
C
o
p
y
r
i
g
h
t

2
0
2
2
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 8:47 AM via
AN: 3134268 ; Jaime Buelta.; Python Architecture Patterns : Master API Design, Event-driven Structures, and Package Management in Python
Account: ns335141

Python Architecture Patterns

Master API design, event-driven structures, and
package management in Python

Jaime Buelta

BIRMINGHAM—MUMBAI

"Python" and the Python Logo are trademarks of the Python Software Foundation.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Python Architecture Patterns
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Saby D'silva
Project Editor: Parvathy Nair
Content Development Editor: Alex Patterson
Copy Editor: Safis Editor
Technical Editor: Tejas Mhasvekar
Proofreader: Safis Editor
Indexer: Pratik Shirodkar
Presentation Designer: Pranit Padwal

First published: January 2022

Production reference: 2020222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-999-2

www.packt.com

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

www.packt.com

Contributors

About the author
Jaime Buelta has been a professional programmer for 20 years and a full-time
Python developer for over 10. During that time, he has been exposed to a lot of
different technologies while working for different industries and helping them
achieve their goals; these industries include aerospace, industrial systems, video
game online services, finance services and educational tools. He has been writing
technical books since 2018, reflecting on lessons learned over his career, including
Python Automation Cookbook and Hands On Docker for Microservices in Python. He is
currently living in Dublin, Ireland.

Writing a book is always more than a single person's work. There're not
only the people involved directly in polishing and improving the drafts, but
also a lot of conversations and talks with exceptional people in the Python
and tech community that shape the ideas in it. It also wouldn't be possible
without the love and support from Dana, my amazing wife.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Pradeep Pant is a computer programmer, software architect, AI researcher and
open source advocate. Pradeep has been writing computer programs for more than 2
decades in various programming languages and platforms, such as microprocessor/
Assembly, C, C++, Perl, Python, R, JavaScript, AI/ML, Linux, the cloud and many
more. Pradeep holds a master's degree in physics and another master's in computer
science. In his free time, Pradeep likes to write about his tech journey and learnings
at https://pradeeppant.com.

Pradeep works with Ockham BV, a Belgium-based software development company.
The company develops software in the quality and document management systems
space.

Pradeep can be contacted through email or through professional networks:

• Email: pp@pradeeppant.com
• LinkedIn: https://www.linkedin.com/in/ppant/
• GitHub: https://github.com/ppant

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pradeeppant.com
pp@pradeeppant.com
https://www.linkedin.com/in/ppant/
https://github.com/ppant

[v]

Table of Contents
Preface xiii
Chapter 1: Introduction to Software Architecture 1

Defining the structure of a system 2
Division into smaller units 4

In-process communication 6
Conway's Law – Effects on software architecture 7
Application example – Overview 9
Security aspects of software architecture 11
Summary 13

Part I: Design 15
Chapter 2: API Design 17

Abstractions 18
Using the right abstractions 21
Leaking abstractions 22
Resources and action abstractions 23

RESTful interfaces 25
A more practical definition 26
Headers and statuses 29
Designing resources 32
Resources and parameters 34
Pagination 35
Designing a RESTful API process 37
Using the Open API specification 40

Authentication 44
Authenticating HTML interfaces 44
Authenticating RESTful interfaces 46

Self-encoded tokens 49
Versioning the API 51

Why versioning? 51
Internal versus external versioning 51

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Semantic versioning 52
Simple versioning 54

Frontend and backend 55
Model View Controller structure 57

HTML interfaces 58
Traditional HTML interfaces 58
Dynamic pages 59
Single-page apps 61
Hybrid approach 63

Designing the API for the example 63
Endpoints 65
Review of the design and implementation 73

Summary 73
Chapter 3: Data Modeling 75

Types of databases 76
Relational databases 77
Non-relational databases 79

Key-value stores 80
Document stores 81
Wide-column databases 82
Graph databases 83

Small databases 83
Database transactions 85
Distributed relational databases 87

Primary/replica 88
Sharding 90

Pure sharding 92
Mixed sharding 93
Table sharding 95

Advantages and disadvantages of sharding 96
Schema design 97

Schema normalization 101
Denormalization 103

Data indexing 105
Cardinality 107

Summary 110
Chapter 4: The Data Layer 111

The Model layer 112
Domain-Driven Design 112
Using ORM 114

Independence from the database 116
Independence from SQL and the Repository pattern 116

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

No problems related to composing SQL 118
The Unit of Work pattern and encapsulating the data 122
CQRS, using different models for read and write 126

Database migrations 130
Backward compatibility 130
Relational schema changes 131

Changing the database without interruption 132
Data migrations 136

Changes without enforcing a schema 137
Dealing with legacy databases 139

Detecting a schema from a database 139
Syncing the existing schema to the ORM definition 141

Summary 143
Part II: Architectural Patterns 145
Chapter 5: The Twelve-Factor App Methodology 147

Intro to the Twelve-Factor App 148
Continuous Integration 149
Scalability 151
Configuration 153
The Twelve Factors 156

Build once, run multiple times 157
Dependencies and configurations 159
Scalability 163
Monitoring and admin 166

Containerized Twelve-Factor Apps 169
Summary 171

Chapter 6: Web Server Structures 173
Request-response 174
Web architecture 177
Web servers 177

Serving static content externally 180
Reverse proxy 182
Logging 185
Advanced usages 186

uWSGI 186
The WSGI application 187
Interacting with the web server 189
Processes 190
Process lifecycle 191

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[viii]

Python worker 195
Django MVT architecture 195
Routing a request towards a View 197
The View 199

HttpRequest 201
HttpResponse 203

Middleware 205
Django REST framework 208

Models 209
URL routing 210
Views 210
Serializer 212

External layers 216
Summary 217

Chapter 7: Event-Driven Structures 219
Sending events 220
Asynchronous tasks 221
Subdividing tasks 226
Scheduled tasks 227
Queue effects 227

Single code for all workers 232
Cloud queues and workers 233

Celery 235
Configuring Celery 236
Celery worker 237
Triggering tasks 240
Connecting the dots 241
Scheduled tasks 244
Celery Flower 249
Flower HTTP API 252

Summary 254
Chapter 8: Advanced Event-Driven Structures 255

Streaming events 256
Pipelines 260

Preparation 261
Base task 263
Image task 264
Video task 266
Connecting the tasks 267
Running the task 270

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ix]

Defining a bus 272
More complex systems 274
Testing event-driven systems 278
Summary 280

Chapter 9: Microservices vs Monolith 281
Monolithic architecture 282
The microservices architecture 283
Which architecture to choose 285

A side note about similar designs 289
The key factor – team communication 290
Moving from a monolith to microservices 294

Challenges for the migration 294
A move in four acts 296

1. Analyze 297
2. Design 298
3. Plan 301
4. Execute 303

Containerizing services 306
Building and running an image 308
Building and running a web service 311

uWSGI configuration 314
nginx configuration 314
Start script 315
Building and running 316
Caveats 319

Orchestration and Kubernetes 320
Summary 322

Part III: Implementation 325
Chapter 10: Testing and TDD 327

Testing the code 328
Different levels of testing 331

Unit tests 331
Integration tests 332
System tests 333

Testing philosophy 334
How to design a great test 336
Structuring tests 339

Test-Driven Development 342
Introducing TDD into new teams 345
Problems and limitations 346
Example of the TDD process 347

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[x]

Introduction to unit testing in Python 350
Python unittest 350
Pytest 354

Testing external dependencies 358
Mocking 361
Dependency injection 364
Dependency injection in OOP 366

Advanced pytest 369
Grouping tests 370
Using fixtures 374

Summary 379
Chapter 11: Package Management 381

The creation of a new package 382
Trivial packaging in Python 384
The Python packaging ecosystem 386

PyPI 387
Virtual environments 390
Preparing an environment 392

A note on containers 393
Python packages 394

Creating a package 395
Development mode 398
Pure Python package 398

Cython 401
Python package with binary code 405
Uploading your package to PyPI 408
Creating your own private index 415
Summary 419

Part IV: Ongoing operations 421
Chapter 12: Logging 423

Log basics 424
Producing logs in Python 426
Detecting problems through logs 430

Detecting expected errors 430
Capturing unexpected errors 431

Log strategies 434
Adding logs while developing 437
Log limitations 438
Summary 439

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xi]

Chapter 13: Metrics 441
Metrics versus logs 442

Kinds of metrics 443
Generating metrics with Prometheus 445

Preparing the environment 445
Configuring Django Prometheus 447
Checking the metrics 449
Starting a Prometheus server 450

Querying Prometheus 454
Proactively working with metrics 459
Alerting 460
Summary 461

Chapter 14: Profiling 463
Profiling basics 464
Types of profilers 465
Profiling code for time 468

Using the built-in cProfile module 470
Line profiler 475

Partial profiling 481
Example web server returning prime numbers 482
Profiling the whole process 486
Generating a profile file per request 489

Memory profiling 492
Using memory_profiler 494
Memory optimization 496

Summary 498
Chapter 15: Debugging 501

Detecting and processing defects 502
Investigation in production 504
Understanding the problem in production 506

Logging a request ID 507
Analyzing data 513
Increasing logging 514

Local debugging 515
Python introspection tools 518
Debugging with logs 522
Debugging with breakpoints 524
Summary 528

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xii]

Chapter 16: Ongoing Architecture 531
Adjusting the architecture 532
Scheduled downtime 533

Maintenance window 534
Incidents 535

Postmortem analysis 537
Premortem analysis 540

Load testing 541
Versioning 543
Backward compatibility 546

Incremental changes 548
Deploying without interruption 551

Feature flags 554
Teamwork aspects of changes 555
Summary 557

Other Books You May Enjoy 561
Index 567

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[xiii]

Preface
The evolution of software means that, over time, systems grow to be more and more
complex, and require more and more developers working on them in a coordinated
fashion. As the size increases, a general structure arises from there. This structure, if
not well planned, can become really chaotic and difficult to work with.

The challenge of software architecture is to plan and design this structure. A well-
designed architecture makes different teams able to interact with each other while at
the same time having a clear understanding of their own responsibilities and their
goals.

The architecture of a system should be designed in a way that day-to-day software
development is possible with minimal resistance, allowing for adding features and
expanding the system. The architecture in a live system is also always in flux, and
can be adjusted and expanded as well, reshaping the different software elements in a
deliberate and smooth fashion.

In this book we will see the different aspects of software architecture, from the top
level to some of the lower-level details that support the higher view. The book is
structured in four sections, covering all the different aspects in the life cycle:

• Design before writing any code
• Architectural patterns to use proven approaches
• Implementation of the design in actual code
• Ongoing operation to cover changes, and verification that it's all working as

expected

During the book we will cover different techniques across all these aspects.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[xiv]

Who this book is for
This book is for software developers that want to expand their knowledge of
software architecture, whether experienced developers that want to expand and
solidify their intuitions about complex systems, or less experienced developers who
want to learn and grow their abilities, facing bigger systems with a broader view.

We will use code written in Python for the examples. Though you're not required to
be an expert, some basic knowledge of Python is advisable.

What this book covers
Chapter 1, Introduction to Software Architecture, presents the topic of what software
architecture is and why it is useful, as well as presenting a design example.

The first section of the book covers the Design phase, before the software is written:

Chapter 2, API Design, shows the basics of designing useful APIs that abstract the
operations conveniently.

Chapter 3, Data Modeling, talks about the particularities of storage systems and how to
design the proper data representation for the application.

Chapter 4, The Data Layer, goes over the code handling of the stored data, and how to
make it fit for purpose.

Next, we will present a section that covers the different Architectural patterns
available, which reuse proven structures:

Chapter 5, The Twelve-Factor App Methodology, shows how this methodology includes
good practices that can be useful when operating with web services and can be
applied in a variety of situations.

Chapter 6, Web Server Structures, explains web services and the different elements to
take into consideration when settling on both the operative and the software design.

Chapter 7, Event-Driven Structures, describes another kind of system that works
asynchronously, receiving information without returning an immediate response.

Chapter 8, Advanced Event-Driven Structures, explains more advanced usages for
asynchronous systems, and some different patterns that can be created.

Chapter 9, Microservices vs Monolith, presents these two architectures for complex
systems, and goes over their differences.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[xv]

The Implementation section of the book covers how the code is written:

Chapter 10, Testing and TDD, talks about the fundaments of testing and how Test
Driven Development can be used in the coding process.

Chapter 11, Package Management, follows the process of creating reusable parts of code
and how to distribute them.

Finally, the last section deals about Ongoing operations, where the system is in
operation and requires monitoring at the same time that is adjusted and changed:

Chapter 12, Logging, describes how to record what working systems are doing.

Chapter 13, Metrics, discusses aggregating different values to see how the whole
system is behaving.

Chapter 14, Profiling, explains how to understand how code is executed to improve its
performance.

Chapter 15, Debugging, covers the process of digging deep into the execution of code
to find and fix errors.

Chapter 16, Ongoing Architecture, describes how to successfully operate architectural
changes on running systems.

To get the most out of this book
• The book uses Python language for code examples, and assumes that the

reader is comfortable reading it, though an expert level is not needed.
• Previous exposure to complex systems with multiple services will be

advantageous to understand the different challenges software architecture
presents. This should be simple for developers with a couple of years of
experience or more.

• Familiarity with web services and REST interfaces is useful to better
understand some elements.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/
PacktPublishing/Python-Architecture-Patterns. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns
https://github.com/PacktPublishing/Python-Architecture-Patterns
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[xvi]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801819992_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, object names, module names, folder names,
filenames, file extensions, pathnames, dummy URLs and user input. Here is an
example: "For this recipe, we need to import the requests module."

A block of code is set as follows:

def leonardo(number):

 if number in (0, 1):
 return 1

 # EXAMPLE COMMENT
 return leonardo(number - 1) + leonardo(number - 2) + 1

Note that code may be edited for concision and clarity. Refer to the full code when
necessary, which is available on GitHub.

Any command-line input or output is written as follows (notice the $ symbol):

$ python example_script.py parameters

Any input in the Python interpreter is written as follows (notice the >>> symbol).
Expected output will be reflected without the >>> symbol:

>>> import logging
>>> logging.warning('This is a warning')
WARNING:root:This is a warning

To enter the Python interpreter, call the python3 command with no parameters:

$ python3
Python 3.9.7 (default, Oct 13 2021, 06:45:31)
[Clang 13.0.0 (clang-1300.0.29.3)] on darwin

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://static.packt-cdn.com/downloads/9781801819992_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801819992_ColorImages.pdf

Preface

[xvii]

Type "help", "copyright", "credits" or "license" for more information.
>>>

Any command-line input or output is written as follows:

$ cp example.txt copy_of_example.txt

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit http://authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com/submit-errata
http://authors.packtpub.com

Preface

[xviii]

Share your thoughts
Once you've read Python Architecture Patterns, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure
we're delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://packt.link/r/1801819998

[1]

1
Introduction to Software

Architecture
The objective of this chapter is to present an introduction to what software
architecture is and where it's useful. We will look at some of the basic techniques
used when defining the architecture of a system and a baseline example of the web
services architecture.

This chapter includes a discussion of the implications that software structure has
for team structure and communication. As the successful building of any non-tiny
piece of software depends heavily on successful communication and collaboration
between one or more teams of multiple developers, this factor should be taken into
consideration. Also, the structure of the software can have a profound effect on how
different elements are accessed, so how software is structured has ramifications for
security.

Also, in this chapter, there will be a brief introduction to the architecture of
an example system that we will be using to present the different patterns and
discussions throughout the rest of the book.

In this chapter, we'll cover the following topics:

• Defining the structure of a system
• Dividing into smaller units
• Conway's Law in software architecture
• General overview of the example
• Security aspects of software architecture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Software Architecture

[2]

Let's dive in.

Defining the structure of a system
At its core, software development is about creating and managing complex systems.

In the early days of computing, programs were relatively simple. At most, they
perhaps could calculate a parabolic trajectory or factorize numbers. The very first
computer program, designed in 1843 by Ada Lovelace, calculated a sequence of
Bernoulli numbers. A hundred years after that, during the Second World War,
electronic computers were invented to break encryption codes. As the possibilities
of the new invention started to be explored, more and more complex operations and
systems were designed. Tools like compilers and high-level languages multiplied the
number of possibilities and the rapid advancement of hardware allowed more and
more operations to be performed. This quickly created a need to manage the growing
complexity and apply consistent engineering principles to the creation of software.

More than 50 years after the birth of the computing industry, the software tools at
our disposal are incredibly varied and powerful. We stand on the shoulders of giants
to build our own software. We can quickly add a lot of functionalities with relatively
little effort, either leveraging high-level languages and APIs or using out-of-the-
box modules and packages. With this great power comes the great responsibility of
managing the explosion of complexity that it produces.

In the most simple terms, software architecture defines the structure of a software
system. This architecture can develop organically, usually in the early stages of
a project, but after system growth and a few change requests, the need to think
carefully about the architecture becomes more and more important. As the system
becomes bigger, the structure becomes more difficult to change, which affects future
efforts. It's easier to make changes following the structure rather than against the
structure.

Making it so that certain changes are difficult to do is not
necessarily always a bad thing. Changes that should be made
difficult could involve elements that need to be overseen by
different teams or perhaps elements that can affect external
customers. While the main focus is to create a system that's easy
and efficient to change in the future, a smart architectural design
will have a proper balance of ease and difficulty based on the
requirements. Later in the chapter, we will study security as a clear
example of when to keep certain operations difficult to implement.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[3]

At the core of software architecture, then, is taking a look at the big picture: to focus
on where the system is going to be in the future, to be able to materialize this view,
but also to help the present situation. The usual choice between short-term wins
and long-term operation is very important in development, and its most common
outcome is the creation of technical debt. Software architecture deals mostly with
long-term implications.

The considerations for software architecture can be quite numerous and there needs
to be a balance between them. Some examples may include:

• Business vision, if the system is going to be commercially exploited. This
may include requirements coming from stakeholders like marketing, sales,
or management. Business vision is typically driven by customers.

• Technical requirements, like being sure that the system is scalable and can
handle a certain number of users, or that the system is fast enough for its use
case. A news website requires different update times than a real-time trading
system.

• Security and reliability concerns, the seriousness of which depends on how
risky or critical the application and the data stored are.

• Division of tasks, to allow multiple teams, perhaps specialized in different
areas, to work in a flexible way at the same time on the same system. As
systems grow, the need to divide them into semi-autonomous, smaller
components becomes more pressing. Small projects may live longer with a
"single-block" or monolithic approach.

• Use specific technologies, for example, to allow integration with other
systems or leverage the existing knowledge in the team.

These considerations will influence the structure and design of a system. In a sense,
the software architect is responsible for implementing the application vision and
matching it with the specific technologies and teams that will develop it. That
makes the software architect an important intermediary between the business
teams and the technology teams, as well as between the different technology teams.
Communication is a critical aspect of the job.

To enable successful communication, a good architecture should define boundaries
between the different aspects and assign clear responsibilities. The software architect
should, in addition to defining clear boundaries, facilitate the creation of interface
channels between the system components and follow up on the implementation
details.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Software Architecture

[4]

Ideally, the architectural design should happen at the beginning of system design,
with a well thought-out design based on the requirements for the project. This is
the general approach in this book because it's the best way to explain the different
options and techniques. But it's not the most common use case in real life.

One of the main challenges for a software architect is working with existing systems
that need to be adapted, making incremental approaches toward a better system, all
while not interrupting the normal daily operation that keeps the business running.

Division into smaller units
The main technique for software architecture is to divide the whole system into
smaller elements and describe how they interact with each other. Each smaller
element, or unit, should have a clear function and interface.

For example, a common architecture for a typical system could be a web service
architecture composed of:

• A database that stores all the data in MySQL
• A web worker that serves dynamic HTML content written in PHP
• An Apache web server that handles all the web requests, returns any static

files, like CSS and images, and forwards the dynamic requests to the web
worker

Figure 1.1: Typical web architecture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[5]

As you can see, every different element has a distinct function in the system. They
interact with each other in clearly defined ways. This is known as the Single-
Responsibility principle. When presented with new features, most use cases will fall
clearly within one of the elements of the system. Any style changes will be handled
by the web server and dynamic changes by the web worker. There are dependencies
between the elements, as the data stored in the database may need to be changed to
support dynamic requests, but they can be detected early in the process.

Each element has different requirements and characteristics:

• The database needs to be reliable, as it stores all the data. Maintenance work
like backup- and recovery-related work will be important. The database
won't be updated very frequently, as databases are very stable. Changes to
the table schemas will be made through restarts in the web worker.

• The web worker needs to be scalable and not store any state. Instead, any
data will be sent and received from the database. This element will be
updated often. Multiple copies can be run, either in the same machine or in
multiple ones to allow horizontal scalability.

• The web server will require some changes for new styling, but that won't
happen very often. Once the configuration is properly set up, this element
will remain quite stable. Only one web server per machine is required, as it's
capable of load-balancing between multiple web workers.

This architecture and tech stack has been extremely popular
since the early 2000s and was called LAMP, an acronym made
from the different open source projects involved: (L)inux as an
operating system, (A)pache, (M)ySQL, and (P)HP. Nowadays,
the technologies can be swapped for equivalent ones, like using
PostgreSQL instead of MySQL or Nginx instead of Apache, but still
using the LAMP name. The LAMP architecture can be considered
the default starting point when designing web-based client/server
systems using HTTP, creating a solid and proven foundation to
start building a more complex system.

We will describe this architecture in greater detail in Chapter 9.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Software Architecture

[6]

As we can see, the work balance between elements is very different, as the web
worker will be the focus for most new work, while the other two elements will be
much more stable. The database will require specific work for us to be sure that it's in
good shape, as it's arguably the most critical element of the three. The other two can
recover quickly if there's a problem, but any corruption in the database will generate
a lot of problems.

The communication protocols are also unique. The web worker talks to the database
using SQL statements. The web server talks to the web worker using a dedicated
interface, normally FastCGI or a similar protocol. The web server communicates with
the external clients via HTTP requests. The web server and the database don't talk to
each other.

These three protocols are different. This doesn't have to be the case for all systems;
different components can share the same protocol. For example, there can be
multiple RESTful interfaces, which is common in microservices.

In-process communication
The typical way of looking at different units is as different processes running
independently, but that's not the only option. Two different modules inside the
same process can still follow the Single-Responsibility principle.

The most critical and valuable element of a system is almost always
the stored data.

The Single-Responsibility principle can be applied at different
levels and is used to define the divisions between functions or
other blocks. So, it can be applied in smaller and smaller scopes.
It's turtles all the way down! But, from the point of view of
architecture, the higher-level elements are the most important, as
it's the higher level that defines the structure. Knowing how far
to go in terms of detail is clearly important, but when taking an
architectural approach, it is better to err on the "big picture" side
rather than the "too much detail" one.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[7]

A clear example of this would be a library that's maintained independently, but it
could also be certain modules within a code base. For example, you could create a
module that performs all the external HTTP calls and handles all the complexity
of keeping connections, retries, handling errors, and so on, or you could create a
module to produce reports in multiple formats, based on some parameters.

The important characteristic is that in order to create an independent element, the
API needs to be clearly defined and the responsibility needs to be well defined. It
should be possible for the module to be extracted into a different repo and installed
as a third-party element for it to be considered truly independent.

Inside the same component, communication is typically straightforward, as internal
APIs will be used. In the vast majority of cases, the same programming language will
be used.

Conway's Law – Effects on software
architecture
A critical concept to always keep in mind while dealing with architectural designs
is Conway's Law. Conway's Law is a well-known adage that postulates that the
systems introduced in organizations mirror the communication pattern of the
organization structure (https://www.thoughtworks.com/insights/articles/
demystifying-conways-law):

Any organization that designs a system (defined broadly) will produce a design
whose structure is a copy of the organization's communication structure.

– Melvin E. Conway

Creating a big component with internal divisions only is a well-
known pattern called a monolithic architecture. The LAMP
architecture described above is an example of that, as most of the
code is defined inside the web worker. Monoliths are the usual de
facto starts of projects, as normally at the start there's no big plan
and dividing things strictly into multiple components doesn't have
a big advantage when the code base is small. As the code base and
system grow more and more complex, the division of elements
inside the monolith starts to make sense, and later it may start to
make sense to split it into several components. We will discuss
monoliths further in Chapter 9, Microservices vs Monolith.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.thoughtworks.com/insights/articles/demystifying-conways-law
https://www.thoughtworks.com/insights/articles/demystifying-conways-law

Introduction to Software Architecture

[8]

This means that the structure of the organization's people is replicated, either
explicitly or otherwise, to form the software structure created by an organization. In
a very simple example, a company that has two big departments – say, purchases
and sales – will tend to create two big systems, one focused on buying and another
on selling, that talk to each other, instead of other possible structures, like a system
with divisions by product.

This can feel natural; after all, communication between teams is more difficult than
communication within teams. Communication between teams would need to be
more structured and require more active work. Communication inside a single group
would be more fluid and less rigid. These elements are key for the design of a good
software architecture.

The main thing for the successful application of any software architecture is that
the team structure needs to follow the designed architecture quite closely. Trying
to deviate too much will result in difficulties, as the tendency will be to structure,
de facto, everything following group divisions. In the same way, changing the
architecture of a system would likely necessitate restructuring the organization.
This is a difficult and painful process, as anyone who has experienced a company
reorganization will attest.

Division of responsibilities is also a key aspect. A single software element should
have a clear owner, and this shouldn't be distributed across multiple teams. Different
teams have different goals and focuses, which will complicate the long-term vision
and create tensions.

If there's a big imbalance in the mapping of work units to teams (for example, too
many work units for one team and too few for another team), it is likely that there's
a problem with the architecture of the system.

As remote work becomes more common and teams increasingly become located
in different parts of the world, communication is also impacted. That's why it
has become very common to set up different branches to take care of different
elements of the system and to use detailed APIs to overcome the physical barriers
of geographical distance. Communication improvements also have an effect on the
capacity for collaboration, making remote work more effective and allowing fully
remote teams to work closely together on the same code base.

The reverse, a single team taking ownership of multiple elements,
is definitely possible but also requires careful consideration to
ensure that this doesn't overstress the team.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[9]

Conway's Law should not be considered an impediment to overcome but a
reflection of the fact that organizational structure has an impact on the structure
of the software. Software architecture is tightly related to how different teams
are coordinated and responsibilities are divided. It has an important human
communication component.

Keeping this in mind will help you design a successful software architecture so
that the communication flow is fluid at all times and you can identify problems in
advance. Software architecture is, of course, closely tied to the human factor, as the
architecture will ultimately be implemented and maintained by engineers.

Application example – Overview
In this book, we will be using an application as an example to demonstrate the
different elements and patterns presented. This application will be simple but
divided into different elements for demonstration purposes. The full code for the
example is available on GitHub, and different parts of it will be presented in the
different chapters. The example is written in Python, using well-known frameworks
and modules.

The example application is a web application for microblogging, very similar to
Twitter. In essence, users will write short text messages that will be available for
other users to read.

The recent COVID-19 crisis has greatly increased the trend of
remote working, especially in software. This is resulting in more
people working remotely and in better tools that are adapted to
work in this way. While time zone differences are still a big barrier
to communication, more and more companies and teams are
learning to work effectively in full-remote mode. Remember that
Conway's Law is very much dependent on the communication
dependencies of organizations, but communication itself can
change and improve.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Software Architecture

[10]

The architecture of the example system is described in this diagram:

Figure 1.2: Example architecture

It has the following high-level functional elements:

• A public website in HTML that can be accessed. This includes functionality
for login, logout, writing new micro-posts, and reading other users' micro-
posts (no need to be logged in for this).

• A public RESTful API, to allow the usage of other clients (mobile, JavaScript,
and so on) instead of the HTML site. This will authenticate the users using
OAuth and perform actions similar to the website.

• A task manager that will execute event-driven tasks. We will add periodic
tasks that will calculate daily statistics and send email notifications to users
when they are named in a micro-post.

• A database that stores all the information. Note that access to it is shared
between the different elements.

• Internally, a common package to ensure that the database is accessed
correctly for all the services. This package works as a different element.

These two elements, while distinct, will be made into a
single application, as shown in the diagram. The front-
facing part of the application will include a web server, as
we saw in the LAMP architecture description, which has
not been displayed here for simplicity.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[11]

Security aspects of software architecture
An important element to take into consideration when creating an architecture is
the security requirements. Not every application is the same, so some can be more
relaxed in this aspect than others. For example, a banking application needs to be 100
times more secure than, say, an internet forum for discussing cats. The most common
example of this is the storage of passwords. The most naive approach to passwords
is to store them, in plain text, associated with a username or email address – say, in a
file or a database table. When the user tries to log in, we receive the input password,
compare it with the one stored previously, and, if they are the same, we allow the
user to log in. Right?

Well, this is a very bad idea, because it can produce serious problems:

• If an attacker has access to the storage for the application, they'll be able to
read the passwords of all the users. Users tend to reuse passwords (even if
it's a bad idea), so, paired with their emails, they'll be exposed to attacks on
multiple applications, not only the breached one.

• Another real issue is insider threats, workers who may have legitimate access
to the system but copy data for nefarious purposes or by mistake. For very
sensitive data, this can be a very important consideration.

• Mistakes like displaying the password of a user in status logs.

To make things secure, data needs to be structured in a way that's as protected as
possible from access or even copying, without exposing the real passwords of users.
The usual solution to this is to have the following schema:

1. The password itself is not stored. Instead, a cryptographical hash of the
password is stored. This applies a mathematical function to the password
and generates a replicable sequence of bits, but the reverse operation is
computationally very difficult.

2. As the hash is deterministic based on the input, a malicious actor could
detect duplicated passwords, as their hashes are the same. To avoid this
problem, a random sequence of characters, called a salt, is added for each
account. This will be added to each password before hashing, meaning two
users with the same password but different salts will have different hashes.

This may seem unlikely, but keep in mind that any copy of
the data stored is susceptible to attack, including backups.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Software Architecture

[12]

3. Both the resulting hash and the salt are stored.
4. When a user tries to log in, their input password is added to the salt, and the

result is compared with the stored hash. If it's correct, the user is logged in.

Note that in this design, the actual password is unknown to the system. It's not
stored anywhere and is only accepted temporarily to compare it with the expected
hash, after being processed.

This kind of system is more secure than one that stores the password directly, as
the password is not known by the people operating the system, nor is it stored
anywhere.

In certain cases, the same approach as for passwords can be taken to encrypt other
stored data, so that only customers can access their own data. For example, you can
enable end-to-end encryption for a communication channel.

Security has a very close relationship with the architecture of a system. As we saw
before, the architecture defines which aspects are easy and difficult to change and
can make some unsafe things impossible to do, like knowing the password of a user,
as we described in the previous example. Other options include not storing data
from the user to keep privacy or reducing the data exposed in internal APIs, for
example. Software security is a very difficult problem and is often a double-edged
sword, and trying to make a system more secure can have the side effect of making
operations long-winded and inconvenient.

This example is presented in a simplified way. There are multiple
ways of using this schema and different ways of comparing a
hash. For example, the bcrypt function can be applied multiple
times, increasing encryption each time, which can increase the time
required to produce a valid hash, making it more resistant to brute-
force attacks.

The problem of mistakenly displaying the password of a user in
status logs may still happen! Extra care should be taken to make
sure that sensitive information is not being logged by mistake.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[13]

Summary
In this chapter, we looked at what software architecture is and when it is required, as
well as its focus on the long-term approach, which is characteristic of the discipline.
We learned that the underlying structure of software is difficult to change and that
that aspect should be taken into consideration when designing and changing a
software system.

We described how the most important thing is to divide a complex system into
smaller parts and assign clear goals and objectives to each of them, keeping in
mind that these smaller parts can use multiple programming languages and refer
to different scopes. We also described the LAMP architecture and how it's a widely
successful starting point when creating simple web service systems.

We talked about how Conway's Law affects the architecture of a system, as
underlying team structures have a direct impact on the implementation and
structure of software. After all, software is operated and developed by humans, and
human communication needs to be accounted for to implement it successfully.

We described the example that we will use throughout the book to describe the
different elements and patterns we will present. Finally, we commented on the
security aspects of software architecture and how creating barriers to accessing data
as part of the structural design of a system can mitigate security issues.

In the next section of the book, we will talk about the different aspects of designing a
system.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

We will first spend some time explaining the basic steps to designing a system. My
suggestion is as follows: "Design is the first stage of any successful system, and
encompasses everything that you work on before you begin implementation." In this
section, we will focus on the general principles and core aspects of each element of
the system.

Two main core elements should be at the forefront when designing each part of the
system: The interface, or how an element of the system connects to the rest, and data
storage, how this element stores information that can be retrieved later.

Both are critical. The interface defines what the system is and its functionality from
the point of view of any user. A well-designed interface hides the implementation
details and provides some abstractions that allow for a consistent and comprehensive
way of performing actions.

The heart of virtually every successful working system is the data. This is where the
value of the system lies. Any seasoned engineer will tell you that an organization can
reconstruct a system when the data is available, even if the code that produced it is
lost, rather than recover from a total loss of the data, even if the application code is
available.

The storage of data is, then, the core of the system. There are many options we can
choose from when it comes to storing our data. What kind of database? Store the
data in one data storage facility, or several? The traditional way of using raw access
to the database, typically in plain SQL statements, is not the most efficient option,
and it's prone to problems when complex systems are involved. Other kinds of
databases exist that don't even use SQL. We will look at multiple options along with
their pros and cons.

Part I
Design

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing how the data is stored in the system is hard once the system is in
operation. It isn't impossible but will require a lot of work. The storage option is
arguably the founding stone when designing a new system, so be sure that the
chosen option fits your requirements. It can be difficult to design something that isn't
overly complex but also allows the allocated space to grow as the application starts
to store more and more data as it's used.

This section of the book comprises the following chapters:

1. API Design, describing how to create useful, yet flexible, interfaces
2. Data Modeling, with different ways of handling and representing data to

ensure that this critical aspect is well thought through from the outset

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[17]

2
API Design

In this chapter, we will talk about the basic application programming interface
(API) design principles. We will see how to start our design by defining useful
abstractions that will create the foundation for the design.

We will then present the principles for RESTful interfaces, covering both the strict,
academic definition and a more practical definition to help when making designs.
We will look at design approaches and techniques to help create a useful API based
on standard practices. We will also spend some time talking about authentication, as
this is a critical element for most APIs.

We will cover how to create a versioning system for the API, attending to the
different use cases that can be affected.

We will focus in this book on RESTful interfaces, as they are the
most common right now. Before that, there were other alternatives,
including Remote Procedure Call (RPC) in the 80s, a way to make
a remote function call, or Single Object Access Protocol (SOAP) in
the early 2000s, which standardized the format of the remote call.
Current RESTful interfaces are easier to read and take advantage
of the already established usage of HTTP more strongly, although,
in essence, they could potentially be integrated via these older
specifications.

They are still available nowadays, although predominantly in older
systems.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[18]

We will see the difference between the frontend and the backend, and its interaction.
Although the main objective of the chapter is to talk about API interfaces, we will
also talk about HTML interfaces to see the differences and how they interact with
other APIs.

Finally, we will describe the design for the example that we will use later in the book.

In this chapter, we'll cover the following topics:

• Abstractions
• RESTful interfaces
• Authentication
• Versioning the API
• Frontend and backend
• HTML interfaces
• Designing the API for the example

Let's take a look at abstractions first.

Abstractions
An API allows us to use a piece of software without totally understanding all the
different steps that are involved. It presents a clear menu of actions that can be
performed, enabling an external user, who doesn't necessarily understand the
complexities of the operation, to perform them efficiently. It presents a simplification
of the process.

These actions can be purely functional, where the output is only related to the input;
for example, a mathematical function that calculates the barycenter of a planet and a
star, given their orbits and masses.

Alternatively, they can deal with state, as the same action repeated twice may have
different effects; for example, retrieving the time in the system. Perhaps even a call
allows the time zone of the computer to be set, and two subsequent calls to retrieve
the time may return very different results.

In both cases, the APIs are defining abstractions. Retrieving the time of the system
in a single operation is simple enough, but perhaps the details of doing so are not
so easy. It may involve reading in a certain way some piece of hardware that keeps
track of time.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[19]

Different hardware may report the time differently, but the result should always be
translated in a standard format. Time zones and time savings need to be applied. All
this complexity is handled by the developers of the module that exposes the API and
provides a clear and understandable contract with any user. "Call this function, and
the time in ISO format will be returned."

This is, of course, a simple example, but APIs can hide a tremendous amount of
complexity under their interfaces. A good example to think about is a program like
curl. Even when just sending an HTTP request to a URL and printing the returned
headers, there is a huge amount of complexity associated with this:

$ curl -IL http://google.com
HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Tue, 09 Mar 2021 20:39:09 GMT
Expires: Thu, 08 Apr 2021 20:39:09 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 219
X-XSS-Protection: 0
X-Frame-Options: SAMEORIGIN

HTTP/1.1 200 OK
Content-Type: text/html; charset=ISO-8859-1
P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."
Date: Tue, 09 Mar 2021 20:39:09 GMT
Server: gws
X-XSS-Protection: 0
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
Expires: Tue, 09 Mar 2021 20:39:09 GMT

While we are mainly talking about APIs, and throughout the book
we will describe mostly ones related to online services, the concept
of abstractions really can be applied to anything. A web page to
manage a user is an abstraction, as it defines the concept of "user
account" and the associated parameters. Another omnipresent
example is the "Shopping cart" for e-commerce. It's good to create
a clear mental image, as it helps to create a clearer and more
consistent interface for the user.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[20]

Cache-Control: private
Set-Cookie: NID=211=V-jsXV6z9PIpszplstSzABT9mOSk7wyucnPzeCz-TUSfOH9_F-
07V6-fJ5t9L2eeS1WI-p2G_1_zKa2Tl6nztNH-ur0xF4yIk7iT5CxCTSDsjAaasn4c6mfp3
fyYXMp7q1wA2qgmT_hlYScdeAMFkgXt1KaMFKIYmp0RGvpJ-jc; expires=Wed, 08-
Sep-2021 20:39:09 GMT; path=/; domain=.google.com; HttpOnly

This makes a call to www.google.com and displays the headers of the response using
the -I flag. The -L flag is added to automatically redirect any request which is what
is happening here.

Making a remote connection to a server requires a lot of different moving parts:

• DNS access to translate the server address www.google.com to an actual IP
address.

• The communication between both servers, which involves using the TCP
protocol to generate a persistent connection and guarantee the reception of
the data.

• Redirection based on the result from the first request, as the server returns
a code pointing to another URL. This was done owing to the usage of the -L
flag.

• The redirection points to an HTTPS URL, which requires adding a
verification and encryption layer on top of that.

Each of these steps also makes use of other APIs to perform smaller actions, which
could involve the functionality of the operating system or even calling remote
servers such as the DNS one to obtain data from there.

But, from the point of view of the user of curl, this is not very relevant. It is
simplified to the point where a single command line with a few flags can perform
a well-defined operation without worrying about the format to get data from the
DNS or how to encrypt a request using SSL.

Here, the curl interface is used from the command line. While the
strict definition of an API discard stipulates that the end user is a
human, there's not really a big change. Good APIs should be easily
testable by human users. Command-line interfaces can also be
easily automated by bash scripts or other languages.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[21]

Using the right abstractions
For a successful interface, the root is to create a series of abstractions and present
them to the user so that they can perform actions. The most important question when
designing a new API is, therefore, to decide which are the best abstractions.

When the process happens organically, the abstractions are decided mostly on the
go. There is an initial idea, acknowledged as an understanding of the problem, that
then gets tweaked.

For example, it's very common to start a user management system by adding
different flags to the users. So, a user has permission to perform action A, and then
a parameter to perform action B, and so on. By adding one flag at a time, come the
tenth flag, the process becomes very confusing.

Then, a new abstraction can be used; roles and permissions. Certain kinds of users
can perform different actions, such as admin roles. A user can have a role, and the
role is the one that describes the related permissions.

Note that this simplifies the problem, as it's easy to understand and manage.
However, moving from "an individual collection of flags" to "several roles" can
be a complicated process. There is a reduction in the number of possible options.
Perhaps some existing users have a peculiar combination of flags. All this needs to
be handled carefully.

While designing a new API, it is good to try to explicitly describe the inherent
abstractions that the API uses to clarify them, at least at a high level. This also has
the advantage of being able to think about that as a user of the API and see if things
add up.

However, every abstraction has its limits.

One of the most useful viewpoints in the work of software
developers is to detach yourself from your "internal view" and take
the position of the actual user of the software. This is more difficult
than it sounds, but it's certainly a skill worth developing. This
will make you a better designer. Don't be afraid to ask a friend or
coworker to detect blind spots in your design.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[22]

Leaking abstractions
When an abstraction is leaking details from the implementation, and not presenting a
perfectly opaque image, it's called a leaky abstraction.

While a good API should try to avoid this, sometimes it happens. This can be caused
by underlying bugs in the code serving the API, or sometimes directly from the way
the code operates in certain operations.

A common case for this is relational databases. SQL abstracts the process of
searching data from how it is actually stored in the database. You can search with
complex queries and get the result, and you don't need to know how the data
is structured. But sometimes, you'll find out that a particular query is slow, and
reorganizing the parameters of the query has a big impact on how this happens. This
is a leaky abstraction.

Operating systems are good examples of a system that generates good abstractions
that don't leak the majority of the time. There are lots of examples. Not being able
to read or write a file due to a lack of space (a less common problem now than three
decades ago); breaking a connection with a remote server due to a network problem;
or not being able to create a new connection due to reaching a limit in terms of the
number of open file descriptors.

Leaky abstractions are, to a certain degree, unavoidable. They are the result of not
living in a perfect world. Software is fallible. Understanding and preparing for that is
critical.

"All non-trivial abstractions, to some degree, are leaky."

– Joel Spolsky's Law of Leaky Abstractions

When designing an API, it is important to take this fact into account for several
reasons:

• To present clear errors and hints externally. A good design will always
include cases for things going wrong and try to present them clearly with
proper error codes or error handling.

This is very common, and the reason why there are significant
tools to help ascertain what is going on when running a SQL query,
which is very detached from the implementation. The main one is
the EXPLAIN command.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[23]

• To deal with errors that could come from dependent services internally.
Dependent services can fail or have other kinds of problems. The API
should abstract this to a certain degree, recovering from the problem if
possible, failing gracefully if not, and returning a proper result if recovery
is impossible.

The best design is the one that not only designs things when they work as expected,
but also prepares for unexpected problems and is sure that they can be analyzed
and corrected.

Resources and action abstractions
A very useful pattern to consider when designing an API is to produce a set
of resources that can perform actions. This pattern uses two kinds of elements:
resources and actions.

Resources are passive elements that are referenced, while actions are performed on
resources.

For example, let's define a very simple interface to play a simple game guessing coin
tosses. This is a game consisting of three guesses for three coin tosses, and the user
wins if at least two of these guesses are correct.

The resource and actions may be as follows:

Resource Actions Details
HEADS None A coin toss result.
TAILS None A coin toss result.
GAME START Start a new GAME.

READ Returns the current round (1
to 3) and the current correct
guesses.

COIN_TOSS TOSS Toss the coin. If the GUESS
hasn't been produced, it
returns an error.

GUESS Accepts HEADS or TAILS as
the guess.

RESULT It returns HEADS or TAILS
and whether the GUESS was
correct.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[24]

A possible sequence for a single game could be:

GAME START
> (GAME 1)
GAME 1 COIN_TOSS GUESS HEAD
GAME 1 COIN_TOSS TOSS
GAME 1 COIN_TOSS RESULT
> (TAILS, INCORRECT)
GAME 1 COIN_TOSS GUESS HEAD
GAME 1 COIN_TOSS TOSS
GAME 1 COIN_TOSS RESULT
> (HEAD, CORRECT)
GAME 1 READ
> (ROUND 2, 1 CORRECT, IN PROCESS)
GAME 1 COIN_TOSS GUESS HEAD
GAME 1 COIN_TOSS TOSS
GAME 1 COIN_TOSS RESULT
> (HEAD, CORRECT)
GAME 1 READ
> (ROUND 3, 2 CORRECT, YOU WIN)

Note how each resource has its own set of actions that can be performed. Actions can
be repeated if that's convenient, but it's not required. Resources can be combined into
a hierarchical representation (like here, where COIN_TOSS depends on a higher GAME
resource). Actions can require parameters that can be other resources.

However, the abstractions are organized around having a consistent set of resources
and actions. This way of explicitly organizing an API is useful as it clarifies what is
passive and what's active in the system.

This is a common pattern, and it's used in RESTful interfaces, as we will see next.

Object-oriented programming (OOP) uses these abstractions, as
everything is an object that can receive messages to perform some
actions. Functional programming, on the other hand, doesn't fit
neatly into this structure, as "actions" can work like resources.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[25]

RESTful interfaces
RESTful interfaces are incredibly common these days, and for good reason. They've
become the de facto standard in web services that serve other applications.

Representational State Transfer (REST) was defined in 2000 in a Ph.D. dissertation
by Roy Fielding, and it uses HTTP standards as a basis to create a definition of a
software architecture style.

For a system to be considered RESTful, it should follow certain rules:

• Client-server architecture. It works through remote calling.
• Stateless. All the information related to a particular request should be

contained in the request itself, making it independent from the specific
server serving the request.

• Cacheability. The cacheability of the responses should be clear, either to say
they are cacheable or not.

• Layered system. The client cannot tell if they are connected to a final server
or if there's an intermediate server.

• Uniform interface, with four prerequisites:
• Resource identification in requests, meaning a resource is

unequivocally represented, and its representation is independent
• Resource manipulation through representations, allowing clients to

have all the required information to make changes when they have
the representation

• Self-descriptive messages, meaning messages are complete in
themselves

• Hypermedia as the Engine of Application State, meaning the client
can walk through the system using referenced hyperlinks

• Code on demand. This is an optional requirement, and it's normally not
used. Servers can submit code in response to help perform operations or
improve the client; for example, submitting JavaScript to be executed in the
browser.

This is the most formal definition. As you can see, it's not necessarily based on
HTTP requests. For more convenient usage, we need to limit the possibilities
somewhat and set a common framework.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[26]

A more practical definition
When people talk colloquially about RESTful interfaces, normally they are
understood as interfaces based on HTTP resources using JSON formatted requests.
This is wholly compatible with the definition that we've seen before, but taking some
key elements into consideration.

The main one is that URIs (Uniform Resource Identifiers) should describe clear
resources, as well as HTTP methods and actions to perform on them, using the
CRUD (Create Retrieve Update Delete) approach.

There are two kinds of URIs, whether they describe a single resource or a collection
of resources, as can be seen in the following table:

Resource Example Method Description
Collection /books GET List operation. Returns all the available

elements of the collection, for example, all
books.

POST Create operation. Creates a new element of the
collection. Returns the newly created resource.

Single /books/1 GET Retrieve operation. Returns the data from the
resource, for example, the book with an ID of 1.

PUT Set (Update) operation. Sends the new data
for the resource. If it doesn't exist, it will be
created. If it does, it will be overwritten.

PATCH Partial update operation. Overwrites only the
partial values for the resource, for example,
sends and writes only the email for the user
object.

DELETE Delete operation. It deletes the resource.

These key elements are sometimes ignored, leading to pseudo-
RESTful interfaces, which don't have the same properties.

CRUD interfaces facilitate the performance of those actions: Create
(save a new entry), Retrieve (read), Update (overwrite), and Delete
entries. These are the basic operations for any persistent storage
system.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[27]

The key element of this design is the definition of everything as a resource, as we
saw before. Resources are defined by their URIs, which contain a hierarchical view of
the resources, for example:

/books/1/cover defines the resource of the cover image from the book with an ID
of 1.

Most of the input and output of the resources will be represented in JSON format.
For example, this could be an example of a request and response to retrieve a user:

GET /books/1

HTTP/1.1 200 OK
Content-Type: application/json
{"name": "Frankenstein", "author": "Mary Shelley", "cover": "http://
library.lbr/books/1/cover"}

The response is formatted in JSON, as specified in Content-Type. This makes it easy
to parse and analyze automatically. Note that the avatar field returns a hyperlink
to another resource. This makes the interface walkable and reduces the amount of
information that the client requires beforehand.

For simplicity, we will use integer IDs to identify the resources in
this chapter. In real-world operations, this is not recommended.
They have no meaning at all, and, even worse, they can sometimes
leak information about the number of elements in the system or
their internal order. For example, a competitor could estimate how
many new entries are being added each week. To detach from
whatever internal representation, try to always use a natural key
externally, if available, such as the ISBN number for books, or
create a random Universally Unique Identifier (UUID).

Another problem with sequential integers is that, at high rates,
the system may struggle to create them correctly, as it won't be
possible to create two at the same time. This can limit the growth of
a system.

This is one of the most forgotten properties when designing
RESTful interfaces. It is preferable to return full URIs to resources
instead of indirect references, such as no-context IDs.

For example, when creating a new resource, include the new URI
in the response, in the Location header.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[28]

To send new values to overwrite, the same format should be used. Note that some
elements may be read-only, such as cover, and aren't required:

PUT /books/1
Content-Type: application/json
{"name": "Frankenstein or The Modern Prometheus", "author": "Mary
Shelley"}
HTTP/1.1 200 OK
Content-Type: application/json
{"name": "Frankenstein or The Modern Prometheus", "author": "Mary
Shelley", "cover": "http://library.com/books/1/cover"}

The same representation should be used for input and output, making it easy for
the client to retrieve a resource, modify it, and then resubmit it.

When the resource will be directly represented by binary content, it can return the
proper format, specified in the Content-Type header. For example, retrieving the
avatar resource may return an image file:

GET /books/1/cover

HTTP/1.1 200 OK
Content-Type: image/png
...

In the same way, when creating or updating a new avatar, it should be sent in the
proper format.

Another important property is ensuring that some actions are idempotent, and
others are not. Idempotent actions can be repeated multiple times, producing the
same result, while repeating not-idempotent actions will generate different results.
Evidently, the action should be identical.

This is really handy and creates a level of consistency that's very
much appreciated when implementing a client. While testing, try
to ensure that retrieving a value and resubmitting it is valid and
doesn't create a problem.

While the original intention of RESTful interfaces was to make use
of multiple formats, for example, accepting XML and JSON, this
is not very common in practice. JSON is, by and large, the most
standard format these days. Some systems may benefit from using
multiple formats, though.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[29]

A clear case of this is the creation of a new element. If we submit two identical POST
creations of a new element of a resource list, it will create two new elements. For
example, submitting two books with the same name and author will create two
identical books.

On the other hand, two GET requests will produce the same result. The same is true
for PUT or DELETE, as they'll overwrite or "delete again" the resource.

The fact that the only non-idempotent requests are POST actions simplifies
significantly the design of measures to deal with problems when there's the question
of whether it should be retried. Idempotent requests are safe to retry at any time,
thereby simplifying the handling of errors such as network problems.

Headers and statuses
An important detail of the HTTP protocol that can sometimes be overlooked is the
different headers and status codes.

Headers include metadata information about the request or response. Some of it
is added automatically, like the size of the body of the request or response. Some
interesting headers to consider are the following:

Header Type Details
Authorization Standard Credentials to authenticate the request.
Content-Type Standard The type of the body of the request, like

application/json or text/html.

Date Standard When the message was created.
If-Modified-Since Standard The sender has a copy of the resource at

this time. If it hasn't changed since then,
a 304 Not Modified response (with an
empty body) can be returned. This allows
the caching of data and saves time and
bandwidth by not returning duplicated
info. This can be used in GET requests.

This is assuming that there's no limitation to the content of the
resource. If they are, the second request will fail, which will
produce a different result to the first in any case.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[30]

X-Forwarded-From De facto
standard

Stores the IP where the message was
originated, and the different proxies it
went through.

Forwarded Standard Same as X-Forwarded-From. This is a
newer header and less common still than
X-Forwarded-From.

A well-designed API will make use of headers to communicate proper information,
for example, setting Content-Type correctly or accepting cache parameters if possible.

Another important detail is to make good use of available status codes. Status codes
provide significant information about what happened, and using the most detailed
information possible for each situation will provide a better interface.

Some common status codes are as follows:

Status code Description
200 OK A successful resource access or modification. It

should return a body; if it doesn't, use 204 No
Content.

201 Created A successful POST request that creates a new resource.
204 No Content A successful request that doesn't return a body, for

example, a successful DELETE request.
301 Moved Permanently The accessed resource is now permanently located in

a different URI. It should return a Location header
with the new URI. Most libraries will follow up
automatically for GET accesses. For example, the API
is only accessible in HTTPS, but it was accessed in HTTP.

302 Found The accessed resource is temporarily located in a
different URI. A typical example is being redirected
to a login page if authenticated.

304 Not Modified A cached resource is still valid. The body should be
empty. This status code is only returned if the client
requested cached information, for example, using the
If-Modified-Since header.

A comprehensive list of headers can be found at https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Chapter 2

[31]

400 Bad Request A generic error in the request. This is the server
saying, "something went wrong on your end." A
more descriptive message should be added to the
body. If a more descriptive status code is possible, it
should be preferred.

401 Unauthorized The request is not allowed, as the request is not
properly authenticated. The request may lack valid
headers for authentication.

403 Forbidden The request is authenticated, but it can't access this
resource. This is different from the 401 Unauthorized
status in that the request is already correctly
authenticated but doesn't have access.

404 Not Found Probably the most famous status code! The resource
described by the URI cannot be found.

405 Method Not Allowed The requested method cannot be used; for example,
the resource cannot be deleted.

429 Too Many Requests The server should return this status code if there's a
limit to the number of requests the client can do. It
should return a description or more info in the body,
and ideally, a Retry-After header indicating the time
in seconds to the next retry.

500 Server Error A generic error in the server. This status should
only be used if an unexpected error happened in the
server.

502 Bad Gateway The server is redirecting the request to a different
server, and the communication was incorrect. This
error normally appears when some backend service is
unavailable or incorrectly configured.

503 Service Unavailable The server is currently unable to handle requests.
Normally, this is a temporary situation, such as a
load problem. It could be used to mark maintenance
downtime, but this is generally rare.

504 Gateway Timeout Similar to 502 Bad Gateway, but in this case, the
backend service didn't respond, provoking a timeout.

In general, non-descriptive error codes such as 400 Bad Request and 500 Server
Error should be left for general situations. However, if there is a better, more
descriptive status code, this should be used instead.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[32]

For example, a PATCH request to overwrite a parameter should return 400 Bad
Request if the parameter is incorrect for any reason, but 404 Not Found if the resource
URI is not found.

In any error, please include some extra feedback to the user with a reason. A general
descriptor can help the handling of unexpected cases and simplify debugging issues.

For example, the mentioned PATCH may return this body:

{
 "message": "Field 'address' is unknown"
}

This will give specific details about the problem. Other options include returning
error codes, multiple messages in case there are multiple possible errors, and also
duplicating the status code in the body.

Designing resources
The available actions in a RESTful API are limited to CRUD operations. Therefore,
resources are the basic construction blocks for the API.

Making everything a resource helps to create very explicit APIs and helps with the
stateless requirement for RESTful interfaces.

There are other status codes. You can check a comprehensive list,
including details on each one, here: https://httpstatuses.com/.

This is especially useful for 4XX errors as they will help users of the
API to fix their own bugs and iteratively improve their integration.

A stateless service means that all the information required to fulfill
a request is either provided by the caller or retrieved externally,
normally from a database. This excludes other ways of keeping
information, such as storing information locally in the same
server's hard drive. This makes any server capable of handling
every single request, and it's critical in achieving scalability.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://httpstatuses.com/

Chapter 2

[33]

Elements that could be activated by creating different actions could be separated
into different resources. For example, an interface simulating a pen could require the
following elements:

• Opening and closing the pen.
• Writing something. Only an open pen can write.

In some APIs, like an object-oriented one, this could involve creating a pen object
and changing its state:

pen = Pen()
pen.open()
pen.write("Something")
pen.close()

In a RESTful API, we need to create different resources for both the pen and its
status:

Create a new pen with id 1
POST /pens
Create a new open pen for pen 1
POST /pens/1/open
Update the new open text for the open pen 1
PUT /pens/1/open/1/text
Delete the open pen, closing the pen
DELETE /pens/1/open/1

This may look a bit cumbersome, but RESTful APIs should aim to be higher level
than the typical object-oriented one. Either create the text directly, or create a pen
and then the text, without having to perform the open/close operation.

Note also that every single aspect and step gets registered and has its own set of
identifiers and is addressable. This is more explicit than the internal state that can be
found in OOP. As we've seen, we want it to be stateless, while objects are very much
stateful.

Keep in mind that RESTful APIs are used in the context of remote
calls. This means that they can't be low level, as each call is a big
investment compared with a local API, as the time per call will be a
sensible part of the operation.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[34]

Dealing only with resources can require certain adaptations if coming from a more
traditional OOP environment, but they are a pretty flexible tool and can allocate
multiple ways of performing actions.

Resources and parameters
While everything is a resource, some elements make more sense as a parameter
that interacts with the resource. This is very natural when modifying the resource.
Any change needs to be submitted to update the resource. But, in other cases, some
resources could be modified for other causes. The most common case is searches.

A typical search endpoint will define a search resource and retrieve its results.
However, a search without parameters to filter is not really useful, so extra
parameters will be required to define the search, for example:

Return every pen in the system
GET /pens/search

Return only red pens
GET /pens/search?color=red

Return only red pens, sorted by creation date
GET /pens/search?color=red&sort=creation_date

These parameters are stored in query parameters, which are natural extensions to
retrieve them.

Keep in mind that a resource doesn't need to be translated directly
into a database object. That's thinking backward, from the storage
to the API. Remember that you are not limited to that, and can
compose resources that obtain information from multiple sources
or that don't fit into a direct translation. We will see examples in
the next chapter.

As a general rule, only GET requests should have query parameters.
Other kinds of request methods should provide any parameters as
part of the body.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[35]

GET requests are also easy to cache if including the query parameters. If the search is
returning the same values for each request, given that that's an idempotent request,
the full URI, including the query parameters, can be cached even externally from the
service.

By convention, all logs that store GET requests will also store the query params, while
any parameter sent as a header or in the body of the request won't be logged. This
has security implications, as any sensible parameter, such as a password, shouldn't
be sent as a query parameter.

Sometimes, that's the reason to create POST operations that typically would be a GET
request, but prefer to set parameters in the body of the request instead of query
parameters. While it is possible in the HTTP protocol to set the body in a GET request,
it's definitely very unusual.

Another reason to use POST requests is to allow a bigger space for parameters, as the
full URL, including query parameters, is normally limited to 2K in size, while bodies
are much less restricted in size.

Pagination
In a RESTful interface, any LIST request that returns a sensible number of elements
should be paginated.

This means that the number of elements and pages can be tweaked from the request,
returning only a specific page of elements. This limits the scope of the request and
avoids very slow response times and waste transmission bytes.

An example could involve using the parameters page and size, for example:

Return only first 10 elements
GET /pens/search?page=1&size=10

A well-constructed response will have a similar format to this:

{
 "next": "http://pens.pns/pens/search?page=2&size=10",
 "previous": null,

An example of this could be searching by phone number, email, or
other personal information, so a middle-man agent could intercept
and learn about them.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[36]

 "result": [
 # elements
]
}

It contains a result field with the resulting list and next and previous fields that are
hyperlinks to the next and previous page, with a value of null if it is not available.
This makes it easy to walk through all the results.

This technique also allows multiple pages to be retrieved in parallel, which can speed
up the downloading of information, doing several small requests instead of one big
one. The objective, though, is to provide sufficient filter parameters for generally
returning not too much information, being able to retrieve only the relevant
information.

Pagination has a problem, which is that the data in the collection may change
between multiple requests, especially if retrieving many pages. The problem is as
follows:

Obtain first page
GET /pens/search?page=1&size=10&sort=name

Create a new resource that is added to the first page
POST /pens

Obtain second page
GET /pens/search?page=2&size=10&sort=name

The second page now has a repeated element that used to be on the first page but
has now moved to the second, and then there's one element that's not returned.
Normally, the non-return of the new resource is not that much of a problem, as, after
all, the retrieval of information started before its creation. However, the return of the
same resource twice can be.

To avoid this kind of problem, there's the possibility of sorting by default the values
by creation date or something analogous. This way, any new resource will be added
at the end of pagination and will be consistently retrieved.

A sort parameter could also be useful to ensure consistency in
pages.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[37]

Creating a flexible pagination system increases the usefulness of any API. Be sure
that your pagination definition is consistent across any different resources.

Designing a RESTful API process
The best way to start designing a RESTful API is to clearly state the resources and
then describe them, including the following details:

• Description: Description of the action
• Resource URI: Note that this may be shared for several actions, differentiated

by the method (for example, GET to retrieve and DELETE to delete)
• Methods applicable: The HTTP method to use for the action defined in this

endpoint
• (Only if relevant) Input body: The input body of the request
• Expected result in the body: Result
• Possible expected errors: Returning status codes depending on specific errors
• Description: Description of the action
• (Only if relevant) Input query parameters: Query parameters to add to the URI

for extra functionality
• (Only if relevant) Relevant headers: Any supported header
• (Only if relevant) Returning status codes out of the ordinary (200 and 201):

Different from errors, in case there's a status code that's considered a success
but it's not the usual case; for example, a success returns a redirection

This will be enough to create a design document that can be understood by other
engineers and allow them to work on the interface.

It is good practice, though, to start with a quick draft of the different URIs and
methods, and to have a quick look at all the different resources that the system has
without getting into too much detail, such as a body description or errors. This
helps to detect missing resource gaps or other kinds of inconsistencies in the API.

For resources that return inherently "new" elements, like
notifications or similar, add an updated_since parameter to
retrieve only the new resources since the most recent access. This
speeds up access in a practical way and retrieves only the relevant
information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[38]

For example, the API described in this chapter has the following actions:

GET /pens
POST /pens
POST /pens/<pen_id>/open
PUT /pens/<pen_id>/open/<open_pen_id>/text
DELETE /pens/<pen_id>/open/<open_pen_id>
GET /pens/search

There are a couple of details that can be tweaked and improved here:

• It looks like we forgot to add the action to remove a pen, once created
• There are a couple of GET actions for retrieving information about the created

resource that should be added
• In the PUT action, it feels a bit redundant to have to add /text

With this feedback, we can again describe the API as follows (modifications have an
arrow):

GET /pens
POST /pens
GET /pens/<pen_id>
DELETE /pens/<pen_id> ←
POST /pens/<pen_id>/open
GET /pens/<pen_id>/open/<open_pen_id> ←
PUT /pens/<pen_id>/open/<open_pen_id> ←
DELETE /pens/<pen_id>/open/<open_pen_id>
GET /pens/search

Note how the organization in the hierarchical structure helps to take a good look
at all the elements and find either gaps or relations that may not be obvious at first
glance.

After that, we can get into details. We can use the template described at the start
of the section, or any other one that works for you. For example, we can define the
endpoints to create a new pen and read a pen in the system:

Creating a new pen:

• Description: Creates a new pen, specifying the color.
• Resource URI: /pens
• Method: POST

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[39]

• Input body:
{
 "name": <pen name>,
 "color": (black|blue|red)
}

• Errors:
400 Bad Request

Error in the body, such as an unrecognized color, a duplicated name, or a bad
format.

Retrieving an existing pen:

• Description: Retrieves an existing pen.
• Resource URI: /pens/<pen id>
• Method: GET
• Return body:

{
 "name": <pen name>,
 "color": (black|blue|red)
 }

• Errors:
404 Not Found
The pen ID is not found.

The main objective is that these small templates are useful and to the point. Feel free
to tweak them as expected, and don't worry about being too completist with the
errors or details. The most important part is that they are useful; for example, adding
a 405 Method Not Allowed message could be redundant.

The API can also be designed using tools such as Postman (www.
postman.com), which is an API platform that can be used to
either design or test/debug existing APIs. While useful, it is good
to be able to design an API without external tools, in case that's
required, and because it forces you to think about the design and
not necessarily the tool itself. We will also see how to use Open
API, which is based more on the definition, and not so much on
providing a test environment.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

www.postman.com
www.postman.com

API Design

[40]

Designing and defining an API can also enable it to be structured in a standard
manner afterward to take advantage of tools.

Using the Open API specification
A more structured alternative is to use a tool such as Open API (https://www.
openapis.org/). Open API is a specification for defining a RESTful API through a
YAML or JSON document. This allows this definition to interact with other tools to
generate automatic documentation for the API.

It allows the definition of different components that can be repeated, both as input
and output. This makes it easy to build consistent reusable objects. There are also
ways of inheriting or composing from one another, thereby creating a rich interface.

For example, this is a YAML file that describes the two endpoints described above.
The file is available on GitHub: https://github.com/PacktPublishing/Python-
Architecture-Patterns/blob/main/pen_example.yaml:

openapi: 3.0.0
info:
 version: "1.0.0"
 title: "Swagger Pens"
paths:
 /pens:
 post:
 tags:
 - "pens"
 summary: "Add a new pen"
 requestBody:
 description: "Pen object that needs to be added to the store"
 required: true
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Pen"

Describing the whole Open API specification in detail is beyond
the scope of this book. Most common web frameworks allow
integration with it, generating the YAML file automatically or the
web documentation that we'll see later. It was previously called
Swagger and its web page (https://swagger.io/) has a very
useful editor and other resources.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.openapis.org/
https://www.openapis.org/
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/pen_example.yaml
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/pen_example.yaml
https://swagger.io/

Chapter 2

[41]

 responses:
 "201":
 description: "Created"
 "400":
 description: "Invalid input"
 /pens/{pen_id}:
 get:
 tags:
 - "pens"
 summary: "Retrieve an existing pen"
 parameters:
 - name: "pen_id"
 in: path
 description: "Pen ID"
 required: true
 schema:
 type: integer
 format: int64
 responses:
 "200":
 description: "OK"
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Pen"
 "404":
 description: "Not Found"

components:
 schemas:
 Pen:
 type: "object"
 properties:
 name:
 type: "string"
 color:
 type: "string"
 enum:
 - black
 - blue
 - red

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[42]

In the components part, the Pen object gets defined, and then is used in both
endpoints. You can see how both endpoints, POST /pens and GET /pens/{pen_id},
are defined and describe the expected input and output, taking into account the
different errors that can be produced.

One of the most interesting aspects of Open API is the ability to automatically
generate a documentation page with all the information to help any possible
implementation. The generated documentation looks like this:

Figure 2.1: Swagger Pens documentation

If the YAML file describes your interface correctly and fully, this can be really useful.
In some cases, it could be advantageous to work from the YAML to the API. This
first generates the YAML file and allows work in both directions from there, both in
the frontend direction and the backend direction. For an API-first approach, it may
make sense. It's even possible to automatically create skeletons of clients and servers
in multiple languages, for example, servers in Python Flask or Spring, and clients in
Java or Angular.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[43]

Each of the endpoints contains further information and can even be tested in the
same documentation, thereby significantly helping an external developer who wants
to use the API, as we can see in the next graphic:

Figure 2.2: Swagger Pens expanded documentation

Keep in mind that it's up to you to make the implementation match
the definition closely. These skeletons will still require enough
work to make them work correctly. Open API will simplify the
process, but it won't magically solve all integration problems.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[44]

Given that it's very easy to ensure that the server can generate this automatic
documentation, even if the design is not started from an Open API YAML file, it's a
good idea to generate it so as to create self-generating documentation.

Authentication
A critical part of virtually any API is the ability to distinguish between authorized
and unauthorized access. Being able to log the user properly is critical, and a
headache from the point of view of security.

Security is hard, so it's better to rely on standards to simplify the operation.

The most important security issue regarding authentication is to always use
HTTPS endpoints in production. This allows the channel to be protected against
eavesdropping and makes communication private. Note that an HTTP website just
means that the communication is private; you could be talking with the devil. But it's
the bare minimum required to allow users of your API to send you passwords and
other sensitive information without the fear that an external user is going to receive
this information.

HTTPS endpoints are valid for all access, but other details are specific depending on
whether they are HTML interfaces or RESTful ones.

Authenticating HTML interfaces
In HTML web pages, normally, the flow to authenticate is as follows:

1. A login screen gets presented to the user.
2. The user enters their login and password and sends them to the server.

As we said before, these are just general tips, but in no way a
comprehensive set of secure practices. This book is not focused on
security. Please keep up with security issues and solutions, as this
is a field that is always evolving.

Normally, most architectures use HTTPS until the request
reaches the data center or secure network, and then use HTTP
internally. This permits a check on the data flowing internally
but also protects data that is traveling across the internet. While
less important these days, it also improves efficiency, as encoding
requests in HTTPS require extra processing power.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[45]

3. The server verifies the password. If correct, it returns a cookie with a session
ID.

4. The browser receives the response and stores the cookie.
5. All new requests will send the cookie. The server will verify the cookie and

properly identify the user.
6. The user can log out, removing the cookie. If this is done explicitly, a request

will be sent to the server to delete the session ID. Typically, the session ID
will have an expiry time for cleaning itself. This expiry can renew itself on
each access or force the user to log in again from time to time.

It's important to set up the cookie as Secure, HttpOnly, and SameSite. Secure ensures
that the cookie is only sent to HTTPS endpoints, and not to HTTP ones. HttpOnly
renders the cookie inaccessible by JavaScript, which makes it more difficult to obtain
the cookie via malicious code. The cookie will be sent automatically to the host that
sets it. SameSite ensures that cookies are only sent when the origin of the source is
a page from the same host. It can be set to Strict, Lax, and None. Lax allows you to
navigate to the page from a different site, thereby sending the cookie, while Strict
doesn't allow it.

Possible bad usage of the cookie is through XSS (cross-site scripting) attacks. A
compromised script reads that cookie, and then forges bad requests authenticated as
the user.

Another important kind of security problem is cross-site request forgery (CSRF).
In this case, the fact that the user is logged in on an external service is exploited by
presenting a URL that will be automatically executed in a different, compromised
website.

For example, while accessing a forum, a URL from a common bank is called,
presented as an image, for example. If the user is logged in to this bank, the
operation will be executed.

The SameSite attribute greatly reduces the risk of CSRF, but in case the attribute
is not understood by older browsers, operations presented to the user by the bank
should present a random token, making the user send both the authenticated request
with the cookie and a valid token. An external page won't know a valid random
token, making this exploit much more difficult.

You can obtain more information at the Mozilla SameSite Cookie
page: https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Set-Cookie/SameSite.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

API Design

[46]

The session ID that the cookie contains can either be stored in the database, being just
a random unique identifier, or a rich token.

A random identifier is just that, a random number that stores the related information
in the database, mainly, who is accessing and when the session expires. With
every access, this session ID is queried to the server and the related information is
retrieved. On very big deployments, with many accesses, this can create problems
as it's less scalable. The database where the session ID is stored needs to be accessed
by all workers, which can create a bottleneck.

One possible solution is to create a rich data token. This works by adding all the
required information directly to the cookie; for example, storing the user ID, expiry,
and so on, directly. This avoids database access, but makes the cookie possible to
forge, as all information is in the open. To fix it, the cookie is signed.

The signature proves that the data was originated by a trusted login server and can
be verified independently by any other server. This is more scalable and avoids
bottlenecks. Optionally, the content can also be encrypted to avoid being read.

Another advantage of this system is that the generation of the token can be
independent of the general system. If the token can be validated independently,
there's no need for the login server to be the same as the general server.

Even more so, a single token signer can issue tokens for multiple services. This is the
basis for SSO (Single Sign-On): log in to an auth provider and then use the same
account in several related services. This is very common in common services such as
Google, Facebook or GitHub, to avoid having to create a specific login for some web
pages.

That operation mode, having a token authority, is the basis of the OAuth
authorization framework.

Authenticating RESTful interfaces
OAuth has become a common standard for authenticating access for APIs, and
RESTful APIs in particular.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[47]

It is based on the idea that there's an authorizer who can check the identity of the
user and provide them with a token with information allowing the user to log in.
The service will receive this token and will log the user:

Figure 2.3: Authentication flow

The most common version at the moment is OAuth 2.0, which allows flexibility in
terms of logging in and flow. Keep in mind that OAuth is not exactly a protocol, but
provides certain ideas that can be tweaked to the specific use case.

There's a difference between authenticating and authorizing, and
in essence, OAuth is an authorization system. Authenticating is
determining who the user is, while authorizing is what the user is
capable of doing. OAuth uses the concept of scope to return what
the capabilities of a user are.

Most implementations of OAuth, such as OpenID Connect,
also include the user information in the returning token to also
authenticate the user, returning who the user is.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[48]

There's an important difference in terms of whether the system accessing the API
is the final user directly, or whether it accesses it on behalf of a user. An example of
the latter could be a smartphone app to access a service like Twitter, or a service that
needs to access the data stored for the user in GitHub, such as a code analysis tool.
The app itself is not the one that performs the actions but transfers the actions of a
user.

This flow is called the Authorization Code grant. The main characteristic is that
the auth provider will present a login page to the user and redirect them with the
authentication token.

For example, this could be the sequence of calls for the Authorization Code grant:

GET https://myservice.com/login
 Return a page with a form to initiate the login with authorizer.com

Follow the flow in the external authorize until login, with something
like.

POST https://authorizer.com/authorize
 grant_type=authorization_code
 redirect_uri=https://myservice.com/redirect
 user=myuser
 password=mypassword
 Return 302 Found to https://myservice.com/redirect?code=XXXXX

GET https://myservice.com/redirect?code=XXXXX
-> Login into the system and set proper cookie,
 return 302 to https://myservice.com

If the system accessing the API is from the end user directly, the Client Credentials
grant type flow can be used instead. In this case, the first call will send client_id
(user ID) and client_secret (password) to retrieve the authentication token directly.
This token will be set in new calls as a header, authenticating the request.

This means that there are different ways in which you can
implement OAuth, and, crucially, that different authorizers will
implement it differently. Please verify their documentation with
care when implementing the integration.

Generally, authorizers use the OpenID Connect protocol, which is
based on OAuth.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[49]

Note that this skips a step, and is easier to automate:

POST /token HTTP/1.1
 grant_type=authorization_code
 &client_id=XXXX
 &client_secret=YYYY
 Returns a JSON body with
 {
 "access_token":"ZZZZ",
 "token_type":"bearer",
 "expires_in":86400,
}

Make new requests setting the header
Authorization: "Bearer ZZZZ"

While OAuth allows you to use an external server to retrieve the access token, that's
not strictly required. It can be the same server as the rest. This is useful for this
last flow, where the ability to log in with an external provider such as Facebook or
Google is not as useful. Our example system will use the Client Credentials flow.

Self-encoded tokens
The returned tokens from the authorization server can contain sufficient information
such that no external check with the authorizer is required.

To do so, the token is typically encoded in a JSON Web Token (JWT). A JWT is a
standard that encodes a JSON object in a URL-safe sequence of characters.

A JWT has the following elements:

• A header. This contains information on how the token is encoded.
• A payload. The body of the token. Some of the fields in this object, called

claims, are standard, but it can allocate custom claims as well. Standard
claims are not required and can describe elements such as the issuer (iss),
or the expiration time of the token as Unix Epoch (exp).

As we've seen, including the user information in the token is
important to determine who the user is. If not, we will end with a
request that is capable of doing the work, but without information
on behalf of who.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[50]

• A signature. This verifies that the token was generated by the proper source.
This uses different algorithms, based on the information in the header.

In general, a JWT is encoded, but it's not encrypted. A standard JWT library will
decode its parts and verify that the signature is correct.

For example, to generate a token using pyjwt (https://pypi.org/project/PyJWT/),
you'll need to install PyJWT using pip if not previously installed:

$ pip install PyJWT

Then, while opening a Python interpreter, to create a token with a payload with
a user ID and an HS256 algorithm to sign it with the "secret" secret, you use the
following code:

>>> import jwt
>>> token = jwt.encode({"user_id": "1234"}, "secret",
algorithm="HS256")
>>> token
'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjoiMTIzNCJ9.
vFn0prsLvRu00Kgy6M8s6S2Ddnuvz-FgtQ7nWz6NoC0'

The JWT token can then be decoded and the payload extracted. If the secret is
incorrect, it will produce an error:

>>> jwt.decode(token,"secret", algorithms=['HS256'])
{'user_id': '1234'}
>>> jwt.decode(token,"badsecret", algorithms=['HS256'])
Traceback (most recent call last):
 …
 jwt.exceptions.InvalidSignatureError: Signature verification failed

You can test the different fields and systems in the interactive tool:
https://jwt.io/.

The algorithm to be used is stored in the headers, but it's a
good idea, for reasons of security, to only validate the token
with the expected algorithm and not rely on the header. In the
past, there have been some security problems with certain JWT
implementations and forgery of the tokens, as you can read
here: https://www.chosenplaintext.ca/2015/03/31/jwt-
algorithm-confusion.html.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pypi.org/project/PyJWT/
https://jwt.io/
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html

Chapter 2

[51]

The most interesting algorithms, though, are not symmetrical ones like HS256,
where the same value is added for encoding and decoding, but public-private keys
like RSA-256 (RS256). This allows the token to be encoded with the private key and
verified with the public key.

This schema is very common, as the public key can be distributed widely, but only
the proper authorizer who has the private key can be the source of the tokens.

Including the payload information that can be used to identify the user allows
authentication of the requests using just the information in the payload, once
verified, as we discussed earlier.

Versioning the API
Interfaces are rarely created fully formed from scratch. They are constantly being
tweaked, with new features added, and bugs or inconsistencies fixed. To better
communicate these changes, it's useful to create some sort of versioning to transmit
this information.

Why versioning?
The main advantage of versioning is to shape the conversation about what things are
included when. This can be bug fixes, new features, or even newly introduced bugs.

If we know that the current interface released is version v1.2.3, and we are about
to release version v1.2.4, which fixes bug X, we can talk about it more easily, as well
as creating release notes informing users of that fact.

Internal versus external versioning
There are two kinds of versions that can get a bit confused. One is the internal
version, which is something that makes sense for the developers of a project. This is
normally related to the version of the software, usually with some help from version
control, such as Git.

This version is very detailed and can cover very small changes, including small bug
fixes. The aim of it is to be able to detect even minimal changes between software
to allow the detection of bugs or the introduction of code.

The other is the external version. The external version is the version that people
using the external service are going to be able to perceive. While this can be as
detailed as the internal one, that is normally not that helpful to users and can
provide a confusing message.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[52]

For example, an internal version may distinguish between two different bug fixes,
as this is useful to replicate. An externally communicated version can combine them
both in "multiple bug fixes and improvements."

Another good example of when it's useful to make a difference is when the interface
changes massively. For example, a brand-new revamp of the look and feel of a site
could use "Version 2 interface," but this can happen over multiple internal new
versions, to be tested internally or by a selected group (for example, beta testers).
Finally, when the "Version 2 interface" is ready, it can be activated for all users.

One way of describing the external version could be to call it a "marketing version."

This version will be more dependent on marketing efforts than technical
implementation.

Semantic versioning
A common pattern for defining versions is to use semantic versioning. Semantic
versioning describes a method with three increasing integers that carry different
meanings, in descending order of incompatibility:

vX.Y.Z

X is called the major version. Any change in the major version will mean backward-
incompatible changes.

Y is the minor version. Minor changes may add new features, but any change will be
backward compatible.

Z is the patch version. It will only make small changes such as bug fixes and security
patches, but it doesn't change the interface itself.

This largely depends on the kind of system and who their expected
users are. A highly technical user will appreciate the extra details,
but a more casual one will not.

Note that here we are avoiding the term "release version" as it
could be misleading. This version is only used to communicate
information externally.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[53]

This means that software designed to work with v1.2.15 will work with versions
v1.2.35 and v1.3.5, but it won't work with version v2.1.3 or version v1.1.4. It may
work with version v1.2.14, but it may have some bug that was corrected later.

Sometimes, extra details can be added to describe interfaces that are not ready, for
example, v1.2.3-rc1 (release candidate) or v1.2.3-dev0 (development version).

This semantic versioning is very easy to understand and gives good information
about changes. It is widely used, but it has some problems in certain cases:

• Strictly adopting the major version for systems that don't have clear
backward compatibility can be difficult. This was the reason why the Linux
kernel stopped using proper semantic versioning, because they will never
update the major version, as every single release needed to be backward
compatible. In that case, a major version can be frozen for years and years
and stops being a useful reference. In the Linux kernel, that happened with
version 2.6.X, which remained for 8 years until version 3.0 was released in
2011 without any backward-incompatible change.

• Semantic versioning requires a pretty strict definition of the interface. If the
interface changes often with new features, as happens typically with online
services, the minor version increases quickly, and the patch version is of
almost no use.

For online services, the combination of both will make only a single number useful,
which is not a great use of it. Semantic versioning works better for cases that require
multiple API versions working at the same time, for example:

• The API is very stable and changes very rarely, though there are regular
security updates. Every couple of years, there's a major update. A good
example is databases, such as MySQL. Operative systems are another
example.

The v at the start is optional but helps to indicate that it's a version
number.

Normally, before the software is ready for release, the major
number is set to zero (for example, v0.1.3), making version
v1.0.0 the first one to be publicly available.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[54]

• The API belongs to a software library that can be used by multiple supported
environments; for example, a Python library compatible with Python 2 for
version v4 and Python 3 for v5. This can allow several versions to be kept
alive if required.

If the system effectively has a single version running at the same time, it is better to
not add the extra effort to keep proper semantic versioning in place as the effort is
not worth the reward in terms of the kind of investment required.

Simple versioning
Instead of doing strict semantic versioning, a simplified version can be done instead.
This won't carry the same kind of meaning, but it will be a constantly increasing
counter. This will work to coordinate teams, although it won't require the same kind
of commitment.

This is the same idea as the build number that can be created automatically by
compilers, an increasing number to distinguish one version from another and work
as a reference. However, a plain build number can be a bit dry to use.

It is better to use a similar structure to semantic versioning, as it will be
understandable by everyone; but instead of using it with specific rules, it is looser
than that:

• Normally, for a new version, increase the patch version.
• If either the patch version gets too high (in other words, 100, 10, or another

arbitrary number), increase the minor version and set the patch version to
zero.

• Alternatively, if there's any special milestone for the project, as defined by
the people working on it, increase the minor number earlier.

• Do the same with the major version number.

This will allow the numbers to be increased in a consistent way without worrying
too much about meaning.

This structure works very well for things like online cloud services, which, in
essence, require an increasing counter, as they have a single version deployed at the
same time. In this case, the most important use of the version is internal usage and
won't require the maintenance that strict semantic versioning requires.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[55]

Frontend and backend
The usual way of dividing different services is by talking about the "frontend" and
the "backend." They describe the layers of software, where the layer closer to the end
user is the frontend, and the one behind is the backend.

Traditionally, the frontend is the layer that takes care of the presentation layer, next
to the user, and the backend is the data access layer, which serves the business logic.
In a client-server architecture, the client is the frontend and the server is the backend:

Figure 2.4: Client-Server architecture

As architectures grow more complex, these terms become somewhat polysemic,
and they are usually understood depending on the context. While frontend is
almost always understood as the user interface directly, backend can be applied to
multiple layers, meaning the next layer that gives support to whatever system is
being discussed. For example, in a cloud application, the web application may use a
database such as MySQL as the storage backend, or in-memory storage such as Redis
as the cache backend.

The general approach for the frontend and backend is quite different.

The frontend focuses on the user experience, so the most important elements are
usability, pleasing design, responsiveness, and so on. A lot of that requires an eye for
the "final look" and how to make things easy to use. Frontend code is executed in the
final user, so compatibility between different types of hardware can be important.
At the same time, it distributes the load, so performance is most important from the
point of view of the user interface.

The backend focuses more on stability. Here, the hardware is under strict control,
but the load is not distributed, making performance important in terms of controlling
the total resources used. Modifying the backend is also easier, as changing it once
changes it for all the users at the same time. But it's riskier, as a problem here may
affect every single user. This environment primes more to focus on solid engineering
practices and replicability.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[56]

In general, some common technologies used for the frontend are as follows:

• HTML and associated technologies such as CSS
• JavaScript and libraries or frameworks to add interactivity, such as jQuery or

React
• Design tools

Backend technologies, as they are under more direct control, can be more varied, for
example:

• Multiple programming languages, either scripting languages such as Python,
PHP, Ruby, or even JavaScript using Node.js, or compiled languages such as
Java or C#. They can even be mixed, making different elements in different
languages.

• Databases, either relational databases such as MySQL or PostgreSQL, or non-
relational ones such as MongoDB, Riak, or Cassandra.

• Web servers, such as Nginx or Apache.
• Scalability and high-availability tools, such as load balancers.
• Infrastructure and cloud technologies, such as AWS services.
• Container-related tech, like Docker or Kubernetes.

The frontend will make use of interfaces defined by the backend to present the
actions in a user-friendly way. There can be several frontends for the same backend,
a typical example being multiple smartphone interfaces for different platforms, but
that use the same API to communicate with the backend.

The term full stack engineer is commonly used to describe
someone who is comfortable doing both kinds of work. While
this can work in certain aspects, it's actually quite difficult to find
someone who is equally comfortable or who is inclined to work on
both elements in the longer term.

Most engineers will naturally tend toward one of the sides, and
most companies will have different teams working on both
aspects. In a certain way, the personality traits for each work are
different, with frontend work requiring more of an eye for design,
and backend users being comfortable with stability and reliability
practices.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[57]

Keep in mind that frontend and backend are conceptual divisions, but they don't
necessarily need to be divided into different processes or repositories. A common
case where the frontend and backend live together are web frameworks such as
Ruby on Rails or Django, where you can define the frontend HTML interface at the
same time as the backend controllers that handle the data access and business logic.
In this case, the HTML code is served directly from the same process that performs
access to the data. This process separates the concerns using the Model View
Controller structure.

Model View Controller structure
The Model View Controller, or MVC, is a design that separates the logic of a
program into three distinct components.

• This structure is really successful as it creates a clear separation of concepts:
• The Model manages the data
• The Controller accepts input from the user and transforms it into the

manipulation of the model
• The View represents the information for the user to understand

In essence, the Model is the core of the system, as it deals with the manipulation of
the data. The Controller represents the input, and the View represents the output of
the operations.

Figure 2.5: The Model View Controller pattern

The Model View Controller pattern started very early in the design
of graphic user interfaces and has been used in that area since
the first full graphic interactive interfaces in the 80s. In the 90s, it
started being introduced as a way of handling web applications.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[58]

The MVC structure can be considered at different levels, and it can be regarded as
fractal. If several elements interact, they can have their own MVC structure, and the
model part of a system can talk to a backend that provides information.

The Model is arguably the most important element of the three as it's the core part
of it. It contains the data access, but also the business logic. A rich Model component
works as a way of abstracting the logic of the application from the input and output.

Commonly, some of the barriers between controllers get a bit blurry. Different inputs
may be dealt with in the Controller, producing different calls to the Model. At the
same time, the output can be tweaked in the Controller before being passed to the
view. While it's always difficult to enforce clear, strict boundaries, it's good to keep
in mind what the main objective of each component is so as to provide clarity.

HTML interfaces
While the strict definition of APIs works for interfaces that are designed to be
accessed by other programs, it's good to spend a bit of time talking about the basics
of how to create a successful human interface. For this purpose, we will talk mainly
about HTML interfaces, aimed at being used by the end user in a browser.

HTML technologies are highly related to RESTful ones because they were developed
in parallel during the early days of the internet. Typically, they are presented
intertwined in modern web applications.

Traditional HTML interfaces
The way traditional web interfaces work is through HTTP requests, only using the
GET and POST methods. GET retrieves a page from the server, while POST is paired
with some form that submits data to the server.

The MVC pattern can be implemented in different ways. For
example, Django claims it is a Model View Template, as the
controller is more the framework itself. However, these are minor
details that don't contradict the general design.

Most of the concepts that we will deal with apply to other kinds of
human interfaces, such as GUIs or mobile applications.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[59]

While this is certainly more restrictive than all the available options, it can work well
for simple website interfaces.

For example, a blog is read way more often than is written, so readers make use of
a lot of GET requests to get the information, and perhaps some POST requests to send
back some comments. The need to remove or change a comment was traditionally
small, although it can be allocated with other URLs where POST is used.

An HTML interface doesn't work in the same way as a RESTful interface because of
these limitations, but it can also improve with a design that takes the abstractions
and resources approach in mind.

For example, some common abstractions for a blog are as follows:

• Each post, with associated comments
• A main page with the latest posts
• A search page that can return posts that contain a certain word or tag

This is very similar to the interface in resources, where only the two resources of
"comment" and "post,", which will be separated in a RESTful way, will be joined in
the same concept.

The main limitation of traditional HTML interfaces is that every change needs to
refresh the whole page. For simple applications like a blog, this can work quite well,
but more complex applications may require a more dynamic approach.

Dynamic pages
To add interactivity to the browser, we can add some JavaScript code that will
perform actions to change the page directly on the browser representation; for
example, selecting the color of the interface from a drop-down selector.

This was a prerequisite, as browsers only implemented these
methods. While, nowadays, most modern browsers can use all
HTTP methods in requests, it's still a common requirement to
allow compatibility with older browsers.

Note that browsers will ask you before retrying a POST request as
they are not idempotent.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[60]

From JavaScript, independent HTTP requests can also be done, so we can use that to
make specific calls to retrieve details that can be added to improve the experience of
the user.

For example, for a form to input an address, a dropdown may select the country.
Once selected, a call to the server will retrieve the proper regions to incorporate the
input. If the user selects United States, the list of all states will be retrieved and be
available in the next dropdown. If the user selects Canada, the list of territories and
provinces will be used instead:

Figure 2.5: Improving user experience with appropriate dropdowns

Another example, that reverses the interface somewhat, could be to use the ZIP code
to determine the state automatically.

This is called manipulating the Document Object Model (DOM),
which contains the representation of the document as defined
by the HTML and possibly the CSS. JavaScript can access this
representation and change it by editing any parameters or even
adding or removing elements.

There is actually a service to retrieve this information called
https://zippopotam.us/. It can be called and returns not only
the state but further information, in JSON format.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://zippopotam.us/

Chapter 2

[61]

These kinds of calls are called Asynchronous JavaScript And XML (AJAX).
Although the name mentions XML, it's not required, and any format can be
retrieved. At the moment, it is very common to use JSON or even plain text. One
possibility is to use HTML, so an area of the page can be replaced with snippets that
come from the server:

Figure 2.6: Using HTML to replace areas of the page

Raw HTML, although somewhat inelegant, can be effective, so it's very common
to use a RESTful API returning JSON to retrieve the expected data for these small
elements and then modify the DOM with it through JavaScript code. Given that
the objective of this API is not to replace the HTML interface in its entirety, but
complement it, this RESTful API will likely be incomplete. It won't be possible to
create a full experience using only these RESTful calls.

Other applications go directly to the point of creating an API-first approach and
create the browser experience from there.

Single-page apps
The idea behind a single-page app is easy. Let's open a single HTML page and
change its content dynamically. If there's any new data to be required, it will be
accessed through a specific (typically RESTful) API.

This completely detaches the human interface, understood as the elements that have
the responsibility of displaying the information to a human, from the service. The
service serves a RESTful API exclusively, without worrying about the representation
of the data.

This kind of approach is sometimes called API-first as it designs a
system from the API to the representation, instead of creating it the
other way around, which is the natural way in which it is created
in an organic service.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[62]

Although there are specific frameworks and tools designed with this objective in
mind, such as React or AngularJS, there are two main challenges with this kind of
approach:

• The technical skill required to create a successful human interface on a
single page is quite high, even with the help of tools. Any non-trivial
representation of a valid interface will require keeping a lot of state and
dealing with multiple calls. This is prone to have errors that compromise the
stability of the page. The traditional approach for browser pages works with
independent pages that limit the scope of each step, which is easier to handle.

• The need to design and prepare the API beforehand can result in a slow
start for the project. It requires more planification and upfront commitment,
even if both sides are developed in parallel, which also has its challenges.

These issues ensure that this approach is not usually done for new applications
starting from scratch. However, if the application started with another kind of user
interface, like a smartphone application, it could leverage the already existing REST
API to generate an HTML interface that replicates the functionality.

The main advantage of this approach is detaching the application from the user
interface. Where an application starts its development as a small project with a
regular HTML interface, the risk is that any other user interface will tend to conform
to the HTML interface. This can quickly add up to a lot of technical debt and
compromise the design of the API, as the abstractions that are used will likely be
derived from the existing interface, instead of the most adequate ones.

A whole API-first approach greatly separates the interface, so creating a new
interface is as easy to use as the already existing API. For applications that require
multiple interfaces, such as an HTML interface, but also different smartphones
applications for iOS and Android, that could be a good solution.

A single-page application can also be quite innovative in terms of presenting a full
interface. This can create rich and complex interfaces that deviate from what could be
understood as a "web page," as in the case of a game or an interactive application.

Keep in mind that there are interface expectations carried
by the browser that can be difficult to avoid or replace, for
example, hitting the back button.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[63]

Hybrid approach
Going all-in with a single-page application, as we've seen, can be quite challenging.
To a certain degree, it is using a browser to overwrite its usage.

That's why normally the design doesn't go that far and creates a more traditional
web interface. This interface is still recognizable as a web application but relies
heavily on JavaScript to obtain information using a RESTful interface. This can
happen as a natural step to migrating from a traditional HTML interface to a single-
page app, but it may also be a conscious decision.

This approach combines the previous two. On the one hand, it still requires an
HTML interface for the general approach of the interface, with clear pages to
navigate. On the other, it creates a RESTful API that fills most of the information and
uses JavaScript to make use of this API.

In practice, this tends to create a less complete RESTful API, as some of the elements
may be added directly to the HTML part of it. But, at the same time, it allows the
iterative migration of elements into the API, starting with certain elements, but
adding more as time goes by. This stage is very flexible.

Designing the API for the example
As we described in the first chapter, General Overview of the Example, we need to set
the definition for the different interfaces that we will be working on in the example.
Remember that the example is a microblogging application that will allow users to
write their own text microposts so that they are available for others to read.

There are two main interfaces in the example:

• An HTML interface for allowing users to interact with the service using a
browser

• A RESTful interface for allowing the creation of other clients like a
smartphone app

This approach is similar to the dynamic page one, but there is an
important difference, which is the intention to create a coherent
API that can be used without being totally tailored to the HTML
interface. That changes the approach significantly.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[64]

In this chapter, we will describe the design of the second interface. We will start with
a description of the different basic definitions and resources that we will use:

• User: A representation of the user of the application. It will be defined by a
username and a password to be able to login.

• Micropost: A small text of up to 255 characters posted by a User. A Micropost
can be optionally addressed to a User. It has also the time it was created.

• Collection: The display of Microposts from a User.
• Follower: A User can follow another User.
• Timeline: An ordered list of the Microposts by the followed Users.
• Search: Allow a search by User or by text contained in Microposts.

We can define these elements as resources in a RESTful way, in the way introduced
earlier in the chapter, first as a quick description of the URIs:

POST /api/token
DELETE /api/token
GET /api/user/<username>
GET /api/user/<username>/collection
POST /api/user/<username>/collection
GET /api/user/<username>/collection/<micropost_id>
PUT /api/user/<username>/collection/<micropost_id>
PATCH /api/user/<username>/collection/<micropost_id>
DELETE /api/user/<username>/collection/<micropost_id>
GET /api/user/<username>/timeline
GET /api/user/<username>/following
POST /api/user/<username>/following
DELETE /api/user/<username>/following/<username>
GET /api/user/<username>/followers
GET /api/search

Once this brief design is complete, we can flesh out the definition of each endpoint.

Note that we added POST and DELETE resources for /token to deal
with login and logout.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[65]

Endpoints
We will describe all the API endpoints in a bit more detail, following the template
introduced previously in this chapter.

Login:

• Description: Using the proper authentication credentials, return a valid access
token. The token needs to be included in the requests as the Authorization
header.

• Resource URI: /api/token
• Method: POST
• Request body:

{
 "grant_type": "authorization_code"
 "client_id": <client id>,
 "client_secret": <client secret>
}

• Return body:
{
 "access_token": <access token>,
 "token_type":"bearer",
 "expires_in":86400,
}

• Errors:
400 Bad Request Incorrect body.
400 Bad Request Bad credentials.

Logout:

• Description: Invalidate the bearer token. If successful, it will return a 204 No
Content error.

• Resource URI: /api/token
• Method: DELETE
• Headers: Authentication: Bearer: <token>
• Errors:

401 Unauthorized Trying to access this URI without being
properly authenticated.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[66]

Retrieve user:

• Description: Returns the username resource.
• Resource URI: /api/users/<username>
• Method: GET
• Headers: Authentication: Bearer: <token>
• Query Parameters:

size Page size.
page Page number.

• Return body:
{
 "username": <username>,
 "collection": /users/<username>/collection,
}

• Errors:
401 Unauthorized Trying to access this URI without being
authenticated.
404 Not Found Username does not exist.

Retrieve user's collection:

• Description: Returns the collection of all microposts from a user, in paginated
form.

• Resource URI: /api/users/<username>/collection
• Method: GET
• Headers: Authentication: Bearer: <token>
• Return body:

{
 "next": <next page or null>,
 "previous": <previous page or null>,
 "result": [
 {
 "id": <micropost id>,
 "href": <micropost url>,
 "user": <user url>,
 "text": <Micropost text>,

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[67]

 "timestamp": <timestamp for micropost in ISO 8601>
 },
 ...
]
}

• Errors:
401 Unauthorized Trying to access this URI without being
authenticated.
404 Not Found Username does not exist.

Create new micropost:

• Description: Create a new micropost.
• Resource URI: /api/users/<username>/collection
• Method: POST
• Headers: Authentication: Bearer: <token>
• Request body:

{
 "text": <Micropost text>,
 "referenced": <optional username of referenced user>
}

• Errors:
400 Bad Request Incorrect body.
400 Bad Request Invalid text (for example, more than 255
characters).
400 Bad Request Referenced user not found.
401 Unauthorized Trying to access this URI without being
authenticated.
403 Forbidden Trying to create a micropost of a different user
to the one logged in.

Retrieve micropost:

• Description: Returns a single micropost.
• Resource URI: /api/users/<username>/collection/<micropost_id>
• Method: GET
• Headers: Authentication: Bearer: <token>

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[68]

• Return body:
 {
 "id": <micropost id>,
 "href": <micropost url>,
 "user": <user url>,
 "text": <Micropost text>,
 "timestamp": <timestamp for micropost in ISO 8601>,
 "referenced": <optional username of referenced user>
 }

• Errors:
401 Unauthorized Trying to access this URI without being
authenticated.
404 Not Found Username does not exist.
404 Not Found Micropost ID does not exist.

Update micropost:

• Description: Update the text for a micropost.
• Resource URI: /api/users/<username>/collection/<micropost_id>
• Method: PUT, PATCH
• Headers: Authentication: Bearer: <token>
• Request body:

 {
 "text": <Micropost text>,
 "referenced": <optional username of referenced user>
 }

• Errors:
400 Bad Request Incorrect body.
400 Bad Request Invalid text (for example, more than 255
characters).
400 Bad Request Referenced user not found.
401 Unauthorized Trying to access this URI without being
authenticated.
403 Forbidden Trying to update a micropost of a different user
to the one logged in.
404 Not Found Username does not exist.
404 Not Found Micropost ID does not exist.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[69]

Delete micropost:

• Description: Delete a micropost. If successful, it will return a 204 No Content
error.

• Resource URI: /api/users/<username>/collection/<micropost_id>
• Method: DELETE
• Headers: Authentication: Bearer: <token>
• Errors:

401 Unauthorized Trying to access this URI without being
authenticated.
403 Forbidden Trying to delete a micropost of a different user
to the one logged in.
404 Not Found Username does not exist.
404 Not Found Micropost ID does not exist.

Retrieve user's timeline:

• Description: Returns the collection of all microposts from the timeline of a
user, in paginated form. The microposts will be returned by timestamp order,
with the oldest being returned first.

• Resource URI: /api/users/<username>/timeline
• Method: GET
• Headers: Authentication: Bearer: <token>
• Return body:

{
 "next": <next page or null>,
 "previous": <previous page or null>,
 "result": [
 {
 "id": <micropost id>,
 "href": <micropost url>,
 "user": <user url>,
 "text": <Micropost text>,
 "timestamp": <timestamp for micropost in ISO 8601>,
 "referenced": <optional username of referenced user>
 },
 ...
]
}

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[70]

• Errors:
401 Unauthorized Trying to access this URI without being
authenticated.
404 Not Found Username does not exist.

Retrieve the users a user is following:

• Description: Returns a collection of all users that the selected user is following.
• Resource URI: /api/users/<username>/following
• Method: GET
• Headers: Authentication: Bearer: <token>
• Return body:

{
 "next": <next page or null>,
 "previous": <previous page or null>,
 "result": [
 {
 "username": <username>,
 "collection": /users/<username>/collection,
 },
 ...
]
}

• Errors:
401 Unauthorized Trying to access this URI without being
authenticated.
404 Not Found Username does not exist.

Follow a user:

• Description: Causes the selected user to follow a different user.
• Resource URI: /api/users/<username>/following
• Method: POST
• Headers: Authentication: Bearer: <token>
• Request body:

{
 "username": <username>
}

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[71]

• Errors:
400 Bad Request The username to follow is incorrect or does not
exist.
400 Bad Request Bad body.
401 Unauthorized Trying to access this URI without being
authenticated.
404 Not Found Username does not exist.

Stop following a user:

• Description: Stops following a user. If successful, it will return a 204 No
Content error.

• Resource URI: /api/users/<username>/following/<username>
• Method: DELETE
• Headers: Authentication: Bearer: <token>
• Errors:

401 Unauthorized Trying to access this URI without being
authenticated.
403 Forbidden Trying to stop following a user who is not the
authenticated one.
404 Not Found Username to stop following does not exist.

Retrieve a user's followers:

• Description: Returns, in paginated form, all followers of this user.
• Resource URI: /api/users/<username>/followers
• Method: GET
• Headers:Authentication: Bearer: <token>
• Return body:

{
 "next": <next page or null>,
 "previous": <previous page or null>,
 "result": [
 {
 "username": <username>,
 "collection": /users/<username>/collection,
 },
 ...
]
}

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[72]

• Errors:
401 Unauthorized Trying to access this URI without being
authenticated.
404 Not Found Username does not exist.

Search microposts:

• Description: Returns, in paginated form, microposts that fulfill the search
query.

• Resource URI: /api/search
• Method: GET
• Headers: Authentication: Bearer: <token>
• Query parameters:

username: Optional username to search. Partial matches will be
returned.
text: Mandatory text to search, with a minimum of three
characters. Partial matches will be returned.

• Return body:
{
 "next": <next page or null>,
 "previous": <previous page or null>,
 "result": [
 {
 "id": <micropost id>,
 "href": <micropost url>,
 "user": <user url>,
 "text": <Micropost text>,
 "timestamp": <timestamp for micropost in ISO 8601>,
 "referenced": <optional username of referenced user>
 },
]
}

• Errors:
400 Bad Request No mandatory query parameters.
400 Bad Request Incorrect value in query parameters.
401 Unauthorized Trying to access this URI without being
authenticated.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[73]

Review of the design and implementation
This two-step approach of presenting and designing a new API enables you to
quickly see whether something is out of place as regards the design. Then, it can be
iterated over until fixed. The next step is to start with the implementation, as we will
see in forthcoming chapters.

Summary
In this chapter, we described how the basics of API design are to create a set of
useful abstractions that allow users to perform actions without having to care about
the internal details. This led to describing how to define an API with resources and
actions.

This definition of an API has evolved to cover RESTful interfaces that follow certain
properties that make them very interesting for web server design. We described a
bunch of useful standards and techniques when designing RESTful interfaces to
create consistent and complete interfaces, including the OpenAPI tools. We went
through authentication details as it's a very important element for APIs.

We covered the ideas behind versioning and how to create a proper versioning
schema that's tailored to the specific use case for the API. We also covered the
differences between the frontend and the backend and how this can be generalized.
We also covered the MVC pattern, which is a very common way to structure
software.

We described the different options for HTML interfaces to provide a complete
overview of the different interfaces in web services. We covered different options in
terms of how an HTML service can be constructed and interact with other APIs.

Finally, we presented the design for the RESTful interface for the example, while
reviewing the general design and endpoints.

Another critical element of design is the data structure. We will cover this next.

Remember that extra care should be advised when securing APIs
that have external usage. We went through some general ideas
and common strategies, but note that this book does not focus
on security. This is a critical aspect of the design of any API and
should be done carefully.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

API Design

[74]

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://packt.link/PythonArchitechture

[75]

3
Data Modeling

The core of any application is its data. At the very root of any computer application,
it's a system designed to deal with information, receiving it, transforming it, and
returning either the same information or insightful elements extracted from it. The
stored data is a crucial part of this cycle, as it allows you to use information that has
been communicated before.

In this chapter, we will talk about how we can model the stored data from our
application and what the different options are to store and structure the data to be
persisted.

We will start by describing the different database options that are available, which
are critical to understanding their different applications, but we will mostly focus,
during the chapter, on relational databases, as they are the most common type. We
will describe the concept of a transaction to ensure that different changes are applied
in one go.

We will describe different ways that we can increase the scope of a relational
database by using multiple servers, and what the use cases for each option are.

After that, we will describe different alternatives when designing a schema to ensure
that our data is structured in the best possible way. We will discuss how to enable
fast access to data through the usage of indices.

In this chapter, we'll cover the following topics:

• Types of databases
• Database transactions

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[76]

• Distributed relational databases
• Schema design
• Data indexing

Let's start with an introduction to the different databases out there.

Types of databases
All the persistent data from an application should live in a database. As we've
discussed, data is the most critical aspect of any application, and proper handling of
it is critical to ensure the viability of the project.

Databases have been a critical tool for most of the time software systems have
been available. They create an abstraction layer that allows accessing data without
having to worry too much about how the data is structured by the hardware. Most
databases allow the structure of the data to be defined without having to worry
about how that's implemented behind the curtains.

DBMSes are among the most invested and mature projects in software. Each DBMS
has its own quirks, to the point where there's a specific job role for a "database
expert": the Database Administrator (DBA).

Technically, databases are collections of data themselves and
are handled by the database management system (DBMS), the
software that allows the input and output of data. Normally,
the word "database" is used for both the collection and the
management system, depending on the context. Most DBMSes will
allow access to multiple databases of the same kind, without being
able to cross data between them, to allow logical separation of the
data.

As we saw in Chapter 2, API Design, this abstraction is not perfect
and sometimes we will have to understand the internals of
databases to improve the performance or do things in "the proper
way."

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[77]

Performance improvements in hardware and software and external tools to handle
database complexity have made this role less common, though it's still in use by
some organizations. To a certain degree, the architect role overtakes parts of this role,
though with more of a supervising role and less of a gatekeeping one.

There are multiple DBMSes available on the market, with a good selection of open
source software that covers most use cases. Roughly speaking, we can divide the
existing DBMS alternatives into this non-exhaustive classification:

• Relational databases: The default standard in databases. Use SQL query
language and have a defined schema. Examples are open source projects like
MySQL or PostgreSQL, or commercial ones like Oracle or MS SQL Server.

• Non-relational databases: New alternatives to the traditional databases. This
is a diverse group with multiple alternatives, and includes very different
options like MongoDB, Riak, or Cassandra.

• Small databases: These databases are aimed to be embedded into the system.
The most famous example is SQLite.

Let's take a more in-depth look at them.

Relational databases
These are the most common databases and the first idea that comes to mind when
talking about databases. The relational model for databases was developed in the
1970s, and it's based on creating a series of tables that can be related to each other.
Since the 1980s, they have become incredibly popular.

Each defined table has a number of fields or columns that are fixed and data is
described as records or rows. Tables are theoretically infinite, so more and more
rows can be added. One of the columns is defined as the primary key and uniquely
describes the row. Therefore, it needs to be unique.

The DBA role was quite popular for a long time and required
highly specialized engineers, to the point of DBAs specializing
in a single specific DBMS. The DBA will act as the expert in the
database, both in knowing how to access it and ensuring that any
changes done to it work adequately. They normally are the only
ones allowed to perform changes or maintenance tasks in the
database.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[78]

The primary key is used to reference that record, when necessary, in other tables.
This creates the relation aspect of the database. When a column in a table makes
reference to another table, this is called a foreign key.

These references can produce one-to-one relationships; one-to-many, when a single
row can be referenced in multiple rows in another table; or even many-to-many,
which requires an intermediary table to cross over the data.

All this information needs to be described in the schema. The schema describes each
table, what the fields and types of each are, as well as the relations between them.

It's important to note that defining the schema requires thinking ahead and being
aware of the changes that can be made. Defining types before having data also
requires keeping in mind possible improvements. While the schema can be changed,
it's always a serious operation that, if not taken with proper care, can lead to the
database not being available for some time, or, in the worst-case scenario, data can
be changed or processed inconsistently.

A query can also be executed that searches for data fulfilling certain conditions.
For that, tables can be joined based on their relationships.

Virtually all relational databases are interacted with using Structured Query
Language, or SQL. This language has become the standard to work with relational
databases and follow the same concepts that we've described here. It describes both
how to query the database and how to add or change data contained there.

The most relevant characteristic of SQL is that it is a declarative language. This
means that the statements describe the result instead of the procedure to obtain
it, as is typical with imperative languages. This abstracts the internal details away
from the how to focus on the what.

If there is a value that's unique and descriptive enough, it can
be used for the primary key; this is called a natural key. Natural
keys can also be a combination of fields, though that limits their
convenience. When a natural key is not available, an increasing
counter can be handled directly by the database to ensure it is
unique per row. This is called a surrogate key.

Relations in relational databases are really constraints. That means
that a value can't be deleted if it's still referenced somewhere.
Relational databases come from a strict mathematical background,
though that background's implemented in different degrees of
strictness.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[79]

This characteristic makes SQL portable between systems, as the internals of the
how can be different in different databases. Using a specific relational database and
adapting to another is relatively easy.

While relational databases are very mature and flexible and are used in very
different scenarios, there are two main problems that are difficult to deal with. One
is requiring a predefined schema, as we said above. The other, and more serious
after a certain size, is dealing with scale. Relational databases are thought to be a
central access point that's accessed, and there need to be some techniques to scale
once the limit of vertical scaling has been reached.

We will talk about specific techniques to deal with this issue and increase the
scalability of relational databases later in this chapter.

Non-relational databases
Non-relational databases are a diverse group of DBMSes that do not fit into the
relational paradigm.

Imperative languages describe the control flow and are the most
common languages. Examples of imperative languages are Python,
JavaScript, C, and Java. Declarative languages are normally
restricted to specific domains (Domain-Specific Languages, or
DSLs) that allow you to describe the result in simpler terms, while
imperative languages are more flexible.

This is used sometimes to set up a local database for running tests
that's different from the final database that will be in place once the
system is in production. This is possible in some web frameworks,
but it requires some caveats, as complex systems sometimes have
to use specific characteristics for a particular database, making it
impossible to perform an easy replacement of this kind.

Non-relational databases are also called NoSQL, emphasizing
the relational nature of the SQL language, standing for either
"not SQL" or "Not Only SQL," to be more reflective of adding
possibilities and not removing them.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[80]

While there have been non-relational databases even before the introduction
of relational databases and alongside them, since the 2000s, there has been an
introduction or recovery of methods and designs that look to alternative options.
Most of them aim to address the two main weak spots in relational databases,
their strictness and scalability issues.

They are very varied and have very different structures, but the most common
kinds of non-relational systems are the following groups:

• Key-value stores
• Document stores
• Wide-column databases
• Graph databases

Let's describe each of them.

Key-value stores
Key-value stores are arguably the simplest of all databases in terms of functionality.
They define a single key that stores a value. The value is totally opaque to the system,
not being able to be queried in any way. There's even, in some implementations,
no way of querying keys in the system; instead, they need to be an input to any
operation.

This is very similar to a hash table or dictionary but on a bigger scale. Cache systems
are normally based on this kind of data store.

While the technology is similar, there's an important differentiation
between a cache and a database. A cache is a system that stores
data already calculated to speed up its retrieval, while a database
stores raw data. If the data is not in the cache, it can be retrieved
from a different system, but if it's not in the database, either the
data is not stored or there has been a big problem.

That's why cache systems tend to store information only in
memory and are more resilient to restarts or problems, making
them easier to deal with. If a cache is missing, the system works,
just slower.

It's very important that information is not ultimately stored in
cache systems that are not backed up by proper storage. It's a
mistake that sometimes happens inadvertently, for example, with
temporal data, but the risk is to get a problem at the wrong time
and lose the data, so be aware of it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[81]

The main advantage of this system is, on the one hand, the simplicity of it, allowing
the quick storage and retrieval of data. It also allows you to horizontally scale to
a great extent. As each key is independent of the rest, they can even be stored in
different servers. Redundancy can also be introduced in the system, making multiple
copies for each key and value, though this makes the retrieval of information slower,
as the multiple copies need to be compared to detect data corruption.

Some examples of key-value databases are Riak and Redis (if used with durability
enabled).

Document stores
Document stores revolve around the concept of a "document," which is similar to a
"record" in relational databases. Documents, though, are more flexible, as they don't
need to follow a predefined format. They also typically allow embedding more data
in subfields, something that relational databases normally don't do, relying instead
on creating a relationship and storing that data in a different table.

For example, a document can look like this, here represented as JSON:

{
 "id": "ABCDEFG"
 "name": {
 "first": "Sherlock",
 "surname": "Holmes"
 }
 "address": {
 "country": "UK",
 "city": "London",
 "street": "Baker Street",
 "number": "221B",
 "postcode": "NW16XE"
 }
}

Documents are normally grouped in collections, which are similar to "tables."
Normally documents are retrieved by a unique ID that acts as the primary key, but
queries can also be constructed to search fields created in the document.

So, in our case, we could retrieve the key (ID) ABCDEFG, like in a key-value store;
or make richer queries like "get me all entries in the detectives collection whose
address.country equals UK," for example.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[82]

Documents in one collection can be related to documents in another collection by
their ID, creating a reference, but normally these databases don't allow you to create
join queries. Instead, the application layer should allow you to retrieve this linked
information.

Some examples of document stores are MongoDB (https://www.mongodb.com/) and
Elasticsearch (https://www.elastic.co/elasticsearch/).

Wide-column databases
Wide-column databases are structured with their data separated by columns. They
create tables with certain columns, but they are optional. They also can't natively
relate a record in one table with another.

They are a bit more capable of being queried than pure key-value stores but require
more upfront design work on what kinds of queries are possible in the system. This
is more restrictive than in document-oriented stores where there is more flexibility in
doing that after the design is done.

They are aimed at very big database deployments with high availability and
replicated data. Some examples of wide-column databases are Apache Cassandra
(https://cassandra.apache.org/) and Google's Bigtable (https://cloud.google.
com/bigtable).

Keep in mind that, while it is technically possible to create a
collection with documents totally independent and with different
formats, in practice, all documents in a collection will follow a
somewhat similar format, with optional fields or embedded data.

In general, documents favor embedding information over
creating references. This could lead to denormalizing information,
repeating the information in several places. We will talk more
about denormalization later in the chapter.

Normally, columns are related and can only be queried in a
particular order, meaning that if columns A, B, and C exist, a row
can query based on either A, A and B, or A, B, and C, but not just C
or B and C, for example.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.mongodb.com/
https://www.elastic.co/elasticsearch/
https://cassandra.apache.org/
https://cloud.google.com/bigtable
https://cloud.google.com/bigtable

Chapter 3

[83]

Graph databases
While the previous non-relational databases are based on giving up the ability to
create relationships between elements to gain other features (like scalability or
flexibility), graph databases go in the opposite direction. They greatly enhance the
relationship aspect of the elements to create complex graphs.

They store objects that are nodes and edges, or relationships between the nodes. Both
edges and nodes may have properties to better describe them.

The query capabilities of graph databases are aimed at retrieving information based
on relationships. For example, given a list of companies and providers, is there any
provider in a supply chain of a specific company that is in a specific country? Up
to how many levels? These questions may be easy to answer for the first level in a
relational database (obtain the suppliers of the company and their countries), but
quite complex and consuming for the third-level relations.

Figure 3.1: Example of data that is typical of graph databases

They are typically used for social graphs, where there are connections between
people or organizations. Some examples are Neo4j (https://neo4j.com/) or
ArangoDB (https://www.arangodb.com/).

Small databases
This group is a bit special compared with the rest. It's composed of database systems
that are not differentiated as an independent process, working as an independent
client-server structure. Instead, they are embedded into the code of the application,
reading directly from the hard drive. They are normally used in simple applications
that run as a single process and want to keep the information in a structured way.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://neo4j.com/
https://www.arangodb.com/

Data Modeling

[84]

A crude, yet effective, way of representing this method is to save information as
a JSON object into a file and recover it when required, for example, client settings
for a smartphone app. The settings file is loaded when the application starts from
memory, then saved if there's any change.

For example, in Python code, this could be represented like this:

>>> import json
>>> with open('settings.json') as fp:
... settings = json.load(fp)
...
>>> settings
{'custom_parameter': 5}
>>> settings['custom_parameter'] = 3
>>> with open('settings.json', 'w') as fp:
... json.dump(settings, fp)

For small amounts of data, this structure may work, but it has the limitation that it's
difficult to query. The most complete alternative is SQLite, which is a full-fledged
SQL database, but it's embedded into the system, without requiring external calls.
The database is stored in a binary file.

SQLite is so popular that it's even supported in a lot of standard libraries, without
requiring an external module, for example, in the Python standard library.

>>> import sqlite3
>>> con = sqlite3.connect('database.db')
>>> cur = con.cursor()
>>> cur.execute('''CREATE TABLE pens (id INTEGER PRIMARY KEY DESC,
name, color)''')
<sqlite3.Cursor object at 0x10c484c70>
>>> con.commit()
>>> cur.execute('''INSERT INTO pens VALUES (1, 'Waldorf', 'blue')''')
<sqlite3.Cursor object at 0x10c484c70>
>>> con.commit()
>>> cur.execute('SELECT * FROM pens');
<sqlite3.Cursor object at 0x10c484c70>
>>> cur.fetchall()
[(1, 'Waldorf', 'blue')]

This module follows the DB-API 2.0 standard, which is the Python standard to
connect to databases. It aims to standardize access to different database backends.
This makes it easy to create a higher-level module that can access multiple SQL
databases and swap them with minimal changes.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[85]

SQLite implements most of the SQL standard.

Database transactions
Storing data can be a complex operation internally for a database. In some cases,
it can include changing the data in a single place, but there are operations that can
affect millions of records in a single operation, for example, "update all records
created before this timestamp."

How broad and possible these operations are highly depends on the database,
but they are very similar to relational databases. In that case, normally there's the
concept of a transaction.

A transaction is an operation that happens in one go. It either happens or it doesn't,
but the database is not left in an inconsistent state in the middle. For example, if the
operation described before of "update all records created before this timestamp" can
produce an effect where, through an error, only half of the records are changed, then
it's not a transaction, but multiple independent operations.

This characteristic can become a strong requirement for the database in some
applications, and it's called atomicity. That means the transaction is atomic when it's
applied. This characteristic is the main one of the so-called ACID properties.

The other properties are consistency, isolation, and durability. The four properties
are, then:

• Atomicity, which means that the transaction is applied as one unit. It is either
applied completely or not.

• Consistency, which means that the transaction is applied taking into account
all restrictions that are defined in the database. For example, foreign key
constraints are respected, or any stored triggers that modify the data applied.

You can check the full DB-API 2.0 specification in PEP-249:
https://www.python.org/dev/peps/pep-0249/.

It can happen that there's an error in the middle of a transaction. In
that case, it will go back all the way to the start of it, so no record
will change.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.python.org/dev/peps/pep-0249/

Data Modeling

[86]

• Isolation, which means that parallel transactions work in the same way
that they were run one after the other, ensuring that one transaction is not
affecting another. Obviously, the exception is the order in which they are run,
which may have an impact.

• Durability, which means that, after a transaction is reported as completed,
it won't be lost even in the event of a catastrophic failure, like the database
process crashing.

These properties are the gold standard to take care of data. It means that the data is
safe and consistent.

Most relational databases have the concept of starting a transaction, performing
several operations, and then finally committing the transaction so all the changes
are applied in one go. If there's a problem, the transaction will fail, reverting to
the previous state. A transaction can also be aborted if, during the performance of
operations, any problem, like a constraint issue, is detected.

ACID transactions have a cost in terms of performance, and especially in terms
of scalability. The need for durability means that data needs to be stored on disk
or other permanent support before being returned from the transaction. The
requirement for isolation means that each open transaction requires operating in a
way that it can't see new updates, which may require temporary data to be stored
until the transaction is completed. Consistency also requires checks to ensure that all
constraints are fulfilled, which may require complex checks.

Virtually all relational databases are fully ACID compliant, and that has become a
defining characteristic of them. In the non-relational world, things are more flexible.

Scaling the database with multiple servers or nodes with these properties proves
difficult, though. This system creates distributed transactions, running on multiple
servers at the same time. Maintaining full ACID transactions in databases with
more than one server is extremely difficult, and has a heavy penalty in terms of
performance, because of the extra delay caused by understanding what the other
nodes have done and rolling back the transaction if there's a failure in any of
them. The problems also increase in a non-linear way, sort of working against the
advantages of having multiple servers.

This way of operating allows creating extra verification steps, as
inside the transaction, data can still be queried and be validated
before finally committing it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[87]

While this is possible, a lot of applications can work around these limitations. We
will see some useful patterns.

Distributed relational databases
As we've discussed before, relational databases weren't designed with scalability
in mind. They are great for enforcing strong data assurances, including ACID
transactions, but their preferred way of operating is through a single server.

This can impose limitations in terms of how big an application can be using
relational databases.

The disadvantage of the ACID properties is eventual consistency. Instead of an atomic
operation that gets processed in a single go, the system gradually translates to the
desired system. Not every part of the system has the same state at the same time.
Instead, there are certain delays while this change is propagating in the system.
The other big advantage is that we can increase the availability, as it won't depend
on a single node to make the change, and any non-available elements will catch up
after recovering. Because of the distributed nature of the cluster, this may involve
consulting different sources and trying to reach a quorum between them.

It is worth noting that a database server can grow vertically, which
means using better hardware. Increasing the capacity of a server
or replacing it with a bigger one is an easier solution for high
demand than applying some of these techniques, but there's a
limit. In any case, please double-check that the expected size is big
enough. These days, there are servers in cloud providers that reach
1 terabyte of RAM or more. That's enough to cover a huge number
of cases.

Note that these techniques are useful to grow a system after it is
up and running, and can be added to most usages of relational
databases.

It depends greatly on the application you have in mind when
considering if loosening some of the ACID properties is worth
doing. Critical data, where a delay or data corruption has a higher
impact and may not be acceptable, may not be a good fit for a
distributed database.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[88]

In order to increase the capacity, the first thing is to understand what the data access
of the application is.

Primary/replica
A very common case is that the number of reads is much higher than writes. Or,
talking in SQL terms, the number of SELECT statements is much higher than the
UPDATE or DELETE ones. This is very typical of applications where there's way more
access to information than updates to information, for example, a newspaper,
where there's a lot of access to read a news article, but not so many new articles
comparatively.

A common pattern for this situation is to create a cluster adding one or more read-
only copies of the database, and then spread the reads across them, a situation
similar to this one:

Figure 3.2: Dealing with multiple Read queries

All the writes go to the primary node, and then that gets disseminated to the replica
nodes automatically. Because the replicas contain the whole database, and the only
write activity comes from the primary, this increases the number of queries that can
run at the same time in the system.

This system is natively supported by most relational databases, especially the most
common ones, MySQL and PostgreSQL. The write nodes are configured as primary,
and the replicas are pointed at the primary to start copying the data. After some
time, they'll be up to date and in sync with the primary.

Every new change in the primary will be replicated automatically. This, though,
has a delay, called a replication lag. This means that the data just written won't be
available to read for some time, typically less than a second.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[89]

An operation to avoid, then, is to write and immediately read the same or related
data in an external operation, as this can cause inconsistent results. This can be
solved either by keeping the data temporarily, avoiding the need for the query, or by
making it possible to address a specific read to the primary node, to ensure that the
data is consistent.

Figure 3.3: A specific Read query on the primary node

This system also allows there to be redundancy of data, as it's always being copied to
the replicas. If there's a problem, a replica can be promoted to be the new primary.

Replication lag is a good indicator of the wellbeing of the
database. If the lag increases over time, it's an indication that the
cluster is not capable of handling the level of traffic and requires
adjustments. This time will be greatly influenced by the network
and general performance of each of the nodes.

These direct reads should be used only when necessary, as they go
against the idea of reducing the number of queries to the primary
server. That was the reason to set up multiple servers!

A replica server doesn't fulfill exactly the same role as a backup,
though it can be used with a similar intent. A replica is intended to
perform a quick action and maintain the availability of the system.
Backups are easier and cheaper to run and allow you to keep a
historical record of the data. Backups can also be located in a very
different location than the replica, while a replica requires a good
network connection with the primary.

Do not skip doing backups, even if there are replicas available.
Backups will add a security layer in case of catastrophic failure.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[90]

Note that this way of structuring the database may require adapting the application
level to be aware of all the changes and access to different database servers. There
are existing tools such as Pgpool (for PostgreSQL) or ProxySQL (for MySQL) that
stay in the middle of the path and redirect the queries. The application addresses the
queries to the proxies, and then the proxy redirects them based on the configuration.
There are cases, like the write and read pattern that we've seen above, that are not
covered easily and may require specific changes in the application code. Be sure to
understand how these kinds of tools work and run some tests before running them
in your application.

A simpler case of this structure is to create offline replicas. These can be created from
a backup and not updated from the live system. These replicas can be useful to create
queries that don't require up-to-date information, in cases where perhaps a daily
snapshot is good enough. They are common in applications like statistical analysis or
data warehousing.

Sharding
If the application has a higher number of writes, the primary-replica structure may
not be good enough. Too many writes are directed to the same server, which creates
a bottleneck. Or if the system traffic grows enough, there's a limit to the number of
writes that a single server can accept.

A possible solution is to horizontally partition the data. This means dividing the data
into different databases according to a specific key, so all related data can go to the
same server. Each of the different partitions is called a shard.

The partition key is called the shard key, and based on its value, each row will be
allocated a specific shard.

Note that "partitioning" and "sharding" can be considered
synonyms, though in reality sharding is only if the partition
is horizontal, separating a single table into different servers.
Partitioning can be more general, like dividing a table into two,
or splitting into different columns, which is not typically called
sharding.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[91]

Figure 3.4: Shard keys

Any query needs to be able to determine what the proper shard is to be applied to.
Any query that affects two or more shards may be impossible to do or can only be
performed in succession. Of course, this excludes the possibility of performing these
queries in a single transaction. In any case, these operations will be very expensive,
and should be avoided as much as possible. Sharding is a fantastic idea when the
data is naturally partitioned, and very bad when queries affecting multiple shards
are performed.

The choosing of the sharding key is also crucial. A good key should follow natural
partitions between data, so performing cross-shard queries is not required. For
example, if the data of a user is independent of the rest, which may happen with a
photo-sharing application, the user identifier could be a good shard key.

Another important quality is that the shard to address the query needs to be
determined based on the shard key. That means that every query needs to have
the shard key available. This means that the shard key should be an input of every
operation.

The name shard comes from the videogame Ultima Online, which,
in the late 90s, used this strategy to create a "multiverse" where
different players could play the same game on different servers.
They called them "shards," as they were aspects of the same reality,
but contained different players in them. The name stuck and it's
still used to describe the architecture.

Some NoSQL databases allow native sharding that will take care of
all these options automatically. A common example is MongoDB,
which is even capable of running queries in multiple shards in a
transparent manner. These queries will be slow, in any case.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[92]

Another property of the shard key is that the data should be ideally portioned in a
way that shards have the same size, or at least they are similar enough. If one shard
is much bigger than the rest, that could lead to problems of imbalanced data, not
enough distributing of the queries, and having one shard being the bottleneck.

Pure sharding
On pure shards, the data is all partitioned in shards and the shard key is an input of
every operation. The shard is determined based on the shard key.

To ensure that the shards are balanced, each key is hashed in a way that is equally
distributed between the number of shards. A typical case is to use a modulo
operation, for example. If we have 8 shards, we determine which shard the data is
partitioned into based on a number that's equally distributed.

User ID Operation Shard
1234 1234 mod 8 2
2347 2347 mod 8 3
7645 7645 mod 8 5
1235 1235 mod 8 3
4356 4356 mod 8 4
2345 2345 mod 8 1
2344 2344 mod 8 0

If the shard key is not a number, or if it's not evenly distributed, a hash function can
be applied. For example, in Python:

>>> import hashlib
>>> shard_key = 'ABCDEF'
>>> hashlib.md5(shard_key.encode()).hexdigest()[-6:]
'b9fcf6'
>>> int('b9fcf6', 16) # Transform in number for base 16
12188918
>>> int('b9fcf6', 16) % 8
6

This strategy is only possible if the shard key is always available as input for every
operation. When this is not an option, we need to look at other options.

Changing the number of shards is not an easy task, as the destination for each key is
decided by a fixed formula. It is possible, though, to grow or reduce the number of
shards with some preparation in advance.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[93]

We can create "virtual shards" that point to the same server. For example, to create
100 shards, and use two servers, initially the virtual shard distribution will be like
this:

Virtual Shard Server
0-49 Server A
50-99 Server B

If the number of servers needs to be increased, the virtual shard structure will change
in this way.

Virtual Shard Server
0-24 Server A
25-49 Server C
50-74 Server B
75-99 Server D

This change to the specific server that corresponds to each shard may require some
code change, but it's easier to handle as the shard key calculation won't change. The
same operation can be applied in reverse, though it may create imbalance, so it needs
to be done with care.

Virtual Shard Server
0-24 Server A
25-49 Server C
50-99 Server B

Each of the operations requires changing the location of data based on the shard key.
This is a costly operation, especially if a lot of data needs to be exchanged.

Mixed sharding
Sometimes it is not possible to create pure shards and a translation from the input
is required to determine the shard key. This is the case, for example, when a user is
logging in if the shard key is the user ID. The user will log in using their email, but
that needs to be translated to the user ID to be able to determine the shard to search
the information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[94]

In that case, an external table can be used purely to translate the input of a particular
query to the shard key.

Figure 3.5: External tables to translate the input of shard keys

This creates a situation where a single shard is responsible for this translation layer.
This shard can be used exclusively for this, or also act as any other shard.

Keep in mind that this requires a translation layer for each possible input parameter
that's not directly the shard key, and that it requires keeping all the information of
all shards in a single database. This needs to be kept under control and store as little
information as possible, to avoid issues.

This strategy can be used as well to store, directly, what shard key goes to what
shard, and perform a query instead of a direct operation, as we saw above.

Figure 3.6: Storing shard keys to shards

This has the inconvenience that determining the shard based on the key requires a
query in a database, especially with a big database. But it also allows changing the
shard of the data in a consistent way, which can be used to adapt the number of
shards, like growing or reducing the number. And it can be done without requiring
downtime.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[95]

If the specific shard, not only the shard key, is stored in this translation table, the
assignment of the shard to the key can be changed one by one, and in a continuous
manner. The process will be approximately like this:

1. Shard key X is assigned to server A in the reference table. This is the start
state.

2. Data from server A for shard key X is copied to server B. Note that no query
involving shard key X is directed to server B yet.

3. Once all the data is copied, the entry for the reference table for shard key X is
changed to server B.

4. All queries for shard key X are directed to server B.
5. Data from shard key X in server A can be cleaned.

Step 3 is the critical step, and needs to happen only after all the data is copied, and
before any new write is performed. A way of ensuring this is to create a flag in
the reference table that can stop or delay the writing of data while the operation
is in place. This flag will be set up right before step 2 and removed after step 3 is
completed.

This process will produce a smooth migration over time, but it requires enough
space to work, and can take a significant amount of time.

Please allow ample time to complete the migration. Depending on the size and
complexity of the dataset, it can take a lot of time to migrate, up to hours or even
days for extreme cases.

Table sharding
An alternative to sharding by shard key, for smaller clusters, is to separate tables or
collections by server. This means that any query in table X is directed to a specific
server, and the rest of the queries are directed to another. This strategy only works
for unrelated tables, as it's not possible to perform joins between tables in different
servers.

Downscale operations are more complicated than upscale, as the
increase in space allows for ample room. Fortunately, it is rare that
a database cluster needs to downscale, as most applications will
grow over time.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[96]

This works as a less complicated alternative, but it's way less flexible. It's only
recommended for relatively small clusters where there's a big imbalance in size
between one or two tables and the rest, for example, if one table stores logs that
are much bigger than the rest of the database and are sparingly accessed.

Advantages and disadvantages of sharding
In summary, the main advantages of sharding are:

• Allows spreading writes over multiple servers, increasing the write
throughput of the system

• The data gets stored in multiple servers, so massive amounts of data can be
stored, without limiting the data that can be stored in a single server

In essence, sharding allows the creation of big, scalable systems. But it also has
disadvantages:

• Sharded systems are more complicated to run and have some overhead
in terms of configuring different servers, and so forth. While any big
deployment will have its problems, sharding requires more work than a
primary-replica setup, as the maintenance and operation need to be planned
with more care and operations will take longer.

• Native support for sharding is available only in a small number of databases,
like MongoDB, but relational databases don't have the feature implemented
natively. This means that the complexity needs to be handled with ad hoc
code, which will require an investment in developing it.

• Some queries will be impossible or almost impossible to do once the data is
sharded. Aggregation and joins, depending on how the data is partitioned,
won't be possible. The shard key needs to be selected carefully, as it will have
a big implication on what queries are possible or not. We also lose the ACID
properties, as some operations may need to involve more than one shard. A
sharded database is less flexible.

As we've seen, designing, operating, and maintaining a sharded database only
makes sense for very big systems, when the number of actions in the database
requires such a complex system.

Note that this can be considered, being pedantic, as not properly
sharding, though the structure is similar.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[97]

Schema design
For databases that need to define a schema, the specific design to use is something
that needs to be considered.

Changing the schema is an important action that will require planning and, certainly,
a long-term view needs to be applied to the design.

The best way to start the design of a schema is to draw the different tables, fields,
and their relationships, if there are foreign keys pointing to other tables.

Figure 3.7: Drawing a schema

The presentation of this data should allow you to detect possible blind spots or
the repetition of elements. If the number of tables is too big, it may be necessary to
divide it into several groups.

This section will talk specifically about relational databases, as they
are the ones that enforce a stricter schema. Other databases are
more flexible in their changes, but they also benefit from spending
some time thinking about their structure.

We will talk later in the chapter about how to change the schema
of a database. We only need to remark here that mutating the
database schema is an unavoidable part of the process of building
a system. Nonetheless, it's a process that needs to be taken with
respect and understanding what the possible problems are. It's
definitely a good idea to spend time thinking about and ensuring
an adequate design for the schema.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[98]

Each of the tables can have foreign key relationships with others of different kinds:

• One-to-many, where a single reference is added for multiple elements of
another table. For example, a single author is referenced in all their books.
A simple foreign key relationship works in this case, as the Books table will
have a foreign key to the entry in Authors. Multiple book rows can have a
reference to the same author.

Figure 3.8: The key in the first table references multiple rows in the second

• One-to-zero or -one are specific cases where a row can be related to only
another. For example, let's assume an editor can be working on a book (and
only one book at a time). The reference for the editor in the Books table is
a foreign key that can be set to null if there's no editing process. Another
back reference from the editor to the book will ensure that the relationship is
unique. Both references need to be changed in a transaction.

Figure 3.9: The relationship only makes it possible to match two rows

Though there are tools that can help with this work, personally,
it helps me to hand-draw these relationships, as it helps me think
of the different relationships and construct a mental image of the
design.

Strict one-to-one relationships, like a book and a title,
where both are always related, are typically better
modeled as adding all the information into a single table.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[99]

• Many-to-many, where there can be multiple assignments in both directions.
For example, a book may be categorized under different genres. A single
genre will be assigned to multiple books, and a single book can be assigned
to more than one genre. Under a relational data structure, there's a need for
an intermediary extra table that makes that relationship, which will point to
both the book and the genre.

Figure 3.10: Note the intermediary table allows multiple combinations.
The first table can reference multiple rows of the second, and the second multiple rows of the first

In most cases, the types of fields to store for each of the tables are straightforward,
though certain details should be considered:

• Allowing enough space to grow in the future. Some fields, like strings,
require defining a maximum size to store. For example, storing a string
representing an email address will require a maximum of 254 characters. But
sometimes the size is not obvious, like storing the name of a customer. In
these cases, it's better to err on the safe size and increase the limit.

• The limits should be enforced not only for the database, but also above this
level, to always allow any API or UI that deals with the field to handle it
gracefully.

This extra table may include more information, for example, how
accurate the genre is for the book. That way, it could describe
books that are 50% horror and 90% adventure.

Outside of the relational data world, sometimes there's not such
a pressing need for creating many-to-many relationships, and
instead they can be directly added as a collection of tags. Some
relational databases now allow more flexibility in allowing fields
that are lists or JSON objects, which can be used in this way,
simplifying the design.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[100]

When dealing with numbers, in most cases regular integers will be enough to
represent most used numbers. Though some databases accept categories like
smallint for 2 bytes or tinyint for 1-byte values, it's not recommended to
make use of them. The difference in space used will be minimal.

• The internal database representation doesn't need to be the same as what's
externally available. For example, the time stored in the database should
always be in UTC, and then translated to the user's time zone.

Another example is if prices are stored, it's better to store them in cents, to
avoid float numbers, and then present them as dollars and cents.

The internal representation doesn't need to follow the same conventions if
storing them in a different format is better for some reason.

• At the same time, it's better to represent the data naturally. A typical
example of that is the overabundance of using numeric IDs to represent rows
that have natural keys or using Enums (small integers assigned to represent
a list of options) instead of using short strings instead. While these choices
made sense some time ago, when space and processing power were more
restrictive, now the performance improvement is negligible, and storing data
in an understandable way helps greatly while developing.

Storing the time always in UTC format allows using a
consistent time in the server, in particular if there are users
in different time zones. Storing the time by applying the
time zone for the user produces non-comparable times in
the database and using the default time zone of the server
can produce different results based on the position of the
server, or even worse, inconsistent data if more than one
server in different time zones is involved. Ensure that all
times are stored in the database in UTC.

For example, this means that a price of $99.95 will be
stored as the integer 9995. Dealing with float arithmetic
can create problems for prices, and prices can be translated
into cents for easy handling.

For example, instead of using an integer field to store
colors, where 1 means RED, 2 means BLUE, and 3 means
YELLOW, use a short string field using the strings RED,
BLUE, and YELLOW. The storing difference is negligible
even if there are millions of records, and it's way easier to
navigate the database.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[101]

We will see a bit later about normalization and denormalization, which are
related to this concept.

• No design will be perfect or complete. In a system under development, the
schema will always require changes. This is totally normal and expected and
should be accepted as such. Perfect is the enemy of good. The design should
try to be as simple as possible to adjust for the current needs of the system.
Overdesign, trying to advance every possible future need and complicating
the design, is a real problem that can waste efforts in laying the ground for
needs that never materialize. Keep your design simple and flexible.

Schema normalization
As we've seen, in relational databases, a key concept is the foreign key one. Data
can be stored in a table and linked to another. This split in data means that a set of
limited data can, instead of being stored in a single table, be split in two.

For example, let's take a look at this table, initially with the field House as a string:

 Characters

id Name House
1 Eddard Stark Stark
2 Jon Snow Stark
3 Daenerys

Targaryen
Targaryen

4 Jaime Lannister Lannister

To ensure that the data is consistent and there are no errors, the field House can
be normalized. This means that it's stored in a different table, and a FOREIGN KEY
constraint is enforced, in this way.

Characters Houses

id Name HouseId
(FK)

id Name Words

1 Eddard Stark 1 1 Stark Winter is coming

2 Jon Snow 1 2 Lannister Hear me roar

3 Daenerys
Targaryen

3 3 Targaryen Fire and blood

4 Jaime Lannister 2

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[102]

This way of operating normalizes the data. No new entry with a new House can be
added unless it is first introduced in the Houses table. In the same way, an entry in
Houses cannot be deleted while a single entry in Characters contains a reference. This
ensures that the data is very consistent and there are no problems, like introducing
a typo like House Lanister (single n) for a new entry, which may complicate later
queries.

It also has the advantage of being able to add extra information for each of the entries
in Houses. In this case, we can add the Words of the House. The data is also more
compact, as repeated information is stored in a single pace.

On the other hand, this has a couple of issues. First of all, any reference to a
Character that needs to know the information of the House needs to perform a JOIN
query. In the first Characters table, we could generate our query in this way:

SELECT Name, House FROM Characters;

While in the second schema, we will require this one:

SELECT Characters.Name, Houses.Name
FROM Characters JOIN Houses ON Characters.HouseId = Houses.id;

This query will take longer to execute, as information needs to be compounded
from two tables. For big tables, this time can be extensive. This can also require a
JOIN from different tables if we add, for example, a PreferredWeapon field and a
Weapons normalized table for each Character. Or we can add even more tables as
the Characters table grows in fields.

It will also take longer to insert and delete data, as more checks need to be
performed. In general, operations will take longer.

Normalized data is also difficult to shard. The concept of normalization of keeping
every element described in its own table and reference from there is inherently
difficult to shard, as it makes partitioning very difficult.

Another problem is that the database is more difficult to read and operate. Deletes
need to happen in an ordered fashion, which gets more difficult to follow as more
fields are being added. Also, complex JOIN queries need to be performed for simple
operations. The queries are longer and more complicated to generate.

While this normalization structure, creating foreign keys through numerical
identifiers, is pretty typical, it's not the only option.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[103]

To improve the clarity of the database, natural keys can be used to simplify them,
describing the data in this way. Instead of using an integer as the primary key, we
use the Name field on the Houses table.

Characters Houses

Id Name House (FK) Name (PK) Words

1 Eddard Stark Stark Stark Winter is coming

2 Jon Snow Stark Lannister Hear me roar

3 Daenerys
Targaryen

Targaryen Targaryen Fire and blood

4 Jaime Lannister Lannister

This not only removes the usage of an extra field, but it also allows you to make the
reference with a descriptive value. We recover our original query, even if the data is
normalized.

Only when we want to obtain the information in the Words field will we need to
perform a JOIN query:

SELECT Name, House FROM Characters;

This trick, anyway, may not avoid the usage of JOIN queries in normal operation.
Perhaps there are a lot of references and the system is having problems with the
amount of time that it's taking to perform queries. In that case, it may be necessary to
reduce the need to JOIN tables.

Denormalization
Denormalization is the opposing action to normalization. Where normalizing data
splits it into different tables to ensure that all the data is consistent, denormalizing
regroups information into a single table to avoid the necessity to JOIN tables.

As we described before, the extra space of storing a string
instead of a single integer is negligible. Some developers are very
much against natural keys and prefer to use integer values, but
nowadays there's not really a solid technical reason for limiting
yourself.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[104]

Following our example above, we want to replace a JOIN query like this:

SELECT Characters.Name, Houses.Name, House.Words
FROM Characters JOIN Houses ON Characters.House = Houses.Name;

Which follows this schema:

Characters Houses

Id Name House (FK) Name (PK) Words

1 Eddard Stark Stark Stark Winter is coming

2 Jon Snow Stark Lannister Hear me roar

3 Daenerys
Targaryen

Targaryen Targaryen Fire and blood

4 Jaime Lannister Lannister

For a query similar to this, querying a single table, use something like this:

SELECT Name, House, Words FROM Characters

To do so, the data needs to be structured in a single table.

Characters

id Name House Words
1 Eddard Stark Stark Winter is coming
2 Jon Snow Stark Winter is coming
3 Daenerys

Targaryen
Targaryen Fire and blood

4 Jaime Lannister Lannister Hear me roar

Note that information is duplicated. Every Character has a copy of the Words of the
House, something that was not required before. This means denormalization uses
more space; in a big table with many rows, way more space.

Denormalization also increases the risk of inconsistent data, as there's nothing
ensuring that there's not a new value that's a typo of an old value, or that, by
mistake, incorrect Words are added to a different House.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[105]

But, on the other hand, we are now free of having to JOIN tables. For big tables
this can speed up processing, both read and writes, quite a lot. It also removes the
concerns for sharding, as now the table can be partitioned on whatever shard key
that's convenient and will contain all the information.

Denormalization is an extremely common option for the use cases that typically fall
under NoSQL databases, which remove the capability to perform JOIN queries. For
example, document databases embed data as subfields into a bigger entity. While it
certainly has its cons, it's a trade-off that makes sense in some operations.

Data indexing
As data grows, the access to data starts getting slower. Retrieving exactly the
proper data from a big table full of information requires performing more internal
operations to locate it.

This process can be greatly speeded up by organizing the data smartly in a way that
is easy to search. This leads to creating indexes that allow you to locate data very
quickly by searching through them. The basics of an index is to create an external
sorted data structure that points to one or more fields of each of the records of the
database. This index structure is always kept sorted as data in the table changes.

For example, a short table may contain this information

id Name Height (cm)
1 Eddard 178
2 John 173
3 Daenerys 157
4 Jaime 188

While we will describe data indexing in relation to relational
databases, most of the fundamentals are applicable to other
databases.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[106]

In the absence of an index, to query what entry has the highest height, the database
will need to individually check each of the rows and sort them. This is called a full
table scan. A full table scan can be very costly if the table has millions of rows.

By creating an index for the Height field, a data structure that is always sorted is kept
in sync with the data.

id Name Height (cm) Height (cm) id

1 Eddard 178 188 4

2 John 173 178 1

3 Daenerys 157 173 5

4 Jaime 188 157 3

Because it is always sorted, making any query related to the height is easy to fulfill.
For example, obtaining what the top 3 heights are doesn't require any checking, just
retrieving the first three records from the index, and determining heights between
180 and 170 is also easy, using search methods in sorted lists, like a binary search.
Once again, if this index doesn't exist, the only way to find these queries is by
checking each record in the table.

Note that the index doesn't cover all the fields. The Name field is not indexed, for
example. Another index may be required to cover other fields. The same table
accepts multiple indices.

Indexes can be combined, creating an index for two or more fields. These composite
indices sort the data based on the ordered combination of both fields, for example,
a composite index that is (Name, Height) will quickly return the height for Names
starting with J. A composite index of (Height, Name) will do the opposite, priming
the height and then sorting the Name field.

Querying in composite indices for only the first part of the index is possible. In our
example, an index of (Height, Name) will always work for querying Height.

The usage or not of indexes to retrieve the information is done automatically by
the database; the SQL query doesn't change at all. Internally, the database will run
the query analyzer before running a query. This part of the database software will
determine how to retrieve the data, and what indexes to use, if any.

The primary key of a table is always indexed, as it needs to be a
unique value.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[107]

Indexes greatly speed up the queries that use them, especially for big tables with
thousands or millions of rows. They are also used automatically, so they don't add
extra complexity to the generation of queries. So, if they are so great, why not index
absolutely everything? Well, indices also have some issues:

• Each index requires extra space. While this is optimized, adding a lot of
indexes in a single table will use more space, both in the hard drive and in
RAM.

• Each time the table changes, all indices in the table need to be adjusted to be
sure that the index is properly sorted. This is more noticeable in new data
being written, like records being added or indexed fields being updated.
Indices are a trade-off between spending more time on writing to speed
up the reading. For tables that are write heavy, this trade-off may not be
adequate, and maintaining one or more indices can be counterproductive.

• Small tables don't really benefit from being indexed. The difference between
a full table scan and an indexed search is small if the number of rows is
below the thousands.

As a rule of thumb, it's better to try to create indices after the need is detected. Once
a slow query is discovered, analyze if an index will improve the situation, and only
then create it.

Cardinality
An important characteristic of the usefulness of each index is its cardinality. This is
the number of different values that an index contains.

The query analyzer needs to run quickly, as determining what the
best possible way to search for information is can take more time
than running a naïve approach and returning the data. This means
that, sometimes, it will make mistakes and not use the optimal
combination. The SQL command EXPLAIN, used before another
SQL statement, will display how the query will be interpreted and
run, which allows you to understand and tweak it to improve its
execution time.

Keep in mind that using different independent indices in the same
query may not be possible. Sometimes the database won't be able
to perform a faster query by combining two indices as the data
needs to be correlated between them, and that may be a costly
operation.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[108]

For example, the Height index in this table has a cardinality of 4. There are four
different values.

id Height (cm)
1 178
2 165
3 167
4 192

A table like this has only a cardinality of 2.

id Height (cm)
1 178
2 165
3 178
4 165

An index with low cardinality has low quality, as it's not able to speed up the search
as much as expected. An index can be understood as a filter that allows you to
reduce the number of rows to search. If, after applying the filter, the table has not
been greatly reduced, the index won't be useful. Let's use an extreme example to
describe it.

Imagine a table with a million rows indexed by a field that's the same in all of them.
Now imagine that we make a query to find a single row in a different field that's not
indexed. If we use the index, we won't be able to speed up the process, as the index
will return every single row in the database.

Figure 3.11: Returning every single row from a query using an unhelpful index

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[109]

Now imagine it with two values. Half of the rows of the table are returned first, and
then we need to query them. This is better, but using the index has some overhead
compared with just performing a full table scan, so in practice, this is not very
advantageous.

Figure 3.12: Returning rows using an index with two values

As we increase the cardinality of the index, adding more and more values, the index
is more useful.

Figure 3.13: Returning rows using an index with four values

With a higher cardinality, the database is able to discriminate better and to point to a
smaller subsection of values, which speeds up greatly access to the proper data.

As a rule of thumb, ensure that the cardinality of an index is
always 10 or higher. Lower than that is probably not good enough
to use as an index. The query analyzer will take the cardinality
value into account to see whether to use the index or not.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Data Modeling

[110]

Keep in mind that the cardinality of fields that only allow a small number of values,
such as Booleans and Enums, is always limited and makes them bad candidates to be
indexed, at least on their own. On the other hand, values that are unique will always
have the highest possible cardinality and they are good candidates for indexing.
Primary keys are always indexed automatically for this reason.

Summary
In this chapter, we described different methods and techniques to deal with the
storage layer, both from the point of view of the different capacities and options
available in the database itself, and how the code of our application can interact to
store and retrieve information.

We described the different kinds of databases, both relational and non-relational, and
what the differences and usages of each are, and how the concept of a transaction,
one of the fundamental characteristics of relational databases, allows compliance
with ACID properties. As some of the non-relational databases are aimed at dealing
with data on a large scale and are distributed, we presented some of the techniques
to scale up relational systems, as that kind of database was not initially designed to
deal with multiple servers.

We continued by describing how we can design a schema and what the pros and
cons are for normalizing and denormalizing the data. We also described why we
index fields and when it's counterproductive.

In Chapter 4, The Data Layer, we will see how to design the data layer.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[111]

4
The Data Layer

The modeling of data when interacting with the application code is as important as
how that data is stored in storage. The data layer is the layer that developers will
interact with most often, so creating a good interface is critical to create a productive
environment.

In this chapter, we will describe how to create a software data layer that interacts
with storage to abstract the specifics of storing data. We will see what Domain-
Driven Design is, how to use an Object-Relational Mapping framework, and more
advanced patterns, like Command Query Responsibility Segregation.

We will also talk about how to make changes to the database as the application
evolves and, finally, techniques to deal with legacy databases when the structure
has already been defined before our involvement.

In this chapter, we will look at the following topics:

• The Model layer
• Database migrations
• Dealing with legacy databases

Let's start by giving the context of the data design as part of the Model part of the
Model-View-Controller (MVC) pattern.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[112]

The Model layer
As we saw when we presented the Model-View-Controller architecture in Chapter 2,
API Design, the Model layer is the part that's intimately related with the data and
storing and retrieving it.

The Model abstracts all the data handling. This not only includes database access but
also the related business logic. This creates a two-layer structure:

• The internal data modeling layer, handling the storage and retrieval of data
from the database. This layer needs to understand the way the data is stored
in the database and handles it accordingly.

• The next layer creates business logic and uses the internal data modeling
layer to support it. This layer is in charge of ensuring that the data to be
stored is consistent and enforces any relationships or constraints.

It's very common to deal with the data layer as a pure extension of the database
design, removing the business level or storing it as code in the Controller part.
While this is doable, it's better to think about whether it's good to explicitly add
the business layer on top and ensure there's separation between the entity models,
which makes good business sense, and the database models, which contain the
details on how to access the database.

Domain-Driven Design
This way of operating has become common as part of Domain-Driven Design.
When DDD was first introduced, it was aimed mainly at bridging the gap between
the specific application and the technology implementing it to try to use proper
nomenclature and ensure that the code was in sync with the real operations that the
users of the code would use. For example, banking software will use methods for
lodging and withdrawing funds, instead of adding and subtracting from an account.

When paired with Object-Oriented Programming (OOP), DDD techniques will
replicate the concepts required by the specific domain as objects. In our previous
example, we would have an Account object that accepts the methods lodge() and
withdraw(). These would probably accept a Transfer object that would keep the
proper balance in the source of the funds.

DDD is not only naming methods and attributes in a way
that's consistent with the proper jargon of the domain, but also
replicating the uses and flows.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[113]

These days, DDD is understood as the creation of this business-oriented interface
in the Model layer, so we can abstract the internals on how that's being mapped
into accesses to the database and present a consistent interface that replicates the
business flows.

For a lot of different concepts, the Model works purely as a replication of the
schema of the database. This way, if there's a table, it gets translated into a Model
that accesses that table, replicates the fields, etc. An example of this is storing the
user in a table with username, full name, subscription, and password fields.

But remember that it is not a hard requirement. A Model can use multiple tables
or combine multiple fields in a way that makes more business sense, even not
exposing some fields as they should remain internal.

For example, the example of the user above has the following fields in the database
as columns in a SQL table:

Field Type Description
Username String Unique username
Password String String describing the hashed password
Full name String Name of the user
Subscription
end

Datetime Time when the subscription ends

Subscription
type

Enum (Normal, Premium,
NotSubscribed)

Kind of subscription

DDD requires an intimate knowledge of the specific domain
at hand to create an interface that makes sense and properly
models the business actions. It requires close communication and
collaboration with business experts to be sure that all possible gaps
are covered.

We will use a relational database using SQL as our default
example, as it is the most common kind of database. But everything
that we are discussing is highly applicable to other kinds of
databases, especially to document-based databases.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[114]

But the Model may expose the following:

Attribute/Method Type Description
username String attribute Directly translates the username

column
full_name String attribute Directly translates the full_name

column
subscription Read-only

property
Returns the subscription type column.
If the subscription has ended (as
indicated in the subscription end
column), it returns NotSubscribed

check_password(password) Method Internally checks whether the
password input is valid by comparing
it with the hash password column and
returns whether it is correct or not

Note that this hides the password itself, as its internal details are not relevant outside
the database. It also hides the internal subscription fields, presenting instead a single
attribute that performs all the relevant checks.

This Model transforms the actions from the raw database access to a fully defined
object that abstracts the access to the database. This way of operating, when mapping
an object to a table or collection, is called Object-Relational Mapping (ORM).

Using ORM
As we've seen above, in essence, ORM is performing mapping between the
collections or tables in a database, and generating objects in an OOP environment.

While ORM itself refers to the technique, the way it is usually understood is as a tool.
There are multiple ORM tools available that do the conversion from SQL tables to
Python objects. This means that, instead of composing SQL statements, we will set
up properties defined in classes and objects that will then be translated automatically
by the ORM tool and will connect to the database.

For example, a low-level access for a query in the "pens" table could look like this:

>>> cur = con.cursor()
>>> cur.execute('''CREATE TABLE pens (id INTEGER PRIMARY KEY DESC,
name, color)''')
<sqlite3.Cursor object at 0x10c484c70>
>>> con.commit()

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[115]

>>> cur.execute('''INSERT INTO pens VALUES (1, 'Waldorf', 'blue')''')
<sqlite3.Cursor object at 0x10c484c70>
>>> con.commit()
>>> cur.execute('SELECT * FROM pens');
<sqlite3.Cursor object at 0x10c484c70>
>>> cur.fetchall()
[(1, 'Waldorf', 'blue')]

Note that we are using the DB-API 2.0 standard Python interface, which abstracts
away the differences between different databases, and allows us to retrieve the
information using the standard fetchall() method.

Using an ORM, like the one available in the Django framework, instead of creating a
CREATE TABLE statement, we describe the table in code as a class:

from django.db import models

class Pens(models.Model):
 name = models.CharField(max_length=140)
 color = models.CharField(max_length=30)

This class allows us to retrieve and add elements using the class.

>>> new_pen = Pens(name='Waldorf', color='blue')
>>> new_pen.save()

>>> all_pens = Pens.objects.all()
>>> all_pens[0].name
'Waldorf'

The operation that in raw SQL is an INSERT is to create a new object and then use
the .save() method to persist the data into the database. In the same way, instead of
composing a SELECT query, the search API can be called. For example, this code:

>>> red_pens = Pens.objects.filter(color='red')

To connect Python and an SQL database, the most common
ORMs are the ones included in the Django framework (https://
www.djangoproject.com/) and SQLAlchemy (https://www.
sqlalchemy.org/). There are other less-used options, such as
Pony (https://ponyorm.org/) or Peewee (https://github.
com/coleifer/peewee), that aim to have a simpler approach.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://ponyorm.org/
https://github.com/coleifer/peewee
https://github.com/coleifer/peewee

The Data Layer

[116]

Is equivalent to this code:

SELECT * FROM Pens WHERE color = 'red;

Using an ORM, compared with composing SQL directly, has some advantages:

• Using an ORM detaches the database from the code
• It removes the need for using SQL (or learning it)
• It removes some problems with composing SQL queries, like security issues

Let's take a closer look at these advantages and see their limits.

Independence from the database
First of all, using an ORM detaches the database usage from the code. This means
that a specific database can be changed, and the code will run unchanged. This can
be useful sometimes to run code in different environments or to quickly change to
use a different database.

This approach is not problem-free, as some options may be available in one database
and not in another. It may be a viable tactic for new projects, but the best approach
is to run tests and production in the same technologies to avoid unexpected
compatibility problems.

Independence from SQL and the Repository pattern
Another advantage is that you don't need to learn SQL (or whatever language is
used in the database backend) to work with the data. Instead, the ORM uses its own
API, which can be intuitive and closer to OOP. This can reduce the barrier to entry to
work with the code, as developers that are not familiar with SQL can understand the
ORM code faster.

A very common use case for this is to run tests in SQLite and use
another database like MySQL or PostgreSQL once the code is
deployed in production.

Using classes to abstract the access to the persistent layer from
the database usage is called the Repository pattern. Using an
ORM will make use of this pattern automatically, as it will use
programmatic actions without requiring any internal knowledge of
the database.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[117]

This advantage also has the counterpart that the translation of some actions can be
clunky and produce highly inefficient SQL statements. This is especially true for
complicated queries that require you to JOIN multiple tables.

A typical example of this is the following example code. The Books objects have a
reference to their author that's stored in a different table and stored as a foreign key
reference.

for book in Books.objects.find(publisher='packt'):
 author = book.author
 do_something(author)

This code is interpreted in the following way:

Produce a query to retrieve all the books from publisher 'packt'
For each book, make a query to retrieve the author
Perform the action with the author

When the number of books is high, all those extra queries can be very costly. What
we really want to do is

Produce a query to retrieve all the books from publisher 'packt',
joining with their authors
For each book, perform the action with the author

This way, only a single query is generated, which is much more efficient than the
first case.

This join has to be manually indicated to the API, in the following way.

for book in Books.objects.find(publisher='packt').select_
related('author'):
 author = book.author
 do_something(author)

This balance for ORM frameworks, between being intuitive to work with and
sometimes requiring an understanding of the underlying implementation details,
is a balance that needs to be defined. The framework itself will take a more or less
flexible approach depending on how the specific SQL statements used are abstracted
over a convenient API.

The need to require the addition of extra information is actually
a good example of leaking abstractions, as discussed in Chapter 2.
You are still required to understand the details of the database to
be able to create efficient code.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[118]

No problems related to composing SQL
Even if the developer knows how to deal with SQL, there's a lot of gotchas when
working with it. A pretty important advantage is that using an ORM avoids some
of the problems of dealing with the direct manipulation of SQL statements. When
directly composing SQL, it ends up becoming a pure string manipulation to generate
the desired query. This can create a lot of problems.

The most obvious ones are the requirement to compose the proper SQL statement,
and not to generate a syntactically invalid SQL statement. For example, consider the
following code:

>>> color_list = ','.join(colors)
>>> query = 'SELECT * FROM Pens WHERE color IN (' + color_list + ')'

This code works for values of colors that contain values but will produce an error if
colors is empty.

Even worse, if the query is composed using input parameters directly, it can produce
security problems. There's a kind of attack called an SQL injection attack that is
aimed at precisely this kind of behavior.

For example, let's say that the query presented above is produced when the user
is calling a search that can be filtered by different colors. The user is directly asked
for the colors. A malicious user may ask for the color 'red'; DROP TABLE users;.
This will take advantage of the fact that the query is composed as a pure string to
generate a malicious string that contains a hidden, non-expected operation.

To avoid this problem, any input that may be used as part of a SQL query (or any
other language) needs to be sanitized. This means removing or escaping characters
that may affect the behavior of the expected query.

Escaping characters means that they are properly encoded to be
understood as a regular string, and not part of the syntax. For
example, in Python, to escape the character " to be included in
a string instead of ending the string definition, it needs to be
preceded by the \ character. Of course, the \ character needs to be
escaped if it needs to be used in a string, in this case doubling it,
using \\.

For example:

"This string contains the double quote character \"
and the backslash character \\."

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[119]

While there are specific techniques to manually compose SQL statements and
sanitize the inputs, any ORM will sanitize them automatically, greatly reducing
the risk of SQL injection by default. This is a great win in terms of security and it's
probably the biggest advantage for ORM frameworks. Manually composing SQL
statements is generally understood as a bad idea, relying instead on an indirect way
that guarantees that any input is safe.

The counterpart is that, even when having a good understanding of the ORM API,
there are limits to the way elements are read for certain queries or results, which
may lead to operations that are much more complicated or inefficient using an ORM
framework than creating a bespoke SQL query.

ORM frameworks will also have an impact in terms of performance, as they require
time to compose the proper SQL query, encode and decode data, and do other
checkups. While for most queries this time will be negligible, for specific ones
perhaps this will greatly increase the time taken to retrieve the data. Unfortunately,
there's a good chance that, at some point, a specific, tailored SQL query will need to
be created for some action. When dealing with ORM frameworks, there's always a
balance between convenience and being able to create exactly the right query for the
task at hand.

If using SQL is the way to go, a common approach is to use prepared statements,
which are immutable queries with parameters, so they are replaced as part of the
execution in the DB API. For example, the following code will work in a similar way
to a print statement.

db.execute('SELECT * FROM Pens WHERE color={color}', color=color_input)

This typically happens when creating complex joins. The queries
created from the ORM are good for straightforward queries but can
struggle to create queries when there are too many relationships, as
it will overcomplicate them.

Another limit of ORM frameworks is that SQL access may allow
operations that are not possible in the ORM interface. This may be
a product of specific plugins or capabilities that are unique to the
database in use.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[120]

This code will safely replace the color with the proper input, encoded in a safe way.
If there's a list of elements that need to be replaced, that could be done in two steps:
first, preparing the proper template, with one parameter per input, and second,
making the replacement. For example:

Input list
>>> color_list = ['red', 'green', 'blue']
Create a dictionary with a unique name per parameter (color_X) and
the value
>>> parameters = {f'color_{index}': value for index, value in
enumerate(color_list)}
>>> parameters
{'color_0': 'red', 'color_1': 'green', 'color_2': 'blue'}
Create a clausule with the name of the parameters to be replaced
by string substitution
Note that {{ will be replaced by a single {
>>> query_params = ','.join(f'{{{param}}}' for param in parameters.
keys())
>>> query_params
'{color_0},{color_1},{color_2}'
Compose the full query, replacing the prepared string
>>> query = f'SELECT * FROM Pens WHERE color IN ({query_params})'
>>> query
'SELECT * FROM Pens WHERE color IN ({color_0},{color_1},{color_2})'
To execute, using ** on front of a dictionary will put all its keys
as
input parameters
>>> query.format(**parameters)
'SELECT * FROM Pens WHERE color IN (red,green,blue)'
Execute the query in a similar way, it will handle all
required encoding and escaping from the string input
 >>> db.execute(query, **query_params)

In our examples, we are using a SELECT * statement that will return all the columns
in the table for simplicity, but this is not the correct way of addressing them and
should be avoided. The problem is that returning all columns may not be stable.

New columns can be added to a table, so retrieving all columns may change the
retrieved data, increasing the chance of producing a formatting error. For example:

>>> cur.execute('SELECT * FROM pens');
<sqlite3.Cursor object at 0x10e640810>
This returns a row

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[121]

>>> cur.fetchone()
(1, 'Waldorf', 'blue')
>>> cur.execute('ALTER TABLE pens ADD brand')
<sqlite3.Cursor object at 0x10e640810>
>>> cur.execute('SELECT * FROM pens');
<sqlite3.Cursor object at 0x10e640810>
This is the same row as above, but now it returns an extra element
>>> cur.fetchone()
(1, 'Waldorf', 'blue', None)

An ORM will handle this case automatically, but using raw SQL requires you to take
this effect into account and always include explicitly the columns to retrieve to avoid
problems when making changes in the schema later on.

>>> cur.execute('SELECT name, color FROM pens');
<sqlite3.Cursor object at 0x10e640810>
>>> cur.fetchone()
('Waldorf', 'blue')

Queries generated programmatically by composing them are called dynamic
queries. While the default strategy should be to avoid them, preferring prepared
statements, in certain cases dynamic queries are still very useful. There's a level of
customization that can be impossible to produce unless there's a dynamic query
involved.

Even if the selected way to access the database is raw SQL statements, it's good to
create an abstraction layer that deals with all the specific details of the access. This
layer should be responsible for storing data, in the proper format in the database,
without business logic on that.

Backward compatibility is critical when dealing with stored data.
We will talk more about that later in the chapter.

Exactly what is considered a dynamic query may depend on the
environment. In some cases, any query that's not a stored query
(a query stored in the database itself beforehand and called with
some parameters) may be considered dynamic. From our point of
view, we will consider dynamic queries any queries that require
string manipulation to produce the query.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[122]

ORM frameworks will typically work a bit against this, as they are capable of
handling a lot of complexity and will invite you to overload each of the defined
objects with business logic. When the translation between the business concept
and the database table is direct, for example, a user object, this is fine. But it's
definitely possible to create an extra intermediate layer between the storage and the
meaningful business object.

The Unit of Work pattern and encapsulating
the data
As we've seen before, ORM frameworks directly translate between tables in the
database and objects. This creates a representation of the data itself, in the way it's
stored in the database.

In most situations, the design of the database will be tightly related to the business
entities that we've introduced in the DDD philosophy. But that design may require
an extra step, as some entities may be detached from the internal representation of
the data, as it's stored inside the database.

The creation of methods representing actions that are unique entities is called
the Unit of Work pattern. This means that everything that happens in this high-
level action is performed as a single unit, even if internally it is implemented with
multiple database operations. The operation acts atomically for the caller.

For example, we saw earlier the example of an Account class that accepts .lodge()
and .withdraw() methods. While it is possible to directly implement an Account table
that contains an integer representing the funds, we can also automatically create with
any change a double-entry accountability system that keeps track of the system.

If the database allows for it, all the operations in a unit of work
should be produced inside a transaction to ensure that the whole
operation is done in one go. The name Unit of Work is very
tightly associated with transactions and relational databases and
normally is not used in databases that are not capable of creating
transactions, though the pattern can still be used conceptually.

Account can be called a Domain Model to indicate that it's
independent of the database representation.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[123]

To do so, each Account should have debit and credit internal values that change
accordingly. If we also add an extra Log entry, in a different table, for keeping track
of movements, it may be implemented as three different classes. The Account class
will be the one to be used to encapsulate the log, while InternalAccount and Log will
correspond to tables in the database. Note that a single .lodge() or .withdraw() call
will generate multiple accesses to the database, as we'll see later.

Figure 4.1: Design of the Account class

The code could be something like this:

class InternalAccount(models.Model):
 ''' This is the model related to a DB table '''
 account_number = models.IntegerField(unique=True)
 initial_amount = models.IntegerField(default=0)
 amount = models.IntegerField(default=0)

class Log(models.Model):
 ''' This models stores the operations '''
 source = models.ForeignKey('InternalAccount',
 related_name='debit')
 destination = models.ForeignKey('InternalAccount',
 related_name='credit')
 amount = models.IntegerField()
 timestamp = models.DateTimeField(auto_now=True)

 def commit():
 ''' this produces the operation '''
 with transaction.atomic():
 # Update the amounts
 self.source.amount -= self.amount

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[124]

 self.destination.amount += self.amount
 # save everything
 self.source.save()
 self.destination.save()
 self.save()

class Account(object):
 ''' This is the exposed object that handled the operations '''

 def __init__(self, account_number, amount=0):
 # Retrieve or create the account
 self.internal, _ = InternalAccount.objects.get_or_create(
 account_number=account_number,
 initial_amount=amount,
 amount=amount)

 @property
 def amount(self):
 return self.internal.amount

 def lodge(source_account, amount):
 '''
 This operation adds funds from the source
 '''
 log = Log(source=source_account, destination=self,
 amount=amount)
 log.commit()

 def withdraw(dest_account, amount):
 '''
 This operation transfer funds to the destination
 '''
 log = Log(source=self, destination=dest_account,
 amount=amount)
 log.commit()

The Account class is the expected interface. It is not related directly to anything in the
database but keeps a relation to the InternalAccount using the unique reference of
the account_number.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[125]

Whenever there's an operation, it requires another account, and then a new Log is
created. The Log references the source, destination, and amount of the funds, and, in
a single transaction, performs the operation. This is done in the commit method.

 def commit():
 ''' this produces the operation '''
 with transaction.atomic():
 # Update the amounts
 self.source.amount -= self.amount
 self.destination.amount += self.amount
 # save everything
 self.source.save()
 self.destination.save()
 self.save()

In a single transaction, indicated by the usage of the with transaction.atomic()
context manager, it adds and subtracts funds from the accounts, and then saves the
three related rows, the source, the destination, and the log itself.

The logic to store the different elements is presented in a different
class than the ORM models. This can be understood in the way
that the ORM model classes are the Repositories classes and the
Account model is the Unit of Work class.

In some manuals, they use Unit of Work classes, leaving them
without much context, just as a container to perform the action
to store the multiple elements. Nevertheless, it's more useful to
assign a clear concept behind the Account class to give context and
meaning. And there could be several actions that are appropriate
for the business entity.

The Django ORM requires you to set this atomic decorator, but
other ORMs can work differently. For example, SQLAlchemy tends
to work more by adding operations to a queue and requiring you
to explicitly apply all of them in a batch operation. Please check the
documentation of the specific software you are using for each case.

A missing detail due to simplicity is the validation that there are
enough funds to perform the operation. In cases where there aren't
enough funds, an exception should be produced that will abort the
transaction.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[126]

Note how this format allows for each InternalAccount to retrieve every Log
associated to the transactions, both debits and credits. That means it can be checked
that the current amount is correct. This code will calculate the amount in an account,
based on the logs, and that can be used to check the amount is correct.

class InternalAccount(models.Model):
 ...

 def recalculate(self):
 '''
 Recalculate the amount, based on the logs
 '''
 total_credit = sum(log.amount for log in self.credit.all())
 total_debit = sum(log.amount for log in self.debit.all())
 return self.initial_amount + total_credit - total_debit

The initial amount is required. The debit and credit fields are back-references to
the Log, as defined in the Log class.

From the point of view of a user only interested in operating with Account objects,
all these details are irrelevant. This extra layer allows us to cleanly abstract from the
database implementation and store any relevant business logic there. This can be the
exposed business Model layer (of the Domain Model) that handles relevant business
operations with the proper logic and nomenclature.

CQRS, using different models for read and
write
Sometimes a simple CRUD model for the database is not descriptive of how the data
flows in the system. In some complex settings, it may be necessary to use different
ways to read the data and to write or interact with the data.

A possibility is that sending data and reading it happen at different ends of a
pipeline. For example, this is something that happens in event-driven systems,
where the data is recorded in a queue, and then later processed. In most cases,
this data is processed or aggregated in a different database.

Let's see a more specific example. We store sales for different products. These sales
contain the SKU (a unique identifier of the product sold) and the price. But we don't
know, at the time of the sale, what the profit from the sale is, as the buying of the
product depends on fluctuations of the market. The storing of a sale goes to a queue
to start the process to reconcile it with the price paid. Finally, a relational database
stores the final sale entry, which includes the purchase price and profit.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[127]

The flow of information goes from the Domain Model to the queue, then by some
external process to the relational database, where it is then represented with a
relational model in an ORM way, and then back to the Domain Model.

This structure is called Command Query Responsibility Segregation (CQRS),
meaning that the Command (write operations) and Query (read operations) are
separated. The pattern is not unique to event-driven structures; they are typically
seen in these systems because their nature is to detach the input data from the output
data.

The Domain Model may require different methods to deal with the information.
The input and output data has a different internal representation, and sometimes it
may be easier to clearly distinguish them. It's anyway a good idea to use an explicit
Domain Model layer for CQRS to group the functionality and treat it as a whole.
In certain cases, the models and data may be quite different for read and write. For
example, if there's a step where aggregated results are generated, that may create
extra data in the read part that's never written.

A description of the process of how the read and write parts connect is out of scope
in our examples. In our example, that process would be how the data is stored in the
database, including the amount paid.

The following diagram depicts the flow of information in a CQRS structure:

Figure 4.2: The flow of information in a CQRS structure

Our model's definition could be like this:

Class SaleModel(models.Model):
 ''' This is the usual ORM model '''
 Sale_id = models.IntegerField(unique=True)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[128]

 sku = models.IntegerField()
 amount = models.IntegerField()
 price = models.IntegerField()

class Sale(object):
 '''
 This is the exposed Domain Model that handled the operations
 In a domain meaningful way, without exposing internal info
 '''

 def __init__(self, sale_id, sku, amount):
 self.sale_id = sale_id
 self.sku = sku
 self.amount = amount
 # These elements are won't be filled when creating a new
element
 self._price = None
 self._profit = None

 @property
 def price(self):
 if self._price is None:
 raise Exception('No price yet for this sale')
 return self._price

 @property
 def profit(self):
 if self._profit is None:
 raise Exception('No price yet for this sale')
 return self._profit

 def save(self):
 # This sends the sale to the queue
 event = {
 'sale_id': self.sale_id,
 'sku': self.sku,
 'amount': self.amount,
 }
 # This sends the event to the external queue
 Queue.send(event)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[129]

 @classmethod
 def get(cls, sale_id):
 # if the sale is still not available it will raise an
 # Exception
 sale = SaleModel.objects.get(sale_id=sale_id)
 full_sale = Sale(sale_id=sale_id, sku=sale.sku,
 amount=sale.amount)
 # fill the private attributes
 full_sale._price = sale.price
 full_sale._profit = sale.amount - full_sale._price
 return full_sale

Note how the flow is different for save and retrieve:

 # Create a new sale
 sale = Sale(sale_id=sale_id, sku=sale.sku, amount=sale.amount)
 sale.save()

 # Wait some time until totally processed
 full_sale = Sale.get(sale_id=sale_id)
 # retrieve the profit
 full_sale.profit

CQRS systems are complex, as the data in and the data out is different. They also
normally incur some delay in being able to retrieve the information back, which can
be inconvenient.

Another important problem in CQRS systems is the fact that the different pieces
need to be in sync. This includes both the read and write models, but also
any transformation that happens within the pipeline. Over time, this creates a
maintenance requirement, especially when backward compatibility needs to be
maintained.

All these problems make CQRS systems complicated. They should
be used with care only when strictly necessary.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[130]

Database migrations
An unavoidable fact of development is that software systems are always changing.
While the pace of changes in the database is typically not as fast as other areas, there
are still changes and they need to be treated carefully.

Data changes are roughly categorized into two different kinds:

• Format or schema changes: New elements, like fields or tables, to be added
or removed; or changes in the format of some fields.

• Data changes: Requiring changing the data itself, without modifying the
format. For example, normalizing an address field including the zip code,
or making a string field uppercase.

Backward compatibility
The basic principle related to changes in the database is backward compatibility.
This means that any single change in the database needs to work without any change
in the code.

This allows you to make changes without interrupting the service. If the changes in
the database require a change in the code to understand it, the service will have to
be interrupted. This is because you can't apply both changes at the same time, and if
there is more than one server executing the code, it can't be applied simultaneously.

Depending on the database, there are different approaches to data changes.

For relational databases, given that they require a fixed structure to be defined,
any change in the schema needs to be applied to the whole database as a single
operation.

For other databases that don't force defining a schema, there are ways of updating
the database in a more iterative way.

Let's take a look at the different approaches.

Of course, there's another option, which is to stop the service,
perform all the changes, and restart again. While this is not great,
it could be an option for small services or if scheduled downtime is
acceptable.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[131]

Relational schema changes
In relational databases, each individual schema change is applied as a SQL statement
that operates like a transaction. The schema change, called a migration, can happen
at the same time that some transformation of the data (for example, transforming
integers to strings) takes place.

Migrations are SQL commands that perform changes in an atomic way. They can
involve changing the format of tables in the database, but also more operations like
changing the data or multiple changes in one go. This can be achieved by creating
a single transaction that groups these changes. Most ORM frameworks include
support to create migrations and perform these operations natively.

For example, Django will automatically create a migration file by running the
command makemigrations. This command needs to be run manually, but it will
detect any change in the models and make the proper changes.

For example, if we add an extra value branch_id in the class introduced before

class InternalAccount(models.Model):
 ''' This is the model related to a DB table '''
 account_number = models.IntegerField(unique=True)
 initial_amount = models.IntegerField(default=0)
 amount = models.IntegerField(default=0)
 branch_id = models.IntegerField()

Running the command makemigrations will generate the proper file that describes
the migration.

$ python3 manage.py makemigrations
Migrations for 'example':
 example/migrations/0002_auto_20210501_1843.py
 - Add field branch_id to internalaccount

Note that Django keeps track of the state in the models and automatically adjusts the
changes creating the proper migration files. The pending migrations can be applied
automatically with the command migrate.

$ python3 manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, example, sessions
Running migrations:
 Applying example.0002_auto_20210501_1843... OK

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[132]

For more details about Django migrations, check the documentation at https://
docs.djangoproject.com/en/3.2/topics/migrations/.

Changing the database without interruption
The process to migrate the data, then, needs to happen in the following order:

1. The old code and the old database schema are in place. This is the starting
point.

2. The database applies a migration that's backward compatible with the old
code. As the database can apply this change while in operation, the service is
not interrupted.

3. The new code taking advantage of the new schema is deployed. This
deployment won't require any special downtime and can be performed
without interrupting the process.

The critical element of this process is step 2, to ensure that the migration is backward
compatible with the previous code.

Most of the usual changes are relatively simple, like adding a new table or column
to a table, and you'll have no problem with that. The old code won't make use of
the column or table, and that will be totally fine. But other migrations can be more
complex.

Django will store in the database the status of the applied
migrations, to be sure that each one is applied exactly once.

Keep in mind that, to properly use migrations through Django
no alterations outside of this method should be made, as this can
confuse and create conflicts. If you need to apply changes that
can't be replicated automatically with a change in the model, like a
data migration, you can create an empty migration and fill it with
your custom SQL statements. This can create complex, custom
migrations, but that will be applied and kept in track with the rest
of the automatically created Django migrations. Models can also
be explicitly marked as not-handled by Django to manage them
manually.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.djangoproject.com/en/3.2/topics/migrations/
https://docs.djangoproject.com/en/3.2/topics/migrations/

Chapter 4

[133]

For example, let's imagine that a field Field1 that has so far been an integer needs to
be translated into a string. There'll be numbers stored, but also some special values
like NaN or Inf that are not supported by the database. The new code will decode
them and deal with them correctly.

But obviously, a change that migrates the code from an integer to a string is going to
produce an error if this is not taken into account in the old code.

To solve this problem, it needs to be approached as a series of steps instead:

1. The old code and the old database schema are in place. This is the starting
point.

2. The database applies a migration adding a new column, Field2. In this
migration, the value from Field1 is translated into a string and copied.

3. A new version of the code, intermediate code, is deployed. This version
understands there may be one (Field2) or two columns (Field1 and Field2).
It uses the value in Field2, not the one in Field1, but if there's a write, it
should overwrite both.

4. A new migration removing Field1, now unused, can be applied.

5. The new code that is only aware of Field2 can now be deployed safely.

Depending on whether Field2 is an acceptable name or not, it may be possible that
a further migration is deployed changing the name from Field2 to Field1. In that
case, the new code needs to be prepared in advance to use Field2 or, if not present,
Field1.

To avoid having a problem with possible updates between
the application of the migration and the new code, the
code will need to check if the column Field1 exists, and if
it does and has a different value than Field2, update the
latter before performing any operation.

In the same migration, the same caveat as above should be
applied – if the value in Field1 is different from the one
in Field2, overwrite it with Field1. Note how the only
case where this may happen is if it has been updated with
the old code.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[134]

A new deployment could be done after that to use only Field1 again:

Figure 4.3: Migrating from Field1 to Field2

If this seems like a lot of work, well, it is. All these steps are required to enforce
smooth operation and achieve no downtime. The alternative is to stop the old code,
perform the migration with the format change in Field1, and then start the new
code. But this can cause several problems.

The most obvious is the downtime. While the impact can be minimized by trying
to set up a proper maintenance window, most modern applications are expected to
work 24x7 and any downtime is considered a problem. If the application has a global
audience, it may be difficult to justify a stop just for avoidable maintenance.

The downtime also may last a while, depending on the migration side. A common
problem is testing the migration in a database much smaller than the production one.
This can create an unexpected problem when running in production, taking much
longer than anticipated. Depending on the size of the data, a complex migration may
take hours to complete. And, given that it will run as part of a transaction, it needs to
be totally completed before proceeding or it will be rolled back.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[135]

But another problem is the risk of introducing a step, at the start of the new code,
that can have problems and bugs, either related to the migration, or unrelated.
With this process, after the migration is applied, there's no possibility of using the
old code. If there's a bug in the new code, it needs to be fixed and a newer version
deployed. This can create big trouble.

While it's true that, as migrations are not reversible, applying a migration is always
a risk, the fact that the code stays stable helps mitigate problems. Changing a single
piece of code is less risky than changing two without being able to revert either of
them.

Keep in mind how migrations inter-operate with the techniques that we talked about
related to distributed databases. For example, a sharded database will need to apply
each migration independently to each of the shards, which may be a time-consuming
operation.

If possible, try to test the migrations of the system with a big
enough test database that's representative. Some operations can
be quite costly. It's possible that some migrations may need to be
tweaked to run faster or even divided into smaller steps so each
one can run in its own transaction to run in a reasonable time. It's
even possible in some cases that the database will require more
memory to allow the migration to run in a reasonable amount of
time.

Migrations may be reversible, as there could be steps that
perform the reverse operation. While this is theoretically true, it is
extremely difficult to enforce in real operations. It's possible that a
migration like removing a column is effectively not reversible, as
data gets lost.

This way migrations need to be applied very carefully and by
ensuring that each step is small and deliberate.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[136]

Data migrations
Data migrations are changes in the database that don't change the format but change
the values of some fields.

These migrations are produced normally either to correct some error in the data, like
a bug that stores a value with some encoding error, or to move old records to a more
up-to-date format. For example, including zip codes in all addresses, if not already
present, or to change the scale of a measurement from inches to centimeters.

In either case, these actions may need to be performed for all rows or only for a
selection of them. Applying them only to the relevant subset, if possible, can greatly
speed up the process, especially for big databases.

In cases like the scale change described above, the process may require more steps
to ensure that the code can handle both scales and differentiate between them. For
example, with an extra field describing the scale. In this case, the process will be as
follows:

1. Create a migration to set a new column, scale, to all rows, with a default
value of inches. Any new row introduced by the old code will automatically
set up the values correctly, by using a default value.

2. Deploy a new version of the code able to work with both inches and
centimeters reading the value in scale.

3. Set up another migration to change the value of measurement. Each row will
change both the scale and the measurement accordingly. Set the default value
for scale to centimeters.

4. Now all the values in the database are in centimeters.
5. Optionally, clean up by deploying a new version of the code that doesn't

access the scale field and understands only centimeters, as both scales are
not used. After that, a new migration removing the column can also be run.

Step 5 is optional and normally there's not a great appetite for this kind of cleanup,
as it's not strictly necessary and the versatility of having the extra column may be
worth keeping for future usage.

As we discussed before, the key element is to deploy code that's able to work with
both database values, the old and the new, and understand them. This allows for a
smooth transition between the values.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[137]

Changes without enforcing a schema
One of the flexible aspects of non-relational databases is the fact that there's typically
not an enforced schema. Instead, the stored documents accept different formats.

This means that, instead of an all-or-nothing change as for relational databases, a
more continuous change and dealing with multiple formats is preferred.

Instead of the application of migrations, which is a concept not really applicable
here, the code will have to perform the changes over time. In this case, the steps are
like this:

1. The old code and the old database schema are in place. This is the starting
point.

2. Each of the documents in the database has a version field.
3. The new code contains a Model layer with the migration instructions from

the previous version to the new one – in our example above, to translate
Field1 from integer to string.

4. Every time that a particular document is accessed, the version is checked.
If it's not the latest, Field1 is transformed into a string, and the version is
updated. This action happens before performing any operation. After the
update, the operation is performed normally.

This operation runs alongside the normal operation of the system. Given
enough time, it will migrate, document by document, the whole database.

The version field may not be strictly necessary, as the type
of Field1 may be easy to infer and change. But it presents
the advantage that it makes the process explicit, and can be
concatenated, migrating an old document from different versions
in a single access.

If the version field is not present, it may be understood as
version 0 and be migrated to version 1, now including the field.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[138]

Figure 4.4: Changes over time

This process is very clean, but sometimes leaving data in the old format for a long
time, even if it's not accessed, may not be advisable. It may cause that code to
migrate from version 1 to 2, version 2 to 3, etc, if still present in the code. If this
is the case, an extra process running alongside may be covering every document,
updating and saving it until the whole database is migrated.

Also note that, if this functionality is encapsulated in the internal database access
layer, the logic above this one may use the newer functionality without caring about
old formats, as they'll be translated on the fly.

While there's still data in the database with the old version, the code needs to be
able to interpret it. This can cause some accumulation of old tech, so it's also possible
to migrate all the data in the background, as it can be done document to document,
filtering by the old version, while everything is in operation. Once this background
migration is done, the code can be refactored and cleaned to remove the handling of
obsolete versions.

This process is similar to the one described for data migration,
though databases enforcing schemas need to perform migrations
to change the format. In a schema-less database, the format can be
changed at the same time as the value.

In the same way, a pure data change, like the example seen
before where it was changing the scale, can be performed without
the need for a migration, slowly changing the database as we
described here. Doing it with a migration ensures a cleaner change,
though, and may allow a simultaneous change in format.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[139]

Dealing with legacy databases
ORM frameworks can generate the proper SQL commands to create the database
schema. When designing and implementing a database from scratch, that means
that we can create the ORM Model in code and the ORM framework will make the
proper adjustments.

But sometimes, we need to work with an existing database that was created
previously by manually running SQL commands. There are two possible use cases:

• The schema will never be under the control of the ORM framework. In
this case, we need a way to detect the existing schema and use it.

• We want to use the ORM framework from this situation to control the
fields and any new changes. In this scenario, we need to create a Model that
reflects the current situation and move from there to a declarative situation.

Let's take a look at how to approach these situations.

Detecting a schema from a database
For certain applications, if the database is stable or it's simple enough, it can be used
as-is, and you can try to minimize the code to deal with it. SQLAlchemy allows you
to automatically detect the schema of the database and work with it.

This way of describing the schema in code is called declarative.

SQLAlchemy is a very powerful ORM-capable library and
arguably the best solution to perform complex and tailored
accesses to a relational database. It allows complex definitions on
how exactly tables relate to each other and allows you to tweak
queries and create precise mappings. It's also more complex and
potentially more difficult to use than other ORM frameworks such
as the Django ORM.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[140]

To automatically detect a database, you can automatically detect the tables and
columns:

>>> from sqlalchemy.ext.automap import automap_base
>>> from sqlalchemy.sql import select
>>> from sqlalchemy import create_engine

Read the database and detect it
>>> engine = create_engine("sqlite:///database.db")
>>> Base = automap_base()
>>> Base.prepare(engine, reflect=True)

The Pens class maps the table called "pens" in the DB
>>> Pens = Base.classes.pens

Create a session to query
>>> session = Session(engine)

Create a select query
>>> query = select(Pens).where(Pens.color=='blue')
Execute the query
>>> result = session.execute(query)
>>> for row, in result:
... print(row.id, row.name, row.color)
...
1 Waldorf blue

Note how the described names for the table pens and columns id, name, and color
are detected automatically. The format of the query is also very similar to what a
SQL construction will be.

The Django ORM also has a command that allows you to dump a definition of the
defined tables and relationships, using inspectdb.

$ python3 manage.py inspectdb > models.py

This creates a models.py file that contains the interpretation of the database based on
the discovery that Django can do. This file may require adjustments.

SQLAlchemy allows more complex usages and the creation
of classes. For more information, refer to its documentation:
https://docs.sqlalchemy.org/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.sqlalchemy.org/

Chapter 4

[141]

These methods of operation work perfectly for simple situations, where the most
important part is to not spend too much effort having to replicate a schema in code.
Other situations, where the schema gets mutated and requires better handling and
control over the code, require a different approach.

Check the Django documentation for more information: https://docs.
djangoproject.com/en/3.2/howto/legacy-databases/.

Syncing the existing schema to the ORM
definition
In other situations, there's a legacy database that was created by a method that
cannot be replicated. Perhaps it was done through manual commands. The current
code may use the database, but we want to migrate the code so we are up-to-date
with it so we can, on one hand, understand exactly what the different relations
and formats are, and on another, allow the ORM to make controlled changes to the
schema in a compatible way. We will see the latter as migrations.

The challenge in this case is to create a bunch of Models in the ORM framework that
are up-to-date with the definition of the database. This is easier said than done, for
several reasons:

• There can be database features that are not exactly translated by the ORM.
For example, ORM frameworks don't deal with stored procedures natively.
If the database has stored procedures, they need to be either removed or
replicated as part of the software operation.

Stored procedures are code functions inside the database
that modify it. They can be manually called by using a SQL
query, but normally they are triggered by certain operations,
like inserting a new row or changing a column. Stored
procedures are not very common these days, as they can
be confusing to operate, and instead, in most cases, system
designs tend to see databases as storage-only facilities,
without the capacity to change the data that is stored.
Managing stored procedures is complicated, as they can be
difficult to debug and keep in sync with external code.

Stored procedures can be replicated by code that handles
that complexity as part of a single Unit of Work action
when the action will be triggered. This is the most common
approach these days. But, of course, migrating already-
existing stored procedures into external code is a process
that may not be easy and requires care and planning.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.djangoproject.com/en/3.2/howto/legacy-databases/
https://docs.djangoproject.com/en/3.2/howto/legacy-databases/

The Data Layer

[142]

• ORM frameworks can have their quirks in how to set up certain elements,
which may not be compatible with the already-existing database. For
example, how certain elements are named. The Django ORM doesn't allow
you to set custom names for the indices and constraints. For a while, the
constraint can remain only in the database, but "hidden" in the ORM, but
in the long run that can create problems. This means that at some point, the
index name needs to be changed externally to the compatible name.

• Another example of this is the lack of support for composite primary keys in
the Django ORM, which may require you to create a new numeric column to
create a surrogate key.

These limitations require that the creation of Models is done carefully and there are
checks needed to ensure that they work as expected with the current schema. The
created schema based on the code Models in the ORM framework can be produced
and compared with the actual schema until there's parity or they are close enough.

For example, for Django, the following general procedure can be used:

1. Create a dump of the database schema. This will be used as a reference.
2. Create the proper Model files. The starting point could be the output from

the inspectdb command described above.

3. Create a single migration with all the required changes for the database.
This migration is created normally, with makemigrations.

4. Use the command sqlmigrate to produce a SQL dump of the SQL statements
that will be applied by the migration. This generates a database schema that
can be compared with the reference.

5. Adjust the differences and repeat from step 2 onward. Remember to delete
the migration file each time to generate it from scratch.

Once the migration is tweaked to produce exactly the results that are
currently applied, this migration can be applied using the parameter --fake
or –fake-initial, meaning that it will be registered as applied, but the SQL
won't run.

Note that the inspectdb creates the Models with their
metadata set to not track changes in the database. That
means that Django labels the Models as not tracked for
changes as migrations. Once verified, this will need to be
changed.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[143]

After that, changes can be applied normally by changing the Models and then
autogenerating migrations.

Summary
In this chapter, we described what the principles behind Domain-Driven Design
are, to orient the abstraction of storing data and use rich objects that follow business
principles. We also described ORM frameworks and how they can be useful to
remove the need to deal with low-level interaction with specific libraries to work
with the storage layer. We described different useful techniques for the code to
interact with the database, like the Unit of Work pattern, which is related to the
concept of a transaction, and CQRS for advanced cases where the write and read are
addressed to different backends.

We also discussed how to deal with database changes, both with explicit migrations
that change the schema and with more soft changes that migrate the data as the
application is running.

Finally, we described different methods to deal with legacy databases, and how to
create models to create a proper software abstraction when there's no control over
the current schema of the data.

This is a very simplified method. As we discussed above, there
are some elements that can be difficult to replicate. Changes to
the external database to solve incompatibility problems may be
required.

On the other hand, sometimes it can be okay to live with small
differences that are not creating any problems. For example, a
different name in the primary key index may be something that can
be acceptable and fixed later. Normally, these kinds of operations
require a long time to be totally completed from a complex schema.
Plan accordingly and do it in small increments.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Data Layer

[144]

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

To be able to produce successful designs, it's not necessary to start from scratch.
Instead, your efforts are better put into understanding which common architectural
patterns have already been proven successful.

In this section of the book, we will see different ideas that are common across a lot of
successful systems. All these elements are useful in specific contexts, and we will see
what their strengths and limitations are over the following chapters:

1. The Twelve-Factor App Methodology, explaining this methodology
2. Web Server Structures, describing how to deal effectively with response-

request services
3. Event-Driven Structure Basics, introducing how to work with events and

communicate different services with them
4. Advanced Event-Driven Structures, for creating complex flows of

information, priorities, and CQRS
5. Microservices vs Monolith, explaining the differences between them and the

tools for dealing with them

We will introduce you to the Twelve-Factor App methodology, as it contains a list
of useful suggestions for dealing with the specifics of services. We will also get into
the specifics of web server request-response structures, which are normally the
foundation of servers.

Part II
Architectural

Patterns

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

We will also cover event-driven systems, taking two chapters to be sure to cover the
basic and more advanced uses. Event-driven systems are asynchronous by nature,
meaning that the calling system won't wait until the processing is done, and in a lot
of cases, there won't even be something similar to a response. These systems are very
useful for dealing either with triggering multiple services with the same input or for
generating results that take a long time to process.

We'll also discuss monolithic systems compared with microservices, and the different
tools and techniques to use in both cases, including migrating from one to the other.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[147]

5
The Twelve-Factor
App Methodology

When designing a software system, it's not a good idea to reinvent the wheel each
time for each new project. Certain parts of software are common to most web service
projects. Learning some of the known practices that have proven successful over
time is important to avoid making easily fixed mistakes.

In this chapter, we will focus on the Twelve-Factor App methodology. This
methodology is a series of recommendations that are well proven for web services
that are deployed on the web.

We will present the base details for this methodology during the chapter and will
spend some time describing in more detail some of the most important factors that
this methodology covers.

The Twelve-Factor App has its origins in Heroku, a company that
provides easy access to deployments. Some of the factors are more
general than others, and everything should be considered general
advice and not necessarily an imposition. The methodology is less
applicable outside of web cloud services, but it's still a good idea to
review it and try to extract useful information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[148]

In this chapter, we'll cover the following topics:

• Intro to the Twelve-Factor App
• Continuous Integration
• Scalability
• Configuration
• The Twelve factors
• Containerized Twelve-Factor Apps

Let's start by introducing the basic concepts of the Twelve-Factor App.

Intro to the Twelve-Factor App
The Twelve-Factor App is a methodology with 12 different aspects or factors that
cover good practices to follow while designing a web system. They aim to provide
clarity and simplify some of the possibilities, detailing patterns that are known to
work.

The factors are generic enough to not be prescriptive in how to implement them or
force the use of specific tools, and at the same time, give clear direction. The Twelve-
Factor App Methodology is opinionated in the sense that it aims to cover cloud
services in a scalable way, and also promotes the idea of Continuous Integration
(CI) as a critical aspect of these kinds of operations. This also leads to a reduction
in the differences between a local, development environment and a production
environment.

These two aspects, consistency between local and production deployments, and
CI, interact, as it allows the system to be tested in a consistent way, both in a
development environment and while running the tests in a CI system.

Scalability is another key element. As cloud services require working with a variable
workload, we need to allow our service to be capable of growing and be able to
process more requests coming into the system without any issues.

A third general problem that we will cover, and which is also central to the Twelve-
Factor App, is the challenge of configuration. Configuration allows the same code
to be set up in different environments, while also tweaking some features to adjust
them in certain situations.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[149]

Continuous Integration
Continuous Integration, or CI, is the practice of automating the running of tests when
new code is submitted to a central repository. Whereas, when originally introduced
back in 1991, it could be understood as running a "nightly build", as running the tests
took time and was expensive, these days, it is commonly understood as running a set
of tests with each new code submission.

The objective is to produce code that always works. After all, if it's not, it is detected
quickly by the failing tests. This fast feedback loop helps developers to increase their
speed and create a safety net that allows them to focus on whatever feature they are
implementing and leave it to the CI system to run the totality of tests. The discipline
of running the tests automatically and on every single test greatly helps to ensure
high-quality code, as any error is detected quickly.

This is also dependent on the quality of the tests that are run, so in order to have a
good CI system, it is important to understand the importance of good tests and to
refine the testing procedure regularly, both to ensure that it gives us an adequate
level of confidence and that it runs fast enough not to cause a problem.

CI is based on the capacity of automating whatever system is used as a central
repository for code, so tests are launched as soon as new changes are forthcoming
from a developer. It is very common to use a source control system like git, and add
a hook that automatically runs the tests.

In a more practical approach, git is normally used under a cloud system like GitHub
(https://github.com/) or GitLab (https://about.gitlab.com/). Both of them have
other services that integrate with them and allow operations to be run automatically
through some configuration. Examples include TravisCI (https://www.travis-ci.
com/) and CircleCI (https://circleci.com/). In the case of GitHub, they have their
own native system called GitHub Actions. All of these are based on the idea of
adding a special file to configure the service, thereby simplifying the setup and run
of a pipeline.

Fast enough, when dealing with a CI system can vary. Keep in
mind that the tests will run in the background, automatically,
without the involvement of a developer, so they may take a
while to return a result, compared with the quick feedback that
a developer will expect when debugging a problem. As a very
general approximation, aim to have your test pipeline finished in
around 20 minutes or less, if that is possible.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/
https://about.gitlab.com/
https://www.travis-ci.com/
https://www.travis-ci.com/
https://circleci.com/

The Twelve-Factor App Methodology

[150]

A CI pipeline is a succession of steps that are run in order. If there's an error, it will
stop the execution of the pipeline and report whatever problem has been detected,
allowing for early detection and feedback for developers. Typically, we build the
software into a testable state and then run the tests. If there are different kinds of
tests, such as unit and integration tests, run them both, either one after the other or
in parallel.

A typical pipeline to run tests could do the following:

1. As it starts in a new, empty environment, install the required dependency
tools to run the tests; for example, a particular version of Python and a
compiler, or a static analysis tool that will be used in step 3.

2. Perform any build command to prepare the code, such as compiling or
packetizing.

3. Run static analysis tools like flake8 to detect style problems. If the results
reveal problems, stop here and report.

4. Run the unit tests. If the results are incorrect, stop here and show the errors.
5. Prepare and run other tests, such as integration or system tests.

These stages may be run, in certain cases, in parallel. For example, steps 3 and 4 may
run at the same time as there is no dependency between the cases, whereas step 2
needs to be completed before moving on to step 3. These steps can be described in
some CI systems to allow for faster execution.

The keyword in a CI pipeline is automation. To allow the pipeline to be executed, all
the steps need to be able to be run automatically, without any manual intervention.
This requires that any dependency is also able to be set up automatically. For
example, elements like databases or other dependencies, if required for tests, need to
be allocated.

A common pattern is that CI tools allocate a virtual machine
that allows a database to start up so that it's available in the
environment, including the usual suspects such as MySQL,
PostgreSQL, and MongoDB. Keep in mind that the database
will start empty, and if test data needs to be seeded, it will need
to be done during the setting up of the environment. Check the
documentation for your specific tool for more details.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[151]

One possibility is to use Docker to build one or more containers that will standardize
the process and make all dependencies explicit in the building process. This is
becoming an increasingly common option.

Some of the factors of the Twelve-Factor App play a part in the setup of a CI
pipeline, as they aim to have code that is easy to build, to be deployed either for
testing or operating and configuration.

Scalability
Cloud systems are expected to behave correctly under high loads, or at least to adjust
between different loads. This requires the software to be scalable. Scalability is the
ability of the software to be allowed to grow and accept more requests, mostly by
increasing resources.

There are two types of scalability:

• Vertical scalability: Increasing resources to each node, making them more
powerful. This is the equivalent of buying a more powerful computer;
adding more RAM, more hard drive space, a faster CPU…

• Horizontal scalability: Adding more nodes to the system, without them being
necessarily more powerful. For example, instead of having two web servers,
increase them to five.

In general, horizontal scalability is considered more desirable. In a cloud system, the
capacity of adding and removing nodes can be automated, allowing for deployments
to adjust automatically based on the number of current requests flowing into the
system. Compared with the traditional way of operating, where the system had to be
dimensioned for the moment of maximum system load, this can greatly reduce costs
since, most of the time, the system will be underutilized.

For example, let's compare a situation where, at noon, the system requires 11
servers, when most customers are connected. At midnight, the system is at its lowest
utilization point, and only 2 servers are required.

We will talk more about Docker in Chapter 8, Advanced Event-
Driven Structures.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[152]

The following diagram shows a typical situation when the number of servers grows
based on the load:

Figure 5.1: Service scaling up and down over time

The traditional situation will make use of 264 cost units (11 servers * 24 hours),
while automatically scaling uses approximately 166 cost units, saving a considerable
number of resources.

Even more so, a traditional system requires extra headroom to allow for unexpected
spikes that could occur. Normally, a system will be set up to allow at least a 30%
extra load, maybe even more. In that case, the cost is permanently added.

To allow a system to be horizontally scalable, it needs to be stateless. This means that
each node is indistinguishable. Each request will be allocated to a node in some sort
of rotation, distributing the load across all nodes. All state from each request needs
to come either from the request itself (input parameters) or from an external storage
source. From the point of view of the application, each request comes in an empty
space and cannot be carried over in any event. That means not storing anything in
the local hard drive or local memory between requests.

The external storage source will typically be a database, but it's also common to use
storage services more oriented to store files or other big blobs of binary data, for
example, AWS S3.

Storing information intra-request, for example, composing a file
with information from the database to return it in the request is
OK, although keeping it in memory, if possible, will likely be faster
than using the hard drive.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[153]

A cache should also be kept outside of each individual node, using tools such as
Riak or memcached. Internal caches, using local memory, have the problem that they
likely won't be used, as the next relevant request will likely be served by another
node in the system. Using an external service allows all nodes to access the cache and
improves the general performance of the system.

Keep in mind that the whole system cannot be stateless. In particular, the storage
elements, such as databases and caches, require a different way of operating, as they
are the ones storing the data. We discussed how to scale storage systems in Chapter 3,
Data Modeling.

Configuration
One of the basic ideas of the Twelve-Factor App is that the code is unique, but it
can be adjusted through configuration. This enables the same code to be used and
deployed in different environments.

The use of different environments allows testing environments to be set up, where
tests can be run without affecting production data. They are a more controlled
place for experimenting or trying to replicate real problems in a sandbox. There's
also another environment that is not typically thought of as such, which is the local
development environment, where developers are able to check that the system
works.

AWS S3 is a web service that allows a file to be stored and retrieved
from a URL. It allows the creation of a bucket, which will contain
a number of keys or paths; for example, accessing a URL similar
to https://s3.amazonaws.com/mybucket/path/to/file so it
can upload and download file-like objects. There are also plenty of
libraries to help deal with the service, such as boto3 for Python.

This service is very useful for working with files in a scalable way,
and it allows configuration in such a way that access for reading
can be done publicly, enabling the pattern of storing the data
through your system, and then allowing the user to read it from
the public URL, thereby simplifying the system.

Refer to the AWS documentation for more information: https://
aws.amazon.com/s3/

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

The Twelve-Factor App Methodology

[154]

Configuring the system is more difficult than it appears at first sight. There's always
a growing number of parameters to take care of. In complex systems, it is important
to structure parameters in certain ways to allow them to be divided into more
manageable parts.

Configuration parameters can be divided into two main categories:

• Operational configuration: These are parameters that connect different parts
of the system or that are related to monitoring; for example, the address
and credentials for the database, the URL to use to access an external API,
or setting the level of logging to INFO. These config parameters are only
changed when there's a change in the cluster, but the external behavior of
the application doesn't change; for example, a change to log only WARNING
logs or higher, or the credentials are replaced to rotate them.

• These parameters are under the control of operations and are normally
changed transparently or during maintenance. A misconfiguration in these
parameters is normally a serious problem as it can affect the functionality of
the system.

• Feature configuration: These parameters change external behavior, enabling
or disabling features or changing aspects of the software; for example,
theming parameters to set the color and header images; or enabling the
premium feature to allow a charge for premium access, or updating
the parameters of a mathematical model that changes how the internal
calculation of orbits are performed.
These parameters are irrelevant as regards the operation of the software. A
misconfiguration here will likely not cause problems, as it will continue to
operate normally. Changes here are more under the control of developers
or even business managers to enable a feature at a particular point in time.

Creating a comprehensive and easy-to-use local environment is
a critical aspect of developer productivity. When working with a
single service or process, such as a web server, it is relatively easy
to set up, as most projects will allow starting in a dev mode, but
once there are more elements, it becomes more difficult to set up.

Complex settings have been quite common for years. There has
been a relatively recent push to use virtual machines that could be
set up from scratch, and more recently, containerization to ensure
that it's easy to start it from a known point.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[155]

These two categories have different aims and, normally, are maintained by different
people. While the operational configuration parameters are tightly related to a single
environment and require parameters that are correct for the environment, the feature
configuration normally moves between the local development to test it until it is
changed in the production one with the same value.

Traditionally, the configuration has been stored in one or more files, typically
grouped by environment. This creates a file called production.cnf and another
one called staging.cnf that are attached to the code base, and depending on the
environment, one or the other is used. This entails certain problems:

• Making a configuration change is, de facto, a code change. This limits the
speed of changes that can be performed and cause problems with scope.

• When the number of environments grows, the number of files grows at the
same time. This can cause errors as a result of duplication; for example,
a mistake that changes the wrong file is not reverted and is unexpectedly
deployed later. Old files may also not be removed.

• Centralizing control among developers. As we've seen, some of these
parameters are not necessarily under the control of developers, but ops
teams. Storing all the data in the code base makes it more difficult to create
a division between jobs, requiring both teams to access the same files.
While this is fine for small teams, over time, it makes sense to try to reduce
the need to have big groups of people accessing the same file to only care
about half of it.

Configuration parameters that aim to activate or deactivate a full
feature are known as feature flags. They are used to produce a
"business release" at a particular time, deploying new code into a
production environment without the feature, while the feature is
being worked on internally.

Once the feature is ready for release, after thoroughly testing
it, the code can be deployed beforehand in production, and the
full feature can be activated just by changing the proper config
parameter.

This allows us to keep working in small increases toward a big
feature, such as a revamp of the user interface, while at the same
time building and releasing small increments frequently. Once
the feature is released, the code can be refactored to remove the
parameter.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[156]

• Storing sensitive parameters such as passwords in files and storing them in
the code repo is an obvious security risk, as anyone with access to the repo
can use these credentials to access all environments, including production.

These problems render it unadvisable to store the configuration directly as
files inside the code base. We will see how the Twelve-Factor App deals with it
specifically in the Configuration factor.

The Twelve Factors
The factors for Twelve-Factor Apps are as follows:

1. Code base. Store the code in a single repo and differentiate only by
configuration.

2. Dependencies. Declare them explicitly and clearly.
3. Config. Config through the environment.
4. Backing services. Any backing service should be treated as an attached

resource.
5. Build, release, run. Differentiate between build and run states.
6. Processes. Execute the app as a stateless process.
7. Port binding. Expose services through ports.
8. Concurrency. Set up the services as processes.
9. Disposability. Fast start and graceful shutdown.
10. Dev/prod parity. All environments should be as similar as possible.
11. Logs. Send logs to event streams.
12. Admin processes. Run one-off admin processes independently.

The factors can be grouped around different concepts:

• Code base, Build, release, run, and Dev/prod parity work around the idea
of generating a single application that runs in different environments,
differentiating only through configuration

• Config, Dependencies, Port binding, and Backing services work around the
configuration and connectivity of different services

• Processes, Disposability, and Concurrency are related to the scalability concept
• Logs and Admin processes are practical ideas involved with monitoring and

one-off processes

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[157]

Let's take a look at all four of these groups.

Build once, run multiple times
One of the key concepts around the Twelve-Factor App is that it's easy to build and
manage, but at the same time, it's a unified system. This means that there's no ad hoc
code that's changed from one version to another, just configurable options.

The aim of the Code base factor is that all the software for an app is a single repo, with
a single state, without special branches for each customer, or a special functionality
that's only available in a particular environment.

This means that the code to deploy is always the same, and only the configuration
changes. This allows easy testing of all the configuration changes and does not
introduce blind spots.

Note that a single system may have multiple projects, living in multiple repos, that
individually fulfill the Twelve-Factor App and work together. Other factors talk
about interoperation on applications.

A single code base allows a strict differentiation of the stages in the Build, release, run
factor. This factor ensures that there are three distinct stages:

• The build stage transforms the content of the code repo into a package or
executable that will be run later

Very specific environments are typically called snowflake
environments. Anyone that has dealt with them knows how
painfully difficult they are to maintain, and that's why the objective
for the Twelve-Factor App is to remove them, or at least make
them change based just on the configuration.

Keeping multiple applications working together, through
coordinated APIs, is always a challenge and requires good
coordination across teams. Some companies adopt the monorepo
approach, where there's a single repository with all the company
projects living in multiple subdirectories, to be sure that there's a
complete view of the whole system and a single state across the
whole organization.

This also has its own challenges, and requires greater coordination
across teams and can present big challenges for big repos.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[158]

• The release stage uses this built package, combines it with the proper
configuration for the selected environment, and sets it ready for execution

• The run stage finally executes the package in the selected environment

Because stages are strictly divided, it's not possible to change the configuration or the
code after the code is deployed. This requires a new release in any case. This makes
the releases very explicit, and each one should be executed independently. Note
that the run stage may need to be executed again in case there's a new server or the
server crashes, so the aim should be for this to be as easy to do as possible. As we are
seeing, a common thread through the Twelve-Factor App is strict separation, so that
each element is easy to recognize and to operate. We will check how to define the
configuration in other factors.

Because of this strict separation, in particular, in the build stage, it's easy to follow
the Dev/prod parity. In essence, a development environment is the same as a
production one, as they use the same building stage, but with proper configuration
to run locally. This factor also makes it possible to use the same (or as close as
possible) backing services, like databases or queues, to ensure that local development
is as representative as a production environment. Container tools such as Docker, or
provisioning tools such as Chef or Puppet, can also help in automatically setting up
environments that contain all the required dependencies.

Obtaining a fast and easy process to develop, build, and deploy is critical for
speeding up the cycle and adjusting quickly.

As we discussed previously, the configuration lives in a different
place to the code base. This separation makes sense, and it could be
also under source control. It may be stored as files, but the access
can then be separated by environment, something that makes
sense, as some environments, like production, are more critical
than others. Storing the configuration as part of the code base
makes it difficult to perform that separation.

Keep in mind that more than one file can be combined, allowing
the parameters to be separated into feature and operational
configurations.

Performing tests after the build stage also ensures that the code
remains without changes between the tests and the release and
operation.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[159]

Dependencies and configurations
The Twelve-Factor App advocates the explicit definition of dependencies and
configuration and, at the same time, is opinionated in terms of how to do them and
provides solid standards that are proven.

That is why, in the Config factor, it talks about storing all the configuration for the
system in environment variables. Environment variables are independent from
code, which allows retention of the strict differentiation that we talked about in the
Build, release, run factor and avoidance of the problems that we described previously
in storing them in files inside the code base. They are also language- and OS-
independent, and easy to work with. Injecting environment variables into a new
environment is also easy.

This is preferred to other alternatives, such as setting different files into the code
base describing environments like staging or production, because they allow more
granularity, and because this kind of handling ends up creating too many files and
changing the code for environments that are not affected; for example, having to
update the code base for a demo environment that is short-lived.

Configuration can be obtained in configuration files directly from the environment
using standard libraries; for example, in Python:

import os
PARAMETER = os.environ['PATH']

This code will store in the constant PARAMETER the value of the PATH environment
variable. Be careful as the lack of a PATH environment variable will generate a
KeyError as it won't be present in the environ dictionary.

Although the Twelve-Factor App encourages dealing with
configurations in a variable-independent way, the reality of the
work means that there are a limited number of environments and
their configuration should be stored somewhere. The key element
is storing it in a different place to the code base, managed only on
the release stage. This allows plenty of flexibility.

Keep in mind that for local development, these environment
variables may need to be changed independently to test or debug
different features.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[160]

To allow for optional environment variables, and protect against them going
missing, use .get to set up a default value:

PARAMETER = os.environ.get('MYENVVAR', 'DEFAULT VALUE')

Note that environment variables are always defined as text. If the value needs to be
in a different format, it needs to be converted, for example:

NUMBER_PARAMETER = int(os.environ['ENVINTEGERPARAMETER'])

This presents a common problem when defining a Boolean value. Defining this
translation code as follows is incorrect:

BOOL_PARAMETER = bool(os.environ['ENVBOOLPARAMETER'])

If the value of ENVPARAMETER is "TRUE", the value of BOOL_PARAMETER is True (Boolean).
But if the value of ENVPARAMETER is "FALSE", the value of BOOL_PARAMETER is also True.
This is because the string "FALSE" is a non-empty string and gets converted into True.
Instead, the standard library package, distutils, can be used:

import os
from distutils.util import strtobool
BOOL_PARAMETER = strtobool(os.environ['ENVBOOLPARAMETER'])

For the following examples, keep in mind that the defined
environment variables need to be defined in your environment.
These definitions are not included, to simplify the explanation.
You can run Python, adding a local environment, by running $
MYENVVAR=VALUE python3.

As a general recommendation, it's better to raise an exception
because there's a missing configuration variable than to continue
with a default parameter. This makes configuration problems
easier to spot, as it will stop when the process starts, failing loudly.
Remember, following the Twelve-Factor App ideas, you want to
describe things explicitly and any problem should fail as early as
possible in order to be able to fix it correctly instead of passing
without detection.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[161]

Environment variables also allow the injection of sensitive values such as secrets
without storing them in the code base. Keep in mind that the secret will be available
to inspect in the environment of the execution, but typically that's protected so only
authorized team members can access it through ssh or similar in the environment.

As part of this configuration, any backing services should be defined as well as
environment variables. Backing services are external services that the app uses over
the network. They could be databases, queues, caching systems, or suchlike. They
can be local to the same network or external services, such as APIs handled by an
external company or AWS services.

From the point of view of the app, this differentiation should be irrelevant.
The resources should be accessed by a URI and credentials, and, as part of the
configuration, can be changed based on the environment. This makes the resources
loosely coupled, and means they can be replaced easily. If there is a migration
and the database needs to be moved between two networks, we can start the new
database, perform a new release with a configuration change, and the app will point
to the new database. This can be done with no code changes.

To allow the concatenation of multiple applications, the Port binding factor ensures
that any service exposed is a port, which may be different depending on the service.
This makes it easy to consider each app a backing service. Preferably, it should be
exposed in HTTP as this makes it very standard to connect to.

strtobool returns not True or False as Booleans, but 0 or
1 as integers. This normally works correctly, but if you need
strict Boolean values, add bool like this: bool(strtobool(os.
environ['ENVPARAMETER']))

For applications, use HTTP over port 80 when possible. This makes
all connections easy with URLs such as http://service-a.
local/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[162]

Some applications require the combination of several processes working in
conjunction. For example, it is typical for a web server for a Python application, such
as Django, to use an application server like uWSGI to run it, and then a web server
like nginx or Apache to serve it and the static files.

Figure 5.2: Connecting a web server and application server

They all connect by exposing a known port and protocol, which makes the setup
easy.

On the same note, for clarity, all library dependencies should be explicitly set up and
not rely on the pre-installation of certain packages in the existing operating system.
The dependencies should be described through a dependency declaration, like a
requisites.txt pip file for Python.

Dependencies should then be installed as part of the build stage, with commands
such as pip install -r requirements.txt.

Even more so, dependencies should be isolated to ensure that there are no implicit
dependencies that are not tightly controlled. Dependencies should also be defined as
tightly as possible, to avoid the problem of different versions of dependencies being
installed if new versions are released upstream.

For example, in a pip file, a dependency can be described in different ways:

requests
requests>=v2.22.0
requests==v2.25.1

Keep in mind that the specific Python version is also a dependency
that should be controlled tightly. The same is true of other required
OS dependencies. Ideally, the OS environment should be created
from scratch with the dependencies specified.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[163]

The first way accepts any version, so it will typically use the latest. The second
describes a minimum (and optionally maximum) version. The third version pins a
specific version.

Using very explicit dependencies makes the builds repeatable and deterministic. It
ensures a lack of unknown changes during the build stage because a new version has
been released. While most new packages will be compatible, it may also sometimes
introduce changes that affect the behavior of the system. Even worse, those changes
will be introduced inadvertently, causing severe problems.

Scalability
We talked earlier in the chapter about the why's of scalability. The Twelve-Factor
App also talks about how to successfully grow or reduce the system.

The Processes factor talks about making sure that the run stage consists of starting
one or more processes. These processes should be stateless and share nothing,
meaning that all the data needs to be retrieved from an external backing service like
a database. A temporal local disk can be used for temporal data within the same
request, although their use should be kept to a minimum.

The next property that processes need to fulfill is their disposability. The processes
need to be able to be started and stopped quickly, and at any time.

Starting quickly allows the system to react quickly to releases or restarts. The aim
should be to take not more than a few seconds to have the process up and running.
Quick turnaround is also important to allow rapid growth of the system in case
more processes are being added for scale purposes.

This is equivalent to other package management systems in
operative systems, like apt in Ubuntu. You can install a specific
version with apt-get install dependency=version.

For example, a file upload may use the local hard drive to store
a temporal copy and then process the data. After the data is
processed, the file should be deleted from the disk.

If possible, try to use memory for this temporal storage as it will
make this distinction more strict.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[164]

The opposite is to allow the graceful shutdown of the process. This can be required
for scale-down situations, to be sure that any request is not interrupted in this case.
By convention, processes should be stopped by sending the SIGTERM signal.

For example, for a web request, a graceful shutdown first will curtail the acceptance
of any new requests, will finish any requests in the queue, and finally, will shut
down the process. Web requests are typically quick to answer, but for other
processes, such as long asynchronous tasks, it may take a long time to stop if they
need to finish the current task.

Instead, long task workers should return the job to the queue and cancel the
execution. This way, the task will be performed again, and to ensure that this doesn't
duplicate actions, we need to ensure that all tasks can be canceled by waiting until
the end of it to save its results and wrapping them into a transaction or similar.

Processes should also be robust against unexpected stoppages. These stoppages
could be caused by bugs, hardware errors, or, in general, unexpected surprises that
always appear in software. Creating a resilient queue system that can retry in case a
task is interrupted will help greatly in these instances.

Because the system is created through processes, based on that, we can scale out by
creating more of them. Processes are independent and can be run at the same time on
the same server or others. This is the basis of the Concurrency factor.

Working with Docker containers automatically uses this
convection by sending a SIGTERM signal to the main process
whenever the container needs to be stopped. If the process doesn't
stop itself after a grace period, it will be killed instead. The grace
period can be configured if necessary.

Be sure that the main process for the container can receive SIGTERM
and deal with it properly to ensure a graceful stopping of the
container.

In some cases, it may be necessary to distinguish between the bulk
of the preparation job and the saving of results part. We either
want to wait, if the job is saving the results at the time of shut
down, or stop execution and return the task to the queue. Some
save operations may require calling systems that don't accept
transactions. The acceptable time for shutting down long-running
processes may be longer than for web servers.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[165]

Keep in mind that the same application can use multiple processes that coordinate
among them to handle different tasks and each process may have a different number
of copies. In our previous example above, with an nginx server and uWSGI one,
the optimal number may be to have a single nginx process for many more times the
number of uWSGI workers.

Adding more nodes, as they are independent and stateless, becomes an easy
operation under a Twelve-Factor App. That allows the size of the entire operation to
be adjusted to the load of the system. This can be a manual operation, to slowly add
new nodes as the system grows in load and requests, or it can be done automatically,
as we described earlier in the chapter.

The Twelve-factor App processes should also be run by some sort of operating
system process manager, like upstart or systemd. These systems ensure that the
processes remain running, even in the event of a crash, handle graceful manual
restarts, and also manage output streams gracefully. We will talk more about output
streams as part of logs.

The traditional deployment process was to set up a physical server
(or virtual machine) for a node and fit a number of elements, which
normally included tailoring the number of workers until finding
the optimal figure to make proper use of the hardware.

With containers, this process is somehow reversed. Containers
tend to be more lightweight and more can be created. While the
optimization process is still required, with containers, it's more
about creating a unit and then checking how many of them a single
node can fit, as containers can be moved around nodes more easily,
and the resulting apps tend to be smaller. Instead of finding out
what is the proper size of the application for a given server, we
figure out how many copies of a small application fit in a server,
knowing that we can use different server sizes or add more servers
with ease.

The Twelve-Factor App doesn't demand that this scale is done
automatically, but definitively enables it. Automating the
adjustment should be treated with care, as it requires careful
metrics on the load of the system. Allow time to perform tests to
make the proper adjustments.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[166]

Restarting the processes automatically, combined with a quick start up time and
resilience in shutdown situations, makes the app dynamic and capable of self-
repairing in case there is an unexpected problem that causes a process to crash. It
also allows controlled shutdowns to be used as part of a general operation to avoid
long-running processes and act as a contingency plan for memory leaks or other
kinds of long-running problems.

Monitoring and admin
A comprehensive monitoring system is important for detecting problems and
analyzing the operation of the system. While it's not the only monitoring tool, logs
are a critical part of any monitoring system.

Logs are text strings that provide visibility of the behavior of a running app.
They should always include a timestamp on when they were generated. They are
generated as the code is being executed, giving information on the different actions
as they happen. The specifics about what to log can vary significantly by application,
but typically frameworks will automatically create logs based on common practices.

For example, any web-related software will log requests received, something like
this, for example:

[16/May/2021 13:32:16] "GET /path HTTP/1.1" 200 10697

Note that it includes:

• A timestamp for when it was generated [16/May/2021 13:32:16]
• The HTTP GET method and the HTTP/1.1 protocol

When working with containers, this changes a bit, as the equivalent
is mostly handling containers more than processes. Instead of an
operating system process manager, the work is performed by a
container orchestrator that ensures that the containers are running
properly and capturing any output stream. Inside the container,
the processes can start without being under the control of a
manager. The container will stop if the process is stopped.

This is equivalent to the old trick of turning it off and then turning
it back on! If it can be done very quickly, it can save a lot of
situations!

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[167]

• The accessed path – /path
• The returned status code – 200
• The size of the request – 10697

This kind of log is called an access log and will be generated in different formats.
At the very least, it should always include the timestamp, HTTP method, path, and
status code, but it can be configured to return extra information, such as the IP of the
client making the request, or the time that it took to process the request.

Access logs are not the only useful ones. Application logs are also very useful.
Application logs are generated inside the code and can be used to communicate
significant milestones or errors. Web frameworks prepare the logs, so it's easy to
generate new ones. For example, in Django, you can create logs this way:

import logging
logger = logging.getLogger(__name__)
...

def view(request, arg):

 logger.info('Testing condition')
 if something_bad:
 logger.warning('Something bad happened')

This will generate logs like these:

2021-05-16 14:01:37,269 INFO Testing condition
2021-05-16 14:01:37,269 WARNING Something bad happened

Access logs are also generated by web servers including nginx
and Apache. Configuring them properly to adjust the information
produced is important for operational purposes.

We will get into more details about logs in Chapter 11, Package
Management.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[168]

The Logs factor suggests that logs shouldn't be managed by the process itself. Instead,
logs should be printed in their own standard output without any intermediate
step. The environment surrounding the process, like the operating system process
manager described in the Concurrency factor, should be charged with receiving
the logs, combining them, and routing them properly to a long-term archival and
monitoring system. Note that this configuration is totally out of the application's
control.

This is in contrast to storing the logs as log files in the hard drive. This has the
problem of requiring the logs to be rotated and ensure that there's enough space.
This also requires the different processes to coordinate in terms of having a similar
policy for log rotation and storage. Instead, standard outputs can be combined and
aggregated together for a whole image of the system, and not a single process.

The logs can also be directed toward an external log indexing system, such as
the ELK Stack (Elasticsearch, Kibana, and Logstash: https://www.elastic.co/
products/), which will capture logs and provide analytic tools to search through
them. External tools are also available, including Loggly (https://www.loggly.com/)
or Splunk (https://www.splunk.com/) to avoid maintenance. All these tools allow
standard output logs to be captured and redirected to their solutions.

These other tools can provide capabilities like searching and finding specific events
in a particular time window, observing trends such as changes in the number of
requests per hour, and even creating automatic alerts based on certain rules, such
as an increase in the number of ERROR logs over a period of time over and above a
certain value.

The Admin processes factor covers some processes that sometimes need to be run for
specific operations, but are not part of the app's normal operation. Examples include
the following:

• Database migrations

For local development, just showing the logs in a terminal may be
enough for development purposes.

In the container world, this recommendation makes even more
sense. Docker orchestration tools can easily capture the standard
output from the containers and then redirect them to somewhere
else.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.elastic.co/products/
https://www.elastic.co/products/
https://www.loggly.com/
https://www.splunk.com/

Chapter 5

[169]

• The production of ad hoc reports, such as generating a one-off report for
certain sales or detecting how many records are affected by a bug

• Running a console for debugging purposes

These operations are not part of the day-to-day operation, but may need to be run.
The interface is clearly different. To execute them, they should run in the same
environment as the regular processes, using the same code base and configuration.
These admin operations should be included as part of the code base to avoid
problems with mismatched code.

In traditional environments, it may be necessary to log in to a server through ssh to
allow the execution of this process. In container environments, a full container can be
started exclusively to execute the process.

This is very common in cases of migrations, for example. A preparation command
may consist of running the build to execute migrations.

To run these admin commands in containers, the container image should be the same
one that runs the application, but called with a different command, so the code and
environment are the same as in the running application.

Containerized Twelve-Factor Apps
Although the Twelve-Factor App methodology is older than the current trend
toward containerization using Docker and related tools, it's very aligned. Both tools
are oriented toward scalable services in the cloud, and containers help to create
patterns that match the ones described in the Twelve-Factor methodology.

Executing commands in a console in a production environment
should be used only when no other alternative is available, and
not as a way of removing the need to create specific scripts for
recurring operations. Extreme caution should apply. Keep in mind
that an error in a production environment can create a serious
problem. Treat your production environment with the proper
respect.

This should be done before the actual release, to ensure that
the database is migrated. Refer to Chapter 4 for more details on
migrations.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[170]

The most important, arguably, is the fact that the creation of an invariant container
image that then gets run works very well with the Build, release, run factor and with
being very explicit with Dependencies, as the whole image will include details such
as the specific OS to use and any library. Including the build process as part of the
repository also helps in the implementation of the Code base factor.

Each container also works as a Process, which allows scaling by creating multiple
copies of the same container, using the Concurrency model.

The concept of containers makes them easy to start and stop, leaning into the
Disposability factor, and connecting one to another through an orchestration tool such
as Kubernetes makes it easy to also set up the Backing services factor, and it's also
easy to share services between specific ports in containers following the Port binding
factor. In most cases, however, they'll be shared as web interfaces on the standard
port 80.

In Docker and orchestrator tools like Kubernetes, it is very easy to set up different
environments injecting environment variables, thereby fulfilling the Configuration
factor. This environment configuration, as well as a description of the cluster, can
be stored in files, which allow multiple environments to be created easily. It also
includes tools for handling properly secrets, so they are properly encrypted and are
not stored in the configuration files to avoid leaking secrets.

Another critical advantage of containers is the fact that a cluster can be replicated
easily locally, as the same image that runs in production can run in a local
environment, with only small changes in its configuration. This helps greatly in
ensuring that the different environments are kept up to date, as demanded by the
Dev/Prod parity factor.

We will talk more about Docker containers in Chapter 8, Advanced
Event-Driven Structures.

While containers are usually thought of conceptually as
lightweight virtual machines, it's better to think of them as a
process wrapped in its own filesystem. This is closer to the way
they operate.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[171]

Sending information to standard output as per the Logs factor is also a great way
to store logs as container tools will receive and deal with or redirect those logs
adequately.

Finally, the Admin processes can be handled by launching the same container image
with a different command that runs the specific admin command. This can be
handled by the orchestrator if it needs to happen regularly, such as running the
migrations prior to a deployment, or if it's a periodic task.

As we can see, working with containers is a great way of following the
recommendations for the Twelve-Factor App, as the tools work in the same direction.
This doesn't mean that they are done for free, but that there's a significant degree of
alignment between the methodology and the ideas behind containers.

This is not surprising as both come from a similar background, dealing with web
services that need to be run in the cloud.

Summary
In this chapter, we saw that it's good to have solid and reliable patterns to build
software to be sure that we stand over the shoulder of tested decisions that we
can use to shape new designs. For web services living in the cloud, we can use the
Twelve-Factor App methodology as a guideline for a lot of useful advice.

We discussed how the Twelve-Factor App is aligned with two main ideas – CI and
scalability.

CI is the practice of constantly validating any new code by running tests automatically
after the code is shared. This creates a safety net that enables developers to move
quickly, although it requires discipline to properly add automated tests as new
features are being developed.

In general, the container approach works toward defining a cluster
and instigating a clear separation between different services and
containers in a consistent manner. This brings together different
environments, as the development environment can replicate the
production setup on a small scale.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Twelve-Factor App Methodology

[172]

We also discussed the concept of scalability, or the capacity for software to allow
more load by adding more resources. We talked about why it is important to allow
the software to grow and reduce based on the load, even to the point to be able to
adjust dynamically. We also saw how making the system stateless is key to achieving
scalable software.

We saw the challenges for configuration, something that the Twelve-Factor App
also deals with, and how not every configuration parameter is equal. We described
how configuration can be divided into Operational configuration and Feature
configuration, which can help divide and give the proper context to each parameter.

We went through each of the factors for the Twelve-Factor App, and divided them
into four different groups, relating them, and explaining how the different factors
support each other. We divided the factors into groups:

• Build once, run multiple times, based on the idea of generating a single
package that runs in a different environment

• Dependencies and configuration, around the configuration and software and
service dependencies of the application

• Scalability, to achieve the scalability that we talked about before
• Monitoring and admin with other elements to deal with the operation of the

software while in operation

Finally, we spent some time talking about how the Twelve-Factor App ideas are very
much in line with what containerization is about, and how different Docker features
and concepts allow us to easily create Twelve-Factor Apps.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[173]

6
Web Server Structures

Web servers are the most common servers for remote access at the moment. Web
services based on HTTP are flexible and powerful.

In this chapter, we will see how web servers are structured, starting by describing
how the basic request-response architecture works, and then diving into a LAMP-
style architecture in three layers: the web server itself, the workers executing
the code, and an intermediate layer that controls those workers and presents a
standardized connection to the web server.

We will describe each layer in detail, presenting a specific tool, such as nginx for the
web server, uWSGI for the intermediate layer, and the Python Django framework for
the specific code inside the worker. We will describe each of them in detail.

We will also include the Django REST framework, as it's a tool that builds on top of
Django to generate RESTful API interfaces.

Finally, we will describe how extra layers can be added on top for greater flexibility,
scalability, and performance.

In this chapter, we'll cover the following topics:

• Request-response
• Web architecture
• Web servers

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[174]

• uWSGI
• Python workers
• External layers

Let's start by describing the basis of the request-response architecture.

Request-response
The classical server architecture is heavily based on request-response to
communicate. A client sends a request to a remote server and the server processes it
and returns a response.

This communication pattern has been prevalent since the era of mainframes and
works in an analog manner as software communicates internally with a library, but
over a network. The software calls a library and receives a response from it.

An important element is the time delay between the sending of the request and the
reception of the response. Internally, it is rare that a call takes more than a couple of
milliseconds, but for a network, it may be measured in hundreds of milliseconds and
seconds, very commonly.

Times will also be highly variable, as the network conditions may affect them
greatly. This time difference makes it important to handle it properly.

The usual strategy when making requests is to make them synchronously. That
means that the code stops and waits until the response is ready. This is convenient,
as the code will be simple, but it's also inefficient, as the computer will be not doing
anything while the server is calculating the response and it's being transferred
through the network.

Network calls are very dependent on where the server is located.
A call within the same data center will be fast, perhaps taking less
than 100 milliseconds, while a connection to an external API will
likely take close to a second or more.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[175]

The fact that the network is more unreliable than a local call, requires better error
handling that understands this fact. Any request-response system should take extra
care about capturing different errors, and retry, as network problems typically are
transient, and can be recovered if retried after waiting.

Another characteristic of the request-response pattern is that a server cannot call
the client proactively, only return information. This simplifies the communication,
as it's not entirely bidirectional. The client is required to initiate the request, and
the server only needs to listen for new requests coming. This also makes both roles
asymmetrical and requires the client to know where the server is, usually by its DNS
address and the port to access (by default, port 80 for HTTP and 443 for HTTPS).

This characteristic makes some communication patterns difficult to achieve. For
example, full bidirectional communication, where two parts want to initiate the
sending of messages, is difficult to achieve with request-response.

The client can be improved to perform multiple requests at the
same time. This can be done when the requests are independent
of each other, allowing it to make them in parallel. An easy way to
achieve this is to use a multithreaded system to perform them, so
they can speed up the process.

Typically, a flow will be required, with some requests that can
be performed in parallel and others that require waiting until
information is received. For example, a common request to retrieve
a web page will make one request to retrieve the page and later
will download multiple files referenced (e.g. header files, images)
in parallel.

We will see later in the chapter how this effect can be designed to
increase the responsiveness of web pages.

As we saw in Chapter 2, API Design the multiple status codes from
HTTP can give detailed information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[176]

A crude example of this is a message server implemented only in request-response.
Two clients require the usage of an intermediate server.

Each user can perform two actions:

• Request any new message addressed to them
• Send a new message to another user

A user needs to check periodically whether there are new messages available
through polling. This is inefficient, as it's likely that for any new message there'll be
a significant number of checks that return "no new messages available." Even worse,
there could be a significant delay before noticing that a new message is available if
the checks are not performed often enough.

Even with these limitations, request-response architecture is the basis of web services
and has been proven to be very reliable over the decades. The possibility of having a
central server that controls communication and can take a passive role in accepting
new requests makes the architecture simple to implement and quick to evolve, and
simplifies the client's work. The centralized aspect allows a lot of control.

This basic structure is common in applications like forums or
social networks that allow the users to have some sort of direct
messaging between users.

In real applications, normally this polling is avoided by sending
a notification in a way that's proactive towards the client. For
example, mobile OSes have a system to deliver notifications,
enabling the server to send a notification through an external API
provided by the OS to notify the user of a new message. An older
alternative is to send an email with the same goal.

There are other alternatives, of course. There are P2P alternatives,
where two clients can connect to each other, and there are
connections with a server through websockets that can remain
open, allowing the server to notify the user of new information.
They both deviate from the request-response architecture.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[177]

Web architecture
We introduced in the introduction of the chapter the LAMP architecture, which is the
base for the web server architecture:

Figure 6.1: The LAMP architecture

The LAMP architecture is more general, but we will take a closer look at the web
server and web worker. We will use specific tools, based on the Python ecosystem,
but we will discuss possible alternatives.

Figure 6.2: More detailed architecture in a Python environment

From the point of view of an incoming request, a web request accesses the different
elements.

Web servers
The web server exposes the HTTP port, accepts incoming connections, and redirects
them towards the backend. One common option is nginx (https://www.nginx.com/).
Another common option is Apache (https://httpd.apache.org/). The web server
can directly serve a request, for example, by directly returning static files, permanent
redirects, or similar simple requests. If the request requires more computation, it will
be directed towards the backend, acting as a reverse proxy.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.nginx.com/
https://httpd.apache.org/

Web Server Structures

[178]

The primary objective of the web server in the presented architecture is to work as a
reverse proxy, accepting HTTP requests, stabilizing the input of data, and queuing
the incoming requests.

A basic configuration for nginx could look like this. The code is available on GitHub
at https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/
main/chapter_06_web_server/nginx_example.conf.

server {
 listen 80 default_server;
 listen [::]:80 default_server;

 error_log /dev/stdout;
 access_log /dev/stdout;

 root /opt/;

 location /static/ {
 autoindex on;
 try_files $uri $uri/ =404;
 }

 location / {
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 uwsgi_pass unix:///tmp/uwsgi.sock;
 include uwsgi_params;
 }

}

The directive server opens and closes the basic block to define how to serve the data.
Note each line ends with a semicolon.

In nginx parlance, each server directive defines a virtual server.
Normally there will be only one, but multiple can be configured,
for example, to define different behaviors based on the DNS
addressed.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_06_web_server/nginx_example.conf
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_06_web_server/nginx_example.conf

Chapter 6

[179]

Inside, we have a basic configuration on what port to serve – in our case, port 80 and
both IPv4 and IPv6 addresses. The default_server clause means this is the server to
be used by default:

 listen 80 default_server;
 listen [::]:80 default_server;

Next, we define where the static files are, both in terms of the external URL, and
what is the mapping with some section of the hard drive.

Note the static location needs to be defined before the reverse proxy:

 root /opt/;

 location /static/ {
 autoindex on;
 try_files $uri $uri/ =404;
 }

root defines the starting point, while location starts a section that will serve the URL
/static/file1.txt from the file located in the hard drive at /opt/static/file1.txt.

try_files will scan for files in the URI and raise a 404 error if it's not there.

autoindex automatically generates an index page to check the contents of a directory.

IPv4 is the common address with four numbers, like 127.0.0.1.
IPv6 is longer, and it's intended as a replacement for IPv4. For
example, an IPv6 address can be expressed as 2001:0db8:0000:
0000:0000:ff00:0042:7879. IPv4 addresses have already been
exhausted, meaning that there are no new addresses available.
IPv6 will in the long run provide enough to avoid this problem,
though IPv4 is still widely used, and probably will remain in use
for a long time yet.

This option is typically disabled in production servers, but it's very
handy to detect problems with static files while running in test
mode.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[180]

It's important in production environments to serve static files directly from the web
server, instead of doing them further along the line with the Python worker. While
this is possible, and a common case when working in a development environment,
it's very inefficient. The speed and memory usage will be much bigger, while a web
server is optimized to serve static files. Please always remember to serve static files in
production through a web server.

Serving static content externally
An alternative is to use an external service to handle files, like AWS S3, that allows
you to serve static files. The files then will be under a different URL than the service,
for example:

• The service URL is https://example.com/index
• The static files are in https://mybucket.external-service/static/

All the references inside the service web pages, then, should point to the external
service endpoint.

This way of operating requires you to push the code to the external service as part of
the deployment. To allow for uninterrupted deployments, remember that the static
content needs to be available before. Another important detail is to upload them with
a different path, so static files between deployments are not confused.

This is easy to do using different root paths. For example:

1. Version v1 of the service is deployed. This is the starting point. The static
content is served from https://mybucket.external-service/static/v1/.
The calls to the service, like https://example.com/index, return all their static
content pointing at version v1.

2. Once v2 of the service is ready, the first thing to do is to push it to the
external service, so it's available in https://mybucket.external-service/
static/v2/. Note that, at this point, no user is accessing /static/v2; the
service is still returning /static/v1.
Deploy the new service. Once it is deployed, the users will start accessing /
static/v2 when they call https://example.com/index.

As we've seen in previous chapters, the key for a seamless deployment is to perform
actions in small increments, and each step must perform actions that are reversible
and prepare the terrain so there's no moment when something that's required is not
ready.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[181]

This approach can be used for big operations. In a JavaScript-heavy interface,
like a single-page application, changing the static files effectively can be a new
deployment. The underlying service API can remain the same but changing the
downloaded version for all JavaScript code and other static content, which in effect
will deploy a new version.

This structure makes both versions of the static content available at the same
time. This can also be used to make tests or release beta versions. As the service is
returning whether to use version A or B, this can be set dynamically.

For example, adding an optional parameter in any call to overwrite the returned
version:

• Calling https://example.com/index returns the default version, for example,
v2.

• Calling https://example.com/index?overwrite_static=v3 returns the
specified version instead, like v3.

Other options are returning v3 for specific users, like beta testers or internal staff.
Once v3 is deemed correct, it can be changed to be the new default with a small
change in the service.

We talked about single-page apps in Chapter 2.

This approach can be taken to the extreme to push any single
commit to the source control to the public S3 bucket, and then
test in any environment, including production. This can help to
generate a very fast feedback loop where QA or product owners
can quickly see changes in their own browser, without requiring
any deployment or special environment.

Don't feel limited to a unique integer as the version number; it
can work as well with a random UUID or SHA of the content
generated automatically. Web storage is quite cheap, so it would
require a lot of versions with very big files to really start to worry
about cost. And old versions can be deleted periodically.

While this approach can be very aggressive and not viable for all
applications, for an application that requires many changes in a
rich JavaScript interface or to make drastic changes to the look and
feel, it can be highly productive.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[182]

This external serving can be combined with CDN (content delivery network)
support for a multiregional proxy. This will distribute the files around the world to
provide a copy of it closer to the user.

Using a CDN is very powerful for truly global audiences. They are especially
useful for serving data that requires low latency around the world. For example,
broadcasting near real-time video.

The data can be distributed internally between the different servers from the
company providing the CDN service quite quickly, as they'll use dedicated networks
between them instead of using an external network.

In any case, using an external service to store the static files will, obviously, remove
the need to configure the web server for them.

Reverse proxy
Let's continue describing the web server configuration. After describing the static
files, we need to define a connection to the backend, acting as a reverse proxy.

A reverse proxy is a proxy server that can redirect a received request towards one or
more defined backends. In our example, the backend is the uWSGI process.

Think of a CDN as an internal cache by the company providing
the service. For example, we have a service where their servers
are located in Europe, but a user is accessing it from Japan. This
company has servers in Japan that store a copy of the static content.
That means that the user can access the files with much lower
latency than if the request had to reach a server in Europe, more
than 8,000 kilometers away.

Video broadcast online is typically transferred as small video
chunks of a few seconds in duration. An index file keeps track
of what is the latest chunk generated, so clients can be kept up
to date. This is the basis of the format HTTP Live Streaming, or
HLS, very common as the transfer of data is done directly through
HTTP.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[183]

The web server will be able to communicate with the backend in multiple ways,
allowing flexibility. This can use different protocols, like FastCGI, SCGI, straight
HTTP for pure proxying, or, in our case, connecting directly to the uWSGI protocol.
We need to define it to connect through either a TCP socket or a UNIX socket. We
will use a UNIX socket.

The socket needs to be coordinated with the way uWSGI is configured. As we will
see later, the uWSGI process will create it:

 location / {
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 include uwsgi_params;
 uwsgi_pass unix:///tmp/uwsgi.sock;
 }

First of all, the root of the server is at the / URL. It's important to make the static
content before the reverse proxy, as the locations are checked in order. So any
request for a /static request gets detected before checking for / and it's properly
treated.

A reverse proxy works in a similar way as a load balancer, though
load balancers can work with more protocols, while a reverse
proxy is only capable of working with web requests. On top of
distributing requests across different servers, it can also add some
features like caching, security, SSL termination (receiving a request
in HTTPS and connecting to other servers using HTTP), or, in this
particular case, receive a web request and transfer it to through a
WSGI connection.

TCP sockets are designed to allow communication between
different servers, while UNIX sockets are designed to communicate
processes locally. UNIX sockets are a little bit lighter for
communication inside the same host and they work like a file,
allowing you to assign them permissions to control what process
can access what socket.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[184]

The core of the reverse proxy configuration is the uwsgi_pass clause. This specified
where to redirect the requests. include uwgi_params will add a bunch of standard
configurations to be passed to the next stage.

Extra elements can be added as HTTP headers. They'll be added to the request, so
they are available further down the request.

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;

In this case, we are adding the Host header, with information about the requested
host. Note that the $host is an indication to nginx to fill the value with the host the
request is addressed to. In the same way, the header X-Real-IP is added with the IP
address from the remote address.

In our configuration, we only use a single backend, as uWSGI will balance between
different workers. But, if necessary, multiple backends can be defined, even mixing
UNIX and TCP sockets, defining a cluster.

upstream uwsgibackends {
 server unix:///tmp/uwsgi.sock;
 server 192.168.1.117:8080;
 server 10.0.0.6:8000;
}

Later, define the uwsgi_pass to use the cluster. The requests will be equally spread
over the different backends.

uwsgi_pass uwsgibackends;

uwsgi_params is actually a defined file included by default in
nginx config that adds a lot of uwsgi_param statements with
elements like SERVER_NAME, REMOTE_ADDRESS, etc.

More uwsgi_param can be added if necessary, in a similar way to
the headers.

Setting headers correctly to pass on is unappreciated work, but
can be critical to properly monitor problems. Setting headers may
require doing so at different stages. As we will discuss later, a
single request can pass through multiple proxies, and each of them
needs to adequately forward the headers.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[185]

Logging
We also need to track any possible error or access. There are two different logs that
nginx (and other web servers) produces:

• Error log: The error log tracks possible problems from the web server itself,
like not being able to start, configuration problems, etc.

• Access log: The access log reports any request accessing the system. This is
the basic information about the system flowing. It can be used to find specific
problems like 502 errors when the backend cannot be connected, or, when
treated as aggregated, it can detect problems like an abnormal number of
error status codes (4xx or 5xx).

Both logs are critical information that needs to be adequately detected. Following
the Twelve-Factor App, we should treat them as streams of data. The easiest is to
redirect them both to standard output.

 access_log /dev/stdout;
 error_log /dev/stdout;

This requires nginx to not start as a daemon process, or if it is, capture the standard
output properly.

Another option is to redirect the log into a centralized log facility, using the
proper protocol. This directs all the logs into a centralized server that captures the
information. In this example, we send it to a syslog host in syslog_host.

 error_log syslog:server=syslog_host:514;
 access_log syslog:server=syslog_host:514,tag=nginx;

This protocol allows you to include tags and extra information that can help separate
the origin of each log later.

We will talk in further detail about logs in Chapter 11.

Being able to distinguish the source of each log is critical and
always requires a bit of tweaking. Be sure to spend some time
making the logs easy to search. It will greatly simplify the work
when an error in production requires gathering information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[186]

Advanced usages
A web server is very powerful, and shouldn't be underestimated. Other than acting
purely as a proxy, there are a lot of other features that can be enabled like returning
custom redirects, overwriting the proxy with a static page for maintenance windows,
rewriting URLs to adjust changes, providing SSL termination (decrypt receiving
HTTPS requests to pass them decrypted through regular HTTP, and encrypt the
result back), caching requests, splitting the requests based on percentages for A/B
testing, choosing a backend server based on geolocalization of the requester, etc.

Be sure to read the documentation of nginx at http://nginx.org/en/docs/ to read
all the possibilities.

uWSGI
The next element of the chain is the uWSGI application. This application receives the
requests from nginx and redirects them into independent Python workers, in WSGI
format.

uWSGI will also start and coordinate the different processes, handling the lifecycle
for each of them. The application works as an intermediary, starting a group of
workers receiving the requests.

uWSGI is configured through a uwsgi.ini file. Let's see an example, available on
GitHub at https://github.com/PacktPublishing/Python-Architecture-Patterns/
blob/main/chapter_06_web_server/uwsgi_example.uni.

[uwsgi]
chdir=/root/directory
wsgi-file = webapplication/wsgi.py
master=True
socket=/tmp/uwsgi.sock
vacuum=True
processes=1

Web Server Gateway Interface (WSGI) is a Python standard to
deal with web requests. It's very popular and supported by a lot
of software, both from the sending end (like nginx, but also other
web servers like Apache and GUnicorn) and from the receiving
end (virtually every Python web framework, like Django, Flask, or
Pyramid).

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://nginx.org/en/docs/
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_06_web_server/uwsgi_example.uni
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_06_web_server/uwsgi_example.uni

Chapter 6

[187]

max-requests=5000
Used to send commands to uWSGI
master-fifo=/tmp/uwsgi-fifo

The first element defines what the working directory is. The application will be
launched here, and other file references will work from here:

chdir=/root/directory

Then, we describe where the wsgi.py file is, which describes our application.

The WSGI application
Inside this file is the definition of the application function, which uWSGI can use to
address the internal Python code, in a controlled way.

For example:

def application(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 return [b'Body of the response\n']

The first parameter is a dictionary with predefined variables that detail the request
(like METHOD, PATH_INFO, CONTENT_TYPE, and so on) and parameters related to the
protocol or environment (for example, wsgi.version).

The second parameter, start_response, is a callable that allows you to set up the
return status and any headers.

The function should return the body. Note how it's returned in byte stream format.

The difference between text streams (or strings) and byte streams
was one of the big differences introduced in Python 3. To
summarize it, byte streams are raw binary data, while text streams
contain meaning by interpreting that data through a particular
encoding.

The differentiation between both can be a bit baffling sometimes,
in particular since Python 3 makes the difference explicit, and that
clashes with some previous lax practices, especially when dealing
with ASCII content that can be represented in the same way.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[188]

The function can also work as a generator and use the keyword yield instead of
return when the returning body needs to be streamed.

Keep in mind that text streams need to be encoded to be
transformed into byte streams, and byte streams need to be
decoded into text streams. Encoding is moving from the abstract
representation of text to the precise representation of binary.

For example, the Spanish word "cañón" contains two characters not
present in ASCII, ñ and ó. You can see how encoding them through
UTF8 replaces them with specific binary elements described in
UTF8:

>>> 'cañón'.encode('utf-8')
b'ca\xc3\xb1\xc3\xb3n'
>>> b'ca\xc3\xb1\xc3\xb3n'.decode('utf-8')
'cañón'

Any function that uses yield is a generator in Python. This means
that when called, it returns an iterator object that returns elements
one by one, normally to be used in loops.

This is very useful for situations where each element of the loop
takes some time to process but can be returned without being
required to calculate every single item, reducing latency and
memory usage, as not all elements need to be maintained in
memory.

>>> def mygenerator():
... yield 1
... yield 2
... yield 3
>>> for i in mygenerator():
... print(i)
...
1
2
3

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[189]

In any case, the WSGI file is normally created by default by whatever framework is
used. For example, a wsgi.py file created by Django will look like this.

import os

from django.core.wsgi import get_wsgi_application

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "webapplication.
settings")

application = get_wsgi_application()

Note how the function get_wsgi_application will automatically set up the proper
application function, and connect it with the rest of the defined code – a great
advantage of using an existing framework!

Interacting with the web server
Let's continue with the uwsgi.ini configuration with the socket configuration:

socket=/tmp/uwsgi.sock
vacuum=True

The socket parameter creates the UNIX socket for the web server to connect to. It
was discussed before in this chapter, when talking about the web server. This needs
to be coordinated on both sides, to ensure they connect properly.

The vacuum option cleans up the socket when the server is closed.

uWSGI also allows you to use a native HTTP socket, using
the option http-socket. For example, http-socket =
0.0.0.0:8000 to serve all addresses on port 8000. You may use
this option if the web server is not on the same server and needs to
communicate through the network.

When possible, avoid exposing uWSGI directly publicly over the
internet. A web server will be safer and more efficient. It will also
serve static content much more efficiently. If you really must skip
the web server, use the option http instead of http-socket, which
includes a certain level of protection.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[190]

Processes
The next parameters control the number of processes and how to control them:

master=True
processes=1

The master parameter creates a master process that ensures that the number of
workers is correct, restarting if not, and deals with the process lifecycle, among other
tasks. It should always be enabled in production for smooth operation.

The processes parameter is very straightforward and describes how many Python
workers should be started. Received requests will be load balanced across them.

The way uWSGI generates new processes is through pre-forking. This means that
a single process gets started, and after the application is loaded (which may take a
while), it's cloned through a fork process. This sensibly speeds up the startup time
for new processes, but at the same time, relays that the setup of the application can
be duplicated.

Choosing the right number of processes is highly dependent on the application
itself and the hardware that supports it. The hardware is important as a CPU with
multiple cores will be able to run more processes efficiently. The amount of IO vs
CPU usage in the application will determine how many processes can be run by the
CPU core.

This assumption, on rare occasions, may cause problems with
certain libraries that, for example, open file descriptors during
initializations that cannot be shared safely. If that's the case, the
parameter lazy-apps will make each worker start from scratch,
independently. This is slower, but it creates more consistent
results.

Theoretically, a process not using IO and purely crunching
numbers will use the whole core without wait periods, not
allowing the core to switch to another process meanwhile. A
process with high IO, with the core idle while waiting for results
from the database and external services, will increase its efficiency
by performing more context switches. This number should be
tested to ensure the best results. A common starting point will
be two times the number of cores, but remember to monitor the
system to tweak it and obtain the best results.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[191]

An important detail about the created processes is that they deactivate the creation
of new threads by default. This is an optimization choice. In the majority of web
applications, there's no need to create independent threads inside each of the
workers, and that allows you to deactivate the Python GIL, speeding up the code.

If threads need to be used, the option enable-threads will enable them.

Process lifecycle
During the time of operation, processes won't stay static. Any working web
application will need to reload with new code changes regularly. The next
parameters are related to how processes are created and destroyed.

max-requests=5000
Used to send commands to uWSGI
master-fifo=/tmp/uwsgi-fifo

max-requests specifies the number of requests to be processed by a single worker
before being restarted. Once the worker gets to this number, uWSGI will destroy it
and create another worker from scratch, following the usual process (fork by default,
or using lazy-apps if configured).

This is useful to avoid problems with memory leaks or other sorts of stale problems,
where the performance of a worker gets degraded over time. Recycling the workers
is a protective measure that can be taken pre-emptively, so even if a problem is
present, it will be corrected before it causes any issues.

The Global Interpreter Lock or GIL is a mutex lock that only
allows a single thread to have control of the Python process.
This means that, inside a single process, no two threads can run
at the same time, something that multi-core CPU architecture
makes possible. Note that multiple threads may be waiting for IO
results while another runs, which is a usual situation in real-life
applications. The GIL is typically held and released constantly, as
each operation first holds the GIL and then releases it at the end.

The GIL is commonly blamed for inefficiencies in Python, though
the effect is only perceived in high-CPU multi-threaded operations
in native Python (as opposed to using optimized libraries like
NumPy), which are not as usual and are already slow to start with.

These interactions with the GIL are only wasteful if no threads will
be run, so that's why uWSGI deactivates it by default.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[192]

Remember that, based on the Twelve-Factor App, web workers need to be able to be
stopped and started at any time, so this recycling is painless.

uWSGI will also recycle the worker when it's idle, after serving its 5,000th request, so
it will be a controlled operation.

When multiple workers are involved, if each of them will restart after their 5,000th
request, a stampede problem can be created where one after another all the workers
are recycled. Keep in mind that the load is distributed through the workers equally,
so this count will be in sync across the multiple workers. While the expectation is
that, for example, with 16 workers, at least 15 of them will be available, in practice
we might find that all are being recycled at the same time.

To avoid this problem, use the max-requests-delta parameter. This parameter adds
a variable number for each worker. It will multiply the delta for the worker ID (a
unique consecutive number for each worker starting from 1). So, configuring a delta
of 200, each worker will have the following:

Worker Base max-request Delta Total requests to recycle
Worker 1 5,000 1 * 200 5,200
Worker 2 5,000 2 * 200 5,400
Worker 3 5,000 3 * 200 5,600
…

Worker 16 5,000 16 * 200 8,200

This makes the recycling happen at different times, increasing the number of
workers available at the same time, as they won't restart simultaneously.

Keep in mind this recycling may interfere with other operations.
Depending on the startup time, it may take a few seconds or worse
(especially if lazy-apps is used) to start the worker, potentially
creating a backlog of requests. uWSGI will queue the incoming
requests. In our example configuration, there's only a single
worker defined in processes. With multiple workers this can be
mitigated, as the rest of the workers will be able to handle the extra
load.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[193]

The master-fifo parameter creates a way to communicate with uWSGI and send
commands:

Used to send commands to uWSGI
master-fifo=/tmp/uwsgi-fifo

This creates a UNIX socket in /tmp/uwsgi-fifo that can receive commands in the
form of characters redirected to it. For example:

Generate a graceful reload
echo r >> /tmp/uwsgi-fifo

Graceful stop of the server
echo q >> /tmp/uwsgi-fifo

This method allows for better handling of situations than sending signals, as
there are more commands available and it allows for quite granular control of the
processes and the whole uWSGI.

For example, sending Q will produce a direct shutdown of uWSGI, while q will
produce a graceful one. A graceful shutdown will start by stopping accepting new
requests in uWSGI, then waiting until any request in the internal uWSGI queue
is being processed, and when a worker has finished its request, stopping it in an
orderly fashion. Finally, when all workers are done, stop the uWSGI master process.

This problem is of the same kind as what's called a cache stampede.
This is produced where multiple cache values are invalidated at
the same time, producing the regeneration of values at the same
time. Because the system expects to be running under some cache
acceleration, suddenly having to recreate a significant portion
section of the cache may produce a serious performance problem,
to the point of the complete collapse of the system.

To avoid this, avoid setting fixed times for the cache to expire, such
as a certain hour of the clock. This can happen, for example, if a
backend gets updated with news for the day at midnight, making
it tempting to expire the cache at this time. Instead, add an element
to make the different keys expire at slightly different times to avoid
this problem. This can be achieved by adding a small random
amount of time to the expiry time for each of the keys, so they can
reliably be refreshed at different times.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[194]

The graceful reload with r takes a similar approach, keeping the requests in the
internal queue and waiting until the workers are done to stop them and restart them.
It will also load any new configuration related to uWSGI itself. Note that, during
the time of the operation, the internal uWSGI listen queue may be filled up, causing
problems.

If the loading of processes is done through the fork process, after starting up the
first one, the rest will be copies, so they will be loaded quite quickly. By comparison,
using lazy-apps may delay achieving full capacity as each individual worker will
need to be individually started from scratch. This can produce an extra load on the
server, depending on the number of workers and the startup procedure.

Reloading a single server under load may be complicated. Using multiple uWSGI
servers simplifies the process. In this situation, reloads should happen at different
times to allow you to distribute the load.

A cluster-style approach can be taken in using multiple servers to perform this
dance, creating copies of the uWSGI configuration in multiple servers and then
recycling them one at a time. While one is reloading, the others will be able to handle
the extra load. In extreme situations, an extra server can be used to produce extra
capacity during the reload.

The size of the listen queue can be tweaked with the listen
parameter, but keep in mind that there's a limit set up by Linux
that you may need to change as well. Defaults are 100 for listen and
128 for the Linux configuration.

Do tests before changing those to big values, as churning through a
big backlog of tasks has its own problems.

A possible alternative for lazy-apps is to use the c option,
reloading the workers with chain reloading. This reloads each
worker independently, waiting until a single worker is totally
reloaded before moving to the next one. This procedure doesn't
reload the uWSGI configuration but will do with code changes
in the workers. It will take longer, but it will work at a controller
pace.

This is common in cloud environments where an extra server can
be used and then destroyed. In Docker situations, new containers
can be added to provide this extra capacity.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[195]

For more information about the master-fifo and accepted commands, including
how to pause and resume the instance, and other exotic operations, check the uWSGI
documentation at https://uwsgi-docs.readthedocs.io/en/latest/MasterFIFO.html.

Python worker
The core of the system is the Python WSGI worker. This worker receives the HTTP
requests from uWSGI after they're routed by the external web server, etc.

This is where the magic happens, and it is specific to the application. This is the
element that will see faster iteration than the rest of the links of the chain.

Each framework will interact in a slightly different way with the requests, but in
general, they will follow similar patterns. We will use Django as an example.

Django MVT architecture
Django borrows heavily from the MVC structure but tweaks it a bit into what's called
MVT (Model-View-Template):

• The Model remains the same, the representation of the data and interacting
with the storage.

uWSGI is a very powerful application that has almost endless
possibilities for configuration. Its documentation is overwhelming
in the amount of detail it contains, but it's incredibly
comprehensive and insightful. You can learn a lot, not only
about uWSGI but also about how the whole web stack works. I
highly recommend going through slowly, but surely, to learn a
lot. You can access the documentation at https://uwsgi-docs.
readthedocs.io/.

We won't discuss all aspects of Django or go into a deep dive of
its features but will use a selection to look at some lessons that are
useful for other frameworks.

The Django project is really well documented. Seriously, it has
always been distinguished by its world-class documentation,
since the project started. You can read it here: http://www.
djangoproject.com.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://uwsgi-docs.readthedocs.io/en/latest/MasterFIFO.html
https://uwsgi-docs.readthedocs.io/
https://uwsgi-docs.readthedocs.io/
http://www.djangoproject.com
http://www.djangoproject.com

Web Server Structures

[196]

• The View receives the HTTP request and processes it, interacting with the
different Models that may be required.

• The Template is a system to generate HTML files, from values passed on.

This changes Model-View-Controller a bit, though the result is similar.

Figure 6.3: The Model-View-Controller

The Model works the same in both systems. The Django View acts as a combination
of the View and the Controller, and the Template is a helping system for the View
component of the Django View.

The templating system is not strictly required to be used, as not every Django
interface requires an HTML page as a result.

Django is a powerful and comprehensive framework and has some assumptions
on how things are supposed to run, such as using the Django ORM or using its
templating system. While doing so is "swimming with the current," it's definitely
possible to take other approaches and tailor any part of the system. This can involve
elements like not using templates, using a different templating system, using a
different ORM library like SQLAlchemy, and adding extra libraries to connect to
different databases, including ones not supported natively by Django (like NoSQL
databases). Do not let the constraints of the system limit you from achieving your
goals.

While Django was designed to create HTML interfaces, there are
ways of creating other types of interfaces. In particular, for RESTful
interfaces, the Django REST framework (https://www.django-
rest-framework.org) allows you to expand the functionality and
generate self-documented RESTful interfaces easily.

We will look at the Django REST framework later in the chapter.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.django-rest-framework.org
https://www.django-rest-framework.org

Chapter 6

[197]

Routing a request towards a View
Django provides the tools to perform the proper routing from a particular URL to a
specific View.

This is done in the urls.py file. Let's see an example.

from django.urls import path
from views import first_view, second_view

urlpatterns = [
 path('example/', first_view)
 path('example/<int:parameter>/<slug:other_parameter>', second_view)
]

The required Views (that are typically declared as functions) are imported from
whatever module they are currently in into the file.

The urlpatterns list defines an ordered list of URL patterns that will be tested
against an input URL.

The first path definition is very straightforward. If the URL is example/, it will call
the View first_view.

The second path definition contains definitions to capture parameters. It will
transform the defined parameters properly and pass them over to the view. For
example, the URL example/15/example-slug will create these parameters:

• parameter=int(15)

• other_parameter=str("example-slug")

There are different types of parameters that can be configured. int is self-
explanatory, but slug is a limited string that will include only alphanumeric, _
(underscore), and – (dash) symbols, excluding characters like . or other symbols.

Django is opinionated in the way that it presents a lot of elements
working together with certain assumptions. They are tightly
related to each other. If that's an impediment, for example, because
you need to use wildly different tools, a good alternative can be
Pyramid (https://trypyramid.com), a Python web framework
designed to build your own combination of tools to ensure
flexibility.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://trypyramid.com

Web Server Structures

[198]

Another option is to generate the paths directly as regex. If you are familiar with
the regex format, this can be very powerful and allow a great deal of control. At the
same time, regexes can grow really complex and difficult to read and use.

from django.urls import re_path

urlpatterns = [
 re_path('example/(?P<parameter>\d+)/', view)
]

An intermediate option is to define types to be sure that they match specific values,
for example, creating a type to match only months like Apr or Jun. If the type is
defined in this way, an incorrect pattern like Jen will return a 404 automatically.
Internally, this will require writing a regex to match the proper string anyway, but
afterwards, it can transform the value. For example, to transform the month Jun to
either the number 1, normalize it as JUNE, or any other value that makes sense later.
The complexity of the regex will be abstracted by the type.

Keep in mind that the patterns are checked in order. That means that, if a pattern
may fulfil two paths, it will select the first one. This may have unintended effects
when a previous path "hides" the next one, so the least restrictive patterns should be
positioned later.

For example:

from django.urls import path

urlpatterns = [
 path('example/<str:parameter>/', first_view)
 path('example/<int:parameter>/', second_view)
]

There are more types available. There's also a str type that can be
too broad. The character / is understood as special in URLs and it's
always excluded. This allows for easy separation of parameters.
The type slug should cover more typical use cases for parameters
inside a URL.

This was the only option available previously in
Django. As you can see for the example, equivalent to
example/<int:parameter>/, the new path-defined URL patterns
are easier to read and to deal with.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[199]

No URL will ever get passed to second_view, as any parameter that is an integer will
be captured first.

The interesting stuff happens inside of the View.

The View
The View is the central element of Django. It receives the request information, plus
any parameters from the URL, and processes it. The View normally will use the
different Models to compose the information, and finally returns a response.

The View is in charge of deciding if there's any change in behavior based on the
request. Note that the routing towards the View only distinguishes between different
paths, but other distinctions like HTTP method or parameters will need to be
differentiated here.

This makes it a very common pattern to differentiate between POST and GET
requests to the same URL. A common usage in web pages is to make a form page
to display the empty form, and then POST to the same URL. For example, in a form
with a single parameter, the structure will be similar to the following example:

def example_view(request):
 # create an empty form
 form_content = Form()

 if request.method == 'POST':
 # Obtain the value
 value = request.POST['my-value']
 if validate(value):
 # Perform actions based on the value
 do_stuff()

This kind of error is usually possible in most URL routers in web
frameworks, as most of them are pattern-based. Keep an eye in
case it affects your code.

This is intended as pseudocode to not complicate it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[200]

 content = 'Thanks for your answer'
 else:
 content = 'Sorry, this is incorrect' + form_content

 elif request.method == 'GET':
 content = form_content

 return render(content)

While it's true that Django includes a form system that simplifies the validation and
reporting of forms, this structure can grow legs and become tiresome. In particular,
the multiple nested if blocks are confusing.

Instead of that, dividing the View with two different subfunctions may be clearer.

def display_form(form_content, message=''):
 content = message + form_content
 return content

def process_data(parameters, form_content):
 # Obtain the value
 if validate(parameters):
 # Perform actions based on the value
 do_stuff()
 content = 'Thanks for your answer'
 else:
 message = 'Sorry, this is incorrect'
 content = display_form(form_content , message)

 return content

def example_view(request):
 # create an empty form

We won't go into details with the form system in Django. It is quite
complete and allows you to render rich HTML forms that will
validate and show possible errors to the user. Read the Django
documentation to know more.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[201]

 form_content = Form()

 if request.method == 'POST':
 content = process_data(request.POST, form_content)
 elif request.method == 'GET':
 content = display_form(form_content)

 return render(content)

The challenge here is to preserve the fact that, when the parameters are incorrect, the
form needs to be rendered again. By the principle of DRY (Don't Repeat Yourself),
we should try to locate that code in a single place. Here, in the display_form
function. We allow some customization of the message to add some extra content,
in case the data is incorrect.

Note that the display_form function gets called both from example_view and also
inside process_data.

HttpRequest
The key element for passing information is the request parameter. This object's
type is HttpRequest, and contains all the information that the user is sending in the
request.

Its most important attributes are:

• method, which contains the used HTTP method.
• If the method is GET, it will contain a GET attribute with a QueryDict (a

dictionary subclass) containing all the query parameters in the request. For
example, a request such as:

/example?param1=1¶m2=text¶m1=2

In a more complete example, the form will be tweaked to show
the specific errors. Django forms are able to do this automatically.
The process will be to create a form with the parameters from the
request, validate it, and print it. It automatically will produce the
proper error messages, based on the type of each of the fields,
including custom types. Again, refer to Django's documentation for
more information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[202]

Will produce a request.GET value like this:

<QueryDict: {'param1': ['1', '2'], 'param2': ['text']}>

Note that the parameters are stored internally as a list of values, because
query parameters accept multiple parameters with the same key, though
that's not usually the case. They'll return a unique value when queried
anyway:

>>> request.GET['param1']
2
>>> request.GET['param2']
text

All the parameters are defined as strings, needing to be converted to other
types if necessary.

• If the method is POST, an analogous POST attribute will be created. In this case,
it will be filled first by the body of the request, to allow encoding form posts.
If the body is empty, it will fill the values with query parameters like the GET
case.

• content_type with the MIME type of the request.
• FILES, including data for any uploaded files in the request, for certain POST

requests.
• headers, a dictionary containing all the HTTP headers of the request and

headers. Another dictionary, META, contains extra information from headers
that may be introduced and are not necessarily HTTP-based, like SERVER_
NAME. In general, it is better to obtain information from the headers attribute.

They'll be all reported in order, with the latest value being
returned. If you need to access all values, use the method getlist:

>>> request.GET.getlist('param1')
['1', '2']

POST multiple values will commonly be used in multiple
selection forms.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[203]

There are also some useful methods to retrieve information from the request, for
example:

• .get_host() to obtain the name of the host. It will interpret the different
headers to determine the proper host, so it's more reliable than directly
reading the HTTP_HOST header.

• .build_absolute_uri(location) to generate a full URI, including the host,
port, etc. This method is useful to create full references to return them.

These attributes and methods, combined with the parameters described in the
request, allow you to retrieve all the relevant information necessary for processing
the request and call the required Models.

HttpResponse
The HttpResponse class handles the information being returned by the View to the
web server. The return from a View function needs to be an HttpResponse object.

from django.http import HttpResponse
def my_view(request):
 return HttpResponse(content="example text", status_code=200)

The response has a default status_code of 200 if it's not specified.

If the response needs to be written in several steps, it can be added through the
.write() method.

response = HttpResponse()
response.write('First part of the body')
response.write('Second part of the body')

The body can also be composed as an iterable.

body= ['Multiple ', 'data ', 'that ', 'will ', 'be ', 'composed']
response = HttpResponse(content=body)

All responses from HttpResponse will be composed completely
before being returned. It is possible to return responses in a
streaming way, meaning that the status code will be returned first
and chunks of the body will be sent over time. To do that, there's
another class called StreamingHttpResponse that will work in
that way, and can be useful for sending big responses over time.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[204]

Instead of using integers to define the status code, it's better to use the defined
constants available in Python, for example:

from django.http import HttpResponse
from http import HTTPStatus

def my_view(request):
 return HttpResponse(content="example text", status_code=HTTPStatus.
OK)

This makes the usage of each status code more explicit and helps increase the
readability of the code, making them explicitly HTTPStatus objects.

The content parameter defines the body of the request. It can be described as a
Python string, but it also accepts binary data, if the response is not plain text. If that's
the case, a content_type parameter should be added to adequately label the data
with the proper MIME type.

HttpResponse(content=img_data, content_type="image/png")

Headers can also be added to the response using the headers parameter.

headers = {
 'Content-Type': 'application/pdf',
 'Content-Disposition': 'attachment; filename="report.pdf"',
}
response = HttpResponse(content=img_data, headers=header)

You can see all the status codes defined in Python here: https://
docs.python.org/3/library/http.html. Note the name is
their standard HTTP status code name, as defined in several RFC
documents, for example, 201 CREATED, 404 NOT FOUND, 502 BAD
GATEWAY, etc.

It is very important that the returned Content-Type matches the
format of the body. This will make any other tool, like a browser,
properly interpret the content adequately.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.python.org/3/library/http.html
https://docs.python.org/3/library/http.html

Chapter 6

[205]

Headers are also stored in the response when it is accessed as a dictionary:

response['Content-Disposition'] = 'attachment; filename="myreport.pdf"'
del response['Content-Disposition']

There are specialized subclasses for common cases. Instead of using a generic
HttpResponse, for JSON encoded requests, it's better to use JsonResponse, which will
correctly fill the Content-Type and encode it:

from django.http import JsonResponse
response = JsonResponse({'example': 1, 'key': 'body'})

In the same style, the FileResponse allows you to download a file directly, providing
a file-like object and directly filling the headers and content type, including if it needs
to be an attachment

from django.http import FileResponse
file_object = open('report.pdf', 'rb')
response = FileResponse(file_object, is_attachment=True)

The response can also be created by rendering a template. This is the usual way of
doing so for HTML interfaces, which was what Django was originally designed for.
The render function will automatically return an HttpResponse object.

from django.shortcuts import render

def my_view(request):
 ...
 return render(request, 'mytemplate.html')

Middleware
A key concept in WSGI requests is that they can be chained. This means that a
request can go through different stages, wrapping a new request around the orinal
at each stage, which allows you to add functionality.

Content-Disposition can be used to label the response as an
attachment that should be downloaded to the hard drive.

Also, we can set up the Content-Type header either manually
through the headers parameter or through the content_type
parameter directly.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[206]

This leads to the concept of middleware. Middleware improves the handling
between systems by simplifying handling several aspects of the request, adding
functionality, or simplifying their usage.

A typical example of middleware is logging each received request in a standard
manner. The middleware will receive the request, produce a log, and hand the
request to the next level.

Another example is managing whether the user is logged or not. There's a standard
Django middleware that will detect any session stored in cookies and will search in
the database for the associated user. It will then fill the request.user object with the
proper user.

Another example, enabled by default in Django, checks the CSRF token on POST
requests. If the CSRF token is not present or it's incorrect, the request will be
immediately intercepted and it will return 403 FORBIDDEN, before accessing the View
code.

Middleware can access the request both when it's received and the response when
it's ready, so they can work on either side or both sides in coordination:

• Logging middleware that generates a log with the path and method of the
received request can generate it before the request is sent to the View.

• Logging middleware that also logs the status code needs to have the
information of the status code, so it will need to do it once the View is
finished and the response is ready.

• Logging middleware that logs the time it took to generate the request will
need to first register the time when the request was received, and what time
it is when the response is ready, to log the difference. This requires code both
before and after the View.

Middleware is a word that can refer to different concepts
depending on the context of its usage. When used in an HTTP
server environment, it typically refers to plugins that enhance or
simplify the handling of requests.

We introduced the idea of CSRF and tokens in Chapter 2.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[207]

Middleware is defined in this way:

def example_middleware(get_response):
 # The example_middleware wraps the actual middleware

 def middleware(request):
 # Any code to be executed before the view
 # should be located here

 response = get_response(request)

 # Code to be executed after the view
 # should be located here

 return response

 return middleware

The structure to return a function allows the initialization of chained elements. The
input get_reponse can be another middleware function or could be the final view.
This allows this kind of structure:

chain = middleware_one(middleware_two(my_view))
final_response = chain(request)

The order of the middleware is also important. For example, logging should happen
before any middleware that can stop the request, as if done in reverse order, any
rejected request (for example, not adding a proper CSRF) won't be logged.

Middleware can be easily added, either custom-made or by using third-party
options. There are a lot of packages that create their own middleware functions for
useful features in Django. When considering adding a new feature, spend some time
searching to see if there's something already available.

Generally, middleware functions have some recommendations
on where they should be located. Some are more sensitive to their
position than others. Check the documentation for each one.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[208]

Django REST framework
While Django was designed originally to support HTML interfaces, its functionality
has been expanded, both as new features inside the Django project itself, as well as
other external projects that enhance Django.

One of particular interest is Django REST framework. We will use it as an example of
the available possibilities.

For our example, we will implement some of the endpoints that we defined in
Chapter 2. We will use the following endpoints, to follow the whole lifecycle of a
micropost.

Endpoint Method Action
/api/users/<username>/collection GET Retrieve all the

microposts from
a user

/api/users/<username>/collection POST Create a new
micropost for
the user

/api/users/<username>/collection/<micropost_id> GET Retrieve a single
micropost

/api/users/<username>/collection/<micropost_id> PUT,
PATCH

Update a
micropost

/api/users/<username>/collection/<micropost_id> DELETE Delete a
micropost

The basic principle behind Django REST framework is to create different classes that
encapsulate the exposed resources as URLs.

The extra concept is that objects will be transformed from an internal Model into an
external JSON object and vice versa through a serializer. The serializer will handle the
creation and validate that the external data is correct.

Django REST framework is not only a popular and powerful
module. It also uses a lot of conventions that are common across
REST frameworks in multiple programming languages.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[209]

Models
We first need to introduce the models to store the information. We will use a Usr
Model for the users and a Micropost Model.

from django.db import models
class Usr(models.Model):
 username = models.CharField(max_length=50)

class Micropost(models.Model):
 user = models.ForeignKey(Usr, on_delete=models.CASCADE,
 related_name='owner')
 text = models.CharField(max_length=300)
 referenced = models.ForeignKey(Usr, null=True,
 on_delete=models.CASCADE,
 related_name='reference')
 timestamp = models.DateTimeField(auto_now=True

The Usr model is very straightforward, only storing the username. The Micropost
Model stores a string of text and the user that created the micropost. Optionally, it
can store a referenced user.

A serializer can't only transform a Model object, but any kind of
internal Python class. You can use them to create "virtual objects"
that can pull information from multiple Models.

A peculiarity of Django REST framework is that the serializer is the
same for input and output. In other frameworks, there are different
modules for the way in and out.

Note that the relations have their own named back reference,
reference and owner. They are created by default by Django so
you can search where a Usr is referenced, for example.

Note also that the text allows for 300 characters, instead of the 255
that we said in the API. This is to allow a bit of extra space in the
database. We will still protect against more characters later.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[210]

URL routing
With this information, we create two different views, one for each URL that we need
to create. They'll be called MicropostsListView and MicropostView. Let's take a look
first at how the URLs are defined in the urls.py file:

from django.urls import path

from . import views

urlpatterns = [
 path('users/<username>/collection', views.MicropostsListView.as_
view(),
 name='user-collection'),
 path('users/<username>/collection/<pk>', views.MicropostView.as_
view(),
 name='micropost-detail'),
]

Note that there are two URLs, that correspond to this definition:

/api/users/<username>/collection
/api/users/<username>/collection/<micropost_id>

And each is mapped to the corresponding view.

Views
Each view inherits from the proper API endpoint, the collection one from
ListCreateAPIView, which defines the actions for LIST (GET) and CREATE (POST):

from rest_framework.generics import ListCreateAPIView
from .models import Micropost, Usr
from .serializers import MicropostSerializer

class MicropostsListView(ListCreateAPIView):
 serializer_class = MicropostSerializer

 def get_queryset(self):
 result = Micropost.objects.filter(
 user__username=self.kwargs['username']
)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[211]

 return result

 def perform_create(self, serializer):
 user = Usr.objects.get(username=self.kwargs['username'])
 serializer.save(user=user)

We will check the serializer later. The class requires defining the queryset that it will
use to retrieve the information when the LIST part of the class is called. Because our
URL includes the username, we need to identify it:

 def get_queryset(self):
 result = Micropost.objects.filter(
 user__username=self.kwargs['username']
)
 return result

self.kwargs['username'] will retrieve the username defined in the URL.

For the CREATE part, we need to overwrite the perform_create method. This method
receives a serializer parameter that already contains the validated parameters.

We need to obtain the username and user from the same self.kwargs to be sure to
add it to the creation of the Micropost object.

 def perform_create(self, serializer):
 user = Usr.objects.get(username=self.kwargs['username'])
 serializer.save(user=user)

The new object is created combining both the user and the rest of the data, added as
part of the save method for the serializer.

The individual View follows a similar pattern, but there's no need to overwrite the
creation:

from rest_framework.generics import ListCreateAPIView
from .models import Micropost, Usr
from .serializers import MicropostSerializer

class MicropostView(RetrieveUpdateDestroyAPIView):
 serializer_class = MicropostSerializer

 def get_queryset(self):
 result = Micropost.objects.filter(

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[212]

 user__username=self.kwargs['username']
)
 return result

In this case, we allow more operations: RETRIEVE (GET), UPDATE (PUT and PATCH), and
DESTROY (DELETE).

Serializer
The serializer transforms from the Python object of the Model to the JSON result and
the other way around. The serializer is defined like this:

from .models import Micropost, Usr
from rest_framework import serializers

class MicropostSerializer(serializers.ModelSerializer):
 href = MicropostHyperlink(source='*', read_only=True)
 text = serializers.CharField(max_length=255)
 referenced = serializers.SlugRelatedField(queryset=Usr.objects.all(),
 slug_field='username',
 allow_null=True)
 user = serializers.CharField(source='user.username', read_only=True)

 class Meta:
 model = Micropost
 fields = ['href', 'id', 'text', 'referenced', 'timestamp',
'user']

ModelSerializer will automatically detect the fields in the model defined in the Meta
subclass. We specified the fields to be included in the fields section. Note that, apart
from the ones that are directly translated, id and timestamp, we include others that
will change (user, text, referenced) and an extra one (href). The directly translated
ones are straightforward; we don't need to do anything there.

The text field is described again as a CharField, but this time, we limit the maximum
number of characters.

The user field is also redescribed as a CharField, but using the source parameter we
define it as the username of the referenced user. The field is defined as read_only.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[213]

referenced is similar to it, but we need to define it as SlugRelatedField, so it
understands that's a reference. A slug is a string that references the value. We define
that the slug_field is the username of the reference, and add the queryset to allow
searching for it.

The href field requires an extra defined class to create a proper URL reference. Let's
take a detailed look:

from .models import Micropost, Usr
from rest_framework import serializers
from rest_framework.reverse import reverse

class MicropostHyperlink(serializers.HyperlinkedRelatedField):
 view_name = 'micropost-detail'

 def get_url(self, obj, view_name, request, format):
 url_kwargs = {
 'pk': obj.pk,
 'username': obj.user.username,
 }
 result = reverse(view_name, kwargs=url_kwargs, request=request,
 format=format)
 return result

class MicropostSerializer(serializers.ModelSerializer):
 href = MicropostHyperlink(source='*', read_only=True)
 ...

view_name describes the URL that will be used. The reverse call transforms the
parameters into the proper full URL. This is wrapped in the get_url method. This
method receives mainly the obj parameter with the full object. This full object is
defined in the source='*' call to the MicropostHyperlink class in the serializer.

The combination of all these factors makes the interface work correctly. Django REST
framework can also create an interface to help you visualize the whole interface and
use it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[214]

For example, a list will look like this:

Figure 6.4: Microposts List

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[215]

And a micropost page will look like this, which allows you to test different actions
like PUT, PATCH, DELETE, and GET.

Figure 6.5: Microposts page

Django REST framework is very powerful and can be used in
different ways to be sure that it behaves exactly as you expect. It
has its own quirks, and it tends to be a little temperamental with
the parameters until everything is configured just right. At the
same time, it allows you to customize the interface in every aspect.
Be sure to read the documentation carefully.

You can find the whole documentation here: https://www.
django-rest-framework.org/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.django-rest-framework.org/
https://www.django-rest-framework.org/

Web Server Structures

[216]

External layers
On top of the web server, there is the possibility to continue the link by adding
extra levels that work on the HTTP layer. This allows you to load balance between
multiple servers and increase the total throughput of the system. This can be chained
into multiple layers, if necessary.

Figure 6.6: Chained load balancers

The route from the user to the edge of our system is handled by the internet, but once
it reaches the edge load balancer, it directs the requests inside the system. The edge
load balancer works as a gateway between the external networks and the controlled
environment of our network.

The configuration of the network can greatly vary, and in lots of cases multiple load
balancers are not required, and the edge load balancer can handle multiple web
servers directly. The capacity in this case is key, as a load balancer has a limit on the
number of requests that it can take.

The edge load balancer is normally the only one that handles
HTTPS connection, allowing the rest of the system to use only
HTTP. This is convenient as HTTP requests are easier to cache and
handle. HTTPS requests are encoded end to end and cannot be
properly cached or analyzed. The internal traffic is protected from
external access and should have robust policies to be sure that only
approved engineers are able to access it and access logs to audit
accesses. But at the same time, it can be easily debugged, and any
traffic problems can be solved much more easily.

Some key load balancers can be set up as specialized hardware to
ensure that they have the capacity to handle the required number
of requests.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[217]

This multi-layered structure allows you to introduce caching at any point of the
system. This can improve the performance of the system, though it needs to be
treated with care to be sure that it's adequate. After all, one of the most difficult
problems in software development is the proper handling of the cache and its
invalidation.

Summary
In this chapter, we went into the details about how web servers work, and the
different layers that are involved.

We started by describing the fundamental details of the request-response and web
server architecture. Then, we moved on to describe a system with three layers, using
nginx as the front web server and uWSGI to handle multiple Python workers that
run Django code.

We started with the web server itself, which allows you to serve HTTP, directly
return the static content stored in files, and route it towards the next layer. We
analyzed the different configuration elements, including enabling header forwarding
and logging.

We continued by describing how uWSGI works and how it's able to create and set up
different processes that interact through the WSGI protocol in Python. We described
how to set up the interaction with the previous level (the nginx web server) and the
next level (the Python code). We also described how the workers can be restarted in
an orderly way, and how they can be automatically recycled periodically to mitigate
certain kinds of problems.

We described how Django works to define a web application, and how the requests
and responses flow through the code, including how the middleware can be used
to chain elements in the flow. We also introduced Django REST framework as a
way to create RESTful APIs and show how our example introduced in Chapter 2
can be implemented through the views and serializers provided by Django REST
framework.

Finally, we described how the structure can be extended by layers on top to be sure
to distribute the load across multiple servers and scale the system.

We will next describe event-driven systems.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Server Structures

[218]

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[219]

7
Event-Driven Structures

Request-response is not the only software architecture that can be used in a system.
There can also be requests that don't require an immediate response. Perhaps there's
no interest in a response, as the task can be done without the caller being required
to wait, or perhaps it takes a long time and the caller doesn't want to be waiting for
it. In any case, there's the option to, from the point of view of the caller, just send a
message and proceed.

This message is called an event, and there are multiple uses for this kind of system.
In this chapter, we will introduce the concept, and we will describe in detail one
of the most popular uses of it: creating asynchronous tasks that are executed in the
background while the caller of the task continues uninterrupted.

In the chapter, we will describe the basics of asynchronous tasks, including the
details of queueing systems and how to generate automatically scheduled tasks.

We will use Celery as an example of a popular task manager in Python that has
multiple capabilities. We will show specific examples of how to perform common
tasks. We will also explore Celery Flower, a tool that creates a web interface to
monitor and control Celery and has an HTTP API that allows you to control that
interface, including sending new tasks to execute.

In this chapter, we'll cover the following topics:

• Sending events
• Asynchronous tasks
• Subdividing tasks

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[220]

• Scheduled tasks
• Queue effects
• Celery

Let's start by describing the basics of event-driven systems.

Sending events
Event-driven structures are based on the fire-and-forget principle. Instead of sending
data and waiting until the other part returns a response, it just sends data and
continues executing.

This makes it different from the request-response architecture that we saw in the
previous chapter. A request-response process will wait until an appropriate response
is generated. Meanwhile, the execution of more code will stop, as the new data
produced by the external system is required to continue.

In an event-driven system, there's no response data, at least not in the same sense.
Instead, an event containing the request will be sent, and the task will just continue.
Some minimal information could be returned to ensure that the event can be
tracked later.

The difference is that the task itself won't be done in the same moment, so getting
back from generating the event will be very fast. The event, once generated, will
travel to a different system that will transmit it towards its destination.

This system is called a bus and works to make messages flow through the system. An
architecture can use a single bus that acts as a central place to send messages across
systems, or it can use multiple ones.

Event-driven systems can be implemented with request-response
servers. This doesn't make them a pure request-response system.
For example, a RESTful API that creates an event and returns an
event ID. Any work is not done yet, and the only detail returned is
an identifier to be able to check the status of any follow-up tasks.

This is not the only option, as this event ID may be produced
locally, or even not be produced at all.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[221]

Each of the events will be inserted into a queue. A queue is a logical FIFO system that
will transmit the events from the entry point to the defined next stage. At that point,
another module will receive the event and process it.

This new system is listening to the queue and extracts all the received events to
process them. This worker can't communicate directly with the sender of the event
through the same channel, but it can interact with other elements, like shared
databases or exposed endpoints, and can even send more events into queues to
further process the results.

Multiple subscribers can tend the same queue, and they'll be extracting events
in parallel. Multiple publishers can also produce events into the same queue.
The capacity of the queue will be described by the number of events that can
be processed, and enough subscribers should be provided so the queue can be
processed quickly enough.

Typical tools that can work as a bus are RabbitMQ, Redis, and Apache Kafka. While
it is possible to use a tool "as is," there are multiple libraries that will help you work
with these tools to create your own way of handling sending messages.

Asynchronous tasks
A simple event-driven system is one that allows you to execute asynchronous tasks.

The events produced by an event-driven system describe a particular task to execute.
Normally, each task will require some time to execute, which makes it impractical to
be executed directly as part of the publisher code flow.

In general, it's advisable to use a single bus to communicate all
the systems. There are multiple tools that allow us to implement
multiple logical partitions, so the messages are routed to and from
the right destinations.

The systems at each end of the queue are called the publisher and
the subscriber.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[222]

The typical example is a web server that needs to respond to the user in a reasonable
time. Some HTTP timeouts can produce errors if an HTTP request takes too long,
and generally it is not a great experience to respond in more than a second or two.

The solution is to send an event to handle this task, generate a task ID, and return the
task ID immediately. The event will be sent to a message queue that will deliver it to
a back-end system. The back-end system will then execute the task, which can take as
long as it needs to execute.

Meanwhile, the task ID can be used to monitor the progress of the execution. The
back-end task will update the status of the execution in shared storage, like a
database, so when it's completed, the web front-end can inform the user. This shared
storage can also store any produced results that may be interesting.

Figure 7.1: The flow of an event

Because the status of the task is stored in a database that's accessible by the front-end
web server, the user can ask for the status of the task at any point by identifying it
through the task ID.

These operations that take a long time may involve tasks like
encoding video into a different resolution, analyzing images with
a complex algorithm, sending 1,000 emails to customers, deleting
a million registers in bulk, copying data from an external database
into a local one, generating reports, or pulling data from multiple
sources.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[223]

Figure 7.2: Checking the progress of an async task with shared storage

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[224]

The back-end system can produce intermediate updates if necessary, showing when
25% or 50% of the task has been completed. This will need to be stored in the same
shared storage.

This process is a simplification, though. The queue is usually capable of returning
whether a task has been finished or not. The shared storage/database will be
required only if the task is required to return some data. A database works fine for
small results, but if big elements like documents are produced as part of the task,
this may not be a valid option and a different kind of storage may be required.

A shared database is not the only way to be sure that the web server front-end is
capable of receiving information. The web server can expose an internal API that
allows the back-end to send back information. This is, to all effects, the same as
sending the data to a different external service. The back-end will need to access the
API, configure it, and perhaps be authenticated. The API can be created exclusively
for the back-end or can be an API for general usage that also accepts the specific data
that the back-end system will produce.

In this case, all the information, task IDs, statuses, and results can remain inside the
web server's internal storage.

For example, if a task is to generate a report, the back-end will
store it in document storage like AWS S3 so it's available to be
downloaded by the user later.

Sharing access to a database between two different systems
can be difficult, as the database will need to be in sync for both
systems. We need to detach the systems so they can be deployed
independently and without breaking backward compatibility.
Any change in the schema will require extra care to ensure that the
system can perform at any point, without interruption. Exposing
an API and keeping the database under the full control of the
front-end service is a good solution, but keep in mind that requests
originating from the back-end will compete with external requests,
so we need enough capacity for both.

Remember that the queue is likely to store the task ID and the
status of the task. This may be replicated for convenience in the
internal storage.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[225]

Figure 7.3: Sending back information to the source service

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[226]

Remember that this API doesn't have to be directed to the same front-end. It can
also call any other service, internal or external, generating a complex flow between
elements. It even creates its own events that will be reintroduced into the queue to
produce other tasks.

Subdividing tasks
It's entirely possible to generate more tasks from an initial one. This is done by
creating the right event inside a task and sending it to the right queue.

This allows a single task to distribute its load and parallelize its action. For example,
if a task generates a report and sends it by email to a group of recipients, the task can
first generate the report and then send the emails in parallel by creating new tasks
that will focus only on creating the emails and attaching the report.

This spreads the load over multiple workers, speeding up the process. Another
advantage is that individual tasks will be shorter, which makes them easier to
control, monitor, and operate.

The process can be repeated, if necessary, with subtasks creating their own subtasks.
Some tasks may require creating huge amounts of information in the background,
so subdividing them may make sense, but it will also increase the complexity of
following the flow of the code, so use this technique sparingly and only when it
creates a clear advantage.

Some task managers may permit the creation of workflows where
tasks are distributed, and their results are returned and combined.
This can be used in some cases, but in practice it is less useful than
it initially appears, as it introduces extra waiting and we can end
up with the task taking a longer time.

But easy wins are bulk tasks performing similar actions on
multiple elements without the need to combine the results, which
are quite commonly encountered.

Keep in mind, though, that this will make the initial task finish
quickly, making the initial task's ID status a bad way to check
whether the whole operation has been completed. The initial task
may return the IDs of the new tasks if they need to be monitored.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[227]

Scheduled tasks
Asynchronous tasks don't need to be generated directly by a frontend and direct
action by a user, but can also be set to run at specific times, through a schedule.

Some examples of scheduled tasks include generating daily reports during night
hours, updating information hourly via an external API, precaching values so they
are quickly available later, generating a schedule for next week at the start of the
week, and sending reminder emails every hour.

Most task queues will allow the generation of scheduled tasks, indicating it clearly in
their definition, so they will be triggered automatically.

Some scheduled tasks can be quite big, such as each night sending emails to
thousands of recipients. It's very useful to divide a scheduled task, so a small
scheduled task is triggered just to add all the individual tasks to the queue that will
be processed later. This distributes the load and allows the task to finish earlier,
making full use of the system.

In the example of sending emails, a single task triggers every night, reading the
configuration and creating a new task for each email found. Then the new tasks
will receive the email, compose the body by pulling from external information,
and send it.

Queue effects
An important element of asynchronous tasks is the effect that introducing a queue
may have. As we've seen, the background tasks are slow, meaning that any worker
running them will be busy for some time.

We will see later in the chapter how to generate a scheduled task
for Celery.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[228]

Meanwhile, more tasks can be introduced, which may mean that the queue starts
building up.

Figure 7.4: Single queue

On the one hand, this can be a capacity problem. If the number of workers is not
sufficient to handle the average number of tasks introduced in the queue, the queue
will build up until it reaches its limit, and new tasks will be rejected.

But typically, the load doesn't work like a constant influx of tasks. Instead, there are
times when there are no tasks to execute, and other times when there's a sudden
spike in the number of tasks to be executed, filling the queue. Also, there's a need
to calculate the right number of workers to keep running to be sure that the waiting
period for those spikes, where a task gets delayed because all the workers are busy,
is not causing problems.

Calculating the "right" amount of workers can be difficult, but with
a bit of trial and error a "good enough" number can be obtained.
There's a mathematical tool to deal with it, queueing theory, which
calculates it based on several parameters.

In any case, these days resources for each worker are cheap and it's
not imperative to generate the exact number of workers, as long as
it's close enough so that any possible spike can be processed in a
reasonable amount of time.

You can learn more about queueing theory at http://people.
brunel.ac.uk/~mastjjb/jeb/or/queue.html.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://people.brunel.ac.uk/~mastjjb/jeb/or/queue.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/queue.html

Chapter 7

[229]

An extra difficulty, as we saw with scheduled tasks, is that at a specific time, a
considerable number of tasks can be triggered at the same time. This can saturate
the queue at a particular time, requiring perhaps an hour to digest all the tasks, for
example, creating daily reports, ingesting new updates in an external API every 4
hours, or aggregating data for the week.

This means that, for example, if 100 tasks to create background reports are added,
they will block a task to generate a report sent by a user, which will produce a bad
experience. The user will have to wait for far too long if they ask for the report a few
minutes after the scheduled tasks were fired.

A possible solution is to use multiple queues, with different workers pulling from
them.

Figure 7.5: Priority and background queue

This makes those different tasks go to different workers, making it possible
to reserve capacity for certain tasks to run uninterrupted. In our example, the
background reports can go to their own dedicated workers, and the user reports
have their own workers as well. This, though, wastes capacity. If the background
reports run only once a day, once the 100 tasks are processed, the workers will be
idle for the rest of the day, even if there's a long queue in the worker serving the user
reports.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[230]

Instead of that, a mixed approach can be used.

Figure 7.6: Regular worker pulling from multiple queues

In this case, the user report worker will continue with the same approach, but the
background report worker will pull tasks from both queues. In this case, we limit
the capacity for background reports, but at the same time, we increase it for the user
report tasks when there's available capacity.

We reserve capacity for the user report tasks, which are priority, and make the rest of
the workers pull from all available tasks, including priority and non-priority tasks.

To be able to divide work into these two queues, the tasks need to be divided
carefully:

• Priority tasks. They are started on behalf of the user. They are time sensitive.
They are fast to execute, so latency is important.

• Background tasks. Normally started by automated systems and scheduled
tasks. They are less time sensitive. They can run for long periods, so higher
latency is easier to accept.

The balance between them should be maintained. If too many tasks are labeled as
priority, the queue will be quickly filled, rendering it pointless.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[231]

The number of priority workers can be tweaked based on the number and frequency
of spikes and expected turnaround time. Only enough priority workers to cover
regular traffic at the times where there are big spikes in background tasks are
required, as long as those spikes are predictable.

An alternative is to generate a priority system based on specific priorities, like
numbers. That way, a task with priority 3 will be executed before a task with priority
2, and that before a task with priority 1, and so on. The great advantage of having
priorities is that the workers can be working all the time, without wasting any
capacity.

But this approach has some problems:

• A lot of queue backends don't support it efficiently. To keep a queue sorted
by priority costs more than just assigning tasks to a plain queue. In practice,
it may not produce as good results as you expect, requiring many tweaks and
adjustments.

• It means you need to deal with priority inflation. It's very easy for teams
to start increasing the priority of tasks over time, especially if multiple
teams are involved. The decision on what task should return first could get
complicated and pressure can grow the priority numbers over time.

While it can appear that a sorted queue is ideal, the simplicity of two levels (priority
and background) makes it very easy to understand the system and generates easy
expectations when developing and creating new tasks. It's way easier to tweak and
understand and will generate better results with less work.

There's always the temptation to generate multiple queues to set
up different priorities and reserve capacity for each of them. This
is normally not a good idea, as they will waste capacity. The most
efficient system is one with a single queue, as all capacity will be
always used. There is a problem of priority, though, as it makes
some tasks take too long. More than two queues overcomplicates
and risks wasting capacity where many workers are idle most of
the time, while other queues are filled. The simplicity of two queues
helps develop the discipline of deciding between only two options
and makes it easy to understand why we want multiple queues.

Good metrics are critical for monitoring and understanding the
behavior of the queue. We will talk more about metrics in Chapter
13, Metrics.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[232]

Single code for all workers
When having different workers pulling from different queues, the worker could have
different codebases, making one with priority tasks and another with background
tasks.

This is generally not advisable, as it will differentiate the codebase and require
maintaining two code bases in parallel, with some problems:

• It's likely that some tasks or task parts will be either priority or background,
depending on what system or user triggers them. For example, reports that
can be either produced on the fly for a user, or daily as part of a batch process
to finally send them by mail. The report generation should remain common,
so any change is applied to both.

• Handling two codebases instead of one is more inconvenient. A big part of
the general code is shared, so updates will need to be run independently.

• A unique codebase can handle all kinds of tasks. That makes it possible
to have a worker that handles both priority and background tasks. Two
codebases will require strict task separation, not using the extra capacity
available in the background workers to help with priority tasks.

It is better to use a single worker when building, and through the configuration
decide to receive messages from one queue or both. This simplifies the architecture
for local development and testing.

Note that for this to work, it will require strict separation of tasks.
More about this a bit later.

This may not be adequate when the nature of the tasks may
create conflicts. For example, if some of the tasks require big
dependencies or specialized hardware (as could be the case with
some AI-related tasks) this may require that specific tasks run
in dedicated workers, making it impractical for them to share
the same codebase. These cases are rare, and unless they are
encountered, it's better to try to consolidate and use the same
worker for all tasks.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[233]

Cloud queues and workers
The main characteristic of cloud computing is that services can be started and
stopped dynamically, allowing us to use only the resources required at a particular
moment. This allows the system to increase and decrease capacity quickly.

In cloud environments, it's possible that the number of workers extracting events
from a queue can be modified. That alleviates the problems with resourcing that
we discussed above. Do we have a full queue? Increase the number of workers on
demand! Ideally, we could even spawn a single worker for each event that spawns a
task, making the system infinitely scalable.

This, obviously, is easier said than done, as there are some issues with trying to
dynamically create workers on the spot:

• The start-up time can add significant time to the execution of the task, even to
the point of being longer than the execution time of the task itself. Depending
on how heavy the creation of a worker is, starting it can take a significant
amount of time.
In the traditional cloud setting, the lowest granularity required to start a new
virtual server, which is relatively heavy, takes at least a couple of minutes.
With newer tools, such as containers, this can be sped up sensibly, but the
underlying principle will remain, as at some point in time a new virtual
server will need to be spawned.

• A single new virtual worker may be too big for a single worker, making it
inefficient to spawn one for each task. Again, containerized solutions can
help by making it easier to separate between creating a new container and
requiring spinning up a new virtual server in the cloud service.

• Any cloud service should have limits. Each new worker created costs
money and cloud services can get very expensive if scaled up without
control. Without certain control on the cost side of things, this can grow
to be a problem due to high, unexpected costs. Normally this can happen
by accident, with some explosion of workers due to some problem on the
system, but there's also a security attack, called Cash Overflow, aimed at
making a service run as expensively as possible to force the owner of the
service to stop it or even bankrupt them.

Because of these problems, normally a solution will need to work in sort of a batched
way, allowing extra space to grow and generating extra virtual servers only when
they are required to reduce the queue. In the same way, when the extra capacity is
not required any more, it will be removed.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[234]

The process should be similar to this:

Figure 7.7: Starting up a new server

Extra care should be taken to be sure that all the workers located
in the same virtual server are idle before stopping it. This is
done automatically by stopping the servers gracefully, so they'll
finish any remaining tasks, start no new ones, and finish when
everything is done.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[235]

Knowing exactly when a new server should be spawned depends greatly on the
requirements for latency, traffic, and the speed of creating a new server (if the server
starts quickly, perhaps it can be less aggressive in scaling up).

Celery
Celery is the most popular task queue created in Python. It allows us to create new
tasks easily and can handle the creation of the events that trigger new tasks.

Celery requires to work to set up a broker, which will be used as a queue to handle
the messages.

The code that creates the message will add it to the broker, and the broker will pass
it to one of the connected workers. When everything happens with Python code,
where the celery package can be installed, it's simple to operate. We'll see later how
to operate it in other cases.

Celery can use multiple systems as brokers. The most popular are Redis and
RabbitMQ.

A good starting point is to create a new server each time the queue
has a number of tasks equal to or greater than the number of
workers in a single server. That triggers a new server that will be
able to handle those tasks. If the creation is triggered with fewer
tasks than that, it will create a server that is not quite filled. If the
start-up time is very long, this can be reduced to ensure that the
new server is up before there's a significant queue building up. But
this will require experimentation and testing for a specific system.

In Celery parlance, the broker is the message queue, while the
backend is reserved for interacting with a storage system to return
information.

In our examples, we will use Redis as it can be used for the broker
and the backend, and it's widely available in cloud systems. It's
also quite scalable and handles big loads easily.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[236]

Using a backend is optional, as tasks don't need to define a return value, and it's very
common that asynchronous tasks don't directly return response data other than the
status of the task. The key word here is "directly"; sometimes, a task will generate an
external result that can be accessible, but not through the Celery system.

Some examples of these values are reports that can be stored in other storage
facilities, emails sent during task processing, and pre-caching of values, where there
is not a direct result, but there's new data generated and stored in other places.

The returning value needs also to be small enough that it can be stored in the system
working as the backend. Also, if strong persistence is used, it's recommended that a
database is used as the backend.

We will use the example present on GitHub: https://github.com/PacktPublishing/
Python-Architecture-Patterns/tree/main/chapter_07_event_driven/celery_
example. We will use the example to create a task to retrieve, from an external API,
pending TO DO actions by some users, and generate an email to send as a reminder.

Let's take a look at the code.

Configuring Celery
The code is divided into two files: celery_tasks.py, which describes the tasks, and
start_task.py, which connects with the queue and enqueues a task.

At the start of each, we need to configure the broker to use. In this case, we will use a
Redis server running in the localhost:

from celery import Celery

app = Celery('tasks', broker='redis://localhost')

As a prerequisite, we need to set up a Redis server running in our expected
localhost address. An easy way of doing so, if you have Docker installed, is to start
a container:

$ docker run -d -p 6379:6379 redis

Remember to install the required dependencies by running pip
install -r requirements.txt.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_07_event_driven/celery_example
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_07_event_driven/celery_example
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_07_event_driven/celery_example

Chapter 7

[237]

This starts the standard Redis container that will expose the service over the
standard port, 6379. That will connect automatically with the previous broker URL of
redis://localhost.

This is all the configuration that's required, and it will allow both sides, the publisher
and the subscriber, to connect to the queue.

Celery worker
We will use https://jsonplaceholder.typicode.com/ to simulate calling an external
API. This testing site exposes an accessible REST endpoint to retrieve some mock
information. You can see their definition, but basically, we will access the /todos and
/users endpoints. The /todos endpoint exposes actions stored by the users, so we
will query them to retrieve pending actions, and combine this with the information
in the /users endpoint.

The celery_tasks.py worker defines a main task, obtain_info, and a secondary
task, send_email. The first one pulls the information from the API and decides what
emails need to be sent. The second then sends the email.

The file starts with the configuration of the queue and imports:

from celery import Celery
import requests
from collections import defaultdict

app = Celery('tasks', broker='redis://localhost')
logger = app.log.get_default_logger()
BASE_URL = 'https://jsonplaceholder.typicode.com'

The logger definition permits the use of native Celery logs that will be streamed into
the Celery configuration for logs. By default, this is the standard output.

Let's take a look at the obtain_info task. Note the @app.task that defines the function
as a Celery task:

@app.task
def obtain_info():

The sending of the email is just mocked to avoid complicating the
system and needing to handle mocked email addresses. It's left as
an exercise for the reader.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://jsonplaceholder.typicode.com/

Event-Driven Structures

[238]

 logger.info('Stating task')
 users = {}
 task_reminders = defaultdict(list)
 # Call the /todos endpoint to retrieve all the tasks
 response = requests.get(f'{BASE_URL}/todos')
 for task in response.json():
 # Skip completed tasks
 if task['completed'] is True:
 continue

 # Retrieve user info. The info is cached to only ask
 # once per user
 user_id = task['userId']
 if user_id not in users:
 users[user_id] = obtain_user_info(user_id)

 info = users[user_id]

 # Append the task information to task_reminders, that
 # aggregates them per user
 task_data = (info, task)
 task_reminders[user_id].append(task_data)

 # The data is ready to process, create an email per
 # each user
 for user_id, reminders in task_reminders.items():
 compose_email(reminders)

 logger.info('End task')

We wrap the function with INFO logs to provide context to the task execution.
First, it calls the /todos endpoint on this line, which then goes through each task
independently, skipping any completed task.

 response = requests.get(f'{BASE_URL}/todos')
 for task in response.json():
 if task['completed'] is True:
 continue

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[239]

Then, it checks the information for the user and puts it into the info variable.
Because this information can be used multiple times in the same loop, it is cached in
the users dictionary. Once the info is cached, it's not asked for again:

 user_id = task['userId']
 if user_id not in users:
 users[user_id] = obtain_user_info(user_id)

 info = users[user_id]

The individual task data is added to a list created to store all the tasks for a user. The
task_reminders dictionary is created as a defaultdict(list), meaning that the first
time a particular user_id is accessed, if it's not present, it will be initialized as an
empty list, allowing a new element to be appended.

 task_data = (info, task)
 task_reminders[user_id].append(task_data)

Finally, the stored elements in task_reminders are iterated to compose the resulting
email:

 for user_id, reminders in task_reminders.items():
 compose_email(reminders)

Two follow-up functions are called: obtain_user_info and compose_email.

obtain_user_info retrieves the information directly from the /users/{user_id}
endpoint and returns it:

def obtain_user_info(user_id):
 logger.info(f'Retrieving info for user {user_id}')
 response = requests.get(f'{BASE_URL}/users/{user_id}')
 data = response.json()
 logger.info(f'Info for user {user_id} retrieved')
 return data

compose_email takes the information in the task list, which includes a group of user_
info, task_info, extracts the title information for each task_info, then the email
from the matched user_info, and then calls the send_email task:

def compose_email(remainders):
 # remainders is a list of (user_info, task_info)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[240]

 # Retrieve all the titles from each task_info
 titles = [task['title'] for _, task in remainders]

 # Obtain the user_info from the first element
 # The user_info is repeated and the same on each element
 user_info, _ = remainders[0]
 email = user_info['email']
 # Start the task send_email with the proper info
 send_email.delay(email, titles)

As you can see, the send_email task includes a .delay call, which enqueues this task
with the appropriate parameters. send_email is another Celery task. It is very simple
as we are just mocking the email delivery. It just logs its parameters:

@app.task
def send_email(email, remainders):
 logger.info(f'Send an email to {email}')
 logger.info(f'Reminders {remainders}')

Triggering tasks
The start_task.py script contains all the code to trigger the task. This is a simple
script that imports the task from the other file.

from celery_tasks import obtain_info

obtain_info.delay()

Note that it inherits all the configuration from celery_tasks.py when doing the
import.

Importantly, it calls the task with .delay(). This sends the task to the queue so the
worker can pull it out and execute it.

Let's see now how both files interact.

Note that if you call the task directly with obtain_info(), you'll
execute the code directly, instead of submitting the task to the
queue.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[241]

Connecting the dots
To be able to set both parts, the publisher and the consumer, first start the worker
calling style:

$ celery -A celery_tasks worker --loglevel=INFO -c 3

This starts the celery_tasks module (the celery_tasks.py file) with the -A
parameter. It sets the log level to INFO and starts three workers with the -c 3
parameter. It will display a starting log similar to this one:

$ celery -A celery_tasks worker --loglevel=INFO -c 3

 v5.1.1 (sun-harmonics)

macOS-10.15.7-x86_64-i386-64bit 2021-06-22 20:14:09

[config]
.> app: tasks:0x110b45760
.> transport: redis://localhost:6379//
.> results: disabled://
.> concurrency: 3 (prefork)
.> task events: OFF (enable -E to monitor tasks in this worker)

[queues]
.> celery exchange=celery(direct) key=celery

[tasks]
 . celery_tasks.obtain_info
 . celery_tasks.send_email

[2021-06-22 20:14:09,613: INFO/MainProcess] Connected to redis://
localhost:6379//
[2021-06-22 20:14:09,628: INFO/MainProcess] mingle: searching for
neighbors
[2021-06-22 20:14:10,666: INFO/MainProcess] mingle: all alone

Note: Some of the modules used, such as Celery, might not be
compatible with Windows systems. More information can be
found at https://docs.celeryproject.org/en/stable/faq.
html#does-celery-support-windows.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.celeryproject.org/en/stable/faq.html#does-celery-support-windows
https://docs.celeryproject.org/en/stable/faq.html#does-celery-support-windows

Event-Driven Structures

[242]

Note that it displays the two available tasks, obtain_info and send_email. In another
window, we can send tasks calling the start_task.py script:

$ python3 start_task.py

This will trigger the task in the Celery worker, producing logs (edited for clarity and
brevity). We will explain the logs in the next paragraphs.

[2021-06-22 20:30:52,627: INFO/MainProcess] Task celery_tasks.obtain_
info[5f6c9441-9dda-40df-b456-91100a92d42c] received
[2021-06-22 20:30:52,632: INFO/ForkPoolWorker-2] Stating task
[2021-06-22 20:30:52,899: INFO/ForkPoolWorker-2] Retrieving info for
user 1
...
[2021-06-22 20:30:54,128: INFO/MainProcess] Task celery_tasks.send_
email[08b9ed75-0f33-48f8-8b55-1f917cfdeae8] received
[2021-06-22 20:30:54,133: INFO/MainProcess] Task celery_tasks.send_
email[d1f6c6a0-a416-4565-b085-6b0a180cad37] received
[2021-06-22 20:30:54,132: INFO/ForkPoolWorker-1] Send an email to
Sincere@april.biz
[2021-06-22 20:30:54,134: INFO/ForkPoolWorker-1] Reminders ['delectus
aut autem', 'quis ut nam facilis et officia qui', 'fugiat veniam
minus', 'laboriosam mollitia et enim quasi adipisci quia provident
illum', 'qui ullam ratione quibusdam voluptatem quia omnis', 'illo
expedita consequatur quia in', 'molestiae perspiciatis ipsa', 'et
doloremque nulla', 'dolorum est consequatur ea mollitia in culpa']
[2021-06-22 20:30:54,135: INFO/ForkPoolWorker-1] Task celery_tasks.
send_email[08b9ed75-0f33-48f8-8b55-1f917cfdeae8] succeeded in
0.004046451000021989s: None
[2021-06-22 20:30:54,137: INFO/ForkPoolWorker-3] Send an email to
Shanna@melissa.tv
[2021-06-22 20:30:54,181: INFO/ForkPoolWorker-2] Task celery_tasks.
obtain_info[5f6c9441-9dda-40df-b456-91100a92d42c] succeeded in
1.5507660419999638s: None
...
[2021-06-22 20:30:54,141: INFO/ForkPoolWorker-3] Task celery_tasks.
send_email[d1f6c6a0-a416-4565-b085-6b0a180cad37] succeeded in
0.004405897999959052s: None
[2021-06-22 20:30:54,192: INFO/ForkPoolWorker-2] Task celery_tasks.
send_email[aff6dfc9-3e9d-4c2d-9aa0-9f91f2b35f87] succeeded in
0.0012900159999844618s: None

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[243]

Because we started three different workers, the logs are intertwined. Pay attention to
the first task, which corresponds to obtain_info. This task has been executed in the
worker ForkPoolWorker-2 in our execution.

[2021-06-22 20:30:52,627: INFO/MainProcess] Task celery_tasks.obtain_
info[5f6c9441-9dda-40df-b456-91100a92d42c] received
[2021-06-22 20:30:52,632: INFO/ForkPoolWorker-2] Stating task
[2021-06-22 20:30:52,899: INFO/ForkPoolWorker-2] Retrieving info for
user 1
...
[2021-06-22 20:30:54,181: INFO/ForkPoolWorker-2] Task celery_tasks.
obtain_info[5f6c9441-9dda-40df-b456-91100a92d42c] succeeded in
1.5507660419999638s: None

While this task is being executed, the send_email tasks are also being enqueued and
executed by the other workers.

For example:

[2021-06-22 20:30:54,133: INFO/MainProcess] Task celery_tasks.send_
email[d1f6c6a0-a416-4565-b085-6b0a180cad37] received
[2021-06-22 20:30:54,132: INFO/ForkPoolWorker-1] Send an email to
Sincere@april.biz
[2021-06-22 20:30:54,134: INFO/ForkPoolWorker-1] Reminders ['delectus
aut autem', 'quis ut nam facilis et officia qui', 'fugiat veniam
minus', 'laboriosam mollitia et enim quasi adipisci quia provident
illum', 'qui ullam ratione quibusdam voluptatem quia omnis', 'illo
expedita consequatur quia in', 'molestiae perspiciatis ipsa', 'et
doloremque nulla', 'dolorum est consequatur ea mollitia in culpa']
[2021-06-22 20:30:54,135: INFO/ForkPoolWorker-1] Task celery_tasks.
send_email[08b9ed75-0f33-48f8-8b55-1f917cfdeae8] succeeded in
0.004046451000021989s: None

At the end of the execution, there's a log showing the time it has taken, in seconds.

If only one worker is involved, the tasks will be run consecutively,
making it easier to differentiate between tasks.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[244]

We can see how the send_email tasks start before the end of the obtain_info task,
and that there are still send_email tasks running after the end of the obtain_info
task, showing how the tasks are running independently.

Scheduled tasks
Inside Celery, we can also generate tasks with a certain schedule, so they can be
triggered automatically at the proper time.

To do so, we need to define a task and a schedule. We defined them in the celery_
scheduled_tasks.py file. Let's take a look:

from celery import Celery
from celery.schedules import crontab

app = Celery('tasks', broker='redis://localhost')

logger = app.log.get_default_logger()

@app.task
def scheduled_task(timing):
 logger.info(f'Scheduled task executed {timing}')

app.conf.beat_schedule = {
 # Executes every 15 seconds
 'every-15-seconds': {
 'task': 'celery_scheduled_tasks.scheduled_task',
 'schedule': 15,
 'args': ('every 15 seconds',),
 },

 # Executes following crontab
 'every-2-minutes': {
 'task': 'celery_scheduled_tasks.scheduled_task',
 'schedule': crontab(minute='*/2'),
 'args': ('crontab every 2 minutes',),
 },
}

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[245]

This file starts with the same configuration as the previous example, and we define a
small, simple task that just displays when it is executed.

@app.task
def scheduled_task(timing):
 logger.info(f'Scheduled task executed {timing}')

The interesting bit comes later, as the schedule is configured in the app.conf.beat_
schedule parameter. We created two entries.

app.conf.beat_schedule = {
 # Executes every 15 seconds
 'every-15-seconds': {
 'task': 'celery_scheduled_tasks.scheduled_task',
 'schedule': 15,
 'args': ('every 15 seconds',),
 },

The first one defines an execution of the proper task every 15 seconds. The task needs
to include the module name (celery_scheduled_tasks). The schedule parameter
is defined in seconds. The args parameter contains any parameter to pass for the
execution. Note that it's defined as a list of parameters. In this case, we create a tuple
with a single entry, as there's only one argument.

The second entry defines the schedule instead as a crontab entry.

 # Executes following crontab
 'every-2-minutes': {
 'task': 'celery_scheduled_tasks.scheduled_task',
 'schedule': crontab(minute='*/2'),
 'args': ('crontab every 2 minutes',),
 },

This crontab object, which is passed as the schedule parameter, executes the task
once every two minutes. Crontab entries are very flexible and allow for a wide range
of possible actions.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[246]

Some examples are as follows:

Crontab entry Description
crontab() Execute every minute, the lowest possible

resolution
crontab(minute=0) Execute every hour, at minute 0
crontab(minute=15) Execute hourly, at minute 15
crontab(hour=0, minute=0) Execute daily, at midnight (in your time

zone)
crontab(hour=6, minute=30, day_of_
week='monday')

Execute every Monday, at 6:30

crontab(hour='*/8', minute=0) Execute every hour divisible by 8 (0, 8, 16).
Three times a day, at minute 0 in each case

crontab(day_of_month=1, hour=0,
minute=0)

Execute on the first of each month, at
midnight

crontab(minute='*/2') Execute every minute divisible by 2. Once
every two minutes

There are more options, including relating the time to solar times, like dawn and
dusk, or custom schedulers, but most use cases will be perfectly fine either once
every X seconds or with a crontab definition.

To start the scheduler, we need to start a specific worker, the beat worker:

$ celery -A celery_scheduled_tasks beat
celery beat v4.4.7 (cliffs) is starting.
__ - ... __ - _
LocalTime -> 2021-06-28 13:53:23
Configuration ->
 . broker -> redis://localhost:6379//
 . loader -> celery.loaders.app.AppLoader
 . scheduler -> celery.beat.PersistentScheduler
 . db -> celerybeat-schedule
 . logfile -> [stderr]@%WARNING
 . maxinterval -> 5.00 minutes (300s)

You can check the full documentation here: https://docs.
celeryproject.org/en/stable/userguide/periodic-tasks.
html#starting-the-scheduler.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#starting-the-scheduler
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#starting-the-scheduler
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#starting-the-scheduler

Chapter 7

[247]

We start the celery_scheduled_tasks worker in the usual way.

$ celery -A celery_scheduled_tasks worker --loglevel=INFO -c 3

But you can see that there's still no incoming tasks. We need to start celery beat,
which is a specific worker that inserts the tasks in the queue:

$ celery -A celery_scheduled_tasks beat
celery beat v4.4.7 (cliffs) is starting.
__ - ... __ - _
LocalTime -> 2021-06-28 15:13:06
Configuration ->
 . broker -> redis://localhost:6379//
 . loader -> celery.loaders.app.AppLoader
 . scheduler -> celery.beat.PersistentScheduler
 . db -> celerybeat-schedule
 . logfile -> [stderr]@%WARNING
 . maxinterval -> 5.00 minutes (300s)

Once celery beat is started, you'll start seeing the tasks being scheduled and
executed as expected:

[2021-06-28 15:13:06,504: INFO/MainProcess] Received task: celery_
scheduled_tasks.scheduled_task[42ed6155-4978-4c39-b307-852561fdafa8]
[2021-06-28 15:13:06,509: INFO/MainProcess] Received task: celery_
scheduled_tasks.scheduled_task[517d38b0-f276-4c42-9738-80ca844b8e77]
[2021-06-28 15:13:06,510: INFO/ForkPoolWorker-2] Scheduled task
executed every 15 seconds
[2021-06-28 15:13:06,510: INFO/ForkPoolWorker-1] Scheduled task
executed crontab every 2 minutes
[2021-06-28 15:13:06,511: INFO/ForkPoolWorker-2] Task celery_scheduled_
tasks.scheduled_task[42ed6155-4978-4c39-b307-852561fdafa8] succeeded in
0.0016690909999965697s: None
[2021-06-28 15:13:06,512: INFO/ForkPoolWorker-1] Task celery_scheduled_
tasks.scheduled_task[517d38b0-f276-4c42-9738-80ca844b8e77] succeeded in
0.0014504210000154671s: None
[2021-06-28 15:13:21,486: INFO/MainProcess] Received task: celery_
scheduled_tasks.scheduled_task[4d77b138-283c-44c8-a8ce-9183cf0480a7]
[2021-06-28 15:13:21,488: INFO/ForkPoolWorker-2] Scheduled task
executed every 15 seconds
[2021-06-28 15:13:21,489: INFO/ForkPoolWorker-2] Task celery_scheduled_
tasks.scheduled_task[4d77b138-283c-44c8-a8ce-9183cf0480a7] succeeded in
0.0005252540000242334s: None

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[248]

[2021-06-28 15:13:36,486: INFO/MainProcess] Received task: celery_
scheduled_tasks.scheduled_task[2eb2ee30-2bcd-45af-8ee2-437868be22e4]
[2021-06-28 15:13:36,489: INFO/ForkPoolWorker-2] Scheduled task
executed every 15 seconds
[2021-06-28 15:13:36,489: INFO/ForkPoolWorker-2] Task celery_scheduled_
tasks.scheduled_task[2eb2ee30-2bcd-45af-8ee2-437868be22e4] succeeded in
0.000493534999975509s: None
[2021-06-28 15:13:51,486: INFO/MainProcess] Received task: celery_
scheduled_tasks.scheduled_task[c7c0616c-857a-4f7b-ae7a-dd967f9498fb]
[2021-06-28 15:13:51,488: INFO/ForkPoolWorker-2] Scheduled task
executed every 15 seconds
[2021-06-28 15:13:51,489: INFO/ForkPoolWorker-2] Task celery_scheduled_
tasks.scheduled_task[c7c0616c-857a-4f7b-ae7a-dd967f9498fb] succeeded in
0.0004461000000333115s: None
[2021-06-28 15:14:00,004: INFO/MainProcess] Received task: celery_
scheduled_tasks.scheduled_task[59f6a323-4d9f-4ac4-b831-39ca6b342296]
[2021-06-28 15:14:00,006: INFO/ForkPoolWorker-2] Scheduled task
executed crontab every 2 minutes
[2021-06-28 15:14:00,006: INFO/ForkPoolWorker-2] Task celery_scheduled_
tasks.scheduled_task[59f6a323-4d9f-4ac4-b831-39ca6b342296] succeeded in
0.0004902660000425385s: None

You can see that both kinds of tasks are scheduled accordingly. In this log, check the
times and see that they are 15 seconds apart:

[2021-06-28 15:13:06,510: INFO/ForkPoolWorker-2] Scheduled task
executed every 15 seconds
[2021-06-28 15:13:21,488: INFO/ForkPoolWorker-2] Scheduled task
executed every 15 seconds
[2021-06-28 15:13:36,489: INFO/ForkPoolWorker-2] Scheduled task
executed every 15 seconds
[2021-06-28 15:13:51,488: INFO/ForkPoolWorker-2] Scheduled task
executed every 15 seconds

The other task happens exactly every 2 minutes. Note that the first execution may
not be totally precise. In this case, the schedule was triggered in the later seconds of
15:12 and still got executed later than that. In any case, it will be within the 1-minute
resolution window of the crontab.

[2021-06-28 15:13:06,510: INFO/ForkPoolWorker-1] Scheduled task
executed crontab every 2 minutes
[2021-06-28 15:14:00,006: INFO/ForkPoolWorker-2] Scheduled task
executed crontab every 2 minutes

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[249]

When creating periodic tasks, keep in mind the different priorities, as we described
previously in the chapter.

This leads to the way of monitoring how the different tasks are being executed, in a
better way than just by checking the logs.

Celery Flower
Obtaining good monitoring in Celery is important if you want to understand the
executed tasks and find and fix problems. A good tool for that is Flower, which
enhances Celery by adding a real-time monitoring web page that allows you to
control Celery through the web page and through an HTTP API.

It's also very easy to set up and integrate with Celery. First, we need to be sure that
the flower package is installed. The package is included in the requirements.txt
after the previous step, but if it's not, you can install it independently using pip3.

$ pip3 install flower

Once it is installed, you can start flower with the following command:

$ celery --broker=redis://localhost flower -A celery_tasks --port=5555
[I 210624 19:23:01 command:135] Visit me at http://localhost:5555
[I 210624 19:23:01 command:142] Broker: redis://localhost:6379//
[I 210624 19:23:01 command:143] Registered tasks:
 ['celery.accumulate',
 'celery.backend_cleanup',
 'celery.chain',
 'celery.chord',
 'celery.chord_unlock',

It is good practice to use a periodic task as a "heartbeat" to check
that the system is working correctly. This task can be used to
monitor that the tasks in the system are flowing as expected, with
no big delays or problems.

You can check the whole documentation at https://flower.
readthedocs.io/en/latest/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/

Event-Driven Structures

[250]

 'celery.chunks',
 'celery.group',
 'celery.map',
 'celery.starmap',
 'celery_tasks.obtain_info',
 'celery_tasks.send_email']
[I 210624 19:23:01 mixins:229] Connected to redis://localhost:6379//

The command is very similar to starting the Celery workers, but includes the
definition of the broker using Redis, as we saw before, with --broker=redis://
localhost, and specifying the port to expose, --port=5555.

The interface is exposed in http://localhost:5555.

Figure 7.8: Celery Flower interface

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[251]

The front page shows the different workers in the system. Note that it shows the
number of active tasks, as well as processed tasks. In this case, we have 11 tasks
corresponding to a whole run of start_task.py. You can go to the Tasks tab to see
the details of each of the tasks executed, which looks like this:

Figure 7.9: Tasks page

You can see information such as the input parameters, the state of the task, the name
of the task, and how long it ran for.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[252]

Each Celery process will appear independently, even if it's capable of running
multiple workers. You can check its parameters on the Worker page. See the Max
concurrency parameter.

Figure 7.10: Worker page

From here, you can also review and change the configuration of the number of
workers per Celery process, set rate limits, and more.

Flower HTTP API
A great addition from Flower is the HTTP API, which allows us to control Flower
through HTTP calls. This enables the automatic control of the system and allows us
to trigger the tasks directly with an HTTP request. This can be used to call the tasks
in any programming language, and greatly increases the flexibility of Celery.

The URL to call a task asynchronously is the following:

POST /api/task/async-apply/{task}

It requires a POST, and the arguments of the call should be included in the body. For
example, make a call with curl:

$ curl -X POST -d '{"args":["example@email.com",["msg1", "msg2"]]}'
http://localhost:5555/api/task/async-apply/celery_tasks.send_email
{"task-id": "79258153-0bdf-4d67-882c-30405d9a36f0"}

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[253]

The task is executed in the worker:

[2021-06-24 22:35:33,052: INFO/MainProcess] Received task: celery_
tasks.send_email[79258153-0bdf-4d67-882c-30405d9a36f0]
[2021-06-24 22:35:33,054: INFO/ForkPoolWorker-2] Send an email to
example@email.com
[2021-06-24 22:35:33,055: INFO/ForkPoolWorker-2] Reminders ['msg1',
'msg2']
[2021-06-24 22:35:33,056: INFO/ForkPoolWorker-2] Task celery_tasks.
send_email[79258153-0bdf-4d67-882c-30405d9a36f0] succeeded in
0.0021811629999999305s: None

Using the same API, the status of the task can be retrieved with a GET request:

GET /api/task/info/{task_id}

For example:

$ curl http://localhost:5555/api/task/info/79258153-0bdf-4d67-882c-
30405d9a36f0
{"uuid": "79258153-0bdf-4d67-882c-30405d9a36f0", "name": "celery_tasks.
send_email", "state": "SUCCESS", "received": 1624571191.674537, "sent":
null, "started": 1624571191.676534, "rejected": null, "succeeded":
1624571191.679662, "failed": null, "retried": null, "revoked": null,
"args": "['example@email.com', ['msg1', 'msg2']]", "kwargs": "{}",
"eta": null, "expires": null, "retries": 0, "worker": "celery@Jaimes-
iMac-5K.local", "result": "None", "exception": null, "timestamp":
1624571191.679662, "runtime": 0.0007789200000161145, "traceback":
null, "exchange": null, "routing_key": null, "clock": 807, "client":
null, "root": "79258153-0bdf-4d67-882c-30405d9a36f0", "root_id":
"79258153-0bdf-4d67-882c-30405d9a36f0", "parent": null, "parent_id":
null, "children": []}

Note the state parameter, which here shows the task is finished successfully, but it
will return PENDING if it's not done yet.

This can be used to poll the status of the task until it's completed or it shows an error,
as we described earlier in the chapter.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Event-Driven Structures

[254]

Summary
In this chapter, we have seen what event-driven structures are. We started with
a general discussion about how events can be used to create different flows than
the traditional request-response structure. We talked about how the events are
introduced into queues to be transmitted to other systems. We introduced the idea of
a publisher and a subscriber to introduce or extract events from that queue.

We described how this structure could be used to act on asynchronous tasks: tasks
that run in the background and allow other elements of the interface to respond
quickly. We described how dividing asynchronous tasks into smaller ones can help
increase throughput by taking advantage of having multiple subscribers that can
execute these smaller tasks. We described how tasks can be added automatically at
certain times to allow the execution of predetermined tasks periodically.

As the introduction of tasks can happen with great variability, we discussed some
important details of how queues work, the different problems that we can encounter,
and strategies to deal with them. We talked about how a simple strategy for a
background queue and a priority queue works in most scenarios and warned about
overcomplicating it. We also explained that, in the same spirit, it's better to keep
the code synchronized among all workers, even in cases when the queues may be
different. We also briefly touched on the capabilities of cloud computing as applied
to asynchronous workers.

We explained how to use Celery, a popular task manager, to create asynchronous
tasks. We covered setting up the different elements, including the back-end broker,
how to define a proper worker, and how to generate tasks from a different service.
We included a section on how to create scheduled tasks in Celery as well.

We presented Celery Flower, a complement for Celery that includes a web interface
with which we can monitor and control Celery. It also includes an HTTP API that
allows us to create tasks by sending HTTP requests, allowing any programming
language to interact with our Celery system.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[255]

8
Advanced Event-Driven

Structures
As we saw in the previous chapter, event-driven architectures are quite flexible
and capable of creating complex scenarios. In this chapter, we will see what are the
possible event-driven structures that cover more advanced use cases and how to
deal with their complexities.

We will see how some common applications like logs and metrics can be thought of
as event-driven systems and use them to generate control systems that will feedback
into the system producing the events.

We will also discuss, with an example, how to create complex pipelines where
different events are being produced and the system is coordinated. We will also
move to a more general overview, introducing the bus as a concept to interconnect
all the event-driven components.

We will introduce some general ideas on further complex systems to describe some
of the challenges that these kinds of big event-driven systems can produce, such
as the need to use CQRS techniques to retrieve information that crosses multiple
modules. Finally, we will give some notes on how to test the system, paying
attention to the different levels of tests.

In this chapter, we'll cover the following topics:

• Streaming events
• Pipelines

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[256]

• Defining a bus
• More complex systems
• Testing event-driven systems

We will start by describing streams of events.

Streaming events
For some purposes, it can be good to just produce events that capture information
and store it for later access. This structure is typical for instrumentation, for example,
where we create an event every time there's an error. This event will contain
information about things such as where the error was generated, debugging details
to be able to understand it, and so on. The event is then sent, and the application
continues recovering from the error.

The same can be done for specific parts of the code. For example, to capture an
access time to a database, the timing and related data (like the specific query) can be
captured and sent in an event.

All those events should be compiled into a location to allow them to be queried and
aggregated.

While usually not thought of as event-driven processes, this is pretty much how
logs and metrics work. In the case of logs, the events are generally text strings that
get fired whenever the code decides to create them. The logs are forwarded to a
destination that allows us to search them later.

These kinds of events are simple but can be very powerful by allowing us to discover
what the program is executing in a live system.

This instrumentation may also be used to enable controls or alerts when certain
conditions are matched. A typical example of this is to alert us if the number of
errors captured by logs crosses a certain threshold.

Logs can be stored in different formats. It's also common to create
them in JSON to allow better searching.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[257]

Figure 8.1: Monitoring events flow

This can also be used to produce feedback systems, where the instrumentation
monitoring the system can be used to determine whether to change something in
the system itself. For example, capturing metrics to determine whether the system
needs to scale up or scale down and change the number of servers available based
on the amount of requests or other parameters.

Figure 8.2: Feedback of scaling events

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[258]

This is not the only way a system can be monitored, though. This method of
operation can also be used as a way of detecting quotas, for example, short-circuiting
the processing of incoming requests if a certain quota has been exceeded.

Figure 8.3: Monitor to detect quotas and stop extra requests

This structure is different from the upfront approach of setting a module that
controls the system, relying instead on acting only when the threshold is breached,
making the calculations in the background. This can reduce the amount of processing
required upfront.

For example, for a quota of a maximum number of requests per minute, the process
will be something like the following pseudocode:

def process_request(request):
 # Search for the owner of the request
 owner = request.owner
 info = retrieve_owner_info_from_db(owner)
 if check_quota_info(info):
 return process_request(request)
 else:
 return 'Quota exceeded'

check_quota_info will be different in both cases. The upfront approach requires
maintaining and storing information about the previous requests:

def check_quota_info(info):
 current_minute = get_current_minute()
 if current_minute != info.minute:
 # New minute, start the quota
 info.requests = 0
 info.minute = current_minute

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[259]

 else:
 info.requests += 1

 # Update the information
 info.save()

 if info.requests > info.quota:
 # Quota exceeded
 return False

 # Quota still valid
 return False

If the validation is done in an external system, based on the events generated, check_
quota_info doesn't need to store the information, rather just checking whether the
quota has been exceeded:

def check_quota_info(info):
 # Generate the proper event for a new event
 generate_event('request', info.owner)

 if info.quota_exceeded:
 return False

 # Quota still valid
 return False

The whole check is performed in the backend monitoring system, based on the
generated events, and then stored in the info. This detaches the logic for whether to
apply the quota from the check itself, decreasing the latency. The counterpart is that
the detection of the quota having been exceeded may be delayed, allowing some
requests to be processed even if they shouldn't be according to the quota.

Ideally, the generated events should already be in use to monitor
the requests received. This operation can be very useful as it reuses
events generated for other uses, reducing the need to collect extra
data.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[260]

At the same time, the check can be more complex and doesn't need to be done as
each new request comes along. For example, for an hourly quota when multiple
requests are received every second, perhaps a check every minute is good enough to
ensure the quota is respected. This can save a big deal of processing power compared
to checking the conditions every time a request is received.

We will talk in more detail specifically about logs and metrics in Chapter 12, Logging,
and Chapter 13, Metrics.

Pipelines
The flow of events doesn't have to be contained in a single system. The receiving
end of the system can produce its own events, directed to other systems. Events will
cascade into multiple systems, generating a process.

This is a similar situation to the one presented previously, but in this case it's a more
deliberate process aimed at creating specific data pipelines where the flow between
systems is triggered and processed.

A possible example of this is a system to rescale videos into different sizes and
formats. When a video is uploaded into the system, it needs to be converted into
multiple versions to be used in different situations. A thumbnail should also be
created to display the first frame of the video before playing it.

We will do this in three steps. First, a queue will receive the event to start the
processing. This will trigger two events in two different queues to process the resize
and the thumbnail generation independently. This will be our pipeline.

To store the input and output data, given that they are videos and images, we
require external storage. We will use AWS S3, or more precisely, a mock for S3.

This, of course, is highly dependent on the specific scales,
characteristics, and requests involved in different systems.
For some systems, upfront could be a better choice, as it's
easier to implement and doesn't require a monitoring system.
Always validate whether the options fit into your system before
implementing.

AWS S3 is an object storage service provided by Amazon in the
cloud, very popular for being both easy to use and very stable. We
will use a mock of S3 that will allow us to start a local service that
behaves like S3, which will simplify our example.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[261]

Here is a high-level diagram of the system:

Figure 8.4: Video and image queue

To get started, we need to upload the source video to the mock S3 and start the task.
We will also require some way of checking the results. For that, two scripts will be
available.

Let's start with the setup configuration.

Preparation
As outlined above, we have two key prerequisites: a queue backend and the mock S3
storage.

For the queue backend, we will use Redis again. Redis is very easy to configure for
multiple queues, and we'll see how later. To start the Redis queue, we will again use
Docker to download and run the official image:

$ docker run -d -p 6379:6379 redis

This starts a Redis container exposed on the standard port 6379. Note the -d option
will keep the container running in the background.

The code is available on GitHub at https://github.com/
PacktPublishing/Python-Architecture-Patterns/tree/
main/chapter_08_advanced_event_driven.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_08_advanced_event_driven
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_08_advanced_event_driven
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_08_advanced_event_driven

Advanced Event-Driven Structures

[262]

For the mock S3 service, we will use the same approach, starting a container that
starts S3 Mock, a system that replicates the S3 API, but stores the files locally. This
lets us avoid setting up a real S3 instance, which involves getting an AWS account,
paying for our usage, and so on.

To start S3 Mock, we will also use Docker:

$ docker run -d -p 9090:9090 -t adobe/s3mock

The container exposes the endpoint on port 9090. We will direct the S3 requests
toward this local port. We will use the videos bucket for storing all the data.

We will define three different Celery workers that will perform three different
tasks: the base task, image task and video task. Each one will be pulling events from
different queues.

We will also use some third-party libraries. This includes Celery, as we saw in the
previous chapter, but also other libraries, like boto3, click, and MoviePy. All the
required libraries are available in the requirements.txt file so they can be installed
with the following command:

$ pip3 install -r requirements.txt

S3 Mock is a great option for development testing for S3
storage without using a real connection to S3. We will see later
how to connect to the mock with a standard module. The full
documentation can be found at https://github.com/adobe/
S3Mock.

This distinction of specific tasks for different workers is done
deliberately for explanation purposes. In this example, there's
probably not a good reason to make this distinction, as all the tasks
can run in the same worker, and new events can be reintroduced
in the same queue, and this is recommended, as we saw in the
previous chapter. Sometimes, though, there are other conditions
that may require a change of approach.

For example, some of the tasks may require specific hardware
for AI processing, use way more RAM or CPU power making it
impractical to make all workers equal, or other reasons that will
necessitate separating the workers. Still, be sure that there's a
good reason to make the split. It will complicate the operation and
performance of the system.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/adobe/S3Mock
https://github.com/adobe/S3Mock

Chapter 8

[263]

Let's start with the first stage of the process, the base task that will redirect to the
other two.

Base task
The main task will receive a path that contains the image. It will then create two
tasks for the processing of the video resizing and the extraction of the thumbnail.

Here's the code for base_tasks.py:

from celery import Celery

app = Celery(broker='redis://localhost/0')
images_app = Celery(broker='redis://localhost/1')
videos_app = Celery(broker='redis://localhost/2')

logger = app.log.get_default_logger()

@app.task
def process_file(path):
 logger.info('Stating task')

 logger.info('The file is a video, needs to extract thumbnail and '
 'create resized version')
 videos_app.send_task('video_tasks.process_video', [path])
 images_app.send_task('image_tasks.process_video', [path])

 logger.info('End task')

Note that we are creating three different queues here:

app = Celery(broker='redis://localhost/0')
images_app = Celery(broker='redis://localhost/1')
videos_app = Celery(broker='redis://localhost/2')

Redis allows us to create different databases easily by referring to them with an
integer. So, we create database 0 for the base queue, database 1 for the images queue,
and database 2 for the videos queue.

We generate events in these queues with the .send_task function. Note that on each
queue we send the proper task. We include the path as a parameter.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[264]

When the task is triggered, it will enqueue the next tasks. Let's take a look at the
image task.

Image task
To generate a thumbnail of the video, we need the help of two third-party modules:

• boto3. This common library helps us connect to AWS services. In particular,
we will use it to download and upload to our own mocked S3 service.

• MoviePy. This is a library for working with video. We will extract the first
frame as an independent file using this library.

Both libraries are included in the requirements.txt file described earlier in the
chapter and included in the GitHub repo. Let's take a look at image_tasks.py:

from celery import Celery
import boto3
import moviepy.editor as mp
import tempfile

MOCK_S3 = 'http://localhost:9090/'
BUCKET = 'videos'

videos_app = Celery(broker='redis://localhost/1')

Note that all parameters for the tasks are defined in the second
parameter of .send_task. This requires that the parameter is a list
of arguments. In this case, we only have a single parameter that
needs still to be described as a list with [path].

You can check the whole boto3 documentation at
https://boto3.amazonaws.com/v1/documentation/
api/latest/index.html. It can be used to control all
AWS APIs.

The full MoviePy documentation is available at https://
zulko.github.io/moviepy/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://zulko.github.io/moviepy/
https://zulko.github.io/moviepy/

Chapter 8

[265]

logger = videos_app.log.get_default_logger()

@videos_app.task
def process_video(path):
 logger.info(f'Stating process video {path} for image thumbnail')

 client = boto3.client('s3', endpoint_url=MOCK_S3)
 # Download the file to a temp file
 with tempfile.NamedTemporaryFile(suffix='.mp4') as tmp_file:
 client.download_fileobj(BUCKET, path, tmp_file)

 # Extract first frame with moviepy
 video = mp.VideoFileClip(tmp_file.name)
 with tempfile.NamedTemporaryFile(suffix='.png') as output_file:
 video.save_frame(output_file.name)
 client.upload_fileobj(output_file, BUCKET, path + '.png')

 logger.info('Finish image thumbnails')

Note that we define the Celery application with the correct database. We then
describe the task. Let's divide it into different steps. We first download the source file
defined in path into a temporary file:

client = boto3.client('s3', endpoint_url=MOCK_S3)
Download the file to a temp file
with tempfile.NamedTemporaryFile(suffix='.mp4') as tmp_file:
 client.download_fileobj(BUCKET, path, tmp_file)

Note that we define the endpoint to connect with MOCK_S3, which is our S3 Mock
container, exposed on http://localhost:9090/ as we described before.

Right after it we generate a temporary file to store the downloaded video. We define
that the suffix of the temporary file to be .mp4 so later VideoPy can detect properly
that the temporary file is a video.

Note the next steps are all inside the with block defining the
temporary file. If it was defined outside of this block, the file would
be closed and not available.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[266]

The next step is to load the file in MoviePy and then extract the first frame into
another temporary file. This second temporary file has a suffix of .png to label it as
an image:

video = mp.VideoFileClip(tmp_file.name)
with tempfile.NamedTemporaryFile(suffix='.png') as output_file:
 video.save_frame(output_file.name)

Finally, the file is uploaded to S3 Mock, adding .png to the end of the original name:

client.upload_fileobj(output_file, BUCKET, path + '.png')

Once again, pay attention to the indentation to be sure that the temporary files are
available at the different stages.

The task to resize the video follows a similar pattern. Let's take a look.

Video task
The video Celery worker pulls from the video queue and performs similar steps to
the image task:

from celery import Celery
import boto3
import moviepy.editor as mp
import tempfile

MOCK_S3 = 'http://localhost:9090/'
BUCKET = 'videos'
SIZE = 720

videos_app = Celery(broker='redis://localhost/2')

logger = videos_app.log.get_default_logger()

@videos_app.task
def process_video(path):
 logger.info(f'Starting process video {path} for image resize')

 client = boto3.client('s3', endpoint_url=MOCK_S3)
 # Download the file to a temp file

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[267]

 with tempfile.NamedTemporaryFile(suffix='.mp4') as tmp_file:
 client.download_fileobj(BUCKET, path, tmp_file)

 # Resize with moviepy
 video = mp.VideoFileClip(tmp_file.name)
 video_resized = video.resize(height=SIZE)
 with tempfile.NamedTemporaryFile(suffix='.mp4') as output_file:
 video_resized.write_videofile(output_file.name)
 client.upload_fileobj(output_file, BUCKET, path +
f'x{SIZE}.mp4')

 logger.info('Finish video resize')

The only difference from the image task is the resizing of the video to a height of 720
pixels and uploading the result:

Resize with moviepy
video = mp.VideoFileClip(tmp_file.name)
video_resized = video.resize(height=SIZE)
with tempfile.NamedTemporaryFile(suffix='.mp4') as output_file:
 video_resized.write_videofile(output_file.name)

But the general flow is very similar. Note that it's pulling from a different Redis
database, corresponding to the video queue.

Connecting the tasks
To test the system, we need to start all the different elements. Each one is started in a
different terminal so we can see their different logs:

 $ celery -A base_tasks worker --loglevel=INFO
 $ celery -A video_tasks worker --loglevel=INFO
 $ celery -A image_tasks worker --loglevel=INFO

To start the process, we need a video to be processed in the system.

One possibility to find good, free, videos is to use https://www.
pexels.com/, which has free stock content. For our example
run, we will download the 4K video with URL https://www.
pexels.com/video/waves-rushing-and-splashing-to-the-
shore-1409899/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.pexels.com/
https://www.pexels.com/
https://www.pexels.com/video/waves-rushing-and-splashing-to-the-shore-1409899/
https://www.pexels.com/video/waves-rushing-and-splashing-to-the-shore-1409899/
https://www.pexels.com/video/waves-rushing-and-splashing-to-the-shore-1409899/

Advanced Event-Driven Structures

[268]

We will use the following script to upload the video to the S3 Mock storage and start
the task:

import click
import boto3
from celery import Celery

celery_app = Celery(broker='redis://localhost/0')

 MOCK_S3 = 'http://localhost:9090/'
BUCKET = 'videos'
SOURCE_VIDEO_PATH = '/source_video.mp4'

@click.command()
@click.argument('video_to_upload')
def main(video_to_upload):
Note the credentials are required by boto3, but we are using
a mock S3 that doesn't require them, so they can be fake
 client = boto3.client('s3', endpoint_url=MOCK_S3,
 aws_access_key_id='FAKE_ACCESS_ID',
 aws_secret_access_key='FAKE_ACCESS_KEY')
 # Create bucket if not set
 client.create_bucket(Bucket=BUCKET)

 # Upload the file
 client.upload_file(video_to_upload, BUCKET, SOURCE_VIDEO_PATH)

 # Trigger the
 celery_app.send_task('base_tasks.process_file', [SOURCE_VIDEO_
PATH])

if __name__ == '__main__':
 main()

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[269]

The start of the script describes the Celery queue, the base queue, that will be the
start of the pipeline. We define several values related to the configuration, as we saw
in the previous tasks. The only addition is SOURCE_VIDEO_PATH, which will host the
video in S3 Mock.

We use the click library to generate an easy command-line interface (CLI). The
following lines generate a simple interface that requests the name of the video to
upload as the parameter of the function.

@click.command()
@click.argument('video_to_upload')
def main(video_to_upload):
 ….

click is a fantastic option to generate CLIs quickly. You can read more about it in its
documentation here: https://click.palletsprojects.com/.

The content of the main function simply connects to our S3 Mock, creates the bucket
if not set yet, uploads the file to SOURCE_VIDEO_PATH, and then sends the task to the
queue to start the process:

 client = boto3.client('s3', endpoint_url=MOCK_S3)
 # Create bucket if not set
 client.create_bucket(Bucket=BUCKET)

 # Upload the file
 client.upload_file(video_to_upload, BUCKET, SOURCE_VIDEO_PATH)

 # Trigger the
 celery_app.send_task('base_tasks.process_file', [SOURCE_VIDEO_
PATH])

Let's run it and see the results.

In this script we use the same name to upload all files, overwriting
it if the script is run again. Feel free to change this if it makes more
sense to you to do it differently.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://click.palletsprojects.com/

Advanced Event-Driven Structures

[270]

Running the task
The script can be run after adding the name of the video to upload. Remember that
all the libraries in requirements.txt need to be installed:

$ python3 upload_video_and_start.py source_video.mp4

It will take a bit of time to upload the file to S3 Mock. Once called, the first worker to
react is the base one. This worker will create two new tasks:

[2021-07-08 20:37:57,219: INFO/MainProcess] Received task: base_tasks.
process_file[8410980a-d443-4408-8f17-48e89f935325]
[2021-07-08 20:37:57,309: INFO/ForkPoolWorker-2] Stating task
[2021-07-08 20:37:57,660: INFO/ForkPoolWorker-2] The file is a video,
needs to extract thumbnail and create resized version
[2021-07-08 20:37:58,163: INFO/ForkPoolWorker-2] End task
[2021-07-08 20:37:58,163: INFO/ForkPoolWorker-2] Task base_tasks.
process_file[8410980a-d443-4408-8f17-48e89f935325] succeeded in
0.8547832089971052s: None

The other two will start soon after. The image worker will display new logs, starting
the image thumbnail creation:

[2021-07-08 20:37:58,251: INFO/MainProcess] Received task: image_tasks.
process_video[5960846f-f385-45ba-9f78-c8c5b6c37987]
[2021-07-08 20:37:58,532: INFO/ForkPoolWorker-2] Stating process video
/source_video.mp4 for image thumbnail
[2021-07-08 20:38:41,055: INFO/ForkPoolWorker-2] Finish image
thumbnails
[2021-07-08 20:38:41,182: INFO/ForkPoolWorker-2] Task image_tasks.
process_video[5960846f-f385-45ba-9f78-c8c5b6c37987] succeeded in
42.650344008012326s: None

The video worker will take longer as it needs to resize the video:

[2021-07-08 20:37:57,813: INFO/MainProcess] Received task: video_tasks.
process_video[34085562-08d6-4b50-ac2c-73e991dbb58a]
[2021-07-08 20:37:57,982: INFO/ForkPoolWorker-2] Starting process video
/source_video.mp4 for image resize
[2021-07-08 20:38:15,384: WARNING/ForkPoolWorker-2] Moviepy - Building
video /var/folders/yx/k970yrd11hb4lmrq4rg5brq80000gn/T/tmp0deg6k8e.mp4.
[2021-07-08 20:38:15,385: WARNING/ForkPoolWorker-2] Moviepy - Writing
video /var/folders/yx/k970yrd11hb4lmrq4rg5brq80000gn/T/tmp0deg6k8e.mp4
[2021-07-08 20:38:15,429: WARNING/ForkPoolWorker-2] t: 0%| |
0/528 [00:00<?, ?it/s, now=None]

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[271]

[2021-07-08 20:38:16,816: WARNING/ForkPoolWorker-2] t: 0%| |
2/528 [00:01<06:04, 1.44it/s, now=None]
[2021-07-08 20:38:17,021: WARNING/ForkPoolWorker-2] t: 1%| |
3/528 [00:01<04:17, 2.04it/s, now=None]
...
[2021-07-08 20:39:49,400: WARNING/ForkPoolWorker-2] t: 99%|#########9|
524/528 [01:33<00:00, 6.29it/s, now=None]
[2021-07-08 20:39:49,570: WARNING/ForkPoolWorker-2] t: 99%|#########9|
525/528 [01:34<00:00, 6.16it/s, now=None]
[2021-07-08 20:39:49,874: WARNING/ForkPoolWorker-2] t: 100%|#########9|
527/528 [01:34<00:00, 6.36it/s, now=None]
[2021-07-08 20:39:50,027: WARNING/ForkPoolWorker-2] t: 100%|##########|
528/528 [01:34<00:00, 6.42it/s, now=None]
[2021-07-08 20:39:50,723: WARNING/ForkPoolWorker-2] Moviepy - Done !
[2021-07-08 20:39:50,723: WARNING/ForkPoolWorker-2] Moviepy - video
ready /var/folders/yx/k970yrd11hb4lmrq4rg5brq80000gn/T/tmp0deg6k8e.mp4
[2021-07-08 20:39:51,170: INFO/ForkPoolWorker-2] Finish video resize
[2021-07-08 20:39:51,171: INFO/ForkPoolWorker-2] Task video_tasks.
process_video[34085562-08d6-4b50-ac2c-73e991dbb58a] succeeded in
113.18933968200872s: None

To retrieve the results, we will use the check_results.py script, which downloads
the contents of the S3 Mock storage:

import boto3

MOCK_S3 = 'http://localhost:9090/'
BUCKET = 'videos'

client = boto3.client('s3', endpoint_url=MOCK_S3)

for path in client.list_objects(Bucket=BUCKET)['Contents']:
 print(f'file {path["Key"]:25} size {path["Size"]}')

 filename = path['Key'][1:]

 client.download_file(BUCKET, path['Key'], filename)

By running it, we download the files into the local directory:

$ python3 check_results.py
file /source_video.mp4 size 56807332
file /source_video.mp4.png size 6939007
file /source_video.mp4x720.mp4 size 8525077

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[272]

You can check the resulting files and confirm that they have been generated
correctly. Note that source_video.mp4 will be the same as your input video.

This example demonstrates how to set up a relatively complex pipeline where
different queues and workers are triggered in a coordinated fashion. Note that while
we directly used Celery to send the tasks to the queues, we could also have used
Celery Flower and an HTTP request to do this.

Defining a bus
While we talked about the queue backend system, this hasn't been truly expanded to
the concept of a bus. The term bus originates from the hardware buses that transmit
data between different components of a hardware system. This makes them a central,
multisource, and multidestination part of the system.

A software bus is a generalization of this concept that allows us to interconnect
several logical components.

As the bus is in charge of data transmission, that means that the sender doesn't need
to know much other than the message to transmit and the queue to send it to. The
bus itself will transmit to the destination or destinations.

The concept of a bus is closely related to that of the message broker. A message broker,
though, typically includes more capacities than a pure bus, such as being able to
transform messages along the way and use multiple protocols. Message brokers
can be very complex and allow a huge amount of customization and decoupling of
services. In general, most of the tools to support the usage of a bus will be labeled as
message brokers, though some are more powerful than others.

In essence, a bus is a component specialized in the transmission
of data. This is an ordered communication compared to the
usual alternative of connecting directly to the services through a
network, without any intermediate component.

Though we will use the term "bus", some of the capacities will be
more closely related to features such as routing messages, which
should require tools considered message brokers. Analyze the
requirements of your specific use cases and use a tool that can fulfil
them.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[273]

The bus will be then defined as a central point where all the event-related
communication will be directed to. This simplifies the configuration, as the events
can be routed to the proper destination without requiring a different endpoint.

Figure 8.5: Message bussing

Internally, though, the bus will contain different logical divisions that allow the
proper routing of messages. These are the queues.

In our example before, we used Redis as a bus. Though the connection URL is a little
different, it can be refactored to make it a bit clearer:

Remember that database 0 is the base queue
BASE_BROKER = 'redis://localhost/0'
Base_app = Celery(broker=BROKER)

Refactor for base
BROKER_ROOT = 'redis://localhost'

The routing can be complicated, if the bus allows for it, which is
the case here.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[274]

BROKER_BASE_QUEUE = 0
base_app = Celery(broker=f'{BASE_BROKER}/{BROKER_BASE_QUEUE}')
To address the image queue
BROKER_ROOT = 'redis://localhost'
BROKER_IMAGE_QUEUE = 1
image_app = Celery(broker=f'{BASE_BROKER}/{BROKER_IMAGE_QUEUE}')

This central location makes the configuration of all the different services easy, both
for pushing events to the queues and pulling from them.

More complex systems
More complex systems can be created where the events pass through multiple stages
and are even designed for easy plugin systems working from the same queue.

This can create complicated setups where the data flows through complex pipelines
and is processed by independent modules. These kinds of scenarios are typically
seen on instrumentation that aims to analyze and process big quantities of data to try
and detect patterns and behaviors.

Imagine, for example, a system that makes bookings for a travel agency. There
are a lot of searches and bookings requests that happen in the system, with
associated purchases such as car rentals, luggage bags, food, and so on. Each of
the actions produces a regular response (search, book, purchase, and so on), but an
event describing the action will be introduced into a queue to be processed in the
background. Different modules will analyze user behavior with different objectives
in mind.

For example, the following modules could be added to this system:

• Aggregate economic results by time, to obtain a global view of how the
service is working over time. This can involve details such as purchases per
day, revenue, margins, and so on.

• Analyze the behavior of regular users. Follow users to discover their
patterns. What are they searching for before booking? Are they using offers?
How often are they booking flights? How long is their average trip? Any
outliers?

• Be sure that there's enough inventory for purchases. Backorder any required
elements, based on the items being purchased in the system. This includes
also scheduling enough food for flights, based on pre-purchases.

• Collect information about preferred destinations, based on searches.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[275]

• Trigger alerts for things like full flights that could lead to scheduling more
planes for those days.

These modules are fundamentally about different things and present a different view
on the system. Some are more oriented toward the behavior of users and marketing,
while others are more related to logistics. Depending on the size of the system, it
could be determined that the modules require a different, dedicated team to take
care of each of them independently.

Figure 8.6: Bus from front end system to different modules

Note that each system will likely have its own storage to allow it to store the
information. This could also lead to the creation of their own APIs to access this
information once collected.

The same event will be sent to the bus, and then the different services will receive it.
To be able to do so, you'll need to get a bus that accepts subscriptions from several
systems and delivers the same message to all subscribed systems.

To query the information, the system needs to query the
databases of the modules where the data is stored. This can be
an independent service, but it will likely be the same system's
front end, as it will typically contain all the external interface and
permissions handling.

This makes it necessary for the front end system to access the
stored information, either by directly accessing the database or by
using some API to access it. The front end system should model
access to the data, as we saw in Chapter 3, Data Modeling, and will
very likely require a model definition that abstracts the complex
access to the data.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[276]

Note that the workers in this case can create more events to be introduced. For
example, any module will be able to create an alert, to which the alert system will be
notified. For example, if the inventory is too low, it may require a quick alert at the
same time it backorders, to be sure that action is taken quickly.

Figure 8.7: Note that communication between the modules and the alerts also is done through the bus

Complex event-driven systems can help you distribute the work between different
components. In this example, you can see how the immediate response (booking a
flight) is completely independent of the further detailed analysis in the background
that can be used for longer-term planning. If all the components were added
while the request was served, it could interfere with performance. The backend
components can be swapped and upgraded while the front end system is unaffected.

To properly implement this kind of system, the event needs to use a standard format
that's easy to adapt and extend, to ensure that any module that receives it can
quickly scan through it and discard it if it's not necessary.

A good idea is to use a simple JSON structure like the following:

{
 "type": string defining the event type,
 "data": subevent content
}

This pattern is called publish/subscribe or pub/sub. The consumers
of the events need to subscribe to the topic, which is, in pub/
sub parlance, is the equivalent of a queue. Most buses accept this
system, though it may require some work to configure.

For example, there's a library to allow Celery to work under this
system available at https://github.com/Mulugruntz/celery-
pubsub.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/Mulugruntz/celery-pubsub
https://github.com/Mulugruntz/celery-pubsub

Chapter 8

[277]

For example, when a search is produced, an event like this will be created:

{
 "type": "SEARCH",
 "data": {
 "from": "Dublin",
 "to": "New York",
 "depart_date": 2021-12-31,
 "return_date": null,
 "user": null

 }
}

The type field makes easy to discard the event if it's not of interest to any module.
For example, the economic analysis module will discard any SEARCH event. Other
modules may require further processing. For example, the user behavior module
will analyze SEARCH events where the user field in the data is set.

Keep in mind that an important element for event-driven systems is that the storage
may not be common to all. Perhaps each independent module has its own database.
You'll need to use the techniques for CQRS that we discussed in Chapter 3, Data
Modeling, to model data in these modules. In essence, you'll need to ask differently
to read and to save new data, as writing new data requires the generation of events;
and you'll need to model them as a business unit. What's more, the model may need
to merge information from multiple modules in some cases. For example, if there's a
query in the system that requires obtaining some economic information for a user, it
needs to query both the user behavior module and the economic analysis module,
while presenting the information as a unique model of EconomicInfoUser.

The flexible data structure will allow for new events to be generated, adding more
information and allowing for controlled changes across the modules by enforcing the
backward compatibility of changes. Then the different teams can work in parallel,
improving the system without stepping on each other's toes too much.

When information is frequently accessed, it may make sense
to duplicate it in several places. This goes against the single
responsibility principle (that every feature should be the sole
responsibility of a single module), but the alternative is to create
complicated methods of access to get information that's commonly
used. Be careful when designing and dividing the system to avoid
these problems.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[278]

But ensuring that they behave correctly can be complicated, as there are multiple
parts that interact with each other.

Testing event-driven systems
Event-driven systems are very flexible and, in certain situations, can be incredibly
useful in detaching different elements. But this flexibility and detachment can make
them difficult to test to ensure that everything works as expected.

In general, unit tests are the fastest tests to generate, but the detached nature of
event-driven systems makes them not very useful to properly test the reception of
events. Sure, the events can be simulated, and the general behavior of receiving an
event can be tested. But the problem is: how can we ensure that the event has been
properly generated? And at the right moment?

The only option is to use integration tests to check the behavior of the system. But
these tests are more expensive to design and run.

For example, in our previous example, to test that a purchase of food correctly
triggers an alert, we need to:

1. Generate a call to purchase a food item.
2. Produce the appropriate event.
3. Handle the event in the inventory control. The current inventory should be

configured as low, which will produce an alert event.
4. Handle the alert event properly.

There's always an endless debate about naming tests, what
exactly a unit test is compared to an integration test, system
test, acceptance test, and so on. To avoid getting into too deep a
discussion here, at it's not the objective of the book, we will use
the term unit test to describe tests that can only be run in a single
module, and integration test to refer to those that require two or
more modules interacting with each other to be successful. Unit
tests will mock any dependence, but integration tests will actually
call the dependence to be sure that the connection between
modules works correctly.

These two levels are significantly different in terms of the cost for
each test written. Way more unit tests can be written and run than
integration tests in the same period of time.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[279]

All these steps require configuration to be done in three different systems (the front-
end system, the inventory control module, and the alert module), along with setting
up the bus to connect them. Ideally, this test will require the system to be able to start
up with an automation system to automate the tests. That requires every module
involved to be automatable.

As we can see, this is a high bar in setting up and running tests, though it is still
worth doing. To achieve a sane balance between integration and unit tests, we
should grow them and apply some strategy to be sure that we have reasonable
coverage for both.

Unit tests are cheap, so every case should have healthy coverage by unit tests, where
the external modules are mocked. This includes cases such as different input formats,
different configurations, all flows, errors, and so on. Good unit tests should cover
most possibilities from an isolation point of view, mocking the input of data and any
sent event.

For example, continuing the inventory control example, many unit tests can control
the following requisites, all by changing the input request:

• Purchase of an element with high inventory.
• Purchase of an element with low inventory. This should produce an alert

event.
• Purchase of a non-existing element. This should generate an error.
• Event with invalid format. This should generate an error.
• Purchase of an element with zero inventory. This should generate an alert

event.
• More cases, such as different kinds of purchases, formats, and so on.

Integration tests, on the other hand, should have only a few tests, mostly covering
the "happy path". The happy path means that a regular representative event is
being sent and processed, but doesn't produce expected errors. The objective of
an integration test is to confirm that all the parts are connecting and working as
expected. Given that integration tests are more expensive to run and operate, aim to
implement only the most important, and keep an eye out for any test that isn't worth
maintaining and can be pruned.

We described, in the above discussion on integration tests, a happy
path scenario. The event triggers a handle in the inventory and
generates an alert that's also handled. For integration tests, this
is preferred over not generating an alert, as it stresses the system
more.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advanced Event-Driven Structures

[280]

Though it depends on the system, the ratio of unit to integration test should be
heavily weighted toward unit tests, sometimes by 20 times or more (meaning 1
integration test for 20 unit tests).

Summary
In this chapter, we have seen more event-driven systems with a variety of advanced
and complex architectures that can be designed. We have presented some of the
flexibility and power that event-driven design can bring to a design, but also the
challenges attached to event-driven design.

We started by presenting common systems such as logs and metrics as event-driven
systems, as they are, and considered how looking at them in this way allows us to
create alerting and feedback systems that can be used to control the source of the
events.

We also presented an example with Celery of a more complex pipeline, including the
usage of multiple queues and shared storage to generate multiple coordinated tasks,
such as resizing a video and extracting a thumbnail.

We presented the idea of a bus, a shared access point for all events in the system, and
looked at how we can generate more complex systems where events are delivered
to multiple systems and cascade into complex actions. We also discussed the
challenges of solving these complex interactions, both in terms of requiring the use of
CQRS techniques to model information that can be read after the write is generated
through events, and the demands in terms of testing at different levels with unit and
integration tests.

In the next chapter, we will see the two main architectures for complex systems:
monolithic and microservices.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[281]

9
Microservices vs Monolith

In this chapter, we will present and comment on two of the most common
architectures for complex systems. Monolithic architecture creates a single block
where the whole system is contained, and is simple to operate. Microservices
architecture, on the other hand, divides the system into smaller microservices that
talk to each other, aiming to allow different teams to take ownership of different
elements, and helping big teams to work in parallel.

We will discuss when to choose each one, based on its different characteristics.
We will also go through the teamwork aspect of them, as they have different
requirements in terms of how the work needs to be structured.

A common pattern is to migrate from an old monolithic architecture to a
microservices one. We will talk about the stages involved in such a change.

We will also introduce Docker as a way of containerizing services, something
very useful when it comes to creating microservices, but that can also be applied
to monoliths. We will containerize the web application presented in Chapter 5, The
Twelve-Factor App Methodology.

Remember that the architecture is not only related to tech, but to
a significant degree to how communication is structured! Refer
to Chapter 1, Introduction to Software Architecture, for a further
discussion of Conway's Law.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[282]

Finally, we will briefly describe how to deploy and operate multiple containers using
an orchestration tool, and describe the most popular one these days – Kubernetes.

In this chapter, we'll cover the following topics:

• Monolithic architecture
• The microservices architecture
• Which architecture to choose
• Moving from a monolith to microservices
• Containerizing services
• Orchestration and Kubernetes

Let's start by talking in more depth about monolithic architecture.

Monolithic architecture
When a system is designed organically, the tendency is to generate a single unitary
block of software that contains the whole functionality of the system.

This is a logical progression. When a software system is designed, it starts small,
typically with a simple functionality. But, as the software is used, it grows in terms of
its usage and starts getting requests for new functionality to complement the existing
ones. Unless there are sufficient resources and planning to structure the growth,
the path of least resistance will be to keep adding everything into the same code
structure, with little modularity.

Figure 9.1: A monolithic application

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[283]

This process ensures that all the code and functionality are tied together in a single
block, hence the name monolithic architecture.

Although this kind of structure is quite common, in general, monolithic structures
have a better modularity and internal structure. Even if the software is composed
of a single block, it can be divided logically into different parts, assigning different
responsibilities to different modules.

The defining characteristic of a monolith is that all the calls between modules are
through internal APIs, within the same process. This affords the advantage of being
very flexible. The strategy for deploying a new version of the monolith is also easy.
Restarting the process will ensure full deployment.

The version of the monolith is easy to know, as all the code is part of the same
structure. The code, if it's under source control, will all be under the same repo.

The microservices architecture
The microservices architecture was developed as an alternative to having a single
block containing all the code.

And, by extension, software that follows this pattern is called a
monolith.

For example, in previous chapters we discussed the MVC
architecture. This is a monolithic architecture. The Models, Views,
and Controllers are all under the same process, but there is a
definitive structure in place that differentiates the responsibilities
and functions.

Monolithic architecture is not synonymous with a lack of structure.

Keep in mind that a monolithic application can have multiple
copies running. For example, a monolithic web application can
have multiple copies of the same software running in parallel, with
a load balancer sending requests to all of them. A restart, in this
case, will be in multiple stages.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[284]

A system following a microservices architecture is a collection of loosely coupled
specialized services that work in unison to provide a comprehensive service. Let's divide the
definition up in order to be clearer:

1. A collection of specialized services, meaning that there are different and
well-defined modules

2. Loosely coupled, so each microservice can be independently deployed and
developed

3. That work in unison. Each microservice needs to communicate with others
4. To provide a comprehensive service, meaning that the whole system creates

a full system that has a clear motive and functionality

Compared with a monolith, instead of grouping the whole software under the
same process, it uses multiple, separate functional parts (each microservice) that
communicate through well-defined APIs. These elements can be in different
processes and typically are moved out from different servers to allow proper scaling
of the system.

Figure 9.2: Note that not all microservices will be connected to the storage.
Each microservice may have its own individual storage

The defining characteristic is that the calls between different services are all through
external APIs. These APIs act as a clear, defined barrier between functionalities.
Because of this, microservices architecture requires advanced planning and needs to
define clearly the differences between components.

In particular, microservices architecture requires a good upfront
design to be sure that the different elements connect together
correctly, as any problem that is cross-service will be costly to work
with.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[285]

A system that follows the microservices architecture doesn't happen organically, but
it's the result of a plan created beforehand and executed carefully. This architecture is
not typically started for systems from scratch, but instead, they are migrated from a
previously existing, successful, monolithic architecture.

Which architecture to choose
There's a tendency to think that a more evolved architecture, like the microservices
architecture, is better, but that's an oversimplification. Each one has its own set of
strengths and weaknesses.

The first one is the fact that almost every small application will start as a monolithic
application. This is because it is the most natural way to start a system. Everything is
at hand, the number of modules is reduced, and it's an easy starting point.

Microservices, on the other hand, require the creation of a plan to divide the
functionality carefully into different modules. This task may be complicated, as some
designs may prove inadequate later on.

This requires quite a lot of work to be done beforehand, which requires an
investment in the microservices architecture.

That said, as monoliths grow, they can start presenting problems just through the
sheer size of the code. The main characteristic of a monolithic architecture is that all
the code is found together, and it can start presenting a lot of connections that can
cause developers to be confused. Complexity can be reduced by good practices and
constant vigilance to ensure good internal structure, but that requires a lot of work
in place by existing developers to enforce it. When dealing with a big and complex
system, it may be easier to present clear and strict boundaries just by dividing
different areas into different processes.

Keep in mind that no design can be totally future-proof. Any
perfectly valid architectural decision may prove incorrect a year or
two later when changes in the system require adjustments. While it
is a good question to think about the future, trying to cover every
possibility is futile. The proper balance between designing for the
current feature and designing for the future vision of the system is
a constant challenge in software architecture.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[286]

The modules can also require different specific knowledge, making it natural
to assign different team members to different areas. To create a proper sense of
ownership of the modules, they can have different opinions in terms of code
standards, an adequate programming language for the job, ways of performing tasks,
and so on; for example, a photosystem that has an interface for uploading photos
and an AI system for categorizing them. While the first module will work as a web
service, the abilities required for training and handling an AI model to categorize the
data will be very different, making the module separation natural and productive.
Both of them in the same code base may generate problems by trying to work at the
same time.

Another problem of monolithic applications is the inefficient utilization of resources,
as each deployment of the monolith carries over every copy of every module. For
example, the RAM required will be determined for the worst-case scenario across
multiple modules. When there are multiple copies of the monolith, that will waste
a lot of RAM preparing for worst-case scenarios that will likely be rare. Another
example is the fact that, if any module requires a connection to the database, a new
connection will be created, whether that's used or not.

In comparison, using microservices can adjust each service according to its own
worst-case use case, and independently control the number of replicas for each.
When viewed as a whole, that can lead to big resource saves in big deployments.

Figure 9.3: Notice that using different microservices allows us to reduce RAM usage by dividing requests into
different microservices, while in a monolithic application, the worst-case scenario drives RAM utilization

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[287]

Deployments also work very differently between monoliths and microservices. As
the monolithic application needs to be deployed in a single go, every deployment is,
effectively, a task for the whole team. If the team is small, creating a new deployment
and ensuring that the new features are properly coordinated between modules and
not interfering incorrectly is not very complicated. However, as the teams grow
bigger, this can present a serious challenge if the code is not strictly structured. In
particular, a bug in a small part of the system may bring down the whole system
completely, as any critical error in the monolith affects the whole of the code.

Monolith deployments require coordination between modules, meaning that
they need to work with each other, which normally leads to teams working
closely together until the feature is ready to be released, and require some sort of
supervision until the deployment is ready. This is noticeable when several teams are
working on the same code base, with competing goals, and this blurs the ownership
and responsibility of deployments.

By comparison, different microservices are deployed independently. The API
should be stable and backward compatible with older releases, and that's one of the
strong requisites that need to be enforced. However, the boundaries are very clear,
and in the event of a critical bug, the worst that can happen is that the particular
microservice goes down, while other unrelated microservices continue unaffected.

This makes the system work in a "degraded state," as compared to the "all-or-none"
approach of the monolith. It limits the scope of a catastrophic failure.

Of course, in both cases, solid testing techniques can be used to increase the quality
of the software released.

In comparison with the monolith, microservices can be deployed independently,
without coordinating closely with other services. This brings independence to the
teams working on them and allows for faster, continuous deployments that require
less central coordination.

Of course, certain microservices may be more critical than others,
making them worthy of extra attention and care regarding
their stability. But, in that case, they can be defined as critical in
advance, with stricter stability rules enforced.

The keyword here is less coordination. Coordination is still
required, but the objective of a microservices architecture is
necessarily that each microservice can be independently deployed
and owned by a team, so the majority of changes can be dictated
exclusively by the owner without requiring a process of warning
other teams.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[288]

Monolithic applications, because they communicate with other modules through
internal operations, mean that they typically can perform these operations much
faster than through the external APIs. This allows a very high level of interaction
between modules without paying a significant performance price.

There is an overhead related to the usage of external APIs and communication
through a network that can produce a noticeable delay, especially if there are too
many internal requests made to different microservices. Careful consideration is
required to try to avoid repeating external calls and to limit the number of services
that can be contacted in a single task.

Another interesting advantage of microservices is the independence of technical
requirements. In a monolithic application, problems may arise as a result of requiring
different versions of libraries for different modules. For example, updating the
version of Python requires the whole code base to be prepared for that. These library
updates can be complicated as different modules may have different requirements,
and one module can effectively mingle with another by requiring an upgrade of the
version of a certain library that's used by both.

Microservices, on the other hand, contain their own set of technical requirements, so
there's not this limitation. Because of the external APIs used, different microservices
can even be programmed in different programming languages. This allows the use of
specialized tools for different microservices, tailoring each one for each purpose and
thereby avoiding conflicts.

In some cases, the usage of tools to abstract the contact with other
microservices may produce extra calls that will be absolutely
necessary. For example, a task to process a document needs to
obtain some user information, which requires calling a different
microservice. The name is required at the start of the document,
and the email at the end of it. A naïve implementation may
produce two requests to obtain the information instead of
requesting it all in a single go.

Just because different microservices can be programmed in different
languages doesn't mean that they should. Avoid the temptation
of using too many programming languages in a microservices
architecture as this will complicate maintenance and make it
difficult for a member of a different team to be able to help, thereby
creating more isolated teams.

Having one or two default languages and frameworks available and
then allowing special justified cases is a sensible way to proceed.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[289]

As we see, most of the characteristics of microservices make it more suited for a
bigger operation, when the number of developers is high enough that they need to
be split into different teams and coordination needs to be more explicit. The high
change of pace in a big application also requires better ways to deploy and work
independently, in general.

A small team can self-coordinate very well and will be able to work quickly and
efficiently in a monolith.

This is not to say that a monolith can be very big. Some are. But, in a general sense,
microservices architecture only makes sense if there are enough developers such that
different teams are working in the same system and are required to achieve a good
level of independence between them.

A side note about similar designs
While the decision of monolith versus microservices is normally discussed in the
context of web services, it's not exactly a new idea and it's not the only environment
where there are similar ideas and structures.

The kernel of an OS can also be monolithic. In this case, a kernel structure is called
monolithic if it all operates within kernel space. A program running in kernel space
in a computer can access the whole memory and hardware directly, something
that is critical for the usage of an OS, while at the same time, this is dangerous as
it has big security and safety implications. Because the code in kernel space works
so closely with the hardware, any failure here can result in the total failure of the
system (a kernel panic). The alternative is to run in user space, which is the area
where a program only has access to its own data, and has to interact explicitly with
the OS to retrieve information.

For example, a program in user space that wants to read from a file needs to
make a call to the OS, and the OS, in kernel space, will access the file, retrieve the
information, and return it to the requested program, copying to a part of the memory
where the program can access.

The idea of the monolithic kernel is that it can minimize this movement and context
switch between different kernel elements, such as libraries or hardware drivers.

The alternative to a monolithic kernel is called a microkernel. In a microkernel
structure, the kernel part is greatly reduced and elements such as filesystems,
hardware drivers, and network stacks are executed in user space instead of in kernel
space. This requires these elements to communicate by passing messages through the
microkernel, which is less efficient.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[290]

At the same time, it can improve the modularity and security of the elements, as any
crash in user space can be restarted easily.

There was a famous argument between Andrew S. Tanenbaum and Linus Torvalds
about what architecture is better, given that Linux was created as a monolithic
kernel. In the long run, kernels have evolved toward hybrid models, where they take
aspects of both elements, incorporating microkernel ideas into existing monolithic
kernels for flexibility.

Discovering and analyzing related architectural ideas can help to improve the tools
at the disposal of a good architect and improve architectural understanding and
knowledge.

The key factor – team communication
A key element of the difference between microservices and monolithic architecture is
the difference in the communication structure that they support.

If the monolithic application has grown organically from a small project, as usually
happens, the internal structure can become messy, and requires developers with
experience in the system who can change and adapt it for any change. In bad cases,
the code can become very chaotic and be more and more complicated to work with.

Increasing the size of the development team becomes complicated, as each engineer
requires a lot of contextual information, and learning how to navigate the code is
difficult. The older teammates who have been around can help to train new team
members, but they'll act as bottlenecks, and mentoring is a slow process that has
limits. Each new member of the team will require a significant amount of training
time until they can be productive in fixing bugs and adding new features.

Teams also have a maximum natural size limit. Managing a team with too many
members, without dividing it into smaller groups, is difficult.

The ideal size of a team depends on a lot of different factors, but
between 5 and 9 is generally considered the ideal size to work
efficiently.

Teams that are bigger than that tend to self-organize into their own
smaller groups, losing focus as a unit and creating small information
silos where parts of the team are not aware of what's going on.

Teams with fewer members create too much overhead in terms of
management and communication with other teams. They will be
able to work faster with a slightly bigger size.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[291]

If the growing size of the code requires it, this is the time to employ all the techniques
that we are describing in this book to generate more structure, architecting the
system. This will involve defining modules with clear responsibilities and clear
boundaries. This division allows the team to be divided into groups and allows them
to work at creating ownership and explicit goals for each team.

This allows the teams to work in parallel without too much interference, so the extra
members can increase the throughput in terms of features. As we commented before,
clear boundaries will help in defining the work for each team.

In a monolith, however, these limitations are soft, as the whole system is accessible.
Sure, there is a certain discipline in terms of focusing on certain areas, and the
tendency will be that one team will be able to access everything, and will tweak and
bend internal APIs.

When moving to a microservices architecture, the division of work becomes way
more explicit. The APIs between teams become hard limitations and there is a need
for more work upfront to communicate between teams. The trade-off is that teams
are way more independent, as they can:

• Own the microservice completely without other teams coding in the same
code base

• Deploy independently from other teams

As the code base will be smaller, new members of the team will be able to learn it
quickly and be productive earlier. Because the external APIs to interact with other
microservices will be explicitly defined, a higher level of abstraction will be applied,
making it easier to interact.

This characteristic is not necessarily a bad thing, especially on a
smaller scale. This way of working with a small, focused team can
produce fantastic results, as they'll be able to adjust quickly all the
related parts of the software. The drawback is that the members
of the team need to be highly experienced and know their way
around the software, which normally becomes more and more
difficult over time.

Note this also means that different teams will know less about
the internals of other microservices compared with monolithic
applications when there's at least a superficial knowledge of it. This
can create some friction when moving people from one team to
another.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[292]

As we saw in the first chapter, Conway's law is something to keep in mind when
making architectural decisions that affect communication within the organization.
Let's remember that this software law states that the structure of the software will
replicate the communication structure of the organization.

A good example of Conway's law is the creation of DevOps practices. The older
way of dividing work was to have different teams, one related to developing new
features, and another in charge of deploying and operating the software. The abilities
required for each task are different, after all.

The risk of this structure is the "I don't know what it is / I don't know where it runs"
division, which can cause the team responsible for developing new features to be
unaware of bugs and problems associated with operating the software, while the
operations team finds changes with little reaction time, and identifies bugs without
understanding the inside operation of the software.

This division is still in place in many organizations, but the idea behind DevOps is
that the same team that develops the software is responsible for deploying it, thereby
creating a virtuous feedback loop where developers are aware of the complexities of
the deployment and can react and fix bugs in production and improve the operation
of the software.

Note that this normally involves creating a multi-functional team with people who
both understand operations and development, though they don't necessarily need to
be the same. Sometimes, an external team is responsible for creating a set of common
tools for other teams to use in their operations.

Communication within the same team is different from the communication between
different teams. Communicating with other teams is always more difficult and
costlier. This is probably easy to say, but the implications of it for teamwork are big.
Examples include the following:

This is a big change, and changing from the older structure to
the DevOps one involves mixing teams in a way that can be very
disruptive for the corporate culture. As we've tried to highlight
here, this involves people changes, which are slow and have a
significant amount of pain associated with them. For example,
there may be a good operations culture where they share their
knowledge and have fun together, and now they'll need to break
up those teams and integrate them with new people.

This kind of process is difficult and should be planned carefully,
understanding both its human and social scale.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[293]

• Because APIs to be used externally from the team are going to be used by
other engineers without the same level of expertise in the internals, it makes
sense to make them generic and easy to use, as well as creating proper
documentation.

• If a new design follows the structure of already existing teams, it will be
easier to implement than the other way around. Architectural changes that lie
between teams require organizational changes. Changing the structure of an
organization is a long and painful process. Anyone who has been involved
in a company reorganization can attest to that. These organizational changes
will be reflected in the software naturally, so ideally a plan will be generated
to allow for it.

• Two teams working in the same service will create problems because each
team will try to pull it to their own goals. This is a situation that can happen
with some common libraries or with "core" microservices that are used by
multiple teams. Try to enforce clear owners for them to be sure that a single
team is in charge of any changes.

• Given that different physical locations and time zones naturally impose
their own communication barrier, they normally are used to set up different
teams, describing their own structured communication, like the API
definition, between time zones.

Explicit owners establish clarity about who is responsible
for changes and new features. Even if something is
implemented by someone else, the owner should be
responsible for approving it and giving direction and
feedback. They should also be prepared to have a long-
term vision and handle any technical debt.

Working remotely has increased significantly as a result
of the COVID-19 crisis. This has also created the need
to structure communication differently compared with
a team working together in the same room. This has
developed and improved communication skills, which can
lead to better ways of organizing work. In any case, team
division is not only a matter of being physically located
in the same place but creating the bonds and structure to
work as a team.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[294]

Communication aspects of development are an important part of the work and
should not be underestimated. Keep in mind that changes to them are "people
changes," which are more difficult to implement than tech changes.

Moving from a monolith to microservices
A usual case is the need to migrate from an existing monolithic architecture to a new
microservices one.

The main reason for wanting to implement this change is the size of the system.
As we've discussed before, the main advantage of a microservice system is the
creation of multiple independent parts that can be developed in parallel, enabling
the development to be scaled and the pace increased by allowing more engineers to
work at the same time.

This is a move that makes sense if the monolith has grown to exceed a manageable
size and there are enough problems with releases, interfering features, and stepping
on each other's toes. But, at the same time, it's a very huge and painful transition to
perform.

Challenges for the migration
While the final result may be much better than a monolithic application that shows
its age, migrating to a new architecture is a big undertaking. We'll now look at some
of the challenges and problems that we can expect in the process:

• Migrating to microservices will require a huge amount of effort, actively
changing the way the organization operates, and will require a big upfront
investment until it starts to pay off. The transition time will be painful and
will require compromises between the speed of migration and the regular
operation of the service, as stopping the operation completely won't be an
option. It will require a good deal of meetings and documentation to plan
and communicate the migration to everyone. It needs to have active support
at the executive level to ensure full commitment to get it done, with a clear
understanding of why it is being done.

• It also requires a profound cultural change. As we've seen above, the key
element of microservices is the interaction between teams, which will
change significantly compared with the way of operating in a monolithic
architecture. This will likely involve changing teams and changing tools.
Teams will have to be stricter in their usage and documentation of external
APIs.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[295]

They'll need to be more formal in their interaction with other teams and
probably take attributions they didn't have before. In general, people don't
like change, and that could be responded to in the form of resistance by
members of some teams. Be sure that these elements are taken into account.

• Another challenge is the training aspect. New tools will surely be used
(we will cover Docker and Kubernetes later in this chapter), so some teams
will likely need to adapt to use them. Managing a cluster of services can be
complicated to wrap one's head around, and it will likely involve different
tools than the ones used previously. For example, local developers will likely
be very different. Learning how to operate and work with containers, if going
down that route, will take some time. This requires planning and the need to
support team members until they are comfortable with the new system.

• Dividing the existing monolith into different services requires careful
planning. A bad division between services can make two services tightly
coupled, thereby not allowing independent deployment. This can result in a
situation where practically any change to one service will require a change
in the other, even if, theoretically, this could be done independently. This
creates duplication of work, as routinely working on a single feature requires
multiple microservices to be changed and deployed. Microservices can be
mutated later and boundaries redefined, but there's a high cost associated
with that. The same care should be taken later when adding new services.

• There's an overhead in creating microservices, as there is some work that
gets replicated on each service. That overhead gets compensated for by
allowing independent and parallel development. But, to take full advantage
of that, you need numbers. A small development team of up to 10 people
can coordinate and handle a monolith very efficiently. It's only when the size
grows and independent teams are formed that migrating to microservices
starts to make sense. The bigger the company, the more it makes sense.

A very clear example of this is the extra complexity for
debugging a request coming into the system, as it can
be jumping around different microservices. Previously,
this request was probably easier to track in the monolith.
Understanding how a request moves and finding subtle
bugs produced by that can be difficult. To be certain of
fixing this, they will likely need to be replicated and fixed
in local development, which, as we've seen, will entail the
use of different tools and systems.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[296]

• A balance between allowing each team to make their own decisions and
standardize some common elements and decisions is necessary. If teams have
too little direction, they'll keep reinventing the wheel over and over. They'll
also end up creating knowledge silos where the knowledge in a section of
the company is wholly non-transferable to another team, making it difficult
to learn lessons collectively. Solid communication between teams is required
to allow consensus and the reuse of common solutions. Allow controlled
experimentation, label it as such, and get the lessons learned across the board
so that the other teams benefit. There will be tension between shared and
reusable ideas and independent, multiple-implementation ideas.

• Following the Agile principles, we know that working software is more
important than extensive documentation. However, in microservices, it's
important to maximize the usability of each individual microservice to
reduce the amount of support between teams. That involves some degree of
documentation. The best approach is to create self-documenting services.

• As we've discussed earlier, each call to a different microservice can increase
the delay of responses, as multiple layers will have to be involved. This can
produce latency problems, with external responses taking longer. They will
also be affected by the performance and capacity of the internal network
connecting the microservices.

A move to microservices should be taken with care and by carefully analyzing its
pros and cons. It is possible that it will take years to complete the migration in a
mature system. But for a big system, the resulting system will be much more agile
and easy to change, allowing you to tackle technical debt effectively and to empower
developers to take full ownership and innovate, structuring communication and
delivering a high-quality, reliable service.

A move in four acts
The migration from one architecture to another should be considered in four steps:

1. Analyze the existing system carefully.
2. Design to determine what the desired destination is.

Be careful when introducing shared code across services.
If the code grows, it will make services dependent on
each other. This can reduce the independence of the
microservices.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[297]

3. Plan. Create a route to move, step by step, from the current system to the
vision designed in the first stage.

4. Execute the plan. This stage will need to be done slowly and deliberately,
and at each step, the design and plan will need to be re-evaluated.

Let's look at each of the steps in greater detail.

1. Analyze
The very first step is to have a good understanding of our starting point with the
existing monolith. This may appear trivial, but the fact is that it is quite conceivable
that no particular person has a good understanding of all the details of the system. It
may require information gathering, compilation, and digging deep to understand the
intricacies of the system.

The main objective of this phase should be to determine whether a change will
actually be beneficial and get a preliminary idea of what microservices will result
from the migration. Performing this migration is a big commitment, and it's always
a good idea to double-check that tangible benefits will result. Even if, at this stage,
it won't be possible to estimate the effort required, it will start shaping the size of
the task.

The existing code can be described as legacy code. While a debate is
currently taking place on exactly what code can be categorized as
legacy, the main property of it is code that is already in place and
doesn't follow the best and new practices that new code has.

In other words, legacy code is old code from some time ago and
that is very likely not up to date with current practices. However,
legacy code is critical, as it is in use and probably key for the day-
to-day operations of the organization.

This analysis will benefit greatly from good metrics and actual data
showing the number of requests and interactions that are actually
being produced in the system. This can be achieved through good
monitoring, and adding metrics and logs to the system to allow the
current behavior to be measured. This can lead to insights about
what parts are commonly used, and, even better, parts that are
almost never used and can perhaps be deprecated and removed.
Monitoring can continue to be used to ensure that the process is
going according to plan.

We will discuss monitoring in more detail in Chapter 11, Package
Mangement, and Chapter 12, Logging.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[298]

This analysis can be almost instant if the system is already well-architected and
properly maintained, but may extend to months of meetings and digging into code if
the monolith is a mess of chaotic code. However, this stage will allow us to build on
solid foundations, knowing what the current system is.

2. Design
The next stage of the process is to generate a vision in terms of what the system will
look like after breaking the monolith up into multiple microservices.

Each microservice needs to be considered in isolation, and as part of the rest. Think
in terms of what makes sense to separate. Some questions that may help you to
structure the design are as follows:

• What microservices should be created? Can you describe each microservice
with a clear objective and area to control?

• Is there any critical or core microservice that requires more attention
or special requirements? For example, higher security or performance
requirements.

• How will the teams be structured to cover the microservices? Are there too
many for the team to support? If that's the case, can multiple requests or
areas be joined as part of the same microservice?

• What are the prerequisites of each microservice?
• What new technologies will be introduced? Is any training required?
• Are microservices independent? What are the dependencies between

microservices? Is there any microservice that is accessed more than others?
• Can microservices be deployed independently from each other? What's the

process if a new change is introduced that requires a change in a dependent
dependency?

• What microservices are going to be exposed externally? What microservices
are only exposed internally?

• Is there any prerequisite in terms of required API limitations? For example, is
there any service that requires specific APIs, such as a SOAP connection?

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[299]

Other things that can be useful in informing the design can be to draw expected
flow diagrams of requests that need to interact with multiple microservice, so as to
analyze the expected movement between services.

Special care should be taken regarding whatever storage is decided for each
microservice. In general, storage for one microservice should not be shared with
another, to isolate the data.

This has a very concrete application, that is, to not access a database or other kind
of raw storage directly by two or more microservices. Instead, one microservice
should control the format and expose the data, and allow changes to the data by an
accessible API.

For example, let's imagine that there are two microservices, one that controls reports
and another that controls users. For certain reports, we may need to access the user
information to pull, for example, the name and email of a user who generated a
report. We can break the microservice's responsibility by allowing the report service
to access directly a database that contains user information.

Figure 9.4: An example of incorrect usage, accessing the information directly from storage

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[300]

Instead, the report service needs to access the user microservice through an API and
pull the data. That way, each microservice is responsible for its own storage and
format.

Figure 9.5: This is the correct structure. Each microservice keeps its own independent storage.
This way, any information is only shared through well-defined APIs

As we commented before, creating a flow diagram of some requests will help enforce
this separation and find possible points of improvement; for example, returning data
from an API that is not required until later in the process.

At this stage, there's no need to design detailed APIs between microservices, but
some general ideas on what services handle what data and what the required flows
between microservices are would be beneficial.

While a prerequisite is not to mix storage, and to retain separation,
you can use the same backend service to provide support for
different microservices. The same database server can handle two
or more logical databases that can store different information.

Generally, though, most microservices won't require their own
data to be stored and can work in a completely stateless way,
relying instead on other microservices to store the data.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[301]

3. Plan
Once the general areas are clear, it's time to get into more detail and start planning
how the system is going to be changed from the starting point to the end line.

The challenge here is to iteratively move into the new system while the system
simultaneously remains functional at all times. New features are likely being
introduced, but let's park that for the moment and talk only about the migration
itself.

To be able to do so, we need to use what is known as the strangler pattern. This
pattern aims to gradually replace parts of the system with new ones until the entire
previous system is "strangled" and can be removed safely. This pattern gets applied
iteratively, slowly, migrating the functionality from the old system to the new one in
small increments.

Figure 9.6: The strangler pattern

To create new microservices, there are three possible strategies:

• Replace the functionality with new code that substitutes the old code,
functionally producing the same result. Externally, the code reacts exactly
the same to external requests, but internally, the implementation is new.
This strategy allows you to start from scratch and fix some of the oddities of
the old code. It can even be done in newer tools such as frameworks or even
programming languages.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[302]

At the same time, this approach can be very time-consuming. If the legacy
system is undocumented and/or untested, it can be difficult to guarantee the
same functionality. Also, if the functionality covered by this microservice is
changing quickly, it may enter a game of catch-up between the new system
and the old one, where there's no time to replicate any new functionality.

• Divide the functionality, copying and pasting code that exists in the monolith
into a new microservice structure. If the existing code is in good shape and
structured, this approach is relatively fast, only requiring some internal calls
to be replaced with external API calls.

This process can also be made iterative by first starting with a single
functionality migrated to the new microservice, and then, one by one,
moving the code until the functionality is completely migrated. At that point,
it is safe to delete the code from the old system.

• A combination of both divide and replace. Some parts of the same
functionality can likely be copied directly, but for others, a new approach is
preferred.

This will inform each microservice plan, although we will need to create a global
view to determine which microservices to create in what order.

Here are some useful points to think about to determine what the best course of
action is:

• What microservices need to be available first, taking into account
dependencies that will be produced.

This approach makes the most sense where the legacy
parts to be replicated are small and obsolete, like using a
tech stack that is considered to be deprecated.

It may be necessary to include in the monolith new access
points to ensure that a new microservice can call back to
obtain some information.

It's also possible that the monolith needs to be refactored
to clarify elements and divide them into a structure that's
more in line with the new system.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[303]

• An idea of what the biggest pain points are, and whether working on them
is a priority. Pain points are the code or other elements that are changed
frequently and the current way of dealing with them in a monolith makes
them difficult. This can produce great benefits following migration.

• What are the difficult points and the cans of worms? There will likely be
some. Acknowledge that they exist and minimize their impact on other
services. Note that they may be the same as the pain points, or they may
differ. For example, old systems that are very stable are difficult points, but
not painful as per our definition, as they don't change.

• Now for a couple of quick wins that will keep the momentum of the project
going. Show the advantages to your teams and stakeholders quickly! This
will also allow everyone to understand the new mode of operation you want
to move to and start working that way.

• An idea of the training that teams will require and what the new elements
are that you want to introduce. Also, whether any skills are lacking in your
team – you may be planning to hire.

• Any team changes and ownership of the new services. It's important to
consider feedback from the teams so that they can express their concerns
regarding any oversights during the creation of the plan. Involve the team
and value their feedback.

Once we have a plan on how we are going to proceed, it's time to do it.

4. Execute
Finally, we need to act on our plan to start the move from the outdated monolith to
the new wonderful land of microservices!

This will actually be the longest stage of the four, and arguably the most difficult.
As we said before, the objective is to keep the service running all throughout the
process.

The key element for a successful transition is to maintain backward compatibility.
This means that the system keeps behaving like the monolithic system from an
external point of view. That way, we can change the internals in terms of how the
system works without affecting customers.

Ideally, the new architecture will allow us to be faster, meaning the
only perceived change will be that the system is more responsive!

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[304]

This is obviously easier said than done. Software development in a production
environment has been referred to as starting an automobile race driving a Ford T
and crossing the finishing line in a Ferrari, changing every single piece of it without
stopping. Fortunately, software is so flexible that this is something we can even
discuss.

To be able to make the change, from the monolith to the new microservice or
microservices that handle the same functionality, the key tool is to use a load
balancer at the top level, right on the ingress of requests. This is especially useful if
the new microservice is directly replacing the requests. The load balancer can take
the intake of requests and redirect them to the proper service, in a controlled manner.

This can be used to migrate the requests from the monolith slowly to the new
microservice that should receive this request. Keep in mind that the load balancer
can be configured by a different URL to direct the request to a different service, so
it can use that small granularity to distribute the load properly across the different
services.

The process will look a little like this. First, the load balancer is directing all the
requests to the legacy monolith. Once the new microservice is deployed, the requests
can be load-balanced by introducing the new microservice. Initially, the balance
should only be forwarding a few requests to the new system, to be sure that the
behavior is the same.

Slowly, over time, it can grow until all requests are migrated. For example, the first
week can only move 10% of the requests, the second week 30%, the third week 50%,
and then 100% of all requests the week after.

We will assume that all incoming requests are HTTP requests. A
load balancer can handle other kinds of requests, but HTTP is by
far the most common.

The migration period is 4 weeks. During that time, no new features
and changes should be introduced as the interface needs to be
stable between the legacy monolith and the new microservice. Be
sure that all the parties involved are aware of the plan and each of
the steps.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[305]

At that point, the handling of the requests in the legacy monolith is unused and can
be removed to cleanup if this makes sense.

This process is similar to the strangler pattern that we discussed before, but in this
case applied to individual requests. The load balancer will be an invaluable ally for
implementing the pattern in full form, extending this procedure in a greater mode,
as we are adding more functionality and slowly migrating it to be certain that any
problem can be detected early and without affecting a large number of requests.

Execution phases
The whole execution plan should consist of three phases:

1. The pilot phase. Any plan will need to be tested with care. The pilot phase
will be when the plan is checked in terms of its feasibility and the tools
tested. A single team should lead this effort, to be sure that they are focused
on it, and can learn and share quickly. Try to start on a couple of small
services and low-hanging fruit, so that the improvement is obvious for the
team. Good candidates are non-critical services, so if there's a problem, it
doesn't present a big impact. This phase will allow you to prepare for the
migration and to make adjustments and learn from inevitable mistakes.

2. Consolidation phase. At this point, the basics of the migration are
understood, but there's still a lot of code to migrate. The pilot team can
then start training other teams and spread the knowledge, so everyone
understands how it should proceed. By this time, the basic infrastructure will
be in place, and hopefully the most obvious issues have been corrected or at
least there's a good understanding of how to deal with them.
To help with the spreading of knowledge, documenting standards will help
teams to coordinate and depend less on asking the same questions over and
over. Enforcing a list of prerequisites for a new microservice to be deployed
and running in production will give clarity on what is required. Be sure
also to keep a feedback channel, so new teams can share their findings and
improve the process.
This phase will probably see some plan changes, as reality will overcome
whatever plan has been laid out in advance. Be sure to adapt and keep an eye
on the objective while navigating through the problems.
At this phase, the pace will be increased, as the uncertainty is being reduced
as more and more code is migrated. At some point, creating and migrating a
new microservice will be routine for the team.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[306]

3. Final phase. In this phase, the monolithic architecture has been split, and
any new development is done in the microservices. There may still be some
remains of the monolith that are regarded as unimportant or low priority. If
that's the case, the boundaries should be clear to contain the old way of doing
things.

Now, teams can take full ownership of their microservices and start taking
more ambitious tasks, such as replacing a microservice completely by
creating an equivalent one in another programming language or changing
the architecture by merging or splitting microservices. This is the end stage
where, from now on, you live in a microservices architecture. Be sure to
celebrate it with the team accordingly.

That's roughly the process. Of course, this may be a long and arduous process that
can span many months or even years. Be sure to keep a sustainable pace and a long-
term view on the objective to be able to continue until the goal is reached.

Containerizing services
The traditional way of operating services is to use a server using a full OS, such
as Linux, and then install on it all the required packages (for example, Python or
PHP) and services (for example, nginx, uWSGI). The server acts as the unit, so each
physical machine needs to be independently maintained and managed. It also may
not be optimal from the point of view of hardware utilization.

This can be improved by replacing the physical server with virtual machines, so a
single physical server can handle multiple VMs. This helps with hardware utilization
and flexibility, but still requires each server to be managed as an independent
physical machine.

Containers bring a different approach to this area. Instead of using a full-fledged
computer (a server), with an installed OS, packages, and dependencies, and
then installing your software on top of that, which mutates more often than the
underlying system, it creates a package (the container image) that brings it all.

Multiple tools help with this management, for example,
configuration management tools such as Chef or Puppet. They can
manage multiple servers and guarantee that they have installed the
proper versions and are running the proper services.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[307]

The container has its own filesystem, including the OS, dependencies, packages, and
code, and is deployed as a whole. Instead of having a stable platform and running
services on top of them, containers run as a whole, self-containing everything
required. The platform (host machine) is a thin layer that only needs to be able to
run the containers. Containers share the same kernel with the host, making them
very efficient to run, compared with VMs, which may require simulating the whole
server.

This allows, for example, different containers to be run in the same physical machine
and have each container run a different OS, with different packages, and different
versions of the code.

The most popular tool for building and running containers is Docker (https://www.
docker.com/). We will now examine how to operate with it.

Once installed, you should be able to check the version running and get something
similar to the following:

$ docker version
Client:
 Cloud integration: 1.0.17
 Version: 20.10.7
 API version: 1.41
 Go version: go1.16.4
 Git commit: f0df350
 Built: Wed Jun 2 11:56:22 2021
 OS/Arch: darwin/amd64
 Context: desktop-linux
 Experimental: true

Server: Docker Engine - Community
 Engine:

Sometimes, containers are thought of as "lightweight virtual
machines." This is not correct. Instead, think of them as a process
wrapped in its own filesystem. This process is the main process of the
container, and when it finishes, the container stops running.

To install Docker, you can go to the documentation at https://
docs.docker.com/get-docker/ and follow the instructions. Use
version 20.10.7 or later.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

Microservices vs Monolith

[308]

 Version: 20.10.7
 API version: 1.41 (minimum version 1.12)
 Go version: go1.13.15
 Git commit: b0f5bc3
 Built: Wed Jun 2 11:54:58 2021
 OS/Arch: linux/amd64
 Experimental: false
 containerd:
 Version: 1.4.6
 GitCommit: d71fcd7d8303cbf684402823e425e9dd2e99285d
 runc:
 Version: 1.0.0-rc95
 GitCommit: b9ee9c6314599f1b4a7f497e1f1f856fe433d3b7
 docker-init:
 Version: 0.19.0
 GitCommit: de40ad0

Now we need to build a container image that we can run.

Building and running an image
The container image is the whole filesystem and instructions to run when it's started.
To start using containers we need to build the proper images that form the basis of
the system.

An image is created by applying a Dockerfile, a recipe that creates the image by
executing different layers, one by one.

Let's see a very simple Dockerfile. Create a file called sometext.txt containing
some small example text, and another file called Dockerfile.simple containing the
following text:

FROM ubuntu
RUN mkdir -p /opt/
COPY sometext.txt /opt/sometext.txt
CMD cat /opt/sometext.txt

The first line, FROM, will start the image by using the Ubuntu image.

Remember the description presented previously, that a container
is a process surrounded by its own filesystem. Building the image
creates this filesystem.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[309]

One of the main advantages of containers is the ability to use and share already
created containers, either directly or as a starting point to enhance them. Nowadays,
it is very common to create and push a container to Docker Hub to allow others to
use it directly. That's one of the great things about containers! They are very easy to
share and use.

The second line runs a command inside the container. In this case, it creates a new
subdirectory in /opt:

RUN mkdir -p /opt/

Next, we copy the current sometext.txt file inside, in the new subdirectory:

COPY sometext.txt /opt/sometext.txt

Finally, we define the command to execute when the image is run:

CMD cat /opt/sometext.txt

To build the image, we run the following command:

docker build -f <Dockerfile> --tag <tag name> <context>

In our case, we use the defined Dockerfile and example as a tag. The context is .
(current directory), which defines the root point in terms of where to refer to all the
COPY commands:

$ docker build -f Dockerfile.sample -–tag example .
[+] Building 1.9s (8/8) FINISHED
 => [internal] load build definition from Dockerfile.sample
 => => transferring dockerfile: 92B
 => [internal] load .dockerignore
 => => transferring context: 2B

There are many images that you can use as a starting point. You
have all the usual Linux distributions, such as Ubuntu, Debian, and
Fedora, but also images for full-fledged systems such as storage
systems (MySQL, PostgreSQL, and Redis) or images to work with
specific tools, such as Python, Node.js, or Ruby. Check Docker Hub
(https://hub.docker.com) for all the available images.

An interesting starting point is to use the Alpine Linux distribution,
which is designed to be small and focused on security. Check out
https://www.alpinelinux.org for further information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://hub.docker.com
https://www.alpinelinux.org

Microservices vs Monolith

[310]

 => [internal] load metadata for docker.io/library/ubuntu:latest
 => [1/3] FROM docker.io/library/ubuntu@sha256:82becede498899ec668628e7
cb0ad87b6e1c371cb8a1e597d83a47fac21d6af3
 => [internal] load build context
 => => transferring context: 82B
 => CACHED [2/3] RUN mkdir -p /opt/
 => CACHED [3/3] COPY sometext.txt /opt/sometext.txt
 => exporting to image
 => => exporting layers
 => => writing image sha256:e4a5342b531e68dfdb4d640f57165b704b1132cd18b
5e2ba1220e2d800d066cb

If we list the available images, you will be able to see the example one:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
example latest e4a5342b531e 2 hours ago 72.8MB
ubuntu latest 1318b700e415 47 hours ago 72.8MB

We can now run the container, which will execute the cat command inside:

$ docker run example
Some example text

The container will stop the execution as the command finishes. You can see the
stopped containers using the docker ps -a command, but a stopped container is
generally not very interesting.

While this way of running containers can be useful sometimes to compile binaries or
other kinds of operations of a similar kind, normally, it's more common to create RUN
commands that are always running. In that case, it will run until stopped externally,
as the command will run forever.

A common exception to this is that the resulting filesystem is
stored onto disk, so the stopped container may have interesting
files generated as part of the command.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[311]

Building and running a web service
A web service container is the most common type of microservice, as we have seen.
To be able to build and run one, we need to have the following parts:

• Proper infrastructure that runs the web service to a port in the container
• Our code, which will run

Following the usual architecture presented in previous chapters, we will use the
following tech stack:

• Our code will be written in Python and use Django as the web framework
• The Python code will be executed through uWSGI
• The service will be exposed in port 8000 through an nginx web server

Let's take a look at the different elements.

The code is structured in two main directories and one file:

• docker: This subdirectory contains the files related to the operation of Docker
and other infrastructure.

• src: The source code of the web service itself. The source code is the same as
we saw in Chapter 5, The Twelve-Factor App Methodology.

• requirements.txt: The file with the Python requirements for running the
source code.

The Dockerfile image is located in the ./docker subdirectory. We will follow it to
explain how the different parts connect:

FROM ubuntu AS runtime-image

Install Python, uwsgi and nginx
RUN apt-get update && apt-get install -y python3 nginx uwsgi uwsgi-
plugin-python3

The code is available at https://github.com/PacktPublishing/
Python-Architecture-Patterns/tree/main/chapter_09_
monolith_microservices/web_service.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_09_monolith_microservices/web_service
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_09_monolith_microservices/web_service
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_09_monolith_microservices/web_service

Microservices vs Monolith

[312]

RUN apt-get install -y python3-pip

Add starting script and config
RUN mkdir -p /opt/server
ADD ./docker/uwsgi.ini /opt/server
ADD ./docker/nginx.conf /etc/nginx/conf.d/default.conf
ADD ./docker/start_server.sh /opt/server

Add and install requirements
ADD requirements.txt /opt/server
RUN pip3 install -r /opt/server/requirements.txt

Add the source code
RUN mkdir -p /opt/code
ADD ./src/ /opt/code

WORKDIR /opt/code

compile the static files
RUN python3 manage.py collectstatic --noinput

EXPOSE 8000
CMD ["/bin/sh", "/opt/server/start_server.sh"]

The first part of the file starts the container from the standard Ubuntu Docker image
and install the basic requirements: Python interpreter, nginx, uWSGI, and a couple of
complementary packages – the uWSGI plugin to run python3 code and pip to be able
to install Python packages:

FROM ubuntu AS runtime-image

Install Python, uwsgi and nginx
RUN apt-get update && apt-get install -y python3 nginx uwsgi uwsgi-
plugin-python3
RUN apt-get install -y python3-pip

The next stage is to add all the required scripts and config files to start the server and
configure uWSGI and nginx. All these files are in the ./docker subdirectory and are
stored inside the container in /opt/server (except for the nginx configuration that is
stored in the default /etc/nginx subdirectory).

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[313]

We ensure that the start script is executable:

Add starting script and config
RUN mkdir -p /opt/server
ADD ./docker/uwsgi.ini /opt/server
ADD ./docker/nginx.conf /etc/nginx/conf.d/default.conf
ADD ./docker/start_server.sh /opt/server
RUN chmod +x /opt/server/start_server.sh

The Python requirements are installed next. The requirements.txt file is added and
then installed through the pip3 command:

Add and install requirements
ADD requirements.txt /opt/server
RUN pip3 install -r /opt/server/requirements.txt

We add the source code to /opt/code next. With the WORKDIR command, we execute
any RUN command in that subdirectory and then run collectstatic with the Django
manage.py command to generate the static files in the proper subdirectory:

Add the source code
RUN mkdir -p /opt/code
ADD ./src/ /opt/code

WORKDIR /opt/code

compile the static files
RUN python3 manage.py collectstatic --noinput

Finally, we describe the exposed port (8000) and the CMD to run to start the container,
the start_server.sh script copied previously:

EXPOSE 8000
CMD ["/bin/bash", "/opt/server/start_server.sh"]

Some Python packages may need certain packages to be installed
in the container in the first stage to be sure that some tools are
available; for example, installing certain database connection
modules will require the proper client libraries to be installed.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[314]

uWSGI configuration
The uWSGI configuration is very similar to the one presented in Chapter 5, The
Twelve-Factor App Methodology:

[uwsgi]
plugins=python3
chdir=/opt/code
wsgi-file = microposts/wsgi.py
master=True
socket=/tmp/uwsgi.sock
vacuum=True
processes=1
max-requests=5000
uid=www-data
Used to send commands to uWSGI
master-fifo=/tmp/uwsgi-fifo

The only difference is the need to include the plugins parameter to indicate that it
runs the python3 plugin (this is because the Ubuntu-installed uwsgi package doesn't
have it activated by default). Also, we will run the process with the same user as
nginx, to allow them to communicate through the /tmp/uwsgi.sock socket. This is
added with uid=www-data, with www-data being the default nginx user.

nginx configuration
The nginx configuration is also very similar to the one presented in Chapter 5, The
Twelve-Factor App Methodology:

server {
 listen 8000 default_server;
 listen [::]:8000 default_server;

 root /opt/code/;

 location /static/ {
 autoindex on;
 try_files $uri $uri/ =404;
 }

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[315]

 location / {
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 uwsgi_pass unix:///tmp/uwsgi.sock;
 include uwsgi_params;
 }

}

The only difference is the exposed port, which is 8000. Note that the root directory is
/opt/code, making the static file directory /opt/code/static. This needs to be in sync
with the configuration from Django.

Start script
Let's take a look at the script that starts the service, start_script.sh:

#!/bin/bash

_term() {
 # See details in the uwsgi.ini file and
 # in http://uwsgi-docs.readthedocs.io/en/latest/MasterFIFO.html
 # q means "graceful stop"
 echo q > /tmp/uwsgi-fifo
}

trap _term TERM

nginx
uwsgi --ini /opt/server/uwsgi.ini &

We need to wait to properly catch the signal, that's why uWSGI is
started
in the background. $! is the PID of uWSGI
wait $!
The container exits with code 143, which means "exited because
SIGTERM"
128 + 15 (SIGTERM)
http://www.tldp.org/LDP/abs/html/exitcodes.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_12_02.html
echo "Exiting, bye!"

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[316]

The core of the start is at the center, in these lines, nginx:

uwsgi --ini /opt/server/uwsgi.ini &
wait $!

This starts both nginx and uwsgi, and waits until the uwsgi process is not running. In
Bash, $! is the PID of the last process (the uwsgi process).

When Docker attempts to stop a container, it will first send a SIGTERM signal to
the container. That's why we create a trap command that captures this signal and
executes the _term() function. This function sends a graceful stop command to the
uwsgi queue, as we described in Chapter 5, The Twelve-Factor App Methodology, which
ends the process in a graceful manner:

_term() {
 echo q > /tmp/uwsgi-fifo
}

trap _term TERM

If the initial SIGTERM signal is not successful, Docker will stop the container killing it
following a grace period, but that will risk having a non-graceful end for the process.

Building and running
We can now build the image and run it. To build the image, we perform a similar
command as before:

$ docker build -f docker/Dockerfile --tag example .
[+] Building 0.2s (19/19) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 85B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/ubuntu:latest
 => [1/14] FROM docker.io/library/ubuntu
 => [internal] load build context
 => => transferring context: 4.02kB
 => CACHED [2/14] RUN apt-get update && apt-get install -y python3
nginx uwsgi uwsgi-plugin-pytho
 => CACHED [3/14] RUN apt-get install -y python3-pip
 => CACHED [4/14] RUN mkdir -p /opt/server
 => CACHED [5/14] ADD ./docker/uwsgi.ini /opt/server
 => CACHED [6/14] ADD ./docker/nginx.conf /etc/nginx/conf.d/default.
conf

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[317]

 => CACHED [7/14] ADD ./docker/start_server.sh /opt/server
 => CACHED [8/14] RUN chmod +x /opt/server/start_server.sh
 => CACHED [9/14] ADD requirements.txt /opt/server
 => CACHED [10/14] RUN pip3 install -r /opt/server/requirements.txt
 => CACHED [11/14] RUN mkdir -p /opt/code
 => CACHED [12/14] ADD ./src/ /opt/code
 => CACHED [13/14] WORKDIR /opt/code
 => CACHED [14/14] RUN python3 manage.py collectstatic --noinput
 => exporting to image
 => => exporting layers
 => => writing image sha256:7be9ae2ab0e16547480aef6d32a11c2ccaa3da4aa5e
fbfddedb888681b8e10fa
 => => naming to docker.io/library/example

To run the service, start the container, mapping its port 8000 to a local port, for
example, local 8000:

$ docker run -p 8000:8000 example
[uWSGI] getting INI configuration from /opt/server/uwsgi.ini
*** Starting uWSGI 2.0.18-debian (64bit) on [Sat Jul 31 20:07:20 2021]

compiled with version: 10.0.1 20200405 (experimental) [master revision
0be9efad938:fcb98e4978a:705510a708d3642c9c962beb663c476167e4e8a4] on 11
April 2020 11:15:55
os: Linux-5.10.25-linuxkit #1 SMP Tue Mar 23 09:27:39 UTC 2021
nodename: b01ce0d2a335
machine: x86_64
clock source: unix
pcre jit disabled
detected number of CPU cores: 2
current working directory: /opt/code
detected binary path: /usr/bin/uwsgi-core
setuid() to 33
chdir() to /opt/code
your memory page size is 4096 bytes
detected max file descriptor number: 1048576
lock engine: pthread robust mutexes
thunder lock: disabled (you can enable it with --thunder-lock)
uwsgi socket 0 bound to UNIX address /tmp/uwsgi.sock fd 3
Python version: 3.8.10 (default, Jun 2 2021, 10:49:15) [GCC 9.4.0]
*** Python threads support is disabled. You can enable it with
--enable-threads ***
Python main interpreter initialized at 0x55a60f8c2a40
your server socket listen backlog is limited to 100 connections

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[318]

your mercy for graceful operations on workers is 60 seconds
mapped 145840 bytes (142 KB) for 1 cores
*** Operational MODE: single process ***
WSGI app 0 (mountpoint='') ready in 1 seconds on interpreter
0x55a60f8c2a40 pid: 11 (default app)
*** uWSGI is running in multiple interpreter mode ***
spawned uWSGI master process (pid: 11)
spawned uWSGI worker 1 (pid: 13, cores: 1)

After doing this, you can access your local address, http://localhost:8000, and
access the service; for example, accessing the URL http://localhost:8000/api/
users/jaime/collection:

Figure 9.7: Microposts list

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[319]

You'll see the access log in the screen where you started the container:

[pid: 13|app: 0|req: 2/2] 172.17.0.1 () {42 vars in 769 bytes} [Sat Jul
31 20:28:56 2021] GET /api/users/jaime/collection => generated 10375
bytes in 173 msecs (HTTP/1.1 200) 8 headers in 391 bytes (1 switches on
core 0)

The container can be stopped gracefully using the docker stop command. To do so,
you'll need to first discover the container ID using docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
b01ce0d2a335 example "/bin/bash /opt/serv…" 23 minutes ago Up
23 minutes 0.0.0.0:8000->8000/tcp, :::8000->8000/tcp hardcore_chaum
$ docker stop b01ce0d2a335
b01ce0d2a335

The container log will show the details when capturing the SIGTERM signal sent by
Docker and will then exit:

Caught SIGTERM signal! Sending graceful stop to uWSGI through the
master-fifo
Exiting, bye!

To be able to set this example, we made some conscious decisions to simplify the
operation compared with a typical service.

Caveats
Remember to check Chapter 5, The Twelve-Factor App Methodology, to see the defined
API and understand it better.

The DEBUG mode in the Django settings.py file is set to True, which allows us to see
more information when, for example, 404 or 500 errors are triggered. This parameter
should be disabled in production as it can give away critical information.

The STATIC_ROOT and STATIC_URL parameters need to be coordinated between Django
and nginx to point to the same place. That way, the collectstatic command will
store the data in the same place where nginx will pick it up.

The most important detail is the use of a SQLite database instead of an internal one.
This database is stored in the src/db.sqlite3 file, in the filesystem of the container.
This means that if the container is stopped and restarted, any changes will be
destroyed.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Microservices vs Monolith

[320]

The db.sqlite3 file in the GitHub repo contains some information that has been
stored for convenience, two users, jaime and dana, each with a couple of microposts.
The API so far hasn't been defined in such a way to create new users, so it needs to
relay into creating them using Django tools or manipulating the SQL directly. These
users are added for demonstration purposes.

In general, this database usage is not well suited for production usage, requiring
connection to a database external to the container. This obviously requires an
available external database, which complicates the setup.

Now that we know how to use containers, we can perhaps start another Docker
container with a database, such as MySQL, for a better configuration.

If we want to create more than one container and connect them, like a web server
and a database that acts as a backend for storing the data, instead of starting all the
containers individually, we can use orchestration tools.

Orchestration and Kubernetes
Managing multiple containers and connecting them is known as orchestrating them.
Microservices that are deployed in containers will have to orchestrate them to be
sure that the multiple microservices are interconnecting.

This concept includes details such as discovering where the other containers
are, dependencies between services, and generating multiple copies of the same
container.

As an exercise, create a script that seeds the database with
information as part of the build process.

A containerized database is not a great idea for production. In
general, containers are great for stateless services that change
often, as they can be started and stopped easily. Databases tend to
be very stable and there are a lot of services that make provisions
for managed databases. The advantages that containers bring are
simply not relevant for a typical database.

That doesn't mean that there are usages out of production. It is a
great option for local development, for example, as it allows the
creation of a replicable local environment easily.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[321]

There are several tools that can perform orchestration, the two most common ones
being docker-compose and Kubernetes.

docker-compose is part of the general offering by Docker. It works very well for small
deployments or local development. It defines a single YAML file that contains the
definition of the different services, and the name that they can use. It can be used
to replace a lot of docker build and docker run commands, as it can define all the
parameters in the YAML file.

Kubernetes is aimed at bigger deployments and clusters and allows the generation
of a full logical structure for containers to define how they connect to one another,
thereby allowing abstraction to the underlying infrastructure.

Any physical (or virtual) server configured in Kubernetes is called a node. All nodes
define the cluster. Each node is handled by Kubernetes, and Kubernetes will create
a network between the nodes and assign the different containers to each of them,
attending to the available space on them. This means that the number, location, or
kind of node doesn't need to be handled by the services.

Instead, the applications in the cluster are distributed in the logical layer. Several
elements can be defined:

• Pod. A Pod is the minimal unit defined in Kubernetes, and it is defined as a
group of containers that runs as a unit. Normally, Pods will consist of just
one container, but in some cases, they may comprise several. Everything in
Kubernetes runs in Pods.

• Deployment. A collection of Pods. The Deployment will define the number
of replicas that are needed, and create the proper number of Pods. Each Pod
for the same deployment can live in different nodes, but that's under the
control of Kubernetes.

Orchestration tools are very powerful, as well as complex, and
require that you become familiar with a lot of terms. To explain
them fully is beyond the scope of this book, but we will point
to some and give a short introduction. Please refer to the linked
documentation in the sections below for more information.

You can check the documentation for Docker Compose here:
https://docs.docker.com/compose/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.docker.com/compose/

Microservices vs Monolith

[322]

Because the Deployment controls the number of Pods, if a Pod crashes, the
Deployment will restart it. Also, the Deployment can be manipulated to
change the number, for example, by creating autoscalers. If the image to
be deployed in the Pods is changed, the Deployment will create new Pods
with the right image and remove the old ones accordingly, based on rolling
updates or other strategies.

• Service. A label that can be used to route requests to certain Pods, acting as
a DNS name. Normally, this will point to the Pods created for deployment.
This allows other Pods in the system to send requests to a known place. The
requests will be load-balanced between the different Pods.

• Ingress. External access to a service. This will map an incoming DNS to a
service. Ingresses allow applications to be exposed externally. An external
request will go through the process of entering through an Ingress, being
directed to a Service, and then handled by a specific pod.

Some components can be described in a Kubernetes cluster, such as ConfigMaps,
defining key-value pairs that can be used for configuration purposes; Volumes to
share storage across Pods; and Secrets to define secret values that can be injected
into Pods.

Kubernetes is a fantastic tool that can handle pretty big clusters with hundreds of
nodes and thousands of Pods. It's also a complex tool that requires you to learn how
it can be used and has a significant learning curve. It's pretty popular these days, and
there's plenty of documentation about it. The official documentation can be found
here: https://kubernetes.io/docs/home/.

Summary
In this chapter, we described both the monolithic and microservices architectures.
We started by presenting the monolithic architecture and how it tends to be a
"default architecture," generated organically as an application is designed. Monoliths
are created as unitary blocks that contain all the code within a single block.

In comparison, the microservices architecture divides the functionality of the whole
application into smaller parts so that they can be worked in parallel. For this strategy
to work, it needs to define clear boundaries and document how to interconnect the
different services. Compared with the monolithic architecture, microservices aim
to generate more structured code and control big code bases by dividing them into
smaller, more manageable systems.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kubernetes.io/docs/home/

Chapter 9

[323]

We discussed what the best architecture is and how to choose whether to design
a system as a monolith or as microservices. Each approach has its pros and cons,
but in general, systems start as monolithic and the move to divide the code base
into smaller microservices comes after the code base and the number of developers
working on it reaches a certain size.

The difference between the two architectures is not just technical. It largely involves
how developers working on the system need to communicate and divide the teams.
We discussed the different aspects to take into account, including the structure and
size of the teams.

Since migrating from an old monolithic architecture to a new microservices one is
such a common case, we talked about how to approach the work, analyze it, and
perform it, using a four-stage roadmap: Analyze, Design, Plan, and Execute.

We then discussed how containerizing services (and, in particular, microservices)
can be helpful. We explored how to use Docker as a tool to containerize services and
its multiple advantages and uses. We included an example of containerizing our
example web service, as described in Chapter 5, The Twelve-Factor App Methodology.

Finally, we described briefly the usage of an orchestration tool to coordinate and
intercommunicate between multiple containers, and the most popular, Kubernetes.
We then covered a brief introduction to Kubernetes.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

You can get more information about microservices and how
to perform a migration from a monolithic architecture to a
microservices one in the book Hands-On Docker for Microservices
with Python, from the author of this book, which expands on these
concepts and goes into greater depth.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Designing is an important stage to have a plan of action, but really the meat of the
developing process is in the implementation.

Implementing the general architecture design will require multiple smaller design
decisions about how the code needs to be structured and developed. It doesn't
matter how good the design is, the execution is critical and will validate or adjust the
prepared plan.

A solid implementation, then, requires developers to be skeptical about their own
coding abilities and code needs to be tested thoroughly before it can be considered
"done." This is a normal operation, and when done constantly, it produces good
cascading effects, not only improving the quality of the code and reducing the
number of problems but also increasing the capacity of the team to foresee weak
points and harden them to be sure that, once in operation, the software is reliable
and works with as few problems as possible.

We will see how to approach testing, including the use of Test-Driven Design
(TDD), a practice that puts testing at the center of the development process.

Sometimes some code aspects need to be shared multiple times to be reused. A
powerful tool in the Python world is the easy creation and sharing of modules that
can be implemented. We will see how to structure, create, and maintain standard
Python modules, including uploading them into PyPI, the standard Python
repository of third-party packages.

This section of the book includes the following chapters:

• Chapter 10, Testing and TDD, explaining different approaches to testing, the
Test-Driven Design methodology, and tools to write tests easily

• Chapter 11, Package Management, describing how to structure code to be
shared to use in different parts of the system or to share it with the broader
community

Part III
Implementation

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[327]

10
Testing and TDD

No matter how good a developer is, they'll write code that doesn't always perform
correctly. This is unavoidable, as no developer is perfect. But it's also because the
expected results are sometimes not the ones that one would think of while immersed
in coding.

Designs rarely go as expected and there's always a discussion going back and forth
while they are being implemented, until refining them and getting them correct.

Everyone has a plan until they get punched in the mouth. – Mike Tyson

Writing software is notoriously difficult because of its extreme plasticity, but at the
same time, we can use software to double-check that the code is doing what it is
supposed to do.

Writing tests allows you to detect problems while the code is fresh and with some
sane skepticism to verify that the expected results are the actual results. We will see
during the chapter how to write tests easily, as well as different strategies to write
different tests for capturing different kinds of problems.

Be aware that, as with any other code, tests can have bugs as well.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[328]

We will describe how to work under TDD, a methodology that works by defining
the tests first, to ensure that the validation is as independent of the actual code
implementation as possible.

We will also show how to create tests in Python using common unit test frameworks,
the standard unittest module, and the more advanced and powerful pytest.

In this chapter, we'll cover the following topics:

• Testing the code
• Different levels of testing
• Testing philosophy
• Test-Driven Development
• Introduction to unit testing in Python
• Testing external dependencies
• Advanced pytest

Let's start with some basic concepts about testing.

Testing the code
The first question when discussing testing the code is a simple one: What exactly do
we mean by testing the code?

While there are multiple answers to that, in the broadest sense, the answer could be
"any procedure that probes the application to check that it works correctly before it reaches the
final customers." In this sense, any formal or informal testing procedure will fulfil the
definition.

Note this chapter is a bit longer than others, mostly due to the need
to present example code.

The most relaxed approach, which is sometimes seen in small
applications with one or two developers, is to not create specific
tests but to do informal "full application runs" checking that a
newly implemented feature works as expected.

This approach may work for small, simple applications, but the
main problem is ensuring that older features remain stable.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[329]

But, for high-quality software that is big and complex enough, we need to be a bit
more careful about the testing. So, let's try to come up with a more precise definition
of testing: Testing is any documented procedure, preferably automated, that, from a known
setup, checks the different elements of the application work correctly before it reaches the final
customers.

If we check the differences with the previous definition, there are several key words.
Let's check each of them to see the different details:

• Documented: Compared with the previous version, the aim should be that
the tests are documented. This allows you to reproduce them precisely if
necessary and allows you to compare them to discover blind spots.
There are multiple ways that a test can be documented, either by specifying a
list of steps to run and expected results or by creating code that runs the test.
The main idea is that a test can be analyzed, be run several times by different
people, be changed if necessary, and have a clear design and result.

• Preferably automated: Tests should be able to be run automatically, with as
little human intervention as possible. This allows you to trigger Continuous
Integration techniques to run many tests over and over, creating a "safety
net" that is able to catch unexpected errors as early as possible. We say
"preferably" because perhaps some tests are impossible or very costly
to totally automate. In any case, the objective should be to have the vast
majority of tests automated, to allow computers to do the heavy lifting and
save precious human time. There are also multiple software tools that allow
you to run tests, which can help.

• From a known setup: To be able to run tests in isolation, we need to know
what the status of the system should be before running the test. That ensures
that the result of a test will not create a certain state that could interfere with
the next test. Before and after a test, certain cleanup may be required.
This can make running tests in batches slower, compared with not worrying
about the initial or end status, but it will create a solid foundation to avoid
problems.

As a general rule, and especially in automated tests, the
order in which the tests are executed should be irrelevant,
to avoid cross-contamination. This is easier said than done,
and in some cases, the order of tests can create problems.
For example, test A creates an entry that test B reads. If
test B is run in isolation, it will fail as it expects the entry
created by A. These cases should be fixed, as they can
greatly complicate debugging. Also, being able to run tests
independently allows them to be parallelized.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[330]

• Different elements of the application: Most tests should not address the
whole application, but smaller parts of it. We will talk more later about the
different levels of testing, but tests should be specific about what are they
testing and cover different elements, as tests covering more ground will be
costlier.

A key element of testing is to have a good return on investment. Designing and
running tests takes time, and that time needs to be well spent. Any test needs
to be maintained, which should be worth it. Over the whole chapter, we will be
commenting on this important aspect of testing.

This general definition helps to start the discussion, but we can be more concrete
about the different tests defined by how much of the system is under test, during
each test.

There's an important kind of testing that we are not covering
with this definition, which is called exploratory testing. These tests
are typically run by QA engineers, who use the final application
without a clear preconceived idea but try to pre-emptively find
problems. If the application has a customer-facing UI, this style of
testing can be invaluable in detecting inconsistencies and problems
that are not detected in the design phase.

For example, a good QA engineer will be able to say that the color
of a button on page X is not the same as the button on page Y, or
that the button is not evident enough to perform an action, or that
to perform a certain action there's a prerequisite that's not evident
or possible with the new interface. Any user experience (UX) check
will probably fall into this category.

By its nature, this kind of testing cannot be "designed" or
"documented," as it ultimately comes down to interpretation and a
good eye to understand whether the application feels correct. Once a
problem is detected, then it can be documented to be avoided.

While this is certainly useful and recommended, this style of
testing is more an art than an engineering practice and we won't be
discussing it in detail.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[331]

Different levels of testing
As we described before, tests should cover different elements of the system. This
means that a test can address a small or big part of the system (or the whole system),
trying to reduce its range of action.

When testing a small part of the system, we reduce the complexity of the test and
scope. We need to call only that small part of the system, and the setup is easier to
start with. In general, the smaller the element to test, the faster and easier it is to test it.

We will define three different levels or kinds of tests, from small to big scopes:

• Unit tests, for tests that check only part of a service
• Integration tests, for tests that check a single service as a whole
• System tests, for tests that check multiple services working together

Names can actually vary quite a lot. In this book, we won't be very strict with
definitions, instead defining soft limits and suggesting finding a balance that works
for your specific project. Don't be shy to take decisions on the proper level for each
test and define your own nomenclature, and always keep in mind how much effort it
takes to create tests to be sure that they are always worth it.

Let's start describing each of the levels in more detail.

Unit tests
The smallest kind of test is also the one where most effort is typically invested, the
unit test. This kind of test checks the behavior of a small unit of code, not the whole
system. This unit of code could be as small as a single function or test a single API
endpoint, and so on.

The definition of the levels can be a little blurred. For example,
integration and unit tests can be defined side by side, and the
difference between them could be more academic in that case.

As we said above, there's a lot of debate on how big a unit test
should actually be, based on what the "unit" is and whether it is
actually a unit. For example, in some cases, people will only call a
test a unit test if it involves a single function or class.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[332]

Because a unit test checks a small part of the functionality, it can be very easy to set
up and quick to run. Therefore, making new unit tests is quick and can thoroughly
test the system, checking that the small individual pieces that make the whole system
work as expected.

The objective of unit tests is to check in depth the behavior of a defined feature of a
service. Any external requests or elements should be simulated, meaning that they
are defined as part of the test. We will cover unit tests in more detail later in the
chapter, as they are the key elements of the TDD approach.

Integration tests
The next level is the integration test. This is checking the whole behavior of a service
or a couple of services.

The main goal of integration testing is to be sure that the different services or
different modules inside the same service can work with each other. While in unit
tests, external requests are simulated, integration tests use the real service.

It's important to note that, commonly, different services will be developed
by different developers or even different teams, and they can diverge in their
understanding of how a particular API is implemented, even in the event of a well-
defined spec.

The setup in integration tests is more complex than in unit tests, as more elements
need to be properly set up. This makes integration tests slower and more expensive
than unit tests.

Integration tests are great to check that different services work in unison, but there
are some limitations.

Integration tests are normally not as thorough as unit tests, focusing on checking
basic functionality and following a happy path. A happy path is a concept in testing
meaning that the test case should produce no errors or exceptions.

The simulation of external APIs may still be required. For example,
simulating an external payment provider for the tests. But, in
general, as many real services should be used for integration
tests as possible, as the point of the test is to test that the different
services work together.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[333]

Expected errors and exceptions are normally tested in unit tests, since they are also
elements that can fail. That doesn't mean that every single integration test should
follow a happy path; some integration errors may be worth checking, but in general,
a happy path tests the expected general behavior of the feature. They will compose
the bulk of the integration tests.

System tests
The final level is the system level. System tests check that all the different services
work correctly together.

A requirement for this kind of test is that there are actually multiple services in
the system. If not, they are not different from tests at the lower levels. The main
objective of these tests is to check that the different services can cooperate, and the
configuration is correct.

System tests are slow and difficult to implement. They require the whole system
to be set up, with all the different services properly configured. Creating that
environment can be complicated. Sometimes, it's so difficult that the only way of
actually performing any system tests is to run them in the live environment.

While this is not ideal, sometimes it is unavoidable and can help to improve
confidence after deployments, to ensure that the new code is working correctly. In
that case, given the constraints, only a minimum amount of tests should be run, as
the live environment is critical. The tests to run should also exercise the maximum
amount of common functionality and services to detect any critical problem as fast as
possible. This set of tests is sometimes called acceptance tests or smoke tests. They may
be run manually, as a way of ensuring that everything looks correct.

Smoke tests should be very clear, well documented, and designed carefully to cover
the most critical parts of the whole system. Ideally, they should also be read-only, so
they don't leave useless data after their execution.

The environment configuration is an important part of what
these tests check. That may make them important to run on each
environment that is under test, including the live environment.

Of course, smoke tests can be run not only on the live environment
and can work as a way to ensure that other environments are
working correctly.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[334]

Testing philosophy
A key element of everything involved with testing is another question: Why test?
What are we trying to achieve with it?

As we've seen, testing is a way of ensuring that the behavior of the code is the
expected one. The objective of testing is to detect possible problems (sometimes
called defects) before the code is published and used by real users.

A defect that goes undetected and gets deployed into a live system is pretty
expensive to repair. First of all, it needs to be detected. In a live application with a
lot of activity, detecting a problem can be difficult (though we will talk about it in
Chapter 16, Ongoing Architecture), but even worse, it will normally be detected by a
user of the system using the application. It's possible that the user won't properly
communicate the problem back, so the problem is still present, creating problems or
limiting activity. The detecting user might abandon the system, or at the very least
their confidence in the system will decrease.

Any reputational cost will be bad, but it can also be difficult to extract enough
information from the user to know exactly what happened and how to fix it. This
makes the cycle between detecting the problem and fixing it long.

Any testing system will improve the ability to fix defects earlier. Not only can we
create a specific test that simulates exactly the same problem, but we can also create
a framework that executes tests regularly to have a clear approach to how to detect
and fix problems.

Different testing levels have different effects on this cost. In general, any problem
that can be detected at the unit test level is going to be cheaper to fix there, and the
cost increases from there. Designing and running a unit test is easier and faster than
doing the same with an integration test, and an integration test is cheaper than a
system test.

There's a subtle difference between defects and bugs. Bugs are a
kind of defect where the software behaves in a way that it's not
expected to. For example, certain input produces an unexpected
error. Defects are more general. A defect could be that a button is
not visible enough, or that the logo on a page is not the correct one.
In general, tests are way better at detecting bugs than other defects,
but remember what we said about exploratory testing.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[335]

The different test levels could be understood as different layers capturing possible
problems. Each layer will capture different problems if they appear. The closer to
the start of the process (design and unit tests while coding), the cheaper it is to create
a dense net that will detect and alert for problems. The cost of fixing a problem
increases the farther away it is from the controlled environment at the start of the
process.

Figure 10.1: The cost of fixing defects increases the later they get detected

Some defects are impossible to detect at the unit test level, like the integration of
different parts. That's where the next level comes into play. As we've seen, the worst
scenario is not detecting a problem and it affecting real users on the live system.

But having tests is not only a good way of capturing problems once. Because a test
can still remain, and be run on new code changes, it also creates a safety net while
developing to be sure that creating new code or modifying the code does not affect
the old functionality.

This is one of the best arguments for running tests automatically
and constantly, as per Continuous Integration practices. The
developer can focus on the feature being developed, while the
Continuous Integration tool will run every test, alerting early
if there's a problem with some test. A problem with previously
introduced functionality that is failing is called a regression.

Regression problems are quite common, so having good test
coverage is great to prevent them going undetected. Specific tests
covering previous functionality to ensure that it keeps running
as expected can be introduced. These are regression tests, and
sometimes they are added after we have detected a regression
problem.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[336]

Another benefit of having good tests that check the behavior of the system is that the
code itself can be changed heavily, knowing that the behavior will remain the same.
These changes can be made to restructure the code, clean it, and in general improve
it. These changes are called refactoring the code, changing how the code is written
without changing the expected behavior of it.

Now, we should answer the question "what is a good test?" As we discussed, writing
a test is not free, there's an effort involved, and we need to be sure that it's worth it.
How can we create good ones?

How to design a great test
Designing good tests requires a certain mindset. The objective while designing the
code that covers certain functionality is to make the code fulfill that functionality
while at the same time being efficient, writing clear code that could even be
described as elegant.

The objective of the test is to be sure that the functionality sticks to the expected
behavior, and that all the different problems that can arise produce results that make
sense.

Now, to be able to really put the functionality to the test, the mindset should be to
stress the code as much as possible. For example, let's imagine a function divide(A,
B), that divides two integers between -100 and 100: A between B.

While approaching the test, we need to check what the limits are of this, trying
to check that the function is performing properly with the expected behavior. For
example, the following tests could be created:

Action Expected behavior Comments
divide(10, 2) return 5 Basic case
divide(-20, 4) return -5 Divide one negative and one positive

integer
divide(-10, -5) return 2 Divide two negative integers
divide(12, 2) return 5 Not exact division
divide(100, 50) return 2 Maximum value of A
divide(101, 50) Produce an input

error
Value of A exceeding the maximum

divide(50, 100) return 0 Maximum value of B
divide(50, 101) Produce an input

error
Value of B exceeding the maximum

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[337]

divide(10, 0) Produce an
exception

Divide by zero

divide('10', 2) Produce an input
error

Invalid format for parameter A

divide(10, '2') Produce an input
error

Invalid format for parameter B

Note how we are testing different possibilities:

• The usual behavior of all the parameters is correct, and the division works
correctly. This includes both positive and negative numbers, exact division,
and inexact division.

• Values within the maximum and minimum values: We check that the
maximum values are hit and correct, and the next value is properly detected.

• Division by zero: A known limitation on functionality that should produce a
predetermined response (exception).

• Wrong input format.

We can really create a lot of test cases for simple functionality! Note that all these
cases can be expanded. For example, we can add divide(-100, 50) and divide(100,
-50) cases. In those cases, the question is the same: are those tests adding better
detection of problems?

The proper balance between the number of tests and not having tests that cover
functionality already checked by an existing test (for example, creating a big table
dividing numbers with a lot of divisions) may depend greatly on the code under test
and practices in your organization. Some critical areas may require more thorough
testing as a failure there could be more important.

The best test is the test that really stresses the code and ensures
that it's working as expected, trying very hard to cover the most
difficult use cases. Making the tests ask difficult questions of the
code under test is the best way of preparing your code for the real
action. A system under load will see all kinds of combinations, so
the best preparation for that is to create tests that try as hard as
possible to find problems, to be able to solve them before moving
to the next phase.

This is analogous to football training, where a series of very
demanding exercises are presented to be sure that the trainee
will be able to perform later, during the match. Be sure that your
training regime is hard enough to properly prepare for demanding
matches!

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[338]

Note that tests are done independently from the implementation of the code. A
test definition is done purely from an external view of the function to test, without
requiring knowing what's inside. This is called black-box testing. A heathy test suite
always starts with this approach.

A critical ability to develop as a developer writing tests is to detach from the
knowledge of the code itself and approach tests independently.

In some cases, this external approach won't be enough. If the developer knows
that there's some specific area where there could be problems, it may be good
to complement it with tests that check functionality that is not apparent from an
external point of view.

For example, a function that calculates a result based on some input may have an
internal point where the algorithm changes to calculate it using different models.
This information doesn't need to be known by the external user, but it will be good to
add a couple of checks that the transition works correctly.

This kind of testing is called white-box testing, in comparison to the black-box
approach discussed early.

For example, any external API should test any input with care and
be really defensive about that, as external users may abuse external
APIs. For example, testing what happens when strings are input
in integer fields, infinity or NaN (Not a Number) values are added,
payload limits are exceeded, the maximum size of a list or page is
exceeded, etc.

By comparison, interfaces that are mostly internal will require
less testing, as the internal code is less likely to abuse the API. For
example, if the divide function is only internal, it might not be
required to test that the input format is incorrect, just to check that
the limits are respected.

Testing can be so detached that it may use independent people just
to create the tests, like a QA team performing tests. Unfortunately,
this is not a possible approach for unit tests, which will likely be
created by the same developers that write the code itself.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[339]

Black-box testing tries to avoid a common problem where the same developer writes
both the code and the test and then checks that the interpretation of the feature
implemented in the code works as expected, instead of checking that it works as it
should when looking from an external endpoint. We will take a look later at TDD,
which tries to ensure tests are created without the implementation in mind by
writing the tests before writing the code.

Structuring tests
In terms of structure, especially for unit tests, a nice way to structure tests is using
the Arrange Act Assert (AAA) pattern.

This pattern means the test is in three different phases:

• Arrange: Prepare the environment for the tests. This includes all the setup to
get the system right at the point before performing the next step, at a stable
moment.

• Act: Perform the action that is the objective of the test.
• Assert: Check that the result of the action is the expected one.

The test gets structured as a sentence like this:

GIVEN (Arrange) an environment known, the ACTION (Act) produces the specified
RESULT (Assert)

It's important to remember that, in a test suite, white-box tests
should always be secondary to black-box tests. The main objective
is to test the functionality from an external perspective. White-box
testing may be a good addition, especially in some aspects, but it
should have a lower priority.

Developing the ability to be able to create good black-box tests is
important and should be transmitted to the team.

This pattern is also sometimes called GIVEN, WHEN, THEN as
each step can be described in those terms.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[340]

Note that this structure aims for all the tests to be independent, and for each to test a
single thing.

Note that this structure can be used whether the tests are executed through code or
run manually, though they'll be used more for automated tests. When running them
manually, the Arrange stage can take a long time to produce for each test, leading
to a lot of time spent on that. Instead, manual tests are normally grouped together
in the pattern that we describe above, executing a series of Act and Assert and using
the input in the previous stage as setup for the next. This creates a dependency in
requiring to run tests in a specific sequence, which is not great for unit test suites, but
it can be better for smoke tests or other environments where the Arrange step is very
expensive.

Let's see an example of code created with this structure. Imagine that we have a
method that we want to test, called method_to_test. The method is part of a class
called ClassToTest.

 def test_example():
 # Arrange step
 # Create the instance of the class to test
 object_to_test = ClassToTest(paramA='some init param',
 paramB='another init param')

 # Act step
 response = object_to_test.method_to_test(param='execution_param')

A common different pattern is to group act steps in tests, testing
multiple functionalities in a single test. For example, test that
writing a value is correct and then check that the search for the
value returns the proper value. This won't follow the AAA pattern.
Instead, to follow the AAA pattern, two tests should be created, the
first one to validate that the write works correctly and the second
where the value is created as part of the setup in the Arrange step
before doing the search.

In the same way, if the code to test is purely functional (meaning
that only the input parameters are the ones that determine its state,
like the divide example above), the Arrange step is not required.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[341]

 # Assert step
 assert response == 'expected result'

Each of the steps is very clearly defined. The first one prepares, in this case, an object
in the class that we want to test. Note that we may need to add some parameters or
some preparation so the object is in a known starting point so the next steps work as
expected.

The Act step just generates the action that is under test. In this case, call the method_
to_test method for the prepared object with the proper parameter.

Finally, the Assert step is very straightforward and just checks the response is the
expected one.

Another common pattern that appears using the AAA pattern for tests is to create
common functions for testing in Arrange steps. For example, creating a basic
environment, which could require a complex setup, and then having multiple copies
where the Act and Assert steps are different. This reduces the repetition of code.

For example:

def create_basic_environment():
 object_to_test = ClassToTest(paramA='some init param',
 paramB='another init param')
 # This code may be much more complex and perhaps have
 # 100 more lines of code, because the basic environment
 # to test requires a lot of things to set up
 return object_to_test

def test_exampleA():
 # Arrange
 object_to_test = create_basic_environment()

 # Act
 response = object_to_test.method_to_test(param='execution_param')

 # Assert
 assert response == 'expected result B'

In general, both the Act and Assert steps are simple to define and
write. The Arrange step is where most of the effort of the test will
normally be.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[342]

def test_exampleB():
 # Arrange
 object_to_test = create_basic_environment()

 # Act
 response = object_to_test.method_to_test(param='execution_param')

 # Assert
 assert response == 'expected result B'

We will see later how we can structure multiple tests that are very similar to avoid
repetition, which is a problem when having big test suites. Having big test suites is
important to create good test coverage, as we saw above.

Test-Driven Development
A very popular technique to approach programming is Test-Driven Development
or TDD. TDD consists of putting tests at the center of the developing experience.

This builds on some of the ideas that we exposed earlier in the chapter, though
working on them with a more consistent view.

The TDD flow to develop software works as follows:

1. New functionality is decided on to be added to the code.
2. A new test is written to define the new functionality. Note that this is done

before the code.
3. The test suite is run to show that it's failing.
4. The new functionality is then added to the main code, focusing on simplicity.

Only the required feature, without extra details, should be added.

Repetition in tests is, up to a certain point, unavoidable and even
healthy to a certain degree. When changing the behavior of some
part of the code because there are changes, the tests need to be
changed accordingly to accommodate the changes. This change
helps to weigh the size of the changes and avoid making big
changes lightly, as the tests will work as a reminder of the affected
functionality.

Nonetheless, mindless repetition is not great, and we will see later
some options to reduce the amount of code to be repeated.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[343]

5. The test suite is run to show that the new test is working. This may need to
be done several times until the code is ready.

6. The new functionality is ready! Now the code can be refactored to improve
it, avoiding duplication, rearranging elements, grouping it with previously
existing code, etc.

The cycle can start again for any new functionality.

As you can see, TDD is based on three main ideas:

• Write the tests before writing the code: This prevents the problem of
creating a test that is too tightly coupled with the current implementation,
forcing the developer to think about the test and the feature before jumping
into writing it. It also forces the developer to check that the test actually
fails before the feature is written, being sure that a problem later on will be
detected. This is similar to the black box testing approach that we described
earlier in the How to design a great test section.

• Run the tests constantly: A critical part of the process is running the whole
test suite to check that all the functionality in the system is correct. This is
done over and over, every time that a new test is created, but also while
the functionality is being written. Running the tests is an essential part of
developing in TDD. This ensures that all functionality is always checked and
that the code works as expected at all times so any bug or discrepancy can be
solved quickly.

• Work in very small increments: Focus on the task at hand, so each step
builds and grows a test suite that is big and covers the whole functionality of
the code in depth.

This big test suite creates a safety net that allows you to perform refactors of the
code often, big and small, therefore improving the code constantly. Small increments
mean small tests that are specific and need to be thought about before adding
the code.

An extension of this idea is a focus on writing only the code that's
required for the task at hand and not more. This is sometimes
referred to as the YAGNI principle (You Ain't Gonna Need It).
The intention of this principle is to prevent overdesigning or
creating code for "foreseeable requests in the future," which, in
practice, have a high probability of never materializing and, even
worse, makes the code more difficult to change in other directions.
Given that software development is notoriously difficult to plan in
advance, the emphasis should be on keeping things small and not
getting too far ahead of yourself.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[344]

These three ideas interact constantly during the development cycle, and it keeps the
tests at the center of the development process, hence the name of the practice.

Another important advantage of TDD is that putting the focus so heavily on the tests
means that how the code is going to be tested is thought about from the start, which
helps in designing code that's easily testable. Also, reducing the amount of code to
write, focusing on it being strictly required to pass the test reduces the probability of
overdesign. The requirement to create small tests and work in increments also tends
to generate modular code, in small units that are combined together but are able to
be tested independently.

The general flow is to be constantly working with new failing tests, making them
pass and then refactoring, sometimes called the "red/green/refactor" pattern: red when
the test is failing and green when all tests are passing.

Refactoring is a critical aspect of the TDD process. It is strongly encouraged, to
constantly improve the quality of the existing code. One of the best outcomes of this
way of working is the generation of very extensive test suites that cover each detail
of the code functionality, meaning that refactoring code can be done knowing that
there's a solid ground that is going to capture any problems introduced by changing
the code and adding bugs.

Improving the code's readability, usability, and so on, by refactoring is known to
have a good impact in terms of improving the morale of developers and increasing
the pace at which changes can be introduced, as the code is kept in good shape.

Another important aspect of TDD is the requirement of speedy tests. As tests are
always running following TDD practices, the total execution time is quite important.
The time that it takes for each test should be considered carefully, as the growing size
of the test suite will make it take longer to run.

There's a general threshold where focus gets lost, so running tests taking longer
than around 10 seconds will make them not "part of the same operation," risking the
developer thinking about other stuff.

In general, and not only in TDD, allowing time to clean up old
code and improve it is critical to maintain a good pace for changes.
Old code that is stale tends to be more and more difficult to work
with, and over time it will require way more effort to change it to
make more changes. Encouraging healthy habits to care about the
current state of the code and allowing time to perform maintenance
improvements is critical for the long-term sustainability of any
software system.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[345]

Obviously, running the whole test suite in under 10 seconds will be extremely
difficult, especially as the number of tests grows. A full unit test suite for a complex
application can consist of 10,000 tests or more! In real life, there are multiple
strategies that can help alleviate this fact.

The whole test suite doesn't need to be run all the time. Instead, any test runner
should allow you to select a range of tests to run, allowing you to reduce the number
of tests to run on each run while the feature is in development. This means running
only the tests that are relevant for the same module, for example. It can even mean
running a single test, in certain cases, to speed up the result.

Anyway, as the time taken to run tests is important in TDD, observing the duration
of tests is important, and generating tests that can run quickly is key to being able
to work in the TDD way. This is mainly achieved by creating tests that cover small
portions of the code, and therefore the time to set up can be kept under control.

Introducing TDD into new teams
Introducing TDD practices in an organization can be tricky, as they change the way
to perform actions that are quite basic, and go a bit against the usual way of working
(writing tests after writing the code).

When considering introducing TDD into a team, it's good to have an advocate that
can act as a point of contact for the rest of the team and solve the questions and
problems that may arise through creating tests.

Of course, at some point, the whole test suite should be run. TDD is
actually aligned with Continuous Integration, as it is also based on
running tests, this time automatically once the code is checked out
into a repo. The combination of being able to run a few tests locally
to ensure that things are working correctly while developing with
the whole test suite running in the background once the code is
committed to the repo is great.

TDD practices work best with unit tests. Integration and system
tests may require a big setup that is not compatible with the speed
and tight feedback loop required for TDD to work.

Fortunately, as we saw before, unit testing is where the bulk of
testing is typically focused on most projects.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[346]

TDD is very popular in environments where pair programming is also common,
so it's another possibility to have someone drive a session while training the other
developers and introducing the practice.

It may be challenging to apply TDD techniques with already existing code, as pre-
existing code can be difficult to test in this configuration, especially if the developers
are new to the practice. TDD works great for new projects, though, as a test suite for
new code will be created at the same time as the code. A mixed approach of starting
a new module inside an existing project, so most code is new and can be designed
using TDD techniques, reduces the problem of dealing with legacy code.

If you want to see if TDD can be effective for new code, try to start small, using some
small project with a small team to be sure that it's not too disruptive and that the
principles can be properly digested and applied. There are some developers that
really love to use TDD principles, as it fits their personality and how they approach
the process of developing. Remember that this is not necessarily how everyone will
feel and that starting with these practices requires time, and perhaps it won't be
possible to apply them 100% as the previous code might limit it.

Problems and limitations
TDD practices are very popular and widely followed in the industry, though they
have their limits. One is the problem of big tests that take too long to run. These tests
may be unavoidable in certain situations.

Another is the difficulty of fully taking this approach if it is not done from the
beginning, as parts of the code will already be written, and perhaps new tests should
be added, violating the rule of creating the tests before the code.

Another problem is designing new code while the features to be implemented are
fluid and not fully defined. This requires experimentation, for example, to design a
function to return a color that contrasts with an input color, for example, to present
a contrast color based on a theme selectable by the user. This function may require
inspection to see if it "looks right," which can require tweaking that's difficult to
achieve with a preconfigured unit test.

Remember, the key element of TDD is the mindset of forcing the
developer to think first about how a particular feature is going
to be tested before starting to think about the implementation.
This mindset doesn't come naturally and needs to be trained and
practiced.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[347]

Not a problem specifically with TDD, but something to be careful about is to
remember to avoid dependencies between tests. This can happen with any test suite,
but given the focus on creating new tests, it's a likely problem if the team is starting
with TDD practices. Dependencies can be introduced by requiring tests to run in a
particular order, as the tests can contaminate the environment. This is normally not
done on purpose, but it's done inadvertently while writing multiple tests.

In any case, remember that TDD is not necessarily something that it's all or nothing,
but a set of ideas and practices that can help you design code that's well tested and
high quality. Not every single test in the system needs to be designed using TDD,
but a lot of them can be.

Example of the TDD process
Let's imagine that we need to create a function that:

• For values lower than 0, returns zero
• For values greater than 10, returns 100
• For values between, it returns the power of two of the value. Note that for the

edges, it returns the power of two of the input (0 for 0 and 100 for 10)

To write the code in full TDD fashion, we start with the smallest possible test. Let's
create the smallest skeleton and the first test.

def parameter_tdd(value):
 pass

assert parameter_tdd(5) == 25

We run the test, and get an error with the test failing. Right now, we will use pure
Python code, but later in the chapter, we'll see how to run tests more efficiently.

$ python3 tdd_example.py
Traceback (most recent call last):
 File ".../tdd_example.py", line 6, in <module>

A typical effect on that will be that some tests fail if run
independently, as their dependencies are not run in that case.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[348]

 assert parameter_tdd(5) == 25
AssertionError

The implementation of the use case is quite straightforward.

def parameter_tdd(value):
 return 25

Yes, we are actually returning a hardcoded value, but that's really all that is required
to pass the first tests. Let's run the tests now and you'll see no errors.

$ python3 tdd_example.py

But now we add tests for the lower edge. While these are two lines, they can be
considered the same test, as they're checking that the edge is correct.

assert parameter_tdd(-1) == 0
assert parameter_tdd(0) == 0
assert parameter_tdd(5) == 25

Let's run the tests again.

$ python3 tdd_example.py
Traceback (most recent call last):
 File ".../tdd_example.py", line 6, in <module>
 assert parameter_tdd(-1) == 0
AssertionError

We need to add code to handle the lower edge.

def parameter_tdd(value):
 if value <= 0:
 return 0

 return 25

When running the test, we see that it's running the tests correctly. Let's add
parameters now to handle the upper edge.

assert parameter_tdd(-1) == 0
assert parameter_tdd(0) == 0
assert parameter_tdd(5) == 25
assert parameter_tdd(10) == 100
assert parameter_tdd(11) == 100

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[349]

This triggers the corresponding error.

$ python3 tdd_example.py
Traceback (most recent call last):
 File "…/tdd_example.py", line 12, in <module>
 assert parameter_tdd(10) == 100
AssertionError

Let's add the higher edge.

def parameter_tdd(value):
 if value <= 0:
 return 0

 if value >= 10:
 return 100

 return 25

This runs correctly. We are not confident that all the code is fine, and we really want
to be sure that the intermediate section is correct, so we add another test.

assert parameter_tdd(-1) == 0
assert parameter_tdd(0) == 0
assert parameter_tdd(5) == 25
assert parameter_tdd(7) == 49
assert parameter_tdd(10) == 100
assert parameter_tdd(11) == 100

Aha! Now it shows an error, due to the initial hardcoding.

$ python3 tdd_example.py
Traceback (most recent call last):
 File "/…/tdd_example.py", line 15, in <module>
 assert parameter_tdd(7) == 49
AssertionError

So let's fix it.

def parameter_tdd(value):
 if value <= 0:
 return 0

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[350]

 if value >= 10:
 return 100

 return value ** 2

This runs all the tests correctly. Now, with the safety net of the tests, we think we can
refactor the code a little bit to clean it up.

def parameter_tdd(value):
 if value < 0:
 return 0

 if value < 10:
 return value ** 2

 return 100

We can run the tests all through the process and be sure that the code is correct. The
final result may be different based on what the team considers good code or what is
more explicit, but we have our test suite that will ensure that the tests are consistent,
and the behavior is correct.

The function here is quite small, but this shows what the flow is when writing code
in the TDD style.

Introduction to unit testing in Python
There are multiple ways to run tests in Python. One, as we have seen above, a bit
crude, is to execute code with multiple asserts. A common one is the standard library
unittest.

Python unittest
unittest is a module included in the Python standard library. It is based on the
concept of creating a testing class that groups several testing methods. Let's write a
new file with the tests written in the proper format, called test_unittest_example.
py.

import unittest
from tdd_example import parameter_tdd

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[351]

class TestTDDExample(unittest.TestCase):

 def test_negative(self):
 self.assertEqual(parameter_tdd(-1), 0)

 def test_zero(self):
 self.assertEqual(parameter_tdd(0), 0)

 def test_five(self):
 self.assertEqual(parameter_tdd(5), 25)

 def test_seven(self):
 # Note this test is incorrect
 self.assertEqual(parameter_tdd(7), 0)

 def test_ten(self):
 self.assertEqual(parameter_tdd(10), 100)

 def test_eleven(self):
 self.assertEqual(parameter_tdd(11), 100)

if __name__ == '__main__':
 unittest.main()

Let's analyze the different elements. The first ones are the imports on top.

import unittest
from tdd_example import parameter_tdd

We import the unittest module and the function to test. The most important part
comes next, which defines the tests.

class TestTDDExample(unittest.TestCase):

 def test_negative(self):
 self.assertEqual(parameter_tdd(-1), 0)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[352]

The class TestTDDExample groups the different tests. Notice that it's inheriting
from unittest.TestCase. Then, methods that start with test_ will produce the
independent tests. Here, we will show one. Internally, it calls the function and
compares the result with 0, using the self.assertEqual function.

Finally, we add this code.

if __name__ == '__main__':
 unittest.main()

This runs the tests automatically if we run the file. So, let's run the file:

$ python3 test_unittest_example.py
...F..
==
FAIL: test_seven (__main__.TestTDDExample)
--
Traceback (most recent call last):
 File ".../unittest_example.py", line 17, in test_seven
 self.assertEqual(parameter_tdd(7), 0)
AssertionError: 49 != 0

--
Ran 6 tests in 0.001s

FAILED (failures=1)

As you can see, it has run all six tests, and shows any errors. Here, we can clearly see
the problem. If we need more detail, we can run with -v showing showing each of
the tests that are being run:

$ python3 test_unittest_example.py -v
test_eleven (__main__.TestTDDExample) ... ok
test_five (__main__.TestTDDExample) ... ok
test_negative (__main__.TestTDDExample) ... ok
test_seven (__main__.TestTDDExample) ... FAIL
test_ten (__main__.TestTDDExample) ... ok

Notice that test_seven is defined incorrectly. We do this to
produce an error when running it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[353]

test_zero (__main__.TestTDDExample) ... ok

==
FAIL: test_seven (__main__.TestTDDExample)
--
Traceback (most recent call last):
 File ".../unittest_example.py", line 17, in test_seven
 self.assertEqual(parameter_tdd(7), 0)
AssertionError: 49 != 0

--
Ran 6 tests in 0.001s

FAILED (failures=1)

You can also run a single test or combination of them using the -k option, which
searches for matching tests.

$ python3 test_unittest_example.py -v -k test_ten
test_ten (__main__.TestTDDExample) ... ok

--
Ran 1 test in 0.000s

OK

unittest is extremely popular and can accept a lot of options, and it's compatible
with virtually every framework in Python. It's also very flexible in terms of
ways of testing. For example, there are multiple methods to compare values, like
assertNotEqual and assertGreater.

It also has setUp and tearDown methods to execute code before and after the
execution of each test in the class.

There's a specific assert function that works differently, which
is assertRaises, used to detect when the code generates an
exception. We will take a look at it later when testing mocking
external calls.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[354]

While unittest is probably the most popular test framework, it's not the most
powerful one. Let's take a look at it.

Pytest
Pytest simplifies writing tests even further. One common complaint about unittest
is that it forces you to set a lot of assertCompare calls that are not obvious. It also
needs to structure the tests, adding a bit of boilerplate code, like the test class. Other
problems are not as obvious, but when creating big test suites, the setup of different
tests can start to get complicated.

Pytest instead simplifies the running and defining of tests, and captures all the
relevant information using standard assert statements that are easier to read and
recognize.

Be sure to install pytest through pip in your environment.

$ pip3 install pytest

Let's see how to run the tests defined in the unittest, in the file test_pytest_
example.py.

from tdd_example import parameter_tdd

def test_negative():

Be sure to take a look at the official documentation: https://
docs.python.org/3/library/unittest.html.

A common pattern is to create classes that inherit from other test
classes. Over time, that can grow legs of its own.

In this section, we will use pytest in the simplest way. Later in the
chapter, we will cover more interesting cases.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

Chapter 10

[355]

 assert parameter_tdd(-1) == 0

def test_zero():
 assert parameter_tdd(0) == 0

def test_five():
 assert parameter_tdd(5) == 25

def test_seven():
 # Note this test is deliberatly set to fail
 assert parameter_tdd(7) == 0

def test_ten():
 assert parameter_tdd(10) == 100

def test_eleven():
 assert parameter_tdd(11) == 100

If you compare it with the equivalent code in test_unittest_example.py, the code
is significantly leaner. When running it with pytest, it also shows more detailed,
colored information.

$ pytest test_unittest_example.py
================= test session starts =================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
collected 6 items

test_unittest_example.py ...F.. [100%]

====================== FAILURES =======================
______________ TestTDDExample.test_seven ______________

self = <test_unittest_example.TestTDDExample testMethod=test_seven>

 def test_seven(self):
> self.assertEqual(parameter_tdd(7), 0)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[356]

E AssertionError: 49 != 0

test_unittest_example.py:17: AssertionError
=============== short test summary info ===============
FAILED test_unittest_example.py::TestTDDExample::test_seven
============= 1 failed, 5 passed in 0.10s =============

As with unittest, we can see more information with -v and run a selection of tests
with -k.

$ pytest -v test_unittest_example.py
========================= test session starts =========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
cachedir: .pytest_cache
collected 6 items

test_unittest_example.py::TestTDDExample::test_eleven PASSED [16%]
test_unittest_example.py::TestTDDExample::test_five PASSED [33%]
test_unittest_example.py::TestTDDExample::test_negative PASSED [50%]
test_unittest_example.py::TestTDDExample::test_seven FAILED [66%]
test_unittest_example.py::TestTDDExample::test_ten PASSED [83%]
test_unittest_example.py::TestTDDExample::test_zero PASSED [100%]

============================== FAILURES ===============================
______________________ TestTDDExample.test_seven ______________________

self = <test_unittest_example.TestTDDExample testMethod=test_seven>

 def test_seven(self):
> self.assertEqual(parameter_tdd(7), 0)
E AssertionError: 49 != 0

test_unittest_example.py:17: AssertionError
======================= short test summary info =======================
FAILED test_unittest_example.py::TestTDDExample::test_seven -
AssertionErr...
===================== 1 failed, 5 passed in 0.08s =====================

$ pytest test_pytest_example.py -v -k test_ten
========================= test session starts =========================

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[357]

platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
cachedir: .pytest_cache
collected 6 items / 5 deselected / 1 selected

test_pytest_example.py::test_ten PASSED [100%]

=================== 1 passed, 5 deselected in 0.02s ===================

And it's totally compatible with unittest defined tests, which allows you to combine
both styles or migrate them.

$ pytest test_unittest_example.py
========================= test session starts =========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
collected 6 items

test_unittest_example.py ...F.. [100%]

============================== FAILURES ===============================
______________________ TestTDDExample.test_seven ______________________

self = <test_unittest_example.TestTDDExample testMethod=test_seven>

 def test_seven(self):
> self.assertEqual(parameter_tdd(7), 0)
E AssertionError: 49 != 0

test_unittest_example.py:17: AssertionError
======================= short test summary info =======================
FAILED test_unittest_example.py::TestTDDExample::test_seven -
AssertionErr...
===================== 1 failed, 5 passed in 0.08s =====================

Another great feature of pytest is easy autodiscovery to find files that start with
test_ and run inside all the tests. If we try it, pointing at the current directory, we
can see it runs both test_unittest_example.py and test_pytest_example.py.

$ pytest .
========================= test session starts =========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
collected 12 items

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[358]

test_pytest_example.py ...F.. [50%]
test_unittest_example.py ...F.. [100%]

============================== FAILURES ===============================
_____________________________ test_seven ______________________________

 def test_seven():
 # Note this test is deliberatly set to fail
> assert parameter_tdd(7) == 0
E assert 49 == 0
E + where 49 = parameter_tdd(7)

test_pytest_example.py:18: AssertionError
______________________ TestTDDExample.test_seven ______________________

self = <test_unittest_example.TestTDDExample testMethod=test_seven>

 def test_seven(self):
> self.assertEqual(parameter_tdd(7), 0)
E AssertionError: 49 != 0

test_unittest_example.py:17: AssertionError
======================= short test summary info =======================
FAILED test_pytest_example.py::test_seven - assert 49 == 0
FAILED test_unittest_example.py::TestTDDExample::test_seven -
AssertionErr...
==================== 2 failed, 10 passed in 0.23s =====================

We will continue talking about more features of pytest during the chapter, but first,
we need to go back to how to define tests when the code has dependencies.

Testing external dependencies
When building unit tests, we talked about how it's based around the concept of
isolating a unit in the code to test it independently.

This isolation concept is key, as we want to focus on small sections of the code to
create small, clear tests. Creating small tests also helps in keeping the tests fast.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[359]

In our example above, we tested a purely functional function, parameter_tdd, that
had no dependencies. It was not using any external library or any other function. But
inevitably, at some point, you'll need to test something that depends on something
else.

The question in this case is should the other component be part of the test or not?

This is not an easy question to answer. Some developers think that all unit tests
should be purely about a single function or method, and therefore, any dependency
should not be part of the test. But, on a more practical level, there are sometimes
pieces of code that form a unit that it's easier to test in conjunction than separately.

For example, think about a function that:

• For values lower than 0, returns zero.
• For values greater than 100, returns 10.
• For values between, it returns the square root of the value. Note that for the

edges, it returns the square root of them (0 for 0 and 10 for 100).

This is very similar to the previous function, parameter_tdd, but this time we need
the help of an external library to produce the square root of a number. Let's take a
look at the code.

It's divided into two files. dependent.py contains the definition of the function.

import math

def parameter_dependent(value):
 if value < 0:
 return 0

 if value <= 100:
 return math.sqrt(value)

 return 10

The code is pretty similar to the code in the parameter_tdd example. The module
math.sqrt returns the square root of a number.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[360]

And the tests are in test_dependent.py.

from dependent import parameter_dependent

def test_negative():
 assert parameter_dependent(-1) == 0

def test_zero():
 assert parameter_dependent(0) == 0

def test_twenty_five():
 assert parameter_dependent(25) == 5

def test_hundred():
 assert parameter_dependent(100) == 10

def test_hundred_and_one():
 assert parameter_dependent(101) == 10

In this case, we are completely using the external library and testing it at the same
time that we are testing our code. For this simple example, this is a perfectly valid
option, though that may not be the case for other cases.

For example, the external dependency could be making external HTTP calls that
need to be captured to prevent making them while running tests and to have control
over the returned values, or other big pieces of functionality that should be tested in
isolation.

To detach a function from its dependencies, there are two different approaches. We
will show them using parameter_dependent as a baseline.

The code is available in GitHub at https://github.com/
PacktPublishing/Python-Architecture-Patterns/tree/
main/chapter_10_testing_and_tdd.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_10_testing_and_tdd
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_10_testing_and_tdd
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_10_testing_and_tdd

Chapter 10

[361]

We will see next how to mock the external calls.

Mocking
Mocking is a practice that internally replaces the dependencies, replacing them with
fake calls, under the control of the test itself. This way, we can introduce a known
response for any external dependency, and not call the actual code.

To be able to mock the code, in our test code, we need to prepare the mock as part of
the Arrange step. There are different libraries to mock calls, but the easiest is to use
the unittest.mock library included as part of the standard library.

The easiest usage of mock is to patch an external library:

from unittest.mock import patch
from dependent import parameter_dependent

@patch('math.sqrt')
def test_twenty_five(mock_sqrt):
 mock_sqrt.return_value = 5
 assert parameter_dependent(25) == 5
 mock_sqrt.assert_called_once_with(25)

Again, in this case, the tests work perfectly fine with the
dependency included, as it's simple and doesn't produce side
effects like external calls, etc.

Internally, mocking is implemented using what is known as
monkey-patching, which is the dynamic replacement of existing
libraries with alternatives. While this can be achieved in different
ways in different programming languages, it's especially popular
in dynamic languages like Python or Ruby. Monkey-patching can
be used for other purposes than testing, though it should be used
with care, as it can change the behavior of libraries and can be
quite disconcerting for debugging.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[362]

The patch decorator intercepts the calls to the defined library, math.sqrt, and
replaces it with a mock object that passes to the function, here called mock_sqrt.

This object is a bit special. It basically allows any calls, accesses almost any method or
attributes (except predefined ones), and keeps returning a mock object. This makes
the mock object something really flexible that will adapt to whatever code surrounds
it. When necessary, the returning value can be set calling .return_value, as we show
in the first line.

We are, in essence, saying that calls to mock_sqrt will return the value 5. So, we are
preparing the output of the external call, so we can control it.

Finally, we check that we called the mock mock_sqrt once, with the input (25) using
the method assert_called_once_with.

In essence, we are:

• Preparing the mock so it replaces math.sqrt
• Setting the value that it will return when called
• Checking that the call works as expected
• Double-checking that the mock was called with the right value

For other tests, for example, we can check that the mock was not called, indicating
that the external dependence wasn't called.

@patch('math.sqrt')
def test_hundred_and_one(mock_sqrt):
 assert parameter_dependent(101) == 10
 mock_sqrt.assert_not_called()

There are multiple assert functions that allow you to detect how the mock has been
used. Some examples:

• The called attribute returning True or False based on whether the mock has
been called or not, allowing you to write:

assert mock_sqrt.called is True

• The call_count attribute returning the number of times a mock has been
called.

• The assert_called_with() method to check the number of times that it has
been called. It will raise an exception if the last call is not produced in the
specified way.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[363]

• The assert_any_call() method to check whether any of the calls have been
produced in the specified way.

With that information, the full file for testing, test_dependent_mocked_test.py, will
be like this.

from unittest.mock import patch
from dependent import parameter_dependent

@patch('math.sqrt')
def test_negative(mock_sqrt):
 assert parameter_dependent(-1) == 0
 mock_sqrt.assert_not_called()

@patch('math.sqrt')
def test_zero(mock_sqrt):
 mock_sqrt.return_value = 0
 assert parameter_dependent(0) == 0
 mock_sqrt.assert_called_once_with(0)

@patch('math.sqrt')
def test_twenty_five(mock_sqrt):
 mock_sqrt.return_value = 5
 assert parameter_dependent(25) == 5
 mock_sqrt.assert_called_with(25)

@patch('math.sqrt')
def test_hundred(mock_sqrt):
 mock_sqrt.return_value = 10
 assert parameter_dependent(100) == 10
 mock_sqrt.assert_called_with(100)

@patch('math.sqrt')
def test_hundred_and_one(mock_sqrt):
 assert parameter_dependent(101) == 10
 mock_sqrt.assert_not_called()

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[364]

If the mock needs to return different values, you can define the side_effect attribute
of the mock as a list or tuple. side_effect is similar to return_value, but it has a few
differences, as we'll see.

@patch('math.sqrt')
def test_multiple_returns_mock(mock_sqrt):
 mock_sqrt.side_effect = (5, 10)
 assert parameter_dependent(25) == 5
 assert parameter_dependent(100) == 10

side_effect can also be used to produce an exception, if needed.

import pytest
from unittest.mock import patch
from dependent import parameter_dependent

@patch('math.sqrt')
def test_exception_raised_mock(mock_sqrt):
 mock_sqrt.side_effect = ValueError('Error on the external library')
 with pytest.raises(ValueError):
 parameter_dependent(25)

The with section asserts that the expected Exception is raised in the block. If not, it
shows an error.

Mocking is not the only way to handle dependencies for tests. We will see a different
approach next.

Dependency injection
While mocking replaces the dependency without the original code noticing, by
patching it externally, dependency injection is a technique to make that dependency
explicit when calling the function under test, so it can be replaced with a testing
substitute.

In unittest, checking a raised exception can be done with a
similar with block.

with self.assertRaises(ValueError):

 parameter_dependent(25)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[365]

In essence, it's a way of designing the code that makes dependencies explicit by
requiring them as input parameters.

Let's see how this changes the code under test.

def parameter_dependent(value, sqrt_func):
 if value < 0:
 return 0

 if value <= 100:
 return sqrt_func(value)

 return 10

Notice how now the sqrt function is an input parameter.

If we want to use the parameter_dependent function in a normal scenario, we will
have to produce the dependency, for example.

import math

def test_good_dependency():
 assert parameter_dependent(25, math.sqrt) == 5

And if we want to perform tests, we can do it by replacing the math.sqrt function
with a specific function, and then using it. For example:

def test_twenty_five():

 def good_dependency(number):
 return 5

 assert parameter_dependent(25, good_dependency) == 5

Dependency injection, while useful for testing, is not only aimed
at that. By adding the dependencies explicitly, it also reduces
the need for a function to know how to initialize a particular
dependency, instead relying on the interface of the dependency.
It creates a separation between "initializing" a dependency (which
should be taken care of externally) and "using" it (which is the only
part that the dependent code will do). This differentiation will
become clearer later when we see an OOP example.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[366]

We can also provoke an error if calling the dependency to ensure that in some tests
the dependency is not used, for example.

def test_negative():

 def bad_dependency(number):
 raise Exception('Function called')

 assert parameter_dependent(-1, bad_dependency) == 0

Note how this approach is more explicit than mocking. The code to test becomes, in
essence, totally functional as it doesn't have external dependencies.

Dependency injection in OOP
Dependency injection can also be used with OOP. In this case, we can start with code
that is like this.

class Writer:

 def __init__(self):
 self.path = settings.WRITER_PATH

 def write(self, filename, data):
 with open(self.path + filename, 'w') as fp:
 fp.write(data)

class Model:

 def __init__(self, data):
 self.data = data
 self.filename = settings.MODEL_FILE
 self.writer = Writer()

 def save(self):
 self.writer.write(self.filename, self.data)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[367]

As we can see, the settings class stores different elements that are required on
where the data will be stored. The model receives some data and then saves it. The
code in operation will require minimal initialization.

 model = Model('test')
 model.save()

The model receives some data and then saves it. The code in operation requires
minimal initialization, but at the same time, it's not explicit.

To use dependency injection principles, the code will need to be written in this way:

class WriterInjection:

 def __init__(self, path):
 self.path = path

 def write(self, filename, data):
 with open(self.path + filename, 'w') as fp:
 fp.write(data)

class ModelInjection:

 def __init__(self, data, filename, writer):
 self.data = data
 self.filename = filename
 self.writer = writer

 def save(self):
 self.writer.write(self.filename, self.data)

In this case, every value that is a dependency is provided explicitly. In the definition
of the code, the settings module is not present anywhere, but instead, that will
be specified when the class is instantiated. The code will now need to define the
configuration directly.

 writer = WriterInjection('./')
 model = ModelInjection('test', 'model_injection.txt', writer)
 model.save()

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[368]

We can compare how to test both cases, as seen in the file test_dependency_
injection_test.py. The first test is mocking, as we saw before, the write method of
the Writer class to assert that it has been called correctly.

@patch('class_injection.Writer.write')
def test_model(mock_write):

 model = Model('test_model')
 model.save()

 mock_write.assert_called_with('model.txt', 'test_model')

Compared to that, the dependency injection example doesn't require a mock through
monkey-patching. It just creates its own Writer that simulates the interface.

def test_modelinjection():

 EXPECTED_DATA = 'test_modelinjection'
 EXPECTED_FILENAME = 'model_injection.txt'

 class MockWriter:

 def write(self, filename, data):
 self.filename = filename
 self.data = data

 writer = MockWriter()
 model = ModelInjection(EXPECTED_DATA, EXPECTED_FILENAME,
 writer)
 model.save()

 assert writer.data == EXPECTED_DATA
 assert writer.filename == EXPECTED_FILENAME

This second style is more verbose, but it shows some of the differences when writing
code in this way:

• No monkey-patching mock is required. Monkey-patching can be quite
fragile, as it's meddling with internal code that's not supposed to be exposed.
While in testing this interference is not the same as doing it for regular code
running, it's still something that can be messy and have unintended effects,
especially if the internal code changes in some unforeseen way.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[369]

Keep in mind that mocks will likely involve, at some point, relating to
second-level dependencies, which can start having strange or complicated
effects requiring you to spend time handling that extra complexity.

• The way of writing the code is different in itself. Code produced with
dependency injection is, as we've seen, more modular and composed of
smaller elements. This tends to create smaller and more combinable modules
that play along together, with fewer unknown dependencies, as they are
always explicit.

• Be careful, though, as this requires a certain amount of discipline and mental
framing to produce truly loosely coupled modules. If this is not considered
when designing the interfaces, the resulting code will instead be artificially
divided, resulting in tightly coupled code across different modules.
Developing this discipline requires certain training; do not expect it to come
naturally to all developers.

• The code can sometimes be more difficult to debug, as the configuration
will be separated from the rest of the code, sometimes making it difficult
to understand the flow of the code. The complexity can be produced at the
interaction of classes, which may be more difficult to understand and test.
Typically, the upfront effort to develop code in this style is a bit greater as
well.

Dependency injection is a very popular technique in certain software circles and
programming languages. Mocking is more difficult in less dynamic languages than
Python, and also different programming languages have their own sets of ideas on
how to structure code. For example, dependency injection is very popular in Java,
where there are specific tools to work in this style.

Advanced pytest
While we've described the basic functionalities for pytest, we barely scratched the
surface in terms of the number of possibilities that it presents to help generate testing
code.

Without being exhaustive, we will see some useful possibilities of the tool.

Pytest is a big and comprehensive tool. It is worth learning how to
use it. Here, we will only scratch the surface. Be sure to check the
official documentation at https://docs.pytest.org/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.pytest.org/

Testing and TDD

[370]

Grouping tests
Sometimes it is useful to group tests together so they are related to specific things,
like modules, or to run them in unison. The simplest way of grouping tests together
is to join them into a single class.

For example, going back to the test examples before, we could structure tests into
two classes, as we see in test_group_classes.py.

from tdd_example import parameter_tdd

class TestEdgesCases():

 def test_negative(self):
 assert parameter_tdd(-1) == 0

 def test_zero(self):
 assert parameter_tdd(0) == 0

 def test_ten(self):
 assert parameter_tdd(10) == 100

 def test_eleven(self):
 assert parameter_tdd(11) == 100

class TestRegularCases():

 def test_five(self):
 assert parameter_tdd(5) == 25

 def test_seven(self):
 assert parameter_tdd(7) == 49

This is an easy way to divide tests and allows you to run them independently:

$ pytest -v test_group_classes.py
======================== test session starts =========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
collected 6 items

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[371]

test_group_classes.py::TestEdgesCases::test_negative PASSED [16%]
test_group_classes.py::TestEdgesCases::test_zero PASSED [33%]
test_group_classes.py::TestEdgesCases::test_ten PASSED [50%]
test_group_classes.py::TestEdgesCases::test_eleven PASSED [66%]
test_group_classes.py::TestRegularCases::test_five PASSED [83%]
test_group_classes.py::TestRegularCases::test_seven PASSED [100%]

========================= 6 passed in 0.02s ==========================

$ pytest -k TestRegularCases -v test_group_classes.py
========================= test session starts ========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
collected 6 items / 4 deselected / 2 selected

test_group_classes.py::TestRegularCases::test_five PASSED [50%]
test_group_classes.py::TestRegularCases::test_seven PASSED [100%]

================== 2 passed, 4 deselected in 0.02s ===================
$ pytest -v test_group_classes.py::TestRegularCases
========================= test session starts ========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
cachedir: .pytest_cache
rootdir: /Users/jaime/Dropbox/Packt/architecture_book/chapter_09_
testing_and_tdd/advanced_pytest
plugins: celery-4.4.7
collected 2 items

test_group_classes.py::TestRegularCases::test_five PASSED [50%]
test_group_classes.py::TestRegularCases::test_seven PASSED [100%]

========================== 2 passed in 0.02s =========================

Another possibility is to use markers. Markers are indicators that can be added
through a decorator in the tests, for example, in test_markers.py.

import pytest
from tdd_example import parameter_tdd

@pytest.mark.edge

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[372]

def test_negative():
 assert parameter_tdd(-1) == 0

@pytest.mark.edge
def test_zero():
 assert parameter_tdd(0) == 0

def test_five():
 assert parameter_tdd(5) == 25

def test_seven():
 assert parameter_tdd(7) == 49

@pytest.mark.edge
def test_ten():
 assert parameter_tdd(10) == 100

@pytest.mark.edge
def test_eleven():
 assert parameter_tdd(11) == 100

See that we are defining a decorator, @pytest.mark.edge, on all the tests that checks
the edge of the values.

If we execute the tests, we can use the parameter -m to run only the ones with a
certain tag.

 $ pytest -m edge -v test_markers.py
========================= test session starts ========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
collected 6 items / 2 deselected / 4 selected

test_markers.py::test_negative PASSED [25%]
test_markers.py::test_zero PASSED [50%]
test_markers.py::test_ten PASSED [75%]
test_markers.py::test_eleven PASSED [100%]

========================== warnings summary ==========================
test_markers.py:5

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[373]

 test_markers.py:5: PytestUnknownMarkWarning: Unknown pytest.mark.edge
- is this a typo? You can register custom marks to avoid this warning
- for details, see https://docs.pytest.org/en/stable/mark.html
 @pytest.mark.edge

test_markers.py:10
...

-- Docs: https://docs.pytest.org/en/stable/warnings.html
============ 4 passed, 2 deselected, 4 warnings in 0.02s =============

The warning PytestUnknownMarkWarning: Unknown pytest.mark.edge is produced if
the marker edge is not registered.

This is very useful for finding typos, like accidentally writing egde or similar. To
avoid this warning, you'll need to add a pytest.ini config file with the definition of
the markers, like this.

[pytest]
markers =
 edge: tests related to edges in intervals

Now, running the tests shows no warning.

$ pytest -m edge -v test_markers.py
========================= test session starts =========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
cachedir: .pytest_cache
rootdir: /Users/jaime/Dropbox/Packt/architecture_book/chapter_09_
testing_and_tdd/advanced_pytest, configfile: pytest.ini
plugins: celery-4.4.7
collected 6 items / 2 deselected / 4 selected

test_markers.py::test_negative PASSED [25%]
test_markers.py::test_zero PASSED [50%]

Be aware that the GitHub code includes the pytest.ini code.
You won't see the warning if the pytest.ini file is present, for
example, if you clone the whole repo.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[374]

test_markers.py::test_ten PASSED [75%]
test_markers.py::test_eleven PASSED [100%]

=================== 4 passed, 2 deselected in 0.02s ===================

Note that markers can be used across the full test suite, including multiple files. That
allows for making markers to identify common patterns across the tests, for example,
creating a quick test suite with the most important tests to run with the marker
basic.

There are also some predefined markers with some built-in features. The most
common ones are skip (which will skip the test) and xfail (which will reverse the
test, meaning that it expects it to fail).

Using fixtures
The use of fixtures is the preferred way to set up tests in pytest. A fixture, in essence,
is a context created to set up a test.

Fixtures are used as input for the test functions, so they can be set up and create
specific environments for the test to be created.

For example, let's take a look at a simple function that counts the number of
occurrences of a character in a string.

def count_characters(char_to_count, string_to_count):
 number = 0
 for char in string_to_count:
 if char == char_to_count:
 number += 1

 return number

That's a pretty simple loop that iterates through the string and counts the matching
characters.

This is equivalent to using the function .count() for a string,
but this is included to present a working function. It could be
refactored afterward!

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[375]

A regular test to cover the functionalities could be as follows.

def test_counting():
 assert count_characters('a', 'Barbara Ann') == 3

Pretty straightforward. Now let's see how we can define a fixture to define a setup, in
case we want to replicate it.

import pytest

@pytest.fixture()
def prepare_string():
 # Setup the values to return
 prepared_string = 'Ba, ba, ba, Barbara Ann'

 # Return the value
 yield prepared_string

 # Teardown any value
 del prepared_string

First of all, the fixture is decorated with pytest.fixture to mark it as such. A fixture
is divided into three steps:

• Setup: Here, we simply defined a string, but this will probably be the biggest
part, where the values are prepared.

• Return the value: If we use the yield functionality, we will be able to go to
the next step; if not, the fixture will finish here.

• Teardown and clean up values: Here, we simply delete the variable as an
example, though this will happen automatically later.

Later, we will see a more complex fixture. Here, we are just
presenting the concept.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[376]

Defining the fixture this way will allow us to reuse it easily in different test functions,
just using the name as the input parameter.

def test_counting_fixture(prepare_string):
 assert count_characters('a', prepare_string) == 6

def test_counting_fixture2(prepare_string):
 assert count_characters('r', prepare_string) == 2

Note how the prepare_string parameter is automatically providing the value that
we defined with yield. If we run the tests, we can see the effect. Even more, we can
use the parameter --setup-show to see the setup and tear down all of the fixtures.

$ pytest -v test_fixtures.py -k counting_fixture --setup-show
======================== test session starts ========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
plugins: celery-4.4.7
collected 3 items / 1 deselected / 2 selected

test_fixtures.py::test_counting_fixture
 SETUP F prepare_string
 test_fixtures.py::test_counting_fixture (fixtures used:
prepare_string)PASSED
 TEARDOWN F prepare_string
test_fixtures.py::test_counting_fixture2
 SETUP F prepare_string
 test_fixtures.py::test_counting_fixture2 (fixtures used:
prepare_string)PASSED
 TEARDOWN F prepare_string

=================== 2 passed, 1 deselected in 0.02s ===================

This fixture was very simple and did not do anything that couldn't be done defining
the string, but fixtures can be used to connect to a database or prepare files, taking
into account that they can clean them up at the end.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[377]

For example, complicating the same example a bit, instead of counting from a string,
it should count from a file, so the function needs to open a file, read it, and count the
characters. The function will be like this.

def count_characters_from_file(char_to_count, file_to_count):
 '''
 Open a file and count the characters in the text contained
 in the file
 '''
 number = 0
 with open(file_to_count) as fp:
 for line in fp:
 for char in line:
 if char == char_to_count:
 number += 1

 return number

The fixture should then create a file, return it, and then remove it as part of the
teardown. Let's take a look at it.

import os
import time
import pytest

@pytest.fixture()
def prepare_file():
 data = [
 'Ba, ba, ba, Barbara Ann',
 'Ba, ba, ba, Barbara Ann',
 'Barbara Ann',
 'take my hand',
]
 filename = f'./test_file_{time.time()}.txt'
 # Setup the values to return
 with open(filename, 'w') as fp:
 for line in data:

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing and TDD

[378]

 fp.write(line)

 # Return the value
 yield filename

 # Delete the file as teardown
 os.remove(filename)

Note that in the filename, we define the name adding the timestamp when it's
generated. This means that each of the files that will be generated by this fixture will
be unique.

 filename = f'./test_file_{time.time()}.txt'

The file then gets created and the data is written.

 with open(filename, 'w') as fp:
 for line in data:
 fp.write(line)

The name of the file, which, as we've seen, is unique, gets yielded. Finally, the file is
deleted in the teardown.

The tests are similar to the previous ones, as most of the complexity is stored in the
fixture.

def test_counting_fixture(prepare_file):
 assert count_characters_from_file('a', prepare_file) == 17

def test_counting_fixture2(prepare_file):
 assert count_characters_from_file('r', prepare_file) == 6

When running it, we see it works as expected, and we can check that the teardown
step deletes the testing files after each test.

$ pytest -v test_fixtures2.py
========================= test session starts =========================
platform darwin -- Python 3.9.5, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
-- /usr/local/opt/python@3.9/bin/python3.9
collected 2 items

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[379]

test_fixtures2.py::test_counting_fixture PASSED [50%]
test_fixtures2.py::test_counting_fixture2 PASSED [100%]

========================== 2 passed in 0.02s ==========================

Fixtures don't need to be defined in the same file. They can also be stored in a special
file called conftest.py, which will automatically be shared by pytest across all the
tests.

In this chapter, we only scratched the surface in terms of the possibilities of pytest. It
is a fantastic tool and one that I encourage you to learn about. It will pay off greatly
to efficiently run tests and design them in the best possible way. Testing is a critical
part of a project and it's one of the development stages where developers spend most
of their time.

Summary
In this chapter, we went through the whys and hows of tests to describe how a good
testing strategy is required to produce high-quality software and prevent problems
once the code is in use by customers.

We started by describing the general principles behind testing, how to make tests
that provide more value than their cost, and the different levels of testing to ensure
this. We saw the three main levels of tests, which we called unit tests (parts of a
single component), system tests (the whole system), and integration tests in the
middle (a whole component or several components, but not all).

Fixtures can also be combined, they can be set to be used
automatically, and there are already built-in fixtures to work with
temporal data and directories or capture output. There are also a
lot of plugins for useful fixtures in PyPI, installable as third-party
modules, covering functionality like connecting to databases
or interacting with other external resources. Be sure to check
the Pytest documentation and to search before implementing
your own fixture to see if you can leverage an already existing
module: https://docs.pytest.org/en/latest/explanation/
fixtures.html#about-fixtures.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.pytest.org/en/latest/explanation/fixtures.html#about-fixtures
https://docs.pytest.org/en/latest/explanation/fixtures.html#about-fixtures

Testing and TDD

[380]

We continued by describing different strategies to ensure that our tests are great
ones, and how to structure them using the Arrange-Act-Assert pattern, for ease of
writing and understanding them after they are written.

Later, we described in detail the principles behind Test-Driven Development, a
technique that puts tests at the center of development, which mandates writing
the tests before the code, working in small increments, and running the tests over
and over to create a good test suite that protects against unexpected behavior. We
also analyzed the limits and caveats of working in a TDD fashion and provided an
example of what the flow looks like.

We continued by presenting ways of creating unit tests in Python, both using the
standard unittest module and by introducing the more powerful pytest. We also
presented a section with advanced usage of pytest to show a bit of what this great
third-party module is capable of.

We described how to test external dependencies, something that is critically
important when writing unit tests to isolate functionality. We also described how to
mock dependencies and how to work under the dependency injection principles.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

[381]

11
Package Management

When working in complex systems, especially in microservices or similar
architectures, there is sometimes a need to share code so it's available at different,
unconnected parts of the system. That's normally code that will help to abstract some
functions, which can vary greatly, from security purposes (for example, calculating
a signature in a way that's understood by other systems that will have to verify it),
to connecting to databases or external APIs, or even helping to monitor the system
consistently.

Instead of reinventing the wheel each time, we can reuse the same code multiple
times to be certain that it's properly tested and validated, and consistent throughout
the entire system. Some modules may be interesting to share not only across the
organization but even outside it, creating a standard module others can take
advantage of.

Others have done that before, and a lot of common use cases, such as connecting to
existing databases, using network resources, accessing OS features, understanding
files in all kinds of formats, calculating common algorithms and formulas, in all
kinds of domains, creating and operating AI models, and a long list of other cases
besides, are available.

To enhance the sharing and utilization of all those abilities, modern programming
languages have their own ways of creating and sharing packages, so the usefulness
of the language multiplies greatly.

In this chapter, we will discuss the use of packages, mostly from a Python
perspective, covering when and how to decide to create a package. We will explore
the different options available, from a simple structure to packages that include code
compiled so that it can be optimized for specific tasks.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Package Management

[382]

In this chapter, we'll cover the following topics:

• The creation of a new package
• Trivial packaging in Python
• The Python packaging ecosystem
• Creating a package
• Cython
• Python package with binary code
• Uploading your package to PyPI
• Creating your own private index

Let's start by defining what code could be a candidate to create a package.

The creation of a new package
In any software, there will be snippets of code that could be shared across different
parts of the code. When working with small, monolithic applications, this can be as
easy as creating some internal modules or functions that can share functionality by
calling it directly.

Over time, this common function or functions could be grouped together under a
module to clarify that they are to be used across the application.

This will work fine up to a certain size. Some of the problems that can arise as the
code grows and becomes more complex are as follows:

• Create a more generic API to interact with the module, aimed at greater
flexibility in terms of module utilization. This can involve creating a more
defensive style of programming, to be sure that the module is used as
expected and return proper errors.

Avoid the temptation to use the name utils for a module with
code expected to be used in different positions. While this is very
common, it is also not very descriptive and a bit lazy. How does
someone know if a function is in the utils module? Instead of
that, try to use a descriptive name.

If it's not possible, divide it into submodules, so you can create
something like utils.communication or utils.math to avoid
this effect.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[383]

• Specific documentation needs to be provided for the module so that
developers who are not familiar with the module are able to use it.

• Ownership of the module may need to be clarified and its own maintainers
specified. This can take the form of a stricter code review before changing the
code, with some developer or developers designated as the point of contact
for the module.

• The most critical one, the functionality of the module, is required to be
present in two or more independent services or code bases. If this happens,
instead of just copying/pasting the code across different code bases, it makes
sense to create an independent module that can be imported. This could be
a deliberate option upfront, to standardize certain operations (for example,
produce and verify signed messages across multiple services) or it could be
an afterthought following successful implementation of the functionality in
one code base that it could be handy to have in other services of the system.
For example, instrumenting the communication messages to you generates
a log. This log can be useful in other services, so, from the original service, it
gets migrated to others.

In general, the module starts getting its own entity, and not only as a shared location
for incorporating code that is going to be shared. At that time, it starts to make sense
to treat it as an independent library more than a module attached to a particular code
base.

Once the decision to create some code as an independent package has been taken,
several aspects should be considered:

• As we've seen before, the most important is the ownership of the new
package. Packages exist in the boundaries between different teams and
groups, as they are used by different ones. Be sure to provide clear
ownership regarding any package to be sure that the team responsible
for it is reachable, both for any possible inquiries and for setting its own
maintenance.

• Any new package will require time to develop new features and adjustments,
especially as the package is in use, probably stretching its limits as it's used
in multiple services and in more ways. Be sure to take this into account
and adjust the load of the team responsible accordingly. This will be very
dependent on how mature the package is and how many new features are
required.

• In the same way, be sure to budget time to maintain the package. Even
if there are no new features, bugs will be detected and other general
maintenance, such as updating the dependencies on account of security fixes
or compatibility with new OS versions, will need to be continued.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Package Management

[384]

All these elements should be taken into account. In general, it is advisable to create
some sort of roadmap where the team responsible can define what the objectives are
and a time frame to achieve them.

We will focus on creating a new package in Python, but the basics are similar when
creating other packages in other languages.

Trivial packaging in Python
In Python, it is easy to create a package to be imported by just adding a subdirectory
to the code. While this is simple, it can be adequate initially, as the subdirectory can
be copied. For example, the code can be added directly to the source control system,
or it can even be installed by compressing the code and uncompressing it in place.

The structure of the code for a module in Python can be worked out as a subdirectory
with a single entry point. For example, when creating a module called naive_package
with the following structure:

└── naive_package
 ├── __init__.py
 ├── module.py
 └── submodule
 ├── __init__.py
 └── submodule.py

We can see that the module contains a submodule, so let's start there. The submodule
directory contains two files, the submodule.py file with the code, and an empty
__init__.py file to allow the other file to be imported, as we will see later.

The bottom line is that a new package is a new project. You need to
treat it as such.

This is not a long-term solution, as it won't handle multiple
versions, dependencies, and so on, but it can work in some cases as
a first step. At least initially, all the code to be packetized needs to
be stored in the same subdirectory.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[385]

The content of submodule.py is this example function:

def subfunction():
 return 'calling subfunction'

The top level is the module itself. We have the module.py file, which defines the
some_function function that calls the submodule:

from .submodule.submodule import subfunction

def some_function():
 result = subfunction()
 return f'some function {result}'

The import line has a detail, a dot in the form of the submodule located in the same
directory. This is specific syntax in Python 3 for being more precise when importing.
Without the dot, it will try to import from the library instead.

The rest of the function calls subfunction and combines the result to return a string
of text.

The __init__.py file, in this case, is not empty, but instead, it imports the
some_function function:

from .module import some_function

Note again the relative import as indicated by the preceding dot. This allows having
the some_function function available as part of the top level of the naive_package
module.

__init__.py is a special Python file that indicates that the
directory contains Python code and can be imported externally. It
symbolizes the directory itself, as we will see later.

You can learn more about relative imports in PEP-328, which
describes it, here: https://www.python.org/dev/peps/pep-
0328/. PEPs (Python Enhancement Proposals) are documents
describing new features relating to the Python language or
information related to the community. It is the official channel for
proposing changes and advancing the language.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/

Package Management

[386]

We can now create a file to call the module. We'll write the call_naive_package.py
file, which needs to be at the same level as the native_package directory:

from naive_package import some_function

print(some_function())

This file just calls the module-defined function and prints the result:

$ python3 call_naive_package.py
some function calling subfunction

This method of handling a module to be shared is not recommended, but this small
module can help us understand how to create a package and what the structure of a
module is. The first step to detaching a module and creating an independent package
will be to create a single subdirectory that has a clear API, including clear entry
points to use it.

But to get a better solution, we will need to be able to create a full Python package
from there. Let's take a look at what that means exactly.

The Python packaging ecosystem
Python has a very active ecosystem of third-party open source packages that
covers a wide variety of topics and enables the power of any Python program to be
enhanced. You can take advantage of installing them by using pip, which is installed
automatically for any new Python install.

For example, to install the package named requests, a package allowing the
compilation of easier and more powerful HTTP requests, the command is:

$ pip3 install requests

pip searches in the Python Package Index automatically to see whether the package
is available and if it is, it will download it and install it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[387]

We will see more detailed usage on pip later in the chapter, but first, we need to
discuss the main source where the packages are downloaded.

PyPI
The Python Package Index (PyPI, normally pronounced as Pie-P-I, as opposed to Pie-
Pie) is the official source of packages in Python and can be checked at https://pypi.
org:

Figure 11.1: pypi.org main page

Note that the pip command could take the form of pip3. This
depends on the installation of Python in your system. We will use
them indistinctly.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pypi.org
https://pypi.org

Package Management

[388]

On the PyPI web page, the search enables specific packages to be found along with
useful information, including available packages with partial matches. They can also
be filtered.

Figure 11.2: Searching for packages

Once the individual package is specified, more information can be found regarding
brief documentation, links to the source and home page of the project, and other
similar kinds of licenses or maintainers.

The home page and documentation page are very significant for
big packages, as they will include much more information about
how to use the package. Smaller packages will normally only
include the documentation on this page, but it's always worth
checking their page for the source as it may link to a GitHub page
with details about bugs and the possibility of submitting patches or
reports.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[389]

The page for requests looks like this at the time of writing this book:

Figure 11.3: Detailed info about a module

Searching directly in PyPI can help locate some interesting modules, and in some
cases, will be quite straightforward, such as finding a module to connect to a
database (for example, searching by the name of the database). This, though,
normally involves a significant amount of trial and error, as the name may not be
indicative of how good a module will be for your use case.

Spending some time on the internet searching for the best module for a use case is a
great idea and it will improve the chances of finding the right package for your use
case.

In any case, given the number of available packages for Python, of varying quality
and maturity, it's always worthwhile setting aside some time to research alternatives.

A great source of knowledge in this case is StackOverflow
(https://stackoverflow.com/), which contains a lot of
questions and answers that can be used to ascertain interesting
modules. A general Google search will also help.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://stackoverflow.com/

Package Management

[390]

Packages are not curated in any way by pypi.org, as it's publicly available to
anyone to submit their packages, although malicious ones will be eliminated. How
popular a package is will require more indirect methods, such as searching how
many downloads or searching through a searcher online to see whether other
projects are using it. Ultimately, it will require the performance of some Proof-of-
Concept programs to analyze whether the candidate packages cover all the required
functionalities.

Virtual environments
The next element in the packaging chain is the creation of virtual environments to
isolate the installation of modules.

When dealing with installing packages, using the default environments in the system
leads to the packages being installed there. This means that the general installation of
the Python interpreter will be affected by this.

This can lead to problems, as you may install packages that have side effects when
using the Python interpreter for other purposes, as dependencies in the packages
may interfere with each other.

For example, if the same machine has a Python program that requires the package1
package and another Python program that requires package2, and they are both
incompatible, that will create a conflict. Installing both package1 and package2 won't
be possible.

The solution to this problem is to create two different environments, so each package
and its dependencies are stored independently – independently from each other,
but also independently from the system Python interpreter, so it won't affect any
possible system activity that depends on the Python system interpreter.

To create a new virtual environment, you can use the standard module venv,
included in all installations of Python 3 after 3.3:

$ python3 -m venv venv

Note that this can also happen through version incompatibility,
especially in the dependencies of the packages, or in the
dependencies of dependencies. For example, package1 requires
dependency version 5 to be installed, and package2 requires
dependency version 6 or higher. They won't be able to run in
conjunction with one another.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[391]

This creates the venv subdirectory, which contains the virtual environment. The
environment can be activated using the following source command:

$ source ./venv/bin/activate
(venv) $ which python
./venv/bin/python
(venv) $ which pip
./venv/bin/python

You can see that the python interpreter and pip that get executed is the one located
in the virtual environment, and not the system one, and also the indication in the
prompt that the virtual environment, venv, is active.

The virtual environment also has its own library, so any installed packages will be
stored here, and not in the system environment.

Once in the virtual environment, any call to pip will install the packages in the
virtual environment, so they are independent of any other environment. Each
program can then be executed within its own virtual environment.

With a proper environment, we can use pip to install the different dependencies.

Please note that we have used a name for the created virtual
environment, venv, which is the same as the name of the module.
That's not necessary. Virtual environments can be created with any
name. Be sure to use a name that's descriptive in your use case.

The virtual environment can be deactivated by calling the
deactivate command. You can see that the (venv) indication
disappears.

In cases where the virtual environment cannot be activated directly
through the command line and the command needs to be executed
directly, for example, for cronjob cases, you can call the python
interpreter directly in the virtual environment by its full path, such
as /path/to/venv/python/your_script.py.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Package Management

[392]

Preparing an environment
Creating a virtual environment is the first stage, but we need to install all
dependencies for our software.

To be able to replicate the environment in all situations, the best is to create a
requirements file that defines all dependencies that should be installed. pip allows
working with a file, normally called requirements.txt, to install dependencies.

This is an excellent way of creating a replicable environment that can be started from
scratch when necessary.

For example, let's take a look at the following requirements.txt file:

requests==2.26.0
pint==0.17

The file can be downloaded from GitHub at https://github.com/PacktPublishing/
Python-Architecture-Patterns/blob/main/chapter_11_package_management/
requirements.txt.

The file can be installed in the virtual environment (remember to activate it) using
the following command:

(venv) $ pip install -r requirements.txt

After that, all the specified requirements will be installed in the environment.

Note that the dependencies of your specified dependencies may not be totally
pinned down to specific versions. This is because the dependencies have their own
definition, which can produce unknown upgrades on second-level dependencies
when a new package is delivered.

Note the format is package==version. This specifies the exact
version to use for the package, which is the recommended way
of installing dependencies. That avoids the problem of using just
package, which will install the latest version, and which can lead
to an upgrade that's not planned, which may break compatibility.

Other options, such as package>=version, to specify a minimum
version are available.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_11_package_management/requirements.txt
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_11_package_management/requirements.txt
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_11_package_management/requirements.txt

Chapter 11

[393]

To avoid having that problem, you can create an initial installation with your first-
level dependencies, and then obtain all the dependencies that have been installed
with the pip freeze command:

(venv) $ pip freeze
certifi==2021.5.30
chardet==3.0.4
charset-normalizer==2.0.4
idna==2.10
packaging==21.0
Pint==0.17
pyparsing==2.4.7
requests==2.26.0
urllib3==1.26.6

You can use the output to update the requirements.txt directly, so the next
installation will have all the second-level dependencies also pinned down.

A note on containers
When working in a container manner, the distinction between the system interpreter
and the program interpreter is more diluted, as the container has its own OS
wrapped, thereby enforcing a strong separation.

In the traditional way of deploying services, they are installed and run in the same
server, making it necessary to keep a separation between the interpreter due to the
restrictions that we talked about previously.

By using containers, we have already created a wrap around each of the services
into their own OS filesystem, which means that we can skip the creation of a virtual
environment. The container acts as a virtual environment in this case, enforcing
separation between different containers.

As we've discussed previously in Chapter 8, Advanced Event-Driven Structures,
when talking about containers, each container should serve only a single service,
coordinating different containers to generate different servers. That way, it
eliminates the case of having to share the same interpreter.

Note that adding new requirements will require the same process
to be generated, to install first, then run freeze, and then update
the requirements.txt file with the ouput.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Package Management

[394]

This means that we can ease some of the restrictions that we would normally impose
in a traditional setting, and care just about one environment, being able to take less
care about polluting the system environment. There's only one environment, so
we can play with it more freely. If we need more services or environments, we can
always create more containers.

Python packages
A Python module ready to use is, in essence, a subdirectory with certain Python
code. This subdirectory gets installed in the proper library's subdirectoy, and the
interpreter searches in this subdirectory. The directory is called site-packages.

To distribute it, the subdirectory is packaged into two different files, either Egg files
or Wheel files. Importantly, though, pip can only install Wheel files.

Egg files are considered deprecated, as their format is older and it's basically a zipped
file containing some metadata. Wheel files have several advantages:

• They are better defined and allow for more use cases. There's a specific PEP,
PEP-427 (https://www.python.org/dev/peps/pep-0427/), that defines the
format. Egg files were never officially defined.

• They can be defined to have better compatibility, allowing the creation
of Wheel files that are compatible between different versions of Python,
including Python 2 and Python 3.

• Wheel files can include already compiled binary code. Python allows the
inclusion of libraries that are written in C, but these libraries need to target
the proper hardware architecture. In Egg files, the source files were included
and compiled at install time, but that required the proper compilation tools
and environment in the installation machine, and this could easily result in
compilation issues.

This subdirectory is available in the virtual environment, if you are
using one. You can check the following subdirectory: venv/lib/
python3.9/site-packages/.

Source packages can also be created. In this case, the file is a tar file
that contains all the code.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.python.org/dev/peps/pep-0427/

Chapter 11

[395]

• Instead of that, Wheel files can be precompiled with binary files. The Wheel
file has better-defined compatibility based on hardware architecture and the
OS, so the right Wheel file will be downloaded and installed, if available. This
makes the installation faster, as no compilation needs to be performed in
the installation, and removes the need for compilation tools available in the
target machine. A Wheel file with a source file can also be created to allow its
installation in machines not already precompiled, though in this case, it will
require a compiler.

• Wheel files can be cryptographically signed, while Eggs don't support this
option. That adds an extra layer to avoid compromised and modified
packages.

Right now, the standard for packaging in Python is Wheel files, and they should be
preferred as a general rule. Egg files should be limited to older packages that haven't
been upgraded to the new format.

We will see now how to create your own package.

Creating a package
Even if, in most cases, we will use third-party packages, at some point, it is possible
that you'll need to create your own package.

To do so, you need to create a setup.py file, which is the base of the package,
describing what is inside it. Base package code will look like this:

package
├── LICENSE
├── README
├── setup.py
└── src
 └─── <source code>

Egg files can be installed with the older easy_install script,
although this is no longer included in the latest versions of Python.
Check the documentation for setup tools on how to use easy_
install: https://setuptools.readthedocs.io/en/latest/
deprecated/easy_install.html.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://setuptools.readthedocs.io/en/latest/deprecated/easy_install.html
https://setuptools.readthedocs.io/en/latest/deprecated/easy_install.html

Package Management

[396]

The LICENSE and README files are not mandatory but are good to include for adding
information about the package. The LICENSE file will be included automatically in the
package.

The README file is not included, but we will include its content in a full description of
the package as part of the build process, as we will see later.

The code of the process is the setup.py file. Let's take a look at an example:

import setuptools

with open('README') as readme:
 description = readme.read()

setuptools.setup(
 name='wheel-package',
 version='0.0.1',
 author='you',
 author_email='me@you.com',
 description='an example of a package',
 url='http://site.com',
 long_description=description,
 classifiers=[
 'Programming Language :: Python :: 3',
 'Operating System :: OS Independent',
 'License :: OSI Approved :: MIT License',
],
 package_dir={'': 'src'},
 install_requires=[
 'requests',
],
 packages=setuptools.find_packages(where='src'),
 python_requires='>=3.9',
)

Choosing your own open source license can be difficult. You can
use the web (https://choosealicense.com/), which shows
different options and explains them. We will use the MIT license as
an example.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://choosealicense.com/

Chapter 11

[397]

The setup.py file essentially contains the setuptools.setup function, which defines
the package. It defines the following:

• name: The name of the package.
• version: The version of the package. It will be used when installing a

particular version or when ascertaining which is the latest version.
• author and author_email: It is good to include these to receive any possible

bug reports or requests.
• description: A short description.
• url: The URL for the project.
• long_description: A longer description. Here, we are reading the README file,

storing the content in the description variable:
with open('README') as readme:
 description = readme.read()

An important detail of setup.py is that it is dynamic, so we can use code to
determine the values of any parameter.

• classifier: Categories for allowing packages to be categorized in different
areas, such as the kinds of licenses and languages, or if the package is
supposed to work with a framework like Django. You can check the full list
of classifiers at the following link: https://pypi.org/classifiers/.

• package_dir: The subdirectory where the code of the package is located.
Here, we specify src. By default, it will use the same directory as setup.py,
but it's better to make the division so as to keep the code tidy.

• install_requires: Any dependency that needs to be installed with your
package. Here, we are adding requests as an example. Note that any second-
order dependencies (dependencies of requests) will be installed as well.

• packages: Using the setuptools.find_packages function, include everything
that's in the src directory.

• python_requires: Define what Python interpreters are compatible with the
package. In this case, we define it for Python 3.9 or higher.

Once the file is ready, you can run the setup.py script directly, for example, to check
that the data is correct:

$ python setup.py check
running check

This command will verify that the setup.py definition is correct and that no
mandatory elements are missing.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pypi.org/classifiers/

Package Management

[398]

Development mode
The setup.py file can be used to install the package in develop mode. This installs the
package in the current environment in a linked way. This means that any changes
to the code will be applied directly to the package after the interpreter is restarted,
making it easy to change and work with tests. Remember to run it while inside the
virtual environment:

(venv) $ python setup.py develop
running develop
running egg_info
writing src/wheel_package.egg-info/PKG-INFO
writing dependency_links to src/wheel_package.egg-info/dependency_
links.txt
writing requirements to src/wheel_package.egg-info/requires.txt
writing top-level names to src/wheel_package.egg-info/top_level.txt
reading manifest file 'src/wheel_package.egg-info/SOURCES.txt'
adding license file 'LICENSE'
...
Using venv/lib/python3.9/site-packages
Finished processing dependencies for wheel-package==0.0.1

The developed version can be uninstalled easily to clean up the environment:

(venv) $ python setup.py develop --uninstall
running develop
Removing /venv/lib/python3.9/site-packages/wheel-package.egg-link
(link to src)
Removing wheel-package 0.0.1 from easy-install.pth file

You can read more about development mode in the official documentation here:
https://setuptools.readthedocs.io/en/latest/userguide/development_mode.html.

This step installs the package directly in the current environment and can be used to
run tests and validate that the package is working as expected once installed. Once
this is done, we can prepare the package itself.

Pure Python package
To create a package, we first need to define what kind of package we want to create.
As we described before, we have three options: a source distribution, an Egg, or a
Wheel. Each one is defined by a different command in setup.py.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://setuptools.readthedocs.io/en/latest/userguide/development_mode.html

Chapter 11

[399]

To create a source distribution, we will use sdist (source distribution):

$ python setup.py sdist
running sdist
running egg_info
writing src/wheel_package.egg-info/PKG-INFO
writing dependency_links to src/wheel_package.egg-info/dependency_
links.txt
writing requirements to src/wheel_package.egg-info/requires.txt
writing top-level names to src/wheel_package.egg-info/top_level.txt
reading manifest file 'src/wheel_package.egg-info/SOURCES.txt'
adding license file 'LICENSE'
writing manifest file 'src/wheel_package.egg-info/SOURCES.txt'
running check
creating wheel-package-0.0.1
creating wheel-package-0.0.1/src
creating wheel-package-0.0.1/src/submodule
creating wheel-package-0.0.1/src/wheel_package.egg-info
copying files to wheel-package-0.0.1...
copying LICENSE -> wheel-package-0.0.1
copying README.md -> wheel-package-0.0.1
copying setup.py -> wheel-package-0.0.1
copying src/submodule/__init__.py -> wheel-package-0.0.1/src/submodule
copying src/submodule/submodule.py -> wheel-package-0.0.1/src/submodule
copying src/wheel_package.egg-info/PKG-INFO -> wheel-package-0.0.1/src/
wheel_package.egg-info
copying src/wheel_package.egg-info/SOURCES.txt -> wheel-package-0.0.1/
src/wheel_package.egg-info
copying src/wheel_package.egg-info/dependency_links.txt -> wheel-
package-0.0.1/src/wheel_package.egg-info
copying src/wheel_package.egg-info/requires.txt -> wheel-package-0.0.1/
src/wheel_package.egg-info
copying src/wheel_package.egg-info/top_level.txt -> wheel-
package-0.0.1/src/wheel_package.egg-info
Writing wheel-package-0.0.1/setup.cfg
creating dist
Creating tar archive
removing 'wheel-package-0.0.1' (and everything under it)

The dist package is available in the newly created dist subdirectory:

$ ls dist
wheel-package-0.0.1.tar.gz

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Package Management

[400]

To generate a proper Wheel package, we need to install the wheel module first:

$ pip install wheel
Collecting wheel
 Using cached wheel-0.37.0-py2.py3-none-any.whl (35 kB)
Installing collected packages: wheel
Successfully installed wheel-0.37.0

This adds the bdist_wheel command to the available commands in setup.py, which
generates a wheel:

$ python setup.py bdist_wheel
running bdist_wheel
running build
running build_py
installing to build/bdist.macosx-11-x86_64/wheel
...
adding 'wheel_package-0.0.1.dist-info/LICENSE'
adding 'wheel_package-0.0.1.dist-info/METADATA'
adding 'wheel_package-0.0.1.dist-info/WHEEL'
adding 'wheel_package-0.0.1.dist-info/top_level.txt'
adding 'wheel_package-0.0.1.dist-info/RECORD'
removing build/bdist.macosx-11-x86_64/wheel

And the wheel file is available, once more, in the dist subdirectory:

$ ls dist
wheel_package-0.0.1-py3-none-any.whl

Note that it also includes Python version 3.

All these created packages can be installed directly with pip:

$ pip install dist/wheel-package-0.0.1.tar.gz
Processing ./dist/wheel-package-0.0.1.tar.gz
...

Wheel packages compatible with both Python 2 and Python 3 can
be used. These wheels are called Universal. That was useful while
doing the transition between both versions. Hopefully, by now,
most of the new code in Python is using version 3 and we don't
have to worry about that.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[401]

Successfully built wheel-package
Installing collected packages: wheel-package
Successfully installed wheel-package-0.0.

$ pip uninstall wheel-package
Found existing installation: wheel-package 0.0.1
Uninstalling wheel-package-0.0.1:
 Would remove:
 venv/lib/python3.9/site-packages/submodule/*
 venv/lib/python3.9/site-packages/wheel_package-0.0.1.dist-info/*
Proceed (Y/n)? y
 Successfully uninstalled wheel-package-0.0.1

$ pip install dist/wheel_package-0.0.1-py3-none-any.whl
Processing ./dist/wheel_package-0.0.1-py3-none-any.whl
Collecting requests
 Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB)
...
Collecting urllib3<1.27,>=1.21.1
 Using cached urllib3-1.26.6-py2.py3-none-any.whl (138 kB)
...
Installing collected packages: wheel-package
Successfully installed wheel-package-0.0.

Note that the dependencies, in this case, requests, are installed automatically as well
as any second-level dependency, for example, urllib3.

The power of the packaging is not only applicable to packages that contain only
Python code. One of the most interesting features of wheels is the ability to generate
pre-compiled packages, which includes compiled code for a target system.

To be able to show that, we need to produce some Python module that contains code
that will be compiled. To do so, we need to take a small detour.

Cython
Python is capable of creating C and C++ language extensions that are compiled
and interact with the Python code. Python itself is written in C, so this is a natural
extension.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Package Management

[402]

While Python has a lot of great features, pure speed when performing certain
operations, such as numerical operations, is not its forte. This is where the C
extensions come into their own as they enable low-level code to be accessed, which
can be optimized and run faster than Python. Don't underestimate the possibility of
creating a small, localized C extension that speeds up critical parts of the code.

Creating a C extension, however, can be difficult. The interface between Python
and C is not straightforward, and the memory management required in C may be
daunting unless you have significant experience of working with the C language.

Fortunately, there are some alternatives to make the task easier. A very good one is
Cython.

Cython is a tool that compiles Python code with some extensions in C, so writing a C
extension is as simple as writing Python code. The code is annotated to describe the
C types for variables, but other than that, it looks pretty similar.

Cython files are stored as .pyx files. Let's see an example, which will determine
whether a number is a prime number with the help of the wheel_package_compiled.
pyx file:

def check_if_prime(unsigned int number):
 cdef int counter = 2

 if number == 0:
 return False

If you want to dive deep into the topic and create your own C/C++
extensions, you can start by reading the official documentation at
https://docs.python.org/3/extending/index.html.

Other options are available, such as creating extensions in Rust.
You can check how to do this in the following article: https://
developers.redhat.com/blog/2017/11/16/speed-python-
using-rust.

A complete description of Cython and all its possibilities is beyond
the scope of this book. We present just a brief introduction.
Please check the complete documentation for more information:
https://cython.org/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.python.org/3/extending/index.html
https://developers.redhat.com/blog/2017/11/16/speed-python-using-rust
https://developers.redhat.com/blog/2017/11/16/speed-python-using-rust
https://developers.redhat.com/blog/2017/11/16/speed-python-using-rust
https://cython.org/

Chapter 11

[403]

 while counter < number:
 if number % counter == 0:
 return False

 counter += 1

 return True

The code is checking whether a positive number is a prime number:

• It returns False if the input is zero.
• It tries to divide the number by a number from 2 to the number. If any

division is exact, it returns False as the number is not a prime number.
• If no division is exact, or the number is lower than 2, it returns True.

The code is not exactly Pythonic, as it will be translated into C. It's more efficient to
avoid Python calls like range or similar. Don't be afraid to test different approaches
to see what's faster to execute.

Once the pyx file is ready, it can be compiled and imported into Python, using
Cython. First, we need to install Cython:

$ pip install cython
Collecting cython
 Using cached Cython-0.29.24-cp39-cp39-macosx_10_9_x86_64.whl (1.9 MB)
Installing collected packages: cython
Successfully installed cython-0.29.24

Now, using pyximport, we can import the module directly like a py file. Cython will
automatically compile it if necessary:

>>> import pyximport
>>> pyximport.install()
(None, <pyximport.pyximport.PyxImporter object at 0x10684a190>)
>>> import wheel_package_compiled

The code is not particularly good; it attempts too many divisions
in general. It is just for the purpose of showing example code that
may make sense to be compiled and is not too complicated.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

Package Management

[404]

venv/lib/python3.9/site-packages/Cython/Compiler/Main.py:369:
FutureWarning: Cython directive 'language_level' not set, using 2 for
now (Py2). This will change in a later release! File: wheel_package_
compiled.pyx
 tree = Parsing.p_module(s, pxd, full_module_name)
.pyxbld/temp.macosx-11-x86_64-3.9/pyrex/wheel_package_
compiled.c:1149:35: warning: comparison of integers of different signs:
'int' and 'unsigned int' [-Wsign-compare]
 __pyx_t_1 = ((__pyx_v_counter < __pyx_v_number) != 0);
                  ~~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~
1 warning generated.
>>> wheel_package_compiled.check_if_prime(5)
   True

You can see that the compiler produces an error because there's a comparison 
between unsigned int and int (between counter and number). 

Once the code is compiled, Cython creates both a wheel_package_compiled.c file, 
local to the directory, and the compiled .so file, which, by default, is stored in $HOME/ 
.pyxbld:

$ ls ~/.pyxbld/lib.macosx-11-x86_64-3.9/
wheel_package_compiled.cpython-39-darwin.so

Using pyximport is good for local development, but we can create a package that 
compiles and packages it as part of the build process. 

This has been deliberately left to clearly show when the 
compilation takes place and that any compilation feedback, such as 
warnings or errors, will be displayed.

Note that this will be specific to your system. Here, we are showing 
a module compiled for macOS.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11

[ 405 ]

Python package with binary code
We will use the code we created using Cython to show how to build a package that 
combines Python code with precompiled code. We will generate a Wheel file.

We create a package called wheel_package_compiled that extends the previous 
example package, wheel_package, with the code presented to be compiled in Cython.

The structure of the package will be like this:

wheel_package_compiled
    ├── LICENSE
    ├── README
    ├── src
    │   ├── __init__.py
    │   ├── submodule
    │   │   ├── __init__.py
    │   │   └── submodule.py
    │   ├── wheel_package.py
    │   └── wheel_package_compiled.pyx
    └── setup.py

This is the same as the package introduced previously, but with the addition of the 
.pyx file. The setup.py file needs to add some changes:

import setuptools
from Cython.Build import cythonize
from distutils.extension import Exteldnsion

extensions = [
    Extension("wheel_package_compiled", ["src/wheel_package_compiled.
pyx"]),
]

The code is available in GitHub at https://github.com/
PacktPublishing/Python-Architecture-Patterns/tree/
main/chapter_11_package_management/wheel_package_
compiled.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_11_package_management/wheel_package_compiled
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_11_package_management/wheel_package_compiled
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_11_package_management/wheel_package_compiled
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_11_package_management/wheel_package_compiled


Package Management

[ 406 ]

with open('README') as readme:
    description = readme.read()

setuptools.setup(
    name='wheel-package-compiled',
    version='0.0.1',
    author='you',
    author_email='me@you.com',
    description='an example of a package',
    url='http://site.com',
    long_description=description,
    classifiers=[
        'Programming Language :: Python :: 3',
        'Operating System :: OS Independent',
        'License :: OSI Approved :: MIT License',
    ],
    package_dir={'': 'src'},
    install_requires=[
        'requests',
    ],
    ext_modules=cythonize(extensions),
    packages=setuptools.find_packages(where='src'),
    python_requires='>=3.9',
)

The changes introduced, other than the name change for the package, are all related to 
the new extension:

from Cython.Build import cythonize
from distutils.extension import Extension

extensions = [
    Extension("wheel_package_compiled", ["src/wheel_package_compiled.
pyx"]),
]
...
ext_modules=cythonize(extensions),

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11

[ 407 ]

The extension definition targets the name of the module to add, and the location 
of the source. With the cythonize function, we are indicating that we want to use 
Cython to compile it.

Once this is configured, we can run the code to generate the wheel, calling setup.py:

$ python setup.py bdist_wheel
Compiling src/wheel_package_compiled.pyx because it changed.
[1/1] Cythonizing src/wheel_package_compiled.pyx
...
running bdist_wheel
running build
running build_py
...
creating 'dist/wheel_package_compiled-0.0.1-cp39-cp39-macosx_11_0_
x86_64.whl' and adding 'build/bdist.macosx-11-x86_64/wheel' to it
adding 'wheel_package_compiled.cpython-39-darwin.so'
adding 'submodule/__init__.py'
adding 'submodule/submodule.py'
adding 'wheel_package_compiled-0.0.1.dist-info/LICENSE'
adding 'wheel_package_compiled-0.0.1.dist-info/METADATA'
adding 'wheel_package_compiled-0.0.1.dist-info/WHEEL'
adding 'wheel_package_compiled-0.0.1.dist-info/top_level.txt'
adding 'wheel_package_compiled-0.0.1.dist-info/RECORD'
removing build/bdist.macosx-11-x86_64/wheel

The compiled Wheel is available, as before, in the dist subdirectory.

$ ls dist
wheel_package_compiled-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl

Compared with the Wheel created previously, we can see that it adds the platform 
and hardware architecture (macOS 11 and x86 64 bits, which is the computer used to 
compile it while writing the book). The cp39 part shows that it used the Python 3.9 
ABI (Application Binary Interface).

Extension modules are modules compiled in C/C++. In this case, 
Cython will run the intermediate steps to be sure that the proper 
.c file is the one being compiled.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Package Management

[ 408 ]

The created Wheel is ready to use for the same architecture and system. The Wheel 
package directly includes all the compiled code, so the package will install quickly, 
as only copying files is involved. Also, there will be no need to install compilation 
tools and dependencies.

When working with packages that need to be installed in multiple architectures or 
systems, you'll need to create an individual Wheel for each case and add the source 
distribution file to allow other systems to work with it. 

But, unless you are creating a general package to be submitted to PyPI, the package 
will be for self-consumption, and normally you only need to create a Wheel file for 
your specific use case.

Which leads to the same step. What if you want to share your module with the whole 
Python community?

Uploading your package to PyPI
PyPI is open to accepting packages from any developer. We can create a new account 
and upload our packages to the official Python repo to allow any project to use it.

To help with testing and to be sure that we can verify the process, there's a testing 
site called TestPyPI at https://test.pypi.org/ that can be used to perform tests and 
to upload your package first.

One of the great characteristics of open source projects, like Python 
and its ecosystem, is the ability to use code that is gracefully shared 
by other developers. While not mandatory, it is always good 
to give back and to share code that could be of interest to other 
developers to increase the usefulness of the Python library. 

Be a good participant in the Python ecosystem and share code that 
could be useful to others.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://test.pypi.org/


Chapter 11

[ 409 ]

Figure 11.4: TestPyPI main page

The site is the same as the production one but indicates with a banner that it's the 
testing site.

You can register a new user at https://test.pypi.org/account/register/. After 
that, you'll need to create a new API token to allow the package to be uploaded.

Remember to verify your email. Without a verified email, you 
won't be able to create an API token.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://test.pypi.org/account/register/


Package Management

[ 410 ]

If there's a problem with the API token or you lose it, you can always delete it and 
start again.

Figure 11.5: You'll need to grant the full scope to upload a new package

Create a new token and copy it to a safe place. The token (which starts with pypi-) 
will only be displayed once for safety reasons, so be careful with it.

The next step is to install the twine package, which simplifies the process of 
uploading. Be sure to install it in our virtual environment:

(venv) $ pip install twine
Collecting twine
  Downloading twine-3.4.2-py3-none-any.whl (34 kB)
...

The token replaces the login and password when uploading a 
package. We will see later how to use it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11

[ 411 ]

Installing collected packages: zipp, webencodings, six, Pygments, 
importlib-metadata, docutils, bleach, tqdm, rfc3986, requests-toolbelt, 
readme-renderer, pkginfo, keyring, colorama, twine
Successfully installed Pygments-2.10.0 bleach-4.1.0 colorama-0.4.4 
docutils-0.17.1 importlib-metadata-4.8.1 keyring-23.2.0 pkginfo-1.7.1 
readme-renderer-29.0 requests-toolbelt-0.9.1 rfc3986-1.5.0 six-1.16.0 
tqdm-4.62.2 twine-3.4.2 webencodings-0.5.1 zipp-3.5.0

Now we can upload the packages created in the dist subdirectory. 

We have now built the compiled Wheel and the source distribution:

(venv) $ ls dist
wheel-package-compiled-0.0.1.tar.gz
wheel_package_compiled-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl

Let's upload the packages. We need to indicate that we want to upload to the testpy 
repo. We will use __token__ as the username and the full token (including the pypi- 
prefix) as the password:

(venv) $ python -m twine upload --repository testpypi dist/*
Uploading distributions to https://test.pypi.org/legacy/
Enter your username: __token__
Enter your password:
Uploading wheel_package_compiled-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl
100%|██████████████████████████████████████████████████████████████████
█████| 12.6k/12.6k [00:01<00:00, 7.41kB/s]
Uploading wheel-package-compiled-0.0.1.tar.gz
100%|██████████████████████████████████████████████████████████████████
█████| 24.0k/24.0k [00:00<00:00, 24.6kB/s]

View at:
https://test.pypi.org/project/wheel-package-compiled/0.0.1/

For our example, we will use the same package created previously, 
but keep in mind that trying to reupload it may not work, as there 
may already be a package called that in TestPyPI. TestPyPI is 
not permanent, and regularly deletes packages, but the example 
uploaded as part of the writing process of the book could still be 
there. To do your tests, create your own package with a unique 
name.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Package Management

[ 412 ]

The package is now uploaded! We can check the page on the TestPyPI website.

Figure 11.6: Main page for the package

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11

[ 413 ]

You can verify the uploaded files by clicking Download files:

Figure 11.7: Verifying the uploaded files

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Package Management

[ 414 ]

You can also access the files through the search function:

Figure 11.8: The package available in search

You can now download the package directly through pip, but you need to indicate 
that the index to use is the TestPyPI one. To ensure a clean installation, create a new 
virtual environment as follows:

$ python3 -m venv venv2
$ source ./venv2/bin/activate
(venv2) $ pip install --index-url https://test.pypi.org/simple/ wheel-
package-compiled
Looking in indexes: https://test.pypi.org/simple/
Collecting wheel-package-compiled
  Downloading https://test-files.pythonhosted.org/packages/87/c3/88129
8cdc8eb6ad23456784c80d585b5872581d6ceda6da3dfe3bdcaa7ed/wheel_package_
compiled-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl (9.6 kB)
Collecting requests
  Downloading https://test-files.pythonhosted.org/packages/6d/00/8ed
1b6ea43b10bfe28d08e6af29fd6aa5d8dab5e45ead9394a6268a2d2ec/requests-
2.5.4.1-py2.py3-none-any.whl (468 kB)
     |████████████████████████████████| 468 kB 634 kB/s

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11

[ 415 ]

Installing collected packages: requests, wheel-package-compiled
Successfully installed requests-2.5.4.1 wheel-package-compiled-0.0.1

Note that the version downloaded is the Wheel one, as it is the right target for the 
compiled version. It also correctly downloads the specified requests dependency.

You can now test the package through the Python interpreter:

(venv2) $ python
Python 3.9.6 (default, Jun 29 2021, 05:25:02)
[Clang 12.0.5 (clang-1205.0.22.9)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import wheel_package_compiled
>>> wheel_package_compiled.check_if_prime(5)
True

The package is now installed and ready to use. The next step is to upload this 
package to production PyPI instead of TestPyPI. This is totally analogous to the 
process that we've seen here, creating an account in PyPI and proceeding from there. 

But, what if the objective of the package is not to create a publicly available package? 
It is possible that we need to create our own index with our packages.

Creating your own private index
Sometimes, you'll need to have your own private index, so you can serve your own 
packages without opening them to the full internet, for internal packages that need 
to be used across the company, but where it doesn't make sense to upload them to 
the public PyPI.

You can create your own private index that can be used to share those packages and 
install them by calling to that index.

To serve the packages, we need to run a PyPI server locally. There are several options 
in terms of available servers that can be used, but an easy option is pypiserver 
(https://github.com/pypiserver/pypiserver).

pypiserver can be installed in several ways; we will see how to 
run it locally, but to serve it correctly, you'll need to install it in a 
way that's available in your network. Check the documentation to 
see several options, but a good option is to use the official Docker 
image available.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/pypiserver/pypiserver


Package Management

[ 416 ]

To run pypiserver, first, install the package using pip and create a directory for 
storing the packages:

$ pip install pypiserver
Collecting pypiserver
  Downloading pypiserver-1.4.2-py2.py3-none-any.whl (77 kB)
     |████████████████████████████████| 77 kB 905 kB/s
Installing collected packages: pypiserver
Successfully installed pypiserver-1.4.2
$ mkdir ./package-library

Start the server. We use the parameter -p 8080 to serve it in that port, the directory 
to store the packages, and -P . -a . to facilitate the uploading of packages without 
authentication:

$ pypi-server -P . -a . -p 8080 ./package-library

Open a browser and check http://localhost:8080.

Figure 11.9: Local pypi server

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11

[ 417 ]

You can check the available packages in this index by going to http://
localhost:8080/simple/.

Figure 11.10: Empty index so far

We now need to upload the packages, using twine again, but pointing to our private 
URL. As we are able to upload with no authentication, we can enter an empty 
username and password:

$ python -m twine upload --repository-url http://localhost:8080 dist/*
Uploading distributions to http://localhost:8080
Enter your username:
Enter your password:
Uploading wheel_package_compiled-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl
100%|████████████████████████████████| 12.6k/12.6k [00:00<00:00, 
843kB/s]
Uploading wheel-package-compiled-0.0.1.tar.gz
100%|████████████████████████████████| 24.0k/24.0k [00:00<00:00, 
2.18MB/s]

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Package Management

[ 418 ]

The index is now showing the package available.

Figure 11.11: Showing the package uploaded

Figure 11.12: All the uploaded files for the package

The files are also uploaded to the package-library directory:

$ ls package-library
wheel-package-compiled-0.0.1.tar.gz
wheel_package_compiled-0.0.1-cp39-cp39-macosx_11_0_x86_64.whl

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11

[ 419 ]

Any file added to package-library will also be served, allowing packages to be 
added by moving them to the directory, although that could be complicated once the 
server is deployed properly to the packages over the network.

The package can now be downloaded and installed, pointing to your private index 
using the –index-url parameter:

$ pip install --index-url http://localhost:8080 wheel-package-compiled
Looking in indexes: http://localhost:8080
Collecting wheel-package-compiled
  Downloading http://localhost:8080/packages/wheel_package_compiled-
0.0.1-cp39-cp39-macosx_11_0_x86_64.whl (9.6 kB)
…
Successfully installed certifi-2021.5.30 charset-normalizer-2.0.4 idna-
3.2 requests-2.26.0 urllib3-1.26.6 wheel-package-compiled-0.0.1
$ python
Python 3.9.6 (default, Jun 29 2021, 05:25:02)
[Clang 12.0.5 (clang-1205.0.22.9)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import wheel_package_compiled
>>> wheel_package_compiled.check_if_prime(5)
True

This tests that the module can be imported and executed after installation.

Summary
In this chapter, we described when it's a good idea to create a standard package and 
the caveats and requirements that we should add to be sure that we are taking a 
good decision. In essence, creating a new package is creating a new project, and we 
should give the proper ownership, documentation, and so on, as expected of other 
projects in the organization.

We described the simplest possible package in Python just by structuring code, but 
without creating a proper package. This acts as a baseline on how the code should be 
structured later.

We continued describing what the current packaging environment is and what are 
the different elements that are part of it, like PyPI, which is the official source for 
publicly available packages, and how to create virtual environments to not cross-
contaminate different environments when requiring different dependencies. We also 
described the Wheel package, which will be the kind of package that we will create 
later.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Package Management

[ 420 ]

Next, we described how to create such a package, creating a setup.py file. We 
described how to install it in development mode to be able to do tests and how to 
build and get the package ready.

We took a small detour to explain how to generate code to be compiled with 
Cython, an easy way to create Python extensions writing in Python code with some 
extensions, to generate C code automatically.

We used Cython code to show how to generate a compiled Wheel, allowing the 
distribution of already precompiled code without needing to be compiled on 
installation.

We showed how to upload packages to PyPI to distribute publicly (showing how to 
upload to TestPyPI, allowing the upload of packages to be tested) and described how 
to create your own individual index so that you can distribute your own packages 
privately.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:  
https://packt.link/PythonArchitechture

There are some alternatives to creating packages instead of using 
the standard setup.py file. You can take a look at the Poetry 
package (https://python-poetry.org/) to see how to manage 
packages in a more integrated way, especially if the package has 
many dependencies.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://python-poetry.org/


Our work with an architecture is not finished when a system is up and running. A 
working application requires ongoing maintenance and effort to keep it running 
successfully.

Systems will be in a maintenance phase during the longest part of their life cycles. 
This phase is where we add features, detect and fix defects, and analyze the system's 
behavior to prevent problems. 

To be able to do that successfully, we need to have tools to cover two basic elements:

• Observability: This is the capability of knowing what's going on in a live 
system. Low-observability systems are difficult or even impossible to 
understand, which makes it difficult to know if there are problems or work 
out the cause of those problems. In high-observability systems, it's easy 
to infer the internal state and the events flowing inside the system, which 
allows for easy detection of the critical structures where problems are being 
generated. 
The main tools for observing systems are logs and metrics, which are used in 
conjunction to allow us to understand the system and analyze its behavior.
Observability is a property of the system itself. Typically, monitoring is the 
action of obtaining information about the current or past state of the system. 
It's all a bit of a naming debate, but technically, you monitor the system to 
collect the observable parts of it.

Part IV
Ongoing 

operations

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



• Analysis: To detect problems in more controlled situations, we have two 
important tools, debugging and profiling. The first is a staple of the 
development process, working step by step through code to understand how 
a piece of code works and ascertain why it's doing what it is doing. Profiling 
is instrumenting the code to show how it works and, specifically, determine 
which parts take the most time to execute, to allow you to act on them and 
improve their performance. 
These two tools work complementarily with one another and allow us to fix 
and improve different kinds of problems after they've been detected.

In this section, we will also talk about the challenge of making changes while the 
system is in operation. The only constant in software is change, and balancing 
existing systems with new functionalities is a critical ability. Part of this task is to 
coordinate between different teams so they are aware of the implications of their 
changes and can work as a single unit.

This section comprises of the following chapters:

• Logging
• Metrics
• Profiling
• Debugging
• Ongoing architecture

We will start by understanding how to use logs for monitoring.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 423 ]

12
Logging

One of the basic elements of monitoring and observability is logs. Logs allow us to 
detect actions that are happening in a running system. That information can be used 
to analyze the behavior of the system, especially any errors or bugs that may arise, 
giving us useful insight into what is actually going on.

Using logs correctly is deceptively difficult, though. It's easy to collect too much or 
too little information, or to log the wrong information. In this chapter, we will see 
some of the key elements of what to collect, and the general strategy to follow to 
ensure that logs are used to their best effect.

In this chapter, we'll cover the following topics:

• Log basics
• Producing logs in Python
• Detecting problems through logs
• Log strategies
• Adding logs while developing
• Log limitations

Let's start with the basic principles of logging.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Logging

[ 424 ]

Log basics
Logs are basically messages produced by the system as it runs. These messages are 
produced by specific pieces of code as they are executed, allowing us to track actions 
happening in the code.

Logs can be completely generic, like "Function X is called" or can include some context 
of the specifics of the execution, like "Function X is called with parameter Y."

Normally, logs are generated as plaintext messages. While there are other options, 
pure plaintext is very easy to deal with, can be read easily, is flexible in its format, 
and can be searched with pure text tools like grep. These tools are normally very fast 
and most developers and sysadmins know how to use them.

As well as the main message text, each log contains some metadata about what 
system produced the log, what time the log was created, and so on. If the log is in 
text format, this is normally attached to the start of the line.

Another important metadata value is the severity of the log. This allows us to 
categorize the different logs by their relative importance. The standard severity 
levels, in order of less to more important, are DEBUG, INFO, WARNING, and ERROR. 

It's important to categorize the logs with their proper severity and filter out 
unimportant messages to focus on the more important ones. Each logging facility can 
be configured to only produce logs at one severity level or more.

A standard and consistent log format helps you with searching, 
filtering, and sorting the messages. Ensure that you use consistent 
formats across your different systems.

The CRITICAL level is less used, but it's useful to show catastrophic 
errors.

It's possible to add custom log levels instead of the predefined 
ones. This is generally a bad idea and should be avoided in 
most cases, as the log levels are well understood by all tools and 
engineers. We will describe later in this chapter how to define a 
strategy per level to make the best of each level.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 12

[ 425 ]

In a system serving requests, either as request-response or asynchronously, most 
of the logs will be generated as part of dealing with a request, which will produce 
several logs indicating what the request is doing. Because more than one request will 
normally be undergoing processing at once, the logs will be generated intermixed. 
For example, consider the following logs:

Sept 16 20:42:04.130 10.1.0.34 INFO web: REQUEST GET /login
Sept 16 20:42:04.170 10.1.0.37 INFO api: REQUEST GET /api/login
Sept 16 20:42:04.250 10.1.0.37 INFO api: REQUEST TIME 80 ms
Sept 16 20:42:04.270 10.1.0.37 INFO api: REQUEST STATUS 200
Sept 16 20:42:04.360 10.1.0.34 INFO web: REQUEST TIME 230 ms
Sept 16 20:42:04.370 10.1.0.34 INFO web: REQUEST STATUS 200

The preceding logs show two different services, as indicated by the different IP 
addresses (10.1.0.34 and 10.1.0.37) and the two different service types (web and 
api). Though this can be enough to separate the requests, it's a good idea to create a 
single request ID to be able to group the requests in the following way:

Sept 16 20:42:04.130 10.1.0.34 INFO web: [4246953f8] REQUEST GET /login
Sept 16 20:42:04.170 10.1.0.37 INFO api: [fea9f04f3] REQUEST GET /api/
login
Sept 16 20:42:04.250 10.1.0.37 INFO api: [fea9f04f3] REQUEST TIME 80 ms
Sept 16 20:42:04.270 10.1.0.37 INFO api: [fea9f04f3] REQUEST STATUS 200
Sept 16 20:42:04.360 10.1.0.34 INFO web: [4246953f8] REQUEST TIME 230 
ms
Sept 16 20:42:04.370 10.1.0.34 INFO web: [4246953f8] REQUEST STATUS 200

As we saw in Chapter 5, The Twelve-Factor App Methodology, in the Twelve-Factor 
App methodology, logs should be treated as an event stream. This means that the 
application itself should not be concerned with the storage and treatment of logs. 
Instead, the logs should be directed to stdout. From there, while developing the 
application, the developer can extract the information while it's running.

In microservices environments, requests will flow from one service 
to the other, so it's a good idea to create a request ID that's shared 
across services so the full cross-service flow can be understood. 
To do that, the request ID needs to be created by the first service 
and then transmitted to the next, typically as a header in an HTTP 
request.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Logging

[ 426 ]

In production environments, stdout should be captured so that other tools can use it 
and then routed, annexing any different sources into a single stream, and then stored 
or indexed for later consulting. These tools should be configured in the production 
environment, and not in the app itself. 

Possible tools for this rerouting include alternatives like Fluentd (https://github.
com/fluent/fluentd) or even the old favorite combination of a direct to logger Linux 
command to create system logs and then sending those logs to a configured rsyslog 
(https://www.rsyslog.com/) server that can forward and aggregate them.

No matter how we collect logs, a typical system will produce a lot of them, and 
they need to be stored somewhere. While each individual log is small, aggregating 
thousands of them uses a significant amount of space. Any log system should be 
configured to have a policy on how much data it should accept to avoid growing 
indefinitely. In general, a retention policy based on time (such as keeping logs from 
the last 15 days) is the best approach, as it will be easy to understand. Finding the 
balance between how far back in the past you need to be able look and the amount of 
space the system uses is important.

Generating log entries is easy, as we will see in the next section, Producing logs in 
Python.

Producing logs in Python
Python includes a standard module to produce logs. This module is easy to use, with 
a very flexible configuration, but it can be confusing if you don't understand the way 
it operates.

A basic program to create logs looks like this. This is available as basic_logging.
py on GitHub at https://github.com/PacktPublishing/Python-Architecture-
Patterns/tree/main/chapter_12_logging:

Be sure to check the retention policy when enabling any new log 
service, be it local or cloud-based, to make sure it's compatible 
with your defined retention period. You won't be able to analyze 
anything that happened before the time window. Double-
check that the rate of log creation is as expected and that space 
consumption is not making the effective time window in which 
you can collect logs smaller. You don't want to find out that you 
unexpectedly went over quota while you were tracking a bug.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/fluent/fluentd
https://github.com/fluent/fluentd
https://www.rsyslog.com/
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_12_logging
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_12_logging


Chapter 12

[ 427 ]

import logging

# Generate two logs with different severity levels
logging.warning('This is a warning message')
logging.info('This is an info message')

The .warning and .info methods create logs with the corresponding severity 
message. The message is a text string. 

When executed, it shows the following:

$ python3 basic_logging.py
WARNING:root:This is a warning message

The logs are, by default, routed to stdout, which is what we want, but it is 
configured not to display INFO logs. The format of the logs is also the default, which 
doesn't include a timestamp.

To add all this information, we need to understand the three basic elements used for 
logging in Python:

• A formatter, which describes how the full log is going to be presented, 
attaching metadata like the timestamp or the severity.

• A handler, which decides how the logs are propagated. It sets the format of 
the logs through the formatter, as defined above.

• A logger, which produces the logs. It has one or more handlers that describe 
how the logs are propagated.

With this information, we can configure the logs to specify all the details we want:

import sys
import logging

# Define the format
FORMAT = '%(asctime)s.%(msecs)dZ:APP:%(name)s:%(levelname)s:%(message)
s'
formatter = logging.Formatter(FORMAT, datefmt="%Y-%m-%dT%H:%M:%S")

# Create a handler that sends the logs to stdout
handler = logging.StreamHandler(stream=sys.stdout)
handler.setFormatter(formatter)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Logging

[ 428 ]

# Create a logger with name 'mylogger', adding the handler and setting
# the level to INFO
logger = logging.getLogger('mylogger')
logger.addHandler(handler)
logger.setLevel(logging.INFO)

# Generate three logs
logger.warning('This is a warning message')
logger.info('This is an info message')
logger.debug('This is a debug message, not to be displayed')

We define the three elements in the same order that we saw before. First the 
formatter, then the handler, which sets the formatter, and finally the logger, which 
adds the handler.

The formatter has the following format:

FORMAT = '%(asctime)s.%(msecs)dZ:APP:%(name)s:%(levelname)s:%(message)
s'
formatter = logging.Formatter(FORMAT, datefmt="%Y-%m-%dT%H:%M:%S")

FORMAT is composed in Python % format, which is an old way to describe strings. Most 
elements are described as %(name)s, where the final s character means string format. 
Here's a description of each element:

• asctime sets the timestamp in a human-readable format. We describe 
it in the datefmt argument to follow the ISO 8601 format. We also add 
the milliseconds next and a Z to get the timestamp in full ISO 8601 form. 
%(msecs)d with a d at the end means that we print the value as an integer. 
This is to limit the value to milliseconds and not show any extra resolution, 
which is available as a fractional value.

• name is the name of the logger, as we will describe later. We add also APP to 
differentiate between different applications.

• levelname is the severity of the log, such as INFO, WARNING, or ERROR.
• message, finally, is the log message.

Once we have defined the formatter, we can move to the handler:

handler = logging.StreamHandler(stream=sys.stdout)
handler.setFormatter(formatter)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 12

[ 429 ]

The handler is a StreamHandler, and we set the destination of the stream to be sys.
stdout, which is the Python-defined variable that points to stdout.

Once the handler is defined, we can create the logger:

logger = logging.getLogger('mylogger')
logger.addHandler(handler)
logger.setLevel(logging.INFO)

The first thing to do is to create a name for the logger, which here we define as 
mylogger. This allows us to divide the logs of the application into subsections. We 
append the handler using .addHandler.

Finally, we define the level to log as INFO using the .setLevel method. This will 
display all logs of the level INFO and higher, while those lower won't be.

If we run the file, we see the whole configuration coming together:

$ python3 configured_logging.py
2021-09-18T23:15:24.563Z:APP:mylogger:WARNING:This is a warning message
2021-09-18T23:15:24.563Z:APP:mylogger:INFO:This is an info message

We can see that:

• The time is defined in ISO 8601 format as 2021-09-18T23:15:24.563Z. This is 
a combination of the asctime and msec parameters.

• The APP and mylogger parameters allow us to filter by application and 
submodule.

• The severity is displayed. Note that there's a DEBUG message that isn't 
displayed, as the minimum level configured is INFO.

The logging module in Python is capable of high levels of configuration. Check 
the official documentation for more information at https://docs.python.org/3/
library/logging.html.

There are more handlers available, like FileHandler to send the 
logs to a file, SysLogHandler to send logs to a syslog destination, 
and even more advanced cases like TimeRotatingFileHandler, 
which rotates the logs based on time, meaning it stores the last 
defined time, and archives older versions. You can see more 
information of all available handlers in the documentation at 
https://docs.python.org/3/howto/logging.html#useful-
handlers.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/howto/logging.html#useful-handlers
https://docs.python.org/3/howto/logging.html#useful-handlers


Logging

[ 430 ]

Detecting problems through logs
For any problem in a running system, there are two kind of errors that can occur: 
expected and unexpected. In this section, we will see the differences between them in 
terms of logs and how we handle them.

Detecting expected errors
Expected errors are errors that are detected explicitly by creating an ERROR log in the 
code. For example, the following code produces an ERROR log when the accessed URL 
returns a status code different from 200 OK:

import logging
import requests

URL = 'https://httpbin.org/status/500'

response = requests.get(URL)
status_code = response.status_code
if status_code != 200:
    logging.error(f'Error accessing {URL} status code {status_code}')

This code, when executed, triggers an ERROR log:

$ python3 expected_error.py
ERROR:root:Error accessing https://httpbin.org/status/500 status code 
500

This is a common pattern to access an external URL and validate that it has been 
accessed correctly. The block where the log is generated could perform some 
remediation or a retry, among other things.

This is an example of an expected error. We planned in advance for something that 
we didn't want to happen, but understood that there's a possibility of it happening. 
By planning in advance, the code is ready to process the error and capture it 
adequately.

Here, we use the https://httpbin.org service, a simple HTTP 
request and response service that can be used to test code. In 
particular, the https://httpbin.org/status/<code> endpoint 
returns the specified status code, making it easy to generate errors.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://httpbin.org


Chapter 12

[ 431 ]

In this case, we can describe the situation clearly enough, and provide context to 
understand what is happening. The problem is obvious, even if the solution may not 
be.

These kinds of errors are relatively easy to deal with since they describe foreseen 
problems. 

For example, the site may be unavailable, there could be an authentication problem, 
or perhaps the base URL is misconfigured.

Other examples of this type of error include connections to databases and data being 
stored in a deprecated format. 

Capturing unexpected errors
But expected errors are not the only ones that can occur. Unfortunately, any running 
system will surprise you with all kinds of unexpected behavior that will break the 
code in creative ways. Unexpected errors in Python are normally produced by 
an exception being raised at some point in the code when that exception won't be 
captured.

For example, imagine that when making a small change to some code, we introduce 
a typo:

import logging
import requests

URL = 'https://httpbin.org/status/500'

logging.info(f'GET {URL}')
response = requests.ge(URL)
status_code = response.status_code
if status_code != 200:
    logging.error(f'Error accessing {URL} status code {status_code}')

Keep in mind that in some cases, it's possible for the code to 
deal with a certain situation without failing, but for it still to be 
considered an error. For example, maybe you want to detect if an 
old authentication system is still in use by someone. This method 
of adding ERROR or WARNING logs when deprecated actions are 
detected can enable you to take actions to remedy the situation.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Logging

[ 432 ]

Note that in line 8, we introduced a typo:

response = requests.ge(URL)

The correct .get call has been replaced by .ge. When we run it, it produces the 
following error:

$ python3 unexpected_error.py
Traceback (most recent call last):
  File "./unexpected_error.py", line 8, in <module>
    response = requests.ge(URL)
AttributeError: module 'requests' has no attribute 'ge'

By default in Python, it will show the error and stack trace in the stdout. When the 
code is executed as part of a web server, this is sometimes enough to send these 
messages as ERROR logs, depending on how the configuration is set up.

If you need to create a script that needs to be running endlessly and is protected 
against any unexpected errors, be sure to use a try..except block as it's generic, so 
any possible exception will be captured and handled.

For example, let's adjust the code to make a request every few seconds. The code is 
available in GitHub at https://github.com/PacktPublishing/Python-Architecture-
Patterns/tree/main/chapter_12_logging:

import logging
import requests
from time import sleep

logger = logging.getLogger()
logger.setLevel(logging.INFO)

Any web server will capture and route these messages properly 
toward the logs and generate a proper 500 status code, indicating 
that there has been an unexpected error. The server will still be 
available for the next request.

Any Python exception that's properly captured with a specific 
except block can be considered an expected error. Some of them 
may require ERROR messages to be generated, but others may be 
captured and handled without requiring such information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_12_logging
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_12_logging


Chapter 12

[ 433 ]

while True:
    
    try:
        sleep(3)
        logging.info('--- New request ---')
    
        URL = 'https://httpbin.org/status/500'

        logging.info(f'GET {URL}')
        response = requests.ge(URL)
        scode = response.status_code
        if scode != 200:
            logger.error(f'Error accessing {URL} status code {scode}')
    except Exception as err:
        logger.exception(f'ERROR {err}')

The key element is the following endless loop:

while True:
    try:
        code
    except Exception as err:
        logger.exception(f'ERROR {err}')

The try..except block is inside the loop, so even if there's an error, the loop will be 
uninterrupted. If there's any error, except Exception will capture it, no matter what 
the exception is.

To be sure that not only is the error logged, but also the full stack trace, we log it 
using .exception instead of .error. This extends the information over a single text 
message while logging it with ERROR severity.

When we run the command, we get these logs. Be sure to stop it by pressing Ctrl + C:

$ python3 protected_errors.py
INFO:root:--- New request ---
INFO:root:GET https://httpbin.org/status/500
ERROR:root:ERROR module 'requests' has no attribute 'ge'

This is sometimes referred to as Pokemon exception handling, as in 
"Gotta catch 'em all." This should be restricted to a kind of "last-
resort safety net." In general, not being precise with the exceptions 
to be captured is a bad idea, as you can hide errors by handling 
them incorrectly. Errors should never pass silently.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Logging

[ 434 ]

Traceback (most recent call last):
  File "./protected_errors.py", line 18, in <module>
    response = requests.ge(URL)
AttributeError: module 'requests' has no attribute 'ge'
INFO:root:--- New request ---
INFO:root:GET https://httpbin.org/status/500
ERROR:root:ERROR module 'requests' has no attribute 'ge'
Traceback (most recent call last):
  File "./protected_errors.py", line 18, in <module>
    response = requests.ge(URL)
AttributeError: module 'requests' has no attribute 'ge'
^C
...
KeyboardInterrupt

As you can see, the logs include Traceback, which allows us to detect a specific 
problem by adding information about where the exception was produced.

Any unexpected error should be logged as ERROR. Ideally, they should also be 
analyzed and the code changed to bugfix them or at least transform them into 
expected errors. Sometimes this is not feasible due to other pressing issues or a low 
occurrence of the problem, but some strategy should be implemented to make sure 
there's consistency in the handling of bugs.

Sometimes, unexpected errors will present themselves with enough information 
about what the problem is, which could be related to an external problem like a 
network issue or a database problem. The solution may be located outside the realm 
of the service itself.

Log strategies
A common problem when dealing with logs is deciding on the appropriate severity 
for each of the individual services. Is this message a WARNING or an ERROR? Should this 
statement be added as an INFO message or not?

A great tool to handle unexpected errors is Sentry (https://
sentry.io/). This tool creates a trigger for each error on a lot 
of common platforms, including Python Django, Ruby on Rails, 
Node, JavaScript, C#, iOS, and Android. It aggregates the errors 
detected and allows us to work with them more strategically, 
which is sometimes difficult when just having access to the logs.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://sentry.io/
https://sentry.io/


Chapter 12

[ 435 ]

Most of the log severity descriptions have definitions, such as the program shows a 
potentially harmful situation or the application highlights the progress of the request. These 
are vague definitions and difficult to act on in a real-life situation. Instead of using 
these vague definitions, try to define each level in relationship with any follow-up 
action that should be taken if the issue is encoutered. This helps to clarify to the 
developers what to do when a given error log is found. For example: "Do I want to be 
informed each and every time this situation happens?"

The following table shows some examples of the different severity levels and what 
action could be taken:

Log level Action to take Comments
DEBUG None. Not tracked. Only useful 

while developing.
INFO None. INFO logs show generic 

information about the flow 
of the actions in the app to 
help track systems.

WARNING Track the number of logs. 
Alert on raising levels.

WARNING logs track errors 
that are automatically fixed, 
like retries to connect to an 
external service, or fixable 
format errors in a database. 
A sudden increase may 
require investigation.

ERROR Track the number of logs. 
Alert on raising levels. 
Review all errors.

ERROR logs track errors 
that can't be recovered. A 
sudden increase may require 
immediate action. All of 
them should be periodically 
reviewed to fix common 
occurrences and mitigate 
them, perhaps moving them 
to WARNING level.

CRITICAL Immediate response. CRITICAL logs indicate a 
catastrophic failure in the 
application. A single one 
indicates the system is not 
working at all and can't 
recover.

This sets clear expectations on how to respond. Note this is an example, and you 
may need to make tweaks and adjustments to adapt this to the needs of your specific 
organization.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Logging

[ 436 ]

The hierarchy of different severities is very clear, and in our example, there's 
an acceptance that there'll be a certain number of ERROR logs generated. For the 
development team's sanity, not everything needs to be fixed immediately, but a 
certain order and prioritization should be enforced.

WARNING logs are indications that something may not be working as smoothly as 
expected, but things are under control, unless there's a sudden increase in the 
number of logs of this kind. INFO logs are just there to give context in the event of a 
problem, but can be ignored otherwise.

In production situations, ERROR logs will typically be categorized 
from "we're doomed" to "meh." Development teams should 
actively either fix "meh" logs or stop the issue from being logged 
to remove noise from the monitoring tools. That may include 
lowering the level of logs if they aren't worth checking. You want 
as few ERROR logs as possible, so all of them can be meaningful. 

Remember that ERROR logs will include unexpected errors that 
typically require a fix to either resolve the issue completely, or 
explicitly capture it and reduce its severity if it is not important. 

This follow-up is definitely a challenge as applications grow, as the 
number of ERROR logs will increase significantly. It requires time 
to be spent on proactive maintenance. If this is not taken seriously 
and it is too often dropped for other tasks, it will compromise the 
reliability of the application in the medium term.

A common mistake is to generate ERROR logs in actions where there 
are incorrect input parameters, such as in web requests when a 
400 BAD REQUEST status code is returned. Some developers will 
argue that a customer sending a malformed request is an error. But 
there's nothing that the developer team should do if the request is 
properly detected and returned. It's business as usual, and the only 
action may be to return a meaningful message to the requester so 
they can fix their request. 

If this behavior persists in certain critical requests, like repeatedly 
sending a bad password, a WARNING log can be created. There's no 
point in creating an ERROR log when the application is behaving as 
expected. 

In web applications, as a rule of thumb, ERROR logs should only 
be created when the status code is one of the 50X variants (like 
500, 502, and 503). Remember that the 40X errors mean that the 
sender has a problem, while 50X means that the application has the 
problem, and it's your team's responsibility to fix it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 12

[ 437 ]

With common and shared definitions of log levels across the team, all engineers 
will have a shared understanding of error severity that will help shape meaningful 
actions toward improving the code.

Allow time for tweaking and adjusting any definition. It's also likely that you'll have 
to deal with logs created before the definition, which can require work. One of the 
biggest challenges in legacy systems is creating a proper logging system to categorize 
problems, as they'll likely be very noisy, making it difficult to distinguish the real 
problems from annoyances and even non-problems.

Adding logs while developing
Any test runner will capture logs and display it as part of the trace while running 
tests.

This is a good opportunity to check that the expected logs are being generated while 
the feature is still in development phase, especially if it's done in a TDD process 
where the failing tests and errors are produced routinely as part of the process, as 
we saw in Chapter 10, Testing and TDD. Any test that checks an error should also add 
a corresponding log and, while developing the feature, check that they are being 
produced.

While developing, DEBUG logs can be used to add extra information about the code 
flow that would be excessive for production. In development, this extra information 
can help fill in the gaps between INFO logs and help developers to solidify the habit 
of adding logs. A DEBUG log may be promoted to INFO if, during tests, it's found to be 
useful in tracking problems in production.

pytest, which we introduced in Chapter 10, Testing and TDD, will 
display logs as part of the result of a failing test.

You can explicitly add to the test a check to validate that the log is 
being generated by using a tool like pytest-catchlog (https://
pypi.org/project/pytest-catchlog/).

Typically, though, we just take a bit of care and incorporate the 
practice of checking while using TDD practices as part of the initial 
check that the test is failing. However, be sure that the developers 
understand why it's useful to have logs while developing to make 
the habit stick.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pypi.org/project/pytest-catchlog/
https://pypi.org/project/pytest-catchlog/


Logging

[ 438 ]

Additionally, for special occasions, DEBUG logs can be enabled in production in 
controlled cases to track certain problems that are difficult to understand. Note that 
this has big implications on the number of generated logs, which can lead to storage 
problems. Be very cautious here.

It's always a good idea to double-check that the logs are being properly captured and 
available in different environments. All the configuration to ensure that the logs are 
properly captured may take a bit of time, so it's better to do this beforehand. This 
involves capturing unexpected errors and other logs in production and checking that 
all the plumbing is done correctly. The alternative is to discover that it's not working 
correctly only after stumbling into a real problem.

Log limitations
Logs are very useful to understand what's happening in a running system, but they 
have certain limitations that are important to understand:

• Logs are only as good as their messages. A good, descriptive message is critical 
in making logs useful. Reviewing the log messages with a critical eye, 
and correcting them when needed, is important to save precious time on 
production problems.

• Have an appropriate number of logs. Too many logs can confuse a flow, and 
too few may not include enough information to allow us to understand the 
problem. Large numbers of logs also create problems with storage. 

• Logs should work as an indication of the context of the problem, but likely won't 
pinpoint it. Trying to generate specific logs that fully explain a bug will be an 
impossible task. Instead, focus on showing the general flow and surrounding 
context of the action, so it can be replicated locally and debugged. For 
example, for a request, make sure to log both the request and its parameters 
so the situation can be replicated.

Be sensible about the messages displayed in INFO and higher 
severity logs. In terms of information that's displayed, avoid 
sensitive data such as passwords, secret keys, credit card numbers, 
and personal information.

Keep an eye in production for any size limitations and how quickly 
logs are generated. Systems may experience a log explosion in 
situations when new features are generated, if the number of 
requests grows, or if the number of workers in the system is 
increased. These three situations can be produced when systems 
undergo growth.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 12

[ 439 ]

• Logs allow us to follow the execution of a single instance. When grouped together 
using a request ID or similar, logs can be grouped by execution, allowing us 
to follow the flow of a request or task. However, logs don't directly display 
aggregated information. Logs answer the question, "what happened in this 
task?", but not "what is going on in the system?" For that kind of info, it's better 
to use metrics.

• Logs only work retrospectively. When a problem in a task is detected, logs 
can only show information that was prepared in advance. That's why it's 
important to analyze critically and refine the information, removing logs that 
are not useful and adding others with relevant contextual information to help 
replicate the problem.

Logs are a fantastic tool, but they need to be maintained to ensure that they can 
be used to detect bugs and problems and allow us to take action as efficiently as 
possible.

Summary
In this chapter, we started by presenting the basic elements of logs. We defined 
how logs contain messages plus some metadata like a timestamp, and considered 
the different severity levels. We also described the need to define request IDs to 
group logs related to the same task. We also discussed how, in the Twelve-Factor 
App methodology, logs should be sent to stdout to detach log generation from 
the process of handling and routing them to the proper destination to allow the 
collection of all logs in the system.

We then showed how to produce logs in Python using the standard logging module, 
describing the three key elements of the logger, the handler, and the formatter. 
Next, we showed the two different errors that can be produced in a system: expected, 
understood as errors that were foreseen as possible and are handled; and unexpected, 
meaning those that were not foreseen and occurred out of our control. We then went 
through the different strategies and cases for these.

We described the different severities and how to generate a strategy for what actions 
should be taken when a log of a certain severity is detected, instead of categorizing 
the logs in terms of "how critical they are", which ends up generating vague 
guidelines and not being very useful.

There are tools available to create metrics based on logs. 
We will talk more about metrics in Chapter 13, Metrics.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Logging

[ 440 ]

We discussed several habits to improve the usefulness logs by including them in 
development in a TDD workflow. This allows developers to consider the information 
presented in logs while writing tests and producing errors, which presents the 
perfect opportunity to ensure that the logs generated work correctly.

Finally, we discussed the limitations of logs and how we can deal with them. 

In the next chapter, we will look at how to work with aggregated information to find 
out the general state of the system through the usage of metrics.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:  
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 441 ]

13
Metrics

As well as logging, the other key element of observability is metrics. Metrics allow 
you to see the general state of the system and observe trends and situations that are 
mostly caused by multiple, perhaps even many, tasks being executed at the same 
time.

When monitoring a live system, typically metrics are the main focus, as they allow 
you to see at a glance whether everything appears to be working correctly. Normally 
with metrics, it is possible to detect if a system is struggling, for example, for a 
sudden increase in the number of incoming requests, but also to foresee problems 
by showing trends, like a small but constant increase in the number of requests. This 
allows you to act preemptively, without waiting until a problem is serious.

Generating a good metric system to monitor the life of a system is invaluable to be 
able to react quickly when problems arise. Metrics can also be used as a base for 
automatic alerts that can help warn about certain conditions taking place, typically 
something to investigate or correct.

In this chapter, we'll cover the following topics:

• Metrics versus logs
• Generating metrics with Prometheus

During this chapter, we will mostly use examples of web services, 
like request metrics. Do not feel restricted by them; you can 
generate metrics in all kinds of services!

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Metrics

[ 442 ]

• Querying Prometheus
• Proactively working with metrics
• Alerting

First, we will take a look at metrics compared with the other main tool for 
observability, logs.

Metrics versus logs
As we saw in the previous chapter, logs are text messages produced as code is 
executed. They are good at giving visibility on each of the specific tasks that the 
system is performing, but they generate a huge amount of data, which is difficult to 
digest in bulk. Instead, only small groups of logs are able to be analyzed at any given 
time.

But sometimes the important information is not a specific request, but to understand 
the behavior of the system as a whole. Is the load of the system growing compared to 
yesterday's? How many errors are we returning? Is the time it takes to process tasks 
increasing? Or decreasing?

All those questions are impossible to answer with logs, as they require a broader 
view, at a higher level. To be able to achieve that, the data needs to be aggregated to 
be able to understand the system as a whole.

The information to store in metrics is also different. While each recorded log is a text 
message, each produced metric is a number. These numbers will later be statistically 
processed to aggregate the information. 

Normally, the logs analyzed will all be related to a single task. 
We saw in the previous chapter how to use a request ID for that. 
But on certain occasions, it may be necessary to check all logs 
happening in a particular time window to see crossing effects, like 
a problem in one server that affects all tasks during certain times.

We will talk later in the chapter about the different kinds of 
numbers that can be produced as a metric.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 13

[ 443 ]

The difference between the amount of information produced in each record means 
that metrics are much more lightweight compared with logs. To further reduce the 
amount of data stored, the data is aggregated automatically. 

Metrics should capture and analyze information related to performance, such as the 
average time to process a task. That allows you to detect possible bottlenecks and 
act quickly in order to improve the performance of the system. This is easier to do 
in an aggregated way, as information for a single task, like generated logs, may not 
capture enough information to see the big picture. An important outcome of this is 
to be able to see trends and detect problems before they grow too big, remediating 
them early. Compared to this, logs are mostly used after the fact and are difficult to 
use as a way to take preventive action.

Kinds of metrics
There are different kinds of metrics that can be produced. This can be different 
depending on the specific tool used to generate the metrics, but in general, there are 
a few that are common in most systems, like the following:

• Counter: A trigger is generated each time something happens. This will be 
counted and aggregated as a total; for example, in a web service, the number 
of requests or the number of generated errors. Counters are useful for 
understanding how many times a certain action happens in the system.

• Gauge: A single number across the system. A gauge number can go up or 
down, but the last value overwrites the previous, as it stores the general state 
of the system; for example, the number of elements in a queue, or the number 
of existing workers in the system.

• Measure: Events that have a numeric value associated with them. These 
numbers can be averaged, summed, or aggregated in a certain way. 
Compared with gauges, the difference is that previous measures are still 
independent; for example, when we emit a metric with a request time in 
milliseconds and request size in bytes. 

The resolution of metrics may depend on the tool and set 
configuration. Keep in mind that a higher resolution will require 
more resources to store all the data. A typical resolution is one 
minute, which is small enough to present detailed information 
unless you have a very active system that routinely receives 10 
tasks per second or more.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Metrics

[ 444 ]

Measures can also work as counters, since each emitted event is, in essence, a 
counter. For example, tracking the request time will also count the number of 
requests, as it will be generated once per request. Tools will normally create 
the associated counter automatically for every measure.

Defining which metric is adequate for the specific value to measure is important. In 
most cases, they'll be measures, to allow storing a value produced by events. Counters 
are normally evident (they are measures without values), while gauges are normally 
the ones that are less obvious and can present more of a challenge on when to use 
them.

Metrics can also be derived from other metrics to generate new ones. For example, 
we can divide the number of requests that return an error code by the total number 
of requests to produce an error percentage. Such derived metrics can help you 
understand information in a meaningful way.

There are also two kinds of metric systems, depending on how the metrics are 
produced:

• Every time there's a metric produced, an event gets pushed toward the metrics 
collector

• Each system maintains its own metrics internally, which are periodically 
pulled from the metrics collector

Each system has its own pros and cons. Pushing events produces higher traffic and 
activity, as every individual event is sent immediately, which can cause bottlenecks 
and delays. Pulling events will only sample the information, and produce lower-
resolution data, as it can miss what happened between samples, but it's more stable 
as the number of requests is not increasing with the number of events.

We will use some examples with Prometheus, a metrics system that uses the pulling 
approach. The most used exponent of the push approach is Graphite.

Both approaches are used, but the current trend is moving toward 
pulling systems. They reduce the amount of maintenance that is 
required for pushing systems and are easier to scale.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 13

[ 445 ]

Generating metrics with Prometheus
Prometheus is a popular metrics system that is well supported and easy to use. We 
will use it as an example during the chapter to show how to collect metrics and how 
it interconnects with other tools to display metrics.

As we saw before, Prometheus uses the pulling approach to metrics generation. That 
means that any system that produces metrics will run its own internal Prometheus 
client that keeps track of metrics. 

For web services, this can be added as an extra endpoint that serves the metrics. This 
is the approach taken by the django-prometheus module, which will automatically 
collect a lot of common metrics for a Django web service.

Preparing the environment
We need to set up the environment to be sure to install all the required packages and 
dependencies of the code. 

Let's start by creating a new virtual environment, as introduced in Chapter 11, Package 
Management, to be sure to create our own isolated sandbox to install packages:

$ python3 -m venv venv
$ source venv/bin/activate

We can now install the prepared list of requirements, stored in requirements.txt. 
This contains the Django and Django REST framework modules, as seen in Chapter 6, 
Web Server Structures, but also the Prometheus dependency:

(venv) $ cat requirements.txt
django
django-rest-framework
django-prometheus
(venv) $ pip install -r requirements.txt
Collecting Django

We will build up from the Django application code presented 
in Chapter 6, Web Server Structures, to present a working 
application. Check the code in GitHub at https://github.com/
PacktPublishing/Python-Architecture-Patterns/tree/
main/chapter_13_metrics/microposts.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_13_metrics/microposts
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_13_metrics/microposts
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_13_metrics/microposts


Metrics

[ 446 ]

  Downloading Django-3.2.7-py3-none-any.whl (7.9 MB)
     |████████████████████████████████| 7.9 MB 5.7 MB/s
...
Installing collected packages: djangorestframework, django-rest-
framework
    Running setup.py install for django-rest-framework ... done
Successfully installed django-rest-framework-0.1.0 
djangorestframework-3.12.4

To start the server, go to the micropost subdirectory and run the runserver 
command:

(venv) $ python3 manage.py runserver 0.0.0.0:8000
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).
October 01, 2021 - 23:24:26
Django version 3.2.7, using settings 'microposts.settings'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.

The application is now accessible in the root address: http://localhost:8000, for 
example, http://localhost:8000/api/users/jaime/collection.

If you remember from Chapter 3, Data Modeling, we added some initial data, so you 
can access the URLs http://localhost:8000/api/users/jaime/collection and 
http://localhost:8000/api/users/dana/collection to see some data. 

Note that we started the server at address 0.0.0.0. This opens 
Django to serve any IP address, and not only requests coming from 
localhost. This is an important detail that will be clarified later.

Note also that the root address will return a 404 error, as no 
endpoint is defined there.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 13

[ 447 ]

Figure 13.1: Accessing an available URL in the application

Access these pages a couple of times to produce metrics that we can later access.

Configuring Django Prometheus
The configuration of the django-prometheus module is done in the microposts/
settings.py file, where we need to do two things.

First, add the django-prometheus application to the installed app list which enables 
the module:

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Metrics

[ 448 ]

    'django.contrib.messages',
    'django.contrib.staticfiles',
    'django_prometheus',
    'rest_framework',
    'api',
]

We also need to include the proper middlewares to track requests. We need to put 
one middleware at the start of the request process and another at the end, to be sure 
to capture and measure the whole process:

MIDDLEWARE = [
    'django_prometheus.middleware.PrometheusBeforeMiddleware',
    'django.middleware.security.SecurityMiddleware',
    'django.contrib.sessions.middleware.SessionMiddleware',
    'django.middleware.common.CommonMiddleware',
    'django.middleware.csrf.CsrfViewMiddleware',
    'django.contrib.auth.middleware.AuthenticationMiddleware',
    'django.contrib.messages.middleware.MessageMiddleware',
    'django.middleware.clickjacking.XFrameOptionsMiddleware',
    'django_prometheus.middleware.PrometheusAfterMiddleware',
]

Check the position of django.prometheus.middleware.PrometheusBeforeMiddleware 
and django_prometheus.middleware.PrometheusAfterMiddleware.

With this configuration, the Prometheus collection is now enabled. But we also need 
a way to access them. Remember, an important element for the Prometheus system is 
that each application serves its own metric collection. 

In this case, we can add an endpoint to the file microposts/url.py, which handles the 
top-level URLs for the system:

from django.contrib import admin
from django.urls import include, path

urlpatterns = [

We also changed the ALLOWED_HOSTS value to be '*' and allow 
requests from any hostname. This detail will be explained a bit 
later.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 13

[ 449 ]

    path('', include('django_prometheus.urls')),
    path('api/', include('api.urls')),
    path('admin/', admin.site.urls),
]

The path('', include('django_prometheus.urls')) line sets up a /metrics URL 
that we can now access.

Checking the metrics
The main URL root shows that there's a new endpoint – /metrics:

Figure 13.2: This page appears because the DEBUG mode is active.  
Remember to deactivate it before deploying in production

When accessing the /metrics endpoint, it shows all the collected metrics. Note that 
there are a lot of metrics that are collected. This is all in text format, and it's expected 
to be collected by a Prometheus metric server.

Be sure to access a few times the endpoints http://
localhost:8000/api/users/jaime/collection and http://
localhost:8000/api/users/dana/collection to produce some 
metrics. You can check how some metrics, like django_http_
requests_total_by_view_transport_method_total{metho
d="GET",transport="http",view="user-collection"}, are 
increasing.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Metrics

[ 450 ]

Figure 13.3: The raw Prometheus metrics, as collected by the application

The next step is to start a Prometheus server that can pull the info and display it.

Starting a Prometheus server
The Prometheus server will pull periodically for metrics to all the configured 
applications that are collecting their metrics. These elements are called targets by 
Prometheus.

The easiest way to start a Prometheus server is to start the official Docker image.

We need to start the server, but before that, we need to set up the configuration in 
the prometheus.yml file. You can check the example on GitHub: https://github.com/
PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_13_metrics/
prometheus.yml:

We introduced Docker in Chapter 9, Microservices vs Monolith. Refer 
to that chapter for more information.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_13_metrics/prometheus.yml
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_13_metrics/prometheus.yml
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_13_metrics/prometheus.yml


Chapter 13

[ 451 ]

# my global config
global:
  scrape_interval: 15s # Set the scrape interval to every 15 seconds. 
Default is every 1 minute.
  # scrape_timeout is set to the global default (10s).

scrape_configs:
  # The job name is added as a label `job=<job_name>` to any timeseries 
scraped from this config.
  - job_name: "prometheus"

    # metrics_path defaults to '/metrics'
    # scheme defaults to 'http'.

    static_configs:
      # The target needs to point to your local IP address
      # 192.168.1.196 IS AN EXAMPLE THAT WON'T WORK IN YOUR SYSTEM
      - targets: ["192.168.1.196:8000"]

The config file has two main sections. The first with global indicates how often to 
scrape (to read information from the targets) and other general configuration values.

The second, scrape_config, describes what to scrape from, and the main parameter 
is targets. Here, we need to configure all our targets. This one in particular needs to 
be described by its external IP, which will be the IP from your computer. 

This address cannot be localhost, as inside the Prometheus Docker container it will 
resolve as the same container, which is not what you want. You'll need to find out 
your local IP address. 

This is to ensure that the Prometheus server can access the Django application that's 
running locally. As you remember, we opened the access allowing connections from 
any hostname with the option 0.0.0.0 when starting the server and allowing all 
hosts in the config parameter ALLOWED_HOSTS.

If you don't know how to find it through ipconfig or ifconfig, 
you can check out this article on ways to find it: https://
lifehacker.com/how-to-find-your-local-and-external-ip-
address-5833108. Remember that it's your local address, not the 
external one.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://lifehacker.com/how-to-find-your-local-and-external-ip-address-5833108
https://lifehacker.com/how-to-find-your-local-and-external-ip-address-5833108
https://lifehacker.com/how-to-find-your-local-and-external-ip-address-5833108


Metrics

[ 452 ]

Double-check that you can access the metrics in the local IP.

Figure 13.4: Note the IP used to access; remember that you should use your own local one

With all this information, you are now ready to start the Prometheus server in 
Docker, using your own config file. 

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 13

[ 453 ]

Please note that this command requires you to find the full path to the prometheus.
yml file. If you are in the same directory, you can address it as $(pwd)/prometheus.
yml.

For this, run the following docker command, adding the whole path to the config file 
to share it with the new container:

$ docker run -p 9090:9090  -v /full/path/to/file/prometheus.yml:/etc/
prometheus/prometheus.yml prom/prometheus
level=info ts=2021-10-02T15:24:17.228Z caller=main.go:400 msg="No 
time or size retention was set so using the default time retention" 
duration=15d
level=info ts=2021-10-02T15:24:17.228Z caller=main.go:438 msg="Starting 
Prometheus" version="(version=2.30.2, branch=HEAD, revision=b30db03f356
51888e34ac101a06e25d27d15b476)"
... 
level=info ts=2021-10-02T15:24:17.266Z caller=main.go:794 msg="Server 
is ready to receive web requests."

The docker command is structured in the following way:

• -p 9090:9090 maps the local 9090 port to the 9090 port inside the container
• -v /full/path/to/file/prometheus.yml:/etc/prometheus/prometheus.

yml mounts the local file (remember to add the full path or use $(pwd)/
prometheus.yml) in the expected configuration route for Prometheus

• docker run prom/Prometheus is the command to run the prom/Prometheus 
image, which is the official Prometheus image

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Metrics

[ 454 ]

After the Prometheus server is up and running, the server is accessible at http://
localhost:9090.

Figure 13.5: The empty graph Prometheus page

From here, we can start querying the system.

Querying Prometheus
Prometheus has its own query system, called PromQL, and ways of operating with 
metrics that, while powerful, can be a little confusing at the beginning. Part of it is its 
pull approach to metrics.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 13

[ 455 ]

For example, requesting one useful metric, like django_http_requests_latency_
seconds_by_view_method_count, will display how many times each view has been 
called for each method.

Figure 13.6: Notice how the prometheus-django-metrics view is called more often, as it is called  
automatically by Prometheus once every 15 seconds to scrape the results

This is presented as an accumulated value that grows over time. This is not very 
useful, as it's difficult to make sense of what exactly it means.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Metrics

[ 456 ]

Instead, the value is more likely to be presented as a rate, representing how many 
requests have been detected per second. For example, with a resolution of 1 minute, 
rate(django_http_requests_latency_seconds_by_view_method_count[1m]) shows 
the following graph instead:

Figure 13.7: Note that the different methods and views are displayed as different lines

As you can see, there's a constant number of requests from prometheus-django-
metrics, which is Prometheus requesting the metrics information. This happens once 
every 15 seconds, or approximately 0.066 times per second.

In the graph, there's also another spike of the user-collection method happening at 
15:55, at the time where we manually generated some requests to the service. As you 
can see, the resolution is per minute, as described in the rate.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 13

[ 457 ]

If we want to aggregate all of this in a single graph, we can use the sum operator, 
specifying what we want to aggregate from. To sum all GET requests, for example, 
with:

sum(rate(django_http_requests_latency_seconds_by_view_method_
count[1m])) by (method)

This produces this other graph: 

Figure 13.8: Note the bottom value is based on the baseline created by the calls to prometheus-django-metrics

To plot times instead, the metric to use is the django_http_requests_latency_
seconds_by_view_method_bucket one. The bucket metrics are generated in a way 
that can be combined with the histogram_quantile function to display a particular 
quantile, which is useful for giving a proper feeling of times.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Metrics

[ 458 ]

To plot the 0.95 quantile over a period of 5 minutes, the following query can be 
generated:

histogram_quantile(0.95, rate(django_http_requests_latency_seconds_by_
view_method_bucket[5m]))

When you run it, you should receive the following:

Figure 13.9: Note how the metrics collection is much faster than the user-collection requests

For example, quantile 0.95 means that the time is the highest of 
95% of the requests. This is more useful than creating averages as 
they can get skewed by high numbers. Instead, you can draw the 
quantile 0.50 (the maximum time it takes for half of the requests), 
the quantile 0.90 (the maximum time for most of the requests), and 
quantile 0.99 for the very top time it takes to return a request. This 
allows you to get a better picture, as it's different from the situation 
of growing quantile 0.50 (most requests take longer to return) with 
growing quantile 0.99 (some slow queries are getting worse).

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 13

[ 459 ]

To plot times instead, the metric to use is the django_http_requests_latency_
seconds_by_view_method_bucket one. The bucket metrics are generated in a way 
that can be combined with the histogram_quantile function to display a particular 
quantile, which is useful for giving a proper feeling of times.

Metrics can also be filtered to display only specific labels, and a good number of 
functions to multiply, divide, add, create averages, and all kinds of operations are 
available.

The interface has autocompleted, which can help you find certain metrics.

Check the Prometheus documentation about queries to find out more: https://
prometheus.io/docs/prometheus/latest/querying/basics/.

Proactively working with metrics
As we've seen, metrics show an aggregated point of view for the status of the whole 
cluster. They allow you to detect trending problems, but it's difficult to pinpoint a 
single spurious error.

This shouldn't stop us from considering them as a critical tool for successful 
monitoring because they can tell whether the whole system is healthy. In some 
companies, the most critical metrics are on permanent display on screens so the 
operations team can see them and react quickly to any sudden problem.

Prometheus queries can be a bit long and complicated when trying 
to display the result of several metrics, such as the percentage of 
successful requests over the total. Be sure to test that the result is 
what you expect it to be and allocate time to tweak the queries later 
to keep improving them.

Prometheus is normally paired with Grafana. Grafana is an open 
source, interactive visualization tool that can be connected with 
Prometheus to create rich dashboards. This leverages the collection 
of metrics and helps visualize the state of the system in a much 
more understandable way. Describing how to use Grafana is out 
of scope for this book, but using it to display metrics is highly 
recommended: https://grafana.com/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://grafana.com/


Metrics

[ 460 ]

Finding the proper balance of what metrics are the key ones for a service is not as 
straightforward as it seems, and it will require time and experience, perhaps even 
trial and error. 

There are, though, four metrics for online services that are considered always 
important. They are:

• Latency: How many milliseconds it takes for the system to respond to a 
request. Depending on the service, sometimes seconds can be used instead. 
In my experience, milliseconds are typically the adequate time scale, as most 
web applications take between 50 ms and 1 second to respond, depending on 
the request. Requests taking longer than 1 second are typically rarer, though 
there are always some, depending on the system.

• Traffic: The number of requests flowing through the system per unit of time, 
for example, the number of requests per minute.

• Errors: The percentage of requests received that return an error.
• Saturation: Describing whether the capacity of the cluster has enough 

headroom. This includes elements as available hard drive space, memory, 
and so on. For example, there's 15% available RAM in the system.

These metrics can be found in the Google SRE book as the four golden signals and are 
recognized as the most important high-level elements for successful monitoring.

Alerting
When problems are detected through the metrics, an automatic alert should be 
triggered. Prometheus has an alert system that will raise when a defined metric 
fulfills the defined alert.

The main tool to check saturation is the multiple default 
exporters available to collect most of the hardware information 
automatically, like memory, CPU, and hard drive space. When 
using a cloud provider, normally they expose their own set of 
related metrics, like CloudWatch in AWS.

Check out the Prometheus documentation on alerting for more 
information: https://prometheus.io/docs/alerting/latest/
overview/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/overview/


Chapter 13

[ 461 ]

Normally, alerts will be configured when the value of metrics is crossing some 
threshold. For example, the number of errors is higher than X, or the time to return a 
request is too high.

The built-in Alertmanager can alert in some ways, like sending an email, but it can 
also be connected to other tools to perform more complex actions. For example, 
connecting to an integrated incident solution like Opsgenie (https://www.atlassian.
com/software/opsgenie) allows you to create alert flows, such as sending emails and 
SMS, calls.

Alerting, as with metrics, is an ongoing process. Some key thresholds won't be 
evident at the start of the system, and only experience will allow you to discover 
them. In the same way, it's very likely that some alerts are created that don't require 
active monitoring, and should be disconnected to ensure that the alerts in the system 
are on point and have a high signal-to-noise ratio.

Summary
In this chapter, we described what metrics are and how they compare with logs. We 
described how metrics are useful to analyze the general state of the system, while 
logs describe specific tasks, being more difficult to describe the aggregated situation.

We enumerated different kinds of metrics that can be produced and described 
Prometheus, a common metrics system that uses the pull approach on how to 
capture metrics.

An alert could also be that some element is too low; for example, 
if the number of requests in a system falls to zero, that could be an 
indication that the system is down.

While alerts can be generated directly from metrics, there are 
tools that allow you also to generate alerts from logs directly. For 
example, Sentry (https://sentry.io/) will aggregate errors 
based on logs and can set up thresholds to escalate toward more 
active alerts, like sending emails. 
Another alternative is to derivate metrics from logs using external 
logging systems. This allows you, for example, to create a counter 
based on the number of ERROR logs, or more complicated metrics. 
These systems, once more, allow you to trigger alerts based on 
these derived metrics.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.atlassian.com/software/opsgenie
https://www.atlassian.com/software/opsgenie
https://sentry.io/


Metrics

[ 462 ]

We set an example of how to generate metrics automatically in Django by installing 
and configuring the django-prometheus module, and how to start a Prometheus 
server that scrapes the generated metrics.

Next, we described how to query metrics in Prometheus, introducing PromQL, and 
showed some common examples of how to display metrics, plot rate to see clearly 
how the metrics are changing over time, and how to use the histogram_quantile 
function to work with times.

We also showed in the chapter how to work proactively to detect common problems 
as soon as possible and what the four golden signals are, as described by Google. 
Finally, we introduced alerts as a way to be notified when metrics are out of a normal 
margin. Using alerts is a smart way to be notified without having to manually look at 
metrics.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:  
https://packt.link/PythonArchitechture

Keep in mind that you can also generate your own custom 
metrics, not having to only rely on the ones in an external module. 
Check the Prometheus client to see how, for example, for Python: 
https://github.com/prometheus/client_python.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/prometheus/client_python


[ 463 ]

14
Profiling

It is quite common that written code doesn't behave perfectly after being tested with 
real data. Other than bugs, we can find the problem that the performance of the code 
is not adequate. Perhaps some requests are taking too much time, or perhaps the 
usage of memory is too high.

In those cases, it's difficult to know exactly what the key elements are, that are taking 
the most time or memory. While it's possible to try to follow the logic, normally once 
the code is released, the bottlenecks will be at points that are almost impossible to 
know beforehand.

To get information on what exactly is going on and follow the code flow, we can use 
profilers to dynamically analyze the code and better understand how the code is 
executed, in particular, where most time is spent. This can lead to adjustments and 
improvements affecting the most significant elements of the code, driven by data, 
instead of vague speculation.

In this chapter, we'll cover the following topics:

• Profiling basics
• Types of profilers
• Profiling code for time
• Partial profiling
• Memory profiling

First, we will take a look at the basic principles of profiling.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 464 ]

Profiling basics
Profiling is a dynamic analysis that instruments code to understand how it runs. 
This information is extracted and compiled in a way that can be used to get a better 
knowledge of a particular behavior based on a real case, as the code is running as 
usual. This information can be used to improve the code.

The normal application of profiling is to improve the performance of the code under 
analysis. By understanding how it executes in practice, it sheds light on the dynamics 
of the code modules and parts that could be causing problems. Then, actions can be 
taken in those specific areas.

Performance can be understood in two ways: either time performance (how long 
code takes to execute) or memory performance (how much memory the code takes to 
execute). Both can be bottlenecks. Some code may take too long to execute or use a 
lot of memory, which may limit the hardware where it's executed.

A common case in software development is that you don't really know what your 
code is going to do until it gets executed. Clauses to cover corner cases that appear 
rare may execute much more than expected, and software works differently when 
there are big arrays, as some algorithms may not be adequate. 

Certain static analysis tools, as opposed to dynamic, can provide 
insight into aspects of the code. For example, they can be used 
to detect if certain code is dead code, meaning it's not called 
anywhere in the whole code. Or, they can detect some bugs, like 
the usage of variables that haven't been defined before, like when 
having a typo. But they don't work with the specifics of code that's 
actually being run. Profiling will bring specific data based on the 
use case instrumented and will return much more information on 
the flow of the code.

We will focus more on time performance in this chapter, as it is 
typically a bigger problem, but we will also explain how to use a 
memory profiler.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 465 ]

The problem is that doing that analysis before having the system running is 
incredibly difficult, and at most times, futile, as the problematic pieces of code will 
very likely be completely unexpected.

Programmers waste enormous amounts of time thinking about, or worrying about, 
the speed of noncritical parts of their programs, and these attempts at efficiency 
actually have a strong negative impact when debugging and maintenance are 
considered. We should forget about small efficiencies, say about 97% of the time: 
premature optimization is the root of all evil. Yet we should not pass up our 
opportunities in that critical 3%.

Donald Knuth – Structured Programing with GOTO Statements - 1974.

Profiling gives us the ideal tool to not prematurely optimize, but to optimize 
according to real, tangible data. The idea is that you cannot optimize what you 
cannot measure. The profiler measures so it can be acted upon.

Profiling can be achieved in different ways, each with its pros and cons.

Types of profilers
There are two main kinds of time profilers:

• Deterministic profilers, through a process of tracing. A deterministic profiler 
instruments the code and records each individual command. This makes 
deterministic profilers very detailed, as they can follow up the code on each 
step, but at the same time, the code is executed slower than without the 
instrumentation.

The famous quote above is sometimes reduced to "premature 
optimization is the root of all evil," which is a bit reductionist 
and doesn't carry the nuance. Sometimes it's important to design 
elements with care and it's possible to plan in advance. As good as 
profiling (or other techniques) may be, they can only go so far. But 
it's important to understand, on most occasions, it's better to take 
the simple approach, as performance will be good enough, and it 
will be possible to improve it later in the few cases when it's not.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 466 ]

• Deterministic profilers are not great to execute continuously. Instead, they 
can be activated in specific situations, like while running specific tests offline, 
to find out problems.

• Statistical profiles, through sampling. This kind of profiler, instead of 
instrumenting the code and detecting each operation, awakes at certain 
intervals and takes a sample of the current code execution stack. If this 
process is done for long enough, it captures the general execution of the 
program. 

While they don't give as detailed information as deterministic profiles, 
statistical profilers are much more lightweight and don't consume many 
resources. They can be enabled to constantly monitor live systems without 
interfering with their performance.
Statistical profilers only make sense on systems that are under relative 
load, as in a system that is not stressed, they'll show that most time is spent 
waiting.
Statistical profilers can be internal, if the sampling is done directly on the 
interpreter, or even external if it's a different program that is taking the 
samples. An external profiler has the advantage that, even if there's any 
problem with the sampling process, it won't interfere with the program being 
sampled.

Both profilers can be seen as complementary. Statistical profilers are good tools for 
understanding the most-visited parts of the code and where the system, aggregated, 
is spending time. They live in the live system, where the real case usages determine 
the behavior of the system.

The deterministic profilers are tools for analyzing specific use cases in the petri dish 
of the developer's laptop, where a specific task that is having some problem can be 
dissected and analyzed carefully, to be improved.

Taking a sample of the stack is similar to taking a picture. 
Imagine a train or subway hall where people are moving 
across to go from one platform to another. Sampling is 
analogous to taking pictures at periodic intervals, for 
example, once every 5 minutes. Sure, it's not possible 
to get exactly who comes from one platform and goes 
to another, but after a whole day, it will provide good 
enough information on how many people have been 
around and what platforms are the most popular.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 467 ]

Typically, code will present hotspots, slow parts of it that get executed often. Finding 
the specific parts to focus attention on and then act on them is a great way to 
improve the overall speed.

These hotspots can be revealed by profiling, either by checking the global hotspots 
using a statistical profiler or the specific hotspots for a task with a deterministic 
profiler. The first will display the specific parts of the code that are most used in 
general, which allows us to understand the pieces that get hit more often and take 
the most time in aggregate. The deterministic profiler can show, for a specific task, 
how long it takes for each line of code, and determine what are the slow elements.

Another kind of profiler is the memory profiler. A memory profiler records when 
memory is increased and decreased, tracking the usage of memory. Profiling 
memory is typically used to find out memory leaks, which are rare for a Python 
program, but they can happen.

Python has a garbage collector that releases memory automatically when an object 
is not referenced anymore. This happens without having to take any action, so 
compared with programs with manual memory assignment, like C/C++, the 
memory management is easier to handle. The garbage collection mechanism used 
for Python is called reference counting, and it frees memory immediately once a 
memory object is not used by anyone, as compared with other kinds of garbage 
collectors that wait.

In the case of Python, memory leaks can be created by three main use cases, from 
more likely to least:

• Some objects are still referenced, even if they are not used anymore. This can 
typically happen if there are long-lived objects that keep small elements in 
big elements, like lists of dictionaries when they are added and not removed.

In some respects, statistical profilers are analogous to metrics 
and deterministic profilers to logs. One displays the aggregated 
elements and the other the specific elements. Deterministic 
profilers, contrary to logs, are not ideal tools for using in live 
systems without care, though.

We won't look at statistical profilers as they require systems that 
are under load and they are difficult to create in a test that's fit for 
the scope of this book. You can check py-spy (https://pypi.
org/project/py-spy/) or pyinstrument (https://pypi.org/
project/pyinstrument/).

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pypi.org/project/py-spy/
https://pypi.org/project/py-spy/
https://pypi.org/project/pyinstrument/
https://pypi.org/project/pyinstrument/


Profiling

[ 468 ]

• An internal C extension is not managing the memory correctly. This may 
require further investigation with specific C profiling tools, which is out of 
scope for this book.

• Complex reference cycles. A reference cycle is a group of objects that 
reference each other, e.g. object A references B and object B references 
A. While Python has algorithms to detect them and release the memory 
nonetheless, there's the small possibility that the garbage collector is disabled 
or any other bug problem. You can see more information on the Python 
garbage collector here: https://docs.python.org/3/library/gc.html.

The most likely situation for extra usage of memory is an algorithm that uses a lot of 
memory, and detecting when the memory is allocated can be achieved with the help 
of a memory profiler.

Let's introduce some code and profile it.

Profiling code for time
We will start by creating a short program that will calculate and display all prime 
numbers up to a particular number. Prime numbers are numbers that are only 
divisible by themselves and one.

We will start by taking a naïve approach first:

def check_if_prime(number):
    result = True

    for i in range(2, number):
        if number % i == 0:
            result = False

    return result

This code will take every number from 2 to the number under test (without 
including it), and check whether the number is divisible. If at any point it is divisible, 
the number is not a prime number.

Memory profiling is typically more complicated and takes more 
effort than time profiling.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.python.org/3/library/gc.html


Chapter 14

[ 469 ]

To calculate all the way from 1 to 5,000, to verify that we are not making any 
mistakes, we will include the first prime numbers lower than 100 and compare 
them. This is on GitHub, available as primes_1.py at https://github.com/
PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_
profiling/primes_1.py.

PRIMES = [1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 
53,
          59, 61, 67, 71, 73, 79, 83, 89, 97]
NUM_PRIMES_UP_TO = 5000

def check_if_prime(number):
    result = True

    for i in range(2, number):
        if number % i == 0:
            result = False

    return result

if __name__ == '__main__':
    # Calculate primes from 1 to NUM_PRIMES_UP_TO
    primes = [number for number in range(1, NUM_PRIMES_UP_TO)
              if check_if_prime(number)]
    # Compare the first primers to verify the process is correct
    assert primes[:len(PRIMES)] == PRIMES

    print('Primes')
    print('------')
    for prime in primes:
        print(prime)
    print('------')

The calculation of prime numbers is performed by creating a list of all numbers 
(from 1 to NUM_PRIMES_UP_TO) and verifying each of them. Only values that return 
True will be kept:

    # Calculate primes from 1 to NUM_PRIMES_UP_TO
    primes = [number for number in range(1, NUM_PRIMES_UP_TO)
              if check_if_prime(number)]

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_1.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_1.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_1.py


Profiling

[ 470 ]

The next line asserts that the first prime numbers are the same as the ones defined in 
the PRIMES list, which is a hardcoded list of the first primes lower than 100.

assert primes[:len(PRIMES)] == PRIMES

The primes are finally printed. Let's execute the program, timing its execution:

$ time python3 primes_1.py
Primes
------
1
2
3
5
7
11
13
17
19
… 
4969
4973
4987
4993
4999
------

Real      0m0.875s
User      0m0.751s
sys 0m0.035s

From here, we will start analyzing the code to see what is going on internally and see 
if we can improve it.

Using the built-in cProfile module
The easiest, faster way of profiling a module is to directly use the included cProfile 
module in Python. This module is part of the standard library and can be called as 
part of the external call, like this:

$ time python3 -m cProfile primes_1.py
Primes

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 471 ]

------
1
2
3
5
...
4993
4999
------
         5677 function calls in 0.760 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.002    0.002    0.757    0.757 primes_1.
py:19(<listcomp>)
        1    0.000    0.000    0.760    0.760 primes_1.py:2(<module>)
     4999    0.754    0.000    0.754    0.000 primes_1.py:7(check_if_
prime)
        1    0.000    0.000    0.760    0.760 {built-in method 
builtins.exec}
        1    0.000    0.000    0.000    0.000 {built-in method 
builtins.len}
      673    0.004    0.000    0.004    0.000 {built-in method 
builtins.print}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_
lsprof.Profiler' objects}

Real      0m0.895s
User      0m0.764s
sys 0m0.032s

Note this called the script normally, but also presented the profile analysis. The table 
shows:

• ncalls: Number of times each element has been called
• tottime: Total time spent on each element, not including sub calls
• percall: Time per call on each element (not including sub calls)
• cumtime: Cumulative time – the total time spent on each element, including 

subcalls

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 472 ]

• percall: Time per call on an element, including subcalls
• filename:lineno: Each of the elements under analysis

In this case, the time is clearly seen to be spent in the check_if_prime function, which 
is called 4,999 times, and it takes the practical totality of the time (744 milliseconds 
compared with a total of 762).

While this text table can be enough for simple scripts like this one, the output can be 
presented as a file and then displayed with other tools:

$ time python3 -m cProfile -o primes1.prof  primes_1.py
$ ls primes1.prof
primes1.prof

Now we need to install the visualizer SnakeViz, installing it through pip:

$ pip3 install snakeviz

Finally, open the file with snakeviz, which will open a browser with the information:

$ snakeviz primes1.prof
snakeviz web server started on 127.0.0.1:8080; enter Ctrl-C to exit
http://127.0.0.1:8080/snakeviz/%2FUsers%2Fjaime%2FDropbox%2FPackt%2Farc
hitecture_book%2Fchapter_13_profiling%2Fprimes1.prof

While not easy to see here due to the fact that it's a small script, 
cProfile increases the time it takes to execute the code. There's an 
equivalent module called profile that's a direct replacement but 
implemented in pure Python, as opposed to a C extension. Please 
generally use cProfile as it's faster, but profile can be useful at 
certain moments, like when trying to extend the functionality.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 473 ]

Figure 14.1: Graphical representation of the profiling information. The full page is too big to fit  
here and has been cropped purposefully to show some of the info.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 474 ]

This graph is interactive, and we can click and hover on different elements to get 
more information:

Figure 14.2: Checking the information about check_if_prime. The full page is too big to  
fit here and has been cropped purposefully to show some of the info.

We can confirm here that the bulk of the time is spent on check_if_prime, but we 
don't get information about what's inside it.

This is because cProfile only has function granularity. You'll see how long each 
function call takes, but not a lower resolution. For this specifically simple function, 
this may not be enough.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 475 ]

We will see how to use a profiler that has a higher resolution, analyzing each line 
of code.

Line profiler
To analyze the check_if_prime function, we need to first install the module line_
profiler

$ pip3 install line_profiler

After it's installed, we will make a small change in the code, and save it as primes_2.
py. We will add the decorator @profile for the check_if_prime function, to indicate 
to the line profiler to look into it.

The code will be like this (the rest will be unaffected). You can check the whole 
file on GitHub at https://github.com/PacktPublishing/Python-Architecture-
Patterns/blob/main/chapter_14_profiling/primes_2.py.

@profile
def check_if_prime(number):
    result = True

    for i in range(2, number):
        if number % i == 0:
            result = False

    return result

Do not underestimate this tool. The code example presented is 
purposefully simple to avoid spending too much time explaining 
its use. Most of the time, localizing the function that's taking most 
of the time is good enough to visually inspect it and discover 
what's taking too long. Keep in mind that, in most practical 
situations, the time spent will be on external calls like DB accesses, 
remote requests, etc.

Keep in mind that you should only profile sections of the code 
where you want to know more in this way. If all the code was 
profiled in this way, it would take a lot of time to analyze.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_2.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_2.py


Profiling

[ 476 ]

Execute the code now with kernprof, which will be installed after the installation of 
line_profiler.

$ time kernprof -l primes_2.py
Primes
------
1
2
3
5
…
4987
4993
4999
------
Wrote profile results to primes_2.py.lprof

Real      0m12.139s
User      0m11.999s
sys 0m0.098s

Note the execution took noticeably longer – 12 seconds compared with subsecond 
execution without the profiler enabled. Now we can take a look at the results with 
this command:

$ python3 -m line_profiler primes_2.py.lprof
Timer unit: 1e-06 s

Total time: 6.91213 s
File: primes_2.py
Function: check_if_prime at line 7

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           @profile
     8                                           def check_if_
prime(number):
     9      4999       1504.0      0.3      0.0      result = True
    10
    11  12492502    3151770.0      0.3     45.6      for i in range(2, 
number):

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 477 ]

    12  12487503    3749127.0      0.3     54.2          if number % i 
== 0:
    13     33359       8302.0      0.2      0.1              result = 
False
    14
    15      4999       1428.0      0.3      0.0      return result

Here, we can start analyzing the specifics of the algorithm used. The main problem 
seems to be that we are doing a lot of comparisons. Both lines 11 and 12 are being 
called too many times, though the time per hit is short. We need to find a way to 
reduce the number of times they're being called.

The first one is easy. Once we find a False result, we don't need to wait anymore; 
we can return directly, instead of continuing with the loop. The code will be like this 
(stored in primes_3.py, available at https://github.com/PacktPublishing/Python-
Architecture-Patterns/blob/main/chapter_14_profiling/primes_3.py):

@profile
def check_if_prime(number):

    for i in range(2, number):
        if number % i == 0:
            return False

    return True

Let's take a look at the profiler result.

$ time kernprof -l primes_3.py
... 
Real      0m2.117s
User      0m1.713s
sys       0m0.116s

$ python3 -m line_profiler primes_3.py.lprof
Timer unit: 1e-06 s

Total time: 0.863039 s
File: primes_3.py
Function: check_if_prime at line 7

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_3.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_3.py


Profiling

[ 478 ]

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           @profile
     8                                           def check_if_
prime(number):
     9
    10   1564538     388011.0      0.2     45.0      for i in range(2, 
number):
    11   1563868     473788.0      0.3     54.9          if number % i 
== 0:
    12      4329       1078.0      0.2      0.1              return 
False
    13
    14       670        162.0      0.2      0.0      return True

We see how time has gone down by a big factor (2 seconds compared with the 12 
seconds before, as measured by time) and we see the great reduction in time spent 
on comparisons (3,749,127 microseconds before, and then 473,788 microseconds), 
mainly due to the fact there are 10 times fewer comparisons, 1,563,868 compared 
with 12,487,503.

We can also improve and further reduce the number of comparisons by limiting the 
size of the loop.

Right now, the loop will try to divide the source number between all the numbers up 
to itself. For example, for 19, we try these numbers (as 19 is a prime number, it's not 
divisible by any except for itself).

Divide 19 between
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Trying all these numbers is not necessary. At least, we can skip half of them, as no 
number will be divisible by a number higher than half itself. For example, 19 divided 
by 10 or higher is less than 2.

Divide 19 between
[2, 3, 4, 5, 6, 7, 8, 9, 10]

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 479 ]

Furthermore, any factor of a number will be lower than its square root. This can be 
explained as follows: If a number is the factor of two or more numbers, the highest 
they may be is the square root of the whole number. So we check only the numbers 
up to the square root (rounded down):

Divide 19 between
[2, 3, 4]

But we can reduce it even further. We only need to check the odd numbers after 2, as 
any even number will be divisible by 2. So, in this case, we even reduce it further.

Divide 19 between
[2, 3]

To apply all of this, we need to tweak the code again and store it in primes_4.py, 
available on GitHub at https://github.com/PacktPublishing/Python-Architecture-
Patterns/blob/main/chapter_14_profiling/primes_4.py:

def check_if_prime(number):

    if number % 2 == 0 and number != 2:
        return False

    for i in range(3, math.floor(math.sqrt(number)) + 1, 2):
        if number % i == 0:
            return False

    return True

The code always checks for divisibility by 2, unless the number is 2. This is to keep 
returning 2 correctly as a prime.

Then, we create a range of numbers that starts from 3 (we already tested 2) and 
continue until the square root of the number. We use the math module to perform 
the action and to floor the number to the nearest lower integer. The range function 
requires a +1 of this number, as it doesn't include the defined number. Finally, the 
range step on 2 integers at  time so that all the numbers are odd, since we started 
with 3.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_4.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/primes_4.py


Profiling

[ 480 ]

For example, to test a number like 1,000, this is the equivalent code.

>>> import math
>>> math.sqrt(1000)
31.622776601683793
>>> math.floor(math.sqrt(1000))
31
>>> list(range(3, 31 + 1, 2))
[3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]

Note that 31 is returned as we added the +1.

Let's profile the code again.

$ time kernprof -l primes_4.py
Primes
------
1
2
3
5
…
4973
4987
4993
4999
------
Wrote profile results to primes_4.py.lprof

Real      0m0.477s
User      0m0.353s
sys       0m0.094s

We see another big increase in performance. Let's see the line profile.

$ python3 -m line_profiler primes_4.py.lprof
Timer unit: 1e-06 s

Total time: 0.018276 s
File: primes_4.py
Function: check_if_prime at line 8

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 481 ]

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     8                                           @profile
     9                                           def check_if_
prime(number):
    10
    11      4999       1924.0      0.4     10.5      if number % 2 == 0 
and number != 2:
    12      2498        654.0      0.3      3.6          return False
    13
    14     22228       7558.0      0.3     41.4      for i in range(3, 
math.floor(math.sqrt(number)) + 1, 2):
    15     21558       7476.0      0.3     40.9          if number % i 
== 0:
    16      1831        506.0      0.3      2.8              return 
False
    17
    18       670        158.0      0.2      0.9      return True

We've reduced the number of loop iterations drastically to 22,228, from 1.5 million in 
primes_3.py and over 12 million in primes_2.py, when we started the line profiling. 
That's some serious improvement!

The line approach should be used only for small sections. In general, we've seen how 
cProfile can be more useful, as it's easier to run and gives information. 

Previous sections have assumed that we are able to run the whole script and then 
receive the results, but that may not be correct. Let's take a look at how to profile in 
sections of the program, for example, when a request is received.

Partial profiling 
In many scenarios, profilers will be useful in environments where the system is in 
operation and we cannot wait until the process finishes before obtaining profiling 
information. Typical scenarios are web requests.

You can try to do the test to increase NUM_PRIMES_UP_TO in 
primes_2.py and primes_4.py and compare them. The change 
will be clearly perceptible.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 482 ]

If we want to analyze a particular web request, we may need to start a web server, 
produce a single request, and stop the process to obtain the result. This doesn't work 
as well as you may think due to some problems that we will see.

But first, let's create some code to explain this situation.

Example web server returning prime numbers
We will use the final version of the function check_if_prime and create a web service 
that returns all the primes up to the number specified in the path of the request. The 
code will be the following, and it's fully available in the server.py file on GitHub at 
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/
chapter_14_profiling/server.py.

from http.server import BaseHTTPRequestHandler, HTTPServer
import math

def check_if_prime(number):

    if number % 2 == 0 and number != 2:
        return False

    for i in range(3, math.floor(math.sqrt(number)) + 1, 2):
        if number % i == 0:
            return False

    return True

def prime_numbers_up_to(up_to):
    primes = [number for number in range(1, up_to + 1)
              if check_if_prime(number)]

    return primes

def extract_param(path):
    '''
    Extract the parameter and transform into
    a positive integer. If the parameter is

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/server.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/server.py


Chapter 14

[ 483 ]

    not valid, return None
    '''
    raw_param = path.replace('/', '')

    # Try to convert in number
    try:
        param = int(raw_param)
    except ValueError:
        return None

    # Check that it's positive
    if param < 0:
        return None

    return param

def get_result(path):
    param = extract_param(path)
    if param is None:
        return 'Invalid parameter, please add an integer'

    return prime_numbers_up_to(param)

class MyServer(BaseHTTPRequestHandler):

    def do_GET(self):

        result = get_result(self.path)

        self.send_response(200)
        self.send_header("Content-type", "text/html")
        self.end_headers()
        return_template = '''
            <html>
                <head><title>Example</title></head>
                <body>
                    <p>Add a positive integer number in the path to 
display
                    all primes up to that number</p>

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 484 ]

                    <p>Result {result}</p>
                </body>
            </html>
        '''

        body = bytes(return_template.format(result=result), 'utf-8')
        self.wfile.write(body)

if __name__ == '__main__':

    HOST = 'localhost'
    PORT = 8000

    web_server = HTTPServer((HOST, PORT), MyServer)
    print(f'Server available at http://{HOST}:{PORT}')
    print('Use CTR+C to stop it')

    # Capture gracefully the end of the server by KeyboardInterrupt
    try:
        web_server.serve_forever()
    except KeyboardInterrupt:
        pass

    web_server.server_close()
    print("Server stopped.")

The code is better understood if you start from the end. The final block creates a 
web server using the base HTTPServer definition in the Python module http.server. 
Previously, we created the class MyServer, which defines what to do if there's a GET 
request in the do_GET method.

The do_GET method returns an HTML response with the result calculated by get_
result. It adds all the required headers and formats the body in HTML.

The interesting bits of the process happen in the next functions.

get_result is the root one. It first calls extract_param to get a number, up to which to 
calculate the threshold number for us to calculate primes up to. If correct, then that's 
passed to prime_numbers_up_to.

def get_result(path):
    param = extract_param(path)

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 485 ]

    if param is None:
        return 'Invalid parameter, please add an integer'

    return prime_numbers_up_to(param)

The function extract_params will extract a number from the URL path. It first 
removes any / character, and then tries to convert it into an integer and checks the 
integer is positive. For any errors, it returns None.

def extract_param(path):
    '''
    Extract the parameter and transform into
    a positive integer. If the parameter is
    not valid, return None
    '''
    raw_param = path.replace('/', '')

    # Try to convert in number
    try:
        param = int(raw_param)
    except ValueError:
        return None

    # Check that it's positive
    if param < 0:
        return None

    return param

The function prime_numbers_up_to, finally, calculates the prime numbers up to the 
number passed. This is similar to the code that we saw earlier in the chapter. 

def prime_numbers_up_to(up_to):
    primes = [number for number in range(1, up_to + 1)
              if check_if_prime(number)]

    return primes

Finally, check_if_prime, which we covered extensively earlier in the chapter, is the 
same as it was at primes_4.py.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 486 ]

The process can be started with:

$ python3 server.py
Server available at http://localhost:8000
Use CTR+C to stop it

And then tested by going to http://localhost:8000/500 to try to get prime numbers 
up to 500.

 

Figure 14.3: The interface displaying all primes up to 500

As you can see, we have an understandable output. Let's move on to profiling the 
process we used to get it.

Profiling the whole process
We can profile the whole process by starting it under cProfile and then 
capturing its output with. We start it like this, make a single request to http://
localhost:8000/500, and check the results.

$ python3 -m cProfile -o server.prof server.py
Server available at http://localhost:8000
Use CTR+C to stop it

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 487 ]

127.0.0.1 - - [10/Oct/2021 14:05:34] "GET /500 HTTP/1.1" 200 -
127.0.0.1 - - [10/Oct/2021 14:05:34] "GET /favicon.ico HTTP/1.1" 200 -
^CServer stopped.

We have stored the results in the file server.prof. This file can then be analyzed as 
before, using snakeviz.

$ snakeviz server.prof
snakeviz web server started on 127.0.0.1:8080; enter Ctrl-C to exit

Which displays the following diagram:

Figure 14.4: Diagram of the full profile. The full page is too big to fit here and has been  
cropped purposefully to show some of the info.

As you can see, the diagram shows that for the vast majority of the test duration, the 
code was waiting for a new request, and internally doing a poll action. This is part of 
the server code and not our code.

To find the code that we care about, we can manually search in the long list below 
for get_result, which is the root of the interesting bits of our code. Be sure to select 
Cutoff: None to display all the functions.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 488 ]

Once selected, the diagram will display from there onward. Be sure to scroll up to 
see the new diagram.

Figure 14.5: The diagram showing from get_result. The full page is too big to fit  
here and has been cropped purposefully to show some of the info.

Here, you can see more of the general structure of the code execution. You can see 
that most of the time is spent on the multiple check_if_prime calls, which comprise 
the bulk of prime_numbers_up_to and the list comprehension included in it, and very 
little time is spent on extract_params.

But this approach has some problems:

• First of all, we need to go a full cycle between starting and stopping a 
process. This is cumbersome to do for requests.

• Everything that happens in the cycle is included. That adds noise to the 
analysis. Fortunately, we knew that the interesting part was in get_result, 
but that may not be evident. This case also uses a minimal structure but 
adding that in the case of a complex framework like Django can lead to a lot 
of  .

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 14

[ 489 ]

• If we process two different requests, they will be added into the same file, 
again mixing the results.

These problems can be solved by applying the profiler to only the part that is of 
interest and producing a new file for each request.

Generating a profile file per request
To be able to generate a different file with information per individual request, 
we need to create a decorator for easy access. This will profile and produce an 
independent file.

In the file server_profile_by_request.py, we get the same code as in server.py, but 
adding the following decorator.

from functools import wraps
import cProfile
from time import time

def profile_this(func):

    @wraps(func)
    def wrapper(*args, **kwargs):
        prof = cProfile.Profile()
        retval = prof.runcall(func, *args, **kwargs)
        filename = f'profile-{time()}.prof'
        prof.dump_stats(filename)
        return retval

    return wrapper

The decorator defines a wrapper function that replaces the original function. We use 
the wraps decorator to keep the original name and docstring.

This is just a standard decorator process. A decorator function in 
Python is one that returns a function that then replaces the original 
one. As you can see, the original function func is still called inside 
the wrapper that replaces it, but it adds extra functionality.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 490 ]

Inside, we start a profiler and run the function under it using the runcall function. 
This line is the core of it – using the profiler generated, we run the original function 
func with its parameters and store its returned value.

retval = prof.runcall(func, *args, **kwargs)

After that, we generate a new file that includes the current time and dump the stats 
in it with the .dump_stats call.

We also decorate the get_result function, so we start our profiling there.

@profile_this
def get_result(path):
    param = extract_param(path)
    if param is None:
        return 'Invalid parameter, please add an integer'

    return prime_numbers_up_to(param)

The full code is available in the file server_profile_by_request.py, available on 
GitHub at https://github.com/PacktPublishing/Python-Architecture-Patterns/
blob/main/chapter_14_profiling/server_profile_by_request.py.

Let's start the server now and make some calls through the browser, one to http://
localhost:8000/500 and another to http://localhost:8000/800.

$ python3 server_profile_by_request.py
Server available at http://localhost:8000
Use CTR+C to stop it
127.0.0.1 - - [10/Oct/2021 17:09:57] "GET /500 HTTP/1.1" 200 -
127.0.0.1 - - [10/Oct/2021 17:10:00] "GET /800 HTTP/1.1" 200 -

We can see how new files are created:

$ ls profile-*
profile-1633882197.634005.prof 
profile-1633882200.226291.prof

These files can be displayed using snakeviz:

$ snakeviz profile-1633882197.634005.prof
snakeviz web server started on 127.0.0.1:8080; enter Ctrl-C to exit

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/server_profile_by_request.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/server_profile_by_request.py


Chapter 14

[ 491 ]

Figure 14.6: The profile information of a single request. The full page is too big to fit  
here and has been cropped purposefully to show some of the info.

Each file contains only the information from get_result onwards, which gets 
information only up to a point. Even more so, each file displays information only for 
a specific request, so it can be profiled individually, with a high level of detail.

The code can be adapted to adapt the filename more specifically to include details 
like call parameters, which can be useful. Another interesting possible adaptation is 
to create a random sample, so only 1 in X calls produces profiled code. This can help 
reduce the overhead of profiling and allow you to completely profile some requests.

Next, we'll see how to perform memory profiling.

This is different from a statistical profiler, as it will still completely 
profile some requests, instead of detecting what's going on at a 
particular time. This can help follow the flow of what happens for 
particular requests.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 492 ]

Memory profiling
Sometimes, applications use too much memory. The worst-case scenario is that 
they use more and more memory as time goes by, normally due to what's called a 
memory leak, maintaining memory that is no longer used, due to some mistake in 
the coding. Other problems can also include the fact that the usage of memory may 
be improved, as it's a limited resource.

To profile memory and analyze what the objects are that use the memory, we need 
first to create some example code. We will generate enough Leonardo numbers.

Leonardo numbers are numbers that follow a sequence defined as the following:

• The first Leonardo number is one
• The second Leonardo number is also one
• Any other Leonardo number is the two previous Leonardo numbers plus one

Leonardo numbers are similar to Fibonacci numbers. They are actually related to 
them. We use them instead of Fibonacci to show more variety. Numbers are fun!

We present the first 35 Leonardo numbers by creating a recursive function and store 
it in leonardo_1.py, available on GitHub at https://github.com/PacktPublishing/
Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_1.py.

def leonardo(number):

    if number in (0, 1):
        return 1

    return leonardo(number - 1) + leonardo(number - 2) + 1

NUMBER = 35
for i in range(NUMBER + 1):
    print('leonardo[{}] = {}'.format(i, leonardo(i)))

You can run the code and see it takes progressively longer.

$ time python3 leonardo_1.py
leonardo[0] = 1
leonardo[1] = 1
leonardo[2] = 3
leonardo[3] = 5
leonardo[4] = 9

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_1.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_1.py


Chapter 14

[ 493 ]

leonardo[5] = 15
...
leonardo[30] = 2692537
leonardo[31] = 4356617
leonardo[32] = 7049155
leonardo[33] = 11405773
leonardo[34] = 18454929
leonardo[35] = 29860703

real      0m9.454s
user      0m8.844s
sys 0m0.183s

To speed up the process, we see that it's possible to use memorization techniques, 
which means to store the results and use them instead of calculating them all the 
time.

We change the code like this, creating the leonardo_2.py file (available on GitHub at 
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/
chapter_14_profiling/leonardo_2.py).

CACHE = {}

def leonardo(number):

    if number in (0, 1):
        return 1

    if number not in CACHE:
        result = leonardo(number - 1) + leonardo(number - 2) + 1
        CACHE[number] = result

    return CACHE[number]

NUMBER = 35000
for i in range(NUMBER + 1):
    print(f'leonardo[{i}] = {leonardo(i)}')

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_2.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_2.py


Profiling

[ 494 ]

This uses a global dictionary, CACHE, to store all Leonardo numbers, speeding up the 
process. Note that we increased the number of numbers to calculate from 35 to 35000, 
a thousand times more. The process runs quite quickly.

$ time python3 leonardo_2.py
leonardo[0] = 1
leonardo[1] = 1
leonardo[2] = 3
leonardo[3] = 5
leonardo[4] = 9
leonardo[5] = 15
...
leonardo[35000] = ...

real      0m15.973s
user      0m8.309s
sys       0m1.064s

Let's take a look now at memory usage.

Using memory_profiler
Now that we have our application storing information, let's use a profiler to show 
where the memory is stored.

We need to install the package memory_profiler. This package is similar to line_
profiler.

$ pip install memory_profiler

We can now add a @profile decorator in the leonardo function (stored in 
leonardo_2p.py, on GitHub at https://github.com/PacktPublishing/Python-
Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_2p.py), and run 
it using the memory_profiler module. You'll notice that it runs slower this time, but 
after the usual result, it displays a table.

$ time python3 -m memory_profiler leonardo_2p.py
...
Filename: leonardo_2p.py

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_2p.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_2p.py


Chapter 14

[ 495 ]

Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     5  104.277 MiB   97.082 MiB      104999   @profile
     6                                         def leonardo(number):
     7
     8  104.277 MiB    0.000 MiB      104999       if number in (0, 1):
     9   38.332 MiB    0.000 MiB           5           return 1
    10
    11  104.277 MiB    0.000 MiB      104994       if number not in 
CACHE:
    12  104.277 MiB    5.281 MiB       34999           result = 
leonardo(number - 1) + leonardo(number - 2) + 1
    13  104.277 MiB    1.914 MiB       34999           CACHE[number] = 
result
    14
    15  104.277 MiB    0.000 MiB      104994       return CACHE[number]

Real      0m47.725s
User      0m25.188s
sys 0m10.372s

This table shows first the memory usage, and the increment or decrement, as well as 
how many times each line appears.

You can see the following:

• Line 9 gets executed only a few times. When it does, the amount of memory 
is around 38 MiB, which will be the minimum memory used by the program.

• The total memory used is almost 105 MiB.
• The whole memory increase is localized in lines 12 and 13, when we create 

a new Leonardo number and when we store it in the CACHE dictionary. Note 
how we are never releasing memory here.

We don't really need to keep all the previous Leonardo numbers in memory at all 
times, and we can try a different approach to keep only a few.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 496 ]

Memory optimization
We create the file leonardo_3.py with the following code, available on GitHub at 
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/
chapter_14_profiling/leonardo_3.py:

CACHE = {}

@profile
def leonardo(number):

    if number in (0, 1):
        return 1

    if number not in CACHE:
        result = leonardo(number - 1) + leonardo(number - 2) + 1
        CACHE[number] = result

    ret_value = CACHE[number]

    MAX_SIZE = 5
    while len(CACHE) > MAX_SIZE:
        # Maximum size allowed,
        # delete the first value, which will be the oldest
        key = list(CACHE.keys())[0]
        del CACHE[key]

    return ret_value

NUMBER = 35000
for i in range(NUMBER + 1):
    print(f'leonardo[{i}] = {leonardo(i)}')

Note we keep the @profile decorator to run the memory profiler again. Most of the 
code is the same, but we added the following extra block:

    MAX_SIZE = 5
    while len(CACHE) > MAX_SIZE:
        # Maximum size allowed,
        # delete the first value, which will be the oldest

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_3.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_14_profiling/leonardo_3.py


Chapter 14

[ 497 ]

        key = list(CACHE.keys())[0]
        del CACHE[key]

This code will keep the number of elements in the CACHE dictionary within a limit. 
When the limit is reached, it will remove the first element returned by CACHE.keys(), 
which will be the oldest.

The dictionary won't be able to grow. Let's now try to run it and see the results of the 
profiling.

$ time python3 -m memory_profiler leonardo_3.py
...
Filename: leonardo_3.py

Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     5   38.441 MiB   38.434 MiB      104999   @profile
     6                                         def leonardo(number):
     7
     8   38.441 MiB    0.000 MiB      104999       if number in (0, 1):
     9   38.367 MiB    0.000 MiB           5           return 1
    10
    11   38.441 MiB    0.000 MiB      104994       if number not in 
CACHE:
    12   38.441 MiB    0.008 MiB       34999           result = 
leonardo(number - 1) + leonardo(number - 2) + 1
    13   38.441 MiB    0.000 MiB       34999           CACHE[number] = 
result
    14
    15   38.441 MiB    0.000 MiB      104994       ret_value = 
CACHE[number]
    16
    17   38.441 MiB    0.000 MiB      104994       MAX_SIZE = 5
    18   38.441 MiB    0.000 MiB      139988       while len(CACHE) > 
MAX_SIZE:

Since Python 3.6, all Python dictionaries are ordered, so they'll 
return their keys in the order they have been input previously. We 
take advantage of that for this. Note we need to convert the result 
from CACHE.keys() (a dict_keys object) to a list to allow getting 
the first element.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Profiling

[ 498 ]

    19                                                 # Maximum size 
allowed,
    20                                                 # delete the 
first value, which will be the oldest
    21   38.441 MiB    0.000 MiB       34994           key = 
list(CACHE.keys())[0]
    22   38.441 MiB    0.000 MiB       34994           del CACHE[key]
    23
    24   38.441 MiB    0.000 MiB      104994       return ret_value

In this case, we see how the memory remains stable at around the 38 MiB, that we see 
is the minimum. In this case, note how there are no increments or decrements. Really 
what happens here is that increments and decrements are too small to be noticed. 
Because they cancel each other, the report is close to zero.

The memory-profiler module is also able to perform more actions, including 
showing the usage of memory based on time and plotting it, so you can see memory 
increasing or decreasing over time. Take a look at its full documentation at https://
pypi.org/project/memory-profiler/.

Summary
In this chapter, we described what profiling is and when it's useful to apply it. We 
described that profiling is a dynamic tool that allows you to understand how code 
runs. This information is useful in understanding the flow in a practice situation 
and being able to optimize the code with that information. Code can be optimized 
normally to execute faster, but other alternatives are open, like using fewer resources 
(normally memory), reducing external accesses, etc.

We described the main types of profilers: deterministic profilers, statistical profilers, 
and memory profilers. The first two are mostly oriented toward improving the 
performance of code and memory profilers analyze the memory used by the code in 
execution. Deterministic profilers instrument the code to detail the flow of the code 
as it's executed. Statistical profilers sample the code at periodic times to provide a 
general view of the parts of the code that are executed more often.

We then showed how to profile the code using deterministic profilers, presenting 
an example. We analyzed it first with the built-in module cProfile, which gives a 
function resolution. We saw how to use graphical tools to show the results. To dig 
deeper, we used the third-party module line-profiler, which goes through each 
of the code lines. Once the flow of the code is understood, it is optimized to greatly 
reduce its execution time.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pypi.org/project/memory-profiler/
https://pypi.org/project/memory-profiler/


Chapter 14

[ 499 ]

The next step was to see how to profile a process intended to keep running, like a 
web server. We showed the problems with trying to profile the whole application 
in these cases and described how we can profile each individual request instead 
for clarity.

Finally, we also presented an example to profile memory and see how it's used by 
using the module memory-profiler.

In the next chapter, we will learn more details about how to find and fix problems in 
code, including in complex situations, through debugging techniques.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:  
https://packt.link/PythonArchitechture

These techniques are also applicable to other situations like 
conditional profiling, profiling in only certain situations, like at 
certain times or one of each 100 requests.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 501 ]

15
Debugging

Generally speaking, the cycle for debugging problems has the following steps:

1. Detecting the problem. A new problem or defect is discovered
2. Analyzing and assigning priority to this problem, to be sure that we spend 

time on meaningful problems and focus on the most important ones
3. Investigating what exactly causes the problem. Ideally, this should end with 

a way of replicating the problem in a local environment
4. Replicating the problem locally, and getting into the specific details on why it 

happens
5. Fixing the problem

As you can see, the general strategy is to first locate and understand the problem, so 
we can then properly debug and fix it.

In this chapter, we'll cover the following topics to see effective techniques on how to 
work through all those phases:

• Detecting and processing defects
• Investigation in production
• Understanding the problem in production
• Local debugging
• Python introspection tools
• Debugging with logs
• Debugging with breakpoints

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 502 ]

Let's take a look at the very first step when dealing with defects.

Detecting and processing defects
The first step is actually detecting the problem. This can sound a bit silly, but it's a 
quite crucial stage.

Detecting problems can be done in different ways, and some may be more evident 
than others. Normally, once the code is in production, defects will be detected by a 
user, either internally (best case) or externally (worst case), or through monitoring.

Based on how problems are detected, we can categorize them into different 
severities, for example:

• Catastrophic problems that are completely stopping the operation. These 
bugs mean that nothing, not even non-related tasks in the same system, 
works

• Critical problems that stop the execution of some tasks, but not others
• Serious problems that will stop or cause problems with certain tasks, but 

only in some circumstances. For example, a parameter is not checked and 
produces an exception, or some combination produces a task so slow that it 
produces a timeout

• Mild problems, which include tasks containing errors or inaccuracies. For 
example, a task produces an empty result in certain circumstances, or a 
problem in the UI that doesn't allow calling a functionality

• Cosmetic or minor problems like typos and similar

While we will mainly use the term "bug" to describe any defect, 
remember that it may include details like bad performance or 
unexpected behavior that may not be properly categorized as a 
"bug." The proper tool to fix the problem could be different, but the 
detection is normally done in a similar way.

Keep in mind that monitoring will only be able to capture obvious, 
and typically serious, errors.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 503 ]

Because every development team is limited, there will always be too many bugs 
and having the proper approach on what to pay attention to and what to fix first is 
critical. Normally bugs in the first group will obviously be quite pressing to fix and 
will require an immediate all-hands reaction. But categorization and prioritization 
are important. 

Having a clear signal on what things to look for next will help developers have 
a clear view and be efficient by spending time on important problems and not 
whatever is the latest. Teams themselves can perform some triage of problems, but 
it's good to add some context.

Keep in mind that usually, you need to both correct bugs and implement new 
features, and each of these tasks can distract from the other. 

Fixing bugs is important, not only for the resulting quality of the service, as any user 
will find working with a buggy service very frustrating. But it's also important for 
the development team, as working with a low-quality service is also frustrating for 
developers. 

Any detected problem, except the catastrophic ones, where context is irrelevant, 
should capture the context surrounding the steps that were required to produce the 
error. The objective of this is to be able to reproduce the error.

When a problem can be replicated, you're halfway to the solution. The problem can 
be ideally replicated into a test, so it can be tested over and over until the problem is 
understood and fixed. In the best situations, this test can be a unit test, if the problem 
affects a single system and all the conditions are understood and can be replicated. If 
the problem affects more than one system, it may be necessary to create integration 
tests.

A proper balance needs to be struck between bug fixing and 
introducing new features. Also remember to allocate time for the 
corresponding new bugs introduced for new features. A feature is 
not ready when released, it's ready when its bugs are fixed.

Reproducing the error is a critical element of fixing it. The worst-
case scenario is that a bug is intermittent or appears to happen 
at random times. More digging will be required in order to 
understand why it is happening when it's happening.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 504 ]

Once a problem is categorized and replicable, the investigation can proceed to 
understand why.

Visually inspecting the code and trying to reason where problems and bugs are is 
normally not good enough. Even very simple code will surprise you in terms of how 
it's executed. Being able to analyze how, in a particular case, the code is executing 
with precision is critical for analyzing and fixing problems that are found.

Investigation in production
Once we are aware that we have a problem in production, we need to understand 
what is happening and what the key elements that produce it are.

The most important tools when analyzing why a particular problem is produced are 
the observability tools. That's why it is important to do preparation work in advance 
to be sure to be able to find problems when required.

We talked in previous chapters about logs and metrics. When debugging, metrics 
are normally not relevant, except to show the relative importance of a bug. Checking 
an increase in returned errors can be important to detect that there's an error, but 
detecting what error will require more precise information.

Do not underestimate metrics, though. They can help quickly determine what 
specific component is failing or if there's any relationship with other elements, for 
example, if there's a single server that's producing errors, or if it has run out of 
memory or hard drive space. 

A common problem during an investigation is to find out what 
the specific circumstances are that are provoking the problem, 
for example, data that's set up in a particular way in production 
and that triggers some issue. Finding exactly what is causing the 
problem can be complicated in this environment. We will talk later 
in the chapter about finding a problem in production.

It's very important to remark on the importance of being able to 
replicate a problem. If that's the case, tests can be done to produce 
the error and follow the consequences.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 505 ]

But in any case, logs will generally be more useful in determining which part of the 
code is behaving badly. As we saw in Chapter 12, Logging, we can describe error logs 
as detecting two kinds of problems:

• Expected errors. In this case, we did the work of debugging the error 
beforehand and knowing what happened should be easy. Examples of this 
can be an external request that returns an error, a database that cannot be 
connected to, etc.
Most of these errors will be related to external services (from the point of 
view of the one raising the error) that are misbehaving. This could indicate 
a network problem, misconfiguration, or problems in other services. It is 
not rare that errors propagate through the system as an error may provoke 
a cascading failure. Typically, though, the origin will be an unexpected 
error and the rest will be expected ones, as they'll receive the error from an 
external source.

• Unexpected errors. The sign of these errors are logs indicating that 
something has gone wrong, and in most modern programming languages, a 
stack trace of some sort in the logs detailing the line of code when the error 
was produced.

The system should provide the proper handling for the task. For example, a 
web server will return a 500 error, and a task management system may retry 
the task after some delay. This may lead to the error being propagated, as we 
saw before.

For example, a problematic server can produce apparently random 
errors, if the external requests are directed to different servers, 
and the failure is related to a combination of a specific request 
addressed to a specific server.

By default, any kind of framework that executes tasks, 
like a web framework or task management system, will 
produce an error, but keep the system stable. This means 
that only the task producing the error will be interrupted 
and any new task will be handled from scratch.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 506 ]

In any of the two cases, the main tool to detect what the problem was will be logs. 
Either the logs show a known problem that is captured and properly labeled, or the 
logs show a stack trace that should indicate what specific part of the code is showing 
the error.

Finding the element and part of the code that is the source of the error is important 
for understanding the problem and for debugging the specific problem. This is 
particularly important in microservices architectures, as they'll have multiple 
independent elements.

Keep in mind that sometimes it is not possible to totally avoid errors. For example, 
if there's an external dependency calling an external API and it has a problem, this 
may trigger internal errors. These can be mitigated, failing gracefully, or generating 
a state of "service not available." But the root of the error may not be possible to 
fix totally. 

We can have these cases be notified to us, but they won't require further short-term 
action.

In other cases, when the error is not immediately obvious and further investigation 
needs to be done, it will require some debugging.

Understanding the problem in production
The challenge in complex systems is the fact that detecting problems becomes 
exponentially more complicated. As multiple layers and modules are added and 
interact with each other, bugs become potentially more subtle and more complex.

We talked about microservices and monolithic architectures in 
Chapter 9, Microservices vs Monolith. Monoliths are easier to deal 
with in terms of bugs, as all the code is handled on the same site, 
but anyway they'll become more and more complex as they grow.

Mitigating external dependencies may require creating 
redundancy, even using different suppliers so as not to be 
dependent on a single point of failure, though this may not be 
realistic, as it can be extremely costly.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 507 ]

The objective in this step, though, should be to analyze enough of the problem in 
production to be able to replicate it in a local environment, where the smaller scale 
of the environment will make it easier and less invasive to probe and make changes. 
Once enough information has been collected, it's better to leave any production 
environment alone and focus on the specifics of the problem. 

Sometimes, general logging enabled is enough to determine exactly what the bug 
is or how to replicate it locally. In those cases, it may be necessary to research the 
circumstances that trigger the problem.

Logging a request ID
One of the problems when analyzing a large number of logs is correlating them. To 
properly group logs that are related to each other, we could filter by the host that 
generates them and select a short window of time, but even that may not be good 
enough as two or more different tasks can be running at the same time. We need a 
unique identifier per task or request that can trace all logs coming from the same 
source. We will call this identifier a request ID, as they are added automatically in 
many frameworks. This sometimes is called a task ID in task managers.

As we saw before, microservice architectures can be especially 
difficult to debug. The interaction between different microservices 
can produce complex interactions that can produce subtle 
problems in the integration of its different parts. This integration 
can be difficult to test in integration tests, or perhaps the source of 
the problem is in a blind spot of the integration tests.

But monoliths can also have problems as their parts grow more 
complex. Difficult bugs may be produced due to the interaction 
of specific production data that interacts in an unexpected way. A 
big advantage of monolithic systems is that the tests will cover the 
whole system, making it easier to replicate with unit or integration 
tests.

Remember that having a replicable bug is more than half the battle! 
Once the problem can be categorized as a replicable set of steps 
locally, a test can be created to produce it over and over and debug 
in a controlled environment.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 508 ]

In cases where multiple services are involved, like in microservice architectures, it 
is very important to keep a common request ID that can work to trace the different 
requests between different services. That allows you to follow and correlate different 
logs in the system from different services that have the same origin. 

The following diagram shows the flow between a frontend and two backend services 
that are called internally. Note that the X-Request-ID header is set by the frontend 
and it's forwarded to service A, which then forwards it toward service B.

Figure 15.1: Request ID across multiple services

Because all of them share the same request ID, logs can be filtered by that 
information to obtain all the information about a single task.

To achieve this, we can use the module django_log_request_id to create a request ID 
in Django applications.

We show some code in GitHub at https://github.com/PacktPublishing/Python-
Architecture-Patterns/tree/main/chapter_15_debug following the example across 
the book. This requires creating a virtual environment and installing the package, 
alongside the rest of the requirements.

$ python3 -m venv ./venv
$ source ./venv/bin/activate
(venv) $ pip install -r requirements.txt

You can see the whole documentation here: https://github.
com/dabapps/django-log-request-id/.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_15_debug
https://github.com/PacktPublishing/Python-Architecture-Patterns/tree/main/chapter_15_debug
https://github.com/dabapps/django-log-request-id/
https://github.com/dabapps/django-log-request-id/


Chapter 15

[ 509 ]

The code has been changed to include some extra logs in the microposts/api/views.
py file (as seen at https://github.com/PacktPublishing/Python-Architecture-
Patterns/blob/main/chapter_15_debug/microposts/api/views.py):

from rest_framework.generics import ListCreateAPIView
from rest_framework.generics import RetrieveUpdateDestroyAPIView
from .models import Micropost, Usr
from .serializers import MicropostSerializer
import logging

logger = logging.getLogger(__name__)

class MicropostsListView(ListCreateAPIView):
    serializer_class = MicropostSerializer

    def get_queryset(self):
        logger.info('Getting queryset')
        result = Micropost.objects.filter(user__username=self.
kwargs['username'])
        logger.info(f'Querysert ready {result}')
        return result

    def perform_create(self, serializer):
        user = Usr.objects.get(username=self.kwargs['username'])
        serializer.save(user=user)

class MicropostView(RetrieveUpdateDestroyAPIView):
    serializer_class = MicropostSerializer

    def get_queryset(self):
        logger.info('Getting queryset for single element')
        result = Micropost.objects.filter(user__username=self.
kwargs['username'])
        logger.info(f'Queryset ready {result}')
        return result

Note how this is now adding some logs when accessing the list collections page and 
the individual micropost page. We will use the example URL /api/users/jaime/
collection/5.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_15_debug/microposts/api/views.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_15_debug/microposts/api/views.py


Debugging

[ 510 ]

To enable the usage of the request ID, we need to properly set up the configuration 
in microposts/settings.py (https://github.com/PacktPublishing/Python-
Architecture-Patterns/blob/main/chapter_15_debug/microposts/microposts/
settings.py):

LOG_REQUEST_ID_HEADER = "HTTP_X_REQUEST_ID"
GENERATE_REQUEST_ID_IF_NOT_IN_HEADER = True

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'filters': {
        'request_id': {
            '()': 'log_request_id.filters.RequestIDFilter'
        }
    },
    'formatters': {
        'standard': {
            'format': '%(levelname)-8s [%(asctime)s] [%(request_id)s] 
%(name)s: %(message)s'
        },
    },
    'handlers': {
        'console': {
            'level': 'INFO',
            'class': 'logging.StreamHandler',
            'filters': ['request_id'],
            'formatter': 'standard',
        },
    },
    'root': {
        'handlers': ['console'],
        'level': 'INFO',
    },
}

The LOGGING dictionary is a characteristic in Django that describes how to log. 
filters adds extra information, in this case, our request_id, formatter describes the 
specific format to use (note that we add request_id as a parameter, which will be 
presented in brackets). 

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_15_debug/microposts/microposts/settings.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_15_debug/microposts/microposts/settings.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_15_debug/microposts/microposts/settings.py


Chapter 15

[ 511 ]

handlers describes what happens to each message, joining filters and formatter 
with information about levels to display and where to send the info. In this case, 
StreamHandler will send the log to stdout. We set all the logs on the root level to use 
this handler.

The lines,

LOG_REQUEST_ID_HEADER = "HTTP_X_REQUEST_ID"
GENERATE_REQUEST_ID_IF_NOT_IN_HEADER = True

state that a new Request ID parameter should be created if not found as a header in 
the input and that the name of the header will be X-Request-ID.

Once all of this is configured, we can run a test starting the server with: 

(venv) $ python3 manage.py runserver
Watching for file changes with StatReloader
2021-10-23 16:11:16,694 INFO     [none] django.utils.autoreload: 
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).
October 23, 2021 - 16:11:16
Django version 3.2.8, using settings 'microposts.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C

On another screen, make a call to the test URL with curl:

(venv) $ curl http://localhost:8000/api/users/jaime/collection/5
{"href":"http://localhost:8000/api/users/jaime/
collection/5","id":5,"text":"A referenced micropost","referenced":"dana
","timestamp":"2021-06-10T21:15:27.511837Z","user":"jaime"}

Check the Django documentation for more information: https://
docs.djangoproject.com/en/3.2/topics/logging/. Logging 
in Django may take a bit of experience in setting all the parameters 
correctly. Take your time when configuring it.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.djangoproject.com/en/3.2/topics/logging/
https://docs.djangoproject.com/en/3.2/topics/logging/


Debugging

[ 512 ]

At the same time, you'll see the logs on the server screen:

2021-10-23 16:12:47,969 INFO     [66e9f8f1b43140338ddc3ef569b8e845] 
api.views: Getting queryset for single element
2021-10-23 16:12:47,971 INFO     [66e9f8f1b43140338ddc3ef569b8e845] 
api.views: Queryset ready <QuerySet [<Micropost: Micropost object (1)>, 
<Micropost: Micropost object (2)>, <Micropost: Micropost object (5)>]>
[23/Oct/2021 16:12:47] "GET /api/users/jaime/collection/5 HTTP/1.1" 200 
177

Which, as you can see, added a new request ID element, 66e9f8f1b43140338ddc3ef56
9b8e845 in this case.

But the request ID can also be created by calling with the proper header. Let's try 
again, making another curl request and the -H parameter to add a header.

$ curl -H "X-Request-ID:1A2B3C" http://localhost:8000/api/users/jaime/
collection/5
{"href":"http://localhost:8000/api/users/jaime/
collection/5","id":5,"text":"A referenced micropost","referenced":"dana
","timestamp":"2021-06-10T21:15:27.511837Z","user":"jaime"}

You can check the logs in the server again:

2021-10-23 16:14:41,122 INFO     [1A2B3C] api.views: Getting queryset 
for single element
2021-10-23 16:14:41,124 INFO     [1A2B3C] api.views: Queryset ready 
<QuerySet [<Micropost: Micropost object (1)>, <Micropost: Micropost 
object (2)>, <Micropost: Micropost object (5)>]>
[23/Oct/2021 16:14:41] "GET /api/users/jaime/collection/5 HTTP/1.1" 200 
177

This shows that the request ID has been set by the value in the header.

The request ID can be passed over other services by using the Session included in 
the same module, which acts as a Session in the requests module.

from log_request_id.session import Session
session = Session()
session.get('http://nextservice/url')

This will set the proper header in the request, passing through it to the next step of 
the chain, like service A or service B.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 513 ]

Analyzing data
If the default logs are not enough to understand the problem, the next stage in those 
cases is understanding the data related to the problem. Typically, the data storage 
may be inspected to follow up on the related data for the task, to see if there's any 
indication about that.

Analyzing the stored data may require performing ad hoc manual queries to 
databases or other kinds of data storage to find out if the related data is consistent or 
if there is any combination of parameters that's not expected.

If investigating the data is not enough to be able to understand the problem, it may 
be necessary to increase the information on the logs.

Be sure to check the django-log-request-id documentation.

This step may be complicated by either missing data or data 
restrictions that make it difficult or impossible to obtain the data. 
Sometimes only a few people in the organization can access 
the required data, which may delay the investigation. Another 
possibility is that the data is impossible to retrieve. For example, 
data policies may not store the data, or the data may be encrypted. 
This is a regular occurrence in cases involving Personally 
Identifiable Information (PII), passwords, or similar data.

Remember that the objective is to capture information from 
production to be able to understand and replicate the problem 
independently. 
In some cases, when investigating a problem in production, it is 
possible that changing the data manually will fix the issue. This 
could be necessary in some emergency situations, but the objective 
still needs to be to understand why this inconsistent situation of 
the data has been possible or how the service should be changed 
to allow you to deal with this data situation. Then the code can be 
changed accordingly to ensure that the problem doesn't happen in 
the future.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 514 ]

Increasing logging
If the regular logs and an investigation of the data don't bear fruit, it may be 
necessary to increase the level of logging with special logs, following the problem.

This is a last-resort method, because it has two main problems:

• Any change in the logs needs to be deployed, which makes it costly and 
expensive to run. 

• The number of logs in the system will be incremented, which will require 
more space to store them. Depending on the number of requests in the 
system, this can create pressure on the logging system.

These extra logs should always be short term, and should be reverted as soon as 
possible.

While enabling an extra level of logging, like setting logs to DEBUG level, is technically 
possible, this will probably increase the logs too much, and will make it difficult to 
know what the key ones are in the massive amount of logs. With some DEBUG logs, 
specifics of the area under investigation can be temporally promoted to INFO or 
higher to make sure that they are properly logged.

Be extra careful with information that's logged temporally. Confidential information 
like PII should not be logged. Instead, try to log surrounding information that can 
help find out the problem.

For example, if there's a suspicion that some unexpected character may be producing 
a problem with the algorithm to check the password, instead of logging the 
password, some code can be added to detect whether there's an invalid character.

For example, assuming there's a problem with a password or secret that has an 
emoji, we could extract only non-ASCII characters to find out if this is the problem, 
like this:

>>> password = 'secret password '

>>> bad_characters = [c for c in password if not c.isascii()]
>>> bad_characters
[' ']

The value in bad_characters can be then logged, as it won't contain the full 
password. 

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 515 ]

Adding temporal logs is cumbersome, as it typically will involve several 
deployments until finding out the problem. It's always important to keep the number 
of logs to a minimum, cleaning up the useless ones as quickly as possible, and 
remember to remove them completely after the work is done.

Remember that the work is just to be able to reproduce the problem locally, so you 
can more efficiently investigate and fix the problem locally. Sometimes the problem 
may be deemed obvious after some temporal log, but, good TDD practice, as we saw 
in Chapter 10, Testing and TDD, tests displaying and then fixing the bug.

Once we can detect the problem locally, it is time to go to the next step.

Local debugging
Debugging locally means exposing and fixing a problem once we have a local 
reproduction.

The basic steps of debugging are reproducing the problem, knowing what the 
current, incorrect result is, and knowing what the correct result should be. With that 
information, we can start debugging.

Taking a step back, any debugging process follows the following process:

1. You realize there's a problem
2. You understand what the correct behavior should be
3. You investigate and discover why the current system behaves incorrectly
4. You fix the problem

Note that this assumption is probably easier to test quickly and 
without any secret data with a unit test. This is just an example.

A great way of creating the reproduction of the problem is with a 
test, if that's possible. As we saw in Chapter 10, Testing and TDD, 
this is the basis of TDD. Create a test that fails and then change 
the code to make it pass. This approach is very usable when fixing 
bugs.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 516 ]

Keeping this process in mind is also useful from a local debugging perspective, 
though at this point, it is likely that steps 1 and 2 are already sorted out. In the vast 
majority of cases, the difficult step is 3, as we've been seeing throughout the chapter.

To understand, once presented with the code, why the code is behaving as it is, a 
method similar to the scientific method can be used to systematize the approach:

1. Measure and observe the code
2. Produce a hypothesis on why a certain result is being produced
3. Validate or disprove the hypothesis by either analyzing the produced state, if 

possible, or creating a specific "experiment" (some specific code, like a test) to 
force it to be produced

4. Use the resulting information to iterate the process until the source of the 
problem is totally understood

Note that this process doesn't necessarily need to be applied to the whole problem. 
It can be focused on the specific parts of the code that can influence the problem. For 
example, is this setting activated in this case? Is this loop in the code being accessed? 
Is the value calculated lower than a threshold, which will later send us down a 
different code path? 

All those answers will increase the knowledge of why the code is behaving in the 
way that it's behaving.

Debugging is a skill. Some people may say it's an art. In any case, it can be improved 
over time, as more time gets invested in it. Practice plays an important role in 
developing the kind of intuition that involves knowing when to take a deeper look 
into some areas over others to identify the promising areas where the code may be 
failing. 

There are some general ideas that can be very helpful when approaching debugging:

• Divide and conquer. Take small steps and isolate areas of the code so 
it's possible to simplify the code and make it digestible. As important as 
understanding when there's a problem in the code is detecting when there 
isn't so we can set our focus on the relevant bits. 

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 517 ]

• Move backward from the visible error. It's quite common that the source 
of a problem is not where an error is raised or obvious, but instead the 
error was produced earlier. A good approach is to move backward from 
the position where the problem is obvious and then validate the flow. This 
allows you to ignore all code that comes after the problem, and have a clear 
path of analysis.

• You can make an assumption, as long as you can then prove that this 
assumption is correct. Code is complex, and you won't be able to keep the 
whole codebase in your head. Instead, focus needs to be carefully moved 
across different parts, making assumptions about what the rest is returning.

Properly eliminating everything can be arduous, but removing proven 
assumptions from the mind will reduce the amount of code to analyze and 
verify. 
But those assumptions need to be validated to really prove that they are 
correct, or we risk the chance of making a wrong assumption. It's very easy 
to fall into bad assumptions and think that the problem is in a particular part 
of the code when it really is in another.

Though the whole range of techniques and possibilities of debugging is there, and 
certainly sometimes bugs can be convoluted and difficult to detect and fix, most bugs 
are typically easy to understand and fix. Perhaps they are a typo, an off-by-one error, 
or a type error that needs to be checked. 

Edward J. Gauss described this method in what he called 
the "wolf fence algorithm" in a 1982 article:

There's one wolf in Alaska; how do you find it? First build a 
fence down the middle of the state, wait for the wolf to howl, 
determine which side of the fence it is on. Repeat process on that 
side only, until you get to the point where you can see the wolf.

As Sherlock Holmes once said:

When you have eliminated the impossible, whatever remains, 
however improbable, must be the truth.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 518 ]

Before we move on to specific techniques, we need to understand the tools in Python 
help in our investigation.

Python introspection tools 
As Python is a dynamic language, it's very flexible and allows you to perform actions 
on its objects to discover their properties or types.

This is called introspection, and allows you to inspect elements without having too 
much context about the objects to be inspected. This can be performed at runtime, so 
it can be used while debugging to discover the attributes and methods of any object.

The main starting point is the type function. The type function simply returns the 
class of an object. For example:

>>> my_object = {'example': True}
>>> type(my_object)
<class 'dict'>
>>> another_object = {'example'}
>>> type(another_object)
<class 'set'>

This can be used to double-check that an object is of the expected type. 

A typical example error is to have a problem because a variable can be either an 
object or None. In that case, it's possible that a mistake handling the variable makes it 
necessary to double-check that the type is the expected one.

While type is useful in debugging environments, avoid using it directly in your code. 

For example, avoid comparing defaults of None, True, and False with their types, as 
they are created as singletons. That means there's a single instance of each of these 
objects, so every time that we need to verify if an object is None, it's better to make an 
identity comparison, like this:

>>> object = None
>>> object is None
True

Keeping the code simple helps a lot in later debugging problems. 
Simple code is easy to understand and debug.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 519 ]

Identity comparisons can prevent the kind of problem where the usage of None or 
False can't be distinguished in an if block.

>>> object = False
>>> if not object:
...     print('Check valid')
...
Check valid
>>> object = None
>>> if not object:
...     print('Check valid')
...
Check valid

Instead, only checking against the identity comparison will allow you to detect only 
the value of None properly.

>>> object = False
>>> if object is None:
...     print('object is None')
...
>>> object = None
>>> if object is None:
...     print('object is None')
...
object is None

The same can be used for Boolean values.

>>> bool('Testing') is True
True

For other cases, there's the isinstance function, which can be used to find if a 
particular object is an instance of a particular class:

>>> class A:
...     pass
...
>>> a = A()
>>> isinstance(a, A)
True

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 520 ]

This is better than making comparisons with type, because it is aware of any 
inheritance that may have been produced. For example, in the following code we see 
how an object from a class that inherits from another will return that it's an instance 
of either, while the type function will only return one.

>>> class A:
...     pass
...
>>> class B(A):
...     pass
...
>>> b = B()
>>> isinstance(b, B)
True
>>> isinstance(b, A)
True
>>> type(b)
<class '__main__.B'>

The most useful function for introspection, though, is dir. dir allows you to see all 
the methods and attributes in an object, and it's particularly useful when analyzing 
objects from a not-clear origin, or where the interface is not clear.

>>> d = {}
>>> dir(d)
['__class__', '__class_getitem__', '__contains__', '__delattr__', '__
delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__
getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__
init_subclass__', '__ior__', '__iter__', '__le__', '__len__', '__lt__', 
'__ne__', '__new__', '__or__', '__reduce__', '__reduce_ex__', '__
repr__', '__reversed__', '__ror__', '__setattr__', '__setitem__', '__
sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 
'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 
'values']

Obtaining the whole attributes can be a bit too much in certain situations, so the 
returned values can filter out the double-underscore ones to reduce the amount of 
noise and be able to detect attributes that can give some clue about the object usage 
more easily.

>>> [attr for attr in dir(d) if not attr.startswith('__')]
['clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 
'setdefault', 'update', 'values']

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 521 ]

Another interesting function is help, which displays the help from objects. This is 
particularly helpful for methods:

>>> help(d.pop)
Help on built-in function pop:

pop(...) method of builtins.dict instance
    D.pop(k[,d]) -> v, remove specified key and return the 
corresponding value.

    If key is not found, default is returned if given, otherwise 
KeyError is raised

This function displays the defined docstring from the object.

>>> class C:
...     '''
...     This is an example docstring
...     '''
...     pass
...
>>> c = C()
>>> help(c)
Help on C in module __main__ object:

class C(builtins.object)
 |  This is an example docstring
 |
 |  Data descriptors defined here:
 |
 |  __dict__
 |      dictionary for instance variables (if defined)
 |
 |  __weakref__
 |      list of weak references to the object (if defined)

All these methods can help you navigate code that's new or under analysis without 
being an expert, and avoid many checks with code that can be hard to search 
through.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 522 ]

Using these tools is good, but let's see how we can understand the behavior of the 
code.

Debugging with logs
A simple yet effective way of detecting what's going on and how the code is being 
executed is adding comments that are displayed either containing statements like 
starting the loop here or including values of variables like Value of A = X. By 
strategically locating these kinds of outputs, the developer can understand the flow 
of the program.

The simplest form of this approach is print debugging. It consists of adding print 
statements to be able to watch the output from them, normally while executing the 
code locally in a test or similar.

Obviously, these print statements need to be removed after the process has 
been finished. One of the main complaints about this technique is precisely this, 
that there's a chance that some print statements intended for debugging are not 
removed, and it's a common mistake.

This can be refined, though, by instead of directly using print statements, using logs 
instead, as we introduced in Chapter 12, Logging.

Adding sensible docstrings is a great help not only for keeping 
the code well commented and adding context for developers 
working in the code, but also in case of debugging in parts 
where the function or object is used. You can learn more about 
docstrings in the PEP 257 document: https://www.python.
org/dev/peps/pep-0257/.

We touched on this earlier in this chapter as well as in Chapter 10, 
Testing and TDD. 

Print debugging can be considered a bit controversial to some 
people. It has been around for a long time, and it's considered a 
crude way of debugging. In any case, it can be very quick and 
flexible and can fit some debug cases very well, as we will see.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/


Chapter 15

[ 523 ]

The advantage of this method is that it can be done quickly and it can also be used to 
explore logs that can then be promoted to permanent ones, once adapted.

Another important advantage is that tests can be run very quickly, as adding more 
logs is a simple operation, and logs won't interfere with the execution of code. This 
makes it a good combination to use with TDD practices.

The fact that the logs won't interfere with the code and code can be running 
unaffected can make some difficult bugs based on concurrency easier to debug, 
as interrupting the flow of the operation in those cases will affect the behavior of 
the bug.

While debugging through logs can be quite convenient, it requires certain knowledge 
of where and what logs to set to obtain the relevant information. Anything not 
logged won't be visible in the next run. This knowledge can come through a 
discovery process and take time to pinpoint the relevant information that will lead to 
fixing the bug.

Another problem is that new logs are new code, and they can create problems if 
there are errors introduced like bad assumptions or typos. This will normally be easy 
to fix, but can be an annoyance and require a new run.

Remember that all introspection tools that we talked about before in the chapter are 
available.

Ideally, these logs will be DEBUG logs, which will only be displayed 
when running tests, but won't be produced in a production 
environment. 

While logs can be added and not produced later, it's good practice 
anyway to remove any spurious logs after fixing the bug. Logs 
can accumulate and there will be an excessive amount of them 
unless they are periodically taken care of. It can be difficult to find 
information in a big wall of text.

Concurrent bugs can be quite complicated. They are produced 
when two independent threads interact in an unexpected way. 
Because of the uncertain nature of what one thread will start and 
stop or when an action from one thread will affect the other, they 
normally require extensive logs to try to capture the specifics of 
that problem.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 524 ]

Debugging with breakpoints
In other situations, it's better to stop the execution of the code and take a look at the 
current status. Given that Python is a dynamic language, it means that, if we stop the 
execution of the script and enter the interpreter, we can run any kind of code and see 
its results.

This is exactly what is done through the usage of the breakpoint function.

When the interpreter finds a breakpoint call, it stops and opens an interactive 
interpreter. From this interactive interpreter, the current status of the code can be 
examined and any investigation can take place, simply executing the code. This 
makes it possible to understand interactively what the code is doing.

Let's take a look at some code and analyze how it runs. The code can be found on 
GitHub at https://github.com/PacktPublishing/Python-Architecture-Patterns/
blob/main/chapter_15_debug/debug.py and it's the following:

def valid(candidate):

    if candidate <= 1:
        return False

    lower = candidate - 1

    while lower > 1:
        if candidate / lower == candidate // lower:
            return False

    return True

assert not valid(1)

breakpoint is a relatively new addition to Python, available since 
Python 3.7. Previously, it was necessary to import the module pdb, 
typically in this way in a single line:

import pdb; pdb.set_trace()

Other than the ease of usage, breakpoint has some other 
advantages that we will see.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_15_debug/debug.py
https://github.com/PacktPublishing/Python-Architecture-Patterns/blob/main/chapter_15_debug/debug.py


Chapter 15

[ 525 ]

assert valid(3)
assert not valid(15)
assert not valid(18)
assert not valid(50)
assert valid(53)

Perhaps you are able to understand what the code does, but let's take a look at it 
interactively. You can check first that all the assert statements at the end are correct.

$ python3 debug.py

But we now introduce a breakpoint call before line 9, right at the start of the while 
loop.

    while lower > 1:
        breakpoint()
        if candidate / lower == candidate // lower:
            return False

Execute the program again and it now stops at that line and presents an interactive 
prompt:

$ python3 debug.py
> ./debug.py(10)valid()
-> if candidate / lower == candidate // lower:
(Pdb)

Check the value of candidate and both operations.

(Pdb) candidate
3
(Pdb) candidate / lower
1.5
(Pdb) candidate // lower
1

This line is checking whether dividing candidate by lower produces an exact integer, 
as in that case both operations will return the same. Execute the next line by hitting n, 
from the command n(ext), and check that the loop ends and it returns True:

(Pdb) n
> ./debug.py(13)valid()
-> lower -= 1
(Pdb) n

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Debugging

[ 526 ]

> ./debug.py(8)valid()
-> while lower > 1:
(Pdb) n
> ./debug.py(15)valid()
-> return True
(Pdb) n
--Return--
> ./debug.py(15)valid()->True
-> return True

Continue the execution until a new breakpoint is found using the command c, from 
c(ontinue). Note this happens on the next call to valid, which has an input of 15.

(Pdb) c
> ./debug.py(10)valid()
-> if candidate / lower == candidate // lower:
(Pdb) candidate
15

You can also use the command l(ist) to display the surrounding code.

(Pdb) l
  5
  6       lower = candidate - 1
  7
  8       while lower > 1:
  9           breakpoint()
 10  ->         if candidate / lower == candidate // lower:
 11               return False
 12
 13           lower -= 1
 14
 15       return True

Continue freely investigating the code. When you are finished, run q(uit) to exit.

(Pdb) q
bdb.BdbQuit

After analyzing the code carefully, you probably know what it does. It checks 
whether a number is prime or not by checking if it's divisible by any number lower 
than the number itself.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 527 ]

Another two useful debug commands are s(tep), to get into a function call, and 
r(eturn), to execute the code until the current function returns its execution.

breakpoint can also be customized to call other debuggers, not only pdb. There are 
other debuggers for Python that include more contextual information or with more 
advanced usages, like ipdb (https://pypi.org/project/ipdb/). To use them, you 
need to set the PYTHONBREAKPOINT environment variable with the endpoint for the 
debugger, after installing the debugger.

$ pip3 install ipdb
…
$ PYTHONBREAKPOINT=IPython.core.debugger.set_trace python3 debug.py
> ./debug.py(10)valid()
      8     while lower > 1:
      9         breakpoint()
---> 10         if candidate / lower == candidate // lower:
     11             return False
     12

ipdb>

There are multiple debuggers that can be used, including support from IDEs like 
Visual Studio or PyCharm. Here are examples of two other debuggers:

• pudb (https://github.com/inducer/pudb): Has a console-based graphical 
interface and more context around the code and variables

• remote-pdb (https://github.com/ionelmc/python-remote-pdb): Allows you 
to debug remotely, connecting to a TCP socket. This allows you to debug a 
program running in a different machine or trigger the debugger in a situation 
where there's no good access to the stdout of the process, for example, 
because it's running in the background

We investigated similar code and improvements in Chapter 14, 
Profiling. This is, needless to say, not the most efficient way of 
setting code to check this, but it has been added as an example and 
for teaching purposes.

This environment variable can be set to 0 to skip any breakpoint, 
effectively deactivating the debug process: PYTHONBREAKPOINT=0. 
This can be used as a failsafe to avoid being interrupted by 
breakpoint statements that haven't been properly removed, or to 
quickly run the code without interruptions.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pypi.org/project/ipdb/
https://github.com/inducer/pudb
https://github.com/ionelmc/python-remote-pdb


Debugging

[ 528 ]

Using a debugger properly is a skill that requires time to learn. Be sure to try 
different options and get comfortable with them. Debugging will also be used while 
running tests, as we described in Chapter 10, Testing and TDD.

Summary
In this chapter, we described the general process of detecting and fixing problems. 
When working in complex systems, there's the challenge of properly detecting 
and categorizing the different reports to be sure that they are prioritized. It's very 
important to be able to reliably reproduce the problem in order to show all the 
conditions and context that are producing the issue.

Once a problem is deemed important, there needs to be an investigation into why 
this problem is happening. This can be on the running code, and use the available 
tools in production to see if it can be understood why the problem occurs. The 
objective of this investigation is to be able to replicate the problem locally. 

Most issues will be easy to reproduce locally and move forward, but we also 
described some tools in case it remains a mystery why the issue is being produced. 
As the main tool to understand the behavior of the code in production is logs, 
we talked about creating a request ID that can help us to trace the different calls 
and relate logs from different systems. We also described how the data in the 
environment may have the key to why the problem is occurring there. If it is 
necessary, the number of logs may need to be increased to extract information from 
production, though this should be reserved for very elusive bugs.

We then moved on to how to debug locally, after replicating the problem, ideally, 
as we saw in Chapter 10, Testing and TDD, in the form of a unit test. We gave some 
general ideas to help with debugging, though it must be said that debugging is a skill 
that needs to be practiced.

Debugging can be learned and improved, so it's an area where 
more experienced developers can help their junior counterparts. 
Be sure to create a team where it is encouraged to help with 
debugging when required in difficult cases. Two pairs of eyes see 
more than one!

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15

[ 529 ]

We introduced some of the tools that help with debugging in Python, which make 
use of the possibilities that Python presents for introspection. As Python is a dynamic 
language, there are a lot of possibilities, as it's able to execute any code, including all 
the introspection capabilities.

We then talked about how to create logs to debug, which is an improved version 
of using print statements, and, when done in a systematic way, can help to create 
better logs in the long run. Finally, we moved on to debugging using the breakpoint 
function call, which stops the execution of the program and allows you to inspect 
and understand the status at that point, as well as continuing with the flow.

In the next chapter, we will talk about the challenges of working in the architecture 
of a system when it's running and needs to be evolved.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:  
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 531 ]

16
Ongoing Architecture

Just as software itself is never truly complete, software architecture is never a 
finished piece of work. There are always changes, adjustments, and tweaks that need 
to be performed in order to improve the system: adding new features; improving 
performance; fixing security problems. While good architecture requires us to 
understand deeply how to design a system, the reality of the ongoing process is 
more about making changes and improvements.

We will talk in this chapter about some of those aspects, as well as dealing with 
some of the techniques and ideas around making changes in a real working system, 
keeping in mind that the process can always be improved further by reflecting on 
how the process is performed and following some guidelines to ensure that the 
system can be changed continuously while at the same time maintaining service 
to customers.

In this chapter, we'll cover the following topics:

• Adjusting the architecture
• Scheduled downtime
• Incidents
• Load testing
• Versioning
• Backward compatibility
• Feature flags
• Teamwork aspects of changes

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 532 ]

Let's start by taking a look at why to make changes in the architecture of a system.

Adjusting the architecture
While for most of this book we've been talking about system design, which is the 
basic function of an architect, it is most likely that the bulk of their day-to-day job 
will be more focused on redesigns. 

This is always an endless task, as working software systems are always under 
revision and expansion. Some of the reasons why it may be necessary to adjust the 
architecture of a system are as follows:

• To provide certain features or characteristics previously not available – for 
example, adding an event-driven system to run asynchronous tasks, allowing 
us to avoid the request-response pattern that was previously all that was 
available.

• Because there are bottlenecks or limitations with the current architecture. For 
example, only a single database is present in the system and there's a limit on 
the number of queries that can run.

• As systems grow, it may be necessary to divide parts to allow better control 
over them – for example, dividing a monolith into microservices, as we saw 
in Chapter 8, Advanced Event-Driven Structures.

• To increase the security of the system – for example, removing or encoding 
stored information that might be sensitive, like emails addresses and other 
personally identifiable information (PII).

• Big API changes, like introducing a new version of an API either internally or 
externally. For example, adding a new endpoint that works better for other 
internal systems to perform some action, where the calling services should be 
migrated.

• Changes in the storage system, including all the different ideas that we 
discussed in Chapter 3, Data Modeling when talking about distributed 
databases. This could also include adding or replacing existing storage 
systems.

• To adapt technologies that are obsolete. This can happen in legacy systems 
that have a critical component that is no longer supported, or a fundamental 
security problem. For example, replacing an old module with another 
that is capable of using new security processes because the old one is not 
maintained anymore and relies on old encryption methods.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 533 ]

• Rewrites using new languages or technology. This can be done to consolidate 
technologies if at some point a system was created using a different 
language, and, after a while, it is decided to bring it in line with the most 
used language to allow better maintenance. This scenario is typical in 
organizations that experienced growth, and at some point, a team decided 
to use their favorite language to create a service. After some time, this may 
cause problems by complicating maintenance as expertise in this language 
may be lacking. This can be even worse if the original developer has left the 
organization. It could be better to adjust or rewrite the service by integrating 
it into an existing one or replace it with an equivalent one in the preferred 
language.

• Other kinds of technical debt – for example, refactors that can clean the code 
and make it more readable, or to allow for changing names of components to 
be more precise, among other things.

These are just some examples, but the truth is that all systems require constant 
updating and adjusting, as software is rarely a finished task.

The challenge is not only to design these changes to achieve the expected results, but 
also to move from the starting point to the destination with minimal interruption to 
the system. These days the expectation is that online systems are only very rarely 
interrupted, setting a high bar for any change.

To achieve this, changes need to be taken in small steps, taking extra care to ensure 
that the system is available at all points.

Scheduled downtime
While ideally there should be no interruption in the system as a result of the 
changes made, sometimes it's simply not possible to perform big changes without 
interrupting the system.

When and whether it's sensible to have downtime may depend 
greatly depending on the system. For example, in its first years 
of operation, the popular website Stack Overflow (https://
stackoverflow.com/) had frequent downtime, initially even 
every day, where the webpage returned a "down for maintenance" 
page during the morning hours in Europe. That changed 
eventually, and now it's rare to see that kind of message. 

But that was acceptable in the early stages of the project as the bulk 
of their users used the site in line with North American hours and 
it was (and still is) a free website.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://stackoverflow.com/
https://stackoverflow.com/


Ongoing Architecture

[ 534 ]

Scheduling downtime is always an option, but it's a costly one, so it needs to be 
designed in a way that minimizes the impact on the operations. If the system is an 
established 24x7 service that's critical for customers, or produces income for the 
business while up (like a store, for example), any downtime will have a pretty hefty 
price tag.

In other cases, like a small new service with very little traffic, customers will either be 
more understanding or there'll even be a good chance that they will be unaffected. 

Scheduled downtime should be communicated beforehand to affected customers. 
This communication can take multiple forms, and will greatly depend on the kind of 
service. For example, a public web store may announce downtime with a banner on 
their page during the week informing that it won't be available on Sunday morning, 
but scheduling downtime for a banking operation may require months of advance 
notice and negotiation over when is the best time.

If possible, is a good practice to define maintenance windows to properly set clear 
expectations about times when the service will or might have a high risk of some sort 
of interruption.

Maintenance window
Maintenance windows are periods where it is communicated beforehand that 
maintenance might happen. The idea is to guarantee the stability of the system 
outside of maintenance windows while allocating clear times where maintenance 
might happen.

A maintenance window could perhaps be at weekends or nights in the most active 
timezone for the system. During the busiest hours of activity the service remains 
uninterrupted, and maintenance is only carried over when it can't wait, like when 
preventing or fixing a critical incident.

Maintenance windows are different than scheduled downtime. While in some cases 
it will happen, not every maintenance window needs to involve downtime – there is 
simply the possibility that it might happen.

Not every maintenance window needs to be defined equally – some may be safer 
than others and capable of doing more extensive maintenance. For example, 
weekends may be reserved for scheduled downtime, but nights during the working 
week may see regular deployments.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 535 ]

It's important to communicate maintenance windows in advance, for example 
designing a table like the following:

Days Time Type of 
maintenance 
window

Risk Comments

Monday to 
Thursday

08:00 – 12:00 UTC Regular 
maintenance

Low risk Regular deployments 
considered low risk. No 
impact to service.

Saturday 08:00 – 18:00 UTC Serious 
maintenance

High risk Adjustments considered 
risky. While the 
expectation is that the 
service will be fully 
available, there is a 
chance that it will be 
interrupted at some 
point during the 
window.

Saturday 08:00 – 18:00 UTC Notified 
Scheduled 
downtime

Service 
unavailable

One month's notice 
given. Essential 
maintenance that 
requires the service to be 
unavailable.

An important detail about maintenance windows is that they should be big enough 
to allow ample time for the maintenance to be done. Be sure to be generous with 
time, as it's better to set expectations with a large maintenance window that can 
be used safely for any eventuality, rather than a short one that often needs to be 
extended.

While scheduled downtime and maintenance windows will help frame the times 
where the service is active and what times are riskier for the user, it's still possible 
that some problem arises and causes a problem in the system.

Incidents
Unfortunately, at some point in its life, the system won't behave as it should. It will 
produce an error so important that it needs to be taken care of immediately.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 536 ]

An incident is defined as a problem that disrupts the service so much that it requires 
an emergency response. 

During incidents, using all monitoring tools available is critical to find the problem 
as soon as possible and be able to correct it. Reaction times should be as fast as 
possible while keeping the risk of corrective actions as low as possible. A balance 
needs to be struck here, and depending on the nature of the incident, riskier actions 
can be taken, for example when the system is completely down, as recovering the 
system will be more important.

Recovery during incidents will normally be limited by two factors:

• How good the monitoring tools are at detecting and understanding problems
• How fast a change can be introduced in the system, related to how quick it is 

to change a parameter or to deploy new code

The first of the above points is the understand part and the second is the solve part 
(though it may be necessary to make changes to get a better understanding of the 
problem, as we saw in Chapter 14, Profiling). 

This is why these two elements, the observability and the time required to make 
a change, are so important. In normal situations, taking a long time to deploy or 
to make a change is normally just a minor annoyance, but in a critical situation, it 
could hinder the fixes that can help the health of the system to recover. 

This doesn't necessarily mean that the full service is totally 
interrupted – it could be a noticeable degradation of the external 
service, or even a problem in one internal service that reduces the 
quality of service overall. For example, if an asynchronous task 
handler is failing 50% of the time, external customers may only see 
that their tasks take longer, but that is probably important enough 
to take corrective action.

We cover both of these aspects in the book, with the observability 
tools examined in Chapter 11, Package Management, and Chapter 
12, Logging. We also may need to use the techniques described in 
Chapter 14, Profiling.

Introducing changes to the system is tightly related to the 
Continuous Integration (CI) techniques that we discussed 
in Chapter 4, The Data Layer. A fast CI pipeline can make a big 
difference in how long it takes new code to be ready to deploy.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 537 ]

The reaction to an incident is a complicated process that requires flexibility and 
improvisation, which improve with experience. But there needs to be as well a 
continuous process of improving the uptime of the system and understanding the 
weakest part of the system, to avoid the problems or minimize them.

Postmortem analysis
Postmortem analysis, also called a post-incident review, is an analysis done after a 
problem has impacted the service. Its objective is to understand what failed, why, 
and take corrective measures to ensure that the problem doesn't happen again, or at 
least that it has a reduced impact.

Typically, a postmortem starts with the people involved in the correction of the 
problem filling in a template form. Having a template predefined helps to shape the 
discussion and focus on the remediation to carry out.

The basic template should start with all the main details of what happened, followed 
by why it happened, and finally, the most important part: what are the next actions 
to correct the problem?

For example, a simple template could be the following:

Incident report

1. Summary. A brief description of what happened.
Example: The service went down between 08:30 and 9:45 UTC on the 5th of 
November. 

2. Impact. Describe the impact of the problem. What was the external problem? 
How external users were affected?
Example: All user requests were returning 500 errors. 

There are plenty of postmortem templates available online that you 
can search through to see if there's a particular one that you like, 
or just to get ideas. As with any other part of the process, it should 
be improved and refined as it goes along. Remember to create and 
tweak your own template.

Remember that a postmortem analysis happens after the incident 
is over. While it could be good to take some notes while is 
happening, the focus during an incident is to fix it first. Focus on 
the most important thing first.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 538 ]

3. Detection. A description of how it was detected initially. Could it have been 
detected earlier?
Example: The monitoring system alerted about the problem at 8:35 UTC, after 
5 minutes of 100% error requests.

4. Response. Actions taken to correct the problem.
Example: John cleaned the disk space in the database server and restarted the 
database.

5. Timeline. A timeline of events to understand how the incident developed 
and how long each phase took.
Example:
8:30 Start of the problem.
8:35 An alert in the monitoring system was triggered. John started looking 
into the problem.
8:37 It is detected that the database is unresponsive and cannot be restarted.
9:05 After investigation, John discovered that the database disk was full.
9:30 The logs in the database server had filled up the server disk space, 
causing the database server to crash.
9:40 Old logs are removed from the server, freeing disk space. The database 
is restarted.
9:45 Service is restored.

6. Root cause. A description of the identified root cause of the problem that, if 
fixed, will completely remove this problem.

Detecting the root cause is not necessarily easy, as 
sometimes a chain of events will be involved. To help find 
the root cause, you can use the five whys technique. Start 
describing the impact and ask why it happened. Then ask 
why this happened, and so on. Keep iterating until you 
have asked "why?" five times, and the resulting one will be 
the root cause. Don't take this to mean that you must ask 
"why?" exactly five times, but keep going until you can get 
a solid answer.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 539 ]

Take into account that the investigation can go further than the steps taken 
to recover the service during the incident, where a quick fix may have been 
enough to get out of the woods.
Example: 
The server returned errors. Why?
Because the database had crashed. Why?
Because the database server ran out of space. Why?
Because the space was fully filled with logs. Why?
Because the log space on the disk was not limited and could grow indefinitely.

7. Lessons learned. Things that could be improved in the process, as well as 
any other element that went well and could be useful to know, like the usage 
of a certain tool or metric that was useful when analyzing the problem. 
Example:
The amount of disk space that logs use should be limited in all cases.
The disk space itself is not being monitored or alerted before it completely 
runs out.
The alerting system is too slow and requires a high level of errors before 
alerting.

8. Next actions. The most important part of the process. Describe what actions 
should be performed to eliminate or, if that's not possible, mitigate the 
problem. Be sure that these actions have clear owners and are followed up.

Not only should the root cause be addressed, but also any possible 
improvements detected in the lessons learned part.
Example:
Action: Enable log rotation to limit the amount of space that logs can take up 
in all servers, starting with the database. Assigned to the operations team.

If there's a ticketing system, these actions should be 
transformed into tickets and be prioritized accordingly to 
be sure that the proper team implements them. 

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 540 ]

Action: Monitor and alert on the disk space to raise an alert if the disk space 
has less than 20% of the total available space, to allow faster reactions. 
Assigned to the operations team.
Action: Tweak the error alert to change it to alert when there's only one 
minute of 30% or more requests returning errors. Assigned to the operations 
team.

Note that the template doesn't have to be filled out in one go. Typically, the template 
will be filled in as much as possible, and a postmortem meeting will be held, when 
the incident can be analyzed and the template totally filled in, including the Next 
action part, which, again, is the most important part of the analysis.

In recent years, an equivalent process to try to foresee problems has been put in 
place, especially before an important event.

Premortem analysis
The premortem analysis is an exercise to try to analyze what could go wrong before 
an important event. The event could be some milestone, launch event, or something 
similar that is expected to significantly change the conditions of the system.

For example, there could be a marketing campaign launch that is expected to double 
or triple the amount of traffic that had previously been normal.

The premortem analysis is the reverse of a postmortem. You set your mindset in the 
future and ask: What went wrong? What is the worst-case scenario? From there, you 
verify your assumptions about your system and prepare for them.

Keep in mind that it's crucial that postmortem processes are 
focused on improving the system and not on assigning blame for 
the problem. The objective of the process is to detect weak spots 
and to try to make sure that problems are not repeated.

The word "premortem" is quite a funny neologism that comes from 
the usage of "postmortem" as a way to refer to an analysis done after 
the fact, making an analogy with an autopsy. Though hopefully, 
nothing is dead yet!.

It can also be called a preparation analysis.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 541 ]

Consider an analysis for the above example of tripling the amount of traffic on the 
system. Can we simulate the conditions to verify that our system is ready for it? 
Which elements of the system do we think are less robust?

All that can lead to planning for the different scenarios and running tests to ensure 
that the system will be ready for the event.

When doing any premortem analysis, be sure to have enough time to perform the 
necessary actions and tests to prepare the system. As usual, actions will have to be 
prioritised to be sure that time is well spent. But keep in mind that this preparation 
can be an endless task, and as time will be limited, it needs to be focused on the 
most important or sensitive parts of the system. Be sure to use as many data-driven 
actions as possible and focus the analysis on real data and not hunches.

Load testing
A key element of preparation in these cases is load testing. 

Load testing is creating a simulated load that goes to an increased level of traffic. It 
can be done in an explorative way, i.e., let's find out what the limits of our system are; 
or in a confirmative way, i.e., let's double-check that we can reach this level of traffic.

Load testing is typically done not in production environments, but in staging ones, 
replicating the configuration and hardware in production, though it is normal to 
create a final load test verifying that the configuration in the production environment 
is the correct one.

The basic element of a load test is to simulate a typical user performing actions on 
the system. For example, a typical user can log in, check a few pages, add some 
information, and then log out. We can replicate this behavior using automated tools 
that work on our external interface.

An interesting part of load testing analysis in cloud environments 
is to ensure that any autoscaling in the system works correctly, so 
it provisions more hardware automatically when receiving greater 
load, and deletes it when it's not necessary. Caution is required 
here, as a full load test to the maximum capacity of the cluster can 
be expensive each time it's run.

A good way of using these tools is reusing any kind of automated 
testing that can be created, and using it as well as the basis for the 
simulation. This makes the integration or system test framework 
the unit to enable load testing.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 542 ]

Then, we can multiply that unit simulating the behavior for a single user multiple 
times to simulate the effect of N users, producing enough load to test our system. 

If necessary, or to perform tweaks, logs can be analyzed to generate an adequate 
profile of the typical interfaces exercised by the users. Remember to relay in data 
when possible. Load tests, though, are sometimes needed when there is no solid 
data, as they are done typically when new features are introduced, so estimations 
have to be used.

Keep in mind that creating the load can also suffer from its own bottlenecks. To 
multiply the simulations, it may be necessary to use multiple servers and ensure that 
the network is capable of supporting the traffic.

Multiplying the simulation can be done directly by starting the process multiple 
times. This procedure, though simple, is quite effective and can be controlled with 
simple scripts. It also has the flexibility that the simulation can be any kind of 
process, including readjusted system tests using any existing software. This speeds 
up the preparation of the load test and builds trust that the simulation is accurate, as 
it reuses existing software that has been tested previously.

For simplicity, it's better to use a single simulation that works as 
a combination of typical behaviors of users instead of trying to 
generate multiple smaller simulations trying to replicate different 
users.

As we said before, the usage of some system test that exercises the 
main parts of the system works very well in these cases, once you 
double-check that the behavior is compatible with the typical case 
in the system.

Remember to monitor the results of each simulation, and errors 
in particular. This will help detect possible problems. Load tests 
also exercise the monitoring of the system, so it's a good exercise in 
detecting weak points and improving on them.

The more intensive load tests are, the more problems they'll be able 
to capture. Then we can avoid those problems once real traffic is in 
play.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 543 ]

Load tests should also be aimed at creating some headroom in the production cluster 
so they verify that the load is always under control, even in cases when it's growing, 
instead of finding bottlenecks during regular operations, which may produce 
incidents.

Versioning
When making changes to any service, a system needs to be in place to track the 
different changes. That way, we can understand what gets deployed when and what 
has changed from last week.

Versioning means assigning a unique code version to each service or system. It makes 
it easy to understand what software has been deployed and track down what has 
been changed from one version to another. 

It is also possible to use specific tools aimed at common use cases 
like HTTP interfaces, for example, Locust (https://locust.
io/). This tool allows us to create a web session, simulating a user 
accessing the system. The great advantages of Locust are that it 
already has a reporting system embedded and can be scaled with 
minimal preparation. However, it requires the creation of a new 
session explicitly for the load test and is only capable of working 
with web interfaces.

This information is really powerful when you're facing an incident. 
One of the riskiest moments in a system is when there's a new 
deployment, as new code can create new problems. It's not unusual 
that an incident is produced due to the release of a new version.

Version numbers are normally assigned in the source control 
system at specific points to precisely track the code at that 
particular point. The point of having a defined version is to have a 
precise definition of the code under that unique version number. A 
version number that is applicable to multiple iterations of the code 
is useless.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://locust.io/
https://locust.io/


Ongoing Architecture

[ 544 ]

Version numbers are about communicating the differences in code when talking 
about different snapshots of the same project. Their main objective is to communicate 
and allow us to understand how software evolves, not only within the team, but 
externally as well.

Traditionally, versions were highly related to packaged software and different 
versions of the software that were sold in boxes, making them marketing versions. 
When the internal version was required, a build number was used, which was a 
consecutive number based on the number of times the software had been compiled.

Versions can not only be applied to whole software, but also to elements of it, as 
API version, library versions, etc. In the same way, different versions can be used 
effectively for the same software, such as for creating an internal version for the 
technical team but an external version for marketing purposes.

In modern software, where the releases are frequent and the version needs to change 
often, this simple method is not adequate, and instead different version schemas are 
created. The most common is semantic versioning.

Semantic versioning uses two or three numbers, separated by dots. An optional v 
prefix can be added to clarify that it refers to a version:

vX.Y.Z

The first number (X) is called the major version. The second (Y) is the minor version, 
and the last number (Z) is the patch version. These numbers are increased as new 
versions are generated:

• An increase in the major version indicates that the software is not compatible 
with previously existing software. 

• An increase in the minor version means that this version contains new 
features, but they don't break compatibility with older versions.

For example, some software could be sold as Awesome Software 
v4, have an API v2, and internally be described as build number 
v4.356.

We talked about semantic versioning in Chapter 2, API Design, but 
the topic is important enough to be repeated. Note that the same 
concept can be used both for APIs and code releases.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 545 ]

• Finally, an increase of the patch version only covers bugfixes and other 
improvements like security patches. It fixes problems, but doesn't change the 
compatibility of the system.

A good example of this kind of versioning is the Python interpreter itself:

• Python 3 was an increase in the major version, and as such, code from 
Python 2 required changes to be run under Python 3

• Python 3.9 introduced new features compared with Python 3.8, for example, 
the new union operators for dictionaries

• Python 3.9.7 adds bugfixes and improvements over the previous patch 
version

Semantic versioning is very popular and it's particularly useful when dealing with 
APIs and with libraries that are going to be used externally. It provides a clear 
expectation, from just the version number, on what to expect from a new change, and 
allows clarity at the time of adding new features.

This kind of versioning, though, may be too restrictive for certain projects, and in 
particular, for internal interfaces. As it operates with small iterations that maintain 
compatibility along the way, only deprecating features after they are old, it works 
more like a window that is always evolving. Therefore, it's difficult to introduce a 
meaningful specific version.

When working with internal APIs, especially with microservices or internal libraries 
that change very often and are consumed by other parts of the organization, it is 
better to relax the rules and, while using something similar to semantic versioning, 
just using it as a general tool to increase version numbers in a consistent manner to 
provide an understanding of how the code changes, but without necessarily having 
to force changes in major or minor versions.

Keep in mind that increasing a major version number can also 
mark changes that would ordinarily appear in minor version 
updates, too. A change in the major version number will likely 
bring new features as well as major overhauls.

For example, the Linux kernel decided to move away from 
semantic versioning for this reason, deciding that instead new 
major versions will be small and not change things, and won't 
carry any particular meaning: http://lkml.iu.edu/hypermail/
linux/kernel/1804.1/06654.html.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://lkml.iu.edu/hypermail/linux/kernel/1804.1/06654.html
http://lkml.iu.edu/hypermail/linux/kernel/1804.1/06654.html


Ongoing Architecture

[ 546 ]

When communicating through external APIs, though, version numbers do not only 
carry a technical meaning, but also a marketing one. Using semantic versioning gives 
a strong assurance of the capacities of the API.

Keep in mind that it can be possible to create a general version of a whole system, 
even if internally its different components have their own independent versions. In 
cases like online services, though, that can be tricky or pointless. Instead, the focus 
should be on maintaining backward compatibility.

Backward compatibility
The key aspect of changing architecture in a running system is the necessity of 
always keeping backward compatibility in its interfaces and APIs.

Backward compatibility means that systems keep their old interfaces working as 
expected, so any calling system won't be affected by the change. This allows them to 
be upgraded at any point, without interrupting the service.

As versioning is so important, a good idea is to allow services to 
self-report their version number via a specific endpoint like /api/
version or another easily accessed way to be sure that it's clear 
and can be checked by other dependant services.

We also talked about backward compatibility in regard to 
databases changes in Chapter 3, Data Modeling. Here we will talk 
about interfaces, but it follows the same ideas.

Keep in mind that backward compatibility needs to apply 
externally, as customers rely on a stable working interface, but 
also internally where multiple services interact with each other. If 
the system is complex and has multiple parts, the APIs connecting 
them should be backward compatible. This is particularly 
important in microservices architectures to allow the independent 
deployment of microservices.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 547 ]

This concept is quite simple, but it has implications on how changes need to be 
designed and implemented:

• Changes should always be additive. That means that they add options, and 
don't remove them. This makes any existing calls to the system keep using 
the existing features and options and doesn't disrupt them.

• Removing options should be done with extreme care, and only after 
verifying that they are not used anymore. To be able to detect that, we need 
to adjust the monitoring so we have real data that can clearly provide solid 
data to allow us to determine this.

• Even additive changes in externally accessible APIs are difficult. External 
customers tend to remember the API as it is, so it can be difficult to change 
the format of existing calls, even if it's just adding a new field.
This depends on the format used. Adding a new field in a JSON object 
is safer than changing a SOAP definition, which needs to be defined 
beforehand. This is one of the reasons why JSON is so popular – because it's 
flexible in the definition of the objects returned.
Nonetheless, for external APIs it could be safer to add new endpoints if 
necessary. API changes are normally done in stages, creating a new version 
of the API and trying to encourage customers to change to the new and better 
API. These migrations can be long and arduous, as external users will require 
clear advantages to be persuaded to adopt the change on their end.

With external interfaces, it may be almost impossible 
to remove any option or endpoint, especially on APIs. 
Customers don't want to change their existing systems to 
adjust to any changes unless there's a good reason, and 
even in that case it will take a lot of work to adequately 
communicate it. We will talk later in this chapter about 
this situation.

Web interfaces allow greater flexibility for changes as they 
are used manually by humans.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 548 ]

• Existing tests, both unit and integration tests, are the best way to ensure that 
the API is backward compatible. In essence, any new feature should pass 
the tests without a problem, as the old behavior won't change. Good test 
coverage of the API functionality is the best way to maintain compatibility.

Introducing changes in external interfaces is more complicated and normally 
requires the definition of stricter APIs and a slower pace of change. Internal 
interfaces allow greater flexibility, as their changes can be communicated across the 
organization in an incremental way that will allow adaptation without interrupting 
the service at any point.

Incremental changes
Incremental changes to the system, slowing mutating and adjusting the APIs, can 
be released in sequence with multiple services involved. But the changes need to be 
applied in sequence and keep backward compatibility in mind.

For example, let's say that we have two services: service A generates an interface 
displaying students taking exams, and calls service B to obtain the list of examinees. 
This is done by calling an internal endpoint:

GET /examinees (v1)
[
    {
         "examinee_id": <student id>,
         "name": <name of the examinee>
    }, …
]

A good example of how painful a change in APIs can 
be is the migration from Python 2 to Python 3. Python 3 
has been available since 2008, but took a long time to get 
any kind of traction, because programs written in Python 
2 needed to be changed. The migration has been quite 
lengthy, even to the point that the last Python 2 interpreter 
(Python 2.7) was supported for ten years, from its first 
release in 2010 until 2020. Even with that long process, 
there's still code in legacy systems working with Python 
2. This shows the difficulty of moving from one API to 
another if no backward compatibility is respected.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 549 ]

There's a new feature that needs to be introduced in service A that requires extra 
information from the examinees, and requires us to know the number of times that 
each examinee has attempted a particular exam to sort them adequately by that 
parameter. With the current information, that's impossible, but service B can be 
tweaked to return that information.

To do so, the API needs to be extended, so it returns that information:

GET /examinees (v2)
[
    {
         "examinee_id": <student id>,
         "name": <name of the examinee>,
         "exam_tries", <num tries>
    }, …
]

Only after this change is properly done and deployed can service A use it. This 
process happens in the following stages:

1. Initial stage.
2. Deployment of service B with /examinees (v2). Note how service A will just 

ignore the extra field and keep working normally.
3. Deployment of service A reading and using the new parameter exam_tries.

All of the steps are stable. The service works without a problem throughout each 
one, so there's detachment between the different services.

This detachment is important because if there's a problem with a 
deployment, it can be reversed and only affects a single service, 
quickly reverting to the previous stable situation until the issue 
can be fixed. The worst situation is to have two changes in services 
that need to happen at the same time, as a failure in one will affect 
the other and reversing the situation may not be easy. Even worse, 
the problem could be in the interaction between them, and in that 
situation it won't be clear which one is responsible, because it could 
be both. It is important to keep to small individual steps where 
each step is solid and reliable.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 550 ]

This way of operating allows us to implement greater changes, for example, 
renaming a field. Let's say that we don't like the examinee_id field and want to 
change it for a more appropriate student_id. The process will go like this:

1. Update the returned object to include a new field called student_id, 
replicating the previous value in service B:

GET /examinees (v3)
[
    {
         "examinee_id": <student id>,
         "student_id": <student id>,
         "name": <name of the examinee>,
         "exam_tries", <num tries>
    }, …
]

2. Update and deploy service A to use student_id instead of examinee_id. 
3. Do the same in other services that possibly call service B. 

4. Remove the old field from service B and deploy the service:
GET /examinees (v3)
[
    {
         "examinee_id": <student id>,
         "student_id": <student id>,
         "name": <name of the examinee>,
         "exam_tries", <num tries>
    }, …
]

5. Remove the old field from service B and deploy the service.

Use monitoring tools and logs to verify this!

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 551 ]

This illustrates how we can deploy changes without interrupting the service in 
terms of what is being deployed. But, how can we ensure that the services are always 
available while deploying a new version?

Deploying without interruption
To allow continuous releases without service interruption, we need to take the 
backward-compatible changes and deploy them while the service is still responding. 

To do so, the best ally is the load balancer.

The process of a successful smooth deployment requires several instances of the 
service to be updated, as follows:

This step is technically optional, though it would be good 
for maintenance reasons to remove cruft from the API. But 
the reality of the day-to-day work means that it's likely 
that it will stay there, just not being accessed anymore. A 
good balance needs to be found between the convenience 
of leaving it be and maintaining a clean and updated API.

We talked about load balancers in Chapter 5, The Twelve-Factor App 
Methodology, and Chapter 8, Advanced Event-Driven Structures. They 
are really useful!

We are going to assume that we are using cloud instances or 
containers that can be created and destroyed easily. Keep in mind 
that you can treat them as workers under nginx or any other kind 
of web server acting as a load balancer inside a single server. This 
is how the nginx reload command works.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 552 ]

1. This is the initial stage, where all the instances have version 1 of the service to 
be updated:

Figure 16.1: Starting point

2. A new instance with service 2 is created. Note that it's not yet been added to 
the load balancer.

Figure 16.2: New server created

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 553 ]

3. The new version is added to the load balancer. Right now, the requests 
can be directed to version 1 or version 2. If we followed the principles of 
backward compatibility, though, this should not cause any problems.

Figure 16.3: New server included in the load balancer

4. To keep the number of instances constant, an old instance needs to be 
removed. A careful approach here means starting by disabling the old 
instance in the load balancer, so no new requests will be addressed. After the 
service finishes all the already-ongoing requests (remember, no new requests 
will be sent to this instance), the instance is effectively disabled and can be 
removed totally from the load balancer.

Figure 16.4: Removal of an old server from the load balancer

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 554 ]

5. The old instance can be destroyed/recycled.

Figure 16.5: Old server has been totally removed

6. The process can be repeated until all instances are at version 2.

Figure 16.6: Final stage with all new servers

There are tools that allow us to do this process automatically. For example, 
Kubernetes will perform this automatically when rolling out changes to containers. 
We also saw that web services like nginx or Apache will do as well. But the same 
process can also be applied manually or through developing custom tools when an 
unusual use case demands it.

Feature flags
The idea of feature flags is to hide functionality that is still not ready to be released 
under a configuration change. Following the principles of small increments and 
quick iteration makes it impossible to create big changes, like a new user interface.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 555 ]

To complicate things further, these big changes will likely happen in parallel with 
others. There's no chance of delaying the whole release process for 6 months or more 
until the new user interface is working correctly. 

Creating a separate branch that's long-lived is also not a great solution, as merging 
this branch becomes a nightmare. Long-living branches are complex to manage and 
always difficult to work with.

A better solution is to create a configuration parameter that activates or deactivates 
this feature. The feature can then be tested in a particular environment, while all the 
development continues at the same pace. 

That means that other changes, like bug fixes or performance improvements, are 
still happening and being deployed. And the work done on the big new feature is 
merged into the main branch as often as usual. This means that the developed parts 
of the big new feature are also being released to the production environment, but 
they are not active yet.

The feature will be then developed in small increments until it's ready for release. 
The final step is to simply enable it through a configuration change.

This technique allows us to grow in confidence and release big features without 
sacrificing small incremental approaches to it.

Teamwork aspects of changes
Software architecture is not only about technology, but a part of it is highly 
dependent on communication and human aspects. 

Tests need to ensure that both options – the feature active and 
deactivated – work correctly, but working in small increments 
makes this relatively easy.

Note that the feature may be active for certain users or 
environments. This is how beta features are tested: they rely 
on some users being able to access the feature before it is fully 
released. The test users could be internal to the organization 
initially, like QA teams, managers, product owners, etc., so they 
can provide feedback on the feature, but using production data.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 556 ]

The process of implementing changes in a system has some human elements 
affecting teamwork that need to be taken into consideration. 

Some examples:

• Keep in mind that the work of a software architect typically lies in managing 
communication with multiple teams, which requires care and soft skills in 
both actively listening to teams and explaining or even negotiating design 
changes. Depending on the size of the organization, that could be challenging 
as different teams may have wildly different cultures.

• The pace and acceptance of technical changes in an organization are 
tightly related to the organization's culture (or subcultures). Changes in 
organizations' ways of working typically occur much more slowly, although 
organizations that can quickly change technologies tend to be faster in 
adjusting to organization-wide changes.

• In the same way, technology changes require support and training, even if 
it's purely within the organization. When requiring some big technology 
change, be sure to have a point of contact where the team can go to resolve 
doubts and questions. 
A lot of the questions can be solved by explaining why that change is 
required and working from there.

• Remember when we talked about Conway's Law of software architecture in 
Chapter 1, Introduction to software architecture, about how the communication 
structure and architectural structure are related. A change in one will likely 
affect the other, which means that big enough architectural changes will lead 
to organizational restructuring, which has its own challenges.

• At the same time, changes may have winners and losers in the affected teams. 
One engineer could feel threatened because they won't be able to use their 
favorite programming language. In the same way, their partner will be 
excited because now the opportunity to use their favorite piece of tech is 
amazing.
This problem can be particularly poignant in team shuffling when people 
are moving around or when creating new teams. An important factor in  the 
pace of development is to have an efficient team and making changes to 
teams has an impact on their communication and effectiveness. This impact 
needs to be analyzed and taken into consideration.

• Maintenance needs to be introduced routinely as part of the day-to-day 
operations of the organization. Regular maintenance should include all 
security updates, but also tasks like upgrading OS versions, dependencies, 
etc.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 16

[ 557 ]

A general plan to deal with this kind of routine maintenance will provide 
clarity and clear expectations. For example: the OS version will be upgraded 
within three to six months of a new LTS version being released. This produces 
predictability, gives clear objectives to follow, and produces continuous 
improvement of the system. 
In the same way, automatic tools that detect security vulnerabilities make it 
easy for the team to know when it's time to upgrade dependencies either in 
the code or in the underlying system.

• In the same way, the repayment of technical debt needs to be introduced 
as a habit to be sure that the system is healthy. Technical debt is typically 
detected by the teams themselves, as they'll have the best understanding 
of it, and is manifested with a progressively slower pace of code changes. 
If technical debt is not addressed, it will become more and more complicated 
to work with, making the development process more difficult and risking 
burnout by developers. Be sure to budget time to tackle it before it gets out 
of control.

As a general consideration, just keep in mind that changes in architecture need to be 
carried out by members of the team, and that information needs to be communicated 
and executed correctly. As with any other task where communication is an important 
component, this presents its own challenges and problems, as communicating with 
people, especially with several people, is arguably one of the most difficult tasks 
in software development. Any software architecture designer needs to be aware 
of this and allocate enough time to be sure to, on one hand, communicate the plan 
adequately, and on the other, receive feedback and adjust accordingly to get the 
best results.

Summary
In this chapter, we described the different aspects and challenges of keeping a system 
running while developing and changing it, including its architecture.

We started by describing different ways that architecture can require adjustments 
and changes. We then moved on to talk about how to manage changes, including 
the option of having some designated time where the system won't be available, 
and introduced the concept of maintenance windows to clearly communicate 
expectations of stability and change.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



Ongoing Architecture

[ 558 ]

We next went over the different incidents that can happen when problems arise, 
and the system struggles. We went over the necessary continuous process of 
improvement and reflection after an incident of this kind happens, and also looked 
at preparation processes that can be used before a significant event where the risk 
increases, for example, because of a marketing push expected to increase the load of 
the system.

To deal with this, we next introduced load testing and how it can be used to verify 
the system's capacity for accepting a defined load, making sure that it's ready 
to support the expected traffic. We talked as well about the necessity of creating 
a versioning system that clearly communicates what version of the software is 
currently deployed. 

Next, we talked about the critical aspect of backward compatibility and how 
is crucial in ensuring small, fast increments that are the key to continuous 
improvement and advancement. We also talked about how feature flags can help 
mix this process of releasing bigger features that need to be activated as a whole.

Finally, we described different aspects of how changes in a system and architecture 
can affect human collaboration and communication and how that needs to be taken 
into account while performing changes to the system, in particular changes that 
may affect the structure of the teams, which, as we've seen, will tend to replicate the 
structure of the software.

Join our book's Discord space
Join the book's Discord workspace for a monthly Ask me Anything session with the author:  
https://packt.link/PythonArchitechture

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 559 ]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, 
as well as industry leading tools to help you plan your personal development and 
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and 

Videos from over 4,000 industry professionals
• Improve your learning with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for 
a range of free newsletters, and receive exclusive discounts and offers on Packt books 
and eBooks.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

packt.com
www.packt.com


 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 561 ]

Other Books  
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Python Programming, Third Edition

Fabrizio Romano

Heinrich Kruger

ISBN: 9781801815093

• Get Python up and running on Windows, Mac, and Linux
• Write elegant, reusable, and efficient code in any situation
• Avoid common pitfalls like duplication, complicated design, and over-

engineering
• Understand when to use the functional or object-oriented approach to 

programming

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/learn-python-programming-third-edition/9781801815093


[ 562 ]

Other Books You May Enjoy

• Build a simple API with FastAPI and program GUI applications with Tkinter
• Get an initial overview of more complex topics such as data persistence and 

cryptography
• Fetch, clean, and manipulate data, making efficient use of Python's built-in 

data structures

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 563 ]

Other Books You May Enjoy

Python GUI Programming with Tkinter, Second Edition

Alan D. Moore

ISBN: 9781801815925

• Produce well-organized, functional, and responsive GUI applications
• Extend the functionality of existing widgets using classes and OOP
• Plan wisely for the expansion of your app using MVC and version control
• Make sure your app works as intended through widget validation and unit 

testing
• Use tools and processes to analyze and respond to user requests
• Become familiar with technologies used in workplace applications, including 

SQL, HTTP, Matplotlib, threading, and CSV
• Use PostgreSQL authentication to ensure data security for your application

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/python-gui-programming-with-tkinter-second-edition/9781801815925


[ 564 ]

Other Books You May Enjoy

Python Object-Oriented Programming, Fourth Edition

Steven F. Lott

Dusty Phillips

ISBN: 9781801077262

• Implement objects in Python by creating classes and defining methods
• Extend class functionality using inheritance
• Use exceptions to handle unusual situations cleanly
• Understand when to use object-oriented features, and more importantly, 

when not to use them
• Discover several widely used design patterns and how they are implemented 

in Python
• Uncover the simplicity of unit and integration testing and understand why 

they are so important
• Learn to statically type check your dynamic code
• Understand concurrency with asyncio and how it speeds up programs

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/python-object-oriented-programming-fourth-edition/9781801077262


[ 565 ]

Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech 
professionals, just like you, to help them share their insight with the global tech 
community. You can make a general application, apply for a specific hot topic that 
we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you've finished Python Architecture Patterns, we'd love to hear your thoughts! If 
you purchased the book from Amazon, please click here to go straight to the 
Amazon review page for this book and share your feedback or leave a review on the 
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure 
we're delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use

authors.packtpub.com
authors.packtpub.com
https://packt.link/r/1801819998
https://packt.link/r/1801819998


 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 567 ]

Index
A
abstractions  18-20

limitations  22
using  21

access log  185
action abstractions  23, 24
advanced Pytest  369

fixtures, using  374-379
tests, grouping  370-374
URL  369

alerting  460, 461
reference link  460

alpine Linux distribution
URL  309

analysis  422
Apache

URL  177
Apache Cassandra

URL  82
Apache Kafka  221
API design  17
API-first approach  61
application programming interface (API)

about  17
designing  63, 64
design, reviewing  73
endpoints  65-72
implementing  73
versioning  51

ArangoDB
URL  83

Arrange Act Assert (AAA) pattern  339
phases  339

Asynchronous JavaScript And XML (AJAX)  61
asynchronous tasks  221-226

atomicity  85
authenticating

versus authorizing  47
authentication  44
Authorization Code grant  48
authorizing

versus authenticating  47
automation  150
AWS S3  153

reference link  153

B
backend  55, 57
backward compatibility  121, 130, 546-548

deploying, without interruption  551-554
incremental changes  548-550

bcrypt function  12
Boto3 documentation

reference link  264
boto3 library  264
built-in cProfile module

using  470-474
bus  220

defining  272-274

C
cardinality  107, 109
catastrophic problems  502
Celery  235, 236

configuring  236
dots, connecting  241-243
HTTP API  252, 253
scheduled tasks  244-249
task, triggering  240

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 568 ]

Celery Flower  249-252
Celery worker  237-240
CircleCI

URL  149
Cloud Bigtable

reference link  82
code profiling, for time  468- 470

built-in cProfile module, using  470-474
line profiler, using  475-481

command-line interface (CLI)  269
Command Query Responsibility Segregation 

(CQRS)  127, 129
complex systems  274-277

modules  274
configuration  153-155
configuration parameters

feature configuration  154
operational configuration  154

consistency  85
container image  308

building  308, 309
running  310

containerized Twelve-Factor app  169, 171
containers  306
content delivery network (CDN)  182
Continuous Integration (CI)  148-150
Conway's Law  7
Create Retrieve Update Delete (CRUD)  26
critical problems  502
cryptographical hash  11
Cython  402-404

URL  402

D
data

encapsulating  122-126
Database Administrator (DBA)  76
database management system (DBMS)  76
database migrations  130
databases

about  5
changing, without interruption  132-135
non-relational databases  79
relational databases  77-79
small databases  83, 84
types  76, 77

database transactions  85, 86
data indexing  105-107
data migrations  136
db.sqlite3 file  320
debugging  422

with breakpoints  524-527
with logs  522, 523

declarative  139
defects

detecting  502, 503
processing  503

denormalization  103, 105
dependency injection  364-366

in OOP  366-369
deployment  321
deterministic profilers  465
development mode  398

reference link  398
distributed relational databases  87
Django  132

request, routing to View  197, 198
Django framework

URL  115
Django migrations

reference link  132
Django MVT architecture  195, 196
Django project

URL  195
Django Prometheus

configuring  447-449
Django REST framework  208

models  209
serializer  212-215
URL  196
URL routing  210
views  210, 211

Docker
URL  307

Docker Compose
URL  321

Docker Hub
URL  309

docstrings, PEP 257 document
reference link  522

Document Object Model (DOM)  60
document stores  81, 82
Domain-Driven Design  112-114

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 569 ]

Domain Model  122
Domain-Specific Languages (DSL)  79
durability  86
dynamic page  59-61
dynamic queries  121

E
edge load balancer  216
Elasticsearch

reference link  82
ELK Stack

reference link  168
environment variables  159
error log  185
event-driven systems  220, 278

testing  278-280
events

sending  220, 221
streaming  256-260

eventual consistency  87
execution phases, for migration from  

monolith to microservices
consolidation  305
final  306
pilot  305

expected errors  505
detecting  430, 431

external dependencies
mocking  361-364
testing  358-361

external layers  216
external versioning

versus internal versioning  51, 52

F
feature configuration  154
feature flags  554, 555
fixture

steps  375
using  374-379

Flower tool
reference link  249

Fluentd
reference link  426

foreign key  78, 98, 99
formatter  427

frontend  55, 57
common technologies  56

full stack engineer  56
full table scan  106

G
GitHub

URL  149
GitLab

URL  149
Global Interpreter Lock (GIL)  191
Grafana

URL  459
graph databases  83

H
handler  427

reference link  429
happy path  279
headers list

reference link  30
horizontal scalability  151
hotspots

global hotspots  467
specific hotspots  467

HTML interfaces  58
authenticating  44-46

HTTP API  252
HttpRequest  201

attributes  201-203
HttpResponse  203-205
Hybrid approach  63

I
incident  535, 536
ingress  322
in-process communication  6, 7
integration tests  278, 332, 333
internal versioning

versus external versioning  51, 52
introspection tools  518-521
ipdb

reference link  527
isolation  86

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 570 ]

J
JWT token

elements  49

K
kernel space  289
key-value stores  80
Kubernetes  321, 322

URL  322

L
LAMP architecture  7
leaky abstraction

leaking  22
legacy databases

dealing with  139
leonardo_1.py

reference link  492
leonardo_2.py file

reference link  493
Leonardo numbers  492
line profiler

using  475-481
load testing  541, 542
local debugging  515-517
logger  427
Loggly

URL  168
logs  185, 421-426

access log  185
adding  437, 438
error log  185
limitations  438, 439
problems, detecting through  430
producing, in Python  426-429
strategies  434-437
versus metrics  442, 443

M
master-fifo

reference link  195
memory leaks

use cases  467

memory profiler  467, 468, 492-494
memory optimization  496, 498
memory_profiler package, using  494, 495

memory-profiler module
reference link  498

message broker  272
metrics  421, 444

checking  449, 450
counter  443
errors  460
gauge  443
latency  460
measure  444
saturation  460
traffic  460
versus logs  442, 443
working with  459

metrics, generating with Prometheus  445
environment setup  445-447

microkernel  289
MicropostsListView  210
MicropostView  210
microservices architecture  281-285

communication structure  291-293
versus monolithic architecture  285-288

middleware
defining  205, 207

migration  131
migration, from monolith to  

microservices  294
analyze  297
challenges  294-296
design  298-300
execute  303, 304
plan  301-303

mild problems  502
minor problems  502
mixed sharding  93-95
mocking  361-364
Model layer  112
Model View Controller (MVC)  57, 58
Model-View-Template (MVT)  195
MongoDB

URL  82
monolithic architecture  7, 281-283

communication structure  290, 291

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 571 ]

MoviePy documentation
reference link  264

MoviePy library  264
Mozilla SameSite Cookie

reference link  45

N
natural key  78
Neo4j

URL  83
nginx

URL  177
nginx configuration  314
nodes  321
non-relational databases  77-79

changes, without enforcing schema  137, 138
document stores  81, 82
graph databases  83
key-value stores  80
wide-column stores  82

NoSQL  79

O
OAuth  47
Object-Oriented Programming  

(OOP)  24, 112-114
Object-Relational Mapping (ORM)  114

database, detaching from code  116
independence, from SQL  116, 117
issues related to composing SQL,  

removing  118-122
using  114-116

observability  421
OOP programming

dependency injection  366-369
Open API

URL  40
operational configuration  154
Opsgenie

URL  461
orchestration  321
ORM

schema, syncing, to   141, 142

P
package

creating  382-384, 395-397
installing, in development mode  398
uploading, to PyPI  408-415

partial profiling  481
profile file per request, generating  489-491
web server returning prime numbers,  

creating  482-486
whole process, profiling  486-488

Peewee
reference link  115

PEP-328 imports
reference link  385

performance
memory performance  464
time performance  464

Personally Identifiable Information (PII)  513
philosophy

test, designing  336-339
testing  334, 336
test, structuring  339-342

pipelines  260, 261
base task  263
image task  264, 265
preparation  261, 262
task, connecting  267-269
task, running  270-272
video task  266, 267

pod  321
Pony

URL  115
Postman

URL  39
postmortem analysis  537-540
premortem analysis  540
preparation analysis  540
primary key  77
primary/replica  88-90
primes_1.py

reference link  469
print debugging  522
private index

creating  415-419

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 572 ]

production investigation  504, 506
data, analyzing  513
logging, increasing  514, 515
request ID, logging  507-512

profilers
deterministic profilers  465
memory profiler  467
statistical profilers  466

profiling  422
basics  464, 465

Prometheus
metrics, generating  445
querying  454-459

Prometheus documentation, on queries
reference link  459

Prometheus server
starting  450-453

publisher  221
publish/subscribe (pub/sub)  276
pudb

reference link  527
pure sharding  92, 93
pyinstrument

reference link  467
pyjwt

reference link  50
pypiserver  415
Pyramid

URL  197
py-spy

reference link  467
Pytest  354-358
pytest-catchlog

reference link  437
Python

introspection tools  518-521
logs, producing  426-429
trivial packaging  384-386
unit testing  350

Python Enhancement Proposals (PEPs)  385
Python garbage collector

reference link  468
Python package  394, 395

defining  398-401
with binary code  405-408

Python Package Index (PyPI)  387-390
package, uploading to  408-415

Python packaging ecosystem  386
Python Package Index (PyPI)  387-390
virtual environment  390, 391
virtual environment, creating  392, 393

Python status codes
reference link  204

Python WSGI worker  195

Q
queue  221
queue effects  227-231

cloud queue  233-235
cloud worker  233-235

queueing theory
reference link  228

queue tasks
background tasks  230
priority tasks  230
single code  232

R
RabbitMQ  221
Redis  81, 221
reference counting  467
relational databases  77-79
Relational schema changes  131
remote-pdb

reference link  527
Remote Procedure Call (RPC)  17
replication lag  88, 89
Repositories  125
Repository pattern  116
Representational State Transfer (REST)  25
request ID

logging  507-512
request-response architecture  174-176
resources abstractions  23, 24
RESTful interfaces  25

authenticating  46-49
defining  26-28
headers and status  29
Open API specification, using  40-44
pagination  35-37
resource, designing  32, 33
resources and parameters  34, 35

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 573 ]

RESTful API process, designing  37-40
RESTful rules  25
reverse proxy  182-184

working  183
Riak  81
rsyslog

reference link  426

S
salt  11
scalability  148-153
scalability, types

horizontal scalability  151
vertical scalability  151

scheduled downtime  533, 534
maintenance window  534, 535

scheduled tasks  227
schema

detecting, from database  139, 141
syncing, to ORM  141, 142

schema design  97-101
schema normalization  101, 102
self-encoded tokens  49-51
semantic versioning  52-54, 544
Sentry

URL  434, 461
serious problems  502
server_profile_by_request.py

reference link  490
server.py file

reference link  482
service  322
services

containerizing  306, 307
sharding  90, 91

advantages  96
disadvantages  96

shard key  90
shared database  224
simple versioning  54
single code  232
Single Object Access Protocol (SOAP)  17
single-page application  61, 62
Single-Responsibility principle  5, 6
Single Sign-On (SSO)  46
site-packages  394

small databases  77, 83, 84
software architecture  2, 532, 533

considerations  3
division, into smaller units  4-6
effects  7-9
security aspects  11, 12
teamwork aspects  556, 557

Splunk
URL  168

SQLAlchemy  139
URL  115, 140

SQL injection attack  118
Stack Overflow

URL  533
static files

serving  180
statistical profilers  466
status codes  30, 31
stored procedures  141
strangler pattern  301
Structured Query Language (SQL)  78
subdividing tasks  226
subscriber  221
surrogate key  78
Swagger

about  40
URL  40

system structure
defining  2, 3

system tests  333

T
table sharding  95
Test-Driven Development (TDD)  342-345

ideas  343
into teams  345, 346
problems and limitations  346
process, example  347-350

testing, levels  331
integration test  332, 333
system test  333
unit tests  331

TestPyPI
URL  408

traditional HTML interfaces  58, 59
transaction  85

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



[ 574 ]

TravisCI
URL  149

trivial packaging
in Python  384-386

Twelve-Factor App  148
factors  156

Twelve-Factor App, groups
build once, run multiple times  157, 158
dependencies and configuration  159-163
monitoring and admin  166-169
scalability  163-166

Twelve-Factor App methodology  147

U
unexpected errors  505

capturing  431-434
uniform interface

prerequisites  25
Uniform Resource Identifiers (URIs)  26
Unit of Work class  125
Unit of Work pattern  122-126
unit testing

in Python  350
unit tests  278, 331
unittest module  350-353
uWSGI application  186, 187

interacting, with web server  189
processes  190, 191
process lifecycle  191-195
reference link  195

uWSGI configuration  314

V
versioning  543-546

need for  51
vertical scalability  151
View  199-201

HttpRequest  201-203
HttpResponse  203-205

virtual environment  390, 391
container, using  393, 394
creating  392, 393

W
web application for microblogging  9

functional elements functional elements  10
web architecture  177
web server  5

about  177-179
advanced usages  186
logs  185
reverse proxy  182-184
static files, serving  180-182

Web Server Gateway Interface (WSGI)  186
web service

building  316
running  317-319
start script  315, 316

web service container  311
building  311
running  312, 313

web worker  5
wheel package  400
wheel_package_compiled package  405
wide-column databases  82
wolf fence algorithm  517
WSGI application  187-189

Y
You Ain't Gonna Need It (YAGNI)  343

 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/9/2023 8:47 AM via . All use subject to https://www.ebsco.com/terms-of-use


	Cover
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction to Software Architecture
	Defining the structure of a system
	Division into smaller units
	In-process communication

	Conway's Law – Effects on software architecture
	Application example – Overview 
	Security aspects of software architecture
	Summary

	Part I
	Chapter 2: API Design
	Abstractions
	Using the right abstractions
	Leaking abstractions
	Resources and action abstractions

	RESTful interfaces
	A more practical definition
	Headers and statuses
	Designing resources
	Resources and parameters
	Pagination
	Designing a RESTful API process
	Using the Open API specification

	Authentication
	Authenticating HTML interfaces
	Authenticating RESTful interfaces
	Self-encoded tokens


	Versioning the API
	Why versioning?
	Internal versus external versioning
	Semantic versioning
	Simple versioning

	Frontend and backend
	Model View Controller structure

	HTML interfaces
	Traditional HTML interfaces
	Dynamic pages
	Single-page apps
	Hybrid approach

	Designing the API for the example
	Endpoints
	Review of the design and implementation


	Summary

	Chapter 3: Data Modeling
	Types of databases
	Relational databases
	Non-relational databases
	Key-value stores
	Document stores
	Wide-column databases
	Graph databases

	Small databases

	Database transactions
	Distributed relational databases
	Primary/replica
	Sharding
	Pure sharding
	Mixed sharding
	Table sharding

	Advantages and disadvantages of sharding

	Schema design
	Schema normalization 
	Denormalization

	Data indexing
	Cardinality

	Summary

	Chapter 4: The Data Layer
	The Model layer
	Domain-Driven Design
	Using ORM
	Independence from the database
	Independence from SQL and the Repository pattern
	No problems related to composing SQL

	The Unit of Work pattern and encapsulating the data
	CQRS, using different models for read and write

	Database migrations
	Backward compatibility
	Relational schema changes
	Changing the database without interruption
	Data migrations

	Changes without enforcing a schema

	Dealing with legacy databases
	Detecting a schema from a database
	Syncing the existing schema to the ORM definition

	Summary

	Part II
	Chapter 5: The Twelve-Factor App Methodology
	Intro to the Twelve-Factor App
	Continuous Integration
	Scalability
	Configuration
	The Twelve Factors
	Build once, run multiple times
	Dependencies and configurations
	Scalability
	Monitoring and admin

	Containerized Twelve-Factor Apps
	Summary

	Chapter 6: Web Server Structures
	Request-response
	Web architecture
	Web servers
	Serving static content externally
	Reverse proxy
	Logging
	Advanced usages

	uWSGI
	The WSGI application
	Interacting with the web server
	Processes
	Process lifecycle

	Python worker
	Django MVT architecture
	Routing a request towards a View
	The View
	HttpRequest
	HttpResponse

	Middleware
	Django REST framework
	Models
	URL routing
	Views
	Serializer


	External layers
	Summary

	Chapter 7: Event-Driven Structures
	Sending events
	Asynchronous tasks
	Subdividing tasks
	Scheduled tasks
	Queue effects
	Single code for all workers
	Cloud queues and workers

	Celery
	Configuring Celery
	Celery worker
	Triggering tasks
	Connecting the dots
	Scheduled tasks
	Celery Flower
	Flower HTTP API

	Summary

	Chapter 8: Advanced Event-Driven Structures
	Streaming events
	Pipelines
	Preparation
	Base task
	Image task
	Video task
	Connecting the tasks
	Running the task

	Defining a bus
	More complex systems
	Testing event-driven systems
	Summary

	Chapter 9: Microservices vs Monolith
	Monolithic architecture
	The microservices architecture
	Which architecture to choose
	A side note about similar designs

	The key factor – team communication
	Moving from a monolith to microservices
	Challenges for the migration
	A move in four acts
	1. Analyze
	2. Design
	3. Plan
	4. Execute


	Containerizing services
	Building and running an image
	Building and running a web service
	uWSGI configuration
	nginx configuration
	Start script
	Building and running
	Caveats


	Orchestration and Kubernetes
	Summary

	Part III
	Chapter 10: Testing and TDD
	Testing the code
	Different levels of testing
	Unit tests
	Integration tests
	System tests

	Testing philosophy
	How to design a great test
	Structuring tests

	Test-Driven Development
	Introducing TDD into new teams
	Problems and limitations
	Example of the TDD process

	Introduction to unit testing in Python
	Python unittest
	Pytest

	Testing external dependencies
	Mocking
	Dependency injection
	Dependency injection in OOP

	Advanced pytest
	Grouping tests
	Using fixtures

	Summary

	Chapter 11: Package Management
	The creation of a new package
	Trivial packaging in Python
	The Python packaging ecosystem
	PyPI
	Virtual environments
	Preparing an environment
	A note on containers

	Python packages

	Creating a package
	Development mode
	Pure Python package

	Cython
	Python package with binary code
	Uploading your package to PyPI
	Creating your own private index
	Summary

	Part IV
	Chapter 12: Logging
	Log basics
	Producing logs in Python
	Detecting problems through logs
	Detecting expected errors
	Capturing unexpected errors

	Log strategies
	Adding logs while developing
	Log limitations
	Summary

	Chapter 13: Metrics
	Metrics versus logs
	Kinds of metrics

	Generating metrics with Prometheus
	Preparing the environment
	Configuring Django Prometheus
	Checking the metrics
	Starting a Prometheus server

	Querying Prometheus
	Proactively working with metrics
	Alerting
	Summary

	Chapter 14: Profiling
	Profiling basics
	Types of profilers
	Profiling code for time
	Using the built-in cProfile module
	Line profiler

	Partial profiling 
	Example web server returning prime numbers
	Profiling the whole process
	Generating a profile file per request

	Memory profiling
	Using memory_profiler
	Memory optimization

	Summary

	Chapter 15: Debugging
	Detecting and processing defects
	Investigation in production
	Understanding the problem in production
	Logging a request ID
	Analyzing data
	Increasing logging

	Local debugging
	Python introspection tools 
	Debugging with logs
	Debugging with breakpoints
	Summary

	Chapter 16: Ongoing Architecture
	Adjusting the architecture
	Scheduled downtime
	Maintenance window

	Incidents
	Postmortem analysis
	Premortem analysis

	Load testing
	Versioning
	Backward compatibility
	Incremental changes
	Deploying without interruption

	Feature flags
	Teamwork aspects of changes
	Summary

	PacktPage
	Other Books You May Enjoy
	Index

