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PREFACE

This book is about the post-Newtonian theory, a method of suc-
cessive approximations of Einstein’s field equations in powers of
the light speed. This method was proposed in 1938 by Einstein,
Infeld and Hoffmann1 and in 1965 the first post-Newtonian hy-
drodynamic equations for a perfect fluid were derived by Chan-
drasekhar.2 Nowadays the post-Newtonian theory is still a field
of investigation by many researches.

The aim of this book is to present the post-Newtonian theory
and some applications in a self-contained manner. The devel-
opment of the theory follows the works of Chandrasekhar and
its collaborators and the book by Weinberg.3 For another dif-
ferent approach and applications of the post-Newtonian theory

1A. Einstein, L. Infeld and B. Hoffmann, The gravitational equations
and the problem of motion, Ann. of Math. 39, 65 (1938).

2S. Chandrasekhar, The post-Newtonian equations of hydrodynamics in
general relativity, Ap. J. 142, 1488 (1965).

3S. Weinberg, Gravitation and cosmology. Principles and applications
of the theory of relativity (Wiley, New York, 1972).
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the reader is referred to the book by Poisson and Will.4

The book is organized as follows. In the first Chapter an
overview of the non-relativistic and relativistic Boltzmann equa-
tion with the corresponding transfer and balance equations are
introduced. The particle four-flow and the energy-momentum
tensor are calculated with the equilibrium Maxwell-Jüttner dis-
tribution function and it is shown that the equilibrium condition
of the Boltzmann equation in gravitational fields leads to Tol-
man and Klein laws.

In Chapter two the first post-Newtonian approximation of
Einstein’s field equations is determined from Chandrasekhar and
Weinberg methods, which introduce different gauge conditions
and equivalent gravitational potentials. The post-Newtonian
balance equations for an Eulerian and non-perfect fluids are ob-
tained and the Brans-Dicke theory in the post-Newtonian ap-
proximation is developed. Other subjects of this chapter in-
clude the analysis of the gravitational potentials, the conserva-
tion laws and the virial theorem in the post-Newtonian approx-
imation.

The second post-Newtonian approximation is the subject
of Chapter three, where new gravitational potentials come out
from Einstein’s field equations. The Eulerian balance equations
are determined and the conservation laws are investigated in
this approximation.

In Chapter four the first and second post-Newtonian approx-
imations of the Boltzmann equation and of the Maxwell-Jüttner

4E. Poisson and C. M. Will, Gravity: Newtonian, Post-Newtonian, Rel-
ativistic, (Cambridge UP, Cambridge, 2014).
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distribution function are derived. From a transfer equation of
the post-Newtonian Boltzmann equations the Eulerian balance
equations for perfect gases are obtained for the two approx-
imations. Furthermore, the post-Newtonian Jeans equations
for stationary spherically symmetrical and axisymmetrical self-
gravitating systems are derived.

The aim of Chapter five is the search for polytropic solutions
of the post-Newtonian Lane-Emden equation for some stars like
the Sun, white and brown dwarfs, red giants and neutron stars.
The post-Newtonian solutions are compared with the ones that
come out from the Newtonian Lane-Emden equation.

In Chapter six the problem of spherically symmetrical ac-
cretion is investigated where the Bernoulli equation and the
critical values of the flow fields are determined in the post-
Newtonian approximation. The solutions of the post-Newtonian
Bernoulli equation are compared with the ones that follow from
the Bernoulli equations of a relativistic theory and its weak field
approximation.

The Jeans instability from the hydrodynamic equations is
the subject of Chapter seven. Here the Newtonian Jeans insta-
bility is investigated for a non-expanding and expanding Uni-
verse. The post-Newtonian Jeans instability are obtained from
the mass density and momentum density balance equations in
the first and second approximations.

The aim of Chapter eight is to study Jeans instability within
the framework of the Boltzmann equation. For the Newtonian
and post-Newtonian Boltzmann equations two approaches are
used to obtain the dispersion relation which leads to the Jeans
instability. In one of them the perturbed distribution function

xv
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is left unspecified while in the other the perturbed distribution
function is written in terms of the summational invariants of the
Boltzmann equation. The determination of Jeans instability for
an expanding Universe and for a BGK model of the Boltzmann
equation – where collision between the particles are taken into
account – are also examined.

In the last chapter it is investigated the rotation curves of
galaxies within the post-Newtonian framework and the solution
of Jeans equation for stationary spherically symmetrical self-
gravitating systems.

The notations used in this book are: Greek indices take the
values 0,1,2,3 and Latin indices the values 1,2,3. The semicolon
denotes the covariant differentiation, the indices of Cartesian
tensors will be written as subscripts, the summation convention
over repeated indices will be assumed and the partial differen-
tiation will be denoted by ∂/∂xi.

It is expected that this book can be helpful not only as a
text for advanced courses but also as a reference for physicists,
astrophysicists and applied mathematicians who are interested
in the post-Newtonian theory and its applications.

The financial support of Conselho Nacional de Desenvolvi-
mento Cient́ıfico e Tecnológico (CNPq, grant No. 304054/2019-
4) Brazil, is gratefully acknowledged.

Gilberto Medeiros Kremer

Itajáı, Brazil
July 2021

xvi
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CHAPTER 1

THE BOLTZMANN
EQUATION:
AN OVERVIEW

In this chapter an outline of the Boltzmann equation is pre-
sented. The non-relativistic Boltzmann equation is based on
the book [1] while the relativistic one on the book [2]. For more
details and references on non-relativistic and relativistic Boltz-
mann equation the reader should consult these two books and
the references therein.

1
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2 CHAPTER 1. BOLTZMANN EQUATION

1.1 Non-relativistic Boltzmann equa-
tion

The Boltzmann equation is a non-linear integro-differential equa-
tion for the space-time evolution of the one-particle distribution
function f(x,v, t) in the phase space spanned by the space co-
ordinates x and velocity v of the particles. The one-particle
distribution function is such that dN = f(x,v, t)d3xd3v gives
at time t the number of particles in the volume element d3x
about x and with velocities in a range d3v about v. In the non-
relativistic kinetic theory of monatomic gases the Boltzmann
equation reads

∂f

∂t
+ vi

∂f

∂xi
+ Fi

∂f

∂vi
=

∫ [
f(x,v′

∗, t)f(x,v
′, t)

−f(x,v∗, t)f(x,v, t)
]
g σ dΩ d3v∗. (1.1)

Here F is a force per unit mass which acts on the particles and
do not depend on its velocities. The right-hand side is a con-
sequence of the so-called Stoßzahlansatz which considers only
binary collisions of two beams of particles which before collision
have velocities (v,v∗) and after collision (v′,v′

∗). Furthermore,
g = |v∗ − v| is a relative velocity, σ a collision differential cross
section and dΩ an element of solid angle of the scattered parti-
cles. In the binary collision the momentum and energy conser-
vation laws hold

mv +mv∗ = mv′ +mv′
∗,

1

2
mv2 +

1

2
mv2∗ =

1

2
mv′2 +

1

2
mv′2∗ ,

(1.2)
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1.1. NON-RELATIVISTIC BOLTZMANN EQUATION 3

where m is the particle rest mass.
In the kinetic theory of gases the macroscopic fields are

given in terms of integrals over the microscopic quantities of
the particles multiplied by the one-particle distribution func-
tion. The microscopic quantities mass m, momentum mv and
energy mv2/2 of a particle imply the macroscopic fields of mass
density ρ, momentum density ρV and energy density ρu of the
gas defined by

ρ(x, t) =

∫
mf(x,v, t)d3v, ρV(x, t) =

∫
mvf(x,v, t)d3v, (1.3)

ρu(x, t) =

∫
m

2
v2f(x,v, t)d3v.(1.4)

The energy density can be decomposed into a sum of a kinetic
energy density ρV 2/2 and an internal energy density ρε by intro-
ducing the peculiar velocity Vi = vi−Vi which is the difference of
the particle velocity v and the hydrodynamic velocity V. Hence
we have

ρu =
1

2
ρV 2 + ρε, where ρε =

∫
1

2
mV2f(x,v, t)d3v. (1.5)

Note that
∫ Vifd3v = 0.

An important quantity in the kinetic theory of gases is the
so-called summational invariant ψ defined by the relationship
ψ+ψ∗ = ψ′+ψ′

∗. It is easy to see that the mass m, the momen-
tum mv and the energy mv2/2 of a particle are summational in-
variants. One important consequence is that the representation
of the summational invariant as a sum of mass, momentum and
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4 CHAPTER 1. BOLTZMANN EQUATION

energy of a particle leads to the determination of the one-particle
distribution function at equilibrium. Indeed, the equilibrium is
characterized when the collision term of the Boltzmann equa-
tion (1.1) vanishes, i.e., at equilibrium the number of particles
entering in the phase space volume is equal to those that leav-
ing it. In this sense f(x,v′

∗, t)f(x,v
′, t) = f(x,v∗, t)f(x,v, t)

implying that ln f(x,v, t) is a summation invariant so that at
equilibrium the one-particle distribution function becomes the
Maxwellian distribution function

f =
ρ

m

( m

2πkT

) 3
2

exp

[
−mV2

2kT

]
, (1.6)

where the absolute temperature T is related with the specific
internal energy by ε = 3kT/2m with k denoting the Boltzmann
constant.

The derivation of hydrodynamic equations from a transfer
equation for arbitrary macroscopic quantities which are associ-
ated with mean values of microscopic quantities is an old subject
in the literature of kinetic theory of gases which goes back to
the work of Maxwell in 1867 [3]. In 1911 Enskog [4] determined
from the Boltzmann equation a general transfer equation for an
arbitrary function of the space-time and particle velocity where
the hydrodynamic equations could be obtained. The starting
point for the knowledge of the so-called Maxwell-Enskog trans-
fer equation follows from the multiplication of the Boltzmann
equation (1.1) by an arbitrary function of the space-time coordi-
nates and particle velocity Ψ(x,v, t) and subsequent integration
of the resulting equation over all values of the particle velocity
components d3v. Hence it follows the Maxwell-Enskog transfer
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1.1. NON-RELATIVISTIC BOLTZMANN EQUATION 5

equation ∫
Ψ

[
∂f

∂t
+ vi

∂f

∂xi
+ Fi

∂f

∂vi

]
d3v =

∂

∂t

∫
Ψfd3v

+
∂

∂xi

∫
Ψvifd

3v +

∫
∂ΨfFi

∂vi
d3v

−
∫ [

∂Ψ

∂t
+ vi

∂Ψ

∂xi
+ Fi

∂Ψ

∂vi

]
fd3v

=
1

4

∫
[Ψ + Ψ∗ −Ψ′ −Ψ′

∗] [f
′
∗f

′ − f∗f ] g σ dΩ d3v∗d3v. (1.7)

In the above equation the underlined term vanishes since it can
be converted by the use of the divergence theorem into an inte-
gral over a surface situated far away in the velocity space where
the distribution function tends to zero. Its right-hand side fol-
lows by considering the symmetry properties of the collision op-
erator of the Boltzmann equation where it was introduced the
abbreviations f ′

∗ ≡ f(x,v′
∗, t), f ≡ f(x,v, t) and so on. Note

that the right-hand side of the transfer equation vanishes if Ψ
is a summational invariant, i.e., for Ψ ≡ ψ.

The balance equations for the fields of mass density ρ, mo-
mentum density ρV and energy density ρu are obtained from
the transfer equation (1.7) by choosing Ψ equal to the mass m,
momentum mv and energy mv2/2 of the particles. Hence, it
follows respectively

∂ρ

∂t
+

∂ρVi

∂xi
= 0, (1.8)
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6 CHAPTER 1. BOLTZMANN EQUATION

∂ρVi

∂t
+

∂(ρViVj + pij)

∂xj
= −ρ ∂φ

∂xi
, (1.9)

∂
[
ρ
(
ε+ V 2

2

)]
∂t

+
∂
[
ρ
(
ε+ V 2

2

)
Vi + qi + pijVj

]
∂xi

= −ρ ∂φ

∂xi
Vi.

(1.10)
In the above equations we have identified the force per unit mass
F as the gravitational field g = −∇φ where φ is the Newtonian
gravitational potential, which is related with the mass density ρ
and the universal gravitational constant G through the Poisson
equation ∇2φ = 4πGρ. Furthermore, it was introduced the
pressure tensor pij and the heat flux vector qi which are given
in terms of the one-particle distribution function by

pij =

∫
mViVjfd3v, qi =

∫
1

2
mV2Vifd3v. (1.11)

The pressure is the trace of the pressure tensor p = prr/3 and
for perfect gases it is related to the specific internal energy by
p = 2ρε/3 = ρkT/m.

If we eliminate the time derivative of the hydrodynamic ve-
locity V from the balance equation for the energy density (1.10)
by using the momentum density balance equation (1.9) we get
the internal energy density balance equation

∂ρε

∂t
+

∂(ρεVi + qi)

∂xi
+ pij

∂Vi

∂xi
= 0. (1.12)
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1.2. BOLTZMANN EQUATION IN SPECIAL RELATIVITY7

1.2 Boltzmann equation in special rel-
ativity

In special relativity it is considered that a gas particle of rest
mass m is characterized by the space-time coordinates (xα) =
(ct,x) and momentum four-vector (pα) = (p0,p). From the
constraint that the length of the momentum four-vector is equal
to mc, its time component p0 is given in terms of the spatial
components p by p0 =

√|p|2 +m2c2.

The one-particle distribution function f(xα, pα) = f(x,p, t)
is defined in terms of the space-time and momentum coordinates
so that the number of particles in the volume element d3x about
x and with momenta in a range d3p about p at time t is given
by dN = f(x,p, t)d3x d3p.

In order to know if the one-particle distribution function is a
scalar invariant we have to know if d3xd3p is a scalar invariant,
because the number of particles in a volume element is indeed
a scalar invariant due to fact that all observers will count the
same number of particles.

We consider two inertial systems which transform according
a homogeneous Lorentz group in a Minkowski space-time and
whose components of the metric tensor are diag(1,−1,−1,−1).
The volume elements d4x = d4x′ and d4p = d4p′ are scalar
invariants. If we choose the primed frame of reference as a rest
frame where p′ = 0, we have that d3x′ is the proper volume
whose transformation law is

d3x =
√

1− v2/c2d3x′. (1.13)
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8 CHAPTER 1. BOLTZMANN EQUATION

The transformation law for p0 and d3p – by taking into account
the primed frame as a rest frame where p′ = 0 – are

p0 =
1√

1− v2/c2
p′0,

d3p′

p′0
=

d3p

p0
. (1.14)

In a Minkowski space-time p0 = p0 hence from the above equa-
tions we have that d3xd3p = d3x′d3p′ is a scalar invariant and
as a consequence the one-particle distribution function is also a
scalar invariant. Note that d3p/p0 is a scalar invariant.

In the phase space spanned by the space coordinates x and
momentum p of the particles the space-time evolution of the
one-particle distribution function f(x,p, t) is given by the Boltz-
mann equation

pμ
∂f

∂xμ
=

∫ [
f(x,p′

∗, t)f(x,p
′, t)

−f(x,p∗, t)f(x,p, t)
]
F σ dΩ

d3p∗
p∗0

. (1.15)

The right-hand side of the above equation represents the colli-
sion term which takes into account the binary collision of two
beams of particles which before collision have momenta (p,p∗)
and after collision (p′,p′

∗). The relative velocity here is given
by the invariant flux

F =
p0p0∗
c

√
(v − v∗)2 − 1

c2
(v × v∗)2 =

√
(pα∗ pα)2 −m4c4.

(1.16)
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1.2 SPECIAL RELATIVITY 9

Furthermore, σ is the invariant differential cross-section and dΩ
the solid angle element. At collision the energy-momentum con-
servation law holds

pμ + pμ∗ = p′μ + p′μ∗ , (1.17)

which is a summational invariant.

The transfer equation for an arbitrary function Ψ(xμ, pμ)
is obtained from the multiplication of the Boltzmann equation
(1.15) by Ψ(xμ, pμ) and integration of the resulting equation
with respect to d3p/p0, yielding

∂

∂xμ

∫
Ψpμf

d3p

p0
−
∫

∂Ψ

∂xμ
pμf

d3p

p0

=
1

4

∫
[Ψ + Ψ∗ −Ψ′ −Ψ′

∗] [f
′
∗f

′ − f∗f ] F σ dΩ
d3p∗
p∗0

d3p

p0
,(1.18)

where the right-hand side follows from the symmetry properties
of the collision operator of the Boltzmann equation. Here it was
introduced the abbreviations f ′

∗ ≡ f(x,p′
∗, t), f ≡ f(x,p, t) and

so on.

The equilibrium state is attained when the right-hand side
of Boltzmann equation (1.15) vanishes so that ln f(x,p, t) is a
summational invariant and the one-particle distribution func-
tion at equilibrium becomes the Maxwell-Jüttner distribution
function

f(x,p, t) =
n

4πm2ckTK2(ζ)
exp

(
−pμUμ

kT

)
. (1.19)
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10 CHAPTER 1. BOLTZMANN EQUATION

Here n is the particle number density, Uμ the hydrodynamic
four-velocity – such that UμU

μ = c2 – and K2(ζ) the modified
Bessel function of second kind defined by

Kn(ζ) =

(
ζ

2

)n Γ
(
1
2

)
Γ
(
n+ 1

2

) ∫ ∞

1

e−ζy(y2 − 1)n−
1
2 dy. (1.20)

The relativistic parameter ζ = mc2/kT is the ratio of the rest
energy of the gas particle mc2 and the thermal energy of the
gas kT . In the non-relativistic limiting case ζ � 1 while in the
ultra-relativistic limiting case ζ � 1.

The macroscopic fields of particle four-flow Nμ and energy-
momentum tensor Tμν are defined in terms of the one-particle
distribution function as

Nμ =

∫
cpμf(x,p, t)

d3p

p0
, Tμν =

∫
cpμpνf(x,p, t)

d3p

p0
.(1.21)

The balance equations for the macroscopic fields are ob-
tained from the transfer equation (1.18) by choosing Ψ = c
and Ψ = cpμ, yielding

∂

∂xμ

∫
cpμf

d3p

p0
= 0, ⇒ ∂μN

μ = 0, (1.22)

∂

∂xν

∫
cpμpνf

d3p

p0
= 0, ⇒ ∂νT

μν = 0. (1.23)

Let us determine the equilibrium values of the particle four-
flow Nμ and energy-momentum tensor Tμν from the Maxwell-
Jüttner distribution function. We choose a local Lorentz frame
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1.2 SPECIAL RELATIVITY 11

where the spatial components of the hydrodynamic four-velocity
vanishes, i.e., Uμ = (c,0) and write the particle four-flow as

Nμ =

∫
cpμf

d3p

p0
= − cn

4πm2ckTK2(ζ)

∂

∂Uμ

∫
e−(pμUμ)

d3p

p0
,

(1.24)
where we have introduced Uμ = Uμ/kT which obeys the rela-
tionships

UμUμ =
ζ2

(mc)2
,

∂ζ

∂Uμ =
(mc)2

ζ
Uμ = mUμ. (1.25)

In a local Lorentz frame we can use spherical coordinates to
write

d3p = |p|2 sin θd|p|dθdϕ, (1.26)

where the range of the angles are 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.
Furthermore we change the integration variable and introduce
a new variable y such that

p0 = mcy, |p|2 = p20 −m2c2 = m2c2(y2 − 1), (1.27)

d|p|
p0

=
dy√
y2 − 1

. (1.28)

Hence by considering that the integrals over the angles θ and ϕ
furnish 4π, (1.24) becomes

Nμ = − ζn

mK2(ζ)

∂

∂Uμ

∫
e−ζy

√
y2 − 1dy

= − ζn

mK2(ζ)

∂K1(ζ)/ζ

∂Uμ = nUμ. (1.29)
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12 CHAPTER 1. BOLTZMANN EQUATION

The evaluation of the energy-momentum tensor proceeds in
the same way

Tμν =

∫
cpμpνf

d3p

p0
=

ζn

mK2(ζ)

∂2K1(ζ)/ζ

∂Uμ∂Uν
= (ε+ p)

UμUν

c2
− pgμν , (1.30)

Here gμν is the Minkowski metric tensor. The energy density ε
and the hydrostatic pressure p are given by

ε = ρc2
(
K3(ζ)

K2(ζ)
− 1

ζ

)
, p = nkT. (1.31)

In the above equations it was used the recurrence relation
for the modified Bessel function of second kind

d

dζ

(
Kn(ζ)

ζn

)
= −Kn+1

ζn
. (1.32)

The energy density has the following values in the non-
relativistic ζ � 1 and ultra-relativistic ζ � 1 limiting cases

ε = ρc2
(
1 +

3kT

2mc2

)
, for ζ � 1, (1.33)

ε = 3nkT = 3p, for ζ � 1, (1.34)

by using the asymptotic expressions for the modified Bessel
function of the second kind given in the Appendix.

Another quantity that is very important in the analysis of
the Boltzmann equation is the entropy. In a relativistic the-
ory the entropy four-flow is given in terms of the one-particle
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1.2 SPECIAL RELATIVITY 13

distribution function by

Sμ = −k
∫

cf ln f pμ
d3p

p0
. (1.35)

If we choose Ψ = −kc ln f in the transfer equation (1.18) we get
the balance equation for the entropy four-flow

∂

∂xμ

∫
(−kc ln f)pμf d

3p

p0
= −kc

∫
∂f

∂xμ
pμf

d3p

p0

+
kc

4

∫ [
ln

f ′f ′
∗

ff∗

] [
f ′f ′

∗
ff∗

− 1

]
f∗f F σ dΩ

d3p∗
p∗0

d3p

p0
. (1.36)

The first term in the right-hand side of the above equation van-
ishes, since it can be identified as the multiplication of the Boltz-

mann equation (1.15) by kc, integration over all values of d3p
p0

and considering the symmetry properties of the collision opera-
tor. The second term is non-negative thanks to the relationship
(x− 1) lnx ≥ 0 which is valid for all x > 0. Hence the entropy
four-flow balance equation reduces to

∂μS
μ ≥ 0. (1.37)

The equilibrium entropy four-flow can be obtained from the
insertion of the Maxwell-Jüttner distribution function (1.19)
into its definition (1.35) and integration of the resulting equa-
tion, yielding

Sμ = k

∫
fpμe−

pμUμ
kT

{
pνUν

kT
− ln

[
n

4πm2ckTK2(ζ)

]}
d3p

p0
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14 CHAPTER 1. BOLTZMANN EQUATION

=
TμνUν

T
+ k ln

[
4πm2ckTK2(ζ)

n

]
Nμ

= n

{
k ln

[
4πm2ckTK2(ζ)

n

]
+

ε

nT

}
Uμ. (1.38)

thanks to (1.29) and (1.30). The entropy per particle s is related
to the equilibrium value of the entropy four-flow written as Sμ =
nsUμ.

The Gibbs function per particle is identified with the chem-
ical potential μ and defined by

μ =
ε

n
− Ts+

p

n
= kT

{
ln

[
n

4πm2ckTK2(ζ)

]
+ 1

}
. (1.39)

From this last result we can rewrite the Maxwell-Jüttner
distribution function (1.19) as

f = exp

[
μ

kT
− 1− pμU

μ

kT

]
. (1.40)

1.3 Boltzmann equation in
gravitational fields

In order to write the number of particles in terms of the one-
particle distribution function we have to know the transforma-
tions of the volume elements d3x and d3p in a Riemannian space.
These transformations read

p0
√−gd3x = p′0

√
−g′d3x′,

√−g d
3p

p0
=
√
−g′ d

3p′

p′0
, (1.41)
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1.3 GRAVITATIONAL FIELDS 15

where g is the determinant of the metric tensor gμν .
Hence in a Riemannian space the one-particle distribution

function is the scalar invariant f(x,p, t) such that

dN = f(x,p, t) p0
√−g d3x√−g d3p

p0
, (1.42)

gives the number of particle world lines that crosses the hyper-
surface element represented by the three-dimensional space on
the surface x0 = constant and with momentum four-vector con-
tained in the cell d3p/p0 of the mass-shell. In a Minkowski space√−g = 1, p0 = p0 and dN = f(x,p, t)d3xd3p.

In the presence of a gravitational field the left-hand side
of the Boltzmann equation should be modified. For that end
we shall write the one-particle distribution function f(x,p, t)
as f(xμ(τ∗), pi(τ∗)) where τ∗ = τ/m is an affine parameter
along the world line of a particle of rest mass m and τ denotes
the proper time. The variation of the one-particle distribution
function with respect to the affine parameter τ∗ reads

df(xμ(τ∗), pi(τ∗))
dτ∗

=
∂f

∂xμ

dxμ

dτ∗
+

∂f

∂pi
dpi

dτ∗
. (1.43)

Now from the equation of motion of a particle in the presence
of a gravitational field

d2xμ

dτ2
+ Γμ

νλ
dxν

dτ

dxλ

dτ
= 0, (1.44)

rewritten as

dpi

dτ∗
= −Γi

μνp
μpν , where pμ =

dxμ

dτ∗
, (1.45)
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16 CHAPTER 1. BOLTZMANN EQUATION

it follows that (1.43) becomes

df(xμ(τ∗), pi(τ∗))
dτ∗

= pμ
∂f

∂xμ
− Γi

μνp
μpν

∂f

∂pi
. (1.46)

Hence, the left-hand side of the Boltzmann equation is replaced
by

pμ
∂f

∂xμ
−→ pμ

∂f

∂xμ
− Γi

μνp
μpν

∂f

∂pi
, (1.47)

while in its right-hand side we should replace the invariant el-
ement d3p∗/p∗0 by

√−gd3p∗/p∗0. Therefore the Boltzmann
equation in the presence of a gravitational field reads

pμ
∂f

∂xμ
− Γi

μνp
μpν

∂f

∂pi
=

∫
(f ′

∗f
′ − f∗f) F σ dΩ

√−g d
3p∗
p∗0

.

(1.48)
Another expression for the Boltzmann equation in gravita-

tional fields is obtained when the mass-shell condition pμp
ν =

m2c2 is not taken into account. First we note that

∂f(xμ, pi)

∂xμ
=

∂f(xμ, pμ)

∂xμ
+

∂f(xμ, pμ)

∂p0
∂p0

∂xμ
, (1.49)

∂f(xμ, pi)

∂pi
=

∂f(xμ, pμ)

∂pi
+

∂f(xμ, pμ)

∂p0
∂p0

∂pi
, (1.50)

while from the mass-shell condition pμp
ν = m2c2 and (1.45) it

follows that

∂p0

∂xμ
= − 1

p0
pνpκΓ

κ
μν ,

∂p0

∂pi
= − pi

p0
. (1.51)
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1.3 GRAVITATIONAL FIELDS 17

Hence by taking into account (1.49) – (1.51) the Boltzmann
equation (1.48) can be rewritten as

pμ
∂f

∂xμ
− Γσ

μνp
μpν

∂f

∂pσ
=

∫
(f ′

∗f
′ − f∗f) F σ dΩ

√−g d
3p∗
p∗0

.

(1.52)
The particle four-flow Nμ and the energy-momentum tensor

Tμν are defined in terms of the one-particle distribution function
by

Nμ =

∫
cpμf(x,p, t)

√−g d
3p

p0
, (1.53)

Tμν =

∫
cpμpνf(x,p, t)

√−g d
3p

p0
. (1.54)

To obtain the balance equations for the particle four-flow
and energy-momentum tensor we need to know a relationship
that follows from the Liouville theorem in a seven-dimensional
phase space spanned by the coordinates (xμ, pi).

In a Riemannian space d4x is a scalar density of weight −1
whose invariant volume element is

√−gd4x =
√−g′d4x′. Let

us consider a seven-dimensional phase space spanned by the
coordinates (xμ, pi) where the invariant volume element is given

by dF =
√−gd4x√−g d3p

p0
. In this phase space we introduce a

seven-dimensional momentum pA and a corresponding seven-
dimensional gradient ∂/(∂xA) defined by

(pA) =

(
dxμ

dτ∗
,
dpi

dτ∗

)
≡ (

pμ,−Γi
μνp

μpν
)
, (1.55)
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(
∂

∂xA

)
=

(
∂

∂xμ
,
∂

∂pi

)
. (1.56)

According to the Liouville theorem the density of the points
in the phase space is constant along the trajectories in the
phase space, which means that the density of the points in the
phase space moves like an incompressible fluid. By identifying
−g/p0 as the density of the points in the phase space spanned
by (xμ, pi) the Liouville theorem implies that the divergence of
−gpA/p0 must vanish, i.e.

∂

∂xA

(−g
p0

pA
)

=
∂

∂xμ

(−g
p0

pμ
)
+

∂

∂pi

(
g

p0
Γi
μνp

μpν
)

= 0.

(1.57)
The balance equation for the particle four-flow is obtained

from the multiplication of the Boltzmann equation (1.48) by c
and the integration of the resulting equation over the invariant

volume element dF =
√−gd4x√−g d3p

p0
, yielding∫

c

{
pμ

∂f

∂xμ
− Γi

μνp
μpν

∂f

∂pi

}(−g
p0

)
d3pd4x

=

∫ {
∂

∂xμ

[
cpμf

(−g
p0

)]

− ∂

∂pi

[
cf

(−g
p0

)
Γi
μνp

μpν
]}

d3pd4x = 0, (1.58)

thanks to (1.57) and to the vanishing of the right-hand side of
the Boltzmann equation for all summational invariant. The un-
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derlined term vanishes, since the volume integral in the momen-
tum space can be transformed into an integral over an infinitely
far surface where the one-particle distribution function tends to
zero. The remaining integral above can be rewritten as∫

∂

∂xμ

[
cpμf

(−g
p0

)]
d3pd4x

=

∫
∂

∂xμ

{
√−g

[∫
cpμf

√−g d
3p

p0

]}
d4x

=

∫ {
∂

∂xμ

[∫
cpμf

√−g d
3p

p0

]

+
∂ ln

√−g
∂xμ

∫
cpμf

√−g d
3p

p0

}
√−gd4x

=

∫ [∫
cpμf

√−g d
3p

p0

]
;μ

√−gd4x

=

∫
Nμ

;μ

√−gd4x = 0, (1.59)

where the following relationships were used

∂ ln
√−g

∂xμ
= Γν

μν , Aμ
;μ =

∂Aμ

∂xμ
+ Γμ

μνA
ν . (1.60)

Now by considering that the integration over
√−gd4x is arbi-

trary, the integrand of the above equation must vanish and we
find the balance equation for the particle four flow, namely

Nμ
;μ = 0. (1.61)
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We shall determine the energy-momentum tensor balance
equation in two steps, in the first one the time component of
the momentum four-vector pμ is considered and in the other its
spatial components. Let us begin by multiplying the Boltzmann
(1.48) with p0(−g/p0)d3pd4x and the integration of the resulting
equation∫

cp0

{
pμ

∂f

∂xμ
− Γi

μνp
μpν

∂f

∂pi

}(
− g

p0

)
d3pd4x

=

∫ {
∂

∂xμ

[∫
cp0pμf

√−g d
3p

p0

]
+
∂ ln

√−g
∂xμ

∫
cp0pμf

√−g d
3p

p0

−
∫

cf

[
∂p0

∂xμ
pμ − ∂p0

∂pi
Γi
μνp

μpν
]√−g d3p

p0

}
√−gd4x

−
∫

∂

∂pi

[
cp0f

(
− g

p0

)
Γi
μνp

μpν
]
d3pd4x = 0. (1.62)

If we consider that the underlined term vanishes, use (1.51) and
the fact that the integration over

√−gd4x is arbitrary so that
the integrand of the remaining equation is zero, we get from the
above equation that

∂T 0μ

∂xμ
+ Γν

μνT
0μ + Γ0

μνT
μν = T 0μ

;μ = 0. (1.63)

Following the same methodology for the spatial components
of the momentum four-vector and multiplying the Boltzmann

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.3 GRAVITATIONAL FIELDS 21

equation (1.48) with pi(−g/p0)d3pd4x and integrating the re-
sulting equation we get∫

cpi

{
pμ

∂f

∂xμ
− Γj

μνp
μpν

∂f

∂pj

}(
− g

p0

)
d3pd4x

=

∫ {
∂

∂xμ

[∫
cpipμf

√−g d
3p

p0

]
+
∂ ln

√−g
∂xμ

∫
cpipμf

√−g d
3p

p0

+

∫
cf

∂pi

∂pj
Γj
μνp

μpν
√−g d

3p

p0

}
√−gd4x

−
∫

∂

∂pi

[
cp0f

(
− g

p0

)
Γi
μνp

μpν
]
d3pd4x = 0. (1.64)

The underlined term above vanishes and note that xμ and pi

are independent variables. The above equation leads to

∂T iμ

∂xμ
+ Γν

μνT
iμ + Γi

μνT
μν = T iμ

;μ = 0. (1.65)

Hence by collecting the two above results (1.63) and (1.65), the
balance equation for the energy-momentum tensor is

T νμ
;μ = 0. (1.66)

Previously it was pointed out that the right-hand side of
Boltzmann’s equation (1.48) vanishes identically at equilibrium
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when the one-particle distribution function is given by (1.19)
or (1.40), which is the Maxwell-Jüttner distribution function.
We shall determine the restrictions dictated by the left-hand
side of (1.48) when the one-particle distribution function is the
Maxwell-Jüttner one. If we insert (1.40) into the left-hand side
of the the Boltzmann equation (1.48) we get the momentum
four-vector polynomial equation

pν∂ν

[ μ

kT

]
− 1

2
pμpν

{[
Uμ

kT

]
;ν

+

[
Uν

kT

]
;μ

}
= 0. (1.67)

The above equation is valid for all values of pμ so that the co-
efficients of the polynomial equation must vanish, yielding

∂ν

[ μ

kT

]
= 0,

[
Uμ

kT

]
;ν

+

[
Uν

kT

]
;μ

= 0. (1.68)

Here it was assumed that the particles have non-vanishing rest
mass.

Let us first analyze (1.68)2 which is the so-called Killing
equation and Uν/kT is a (timelike) Killing vector. We rewrite
the Killing equation as

Uμ;ν + Uν;μ − 1

T
(Uμ∂νT + Uν∂μT ) = 0, (1.69)

and perform the projections with respect to UμUν and Uν ,
yielding

Ṫ ≡ Uμ∂μT = 0, and U̇μ ≡ UνUμ;ν =
c2

T
∂μT, (1.70)
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respectively. The interpretation of equations (1.70) is: in equi-
librium a gas must have a stationary temperature and its accel-
eration must be counterbalanced by a spatial temperature gra-
dient. Note that the condition (1.70)2 is not compatible with a
geodesic fluid motion which would require U̇μ = 0.

We consider a fluid at rest where the spatial components of
the four-velocity vanish so that (see (2.6))

(Uμ) =

(
c√
g00

,0

)
. (1.71)

The existence of a time-like Killing vector corresponds to a sta-
tionary metric, where the acceleration term becomes

U̇μ = UνUμ
;ν = U0

(
∂Uμ

∂x0
+ Γμ

00U
0

)
=

c2

g00
Γμ
00 = −c2gμν∂ν ln√g00. (1.72)

Here we have used (2.10) and neglected all time derivatives,
since we are dealing with a stationary metric. Now from (1.70)2
and (1.72) we have

c2gμν∂ν [ln (
√
g00 T )] = 0, (1.73)

which implies Tolman’s law [5, 6]
√
g00 T = constant . (1.74)

From Tolman’s law and the equilibrium condition (1.68)1
follows Klein’s law [7]

√
g00 μ = constant . (1.75)
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We note that both laws were obtained from the equilibrium
conditions applied to the Maxwell-Jüttner distribution function,
but they can also be derived on purely thermodynamics grounds
as in Tolman and Klein’s original papers.

Appendix

The asymptotic expansion of Kn(ζ) for large values of ζ, i.e.
ζ � 1, is given by (see [8, 9])

Kn(ζ) =

√
π

2ζ

1

eζ

[
1 +

4n2 − 1

8ζ
+

(4n2 − 1)(4n2 − 9)

2!(8ζ)2

+
(4n2 − 1)(4n2 − 9)(4n2 − 25)

3!(8ζ)3
+ . . .

]
, (1.76)

while for small values of ζ, i.e. ζ � 1, it reads [8, 9]

Kn(ζ) =
1

2

n−1∑
k=0

(−1)k (n− k − 1)!

k!
(

ζ
2

)n−2k
+ (−1)n+1

∞∑
k=0

(
ζ
2

)n+2k

k!(n+ k)!

×
[
ln

ζ

2
− 1

2
ψ(k + 1)− 1

2
ψ(n+ k + 1)

]
. (1.77)

Above the function ψ(n) is defined in terms of Euler’s constant
γ = 0.577 215 664 . . . by

ψ(n+ 1) = −γ +
n∑

k=1

1

k
, ψ(1) = −γ. (1.78)
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CHAPTER 2

FIRST
POST-NEWTONIAN
APPROXIMATION

In this chapter the first post-Newtonian approximation of Ein-
stein’s field equations is derived following the Chandrasekhar
and Weinberg methods and the corresponding Poisson equations
and Eulerian hydrodynamic equations are determined. The
first post-Newtonian approximation of the Brans-Dicke theory is
analysed and the hydrodynamic equations for non-perfect fluids
are obtained. The gravitational potentials and conservation laws
in the first post-Newtonian approximation are also discussed.

27
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2.1 Preliminaries

We start with the general expression for the line element ds in
terms of the metric tensor gμν , namely

ds2 = c2dτ2 = gμνdx
μdxν

= g00(dx
0)2 + 2g0idx

0dxi + gijdx
idxj , (2.1)

where τ is the proper time and dx0 = cdt.
If we introduce the spatial metric tensor

γij = −gij + g0ig0j
g00

, (2.2)

the line element (2.1) can be rewritten as

ds2 = c2dτ2 = g00(cdt)
2 + 2g0idx

0dxi

+

(
g0ig0j
g00

− γij

)
dxidxj . (2.3)

From the above expression we can derive a relationship between
the time t and the proper time τ differentials through the divi-
sion of (2.3) by (cdt)2 and the introduction of the velocity and
speed defined by

V i =
dxi

dt
, V =

√
γij

dxi

dt

dxj

dt
. (2.4)

Hence it follows that

γ =
dt

dτ
=

1√
g00

(
1 + g0iV i

g00c

)2
− V 2

c2

. (2.5)
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Note that in a Minkowski space-time g00 = 1, g0i = 0 and γ =
1/
√
1− V 2/c2 reduces to the Lorentz factor of special relativity.

The contravariant components of the four-velocity Uμ =
dxμ/dτ are given as functions of the velocity by

(Uμ) =

(
dx0

dτ
= γc,

dxi

dτ
= γV i

)
, (2.6)

while the covariant components read

(Uμ) = (gμνU
ν) = γ

(
cg00 + g0iV

i, cg0i + gijV
j
)
. (2.7)

It is straightforward to obtain from (2.6) and (2.7) that UμUμ =
c2.

A macroscopic description of a relativistic fluid is based
on the balance equations of particle four-flow Nμ and energy-
momentum tensor Tμν , namely

Nμ
;μ =

∂Nμ

∂xμ
+ Γμ

μλN
λ = 0, (2.8)

Tμν
;ν =

∂Tμν

∂xν
+ Γμ

νλT
λν + Γν

νλT
μλ = 0, (2.9)

where the semicolon denotes the covariant derivative and Γσ
μν

are the Christoffel symbols

Γσ
μν =

gστ

2

(
∂gμτ
∂xν

+
∂gτν
∂xμ

− ∂gμν
∂xτ

)
. (2.10)

A perfect fluid is characterized by the absence of dissipative
effects like viscous stresses and heat conduction. For a perfect

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



30 CHAPTER 2. FIRST POST-NEWTONIAN

fluid the particle four-flow and the energy-momentum tensor are
represented as

Nμ = nUμ, Tμν = (ε+ p)
UμUν

c2
− pgμν . (2.11)

Here n denotes the particle number density of the relativis-
tic fluid, p and ε its pressure and energy density, respectively.
The energy density has two parts ε = ρc2(1 + ε/c2) one as-
sociated with the mass density ρ = mn and another to the
internal energy density ρε. The specific internal energy for a
non-relativistic perfect fluid is given by ε = cvT , where cv is
the specific heat at constant volume and T the absolute tem-
perature. For monatomic gases cv = 3k/2m with k denoting
Boltzmann constant and m the rest mass of a fluid particle.

The connection between the space-time geometry and the
matter content inside it is governed by Einstein’s field equations

Rμν − 1

2
Rgμν = −8πG

c4
Tμν , (2.12)

whereG = 6.674×10−11 m3/(s2kg) is the universal gravitational
constant.

The Ricci tensor

Rμν = Rτ
μτν =

∂Γτ
μτ

∂xν
− ∂Γτ

μν

∂xτ
+ Γσ

μτΓ
τ
νσ − Γσ

μνΓ
τ
στ ,

(2.13)
is a contraction of the Riemann curvature tensor (or Riemann–
Christoffel tensor)

Rτ
μσν =

∂Γτ
μσ

∂xν
− ∂Γτ

μν

∂xσ
+ Γτ

νεΓ
ε
μσ − Γτ

σεΓ
ε
μν , (2.14)
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and a contraction of the Ricci tensor R = gμνRμν is the scalar
curvature (or Ricci scalar).

An alternative form of the Ricci tensor is given in terms of
second derivatives of the metric tensor

Rμν =
gστ

2

(
∂2gμν
∂xσxτ

+
∂2gστ
∂xμxν

− ∂2gσν
∂xμxτ

− ∂2gμτ
∂xσxν

)
+gστgκη (Γ

κ
στΓ

η
μν − Γκ

σνΓ
η
μτ ) . (2.15)

Equivalently Einstein’s field equations may be written as

Rμν = −8πG

c4

(
Tμν − 1

2
T σ

σgμν

)
= −8πG

c4
Tμν , (2.16)

where T σ
σ = gσκTκσ is the trace of the energy-momentum ten-

sor.

2.2 The first post-Newtonian approx-
imation

The post-Newtonian theory is a method of successive approxi-
mations in 1/c2 powers for the determination of the components
of the metric tensor from Einstein’s field equations which was
proposed by Einstein, Infeld and Hoffmann [1] in 1938. In this
method Einstein’s field equations (2.16) of O(c−n) – order can
be written as

n

Rμν = −8πG

c4

n−2

Tμν . (2.17)
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Hence from the knowledge of the energy-momentum tensor in
the (n−2)th-order the Ricci tensor and consequently the metric
tensor in the nth-order can be determined.

From the knowledge of the metric tensor components in a
Minkowski space-time g00 = 1, gij = −δij and g0i = 0 we can
split the contravariant and covariant components of the metric
tensor as

g00 = 1 +
2
g00 +

4
g00 +

6
g00 +O(c−8), (2.18)

g00 = 1 +
2

g00 +
4

g00 +
6

g00 +O(c−8), (2.19)

gij = −δij+ 2
gij+

4
gij+O(c−6), g0i =

3
g0i+

5
g0i+O(c−7), (2.20)

gij = −δij+
2

gij+
4

gij+O(c−6), g0i =
3

g0i+
5

g0i+O(c−7), (2.21)

where
n
gμν and

n

gμν denote the metric tensor components of order
O(c−n).

The relationships between the covariant and contravariant
components of the metric tensor can be found from gμσgσν = δνμ,
which implies that

g0σg0σ = g00g00 + g0ig0i = 1, (2.22)

g0σgiσ = g00gi0 + g0jgij = 0, (2.23)

giσgjσ = gi0gj0 + gikgjk = δij . (2.24)

The above equations with the representations (2.18) – (2.21)
become

1 +
2
g00 +

2

g00 +O(c−4) = 1, (2.25)
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3
g0i −

3

g0jδij +O(c−4) = 0, (2.26)

δij − δik
2
gjk − δjk

2

gik +O(c−4) = δij , (2.27)

so that we can infer that:
2

g00 = − 2
g00,

2

gij = − 2
gij and

3

g0i =
3
g0i.

On the basis of (2.18) – (2.21) the components of the Chris-
toffel symbols (2.10) can be split in orders O (c−n) as

(i) Γ0
00 =

3

Γ0
00 +

5

Γ0
00 +O(c−7), where

3

Γ0
00 =

1

2c

∂
2
g00
∂t

,
5

Γ0
00 =

1

2c

∂
4
g00
∂t

+

2

g00

2c

∂
2
g00
∂t

−
3

g0i

2c

∂
2
g00
∂xi

;

(2.28)

(ii) Γ0
0i =

2

Γ0
0i +

4

Γ0
0i +O(c−6), where

2

Γ0
0i =

1

2

∂
2
g00
∂xi

,
4

Γ0
0i =

1

2

∂
4
g00
∂xi

+

2

g00

2

∂
2
g00
∂xi

; (2.29)

(iii) Γ0
ij =

3

Γ0
ij +O(c−5), where

3

Γ0
ij =

1

2

(
∂

3
g0i
∂xj

+
∂

3
g0j
∂xi

− 1

c

∂
2
gij
∂t

)
; (2.30)

(iv) Γi
00 =

2

Γi
00 +

4

Γi
00 +O(c−6), where

2

Γi
00 =

1

2

∂
2
g00
∂xi

,
4

Γi
00 =

1

2

∂
4
g00
∂xi

−
2

gij

2

∂
2
g00
∂xj

− 1

c

∂
3
g0i
∂t

;

(2.31)
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(v) Γi
0j =

3

Γi
0j +O(c−5), where

3

Γi
0j = −1

2

(
1

c

∂
2
gij
∂t

+
∂

3
g0i
∂xj

− ∂
3
g0j
∂xi

)
; (2.32)

(vi) Γi
jk =

2

Γi
jk +O(c−4), where

2

Γi
jk = −1

2

(
∂

2
gij

∂xk
+

∂
2
gik
∂xj

− ∂
2
gjk
∂xi

)
. (2.33)

The slip of the Ricci tensor in orders O (c−n) is based on
its definition (2.13) or (2.15) and on the splits of the Christoffel
symbols or of the metric tensor, so that we can write

R00 =
2

R00 +
4

R00 +O(c−6), (2.34)

Rij =
2

Rij +
4

Rij +O(c−6), (2.35)

R0i =
3

R0i +
5

R0i +O(c−7). (2.36)

Let us determine explicitly the components of the Ricci ten-
sor in terms of the derivatives of the metric tensor. We begin
with the time component of the Ricci tensor that can be written
thanks to (2.13) as

R00 =
∂Γi

0i

∂x0
− ∂Γi

00

∂xi
+ Γi

00Γ
0
0i

+Γi
0jΓ

j
0i − Γ0

00Γ
i
0i − Γi

00Γ
j
ij , (2.37)
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so that its second and fourth order are given by

2

R00 = −∂
2

Γi
00

∂xi
,

4

R00 =
1

c

∂
3

Γi
0i

∂t
− ∂

4

Γi
00

∂xi
+

2

Γi
00

2

Γ0
0i −

2

Γi
00

2

Γj
ij .

(2.38)
Now by using the above relationships for the Christoffel symbols
we get

2

R00 = −1

2
∇2 2

g00, (2.39)

4

R00 = −1

2
∇2 4

g00 − 1

2c2
∂2 2

gii
∂t2

+
1

c

∂2 3
g0i

∂t∂xi
+

2

gij

2

∂2 2
g00

∂xi∂xj

+
1

4

∂
2
g00
∂xi

∂
2
g00
∂xi

+
1

4

∂
2
gjj
∂xi

∂
2
g00
∂xi

− 1

2

∂
2
g00
∂xi

∂
2
gij
∂xj

. (2.40)

In the same way the spatial components of the Ricci tensor
read

2

Rij =
∂

2

Γ0
i0

∂xj
+

∂
2

Γk
ik

∂xj
− ∂

2

Γk
ij

∂xk
= −1

2
∇2 2

gij +
1

2

∂2 2
g00

∂xi∂xj

−1

2

∂2 2
gkk

∂xi∂xj
+

1

2

∂2 2
gik

∂xj∂xk
+

1

2

∂2 2
gjk

∂xi∂xk
, (2.41)

while its space-time components become

3

Ri0 =
1

c

∂
2

Γj
ij

∂t
− ∂

3

Γj
0i

∂xj
= −1

2
∇2 3

g0i +
1

2c

∂2 2
gij

∂t∂xj

− 1

2c

∂2 2
gkk

∂t∂xi
+

1

2

∂2 3
g0j

∂xi∂xj
. (2.42)
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For the determination of the components of the metric tensor
from Einstein’s field equations (2.17) one has to known how the
energy-momentum tensor is split in orders of 1/cn. For that
end we note that in the non-relativistic case the contravariant
components of the four-velocity (2.6) reduce to (Uμ) = (c, Vi),
so that the components of the energy-momentum tensor (2.11)2
become T 00 = ρc2, T ij = ρViVj + pδij and T 0i = ρcVi. Hence
on the basis of the expression of T 00 we may infer that T ij and
T 0i are of orders O(c−2) and O(c−1), respectively, and we may
write

T 00 =
0

T 00 +
2

T 00 +O(c−4), (2.43)

T ij =
2

T ij +
4

T ij +O(c−6), (2.44)

T 0i =
1

T 0i +
3

T 0i +O(c−5). (2.45)

Hence we can split components of the tensor Tμν = Tμν −
1
2T

σ
σgμν as

T00 =
0

T00 +
2

T00 +O(c−4), (2.46)

Tij =
0

Tij +
2

Tij +O(c−4), (2.47)

T0i =
1

T0i +
3

T0i +O(c−5). (2.48)

The trace of the energy-momentum tensor up to 1/c2 order
is given by

T σ
σ = g00T

00 + 2g0iT
0i + gijT

ij =
0

T 00 +
2
g00

0

T 00 +
2

T 00 −
2

T ii,
(2.49)
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so that in the first orders the tensor components of Tμν =
gμσgντ (T

στ − Tκ
κg

στ/2) read

0

T00 =
1

2

0

T 00 =
1

2
ρc2,

0

Tij =
1

2

0

T 00δij =
1

2
ρc2δij , (2.50)

1

T0i = −
1

T 0i = −ρcVi,
2

T00 =
1

2

(
2

T 00 +
2

T ii + 2
2
g00

0

T 00

)
. (2.51)

In the non-relativistic case the components of the particle
four-flow are N0 = nc and N i = nVi so that we can split the
time and space components of the particle four-flow as

N0 =
0

N0 +
2

N0 +O(c−4), N i =
1

N i +
3

N i +O(c−5).(2.52)

We proceed to determine the components of the metric ten-
sor from Einstein’s field equations (2.17) by following two dif-
ferent methods, one will be based on the book by Weinberg [2]
and the other on the paper by Chandrasekhar [3].

2.3 The solution of Einstein’s field
equations

2.3.1 The Weinberg method

The expressions for the components of the Ricci tensor
4

R00,
2

Rij

and
3

R0i, given by (2.40), (2.41) and (2.42), respectively, can be
simplified through the use of the so-called harmonic coordinate
conditions, which refer to the gauge conditions gμνΓτ

μν = 0.
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From these gauge conditions it follows that gμνΓ0
μν and gμνΓi

μν

up to order O (c−3
)
become

1

2c

∂
2
g00
∂t

+
1

2c

∂
2
gkk
∂t

− ∂
3
g0k
∂xk

= 0,
1

2

∂
2
g00
∂xi

+
∂

2
gik
∂xk

− 1

2

∂
2
gkk
∂xi

= 0.

(2.53)
The two above relationships were introduced by Einstein, Infeld
and Hoffmann [1] in 1938 and referred as coordinate conditions.

From the differentiation of the expressions (2.53) with re-
spect to the space and time coordinates it follows that

1

2c

∂2 2
g00

∂t∂xi
+

1

2c

∂2 2
gkk

∂t∂xi
− ∂2 3

g0k
∂xk∂xi

= 0, (2.54)

1

2c

∂2 2
g00

∂t2
+

1

2c

∂2 2
gkk

∂t2
− ∂2 3

g0k
∂xk∂t

= 0, (2.55)

1

2

∂2 2
g00

∂xi∂xj
+

∂2 2
gik

∂xk∂xj
− 1

2

∂2 2
gkk

∂xi∂xj
= 0, (2.56)

1

2

∂2 2
g00

∂xi∂t
+

∂2 2
gik

∂xk∂t
− 1

2

∂2 2
gkk

∂xi∂t
= 0. (2.57)

Now the elimination of (∂2 2
g00/∂x

i∂t) from (2.57) by the use of
(2.54) leads to

1

c

∂2 2
gik

∂xk∂t
− 1

c

∂2 2
gkk

∂xi∂t
+

∂2 3
g0k

∂xi∂xk
= 0. (2.58)

The sum of (2.56) with the same equation where the indexes are
interchanged i↔ j yields

∂2 2
g00

∂xi∂xj
+

∂2 2
gik

∂xk∂xj
+

∂2 2
gjk

∂xk∂xi
− ∂2 2

gkk
∂xi∂xj

= 0. (2.59)
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With the above results it is possible to reduce the expressions
for the components of the Ricci tensor. We begin with the time
component (2.40) which by the use of (2.53)2 and (2.55) reduces
to

4

R00 = −1

2
∇2 4

g00+
1

2c2
∂2 2

g00
∂t2

+

2

gij

2

∂2 2
g00

∂xi∂xj
+
1

2

∂
2
g00
∂xi

∂
2
g00
∂xi

. (2.60)

Furthermore, the spatial components of the Ricci tensor (2.41)
and space-time components (2.42) become

2

Rij = −1

2
∇2 2

gij ,
3

Ri0 = −1

2
∇2 3

g0i, (2.61)

thanks to (2.59) and (2.58), respectively.
Now we are ready to obtain the expressions for the metric

tensor components in terms of gravitational potentials. We be-
gin by introducing the Poisson equation ∇2φ = 4πGρ, which
relates the Newtonian gravitational potential φ with the mass
density ρ and universal gravitational constant G.

Let us analyze the time component of Einstein’s field equa-
tions (2.17) which together with the Ricci tensor (2.39), the
energy-momentum tensor component (2.50)1 and the Poisson
equation lead to the following relationship

2

R00 = −1

2
∇2 2

g00 = −8πG

c4
0

T00 = −4πGρ

c2
= −∇

2φ

c2
. (2.62)

Here we may identify the time component of the metric tensor
with the Newtonian gravitational potential

2
g00 = 2φ/c2. The
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solution of the Poisson equation for a Newtonian gravitational
potential that vanishes at infinity is given by

φ(x, t) = −G
∫
V

ρ(x′, t)
|x− x′|d

3x′, (2.63)

where the integration is extended over the entire volume V oc-
cupied by the fluid and d3x′ = dx′

1dx
′
2dx

′
3 denotes a volume

element.
The spatial components of Einstein’s field equations (2.17)

together with the Ricci tensor (2.61)1, the energy-momentum
tensor components (2.50)2 and the Poisson equation imply that

2

Rij = −1

2
∇2 2

gij = −8πG

c4
0

Tij = −4πGρ

c2
δij = −∇

2φ

c2
δij , (2.64)

so that the spatial components of the metric tensor are also
identified with the Newtonian gravitational potential, namely
2
gij = (2φ/c2)δij .

The identification of the space-time components of the met-
ric tensor follows the same methodology by using Einstein’s
field equation (2.17), the Ricci tensor (2.61)2 and the energy-
momentum tensor components (2.51)1:

3

Ri0 = −1

2
∇2 3

g0i = −8πG

c4
1

T0i =
8πG

c4
ρcVi. (2.65)

Here we identify the space-time component of the metric tensor
with the vector gravitational potential ξi through

3
g0i = − ξi

c3
, so that ∇2ξi = 16πGρVi. (2.66)
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Furthermore, the solution of (2.65) for the vector gravitational
potential ξi which vanishes at infinity is given by

ξi(x, t) = −4G
∫
V

ρ(x′, t)Vi(x
′, t)

|x− x′| d3x′. (2.67)

The last identification is the time component of the metric
tensor of order O(c−4). Here we use Einstein’s field equations
(2.17) together with the Ricci tensor (2.60) and the energy-
momentum tensor (2.51)2 to obtain

4

R00 = −1

2
∇2 4

g00 +
1

c4

[
∂2φ

∂t2
− 2φ∇2φ+ 2 (∇φ)

2

]
= −8πG

c4
2

T00 = −4πG

c4

(
2

T 00 +
2

T ii + 4φρ

)
, (2.68)

thanks to the following relationships
2
g00 = 2φ/c2,

2

gij = − 2
gij =

−(2φ/c2)δij and
0

T 00 = ρc2. Now by considering the Poisson

equation and the identity ∇2φ2 = 2φ∇2φ + 2 (∇φ)
2
the above

equation reduces to

1

2
∇2

(
4
g00 − 2

φ2

c4

)
=

4πG

c4

(
2

T 00 +
2

T ii

)
+

1

c4
∂2φ

∂t2
. (2.69)

From the above equation we may identify
4
g00 with another scalar

gravitational potential ψ through the relation

4
g00 =

2

c4
(ψ + φ2), so that ∇2ψ = 4πG

(
2

T 00 +
2

T ii

)
+

∂2φ

∂t2
.

(2.70)
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Since φ and
4
g00 vanish at infinity, the solution of (2.69) is given

by

ψ(x, t) = −
∫
V

[
G

(
2

T 00 (x′, t) +
2

T ii (x′, t)
)

+
1

4π

∂2φ(x′, t)
∂t2

]
d3x′

|x− x′| . (2.71)

Once the components of the metric tensor as functions of
gravitational potentials are known we can investigate the re-
strictions imposed by the harmonic coordinate conditions (2.53).
While the first condition imposes that the gravitational poten-
tials must obey the relation

1

c2

[
4
∂φ

∂t
+

∂ξi
∂xi

]
= 0, (2.72)

the second one is identically zero.
It is interesting to note that the Laplacian of (2.72) together

with the Newtonian Poisson equation ∇2φ = 4πGρ and (2.66)2
leads to

0 =
1

c2

[
4
∂∇2φ

∂t
+

∂∇2ξi
∂xi

]
=

16πG

c2

[
∂ρ

∂t
+

∂ρVi

∂xi

]
, (2.73)

where its right-hand side represents the Newtonian continuity
equation, which is valid at O (c−2

)
post-Newtonian level.

2.3.2 Explicit expressions for the components

Here we shall give the final expressions for the components of the
metric tensor, Christoffel symbols, four-velocity, particle four-
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flow and energy-momentum tensor in the first post-Newtonian
approximation with respect to gravitational potentials deter-
mined in the Weinberg’s method.

Metric tensor and Christoffel symbols components

The expressions for the components of the metric tensor in the
first post-Newtonian approximation read

g00 = 1 +
2φ

c2
+

2

c4
(
φ2 + ψ

)
+O(c−6), (2.74)

g00 = 1− 2φ

c2
+

2

c4
(
φ2 − ψ

)
+O(c−6), (2.75)

g0i = g0i = − 1

c3
ξi +O(c−5), (2.76)

gij = −
(
1− 2φ

c2

)
δij +O(c−4), (2.77)

gij = −
(
1 +

2φ

c2

)
δij +O(c−4). (2.78)

The substitution of the components of the metric tensor
(2.74) – (2.77) into the Christoffel symbols (2.28) – (2.33) lead
to the following expressions

3

Γ0
00 =

1

c3
∂φ

∂t
,

5

Γ0
00 =

1

c5

(
∂ψ

∂t
+ ξi

∂φ

∂xi

)
, (2.79)

2

Γ0
0i =

1

c2
∂φ

∂xi
,

4

Γ0
0i =

1

c4
∂ψ

∂xi
, (2.80)

3

Γ0
ij = − 1

2c3

(
∂ξi
∂xj

+
∂ξj
∂xi

+ 2
∂φ

∂t
δij

)
, (2.81)
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2

Γi
00 =

1

c2
∂φ

∂xi
,

4

Γi
00 =

1

c4

(
2
∂φ2

∂xi
+

∂ψ

∂xi
+

∂ξi
∂t

)
,(2.82)

3

Γi
0j =

1

2c3

(
∂ξi
∂xj

− ∂ξj
∂xi

− 2
∂φ

∂t
δij

)
, (2.83)

2

Γi
jk =

1

c2

(
∂φ

∂xi
δjk − ∂φ

∂xj
δik − ∂φ

∂xk
δij

)
. (2.84)

Four-velocity components

In order to determine the components of the four-velocity given
by (Uμ) =

(
γc, γV i

)
in first post-Newtonian approximation we

note that from (2.1) and (2.74) – (2.77) we can write(
dτ

dt

)2

=
1

γ2
= g00 +

2

c
g0iV

i +
1

c2
gijV

iV j

= 1 +
1

c2
(
2φ− V 2

)
+

2

c4
(
ψ + φ2 + φV 2 − ξiV

i
)
. (2.85)

If we use the approximation 1/
√
1 + x ≈ 1 − x/2 + 3x2/8 we

obtain from the above equation the following expression for γ:

γ = 1 +
1

c2

(
V 2

2
− φ

)
+

1

c4

(
3V 4

8
− 5φV 2

2
+

φ2

2
− ψ + ξiV

i

)
.

(2.86)
Hence the expressions for the contravariant and covariant four-
velocity components up to order O(c−4) read

U0 = c

[
1 +

1

c2

(
V 2

2
− φ

)
+

1

c4

(
3V 4

8
− 5φV 2

2
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+
φ2

2
− ψ + ξiVi

)]
, (2.87)

U i = Vi

[
1 +

1

c2

(
V 2

2
− φ

)
+

1

c4

(
3V 4

8
− 5φV 2

2

+
φ2

2
− ψ + ξiVi

)]
, (2.88)

U0 = c

[
1 +

1

c2

(
V 2

2
+ φ

)
+

1

c4

(
3V 4

8

−3φV 2

2
+

φ2

2
+ ψ

)]
, (2.89)

Ui = −Vi

[
1 +

1

c2

(
V 2

2
− 3φ

)]
− ξi

c2
. (2.90)

Particle four-flow and energy-momentum tensor com-
ponents

The particle four-flow components (2.52) can now be determined
from the knowledge of the four-vector components (2.87) and
(2.88). Up to order O (c−2

)
the components read

0

N0 = nc,
2

N0 =
n

c

(
V 2

2
− φ

)
, (2.91)

1

N i = nVi,
3

N i =
nVi

c2

(
V 2

2
− φ

)
. (2.92)

In the same way it follows the energy-momentum tensor com-
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ponents (2.43) – (2.45) for a perfect fluid, namely

0

T 00 = ρc2,
2

T 00 = ρ
(
V 2 + ε− 2φ

)
,

1

T i0 = ρcVi, (2.93)
3

T i0 =
ρVi

c

(
V 2 − 2φ+ ε+

p

ρ

)
,

2

T ij = ρViVj + pδij , (2.94)

4

T ij =
ρViVj

c2

(
V 2 − 2φ+ ε+

p

ρ

)
+

2φp

c2
δij , (2.95)

4

T 00 =
ρ

c2

[
V 2

(
V 2 + ε+

p

ρ
− 6φ

)
− 2εφ+ 2ξiVi + 2φ2 − 2ψ

]
.

(2.96)
Here we note that for the correspondence of (2.93) – (2.95) with
the equations (9.8.4) – (9.8.6) and (9.8.11) – (9.8.13) of Wein-
berg [2] one has to introduce the speed of light c and identify
the mass density ρ of that work with ε = ρc2(1 + ε/c2) and the
vector potential ζi with ξi.

Furthermore the expressions for the tensor Tμν = Tμν −
gμνT

σ
σ/2 read

T00 =
ρc2

2
+ ρ

(
V 2 + φ+

ε

2
+

3p

2ρ

)
+

ρ

c2

[
V 4

+V 2

(
ε+

p

ρ
− 2φ

)
+ φ

(
ε+ 3

p

ρ

)
+ φ2 + ψ

]
, (2.97)

Tij =
ρc2

2
δij + ρ

[
ViVj +

1

2

(
ε− p

ρ
− 2φ

)
δij

]
, (2.98)

T0i = −ρcVi − ρ

c

[
Vi

(
V 2 + ε+

p

ρ
− 2φ

)
+

ξi
2

]
. (2.99)
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By considering the expressions for the energy-momentum
tensor components, the Poisson equation (2.70) for the scalar
gravitational potential ψ can be written as

∇2ψ = 8πGρ

(
V 2 − φ+

ε

2
+

3p

2ρ

)
+

∂2φ

∂t2
, (2.100)

thanks to (2.93) and (2.94).

2.3.3 The Chandrasekhar method

Here we shall adopt the Chandrasekhar notation for the gravi-
tational potentials and later we will identify the connection of
these potentials with those obtained from the Weinberg method
of the last section.

We begin to investigate the time component of Einstein’s
field equations (2.17) corresponding to the Ricci tensor (2.39)
and energy-momentum tensor (2.50)1, namely

2

R00 = −1

2
∇2 2

g00 = −8πG

c4
0

T00 = −4πGρ

c2
=
∇2U

c2
. (2.101)

Here the Newtonian gravitational potential has an opposite sign
with respect to the one of the last section, i.e., U = −φ and
the Poisson equation in this case is written as ∇2U = −4πGρ.
From the above equation it follows that the time component of
the metric tensor is

2
g00 = −2U/c2.

The spatial component of Einstein’s field equations (2.17)
for the Ricci tensor (2.41) and energy-momentum tensor (2.50)2
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reads

2

Rij = −1

2
∇2 2

gij +
1

2

∂2 2
g00

∂xi∂xj
− 1

2

∂2 2
gkk

∂xi∂xj
+

1

2

∂2 2
gik

∂xj∂xk

+
1

2

∂2 2
gjk

∂xi∂xk
= −8πG

c4
0

Tij = −4πGρ

c2
δij =

∇2U

c2
δij . (2.102)

It is easy to verify that this equation is satisfied for
2
gij =

−(2U/c2)δij together with
2
g00 = −2U/c2.

Up to now the only difference in the expressions for the com-
ponents of the metric tensor in the two descriptions is the op-
posite sign in the Newtonian gravitational potential. A more
subtle difference will appear when the others components of
the metric tensor will be determined, since the gauge condition
adopted by Chandrasekhar is

1

2c

∂
2
gkk
∂t

=
∂

3
g0i
∂xi

. (2.103)

Let us analyze the space-time component of Einstein’s field
equations (2.17) together with the Ricci tensor (2.42) and the
energy-momentum tensor (2.51)1, namely

3

Ri0 = −1

2
∇2 3

g0i +
1

2c

∂2 2
gij

∂t∂xj
− 1

2c

∂2 2
gkk

∂t∂xi
+

1

2

∂2 3
g0j

∂xi∂xj

= −1

2
∇2 3

g0i +
1

2c

∂2 2
gij

∂t∂xj
− 1

4c

∂2 2
gkk

∂t∂xi
= −1

2
∇2 3

g0i

+
1

2c3
∂2U

∂t∂xi
= −8πG

c4
1

T0i =
8πG

c4
ρcVi, (2.104)
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thanks to the gauge condition (2.103) and the expressions for

the components of the metric tensor
2
g00 = −2U/c2 and

2
gij =

−(2U/c2)δij . Now we define
3
g0i in terms of a vector Ui and a

scalar χ gravitational potential through the expression

3
g0i =

1

c3

(
4Ui − 1

2

∂2χ

∂t∂xi

)
, (2.105)

where the gravitational potentials satisfy the equations

∇2Ui = −4πGρVi, ∇2χ = −2U. (2.106)

Lastly we get that the time component of Einstein’s field
equations (2.17) together with the Ricci tensor (2.40) and the
energy-momentum tensor (2.51)2 lead to

4

R00 = −1

2
∇2 4

g00 − 1

2c2
∂2 2

gii
∂t2

+
1

c

∂2 3
g0i

∂t∂xi
+

2

gij

2

∂2 2
g00

∂xi∂xj

+
1

4

∂
2
g00
∂xi

∂
2
g00
∂xi

+
1

4

∂
2
gjj
∂xi

∂
2
g00
∂xi

− 1

2

∂
2
g00
∂xi

∂
2
gij
∂xj

= −1

2
∇2 4

g00 − 2

c4
[
U∇2U − (∇U)2

]
= −8πG

c4
2

T00

= −4πG

c4

(
2

T 00 +
2

T ii − 4ρU

)
. (2.107)

Here we have used the gauge condition (2.103) and the com-

ponents of the metric tensor
2
g00 = −2U/c2 and

2

gij = − 2
gij =

(2U/c2)δij .
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Equation (2.107) can be simplified by considering again the
following identity ∇2U2 = 2U∇2U + 2(∇U)2 and the Poisson
equation ∇2U = −4πGρ, yielding

∇2

(
−1

2
4
g00 +

U2

c4

)
= −4πG

c4

(
2

T 00 +
2

T ii

)
. (2.108)

From the above equation we identify
4
g00 with another scalar

gravitational potential Φ such that

4
g00 =

2

c4
(
U2 − 2Φ

)
. (2.109)

The new scalar gravitational potential satisfies the equation

∇2Φ = −2πG
(

2

T 00 +
2

T ii

)
= −4πGρϕ. (2.110)

where ϕ represents the following abbreviation introduced in [3].

ϕ =

(
V 2 + U +

ε

2
+

3p

2ρ

)
. (2.111)

Here we can also investigate the restrictions imposed by the
gauge condition (2.103) on the gravitational potentials. If we in-

sert (2.105) and
2
gij = −(2U/c2)δij into (2.103) and use (2.106)2

we get

0 =
3

c2
∂U

∂t
+

1

c2

(
4
∂Ui

∂xi
− 1

2

∂∇2χ

∂t

)
=

4

c2

(
∂U

∂t
+
∂Ui

∂xi

)
. (2.112)

This equation leads also to the Newtonian continuity equation at
O (c−2

)
post-Newtonian level. Indeed, by taking the Laplacian
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of (2.112) and using the Poisson equation ∇2U = −4πGρ and
(2.106)1 we get

1

c2
∇2

(
∂U

∂t
+

∂Ui

∂xi

)
= −4πG

c2

[
∂ρ

∂t
+

∂ρVi

∂xi

]
= 0. (2.113)

As it was pointed out the correspondence of the Newtonian
gravitational potentials in the two methods is given by φ = −U ,
while other relationships between the gravitational potentials
follow from the comparison of (2.66) with (2.105) and (2.70)
with (2.109), yielding

ξi = −4Ui +
1

2

∂2χ

∂t∂xi
, ψ = −2Φ. (2.114)

For the determination of the components of the metric ten-
sor, Christoffel symbols, four-velocity, particle four-vector and
energy momentum tensor in terms of the gravitational potentials
of Chandrasekhar’s method it is enough to use the identifications
φ = −U and (2.114) in the expressions (2.74) – (2.99). Here we
collect the Poisson equations in the Chandrasekhar method:

∇2U = −4πGρ, ∇2Φ = −4πGρ

(
V 2 + U +

ε

2
+

3p

2ρ

)
, (2.115)

∇2Πi = −16πGρVi +
∂2U

∂t∂xi
,(2.116)

where we have introduced the vector gravitational potential
Πi = −ξi.
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Note that the gauge condition (2.112) can be also expressed
as

4

(
∂U

∂t
+

∂Ui

∂xi

)
= 3

∂U

∂t
+

∂Πi

∂xi
= 0. (2.117)

2.4 Hydrodynamic equations for an
Eulerian fluid

The first post-Newtonian approximation for the Eulerian hydro-
dynamic equations are obtained from the balance laws for the
particle four-flow (2.8) and energy-momentum tensor (2.9) by
considering the expressions for the particle four-flow and energy-
momentum tensor given by (2.91) – (2.96), which refer to a
perfect fluid where dissipative effects are neglected.

We begin by writing the particle four-flow balance law (2.8)
up to the order O(c−4), namely

∂
0

N0

∂x0
+

∂
1

N i

∂xi
+

∂
2

N0

∂x0
+

∂
3

N i

∂xi
+

(
3

Γ0
00 +

3

Γj
0j

)
0

N0

+

(
2

Γ0
i0 +

2

Γj
ij

)
1

N i = 0. (2.118)

From the underlined terms of (2.118) together with (2.91)1 and
(2.92)1 we get the Newtonian continuity equation

∂n

∂t
+

∂nVi

∂xi
= 0, or

∂ρ

∂t
+

∂ρVi

∂xi
= 0, (2.119)
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for the particle number density n and for the mass density ρ =
mn, where m denotes the rest mass of a fluid particle.

Now from the full equation (2.118) together with (2.91) and
(2.92) it follows that

∂n

∂t
+

∂nVi

∂xi
+

1

c2

{
∂

∂t

[
n

(
V 2

2
− φ

)]
+

∂

∂xi

[
nVi

(
V 2

2
− φ

)]
− 2n

∂φ

∂t
− 2nVi

∂φ

∂xi

}
= 0. (2.120)

Here we note that the two last terms of the above equation can
be written as

− 2

c2

{
n
∂φ

∂t
+ nVi

∂φ

∂xi

}
= − 2

c2

{
∂nφ

∂t
+

∂nViφ

∂xi

−φ
[
∂n

∂t
+

∂nVi

∂xi

]}
= − 2

c2

{
∂nφ

∂t
+

∂nViφ

∂xi

}
+O(c−4), (2.121)

thanks to the continuity equation (2.119). Hence, (2.120) with
(2.121) and ρ = mn reduces to

∂ρ∗
∂t

+
∂ρ∗Vi

∂xi
= 0, (2.122)

which is a continuity equation for the mass density ρ∗ in the
first post-Newtonian approximation

ρ∗ = ρ

[
1 +

1

c2

(
V 2

2
− 3φ

)]
. (2.123)

The notation for the mass density ρ∗ was introduced by Fock
[6] and (2.122) corresponds to eq. (117) of Chandrasekhar [3].
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The time component of the energy-momentum tensor bal-
ance law (2.9) up to the order O(c−3) is

∂
0

T 00

∂x0
+

∂
1

T 0i

∂xi
+

∂
2

T 00

∂x0
+

∂
3

T 0i

∂xi
+

(
2

3

Γ0
00 +

3

Γj
0j

)
0

T 00

+

(
3

2

Γ0
i0 +

2

Γj
ij

)
1

T 0i = 0. (2.124)

The underlined terms of (2.124) together with (2.93) imply again
in the continuity equation for the mass-energy density (2.119)2,
while the full equation (2.124) together with (2.93) and (2.94)
leads to

∂

∂t

{
ρ

[
1 +

1

c2
(
V 2 + ε− 2φ

) ]}
+

∂

∂xi

{
ρVi

[
1 +

1

c2

(
V 2

+ε− 2φ+
p

ρ

)]}
=

ρ

c2
∂φ

∂t
. (2.125)

If we identify ε = ρc2(1 + ε/c2) with ρ the above expression
corresponds to eq. (9.8.14) of Weinberg [2]. On the other hand
by introducing the mass-energy density σ defined by

σ = ρ

[
1 +

1

c2

(
V 2 + ε− 2φ+

p

ρ

)]
, (2.126)

the mass-energy density hydrodynamic equation (2.125) can be
written as

∂σ

∂t
+

∂σVi

∂xi
=

1

c2

(
ρ
∂φ

∂t
+

∂p

∂t

)
, (2.127)
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which corresponds to equation (64) of Chandrasekhar [3].
Up to order O(c−4) the equation for the spatial components

of the energy-momentum tensor (2.9) read

∂
1

T 0i

∂x0
+

∂
2

T ij

∂xj
+

2

Γi
00

0

T 00 +
∂

3

T 0i

∂x0
+

∂
4

T ij

∂xj
+

4

Γi
00

0

T 00

+

[(
2

Γ0
0j +

2

Γl
jl

)
δik +

2

Γi
jk

]
2

T kj +
2

Γi
00

2

T 00

+

[
2

3

Γi
0j +

(
3

Γ0
00 +

3

Γk
0k

)
δij

]
1

T 0j = 0. (2.128)

The underlined terms in the above equation together with (2.93)
and (2.94) leads to the Newtonian momentum density hydrody-
namic equation

∂ρVi

∂t
+

∂ (ρViVj + pδij)

∂xj
+ ρ

∂φ

∂xi
= 0. (2.129)

Furthermore, from the full expression of (2.128) with (2.93) –
(2.95) we get

∂

∂t

{
ρVi

[
1 +

1

c2

(
V 2 − 2φ+ ε+

p

ρ

)]}
+

∂

∂xj

{
ρViVj

[
1 +

1

c2

(
V 2 + ε− 2φ+

p

ρ

)]}
+

∂

∂xi

[
p

(
1 +

2φ

c2

)]
+ ρ

∂

∂xi

[
φ+

1

c2
(
2φ2 + ψ

) ]
+

ρ

c2
∂ξi
∂t
− p

c2
∂φ

∂xi
− 4

ρ

c2
Vi

(
∂φ

∂t
+ Vj

∂φ

∂xj

)
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+
ρ

c2
Vj

(
∂ξi
∂xj

− ∂ξj
∂xi

)
+

ρ

c2
(
2V 2 + ε− 2φ

) ∂φ

∂xi
= 0, (2.130)

which without the term ε corresponds to equation (9.8.15) of
Weinberg [2]. This equation can be rewritten as

∂σVi

∂t
+

∂σViVj

∂xj
+

∂

∂xi

[
p

(
1− 2φ

c2

)]
+ρ

∂φ

∂xi

[
1 +

2

c2

(
V 2 − φ+

ε

2
+

3p

2ρ

)]
+

ρ

c2
∂ψ

∂xi

−4ρ

c2
d

dt

(
φVi − ξi

4

)
− ρ

c2
Vj

∂ξj
∂xi

= 0, (2.131)

by using the definition (2.126) of σ, introducing the material
time derivative d/dt = ∂/∂t+Vi∂/∂x

i and employing the New-
tonian continuity equation (2.119)2 and the Newtonian momen-
tum hydrodynamic equation (2.129) in the terms of order 1/c2.
The expression (2.131) corresponds to equation (68) of Chan-
drasekhar [3] if we identify ε with Π and Chandrasekhar’s grav-
itational potentials U , Φ, Ui and χ with

φ = −U, ψ ≡ −2Φ, ξi = −4Ui +
1

2

∂2χ

∂t∂xi
. (2.132)

The momentum density hydrodynamic equation (2.131) can
be rewritten as

ρ
dVi

dt
+

∂p

∂xi

[
1− 1

c2

(
V 2 − 4φ+ ε+

p

ρ

)]
+ρ

∂φ

∂xi

[
1 +

1

c2
(
V 2 + 4φ

)]
+

ρ

c2

[
∂ψ

∂xi
+

dξi
dt
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−Vj
∂ξj
∂xi

+ Vi

(
1

ρ

∂p

∂t
+

∂φ

∂t
− 4

dφ

dt

)]
= 0, (2.133)

by taking into account the definition of σ given by (2.126) and
the mass-energy hydrodynamic equation (2.127). If the terms
of order 1/c2 are neglected the above equation reduces to the
Newtonian momentum density hydrodynamic equation (2.129).

The hydrodynamic equation for the total energy density
which is a sum of the internal ρε and kinetic ρV 2/2 energy
densities can be obtained by subtracting (2.122) from (2.127),
yielding

1

c2

{
∂

∂t

[
ρ

(
V 2

2
+ ε

)]
+

∂

∂xi

[
ρ

(
V 2

2
+ ε

)
Vi

]
+ p

∂Vi

∂xi

+Vi

(
ρ
∂φ

∂xi
+

∂p

∂xi

)
+ φ

(
∂ρ

∂t
+

∂ρVi

∂xi

)}
= 0.(2.134)

If we consider the Newtonian continuity equation (2.119) the
underlined term vanishes and (2.134) reduces to the well-known
Newtonian hydrodynamic equation for the total energy density,
namely

∂

∂t

[
ρ

(
V 2

2
+ ε

)]
+

∂

∂xi

[
ρ

(
V 2

2
+ ε

)
Vi

]
+p

∂Vi

∂xi
+ Vi

(
ρ
∂φ

∂xi
+

∂p

∂xi

)
= 0. (2.135)

Note that the post-Newtonian contributions do not show up in
this equation. For the determination of the first post-Newtonian
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contributions to the total energy density we have to go further
and determine the second post-Newtonian approximation. This
will be the subject of the next chapter.

The hydrodynamic equation for the internal energy density
of an Eulerian fluid follows from the elimination of the time
derivative of the hydrodynamic velocity from (2.135) by us-
ing the Newtonian momentum density hydrodynamic equation
(2.129), yielding

ρ
dε

dt
+ p

∂Vi

∂xi
= 0. (2.136)

We call attention to the fact that all hydrodynamic equations
of this section refer to Eulerian fluids, where viscous and heat-
conducting effects are not taken into account. In Section 2.6
these dissipative effects will be considered.

2.5 Brans-Dicke post-Newtonian
approximation

2.5.1 Brans-Dicke theory

The Brans-Dicke theory [8] is a scalar-tensor theory, where the
gravitational constant is not considered as a constant but con-
nected with an average value of a scalar field coupled with the
mass density of the universe. The scalar field can vary from
place to place with time and is based on Mach’s principle that
the inertial masses of the particles are not constants but repre-
sent interactions with the mass distribution of the Universe.
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According to the discussion of Sciama [9] about Mach’s prin-
ciple and the dimensional analysis proposed by Dicke [10] the
gravitational constant is related to the mass distribution of a
uniform expanding Universe by GM/Rc2 ∼ 1, where M and R
refer to the mass and radius of the observable Universe. The
approximated values for the mass and radius of the observable
Universe are M ∼ 1053 kg and R ∼ 1026 m, and the relationship
GM/Rc2 ∼ 1 implies that G ∼ 9 × 10−11 Nm2/kg2, which is
very close to its present value of G = 6.67× 10−11 Nm2/kg2.

The starting point of the Brans-Dicke theory is the Einstein-
Hilbert action

δ

∫ [
R+

16πG

c4
LM

]√−gd4x = 0, (2.137)

where LM is the Lagrangian of the matter field. On the basis
of (2.137) the following action was proposed in [8]

δ

∫ [
φR+

16π

c4
LM +

ω

φ
φ,μφ,μ

]√−gd4x = 0, (2.138)

where the scalar field φ plays the role of the inverse of the grav-
itational constant 1/G and it is assumed that the gravitational
constant is a function of the scalar field. In the action (2.138)
the term ωφ,μφ,μ/φ is the Lagrangian density of the scalar field
and ω denotes a dimensionless coupling constant.

In order to get the field equations from the action (2.138)
we start by taking the variation with respect to the scalar field
φ, yielding∫ [

Rδφ+ 2
ω

φ
δφ,μφ

,μ − ω

φ2
φ,μφ,μδφ

]√−gd4x = 0. (2.139)
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The second term within the above brackets can be written as

2
ω

φ
δφ,μφ

,μ√−g = 2ω

{(
δφ

φ
φ,μ√−g

)
,μ

+
δφ

φ

√−g
(
1

φ
φ,μφ,μ − φ, μ

, μ − φ,μ(ln
√−g),μ

)}
. (2.140)

The first term within the above braces drops out, since it can
be converted by the use of Gauss theorem into an integral over
the hypersurface of the four-volume, where the variation of the
field φ vanishes at the boundary. Hence (2.140) can be written
as

2
ω

φ
δφ,μφ

,μ√−g = 2ω
δφ

φ

√−g
(
1

φ
φ,μφ,μ −�φ

)
, (2.141)

where we have introduced the covariant d’Alembertian � de-
fined by

�φ =
1√−g

[√−gφ,μ
]
,μ

= φ,μ
;μ = φ, μ

, μ

+φ,μ(ln
√−g),μ = φ, μ

, μ + Γν
νμφ

,μ. (2.142)

The insertion of (2.141) into (2.139) leads to∫
δφ

[
R− 2

ω

φ
�φ+

ω

φ2
φ,μφ,μ

]√−gd4x = 0. (2.143)

Now the condition for a stationary action implies that the term
within the brackets must vanish and we have

2ω�φ = φR+
ω

φ
φ,μφ,μ. (2.144)
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As was pointed out in [8] the expression (2.144) is a wave equa-
tion for φ where the right-hand terms act as sources for the
generation of the φ waves.

The variation of the action (2.138) with respect to the metric
tensor gμν is more involved, since we have to write the term
φR = φgμνRμν and take into account the expression (2.14) of
the Ricci tensor, namely

δ

∫ [
φ

(
Rμν +

ω

φ2
φ,μφ,ν

)
gμν +

16π

c4
LM

]√−gd4x
= δ

∫ {
φgμν

[
Γσ

μσ,ν − Γσ
μν,σ + Γρ

νσΓ
σ
μρ

−Γσ
σρΓ

ρ
μν − ω

φ2
φ,μφ,ν

]
+

16π

c4
LM

}√−gd4x
= δ

∫ {(
φgμνΓσ

μσ

√−g)
,ν
− (φgμνΓσ

μν

√−g)
,σ

+gμν
√−g

[
φ

(
Γσ

σρΓ
ρ
μν − Γρ

νσΓ
σ
μρ

)
+ Γσ

μνφ,σ

−Γσ
μσφ,ν +

ω

φ
φ,μφ,ν

]
+

16π

c4
LM

√−g
}
d4x = 0.(2.145)

The two underlined terms in the above equation drop out if
we use Gauss theorem to convert them into integrals over the
hypersurface of the four volume where the variation of the fields
vanish. Here we follow Dirac [11] and analyze separately the
next two terms of the last equality. We begin with the variation
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of the first term of (2.145) which can be transformed into

δ
(
gμν
√−gΓσ

σρΓ
ρ
μν

)
= Γρ

μνδ
(
gμν
√−gΓσ

σρ

)
+gμν

√−gΓσ
σρδΓ

ρ
μν = Γρ

μνδ
(
gμν
√−g ,ρ

)
+Γσ

σρδ
(
gμν
√−gΓρ

μν

)− Γσ
σρΓ

ρ
μνδ

(
gμν
√−g)

= Γρ
μνδ

(
gμν
√−g ,ρ

)− Γσ
σρδ

(
gρν
√−g)

,ν

−Γσ
σρΓ

ρ
μνδ

(
gμν
√−g) , (2.146)

where we have used the relationships (2.332) and (2.334) of the
Appendix. The variation of the second term of (2.145) by taking
into account (2.334) can be written as

δ
(
gμν
√−gΓσ

μρΓ
ρ
νσ

)
= 2gμν

√−gΓρ
σνδΓ

σ
μρ

+Γσ
μρΓ

ρ
νσδ

(
gμν
√−g) = 2δ

(
gμν
√−gΓσ

μρ

)
Γρ

σν

−Γσ
μρΓ

ρ
νσδ

(
gμν
√−g) = −δ (gσν,ρ√−g)Γρ

σν

−Γσ
μρΓ

ρ
νσδ

(
gμν
√−g) . (2.147)

The variation of the third and fourth terms of (2.145) can be
transformed into

δ
(
Γσ

μνg
μν√−g)φ,σ − δ

(
Γσ

μσg
μν√−g)φ,ν

= −δ
[(

gμσ
√−g

)
,μ
φ,σ

]
− δ

(
φ,μ√−g,μ

)
= δ

(√−g)φ,σ
,σ

−2δ
(
φμ√−g

)
,μ
+ δ

(
gμν
√−g

)
φ,μ,ν , (2.148)

where the relationships (2.332) and (2.334) of the Appendix
were taken into account. The variation of the last term of (2.145)
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is

δ

(
ω

φ
φ,μφ,νg

μν√−g
)

=
ω

φ
φ,μφ,νδ

(
gμν
√−g) . (2.149)

Now by collecting all terms (2.146) – (2.149) the action (2.145)
can be written as∫ {(

φΓρ
μνδ
√−ggμν)

,ρ
− (φΓρ

ρμδ
√−ggμν)

,ν

−2δ (φμ√−g)
,μ
+

[
φRμν + φ,μ,ν − Γρ

μνφ,ρ

+
ω

φ
φ,μφ,ν

]
δ
(√−ggμν)+ (

φ,σ
,σ + Γρ

ρμφ
,μ
)
δ
(√−g)

+
16π

c4
δLM

√−g
δgμν

δgμν

}
d4x = 0, (2.150)

where we have introduced the expression for the Ricci tensor
Rμν given by (2.14) and rearranged the terms in order to get
the two first perfect differentials. The underlined terms drop
out, since again we can use Gauss theorem to transform them
into integrals over the hypersurface of the four volume where
the variation of the fields vanish.

By taking into account the variations (2.337) and (2.338) in
the Appendix the action obtained from (2.150) becomes∫

φ

{[
Rμν +

ω

φ2
φ,μφ,ν +

1

φ
φ,μ;ν

](
1

2
gμνgστ − gμσgντ

)
+

1

2φ
φ,μ

;μg
στ +

16π

c4φ
√−g

δLM
√−g

δgστ

}
δgστ

√−gd4x = 0,(2.151)
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where we have introduced the covariant derivatives

φ,μ;ν = φ,μ,ν − Γρ
μνφ,ρ, φ,μ

;μ = φ,μ
,μ + Γρ

ρμφ
,μ. (2.152)

The expression within the braces of (2.151) must vanish due
to the stationary condition of the action and we get the mod-
ification of Einstein’s field equations proposed by Brans-Dicke
[8]

Rμν − 1

2
Rgμν = − 8π

c4φ
Tμν − ω

φ2

(
φ,μφ,ν − 1

2
φ,σφ

,σgμν

)
− 1

φ
(φ,μ;ν − gμν�φ) , (2.153)

where the energy-momentum tensor of the matter field is defined
by

Tμν = − 2√−g
δLM

√−g
δgμν

. (2.154)

The covariant divergence of the energy-momentum tensor of
the matter field vanishes, which can be seen by the multiplica-
tion of the Brans-Dicke equations (2.153) by φ and taking the
covariant divergence of the resulting equation, yielding

φ

(
Rμν − 1

2
Rgμν

)
;ν

+ φ,ν

(
Rμν − 1

2
Rgμν

)
= −8π

c4
Tμν

;ν

+
ω

2φ2
φ,μφ,νφ,ν − ω

φ
φ,μφ,ν

;ν − φ,μ;ν
;ν + φ,ν

;ν
;μ. (2.155)
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By using the Bianchi identity(
Rμν − 1

2
Rgμν

)
;ν

= 0, (2.156)

the property of the curvature tensor

Rμνφν = φ,ν
;ν

;μ − φν;μ
;ν , (2.157)

and the relationship that follows from (2.144)

1

2
φ,μR = φ,μ

(
ω

φ
φν

;ν −
ω

2φ2
φ,νφ,ν

)
, (2.158)

it follows from (2.155) the vanishing covariant divergence of the
energy-momentum tensor of the matter field, namely Tμν

;ν = 0.
If we take the trace of the Brans-Dicke equations (2.153) it

follows

R =
8π

c4φ
T − ω

φ2
φ,μφ,μ − 3

φ
�φ, (2.159)

where T = Tμ
μ is the trace of the energy-momentum tensor of

the matter field. Now by making use of (2.144) to eliminate the
scalar curvature R a new wave equation emerges

�φ =
8π

(3 + 2ω)c4
T. (2.160)

Another expression for the Brans-Dicke field equations is ob-
tained from the elimination of the scalar curvature from (2.153)
by the use of (2.159), yielding

Rμν = − 8π

c4φ

[
Tμν − 1 + ω

3 + 2ω
Tgμν

]
− ω

φ2
φ,μφ,ν − φ,μ;ν

φ
.(2.161)
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2.5.2 Post-Newtonian Brans-Dicke theory

The post-Newtonian hydrodynamic equations in the theory of
Brans-Dicke were determined by Nutku [12] by following the
method of Chandrasekhar described in Section 2.3.3. In his
book Weinberg [2] analyzed also the Brans-Dicke theory within
the post-Newtonian approximation. Here we shall follow Wein-
berg’s method described in Section 2.3.1, but instead of using
the harmonic coordinate conditions we shall use another gauge
condition proposed by Brans and Dicke [8], which will be intro-
duced bellow.

In order to distinguish the Brans-Dicke scalar field φ from
the Newtonian gravitational potential φ of Section 2.3.1, we
follow Weinberg [2] and write the Brans-Dicke scalar field as
φ = (1 + ζ)/G, where ζ is a new scalar field and G a constant
of order of the gravitational constant G. In terms of the scalar
field ζ the wave equation (2.160) and the Brans-Dicke (2.161)
equations can be rewritten as

�ζ =
8πG

(3 + 2ω)c4
T, (2.162)

Rμν +
ωζ,μζ,ν
(1 + ζ)2

+
ζ,μ;ν
1 + ζ

= − 8πG
c4(1 + ζ)

Tμν . (2.163)

Here the energy-momentum tensor of the matter field Tμν is
defined by

Tμν = Tμν − 1 + ω

3 + 2ω
Tgμν . (2.164)

First we note that the lowest order of the trace of the energy-
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momentum tensor of the matter field is T =
0

T 00 = 1
2ρc

2, so that
we infer from (2.162) that the expansion of ζ should be given
by

ζ =
2

ζ +
4

ζ +O (c−6
)
. (2.165)

The determination of
2

ζ follows from (2.162) which reduces to

∇2
2

ζ = − 8πG
(3 + 2ω)c4

0

T 00 = − 8πG
(3 + 2ω)c2

ρ. (2.166)

The components of the energy-momentum tensor of the mat-
ter field Tμν in the first orders read

0

T00 =
2 + ω

3 + 2ω
ρc2,

0

Tij =
1 + ω

3 + 2ω
ρc2δij ,

1

T0i = −ρcVi, (2.167)

2

T00 =
2 + ω

3 + 2ω

2

T 00 +
1 + ω

3 + 2ω

2

T ii +
4 + 2ω

3 + 2ω
2
g00

0

T 00, (2.168)

thanks to (2.164) and (2.49).
To solve the Brans-Dicke field equations (2.163) we need to

know the product ζ,μζ,ν and the covariant derivative ζ,μ;ν in
the first post-Newtonian approximation. The product of the
components are of orders

2

ζ ,0
2

ζ ,0 = O (c−6
)
,

2

ζ ,0
2

ζ ,i = O
(
c−5

)
,

2

ζ ,i
2

ζ ,j = O
(
c−4

)
,(2.169)

and they do not contribute to the Brans-Dicke field equations
(2.163) in the first post-Newtonian approximation. The post-
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Newtonian orders of the covariant derivative components read

2

ζ ,0;0 =
1

c2
∂2

2

ζ

∂t2
−

2

Γi
00

∂
2

ζ

∂xi
,

2

ζ ,0;i =
1

c

∂2
2

ζ

∂t∂xi
, (2.170)

2

ζ ,i;j =
∂2

2

ζ

∂xi∂xj
−

2

Γk
ij

∂
2

ζ

∂xk
. (2.171)

Now we can write the components of the Brans-Dicke field
equations (2.163) in the post-Newtonian approximation by mak-
ing use of the expressions for the Ricci tensor (2.39) – (2.42) for
the energy-momentum tensor components (2.167) and (2.168)
and for the covariant derivatives (2.170) and (2.171). They read

−1

2
∇2 2

g00 = −8πG
c4

0

T00 = −8πG
c2

2 + ω

3 + 2ω
ρ, (2.172)

−1

2
∇2 4

g00 − 1

2c2
∂2 2

gii
∂t2

+
1

c

∂2 3
g0i

∂t∂xi
+

2

gij

2

∂2 2
g00

∂xi∂xj

+
1

4

∂
2
g00
∂xi

∂
2
g00
∂xi

+
1

4

∂
2
gjj
∂xi

∂
2
g00
∂xi

− 1

2

∂
2
g00
∂xi

∂
2
gij
∂xj

+
1

c2
∂2

2

ζ

∂t2
−

2

Γi
00

∂
2

ζ

∂xi
= −8πG

c4
2

T00 = −8πG
c4

[
2 + ω

3 + 2ω

2

T 00

+
1 + ω

3 + 2ω

2

T ii +
3 + ω

3 + 2ω
2
g00

0

T 00

]
, (2.173)

−1

2
∇2 2

gij +
1

2

∂2 2
g00

∂xi∂xj
− 1

2

∂2 2
gkk

∂xi∂xj
+

1

2

∂2 2
gik

∂xj∂xk

+
1

2

∂2 2
gjk

∂xi∂xk
+

∂2
2

ζ

∂xi∂xj
−

2

Γk
ij

∂
2

ζ

∂xk
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= −8πG
c4

0

Tij = −8πG
c2

1 + ω

3 + 2ω
ρδij , (2.174)

−1

2
∇2 3

g0i +
1

2c

∂2 2
gij

∂t∂xj
− 1

2c

∂2 2
gkk

∂t∂xi
+

1

2

∂2 3
g0j

∂xi∂xj
+

1

c

∂2
2

ζ

∂t∂xi

= −8πG
c4

1

T0i =
8πG
c3

ρVi. (2.175)

As was previously pointed out, in the Brans-Dicke theory [8]
the harmonic coordinate conditions are modified and written as
gμνΓτ

μν = ∂ζ/∂xτ , which are now the new gauge conditions.
The time and space components of the gauge conditions up to
order O (c−3

)
are

1

2c

∂
2
g00
∂t

+
1

2c

∂
2
gkk
∂t

− ∂
3
g0k
∂xk

=
1

c

∂
2

ζ

∂t
, (2.176)

1

2

∂
2
gkk
∂xi

− 1

2

∂
2
g00
∂xi

− ∂
2
gik
∂xk

=
∂

2

ζ

∂xi
. (2.177)

The derivatives of the above expressions with respect to the
space and time coordinates become

1

2c

∂2 2
g00

∂t∂xi
+

1

2c

∂2 2
gkk

∂t∂xi
− ∂2 3

g0k
∂xk∂xi

=
1

c

∂2
2

ζ

∂t∂xi
, (2.178)

1

2c

∂2 2
g00

∂t2
+

1

2c

∂2 2
gkk

∂t2
− ∂2 3

g0k
∂xk∂t

=
1

c

∂2
2

ζ

∂t2
, (2.179)

1

2

∂2 2
gkk

∂xi∂xj
− 1

2

∂2 2
g00

∂xi∂xj
− ∂2 2

gik
∂xk∂xj

=
∂2

2

ζ

∂xi∂xj
, (2.180)

1

2

∂2 2
gkk

∂xi∂t
− 1

2

∂2 2
g00

∂xi∂t
− ∂2 2

gik
∂xk∂t

=
∂2

2

ζ

∂xi∂t
. (2.181)
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Now we eliminate (∂2 2
g00/∂x

i∂t) from (2.178) by using (2.181)
and get

1

c

∂2 2
gkk

∂xi∂t
− 1

c

∂2 2
gik

∂xk∂t
− ∂2 3

g0k
∂xi∂xk

=
2

c

∂2
2

ζ

∂t∂xi
, (2.182)

furthermore the sum of (2.180) with the same equation where
the indexes are interchanged i↔ j leads to

∂2 2
gkk

∂xi∂xj
− ∂2 2

g00
∂xi∂xj

− ∂2 2
gik

∂xk∂xj
− ∂2 2

gjk
∂xk∂xi

= 2
∂2

2

ζ

∂xi∂xj
. (2.183)

If we take into account (2.177), (2.179), (2.182) and (2.183)
the Brans-Dicke field equations (2.173), (2.174) and (2.175) re-
duce to

−1

2
∇2 4

g00 +
1

2c2
∂2 2

g00
∂t2

+

2

gij

2

∂2 2
g00

∂xi∂xj
+

1

2

∂
2
g00
∂xi

∂
2
g00
∂xi

= −8πG
c4

[
2 + ω

3 + 2ω

2

T 00 +
1 + ω

3 + 2ω

2

T ii +
4 + 2ω

3 + 2ω
2
g00

0

T 00

]
,

(2.184)

1

2
∇2 2

gij =
8πG
c2

1 + ω

3 + 2ω
ρδij , (2.185)

1

2
∇2 3

g0i = −8πG
c3

ρVi. (2.186)

Let us find the solutions of (2.172) and (2.184) – (2.186)
for the components of the metric tensor. We begin with the
determination of

2
g00 from (2.172) which can be rewritten as

1

2
∇2 2

g00 =
8πG
c2

2 + ω

3 + 2ω
ρ =

4πG

c2
ρ, (2.187)
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where we have introduced a new gravitational constant

G =
4 + 2ω

3 + 2ω
G. (2.188)

Hence one may identify from (2.187) the usual relationship be-

tween
2
g00 and the Newtonian potential φ through

2
g00 =

2φ

c2
, so that ∇2φ = 4πGρ. (2.189)

For the determination of
2
gij we write (2.185) as

1

2
∇2 2

gij =
1 + ω

2 + ω

∇2φ

c2
δij , so that

2
gij =

2 + 2ω

2 + ω

φ

c2
δij . (2.190)

The equation (2.186) for
3
g0i can be written as

∇2 3
g0i = −16πG

c3
3 + 2ω

4 + 2ω
ρVi, (2.191)

where we can identify a vector gravitational potential ξi by

3
g0i = −3 + 2ω

4 + 2ω

ξi
c3

so that ∇2ξi = 16πGρVi. (2.192)

The determination of
4
g00 is more involved. We insert the

values of
2
g00 = 2φ/c2,

0

T 00 = ρc2 into (2.184), use the identity
∇2φ2 = 2φ∇2φ + 2(∇φ)2 and after some rearrangements we
arrive at

1

2
∇2

(
4
g00 − 2φ2

c4

)
=

4πG

c4
3 + 2ω

2 + ω

[
4 + 2ω

3 + 2ω

2

T 00 +
2 + 2ω

3 + 2ω

2

T ii

+
2φρ

3 + 2ω

]
+

1

c4
∂2φ

∂t2
. (2.193)
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Here we identify the scalar gravitational potential ψ through

4
g00 =

2

c4

[
3 + 2ω

4 + 2ω
ψ + φ2

]
, so that (2.194)

∇2ψ = 4πG

[
4 + 2ω

3 + 2ω

2

T 00 +
2 + 2ω

3 + 2ω

2

T ii +
2φρ

3 + 2ω

]
+

1

c4
∂2φ

∂t2
.

(2.195)

The last identification refers to the scalar field
2

ζ from (2.166),
which can be rewritten, thanks to (2.188) and (2.189), as

∇2
2

ζ = − 1

(2 + ω)c2
∇2φ, so that

2

ζ = − φ

(2 + ω)c2
. (2.196)

From the investigation of the gauge condition (2.176) it fol-
lows that

0 =
1

c3
3 + 2ω

2 + ω

[
4
∂∇2φ

∂t
+

∂∇2ξi
∂xi

]
=

16πG

c3
3 + 2ω

2 + ω

[
∂ρ

∂t
+

∂ρVi

∂xi

]
,

(2.197)
which is equivalent to (2.73) and in its right-hand side the New-
tonian continuity equation shows up, which is valid at O (c−3

)
post-Newtonian level. Furthermore the gauge condition (2.177)
is identically verified.

Explicit expressions for the components

As in Section 2.3.2 we shall give here the final expressions for
the components of the metric tensor, Christoffel symbols, four-
velocity, particle four-vector and energy momentum tensor in
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the first post-Newtonian approximation of the Brans-Dicke the-
ory.

The metric tensor components in the first post-Newtonian
approximation read

g00 = 1 +
2φ

c2
+

2

c4

(
3 + 2ω

4 + 2ω
ψ + φ2

)
+O(c−6), (2.198)

g0i = −3 + 2ω

4 + 2ω

ξi
c3

+O(c−5), (2.199)

gij = −
(
1− 2 + 2ω

2 + ω

φ

c2

)
δij +O(c−4). (2.200)

The Christoffel symbols (2.28) – (2.33) obtained from the
substitution of the components of the metric tensor (2.198) –
(2.200) become

3

Γ0
00 =

1

c3
∂φ

∂t
,

5

Γ0
00 =

1

c5
3 + 2ω

4 + 2ω

(
∂ψ

∂t
+ ξi

∂φ

∂xi

)
, (2.201)

2

Γ0
0i =

1

c2
∂φ

∂xi
,

4

Γ0
0i =

1

c4
3 + 2ω

4 + 2ω

∂ψ

∂xi
, (2.202)

3

Γ0
ij = − 1

2c3

[
3 + 2ω

4 + 2ω

(
∂ξi
∂xj

+
∂ξj
∂xi

)
+

2 + 2ω

2 + ω

∂φ

∂t
δij

]
,(2.203)

2

Γi
00 =

1

c2
∂φ

∂xi
,

4

Γi
00 =

1

c4
3 + 2ω

4 + 2ω

(
2
∂φ2

∂xi
+

∂ψ

∂xi
+

∂ξi
∂t

)
,

(2.204)

3

Γi
0j =

1

2c3

[
3 + 2ω

4 + 2ω

(
∂ξi
∂xj

− ∂ξj
∂xi

)
− 2 + 2ω

2 + ω

∂φ

∂t
δij

]
, (2.205)
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2

Γi
jk =

1

c2
1 + ω

2 + ω

(
∂φ

∂xi
δjk − ∂φ

∂xj
δik − ∂φ

∂xk
δij

)
. (2.206)

The expressions for the four-velocity components up to order
O(c−4) are

U0 = c

{
1 +

1

c2

(
V 2

2
− φ

)
+

1

c4

[
3V 4

8
+

φ2

2
− 8 + 5ω

4 + 2ω
φV 2

−3 + 2ω

4 + 2ω
(ψ − ξiVi)

]}
, (2.207)

and U i = U0Vi/c.
The particle four-flow components up to order O (c−2

)
are

the same as the ones given in (2.91) and (2.92), namely

0

N0 = nc,
2

N0 =
n

c

(
V 2

2
− φ

)
, (2.208)

1

N i = nVi,
3

N i =
nVi

c2

(
V 2

2
− φ

)
, (2.209)

while the energy-momentum tensor components read

0

T 00 = ρc2,
2

T 00 = ρ
(
V 2 + ε− 2φ

)
,

1

T i0 = ρcVi, (2.210)
3

T i0 =
ρVi

c

(
V 2 − 2φ+ ε+

p

ρ

)
,

2

T ij = ρViVj + pδij , (2.211)

4

T ij =
ρViVj

c2

(
V 2 − 2φ+ ε+

p

ρ

)
+

2 + 2ω

2 + ω

φp

c2
δij . (2.212)

Note that the if we compare (2.210) – (2.212) with (2.93) – (2.95)
we infer that the only difference is the last term in (2.212).
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The Poisson equation (2.195) for ψ can be rewritten as

∇2ψ = 8πGρ

(
V 2 − φ+

2 + ω

3 + 2ω
ε+

3 + 3ω

3 + 2ω

p

ρ

)
+

∂2φ

∂t2
, (2.213)

by taking into account (2.210) and (2.211).

2.5.3 Hydrodynamic equations for an
Eulerian fluid

For the determination of the continuity equation in the post-
Newtonian Brans-Dicke theory we make use of the particle four-
flow balance law (2.118) together with the the particle four-
flow components (2.208), (2.209) and the components of the
Cristoffel symbols (2.201) – (2.206), yielding

∂
{
n
[
1 + 1

c2

(
V 2

2 − φ
)]}

∂t
+

∂
{
nVi

[
1 + 1

c2

(
V 2

2 − φ
)]}

∂xi

+
n

c2
1 + 2ω

2 + ω

(
∂φ

∂t
+ Vi

∂φ

∂t

)
= 0. (2.214)

Now making use of the relationship (2.121) we get the continuity
equation

∂ρ∗
∂t

+
∂ρ∗Vi

∂xi
= 0, (2.215)

for the mass density ρ∗ defined by

ρ∗ = ρ

[
1 +

1

c2

(
V 2

2
− 3(1 + ω)

2 + ω
φ

)]
. (2.216)
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The hydrodynamic equation for the mass-energy density is
obtained from the time component of the energy-momentum
tensor equation (2.124) together with the representations of its
components (2.210) – (2.212) and the components of the Cristof-
fel symbols (2.201) – (2.206). The final result is

∂σ

∂t
+

∂σVi

∂xi
=

1

c2

[
ρ
∂φ

∂t
+

∂p

∂t

]
− 3ρ

c2(2 + ω)

dφ

dt
, (2.217)

where the mass-energy density σ is defined by (2.126), which we
reproduce here

σ = ρ

[
1 +

1

c2

(
V 2 + ε− 2φ+

p

ρ

)]
. (2.218)

From the equation for the spatial components of the energy-
momentum tensor (2.128) together with the representations of
its components (2.210) – (2.212) and the components of the
Cristoffel symbols (2.201) – (2.206) it follows after some rear-
rangements the hydrodynamic equation for the momentum den-
sity

∂σVi

∂t
+

∂σViVj

∂xj
+

∂

∂xi

[
p

(
1− 1 + 2ω

2 + ω

φ

c2

)]
+ ρ

∂φ

∂xi

[
1

+
1

c2

(
3 + 2ω

2 + ω
V 2 − 1 + 2ω

2 + ω
φ+ ε+

3 + 3ω

2 + ω

p

ρ

)]
−3 + 4ω

2 + ω

ρ

c2
dφVi

dt
+

3 + 2ω

4 + 2ω

ρ

c2

[
∂ψ

∂xi
− Vj

∂ξj
∂xi

+
dξi
dt

]
= 0.

(2.219)
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Equations (2.215) – (2.219) are the same as those derived in
the work of Nutku [12] if we made the following identifications
ε = Π, φ = −U and

3 + 2ω

4 + 2ω
ψ = −2Φ, 3 + 2ω

4 + 2ω
ξi = −6 + 4ω

2 + ω
Ui +

1

2

∂2χ

∂t∂xi
.

(2.220)
Another expression for the hydrodynamic equation of the

momentum density can be obtained by substituting the mass-
energy density (2.218) into (2.219) and after some rearrange-
ments, yields

ρ
dVi

dt
+ ρ

∂φ

∂xi

[
1 +

1

c2

(
1 + ω

2 + ω
V 2 +

6 + 4ω

2 + ω
φ

)]
+

∂p

∂xi

[
1

− 1

c2

(
V 2 +

p

ρ
− 6 + 4ω

2 + ω
φ+ ε

)]
+

3 + 2ω

4 + 2ω

ρ

c2

[
∂ψ

∂xi
+

dξi
dt

−Vj
∂ξj
∂xi

]
+

ρVi

c2

(
1

ρ

∂p

∂t
+

∂φ

∂t
− 6 + 4ω

2 + ω

dφ

dt

)
= 0. (2.221)

By subtracting (2.215) from (2.217) it follows the hydrody-
namic equation for the total energy density which is a sum of
the internal ρε and kinetic ρV 2/2 energy densities, namely

1

c2

{
∂

∂t

[
ρ

(
V 2

2
+ ε

)]
+

∂

∂xi

[
ρ

(
V 2

2
+ ε

)
Vi

]
+ p

∂Vi

∂xi

+Vi

(
ρ
∂φ

∂xi
+

∂p

∂xi

)
+

ω − 1

2 + ω
φ

(
∂ρ

∂t
+

∂ρVi

∂xi

)}
= 0. (2.222)

Now by using the Newtonian continuity equation (2.119) for the
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underlined term we get the Newtonian hydrodynamic equation
(2.135) for the total energy density.

2.6 Non-perfect fluid hydrodynamic
equations

Up to now we have considered a perfect relativistic gas dic-
tated by the constitutive relations (2.11) for the particle four-
flow and energy-momentum tensor. The question which arises
refers to the post-Newtonian expressions for the hydrodynamic
equations for the mass-density and momentum density for a
viscous and heat-conducting fluid where shear stresses and heat
flux are taken into account.

Before we analyze this subject we shall introduce a projector
that will be useful to interpret physically the components of
the energy-momentum tensor. From the definition of the four-
velocity of the fluid Uμ we introduce a symmetric tensor (see
e.g. [13])

Δμν = gμν − 1

c2
UμUν , (2.223)

that projects an arbitrary four-vector into another four-vector
perpendicular to Uμ since ΔμνUν = 0. The tensor Δμν is called
a projector and it has the properties

ΔμνΔνσ = Δμ
σ, Δμ

νΔ
νσ = Δμσ, Δμ

μ = 3. (2.224)

In a local Minkowski rest frame where Uμ = (c,0) the pro-
jector has the form: Δμν = diag(0,−1,−1,−1). The post-
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Newtonian approximation of the components of the projector
are obtained from (2.223) together with (2.74) – (2.77), (2.87)
and (2.88) and read

Δ00 = −V 2

c2
+O(c−4), Δ0i = −Vi

c
+O(c−3), (2.225)

Δij = −
(
1 +

2φ

c2

)
δij − ViVj

c2
+O(c−4). (2.226)

If Aμ is a four-vector and Aμν a tensor, then

A(μ) = Δμ
νA

ν , (2.227)

A(μν) =
1

2
(Δμ

σΔ
ν
τ +Δν

σΔ
μ
τ )A

στ , (2.228)

A[μν] =
1

2
(Δμ

σΔ
ν
τ −Δν

σΔ
μ
τ )A

στ , (2.229)

represent a four-vector, a symmetric tensor and an antisym-
metric tensor that have only the spatial components in a local
Minkowski rest frame. Furthermore,

A〈μν〉 = A(μν) − 1

3
ΔμνΔστA

(στ), (2.230)

is a symmetric traceless tensor where the projection ΔμνA
〈μν〉 =

0 and gμνA
〈μν〉 = 0 hold.

In order to identify the relativistic non-equilibrium quanti-
ties with the non-relativistic ones it is useful to introduce decom-
positions of the particle four-flow and energy-momentum tensor
with respect to the four-velocity Uμ. The most usual decompo-
sition is due to Eckart [14] where the particle four-flow Nμ and
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the energy-momentum tensor Tμν for a viscous heat conducting
fluid are written as:

Nμ = nUμ, (2.231)

Tμν = p〈μν〉 − (p+�)Δμν +
ε

c2
UμUν

+
1

c2

(
Uμq(ν) + Uνq(μ)

)
. (2.232)

Note that the decomposition of the particle four-flow is the same
as the one for a perfect fluid (2.11)1. The above decompositions
define the quantities n, p〈μν〉, p, �, q(μ) and ε, which are iden-
tified as:

n =
1

c2
NμUμ– particle number density, (2.233)

p〈μν〉 =
(
Δμ

σΔ
ν
τ − 1

3
ΔμνΔστ

)
T στ– pressure deviator,

(2.234)

(p+�) = −1

3
ΔμνT

μν– hydrostatic + dynamic pressures,

(2.235)

q(μ) = Δμ
νUσT

νσ – heat flux, (2.236)

ε =
1

c2
UμT

μνUν – energy density. (2.237)

The dynamic pressure is the non-equilibrium part of the trace
of the energy-momentum tensor, since the hydrostatic pressure
p and the energy density ε refer to equilibrium quantities. The
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constitutive equation for the dynamic pressure is proportional
to the velocity divergent and the coefficient of proportionality is
the volume viscosity which is of order 1/c4 (see e.g. [13]). Hence
the dynamic pressure will not be considered in the following
analysis.

We begin by writing the spatial components of the pressure
deviator as

p〈ij〉 = pij +
1

2c2
(pikVkVj + pjkVkVi) , with pij = pij − prr

3
δij

(2.238)
denoting the non-relativistic pressure deviator. Due to the re-
lationship Uμp

〈μν〉 = gνσU
σp〈μν〉 = 0 we have that(

g00U
0 + g0jU

j
)
p〈0i〉 +

(
g0jU

0 + gjkU
k
)
p〈ij〉 = 0, (2.239)(

g00U
0 + g0jU

j
)
p〈00〉 +

(
g0jU

0 + gjkU
k
)
p〈0j〉 = 0, (2.240)

which imply the time and space-time components of the pressure
deviator

p〈00〉 = pij
ViVj

c2
+O(c−4), p〈0i〉 = pij

Vj

c
+O(c−3).(2.241)

Note that with the representations given above the trace of the
pressure deviator p〈μν〉 vanish. Indeed

gμνp
〈μν〉 = g00p

〈00〉 + 2g0ip
〈0i〉 + gijp

〈ij〉 = 0. (2.242)

A similar result follows from the condition Δμνp
〈μν〉.

We write the spatial components of the heat flux as

q(i) = qi, (2.243)
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where qi is the non-relativistic heat flux vector. By using the
relationship Uμq

(μ) = gμνU
νq(μ) = 0 we get the time component

of the heat flux

q(0) = qi
Vi

c
+O(c−3). (2.244)

Up to order O (c−2
)
the expressions for the components of

the pressure deviator and heat flux are

p〈ij〉 = pij +
1

2c2
(pikVkVj + pjkVkVi) , p〈00〉 = pij

ViVj

c2
,

(2.245)

p〈0i〉 = pij
Vj

c
, q(i) = qi, q(0) = qi

Vi

c
. (2.246)

In the non-relativistic limiting case the above expressions reduce
to

p〈ij〉 = pij , p〈00〉 = 0, p〈0i〉 = 0, q(i) = qi, q(0) = 0.
(2.247)

We note that the pressure deviator and the heat flux vector
must vanish at equilibrium, i.e., pij |E = 0 and qi|E = 0.

Now the different orders of the energy-momentum tensor
components can be identified from (2.232) together with (2.225),
(2.226), (2.245) and (2.246). They read

0

T 00 = ρc2,
2

T 00 = ρ
(
V 2 + ε− 2φ

)
, (2.248)

1

T i0 = ρcVi,
3

T i0 = ρ

(
V 2−2φ+ε+

p

ρ

)
Vi

c
+
pijVj

c
+
qi
c
, (2.249)
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2

T ij = ρViVj + pδij + pij , (2.250)
4

T ij = ρ

(
V 2 − 2φ+ ε+

p

ρ

)
ViVj

c2
+

2φp

c2
δij

+
1

2c2
(pikVkVj + pjkVkVi) +

1

c2
(qiVj + qjVi) .(2.251)

It is important to call attention that the introduction of non-
equilibrium quantities related with the pressure deviator and
heat flux does not change the determination of the components
of the metric tensor from Einstein’s field equations in the first
post-Newtonian approximation. This can be verified since the
components of the energy-momentum tensor which appear in
Einstein’s field equations to compute

2
g00,

4
g00,

2
gij and

3
g0i are

0

T00,
2

T00,
0

Tij and
1

T0i, respectively, and in none of these quanti-
ties neither the pressure deviator pij nor the heat flux qi show
up.

As it was previously pointed out the expression for the par-
ticle four-flow in the Eckart decomposition is the same as that
of a perfect fluid. Hence, its hydrodynamic equation is the same
as that of a perfect fluid, i.e. the continuity equation (2.122) for
the mass density ρ∗ holds.

The hydrodynamic equation for the mass-energy density fol-
lows from time component of the balance law for the energy-
momentum tensor (2.124), yielding

∂σ

∂t
+

∂σVi

∂xi
− 1

c2

(
ρ
∂φ

∂t
+

∂p

∂t

)
+

1

c2

(
∂pijVj

∂xi
+

∂qi
∂xi

)
= 0.

(2.252)
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Here we note the new contributions of the pressure deviator
pij and heat flux qi when this equation is compared with the
corresponding one for the perfect fluid (2.127).

From the balance equation for the spatial components of the
energy-momentum tensor (2.128) we obtain the hydrodynamic
equation for the momentum density:

∂σVi

∂t
+

∂σViVj

∂xj
+

∂

∂xi

[
p

(
1 +

2φ

c2

)]
+

∂pij
∂xj

+ρ
∂φ

∂xi

[
1 +

1

c2

(
2V 2 + ε+ 2φ− p

ρ

)]
− 4

pij
c2

∂φ

∂xj

+
ρ

c2
Vj

(
∂ξi
∂xj

− ∂ξj
∂xi

)
− 4

ρ

c2
Vi

(
∂φ

∂t
+ Vj

∂φ

∂xj

)
+

ρ

c2

(
∂ψ

∂xi
+

∂ξi
∂t

)
+

1

c2
∂ (pijVj + qi)

∂t

∂φ

∂xi

+
1

c2
∂

∂xj

[
qiVj + qjVi +

(pikVj + pjkVi)Vk

2

]
= 0. (2.253)

Without the dissipative terms pik and qi the above equation
reduces to (2.131).

The momentum density hydrodynamic equation correspond-
ing to the Eulerian equation (2.133) is:

ρ
dVi

dt
+

∂ (pij + pδij)

∂xj

[
1− 1

c2

(
V 2 − 4φ+ ε+

p

ρ

)]
+ρ

∂φ

∂xi

[
1 +

1

c2

(
V 2 + 4φ

)]
+

ρ

c2

[
∂ψ

∂xi
+

dξi
dt
− Vj

∂ξj
∂xi
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+Vi

(
1

ρ

∂p

∂t
+

∂φ

∂t
− 4

dφ

dt

)]
+

1

c2
∂ (pijVj + qi)

∂t

+
1

c2
∂

∂xj

[
qiVj + qjVi +

1

2
(pikVj + pjkVi)Vk − 4φpij

]
+2

φ

c2
∂pij
∂xj

− Vi

c2

(
∂pjkVk

∂xj
+

∂qj
∂xj

)
= 0.(2.254)

Here the definition of σ given in (2.126) and the mass-energy
hydrodynamic equation (2.252) were used.

The Newtonian momentum density hydrodynamic equation
follows from (2.254) by neglecting all terms of O (c−2

)
order,

yielding

ρ
dVi

dt
+

∂ (pij + pδij)

∂xj
+ ρ

∂φ

∂xi
= 0. (2.255)

By subtracting the mass density equation (2.122) from the
mass-energy equation (2.252) we get the total energy density
hydrodynamic equation

1

c2

{
∂

∂t

[
ρ

(
V 2

2
+ ε

)]
+

∂

∂xi

[
ρ

(
V 2

2
+ ε

)
Vi

]
+ ρVi

∂φ

∂xi

+
∂ [pijVj + qi + pVi]

∂xi
− φ

(
∂ρ

∂t
+

∂ρVi

∂xi

)}
= 0, (2.256)

which corresponds to (2.134). If we use the Newtonian conti-
nuity equation for the underlined term, (2.256) reduces to the
Newtonian total energy density hydrodynamic equation for a
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viscous and heat conducting fluid

∂

∂t

[
ρ

(
V 2

2
+ ε

)]
+

∂

∂xi

[
ρ

(
V 2

2
+ ε

)
Vi

]
+ ρVi

∂φ

∂xi

+
∂ [pijVj + qi + pVi]

∂xi
= 0, (2.257)

As was pointed out in the Section 2.4 – where the Eulerian
hydrodynamic equations were introduced – in order to get the
first post-Newtonian corrections to the total energy density hy-
drodynamic equation we must go further to the second post-
Newtonian approximation.

The hydrodynamic equation for the internal energy density
is obtained from the elimination from (2.256) of the time deriva-
tive of the hydrodynamic velocity by using the Newtonian mo-
mentum density hydrodynamic equation (2.255), yielding

ρ
dε

dt
+

∂qi
∂xi

+ [pij + pδij ]
∂Vi

∂xj
= 0. (2.258)

This equation refers to the Newtonian internal energy density
hydrodynamic equation for a viscous and heat-conducting fluid
and it corresponds to (2.136) of the Eulerian fluid.

2.7 The gravitational potentials

In this section we shall express the gravitational potentials –
defined in the method of Chandrasekhar – in terms of integrals
over the entire volume V occupied by the fluid. The first one
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is the Newtonian gravitational potential U which is solution of
the Poisson equation ∇2U = −4πGρ,

U(x) = G

∫
V

ρ(x′)
|x− x′|d

3x′. (2.259)

Here and in the following expressions we shall not specify the
time dependence of the fields. The above equation corresponds
to (2.63) with the identification U = −φ.

The equation for the vector gravitational potential Ui, given
by (2.106)1, has the corresponding integral solution

Ui(x) = G

∫
V

ρ(x′)Vi(x
′)

|x− x′| d3x′, (2.260)

while the integral solution of the scalar gravitational potential
Φ, which satisfies (2.110) is

Φ(x) = G

∫
V

ρ(x′)ϕ(x′)
|x− x′| d3x′, where ϕ = V 2 + U +

ε

2
+

3p

2ρ
.

(2.261)
According to the work of Chandrasekhar and Lebovitz [7]

the scalar gravitational potential χ introduced in (2.105) is a
super-potential, since it obeys the equation ∇4χ = 8πGρ. We
proceed to derive this equation on the basis of this paper. To
begin with we introduce the gravitational potential symmetric
tensor

Uij(x) = G

∫
V

ρ(x′)(xi − x′
i)(xj − x′

j)

|x− x′|3 d3x′, (2.262)
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and another vector gravitational potential defined by

Di(x) = G

∫
V

ρ(x′)x′
i

|x− x′|d
3x′. (2.263)

Note that the trace of the gravitational potential tensor (2.262)
is the Newtonian gravitational potential

U(x) = Uii(x) = G

∫
V

ρ(x′)
|x− x′|d

3x′. (2.264)

If we differentiate the vector gravitational potential (2.263)
and the Newtonian gravitational potential (2.264) with respect
to xj we get respectively

∂Di

∂xj
= −G

∫
V

ρ(x′)x′
i(xj − x′

j)

|x− x′|3 d3x′, (2.265)

∂U

∂xj
= −G

∫
V

ρ(x′)(xj − x′
j)

|x− x′|3 d3x′. (2.266)

Now if we subtract from (2.265) the equation (2.266) multiplied
by xi we obtain the gravitational potential tensor, namely

∂Di

∂xj
− xi

∂U

∂xj
= G

∫
V

ρ(x′)(xi − x′
i)(xj − x′

j)

|x− x′|3 d3x′ = Uij .

(2.267)
Since the gravitational potential tensor is a symmetric tensor
we can write from (2.267) that

∂Di

∂xj
− xi

∂U

∂xj
=

∂Dj

∂xi
− xj

∂U

∂xi
, (2.268)
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which in terms of a rotational of a vector reduces to

∇×D = ∇U × x = ∇× (Ux) . (2.269)

From the above equation we infer that D is given by Ux plus a
gradient of a scalar field χ (say), i.e.,

Di = Uxi +
∂χ

∂xi
. (2.270)

The divergence of the above equation with respect to xi leads
to

∂Di

∂xi
= 3U + xi

∂U

∂xi
+∇2χ. (2.271)

If we use the trace of (2.267), namely

∂Di

∂xi
− xi

∂U

∂xi
= U, (2.272)

equation (2.271) reduces to (2.106)2, i.e., ∇2χ = −2U . This
last equation together with the Poisson equation∇2U = −4πGρ
implies the equation for the super-potential of the gravitational
field ∇4χ = 8πGρ.

Another expression for the gravitational potential tensor Uij

can be obtained from (2.267) and (2.270), yielding

Uij = Uδij +
∂2χ

∂xi∂xj
. (2.273)

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



90 CHAPTER 2. FIRST POST-NEWTONIAN

As it was pointed out in [7] an alternative way to obtain the
relationship (2.273) is to introduce the following definition of
the super-potential χ

χ = −G
∫
V

ρ(x′)|x− x′|d3x′. (2.274)

The differentiation of the above equation with respect to xi leads
to

∂χ

∂xi
= −G

∫
V

ρ(x′)(xi − x′
i)

|x− x′| d3x′ = Uxi +Di, (2.275)

thanks to the definitions of Di and U given by (2.263) and
(2.264), respectively. Note that this equation is the same as
the one given in (2.270). Furthermore, its differentiation with
respect to xj leads to (2.273), since

∂2χ

∂xi∂xj
= G

∫
V

ρ(x′)(xi − x′
i)(xj − x′

j)

|x− x′|3 d3x′

−δijG
∫
V

ρ(x′)
|x− x′|d

3x′ = Uij − Uδij . (2.276)

In the derivation of the virial theorem the gravitational po-
tential energy tensor Wij plays an important role. It is defined
in terms of the gravitational potential tensor Uij by

Wij = −1

2

∫
V

ρ(x)Uij(x)d
3x

= −G

2

∫
V

∫
V

ρ(x)ρ(x′)(xi − x′
i)(xj − x′

j)

|x− x′|3 d3x′d3x. (2.277)
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Another expression for the gravitational potential energy
tensor is given by the relation

Wij =

∫
V

ρ(x)xi
∂U

∂xj
d3x =

∫
V

ρ(x)xj
∂U

∂xi
d3x. (2.278)

Indeed by considering the definition of the gravitational poten-
tial (2.264) we have∫

V

ρ(x)xi
∂U

∂xj
d3x

=

∫
V

ρ(x)xi

[
−G

∫
V

ρ(x′)(xj − x′
j)

|x− x′|3 d3x′
]
d3x

=

∫
V

ρ(x′)x′
i

[
−G

∫
V

ρ(x)(x′
j − xj)

|x− x′|3 d3x

]
d3x′

= −G

2

∫
V

∫
V

ρ(x)ρ(x′)(xi − x′
i)(xj − x′

j)d
3x′d3x

|x− x′|3 = Wij ,

(2.279)

where the third equality was obtained by interchanging the
primed and the unprimed labels.

The trace of the gravitational potential energy tensor (2.277)
and (2.278) is the gravitational potential energy, namely

W = Wii = −1

2

∫
V

ρ(x)U(x)d3x

= −G

2

∫
V

∫
V

ρ(x)ρ(x′)
|x− x′| d

3x′d3x =

∫
V

ρ(x)xi
∂U

∂xi
d3x. (2.280)
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2.8 The conservation laws

Here we shall write the hydrodynamic equations of Section 2.4
in terms of the Chandrasekhar gravitational potentials by iden-
tifying

φ = −U, ψ ≡ −2Φ, ξi = −4Ui +
1

2

∂2χ

∂t∂xi
= −Πi. (2.281)

Note that we have introduced the vector gravitational potential
Πi = −ξi in order to have the same structure of equations of [4]
where it is denoted by Pi.

In the analysis of the conservation laws it is necessary to
use Reynolds’ transport theorem which is valid for an arbitrary
scalar–, vector– or tensor–valued function F (x, t), namely

d

dt

∫
V

F (x, t)d3x =

∫
V

(
∂F (x, t)

∂t
+

∂F (x, t)Vi

∂xi

)
. (2.282)

Conservation of total linear momentum density

The hydrodynamic equation for the momentum density (2.131)
rewritten in terms of Chandrasekhar’s potentials, read

∂σVi

∂t
+

∂σViVj

∂xj
− ρ

∂U

∂xi
+

∂

∂xi

[
p

(
1 +

2U

c2

)]
+
4ρ

c2
d

dt

(
UVi − Πi

4

)
− 2

ρ

c2

(
ϕ
∂U

∂xi
+

∂Φ

∂xi

)
+

ρ

c2
Vj

(
4
∂Uj

∂xi
− 1

2

∂3χ

∂t∂xi∂xj

)
= 0. (2.283)
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Note that in the above equation we introduce the abbreviation
ϕ defined in (2.111).

If we integrate (2.283) over the volume V occupied by the
fluid we get∫

V

{
∂σVi

∂t
+

∂σViVj

∂xj
− ρ

∂U

∂xi
+

∂

∂xi

[
p

(
1 +

2U

c2

)]
+
4ρ

c2
d

dt

(
UVi − Πi

4

)
− 2

ρ

c2

(
ϕ
∂U

∂xi
+

∂Φ

∂xi

)
+

ρ

c2
Vj

(
4
∂Uj

∂xi
− 1

2

∂3χ

∂t∂xi∂xj

)}
d3x = 0. (2.284)

Below we shall analyze separately the terms in (2.283) and will
enumerate them for an easy view.

(i) ∫
V

{
∂σVi

∂t
+

∂σViVj

∂xj

}
d3x =

d

dt

∫
V

σVid
3x, (2.285)

by the use of Reynolds’ transport theorem (2.282).
(ii)

−
∫
V

ρ(x)
∂U

∂xi
d3x =

G

2

∫
V

∫
V

ρ(x)ρ(x′)
xi − x′

i

|x− x′|3 d
3xd3x′

+
G

2

∫
V

∫
V

ρ(x)ρ(x′)
x′
i − xi

|x− x′|3 d
3xd3x′ = 0, (2.286)

where in the second term above we have changed the primed
and the unprimed labels.
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(iii) ∫
V

∂

∂xi

[
p

(
1 +

2U

c2

)]
d3x = 0, (2.287)

since this integral can be converted – by using Gauss’ divergence
theorem – into a surface integral where the pressure vanishes on
the boundary of the configuration.

(iv)

4

c2

∫
V

ρ
d

dt

(
UVi − Πi

4

)
d3x =

4

c2

∫
V

{
∂ρ
(
UVi − Πi

4

)
∂t

+
∂ρVj

(
UVi − Πi

4

)
∂xj

−
(
UVi − Πi

4

)(
∂ρ

∂t
+

∂ρVj

∂xj

)}
d3x

=
4

c2
d

dt

∫
V

ρ

(
UVi − Πi

4

)
d3x, (2.288)

where the underlined term vanishes, since we can use the New-
tonian continuity equation at this approximation. For the last
integral we have applied Reynolds’ transport theorem.

(v)∫
V

ρ
∂Φ

∂xi
d3x = −G

∫
V

∫
V

ρ(x)ρ(x′)ϕ(x′)
xi − x′

i

|x− x′|3 d
3xd3x′

= −G
∫
V

d3x′ρ(x′)ϕ(x′)
∂

∂x′i

∫
V

d3x
ρ(x)

|x− x′|
= −

∫
V

d3x′ρ(x′)ϕ(x′)
∂U(x′)
∂x′i

, hence

− 2

c2

∫
V

ρ

(
ϕ
∂U

∂xi
+

∂Φ

∂xi

)
d3x = 0, (2.289)
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(vi) ∫
V

ρVj
∂Uj

∂xi
d3x

= −G

2

∫
V

∫
V

ρ(x)ρ(x′)Vj(x)Vj(x
′)

xi − x′
i

|x− x′|3 d
3xd3x′

−G

2

∫
V

∫
V

ρ(x)ρ(x′)Vj(x)Vj(x
′)

x′
i − xi

|x− x′|3 d
3xd3x′ = 0,(2.290)

where the primed and the unprimed labels were changed in the
second expression above.

(vii) The determination of the last integral is more involved.
We begin by evaluating

∂χ

∂t
= −G

∫
V

∂ρ(x′)
∂t

|x− x′|d3x′

= G

∫
V

∂ρ(x′)Vk(x
′)

∂x′k
|x− x′|d3x′

= G

∫
V

∂ρ(x′)Vk(x
′)|x− x′|

∂x′k
d3x′

+G

∫
V

ρ(x′)Vk(x
′)
xk − x′

k

|x− x′| d
3x′. (2.291)

For the second integral we make use of the Newtonian conti-
nuity equation (2.129), since the term which we are interested
is of O (c−2

)
– order. The underlined term vanishes thanks to

Gauss’ divergence theorem. From this equation it follows by
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differentiating it with respect to xi and xj that

∂3χ

∂xi∂xj∂t
= −G

∫
V

ρ(x′)Vk(x
′)(xk − x′

k)
δij

|x− x′|3 d
3x′

−G
∫
V

ρ(x′)
[
Vi(x

′)(xj − x′
j) + Vj(x

′)(xi − x′
i)
] d3x′

|x− x′|3

+3G

∫
V

ρ(x′)Vk(x
′)(xk − x′

k)
(xi − x′

i)(xj − x′
j)

|x− x′|5 d3x′. (2.292)

Now from the above equation we get∫
V

ρ(x)Vj(x)
∂3χ(x)

∂xi∂xj∂t
d3x

= G

∫
V

∫
V

{
3
Vk(x

′)(xk − x′
k)Vj(x)(xj − x′

j)(xi − x′
i)

|x− x′|5

−Vi(x)Vj(x
′)(xj − x′

j)

|x− x′|3 − Vi(x
′)Vj(x)(xj − x′

j)

|x− x′|3

−Vj(x)Vj(x
′)(xi − x′

i)

|x− x′|3
}
ρ(x′)ρ(x)d3xd3x′ = 0.(2.293)

This integral vanishes by interchanging the primed with the un-
primed labels. Now collecting all results above (i) – (vii) we
arrive at the conservation of the total linear momentum density
in the first post-Newtonian approximation, namely

d

dt

∫
V

{
ρVi

[
1 +

1

c2

(
V 2 + 6U + ε+

p

ρ

)]
− ρΠi

}
d3x = 0,

(2.294)
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where the total linear momentum density is

Pi = ρVi +
ρ

c2

[
Vi

(
V 2 + 6U + ε+

p

ρ

)
−Πi

]
. (2.295)

Conservation of total angular momentum density

For the determination of the total angular momentum density
conservation we need to evaluate integrals over the volume V
which are obtained from the multiplication of the hydrodynamic
equation for the momentum density (2.283) with xj , namely∫

V

{
∂σVi

∂t
+

∂σViVj

∂xj
− ρ

∂U

∂xi
+

∂

∂xi

[
p

(
1 +

2U

c2

)]
+
4ρ

c2
d

dt

(
UVi − Πi

4

)
− 2

ρ

c2

(
ϕ
∂U

∂xi
+

∂Φ

∂xi

)
+

ρ

c2
Vj

(
4
∂Uj

∂xi
− 1

2

∂3χ

∂t∂xi∂xj

)}
xjd

3x = 0. (2.296)

We proceed to evaluate the integrals following the same
methodology above.

(viii)∫
V

xj

{
∂σVi

∂t
+

∂σViVk

∂xk

}
d3x

= −
∫
V

σViVjd
3x+

∫
V

{
∂σVixj

∂t
+

∂σVixjVk

∂xk

}
d3x

= −2Kij +
d

dt

∫
V

σVixjd
3x. (2.297)
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Here Reynolds’ transport theorem (2.282) was used and the ki-
netic energy tensor was introduced

Kij =
1

2

∫
V

σViVjd
3x. (2.298)

(ix)

−
∫
V

ρ(x)xj
∂U

∂xi
d3x = −Wij (2.299)

where Wij is the gravitational potential energy tensor (2.277)
which is symmetric.

(x)∫
V

xj
∂

∂xi

[
p

(
1 +

2U

c2

)]
d3x = −δij

∫
V

[
p

(
1 +

2U

c2

)]
d3x

+

∫
V

∂

∂xi

[
xjp

(
1 +

2U

c2

)]
d3x. (2.300)

The last integral vanishes, since it can be converted in a sur-
face integral by the use of Gauss’ divergence theorem and the
pressure vanishes on the boundary of the configuration.

(xi)

4

c2

∫
V

xjρ
d

dt

(
UVi − Πi

4

)
d3x =

4

c2

∫
V

{
∂ρxj

(
UVi − Πi

4

)
∂t

+
∂ρVkxj

(
UVi − Πi

4

)
∂xk

−
(
UVi − Πi

4

)
xj

(
∂ρ

∂t
+

∂ρVk

∂xk

)
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−ρVj

(
UVi − Πi

4

)}
d3x =

4

c2
d

dt

∫
V

ρxj

(
UVi − Πi

4

)
d3x

− 4

c2

∫
V

ρVj

(
UVi − Πi

4

)
d3x, (2.301)

thanks to the use of the Reynolds transport theorem (2.282) and
the Newtonian approximation of the continuity equation where
the underlined term vanishes. We shall write the second integral
in the last equality as

− 4

c2

∫
V

ρVj

(
UVi − Πi

4

)
d3x =

4

c2

∫
ρVj

(
Ui − UVi

−1

8

∂2χ

∂t∂xi

)
d3x. (2.302)

thanks to (2.281)3. According to (2.260) the first term in the
integral can be written as∫

V

ρVjUid
3x = G

∫
V

∫
V

ρ(x)ρ(x′)Vi(x
′)Vj(x)

d3xd3x′

|x− x′|
=

G

2

∫
V

∫
V

ρ(x)ρ(x′) [Vi(x
′)Vj(x) + Vi(x)Vj(x

′)]
d3xd3x′

|x− x′| ,
(2.303)

which is a symmetric tensor. For the term in the integral (2.302)
related with χ we differentiate (2.291) so that we can write it as∫

V

ρVj
∂2χ

∂t∂xi
d3x = G

∫
V

∫
V

ρ(x)ρ(x′)
Vj(x)Vi(x

′)
|x− x′| d3xd3x′
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−G
∫
V

∫
V

ρ(x)ρ(x′)
Vj(x)Vk(x

′)(xk − x′
k)(xi − x′

i)

|x− x′|3 d3xd3x′.

(2.304)

(xii)∫
V

ρxj

(
ϕ
∂U

∂xi
+

∂Φ

∂xi

)
d3x = −G

∫
V

∫
V

ρ(x)ρ(x′)
[
ϕ(x)

+ϕ(x′)
] (xi − x′

i)xj

|x− x′|3 d3xd3x′ = −G

2

∫
V

∫
V

ρ(x)ρ(x′)
[
ϕ(x)

+ϕ(x′)
] (xi − x′

i)(xj − x′
j)

|x− x′|3 d3xd3x′

= −G
∫
V

∫
V

ρ(x)ρ(x′)ϕ(x)
(xi − x′

i)(xj − x′
j)

|x− x′|3 d3xd3x′

= −G
∫
V

d3xρ(x)ϕ(x)

∫
V

d3x′ρ(x′)
(xi − x′

i)(xj − x′
j)

|x− x′|3

= −
∫

ρϕUijd
3x = −Fij . (2.305)

where Uij is the gravitational potential tensor (2.262). Note
that Fij is a symmetric tensor.

(xiii)∫
V

ρxjVk
∂Uk

∂xi
d3x = −G

2

∫
V

∫
V

ρ(x)ρ(x′)Vk(x)Vk(x
′)

× (xi − x′
i)(xj − x′

j)

|x− x′|3 d3xd3x′, (2.306)
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is also a symmetric tensor. We collect together the following
terms that appear in (2.302), (2.303) and (2.306) and denote it
by the symmetric tensor Vij , namely

Vij =

∫
V

ρ

[
Vj (Ui − UVi) + xjVk

∂Uk

∂xi

]
d3x. (2.307)

(xiv) For the last integral obtained from (2.296) we incorpo-
rate the integral (2.303), use (2.293) and introduce the tensor
Xij

Xij =

∫
V

ρ(x)xjVk(x)
∂3χ(x)

∂xi∂xk∂t
d3x

+

∫
V

ρ(x)Vj(x)
∂2χ(x)

∂t∂xi
d3x

= −G
∫
V

∫
V

ρ(x′)ρ(x)
{
1

2

Vk(x)Vk(x
′)(xi − x′

i)(xj − x′
j)

|x− x′|3

+
Vk(x

′)(xk − x′
k)
[
Vj(x)(xi − x′

i) + Vi(x)(xj − x′
j)
]

|x− x′|3

−3

2

Vk(x
′)(xk − x′

k)Vl(x)(xl − x′
l)(xi − x′

i)(xj − x′
j)

|x− x′|5

−Vj(x)Vi(x
′)

|x− x′|
}
d3xd3x′. (2.308)

From the above equation we conclude that the tensor Xij is also
symmetric.

By collecting the results (viii) – (xiv) above we get that

d

dt

∫
V

xjPid
3x = 2Kij +Wij + δij

∫
V

[
p

(
1 +

2U

c2

)]
d3x
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− 1

c2

(
2Fij + 4Vij − 1

2
Xij

)
, (2.309)

where Pi is the total linear momentum density (2.295).
Now by taking the antisymmetric part of (2.309) it follows

the conservation of the total angular momentum, which is ex-
pressed as

d

dt

∫
V

(xjPi − xiPj) d
3x = 0. (2.310)

Conservation of total energy density

The hydrodynamic equation for the total energy density (2.134)
– which is a sum of the kinetic ρV 2/2 and internal ρε energy
densities – written in terms of Chandrasekhar’s potentials is

∂

∂t

[
ρ

(
V 2

2
+ ε

)]
+

∂

∂xi

[
ρ

(
V 2

2
+ ε

)
Vi

]
+

∂pVi

∂xi

−ρVi
∂U

∂xi
− U

(
∂ρ

∂t
+

∂ρVi

∂xi

)
= 0. (2.311)

Following the same methodology above we evaluate the integrals
over the volume V separately.

(xv)∫
V

{
∂

∂t

[
ρ

(
V 2

2
+ ε

)]
+

∂

∂xi

[
ρ

(
V 2

2
+ ε

)
Vi

]}
d3x

=
d

dt

∫
V

ρ

(
V 2

2
+ ε

)
d3x, (2.312)
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thanks to Reynolds’ transport theorem (2.282).
(xvi) ∫

V

∂pVi

∂xi
d3x = 0, (2.313)

by using Gauss divergence theorem and assuming that the pres-
sure vanishes on the boundary of the configuration.

(xvii)∫
V

ρ(x)Vi(x)
∂U(x)

∂xi
d3x

= −G
∫
V

∫
V

ρ(x)ρ(x′)Vi(x)
xi − x′

i

|x− x′|3 d
3xd3x′

= −G

2

∫
V

∫
V

ρ(x)ρ(x′)[Vi(x)− Vi(x
′)]

xi − x′
i

|x− x′|3 d
3xd3x′

=
G

2

∫
V

∫
V

ρ(x)ρ(x′)
d

dt

1

|x− x′|d
3xd3x′

=
G

2

∫
V

ρ(x)d3x

[
d

dt

∫
V

ρ(x′)
|x− x′|d

3x′

−
∫
V

d3x′

|x− x′|
(
∂ρ(x′)
∂t

+
∂ρ(x′)Vi(x

′)
∂xi

)]
= −1

2

∫
V

U(x′)
(
∂ρ(x′)
∂t

+
∂ρ(x′)Vi(x

′)
∂xi

)
d3x′

+
1

2

∫
V

ρ(x)
dU(x)

dt
d3x =

1

2

d

dt

∫
V

ρ(x)U(x)d3x

−
∫
V

U(x)

(
∂ρ(x)

∂t
+

∂ρ(x)Vi(x)

∂xi

)
d3x. (2.314)
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Above we have applied twice the Reynolds transport theorem
(2.282). Note that the second integral in the last equality is just
the integral of the last term in (2.311).

By collecting the results (xv) – (xvii) follows the conservation
of total energy

d

dt

∫
V

ρ

(
V 2

2
+ ε− U

2

)
d3x = 0. (2.315)

This is the Newtonian expression for the total energy density
conservation. For the determination of the post-Newtonian con-
tribution to the total energy density we have to go further and
find the second post-Newtonian approximation. This will be the
subject of the next chapter.

2.9 The post-Newtonian virial
theorem

In this section we shall determine the post-Newtonian approx-
imation of the tensor virial theorem. We begin by considering
one-half of the symmetric part of (2.309), namely

1

2

d

dt

∫
V

(xjPi + xiPj)d
3x = 2Kij +Wij

+δij

∫
V

[
p

(
1 +

2U

c2

)]
d3x− 1

c2

(
2Fij + 4Vij − 1

2
Xij

)
.(2.316)

Next we introduce the moment of inertia tensor in terms of
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the mass density ρ∗ defined in (2.123), namely

Iij =

∫
V

ρ∗xixjd
3x, (2.317)

so that its time derivative becomes

dIij
dt

=

∫
V

[
∂ρ∗xixj

∂t
+

∂ρ∗xixjVk

∂xk

]
d3x

=

∫
V

[
∂ρ∗
∂t

+
∂ρ∗Vk

∂xk

]
xixjd

3x+

∫
V

ρ∗(xiVj + xjVi)d
3x

=

∫
V

ρ∗(xiVj + xjVi)d
3x. (2.318)

Here the Reynolds transport theorem (2.282) was used to write
the first equality, moreover the first integral in the second equal-
ity vanishes due to the continuity equation (2.122). Hence we
obtain from the time differentiation of (2.318) that

d2Iij
dt2

=
d

dt

∫
V

ρ∗(xiVj + xjVi)d
3x. (2.319)

The post-Newtonian virial theorem follows from (2.316) to-
gether with (2.319), yielding

1

2

d2Iij
dt2

+
1

c2
d

dt

∫
V

ρ

[(
V 2

2
+ 3U + ε+

p

ρ

)
(Vixj + Vjxi)

−(Πixj +Πjxi)

]
d3x = 2δij

∫
V

[
p

(
1 +

2U

c2

)]
d3x

+Kij +Wij − 1

c2

(
2Fij + 4Vij − 1

2
Xij

)
, (2.320)
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where the total linear momentum density (2.295) was writing as

Pi = ρ∗Vi +
ρ

c2

[(
V 2

2
+ 3U + ε+

p

ρ

)
Vi −Πi

]
, (2.321)

thanks to (2.123).
In the Newtonian case (2.320) reduces to the well-know ex-

pression for the tensor virial theorem

1

2

d

dt

∫
V

ρ (xiVj + xiVj) d
3x =

∫
V

ρViVjd
3x+ δij

∫
V

pd3x

+
1

2

∫
V

ρ

(
∂U

∂xi
xj +

∂U

∂xj
xi

)
d3x, (2.322)

by considering the expression for the gravitational potential en-
ergy tensor Wij given in (2.278). Its contracted expression by
taking into account (2.280) is

d

dt

∫
V

ρxiVid
3x =

∫
V

ρ

(
V 2 − U

2
+ 3p

)
d3x. (2.323)

The stationary version of the post-Newtonian virial theorem
(2.320) reduces to

2Kij +Wij + δij

∫
V

[
p

(
1 +

2U

c2

)]
d3x

− 1

c2

(
2Fij + 4Vij − 1

2
Xij

)
= 0. (2.324)

The contracted version of the above equation reads∫
V

ρ

(
V 2 − U

2
+ 3

p

ρ

)
d3x+

1

c2

{∫
V

ρ

[
V 2

(
V 2 + ε
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+
p

ρ
+ 4U

)
− U

(
2U + ε− 3

p

ρ

)
− 7

4
ViUi

]
d3x

−G

4

∫
V

∫
V

ρ(x)ρ(x′)d3xd3x′

×Vi(x
′)(xi − x′

i)Vj(x)(xj − x′
j)

|x− x′|3
}

= 0, (2.325)

thanks to the expressions of the contracted tensors

2Kii =

∫
V

ρV 2

[
1 +

1

c2

(
V 2 + 2U + ε+

p

ρ

)]
, (2.326)

Wii = −1

2

∫
V

ρUd3x, (2.327)

Vii =
1

2

∫
V

ρ
(
UiVi − 2UV 2

)
d3x, (2.328)

Fii =

∫
V

ρU

(
V 2 + U +

ε

2
+

3p

2ρ

)
d3x, (2.329)

Xii =
1

2

∫
V

ρUiVid
3x− G

2

∫
V

∫
V

ρ(x)ρ(x′)

×Vi(x
′)(xi − x′

i)Vj(x)(xj − x′
j)

|x− x′|3 d3xd3x′. (2.330)

The contacted version of the stationary version of the post-
Newtonian virial theorem (2.325) corresponds to the equation
(146) of [3].
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Appendix

In this appendix we give some relationships that are used in the
previous sections.

If g denotes the determinant of the metric tensor gμν its
differentiation with respect to xμ is

∂g

∂xμ
= g,μ = ggνσgνσ,μ, (2.331)

which is obtained from the differentiation of each component of
the metric tensor gνσ multiplied by its cofactor ggνσ.

The contracted Christoffel symbols are also expressed in
terms of the determinant of the metric tensor as

Γν
μν =

gσν

2

(
gσμ,ν + gσν,μ − gμν,σ

)
=

gσνgσν,μ
2

=
g,μ
2g

=
(
ln
√−g)

,μ
, (2.332)

thanks to (2.331).
From the vanishing covariant derivative of the metric tensor

gμν ;σ = 0 we have that

gμν,σ = −gμτΓν
τσ − gντΓμ

τσ, (2.333)

from which together with (2.332) yields(
gμν
√−g)

,ν
= −gνσΓμ

σν

√−g. (2.334)

The variation of the metric tensor gμν is obtained from

δ (gμσgσν) = δgμσgσν + gμσδgσν = δ(δμν ) = 0, (2.335)
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which by the multiplication with gντ implies that

δgμτ = −gμσgντδgσν . (2.336)

On the other hand the variation of
√−g is given by

δ
√−g =

1

2
√−g δ(−g) =

1

2

√−ggμνδgμν , (2.337)

if we use a corresponding equation to (2.331). Hence from
(2.336) and (2.337) we have

δ
(
gμν
√−g) = √−g(1

2
gμνgστ − gμσgντ

)
δgστ . (2.338)
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CHAPTER 3

SECOND
POST-NEWTONIAN
APPROXIMATION

The second post-Newtonian approximation to Einstein’s field
equations is analyzed in this chapter. The corresponding Pois-
son equations for the gravitational potentials and the Eulerian
hydrodynamic equations are obtained in this approximation.
The search for the conservation laws of the total linear momen-
tum density and total energy density are based on the frame-
work of general relativity conservation laws where the energy-
momentum pseudo-tensor plays an important role in the deter-
mination of the conservative quantities.

111
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3.1 Preliminaries

Apart from the knowledge of the hydrodynamic equations in the
first post-Newtonian approximation it is important to know the
corresponding expressions for the conserved quantities which are
related with the total linear and angular momenta and total en-
ergy of the system. The expressions for these quantities were
derived by Chandrasekhar in [1] by using the hydrodynamic
equations supplied by the condition of isentropic flow. This
condition – which is a consequence of the first law of thermo-
dynamics d′Q = dE + pdV = 0 – can be obtained from (2.136)
together with the continuity equation dρ/dt + ρ∂Vi/∂x

i = 0,
yielding

dε

dt
=

p

ρ2
dρ

dt
. (3.1)

In a later paper [2] Chandrasekhar derived the conserva-
tion laws within the framework of general relativity by taking
into account the symmetric energy-momentum complex of Lan-
dau and Lifshitz [3] which is a sum of the energy-momentum
tensor and the energy-momentum pseudo-tensor.1 He showed
that the use of the energy-momentum complex in the first post-
Newtonian approximation led to the Newtonian conservation
law for the total energy of the system and argued that the first
post-Newtonian conservation law for the total energy of the sys-

1In Section 3.7 the energy-momentum pseudo-tensor and the energy-
momentum complex will be introduced.
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tem should be derived from the knowledge of the second post-
Newtonian approximation.

The second post-Newtonian approximation and the corre-
sponding conservation laws were developed by Chandrasekhar
and Nutku [4]. The starting point is the decompositions of the
components of the metric tensor

g00 = 1− 2U

c2
+

2

c4
(
U2 − 2Φ

)
+

Ψ00

c6
+O(c−8), (3.2)

g0i =
1

c3

(
4Ui − 1

2

∂2χ

∂t∂xi

)
+

Ψ0i

c5
+O(c−7), (3.3)

gij = −
(
1 +

2U

c2

)
δij +

Ψij

c4
+O(c−6). (3.4)

Here new gravitational potentials Ψ00, Ψ0i and Ψij were intro-
duced and they will be determined from Einstein’s field equa-
tions in the next sections.

In the previous chapter it was shown that the gravitational
potentials U , Ui, χ and Φ satisfy the Poisson equations

∇2U = −4πGρ, ∇2Ui = −4πGρVi, ∇2χ = −2U, (3.5)

∇2Φ = −4πGρϕ = −4πGρ

(
V 2 + U +

ε

2
+

3p

2ρ

)
. (3.6)

We follow [4] and introduce the vector gravitational potential
Πi defined by the relationship

Πi = 4Ui − 1

2

∂2χ

∂t∂xi
, (3.7)
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and we note that Πi = −ξi, which is the vector gravitational
potential in Weinberg’s method. Furthermore, we have from
(3.5) and (3.7) that the Poisson equation for Πi is given by

∇2Πi = −16πGρVi +
∂2U

∂t∂xi
, (3.8)

while the gauge condition (2.112) implies that

3

c2
∂U

∂t
+

1

c2
∂Πi

∂xi
= 0. (3.9)

The contra- and co-variant components of the four-velocity
and of the tensor Tμν = Tμν − gμνT

σ
σ/2 are given in Section

2.3.2 which we reproduce here in terms of the Chandrasekhar
potentials

U0 = c

[
1+

1

c2

(
V 2

2
+U

)
+

1

c4

(
3V 4

8
+
5UV 2

2
+
U2

2
+2Φ−ΠiVi

)]
,

(3.10)

U i =
U0

c
Vi, Ui = −Vi

[
1 +

1

c2

(
V 2

2
+ 3U

)]
+

Πi

c2
, (3.11)

U0 = c

[
1 +

1

c2

(
V 2

2
− U

)
+

1

c4

(
3V 4

8
+

3UV 2

2
+

U2

2
− 2Φ

)]
,

(3.12)

T00 =
ρc2

2
+ ρ

(
V 2 − U +

ε

2
+

3p

2ρ

)
+

ρ

c2

[
V 4 + U2
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+V 2

(
ε+

p

ρ
+ 2U

)
− U

(
ε+ 3

p

ρ

)
− 2Φ

]
, (3.13)

Tij =
ρc2

2
δij + ρ

[
ViVj +

1

2

(
ε− p

ρ
+ 2U

)
δij

]
, (3.14)

T0i = −ρcVi − ρ

c

[
Vi

(
V 2 + ε+

p

ρ
+ 2U

)
− Πi

2

]
.(3.15)

The components of the Christoffel symbols are given in Ap-
pendix A.

In the next sections we shall determine the second post-
Newtonian approximation of the metric tensor by following very
close the paper of Chandrasekhar and Nutku [4].

3.2 Equation for determination Ψij

For the determination of Ψij we have to solve the spatial com-
ponents of Einstein’s field equations

4

Rij = −8πG

c4
2

Tij , (3.16)

where the spatial components of the Ricci tensor are given by

4

Rij =
∂

4

Γ0
0i

∂xj
+

∂
4

Γk
ik

∂xj
− 1

c

∂
3

Γ0
ij

∂t
− ∂

4

Γk
ij

∂xk
+

2

Γ0
0i

2

Γ0
0j

+
2

Γk
il

2

Γl
kj −

2

Γk
ij

2

Γ0
k0 −

2

Γk
ij

2

Γl
kl. (3.17)

By considering the components of the Christoffel symbols
given in the Appendix A the left-hand side of Einstein’s field
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equations (3.16) reduces to

4

Rij = − 1

2c4

[
∇2Ψij +

∂2Ψkk

∂xi∂xj
− ∂

∂xk

(
∂Ψik

∂xj
+

∂Ψjk

∂xi

)]
− 1

c4

[
2
∂U

∂xi

∂U

∂xj
− ∂2(U2 + 2Φ)

∂xi∂xj

−1

2

∂

∂t

(
∂Πi

∂xj
+

∂Πj

∂xi

)
− δij

(
∇U2 +

∂2U

∂t2

)]
. (3.18)

Furthermore, from (3.14) its right-hand side becomes

−8πG

c4
2

Tij = −8πG

c4

[
ViVj +

1

2

(
ε− p

ρ
+ 2U

)
δij

]
+

2

c4

[
∇2Φ+ 4πGρ

(
V 2 + U +

ε

2
+

3p

2ρ

)]
δij

=
2

c2

[
∇2Φδij − 4πGρ

(
ViVj − V 2δij − 2

p

ρ
δij

)]
.(3.19)

Note that the underlined term is identically zero due to (3.6)
and it has been added in order to write a more compact form of
Einstein’s field equations (3.16). Hence, from (3.18) and (3.19)
the spatial components of Einstein’s field equations (3.16) can
be written as

∇2Ψij − ∂

∂xi

(
∂Ψjk

∂xk
− 1

2

∂Ψkk

∂xj

)
− ∂

∂xj

(
∂Ψik

∂xk
− 1

2

∂Ψkk

∂xi

)
= Sij , (3.20)
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where Sij is the symmetric tensor

Sij = −2
(
δij∇2 +

∂2

∂xi∂xj

)
(U2 + 2Φ) + 4

∂U

∂xi

∂U

∂xj

−2∂
2U

∂t2
δij − ∂

∂t

(
∂Πi

∂xj
+

∂Πj

∂xi

)
+16πGρ

(
ViVj − V 2δij − 2

p

ρ
δij

)
. (3.21)

Equation (3.20) can be reduced to a simpler form by noting
that its contraction and differentiation with respect to xj leads
respectively to

∇2Ψkk − ∂2Ψjk

∂xj∂xk
=

1

2
Skk, (3.22)

∂

∂xi

(
∇2Ψkk − ∂2Ψjk

∂xj∂xk

)
=

∂Sij

∂xj
. (3.23)

The combination of the two above equations implies the follow-
ing integrability condition for (3.20):

∂

∂xi

(
Sij − 1

2
Skkδij

)
= 0. (3.24)

Now by introducing an arbitrary vector function wi defined
by

wi =
∂Ψij

∂xj
− 1

2

∂Ψjj

∂xi
, (3.25)
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we can rewrite (3.20) as

∇2Ψij = Sij +
∂wi

∂xj
+

∂wj

∂xi
. (3.26)

The above equation satisfies the integrability condition (3.24).
Indeed, its contraction

∇2Ψkk = Skk + 2
∂wk

∂xk
, (3.27)

together with the differentiation of the combination ∇2Ψij −
1
2∇2Ψkkδij with respect to xj imply that

∂

∂xj

(
∇2Ψij − 1

2
∇2Ψkkδij

)
= ∇2wi, (3.28)

which is just the Laplacian of (3.25). Hence we can consider
(3.26) as the Poisson equation for the determination of the ten-
sor gravitational potential Ψij in terms of the arbitrary space-
time vector function wi.

Here it is necessary to verify the validity of the integrability
condition (3.24). For that end we contract Sij from (3.21) and
get

Skk = −8∇2(U2 + 2Φ)− 32πGρ

(
V 2 + 3

p

ρ

)
−2 ∂

∂t

(
3
∂U

∂t
+

∂Πi

∂xi

)
+ 4

(
∂U

∂xj

)2

= 32πGρ
(
V 2 + 4U + ε

)− 12

(
∂U

∂xj

)2

. (3.29)
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Here we have used the Poisson equations for the gravitational
potentials U and Φ given by (3.5)1 and (3.6), respectively, and
the gauge condition (3.9). Next we differentiate Sij – given by
(3.21) – with respect to xj , yielding

∂Sij

∂xj
= −4 ∂

∂xi

[∇2
(
U2 + 2Φ

)]
+ 4

(
∂U

∂xi
∇2U

+
∂2U

∂xi∂xj

∂U

∂xj

)
+ 16πG

∂

∂xj

[
ρ
(
ViVj − V 2δij

)− 2pδij
]

− ∂2

∂t∂xi

(
2
∂U

∂t
+

∂Πj

∂xj

)
− ∂

∂t
∇2Πi = 16πG

[
∂ρVi

∂t

+
∂ρViVj

∂xj
+

∂p

∂xi
− ρ

∂U

∂xi
+

∂ρ(V 2 + 4U + ε)

∂xi

]
−12 ∂2U

∂xi∂xj

∂U

∂xj
, (3.30)

where we have also taken into account the relationship ∇2U2 =
2U∇2U + 2(∇U)2, the Poisson equation (3.8) for Πi and the
gauge condition (3.9). Now from the two last equations (3.29)
and (3.30) we have

∂

∂xi

(
Sij − 1

2
Skkδij

)
= 16πG

[
∂ρVi

∂t
+

∂ρViVj

∂xj
+

∂p

∂xi
− ρ

∂U

∂xi

]
.

(3.31)
One recognizes the term within the brackets as the Newto-
nian hydrodynamic equation for the momentum density (2.129),
which can be taken here equal to zero, since we are dealing with
equations that are at most of order O (c−4

)
. Hence, the inte-

grability condition (3.24) is verified.
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3.3 Equation for determination Ψ0i

The knowledge of Ψ0i follows from the solution of Einstein’s
field equations

5

R0i = −8πG

c4
3

T0i, (3.32)

where its right-hand side, thanks to (3.15), is given by

−8πG

c4
3

T0i =
8πG

c5
ρ

[
Vi

(
V 2 + ε+

p

ρ
+ 2U

)
− Πi

2

]
. (3.33)

The space-time component of the Ricci tensor read

5

R0i =
∂

5

Γ0
00

∂xi
+

∂
5

Γk
0k

∂xi
− 1

c

∂
4

Γ0
0i

∂t
− ∂

5

Γj
0i

∂xj
+

2

Γj
00

3

Γ0
ji

+
2

Γk
ij

3

Γj
0k −

2

Γ0
0i

3

Γj
0j −

2

Γj
kj

3

Γk
0i. (3.34)

If we take into account the components of the Christoffel
symbols given in the Appendix A, the Ricci tensor (3.34) be-
comes

5

R0i = − 1

2c5

[
∇2Ψ0i − ∂2Ψ0k

∂xk∂xi

]
+

1

2c5

[
∂wi

∂t
− 1

2

∂Ψkk

∂t∂xi

]
+

1

c5

(
4U∇2Ui − ∂U

∂xj

∂Πj

∂xi
− 5

∂U

∂t

∂U

∂xi
+Πj

∂2U

∂xi∂xj

)
,(3.35)

where wi is the arbitrary vector defined by (3.25).
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Einstein’s field equations (3.32) together with (3.33) and
(3.35) lead to the following Poisson equation for the vector grav-
itational potential Ψ0i

∇2Ψ0i = −16πGρ

[
Vi

(
V 2 + ε+

p

ρ
+ 4U

)
− Πi

2

]
−10∂U

∂t

∂U

∂xi
− 2

∂U

∂xj

∂Πj

∂xi
+ 2Πj

∂2U

∂xi∂xj
+

∂wi

∂t
+

∂w

∂xi
, (3.36)

where w is an unspecified space-time scalar function introduced
by Chandrasekhar and Nutku [4] and defined by

1

c2
w =

1

c2

[
∂Ψ0j

∂xj
− 1

2

∂Ψjj

∂t

]
+ 4

(
∂U

∂t
+

∂Ui

∂xi

)
. (3.37)

Note that the underlined term is identically zero at 1/c2 order
according to (2.112).

At this point it is important to check if the definition of w
given by (3.37) is consistent with (3.27) and (3.36), which can
be verified by taking the Laplacian of (3.37). By taking into
account (2.113), (3.29) and introducing σ = ρ[1 + (V 2 + 2U +
ε + p/ρ)/c2] we arrive – after some rearrangements – at the
following expression

1

c2
∇2w =

1

c2

[
∂∇2Ψ0j

∂xj
− 1

2

∂∇2Ψjj

∂t

]
+ 4

(
∂∇2U

∂t

+
∂∇2Ui

∂xi

)
=

1

c2
∇2w − 16πG

[
∂σ

∂t
+

∂σVi

∂xi

+
1

c2

(
ρ
∂U

∂t
− ∂p

∂t

)]
− 32πG

c2

(
∂ρ

∂t
+

∂ρVi

∂xi

)
. (3.38)
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Now by making use of (2.113) and the mass-energy density hy-
drodynamic equation in the first post-Newtonian approximation
(2.127), the second and the third terms in the right-hand side
of (3.37) vanish and we get the identity 1

c2∇2w = 1
c2∇2w, con-

firming the consistency of the definition of the scalar function
w, which can be considered an arbitrary function in space-time.

3.4 Equation for determination Ψ00

Here the time component of Einstein’s field equations for the
determination of Ψ00 is

6

R00 = −8πG

c4
4

T00, (3.39)

and its right-hand side follows from (3.13), yielding

−8πG

c4
4

T00 = −8πG

c6
ρ

[
V 4 + V 2

(
ε+

p

ρ
+ 2U

)
−U

(
ε+ 3

p

ρ

)
+ U2 − 2Φ

]
. (3.40)

The time component of the Ricci tensor is given by

6

R00 =
1

c

∂
5

Γi
0i

∂t
− ∂

6

Γi
00

∂xi
+

2

Γi
00

4

Γ0
0i +

2

Γ0
0i

4

Γi
00

+
3

Γi
0j

3

Γj
i0 −

3

Γ0
00

3

Γi
0i −

2

Γi
00

4

Γj
ij −

2

Γj
ij

4

Γi
00, (3.41)
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which by using the components of the Christoffel symbols given
in the Appendix A, yields

6

R00 = − 1

2c6
∇2Ψ00 +

1

c6
∂U

∂xi

∂Πi

∂t
− 3

c6

(
∂U

∂t

)2

+
1

c6
∂w

∂t

+
wi

c6
∂U

∂xi
+

1

c6
∂U

∂xi

∂

∂xi

(
6Φ− 5U2

)
+

1

2c6
∂Πj

∂xi

(
∂Πi

∂xj

−∂Πj

∂xi

)
+

2U

c2
∇2
(
U2 − 2Φ

)
+

1

c6
(
4U2δij +Ψij

) ∂2U

∂xi∂xj
.(3.42)

From the knowledge of the left- and right-hand sides of the
time component of Einstein’s field equations we insert (3.40)
and (3.42) into (3.39), use (3.8) and get the following Poisson
equation for the scalar gravitational potential Ψ00:

∇2Ψ00 = 16πGρ

[
V 2

(
V 2 + ε+

p

ρ
+ 4U

)
− U2 − 2Φ

]
+2

∂U

∂xi

∂Πi

∂t
− 6

(
∂U

∂t

)2

+ 2
∂w

∂t
+ 2wi

∂U

∂xi
+ 12

∂U

∂xi

∂Φ

∂xi

−12U
(
∂U

∂xi

)2

+
∂Πj

∂xi

(
∂Πi

∂xj
− ∂Πj

∂xi

)
+ 2Ψij

∂2U

∂xi∂xj
. (3.43)

The only difference of this equation with the corresponding one
of the paper by Chandrasekhar and Nutku [4] is that they in-
troduce two new quantities Σij and Wi through

Σij = Ψij − ∂Wi

∂xj
− ∂Wj

∂xi
, (3.44)

where the following relationships hold ∇2Σij = Sij and ∇2Wi =
wi and verify (3.26).
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3.5 A gauge choice

As was noticed in the previous sections, the solutions of Ein-
stein’s field equations for the metric tensor components Ψij and
Ψ0i comprehend the arbitrary scalar function w and the arbi-
trary vector function wi. As was pointed out in [4] we have the
freedom to choice a particular gauge which do not affect the
choices that were already introduced in the analysis of the first
post-Newtonian approximation.

The choice proposed in [4] was the vanishing values of both
functions, i.e., w = 0 and wi = 0. This gauge choice implies
that we have from (3.25), (3.37) and (2.117):

∂Ψij

∂xj
− 1

2

∂Ψjj

∂xi
= 0, (3.45)

3
∂U

∂t
+

∂Πi

∂xi
+

1

c2

[
∂Ψ0j

∂xj
− 1

2

∂Ψjj

∂t

]
= 0. (3.46)

Here we write a summary of the Poisson equations in the
proposed gauge for the second post-Newtonian approximation

∇2U = −4πGρ, ∇2Φ = −4πGρ

(
V 2 + U +

ε

2
+

3p

2ρ

)
, (3.47)

∇2Πi = −16πGρVi +
∂2U

∂t∂xi
, (3.48)

∇2Ψij = 16πGρ

(
ViVj − V 2δij − 2

p

ρ
δij

)
+ 4

∂U

∂xi

∂U

∂xj

−2∂
2U

∂t2
δij − 2

(
δij∇2 +

∂2

∂xi∂xj

)
(U2 + 2Φ)
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− ∂

∂t

(
∂Πi

∂xj
+

∂Πj

∂xi

)
, (3.49)

∇2Ψ0i = −16πGρ

[
Vi

(
V 2 + ε+

p

ρ
+ 4U

)
− Πi

2

]
−10∂U

∂t

∂U

∂xi
− 2

∂U

∂xj

∂Πj

∂xi
+ 2Πj

∂2U

∂xi∂xj
, (3.50)

∇2Ψ00 = 16πGρ

[
V 2

(
V 2 + ε+

p

ρ
+ 4U

)
− U2 − 2Φ

]
+2

∂U

∂xi

∂Πi

∂t
− 6

(
∂U

∂t

)2

+ 12
∂U

∂xi

∂Φ

∂xi
− 12U

(
∂U

∂xi

)2

+
∂Πj

∂xi

(
∂Πi

∂xj
− ∂Πj

∂xi

)
+ 2Ψij

∂2U

∂xi∂xj
. (3.51)

Furthermore, in this gauge we have from (3.27) and (3.29)

∇2Ψkk = 32πGρ
(
V 2 + 4U + ε

)− 12

(
∂U

∂xj

)2

. (3.52)

3.6 Hydrodynamic equations for an
Eulerian fluid

To determine the hydrodynamic equations for an Eulerian fluid
in the second post-Newtonian approximation, we shall need the
expressions of the four-velocity, particle four-vector and energy
momentum tensor in this approximation.
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The components of the four-velocity (Uμ) =
(
γc, γV i

)
are

determined from (2.85) and reads(
dτ

dt

)2

=
1

γ2
= g00 +

2

c
g0iV

i +
1

c2
gijV

iV j

= 1− 1

c2
(
V 2 + 2U

)
+

2

c4
(
U2 − 2Φ− UV 2 +ΠiVi

)
+

1

c6
(Ψ00 + 2Ψ0iVi +ΨijViVj) . (3.53)

By using the approximation 1/
√
1 + x ≈ 1−x2+3x2/8−5x3/16

we find that the time component of the four-velocity becomes

U0 = c

{
1 +

1

c2

(
V 2

2
+ U

)
+

1

c4

(
3V 4

8
+

5UV 2

2
+

U2

2

+2Φ−ΠiVi

)
+

1

c6

[
V 2

4

(
5V 4

4
+

27UV 2

2
+ 21U2

)
+6

(
V 2

2
+ U

)(
Φ− ΠiVi

2

)
− U3

2

−1

2
(Ψ00 + 2Ψ0iVi +ΨijViVj)

]}
, (3.54)

while the spatial components are simply U i = U0Vi/c.
From the knowledge of the four-velocity components it is

easy to obtain the components of the particle four-flow Nμ =
nUμ up to order O (c−4

)
, namely

0

N0 = nc,
2

N0 =
n

c

(
V 2

2
+ U

)
, (3.55)
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4

N0 =
n

c3

(
3V 4

8
+

5UV 2

2
+

U2

2
+ 2Φ−ΠiVi

)
, (3.56)

1

N i = nVi,
3

N i =
nVi

c2

(
V 2

2
+ U

)
, (3.57)

5

N i =
nVi

c4

(
3V 4

8
+

5UV 2

2
+

U2

2
+ 2Φ−ΠiVi

)
.(3.58)

The components of the energy-momentum tensor

Tμν = ρ

[
1 +

1

c2

(
ε+

p

ρ

)]
UμUν − pgμν (3.59)

up to order O (c−6
)
are

0

T 00 = ρc2,
2

T 00 = ρ
(
V 2 + ε+ 2U

)
, (3.60)

4

T 00 =
ρ

c2

[
V 2

(
V 2 + ε+

p

ρ
+ 6U

)
+ 2Uε

−2ΠiVi + 2U2 + 4Φ

]
, (3.61)

6

T 00 =
ρ

c4

[
V 6 + 10V 4U + 16U2V 2 − 4ΠiVi

(
V 2 + 2Φ

)
+8Φ

(
V 2 + 2U

)
+

(
ε+

p

ρ

)(
V 4 + 6V 2U − 2ΠiVi

)
+2ε(U2 + 2Φ2

)− 2Ψ0iVi −Ψ00 −ΨijViVj

]
, (3.62)

1

T i0 = ρcVi,
3

T i0 =
ρVi

c

(
V 2 + 2U + ε+

p

ρ

)
, (3.63)
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5

T i0 =
ρ

c3

{
Vi

[
V 4 + 6V 2U + 2U2 +

(
ε+

p

ρ

)
(V 2 + 2U)

+4Φ− 2ΠjVj

]
− p

ρ
Πi

}
, (3.64)

2

T ij = ρViVj + pδij , (3.65)
4

T ij =
ρViVj

c2

(
V 2 + 2U + ε+

p

ρ

)
− 2Up

c2
δij , (3.66)

6

T ij =
ρ

c4

{
ViVj

[
V 4 + 6V 2U + 2U2 +

(
ε+

p

ρ

)
(V 2 + 2U)

+4Φ− 2ΠkVk

]
+

p

ρ

(
4U2δij +Ψij

)}
. (3.67)

Mass density hydrodynamic equation

The mass density hydrodynamic equation in the second post-
Newtonian approximation follows from the balance equation for
the particle four-flow (2.8) which up to O (c−4

)
reads

∂

(
0

N0 +
2

N0 +
4

N0

)
∂x0

+

∂

(
1

N i +
3

N i +
5

N i

)
∂xi

+

(
2

Γ0
0i +

2

Γj
ij

)
3

N i +

(
3

Γ0
00 +

3

Γj
0j +

5

Γ0
00 +

5

Γj
0j

)
0

N0

+

(
3

Γ0
00 +

3

Γj
0j

)
2

N0 +

(
2

Γ0
i0 +

2

Γj
ij +

4

Γ0
i0 +

4

Γj
ij

)
1

N i = 0.

(3.68)
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By taking into account the components of the particle four-
flow (3.55) – (3.58) and of the Christoffel symbols given in the
Appendix A, we arrive at

∂n

∂t
+

∂nVi

∂xi
− 2n

c4

[
∂

∂t
+ Vi

∂

∂xi

](
Φ+ U2 +

Ψkk

4

)
+2

n

c2

(
1 +

V 2

2c2

)(
∂U

∂t
+ Vi

∂U

∂xi

)
. (3.69)

where we have introduced the abbreviation

n = n

[
1 +

1

c2

(
V 2

2
+ U

)
+

1

c4

(
3V 4

8
+

5UV 2

2

+
U2

2
+ 2Φ−ΠiVi

)]
. (3.70)

The first underlined term in (3.69) can be rewritten as

−2n

c4

[
∂

∂t
+ Vi

∂

∂xi

](
Φ+ U2 +

Ψkk

4

)
= − 2

c4
∂n

(
Φ+ U2 + Ψkk

4

)
∂t

− 2

c4
∂nVi

(
Φ+ U2 + Ψkk

4

)
∂xi

+
2

c4

(
Φ+ U2 +

Ψkk

4

)(
∂n

∂t
+

∂nVi

∂xi

)
. (3.71)

For the above underlined term the Newtonian continuity equa-
tion can be used so that it vanishes. The second underlined
term in (3.69), by following the same methodology of the first
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underlined term, can be rewritten as

2
n

c2

(
1 +

V 2

2c2

)(
∂U

∂t
+ Vi

∂U

∂xi

)
=

2

c2

∂nU
(
1 + V 2

2c2 + 3U
2c2

)
∂t

+
2

c2

∂nViU
(
1 + V 2

2c2 + 3U
2c2

)
∂xi

, (3.72)

by taking into account the continuity equation in the first post-
Newtonian approximation (2.122), namely

∂n

∂t
+

∂nVi

∂xi
= − 1

c2

[
∂n

(
V 2

2 + 3U
)

∂t
+

∂nVi

(
V 2

2 + 3U
)

∂xi

]
.

(3.73)
If we introduce the mass density ρ = mn – where m denotes

the fluid particle rest mass – and insert (3.71) and (3.72) into
(3.69) it follows the continuity equation

∂ρ̃

∂t
+

∂ρ̃Vi

∂xi
= 0, (3.74)

for the mass density in the second post-Newtonian approxima-
tion

ρ̃ = ρ

[
1 +

1

c2

(
V 2

2
+ 3U

)
+

1

c4

(
3

8
V 4 +

7

2
UV 2 +

3

2
U2

−1

2
Ψkk −ΠiVi

)]
. (3.75)

The mass density above corresponds to eq. (53) of [4], which
was obtained from the consideration that the volume integral
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of ρU0√−g is constant. This expression is a consequence of
the particle four-flow hydrodynamic equation, which can be ex-
pressed as

(mnUμ);μ =
1√−g

∂ρ
√−gUμ

∂xμ

=
1√−g

(
∂ρ
√−gU0

c∂t
+

∂ρ
√−gU0Vi

c∂xi

)
= 0, (3.76)

so that the above equation leads – by using Reynolds transport
theorem (2.282) – to the mass conservation

dM

dt
=

d

dt

∫
V

ρU0√−gd3x = 0. (3.77)

From the components of the metric tensor in the second post-
Newtonian approximation (3.2) – (3.4) one obtains that up to
order O (c−4

)
g = −

[
1 +

4U

c2
+

1

c4
(
2U2 − 4Φ−Ψkk

)]
, (3.78)

√−g =

[
1 +

2U

c2
− 1

c4

(
U2 + 2Φ +

Ψkk

2

)]
, (3.79)

which implies that ρU0√−g = ρ̃.

Mass-energy density hydrodynamic equation

The determination of the hydrodynamic equation for the mass-
energy density in the second post-Newtonian approximation fol-
lows from the time component of the balance equation for the
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energy-momentum tensor T 0ν
;ν = 0 in O (c−5

)
– order, namely

∂

(
0

T 00 +
2

T 00 +
4

T 00

)
∂x0

+

∂

(
1

T 0i +
3

T 0i +
5

T 0i

)
∂xi

+

(
2

3

Γ0
00 +

3

Γj
0j

)
2

T 00 +

(
3

2

Γ0
i0 +

2

Γj
ij

)
3

T 0i

+

(
2

3

Γ0
00 +

3

Γj
0j + 2

5

Γ0
00 +

5

Γj
0j

)
0

T 00 +
3

Γ0
ij

2

T ij

+

(
3

2

Γ0
i0 +

2

Γj
ij + 3

4

Γ0
i0 +

4

Γj
ij

)
1

T 0i = 0. (3.80)

From the knowledge of the different orders of the components
of the energy-momentum tensor (3.60) – (3.67) and Christoffel
symbols given in the Appendix A, one can obtain from (3.80)
the hydrodynamic equation for the mass-energy density in the
second post-Newtonian approximation

∂σ̃

∂t
+

∂σ̃Vi

∂xi
+

1

c2

(
ρ
∂U

∂t
− ∂p

∂t

)
+

2ρ

c4

[
ϕ
∂U

∂t
− Vi

∂Φ

∂xi

+
1

ρ

∂pUVi

∂xi
− Vi

2

∂Πi

∂t

]
= 0. (3.81)

Here we have introduced ϕ = V 2+U + ε
2 +

3p
2ρ from (2.111) and

σ̃ = ρ

{
1 +

1

c2

(
V 2 + 2U + ε+

p

ρ

)
+

1

c4

[
V 4 + 6V 2U − U2

+2Uε+ V 2

(
ε+

p

ρ

)
−ΠiVi − 1

2
Ψkk

]}
. (3.82)
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Note that if we consider terms up to order O (c−2
)
equation

(3.81) reduces to (2.127). To obtain (3.81) we have neglected
the term

1

c4

(
3U2 + 4Φ +

Ψkk

2

)[
∂ρ

∂t
+

∂ρVi

∂xi

]
−Πi

c4

[
∂ρVi

∂t
+

∂ρViVj

∂xj
+

∂p

∂xi
− ρ

∂U

∂xi

]
, (3.83)

since we can use the Newtonian continuity equation and the
momentum hydrodynamic equation for the first and the second
terms within the brackets, respectively.

Hydrodynamic equation for the total energy density

As in Section 2.4 we shall determine here the hydrodynamic
equation for the total energy which is a sum of the internal ρε
and kinetic ρV 2/2 energy densities. To begin with we subtract
the continuity equation (3.74) from the mass-energy density hy-
drodynamic equation (3.81), yielding

1

c2

{
∂

∂t

[
ρ

(
V 2

2
+ ε

)
+

ρ

c2

(
5

8
V 4 +

5

2
V 2U − 5

2
U2 + 2εU

+V 2

(
ε+

p

ρ

))]
+

∂

∂xi

[
ρVi

(
V 2

2
+ ε

)
+

ρVi

c2

(
5

8
V 4

+
5

2
V 2U − 5

2
U2 + 2εU + V 2

(
ε+

p

ρ

))]
+

∂pVi

∂xi

−ρVi
∂U

∂xi
− U

(
∂ρ

∂t
+

∂ρVi

∂xi

)
+

2ρ

c2

[
ϕ
∂U

∂t
− Vi

∂Φ

∂xi
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+
1

ρ

∂pUVi

∂xi
− Vi

2

∂Πi

∂t

]}
= 0. (3.84)

We note that the total energy density hydrodynamic equation
is of order O (c−2

)
, meaning that the post-Newtonian correc-

tions to the resulting equation corresponds to the first post-
Newtonian approximation.

From this equation we can obtain the total energy density
conservation law by integrating (3.84) over the volume occupied
by the fluid. First we note that the integral∫

V

(
∂pVi

∂xi
+

2

c2
∂pUVi

∂xi

)
d3x =

∫
S

p

(
1 +

2U

c2

)
VinidS = 0,

(3.85)
vanishes by using using Gauss divergence theorem and consider-
ing that the pressure vanishes on the boundary of the configura-
tion. Next we take into account the previous result (2.314) and
the results (3.180) and (3.181) given in the Appendix B which
we reproduce here∫

V

ρ(x)Vi(x)
∂U(x)

∂xi
d3x =

1

2

d

dt

∫
V

ρ(x)U(x)d3x

−
∫
V

U(x)

(
∂ρ(x)

∂t
+

∂ρ(x)Vi(x)

∂xi

)
d3x, (3.86)

− 1

c2

∫
V

ρVi
∂Πi

∂t
= − 1

2c2
d

dt

∫
V

ρViΠid
3x, (3.87)∫

V

ρVi
∂Φ

∂xi
d3x =

∫
ρϕ

∂U

∂t
d3x. (3.88)

Now by collecting the above results we arrive at the total
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energy density conservation law in the first post-Newtonian ap-
proximation

1

c2
d

dt

∫
V

E d3x = 0, where (3.89)

E = ρ

(
V 2

2
+ ε− U

2

)
+

ρ

c2

[
5

8
V 4 +

5

2
V 2U − 5

2
U2

+2εU + V 2

(
ε+

p

ρ

)
− 1

2
ΠiVi

]
. (3.90)

The expression for the total energy density E was derived in
[1] by considering the isentropic flow condition and in [4] by
taking into account the symmetric energy-momentum complex
of Landau and Lifshitz [3]. This latter method for the derivation
of the total energy density conservation law will be the subject
of Section 3.7.3.

The hydrodynamic equation for the internal energy density
in the first post-Newtonian approximation is obtained from the
multiplication of (3.84) by c2 and the use of the hydrodynamic
equations for the mass density (2.122) and momentum density
(2.131) in the first post-Newtonian approximation to eliminate
the time derivative of the mass density ρ and hydrodynamic
velocity Vi. After some rearrangements we get that

ρ
dε

dt
+ p

(
1− 5

3

V 2

c2

)
∂Vi

∂xi
− V 2

c2
∂p

∂t
+

ρ (2ε− 5U)

c2
dU

dt

+
ρVi

c2

(
V 2 +

2

3
ε

)[
∂U

∂xi
− 1

ρ

∂p

∂xi

]
= 0. (3.91)
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Without the terms in c−2 this equation reduces to the New-
tonian internal energy density hydrodynamic equation for an
Eulerian fluid.

Momentum density hydrodynamic equation

The hydrodynamic equation for the momentum density in the
second post-Newtonian approximation is obtained from the spa-
tial balance equation for the energy-momentum tensor T iν

;ν =
0, which up to the sixth order reads(

∂
1

T 0i +
3

T 0i +
5

T 0i

)
∂x0

+

∂

(
2

T ij +
4

T ij +
6

T ij

)
∂xj

+
2

Γi
00

4

T 00 +
6

Γi
00

0

T 00 +

(
2

Γi
00 +

4

Γi
00

)(
0

T 00 +
2

T 00

)
+

[
2

Γi
jk +

(
2

Γ0
0j +

2

Γl
jl

)
δik

](
2

T kj +
4

T kj

)
+

[
4

Γi
jk +

(
4

Γ0
0j +

4

Γl
jl

)
δik

]
2

T kj

+

[
2

5

Γi
0j +

(
5

Γ0
00 +

5

Γk
0k

)
δij

]
1

T 0j

+

[
2

3

Γi
0j +

(
3

Γ0
00 +

3

Γk
0k

)
δij

](
1

T 0j +
3

T 0j

)
= 0. (3.92)

If one insert the different orders of the energy-momentum
tensor and Christoffel symbols components, one arrive after a
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long calculation to

∂ρVi

∂t
+

∂ρViVj

∂xj
+

∂p

∂xi

[
1 +

2U

c2
− 1

c4

(
U2 + 2Φ +

Ψkk

2

)]
−ρ ∂U

∂xi

{
1 +

2

c2

(
V 2 + U +

ε

2
+

p

2ρ

)
+

2

c4

[
V 4 + 5UV 2

−3U2

2
+ Φ + (V 2 + U)

(
ε+

p

ρ

)
−ΠiVi − Ψkk

4

]}
+

ρ

c2

(
Vj

∂Πj

∂xi
− 2

∂Φ

∂xi

)[
1 +

1

c2

(
V 2 + 4U + ε+

p

ρ

)]
+

ρ

2c4

(
∂Ψ00

∂xi
+ 2Vj

∂Ψ0j

∂xi
+ VjVk

∂Ψjk

∂xi

)
= 0, (3.93)

where we have introduced the abbreviation for the momentum
density

ρVi = ρVi

{
1 +

1

c2

(
V 2 + 6U + ε+

p

ρ

)
+

1

c4

[
V 4 + 10V 2U

+13U2 + 2Φ− 2ΠiVi − Ψkk

2
+
(
V 2 + 6U

)(
ε+

p

ρ

)]}
− ρ

c2
Πi

[
1 +

1

c2

(
V 2 + 4U + ε+

p

ρ

)]
− ρ

c4
(
Ψ0i +ΨijVj

)
.

(3.94)

Expression (3.94) corresponds to eq. (54) of the work [4].
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3.7 Conservation laws in general rela-
tivity

In this section we follow Synge [5] and introduce a symmet-
ric array of quantities Wμν = W νμ which satisfies the partial
differential equations

∂Wμν

∂xν
= 0. (3.95)

It is supposed that this equation must hold for all transformation
of coordinates of Wμν , but neither Wμν nor the equation (3.95)
have tensorial characters.

The integration of (3.95) in an infinite three-dimensional vol-
ume by considering x0 = constant, leads to∫

∂Wμν

∂xν
d3x =

∫ (
1

c

∂Wμ0

∂t
+

∂Wμi

∂xi

)
d3x

=

∫
1

c

∂Wμ0

∂t
d3x+

∫
WμinidS = 0, (3.96)

where d3x = dx1dx2dx3 is the volume element. If we consider
that the quantities Wμν vanish at the surface of the infinite
three-dimensional volume, we have that for x0 = constant the
following relationship hods

1

c

∫
∂Wμ0

∂t
d3x+

1

c

∫
Wμ0VjnjdS =

1

c

∫ (
∂Wμ0

∂t

+
∂Wμ0Vj

∂xj

)
d3x =

d

dt

[
1

c

∫
Wμ0d3x

]
= 0. (3.97)
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This equation implies that there exist four conservative quanti-
ties Pμ independent of x0 = ct.

Another conservative quantity can be build from the deriva-
tive

∂

∂xτ
(xμW ντ − xνWμτ ) = 0, (3.98)

which vanishes due to the symmetry of Wμν . The integration
of (3.98) in an infinite three-dimensional volume leads to∫ [

1

c

∂

∂t

(
xμW ν0 − xνWμ0

)
+

∂

∂xi

(
xμW νi − xνWμi

) ]
d3x = 0,

(3.99)
and by considering the vanishing of Wμν at the surface of the
infinite three-dimensional volume it reduces to

d

dt

[
1

c

∫ (
xμW ν0 − xνWμ0

)
d3x

]
= 0. (3.100)

We conclude that there exist more six conservative quantities
Mμν = −Mνμ independent of x0 = ct.

Now we have to link the conservative quantities Pμ and Mμν

with the four-momentum and four-tensor angular momentum,
respectively. For that end we follow Chandrasekhar and de-
fine Wμν in terms of the energy-momentum complex Θμν =
(−g) (Tμν + tμν), namely

Wμν =
8πG

c4
Θμν =

8πG

c4
(−g) (Tμν + tμν) . (3.101)

Here tμν is the so-called energy-momentum pseudo-tensor of the
gravitational field.
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3.7.1 Energy-momentum pseudo-tensor of the
gravitational field

The aim of this section is the determination of the energy-
momentum pseudo-tensor of the gravitational field and for that
end we introduce the tensor

Uμσνλ = g
(
gμλgσν − gμνgσλ

)
, (3.102)

which has the same properties as the Riemann-Christoffel tensor
Rμνστ , namely

1. Symmetry: Uμσνλ = Uνλμσ,

2. Cyclicity: Uμσνλ + Uμνλσ + Uμλσν = 0,

3. Anti-symmetry: Uμσνλ = −Uσμνλ = −Uμσλν = Uσμλν .

From the symmetry and anti-symmetry properties of the ten-
sor Uμσνλ it is easy to obtain the relations for its derivatives

∂2Uμσνλ

∂xσ∂xλ
=

∂2Uνλμσ

∂xσ∂xλ
, (3.103)

∂3Uμσνλ

∂xν∂xσ∂xλ
= − ∂3Uμσλν

∂xν∂xσ∂xλ
= − ∂2Uμσνλ

∂xλ∂xσ∂xν
. (3.104)

We infer from (3.103) that the contracted second derivative of
Uμσνλ is symmetric in the two remaining indices, while from
(3.104) we get that its third contracted derivative vanishes.
Hence, we can make the following identification

Wμν =
1

2

∂2Uμσνλ

∂xσ∂xλ
, (3.105)
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since Wμν = W νμ and (3.95) holds.
To determine explicitly the contracted second derivative of

Uμσνλ, we note that the covariant derivative of
(
g−1Uμσνλ

)
;τ

vanishes, thanks to the vanishing of the covariant of the metric
tensor gμν ;τ = 0. Hence, we can write

0 =
(
g−1Uμσνλ

)
;τ

= − 1

g2
∂g

∂xτ
Uμσνλ +

1

g

(
∂Uμσνλ

∂xτ

+Γμ
τεU

εσνλ + Γσ
τεU

μενλ + Γν
τεU

μσελ + Γλ
τεU

μσνε

)
.(3.106)

Moreover by using (2.331), the derivative of Uμσνλ with respect
to xτ becomes

∂Uμσνλ

∂xτ
= 2Γε

ετU
μσνλ − Γμ

τεU
εσνλ − Γσ

τεU
μενλ

−Γν
τεU

μσελ − Γλ
τεU

μσνε. (3.107)

From the above equation it follows when τ = σ the contracted
expression

∂Uμσνλ

∂xσ
= Γε

εσU
μσνλ − Γν

σεU
μσελ − Γλ

σεU
μσνε, (3.108)

where the anti-symmetry property of U εσνλ = −Uσενλ and
the symmetry property of Γμ

σε = Γμ
εσ was used to get that

Γμ
σεU

εσνλ = 0.
The partial derivative of (3.108) with respect to xλ leads to

∂2Uμσνλ

∂xσ∂xλ
= Aμν +Bμν , (3.109)
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where Aμν and Bμν are given by

Aμν =
∂Γτ

τσ

∂xλ
Uμσνλ − ∂Γν

σε

∂xλ
Uμσελ − ∂Γλ

σε

∂xλ
Uμσνε, (3.110)

Bμν = Γτ
τσ

∂Uμσνλ

∂xλ
− Γν

σε
∂Uμσελ

∂xλ
− Γλ

σε
∂Uμσνε

∂xλ
. (3.111)

The tensor Aμν defined in (3.110) can be expressed as

Aμν = Uμσνλ

(
∂Γτ

τσ

∂xλ
− ∂Γε

σλ

∂xε

)
+

1

2
Uμσελ

(
∂Γν

λσ

∂xε
− ∂Γν

εσ

∂xλ

)
,

(3.112)
thanks to the use of the anti-symmetry property of Uμσνλ in
the expression

−∂Γν
σε

∂xλ
Uμσελ =

∂Γν
σε

∂xλ
Uμσλε =

∂Γν
σλ

∂xε
Uμσελ. (3.113)

In terms of the Riemann-Christoffel (2.14) and Ricci (2.13) ten-
sors Aμν reads

Aμν = Uμσνλ (Rσλ + Γε
σλΓ

τ
τε − Γε

στΓ
τ
λε)

+
1

2
Uμσελ (Rν

σλε + Γτ
σεΓ

ν
λτ − Γτ

λσΓ
ν
ετ ) , (3.114)

which can be simplified and written as

Aμν = 2g

(
Rμν − 1

2
Rgμν

)
+ g

(
gμλgσε − gμεgσλ

)
Γτ

σεΓ
ν
λτ

+g
(
gμλgσν − gμνgσλ

) [
Γε

σλΓ
τ
τε − Γε

στΓ
τ
λε

]
, (3.115)
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thanks to the following relationships

UμσνλRσλ = g
(
gμλgσν − gμνgσλ

)
Rσλ = g (Rμν −Rgμν) ,

(3.116)

1

2
UμσελRν

λσε =
1

2
g
(
gμλgσε − gμεgσλ

)
Rν

σλε

=
1

2
ggμλgσεgντRστελ +

1

2
ggμεgσλgντRστλε = gRμν , (3.117)

−1

2
UμσελΓτ

λσΓ
ν
ετ =

1

2
UμσλεΓτ

λσΓ
ν
ετ =

1

2
UμσελΓτ

εσΓ
ν
λτ .

(3.118)
The expression of Bμν is more involved and below we give

the expressions for the three terms which appear in (3.111) by
using the derivative of Uμσνλ given in (3.107):

Γτ
τσ

∂Uμσνλ

∂xλ
= gΓτ

τσ

[
Γε

ελ

(
gμλgσν − gμνgσλ

)
+Γμ

ελ

(
gσλgεν − gσνgελ

)
+ Γσ

ελ

(
gμνgελ − gμλgεν

)]
, (3.119)

−Γν
σε
∂Uμσελ

∂xλ
= gΓν

σε

[
Γτ

τλ

(
gμεgσλ − gμλgσε

)
+Γμ

τλ

(
gσεgτλ − gσλgετ

)
+ Γσ

τλ

(
gμλgετ − gμεgτλ

)]
,(3.120)

−Γλ
σε
∂Uμσνε

∂xλ
= gΓλ

σε

[
2Γτ

τλ

(
gμνgσε − gμεgσν

)
+Γμ

τλ

(
gνσgετ − gντgεσ

)
+ Γν

τλ

(
gμεgστ − gμτgεσ

)
+2Γε

τλ

(
gσνgμτ − gμνgστ

)]
. (3.121)
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In the above equations the symmetry property of the Christoffel
symbols was taken into account.

Now from (3.109), (3.115) and (3.119) – (3.121) we get

Wμν =
1

2

∂2Uμσνλ

∂xσ∂xλ
= g

(
Rμν − 1

2
Rgμν

)
− 1

2
gV μν , (3.122)

where the symmetric quantity V μν is given by

V μν =
(
gμνgσλ − gμλgσν

)[
Γτ

τσΓ
ε
ελ + Γτ

ελΓ
ε
τσ

−2Γτ
τεΓ

ε
σλ

]
+ gμλgσε

[
Γτ

τλΓ
ν
σε + Γτ

σεΓ
ν
τλ − Γτ

τεΓ
ν
σλ

−Γτ
σλΓ

ν
τε

]
+ gνλgσε

[
Γτ

τλΓ
μ
σε + Γτ

σεΓ
μ
τλ − Γτ

τεΓ
μ
σλ

−Γτ
σλΓ

μ
τε

]
+ gλεgστ

[
Γμ

τλΓ
ν
σε − Γμ

λεΓ
ν
τσ

]
. (3.123)

Here it is important to call attention that V μν is not a tensor.
Now by using Einstein’s field equations

Gμν = Rμν − 1

2
Rgμν = −8πG

c4
Tμν , (3.124)

we can rewrite (3.122) as

Wμν =
8πG

c4
(−g)

(
Tμν +

c4

16πG
V μν

)
. (3.125)

From the comparison of (3.125) with (3.101) we can identify
the energy-momentum pseudo-tensor tμν with V μν whose ex-
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pression2 is given in (3.123):

tμν =
c4

16πG
V μν . (3.126)

According to (3.95) the ordinary divergence of the energy-
momentum complex Θμν = (−g) (Tμν + tμν) vanishes, i.e.

Θμν
,ν = [(−g) (Tμν + tμν)],ν = 0, (3.127)

so that we can infer from (3.97) that∫
V

Θ00d3x = constant and

∫
V

Θ0id3x = constant.

(3.128)
Below we shall determine the components of the energy-

momentum complex Θ00 and Θ0i in the first post-Newtonian
approximation, which correspond to the total energy and linear
momentum conservation laws, respectively.

3.7.2 The total linear momentum density con-
servation

We begin by determining the energy-momentum pseudo-tensor
component t0i from (3.123) and (3.126), yielding

3

t0i =
c4

16πG

[
3

Γj
0j

(
2

Γk
ik −

2

Γi
kk

)
+

3

Γi
0j

(
2

Γk
jk −

2

Γj
kk

)
2This is the same as the one given in the book of Landau and Lifshitz

[3], namely eq. (96.8)
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−2
3

Γj
0i

2

Γk
jk +

3

Γ0
jj

(
2

2

Γ0
i0 −

2

Γi
kk +

2

Γk
ik

)
+

(
3

Γj
0k +

3

Γ0
jk

)(
2

Γk
ij +

2

Γi
jk

)]
=

1

4πGc

[
3
∂U

∂t

∂U

∂xi
+ 4

∂U

∂xj

∂Uj

∂xi
− 4

∂U

∂xj

∂Ui

∂xj

]
. (3.129)

All terms that appear in (3.129) must be worked in order to
identify the terms that can be put in a divergence form, since
their volume integral vanishes and do not contribute to (3.128)2.
We begin by writing the first term in (3.129) as

∂U

∂t

∂U

∂xi
=

1

2

∂

∂xi

(
∂U2

∂t

)
− U

∂2U

∂t∂xi
, (3.130)

while the transformation of the second term reads

∂U

∂xj

∂Uj

∂xi
=

∂

∂xj

(
U
∂Uj

∂xi

)
− U

∂2Uj

∂xi∂xj

=
∂

∂xj

(
U
∂Uj

∂xi

)
+ U

∂2U

∂t∂xi
, (3.131)

where we have used the relationship given in (2.112), namely
∂U/∂t+ ∂Ui/∂x

i = 0. For the third term in (3.129) we write it
as

∂U

∂xj

∂Ui

∂xj
=

∂2 (UUi)

∂xj∂xj
− ∂

∂xj

(
U
∂Ui

∂xj

)
− Ui∇2U. (3.132)

We have to evaluate also the term which appears in the equa-
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tions (3.130) and (3.131)

U
∂2U

∂t∂xi
= −U

2

∂4χ

∂t∂xi∂xj∂xj
= −1

2

∂

∂xj

(
U

∂3χ

∂t∂xi∂xj

)
+
1

2

∂U

∂xj

∂3χ

∂t∂xi∂xj
= −1

2

∂

∂xj

(
U

∂3χ

∂t∂xi∂xj

)
−1

2
∇2U

∂2χ

∂t∂xi
+

1

2

∂

∂xj

(
∂U

∂xj

∂2χ

∂t∂xi

)
= −1

2
∇2U

∂2χ

∂t∂xi

+
1

2

∂

∂xj

[
∂

∂xj

(
∂U

∂xj

∂2χ

∂t∂xi

)
− U

∂3χ

∂t∂xi∂xj

]
, (3.133)

where we have used the relationship ∇2χ = −2U . Now by col-
lecting the results (3.130) – (3.133) and using Poisson’s equa-
tion ∇2U = −4πGρ, we get that the component of the energy-
momentum pseudo-tensor (3.129) becomes

3

t0i = −1

c

(
4Ui − 1

2

∂2χ

∂t∂xi

)
+

1

4πGc

∂

∂xj

{
3

2

∂U2

∂t
δij

−U ∂3χ

∂t∂xi∂xj
+ 4U

(
∂Ui

∂xj
+

∂Uj

∂xi

)
+

∂

∂xj

[
U

(
1

2

∂2χ

∂t∂xi
− 4Ui

)]}
. (3.134)

The above equation can be rewritten without the divergence

terms and by considering
(
4Ui − 1

2
∂2χ
∂t∂xi

)
= Πi as

3

t0i = −Πi

c
+ divergence terms. (3.135)
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Now we can build the component of the energy-momentum
complex

1

c
Θ0i = −1

c
g

(
1

T 0i +
3

T 0i +
3

t0i
)
, (3.136)

by taking into account (3.63), (3.78) and (3.135), yielding again
the expression for the total linear momentum in the first post-
Newtonian approximation (2.295):

1

c
Θ0i = ρVi +

1

c2

[
Vi

(
V 2 + 6U + ε+

p

ρ

)
−Πi

]
= Pi.(3.137)

3.7.3 The total energy density conservation

The two approximations of the energy-momentum tensor com-
ponent t00 which follows from (3.123) and (3.126) read

2

t00 =
c4δij
16πG

[
2

2

Γk
ij

2

Γl
lk −

2

Γk
ki

2

Γl
lj −

2

Γk
li

2

Γl
kj

]
= − 7

8πG

(
∂U

∂xi

)2

, (3.138)

4

t00 =
c4

16πG

{
δij

[
2

2

Γk
ij

4

Γl
lk + 2

4

Γk
ij

2

Γl
lk − 2

2

Γk
ki

4

Γl
lj

−
2

Γk
li

2

Γl
kj −

2

Γk
li

2

Γl
kj

]
+ δijδkj

[
3

Γ0
il

3

Γ0
jk −

3

Γ0
ij

3

Γ0
kl

]}
=

1

16πGc2

{
56U

(
∂U

∂xi

)2

+

(
6
∂Ψjj

∂xi
− 4

∂Ψij

∂xj

)
∂U

∂xi
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+
1

2

[
∂Πi

∂xj

(
∂Πi

∂xj
+

∂Πj

∂xi

)
− 6

(
∂U

∂t

)2]}
. (3.139)

By taking into account the approximations of the compo-
nents of the energy-momentum tensor (3.60) and (3.61) and
of the pseudo-tensor (3.138) and (3.139) the component of the
energy-momentum complex Θ00 reads

Θ00 = −g
(

0

T 00 +
2

T 00 +
4

T 00 +
2

t00 +
4

t00
)

= ρc2

+ρ
(
V 2 + 6U + ε

)
+

ρ

c2

[
V 4 + 10UV 2 + 12U2 + 6Uε

+V 2

(
ε+

p

ρ

)
− 2ViΠi −Ψjj

]
− 7

8πG

(
∂U

∂xi

)2(
1 +

4U

c2

)
+

1

16πGc2

{
56U

(
∂U

∂xi

)2

+ 4
∂Ψjj

∂xi

∂U

∂xi

+
1

2

[
∂Πi

∂xj

(
∂Πi

∂xj
+

∂Πj

∂xi

)
− 6

(
∂U

∂t

)2]}
. (3.140)

Here (3.45) was used which is a consequence of the gauge choice.
As we did in the last section all terms that appear in (3.140)

must be worked to identify the terms that can be put in a diver-
gence form, due to the fact that their volume integrals vanish
and do not contribute to (3.128)1. Bellow we enumerate the
terms:

(i)

∂U

∂xi

∂U

∂xi
=

1

2

∂2U2

∂xi∂xi
− U∇2U =

1

2

∂2U2

∂xi∂xi
+ 4πGρU, (3.141)
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thanks to the Poisson equation ∇2U = −4πGρ,
(ii)

4
∂Ψjj

∂xi

∂U

∂xi
= 4

∂

∂xi

(
Ψjj

∂U

∂xi

)
+ 16πGρΨjj , (3.142)

where the Poisson equation was used.
(iii)

∂Πi

∂xj

∂Πi

∂xj
=

∂

∂xj

(
Πi

∂Πi

∂xj

)
−Πi∇2Πi =

∂

∂xj

(
Πi

∂Πi

∂xj

)
+16πGρViΠi −Πi

∂2U

∂t∂xi
= 16πGρViΠi

+
∂

∂xj

(
Πi

∂Πi

∂xj
−Πj

∂U

∂t

)
+

∂Πi

∂xi

∂U

∂t
= 16πGρViΠi

+
∂

∂xj

(
Πi

∂Πi

∂xj
−Πj

∂U

∂t

)
− 3

(
∂U

∂t

)2

, (3.143)

thanks to (3.8) and (3.9).
(iv)

∂Πi

∂xj

∂Πj

∂xi
=

∂

∂xj

(
Πi

∂Πj

∂xi

)
−Πi

∂2Πj

∂xi∂xj

=
∂

∂xj

(
Πi

∂Πj

∂xi

)
− ∂

∂xi

(
Πi

∂Πj

∂xj

)
+

∂Πi

∂xi

∂Πj

∂xj

=
∂

∂xj

(
Πi

∂Πj

∂xi
−Πj

∂Πi

∂xi

)
+ 9

(
∂U

∂t

)2

. (3.144)

Here (3.9) was used.
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Now collecting all results (3.141) – (3.144) the component of
the energy-momentum complex (3.140) without the divergence
terms becomes

Θ00 = ρc2 + ρ

(
V 2 +

5

2
U + ε

)
+

ρ

c2

[
V 4 + 10UV 2

+12U2 + 6Uε+ V 2

(
ε+

p

ρ

)
− 3

2
ViΠi

]
. (3.145)

This is the energy-momentum complex of the mass-energy
density. If we want to have the one for the energy density we
have to subtract the mass density (3.75) as we did to obtain the
hydrodynamic equation for the total energy density, i.e.,

E = Θ00 − ρ̃c2 = ρ

(
V 2

2
+ ε− U

2

)
+

ρ

c2

[
5

8
V 4 +

13

2
V 2U

+
21

2
U2 + 6Uε+ V 2

(
ε+

p

ρ

)
+

1

2
Ψii − 1

2
ViΠi

]
. (3.146)

At this point we have to work with the term 1
2ρΨii and for

that end we write

ρΨjj

2
= −Ψjj∇2U

8πG
= − 1

8πG

[
∂

∂xi

(
Ψjj

∂U

∂xi

)
− ∂Ψjj

∂xi

∂U

∂xi

]
= − 1

8πG

[
∂

∂xi

(
Ψjj

∂U

∂xi

)
− ∂

∂xi

(
U
∂Ψjj

∂xi

)
+ U

∂2Ψjj

∂xi∂xi

]
= − 1

8πG

{
∂

∂xi

(
Ψjj

∂U

∂xi

)
− ∂

∂xi

(
U
∂Ψjj

∂xi

)
+ U

[
32πG(V 2

+4U + ε)− 12

(
4πGρU +

1

2

∂2U2

∂xi∂xi

)]}
, (3.147)
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where we make use of (3.52) and (3.141). Now we have to eval-
uate

U
∂2U2

∂xi∂xi
=

∂

∂xi

(
U
∂U2

∂xi

)
− ∂U

∂xi

∂U2

∂xi

=
∂

∂xi

(
U
∂U2

∂xi

)
− U2∇2U − ∂

∂xi

(
U2 ∂U

∂xi

)
=

∂

∂xi

(
U
∂U2

∂xi
− U2 ∂U

∂xi

)
− 4πGρU2. (3.148)

By collecting the terms without the divergences from (3.147)
and (3.148) we have that

1

2
ρΨjj = −ρ

(
4V 2U + 4Uε+ 13U2

)
, (3.149)

and the total energy density (3.146) becomes

E = ρ

(
V 2

2
+ ε− U

2

)
+

ρ

c2

[
5

8
V 4 +

5

2
V 2U − 5

2
U2

+2Uε+ V 2

(
ε+

p

ρ

)
− 1

2
ViΠi

]
. (3.150)

As it should be, this is the same expression as the one (3.90),
which was found through the analysis of the hydrodynamic
equation for the total energy density.

Appendix A

In this appendix we give the components of the Christoffel sym-
bols that are used in the previous sections. From Section 2.3.2
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by identifying the gravitational potentials φ = −U , ξi = −Πi

and ψ = −2Φ we have

3

Γ0
00 = − 1

c3
∂U

∂t
,

5

Γ0
00 =

1

c5

(
Πi

∂U

∂xi
− 2

∂Φ

∂t

)
, (3.151)

2

Γ0
0i = − 1

c2
∂U

∂xi
,

4

Γ0
0i = − 2

c4
∂Φ

∂xi
, (3.152)

2

Γi
00 = − 1

c2
∂U

∂xi
,

4

Γi
00 =

2

c4
∂(U2 − Φ)

∂xi
− 1

c4
∂Πi

∂t
, (3.153)

3

Γ0
ij =

1

2c3

(
∂Πi

∂xj
+

∂Πj

∂xi
+ 2

∂U

∂t
δij

)
, (3.154)

2

Γi
jk =

1

c2

(
∂U

∂xj
δik +

∂U

∂xk
δij − ∂U

∂xi
δjk

)
, (3.155)

3

Γj
0i =

1

2c3

(
∂Πi

∂xj
− ∂Πj

∂xi
+ 2

∂U

∂t
δij

)
. (3.156)

The components of the Christoffel symbols
4

Γi
jk and

5

Γi
0j are

obtained from

4

Γi
jk = −1

2

(
∂

4
gij

∂xk
+

∂
4
gik
∂xj

− ∂
4
gjk
∂xi

)
+

2

gil

2

(
∂

2
gjl

∂xk
+

∂
2
gkl
∂xj

−∂
2
gjk
∂xl

)
= − 1

2c4

(
∂Ψij

∂xk
+

∂Ψik

∂xj
− ∂Ψjk

∂xi

)
− 1

c4

(
∂U2

∂xk
δij +

∂U2

∂xj
δik − ∂U2

∂xi
δjk

)
. (3.157)
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5

Γi
0j =

2

g0i

2

∂
2
g00
∂xj

− 1

2

(
∂

5
gi0
∂xj

+
1

c

∂
4
gij
∂t

− ∂
5
gj0
∂xi

)

+

2

gik

2

(
∂

3
gk0
∂xj

+
1

c

∂
2
gkj
∂t

− ∂
3
g0j
∂xk

)
= − 1

c5
Πi

∂U

∂xj

+
U

c5

(
∂Πi

∂xj
− ∂Πj

∂xi
− 2

∂U

∂t
δij

)
− 1

2c5

(
∂Ψ0i

∂xj
− ∂Ψ0j

∂xi
+

∂Ψij

∂t

)
. (3.158)

The determination of
6

Γi
00 is more involved. We begin by

writing it as

6

Γi
00 =

3

g0i

2c

∂
2
g00
∂t

+

2

gij

2

(
2

c

∂
3
g0j
∂t

− ∂
4
g00
∂xj

)

−δij
2

(
2

c

∂
5
g0j
∂t

− ∂
6
g00
∂xj

)
−

4

gij

2

∂
2
g00
∂xj

. (3.159)

The known metric tensor coefficients that appear in the above
equation are

3

g0i =
3
g0i =

Πi

c3
,

2
g00 = −2U

c2
,

2

gij = − 2
gij =

2U

c2
δij , (3.160)

4
g00 = − 2

c4
(
U2 − 2Φ

)
,

5
g0i =

Ψ0i

c5
.(3.161)

In the expression of
6

Γi
00 there is one component of the metric
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tensor which is not known till now, namely
4

gij . For the determi-

nation of
4

gij we make use of the relationship gi0gj0+gikgjk = δij
given in (2.24), which here reduces to

δij =
3

g0i
3
g0j +

(
−δik +

2

gik +
4

gik
)(

−δkj + 2
gkj +

4

gkj
)

= δij −
2

gij − 2
gij +

2

gik
2
gkj −

4

gij − 4
gij +O

(
c−6

)
. (3.162)

Now by using
2

gij = − 2
gij = 2Uδij/c

2 and
4
gij = Ψij/c

4 we get
that

4

gij = − 1

c4
(
4U2δij +Ψij

)
. (3.163)

By taking into account (3.160), (3.161) and (3.163) it follows
that (3.159) reduces to

6

Γi
00 =

1

2c6
∂Ψ00

∂xi
− 1

c6
∂Ψ0i

∂t
− Πi

c6
∂U

∂t
− 4U

c6

(
∂U2

∂xi
− ∂Φ

∂xi

)
+
2U

c6
∂Πi

∂t
− Ψij

c6
∂U

∂xj
. (3.164)

Appendix B

In this appendix we shall determine some integrals which are
used in the determination of the total energy conservation law
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(3.90). The results are based on the paper by Chandrasekhar
[1]. We are interested in calculating the volume integral of

− ρ

c2
Vi

∂Πi

∂t
= − ρ

c2
Vi

(
4
∂Ui

∂t
− 1

2

∂3χ

∂t2∂xi

)
, (3.165)

where it was considered Πi = 4Ui − 1
2

∂2χ
∂t∂xi ,.

First we shall evaluate the term with χ in (3.165) and for
that end we differentiate (2.291) with respect to xi and get

∂2χ

∂t∂xi
= −G

∫
V

ρ(x′)Vk(x
′)(xk − x′

k)(xi − x′
i)

d3x′

|x− x′|3

+G

∫
V

ρ(x′)Vi(x
′)

d3x′

|x− x′| = −Zi + Ui, (3.166)

where Ui is the vector gravitational potential (2.260) and we
have introduced the abbreviation Zi for the second integral
above. Next we write

∂3χ

∂t2∂xi
=

d(Ui − Zi)

dt
− Vj

∂(Ui − Zi)

∂xj
, (3.167)

and the two terms will be evaluated separately.

(i) The first one is the integral∫
V

ρVi

2c2
d(Ui − Zi)

dt
d3x =

∫
V

ρVi

2c2

(
∂(Ui − Zi)

∂t

+Vj
∂(Ui − Zi)

∂xj

)
d3x =

1

2c2

∫
V

(
∂ρVi(Ui − Zi)

∂t
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+
∂ρViVj(Ui − Zi)

∂xj

)
d3x− 1

2c2

∫
V

ρ(Ui − Zi)

×
(
∂ρVi

∂t
+

∂ρViVj

∂xj

)
d3x =

1

2c2
d

dt

∫
V

ρVi(Ui − Zi)d
3x

− 1

2c2

∫
ρ(Ui − Zi)

dVi

dt
d3x, (3.168)

where Reynolds transport theorem (2.282) and the Newtonian
continuity equation were used, since this term is of order 1/c2.
Now we evaluate the first term of the second integral in (3.168)
by considering the definition of Ui given by (2.260)

1

2c2

∫
V

ρUi
dVi

dt
d3x =

1

2c2

∫
V

(
∂ρViUi

∂t
+

∂ρViVjUi

∂xj

)
d3x

− 1

2c2

∫
V

ρVi

(
∂Ui

∂t
+ Vj

∂Ui

∂xj

)
d3x =

1

2c2
d

dt

∫
V

ρViUid
3x

− G

2c2

∫
V

∫
V

ρ(x)Vi(x)

{
∂

∂t

[
ρ(x′)Vi(x

′)
|x− x′|

]
+

∂

∂xj

[
ρ(x′)Vi(x

′)Vj(x
′)

|x− x′|
]}

d3xd3x′ =
1

2c2
d

dt

∫
V

ρViUid
3x

− G

2c2

∫
V

∫
V

ρ(x)ρ(x′)Vi(x)
d

dt

(
Vi(x

′)
|x− x′|

)
d3xd3x′

=
1

2c2
d

dt

∫
V

ρViUid
3x− 1

2c2

∫
V

ρUi
dVi

dt
d3x

− G

2c2

∫
V

∫
V

ρ(x)ρ(x′)Vi(x)Vi(x
′)
d

dt

1

|x− x′|d
3xd3x′.(3.169)
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Hence from (3.168) and (3.169) we get that∫
V

ρVi

2c2
d(Ui − Zi)

dt
d3x =

1

2c2

{∫
ρZi

dVi

dt
d3x

+
d

dt

∫
V

ρVi

(
Ui

2
− Zi

)
d3x+

G

2

∫
V

∫
V

ρ(x)ρ(x′)

×Vi(x)Vi(x
′)
d

dt

1

|x− x′|d
3xd3x′

}
. (3.170)

(ii) For the evaluation of the second term in (3.167) we de-
termine first the expression

Wi(x) = Vj
∂(Ui − Zi)

∂xj
= Vj(x)

∂

∂xj

{
G

∫
V

ρ(x′)Vi(x
′)

|x− x′| d3x′

−G
∫
V

ρ(x′)Vk(x
′)(xk − x′

k)
(xi − x′

i)

|x− x′|3 d
3x′
}

= −G
∫
V

ρ(x′)d3x′

|x− x′|3
{
Vj(x)Vj(x

′)(xi − x′
i)

+
[
Vi(x

′)Vj(x) + Vi(x)Vj(x
′)
]
(xj − x′

j)

−3Vj(x)(xj − x′
j)Vk(x

′)(xk − x′
k)

xi − x′
i

|x− x′|2
}
. (3.171)

Now we integrate over the volume the above expression

− 1

2c2

∫
V

ρ(x)Wi(x)Vi(x)d
3x =

G

4c2

∫
V

∫
V

ρ(x)ρ(x′)

×
{[

Vj(x)Vj(x)Vi(x
′) + 2Vj(x)Vj(x

′) (Vi(x)− Vi(x
′))
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−Vj(x
′)Vj(x

′)Vi(x)

]
(xi − x′

i) + 3Vi(x
′)(xi − x′

i)Vj(x)

×(xj − x′
j)Vk(x

′)
(xk − x′

k)

|x− x′|2 − 3Vi(x)(xi − x′
i)Vj(x

′)

×(xj − x′
j)Vk(x)

(xk − x′
k)

|x− x′|2
}

d3xd3x′

|x− x′|3 .(3.172)

Note that in (3.172) we have considered the interchanging of
the primed and unprimed labels. This expression can be put in
another form by noting that

1

4c2
d

dt

∫
V

ρViZid
3x =

1

4c2

∫
V

[
∂ρViZi

∂t
+

∂ρViZiVj

∂xj

]
d3x

=
1

4c2

∫
V

ρ(x)

[
Zi(x)

dVi(x)

dt
+ Vi(x)

dZi(x)

dt

]
d3x, (3.173)

where the Reynolds transport theorem and the Newtonian conti-
nuity equation were used. The evaluation of dZi(x)/dt by using
its definition given in (3.166) reads

1

4c2
dZi(x)

dt
=

G

4c2
d

dt

∫
V

ρ(x′)Vk(x
′)(xk − x′

k)(xi − x′
i)d

3x′

|x− x′|3

=
G

4c2

∫
V

ρ(x′)
dVk(x

′)
dt

(xk − x′
k)(xi − x′

i)
d3x′

|x− x′|3

+
G

4c2

∫
V

ρ(x′)
d3x′

|x− x′|3
{
Vj(x

′)(xj − x′
j) [Vi(x)− Vi(x

′)]

+(xi − x′
i)Vj(x

′) [Vj(x)− Vj(x
′)]− 3Vj(x

′)(xj − x′
j)

×(xi − x′
i) [Vk(x)− Vk(x

′)]
(xk − x′

k)

|x− x′|2
}
, (3.174)
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while its volume integral becomes

1

4c2

∫
V

ρ(x)Vi(x)
dZi(x)

dt
d3x =

G

4c2

∫
V

∫
V

ρ(x)ρ(x′)

×dVk(x
′)

dt
(xk − x′

k)Vi(x)(xi − x′
i)

d3x′

|x− x′|3

+
G

4c2

∫
V

∫
V

ρ(x)Vi(x)ρ(x
′)

d3x′

|x− x′|3
{
Vj(x

′)

×(xj − x′
j) [Vi(x)− Vi(x

′)] + (xi − x′
i)Vj(x

′)
× [Vj(x)− Vj(x

′)]− 3Vj(x
′)(xj − x′

j)

×(xi − x′
i) [Vk(x)− Vk(x

′)]
(xk − x′

k)

|x− x′|2
}
. (3.175)

Hence we can write (3.172) thanks to (3.173) and (3.175) as

− 1

2c2

∫
V

ρ(x)Wi(x)Vi(x)d
3x =

1

4c2
d

dt

∫
V

ρViZid
3x

− G

4c2

∫
V

∫
V

ρ(x)ρ(x′)Vi(x)Vi(x
′)
d

dt

1

|x− x′|d
3xd3x′

− 1

2c2

∫
V

ρ(x)Zi(x)
dVi(x)

dt
d3x. (3.176)

Now by collecting the results (3.170) and (3.176) the volume
integral of (3.167), yields

1

2c2

∫
V

ρVi
∂3χ

∂t2∂xi
d3x =

1

4c2
d

dt

∫
V

ρVi (Ui − Zi) d
3x. (3.177)
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For the determination of the volume integral of (3.165) we
need also to know the following integral

1

c2

∫
V

ρVi
∂Ui

∂t
d3x =

1

c2

∫
V

ρVi
dUi

dt
d3x− 1

c2

∫
V

ρViVj
∂Ui

∂xj
d3x.

(3.178)
By following the same methodology above one finds that

1

c2

∫
V

ρVi
∂Ui

∂t
d3x =

1

2c2
d

dt

∫
V

ρViUid
3x. (3.179)

Finally the volume integral of (3.165) becomes

− 1

c2

∫
V

ρVi
∂Πi

∂t
= − 1

c2
d

dt

∫
V

ρVi

(
7

4
Ui +

1

4
Zi

)
d3x

= − 1

2c2
d

dt

∫
V

ρViΠid
3x, (3.180)

thanks to (3.165) and (3.166).
Another relationship that is useful to the calculation of the

total energy conservation law is obtained from∫
V

ρVi

(
ϕ
∂U

∂xi
+

∂Φ

∂xi

)
d3x = −G

∫
V

∫
V

ρ(x)ρ(x′)

×
[
ϕ(x) + ϕ(x′)

]Vi(x)(xi − x′
i)

|x− x′|3 d3xd3x′

= −G

2

∫
V

∫
V

ρ(x)ρ(x′)
[Vi(x)− Vi(x

′)](xi − x′
i)

|x− x′|3

×
[
ϕ(x) + ϕ(x′)

]
d3xd3x′ =

G

2

∫
V

∫
V

ρ(x)ρ(x′)
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×
[
ϕ(x) + ϕ(x′)

] d
dt

1

|x− x′|d
3xd3x′

= G

∫
V

d3xρ(x)ϕ(x)

∫
V

d3x′ρ(x′)
d

dt

1

|x− x′|
= G

∫
V

d3xρ(x)ϕ(x)
d

dt

∫
V

d3x′ ρ(x′)
|x− x′|

=

∫
V

ρϕ
dU

dt
d3x. (3.181)

Hence we conclude from this equation that
∫
V
ρVi

∂Φ
∂xi d

3x =∫
ρϕ∂U

∂t d
3x.
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CHAPTER 4

POST-NEWTONIAN
KINETIC THEORY

In this chapter a kinetic theory of relativistic gases is developed
within the framework of the post-Newtonian approximation.
The first post-Newtonian approximation of the Boltzmann equa-
tion for collisionless systems was first determined in the papers
[1, 2]. Here the Boltzmann equation, the Maxwell-Jüttner dis-
tribution function, the particle four-flow the energy-momentum
tensor and the Eulerian hydrodynamic equations are determined
from a kinetic theory in the first and second post-Newtonian
approximations. The derivation of the post-Newtonian Boltz-
mann equation follows the methodology that was outlined in
the book [3] and in Section 1.3, while the determination of the
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164 CHAPTER 4. POST-NEWTONIAN KINETIC

post-Newtonian Maxwell-Jüttner distribution function and of
the particle four-flow and energy-momentum tensor follow the
work [4]. Another issue developed here are the Jeans equations
in the first post-Newtonian approximation for stationary spher-
ically symmetrical and axisymmetrical self-gravitating systems.

4.1 First post-Newtonian approxima-
tion

4.1.1 Post-Newtonian Boltzmann equation

We start by writing the equation of motion of the gas particles

d2xμ

dτ2
+ Γμ

νλ
dxν

dτ

dxλ

dτ
= 0, (4.1)

and computing the acceleration which follows from this equation
(see Weinberg [5])

d2xi

d(x0)2
=

(
dx0

dτ

)−1
d

dτ

[(
dx0

dτ

)−1
dxi

dτ

]

=

(
dx0

dτ

)−2 [
d2xi

dτ2
−
(
dx0

dτ

)−1
d2x0

dτ2
dxi

dτ

]
. (4.2)

The above equation can be rewritten by using (4.1) as

d2xi

d(x0)2
=

(
dx0

dτ

)−2
dxμ

dτ

dxν

dτ

[
Γ0

μν

(
dx0

dτ

)−1
dxi

dτ
− Γi

μν

]
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= −Γi
00 − Γi

jk
dxj

dx0

dxk

dx0
− 2Γi

0j
dxj

dx0

+
dxi

dx0

[
Γ0

00 + 2Γ0
0j
dxj

dx0
+ Γ0

jk
dxj

dx0

dxk

dx0

]
. (4.3)

If we use the expressions for the components of the Christoffel
symbols (2.79) – (2.84), the post-Newtonian approximation of
(4.3) up to order O(c−4) becomes

d2xi

dt2
= c2

{
−

2

Γi
00 −

4

Γi
00 − 2

vj
c

3

Γi
0j − vjvk

c2

2

Γi
jk +

vi
c

[
3

Γ0
00

+2
vj
c

2

Γ0
0j +

vjvk
c2

3

Γ0
jk

]}
= − ∂φ

∂xi
+

1

c2

[
4vivj

∂φ

∂xj
− ∂ψ

∂xi

−4φ ∂φ

∂xi
+ 3vi

∂φ

∂t
− ∂ξi

∂t
− vj

(
∂ξi
∂xj

− ∂ξj
∂xi

)
− v2

∂φ

∂xi

]
.(4.4)

Note that the underlined term above was not considered, since
it is of order O(c−5).

Now we can write the one-particle distribution function f =
f(x,v, t) as f(xμ(τ), vi(τ)) where τ is the proper time along the
world line of the one-particle distribution function. Hence the
variation of the one-particle distribution function with respect
to the proper time reads

df(xμ(τ), vi(τ))

dτ
=

∂f

∂xμ

dxμ

dτ
+

∂f

∂vi

dvi
dτ

= uμ ∂f

∂xμ
+

∂f

∂vi

dvi
dt

dt

dτ
,

(4.5)
where uμ = (u0, u0vi/c) is the four-velocity of the gas particles.
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The first term of the second equality up to the order O(c−2) is

uμ ∂f

∂xμ
= u0 ∂f

∂x0
+ ui ∂f

∂xi
=

[
1 +

1

c2

(
v2

2
− φ

)](
∂f

∂t
+ vi

∂f

∂xi

)
,

(4.6)
where we have used the corresponding expressions (2.87) and
(2.88) for u0 and ui through the substitution of the hydrody-
namic velocities Uμ and V by the particle velocities uμ and v.

The second term of the last equality in (4.5) up to the order
O(c−2) becomes

∂f

∂vi

dvi
dt

dt

dτ
=

∂f

∂vi

{
− ∂φ

∂xi
+

1

c2

[
4vivj

∂φ

∂xj
+ 3vi

∂φ

∂t

−
(
3v2

2
+ 3φ

)
∂φ

∂xi
− ∂ψ

∂xi
− ∂ξi

∂t
− vj

(
∂ξi
∂xj

− ∂ξj
∂xi

)}
, (4.7)

thanks to (2.86) and (4.4).
By collecting the results (4.5) – (4.7) we get the Boltzmann

equation in the first post-Newtonian approximation[
∂f

∂t
+ vi

∂f

∂xi

][
1 +

1

c2

(
v2

2
− φ

)]
− ∂φ

∂xi

∂f

∂vi

+
1

c2

[
4vivj

∂φ

∂xj
+ 3vi

∂φ

∂t
−
(
3v2

2
+ 3φ

)
∂φ

∂xi

− ∂ψ

∂xi
− ∂ξi

∂t
− vj

(
∂ξi
∂xj

− ∂ξj
∂xi

)]
∂f

∂vi
= Q(f, f), (4.8)

where we have introduced the collision operator of the Boltz-
mann equation Q(f, f), which refers to the binary collision of
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the particles and is given in terms of an integral of the prod-
uct of two particle distribution functions at collision. Note that
without the terms of order O (c−2

)
equation (4.8) reduces to

(1.1).

4.1.2 Post-Newtonian Maxwell-Jüttner
distribution function

The relativistic equilibrium distribution function is the Maxwell-
Jüttner distribution function (1.19) which was introduced in
Section 1.2 and reads

f(x,p, t) =
n

4πm2ckTK2(ζ)
exp

(
−pμUμ

kT

)
. (4.9)

For the determination of the Maxwell-Jüttner distribution
function in the post-Newtonian approximation we need to eval-
uate the exponential term in (4.9). For that end we intro-
duce the components of the four-velocity of the gas particles
uμ = (u0, u0vi/c) which are obtained from the components of
the hydrodynamic four-velocity Uμ = (U0, U0Vi/c) given by
(2.87) and (2.88) and replacing U0 and Vi by u0 and vi, respec-
tively. Hence, we have ui = u0vi/c and

u0

c
= 1 +

1

c2

(
v2

2
− φ

)
+

1

c4

(
3v4

8
− 5v2φ

2
+

φ2

2
− ψ + ξivi

)
.

(4.10)
Next we introduce the peculiar velocity Vi = vi − Vi – which is
the difference of the fluid particle velocity v and the hydrody-
namic velocity V – in the expression for the components of the
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particle velocity and get

gμνp
μUν

kT
=

m
(
g00u

0U0 + g0iu
0U i + g0iu

iU0 + giju
iU j

)
kT

=
m

kT

{
c2 +

V2

2
+

1

c2

[
3V4

8
− 2φV2 +

V 2V2

2

+
(ViVi)2

2
+ (ViVi)V2

]}
. (4.11)

In the above equation the components of the metric tensor (2.74)
– (2.78) were introduced.

Up to 1/c4 order the modified Bessel function of second kind
reads

1

K2(ζ)
=

√
2mc2

πkT
e

mc2

kT

(
1− 15kT

8mc2
+

345(kT )2

128m2c4
+ . . .

)
. (4.12)

thanks to the asymptotic expansion (1.76). Hence, by tak-
ing into account (4.9), (4.11) and (4.12) we get the first post-
Newtonian approximation of the Maxwell-Jüttner distribution
function

f =
n

(2πmkT )
3
2

e−
mV2

2kT

{
1− m

kTc2

[
3V4

8
+

15k2T 2

8m2

−2φV2 +
(ViVi)2

2
+

V 2V2

2
+ (ViVi)V2

]}
. (4.13)

Here we have considered the terms with the factor 1/c2 of small
order and used the approximation e−x ≈ 1− x.
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4.1.3 Post-Newtonian macroscopic fields

The expressions for the particle four-flow Nμ and for the energy-
momentum tensor Tμν in terms of the one-particle distribution
function were introduced in Chapter 1 (see (1.53) and (1.54))
and their expressions as function of the particle four-velocity uμ

are

Nμ = m3c

∫
uμ√−gf d

3u

u0
, Tμν = m4c

∫
uμuν√−gf d

3u

u0
.

(4.14)
The transformation of the differential element of integration

d3u = du1du2du3 in terms of the one related with the peculiar
velocity d3V = dV1dV2dV3 is given by the determinant of the
Jacobian matrix

d3u = |J |d3V, where J =
∂(u1, u2, u2)

∂(V1,V2,V3) . (4.15)

From the expression of ui in terms of the peculiar velocity Vi
one can obtain that

∂ui

∂Vj = δij

(
1 +

V2 + V 2 + 2VkVk
2c2

− φ

c2

)
+

(Vi + Vi)(Vj + Vj)
c2

,

(4.16)
and it follows by considering terms up to the 1/c2 order that

d3u =

{
1 +

1

c2

[
5(V 2 + 2VkVk + V2)

2
− 3φ

]}
d3V. (4.17)

Likewise from the expressions for the components of the metric
tensor (2.74) – (2.78) we can build the relation up to the 1/c2
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order

u0 = (g00u
0 + g0iu

i) = g00u
0

(
1 +

g0iu
i

g00u0

)
= u0

(
1 + 2

φ

c2

)
.

(4.18)
Now by considering that

√−g = 1−2φ/c2 we have the following
relationship up to the 1/c2 order

√−g d3u
u0

=

{
1 +

1

c2

[
5(V 2 + 2VkVk + V2)

2
− 7φ

]}
d3V
u0

.(4.19)

Another expression for the integration element which will be
used in the next sections is

√−g d3u
u0

=

{
1 +

1

c2
[
2v2 − 6φ

]} d3v

c
, (4.20)

thanks to (4.10). Here we have written the integration element
as function of the particle velocity v.

From the knowledge of the post-Newtonian Maxwell-Jüttner
distribution function (4.13) and the element of integration (4.19)
we can calculate the expressions for the particle four-flow and
the energy-momentum tensor in this approximation.

The time component of the particle four-flow (4.14)1 can be
written as

N0 = m3c

∫
u0√−gf d

3u

u0
=

∫ ∞

0

m3cne−
mV2

2kT 4πV2

(2πmkT )
3
2

dV

×
{
1− m

kTc2

[
3V4

8
+

15k2T 2

8m2
− 2φV2 +

(ViVi)2
2

+
V 2V2

2
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+(ViVi)V2

]
+

1

c2

[
5(V 2 + 2VkVk + V2)

2
− 7φ

]}
= nc

[
1 +

1

c2

(
V 2

2
− φ

)]
. (4.21)

Above we have introduced spherical coordinates to express the
integral element d3V = V2 sin θdθdϕ, where 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2π and performed the integrations in these angles
whose result is 4π. Furthermore, we have used the expressions
for the Gaussian integrals in the Appendix A. Note that the
integrals of the odd velocities Vi are zero.

The expression for N0 given by (4.21) matches with the one
of the phenomenological equation (2.208).

The components of the energy-momentum tensor are ob-
tained through integration of (4.14)2 by using (4.19) and (4.13),
yielding

T 00 = m4c

∫
u0u0√−gf d

3u

u0
=

∫ ∞

0

m4c2ne−
mV2

2kT 4πV2

(2πmkT )
3
2

dV

×
{
1− m

kTc2

[
3V4

8
+

15k2T 2

8m2
− 2φV2 +

(ViVi)2
2

+
V 2V2

2
+ (ViVi)V2

]
+

1

c2

[
3(V 2 + 2VkVk + V2)− 8φ

]}
= ρc2

[
1 +

1

c2

(
V 2 − 2φ+ ε

)]
, (4.22)

T 0i = m4c

∫
u0ui√−gf d

3u

u0
=

∫ ∞

0

m4cne−
mV2

2kT 4πV2

(2πmkT )
3
2

dV
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×(Vi + Vi)
{
1− m

kTc2

[
3V4

8
+

15k2T 2

8m2
− 2φV2 +

(ViVi)2
2

+
V 2V2

2
+ (ViVi)V2

]
+

1

c2

[
3(V 2 + 2VkVk + V2)− 8φ

]}
= ρcVi

[
1 +

1

c2

(
V 2 − 2φ+ ε+

p

ρ

)]
, (4.23)

T ij = m4c

∫
uiuj√−gf d

3u

u0
=

∫ ∞

0

m4ne−
mV2

2kT 4πV2

(2πmkT )
3
2

dV

×(Vi + Vi)(Vj + Vj)
{
1− m

kTc2

[
3V4

8
+

15k2T 2

8m2

−2φV2 +
(ViVi)2

2
+

V 2V2

2
+ (ViVi)V2

]
+

1

c2

[
3(V 2 + 2VkVk + V2)− 8φ

]}
= p

[
1 +

2φ

c2

]
δij

+ρ

[
1 +

1

c2

(
V 2 − 2φ+ ε+

p

ρ

)]
ViVj . (4.24)

The above expressions match the phenomenological ones (2.93)
– (2.95), the only difference is that here the specific internal
energy refers to the one of a monatomic gas ε = 3kT/2m. Note
that above p = nkT is the pressure of a perfect fluid.
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4.1.4 Post-Newtonian transfer and Eulerian
hydrodynamic equations

Here we follow the methodology described in Chapter 1 and
multiply the Boltzmann equation (4.8) by an arbitrary func-
tion Ψ(x,v, t) and integrate the resulting equation by using
the invariant integration element (4.20). Hence it follows the
post-Newtonian version of the Maxwell-Enskog transfer equa-
tion, namely

∂

∂t

∫
Ψ

[
1 +

1

c2

(
5v2

2
− 7φ

)]
fd3v +

∂

∂xi

∫
Ψvi

[
1

+
1

c2

(
5v2

2
− 7φ

)]
fd3v − 2

c2

∫
Ψ

[
∂φ

∂t
+

∂φ

∂xi
vi

]
fd3v

−
∫ [

∂Ψ

∂t
+

∂Ψ

∂xi
vi

][
1 +

1

c2

(
5v2

2
− 7φ

)]
fd3v

+
∂φ

∂xi

∫
∂Ψ

∂vi

[
1 +

1

c2

(
7

2
v2 − 3φ

)]
fd3v

− 1

c2

∫
∂Ψ

∂vi

[
4vivj

∂φ

∂xj
− vj

(
∂ξi
∂xj

− ∂ξj
∂xi

)
+ 3vi

∂φ

∂t
− ∂ψ

∂xi

−∂ξi
∂t

]
fd3v =

∫
Ψ

{
1 +

1

c2
[
2v2 − 6φ

]}Q(f, f)d3v. (4.25)

Likewise in Chapter 1, for the divergence term in the velocity
space we used the divergence theorem and considered that the
one-particle distribution function vanishes at the surface situ-
ated far away in the velocity space.

As usual in kinetic theory of gases the hydrodynamic equa-
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tions for the mass, mass-energy and momentum densities are
obtained from the transfer equation (4.25) by choosing appro-
priated values for the arbitrary function Ψ(x,v, t).

We begin by choosing Ψ = m4 in (4.25) and considering
the equilibrium distribution function (4.13). By performing the
integrations we get

∂

∂t

{
ρ

[
1 +

1

c2

(
V 2

2
− φ

)]}
+

∂

∂xi

{
ρVi

[
1

+
1

c2

(
V 2

2
− φ

)]}
=

2ρ

c2

(
∂φ

∂t
+ Vi

∂φ

∂xi

)
=

2

c2

(
∂ρφ

∂t
+

∂ρφVi

∂xi

)
− 2φ

c2

(
∂ρ

∂t
+

∂ρVi

∂xi

)
. (4.26)

Now we use the Newtonian approximation of the continuity
equation

∂ρ

∂t
+

∂ρVi

∂xi
= 0, (4.27)

for the terms of order O(c−2) in (4.26). If we introduce the mass
density

ρ∗ = ρ

[
1 +

1

c2

(
V 2

2
− 3φ

)]
, (4.28)

we arrive at the continuity equation for the mass density ρ∗ in
the post-Newtonian approximation, namely

∂ρ∗

∂t
+

∂ρ∗Vi

∂xi
= 0. (4.29)
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The above equations match equations (2.122) and (2.123) of the
phenomenological theory.

The hydrodynamic equation for the mass-energy density is
obtained by choosing Ψ = m4u0 in (4.25) and following the
same methodology, yielding

∂

∂t

{
ρ

[
1 +

1

c2
(
V 2 − 2φ+ ε

) ]}
+

∂

∂xi

{
ρVi

[
1

+
1

c2

(
V 2 − 2φ+ ε+

p

ρ

)]}
− ρ

c2
∂φ

∂t
= 0. (4.30)

In terms of σ = ρ
[
1 + 1

c2

(
V 2 − 2φ+ ε+ p

ρ

)]
, it can be written

as

∂σ

∂t
+

∂σVi

∂xi
− 1

c2

(
ρ
∂φ

∂t
+

∂p

∂t

)
= 0, (4.31)

which matches equation (2.127) of the phenomenological theory.
For the momentum density we choose Ψ = m4ui in (4.25),

use the distribution function (4.13), perform the integrations
and get

∂

∂t

{
ρ

[
1 +

1

c2

(
V 2 − 2φ+ ε+

p

ρ

)]
Vi

}
+

∂

∂xi

[
p

(
1 +

2φ

c2

)]
− 4

ρ

c2
Vi

(
∂φ

∂t
+ Vj

∂φ

∂xj

)
+

∂

∂xj

{
ρ

[
1 +

1

c2

(
V 2 − 2φ+ ε+

p

ρ

)]
ViVj

}
+ρ

[
1 +

1

c2

(
2V 2 + 2φ+ ε− p

ρ

)]
∂φ

∂xi
+

ρ

c2

(
∂ξi
∂t

+
∂ψ

∂xi

)
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+
ρ

c2
Vj

(
∂ξi
∂xj

− ∂ξj
∂xi

)
= 0. (4.32)

By introducing σ and the material time derivative d/dt = ∂/∂t+
V i∂/∂xi the above equation can be rewritten as

∂σVi

∂t
+

∂σViVj

∂xj
+ ρ

∂φ

∂xi

[
1 +

2

c2

(
V 2 − φ+

ε

2
+

3p

2ρ

)]
+

∂

∂xi

[
p

(
1− 2φ

c2

)]
− ρ

c2
Vj

∂ξj
∂xi

+
ρ

c2
∂ψ

∂xi

−4ρ

c2
d

dt

(
Viφ− ξi

4

)
= 0. (4.33)

Here we have used the Newtonian expression of the momen-
tum density hydrodynamic equation (2.129) for the terms of
order O (c−2

)
. The above equation matches (2.131) of the phe-

nomenological theory.
It is noteworthy to call attention to the fact that the right-

hand side of the Boltzmann equation vanishes for the choices
m4,m4u0,m4ui, since mass, momentum and energy densities
are conservative quantities at collision.

4.2 Second post-Newtonian
approximation

In this section we shall derive the Boltzmann equation and
the Maxwell-Jüttner distribution function in the second post-
Newtonian approximation by using the Chandrasekhar poten-
tials and the results of Chapter 3.
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4.2.1 Post-Newtonian Boltzmann equation

We start by writing the acceleration term (4.4) and taking into
account the higher order Christoffel symbols up to O (c−6

)
.

From the expressions for the Christoffel symbols given in the
Appendix A of Chapter 3 we get

d2xi

dt2
= c2

{
−

2

Γi
00 −

4

Γi
00 −

6

Γi
00 − 2

vj
c

(
3

Γi
0j +

5

Γi
0j

)
+
vi
c

[
3

Γ0
00 +

5

Γ0
00 + 2

vj
c

(
2

Γ0
0j +

4

Γ0
0j

)
+

vjvk
c2

3

Γ0
jk

]
−vjvk

c2

(
2

Γi
jk +

4

Γi
jk

)}
=

∂U

∂xi
− vi

c2

[
∂U

∂t
+ 2vj

∂U

∂xj

]
− 1

c2

(
1− 2U

c2

)[
2
∂
(
U2 − Φ

)
∂xi

+

(
2vivj

∂U

∂xj
− v2

∂U

∂xi

)
−∂Πi

∂t
− vj

(
∂Πi

∂xj
− ∂Πj

∂xi
− 2δij

∂U

∂t

)]
+

vi
c4

[
vjvk

∂Πj

∂xk

+v2
∂U

∂t

]
+

vi
c4

[
Πj

∂U

∂xj
− 2

∂Φ

∂t
− 4vj

∂Φ

∂xj

]
+

vjvk
2c4

[
2
∂Ψij

∂xk

−∂Ψjk

∂xi

]
+

1

c4

[
Πi

∂U

∂t
+

∂Ψi0

∂t
− 1

2

∂Ψ00

∂xi
+Ψij

∂U

∂xj

]
+
2vj
c4

[
Πi

∂U

∂xj
+

1

2

∂Ψi0

∂xj
− 1

2

∂Ψj0

∂xi
+

1

2

∂Ψij

∂t

]
. (4.34)

According to (4.5) the variation of the one-particle distribu-
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tion function with respect to the proper time is given by

df(xμ(τ), vi(τ))

dτ
=

∂f

∂xμ

dxμ

dτ
+

∂f

∂vi

dvi
dτ

= uμ ∂f

∂xμ
+

∂f

∂vi

d2xi

dt2
dt

dτ
,

(4.35)
where the time component of the four-velocity of the gas parti-
cles in the second post-Newtonian approximation is given by

u0 = c

{
1 +

1

c2

(
v2

2
+ U

)
+

1

c4

(
3v4

8
+

5Uv2

2

+
U2

2
+ 2Φ−Πivi

)}
, (4.36)

which follows from (3.10) by replacing the components of the
hydrodynamic velocities by the gas particles velocities. The
spatial component of the four velocity of the gas particles is
ui = u0vi/c and dt/dτ = u0/c.

The Boltzmann equation in the second post-Newtonian ap-
proximation follows from (4.35) by taking into account (4.34)
and (4.36) and reads[

∂f

∂t
+ vi

∂f

∂xi
+

∂f

∂vi

∂U

∂xi

][
1 +

1

c2

(
v2

2
+ U

)
+

1

c4

(
3v4

8

+
5v2U

2
+

U2

2
+ 2Φ−Πjvj

)]
+

1

c2
∂f

∂vi

{[
1 +

1

c2

(
v2

2

−U
)][

vj

(
∂Πi

∂xj
− ∂Πj

∂xi

)
− 2vi

∂U

∂t
+

∂Πi

∂t
− 2

∂
(
U2 − Φ

)
∂xi

−2vivj ∂U
∂xj

+ v2
∂U

∂xi

]
− vi

[
1 +

1

c2

(
v2

2
+ U

)][
∂U

∂t
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+2vj
∂U

∂xj

]
+

vjvk
2c2

[
2
∂Ψij

∂xk
− ∂Ψjk

∂xi

]
+

1

c2

[
Πi

∂U

∂t
+

∂Ψi0

∂t

−1

2

∂Ψ00

∂xi
+Ψij

∂U

∂xj

]
+

vi
c2

[
vjvk

∂Πj

∂xk
+ v2

∂U

∂t

]
+
2vj
c2

[
Πi

∂U

∂xj
+

1

2

∂Ψi0

∂xj
− 1

2

∂Ψj0

∂xi
+

1

2

∂Ψij

∂t

]
+
vi
c2

[
Πj

∂U

∂xj
− 2

∂Φ

∂t
− 4vj

∂Φ

∂xj

]}
= Q(f, f). (4.37)

4.2.2 Post-Newtonian Maxwell-Jüttner
distribution function

The determination of the Maxwell-Jüttner distribution function
in the second post-Newtonian approximation follows the same
methodology described in Section 4.2. First we compute the
term in the exponential up to the order 1/c4, namely

gμνp
μUν

kT
=

m

kT

{
c2 +

V2

2
+

1

c2

[
2UV2 +

V 2V2

2

+
(ViVi)2

2
+ (ViVi)V2 +

3V4

8

]
+

1

c4

[
3U2V2

+4UV 2V2 + 4U(ViVi)2 + 8U(ViVi)V2 + 3UV4

+
V 4V2

2
+ V 2(ViVi)2 + 2V 2(ViVi)V2 +

3V 2V4

4

+(ViVi)3 + 9(ViVi)2V2

4
+

3(ViVi)V4

2
+

5V6

16
−ΠiVi(ViVi)
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−ΠiViV2 −ΠiViV2 + 2ΦV2 − ViVjΨij

2

]}
, (4.38)

thanks to (3.2) – (3.4), (3.10) and (4.36).

The equilibrium Maxwell-Jüttner distribution function in
the second post-Newtonian approximation is obtained from the
insertion of (4.38) into (4.9) and considering the approximation
e−x ≈ 1− x+ x2/2. Up to (1/c4)–terms the resulting equation
reads

f =
n

(2πmkT )
3
2

e−
mV2

2kT

{
1− 1

c2

[
15kT

8m
+

m(ViVi)2
2kT

+
2mUV2

kT
+

3mV4

8kT
+

mV 2V2

2kT
+

m(ViVi)V2

kT

]
+

1

c4

[
2m2U2V4

(kT )2
+

m2UV 2V4

(kT )2
+

3m2UV6

4(kT )2
+

m2V 4V4

8(kT )2

+
m2U(ViVi)2V2

(kT )2
+

2m2U(ViVi)V4

(kT )2
+

3m2V 2V6

16(kT )2

+
m2(ViVi)4
8(kT )2

+
m2V 2(ViVi)2V2

4(kT )2
+

m2V 2(ViVi)V4

2(kT )2

+
m2(ViVi)3V2

2(kT )2
+

11m2(ViVi)2V4

16(kT )2
+

3m2(ViVi)V6

8(kT )2

+
9m2V8

128(kT )2
+

345(kT )2

128m2
− 3mU2V2

kT
− 4mUV 2V2

kT

−4mU(ViVi)2
kT

− 8mU(ViVi)V2

kT
− 3mUV4

kT
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−mV 4V2

2kT
− mV 2(ViVi)2

kT
− 2mV 2(ViVi)V2

kT

−3mV 2V4

4kT
− m(ViVi)3

kT
− 5mV6

16kT
+

mΠiViV2

kT

−9m(ViVi)2V2

4kT
+

mΠiVi(ViVi)
kT

− 3m(ViVi)V4

2kT

+
mΠiViV2

kT
− 2mΦV2

kT
+

mViVjΨij

2kT
+

15UV2

4

+
15V 2V2

16
+

15(ViVi)2
16

+
15(ViVi)V2

8
+

45V4

64

]}
. (4.39)

4.2.3 Post-Newtonian macroscopic fields

To determine the particle four-flow and the energy-momentum
tensor components we need to know the integration element√−g d3u/u0 in the second post-Newtonian approximation. To
obtain it we begin by determining the Jacobian matrix of the
transformation d3u = |J |d3v from (4.36) which leads to

d3u =

[
1 +

1

c2

(
5v2

2
+ 3U

)
+

1

c4

(
35v4

8
+

9U2

2
+ 6Φ

+
35Uv2

2
− 4Πivi

)]
d3v. (4.40)

Moreover from the expressions for the components of the metric
tensor (3.2) – (3.4) and of the particle four-velocity (4.36) we
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have that

u0 = (g00u
0 + g0iu

i) = u0

[
1− 2

U

c2
+

1

c4
(
2U2 − 4Φ + Πivi

)]
,

(4.41)

√−g = 1 +
2U

c2
− 1

c4

(
U2 + 2Φ +

Ψkk

2

)
. (4.42)

Hence up to the 1/c4 order we get the following relationship
√−g d3u

u0
=

[
1 +

1

c2

(
5v2

2
+ 7U

)
+

1

c4

(
35v4

8

+
55Uv2

2
+

43U2

2
+ 8Φ− Ψkk

2
− 5Πivi

)]
d3v

u0

=

{
1 +

1

c2

[
2v2 + 6U

]
+

1

c4

[
3v4 + 20Uv2

+15U2 + 6Φ− 4Πivi − Ψkk

2

]}
d3v

c
. (4.43)

From the knowledge of the equilibrium Maxwell-Jüttner dis-
tribution function (4.39) and of the integration element (4.43) it
is possible to determine the components of the particle four-flow
and energy-momentum tensor in the second post-Newtonian ap-
proximation. Indeed, the insertion of (4.39) and (4.43) into the
definition of the particle four-flow (4.14)1 and integration of the
resulting equation leads to

N0 = nc

[
1 +

1

c2

(
V 2

2
+ U

)
+

1

c4

(
3V 4

8
+

5V 2U

2
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+
U2

2
+ 2Φ−ΠiVi

)]
, (4.44)

and N i = N0Vi/c.
The components of the energy-momentum tensor follow from

the insertion of the Maxwell-Jüttner distribution function (4.39)
and the integration element (4.43) into (4.14)2 and integration
of the resulting equations. The time component of the energy-
momentum tensor reads

T 00 = ρc2
[
1 +

1

c2

(
V 2 + 2U +

3kT

2m

)
+

1

c4

(
V 4 + 6UV 2

+2U2 +
5kTV 2

2m
+

15(kT )2

8m2
+

3kTU

m
− 2ΠiVi + 4Φ

)]
. (4.45)

If we make use of the thermal equation of state and the expres-
sion of the specific internal energy

p =
ρkT

m
, ε =

3kT

2m

(
1 +

5kT

4mc2

)
, (4.46)

the resulting expression for the time component of the energy-
momentum tensor becomes

T 00 = ρc2
{
1 +

1

c2

(
V 2 + 2U + ε

)
+

1

c4

[
V 4 + 6UV 2

+2U2 +

(
ε+

p

ρ

)
V 2 + 2εU − 2ΠiVi + 4Φ

]}
. (4.47)

The final expression for the energy-momentum tensor space-
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time components is

T 0i = ρcVi

[
1 +

1

c2

(
V 2 + 2U +

5kT

2m

)
+

1

c4

(
V 4 + 6UV 2

+2U2 +
5kTV 2

2m
+

15(kT )2

8m2
+

5kTU

m
− 2ΠjVj + 4Φ

)]
−ρkTΠi

mc4
= ρcVi

{
1 +

1

c2

(
V 2 + 2U + ε+

p

ρ

)
+

1

c4

[
V 4 + 6UV 2 + 2U2 +

(
ε+

p

ρ

)(
V 2 + 2U

)
−2ΠjVj + 4Φ

]}
− pΠi

c4
, (4.48)

while the one for the spatial components reads

T ij = ρ

(
ViVj +

kT

m
δij

)
+

ρ

c2

[(
V 2 + 2U +

3kT0

2m

)
ViVj

−2kTU

m
δij

]
+

ρ

c4

[(
V 4 + 6UV 2 + 2U2 +

5kTV 2

2m

+
15(kT )2

8m2
+

5kTU

m
− 2ΠkVk + 4Φ

)
ViVj +

4kTU2

m
δij

+
kTΨij

m

]
= ρ

(
ViVj +

p

ρ
δij

)
+

ρ

c2

[(
V 2 + 2U + ε

+
p

ρ

)
ViVj − 2

p

ρ
Uδij

]
+

ρ

c4

[(
V 4 + 6UV 2 + 2U2

+

(
ε+

p

ρ

)
(V 2 + 2U)− 2ΠkVk + 4Φ

)
ViVj
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+
p

ρ
(4U2δij +Ψij)

]
. (4.49)

The above expressions for the components of the particle
four-flow and energy-momentum tensor match the ones given in
Section 3.6.

4.2.4 Post-Newtonian hydrodynamic
equations

The post-Newtonian hydrodynamic equation for the mass den-
sity is obtained from the multiplication of the Boltzmann equa-
tion (4.36) by m4√−gd3u/u0, the use of Maxwell-Jüttner dis-
tribution function (4.39) and of the integration element (4.43).
The integration of the resulting equation, yields

∂

∂t

{
ρ

[
1 +

1

c2

(
V 2

2
+ U

)
+

1

c4

(
3V 4

8
+

5V 2U

2
+

U2

2

+2Φ−ΠjVj

)]}
+

∂

∂xi

{
ρVi

[
1 +

1

c2

(
V 2

2
+ U

)
+

1

c4

(
3V 4

8
+

5V 2U

2
+

U2

2
+ 2Φ−ΠjVj

)]}
+2

ρ

c2

(
∂U

∂t
+ Vi

∂U

∂xi

)
+

ρ

c4

(
∂U

∂t
+ Vi

∂U

∂xi

)(
V 2 − 4U

)
− ρ

c4

[
2

(
∂Φ

∂t
+ Vi

∂Φ

∂xi

)
+

1

2

(
∂Ψkk

∂t
+ Vi

∂Ψkk

∂xi

)]
= 0.

(4.50)
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In order to get the continuity equation (3.74) we have to trans-
form the underlined terms as follows. The first underlined term
can be rewritten as

2
ρ

c2

(
∂U

∂t
+ Vi

∂U

∂xi

)
=

2

c2

(
∂ρU

∂t
+

∂ρUVi

∂xi

)
− 2U

c2

(
∂ρ

∂t

+
∂ρVi

∂xi

)
=

2

c2

(
∂ρU

∂t
+

∂ρViU

∂xi

)
+

U

c4

[(
∂ρV 2

∂t

+
∂ρV 2Vi

∂xi

)
+ 6

(
∂ρU

∂t
+

∂ρUVi

∂xi

)]
, (4.51)

where the expression for the continuity equation in the first
post-Newtonian approximation (2.122) was used. The second
underlined term can be transformed according to

ρ

c4

(
∂U

∂t
+ Vi

∂U

∂xi

)(
V 2 − 4U

)
=

1

c4

{
∂ρUV 2

∂t

+
∂ρUV 2Vi

∂xi
− U

(
∂ρV 2

∂t
+

∂ρV 2Vi

∂xi

)
− 4U

[
∂ρU

∂t

+
∂ρUVi

∂xi
− U

(
∂ρ

∂t
+

∂ρVi

∂xi

)]}
. (4.52)

Here we note that for the above underlined term we can use the
Newtonian continuity equation so that this term vanishes. Now
by adding the two equations (4.51) and (4.52) we get

2
ρ

c2

(
∂U

∂t
+ Vi

∂U

∂xi

)
+

ρ

c4

(
∂U

∂t
+ Vi

∂U

∂xi

)(
V 2 − 4U

)
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=
2

c2

(
∂ρU

∂t
+

∂ρUVi

∂xi

)
+

1

c4

{
∂ρUV 2

∂t

+
∂ρUV 2Vi

∂xi
+ 2U

(
∂ρU

∂t
+

∂ρUVi

∂xi

)}
. (4.53)

Furthermore, the last term of the above equality can be ex-
pressed as

2U

c4

(
∂ρU

∂t
+

∂ρUVi

∂xi

)
=

1

c4

(
∂ρU2

∂t
+

∂ρU2Vi

∂xi

)
+O (c−6

)
.

(4.54)
The last underlined term in (4.50) can be written as

− ρ

c4

[
2

(
∂Φ

∂t
+ Vi

∂Φ

∂xi

)
+

1

2

(
∂Ψkk

∂t
+ Vi

∂Ψkk

∂xi

)]
= − 1

c4

[
∂ρ
(
2Φ + Ψkk

2

)
∂t

+
∂ρVi

(
2Φ + Ψkk

2

)
∂xi

]

+
1

c4

(
2Φ +

Ψkk

2

)(
∂ρ

∂t
+

∂ρVi

∂xi

)
, (4.55)

where the underlined term above vanishes thanks to the New-
tonian continuity equation.

The continuity equation in the second post-Newtonian ap-
proximation is obtained from (4.50) by using (4.53)– (4.55),
yielding

∂ρ̃

∂t
+

∂ρ̃Vi

∂xi
= 0, (4.56)
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which together with the expression for the mass density in the
second post-Newtonian approximation

ρ̃ = ρ

[
1 +

1

c2

(
V 2

2
+ 3U

)
+

1

c4

(
3

8
V 4 +

7

2
UV 2 +

3

2
U2

−1

2
Ψkk −ΠiVi

)]
, (4.57)

matches equation (3.74) from the phenomenological theory.
The mass-energy hydrodynamic equation is obtained by ap-

plying the same methodology, i.e. the Boltzmann equation
(4.36) is multiplied by the term m4u0√−gd3u/u0, the Maxwell-
Jüttner distribution function (4.39) and the integration element
(4.43) are used. From the integration of the resulting equation
it follows that

∂

∂t

{
ρ

[
1 +

1

c2

(
V 2 + 2U + ε

)
+

1

c4

(
V 4 + 6V 2U + 2U2

+V 2

(
ε+

p

ρ

)
+ 2Uε+ 4Φ− 2ΠjVj

)]}
+

∂

∂xi

{
ρVi

[
1

+
1

c2

(
V 2 + 2U + ε+

p

ρ

)
+

1

c4

(
V 4 + 6V 2U + 2U2

+4Φ + (2U + V 2)

(
ε+

p

ρ

)
− 2ΠjVj

)]
− pΠi

c4

}
+

ρ

c2
∂U

∂t
+

ρ

c4

[(
3kT

2m
+ 2U + 2V 2

)
∂U

∂t

−3
(
∂U2

∂t
+ Vi

∂U2

∂xi

)
+Πi

∂U

∂xi
− 1

2

(
∂Ψkk

∂t
+ Vi

∂Ψkk

∂xi

)
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−
(
4
∂Φ

∂t
+ 6Vi

∂Φ

∂xi

)
+ ViVj

∂Πi

∂xj

]
= 0. (4.58)

This equation can be put in the following form

∂σ̃

∂t
+

∂σ̃Vi

∂xi
+

1

c2

(
ρ
∂U

∂t
− ∂p

∂t

)
+

2ρ

c4

[
ϕ
∂U

∂t
− Vi

∂Φ

∂xi

+
1

ρ

∂pUVi

∂xi
− Vi

2

∂Πi

∂t

]
= 0. (4.59)

by introducing the abbreviations ϕ = V 2 + U + ε
2 + 3p

2ρ from

(2.111) and

σ̃ = ρ

{
1 +

1

c2

(
V 2 + 2U + ε+

p

ρ

)
+

1

c4

[
V 4 + 6V 2U − U2

+2Uε+ V 2

(
ε+

p

ρ

)
−ΠiVi − 1

2
Ψkk

]}
. (4.60)

Note that in (4.59) the term

1

c4

(
3U2 + 4Φ +

Ψkk

2

)[
∂ρ

∂t
+

∂ρVi

∂xi

]
−Πi

c4

[
∂ρVi

∂t
+

∂ρViVj

∂xj
+

∂p

∂xi
− ρ

∂U

∂xi

]
, (4.61)

was neglected, since the Newtonian continuity equation and the
momentum hydrodynamic equation for the first and the second
terms within the brackets can be used, respectively. Equation
(4.59) corresponds to (3.81) of the phenomenological theory.
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4.3 Post-Newtonian Jeans equations

In astrophysics the so-called Jeans equation refers to the mo-
mentum density hydrodynamic equation for stationary symmet-
rical self-gravitating systems which is derived from the collision-
less Boltzmann equation (see e.g. the book [6] and the references
therein). In this section we shall derive the Jeans equation from
the collisionless first post-Newtonian Boltzmann equation (4.8)
for stationary spherically symmetrical and axisymmetrical self-
gravitating systems. The mean velocity of stationary systems,
represented by the hydrodynamic velocity vanishes, i.e., V = 0
and the post-Newtonian Maxwell-Jüttner distribution function
(4.13) reduces to

f = f0

{
1− 15kT

8mc2
− m

kTc2

[
3v4

8
− 2φv2

]}
=

ne−
mv2

2kT

(2πmkT )
3
2

{
1− 15kT

8mc2
− m

kTc2

[
3v4

8
− 2φv2

]}
. (4.62)

Above f0 is the Maxwellian distribution function.
Furthermore, for stationary systems the component of the

energy-momentum tensor T 0i given by (4.23) vanishes and the
Poisson equation (2.66) for the gravitational potential ξi reduces

to ∇2ξi = 0. Hence we can consider �ξ as a Laplacian vector field
such that ∇× �ξ = 0 and ∇ · �ξ = 0.

The expressions for the post-Newtonian collisionless Boltz-
mann equation in spherical and cylindrical coordinates by con-
sidering �ξ a Laplacian vector field are given in the Appendices
B and C.
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4.3.1 Stationary and spherically symmetrical
self-gravitating systems

For stationary spherically symmetrical self-gravitating systems
the Jeans equation is a differential equation for the determi-
nation of the radial velocity dispersion, which is represented
by the square root of the mean value of the radial velocity
square

√〈v2r〉. The equation for the radial velocity dispersion is
obtained from the multiplication of the post-Newtonian Boltz-
mann equation in spherical coordinates (4.89) by m4vru

0/c and
integration of the resulting equation by taking into account the
invariant integration element (4.20), yielding

d

dr

{
ρ

[
〈v2r〉+

3

c2
〈v2rv2〉 −

8

c2
φ〈v2r〉 −

m

kTc2

(
3

8
〈v2rv4〉

−2φ〈v2rv2〉
)
− 15

8c2
kT

m
〈v2r〉

]}
− ρ

r

{(
1− 8

c2
φ

− 15

8c2
kT

m

)(〈v2θ〉+ 〈v2ϕ〉 − 2〈v2r〉
)
+

1

c2

(
3 +

2m

kTc2

)
× (〈v2θv2〉+ 〈v2ϕv2〉 − 2〈v2rv2〉

)− 3m

8kTc2
(〈v2θv4〉

+〈v2ϕv4〉 − 2〈v2rv4〉
)}− ρ

r
cotan θ

{
〈vrvθ〉+ 3

c2
〈vrvθv2〉

+
6

c2
〈vrvθv2ϕ〉 −

8

c2
φ〈vrvθ〉 − 15

8c2
kT

m
〈vrvθ〉

− m

kTc2

[
3

8
〈vrvθv4〉 − 2φ〈vrvθv2〉

]}
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+ρ
dφ

dr

[
1 +

4

c2
〈v2〉 − 4

c2
φ− 4

c2
〈v2r〉 −

15

8c2
kT

m

− m

kTc2

(
3

8
〈v4〉 − 2φ〈v2〉

)]
+

ρ

c2
dψ

dr
= 0. (4.63)

Note that the assumption of a spherically symmetrical system
implies that the gravitational potentials and the distribution
function do not depend on the angles θ and ϕ but only on r. In
(4.63) the mean values are defined by

ρ =

∫
m4f0d

3v, ρ〈vnv2r〉 =
∫

m4vnv2rf0d
3v, (4.64)

and so on. In the derivation of (4.63) we have consider that
the integrals with the derivatives of the distribution function
with respect to the components of the velocity can be reduced
according to ∫

v2
∂f

∂vr
dvrdvθdvϕ =

∫
∂v2f

∂vr
dvrdvθdvϕ

−2
∫

vrfdvrdvθdvϕ =

∫ +∞

−∞

∫ +∞

−∞
v2f

∣∣∣+∞

−∞
dvθdvϕ

−2
∫

vrfdvrdvθdvϕ = −2〈vr〉, (4.65)

since the distribution function vanishes for great values of the
particle velocity.

The mean values in (4.63) can be expressed in terms of
〈v2r〉, 〈v2θ〉 and 〈v2ϕ〉. Indeed, by introducing the Maxwellian dis-
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tribution function (4.62)2 in (4.64)2 and integrating the result-
ing equations follow the relationships

〈v2〉 = 3
kT

m
, 〈v4〉 = 15

(
kT

m

)2

, 〈v2v2r〉 = 5
kT

m
〈v2r〉, (4.66)

〈v4v2r〉 = 35

(
kT

m

)2

〈v2r〉, 〈v2v2θ〉 = 5
kT

m
〈v2θ〉, (4.67)

〈v4v2θ〉 = 35

(
kT

m

)2

〈v2θ〉, 〈v2v2ϕ〉 = 5
kT

m
〈v2ϕ〉, (4.68)

〈v4v2ϕ〉 = 35

(
kT

m

)2

〈v2ϕ〉, (4.69)

〈vrvθ〉 = 〈vrvθv2〉 = 〈vrvθv4〉 = 〈vrvθv2ϕ〉 = 0. (4.70)

If we multiply the post-Newtonian Boltzmann equation in
spherical coordinates (4.89) by m4vθu

0/c or m4vϕu
0/c and in-

tegrate the resulting equations by taking into account the invari-
ant integration element (4.20), we get – by considering that the
odd moments vanish – that 〈v2θ〉 = 〈v2ϕ〉. Now from the above
results we can express (4.63) as a function of 〈v2r〉, 〈v2θ〉, 〈v2ϕ〉 and
obtain the post-Newtonian Jeans equation for stationary spher-
ically symmetrical systems:

d

dr

[
ρ〈v2r〉

(
1 +

2φ

c2

)]
+ 2ρ

〈v2r〉β
r

(
1 +

2φ

c2

)
+

ρ

c2
dψ

dr

+ρ
dφ

dr

[
1 +

2φ

c2
− 4

c2
〈v2r〉+

9

2

kT

mc2

]
= 0. (4.71)

Here we have introduced the velocity anisotropy parameter β =
1− 〈v2θ〉/〈v2r〉, by assuming that 〈v2θ〉 = 〈v2ϕ〉.
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The radial velocity dispersion
√〈v2r〉 can be found as a solu-

tion of equation (4.71) together with the Poisson equations for
the gravitational potentials φ and ψ once we know the velocity
anisotropy parameter β and the dependence of the mass density
ρ on the radial distance r.

4.3.2 Stationary and axisymmetrical
self-gravitating systems

Another interesting problem in astrophysics is the analysis of
stationary and axisymmetrical self-gravitating systems. The
equations that rule the behavior of such systems are obtained
from the post-Newtonian Boltzmann equation in cylindrical co-
ordinates (4.93) as follows. First we multiply (4.93) bym4vru

0/c
and the integration element (4.20). The integration of the re-
sulting equation, yields

∂

∂r

{
ρ

[
〈v2r〉+

3

c2
〈v2rv2〉 −

m

kTc2

(
3

8
〈v2rv4〉 − 2φ〈v2rv2〉

)
− 15

8c2
kT

m
〈v2r〉 −

8

c2
φ〈v2r〉

]}
+

∂

∂z

{
ρ

[
〈vrvz〉+ 3

c2
〈vrvzv2〉

− 8

c2
φ〈vrvz〉 − 15

8c2
kT

m
〈vrvz〉 − m

kTc2

(
3

8
〈vrvzv4〉

−2φ〈vrvzv2〉
)]}

+
ρ

r

{
3

c2

(
〈v2rv2〉 − 〈v2ϕv2〉

)
+
(〈v2r〉 − 〈v2ϕ〉)(1− 8

φ

c2
− 15

8c2
kT

m

)
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− m

kTc2

[
3

8

(〈v2rv4〉 − 〈v2ϕv4〉)− 2φ
(〈v2rv2〉 − 〈v2ϕv2〉)]}

− 4

c2
ρ
∂φ

∂z
〈vrvz〉+ ρ

∂φ

∂r

[
1 +

4

c2
〈v2〉 − 4

c2
〈v2r〉 −

4

c2
φ

− 15

8c2
kT

m
− m

kTc2

(
3

8
〈v4〉 − 2φ〈v2〉

)]
+

ρ

c2
∂ψ

∂r
= 0.(4.72)

Next we follow the same methodology but multiply the post-
Newtonian Boltzmann equation in cylindrical coordinates (4.93)
by m4vzu

0/c, resulting

∂

∂z

{
ρ

[
〈v2z〉+

3

c2
〈v2zv2〉 −

8

c2
φ〈v2z〉 −

m

kTc2

(
3

8
〈v2zv4〉

−2φ〈v2zv2〉
)
− 15

8c2
kT

m
〈v2z〉

]}
+

∂

∂r

{
ρ

[
〈vrvz〉

+
3

c2
〈vrvzv2〉 − 8

c2
φ〈vrvz〉 − 15

8c2
kT

m
〈vrvz〉

− m

kTc2

(
3

8
〈vrvzv4〉 − 2φ〈vrvzv2〉

)]}
+
ρ

r

{
3

c2
〈vrvzv2〉+ 〈vrvz〉

(
1− 8

φ

c2
− 15

8c2
kT

m

)
− m

kTc2

[
3

8
〈vrvzv4〉 − 2φ〈vrvzv2〉

]}
+ρ

∂φ

∂z

[
1 +

4

c2
〈v2〉 − 4

c2
〈v2z〉 −

m

kTc2

(
3

8
〈v4〉 − 2φ〈v2〉

)
− 4

c2
φ− 15

8c2
kT

m

]
− 4

c2
ρ
∂φ

∂r
〈vrvz〉+ ρ

c2
∂ψ

∂z
= 0. (4.73)
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Finally the multiplication of the post-Newtonian Boltzmann
equation in cylindrical coordinates (4.93) by m4vϕu

0/c and fol-
lowing the same methodology leads to

∂

∂r

{
ρ

[
〈vrvϕ〉+ 3

c2
〈vrvϕv2〉 − m

kTc2

(
3

8
〈vrvϕv4〉

−2φ〈vrvϕv2〉
)
− 8

c2
φ〈vrvϕ〉 − 15

8c2
kT

m
〈vrvϕ〉

]}
+

∂

∂z

{
ρ

[
〈vϕvz〉+ 3

c2
〈vϕvzv2〉 − 8

c2
φ〈vϕvz〉 − 15

8c2
kT

m
〈vϕvz〉

− m

kTc2

(
3

8
〈vϕvzv4〉 − 2φ〈vϕvzv2〉

)]}
+ 2

ρ

r

{(
1− 8

φ

c2

− 15

8c2
kT

m

)
〈vrvϕ〉 − m

kTc2

[
3

8
〈vrvϕv4〉 − 2φ〈vrvϕv2〉

]
+

3

c2
〈vrvϕv2〉

}
− 4

c2
ρ
∂φ

∂r
〈vrvϕ〉 − 4

c2
ρ
∂φ

∂z
〈vzvϕ〉 = 0. (4.74)

The mean values can be expressed in terms of 〈v2r〉 and 〈v2ϕ〉
and 〈v2z〉 from the integrations by using the Maxwellian distri-
bution function (4.62)2. Here we have that

〈v2v2z〉 = 5
kT

m
〈v2z〉, 〈v4v2z〉 = 35

(
kT

m

)2

〈v2z〉, (4.75)

while the mean values with odd velocities vanish.
Since the odd moments vanish, (4.74) becomes trivial and

(4.72) and (4.73) reduce to the post-Newtonian Jeans equa-
tions for stationary and axisymmetrical self-gravitating systems,
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namely

∂

∂r

[
ρ〈v2r〉

(
1 +

2φ

c2

)]
+

ρ
(〈v2r〉 − 〈v2ϕ〉)

r

(
1 +

2φ

c2

)
+ρ

∂φ

∂r

[
1 +

2φ

c2
− 4

c2
〈v2r〉+

9

2

kT

mc2

]
+

ρ

c2
∂ψ

∂r
= 0, (4.76)

∂

∂z

[
ρ〈v2z〉

(
1 +

2φ

c2

)]
+

ρ

c2
∂ψ

∂z
+ ρ

∂φ

∂z

[
1 +

2φ

c2

− 4

c2
〈v2z〉+

9

2

kT

mc2

]
= 0. (4.77)

Appendix A

For the integration of the equations in this chapter we have used
the following Gaussian integrals from the kinetic theory of gases
(see e.g.[7])

In =

∫
Vne−

mV2

kT dV =
1

2
Γ

(
n+ 1

2

)(
kT

m

)n+1
2

(4.78)

Γ(n+ 1) = nΓ(n), Γ(1) = 1, Γ

(
1

2

)
=
√
π,(4.79)∫

e−
mV2

kT0 ViVjd3V =
I2
3
δij , (4.80)∫

e−
mV2

kT0 ViVjVkVld3V =
I4
[
δijδkl + δikδjl + δilδjk

]
15

,(4.81)∫
e−

mV2

kT0 ViVjVkVlVnVnd3V =
I6
105

[
δij
(
δklδmn + δkmδln
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+δknδlm
)
+ δik

(
δjlδmn + δjmδln + δjnδlm

)
+δil

(
δjkδmn + δjmδkn + δjnδkm

)
+ δim

(
δjkδln

+δjlδkn + δjnδkl
)
+ δin

(
δjkδlm + δjlδkm + δjmδkl

)]
.(4.82)

Appendix B: Boltzmann equation
in spherical coordinates

In order to write the post-Newtonian Boltzmann equation (4.8)
in spherical coordinates we make use of the relationships be-
tween Cartesian coordinates (x1, x2, x3) and spherical coordi-
nates (r, θ, ϕ)

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (4.83)

and the relationships between the velocities (v1, v2, v3) in Carte-
sian coordinates and the ones in spherical coordinates (vr =
ṙ, vθ = rθ̇, vϕ = r sin θϕ̇)

v1 = vr sin θ cosϕ+ vθ cos θ cosϕ− vϕ sinϕ, (4.84)

v2 = vr sin θ sinϕ+ vθ cos θ sinϕ+ vϕ cosϕ, (4.85)

v3 = vr cos θ − vθ sin θ. (4.86)

The relationship between the material time derivative of the
distribution function f = f(t, r, θ, ϕ, vr, vθ, vϕ) in spherical co-
ordinates is given by

df

dt
=

∂f

∂t
+ vi

∂f

∂xi
=

∂f

∂t
+

∂f

∂r
ṙ +

∂f

∂θ
θ̇ +

∂f

∂ϕ
ϕ̇
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+
∂f

∂vr
v̇r +

∂f

∂vθ
v̇θ +

∂f

∂vϕ
v̇ϕ, (4.87)

which implies

df

dt
=

∂f

∂t
+ vr

∂f

∂r
+

vθ
r

∂f

∂θ
+

vϕ
r sin θ

∂f

∂ϕ

+

(
v2θ + v2ϕ

r

)
∂f

∂vr
+

(
v2ϕ cotan θ

r
− vrvθ

r

)
∂f

∂vθ

−
(
vθvϕ cotan θ

r
+

vrvϕ
r

)
∂f

∂vϕ
. (4.88)

Hence the Boltzmann equation (4.8) in spherical coordinates
becomes(

1 +
v2

2c2
− φ

c2

)[
∂f

∂t
+ vr

∂f

∂r
+

vθ
r

∂f

∂θ
+

vϕ
r sin θ

∂f

∂ϕ

+

(
v2θ + v2ϕ

r

)
∂f

∂vr
+

(
v2ϕ cotan θ

r
− vrvθ

r

)
∂f

∂vθ

−
(
vθvϕ cotan θ

r
+

vrvϕ
r

)
∂f

∂vϕ

]
−
(
1 +

3v2

2c2
+

3φ

c2

)
×
(

∂f

∂vr

∂φ

∂r
+

1

r

∂f

∂vθ

∂φ

∂θ
+

1

r sin θ

∂f

∂vϕ

∂φ

∂ϕ

)
+

1

c2

{
3

(
vr

∂f

∂vr
+ vθ

∂f

∂vθ
+ vϕ

∂f

∂vϕ

)
∂φ

∂t
+ 4

(
vr

∂f

∂vr

+vθ
∂f

∂vθ
+ vϕ

∂f

∂vϕ

)(
vr

∂φ

∂r
+

vθ
r

∂φ

∂θ
+

vϕ
r sin θ

∂φ

∂ϕ

)
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−
(

∂f

∂vr

∂ψ

∂r
+

1

r

∂f

∂vθ

∂ψ

∂θ
+

1

r sin θ

∂f

∂vϕ

∂ψ

∂ϕ

)
− ∂f

∂vr

∂ξr
∂t
− ∂f

∂vθ

∂ξθ
∂t

− ∂f

∂vϕ

∂ξϕ
∂t

}
= 0. (4.89)

Appendix C: Boltzmann equation
in cylindrical coordinates

The relationships between Cartesian coordinates (x1, x2, x3) and
cylindrical coordinates (r, ϕ, z) are

x1 = r cosϕ, x2 = r sinϕ, x3 = z, (4.90)

while the relations between the velocities (v1, v2, v3) in Carte-
sian coordinates and the ones in cylindrical coordinates read

v1 = vr cosϕ− vϕ sinϕ, v2 = vr sinϕ+ vϕ cosϕ, v3 = ż,(4.91)

where vr = ṙ and vϕ = rϕ̇.
The material time derivative of the distribution function in

cylindrical coordinates f = f(t, r, ϕ, z, vr, vϕ, vz) is given by

df

dt
=

∂f

∂t
+ vr

∂f

∂r
+

vϕ
r

∂f

∂ϕ
+ vz

∂f

∂z
+

v2ϕ
r

∂f

∂vr
− vrvϕ

r

∂f

∂vϕ
,(4.92)

so that the Boltzmann equation (4.8) in cylindrical coordinates
reads(

1 +
v2

2c2
− φ

c2

)[
∂f

∂t
+ vr

∂f

∂r
+

vϕ
r

∂f

∂ϕ
+ vz

∂f

∂z
+

v2ϕ
r

∂f

∂vr
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−vrvϕ
r

∂f

∂vϕ

]
−
(
1 +

3v2

2c2
+

3φ

c2

)(
∂f

∂vr

∂φ

∂r
+

1

r

∂f

∂vϕ

∂φ

∂ϕ

+
∂f

∂vz

∂φ

∂z

)
+

1

c2

{
3

(
vr

∂f

∂vr
+ vθ

∂f

∂vθ
+ vϕ

∂f

∂vϕ

)
∂φ

∂t

−
(

∂f

∂vr

∂ψ

∂r
+

1

r

∂f

∂vϕ

∂ψ

∂ϕ
+

∂f

∂vz

∂ψ

∂z

)
+ 4

(
vr

∂f

∂vr

+vϕ
∂f

∂vϕ
+ vz

∂f

∂vz

)(
vr

∂φ

∂r
+

vϕ
r

∂φ

∂ϕ
+ vz

∂φ

∂z

)
− ∂f

∂vr

∂ξr
∂t
− ∂f

∂vϕ

∂ξϕ
∂t

− ∂f

∂vz

∂ξz
∂t

}
= 0. (4.93)
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2002).

[4] G. M. Kremer, M. G. Richarte and K. Weber, Self-

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



202 CHAPTER 4. POST-NEWTONIAN KINETIC

gravitating systems of ideal gases in the 1PN approxima-
tion, Phys. Rev. D 93, 064073 (2016).

[5] S. Weinberg, Gravitation and cosmology. Principles and
applications of the theory of relativity (Wiley, New York,
1972).

[6] J. Binney and S. Tremaine Galactic Dynamics, 2nd. ed.
(Princeton University Press, Princeton, 2008).

[7] G. M. Kremer, An introduction to the Boltzmann equation
and transport processes in gases (Springer, Berlin, 2010).

[8] G.M. Kremer, Post-Newtonian kinetic theory, Annals of
Physics 426, 168400 (2021).

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER 5

STELLAR
STRUCTURE
MODELS

In astrophysics, the Lane-Emden equation is used to model self-
gravitating spherically symmetrical stellar interiors character-
ized by a polytropic equation of state. The solution of the Lane-
Emden equation allows to determine some physical quantities
for these systems, such as pressure, density, and temperature.
A full description of the Newtonian version of the Lane-Emden
equation with applications to stellar structures can be found in
the books by Eddington [1] and Chandrasekhar [2]. In this chap-
ter the post-Newtonian Lane-Emden equation is derived and the

203
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physical properties of some stars are analysed.

5.1 The polytropic equation of state

The first law of thermodynamics connects the internal energy
U of the system with the heat Q supplied to the system and
the work W done by the system. For infinitesimal quasi-static
changes this law is represented by dU = d′Q− d′W , where d′Q
and d′W refer to the fact that both quantities are not differen-
tials. Furthermore, for quasi-static changes the work done by
the system is given by the product of the pressure p and the
infinitesimal volume dV , i.e., d′W = pdV .

For a perfect gas the equation of state is given by pV =
nRT , where n is the number of moles of the gas and R = 8.314
J/(K mol) is the universal gas constant. The internal energy
of a perfect gas is only a function of the absolute temperature
U = U(T ), so that the first law of thermodynamics becomes

d′Q =
dU

dT
dT + nRT

dV

V
. (5.1)

If we divide the quantities by the amount of the substance in
moles and introduce the heat per mole q = Q/n, the internal
energy per mole u = U/n and the volume per mole v = V/n the
above equation can be rewritten as

d′q =
du

dT
dT +RT

dv

v
. (5.2)

The molar heat capacities are defined in terms of the ratio
d′q/dT and are commonly referred as specific heat capacities.
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For an isochoric process the volume remains constant and we
have from (5.2) the specific heat capacity at constant volume

cv =
d′q
dT

∣∣∣∣
v

=
du

dT
. (5.3)

If we use the equation of state pV = nRT we can write

dv

v
=

dV

V
=

dT

T
− dp

p
, (5.4)

and (5.2) reduces to

d′q = (cv +R)dT − RT

p
dp. (5.5)

For an isobaric process the pressure remains constant and we
have the specific heat capacity at constant pressure

cp = cv +R =
d′q
dT

∣∣∣∣
p

. (5.6)

In a polytropic process the specific heat capacity c = d′q/dT
remains constant in a quasi-static process so that we can write
from (5.2) that

(cv − c)
dT

T
+ (cp − cv)

dv

v
= 0, (5.7)

which can be integrated, yielding

T cv−cvcp−cv = constant, or Tvγ−1 = constant, (5.8)
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where γ = (cp − c)(cv − c).
Now by using the equation of state to eliminate the abso-

lute temperature from (5.8) we get the equation of state for
polytropic quasi-static processes

pV γ = constant, or p = κργ = κρ
n+1
n , (5.9)

where κ is a constant and we have introduced the so-called poly-
tropic index n = 1/(γ − 1).

The specific heat capacity c vanishes for adiabatic processes
where d′q = 0 and γ = cp/cv reduces to the ratio of the specific
heat capacities at constant pressure and constant volume. For
isothermal processes dT = 0 and c→∞.

The relationship between the specific internal energy ε and
the polytropic equation of state p = κργ can be established from
the integrability condition of the Gibbs equation

ds =
1

T

(
dε− p

ρ2
dρ

)
=

1

T

[
∂ε

∂T
dT +

(
∂ε

∂ρ
− p

ρ2

)
dρ

]
, (5.10)

where s denotes the specific entropy and ε = ε(ρ, T ). The inte-
grability condition that follows from the above equation reads

ρ2
∂ε

∂ρ
= p− T

∂p

∂T
= κργ . (5.11)

The integration of the above equation leads to

ε =
1

γ − 1

p

ρ
= n

p

ρ
=

κργ−1

γ − 1
, (5.12)

showing that the specific internal energy of a polytropic fluid is
only a function of the mass density.
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5.2 Stellar mean molecular weight

We consider a star as a self-gravitating spherically symmetrical
mass of a highly ionized gas at equilibrium. The mass of the
gas is held together by its own gravity and has three kinds of
species: hydrogen, helium and heavy elements, which for the
purpose of the calculations are not specified.

The pressure of the star is a sum of the partial pressures due
to each species

p =
∑
a

pa =
∑
a

nakT, (5.13)

where na is the particle number density of the species a.
For a highly ionized gas each atom contributes with Za + 1

particles where Za is the atomic number of species a. Hence the
particle number density na of species a, which is the number of
atoms per volume is given by

na =
ρxa(Za + 1)

Mamμ
, (5.14)

where ρ is the mass density of the star, mμ = 1.66 × 10−27 kg
the unified atomic mass, xa the mass fraction of species a and
Ma the corresponding atomic mass.

From (5.13), (5.14) and the equation of state of the star we
have ∑

a

ρxa(Za + 1)

Mamμ
kT =

ρ

mμμ
kT, (5.15)
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and the mean molecular weight μ of the stellar material becomes

μ−1 =
∑
a

xa(Za + 1)

Ma
. (5.16)

Let X, Y and Z be the mass fraction of hydrogen, helium
and heavy elements, respectively. For a mixture with these three
species we must have that X + Y +Z = 1. The atomic number
and the corresponding atomic mass for hydrogen are Za = 1
and Ma = 2, for helium Za = 2 and Ma = 4, while for the
heavy materials with atomic mass greater then Ma > 4 we can
approximate (Za + 1)/Ma ≈ 1/2. Hence, the mean molecular
weight (5.16) becomes

μ =
1

2X + 3
4Y + 1

2Z
=

4

2 + 6X + Y
, (5.17)

by eliminating the mass fraction of the heavy elements Z =
1−X − Y .

The stellar structures we are interested in are the neutron
stars, white and brown dwarfs, red giants and the Sun.

White dwarfs are dense stars with low luminosity whose
masses are of order of the Sun and radii comparable to the
one of the Earth. In the structure of white dwarfs there exists
almost heavy metals Z ≈ 1, they are devoid of hydrogen and
helium so that X = Y ≈ 0 and the mean molecular weight is
μ = 2. Brown dwarfs are small stars with sizes approximately
of a planet like Jupiter and unlike a regular star the fusion of
hydrogen does not occur. Brown dwarfs are composed by hy-
drogen, helium and heavy metals in the approximate proportion
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X = 0.70, Y = 0.28 and Z = 0.02 and the mean molecular
weight is μ = 0.62. Red giants represent the final evolution
phase of stars of intermediate or low masses after the hydrogen
fusion. For red giants the mean molecular weight is μ = 1.34
since they are devoid of hydrogen and helium predominates in
the proportion Y = 0.98, X = 0 and Z = 0.02. Neutron stars
are formed from a gravitational collapse of massive stars at the
end of their life. The neutron stars have only neutrons so that
μ = 1. The mass fractions for the Sun are X = 0.73, Y = 0.25
and Z = 0.02 and its mean molecular weight is μ = 0.6.

5.3 Newtonian Lane-Emden equation

We start by considering the Newtonian momentum density hy-
drodynamic equation (2.129) for a stationary self-gravitating
system where the hydrodynamic velocity vanishes V = 0. In
spherical coordinates where the only dependence of ρ, p, and φ
is on the radial variable r this equation reduces to

dp

dr
− ρ

dΦ

dr
= 0. (5.18)

Here we have adopted the convention for φ = −Φ, so that the
Poisson equation∇2φ = 4πGρ = −∇2Φ in spherical coordinates
reads

1

r2
d

dr

(
r2

dΦ

dr

)
= −4πGρ. (5.19)

By considering the polytropic equation of state p = κρ
1+n
n

one can obtain from (5.18) a differential equation which connects
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the mass density ρ and the gravitational potential Φ, namely

κ
1 + n

n
ρ

1−n
n

dρ

dr
=

dΦ

dr
. (5.20)

From the integration of the above equation it follows that

κ(1 + n)ρ
1
n = Φ+ constant. (5.21)

As was pointed by Eddington [1] the usual convention is to con-
sider that the gravitational potential has a zero value at infinity,
but this choice is arbitrary. Hence for convenience, here it is as-
sumed that the gravitational potential vanishes at the boundary
of the star where the mass density also vanishes. In this case
the integration constant is zero and we get from (5.21) the fol-
lowing relationship between the mass density and gravitational
potential

ρ =

(
Φ

(n+ 1)κ

)n

. (5.22)

The polytropic equation of state p = κρ
1+n
n in terms of the

gravitational potential reads

p = κ

(
Φ

(n+ 1)κ

)n+1

=
ρΦ

n+ 1
. (5.23)

Now we can obtain the differential equation for the gravita-
tional potential Φ from (5.19) and (5.22)

d2Φ

dr2
+

2

r

dΦ

dr
+

4πG

[(n+ 1)κ]n
Φn = 0. (5.24)
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The solution of (5.24) for the gravitational potential Φ(r)
follows from the knowledge of mass density ρ(r) and the pressure
p(r) given by (5.22) and (5.23), respectively.

In order to solve (5.24) we introduce the dimensionless quan-
tities

u =
Φ

Φc
=

(
ρ

ρc

) 1
n

, z =
r

a
, a =

√
κ(n+ 1)

4πG
ρ

1−n
n

c , (5.25)

where the quantities Φc and ρc refer to their values at the center
of the star. Hence (5.24) can be rewritten as

d2u(z)

dz2
+

2

z

du(z)

dz
+ u(z)n = 0, (5.26)

which is known in the literature as the Lane-Emden equation of
index n.

The Lane-Emden equation (5.26) can be solved numerically
for different values of the polytropic index n provided we specify
two boundary conditions at the center of the star. The boundary
conditions are

u(0) = 1, and
du

dz
(0) = 0. (5.27)

The first boundary condition is a direct consequence of (5.25)1.
The second one follows from (5.18) by writing it as

lim
r→0

dp

dr
= lim

r→0
ρ(r)

d

dr

(
GM(r)

r

)
≈ lim

r→0
ρ(r)

d

dr

(
4π

3
Gr2ρc

)
= 0,

(5.28)

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



212 CHAPTER 5. STELLAR STRUCTURE MODELS

where the Newtonian gravitational potential Φ = GM(r)/r was
introduced and the mass near the center was approximated by
M(r) ≈ 4πr3ρc/3. Hence from the polytropic equation of state

p = κρ
1+n
n we have that dρ

dr (0) = 0 and (5.27)2 follows from the
definition (5.25)1.

5.4 Post-Newtonian Lane-Emden
equation

For the Lane-Emden equation in the post-Newtonian approxi-
mation, we consider the momentum density hydrodynamic equa-
tion (2.131) for stationary self-gravitating systems where the
hydrodynamic velocity vanishes, i.e, V = 0. Here we write the
potentials φ and ψ as Φ = −φ and Ψ = −ψ. Since in spherical
coordinates the fields ρ, p,Φ and Ψ depend only on the radial
variable r, equation (2.131) becomes

d

dr

[
p

(
1 +

2Φ

c2

)]
−ρ

[
1 +

2

c2

(
Φ+

ε

2
+

3p

2ρ

)]
dΦ

dr
− ρ

c2
dΨ

dr
= 0.

(5.29)
The above equation can be rewritten as(

1 +
2Φ

c2

)
dp

dr
− ρ

[
1 +

1

c2

(
2Φ + (n+ 1)

p

ρ

)]
dΦ

dr
− ρ

c2
dΨ

dr
= 0,

(5.30)
by taking into account the relationship ε = np/ρ, which accord-
ing to (5.12) is valid for a polytropic fluid. By neglecting the
terms of order 1/c2 the above equation reduces to the Newtonian
equation (5.18).
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If we consider terms up to 1/c2 we can obtain from (5.30)
the equation

1

ρ

dp

dr

(
1− n+ 1

c2
p

ρ

)
− d

dr

(
Φ+

Ψ

c2

)
= 0, (5.31)

which can be solved for the mass density ρ as function of the po-
tentials Φ,Ψ once we consider the polytropic equation of state.
Indeed, from the insertion of the polytropic equation of state

p = κρ
n+1
n into (5.31) and integration of the resulting equation

yields

Φ +
Ψ

c2
= (n+ 1)κρ

1
n

(
1− κ(1 + n)

2c2
ρ

1
n

)
. (5.32)

Here it is assumed that the gravitational potentials Φ and Ψ
vanish at the boundary of the star where the mass density also
vanishes.

Equation (5.32) can be solved for ρ up to order 1/c2, yielding

ρ =

⎡⎣ Φ+ Ψ
c2

(n+ 1)κ
(
1− κ(1+n)

2c2 ρ
1
n

)
⎤⎦n

≈
(

Φ

(n+ 1)κ

)n
{
1 +

n

c2

[(
Ψ

Φ

)
+

κ(1 + n)ρ
1
n

2

]

≈
(

Φ

(n+ 1)κ

)n
{
1 +

n

c2

[(
Ψ

Φ

)
+

Φ

2

]}
. (5.33)

In spherical coordinates the Poisson equation for the grav-
itational potential Φ is given by (5.19) while the one for the
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gravitational Ψ which follow from (2.100) for a stationary pro-
cess reads

1

r2
d

dr

(
r2

dΨ

dr

)
= −8πGρ

(
Φ+

3 + n

2

p

ρ

)
. (5.34)

Now we combine the Poisson equations (5.19) and (5.34) and
write

1

r2
d

dr

[
r2

d

dr

(
Φ+

Ψ

c2

)]
= −4πGρ

[
1 +

2

c2

(
Φ+

(3 + n)p

2ρ

)]
.

(5.35)
If we eliminate the potentials Φ,Ψ from the above equation by

using (5.32) and use the polytropic equation of state p = κρ
n+1
n

we get the following differential equation for the mass density

κ(n+ 1)
1

r2
d

dr

[
r2

d

dr

(
ρ

1
n − (1 + n)κ

2c2
ρ

2
n

)]
= −4πGρ

[
1 +

(5 + 3n)κ

c2
ρ

1
n

]
. (5.36)

In order to get the Lane-Emden equation we introduce the
dimensionless variables (5.25) and in these new variables (5.36)
becomes (

1− (1 + n)pc
c2ρc

u(z)

)[
d2u(z)

dz2
+

2

z

du(z)

dz

]
− (1 + n)pc

c2ρc

(
du(z)

dz

)2

= −u(z)n
(
1 +

(5 + 3n)pc
c2ρc

u(z)

)
. (5.37)
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If we consider terms up to the order 1/c2 we get the following
equivalent version of the Lane-Emden equation in the first post-
Newtonian approximation:(

1− (6 + 4n)pc
c2ρc

u(z)

)[
d2u(z)

dz2
+

2

z

du(z)

dz

]
− (1 + n)pc

c2ρc

(
du(z)

dz

)2

+ u(z)n = 0. (5.38)

The Newtonian limit of the Lane-Emden equation (5.26) is re-
covered when the terms with 1/c2 are not taken into account.

If we assume that the equation of state for pressure at the
center of the star is the one of a perfect fluid pc = ρckTc/m =
ρckTc/μmμ, where Tc is the temperature at the star center, we
have that

pc
ρcc2

=
kTc

mc2
=

kTc

μmμc2
, (5.39)

which represents the ratio of the thermal energy of the fluid at
the star center kTc and the rest energy of its particles mc2.

5.5 Lane-Emden equation in the post-
Newtonian Brans-Dicke theory

In Section 2.5 the Brans-Dicke theory was analyzed and the cor-
responding post-Newtonian hydrodynamic equations were de-
termined. Two gravitational constants were introduced, G from
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the Poisson equation (2.189) and G which is of order of the
gravitational constant G. Here the difference between these
two gravitational constants will be determined by a parame-
ter β = G/G so that when β = 1 both gravitational constants
coincide. From (2.188) it is possible to relate the dimensionless
coupling constant ω with β, yielding

ω =
4− 3β

2(β − 1)
(5.40)

The stationary momentum density hydrodynamic equation
(2.219) in the post-Newtonian Brans-Dicke theory reads

∂

∂xi

[
p

(
1 +

2(3− 2β)

β

Φ

c2

)]
− ρ

∂Φ

∂xi

{
1 +

1

c2

[
2(3− 2β)

β
Φ

+

(
n+

3(2− β)

β

)
p

ρ

]}
− 1

β

ρ

c2
∂Ψ

∂xi
= 0, (5.41)

while the the Poisson equations (2.189) and (2.213) become

∇2Φ = −4πβGρ, ∇2Ψ = −8πβGρ
(
Φ+

β

2
ε+

3(2− β)

2

p

ρ

)
,

(5.42)
respectively.

Following the same methodology of the last section we ob-
tain the same equation (5.31) for the stationary momentum den-
sity hydrodynamic equation (5.41) and through integration the
following relationship which connects the two gravitational po-
tential with the mass density, namely

Φ +
Ψ

βc2
= (n+ 1)κρ

1
n

(
1− κ(1 + n)

2c2
ρ

1
n

)
. (5.43)
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Moreover, the combination of the Poisson equations (5.42)
leads to the following post-Newtonian Lane-Emden equation in
the Brans-Dicke theory(

1− [2n(β + 1) + (8− 2β)]pc
βc2ρc

u(z)

)[
d2u(z)

dz2
+

2

z

du(z)

dz

]
− (1 + n)pc

c2ρc

(
du(z)

dz

)2

+ βu(z)n = 0. (5.44)

Note that when β = 1 the results of the last section are
recovered.

5.6 The physical quantities of stars

We rely on the books by Eddington [1] and Chandrasekhar [2]
and give here the expressions for the mass, radius, pressure,
mass density and temperature of the stars which follow from
the Lane-Emden equations.

5.6.1 Newtonian theory

The numerical solution of the Lane-Emden equation (5.26) with
the boundary conditions (5.27) represents a monotonically de-
creasing behavior of u(z) and its first zero, which will be denoted
by z|u=0 = RN , corresponds to the surface of the star. The ra-
dius of the star is given by

R = aRN =

√
(n+ 1)κ

4πG
ρ

1−n
n

c RN , (5.45)
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thanks to (5.25).
The mass of the star is calculated from

M(R) =

∫ R

0

4πr2ρdr = 4πa3ρc

∫ RN

0

z2undz

= −4πa3ρc
∫ RN

0

d

(
z2

du

dz

)
= −4πρca3R2

N

du

dz

∣∣∣∣
RN

= 4πρca
3MN , (5.46)

where we used the relationship (5.25), the Lane-Emden equa-
tion (5.26) and – by following Eddington [1] – introduced the
quantity

MN = −R2
N

du

dz

∣∣∣∣
RN

. (5.47)

If we eliminate a and ρc from the above equation by using
(5.25) and (5.45) we get that the mass of the star can be written
as

M(R) = 4π

[
(n+ 1)κ

4πG

] n
n−1

(
R

RN

)n−3
n−1

MN . (5.48)

so that we can build the following mass-radius relationships by
taking into account (5.22), (5.45) and (5.46)

GM(R)

MN

RN

R
= (n+ 1)κρ

1
n
c = Φc, (5.49)(

GM(R)

MN

)n−1(
RN

R

)n−3

=
[(n+ 1)κ]n

4πG
. (5.50)
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From the knowledge of the massM(R) and radius R of a star the
quantities RN andMN can be determined from the Lane-Emden
equation (5.26) and the values of κ, Φc and ρc can be obtained
from the above equations for fixed values of the polytropic index
n.

Another way to determine the central mass density of the
star is to express it as function of the mean mass density of the
star

ρ =
M(R)

4πR3/3
=

[
− 3

RN

du

dz

∣∣∣∣
RN

]
ρc, and

ρc
ρ

=

[
− 3

RN

du

dz

∣∣∣∣
RN

]−1

,

(5.51)
thanks to (5.46).

The central pressure of the star follows from the polytropic

equation of state pc = κρ
1+n
n

c together with (5.49) and (5.51),
yielding

pc =
GM(R)

MN

RN

R

ρc
n+ 1

=
GM(R)

MN

RN

R

ρ

n+ 1

[
− 3

RN

du

dz

∣∣∣∣
RN

]−1

.

(5.52)
From the equation of state of a perfect fluid one can obtain

the temperature at the center of the star

Tc =
μmμ

k

pc
ρc

=
μmμ

k(n+ 1)

GM(R)

MN

RN

R
. (5.53)

The mass density and pressure and temperature as functions
of the dimensionless radial distance z follows from (5.25) and the
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polytropic equation of state, namely

ρ(z) = ρc u(z)
n, p(z) = pc u(z)

n+1, T (z) = Tc u(z). (5.54)

5.6.2 Post-Newtonian theory

The first zero of the numerical solution of the post-Newtonian
Lane-Emden equation (5.38) for u(z) will be denoted here by
z|u=0 = RPN = R/a.

The inner mass M(R) of a sphere with radius R is given by

M(R) =

∫ R

0

4π
√
γ∗ρr2dr, (5.55)

where γ∗ is the determinant of the spatial metric tensor. Here
up to 1/c2 order we have

√
γ∗ =

√−g
g00

=

(
1 +

3Φ

c2

)
=

(
1 +

3(n+ 1)κρ
1
n

c2

)

=

(
1 +

3(n+ 1)pc
c2ρc

u(z)

)
, (5.56)

thanks to (5.25) and (5.32). Hence the mass of the star which
follows from the Lane-Emden equation (5.38) is

M(R) = 4πa3ρc

∫ RPN

0

(
1 +

3(n+ 1)pc
c2ρc

u(z)

)
z2undz

= −4πa3ρc
∫ RPN

0

{(
1− (3 + n)pc

c2ρc
u(z)

)[
d2u(z)

dz2
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+
2

z

du(z)

dz

]
− (1 + n)pc

c2ρc

(
du(z)

dz

)2}
z2dz = 4πρca

3MPN .

(5.57)

In the above equation we have introduced the abbreviation

MPN = −
∫ RPN

0

{(
1− (3 + n)pc

c2ρc
u(z)

)[
d2u(z)

dz2

+
2

z

du(z)

dz

]
− (1 + n)pc

c2ρc

(
du(z)

dz

)2}
z2dz. (5.58)

The mass-radius relationships are given by

GM(R)

MPN

RPN

R
= (n+ 1)κρ

1
n
c = Φc, (5.59)(

GM(R)

MPN

)n−1(
RPN

R

)n−3

=
[(n+ 1)κ]n

4πG
, (5.60)

while the central mass density, pressure and temperature read

ρc
ρ

=
R3

PN

3MPN
, (5.61)

pc =
GM(R)

MPN

RPN

R

ρ

n+ 1

R3
PN

3MPN
, (5.62)

Tc =
μmμ

k(n+ 1)

GM(R)

MPN

RPN

R
. (5.63)

5.6.3 Brans-Dicke post-Newtonian theory

The first zero of the numerical solution of the post-Newtonian
Brans-Dicke Lane-Emden equation (5.44) for u(z) will be de-
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noted here by z|u=0 = RBD = R/a. The equations for the
physical quantities can be obtained from the results of the post-
Newtonian theory above by replacing MPN by

MBD = −
∫ Rb

0

{(
1− [n(2β − 1) + 5− 2β]pc

c2ρc
u(z)

)
×
[
d2u(z)

dz2
+

2

z

du(z)

dz

]
− (1 + n)pc

c2ρc

(
du(z)

dz

)2}
dz

β
. (5.64)

5.7 Polytropic solutions of the
Lane-Emden equations

In this section we shall search for polytropic solutions of the
Lane-Emden equations for the Sun and some other stars.

The Sun has a mass M� = 1.989 × 1030kg, radius R� =
6.96 × 108m and the polytropic index usually adopted for it is
n = 3 so that p = κρ

4
3 . This equation of state corresponds to

a completely degenerate ultra-relativistic Fermi gas (see e. g.
[6]).

The polytropic index n = 3 is also considered for white dwarf
stars with higher masses. Here we are interested in the white
dwarf Sirius B which is the companion that orbits around the
star Sirius. Its mass and radius are M = 1.5M� and R =
8.4× 10−3R�, respectively.

The equation of state of a non-relativistic completely degen-
erate Fermi gas is p = κρ

5
3 which corresponds to the polytropic

index n = 3/2 (see e. g. [6]). Convective core stars of red
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giants and brown dwarfs are represented by this polytropic in-
dex. We shall analyze the red giant star Aldebaran with mass
M = 1.5M� and radius R = 44.2R� and the brown dwarf star
Teide 1 with mass M = 5.3×10−2M� and radius R = 10−1R�.

Neutron stars can be represented by an equation of state
with a polytropic index n � 1. Here we will focus our attention
to the neutron stars PSR J0348+0432 with mass M = 2.01M�
and radius R = 1.87×10−5R� and PSR J1614–2230 with mass
M = 1.91M� and radius R = 1.87× 10−5R�.

Let us analyze first the results that follow from the New-
tonian Lane-Emden equation for the Sun, Teide 1, Aldebaran
and Sirius B, which are represented in Table 5.1. The first
zeros were found as a solution of the Newtonian Lane-Emden
equation (5.26) and the central mass density, central pressure
and central temperature were calculated from (5.51), (5.52) and
(5.53), respectively. Note that first zeros for the Sun and for
Sirius B are equal as well as the ones for Teide 1 and for Alde-
baran, which is a consequence that the Sun and Sirius B have
the same polytropic index n = 3, while Teide 1 and Aldebaran
have the polytropic index n = 3/2. We infer from this table that
the central pressure of the Sun and Teide 1 are of the same or-
der but the central mass density and temperature of Teide 1 are
one order of magnitude lower than the Sun, since the former has
mass and radius smaller than the latter. The red giant Alde-
baran has mass and radius larger than those of the Sun and
Teide 1 but its central density, pressure and temperature are
smaller. The central quantities of the white dwarf Sirius B are
several orders of magnitude greater than those of the Sun, since
its has a smaller radius and a greater mass than the latter.
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first zero ρc (kg/m3) pc (Pa) Tc (K)

Sun 6.90 7.64× 104 1.25× 1016 1.18× 107

Teide 1 3.65 4.46× 105 2.43× 1016 4.05× 106

Aldebaran 3.65 1.45× 10−1 5.04× 108 5.60× 105

Sirius B 6.90 1.56× 1011 3.34× 1024 5.14× 109

Table 5.1: First zeros, central mass densities, pressures and tem-
peratures from the Newtonian Lane-Emden equation.

The Lane-Emden in the Brans-Dicke post-Newtonian theory
(5.44) differs from the post-Newtonian one (5.38) by the param-
eter β, which is a very small quantity. Indeed, according to the
Cassini probe [7] the value of the dimensionless coupling con-
stant ω in the Brans-Dicke theory should be ω > 40, 000 and
the constrains due to Planck’s data [8] imply that ω > 181.65.
These restriction on dimensionless coupling constant imply that
the parameter is approximate β ≈ 1 and the corresponding
Lane-Emden equation in the Brans-Dicke post-Newtonian the-
ory (5.44) reduces to the one of the post-Newtonian theory
(5.38). Hence, the values that follow from these two theories
are quite the same.

The difference between the Lane-Emden equations for the
Newtonian (5.26) and post-Newtonian (5.38) theories lies on the
terms that are multiplied by pc/ρc

2 = kTc/mc2 corresponding
to the ratio of the thermal energy of the fluid at the star center
kTc and the rest energy of its particlesmc2. Here this parameter
was determined from the central temperature Tc obtained from
the Newtonian theory and the values found are: kTc/mc2 =
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1.19 × 10−6 for the Sun, kTc/mc2 = 2.37 × 10−4 for Sirius B,
kTc/mc2 = 6.04 × 10−7 for Teide 1 and kTc/mc2 = 3.86 ×
10−8for Aldebaran. Hence, the values given in Table 5.1 remain
practically unchanged for these stars if we take into account the
post-Newtonian Lane-Emden equation. Post-Newtonian correc-
tions are important for more massive stars like the neutron stars
PSR J0348+0432 and PSR J1614–2230 whose values are given
in Table 5.2. In neutron stars the central temperature is at
least three orders of magnitude greater than those of the other
stars analysed here and the ratio of the thermal energy at the
star center and the rest energy of the particle is kTc/mc2 =
1.14 × 10−1 for PSR J0348+0432 and kTc/mc2 = 1.09 × 10−1

for PSR J1614–2230. From this table we can infer that the post-
Newtonian corrections for the central pressure and temperature
are about fifty percent larger than those from the Newtonian
theory. The results for the two neutron stars are quite the same,
since the only difference between both is in their masses which
are of the same magnitude.

PSR J0348+0432 first zero ρc (kg/m3) pc (Pa) Tc (K)

Newtonian 3.14 1.42 × 1018 1.46 × 1034 1.23 × 1012

Post-Newtonian 2.53 1.38 × 1018 2.12 × 1034 1.84 × 1012

PSR J1614–2230 first zero ρc (kg/m3) pc (Pa) Tc (K)

Newtonian 3.14 1.37 × 1018 1.34 × 1034 1.18 × 1012

Post-Newtonian 2.55 1.34 × 1018 1.95 × 1034 1.75 × 1012

Table 5.2: Neutron Stars PSR J0348+0432 and PSR
J1614–2230. First zeros, central mass densities, pressures
and temperatures from Newtonian and post-Newtonian Lane-
Emden equations.
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CHAPTER 6

SPHERICALLY
SYMMETRICAL
ACCRETION

An important area of research in astrophysics is related to the
spherically symmetrical steady state problem where a compact
massive object (e.g. white dwarfs, neutron stars or black holes)
captures gravitationally the particles of the surrounded matter
of an interstellar plasma. This process is known as spherically
symmetrical accretion. The pioneers works in this subject were
published by Hoyle and Lyttleton [1, 2], Bondi and Hoyle [3],
Bondi [4] and Michel [5]. In this chapter the spherically sym-
metrical accretion in the Newtonian and post-Newtonian ap-

227
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proximation are analysed.

6.1 Newtonian spherically symmetri-
cal accretion

6.1.1 Newtonian Bernoulli equation

In the analysis of the spherically symmetrical accretion a com-
pact massive object of mass M at rest is surrounded by an
infinite gas cloud of an interstellar plasma which is moving with
a velocity V relative to it. At large distances from the compact
massive object the gas cloud is at rest with uniform density and
pressure denoted by ρ∞ and p∞, respectively. The flow of the
gas cloud is steady-state and spherically symmetrical and the
resulting mass increase of the compact massive object is not
taken into account. The gas is characterized by a polytropic
equation of state and by a sound speed a given by

p = κργ = κρ
n+1
n , a =

√
dp

dρ
=
√
γκργ−1 =

√
γp

ρ
, (6.1)

where κ is a constant and n the polytropic index.
For steady states the Newtonian hydrodynamic equations

for mass density (2.119) and momentum density (2.129) for an
Eulerian fluid become

∂ρVi

∂xi
= 0, Vj

∂Vi

∂xj
+

1

ρ

∂p

∂xi
+

∂φ

∂xi
= 0, (6.2)
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respectively. Here Vi is the gas flow velocity and φ the New-
tonian gravitational potential. By considering that the fields
depend only on the radial direction r the above equations in
spherical coordinates can be written as

1

r2
d(r2ρV )

dr
= 0, V

dV

dr
+

1

ρ

dp

dr
+

dφ

dr
= 0, (6.3)

with V denoting the component of the gas flow velocity in the
radial direction.

The integration of the continuity equation (6.3)1 implies the
constant mass accretion rate

Ṁ = 4πr2ρV = constant. (6.4)

If we take into account the polytropic equation of state (6.1)
we can rewritten the momentum density hydrodynamic equation
(6.3)2 as

1

2

dV 2

dr
+

γκ

γ − 1

dργ−1

dr
+

dφ

dr
= 0. (6.5)

The integration of the above equation results the Newtonian
Bernoulli equation

V 2

2
+

γκργ−1

γ − 1
+ φ =

V 2

2
+

a2

γ − 1
− GM

r
=

a2∞
γ − 1

. (6.6)

In the above equation we have introduced the sound speed
a2 = γκργ−1 and the expression for the Newtonian gravitational
potential φ = −GM/r. Moreover, it was supposed that the ra-
dial gas flow velocity and the Newtonian gravitational potential

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



230 CHAPTER 6. SPHERICAL ACCRETION

vanish at large distances from the compact massive object where
a∞ denotes the sound speed there.

If we denote by a prime the derivative with respect to r, i.e.,
′ ≡ d/dr we can rewrite (6.3) as

ρ′

ρ
+

V ′

V
+

2

r
= 0, V V ′ + a2

ρ′

ρ
+

GM

r2
= 0. (6.7)

The system of equations (6.7) can be solved for V ′ and ρ′, yield-
ing

V ′

V
=

2a2/r −GM/r2

V 2 − a2
,

ρ′

ρ
= −2V 2/r −GM/r2

V 2 − a2
, (6.8)

which implies the relationship(
2V 2 − GM

r

)
dV

V
= −

(
2a2 − GM

r

)
dρ

ρ
. (6.9)

We infer from the above equation that a critical point is attained
when both expressions within the parenthesis vanish, since both
imply turning points for the functions ρ and V . The critical
values of the gas flow velocity Vc and sound speed ac are given
by

V 2
c =

GM

2rc
= a2c , (6.10)

where rc denotes the critical radius. The existence of a critical
point prevent singularities in the gas flow solution and guaran-
tees a smooth monotonic increase of the gas flow velocity when
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r decreases. Note from (6.10) that at the critical point the gas
flow velocity is equal to the sound speed so that the critical
radius represents the transonic radius.

If we insert (6.10) into the Bernoulli equation (6.6) and solve
for the gas flow velocity (or the sound speed) at the critical point
we get

a2c = V 2
c =

2

5− 3γ
a2∞, rc =

5− 3γ

4

GM

a2∞
, (6.11)

which is valid for γ �= 5/3.
From the expression for the sound speed a2 = γκργ−1 we

can obtain the following relationship for the mass density

ρ = ρ∞

(
a

a∞

) 2
γ−1

, (6.12)

so that mass accretion rate (6.4) in terms of the variables at the
critical point can be rewritten as

Ṁ = 4πr2cρcVc = 4πλc (GM)
2
ρ∞a−3

∞ , (6.13)

thanks to (6.11) and (6.12). Here λc is a dimensionless param-
eter that depends only on γ, namely

λc = 2
9−7γ

2(γ−1) (5− 3γ)
3γ−5

2(γ−1) . (6.14)

Some values of the dimensionless parameter λc as function of
γ are given in Table 6.1, where γ = 1 refers to an isothermal
equation of state, γ = 7/5 and γ = 5/3 to adiabatic equations
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of state for diatomic and monatomic gases, respectively, and
γ = 4/3 to an equation of state for a completely degenerate
ultra-relativistic Fermi gas. The value γ = 5/3 represents also
the equation of state of a completely degenerate non-relativistic
Fermi gas.

γ 1 4/3 7/5 5/3
λc 1.120 0.707 0.625 0.250

Table 6.1: Values of λc for some values of γ.

The temperature can be related with the sound speed and
the density by using the equation of state for a perfect fluid
p = ρT/μmμ together with the expression for the sound speed
a2 = γp/ρ, yielding

T

T∞
=

(
a

a∞

)2

=

(
ρ

ρ∞

)γ−1

. (6.15)

Let us investigate the behavior of the gas flow velocity, mass
density and absolute temperature for some special cases.

We begin with the case where γ = 5/3 so that the Bernoulli
equation (6.6) can be rewritten as

V 2 + 3a2

2GM/r
= 1 +

3a2∞r

2GM
. (6.16)

From (6.10) together with (6.16) and also from (6.11)2 we infer
that rc = 0, the critical radius vanishes when γ = 5/3. We
estimate the last term in (6.16) by considering that the mass of
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the compact object is of order of the Sun M � M� and that
the sound speed of the gas far from the compact massive object
is of order a∞ � 104 m/s. In this case

3a2∞r

2GM
≈ r

6au
, (6.17)

where au=1.496×1011 m is the astronomical unit. If we restrict
ourselves to distances from the compact massive object where
a2∞r/GM � 1 we get from (6.16) that

V 2 + 3a2 ≈ 2GM

r
. (6.18)

At the critical point we can approximate the gas flow velocity
with the speed of sound and it follows that

V ≈ a ≈
√

GM

2r
. (6.19)

Hence, the mass density (6.12) and the absolute temperature
(6.15) at the critical point become

ρ

ρ∞
≈
(
GM

2a2∞

) 3
2 1

r
3
2

,
T

T∞
≈
(
GM

2a2∞

)
1

r
. (6.20)

From (6.19) and (6.20) one infers that the gas flow velocity, mass
density and the absolute temperature increase when the radial
distance from the compact massive object decreases. Further-
more, the increase in the mass density is more accentuated than
those of the temperature and gas flow velocity.
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Two limiting cases can be analyzed for γ �= 5/3. The first
one is when r � rc where the gas flow velocity V and gravita-
tional potential φ become very small and according to Bernoulli
equation (6.6) we can approximate the sound speed with its
value far from the compact massive object a ≈ a∞. In this case
we have from (6.12) and (6.15) that the mass density and the
temperature are equal to their values far from the massive com-
pact object, i.e., ρ ≈ ρ∞ and T ≈ T∞. The gas flow velocity
can be obtained from the mass accretion rate (6.4) and (6.13),
namely

Ṁ = 4πr2ρV = 4πλc (GM)
2
ρ∞a−3

∞ , =⇒ V ≈ λc (GM)
2
a−3
∞

r2
.

(6.21)
Hence the gas flow velocity increases when the distance from
the compact massive object decreases.

In the other limiting case the condition r � rc holds and we
can rewrite the Bernoulli equation (6.6) as

V 2

2a2∞
=

4

5− 3γ

rc
r
− 1

γ − 1

(
a2

a2∞
− 1

)
≈ 4

5− 3γ

rc
r

=
GM

a2∞r
,

(6.22)
thanks to (6.11)2 and the condition that r � rc. Hence we have
that

V ≈
√

2GM

r
, (6.23)

and the gas flow velocity is a function of the inverse of the square
of the radial distance from the compact massive object and in-
creases by decreasing this distance. From the mass accretion
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rate we have that the dependence of the mass density on r is

Ṁ = 4πr2ρV = 4πλc (GM)
2
ρ∞a−3

∞ , hence (6.24)

ρ

ρ∞
≈ λc (GM)

3
2 a−3

∞√
2 r

3
2

, (6.25)

while the dependence of the absolute temperature on r is ob-
tained from (6.15), yielding

T

T∞
≈
[
λc (GM)

3
2 a−3

∞√
2 r

3
2

]γ−1

. (6.26)

Both fields increase by decreasing the distance from the compact
massive object.

6.1.2 Gas flow velocity as function of radial
distance

For the determination of the dependence of the gas flow veloc-
ity as function of the radial distance we follow Bondi [4] and
introduce the dimensionless quantities

r∗ =
ra2∞
GM

, s∗ =
V

a∞
, t∗ =

ρ

ρ∞
=

(
a

a∞

) 2
γ−1

, (6.27)

which are related to the radial distance from the compact mas-
sive object, gas flow velocity and mass density, respectively.

The mass accretion rate (6.4) in terms of these dimensionless
quantities reads

Ṁ = 4πρr2V = 4πλ (GM)
2
ρ∞a−3

∞ , (6.28)
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where λ = r2∗s∗t∗ is a constant.
We shall write the Bernoulli equation (6.6) in terms of the

Mach number u∗ = V/a – which gives the ratio of the gas flow
velocity V and the sound speed a – and the dimensionless ra-
dial distance r∗. The Mach number is usually denoted by Ma,
but the expressions in the sequence become less cumbersome
by denoting it as u∗. For this end we express the dimension-
less parameters s∗ and t∗ as functions of (r∗, u∗) by using the
relationships (6.27) and λ = r2∗s∗t∗, namely

s∗ = u
2

γ+1∗

(
λ

r2∗

) γ−1
γ+1

, t∗ =

(
λ

u∗ r2∗

) 2
γ+1

. (6.29)

The gas flow velocity V and sound speed a in terms of (r∗, u∗)

follow from (6.27) and a/a∞ = t
γ−1
2∗ , yielding

V = a∞u
2

γ+1∗

(
λ

r2∗

) γ−1
γ+1

, a = a∞

(
λ

u∗ r2∗

) γ−1
γ+1

, (6.30)

while the gravitational potential φ as function of r∗ reads

φ = −GM

r
= −a2∞

r∗
. (6.31)

The dependence of the Mach number u∗ with the dimen-
sionless radial distance r∗ follows from the Newtonian Bernoulli
equation (6.6) together with (6.29) – (6.31) resulting

u
4

γ+1∗
2

(
λ

r2∗

) 2(γ−1)
γ+1

+
1

γ − 1

(
λ

u∗ r2∗

) 2(γ−1)
γ+1

=
1

r∗
+

1

γ − 1
. (6.32)
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Figure 6.1: LogLogPlot of Mach number u∗ as function of the
dimensionless radial distance r∗ for γ = 7/5 and two values of
the dimensionless parameter: λ = λc = 0.625 and λ = λc/4.

In Figure 6.1 the Mach number u∗ is plotted as function
of the dimensionless radial distance r∗ for γ = 7/5 where two
different values of the dimensionless parameter λ were adopted:
λ = λc = 0.625 and λ = λc/4. These values are the same as
those adopted in the work of Bondi [4]. From this figure we
infer that we have two physically accepted kinds of flows which
correspond to an infall of matter to the compact massive object
and an outflow of matter from the compact massive object. The
matter infalls correspond to accretion flows and are represented
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 < 5
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Figure 6.2: LogLogPlot of Mach number u∗ as function of di-
mensionless radial distance r∗ for λc = 0.25 corresponding to
γ = 5/3 .

in the figure by the left arrows. The matter outflows are wind
flows and in the figure are represented by right arrows. For
the critical value of the dimensionless parameter λc = 0.625
the solution goes through the critical radial distance rc = 0.20
where the critical Mach number is one corresponding to the
transonic point. These solutions are represented by the blue
curves. For dimensionless parameters smaller than the critical
dimensionless parameter λ < λc there are two solutions, one
refers to a subsonic accretion flow while the other to a supersonic
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Figure 6.3: LogPlot of the ratios of the mass densities ρ/ρ∞
(left frame) and absolute temperatures T/T∞ (right frame) as
functions of radial distance r∗ for γ = 7/5 (blue curve) and
γ = 5/3 (red curve).

wind flow. Both solutions for λ < λc are represented in the
figure by red curves.

As was pointed previously for the case where γ = 5/3 the
critical dimensionless radial distance vanishes rc = 0. The Mach
number u∗ as function of the dimensionless radial distance r∗ for
this case is plotted in Figure 6.2. The two physically accepted
flows correspond to an accretion represented by the blue curve
and a wind flow represented by the red one. Both solutions
converge to the Mach number u∗ = 1 at the transonic point.

The ratios of the mass densities

ρ

ρ∞
=

(
λ

u∗ r2∗

) 2
γ+1

, (6.33)
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for the accretion solutions are plotted in the left frame of Fig-
ure 6.3 as functions of the dimensionless radial distance r∗. The
blue curve represents the case γ = 7/5 while the red one refers
to γ = 5/3. As expected both mass densities ratios increase
by decreasing the radial distance from the compact massive ob-
ject and the mass densities ρ tend to ρ∞ far from the compact
massive object. We infer from this figure that the increase in
the mass density for γ = 7/5 is more accentuate than that for
γ = 5/3.

In the right frame of Figure 6.3 the ratios of the temperatures

T

T∞
=

(
λ

u∗ r2∗

) 2(γ−1)
γ+1

, (6.34)

are plotted as functions of the dimensionless radial distance
where the blue curve represents γ = 7/5 while the red one
γ = 5/3. From this curve we observe that the absolute tem-
peratures T far from the compact massive object tend to T∞
while the ratio T/T∞ for γ = 5/3 is bigger than the one for
γ = 7/5.

6.2 Post-Newtonian accretion

6.2.1 Post-Newtonian Bernoulli equation

Let us now analyse the same problem but within the framework
of the post-Newtonian hydrodynamic equations. The steady
state hydrodynamic equations for the mass density (2.122), the
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mass-energy density (2.127) and the momentum density (2.131)
become

∂ρ∗Vi

∂xi
= 0,

∂σVi

∂xi
= 0, (6.35)

σVj
∂Vi

∂xj
+ ρ

∂φ

∂xi

[
1 +

2

c2

(
V 2 − φ+

3γ − 2

2(γ − 1)

p

ρ

)]
+

∂

∂xi

[
p

(
1− 2φ

c2

)]
− 4ρ

c2
Vj

∂φVi

∂xj

+
ρ

c2
∂ψ

∂xi
+

ρ

c2
Vj

(
∂ξi
∂xj

− ∂ξj
∂xi

)
= 0. (6.36)

In the steady state momentum density hydrodynamic equation
(6.36) we have used the corresponding mass-energy density hy-
drodynamic equation (6.35)2 and the relationship between the
specific internal energy and pressure ε = p/(γ − 1)ρ for a poly-
tropic fluid.

The fields in spherical coordinates depend only on the radial
coordinate r and for a spherically symmetrical flow the gas flow
velocity has only the radial component Vi = (V (r), 0, 0). Hence
we get from (6.35) and (6.36)

d
{
r2ρ

[
1 + 1

c2

(
V 2

2 − 3φ
)]

V
}

dr
= 0, (6.37)

d
{
r2ρ

[
1 + 1

c2

(
V 2 − 2φ+ γ

γ−1
p
ρ

)]
V
}

dr
= 0, (6.38)

ρ

[
1 +

1

c2

(
V 2 − 6φ+

γ

γ − 1

p

ρ

)]
V
dV

dr
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+ρ
dφ

dr

[
1− 2

c2

(
V 2 + φ− 3γ − 2

2(γ − 1)

p

ρ

)]
+

d

dr

[
p

(
1− 2φ

c2

)]
+

ρ

c2
dψ

dr
= 0, (6.39)

by considering the definitions of ρ∗ and σ from (2.123) and
(2.126), namely

ρ∗ = ρ

[
1+

1

c2

(
V 2

2
− 3φ

)]
, σ = ρ

[
1+

1

c2

(
V 2+ ε−2φ+

p

ρ

)]
.

(6.40)
At this point it is more appropriate to analyse the accretion

flow by introducing the proper velocity of the flow vr which is
measured by a local stationary observer (see e.g [6, 7]). The
definition of the proper velocity reads

vr =
Ur

U0/c
=

Ur

(U0/c) (1 + 2φ/c2)
. (6.41)

The relationship between the proper velocity and the radial
component of the four-velocity follows from Vi = U i/(U0/c)
and (6.41), yielding

vr =
V

(1 + 2φ/c2)
, or V = vr

(
1 + 2

φ

c2

)
. (6.42)

The system of differential equations (6.37) – (6.39) can be
rewritten in terms of the proper velocity vr as

d
{
r2ρ

[
1 + 1

c2

(
v2
r

2 − φ
)]

vr

}
dr

= 0, (6.43)
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d
{
r2ρ

[
1 + 1

c2

(
v2r +

a2

γ−1

)]
vr

}
dr

= 0, (6.44)[
1 +

1

c2

(
v2r − 2φ+

a2

γ − 1

)]
vr

dvr
dr

+
dρ

dr

a2

ρ

(
1− 2φ

c2

)
+
dφ

dr

[
1− 1

c2

(
2φ− a2

γ − 1

)]
+

1

c2
dψ

dr
= 0, (6.45)

thanks to (6.42) and the expression for the sound speed of a gas
with a polytropic equation of state a2 = γp/ρ.

The mass-density and mass-energy accretion rates are ob-
tained from the integration of (6.43) and (6.44) resulting

Ṁρ∗ = 4πρr2
[
1 +

1

c2

(
v2r
2
− φ

)]
vr, (6.46)

Ṁσ = 4πρr2
[
1 +

1

c2

(
v2r +

a2

γ − 1

)]
vr. (6.47)

The relationship between both accretion rates follow from

Ṁσ

Ṁρ∗
=

[
1 + 1

c2

(
v2r +

a2

γ−1

)]
vr[

1 + 1
c2

(
v2
r

2 − φ

)]
vr

≈
[
1 +

1

c2

(
v2r
2

+ φ+
a2

γ − 1

)]
.

(6.48)
Here the approximation 1/(1 + x) ≈ 1 − x for the 1/c2 – term
was used. The underlined term is of 1/c2 order and we can use
the Newtonian Bernoulli equation

v2r
2

+
a2

γ − 1
+ φ =

a2∞
γ − 1

, (6.49)
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to simplify (6.48) and get

Ṁσ = Ṁρ∗

[
1 +

1

γ − 1

a2∞
c2

]
. (6.50)

Note that the mass density and mass-energy density accretion
rates are related to each other and differ by a term of order
1/c2 which refers to square of the ratio of the sound speed far
from the compact massive object and the speed of light. Both
accretion rates coincide in the Newtonian limiting case for small
values of a2∞/c2 � 1, i.e., Ṁσ = Ṁρ∗ = 4πρr2V .

For the determination of the post-Newtonian Bernoulli equa-
tion we multiply the momentum density equation (6.45) by

1

ρ

[
1 +

1

c2

(
2φ− a2

γ − 1

)]
,

which, by considering terms up to the 1/c2 order, leads to the
following differential equation

vr
dvr
dr

[
1 +

v2r
c2

]
+

dρ

dr

a2

ρ

[
1− a2

c2(γ − 1)

]
+

dφ

dr
+

1

c2
dψ

dr
= 0.

(6.51)
If we take into account the equation of state p = κργ and

the Newtonian Bernoulli equation (6.6) for the underlined 1/c2

– term, the above equation reduces to

vrdvr

[
1+

v2r
c2

]
+γκργ−2dρ

[
1− γ

c2(γ − 1)
κργ−1

]
+dφ+

1

c2
dψ = 0.

(6.52)
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The integration of (6.52) leads to the Bernoulli equation in
the post-Newtonian approximation

v2r
2

[
1 +

v2r
2c2

]
+

a2

γ − 1

[
1− a2

2c2(γ − 1)

]
+ φ+

ψ

c2

=
a2∞
γ − 1

[
1− a2∞

2c2(γ − 1)

]
. (6.53)

Above it was assumed that the gravitational potentials φ, ψ and
the proper velocity vr vanish far from the compact massive ob-
ject. We call attention to the fact that (6.53) reduces to the
Newtonian Bernoulli equation (6.6) by neglecting the 1/c2 –
terms.

As in the Newtonian analysis we denote the differentiation
with respect to the radial coordinate r by a prime and expand
the derivatives in the hydrodynamic equation for the mass den-
sity (6.43) and get

2rρvr + r2ρ′vr + r2ρv′r +
r2ρvr
c2 (vrv

′
r − φ′)

1 + 1
c2

(
v2
r

2 − φ
) = 0. (6.54)

This equation reduces to

2

r
+

ρ′

ρ
+

v′r
vr

+
1

c2
(vrv

′
r − φ′) = 0, (6.55)

by considering terms up to 1/c2. Likewise one can obtain from
the hydrodynamic equation for the mass-energy density (6.44)
the following expression

2

r
+

ρ′

ρ
+

v′r
vr

+
1

c2

(
2vrv

′
r + a2

ρ′

ρ

)
= 0. (6.56)
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In terms of the derivative with respect to the radial coordinate,
equation (6.52) can be rewritten as(

1 +
v2r
c2

)
vrv

′
r +

[
1− a2

c2(γ − 1)

]
a2

ρ′

ρ
+ φ′ +

ψ′

c2
= 0. (6.57)

By neglecting the 1/c2 – terms the mass density (6.55) and the
mass-energy density (6.56) equations coincide and these equa-
tions together with (6.57) reduce to the Newtonian ones (6.7).

The system of differential equations (6.55) – (6.57) can be
solved algebraically for v′r, ρ

′ and ψ′ resulting

v′r
vr

=
2

r

a2
(
1− rφ′

2c2

)
− rφ′

2

v2r
(
1− a2

c2

)− a2
,

ρ′

ρ
= −2

r

v2r

(
1− rφ′

c2

)
− rφ′

2

v2r
(
1− a2

c2

)− a2
,

(6.58)

ψ′ =
N1

r(γ − 1)
[
v2r

(
1− a2

c2

)− a2
] , (6.59)

where N1 denotes the following abbreviation

N1 = a4
[
rφ′ − 2v2r

(
1− rφ′

c2

)]
+ rφ′v4r(γ − 1)

−2a2(γ − 1)v4r

(
1− rφ′

2c2

)
. (6.60)

From (6.58) we can build the relationship[
v2r

(
1− rφ′

c2

)
− rφ′

2

]
dvr
vr

= −
[
a2

(
1− rφ′

2c2

)
− rφ′

2

]
dρ

ρ
.

(6.61)
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The same analysis as in the Newtonian case follows from the
above equation, i.e., the turning points for the functions ρ and
vr are attained when both expressions within the parenthesis
vanish, yielding

V 2
c =

rcφ
′
c

2
(
1− rcφ′c

c2

) ≈ rcφ
′
c

2

(
1 +

rcφ
′
c

c2

)
, (6.62)

a2c =
rcφ

′
c

2
(
1− rcφ′c

2c2

) ≈ rcφ
′
c

2

(
1 +

rcφ
′
c

2c2

)
. (6.63)

Hence, the solution must pass through a critical point, which is
defined by a critical radius rc, a critical proper velocity Vc and a
critical sound velocity ac. As was commented in the Newtonian
case, the existence of a critical point prevent singularities in the
flow solution and guarantees a smooth monotonic increase of the
flow velocity when r decreases. Note that the approximation
above is valid since we are working with a first post-Newtonian
theory. The relationship between the critical gas flow velocity
and speed of sound follows from (6.62) and (6.63) resulting

a2c
V 2
c

=

(
1− rcφ

′
c

c2

)
(
1− rcφ′c

2c2

) ≈ (
1− rcφ

′
c

2c2

)
≈

(
1− a2c

c2

)
≈

(
1− V 2

c

c2

)
.

(6.64)
Hence, unlike the Newtonian case, the critical gas flow is not
equal to the sound speed.

For the determination of ψ′
c at the critical point we substi-

tute (6.64) into (6.59) and take into account the expression for
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the Newtonian gravitational potential φ = −GM/r = −rφ′,
resulting

ψ′
c

c2
=

φ2
c

2c2rc
=

G2M2

2c2r3c
. (6.65)

We can also determine ψ′ by considering that the scalar grav-
itational potential ψ is of order 1/c2 and we can approximate
(6.59) by

ψ′

c2
=
−a4 [φ+ 2v2r

]− 2a2(γ − 1)v4r − φv4r(γ − 1)

c2r(γ − 1) [v2r − a2]
. (6.66)

Here we have neglected the terms proportional to 1/c2 and taken
into account the relationship φ′r = −φ. If we rely on the virial
theorem 2K +W = 0 – where K and W represent the kinetic
and potential energies – we can assume that 2v2r + φ = 0 and
(6.66) reduces to

ψ′

c2
=

φ2

2c2r
. (6.67)

Now from the integration of (6.67) and the use of φ = −GM/r =
−rφ′ the scalar gravitational potential ψ can be determined,
yielding

ψ

c2
= −G2M2

4c2r2
= − φ2

4c2
, so that

ψc

c2
= − φ2

c

4c2
. (6.68)

Here it was considered that the scalar gravitational potential ψ
vanishes at distances far from the massive object r →∞. Equa-
tion (6.68)2 can be seen as the integral of (6.65) with respect to
rc.
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The determination of the critical values follows from the
Bernoulli equation (6.53) when the expressions for the sound
speed (6.63), proper velocity (6.64) and gravitational potential
(6.68)2 are taken into account. One obtains an algebraic equa-
tion for the determination of φc at the critical point which can
be solved and its value up to order 1/c2 is

φc = − 4a2∞
(5− 3γ)

[
1 +

15− 11γ

8(γ − 1)(5− 3γ)

a2∞
c2

]
. (6.69)

The critical radius is obtained from φ = −GM/r and reads

rc =
(5− 3γ)

4

GM

a2∞

[
1− 15− 11γ

8(γ − 1)(5− 3γ)

a2∞
c2

]
. (6.70)

From (6.63) and (6.64) together with (6.69) and φ′
c = −φc/rc

follow the critical values of the sound speed ac and proper ve-
locity Vc, namely

a2c =
2a2∞

(5− 3γ)

[
1− 1− 5γ

8(γ − 1)(5− 3γ)

a2∞
c2

]
, (6.71)

V 2
c =

2a2∞
(5− 3γ)

[
1− 17− 21γ

8(γ − 1)(5− 3γ)

a2∞
c2

]
. (6.72)

The critical value of the mass density is obtained from the
expression for the sound speed a2 = γp/ρ together with its
critical value (6.71) and the equation of state p = κργ , yielding

ρc
ρ∞

=

(
ac
a∞

) 2
γ−1

=

(
2

5− 3γ

) 1
γ−1

[
1− 1− 5γ

8(γ − 1)2(5− 3γ)

a2∞
c2

]
,

(6.73)
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while the critical value of the absolute temperature follows from
the equation of state p = kTρ/μmμ and reads

Tc

T∞
=

2

5− 3γ

[
1− 1− 5γ

8(γ − 1)(5− 3γ)

a2∞
c2

]
. (6.74)

At the critical point the mass-density accretion rate (6.46)
becomes

Ṁρ∗ = 4πρcr
2
c

[
1 +

1

c2

(
V 2
c

2
− φc

)]
Vc = 4πλc

(
GM

a2∞

)2

ρ∞a∞,

(6.75)
where the critical value for the dimensionless parameter is given
by

λc = (5− 3γ)
3γ−5
2γ−2 2

9−7γ
2γ−2

[
1 +

121− 216γ + 103γ2

16(5− 3γ)(γ − 1)2
a2∞
c2

]
. (6.76)

When the ratio of the sound speed far from the compact
massive object and the speed of light is very small a∞/c � 1
the Newtonian critical values are recovered, namely

φc = − 4a2∞
(5− 3γ)

, rc =
(5− 3γ)

4

GM

a2∞
, (6.77)

a2c = V 2
c =

2a2∞
(5− 3γ)

,
ρc
ρ∞

=

(
2

5− 3γ

) 1
γ−1

,(6.78)

λc = (5− 3γ)
3γ−5
2γ−2 2

9−7γ
2γ−2 . (6.79)

The critical values above are valid for γ �= 5/3 and in the case
when γ = 5/3 the post-Newtonian Bernoulli equation (6.53)
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reduces to[
v2r
2

(
1 +

v2r
2c2

)
+

3a2

2

(
1− 3a2

4c2

)]
r

GM
−

(
1 +

GM

4rc2

)
=

3a2∞r

2GM

(
1− 3a2∞

4c2

)
. (6.80)

If as in the Newtonian case we restrict ourselves to distances
from the compact massive object where a2∞r/GM � 1 and use
the relationship (6.64) – which connects the gas flow velocity
with the sound speed at the critical point – we get from (6.80):

v2r

[
1− 19v2r

16c2

]
≈ GM

2r

[
1 +

GM

4rc2

]
, or v2r ≈

GM

2r

[
1 +

27GM

32rc2

]
.

(6.81)
The expression for the sound speed, mass density and ab-

solute temperature for γ = 5/3 in the post-Newtonian approxi-
mation read

a2 ≈ v2r

[
1− v2r

c2

]
≈ GM

2r

[
1− 5GM

32rc2

]
, (6.82)

ρ

ρ∞
=

(
a

a∞

)3

≈
(

GM

2a2∞r

) 3
2
[
1− 15GM

64rc2

]
, (6.83)

T

T∞
=

(
a

a∞

)2

≈ GM

2a2∞r

[
1− 5GM

32rc2

]
. (6.84)

The post-Newtonian contributions to the fields given in the
equations (6.81) – (6.84) are small, since for a compact massive
object with a mass M �M�, GM/c2 ≈ 102m.
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As in Section 6.1.1 we shall analyse the post-Newtonian ap-
proximation limiting cases for γ �= 5/3 when the radial distance
from the compact massive object is smaller or bigger than the
critical radius.

When r � rc the gas proper velocity vr and Newtonian grav-
itational potential φ become very small so that the sound speed
can be approximated by its value far from the compact massive
object a ≈ a∞ as well as the mass density and the absolute tem-
perature, i.e., ρ ≈ ρ∞ and T ≈ T∞. As a consequence the gas
flow velocity for r � rc is the same as that for the Newtonian
case (6.21).

The post-Newtonian Bernoulli equation (6.53) for r � rc
reduces to

v2r
2

[
1 +

v2r
2c2

]
≈ GM

r

[
1 +

GM

4rc2

]
, (6.85)

if we use the same arguments that were applied to derive (6.22).
From the above equation we obtain that

vr ≈
√

2GM

r

[
1− 3GM

8rc2

]
. (6.86)

Furthermore, from the mass accretion rate (6.75) the depen-
dence of the mass density on r is

ρ

ρ∞
≈ λc (GM)

3
2 a−3

∞√
2 r

3
2

[
1− 13GM

8rc2

]
. (6.87)

We infer from (6.86) that the gas proper velocity in the post-
Newtonian approximation for r � rc is smaller than the New-
tonian one as well the ratio of the mass density (6.87).
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6.2.2 Mach number as function of the radial
distance

In the post-Newtonian approximation we write Bondi’s dimen-
sionless quantities (6.27) as

r∗ =
ra2∞
GM

(
1 +

GM

2rc2

)
, s∗ =

vr
a∞

(
1 +

v2r
2c2

)
, t∗ =

ρ

ρ∞
,(6.88)

which are related to the radial distance, proper velocity and
mass density, respectively. Another dimensionless quantity is
the Mach number, which is the ratio of the proper velocity and
the sound speed u∗ = vr/a.

If we solve (6.88) for r and vr by considering terms up to
1/c2 we obtain

r =
GM

a2∞
r∗

(
1− β2

2r∗

)
, vr = a∞s∗

(
1− β2

2
s2∗

)
. (6.89)

Here we have introduced the relativistic dimensionless parame-
ter β = a∞/c which refers to the ratio of the sound speed far
from the compact massive object and the speed of light.

The mass-density accretion rate (6.46) can be rewritten in
terms of the new variables (6.88) and by taking into account the
Newtonian gravitational potential φ = −GM/r as

Ṁρ∗ = 4πλ

(
GM

a2∞

)2

ρ∞a∞, (6.90)

where λ = r2∗s∗t∗.
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The dependence of the proper velocity as a function of the ra-
dial velocity follows from the post-Newtonian Bernoulli equation
(6.53) by expressing it as function of the dimensionless quanti-
ties (r∗, u∗).

Let us write first the dimensionless parameters s∗ and t∗ as
functions of (r∗, u∗), namely

s∗ = u
2

γ+1∗

(
λ

r2∗

) γ−1
γ+1

⎡⎣1 + β2

γ + 1
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

⎤⎦ , (6.91)

t∗ =

(
λ

u∗r2∗

) 2
γ+1

⎡⎣1− β2

γ + 1
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

⎤⎦ . (6.92)

Above we have taken into account (6.88)2 and the following re-

lationships u∗ = vr/a, λ = r2∗s∗t∗ and t∗ = ρ/ρ∞ = (a/a∞)
2

γ−1 .

Now we can rewrite vr and a in terms of (r∗, u∗) from (6.89)2

and a/a∞ = t
γ−1
2∗ , yielding

vr = a∞u
2

γ+1∗

(
λ

r2∗

) γ−1
γ+1

[
1− β2(γ − 1)

2(γ + 1)
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

]
,(6.93)

a = a∞

(
λ

u∗r2∗

) γ−1
γ+1

⎡⎣1− β2(γ − 1)

2(γ + 1)
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

⎤⎦ .(6.94)

The gravitational potentials φ and ψ as functions of r∗ are given
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by

φ = −GM

r
= −a2∞

r∗

(
1 +

β2

2r∗

)
,

ψ

c2
= − φ2

4c2
= −a2∞

4r2∗
β2.

(6.95)
We call attention to the fact that in (6.91) – (6.95) we have
considered only terms up to the order 1/c2.

Now from the post-Newtonian Bernoulli equation (6.53) to-
gether with (6.93) – (6.95) we get the final equation which gives
the dependence of the Mach number u∗ with the dimensionless
radial distance r∗

u
4

γ+1∗
2

(
λ

r2∗

) 2(γ−1)
γ+1

[
1 +

β2

2(γ + 1)
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

]

− 1

r∗

(
1 +

3β2

4r∗

)
+

1

γ − 1

(
λ

u∗r2∗

) 2(γ−1)
γ+1

×
⎡⎣1− (

1 +
(γ + 1)

2(γ − 1)2u2∗

)
β2(γ − 1)

γ + 1
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

⎤⎦
=

1

γ − 1

(
1− β2

2(γ − 1)

)
. (6.96)

The above equation reduces to the Newtonian one (6.32) if we
neglect the β2 terms.
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6.3 Relativistic Bondi accretion

In this section we shall analyze the relativistic Bondi accretion
and its weak field limiting case. The determination of the rela-
tivistic Bernoulli equation and the analysis of the critical point
follow the work by Michel [5].

6.3.1 Relativistic Bernoulli equation

The Schwarzschild metric is the solution of Einstein’s field equa-
tions that describes the gravitational field outside a spherical
mass. The line element in spherical coordinates (r, θ, ϕ) reads

ds2 =

(
1− 2GM

rc2

)(
dx0

)2 − 1(
1− 2GM

rc2

) (dr)
2

−r2
[
(dθ)

2
+ sin2 θ (dϕ)

2
]
. (6.97)

The Schwarzschild radius corresponds to the radius which
defines the event horizon of a Schwarzschild black hole and is
given by rS = 2GM/rc2.

The gas cloud of the interstellar plasma is characterized by
the particle four-flow Nμ and energy-momentum tensor Tμν of
a perfect fluid

Nμ = nUμ, Tμν = (p+ ε)
UμUν

c2
− pgμν . (6.98)

The balance equations for the particle four-flow and energy-
momentum tensor can be written as

Nμ
;μ =

1√−g
∂
√−gNμ

∂xμ
= 0, (6.99)
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Tμ
ν
;ν =

1√−g
∂
√−g Tμ

ν

∂xν
− 1

2
T νσ ∂gνσ

∂xμ
= 0. (6.100)

In the analysis of the spherically symmetrical accretion the
non-vanishing components of the four-velocity are

(Uμ) =

(
U0 =

dx0

dτ
, Ur =

dr

dτ
, 0, 0

)
, (6.101)

and due to the constraint gμνU
μUν = c2 the component U0 is

connected with Ur by

U0

c
=

√
1− 2GM

rc2 +
(
Ur

c

)2
1− 2GM

rc2

. (6.102)

The balance equation for the particle four-flow (6.99) can be
integrated furnishing the relationship

√−gnUr = constant, (6.103)

which together with
√−g = r2 sin2 θ implies the spherically

symmetrical mass accretion rate

Ṁ = 4πρr2Ur = constant. (6.104)

Here we have introduced the mass density ρ = mn where m
denotes the rest mass of the gas particles.

The time component of the balance of the energy-momentum
tensor (6.100) reduces to

1√−g
∂
√−g T0

ν

∂xν
= 0, (6.105)
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since the components of the metric tensor do not depend on the
time. The integration of the above equation yields

√−gT0
1 =

√−g (p+ ε)
Ur

c

U0

c
= constant. (6.106)

The elimination of Ur from (6.106) by using (6.103) leads to

p+ ε

ρ

U0

c
= constant, (6.107)

which can be rewritten as(
p+ ε

ρ

)2
[
1− 2GM

rc2
+

(
Ur

c

)2
]
= constant, (6.108)

thanks to the relationship (6.102).
At this point it is interesting to introduce the sound speed

a whose expression in relativity is given by (see e.g. [8])

a2

c2
=

ρ

p+ ε

(
∂p

∂ρ

)
s

, (6.109)

where the differentiation is taken at constant entropy s.
From now on we consider a gas with a polytropic equation

of state and energy density equation given by

p = κργ , ε = ρc2 +
κργ

γ − 1
. (6.110)

From (6.109) and (6.110) we can obtain the expressions

p+ ε

ρ
=

κγργ−1

γ − 1
+ c2 =

κγργ−1

a2/c2
, (6.111)
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which implies that we can write

κγργ−1 =
(γ − 1)a2

γ − 1− a2/c2
,

p+ ε

ρ
=

c2

1− a2/(γ − 1)c2
.(6.112)

Furthermore, based on the above expressions the sound speed
can be expressed as

a2

c2
=

ρ2

p+ ε

d

dρ

(
p+ ε

ρ

)
. (6.113)

The relativistic Bernoulli equation is obtained from the sub-
stitution of (6.112) into (6.108), yielding(
1− a2

c2(γ − 1)

)2

=

(
1− a2∞

c2(γ − 1)

)2
[
1− 2GM

rc2
+

(
Ur

c

)2
]
,

(6.114)
where it was supposed that far from the Schwarzschild black
hole 2GM/rc2 and Ur vanish while the sound speed becomes
a∞.

To determine the critical point of the gas flow we differentiate
(6.104) and (6.108) and get respectively

dρ

ρ
+

dUr

Ur
+ 2

dr

r
= 0, (6.115)

2

(
p+ ε

ρ

)
d

dρ

(
p+ ε

ρ

)
dρ

[
1− 2GM

rc2
+

(
Ur

c

)2
]

+

(
p+ ε

ρ

)2 [
2GM

r2c2
dr +

2

c2
UrdUr

]
= 0. (6.116)
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Another expression for (6.116) is obtained by eliminating
dρ from (6.115) and considering the relationships (6.112) and
(6.113). Hence it follows that

dUr

Ur

[
a2

c2
− (Ur/c)

2

1− 2GM/rc2 + (Ur/c)
2

]

+
dr

r

[
2
a2

c2
− GM/rc2

1− 2GM/rc2 + (Ur/c)
2

]
= 0. (6.117)

The critical point is determined when both expressions in the
parenthesis in (6.117) vanish resulting the following expressions
for the critical gas flow velocity and sound speed

(Ur
c )

2 =
GM

2rc
, a2c =

(Ur
c )

2

1− 3(Ur
c /c)

2
, (Ur

c )
2 =

a2c
1 + 3(ac/c)2

.

(6.118)
Note that as in the post-Newtonian case the critical sound speed
does not coincide with the critical gas flow velocity.

It is interesting to compare the post-Newtonian approxima-
tion with the weak field limit of the relativistic case. For that
end we begin by writing the Bernoulli equation (6.114) at the
critical point and taking into account (6.118) as(

1 + 3
a2c
c2

)(
1− a2c

c2(γ − 1)

)2

=

(
1− a2∞

c2(γ − 1)

)2

. (6.119)

This is a third order algebraic equation for the determination of
the critical sound speed a2c which was solved in [9]. Here we are
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interested in its weak field approximation and solve (6.119) by
considering terms up to 1/c2 – order

a2c =
2a2∞
5− 3γ

[
1− 3(3γ + 1)

2(5− 3γ)(γ − 1)

a2∞
c2

]
. (6.120)

The approximate expressions for the critical gas flow velocity
Uc and critical radial distance follows from (6.118) and (6.120),
yielding

Uc
2 =

2a2∞
5− 3γ

[
1 +

3(7− 11γ)

4(5− 3γ)(γ − 1)

a2∞
c2

]
, (6.121)

rc =
(5− 3γ)

4

GM

a2∞

[
1− 3(7− 11γ)

4(γ − 1)(5− 3γ)

a2∞
c2

]
. (6.122)

The critical mass density is obtained from the knowledge of
the critical sound speed and reads

ρc
ρ∞

=

(
ac
a∞

) 2
γ−1

=

(
2

5− 3γ

) 1
γ−1

[
1− 3(3γ + 1)

2(5− 3γ)(γ − 1)2
a2∞
c2

]
.

(6.123)
The critical absolute temperature follows from the equation

of state of a perfect gas p = kTρ/μmμ namely

Tc

T∞
=

(
ac
a∞

)2

=
2

5− 3γ

[
1− 3(3γ + 1)

2(5− 3γ)(γ − 1)

a2∞
c2

]
.(6.124)

We can rewrite the mass accretion rate (6.104) as

Ṁ = 4πρcr
2
cVc = 4πλc(GM)2ρ∞a−3

∞ (6.125)
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thanks to (6.121) – (6.123). Here λc is given by

λc = (5− 3γ)
3γ−5
2γ−2 2

9−7γ
2γ−2

[
1 +

3(17− 66γ + 33γ2)

8(γ − 1)2(5− 3γ)

a2∞
c2

]
.(6.126)

Note that all expressions above for the critical quantities dif-
fer from those of the post-Newtonian approximation given in
Section 6.2.1.

The weak field limit of the relativistic Bernoulli equation is
obtained by considering terms up to the 1/c2 order in (6.114),
yielding

(Ur)2

2

[
1−

(
Ur

c

)2

− 4φ

c2

]

+
a2

(γ − 1)

[
1− a2

2c2(γ − 1)
− 2φ

c2
−

(
Ur

c

)2
]

+φ

(
1− 2φ

c2

)
=

a2∞
(γ − 1)

(
1− a2∞

2c2(γ − 1)

)
. (6.127)

Above we have introduced the Newtonian gravitational poten-
tial φ = −GM

r . Without the 1/c2 – terms (6.127) reduces to
the non-relativistic Bernoulli equation (6.6), but this expression
differs from the post-Newtonian Bernoulli equation (6.53).

The weak field approximation of the Bernoulli equation given
by (6.127) can also be expressed in terms of the proper veloc-
ity of the flow vr defined by (6.41). For that end we use the
relationship between the components Ur and U0 which follows
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from UμU
μ = c2

(
U0

c

)2

=
1 +

(
1− 2φ

c2

) (
Ur

c

)2
1 + 2φ

c2

, (6.128)

so that the proper velocity (6.41) becomes

vr =
Ur√

1 + 2 φ
c2

√
1 +

(
1− 2φ

c2

) (
Ur

c

)2 . (6.129)

The expression of the radial four-velocity component in terms
of the proper velocity by retaining terms up to the 1/c2 order is

Ur = vr

[
1 +

φ

c2
+

v2r
2c2

]
. (6.130)

The weak field limit of Bernoulli equation written in terms
of the proper velocity is obtained from the insertion of (6.130)
into (6.127) and considering terms up to 1/c2 order, yielding

v2r
2

[
1− 2φ

c2

]
+

a2

(γ − 1)

[
1− a2

2c2(γ − 1)
−2φ

c2
− v2r

c2

]
+φ

(
1− 2φ

c2

)
− a2∞

(γ − 1)

(
1− a2∞

2c2(γ − 1)

)
=

v2r
2

[
1− 2φ

c2

]
+

a2

(γ − 1)

[
1 +

3a2 − 4a2∞
2c2(γ − 1)

]
+φ

(
1− 2φ

c2

)
=

a2∞
(γ − 1)

(
1− a2∞

2c2(γ − 1)

)
. (6.131)
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Note that for the underlined term of the above equation we have
used the Newtonian Bernoulli equation (6.49), since it is of 1/c2

order.

6.3.2 Mach number as function of the radial
distance

For the weak field limit the mass density accretion rate follows
from (6.103) which in terms of the proper velocity reads

Ṁ = 4πρr2Ur = 4πρr2vr

[
1− GM

rc2
+

v2r
2c2

]
. (6.132)

If we introduce the dimensionless quantities

r∗ =
ra2∞
GM

(
1− GM

2rc2

)
, s∗ =

vr
a∞

(
1 +

v2r
2c2

)
, t∗ =

ρ

ρ∞
,

(6.133)
the mass density accretion rate becomes

Ṁ = 4πλ

(
GM

a2∞

)2

ρ∞a∞, where λ = r2∗s∗t∗. (6.134)

By considering terms up to the 1/c2 order we can obtain from
(6.133) that

r =
GMr∗
a2∞

(
1 +

β2

2r∗

)
, vr = a∞s∗

(
1− β2s∗

2

)
. (6.135)

The expression for s∗ given above is the same as the one
in the post-Newtonian approximation (6.88) so that we can use
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(6.93) and (6.94) for the proper velocity and sound speed as a
function of the Mach number u∗ and dimensionless radial dis-
tance r∗, respectively. The Newtonian gravitational potential
φ = −GM/r in terms of the dimensionless radial distance is

φ = −a2∞
r∗

(
1− β2

2r∗

)
. (6.136)

Now from the weak field Bernoulli equation (6.131) together
with (6.93), (6.94) and (6.136) follow the expression which relate
the Mach number u∗ = vr/a as function of the dimensionless
radial distance r∗, namely

u
4

γ+1∗
2

(
λ

r2∗

) 2(γ−1)
γ+1

[
1− β2(γ − 1)

γ + 1
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

+
2β2

r∗

]

− 1

r∗

(
1 +

3β2

2r∗

)
+

1

γ − 1

(
λ

u∗ r2∗

) 2(γ−1)
γ+1

[
1− 2β2

γ − 1

−
(
1− 3(γ + 1)

2(γ − 1)2u2∗

)
β2(γ − 1)

(γ + 1)
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

]

=
1

γ − 1

(
1− β2

2(γ − 1)

)
. (6.137)

The relativistic Bernoulli equation (6.114) can also be writ-
ten in terms of a Mach number defined by U∗ = Ur/a which
refers to the ratio of the radial component of the four-velocity
and the sound speed. Here we can use the Bondi dimensionless
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quantities (6.27) and write⎡⎣1− β2

γ − 1

(
λ

U∗r2∗

) 2(γ−1)
γ+1

⎤⎦2

=

(
1− β2

γ − 1

)2
[
1− 2β2

r∗

+β2U2
∗

(
λ

U∗r2∗

) 2(γ−1)
γ+1

]
. (6.138)

In terms of the Mach number related with the proper velocity
u∗ = vr/a the Mach number U∗ is given by

u∗ =
vr
a

=
U∗√

1− 2β2

r

√
1 +

(
1 + 2β2

r

)
β2U2∗

(
λ

U∗r2∗

) 2(γ−1)
γ+1

,

(6.139)
thanks to (6.129).

6.4 Numerical results

Let us analyse the behavior of the solutions for the Mach number
u∗ as function of the dimensionless radial distance r∗ which fol-
low from the different approximations of the Bernoulli equation,
namely, the Newtonian, the post-Newtonian approximation, the
relativistic and its weak field approximation.

The Newtonian solution of (6.32) will be denoted by (N), the
post-Newtonian solution of (6.96) by (PN) and the weak field
approximation solution of (6.137) by (WF). For the relativistic
accretion, denoted by (R), the Bernoulli equation (6.138) was
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first solved for the Mach number with respect to the radial four-
velocity U∗ and then from (6.139) the Mach number for the
proper velocity u∗ was obtained.

In the tables and figures below – which show the Mach
number u∗ as a function of the dimensionless radial distance
r∗ – it was considered that the ratio of the sound velocity
far from the massive body and the light speed was equal to
β = a∞/c = 10−2, which is of relativistic order.

Table 6.2 shows the values for the Mach number u∗ as func-
tion of the dimensionless radial distance r∗ in the range 5 ×
10−4 ≤ r∗ ≤ 2.5× 10−2 for a ultra-relativistic Fermi gas where
γ = 4/3. The critical radius in the Newtonian approximation
is r∗ = 0.25 where the critical Mach number assumes the value
u∗ = 1. From this table we infer that by increasing the dimen-
sionless radial distances r∗ from the massive body the Mach
number decreases. The values of the Mach number for the rela-
tivistic case are bigger than the Newtonian ones while the values
of the Mach number for the post-Newtonian and weak field ap-
proximations are practically the same and are smaller than those
for the Newtonian case. By increasing the dimensionless radial
distance the difference between the Newtonian, post-Newtonian
and weak field solutions becomes very small and the solutions
practically coincide at r∗ = 10−3. The contour plots for the
Newtonian (6.32), post-Newtonian (6.96) and weak field (6.137)
Bernoulli equations are shown in the left frame Figure 6.4. In
this figure the Newtonian solution is represented by a straight
line, the post-Newtonian by a dashed line and the weak field
approximations by a dot-dashed line. We note that the differ-
ence between the Newtonian, post-Newtonian and weak field are

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



268 CHAPTER 6. SPHERICALLY ACCRETION

very small and coincide by increasing the dimensionless radial
distance.

r∗ u∗ (N) u∗ (PN) u∗ (WF) u∗ (R)
2.5× 10−2 1.00 1.07 1.02 2.09
5× 10−2 2.40 2.41 2.41 3.31
10−2 4.35 4.34 4.34 4.97

5× 10−3 5.40 5.37 5.37 6.07
10−3 8.53 8.24 8.26 11.26

5× 10−4 10.29 9.66 9.66 20.26

Table 6.2: Mach number u∗ = vr/a as function of the dimension-
less radial distance r∗ for a ultra-relativistic Fermi gas γ = 4/3.

For a diatomic gas where γ = 7/5 the Mach number u∗ as
function of the dimensionless radial distance r∗ in the range
5× 10−4 ≤ r∗ ≤ 2× 10−2 is shown in Table 6.3. One may infer
the same conclusions as those in the former case, i.e., in com-
parison with the Newtonian solutions the dependence of Mach
number with respect to the dimensionless radial distance for the
relativistic case is bigger, the post-Newtonian and the weak field
solutions are smaller and both have practically the same values.
The critical radius for the Newtonian case is r∗ = 0.2 where the
Mach number attains the value u∗ = 1. The contour plots of
the Newtonian (straight line), the post-Newtonian (dashed line)
and the weak field (dot-dashed line) solutions are displayed in
the right frame of Figure 6.4 showing that the values of the
Mach number for the Newtonian solution is bigger than those
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Figure 6.4: Contour plots of Mach number u∗ as function of
dimensionless radial distance r∗ for ultra-relativistic Fermi gas
γ = 4/3 (left frame) and for diatomic gas γ = 7/5 (right frame).
Newtonian – straight line, post-Newtonian – dashed line and
weak field – dot-dashed line.

for the post-Newtonian and weak field solutions and that the
difference between them becomes very small by increasing the
dimensionless radial distance.

The contour plots for a monatomic gas or a non-relativistic
Fermi gas with γ = 5/3 are shown in Figure 6.5 where of the
Newtonian solution is represented by a straight line, the post-
Newtonian solution by a dashed line and weak field solution by
a dot-dashed line. For the Newtonian case the critical dimen-
sionless radial distance is r∗ = 0 where the the Mach number
becomes equal to u∗ = 1. We call attention to the fact that
r∗ = 0 is a turning point for the Newtonian solution where a
transition occurs from an accretion flow to a wind flow. We in-
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r∗ u∗ (N) u∗ (PN) u∗ (WF) u∗ (R)
2× 10−2 1.00 1.02 1.06 2.21
5× 10−2 2.00 2.00 2.00 2.86
10−2 3.43 3.43 3.43 4.02

5× 10−3 4.16 4.14 4.13 4.77
10−3 6.16 5.99 5.98 8.22

5× 10−4 7.21 6.83 6.81 14.22

Table 6.3: Mach number u∗ = V/a as function of the dimen-
sionless radial distance r∗ for a diatomic gas γ = 7/5.

fer from this figure that the values of the weak field solution are
smaller than the Newtonian ones and the turning point is about
r∗ ≈ 4 × 10−3. Furthermore, for the post-Newtonian solution
there is no turning point which corresponds to a transition from
an accretion flow to a wind flow.

Once the Mach numbers as functions of the dimensionless
radial distances are determined one can obtain the ratios of the
mass density and absolute temperature with respect to their val-
ues far from the compact massive object as function of the di-
mensionless radial distance from (6.33) and (6.34), respectively.
The ratios ρ/ρ∞ and T/T∞ for a ultra-relativistic Fermi gas
(γ = 4/3) and diatomic gas (γ = 7/5) which follow from the
Newtonian and relativistic solutions are compared in table 6.4.
The values of the density and temperature ratios correspond to
a dimensionless radial distance r∗ = 10−2. One observes from
this table that the values of the ratios ρ/ρ∞ and T/T∞ for the
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Figure 6.5: Contour plots of Mach number u∗ as function of
dimensionless radial distance r∗ for non-relativistic Fermi gas
γ = 5/3. Dashed line Newtonian, straight line post-Newtonian
and weak field.Newtonian – straight line, post-Newtonian –
dashed line and weak field – dot-dashed line.

relativistic solution are smaller than those for the Newtonian so-
lution. This can be easily understood by noting that the mass
accretion rate is a constant and proportional to ρr2vr, hence
by increasing the velocity for a given radial distance the density
must diminish. Note that the velocity of the relativistic solution
is bigger than the one of the Newtonian case. There is no sensi-
ble difference in these ratios from the post-Newtonian and weak
field approximations with respect to those from the Newtonian
theory.
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γ ρ/ρ∞ (N) ρ/ρ∞ (R) T/T∞ (N) T/T∞ (R)
4/3 5.65× 102 4.87× 102 2.64× 106 1.87× 106

7/5 5.21× 102 4.00× 102 3.31× 106 1.76× 106

Table 6.4: Comparison of ratios ρ/ρ∞ and T/T∞ at r∗ = 10−2

for γ = 4/3 and γ = 7/5. (N) Newtonian solution and (R)
relativistic solution.

Here it is necessary to comment the behaviors of the post-
Newtonian and weak field solutions found in the above analy-
sis when both are compared with the Newtonian and relativis-
tic solutions. One expects that the post-Newtonian and weak
field solutions should be more close to the relativistic one and
not smaller than the Newtonian solution. By inspecting the
Newtonian (6.32), the post-Newtonian (6.96) and the weak field
(6.137) equations we note that the two latter equations have
corrections from the Newtonian one and their solutions should
furnish different results for the dependence of the Mach number
as function of the dimensionless radial distance. We can ask
why the values of the Mach number for the post-Newtonian and
weak field are smaller than in the Newtonian case. The only
clue is to look at the expression for the proper velocity (6.93)
for the post-Newtonian and weak field which can be written as

vr = a∞u
2

γ+1∗

(
λ

r2∗

) γ−1
γ+1

⎡⎣1− β2(γ − 1)

2(γ + 1)
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

⎤⎦
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= vNr

⎡⎣1− β2(γ − 1)

2(γ + 1)
u

4
γ+1∗

(
λ

r2∗

) 2(γ−1)
γ+1

⎤⎦ , (6.140)

where vNr is the Newtonian expression for the proper velocity.
One infers from the above equation that the proper velocities for
the post-Newtonian and weak field should be smaller than the
one for the Newtonian case, which could explain the difference
in the behavior of the solutions.

To sum up the above results: (i) the Mach number for the
Newtonian, post-Newtonian and weak field accretions have prac-
tically the same values for radial distances of order of the critical
radial distance; (ii) by decreasing the radial distance the Mach
number for the Newtonian accretion is bigger than the one for
the post-Newtonian and weak field accretions; (iii) the effect of
the correction terms in post-Newtonian and weak field Bernoulli
equations are more perceptive for the lowest values of the radial
distance; (iv) practically there is no difference between the New-
tonian, post-Newtonian and weak field Mach numbers when the
ratio a∞/c� 10−2; (v) the solutions for a∞/c > 10−2 does not
lead to a continuous inflow and outflow velocities at the criti-
cal point; (vi) from the comparison of the solutions with those
that follow from the relativistic Bernoulli equation shows that
the Mach number of the former is bigger than the Newtonian,
post-Newtonian and weak field Mach numbers.
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CHAPTER 7

JEANS
INSTABILITY:
HYDRODYNAMIC
EQUATIONS

The standard cosmological model is based on the fact that at
scales larger than 100 Mpc (3.08× 1018 m) the Universe is basi-
cally uniform and homogeneous. The inhomogeneities at small
scales account for the existence of galaxies and clusters of galax-
ies. A question that arises is how to explain the growth and the
basic mechanism of matter aggregation which generate these

277

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



278 CHAPTER 7. HYDRODYNAMIC JEANS INSTABILITY

structures. The first determination of the fluid instabilities for a
static Universe – where small perturbations of a gas cloud could
grow exponentially leading to its collapse – was due to Sir James
Jeans in 1912 [1]. By using the fluid hydrodynamic equations
he determined a dispersion relation which implied, apart from
the harmonic perturbations, a growing and a decaying prop-
agating modes. In other words, he found a physical cutoff –
nowadays called Jeans’ wavelength – such that the perturba-
tions with wavelength shorter than the Jeans wavelength will
not grow in time and evolve as harmonic oscillations, whereas
the perturbations with larger wavelength may grow or decay
exponentially in time. A very simple argument can be used
to understand the gravitational instability associated with the
Jeans mechanism: let us consider a spherical volume of radius
λ which encloses a given mass M and where there exists a mass
density inhomogeneity. In this spherical volume two forces are
present, namely, the gravity force per unit of mass Fg and the
pressure force per unit of mass Fp. The inhomogeneity will grow
if Fg > Fp, i.e, if the gravity force per unit mass is greater than
the opposed pressure force per unit of mass, namely,

Fg =
GM

λ2
∝ Gρλ3

λ2
= Gρλ > Fp ∝ pλ2

ρλ3
∝ c2s

λ
, =⇒ λ2 >

c2s
Gρ

.

Here we have taken the sound speed as c2s ∝ (p/ρ) andM = ρλ3.
The Jeans wavelength is given in terms of the Jeans wave num-
ber by λJ = 2π/κJ = 2πcs/

√
4πGρ. By introducing the wave

number κ = 2π/λ the instability comes out if the condition
λ > λJ or κ < κJ holds. Furthermore, if tp represents the
timescale associated with the pressure exerted over a region with
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matter and tg the timescale needed to start the gravitational
collapse of the matter due to its own weight, the Jeans instabil-
ity occurs whenever the pressure timescale is greater than the
gravitational one, i.e., tp = (λ/cs) > tg = 1/

√
Gρ.

In this chapter we shall investigate the Jeans instability on
the basis of the hydrodynamic equations for the Newtonian, first
and second post-Newtonian approximations.

7.1 Newtonian Jeans instability

The Newtonian analysis of the Jeans instability is based on the
mass density (1.8) and momentum density (1.9) balance equa-
tions for an Eulerian fluid where pij = pδij , which we reproduce
here

∂ρ

∂t
+

∂ρVi

∂xi
= 0, (7.1)

∂ρVi

∂t
+

∂ρViVj

∂xj
+

∂p

∂xi
− ρ

∂U

∂xi
= 0, (7.2)

where the Newtonian gravitational potential U = −φ obeys the
Poisson equation

∇2U = −4πGρ. (7.3)

Here we shall investigate the Jeans instability for an isen-
tropic flow with a polytropic equation of state p = κργ and
sound speed c2s = dp/dρ.

Equations (7.1) – (7.3) represent a system of partial differen-
tial equations for the determination of the mass density ρ(x, t),
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hydrodynamic velocity Vi(x, t) and Newtonian gravitational po-
tential U(x, t). We shall assume that the fluid is initially at rest
with constant mass density ρ0, vanishing hydrodynamic veloc-
ity V 0

i = 0 and constant Newtonian gravitational potential U0.
The homogeneity condition implies that the equilibrium fields
do not depend on the spatial coordinates.

The equilibrium fields are superposed by the field perturba-
tions ρ1(x, t), V

1
i (x, t) and U1(x, t), namely

ρ(x, t)=ρ0+ρ1(x, t), Vi(x, t)=V 1
i (x, t), U(x, t)=U0+U1(x, t),

(7.4)
where the field perturbations are supposed to be small quanti-
ties.

While the equilibrium fields satisfy the balance equations of
mass density (7.1) and momentum density (7.2), the Poisson
equation (7.3) leads to an inconsistency, namely, 0 = −4πGρ0.
To remover this inconsistency one relies on the ”Jeans swindle”,
which asserts that the Poisson equation is valid only for the
perturbed values of the Newtonian gravitational potential and
mass density.

From the insertion of the representations (7.4) into (7.1) –
(7.3) and subsequent linearization of the resulting equations it
follows that

∂ρ1
∂t

+ ρ0
∂V 1

i

∂xi
= 0, (7.5)

ρ0
∂V 1

i

∂t
+ c2s

∂ρ1
∂xi

− ρ0
∂U1

∂xi
= 0, (7.6)

∇2U1 = −4πGρ1. (7.7)
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In (7.6) we have considered ∂p1/∂x
i = c2s∂ρ1/∂x

i.
By taking the time derivative of (7.5) and the divergence of

(7.6) we get

∂2ρ1
∂t2

+ ρ0
∂2V 1

i

∂t∂xi
= 0, ρ0

∂2V 1
i

∂xi∂t
+ c2s∇2ρ1 − ρ0∇2U1 = 0. (7.8)

If we eliminate the velocity derivatives from the mass density
equation (7.8)1 by using the momentum density equation (7.8)2
and the Laplacian of the Newtonian gravitational potential by
considering the Poisson equation (7.7) we get

∂2ρ1
∂t2

− c2s∇2ρ1 − 4πGρ0ρ1 = 0, (7.9)

which is an equation which involves only the mass density per-
turbation.

Now we characterize the mass density perturbation by a
plane wave of small amplitude ρ, wave number vector k and
frequency ω:

ρ1(x, t) = ρ exp[i(k · x− ωt)]. (7.10)

If we insert (7.10) into (7.9) we get the following dispersion
relation which relates the frequency ω with the modulus of the
wave number vector κ =

√
k · k:

ω2 = c2sκ
2
J

(
κ2

κ2
J

− 1

)
= c2sk

2
J

(
λ2
J

λ2
− 1

)
where κJ =

√
4πGρ0
cs

,

(7.11)
denotes Jeans’ wavelength.
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The dispersion relation (7.11) represents the solution given
by Jeans. For small wavelengths λJ > λ the frequency ω is
a real quantity and the mass density perturbation propagates
as harmonic waves in time. For big wavelengths λJ < λ the
frequency ω becomes a pure imaginary quantity so that the mass
density perturbation will grow or decay depending on the sign
±. The one which grows in time refers to Jeans’ instability.

The Jeans mass is defined as the minimum mass for an over-
density to begin the gravitational collapse and it is defined as
the mass contained within a sphere of radius λJ , namely

MJ =
4π

3
λ3
Jρ0. (7.12)

7.2 Jeans instability in expanding
Universe

Another problem which is interesting to examine is the Jeans
instability in an expanding Universe. This problem was first
analyzed by Bonnor [2] in 1957 by using the Newtonian balance
equations coupled with the Poisson equation. The description
of this problem can also be found in the books by Weinberg
[3] and Coles and Lucchin [4]. We note that the Newtonian
gravity is valid in regions whose radius are small compared with
the Hubble radius and the velocities are non-relativistic. The
Hubble radius is of order of c/H0 where the Hubble constant
has an approximate value of H0 = 73 km/s/Mpc.
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We consider that the expanding Universe is ruled by the spa-
tially flat Friedmann-Lamâıtre-Robertson-Walker (FLRW) met-
ric ds2 = (cdt)2−a(t)(dx2+dy2+dz2), where a(t) is the cosmic
scale factor.1

Here we shall follow the work [5] and write the Newtonian
balance equations and the Poisson equation in terms of the co-
moving coordinates x0 which are related with the physical coor-
dinates x by x(t) = a(t)x0. For that end we have to transform
the time and spatial derivatives as follows

∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
x0

+
∂xi

0

∂t

∣∣∣∣
x

∂

∂xi
0

∣∣∣∣
t

=
∂

∂t

∣∣∣∣
x0

− ȧ

a
xi
0

∂

∂xi
0

∣∣∣∣
t

, (7.13)

∂

∂xi

∣∣∣∣
t

=
1

a

∂

∂xi
0

∣∣∣∣
t

. (7.14)

For the analysis of Jeans instability we shall consider the
background solutions

ρB = ρ0

(a0
a

)3

, VB = ȧx0, UB = −2π

3
GρB x · x, (7.15)

superposed by the field perturbations ρ1, V
1
i and U1 i.e., ρ =

ρB + ρ1, Vi = V B
i + V 1

i and U = UB + U1. The mass-energy
density background results from Einstein’s field equations for a
dust dominated Universe where p ≈ 0 (see (7.93)), while the
velocity background follows from Hubble-Lamâıtre’s law V =
(ȧ/a)x. The Newtonian gravitational potential background sat-
isfy the Poisson equation (7.3) without the necessity to invoke
the ”Jeans swindle”.

1For an overview of the field equations which follow from Einstein’s field
equations the reader is referred to the Appendix of this chapter.
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By taking into account (7.13) and considering only the linear
terms the mass-energy density balance equation (7.1) can be
written as

∂ρB
∂t

+
∂ρ1
∂t

− ȧ

a
xi
0

∂ρ1
∂xi

0

+
ρB
a

(
∂V B

i

∂xi
0

+
∂V 1

i

∂xi
0

)
+

ρ1
a

∂V B
i

∂xi
0

+
V B
i

a

∂ρ1
∂xi

0

=
∂ρ1
∂t

+
ρB
a

∂V 1
i

∂xi
0

+
ρ1
a

∂V B
i

∂xi
0

= 0, (7.16)

where in the last equality above we have used the relationships
given in (7.15). Now we introduce the mass-energy density and
velocity contrasts

ρ̃ =
ρ1
ρB

, Ṽi =
V 1
i

a
, (7.17)

so that (7.16) thanks to (7.15) becomes

∂ρ̃

∂t
+

∂Ṽi

∂xi
0

= 0. (7.18)

The momentum density balance equation (7.2) by consider-
ing (7.13) and taking in account only linear terms reads

(ρB + ρ1)

[
∂V B

i

∂t
− ȧ

a
xj
0

∂V B
i

∂xj
0

]
+ ρB

[
∂V 1

i

∂t
− ȧ

a
xj
0

∂V 1
i

∂xj
0

]

+
ρBV

B
j

a

∂V 1
i

∂xj
0

+
(ρBV

B
j + ρBV

1
j + ρ1V

B
j )

a

∂V B
i

∂xj
0

+
c2s
a

∂ρ1
∂x1

0

− (ρB + ρ1)

a

∂U0

∂xj
0

− ρB
a

∂U1

∂xi
0
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= (ρB + ρ1)

[
ä− ȧ2

a

]
xi
0 + ρB

[
∂V 1

i

∂t
− ȧ

a
xj
0

∂V 1
i

∂xj
0

]

+(ρBV
B
i + ρBV

1
i + ρ1V

B
i )

ȧ

a
+

c2s
a

∂ρ1
∂xi

0

+
ρBV

B
j

a

∂V 1
i

∂xj
0

+
4π

3
GρBx

i
0(ρB + ρ1)− ρB

a

∂U1

∂xi
0

= 0. (7.19)

Here we have introduced the sound speed by considering the
relation ∂p1/∂x

i
0 = c2s∂ρ1/∂x

i
0. Furthermore, in the last equal-

ity the relationships (7.15) were used. Now by considering the
Hubble-Lamâıtre’s law V B

i = ȧxi
0, the acceleration equation for

a dust dominated Universe (7.92)1 and introducing the mass-

energy density ρ̃ and velocity Ṽi contrasts the above equation
reduces to

∂Ṽi

∂t
+ 2

ȧ

a
Ṽi +

c2s
a2

∂ρ̃

∂xi
0

− 1

a2
∂U1

∂xi
0

= 0. (7.20)

The Poisson equation (7.3) for the perturbations is given by

∇2
x0
U1 = −4πGρBa

2ρ̃. (7.21)

Following the same methodology of the previous section we
derive the mass-energy density contrast equation (7.18) with
respect to time and the velocity contrast equation (7.20) with
respect to the comoving coordinates. By eliminating the deriva-
tives of the velocity contrast from the former equation by using
the latter equation, yields

∂2ρ̃

∂t2
+ 2

ȧ

a

∂ρ̃

∂t
− c2s

a2
∇2

x0
ρ̃− 4πGρB ρ̃ = 0. (7.22)
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Here we have used the Poisson equation (7.21) to eliminate the
Laplacian of the perturbed Newtonian gravitational potential
U1.

The mass-energy density contrast ρ̃ is now expanded in a
plane wave base where the comoving wave number is q, while
the physical one is q/a(t). The factor 1/a(t) in the physical wave
number takes into account that the wave number is stretched
out in an expanding Universe. Hence we write the mass-energy
density contrast as

ρ̃ = δρ(t) exp [iq · x0] . (7.23)

Insertion of the plane wave representation (7.23) into (7.22)
leads to the following differential equation for the amplitude of
the mass-energy density contrast δρ(t):

d2δρ

dt2
+ 2

ȧ

a

dδρ

dt
+ c2s

q2

a2
δρ− 4πGρBδρ = 0. (7.24)

Now we shall write (7.24) in term of dimensionless quantities.
For that end we shall use the time dependence of the scale factor

a = a0
(
6πGρBt

2
) 1

3 which follows from the Friedmann equation
for a pressureless fluid (see (7.94) in the Appendix) and the
dimensionless quantities

λ0 =
2πa0
q

, λJ =
2πcs√
4πGρB

, τ = t
√

6πGρB , (7.25)

which represent the mass-energy density contrast wavelength,
Jeans wavelength and dimensionless time, respectively. The
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Figure 7.1: Amplitude of the mass-energy density contrast δρ
as function of the dimensionless time τ for big λJ/λ0 = 0.1
and small λJ/λ0 = 10 wavelengths in comparison with Jeans
wavelength.

resulting differential equation for the amplitude of the mass-
energy density contrast becomes

τ2δρ′′ +
4

3
τδρ′ +

2

3

(
λ2
J

λ2
0

τ
2
3 − τ2

)
δρ = 0. (7.26)

In the above equation the prime denotes differentiation with
respect to the dimensionless time τ and it was used the rela-

tionships a = a0
(
6πGρBt

2
) 1

3 and a′/a = 2/3τ .
The differential equation (7.26) was solved numerically for

the following initial conditions: δρ(0.001) = 1 and δρ′(0.001) =
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Figure 7.2: Amplitude of the mass-energy density contrast δρ
as function of the dimensionless time τ in the oscillatory regime
for two ratios λJ/λ0 = 10 and λJ/λ0 = 20.

0. In Figure 7.1 it is shown the behavior of the mass-energy den-
sity contrast as function of the dimensionless time τ for two val-
ues of the ratio between the Jeans and mass-energy density con-
trast wavelengths λJ/λ0. The case λJ/λ0 = 0.1 represents the
Jeans instability where the mass-energy density contrast grows
with time (big wavelengths), while the one where λJ/λ0 = 10
shows an oscillatory behavior of the mass-energy density con-
trast (small wavelengths). In Figure 7.2 a comparison of the
oscillatory behavior for the ratios λJ/λ0 = 10 and λJ/λ0 = 20
shows that by decreasing the wavelength of the mass-energy
density contrast the period of the oscillation decreases.

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.3. POST-NEWTONIAN JEANS INSTABILITY I 289

7.3 Post-Newtonian Jeans instability
I

Let us investigate the Jeans instability within the framework of
the first post-Newtonian Eulerian hydrodynamic equations. We
begin by reproducing here the balance equations for the mass
density (2.122)

∂ρ∗
∂t

+
∂ρ∗Vi

∂xi
= 0, where ρ∗ = ρ

[
1 +

1

c2

(
V 2

2
+ 3U

)]
,

(7.27)
and for the momentum density (2.133)

ρ
dVi

dt
+

∂p

∂xi

[
1− 1

c2

(
V 2 + 4U + ε+

p

ρ

)]
−ρ ∂U

∂xi

[
1 +

1

c2
(
V 2 − 4U

)]− ρ

c2

[
2
∂Φ

∂xi
+

dΠi

dt

−Vj
∂Πj

∂xi
+ Vi

(
∂U

∂t
− 1

ρ

∂p

∂t
− 4

dU

dt

)]
= 0. (7.28)

The above equations were written in terms of the Chandrasekhar
potentials U = −φ, Φ = −ψ/2 and Πi = −ξi, which obey the
Poisson equations (2.115) and (2.116)

∇2U = −4πGρ, ∇2Φ = −4πGρ

(
V 2 + U +

ε

2
+

3p

2ρ

)
,

(7.29)

∇2Πi = −16πGρVi +
∂2U

∂t∂xi
, (7.30)
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and the gauge condition (2.117)

3
∂U

∂t
+

∂Πi

∂xi
= 0. (7.31)

The system of partial differential equations (7.27) – (7.30)
is closed by assuming the polytropic equation of state p = κργ

and the specific internal energy equation ε = 1
γ−1

p
ρ , which fol-

lows from the integrability condition of the Gibbs equation (see
Section 5.1).

We shall consider that the fluid is initially at rest where the
fields of mass density and scalar gravitational potentials assume
constant values ρ = ρ0, U = U0 and Φ = Φ0, while the hy-
drodynamic velocity Vi and the gravitational potential vector
Πi vanish. These values for the fields satisfy the mass density
(7.27) and the momentum density (7.28) balance equations but
not the Poisson equations (7.29) and (7.30). Hence we assume
again the ”Jeans swindle” by considering that the Poisson equa-
tions are valid only for the perturbed fields. Note that we have
assumed non-vanishing values for the unperturbed gravitational
potentials U = U0 and Φ = Φ0. This assumption is different
from the work [7] on the post-Newtonian Jeans analysis, since
there it was considered vanishing values for the unperturbed
potentials. It will be shown here that the unperturbed Newto-
nian gravitational potential U0 plays an important role in the
determination of the Jeans mass.

The equilibrium fields are superposed by small perturbations
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denoted by the subscript 1 such that

ρ(x, t) = ρ0 + ρ1(x, t), Vi(x, t) = V 1
i (x, t), Πi(x, t) = Π1

i (x, t),
(7.32)

U(x, t) = U0 + U1(x, t), Φ(x, t) = Φ0 +Φ1(x, t). (7.33)

Insertion of the representations (7.32) and (7.33) into the
balance equations of mass density (7.27) and momentum density
(7.28) and linearization of the resulting equations, lead to[

∂ρ1
∂t

+ ρ0
∂V 1

i

∂xi

] [
1 +

3U0

c2

]
+

3ρ0
c2

∂U1

∂t
= 0, (7.34)

ρ0
∂V 1

i

∂t
+ c2s

∂ρ1
∂xi

[
1− 1

c2

(
4U0 + ε0 +

p0
ρ0

)]
−ρ0 ∂U1

∂xi

(
1− 4U0

c2

)
− ρ0

c2

(
2
∂Φ1

∂xi
+

∂Π1
i

∂t

)
= 0.(7.35)

If we multiply (7.34) by (1− 3U0/c
2) and retain only terms

up to 1/c2 order the resulting equation reduces to

∂ρ1
∂t

+ ρ0
∂V 1

i

∂xi
+

3ρ0
c2

∂U1

∂t
= 0. (7.36)

By taking the time derivative of (7.36) and the divergence
of (7.35) it follows respectively that

∂2ρ1
∂t2

+ ρ0
∂2V 1

i

∂xi∂t
+

3ρ0
c2

∂2U1

∂t2
= 0, (7.37)

ρ0
∂2V 1

i

∂xi∂t
+ c2s∇2ρ1

[
1− 1

c2

(
4U0 + ε0 +

p0
ρ0

)]
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−ρ0∇2U1

(
1− 4U0

c2

)
− ρ0

c2

(
2∇2Φ1 +

∂2Π1
i

∂xi∂t

)
= 0. (7.38)

Now the elimination of the velocity derivatives from (7.37) by
using (7.38), yields

∂2ρ1
∂t2

− c2s∇2ρ1

[
1− 1

c2

(
4U0 + ε0 +

p0
ρ0

)]
+ 2

ρ0
c2
∇2Φ1

+ρ0∇2U1

(
1− 4U0

c2

)
+

ρ0
C2

∂

∂t

[
3
∂U1

∂t
+

∂Π1
i

∂xi

]
= 0,(7.39)

where the underlined term above vanishes thanks to the gauge
condition (7.31).

The perturbed Poisson equations are obtained from the in-
sertion of the representations (7.32) and (7.33) into (7.29), yield-
ing

∇2U1 = −4πGρ1, (7.40)

∇2Φ1 = −4πGρ1

(
U0 +

ε0
2

)
− 4πGρ0

(
U1 +

ε1
2

+
3p1
2ρ0

)
,

(7.41)
since the linearization of the ratio p/ρ is given by

p

ρ
=

p0
ρ0

(
1 + p1/p0
1 + ρ1/ρ0

)
≈ p0

ρ0

(
1 +

p1
p0
− ρ1

ρ0

)
. (7.42)

Note that the perturbed gravitational potential vector Π1
i does

not appear in (7.39), so that its Poisson equation (7.30) will not
be used in the following analysis.
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The elimination of the Laplacians of the scalar gravitational
potentials U1 and Φ1 from (7.39) by the use of (7.40) and (7.41)
results in the following differential equation for the perturbed
mass density:

∂2ρ1
∂t2

− c2s∇2ρ1

[
1− 1

c2

(
4U0 + ε0 +

p0
ρ0

)]
− 4πGρ20

c2

(
2U1

+ε1 +
3p1
ρ0

)
− 4πGρ0ρ1

[
1− 1

c2
(2U0 − ε0)

]
= 0. (7.43)

The above equation will turn into a differential equation for the
determination of the mass density perturbation if we know the
perturbations of the pressure p1, specific internal energy ε1 and
gravitational potential U1 as functions of ρ1. The relationship
between U1 and ρ1 is given by the Poisson equation (7.40). From
the expressions of the sound speed c2s = dp/dρ and of the specific
internal energy ε = p/ρ(γ−1) it is easy to obtain for a polytropic
fluid that

p0 =
c2s
γ
ρ0, p1 = c2sρ1, ε0 =

c2s
γ(γ − 1)

, ε1 =
c2s
γ

ρ1
ρ0

.

(7.44)
Hence from (7.43) by using (7.44) we obtain the following ex-
pression

∂2ρ1
∂t2

− c2s∇2ρ1

[
1− c2s

c2

(
4
U0

c2s
+

1

γ − 1

)]
− 8πGρ20

U1

c2

−4πGρ0ρ1

[
1− c2s

c2

(
2
U0

c2s
− 3γ − 2

γ − 1

)]
= 0. (7.45)
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We consider now the mass density and the Newtonian gravi-
tational potential as plane waves of frequency ω and wave num-
ber vector k according to

ρ1(x, t) = ρe[i(k·x−ωt)], U1(x, t) = Ue[i(k·x−ωt)], (7.46)

where ρ and U represent small amplitudes of the mass density
and Newtonian gravitational potential, respectively.

Insertion of the representations (7.46) into the Poisson equa-
tion (7.40) leads to a relationship between the mass density and
the Newtonian gravitational potential amplitudes

κ2U = 4πGρ. (7.47)

The dispersion relation – which relates the frequency ω to
the modulus of the wave number vector κ =

√
k · k – is obtained

from the insertion of the plane wave representations (7.46) into
the differential equation for the mass density perturbation (7.45)
and taking into account (7.47), yielding

ω2 = c2sκ
2

[
1− c2s

c2

(
4
U0

c2s
+

1

γ − 1

)]
− 2

(
4πGρ0
κc

)2

−4πGρ0

[
1− c2s

c2

(
2
U0

c2s
− 3γ − 2

γ − 1

)]
. (7.48)

By introducing the dimensionless frequency ω∗ and wave
number κ∗ defined in terms of the Jeans wave number κJ =√
4πGρ0/cs as

ω∗ =
ω√

4πGρ0
, κ∗ =

κ

κJ
, (7.49)
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the dispersion relation (7.48) becomes

ω2
∗ = κ2

∗ − 1− c2s
c2

[(
4U0

c2s
+

1

γ − 1

)
κ2
∗ +

2

κ2∗
− 2U0

c2s
+

3γ − 2

γ − 1

]
.

(7.50)
We note from the above equation the post-Newtonian contribu-
tion to the dispersion relation which is the factor of the ratio
c2s/c

2. As it should be, without this term (7.50) reduces to the
Newtonian dispersion relation (7.11).

The harmonic wave solutions in time are obtained from the
real roots of the dispersion relation (7.50), while the instabilities
which will grow or decay in time come from the pure imaginary
roots of this equation. The Jeans instability refers to the one
which grows in time. The value of κ∗ where ω∗ changes from
the pure imaginary value to the real value is obtained by taking
ω∗ = 0 in (7.50) and if we solve the resulting equation for κ∗ by
considering only terms up to the 1/c2 order, we get

κ∗ =
κ

κJ
= 1 +

c2s
c2

[
5γ − 3

2(γ − 1)
+

U0

c2s

]
=

λJ

λ
. (7.51)

This equation gives the ratio of the Jeans wavelength and the
wavelength of the perturbation.

From (7.51) we can determine the amount of mass which is
necessary for an overdensity to initiate the gravitational collapse
in the post-Newtonian theory. We recall that in the case of the
Newtonian theory it is given by (7.12). Here we build the ratio
of the Jeans masses corresponding to the post-Newtonian MPN

J

and Newtonian MN
J wavelengths. The two masses are related
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to the masses contained in a sphere of radius equal to their
corresponding wavelengths. Hence, we have

MPN
J

MN
J

=

(
λ

λJ

)3

= 1− c2s
c2

[
3(5γ − 3)

2(γ − 1)
+

3U0

c2s

]
, (7.52)

by considering terms up to the 1/c2 order.

We can infer from (7.52) that the mass necessary to begin the
gravitational collapse in the post-Newtonian theory is smaller
than the one in the Newtonian theory. The difference between
the post-Newtonian and Newtonian Jean masses is small, since
it depends on the square of the ratio between the sound and light
speeds. Furthermore, the difference between the two masses de-
pend on the polytropic index n = 1/(γ − 1) and on the unper-
turbed Newtonian gravitational potential U0. From the virial
theorem the unperturbed Newtonian gravitational potential can
be taken as the square of the velocity dispersion, which is a mean
velocity of a group of astronomical objects. Furthermore, a non-
vanishing background Newtonian gravitational potential implies
in a smaller post-Newtonian Jeans mass in comparison with the
one where the background Newtonian gravitational potential is
not taken into account.

For a monatomic or Fermi non-relativistic gas γ = 5/3 and
(7.52) becomes

MPN
J

MN
J

= 1− 3
c2s
c2

[
4 +

U0

c2s

]
. (7.53)
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7.4 Post-Newtonian Jeans instability
II

In this section we shall investigate the Jeans instability within
the framework of the second post-Newtonian Eulerian equa-
tions. The balance equations for the mass density and mo-
mentum density are given by (3.74) and (3.93), respectively.
Furthermore, the Poisson equations for the gravitational poten-
tials are given by (3.47) – (3.51) and the gauge conditions by
(3.46) and (3.52).

Here we shall also consider that the fluid is initially at rest
with a constant mass density and vanishing hydrodynamic ve-
locity, but for simplicity we take into account that the back-
ground values of the gravitational potentials are zero. The rep-
resentation of these fields are

ρ(x, t) = ρ0 + ρ1(x, t) Vi(x, t) = V 1
i (x, t), (7.54)

Πi(x, t) = Π1
i (x, t), U(x, t) = U1(x, t), (7.55)

Φ(x, t) = Φ1(x, t), Ψ0i(x, t) = Ψ1
0i(x, t), (7.56)

Ψij(x, t) = Ψ1
ij(x, t), Ψ00(x, t) = Ψ1

00(x, t), (7.57)

where the subscripts 1 denote the perturbed values of the fields.

By using the above representations into (3.75), the linearized
mass density becomes

ρ̃ = ρ1 + ρ0

[
1 +

3U1

c2
− Ψ1

kk

2c4

]
, (7.58)
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while from from (3.94) the linearized momentum density reads

ρVi = ρ0

[
V 1
i −

Π1
i

c2

] [
1 +

1

c2

(
ε0 +

p0
ρ0

)]
− ρ0

c4
Ψ1

0i. (7.59)

Now the linearized mass density balance equation (3.74) re-
duces to

∂ρ1
∂t

+ ρ0
∂V 1

i

∂xi
+

3ρ0
c2

∂U1

∂t
− ρ0

2c4
∂Ψ1

kk

∂t
= 0, (7.60)

and the linearized momentum density balance equation (3.93)
becomes

ρ0

[
1 +

1

c2

(
ε0 +

p0
ρ0

)][
∂V 1

i

∂t
− ∂U1

∂xi
− 2

c2
∂Φ1

∂xi
− 1

c2
∂Π1

i

∂t

]
+c2s

∂ρ1
∂xi

+
ρ0
c4

(
1

2

∂Ψ1
00

∂xi
− ∂Ψ1

0i

∂t

)
= 0. (7.61)

For the gravitational potentials we shall invoke the ”Jeans
swindle” and consider that their Poisson equations are valid only
for the perturbed fields. Hence, it follows from (3.47), (3.48),
(3.50) and (3.51) that

∇2U1 = −4πGρ1, ∇2Π1
i = −16πGρ0V

1
i +

∂2U1

∂t∂xi
,(7.62)

∇2Φ1 = −2πGε0ρ1 − 4πGρ0

(
U1 +

ε1
2

+
3p1
2ρ0

)
, (7.63)

∇2Ψ1
00 = −32πGρ0Φ1, (7.64)

∇2Ψ1
0i = −16πGρ0

[
V 1
i

(
ε0 +

p0
ρ0

)
− Π1

i

2

]
. (7.65)
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In (7.63) we have used the relationship (7.42).
The linearized gauge conditions (3.46) and (3.52) read

3
∂U1

∂t
+

∂Π1
i

∂xi
+

1

c2

[
∂Ψ1

0j

∂xj
− 1

2

∂Ψ1
kk

∂t

]
= 0, (7.66)

∇2Ψ1
kk = 32πGε0ρ1 + 32πGρ0 (4U1 + ε1) . (7.67)

As in the previous section we have to evaluate the perturbed
specific internal energy. For that end we shall rely on the re-
sult which comes out from the kinetic theory of relativistic
monatomic gases for the specific internal energy, namely (see
e.g. [8])

ε =
3kT

2m

(
1 +

5kT

4mc2

)
, (7.68)

which by using the relationship ε = 1
γ−1

p
ρ can be rewritten as

ε =
1

γ − 1

p

ρ

(
1 +

5

6(γ − 1)

p

c2ρ

)
. (7.69)

Hence, the following relationships hold

ε0 =
c2s

γ(γ − 1)

(
1 +

5

6γ(γ − 1)

c2s
c2

)
, (7.70)

ε1 =
c2s
γ

(
1 +

5

3γ(γ − 1)

c2s
c2

)
ρ1
ρ0

, (7.71)

thanks to (7.42) and (7.44).
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By following the same methodology developed in the pre-
vious sections we take the time derivative of the mass density
balance equation (7.60) resulting

∂2ρ1
∂t2

+ ρ0
∂2V 1

i

∂t∂xi
+

3ρ0
c2

∂2U1

∂t2
− ρ0

2c4
∂2Ψ1

kk

∂t2
= 0. (7.72)

Next the divergence of the momentum density balance equation
(7.61), yields

ρ0

[
1 +

1

c2

(
ε0 +

p0
ρ0

)][
∂2V 1

i

∂t∂xi
−∇2U1 − 2

c2
∇2Φ1

− 1

c2
∂2Π1

i

∂t∂xi

]
+ c2s∇2ρ1 +

ρ0
c4

(
1

2
∇2Ψ1

00 −
∂2Ψ1

0i

∂t∂xi

)
= 0, (7.73)

whose division by
[
1+ 1

c2

(
ε0 +

p0

ρ0

)]
leads to an equation, which

by considering terms up to the 1/c4 order, reads

ρ0

[
∂2V 1

i

∂t∂xi
−∇2U1 − 2

c2
∇2Φ1 − 1

c2
∂2Π1

i

∂t∂xi

]
+c2s∇2ρ1

[
1− 1

c2

(
ε0 +

p0
ρ0

)
+

1

c4

(
ε0 +

p0
ρ0

)2
]

+
ρ0
c4

(
1

2
∇2Ψ1

00 −
∂2Ψ1

0i

∂t∂xi

)
= 0. (7.74)

Equation (7.74) is used to eliminate the velocity derivatives
from (7.72), yielding

∂2ρ1
∂t2

− c2s

[
1− 1

c2

(
ε0 +

p0
ρ0

)
+

1

c4

(
ε0 +

p0
ρ0

)2
]
∇2ρ1
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+ρ0
∂

∂t

[
3
∂U1

∂t
+

∂Π1
i

∂xi
+

1

c2

(
∂Ψ1

0j

∂xj
− 1

2

∂Ψ1
kk

∂t

)]

+ρ0

(
∇2U1 +

2

c2
∇2Φ1

)
− ρ0

2c4
∇2Ψ1

00 = 0. (7.75)

Note that the underlined term vanishes, thanks to the gauge
condition (7.66).

In order to obtain the dispersion relation we assume the
plane wave representation of the perturbed fields

ρ1(x, t) = ρe[i(k·x−ωt)], U1(x, t) = Ue[i(k·x−ωt)], (7.76)

Φ1(x, t) = Φe[i(k·x−ωt)], Ψ1
00(x, t) = Ψ00e

[i(k·x−ωt)], (7.77)

where ρ, U , Φ and Ψ00 are small amplitudes.
Insertion of the plane wave representations (7.76) and (7.77)

into (7.75) leads to{
ω2 − c2sκ

2

[
1− 1

c2

(
ε0 +

p0
ρ0

)
+

1

c4

(
ε0 +

p0
ρ0

)2
]}

ρ

+ρ0κ
2

(
U +

2Φ

c2
− Ψ00

2c4

)
= 0. (7.78)

We have to eliminate from (7.78) the amplitudes U , Φ and
Ψ00 and for that end we use the Poisson equations (7.62) – (7.64)
together with (7.76) and (7.77), resulting

κ2U = 4πGρ, κ2Ψ00 = 32πGρ0Φ, (7.79)

κ2Φ = 4πGρ0U + 2πG
c2s

γ − 1

[
3γ − 2 +

5(2γ − 1)

6γ2(γ − 1)

c2s
c2

]
ρ,(7.80)
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where the relationships (7.70) and (7.71) were taken into ac-
count.

The dispersion relation follows from (7.78) together with
(7.49), (7.70), (7.79) and (7.80), yielding

ω2
∗ = κ2

∗ − 1− c2s
c2

[
κ2
∗

γ − 1
+

2

κ2∗
+

3γ − 2

γ − 1

]
−c4s
c4

[
(5− 6γ)κ2

∗
6γ2(γ − 1)2

− 2(3γ − 2)

(γ − 1)κ2∗
+

5(2γ − 1)

6(γ − 1)2γ2
− 4

κ4∗

]
. (7.81)

In the above equation we have considered only the terms up to
the 1/c4 order.

By taking ω∗ = 0 in (7.81) we get the value of κ∗ where
ω∗ changes from the real value – corresponding to harmonic
waves – to the pure imaginary value – corresponding to growing
(Jeans instability) or decaying waves. By solving the resulting
equation for κ∗ when ω∗ = 0 and consider only terms up to the
1/c4 order, we get

κ∗ = 1 +
5γ − 3

2(γ − 1)

c2s
c2

+
20− 9γ(γ − 1)(35γ − 27)

24γ(γ − 1)2
c4s
c4

, (7.82)

which shows the contribution of the second post-Newtonian ap-
proximation to the dimensionless modulus of the wave number.

The contribution of the term c4s/c
2 is negative, since if we

choose γ = 5/3 which corresponds to a monatomic or a Fermi
non-relativistic gas we get

κ∗ = 1 + 4
c2s
c2
− 33

2

c4s
c4

. (7.83)
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In this case the Jeans mass becomes

MPN
J

MN
J

=

(
λ

λJ

)3

= 1− 12
c2s
c2

+
291

2

c4s
c4

. (7.84)

Although the above equation shows that the Jeans mass in the
second post-Newtonian approximation is larger than the one in
the first post-Newtonian approximation, the difference between
the two is very small. Indeed, for the ratio cs/c � 10−1 the
difference is only 1.6%

Appendix

The cosmological models are based on the Cosmological Princi-
ple that asserts that at large scales the Universe is spatially
homogeneous and isotropic. The homogeneity refers to the
property that the Universe is identically uniform at any place
while in the isotropy property the uniformity is identical in
all directions. The solution of Einstein’s field equations for
a homogeneous and isotropic Universe is given by the met-
ric derived by Friedmann–Lemâıtre–Robertson–Walker (FLRW
metric). Here we shall consider the FLRW metric for a spa-
tially flat Universe where the line element is given by ds2 =
(cdt)2 − a(t)2

(
dx2 + dy2 + dz2

)
, with a(t) denoting the cosmic

scale factor. We recall that Einstein’s field equations are given
by

Rμν − 1

2
Rgμν = −8πG

c4
Tμν . (7.85)
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If we consider that the source of the gravitational field is a per-
fect fluid the energy-momentum tensor reads

Tμν =
(
ρc2 + p

) UμUν

c2
− pgμν . (7.86)

For the FLRW spatially flat metric the non-vanishing com-
ponents of the Christoffel symbols read

Γ0
11 = Γ0

22 = Γ0
33 = a′a, Γ1

01 = Γ2
02 = Γ3

03 =
a′

a
, (7.87)

where the prime refers to a differentiation with respect to x0 =
ct. The curvature scalar and the components of the Ricci tensor
for the FLRW spatially flat metric are given by

R = 6

(
a′′

a
+

a′2

a2

)
, R00 = 3

a′′

a
, (7.88)

R11 = R22 = R33 = −2a′2 − a′′a. (7.89)

From the time and spatial components of Einstein’s field
equations it follows a coupled system of differential equations(

ȧ

a

)2

=
8πG

3
ρ,

ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
, (7.90)

where the dot represents the differentiation with respect to the
proper time t. The above equations are known as the Friedmann
and acceleration equations, respectively.

By differentiating the Friedmann equation (7.90)1 with re-
spect to time and eliminating the acceleration term by using
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(7.90)2 it follows the equation

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0. (7.91)

In the analysis of the matter dominated phase of the Uni-
verse the pressure is negligible in comparison of the mass-energy
density and we have a ”dust Universe” where p ≈ 0. In this case
the equations (7.90)2 and (7.91) reduces to

ä

a
= −4πG

3
ρ, ρ̇+ 3

ȧ

a
ρ = 0. (7.92)

The integration of the last above equation furnishes a relation-
ship between the mass-energy density and the scale factor which
reads

ρ = ρ0

(a0
a

)3

. (7.93)

The insertion of (7.93) into the Friedman equation (7.90)
and subsequent integration of the resulting equation implies
the knowledge of the dependence of the scale factor with time,
namely

a = a0
(
6πGρ0t

2
) 1

3 . (7.94)

Hence it follows from (7.93) and (7.94) the dependence of the
mass-energy density with respect to time ρ = 1/(6πGt2).

If we relate the observable measured coordinates x – known
as the physical or proper coordinates – with the comoving coor-
dinates x0 by x(t) = a(t)x0, we obtain by differentiating it with
respect to time – and considering that the peculiar velocities are
absent – the Hubble-Lamâıtre’s law V = (ȧ/a)x.
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CHAPTER 8

JEANS
INSTABILITY:
BOLTZMANN
EQUATION

The aim of this chapter is to investigate the Jeans instability
for self-gravitating gases within the framework of a kinetic the-
ory based on the Boltzmann equation which is coupled with
the Poisson equation. By considering perturbations of the one-
particle distribution function and the gravitational potential
from an equilibrium state, it is possible to derive a dispersion

307
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relation where the Jeans instability can be determined. Two
analysis are developed here, in one the perturbed one-particle
distribution function is left unspecified [1, 2] while in the other
it is supposed as a function of the summational invariants [3].

8.1 Jeans instability for a single gas

We start by analyzing the Jeans instability of a self-gravitating
single gas described by the collisionless Boltzmann and Poisson
equations

∂f

∂t
+ vi

∂f

∂xi
+

∂U

∂xi

∂f

∂vi
= 0, ∇2U = −4πG

∫
mfd3v, (8.1)

respectively, which can be seen as a coupled system of differ-
ential equations for the determination of the one-particle distri-
bution function f(x,v, t) and Newtonian gravitational potential
U(x, t).

To analyze the gas instabilities we shall write the distribution
function and the Newtonian gravitational potential as a sum of
background terms denoted by the subscript zero and perturbed
terms with the subscript 1, i.e.,

f(x,v, t) = f0(v) + εf1(x,v, t), U(x, t) = U0(x) + εU1(x, t),
(8.2)

where we have introduced a small parameter ε multiplying the
perturbed quantities to control that only linear terms in this
parameter should be taken into account. The background dis-
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tribution function is the Maxwellian one

f0(v) =
ρ0
m

e−v2/2σ2

(2πσ2)3/2
, (8.3)

which depends only on the gas particle velocity v. The mass
density ρ0 and the temperature T0 of the background are con-
stants and σ =

√
kT0/m denotes the velocity (thermal) disper-

sion of the self-gravitating gas.
If we insert the representations (8.2) into the collisionless

Boltzmann equation (8.1)1 and equate the terms of the same
ε–order we get two hierarchy equations:

∂U0

∂xi

∂f0
∂vi

= 0,
∂f1
∂t

+ vi
∂f1
∂xi

+
∂U1

∂xi

∂f0
∂vi

+
∂U0

∂xi

∂f1
∂vi

= 0.(8.4)

The first equation (8.4)1 is satisfied if the background New-
tonian gravitational potential of the self-gravitating gas does
not depend on the spatial coordinates. This condition follows
also from symmetry considerations, because in a homogeneous
system there is no preference in the direction of the gravita-
tional potential gradient. However, the condition ∇U0 = 0 does
not satisfy the Poisson equation (8.1)2 due to the fact that its
right-hand side refers to the mass density of the self-gravitating
system. In order to remove this inconsistency we again make
use of the ”Jeans swindle”, which considers that the Poisson
equation is valid only for the perturbed one-particle distribu-
tion function and perturbed gravitational potential, i.e.

∇2U1 = −4πG
∫

mf1d
3v. (8.5)
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We represent the perturbations of the distribution function
and of the Newtonian gravitational potential in terms of plane
waves of frequency ω and wave number vector k as follows:

f1(x,v, t) = f1f0(v)e
i(k·x−ωt), U1(x, t) = U1e

i(k·x−ωt), (8.6)

where f1 and U1 are the corresponding amplitudes which are
considered to be small.

Insertion of the representations (8.6) into (8.4)2 leads to a
relationship between the amplitudes

(v · k− ω) f1 −
v · k
σ2

U1 = 0. (8.7)

Furthermore, the Poisson equation (8.5) with (8.6) becomes

κ2U1 = 4πG

∫
mf0f1d

3v, (8.8)

where κ =
√
k · k is the modulus of the wave number vector.

If we eliminate f1 from the Poisson equation (8.8) by using
(8.7) we get

κ2 =
4πGρ0

(2πσ2)
3
2σ2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

e−
v2
x+v2

y+v2
z

2σ2 v · k
v · k− ω

dvxdvydvz,

(8.9)
Here we introduced Maxwellian distribution function (8.3) and
the integrals in the velocity components −∞ < (vx, vy, vz) <∞.

Without loss of generality we can suppose the wave number
vector in the x direction, i.e., k = (κ, 0, 0). The integration of
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(8.9) with respect to the velocity components −∞ < (vy, vz) <
∞ leads to

κ2 =
4πGρ0√
2πσ3

∫ ∞

−∞

e−
v2
x

2σ2 vxκ (vxκ+ ω)

v2xκ
2 − ω2

dvx. (8.10)

Here we have multiplied the nominator and denominator of the
integrand by (vxκ+ ω). Note that the integral of the term which
is linear (odd) in vx vanishes and the remaining integral in vx
can be written as

κ2 =
4πGρ0
σ2

I2 (8.11)

where I2 is defined in terms of the integrals In given by

In(κ, ω) =
2√
π

∫ ∞

0

xne−x2

x2 − (ω/
√
2σκ)2

dx, where x =
vx√
2σ

.

(8.12)

Equation (8.11) is a dispersion relation, since it relates the
modulus of the wave number vector with the frequency κ =
κ(ω).

The unstable solutions are those where �(ω) = 0 and �(ω) >
0, since in this case the solutions grow exponentially with time.
By considering ω = iωI with ωI > 0 the integrals In can be
evaluated and (8.11) becomes

κ2 =
4πGρ0
σ2

[
1−

√
π

2

ωI

κσ
exp

(
ω2
I

2κ2σ2

)
erfc

(
ωI√
2κσ

)]
,(8.13)
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where erfc(x) denotes the complementary error function

erfc(x) =
2√
π

∫ ∞

x

e−x2

dx. (8.14)

If we introduce the Jeans wavelength κJ =
√
4πGρ0/σ with

respect to the velocity dispersion σ and the following dimen-
sionless quantities related with the frequency and modulus of
the wave number vector

ω∗ =
ωI

κJσ
, κ∗ =

κ

κJ
, (8.15)

we can express the dispersion relation (8.13) as

κ2
∗ = 1−

√
π

2

ω∗
κ∗

exp

(
ω2
∗

2κ2∗

)
erfc

(
ω∗√
2κ∗

)
. (8.16)

In Figure 8.1 it is shown the contour plot of the dimension-
less frequency as function of the dimensionless modulus of the
wave vector. Two limiting cases can be inferred from this figure:
(i) when the dimensionless frequency vanishes ω∗ = 0 the modu-
lus of the wave number vector becomes equal to the Jeans wave
number κ = κJ which is related to the limiting value of the fre-
quency where the instability occurs and the corresponding min-
imum mass – the Jeans mass – for an overdensity to begin the
gravitational collapse; (ii) the dimensionless frequency tends to
one when the modulus of the wave number vector tends to zero.
Both cases correspond to the Newtonian analysis described in
Section 7.1 (see equation (7.11)).
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Figure 8.1: Contour plot of the dimensionless frequency as func-
tion of the dimensionless modulus of the wave number vector.

Another methodology to solve Jeans instability from Boltz-
mann equation was proposed in [3] and makes use of the sum-
mational invariants which are related with the rest mass m, the
momentum mv and the energy mv2/2 of a particle. In this
analysis the amplitude f1 is written as a linear combination of
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the summational invariants, namely

f1 = A+B · v +Dv2, (8.17)

where A, B and D are unknowns quantities that do not depend
on v.

If we insert the representations (8.6) and (8.17) together with
(8.3) into the perturbed Boltzmann (8.4)2 and Poisson (8.3)
equations we get

f0

[(
A+B · v +Dv2

)
(k · v − ω)− k · vU1

σ2

]
= 0, (8.18)

κ2U1 = 4πG

∫
mf0

(
A+B · v +Dv2

)
d3v

= 4πGρ0
(
A+ 3σ2D

)
. (8.19)

We have performed the integration of the last equation above
by using the formulas for the Gaussian integrals given in the
Appendix A of Chapter 4 and introduced κ = |k|.

Now we can build a system of algebraic equations for A, B·k,
D and U1. Indeed, if we multiply (8.18) by each of the summa-
tional invariants

(
1,v,v2

)
and integrate the resulting equations

by using the Gaussian integrals we get respectively

ω
(
A+ 3σ2D

)− σ2B · k = 0, (8.20)

ωB · k−
[
A+ 5σ2D − U1

σ2

]
κ2 = 0, (8.21)

ω
(
3A+ 15σ2D

)− 5σ2B · k = 0. (8.22)
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Note that (8.21) results from the scalar multiplication of the
vector equation for B by k and by using κ2 = k · k.

Equations (8.19) – (8.22) represent a system of algebraic
equations for A, B · k, D and U1. It has a non-trivial solution
if the determinant of the coefficients A, B, D and U1 vanishes,
which implies the dispersion relation:

ω2 = c2sκ
2
J

(
κ2

κ2
J

− 1

)
, (8.23)

which is the same dispersion relation which comes from the New-
tonian analysis of the Jeans instability of Section 7.1 given by
(7.11).

The previous analyses were based on a collisionless Boltz-
mann equation where the evolution of the one-particle distribu-
tion function in the phase space does not consider the particle
collisions. In the theory of the Boltzmann equation the col-
lisional term is responsible for the irreversible processes char-
acterized by the viscous and heat conduction effects. A ques-
tion which is important to answer refers to the modifications
introduced by the irreversible processes in the analysis of the
Jeans instability. This problem was analyzed in [4] within the
framework of a collisional Boltzmann equation and recently in
[5] from a phenomenological theory based on the balance equa-
tions. Here we shall investigate the same problem by using the
collisional Boltzmann equation with the same methodology de-
scribed above, which makes use of the summational invariants.

We start by writing the BGK model of the Boltzmann equa-
tion where the structure of the collision term is simplified but
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preserves the basic properties of the full Boltzmann equation.
The collision term in the BGK model is given in terms of the
difference between the one-particle distribution function and the
Maxwellian one multiplied by a frequency ν which is of order
of the collision frequency. In this case the Boltzmann equation
reads (see e.g. [6])

∂f

∂t
+ vi

∂f

∂xi
+

∂U

∂xi

∂f

∂vi
= −ν(f − f0). (8.24)

As in the previous analysis the Boltzmann equation (8.24) is
linked with the Poisson equation

∇2U = −4πG
∫

mfd3v. (8.25)

The Boltzmann and the Poisson equations for the perturbed
one-particle distribution function f1 and perturbed Newtonian
gravitational potential U1 are

∂f1
∂t

+ vi
∂f1
∂xi

+
∂U1

∂xi

∂f0
∂vi

= −νf1, ∇2U1 = −4πG
∫

mf1d
3v.

(8.26)
Now we represent the perturbations in terms of plane waves

with wave number vector k and time dependent amplitudes,
namely

f1(x,v, t) = f1(t)f0(v)e
ik·x, U1(x, t) = U1(t)e

ik·x, (8.27)

where the amplitude f1(t) is a linear combination of the sum-
mational invariants

f1(t) = A(t) +B(t) · v +D(t)v2. (8.28)
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Insertion of the representations (8.27) and (8.28) into the
perturbed equations (8.26) imply

dA

dt
+

dB

dt
· v +

dD

dt
v2 + i(v · k)

[
A+B · v +Dv2 − U1

σ2

]
= −ν (

A+B · v +Dv2
)
, (8.29)

κ2U1 = 4πG

∫
m

(
A+B · v +Dv2

)
d3v

= 4πGρ0
(
A+ 3σ2D

)
. (8.30)

Following the same methodology above we multiply (8.29) by
the summational invariants (1,v, v2) and integrate the resulting
equations by using the Gaussian integrals given in the Appendix
A of Chapter 4, yielding

dA

dt
+ 3σ2 dD

dt
+ iσ2B · k = −ν (

A+ 3σ2D
)
, (8.31)

dB

dt
+ ik

(
A+ 5σ2D − U1

σ2

)
= −νB, (8.32)

3
dA

dt
+ 15σ2 dD

dt
+ i5σ2B · k = −ν (

3A+ 15σ2D
)
. (8.33)

First, we subtract (8.33) from (8.31) multiplied by 5 and get

dA

dt
= −νA, hence A = e−νt. (8.34)

Here we introduce the density contrast which is a parame-
ter that indicates where a local increase in the matter density
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occurs. It is defined by the ratio of perturbed and unperturbed
mass densities and given by

δρ =

∫
mf0f1d

3v

ρ0
= A+ 3σ2D. (8.35)

In terms of the density contrast (8.31) becomes

dδρ

dt
+ iσ2B · k = −νδρ, and

d2δρ

dt2
+ iσ2 dB

dt
· k = −ν dδρ

dt
,

(8.36)
where the last equation is the differentiation with respect to
time of the first one.

We eliminate B and its time derivative from (8.36)2 by using
(8.32) and (8.36)1, resulting

d2δρ

dt2
+ κ2σ2

(
A+ 5σ2D − U1

σ2

)
+ ν

(
dδρ

dt
+ νδρ

)
= −ν dδρ

dt
.

(8.37)

Finally the elimination from (8.37) of the amplitudes U1, A
and D by using (8.30), (8.34) and (8.35), respectively, yields

d2δρ

dt2
+ 2ν

dδρ

dt
− 2

3
κ2σ2e−νt +

(
ν2 − 4πGρ0 +

5

3
κ2σ2

)
δρ = 0.

(8.38)

If we introduce the dimensionless quantities

τ = t
√

4πGρ0, ν∗ =
ν√

4πGρ0
, κJ =

√
4πGρ0

5
3σ

2
, (8.39)

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.1. JEANS INSTABILITY FOR A SINGLE GAS 319

which are related to a dimensionless time, a dimensionless col-
lision frequency, and Jeans wave number, respectively, the dif-
ferential equation (8.38) becomes

d2δρ

dτ2
+ 2ν∗

dδρ

dτ
− 2

5

κ2

κ2
J

e−ν∗τ +

(
ν2∗ − 1 +

κ2

κ2
J

)
δρ = 0. (8.40)

The solution of the differential equation (8.40) is

δρ =

[
C1 exp

(
τ

√
1− λ2

J

λ2

)
+ C2 exp

(
− τ

√
1− λ2

J

λ2

)

+
2
λ2
J

λ2

5
(

λ2
J

λ2 − 1
)]

e−ν∗τ , (8.41)

where we have introduced the wavelength λ and Jeans’ wave-
length λJ by considering the relationship κ/κJ = λJ/λ.

Let us analyse the solution (8.41) of the differential equa-
tion. We note that for wavelength values bigger than the Jeans
wavelength λ/λJ > 1 the terms in the exponential are real.
The first exponential will grow with time implying a growth of
the density contrast and the Jeans instability shows up. When
the wavelength values are smaller than the Jeans wavelength
λ/λJ < 1 the term in the exponential is imaginary and the den-
sity contrast has an oscillatory character. These behaviors are
modulated by the factor e−ν∗τ which implies that the growth
and oscillatory behaviors become smaller when the collision fre-
quency is taken into account, i.e. we may associate the collision
frequency with a damped effect on the solution of the density
contrast.
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Figure 8.2: Density contrast δρ as function of the dimensionless
time τ for λ/λJ = 10, for the cases with (ν∗ = 0.1) and without
(ν∗ = 0) collision frequency.

The differential equation (8.40) was solved numerically for
the initial conditions δρ(0) = 1 and δρ′(0) = 0 for two values of
the dimensionless collision frequency ν∗ = 0 and ν∗ = 0.1 that
show the Jeans instability. Here the ratio of the wavelengths
was λ/λJ = 10. In Figure 8.2 the density contrast δρ is plotted
as function of the dimensionless time τ . The straight line corre-
sponds to the case ν∗ = 0.1 where the collisions are taken into
account while the dashed line represents a collisionless Boltz-
mann equation where ν∗ = 0. Note that in the case where the
collisions are considered the growth of the density contrast is
less accentuated than the one that corresponds to the collision-
less Boltzmann equation, since an energy dissipation comes out
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due to the particle collisions.

8.2 Jeans instability for systems
of two fluids

At the present time it is known that the matter content of the
Universe is composed by baryonic matter and dark matter. The
baryonic matter consists of atoms of all categories while dark
matter refers to a still unknown component which does not
emit or interact with electromagnetic radiation. For the pro-
cess of structure formation it is consider that cold dark matter
is consisted of weakly interacting massive particles with veloci-
ties much smaller than the speed of light. Cold dark matter has
a prominent role in the structure formation since it interacts
only with gravity and is not opposed by any force such as the
pressure of radiation. Hence, dark matter collapses first form-
ing seeds into which the baryons fall later. The dark matter has
an important role, since the epoch of structure formation would
occur later than it is observed if dark matter was not present.

We shall analyze Jeans instability by considering two col-
lisionless Boltzmann equations – one for the baryonic matter
and another for the dark matter – which are connected with the
Poisson equation [3, 7, 8]. Here we shall use the indices b and d
to denote the baryonic and dark matter, respectively. The col-
lisionless Boltzmann equations for the one-particle distribution
functions of baryonic matter fb ≡ f(x,vb, t) and dark matter
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fd ≡ f(x,vd, t) are given by

∂fb
∂t

+ vbi
∂fb
∂xi

+
∂U

∂xi

∂fb
∂vib

= 0,
∂fd
∂t

+ vdi
∂fd
∂xi

+
∂U

∂xi

∂fd
∂vid

= 0,

(8.42)
which are connected with the Poisson equation

∇2U = −4πG
(∫

mbfbd
3vb +

∫
mdfdd

3vd

)
= −4πG(ρb + ρd). (8.43)

Here (ρb, ρd) and (mb,md) are the mass densities and the par-
ticle rest masses of the baryonic and dark matter, respectively.

As previously we suppose that the one-particle distribution
functions f(x,vb, t), f(x,vd, t) and the Newtonian gravitational
potential U are subjected to small perturbations from their equi-
librium values f0

b (vb), f
0
d (vd) and U0 which reads

f(x,vb, t) = f b
0(vb) + εf b

1(x,vb, t), (8.44)

f(x,vd, t) = fd
0 (vd) + εfd

1 (x,vd, t), (8.45)

U(x, t) = U0 + εU1(x, t). (8.46)

Here the equilibrium distribution functions are the Maxwellians

f b
0(vb) =

ρb
mb

e−v2
b/2σ

2
b

(2πσ2
b )

3/2
, fd

0 (vd) =
ρd
md

e−v2
d/2σ

2
d

(2πσ2
d)

3/2
. (8.47)

In the above equations σb =
√
kTb/mb and σd =

√
kTd/md

are the dispersion velocities of the baryonic and dark matter

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.2 JEANS INSTABILITY FOR TWO FLUIDS 323

which are connected with their absolute temperatures Tb and
Td, respectively.

Following the same methodology of the last section we insert
the representations (8.44) – (8.46) into the Boltzmann (8.42)
and Poisson (8.43) equations and get

∂f b
1

∂t
+ vbi

∂f b
1

∂xi
+

∂U1

∂xi

∂f b
0

∂vib
= 0, (8.48)

∂fd
1

∂t
+ vdi

∂fd
1

∂xi
+

∂U1

∂xi

∂fd
0

∂vid
= 0, (8.49)

∇2U1 = −4πG
(∫

mbf
b
1d

3vb +

∫
mdf

d
1 d

3vd

)
.(8.50)

Note that we have also considered that the Poisson equation is
valid only for the perturbations, i.e. we have used the ”Jeans
swindle”.

The next step is to consider the perturbations as plane waves
of frequency ω and wave number vector k as follows

f b
1(x,vb, t) = f b

0(vb)
(
Ab +Bb · vb +Dbv

2
b

)
ei(k·x−ωt), (8.51)

fd
1 (x,vd, t) = fd

0 (vd)
(
Ad +Bd · vd +Ddv

2
d

)
ei(k·x−ωt), (8.52)

U1(x, t) = U1e
i(k·x−ωt), (8.53)

where the amplitude of the Newtonian gravitational potential
is constant and the amplitudes of the perturbed distribution
functions are given in terms of linear combinations of the sum-
mational invariants

(
1,vb,v

2
b

)
and

(
1,vd,v

2
d

)
. Furthermore,

Ab, Ad,Bb,Bd, Db, Dd are unknowns that do not depend on the
particle velocities vb and vd.
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We insert the representations of the perturbations (8.51) –
(8.53) into the Boltzmann and Poisson equations (8.48) – (8.50)
and get the following system of algebraic equations

f b
0

[(
Ab +Bb · vb +Dbv

2
b

)
(ω − k · vb) + k · vb

U1

σ2
b

]
= 0,(8.54)

fd
0

[(
Ad +Bd · vd +Ddv

2
d

)
(ω − k · vd) + k · vd

U1

σ2
d

]
= 0,(8.55)

κ2U1 − 4πG
[(
Ab + 3σ2

bDb

)
ρb +

(
Ad + 3σ2

dDd

)
ρd

]
= 0.(8.56)

From (8.54) – (8.56) we can build a system of algebraic equa-
tions for Ab, Ad, Bb = Bb·k, Bd = Bd·k, Db, Dd and U1. Indeed,
from the multiplication of (8.54) by the summational invariants(
1,vb,v

2
b

)
and (8.55) by the summational invariants

(
1,vd,v

2
d

)
and the integration of the resulting equations we get respectively
the system of algebraic equations for Ab, Ad, Bb, Bd, Db, Dd:

ω
(
Aα + 3σ2

αDα

)−Bασ
2
α = 0, (8.57)

ωBα −
[
Aα + 5σ2

αDα +
U1

σ2
α

]
κ2 = 0, (8.58)

ω

(
Aα +

5

3
σ2
αDα

)
− 5

3
Bασ

2
α = 0. (8.59)

Here we have six equations corresponding to α = b, d. To obtain
the above expressions the Gaussian integrals of the Appendix
A of Chapter 4 were used. Furthermore, as in the previous
section a scalar multiplication with k was performed for the
vector equations of Bb and Bd.
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The algebraic system of equations (8.56) – (8.59) has a non-
trivial solution if the determinant of the coefficients Ab, Ad, Bb,
Bd, Db, Dd, U1 vanishes, which implies the dispersion relation:

ω4
∗ +

[
1 +

ρb
ρd
−

(
1 +

σ2
b

σ2
d

)
κ2
∗

]
ω2
∗ +

σ2
b

σ2
d

[
κ2
∗ − 1− ρbσ

2
d

ρdσ2
b

]
κ2
∗ = 0.

(8.60)
In the above equation we have introduced the dimensionless
wave number κ∗ and the dimensionless frequency ω∗ defined by

κ∗ =
κ

κd
J

=
κ cds√
4πGρd

, ω∗ =
ω√

4πGρd
, (8.61)

which are given in terms of the dark matter Jeans wave number
κd
J =

√
4πGρd/c

d
s where cds =

√
5/3σd denotes the dark matter

sound speed. We have taken the dark matter to build the di-
mensionless quantities, since as it was explained before the dark
matter begins to collapse into a complex network of dark matter
halos well before the ordinary matter.

If we consider only one fluid corresponding to the dark mat-
ter we may neglect the baryonic matter by taking ρb = σb = 0
and the dispersion relation (8.60) reduces to:

ω4
∗ +

[
1− κ2

∗
]
ω2
∗ = 0. (8.62)

The above equation has the solutions ω∗ = ±√κ2/κ2
J − 1 and

ω∗ = 0, so that the Jeans solution for one component (8.23) is
recovered.

The roots of the dispersion relation (8.60) furnishes four so-
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lutions for the dimensionless frequency:

ω∗ = ± σb√
2σd

√
κ2∗

(
1 +

σ2
d

σ2
b

)
− σ2

d

σ2
b

(
1 +

ρb
ρd

)
±Δω, (8.63)

where Δω is given by

Δω2 =

[
κ2
∗

(
1 +

σ2
d

σ2
b

)
− σ2

d

σ2
b

(
1 +

ρb
ρd

)]2
−4σ

2
d

σ2
b

[
κ4
∗ −

(
1 +

ρbσ
2
d

ρdσ2
b

)
κ2
∗

]
. (8.64)

We can infer that the dispersion relation (8.60) is a function
of two ratios ρd/ρb and σd/σb. The mass density ratio has not
changed considerably during the evolution of the Universe so
that we can associate it with the present value of the density
parameter ratio ρd/ρb = Ωd/Ωb ≈ 5.4 [9]. There is no fixed value
for the dispersion velocities ratio σd/σb and here we shall rely
on the simulations of Milky Way-like galaxies which included
baryonic and dark matter [10]. We have inferred from one of the
simulations of this work – where Maxwellian distributions are
considered – that this ratio can be taken as σd/σb = 170/93 ≈
1.83.

The real roots of the dispersion relation (8.63) will imply
harmonic wave solutions in time, while the pure imaginary roots
will provide instabilities which will grow or decay in time, and
the one which grows refers to the Jeans instability. It is inter-
esting to investigate the value of κ∗ where ω∗ changes from the
pure imaginary value to the real value. If we take ω∗ = 0 in
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(8.63) we get

κ∗ =
κdb
J

κd
J

=

√
1 +

ρbσ2
d

ρdσ2
b

=
λd
J

λdb
J

, (8.65)

which can be interpreted as the ratio of two Jeans wave num-
bers, the one denoted by κdb

J refers to the system dark-baryonic
matter while the other κd

J refers to the dark matter.
Let us analyze the amount of mass which is necessary for

an overdensity of a dark-baryonic matter system to initiate the
gravitational collapse. This is related to the Jeans mass con-
tained in a sphere of radius equal to the wavelength λ = 2π/κ.
If Mdb

J denotes the Jeans mass of the dark-baryonic matter sys-
tem and Md

J the one for the dark matter system we can build
the ratio of Jeans masses:

Mdb
J

Md
J

=
ρb + ρd

ρd

(
λdb
J

λd
J

)3

=

(
1 +

ρb
ρd

)(√
1 +

ρbσ2
d

ρdσ2
b

)−3

.(8.66)

σd/σb 1.00 1.20 1.40 1.60 1.83 2.00 2.20

Mdb
J /Md

J 0.92 0.83 0.74 0.66 0.57 0.52 0.45

Table 8.1: Ratio of Jeans masses Mdb
J /Md

J as functions of the
ratio of the dispersion velocities σd/σb for ρd/ρb = 5.4.

The ratio of the Jeans masses of the systems dark-baryonic
matter and dark matter for fixed values of the mass densities
ratio ρd/ρb = 5.4, are given in Table 8.2 as functions of the
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dispersion velocities ratio. We infer from this table that the
increase in the dispersion velocities ratio implies that the mass
needed to begin the gravitational collapse becomes smaller than
the mass where only one constituent is present.We can under-
stand this behavior by noting that for large values of σd/σb the
dispersion velocity of the baryonic matter is smaller than the one
of the dark matter so that the baryonic matter hardly overcome
the escape velocity of a given gravitational field.

8.3 Jeans instability in an expanding
Universe

The aim of this section is to analyze Jeans instability by taking
into account the collisionless Boltzmann and Poisson equations
(8.1) in an expanding Universe where the source of the gravita-
tional field is a pressureless fluid [3].

Here the equilibrium one-particle distribution function must
be written in a comoving frame

f0(v, t) =
ρ(t)

m

1

[2πσ(t)2]3/2
exp

[
− (v − ȧx0)

2

2σ(t)2

]
, (8.67)

thanks to Hubble-Lamâıtre’s law ẋ = ȧx0. We note that the
dispersion velocity σ(t) and the mass density ρ(t) are functions
of time (see the Appendix of Chapter 7).

For the background Newtonian gravitational potential we
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adopt the same expression as that given in Section 7.2, namely

U0(x, t) = −2π

3
Gρx · x = −2π

3
Gρa2x0 · x0. (8.68)

In terms of the comoving coordinates x0 the Boltzmann
equation (8.1)1 can be rewritten, by taking into account the
relationships (7.13), as

∂f

∂t

∣∣∣∣
x0

+
(vi − ȧx0

i )

a

∂f

∂xi
0

∣∣∣∣
t

+
1

a

∂U

∂xi
0

∣∣∣∣
t

∂f

∂vi

∣∣∣∣
t,x0

= 0. (8.69)

If we insert the background distribution function (8.67) into
the Boltzmann equation (8.68) we get

∂f0
∂t

∣∣∣∣
x0

+
(vi − ȧx0

i )

a

∂f0
∂xi

0

∣∣∣∣
t

+
1

a

∂U

∂xi
0

∣∣∣∣
t

∂f0
∂vi

∣∣∣∣
t,x0

= f0

{
ρ̇

ρ
+

(v − ȧx0)
2

σ2

ȧ

a
+

[
(v − ȧx0)

2

σ2
− 3

]
σ̇

σ

+
(v − ȧx0) · x0

σ2

(
ä+

4π

3
Gρa

)}
= 0. (8.70)

By taking into account that for a pressureless fluid (7.92) holds
and considering that the dispersion velocity is proportional to
the inverse of the cosmic scale factor σ(t)/σ0 = a0/a(t), the
Boltzmann equation for the background distribution (8.70) is
identically verified.

Furthermore, the Poisson equation is also identically verified
for the background value of the gravitational potential (8.68),
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since

∇2U0 = −4πGρ = −4πG
∫

mf0d
3v. (8.71)

Now we require that the background distribution function
(8.67) and Newtonian gravitational potential (8.68) are sub-
jected to small perturbations characterized by f1(x,v, t) and
U1(x, t) such that

f(x,v, t) = f0(v, t) + f1(x,v, t) = f0(v, t) [1 + h1(x,v, t)] ,
(8.72)

U(x, t) = U0(x, t) + U1(x, t). (8.73)

Furthermore, we represent the perturbations h1 and U1 by plane
waves where the physical wave number vector is q/a(t) while the
comoving one is simply q. The factor 1/a(t) takes into account
that the wavelength is stretched out in an expanding Universe.
Hence

h1(x,v, t) = h(x,v, t)ei
q·x
a(t) = h(x,v, t)eiq·x0 , (8.74)

U1(x, t) = U(t)ei
q·x
a(t) = U(t)eiq·x0 . (8.75)

The amplitudes h(x,v, t) and U(t) are considered to be small
and we assume that h is given as a linear combination of the
comoving summational invariants 1, (v − ȧx0) and (v − ȧx0)

2
,

namely

h(x,v, t) = A(t) +B(t) · (v − ȧx0) +D(t) (v − ȧx0)
2
, (8.76)
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where A(t), B(t) and D(t) are unknown functions of time that
do not depend on the comoving summational invariants.

The insertion of (8.72) – (8.76) into the collisionless Boltz-
mann (8.69) and Poisson equations (8.5) implies the following
system of equations:

f0

[
∂h

∂t

∣∣∣∣
x0

+

(
vi − ȧxi

0

)
a

∂h

∂xi
0

∣∣∣∣
t

+
1

a

∂U0

∂xi
0

∣∣∣∣
t

∂h

∂vi

∣∣∣∣
t,x0

]

+
1

a

∂U1

∂xi
0

∣∣∣∣
t

∂f0
∂vi

∣∣∣∣
t,x0

= f0

{
dA

dt
+ (v − ȧx0) · dB

dt

+(v − ȧx0)
2 dD

dt
− ȧ

(
v − ȧx0

) · [B+ 2D
(
v − ȧx0

)]
a

+
iq · (v − ȧx0)

a

[
A+B · (v − ȧx0) +D (v − ȧx0)

2

− U

σ2

]
−

(
ä+

4π

3
ρa

)
x0 · [B+ 2D (v − ȧx0)]

}
= 0, (8.77)

q2

a2
U = 4πG

∫
mf0

[
A+B · (v − ȧx0)

+D · (v − ȧx0)
2

]
d3v = 4πGρ

(
A+ 3σ2D

)
. (8.78)

Thanks to the acceleration equation (7.92)1 the underlined in
(8.77) vanishes. Furthermore, in the last equation we have used
the Gaussian integrals in the Appendix A of Chapter 4.

If we multiply (8.77) by the comovig summational invariants

1, (v−ȧx0) and (v − ȧx0)
2
and integrate the resulting equations
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by using the Gaussian integrals in the Appendix A of Chapter
4 we get the following system of differential equations

dA

dt
+ 3σ2 dD

dt
+ i

σ2

a
B − 6

ȧ

a
σ2D = 0, (8.79)

dB

dt
+ i

q2

a

[
A+ 5σ2D − U

σ2

]
− ȧ

a
B = 0, (8.80)

3
dA

dt
+ 15σ2 dD

dt
+ i5

σ2

a
B − 30

ȧ

a
σ2D = 0. (8.81)

Equation (8.80) results from the scalar multiplication of the in-
tegrated equation by q and the introduction of B(t) = B(t) · q.

If we subtract (8.81) from (8.79) multiplied by five, we get
that dA/dt = 0 and for simplicity we choose A = 1.

Here the density contrast is also given by

δρ =

∫
mf0hd

3v

ρ
= A+ 3σ2D. (8.82)

In terms of the density contrast (8.79) or (8.81) becomes

dδρ

dt
+ i

σ2

a
B = 0, (8.83)

by considering that σ/σ0 = a0/a. From the differentiation of
the above equation with respect to time and elimination of B,
dB/dt and U by taking into account (8.83), (8.80) and (8.78),
respectively, we obtain the following differential equation for the
density contrast

d2δρ

dt2
+ 2

ȧ

a

dδρ

dt
+

(
5q2σ2

3a2
− 4πGρ

)
δρ−2q2σ2

3a2
= 0. (8.84)
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If we introduce the dimensionless quantities

λ0 =
2πa0
q

, λJ =
2π

√
5/3σ√

4πGρ
, τ = t

√
6πGρ, (8.85)

the differential equation for the density contrast (8.84) becomes

τ2δρ′′ +
4

3
τδρ′ +

2

3

(
λ2
J

λ2
0

τ
2
3 − τ2

)
δρ− 4λ2

J

15λ0
τ

2
3 = 0. (8.86)

In the above equation we have taken into account that a′/a =

2/3τ and a = a0τ
2
3 , moreover the primes refer to the differen-

tiation with respect to τ . The difference of this equation from
the one of the phenomenological theory (7.26) is due to the un-
derlined term.

For the case of Jeans instability – where the density contrast
grows with time – there is no difference between the numerical
solutions of (8.86) and (7.26) for big wavelengths in comparison
with Jeans’ wavelength (λ0 > λJ), since the underlined term
becomes small. For small wavelengths (λ0 < λJ) – which cor-
responds to the oscillatory behavior of the density contrast –
there are differences between the two solutions but they are not
very significant to comment here.

It is also interesting to analyse the influence of irreversible
processes in the Jeans instability for an expanding Universe. As
in Section 8.1 we shall consider the BGK model of the Boltz-
mann equation given by (8.24).

For the BGK model of the Boltzmann equation we get that
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(8.79) – (8.81) become

dA

dt
+ 3σ2 dD

dt
+ i

σ2

a
B − 6

ȧ

a
σ2D = −ν (

A+ 3σ2D
)
, (8.87)

dB

dt
+ i

q2

a

[
A+ 5σ2D − U

σ2

]
− ȧ

a
B = −νB, (8.88)

3
dA

dt
+ 15σ2 dD

dt
+ i5

σ2

a
B − 30

ȧ

a
σ2D = −ν (

3A+ 15σ2D
)
.

(8.89)
From the combination of (8.87) and (8.89) it follows that

dA/dt = −νA which implies that A = e−νt. If we introduce the
density contrast (8.82) we can rewrite (8.87) as

dδρ

dt
+ i

σ2

a
B = −νδρ. (8.90)

From the differentiation of (8.90) with respect to time and
following the same steps above we arrive at

d2δρ

dt2
+

(
2
ȧ

a
+ ν

)(
dδρ

dt
+ νδρ

)
+

(
5q2σ2

3a2
− 4πGρ

)
δρ

−2e−νtq2σ2

3a2
= −ν dδρ

dt
. (8.91)

In terms of the dimensionless quantities (8.85) the above equa-
tion can be rewritten as

δρ′′ +
(

4

3τ
+ 2ν∗

)
δρ′ + δρ

[
ν∗

(
4

3τ
+ ν∗

)
+
2

3

(
λ2
J

λ2
0τ

4
3

− 1

)]
− 4λ2

J

15λ0

e−ν∗τ

τ
4
3

= 0. (8.92)
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Here the dimensionless collision frequency is ν∗ = ν/
√
6πGρ.

1 2 3 4 5

5

10

15

20

25

30

* = 0.1 (NEX)
* = 0 (NEX)
* = 0.1 (EX)
* = 0 (EX)

Figure 8.3: Density contrast δρ as function of the dimensionless
time τ when λ/λJ = 10, for the cases of non-expanding (NEX)
and expanding (EX) Universe with dimensionless collision fre-
quencies ν∗ = 0.1 and ν∗ = 0.

We have solved numerically the differential equation (8.92)
with the same values adopted before for the initial conditions
δρ(0) = 1 and δρ′(0) = 0, for the two values of the dimensionless
collision frequency ν∗ = 0 and ν∗ = 0.1 and for the ratio of the
wavelengths λ/λJ = 10 that correspond to the Jeans instability.
In Figure 8.3 we plotted the solutions of the density contrast δρ
as function of the dimensionless time τ for the expanding (8.92)
and non-expanding (8.40) Universe. The straight lines represent
the case ν∗ = 0.1 where the collisions are taken into account
while the dashed lines correspond to a collisionless Boltzmann
equation where ν∗ = 0. As in the previous analysis of Figure 8.2
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due to the presence of the particle collisions an energy dissipa-
tion comes out implying a less accentuate growth of the density
contrast in comparison to the one for a collisionless Boltzmann
equation. Furthermore, as a consequence that in an expanding
Universe the solution refers to a comoving frame, the density
contrast growth is smaller than the one for a non-expanding
Universe.

8.4 Post-Newtonian Jeans instability

In this section we shall analyze Jeans instability from the col-
lisionless post-Newtonian Boltzmann equation (4.8) which we
rewrite by introducing the gravitational potentials in the Chan-
drasekhar description U = −φ, Πi = −ξi and Φ = −ψ/2:
∂f

∂t
+ vi

∂f

∂xi
+

∂U

∂xi

∂f

∂vi
+

1

c2

[ (
v2 − 4U

) ∂U

∂xi
− 4vivj

∂U

∂xj

−3vi ∂U
∂t

+ 2
∂Φ

∂xi
+

∂Πi

∂t
+ vj

(
∂Πi

∂xj
− ∂Πj

∂xi

)]
∂f

∂vi
= 0.(8.93)

The above equation results when (4.8) is multiplied by the factor[
1− 1

c2

(
v2

2 +U
)]

and terms up to the 1/c2 order are considered.
The gravitational potentials are given in terms of the Poisson

equations by (see Section 2.3.3)

∇2U = −4πG

c2

0

T 00, ∇2Φ = −2πG
(

2

T 00 +
2

T ii

)
,(8.94)

∇2Πi = −16πG

c

1

T 0i +
∂2U

∂t∂xi
, (8.95)
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where the energy-momentum tensor is defined in terms of the
one-particle distribution function by

Tμν = m4c

∫
uμuνf

√−g d3u
u0

. (8.96)

We recall that the first post-Newtonian approximation for
the components of the four-velocity (4.10) read

u0 = c

[
1 +

1

c2

(
v2

2
+ U

)]
, ui =

u0vi

c
. (8.97)

Furthermore, the Maxwell-Jüttner distribution function (4.13)
– denoted here by fMJ – in a stationary equilibrium background
where the hydrodynamic velocity vanishes Vi = 0 reduces to

fMJ = f0

{
1− σ2

c2

[
15

8
+

3v4

8σ4
+

2Uv2

σ4

]}
, (8.98)

f0 =
ρ0

m4(2πσ2)
3
2

e−
v2

2σ2 . (8.99)

Here f0 is the Maxwellian distribution function which is a func-
tion of the gas particle velocities v, while σ =

√
kT0/m repre-

sents the dispersion velocity of the gas. The mass density ρ0 and
the dispersion velocity σ are considered to be constants. Note
that the factor 1/m4 is due to the fact that the Maxwell-Jüttner
distribution function is written in terms of the four-momentum
pμ.

The invariant integration element which appears in the def-
inition of the energy-momentum tensor (8.96) is given by (see
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(4.20))

√−g d3u
u0

=

{
1 +

1

c2
[
2v2 + 6U

]} d3v

c
. (8.100)

For the analysis of Jeans instability we will make use of the
Boltzmann equation (8.93) together with the Poisson equations
(8.94) and (8.95). For that end we write the one particle dis-
tribution function and the gravitational potentials as a sum of
background terms denoted by the subscript zero and perturbed
terms with the subscript 1, namely

f(x,v, t) = fMJ(x,v, t) + εf1(x,v, t), (8.101)

U(x,v, t) = U0(x) + εU1(x,v, t), (8.102)

Φ(x,v, t) = Φ0(x) + εΦ1(x,v, t), (8.103)

Πi(x,v, t) = Π0
i (x) + εΠ1

i (x,v, t), (8.104)

where ε is a small parameter which is introduce in order to
control that only linear terms in this parameter should be taken
into account. Later we shall take it equal to one.

Now we insert the representations (8.101) – (8.104) into the
Boltzmann equation (8.93), equate the terms of the same ε-order
and get two hierarchy of equations that read

∂U0

∂xi

∂f0
MJ

∂vi
− 2v2f0

σ2c2
vi
∂U0

∂xi
+

1

c2

[ (
v2 − 4U0

) ∂U0

∂xi

−4vivj ∂U0

∂xj
+ 2

∂Φ0

∂xi
+ vj

(
∂Π0

i

∂xj
− ∂Π0

j

∂xi

)]
∂f0
∂vi

= 0, (8.105)
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∂f1
∂t

+ vi
∂f1
∂xi

+
∂U1

∂xi

∂f0
MJ

∂vi
− 2v2f0

σ2c2

(
∂U1

∂t
+ vi

∂U1

∂xi

)
+
∂U0

∂xi

∂f1
∂vi

− 4viU1

c2σ2

∂U0

∂xi
+

1

c2

[ (
v2 − 4U0

) ∂U0

∂xi

+2
∂Φ0

∂xi
− 4vivj

∂U0

∂xj
+ vj

(
∂Π0

i

∂xj
− ∂Π0

j

∂xi

)]
∂f1
∂vi

+
1

c2

[ (
v2 − 4U0

) ∂U1

∂xi
+ 2

∂Φ1

∂xi
+

∂Π1
i

∂t
− 4vivj

∂U1

∂xj

−4U1
∂U0

∂xi
− 3vi

∂U1

∂t
+ vj

(
∂Π1

i

∂xj
− ∂Π1

j

∂xi

)]
∂f0
∂vi

= 0. (8.106)

Here the Maxwell-Jüttner distribution function was written as

fMJ = f0

{
1− σ2

c2

[
15

8
+

3v4

8σ4
+ 2

U0v
2

σ4

]}
− 2f0ε

U1v
2

c2σ2

= f0
MJ − 2f0ε

U1v
2

c2σ2
, (8.107)

where f0
MJ denotes the background Maxwell-Jüttner distribu-

tion function.
The background terms refer to a stationary equilibrium state

and the background equation (8.105) is identically satisfied when
the gradients of the potential gravitational backgrounds vanish,
i.e., ∇U0 = ∇Φ0 = 0 and ∇Π0

i = 0. In this case the Boltzmann
equation for the perturbations (8.106) reduces to

∂f1
∂t

+ vi
∂f1
∂xi

+
∂U1

∂xi

∂f0
MJ

∂vi
− 2v2f0

σ2c2

(
∂U1

∂t
+ vi

∂U1

∂xi

)
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+
1

c2

[ (
v2 − 4U0

) ∂U1

∂xi
+ 2

∂Φ1

∂xi
+

∂Π1
i

∂t
− 3vi

∂U1

∂t

−4vivj ∂U1

∂xj
+ vj

(
∂Π1

i

∂xj
− ∂Π1

j

∂xi

)]
∂f0
∂vi

= 0. (8.108)

However, the Poisson equations (8.94) and (8.95) are not
satisfied by the conditions of vanishing potential gradients, be-
cause the right-hand side of these equations are functions of the
energy-momentum tensor which is non-zero at equilibrium. This
inconsistency is removed by assuming ”Jeans swindle” which
considers that the Poisson equations are valid only for the per-
turbed distribution function and gravitational potentials.

In order to determine the components of energy-momentum
tensor we note that we can write the components of the four-
velocity (8.97) and the invariant integration element (8.100) as

u0 = c

[
1 +

1

c2

(
v2

2
+ U0 + εU1

)]
, ui =

u0vi

c
, (8.109)

√−g d3u
u0

=

{
1 +

1

c2
[
2v2 + 6U0 + 6εU1

]} d3v

c
, (8.110)

by considering the representation of the Newtonian gravitational
potential (8.102).

Now we have from (8.107), (8.109) and (8.110) by consider-
ing ε = 1 that

f

√−g d3u
u0

=

{
1− σ2

c2

[
15

8
+

3v4

8σ4
+ 2

U0v
2

σ4
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−2 v
2

σ2
− 6

U0

σ2

]}
f0

d3v

c
− ε

U1

c2

(
2v2

σ2
− 6

)
f0

d3v

c

+ε

{
1 +

1

c2
[
2v2 + 6U0

]}
f1

d3v

c
. (8.111)

The expressions for the energy-momentum tensor compo-
nents that appear in the right-hand side of the Poisson equa-
tions (8.94) and (8.95) can be written thanks to the relationships
(8.109) and (8.111) as

0

T 00 +
2

T 00 = m4c

∫
u0u0f

√−g d3u
u0

= m4c2
∫

f0

[
1− σ2

c2

(
15

8
+

3v4

8σ4
+

2U0v
2

σ4
− 3v2

σ2

−8U0

σ2

)]
d3v + εm4c2

∫ {
f1

[
1 +

3v2

c2
+

8U0

c2

]

−
(
2v2

σ2
− 8

)
f0U1

c2

}
d3v, (8.112)

2

T ij = m4c

∫
uiujf

√−g d3u
u0

= m4

∫
vivj(f0 + εf1)d

3v,

(8.113)
1

T 0i = m4c

∫
u0uif

√−g d3u
u0

= m4c

∫
vi(f0+εf1)d

3v. (8.114)

Hence, the perturbed Poisson equations (8.94) and (8.95)
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become

∇2U1 = −4πG

c2
[

0

T 00]1 = −4πGm4

∫
f1d

3v, (8.115)

∇2Πi
1 = −16πG

c
[

1

T 0i]1 +
∂2U1

∂t∂xi

= −16πGm4

∫
vif1d

3v +
∂2U1

∂t∂xi
, (8.116)

∇2Φ1 = −2πG
(
[

2

T 00]1 + [
2

T ii]1

)
= −2πGm4

∫ [ (
4v2

+8U0) f1 −
(
2v2

σ2
− 8

)
U1f0

]
d3v. (8.117)

Above [
0

T 00]1, [
1

T 0i]1 and so one denote the energy-momentum
tensor components calculated with the perturbed distribution
function f1.

Now we represent the perturbations in terms of plane waves
of frequency ω and wave number vector k, namely

f1(x,v, t) = f1e
i(k·x−ωt), U1(x,v, t) = U1e

i(k·x−ωt), (8.118)

Φ1(x,v, t) = Φ1e
i(k·x−ωt), Πi

1(x,v, t) = Π1
i e

i(k·x−ωt), (8.119)

where f1, U1,Φ1 and Πi
1 are small amplitudes.

Insertion of the representations (8.118) and (8.119) into the
perturbed Boltzmann (8.108) and Poisson equations (8.115) –
(8.117), yields

(v · k− ω)f1 −
f0
σ2

(v · k)U1

{[
1− σ2

c2

(
15

8
+

3v4

8σ4
− v2

2σ2
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+
2v2U0

σ4

)]
+

1

c2

[
v2ωU1 + 2(v · k)Φ1 − ωviΠ1

i

]}
= 0, (8.120)

κ2U1 = 4πGm4

∫
f1d

3v, (8.121)

κ2Π1
i = 16πGm4

∫
vif1d

3v − kiωU1, (8.122)

κ2Φ1 = 8πGm4

∫
(v2 + 2U0)f1d

3v + 4πGρ0U1. (8.123)

In (8.120) we have used the expression (8.107) to determine
∂fMJ/∂v

i.

For the calculation of the integrals in (8.121) – (8.123) we
choose, without loss of generality, the wave number vector in the
x-direction, i.e., k = (κ, 0, 0) and start with the substitution of
f1 from (8.120) into (8.122), yielding

κ2Π1
i =

16πGρ0

(2πσ2)
3
2

∫
vi(vxκ+ ω)e−

v2

2σ2 d3v

σ2[(vxκ)2 − ω2]

{[
1− σ2

c2

(
15

8

+
3v4

8σ4
− v2

2σ2
+

2U0v
2

σ4

)]
vxκU1

+
1

c2

[
v2ωU1 + 2vxκΦ1 − ωvjΠ1

j

]}
− kiωU1. (8.124)

Above we have multiplied the numerator and denominator of the
integrand by (vxκ+ω). Now we have to perform the integration
of (8.124) in the ranges −∞ < (vx, vy, vz) <∞.
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For the components i = y, z the integration of (8.124) leads
to

κ2Π1
i = −8πGρ0

ω2

κ2σ2c2
I0Π1

i , i = y, z, (8.125)

and infer that Π1
y = Π1

z = 0. In the above equation I0 refers to
the integral In defined by (8.12).

The integration of (8.124) by considering the component i =
x yields

κ2Π1
x =

16πGρ0ω

κσ2

{[
I2 − 3σ2

2c2

(
I6 +

5

4
I2

)
−4U0

c2
(I2 + I4)

]
U1 +

I2
c2

[
2Φ1 − ω

κ
Π1

x

]}
− κωU1.(8.126)

Following the same methodology the substitution of (8.120)
into (8.121) and (8.123) and subsequent integration of the re-
sulting equations lead to

κ2U1 =
4πGρ0
σ2

{[
I2 + (I0 + I2)

ω2

c2κ2
− 3σ2

2c2

(
I6 +

4

3
I4

+
31

12
I2

)
− 4U0

c2
(I2 + I4)

]
U1 +

I2
c2

[
2Φ1 − ω

κ
Π1

x

]}
,(8.127)

κ2Φ1 = 4πGρ0U1 + 16πGρ0

{
I2 + I4 + 2

(
I0 + I2

+
I4
2

)
ω2

κ2c2
− 3σ2

2c2

(
I8 +

7

3
I6 +

71

12
I4 +

71

12
I2

)
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+
U0

σ2

[
I2 − σ2

c2

(
11

2
I6 + 10I4 +

95

8
I2

)
−4U0

c2
(I2 + I4) +

ω2

c2κ2
(I0 + I2)

]}
U1

+
16πGρ0

c2

(
I2 + I4 + I2

U0

σ2

)[
2Φ1 − ω

κ
Π1

x

]
. (8.128)

Equations (8.126) – (8.128) represent an algebraic system of
equations for the amplitudes Π1

x, U1 and Φ1. This system of
equations has a solution if the determinant of the coefficients
vanishes, which implies the following dispersion relation

κ
4
∗ − κ

2
∗

[
I2 +

σ2

c2

(
33

8
I2 + 6I4 − 3

2
I6 + 4(I2 − I4)

U0

σ2

)]
−σ2

c2

[
2I2 + (I0 − 2I2)ω

2
∗

]
= 0. (8.129)

Here we have not considered terms of order higher than O (
c−2

)
,

since we are dealing with the first post-Newtonian approxima-
tion. The dispersion relation (8.129) relates the dimensionless
wave number κ∗ with the dimensionless frequency ω∗, which are
defined by

κ∗ =
κ

κJ
, ω∗ =

ω√
4πGρ0

, where κJ =

√
4πGρ0
σ

,(8.130)

denotes the Jeans wave number. Note that here the Jeans wave
number and the dimensionless wave number κ∗ are defined in
terms of the dispersion velocity σ instead of the sound speed cs.
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We are searching for unstable solutions which correspond to
Jeans instability and for these solutions we have that ω∗ = iωI ,
i.e., �(ω∗) = 0 and ωI = �(ω∗) > 0. In this case the integrals
(8.12) become

I0 =
κ∗
ωI

√
2π exp

(
ω2
I

2κ2∗

)
erfc

(
ωI√
2κ∗

)
, (8.131)

I2 = 1− ω2
I

2κ2∗
I0, I4 =

1

2
− ω2

I

2κ2∗
I2, I6 =

3

4
− ω2

I

2κ2∗
I4, (8.132)

where erfc(x) denotes the complementary error function

erfc(x) =
2√
π

∫ ∞

x

e−x2

dx. (8.133)

In Figure 8.4 the contour plots obtained from the disper-
sion relation (8.129) are shown for two different values of the
ratio between the dispersion velocity and the light speed. One
of them refers to the Newtonian theory where σ/c = 0 and the
other to the post-Newtonian approximation with σ/c = 0.05.
In the evaluation of (8.129) for the post-Newtonian approxima-
tion it was consider that U0 ≈ σ2, i.e., by considering the virial
theorem where the Newtonian gravitational potential can be ap-
proximated with the square of the dispersion velocity. We infer
from this figure that the post-Newtonian approximation has an
influence in the limit of instability, since for a given frequency
the corresponding modulus of the wave number vector in the
post-Newtonian theory is greater than that of the Newtonian
theory, which implies a decrease in the mass limit of interstellar
gas clouds necessary to start the gravitational collapse.
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Figure 8.4: Contour plots of the dimensionless frequency as
function of the dimensionless modulus of the wave number vec-
tor for the Newtonian (σ/c = 0) and post-Newtonian (σ/c =
0.05) theories.

In order to determine the amount of mass necessary to occur
the gravitational collapse we set ωI = 0 in (8.129). This is the
limiting value of the frequency where the instability occurs and
corresponds to a minimum mass for an overdensity to begin the
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gravitational collapse. Hence, it follows

κ
4
∗ −

[
1 +

σ2

c2

(
6 +

2U0

σ2
+

2

κ2∗

)]
κ

2
∗ = 0. (8.134)

The real positive solution of (8.134) is

κ∗ =

√
1

2
+

σ2

c2

[
3 +

U0

σ2
+Δκ

]
, (8.135)

where Δκ is the following abbreviation

Δκ =

√
1

4
+

σ2

c2

[
5 +

U0

σ2
+

σ2

c2

(
9 +

6U0

σ2
+

U2
0

σ4

)]
. (8.136)

By considering terms up to the 1/c2 order (8.135) reduces to

κ∗ = 1 +
σ2

c2

[
4 +

U0

σ2

]
. (8.137)

As previously stated the amount of mass for an overdensity
to initiate the gravitational collapse is related to the Jeans mass
contained in a sphere of radius equal to the wavelength of the
perturbation. The ratio of the Jean masses corresponding to
the post-Newtonian MPN

J and Newtonian MN
J wavelengths is

given here by

MPN
J

MN
J

=
λ3

λ3
J

=
κ

3
J

κ3∗
≈ 1− 3

σ2

c2

[
4 +

U0

σ2

]
, (8.138)
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which shows that in the post-Newtonian framework the mass
needed to begin the gravitational collapse is smaller than in
the Newtonian case. Note that (8.138) is similar to the one
found in the hydrodynamic theory for a monatomic or Fermi
non-relativistic gas (7.53), the only difference is that (8.138) is
a function of the dispersion velocity σ while (7.53) is a function
of the sound speed cs.

As in Section 8.1 we shall analyse the Jeans instability which
follows from the post-Newtonian Boltzmann equation but by
considering the summational invariants.

We begin by recalling that the relativistic summational in-
variants are the rest mass m and the momentum four-vector pμ.
Here the perturbed distribution function will be written as a
function of a linear combination of the summational invariants
Ã+ B̃μp

μ, where Ã and B̃μ are unknowns which do not depend
on the momentum four-vector pμ.

Let us determine the post-Newtonian approximation of Ã+
B̃μp

μ and for that end we make use of the expressions for the
metric tensor components (3.2), (3.3), (3.4) and four-velocity
components (3.10), (3.11). Hence, we write

Ã+ gμνB̃
μpν = Ã+ g00B̃

0p0 + g0iB̃
0pi + g0iB̃

ip0

+gijB̃
ipj = Ã+mc

[
1 +

1

c2

(
v2

2
− U0

)
+

1

c4

(
3v4

8

+
3v2U0

2
+

U2
0

2
− 6Φ0 −Π0

i vi

)]
B̃0 +m

Π0
i vi
c3

B̃0

+m
Π0

i

c2
B̃i −mvi

[
1 +

1

c2

(
v2

2
+ 3U0

)]
B̃i. (8.139)
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In the above equations we have consider terms up to 1/c4 order.
Now we introduce new unknowns

A = Ã+mcB̃0

[
1− U0

c2
+

1

c4

(
U2
0

2
− 6Φ0

)]
+m

Π0
i

c2
B̃i, (8.140)

D =
mB̃0

2c
, Bi = −mB̃i, (8.141)

which implies that (8.139) reduces to

Ã+ gμνB̃
μpν = A+ v2

[
1 +

1

c2

(
3v2

4
+ 3U0

)]
D

+vi

[
1 +

1

c2

(
v2

2
+ 3U0

)]
Bi. (8.142)

Here we may identify the post-Newtonian summational invari-
ants

1, v2
[
1 +

1

c2

(
3v2

4
+ 3U0

)]
, vi

[
1 +

1

c2

(
v2

2
+ 3U0

)]
.(8.143)

The perturbed distribution function is obtained from the
product of the Maxwell-Jüttner distribution function (8.98) and
(8.142), yielding

f1 = f0
MJ

(
Ã+ B̃μp

μ
)
= f0

{[
1− σ2

c2

(
15

8
+

3v4

8σ4

+
2U0v

2

σ4

)]
A+ v2

[
1− σ2

c2

(
15

8
+

3v4

8σ4

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.4. POST-NEWTONIAN JEANS INSTABILITY 351

− 3v2

4σ2
+

2U0v
2

σ4
− 3U0

σ4

)]
D + vi

[
1− σ2

c2

(
15

8

+
3v4

8σ4
− v2

2σ2
+

2U0v
2

σ4
− 3U0

σ4

)]
Bi

}
. (8.144)

The perturbed potentials U1, Π
1

1 and Φ1 as functions of A,
D and Bi are obtained from the insertion of the perturbed dis-
tribution function (8.144) into (8.121), (8.122) (8.123) and by
integrating the resulting equations. It follows respectively

κ2U1 = 4πGρ0

{
A

[
1− σ2

c2

(
15

2
+

6U0

σ2

)]
+3σ2D

[
1− σ2

c2

(
45

4
+

7U0

σ2

)]}
, (8.145)

κ2Π
1

i = 16πGρ0σ
2Bi

[
1− σ2

c2

(
25

2
+

7U0

σ2

)]
+ kiωU1, (8.146)

κ2Φ1 = 4πGρ0

{
U1 + 6σ2A

[
1 +

2U0

3σ2
− σ2

c2

(
15

+
15U0

σ2
+

4U2
0

σ4

)]
+ 30σ4D

[
1 +

2U0

5σ2

−σ2

c2

(
81

4
+

31U0

2σ2
+

14U2
0

5σ4

)]}
. (8.147)

We insert the perturbed distribution function (8.144) into
the perturbed Boltzmann equation (8.120) and multiply the re-
sulting equation by each of the summational invariants given in
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(8.143). The integration of the resulting equations by consid-
ering the invariant element of integration (8.100) leads to the
following system of algebraic equations[

1− 3σ2

2c2

]
A+ 3σ2

[
1− σ2

c2

(
5

4
+

U0

c2

)]
D +

3U1

c2

−σ2

ω

[
1− σ2

c2

(
5

2
+

U0

c2

)]
B · k = 0, (8.148)[

1− σ2

c2

(
5

4
+

U0

c2

)]
A+ 5σ2

[
1− σ2

c2

(
1 +

2U0

c2

)]
D

+
5U1

c2
− 5

3

σ2

ω

[
1− σ2

c2

(
11

4
+

2U0

c2

)]
B · k = 0, (8.149){[

1− σ2

c2

(
5

2
+

U0

c2

)]
A+ 5σ2

[
1− σ2

c2

(
11

4

+
2U0

c2

)]
D − 2Φ1

σ2c2
− U1

σ2

(
1− U0

c2

)}
ki

−ω
[
Bi

(
1 +

2U0

c2

)
− Π

1

i

σ2c2

]
= 0. (8.150)

In order to get a system algebraic equations for the pertur-

bations U1, Π
1

i ki, Φ
1
, A, D and Biki we build first the scalar

product of the vector equations (8.146) and (8.150) with ki.
The resulting equations together with (8.145), (8.147), (8.148)
and (8.149) becomes a system of algebraic equations for these
perturbations. This system of equations has a non-vanishing
solution if the determinant of the coefficients vanishes. Hence,
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it follows the dispersion relation

ω2
∗ = κ2

∗ − 1−
[
5

2
+

4

κ2∗
+

27κ2

10
+

2U0

c2s

(
2κ2

∗ − 1
)] c2s

c2
, (8.151)

for the dimensionless frequency ω∗ = ω/
√
4πGρ0 and dimen-

sionless wave number κ∗ = κ/κJ = κc2s/
√
4πGρ0. In (8.151) we

have taken into account only terms up to the 1/c2 order.

The real root of the κ∗ when ω∗ = 0 is

κ∗ = 1 +
c2s
c2

[
23

5
+

U0

c2s

]
, (8.152)

by considering terms up to the 1/c2 order. Note that the above
equation is not equal to (8.137), since the former is given in
terms of the sound speed and the latter in terms of the dispersion
velocity. Furthermore, the c2s/c

2 factor in (8.152) is 23/5 = 4.6,
while the one in the phenomenological theory (7.51) when γ =
5/3 is 4.
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CHAPTER 9

GALAXY
ROTATION CURVES

The galaxies are astronomical objects composed by stars, stel-
lar remnants, interstellar gas, dust, and dark matter which are
gravitationally bound due to gravitational interaction amongst
their constituents.

The rotation curves obtained from the Newtonian theory in-
crease linearly near the origin up to a maximum and for large
radii vanish. However the measured circular velocity curves for
the galaxies show a small value near the center that increases
linearly up to a small cusp and for large radii tends to a finite
nonzero value. Since the Newtonian gravity do not succeed to
predict the mass distribution of astronomical objects one intro-

357
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duces a dark matter component which till nowadays cannot be
observed or measured directly, but can be detected through its
gravitational effects with the astronomical objects, although it
does not interact directly with the standard matter.

The inclusion of post-Newtonian corrections make it possible
to reduce the amount of dark matter which is needed to explain
the rotation curves which flatten at large radii. However these
corrections cannot solve the whole problem of generating flat
rotation curves, but may help to reduce the dark matter amount
in relation with the Newtonian models.

The post-Newtonian corrections to the problem of galaxy
rotation curves was first investigated in [1, 2, 3] by using a poly-
tropic equation of state. Here we shall follow the work [4] where
the components of the energy-momentum tensor were obtained
from a post-Newtonian Maxwell-Jüttner distribution function.
In this chapter we also analyse an application of the spherically
symmetrical Jeans equation which is related with the effect of
a central massive black hole on the velocity dispersion profile of
the host galaxy.

9.1 Post-Newtonian particle
dynamics

In this section we shall follow Weinberg [5] and determine the
Lagrangian of a single particle in the first post-Newtonian ap-
proximation. The relation between the proper time τ and the
time coordinate t for a free falling particle of velocity V is given

 EBSCOhost - printed on 2/13/2023 9:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.1. POST-NEWTONIAN PARTICLE DYNAMICS 359

by (2.85). In terms of the Chandrasekhar potentials U = −φ,
Φ = ψ/2 and Πi = −ξi we have(

dτ

dt

)2

= 1− 1

c2
(
2U + V 2

)− 2

c4
(
2Φ− U2 + UV 2 −ΠiVi

)
.

(9.1)
From the above equation we can obtain the relationship

dτ

dt
= 1− 1

c2

(
V 2

2
+ U

)
− 1

c4

(
V 4

8
− 3UV 2

2

−U2

2
+ 2Φ−ΠiVi

)
, (9.2)

by using the approximation
√
1 + x ≈ 1 + x/2− x2/8.

As was pointed out by Weinberg
∫
(dτ/dt)dt is stationary so

that we can define the Lagrangian of a single particle per rest
mass m by

L

m
= 1− dτ

dt
=

1

c2

(
V 2

2
+ U

)
+

1

c4

(
V 4

8
− 3UV 2

2

−U2

2
+ 2Φ−ΠiVi

)
. (9.3)

From the Euler-Lagrange equation

d

dt

∂L

∂vi
=

∂L

∂xi
(9.4)

we can obtain the equation of motion{[
1 +

1

c2

(
V 2

2
+ 3U

)]
δij +

ViVj

c2

}
dVj

dt
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+
1

c2

(
3Vi

dU

dt
− dΠi

dt

)
=

∂U

∂xi

+
1

c2

(
3V 2

2

∂U

∂xi
− U

∂U

∂xi
+ 2

∂Φ

∂xi
− Vj

∂Πj

∂xi

)
. (9.5)

In the Appendix of this Chapter it is shown that the inverse
of the second order tensor

Sij =

[
1 +

1

c2

(
V 2

2
+ 3U

)]
δij +

ViVj

c2
, (9.6)

up to the 1/c2 order is

(S−1)ij =

[
1− 1

c2

(
V 2

2
+ 3U

)]
δij − ViVj

c2
. (9.7)

Hence the multiplication of (9.5) by (9.7) and considering terms
up to the 1/c2 order results the acceleration equation of a single
particle (see (4.34))

dVi

dt
=

∂U

∂xi
+

1

c2

[
V 2 ∂U

∂xi
− 4ViVj

∂U

∂xj
− 4U

∂U

∂xi
+ 2

∂Φ

∂xi

−3Vi
∂U

∂t
+

∂Πi

∂t
+ Vj

(
∂Πi

∂xj
− ∂Πj

∂xi

)]
, (9.8)

To derive the above equation we have considered the material
time derivative d/dt = ∂/∂t+ Vi∂/∂x

i.
The energy of the single particle follows from

E = Vi
∂L

∂V i
− L =

m

c2

[
V 2

2
− U +

1

c2

(
3V 4

8

+
3UV 2

2
+

U2

2
− 2Φ

)]
. (9.9)
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9.2 Maxwell-Jüttner distribution
function

Here we shall derive the post-Newtonian Maxwell-Jüttner distri-
bution function for a system characterized by a reference state
where the mass density ρ0 and absolute temperature T0 assume
constants values.

From the two representations of the Maxwell-Jüttner distri-
bution function (1.19) and (1.40) we can write

f =
n

4πm2ckTK2(ζ)
exp

(
−pμUμ

kT

)
= exp

[
μ

kT
− 1− pμU

μ

kT

]
.

(9.10)
Hence we can build the following relationship

n

4πm2ckTK2(ζ)
= exp

[ μ

kT
− 1

]
= exp

[
μ0

kT0
− 1

]
=

n0

4πm2ckT0K2(ζ0)
, (9.11)

since the ratio μ/T = μ0/T0 is a consequence of the Tolman
(1.74) and Klein (1.75) laws.

Tolman’s law (1.74) implies that the temperature T can be
expressed in terms of the reference temperature by

T =
T0√
g00

= T0

[
1 +

U

c2
+

1

c4

(
U2

2
+ 2Φ

)]
, (9.12)

where only terms up to the 1/c4 order were considered.
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As in the Section 4.1.2 we obtain that the exponential fac-
tor in the Maxwell-Jüttner distribution function (9.10) can be
written as

gμνp
μUν

kT
=

mc2

kT0

{
1 +

V2

2c2
− U

c2
+

1

c4

[
3V4

8
+

3V2U

2

+
(ViVi)2

2
+
V2V 2

2
+ (ViVi)V2 +

U2

2
− 2Φ

]}
, (9.13)

by making use of (9.12) and introducing the peculiar velocity
Vi = vi − Vi.

The modified Bessel function of second kind up to the 1/c2

order reads

1

K2(ζ0)
=

√
2mc2

πkT0
e

mc2

kT0

(
1− 15kT0

8mc2
+ . . .

)
. (9.14)

Now we can get the post-Newtonian Maxwell-Jüttner distri-
bution function from (9.10) together with (9.13), (9.14), yielding

f =
n0

(2πmkT0)
3
2

e−
mV2

2kT0
+mU

kT0

{
1− 15kT0

8mc2
− m

kT0c2

[
3V4

8

+
3V2U

2
+

(ViVi)2
2

+
V 2V2

2
+ (ViVi)V2 +

U2

2
− 2Φ

]}
. (9.15)

Above we have considered the terms with the factor 1/c2 of
small order and use the approximation e−x ≈ 1− x.

In the following sections we shall search for static solutions
of a self-gravitating system where the hydrodynamic velocity V
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vanishes and Vi = vi. In this case the post-Newtonian Maxwell-
Jüttner distribution function (9.15) reduces to

f =
n0

(2πmkT0)
3
2

e−
mv2

2kT0
−mU

kT0

{
1− 15kT0

8mc2
− m

kT0c2

[
3v4

8

+
3v2U

2
+

U2

2
− 2Φ

]}
. (9.16)

9.3 Search for static solutions

The search for static solutions of a self-gravitating system in the
post-Newtonian approximation is based on the equations for the
scalar gravitational potentials U and Φ, given respectively by
(2.101) and (2.110). For the static case these equations read

∇2U = −4πG

c2

0

T 00, ∇2Φ = −2πG
(

2

T 00 +
2

T ii

)
. (9.17)

The equation (2.116) for the vector gravitational potential Πi

in the static case becomes ∇2Πi = 0 and this equation does not
couple with the equations for the scalar gravitational potential
U and Φ.

The energy-momentum tensor and the invariant element of
integration are given respectively by (4.14) and (4.20) which are
reproduce here

Tμν = m4c

∫
uμuν√−gf d

3u

u0
, (9.18)

√−g d3u
u0

=

{
1 +

1

c2
[
2v2 + 6U

]} d3v

c
. (9.19)
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To evaluate the components of the energy-momentum tensor
we have to consider the maximum limit of the velocity where
the gas particle is unable to leave the matter distribution. This
is the escape velocity which is obtained from the expression
for the energy (9.9) by considering that its maximum value is
attained when the energy vanishes. In the first post-Newtonian
approximation the maximum value of the velocity is ve =

√
2U .

The components of the energy-momentum tensor in the dif-
ferent orders which follow from the integration in the interval
[0, ve] are given by

0

T 00 = −ρ0c2
[
2

√
U∗
π
− eU∗erf

(√
U∗

)]
, (9.20)

2

T 00 = −ρ0kT0

m

[(
3 +

23

2
U∗ − 10U2

∗ + 4Φ∗

)√
U∗
π

−
(
3

2
+

7

2
U∗ − 1

2
U2
∗ + 2Φ∗

)
eU∗erf

(√
U∗

)]
, (9.21)

2

T ii = −ρ0kT0

m

[
(6 + 4U∗)

√
U∗
π
− 3eU∗erf

(√
U∗

)]
.(9.22)

Here we have introduced the dimensionless quantities

U∗ =
m

kT0
U, Φ∗ =

(
m

kT0

)2

Φ. (9.23)

Furthermore, erf
(√

U∗
)
is the error function

erf
(√

U∗
)
=

2√
π

∫ √
U∗

0

e−x2

dx. (9.24)
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From the insertion of (9.20) – (9.22) into the Poisson equa-
tions (9.17) we get a coupled system of differential equations for
the gravitational potentials U∗ and Φ∗, namely

∇2U∗ = k2J

[
2

√
U∗
π
− eU∗erf

(√
U∗

)]
, (9.25)

∇2Φ∗ =
k2J
2

[(
9 +

31

2
U∗ − 10U2

∗ + 4Φ∗

)√
U∗
π

−
(
9

2
+

7

2
U∗ − 1

2
U2
∗ + 2Φ∗

)
eU∗erf

(√
U∗

)]
. (9.26)

Here kJ =
√
4πGρ0/σ can be identified as the Jeans wave num-

ber with σ =
√

kT0/m denoting the dispersion (thermal) veloc-
ity of the self-gravitating fluid.

We shall consider a spherical coordinate system where the
gravitational potentials are only functions of the radial coor-
dinate r. By introducing the dimensionless radial coordinate
r∗ = rkJ the system of differential equations (9.25) and (9.26)
becomes

1

r2∗

d

dr∗

(
r2∗

dU∗
dr∗

)
=

[
2

√
U∗
π
− eU∗erf

(√
U∗

)]
, (9.27)

2

r2∗

d

dr∗

(
r2∗

dΦ∗
dr∗

)
=

[(
9 +

31

2
U∗ − 10U2

∗ + 4Φ∗

)√
U∗
π

−
(
9

2
+

7

2
U∗ − 1

2
U2
∗ + 2Φ∗

)
eU∗erf

(√
U∗

)]
. (9.28)

Now we specify appropriate boundary conditions for the sys-
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tem of differential equations (9.27) and (9.28) in order to solve
it numerically. Here we assume that the boundary conditions at
the center of the configuration for the gravitational potentials
are:

U∗(0) = Φ∗(0) = 1,
dU∗
dr∗

∣∣∣∣
r∗=0

=
dΦ∗
dr∗

∣∣∣∣
r∗=0

= 0. (9.29)

9.4 Numerical analysis of some fields

In this section we shall analyze the profiles of the mass den-
sity, pressure and gravitational potential energy as functions of
the radial distance, which follow when the system of differential
equations (9.27) and (9.28) are solved for the boundary condi-
tions (9.29).

The mass density corresponds to the time component of
the energy-momentum tensor T 00 and follows from (9.20) and
(9.21), namely

ρ∗ =

0

T 00 +
2

T 00

ρ0c2
= ρN∗ + ρPN

∗ . (9.30)

Here the mass density is written as a sum of a Newtonian ρN∗
and a post-Newtonian ρPN

∗ contribution given by

ρN∗ = eU∗erf
(√

U∗
)
− 2

√
U∗
π

(9.31)

ρPN
∗ =

1

ζ0

[(
3

2
+

7

2
U∗ − 1

2
U2
∗ + 2Φ∗

)
eU∗erf

(√
U∗

)
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Figure 9.1: Dimensionless mass density ρ∗ as function of the
dimensionless radial distance r∗ for the Newtonian theory and
post-Newtonian theory with ζ0 = 50 and ζ0 = 100.

−
(
3 +

23

2
U∗ − 10U2

∗ + 4Φ∗

)√
U∗
π

]
. (9.32)

The dimensionless mass density ρ∗ as function of the di-
mensionless radial distance r∗ for the Newtonian and the post-
Newtonian theories are plotted in Figure 9.1. We note that
the post-Newtonian curves are functions of the parameter ζ0 =
mc2/kT0 which is the ratio of the rest energy of the gas particles
and the thermal energy of the gas. From this figure one can infer
that the contributions to the mass density becomes larger at the
configuration center when the values of ζ0 decrease, i.e., when
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the values of the temperature of the gas T0 increase . The mass
densities tend to zero for large values of the radial distance r∗
and are always positive. Here it is noteworthy to call attention
to the fact that the solutions for the gravitational potentials
become complex for values larger than r∗ ≈ 3.6 .

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.1

0.2

0.3

0.4

r*

p*

Figure 9.2: Dimensionless pressure p∗ as function of the dimen-
sionless radial distance r∗.

The pressure of the gas is given by p =
2

T ii/3 and its ex-
pression in terms of dimensionless quantities which follows from
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(9.22) is given by

p∗ =
mp

kρ0T0
=

m
2

T ii

3kρ0T0
= eU∗erf

(√
U∗

)
−

(
2 +

4

3
U∗

)√
U∗
π
.

(9.33)

In Figure 9.2 the dimensionless pressure p∗ is plotted as a
function of the dimensionless radial coordinate r∗. The pressure
behavior matches the one for the mass density, i.e. its maximum
value occurs at the configuration center and it tends to zero for
large values of the dimensionless radial distance. We call atten-
tion to the fact that in the first post-Newtonian approximation
there is no contribution for the pressure which depends on the
factor 1/ζ0, because these contributions will appear only in the

order of
4

T ii.

The behavior of the pressure-density ratio p∗/ρ∗ as function
of the dimensionless radial coordinate is shown in Figure 9.3.
The behavior is the same as the one for the dimensionless mass
density, namely, for small radii, the ratio p∗/ρ∗ goes to a con-
stant value whereas tends to zero at large radii.

We can be analyzed also the gravitational potential energy of
a gas particle, which can be obtained from the expression for the
energy of a single particle (9.9) by taking V = 0. The dimen-
sionless Newtonian EN

∗ and post-Newtonian EPN
∗ gravitational

potential energy read

E∗ =
Ec2

kT0
= EN

∗ + EPN
∗ (9.34)
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Figure 9.3: Pressure-density ratio as function of the dimen-
sionless radial distance r∗ for the Newtonian theory and post-
Newtonian theory with ζ0 = 50 and ζ0 = 100.

where we can identify

EN
∗ = −U∗, EPN

∗ =
1

ζ0

(
U2
∗
2
− 2Φ∗

)
. (9.35)

The plot of the dimensionless gravitational potential energy
E∗ as function of the dimensionless radial distance r∗ is shown
in Figure 9.4. From this figure we note that the Newtonian
gravitational potential energy is always negative, but the post-
Newtonian gravitational potential energies may change their
sign for large values of the radial distance from the configu-
ration center. Indeed, the temperature of the gas in the post-
Newtonian term U2

∗/2ζ0 determines the sign change of the grav-
itational potential energy.
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Figure 9.4: Dimensionless gravitational potential energy E∗ as
function of the dimensionless radial distance r∗ for the Newto-
nian theory and post-Newtonian theory with ζ0 = 25, ζ0 = 50
and ζ0 = 100.

9.5 Circular rotation curves

In order to determine the post-Newtonian corrections to the
rotation curves we begin by writing the equation for the accel-
eration of a free falling particle (9.8) for the case of stationary
gravitational fields, namely1

dVi

dt
=

∂U

∂xi
+

1

c2

[
V 2 ∂U

∂xi
− 4ViVj

∂U

∂xj
− 4U

∂U

∂xi
+ 2

∂Φ

∂xi

]
.(9.36)

1Here we have considered that the vector gravitational potential is a
Laplacian vector field, where ∇× �Π = 0.
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Next we consider spherical coordinates (r, θ, ϕ) and restrict to
circular orbits of particles in the equatorial plane where ṙ = 0,
θ̇ = 0 and θ = π/2. In this case the velocity reads V = (0, 0, rϕ̇)
and the radial component of the acceleration is rϕ̇2. Hence the
radial component of (9.36) reduces to

rϕ̇2

(
1 +

r

c2
∂U

∂r

)
= −∂U

∂r

[
1− 4U

c2
∂U

∂r

]
− 2

c2
∂Φ

∂r
. (9.37)

By considering terms up to the 1/c2 order we obtain from
(9.37) the circular velocity Vϕ = rϕ̇ in terms of the gravitational
potentials

Vϕ =

√
r
∂U

∂r

(
4U

c2
+

r

c2
∂U

∂r
− 1

)
− r

c2
∂Φ

∂r
. (9.38)

If in the above equation we neglect the 1/c2 terms we get the
Newtonian circular velocity Vϕ =

√−r∂U/∂r.
We introduce now the dimensionless circular velocity V ∗

ϕ =

Vϕ

√
m/kT0 so that (9.38) can be written in terms of the di-

mensionless gravitational potentials U∗, Φ∗, dimensionless ra-
dial coordinate r∗ and dimensionless parameter ζ0 = mc2/kT0

as

V ∗
ϕ =

√
r∗

∂U∗
∂r∗

(
4U∗
ζ0

+
r∗
ζ0

∂U∗
∂r∗

− 1

)
− r

ζ0

∂Φ∗
∂r∗

. (9.39)

Using the solutions of the system of differential equations
(9.27) and (9.28) with the boundary conditions (9.29) the di-
mensionless circular velocities V ∗

ϕ are plotted in Figure 9.5 as
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Figure 9.5: Dimensionless circular velocity V ∗
ϕ as function of the

dimensionless radial distance r∗ for the Newtonian theory and
post-Newtonian theory with ζ0 = 25 and ζ0 = 50.

functions of the dimensionless radial coordinate r∗. We infer
from this figure that the circular velocity profiles for the Newto-
nian and post-Newtonian approximations have the same behav-
iors, but the circular velocities for the post-Newtonian approxi-
mations have large values. Note that by increasing the reference
temperature T0 the dimensionless parameter ζ0 decreases and
large values for the circular velocity are attained. This behavior
is related with the increase of the thermal velocity of the gas
particles

√
kT0/m.

One can infer from the observational data of the galaxies
rotation curves that there exist three distinct regimes for the
circular velocity as a function of the radial coordinate. Begin-
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ning with a linear regime for small radii the circular velocity
passes through a cusp and ends at large radii with a flatten
shape (see e.g. [6]). Here we shall show how to determine this
shape from the model described above. First we note from Fig-
ure 9.5 that the model has a good description for the inner zone
which corresponds to r∗ ≤ rc∗ ≈ 3.6. Indeed, the circular rota-
tion curve grows linear with the radial distance, then it passes
through small cusp but becomes ill-defined for r∗ > rc∗ due to
the fact that the gravitational potentials become complex and
imply that the solutions are unphysical.

This issue can be solved by matching the solutions in the

inner zone – denoted here by U
(1)
∗ (r∗) and Φ

(1)
∗ (r∗) – with two

other gravitational potentials, namely U
(2)
∗ (r∗) and Φ

(2)
∗ (r∗). In

order to have a well-defined boundary problem these two grav-
itational potentials must fulfill the Laplace equations, namely

∇2U
(2)
∗ (r∗) = 0 and ∇2Φ

(2)
∗ (r∗) = 0, and theirs values and cor-

responding first derivatives must be glued at r∗c .
The most simple proposal which fulfill the Laplace equations

is to consider

U
(2)
∗ (r∗) =

α

r∗
+ β Φ

(2)
∗ (r∗) =

γ

r∗
+ δ, (9.40)

where α, β, γ and δ are constants. Let us analyse these poten-
tials, first by imposing the continuity of the potentials and their
derivatives at rc∗, which leads to

α = −r∗2c U
(1)′
∗ (r∗c ), β = U

(1)
∗ (r∗c ) + r∗cU

(1)′
∗ (r∗c ), (9.41)

γ = −r∗2c Φ
(1)′
∗ (r∗c ), δ = Φ

(1)
∗ (r∗c ) + r∗cΦ

(1)′
∗ (r∗c ). (9.42)
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Next we insert the potentials (9.40) into the expression for the
dimensionless circular velocity (9.39), yielding

V ∗
ϕ =

√
α

r

[
1− 1

ζ

(
3α

r
+ 4β

)]
+

2γ

rζ
(9.43)

However with the gravitational potentials (9.40) we cannot ex-
tend physically the first solution beyond the critical radius rc∗,
since the circular velocity (9.43) vanishes in the limit of large
radii and cannot reproduce a flatten circular rotation curve in
the outer zone.

From the above analysis we conclude that it is necessary
to introduce other potentials in order to get a flatten circular
rotation curve for large radii. Another proposal is to consider
the previous gravitational potential U∗(2)(r∗) = α/r + β which
fulfills the Laplace equation while the gravitational potential

Φ
(2)
∗ (r∗) = γ

e−kr∗

r∗
+ δ ln r∗, (9.44)

satisfies a Poisson equation. In (9.44) γ and δ are integration
constants and k a parameter of the Yukawa term. This grav-
itational potentials must also satisfy at r∗c the same boundary
conditions given above. Hence, we can get the following system
of equations

Φ
(2)
∗ (r∗c ) = γ

e−kr∗c

r∗c
+ δ ln r∗c , (9.45)

Φ
(2)′
∗ (r∗) = −γ e

−kr∗

r∗

(
k +

1

r∗c

)
+

δ

r∗c
. (9.46)
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Now from the conditions

U
(1)
∗ (r∗c ) = U

(2)
∗ (r∗c ), U

(1)′
∗ (r∗c ) = U

(2)′
∗ (r∗c ), (9.47)

Φ
(1)
∗ (r∗c ) = Φ

(2)
∗ (r∗c ), Φ

(1)′
∗ (r∗c ) = Φ

(2)′
∗ (r∗c ) (9.48)

we obtain numerically the values of the integration constants
at r∗c � 3.4001: α � 2.4175, β � −0.6431, γ � −29.7253 and
δ � −2.6906. Note that these values do not depend on the
parameter ζ0. The dimensionless circular velocity (9.39) in this
case becomes

V ∗
ϕ =

√
α

r

[
1− 1

ζ

(
3α

r
+ 4β

)]
+

1

ζ

[
γe−kr∗

(
k +

1

r∗c

)
− δ

]
.

(9.49)
From this equation we note that the logarithm contribution in-
troduces a constant in the dimensionless circular velocity which
dominates for large radii since the Coulomb and Yukawa terms
fade away. Another option is to include a Coulomb term in

Φ
(2)
∗ (r∗c ) instead of the Yukawa term. This option will also lead

to a flatten curve, but the Yukawa term is better due to its
smoother behavior for large radii.

In Figure 9.6 the dimensionless circular velocities V ∗
ϕ are

plotted as functions of the dimensionless radial distance r∗ for
the cases of Newtonian and post-Newtonian theories. The grav-
itational potentials in the inner zone are given by the solutions
of the system of differential equations (9.27) and (9.28) with the
boundary conditions (9.29) and in the outer zone by (9.40)1 and
(9.44). We note that the curves flatten at very large radii. More-
over, the values of the dimensionless circular velocity are bigger
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Figure 9.6: Dimensionless circular velocities as functions of the
dimensionless radial coordinate r∗ for the Newtonian and post-
Newtonian approximation.

in the post-Newtonian theory than the ones in the Newtonian
theory. Hence we can assert that the post-Newtonian theory
furnishes corrections for the circular velocities of the Newtonian
theory which can help to reduce the amount of dark matter
needed to explain the rotation curves which flatten at large radii.
These corrections by their own cannot overcome the whole prob-
lem of generating flat rotation curves, however, can reduce the
amount of dark matter in relation with the Newtonian models.

A final remark refers to the influence of the boundary con-
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ditions in the behavior of the analyzed fields. The boundary
condition that has more influence on the solutions refers to the
Newtonian gravitational potential U∗(r∗) at r∗ = 0, but by re-
stricting the values of U∗(0) to the range [0.5, 3] there is no
change in the behavior of the curves, the only difference refers to
the absolute values of the fields which become larger or smaller
than the ones obtained for U∗(0) = 1.

9.6 Stationary spherically symmetri-
cal systems

In this section we shall investigate the Jeans equation for sta-
tionary and spherically symmetrical self-gravitating fluid. The
Jeans equation (4.71) was obtained in Section 4.3.1, which can
be written as

dρ〈v2r〉
dr

(
1 +

2φ

c2

)
+

2ρ〈v2r〉
c2

dφ

dr
+ 2ρ

〈v2r〉β
r

(
1 +

2φ

c2

)
+

ρ

c2
dψ

dr
+ ρ

dφ

dr

[
1 +

2φ

c2
− 4

c2
〈v2r〉+

9

2

kT

mc2

]
= 0. (9.50)

Here β = 1−〈v2θ〉/〈v2r〉 is the velocity anisotropy parameter and
it was assumed that 〈v2θ〉 = 〈v2ϕ〉. From the multiplication of

the above equation by
(
1− 2φ

c2

)
and retaining terms up to the
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order 1/c2 we get that

dρ〈v2r〉
dr

+ 2ρ
β〈v2r〉
r

+ ρ
dφ

dr

[
1− 2

c2
〈v2r〉+

9

2

kT

mc2

]
+

ρ

c2
dψ

dr
= 0.

(9.51)
As was pointed out in Section 4.3.1 the radial velocity dis-

persion
√〈v2r〉 can be found as a solution of the above equation

together with the Poisson equations for the gravitational poten-
tials φ and ψ once we know the velocity anisotropy parameter β
and the dependence of the mass density ρ on the radial distance
r.

The two gravitational potentials in the Jeans equation (9.51)
are determined from the Poisson equations

∇2φ =
4πG

c2

0

T 00, ∇2ψ = 4πG

(
2

T 00 +
2

T ii

)
, (9.52)

once the energy-momentum tensor components are known. The
energy-momentum tensor components follow from the insertion
of the distribution function (4.13) – for a stationary system
where the hydrodynamic velocity vanishes V = 0 – and of the
invariant integration element (4.20) into the definition of the
energy-momentum tensor (9.18) and integration of the result-
ing equation, yielding

0

T 00 +
2

T 00 = ρc2
[
1 +

1

c2

(
3kT

2m
− 2φ

)]
, (9.53)

2

T rr = ρ〈v2r〉,
2

T θθ = ρ〈v2θ〉,
2

Tϕϕ = ρ〈v2ϕ〉. (9.54)

By taking into account (9.53) and (9.54) the Poisson equa-
tions (9.52) – in spherical coordinates where the gravitational
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potentials depend only on the radial coordinate φ = φ(r) and
ψ = ψ(r) – become

1

r2
d

dr

(
r2

dφ

dr

)
= 4πGρ, (9.55)

1

r2
d

dr

(
r2

dψ

dr

)
= 4πGρ

[
〈v2r〉(3− 2β)− 2φ+

3kT

2m

]
.(9.56)

In order to solve the system of differential equations com-
posed by the Jeans (9.51) and Poisson (9.55) and (9.56) equa-
tions we introduce the dimensionless variables

σ2
r =

m

kT
〈v2r〉, φ∗ =

m

kT
φ, ψ∗ =

m2

k2T 2
ψ, (9.57)

ζ =
mc2

kT
, ρ∗ =

ρ

ρ0
, r∗ =

√
4πGρ0
kT/m

r = kJr. (9.58)

Here, ρ0 is a reference mass density, ζ a relativistic parameter –
which depends on the temperature of the system and is related
with the ratio of the rest energy of a particle and the thermal
energy of the system – and kJ the Jeans wave number.

In terms of the dimensionless quantities (9.57) and (9.58)
the dimensionless Jeans (9.51) and Poisson (9.55) and (9.56)
equations become

dρ∗σ2
r

dr∗
+ 2ρ∗

βσ2
r

r∗
+ ρ∗

dφ∗
dr∗

[
1− 2

ζ
σ2
r +

9

2ζ

]
+

ρ∗
ζ

dψ∗
dr∗

= 0,(9.59)

1

r2∗

d

dr∗

(
r2∗

dφ∗
dr∗

)
= ρ∗,(9.60)

1

r2∗

d

dr∗

(
r2∗

dψ∗
dr∗

)
= ρ∗

[
σ2
r(3− 2β)− 2φ∗ +

3

2

]
.(9.61)
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For a given mass density profile and relativistic parameter ζ
one can solve the system of differential equations (9.59) – (9.61).

As an application we shall investigate the effect of a central
massive black hole on the velocity dispersion profile of the host
galaxy following the method of the book of Binney and Tremaine
[6]. The galaxy is assumed to have a constant mass-to-light ratio
and the mass density and the Newtonian gravitational potential
are given by the Hernquist model of scale-length a. Here the di-
mensionless mass density and Newtonian gravitational potential
for the Hernquist model are written as

ρ∗ =
2

r∗(r∗ + 1)3
, φ∗ = − 1

r∗ + 1
− μ

r∗
. (9.62)

The scale-length a is identified with the inverse of Jeans wave
number a = 1/kJ and ρ0 is associated with the galaxy mass Mg.
Furthermore μ = M•/Mg is the ratio of the black hole mass M•
and the galaxy mass Mg.

The Newtonian Poisson equation (9.60) is identically satis-
fied with the mass density and Newtonian gravitational poten-
tial representations of the Hernquist model (9.62).

The system of coupled differential equations given by (9.59)
and (9.61) can be solved for the dimensionless radial velocity
dispersion σr and gravitational potential ψ∗ by assuming values
for the velocity anisotropy parameter β = 1 − 〈v2θ〉/〈v2r〉, the
ratio of the black hole and galaxy masses μ = M•/Mg and the
relativistic parameter ζ = mc2/kT . This system was solved nu-
merically with the boundary conditions σr(3) = 0.1, ψ∗(3) = 0
and dψ∗(3)/dr∗ = 0 for different values of the relativistic pa-
rameter ζ. Furthermore, the values of the two other parameters
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adopted here are similar to the ones given in the book by Bin-
ney and Tremaine [6]. Here the value for the ratio of the black
hole and galaxy masses is μ = 0.004, while the values for the
velocity anisotropy parameter are β = 0.1 and β = −0.1 which
correspond to a radial and a tangential bias, respectively.

0.01 0.05 0.10 0.50 1

0.4

0.5

0.6

0.7

0.8

r=

VRMS

Newtonian*5000*2000*1000

Figure 9.7: Dimensionless root mean square of the velocity
VRMS as function of the dimensionless radial distance r∗ for
β = 0.1 and μ = 0.004. Newtonian solution (straight line) and
post-Newtonian solutions (dashed lines) for different values of
the relativistic parameter ζ.

In Figure 9.7 it is plotted the dimensionless root mean square
velocity dispersion

VRMS =

√
〈v2r〉+ 〈v2θ〉+ 〈v2ϕ〉

kT/m
=

√
3− 2β σr, (9.63)
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Figure 9.8: Dimensionless root mean square of the velocity
VRMS as function of the dimensionless radial distance r∗ for
β = −0.1 and μ = 0.004. Newtonian solution (straight line)
and post-Newtonian solutions (dashed lines) for different values
of the relativistic parameter ζ.

as function of the dimensionless radial distance r∗ for the case
of a radial bias β = 0.1, ratio of the black hole and galaxy
masses μ = 0.004 and different values of the relativistic param-
eter ζ = mc2/kT . The Newtonian solution is represented by
a straight line while the post-Newtonian solutions by dashed
lines when the relativistic parameter assumes the values ζ =
5000, 2000, 1000. We note from this figure that the black hole
has influence on the dimensionless root mean square velocity
dispersion which increases at small radii, because the deep po-
tential well of the black hole increases the velocity of the stars.
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Furthermore, by increasing the absolute temperature of the sys-
tem the relativistic parameter ζ decreases as well as the dimen-
sionless root mean square velocity dispersion.

The root mean square velocity dispersion VRMS as function
of the dimensionless radial distance r∗ is plotted in Figure 9.8
for the case where the ratio of the black hole and galaxy masses
is μ = 0.04 and the velocity anisotropy parameter is β = −0.1
corresponding to a tangential bias. The behavior of the curves
are the same as those in the preceding case, the difference lies
in the values of the dimensionless root mean square velocity
dispersion which are smaller in comparison with the previous
case.

Appendix

Let Sij be a Cartesian second order tensor in a three dimensional
Euclidean space. According to Cayley-Hamilton theorem Sij

satisfies the characteristic polynomial equation(
S3

)
ij
− I1

(
S2

)
ij
+ I2Sij − I3δij = 0, (9.64)

where the invariants are given by

I1 = Sii, I2 =
1

2

[
(Sii)

2 − (
S2

)
ii

]
, (9.65)

I3 =
1

3

(
S3

)
ii
− 1

2
Sii

(
S2

)
jj

+
1

6
(Sii)

3
. (9.66)
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The inverse of Sij follows from (9.64) and reads(
S−1

)
ij
=

1

I3

[(
S2
)
ij
− I1Sij + I2δij

]
. (9.67)

In Section 9.2 the second order tensor Sij is given by

Sij =

[
1 +

1

c2

(
V 2

2
+ 3U

)]
δij +

ViVj

c2
, (9.68)

so that the invariants up to the 1/c2 order are

I1 = 3

[
1 +

1

c2

(
5V 2

6
+ 3U

)]
, (9.69)

I2 = 3

[
1 +

1

c2

(
5V 2

3
+ 6U

)]
, (9.70)

I3 = 1 +
1

c2

(
5V 2

2
+ 9U

)
. (9.71)

Hence the inverse up to the 1/c2 order calculated from (9.67)
becomes

(S−1)ij =

[
1− 1

c2

(
V 2

2
+ 3U

)]
δij − ViVj

c2
. (9.72)
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accretion rate
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mass-energy, 243
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internal energy density, 6
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baryonic matter, 321
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Boltzmann constant, 4
Boltzmann equation, 1, 2, 308,
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collision operator, 166
cylindrical coordinates, 194,

200
first post-Newtonian, 166
gravitational field, 14, 16
non-relativistic, 1
post-Newtonian, 163, 336
second post-Newtonian, 177
special relativity, 7
spherical coordinates, 191,

198
Brans-Dicke theory, 58
brown dwarf, 208

Teide 1, 223

Cayley-Hamilton theorem, 384
Christoffel symbols, 29, 33, 34,

42, 108, 115, 123, 152,
165, 304

collision frequency, 316, 335
collision term, 8
comoving coordinates, 283, 285,

305, 329
comoving summational invari-

ant, 330
compact massive object, 228,

233, 251
matter infall, 237
matter outflow, 237

conservation
mass, 131
total angular momentum

density, 97, 102
total energy density, 102,

104, 134, 148
total linear momentum den-

sity, 92, 96, 145
conservation laws, 92

general relativity, 138
continuity equation, 53, 75, 83

Newtonian, 42, 94, 129, 229
post-Newtonian, 174

cosmic scale factor, 303
cosmological model, 277
cosmological principle, 303
covariant derivative, 29, 64
critical

absolute temperature, 250,
261

gas flow velocity, 231, 247,
260

Mach number, 267
mass density, 249, 261
point, 230, 233, 247, 259
proper velocity, 249
radius, 230, 247, 249, 261
sound speed, 231, 247, 249,

260
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curvature tensor, 65

d’Alembertian, 60
dark matter, 321, 357
dark matter halos, 325
density contrast, 317, 319, 333
dispersion relation, 278, 281, 294,

302, 311, 315, 325, 345
dispersion velocity, 337
dust dominated Universe, 283

Eckart decomposition, 79, 83
Einstein field equations, 30, 31,

47, 115, 120, 122, 144,
256, 283, 303

Einstein-Hilbert action, 59
energy density, 3, 30, 80, 258

internal, 3, 102, 133
kinetic, 3, 102, 133
non-relativistic, 12
ultra-relativistic, 12

energy-momentum
complex, 112, 135, 139, 145,

148, 151
pseudo-tensor, 112, 139, 144,

147
energy-momentum tensor, 10,

17, 43, 45, 112, 127,

164, 169, 171, 182, 256,
304, 337, 363, 379

trace, 36
entropy four-flow, 12

equilibrium, 13
equation of state

completely degenerate non
relativistic Fermi gas,
232

completely degenerate ul-
tra
relativistic Fermi gas,
222, 232

isothermal, 231
perfect gas, 204, 261
polytropic, 206, 209, 228,

243, 258, 279, 290
escape velocity, 364
Euler-Lagrange equation, 359
expanding Universe, 282, 286,

328

first law of thermodynamics, 112,
204

FLRW metric, 283, 303
four-momentum, 139
four-tensor angular momentum,

139
four-vector, 78, 79
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four-velocity, 10, 42, 44, 126,
178, 242, 257

contravariant components,
29, 44, 114

covariant components, 29,
44, 114

particle, 169
free falling particle, 358
Friedmann equation, 286, 304

galaxy, 277, 357
circular rotation curve, 371
circular velocity, 357
cluster, 277
mass, 382

gas cloud, 278
gas flow velocity, 229, 230, 232,

235, 236, 241
gauge condition, 48, 66, 114,

119, 124, 292, 297, 299
Gauss theorem, 60, 94, 98, 103
Gaussian integrals, 197, 314, 324,

331
Gibbs equation, 206, 290
Gibbs function, 14
gravitational collapse, 279, 282,

295, 296, 312, 327, 328,
346, 348

gravitational constant, 6, 39,
66, 216

gravitational instability, 278
gravitational potential, 6, 113,

211
energy, 91, 366
energy tensor, 90, 98
Newtonian, 39, 47, 87, 229,

236, 248, 262, 265, 308,
322

scalar, 41, 50, 87, 123, 248,
290, 363

tensor, 87, 88, 118
vector, 40, 49, 87, 113, 121,

156, 290, 292, 363

harmonic coordinate condition,
37

harmonic wave, 282
heat capacity

molar, 204
specific, 204

heat flux, 6, 80, 82
non-relativistic, 82

Hernquist model, 381
highly ionized gas, 207
homogeneous and isotropic Uni-

verse, 303
homogeneous Lorentz group, 7
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Hubble
constant, 282
radius, 282

Hubble-Lamâıtre law, 283, 305,
328

hydrodynamic equation
Brans-Dicke, 75
Eulerian fluid, 52, 125, 173
heat-conducting fluid, 86
internal energy density, 58,

86
mass density, 53, 75, 128,

175, 188, 241
mass-energy density, 54, 76,

83, 122, 131, 175, 189,
241

momentum density, 55, 76,
84, 92, 119, 136, 176,
209, 212, 216, 229, 241

non-perfect fluid, 78
total energy density, 57, 77,

85, 102, 133
viscous fluid, 86

hydrodynamic velocity, 3, 290,
379

integration element, 170, 338,
363

internal energy density, 30

internal energy, heat and work,
204

per mole, 204
interstellar gas, 357
interstellar plasma, 228, 256
invariant flux, 8
isentropic flow, 112, 279

Jacobian matrix, 169, 181
Jeans

instability, 282, 288, 295,
302, 312, 319, 327, 333,
335, 346

mass, 282, 290, 295, 303,
312, 327, 348

swindle, 280, 283, 290, 298,
309, 323, 340

wave number, 278, 294, 319,
365, 380

wavelength, 278, 281, 287,
312, 319

Jeans equation
axisymmetrical, 197
post-Newtonian, 190
spherically symmetrical, 193,

379
Jeans instability

Boltzmann equation, 307
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first post-Newtonian approx-
imation, 289

Newtonian approximation,
279

second post-Newtonian ap-
proximation, 297

kinetic energy tensor, 98
kinetic theory

relativistic gas, 299
Klein law, 23, 361

Lagrangian, 359
Lane-Emden equation

Brans-Dicke, 215, 221
Newtonian, 209, 217
polytropic solutions, 222
post-Newtonian, 212, 220

Laplace equation, 374
Laplacian, 42, 121
Laplacian vector field, 190
limiting case

non-relativistic, 10
ultra-relativistic, 10

line element, 28
Liouville theorem, 17
local Lorentz frame, 10, 11
Lorentz factor, 29

Mach

number, 236, 238, 253, 255,
264, 265, 270

principle, 58
mass accretion rate, 229, 231,

234, 235, 257, 261, 271
mass density, 3, 30, 39, 130,

188, 231, 232, 239, 361,
366

inhomogeneity, 278
perturbation, 281, 293

mass-energy density, 54, 283,
305

contrast, 284–287
mass-shell condition, 16
Maxwell-Jüttner distribution, 9,

10
first post-Newtonian, 168
post-Newtonian, 164, 167,

337, 340, 350, 361
second post-Newtonian, 179

Maxwellian distribution, 4, 190,
193, 309, 322

mean molecular weight, 207, 208
metric tensor, 7, 32, 42

cofactor, 108
contravariant components,

32
covariant components, 32
determinant, 15
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spatial, 28
Minkowski

metric tensor, 12
rest frame, 78
space-time, 7, 29, 32

modified Bessel function, 10, 12,
168, 362

moment of inertia tensor, 104
momentum density, 3
momentum four-vector, 7, 349
monatomic gases, 2, 30, 232

neutron star, 208
PSR J0348+0432, 225
PSR J1614–2230, 225

one-particle distribution, 2, 7,
308, 322, 328

particle equation of motion
acceleration, 164

particle four-flow, 10, 17, 43,
45, 126, 164, 169, 170,
182, 256

non-relativistic, 37
particle number density, 10, 80,

207
peculiar velocity, 3, 167
perfect fluid, 29, 232, 256

physical coordinates, 283, 305
plane wave

amplitude, 281, 294, 301,
310, 316, 323, 342

comoving wave number, 286
frequency, 281, 294, 310,

323, 342
physical wave number, 286
wave number vector, 281,

294, 310, 316, 323, 342
Poisson equation, 6, 39, 50, 51,

87, 89, 113, 190, 209,
216, 279, 285, 290, 298,
308, 322, 328

polytropic index, 206, 211, 219,
222, 296

post-Newtonian
particle dynamics, 358

post-Newtonian approximation
Brans-Dicke equations, 68
Chandrasekhar method, 47
first approximation, 31
second approximation, 112
Weinberg method, 37

pressure, 6, 12, 30, 205, 366
deviator, 80–82, 84
dynamic, 80
hydrostatic, 80
perturbation, 293
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star, 207
tensor, 6

pressure-density ratio, 369
pressureless fluid, 286, 328
process

adiabatic, 206
isobaric, 205
isochoric, 205
isothermal, 206
polytropic, 205
quasi-static, 205

projector, 78
proper time, 28, 165, 178
proper velocity, 242, 245, 249,

252, 254, 262

quasi-static changes, 204

radial bias, 382
radial velocity dispersion, 191
red giant, 208

Aldebaran, 223
relativistic Bondi accretion, 256
relativistic parameter, 10, 253
relativistic transfer equation, 9
relativistic weak field limit, 260
rest energy, 380
rest mass, 7

Reynolds transport theorem, 92,
98, 99, 103, 105, 131,
157

Ricci tensor, 30, 32, 34, 39, 47,
61, 115, 120, 122, 142,
304

Riemann curvature tensor, 30
Riemann-Christoffel tensor, 140,

142
Riemannian space, 14

scalar curvature, 31
scalar field, 59, 66
Schwarzschild

black hole, 256
metric, 256
radius, 256

sound speed, 229, 231, 232, 236,
253, 259, 278, 279, 285,
293

spatial metric tensor, 220
specific heat

constant volume, 30
specific internal energy, 4, 30,

172, 290
perturbation, 293, 299

spherically symmetrical accre-
tion

Newtonian, 228
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post-Newtonian, 240
star

central mass density, 219,
221

central pressure, 219, 221
central temperature, 219,

221
mass, 218, 220
mass-radius, 218, 221
mean mass density, 219
radius, 217, 220

static solution
self-gravitating system, 363

stationary system
spherically symmetrical, 191,

378
stellar remnants, 357
summational invariant, 3, 9, 314–

316, 324, 349
Sun, 208, 222, 233
super potential, 87, 89

tangential bias, 382
thermal energy, 380
time-like Killing vector, 23
Tolman law, 23, 361
total energy density, 152
total linear momentum density,

97, 102, 106, 148

transfer equation
Maxwell-Enskog, 4
post-Newtonian, 173
special relativity, 10

transonic point, 238, 239
transonic radius, 231
turning point, 230, 247, 270

velocity
anisotropy parameter, 193,

378, 382
contrast, 284, 285
dispersion, 296, 309, 323,

382, 384
velocity anisotropy parameter,

384
virial theorem, 90, 104, 105, 248,

346
stationary, 106, 107
tensor, 106

volume viscosity, 81

white dwarf, 208
Sirius B, 222

wind flow, 238, 269
supersonic, 239

world line, 15, 165

Yukawa term, 376
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