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PREFACE

This book is about the post-Newtonian theory, a method of suc-
cessive approximations of Einstein’s field equations in powers of
the light speed. This method was proposed in 1938 by Einstein,
Infeld and Hoffmann! and in 1965 the first post-Newtonian hy-
drodynamic equations for a perfect fluid were derived by Chan-
drasekhar.? Nowadays the post-Newtonian theory is still a field
of investigation by many researches.

The aim of this book is to present the post-Newtonian theory
and some applications in a self-contained manner. The devel-
opment of the theory follows the works of Chandrasekhar and
its collaborators and the book by Weinberg.® For another dif-
ferent approach and applications of the post-Newtonian theory

1A. Einstein, L. Infeld and B. Hoffmann, The gravitational equations
and the problem of motion, Ann. of Math. 39, 65 (1938).

2S. Chandrasekhar, The post-Newtonian equations of hydrodynamics in
general relativity, Ap. J. 142, 1488 (1965).

3S. Weinberg, Gravitation and cosmology. Principles and applications
of the theory of relativity (Wiley, New York, 1972).

xiii
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the reader is referred to the book by Poisson and Will.*

The book is organized as follows. In the first Chapter an
overview of the non-relativistic and relativistic Boltzmann equa-
tion with the corresponding transfer and balance equations are
introduced. The particle four-flow and the energy-momentum
tensor are calculated with the equilibrium Maxwell-Jiittner dis-
tribution function and it is shown that the equilibrium condition
of the Boltzmann equation in gravitational fields leads to Tol-
man and Klein laws.

In Chapter two the first post-Newtonian approximation of
Einstein’s field equations is determined from Chandrasekhar and
Weinberg methods, which introduce different gauge conditions
and equivalent gravitational potentials. The post-Newtonian
balance equations for an Eulerian and non-perfect fluids are ob-
tained and the Brans-Dicke theory in the post-Newtonian ap-
proximation is developed. Other subjects of this chapter in-
clude the analysis of the gravitational potentials, the conserva-
tion laws and the virial theorem in the post-Newtonian approx-
imation.

The second post-Newtonian approximation is the subject
of Chapter three, where new gravitational potentials come out
from Einstein’s field equations. The Eulerian balance equations
are determined and the conservation laws are investigated in
this approximation.

In Chapter four the first and second post-Newtonian approx-
imations of the Boltzmann equation and of the Maxwell-Jiittner

4E. Poisson and C. M. Will, Gravity: Newtonian, Post-Newtonian, Rel-
ativistic, (Cambridge UP, Cambridge, 2014).

Xiv
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distribution function are derived. From a transfer equation of
the post-Newtonian Boltzmann equations the Eulerian balance
equations for perfect gases are obtained for the two approx-
imations. Furthermore, the post-Newtonian Jeans equations
for stationary spherically symmetrical and axisymmetrical self-
gravitating systems are derived.

The aim of Chapter five is the search for polytropic solutions
of the post-Newtonian Lane-Emden equation for some stars like
the Sun, white and brown dwarfs, red giants and neutron stars.
The post-Newtonian solutions are compared with the ones that
come out from the Newtonian Lane-Emden equation.

In Chapter six the problem of spherically symmetrical ac-
cretion is investigated where the Bernoulli equation and the
critical values of the flow fields are determined in the post-
Newtonian approximation. The solutions of the post-Newtonian
Bernoulli equation are compared with the ones that follow from
the Bernoulli equations of a relativistic theory and its weak field
approximation.

The Jeans instability from the hydrodynamic equations is
the subject of Chapter seven. Here the Newtonian Jeans insta-
bility is investigated for a non-expanding and expanding Uni-
verse. The post-Newtonian Jeans instability are obtained from
the mass density and momentum density balance equations in
the first and second approximations.

The aim of Chapter eight is to study Jeans instability within
the framework of the Boltzmann equation. For the Newtonian
and post-Newtonian Boltzmann equations two approaches are
used to obtain the dispersion relation which leads to the Jeans
instability. In one of them the perturbed distribution function

XV
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is left unspecified while in the other the perturbed distribution
function is written in terms of the summational invariants of the
Boltzmann equation. The determination of Jeans instability for
an expanding Universe and for a BGK model of the Boltzmann
equation — where collision between the particles are taken into
account — are also examined.

In the last chapter it is investigated the rotation curves of
galaxies within the post-Newtonian framework and the solution
of Jeans equation for stationary spherically symmetrical self-
gravitating systems.

The notations used in this book are: Greek indices take the
values 0,1,2,3 and Latin indices the values 1,2,3. The semicolon
denotes the covariant differentiation, the indices of Cartesian
tensors will be written as subscripts, the summation convention
over repeated indices will be assumed and the partial differen-
tiation will be denoted by 9/9z".

It is expected that this book can be helpful not only as a
text for advanced courses but also as a reference for physicists,
astrophysicists and applied mathematicians who are interested
in the post-Newtonian theory and its applications.

The financial support of Conselho Nacional de Desenvolvi-
mento Cientifico e Tecnolégico (CNPq, grant No. 304054/2019-
4) Brazil, is gratefully acknowledged.

Glilberto Medeiros Kremer

Itajai, Brazil
July 2021

xvi

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



CHAPTER 1

THE BOLTZMANN
EQUATION:
AN OVERVIEW

In this chapter an outline of the Boltzmann equation is pre-
sented. The non-relativistic Boltzmann equation is based on
the book [1] while the relativistic one on the book [2]. For more
details and references on non-relativistic and relativistic Boltz-
mann equation the reader should consult these two books and
the references therein.
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2 CHAPTER 1. BOLTZMANN EQUATION

1.1 Non-relativistic Boltzmann equa-
tion

The Boltzmann equation is a non-linear integro-differential equa-
tion for the space-time evolution of the one-particle distribution
function f(x,v,t) in the phase space spanned by the space co-
ordinates x and velocity v of the particles. The one-particle
distribution function is such that dN = f(x,v,t)d3zd®v gives
at time t the number of particles in the volume element d®x
about x and with velocities in a range d>v about v. In the non-
relativistic kinetic theory of monatomic gases the Boltzmann
equation reads
of of

| of _ , ,
E—Fvlal‘i +F16'vi = [f(X,V,“t)f(X,V,t)

—f(x,v*,t)f(x,v,t)}gond?’U*. (1.1)

Here F is a force per unit mass which acts on the particles and
do not depend on its velocities. The right-hand side is a con-
sequence of the so-called Stofizahlansatz which considers only
binary collisions of two beams of particles which before collision
have velocities (v,v,) and after collision (v’,v’,). Furthermore,
g = |v« — v| is a relative velocity, o a collision differential cross
section and df2 an element of solid angle of the scattered parti-
cles. In the binary collision the momentum and energy conser-
vation laws hold

1 1 1
mv +mv, = mv’ +mv’,, imv2 + imvf = §mvl2 + §mvf,
(1.2)
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1.1. NON-RELATIVISTIC BOLTZMANN EQUATION 3

where m is the particle rest mass.

In the kinetic theory of gases the macroscopic fields are
given in terms of integrals over the microscopic quantities of
the particles multiplied by the one-particle distribution func-
tion. The microscopic quantities mass m, momentum mv and
energy muv? /2 of a particle imply the macroscopic fields of mass
density p, momentum density pV and energy density pu of the
gas defined by

p(x,t) = /mf(x,v7t)d3v, pV(x,t) = /mvf(x,v,t)d3v,(l.3)
pu(x,t) Z/%UQf(X,V,t)dSU.(l.Zl)

The energy density can be decomposed into a sum of a kinetic
energy density pV/2/2 and an internal energy density pe by intro-
ducing the peculiar velocity V; = v;—V; which is the difference of
the particle velocity v and the hydrodynamic velocity V. Hence
we have

1 1
pu = 5,0\/2 + pe, where pe :/§mV2f(x,v,t)d3v. (1.5)

Note that [V; fd3v = 0.

An important quantity in the kinetic theory of gases is the
so-called summational invariant ¢ defined by the relationship
Y41, =+, Tt is easy to see that the mass m, the momen-
tum mv and the energy mwv? /2 of a particle are summational in-
variants. One important consequence is that the representation
of the summational invariant as a sum of mass, momentum and
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4 CHAPTER 1. BOLTZMANN EQUATION

energy of a particle leads to the determination of the one-particle
distribution function at equilibrium. Indeed, the equilibrium is
characterized when the collision term of the Boltzmann equa-
tion (1.1) vanishes, i.e., at equilibrium the number of particles
entering in the phase space volume is equal to those that leav-
ing it. In this sense f(x,Vv.,t)f(x,v/',t) = f(x,vi, t)f(x,V,1)
implying that In f(x,v,t) is a summation invariant so that at
equilibrium the one-particle distribution function becomes the
Maxwellian distribution function

r=L (= )gexp[ mVQ], (1.6)

2rkT KT

where the absolute temperature T is related with the specific
internal energy by € = 3kT/2m with k denoting the Boltzmann
constant.

The derivation of hydrodynamic equations from a transfer
equation for arbitrary macroscopic quantities which are associ-
ated with mean values of microscopic quantities is an old subject
in the literature of kinetic theory of gases which goes back to
the work of Maxwell in 1867 [3]. In 1911 Enskog [4] determined
from the Boltzmann equation a general transfer equation for an
arbitrary function of the space-time and particle velocity where
the hydrodynamic equations could be obtained. The starting
point for the knowledge of the so-called Maxwell-Enskog trans-
fer equation follows from the multiplication of the Boltzmann
equation (1.1) by an arbitrary function of the space-time coordi-
nates and particle velocity ¥(x,v,t) and subsequent integration
of the resulting equation over all values of the particle velocity
components d>v. Hence it follows the Maxwell-Enskog transfer
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1.1. NON-RELATIVISTIC BOLTZMANN EQUATION 5

equation

of  of  0f . 0 [ 4
/‘I’{at”‘axﬁﬂaw}d”at vid

9 3 OVfF; 4
e A el
ov ov oOv 5
_/ |:8t +’Uiaxi +Flayz:| fd v
- i/[\lf-&-\l/*_q/’_\y;] [fif = fflgodQdPv.d®. (1.7)

In the above equation the underlined term vanishes since it can
be converted by the use of the divergence theorem into an inte-
gral over a surface situated far away in the velocity space where
the distribution function tends to zero. Its right-hand side fol-
lows by considering the symmetry properties of the collision op-
erator of the Boltzmann equation where it was introduced the
abbreviations f, = f(x,v.,t), f = f(x,v,t) and so on. Note
that the right-hand side of the transfer equation vanishes if ¥
is a summational invariant, i.e., for ¥ = .

The balance equations for the fields of mass density p, mo-
mentum density pV and energy density pu are obtained from
the transfer equation (1.7) by choosing ¥ equal to the mass m,
momentum mv and energy mwv?/2 of the particles. Hence, it
follows respectively

dp , OpV;
aJr 8951 o

0, (1.8)
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6 CHAPTER 1. BOLTZMANN EQUATION

opVi  O0(pViVj+pij) 09
ot T o, Pom (1.9)
ol )] ol B)rains] s,
a s = P
(1.10)

In the above equations we have identified the force per unit mass
F as the gravitational field g = —V¢ where ¢ is the Newtonian
gravitational potential, which is related with the mass density p
and the universal gravitational constant G' through the Poisson
equation V2¢ = 4nGp. Furthermore, it was introduced the
pressure tensor p;; and the heat flux vector ¢; which are given
in terms of the one-particle distribution function by

Pij :/mViijd%, qi:/%mVQVifd%. (1.11)

The pressure is the trace of the pressure tensor p = p,,./3 and
for perfect gases it is related to the specific internal energy by
p =2pe/3 = pkT/m.

If we eliminate the time derivative of the hydrodynamic ve-
locity V from the balance equation for the energy density (1.10)
by using the momentum density balance equation (1.9) we get
the internal energy density balance equation

dpe | O(peVi+qi) oV;
_ ii— = 0. 1.12
ot T on, " Pugg =0 (1.12)
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1.2. BOLTZMANN EQUATION IN SPECIAL RELATIVITY7

1.2 Boltzmann equation in special rel-
ativity

In special relativity it is considered that a gas particle of rest
mass m is characterized by the space-time coordinates (z%) =
(ct,x) and momentum four-vector (p®) = (p°,p). From the
constraint that the length of the momentum four-vector is equal
to me, its time component p® is given in terms of the spatial
components p by p° = /|p|? + m2c2.

The one-particle distribution function f(z%,p®) = f(x, p,t)
is defined in terms of the space-time and momentum coordinates
so that the number of particles in the volume element d®z about
x and with momenta in a range d>p about p at time t is given
by dN = f(x,p,t)d>z d>p.

In order to know if the one-particle distribution function is a
scalar invariant we have to know if d®>zd>p is a scalar invariant,
because the number of particles in a volume element is indeed
a scalar invariant due to fact that all observers will count the
same number of particles.

We consider two inertial systems which transform according
a homogeneous Lorentz group in a Minkowski space-time and
whose components of the metric tensor are diag(1, —1, -1, —1).
The volume elements d*z = d*z’ and d*p = d*p’ are scalar
invariants. If we choose the primed frame of reference as a rest
frame where p’ = 0, we have that d3z’ is the proper volume
whose transformation law is

dr=/1—-v2/c2d%s’. (1.13)
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8 CHAPTER 1. BOLTZMANN EQUATION

The transformation law for p and d3p — by taking into account
the primed frame as a rest frame where p’ = 0 — are

Py, LE_CP (1.14)

In a Minkowski space-time py = p® hence from the above equa-
tions we have that d®zd®p = d32'd3p’ is a scalar invariant and
as a consequence the one-particle distribution function is also a
scalar invariant. Note that d®p/py is a scalar invariant.

In the phase space spanned by the space coordinates x and
momentum p of the particles the space-time evolution of the
one-particle distribution function f(x, p, t) is given by the Boltz-
mann equation

vk = [ [reeplnsop

d3p.
DPx0 '

~f(x, p*,t)f(x,p,t)] FodQ (1.15)

The right-hand side of the above equation represents the colli-
sion term which takes into account the binary collision of two
beams of particles which before collision have momenta (p, p.)
and after collision (p’,p’). The relative velocity here is given
by the invariant flux

0,,0
1
F=th \/ (v=v.)? = (v xv.)? = V/(ppa)” — mich,
(1.16)
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1.2 SPECIAL RELATIVITY 9

Furthermore, o is the invariant differential cross-section and df2
the solid angle element. At collision the energy-momentum con-
servation law holds

o+ pl = p -l (1.17)

which is a summational invariant.

The transfer equation for an arbitrary function W(x#, p*)
is obtained from the multiplication of the Boltzmann equation
(1.15) by W(z*,p*) and integration of the resulting equation
with respect to dp/po, yielding

0 d3p ov d3p
R B T S N P el
5o | 15 [ Gt

L ! l ! pl
:1/[‘1’”’*—‘1’ — W [fLf = fof] FodQ

&p, d
P<@P (118)
Pxo  Po

where the right-hand side follows from the symmetry properties
of the collision operator of the Boltzmann equation. Here it was
introduced the abbreviations f. = f(x,p.,t), f = f(x,p,t) and
SO on.

The equilibrium state is attained when the right-hand side
of Boltzmann equation (1.15) vanishes so that In f(x, p,t) is a
summational invariant and the one-particle distribution func-
tion at equilibrium becomes the Maxwell-Jiittner distribution
function

_ n U,
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10 CHAPTER 1. BOLTZMANN EQUATION

Here n is the particle number density, U, the hydrodynamic
four-velocity — such that U,U" = ¢* — and K»(¢) the modified
Bessel function of second kind defined by

K"(C):(g) F(l;(jr)é)/lme_cy(yg—w‘idy- (1.20)

The relativistic parameter ¢ = mc?/kT is the ratio of the rest
energy of the gas particle mc? and the thermal energy of the
gas kT. In the non-relativistic limiting case ¢ > 1 while in the
ultra-relativistic limiting case ¢ < 1.

The macroscopic fields of particle four-flow N* and energy-
momentum tensor T"” are defined in terms of the one-particle
distribution function as

d3 d3
NH = /CP”f(X,P,t)la ™ = /CP“p”f(X,p,t)fp'(l'ﬂ)
Po Po

The balance equations for the macroscopic fields are ob-
tained from the transfer equation (1.18) by choosing ¥ = ¢
and ¥ = cp*, yielding

0 d3p
w/cp”fpio =0, = 9,N*=0, (1.22)
3
aiy /cp“p”f% =0, = 0,7" =0. (1.23)

Let us determine the equilibrium values of the particle four-
flow N* and energy-momentum tensor T#" from the Maxwell-
Juttner distribution function. We choose a local Lorentz frame

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



EBSCChost -

1.2 SPECIAL RELATIVITY 11

where the spatial components of the hydrodynamic four-velocity
vanishes, i.e., U* = (¢,0) and write the particle four-flow as

d3p cn 0 wyy yd3p
NH — we 20 = Y —(p"U) 2
/cp ! Do 4rm?2ckT K, (C) OU,, /e

Po’
(1.24)
where we have introduced U, = U, /kT which obeys the rela-
tionships
2 2
wu, = 0C _ (M) e, (1.25)

(me)?’ a, ¢
In a local Lorentz frame we can use spherical coordinates to
write

d*p = |p|? sin Od|p|dfdep, (1.26)

where the range of the angles are 0 < 0 < 7 and 0 < ¢ < 27.
Furthermore we change the integration variable and introduce
a new variable y such that

po=mey, |p|*=p5 —m’c =m?(y* 1), (1.27)

d d

del _ _dy (1.28)

Do Vy?—1

Hence by considering that the integrals over the angles 6 and ¢
furnish 4, (1.24) becomes

(n 0 / _
o Cy 2 _
N mi(C) AU, e “Yyy? — ldy

_ (n 9K:1(¢)/¢
mKQ(C) (%IH

= nU". (1.29)
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The evaluation of the energy-momentum tensor proceeds in
the same way

d’p ¢n_ 0*K1(Q)/¢

THY /c IO 2 Sl
Py po  mKy(C) 0U,0u,

ULy ,
= —rg" (1.30)

= (e+p)

Here g"” is the Minkowski metric tensor. The energy density e
and the hydrostatic pressure p are given by
K 1
= (9

() — C) , p=nkT. (1.31)

In the above equations it was used the recurrence relation
for the modified Bessel function of second kind

d (K, K,
4 (EalQN _ Kni1 (1.32)
dC Cn Cn

The energy density has the following values in the non-
relativistic ¢ > 1 and ultra-relativistic { < 1 limiting cases

3kT
_ 2
€= pc (1 + chz) ) for (> 1, (1.33)
€ = 3nkT = 3p, for (<1, (1.34)

by using the asymptotic expressions for the modified Bessel
function of the second kind given in the Appendix.

Another quantity that is very important in the analysis of
the Boltzmann equation is the entropy. In a relativistic the-
ory the entropy four-flow is given in terms of the one-particle
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distribution function by
d3
S“:—k/cflnfp“p—p. (1.35)
0

If we choose ¥ = —kcln f in the transfer equation (1.18) we get
the balance equation for the entropy four-flow

3 3
O [kt 22 - g [ 2L
Po Po

Azt ozt
ke ([ PE 10 dp. &p
+4 |:1 ff*:| [ff* 1:| Ju Fodi} P«0 Po . (1.36)

The first term in the right-hand side of the above equation van-
ishes, since it can be identified as the multiplication of the Boltz-
mann equation (1.15) by ke, integration over all values of %
and considering the symmetry properties of the collision opera-
tor. The second term is non-negative thanks to the relationship
(x —1)Inz > 0 which is valid for all > 0. Hence the entropy
four-flow balance equation reduces to

8,8" > 0. (1.37)

The equilibrium entropy four-flow can be obtained from the
insertion of the Maxwell-Jiittner distribution function (1.19)
into its definition (1.35) and integration of the resulting equa-
tion, yielding

_»uu [ p"U, " “p
W H ET —1 “on
S ki/ fr'e { kT . [47rm26kTK2(<)]} Do
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drm?ckT K2 (C)
n

B 4rm2ckTK5(C) €
_n{kln [n] +nT}U“. (1.38)

™,
ST

+kln{ }N“

thanks to (1.29) and (1.30). The entropy per particle s is related
to the equilibrium value of the entropy four-flow written as S* =
nsU".

The Gibbs function per particle is identified with the chem-
ical potential u and defined by

_ p_ S L
p= Ts—i—n kT{ln[47rm2ckTK2(§)]+1}' (1.39)

From this last result we can rewrite the Maxwell-Juttner
distribution function (1.19) as

(1.40)

_ B _puUM
f_eXp[kT 1 kT]'

1.3 Boltzmann equation in
gravitational fields

In order to write the number of particles in terms of the one-
particle distribution function we have to know the transforma-
tions of the volume elements d®z and d®p in a Riemannian space.
These transformations read

& d
PV=gd’z = p\/—g'd’a’, ‘/jngp =V-q

3.,/
P (141)
Po
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1.3 GRAVITATIONAL FIELDS 15

where g is the determinant of the metric tensor g, .
Hence in a Riemannian space the one-particle distribution
function is the scalar invariant f(x,p,t) such that

3
dN = f(x,p,t)p’ V=gd’z /=g ?, (1.42)
0

gives the number of particle world lines that crosses the hyper-
surface element represented by the three-dimensional space on
the surface 2° = constant and with momentum four-vector con-
tained in the cell d®p/pg of the mass-shell. In a Minkowski space
vV—g9=1,po =p° and dN = f(x,p,t)d>zd>p.

In the presence of a gravitational field the left-hand side
of the Boltzmann equation should be modified. For that end
we shall write the one-particle distribution function f(x,p,t)
as f(a*(7*),p'(*)) where 7% = 7/m is an affine parameter
along the world line of a particle of rest mass m and 7 denotes
the proper time. The variation of the one-particle distribution
function with respect to the affine parameter 7* reads

) P () _ of der o dp
dr* © Qxzkdrr Optdrr

Now from the equation of motion of a particle in the presence
of a gravitational field

(1.43)

2P dz¥ da?
K, — =0, 1.44
dr? Ndr dr ( )
rewritten as
dp’ ; y dzt
i —I.p"p", where pt = T (1.45)
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it follows that (1.43) becomes

df (@(), ' (7)) _ W OF i Of (1.46)

dr* P g PP opt’

Hence, the left-hand side of the Boltzmann equation is replaced
by

0 0 - 0
p#GTJL — p‘uai;; - FLVp,LLpV a;ia (147)

while in its right-hand side we should replace the invariant el-
ement d°p./p.o by /—gd°p«/pso- Therefore the Boltzmann
equation in the presence of a gravitational field reads

8f i af / Y d3p*
H R L v _ B —
p oxh Pl“’p p 8])1 (f*f f*f) FUdQN o .
(1.48)

Another expression for the Boltzmann equation in gravita-
tional fields is obtained when the mass-shell condition p,p” =

m?2c? is not taken into account. First we note that

f(xt,p') _ df(ar,p*) df(a*,p*) Op°
drr  Ozm + opd Oz’ (1.49)

of (x#,p') _ Of(xt,p") _ Of (", p") Op°
oapt  Opt + op®  opt’ (1.50)

while from the mass-shell condition p,p” = m?c? and (1.45) it
follows that
o _ 1 o _ i

= —ppT" R
Ot pop Pt o op* Do

(1.51)
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Hence by taking into account (1.49) — (1.51) the Boltzmann
equation (1.48) can be rewritten as

Of 1oy O

oxh pP" P 8po :

Px0
(1.52)
The particle four-flow N# and the energy-momentum tensor

TH are defined in terms of the one-particle distribution function
by

- / (Lf' — fof) Fody—g

pll«

d3
Nt = /cpﬂf(xvpvt)\/ _gl, (1-53)
Po

v 1Z d3
™ =/0p“p f(X7p,t)x/—ngp- (1.54)

To obtain the balance equations for the particle four-flow
and energy-momentum tensor we need to know a relationship
that follows from the Liouville theorem in a seven-dimensional
phase space spanned by the coordinates (x#,p?).

In a Riemannian space d*x is a scalar density of weight —1
whose invariant volume element is \/—gd*z = /—¢'d*z’. Let
us consider a seven-dimensional phase space spanned by the
coordinates (z#,p') where the invariant volume element is given

by dF = \/—gd4x\/—g%. In this phase space we introduce a
seven-dimensional momentum p“ and a corresponding seven-
dimensional gradient 9/(0x?) defined by

dzt  dpt ; y
(pA) - (dT* : dT*) = (p/’" _FHVpup ) ’ (155)
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@)-(&g) o

According to the Liouville theorem the density of the points
in the phase space is constant along the trajectories in the
phase space, which means that the density of the points in the
phase space moves like an incompressible fluid. By identifying
—g/po as the density of the points in the phase space spanned
by (x#, p®) the Liouville theorem implies that the divergence of
—gp? /po must vanish, i.e.

9 (=9 a 9 (—g, 0 (9.
— (= = ([ —Zpn N
31’A<pop> 317“(pop +8p’ po PP

(1.57)

The balance equation for the particle four-flow is obtained
from the multiplication of the Boltzmann equation (1.48) by ¢
and the integration of the resulting equation over the invariant

volume element dF = ,/—gd4x\/—gdp3—0p, yielding
of i of 9\ 3,4
F— T phlp"—— —= | d°pd
/c{p O wP P 5‘p’} (po pa-xT
9 -9
= = eptrf( =2
/{ax“ [Cp I <P0>}

0 —g> ; } 3. 4
—— |ef | —= | I _ptp”| pd’pd*x =0, (1.58
op? [ / (po wlP } P (1.58)

thanks to (1.57) and to the vanishing of the right-hand side of
the Boltzmann equation for all summational invariant. The un-
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1.3 GRAVITATIONAL FIELDS 19

derlined term vanishes, since the volume integral in the momen-
tum space can be transformed into an integral over an infinitely
far surface where the one-particle distribution function tends to
zero. The remaining integral above can be rewritten as

Jais s ()]
/8x/‘{ [/Cpufr H
[ (s o]
PSD [ s
= [[forrviE] v
_ / NH.,/=gdia =0, (1.59)

where the following relationships were used

dlny/—-g _, . 0Ar " »
T =T, At = D +1I%,, A, (1.60)

Now by considering that the integration over \/—gd*z is arbi-
trary, the integrand of the above equation must vanish and we
find the balance equation for the particle four flow, namely

N*., =0. (1.61)

)
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We shall determine the energy-momentum tensor balance
equation in two steps, in the first one the time component of
the momentum four-vector p* is considered and in the other its
spatial components. Let us begin by multiplying the Boltzmann
(1.48) with p°(—g/po)d>pd*x and the integration of the resulting
equation

0 ; 0
/cpo{pua;;_rfl«l/pﬂpuaz‘fi} <_pgo) dgpd4l‘
d

9 0 ( 9) ; } 3. 4
- - |c —= | T p"p"|d°pd*z =0. (1.62
/apz[pf oo ) D P D (1.62)

If we consider that the underlined term vanishes, use (1.51) and
the fact that the integration over \/—gd*x is arbitrary so that
the integrand of the remaining equation is zero, we get from the
above equation that

oTOH
OxH

Following the same methodology for the spatial components
of the momentum four-vector and multiplying the Boltzmann

+ 1Y, T +1°,,T" =T%  =0. (1.63)
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equation (1.48) with p(—g/po)d®pd*z and integrating the re-
sulting equation we get

folpit st} )
:/{8iu U pp”f\ﬁ }

8111 V- ; d?
T cz?’p“f\/—gl
Po

8 7
+ [ ef yp“p”F V=gd'z
opi 1

9 0 3, 74 _
—/ oy {cp f< po)rwp P }d pd*z = 0. (1.64)

The underlined term above vanishes and note that z* and p
are independent variables. The above equation leads to

o1
oxH

+ IV, T+ 1, T" =T",, = 0. (1.65)

Hence by collecting the two above results (1.63) and (1.65), the
balance equation for the energy-momentum tensor is

T, = 0. (1.66)

Previously it was pointed out that the right-hand side of
Boltzmann’s equation (1.48) vanishes identically at equilibrium
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when the one-particle distribution function is given by (1.19)
or (1.40), which is the Maxwell-Juttner distribution function.
We shall determine the restrictions dictated by the left-hand
side of (1.48) when the one-particle distribution function is the
Maxwell-Jiittner one. If we insert (1.40) into the left-hand side
of the the Boltzmann equation (1.48) we get the momentum
four-vector polynomial equation

ve, [] = Ly ) [Un Ol _
vo. i) — gy {[kT N U Al

The above equation is valid for all values of p* so that the co-
efficients of the polynomial equation must vanish, yielding

LA Uy Ul _
0, [kT} —0, {kT] ) n [kT} = 0. (1.68)

Here it was assumed that the particles have non-vanishing rest
mass.

Let us first analyze (1.68)2 which is the so-called Killing
equation and U, /kT is a (timelike) Killing vector. We rewrite
the Killing equation as

1
U + Upyp — T (UuauT + UuauT) =0, (1.69)

and perform the projections with respect to UFUY and U",
yielding

. . 2
T=U"9,T=0, and U, =U"U,, = %%T, (1.70)
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respectively. The interpretation of equations (1.70) is: in equi-
librium a gas must have a stationary temperature and its accel-
eration must be counterbalanced by a spatial temperature gra-
dient. Note that the condition (1.70)5 is not compatible with a
geodesic fluid motion which would require U* = 0.

We consider a fluid at rest where the spatial components of
the four-velocity vanish so that (see (2.6))

(U") = (\/;Rﬁ) . (1.71)

The existence of a time-like Killing vector corresponds to a sta-
tionary metric, where the acceleration term becomes

. [
o = ooy, =00 (22 4 pig 0
’ 0z9
2
= gc—f‘go = —c?¢g" 9, In \/g0o. (1.72)
00

Here we have used (2.10) and neglected all time derivatives,
since we are dealing with a stationary metric. Now from (1.70)
and (1.72) we have

29, [ (G T)] = 0, (1.73)
which implies Tolman’s law [5, 6]
V900 T = constant . (1.74)

From Tolman’s law and the equilibrium condition (1.68);
follows Klein’s law [7]

V/goo pt = constant . (1.75)
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We note that both laws were obtained from the equilibrium
conditions applied to the Maxwell-Jittner distribution function,
but they can also be derived on purely thermodynamics grounds
as in Tolman and Klein’s original papers.

Appendix

The asymptotic expansion of K, ({) for large values of ¢, i.e.
¢ > 1, is given by (see [8, 9])

T 1 an? -1  (4n? —1)(4n>-9)
KO =2~
O =y/cz IE N TTTSE
(4n? — 1)(4n? — 9)(4n? — 25)
31(8¢)3
while for small values of ¢, i.e. ( < 1, it reads [8, 9]

+} (1.76)

M\f\

)7L+2k:

Q) = 3 DS Y

k=0 k! (%)n "

« [mg - %w(k +1) - %z/J(n tkeD] )

Above the function 1 (n) is defined in terms of Euler’s constant
v =10.577215664... by

P(n+1) = Z

P(1) = —. (1.78)

?T'\»—l
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CHAPTER 2

FIRST
POST-NEWTONIAN
APPROXIMATION

In this chapter the first post-Newtonian approximation of Ein-
stein’s field equations is derived following the Chandrasekhar
and Weinberg methods and the corresponding Poisson equations
and Eulerian hydrodynamic equations are determined. The
first post-Newtonian approximation of the Brans-Dicke theory is
analysed and the hydrodynamic equations for non-perfect fluids
are obtained. The gravitational potentials and conservation laws
in the first post-Newtonian approximation are also discussed.

27
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28 CHAPTER 2. FIRST POST-NEWTONIAN

2.1 Preliminaries

We start with the general expression for the line element ds in
terms of the metric tensor g,,,,, namely
ds® = 2dr? = Guvdxtdx”

= goo(dz®)? + 2go;da’dx’ + gijdasidxj, (2.1)

where 7 is the proper time and dz® = cdt.
If we introduce the spatial metric tensor

90i90; (2.2)

Yij = —gi; +
Y Y goo

the line element (2.1) can be rewritten as
ds* = 2dr* = goo(cdt)? + 2go;da’dx’
+ <90ng3 - ’Yij) dl’idl‘j. (23)
goo

From the above expression we can derive a relationship between
the time ¢ and the proper time 7 differentials through the divi-
sion of (2.3) by (cdt)? and the introduction of the velocity and
speed defined by

S dat dat dad
Vi= VeV (24)

Hence it follows that
dt 1

,-Y:77 .
dr i 2
o (14 ) 2

(2.5)
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Note that in a Minkowski space-time gog = 1, go; = 0 and v =
1/4/1 — V2/c? reduces to the Lorentz factor of special relativity.

The contravariant components of the four-velocity U =
dz* /dT are given as functions of the velocity by

da® dxt .
Yy — | 2 — - 1
(") ( =6 =V ) 7 (2.6)
while the covariant components read
(U) = (g U") =7 (cgoo + goi V', cgoi + gi;V7) . (2.7)

It is straightforward to obtain from (2.6) and (2.7) that U*U, =
2
c.

A macroscopic description of a relativistic fluid is based
on the balance equations of particle four-flow N* and energy-

momentum tensor TH", namely

AN
Nty = o + TN =0, (2.8)
THY
™., = 0 FTH AT 4TV 3T =0,  (2.9)

 Oxv

where the semicolon denotes the covariant derivative and I'?,,,,
are the Christoffel symbols

e, =9 (3gw 4+ 99 _ 3g,w> . (2.10)

2 oxv Oxh ox™

A perfect fluid is characterized by the absence of dissipative
effects like viscous stresses and heat conduction. For a perfect
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fluid the particle four-flow and the energy-momentum tensor are
represented as
Uryv

N# =nU", T = (e + p) >

— pgh". (2.11)

Here n denotes the particle number density of the relativis-
tic fluid, p and € its pressure and energy density, respectively.
The energy density has two parts € = pc?(1 + £/c?) one as-
sociated with the mass density p = mn and another to the
internal energy density pe. The specific internal energy for a
non-relativistic perfect fluid is given by ¢ = ¢, T, where ¢, is
the specific heat at constant volume and T the absolute tem-
perature. For monatomic gases ¢, = 3k/2m with k denoting
Boltzmann constant and m the rest mass of a fluid particle.
The connection between the space-time geometry and the
matter content inside it is governed by Einstein’s field equations

1 8tG
R,U.l/ - iRg;u/ = _CTTHV7 (212)

where G = 6.674x 107! m?/(s%kg) is the universal gravitational
constant.
The Ricci tensor
o7y 07y,
Oxv ox7™

RIJ«V == RTHTV == + FO-/,LTFTI_/O' - FU,U,VFTO'T7
(2.13)
is a contraction of the Riemann curvature tensor (or Riemann—

Christoffel tensor)
o) )

T —
s = Oxv Ox°

+T7 0 e =T 6, (2.14)
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and a contraction of the Ricci tensor R = g"” R, is the scalar
curvature (or Ricci scalar).

An alternative form of the Ricci tensor is given in terms of
second derivatives of the metric tensor

9" <3Qg,w 295r  0?gou 829,n)

R = %5 -

dxox™ | Oxrazv  OxraxT  OxoxV
+97 Gy (T Ty — T, 17 ,7) . (2.15)

Equivalently Einstein’s field equations may be written as

8rG 1, . 8rG
R;w = *CT <T,uu - iT crguu) = 77‘I}LV7 (216)

where T, = g?"T,, is the trace of the energy-momentum ten-
sor.

2.2 The first post-Newtonian approx-
imation

The post-Newtonian theory is a method of successive approxi-
mations in 1/c? powers for the determination of the components
of the metric tensor from Einstein’s field equations which was
proposed by Einstein, Infeld and Hoffmann [1] in 1938. In this
method Einstein’s field equations (2.16) of O(¢™") — order can
be written as

n 8nG =2

R;uj = —CT pu- (217)
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Hence from the knowledge of the energy-momentum tensor in
the (n—2)th-order the Ricci tensor and consequently the metric
tensor in the nth-order can be determined.

From the knowledge of the metric tensor components in a
Minkowski space-time goo = 1, gi; = —6;; and go; = 0 we can
split the contravariant and covariant components of the metric
tensor as

goo =1+ doo + doo + Joo + O(c™®), (2.18)
6% =1+ 6% + 6% + g + O(c"), (2.19)
Gij = —0ij+3Gij +3i;+0(c™ %), goi = Goi+Goi+O(c™7), (2.20)
g9 = —b,4g7+gT+O(), ¢ = g +O(cT), (2.21)

where ¢, and gn’“’ denote the metric tensor components of order
O(e™™).

The relationships between the covariant and contravariant
components of the metric tensor can be found from ¢g"?g,, = ¢,
which implies that

9% 900 = 9°°g00 + 9" g0i = 1, (2.22)
9% gic = 9% gi0 + 9% gi; = 0, (2.23)
gnga _ gZOgjo _'_glkgjk = 5; (224)
The above equations with the representations (2.18) — (2.21)

become
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3 .
doi — g% 6+ O(c™*) =0, (2.26)
6% — Sikdjx — Ojrg™ + O(c™) = %, (2.27)
2 2 3 )
so that we can infer that: ¢%0 = —goo, g7 = ﬁéij and g% = Jo;.

On the basis of (2.18) — (2.21) the components of the Chris-
toffel symbols (2.10) can be split in orders O (¢™") as

3 5
(i) % =T + % + O(c™7), where

2 3 3
%0 :i@ [0 :iaﬁoo ﬂ&gzoo _970139200.
0= 9. ot ’ 0= 9. ot 2c Ot 2¢ Oxt’
(2.28)

2 4
(11) POOi = FOOZ‘ + FOOi + O(C_6)7 where

2
o ‘:139200 10 .:}89400 9 9goo
09 gat 079 ga 2 Oz’

(2.29)

3
(111) FOZ’]’ = 1"0”_ + 0(075)7 where

: 1 (0goi  Odo; 104
0 _ - Z A I
T 2 <5xj + oxt ¢ Ot )’ (2.30)

. 2 . 4 .
(iV) oo =100 + 100 + 0(076), where

2. .
%ioo ~19goo Y, 19doo g7 ddoo 1 0goi.

T2 9xt 00 9 9y 2 O0z7 ¢ Ot
(2.31)
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(v) To; =T, + O(c™?), where

3. 1(1 8&" 850' a930‘
07 2 (c ot + oxd ozt )’ (2:32)

2

(vi) T4 =T, + O(c™*), where

2. 1 (03 04 dd;
T = ( Yig y C9ik _ T9ik ) (2.33)

2\ ok " Oad oz’

The slip of the Ricci tensor in orders O (¢=™) is based on
its definition (2.13) or (2.15) and on the splits of the Christoffel
symbols or of the metric tensor, so that we can write

Rog = éoo + éoo + O(C_G), (2.34)
Rij = ffij + ]4%2']' + 0(676), (2.35)
Ro; = ]3‘—{01' + fsfoi + 0(677). (2.36)

Let us determine explicitly the components of the Ricci ten-
sor in terms of the derivatives of the metric tensor. We begin
with the time component of the Ricci tensor that can be written
thanks to (2.13) as

15) I YRG) e
0x0 o't
+1%0,17 0i = T0I 05 — Tool 1, (2.37)

Ry =
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so that its second and fourth order are given by

2 3 4
2 8Fi00 A 1 OFLOZ 6111‘00 ? i 2 0 . i . J
Roo——W7 0=""7" " + 1001 0i — Mool ;-
(2.38)
Now by using the above relationships for the Christoffel symbols
we get
2 1 92
Roo = —§V 900, (2.39)
2 ..
B _}vzé 1 3G 198G | 97 9goo
00 27 70792 92 T cotort T 2 9aida

19goo ddoo | 10G;; dgoo 1 Dgoo Dgij (2.40)
4 9zt Oxt 4 Oxf Oxt 2 Oxt OxI '

In the same way the spatial components of the Ricci tensor

read
a0 Al ark 1 1 624
Rij = 1.0 + l.k — Y o= —*VQ.&U + = _900_
OxJ oxJ oxk 2 2 0x'0xI
1 g 1 0%k 1 9%gj (2.41)
2 0zi0xd  20xi0xk 2 0x'0xF’ '
while its space-time components become
2 3 )
3 1 8I‘Jij 8Fj0i 1 23 10 éij
0= — — — = ——V~“gp; + — .
SV oxJ 2 Joi + 2¢ Otoxd
1 9% 1 9%y,
Ikk 9oy (2.42)

2 0t0xt | 2010
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For the determination of the components of the metric tensor
from Einstein’s field equations (2.17) one has to known how the
energy-momentum tensor is split in orders of 1/¢"™. For that
end we note that in the non-relativistic case the contravariant
components of the four-velocity (2.6) reduce to (U") = (¢, V;),
so that the components of the energy-momentum tensor (2.11)
become T = pc?, TV = pV;V; + pd;; and TV = pcV;. Hence
on the basis of the expression of 7% we may infer that 7% and
T are of orders O(c™2) and O(c™1), respectively, and we may
write

700 — 700 4 00 O(c™), (2.43)

T = T LT 4 O(c), (2.44)

70 — 0y 0 4 O(c™?). (2.45)

Hence we can split components of the tensor ¥, = T, —
%TUJQW as

TO0 = §00 4 500 4 04, (2.46)

i — g 4 g O(c™), (2.47)

TV = %01' + %m’ +0(c™). (2.48)

The trace of the energy-momentum tensor up to 1/c® order
is given by

. .. 0 0 2 2
T, = gooT” + 290/ T + gi; T = T + GooT™ + T - T*",
(2.49)
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2.3 EINSTEIN’S FIELD EQUATIONS SOLUTIONS 37
so that in the first orders the tensor components of T,, =
GpoGur (T°7 —T" 977 /2) read

1
’Lj72

1° 1
TOQ() = TOO = 5/)02, %

o 1
5 Tooéij = 5/)6251']‘, (250)

1 1 2 1 2 2 . , O
Toi = —T% = —pcVi, Top = 3 (TOO + T 4+ 2g00T00> .(2.51)

In the non-relativistic case the components of the particle
four-flow are N° = nc and N? = nV; so that we can split the
time and space components of the particle four-flow as

0 2 ) 1o 3. =
N =N+ N+ 0O(c™), N'=N"+ N+ O(c™?).(2.52)

We proceed to determine the components of the metric ten-
sor from Einstein’s field equations (2.17) by following two dif-
ferent methods, one will be based on the book by Weinberg [2]
and the other on the paper by Chandrasekhar [3].

2.3 The solution of Einstein’s field
equations

2.3.1 The Weinberg method

4 2
The expressions for the components of the Ricci tensor Rgg, R;;

and 13%01», given by (2.40), (2.41) and (2.42), respectively, can be
simplified through the use of the so-called harmonic coordinate
conditions, which refer to the gauge conditions g**I'7,, = 0.
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From these gauge conditions it follows that g"*T",,, and g"T",,
up to order O (¢~3) become

1 0goo 1 dgrx  Igor _o 1 doo n Odix 1 O ~0
2c Ot 2c Ot ozk ’ '

2 0z OzF 2 Ox?
(2.53)
The two above relationships were introduced by Einstein, Infeld
and Hoffmann [1] in 1938 and referred as coordinate conditions.
From the differentiation of the expressions (2.53) with re-
spect to the space and time coordinates it follows that

1 9%Goo 1 PGer %Gk

— -+ — - — - = 2.54
2c OtOxt  2c OtOxt  Oxkox? ’ (2.54)
1 9% 1 0% 9?4
L 9900 |, L O"Gkk OG0k _ 7 (2.55)
2¢c Ot? 2c Ot? oxkot
1 9% 023 1 0%,
= 9900 ik - T Ikk _ (2.56)
2 0xt0xs  Oxk0xd 2 0x'0xI
192§ 02 10%g
goo 9ik 9kk (2.57)

2070t | Okt 20wt

Now the elimination of (02goo/02'0t) from (2.57) by the use of
(2.54) leads to

1 PG 190G *gox
cOxkot  cOxiOt  Oxioxk

The sum of (2.56) with the same equation where the indexes are
interchanged i <+ j yields
Pgoo | P | P Pk

=0. (2.58)
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With the above results it is possible to reduce the expressions
for the components of the Ricci tensor. We begin with the time
component (2.40) which by the use of (2.53)3 and (2.55) reduces
to

2
4 1 1 8400 g7 %*Goo 1 0doo Igoo
Ron = —=V2§ I Z i R - —.
00 2 900+262 ot2 + 2 Oxi0xd 2 Oxt Oxt

(2.60)

Furthermore, the spatial components of the Ricci tensor (2.41)
and space-time components (2.42) become

2 3
Rij=—=5V2Gi5, R = —5V{os, (2.61)

thanks to (2.59) and (2.58), respectively.

Now we are ready to obtain the expressions for the metric
tensor components in terms of gravitational potentials. We be-
gin by introducing the Poisson equation V2¢ = 47Gp, which
relates the Newtonian gravitational potential ¢ with the mass
density p and universal gravitational constant G.

Let us analyze the time component of Einstein’s field equa-
tions (2.17) which together with the Ricci tensor (2.39), the
energy-momentum tensor component (2.50); and the Poisson
equation lead to the following relationship

1 4 2
: ; 3G = - Wfpz——vf. (2.62)
C C

Here we may identify the time component of the metric tensor
with the Newtonian gravitational potential oo = 2¢/c?. The
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solution of the Poisson equation for a Newtonian gravitational
potential that vanishes at infinity is given by

b(x,t) —G/ = X/|d3 ! (2.63)

where the integration is extended over the entire volume V oc-
cupied by the fluid and d®z’ = dadzhdr} denotes a volume
element.

The spatial components of Einstein’s field equations (2.17)
together with the Ricci tensor (2.61);, the energy-momentum
tensor components (2.50)2 and the Poisson equation imply that

2 0 4
R" = —*VQQW - _%Sij = ﬂ—Gp(Sl] - Vc ¢5U7 (2 64)

e
so that the spatial components of the metric tensor are also
identified with the Newtonian gravitational potential, namely
2 2
9i; = (2¢/c¢*)6i;

The identification of the space-time components of the met-
ric tensor follows the same methodology by using FEinstein’s
field equation (2.17), the Ricci tensor (2.61)2 and the energy-
momentum tensor components (2.51);:

871G 1 G

Rzo = —*VQ‘(]OZ = —CTTOi = CTPCVi- (2'65)

Here we identify the space-time component of the metric tensor
with the vector gravitational potential £; through

Joi = —%, so that V3¢ = 167G pV;. (2.66)
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Furthermore, the solution of (2.65) for the vector gravitational
potential & which vanishes at inﬁnity is given by

&i(x —4G / )d3 ! (2.67)
|X - X’I
The last identification is the time component of the metric
tensor of order O(c™*). Here we use Einstein’s field equations
(2.17) together with the Ricci tensor (2.60) and the energy-
momentum tensor (2.51)s to obtain

24 ]- a2¢ 2
Roo = ﬁv Joo+ =5 | gz — 20V 0 +2 (Vo)?
2 4 2 2
= _%%o = —%G (TOO +T" + 4¢>p> ,(2.68)
C C

thanks to the followmg relationships joo = 2¢/c?, ” = —glj =
—(2¢/c?)é;; and T00 = pc?. Now by considering the Poisson
equation and the identity V2¢? = 2¢V2¢ + 2 (V¢)® the above
equation reduces to

1 *\  4nG (200 2.\ L 16
2V (goo _20) a (T +T" )+ TR (2.69)

From the above equation we may identify goo with another scalar

gravitational potential 1) through the relation

ot
(2.70)

2 2 2 200 | i ¢
oozcj(w—ﬂf)), so that V2 =4xG (T +T" ) + —=.
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Since ¢ and goo vanish at infinity, the solution of (2.69) is given
by

V(x, 1) = —/V {G (T200 () + T (x',t)>
1 82q§(x’,t)] B!

(2.71)

A7 Ot2 |x — x/|

Once the components of the metric tensor as functions of
gravitational potentials are known we can investigate the re-
strictions imposed by the harmonic coordinate conditions (2.53).
While the first condition imposes that the gravitational poten-
tials must obey the relation

1 [, 00  0&]|
= {4& + W} —0, (2.72)

the second one is identically zero.

It is interesting to note that the Laplacian of (2.72) together
with the Newtonian Poisson equation VZ¢ = 47Gp and (2.66)
leads to

C

1 [ oV 0OV3 167G [0p  0pV;
0{4 ot ow } z L%* ale’ (2.73)

o2
where its right-hand side represents the Newtonian continuity
equation, which is valid at O (0*2) post-Newtonian level.

2.3.2 Explicit expressions for the components

Here we shall give the final expressions for the components of the
metric tensor, Christoffel symbols, four-velocity, particle four-
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flow and energy-momentum tensor in the first post-Newtonian
approximation with respect to gravitational potentials deter-
mined in the Weinberg’s method.

Metric tensor and Christoffel symbols components

The expressions for the components of the metric tensor in the
first post-Newtonian approximation read

2¢

goo =1+ +—(¢ +9) +0(c°),  (2.74)
g = % P2 -0 HOE®), )
g0i = 9" = —;3&- +0(c™), (2.76)
gij = — (1 — if) Sij +O(c™), (2.77)
g = — (1 + if) §ij +0(c™?). (2.78)

The substitution of the components of the metric tensor
(2.74) — (2.77) into the Christoffel symbols (2.28) — (2.33) lead
to the following expressions

o 100 ;ol(aw 0

00 = 50 00 = 75
2 106 4 1 o
0 L — 0 C—
Toi = c2 Oxt’ Toi = ct Oxt’ (2:80)
> 1 (06 0§ 09
0. — J 49 - 2.81
" 2¢3 (3xﬂ * ox? * Bt(S” ’ (281)
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2 1 ¢ . 1/ 06> 0 0¢;
Iy = ¢ FZOOZC4<2 ¢ + v + g),(2.82)

2 oz’ ort  oxt Ot
i L (96 0§ 09
Foj = 2¢3 <6a:j oz’ 2 ot 5”) ’ (283)

5 — 5, — 22
2\ Oxt Oxd " oxk

zrijk. _ 1 (a¢ ) 09 5., — 29 5¢j> . (2.84)

Four-velocity components

In order to determine the components of the four-velocity given
by (U*) = (ve,vV?) in first post-Newtonian approximation we
note that from (2.1) and (2.74) — (2.77) we can write

dr\> 1 2 | o
(dt) =2 =9 + Egmvl + cjgz‘jVZV]

S (26 V) 4 2 (W E oV -GV (289)

If we use the approximation 1/v/1+x ~ 1 — 2/2 + 32%/8 we
obtain from the above equation the following expression for ~:

2 4 2 2
’y=1+612(v—¢>+1<3v—5¢v +2—1/J+§,‘Vi).

2 ct 8 2
(2.86)
Hence the expressions for the contravariant and covariant four-
velocity components up to order O(c™*) read

1/V? 1 /3V%  5pV2
U0=C|:1+C2<—¢)+<— 0

2 ct\ 8 2
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¢° ]
+&—vren)] (287)
. 1 /v 1 /3V%  5pV2
vi=vilte (o) s (s %
¢’ '
-t 5%) : (2.88)
1 /V? - 1 /3v4
UOZC{”@(zW) +c4(8
3¢V2 ¢2
— +2+¢)], (2.80)
B 1 (V2 &
Ui=-V; {1+C2 <2—3¢>} -5 (2.90)

Particle four-flow and energy-momentum tensor com-
ponents

The particle four-flow components (2.52) can now be determined
from the knowledge of the four-vector components (2.87) and
(2.88). Up to order O (¢~2) the components read

0 2 V2

N=ne, N°= % (2 - (;5) , (2.91)
1 3 Vz V2

Ni=nV;, Ni= ”CZ (2 - ¢> L (292)

In the same way it follows the energy-momentum tensor com-
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ponents (2.43) — (2.45) for a perfect fluid, namely

0 2 1

T =pc®, T =p(V?+e—2¢), T =pcV;, (2.93)

_ v
c

3. 2.
Tlo <V2 - 2@5 +ée+ z) > TY = szVJ —|—p5¢j, (294)

T TAY 2
T = <V2 ~ 2% +e+ i) + %&j, (2.95)

4
T% = C% [VZ <V2+s+i—6¢) — 2e¢p + 26,V + 2¢° —2¢] .
(2.96)
Here we note that for the correspondence of (2.93) — (2.95) with
the equations (9.8.4) — (9.8.6) and (9.8.11) — (9.8.13) of Wein-
berg [2] one has to introduce the speed of light ¢ and identify
the mass density p of that work with € = pc?(1 + ¢/c?) and the
vector potential (; with &;.
Furthermore the expressions for the tensor ¥,, = T, —
9 T% 5 /2 read

2
_ e TP ) S
Too— 9 +p<V +¢+2+2,0)+02|:V

+V? (a+i—2¢> +6 <s+3i> +¢2+¢], (2.97)
2 1

{Zij = %613 +p |:‘/1,V] + 5 (5 — % — 2(;5) 57j:| R (298)

3
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By considering the expressions for the energy-momentum
tensor components, the Poisson equation (2.70) for the scalar
gravitational potential 1) can be written as

€ 3p> 0%¢

V2 = 87Gp (V2 —d+5+ 2 + 5 (2.100)

thanks to (2.93) and (2.94).

2.3.3 The Chandrasekhar method

Here we shall adopt the Chandrasekhar notation for the gravi-
tational potentials and later we will identify the connection of
these potentials with those obtained from the Weinberg method
of the last section.

We begin to investigate the time component of Einstein’s
field equations (2.17) corresponding to the Ricci tensor (2.39)
and energy-momentum tensor (2.50);, namely

2 0 2

Roo = *%V29200 = *8:746: Too = 747rc§p = VCQU~ (2.101)
Here the Newtonian gravitational potential has an opposite sign
with respect to the one of the last section, i.e., U = —¢ and
the Poisson equation in this case is written as V2U = —47wGp.
From the above equation it follows that the time component of
the metric tensor is oo = —2U/c2.

The spatial component of Einstein’s field equations (2.17)
for the Ricci tensor (2.41) and energy-momentum tensor (2.50)
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reads

L e 1 Fde L P
2 0xt0xd 2 0x'0xd 2 0xidxF

1 9% 871G o 47Gp ViU

2050k A Tij = _Téij = 6725” (2.102)

2 1 92
Rij = =5V gi +

It is easy to verify that this equation is satisfied for f}ij =
—(2U/c?)6;; together with dog = —2U/c?.

Up to now the only difference in the expressions for the com-
ponents of the metric tensor in the two descriptions is the op-
posite sign in the Newtonian gravitational potential. A more
subtle difference will appear when the others components of
the metric tensor will be determined, since the gauge condition
adopted by Chandrasekhar is

1 Odrr  Odoi
— = = 2.1
2¢ Ot ox* (2.103)

Let us analyze the space-time component of Einstein’s field
equations (2.17) together with the Ricci tensor (2.42) and the
energy-momentum tensor (2.51), namely

3 1 1 0%G; 1 %G 1 9%do;
Ro=—=V%pi+ —-—-L - — 22—~
0 goi + 2¢ Ot0xd  2¢ 0tdx* 2 0x'0xd
_ 1 23 1 62.51']' 1 8292kk _ 1 23
- QV 9oi + 2¢0tdxd  4de Otdxt 2V goi
1 9%U 871G 1 G
23 dtdrt A Foi = ct pevi (2.104)
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thanks to the gauge condition (2.103) and the expressions for
the components of the metric tensor 9200 = =20/ c? and f}ij =

—(2U/c*)8;;. Now we define go; in terms of a vector U; and a
scalar x gravitational potential through the expression

, 1 1 9%
goi = 0*3 <4U1 - 587589& s (2.105)

where the gravitational potentials satisfy the equations
V2U; = —4nGpV;,  Vx = —2U. (2.106)

Lastly we get that the time component of Einstein’s field
equations (2.17) together with the Ricci tensor (2.40) and the
energy-momentum tensor (2.51) lead to

2 ..
4 Loos 1 5 180 | g7 9Goo
2c¢2 Ot2 c Otox! 2 OxioxI
19go0 OJoo . 104, 0doo 1 doo 0Js;

4 8xi oz’ + 1 ozt Ozt 2 Ozt OxJ

- —7V2900 - [UVQU —(VU)?] = SWG 3
_ G (TUO + T 4pU) . (2.107)
C

Here we have used the gauge condition (2.103) and the com-
2

ponents of the metric tensor goo = —2U/c? and ¢ = —§;; =
(2U/02)(5”
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Equation (2.107) can be simplified by considering again the
following identity V2U? = 2UV2U + 2(VU)? and the Poisson
equation V2U = —47Gp, yielding

1 U? _AnG 2 i
V2 (—Lao+ L) = 227G (oo L i) (2.108)
2 ct ct

From the above equation we identify goo with another scalar
gravitational potential ® such that

Joo = (U2 —2). (2.109)

The new scalar gravitational potential satisfies the equation

Vi = —27G (TOO T”) = —47Gpyp. (2.110)

where ¢ represents the following abbreviation introduced in [3].
2 e 3p

2.111

(V +U+ - 5 T 2p) ( )

Here we can also investigate the restrictions imposed by the
gauge condition (2.103) on the gravitational potentials. If we in-
sert (2.105) and g;; = —(2U/c?)8;; into (2.103) and use (2.106),
we get

30U 1 ( 0U; 130V%x oU AU,
0= <4axz 2 ot )_ (&s+axi>'(2'112)

This equation leads also to the Newtonian continuity equation at
O (0*2) post-Newtonian level. Indeed, by taking the Laplacian
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of (2.112) and using the Poisson equation V2U = —47Gp and
(2.106); we get

1_,(/0U 0U; AnG [0p = OpV;

CQV <8t +8l‘i> 2 [8t+ 89@1']0' (2.113)
As it was pointed out the correspondence of the Newtonian

gravitational potentials in the two methods is given by ¢ = —U,

while other relationships between the gravitational potentials

follow from the comparison of (2.66) with (2.105) and (2.70)

with (2.109), yielding

1 0%y
S = S e

= -2, (2.114)
For the determination of the components of the metric ten-
sor, Christoffel symbols, four-velocity, particle four-vector and
energy momentum tensor in terms of the gravitational potentials
of Chandrasekhar’s method it is enough to use the identifications
¢ = —U and (2.114) in the expressions (2.74) — (2.99). Here we
collect the Poisson equations in the Chandrasekhar method:

V2U = —4nGp, V2® = —4nGp (V2 +U+S 4 3’1’) ,(2.115)

2 2
2

0°U
M0, = -1 4+ = (2.11
V=11, 6mGpV; + atﬁ'x“( 6)

where we have introduced the vector gravitational potential
I; = =¢&.
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Note that the gauge condition (2.112) can be also expressed
as

(2.117)

f (U 00 0l
ot oxt) ot Odxt

2.4 Hydrodynamic equations for an
Eulerian fluid

The first post-Newtonian approximation for the Eulerian hydro-
dynamic equations are obtained from the balance laws for the
particle four-flow (2.8) and energy-momentum tensor (2.9) by
considering the expressions for the particle four-flow and energy-
momentum tensor given by (2.91) — (2.96), which refer to a
perfect fluid where dissipative effects are neglected.

We begin by writing the particle four-flow balance law (2.8)
up to the order O(c~*), namely

0 1 2 3
aNO aNz aNO aNz 3 o 3 0 0
550 T ot T a0 T g T <F 00+Fﬂoj>N

2 2 1
T (Foio + Fﬂij) Ni=0. (2.118)
From the underlined terms of (2.118) together with (2.91); and

(2.92)1 we get the Newtonian continuity equation

on ~onV; dp | OpVi
ot + oxrt 0 o ot + oxt 0 (2.119)
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for the particle number density n and for the mass density p =
mn, where m denotes the rest mass of a fluid particle.

Now from the full equation (2.118) together with (2.91) and
(2.92) it follows that

o oV 1[0 Vj_(b
ot ozt 8t

8@ [nv <V2 ¢>} Zf ;M } —0. (2.120)

Here we note that the two last terms of the above equation can
be written as

_2{ %—F V@(b} _{8n¢+6nV¢

ot Oxt ot ozt
[ o 2 fono onvio) , o s
¢[8t * ale}_ { ot | ox }+O(C ) (2121)

thanks to the continuity equation (2.119). Hence, (2.120) with
(2.121) and p = mn reduces to

dp.  Op.V;
ot oxt

which is a continuity equation for the mass density p. in the
first post-Newtonian approximation

Py =p [1 + c% (Vz - 3¢)] (2.123)

The notation for the mass density p, was introduced by Fock
[6] and (2.122) corresponds to eq. (117) of Chandrasekhar [3].

=0, (2.122)
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The time component of the energy-momentum tensor bal-
ance law (2.9) up to the order O(c3) is

0 1 2 3
o1 N oT0% N o190 N o1
0z0 ozt 0x0 oz’

3 3 0
+ <2F000 + FJOj) T
2 2 1
+ (3F°io + Fﬂij) T% = 0. (2.124)

The underlined terms of (2.124) together with (2.93) imply again
in the continuity equation for the mass-energy density (2.119)s,
while the full equation (2.124) together with (2.93) and (2.94)
leads to

0 1 0 1
+e—2¢+ ﬁ)” = C—’;%. (2.125)

If we identify ¢ = pc?(1 + ¢/c?) with p the above expression
corresponds to eq. (9.8.14) of Weinberg [2]. On the other hand
by introducing the mass-energy density o defined by

o—p{1+012<V2+6—2¢+i>], (2.126)

the mass-energy density hydrodynamic equation (2.125) can be
written as

ot o = 3 (2.127)

7_‘_7

8a+8UVi_1 dp  Op
Pat "ot )
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which corresponds to equation (64) of Chandrasekhar [3].
Up to order O(c™*) the equation for the spatial components
of the energy-momentum tensor (2.9) read

1 3
aTOi 8sz 2 0 aTOi aTz] 4
o0t T + o+ o + T T

2 . . 2 2
+ Kr%j + T jl> ik + ri jk} T 4 TipeT°

3 . 3 3 1
+ [2#0]» + (F%O + rkOk) 54 TY = 0. (2.128)

The underlined terms in the above equation together with (2.93)
and (2.94) leads to the Newtonian momentum density hydrody-
namic equation

pVi | 9(pViVj +pdij) | 09
ot - 0x; + Pori

Furthermore, from the full expression of (2.128) with (2.93) —

(2.95) we get
0 1
at{”ViP“(VQ _2“”};)]}

11+ 2<V2+5 2¢+p>]
c P

|
Lb{r ) crifo oo
|

= 0. (2.129)

pO po | p

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



56 CHAPTER 2. FIRST POST-NEWTONIAN

P 0&; _ 853‘ P 2 B % B
Jrcz‘/j(axj oz + 2 (QV +e 2(,25) Dy =0, (2.130)

which without the term e corresponds to equation (9.8.15) of
Weinberg [2]. This equation can be rewritten as

ooV n OaV;V; 0 1 2¢
ot oxJ &TZ

02
(%[1—1— (V2—¢+€+ )} o

8 c? Ozt
4 d &G p 9%
S <¢V > Vfaxz 0, (2.131)

by using the definition (2.126) of o, introducing the material
time derivative d/dt = 8/0t + V;0/0z" and employing the New-
tonian continuity equation (2.119)5 and the Newtonian momen-
tum hydrodynamic equation (2.129) in the terms of order 1/c%.
The expression (2.131) corresponds to equation (68) of Chan-
drasekhar [3] if we identify e with IT and Chandrasekhar’s grav-
itational potentials U, ®, U; and x with
- U = _92d —4U; L °x 2.132
6=-U, $=-20, &=+ g (2152)
The momentum density hydrodynamic equation (2.131) can
be rewritten as

Vi | op [112(V24¢+6+p>}
c p

Plat " oa
0 1 o dE
— [1+02(V2+4¢)] LWJF

+p
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Ve TV

3£j 1 ap 8(25 dd) _
V; (pat + 5~ 4dt) ] =0, (2.133)

by taking into account the definition of o given by (2.126) and
the mass-energy hydrodynamic equation (2.127). If the terms
of order 1/c? are neglected the above equation reduces to the
Newtonian momentum density hydrodynamic equation (2.129).

The hydrodynamic equation for the total energy density
which is a sum of the internal ps and kinetic pV?/2 energy
densities can be obtained by subtracting (2.122) from (2.127),
yielding

2o |P\l2 7° oz |P\ 72 7))V TPy

+V; (p(% + 6p,> +¢<3p+ apm>} = 0.(2.134)

oxt = Ozt ot ozt

If we consider the Newtonian continuity equation (2.119) the
underlined term vanishes and (2.134) reduces to the well-known
Newtonian hydrodynamic equation for the total energy density,
namely

b5 )& b5 o)

avi+vi(pa¢ ap) o

+p (2.135)

ozt Ox? + ox?

Note that the post-Newtonian contributions do not show up in
this equation. For the determination of the first post-Newtonian
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contributions to the total energy density we have to go further
and determine the second post-Newtonian approximation. This
will be the subject of the next chapter.

The hydrodynamic equation for the internal energy density
of an Eulerian fluid follows from the elimination of the time
derivative of the hydrodynamic velocity from (2.135) by us-
ing the Newtonian momentum density hydrodynamic equation
(2.129), yielding

de oV,
Pat " Pogi

= 0. (2.136)

We call attention to the fact that all hydrodynamic equations
of this section refer to Eulerian fluids, where viscous and heat-
conducting effects are not taken into account. In Section 2.6
these dissipative effects will be considered.

2.5 Brans-Dicke post-Newtonian
approximation

2.5.1 Brans-Dicke theory

The Brans-Dicke theory [8] is a scalar-tensor theory, where the
gravitational constant is not considered as a constant but con-
nected with an average value of a scalar field coupled with the
mass density of the universe. The scalar field can vary from
place to place with time and is based on Mach’s principle that
the inertial masses of the particles are not constants but repre-
sent interactions with the mass distribution of the Universe.
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According to the discussion of Sciama [9] about Mach’s prin-
ciple and the dimensional analysis proposed by Dicke [10] the
gravitational constant is related to the mass distribution of a
uniform expanding Universe by GM/Rc? ~ 1, where M and R
refer to the mass and radius of the observable Universe. The
approximated values for the mass and radius of the observable
Universe are M ~ 10%3 kg and R ~ 10%° m, and the relationship
GM/Rc* ~ 1 implies that G ~ 9 x 1071* Nm? /kg?, which is
very close to its present value of G = 6.67 x 107! Nm? /kg?.

The starting point of the Brans-Dicke theory is the Einstein-
Hilbert action

1
5 / [R+ (ZGLM] V=gdiz =0, (2.137)

where L/ is the Lagrangian of the matter field. On the basis
of (2.137) the following action was proposed in [8]

5/ [qu + %ﬁcM + quwﬂgb,u] V—gd*z =0, (2.138)
where the scalar field ¢ plays the role of the inverse of the grav-
itational constant 1/G and it is assumed that the gravitational
constant is a function of the scalar field. In the action (2.138)
the term we*¢ ,, /¢ is the Lagrangian density of the scalar field
and w denotes a dimensionless coupling constant.

In order to get the field equations from the action (2.138)
we start by taking the variation with respect to the scalar field

¢, yielding

/ {R(qu + 2%5¢,M¢vﬂ - q‘;wm(s(ﬁ V=gd'z = 0. (2.139)
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The second term within the above brackets can be written as

J— ) J—
2§6¢’M¢’u _g B 2w{ ( (;b¢hu _g>
S

L5 F( S, (b,uw_(é,u(ln\/fg)#)}, (2.140)

The first term within the above braces drops out, since it can
be converted by the use of Gauss theorem into an integral over
the hypersurface of the four-volume, where the variation of the
field ¢ vanishes at the boundary. Hence (2.140) can be written
as

6 1
2§6¢,H¢7# —g9 = QWj\/jg<¢

where we have introduced the covariant d’Alembertian [0 de-
fined by

e

6= o=[v=gs"] =om=0n,
+¢ ”( ny—=g),=9¢" , +I",.0" (2.142)
The insertion of (2.141) into (2.139) leads to
w w 4
0¢ |R— ngd) + ﬁqb’”(b# v—gd'z = 0. (2.143)
Now the condition for a stationary action implies that the term
within the brackets must vanish and we have

200¢ = ¢R + %gﬁ’ﬂ%. (2.144)
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As was pointed out in [8] the expression (2.144) is a wave equa-
tion for ¢ where the right-hand terms act as sources for the
generation of the ¢ waves.

The variation of the action (2.138) with respect to the metric
tensor ¢g"¥ is more involved, since we have to write the term
®R = ¢g"” Ry, and take into account the expression (2.14) of
the Ricci tensor, namely

1
[ ( + ) “”+C6f£M] V—gd*z
TP

17, Y ] 6f£M}\/*gd4x

¢2
= { (69" 1/ D), ~ (6”1 /),

+gl“) V=g |:¢ (Fooprpul/ - Fpuaroup) + Fouud),a

T°,.6., + ‘;¢>,#¢,,,] n ﬁTﬁM\/?g}d% = 0.(2.145)
The two underlined terms in the above equation drop out if
we use Gauss theorem to convert them into integrals over the
hypersurface of the four volume where the variation of the fields
vanish. Here we follow Dirac [11] and analyze separately the
next two terms of the last equality. We begin with the variation

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



62 CHAPTER 2. FIRST POST-NEWTONIAN

of the first term of (2.145) which can be transformed into

0 (gw\/jgratmrpw) = pr(g(g/w\/fgraap)

+g"' /=g 5 p0T" 1y, = T7 100 (gﬂu‘/jg,p)

17650 (9" V=91 ) = T76pT7 6 (9" V/=9)

=T7w0 (9""V=9 ,) =T76p0 (9" V=9) ,
17,70 (g””\/jg) , (2.146)

where we have used the relationships (2.332) and (2.334) of the
Appendix. The variation of the second term of (2.145) by taking
into account (2.334) can be written as

5 (9" =gL7 T ) = 29" \/=g1? 1,017,

AT 4017000 (9" =9) = 20 (9" V=917 1up) T’ o0

71000 (9" =9) = =6 (97" ,V=9) T¥ov
17, T,,6 (9" /=g) . (2.147)

The variation of the third and fourth terms of (2.145) can be
transformed into

0 (Fquugwj\/jg) ¢,<7 -0 (quoglw\/jg) ¢,u
o) o) o) <o)
wy (qs“\/?g) ot 5(g“"\/jg) (2.148)

s

where the relationships (2.332) and (2.334) of the Appendix
were taken into account. The variation of the last term of (2.145)
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is
( 2 065" F) 6,6.0 (9V=5).  (2.149)

Now by collecting all terms (2.146) — (2.149) the action (2.145)
can be written as

/ {(qsrma\/—*gg“"),p SO0

—26 (Qb#\/jg))u + |:¢Rul/ + ¢,p,,l/ - Fp;w(b,p

#2003 (V") + (67 0 4 1707)8 (V)
1647T 5£M\/7 #V}d41':0, (2150)

c 0w

where we have introduced the expression for the Ricci tensor
R, given by (2.14) and rearranged the terms in order to get
the two first perfect differentials. The underlined terms drop
out, since again we can use Gauss theorem to transform them
into integrals over the hypersurface of the four volume where
the variation of the fields vanish.

By taking into account the variations (2.337) and (2.338) in
the Appendix the action obtained from (2.150) becomes

/¢{{R#u+¢2¢u¢ +¢¢w](1g””g‘” g’“’g”>

1 167T 5LM\/ 4
—¢t V= =0,(2.151
+2¢¢ ﬂig + 64(;5\/7 5907_ }6907 gd € 07( 5 )
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where we have introduced the covariant derivatives
b = b = p, ot =t + TP et (2.152)
The expression within the braces of (2.151) must vanish due

to the stationary condition of the action and we get the mod-
ification of Einstein’s field equations proposed by Brans-Dicke

8]
Ry = 50 = = 25T = 5 (0,80~ 5000700
2 (G~ 900), (2153)
where the energy-momentum tensor of the matter field is defined
by
o — 2 _0EMvVg, (2.154)

v —9 59#1/

The covariant divergence of the energy-momentum tensor of
the matter field vanishes, which can be seen by the multiplica-
tion of the Brans-Dicke equations (2.153) by ¢ and taking the
covariant divergence of the resulting equation, yielding

1 1 8
o (R™—_Rg"™) +6,(R™ - _Rg")=-"1T0,
2 ” 2 c
w w
+— 7#¢7V¢7V _
o

207 GrYY = G O (2159)
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By using the Bianchi identity

1
(RW - 2Rg’“’> =0, (2.156)

the property of the curvature tensor

R, = ¢t — ot (2.157)
and the relationship that follows from (2.144)
w w
P
it follows from (2.155) the vanishing covariant divergence of the
energy-momentum tensor of the matter field, namely 7*¥., = 0.

If we take the trace of the Brans-Dicke equations (2.153) it
follows

LR — g ( wm) | (2.158)

8T w 3
R=—T-—=¢"¢,— -0 2.159
C4¢ ¢2 ¢ ¢,H ¢ ¢7 ( )
where T' = T",, is the trace of the energy-momentum tensor of
the matter field. Now by making use of (2.144) to eliminate the

scalar curvature R a new wave equation emerges
8

—T.

(3 + 2w)ct

Another expression for the Brans-Dicke field equations is ob-

tained from the elimination of the scalar curvature from (2.153)
by the use of (2.159), yielding

O¢ = (2.160)

8 1+w
Ao | " 342w

Tgu| — %qb,m,y - ¢’;;” (2.161)

Ry, =
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2.5.2 Post-Newtonian Brans-Dicke theory

The post-Newtonian hydrodynamic equations in the theory of
Brans-Dicke were determined by Nutku [12] by following the
method of Chandrasekhar described in Section 2.3.3. In his
book Weinberg [2] analyzed also the Brans-Dicke theory within
the post-Newtonian approximation. Here we shall follow Wein-
berg’s method described in Section 2.3.1, but instead of using
the harmonic coordinate conditions we shall use another gauge
condition proposed by Brans and Dicke [8], which will be intro-
duced bellow.

In order to distinguish the Brans-Dicke scalar field ¢ from
the Newtonian gravitational potential ¢ of Section 2.3.1, we
follow Weinberg [2] and write the Brans-Dicke scalar field as
¢ = (14 ¢)/G, where ( is a new scalar field and G a constant
of order of the gravitational constant G. In terms of the scalar
field ¢ the wave equation (2.160) and the Brans-Dicke (2.161)
equations can be rewritten as

871G
—T
(3+2w)ct™’
wC,/tC,V C,/L;u 871G

A+0? " 1+¢  _aQ +C)§””' (2.163)

Here the energy-momentum tensor of the matter field ¥,, is
defined by

0¢ = (2.162)

R, +

1+w
SHV == T“V - ng[LV' (2164)

First we note that the lowest order of the trace of the energy-
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0
momentum tensor of the matter field is 7' = 79 = % pc?, so that
we infer from (2.162) that the expansion of ¢ should be given
by

C=CHCHO (). (2.165)

The determination ofz follows from (2.162) which reduces to

2 8rG  ° 87G
2= qoo___ Y _, 2.1
Ve (3 4+ 2w)ct (34 2w)c? P (2.166)

The components of the energy-momentum tensor of the mat-
ter field ¥,,, in the first orders read

0 24w 5, 0 1+w o 1
Too =55 i = 8iiy Tos = —pcVi, (2.167
00 3+2wPCa J 3+2wPC J 0 pc ( )
2 24w oo 14w 2y 442w, 2
Too = T 7%, (2.168
0 =379, T3ra,0 T3y, (2168)

thanks to (2.164) and (2.49).

To solve the Brans-Dicke field equations (2.163) we need to
know the product (¢, and the covariant derivative (,;, in
the first post-Newtonian approximation. The product of the
components are of orders

2(,02,0 =0 (076> ) z,oz,i =0 (075) ) ZZZCJ =0 (074> ,(2.169)

and they do not contribute to the Brans-Dicke field equations
(2.163) in the first post-Newtonian approximation. The post-
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Newtonian orders of the covariant derivative components read

L1 2, 0 w1 0%

Coo = 2or 0 Coi = pETEw (2.170)
2 822 2k az
Cisi = dwidri F 7 Oak (2.171)

Now we can write the components of the Brans-Dicke field
equations (2.163) in the post-Newtonian approximation by mak-
ing use of the expressions for the Ricci tensor (2.39) — (2.42) for
the energy-momentum tensor components (2.167) and (2.168)
and for the covariant derivatives (2.170) and (2.171). They read

1 22 871G o 817G 24+ w
_Z -7 == 2.172
QV goo A 00 2 3+2w/0a ( )
—1V2 i1 h 19750 | g7 9*doo
2 goo 2¢2 Ot2 ¢ Otox? 2 OxioxI
194goo dgoo | 19G; dgoo 1 oo Igij
4 Oxt Oxt 4 Ox' Ox' 2 Oxt OxaJ
2 2
10%C 2, 9¢ _ 8nG.: 871G [ 2+w 240
S 05 iy o MY OTY T
+CQ ot? 0z A "% A |3+ 2w
14+w 2. 3+w > %0
Tii 7], 2.173
312w 332w ] (2.173)

Clges 1 goo 1 gy, L 0*gin
9V 99T 905027 202029 | 2 0xI Ok
1 9% o%c 2, o

2 0zi02% ' Oxidxi 9 ok
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871G o 87Tg 1+w

= —CTT” = 02 3 + 2w pd,], (2174)
V2 1 8G;  1 %G 1 8% 1 9%
goi + 2c0tdxd  2c0tdxt | 20xidxi | ¢ Ot
87w 1 881G

As was previously pointed out, in the Brans-Dicke theory [8]
the harmonic coordinate conditions are modified and written as
g T7 = O0(/0x,, which are now the new gauge conditions.
The time and space components of the gauge conditions up to
order O (¢™?) are

1 0doo | 1 Oger  Odor 1 ac
2¢ Ot 2¢ Ot dxk ¢ ot (2.176)

10ger  10do0  O0Jin 52(

2 0zt 20zt Oxk Ozt
The derivatives of the above expressions with respect to the
space and time coordinates become

(2.177)

1 9%Goo 1 O*Ga 9% o 1 822

2c0tdr' | 2c0tdxt = —2 2.1
2¢c Otox? 2¢ Otoxt  Oxkoxt c otox’ (2.178)
1 a2500 1 829216]{ 82.50]6 1 822
2c 2 - =-23 2.1
2 0 o o2 ortor  cor M)
L0 1 0w w00
20xi0xi  20xidxi  Oxk0xi  Oxidxi’ :
2 2 22 22 22
L0k 1070w _ O%gic _ OC —y 1q1

2070t 2020t Oxk0t  Oxiot
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Now we eliminate (0%goo/0x'0t) from (2.178) by using (2.181)
and get
10%Gr 1 0% O%dor 2 92 9 182
cOxidt ¢TIt dridxF ¢ Itdxt (2.182)
furthermore the sum of (2.180) with the same equation where
the indexes are interchanged 7 ++ j leads to

Pgux Pgoo Pgi Pgi _ 9 9*¢
Ortdxzd  Ox'dzxi  Oxkdxi  dxkodxt Ortdzi’
If we take into account (2.177), (2.179), (2.182) and (2.183)
the Brans-Dicke field equations (2.173), (2.174) and (2.175) re-

(2.183)

duce to
2..
—7Vg L1 9*goo | 9”7 9*goo +15920039200
0T 92 g2 2 Oxidxi | 2 0z’ Ox
8nG | 2+w 2 14w 2, 4+2w, 2y
— _ T T’L’L T
A 31200 T 3x2w T 3yapdot )
(2.184)
1 G 1+w
5V =3 35 5,0 (2.185)
1_,. 8rG
§v2§0i = —C—BpVi. (2.186)

Let us find the solutions of (2.172) and (2.184) — (2.186)
for the components of the metric tensor. We begin with the
determination of Joo from (2.172) which can be rewritten as

817G 2+ w AnG

22
= — 2.1
V 90= "5 370,P T 2 " (2.187)
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where we have introduced a new gravitational constant

4+ 2w

T 34w

Hence one may identify from (2.187) the usual relationship be-
tween goo and the Newtonian potential ¢ through

G. (2.188)

2
doo = —f, so that V2¢ = 47Gp. (2.189)
c
For the determination of §;; we write (2.185) as
1 14w V2% 242w ¢
The equation (2.186) for Jo; can be written as
167G 3 + 2w
23
R v, 2.191
V=90 & 1100 (2.191)
where we can identify a vector gravitational potential & by
3 3+ 2w fz 2
Joi = i iowes so that V=& = 16nGpV;. (2.192)

The determination of ﬁog is more involved. We insert the

0
values of Joo = 2¢/c?, T = pc? into (2.184), use the identity
V22 = 2¢V?¢ + 2(V¢)? and after some rearrangements we
arrive at

1 o/ 242 AG3+2w [4+2w 2y 2+ 2w?,;
- e R T 2 T i
N (goo = A 2tw |3t20 3420
20p 1 9%
+3+2J Ao (2.193)
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Here we identify the scalar gravitational potential v through

. 234w
— that 2.194
900 04{4+2w1/)+¢}7 so tha (2.194)
A+2w2y 2422,  2p 1 9%
V3 = 4nG % K — =
Y=dr [3+2w 3+ 2w 3+2w| Ao

(2.195)

The last identification refers to the scalar ﬁeldz from (2.166),
which can be rewritten, thanks to (2.188) and (2.189), as

¢
(2+w)e?’

2 1

Vi =-— SV?¢,  so that C=-

EEwnE (2.196)

From the investigation of the gauge condition (2.176) it fol-
lows that

13+ 2w[ 0V  OV3]  16nG3+2w[dp  OpV;
324w ot oxt | 3 24w {8t+8xi ’
(2.197)
which is equivalent to (2.73) and in its right-hand side the New-
tonian continuity equation shows up, which is valid at O (¢73)
post-Newtonian level. Furthermore the gauge condition (2.177)
is identically verified.

Explicit expressions for the components

As in Section 2.3.2 we shall give here the final expressions for
the components of the metric tensor, Christoffel symbols, four-
velocity, particle four-vector and energy momentum tensor in
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the first post-Newtonian approximation of the Brans-Dicke the-
ory.

The metric tensor components in the first post-Newtonian
approximation read

2 2 <3+2w

o =1+ 2%+ 5 (T gm0 +6) 40, (2199

4+ 2w
3+2(.4) 51 _5
;= — = 2.1
g =~ 0, (2199)
B 242w\ o _4
Gij = (1 o 02> 0i; + O(c™%). (2.200)

The Christoffel symbols (2.28) — (2.33) obtained from the
substitution of the components of the metric tensor (2.198) —
(2.200) become

; 1 99 5 1342w (0 oo
Po=55 o=z — + &= ), (2.201
0= 35 00 654+2w(3t+§18x1 ,(2.201)
0 1 9¢ 4 13+ 2w %
o _ o _ 1
F 07 02 a.’Ei’ F 01 C44+2w (91”‘7(2202)
I 1 [34+2w (3¢ | 06 | 2+2wd¢
Foz“ = - ], 751.. 2.9
/ 2¢3 [4+2w <8.¢c] + 83;1) + 24w ot Y ,(2.203)

0= 3 550 L +

ozt o ot
(2.204)

2 4 2 X
2 1 06 L 13+2w(28¢ o agl>7

3. 1 342w 8&_85]- _2+2w8¢)
24w Ot

T = — , , 5.1, (2.205
077 263 442w \ 027 Bai J} ( )
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9¢

P
kT ok

Jk =

i, Litw (00, 00 y
r 622+w(8$i5ﬂ 5 5”>.(2.206)

The expressions for the four-velocity components up to order

O(c™*) are

1/V? 1[3v4  ¢? 8+5w
0 _od14+ - - — S22 e 2
v c{ Ta\7 ") Talw T T ar Y

3+ 2w
4 + 2w

(v - &Vi)} } (2.207)

and U = UV, /c.
The particle four-flow components up to order O (¢2) are
the same as the ones given in (2.91) and (2.92), namely

0 2 2

N°=ne, NO= % (‘g - qs) : (2.208)
1 3 g 2

Ni=nV;, Ni= Z‘; <‘; - ¢> o (2.200)

while the energy-momentum tensor components read

0 2 1.
T =p, T =p(V?+e—-2¢), T =pcV;, (2.210)

3i sz D 21..
TO:T V2—2¢+5+; , T = pViVj + pdij, (2.211)
i PViVi ([ p 2+ 2w dp
T = —2 = 0. (2.212
ol 0 d>+5+p t o 2 ( )

Note that the if we compare (2.210) — (2.212) with (2.93) — (2.95)
we infer that the only difference is the last term in (2.212).
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The Poisson equation (2.195) for ¢ can be rewritten as

24w 3+3wp 0%
2 = 2 =)+ =, (2.21
V= 877Gp<V ¢+3+2w€+3+2wp)+8t2’( 3)

by taking into account (2.210) and (2.211).

2.5.3 Hydrodynamic equations for an
Eulerian fluid

For the determination of the continuity equation in the post-
Newtonian Brans-Dicke theory we make use of the particle four-
flow balance law (2.118) together with the the particle four-
flow components (2.208), (2.209) and the components of the
Cristoffel symbols (2.201) — (2.206), yielding

e (T o)} olviftea (5 -9)l}

at * o
nl+4+2w (0¢ oo}
— — — | =0. 2.214
M= <at+VZat 0 (2214)
Now making use of the relationship (2.121) we get the continuity
equation
ap* 810*‘/1
— =0 2.215
ot * ox’ ’ ( )

for the mass density p+ defined by

pe=p {1 + 0—12 (V;) — 3(21;’5)@} . (2.216)
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The hydrodynamic equation for the mass-energy density is
obtained from the time component of the energy-momentum
tensor equation (2.124) together with the representations of its
components (2.210) — (2.212) and the components of the Cristof-
fel symbols (2.201) — (2.206). The final result is

8£ n doV; 1 8¢ L op dp B 3p  do
ot or e |Pot Tt 2Q2+w) dt

(2.217)

where the mass-energy density o is defined by (2.126), which we
reproduce here

{1 + = <V2 te—26+ i)] . (2.218)

From the equation for the spatial components of the energy-
momentum tensor (2.128) together with the representations of
its components (2.210) — (2.212) and the components of the
Cristoffel symbols (2.201) — (2.206) it follows after some rear-
rangements the hydrodynamic equation for the momentum den-
sity

6UVi+BUViVj 0 [(1_1+2w¢>]+ 8¢>[

ot OxJ - oz [P 2+ w c2 P oz
1 /3+2w_ 5 142w 3+3wp
il V2 _ £
<2+w 2+w¢+8+ 24w p)}

3+4wpd¢V 3+2wp [0V _8§j+& _0
24w 2 dt 44 2wc? |0z Togt ' dt |

(2.219)
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Equations (2.215) — (2.219) are the same as those derived in
the work of Nutku [12] if we made the following identifications
e=1I, ¢ = —-U and

2 2 4 1 0?
3+ wwz_Q(p, M&Z_M ; ,8X”
442w 442w 24w 2 Otox?
(2.220)

Another expression for the hydrodynamic equation of the
momentum density can be obtained by substituting the mass-
energy density (2.218) into (2.219) and after some rearrange-
ments, yields

av, 0 1 /1 6+4 o
4,29 {1+CQ< tWye OF w¢)]+ p[l

P at ox? 24w 24w oxt
1 p 644w 34+2w p [0V  d&
S (Ve L 4
02( er 2+w¢+€>}+4+2w02{8x’+dt

agj] oVi <1ap 99 6+ dwdo

-V, == — =0. (2.221
T 0z 2 \pot It 24w dt) 0 ( )

By subtracting (2.215) from (2.217) it follows the hydrody-
namic equation for the total energy density which is a sum of
the internal pe and kinetic pV?/2 energy densities, namely

2o |P\l2 7° oz |P\ 72 7))V TPy

, oler dp w—1 @ apV; B
i (paxi * axi> " 2+w¢<8t e ) 70 (2222)

Now by using the Newtonian continuity equation (2.119) for the
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underlined term we get the Newtonian hydrodynamic equation
(2.135) for the total energy density.

2.6 Non-perfect fluid hydrodynamic
equations

Up to now we have considered a perfect relativistic gas dic-
tated by the constitutive relations (2.11) for the particle four-
flow and energy-momentum tensor. The question which arises
refers to the post-Newtonian expressions for the hydrodynamic
equations for the mass-density and momentum density for a
viscous and heat-conducting fluid where shear stresses and heat
flux are taken into account.

Before we analyze this subject we shall introduce a projector
that will be useful to interpret physically the components of
the energy-momentum tensor. From the definition of the four-
velocity of the fluid U* we introduce a symmetric tensor (see

e.g. [13])
1
AP = ghv — —URDY, (2.223)
c

that projects an arbitrary four-vector into another four-vector
perpendicular to U* since A**U,, = 0. The tensor A*" is called
a projector and it has the properties

AN, = AV, AP AV = ART 0 AF, =30 (2.224)

In a local Minkowski rest frame where U* = (¢, 0) the pro-
jector has the form: A*” = diag(0,—1,—1,—1). The post-
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Newtonian approximation of the components of the projector
are obtained from (2.223) together with (2.74) — (2.77), (2.87)
and (2.88) and read

2 .
A% = —‘C% o), A%=—Yiioe®), (22

C

y 2¢ ViV -4

If A* is a four-vector and A"” a tensor, then

AW = AR AV (2.227)
A(,U,V) == % (AMO-AVT + AVUAMT) AJTa (2228)
Al — % (AF,AY L — AV AFL) AT (2.229)

represent a four-vector, a symmetric tensor and an antisym-
metric tensor that have only the spatial components in a local
Minkowski rest frame. Furthermore,

Al — gl _ % AR A, AT, (2.230)

is a symmetric traceless tensor where the projection AWAQ“’> =
0 and gWA““’> = 0 hold.

In order to identify the relativistic non-equilibrium quanti-
ties with the non-relativistic ones it is useful to introduce decom-
positions of the particle four-flow and energy-momentum tensor
with respect to the four-velocity U*. The most usual decompo-
sition is due to Eckart [14] where the particle four-flow N# and
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the energy-momentum tensor 7" for a viscous heat conducting
fluid are written as:

N# = U™, (2.231)
TH = p) _ (p+ ) AR + C%Uqu

1
+= (U”q(”) + U”q(“)). (2.232)
C

Note that the decomposition of the particle four-flow is the same
as the one for a perfect fluid (2.11);. The above decompositions
define the quantities n, p*, p, w, ¢ and e, which are iden-
tified as:

1
n = — N"U,~ particle number density, (2.233)
c

1
plr) = (A“(,A”T — 3A””AUT> T°7— pressure deviator,

(2.234)
1
(p+w) = —gAWT“”f hydrostatic + dynamic pressures,
(2.235)
¢ = AP, U, T — heat flux, (2.236)
1
€= C—2UMT“”UV — energy density. (2.237)

The dynamic pressure is the non-equilibrium part of the trace
of the energy-momentum tensor, since the hydrostatic pressure
p and the energy density € refer to equilibrium quantities. The
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constitutive equation for the dynamic pressure is proportional
to the velocity divergent and the coefficient of proportionality is
the volume viscosity which is of order 1/c* (see e.g. [13]). Hence
the dynamic pressure will not be considered in the following
analysis.
We begin by writing the spatial components of the pressure
deviator as
) — b (0 VeV VAVE) - with b — s — 27T
p - ng + 202 (szVng +kaVvaz)a with ng = Pij 3 52]
(2.238)
denoting the non-relativistic pressure deviator. Due to the re-
lationship U,ﬂ)““’> = g, U7p") = 0 we have that

(gOOUO + gojUj) Pl + (gojUO + gijk) P =0, (2.239)
(900U° + 9o, U7) pO + (go;U° + g, U*) p®) =0, (2.240)

which imply the time and space-time components of the pressure
deviator

ViV, _ i V: _
p(OO) = pi; CZJ +0(c 4)7 p(O ) = pij?j +O(c 3).(2.241)

Note that with the representations given above the trace of the
pressure deviator p{*) vanish. Indeed

g™ = goop"® + 290ip " + gipt = 0. (2.242)

A similar result follows from the condition A,L,,p<“”>.
We write the spatial components of the heat flux as

¢" = qs, (2.243)
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where q; is the non-relativistic heat flux vector. By using the
relationship U/Lq(“) = gWU”q(”) = 0 we get the time component
of the heat flux

q(o)—qz L O, (2.244)

Up to order O (0_2) the expressions for the components of
the pressure deviator and heat flux are

i 1 ViV
pi = Pij + 22 i ViV + 9 ViVi) P = =Pij—5 2
(2.245)
i Vi i Vi

In the non-relativistic limiting case the above expressions reduce
to

plid) = Pij, p0 =0, p% =0, ¢ =g, ¢ =o.
(2.247)
We note that the pressure deviator and the heat flux vector
must vanish at equilibrium, i.e., p;;|g = 0 and q;|g = 0.
Now the different orders of the energy-momentum tensor
components can be identified from (2.232) together with (2.225),
(2.226), (2.245) and (2.246). They read

0 2
T =pc?, T =p(V?+e-2¢), (2.248)

1i0 %60 2 r\Vi pu
T° = pcV;, TY =p| Ve—2¢+ec+= —1——, (2.249)
P c c
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2 .
T = pViVi 4+ péi; + pij, (2.250)

4 A 2
T”—p(V22¢+5+p> Vi 20p
p) ¢

5
2

1 1
+@ (i ViV; +pu Vi Vi) + = (q:V; +q;V;) .(2.251)

It is important to call attention that the introduction of non-
equilibrium quantities related with the pressure deviator and
heat flux does not change the determination of the components
of the metric tensor from Einstein’s field equations in the first
post-Newtonian approximation. This can be verified since the
components of the energy-momentum tensor which appear in
Einstein’s field equations to compute doo, Goo, ﬁij and go; are

5000, ‘3200, %” and ‘%oz‘, respectively, and in none of these quanti-
ties neither the pressure deviator p;; nor the heat flux q; show
up.

As it was previously pointed out the expression for the par-
ticle four-flow in the Eckart decomposition is the same as that
of a perfect fluid. Hence, its hydrodynamic equation is the same
as that of a perfect fluid, i.e. the continuity equation (2.122) for
the mass density p, holds.

The hydrodynamic equation for the mass-energy density fol-
lows from time component of the balance law for the energy-
momentum tensor (2.124), yielding

do ooV, 1 < O¢p 8;0) 1 (8pijvj 8%) _0

ot | oxt 2 ozt oz’

Por o

c2

(2.252)
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Here we note the new contributions of the pressure deviator
pi; and heat flux g; when this equation is compared with the
corresponding one for the perfect fluid (2.127).

From the balance equation for the spatial components of the
energy-momentum tensor (2.128) we obtain the hydrodynamic
equation for the momentum density:

doV;  9cViV; 0 2¢ Ipij
ot " o +8x’[(1+ )}—'_amj

pa(é {1+12<2V2+s+2¢i” 4P 90

ox 2 Oxd
o 0g Py (00 . 0b
V(@aﬂ 8xi>_4 V(8t+vaxﬂ)
p(0Y OGN | 10(pi;V)+ai) 99
+ (azi o ) L T
0 &V +pVi) Vi
T 29 {qzV +q;Vi + (it +2’°J’“ ) k] =0. (2.253)

Without the dissipative terms p;; and q; the above equation
reduces to (2.131).

The momentum density hydrodynamic equation correspond-
ing to the Eulerian equation (2.133) is:

dVi 0 (pij + pdij) 1 2 p
L + 97 1 =2 \%4 4¢+s+p

+pa¢.[1+;<v2+4¢)] { ¢+@—V%

ot Oxt 7 Ot
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1op 09  de\]  10(pyVi+a)
V( o "o dt)]+2 ot

1 0
=5 |:C[1V + qJV + 5 (pzkv + p]kv) Vk - 4@%]}

c2 Oxd
¢ 31313 Vi (0pixVi | 0q;\ _
Lk D) = 0.(2.254)

Here the definition of o given in (2.126) and the mass-energy
hydrodynamic equation (2.252) were used.

The Newtonian momentum density hydrodynamic equation
follows from (2.254) by neglecting all terms of O (0_2) order,
yielding

02 oxJ 2

vy 0 (pij + poij) 09
Pa vt 0w Pow

= 0. (2.255)

By subtracting the mass density equation (2.122) from the
mass-energy equation (2.252) we get the total energy density

hydrodynamic equation
i o (5 o))+ gl (5 +o) ] oo
ot ! 2 ox?
+2 [p”ng;i TPl ¢>(Zf + %px‘f)} —0, (2.256)
which corresponds to (2.134). If we use the Newtonian conti-

nuity equation for the underlined term, (2.256) reduces to the
Newtonian total energy density hydrodynamic equation for a
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viscous and heat conducting fluid

o[ (V2 a [ (Vv ¢
b5 ] b ()] o

OlpiVi+ai +pVi] _
ox?

+ 0, (2.257)
As was pointed out in the Section 2.4 — where the Eulerian
hydrodynamic equations were introduced — in order to get the
first post-Newtonian corrections to the total energy density hy-
drodynamic equation we must go further to the second post-
Newtonian approximation.

The hydrodynamic equation for the internal energy density
is obtained from the elimination from (2.256) of the time deriva-
tive of the hydrodynamic velocity by using the Newtonian mo-
mentum density hydrodynamic equation (2.255), yielding

% + Iq;
pdt ozt

Vi

Oxi

+ [p” +p5¢j] =0. (2258)
This equation refers to the Newtonian internal energy density
hydrodynamic equation for a viscous and heat-conducting fluid
and it corresponds to (2.136) of the Eulerian fluid.

2.7 The gravitational potentials
In this section we shall express the gravitational potentials —

defined in the method of Chandrasekhar — in terms of integrals
over the entire volume V' occupied by the fluid. The first one
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is the Newtonian gravitational potential U which is solution of
the Poisson equation V2U = —47Gp,

Ulx) =G /V PX) s (2.259)

|x — x|
Here and in the following expressions we shall not specify the
time dependence of the fields. The above equation corresponds
to (2.63) with the identification U = —¢.

The equation for the vector gravitational potential U;, given
by (2.106)1, has the corresponding integral solution

Us(x) = G/V Wd%’, (2.260)

while the integral solution of the scalar gravitational potential
®, which satisfies (2.110) is

/ /
o (x) :G/ Md%’, where ¢:V2+U+§ +37p.
v o [x—x 2 2p
(2.261)

According to the work of Chandrasekhar and Lebovitz [7]
the scalar gravitational potential x introduced in (2.105) is a
super-potential, since it obeys the equation V*y = 87Gp. We
proceed to derive this equation on the basis of this paper. To
begin with we introduce the gravitational potential symmetric
tensor

8l5(x) = G/v plx)(w: = =i)(@; = xé)d%’, (2.262)

|x —x/|3

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



88 CHAPTER 2. FIRST POST-NEWTONIAN

and another vector gravitational potential defined by

Dix) = & [ 2T g (2.263)
v [x = x|

Note that the trace of the gravitational potential tensor (2.262)
is the Newtonian gravitational potential

U(x) = ;(x) = G /V | )f (_"2/|d3x’. (2.264)

If we differentiate the vector gravitational potential (2.263)
and the Newtonian gravitational potential (2.264) with respect
to x; we get respectively

)
ax] = —G/ x—x/\3 S (2.265)
U P =) gy 1

Now if we subtract from (2.265) the equation (2.266) multiplied
by z; we obtain the gravitational potential tensor, namely

oD _oU G/ p(x) (i — x}) (2 — )
aacj 895] v

dSJC/ = L[”

(2.267)
Since the gravitational potential tensor is a symmetric tensor
we can write from (2.267) that

oD, _ OU _9D; U
8:cj l@xj o 8951 ]a$i7

x—xP

(2.268)
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which in terms of a rotational of a vector reduces to
VxD=VU xx=V x (Ux). (2.269)

From the above equation we infer that D is given by Ux plus a
gradient of a scalar field x (say), i.e.,

Ix
8:101- '

D;=Uxzx; + (2.270)

The divergence of the above equation with respect to x; leads
to

D,

. 5. T V3x. (2.271)

If we use the trace of (2.267), namely

oD; _ oU
Bxi ! 8xi

=, (2.272)

equation (2.271) reduces to (2.106)q, i.e., V2x = —2U. This
last equation together with the Poisson equation V2U = —47Gp
implies the equation for the super-potential of the gravitational
field V4y = 87Gp.

Another expression for the gravitational potential tensor ;;
can be obtained from (2.267) and (2.270), yielding

0%x

= Ubsj + ———.
J J+ 8:518%

(2.273)
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As it was pointed out in [7] an alternative way to obtain the
relationship (2.273) is to introduce the following definition of
the super-potential y

X = —G/ p(x)|x — x'|d3. (2.274)
%
The differentiation of the above equation with respect to x; leads
to
i) 13
=-G | —————d’2 =Ux; + D, 2.275
(%vz / |x — x’| i+ ( )

thanks to the definitions of D; and U given by (2.263) and
(2.264), respectively. Note that this equation is the same as
the one given in (2.270). Furthermore, its differentiation with
respect to z; leads to (2.273), since

9%x :G/ p(X') (i — i) (w; — )
1%

0z;0z; |x —x/|3

A3z’

p(x')

—(SijG X/‘ dga:/ = ﬂ” — U(SU (2.276)

v x—

In the derivation of the virial theorem the gravitational po-
tential energy tensor 20;; plays an important role. It is defined
in terms of the gravitational potential tensor ;; by

1
2, — _5 /V p(x)8hi; (x)da

__G / / 1= 2@ ) s, (077

|x—x'|3

EBSCChost - printed on 2/13/2023 9:10 PMvia . All use subject to https://ww.ebsco. conlterns-of-use



2.7. THE GRAVITATIONAL POTENTIALS 91

Another expression for the gravitational potential energy
tensor is given by the relation

oU oU
i = i——d?r = ——d3x. 2.278
w, = [ peomgde= [ pGom,Zodn @2

Indeed by considering the definition of the gravitational poten-
tial (2.264) we have

= / p(x)x; {—G degx] &P’

[x — x|

- )p(x) (@i — af)(z; — x;)dz)’x'd?’m 9
D) |x—x’|3 A
(2.279)

where the third equality was obtained by interchanging the
primed and the unprimed labels.

The trace of the gravitational potential energy tensor (2.277)
and (2.278) is the gravitational potential energy, namely

wow, = /V (U (x)d

g M 3 133 _/ '8U 3
2 /v/v Ix — x| B’ dPx = Vp(x)xlaxid x. (2.280)
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2.8 The conservation laws

Here we shall write the hydrodynamic equations of Section 2.4
in terms of the Chandrasekhar gravitational potentials by iden-
tifying

1 9%x

p=-U, $=-20, &=—AUi+ 5 5 =

—11;. (2.281)

Note that we have introduced the vector gravitational potential
II; = —¢; in order to have the same structure of equations of [4]
where it is denoted by P;.

In the analysis of the conservation laws it is necessary to
use Reynolds’ transport theorem which is valid for an arbitrary
scalar—, vector— or tensor—valued function F(x,t), namely

3 OF (x,t) OF(x,t)V;
| P a:—/v< St o ) (2.282)

dt

Conservation of total linear momentum density

The hydrodynamic equation for the momentum density (2.131)
rewritten in terms of Chandrasekhar’s potentials, read

doVi oViV; U a[( QU)]
+ 14

_|_

ot oz1 Pori T oz P 2
4p d I, p (U 02
) (2

(‘3U 1 0%y
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Note that in the above equation we introduce the abbreviation
¢ defined in (2.111).

If we integrate (2.283) over the volume V' occupied by the
fluid we get

/ 80"/;'_’_60"/;"/]'_ 8U+i 1+g
v | ot Oxd Pori ™ oai |P 2

4p d 11, p( oU 0
JFth(Uv a 4) s < ? ox * 8xi)

8U 1 83x 5

Below we shall analyze separately the terms in (2.283) and will
enumerate them for an easy view.

(i)
ooV doViVj
‘ == d*z, 2.2
/V{ N + £y } / oV (2.285)
by the use of Reynolds’ transport theorem (2.282).

(ii)
_/ ( ZZ 3 7// / — /|z3d3md3 /
7// /‘3d3 rd®z’ =0, (2.286)

where in the second term above we have changed the primed
and the unprimed labels.
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| lo(1+ %) o= (228)

since this integral can be converted — by using Gauss’ divergence
theorem — into a surface integral where the pressure vanishes on
the boundary of the configuration.

(iv)

4 d IL\ 5 4 op (UV; — Lt)
aﬂﬂﬁﬁm‘4)dm—aﬂfg%

opV; (UV; — L 4
+pJ( ‘ ) (UV—)(aerapV?)}d%

OxJ ot oxJd

= %%/ (UV— - H> 3z, (2.288)

where the underlined term vanishes, since we can use the New-
tonian continuity equation at this approximation. For the last
integral we have applied Reynolds’ transport theorem.

(v)

_ / Ti —T; .3 3 /

f,pgatr==6 [ [ sonsoto) 2ot
9 p(x)
_ 3,/ / ! 3
= G/dep(x)go(x)ax,i/vd:cx_xl|
!

— —/ d3x'p(x’)<p(x’)aU(?(. ), hence
s oz’

—3/ p (so ou + aé) d*z =0, (2.289)
14

(iii)

c? oxt Oz
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(vi)

Uj
i—=d
/V'OVJ(%"Z .
__g INY/ n Ti — Ty g3 3.
=5 [ [ sV V) E S e

G , a2 /
—g/V/VP(X)p(X Wi (x)Vy (x) e dPada’ = 0,(2.290)

[x — x|

where the primed and the unprimed labels were changed in the
second expression above.

(vii) The determination of the last integral is more involved.
We begin by evaluating

/
14

ot ot
/ /
Ip(x") Vi (x')|x — x|
G/ 6x’k A3z
k .’Ek 30
+G/ |d (2.291)

For the second integral we make use of the Newtonian conti-
nuity equation (2.129), since the term which we are interested
is of O (¢72) — order. The underlined term vanishes thanks to
Gauss’ divergence theorem. From this equation it follows by
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differentiating it with respect to x* and 27 that

o dij 3.
3x28:w8t G/ e W) ot ®
/ / / / / d3.’1;/
—Gﬂyw>mwxw—xn+wwx%—%ﬂgjyﬁ
(@ =) (xy — ) 4,
+3G/Vp(x’)vk(x/)(xrxk) P a3 (2.292)

Now from the above equation we get

3
/ px)V5(x) aizac(cﬂ ét ¢’

Vi (') (i — 2} )V () — ) (24 — )
‘9//{ x—xF
Vi)V (<) (25— ) Vi)V () (a — )

|x —x/|3 a x —x'|3
Vi)V (x) (@i — x7) }p(x')p(x)d?’xd?’x/ =0.(2.293)

x— P

This integral vanishes by interchanging the primed with the un-
primed labels. Now collecting all results above (i) — (vii) we
arrive at the conservation of the total linear momentum density
in the first post-Newtonian approximation, namely

1
d {pV {1+2 <V2+6U+s+p>} —pni}d%:o,
dt c P
(2.204)
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where the total linear momentum density is

q;;i:pvmuc—pz {Vi <V2+6U+5+£) —HZ}. (2.295)

Conservation of total angular momentum density

For the determination of the total angular momentum density
conservation we need to evaluate integrals over the volume V
which are obtained from the multiplication of the hydrodynamic
equation for the momentum density (2.283) with x;, namely

/ doV, 00V, oU o[ ( 2
v | ot Oxd Pori T oz |P 2

4p d IL; p( oU 09
dt(UV 4> ch(%xﬁaﬂ)

P ou; 1 9y 3
SVild—— — s 75— d°r = 0. 2.2
+62 ’ ( ozt 20toriow ) [T 0 (2.296)

We proceed to evaluate the integrals following the same
methodology above.

(viii)
ooV  0oViVi | 5
: d
o %5+ T
OoVix;  0oVix; Vi) .
_ /. 3 1] 7] 3
- /Vam/]dz+/v{ o T ok }d:c

d
= 28 + — / oViz;diz. (2.297)
14

dt
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Here Reynolds’ transport theorem (2.282) was used and the ki-
netic energy tensor was introduced

1
Rij == / oV;V;d*z. (2.298)
2 )y
(ix)
- / p(x)z; aU,dga:: —20; (2.299)
Vv 81'7’

where 20;; is the gravitational potential energy tensor (2.277)
which is symmetric.

(x)

) 2 2
/V”Ujaxi[p(l " )]d T, [p (1 - ﬂ tr
B U\ 5
+/V pp [gcjp(l + CQ)]d x. (2.300)

The last integral vanishes, since it can be converted in a sur-
face integral by the use of Gauss’ divergence theorem and the
pressure vanishes on the boundary of the configuration.

(xi)

4 I, 4 dpa; (UV; — L
& x»pi UV — =4\ dPe = = pa; ( i)
Idt
v %

c? 4 c? ot
opVia; (UV; — 1) 11, dp  OpVi
N xk ; (Uvi a 4> T (81& T o >
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IT; 5 4d _ LY g
pv;<Uv 4>}dx Cth/Vpr(UV 4)d
4 IT;
—Z /vaj <Um- - 4) >, (2.301)

thanks to the use of the Reynolds transport theorem (2.282) and
the Newtonian approximation of the continuity equation where
the underlined term vanishes. We shall write the second integral
in the last equality as

4 ILY\ 5 4
—§AP%(UW—4)d$:§/PW(Ui—UW

1 0%y 3
_8ataxi>d z. (2.302)

thanks to (2.281)3. According to (2.260) the first term in the
integral can be written as

. Bad®x’
[ vvds=c [ [ peonviene
\% vJv Ix — x|

G NV (x OV (x Brd3y’
:5/V/Vp<x>p<x>m<x>v]< )+ Vi)V ()] ,

x — x|

(2.303)

which is a symmetric tensor. For the term in the integral (2.302)
related with x we differentiate (2.291) so that we can write it as

I e W =
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100
6 [ [ stwitety AR — )= )
(230
(i)
[ (4548 e | [t
+¢ﬂﬂi,@w3f’= //’ )

_ ¢ / / () (30) sz(if; xj)d%d?’x’
— ) —2))

(4
_ 3 3 / /
= —/pwﬂijd% = —Fij-  (2:305)

where $l;; is the gravitational potential tensor (2.262). Note

that §;; is a symmetric tensor.

// (3)Vi )

;3(3{ )d3xd3 ' (2.306)

(xiii)

[
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is also a symmetric tensor. We collect together the following
terms that appear in (2.302), (2.303) and (2.306) and denote it
by the symmetric tensor U;;, namely

%:/v [V (U; — UV)+mJVkaaU d>x. (2.307)

(xiv) For the last integral obtained from (2.296) we incorpo-
rate the integral (2.303), use (2.293) and introduce the tensor

_ aSX(X) 3
Xi; = /‘/P(X)%Vk(x)md T

+ [ pbamix  IX) o,

otoxt
- 1 Vi(x) Vi (x') (i — o) (25 — o)
= [ o< { =
| Vel @ —a}) [v () (@i — @) + Vi(x)(z; — })]
|x — x'|3

3 V(X)) (@k — 2 )Vi(x) (w1 — 2p) (i — ) (2 — )

2 |X—X/‘5
_W}dz pon (2.308)

From the above equation we conclude that the tensor X;; is also
symmetric.
By collecting the results (viii) — (xiv) above we get that

2
i / Jijipide = Q.Qij + QHij + (51'3' pl1+ £ P
dt v v C2
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1 1
- (23” + 4‘171‘]‘ — 2.%@') s (2309)
where 9B; is the total linear momentum density (2.295).

Now by taking the antisymmetric part of (2.309) it follows
the conservation of the total angular momentum, which is ex-
pressed as

d
T /V (2 Bi — 2:P,;) d’x = 0. (2.310)

Conservation of total energy density

The hydrodynamic equation for the total energy density (2.134)
— which is a sum of the kinetic pV2/2 and internal pe energy
densities — written in terms of Chandrasekhar’s potentials is

D (N + 2 [0 (s e)v] + 2%
at [P\ 2 7° oz P\ 72 7))V T

ou dp  0pV;
~Vig U(at + w) 0. (2.311)

Following the same methodology above we evaluate the integrals

over the volume V separately.
V2
(5 v v

(xv)
:% Vp(; ) z, (2.312)

Jo el ()]
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thanks to Reynolds’ transport theorem (2.282).
(xvi)

opVi

v Ozl

by using Gauss divergence theorem and assuming that the pres-

sure vanishes on the boundary of the configuration.
(xvii)

d*z =0, (2.313)

| Vit ag;? d*

:_G// )ﬁd%d‘%’
-5/ p(x)p(x')[wx)—x/i(x’)]Hd%d?’ :
*// Vi \X—X’|d3xd3 '
= 3 J, oo [dt/ Feed
_/deg >I</|<ape§t + a)wi( ))]
-2 /V U(X,)<ap g/) Lo (X;));?(X,))d%’
+% /V p(x)dUdix)d?’x: %% /V P(X)U (x)dz

Ip(x) | Op(x)Vi(x)
—/VU(X)( 5 T o )d%. (2.314)
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Above we have applied twice the Reynolds transport theorem
(2.282). Note that the second integral in the last equality is just
the integral of the last term in (2.311).

By collecting the results (xv) — (xvii) follows the conservation
of total energy

d V2 U\ 4

This is the Newtonian expression for the total energy density
conservation. For the determination of the post-Newtonian con-
tribution to the total energy density we have to go further and
find the second post-Newtonian approximation. This will be the
subject of the next chapter.

2.9 The post-Newtonian virial
theorem

In this section we shall determine the post-Newtonian approx-
imation of the tensor virial theorem. We begin by considering
one-half of the symmetric part of (2.309), namely

1d
2dt

2U 3 1 1
+5ij ” |:p <1 + 62>:| d’r — g (QS:ij +4‘Bij — 2}:1]) (2316)

/V(Q;‘jmi + xi‘I}j)d‘?’x =28 + W,

Next we introduce the moment of inertia tensor in terms of
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the mass density p,. defined in (2.123), namely

jij :/ p*xixjd?’x, (2.317)
|4

so that its time derivative becomes
djij :/ |:8p*l’il‘j + ap*mil'jvk:|d3x
A%

dt ot Ox*
I« 3p*Vk] 3 / 3
= + vixjd’e + [ pu(ziVy; +2;V)d
/V |: at 8a:k J v ( J J )
:/ ps (2 Vy + 2;V;)dP . (2.318)
v

Here the Reynolds transport theorem (2.282) was used to write
the first equality, moreover the first integral in the second equal-
ity vanishes due to the continuity equation (2.122). Hence we
obtain from the time differentiation of (2.318) that

23, d

L bz. 2.31
Rl p (x;Vj + 2, Vy)dx (2.319)

The post-Newtonian virial theorem follows from (2.316) to-
gether with (2.319), yielding

1d?3; | 1d V2
=— +2d/p[(+3U+€+p>(Vx]+Vxl)

2 dt? 2
( 2 ,
—(Wiz; + ijfi)] d*z = 25@3‘/ {p <1 + g)} d*z
1% C
1 1
R+ Wiy — 5 (28 +40y5 — 5%y ) (2.320)
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where the total linear momentum density (2.295) was writing as

2
‘Bi:p*VﬁC% {<2+3U+6+2>V1H1}7 (2.321)

thanks to (2.123).
In the Newtonian case (2.320) reduces to the well-know ex-
pression for the tensor virial theorem
1d
2dt )y

1 oU U\ 4

by considering the expression for the gravitational potential en-
ergy tensor 20,; given in (2.278). Its contracted expression by
taking into account (2.280) is

p(x;V; +xivj)dgifz/ p‘/i‘/jdstF(sij/ pd*z
v v

d U .
— | prVid*z = / p (V2 - =+ 3p> dx. (2.323)
dt Jv v 2

The stationary version of the post-Newtonian virial theorem
(2.320) reduces to
2U
2845 +Wij + 0ij [p (1 + 02” d*x
1%
1 1
2 285 + 4905 — 5%1']' = 0. (2.324)

The contracted version of the above equation reads

1
/p(VQ—U+3p>d3x+2{/p[V2<V2+5
1% 2 P ¢ 1%

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



107

+ + 4U> U<2U +&— 3i) — ZVM} Px

——// xdPxd®s’
X') (@i — ;) Vi (%) (2 x;)}

|x — x/|3

=0, (2.325)
thanks to the expressions of the contracted tensors

284 :/ pV? [1+ (V2+2U+6+];>} , (2.326)

1
W, = —— / pUd’x, (2.327)
2 14
1
By = 5/ p (U;V; —20V?) d’x, (2.328)
\4
2 S AP
Sii = pU V+U+2+2 d*x (2.329)

Xii /pUVd%——//

i) (@i — 2V () (5 — o)

-

L drd®s’. (2.330)

The contacted version of the stationary version of the post-
Newtonian virial theorem (2.325) corresponds to the equation

(146) of [3].
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Appendix

In this appendix we give some relationships that are used in the
previous sections.
If g denotes the determinant of the metric tensor g, its
differentiation with respect to z* is
9y

g — 9 =997 9va u: (2.331)

which is obtained from the differentiation of each component of
the metric tensor g,, multiplied by its cofactor gg”?.

The contracted Christoffel symbols are also expressed in
terms of the determinant of the metric tensor as

ov

v g
F/w: 9 (ga,u’l,“i’gm/”u*g/wya)
go-ygau’u, 9.
=2 I _ I (g /—g) 2.332
5 % (Inv=g) , (2.332)

thanks to (2.331).
From the vanishing covariant derivative of the metric tensor
g"”., = 0 we have that

G = =" Ty — g T, (2.333)
from which together with (2.332) yields
("V=5) , = —0" "0/ 5. (2.334)
The variation of the metric tensor g*” is obtained from

5 (9" gov) = 09" o + g 6Ge, = 6(64) = 0, (2.335)
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T

which by the multiplication with g7 implies that

59“7 = —g“UgVT(SgUV, (2336)
On the other hand the variation of \/—g is given by

1 1
V/—9g=——0(—9) = =vV/—99""0g,, 2.
2\/_—9( 9) = 5V=99""09u (2.337)
if we use a corresponding equation to (2.331). Hence from
(2.336) and (2.337) we have

1
5 (g“”x/jg) _ \/TQ (29;41/907' _ g,uO'gVT) 6907_. (2338)
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CHAPTER 3

SECOND
POST-NEWTONIAN
APPROXIMATION

The second post-Newtonian approximation to Einstein’s field
equations is analyzed in this chapter. The corresponding Pois-
son equations for the gravitational potentials and the Eulerian
hydrodynamic equations are obtained in this approximation.
The search for the conservation laws of the total linear momen-
tum density and total energy density are based on the frame-
work of general relativity conservation laws where the energy-
momentum pseudo-tensor plays an important role in the deter-
mination of the conservative quantities.

111
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3.1 Preliminaries

Apart from the knowledge of the hydrodynamic equations in the
first post-Newtonian approximation it is important to know the
corresponding expressions for the conserved quantities which are
related with the total linear and angular momenta and total en-
ergy of the system. The expressions for these quantities were
derived by Chandrasekhar in [1] by using the hydrodynamic
equations supplied by the condition of isentropic flow. This
condition — which is a consequence of the first law of thermo-
dynamics d'Q = dE + pdV = 0 — can be obtained from (2.136)
together with the continuity equation dp/dt + pdV;/dz' = 0,
yielding

e _pdp (3.1)
dt  p?dt

In a later paper [2] Chandrasekhar derived the conserva-
tion laws within the framework of general relativity by taking
into account the symmetric energy-momentum complex of Lan-
dau and Lifshitz [3] which is a sum of the energy-momentum
tensor and the energy-momentum pseudo-tensor.! He showed
that the use of the energy-momentum complex in the first post-
Newtonian approximation led to the Newtonian conservation
law for the total energy of the system and argued that the first
post-Newtonian conservation law for the total energy of the sys-

1In Section 3.7 the energy-momentum pseudo-tensor and the energy-
momentum complex will be introduced.
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tem should be derived from the knowledge of the second post-
Newtonian approximation.

The second post-Newtonian approximation and the corre-
sponding conservation laws were developed by Chandrasekhar
and Nutku [4]. The starting point is the decompositions of the
components of the metric tensor

U 2, W0
900:1—072—‘!‘0*4([] —2<I))+676

1 1 9?2 W
g0i = 3 (4Ui X ) + 2 40, (3.3)

+0(c™®), (3.2)

 20t01" cd

gij = — <1 + 25) dij + \I;jj +0(c7%). (3.4)
Here new gravitational potentials Wqo, Wo; and ¥;; were intro-
duced and they will be determined from Einstein’s field equa-
tions in the next sections.
In the previous chapter it was shown that the gravitational
potentials U, U;, x and ® satisfy the Poisson equations

V23U = —4nGp, V2U; = —4nGpV;, V2x = —2U, (3.5)

V20 = —4nGpp = —4nGp (V2 +U + g + §p> - (3.6)
P

We follow [4] and introduce the vector gravitational potential
II; defined by the relationship

1 0%y
I = 4U; — — — 2~
2 0tox?

(3.7)
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and we note that II; = —¢&;, which is the vector gravitational
potential in Weinberg’s method. Furthermore, we have from
(3.5) and (3.7) that the Poisson equation for II; is given by

0*U
i1, = -1 , .
VI, 6mGpV; + e (3.8)
while the gauge condition (2.112) implies that
1 olI;
sOU (1AL (3.9)

2ot T 2o,

The contra- and co-variant components of the four-velocity

and of the tensor %, = T}, — gWT"g/2 are given in Section
2.3.2 which we reproduce here in terms of the Chandrasekhar
potentials
2 4 2 2
U° —c[1+ <V +U> 4<3V +5UV +U—+2<I> HV)}
c 8 2 2
(3.10)

, U° 1 (V2 IT;
Ul=""Vi U=-V [1+62 <2+3U>] + 5 (3.11)

V2 1 /3v4 3Uv? U2
Uo—C|:+C2< U)J'_CZ‘L(_'_ +—2‘I’>:|

2 8 2 2
(3.12)

2
pc e 3p P4, gr2
To0 = — VioU + 5| VE+U
00 2+p( +2+2p) 2[ +
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+V? (5 + % + 2U> - U<5 + 37;> - 2@], (3.13)

2 1
Sij = %&j +P |:‘/;‘/} + 5 (5 — % -+ 2U) (5”:| s (314)

ITL;
Foi = —pcVi — g |:Vi <V2 +e+ % + 2U> - 2} .(3.15)

The components of the Christoffel symbols are given in Ap-
pendix A.

In the next sections we shall determine the second post-
Newtonian approximation of the metric tensor by following very
close the paper of Chandrasekhar and Nutku [4].

3.2 Equation for determination V;;

For the determination of W;; we have to solve the spatial com-
ponents of Einstein’s field equations

_87TG 2

T
T

Ry = (3.16)

where the spatial components of the Ricci tensor are given by

4 4 3 4
4 8F00i 8F’“ik 18F0ij 8Fkij 20 20
M=o T ow oot aar Th OO

2k 2l 2k 20 2k 2l
+I', T kj - ijF ko — I ijF kl- (317)

By considering the components of the Christoffel symbols
given in the Appendix A the left-hand side of Einstein’s field
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equations (3.16) reduces to

]4%“ _ VQ 82\Ifkk 0 8\I/Zk a\I/jk
Y 94 Oridxi  Oxk \ O Ozt

1, oU oU 82(U2 +20)
ct axz Ozi OxtOxI

10 (01 Ol , 0
_M(W n a:m‘) s, (w +8tﬂ (3.18)

Furthermore, from (3.14) its right-hand side becomes
871G 2 81G 1 P
—CTEZ‘J‘Z |:VV+2( _,0+2U>6ij:|

[V2@+47TGp <V2 YU+ ~+ 2’1’)}5“

== [v%&ij — 4Gy <Vivj — V2, — 22’%)} (3.19)

Note that the underlined term is identically zero due to (3.6)
and it has been added in order to write a more compact form of
Einstein’s field equations (3.16). Hence, from (3.18) and (3.19)
the spatial components of Einstein’s field equations (3.16) can
be written as

0 [0V 10Uy
20, _ j
Vi ot ( dxk 2 fa )
0 oV 10V .
_&xj< dxk 2 Bl > = Sy (3:20)
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where S;; is the symmetric tensor

oU oU

o5 2 ou

o 2(6”V * 0zt Oxi ) (U7 +22) + 435& Oxd
_2827[] L g ol 91,
o2 ot\ dxd  Oxt

Equation (3.20) can be reduced to a simpler form by noting
that its contraction and differentiation with respect to 27 leads
respectively to

PV 1
Wy — e = =Sy, 22
VoW, 92700k 2Skk7 (3:22)
0 9 0% i, 9Si;
- Wpr — _J = —, 2
ot (V M Dri ok O’ (3:23)

The combination of the two above equations implies the follow-
ing integrability condition for (3.20):

0 1
Now by introducing an arbitrary vector function w; defined
by
W — oV B la\lljj
Y0z 2 02t

(3.25)
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we can rewrite (3.20) as

(9’LUZ' 810]‘

-+ =
oxi ~ Ox'
The above equation satisfies the integrability condition (3.24).
Indeed, its contraction

V2\I!ij = Sij + (326)

8wk
dzk’

together with the differentiation of the combination V2W,; —
%V2\I!kk5ij with respect to z/ imply that

A& W = Spr +2—+ (3.27)

0

57 <v2 i fv \Ifkkéw> = V2w, (3.28)

which is just the Laplacian of (3.25). Hence we can consider
(3.26) as the Poisson equation for the determination of the ten-
sor gravitational potential W;; in terms of the arbitrary space-
time vector function w;.

Here it is necessary to verify the validity of the integrability
condition (3.24). For that end we contract S;; from (3.21) and
get

Spr = —8V2(U? 4 20) — 327Gp (V2 + 37;>

o [/ oU oIl oU \?

=32nGp (V> +4U +¢) — 12 ( ou ) (3.29)

oI
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Here we have used the Poisson equations for the gravitational
potentials U and ® given by (3.5); and (3.6), respectively, and
the gauge condition (3.9). Next we differentiate S;; — given by
(3.21) — with respect to 27, yielding

a5, 0 oU

_ 2 (772 2
5 = 45 (V2 (U? 4 29)] +4(8xiv U
82U U ) )
+(Wax3) + 167TG@ [p (‘/;VJ -V (5@‘) — 2p6ij]
9> [ oU oI\ 0, apV;
Doz (2315 + a:w) Ty i 16”6{ at
opViVy  Oop  OU N Op(VZ +4U +¢)
Oxl ari Pori ox’
0?U oU
200 (3:30)

where we have also taken into account the relationship V2U? =
2UV?2U + 2(VU)?, the Poisson equation (3.8) for II; and the
gauge condition (3.9). Now from the two last equations (3.29)
and (3.30) we have

0 1 B opVi  0pViV;  Op ou
o (S” B 25’“’“5”> - 16”0{ ot | ow T owi Poui|

(3.31)
One recognizes the term within the brackets as the Newto-
nian hydrodynamic equation for the momentum density (2.129),
which can be taken here equal to zero, since we are dealing with
equations that are at most of order O (¢™*). Hence, the inte-
grability condition (3.24) is verified.
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3.3 Equation for determination Uy,

The knowledge of Wy, follows from the solution of Einstein’s
field equations

5 871G 3
ROi == _CT (507;, (332)

where its right-hand side, thanks to (3.15), is given by

H,
_S;ZTG%M B 87Ter [Vi <V2+€+]Z+2U> _ 21} . (3.33)

The space-time component of the Ricci tensor read
5 o 5 i 4 o 5 .
5 oI 00 or 0k 107 04 8Fj0i 2. 3
Ro; = . = — — — =TT
T ow T ow e ot ow 0

2 3 2 3 2 3
+I%; T o — [T g5 — TV ;T 5. (3.34)

If we take into account the components of the Christoffel
symbols given in the Appendix A, the Ricci tensor (3.34) be-

comes
po—_ L lveg, PWor | 1 [Owi 10T
0i T T 95 0T orkdxi | T 265 | ot 2 9tdr
oU oll; U U 92U
( UV~ 5wi o "ot ow JWW) 3.35)

where w; is the arbitrary vector defined by (3.25).
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Einstein’s field equations (3.32) together with (3.33) and
(3.35) lead to the following Poisson equation for the vector grav-
itational potential Wy,

1I;
VW = —167Gp |:V;; <V2 +e+ % +4U> - }

2
oU BU U Il 92U ow, ow
ot 9 2oui v T Wiggign T ot T g B39)

where w is an unspecified space-time scalar function introduced
by Chandrasekhar and Nutku [4] and defined by

L1 [ovy 10wy]  (oU ov,
c2 | Oxd 2 Ot ot 0xt)’

w =
C2

(3.37)

Note that the underlined term is identically zero at 1/c? order
according to (2.112).

At this point it is important to check if the definition of w
given by (3.37) is consistent with (3.27) and (3.36), which can
be verified by taking the Laplacian of (3.37). By taking into
account (2.113), (3.29) and introducing o = p[1 + (V2 42U +
€ + p/p)/c®] we arrive — after some rearrangements — at the
following expression

1, 1[0V, 10V2Y, av2U
c2vw_c2[ 005 2 o | T
oOvV2U,; 1_, Oo  0cdV;
1 ou  0Op 327G (Odp  OpV;
Tz (p ot at” T (at o ) @33
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Now by making use of (2.113) and the mass-energy density hy-
drodynamic equation in the first post-Newtonian approximation
(2.127), the second and the third terms in the right-hand side
of (3.37) vanish and we get the identity % V?w = 5 V?w, con-
firming the consistency of the definition of the scalar function
w, which can be considered an arbitrary function in space-time.

3.4 Equation for determination ¥,

Here the time component of Einstein’s field equations for the
determination of Wqq is

Ry = — oo, (3.39)

oA
and its right-hand side follows from (3.13), yielding

87T4G Top = —87(61,0[‘/4 +V? <€ + 24 2U>
c c p

6

U(a + 3’;) +U? - 2@] . (3.40)

The time component of the Ricci tensor is given by

6 1 8F10i 61—‘100

Rop = — — -
c Ot ox*

3 3 3 4 2

. . 3, 2 X L4
+T%0;T9 0 — T g; — Tl — 9T,  (3.41)

2 4 2 4
+ T80T %; 4+ T 00
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3.5 GAUGE CHOICE 123

which by using the components of the Christoffel symbols given
in the Appendix A, yields

2
L gog, 4 LOUOL 3 <8U> 1 ow

6
Rop = —— - —— [ = -
00 26 06 9rt Ot S\ Ot S Ot

S Ozt B Ozt Ozt (6 U ) + 2¢8 Ozt \ OxI
0*U

o1l 2U _5 /009 1 9
- — V(U —20) + —(4U%0;; + V) —=—.(3.42
89;’>+62 ( )Jrcﬁ( it j)axlaaﬂ (342)
From the knowledge of the left- and right-hand sides of the
time component of Einstein’s field equations we insert (3.40)

and (3.42) into (3.39), use (3.8) and get the following Poisson
equation for the scalar gravitational potential Wq:

V32U = 167Gp [VQ <V2 +e+ % + 4U) —-U? - 2@}

+2

oU o1, <8U)2 ow oU oU 0d
—6 +2

a0 o a ar T Wi T 250 g

2 , , , 2
—12U (aU) - o, (anz 8H]> +ow, LY (3.43)

ox’ ox' \ dz7  Oa' 9 OaiOxi

The only difference of this equation with the corresponding one
of the paper by Chandrasckhar and Nutku [4] is that they in-
troduce two new quantities 3;; and W; through
ow;  ow;

Oz’ oz’
where the following relationships hold V2%;; = S;; and V2W,; =
w; and verify (3.26).

Eij = \Ijij — (344)
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3.5 A gauge choice

As was noticed in the previous sections, the solutions of Ein-
stein’s field equations for the metric tensor components W¥;; and
Wo; comprehend the arbitrary scalar function w and the arbi-
trary vector function w;. As was pointed out in [4] we have the
freedom to choice a particular gauge which do not affect the
choices that were already introduced in the analysis of the first
post-Newtonian approximation.

The choice proposed in [4] was the vanishing values of both
functions, i.e., w = 0 and w; = 0. This gauge choice implies
that we have from (3.25), (3.37) and (2.117):

8\I/ij 1 B‘I'jj N

dxi 2 dxi 0 (8:45)
oU 8Hi 1 8\I/0j 15\1/jj B

ot Tow T [ oo 2o | G40

Here we write a summary of the Poisson equations in the
proposed gauge for the second post-Newtonian approximation

V2U = —47Gp, V*® = —47Gp (V2 +U+ % + Z’i) , (3.47)
0*U
M = —1 i ———, (3.4
\Y 6wGpV; + EYER (3.48)
P oU oU
0*U
—2———0;; — 2{ 6;;V* — | (U? 420
ot? i (&JV - 8x’8m3)(U +22)
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o (o1, Ol
at<8mi + aﬂ)’ (3.49)

IT;
2

V20 = —167Gp [Vi (V2 +e+ % + 4U> -

. 2
U oo, . 9U

0t 001~ 20u7 0w T2 prigw (3:50)
V204 = 167Gp [VQ (V2 +e+ % + 4U> —U? - 29
oU OI1,; oUu\> oU 0® U\ >
T2 a5 ot O (at) 12 i 12U (aﬂ)
o, (o1, Ol 9*U
oxt <8x1 833’) ! 0z 02 (3:51)

Furthermore, in this gauge we have from (3.27) and (3.29)

2
VU = 320Gp (V2 +4U +¢) — 12((;%) : (3.52)

3.6 Hydrodynamic equations for an
Eulerian fluid

To determine the hydrodynamic equations for an Eulerian fluid

in the second post-Newtonian approximation, we shall need the

expressions of the four-velocity, particle four-vector and energy
momentum tensor in this approximation.
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The components of the four-velocity (U*) = (ye,yV?) are
determined from (2.85) and reads

dr\* 1 2 1
(dt) =$=900+2901V + 59V V?
L 2 2 2 2
:1—6—2(1/ +2U)+C—4(U —20 - UV? +1LV;)
1
JFCT; (Too + 2P0, Vi + T, ViV5) . (3.53)

By using the approximation 1/v/1 + z ~ 1 —22+322/8—523/16
we find that the time component of the four-velocity becomes

1 (V2 1 /3v4 5UV? U2
UOZC{1+CQ(+U>+C4(+ +

2 8 2 2
420 — Hivz) + Ciﬁ [‘f (T + 27?]2 + 21U2)
+6 (V;+U> <q>— H;”) —U;
—% (Too + 2T, V; + ‘I’ngzV])} }7 (3.54)

while the spatial components are simply U® = UV, /c.

From the knowledge of the four-velocity components it is
easy to obtain the components of the particle four-flow N* =
nU" up to order O (0’4), namely

0 2 V2
N°=pne,  NO= % (2 T U) , (3.55)
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+ 20— HJ@) . (3.56)

4 4 2 2
o_ n (3VY 50UV U
N _03< s T 2
1, 3 Vz V2
Nt = nV;, Jw:”c2 (2+U), (3.57)

sV (3VF 5UV2 U2
Ry — 420 —1ILV; ) (3.
C4<8+ st V>(358)

The components of the energy-momentum tensor
v 1 p v v
™ =p|l+ 5 e+~ || UU" —pg" (3.59)
c P
up to order O (0_6) are

0 2
T% = p, T = p (V2 + e +2U), (3.60)

. p [ P
TOO:C—2 V2<V2+s+p+6U>+2Us

—2ILV; + 2U% + 4@] , (3.61)

. i
T = LIVE L 10VAU + 16UV — 4TLV; (V2 + 20)
C

+80(V? +2U) + (5 + i) (V*+6V2U — 21LV;)
+2e(U? + 297) — 2V, V; — U — quvvj] . (3.62)

1 3 \7A
T = peVj, T = % <V2 +2U +¢+ ];) . (3.63)
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T = p{m— {V‘* +6V2U +2U% + <s + 1;) (V2 420)

C3
4P — 2vaj} - ﬁni}, (3.64)
2 ..
T = pViV; + péiy, (3.65)
sV 2U
T = L <V2 +2U &+ p) - =L, (3.66)
c p c

6

T = Z{Vivj [V“ +6V2U + 202 + (5 + p) (V2 4 20)
c p

Mass density hydrodynamic equation

The mass density hydrodynamic equation in the second post-
Newtonian approximation follows from the balance equation for
the particle four-flow (2.8) which up to O (¢™*) reads

0 2 4 1 3 5 .
3<NO+NO+NO> 8<N1+N1+N1)
0x0 + oz’
0

2 2 3 3 3 5 5
+(F00i “!‘F]ij)Nz‘f‘ (FOOO"FF]OJ' +F000+FJ0J‘)NO

1

3 3 2 2 2 4 4 .
+ <r000 + rﬂoj> N+ (rom + 174+ 1% + rJij) N'=0.
(3.68)

EBSCChost - printed on 2/13/2023 9:10 PMvia . All use subject to https://ww.ebsco. conlterns-of-use



3.6 HYDRODYNAMIC EQUATIONS 129

By taking into account the components of the particle four-
flow (3.55) — (3.58) and of the Christoffel symbols given in the
Appendix A, we arrive at

On  OnVi _In [a +V;-a} <<I>+U2+\Pkk>

ot | oxi ot ozt 4
n V2 oU oU
+25 (1 + 202) ((% + Viaﬁ)' (3.69)

where we have introduced the abbreviation

1 (V2 1 [/3VY  5UV2
n=n|l+ 5|5 +U)+5(—5+
C C

2 8 2

U2
+5 +2<I>—HiVi>} (3.70)

The first underlined term in (3.69) can be rewritten as

2 {aﬂ/‘ia] (<1>+U2+\IZ“’“)

ct | ot ox?
_ 200 (@+ U4 TE) 2 90V, (O 4 UP 4 Hpk)
ct ot A Oz
2 Wik on  OnV;
S+t +—=) (5 ). 371
(v ) (G50 ) om)

For the above underlined term the Newtonian continuity equa-
tion can be used so that it vanishes. The second underlined
term in (3.69), by following the same methodology of the first
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underlined term, can be rewritten as

n V2 ou oU 9 OnU (1 + 2c2 + 2c2)
25 (14 55 ) (5 -

ot Vg )T 2 ot
9 OnV;U (1 + 262 + 262)
+5 , (3.72)
oxt

by taking into account the continuity equation in the first post-
Newtonian approximation (2.122), namely

on _onv, 1 [8n<v22+3U) onv; (% +30)

o o & a1 + o

(3.73)
If we introduce the mass density p = mn — where m denotes

the fluid particle rest mass — and insert (3.71) and (3.72) into
(3.69) it follows the continuity equation

dp + opVi

ot oxt
for the mass density in the second post-Newtonian approxima-
tion

(3.74)

1 /V? 1/3 7 3
D= 14+ = — I e 7 S 2 | 272
p p[ +02(2 +3U)+C4(8V +2UV +2U
1
—Q\I!kk—HiV;ﬂ. (3.75)

The mass density above corresponds to eq. (53) of [4], which
was obtained from the consideration that the volume integral
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of pU% /=g is constant. This expression is a consequence of
the particle four-flow hydrodynamic equation, which can be ex-
pressed as

(m”U”);u = L@p\/—igU“
vV—g Ozt
1 (30\/?9U° N Ipy/—gU"V;
V=g cot cox’
so that the above equation leads — by using Reynolds transport
theorem (2.282) — to the mass conservation

M d .
_— — d = 0. .
7 7 /V pU N/ —gd’z =0 (3.77)

) =0, (3.76)

From the components of the metric tensor in the second post-
Newtonian approximation (3.2) — (3.4) one obtains that up to
order O (c™*)

a1
g=— {H o U 4@\1/,%)}, (3.78)
2 1 T
Vog= |1+ - = (U2 +20+ 2K )], (3.79)
2 2

which implies that pU°\/—g = p.

Mass-energy density hydrodynamic equation

The determination of the hydrodynamic equation for the mass-
energy density in the second post-Newtonian approximation fol-
lows from the time component of the balance equation for the
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energy-momentum tensor 7%, = 0 in O (¢~°) - order, namely

0 2 4 1 3 5
B (TOO + TOO + T00> o (TO’L + TOz + TOz)
Ox9 * ox'

3 3 2 2 L 3 .
+ <2F000 + FJOj) T + (3F0i0 + F]ij) T

3 3 5 5 0 3 2.
+ <2F000 + FJ()]‘ + 2F000 + Fjoj) T + I‘OijTU
2 2 4 4 1o
+ <3F01'0 + Fjij + 3F0i0 + I‘Jij) TOZ =0. (380)

From the knowledge of the different orders of the components
of the energy-momentum tensor (3.60) — (3.67) and Christoffel
symbols given in the Appendix A, one can obtain from (3.80)
the hydrodynamic equation for the mass-energy density in the
second post-Newtonian approximation

05 93V 1 (U op\ 2] U o0
ot T om T (” ot 6t> p {‘0 ot o
1avaiviani}O

p Oxt 2 Ot ’

(3.81)

Here we have introduced p = V?+U +§ + g—z from (2.111) and
- 1 1
U_p{1+2<V2+2U+€+p) +4{V4+6V2UU2

c p c

1
+2Ue + V2 (5 + i) ~ILV; - Qq:kk] } (3.82)
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Note that if we consider terms up to order O (¢™?) equation
(3.81) reduces to (2.127). To obtain (3.81) we have neglected

the term
1 2 Vi \ [9p | OpVi
— 40 + — | | = -
ct (SU Tatt 2 ) {81& + Ox?

I; [0pVi | OpViVi | Op ou
a { ot 927 | ow _paxi]’ (3.83)

c

since we can use the Newtonian continuity equation and the
momentum hydrodynamic equation for the first and the second
terms within the brackets, respectively.

Hydrodynamic equation for the total energy density

As in Section 2.4 we shall determine here the hydrodynamic
equation for the total energy which is a sum of the internal pe
and kinetic pV/?/2 energy densities. To begin with we subtract
the continuity equation (3.74) from the mass-energy density hy-
drodynamic equation (3.81), yielding

1(o] (V2 p (5 4 5 o 5,
02{8t|:[)<2+5)+02<8v +§V U*iU + 2eU

of P O (V PVi (5,
+V <E+p>)]+8xi {p%( 5 +6>+ =2 8V

5 5 opV;
FoV2U - 202 42U+ V2 e+ 2 )| + 22
2 2 P oz’

BU_U<6p+8pVi) Zp[ ou 0P

—pVi

oz ot " ox ) T2 |%ar T Voa
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LopUvi Viaﬂl} } = 0. (3.84)

p Oxt 2 Ot

We note that the total energy density hydrodynamic equation
is of order O (0*2), meaning that the post-Newtonian correc-
tions to the resulting equation corresponds to the first post-
Newtonian approximation.

From this equation we can obtain the total energy density
conservation law by integrating (3.84) over the volume occupied
by the fluid. First we note that the integral

/ OV | 2 opUV: d%:/p 14+ 2% Vinds = o,
v\ Ozt 2 Ot g c?

(3.85)
vanishes by using using Gauss divergence theorem and consider-
ing that the pressure vanishes on the boundary of the configura-
tion. Next we take into account the previous result (2.314) and
the results (3.180) and (3.181) given in the Appendix B which
we reproduce here

[ ooovied 5 e = 54 [ pivaa
oo ),

;/meagi :7%%/‘/,0%1_[1'&333, (3.87)

/Vp‘/;g;dgx:/p@%[jd?’x. (3.88)

Now by collecting the above results we arrive at the total
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energy density conservation law in the first post-Newtonian ap-
proximation

1d
—— | €d*xr =0,  where (3.89)
C2dt 1
V2 U PID 4 O 4 N
(‘E—p<2+5—2>+62[8V +§V U—QU
2 p 1
+2eU +V (6+p) - QHZ‘VQ}. (3.90)

The expression for the total energy density € was derived in
[1] by considering the isentropic flow condition and in [4] by
taking into account the symmetric energy-momentum complex
of Landau and Lifshitz [3]. This latter method for the derivation
of the total energy density conservation law will be the subject
of Section 3.7.3.

The hydrodynamic equation for the internal energy density
in the first post-Newtonian approximation is obtained from the
multiplication of (3.84) by ¢? and the use of the hydrodynamic
equations for the mass density (2.122) and momentum density
(2.131) in the first post-Newtonian approximation to eliminate
the time derivative of the mass density p and hydrodynamic
velocity V;. After some rearrangements we get that

SV OV V2o pe—s)ay
'Odt p 3c¢2 ) 0zt 2 Ot c? dt
Vil o 2 ou 1 0p
— - — — -| = 0. 91
+5 (V +3e) [axl 9| = (3.91)
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Without the terms in ¢~2 this equation reduces to the New-
tonian internal energy density hydrodynamic equation for an
Eulerian fluid.

Momentum density hydrodynamic equation

The hydrodynamic equation for the momentum density in the
second post-Newtonian approximation is obtained from the spa-
tial balance equation for the energy-momentum tensor 7%, =
0, which up to the sixth order reads

1 3 5 2 4 6
<8T01 + 0% + TOz) 0 <TZJ +TY + TU)
0z * Oxd

2

.4 6. 0 2 4 0 2
+FZOOTOO 4 FZOOTOO 4 <FZOO + FZOO) <T00 + TOO)

[ . 3 3 1 . 3 .
+12I"0; + (Fooo + Fk0k>5ij:| <T°J + TOJ> =0.(3.92)

If one insert the different orders of the energy-momentum
tensor and Christoffel symbols components, one arrive after a
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long calculation to

5gfi+ap§§Vj+§§[1+fj—{l<U +2q>+\1'2’“’“>}
—ng;{l-i- (V2+U+2+2pp)+024{v4+5UV2
£ cosnfe) -
+§<w%§j2gf){1+ <V2+4U+6+‘Zﬂ

L (9\1100 'a\IJOJ 8\1/]k o
4(6 TV ViV ) =0, (3.93)

where we have introduced the abbreviation for the momentum
density

1 1
p%i:pVi{l—k2<V2+6U+5+p>+4[V4+10V2U
c p c

2 Yik 2 P
FI3U% + 20 = 2LV, — —= + (V* + 6U) et

-4, [1+ <V2+4U+s+p>} - L (W0 + 0,15).

(3.94)

Expression (3.94) corresponds to eq. (54) of the work [4].
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3.7 Conservation laws in general rela-
tivity
In this section we follow Synge [5] and introduce a symmet-

ric array of quantities WH” = W"H which satisfies the partial
differential equations

ownv
oxv
It is supposed that this equation must hold for all transformation
of coordinates of W but neither W#¥ nor the equation (3.95)
have tensorial characters.

The integration of (3.95) in an infinite three-dimensional vol-
ume by considering z° = constant, leads to

GWR [ (LOWE g
/ax”dx/<c o ai)dm

70
_/iag/ 3z /W’“ ‘dS =0, (3.96)

(3.95)

where d®z = dx'dx?dz® is the volume element. If we consider
that the quantities W#" vanish at the surface of the infinite
three-dimensional volume, we have that for 2% = constant the
following relationship hods

,/ 6Wﬂ0 /W/LOV dS = 7/ anLO
c ot c ot

aW Ov>d3 d {I/W“Ocﬁ ] =0. (3.97)

oxI dt
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This equation implies that there exist four conservative quanti-
ties P* independent of 20 = ct.
Another conservative quantity can be build from the deriva-
tive
0
o7

which vanishes due to the symmetry of WH#”. The integration
of (3.98) in an infinite three-dimensional volume leads to

(F" W™ — 2" WHT) =0, (3.98)

/ {1 O (a0 — gm0y 4 % CRUGEFR LY ] d’z =0,

c ot
(3.99)
and by considering the vanishing of WH*” at the surface of the
infinite three-dimensional volume it reduces to

d[1
= L / ("W — 2" WH0) d%] =0. (3.100)

We conclude that there exist more six conservative quantities
M = —MV" independent of z° = ct.

Now we have to link the conservative quantities P* and M*¥
with the four-momentum and four-tensor angular momentum,
respectively. For that end we follow Chandrasekhar and de-
fine W# in terms of the energy-momentum complex O* =
(—g) (7" + ), namely

WHY = ﬁ@‘“’ = %(—g) (TH 4+t (3.101)
c c
Here " is the so-called energy-momentum pseudo-tensor of the
gravitational field.
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3.7.1 Energy-momentum pseudo-tensor of the
gravitational field

The aim of this section is the determination of the energy-
momentum pseudo-tensor of the gravitational field and for that
end we introduce the tensor

U[LO’V/\ =y (gpAgau o gp,uga)\) , (3102)

which has the same properties as the Riemann-Christoffel tensor
R[LVUT? namely

1. Symmetry: UHIVA = VAR,
2. Cyclicity: UHoVA 4 UHAT L JHATY = (),
3. Anti-symmetry: UHOVA — _[JoHYA — _[JHOAY — [JOpAV

From the symmetry and anti-symmetry properties of the ten-
sor UMYX it is easy to obtain the relations for its derivatives
82Up,m/)\ aQUV/\p,U
~ = 9 (3.103)
0z 0x 0x° 0x
83U/uﬂ/)\ 63U/u7)\y 82U[L{Tl/>\
= — = . (3.104)
Ox? 97 dz Ox? 0z O 0x Oz dxv
We infer from (3.103) that the contracted second derivative of
UHovA is symmetric in the two remaining indices, while from
(3.104) we get that its third contracted derivative vanishes.
Hence, we can make the following identification

1 82 U,ua’l/)\

wee — 292
2 0x70x™’

(3.105)
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since WH¥ = W¥F and (3.95) holds.
To determine explicitly the contracted second derivative of
UrovA | we note that the covariant derivative of (gflU“‘””\).T

vanishes, thanks to the vanishing of the covariant of the metric
tensor g"”.. = 0. Hence, we can write

MOV

0= (g_lUMUV)\)_ _ i ag

WGl
3T g2 89:T g

ox™
_’_F;J,TEUEUVA + FUTEUMEV)\ + FVTCU;,LO'E)\ + ]_—\/\TCUMUV6> (3106)

Moreover by using (2.331), the derivative of U*°"* with respect
to 27 becomes

aUNO'I/)\

_ QFECTU[LO'V/\ o F;J,TEUGUVA o I'\O'TEUMEV)\
ox™

—TV,  UHTN T UMV, (3.107)

From the above equation it follows when 7 = o the contracted
expression

aU;m'u)\
5 _ I—\EEOU/_LUV)\ o FVUCU[LU€>\ _ l-w)\UE(J,LuJue7 (3108)
x
where the anti-symmetry property of U¢** = —U%* and

the symmetry property of I'*,. = I'*., was used to get that
I#, U = 0.
The partial derivative of (3.108) with respect to 2* leads to

82 U[LUV)\

—— = A" + B* 1
Dz O + ’ (3109)
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where A*” and B*" are given by

v aFTTfT oV 6FUU€ TeN aF)\U5 ove
aU;wz/)\ 8Uuae)\ U Hove
wo_pr_o -2 v 22 A - 1
B 7 oxA 7¢ 9z 7€ x> (3:111)

The tensor A*" defined in (3.110) can be expressed as

aFTTO' o 8F€ok> + lU;Lge)\(aIw)\U - aruso)
ox? oxe 2 oxe Ox?
(3.112)
thanks to the use of the anti-symmetry property of U*¥* in
the expression

AWV — U,LLUV)\(

rv r I
Moc ruser — Moc ruore — oA puoen —(5.113)

o2 oz Oz

In terms of the Riemann-Christoffel (2.14) and Ricci (2.13) ten-
sors A" reads

ARV = UMUVA (RU)\ + Fea/\FT‘re - FCG'TFT)\G)
1
+§U*“’fA (R oxe + Il 2r = T73,1"),  (3.114)

which can be simplified and written as
1
AR = 2g <R“” - 2Rg*”’) +9(9" g7 = g" g7 gl Ar

+g (gﬂ)\gau o guug(f)\) |:F€O')\]-—‘TT6 . 1’\60_7_1'\7')\6:| 7 (3115)
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thanks to the following relationships
UF""Rox = g (9" 9" — 9" ¢°*) Rox = g (R* — Rg"")
(3.116)

1 1
§U/me>\Ru/\ae — §g <gu)\goe _ guegaA) Ruo'/\e

1 1
= 599"%97°9" Rorex + 599”97 9" Rorxe = gR", (3.117)
1 1 1
_7U,uae)\1—w-/\o_rz/€7_ _ 7U/LO'>\£1‘\TAO-FV€T _ 7UIL{T€)\FTEO'FV)\T'
2 2 2
(3.118)
The expression of B*” is more involved and below we give
the expressions for the three terms which appear in (3.111) by
using the derivative of U#7¥* given in (3.107):

8U,u,a'1/)\
W _ QFTTU |:FEE>\ (gp,/\gau o gﬂuga)\)

_'_]_'w,e)\ (ga)\gey o gauge)\) + Fae)\ (g;u/ge)\ o gu)\geu):| , (3119)

.
7.,

8Uuae)\
O = gF”o’e I:FTT)\ (g/“goA - g,u,AgOG)

+I0 (g“gTA — g”g”) +T7,5 (g‘”y" - g‘“g”ﬂ ,(3.120)

v
-I o€

QU Hove
)\0'6 ) = gr)\ae |:2FTT)\ (guygae - guegau)

+Fu7)\ <guoge7— _ gl/'rgea) + FVT)\ (guegcrr _ gp,Tgsa)

+21¢ (g‘”’g’” — g‘“’g”)]. (3.121)
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In the above equations the symmetry property of the Christoffel
symbols was taken into account.
Now from (3.109), (3.115) and (3.119) — (3.121) we get

1 62 U,ucn/)\

i
2 0ro 0 Y

<R‘“’ - ;Rg‘“’> - %gV‘“’, (3.122)
where the symmetric quantity V#" is given by
Vi = (g9 = g7 ) [T 0T on + T7 Al
—QFTTEPGM] + g [FTMF”UG IS A AN (L A
R A e N e o
ST AT | g [T T e~ DT | (3.123)

Here it is important to call attention that V#* is not a tensor.
Now by using Einstein’s field equations
1 8rG

R R ity T 124
G R 2Rg a , (3.124)
we can rewrite (3.122) as

e, 4
W = ZT(fg) <T’“’ + 1607T'GVHV> . (3.125)

From the comparison of (3.125) with (3.101) we can identify
the energy-momentum pseudo-tensor t* with V*” whose ex-
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pression? is given in (3.123):

A

py
167G

VH, (3.126)

According to (3.95) the ordinary divergence of the energy-
momentum complex O = (—g) (T"" + t"") vanishes, i.e.

O, = [(=g) (T™ + )], =0, (3.127)

so that we can infer from (3.97) that

/ 032 = constant and / 0% {3 = constant.
v v

(3.128)

Below we shall determine the components of the energy-

momentum complex ©% and ©% in the first post-Newtonian

approximation, which correspond to the total energy and linear
momentum conservation laws, respectively.

3.7.2 The total linear momentum density con-
servation

We begin by determining the energy-momentum pseudo-tensor
component % from (3.123) and (3.126), yielding

30z' C4 3 2k 2i 3L 2k 2
t = 16mC [Fj()j(F ik — 1T kk) +T Oj(F jk—F]kk>

2This is the same as the one given in the book of Landau and Lifshitz
[3], namely eq. (96.8)
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3 2 3 2 2 2
=217 0% 5 + T <2F0¢0 =T+ Fkik)

3 3 2 2
+<FJ0k + rojk> (Fkij + rljkﬂ

_ 1 8£6U+487U8Uj_467U8Ui
" AxGe | Ot Oxt Oxd Oxt Oxd Oxd

} . (3.129)

All terms that appear in (3.129) must be worked in order to
identify the terms that can be put in a divergence form, since
their volume integral vanishes and do not contribute to (3.128)s.
We begin by writing the first term in (3.129) as

oU oU 1 0 [0U? 9*U
D on 2000 (m) ~Vaian (3-130)
while the transformation of the second term reads
WO, D (00 O,
Oz Ozt oI oz’ 0zt 0xI
0 oU; 0*U
= o (U axi> U ston (8.131)

where we have used the relationship given in (2.112), namely
U /ot + 0U; /0x* = 0. For the third term in (3.129) we write it
as

oU oU; O (UU;) D (Uan

P - _ " " — 72
Oxd Oxd — OxIdxd Qi \ Oad ) GVU. (3132)

We have to evaluate also the term which appears in the equa-
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tions (3.130) and (3.131)

o’U U o*x 10 3y
otoxt 2 Otdx Oz DI _2(%;1( atamiaw)
10U 0%y 10 93y

2 97 Otdridr _ana( ataxiaxa)

1, 9%x 10 [0U 0% 1, 0%x
53V V%0 T 20 \awateni ) T "2 U dian

100 [oU & 0y
500 [ay (&vi ataxz) U@tazlaxﬂ} o (8139
where we have used the relationship V2x = —2U. Now by col-
lecting the results (3.130) — (3.133) and using Poisson’s equa-

tion V2U = —47Gp, we get that the component of the energy-
momentum pseudo-tensor (3.129) becomes

3 2 2
tOi—1<4Ui lax>+ 1 5{38[]6
C

T 20tdxi ) " 4nGeoxi \ 2 Ot Y
a?’X 8U1 8UJ
Uiazion TV (axj * axi)
0 1 0%y
+&ﬂ{U(2m&ﬂ4m>}} (3.134)

The above equation can be rewritten without the divergence

terms and by considering (4UZ- — %%) =1I; as

3 e
" = —— 4+ divergence terms. (3.135)
c
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Now we can build the component of the energy-momentum
complex

1 . 1 1 3 3
E@OZ =29 (T‘“ +T% 4 t0’> , (3.136)

by taking into account (3.63), (3.78) and (3.135), yielding again
the expression for the total linear momentum in the first post-
Newtonian approximation (2.295):

1 . 1
E@)Ol = Vit [Vi (V2 +6U + ¢+ 2;) - Hi:| = Pi.(3.137)

3.7.3 The total energy density conservation

The two approximations of the energy-momentum tensor com-
ponent t° which follows from (3.123) and (3.126) read

00 _ oy
167G

_ T <8U)27 (3.138)

“k T Tk Zk T
[QF iU — TVl — T kj:|

871G \ O

{00 c* 2k T ko 2k T
t = ]_67TG{6” |:2F ijr lk +2F ijr 1k - 2T kiF 1j

2 2 2 2 3 3 3 3
—TF Tl — Fklirlkj:| + 040k [Foilrojk - Foijrokl:| }

1 U \? oV, OV, U
- 167Gc? {56U ((‘hl) * (6 dxi ! Oxd )8&#
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1[om; (011, Ol U\’
- - - =~ | — 6| = . 3.139
+2{8mﬂ (8xJ+8xZ> <8t> ]} ( )
By taking into account the approximations of the compo-
nents of the energy-momentum tensor (3.60) and (3.61) and

of the pseudo-tensor (3.138) and (3.139) the component of the
energy-momentum complex 0% reads

@00 =—g (7200+72*100+f00+;00+;00) :p02

+p (V246U +¢) + 5 [V“ +10UV? + 12U° + 6Ue

2P\ vt o | T (OUN(, ., AU
+V <a+p> Vi1, xp]j] 8wG<axi) 1+c2

1 oU\® = 0v,; 0U
—_— - 4= ——
* 167G c? {56U <8x’) * Ozt Oxt

1[0, /011, ol AW
= : : =) —6( — . 3.140
+2{89§3 (310] + 8:1:1> (3t> ]} ( )
Here (3.45) was used which is a consequence of the gauge choice.
As we did in the last section all terms that appear in (3.140)
must be worked to identify the terms that can be put in a diver-
gence form, due to the fact that their volume integrals vanish

and do not contribute to (3.128);. Bellow we enumerate the
terms:

(i
oU oU 1 02U? .1 82U
grion ~ 2om0a UV U= 3 ggiap TGP (3141)
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thanks to the Poisson equation V2U = —471G)p,

(if)

oV, oU 0 oU
42 - =4 Ppp——— 1 hy 14
ozt Oxt ozt (\I/” 6‘:#) + 167G 5, (3.142)

where the Poisson equation was used.

(iii)

Ol11; O11; 0 (H 81’[1') VeI = i (Hi 8H?>
oxI

Oz O O \ ' Ox OxJ
+16mGpV;1L; — H4827U = 167G pV;1];
pVill; l@tal'l == pVill;
0 o11; oU oI 0U
T 9w (Hax - Hje%) T oat g~ LomCPVill
o I, ouU U\ >
thanks to (3.8) and (3.9).
(iv)
omon, _ o (4o o,
Oxi Ozt Ol b Ot L0z Oxd
_ 0 (g 0 (01, | OIL Ol
oI Y O oz’ " Oxd ozt OxI

0 o1l a1, oU \?
= 57 (Hlaxi — 11, axi) +9 (m> . (3.144)

Here (3.9) was used.
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Now collecting all results (3.141) — (3.144) the component of
the energy-momentum complex (3.140) without the divergence
terms becomes

5
Q% = e +p <V2 + 2U+5> + % [V‘* +10UV?
C
3
1202 + 6Ue + V2 (5 + 7;) - 2Vini]. (3.145)

This is the energy-momentum complex of the mass-energy
density. If we want to have the one for the energy density we
have to subtract the mass density (3.75) as we did to obtain the
hydrodynamic equation for the total energy density, i.e.,

V2 U p o 13

00 2 4 2

= - = A - = Ly vy
E=0 pe p(2 +e 2)4—62[8 —|—2

21 1 1
+3U2 +6Ue + V2 (5 + 7;) + 5 Wi = 2Vini]. (3.146)

At this point we have to work with the term %p\If“v and for
that end we write

p\Ifjj _ _\I/jjsz o 1 |: 0 ( 8U> . 6\Ifjj (9U:|

2 8G  8nG|oxi\ Y oxi oxt Oxi

1 ]9 ou 9 (.09 0V ;;
e [Bmi (\I’” aﬂ) T o (U Dt ) U orioni

L (0 (. U\ o (.00,
=gl am () o (V5 + U e

2772
+4U +¢) — 12 (47erU 419U )] } (3.147)

2 0zi0xt
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where we make use of (3.52) and (3.141). Now we have to eval-
uate

0?U? 0 ( 8U2> ouU oU?

dridri  Ox oxi | Ot 9t
0 oU? 909 0 50U
- Ozt (Uﬁmi> —UVU - oz’ (U 8xi>
0 oU? 50U 9

By collecting the terms without the divergences from (3.147)
and (3.148) we have that

1
5pxlfjj = —p (4V?U + 4Ue + 13U?), (3.149)
and the total energy density (3.146) becomes

V2 U\ pl5 5 5
C=p|—+e— =)+ L |sV+ VU - _U?
p<2 e 2>+02[8 T3 2

1
+2Ue 4 V2 (g + 7;) - 2VZ-HZ} . (3.150)

As it should be, this is the same expression as the one (3.90),
which was found through the analysis of the hydrodynamic
equation for the total energy density.

Appendix A

In this appendix we give the components of the Christoffel sym-
bols that are used in the previous sections. From Section 2.3.2
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by identifying the gravitational potentials ¢ = —U, & = —II;
and ¥ = —2® we have

% = —C%%—(t], [0 = c% <Hi SZ - 2%‘?) . (3.151)
10 = ,CLQSZ, 10, = —6—24%7 (3.152)
%ioo = _c%%’ I ‘00 = %w - 6%5(;}', (3.153)
Io,; = % @1; + ?;;j + 2‘?5574) : (3.154)
QFijk = % (ggj ik %% - % j;g) , (3.155)
Iy, = % (ggj - 21} + 283[tjéij> : (3.156)

4 5
The components of the Christoffel symbols I 5, and I'*¢; are
obtained from

D = 2\ OzF + oxJ ozt oxk " Bz
_6gzjk> _ 1 (f)\lfij L Ok a\yjk)

ox! 20t \ ok oxi Ot

1(aU2 Ut . oU? )
Sin ) -

2,
4 1<3§ij Ok _ag4jk> g”(afljl O
2

(3.157)

A\ gk Oij + oxJ Oik = ozt
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2 .
o 9" dgoo 1 (dgio 1895  Dgjo
0 2 Ox 2\ 0x ¢ Ot ox’

Yo\ ow Tt ek | T T ow

+g5 <8HZ— oI, 28U5ij>
C

2
g <3§k0 19gk; 39303‘)_ 10U

oxi  Ori ot
1 <6\P01 8\Ilgj + 3‘1@)

(3.158)

205 \ Oxd Ot ot

6 .
The determination of Iy is more involved. We begin by
writing it as

3 . 2»,
%ioo 9m59200+9”<25930j 5940(3)

T2 ot 2 \c Ot OxJ
8i; (20do;  Odoo ;ij ddoo
_%i (29905 G900 ) 97 9900, 1
2 (c ot oxI 2 Oxd (3.159)

The known metric tensor coefficients that appear in the above
equation are

1I; 2 20 2, 2U

3
01 3 2
g = goi = R Joo = = g9 = —Gij = C—Q&j, (3.160)
2 N
goo = — (U? —29), doi = ng.(3.161)

6 .
In the expression of I'"og there is one component of the metric
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4 ..
tensor which is not known till now, namely g*/. For the determi-

nation of g*/ we make use of the relationship ¢"g;o —|—g”“gjk = ;5
given in (2.24), which here reduces to

E 2' 4_ 4 .
8ij = 9" doj + (_5ik +9" + glk) <—5kj + Grj + gk])
i 2 %k 2 Yiia -6
=0i; — 97 = Gij + 9% gk; — 97 — 9;; + O (¢7%) . (3.162)

2,,
Now by using ¢ = —§;; = 2Ud;;/c* and g;; = ¥;;/c* we get
that

1

g7 = 3 (4U%6:; + Ty5) . (3.163)

By taking into account (3.160), (3.161) and (3.163) it follows
that (3.159) reduces to

5, _i@‘lfoo_la\lfm_&ai[]_g 3U2_5‘f1)
007 966 gyl S Ot S Ot S\ Ozt Ozt
U Bl W, U
—_— — —_—. 164
S Ot S OxJ (3.164)

Appendix B

In this appendix we shall determine some integrals which are
used in the determination of the total energy conservation law
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(3.90). The results are based on the paper by Chandrasekhar
[1]. We are interested in calculating the volume integral of

. , 3
31_11:_p2vi<48UZ 18)(>’

L i
ot ot 20t20x

Ly,
2

(3.165)

where it was considered 1I; = 4U; — % 8‘22’; ..
First we shall evaluate the term with y in (3.165) and for

that end we differentiate (2.291) with respect to % and get

82X / / / / d3a’

i = =G [ POV a1 = i) s = )
A

+G/Vp(x’)V,;(x’) = AU (3.166)

where U; is the vector gravitational potential (2.260) and we
have introduced the abbreviation Z; for the second integral
above. Next we write

ot20zt dt

oU;, — Z;)
oxi

~V (3.167)

and the two terms will be evaluated separately.
(i) The first one is the integral

/ pV; d(U; —Zi)dgmi/ pVi (8(Ui —Z)
\4 14

2c2 dt 2c2 ot
8(Uz — Zz) 3. 1 8sz(Ul — Zl)
+V; 02 )d T= 55 ., B

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



157

+WM)d3x _ i/ o(U; — Z;)
%

oxI 2c2
Vi  OpViVi\ 5 1 d / ;
( N + 9 d’z 502 4t pVi(U, )d’x
1 dv;
_ 7. 1
502 p(U; — Z;) i Sz, (3.168)

where Reynolds transport theorem (2.282) and the Newtonian
continuity equation were used, since this term is of order 1/c?.
Now we evaluate the first term of the second integral in (3.168)
by considering the definition of U; given by (2.260)

202 ~ 22 ot oI

U,  au; 1d X
2c2 pV(@t T D >dx2d/p‘/ledx

o il { e

+6 p(x")Vi B — 1 d
oxI |x—x/| 202 dt

262// )t< Vi(x )|)d3 B’
e
(x

d 3,03,/
262// (x)V; )dt| idede (3.169)

1 7.
((r“)p[/zUZ 0pV;V;U; >d3

pVi U;d3x
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Hence from (3.168) and (3.169) we get that
, 7. 1 ,
/ pVi d(Uz Z)d3$ _ /p id‘/l 3
v 2¢2 dt 2¢2 dt

i [ (5-z)eas S [ [ pp)

x V;(x)Vi(x ’);i|x |d3xd3 ’} (3.170)

(i) For the evaluation of the second term in (3.167) we de-
termine first the expression

Wi = 1A= Z0) d{G/ P s
14

OxJ = Vil )8:103 |x — x’|
T — T
a4

d3 ! ! !
_G/ Ix — ’|3{ V6o — )
+[Vi(x)V;(x) + Vi(x)Vi(x)] (z; — 2))

T; — T

—3V;(x) (2 — @) Vi (x') (. — 2} )42}. (3.171)

x—x

Now we integrate over the volume the above expression

~5e [ PV x—M//

x{[vj<x>vj<x>v< 1) 4+ 2V, ()Y () (Vi) = Vi(x))
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=Vi(x )WV (xX)Vi(x) | (i — a7) + 3Vi(x") (@i — 27) Vi (x)

(o Vi) E ) = 3V s = Vi)

xr — ) dPxd3a’
(1 — W) 128 k)}

3.172
|x — x/|? ( )

|x — x/|3
Note that in (3.172) we have considered the interchanging of
the primed and unprimed labels. This expression can be put in
another form by noting that
1 d 1
o | pViZidbe = —
402 dt % p . 462 % |:
1 dVi(x) dZ;(x)] 5
== Z; f d’x, 1
[ 0|20 1 v B o am)

where the Reynolds transport theorem and the Newtonian conti-
nuity equation were used. The evaluation of dZ;(x)/dt by using
its definition given in (3.166) reads

1 dZi(x) G d [ p(x")Vie(x)(ar — a) (@i — j)da’

0pViZi  0pViZiVi| 3
o " aw |7°

42 dt 42 dt J, |x — x/|?
G AV (%)) , . d3a
= @ VP(X) dt (xk*xk)(xiixi)|x_xl|3

31,/
i [, o0 ] V) s = ) Vi) = Vi)
Has — 2V () [Vi(x) = Vi(x)] = 3V (x) (a5 — 5)

x (@i — ) [Vi(x) = Vi(x)] w} (3.174)
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while its volume integral becomes

1 dzZ;(x
@/Vp(x)vi(x) dt 4c2//
d3 /
!

de( /) (-%'k _ m;g)Vl(x)(xl — xl)m

3z’ ,
Tz / / )IX’IB{Vj(X)
x(xj — ) [Vi(x) = Vi(x)] + (2 — 27)V;(x')

x [Vi(x) = V;(x)] = 3V; (x')(w; — )

X(x; — x}) [Vie(x) — Vi (x)] W} (3.175)

|x —x

Hence we can write (3.172) thanks to (3.173) and (3.175) as

1 d
Wi (Vi) dPr = — L / ViZidx
1%

T2¢2 fy Ac? dt
d 1
(1) 3,93 ../
402// )VZ(X)dt\xfxﬂdxdx
dVi(x) 4
202 Vp(x)Zz(x) o . (3.176)

Now by collecting the results (3.170) and (3.176) the volume
integral of (3.167), yields

1 3y 1 d
[ »dg = T 5 1, i i Zi dS . 1
2¢2 /V PV 200" T T a2 dt v 4ay Jd%z. (3.177)
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For the determination of the volume integral of (3.165) we
need also to know the following integral

8U 7/ dU ——/pvvj

By following the same methodology above one finds that3 o
=z / Vi aUl &’z 2; % /V pVilUid’z. (3.179)
Finally the volume integral of (3.165) becomes
L3t [ e
= —%% /V pVill;d*z, (3.180)

thanks to (3.165) and (3.166).
Another relationship that is useful to the calculation of the
total energy conservation law is obtained from

/ pv( 9+ gf})d%—a REES

X [SD(X) + @(x’)} Vile)(@i — z;) (i) (_‘TZX]BLE;) dBxd®s’

=5 [ [ oty = OO =
<[t o] dbaia = 5 [ [ oo
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d 1
X [cp(x) + go(x’)} 7 FEy BPrds’

e /V d*zp(x)p(x) /V B px) &1

dt |x — x|
!
=G d?’a:p(x)(p(x)i/ d3z’ px)
v

v dt |x — x/|
dU .
= —d’z. 3.181
/V pogde (3.181)
Hence we conclude from this equation that [, pV; 22 d3z =
ou
[ pp9rdia.
References

[1] S. Chandrasekhar, The post-Newtonian equations of hy-
drodynamics in general relativity, Ap. J. 142, 1488 (1965).

[2] S. Chandrasekhar, Conservation laws in general relativity
and in the post-Newtonian approximations, Ap. J. 158, 45
(1969).

[3] L. D. Landau and E. M. Lifshitz, The classical theory of
fields, 4th ed. (Pergamon Press, Oxford, 1980).

[4] S. Chandrasekhar and Y. Nutku, The second post-
Newtonian equations of hydrodynamics in general relativ-
ity, Ap. J. 158, 55 (1969).

[5] J. L. Synge, Relativity: the general theory (North-Holland,
Amsterdam, 1960).

EBSCChost - printed on 2/13/2023 9:10 PMvia . All use subject to https://ww.ebsco. conlterns-of-use



EBSCChost -

CHAPTER 4

POST-NEWTONIAN
KINETIC THEORY

In this chapter a kinetic theory of relativistic gases is developed
within the framework of the post-Newtonian approximation.
The first post-Newtonian approximation of the Boltzmann equa-
tion for collisionless systems was first determined in the papers
[1, 2]. Here the Boltzmann equation, the Maxwell-Jiittner dis-
tribution function, the particle four-flow the energy-momentum
tensor and the Eulerian hydrodynamic equations are determined
from a kinetic theory in the first and second post-Newtonian
approximations. The derivation of the post-Newtonian Boltz-
mann equation follows the methodology that was outlined in
the book [3] and in Section 1.3, while the determination of the

163
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post-Newtonian Maxwell-Jiittner distribution function and of
the particle four-flow and energy-momentum tensor follow the
work [4]. Another issue developed here are the Jeans equations
in the first post-Newtonian approximation for stationary spher-
ically symmetrical and axisymmetrical self-gravitating systems.

4.1 First post-Newtonian approxima-
tion

4.1.1 Post-Newtonian Boltzmann equation

We start by writing the equation of motion of the gas particles

REV da¥ da?
K, — =0, 4.1
dr? Ndr dr (4.1)

and computing the acceleration which follows from this equation
(see Weinberg [5])

Pal _ (da®\Td | (da®\ dat
d(z%)2  \ dr dr dr dr
() () et
- \dr dr? dr dr? dr |"
The above equation can be rewritten by using (4.1) as

Pt (A0 datdat [ (da0\ et
d(z0)?  \ dr dr dr M\ dr dr "
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i ; dxd da® ; dad
= oo =T g5 o — o gm
da’ dx? da? da*
+os [F%o 4 o1 0 +F0jkdxodxo] (4.3)

If we use the expressions for the components of the Christoffel
symbols (2.79) — (2.84), the post-Newtonian approximation of
(4.3) up to order O(c™*) becomes

2

A2zt

- 02{ ~Tigy — I — 2ﬁri0j - —”C'”’“P + 2 [FO
Vipo 4 Vi%kpo |V _ 00 14, 09 0¢
+2cr 0+ c? ij}} 8xz+ {4 10z Oz
¢ @_8&_”' 06 0§\ 305 (4.4)
‘ot ot Oxi Ozt R

Note that the underlined term above was not considered, since
it is of order O(c™?).

Now we can write the one-particle distribution function f =
f(x,v,t) as f(z"(7),v;(7)) where T is the proper time along the
world line of the one-particle distribution function. Hence the
variation of the one-particle distribution function with respect
to the proper time reads

df (@ () vi(r)) _ Of da* | Of dvi _ , Of  Of dv; dt
dr ozt dr | ov, dr " Ozt | v, dt dr
(4.5)

,u%;/c) is the four-velocity of the gas particles.

where u# = (u
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The first term of the second equality up to the order O(c2) is

fosifonth pod (-l o)

83@“ “ 0 8;16’ 2 ot Vo
(4.6)
where we have used the corresponding expressions (2.87) and
(2.88) for u® and u’ through the substitution of the hydrody-
namic velocities U* and V by the particle velocities u* and v.
The second term of the last equality in (4.5) up to the order
O(c™2) becomes

of dvidt  af [ 96 1 06 . 99
v, di dT@Ui{ 0w T 2 {4””5 3vigy

302 00 ov 06 (06 0
(i )t ()

thanks to (2.86) and (4.4).
By collecting the results (4.5) — (4.7) we get the Boltzmann
equation in the first post-Newtonian approximation

et 2(5-9)- 54

ot oxt 2 ot 87}i
1 99 8¢ 3v 0
+c2{4”’”’a AT (2 " ¢> R
_ 6¢ . 851 o 851 _ 8§] f
ort Ot v <8xj ori )| ov; o(f, f), (4.8)

where we have introduced the collision operator of the Boltz-
mann equation Q(f, f), which refers to the binary collision of
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the particles and is given in terms of an integral of the prod-
uct of two particle distribution functions at collision. Note that
without the terms of order O (0*2) equation (4.8) reduces to
(1.1).

4.1.2 Post-Newtonian Maxwell-Juttner

distribution function

The relativistic equilibrium distribution function is the Maxwell-
Juttner distribution function (1.19) which was introduced in
Section 1.2 and reads
mU,
1 b “) . (4.9)

= dmm2ckTK(C) P <_ KT

f(x,p,t)

For the determination of the Maxwell-Jiittner distribution
function in the post-Newtonian approximation we need to eval-
uate the exponential term in (4.9). For that end we intro-
duce the components of the four-velocity of the gas particles
ut = (u®,u’v;/c) which are obtained from the components of
the hydrodynamic four-velocity U* = (U° UV, /c) given by
(2.87) and (2.88) and replacing U® and V; by u® and v;, respec-
tively. Hence, we have u’ = u’v;/c and

u? 1 [v? 1 /30t 50 P
c—1+cz<z‘¢>+c4(8‘ > +2‘¢+fi”i>
(4.10)
Next we introduce the peculiar velocity V; = v; — V; — which is
the difference of the fluid particle velocity v and the hydrody-
namic velocity V — in the expression for the components of the
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particle velocity and get

gul/pHUV - m(QOOUOUO + gOinUi + goz-uiUO + gijuin)

kT kT
m, V2 13V , V22

= — — =2
kT{C+2+02{8 VI
ViVi)?

+% + (ViVi)VQ] } (4.11)

In the above equation the components of the metric tensor (2.74)
— (2.78) were introduced.

Up to 1/c* order the modified Bessel function of second kind
reads

1 2me?  me? I5KT  345(kT)?
= 1-— e )L (412
Ka(Q)  Vawr ¢ ( gme? T 18mecd (412)
thanks to the asymptotic expansion (1.76). Hence, by tak-

ing into account (4.9), (4.11) and (4.12) we get the first post-
Newtonian approximation of the Maxwell-Jiittner distribution

function
n _my? m [3V*  15K2T2
f=———e 2T ]l — —— | — + ————
(2rmkT)? ETc?| 8 8m?
o, (ViVi)? VA2 2
=20V + 5 + 5 + (V;vi)y . (4.13)

Here we have considered the terms with the factor 1/c? of small
order and used the approximation e ~ 1 — z.

EBSCChost - printed on 2/13/2023 9:10 PMvia . All use subject to https://ww.ebsco. conlterns-of-use



EBSCChost -

4.1 FIRST POST-NEWTONIAN 169

4.1.3 Post-Newtonian macroscopic fields

The expressions for the particle four-flow N* and for the energy-
momentum tensor T#” in terms of the one-particle distribution
function were introduced in Chapter 1 (see (1.53) and (1.54))
and their expressions as function of the particle four-velocity u*
are

3 d3u y 4 y d3u
N“:mc/u“Jjgfu—, s :mc/u“u \/—7ng—
’ (4.14)
The transformation of the differential element of integration
d3u = du'du®du® in terms of the one related with the peculiar
velocity d®V = dV;dV,dVs is given by the determinant of the
Jacobian matrix

O(ut,u?, u?)

du = |J|d>V, h J=——1"" 1
u=1l where OV1,V2, V)

(4.15)
From the expression of u’ in terms of the peculiar velocity V;
one can obtain that

o’ (1+v2+v2+2vkvk ¢> UERD\/ER%)

2c2 c?

= 51 )
aV]‘ J 2
(4.16)

and it follows by considering terms up to the 1/c? order that

1 [5(V2 42V Vi + V?)
3 — —
du—{l—i—c2 [ 5

C

- 34 } V. (4.17)

Likewise from the expressions for the components of the metric
tensor (2.74) — (2.78) we can build the relation up to the 1/c?
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order

uo = (goou” + goiu') = goou® [ 1+ Jo 5= w1+ 2% .
Jgoou c
(4.18)

Now by considering that v/—g = 1—2¢/c? we have the following
relationship up to the 1/¢? order

V—gdiu :{1+1[5(V2+2Vk]}k+v2) _w]}di”v (4.19)

U c? 2

Another expression for the integration element which will be
used in the next sections is

V=g & {1+ [207 —6¢]}d3 (4.20)

() C

thanks to (4.10). Here we have written the integration element
as function of the particle velocity v.

From the knowledge of the post-Newtonian Maxwell-Jiittner
distribution function (4.13) and the element of integration (4.19)
we can calculate the expressions for the particle four-flow and
the energy-momentum tensor in this approximation.

The time component of the particle four-flow (4.14); can be
written as

© m3cne 3 4T V2
Nofmc/ uy/—gf— = mene %
f 0 (2rmkT) 3

(Viv)? | V22

—_92pY?% 4 1Y
¢V+2+2

L m [V 15k2T2
kTc?2| 8 8m?
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2 2
—&—(ViVi)VQ} N C% [S(V + 2‘;1@]}19 +V?) B 7¢] }

el (2 -0)] a

Above we have introduced spherical coordinates to express the
integral element d®V = V?sin 0d0dy, where 0 < 6 < 7 and
0 < ¢ < 27 and performed the integrations in these angles
whose result is 47. Furthermore, we have used the expressions
for the Gaussian integrals in the Appendix A. Note that the
integrals of the odd velocities V; are zero.

The expression for N° given by (4.21) matches with the one
of the phenomenological equation (2.208).

The components of the energy-momentum tensor are ob-
tained through integration of (4.14)2 by using (4.19) and (4.13),
yielding

dPu o m402ne_7§'TVT247TV2
T = m4c/u0u0\/— — = dy
of Ug 0 (2rmkT)?
m [3V*  15K*T? 5 (ViVy)?
X{ kT [8+ 8m? TV 2

v2y? 2 1 2 2
+ +(ViV)ve| + 2 3(VE+2Vi Vi + V) — 8¢
1
= pc? {1 +3 <V2 — 26+ s)} : (4.22)
, . du % micne 5 4 )2
T% = m4c/u0u1\/f — = —dV
of Uo 0 (2rmkT)?2
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8+ 8m?2

- kTc? —20V*+

4 22 V). )2
><(Vi+Vi){1 m [SV 15k2T (ViVi)

%% 2 1 2 2
+ + (ViVi)V? | + = [3(V2 4+ 2V Ve + V?) — 89
C
_ L (v p
=pcVi |1+ 5 (VP=20+e+= ||, (4.23)
c p
g o du % mine= 3 47 )2
T = m4c/ulu3\/— — = dy
9f Uo 0 (27rka)%
m [3V%  15K2T?
R R L
ViV 2 V22
—20V% + % + 2V + (Vivi)VQ]
+5 [B(V2+2ViVi +V?) = 80| ¢ =p (14 5| b
c C
1 (., P
+o |1+ 5 (V —2¢+e+; ViVj. (4.24)

The above expressions match the phenomenological ones (2.93)
— (2.95), the only difference is that here the specific internal
energy refers to the one of a monatomic gas ¢ = 3kT/2m. Note
that above p = nkT is the pressure of a perfect fluid.
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4.1.4 Post-Newtonian transfer and Eulerian
hydrodynamic equations

Here we follow the methodology described in Chapter 1 and
multiply the Boltzmann equation (4.8) by an arbitrary func-
tion W(x,v,t) and integrate the resulting equation by using
the invariant integration element (4.20). Hence it follows the
post-Newtonian version of the Maxwell-Enskog transfer equa-
tion, namely

0 1 (5v

o3 (5 e o

1

(5 w2 o Bl
Sl Ml+;(5“—w>}fd%

0¢ 1 (7,

+o W [1+02< —3¢>}fd3v

LD 0 (06 08 g 00 Dy
2 ) ovi| "oz I\ Oxi  Oat Yot Oxt
06

]de /\If {1 + c% [20% — 6¢]} Q(f, f)d®v. (4.25)

Likewise in Chapter 1, for the divergence term in the velocity
space we used the divergence theorem and considered that the
one-particle distribution function vanishes at the surface situ-
ated far away in the velocity space.

As usual in kinetic theory of gases the hydrodynamic equa-
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tions for the mass, mass-energy and momentum densities are
obtained from the transfer equation (4.25) by choosing appro-
priated values for the arbitrary function ¥(x,v,t).

We begin by choosing ¥ = m? in (4.25) and considering
the equilibrium distribution function (4.13). By performing the
integrations we get

atrla (5o
(o)} -2 %§§i>

dpo  OpdV; 2¢ 9pV;
:c2<8t+ axi> (aﬁ x) (4.26)

Now we use the Newtonian approximation of the continuity
equation

dp | OpV;

=0 4.27
ot ox ’ (4.27)
for the terms of order O(c2) in (4.26). If we introduce the mass
density
1 (V2
p =y {1 + 2 < — 3¢>} (4.28)

we arrive at the continuity equation for the mass density p* in
the post-Newtonian approximation, namely

ap* . 8,0*%
ot ox?

= 0. (4.29)
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The above equations match equations (2.122) and (2.123) of the
phenomenological theory.

The hydrodynamic equation for the mass-energy density is
obtained by choosing ¥ = m*u® in (4.25) and following the
same methodology, yielding

;{p{1+;(vz—2¢+e)”

1( P p3</>
+CQ<V —2¢+E+p>:|}— 29 =0. (4.30)

In terms of o = p [1 + % (V2 —2p+¢e+ %)} , it can be written
as

do 0oV, 1 ( 8¢+8p) 0, (4.31)

ot o 2\Pa T

which matches equation (2.127) of the phenomenological theory.

For the momentum density we choose ¥ = m*u’ in (4.25),
use the distribution function (4.13), perform the integrations
and get

0 :
gloi (- t) ul
d 2¢ ¢ 99
(1) | 18 (5 +vias)
0 1
A

ot oD 25 )

ort ¢
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P o6 0§
=V - — - | =0. 4.32
TaY (83:3 or? (4.32)
By introducing o and the material time derivative d/dt = /0t +
V9 /dz" the above equation can be rewritten as

oV, doViV; ¢ {H< £ Bp)]

2_
ot Tow TPow Vimotsts,

0 [ (1 20\] 0,06 o o0

+8:17i [p (1 02>} CQVJ ox? + c? Oxt
dp d &\ _

b (o) o o

Here we have used the Newtonian expression of the momen-
tum density hydrodynamic equation (2.129) for the terms of
order O (¢72). The above equation matches (2.131) of the phe-
nomenological theory.

It is noteworthy to call attention to the fact that the right-
hand side of the Boltzmann equation vanishes for the choices
m*, miu®, m*u?, since mass, momentum and energy densities

are conservatlve quantities at collision.

4.2 Second post-Newtonian
approximation

In this section we shall derive the Boltzmann equation and
the Maxwell-Jiittner distribution function in the second post-
Newtonian approximation by using the Chandrasekhar poten-
tials and the results of Chapter 3.
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4.2.1 Post-Newtonian Boltzmann equation

We start by writing the acceleration term (4.4) and taking into
account the higher order Christoffel symbols up to O (0_6).
From the expressions for the Christoffel symbols given in the
Appendix A of Chapter 3 we get

A2zt
dt?

U’i 3 5 V. 2 4 v
+— [Fooo + 1% +2-2 (F%j + r%j) + Jc b rojk}

vjvk i ; ou v [OU ou
= (Fﬂk”ﬂ“)} P cz[at“”ﬂaxj

1 2U\ [.0(U? - @) ou L, oU
2 (1 B 62> [2 ox? + (2UiUJ dxi 83:1)

) 2 4 6 v; 3 5.
=c { —TI"90 —TMoo — Moo — QC(Fle +F10j)

ol o oI, oIl Y ou +ﬁ o0 8

ot T\ Qxd Ozt 9ot F ok

oU v; oU o o ViU

20U i oe j
BT } ta [HJ I -2 ot A0j axj] 2c¢4 x’f
Ouu] L[ 00 o 10w U

ox’ "ot ot 2 Ozt Y Qi

2’UJ oU 1 8\11i0 1 8\I/j0 1 a\IJU

[ 00 "2 00 200 T2 0t | (4:34)

According to (4.5) the variation of the one-particle distribu-
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tion function with respect to the proper time is given by

df (z#(7), v (7)) _of dxt Of dv; u af . Of dz* dt
dr T Qxt dr 0 Ov; dr R, Ov; dt? dr’
(4.35)
where the time component of the four-velocity of the gas parti-
cles in the second post-Newtonian approximation is given by

1 [v? 1 /3v*  5U?
0: 1 i U | —
" c{ Tz <2 ) tals T

U2

which follows from (3.10) by replacing the components of the
hydrodynamic velocities by the gas particles velocities. The
spatial component of the four velocity of the gas particles is
ut = u%v;/c and dt/dr = u°/c.

The Boltzmann equation in the second post-Newtonian ap-
proximation follows from (4.35) by taking into account (4.34)
and (4.36) and reads

0f 05 L O1OUY[, (v Y L
[8t+v18xi+8viaxi}{l+02<2+U +c4 8

5020 U? 1 9f 1 (02
00 T )| + = 1+ (%
LRI ]U])}—FcQavi{[ +02(2

o, ol ou oty _0(U?—@)
(- 5) -y -2

Vige ¥ o O

oU oU 1 [v? oU
iy +U28xi] o [“ 2 (2 *U)] {8t
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oU ViV 8\1/1 1 ov ik 1 oU 8\1/10
2 J Sl 2 —m
+”ﬂaa]+ 22 [ pre 8331} { ot ot
1 6\1100 oUu ’U7 81_[] 28U
2o T ”89} {U”‘akﬂ’at

20, [ U 100 10%50 | 10V,
"Oxd 2 Oxd 2 Oxt 2 Ot

i oU 0P 0P
1 L I 1

4.2.2 Post-Newtonian Maxwell-Juttner
distribution function

The determination of the Maxwell-Jiittner distribution function
in the second post-Newtonian approximation follows the same
methodology described in Section 4.2. First we compute the
term in the exponential up to the order 1/c*, namely

Gup'U”  m V72 1 , V2?2
ke kT{ ot |20V —
(‘/;Vl) 2 3V4 1 24,2

g (V)Y 4 |+ 30

+AUVZV? 44U (V;V,;)? + 8U(V;V;)V? + 3UV*
V4 2 3v2 4

2 v 4 2R vivgve + 4V

9(ViVy)*V? +3(WVi)V4 510

17)3 oV
+(V;V;)® + 1 5 G

I Vi(ViVi)
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—ILVV? = ILV,V? + 20V7 — Vivg%] } (4.38)

thanks to (3.2) — (3.4), (3.10) and (4.36).

The equilibrium Maxwell-Jittner distribution function in
the second post-Newtonian approximation is obtained from the
insertion of (4.38) into (4.9) and considering the approximation
e ®~1—x+2%/2. Up to (1/c*)-terms the resulting equation
reads

n _my? 1 [15kT  m(ViV;)?
= ————5e¢€ 2T 1— — +
(2emkT)> 2| 8m 2kT
2mUV?  3mV* mV2V2 m(V;V)V?
+ + +
kT 8kT 2kT kT
1 2m2U V4 L m2UV2p* L 3m2UV° L m2V iyl
| (kT)? (kT)? 4(kT)? 8(kT)?
m2U(V;V)?V?  2m2U(V;v)Vt 3m2V2)S

RT? (TP 16(RT)?

m2(v,v A mAVE(VV)A? m2VE(V ) vt
8(kT)? 4(kT)? 2(kT)?
+m2(vzvl) V2 N 1Im2(V;V;)2V 3m2 (VW)Yo

2(kT)? 16(kT)? 8(kT)?

Om2V®  345(kT)%  3mU?V?  4mUV?)?
128(kT)2 © 128m2 KT kT

AmU(V;Vi)? smU(V;Vi)V?2  3mUV*
kT a kT kT
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mVYY2  mV2(V;V)? 2mVE(V;V,)V?

C2%T kT B kT

3mV2VE m(ViV)3 5mV® mlILV;V?

4T kT 16kT kT
9m(ViVi)2V2 mszz(VZVl) 3m(ViVi)V4
4kT + kT 2T

mlL; V;V? B 2mPY? mV;V; ¥, n 15U V2

kT kT 2kT 4

15V2V2  15(V;V)2  15(ViV) V2 4504
5t 16 2 + 61 ” (4.39)

4.2.3 Post-Newtonian macroscopic fields

To determine the particle four-flow and the energy-momentum
tensor components we need to know the integration element
V=g d3u/ug in the second post-Newtonian approximation. To
obtain it we begin by determining the Jacobian matrix of the
transformation d3u = |J|d?v from (4.36) which leads to

1 2 1 4 2
d*u = {1+CQ(5U+3U) +<35v LA

2 ct 8 2
35U >
Jr

— 4Hivi>} d®v. (4.40)

Moreover from the expressions for the components of the metric
tensor (3.2) — (3.4) and of the particle four-velocity (4.36) we
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have that
uo = (goou’ + goju') = u’ [1 YL (2U° — 40 + H-v-)]
7 02 C4 1Y ’
(4.41)
2U 1 ]
1/7_g:1+2—4<U2—|—2fI>+kk>. (4.42)
c c 2

Hence up to the 1/c¢* order we get the following relationship

V=g du [1+ 1 (51}2 ) 1 (351}4

- 0*2 7+7U +674

() 2 8
55U1}2 43U2 \I'kk d31}
80 — —% _ 5w, ) | —
t—— 5+ 5 v )} =
1 2 1 4 2
C C
v d?
+15U2 + 60 — 4T1,v; — % }c” (4.43)

From the knowledge of the equilibrium Maxwell-Jiittner dis-
tribution function (4.39) and of the integration element (4.43) it
is possible to determine the components of the particle four-flow
and energy-momentum tensor in the second post-Newtonian ap-
proximation. Indeed, the insertion of (4.39) and (4.43) into the
definition of the particle four-flow (4.14); and integration of the
resulting equation leads to

1/Vv? 1 /3vt 5V2U
N = 1+ 5= +U — | —=
nc[+02(2—|— >+C4(8 + 5
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U2
+g 22— HV)] (4.44)

and N = NV, /e.

The components of the energy-momentum tensor follow from
the insertion of the Maxwell-Jiittner distribution function (4.39)
and the integration element (4.43) into (4.14), and integration
of the resulting equations. The time component of the energy-
momentum tensor reads

1 3kT 1
TO = p? |1+ < (V242U + == ) + = (Vi4+6UV?

2 2m ct
5kTV? 15(kT)?  3kTU
+ +

2m 8m?

+2U? + —2ILV; + 4@)] .(4.45)

If we make use of the thermal equation of state and the expres-
sion of the specific internal energy

kT 3kT 5kT
poBT,_UT( BT

4.4
m 2m (4.46)

4mc?

the resulting expression for the time component of the energy-
momentum tensor becomes

1 1
T00p02{1+02<v2+2U+6) +C4{V4+6UV2
+2U? + (6+ Z)VQ +2eU - 2ILYV; +4‘I’] } (4.47)

The final expression for the energy-momentum tensor space-
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time components is

, 1 5kT 1
T :pcw[1+62(v2+2U+2m> +C4<V4+6UV2

SKTV?  15(kT)®  5kTU
+ +
2m 8m?

+20° + — 2IL;V; + 4@)}

. kaHz
met

1
:pcm{1+2(v2+2U+s+p>
c p

1
+C4[V4 +6UV?4+2U% + <s+ 7;) (VZ+20)

plI;

—2T1,V; + 4@] } — (4.48)

while the one for the spatial components reads

. kT kT,
7 = p (Vv + L5, ) 4 L] (v2 om0
m c2 2m

o
5kTV?
2m

4KTU?
— 211k Vi + 4<1>) ViVi + ———0i;
m

%UTU
—51-]} + L Kv4 +6UV 4207 +
m C

15(T) | SKTU

8m?2
KTV, ;
+mj} =p <V2V} + iaij) + c% [(W +2U+¢

+’;>Vivj - 27;U5,;J} +4 Kv“ +6UV? 4 202

+ (s + ]p’) (V2 4 2U) — 20V}, + 4@) ViV
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%(4U25m + ). (4.49)

The above expressions for the components of the particle
four-flow and energy-momentum tensor match the ones given in
Section 3.6.

4.2.4 Post-Newtonian hydrodynamic
equations

The post-Newtonian hydrodynamic equation for the mass den-
sity is obtained from the multiplication of the Boltzmann equa-
tion (4.36) by m*\/—gd®u/ug, the use of Maxwell-Jiittner dis-
tribution function (4.39) and of the integration element (4.43).
The integration of the resulting equation, yields

Of T (VR Y (vt s o2
a\”m T 2\ 2 c4 8 2 2

R

1 /3vYt 5V2U U2
s (B 2+ Sy )|

8 2 2
p (OU  LOUN  p(0U  0UN . .
12 f ( A% axz) < Vv v )

0P 0P 1 8\I/kk 8\I’kk
[2<6't +Vaxi)+2( ot Vi oa )] =0

(4.50)
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In order to get the continuity equation (3.74) we have to trans-
form the underlined terms as follows. The first underlined term

can be rewritten as
p (OU ou opU  0pUV; dp
c2(at +Vlami> - ( ot t on at

9pVi\ _ 2 (0pU  0pViU 1% OpV?
* >_02(6t+ 8xi>+c4[< ot

oxt
0pV2V; opU  0pUV;
+axi>+6( o o )| 45D

where the expression for the continuity equation in the first
post-Newtonian approximation (2.122) was used. The second
underlined term can be transformed according to

2
Z(WJFVZ-‘?U) (V2 —4U) = 14{3va
C C

ot ox' ot

8,0UV2 0pV?  9pV?V; opU
dx U( ot o) W ar

apUV; dp  0pV;

B0 ) s

Here we note that for the above underlined term we can use the
Newtonian continuity equation so that this term vanishes. Now
by adding the two equations (4.51) and (4.52) we get

2<8U aU)+<8U+V6U>(V2—4U)

ot G, ot 0
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_ 2 opU n opUV; 1 opUV?
T2\ ot ot ct ot
OpUV?V opU  0pUYV;
"FT + 2U(6‘t + o7 . (4.53)

Furthermore, the last term of the above equality can be ex-
pressed as

g 1 2 27/.
2U<6pU 8pUVZ> _<8pU opU V;)_i_o(c_(j)'

ct\ ot + oxt ) A\ ot ox?
(4.54)
The last underlined term in (4.50) can be written as
P[00 00N 1(0% | OV
p [Q(at TVigai ) Ta\Tar Vi aus
__L[9p(22+ %) OpVi(22 + )
ct ot ox?
1 Wik dp | OpV;
+7 <2q>+ 5 ) (at + o ) (4.55)

where the underlined term above vanishes thanks to the New-
tonian continuity equation.

The continuity equation in the second post-Newtonian ap-
proximation is obtained from (4.50) by using (4.53)— (4.55),
yielding

op Vi
5T g =0 (4.56)
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which together with the expression for the mass density in the
second post-Newtonian approximation

1/V? 1/3 7 3
sl 2 (X2 L 2va Cyr2 92
P p[ +02( 5 +3U)+C4(8V +2UV +2U
1

_illlkk - HiVi)] ; (4.57)

matches equation (3.74) from the phenomenological theory.
The mass-energy hydrodynamic equation is obtained by ap-
plying the same methodology, i.e. the Boltzmann equation
(4.36) is multiplied by the term m*u®\/—gd3u/ug, the Maxwell-
Jittner distribution function (4.39) and the integration element

(4.43) are used. From the integration of the resulting equation
it follows that

B 1 1
—p|ll+ 5 (VE+2U4¢ ) + =V +6V3U + 20>
ot c? ct

0
+V2(€+ p) +2Ue + 49 — 2HjVj>] } + W{pvi [1

1 1
+2(V2+2U+6+p>+4(V4+6V2U+2U2
c p c
1T,
4D + (2U+V2)<s+ i) —2vaj)] -5 }

A K‘%T +2U+2V2> ou

2 ot 2 ot
ou? ouU? 6U OV kg, oA\ %A
_3<8t *Viaxi) g~ 2( o *‘Mm)
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06 9D o
— (46t + GMaﬂ) + ViV 83:1'] =0. (4.58)

This equation can be put in the following form

o5 05V, 1 ([ dU 08p\ 2p[ OU 0P
o " oo 02('0815_815) &[*”at‘ Pt
10pUV; V}&Hi] .
p Oxt 2 Ot '

(4.59)

by introducing the abbreviations ¢ = V2 + U + 5+ g—z from
(2.111) and

- 1 1
G=pil+ = (V24U +e+ )+ 2|Vt y6v2U — U2
2 P oA
1
+2Ue + V2 (E + i) — 1LV, — 2\I’kk:| } (460)

Note that in (4.59) the term

1 Ui\ [Op  OpVi
3 <3U2+4<I>+ ) [ +

2 ot ox’
I1; {&M opViVy  op  OU

ot oI ozt P ozt

—a ] , (4.61)
was neglected, since the Newtonian continuity equation and the
momentum hydrodynamic equation for the first and the second
terms within the brackets can be used, respectively. Equation
(4.59) corresponds to (3.81) of the phenomenological theory.
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4.3 Post-Newtonian Jeans equations

In astrophysics the so-called Jeans equation refers to the mo-
mentum density hydrodynamic equation for stationary symmet-
rical self-gravitating systems which is derived from the collision-
less Boltzmann equation (see e.g. the book [6] and the references
therein). In this section we shall derive the Jeans equation from
the collisionless first post-Newtonian Boltzmann equation (4.8)
for stationary spherically symmetrical and axisymmetrical self-
gravitating systems. The mean velocity of stationary systems,
represented by the hydrodynamic velocity vanishes, i.e., V.= 0
and the post-Newtonian Maxwell-Jiittner distribution function
(4.13) reduces to

15T m [ 3v?
= 12 T 2 g2
! fo{ 8mc?  kTc? [ 8 2¢v ]}

15kT m  [3v? 9
{ - 8me kTc? {8 20 }} (4.62)

2

__ma

ne” 2r
(2rmkT)2

S

Above fy is the Maxwellian distribution function.

Furthermore, for stationary systems the component of the
energy-momentum tensor 79 given by (4.23) vanishes and the
Poisson equation (2.66) for the gravitational potential & reduces
to V2¢; = 0. Hence we can consider { as a Laplacian vector field
suchthathg=0andV-E:0.

The expressions for the post-Newtonian collisionless Boltz-
mann equation in spherical and cylindrical coordinates by con-
sidering E a Laplacian vector field are given in the Appendices
B and C.
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4.3.1 Stationary and spherically symmetrical
self-gravitating systems

For stationary spherically symmetrical self-gravitating systems
the Jeans equation is a differential equation for the determi-
nation of the radial velocity dispersion, which is represented
by the square root of the mean value of the radial velocity
square \/(v2). The equation for the radial velocity dispersion is
obtained from the multiplication of the post-Newtonian Boltz-
mann equation in spherical coordinates (4.89) by m*v,u°/c and
integration of the resulting equation by taking into account the
invariant integration element (4.20), yielding
(S

ddr{p[@b + SRR — S0 -

kT
o) - BT} el (-5
_Sli’jf) (v3) + (02) — 2(v2)) + % (3+I<:2TWCL2>

X (<v5v2> + (viﬁ} — 2(vz v2>) 8]?Tc2 (( 21)4}

—|—<viv4> - 2(1}31;4))} - ':cotane{@rv(g) + C%(vrvev2>

6 8
+g<’0,ﬁ)al]i> - c—2¢<vrvg> -——

m

e |:3<UTUHU ) — 2¢<vrvevg>] }
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o 4 4, 15 kT
+d[” W@t a e
3 di
—% (8<v4>—2¢<02>>}+c’;dr 0. (4.63)

Note that the assumption of a spherically symmetrical system
implies that the gravitational potentials and the distribution
function do not depend on the angles 6 and ¢ but only on r. In
(4.63) the mean values are defined by

= /m4f0d3v7 plv™v?) = /m%"vffod?’v, (4.64)

and so on. In the derivation of (4.63) we have consider that
the integrals with the derivatives of the distribution function
with respect to the components of the velocity can be reduced
according to

2
/1)2 865: dv,dvedv, = / 6avvrf dv,dvgduv,

+oo +oo 4o
—2/vadUTdvgdv¢, :/ / U2f‘ dvgdv,
oo J—0o o)

72/vrfdvrdvgdv¢ = —2(v,), (4.65)

since the distribution function vanishes for great values of the
particle velocity.

The mean values in (4.63) can be expressed in terms of
(v7), (vg) and (v2). Indeed, by introducing the Maxwellian dis-
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tribution function (4.62)3 in (4.64)s and integrating the result-
ing equations follow the relationships

@ =3, =15 (M) =520, case)

oty =35 (50 ) (e, (el =5 ). (ao)
o) =35 (50) o) 0t =552, o)
kT

(v*v2) =35 (

m

) (v2), (4.69)

(v,09) = (V,090?) = (vvgu?) = <v,v9vi> = 0. (4.70)

If we multiply the post-Newtonian Boltzmann equation in
spherical coordinates (4.89) by m*vgu®/c or m*v,u’/c and in-
tegrate the resulting equations by taking into account the invari-
ant integration element (4.20), we get — by considering that the
odd moments vanish — that (v3) = (v2). Now from the above
results we can express (4.63) as a function of (v7), (vg), (v2) and
obtain the post-Newtonian Jeans equation for stationary spher-
ically symmetrical systems:

i {M ><1+ %)] +2p<03¥ (1+ 2¢) AL

dr 2 dr
do 20 4 5 9ET
i I [t s Z
+p Par [ 2 2 (or) 2 mc?
Here we have introduced the velocity anisotropy parameter 8 =

1 — (vg)/(v?), by assuming that (v7) = (v2).

=0. (4.71)
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The radial velocity dispersion y/(v2) can be found as a solu-
tion of equation (4.71) together with the Poisson equations for
the gravitational potentials ¢ and 1 once we know the velocity
anisotropy parameter 8 and the dependence of the mass density
p on the radial distance r.

4.3.2 Stationary and axisymmetrical
self-gravitating systems

Another interesting problem in astrophysics is the analysis of
stationary and axisymmetrical self-gravitating systems. The
equations that rule the behavior of such systems are obtained
from the post-Newtonian Boltzmann equation in cylindrical co-
ordinates (4.93) as follows. First we multiply (4.93) by m*v,u®/c
and the integration element (4.20). The integration of the re-
sulting equation, yields

2 {o[wnr+ S - s (St - 2otz

15 KT 2y 082¢<v3>} } + i{p{mvﬁ + C%@,,vaQ)

82 m
- St - g (o) = 2 (St
2¢<vrvzv2>>} } + f{; (<v$v2> - <viv2>>
H(it - ) (185 - g5
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f% E((vfu‘*) (viv4)) - 2¢(<v v? } }
~ S 4 p5e L S0 - §<v$> 39

15 kT m (3, p oY
LS

Next we follow the same methodology but multiply the post-
Newtonian Boltzmann equation in cylindrical coordinates (4.93)
by m*v,u/c, resulting

0 3 8 3
{o|otr+ Sz - Sod - s (B

0z
~2002) ) - gy 0] } + g o[ toren)

S or?) = Son) — ()

e (5 ) = 20{ure 2>>:}

+7’f{  (or0r®) + (vrvz>(1 89— ;;’g)

_MTCLCQ [vaz 4 — 2¢(v,v,0 >}

405 1 S0 = 50D - s (o) - 2007
BN Shp
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Finally the multiplication of the post-Newtonian Boltzmann
equation in cylindrical coordinates (4.93) by m*v,u®/c and fol-
lowing the same methodology leads to

0 3 9 m (3 4
m{p{(vrv@ + g(bﬂ@@ ) — e (8<UTU¢U )

3
_kgﬁ(8@w&&>_ZMWWHPO}}+2i{<1_8§

k

82 m
3 , 1 0¢ B
—&-sz(vrvwv >} - C—zpa@zrvﬁ - ?”&WUW =0. (4.74)

The mean values can be expressed in terms of (v?) and (v2)
and (v?) from the integrations by using the Maxwellian distri-
bution function (4.62),. Here we have that

kT KT\
2,2 2 4,2 2
=5— =35 — 4.75
) =5t = () 0d, am)
while the mean values with odd velocities vanish.

Since the odd moments vanish, (4.74) becomes trivial and
(4.72) and (4.73) reduce to the post-Newtonian Jeans equa-
tions for stationary and axisymmetrical self-gravitating systems,
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namely

ol 20\1 = p((v2) = (v2))
o _p(vr> (1+02>_ + " 1+

9 20 _ 4, KT PO
+p6r [1 c? 62< 2 2mc2} 2 or
D2 20\ p OV 00f 20
82_<Z><1+02)_ 028z+ z{1+02

4 9 kT
S+ 5 =
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(4.77)

For the integration of the equations in this chapter we have used
the following Gaussian integrals from the kinetic theory of gases

(see e.g.[7])

n41

In:/v"e*%dvzlr <”+1> (kT> )
2 2 m

1

(4.78)

I(n+1)=nl(n), TI(1)=1, T (2) = \/T,(4.79)

my2 I
/e* BV, V;d3Y = =0,

14 [6i50k1 4 001 + 6101

/e_%ViV'Vled:SV -
J 15

(4.80)

(4.81)

—my? 1
/6 kr}{o Vzvjvkvlvnvndsv = -5 [513 (6kl6mn + 5km5ln
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+5kn5lm) + 6ik (5jl5mn + 5jm5ln + 6jn5lm>
+0i1 (86 0mn + GjmOkn + 6jndkm) + Gim (6501
+6;10kn + 0jn0kt) + Gin (8;501m + 0;00km + 0jmOri)] (4.82)

Appendix B: Boltzmann equation
in spherical coordinates

In order to write the post-Newtonian Boltzmann equation (4.8)
in spherical coordinates we make use of the relationships be-
tween Cartesian coordinates (x!, 22, 23) and spherical coordi-

nates (r,0, )
z' =rsinfcosp, 2°=rsinfsing, z°=rcosh, (4.83)

and the relationships between the velocities (v!, v?,v?) in Carte-
sian coordinates and the ones in spherical coordinates (v, =
7,09 = 70,0, = rsinfy)

v = v, sin 6 cos ¢ + vy cos f cos p — v sing, (4.84)
v% = v, sin O sin ¢ + vy cos O sin p + v, cosp, (4.85)
v = v, cosf — vgsinf. (4.86)
The relationship between the material time derivative of the

distribution function f = f(¢,7,0, ¢, v,,v9,v,) in spherical co-
ordinates is given by

d, 0 0 0 of . of. Of .

@ o5 Of _of 0f, 07, 0f

o e T o T Tl T st
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of ., 9of of
50 +699+3¢“" (4.87)
which implies

o 0f  of wdf . v, Of
dt ot " "or T 06 T rsin6op

vi + Uso af vw cotan® vy \ Of
+ + - =
r ov, r r Ovg

B (Ua% cotan n vﬂ%ﬂ) ﬂ (4.88)

r r Ovy,

Hence the Boltzmann equation (4.8) in spherical coordinates
becomes
S U+ o+

2
1+’”——7 o OJ
2¢2 ot or  r 90  rsinf dy
+<’Ug —&-v(p) of (vicotan& B ww) of

of of wveOf v, Of

r 81),« r r ) dvg
vng cotan 6 UT’UQD 87f B 3L 3¢
( r )3% bt 22 @
L10j00 1 9fos
ov,. 87" rOvg 90  rsind dv, Op

1 of of 1\ 99 of
+2{3< "o g, T ¢8v¢>8t+4( " oy
of 8f)< 8¢+v98¢+ vy &é)

+”"T+ ) "Or " r 00  rsinf dyp
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Ov,. Or 1 0vg 90  rsind dv, Op
e

(8f81/}+18f6w+ 1 8]‘(91/))

S Ou, Bt Qug Ot v, Ot

Appendix C: Boltzmann equation
in cylindrical coordinates

The relationships between Cartesian coordinates (x!, 22, 23) and
cylindrical coordinates (r, o, z) are

! =rcose, 2 =rsing, z2 = 2z, (4.90)

while the relations between the velocities (v!,v? v3) in Carte-

sian coordinates and the ones in cylindrical coordinates read
v! = v, cosp — v, sinp, V¥ = v, sing + v, cos p, v = £,(4.91)

where v, =7 and v, = r¢.
The material time derivative of the distribution function in
cylindrical coordinates f = f(t,7, ¢, 2, vy, vy, v.) is given by

G _0f, 0f w0 | 0f B Of uw, Of

it ot Tor " rop o rov, v ou,

(4.92)

so that the Boltzmann equation (4.8) in cylindrical coordinates
reads
of , , Of  vedf  Of v;of

o "o T oe o T v ou
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_ Uy Of

r O0vy

of 0¢ 1 of of /
+auzaz)+c2{3(”a 0 g T *"av) ot
<afa¢+1 or 0v 8f<3z/;>+4<T8f

ov, Or ;%% ov, 0z v ov,

o2 Ov,. Or 1 O0v, Op

2c2?

_( 302 ¢>)<8f8¢>+18f8¢>

of , 9f 9 v 00 09
e g, T Z82)<UT87"+7"8§0+ * 9z
,5f55r,ﬁ%,3f352 _
ov, dt v, Ot v, Ot =0 (4.93)
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CHAPTER 5

STELLAR
STRUCTURE
MODELS

In astrophysics, the Lane-Emden equation is used to model self-
gravitating spherically symmetrical stellar interiors character-
ized by a polytropic equation of state. The solution of the Lane-
Emden equation allows to determine some physical quantities
for these systems, such as pressure, density, and temperature.
A full description of the Newtonian version of the Lane-Emden
equation with applications to stellar structures can be found in
the books by Eddington [1] and Chandrasekhar [2]. In this chap-
ter the post-Newtonian Lane-Emden equation is derived and the
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physical properties of some stars are analysed.

5.1 The polytropic equation of state

The first law of thermodynamics connects the internal energy
U of the system with the heat @ supplied to the system and
the work W done by the system. For infinitesimal quasi-static
changes this law is represented by dU = d’'Q — d'W, where d'Q
and d'W refer to the fact that both quantities are not differen-
tials. Furthermore, for quasi-static changes the work done by
the system is given by the product of the pressure p and the
infinitesimal volume dV, i.e., dW = pdV.

For a perfect gas the equation of state is given by pV =
nRT, where n is the number of moles of the gas and R = 8.314
J/(K mol) is the universal gas constant. The internal energy
of a perfect gas is only a function of the absolute temperature
U =U(T), so that the first law of thermodynamics becomes

dQ = d—UdT + RTd7V (5.1)

If we divide the quantities by the amount of the substance in
moles and introduce the heat per mole ¢ = @Q/n, the internal
energy per mole v = U/n and the volume per mole v = V/n the
above equation can be rewritten as

du dv
d'q = Yar RT— 5.2
T+ (5.2)
The molar heat capacities are defined in terms of the ratio

d'q/dT and are commonly referred as specific heat capacities.
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For an isochoric process the volume remains constant and we
have from (5.2) the specific heat capacity at constant volume

d'q du

Cy

If we use the equation of state pV = nRT we can write

dv dV dT dp
== 4
v Vv T p’ (5-4)
and (5.2) reduces to
T
d'q = (co+ R)dT — R?dp. (5.5)

For an isobaric process the pressure remains constant and we
have the specific heat capacity at constant pressure
d'q
Cp:Cv-FR:diT . (56)
P
In a polytropic process the specific heat capacity ¢ = d'q/dT
remains constant in a quasi-static process so that we can write
from (5.2) that

drT dv
(co = C)? + (cp — Cv)j =0, (5.7)

which can be integrated, yielding

T ¢y~ = constant, or Tw”~! = constant, (5.8)
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where v = (¢, — ¢)(cy — ©).

Now by using the equation of state to eliminate the abso-
lute temperature from (5.8) we get the equation of state for
polytropic quasi-static processes

pV7 = constant, or p=rkp = fapnTH, (5.9)

where k is a constant and we have introduced the so-called poly-
tropic index n = 1/(y — 1).

The specific heat capacity ¢ vanishes for adiabatic processes
where d'q = 0 and v = ¢, /¢, reduces to the ratio of the specific
heat capacities at constant pressure and constant volume. For
isothermal processes dT" = 0 and ¢ — 0.

The relationship between the specific internal energy € and
the polytropic equation of state p = kp? can be established from
the integrability condition of the Gibbs equation

1 P 1 [ 0e de p

ds=—=|de — =dp| = = | ==dT — —=d 1
’ 71( TR p) T’[GT‘ +<8p p2) p]’(5 0
where s denotes the specific entropy and € = &(p,T). The inte-

grability condition that follows from the above equation reads
Oe op
2

- = — T* frg

Pop =P "ar

The integration of the above equation leads to

kp7. (5.11)

1 V-l

y—1p p -1

showing that the specific internal energy of a polytropic fluid is
only a function of the mass density.
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5.2 Stellar mean molecular weight

We consider a star as a self-gravitating spherically symmetrical
mass of a highly ionized gas at equilibrium. The mass of the
gas is held together by its own gravity and has three kinds of
species: hydrogen, helium and heavy elements, which for the
purpose of the calculations are not specified.

The pressure of the star is a sum of the partial pressures due
to each species

P=_Pa= Y nkT, (5.13)

where n, is the particle number density of the species a.

For a highly ionized gas each atom contributes with Z, + 1
particles where Z, is the atomic number of species a. Hence the
particle number density n, of species a, which is the number of
atoms per volume is given by

pTa(Za +1)
=" 5.14
o=, (514
where p is the mass density of the star, m, = 1.66 x 10727 kg
the unified atomic mass, x, the mass fraction of species a and
M, the corresponding atomic mass.

From (5.13), (5.14) and the equation of state of the star we
have

a(Zy+1
MkT = LkT, (5.15)
Mom,, My
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and the mean molecular weight p of the stellar material becomes

—1 vq(Zq + 1)
pl = za: T (5.16)

Let X, Y and Z be the mass fraction of hydrogen, helium
and heavy elements, respectively. For a mixture with these three
species we must have that X +Y + Z = 1. The atomic number
and the corresponding atomic mass for hydrogen are Z, = 1
and M, = 2, for helium Z, = 2 and M, = 4, while for the
heavy materials with atomic mass greater then M, > 4 we can
approximate (Z, + 1)/M, ~ 1/2. Hence, the mean molecular
weight (5.16) becomes

1 4
C2X+3y+1lz 246X +Y)

1 (5.17)

by eliminating the mass fraction of the heavy elements Z =
1-X-Y.

The stellar structures we are interested in are the neutron
stars, white and brown dwarfs, red giants and the Sun.

White dwarfs are dense stars with low luminosity whose
masses are of order of the Sun and radii comparable to the
one of the Earth. In the structure of white dwarfs there exists
almost heavy metals Z ~ 1, they are devoid of hydrogen and
helium so that X = Y ~ 0 and the mean molecular weight is
1 = 2. Brown dwarfs are small stars with sizes approximately
of a planet like Jupiter and unlike a regular star the fusion of
hydrogen does not occur. Brown dwarfs are composed by hy-
drogen, helium and heavy metals in the approximate proportion
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X =070, Y = 0.28 and Z = 0.02 and the mean molecular
weight is 4 = 0.62. Red giants represent the final evolution
phase of stars of intermediate or low masses after the hydrogen
fusion. For red giants the mean molecular weight is © = 1.34
since they are devoid of hydrogen and helium predominates in
the proportion ¥ = 0.98, X = 0 and Z = 0.02. Neutron stars
are formed from a gravitational collapse of massive stars at the
end of their life. The neutron stars have only neutrons so that
1 = 1. The mass fractions for the Sun are X = 0.73, Y = 0.25
and Z = 0.02 and its mean molecular weight is y = 0.6.

5.3 Newtonian Lane-Emden equation

We start by considering the Newtonian momentum density hy-
drodynamic equation (2.129) for a stationary self-gravitating
system where the hydrodynamic velocity vanishes V. = 0. In
spherical coordinates where the only dependence of p, p, and ¢
is on the radial variable r this equation reduces to

dp dd
— —p— =0. 5.18
dr P dr ( )
Here we have adopted the convention for ¢ = —®, so that the
Poisson equation V2¢ = 47Gp = —V?2® in spherical coordinates
reads
1 d [ ,d®
—— — | =—4 . 1
r2 dr <T dr) mGp (5.19)

By considering the polytropic equation of state p = Iip%
one can obtain from (5.18) a differential equation which connects
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the mass density p and the gravitational potential ®, namely

1+n 1=—ndp dd
no— = — 5.20
" dr dr ( )

From the integration of the above equation it follows that

1
n

k(1 +n)pm = ® + constant. (5.21)

As was pointed by Eddington [1] the usual convention is to con-
sider that the gravitational potential has a zero value at infinity,
but this choice is arbitrary. Hence for convenience, here it is as-
sumed that the gravitational potential vanishes at the boundary
of the star where the mass density also vanishes. In this case
the integration constant is zero and we get from (5.21) the fol-
lowing relationship between the mass density and gravitational
potential

p= <(nf1)ﬁ)n (5.22)

The polytropic equation of state p = Iip# in terms of the
gravitational potential reads

P n+1 p‘b
= —_— = . .2
P K((n+1)n> n+1 (5:23)

Now we can obtain the differential equation for the gravita-
tional potential ® from (5.19) and (5.22)

d*® 24P e

—_— - ———P" = 0. 24
dr? + rdr + [(n+ 1)k]™ 0 (5.24)
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The solution of (5.24) for the gravitational potential ®(r)
follows from the knowledge of mass density p(r) and the pressure
p(r) given by (5.22) and (5.23), respectively.

In order to solve (5.24) we introduce the dimensionless quan-
tities
e p% T R +1) 1=n
U= — = (,Dc) , E= o, A=\ e (5.25)

where the quantities ®. and p, refer to their values at the center
of the star. Hence (5.24) can be rewritten as
d*u(z) 2 du(z)
dz? z dz

+u(2)" =0, (5.26)

which is known in the literature as the Lane-Emden equation of
index n.

The Lane-Emden equation (5.26) can be solved numerically
for different values of the polytropic index n provided we specify
two boundary conditions at the center of the star. The boundary
conditions are

d
“(0)=o. (5.27)

u(0) =1, and %( )

The first boundary condition is a direct consequence of (5.25);.
The second one follows from (5.18) by writing it as

._dp . d (GM(r)\ .. d (4w , o B
}%m—}%f’%r(r ~ e g\ 3 ) =0
(5.28)
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where the Newtonian gravitational potential ® = GM (r)/r was
introduced and the mass near the center was approximated by
M (r) =~ 473 p./3. Hence from the polytropic equation of state
p=rkp = we have that %(0) =0 and (5.27)2 follows from the
definition (5.25);.

5.4 Post-Newtonian Lane-Emden
equation

For the Lane-Emden equation in the post-Newtonian approxi-
mation, we consider the momentum density hydrodynamic equa-
tion (2.131) for stationary self-gravitating systems where the
hydrodynamic velocity vanishes, i.e, V.= 0. Here we write the
potentials ¢ and ¥ as & = —¢ and ¥ = —1). Since in spherical
coordinates the fields p,p, ® and ¥ depend only on the radial
variable r, equation (2.131) becomes

d 29 2 e 3p\|d® pdV
T+ —pltr S (oS4 2) |2 L7y,
dr{p<+62>} p{+c2< +2+2p>} dr 2 dr

The above equation can be rewritten as

20\ d 1 dd dv
<1+02> ;p[1+02(2®+(n+1)i>}p —0,
(5.30)
by taking into account the relationship e = np/p, which accord-
ing to (5.12) is valid for a polytropic fluid. By neglecting the
terms of order 1/c? the above equation reduces to the Newtonian
equation (5.18).
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If we consider terms up to 1/c¢? we can obtain from (5.30)
the equation

1dp n+1lp d U
-—(1- -] ——(®+—=)=0 5.31
v (=) (veE) - e

which can be solved for the mass density p as function of the po-
tentials @, ¥ once we consider the polytropic equation of state.
Indeed, from the insertion of the polytropic equation of state
p= ,‘ipnT+1 into (5.31) and integration of the resulting equation
yields

Y 1 k(1+n) 1

Here it is assumed that the gravitational potentials ® and ¥
vanish at the boundary of the star where the mass density also
vanishes.
Equation (5.32) can be solved for p up to order 1/c?, yielding
n
>+ %
(n+ 1)k (1 - %p%)

() {8 ](3) 05
m((nfl)ﬁy{ug (i)ﬁi } (5.33)

In spherical coordinates the Poisson equation for the grav-
itational potential ® is given by (5.19) while the one for the

p:
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gravitational ¥ which follow from (2.100) for a stationary pro-

cess reads
1d [ ,d¥ 3+np
il 2= ) = = P = . .34
e (T dr) 871'Gp( + > p) (5.34)

Now we combine the Poisson equations (5.19) and (5.34) and
write

1d[,d TN 2 (3+n)p
(5.35)

If we eliminate the potentials ®, ¥ from the above equation by
n+1

using (5.32) and use the polytropic equation of state p = kp 0

we get the following differential equation for the mass density

1 d 2d 1 (1+n)/€ 2
rn+ )55, [ ar <f’" - 2”)]

(54+3n)k 1

= —4nGp [1 + (gpn} . (5.36)

In order to get the Lane-Emden equation we introduce the
dimensionless variables (5.25) and in these new variables (5.36)
becomes

(1 B (l-l-n)pcu(z)) {d%(z) N Qdu(z)]

2pe dz? z dz

(A +n)p. (du(z’)>2 — (1 i (54'371)170”(2)) (5.37)

2pe dz 2p,
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If we consider terms up to the order 1/c¢? we get the following
equivalent version of the Lane-Emden equation in the first post-
Newtonian approximation:

(1 6+ 4n)pcu(z)> [d2u(z) . 2du(z)}

c2p.. dz? z dz
1+n)pe ((du(z)\” 0
! 2, ( E ) +u(z)" =0. (5.38)

The Newtonian limit of the Lane-Emden equation (5.26) is re-
covered when the terms with 1/c? are not taken into account.
If we assume that the equation of state for pressure at the
center of the star is the one of a perfect fluid p. = p.kT./m =
pckT,/wm,,, where T, is the temperature at the star center, we
have that
pe _ KTe KT (5.39)

pec®  mc® pmyc?’

which represents the ratio of the thermal energy of the fluid at

the star center k7, and the rest energy of its particles mc?.

5.5 Lane-Emden equation in the post-
Newtonian Brans-Dicke theory
In Section 2.5 the Brans-Dicke theory was analyzed and the cor-

responding post-Newtonian hydrodynamic equations were de-
termined. Two gravitational constants were introduced, G from
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the Poisson equation (2.189) and G which is of order of the
gravitational constant GG. Here the difference between these
two gravitational constants will be determined by a parame-
ter f = G/G so that when § = 1 both gravitational constants
coincide. From (2.188) it is possible to relate the dimensionless
coupling constant w with 3, yielding
4—-3p
W= (5.40
231 :
The stationary momentum density hydrodynamic equation
(2.219) in the post-Newtonian Brans-Dicke theory reads

) 2(3 - 28) ® 9P 1[2(3 - 28)
83:1'[]9(“ 5 c?ﬂ_”ami{”c?[ R

32-0)\p 1pov
GASCVA Fog b O 41
+<n+ 3 >p 5o 0, (5.41)
while the the Poisson equations (2.189) and (2.213) become
8 32-8) p)

V20 = —4npGp, VU = —8rSGp (<I> +5et = )

(5.42)

respectively.

Following the same methodology of the last section we ob-
tain the same equation (5.31) for the stationary momentum den-
sity hydrodynamic equation (5.41) and through integration the
following relationship which connects the two gravitational po-
tential with the mass density, namely

li(l + n) 1

v 1 1
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Moreover, the combination of the Poisson equations (5.42)
leads to the following post-Newtonian Lane-Emden equation in
the Brans-Dicke theory

(1 B+ 1)+ B=28)p (2)> {dQu(z) | 2du(z)

Bc2p, dz? z dz
2
a ;;&)pc <d1;(;)> + Bu(z)" = 0. (5.44)

Note that when S = 1 the results of the last section are
recovered.

5.6 The physical quantities of stars

We rely on the books by Eddington [1] and Chandrasekhar [2]
and give here the expressions for the mass, radius, pressure,
mass density and temperature of the stars which follow from
the Lane-Emden equations.

5.6.1 Newtonian theory

The numerical solution of the Lane-Emden equation (5.26) with
the boundary conditions (5.27) represents a monotonically de-
creasing behavior of u(z) and its first zero, which will be denoted
by z|u—o = Ry, corresponds to the surface of the star. The ra-
dius of the star is given by

(n+ 1)k 1on

R = ClRN = Wﬂg " RN, (545)
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thanks to (5.25).
The mass of the star is calculated from

R Ry
M(R) = /0 4712 pdr = 47ra3pc/0 22u"dz

fin d d
= —47ra3pc/ d(22) = —47Tpca3R?vl
0 dz dz |
N

= dnp.a’ My, (5.46)

where we used the relationship (5.25), the Lane-Emden equa-
tion (5.26) and — by following Eddington [1] — introduced the
quantity

My = _R? du

= Ry (5.47)

RN

If we eliminate a and p. from the above equation by using
(5.25) and (5.45) we get that the mass of the star can be written
as

+1)k] 7T [ R\
M(R) = dn [("MG)”} (RN> My. (548

so that we can build the following mass-radius relationships by
taking into account (5.22), (5.45) and (5.46)

GM(R) Ry
My R

1
= (n+ rps = ., (5.49)
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From the knowledge of the mass M (R) and radius R of a star the
quantities Ry and My can be determined from the Lane-Emden
equation (5.26) and the values of s, ®. and p. can be obtained
from the above equations for fixed values of the polytropic index
n.

Another way to determine the central mass density of the
star is to express it as function of the mean mass density of the

star
-1
)
RN

(5.51)

3 du

RN dz

__ M®E)
P~ 4xR3/3 ~

3 du
RN dz

pCa and @ -
14

RN

thanks to (5.46).
The central pressure of the star follows from the polytropic
14n

equation of state p. = rkp.™ together with (5.49) and (5.51),
yielding
~1

(5.52)
From the equation of state of a perfect fluid one can obtain
the temperature at the center of the star

3 du

RN dz

_GM(R)Rn p. _ GM(R)Ry p
Pe= "Ny Rn+l My R n+i

T B pe _ g GM(R)RiN.

(5.53)

The mass density and pressure and temperature as functions
of the dimensionless radial distance z follows from (5.25) and the
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polytropic equation of state, namely
p(2) = peu(2)",  p(z) = peulz)"™, T(z) = Teu(z). (5.54)

5.6.2 Post-Newtonian theory

The first zero of the numerical solution of the post-Newtonian
Lane-Emden equation (5.38) for u(z) will be denoted here by
Z|u=0 = RPN = R/a.

The inner mass M (R) of a sphere with radius R is given by

R
M(R) = /O A\ /yepridr, (5.55)

where 7, is the determinant of the spatial metric tensor. Here
up to 1/c? order we have

—g 30 3(n+ )kpn
V== (14 %) ( + 2

_ <1 + Mu(z)) , (5.56)

2
2pe

thanks to (5.25) and (5.32). Hence the mass of the star which
follows from the Lane-Emden equation (5.38) is

Rpn 1
M(R) = 47ra3pc/ <1 + Wu(z)) 22u"dz
0 c

— dndp, /0 o {(1 B (3;;&3%(2)) {d?ﬁ;)
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L2 du(z)] _ (L+n)p (du(z)

2
25, 3
S . 7 ) }z dz = 4mwpe.a”Mpy .

(5.57)

In the above equation we have introduced the abbreviation

Mo == /R {(1- O [dilif)
Jr2du(z)] ~ (L+n)pe (du(z))Q}Zde. 558)

z dz 2pe dz
The mass-radius relationships are given by
GM(R) Rpn ES
- 1 ¢ = q)m .
Vow R (n+1)kp (5.59)
MPN R n 4G ’ '
while the central mass density, pressure and temperature read
Pe R?DN
— = , 5.61
P 3Mpn (5.61)
GM(R) R 7 R
po = M) ey _p_ Rew (5.62)
Mpn R n+13Mpn
M
pmy  GM(R) Rex (5.63)

C:k(n+1) Mpny R

5.6.3 Brans-Dicke post-Newtonian theory

The first zero of the numerical solution of the post-Newtonian
Brans-Dicke Lane-Emden equation (5.44) for u(z) will be de-
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noted here by z|,—0 = Rpp = R/a. The equations for the
physical quantities can be obtained from the results of the post-
Newtonian theory above by replacing Mpy by

Map = — /OR" {(1 @8- 10)2;5 - 2/3]pcu(z))

[ ) () N o

5.7 Polytropic solutions of the
Lane-Emden equations

In this section we shall search for polytropic solutions of the
Lane-Emden equations for the Sun and some other stars.

The Sun has a mass Mgy = 1.989 x 10%3%kg, radius Re =
6.96 x 10®m and the polytropic index usually adopted for it is
n = 3 so that p = /{p%. This equation of state corresponds to
a completely degenerate ultra-relativistic Fermi gas (see e. g.
6]).

The polytropic index n = 3 is also considered for white dwarf
stars with higher masses. Here we are interested in the white
dwarf Sirius B which is the companion that orbits around the
star Sirius. Its mass and radius are M = 1.5Mg and R =
8.4 x 1073 R, respectively.

The equation of state of a non-relativistic completely degen-
erate Fermi gas is p = Kp% which corresponds to the polytropic
index n = 3/2 (see e. g. [6]). Convective core stars of red
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giants and brown dwarfs are represented by this polytropic in-
dex. We shall analyze the red giant star Aldebaran with mass
M = 1.5Mg and radius R = 44.2R, and the brown dwarf star
Teide 1 with mass M = 5.3 x 1072M, and radius R = 107! Re.

Neutron stars can be represented by an equation of state
with a polytropic index n ~ 1. Here we will focus our attention
to the neutron stars PSR J0348+0432 with mass M = 2.01Mg
and radius R = 1.87 x 107° R, and PSR J1614-2230 with mass
M = 1.91M and radius R = 1.87 x 107°R,.

Let us analyze first the results that follow from the New-
tonian Lane-Emden equation for the Sun, Teide 1, Aldebaran
and Sirius B, which are represented in Table 5.1. The first
zeros were found as a solution of the Newtonian Lane-Emden
equation (5.26) and the central mass density, central pressure
and central temperature were calculated from (5.51), (5.52) and
(5.53), respectively. Note that first zeros for the Sun and for
Sirius B are equal as well as the ones for Teide 1 and for Alde-
baran, which is a consequence that the Sun and Sirius B have
the same polytropic index n = 3, while Teide 1 and Aldebaran
have the polytropic index n = 3/2. We infer from this table that
the central pressure of the Sun and Teide 1 are of the same or-
der but the central mass density and temperature of Teide I are
one order of magnitude lower than the Sun, since the former has
mass and radius smaller than the latter. The red giant Alde-
baran has mass and radius larger than those of the Sun and
Teide 1 but its central density, pressure and temperature are
smaller. The central quantities of the white dwarf Sirius B are
several orders of magnitude greater than those of the Sun, since
its has a smaller radius and a greater mass than the latter.
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first zero | pe (kg/m?) pe (Pa) T. (K)
Sun 6.90 7.64 x 107 | 1.25 x 10 | 1.18 x 107
Teide 1 3.65 4.46 x 10° | 2.43 x 10%° | 4.05 x 10°
Aldebaran 3.65 1.45 x 10~ | 5.04 x 10% | 5.60 x 10°
Sirius B 6.90 1.56 x 10™ | 3.34 x 10°* | 5.14 x 10°

Table 5.1: First zeros, central mass densities, pressures and tem-
peratures from the Newtonian Lane-Emden equation.

The Lane-Emden in the Brans-Dicke post-Newtonian theory
(5.44) differs from the post-Newtonian one (5.38) by the param-
eter B, which is a very small quantity. Indeed, according to the
Cassini probe [7] the value of the dimensionless coupling con-
stant w in the Brans-Dicke theory should be w > 40,000 and
the constrains due to Planck’s data [8] imply that w > 181.65.
These restriction on dimensionless coupling constant imply that
the parameter is approximate § =~ 1 and the corresponding
Lane-Emden equation in the Brans-Dicke post-Newtonian the-
ory (5.44) reduces to the one of the post-Newtonian theory
(5.38). Hence, the values that follow from these two theories
are quite the same.

The difference between the Lane-Emden equations for the
Newtonian (5.26) and post-Newtonian (5.38) theories lies on the
terms that are multiplied by p./pc®> = kT./mc? corresponding
to the ratio of the thermal energy of the fluid at the star center
kT, and the rest energy of its particles mc?. Here this parameter
was determined from the central temperature T, obtained from
the Newtonian theory and the values found are: kT,./mc? =
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1.19 x 1079 for the Sun, kT./mc®> = 2.37 x 1074 for Sirius B,
kT./mc®> = 6.04 x 1077 for Teide 1 and kT./mc? = 3.86 x
10~ 8for Aldebaran. Hence, the values given in Table 5.1 remain
practically unchanged for these stars if we take into account the
post-Newtonian Lane-Emden equation. Post-Newtonian correc-
tions are important for more massive stars like the neutron stars
PSR J0348+0432 and PSR J1614-2230 whose values are given
in Table 5.2. In neutron stars the central temperature is at
least three orders of magnitude greater than those of the other
stars analysed here and the ratio of the thermal energy at the
star center and the rest energy of the particle is k7T./mc? =
1.14 x 107! for PSR J0348+0432 and kT./mc* = 1.09 x 107!
for PSR J1614-2230. From this table we can infer that the post-
Newtonian corrections for the central pressure and temperature
are about fifty percent larger than those from the Newtonian
theory. The results for the two neutron stars are quite the same,
since the only difference between both is in their masses which
are of the same magnitude.

PSR J0348+0432 | first zero | p. (kg/m>) p. (Pa) T. (K)
Newtonian 3.14 1.42 x 107 | 1.46 x 1037 | 1.23 x 10™2
Post-Newtonian 2.53 1.38 x 101 2.12 x 10°% | 1.84 x 102

PSR J1614-2230 | first zero | p. (kg/m?) pe (Pa) T. (K)
Newtonian 3.14 1.37 x 101 1.34 x 10°% | 1.18 x 1012
Post-Newtonian 2.55 1.34 x 107 | 1.95 x 10T | 1.75 x 1012

Table 5.2: Neutron Stars PSR J03/8+0432 and PSR
J1614-2230. First zeros, central mass densities, pressures
and temperatures from Newtonian and post-Newtonian Lane-
Emden equations.
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CHAPTER 6

SPHERICALLY
SYMMETRICAL
ACCRETION

An important area of research in astrophysics is related to the
spherically symmetrical steady state problem where a compact
massive object (e.g. white dwarfs, neutron stars or black holes)
captures gravitationally the particles of the surrounded matter
of an interstellar plasma. This process is known as spherically
symmetrical accretion. The pioneers works in this subject were
published by Hoyle and Lyttleton [1, 2], Bondi and Hoyle [3],
Bondi [4] and Michel [5]. In this chapter the spherically sym-
metrical accretion in the Newtonian and post-Newtonian ap-
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proximation are analysed.

6.1 Newtonian spherically symmetri-
cal accretion

6.1.1 Newtonian Bernoulli equation

In the analysis of the spherically symmetrical accretion a com-
pact massive object of mass M at rest is surrounded by an
infinite gas cloud of an interstellar plasma which is moving with
a velocity V relative to it. At large distances from the compact
massive object the gas cloud is at rest with uniform density and
pressure denoted by pso and poo, respectively. The flow of the
gas cloud is steady-state and spherically symmetrical and the
resulting mass increase of the compact massive object is not
taken into account. The gas is characterized by a polytropic
equation of state and by a sound speed a given by

nt1 | dp - [P
p=rp =kKp ™, a= d—pzx/*yfi/ﬂ L= rE (6.1)

where £ is a constant and n the polytropic index.

For steady states the Newtonian hydrodynamic equations
for mass density (2.119) and momentum density (2.129) for an
Eulerian fluid become

IpVi _0 v ovi 1op 09
or; 0x;  pOx;  Om;

0, (6.2)
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respectively. Here V; is the gas flow velocity and ¢ the New-
tonian gravitational potential. By considering that the fields
depend only on the radial direction r the above equations in
spherical coordinates can be written as

1 d(r?pV dav 1d d
jw =0, V7+,7p+7¢ =0, (6.3)
r dr

with V' denoting the component of the gas flow velocity in the
radial direction.

The integration of the continuity equation (6.3); implies the
constant mass accretion rate

M = 471%pV = constant. (6.4)

If we take into account the polytropic equation of state (6.1)
we can rewritten the momentum density hydrodynamic equation
(6.3)2 as

Lav? |k gt do
2 dr y—1 dr dr

0. (6.5)

The integration of the above equation results the Newtonian
Bernoulli equation
V2 ykprL & a? GM  a?

74’ 7_1 +¢:?+7_1* r :7_1. (66)

In the above equation we have introduced the sound speed
a® = vkp?~! and the expression for the Newtonian gravitational
potential ¢ = —GM /r. Moreover, it was supposed that the ra-
dial gas flow velocity and the Newtonian gravitational potential

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



EBSCChost -

230 CHAPTER 6. SPHERICAL ACCRETION

vanish at large distances from the compact massive object where
(oo denotes the sound speed there.
If we denote by a prime the derivative with respect to r, i.e.,
! = d/dr we can rewrite (6.3) as
vt 2 " GM

Prlv2-0 vw+aliZi—0 (67

p V r p r
The system of equations (6.7) can be solved for V'’ and p’, yield-
ing

K_ 2a?/r — GM /r? pf'__QVQ/r—G]M/r2 (6.8)
Vo V2 - g2 ’ 0 V2 - g2 ’ ’
which implies the relationship
M\ d M\ d
<2v2 - G) v (2a2 - G) . (6.9)
r 1% r P

We infer from the above equation that a critical point is attained
when both expressions within the parenthesis vanish, since both
imply turning points for the functions p and V. The critical
values of the gas flow velocity V. and sound speed a. are given
by

» _ GM _ .2

vi= o =dk (6.10)

where r. denotes the critical radius. The existence of a critical
point prevent singularities in the gas flow solution and guaran-
tees a smooth monotonic increase of the gas flow velocity when
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r decreases. Note from (6.10) that at the critical point the gas
flow velocity is equal to the sound speed so that the critical
radius represents the transonic radius.

If we insert (6.10) into the Bernoulli equation (6.6) and solve
for the gas flow velocity (or the sound speed) at the critical point
we get

2 2 2 2 _ 5—3y GiM

ac = ‘/c = 5 — 370,007 Te 4 a2 s
oo

(6.11)

which is valid for v # 5/3.
From the expression for the sound speed a? = vkp?~! we
can obtain the following relationship for the mass density

2

P = P <G)M, (6.12)

Qoo

so that mass accretion rate (6.4) in terms of the variables at the
critical point can be rewritten as

M = 4712 p.V, = d7he (GM)? pooa®, (6.13)

thanks to (6.11) and (6.12). Here A, is a dimensionless param-
eter that depends only on ~, namely

9—Tv 3y—5
Ao = 2260 (5 — 3y)20-1 (6.14)

Some values of the dimensionless parameter \. as function of
~ are given in Table 6.1, where v = 1 refers to an isothermal
equation of state, v = 7/5 and v = 5/3 to adiabatic equations
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of state for diatomic and monatomic gases, respectively, and
v = 4/3 to an equation of state for a completely degenerate
ultra-relativistic Fermi gas. The value v = 5/3 represents also
the equation of state of a completely degenerate non-relativistic
Fermi gas.

v~ 1 [ 43 [ 7/5 | 5/3
Xe | 1.120 | 0.707 | 0.625 | 0.250

Table 6.1: Values of A\, for some values of ~.

The temperature can be related with the sound speed and
the density by using the equation of state for a perfect fluid
p = pT'/m,, together with the expression for the sound speed

a® = yp/p, yielding

E-() e

Let us investigate the behavior of the gas flow velocity, mass
density and absolute temperature for some special cases.
We begin with the case where v = 5/3 so that the Bernoulli
equation (6.6) can be rewritten as
V2 + 3a? 3aZr

sonr — taaar (6.16)

From (6.10) together with (6.16) and also from (6.11)y we infer
that r. = 0, the critical radius vanishes when v = 5/3. We
estimate the last term in (6.16) by considering that the mass of
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the compact object is of order of the Sun M ~ Mg and that
the sound speed of the gas far from the compact massive object
is of order a,, ~ 10* m/s. In this case

3a§or T
2GM " 6au’

(6.17)

where au=1.496 x 10! m is the astronomical unit. If we restrict
ourselves to distances from the compact massive object where
a’.r/GM < 1 we get from (6.16) that

V2?4 3a® ~ M.

(6.18)
At the critical point we can approximate the gas flow velocity
with the speed of sound and it follows that

[GM
~Na~ A —. 1
Vxa or (6.19)

Hence, the mass density (6.12) and the absolute temperature
(6.15) at the critical point become

3
GM\? 1 T GM\ 1
L ~ 72 737 —_— = -~ o . (6.20)
Poo 2d2, ) r2 Too 202, ) r
From (6.19) and (6.20) one infers that the gas flow velocity, mass
density and the absolute temperature increase when the radial
distance from the compact massive object decreases. Further-

more, the increase in the mass density is more accentuated than
those of the temperature and gas flow velocity.
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Two limiting cases can be analyzed for v # 5/3. The first
one is when 7 > r. where the gas flow velocity V' and gravita-
tional potential ¢ become very small and according to Bernoulli
equation (6.6) we can approximate the sound speed with its
value far from the compact massive object a &~ a. In this case
we have from (6.12) and (6.15) that the mass density and the
temperature are equal to their values far from the massive com-
pact object, i.e., p & poo and T =~ T,,. The gas flow velocity
can be obtained from the mass accretion rate (6.4) and (6.13),
namely

Ae (GM)? a?
r2 )
(6.21)
Hence the gas flow velocity increases when the distance from
the compact massive object decreases.
In the other limiting case the condition r < r. holds and we
can rewrite the Bernoulli equation (6.6) as

M = 47r2pV = 4dx), (GM)? Pooln’, => V =

VQ_ 4 re 1 ﬁ 4 e GM
202, 5—3yr y—1\d% T5—3yr  aZr’
(6.22)

thanks to (6.11)2 and the condition that r < r.. Hence we have

that
Vry 2€M, (6.23)

and the gas flow velocity is a function of the inverse of the square
of the radial distance from the compact massive object and in-
creases by decreasing this distance. From the mass accretion
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rate we have that the dependence of the mass density on r is
M = 47r?pV = 4z ). (GM)? pooas’, hence (6.24)
. A (GM)? a3
Poo \@ r2

while the dependence of the absolute temperature on r is ob-
tained from (6.15), yielding

lwo jw

. (6.25)

TN

3 —1
A (GM)2 a3
= ()“w] : (6.26)

V273

Both fields increase by decreasing the distance from the compact
massive object.

6.1.2 Gas flow velocity as function of radial
distance

For the determination of the dependence of the gas flow veloc-
ity as function of the radial distance we follow Bondi [4] and
introduce the dimensionless quantities

2

ra’ 1% 0 a \7 T
= =, ty=—=|— , (6.27
" GM s oo Poo (aoo) ( )

which are related to the radial distance from the compact mas-
sive object, gas flow velocity and mass density, respectively.

The mass accretion rate (6.4) in terms of these dimensionless
quantities reads

M = 4mpr?V = 4z X (GM)? paca’’, (6.28)
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where A = r2s,t, is a constant.

We shall write the Bernoulli equation (6.6) in terms of the
Mach number w, = V/a — which gives the ratio of the gas flow
velocity V' and the sound speed a — and the dimensionless ra-
dial distance r,. The Mach number is usually denoted by Ma,
but the expressions in the sequence become less cumbersome
by denoting it as u.. For this end we express the dimension-
less parameters s, and t, as functions of (r.,u,) by using the
relationships (6.27) and A\ = r2s,t., namely

y—1 2
Sy = u3+1 <7.2> R t* = (u* 7’2> . (629)

The gas flow velocity V' and sound speed a in terms of (r,,u,)

~—1
follow from (6.27) and a/ac = t.? , yielding
W\ y O\
2 71 ¥
V= aoo’U,,;H—l (ﬁ) , a4 = Qpo (’u*TE) s (630)

while the gravitational potential ¢ as function of r, reads

2
o GM _ 4% (6.31)
T T s

The dependence of the Mach number u, with the dimen-
sionless radial distance r, follows from the Newtonian Bernoulli
equation (6.6) together with (6.29) — (6.31) resulting

2(x—1) 2(v=1)

4
wd™ N 1 A 7+ 1 1
A I = — 4+ —— (6.32
2 (rf) +7—1<u*r§) r*+7—1 ( )
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A=Ag transonic

0.100

A<A; subsonic
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: 0.05 0.10 0.50 1 5 10

Figure 6.1: LogLogPlot of Mach number u, as function of the
dimensionless radial distance r, for v = 7/5 and two values of
the dimensionless parameter: A = A\, = 0.625 and A = \./4.

In Figure 6.1 the Mach number u, is plotted as function
of the dimensionless radial distance r, for v = 7/5 where two
different values of the dimensionless parameter A were adopted:
A=A, = 0.625 and A = A\./4. These values are the same as
those adopted in the work of Bondi [4]. From this figure we
infer that we have two physically accepted kinds of flows which
correspond to an infall of matter to the compact massive object
and an outflow of matter from the compact massive object. The
matter infalls correspond to accretion flows and are represented
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Uy
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10=4 0.001 0.010 0.100 1 10

Figure 6.2: LogLogPlot of Mach number u, as function of di-
mensionless radial distance r, for A\, = 0.25 corresponding to

v=5/3.

in the figure by the left arrows. The matter outflows are wind
flows and in the figure are represented by right arrows. For
the critical value of the dimensionless parameter A\, = 0.625
the solution goes through the critical radial distance r, = 0.20
where the critical Mach number is one corresponding to the
transonic point. These solutions are represented by the blue
curves. For dimensionless parameters smaller than the critical
dimensionless parameter A < A, there are two solutions, one
refers to a subsonic accretion flow while the other to a supersonic
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Figure 6.3: LogPlot of the ratios of the mass densities p/poo
(left frame) and absolute temperatures T'/T,, (right frame) as
functions of radial distance r, for v = 7/5 (blue curve) and
v =5/3 (red curve).

wind flow. Both solutions for A < A. are represented in the
figure by red curves.

As was pointed previously for the case where v = 5/3 the
critical dimensionless radial distance vanishes r. = 0. The Mach
number u, as function of the dimensionless radial distance 7, for
this case is plotted in Figure 6.2. The two physically accepted
flows correspond to an accretion represented by the blue curve
and a wind flow represented by the red one. Both solutions
converge to the Mach number u, = 1 at the transonic point.

The ratios of the mass densities

p —( A >+ (6.33)

poo  \UxTi
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for the accretion solutions are plotted in the left frame of Fig-
ure 6.3 as functions of the dimensionless radial distance r,. The
blue curve represents the case v = 7/5 while the red one refers
to v = 5/3. As expected both mass densities ratios increase
by decreasing the radial distance from the compact massive ob-
ject and the mass densities p tend to po far from the compact
massive object. We infer from this figure that the increase in
the mass density for v = 7/5 is more accentuate than that for
v=5/3.

In the right frame of Figure 6.3 the ratios of the temperatures

T A 2(7_;11)
Ti - (u 7"2) 5 (634)

are plotted as functions of the dimensionless radial distance
where the blue curve represents v = 7/5 while the red one
~v = 5/3. From this curve we observe that the absolute tem-
peratures T far from the compact massive object tend to T
while the ratio T/T,, for v = 5/3 is bigger than the one for

v="17/5.

6.2 Post-Newtonian accretion

6.2.1 Post-Newtonian Bernoulli equation

Let us now analyse the same problem but within the framework
of the post-Newtonian hydrodynamic equations. The steady
state hydrodynamic equations for the mass density (2.122), the
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mass-energy density (2.127) and the momentum density (2.131)

become
8(’9’;:/”:0, a;x‘f 0, (6.35)
i o [ (V-0 a0 )|
b2 8o
hamt b (gs )0 6®

In the steady state momentum density hydrodynamic equation
(6.36) we have used the corresponding mass-energy density hy-
drodynamic equation (6.35) and the relationship between the
specific internal energy and pressure € = p/(y — 1)p for a poly-
tropic fluid.

The fields in spherical coordinates depend only on the radial
coordinate r and for a spherically symmetrical flow the gas flow
velocity has only the radial component V; = (V(r),0,0). Hence
we get from (6.35) and (6.36)

ool (5]},

™ (6.37)

d{r2p[1+c%( 2¢+7£>} } (6.38)

dr 0,

p {1+ (V2—6¢+7)} yav
1p dr

E
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Pr 2y=1p
d 20\]  pdi

by considering the definitions of p, and o from (2.123) and
(2.126), namely

2
P :p{1+12 (V—3¢>}, a—p[1+12(v2+a—2¢+pﬂ.
c 2 c p
(6.40)

At this point it is more appropriate to analyse the accretion
flow by introducing the proper velocity of the flow v, which is
measured by a local stationary observer (see e.g [6, 7]). The
definition of the proper velocity reads

_ UT’ _ UT‘

~ Uo/e (U°/e)(1+29/c?)
The relationship between the proper velocity and the radial
component of the four-velocity follows from V; = U?/(U°/c)
and (6.41), yielding
v
(1+2¢/c?)’

The system of differential equations (6.37) — (6.39) can be
rewritten in terms of the proper velocity v, as

ofeofia ($-]w)

dr ’

(6.41)

(o
Vp =

¢
or V=u (1 + 202) . (6.42)

(6.43)
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d{r2p {1+CL2(UE+,YQ721):|UT} . 611
dr ’ '

1 a® dv dp a? 2¢
1+ = (02 -2 p— (1 - =
[+62<v’" ¢+71>}Udr+drp< c?

do 1 a® 1 dy
— 1= = (20— —— =0 6.45
- [ 02(¢ 71)]+02dr - (645)
thanks to (6.42) and the expression for the sound speed of a gas
with a polytropic equation of state a? = yp/p.

The mass-density and mass-energy accretion rates are ob-
tained from the integration of (6.43) and (6.44) resulting

o, —ampr? 1+ L (2 — )] (6.46)
Px P 02 2 s .
) 2 Lo a’
My =4mpr® (14 — (v + v (6.47)
c v—1

The relationship between both accretion rates follow from

a2
i PR e
(6.48)

Here the approximation 1/(1 + x) ~ 1 — z for the 1/¢* — term
was used. The underlined term is of 1/c? order and we can use
the Newtonian Bernoulli equation

CL2 a

112 2
r = 6.49
R v (6.49)
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to simplify (6.48) and get

YR, 1 a4
- =M,, {1 + 7—102] . (6.50)
Note that the mass density and mass-energy density accretion
rates are related to each other and differ by a term of order
1/c? which refers to square of the ratio of the sound speed far
from the compact massive object and the speed of light. Both
accretion rates coincide in the Newtonian limiting case for small
values of a2 /c? < 1, i.e., My = M, = 4mpr?V.

For the determination of the post-Newtonian Bernoulli equa-
tion we multiply the momentum density equation (6.45) by

1 1 a?
S (e-05))

which, by considering terms up to the 1/c? order, leads to the
following differential equation
dv, { vf] dp a® { a® } dp 1 dy
1+-3 =55
(

v M E T, o0 T Tea =Y
(6.51)

If we take into account the equation of state p = kp” and
the Newtonian Bernoulli equation (6.6) for the underlined 1/¢?
— term, the above equation reduces to

2
X 1

v dv, {14—02] +ykp?2dp [l—ﬂﬁp'y_l] +dop+—dyp = 0.
c c c

(v—1)
(6.52)
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The integration of (6.52) leads to the Bernoulli equation in
the post-Newtonian approximation

v2 v2 a® a? P
r r 1 b
2{ +202]+'y—1[ 202(7—1)}+¢+02

as, a,
Above it was assumed that the gravitational potentials ¢, and
the proper velocity v, vanish far from the compact massive ob-
ject. We call attention to the fact that (6.53) reduces to the
Newtonian Bernoulli equation (6.6) by neglecting the 1/c¢* —
terms.

As in the Newtonian analysis we denote the differentiation
with respect to the radial coordinate r by a prime and expand
the derivatives in the hydrodynamic equation for the mass den-
sity (6.43) and get

8 (o] — )

2rpvy + 12 p' v, + 2 pul 4 —< 2 =0. (6.54)
(0
This equation reduces to
2 p v 1 / /
;+;+E+§(UTUT—¢)=O, (655)

by considering terms up to 1/c?. Likewise one can obtain from
the hydrodynamic equation for the mass-energy density (6.44)
the following expression

2 o W 1 i
e <2vrv£ + a”) = 0. (6.56)
r C 4
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In terms of the derivative with respect to the radial coordinate,
equation (6.52) can be rewritten as

v2 , a? 1//
(1 + 02) Vv, + [1 — 02('71):| —+¢ + — =0. (6.57)

By neglecting the 1/¢? — terms the mass density (6.55) and the
mass-energy density (6.56) equations coincide and these equa-
tions together with (6.57) reduce to the Newtonian ones (6.7).

The system of differential equations (6.55) — (6.57) can be
solved algebraically for v/, p’ and v’ resulting

g 2wt (i-g) -y (i)
T (e R A ) (e
(6.58)
N
Y = ! (6.59)

r(y=1)[v2(1- %) —a?]’

where N7 denotes the following abbreviation

Ny =a' {m (1—f>]+r¢ c(r=1)

—2a?(y — 1)v; (1 - ;’52/) (6.60)

From (6.58) we can build the relationship

r¢ r¢'l dv, 2 r¢'\ rd'| dp
[(“a)‘ﬂwf’FQ‘w>2}n
(6.

61)
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The same analysis as in the Newtonian case follows from the
above equation, i.e., the turning points for the functions p and
v, are attained when both expressions within the parenthesis
vanish, yielding

/ / /
ek (B Y
2(1-egh) 2 ¢
o = 7’c¢,c ~ Tc¢’c 1+ Tc(bi:
¢ 2 (1 _ %) 2 202

Hence, the solution must pass through a critical point, which is
defined by a critical radius r., a critical proper velocity V. and a
critical sound velocity a.. As was commented in the Newtonian
case, the existence of a critical point prevent singularities in the
flow solution and guarantees a smooth monotonic increase of the
flow velocity when r decreases. Note that the approximation
above is valid since we are working with a first post-Newtonian
theory. The relationship between the critical gas flow velocity
and speed of sound follows from (6.62) and (6.63) resulting

regL
ig _ (1 B C72) ~ (1 TCd); ~ (1 ﬁ ~ (1 Vj
7 (1 B rcaﬁg) - 2c2 )~ 2 )~ 2 )’

2c?
(6.64)
Hence, unlike the Newtonian case, the critical gas flow is not
equal to the sound speed.
For the determination of ¢/, at the critical point we substi-
tute (6.64) into (6.59) and take into account the expression for

) . (6.63)
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the Newtonian gravitational potential ¢ = —GM/r = —rd/,
resulting
ve 92 GPM?

2 2c2r, 2¢2r3

(6.65)

We can also determine ¢" by considering that the scalar grav-
itational potential 9 is of order 1/¢? and we can approximate
(6.59) by

¢ —at [p+207] - 2a°(y — 1)v} — gui(y — 1)
2 r(y = 1) [v? = a?] .

(6.66)

Here we have neglected the terms proportional to 1/c? and taken
into account the relationship ¢'r = —¢. If we rely on the virial
theorem 2K + W = 0 — where K and W represent the kinetic
and potential energies — we can assume that 202 + ¢ = 0 and
(6.66) reduces to

Y ¢

== 6.67

2 2er (6.67)
Now from the integration of (6.67) and the use of = —GM /r =
—r@’ the scalar gravitational potential 1) can be determined,
yielding

w G2M2 B ¢2

— === so that Ye :—Qi. (6.68)
c? 4c2r? 4c?’ c? 4c?

Here it was considered that the scalar gravitational potential i
vanishes at distances far from the massive object r — co. Equa-
tion (6.68)2 can be seen as the integral of (6.65) with respect to

Te.
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The determination of the critical values follows from the
Bernoulli equation (6.53) when the expressions for the sound
speed (6.63), proper velocity (6.64) and gravitational potential
(6.68)2 are taken into account. One obtains an algebraic equa-
tion for the determination of ¢, at the critical point which can
be solved and its value up to order 1/c? is

12, i 2,
(5—37) 8(y =15 =37) ¢
The critical radius is obtained from ¢ = —GM /r and reads

(5—-3vy)GM

15—11y a2 }

b = — (6.69)

15—11y  a?
- _ doo 6.70
) { -6 -3 } (6:70)

From (6.63) and (6.64) together with (6.69) and ¢/, = —¢. /7.
follow the critical values of the sound speed a. and proper ve-
locity V., namely

2 _ 2ac2>o _ 1—5y @
T B3 {1 8(y—1)(5—37) 2 } , (6.71)

2a? 17— 21 2
v2= = [ - 2 “020} . (6.72)
(5—37) 8(y—1)(5—-37) ¢
The critical value of the mass density is obtained from the
expression for the sound speed a? = vp/p together with its
critical value (6.71) and the equation of state p = kp?, yielding

pe

_ [ 8 T — 2 e 1 — 1 -5y &
Poo \loo - \5-3y 8(y —=1)2(5=3v) 2 |’
(6.73)
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while the critical value of the absolute temperature follows from
the equation of state p = kT'p/um,, and reads

£l 2 {1—8( L5 agO] (6.74)

T 5-3y y=1)(-37)
At the critical point the mass-density accretion rate (6.46)
becomes
: 1 (V2 GM\*
— 2 c —
Mp* = 47Tpc7"c |:]. + g (2 - ¢C>:| VC = 47T)\C (a(2>0> Poolooy
(6.75)
where the critical value for the dimensionless parameter is given
by
3v-5 9-7y 121 — 2167 + 10372 a2
)\c — 5 _3 2y—2 9272 - . 676
o [+ a6

When the ratio of the sound speed far from the compact
massive object and the speed of light is very small ao/c < 1
the Newtonian critical values are recovered, namely

4a2, (5—3y) GM
= Gosy T a1 670
1
2a? P 2 =T
=V —= = 6.78
T T3 e 5—3y (6:78)
3y=5 9-7~y
Ae = (5—3y)2222—2, (6.79)

The critical values above are valid for v # 5/3 and in the case
when v = 5/3 the post-Newtonian Bernoulli equation (6.53)
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reduces to
ﬁ 1_|_’UE +% 1_% L_ 1_|_G7M
2 2c2? 2 4c2 GM 4rc?
3a§o7’ 3a2
= 1-——=2. .
o (- 5%) (850)

If as in the Newtonian case we restrict ourselves to distances
from the compact massive object where a2 r/GM < 1 and use
the relationship (6.64) — which connects the gas flow velocity
with the sound speed at the critical point — we get from (6.80):

2l 19027  GM - GM or o2 GM . 27TGM
r 16e2 |~ 2r drc2 | T oy 32rc2 |’
(6.81)

The expression for the sound speed, mass density and ab-
solute temperature for v = 5/3 in the post-Newtonian approxi-
mation read

2
22|yt o GM [ 3GM
a® = ;. [1 62} ~ { o2 | (6.82)
3 3
p a GM \? 15GM
—=—] = 1-—- .
Poo (aoo> <2a§or> { 64rc? |’ (6.83)
T a\> GM 5GM
— = — ~ 1— . .84
Too <aoo> 2a2.r [ 327“02} (6.84)

The post-Newtonian contributions to the fields given in the
equations (6.81) — (6.84) are small, since for a compact massive
object with a mass M ~ Mg, GM/c® ~ 10*m.
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As in Section 6.1.1 we shall analyse the post-Newtonian ap-
proximation limiting cases for v # 5/3 when the radial distance
from the compact massive object is smaller or bigger than the
critical radius.

When r > r. the gas proper velocity v, and Newtonian grav-
itational potential ¢ become very small so that the sound speed
can be approximated by its value far from the compact massive
object a =~ a,, as well as the mass density and the absolute tem-
perature, i.e., p & ps and T =~ T,,. As a consequence the gas
flow velocity for r > r. is the same as that for the Newtonian

case (6.21).
The post-Newtonian Bernoulli equation (6.53) for r < 7,
reduces to
v? v2 GM GM
— |1 Dl — |14+ — 6.85
2 { +202] r { +4r02}7 (6.85)

if we use the same arguments that were applied to derive (6.22).
From the above equation we obtain that

2G M 3GM
v = {1 87«02]' (6.86)

Furthermore, from the mass accretion rate (6.75) the depen-
dence of the mass density on r is

P A(GM)? az? | 1saM
Poo V2r3 8re? |’
We infer from (6.86) that the gas proper velocity in the post-

Newtonian approximation for r < 7. is smaller than the New-
tonian one as well the ratio of the mass density (6.87).

(6.87)
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6.2.2 Mach number as function of the radial
distance

In the post-Newtonian approximation we write Bondi’s dimen-
sionless quantities (6.27) as

ra? GM v v? P
R - Ny (il SR Y AT B (3
" GM( * 2rc2> B oo < i 202) Poo (6.88)

which are related to the radial distance, proper velocity and
mass density, respectively. Another dimensionless quantity is
the Mach number, which is the ratio of the proper velocity and
the sound speed u, = v,./a.

If we solve (6.88) for r and v, by considering terms up to
1/c? we obtain

GM 32 B2
r= CLTT* (1 ) y Uy = Qoo Sx (1 - 73* : (689)

2 21,

Here we have introduced the relativistic dimensionless parame-
ter 8 = aoo/c which refers to the ratio of the sound speed far
from the compact massive object and the speed of light.

The mass-density accretion rate (6.46) can be rewritten in
terms of the new variables (6.88) and by taking into account the
Newtonian gravitational potential ¢ = —GM/r as

: GM\?
Mp* =47\ <a2> Pooclooy (690)

(oo}

where A\ = rfs*t*.
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The dependence of the proper velocity as a function of the ra-
dial velocity follows from the post-Newtonian Bernoulli equation
(6.53) by expressing it as function of the dimensionless quanti-
ties (7, uy).

Let us write first the dimensionless parameters s, and t, as
functions of (1, u.), namely

2(y—1)

y—1
2/ N\ Tt 2 a4 /N Tt
Se = ug ! () 1+ i 1%.?“ <> ,  (6.91)

-1)

2 2(»y
A\ T B2 A A\
t, = 1-— T = . (6.92
(i) S (3) (692

Above we have taken into account (6.88), and the following re-

lationships u, = v,./a, A = 1r2s,t, and t. = p/pec = (a/am)%.
Now we can rewrite v, and @ in terms of (74, u.) from (6.89)9

2-1
and a/as = t.? , yielding

2 % 2(~v—1 4 2w+711
UT:%W(A) ll_ﬁwmﬂ(x) ]7(6.93)

r2 2(v+1) r2
~y—1 2(y—=1)
ANT | B AT
— 1— 0 = (6.94
o= (i) v\ (694

The gravitational potentials ¢ and 1 as functions of r, are given
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M (B e #
o 2r. )’ 2 42 42T

(6.95)

We call attention to the fact that in (6.91) — (6.95) we have

considered only terms up to the order 1/c.

Now from the post-Newtonian Bernoulli equation (6.53) to-
gether with (6.93) — (6.95) we get the final equation which gives
the dependence of the Mach number u, with the dimensionless
radial distance 7,

2(v—1)

_4 2(v=1)
B ¥ 2 4 +1
U’ i o 1+ 76 ul T i 7
2 r2 2(y+1) r2
2(v—1)
1 1+ 332 N 1 A V¥
Ty 4r, v =1 \u,r?
2(y—1)

(v+1) ) F-1) & (A) —

1—1(1 —
. (*2@—1)%& 1 -z

The above equation reduces to the Newtonian one (6.32) if we
neglect the 82 terms.
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6.3 Relativistic Bondi accretion

In this section we shall analyze the relativistic Bondi accretion
and its weak field limiting case. The determination of the rela-
tivistic Bernoulli equation and the analysis of the critical point
follow the work by Michel [5].

6.3.1 Relativistic Bernoulli equation

The Schwarzschild metric is the solution of Einstein’s field equa-
tions that describes the gravitational field outside a spherical
mass. The line element in spherical coordinates (7,6, ¢) reads
2GM 1
ds® = (1 _ > (d:vo)2 — (17 (dr)2

2 —2GM
re rc? )

—y2 [(d9)2 +sin%6 (dap)ﬂ . (6.97)

The Schwarzschild radius corresponds to the radius which
defines the event horizon of a Schwarzschild black hole and is
given by rg = 2GM /rc?.

The gas cloud of the interstellar plasma is characterized by
the particle four-flow N# and energy-momentum tensor T#” of
a perfect fluid

1 8a%
NH =nU", T“”:(p—i—e)UU

— pg*”. (6.98)

The balance equations for the particle four-flow and energy-
momentum tensor can be written as

1 9,/ —gN*
Nb, = ——NVTIT (6.99)
’ V=g Ozt

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



EBSCChost -

6.3 RELATIVISTIC ACCRETION 257

1 0y=9T,” 1,,,0900
TV = In  Sqwefe g (6.100)
v /=g  Ox¥ 2 ozt
In the analysis of the spherically symmetrical accretion the
non-vanishing components of the four-velocity are

(UH) = (UO ‘zi Ur = jr,o,()) : (6.101)
T T

and due to the constraint g, U*U" = ¢ the component U? is
connected with U" by

2GM | 2
\/1 T e 7)
2GM :
1 - rc?

(6.102)

The balance equation for the particle four-flow (6.99) can be
integrated furnishing the relationship

v —gnU" = constant, (6.103)

which together with \/—¢g = r2sin?# implies the spherically
symmetrical mass accretion rate

M = 47pr?U" = constant. (6.104)

Here we have introduced the mass density p = mn where m
denotes the rest mass of the gas particles.

The time component of the balance of the energy-momentum
tensor (6.100) reduces to

1 8\/—gT0y
— e .1
N AT 0, (6.105)
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since the components of the metric tensor do not depend on the
time. The integration of the above equation yields

Ur U
V=aTo' =v/—=g(p+e) ??0 = constant. (6.106)
The elimination of U” from (6.106) by using (6.103) leads to
U
pte’o_ constant, (6.107)
p

which can be rewritten as

pre\’ |, 26GM  (U"\?
-4 (=
p re c
thanks to the relationship (6.102).

At this point it is interesting to introduce the sound speed
a whose expression in relativity is given by (see e.g. [8])

a*> _ p (9p
_ op 1
. p+€<ap)s, (6.109)

where the differentiation is taken at constant entropy s.
From now on we consider a gas with a polytropic equation
of state and energy density equation given by

= constant,  (6.108)

B
p =Ko, e=pc2+i1. (6.110)
o

From (6.109) and (6.110) we can obtain the expressions

v—1 v—1
p+€ _ Ryp + 02 _ K”YQP -, (6111)
P y-1 a?/c
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which implies that we can write

2 2
v-1__(1=1a pte_ ¢ 6.112
mr y—1-a?/c’  p 1—a2/(7—1>02'( 112)

Furthermore, based on the above expressions the sound speed
can be expressed as

2 2 d
Z-r 2 <p+6>. (6.113)
¢ ptedp\ p

The relativistic Bernoulli equation is obtained from the sub-
stitution of (6.112) into (6.108), yielding

(o) =) 2 (2
A(y—1) A(y—1) rc? c ’
(6.114)
where it was supposed that far from the Schwarzschild black
hole 2GM /r¢? and U™ vanish while the sound speed becomes
Goo-
To determine the critical point of the gas flow we differentiate
(6.104) and (6.108) and get respectively

dp  dU"  dr

=0, (6.115)

N 2
2<p+e>d<p+e)dp 1_2GM+(U)
p ) dp\ p

rc? c
2
2GM 2
r2c c
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Another expression for (6.116) is obtained by eliminating
dp from (6.115) and considering the relationships (6.112) and
(6.113). Hence it follows that

aur [(12 (U /e)? ]

ur|e 1—2GM/rc® + (U /c)?

2 M 2
e GM/re S| =0.(6.117)
r| oc 1—=2GM/rc? + (U /e)

The critical point is determined when both expressions in the
parenthesis in (6.117) vanish resulting the following expressions
for the critical gas flow velocity and sound speed

wp=G o W e
2r, 1-3(Ur/c)? 1+ 3(ac/c)?
(6.118)
Note that as in the post-Newtonian case the critical sound speed
does not coincide with the critical gas flow velocity.

It is interesting to compare the post-Newtonian approxima-
tion with the weak field limit of the relativistic case. For that
end we begin by writing the Bernoulli equation (6.114) at the
critical point and taking into account (6.118) as

(158 o) - (-t eom

This is a third order algebraic equation for the determination of
the critical sound speed a? which was solved in [9]. Here we are
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interested in its weak field approximation and solve (6.119) by
considering terms up to 1/¢? — order

2 2a2, - 33vy+1)  ai
¢ 5-3y 256 -37)(y—1) ¢ ]’

The approximate expressions for the critical gas flow velocity
U, and critical radial distance follows from (6.118) and (6.120),

a (6.120)

yielding
2a> 3(7—11y) a?
U2=_"—"x e (6121
S ey ) 642
— _ 2
o= OZ3NCEM [ BT =11Y)  ds] g9
4 a3 Ay =106 —=37) ¢

The critical mass density is obtained from the knowledge of
the critical sound speed and reads

" <oo> - (52 37>#1 e e 1)%
(6.123)

The critical absolute temperature follows from the equation
of state of a perfect gas p = kT'p/pm,, namely

- <;;>2 “in {1 - 2(53(2;71) 1)%} (6.124)

We can rewrite the mass accretion rate (6.104) as

M = 4npr2V, = 4nd(GM)? posa (6.125)
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thanks to (6.121) — (6.123). Here A. is given by

3y=5 9-74 3(17 — 66 + 33+?%) a2
A = (5—39)52 2575 |1 9| (6.126
G e [ e =G —ay) @ | (6120

Note that all expressions above for the critical quantities dif-
fer from those of the post-Newtonian approximation given in
Section 6.2.1.

The weak field limit of the relativistic Bernoulli equation is
obtained by considering terms up to the 1/c¢? order in (6.114),

yielding
2
()4
c c
2 2 r\ 2
n a 1 a 20 (U"
(v—1) 2¢2(y-1) 2 c

Above we have introduced the Newtonian gravitational poten-
tial ¢ = —CM . Without the 1/¢ — terms (6.127) reduces to
the non-relativistic Bernoulli equation (6.6), but this expression
differs from the post-Newtonian Bernoulli equation (6.53).

(Ur)?

2

The weak field approximation of the Bernoulli equation given
by (6.127) can also be expressed in terms of the proper veloc-
ity of the flow v, defined by (6.41). For that end we use the
relationship between the components U” and U which follows
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from U, U" = 2

<U0>2 () (6.128)

c N 1+%§5 ’

so that the proper velocity (6.41) becomes

,/1+2§§\/1+ (1—%‘;’) (Z)®

The expression of the radial four-velocity component in terms
of the proper velocity by retaining terms up to the 1/¢? order is

v (6.129)

. ¢, v
U’ = v, [1 + 2 + 52 | - (6.130)

The weak field limit of Bernoulli equation written in terms
of the proper velocity is obtained from the insertion of (6.130)
into (6.127) and considering terms up to 1/¢? order, yielding

2¢ a? a® 2¢  v?
[1_ } MCE [ - 202(71)02(:2}
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Note that for the underlined term of the above equation we have
used the Newtonian Bernoulli equation (6.49), since it is of 1/¢?
order.

6.3.2 Mach number as function of the radial
distance

For the weak field limit the mass density accretion rate follows
from (6.103) which in terms of the proper velocity reads

(6.132)

GM v2
rc? 2c?

M = 4rpr®U" = dnpriu, [1 - — + =

If we introduce the dimensionless quantities
ra? GM v v2 p
== (1—=—=), s.=—|1 ) b= —,
T oM < 27‘02) ° oo ( * 202> Poo
6

the mass density accretion rate becomes

2
A5

. GM\?
M =47\ ( ) Pooloos where A= rfs*t*. (6.134)

By considering terms up to the 1/c? order we can obtain from
(6.133) that

2 2
r= GMr, (1 + b ) ; Vp = (oo Sx <1 - ﬂ;*) .(6.135)

aZ, 2r,

The expression for s, given above is the same as the one
in the post-Newtonian approximation (6.88) so that we can use
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(6.93) and (6.94) for the proper velocity and sound speed as a
function of the Mach number w, and dimensionless radial dis-
tance 7y, respectively. The Newtonian gravitational potential

¢ = —GM/r in terms of the dimensionless radial distance is
a2 BQ
=——211- . 6.136
b= ( %) (6.136)

Now from the weak field Bernoulli equation (6.131) together
with (6.93), (6.94) and (6.136) follow the expression which relate
the Mach number u, = v"/a as function of the dimensionless
radial distance r,, namely

2(v=1)

ﬁ 2("(_;11) 2 4 ¥ 2
= S TRERN s +
2 r2 v+1 r2 Ty
1 332 1 A\ o 2432
V¥
—— (1 - 1—
S e I =
9 ., 2(;:11)
(1304 NG =D s (A
20 —1)%u2) (v+1) ° \r?

- vil (1— 2@62 1)). (6.137)

The relativistic Bernoulli equation (6.114) can also be writ-
ten in terms of a Mach number defined by U, = U"/a which
refers to the ratio of the radial component of the four-velocity
and the sound speed. Here we can use the Bondi dimensionless
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quantities (6.27) and write

2 260177 2\ 2 2
(AT (2 2
v —1\U,r? N y—1 T
A\ 2(v—1)
2772 o
U . 6.138
+5°02 () ] (6.135)

In terms of the Mach number related with the proper velocity
uy = v-/a the Mach number U, is given by

Uy U,
U* = — = y
a 2 2 2(34:11)
V122 1+<1+2%)52U3 (Usz)
(6.139)

thanks to (6.129).

6.4 Numerical results

Let us analyse the behavior of the solutions for the Mach number
u, as function of the dimensionless radial distance 7, which fol-
low from the different approximations of the Bernoulli equation,
namely, the Newtonian, the post-Newtonian approximation, the
relativistic and its weak field approximation.

The Newtonian solution of (6.32) will be denoted by (N), the
post-Newtonian solution of (6.96) by (PN) and the weak field
approximation solution of (6.137) by (WF). For the relativistic
accretion, denoted by (R), the Bernoulli equation (6.138) was
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first solved for the Mach number with respect to the radial four-
velocity U, and then from (6.139) the Mach number for the
proper velocity u, was obtained.

In the tables and figures below — which show the Mach
number u, as a function of the dimensionless radial distance
ry — it was considered that the ratio of the sound velocity
far from the massive body and the light speed was equal to
B = aso/c = 1072, which is of relativistic order.

Table 6.2 shows the values for the Mach number w, as func-
tion of the dimensionless radial distance 7, in the range 5 X
1074 < r, < 2.5 x 1072 for a ultra-relativistic Fermi gas where
~v = 4/3. The critical radius in the Newtonian approximation
is ry = 0.25 where the critical Mach number assumes the value
us = 1. From this table we infer that by increasing the dimen-
sionless radial distances r, from the massive body the Mach
number decreases. The values of the Mach number for the rela-
tivistic case are bigger than the Newtonian ones while the values
of the Mach number for the post-Newtonian and weak field ap-
proximations are practically the same and are smaller than those
for the Newtonian case. By increasing the dimensionless radial
distance the difference between the Newtonian, post-Newtonian
and weak field solutions becomes very small and the solutions
practically coincide at 7, = 1073. The contour plots for the
Newtonian (6.32), post-Newtonian (6.96) and weak field (6.137)
Bernoulli equations are shown in the left frame Figure 6.4. In
this figure the Newtonian solution is represented by a straight
line, the post-Newtonian by a dashed line and the weak field
approximations by a dot-dashed line. We note that the differ-
ence between the Newtonian, post-Newtonian and weak field are
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very small and coincide by increasing the dimensionless radial
distance.

T e (N) | us (PN) | ue (WF) | us (R)
25 x 1072 | 1.00 1.07 1.02 2.09
5x 1072 2.40 2.41 2.41 3.31
10~2 4.35 4.34 4.34 4.97
5x 1073 5.40 5.37 5.37 6.07
1073 8.53 8.24 8.26 11.26
5x 1074 10.29 9.66 9.66 20.26

Table 6.2: Mach number u. = v,/a as function of the dimension-
less radial distance . for a ultra-relativistic Fermi gas v = 4/3.

For a diatomic gas where v = 7/5 the Mach number u, as
function of the dimensionless radial distance 7. in the range
5x107* < r, <2x 1072 is shown in Table 6.3. One may infer
the same conclusions as those in the former case, i.e., in com-
parison with the Newtonian solutions the dependence of Mach
number with respect to the dimensionless radial distance for the
relativistic case is bigger, the post-Newtonian and the weak field
solutions are smaller and both have practically the same values.
The critical radius for the Newtonian case is r, = 0.2 where the
Mach number attains the value u, = 1. The contour plots of
the Newtonian (straight line), the post-Newtonian (dashed line)
and the weak field (dot-dashed line) solutions are displayed in
the right frame of Figure 6.4 showing that the values of the
Mach number for the Newtonian solution is bigger than those
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26 40
£ 3m31 3035 3037 3032 3834 0.001 0.002 0.003 0004 0.005

Figure 6.4: Contour plots of Mach number u, as function of
dimensionless radial distance r, for ultra-relativistic Fermi gas
~v = 4/3 (left frame) and for diatomic gas v = 7/5 (right frame).
Newtonian — straight line, post-Newtonian — dashed line and
weak field — dot-dashed line.

for the post-Newtonian and weak field solutions and that the
difference between them becomes very small by increasing the
dimensionless radial distance.

The contour plots for a monatomic gas or a non-relativistic
Fermi gas with 4y = 5/3 are shown in Figure 6.5 where of the
Newtonian solution is represented by a straight line, the post-
Newtonian solution by a dashed line and weak field solution by
a dot-dashed line. For the Newtonian case the critical dimen-
sionless radial distance is r, = 0 where the the Mach number
becomes equal to u, = 1. We call attention to the fact that
r. = 0 is a turning point for the Newtonian solution where a
transition occurs from an accretion flow to a wind flow. We in-
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T e (N) | us (PN) | uy (WF) | us (R)
2x1072 | 1.00 1.02 1.06 2.21
5% 1072 | 2.00 2.00 2.00 2.86

1072 3.43 3.43 3.43 4.02
5x 1072 | 4.16 4.14 4.13 4.77
1073 6.16 5.99 5.98 8.22
5x107% | 7.21 6.83 6.81 14.22

Table 6.3: Mach number u, = V/a as function of the dimen-
sionless radial distance 7, for a diatomic gas v = 7/5.

fer from this figure that the values of the weak field solution are
smaller than the Newtonian ones and the turning point is about
ry ~ 4 x 1073, Furthermore, for the post-Newtonian solution
there is no turning point which corresponds to a transition from
an accretion flow to a wind flow.

Once the Mach numbers as functions of the dimensionless
radial distances are determined one can obtain the ratios of the
mass density and absolute temperature with respect to their val-
ues far from the compact massive object as function of the di-
mensionless radial distance from (6.33) and (6.34), respectively.
The ratios p/ps and T/To for a ultra-relativistic Fermi gas
(v = 4/3) and diatomic gas (v = 7/5) which follow from the
Newtonian and relativistic solutions are compared in table 6.4.
The values of the density and temperature ratios correspond to
a dimensionless radial distance 7, = 1072. One observes from
this table that the values of the ratios p/po. and T/Ts, for the
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0.6

0.000 0.005 0.010 0.015 0.020

Figure 6.5: Contour plots of Mach number u, as function of
dimensionless radial distance r, for non-relativistic Fermi gas
~v = 5/3. Dashed line Newtonian, straight line post-Newtonian
and weak field.Newtonian — straight line, post-Newtonian —
dashed line and weak field — dot-dashed line.

relativistic solution are smaller than those for the Newtonian so-
lution. This can be easily understood by noting that the mass
accretion rate is a constant and proportional to pr2v,, hence
by increasing the velocity for a given radial distance the density
must diminish. Note that the velocity of the relativistic solution
is bigger than the one of the Newtonian case. There is no sensi-
ble difference in these ratios from the post-Newtonian and weak
field approximations with respect to those from the Newtonian
theory.
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Y | plpse (N) | p/poc (R) | T/Toe (N) | /T (R)
4/3 | 5.65 x 10% | 4.87 x 10% | 2.64 x 10° | 1.87 x 10°
7/5 | 5.21 x 10% | 4.00 x 10% | 3.31 x 105 | 1.76 x 10°

Table 6.4: Comparison of ratios p/pe and T/T, at r, = 1072
for v = 4/3 and v = 7/5. (N) Newtonian solution and (R)
relativistic solution.

Here it is necessary to comment the behaviors of the post-
Newtonian and weak field solutions found in the above analy-
sis when both are compared with the Newtonian and relativis-
tic solutions. One expects that the post-Newtonian and weak
field solutions should be more close to the relativistic one and
not smaller than the Newtonian solution. By inspecting the
Newtonian (6.32), the post-Newtonian (6.96) and the weak field
(6.137) equations we note that the two latter equations have
corrections from the Newtonian one and their solutions should
furnish different results for the dependence of the Mach number
as function of the dimensionless radial distance. We can ask
why the values of the Mach number for the post-Newtonian and
weak field are smaller than in the Newtonian case. The only
clue is to look at the expression for the proper velocity (6.93)
for the post-Newtonian and weak field which can be written as

y—1 2(v—1)

o —aadT (AT B0 e (AT
r2 2(v+1) r2
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2(v—=1)

2
N Brly=1) st (A 7
=, 1-— mulJr E 5 (6140)

where v is the Newtonian expression for the proper velocity.
One infers from the above equation that the proper velocities for
the post-Newtonian and weak field should be smaller than the
one for the Newtonian case, which could explain the difference
in the behavior of the solutions.

To sum up the above results: (i) the Mach number for the
Newtonian, post-Newtonian and weak field accretions have prac-
tically the same values for radial distances of order of the critical
radial distance; (ii) by decreasing the radial distance the Mach
number for the Newtonian accretion is bigger than the one for
the post-Newtonian and weak field accretions; (iii) the effect of
the correction terms in post-Newtonian and weak field Bernoulli
equations are more perceptive for the lowest values of the radial
distance; (iv) practically there is no difference between the New-
tonian, post-Newtonian and weak field Mach numbers when the
ratio a./c < 1072; (v) the solutions for as,/c > 10~2 does not
lead to a continuous inflow and outflow velocities at the criti-
cal point; (vi) from the comparison of the solutions with those
that follow from the relativistic Bernoulli equation shows that
the Mach number of the former is bigger than the Newtonian,
post-Newtonian and weak field Mach numbers.
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CHAPTER 7

JEANS
INSTABILITY:
HYDRODYNAMIC
EQUATIONS

The standard cosmological model is based on the fact that at
scales larger than 100 Mpec (3.08 x 10'® m) the Universe is basi-
cally uniform and homogeneous. The inhomogeneities at small
scales account for the existence of galaxies and clusters of galax-
ies. A question that arises is how to explain the growth and the
basic mechanism of matter aggregation which generate these
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structures. The first determination of the fluid instabilities for a
static Universe — where small perturbations of a gas cloud could
grow exponentially leading to its collapse — was due to Sir James
Jeans in 1912 [1]. By using the fluid hydrodynamic equations
he determined a dispersion relation which implied, apart from
the harmonic perturbations, a growing and a decaying prop-
agating modes. In other words, he found a physical cutoff —
nowadays called Jeans’ wavelength — such that the perturba-
tions with wavelength shorter than the Jeans wavelength will
not grow in time and evolve as harmonic oscillations, whereas
the perturbations with larger wavelength may grow or decay
exponentially in time. A very simple argument can be used
to understand the gravitational instability associated with the
Jeans mechanism: let us consider a spherical volume of radius
A which encloses a given mass M and where there exists a mass
density inhomogeneity. In this spherical volume two forces are
present, namely, the gravity force per unit of mass F; and the
pressure force per unit of mass Fj,. The inhomogeneity will grow
if Fy > F), i.e, if the gravity force per unit mass is greater than
the opposed pressure force per unit of mass, namely,

GM  Gp)\® pA\? 2 c?
a2 ST

F, = :Gp)\>Fpo<Wo<X‘,:>)\2>Gp.
Here we have taken the sound speed as ¢ o« (p/p) and M = pA3.
The Jeans wavelength is given in terms of the Jeans wave num-
ber by A\j = 27/k; = 2mes/\/4nGp. By introducing the wave
number k£ = 27/ the instability comes out if the condition
A > Ay or kK < Ky holds. Furthermore, if ¢, represents the
timescale associated with the pressure exerted over a region with
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matter and t, the timescale needed to start the gravitational
collapse of the matter due to its own weight, the Jeans instabil-
ity occurs whenever the pressure timescale is greater than the
gravitational one, i.e., t, = (A\/¢s) >ty = 1/y/Gp.

In this chapter we shall investigate the Jeans instability on
the basis of the hydrodynamic equations for the Newtonian, first
and second post-Newtonian approximations.

7.1 Newtonian Jeans instability

The Newtonian analysis of the Jeans instability is based on the
mass density (1.8) and momentum density (1.9) balance equa-
tions for an Eulerian fluid where p;; = pd;;, which we reproduce
here
dp | OpV;
— — = 7.1
ot * ox? ’ (7.1)
opVi  OpViVi | Op ou
ot OxI ori oz
where the Newtonian gravitational potential U = —¢ obeys the
Poisson equation

—0, (7.2)

V32U = —4nGp. (7.3)

Here we shall investigate the Jeans instability for an isen-
tropic flow with a polytropic equation of state p = kp” and
sound speed ¢2 = dp/dp.

Equations (7.1) — (7.3) represent a system of partial differen-
tial equations for the determination of the mass density p(x,t),
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hydrodynamic velocity V;(x,t) and Newtonian gravitational po-
tential U(x,t). We shall assume that the fluid is initially at rest
with constant mass density pg, vanishing hydrodynamic veloc-
ity V2 = 0 and constant Newtonian gravitational potential Uy.
The homogeneity condition implies that the equilibrium fields
do not depend on the spatial coordinates.

The equilibrium fields are superposed by the field perturba-
tions p1(x,t), Vi'(x,t) and Uy (x,t), namely

p(x,t)=p0+p1(x,t), Vi(X,t):V;l(X, t)7 U(Xv t):U0+U1(X’ t)v

(7.4)
where the field perturbations are supposed to be small quanti-
ties.

While the equilibrium fields satisfy the balance equations of
mass density (7.1) and momentum density (7.2), the Poisson
equation (7.3) leads to an inconsistency, namely, 0 = —47wGpy.
To remover this inconsistency one relies on the ” Jeans swindle”,
which asserts that the Poisson equation is valid only for the
perturbed values of the Newtonian gravitational potential and
mass density.

From the insertion of the representations (7.4) into (7.1) —
(7.3) and subsequent linearization of the resulting equations it
follows that

8p1 8‘/11 -

B T =0 (%)
8‘/;1 26p1 aUl

Po ot + Cs 8l‘i — Po 83& - 07 (76)

V32U, = —4nGp. (7.7)
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In (7.6) we have considered dp;/dz" = c2dp1/0x".

By taking the time derivative of (7.5) and the divergence of
(7.6) we get
82p1 82L21 62‘/1

=0 2v2p, — U, =0.(78
BID 'f'IOOataxZ , Poaxzatﬁ-csv p1— poV-U; (7.8)

If we eliminate the velocity derivatives from the mass density
equation (7.8); by using the momentum density equation (7.8)2
and the Laplacian of the Newtonian gravitational potential by
considering the Poisson equation (7.7) we get

82p1
ot?

— 2V?py — 4nGpopr = 0, (7.9)

which is an equation which involves only the mass density per-
turbation.

Now we characterize the mass density perturbation by a
plane wave of small amplitude p, wave number vector k and
frequency w:

p(x,t) = pexplik - x — wt)]. (7.10)

If we insert (7.10) into (7.9) we get the following dispersion
relation which relates the frequency w with the modulus of the
wave number vector k = vk - k:

? A2 G
W2:C§H3 (:%2_1) chk3 ("27_1> Where Ky = @7
K5 A Cs
(7.11)
denotes Jeans’ wavelength.
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The dispersion relation (7.11) represents the solution given
by Jeans. For small wavelengths A\; > A the frequency w is
a real quantity and the mass density perturbation propagates
as harmonic waves in time. For big wavelengths A\; < A the
frequency w becomes a pure imaginary quantity so that the mass
density perturbation will grow or decay depending on the sign
£. The one which grows in time refers to Jeans’ instability.

The Jeans mass is defined as the minimum mass for an over-
density to begin the gravitational collapse and it is defined as
the mass contained within a sphere of radius \;, namely

47
M; = ?)\"?}po. (7.12)

7.2 Jeans instability in expanding
Universe

Another problem which is interesting to examine is the Jeans
instability in an expanding Universe. This problem was first
analyzed by Bonnor [2] in 1957 by using the Newtonian balance
equations coupled with the Poisson equation. The description
of this problem can also be found in the books by Weinberg
[3] and Coles and Lucchin [4]. We note that the Newtonian
gravity is valid in regions whose radius are small compared with
the Hubble radius and the velocities are non-relativistic. The
Hubble radius is of order of ¢/Hy where the Hubble constant
has an approximate value of Hy = 73 km/s/Mpc.
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We consider that the expanding Universe is ruled by the spa-
tially flat Friedmann-Lamaitre-Robertson-Walker (FLRW) met-
ric ds? = (edt)? —a(t)(dx? + dy® + dz?), where a(t) is the cosmic
scale factor.!

Here we shall follow the work [5] and write the Newtonian
balance equations and the Poisson equation in terms of the co-
moving coordinates xo which are related with the physical coor-
dinates x by x(t) = a(t)xo. For that end we have to transform
the time and spatial derivatives as follows

ol | o5 9| o] a0
ot|, ot x Ot | 0zh|, Ot a%axg . (7.13)
0 10

| = ——]. .14
oxt|, aldxy|, (7.14)

For the analysis of Jeans instability we shall consider the
background solutions

ap\ 3 . 21
PB = Po (f) s VB = axy, UB = 7?GpBX - X, (715)

superposed by the field perturbations p;, V;! and U i.e., p =
pB+p1, Vi = ViB + Vi1 and U = Upg + U;. The mass-energy
density background results from Einstein’s field equations for a
dust dominated Universe where p ~ 0 (see (7.93)), while the
velocity background follows from Hubble-Lamaitre’s law V =
(a/a)x. The Newtonian gravitational potential background sat-
isfy the Poisson equation (7.3) without the necessity to invoke

the ”Jeans swindle”.

1For an overview of the field equations which follow from Einstein’s field
equations the reader is referred to the Appendix of this chapter.
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By taking into account (7.13) and considering only the linear
terms the mass-energy density balance equation (7.1) can be
written as

Opp | Opr i Op1  pp (OVP OV | prOVY
ot ot a %0xy  a \ 0x ' O a Oz}
VP opr _dp1 | p IV  p0VP

0, (7.16)

a dri Ot  a Oxl  a Ox
where in the last equality above we have used the relationships
given in (7.15). Now we introduce the mass-energy density and
velocity contrasts
~ ~ Vi
=L, V=2t (7.17)
PB a

so that (7.16) thanks to (7.15) becomes
o5 o7 _

at * orh

(7.18)

The momentum density balance equation (7.2) by consider-
ing (7.13) and taking in account only linear terms reads

avph a ;ovP

ot axo 81‘-(7)
peV} oV} N (p8VE + pBV} +mVP) ov,p

vt a0V
— =X -
ot a® o)

trB

(pB + p1)

a  Jx} a oz}
& 0p1 _ (p+p1) 00 _ p5 0
a Ox} a ol a Oz
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_( + )a}_ﬁ J?i—f— %_gjavl
—\WBT A o |F0TPE ot a0 ox})
op peVP oV}
VB Vl VB C J 2
+(pB +pBV: +p1 ) o o) @ oxl
4 i p OU
+?Gp3x0(p3 +p1) — 73 69&1 =0. (7.19)
0

Here we have introduced the sound speed by considering the
relation dp; /0x} = c2dp; /dx§. Furthermore, in the last equal-
ity the relationships (7.15) were used. Now by considering the
Hubble-Lamaitre’s law V;® = azl, the acceleration equation for
a dust dominated Universe (7.92); and introducing the mass-
energy density p and velocity V; contrasts the above equation
reduces to

Vi _a~ 2 op 10U,
+2-V; -
ot A a2 dxi a2 Oz

= 0. (7.20)

The Poisson equation (7.3) for the perturbations is given by
2 2~
Vi, U1 = —47Gppa®p. (7.21)

Following the same methodology of the previous section we
derive the mass-energy density contrast equation (7.18) with
respect to time and the velocity contrast equation (7.20) with
respect to the comoving coordinates. By eliminating the deriva-
tives of the velocity contrast from the former equation by using
the latter equation, yields

~ ~ 2
— 42— — a—v2 p—4nGppp = 0. (7.22)
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Here we have used the Poisson equation (7.21) to eliminate the
Laplacian of the perturbed Newtonian gravitational potential
U;.

The mass-energy density contrast p is now expanded in a
plane wave base where the comoving wave number is q, while
the physical one is q/a(t). The factor 1/a(t) in the physical wave
number takes into account that the wave number is stretched
out in an expanding Universe. Hence we write the mass-energy
density contrast as

p = dp(t)exp [iq - Xo] - (7.23)

Insertion of the plane wave representation (7.23) into (7.22)
leads to the following differential equation for the amplitude of
the mass-energy density contrast dp(t):

d?*6p adsp = 5q°
2—— “—op—4 =0. 24
T + ot +céa25p wGppdp =0 (7.24)

Now we shall write (7.24) in term of dimensionless quantities.
For that end we shall use the time dependence of the scale factor

a = ag (67er Btg) 3 which follows from the Friedmann equation
for a pressureless fluid (see (7.94) in the Appendix) and the
dimensionless quantities

2mag 2mce,
Ao = , A = ———, =t\/6nGpp, (7.25

which represent the mass-energy density contrast wavelength,
Jeans wavelength and dimensionless time, respectively. The
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Figure 7.1: Amplitude of the mass-energy density contrast dp
as function of the dimensionless time 7 for big A;/A¢ = 0.1
and small A;/\g = 10 wavelengths in comparison with Jeans
wavelength.

resulting differential equation for the amplitude of the mass-
energy density contrast becomes

2

4 A2
250" + §T5p/ +3 <)\‘2]7§ - 7'2) dp=0. (7.26)
0

In the above equation the prime denotes differentiation with
respect to the dimensionless time 7 and it was used the rela-

1
tionships a = ag (67Gppt*)* and o' /a = 2/37.
The differential equation (7.26) was solved numerically for
the following initial conditions: §p(0.001) = 1 and §p’(0.001) =
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Figure 7.2: Amplitude of the mass-energy density contrast dp
as function of the dimensionless time 7 in the oscillatory regime
for two ratios A\j/Ag = 10 and \;/Ag = 20.

0. In Figure 7.1 it is shown the behavior of the mass-energy den-
sity contrast as function of the dimensionless time 7 for two val-
ues of the ratio between the Jeans and mass-energy density con-
trast wavelengths Aj/\g. The case Aj/Ag = 0.1 represents the
Jeans instability where the mass-energy density contrast grows
with time (big wavelengths), while the one where A\j/Ag = 10
shows an oscillatory behavior of the mass-energy density con-
trast (small wavelengths). In Figure 7.2 a comparison of the
oscillatory behavior for the ratios A\j/Ag = 10 and A;/Ag = 20
shows that by decreasing the wavelength of the mass-energy
density contrast the period of the oscillation decreases.
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7.3 Post-Newtonian Jeans instability
I

Let us investigate the Jeans instability within the framework of
the first post-Newtonian Eulerian hydrodynamic equations. We
begin by reproducing here the balance equations for the mass
density (2.122)

| 2
8p*+ap*v1 =0, where P p{lJ“ <V2 +3U)]

ot Ozt
(7.27)
and for the momentum density (2.133)
dvi | Op L (2 p
o 4 P
pdt+8xl[ 02<V+U+e+p
oU 1, p [ 00  dII
P o {1 + 2 U 4U)} 2 [289:i dt
O11; ou  10p  dU
A e i | Y 2
Vj@l <8t p Ot dt)] 0 (7.28)

The above equations were written in terms of the Chandrasekhar
potentials U = —¢, & = —¢)/2 and II; = —¢;, which obey the
Poisson equations (2.115) and (2.116)

VAU = —4xGp, V20 = —4nGp <v2 YU+ ; + ;’i)

(7.29)

0*U

21, = 167GV
v TPVt S

(7.30)
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and the gauge condition (2.117)

R 00, Ol _
ot ozt

(7.31)

The system of partial differential equations (7.27) — (7.30)
is closed by assuming the polytropic equation of state p = kp?
and the specific internal energy equation € = ﬁ%, which fol-
lows from the integrability condition of the Gibbs equation (see

Section 5.1).

We shall consider that the fluid is initially at rest where the
fields of mass density and scalar gravitational potentials assume
constant values p = pg, U = Uy and & = P, while the hy-
drodynamic velocity V; and the gravitational potential vector
II; vanish. These values for the fields satisfy the mass density
(7.27) and the momentum density (7.28) balance equations but
not the Poisson equations (7.29) and (7.30). Hence we assume
again the 7 Jeans swindle” by considering that the Poisson equa-
tions are valid only for the perturbed fields. Note that we have
assumed non-vanishing values for the unperturbed gravitational
potentials U = Uy and & = &y. This assumption is different
from the work [7] on the post-Newtonian Jeans analysis, since
there it was considered vanishing values for the unperturbed
potentials. It will be shown here that the unperturbed Newto-
nian gravitational potential Uy plays an important role in the
determination of the Jeans mass.

The equilibrium fields are superposed by small perturbations

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



7.3 POST-NEWTONIAN JEANS INSTABILITY I 291

denoted by the subscript 1 such that

p(x,t) = po + p1(x, 1), Vi(x,t) = Vi (x, 1), T;(x,t) = [T} (x, 1),
(7.32)
U(X,t) =Up+ Ul(X, t), (I)(Xﬂf) = dy + (I)l(X, t). (733)

Insertion of the representations (7.32) and (7.33) into the
balance equations of mass density (7.27) and momentum density
(7.28) and linearization of the resulting equations, lead to

8p1 8V1 3U0 3p() (9U1 o
8‘/ 8[)1
)

oUy 4Uy o 0%, oM} _
2 <1 = >_ £o <2 2 = 0.79)

If we multiply (7.34) by (1 — 3Up/c?) and retain only terms
up to 1/c? order the resulting equation reduces to
3[)1 6V11 3po oUy
o Mo T2 o
By taking the time derivative of (7.36) and the divergence
of (7.35) it follows respectively that
62p1 62‘/1 Spo 82U1

o T Pomm T2 op
2

1 272 1 Po
+c;Vipy [1—(4U0+Eo+p>:|
0

= 0. (7.36)

—0, (7.37)

P 5zion
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4U, 911}
—poV2U1 (1 - cQ“) - '%3 <2V2<I>1 + Wa;) =0.(7.38)

Now the elimination of the velocity derivatives from (7.37) by
using (7.38), yields

82P1 22 1 Po £0 —2
— 2V 1— — 40U — 2—V*®
92 c;Vip1 2 0o+¢eo0+ % + 2 1

4U, o [,0U, oII}
2 _ Yo Po 9 1 i
+po VU, <1 > 2 5 [3 +

3 } =0,(7.39)

ot o1t

where the underlined term above vanishes thanks to the gauge
condition (7.31).

The perturbed Poisson equations are obtained from the in-
sertion of the representations (7.32) and (7.33) into (7.29), yield-
ing

V32U, = —4nGpy, (7.40)
25, — — g0 _ &, 3
Vi) = —tnGpy (U + 5) = 4nGipo (U“L 2 +2po)’
(7.41)

since the linearization of the ratio p/p is given by

1
p:“("mm))zm(l—km—pl). (7.42)

p po \1+p1/po Po Do o

Note that the perturbed gravitational potential vector IT} does
not appear in (7.39), so that its Poisson equation (7.30) will not
be used in the following analysis.
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The elimination of the Laplacians of the scalar gravitational
potentials Uy and @4 from (7.39) by the use of (7.40) and (7.41)
results in the following differential equation for the perturbed
mass density:

02 1 4G}
PL_ 2%, [1 - <4Uo+5o+po>} - (2U1
c 90 c

L v, —50)} —0. (743)

c2

The above equation will turn into a differential equation for the
determination of the mass density perturbation if we know the
perturbations of the pressure pi, specific internal energy £; and
gravitational potential U; as functions of p;. The relationship
between Uy and p; is given by the Poisson equation (7.40). From
the expressions of the sound speed ¢2 = dp/dp and of the specific
internal energy € = p/p(y—1) it is easy to obtain for a polytropic

fluid that
_a _ .2 _a _am
Po = —po, b1 = ¢sp1, €= v €1 =——-
gl 1y =1) 7 Po
(7.44)
Hence from (7.43) by using (7.44) we obtain the following ex-
pression
82,01 22 Cg UO 1 2U1
Bre —c;Vip 1—; 4C—§+ﬁ —871'Gpoc—2
c2 Uy 3v—2
—4nG 1—-=(2— - = 0. 7.45
|15 (2 - 557)] o o
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We consider now the mass density and the Newtonian gravi-
tational potential as plane waves of frequency w and wave num-
ber vector k according to

p1(x,t) = pelillex—wtl Uy (x,t) = Uelikex=wbl (7 46)

where p and U represent small amplitudes of the mass density
and Newtonian gravitational potential, respectively.

Insertion of the representations (7.46) into the Poisson equa-
tion (7.40) leads to a relationship between the mass density and
the Newtonian gravitational potential amplitudes

x*U = 47Gp. (7.47)

The dispersion relation — which relates the frequency w to
the modulus of the wave number vector k = vk - k — is obtained
from the insertion of the plane wave representations (7.46) into
the differential equation for the mass density perturbation (7.45)
and taking into account (7.47), yielding

2 1 4 :
w? = 2K? 1- % 4@—%7 -2 mCipo
2\ 2 4-1 ke
c2 Uy 3v—2
—AnG 1—-=(2— - .
" po[ 02( o 7—1>} (

By introducing the dimensionless frequency w, and wave
number k. defined in terms of the Jeans wave number k; =

VArGpo/cs as

Wy =

w K
—_—, .=, 7.49
VATGpg " KJ ( )
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the dispersion relation (7.48) becomes

2 4U 1 2 2U, 3y—2
wf:nf—l—& L A Ep e U 7 .
c? A | K2 v—1

(7.50)
We note from the above equation the post-Newtonian contribu-
tion to the dispersion relation which is the factor of the ratio
c2/c%. As it should be, without this term (7.50) reduces to the
Newtonian dispersion relation (7.11).

The harmonic wave solutions in time are obtained from the
real roots of the dispersion relation (7.50), while the instabilities
which will grow or decay in time come from the pure imaginary
roots of this equation. The Jeans instability refers to the one
which grows in time. The value of k, where w, changes from
the pure imaginary value to the real value is obtained by taking
wy = 0in (7.50) and if we solve the resulting equation for . by
considering only terms up to the 1/c? order, we get

’f*:izl‘i‘

K

62 5’)/—3 Uo _)\J
A

This equation gives the ratio of the Jeans wavelength and the
wavelength of the perturbation.

From (7.51) we can determine the amount of mass which is
necessary for an overdensity to initiate the gravitational collapse
in the post-Newtonian theory. We recall that in the case of the
Newtonian theory it is given by (7.12). Here we build the ratio
of the Jeans masses corresponding to the post-Newtonian MY
and Newtonian M §V wavelengths. The two masses are related
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to the masses contained in a sphere of radius equal to their
corresponding wavelengths. Hence, we have

M5N2<A>3: 02[3(57_3) 3l (752)

My A\ 2 20y-1) 2

by considering terms up to the 1/c? order.

We can infer from (7.52) that the mass necessary to begin the
gravitational collapse in the post-Newtonian theory is smaller
than the one in the Newtonian theory. The difference between
the post-Newtonian and Newtonian Jean masses is small, since
it depends on the square of the ratio between the sound and light
speeds. Furthermore, the difference between the two masses de-
pend on the polytropic index n = 1/(y — 1) and on the unper-
turbed Newtonian gravitational potential Uy. From the virial
theorem the unperturbed Newtonian gravitational potential can
be taken as the square of the velocity dispersion, which is a mean
velocity of a group of astronomical objects. Furthermore, a non-
vanishing background Newtonian gravitational potential implies
in a smaller post-Newtonian Jeans mass in comparison with the
one where the background Newtonian gravitational potential is
not taken into account.

For a monatomic or Fermi non-relativistic gas v = 5/3 and
(7.52) becomes

MEN e[ U
Tt L (7.53)
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7.4 Post-Newtonian Jeans instability
I1

In this section we shall investigate the Jeans instability within
the framework of the second post-Newtonian Eulerian equa-
tions. The balance equations for the mass density and mo-
mentum density are given by (3.74) and (3.93), respectively.
Furthermore, the Poisson equations for the gravitational poten-
tials are given by (3.47) — (3.51) and the gauge conditions by
(3.46) and (3.52).

Here we shall also consider that the fluid is initially at rest
with a constant mass density and vanishing hydrodynamic ve-
locity, but for simplicity we take into account that the back-
ground values of the gravitational potentials are zero. The rep-
resentation of these fields are

p(x,t) = po + p1(x,t) Vi(x,t) = Vzl (x,1), (7.54)
IT;(x, ) = 1T} (x, 1), U(x,t) = Ui(x,t), (7.55)
d(x,t) = By(x,1), Woi(x,t) = U, (x, 1), (7.56)
U, (x,t) = \Ilzlj (x,1), Woo(x,t) = ‘I’(%O (x,t), (7.57)

where the subscripts 1 denote the perturbed values of the fields.

By using the above representations into (3.75), the linearized
mass density becomes

5201+PO[1+C2— (7.58)

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



298 CHAPTER 7. HYDRODYNAMIC JEANS INSTABILITY

while from from (3.94) the linearized momentum density reads

I1; 1 Po Po
— 1 [ 1

Now the linearized mass density balance equation (3.74) re-
duces to

Opr , OV BpoOUL _ po OV
ot PO ay ¢z ot 2¢t Ot

and the linearized momentum density balance equation (3.93)
becomes

o (o wN][VE_ouy 208, 1om
po 2\ py ot oxt ¢ dx' 2 Ot
20p1 | po (13‘1’(1)0 3‘1’(1)i) —0

=0, (7.60)

+e 2 Ozi ot

S 0’ + o

For the gravitational potentials we shall invoke the ”Jeans

swindle” and consider that their Poisson equations are valid only

for the perturbed fields. Hence, it follows from (3.47), (3.48),
(3.50) and (3.51) that

02U,
Uy = —4 AL = -1 ! -, (7.62
VU, wGpy, VI 67GpoV; + a15(%02,(76 )
3
VQ(I)l = —2nGegp1 — 4nGpo | U + o + i} s (763)
2 2p0
V20, = —32nGpo®, (7.64)

g
V203, = —167Gpy [Vil (60 + ig) — 2] : (7.65)
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In (7.63) we have used the relationship (7.42).
The linearized gauge conditions (3.46) and (3.52) read

S0, o1 [ovl, 1ow,
ot ozt 2 | OxJ 2 Ot

VQ\IJ}C;C = 32nGegp1 + 327Gpg (4U1 + 81) . (767)

=0, (7.66)

As in the previous section we have to evaluate the perturbed
specific internal energy. For that end we shall rely on the re-
sult which comes out from the kinetic theory of relativistic
monatomic gases for the specific internal energy, namely (see

e.g. [8])
3kT 5kT
=—1 .
e= o < + 4m02> , (7.68)
which by using the relationship ¢ = ﬁ% can be rewritten as
1 p ( 5 p >
e=—— |1+ . 7.69
y—1p 6(y—1)c?p (7.69)

Hence, the following relationships hold

2 ( 5 02)
o= —C (142 S 7.70
(v =1) 6y(y—1)c? (770)
62,( 5 CQ,) p1
=S (142 G\ 7.71
"y 33(y = 1) 2 ) po (rr1)

thanks to (7.42) and (7.44).
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By following the same methodology developed in the pre-
vious sections we take the time derivative of the mass density
balance equation (7.60) resulting

82p1 82‘/;1 3p0 82U1 Po 82\1111%
3 TP T2 op 94 2
ot atox*  c? Ot 2¢* Ot
Next the divergence of the momentum density balance equation
(7.61), yields

1 Po 82V1 2 2 2
14 = Po i B 25
”“[W (Uﬂ {ataxz VgV

—0.  (1.72)

o
c2 Otox?

po (1 02w,
} + 2V + C;’(Qv%p}m ~ 8@; =0, (7.73)

whose division by [1 + Ciz (60 + 1;—2)] leads to an equation, which
by considering terms up to the 1/¢* order, reads

02V 5 2 _, 1 0211}
po {8158 PV gV - 028t6‘zi]
1 2
+C§v2p1 [1— 5 (80+p0> +71 ( 0+p0> ]
Po c 0
£0o 1 82\I/1i
+7 (2V2\11(1)0 — 8t3£i =0. (7.74)

Equation (7.74) is used to eliminate the velocity derivatives
from (7.72), yielding

Ppr L] 1 poY , 1 o)’
_ 1 — 20 il 20
oz z\0F Po A\t Po

V2P1
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0

+Po§

391 Ol :
ot " owi T2\ w2 ot

o, om 1 (8\115j _16\1/,1€k>

2
+po (V2U1 + 62v2<1>1) - Q%V?\Izgo =0. (7.75)

Note that the underlined term vanishes, thanks to the gauge
condition (7.66).

In order to obtain the dispersion relation we assume the
plane wave representation of the perturbed fields

pr(x,t) = pelilx—wbl 1 (x, 1) = Teliex=wDl - (7.76)
By (x, 1) = Pelikex=wdl gl (x 1) = Tygeliex—wtl - (7.77)

where p, U, ® and Uyq are small amplitudes.
Insertion of the plane wave representations (7.76) and (7.77)

into (7.75) leads to
1 P L po\*
1—2(50+°>+4(50+°> Hp
¢ Po c Po

20 U
+pok? <U + = - 0°> = 0. (7.78)

_ We have to eliminate from (7.78) the amplitudes U, ® and
W and for that end we use the Poisson equations (7.62) — (7.64)
together with (7.76) and (7.77), resulting

k*U = 4G, K2 W = 321Gpo®, (7.79)
2 5(2y —1) ¢?

2B — dnGpolU + 2rG—2— |3y —92 4 2T 72 & | 5 780
K TGpU + 2mG = 137 =24 T @ p,(7.80)
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where the relationships (7.70) and (7.71) were taken into ac-
count.

The dispersion relation follows from (7.78) together with
(7.49), (7.70), (7.79) and (7.80), yielding

2:K2_1_C§[ K3 _|_3 3’72}
* * A2 ly—-1 k2 ~v-1
4 2
S [ (52 67)/%; 203y 23 L 52 21)2 B 44] (781
A 16v2(y =12 (y—Dsi 6(y—1)*? A
In the above equation we have considered only the terms up to
the 1/c* order.

By taking w, = 0 in (7.81) we get the value of k, where
w, changes from the real value — corresponding to harmonic
waves — to the pure imaginary value — corresponding to growing
(Jeans instability) or decaying waves. By solving the resulting
equation for k, when w, = 0 and consider only terms up to the
1/c* order, we get

w

5y—3 ¢2  20-9 —1)(35y — 27) ¢t

*:]- G Pl
mEiTn e Uy —17  c

which shows the contribution of the second post-Newtonian ap-
proximation to the dimensionless modulus of the wave number.

The contribution of the term c¢?/c? is negative, since if we
choose v = 5/3 which corresponds to a monatomic or a Fermi
non-relativistic gas we get

2 334
y=14+4=2 - —= .
K + =2 5 o (7.83)
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In this case the Jeans mass becomes

MEPN A\3 2 991 ¢4
I = —1-12% 4 205 (7.84)
M3 c2 2

AJ

Although the above equation shows that the Jeans mass in the
second post-Newtonian approximation is larger than the one in
the first post-Newtonian approximation, the difference between
the two is very small. Indeed, for the ratio cs/c ~ 107! the
difference is only 1.6%

Appendix

The cosmological models are based on the Cosmological Princi-
ple that asserts that at large scales the Universe is spatially
homogeneous and isotropic. The homogeneity refers to the
property that the Universe is identically uniform at any place
while in the isotropy property the uniformity is identical in
all directions. The solution of Einstein’s field equations for
a homogeneous and isotropic Universe is given by the met-
ric derived by Friedmann-Lemaitre-Robertson-Walker (FLRW
metric). Here we shall consider the FLRW metric for a spa-
tially flat Universe where the line element is given by ds? =
(cdt)? — a(t)? (da® + dy* + dz?), with a(t) denoting the cosmic
scale factor. We recall that Einstein’s field equations are given
by

881G

1
R/’”’ — §Rg/'“j = —CTT,‘“,. (785)
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If we consider that the source of the gravitational field is a per-
fect fluid the energy-momentum tensor reads

urur

™ = (pc2—|—p) c2

— pgh". (7.86)

For the FLRW spatially flat metric the non-vanishing com-
ponents of the Christoffel symbols read

a/

I =T%; =T%3 =da, DI'g =T =0%;3=—, (7.87)
a
where the prime refers to a differentiation with respect to 2% =
ct. The curvature scalar and the components of the Ricci tensor
for the FLRW spatially flat metric are given by

1"

" 12

RG<“+“2>, Roo = 3%, (7.88)
a a a

R11 = R22 = R33 = —20/2 — a”a. (789)

From the time and spatial components of Einstein’s field
equations it follows a coupled system of differential equations

N\ 2 .
a 381G a 4G P
() =5 L=y (pe3n), ()

where the dot represents the differentiation with respect to the
proper time ¢t. The above equations are known as the Friedmann
and acceleration equations, respectively.

By differentiating the Friedmann equation (7.90); with re-
spect to time and eliminating the acceleration term by using
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(7.90)5 it follows the equation

p+3% (p+ 5) =0, (7.91)
a c
In the analysis of the matter dominated phase of the Uni-
verse the pressure is negligible in comparison of the mass-energy
density and we have a ”dust Universe” where p ~ 0. In this case
the equations (7.90)2 and (7.91) reduces to
a e

a
- === 5+ 3=p=0. 7.92
. g P P3P (7.92)

The integration of the last above equation furnishes a relation-
ship between the mass-energy density and the scale factor which
reads
ag 3
p=ro (%) (7.93)
a
The insertion of (7.93) into the Friedman equation (7.90)
and subsequent integration of the resulting equation implies
the knowledge of the dependence of the scale factor with time,
namely

a = agp (GﬂGpotQ)% . (7.94)

Hence it follows from (7.93) and (7.94) the dependence of the
mass-energy density with respect to time p = 1/(67Gt?).

If we relate the observable measured coordinates x — known
as the physical or proper coordinates — with the comoving coor-
dinates xo by x(t) = a(t)xo, we obtain by differentiating it with
respect to time — and considering that the peculiar velocities are
absent — the Hubble-Lamaitre’s law V = (a/a)x.
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CHAPTER 8

JEANS
INSTABILITY:
BOLTZMANN
EQUATION

The aim of this chapter is to investigate the Jeans instability
for self-gravitating gases within the framework of a kinetic the-
ory based on the Boltzmann equation which is coupled with
the Poisson equation. By considering perturbations of the one-
particle distribution function and the gravitational potential
from an equilibrium state, it is possible to derive a dispersion
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EBSCChost - printed on 2/13/2023 9:10 PMvia . All use subject to https://ww.ebsco. conlterns-of-use



EBSCChost -

308 CHAPTER 8. BOLTZMANN JEANS INSTABILITY

relation where the Jeans instability can be determined. Two
analysis are developed here, in one the perturbed one-particle
distribution function is left unspecified [1, 2] while in the other
it is supposed as a function of the summational invariants [3].

8.1 Jeans instability for a single gas

We start by analyzing the Jeans instability of a self-gravitating
single gas described by the collisionless Boltzmann and Poisson
equations

of  of oUdf

95 L. _ 207 _ 3
5t +%8xi + 5 Dyl 0, vU 47TG/mfd v, (8.1)

respectively, which can be seen as a coupled system of differ-
ential equations for the determination of the one-particle distri-
bution function f(x, v,t) and Newtonian gravitational potential
U(x,t).

To analyze the gas instabilities we shall write the distribution
function and the Newtonian gravitational potential as a sum of
background terms denoted by the subscript zero and perturbed
terms with the subscript 1, i.e.,

f(x,v,t) = fo(v) +efi(x,v,t), U(x,t)=Uy(x)+ elUi(x,t),

(8.2)
where we have introduced a small parameter ¢ multiplying the
perturbed quantities to control that only linear terms in this
parameter should be taken into account. The background dis-
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tribution function is the Maxwellian one

—v? /202

fO(V) _ Po €

m 2ra?)’ ®.3)

which depends only on the gas particle velocity v. The mass
density pg and the temperature T of the background are con-
stants and o = /kTp/m denotes the velocity (thermal) disper-
sion of the self-gravitating gas.

If we insert the representations (8.2) into the collisionless
Boltzmann equation (8.1); and equate the terms of the same
e-order we get two hierarchy equations:

OUsOfy _,  Of  Ofi  OUi0f  OUOf:
ozt vt ot Ozt Ozt Ovt Ozt Ovt

The first equation (8.4); is satisfied if the background New-
tonian gravitational potential of the self-gravitating gas does
not depend on the spatial coordinates. This condition follows
also from symmetry considerations, because in a homogeneous
system there is no preference in the direction of the gravita-
tional potential gradient. However, the condition VU = 0 does
not satisfy the Poisson equation (8.1); due to the fact that its
right-hand side refers to the mass density of the self-gravitating
system. In order to remove this inconsistency we again make
use of the ”Jeans swindle”, which considers that the Poisson
equation is valid only for the perturbed one-particle distribu-
tion function and perturbed gravitational potential, i.e.

=0.(8.4)

ViU, = —47rG/mf1d3v. (8.5)
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We represent the perturbations of the distribution function
and of the Newtonian gravitational potential in terms of plane
waves of frequency w and wave number vector k as follows:

fi(x, v, t) = fifo(w)e®&x=eD U (x,t) = Uetx=wt  (8.6)

where f, and U; are the corresponding amplitudes which are
considered to be small.

Insertion of the representations (8.6) into (8.4)2 leads to a
relationship between the amplitudes

ka

(v -k—w)f, — =0. (8.7)

Furthermore, the Poisson equation (8.5) with (8.6) becomes
KU, = 47rG/mfof1d3v, (8.8)

where £ = vk -k is the modulus of the wave number vector.
If we eliminate f, from the Poisson equation (8.8) by using
(8.7) we get

v+v

4G o
K2 = _2Mpo / / / v dvmdvydvz,
(2mo?) 302 v-k—w

(8.9)

Here we introduced Maxwellian distribution function (8.3) and
the integrals in the velocity components —oo < (v, vy, v,) < 0.
Without loss of generality we can suppose the wave number
vector in the z direction, i.e., k = (k,0,0). The integration of
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(8.9) with respect to the velocity components —co < (vy,v,) <
oo leads to

2
K2 = 47 Gpo /oo e 2% Uz’i(vz’f'*'w) dvg. (810)

V2ro3 2k% — w?

IU$
Here we have multiplied the nominator and denominator of the
integrand by (v,k + w). Note that the integral of the term which
is linear (odd) in v, vanishes and the remaining integral in v,
can be written as

e
w2 = TR0, (8.11)
o
where I is defined in terms of the integrals I,, given by
I, (k,w) / where = —2
\f w/\fmi) “ oL
(8.12)

Equation (8.11) is a dispersion relation, since it relates the
modulus of the wave number vector with the frequency k =
K(w).

The unstable solutions are those where (w) = 0 and $(w) >
0, since in this case the solutions grow exponentially with time.
By considering w = iw; with wy > 0 the integrals I,, can be
evaluated and (8.11) becomes

47 Gpg wr w?
2= 1— L fi 1
K = [ \/; — exp (2#@2 5 | erfe f,‘w ,(8.13)
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where erfc(z) denotes the complementary error function
fo(z) = 2/00 g (8.14)
erfc(zr) = N e x. .

If we introduce the Jeans wavelength x; = /4wGpy/o with
respect to the velocity dispersion o and the following dimen-
sionless quantities related with the frequency and modulus of
the wave number vector

wr

Wy = ——, Ky = i, (8.15)
RjO R

we can express the dispersion relation (8.13) as

2
5 T Wi wy Wi
Ky =1-— 2 exp (253) erfc (\/ﬁ/@*) . (8.16)

In Figure 8.1 it is shown the contour plot of the dimension-
less frequency as function of the dimensionless modulus of the
wave vector. Two limiting cases can be inferred from this figure:
(i) when the dimensionless frequency vanishes w, = 0 the modu-
lus of the wave number vector becomes equal to the Jeans wave
number k = k; which is related to the limiting value of the fre-
quency where the instability occurs and the corresponding min-
imum mass — the Jeans mass — for an overdensity to begin the
gravitational collapse; (ii) the dimensionless frequency tends to
one when the modulus of the wave number vector tends to zero.
Both cases correspond to the Newtonian analysis described in
Section 7.1 (see equation (7.11)).
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Figure 8.1: Contour plot of the dimensionless frequency as func-
tion of the dimensionless modulus of the wave number vector.

Another methodology to solve Jeans instability from Boltz-
mann equation was proposed in [3] and makes use of the sum-
mational invariants which are related with the rest mass m, the
momentum mv and the energy mv?/2 of a particle. In this
analysis the amplitude f; is written as a linear combination of
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the summational invariants, namely
fi=A+B-v+Dv (8.17)

where A, B and D are unknowns quantities that do not depend
onv.

If we insert the representations (8.6) and (8.17) together with
(8.3) into the perturbed Boltzmann (8.4); and Poisson (8.3)
equations we get

fo (A+B-V+Dv2)(k-v—w)—k'v% =0, (8.18)

KU, = 47rG/mf0(A +B-v+ Dv2)d3v
= 4rGpy(A+30°D). (8.19)

We have performed the integration of the last equation above
by using the formulas for the Gaussian integrals given in the
Appendix A of Chapter 4 and introduced x = [k|.

Now we can build a system of algebraic equations for A, B-k,
D and U;. Indeed, if we multiply (8.18) by each of the summa-
tional invariants (1, v, V2) and integrate the resulting equations
by using the Gaussian integrals we get respectively

w(A+30°D) —0’B -k =0, (8.20)

wB -k — {A+5O’2DU21} K% =0, (8.21)
g

w (344 150°D) — 55°B - k = 0. (8.22)
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Note that (8.21) results from the scalar multiplication of the
vector equation for B by k and by using x? = k - k.

Equations (8.19) — (8.22) represent a system of algebraic
equations for A, B -k, D and U;. It has a non-trivial solution
if the determinant of the coefficients A, B, D and U; vanishes,
which implies the dispersion relation:

2
w? = K% <H2 - 1> , (8.23)
ks
which is the same dispersion relation which comes from the New-
tonian analysis of the Jeans instability of Section 7.1 given by
(7.11).

The previous analyses were based on a collisionless Boltz-
mann equation where the evolution of the one-particle distribu-
tion function in the phase space does not consider the particle
collisions. In the theory of the Boltzmann equation the col-
lisional term is responsible for the irreversible processes char-
acterized by the viscous and heat conduction effects. A ques-
tion which is important to answer refers to the modifications
introduced by the irreversible processes in the analysis of the
Jeans instability. This problem was analyzed in [4] within the
framework of a collisional Boltzmann equation and recently in
[5] from a phenomenological theory based on the balance equa-
tions. Here we shall investigate the same problem by using the
collisional Boltzmann equation with the same methodology de-
scribed above, which makes use of the summational invariants.

We start by writing the BGK model of the Boltzmann equa-
tion where the structure of the collision term is simplified but
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preserves the basic properties of the full Boltzmann equation.
The collision term in the BGK model is given in terms of the
difference between the one-particle distribution function and the
Maxwellian one multiplied by a frequency v which is of order
of the collision frequency. In this case the Boltzmann equation
reads (see e.g. [6])

af af ~oU of

— == - = — — fo). 8.24

ot TVaw T amaw -~ U0 (8:24)
As in the previous analysis the Boltzmann equation (8.24) is
linked with the Poisson equation

V23U = —4nG / mfdv. (8.25)

The Boltzmann and the Poisson equations for the perturbed
one-particle distribution function f; and perturbed Newtonian
gravitational potential U; are

ofi vafl Uy dfo
ot oxt T 9zt vt

= —vfy, VU, = —477G/mf1d31/.

(8.26)

Now we represent the perturbations in terms of plane waves

with wave number vector k and time dependent amplitudes,
namely

filx,v,t) = fl(t)fg(v)eik'x, Ui(x,t) = Ul(t)eik'x, (8.27)

where the amplitude f,(¢) is a linear combination of the sum-
mational invariants

F1(t) = A(t) + B(t) - v + D(t)v? (8.28)
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Insertion of the representations (8.27) and (8.28) into the
perturbed equations (8.26) imply

dA  dB D , , U,
E—FE.V—FEU +i(v-k)|[A+B-v+ Dv -2
=-v(A+B-v+Dv?), (8.29)
/<;2U1:47TG/m(A+B~v+Dv2)d3v
= 47Gpy (A +30°D) . (8.30)

Following the same methodology above we multiply (8.29) by
the summational invariants (1, v, v?) and integrate the resulting
equations by using the Gaussian integrals given in the Appendix
A of Chapter 4, yielding

dA dD

—p T30 +io’B k= —v (A+30°D), (8.31)

dB an Ul

E + 1k (A + 50D — 02) = —vB, (832)
dA dD

3t 1502% +i50°B -k = —v (34 + 150°D) . (8.33)

First, we subtract (8.33) from (8.31) multiplied by 5 and get

dA

i —VA, hence A=e " (8.34)

Here we introduce the density contrast which is a parame-
ter that indicates where a local increase in the matter density
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occurs. It is defined by the ratio of perturbed and unperturbed
mass densities and given by

_ f me?l d*v
Po

op = A+30°D. (8.35)

In terms of the density contrast (8.31) becomes

dép . , 25p . ,dB dép
Eer B -k=—-vdp, and 2 +io g :fyﬁ,
(8.36)

where the last equation is the differentiation with respect to
time of the first one.

We eliminate B and its time derivative from (8.36)s by using
(8.32) and (8.36)1, resulting

5p 5, Uy ddp dép

— A D - — — =—v—.

p7e + Ko ( + 50 O'2>+V<dt +1/5p) v
(8.37)

Finally the elimination from (8.37) of the amplitudes U;, A
and D by using (8.30), (8.34) and (8.35), respectively, yields

d*s do 2
dt2p 21/d—tp — §/<;2a2e*”t + <1/2 —4rGpo + gnzaz) op =0.
(8.38)

If we introduce the dimensionless quantities

v 4G po
A RN = SNCED
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which are related to a dimensionless time, a dimensionless col-
lision frequency, and Jeans wave number, respectively, the dif-
ferential equation (8.38) becomes

d?*6p dép 2 K> 9 K2
—— — ——e T —14+ — |dp=0. (840
dr? “ar 75 /12Je - (V* * K% P (8.40)

The solution of the differential equation (8.40) is

A2 A2
Ciexp | T 1—)\—“27 +Coexp| — 7 1—)\—‘2]

254

h ]e”ﬂ, (8.41)
(-
where we have introduced the wavelength A\ and Jeans’ wave-
length Ay by considering the relationship k/k; = A/

Let us analyse the solution (8.41) of the differential equa-
tion. We note that for wavelength values bigger than the Jeans
wavelength A\/A; > 1 the terms in the exponential are real.
The first exponential will grow with time implying a growth of
the density contrast and the Jeans instability shows up. When
the wavelength values are smaller than the Jeans wavelength
A/Ay < 1 the term in the exponential is imaginary and the den-
sity contrast has an oscillatory character. These behaviors are
modulated by the factor e~**” which implies that the growth
and oscillatory behaviors become smaller when the collision fre-
quency is taken into account, i.e. we may associate the collision
frequency with a damped effect on the solution of the density
contrast.

op =

+
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op
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30F
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Figure 8.2: Density contrast dp as function of the dimensionless
time 7 for A/A; = 10, for the cases with (v, = 0.1) and without
(v« = 0) collision frequency.

The differential equation (8.40) was solved numerically for
the initial conditions dp(0) = 1 and §p’(0) = 0 for two values of
the dimensionless collision frequency v, = 0 and v, = 0.1 that
show the Jeans instability. Here the ratio of the wavelengths
was A/A; = 10. In Figure 8.2 the density contrast dp is plotted
as function of the dimensionless time 7. The straight line corre-
sponds to the case v, = 0.1 where the collisions are taken into
account while the dashed line represents a collisionless Boltz-
mann equation where v, = 0. Note that in the case where the
collisions are considered the growth of the density contrast is
less accentuated than the one that corresponds to the collision-
less Boltzmann equation, since an energy dissipation comes out
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due to the particle collisions.

8.2 Jeans instability for systems
of two fluids

At the present time it is known that the matter content of the
Universe is composed by baryonic matter and dark matter. The
baryonic matter consists of atoms of all categories while dark
matter refers to a still unknown component which does not
emit or interact with electromagnetic radiation. For the pro-
cess of structure formation it is consider that cold dark matter
is consisted of weakly interacting massive particles with veloci-
ties much smaller than the speed of light. Cold dark matter has
a prominent role in the structure formation since it interacts
only with gravity and is not opposed by any force such as the
pressure of radiation. Hence, dark matter collapses first form-
ing seeds into which the baryons fall later. The dark matter has
an important role, since the epoch of structure formation would
occur later than it is observed if dark matter was not present.

We shall analyze Jeans instability by considering two col-
lisionless Boltzmann equations — one for the baryonic matter
and another for the dark matter — which are connected with the
Poisson equation [3, 7, 8]. Here we shall use the indices b and d
to denote the baryonic and dark matter, respectively. The col-
lisionless Boltzmann equations for the one-particle distribution
functions of baryonic matter f, = f(x,vp,t) and dark matter
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fa = f(x,v4,t) are given by
afy _ ,0fy | OU Ofy Ofs | 40fa | OU Ofs

P - —— =0, L —— - — =0,
ot "oz 0x oul ot "oz " dai v}
(8.42)
which are connected with the Poisson equation
V2U = —4nG ( / my fod>vy + / ma fdd3vd)
= —4nG(pp + pa)- (8.43)

Here (pp, pa) and (my, mg) are the mass densities and the par-
ticle rest masses of the baryonic and dark matter, respectively.

As previously we suppose that the one-particle distribution
functions f(x, vy, t), f(x,vg,t) and the Newtonian gravitational
potential U are subjected to small perturbations from their equi-
librium values f(vy), f3(va) and Uy which reads

f(X,Vb,t) = f(l))(vb) + €ff(X,Vb,t), (844)
f<X7 Vd, t) = f(()i(Vd) + eff(x, Vd, t)’ (8'45)
U(X, t) = U() + EUl (X, t) (846)

Here the equilibrium distribution functions are the Maxwellians

vi /20, —va/20;

pr €

pPo T pa €
my, (2mo})3/?’

mq (2mo2)3/2

In the above equations o, = \/kT,/mp and oq = /kTa/mq

are the dispersion velocities of the baryonic and dark matter

fovy) = fi(va) = (8.47)
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which are connected with their absolute temperatures 7, and
Ty, respectively.

Following the same methodology of the last section we insert
the representations (8.44) — (8.46) into the Boltzmann (8.42)
and Poisson (8.43) equations and get

Oft | p0ft UL 0S5

— 4] = - =
ot ‘oxt - Qxt O} ’
ofs d@fld+6U1 ofd

O | a0f1 OV 0f5 _ 4
SR I (8.49)

VU, = —4nG ( / my frd3 vy + / mg fldd%d) .(8.50)

(8.48)

Note that we have also considered that the Poisson equation is
valid only for the perturbations, i.e. we have used the ”Jeans
swindle”.

The next step is to consider the perturbations as plane waves
of frequency w and wave number vector k as follows

f{](X, Vp, t) == fg(Vb) (Ab + Bb -V + vag) ei(kx—wt)’ (851)
filx,va, t) = f§(va) (Aa +Ba - vy + Dgv3) illex—wt) (8 59)
Uy(x,t) = Ue&*=t (8.53)

where the amplitude of the Newtonian gravitational potential
is constant and the amplitudes of the perturbed distribution
functions are given in terms of linear combinations of the sum-
mational invariants (1, Vi, vg) and (1, Vd, V2). Furthermore,
Ay, Ag, By, By, Dy, Dy are unknowns that do not depend on the
particle velocities v, and vg.
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We insert the representations of the perturbations (8.51) —
(8.53) into the Boltzmann and Poisson equations (8.48) — (8.50)
and get the following system of algebraic equations

b 2 U,

fo (Ab + By vy + vab) (w - k- Vb) + k- Vb? = O,(8.54)
b

U
fd [(Ad + By vy+Dgvi) (w—k-va) +k- vdag} =0,(8.55)
d

k2Uy — 4nG [(Ap + 303 Dy) pp + (Ag + 303Da) pa] = 0.(8.56)

From (8.54) — (8.56) we can build a system of algebraic equa-
tions for Ay, Agq, By = By-k, By = By-k, Dy, Dg and U;. Indeed,
from the multiplication of (8.54) by the summational invariants
(l,vb,vg) and (8.55) by the summational invariants (1,Vd,V(21)
and the integration of the resulting equations we get respectively
the system of algebraic equations for Ay, Ay, By, By, Dy, Dy:

w(Aq +302D,) — Bao2 =0, (8.57)
U
wBq — [Aa + 502D, + 0;} K2 =0, (8.58)
5 2 5 2
wl| Ay + gUaDa - gBaUa =0. (8.59)

Here we have six equations corresponding to o = b, d. To obtain
the above expressions the Gaussian integrals of the Appendix
A of Chapter 4 were used. Furthermore, as in the previous
section a scalar multiplication with k was performed for the
vector equations of B, and By.

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



EBSCChost -

8.2 JEANS INSTABILITY FOR TWO FLUIDS 325

The algebraic system of equations (8.56) — (8.59) has a non-
trivial solution if the determinant of the coefficients Ay, Aa, B,
By, Dy, Dy, Uy vanishes, which implies the dispersion relation:

2

FER P
PdT%

60)

In the above equation we have introduced the dimensionless
wave number k, and the dimensionless frequency w, defined by

2 2
w3+{1+pb— (1+"g) ni]warU’;
Pd 04 04

K K cd w

= — = —, . = ——, 8.61
" k% /ArGpy “ VArGpq ( )

which are given in terms of the dark matter Jeans wave number
k% = \/4rGpg/c? where ¢d = \/%ad denotes the dark matter
sound speed. We have taken the dark matter to build the di-
mensionless quantities, since as it was explained before the dark
matter begins to collapse into a complex network of dark matter
halos well before the ordinary matter.

If we consider only one fluid corresponding to the dark mat-
ter we may neglect the baryonic matter by taking p, = o = 0
and the dispersion relation (8.60) reduces to:

wi+ [1-rK2]w?=0. (8.62)

The above equation has the solutions w, = :t\//<;2//£3 — 1 and
w, = 0, so that the Jeans solution for one component (8.23) is
recovered.

The roots of the dispersion relation (8.60) furnishes four so-
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lutions for the dimensionless frequency:
b o3 o3 Pb
wy =+ R2(1+ =5 ) —=S5(1+— ) £Aw, (8.63)
\@0 d ay (o Pd
where Aw is given by
2 2 2
Aw? = {ﬁi(l—l—g‘é) - U‘é(l-l-pl))}
O O Pd

4% [/-;4 - (1 + M)ﬂ . (8.64)
U? * pdag *

We can infer that the dispersion relation (8.60) is a function
of two ratios pq/pp and o4/0p. The mass density ratio has not
changed considerably during the evolution of the Universe so
that we can associate it with the present value of the density
parameter ratio pqg/pp = Qa/ =~ 5.4 [9]. There is no fixed value
for the dispersion velocities ratio o4/0, and here we shall rely
on the simulations of Milky Way-like galaxies which included
baryonic and dark matter [10]. We have inferred from one of the
simulations of this work — where Maxwellian distributions are
considered — that this ratio can be taken as o4/0, = 170/93 ~
1.83.

The real roots of the dispersion relation (8.63) will imply
harmonic wave solutions in time, while the pure imaginary roots
will provide instabilities which will grow or decay in time, and
the one which grows refers to the Jeans instability. It is inter-
esting to investigate the value of x, where w, changes from the
pure imaginary value to the real value. If we take w, = 0 in
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(8.63) we get

I‘Edb 0.2 Ad
jo == 14 2% _ 2T (8.65)
K P4}, G

which can be interpreted as the ratio of two Jeans wave num-
bers, the one denoted by Iigb refers to the system dark-baryonic
matter while the other /f§ refers to the dark matter.

Let us analyze the amount of mass which is necessary for
an overdensity of a dark-baryonic matter system to initiate the
gravitational collapse. This is related to the Jeans mass con-
tained in a sphere of radius equal to the wavelength A = 27 /k.
It M 3“3 denotes the Jeans mass of the dark-baryonic matter sys-
tem and Mf,l the one for the dark matter system we can build
the ratio of Jeans masses:

3
M3 py+pa (AP Pb Pyoy
MJ Pd )\J Pd Pd0y,

cd/ob 1.00 | 1.20 | 1.40 | 1.60 | 1.83 | 2.00 | 2.20

M /MS 1092083 0.74 | 0.66 | 0.57 | 0.52 | 0.45

Table 8.1: Ratio of Jeans masses M$P/M¢ as functions of the
ratio of the dispersion velocities o4/0y, for pg/py, = 5.4.

The ratio of the Jeans masses of the systems dark-baryonic
matter and dark matter for fixed values of the mass densities
ratio pg/py = 5.4, are given in Table 8.2 as functions of the
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dispersion velocities ratio. We infer from this table that the
increase in the dispersion velocities ratio implies that the mass
needed to begin the gravitational collapse becomes smaller than
the mass where only one constituent is present.We can under-
stand this behavior by noting that for large values of 04/0}, the
dispersion velocity of the baryonic matter is smaller than the one
of the dark matter so that the baryonic matter hardly overcome
the escape velocity of a given gravitational field.

8.3 Jeans instability in an expanding
Universe

The aim of this section is to analyze Jeans instability by taking
into account the collisionless Boltzmann and Poisson equations
(8.1) in an expanding Universe where the source of the gravita-
tional field is a pressureless fluid [3].

Here the equilibrium one-particle distribution function must
be written in a comoving frame

folv,t) = ”fn’t)wi)z]m oxp [—("2;(‘;‘;)] . (867)

thanks to Hubble-Lamailtre’s law x = axg. We note that the
dispersion velocity o(t) and the mass density p(t) are functions
of time (see the Appendix of Chapter 7).

For the background Newtonian gravitational potential we
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adopt the same expression as that given in Section 7.2, namely
2 2
Uo(x,t) = —?ﬂpr ‘X = —ngcfxo - Xp. (8.68)

In terms of the comoving coordinates xo the Boltzmann
equation (8.1); can be rewritten, by taking into account the
relationships (7.13), as

of
ot

(vi —axy) Of

10U
; a@a:é

of
,Ov'

=0. (8.69)

i
a oz} tx0

X0

If we insert the background distribution function (8.67) into
the Boltzmann equation (8.68) we get

9fo (vi — ax?) dfo 10U | 9fo
ot |, a dxh |, adxh|, 0v|,
YOS S
p o a o o
(v—axo) -xo (. 4m
JF# a+ ?Gpa =0. (8.70)

By taking into account that for a pressureless fluid (7.92) holds
and considering that the dispersion velocity is proportional to
the inverse of the cosmic scale factor o(t)/og = ap/a(t), the
Boltzmann equation for the background distribution (8.70) is
identically verified.

Furthermore, the Poisson equation is also identically verified
for the background value of the gravitational potential (8.68),

printed on 2/13/2023 9:10 PMvia . All use subject to https://ww. ebsco. coniterns-of - use



EBSCChost -

330 CHAPTER 8. BOLTZMANN JEANS INSTABILITY

since
ViU, = —4nGp = —471'G/mf0d311. (8.71)

Now we require that the background distribution function
(8.67) and Newtonian gravitational potential (8.68) are sub-
jected to small perturbations characterized by fi(x,v,t) and
Ui(x,t) such that

f(X,V,t) = fO(V»t) + fl(X,V,t) = fO(Vat) [1 + hl(X,V,t)] )
(8.72)
U, 1) = Up(x,1) + Us (x, ). (8.73)

Furthermore, we represent the perturbations hy and Uy by plane
waves where the physical wave number vector is q/a(t) while the
comoving one is simply q. The factor 1/a(t) takes into account
that the wavelength is stretched out in an expanding Universe.
Hence

hi(x,v,t) = E(x,v,t)eim = h(x,v,t)e’T*0 (8.74
Ur(x,t) = U(t)e'a®m = U(t)er™o, (8.75)

The amplitudes h(x,v,t) and U(t) are considered to be small
and we assume that h is given as a linear combination of the
comoving summational invariants 1, (v — axo) and (v — axg)?,
namely

h(x,v,t) = A(t) + B(t) - (v — axo) + D(t) (v — axo)*, (8.76)
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where A(t), B(t) and D(t) are unknown functions of time that
do not depend on the comoving summational invariants.

The insertion of (8.72) — (8.76) into the collisionless Boltz-
mann (8.69) and Poisson equations (8.5) implies the following
system of equations:

5|98 (izdat) Ok | 10U Oh
“lot,, a ozl |, adx)| 00,
1oUL | fy| . [dA . dB
a0z |, 00|, _fo{ ar TV a0 g
. —dx0)2 d£ B d(v—axo) . [B+2D(V — dxo)]
dt a
+WW{A+B.<V_C-LXO>+D<V_@XO)2
a

_;]2] _ WXO - [B+2D (v — axg)] } =0, (8.77)

2
ZQU=47TG/mf0[A+B-(V—ax0)
+D - (v — axg)? } d*v = 4rGp (A +30°D) . (8.78)

Thanks to the acceleration equation (7.92); the underlined in
(8.77) vanishes. Furthermore, in the last equation we have used
the Gaussian integrals in the Appendix A of Chapter 4.

If we multiply (8.77) by the comovig summational invariants
1, (v—axg) and (v — axo)” and integrate the resulting equations
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by using the Gaussian integrals in the Appendix A of Chapter
4 we get the following system of differential equations

= 22 4 i—B-— a ’D = :
7 +3 R 6aa ) (8.79)
dB . ¢? U a

i A ’D—=|-=-B=

s [ + 50 0_2] p 0, (8.80)
dA dD o2 a

—— +1502— +i5—B —30-02D = 0. .81
3dt + 150 7 +15 . 30@0 0. (8.81)

Equation (8.80) results from the scalar multiplication of the in-
tegrated equation by q and the introduction of B(t) = B(t) - q.
If we subtract (8.81) from (8.79) multiplied by five, we get
that dA/dt = 0 and for simplicity we choose A = 1.
Here the density contrast is also given by

hd?
op = m = A+30°D. (8.82)

In terms of the density contrast (8.79) or (8.81) becomes
— +i—B =0, (8.83)

by considering that o/cg = ap/a. From the differentiation of
the above equation with respect to time and elimination of B,
dB/dt and U by taking into account (8.83), (8.80) and (8.78),
respectively, we obtain the following differential equation for the
density contrast

d?6p a dop (5q202 202

2q°o
3a?

2—— =0. (8.84
+ +{ 52 (8.84)

4 _
a2 " “a dt ”Gp> op
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If we introduce the dimensionless quantities

2mag 2m+/5/3 0
Ao = Aj = —42—— =t\/61G 8.85
0 q ) J \/47_[_Tp ) 7- 7T p’ ( )

the differential equation for the density contrast (8.84) becomes

v

4 2 (N2 4\?
250" 4+ —70p’ + = (JTg - 72> 6p— —L73=0. (8.86)

3 3\ A2 15X

In the above equation we have taken into account that a’/a =
2/37 and a = agT3, moreover the primes refer to the differen-
tiation with respect to 7. The difference of this equation from
the one of the phenomenological theory (7.26) is due to the un-
derlined term.

For the case of Jeans instability — where the density contrast
grows with time — there is no difference between the numerical
solutions of (8.86) and (7.26) for big wavelengths in comparison
with Jeans’ wavelength (A\g > A;), since the underlined term
becomes small. For small wavelengths (Ao < Ay) — which cor-
responds to the oscillatory behavior of the density contrast —
there are differences between the two solutions but they are not
very significant to comment here.

It is also interesting to analyse the influence of irreversible
processes in the Jeans instability for an expanding Universe. As
in Section 8.1 we shall consider the BGK model of the Boltz-
mann equation given by (8.24).

For the BGK model of the Boltzmann equation we get that
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(8.79) — (8.81) become
dA dD  o?

2 13022 +iZ B - 6%6%D = —v (A + 30D .
o b3 i 6 o —v(A+30°D), (8.87)
dB ¢ U
2L [A+ 502D — ] - fB — B, (8.88)
dt a o?
dA ,dD  _o? a 2
3 +150 E—HE)—B—Z’)OEU D =—-v(3A+155°D).

(8.89)

From the combination of (8.87) and (8.89) it follows that

dA/dt = —v A which implies that A = e="t. If we introduce the
density contrast (8.82) we can rewrite (8.87) as

ddp
dt

From the differentiation of (8.90) with respect to time and
following the same steps above we arrive at

d*5p a ddp 5q¢%0?
a2 + <2a+y)<dt +1/5p> < 302 47er>5p
2e Vg0 d5p
. S e 1
3a? Yt - (8:91)

In terms of the dimensionless quantities (8.85) the above equa-
tion can be rewritten as

4 4
5" + ( + 21/*)(5p' +op {V* ( + l/*)
31 3T

2/ A2 4N2 eV
= —1)| - =< =0. (892
+3 ()\(2)7-3 ):| 15\ T% ( )

+1 73 = —vép. (8.90)
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Here the dimensionless collision frequency is v, = v//67Gp.

6p
30f

251

v, = 0.1 (NEX)
v, =0 (NEX)
v, = 0.1 (EX)

201

Figure 8.3: Density contrast dp as function of the dimensionless
time 7 when A/\; = 10, for the cases of non-expanding (NEX)
and expanding (EX) Universe with dimensionless collision fre-
quencies v, = 0.1 and v, = 0.

We have solved numerically the differential equation (8.92)
with the same values adopted before for the initial conditions
dp(0) = 1 and 6p’'(0) = 0, for the two values of the dimensionless
collision frequency v, = 0 and v, = 0.1 and for the ratio of the
wavelengths A/A; = 10 that correspond to the Jeans instability.
In Figure 8.3 we plotted the solutions of the density contrast dp
as function of the dimensionless time 7 for the expanding (8.92)
and non-expanding (8.40) Universe. The straight lines represent
the case v, = 0.1 where the collisions are taken into account
while the dashed lines correspond to a collisionless Boltzmann
equation where v, = 0. As in the previous analysis of Figure 8.2
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due to the presence of the particle collisions an energy dissipa-
tion comes out implying a less accentuate growth of the density
contrast in comparison to the one for a collisionless Boltzmann
equation. Furthermore, as a consequence that in an expanding
Universe the solution refers to a comoving frame, the density
contrast growth is smaller than the one for a non-expanding
Universe.

8.4 Post-Newtonian Jeans instability

In this section we shall analyze Jeans instability from the col-
lisionless post-Newtonian Boltzmann equation (4.8) which we
rewrite by introducing the gravitational potentials in the Chan-
drasekhar description U = —¢, II; = —&; and & = —/2:

of  of ouaf 1 ou ou
ot " Viow T o ou {( —4U) o ~ i
o o0 H of
—Sui + 25 + = (8:6J 3x’)]5‘vi —~0.(8.93)

The above equation results when (4.8) is multiplied by the factor
[1 - = (7 + U)] and terms up to the 1/¢? order are considered.

The gravitational potentials are given in terms of the Poisson
equations by (see Section 2.3.3)

4 0 2 2
V2 = _LZG T V2% = —27G (TOO + T”) ,(8.94)
. 167G, U
VAT = — 0 (8.95)

otoxt’
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where the energy-momentum tensor is defined in terms of the
one-particle distribution function by

—F 13
™ = m%/u“u”fﬂ. (8.96)
Uo

We recall that the first post-Newtonian approximation for
the components of the four-velocity (4.10) read

1 /2 - ulot
0_ i _
u c{1+02<2+li)], ut=—. (8.97)

Furthermore, the Maxwell-Jiittner distribution function (4.13)
— denoted here by fj;; — in a stationary equilibrium background
where the hydrodynamic velocity vanishes V; = 0 reduces to

15 3t 2Uv2] }

s Tgor T o1 (8.98)

2
fMJ:fO{l_ZQ[

A — (8.99)
m*(2mwa?)?

Here fj is the Maxwellian distribution function which is a func-
tion of the gas particle velocities v, while o = \/kTy/m repre-
sents the dispersion velocity of the gas. The mass density py and
the dispersion velocity o are considered to be constants. Note
that the factor 1/m? is due to the fact that the Maxwell-Jiittner
distribution function is written in terms of the four-momentum
ph.

The invariant integration element which appears in the def-
inition of the energy-momentum tensor (8.96) is given by (see
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(4.20))
Vogdu _ {1 + = [20? + 6U]} & (8.100)

U c

For the analysis of Jeans instability we will make use of the
Boltzmann equation (8.93) together with the Poisson equations
(8.94) and (8.95). For that end we write the one particle dis-
tribution function and the gravitational potentials as a sum of
background terms denoted by the subscript zero and perturbed
terms with the subscript 1, namely

fx,v,t) = fus(x,v,t) +efi(x,v,t), (8.101)
U(x,v,t) = Up(x) + eUi(x,v,1), (8.102)
D(x,v,t) = Pg(x) + Py (x, v, 1), (8.103)
0 (x, v, t) = 1Y (x) + €I} (x, v, 1), (8.104)

where € is a small parameter which is introduce in order to
control that only linear terms in this parameter should be taken
into account. Later we shall take it equal to one.

Now we insert the representations (8.101) — (8.104) into the
Boltzmann equation (8.93), equate the terms of the same e-order
and get two hierarchy of equations that read

(9U0 af&] 2’0 fo 6U0 1 2 an
ozt ot 8xl + (v 4UO) oz’
Uy .0, oy Ouj\ 1 ofy
40,5 +25 < = | |5 = 0. (8:105)
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afl 8f1 8U1 afj‘eﬂ 2U2f0 <6U1 ‘ 8U1 )

R T I T W TR
00 o et o | ()
2 ()
+Cl2 (v? — 4Uy) % + 28;;1 + 8;% — 4vivj%
—4U, gU? _3%% v @gj - a;;;) gﬁ? = 0. (8.106)

Here the Maxwell-Juttner distribution function was written as

o2 15  3vt Uyv? Uyv?
= l—-—|—+—+2——| ¢ —2fpe—5—=
fars fo{ c? { 8 * 8ot + ot }} f060202
U1U2
= fIO\/IJ - 2f06020_2 ) (8107)

where f9, ; denotes the background Maxwell-Jiittner distribu-
tion function.

The background terms refer to a stationary equilibrium state
and the background equation (8.105) is identically satisfied when
the gradients of the potential gravitational backgrounds vanish,
i.e., VUy = V&5 =0 and VH? = 0. In this case the Boltzmann
equation for the perturbations (8.106) reduces to

% . 8f1 8U1 8f1?“ 21}2f0 <8U1 . 8U1 )

V;—— = S — 4 =
ot Yozt Qxt Ovt o2c? ot b Ot
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1 2 6U1 8@1 8H21 aUl
T | A) G 20 T TRy
U, ot ot Jay,
— Ao v —— 4+ v O L — 0. 1
VT B Tt <8xi Oxt ovt 0. (8.108)

However, the Poisson equations (8.94) and (8.95) are not
satisfied by the conditions of vanishing potential gradients, be-
cause the right-hand side of these equations are functions of the
energy-momentum tensor which is non-zero at equilibrium. This
inconsistency is removed by assuming ”Jeans swindle” which
considers that the Poisson equations are valid only for the per-
turbed distribution function and gravitational potentials.

In order to determine the components of energy-momentum
tensor we note that we can write the components of the four-
velocity (8.97) and the invariant integration element (8.100) as

1 2 _ 0,
u® = c [1+ = (”2 +U0+€U1)] L = “c” . (8.109)
V—gdiu

Uo

1 9 d3v
= 1+c—2[2v + 6Ug + 6eU, | — (8.110)

by considering the representation of the Newtonian gravitational
potential (8.102).

Now we have from (8.107), (8.109) and (8.110) by consider-
ing € =1 that

f\/—gd3u _ {1 3 oj {15 30t 2U0v2

Uug 2|8 8ot ot
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2 3 2 2 3
g gl A UL (207 g dy
o2 o2 c o2 c
1 3
Jre{urc2 [2u2+6U0]}f1dC”. (8.111)

The expressions for the energy-momentum tensor compo-
nents that appear in the right-hand side of the Poisson equa-
tions (8.94) and (8.95) can be written thanks to the relationships
(8.109) and (8.111) as

iioo Jr12;00 _ m4c/ Fd?’u

=m'c /fo
SUUO> d‘3v+em402/{f1
(e

rdi”

] 52

15 vt 20?302
12 v
804 ot o

T” =m c/ iy f YT — m4/vivj(fo+ef1)d311,

(8.113)
71“0 =m c/ r du m4c/vi(f0+ef1)d3v. (8.114)

Hence, the perturbed Poisson equations (8.94) and (8.95)
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become
4 0
VAU, = —:—S[T"Oh = —47TGm4/f1d3v, (8.115)
‘ 167G 1. 0*U
2H'L _ TOz 14
VL T™h + 5o
02U
— —167er4/vif1d3v+ ataxlfi’ (8.116)

V2®, = 271G ([12“00]1 + [12““]1) = —271'Gm4/ [(41}2
202 3
+8Uy) f1 — (O’2 - 8) U1f0:|d V. (8.117)

0 1
Above [Ty, [T%]; and so one denote the energy-momentum
tensor components calculated with the perturbed distribution
function f;.
Now we represent the perturbations in terms of plane waves
of frequency w and wave number vector k, namely

fi(x,v,t) = flei(k'x*‘”t), Ui(x,v,t) = Ulei(k'x*“’t), (8.118)
D1, v, 1) = B! x 0, 1T (x, v, ) = 0520, (8.119)

where f;,Uy,®; and II} are small amplitudes.

Insertion of the representations (8.118) and (8.119) into the
perturbed Boltzmann (8.108) and Poisson equations (8.115) —
(8.117), yields

<+ Jo o?

vkwlf - S m {1 5

15, 3 o
8 8ot 202
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20%U, 1 - _ _
L2 : 0>} + = |:’U2wUl +2(v - k), — WUiH%] } =0, (8.120)
g C

k2U; = 4nGm* / Fid3v, (8.121)
K2TIE = 167Gm* / vif1d% — kWU, (8.122)
k2D = 8rGm* / (v? +2U0) f1d3v + 4nGpoU;. (8.123)

In (8.120) we have used the expression (8.107) to determine
8‘]‘,]\/[(]/8’07

For the calculation of the integrals in (8.121) — (8.123) we
choose, without loss of generality, the wave number vector in the
a-direction, i.e., k = (k,0,0) and start with the substitution of
f1 from (8.120) into (8.122), yielding

02
W2TIT — 107GPo /vi(vxww)e%zd%{[ _ 02(15

' (2102)3 0?[(vzr)? — w?] 2\ 8

+ 3t v? n 2U v T
— — —— + ——— | |vyk
8ot 202 ot !

1 _ _ J— _
—&-C—z [v2wU1 + 20,kD — wvjﬂ}} } — kiwUq. (8.124)

Above we have multiplied the numerator and denominator of the
integrand by (v,x+w). Now we have to perform the integration
of (8.124) in the ranges —oo < (vg, vy, v;) < 00.
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For the components i = y, z the integration of (8.124) leads
to

2
2777 _ w T L
koI = —SWGpOWIOHi, 1=,z (8.125)

and infer that I'T%J = IIL = 0. In the above equation I, refers to
the integral I,, defined by (8.12).

The integration of (8.124) by considering the component ¢ =
z yields

— 167G 302 5
KT = W{{-’z _ 27 (]6+4[2>

Ko? 2c2

4 I - _
*% (L2 + I4)]U1 +3 [2<I>1 - Hl} } — kwU1.(8.126)

Following the same methodology the substitution of (8.120)
into (8.121) and (8.123) and subsequent integration of the re-
sulting equations lead to

— 47Gpo w? 302 4
2 _
KUL=—3 { {12 + Lo+ I2) 5 22 g\l 314
31 4UO = 12 — w—l
+12[2> — (IQ + I4) :| Ui+ o) |:2<I>1 EHI ,(8.127)

/43261 = 47TGp0U1 + 167TGp0{IQ + Iy + 2([0 + I

I\ w? 302 7 7 71
)= - (s + =1, I I
+2>/{202 2c2<8+36+124+12 )
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U, 2711 95
+ 0 [IQ — 02( Ig + 1014 + 12)
c 8

o2 2
4U, w?
—720(12 + 1) +

(Io + 12)] }Ul

c2K2

167G U — —
+—P <12 + I+ 12§> [2@1 - fn;} . (8.128)
C g K

Equations (8.126) — (8.128) represent an algebraic system of
equations for the amplitudes IIL, U; and ®;. This system of
equations has a solution if the determinant of the coefficients

vanishes, which implies the following dispersion relation

2
1 _ L2 o (33 _3 Y
»”, — |:IQ + 2 ( 3 I, + 614 216 +4(1y — Iy) o2
2
— |2+ (Ip — 2I5) wfl =0. (8.129)

Here we have not considered terms of order higher than O (c’z),
since we are dealing with the first post-Newtonian approxima-
tion. The dispersion relation (8.129) relates the dimensionless
wave number s, with the dimensionless frequency w,, which are

defined by
K w VATGpg
=, = ——, h = —— 7 — ,(8.130
x Py w Nez=erm where ¢ o ( )

denotes the Jeans wave number. Note that here the Jeans wave
number and the dimensionless wave number sz, are defined in
terms of the dispersion velocity o instead of the sound speed c;.
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We are searching for unstable solutions which correspond to
Jeans instability and for these solutions we have that w, = iwr,
ie., R(wy) =0 and wy = F(w,) > 0. In this case the integrals
(8.12) become

2
I = Z\/on exp (%) erfc < ) , (8.131)

wr 2 \f%*
2 2
_ w7 1wy 3 w?
I2 — 1 - %IO, _[4 — 5 - 27%3127 Iﬁ — Z 2 2_[4, (8132)

where erfc(x) denotes the complementary error function

erfe(x \/» / —dx. (8.133)

In Figure 8.4 the contour plots obtained from the disper-
sion relation (8.129) are shown for two different values of the
ratio between the dispersion velocity and the light speed. One
of them refers to the Newtonian theory where o/c = 0 and the
other to the post-Newtonian approximation with o/c = 0.05.
In the evaluation of (8.129) for the post-Newtonian approxima-
tion it was consider that Uy ~ o2, i.e., by considering the virial
theorem where the Newtonian gravitational potential can be ap-
proximated with the square of the dispersion velocity. We infer
from this figure that the post-Newtonian approximation has an
influence in the limit of instability, since for a given frequency
the corresponding modulus of the wave number vector in the
post-Newtonian theory is greater than that of the Newtonian
theory, which implies a decrease in the mass limit of interstellar
gas clouds necessary to start the gravitational collapse.
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1.0f,
0.8+
“‘3“‘ 0.6F 1 —_ g _
c
— 2 -0.05
0.4+
0.2, ) ) ) ) :
0.0 0.1 0.2 0.3 0.4 0.5

X

Figure 8.4: Contour plots of the dimensionless frequency as
function of the dimensionless modulus of the wave number vec-
tor for the Newtonian (¢/c¢ = 0) and post-Newtonian (o/c =
0.05) theories.

In order to determine the amount of mass necessary to occur
the gravitational collapse we set wy = 0 in (8.129). This is the
limiting value of the frequency where the instability occurs and
corresponds to a minimum mass for an overdensity to begin the
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gravitational collapse. Hence, it follows

2 Wy, 2
o [1 + 2 <6+ S+ 2)] 22 =0, (8.134)
C 7,

o2 2

The real positive solution of (8.134) is

1 o2 Uo

where Az is the following abbreviation

1 o2 U() o2 6Z'JO Ug
A%\/4+02[5+02+C2(9+ + 1 )| (8136)

o2

By considering terms up to the 1/¢? order (8.135) reduces to

02 U()
so=1+ 5 {4+ 02} : (8.137)

As previously stated the amount of mass for an overdensity
to initiate the gravitational collapse is related to the Jeans mass
contained in a sphere of radius equal to the wavelength of the
perturbation. The ratio of the Jean masses corresponding to
the post-Newtonian M TN and Newtonian MY wavelengths is
given here by

PN 3 3
MPN 33 L8

0'2 Uo
= — = ~l1-3=5 |4+ — 8.138
MY A L c? { * 02] ' ( )
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which shows that in the post-Newtonian framework the mass
needed to begin the gravitational collapse is smaller than in
the Newtonian case. Note that (8.138) is similar to the one
found in the hydrodynamic theory for a monatomic or Fermi
non-relativistic gas (7.53), the only difference is that (8.138) is
a function of the dispersion velocity o while (7.53) is a function
of the sound speed c;.

As in Section 8.1 we shall analyse the Jeans instability which
follows from the post-Newtonian Boltzmann equation but by
considering the summational invariants.

We begin by recalling that the relativistic summational in-
variants are the rest mass m and the momentum four-vector p*.
Here the perturbed distribution function will be written as a
function of a linear combination of the summational invariants
A+ BMp” where A and B are unknowns which do not depend
on the momentum four- Vector pH. ~
_ Let us determine the post-Newtonian approximation of A +
B,p" and for that end we make use of the expressions for the
metric tensor components (3.2), (3.3), (3.4) and four-velocity
components (3.10), (3.11). Hence, we write

A+ g, B*p” = A+ gooB°p + g0: B°p' + g0i B'p°

-~ 1 /02 1 /30
By — A4 14— (% _ — (2%
+9i;5°p —i—mc[ + 2 ( 9 UO) + 04( 3

2 ~
3U2U0 + % — 6D — H?uiﬂ B +m

0,,.
Hi”zgo
3

m 1 (02 ~
+m L Bl — mu; [1 + — (1]2 + 3Uo>} B;. (8.139)
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In the above equations we have consider terms up to 1/c* order.
Now we introduce new unknowns

- ~ Uy 1 (U2 mo .
A= A+meB° [1 — —g + (0 — 6(1)0)] +m— B, (8.140)
c c 2 c

B° -
D= m2 . Bi=-mbB, (8.141)
&

which implies that (8.139) reduces to

~ Sp v 9 1 (302
A-l—gWBp =A+v 1+672 T+3UO D

colie (2 )] B s14)
Vi 2 2 0 i .

Here we may identify the post-Newtonian summational invari-
ants

1 (302 1 [ v?
1, v2 {1+ cQ(Z +3U0>}, v [H CQ(Z +3UO)].(8.143)

The perturbed distribution function is obtained from the
product of the Maxwell-Jiittner distribution function (8.98) and
(8.142), yielding

7 i.B o2 (15  3uvt
Fr=th (A B) = sod 1= 5 (5 +

2 2 2 1 4
. Uo411 )]A+UQ[1—‘72<5+3”
g C

8§ 8ot
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22 1
_30 2o - B pufi- 02(5
O’

402 ot 8

3t V2 2Uyv? 3U0

v B; b, 8.144
+8O'4 202 + o4 o4 >} } ( )

The perturbed potentials U1, ﬁi and ®; as functions of A,
D and B; are obtained from the insertion of the perturbed dis-
tribution function (8.144) into (8.121), (8.122) (8.123) and by
integrating the resulting equations. It follows respectively

KU, = 47er0{A [1 - — (15 + 60;)]
2\ 2 o

+302D [1 -3 @5 + 7:;)] } (8.145)

2
_ 2
KTL, = 167Gpoo®B; [1 - <5
C

+ 7U°)] + kiwU1, (8.146)
2 o2

_ _ 20U, 2
k2D, = 47TG,00{U1 +602A{ + 370 — (;(15

1 4 2
+ 53%“))} +300 4D[1+ Yo
o 502

o2 (81 31U, 14U2
—— | =+ = . .14
02<4+202+504>}} (8.147)
We insert the perturbed distribution function (8.144) into

the perturbed Boltzmann equation (8.120) and multiply the re-
sulting equation by each of the summational invariants given in
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(8.143). The integration of the resulting equations by consid-
ering the invariant element of integration (8.100) leads to the
following system of algebraic equations

i 3()’2 I 0'2 5 Uo 331
) A 2 1—— (= _v D I
i 202] 30 i c? <4+02>] * c?
O’2 (72 5 U()
S | I _- B k= 14
- { 2 <2+ c?ﬂ " s
[ 02 5 U() i 2 0’2 2U0
102<4+02> A+ 5o [1CQ<1+C2>}D
50, 50 o (11 20, _
c2_3w[1_02 ZJrc—z B k=0, (8.149)
1_12 §+@ A+ 502 1—0—2 1
2 \o " 2 7 2\ 4

22U 261 Ul Uy
+cz>}D T2 02(1 - ) }’“i

= 0. (8.150)

In order to get a system algebraic equations for the pertur-
bations U1, ﬁ; ki, 51, A, D and B;k; we build first the scalar
product of the vector equations (8.146) and (8.150) with ;.
The resulting equations together with (8.145), (8.147), (8.148)
and (8.149) becomes a system of algebraic equations for these
perturbations. This system of equations has a non-vanishing
solution if the determinant of the coefficients vanishes. Hence,
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it follows the dispersion relation

5 4 27 K2 2U c
2 2 0 2

= —1—-|=+—=+ + — (2,2 —1

Wi = By [2 ni 10 cg ( Fox )}

2
=.(8.151)

for the dimensionless frequency w, = w/+/47Gpy and dimen-
sionless wave number k., = r/k; = ke //AtGpy. In (8.151) we
have taken into account only terms up to the 1/c? order.

The real root of the x, when w, =0 is

CE 23 Uo
"”“*—”02[5*02]’

S

(8.152)

by considering terms up to the 1/¢? order. Note that the above
equation is not equal to (8.137), since the former is given in
terms of the sound speed and the latter in terms of the dispersion
velocity. Furthermore, the ¢2/c? factor in (8.152) is 23/5 = 4.6,
while the one in the phenomenological theory (7.51) when v =
5/3 is 4.
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CHAPTER 9

GALAXY
ROTATION CURVES

The galaxies are astronomical objects composed by stars, stel-
lar remnants, interstellar gas, dust, and dark matter which are
gravitationally bound due to gravitational interaction amongst
their constituents.

The rotation curves obtained from the Newtonian theory in-
crease linearly near the origin up to a maximum and for large
radii vanish. However the measured circular velocity curves for
the galaxies show a small value near the center that increases
linearly up to a small cusp and for large radii tends to a finite
nonzero value. Since the Newtonian gravity do not succeed to
predict the mass distribution of astronomical objects one intro-

357
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duces a dark matter component which till nowadays cannot be
observed or measured directly, but can be detected through its
gravitational effects with the astronomical objects, although it
does not interact directly with the standard matter.

The inclusion of post-Newtonian corrections make it possible
to reduce the amount of dark matter which is needed to explain
the rotation curves which flatten at large radii. However these
corrections cannot solve the whole problem of generating flat
rotation curves, but may help to reduce the dark matter amount
in relation with the Newtonian models.

The post-Newtonian corrections to the problem of galaxy
rotation curves was first investigated in [1, 2, 3] by using a poly-
tropic equation of state. Here we shall follow the work [4] where
the components of the energy-momentum tensor were obtained
from a post-Newtonian Maxwell-Jittner distribution function.
In this chapter we also analyse an application of the spherically
symmetrical Jeans equation which is related with the effect of
a central massive black hole on the velocity dispersion profile of
the host galaxy.

9.1 Post-Newtonian particle
dynamics

In this section we shall follow Weinberg [5] and determine the
Lagrangian of a single particle in the first post-Newtonian ap-
proximation. The relation between the proper time 7 and the
time coordinate t for a free falling particle of velocity V is given
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by (2.85). In terms of the Chandrasekhar potentials U = —¢,
® =1/2 and II; = —&; we have

dr\’ 1 o 2 ) )
=1 (2U+V)—C—4(2<I>—U +UV? —1ILV;) .

dt 2
(9.1)
From the above equation we can obtain the relationship
dr 1 [/V? 1/v+ 3UV?
ki . _ -
dt c? ( 2 +U> c4< 8 2
U2
- +2<I>—1'I1-Vi>, (9.2)

by using the approximation /1 +z ~ 1+ /2 — 22/8.
As was pointed out by Weinberg [(dr/dt)dt is stationary so
that we can define the Lagrangian of a single particle per rest

mass m by
L (v N (v osuv
m dt 2\ 2 A\ 8 2

2
—% 420 — HiVi>. (9.3)

From the Euler-Lagrange equation
d oL 0L
dt Ovt  Oxi

we can obtain the equation of motion

1 /V? ViV dV;
{|:1+62(2+3U)] 5ij+ 2 }dt

(9.4)

EBSCChost - printed on 2/13/2023 9:10 PMvia . All use subject to https://ww.ebsco. conlterns-of-use



360 CHAPTER 9. GALAXY ROTATION CURVES

N 1 dU - dll;\ _ oU
2 \"tdt dt ) ox
1 [/3VZoU ou o o1l
3 (T oV i Vo) 09

In the Appendix of this Chapter it is shown that the inverse
of the second order tensor

1 [/V? ViV;
Si; = {1+02 <2+3U>]6ij+023, (9.6)
up to the 1/c? order is
1 [V? ViV;
—1 _ 7

Hence the multiplication of (9.5) by (9.7) and considering terms
up to the 1/c? order results the acceleration equation of a single
particle (see (4.34))

av, ou 1] ,0U ou ou 0P
dt Ozt * c? {V ox? iV oxI 4U8xi * 289&
ou ol oL, Ol
*”m+m+WQW‘w”’@@

To derive the above equation we have considered the material
time derivative d/dt = 8/0t + V;0/0x".
The energy of the single particle follows from
oL m[V? 1 /3v4
E=Vi—-L=—|—-U+ 5| —
ovi c? [ 2 ta ( 8
3UV: U2 )}

+——20

+ 2 2
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9.2 Maxwell-Juttner distribution
function

Here we shall derive the post-Newtonian Maxwell-Jiittner distri-
bution function for a system characterized by a reference state
where the mass density py and absolute temperature Ty assume
constants values.

From the two representations of the Maxwell-Jtittner distri-
bution function (1.19) and (1.40) we can write

_ # _pNU/J o i 4 p#U’”
1= TR (0) eXp( kT ) - [kT Y

(9.10)
Hence we can build the following relationship
n [
[ S — ~ 1
Arm2ckTK(Q) [kT }
Ho no
—exp |2 —1| = 9.11
P [kTO ] TRy O

since the ratio u/T = po/Tp is a consequence of the Tolman
(1.74) and Klein (1.75) laws.

Tolman’s law (1.74) implies that the temperature T' can be
expressed in terms of the reference temperature by

T, 1 2
AL I PRI Ny (AP : (9.12)
V900 2\ 2

where only terms up to the 1/c* order were considered.
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As in the Section 4.1.2 we obtain that the exponential fac-
tor in the Maxwell-Jiittner distribution function (9.10) can be
written as

gupU” _me? [ V2 U L[V 3V
KT kTy 8 2

2¢2 2 4

‘/i i2 V2V2 U2
+(TV) +——+ (V;Vi)V? + 5 2@} } (9.13)

by making use of (9.12) and introducing the peculiar velocity
Vi = V; — V;

The modified Bessel function of second kind up to the 1/c?
order reads

1 2m02 me? 15kT0
= KT (1 — R I 9.14
K>(Co) | mkTo o ( sm2 ) (9-14)

Now we can get the post-Newtonian Maxwell-Jtttner distri-
bution function from (9.10) together with (9.13), (9.14), yielding

o _mv? | mU 15kTy m  [3V4
— _e 2Ky TRTG{ ] — — _
(2rmkTy)2 8mc?  kToc? | 8
VU (V)2 VA2 U?
+— ( 5 ) +— (ViVi)V? + o 2@} } (9.15)

Above we have considered the terms with the factor 1/c? of
small order and use the approximation e™* ~ 1 — z.

In the following sections we shall search for static solutions
of a self-gravitating system where the hydrodynamic velocity V
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vanishes and V; = v;. In this case the post-Newtonian Maxwell-
Jittner distribution function (9.15) reduces to

’[’LO _ mu? _ mU {1 15kTO m |:3’U4

— e 2kTy kT

(2rmkTy)2

9.3 Search for static solutions

The search for static solutions of a self-gravitating system in the
post-Newtonian approximation is based on the equations for the
scalar gravitational potentials U and ®, given respectively by
(2.101) and (2.110). For the static case these equations read
0 2 2

ViU = —%G T, V20 = 271G (TOO + T) . (9.17)
The equation (2.116) for the vector gravitational potential II;
in the static case becomes V2II; = 0 and this equation does not
couple with the equations for the scalar gravitational potential
U and ®.

The energy-momentum tensor and the invariant element of
integration are given respectively by (4.14) and (4.20) which are
reproduce here

d3
T :m4c/u“ul’\/fgfu7u, (9.18)
0

/—qd3 1 3
9‘1“:{1+C2 [2v2+6U}}dCU. (9.19)

Uo
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To evaluate the components of the energy-momentum tensor
we have to consider the maximum limit of the velocity where
the gas particle is unable to leave the matter distribution. This
is the escape velocity which is obtained from the expression
for the energy (9.9) by considering that its maximum value is
attained when the energy vanishes. In the first post-Newtonian
approximation the maximum value of the velocity is v, = v2U.

The components of the energy-momentum tensor in the dif-
ferent orders which follow from the integration in the interval

[0, v.] are given by
2 % — eV erf (\/U*)
V o

2 T 2 .
T00 — _,00]@0[<3+ By, — 1002 +4¢*>~/U
m 2 T

3 7 1 2 U,
—(2 +5U. =500+ 2<I>*)e erf (\/ U*) }, (9.21)

ZiiiipokTO %7 U.
T = - {(6+4U*)\/7T 3¢ erf(x/U*) 9.22)

Here we have introduced the dimensionless quantities

0
TOO 2

= —poC ) (9.20)

2

m m
U, =—U, P, =|— | & 9.23
KTy (kT0> (5:23)

Furthermore, erf (\/ U*) is the error function
2 VU 2
erf (\/U*) - e~ da. (9.24)
V7 Jo
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From the insertion of (9.20) — (9.22) into the Poisson equa-
tions (9.17) we get a coupled system of differential equations for
the gravitational potentials U, and ®,, namely

2 % — eYrerf (M)

k2 1 /U,

V2P, = L 9+3—U*—10U*2+4<I>* Y
2 2 T

9 7 1 =

Here kj = \/47Gpy/o can be identified as the Jeans wave num-
ber with o = \/kTy/m denoting the dispersion (thermal) veloc-
ity of the self-gravitating fluid.

We shall consider a spherical coordinate system where the
gravitational potentials are only functions of the radial coor-
dinate r. By introducing the dimensionless radial coordinate
r. = rky the system of differential equations (9.25) and (9.26)
becomes

1d (LdU
r2dr, \ “dr, )

2 d [ ,dd, 31 , U.
d - U1 40, )4/ 2=
r2 dr, <r* dr, > [(9 + 2 v U, + ) s

9 7 Lo U.
(2 Fal. - U2+ 2<I>*)e ert (/7. } (9.28)

Now we specify appropriate boundary conditions for the sys-

V32U, = k% : (9.25)

2 U _ eV erf (\/ﬁ)

. . (9.27)
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tem of differential equations (9.27) and (9.28) in order to solve
it numerically. Here we assume that the boundary conditions at
the center of the configuration for the gravitational potentials
are:

=0. (9.29)

9.4 Numerical analysis of some fields

In this section we shall analyze the profiles of the mass den-
sity, pressure and gravitational potential energy as functions of
the radial distance, which follow when the system of differential
equations (9.27) and (9.28) are solved for the boundary condi-
tions (9.29).

The mass density corresponds to the time component of
the energy-momentum tensor 7% and follows from (9.20) and
(9.21), namely

(9.30)

Here the mass density is written as a sum of a Newtonian pY
and a post-Newtonian pEN contribution given by

2 = e (V) _2\/7* (9.31)
s
P [(3 U~ U2 +2<I>*>eU*erf (V)

T Gol\2 2
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— {p * 50
0.61 1 o » 100
041 —— Newtonian

0.0 0.5 1.0 1.5 20 25 3.0 3.5

Figure 9.1: Dimensionless mass density p, as function of the
dimensionless radial distance r, for the Newtonian theory and
post-Newtonian theory with (o = 50 and (o = 100.

2 JU.
—(3+ —3U* — 1002 +4<I>*> e
2 s

The dimensionless mass density p. as function of the di-
mensionless radial distance r, for the Newtonian and the post-
Newtonian theories are plotted in Figure 9.1. We note that
the post-Newtonian curves are functions of the parameter (5 =
mc? /KTy which is the ratio of the rest energy of the gas particles
and the thermal energy of the gas. From this figure one can infer
that the contributions to the mass density becomes larger at the
configuration center when the values of (y decrease, i.e., when

(9.32)
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the values of the temperature of the gas Tj increase . The mass
densities tend to zero for large values of the radial distance r,
and are always positive. Here it is noteworthy to call attention
to the fact that the solutions for the gravitational potentials
become complex for values larger than r, ~ 3.6 .

041 1

Px 021 1

0.1 1

0.0 1
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5

T

Figure 9.2: Dimensionless pressure p, as function of the dimen-
sionless radial distance r,.

2 .o
The pressure of the gas is given by p = T"/3 and its ex-
pression in terms of dimensionless quantities which follows from

EBSCChost - printed on 2/13/2023 9:10 PMvia . All use subject to https://ww.ebsco. conlterns-of-use



9.4. NUMERICAL ANALYSIS OF SOME FIELDS 369

(9.22) is given by

2
mp mI™ U. 4 U.
P = kpoTO B SkpoTO = et (m) B (2 + 3U*> ?
(9.33)
In Figure 9.2 the dimensionless pressure p, is plotted as a
function of the dimensionless radial coordinate r,. The pressure
behavior matches the one for the mass density, i.e. its maximum
value occurs at the configuration center and it tends to zero for
large values of the dimensionless radial distance. We call atten-
tion to the fact that in the first post-Newtonian approximation
there is no contribution for the pressure which depends on the
factor 1/(y, because these contributions will appear only in the
4

order of T,

The behavior of the pressure-density ratio p./p. as function
of the dimensionless radial coordinate is shown in Figure 9.3.
The behavior is the same as the one for the dimensionless mass
density, namely, for small radii, the ratio p./p. goes to a con-
stant value whereas tends to zero at large radii.

We can be analyzed also the gravitational potential energy of
a gas particle, which can be obtained from the expression for the
energy of a single particle (9.9) by taking V = 0. The dimen-
sionless Newtonian EY and post-Newtonian ETN gravitational
potential energy read

E 2
E, = kTC“o = EN + EPN (9.34)
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0.35F
0.30}

0.251

p= 0.20 — {0 * 50
= s} Zo » 100
0.10F —— Newtonian
0.05F
0.0} ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.0 0.5 1.0 15 2.0 25 3.0 35

Figure 9.3: Pressure-density ratio as function of the dimen-
sionless radial distance r, for the Newtonian theory and post-
Newtonian theory with {, = 50 and (y = 100.

where we can identify

N pn _ 1 (U B )
E,; =-U,, E5N=——=-20,). (9.35)
Co \ 2

The plot of the dimensionless gravitational potential energy
E, as function of the dimensionless radial distance 7, is shown
in Figure 9.4. From this figure we note that the Newtonian
gravitational potential energy is always negative, but the post-
Newtonian gravitational potential energies may change their
sign for large values of the radial distance from the configu-
ration center. Indeed, the temperature of the gas in the post-
Newtonian term U2 /2(, determines the sign change of the grav-

itational potential energy.
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0.0
<0.2
<038 — o*25
E- 1 Jo * 50
<06 — o * 100
<0.4 1 — Newtonian
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0.0 05 1.0 15 2.0 25 3.0 35

Figure 9.4: Dimensionless gravitational potential energy E. as
function of the dimensionless radial distance r, for the Newto-
nian theory and post-Newtonian theory with (5 = 25, {, = 50
and (y = 100.

9.5 Circular rotation curves

In order to determine the post-Newtonian corrections to the
rotation curves we begin by writing the equation for the accel-
eration of a free falling particle (9.8) for the case of stationary
gravitational fields, namely"

v, U 17 ,
dt _8xi+02 v ozt

ou ou ou 0P
B 4%‘6@ B 4U(’9xi + 28xi

(9.36)

1Here we have considered that_the vector gravitational potential is a
Laplacian vector field, where ¥V x II = 0.
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Next we consider spherical coordinates (r, 6, ¢) and restrict to
circular orbits of particles in the equatorial plane where 5 = 0,
0 = 0 and # = 7/2. In this case the velocity reads V = (0,0, 7¢)
and the radial component of the acceleration is 2. Hence the
radial component of (9.36) reduces to

.2<1+T8U) 8U[1 4U8U] 2 99

o) o | o] Eor

5o (9.37)

By considering terms up to the 1/c? order we obtain from
(9.37) the circular velocity V,, = r¢ in terms of the gravitational
potentials

ou (4U r oU r 0P
= — = +==—-1)|-=—. .
Ve \/7" or <82 + 2 or > c2 or (9-38)
If in the above equation we neglect the 1/c? terms we get the

Newtonian circular velocity V,, = \/—rdU/0r.

We introduce now the dimensionless circular velocity V. =
Vo/m /KTy so that (9.38) can be written in terms of the di-
mensionless gravitational potentials U,, ®., dimensionless ra-
dial coordinate r, and dimensionless parameter (o = mc?/kTy
as

v ' arr* CO 6 6T* B Cio 87’* )

Using the solutions of the system of differential equations
(9.27) and (9.28) with the boundary conditions (9.29) the di-
mensionless circular velocities V) are plotted in Figure 9.5 as

* 4* * * *
V*:\/TaU(U+r6U _1> ro®. oo
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Figure 9.5: Dimensionless circular velocity V as function of the
dimensionless radial distance r, for the Newtonian theory and
post-Newtonian theory with (5 = 25 and {, = 50.

functions of the dimensionless radial coordinate r,. We infer
from this figure that the circular velocity profiles for the Newto-
nian and post-Newtonian approximations have the same behav-
iors, but the circular velocities for the post-Newtonian approxi-
mations have large values. Note that by increasing the reference
temperature Ty the dimensionless parameter (y decreases and
large values for the circular velocity are attained. This behavior
is related with the increase of the thermal velocity of the gas
particles \/kTp/m.

One can infer from the observational data of the galaxies
rotation curves that there exist three distinct regimes for the
circular velocity as a function of the radial coordinate. Begin-
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ning with a linear regime for small radii the circular velocity
passes through a cusp and ends at large radii with a flatten
shape (see e.g. [6]). Here we shall show how to determine this
shape from the model described above. First we note from Fig-
ure 9.5 that the model has a good description for the inner zone
which corresponds to r, < r{ ~ 3.6. Indeed, the circular rota-
tion curve grows linear with the radial distance, then it passes
through small cusp but becomes ill-defined for r, > r§ due to
the fact that the gravitational potentials become complex and
imply that the solutions are unphysical.

This issue can be solved by matching the solutions in the
inner zone — denoted here by Uﬁl)(r*) and <I>>(k1)(r*) — with two
other gravitational potentials, namely U,.EQ)(T*) and <I>5<2)(r*). In
order to have a well-defined boundary problem these two grav-
itational potentials must fulfill the Laplace equations, namely
vy (ry) =0 and V2<I>S<2)(r*) = 0, and theirs values and cor-
responding first derivatives must be glued at r.

The most simple proposal which fulfill the Laplace equations
is to consider

Py ==+8 o)=L+, (9.40)
where «, 8,7 and 0 are constants. Let us analyse these poten-
tials, first by imposing the continuity of the potentials and their
derivatives at r¢, which leads to

a=—r2UM' ), B=UD ) + UM (rr),  (9.41)

c c

y=—r20M (), s=0W ) 1 el (). (9.42)
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Next we insert the potentials (9.40) into the expression for the
dimensionless circular velocity (9.39), yielding

« | 1 /3« 27y
S Y Y N P

However with the gravitational potentials (9.40) we cannot ex-
tend physically the first solution beyond the critical radius r¢,
since the circular velocity (9.43) vanishes in the limit of large
radii and cannot reproduce a flatten circular rotation curve in
the outer zone.

From the above analysis we conclude that it is necessary
to introduce other potentials in order to get a flatten circular
rotation curve for large radii. Another proposal is to consider
the previous gravitational potential U, (2)(r,) = a/r + 8 which
fulfills the Laplace equation while the gravitational potential

—kry
@,(,?) (’I“*) = 76

+dlnr,, (9.44)
satisfies a Poisson equation. In (9.44) v and § are integration
constants and k a parameter of the Yukawa term. This grav-
itational potentials must also satisfy at r) the same boundary
conditions given above. Hence, we can get the following system
of equations

(k) =~

+dlnry, (9.45)

r*

—kr, 1
P (r,) = -~ (k + T) - ri (9.46)

Ty i
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Now from the conditions

v =UP ), v =UP'67), (947)

c

o)y =0 ), oM =o' (9.48)

(&

we obtain numerically the values of the integration constants
at r¥ ~ 3.4001: « ~ 2.4175, 8 ~ —0.6431, v >~ —29.7253 and
0 ~ —2.6906. Note that these values do not depend on the
parameter (p. The dimensionless circular velocity (9.39) in this
case becomes

. |« 1 /3« 1 k. i B
I N |

(9.49)
From this equation we note that the logarithm contribution in-
troduces a constant in the dimensionless circular velocity which
dominates for large radii since the Coulomb and Yukawa terms
fade away. Another option is to include a Coulomb term in
o (r’) instead of the Yukawa term. This option will also lead
to a flatten curve, but the Yukawa term is better due to its
smoother behavior for large radii.

In Figure 9.6 the dimensionless circular velocities V' are
plotted as functions of the dimensionless radial distance r, for
the cases of Newtonian and post-Newtonian theories. The grav-
itational potentials in the inner zone are given by the solutions
of the system of differential equations (9.27) and (9.28) with the
boundary conditions (9.29) and in the outer zone by (9.40); and
(9.44). We note that the curves flatten at very large radii. More-
over, the values of the dimensionless circular velocity are bigger
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Figure 9.6: Dimensionless circular velocities as functions of the
dimensionless radial coordinate 7, for the Newtonian and post-

Newtonian approximation.

in the post-Newtonian theory than the ones in the Newtonian
theory. Hence we can assert that the post-Newtonian theory
furnishes corrections for the circular velocities of the Newtonian
theory which can help to reduce the amount of dark matter
needed to explain the rotation curves which flatten at large radii.
These corrections by their own cannot overcome the whole prob-
lem of generating flat rotation curves, however, can reduce the
amount of dark matter in relation with the Newtonian models.

A final remark refers to the influence of the boundary con-
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ditions in the behavior of the analyzed fields. The boundary
condition that has more influence on the solutions refers to the
Newtonian gravitational potential U, (r,) at r, = 0, but by re-
stricting the values of U,(0) to the range [0.5,3] there is no
change in the behavior of the curves, the only difference refers to
the absolute values of the fields which become larger or smaller
than the ones obtained for U,(0) = 1.

9.6 Stationary spherically symmetri-
cal systems

In this section we shall investigate the Jeans equation for sta-
tionary and spherically symmetrical self-gravitating fluid. The
Jeans equation (4.71) was obtained in Section 4.3.1, which can

be written as
2 2
< ) i§> Z—f +2p <UT>6 (1 + 2¢)
_l’_

f{ +—f 42<v3>+9kT]_0. (9.50)

2 mc?

d
pdy
c? dr

Here 3 = 1—(v3)/(v?) is the velocity anisotropy parameter and

it was assumed that (v7) = (v2). From the multiplication of

the above equation by (1 — i—f) and retaining terms up to the
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order 1/c? we get that

dp(vy) Bluy) | do 2,00 9KT]  pdy
R o A L A T -
(9.51)
As was pointed out in Section 4.3.1 the radial velocity dis-
persion 4/ (v2) can be found as a solution of the above equation
together with the Poisson equations for the gravitational poten-
tials ¢ and 1) once we know the velocity anisotropy parameter 3
and the dependence of the mass density p on the radial distance
.

The two gravitational potentials in the Jeans equation (9.51)
are determined from the Poisson equations

4nG 0 2 2

V2 = = 7%, V2 = 47G (TOO + T“) ;o (9.52)
once the energy-momentum tensor components are known. The
energy-momentum tensor components follow from the insertion
of the distribution function (4.13) — for a stationary system
where the hydrodynamic velocity vanishes V. = 0 — and of the
invariant integration element (4.20) into the definition of the
energy-momentum tensor (9.18) and integration of the result-
ing equation, yielding

0 2 1 (3kT
T% + 7% = pc? {1 + = (3 - 2¢)] . (9.53)
c 2m

2
Tr=pld). T =pld) T =gl (954)

By taking into account (9.53) and (9.54) the Poisson equa-
tions (9.52) — in spherical coordinates where the gravitational
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potentials depend only on the radial coordinate ¢ = ¢(r) and
1 = 1(r) — become

1 d [ 5d
2 (7‘ df) =47 Gp, (9.55)

In order to solve the system of differential equations com-
posed by the Jeans (9.51) and Poisson (9.55) and (9.56) equa-
tions we introduce the dimensionless variables

2

9 M, 5 _m _m

Ur - kT <U'r>7 (b* kT(b’ w* k2T2 1/}7 (957)
mc? p VA Gpo

= —_— = —, « — T —7 = k . 9.58

=% T T g R (998)

Here, py is a reference mass density, ¢ a relativistic parameter —
which depends on the temperature of the system and is related
with the ratio of the rest energy of a particle and the thermal
energy of the system — and k; the Jeans wave number.

In terms of the dimensionless quantities (9.57) and (9.58)
the dimensionless Jeans (9.51) and Poisson (9.55) and (9.56)
equations become

dp.o? Bo? do. 2 549 P dibs
ar + 2p. - +p P 1 Car—i— c Car =0,(9.59)
1 d [ ,de.\
S (29 = petos0
1 d [ ,di.
d( dr)—p*[ 2(3-26) — 2. + }(961)
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For a given mass density profile and relativistic parameter ¢
one can solve the system of differential equations (9.59) — (9.61).

As an application we shall investigate the effect of a central
massive black hole on the velocity dispersion profile of the host
galaxy following the method of the book of Binney and Tremaine
[6]. The galaxy is assumed to have a constant mass-to-light ratio
and the mass density and the Newtonian gravitational potential
are given by the Hernquist model of scale-length a. Here the di-
mensionless mass density and Newtonian gravitational potential
for the Hernquist model are written as

2 1 W

R A— —_— -1 9.62
p r(re +1)3 ¢ re +1 1, ( )

The scale-length a is identified with the inverse of Jeans wave
number a = 1/k; and p is associated with the galaxy mass M,.
Furthermore p = M, /My, is the ratio of the black hole mass M,
and the galaxy mass M.

The Newtonian Poisson equation (9.60) is identically satis-
fied with the mass density and Newtonian gravitational poten-
tial representations of the Hernquist model (9.62).

The system of coupled differential equations given by (9.59)
and (9.61) can be solved for the dimensionless radial velocity
dispersion o, and gravitational potential 1, by assuming values
for the velocity anisotropy parameter 3 = 1 — (v3)/(v?), the
ratio of the black hole and galaxy masses p = M, /M, and the
relativistic parameter ¢ = mc?/kT. This system was solved nu-
merically with the boundary conditions o,(3) = 0.1, 1.(3) =0
and di,(3)/dr,. = 0 for different values of the relativistic pa-
rameter (. Furthermore, the values of the two other parameters
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adopted here are similar to the ones given in the book by Bin-
ney and Tremaine [6]. Here the value for the ratio of the black
hole and galaxy masses is 1 = 0.004, while the values for the
velocity anisotropy parameter are § = 0.1 and § = —0.1 which
correspond to a radial and a tangential bias, respectively.

0.8r

0.7F. ™

Newtonian
VRMS g6 %5000
-------- %2000
050 N ] e - %1000

04F

0.01 0.05 0.10 0.50 1

Figure 9.7: Dimensionless root mean square of the velocity
Veums as function of the dimensionless radial distance r, for
B =0.1 and p = 0.004. Newtonian solution (straight line) and
post-Newtonian solutions (dashed lines) for different values of
the relativistic parameter (.

In Figure 9.7 it is plotted the dimensionless root mean square
velocity dispersion

Vaums = \/<Ug> +k<;§in+ we) _ /3 -230,, (9.63)
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0.8f,

07"

. Newtonian
ViRms 0-61 {*5000
SN =50 Nl ] e %2000
05t T 1 - - £+1000
0.4 ‘
0.01 0.05  0.10 0.50 1

Figure 9.8: Dimensionless root mean square of the velocity
Vems as function of the dimensionless radial distance r, for
£ = —0.1 and p = 0.004. Newtonian solution (straight line)
and post-Newtonian solutions (dashed lines) for different values
of the relativistic parameter (.

as function of the dimensionless radial distance r, for the case
of a radial bias f§ = 0.1, ratio of the black hole and galaxy
masses i = 0.004 and different values of the relativistic param-
eter ( = mc?/kT. The Newtonian solution is represented by
a straight line while the post-Newtonian solutions by dashed
lines when the relativistic parameter assumes the values ( =
5000, 2000, 1000. We note from this figure that the black hole
has influence on the dimensionless root mean square velocity
dispersion which increases at small radii, because the deep po-
tential well of the black hole increases the velocity of the stars.
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Furthermore, by increasing the absolute temperature of the sys-
tem the relativistic parameter ¢ decreases as well as the dimen-
sionless root mean square velocity dispersion.

The root mean square velocity dispersion Vgjrg as function
of the dimensionless radial distance r, is plotted in Figure 9.8
for the case where the ratio of the black hole and galaxy masses
is u = 0.04 and the velocity anisotropy parameter is § = —0.1
corresponding to a tangential bias. The behavior of the curves
are the same as those in the preceding case, the difference lies
in the values of the dimensionless root mean square velocity
dispersion which are smaller in comparison with the previous
case.

Appendix
Let S;; be a Cartesian second order tensor in a three dimensional
Euclidean space. According to Cayley-Hamilton theorem S,
satisfies the characteristic polynomial equation

(8%),; — 11 (8%),; + I28i; — 3855 = 0, (9.64)

where the invariants are given by

I =Sy, I = [(Su‘)Q - 52)“] ; (9.65)

(Su)®. (9.66)

DN | =

_Lligsy _lg (g2
13_3(8)1‘1‘ 28“(8)..—&—
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The inverse of S;; follows from (9.64) and reads

) 1
(5= 1 [(8),, — 118 + 23 (9.67)

In Section 9.2 the second order tensor S;; is given by

1 (V2 ViV
Si; = [1 + 3 (2 +3U>} 0ij + 2 (9.68)

so that the invariants up to the 1/c? order are

1 [/5V2
11=1’>[1+C2 (6+3U)], (9.69)
1 /52
12=3[1+62 (3+6U)], (9.70)
1 /52
Is =1+ = (2 + 9U> . (9.71)

Hence the inverse up to the 1/¢? order calculated from (9.67)
becomes

~ 1 (V2 ViV,
(S™h = [1 -3 (2 + 3U)] Sij — 023‘ (9.72)
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collision operator, 166
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first post-Newtonian, 166
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non-relativistic, 1
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special relativity, 7
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mass, 131
total angular momentum
density, 97, 102
total energy density, 102,
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total linear momentum den-
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conservation laws, 92
general relativity, 138
continuity equation, 53, 75, 83
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cosmological model, 277
cosmological principle, 303
covariant derivative, 29, 64
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260
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curvature tensor, 65 164, 169, 171, 182, 256,
304, 337, 363, 379

d’Alembertian, 60 trace, 36

dark matter, 321, 357 entropy .f(')ur.—ﬂow, 12

dark matter halos, 325 equilibrium, 13

density contrast, 317, 319, 333 ¢duation of state
dispersion relation, 278, 281, 294, completel.y flegeneratg non
302. 311. 315. 325. 345 relativistic Fermi gas,

dispersion velocity, 337 232
dust dominated Universe, 283 comilrez;cely degenerate ul-
relativistic Fermi gas,
Eckart decomposition, 79, 83 9222, 232
FEinstein field equations, 30, 31, isothermal, 231
47, 115, 120, 122, 144, perfect gas, 204, 261
256, 283, 303 polytropic, 206, 209, 228,
Einstein-Hilbert action, 59 243, 258, 279, 290
energy density, 3, 30, 80, 258 escape velocity, 364
internal, 3, 102, 133 Euler-Lagrange equation, 359
kinetic, 3, 102, 133 expanding Universe, 282, 286,
non-relativistic, 12 328
ultra-relativistic, 12
energy-momentum first law of thermodynamics, 112,
complex, 112, 135, 139, 145, 204
148, 151 FLRW metric, 283, 303
pseudo-tensor, 112, 139, 144 four-momentum, 139
147 four-tensor angular momentum,
energy-momentum tensor, 10, 139

17, 43, 45, 112, 127, four-vector, 78, 79
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four-velocity, 10, 42, 44, 126, gravitational constant, 6, 39,

178, 242, 257 66, 216
contravariant components, gravitational instability, 278
29, 44, 114 gravitational potential, 6, 113,
covariant components, 29, 211
44, 114 energy, 91, 366
particle, 169 energy tensor, 90, 98
free falling particle, 358 Newtonian, 39, 47, 87, 229,
Friedmann equation, 286, 304 2306, 248, 262, 265, 308,
322
galaxy, 977, 357 | scala;"ég)légg, 87,123, 248,
qrcular rotatl.on curve, 371 tensor, 87, 88, 118
circular velocity, 357 vector, 40, 49, 87, 113, 121,
cluster, 277 156, 290, 292, 363
mass, 382
gas cloud, 278 harmonic coordinate condition,
gas flow velocity, 229, 230, 232, 37
235, 236, 241 harmonic wave, 282

gauge condition, 48, 66, 114, heat capacity
119, 124, 292, 297, 299 molar, 204

Gauss theorem, 60, 94, 98, 103 specific, 204
Gaussian integrals, 197, 314, 324, heat flux, 6, 80, 82
331 non-relativistic, 82
Gibbs equation, 206, 290 Hernquist model, 381
Gibbs function, 14 highly ionized gas, 207
gravitational collapse, 279, 282, homogeneous and isotropic Uni-
295, 296, 312, 327, 328, verse, 303
346, 348 homogeneous Lorentz group, 7
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Hubble-Lamaitre law, 283, 305,
328
hydrodynamic equation
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internal energy density, 58,
86
mass density, 53, 75, 128,
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mass-energy density, 54, 76,
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241
momentum density, 55, 76,
84, 92, 119, 136, 176,
209, 212, 216, 229, 241
non-perfect fluid, 78
total energy density, 57, 77,
85, 102, 133
viscous fluid, 86
hydrodynamic velocity, 3, 290,
379

integration element, 170, 338,

363
internal energy density, 30
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internal energy, heat and work,
204
per mole, 204
interstellar gas, 357
interstellar plasma, 228, 256
invariant flux, 8
isentropic flow, 112, 279

Jacobian matrix, 169, 181
Jeans
instability, 282, 288, 295,
302, 312, 319, 327, 333,
335, 346
mass, 282, 290, 295, 303,
312, 327, 348
swindle, 280, 283, 290, 298,
309, 323, 340
wave number, 278, 294, 319,
365, 380
wavelength, 278, 281, 287,
312, 319
Jeans equation
axisymmetrical, 197
post-Newtonian, 190
spherically symmetrical, 193,
379
Jeans instability
Boltzmann equation, 307
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Newtonian approximation,
279
second post-Newtonian ap-
proximation, 297

kinetic energy tensor, 98
kinetic theory

relativistic gas, 299
Klein law, 23, 361

Lagrangian, 359

Lane-Emden equation
Brans-Dicke, 215, 221
Newtonian, 209, 217
polytropic solutions, 222
post-Newtonian, 212, 220

Laplace equation, 374

Laplacian, 42, 121

Laplacian vector field, 190

limiting case
non-relativistic, 10
ultra-relativistic, 10

line element, 28

Liouville theorem, 17

local Lorentz frame, 10, 11

Lorentz factor, 29

Mach

INDEX

number, 236, 238, 253, 255,
264, 265, 270
principle, 58
mass accretion rate, 229, 231,
234, 235, 257, 261, 271
mass density, 3, 30, 39, 130,
188, 231, 232, 239, 361,
366
inhomogeneity, 278
perturbation, 281, 293
mass-energy density, 54, 283,
305
contrast, 284-287
mass-shell condition, 16
Maxwell-Jiittner distribution, 9,
10
first post-Newtonian, 168
post-Newtonian, 164, 167,
337, 340, 350, 361
second post-Newtonian, 179
Maxwellian distribution, 4, 190,
193, 309, 322
mean molecular weight, 207, 208
metric tensor, 7, 32, 42
cofactor, 108
contravariant components,
32
covariant components, 32
determinant, 15
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spatial, 28
Minkowski

metric tensor, 12

rest frame, 78

space-time, 7, 29, 32
modified Bessel function, 10, 12,

168, 362

moment of inertia tensor, 104
momentum density, 3
momentum four-vector, 7, 349
monatomic gases, 2, 30, 232

neutron star, 208
PSR J0348+0432, 225
PSR J1614-2230, 225

one-particle distribution, 2, 7,
308, 322, 328

particle equation of motion
acceleration, 164
particle four-flow, 10, 17, 43,
45,126, 164, 169, 170,
182, 256
non-relativistic, 37
particle number density, 10, 80,
207
peculiar velocity, 3, 167
perfect fluid, 29, 232, 256

EBSCChost -

393

physical coordinates, 283, 305
plane wave
amplitude, 281, 294, 301,
310, 316, 323, 342
comoving wave number, 286
frequency, 281, 294, 310,
323, 342
physical wave number, 286
wave number vector, 281,
294, 310, 316, 323, 342
Poisson equation, 6, 39, 50, 51,
87, 89, 113, 190, 209,
216, 279, 285, 290, 298,
308, 322, 328
polytropic index, 206, 211, 219,
222, 296
post-Newtonian
particle dynamics, 358
post-Newtonian approximation
Brans-Dicke equations, 68
Chandrasekhar method, 47
first approximation, 31
second approximation, 112
Weinberg method, 37
pressure, 6, 12, 30, 205, 366
deviator, 80-82, 84
dynamic, 80
hydrostatic, 80
perturbation, 293
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star, 207 Reynolds transport theorem, 92,
tensor, 6 98, 99, 103, 105, 131,

157

Ricci tensor, 30, 32, 34, 39, 47,
61, 115, 120, 122, 142,
304

Riemann curvature tensor, 30

Riemann-Christoffel tensor, 140,
142

Riemannian space, 14

pressure-density ratio, 369

pressureless fluid, 286, 328

process
adiabatic, 206
isobaric, 205
isochoric, 205
isothermal, 206
polytropic, 205
quasi-static, 205

projector, 78

proper time, 28, 165, 178

scalar curvature, 31
scalar field, 59, 66

proper velocity, 242, 245, 249, Schwarzschild
252. 254. 262 black hole, 256
7 7 metric, 256
radius, 256

quasi-static changes, 204 sound speed, 229, 231, 232, 236,

253, 259, 278, 279, 285,
293
spatial metric tensor, 220

radial bias, 382
radial velocity dispersion, 191
red giant, 208 specific heat

Aldebaran, 223 constant volume, 30
relativistic Bondi accretion, 256 specific internal energy, 4, 30,

relativistic parameter, 10, 253
relativistic transfer equation, 9
relativistic weak field limit, 260
rest energy, 380

rest mass, 7

172, 290
perturbation, 293, 299
spherically symmetrical accre-

tion
Newtonian, 228
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star

post-Newtonian, 240

central mass density, 219,
221

central pressure, 219, 221

central temperature, 219,

transfer equation
Maxwell-Enskog, 4
post-Newtonian, 173
special relativity, 10

transonic point, 238, 239

transonic radius, 231

395

221
mass, 218, 220
mass-radius, 218, 221
mean mass density, 219
radius, 217, 220
static solution

turning point, 230, 247, 270

velocity
anisotropy parameter, 193,
378, 382
contrast, 284, 285
self-gravitating system, 363 dispersion, 296, 309, 323,
stationary system 382, 384
spherically symmetrical, 191yelocity anisotropy parameter,

378 384
stellar remnants, 357 virial theorem, 90, 104, 105, 248,
summational invariant, 3, 9, 314— 346

316, 324, 349 stationary, 106, 107
Sun, 208, 222, 233 tensor, 106

super potential, 87, 89 volume viscosity, 81

white dwarf, 208
Sirius B, 222

wind flow, 238, 269
supersonic, 239

world line, 15, 165

tangential bias, 382

thermal energy, 380

time-like Killing vector, 23
Tolman law, 23, 361

total energy density, 152

total linear momentum density,

97, 102, 106, 148 Yukawa term, 376
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