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Preface
This book deals with collisions of electrons with atoms. Both the nonrelativistic and
the relativistic theories are presented here. Since we are interested in applications,
the first part of the book is devoted to the basic concepts of computational physics,
describing the main numerical tools necessary for solving problems concerning the
scattering of charged particles by central fields. We also briefly describe the main spe-
cial functions of mathematical physics and provide methods to numerically calculate
them. The second part of the book is dedicated to the nonrelativistic approach to the
study of electron–atom scattering and to an introduction to Pauli matrices and spin.
The Thomas Fermi and Hartree–Fock methods for describing many-electron atoms
and, in particular, for calculating the so-called screening function are described in
the second part of the book. The screening function is crucial for the calculation of
phase shifts, and its analytical approximation is also presented tomake easier the cal-
culation of the electrostatic atomic potential. In the third part of the volume, after an
introduction to the quantum relativistic equations (Klein–Gordon equation and Dirac
equation), the Mott theory is described. It represents the quantum-relativistic theory
of elastic scattering of electrons by central fields, the so-called relativistic partial wave
expansionmethod. The last part of the book presents several applications. It contains
exercises devoted to the calculation of the special functions of mathematical physics
(notably, Legendre polynomials and spherical Bessel functions, both regular and ir-
regular) and to their use for computing phase shifts, scattering amplitudes, differen-
tial elastic scattering cross-sections, and spin-polarization parameters. The exercises
are provided with an increasing degree of difficulty. With the aid of these exercises,
the reader can use all the information described in the first three parts of the book to
write her/his own computer codes for the computation of all the quantities relevant to
the scattering processes.

I am indebted to all my colleagues at the European Centre for Theoretical Studies
in Nuclear Physics and Related Areas (ECT*) in Trento. The stimulating atmosphere
of ECT* has provided the ideal environment to work on this project. I wish to express
my sincere gratitude to Isabel Abril, Pablo de Vera, Jan Franz, Malgorzata Franz, Gio-
vanni Garberoglio, Rafael Garcia-Molina, Gianluca Introzzi, and Simone Taioli for the
numerous and illuminating discussions on the topics covered in the book and for their
invaluable and stimulating comments. I would like to thank the students of my course
entitled Computational Methods for Transport Phenomena (Department of Physics,
University of Trento) for their clever questions and suggestions. I am also grateful to
Maria Del Huerto Flammia for assisting me with the proofreading of this book.

Finally, warm thanks are due to my beloved children for their immense affection,
my dear parents for their great love, and my cherished Roberta for her extraordinary
patience.

Villazzano, January 2022 Maurizio Dapor
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1 Basic numerical analysis
This chapter is devoted to the basic concepts of numerical analysis used in computa-
tional physics [4, 6, 15, 20]. It deals with the numerical tools that are central for the
computational modeling of physical systems. We will introduce the main methods of
numerical differentiation andnumerical quadrature (or integration) (trapezoidal rule,
Simpson rule, Bode rule, Gaussian quadrature, and the Monte Carlo method). Fur-
thermore, we will describe important methods for the solution of ordinary differential
equations (the Euler method, Adams–Bashforth method, and Runge–Kutta method).
We will describe, at the end, the Numerov algorithm for solving linear second-order
differential equations.

1.1 Numerical differentiation

To discuss numerical differentiation, we must remind our readers that any function
f (x), infinitely differentiable in 0, can be expressed as a power series (Maclaurin se-
ries):

f (x) =
∞
∑
n=0 xnn! f (n)(0) = f (0) + x f ′(0) + x2

2!
f ′′(0) + ⋅ ⋅ ⋅ , (1.1)

where f (n)(0) represents thenth derivative of f (x) calculated in the origin. For example,
f (1)(0) = f ′(0). Since zero is the point where we have calculated the derivatives, the
Maclaurin series is a special case of a more general expression. In fact, if the function
f (x) is infinitely differentiable at a point a, then it can be expressed as the following
power series (Taylor series):

f (x) =
∞
∑
n=0 (x − a)nn!

f (n)(a) = f (a) + (x − a) f ′(a) + (x − a)2
2!

f ′′(a) + ⋅ ⋅ ⋅ , (1.2)

so that the Maclaurin series is the Taylor series for a = 0. If x ≪ 1, the Maclaurin
expansion can be truncated so that f (x) can be approximated with a polynomial, for
example, a second-order one:

f (x) ≈ f (0) + x f ′(0) + x2

2!
f ′′(0) . (1.3)

The higher the order of the polynomial, of course, the better the approximation. Any-
way, all the neglected terms in the previous equation are smaller and smaller since
they are proportional to powers of x, a number much smaller than 1. In the neighbor-
hood of x = 0, we thus have, for any h ≪ 1,

f (h) = f (0) + h f ′(0) + h2
2!
f ′′(0) + ⋅ ⋅ ⋅ , (1.4)

https://doi.org/10.1515/9783110675375-001
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4 | 1 Basic numerical analysis

and

f (−h) = f (0) − h f ′(0) + h2
2!
f ′′(0) + ⋅ ⋅ ⋅ , (1.5)

so that

f ′ = f (h) − f (−h)
2h

+ 𝒪(h2) . (1.6)

Note that, in Eq. (1.6), we have indicated with 𝒪(h2) all the terms of order equal or
greater than 2. The formula expressed by Eq. (1.6) is known as the “three-point” for-
mula. The tree-point formula is exact if f is a second-degree polynomial function in
the interval [−h, h]. In other words, Eq. (1.6) assumes a quadratic polynomial interpo-
lation of the function f through x = −h, x = 0, and x = h. A “two point” formula can
be obtained using only Eq. (1.4):

f ′ = f (h) − f (0)
h
+ 𝒪(h) , (1.7)

𝒪(h) includes all the terms of order equal or greater than 1. The “two-point” formula
is exact if f is a linear function in the interval [0, h]. In other words Eq. (1.7) assumes
a linear interpolation of the function f through x = 0 and x = h. Using both Eqs. (1.4)
and (1.5), we can easily obtain the second-order derivative:

f ′′ = f (h) − 2f (0) + f (−h)
h2

+ 𝒪(h2) . (1.8)

Higher-order derivatives can of course be obtained using similar procedures.

1.2 Numerical quadrature

1.2.1 Elementary quadrature formulas

Let us consider a small interval [0, h] where we can assume that the function f is ap-
proximately linear. The so-called trapezoidal rule immediately follows:

h

∫
0

f (x) dx = f (0) + f (h)
2

h + 𝒪(h3) . (1.9)

The name “trapezoidal rule” originates from the fact that, if f has positive values, the
integral is approximated by the area of a trapezoid. The same rule can also be ex-
pressed in a symmetric form about x = 0. To do that, let us assume that f is approxi-
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1.2 Numerical quadrature | 5

mately linear in both the two intervals [−h,0] and [0, h]), so that we can write

h

∫−h f (x) dx = f (−h) + 2f (0) + f (h)
2

h + 𝒪(h3) . (1.10)

To increase the accuracy, let us note that, for |x| < h, we can write

f (x) ≈ f (0) + f (h) − f (−h)
2h

x + f (h) − 2f (0) + f (−h)
2h2

x2 . (1.11)

We can now integrate this equation from −h to h to obtain

h

∫−h f (x) dx = 2hf (0) + 2h3

3
f (h) − 2f (0) + f (−h)

2h2
+ 𝒪(h5) . (1.12)

The so-called Simpson quadrature rule can be deduced from the last equation:

h

∫−h f (x) dx = f (h) + 4f (0) + f (−h)
3

h + 𝒪(h5) . (1.13)

Higher-order quadrature rules can be obtained including in the calculation further
terms of the Taylor series. In particular, we can easily obtain the so-called Bode
quadrature rule:

x0+4h
∫
x0

f (x) dx

=
2 h
45
[7 f (x0) + 32 f (x0 + h) + 12 f (x0 + 2h)

+ 32 f (x0 + 3h) + 7 f (x0 + 4h)] + 𝒪(h
7) . (1.14)

1.2.2 Gaussian quadrature

The Gaussian quadrature rule is another way to perform integration of functions. It is
a very fast algorithm, but it requires that the integrand be a smooth function of x. To
describe this method, let us consider the integral:

S =
1

∫−1 f (x)dx . (1.15)
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6 | 1 Basic numerical analysis

All the elementary quadrature formulas just described use the following approach to
numerically approximate S:

S ≈
N
∑
n=1 cn f (xn) , (1.16)

where

xn = 2
n − 1
N − 1
− 1 , (1.17)

and the coefficients cn are obtained by solving the following system of N linear equa-
tions:

1

∫
1

xp dx =
N
∑
n=1 cn xpn , (1.18)

with p = 0, 1, . . . ,N − 1. In the case of Simpson’s rule, for example, N = 3, x1 = −1,
x2 = 0, x3 = +1, and, once solved the system of linear equations (1.18), c1 = 1/3,
c2 = 4/3, c3 = 1/3. Ifwe give up the requirement of equally spacedpoints xn, choosing
xn as the N zeros of the Legendre polynomial PN (x) (see next chapter), we have

cn =
2

(1 − x2n)[P′N (xn)]2 . (1.19)

For example, if N = 3, Gaussian quadrature corresponds to the use of Eq. (1.16) with
x1 = √3/5, x2 = 0, x3 = −√3/5, c1 = 5/9, c2 = 8/9, and c3 = 5/9. The abscissae
xn and the weights cn for higher values of N can be found in the literature or directly
calculated. Also note that, to compute the integral:

Sab =
b

∫
a

f (x) dx , (1.20)

the following variable change has to be carried out:

y = 2 x − a
b − a
− 1 . (1.21)

Gaussian quadrature can still be used for rapidly varying integrand functions by inte-
grating over many subintervals of the integration range.

1.2.3 The Monte Carlo method

The Monte Carlo method is a very efficient way, based on the generation of random
numbers, to evaluatemulti-dimensional integrals, but, to illustrate the use of random
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numbers to calculate integrals, let us just consider the one-dimensional case. Assum-
ing that N abscissae xi are chosen at random in the closed interval [0, 1], we can write

1

∫
0

f (x) dx ≈ 1
N

N
∑
i=1 f (xi) . (1.22)

This equation represents the Monte Carlo method, expressed in its simplest form, for
integrating a function f from 0 to 1. Please note that the values of the N random ab-
scissae have to be chosen with equal probability in the range [0, 1] or, in other words,
they must be random numbers uniformly distributed within the interval [0, 1]. The ef-
ficiency of theMonte Carlo quadrature can be improved by introducing a new positive
function w(x) satisfying the condition:

1

∫
0

w(x) dx = 1 . (1.23)

Let us now consider the function y(x) defined as

y(x) =
x

∫
0

w(x′)dx′ (1.24)

and observe that

dy
dx
= w(x) , (1.25)

y(x = 0) = 0 , (1.26)
y(x = 1) = 1 . (1.27)

Since

1

∫
0

f (x) dx =
1

∫
0

f (x)
w(x)

w(x)dx =
1

∫
0

f (x)
w(x)

dy
dx

dx =
1

∫
0

f (x(y))
w(x(y))

dy , (1.28)

we have

1

∫
0

f (x) dx ≈ 1
N

N
∑
i=1 f (x(yi))

w(x(yi))
. (1.29)

Using the latter equation, the idea is to choose a function w(x) that behaves approx-
imately like f (x). In such a way, little computing power is used where both w(x) and
f (x) are small and, as a consequence, x values are less important.
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8 | 1 Basic numerical analysis

1.3 Ordinary differential equations

Let us consider the simplest ordinary differential equation:

dy
dx
= f (x, y) . (1.30)

In this equation, f (x, y) is a known function of x and y. We wish to find the function
y(x) satisfying Eq. (1.30) and assuming the following initial condition:

y(x0) = y0 , (1.31)

where x0 and y0 are real numbers.

1.3.1 Euler method

Let us now describe the Euler method. We wish to find the value of the function y for
a given value of the variable x, for example, x = 1. Let us consider the case where x
ranges in the interval [0, 1] so that x0 = 0 and y0 = y(0). Let us divide the interval
[0, 1] inN subintervals of length h = 1/N, and let us indicate with yn the approximated
value of y(xn), where xn = nh:

yn = y(xn) . (1.32)

Thus, the following simple recursion formula numerically solves Eq. (1.30) by a step-
by-step integration:

yn+1 = yn + h f (xn, yn) + 𝒪(h2) , (1.33)

Note that the local error is𝒪(h2). To calculate the global error, we have to consider the
N steps necessary to integrate from x = 0 to x = 1. As a consequence, the global error
is given by N 𝒪(h2) = (1/h)𝒪(h2) ≈ 𝒪(h).

1.3.2 Adams–Bashforth method

This method is based on the exact integration:

yn+1 = yn + xn+1
∫
xn

f (x, y) dx . (1.34)
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By linear extrapolation we obtain the approximate formula:

f ≈ f (xn−1, yn−1) + f (xn, yn) − f (xn−1, yn−1)
xn − xn−1 (x − xn−1) (1.35)

or, equivalently,

f = x − xn−1
h

fn −
x − xn
h

fn−1 + 𝒪(h2) , (1.36)

where fn = f (xn, yn). From

xn+1
∫
xn

x − xn−1
h

fn dx =
fn
2
(xn+1 + xn − 2xn−1) = 3fn

2
h , (1.37)

xn+1
∫
xn

x − xn
h

fn−1 dx = fn−1
2
(xn+1 + xn − 2xn) = fn−1

2
h , (1.38)

we obtain

yn+1 = yn + h
2
(3fn − fn−1) + 𝒪(h3) . (1.39)

Equation (1.39) represents the Adams–Bashforth two-step method.

1.3.3 Runge–Kutta method

A more accurate approach is represented by the so-called Runge–Kutta method. Ac-
cording to the fourth-order Runge–Kutta method, we have

yn+1 = yn + 1
6
(k1 + 2 k2 + 2 k3 + k4) + 𝒪(h

5) , (1.40)

where

k1 = h f (xn, yn) ,

k2 = h f (xn + h/2, yn + k1/2) ,

k3 = h f (xn + h/2, yn + k2/2) ,

k4 = h f (xn + h, yn + k3) . (1.41)
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10 | 1 Basic numerical analysis

1.4 Linear second-order differential equations

A linear differential equation of the second-order has the form:

d2y
dx2
+ f 2(x) y = g(x) . (1.42)

Let us consider y(x). If h ≪ 1 we can expand it in a Maclaurin series as follows:

y(h) = y0 + hy
′ + h2

2!
y′′ + h3

3!
y′′′ + h4

4!
y′′′′ + h5

5!
y′′′′′ + 𝒪(h6) , (1.43)

where y0 is the value assumed by the function at x = 0:

y0 = y(0) . (1.44)

Please note that all the derivatives are calculated at x = 0. We can also write

y(−h) = y0 − hy
′ + h2

2!
y′′ − h3

3!
y′′′ + h4

4!
y′′′′ − h5

5!
y′′′′′ + 𝒪(h6) , (1.45)

and, as a consequence,

y(h) − 2y(0) + y(−h)
h2

= y′′ + h2

12
y′′′′ + 𝒪(h4) . (1.46)

Hence, we can also write

yn+1 − 2yn + yn−1
h2

= y′′n + h2

12
y′′′′n + 𝒪(h4) , (1.47)

where

yn = y(xn) , (1.48)
xn = nh , (1.49)

and all the derivatives are calculated at x = xn.

1.4.1 Numerov algorithm

Many differential equations in physics have the simple form of Eq. (1.42), i. e., they are
linear differential equations of the second order. From Eq. (1.42) it follows that

y′′′′n = d2

dx2
(−f 2y + g)|x = xn . (1.50)
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Keeping in mind Eq. (1.47), we thus obtain, on the one hand,

y′′′′n = − f 2n+1yn+1 − 2f 2nyn + f 2n−1yn−1h2
+
gn+1 − 2gn + gn−1

h2
+ 𝒪(h2) . (1.51)

On the other hand, since

y′′n = −f 2n yn + gn , (1.52)

we have

yn+1 − 2yn + yn−1
h2

= −f 2n yn + gn +
h2

12
y′′′′n + 𝒪(h4) . (1.53)

Using Eqs. (1.51) and (1.53), we obtain

(
12
h2
+ f 2n+1)yn+1 + (−24h2 + 10f 2n)yn + ( 12h2 + f 2n−1)yn−1
= gn+1 + 10gn + gn−1 + 𝒪(h4),

and, after a few simple algebraical manipulations, the Numerov algorithm:

(1 + h2

12
f 2n+1)yn+1 − 2(1 − 5h2

12
f 2n)yn + (1 +

h2

12
f 2n−1)yn−1

=
h2

12
(gn+1 + 10gn + gn−1) + 𝒪(h6) . (1.54)
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2 Special functions of mathematical physics

This chapter is an introduction to the functions ofmathematical physics useful for our
aims [1, 11, 15]. Thismathematical introductionwill help our readers to understand the
concepts that we will present later in the book. We will introduce, in particular, recur-
sion relations useful for determining numerically themain functions of mathematical
physics (i. e., Legendre polynomials, associated Legendre functions, and regular and
irregular spherical Bessel functions). We will discuss spherical harmonics and intro-
duce the confluent hypergeometric function and the Green function.

2.1 Legendre polynomials

We are interested in the Legendre polynomials because they are (as we will show in
the next chapter) eigenfunctions of the square of the orbital angular momentum:

L2 = −ℏ2( 𝜕
2

𝜕ϑ2
+ cot ϑ 𝜕
𝜕ϑ
+

1
sin2 ϑ
𝜕2

𝜕φ2) , (2.1)

L2Pl(cos ϑ) = ℏ
2l(l + 1)Pl(cos ϑ) . (2.2)

They are the following polynomials of degree l of the variable u (−1 ≤ u ≤ 1):

Pl(u) =
1
2ll!

dl

dul
(u2 − 1)l , (2.3)

where l = 0, 1, 2, . . . , and satisfy the equation:

[(1 − u2) d
2

du2
− 2u d

du
+ l(l + 1)]Pl(u) = 0 . (2.4)

The following recursion relationships, valid also for l = 0, once defined P−1 = 1, can
be used to calculate Legendre polynomials:

(l + 1)Pl+1(u) + lPl−1(u) = (2l + 1)uPl(u) , (2.5)

(1 − u2) d
du

Pl(u) = lPl−1(u) − luPl(u) . (2.6)

The first five Legendre polynomials can be directly calculated as follows:

P0 = 1 , (2.7)

P1 = u , (2.8)

P2 =
1
2
(3u2 − 1) , (2.9)

https://doi.org/10.1515/9783110675375-002

 EBSCOhost - printed on 2/13/2023 9:52 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110675375-000


2.2 Associated Legendre functions | 13

P3 =
1
2
(5u3 − 3u) , (2.10)

P4 =
1
8
(35u4 − 30u2 + 3) . (2.11)

Please note that

Pl(1) = 1 , (2.12)

Pl(−1) = (−1)
l . (2.13)

The Legendre polynomials satisfy the closure relationship:

1
2

∞
∑
l=0
(2l + 1)Pl(u)Pl(v) = δ(u − v) , (2.14)

where δ is the Dirac delta distribution.

2.2 Associated Legendre functions

The associated Legendre functions are given by

Pml (u) = (1 − u
2)

1
2m dm

dum
Pl(u) , (2.15)

wherem = 0, 1, 2, . . . , l . They satisfy the equation:

[(1 − u2) d
2

du2
− 2u d

du
+ l(l + 1) − m2

1 − u2
]Pml (u) = 0 . (2.16)

The Legendre polynomials are the particular associated Legendre functions corre-
sponding tom = 0:

Pl(u) = P
0
l (u) . (2.17)

The associated Legendre functions satisfy the orthonormality relationship:

+1

∫
−1

Pmk (u)P
m
l (u) du =

2
2l + 1
(l +m)!
(l −m)!

δkl , (2.18)

where δkl is the Kronecker symbol (equal to 1 if k = l and to 0 otherwise) and, as a
consequence, the Legendre polynomials satisfy the orthonormality relationship:

+1

∫
−1

Pk(u)Pl(u) du =
2

2l + 1
δkl . (2.19)
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To numerically calculate the associated Legendre functions, the following recursion
relationships can be used:

(l −m + 1)Pml+1(u) + (l +m)P
m
l−1(u) = (2l + 1)uP

m
l (u) , (2.20)

(1 − u2) d
du

Pml (u) = (l +m)P
m
l−1(u) − luP

m
l (u) . (2.21)

2.3 Bessel functions

The Bessel equation of order ν satisfies the equation:

x2 d
2y

dx2
+ x dy

dx
+ (x2 − ν2)y = 0 . (2.22)

Any linear combination of the Bessel functions J−ν and J+ν is a solution to this equa-
tion. The Schrödinger equation of a particle in a constant potential V0 can be written
as

(∇2 + K2 − U0)Ψ = 0 , (2.23)

where K = p/m, K2 = 2mE/ℏ2, and U0 = 2mV0/ℏ2. Let us now expand the wave
function in Legendre polynomials:

Ψ(r, cos ϑ) =
∞
∑
l=0

al
yl(r)
r

Pl(cos ϑ) . (2.24)

Since, in spherical coordinates,

∇2 =
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
+

1
r2
(
𝜕2

𝜕ϑ2
+ cot ϑ 𝜕

𝜕ϑ
+

1
sin2 ϑ
𝜕2

𝜕φ
) =
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
−

1
r2
L2

ℏ2
, (2.25)

taking into account Eq. (2.2), the Schrödinger equation becomes

∞
∑
l=0
[
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
−
l(l + 1)
r2
+ K2 − U0]al

yl(r)
r

Pl(cos ϑ) = 0 . (2.26)

All the coefficients of this expansionmust then satisfy the following differential equa-
tion:

[
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
−
l(l + 1)
r2
+ K2 − U0]al

yl(r)
r
= 0 . (2.27)

Let us now introduce

k2 = K2 − U0 , (2.28)
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so that

[
d2

dr2
−
l(l + 1)
r2
+ k2]yl(r) = 0 . (2.29)

If x = kr, the last equation can be rewritten as

[
d2

dx2
−
l(l + 1)
x2
+ 1]yl(x) = 0 . (2.30)

Let us now introduce the spherical Bessel function of order l. It is defined by

jl(x) = √
π
2x
Jl+1/2(x) . (2.31)

Note that x1/2Jl+1/2 is a solution to Eq. (2.30). Indeed

[
d2

dx2
−
l(l + 1)
x2
+ 1]x1/2Jl+1/2

= √x{
d2Jl+1/2
dx2
+

1
x
dJl+1/2
dx
+ [1 − (l + 1/2)

2

x2
] Jl+1/2}

= x−3/2{x2
d2Jl+1/2
dx2
+ x

dJl+1/2
dx
+ [x2 − (l + 1/2)2] Jl+1/2} , (2.32)

and Jl+1/2 is a solution of the Bessel equation (2.22) with ν = l + 1/2. As a consequence,
the function krjl(kr) is a solution to Eq. (2.29). Defining now the spherical Neumann
function of order l (or irregular spherical Bessel function of order l) as

nl(x) = (−1)
l+1√ π

2x
J−l−1/2(x) , (2.33)

we see that krnl(kr) is also a solution of Eq. (2.29). The first three regular and irregular
spherical Bessel functions are given by

j0 =
sin x
x
, (2.34)

j1 =
sin x
x2
−
cos x
x
, (2.35)

j2 = (
3
x3
−

1
x
) sin x − 3

x2
cos x , (2.36)

n0 = −
cos x
x
, (2.37)

n1 = −
cos x
x2
−
sin x
x
, (2.38)

n2 = (−
3
x3
+

1
x
) cos x − 3

x2
sin x . (2.39)
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The following equations hold:

jl(x) ∼x→0
xl

1 ⋅ 3 ⋅ ⋅ ⋅ ⋅ ⋅ (2l + 1)
, (2.40)

nl(x) ∼x→0 −
1 ⋅ 3 ⋅ ⋅ ⋅ ⋅ ⋅ (2l − 1)

xl+1
, (2.41)

jl(0) = δl0 . (2.42)

Furthermore, the Bessel and Neumann functions have the following asymptotic be-
havior:

jl(x) ∼x→∞
sin(x − lπ/2)

x
, (2.43)

nl(x) ∼x→∞ −
cos(x − lπ/2)

x
. (2.44)

To numerically calculate the Bessel and Neumann functions, the following recursion
relationship can be used:

xfl−1 − (2l + 1)fl + xfl+1 = 0 , (2.45)

xfl−1 − (l + 1)fl − x
dfl
dx
= 0 , (2.46)

where fl is any linear combination of the functions jl and nl.

2.4 Spherical harmonics

The spherical harmonics Ym
l are the eigenfunctions common to the operators L2 and

Lz . With l = 0, 1, . . . andm = −l,−l + 1, . . . , l − 1, l, we can write

L2Ym
l = ℏ

2l(l + 1)Ym
l (2.47)

and

LzY
m
l = ℏmY

m
l .

1 (2.48)

Ifm ≥ 0, the spherical harmonics are given by the following equation:

Ym
l (ϑ,φ) = (−1)

m√ (2l + 1)(l −m)!
4π(l +m)!

Pml (cos ϑ) exp(imφ) . (2.49)

1 Please note that here we use the symbolm to indicate the eigenvalues of Lz divided by ℏ. Considera-
tion of the context always allows one to avoid confusing it with the electron mass, also indicated with
m elsewhere.
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Ifm < 0, they can be obtained by

(−1)m Y−ml (ϑ,φ) = Y
m∗
l (ϑ,φ) . (2.50)

Please note that the spherical harmonics are normalized to unity on the unit sphere
and satisfy the orthonormality and closure relationship. They form a complete set of
square-integrable orthonormal functions on the unit sphere:

2π

∫
0

dφ
π

∫
0

sin ϑ dϑ Yk∗
j (ϑ,φ)Y

m
l (ϑ,φ) = δkmδjl , (2.51)

∞
∑
l=0

l
∑
m=−l

Ym∗
l (ϑ,φ)Y

m
l (ϑ
′,φ′) = δ(Ω − Ω′) = δ(ϑ − ϑ′)δ(φ − φ′)

sin ϑ
. (2.52)

2.5 Confluent hypergeometric functions

Another important equation is theKummer equation (also knownas the Laplace equa-
tion):

x d
2y

dx2
+ (b − x)dy

dx
− ay = 0 . (2.53)

The regular solution of this equation is the confluent hypergeometric function:

y = M(a, b, x) = 1 + (a)1
(b)1

x + (a)2
(b)2

x2

2!
+ ⋅ ⋅ ⋅ +

(a)n
(b)n

xn

n!
+ ⋅ ⋅ ⋅ , (2.54)

where

(a)n = a(a + 1)(a + 2) ⋅ ⋅ ⋅ (a + n − 1) , (2.55)
(b)n = b(b + 1)(b + 2) ⋅ ⋅ ⋅ (b + n − 1) , (2.56)

and

(a)0 = 1 , (2.57)
(b)0 = 1 , (2.58)

so that

M(a, b, x) = 1 + a
b
x + a(a + 1)

b(b + 1)
x2

2!

+
a(a + 1)(a + 2)
b(b + 1)(b + 2)

x3

3!
+ ⋅ ⋅ ⋅

+
a(a + 1) ⋅ ⋅ ⋅ (a + n − 1)
b(b + 1) ⋅ ⋅ ⋅ (b + n − 1)

xn

n!
+ ⋅ ⋅ ⋅ . (2.59)
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The Γ function has the following property:

Γ(a + 1) = a Γ(a) . (2.60)

Thus we have

Γ(a + 2) = (a + 1) Γ(a + 1) = (a + 1) a Γ(a) , (2.61)
Γ(a + 3) = (a + 2) Γ(a + 2) = (a + 2) (a + 1) a Γ(a) , (2.62)

and so on. As a consequence, the confluent hypergeometric function can also be ex-
pressed as

M(a, b, x) =
∞
∑
n=0

[Γ(n + a)/Γ(a)]
[Γ(n + b)/Γ(b)]

xn

n!
. (2.63)

2.6 Green function

The operator ∇2 + k2 satisfies the equation:

(∇2 + k2) g(r, r′) = δ(r − r′) , (2.64)

where

δ(r − r′)

is the Dirac delta function and

g(r, r′) = −exp(ik|r − r
′|)

4π|r − r′|
(2.65)

is the Green function.
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3 Partial wave expansion method
The theory of the electron–atom scattering processes can be presented in a very sim-
ple manner assuming the following approximation. Since the masses of the target
atoms are much larger than those of the incident electrons, the target atoms can be
considered, as a first approximation, as infinitelymassive and at rest. Neglecting their
structure, the problem can be further simplified and reduced to the calculation of the
differential and total elastic scattering cross-sections of a beam of electrons (with a
given velocity) by a fixed center of force (described by a central potential). This is the
approach we present in this chapter [2, 5, 11, 14, 18, 22, 26, 31, 32].

3.1 Wave propagation, plane waves, and spherical waves

The function F(x, t), where x is the position and t is the time, represents a wave that
propagates along the x-axis with velocity v if

F(x, t) = F(x − vt) . (3.1)

Our readers can easily verify that it satisfies the d’Alembert equation, i. e.,

𝜕2F
𝜕x2
−

1
v2
𝜕2F
𝜕t2
= 0 . (3.2)

By definition, a plane wave is a function of x and t that assumes, for any given x and t,
the same value all along the plane perpendicular to the x-axis passing through x. So,
F(x, t) = F(x − vt) is a plane wave. A periodical plane wave can be expressed as:

F(x, t) = f exp[i 2π
λ
(x − vt)] = f exp[i(kx − ωt)] , (3.3)

where f is the amplitude, λ the wavelength, k = 2π/λ the wavenumber, andω = 2πv/λ
the angular frequency. By definition, a spherical wave is a function G of the modulus
r of the radius vector r and of time t:

G = G(r, t) (3.4)

that satisfies the three-dimensional version of the d’Alembert equation:

∇2G − 1
v2
𝜕G2

𝜕t2
= 0 . (3.5)

Here, ∇2 is the Laplacian operator, which, in spherical coordinates, is given by

∇2 =
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
+

1
r2
Λ , (3.6)

https://doi.org/10.1515/9783110675375-003
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22 | 3 Partial wave expansion method

where operator Λ depends only on the angular variables ϑ and φ:

Λ = 𝜕
2

𝜕ϑ2
+
cos ϑ
sin ϑ
𝜕
𝜕ϑ
+

1
sin2 ϑ
𝜕2

𝜕φ2 . (3.7)

Since the functionG depends on themodulus r of r, it does not depend on the angular
variables ϑ and φ. As a consequence the d’Alembert equation reads

𝜕2G
𝜕r2
+
2
r
𝜕G
𝜕r
−

1
v2
𝜕2G
𝜕t2
= 0 . (3.8)

Please note that

𝜕
𝜕r
(rG) = G + r 𝜕G

𝜕r
, (3.9)

and

𝜕2

𝜕r2
(rG) = 𝜕

𝜕r
(G + r 𝜕G

𝜕r
) = 2 𝜕G
𝜕r
+ r 𝜕

2G
𝜕r2
. (3.10)

As a consequence,

𝜕2

𝜕r2
(rG) − 1

v2
𝜕2

𝜕t2
(rG) = 0 . (3.11)

In other words, the function rG satisfies the d’Alembert equation in one dimension,
Eq. (3.2), so that

rG(r, t) = F(r − vt) (3.12)

or

G(r, t) = F(r − vt)
r
, (3.13)

where F(r − vt) is a plane wave propagating with velocity v. If F(r − vt) is a periodical
plane wave, then

f (ϑ,φ)G(r, t) = f (ϑ,φ) exp[i(kr − ωt)]
r

= exp(−iωt)ψs(r, ϑ,φ) , (3.14)

where

ψs(r, ϑ,φ) = f (ϑ,φ)
exp(ikr)

r
. (3.15)
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3.2 Time-independent Schrödinger equation for the free particle

We remind our readers that, in quantum mechanics, energy E and momentum p are
represented by differential operators according to the following correspondence rules:

E → iℏ 𝜕
𝜕t
, (3.16)

p → ℏ
i
∇ , (3.17)

where ℏ = h/2π, h is Planck’s constant and, in Cartesian orthogonal coordinates,

∇ = (
𝜕/𝜕x
𝜕/𝜕y
𝜕/𝜕z
) . (3.18)

Since, for a free particle,

E = p2

2m
, (3.19)

Schrödinger equation for the free particle immediately follows:

𝜕ψ
𝜕t
=

iℏ
2m
∇2ψ . (3.20)

Applying the differential operators iℏ𝜕/𝜕t and −iℏ∇ to the planemonochromatic wave:

exp[i(k ⋅ r − ωt)] ,

we obtain the relationships:

E = ℏω , (3.21)
p = ℏk .1 (3.22)

Note that the time-independent Schrödinger equation for the free particle follows:

Eψk(r) = −
ℏ2

2m
∇2 ψk(r) , (3.23)

1 Please note that, from Eq. (3.22), the de Broglie relationship connecting the momentum of a particle
to its wavelength is as follows:

p = h
λ
. (3.24)
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where

ψk(r) = exp(ik ⋅ r) . (3.25)

3.3 Continuity equation

Let us consider a conserved quantity such as, for example, the electric charge, which
is distributed with density ρ inside a portion of space of volume V . Since the con-
sidered quantity is conserved, the flux of the current density j through the surface S
surrounding the volume V must be equal and opposite to the volume integral of the
partial derivative of the density with respect to time:

− ∫
S

j ⋅ dS = ∫
V

𝜕ρ
𝜕t

dV . (3.26)

Let us apply now the divergence theorem:

∫
S

j ⋅ dS = ∫
V

∇ ⋅ j dV . (3.27)

Comparing the two latter equations, we obtain

∫
V

(∇ ⋅ j + 𝜕ρ
𝜕t
)dV = 0 . (3.28)

Since this result does not depend on the choice of the volume V , the integrand must
be null. Thus, the continuity equation immediately follows:

∇ ⋅ j + 𝜕ρ
𝜕t
= 0 . (3.29)

For the case of stationary conditions, we have

𝜕ρ
𝜕t
= 0 , (3.30)

so that the continuity equation becomes

∇ ⋅ j = 0 . (3.31)

Let us indicate now with ρ the probability density associated with the wave function
ψ:

ρ = ψ∗ψ . (3.32)
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The probability current density j defined by

j = iℏ
2m
(ψ∇ψ∗ − ψ∗ ∇ψ) (3.33)

satisfies the continuity equation [seeEq. (3.29)]. This result canbe easily demonstrated
using the Schrödinger equation (3.20) and its hermitian conjugate:

𝜕ψ∗

𝜕t
= −

iℏ
2m
∇2ψ∗ . (3.34)

Indeed

∇ ⋅ j = iℏ
2m
[∇ ⋅ (ψ∇ψ∗) − ∇ ⋅ (ψ∗∇ψ)] , (3.35)

∇ ⋅ (ψ∇ψ∗) = ∇ψ ⋅ ∇ψ∗ + ψ∇2ψ∗ , (3.36)

and

∇ ⋅ (ψ∗∇ψ) = ∇ψ∗ ⋅ ∇ψ + ψ∗∇2ψ . (3.37)

As a consequence,

∇ ⋅ j = iℏ
2m
[∇ψ ⋅ ∇ψ∗ + ψ∇2ψ∗ − ∇ψ∗ ⋅ ∇ψ − ψ∗∇2ψ ]

= ψ iℏ
2m
∇2ψ∗ − ψ∗ iℏ

2m
∇2ψ = −ψ𝜕ψ

∗

𝜕t
− ψ∗ 𝜕ψ
𝜕t

= −
𝜕
𝜕t
(ψ∗ψ) = −𝜕ρ

𝜕t
.

3.4 Differential elastic scattering cross-section

The wave function ψk(r) of an incident electron beammoving in the direction of the z
axis is the plane wave:

ψk(r) = exp(ik ⋅ r) = exp(ikz) , (3.38)

where

k = mv
ℏ

(3.39)

is the electron wavenumber, m the electron mass, and v the electron velocity. Please
note that we are here dealing with an incident beam normalized to one electron per
unit volume. Let us now consider the wave function ψs(r, ϑ,φ), which describes the
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electrons elastically scattered by an atom. After the collision, the scattered electrons
can be described by the spherical wave [see Eq. (3.15)]:

ψs(r, ϑ,φ) = f (ϑ,φ)
exp(ikr)

r
,

where the function f (ϑ,φ) is known as the scattering amplitude. The scattering ampli-
tude depends only on the polar angle ϑ and on the azimuthal angleφ, so all the radial
dependence of the spherical wave is completely described by the factor exp(ikr)/r. For
large values of r,

−
ℏ2

2m
∇2 ψs = E ψs , (3.40)

where

E = ℏ
2k2

2m
. (3.41)

In other words, the spherical wave functionψs satisfies, far from the scattering centre,
the time-independent Schrödinger equation for the free electron. This can be easily
demonstrated using Eqs. (3.6) and (3.7). In fact

𝜕
𝜕r

exp(ikr)
r
= (ik − 1

r
)
exp(ikr)

r
, (3.42)

and

𝜕2

𝜕r2
exp(ikr)

r
= (−k2 − 2ik

r
+

2
r2
)
exp(ikr)

r
, (3.43)

so that

(
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
)
exp(ikr)

r
= −k2 exp(ikr)

r
. (3.44)

As a consequence,

(
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
+

1
r2
Λ)f (ϑ,φ)exp(ikr)

r

= −k2 f (ϑ,φ)exp(ikr)
r
+

1
r2
Λ f (ϑ,φ)exp(ikr)

r
, (3.45)

so, when r →∞,

(
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
+

1
r2
Λ)ψs = −k

2 ψs , (3.46)
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where we have neglected terms tending to zero faster than 1/r. In general, the wave
function describing the scattering process satisfies the Schrödinger equation in the
presence of a potential V(r):

[−
ℏ2

2m
∇2 + V(r)]ψ = E ψ . (3.47)

Very far from the center of scattering the potential becomes negligible so that, to de-
scribe both the incident and the scattered particles, thewave function has to approach
the sum of ψk and ψs, i. e., it must satisfy the following boundary condition:

ψ(r, ϑ,φ) ∼
r→∞

exp(ikz) + f (ϑ,φ)exp(ikr)
r
. (3.48)

Let us now consider the component jr of the probability current density [see Eq. (3.33)]
for particles moving away from the scattering center:

jr =
ℏ

2m i
{f ∗ exp(−ikr)

r
𝜕
𝜕r
[f exp(ikr)

r
] − f exp(ikr)

r
𝜕
𝜕r
[f ∗ exp(−ikr)

r
]} . (3.49)

Note that f = f (ϑ,φ) does not depend on r, so that

𝜕
𝜕r
[f exp(ikr)

r
] = f[−exp(ikr)

r2
+ ik exp(ikr)

r
] ,

𝜕
𝜕r
[f ∗ exp(−ikr)

r
] = f ∗[−exp(−ikr)

r2
− ik exp(−ikr)

r
] .

As a consequence,

jr =
ℏk
m
|f (ϑ,φ)|2

r2
. (3.50)

Since v is the velocity of the incident electrons, we have

v = ℏk
m
, (3.51)

and hence

jr = v
|f (ϑ,φ)|2

r2
. (3.52)

Note that electron velocity v is identical with the incident flux of electrons, i. e., the
number of particles per unit time and per unit area normalized to the density of par-
ticles, while the number of electrons emerging in the solid angle dΩ per unit time is
jr r2 dΩ. Consequently, the differential elastic scattering cross-section, i. e., the ratio
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between the number of electrons emerging in dΩ per unit time and per unit solid an-
gle, and the incident flux v, is given by

dσ
dΩ
=

jrr2

v
= f (ϑ,φ)


2
. (3.53)

3.5 The radial equation

We know that the wave function describing the scattering process satisfies the
Schrödinger equation

[−
ℏ2

2m
∇2 + V]ψ = E ψ ,

where V = V(r) is the atomic potential energy. Once introduced, the quantity U(r)
defined as

U(r) = 2m
ℏ2

V(r) , (3.54)

the Schrödinger equation can be rewritten in the following simpler form:

(∇2 + k2)ψ = Uψ . (3.55)

Let us now assume that our problem is spherically symmetric. Thus the potential en-
ergy V and, consequently, the quantity U depend only on the distance from origin r.
So we can write that V = V(r) and U = U(r). Furthermore, from the observation that
the wave function ψ must be axially symmetric around the electron beam, it follows
that the former does not depend on the azimuthal angle φ, so that ψ = ψ(r, cos θ).
The set of the Legendre polynomials is complete, so that we can expand ψ as follows:

ψ(r, cos ϑ) =
∞
∑
l=0

Cl
Fl(r)
r

Pl(cos ϑ) , (3.56)

where Cl are constants to be determined, Fl(r) are functions of r to be determined, and
Pl(cos ϑ) are the Legendre polynomials. The functions Fl(r) are called partial waves:
in particular, F0(r) is the s-wave, F1(r) is the p-wave, and F2(r) is the d-wave. Now, we
can write

(∇2 + k2 − U)
∞
∑
l=0

Cl
Fl(r)
r

Pl(cos ϑ) = 0 , (3.57)

and, assuming that we can differentiate the sum term by term,

∞
∑
l=0
(∇2 + k2 − U)Cl

Fl(r)
r

Pl(cos ϑ) = 0 . (3.58)
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The form of the Laplacian operator in spherical coordinates is expressed by Eq. (3.6),
so

∞
∑
l=0

Cl (
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
+

1
r2
Λ + k2 − U) Fl(r)

r
Pl(cos ϑ) = 0 . (3.59)

Keeping in mind that Legendre polynomials satisfy the following differential equa-
tion:

[(1 − u2) d
2

du2
− 2u d

du
+ l(l + 1)]Pl(u) = 0 , (3.60)

it can be easily demonstrated that they are eigenvalues of operator Λ defined by
Eq. (3.7) with eigenvalues −l(l + 1). In fact,

ΛPl(cos ϑ)

= (
𝜕2

𝜕ϑ2
+
cos ϑ
sin ϑ
𝜕
𝜕ϑ
+

1
sin2 ϑ
𝜕2

𝜕φ2)Pl(cos ϑ)

= (
d2

dϑ2
+
cos ϑ
sin ϑ

d
dϑ
)Pl(cos ϑ)

= (
1

sin ϑ
d
dϑ

sin θ d
dϑ
)Pl(cos ϑ)

= (
1

sin ϑ
d
dϑ

sin2 ϑ 1
sin ϑ

d
dϑ
)Pl(cos ϑ) .

If u = cos ϑ, then sin2 ϑ = 1 − u2 and du = − sin ϑdϑ, so that

ΛPl(u) = [
d
du
(1 − u2) d

du
]Pl(u) . (3.61)

The last equation can be rearranged as follows:

[(1 − u2) d
2

du2
− 2u d

du
− Λ]Pl(u) = 0 . (3.62)

A comparison between Eq. (3.60) and Eq. (3.62) demonstrates that the eigenvalues of
the Legendre polynomials are −l(l + 1):

ΛPl(u) = −l(l + 1)Pl(u) . (3.63)

We can thus rewrite Eq. (3.59) as follows:

∞
∑
l=0

Cl [
𝜕2

𝜕r2
+
2
r
𝜕
𝜕r
−
l(l + 1)
r2
+ k2 − U] Fl(r)

r
Pl(cos ϑ) = 0 . (3.64)
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The coefficients of all the Legendre polynomials Pl(cos ϑ) in Eq. (3.64) can be equated
to zero as the equation is valid for each value of ϑ, so that

[
d2

dr2
+
2
r
d
dr
−
l(l + 1)
r2
+ k2 − U] Fl(r)

r
= 0 . (3.65)

Since

d2

dr2
Fl(r)
r

=
d
dr
(−

Fl(r)
r2
+
1
r
dFl(r)
dr
)

=
2
r3
Fl(r) −

2
r2

dFl(r)
dr
+
1
r
d2Fl(r)
dr2

and

2
r
d
dr

Fl(r)
r

= −
2
r3
Fl(r) +

2
r2

dFl(r)
dr
,

thus

(
d2

dr2
+
2
r
d
dr
)
Fl(r)
r
=

1
r
d2Fl(r)
dr2
.

As a consequence, Eq. (3.65) assumes the form

[
d2

dr2
−
l(l + 1)
r2
− U(r) + k2 ] Fl(r) = 0 . (3.66)

Equation (3.66) involves only r, the radial distance from the center of scattering. It
is known as the radial equation. Note that, when r → ∞, U(r) → 0 and the radial
equation assumes the form

(
d2

dr2
+ k2 ) Fl(r) = 0 , (3.67)

then the solutions are simply given by sinusoidal functions:

Fl(r) ∼r→∞ Al sin(kr + δl) . (3.68)

It is now convenient to define the phase shifts ηl so that

ηl = δl +
πl
2
, (3.69)
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and therefore

Fl(r) ∼r→∞ Al sin(kr −
πl
2
+ ηl) . (3.70)

Note that, since constants Cl are not yet specified, we can choose Al = 1 for each
l = 0, . . . ,∞, and then write

Fl(r) ∼r→∞ sin(kr − πl
2
+ ηl) . (3.71)

Let us now consider the case of a free particle, so that U(r) = 0. In this case we will
indicate the partial waves with the symbols F0l (r) and the corresponding phase shifts
with the symbols η0l . The radial equations (l = 0, . . . ,∞) assume the form:

[
d2

dr2
−
l(l + 1)
r2
+ k2 ] F0l (r) = 0 . (3.72)

The solutions of these equations are proportional to the regular spherical Bessel func-
tions, jl(kr), multiplied by kr. To find the constant of proportionality and the phase
shifts η0l , let us now still consider the limit corresponding to large values of r (r →∞):

krjl(kr) ∼r→∞ sin(kr − πl
2
) , (3.73)

and compare these functions with the partial waves F0l (r) in the same limit:

F0l (r) ∼r→∞ sin(kr − πl
2
+ η0l ) . (3.74)

The comparison demonstrates that the constant of proportionality is 1 and that the
phase shifts η0l corresponding to the free electrons are equal to zero, η

0
l = 0, for each

l = 0, . . . ,∞. Thus, we have demonstrated that the potential U(r) introduces a shift ηl
in the phase of the scattered waves. If the potential is null, then the phase shift is null.
Furthermore, if the potential is null, we have shown that the partial waves are simply
given by the product of kr by the regular spherical Bessel functions jl(kr):

F0l (r) = kr jl(kr) . (3.75)

3.6 Expansion of the plane wave

To proceed, we need to expand plane wave ψk on the complete set of Legendre poly-
nomials:

ψk(r, cos ϑ) = exp(ikz) =
∞
∑
l=0

C0l
F0l (r)
r

Pl(cos ϑ) . (3.76)
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Taking into account Eq. (3.75), we obtain

exp(ikz) = exp(ikr cos ϑ) =
∞
∑
l=0
(C0l k) jl(kr)Pl(cos ϑ) =

∞
∑
l=0

cl jl(kr)Pl(cos ϑ) , (3.77)

where cl = (C0l k) are constants to be determined. Let us introduce the two new vari-
ables s ≡ kr and u ≡ cos ϑ, so that

exp(isu) =
∞
∑
l=0

cljl(s)Pl(u) . (3.78)

Now let us differentiate the previous equation with respect to the variable s, to obtain

iu exp(isu) =
∞
∑
l=0

iucljl(s)Pl(u) =
∞
∑
l=0

cl
djl(s)
ds

Pl(u) . (3.79)

The Legendre polynomials satisfy the equation:

Pl(u) =
(l + 1)Pl+1(u) + l Pl−1(u)

u (2l + 1)
. (3.80)

Therefore,

iu exp(isu) =
∞
∑
l=0

i cl jl(s)
(l + 1)Pl+1(u) + l Pl−1(u)

(2l + 1)

=
∞
∑
l=1

iPl(u)[
l

2l − 1
cl−1 jl−1(s)] +

∞
∑
l=−1

iPl(u)[
l + 1
2l + 3

cl+1 jl+1(s)]

=
∞
∑
l=0

iPl(u)[
l

2l − 1
cl−1 jl−1(s)] +

∞
∑
l=0

iPl(u)[
l + 1
2l + 3

cl+1 jl+1(s)]

=
∞
∑
l=0

iPl(u)[
l

2l − 1
cl−1 jl−1(s) +

l + 1
2l + 3

cl+1 jl+1(s)] . (3.81)

Note that

s jl−1(s) − (2l + 1) jl(s) + s jl+1(s) = 0 , (3.82)

s jl−1(s) − (l + 1) jl(s) − s
djl(s)
ds
= 0 , (3.83)

and, consequently, the derivatives of the regular spherical Bessel functions are given
by:

djl(s)
ds
=

l
2l + 1

jl−1(s) −
l + 1
2l + 1

jl+1(s) . (3.84)
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Therefore

iu exp(isu) =
∞
∑
l=0

cl Pl(u) [
l

2l + 1
jl−1(s) −

l + 1
2l + 1

jl+1(s)] . (3.85)

From Eqs. (3.81) and (3.85) we obtain

∞
∑
l=0

Pl(u)[jl−1(s) l(
cl

2l + 1
−

icl−1
2l − 1
)

− jl+1(s) (l + 1)(
cl

2l + 1
+

icl+1
2l + 3
)] = 0 . (3.86)

Since the Legendre polynomials Pl(u) are linearly independent functions, the coeffi-
cient of each Pl(u) in the sum can be equated to zero:

jl−1(s) l(
cl

2l + 1
−

icl−1
2l − 1
) = jl+1(s) (l + 1)(

cl
2l + 1
+

icl+1
2l + 3
) . (3.87)

As the previous equation has to be verified for each value of s, we conclude that

1
2l + 1

cl =
i

2l − 1
cl−1 , (3.88)

1
2l + 1

cl = −
i

2l + 3
cl+1 . (3.89)

Eqs. (3.88) and (3.89) are equivalent.We just need to substitute lwith l−1 in the second
equation to find the first one. We need to know the value of the first coefficient of the
set of coefficients cl, i. e., c0, to use Eq. (3.88) [or Eq. (3.89)] to calculate the others.
Since

exp(0) = 1 =
∞
∑
l=0

cl jl(0)Pl(cos ϑ) , (3.90)

jl(0) = 0 for any l ̸= 0, j0(0) = 1, and P0(cos ϑ) = 1, we conclude that c0 = 1. Now,
the recursive use of Eq. (3.88) allows us to obtain the values of the coefficients:

cl = (2l + 1) i
l , (3.91)

and the expansion of the plane wave in Legendre polynomials:

exp(ikr cos ϑ) = exp(ikz) =
∞
∑
l=0
(2l + 1) il jl(kr)Pl(cos ϑ) . (3.92)
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The same result can be obtained observing that, since

1

∫
−1

Pm(u)Pn(u) du =
2

2n + 1
δmn , (3.93)

we have

+1

∫
−1

∞
∑
n=0

cn jn(s)Pn(u)Pl(u) du =
2

2l + 1
cl jl(s) , (3.94)

and, as a consequence, taking into account Eq. (3.78),

2
2l + 1

cl jl(s) =
+1

∫
−1

exp(isu)Pl(u) du . (3.95)

Integrating by parts we obtain

+1

∫
−1

exp(isu)Pl(u) du = [
exp(isu)

is
Pl(u)]

+1

−1
−
+1

∫
−1

exp(isu)
is

P′l (u) du

=
exp(is)Pl(1) − exp(−is)Pl(−1)

is
+ h(s) ,

where we have defined the function h(s) as

h(s) ≡ −
+1

∫
−1

exp(isu)
is

P′l (u) du .

Since Pl(1) = 1 and Pl(−1) = (−1)l, we have

2jl(s) cl
2l + 1
=

2il

s
sin(s − π l

2
) + h(s) . (3.96)

On the one hand, as s → ∞, h(s) → 0 faster than 1/s. This can be easily verified by
repeated integrations by parts. As s→∞, on the other hand,

jl(s) ∼
1
s
sin(s − π l

2
) . (3.97)

Comparing the last two equations in the limit s → ∞, we obtain again Eq. (3.91) and,
as a consequence, Eq. (3.92).
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3.7 Scattering amplitude

The plane wave becomes, when r →∞,

exp(ikz) ∼
r→∞

∞
∑
l=0

(2l + 1) il

kr
sin(kr − πl

2
)Pl(cos ϑ) . (3.98)

Taking into account Eq. (3.71), we see that, in the same limit, Eq. (3.56) assumes the
form:

ψ(r, cos ϑ) ∼
r→∞

∞
∑
l=0

Cl
1
r
sin(kr − πl

2
+ ηl)Pl(cos ϑ) . (3.99)

Consequently,

ψ(r, cos ϑ) − exp(ikz) ∼
r→∞

exp(ikr)
r

ℱ(ϑ) + exp(−ikr)
r

𝒢(ϑ) , (3.100)

where

ℱ(ϑ) =
∞
∑
l=0

Pl(cos ϑ){
Cl
2i
exp[i(−π l

2
+ ηl)] −

(2l + 1)il

2ik
exp(−i π l

2
)} , (3.101)

and

𝒢(ϑ) =
∞
∑
l=0

Pl(cos ϑ){−
Cl
2i
exp[i(π l

2
− ηl)] +

(2l + 1)il

2ik
exp(i π l

2
)} . (3.102)

On the other hand, from Eq. (3.48), we know that

ψ(r, cos ϑ) − exp(ikz) ∼
r→∞

exp(ikr)
r

f (ϑ) . (3.103)

The comparison between Eqs. (3.100) and (3.103) enables us to conclude, in particular,
that

𝒢(ϑ) = 0 . (3.104)

Therefore, from Eq. (3.102), it follows that

Cl
2i
exp[i(π l

2
− ηl)] =

(2l + 1)il

2ik
exp(i π l

2
) . (3.105)

This last equation enables us to express the coefficients Cl as a function of the phase
shifts ηl, for l = 0, . . . ,∞:

Cl =
(2l + 1)il exp(iηl)

k
. (3.106)
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Another consequence of the comparison between Eqs. (3.100) and (3.103) is that

ℱ(ϑ) = f (ϑ) . (3.107)

Therefore, taking also into account Eq. (3.106), we can express the scattering ampli-
tude as the following expansion on the complete set of Legendre’s polynomials:

f (ϑ) = 1
2ik

∞
∑
l=0
(2l + 1) [exp(2iηl − 1)]Pl(cos ϑ) . (3.108)

This expansion can also be expressed as

f (ϑ) = 1
k

∞
∑
l=0
(2l + 1) exp(iηl) sin ηl Pl(cos ϑ) . (3.109)

3.8 Total elastic scattering cross-section and optical theorem

The total elastic scattering cross-section is given by

σ = ∫ dσ
dΩ

dΩ = 2π
π

∫
0

dσ
dΩ

sin ϑ dϑ , (3.110)

where the differential elastic scattering cross-section dσ/dΩ is the squared modulus
of the scattering amplitude:

dσ
dΩ
=

1
k2
∞
∑
m=0

∞
∑
n=0
(2m + 1) (2n + 1) exp[i(ηm − ηn)] sin ηm sin ηn Pm(cos ϑ)Pn(cos ϑ) .

(3.111)
Using Eqs. (3.93), and (3.110), (3.111) we obtain

σ = 4π
k2
∞
∑
l=0
(2l + 1) sin2 ηl . (3.112)

Note that the imaginary part of the forward scattering amplitude f (0) is given by

Im f (0) = 1
k

∞
∑
l=0
(2l + 1) sin2 ηl , (3.113)

so that

σ = 4π
k
Im f (0) . (3.114)

This result is known as the “optical theorem”.
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3.9 The first Born approximation

If electron energy is high enough, another approach allows to describe the electron–
atom elastic scattering, i. e., the scattering of a beamof electrons by a central potential
V(r). This approach is based on the first Born approximation. The first Born approxi-
mation is quite accurate if

E ≫ e2

2a0
Z2 . (3.115)

The Schrödinger equation,

(∇2 + k2) ψ(r) = 2m
ℏ2

V(r)ψ(r), (3.116)

is equivalent to the following integral equation:

ψ(r) = exp(ikz) + 2m
ℏ2
∫ d3r′g(r, r′)V(r′)ψ(r′) , (3.117)

where g(r, r′) is the Green function [see Eq. (2.65)].
To demonstrate Eq. (3.117), let us apply the operator ∇2 + k2 to the function ψ(r)

defined by the integral equation (3.117):

(∇2 + k2)ψ(r) = (∇2 + k2) exp(ikz)

+
2m
ℏ2
∫ d3r′(∇2 + k2) g(r, r′)V(r′)ψ(r′) . (3.118)

The application of the operator ∇2 to the plane wave gives

∇2 exp(ikz) = 𝜕
2

𝜕z2
exp(ikz) = −k2 exp(ikz) , (3.119)

so that

(∇2 + k2) exp(ikz) = 0 . (3.120)

Therefore,

(∇2 + k2)ψ(r) = 2m
ℏ2
∫ d3r′(∇2 + k2) g(r, r′)V(r′)ψ(r′)

=
2m
ℏ2
∫ d3r′δ(r − r′)V(r′)ψ(r′) = 2m

ℏ2
V(r)ψ(r) . (3.121)
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To obtain the scattering amplitude, please note that

r − r
′ = √r2 − 2 r ⋅ r′ + r′2

= r√1 − 2
̂r ⋅ r′
r
+
r′2
r2
∼ r(1 −

̂r ⋅ r′

r
+𝒪(

1
r2
)) , (3.122)

where

̂r = r
r
. (3.123)

Let us introduce𝒦, the wave number in the direction of the outgoing unit vector ̂r:

𝒦 = k ̂r . (3.124)

The Green function has thus the following asymptotic behavior:

g(r, r′) ∼
r→∞
−
exp(ikr − i𝒦 ⋅ r′)

4πr
. (3.125)

Let us now introduce Eq. (3.125) into the integral equation (3.117), so that

ψ(r) ∼
r→∞

exp(iKz) − 2m
ℏ2
∫ d3r′ exp(ikr − i𝒦 ⋅ r

′)
4πr

V(r′)ψ(r′) . (3.126)

From

∫ d3r′ exp(ikr − i𝒦 ⋅ r
′)

4πr
V(r′)ψ(r′) = exp(ikr)

r
∫ d3r′ exp(−i𝒦 ⋅ r

′)
4π

V(r′)ψ(r′) ,

we see that, if the scattering amplitude is given by

f (ϑ,φ) = − m
2πℏ2
∫ d3r exp(−i𝒦 ⋅ r)V(r)ψ(r) , (3.127)

then the boundary conditions, Eq. (3.48), are satisfied. In the first Born approximation,
due to the high ratio between the electron kinetic energy and the atomic potential
energy, we have

ψ(r) ≈ exp(ikz) = exp(ik ⋅ r) , (3.128)

and the equation (3.127) becomes

f (ϑ,φ) = − m
2πℏ2
∫ d3r exp(−i𝒦 ⋅ r)V(r) exp(ik ⋅ r) . (3.129)

Indicating with ℏq the momentum lost by the incident electron,

ℏq = ℏ(k −𝒦) , (3.130)
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we can write that

f (ϑ,φ) = − m
2πℏ2
∫ d3r exp(iq ⋅ r)V(r) . (3.131)

Now, since we are interested in a central potential,

V(r) = V(r)

and

f (ϑ,φ) = f (ϑ)

= −
m

2πℏ2

2π

∫
0

dϕ
π

∫
0

sin θ dθ
∞

∫
0

r2 dr exp(iqr cos θ)V(r)

= −
2m
ℏ2q

∞

∫
0

sin(qr)V(r) r dr . (3.132)

3.10 Rutherford elastic scattering cross-section

We are interested now in the calculation of Rutherford elastic scattering cross-section.
This can be obtained using the first Born approximation with the following potential
(Wentzel-like atomic potential):

V(r) = −Ze
2

r
exp(− r

a
) . (3.133)

Please note that the a parameter can be approximated by

a = a0
Z1/3
, (3.134)

where a0 = ℏ2/me2 is the Bohr radius. Using the first Born approximation, the scatter-
ing amplitude is given by

f (ϑ) = 2m
ℏ2

Ze2

q

∞

∫
0

sin(qr) exp(− r
a
) dr . (3.135)

From

∞

∫
0

sin(qr) exp(− r
a
) dr = q

q2 + (1/a)2
, (3.136)
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we obtain

dσ
dΩ
= f (ϑ)

2
=
4m2

ℏ4
Z2e4

[q2 + (1/a)2]2
. (3.137)

Keeping in mind that |k| = |𝒦| and q = k −𝒦, we have

q2 = (k −𝒦) ⋅ (k −𝒦) = k2 +𝒦2 − 2k𝒦 cos ϑ = 2k2(1 − cos ϑ) , (3.138)

where ϑ is the scattering angle. As the electron kinetic energy is given by

E = ℏ
2k2

2m
, (3.139)

the differential elastic scattering cross-section for the collision of an electron beam
with a Wentzel-like atomic potential is given, in the first Born approximation, by

dσ
dΩ
=

Z2e4

4E2
1

(1 − cos ϑ + α)2
, (3.140)

where

α = 1
2k2a2
=

me4π2

h2
Z2/3

E
. (3.141)

The well-known classical Rutherford formula,

dσ
dΩ
=

Z2e4

4E2
1

(1 − cos ϑ)2
, (3.142)

is the limit of Eq. (3.140) as α → 0. Equation (3.142) describes the elastic scattering of
a beam of electrons by a pure Coulomb potential.
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4 Spectrum of angular momentum and spin
The behavior of a complex atom in amagnetic field, as described by the Zeeman effect
and by the Stern and Gerlach experiment, supports the hypothesis for the existence
of the intrinsic angular momentum, or spin, of an electron. In this chapter we will
briefly introduce the Pauli theory, i. e., the nonrelativistic theory of spin-1/2 particles
[5, 14, 18].

4.1 Spectrum of angular momentum

We know that, in quantum mechanics, differential operators act on wave functions
that are square-integrable complex functions in a Hilbert space. Let us take into ac-
count the components of the electron orbital angular momentum L = r×p, where we
have indicated with r the electron position and with p the electron momentum. Using
the definition of L and the correspondence rule expressed by Eq. (3.17):

p→ −iℏ∇ ,

it is easy to see that

[Lx , Ly] = iℏLz , (4.1)
[Ly , Lz] = iℏLx , (4.2)
[Lz , Lx] = iℏLy , (4.3)

where [A,B] is the commutator of the operatorsA andB.1 Let us consider, for example,
the commutator [Lx , Ly]:

Lx Ly − Ly Lx

= −ℏ2[(y 𝜕
𝜕z
− z 𝜕
𝜕y
)(z 𝜕
𝜕x
− x 𝜕
𝜕z
) − (z 𝜕

𝜕x
− x 𝜕
𝜕z
)(y 𝜕
𝜕z
− z 𝜕
𝜕y
)]

= −ℏ2 (y 𝜕
𝜕x
− x 𝜕
𝜕y
) =
ℏ2

−iℏ
Lz = iℏ Lz .

Let us now consider a more general case. We will say that a linear operator J is an an-
gular momentum, orbital or intrinsic, if its components obey the commutation rules:

[Jx , Jy] = iℏJz , (4.5)

1 The commutator is defined for any pair of linear operators A and B such that[A,B] = AB − BA . (4.4)

https://doi.org/10.1515/9783110675375-004
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42 | 4 Spectrum of angular momentum and spin

[Jy , Jz] = iℏJx , (4.6)
[Jz , Jx] = iℏJy . (4.7)

Since2

JzJ
2
x − J

2
x Jz = JzJxJx − J

2
xJz = JxJzJx − [Jx , Jz]Jx − J

2
xJz

= J2xJz − Jx[Jx , Jz] − [Jx , Jz]Jx − J
2
xJz

= −{Jx , [Jx , Jz]} = −{Jx , − iℏJy} = iℏ{Jx , Jy} ,

JzJ
2
y − J

2
y Jz = −{Jy , [Jy , Jz]} = −{Jy , iℏJx}

= −iℏ{Jy , Jx} = −iℏ{Jx , Jy} ,

and

JzJ
2
z − J

2
z Jz = 0 ,

the two operators Jz and J2 commute:

[Jz , J
2] = 0 . (4.9)

This means that Jz and J2 possess at least one basis of eigenvectors in common and,
consequently, the physical quantities represented by these two operatorsmay bemea-
sured together and simultaneously with arbitrary precision. Using the Dirac notation,
let us indicate with |jm⟩ a basis of orthonormal eigenvectors common to Jz and J2. The
eigenvalues ℏm and ℏ2j(j + 1) correspond, respectively, to Jz and J2. Thus,3

Jz |jm⟩ = ℏm|jm⟩ , (4.10)

J2|jm⟩ = ℏ2j(j + 1)|jm⟩ . (4.11)

Let us now define two new operators, whose meaning will soon become clear. They
are the operators J− and J+, given by

J± = Jx ± iJy . (4.12)

J− and J+ have the following properties:
J†± = J∓ , (4.13)

2 The anticommutator is defined for any pair of linear operators A and B such that{A,B} = AB + BA . (4.8)

3 Please note that here we use the symbolm to indicate the eigenvalues of Jz divided by ℏ. The context
always enables avoiding confusion with the electron mass, also indicated withm elsewhere.
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[Jz , J±] = ±ℏJ± , (4.14)

J+J− = J2x + J2y + ℏJz , (4.15)

J−J+ = J2x + J2y − ℏJz , (4.16)

[J+, J−] = 2ℏJz , (4.17)

{J+, J−} = 2(J2x + J2y) . (4.18)

These properties can be easily demonstrated. The first one is evident, as

J†± = (Jx ± iJy)† = (Jx ∓ iJy) = J∓ .
Let us now compute the commutator of Jz and J±:

[Jz , J±] = [Jz , Jx] ± i[Jz , Jy]
= iℏ Jy ± i(−iℏ Jx) = ℏ(iJy ± Jx)

= ±ℏ(Jx ± iJy) = ±ℏ J± .
We can also easily calculate the commutator and the anticommutator of J+ and J+ just
by observing that

J+J− = J2x + J2y + i Jy Jx − i Jx Jy
= J2x + J

2
y − i [Jx , Jy] = J

2
x + J

2
y − i(iℏJz)

= J2x + J
2
y + ℏJz

and

J−J+ = J2x + J2y − i Jy Jx + i Jx Jy
= J2x + J

2
y + i [Jx , Jy] = J

2
x + J

2
y + i(iℏJz)

= J2x + J
2
y − ℏJz .

Eqs. (4.17) and (4.18) immediately follow from the last two equations. Consequently,

J2 = J2z +
1
2
(J+J− + J−J+) . (4.19)

Now we wish to calculate the norms of the vectors J−|jm⟩ and J+|jm⟩. Since
⟨jm|J†−J−|jm⟩ = ⟨jm|J+J−|jm⟩

= ⟨jm|J2x + J
2
y + ℏJz |jm⟩ = ⟨jm|J

2 − J2z + ℏJz |jm⟩

= ⟨jm|jm⟩ [ℏ2j(j + 1) − ℏ2m2 + ℏ2m] = ℏ2[j(j + 1) − m(m − 1)] ,
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44 | 4 Spectrum of angular momentum and spin

we have

⟨jm|J†−J−|jm⟩ = ℏ2[j(j + 1) −m(m − 1)] ≥ 0, (4.20)

and, similarly,

⟨jm|J†+J+|jm⟩ = ℏ2[j(j + 1) −m(m + 1)] ≥ 0 . (4.21)

Since they are positive or null, we have

m2 − m − j(j + 1) ≤ 0 (4.22)

and

m2 + m − j(j + 1) ≤ 0 , (4.23)

so that

− j ≤ m ≤ j . (4.24)

Furthermore, it can be easily demonstrated that J2 commutes with J±:
[J2, J±] = 0 , (4.25)

so that

J2(J±|jm⟩) = J±J2|jm⟩ = ℏ2j(j + 1)(J±|jm⟩) . (4.26)

This means that J±|jm⟩ are eigenvectors of J2 with eigenvalues ℏ2j(j + 1). From (4.14) it
follows that

Jz(J±|jm⟩) = J±Jz |jm⟩ ± ℏJ±|jm⟩ = ℏ(m ± 1)(J±|jm⟩) , (4.27)

so that J±|jm⟩ are eigenvectors of Jz with eigenvalues ℏ(m± 1). Comparing the previous
equation with

Jz |jm ± 1⟩ = ℏ(m ± 1)|jm ± 1⟩ , (4.28)

we see that the eigenvectors J±|jm⟩ are proportional to |jm ± 1⟩:
J±|jm⟩ = A±|jm ± 1⟩ , (4.29)

 EBSCOhost - printed on 2/13/2023 9:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 Spectrum of angular momentum | 45

where A± are two real and positive constants. From Eq. (4.20) it follows that

⟨jm − 1|A∗−A−|jm − 1⟩
= |A−|2 ⟨jm − 1|jm − 1⟩
= A2− = ℏ2[j(j + 1) −m(m − 1)] , (4.30)

so that

A− = ℏ√j(j + 1) −m(m − 1) . (4.31)

Similarly, from Eq. (4.21) it follows that

A+ = ℏ√j(j + 1) −m(m + 1) . (4.32)

Consequently,

J±|jm⟩ = ℏ√j(j + 1) −m(m ± 1)|jm ± 1⟩ . (4.33)

Let us now indicate withmmin andmmax the minimum and the maximum values ofm,
respectively.4 Let us now consider the following procedure:

J−|jj⟩ = A−|jj − 1⟩ ,
J2−|jj⟩ = J−A−|jj − 1⟩ = A2−|jj − 2⟩ ,
⋅ ⋅ ⋅

Jk−|jj⟩ = Ak−|j − j⟩ .
4 Since

J−|jmmin⟩ = 0 ,
we have

j(j + 1) − mmin(mmin − 1) = 0 ,
so that, taking into account Eq. (4.24),

mmin = −j .
Similarly, from

J+|jmmax⟩ = 0 ,
we obtain

j(j + 1) − mmax(mmax + 1) = 0 ,
so that, still taking into account Eq. (4.24),

mmax = j .
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Here k is, for any given j, the integer number of steps from m = mmax = j to m =
mmin = −j. As a consequence, we can write that j − k = −j, so that j = k/2. In other
words, by going from m = mmax = j to m = mmin = −j using the operator J−, we can
see that jmust be either an integer non-negative number

j = 0 , 1 , 2 , . . . ,∞ , (4.34)

or a half-integer non-negative number

j = 1
2
,
3
2
,
5
2
, . . . ,∞ . (4.35)

The only possible values ofm, for any given j, are the 2j + 1 numbers:

− j,−j + 1, . . . , j − 1, j . (4.36)

In short, if ℏ2j(j + 1) and ℏm are the eigenvalues of J2 and Jz, respectively, then j must
be an integer or half-integer non-negative quantity and the values ofm, for any given
j, are the integer or half-integer numbers: −j,−j + 1, . . . , j − 1, j.

4.2 Spin

The intrinsic angular momentum, or spin, of an electron corresponds to the case j =
1/2. In this case, then, j(j + 1) = 3/4, and m can assume only the two values mmin =
−j = −1/2 andmmax = +j = +1/2. Let us introduce the notation:

|−⟩ ≡ |1/2 − 1/2⟩ , (4.37)
|+⟩ ≡ |1/2 + 1/2⟩ , (4.38)

and indicate the spin operator by using the symbol S. The two-dimensional spin
eigenspace is generated by the two eigenvectors |−⟩ and |+⟩. They have the following
properties:

⟨+|−⟩ = ⟨−|+⟩ = 0 , (4.39)
⟨−|−⟩ = ⟨+|+⟩ = 1 , (4.40)

S2|−⟩ = 3ℏ2

4
|−⟩ , (4.41)

S2|+⟩ = 3ℏ2

4
|+⟩ , (4.42)

Sz |−⟩ = −
ℏ
2
|−⟩ , (4.43)

Sz |+⟩ =
ℏ
2
|+⟩ . (4.44)
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In general, the spin-1/2 state |α⟩ will be a linear superposition of the two basic eigen-
vectors |−⟩ and |+⟩:

|α⟩ = A|+⟩ + B|−⟩ . (4.45)

In the previous equation, the coefficients A and B are complex numbers such that |A|2

is the probability of finding the electron in the state of “spin up” along the z axis and
|B|2 is the probability of finding the electron in the “spin-down” state. The condition
of normalization of |α⟩ entails that

|A|2 + |B|2 = 1 . (4.46)

Indeed,

1 = ⟨α|α⟩ = (⟨+|A† + ⟨−|B† )(A|+⟩ + B|−⟩)
= |A|2⟨+|+⟩ + |B|2⟨−|−⟩ + A†B⟨+|−⟩ + B†A⟨−|+⟩
= |A|2 + |B|2.

The matrix elements of S+ and S− can be easily calculated taking into account that
S−|−⟩ = 0 , (4.47)
S−|+⟩ = ℏ|−⟩ , (4.48)
S+|−⟩ = ℏ|+⟩ , (4.49)
S+|+⟩ = 0 . (4.50)

Let us calculate, for example, S−|+⟩ and S+|−⟩:
S−|+⟩ = ℏ√j(j + 1) −m(m − 1)|−⟩ = ℏ√3/4 + 1/4|−⟩ = ℏ|−⟩ ,
S+|−⟩ = ℏ√j(j + 1) −m(m + 1)|+⟩ = ℏ√3/4 + 1/4|+⟩ = ℏ|+⟩ .

By using Eqs. (4.47), (4.48), (4.49), and (4.50), we obtain

⟨+|S+|+⟩ = 0 ,
⟨+|S+|−⟩ = ℏ⟨+|+⟩ = ℏ ,
⟨−|S+|−⟩ = ℏ⟨−|+⟩ = 0 ,
⟨−|S+|+⟩ = 0 ,
⟨+|S−|+⟩ = ℏ⟨+|−⟩ = 0
⟨+|S−|−⟩ = 0 ,
⟨−|S−|−⟩ = 0 ,
⟨−|S−|+⟩ = ℏ⟨−|−⟩ = ℏ .
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As a consequence, S+ and S− can be represented as:
S+ = ℏ(0 1

0 0
) , (4.51)

S− = ℏ(0 0
1 0
) . (4.52)

Eqs. (4.47), (4.48), (4.49), and (4.50) can be also easily verified using this representa-
tion. Let us consider, for example, Eq. (4.48):

S−|+⟩ = ℏ(0 0
1 0
) (

1
0
) = ℏ(

0
1
) = ℏ|−⟩ . (4.53)

The so-called Pauli matrices σx, σy, and σz are defined as

S = ℏ
2
σ , (4.54)

where

σ = (
σx
σy
σz
) , (4.55)

and

S+ = Sx + iSy , (4.56)

so we have

Sx =
1
2
(S− + S+) , (4.57)

Sy =
i
2
(S− − S+) . (4.58)

It follows that the representation of the Pauli matrices in the basis {|−⟩, |+⟩} is given by

σx = (
0 1
1 0
) , (4.59)

σy = (
0 −i
i 0
) , (4.60)

σz = (
1 0
0 −1
) . (4.61)
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Indeed,

Sx =
ℏ
2
(
0 0
1 0
) +
ℏ
2
(
0 1
0 0
) =
ℏ
2
(
0 1
1 0
) , (4.62)

Sy =
i
2
ℏ (

0 0
1 0
) −

i
2
ℏ (

0 1
0 0
) =
ℏ
2
(
0 −i
i 0
) . (4.63)

Please note that the representation of Sz can be directly obtained by calculating the
matrix elements as follows:

⟨+|Sz |+⟩ =
ℏ
2
,

⟨+|Sz |−⟩ = 0 ,

⟨−|Sz |−⟩ = −
ℏ
2
,

⟨−|Sz |+⟩ = 0 .

Hence,

Sz =
ℏ
2
(
1 0
0 −1
) . (4.64)

The Pauli matrices are Hermitian operators and have the following properties:

σ2x = σ
2
y = σ

2
z = 1 , (4.65)

σxσyσz = i , (4.66)

σxσy − σyσx = 2iσz , (4.67)

σzσx − σxσz = 2iσy , (4.68)

σyσz − σzσy = 2iσx , (4.69)

σxσy + σyσx = 0 , (4.70)

σzσx + σxσz = 0 , (4.71)

σyσz + σzσy = 0 , (4.72)

tr σx = tr σy = tr σz = 0 , (4.73)

det σx = det σy = det σz = −1 . (4.74)

These properties can be easily demonstrated by using the definition of Pauli ma-
trices, or their representation in the basis {|−⟩, |+⟩}. Let us calculate, for example,
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σxσyσz:

σxσyσz = (
0 1
1 0
) (

0 −i
i 0
) (

1 0
0 −1
)

= (
0 1
1 0
) (

0 i
i 0
)

= (
i 0
0 i
) = i .

The same result can be obtained observing that, from [σx , σy] = σxσy − σyσx = 2iσz
and {σx , σy} = σxσy + σyσx = 0, we have

σxσy = iσz

and, therefore,

σxσy σz = iσ
2
z = i .

We leave proving the other properties of the Pauli matrices as an exercise for our
readers.
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5 Phase shifts and atomic potential energy
The calculation of the differential elastic scattering cross-section requires knowledge
of the phase shifts. In this chapter we will provide a method for calculating the phase
shifts using the Numerov algorithm, a very general numerical procedure that can be
used, in particular, to solve the radial equation [15]. The calculation of the phase shifts
requires knowledge of the electron density around the nucleus and of the atomic po-
tential energy. We will see that atomic electrons have the effect of screening the po-
tential of the bare nucleus. We will then describe two models that approximate the
screened atomic potential energy: The Thomas–Fermi statistical approach and the
Hartree–Fock self-consistent method [26].

5.1 An important application of the Numerov algorithm:
the eigenvalue problem

Let us now consider an important application of the Numerov algorithm. Equation
(3.66), i. e., the radial equation:

[ d
2

dr2
− l(l + 1)

r2
− U(r) + k2 ] Fl(r) = 0 ,

has the form of Eq. (1.42). In fact, defining

q2(r) = − l(l + 1)
r2
+ k2 − U(r) = 2m

ℏ2
[− l(l + 1)ℏ

2

2mr2
+ E − V(r)] , (5.1)

we see that Eq. (3.66) becomes

d2Fl(r)
dr2
+ q2(r)Fl(r) = 0 . (5.2)

This equation has the form of Eq. (1.42) with x = r, y = Fl(r), f (r) = q(r), and
g(r) = 0. As a consequence, we can apply to this equation the Numerov algorithm,
so that

(1 + h2

12
q2n+1)(Fl)n+1 − 2(1 −

5h2

12
q2n)(Fl)n + (1 +

h2

12
q2n−1)(Fl)n−1

= 𝒪(h6) ≈ 0 . (5.3)

5.2 Phase-shift calculation

Let us indicate with rmax the distance from the center of the atom where the atomic
potential becomes so small that it can be considered negligible. A reasonable value is

https://doi.org/10.1515/9783110675375-005
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rmax ≈ 2 − 3Å. Since

krjl(kr) ∼r→∞ sin(kr − πl
2
) , (5.4)

krnl(kr) ∼r→∞ − cos(kr −
πl
2
) , (5.5)

and

Fl(r) ∼r→∞ sin(kr − πl
2
+ ηl)

= sin(kr − πl
2
) cos ηl + cos(kr −

πl
2
) sin ηl , (5.6)

if we consider a distance r1 from the center of the atom higher than rmax, then

Fl(r1) ∼ k r1 [cos ηl jl(kr1) − sin ηl nl(kr1)] . (5.7)

Similarly, if r2 > r1, thus

Fl(r2) ∼ k r2 [cos ηl jl(kr2) − sin ηl nl(kr2)] . (5.8)

Let us now define the quantity:

G = G(r1, r2) =
r1Fl(r2)
r2Fl(r1)

=
cos ηl jl(kr2) − sin ηl nl(kr2)
cos ηl jl(kr1) − sin ηl nl(kr1)

. (5.9)

Simple algebraical manipulations allow us to conclude that

tan ηl =
G(r1, r2)jl(kr1) − jl(kr2)
G(r1, r2)nl(kr1) − nl(kr2)

. (5.10)

Equation (5.3) is a recursion formula for numerically integrating the radial equation
(3.66) either forward or backward in r. We can use it to integrate forward in r to the
radius r1 to obtain Fl(r1) and to the radius r2 to obtain Fl(r2). After that, we can eas-
ily calculate G(r1, r2) and, using Eq. (5.10), the phase shifts ηl. The two integrations of
Eq. (3.66) require knowledge of the atomic potential energy as a function of r, i. e., the
distance from the center of the atomic nucleus. The calculation of the atomic potential
energy as a function of r will be discussed in the next section.
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5.3 Atomic electron density and atomic potential energy

5.3.1 Thomas–Fermi model

The simplest theory to approximate the atomic electron density and the atomic poten-
tial energy is the Thomas–Fermi statistical model. This model considers atomic elec-
trons as a fully degenerate gas surrounding the nucleus, assumes radial symmetry,
and uses Poisson’s equation to obtain a differential equation known as the Thomas–
Fermi equation. Once solved, it provides a dimensionless function that approximates
the screening of the nucleus by the orbital electrons. This is the so-called screening
function. The Coulomb potential energy of the bare nucleus multiplied by the screen-
ing function provides the atomic potential energy. Since the Thomas–Fermi model is
statistical, the bigger the number of atomic electrons, the better the approximation.

A Fermi gas is a gas of non-interacting free electrons confined in a specified region
of space. To describe the motion of the particles of a Fermi gas, we have to solve the
Schrödinger equation:

− ℏ
2

2m
( 𝜕

2

𝜕x2
+ 𝜕

2

𝜕y2
+ 𝜕

2

𝜕z2
)ψ = E ψ , (5.11)

where E is the electron energy and the wave function ψ depends on the coordinates
x, y, and z, so that ψ = 0 at the boundaries of the region of space where the electron
gas is confined. It is now convenient to factorize the wave function so that

ψ(x, y, z) = ψ1(x)ψ2(y)ψ3(y) . (5.12)

As a consequence,

− ℏ
2

2m
𝜕2

𝜕x2
ψ1(x) = E1 ψ1(x) , (5.13)

− ℏ
2

2m
𝜕2

𝜕y2
ψ2(y) = E2 ψ2(y) , (5.14)

− ℏ
2

2m
𝜕2

𝜕z2
ψ3(z) = E3 ψ3(z) , (5.15)

and

E = E1 + E2 + E3 . (5.16)

Assuming that

ψ1(x) = 0 for x ≤ 0 and x ≥ l (5.17)
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and

l

∫
0

ψ1(x)

2 dx = 1 , (5.18)

we obtain, for

n1 = 1, 2, . . . ,∞ , (5.19)

the eigenfunctions (normalized to the unity):

ψ1(x) = √
2
l
sin n1πx

l
, (5.20)

and the eigenvalues:

E1 =
1
2m
(πℏ

l
)
2
n21 . (5.21)

In fact, if

ψ1(x) = A sin k1x , (5.22)

where A is a constant to be determined, then

− ℏ
2

2m
(−k21 A sin k1x) = E1 A sin k1x , (5.23)

or

E1 =
ℏ2k21
2m
. (5.24)

Since A sin k1l = 0,

k1 =
n1π
l
. (5.25)

From

1 = A2
l

∫
0

sin2 k1x dx =
A2

k1
1
2
(k1l − sin k1l cos k1l) =

A2

2
l , (5.26)

we obtain

A = √2
l
. (5.27)
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Once the following two new series of integers:

n2 = 1, 2, . . . ,∞ (5.28)

and

n3 = 1, 2, . . . ,∞, (5.29)

have been introduced, we can conclude that, assuming that the electron gas is con-
fined in a cubic box of side l, the wave function is given by

ψ(x, y, z) = (2
l
)
3/2

sin n1πx
l

sin n2πy
l

sin
n3πz
l
, (5.30)

with eigenvalues of energy

E = 1
2m
(πℏ

l
)
2
(n21 + n

2
2 + n

2
3) . (5.31)

We now wish to answer the following question: What is the number of states whose
kinetic energy ranges between E and E + dE? To answer this question, let’s introduce
the radius vectorw, from the origin of a three-dimensional space, such that

w2 = n21 + n
2
2 + n

2
3 (5.32)

and, consequently,

E = 1
2m
(πℏ

l
)
2
w2 . (5.33)

To proceed, let’s now introduce an approximation. We assume that the components
of vectorw are continuous rather than discrete, so

dE = 1
m
(πℏ

l
)
2
w dw . (5.34)

Since the components of w are positive, the number of states N(E) dE is equal to 1/8
of the volume of space delimited by two spherical shells having radius, respectively,
w andw + dw, so that

N(E) dE = 1
8
d(4

3
π w3) = π w2

2
dw (5.35)

and, therefore,

N(E) dE = Ωm3/2

√2 ℏ3 π2
√E dE , (5.36)
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where Ω is the volume of the region of space where the Fermi gas is confined. Note
that Ω = l3 if the region of space where electrons are confined is cubic, as in this
example. Actually, the shape of the region where the non-interacting free electrons
are confined is not relevant. Equation (5.36) is always valid, regardless of the shape of
the confinement region.

Due to Pauli’s exclusion principle, each energetic level of the Fermi gas cannot be
occupied by more than two electrons, corresponding to the two possible spin orien-
tations. The highest electron energy of the Fermi gas at T = 0 (T being the absolute
temperature) is the so-called Fermi energy EF, defined by

NTOT = 2
EF

∫
0

N(E) dE , (5.37)

wherewehave indicatedwithNTOT the total number of electrons confined in the region
of space with volume Ω. The electron density ρ is given by

ρ = NTOT
Ω
. (5.38)

The factor 2 in front of the integral over all the states in Eq. (5.37) is due to the fact that
each energetic level, at T = 0, contains two electrons with opposite spins.

By using Eqs. (5.36) and (5.37), we obtain the dependence of Fermi energy EF on
electron density ρ:

EF =
ℏ2

2m
(3π2ρ)2/3 . (5.39)

The Thomas–Fermi model is based on the assumption that the atomic electrons of an
atom with many electrons can be approximately described as a Fermi gas at T = 0,
confined by a potential energy −V(r), in a spherically shaped region. Therefore, at
distance r from the nucleus, we should have

− V(r) = ℏ
2

2m
[3π2ρ(r)]2/3 . (5.40)

Let us indicate the electric field with ℰ(r), so that:

eℰ(r) = dV(r)
dr
, (5.41)

where e is the elementary charge. According to Gauss’s law:

∫
S

ℰ(r) ⋅ ds = 4π Q , (5.42)
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where Q is the total charge contained in the closed surface S. In our case, the surface
is a sphere whose radius is r and the electric field, for any given radius r, is constant
and normal to the surface, so

∫
S

ℰ(r) ⋅ ds = 4π r2 ℰ(r) . (5.43)

Indicating with Z the atomic number, the total charge is given by the nuclear charge
Ze plus the electronic charge −∫r0 4πeρ(r′)r′ 2dr′. As a consequence,

r2 ℰ(r) = Ze − 4π e
r

∫
0

ρ(r′) r′ 2 dr′ , (5.44)

and, therefore,

1
r2

d
dr
[r2 dV(r)

dr
] = −4π e2 ρ(r) . (5.45)

Taking into account Eq. (5.40), we can easily obtain the dependence on r of the elec-
tron density ρ(r):

ρ(r) = (√2m
ℏ2
)
3 1
3π2
[−V(r)]3/2 . (5.46)

As a consequence, the atomic potential energy of a Thomas–Fermi atom must satisfy
the following differential equation:

1
r2

d
dr
{r2 d

dr
[−V(r)]} = 8√2

3
e2√m3

πℏ3
√[−V(r)]3 . (5.47)

At great distances from the center of the nucleus, the potential energy must approach
zero:

lim
r→∞

r [−V(r)] = 0 , (5.48)

while, since when r is smallV(r) should approach the potential energy of the nucleus,
we have

lim
r→0

r [−V(r)] = Ze2 . (5.49)

The previous two equations represent boundary conditions that must be satisfied
when solving the differential Eq. (5.47). Let us now introduce the Bohr radius a0:

a0 =
ℏ2

me2
, (5.50)
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and the Thomas–Fermi radius aTF:

aTF =
1
2
(3π
4
)
2/3 a0

Z1/3
. (5.51)

Once the auxiliary variable x:

x = r
aTF

(5.52)

and the auxiliary function ξ :

ξ = r[−V(r)]
Ze2

(5.53)

have been defined, from Eq. (5.47) we obtain the differential equation:

d2ξ
dx2
=

ξ 3/2

x1/2
(5.54)

that is subject to the boundary conditions [see Eqs. (5.48) and (5.49)]:

lim
x→0

ξ (x) = 1 , (5.55)

lim
x→∞

ξ (x) = 0 . (5.56)

Indeed

1
r2

d
dr
{r2 d

dr
[−V(r)]} = 1

r2
d
dr
{r2 d

dr
[Ze

2

r
ξ]}

= 1
r2

d
dr
[r2Ze2(− 1

r2
)ξ + r2 Ze

2

r
dξ
dr
]

= 1
r2

d
dr
[− Ze2ξ + r Ze2 dξ

dr
] = Ze2

r
d2ξ
dr2
,

so that

Ze2

r
d2ξ
dr2
= 8√2e2m3/2

3πℏ3
(Ze

2

r
ξ)

3/2
,

or

d2ξ
dr2
= 8√2e2m3/2

3πℏ3
(Ze

2

r
)
1/2
ξ 3/2 .

Now, since

r = aTF x ,

 EBSCOhost - printed on 2/13/2023 9:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.3 Atomic electron density and atomic potential energy | 59

we can also express our equation as a function of x as

1
a2TF

d2ξ
dx2
= 8√2e2m3/2

3πℏ3
(Ze2)1/2 ξ 3/2

a1/2TF x1/2
.

From the definition of the Thomas–Fermi radius aTF, Eq. (5.51), we can easily see that

8√2e3m3/2Z1/2

3πℏ3
a3/2TF = 1 ,

and, as a consequence,

d2ξ
dx2
= [8
√2e3m3/2Z1/2

3πℏ3
a3/2TF ]

ξ 3/2

x1/2
=

ξ 3/2

x1/2
.

Function ξ is the so-called screening function. In the Thomas–Fermi model, it de-
scribes the screening of the atomic potential due to the cloud of atomic electrons.
The solution to Eq. (5.54), subject to the boundary conditions given by Eqs. (5.55) and
(5.56), enables us to obtain the Thomas–Fermi atomic potential energy bymultiplying
the potential energy of the bare nucleus by the screening function (5.53):

− V(r) = Ze2

r
ξ . (5.57)

5.3.2 Hartree and Hartree–Fock approximations

In the previous section we discussed the statistical Thomas–Fermi atomic model. Be-
ing statistical, it is not surprising that the Thomas–Fermi method is inaccurate for
Z < 10. Also, the outer layers of all atoms are not well described by the Thomas–Fermi
approach.

In this section we will discuss more accurate methods for calculating the atomic
potential energy as a function of the distance from the center of the nucleus. They
are the Hartree and the Hartree–Fock theories, in which the Schrödinger equation is
solved by successive approximations subject to the requirement of self-consistency
(self-consistent field).

The Hartree approximation
Let us consider an atomwithN electrons and a nucleus with charge Ze. Letψ(1, . . . ,N)
be the wave function describing the system, and let us write the Schrödinger equation
as

H ψ(1, . . . ,N) = E ψ(1, . . . ,N) , (5.58)
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where E is the atom total energy,

H =
N
∑
i=1
[
p2i
2m
+ U(ri)] + ∑

i>j

e2

rij
(5.59)

is the Hamiltonian,

U(ri) = −
Ze2

ri
(5.60)

is the electron–nucleus potential energy, e2/rij are the potential energies due to the
electron–electron interactions,

ri = |ri| (5.61)

are the electron–nucleus distances, and

rij = |ri − rj| (5.62)

are the electron–electron distances. The Hartree approximation is based on the fac-
torization of the wave function:

ψ(1, . . . ,N) = ψ1(1)ψ2(2) ⋅ ⋅ ⋅ ψN (N) , (5.63)

where

ψi(i) = ψ(ri) χi(msi ) (5.64)

are the products of spatial wave functions by spin states. Furthermore,we assume that
functions ψi(ri) satisfy the normalization conditions:

⟨ψi|ψi⟩ = ∫
ψi(ri)

2d3ri = 1. (5.65)

The expectation value of the Hamiltonian H is given by

⟨H⟩ =
N
∑
i=1
{∫ d3ri ψ

∗
i (ri)[−

ℏ2

2m
∇2i −

Ze2

ri
]ψi(ri)}

+ ∑
i>j
∫ d3ri ∫ d

3rj ψ
∗
j (rj)ψ

∗
i (ri)

e2

rij
ψi(ri)ψj(rj) . (5.66)
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Since we aim at minimizing ⟨H⟩ with the constraint of normalization expressed by
Eq. (5.65), we have to calculate the functional derivatives of the functional:

ℱ = ⟨H⟩ −
N
∑
i=1

εi(∫
ψi(ri)

2d3ri − 1) , (5.67)

where εi are N Lagrange multipliers—one per atomic electron—to be determined.
The expectation value of the Hamiltonian has to be regarded as a functional of

the single-particle wave functions and it is required to be stationary with respect to all
the possible variations of the wave functions describing the single particles, subject
to the constraint of norm-conservation.

Then, the functional derivative of ℱ with respect to ψ∗i (ri) has to be zero. There-
fore, we obtain the N Hartree equations:

[− ℏ
2

2m
∇2i −

Ze2

ri
+ Vi(ri)]ψi(ri) = εiψi(ri) , (5.68)

where the electrostatic potential energy Vi(ri) due to the electron cloud is given by

Vi(ri) = e
2 ∑
i ̸=j
∫ d3rj

1
rij
ψj(rj)

2 . (5.69)

The behavior of ith wave function ψi is determined by Vi, a function that depends on
all the other atomic electron wave functions. Basically, the first set of trial functions
Vi is obtained by using Eq. (5.69) with a set of reasonable trial functions ψi. Once the
Vi functions have been obtained, they are used to solve Eq. (5.68).

In such a way we obtain a new set of ψi functions. The new set of functions ψi is
then used in Eq. (5.69) to obtain a better approximation of the set of functions Vi, and
so on.

This procedure can be interrupted when there are no further significant changes
in both the set of functions Vi(ri) and ψi(ri).

Once the self-consistent calculation has been concluded, the finalVi(ri) andψi(ri)
functions are used to obtain the values of the Lagrange multipliers εi (i. e., the ioniza-
tion energies) and the total energy (i. e., the expectation value ofH obtained using the
numerically obtained wave function ψ). It is given by

⟨ψ|H|ψ⟩ = E =
N
∑
i=1

εi − e
2 ∑
i<j
∫ 1
rij
ψi(ri)

2ψj(rj)

2d3ri d

3rj. (5.70)

The Hartree–Fock approximation
In theHartree approximation, thewave function is the simple product of all the single-
particle wave functions. TheHartree–Fock approximation also takes into account that
the total wave functionmust obey the Pauli exclusion principle, which states that two
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identical fermions cannot occupy the same quantum state. So, in the Hartree–Fock
approximation, the trial function including the spin is a Slater determinant:

ψ(1, . . . ,N) = (N!)−
1
2



ψ1(1) ⋅ ⋅ ⋅ ψ1(N)
⋅ ⋅
⋅ ⋅
⋅ ⋅

ψN (1) ⋅ ⋅ ⋅ ψN (N)



, (5.71)

where

ψi(j) = ψi(rj)χi(msj ) , (5.72)

and χi(msj ) are the spin states.
A function with the form of a Slater determinant obeys the Pauli exclusion prin-

ciple: Indeed, it has the required properties of antisymmetry with respect to the inter-
change of any pair of electrons. Furthermore, ψ is correctly normalized if the single-
particle functions are orthonormal, i. e., if

⟨ψi|ψj⟩ = δij . (5.73)

If we use the Hartree method, but replace the simple factorization utilized by the
Hartree approximationwith the Slater determinant,we obtain theHartree–Fock equa-
tions:

[− ℏ
2

2m
∇2i −

Ze2

ri
]ψi(ri)

+ e2 ∫ d3rj
1
rij

N
∑
j=1

ψ∗j (rj)[ψj(rj)ψi(ri) − ψj(ri)ψi(rj)δmsimsj
]

= εiψi(ri) . (5.74)

The Hartree–Fock set of equations can be solved by iteration, similarly to what occurs
in the Hartree approach. Note that the Hartree–Fock set of equations contain a non-
local term (where the argument of ψi is rj and the argument of ψj is ri) known as the
exchange term and different from zero only whenmsi = msj .
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6 The Klein–Gordon and the Dirac relativistic
equations

The first attempts of generalization of the Schrödinger equation to obtain a quantum
relativistic equation were performed by Schrödinger himself and by Oskar Klein and
Walter Gordon in 1926–1927. The first equation proposed in those years is the so-called
Klein–Gordon equation. We will see that the Klein–Gordon equation predicts nega-
tive energy states and allows that probability densities can be also negative. Thus, it
was soon abandoned. The Klein–Gordon equation was subsequently reinterpreted as
a fundamental equation in quantumfield theory. In particular, in 1934,WolfgangPauli
and VictorWeisskopf demonstrated that it correctly describes particles with null spin,
such as π mesons. The temporary dismissal of the Klein–Gordon equation prompted
renewed effort and further research. These new studies made possible the discovery,
in 1928, of another quantum-relativistic equation by Paul Adrien Maurice Dirac. The
Dirac equation, even if does not eliminate the negative energy states, correctly de-
scribes particles with spin 1/2, such as electrons and positrons. The existence of two
quantum-relativistic equations with similar difficulties suggested the idea that the
equations were correct and that they required a reinterpretation. The final result was
that it was necessary to modify the fundamental concepts about the properties of the
particles, of the fields, and of the radiation–matter interaction [30, 33]. This chapter
is devoted to the deduction of the Klein–Gordon and the Dirac equations. Wewill also
present their main properties and study their characteristics [9, 18, 21, 27, 28].

6.1 The natural system of units

From now on, we will use the system of units defined by ℏ = 1 and c = 1, where
ℏ = h/2π is the reduced Planck constant and c is the speed of light in a vacuum. This
system of units is known as the natural system. In the natural system only one unit,
among energy, time, and length, is independent. Time has the dimension of a length
as a consequence of the fact that c is the ratio between length and time. Energy has
the dimension of an inverse length as a consequence of the fact that ℏ is the product
of energy by time. As in atomic physics, the usual energy unit is eV. So, length is mea-
sured in eV−1. Since time has the dimension of a length, it is also measured in eV−1.
Mass, due to the Einstein law of equivalence between mass and energy, is measured
in eV. Like ℏ and c, also the elementary electric charge e is a dimensionless quantity,
e. g., e2 = e2/(ℏc) ≈ 1/137. To switch to ordinary units, we just need to include in the
equations the required powers of ℏ and c. For example, the relativistic equation relat-
ing energy and momentum is expressed, in natural units, as E2 = p2 + m2, and, in
ordinary units, as E2 = p2 c2 + m2 c4.

https://doi.org/10.1515/9783110675375-006
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6.2 The Lorentz transformation

Here, we would like to remind our readers about the origin of the so-called Lorentz
transformation, which relates the rest frame coordinates t, x, y, z to the coordinates
t′, x′, y′, z′ of a frame moving with constant velocity v in the direction of the x axis
[9, 16, 21, 28, 29]. Let us first observe that space-time is everywhere the same, so there
are no special events in space-time. As a consequence, the transformation has to be
linear. Since x′ has to be zero whenever x = vt, we can write

x′ = (x − vt) f , (6.1)

where f is a function of the constant velocity v of the moving frame. Actually, since
there are not preferred directions in space, f has to be a function of v2:

f = f (v2) . (6.2)

Similarly, since t′ has to be zero whenever t = vx, we can write [29]

t′ = (t − vx) g . (6.3)

Let us now consider a light ray. The speed of light is c = 1, so, in the rest frame, the
path of the light ray is described by the equation x = t. Since the speed of light does
not depend on the reference frame, the path of the light ray is described, in themoving
frame, by the equation x′ = t′. In other words, if x = t, then x′ = t′. Let us set x = t
in Eqs. (6.1) and (6.3):

x′ = (t − vt) f (v2) ,
t′ = (t − vt) g(v2) .

From x′ = t′ we then obtain:

g(v2) = f (v2) . (6.4)

Of course, these arguments can be inverted. If the “moving frame” is considered at
rest, the “rest frame” is moving with velocity −v. So, in conclusion, we can write [29]

x′ = (x − vt) f (v2) , (6.5)

t′ = (t − vx) f (v2) , (6.6)

x = (x′ + vt′) f (v2) , (6.7)

t = (t′ + vx′) f (v2) . (6.8)

From these last equations we obtain, in particular,

t = [(t − vx) + v(x − vt)] f 2(v2) = t f 2(v2)(1 − v2) ,
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and hence

f 2(v2) = 1
1 − v2
. (6.9)

So, in conclusion,

t′ = t − vx
√1 − v2

, (6.10)

x′ = x − vt
√1 − v2

. (6.11)

As for the coordinates y and z, they are passive, being the relative motion along the x
axis. For the reader’s convenience, we write the Lorentz transformation for a relative
motion along the x axis in conventional units:

t′ = t − vx/c2

√1 − v2/c2
, (6.12)

x′ = x − vt
√1 − v2/c2

, (6.13)

y′ = y , (6.14)
z′ = z . (6.15)

From the Lorentz transformation the invariance of the interval, also known as the
proper time, immediately follows. Indeed,

t′ 2 − x′ 2 − y′ 2 − z′ 2 = (t − vx)
2 − (x − vt)2

1 − v2
− y2 − z2

= (t2 − x2) 1 − v
2

1 − v2
− y2 − z2 = t2 − x2 − y2 − z2 .

So, the value of the square of the proper time:

τ2 = t2 − x2 − y2 − z2 (6.16)

is an invariant because it does not change under any Lorentz transformation.

6.3 Four-vectors and tensors

In space-time, an event is specified by the four coordinates x0, x1, x2, x3, where x0 =
ct = t is the time coordinate and x1 = x , x2 = y , x3 = z are the three spatial
coordinates. The components of four-vectors and tensors along the four axes t, x, y,
z are specified by the use of the indices 0 ,1 ,2 ,3, respectively. We will use Greek in-
dices (such as μ , ν , ρ , . . .) to denote the components of four-vectors of space-time and
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Roman indices (such as j , k , l , . . .) to denote the components of three-vectors of the
ordinary space. An event in space-time is, in particular, a four-vector and, therefore,

xμ = (x0, xj) = (x0, x1, x2, x3) = (t, x, y, z) , (6.17)

where μ = 0, 1, 2, 3 and j = 1, 2, 3. Let us consider a Lorentz transformation along the
x axis. Once introduced, the Lorentz matrix (describing a boost along the x axis):

Λμ
ν = (

1
√1−v2

−v
√1−v2

0 0
−v
√1−v2

1
√1−v2

0 0
0 0 1 0
0 0 0 1

) , (6.18)

or

Λμ
ν = (

γ −γv 0 0
−γv γ 0 0
0 0 1 0
0 0 0 1

) , (6.19)

where

γ = 1
√1 − v2

, (6.20)

we can write

x′ μ =
3
∑
ν=0

Λμ
ν x

ν . (6.21)

In general we have

dx′ μ =
3
∑
ν=0

𝜕x′ μ

𝜕xν
dxν . (6.22)

If x′ μ and xμ are related by linear equations, as in Lorentz transformations, we can
write

x′ μ =
3
∑
ν=0

𝜕x′ μ

𝜕xν
xν , (6.23)

so that

Λμ
ν =
𝜕x′ μ

𝜕xν
. (6.24)

 EBSCOhost - printed on 2/13/2023 9:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.3 Four-vectors and tensors | 69

Although in this book we will consider only Lorentz transformations, we observe that
the most general transformation between inertial frames of reference is the Poincaré
transformation:

x′ μ =
3
∑
ν=0

Λμ
ν x

ν + sμ , (6.25)

where sμ are constants. The Lorentz transformation is the Poincaré transformation for
the special case sμ = 0.

A contravariant four-vector aμ (indices are indicated as superscripts) transforms
like xμ, while a covariant four-vector aμ (indices are indicated as subscripts) trans-
forms like 𝜕/𝜕xμ. The correspondence between covariant and contravariant compo-
nents of a four-vector is ruled by themetric tensor gμν defined by

gμν = (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

) . (6.26)

The following equation is used to obtain the covariant components of a four-vector
from its contravariant components:

aμ = gμνa
ν . (6.27)

Please note that, in the previous equation, we have followed the so-called Einstein
convention of summing over repeated indices. According to this convention,

gμνa
ν =

3
∑
ν=0

gμνa
ν . (6.28)

In other words, if a Greek index is repeated, once at the bottom and once at the top,
then the sum on that index from 0 to 3 is implied. Please note that, to raise an index
of a four-vector, we apply a similar rule, namely,

aμ = gμνaν . (6.29)

Using the Einstein convention of summing over repeated indices, the Lorentz trans-
formation, Eq. (6.21), becomes

x′ μ = Λμ
ν x

ν . (6.30)

Since a contravariant four-vector aμ transforms like xμ, we have

a′ μ = Λμ
ν a

ν . (6.31)
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The components of a tensor transform like the products of the components of vectors.
We use the expression “tensor tμν” instead of the stricter expression “tensor whose
contravariant components are tμν”. Please note that the rules just introduced to lower
and raise indices of four-vectors also apply to tensors. For example,

tμ
ν = gμρ t

ρν . (6.32)

The contraction operation on a tensor consists of setting a contravariant index equal
to a covariant index, implying Einstein’s convention on repeated indices. If contrac-
tion is done in combinationwithmultiplication, it is called internalmultiplication. The
contraction:

bμ = tμν a
ν (6.33)

is an example of internalmultiplication. If an equation has a tensor nature, it takes the
same form in any inertial frame of reference. Tensor equations are invariant in form.
The equations expressed in this form are calledmanifestly covariant.

The well-known Kronecker symbol δμ
ν, equal to 1 if μ = ν and to 0 otherwise, is

obtained by lowering an index of the metric tensor, according to the rule:

δμ
ν ≡ gμ

ν = gμρ g
ρν = {

1 if μ = ν ,
0 if μ ̸= ν .

(6.34)

By definition,

a0 = g00 a
0 = a0 ,

a1 = g11 a
1 = − a1 ,

a2 = g22 a
2 = − a2 ,

a3 = g33 a
3 = − a3 . (6.35)

The scalar product of two four-vectors aμ and bν is given by

gμνa
μ bν = aμ bμ = aμ b

μ = a0 b0 − a ⋅ b . (6.36)

Therefore, the norm of a four-vector aμ is given by

aμ aμ = (a
0)

2
− a2 . (6.37)
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Let us now consider the matrix obtained by lowering the first index and raising the
second index of the Lorentz matrix Λμ

ν:1

Λμ
ν = (

γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1

) . (6.41)

Using Eqs. (6.19) and (6.41), we immediately see that Λμ
ν is the inverse of Λμ

ν, i. e.:2

Λμ
ν Λμ

ρ = δν
ρ . (6.42)

As a consequence, if aμ and bμ are two four-vectors, then their scalar product is
Lorentz-invariant. In fact,

a′ μ b′μ = Λ
μ
ν Λ

ρ
μ aν bρ = δν

ρaν bρ = a
ρ bρ = a

μ bμ . (6.43)

Please note that dτ2, in particular, is the Lorentz-invariant normof the four-vector dxμ:

dτ2 = gμνdx
μ dxν = dxμ dxμ = dt

2 − dx2 − dy2 − dz2 . (6.44)

An important example of a four-vector is the partial-differentiation operator 𝜕/𝜕xμ. It
is a covariant four-vector denoted by the symbol 𝜕μ:

𝜕μ =
𝜕
𝜕xμ
. (6.45)

1 Please note that, even if the Lorentz matrix is not a tensor, the rules about lowering and raising
indices are the same as those that apply to tensors. For example:

Λνρ = gμν Λ
μ
ρ = (

γ −γv 0 0
γv −γ 0 0
0 0 −1 0
0 0 0 −1

) . (6.38)

Using Eqs. (6.19) and (6.38), it is then easy to verify that

ΛμνΛμρ = gνρ (6.39)

and
ΛμνΛμ

ρ = gν
ρ = δν

ρ . (6.40)

2 This also follows from the fact that the sign of v is reversed. The inverse transformation is

xμ = x′ ν Λν
μ .
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We hence have

𝜕μ = (
𝜕
𝜕t
,∇) = (

𝜕
𝜕t
,
𝜕
𝜕x
,
𝜕
𝜕y
,
𝜕
𝜕z
) . (6.46)

The d’Alembert operator ◻ is the norm of 𝜕μ:

◻ = 𝜕μ 𝜕
μ =
𝜕2

𝜕t2
− ∇2 . (6.47)

Another important examples of four-vectors is the so-called four-potential:

Aμ = (φ ,A) , (6.48)

where φ is the scalar potential and A is the vector potential. A very important space-
time tensor is the antisymmetric electromagnetic tensor Fμν given by

Fμν =
𝜕Aν
𝜕xμ
−
𝜕Aμ
𝜕xν
. (6.49)

It can also be expressed as

Fμν = (

0 ℰx ℰy ℰz
−ℰx 0 −ℋz ℋy
−ℰy ℋz 0 −ℋx
−ℰz −ℋy ℋx 0

) , (6.50)

where

ℰ = −∇φ − 𝜕A
𝜕t

(6.51)

is the electric field and

ℋ = ∇ × A (6.52)

is the magnetic field.

6.4 The Hamiltonian of a charged particle in an electromagnetic
field

Let us now consider a particle of rest mass m and electric charge e. The relativistic
massM is given by

M = m
√1 − v2

, (6.53)
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and the mechanical momentum π is

π = Mv = mv
√1 − v2

. (6.54)

M and π form the four-vector πμ:

πμ = (M,π) (6.55)

whose norm is the square of the rest massm of the particle:

M2 − π2 = m2 . (6.56)

If the charged particle is in an electromagnetic field, then the energy E and the mo-
mentum p are given by, respectively,

E = M + eφ , (6.57)
p = π + eA . (6.58)

Energy and momentum form the four-vector pμ given by

pμ = πμ + e Aμ . (6.59)

From Eqs. (6.56), (6.57), and (6.58), we have

(E − eφ)2 = (p − eA)2 + m2 , (6.60)

so the Hamiltonian of a particle of rest massm and electric charge e in an electromag-
netic field described by the four-potential Aμ = (φ,A) is given by

H = eφ + √(p − eA)2 + m2 . (6.61)

6.5 Klein–Gordon equation

The Schrödinger equation expressed in natural units is given by

Hψ = i𝜕ψ
𝜕t
. (6.62)

Using the relativistic equation relating energy and momentum of a free particle:

E2 = p2 + m2 , (6.63)

and the correspondence rule

p2 → −∇2 , (6.64)
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where

∇2 =
𝜕2

𝜕x2
+
𝜕2

𝜕y2
+
𝜕2

𝜕z2
, (6.65)

the Schrödinger equation assumes the form:

√m2 − ∇2 ψ = i𝜕ψ
𝜕t
. (6.66)

This equation presents an asymmetry between the spatial coordinates and the time
coordinate. Furthermore, the presence of the square root operator implies a nonlocal
theory. For these reasons, Oskar Klein and Walter Gordon, in 1926, proposed consid-
ering the square of the Hamiltonian to obtain

(
𝜕2

𝜕t2
− ∇2 +m2)ψ = 0 , (6.67)

or

(
𝜕2

𝜕t2
−
𝜕2

𝜕x2
−
𝜕2

𝜕y2
−
𝜕2

𝜕z2
+m2)ψ = 0 . (6.68)

With this equation, Klein and Gordon obtained the wanted symmetry between space
and time coordinates and also, since the square root operator was no longer present,
the difficulties related to the nonlocality disappeared. Using the d’Alembert operator,
we can express the Klein–Gordon equation in its more elegant form:

(◻ + m2)ψ = 0 . (6.69)

Since ◻ = 𝜕μ𝜕μ, the Klein–Gordon equation can also be written as

(𝜕μ𝜕μ + m
2)ψ = 0 . (6.70)

So, it is clear that the Klein–Gordon equation takes the same form in any inertial frame
of reference, being manifestly invariant.

6.6 Klein–Gordon particle in an electromagnetic field

Let us now consider a Klein–Gordon particle in an electromagnetic field. The canon-
ical momentum p has to be substituted by the kinetic (or mechanical) momentum
p − eA, where e is the particle charge and A the vector potential, and E has to be sub-
stituted by E − eφ, where eφ is the potential energy (see Eq. (6.60)). Using four-vectors
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notations, this means

𝜕μ → 𝜕μ + ieAμ , (6.71)

so that

[(𝜕μ + ieAμ)(𝜕μ + ieAμ) + m
2]ψ = 0 . (6.72)

6.7 Nonrelativistic limit of the Klein–Gordon equation

The Schrödinger equation is the nonrelativistic limit of the Klein–Gordon equation.
To demonstrate this, let us consider the plane wave:

ψ = exp[ i(p ⋅ r − E t ) ] , (6.73)

describing a free particle with energy E and momentum p. Since

E2 − p2 = m2 , (6.74)

using the correspondence rules:

E → i 𝜕
𝜕t
, (6.75)

p → −i∇, (6.76)

we immediately obtain the Klein–Gordon Eq. (6.69). It is clear that, applying the
d’Alembert operator to a plane-wave packet defined as

Ψ = ∫ A(p) exp[ i(p ⋅ r − E t ) ] d3p , (6.77)

we obtain the same result. As a consequence, it should be now clear that what we
will subsequently discuss (which, for the sake of simplicity, we limit to a single plane
wave) applies to any plane-wave linear combination or packet.

In the nonrelativistic approximation, the energy T is expressed by

T = E − m = p2

2m
. (6.78)

If we define the new function:

ϕ = exp[ i(p ⋅ r − p2 t
2m
)] , (6.79)
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the non-relativistic plane-wave can be expressed by

ψ = exp(− imt)ϕ . (6.80)

Let us apply now the operator −◻ to the nonrelativistic plane wave ψ:

−◻ψ = (∇2 − 𝜕
2

𝜕t2
) exp(− imt)ϕ

= exp(− imt) ∇2ϕ − 𝜕
𝜕t
[−im exp(− imt)ϕ + exp(− imt)𝜕ϕ

𝜕t
]

= exp(− imt)(∇2ϕ + m2 ϕ + 2im 𝜕ϕ
𝜕t
−
𝜕2ϕ
𝜕t2
) .

Therefore,

−◻ψ = exp(−imt)(∇2 + m2 + 2im 𝜕
𝜕t
−
𝜕2

𝜕t2
)ϕ . (6.81)

Now, let us observe that

𝜕2ϕ
𝜕t2
=
𝜕2

𝜕t2
exp[ i(p ⋅ r − p2 t

2m
)]

=
𝜕
𝜕t
(−i p

2

2m
) exp[ i(p ⋅ r − p2 t

2m
)]

= (−i p
2

2m
)(−i p

2

2m
)ϕ = − p4

4m2ϕ.

Please note that (p4/4m2)ϕ = − 𝜕2ϕ/𝜕t2 can be neglected because, in the nonrelativis-
tic limit, it is much smaller thanm2ϕ, so

−◻ψ = exp(−imt)(∇2 + m2 + 2im 𝜕
𝜕t
)ϕ . (6.82)

Comparing this equation with the Klein–Gordon equation, we conclude that

(∇2 + m2 + 2i m 𝜕
𝜕t
)ϕ = m2ϕ , (6.83)

and, hence,

(∇2 + 2i m 𝜕
𝜕t
)ϕ = 0 . (6.84)
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Once extended to the whole packet Ψ, this deduction allows us to conclude that the
Schrödinger equation;

i𝜕Ψ
𝜕t
= −

1
2m
∇2Ψ = p2

2m
Ψ , (6.85)

represents the nonrelativistic limit of the Klein–Gordon equation. This result was, of
course, expected. The Klein–Gordon equation is the relativistic generalization of the
Schrödinger equation, thus the latter has to be the nonrelativistic limit of the Klein–
Gordon equation. Wolfgang Pauli, in his course given in Zurich during the academic
year 1956–57, used this approach to deduce the Schrödinger equation.

6.8 Difficulties of interpretation

Klein–Gordon equation presents two main difficulties of interpretation. The first one
concerns the appearance of negative energy states. In fact, we can recast the Klein–
Gordon equation so that

(H − i 𝜕
𝜕t
)(H + i 𝜕

𝜕t
)ψ = 0 . (6.86)

Indeed, from this equation we obtain

0 = (H2 − i 𝜕
𝜕t

H + i H 𝜕
𝜕t
+
𝜕2

𝜕t2
)ψ

= (H2 +
𝜕2

𝜕t2
)ψ = (p2 + m2 +

𝜕2

𝜕t2
)ψ

= (
𝜕2

𝜕t2
− ∇2 + m2)ψ = (◻ + m2)ψ .

It is immediately evident that Eq. (6.86) allows both solutions with positive energy,
satisfying the equation:

(H − i 𝜕
𝜕t
)ψ = 0 (6.87)

and solutions with negative energy, satisfying the equation:

(H + i 𝜕
𝜕t
)ψ = 0 . (6.88)

This means that, in particular, Eq. (6.86) predicts, for particles at rest, negative
masses. In this case, indeed, p = 0, and we have

i𝜕ψ
𝜕t
= mψ , (6.89)
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corresponding to the description of particles having positive mass, and

i𝜕ψ
𝜕t
= −mψ , (6.90)

corresponding to the description of particles having negative mass. We could think
that a possible solution of this difficulty could be to exclude all the solutions with
negative energy. Actually, this is not possible when the particles are in the presence
of fields. In fact, if there are intense potential energies, then particles can pass from
states with positive energy to states with negative energy because of the presence of
the fields.

There is another difficulty of interpretation of this first quantum-relativistic equa-
tion. It is related to the continuity equation that, with the introduction of relativity,
requires that (as we will see shortly) the probability density is not necessarily a pos-
itive quantity. It is well known that, using the Schrödinger equation, the probability
density is a positive quantity given by

ρ = ψ∗ ψ .

Keep in mind that, with this probability density, the continuity equation:

𝜕ρ
𝜕t
+ ∇ ⋅ j = 0 ,

is satisfied by the probability current density j given by

j = i
2m
(ψ∇ψ∗ − ψ∗∇ψ) .

If we consider now the Klein–Gordon equation:

𝜕2ψ
𝜕t2
= ∇2ψ − m2ψ , (6.91)

and its hermitian conjugate:

𝜕2ψ∗

𝜕t2
= ∇2ψ∗ − m2ψ∗ , (6.92)

we can easily see that continuity equation, Eq. (3.29), is satisfiedby the followingprob-
ability density:

ρ = i(ψ∗ 𝜕ψ
𝜕t
− ψ 𝜕ψ

∗

𝜕t
) (6.93)
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and probability current density:

j = i(ψ∇ψ∗ − ψ∗∇ψ) . (6.94)

In fact, in this case we have

∇ ⋅ j = iψ(𝜕
2ψ∗

𝜕t2
+ m2ψ∗) − iψ∗(𝜕

2ψ
𝜕t2
+ m2ψ)

= i[ψ 𝜕
𝜕t
(
𝜕ψ∗

𝜕t
) − ψ∗ 𝜕

𝜕t
(
𝜕ψ
𝜕t
)]

= i[ 𝜕
𝜕t
(ψ𝜕ψ

∗

𝜕t
) −
𝜕ψ
𝜕t
𝜕ψ∗

𝜕t
−
𝜕
𝜕t
(ψ∗ 𝜕ψ
𝜕t
) +
𝜕ψ∗

𝜕t
𝜕ψ
𝜕t
]

= i 𝜕
𝜕t
(ψ𝜕ψ

∗

𝜕t
− ψ∗ 𝜕ψ
𝜕t
) = −
𝜕ρ
𝜕t
. (6.95)

Note that the factors within the parentheses in Eqs. (6.93) and (6.94) are differences
between a complex number and its complex conjugate so, to make the probability
density ρ and probability current density j real, we have introduced the imaginary
unit i. Please note that the probability density expressedbyEq. (6.93) is not necessarily
positive: It can also be negative or null.

Actually, each relativistic approach to quantum theorymust confront similar diffi-
culties, and the reason is that relativity allows the transformation ofmatter into energy
andvice versa. As a consequence, quantum-relativistic theories permit the continuous
creation and annihilation of particles.

So, a reinterpretation of the wave function in terms of a field is required. Exactly
as the Maxwell equations describe fields, the idea of field is also present in the Klein–
Gordon equation.

If we consider particles with null mass, the Klein–Gordon equation becomes

◻ψ = 0 . (6.96)

This is the d’Alembert equation. As is well known, the d’Alembert equation describes
electromagnetic fields in a regionof spacewithout charges andcurrents. In theLorentz
gauge, it also describes the evolution of the electromagnetic potentials. Note that the
masses of the particles created and annihilated by the electromagnetic fields, the pho-
tons, are null. So, the fact that Eq. (6.69) becomes Eq. (6.96)when themass is null does
not only confirm the correctness of the Klein–Gordon theory but also suggests that the
wave function has to be reinterpreted as a field.

Anyway, from the historical point of view, we have to say that the temporary
abandonment of the Klein–Gordon equation due to these interpretation difficulties
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prompted further efforts, allowing the discovery of another very important quantum-
relativistic equation: the Dirac equation.

6.9 Spin and gyromagnetic ratio of the electron

Before introducing theDirac equation, we need to remind our readers that at the dawn
of quantum mechanics, although the atomic spectra could be roughly described by
Bohr’s model, it was clear that experimental data about complex atoms, which were
accumulating, required further ideas. There were too many inconsistencies and, in
particular, the number of electrons that could occupy a given orbital was not known.
Also, the behavior of atoms in the presence of magnetic fields needed to be further
explored.

Wolfgang Pauli had demonstrated that Bohr’s theory could be used to describe,
even if roughly, atoms more complex than hydrogen if the maximum number of elec-
trons that could occupy each individual atomic orbital was equal to two. This is the
well known Pauli exclusion principle, whose origin Pauli based on an unspecified
“duplicity”.

In 1925, two young researchers, Samuel Goudsmit and George Uhlenbeck, had
demonstrated that all the problems related to the behavior of atoms inmagnetic fields
could be solved assuming that all electrons are small magnets, each one with the
same magnetic force. According to Goudsmit and Uhlenbeck, the origin of this intrin-
sic electronic magnetism was the rotational motion of every electron around its axis
(the spin). Furthermore, since only two values for the electron spin were permitted
by quantum mechanics, the mystery of the Pauli’s “duplicity” was then clarified. As
intensity of the spin could not be modified and, furthermore, had only two possible
orientations, only two states of spin were allowed.

A problem with the Goudsmit and Uhlenbeck hypothesis arose immediately. It
concerned the gyromagnetic ratio g of the electron that rules the ratio between the
electronic magnetism and its spin. According to the classical methods, g should be
equal to 1, while Goudsmit and Uhlenbeck had to postulate that g was equal to 2 to
obtain a good agreement with the available experimental data. Even if the situation
was not clear, because Goudsmit and Uhlenbeck could not explain the value g = 2 of
the gyromagnetic factor, their model provided good agreement with the experimental
evidence.

In 1928 Paul Dirac proposed using first-order differential equations to reconcile
the quantummechanics of electronswith special relativity. He found out that themin-
imum number of differential equations needed to obtain this result was four. If two
equations can explain the “duplicity” postulated by Pauli, four equations seemed, at
a first glance, toomany. But, aswewill soon see, Dirac’s “quadruplicity” explains both
the electron spin and the discovery of antimatter.
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6.10 Dirac equation

Towritehis equation,Diracproposed that theHamiltonianoperatorH of a freeparticle
had the following form:

H =
3
∑
j=1

αj pj + βm , (6.97)

where the four coefficients αj (j = 1, 2, 3) and β had to be determined assuming that

H2 = p2 + m2 . (6.98)

As a consequence,

(αj)2 = 1 , (6.99)

β2 = 1 , (6.100)

αjβ + βαj = {αj, β} = 0 , (6.101)

and, for each j ̸= k ,

αjαk + αkαj = {αj, αk} = 0 (j, k = 1, 2, 3) . (6.102)

There is only one way to satisfy all these conditions: The quantities αj and β cannot
be numbers. If they were numbers, this system of equations would not have solutions.
Actually, αj and β have to be matrices. Furthermore, since the Hamiltonian operator
is hermitian, the matrices αj and β also have to be hermitian. Note that αj and β have
to be 4 × 4 matrices (at least). This can be easily demonstrated observing that, since
(αj)2 = 1 and β2 = 1 , the eigenvalues of αj and β can only be ±1. Furthermore, as
αj = − βαjβ and β = − αjβαj, we have

Tr αj = Tr β = 0 , (6.103)

due to the cyclic invariance of the trace. As a consequence, the number of diagonal
elements has to be an even number. This even number cannot be 2 because, in the set
of hermitianmatrices 2×2 representedby thePaulimatrices and the identity, only three
of them anticommute. Thus. the smallest matrices satisfying our conditions are 4 × 4.
It is very easy to verify, by direct substitution and taking into account the properties
of the Pauli’s matrices, that a possible representation of the matrices αj and β is the

 EBSCOhost - printed on 2/13/2023 9:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



82 | 6 The Klein–Gordon and the Dirac relativistic equations

following:3

αj = (0 σj

σj 0
) , (6.104)

β = (I 0
0 −I
) . (6.105)

Explicitly expressed, these matrices are:

α1 = αx = (

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

) , (6.106)

α2 = αy = (

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

) , (6.107)

α3 = αz = (

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

) , (6.108)

β = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) . (6.109)

To demonstrate that these matrices satisfy the conditions expressed by Eqs. (6.99),
(6.100), (6.101), and (6.102), we can use their representations:

(αj)2 = (0 σj

σj 0
)(

0 σj

σj 0
) = (

σjσj 0
0 σjσj

)

= (
I 0
0 I
) = I = 1 ,

β2 = (I 0
0 −I
)(

I 0
0 −I
) = (

I 0
0 I
) = I = 1 ,

3 Of course, this is not the only possible representation of the αj and βmatrices.
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αj β + β αj = (0 σj

σj 0
)(

I 0
0 −I
) + (

I 0
0 −I
)(

0 σj

σj 0
)

= (
0 −σj

σj 0
) + (

0 σj

−σj 0
) = 0 .

As for Eq. (6.102), let us calculate, for example, α1 α2 + α2 α1:

α1 α2 + α2 α1 = ( 0 σ1

σ1 0
)(

0 σ2

σ2 0
) + (

0 σ2

σ2 0
)(

0 σ1

σ1 0
)

= (
σ1σ2 0
0 σ1σ2

) + (
σ2σ1 0
0 σ2σ1

)

= (
σxσy 0
0 σxσy

) + (
σyσx 0
0 σyσx

)

= (
σxσy + σyσx 0

0 σxσy + σyσx
) = (

0 0
0 0
) = 0 .

It is evident that matrices αj and β are hermitian because the Pauli matrices are her-
mitian. The first-order equation we were looking for is then given by:

(α ⋅ p + βm)Ψ = i𝜕Ψ
𝜕t
, (6.110)

where the function Ψ (the so-called “spinor”) has four components. This is the Dirac
equation describing a free particle.

Note that the Dirac equation does not solve the problem of the solutions with neg-
ative energy. For example, if we consider a particle at rest, we see that

βmΨ = i 𝜕Ψ
𝜕t
, (6.111)

or, expressing explicitly the four components of the spinor:

βm(

Ψ1
Ψ2
Ψ3
Ψ4

) = i 𝜕
𝜕t
(

Ψ1
Ψ2
Ψ3
Ψ4

) , (6.112)

i. e.,

m(

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

Ψ1
Ψ2
Ψ3
Ψ4

) = i 𝜕
𝜕t
(

Ψ1
Ψ2
Ψ3
Ψ4

) . (6.113)
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Thus,

mΨ1 = i
𝜕Ψ1
𝜕t
, (6.114)

mΨ2 = i
𝜕Ψ2
𝜕t
, (6.115)

−mΨ3 = i
𝜕Ψ3
𝜕t
, (6.116)

−mΨ4 = i
𝜕Ψ4
𝜕t
. (6.117)

While thefirst twoequationsdescribe aparticlewithpositive energy, the last twoequa-
tions describe a particle with negative energy: If Ψ3 ∝ exp(−iEt), then

−m exp(−iEt) = i 𝜕
𝜕t

exp(−iEt) = i(−i)E exp(−iEt) = E exp(−iEt) , (6.118)

and, therefore,

E = −m .4 (6.119)

We conclude this chapter by mentioning another important set of properties of
the αj matrices, i. e.,

αxαy = iσz ,

αyαz = iσx , (6.120)

αzαx = iσy .

The proof is very simple:

αxαy = (
0 σx
σx 0
)(

0 σy
σy 0
) = (

σxσy 0
0 σxσy

)

= (
iσz 0
0 iσz
) = iσz .

4 Solutionswith negative energy represent positrons, i. e., particleswith positivemassm andnegative
charge −e. They are the antiparticles of electrons. Positrons were experimentally discovered in 1932 by
C.Anderson. They are todayused inmanyapplicative fields, frommaterials science tomedical physics.
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Please note that we are using the same symbols σx, σy, and σz to indicate both the 2×2
spin Pauli matrices and the 4 × 4 doubled spin Pauli matrices given by:

σx = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) , (6.121)

σy = (

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

) , (6.122)

σz = (

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

) . (6.123)

The context will always enable the identification of the matrix size.
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7 The Dirac equation and electron spin
Electron spin had to be included as an ad hoc hypothesis in nonrelativistic quantum
mechanics to account for the experimental evidence. The use of the Dirac quantum-
relativistic equation, on the other hand, demonstrates that electron spin is a genuinely
and authentically relativistic phenomenon. In this chapter, wewill showhow electron
spin naturally appears whenwe consider the Dirac equation describing an electron in
an electromagnetic field [18, 21, 27, 28].

7.1 Manifestly covariant form of the Dirac equation

Let us introduce the Dirac matrices, defined by

γ0 ≡ β , (7.1)

γj ≡ β αj . (7.2)

While γ0 is hermitian (being identical with β), the matrices γj are antihermitian. In
fact

γj† = (β αj)† = αj†β† = αjβ = − β αj = −γj . (7.3)

The manifestly covariant form of the Dirac equation of the free particle can be easily
obtained using the Dirac matrices. Let us introduce the γμ four-vector:

γμ = (γ0, γ1, γ2, γ3) = (γ0, γ) (7.4)

and remind our readers that the covariant components of the four-vector describing
the partial-differentiation operator are

𝜕μ = (
𝜕
𝜕t
,
𝜕
𝜕x
,
𝜕
𝜕y
,
𝜕
𝜕z
) = (
𝜕
𝜕t
,∇) . (7.5)

Let us now introduce the four-vector pμ defined as

pμ = (E,p) . (7.6)

The correspondence rules:

E → i 𝜕
𝜕t

(7.7)

and

p → −i∇ , (7.8)

https://doi.org/10.1515/9783110675375-007
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can be written as

pμ → i𝜕μ . (7.9)

Let us now write the Dirac equation (6.110) in the form:

(−i
3
∑
j=1 αj𝜕j − i𝜕0 + βm)Ψ = 0 , (7.10)

and multiply it on the left by β:

(−i
3
∑
j=1 βαj𝜕j − iβ𝜕0 + β2m)Ψ = 0 . (7.11)

So,

(−i
3
∑
j=1 γj𝜕j − iγ0𝜕0 + m)Ψ = 0 . (7.12)

This equation can now be rewritten in the manifestly covariant (invariant, in this spe-
cific case) form:

(iγμ𝜕μ − m)Ψ = 0 . (7.13)

So, the Dirac equation takes the same form in any inertial frame of reference. Let us
now consider a Dirac particle in an electromagnetic field. The canonical momentum p
has to be substituted by the kinetic (or mechanical) momentum p − eA, where e is the
electron charge and A the vector potential. Furthermore E has to be substituted with
E − eφ, where eφ is the potential energy. Then

[α ⋅ (p − eA) + βm + eφ]Ψ = i𝜕0Ψ . (7.14)

Let us now multiply this equation by β on the left and rearrange it to obtain

[∑
j
γj(−i𝜕k + eAk) + γ

0(−i𝜕0 + eφ) + m]Ψ = 0 .

Recall that Aμ ≡ (φ,A) is the four-potential of the electromagnetic field, so that the
Dirac equation becomes

[γμ(i𝜕μ − eAμ) −m]Ψ = 0 . (7.15)
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7.2 The Dirac equation and spin

7.2.1 Properties of commutators and anti-commutators

In order to discuss how the electron spin appears in the Dirac theory, let us first recall
some commutators and anticommutators properties. Let us consider two operators aμ

and bν. The commutator [aμ , bν] of aμ e bν is given by aμ bν − bν aμ, while the an-
ticommutator {aμ , bν} is given by aμ bν + bν aμ. From these definitions, these three
properties immediately follow:

aμ bν = 1
2
[aμ , bν] + 1

2
{aμ , bν} , (7.16)

[aμ , aν]{bμ , bν} = 0 , (7.17)

[aμ , aν] bμ bν =
1
2
[aμ , aν] [bμ , bν] . (7.18)

The demonstration of the first one is quite simple. In fact,

1
2
[aμ , bν] + 1

2
{aμ , bν} = 1

2
(aμ bν − bν aμ + aμ bν + bν aμ) = aμ bν .

As for the second one, let us observe that

[aμ , aν]{bμ , bν} = a
μ aν bμ bν + a

μ aν bν bμ − a
ν aμ bμ bν − a

ν aμ bν bμ .

Let us now recall our readers the Einstein convention on repeated indices. According
to this convention, we have to sum over the repeated indices, so that

aν aμ bμ bν = ∑
ν
∑
μ
aν aμ bμ bν = ∑

μ
∑
ν
aμ aν bν bμ = a

μ aν bν bμ ,

aν aμ bν bμ = ∑
ν
∑
μ
aν aμ bν bμ = ∑

μ
∑
ν
aμ aν bμ bν = a

μ aν bμ bν

and, hence,

[aμ , aν]{bμ , bν} = a
μ aν bμ bν + a

μ aν bν bμ − a
μ aν bν bμ − a

μ aν bμ bν = 0 .

The third property, Eq. (7.18), follows from the first two properties:

[aμ , aν] bμ bν =
1
2
[aμ , aν][bμ , bν] +

1
2
[aμ , aν] {bμ , bν} =

1
2
[aμ , aν] [bμ , bν] .
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7.2.2 Spin

Let us now multiply Eq. (7.15) on the left by the operator [−γμ(i𝜕μ − eAμ) − m] and
obtain

[γμ γν (𝜕μ + ieAμ)(𝜕ν + ieAν) + m
2]Ψ = 0 . (7.19)

From the definition of the Dirac matrices, we have

γμγν + γνγμ ≡ {γμ , γν} = 2gμν , (7.20)

where gμν is the metric tensor: g00 = 1, gμν = −1 for μ = ν = 1, 2, 3, and gμν = 0 for
μ ̸= ν. In fact1

γjγk = βαjβαk = ( 0 σj

−σj 0
) (

0 σk

−σk 0
) = (
−σjσk 0
0 −σjσk

) ,

γ0γj = β2αj = (0 σj

σj 0
) ,

γjγ0 = β αj β = −αjβ2 = ( 0 −σ
j

−σj 0
) ,

so that

{γj, γk} = −(σ
jσk + σkσj 0

0 σjσk + σkσj
) = {

0 if j ̸= k ,
−2 if j = k ,

{γ0, γj} = −( 0 σj − σj

σj − σj 0
) = 0 ,

{γ0, γ0} = 2β
2 = 2.

Using Eqs. (7.16) and (7.20). we obtain

γμγν = 1
2
[γμ , γν] + gμν . (7.21)

As a consequence, we can write

γμγν (𝜕μ + ieAμ)(𝜕ν + ieAν)

=
1
2
[γμ , γν](𝜕μ + ieAμ)(𝜕ν + ieAν)

+ (𝜕ν + ieAν)(𝜕ν + ieAν) ,

1 Please keep in mind that Latin letters j, k, . . . assume the values 1, 2, and 3.
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and, using Eq. (7.18),

γμγν (𝜕μ + ieAμ)(𝜕ν + ieAν)

=
1
4
[γμ , γν][𝜕μ + ieAμ , 𝜕ν + ieAν]

+ (𝜕μ + ieAμ)(𝜕μ + ieAμ) . (7.22)

Let us now introduce the completely contravariant components Sμν of the spin four-
tensor:

Sμν ≡ i
4
[γμ , γν] , (7.23)

and observe that

[γμ γν (𝜕μ + ieAμ)(𝜕ν + ieAν)]Ψ

= [(𝜕μ + ieAμ)(𝜕μ + ieAμ) − iS
μνie(𝜕μ Aν − 𝜕ν Aμ )]Ψ , (7.24)

where we have used the equation:

[𝜕μ + ieAμ , 𝜕ν + ieAν]Ψ = ie(𝜕μ Aν − 𝜕ν Aμ )Ψ . (7.25)

Let us now remind our readers that the completely covariant components Fμν of the
electromagnetic four-tensor can be expressed, as a function of the components of the
four-potential, as

Fμν ≡ 𝜕μ Aν − 𝜕ν Aμ , (7.26)

and thus

[γμ γν (𝜕μ + ieAμ)(𝜕ν + ieAν)]Ψ

= [(𝜕μ + ieAμ)(𝜕μ + ieAμ) + e S
μν Fμν]Ψ . (7.27)

As a consequence, we conclude that the Dirac equation of a charged particle in an
electromagnetic field can be expressed in the form:

[(𝜕μ + ieAμ)(𝜕μ + ieAμ) + m
2 + e Sμν Fμν]Ψ = 0 . (7.28)

The physical meaning of this equation can be particularly appreciated by comparing
it with the covariant form of the Klein–Gordon equation, describing a charged particle
without spin in an electromagnetic field, Eq. (6.72). The Dirac Eq. (7.28) and the Klein–
Gordon Eq. (6.72) differ for the term e Sμν Fμν. Note that the Klein–Gordon equation
describes a particle without spin. The additional term e Sμν Fμν in the Dirac equation
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represents the coupling of the spin of the electron (or the positron) to the electromag-
netic field. So, spin appears in the Dirac theory in a completely natural way. There is
no need at all to introduce ad hoc hypotheses to include spin in the equations describ-
ing electrons and positrons. Actually, spin is a genuinely and authentically relativistic
phenomenon.

7.3 The solution of the Dirac equation for the free particle

Let us consider nowa free electron (or a freepositron). Ifwe factorize the spinor, denot-
ingbyu(p) the factor independent of r, theparticle is describedby the four-component
function:

Ψ = u(p) exp[i(p ⋅ r − Et)] . (7.29)

The Dirac equation describing the functions u(p) takes the form

(α ⋅ p + βm) u(p) = E u(p), (7.30)

and this is equivalent to the system:

{{{{{{
{{{{{{
{

(E − m)u1 − pzu3 − (px − ipy)u4 = 0 ,
(E − m)u2 − (px + ipy)u3 + pzu4 = 0 ,
−pzu1 − (px − ipy)u2 + (E + m)u3 = 0 ,
−(px + ipy)u1 + pzu2 + (E + m)u4 = 0 ,

where the spinor u(p) has been expressed in term of its four components u1, u2, u3 and
u4:

u(p) = (

u1
u2
u3
u4

) . (7.31)

To keep the discussion simple we choose, without any loss of generality, the z axis in
the direction of p, so as to be able to set px = py = 0 and pz = p. Thus, we have

{{{{{{
{{{{{{
{

(E − m)u1 − pu3 = 0 ,
(E − m)u2 + pu4 = 0 ,
−pu1 + (E + m)u3 = 0 ,
pu2 + (E + m)u4 = 0 ,
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or

(

E −m 0 −p 0
0 E −m 0 p
−p 0 E +m 0
0 p 0 E +m

)(

u1
u2
u3
u4

) = 0 . (7.32)

To find nontrivial solutions, we impose that the determinant of the matrix of the coef-
ficients of this system be equal to zero:



E −m 0 −p 0
0 E −m 0 p
−p 0 E +m 0
0 p 0 E +m



= 0 . (7.33)

In this way, we obtain the eigenvalues of the energy. The eigenvalue equation takes
the following simple form:

(E2 −m2 − p2)2 = 0 . (7.34)

The doubly degenerate eigenvalues of the energy are therefore

E± = ±√p2 +m2 . (7.35)

If we denote by Ep the positive eigenvalue,

Ep = √p2 +m2 , (7.36)

the two energy eigenvalues can be expressed as

E± = ±Ep . (7.37)

Let us now consider the spin operator in the direction of p = (0,0, p). This is the oper-
ator S12. Indeed,

S12 = i
4
[γ1, γ2] = i

4
(βα1βα2 − βα2βα1)

=
i
4
(−α1α2 + α2α1) = i

4
(−α1α2 − α1α2)

= − iαxαy/2 = σz/2 = Sz . (7.38)

The spin operator in the z direction commutes, of course, with the Hamiltonian oper-
ator H = αzp + βm. The solutions we are looking for are the eigenvectors common to
the Hamiltonian H and the z component of the spin operator Sz = σz/2. Let us first
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consider the case where u1 = 1 and u2 = 0. After normalizing, using the condition
u†u = 1, we find that

u↑E+ (p) = √Ep +m2Ep
(

1
0
p

Ep+m
0

) , (7.39)

where u↑E+ (p) is the eigenvector with spin up and positive energy. The other three
eigenvectors can be obtained using a similar procedure. The eigenvector with spin
down and positive energy is

u↓E+ (p) = √Ep +m2Ep
(

0
1
0
− p
Ep+m
) , (7.40)

and the two eigenvectors with negative energy (with spin up and spin down, respec-
tively) are:

u↑E− (p) = √Ep +m2Ep
(

− p
Ep+m
0
1
0

) , (7.41)

u↓E− (p) = √Ep +m2Ep
(

0
p

Ep+m
0
1

) . (7.42)

Let us consider, for example, the positive energy solution corresponding to spin up
and calculate the ratio between the u3 component and the u1 component:

u3/u1 = p/(Ep +m) . (7.43)

In the nonrelativistic limit, this ratio is of the order of v: Therefore, u3 is negligible
compared to u1. In other words, in the nonrelativistic limit, the Dirac theory with four-
component spinors is reduced to a theory with two-component spinors. We will fur-
ther discuss, in the next section, this important result, considering the much more
interesting case of the nonrelativistic limit for the description of a Dirac particle in an
electromagnetic field.
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7.4 The Pauli equation

Let us remind our readers that in 1925 the spin model proposed by Goudsmit and Uh-
lenbeck provided results in agreement with all the experimental evidence about spin,
apart from the value of g that had to be equal to 2 instead of 1.

Let us consider an electron in an electromagnetic field. To proceed, let us express
the four-component spinor Ψ as

Ψ = (Φ
χ
) , (7.44)

where Φ and χ are two-components spinors. It is easy to see that the Dirac equation
can be reformulated into the following pair of equations:

σ ⋅ (p − eA)χ = (E − eφ − m)Φ , (7.45)

σ ⋅ (p − eA)Φ = (E − eφ + m)χ . (7.46)

In the last two equations, the components of the three-vector σ are the Pauli matrices.
From Eq. (7.46) we obtain

χ = σ ⋅ (p − eA)
(T − eφ + 2m)

Φ , (7.47)

where

T = E − m . (7.48)

Let us now see how Eq. (7.47) changes in the nonrelativistic limit. In this case,

eφ ≪ m (7.49)

and

T ≪ m , (7.50)

so that

χ = σ ⋅ (p − eA)
2m

Φ . (7.51)

Since

σ ⋅ (p − eA)
2m

= 𝒪(v) = 𝒪(
v
c
) , (7.52)
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Eq. (7.51) demonstrates that the two “high” components of the four-component spinor
are much larger than the two “low” components. In the nonrelativistic limit, χ and Φ
are the so-called small and large components, respectively.

From Eqs. (7.45) and (7.51), it follows that

{
1
2m
[σ ⋅ (p − eA)] [σ ⋅ (p − eA)] + eφ − T}Φ = 0 . (7.53)

For any pair of vectors a and b, with simple algebraic manipulations, it is possible to
show that

(σ ⋅ a) (σ ⋅ b) = a ⋅ b + iσ ⋅ a × b . (7.54)

Furthermore, it is also easy to prove that

(p − eA) × (p − eA) = ie∇ × A . (7.55)

Since ∇ × A = ℋ, whereℋ is the magnetic field, we can conclude that

(T − eφ)Φ = [ (p − eA)
2

2m
−

e
2m

σ ⋅ℋ]Φ . (7.56)

The spin operator S is given by

S = σ
2
, (7.57)

so that Eq. (7.56) can be rewritten as

(T − eφ)Φ = [ (p − eA)
2

2m
− g e

2m
S ⋅ℋ]Φ , (7.58)

where g = 2 is the gyromagnetic ratio of the electron. Equation (7.58) is the Pauli equa-
tion. g is equal to 2, as correctly predicted by the semiempirical model by Goudsmit
and Uhlenbeck which was based on a semiclassical visualization of the electron. This
is themost acclaimed success of theDirac equation. Not only the spin appears as a log-
ical consequence of the simultaneous presence of quantummechanics and relativity,
but the electron gyromagnetic ratio is predicted to be 2—in agreement with the experi-
mental evidence—without introducing any ad hoc hypotheses. Indeed, Dirac theory is
independent of any visualization of spin, which instead appears as a property of mat-
ter that derives directly from the need tomerge quantummechanics and relativity into
a single self-consistent theory. The electron, the simplest of particles, must possess
this property not by virtue of an intuitive model based on preconceptions borrowed
from classical physics (small electrically charged spheres rotating around their axis,
as itwas in the semiempiricalmodel proposedbyGoudsmit andUhlenbeck) but rather
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96 | 7 The Dirac equation and electron spin

to make its behavior consistent with the fundamental principles of quantummechan-
ics and relativity. While retaining its most relevant characteristics, like the spin and
the correct value of the gyromagnetic ratio, Dirac theory manages, at the same time,
to make the intuitive arguments of the model by Goudsmit and Uhlenbeck superflu-
ous.
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8 The Dirac theory of atoms

One of the most important applications of the Dirac theory and, in particular, of the
Dirac equation in a central field, is the description of the atom. In this chapter, after
a discussion about the radial Dirac equation describing an electron in a central field
[12], we will use it to investigate the atoms and the energy levels [21, 28]. Additionally,
we will show that, in the nonrelativistic limit, the Dirac theory provides exactly the
same energy levels predicted by the quantum theory [21, 28].

8.1 Dirac equation in a central field

The Hamiltonian operator of a Dirac particle in a central electromagnetic field is given
by

H = α ⋅ p + βm + V(r) , (8.1)

where V(r) is the potential energy. Please note that, since

∇V(r) = 𝜕V(r)
𝜕r

r
r
, (8.2)

then

r × ∇V(r) = 0 . (8.3)

Let us indicate with L = r × p the orbital angular momentum of the electron and
observe that, due to Eq. (8.3), it commutes with V(r). Indeed, by applying the commu-
tator of V(r) and L to Ψ, we obtain

[V ,L]Ψ = [V , r × p]Ψ = −i[V , r × ∇]Ψ
= −iVr × (∇Ψ) + ir × ∇(VΨ)
= −iVr × (∇Ψ) + ir × (V∇Ψ) + (ir × ∇V)Ψ = 0 . (8.4)

Let us indicate with σ the vector whose components are the Pauli matrices. We wish
to demonstrate that the total angular momentum J, defined as

J = L + σ
2
, (8.5)

is a constant of motion, while neither L nor σ are constants of motion. Let us start
calculating the time derivative of the angular momentum L. Since

dL
dt
= i[H ,L] = i[α ⋅ p + βm + V(r), r × p] , (8.6)

https://doi.org/10.1515/9783110675375-008
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98 | 8 The Dirac theory of atoms

we have, in particular,

dLz
dt
= i[αxpx + αypy + αzpz , xpy − y px] = iαx [px , x] py − iαy [py , y] px . (8.7)

The commutators [px , x], [py , y] (and [pz , z]) can be easily calculated keeping in mind
that they are operators and applying them to Ψ. For example,

[px , x]Ψ = [−i𝜕1, x]Ψ = [−i
𝜕
𝜕x
, x]Ψ

= −i 𝜕
𝜕x
(xΨ) + ix 𝜕Ψ

𝜕x
= −iΨ − ix 𝜕Ψ

𝜕x
+ ix 𝜕Ψ
𝜕x
= −iΨ .

Thus, we have

[px , x] = [py , y] = [pz , z] = −i , (8.8)

and, then,

dLz
dt
= iαx (−i) py − iαy (−i) px = αx py − αy px = (α × p)z . (8.9)

Proceeding in the same way with the components x and y of L, we conclude that

dL
dt
= α × p . (8.10)

Let us now calculate the time derivative of σ. Since

dσ
dt
= i[H ,σ] = i[α ⋅ p + βm + V(r),σ] , (8.11)

we have, in particular,

dσz
dt
= i[α ⋅ p + βm + V(r), σz] = i[α ⋅ p + βm ,−iαxαy] . (8.12)

From the properties of the αx, αy, αz, and βmatrices, it immediately follows that

[αz , αxαy] = 0 ,
[β, αxαy] = 0 ,

(8.13)

so that

dσz
dt
= i[αx px + αy py ,−iαxαy] = [αx px , αxαy] + [αy py , αxαy]

= px (α
2
xαy − αxαyαx) + py (αyαxαy − αxα

2
y)

= 2 (px αy − py αx) = −2 (α × p)z . (8.14)
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As a consequence,

dσ
dt
= − 2α × p . (8.15)

Thus,

dL
dt
+

1
2
dσ
dt
= 0, (8.16)

or

dJ
dt
= 0 . (8.17)

J is thus a constant ofmotion. In order to proceed,we need to expressα ⋅p as a function
of the operator 𝒦, defined by

𝒦 = β(1 + σ ⋅ L) .1 (8.18)

From the definition of J we have

J2 − L2 = 3
4
+ σ ⋅ L , (8.19)

and, as a consequence,

𝒦 = β(J2 − L2 + 1
4
) . (8.20)

Since

σ ⋅ L = σxLx + σyLy + σzLz = (

Lz Lx − iLy 0 0
Lx + iLy −Lz 0 0

0 0 Lz Lx − iLy
0 0 Lx + iLy −Lz

) , (8.21)

we have

1 + σ ⋅ L = (

Lz + 1 Lx − iLy 0 0
Lx + iLy −Lz + 1 0 0

0 0 Lz + 1 Lx − iLy
0 0 Lx + iLy −Lz + 1

) = (
A 0
0 A
) , (8.22)

1 Please note that 1 is the 4×4 identity matrix I, and the three components of σ are the doubled Pauli
spinmatrices. Keep inmind that we use the same symbols σx, σy, and σz to indicate both the 2× 2 spin
Pauli matrices and the 4 × 4 doubled spin Pauli matrices. Also, the symbol 1 is used to indicate the
number 1, the 2 × 2 unit matrix, and the 4 × 4 unit matrix, depending on the context, which always
allows identification of the matrix size.
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where

A = ( Lz + 1 Lx − iLy
Lx + iLy −Lz + 1

) . (8.23)

Thus,

𝒦 = β(1 + σ ⋅ L) = (1 0
0 −1
) (

A 0
0 A
)

= (
A 0
0 −A
) = (

Lz + 1 Lx − iLy 0 0
Lx + iLy −Lz + 1 0 0

0 0 −Lz − 1 −Lx + iLy
0 0 −Lx − iLy Lz − 1

) , (8.24)

𝒦β = (A 0
0 −A
) (

1 0
0 −1
) = (

A 0
0 A
) = 1 + σ ⋅ L , (8.25)

β𝒦 = (1 0
0 −1
)(

A 0
0 −A
) = (

A 0
0 A
) = 1 + σ ⋅ L , (8.26)

so that

[β,𝒦] = 0 . (8.27)

It is possible to show that the operator 𝒦 also commutes with any function of r,
with the operator L2, and with the Hamiltonian H. Let us now introduce the radial-
momentum operator pr, which commutes with 𝒦:

pr = −i
1
r
𝜕
𝜕r

r . (8.28)

Please note that

pr =
r ⋅ p − i

r
. (8.29)

This can be easily seen by applying pr to Ψ:

pr Ψ = (−i
1
r
𝜕
𝜕r

r)Ψ = − iΨ
r
− i 1

r
r 𝜕ψ
𝜕r

=
1
r
[−iΨ + r(−i 𝜕

𝜕r
)Ψ] = 1

r
[−iΨ + r ⋅ (−i𝜕Ψ

𝜕r
r
r
)]

=
1
r
[−iΨ + r ⋅ (−i∇Ψ)] = 1

r
(−i + r ⋅ p)Ψ .

Let us also introduce the radial component αr of the operator α:

αr =
α ⋅ r
r
. (8.30)
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It anticommutes with β, commutes with 𝒦, and has the following property:

α2r = 1 . (8.31)

Indeed,

α2r =
(αx x + αy y + αz z)(αx x + αy y + αz z)

r2

=
α2x x

2 + α2y y
2 + α2z x

2 + {αx , αy}xy + {αy , αz}yz + {αz , αx}zx
r2

=
x2 + y2 + z2

r2
= 1 .

The same result can be obtained observing that, since for any a and b,

(σ ⋅ a)(σ ⋅ b) = a ⋅ b + iσ ⋅ a × b ,

and

(α ⋅ a)(α ⋅ b) = (σ ⋅ a)(σ ⋅ b) , 2

we have

(α ⋅ a) (α ⋅ b) = a ⋅ b + iσ ⋅ a × b .

Thus,

α2r =
(α ⋅ r) (α ⋅ r)

r2
=

r ⋅ r
r2
= 1 .

Also note that

(α ⋅ r) (α ⋅ p) = r ⋅ p + iσ ⋅ r × p = r ⋅ p + iσ ⋅ L .

Since

r ⋅ p = r pr + i

and

iβ𝒦 = iβ2(1 + σ ⋅ L) = i + iσ ⋅ L ,

2 This identity is left for the reader to be derived as an exercise.
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we obtain

(α ⋅ r) (α ⋅ p) = rpr + iβ𝒦 . (8.32)

Equation (8.32) is equivalent to

αr(α ⋅ p) = ( pr +
iβ𝒦
r
) , (8.33)

or, after multiplying on the left by αr,

(α ⋅ p) = αr( pr +
iβ𝒦
r
) . (8.34)

As a consequence, the Hamiltonian operator H can be rewritten as

H = αr( pr +
iβ𝒦
r
) + βm + V(r) , (8.35)

and the Dirac equation can be expressed by

[αr( pr +
iβ𝒦
r
) + βm + V(r)]Ψ = EΨ . (8.36)

8.2 Dirac radial equations

Let us indicate with ζ the eigenvector common to the commuting set of operators β,
𝒦, L2, and Jz, so that

βζ = ζ , (8.37)
𝒦ζ = − k ζ , (8.38)

L2ζ = l(l + 1)ζ , (8.39)
Jzζ = mjζ , (8.40)

where 1, −k, l(l + 1) andmz are their eigenvalues. Let us now define a new function, η,
as

η = − αr ζ . (8.41)

It is evident that η has the following properties:

ζ = − αr η , (8.42)
βη = −βαrζ = αrβζ = αrζ = −η , (8.43)
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and

𝒦η = − k η . (8.44)

Let us now linearly combine ζ and η to obtain the spinor we are looking for:

Ψ = F(r)η + iG(r)ζ . (8.45)

It is easy to see, using this equation and the Dirac equation (8.36), that

αr pr F(r) η = i[
dF(r)
dr
+
F(r)
r
] ζ , (8.46)

iαr pr G(r) ζ = −[
dG(r)
dr
+
G(r)
r
] η , (8.47)

iαrβ𝒦
r

F(r) η = − i
r
F(r) k ζ , (8.48)

iαrβ𝒦
r

iG(r) ζ = − 1
r
G(r) k η , (8.49)

βmF(r) η = −mF(r) η , (8.50)
βm iG(r) ζ = imG(r) ζ . (8.51)

Since ζ and η are linearly independent, we obtain

[E + m − V(r)] F(r) + dG(r)
dr
+
1 + k
r

G(r) = 0 , (8.52)

− [E − m − V(r)]G(r) + dF(r)
dr
+
1 − k
r

F(r) = 0 , (8.53)

where

k = −(l + 1) , (8.54)

when

j = l + 1
2
, (8.55)

(spin up) and

k = l , (8.56)

when

j = l − 1
2

(8.57)
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(spin down). Indeed, from Eq. (8.20) we obtain

−k = j(j + 1) − (j − 1
2
)(j − 1

2
+ 1) + 1

4
= j + 1

2
,

for spin up and

−k = j(j + 1) − (j + 1
2
)(j + 1

2
+ 1) + 1

4
= −(j + 1

2
) ,

for spin down.3

Equations (8.52) and (8.53) represent the Dirac radial equations describing an
electron in a central field.

8.3 The Dirac theory of one-electron atoms

Let us consider an atomwith only one electron and a nucleus with Z protons. If Z = 1,
then we are dealing with the hydrogen atom. The potential φ has spherical symmetry
and is given by the Coulomb law:

φ(r) = Ze
r
. (8.58)

so that the potential energy is given by

V(r) = − κ
r
, (8.59)

where

κ = Ze2 . (8.60)

Let us introduce two new variables u(r) and v(r) such that

u(r) = −r G(r) , (8.61)
v(r) = r F(r) , (8.62)

so that the Dirac radial equations become

du
dr
+
k
r
u(r) − [E + m + κ

r
] v(r) = 0 , (8.63)

dv
dr
−
k
r
v(r) + [E − m + κ

r
] u(r) = 0 . (8.64)

3 Please note that, since j = 1/2 , 3/2 , 5/2 , . . . , it follows that k = ±1 ,±2 ,±3 , . . . .
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Let us define two new variables ϕ1 and ϕ2 such that

ϕ1 + ϕ2 =
exp(λ r)
√m + E

u(r) , (8.65)

ϕ1 − ϕ2 =
exp(λ r)
√m − E

v(r) , (8.66)

where

λ = √m2 − E2 . (8.67)

With these definitions, we have

dϕ1
dr
+
dϕ2
dr
= (λ − k

r
)(ϕ1 + ϕ2)

+ (E + m + κ
r
)√

m − E
m + E
(ϕ1 − ϕ2) , (8.68)

dϕ1
dr
−
dϕ2
dr
= (λ + k

r
)(ϕ1 − ϕ2)

− (E − m + κ
r
)√

m + E
m − E
(ϕ1 + ϕ2) . (8.69)

Adding these two equations, we obtain

dϕ1
dr
= 2λϕ1 −

k
r
ϕ2 −

Eκ
λ r

ϕ1 −
mκ
λr

ϕ2 , (8.70)

while, subtracting Eqs. (8.69) from (8.68), we have

dϕ2
dr
= −

k
r
ϕ1 +

mκ
λr

ϕ1 +
Eκ
λr
ϕ2 . (8.71)

These equations become more manageable by introducing the new variable

ρ = 2λr . (8.72)

Expressed as a function of ρ, they become

dϕ1
dρ
= (1 − Eκ

ρλ
)ϕ1 − (

k
ρ
+
mκ
ρλ
)ϕ2 , (8.73)

dϕ2
dρ
=

Eκ
ρλ

ϕ2 − (
k
ρ
−
mκ
ρλ
)ϕ1 . (8.74)
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To proceed and solve this system of differential equations, let us expand ϕ1 and ϕ2 in
a power series:

ϕ1(ρ) =
∞
∑
j=0

Aj ρ
j+s , (8.75)

ϕ2(ρ) =
∞
∑
j=0

Bj ρ
j+s . (8.76)

We will determine the value of s by requiring that these two power series satisfy the
differential equations (8.73) and (8.74). Substituting the power series (8.75) and (8.76)
in Eqs. (8.73) and (8.74), we obtain the following recursive relationships:

(s + j)Aj − Aj−1 +
Eκ
λ
Aj + (k +

mκ
λ
)Bj = 0 , (8.77)

(s + j)Bj + (k −
mκ
λ
)Aj −

Eκ
λ
Bj = 0 . (8.78)

Let us now consider the case j = 0. Since A−1 = 0, we have

sA0 +
Eκ
λ
A0 + (k +

mκ
λ
)B0 = 0 , (8.79)

sB0 + (k −
mκ
λ
)A0 −

Eκ
λ
B0 = 0 . (8.80)

Let us now rearrange these equations to obtain the following homogeneous system of
linear equations:

{
(s + Eκ

λ )A0 + (k +
mκ
λ )B0 = 0 ,

(k − mκ
λ )A0 + (s −

Eκ
λ )B0 = 0 .

(8.81)

Such a homogeneous system admits nontrivial solutions only if the determinant of the
matrix of coefficients is null:



s + Eκ/λ k + mκ/λ
k − mκ/λ s − Eκ/λ


= 0 . (8.82)

This means that

s2 − E2κ2

λ2
− (k2 − m2κ2

λ2
) = 0,

and therefore, since

λ2 = m2 − E2 ,
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we conclude that

s = ±√k2 − κ2 . (8.83)

To obtain square-integrable wave functions,

s = √k2 − κ2 . (8.84)

Let us consider now Eqs. (8.77) and (8.78). From Eq. (8.78), in particular, we obtain

Bj
Aj
=

k −mκ/λ
δ − j
, (8.85)

where

δ = Eκ/λ − s . (8.86)

Let us insert Eq. (8.85) into Eq. (8.77). By simple algebraic manipulations, we obtain

Aj =
j − δ
(2s + j) j

Aj−1 . (8.87)

Similarly, we have

Bj =
j − 1 − δ
(2s + j) j

Bj−1 . (8.88)

Recursively applying these two relationships, we can express Aj as a function of A0
and Bj as a function of B0. Taking into account the equation:

B0 =
k −mκ/λ

δ
A0 , (8.89)

Bj can also be expressed as a function of A0. Thus, as can be easily verified using the
recursive relationships, the functions ϕ1(ρ) and ϕ2(ρ) of the atoms with one electrons
are

ϕ1(ρ) = A0 ρ
sM(1 − δ, 2s + 1, ρ) , (8.90)

ϕ2(ρ) = A0
k −mκ/λ

δ
ρsM(−δ, 2s + 1, ρ) , (8.91)

whereM = M(α, β, ρ) is the confluent hypergeometric function:

M(α, β, ρ) = 1 + α
β
ρ + α (α + 1)

2! β (β + 1)
ρ2 + ⋅ ⋅ ⋅

+
α (α + 1) (α + 2) ⋅ ⋅ ⋅ (α + j − 1)
j! β (β + 1) (β + 2) ⋅ ⋅ ⋅ (β + j − 1)

ρj + ⋅ ⋅ ⋅ . (8.92)
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Note that, in particular, for α = 1 − δ and β = 2s + 1,

M(1 − δ, 2s + 1, ρ) = 1 + 1 − δ
2s + 1

ρ + ⋅ ⋅ ⋅ + (1 − δ) (2 − δ) ⋅ ⋅ ⋅ (j − δ)
j! (2s + 1) (2s + 2) ⋅ ⋅ ⋅ (2s + j)

ρj + ⋅ ⋅ ⋅ , (8.93)

while, for α = − δ and β = 2s + 1,

M(−δ, 2s+1, ρ) = 1 − δ
2s + 1

ρ + ⋅ ⋅ ⋅ + (−1)j δ (δ − 1) ⋅ ⋅ ⋅ (δ − j + 1)
j! (2s + 1) (2s + 2) ⋅ ⋅ ⋅ (2s + j)

ρj + ⋅ ⋅ ⋅ . (8.94)

Once the functionsϕ1(ρ) andϕ2(ρ) are known, simplemanipulationsmake it possible
to obtain the form of the wave functions F(r) and G(r).

8.4 The Dirac theory of one-electron atom energy levels

Let us now calculate the energy levels. Since

δ = Eκ
λ
− s = Eκ
√m2 − E2

− s , (8.95)

we have

√m2 − E2 δ = Eκ − s√m2 − E2 , (8.96)

and, as a consequence,

E2 = m2 (δ + s)2

(δ + s)2 + κ2

= m2 [
(δ + s)2 + κ2

(δ + s)2
]
−1

= m2 [1 + κ2

(δ + s)2
]
−1
.

Let us remind our readers that |k| = l+1 in the case of spin up, i. e. j = l+1/2, and |k| = l
in case of spin down, i. e. j = l − 1/2, and introduce the principal quantum number n

n = δ + |k| . (8.97)

The energy levels of the atom with only one electron are thus given by

E = m [1 + κ2

(n − |k| + s)2
]
−1/2
. (8.98)
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Let us consider the nonrelativistic limit. Since

s = √k2 − κ2 = |k|√1 − κ
2

k2
, (8.99)

s, in this limit, can be approximated as

s ≈ |k|(1 − κ2

2 k2
) . (8.100)

As a consequence,

E ≈ m [1 + κ2

(n − |k| + |k| − κ2
2|k| )

2
]
−1/2

≈ m(1 + κ2

n2
)
−1/2

≈ m(1 − κ2

2 n2
) .

As κ = Z e2, once the rest energy m is substracted, we find the equation describing
the nonrelativistic one-electron atom energy levels:

E − m ≈ −Z
2 e4m
2 n2
, (8.101)

with n = 1, 2, 3, 4, . . . .

8.5 Many-electron atoms

8.5.1 Screening function

Asweknow, assuming spherical symmetry, the screening function is the ratio between
the electrostatic potential experienced by an electron at a distance r from the nucleus
(which depends on the screening effect due to the presence of the cloud of atomic
electrons) and the electrostatic potential of the bare nucleus. In the literature many
approximate analytical screening functions have been suggested, based on the solu-
tion of the Schrödinger equation.

In Dirac–Hartree–Fock theory, instead of the Schrödinger equation the Dirac
equation is used to calculate one-electron orbitals. In this way all the relativistic ef-
fects are included on the one-electron orbitals and binding energies. Following the
Slater approximation, to deal with the exchange effects, Dirac–Hartree–Fock–Slater
self-consistent fields can be calculated to obtain the atomic screening functions and
thus provide the accurate analytical potentials.
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Let us consider an electron in a central potential, and let us indicate with V(r) the
potential energy:

V(r) = −eφ(r), (8.102)

where φ(r) is the central potential. For atoms with only one electron, the potential is
given by the Coulomb law [see Eq. (8.58)]:

φ(r) = Ze
r
.

We already know that in the case of atoms with many electrons we need to take into
account the effect of the screening of the atomic electrons on the Coulomb potential.
A possible solution is the introduction of a screening function ξ (r) so that

φ(r) = Ze
r
ξ (r) . (8.103)

A superimposition of Yukawa potentials represents a very good approximation of the
screening function. The screening function is, in this case, described by the following
equation:

ξ (r) = ∑
i
γi exp[−λi r] . (8.104)

The values of the parameters γi (∑i γi = 1) and λi are determined to obtain the best
fit with Hartree–Fock or, even better, with Dirac–Hartree–Fock self-contained calcu-
lations, so that the potential energy of an electron in the central potential due to a
many-electron atom can be expressed as (see Cox and Bonham [7] and Salvat et al.
[24])

V(r) = −Ze
2

r
∑
i
γi exp[−λi r] . (8.105)

8.5.2 Corrections to the electrostatic potential

Exchange effects
Furthermore, we also need to take into account the exchange of the incident electron
with an atomic electron. This phenomenon, known as the exchange effect, can be con-
veniently taken into consideration by adding an exchange potential to the potential
calculated by using the Dirac–Hartree–Fock theory.

The Furness and McCarthy potential Vex (see Furness and McCarthy [13]), even if
nonrelativistic, can be used with the Dirac theory because exchange is only a small
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correction to the electrostatic potential (see Salvat and Mayol [25]). It is given by:

Vex =
1
2
(E − V) − 1

2
√(E − V)2 + 4π a0 e4ρ , (8.106)

where E is the electron kinetic energy, e the electron charge, a0 the Bohr radius, and
ρ the atomic electron density (obtained from the Poisson equation).

Polarization of the electron cloud of the target atom
Another phenomenon that should be taken into account for the description of the
atomic potential is the polarization of the electron cloud of the target atom caused by
the passage of relatively slow electrons. If the electron is far from the atom, the Buck-
ingham potential Vp represents a good approximation of the effect of polarization of
the electron cloud. It is given by

Vp = −
αd e2

2(r2 + d2)2
, (8.107)

where αd is the atomic dipole polarizability. Please note that the parameter d avoids
the divergence of the Buckingham potential at r = 0. According to Salvat et al. [23], it
can be calculated by d4 = 0.5 αd a0 Z−1/3 b2, where

b2 = max[(E−50 eV)/(16 eV), 1]. (8.108)

Other phenomena
For a more complete description of the aforementioned and other phenomena (such
as correlation potential, solid-state effects in the case atoms are bound in a solid, and
loss of particles from the elastic channel to the inelastic channels), please see Salvat
et al. [23].
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9 Relativistic partial wave expansion method

In this chapter, the quantum relativistic theory of the elastic scattering of electrons by
atoms will be described [2, 3, 5, 8–10, 12, 14, 17–19, 23, 25]. After a discussion about
the scattering amplitudes and their relationshipwith the differential elastic scattering
cross-section, a procedure will be provided to numerically calculate the phase shifts,
i. e., the fundamental ingredients to compute scattering amplitudes and elastic scat-
tering cross-sections.

9.1 Scattering amplitudes

9.1.1 The fundamental equation

The fundamental equation of relativistic quantum mechanics is the Dirac equation.
The wave function is a four-component spinor. The asymptotic forms of the four com-
ponents of the scattered wave are

Ψj ∼r→∞ aj exp(iKz) + bj(ϑ,φ)
exp(iKr)

r
. (9.1)

In this chapter, we will indicate with K the relativistic wave number of the projectile.
If the spin is parallel to the direction of incidence (spin up), a1 = 1, a2 = 0, b1 =
f +(ϑ,φ), b2 = g+(ϑ,φ), where f + and g+ are two scattering amplitudes. In this case,
the asymptotic behavior of the two “high” components of the four-component spinor,
Ψ1 and Ψ2, is described by the following equations:

Ψ1 ∼r→∞ exp(iKz) + f +(ϑ,φ)exp(iKr)
r
, (9.2)

Ψ2 ∼r→∞ g+(ϑ,φ)exp(iKr)
r
. (9.3)

The case of spin antiparallel to the direction of incidence (spin down) corresponds to
a1 = 0, a2 = 1, b1 = g−(ϑ,φ), b2 = f −(ϑ,φ), and the asymptotic behaviour is, in this
second case, described by the following equations:

Ψ1 ∼r→∞ g−(ϑ,φ)exp(iKr)
r
, (9.4)

Ψ2 ∼r→∞ exp(iKz) + f −(ϑ,φ)exp(iKr)
r
. (9.5)

The differential elastic scattering cross-section can be calculated as

dσ
dΩ
=
∑4j=1 |bj|

2

∑4j=1 |aj|2
. (9.6)

https://doi.org/10.1515/9783110675375-009
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9.1 Scattering amplitudes | 113

Asymptotically, the scattered wave is made up of plane waves proceeding from the
center in various directions, and the coefficients of the solutions for a plane wave are
not all independent. From Eqs. (7.39) and (7.40), we see that

|b3|
|b1|
=
|b4|
|b2|
=
|a3|
|a1|
=
|a4|
|a2|
=

p
Ep +m
, (9.7)

so that

dσ
dΩ
=
|b1|2 + |b2|2

|a1|2 + |a2|2
. (9.8)

We know, from the previous chapter, that the Dirac equations for an electron in a cen-
tral field are given by

[E + m − V(r)]F±l (r) +
dG±l (r)
dr
+
1 + k
r

G±l (r) = 0 , (9.9)

−[E − m − V(r)]G±l (r) +
dF±l (r)
dr
+
1 − k
r

F±l (r) = 0 . (9.10)

The superscript “+” refers to the electrons with spin up (k = −l − 1) while “−” refers to
electrons with spin down (k = l). Let us now introduce the following new variables:

μ(r) ≡ E + m − V(r) , (9.11)
ν(r) ≡ E − m − V(r) , (9.12)

and let us indicate with μ′ the derivative of μ with respect to r:

μ′ = dμ
dr
. (9.13)

From Eq. (9.9) we obtain

F±l (r) = −
1
μ
(
dG±l
dr
+
1 + k
r

G±l ) (9.14)

and

dF±l
dr
=

μ′

μ2
(
dG±l
dr
+
1 + k
r

G±l )

−
1
μ
(
d2G±l
dr2
+
1 + k
r

dG±l
dr
−
1 + k
r2

G±l ) . (9.15)

Using now Eq. (9.10), after a few simple algebraic manipulations, we obtain:

d2G±l
dr2
+ (

2
r
−
μ′

μ
)
dG±l
dr
+ (μν − k(k + 1)

r2
−
1 + k
r

μ′

μ
)G±l = 0 . (9.16)
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9.1.2 Effective Dirac potential

Please note that, from

K2 = E2 − m2 , (9.17)

we see that

μν = K2 − 2EV + V2 . (9.18)

Let us now introduce the function 𝒢±l :

𝒢±l ≡
r

μ1/2
G±l , (9.19)

and define the effective Dirac potential U±l (r):

− U±l (r) = −2EV + V
2 −

k
r
μ′

μ
+

1
2
μ′′

μ
−

3
4
μ′2

μ2
. (9.20)

From Eq. (9.16) it follows that:

[
d2

dr2
−
k(k + 1)

r2
+ K2 − U±l (r)]𝒢

±
l = 0 . (9.21)

For large values of r, 𝒢±l is essentially sinusoidal. In fact, in this case, V(r) ≈ 0 and
since, in the same limit, μ ≈ E + m, it does not depend on r. Then, U±l ≈ 0. As a
consequence, when r →∞, we have

[
d2

dr2
−
k(k + 1)

r2
+ K2]𝒢±l = 0 . (9.22)

Please note that k(k + 1) = l(l + 1). In fact, when spin is down k = l, while when spin
is up

k(k + 1) = (−l − 1)(−l − 1 + 1) = −(l + 1)(−l) = l(l + 1) .

So, when r →∞, we have

[
d2

dr2
−
l(l + 1)

r2
+ K2]𝒢±l = 0 . (9.23)

SinceKrjl(Kr) andKrnl(Kr) are solutions to this equation,we conclude that, for r →∞,
G±l is a linear combination of jl(Kr) and nl(Kr).
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9.1.3 Phase shifts

We have learned that, when r is large enough, V(r) is negligible, U±l is negligible as
well, and the solution to Eq. (9.22) is therefore a linear combination of the regular and
irregular spherical Bessel functions multiplied by Kr. From

𝒢±l = (r/μ
1/2)G±l

it follows that we can write

G±l ∼r→∞ jl(Kr) cos η
±
l − nl(Kr) sin η

±
l , (9.24)

where η±l are constants to be determined (the phase shifts). Taking into account the
asymptotic behaviour of the Bessel functions,

jl(Kr) ∼r→∞
1
Kr

sin(Kr − lπ
2
) , (9.25)

nl(Kr) ∼r→∞ −
1
Kr

cos(Kr − lπ
2
) , (9.26)

we can therefore write

G±l ∼r→∞
1
Kr

sin(Kr − lπ
2
) cos η±l +

1
Kr

cos(Kr − lπ
2
) sin η±l . (9.27)

As a consequence,

G+l ∼r→∞
1
Kr

sin(Kr − lπ
2
+ η+l ) , (9.28)

and

G−l ∼r→∞
1
Kr

sin(Kr − lπ
2
+ η−l ) . (9.29)

The phase shifts η±l represent the effect of the potential V(r) on the phases of the scat-
tered waves.

9.1.4 Scattering amplitudes

Let us expand now Ψ1 and Ψ2 in spherical harmonics:

Ψ1 =
∞
∑
l=0
[AlG
+
l + BlG

−
l ]Pl(cos ϑ) , (9.30)
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Ψ2 =
∞
∑
l=1
[ClG
+
l + DlG

−
l ]P

1
l (cos ϑ) exp(iφ) . (9.31)

The coefficients Al, Bl, Cl, and Dl can be determined by considering the asymptotic
behaviors of the functions. Let us begin with the function Ψ1:

Ψ1 − exp(iKz) =
∞
∑
l=0
[AlG
+
l + BlG

−
l − (2l + 1)i

ljl(Kr)]Pl(cos ϑ) . (9.32)

Since

Ψ1 − exp(iKz) ∼r→∞
exp(iKr)

r
f +(ϑ,φ) , (9.33)

we have:

1
Kr

∞
∑
l=0
[Al sin(Kr −

lπ
2
+ η+l ) + Bl sin(Kr −

lπ
2
+ η−l )

− (2l + 1)il sin(Kr − lπ
2
)]Pl(cos ϑ)

=
exp(iKr)

r
f +(ϑ,φ) . (9.34)

Therefore,

exp(iKr)
2iKr

∞
∑
l=0

exp(−i lπ
2
)

× [Al exp(iη
+
l ) + Bl exp(iη

−
l ) − (2l + 1)i

l]Pl(cos ϑ)

−
exp(−iKr)

2iKr

∞
∑
l=0

exp(i lπ
2
)

× [Al exp(−iη
+
l ) + Bl exp(−iη

−
l ) − (2l + 1)i

l]Pl(cos ϑ)

=
exp(iKr)

r
f +(ϑ,φ) . (9.35)

To satisfy the asymptotic conditions, the coefficient of

−
exp(−iKr)

2iKr

must be null, so that we have

Al exp(−iη
+
l ) + Bl exp(−iη

−
l ) = (2l + 1)i

l . (9.36)
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With the choices

Al = (l + 1)i
l exp(iη+l ) , (9.37)

Bl = li
l exp(iη−l ) , (9.38)

Eq. (9.36) is satisfied. Proceeding in a similar way for the Ψ2 function, since

Ψ2 ∼r→∞
exp(iKr)

r
g+(ϑ,φ) , (9.39)

we can write

∞
∑
l=1
[ClG
+
l + DlG

−
l ]P

1
l (cos ϑ) exp(iφ) =

exp(iKr)
r

g+(ϑ,φ) , (9.40)

obtaining

Cl exp(−iη
+
l ) + Dl exp(−iη

−
l ) = 0 . (9.41)

This equation is satisfied if

Cl = −i
l exp(iη+l ) , (9.42)

Dl = i
l exp(iη−l ) . (9.43)

In conclusion, for electrons with spins parallel to the direction of incidence (spin up),

Ψ1 =
∞
∑
l=0
[(l + 1) exp(iη+l )G

+
l + l exp(iη

−
l )G
−
l ]i

lPl(cos ϑ) , (9.44)

Ψ2 =
∞
∑
l=1
[exp(iη−l )G

−
l − exp(iη

+
l )G
+
l ]i

lP1l (cos ϑ) exp(iφ) , (9.45)

so that, using Eq. (9.35),

f +(ϑ,φ) = f +(ϑ)

=
1
2iK

∞
∑
l=0
{(l + 1) [exp(2iη+l ) − 1]

+ l [exp(2iη−l ) − 1]}Pl(cos ϑ) . (9.46)

Similarly, we obtain

g+(ϑ,φ) = 1
2iK

∞
∑
l=1
[exp(2iη−l ) − exp(2iη

+
l )]P

1
l (cos ϑ) exp(iφ) . (9.47)
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For electronswith spins antiparallel to the direction of incidence (spin down),wehave

f −(ϑ) = f +(ϑ) (9.48)

and

g−(ϑ,φ) = −g+(ϑ,φ) exp(−2iφ) , (9.49)

wherewe indicate by f − and g− the scattering amplitudes for the case of electronswith
spin down. Once defined, the functions

f (ϑ) =
∞
∑
l=0

𝒜lPl(cos ϑ) , (9.50)

g(ϑ) =
∞
∑
l=0

ℬlP
1
l (cos ϑ) , (9.51)

where

𝒜l =
1
2iK
{(l + 1) [exp(2iη+l ) − 1] + l [exp(2iη

−
l ) − 1]} , (9.52)

ℬl =
1
2iK
[exp(2iη−l ) − exp(2iη

+
l )] , (9.53)

we have

f + = f − = f , (9.54)
g+ = g exp(iφ), (9.55)

and

g− = −g exp(−iφ) . (9.56)

9.2 Elastic scattering cross-section

9.2.1 Relativistic elastic scattering cross-section

Let us note first that, for electrons with spin up, we have:

dσ
dΩ
=
|f +|2 + |g+|2

1 + 0
= |f |2 + |g|2 (9.57)

as, in this case, a1 = 1, a2 = 0 b1 = f + , and b2 = g+ . The case of electrons with spin
down provides an identical result since, in this case, a1 = 0, a2 = 1 b1 = g− , and
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b2 = f − , so that

dσ
dΩ
=
|g−|2 + |f −|2

0 + 1
= |f |2 + |g|2 . (9.58)

For an arbitrary spin direction, the electron incident plane wave will be given by Ψ1 =
A exp(iKz) and Ψ2 = B exp(iKz). As a consequence, a1 = A and a2 = B. Furthermore,

b1 = Af
+ + Bg− = Af − Bg exp(−iφ) , (9.59)

b2 = Ag
+ + Bf − = Bf + Ag exp(iφ) .1 (9.60)

Thus we have

|b1|
2 = |A|2|f |2 + |B|2|g|2 − AB∗fg∗ exp(iφ) − A∗Bf ∗g exp(−iφ)

and

|b2|
2 = |B|2|f |2 + |A|2|g|2 + AB∗f ∗g exp(iφ) + A∗Bfg∗ exp(−iφ) ,

so that

|b1|
2 + |b2|

2

= (|f |2 + |g|2){|A|2 + |B|2 + i(i fg
∗ − f ∗g
|f |2 + |g|2

)[AB∗ exp(iφ) − A∗B exp(−iφ)]} .

Therefore,

dσ
dΩ
=
|b1|2 + |b2|2

|a1|2 + |a2|2

= (|f |2 + |g|2){1 + iS(ϑ)[AB
∗ exp(iφ) − A∗B exp(−iφ)
|A|2 + |B|2

]} , (9.61)

where we have introduced the Sherman function S(ϑ) defined by

S(ϑ) = i fg
∗ − f ∗g
|f |2 + |g|2

. (9.62)

If σ1, σ2 and σ3 are the Pauli matrices and η is the two-component spinor

η = (A/
√|A|2 + |B|2

B/√|A|2 + |B|2
) = (

α
β
) , (9.63)

1 Please note that, from Eqs. (9.59) and (9.60), we obtain b1 = f +, b2 = g+ if A = a1 = 1 and
B = a2 = 0, and b1 = g−, b2 = f − if A = a1 = 0 and B = a2 = 1.
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η† = ( A∗

√|A|2 + |B|2
B∗

√|A|2 + |B|2
) = (α∗, β∗) , (9.64)

then

iAB
∗ exp(iφ) − A∗B exp(−iφ)
|A|2 + |B|2

= η†(σy cosφ − σx sinφ)η . (9.65)

Indeed,

σy cosφ − σx sinφ = (
0 −i cosφ

i cosφ 0
) − (

0 sinφ
sinφ 0

)

= (
0 − sinφ − i cosφ

− sinφ + i cosφ 0
) = i( 0 −e

−iφ

eiφ 0
) .

Thus, we have

η†(σy cosφ − σx sinφ)η = i(α
∗, β∗) ( 0 −e

−iφ

eiφ 0
)(

α
β
)

= i(αβ∗eiφ − α∗βe−iφ) = iAB
∗ exp(iφ) − A∗B exp(−iφ)
|A|2 + |B|2

.

Since the z axis has been chosen along the direction of electron incidence, the unit
vector perpendicular to the plane of scattering is given by

n̂ = (
− sinφ
cosφ
0
) , (9.66)

and, hence,

σ ⋅ n̂ = σy cosφ − σx sinφ . (9.67)

Thus, we can write

η†(σy cosφ − σx sinφ)η = P ⋅ n̂ , (9.68)

where

P = ⟨σ⟩ (9.69)

is the initial spin-polarization vector of the electronbeam. Thus, the differential elastic
scattering cross-section can also be written as

dσ
dΩ
= (|f |2 + |g|2)[1 + S(ϑ)P ⋅ n̂] . (9.70)
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Eq. (9.70), obtained here for pure spin states (i. e. for fully polarized beams, so that
|P| = 1), is valid also for a mixture of spin states (with any degree of polarization, i. e.
0 ≤ |P| ≤ 1). Note that, if the beam is completely unpolarized, then P = 0 and

dσ
dΩ
= |f |2 + |g|2 . (9.71)

The total elastic scattering cross-section σ and the transport elastic scattering cross-
section σtr are defined by

σ = 2π
π

∫
0

dσ
dΩ

sin ϑ dϑ , (9.72)

σtr = 2π
π

∫
0

(1 − cos ϑ) dσ
dΩ

sin ϑ dϑ (9.73)

and can be easily calculated by numerical integration.

9.2.2 Nonrelativistic limit

By imposing

η−l = η
+
l = ηl (9.74)

in the previous equations, we obtain the nonrelativistic result. Indeed, in this case,
we have

𝒜l =
1
2iK
{(l + 1)[exp(2iηl) − 1] + l[exp(2iηl) − 1]}

=
1
2iK
(2l + 1)[exp(2iηl) − 1] , (9.75)

ℬl = 0 , (9.76)

so that

f (ϑ) = 1
2iK

∞
∑
l=0
(2l + 1)[exp(2iηl) − 1]Pl(cos ϑ)

=
1
K

∞
∑
l=0
(2l + 1) exp(iηl) sin ηlPl(cos ϑ) , (9.77)

g(ϑ) = 0, (9.78)

and

dσ
dΩ
= |f |2 . (9.79)
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9.3 Phase-shift calculation

9.3.1 Lin, Sherman, and Percus transformation

Let us perform the following transformation (Lin, Sherman, and Percus [17]):

F±l (r) = a
±
l (r)

sinϕ±l (r)
r
, (9.80)

G±l (r) = a
±
l (r)

cosϕ±l (r)
r
. (9.81)

Equations (9.9) and (9.10) become

[E + m − V(r)] tanϕ±l (r) +
1

a±l (r)
da±l (r)
dr

− tanϕ±l (r)
dϕ±l (r)
dr
+
k
r
= 0 , (9.82)

−[E − m − V(r)] cotϕ±l (r) +
1

a±l (r)
da±l (r)
dr

+ cotϕ±l (r)
dϕ±l (r)
dr
−
k
r
= 0 . (9.83)

From these equations, we obtain

dϕ±l (r)
dr
= E + m − V(r) + 1

a±l (r)
da±l (r)
dr

1
tanϕ±l (r)

+
k
r

1
tanϕ±l (r)

, (9.84)

and

dϕ±l (r)
dr
= E − m − V(r) − 1

a±l (r)
da±l (r)
dr

1
cotϕ±l (r)

+
k
r

1
cotϕ±l (r)

. (9.85)

As a consequence,

2m + 1
a±l (r)

da±l (r)
dr
[

1
tanϕ±l (r)

+
1

cotϕ±l (r)
] +

k
r
[

1
tanϕ±l (r)

−
1

cotϕ±l (r)
]

= 2m + 1
a±l (r)

da±l (r)
dr

2
sin 2ϕ±l (r)

+
k
r
2 cos 2ϕ±l (r)
sin 2ϕ±l (r)

= 0 ,

so that

1
a±l (r)

da±l (r)
dr
= −m sin 2ϕ±l (r) −

k
r
cos 2ϕ±l (r) . (9.86)
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Combining now Eqs. (9.84) and (9.86), we obtain

dϕ±l (r)
dr
= E + m − V(r) + [−m sin 2ϕ±l (r) −

k
r
cos 2ϕ±l (r)] cotϕ

±
l (r) +

k
r
cotϕ±l (r)

= E +m [1 − sin 2ϕ±l (r) cotϕ
±
l (r)] +

k
r
cotϕ±l (r) [1 − cos 2ϕ

±
l (r)] − V(r) .

Since

1 − sin 2ϕ±l (r) cotϕ
±
l (r) = − cos 2ϕ

±
l (r)

and

cotϕ±l (r) [1 − cos 2ϕ
±
l (r)] = sin 2ϕ

±
l (r) ,

we conclude that

dϕ±l (r)
dr
=

k
r
sin 2ϕ±l (r) − m cos 2ϕ±l (r) + E − V(r) . (9.87)

9.3.2 Phase shifts

Let us now calculate the phase shifts. Examining Eq. (9.81), we obtain

G′±l =
a′±l cosϕ±l (r)

r
−
a±l
r
sinϕ±l (r)ϕ

′±
l (r) −

a±l cosϕ
±
l (r)

r2
, (9.88)

so that

G′±l
G±l
=

a′±l
a±l
− ϕ′±l (r) tanϕ

±
l (r) −

1
r
. (9.89)

Thus,

G′±l
G±l
= −m sin 2ϕ±l (r) −

k
r
cos 2ϕ±l (r)

− [
k
r
sin 2ϕ±l (r) − m cos 2ϕ±l (r) + E − V(r)] tanϕ

±
l (r) −

1
r

= −
k
r
[cos 2ϕ±l (r) + sin 2ϕ

±
l (r) tanϕ

±
l (r)]

− m [sin 2ϕ±l (r) − cos 2ϕ
±
l (r) tanϕ

±
l (r)] − [E − V(r)] tanϕ

±
l (r) −

1
r
.
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Since

cos 2ϕ±l (r) + sin 2ϕ
±
l (r) tanϕ

±
l (r)

= cos2 ϕ±l (r) − sin
2 ϕ±l (r) + 2 sin

2 ϕ±l (r) = 1

and

sin 2ϕ±l (r) − cos 2ϕ
±
l (r) tanϕ

±
l (r)

= 2 sinϕ±l (r) cosϕ
±
l (r) − sinϕ

±
l (r) cosϕ

±
l (r) + tanϕ

±
l (r) sin

2 ϕ±l (r)

= sinϕ±l (r)[
cos2 ϕ±l (r) + sin

2 ϕ±l (r)
cosϕ±l (r)

] = tanϕ±l (r) ,

we have

G′±l
G±l
= −(E + m − V) tanϕ±l (r) −

1 + k
r
. (9.90)

Keep in mind that the asymptotic form of the solution in the regions corresponding to
large values of r for whichV(r) ≈ 0 is given by Eq. (9.24), repeated here for the reader’s
convenience:

G±l ∼r→∞ jl(Kr) cos η
±
l − nl(Kr) sin η

±
l ,

where K2 = E2 −m2, η±l is the lth phase shift, and jl and nl are, respectively, the regular
and irregular spherical Bessel functions. Therefore,

G′±l
G±l
=

Kj′l (Kr) cos η
±
l − Kn

′
l (Kr) sin η

±
l

jl(Kr) cos η±l − nl(Kr) sin η
±
l
. (9.91)

Taking into account the properties of the Bessel functions, Eqs. (2.45) and (2.46),

xjl− 1 − (2l + 1)jl + xjl+ 1 = 0 , (9.92)

xjl− 1 − (l + 1)jl − x
djl
dx
= 0 , (9.93)

xnl− 1 − (2l + 1)nl + xnl+ 1 = 0 , (9.94)

xnl− 1 − (l + 1)nl − x
dnl
dx
= 0 , (9.95)

it is easy to see that

j′l (x) =
l
x
jl(x) − jl+ 1(x) , (9.96)

n′l (x) =
l
x
nl(x) − nl+ 1(x) . (9.97)
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As a consequence, we have

G′±l
G±l
=

K[ lKr jl(Kr) − jl+1(Kr)] cos η
±
l − K[

l
Krnl(Kr) − nl+1(Kr)] sin η

±
l

jl(Kr) cos η±l − nl(Kr) sin η
±
l

=
(l/r)jl(Kr) − Kjl+1(Kr) − [(l/r)nl(Kr) − Knl+1(Kr)] tan η±l

jl(Kr) − nl(Kr) tan η±l
,

so that

tan η±l =
(l/r)jl(Kr) − Kjl+ 1(Kr) − jl(Kr)(G′±l /G

±
l )

(l/r)nl(Kr) − Knl+ 1(Kr) − nl(Kr)(G′±l /G
±
l )
. (9.98)

Let us now define

ϕ̃±l = lim
r→∞

ϕ±l (r) . (9.99)

For large values of r, V(r) ≈ 0 and Eq. (9.90) becomes

G′±l
G±l
= −(E +m) tan ϕ̃±l −

1 + k
r
, (9.100)

so that

(l/r)jl(Kr) − Kjl+ 1(Kr) − jl(Kr)(G
′±
l /G
±
l )

= −Kjl+ 1(Kr) + jl(Kr)[(E + m) tan ϕ̃
±
l + (1 + l + k)/r] ,

(l/r)nl(Kr) − Knl+ 1(Kr) − nl(Kr)(G
′±
l /G
±
l )

= −Knl+1(Kr) + nl(Kr)[(E + m) tan ϕ̃
±
l + (1 + l + k)/r] .

Therefore,

tan η±l =
Kjl+1(Kr) − jl(Kr)[(E +m) tan ϕ̃±l + (1 + l + k)/r]

Knl+ 1(Kr) − nl(Kr)[(E + m) tan ϕ̃±l + (1 + l + k)/r]
. (9.101)

Using the previous equation, we can calculate the phase shifts of the scattered wave
and, therefore, the differential elastic scattering cross-section.

9.3.3 Numerical approach

To calculate phase shifts using Eq. (9.101), it is necessary to know ϕ̃±l . This means that
we need to numerically solve Eq. (9.87) up to a radius rmax, where the potential can be
considered negligible. The numerical integration of Eq. (9.87) using, for example, the
fourth-order Runge–Kutta method, requires knowing the function ϕ±l when r is very
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small. It is also necessary to know the value of the potential for very small values of r.
For 0 < r < ℏ/mc, the spherical symmetric electrostatic potential experienced by an
electron at distance r from the nucleus, V(r), may be approximated by the following
equation:

V(r) ∼
r→0
−
Z0 + Z1r + Z2r2 + Z3r3

r
. (9.102)

Let us express, as usual, the electrostatic potential as the product of the potential of a
bare nucleus multiplied by a screening function ξ (r) having the analytical form:

ξ (r) =
p
∑
i=1

γi exp(−λir) ,

p
∑
i=1

γi = 1 .

Using this equation, we can easily evaluate Z0, Z1, Z2, and Z3 as:

Z0 = Ze
2∑

i
γi = Ze

2 , (9.103)

Z1 = −Z0
p
∑
i=1

λi γi , (9.104)

Z2 =
Z0
2

p
∑
i=1

λ2i γi , (9.105)

Z3 = −
Z0
6

p
∑
i=1

λ3i γi . (9.106)

Expanding ϕ±l as a power series, we obtain

ϕ±l (r) = ϕ
±
l0 + ϕ

±
l1r + ϕ

±
l2r

2 + ϕ±l3r
3 + ⋅ ⋅ ⋅ . (9.107)

The relationships between the coefficients of this expansion and Z0, Z1, Z2, Z3 are the
following:2

sin 2ϕ±l0 = −
Z0
k
, (9.108)

ϕ±l1 =
E + Z1 − m cos 2ϕ±l0
1 − 2k cos 2ϕ±l0

, (9.109)

2 The simple but rather lengthy demonstration, which can be obtained by substituting Eqs. (9.102)
and (9.107) in Eq. (9.87), is left to the reader as a useful exercise.
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ϕ±l2 =
2ϕ±l1 sin 2ϕ

±
l0(m − kϕ

±
l1) + Z2

2 − 2k cos 2ϕ±l0
, (9.110)

ϕ±l3 =
2ϕ±l2 sin 2ϕ

±
l0(m − 2kϕ

±
l1) + 2ϕ

±2
l1 cos 2ϕ±l0[m − (2/3)kϕ

±
l1] + Z3

3 − 2k cos 2ϕ±l0
, (9.111)

with the extra conditions:

0 ≤ 2ϕ±l0 ≤
1
2
π (9.112)

if k < 0, and

π ≤ 2ϕ±l0 ≤
3
2
π (9.113)

if k > 0.
If we use the mass of the electron as unit of energy (and mass), thenm = 1 and3

W = E
m
. (9.114)

Equations (9.109), (9.110), and (9.111) become

ϕ±l1 =
W + Z1 − cos 2ϕ±l0
1 − 2k cos 2ϕ±l0

, (9.115)

ϕ±l2 =
2ϕ±l1 sin 2ϕ

±
l0(1 − kϕ

±
l1) + Z2

2 − 2k cos 2ϕ±l0
, (9.116)

ϕ±l3 =
2ϕ±l2 sin 2ϕ

±
l0(1 − 2kϕ

±
l1) + 2ϕ

±2
l1 cos 2ϕ±l0[1 − (2/3)kϕ

±
l1] + Z3

3 − 2k cos 2ϕ±l0
. (9.117)

Please note that, with this choice of energy units, the equation for calculating the
phase shifts has the form:

tan η±l =
Kjl+ 1(Kr) − jl(Kr)[(W + 1) tan ϕ̃±l + (1 + l + k)/r]
Knl+ 1(Kr) − nl(Kr)[(W + 1) tan ϕ̃±l + (1 + l + k)/r]

. (9.118)

3 We use here the symbolW for indicating the energy to help keep in mind that it is expressed in m
units.
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9.4 Electron–molecule elastic scattering

According to Salvat et al. [23], when the target is a molecule, instead of an atom, and
the spin-polarization is null, then

dσ
dΩ
= ∑

m,n
exp(iq ⋅ rmn) [fm(ϑ)f

∗
n (ϑ) + gm(ϑ)g

∗
n (ϑ)] , (9.119)

where q is the momentum transfer, rmn = rm − rn, and rm is the position vector of the
mth atom in the molecule. Please note that this equation, in casem = n, so that

rmn = rm − rm = 0 ,

reduces to the previous one, describing electron–atom elastic scattering:

dσ
dΩ
= exp(0) [fm(ϑ)f

∗
m(ϑ) + gm(ϑ)g

∗
m(ϑ)] =

fm(ϑ)

2
+ gm(ϑ)


2
. (9.120)

If the molecules in the target are randomly oriented, we are allowed to average out all
the orientations. Please note that, if we indicate with α the angle between q and rmn,
we have

∫
π
0 2π sin α eiqrmn cos α dα

∫
π
0 2π sin α dα

=
∫
1
−1 e

iqrmn u du

∫
1
−1 du

=
1
2

1

∫
−1

cos(q rmn u) du =
sin qrmn
qrmn
,

so that Eq. (9.119) can be simplified as follows:

dσ
dΩ
= ∑

m,n

sin qrmn
qrmn
[fm(ϑ)f

∗
n (ϑ) + gm(ϑ)g

∗
n (ϑ)] , (9.121)

where the modulus of the momentum transfer is given by

q = 2K sin(ϑ/2) (9.122)

and K is the modulus of the momentum of the projectile. Let us consider now a ran-
domly oriented diatomic molecule. In this case we have

(
dσ
dΩ
) =

sin qr11
qr11
(f1f
∗
1 + g1g

∗
1 ) +

sin qr12
qr12
(f1f
∗
2 + g1g

∗
2 )

+
sin qr21
qr21
(f2f
∗
1 + g2g

∗
1 ) +

sin qr22
qr22
(f2f
∗
2 + g2g

∗
2 ) . (9.123)
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Because

sin qr11
qr11
=

sin qr22
qr22
= lim

x→0

sin x
x
= 1 , (9.124)

and

f1f
∗
1 + g1g

∗
1 = |f1|

2 + |g1|
2 = (

dσ
dΩ
)
1
, (9.125)

f2f
∗
2 + g2g

∗
2 = |f2|

2 + |g2|
2 = (

dσ
dΩ
)
2
, (9.126)

we have

(
dσ
dΩ
) = (

dσ
dΩ
)
1
+ (

dσ
dΩ
)
2

+
sin qr12
qr12
(f1f
∗
2 + g1g

∗
2 ) +

sin qr21
qr21
(f2f
∗
1 + g2g

∗
1 ) . (9.127)

Since

r12 = r21 , (9.128)

we can also write

(
dσ
dΩ
) = (

dσ
dΩ
)
1
+ (

dσ
dΩ
)
2

+
sin qr12
qr12
(f1f
∗
2 + f2f

∗
1 + g1g

∗
2 + g2g

∗
1 ) . (9.129)

Note that the frequently used additivity approximation:

(
dσ
dΩ
) = (

dσ
dΩ
)
1
+ (

dσ
dΩ
)
2
, (9.130)

neglects the term (sin qr12/qr12)(f1f ∗2 + f2f
∗
1 + g1g

∗
2 + g2g

∗
1 ). In the case of a three-atomic

molecule, we similarly obtain

(
dσ
dΩ
) = (

dσ
dΩ
)
1
+ (

dσ
dΩ
)
2
+ (

dσ
dΩ
)
3

+
sin qr12
qr12
(f1f
∗
2 + f2f

∗
1 + g1g

∗
2 + g2g

∗
1 )

+
sin qr23
qr23
(f2f
∗
3 + f3f

∗
2 + g2g

∗
3 + g3g

∗
2 )

+
sin qr31
qr31
(f3f
∗
1 + f1f

∗
3 + g3g

∗
1 + g1g

∗
3 ) . (9.131)
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10 Density matrix and spin-polarization phenomena

In this chapter, we will deal with the problem of the spin-polarization of electron
beams and show that it can be adequately and satisfactorily addressed only in the
setting of a quantum-relativistic theory such as the Dirac theory [5, 14].

10.1 The density matrix

Wewill first introduce a very important concept described by the so-called densityma-
trix. The spin orientation of an electron beam is described by a probability distribution
instead of by a single vector of state. Actually, an electron beam is a quantum system
whose state is a superposition of number ofN substates. Every substate is a pure state
of spin. The overall state is heterogeneous ormixed.Wewill use theDirac notation and
indicate with |a⟩ the state vectors representing the pure states composing the quan-
tum system.1 Let us indicate with {|n⟩} a complete set of orthonormal eigenvectors.2

We can hence expand each pure state |a⟩ using the complete set of orthonormal eigen-
vectors |n⟩:

|a⟩ = ∑
n
cn |n⟩ , (10.1)

where

cn = ⟨n|a⟩ (10.2)

are the projections of the pure state |a⟩ onto the orthonormal eigenvectors |n⟩.3 The
expectation value of any operator A is given by

⟨A⟩ =
N
∑
a=1

pa⟨a|A|a⟩ , (10.3)

1 Pure states |a⟩ are not, in general, orthogonal to each other. Anyway, they are assumed to be nor-
malized vectors.
2 Let us remind our readers that a complete set of basis states {|n⟩} is a set of orthonormal eigenvectors
of some complete set ofmutually commuting operators. The fact that the eigenvectors are orthonormal
implies that ⟨n|n′⟩ = δnn′ . The set of basis states is complete, so that ∑n |n⟩⟨n| = I, where we have
indicated with I the identity operator.
3 Note that ∑n |cn|

2 = 1, due to the completeness of the basis states and to the normalization of the
pure states. In fact∑n |cn|

2 = ∑n⟨a|n⟩⟨n|a⟩ = ⟨a|(∑n |n⟩⟨n|)|a⟩ = ⟨a |I| a⟩ = ⟨a |a⟩ = 1 .

https://doi.org/10.1515/9783110675375-010
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where pa is the probability of obtaining the pure state |a⟩.4 The mean value of the
operator A in the pure state |a⟩ is given by

⟨A⟩a = ⟨a|A|a⟩ , (10.4)

so that we can write

⟨A⟩ =
N
∑
a=1

pa⟨A⟩a . (10.5)

The statistical weights pa of the pure states |a⟩ allowus to introduce the densitymatrix
ρ, defined as

ρ =
N
∑
a=1
|a⟩pa⟨a| . (10.6)

As we can see from the definition of ρ, the density matrix is Hermitian, i. e., ρ† = ρ:
This means that, using a unitary transformation, the density matrix can always be
diagonalized. We can easily calculate the matrix elements of ρ:

ρnm = ⟨n|ρ|m⟩ =
N
∑
a=1
⟨n|a⟩pa⟨a|m⟩ =

N
∑
a=1

pa cn c
∗
m . (10.7)

Let us indicate with the symbol Tr the trace of amatrix. By definition, Tr(M) is the sum
of the diagonal elements of the matrixM:

Tr(M) = ∑
n
⟨n|M|n⟩ . (10.8)

Let us nowcalculate the trace of thematrix ρA. Since the set of basis states is complete,

∑
m
|m⟩⟨m| = I . (10.9)

Here we have indicated with I the identity operator. We have

Tr(ρA) = ∑
n
⟨n|ρA|n⟩ = ∑

n
⟨n|ρIA|n⟩ = ∑

n
∑
m
⟨n|ρ|m⟩⟨m|A|n⟩ . (10.10)

Since

|a⟩ = ∑
n
⟨n|a⟩|n⟩ , (10.11)

4 The probability pa of obtaining the subsystem a satisfies the following conditions: 0 ≤ pa ≤ 1 and
∑Na=1 pa = 1.
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thus

⟨A⟩ =
N
∑
a=1

pa∑
n
∑
m
⟨n|a⟩⟨a|m⟩⟨m|A|n⟩ . (10.12)

To conclude, since

Tr(ρA) = ∑
n
∑
m
⟨n|ρ|m⟩⟨m|A|n⟩ =

N
∑
a=1
∑
n
∑
m
⟨n|a⟩pa⟨a|m⟩⟨m|A|n⟩ , (10.13)

we have

Tr(ρA) = ⟨A⟩ . (10.14)

So, if we know the density matrix, we can easily obtain the mean value of any observ-
able A. In particular, if the observable is the identity operator I, since

⟨I⟩ =
N
∑
a=1

pa⟨a|I|a⟩ =
N
∑
a=1

pa⟨a|a⟩ =
N
∑
a=1

pa = 1 , (10.15)

we obtain

Tr(ρ) = 1 . (10.16)

10.2 The spin-polarization

Let us now consider the spin space. As we know, the Pauli matrices together with the
2 × 2 identity matrix constitute a complete set of 2 × 2 Hermitian matrices. Therefore,
the density matrix can be developed on the Pauli matrices and on the identity matrix
as follows:

ρ = a0I + a1 σx + a2 σy + a3 σz . (10.17)

In this equation, the coefficients a0, a1, a2, a3 are real numbers, I is the 2 × 2 identity
matrix, and σx = σ1, σy = σ2, and σz = σ3 are the Pauli matrices. Let us now calculate
the average values of the Pauli matrices:

⟨σj⟩ = Tr(ρσj) , (10.18)

where j = 1, 2, 3. Since

Tr(ρ) = Tr(ρI) = ⟨I⟩ = 1 , (10.19)
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and

Tr(σj) = 0 , (10.20)

for each j = 1, 2, 3, we can conclude that

Tr(ρ) = a0 Tr(I) = 2a0 = 1. (10.21)

As a consequence,

a0 =
1
2
. (10.22)

We then observe that, since

σxσy = iσz = i(
1 0
0 −1
) , (10.23)

we have

Tr(σxσy) = 0 . (10.24)

Similarly, we can see that

Tr(σyσz) = 0 (10.25)

and

Tr(σzσx) = 0 . (10.26)

Thus we have, for each j, k = 1, 2, 3 and j ̸= k,

Tr(σjσk) = 0 . (10.27)

Furthermore, from

σ2j = I , (10.28)

for every j = 1, 2, 3, it follows that

Tr(σjσj) = 2 . (10.29)

This means that

Tr(σjσk) = 2δjk , (10.30)
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and so

⟨σj⟩ = Tr(ρσj) = Tr[(a0I + ∑
k
ak σk)σj]

= Tr[∑
k
ak σkσj] = 2∑

k
akδkj = 2 aj . (10.31)

Thus

aj =
1
2
⟨σj⟩ . (10.32)

The components of the spin-polarization vector are given by

Pj = ⟨σj⟩ = Tr(ρ σj) . (10.33)

Using this definition, the density matrix can be expressed as

ρ = 1
2
(I +∑

j
σjPj) =

1
2
(I + σ ⋅ P) , (10.34)

or

ρ = 1
2
(

1 + P3 P1 − iP2
P1 + iP2 1 − P3

) . (10.35)

Choosing the z axis in the direction of the polarization P, we obtain

P1 = P2 = 0 , (10.36)
P3 = |P| = P (10.37)

and

ρ = 1
2
(
1 + P 0
0 1 − P

) . (10.38)

The probability that an electron is in the pure state |a⟩ is pa. The probability that the
pure state |a⟩ is in the state |j⟩ is |cj|2. Since the diagonal element ρjj of the density
matrix is given by

ρjj = ⟨j|ρ|j⟩ =
N
∑
a=1

pa |cj|
2 , (10.39)

it represents the probability that an electron be in the state j. Let u be the number of
electrons of the beam with spin up and d the number of electrons of the beam with
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spin down. Thus,

ρ11 =
1 + P
2
=

u
u + d

(10.40)

is the probability that an electron is in the state 1 (spin up) and

ρ22 =
1 − P
2
=

d
u + d

(10.41)

is the probability that an electron is in the state 2 (spin down). As a consequence, we
can easily express P as

P = u − d
u + d
. (10.42)

The density matrix ρ can be written as

ρ = (1 − P)ρ1/2 + Pρ1 = (1 − P)(
1/2 0
0 1/2

) + P (1 0
0 0
) . (10.43)

The matrix:

ρ1/2 = (
1/2 0
0 1/2

) , (10.44)

describes a completely unpolarized system as the spin-up and spin-down probabili-
ties are identical. The other matrix:

ρ1 = (
1 0
0 0
) , (10.45)

represents a pure state with all beam electrons having up orientation of the spins and
describes a beam completely polarized.

This also means that, if P is zero, the beam is completely unpolarized, while, if
P is 1, the beam is completely polarized. All the other situations, corresponding to
0 < P < 1, represent partially polarized beams.

10.3 Polarization change following a collision

We remind our readers that the asymptotic form of the scattered wave is given by the
superposition of a plane wave and a spherical wave:

Ψj ∼r→∞ aj exp(iKz) + bj(ϑ,φ)
exp(iKr)

r
,

 EBSCOhost - printed on 2/13/2023 9:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



136 | 10 Density matrix and spin-polarization phenomena

and the differential elastic scattering cross section is given by

dσ
dΩ
=
|b1|2 + |b2|2

|a1|2 + |a2|2
.

When the spin is parallel to the incidence direction (spin up), a1 = 1, a2 = 0, b1 =
f +(ϑ,φ), b2 = g+(ϑ,φ). When the spin is antiparallel to the incidence direction (spin
down), then a1 = 0, a2 = 1, b1 = g−(ϑ,φ), b2 = f −(ϑ,φ). For an arbitrary direction
of spin, a1 = A, a2 = B, b1 = Af + + Bg−, b2 = Ag+ + Bf −. We have observed that
the relationships between the functions f +(ϑ,φ), g+(ϑ,φ), f −(ϑ,φ), g−(ϑ,φ) and the
functions f (ϑ) and g(ϑ) are given by

f +(ϑ,φ) = f +(ϑ) = f (ϑ) ,

g+(ϑ,φ) = g(ϑ) exp(iφ) ,

g−(ϑ,φ) = − g(ϑ) exp(−iφ) .

As a consequence, we have, for an arbitrary direction of spin,

b1(ϑ,φ) = Af (ϑ) − Bg(ϑ) exp(−iφ) ,

b2(ϑ,φ) = Bf (ϑ) + Ag(ϑ) exp(iφ) .

It is convenient to introduce the matrixM(ϑ,φ):

M(ϑ,φ) = ( f (ϑ) −g(ϑ) exp(−iφ)
g(ϑ) exp(iφ) f (ϑ)

) . (10.46)

If we indicate the initial state as

|η⟩ = (a1
a2
) = (

A
B
) (10.47)

and the final state as

|ηf ⟩ = q(
b1(ϑ,φ)
b2(ϑ,φ)

) = q(Af (ϑ) − Bg(ϑ) exp(−iφ)
Ag(ϑ) exp(iφ) + Bf (ϑ)

) , (10.48)

where q is a normalization constant, we can thus write

qM |η⟩ = q( f (ϑ) −g(ϑ) exp(−iφ)
g(ϑ) exp(iφ) f (ϑ)

) (
A
B
)

= q(Af (ϑ) − Bg(ϑ) exp(−iφ)
Ag(ϑ) exp(iφ) + Bf (ϑ)

) , (10.49)
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so that

|ηf ⟩ = qM |η⟩ . (10.50)

To calculate the normalization constant q, we observe that the final density matrix ρf
and the initial density matrix ρ are related by the relationship:

ρf = |q|
2M ρM† . (10.51)

Indeed,

ρf = ∑
a=±1/2

η
a
f ⟩ pa⟨ξ

a
f


= |q|2 ∑
a=±1/2

Mη
a⟩ pa⟨η

aM
†

= |q|2M( ∑
a=±1/2

η
a⟩ pa⟨η

a)M
†

= |q|2MρM† , (10.52)

where |ηa⟩ is the initial state and |ηaf ⟩ is the final state (a = −1/2,+1/2). Since

1 = Tr(ρf ) = |q|
2 Tr(MρM†) , (10.53)

the squared modulus of the normalization constant q is equal to

|q|2 = 1
Tr(MρM†)

, (10.54)

so that

ρf =
MρM†

Tr(MρM†)
. (10.55)

We can now calculate the spin-polarization vector Pf after scattering. If P is the spin-
polarization vector before scattering, then

Pf = Tr(ρf σ) =
Tr(MM† σ) + Tr(M (σ ⋅ P)M† σ)
Tr(MM†) + Tr(M (σ ⋅ P)M†)

, (10.56)

where we used Eq. (10.34).
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10.4 Polarization of an electron beam initially not polarized

If the beam is initially not polarized, Eq. (10.56) becomes

Pf =
Tr(MM† σ)
Tr(MM†)

. (10.57)

From this equation, we see that the process of scattering polarizes a beam initially
not polarized. We will prove that, in this case, the modulus of the final polarization is
equal to the Sherman function and that its direction is perpendicular to the scattering
plane. Let us remind our readers, first of all, that

σ ⋅ n̂ = i ( 0 − exp(−iφ)
exp(iφ) 0

) , (10.58)

where we have indicated with n̂ the unit vector normal to the scattering plane:

n̂ = (
− sinφ
cosφ
0
) .

Thus, we have

f I − i g σ ⋅ n̂

= (
f 0
0 f
) − i ( 0 −ig exp(−iφ)

ig exp(iφ) 0
)

= i ( f −g exp(−iφ)
g exp(iφ) f

) , (10.59)

so that

M(ϑ,φ) = f (ϑ) I − i g(ϑ)σ ⋅ n̂ . (10.60)

To calculate the final polarization, let us first observe that

(σ ⋅ n̂)†

= −i ( 0 exp(−iφ)
− exp(iφ) 0

)

= i ( 0 − exp(−iφ)
exp(iφ) 0

) = σ ⋅ n̂ , (10.61)
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so that

(σ ⋅ n̂)(σ ⋅ n̂)† = (σ ⋅ n̂)(σ ⋅ n̂)

= i ( 0 − exp(−iφ)
exp(iφ) 0

) i ( 0 − exp(−iφ)
exp(iφ) 0

)

= − (
−1 0
0 −1
) = I . (10.62)

As a consequence, we have

MM† = (fI − igσ ⋅ n̂)[If ∗ + i(σ ⋅ n̂)†g∗]
= |f |2 I + |g|2(σ ⋅ n̂)(σ ⋅ n̂)† + i(fg∗ − f ∗g)σ ⋅ n̂
= (|f |2 + |g|2) I + i(fg∗ − f ∗g)σ ⋅ n̂

= (|f |2 + |g|2) (1 0
0 1
) − (fg∗ − f ∗g) ( 0 − exp(−iφ)

exp(iφ) 0
) ,

or

MM† = ( |f |2 + |g|2 (fg∗ − f ∗g) exp(−iφ)
(f ∗g − fg∗) exp(iφ) |f |2 + |g|2

) . (10.63)

Now, it is not difficult to see that

MM† σx = (
(fg∗ − f ∗g) exp(−iφ) |f |2 + |g|2

|f |2 + |g|2 (f ∗g − fg∗) exp(iφ)
) , (10.64)

MM† σy = i (
(fg∗ − f ∗g) exp(−iφ) −|f |2 − |g|2

|f |2 + |g|2 (fg∗ − f ∗g) exp(iφ)
) , (10.65)

MM† σz = (
|f |2 + |g|2 (f ∗g − fg∗) exp(−iφ)

(f ∗g − fg∗) exp(iφ) −|f |2 − |g|2
) . (10.66)

From these equations, it follows that

Tr(MM†) = 2(|f |2 + |g|2) , (10.67)

Tr(MM† σx) = − 2 i (fg
∗ − f ∗g) sinφ , (10.68)

Tr(MM† σy) = 2 i (fg
∗ − f ∗g) cosφ , (10.69)

Tr(MM† σz) = 0 , (10.70)

and, as a consequence,

Pf =
Tr(MM† σ)
Tr(MM†)

= i fg
∗ − f ∗g
|f |2 + |g|2

(
− sinφ
cosφ
0
) = S(ϑ) n̂ . (10.71)
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So we have demonstrated that the spin-polarization after scattering is equal, in mod-
ulus, to the Sherman function, and it is directed along n̂, i. e., the unit vector normal
to the plane of scattering.

10.5 Double elastic scattering

Let us consider now an electron beam initially not polarized experiencing a double
scattering. Due to the first elastic collision, the electrons of the beam are deflected
with a scattering angle ϑ1, so that the electrons emerge from this collision with a spin-
polarization different from 0. Let us indicate with n̂1 the unit vector normal to the scat-
tering plane of this first elastic scattering collision. The polarization of the beam after
the first elastic scattering collision is given by

P1 = S(ϑ1) n̂1 . (10.72)

Let us now consider a second elastic scattering collision, with scattering angle ϑ2. Let
n̂2 be the unit vector normal to the second plane of scattering. The differential elastic
scattering cross-section of the second collision is thus given by

dσ
dΩ2
= (f (ϑ2)


2
+ g(ϑ2)


2
) (1 + S(ϑ2)P1 ⋅ n̂2)

= (f (ϑ2)

2
+ g(ϑ2)


2
) (1 + S(ϑ2) S(ϑ1) n̂1 ⋅ n̂2) . (10.73)

Let us limit ourselves to the case in which the two scattering planes coincide:

n̂1 ⋅ n̂2 = ±1 , (10.74)

so that we have to consider two different differential elastic scattering cross-sections,
corresponding to the secondelastic collision, dependingon the signof the scalar prod-
uct n̂1 ⋅ n̂2. In particular, if n̂1 ⋅ n̂2 = + 1, then the differential elastic scattering cross-
section dσa/dΩ2 is equal to

dσa
dΩ2
= (f (ϑ2)


2
+ g(ϑ2)


2
) (1 + S(ϑ1) S(ϑ2)) , (10.75)

while, in the case where n̂1 ⋅ n̂2 = − 1, the differential elastic scattering cross-section
dσb/dΩ2 is given by

dσb
dΩ2
= (f (ϑ2)


2
+ g(ϑ2)


2
) (1 − S(ϑ1) S(ϑ2)) . (10.76)
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Wecan thusmeasure these twodifferential elastic scattering cross-sections to evaluate
the following two quantities:

dσa
dΩ2
−

dσb
dΩ2
= 2 (f (ϑ2)


2
+ g(ϑ2)


2
) S(ϑ1) S(ϑ2) , (10.77)

dσa
dΩ2
+

dσb
dΩ2
= 2 (f (ϑ2)


2
+ g(ϑ2)


2
) , (10.78)

and, hence,

S(ϑ1) S(ϑ2) =
dσa/dΩ2 − dσb/dΩ2
dσa/dΩ2 + dσb/dΩ2

. (10.79)

Choosing ϑ1 = ϑ2 = ϑ̄, it is then possible, with a double scattering experiment, to ob-
tain S2(ϑ̄). Once |S(θ̄)| is known for a given angle ϑ̄, a second experiment is performed
varying ϑ1 and keeping constant ϑ2 = ϑ̄. Since |S(ϑ̄)| is known from the first experi-
ment, it is now possible to determine |S(ϑ1)| for various angles ϑ1. By using Eq. (9.70),
the sign of S(ϑ1) can be found by measuring the differential elastic scattering cross-
section of electrons whose polarization direction is known.

10.6 Change of the polarization in the general case

We already know that

Tr(MM†) = 2 (|f |2 + |g|2) , (10.80)

and

Tr(MM† σ) = 2 i(fg∗ − f ∗g) n̂ . (10.81)

Furthermore, we can see that5

Tr(M (σ ⋅ P)M†) = 2 i(fg∗ − f ∗g)P ⋅ n̂ (10.82)

and

Tr(M (σ ⋅ P)M† σ) = 2 ( |f |2 − |g|2)P − 2 (fg∗ + f ∗g)P × n̂ + 4|g|2 (P ⋅ n̂) n̂ . (10.83)

Let us introduce now two further polarization parameters, i. e.,

T(ϑ) = |f (ϑ)|
2 − |g(ϑ)|2

|f (ϑ)|2 + |g(ϑ)|2
, (10.84)

5 The demonstration of these two equations, however lengthy and laborious, is not difficult. It is left
as a useful exercise for the reader to solve.
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and

U(θ) = f (ϑ)g
∗(ϑ) + f ∗(ϑ)g(ϑ)
|f (ϑ)|2 + |g(ϑ)|2

. (10.85)

By using Eq. (10.56), and taking into account the relationship:

2 |g|2

|f |2 + |g|2
= 1 − T(ϑ) , (10.86)

we obtain, in the general case 0 ≤ |P| ≤ 1,

Pf =
[P ⋅ n̂ + S(ϑ)] n̂ + T(ϑ)[P − (P ⋅ n̂) n̂] + U(ϑ) (n̂ × P)

1 + (P ⋅ n̂) S(ϑ)
. (10.87)

Note that

S2(ϑ) + T2(ϑ) + U2(ϑ) = 1 . (10.88)

10.7 Sherman function for molecules

Let us firstly consider oriented molecules. In this case the spin-asymmetry function
(Sherman function) is given by

S(ϑ) = i
dσ/dΩ
∑
m
∑
n
[exp(iq ⋅ rmn)fm(ϑ)g

∗
n (ϑ) − exp(−iq ⋅ rmn)f

∗
m(ϑ)gn(ϑ)] , (10.89)

where

dσ
dΩ
= ∑

m
∑
n
exp(iq ⋅ rmn)[fm(ϑ)f

∗
n (ϑ) + gm(ϑ)g

∗
n (ϑ)] .

Please keep in mind that q is the momentum transfer, rm is the position vector of the
mth atom in the molecule, and

rmn = rm − rn .

In case the molecules are randomly oriented, these equations simplify and be-
come

S(ϑ) = i
dσ/dΩ
∑
m
∑
n

sin qrmn
qrmn
[fm(ϑ)g

∗
n (ϑ) − f

∗
m(ϑ)gn(ϑ)] , (10.90)

where

dσ
dΩ
= ∑

m
∑
n

sin qrmn
qrmn
[fm(ϑ)f

∗
n (ϑ) + gm(ϑ)g

∗
n (ϑ)] ,
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and

rmn = |rmn| = |rm − rn |. (10.91)
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11 Exercises

11.1 Exercise 1

Using their analytical expressions, calculate and represent the first five Legendre poly-
nomials Pl(cos ϑ).

Solution

We know that

P0(u) = 1 , (11.1)
P1(u) = u , (11.2)

P2(u) =
1
2
(3u2 − 1) , (11.3)

P3(u) =
1
2
(5u3 − 3u) , (11.4)

P4(u) =
1
8
(35u4 − 30u2 + 3) . (11.5)

In Fig. 11.1 we represent the first five Legendre polynomials obtained using these equa-
tions with u = cos ϑ.

Figure 11.1: The first five Legendre polynomials calculated using their analytical expressions.

https://doi.org/10.1515/9783110675375-011
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11.2 Exercise 2

Using recursion relations, numerically calculate and represent the first six Legendre
polynomials Pl(cos ϑ).

Solution

The Legendre polynomials Pl(u) satisfy the following recursion relation:

(l + 1)Pl+1(u) + l Pl−1(u) = (2l + 1) u Pl(u) . (11.6)

Since we know that

P0(u) = 1 , (11.7)
P1(u) = u , (11.8)

we can apply a forward recursion procedure. In particular, we will then have

2P2(u) = −P0(u) + 3 u P1(u) , (11.9)
3P3(u) = − 2P1(u) + 5 u P2(u) , (11.10)
4P4(u) = − 3P2(u) + 7 u P3(u) , (11.11)
5P5(u) = − 4P3(u) + 9 u P4(u) , (11.12)

Figure 11.2: The first six Legendre polynomials Pl(cos ϑ) numerically calculated using the recursion
relation.
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and so on. In Fig. 11.2 we represent the first six Legendre polynomials obtained using
these recursion relations with u = cos ϑ.

11.3 Exercise 3

Numerically calculate and represent the first six associated Legendre functions
P1l (cos ϑ).

Solution

The first derivative of the Legendre polynomials can be evaluated using the following
equation:

(1 − u2) d
du

Pl(u) = l Pl−1(u) − l u Pl(u) . (11.13)

Knowing the Legendre polynomials, it is possible, as a consequence, to calculate the
associated Legendre functions that, as a function of u = cos ϑ, are given by

P1l (cos ϑ) = sin ϑ
d

d(cos ϑ)
Pl(cos ϑ) . (11.14)

In Fig. 11.3 we represent the first six associated Legendre functions obtained using
Eqs. (11.13) and (11.14).

Figure 11.3: The first six associated Legendre functions P1l (cos ϑ) numerically calculated using
Eq. (11.13).
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11.4 Exercise 4

Analytically calculate, using their explicit expressions, the associated Legendre func-
tions P13(0.5) and P

1
4(0.5).

Solution

The associated Legendre functions P1l (u) are given by

P1l (u) = √1 − u2
d
du

Pl(u) . (11.15)

Since

dP3(u)
du
=

1
2
(15u2 − 3) , (11.16)

we have

dP3(0.5)
du
=

3
8

(11.17)

and

P13(0.5) = √1 −
1
4
3
8
=

3
16
√3 . (11.18)

Let us now calculate P14(0.5). From

dP4(u)
du
=

1
8
(140u3 − 60u) , (11.19)

it follows that

dP4(0.5)
du
= −

25
16

(11.20)

and, hence,

P14(0.5) = −√1 −
1
4
25
16
= −

25
32
√3 . (11.21)

11.5 Exercise 5

Demonstrate that

4P4(u) = − 3P2(u) + 7 u P3(u) , (11.22)
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where

P4(u) =
1
8
(35u4 − 30u2 + 3) . (11.23)

Solution

We know that

P2(u) =
1
2
(3u2 − 1) , (11.24)

P3(u) =
1
2
(5u3 − 3u) . (11.25)

As a consequence,

−3P2(u) + 7 u P3(u)

= − 3 [ 1
2
(3u2 − 1)] + 7 u [ 1

2
(5u3 − 3u)]

= −
9u2

2
+
3
2
+
35u4

2
−
21u2

2

= 4 1
8
(35u4 − 30u2 + 3) = 4P4(u) .

Note that this is an application of the recursion relation Eq. (11.6).

11.6 Exercise 6

Calculate P5(u).

Solution

Using the recursion relation Eq. (11.6), we obtain:

P5(u)

=
1
5
[− 4P3(u) + 9 u P4(u)]

=
1
5
[− 2 (5u3 − 3u) + 9

8
u (35u4 − 30u2 + 3)]

=
1
8
(63u5 − 70 u3 + 15u) . (11.26)
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11.7 Exercise 7

Demonstrate that

n2(x) = (−
3
x3
+

1
x
) cos x − 3

x2
sin x . (11.27)

Solution

Let us remind our readers that the following recursion relation holds:

x nl−1(x) − (2l + 1) nl(x) + x nl+1(x) = 0 , (11.28)

and that

n0(x) = −
cos x
x
, (11.29)

n1(x) = −
cos x
x2
−
sin x
x
. (11.30)

Using Eq. (11.28) with l = 1, we obtain

n2(x) =
3
x
n1(x) − n0(x), (11.31)

and, as a consequence,

n2(x) =
3
x
(−

cos x
x2
−
sin x
x
) +

cos x
x
= (−

3
x3
+

1
x
) cos x − 3

x2
sin x . (11.32)

11.8 Exercise 8

Demonstrate that

j0(x) =
sin x
x
. (11.33)

Solution

The recursion relation:

x jl−1(x) − (2l + 1) jl(x) + x jl+1(x) = 0 , (11.34)
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allows us to see, on the one hand, that, once l = 1 is chosen,

j0(x) =
3
x
j1(x) − j2(x) . (11.35)

Since, on the other hand,

j1(x) =
sin x
x2
−
cos x
x
, (11.36)

j2(x) = (
3
x3
−

1
x
) sin x − 3

x2
cos x , (11.37)

we have

j0(x) =
3
x
(
sin x
x2
−
cos x
x
) − (

3
x3
−

1
x
) sin x + 3

x2
cos x = sin x

x
. (11.38)

11.9 Exercise 9

Express analytically n3(x) and j3(x).

Solution

Using Eq. (11.28) with l = 2, we obtain

n3(x) =
5
x
n2(x) − n1(x) , (11.39)

so that

n3(x)

=
5
x
[(−

3
x3
+

1
x
) cos x − 3

x2
sin x] + cos x

x2
+
sin x
x

= (−
15
x4
+

6
x2
) cos x + (− 15

x3
+

1
x
) sin x . (11.40)

Similarly, using Eq. (11.34) with l = 2, we obtain

j3(x) =
5
x
j2(x) − j1(x) , (11.41)
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so that

j3(x)

=
5
x
[(

3
x3
−

1
x
) sin x − 3

x2
cos x] − sin x

x2
+
cos x
x

= (
15
x4
−

6
x2
) sin x + (− 15

x3
+

1
x
) cos x . (11.42)

11.10 Exercise 10

Write a program to calculate nl(x) for any given value of l.

Solution

Let us use a forward recursion method. Since we know n0(x) and n1(x), we can calcu-
late nl(x) just by recursively using Eq. (11.28). In Fig. 11.4 we represent the numerically
calculated first four irregular spherical Bessel functions recursively calculated in such
a way.

Figure 11.4: The first four irregular Bessel functions numerically calculated using a forward recursion
algorithm. The program utilizes Eqs. (11.28), (11.29), and (11.30).
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11.11 Exercise 11

Write a program to calculate jl(x) for any given value of l.

Solution

Let us use a backward recursionmethod imposing, to start the recursion, that jlmax
= 0

and jlmax−1 = ϵ, where lmax is a very large value of l and ϵ is a very small number. We
then calculate jl(x) recursively using Eq. (11.34) and utilizing a backward procedure.
Note that the results obtained with this backward procedure have to be normalized
so that j0(x) = sin x/x. In Fig. 11.5 we represent the numerically calculated first four
regular spherical Bessel functions recursively calculated in such a way.

Figure 11.5: The first four regular Bessel functions numerically calculated using a backward recursion
algorithm. The program utilizes Eq. (11.34). Eq. (11.33) is used to normalize the results.

11.12 Exercise 12

Discuss the differences among forward and backward recursion procedures for calcu-
lating the spherical Bessel functions.

Solution

The question we wish to discuss concerns the correct use of forward and backward
recursion procedures. Let us consider the numerical differentiationmethod. We know
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that, since

f1 ≡ f (x + h) = f0 + h f
′ +

h2

2
f ′′ + h3

6
f ′′′ + ⋅ ⋅ ⋅ (11.43)

and

f−1 ≡ f (x − h) = f0 − h f
′ +

h2

2
f ′′ − h3

6
f ′′′ + ⋅ ⋅ ⋅ , (11.44)

we have

f1 − 2 f0 + f−1 = h
2 f ′′ + 𝒪(h4) , (11.45)

so that

f ′′ ≈ f1 − 2 f0 + f1
h2

. (11.46)

Please note now that the recursion relation, satisfied by both the irregular and the
regular spherical Bessel functions, can be rewritten as follows:

fl+1 − 2 fl + fl−1 = [
2l + 1
x
− 2] fl , (11.47)

so that, in the limit of continuous l [fl = f (l)], we can write

d2f (l)
dl2
=

2l − 2x + 1
x

f (l) = − k2(l) f (l) . (11.48)

This equation, in the case k2(l) = (2x − 2l − 1)/x > 0, is satisfied by two oscillatory
linearly independent functions while, if k2(l) < 0, it is satisfied by two exponential
linearly independent functions, one growing and the other onedecreasing. In general,
when

x < 2l + 1
2
, (11.49)

and, as a consequence,

k2(l) < 0 , (11.50)

the regular spherical Bessel functions jl(x) rapidly decrease with increasing l, so that
precision is lost using forward recursion in calculating jl(x). For this reason, regular
spherical Bessel functions jl(x) have to be numerically calculated using backward re-
cursion. As a general rule, we should avoid recursion in the same direction in which
the values of the function we are calculating become smaller and smaller. So, while
forward recursion can be used to calculate the irregular spherical Bessel functions
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nl(x), this method has to be avoided when calculating the regular spherical Bessel
functions jl(x). Please note that backward recursion in calculating jl(x) provides more
accurate results if comparedwith those obtained using both forward recursion formu-
las and explicit evaluation.

11.13 Exercise 13

Write a program to calculate the differential elastic scattering cross-section of 1,000 eV
electrons in Au using the Schrödinger equation (nonrelativistic partial wave expan-
sion method). Use the Numerov algorithm for solving the radial equation.

Solution

We have to solve the radial equation:

d2Fl(r)
dr2
+ q2(r) Fl(r) = 0 , (11.51)

where q2(r) depends on l, on the electron energy E, and on the atomic potential V(r)
according to Eq. (5.1). We knows that the Numerov algorithm allows us to find Fl(r) by
numerically solving the following equation:

(1 + h2

12
q2n+1) (Fl)n+1

− 2(1 − 5 h2

12
q2n) (Fl)n

+ (1 + h2

12
q2n−1) (Fl)n−1 ≈ 0 . (11.52)

To solve it, we need, of course, to know the potential. So, the first step is to write a pro-
gram that calculates the atomic potential energy V(r). Let us choose, for this exercise,
the Lenz and Jensen approximation to the Thomas–Fermi model of the atom:

V(r) = − Ze
2

r
ξ (x) , (11.53)

where

ξ (x) = exp(−x)(1 + x + a x2 + b x3 + c x3) , (11.54)

x = 4.5397 Z1/6√r , (11.55)
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and a = 0.3344, b = 0.0485, and c = 0.002647. Please note that the unit of length
is Å, using the numerical parameters here provided [15]. Once the potential is known,
the second step requires that the radial function Fl(r) be calculated for two values of
r, r1, and r2, both greater than rmax = 3Å (the radius beyond which the potential
becomes negligible). When choosing r1 and r2, make sure that they are not too close to
each other (to obtain numerical precision). On the other hand, the greater the distance
between r1 and r2, the longer the CPU time necessary for the Numerov algorithm to
process the entire computation.

The third step consists of computing, for each l between 0 and lmax (according to
Koonin and Meredith [15], a slightly low estimate of it is lmax ≈ k rmax) the quantity:

G(r1, r2) =
r1 Fl(r2)
r2 Fl(r1)

. (11.56)

Thus, using the programs already written for calculating the spherical regular and
irregular Bessel functions, the fourth step consists of writing a code for calculating
the phase shifts given by

ηl = arctan
G(r1, r2)jl(kr1) − jl(kr2)
G(r1, r2)nl(kr1) − nl(kr2)

. (11.57)

Once the phase shifts have been calculated, the last step requires the use of the
programs already written for computing the Legendre polynomials to calculate the
scattering amplitude according to Eq. (3.109) and the differential elastic scattering

Figure 11.6: Differential elastic scattering cross-section of 1,000 eV electrons calculated for Au using
the Schrödinger equation (nonrelativistic partial wave expansion method). Atomic potential: Lenz
and Jensen approximation to the Thomas–Fermi model of the atom.
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cross-section according to Eq. (3.111). The differential elastic scattering cross-section
of 1,000 eV electrons, calculated for Au using the procedure previously described, is
shown in Fig. 11.6.

11.14 Exercise 14

Write a program to calculate the screening functions of Al, Ag, and Au using the Sal-
vat et al. best fit of the Dirac–Hartree–Fock–Slater model of the atom [24]. Use atomic
units: ℏ = e = m = 1.

Solution

The atomic potential energy can be calculated as the product of the Coulomb poten-
tial energymultiplied by a screening function. Salvat et al. [24] provided the following
screening function representing the best fit of their Dirac–Hartree–Fock–Slater calcu-
lations:

ξ (r) =
3
∑
i=1

γi exp[−λi r] . (11.58)

The values of the parameters γi and λi (with i = 1, 2, 3) of Al, Ag, and Au, according to
Salvat et al., are given in Table 11.1 [24]. Note that the numerical values of λi given in
Table 11.1 are expressed in atomic units, so that ℏ = e = m = 1 and the unit of length,
as a consequence, is the Bohr radius a0 = ℏ2/me2. Using the parameters in Table 11.1,
the screening functions of Al, Ag, and Au are represented in Fig. 11.7 as a function of
the distance r expressed in units a0.

Table 11.1: γi and λi (i = 1, 2, 3) parameters of Al, Ag, and Au according to the Salvat et al. best fit of
the Dirac–Hartree–Fock–Slater potential energy [24].

Z γ1 γ2 γ3 λ1 λ2 λ3

13 0.6002 0.3998 0.0000 5.1405 1.0153 0.0000
47 0.2562 0.6505 0.0933 15.588 2.7412 1.1408
79 0.2289 0.6114 0.1597 22.864 3.6914 1.4886
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Figure 11.7: Screening functions of Al, Ag, and Au as a function of the distance r expressed in units
a0. Salvat et al. best fit of the of the Dirac–Hartree–Fock–Slater atomic model [24].

11.15 Exercise 15

Write a program to calculate the screening functions of Al, Ag, and Au using the Lenz
and Jensen best fit of the Thomas–Fermi atomic model. Compare with the same cal-
culations performed using the Salvat et al. best fit of the Dirac–Hartree–Fock–Slater
model of the atom (previous exercise). Use atomic units: ℏ = e = m = 1.

Solution

The comparison between the screening functions of Al, Ag, and Au obtained by using
the two models is presented in Fig. 11.8 as a function of the distance r expressed in
units a0.

11.16 Exercise 16

Calculate the screening functions of Al and Ag using the Cox and Bonham parameters
[7]. Compare with the screening functions of Al and Ag obtained utilizing the Salvat
et al. parameters [24]. Use atomic units: ℏ = e = m = 1.
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Figure 11.8: Screening functions of Al (solid lines), Ag (dashed lines), and Au (dotted lines) as a func-
tion of the distance r expressed in units a0. Comparison between the Lenz and Jensen best fit of the
Thomas–Fermi (red lines) [15] and the Salvat et al. best fit of the Dirac–Hartree–Fock–Slater (black
lines) [24] atomic models.

Solution

The Cox and Bonham [7] screening function is given by

ξ (r) =
10
∑
i=1

γi exp[−λi r] , (11.59)

where the parameters γi and λi (atomic units) for Al and Ag are given in Tables 11.2
and 11.3 (i = 1, . . . , 10). In Fig. 11.9 we show the comparison between the screening

Table 11.2: γi (i = 1, . . . , 10) parameters of Al and Ag according to Cox and Bonham [7].

Z γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

13 0.6481 −0.0730 2.5058 4.4794 −1.7928 −4.7699 0.0000 0.0000 0.0000 0.0000
47 6.2210 −0.0303 18.1510 18.1633 −3.8052 −21.4036 −19.6939 1.4843 1.7435 0.1594

Table 11.3: λi (i = 1, . . . , 10) parameters of Al and Ag according to Cox and Bonham [7].

Z λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

13 1.1459 34.0620 3.5958 12.6503 2.6209 11.7028 0.0000 0.0000 0.0000 0.0000
47 11.2381 121.1716 19.5404 42.3580 5.7667 17.1382 41.2617 6.9957 3.6234 1.4254
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functions ofAl andAgcalculatedusingCoxandBonham [7] andSalvat et al. [24] fitting
parameters.

Figure 11.9: Screening functions of Al (solid lines) and Ag (dashed lines) as a function of the distance
r expressed in units a0. Comparison between the calculations obtained using Cox and Bonham (red
lines) [7] and Salvat et al. (black lines) [24] best fit parameters.

11.17 Exercise 17

Calculate the radial atomic density of Ar, Kr, andXeusing the Cox andBonhamscreen-
ing function [7].

Solution

The Cox and Bonham parameters γi and λi (atomic units) for Ar, Kr, and Xe are given
in Tables 11.4 and 11.5 (i = 1, . . . , 10). From Poisson’s equation, it follows that the radial
atomic density is given by

ρ(r) = Z
4πr

10
∑
i=1

γi λ
2
i exp[−λi r] . (11.60)

Using Eq. (11.60) and Tables 11.4 and 11.5, we have represented the radial atomic den-
sities of Ar, Kr, and Xe in Figs. 11.10, 11.11, and 11.12, respectively.
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Table 11.4: γi (i = 1, . . . , 10) parameters of Ar, Kr, and Xe according to Cox and Bonham [7].

Z γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

18 1.4268 −0.0602 4.6440 7.4701 −4.4056 −8.0771 0.0000 0.0000 0.0000 0.0000
36 4.6222 −0.0484 12.8497 14.6739 −1.6424 −15.3978 −15.5905 1.5224 0.0000 0.0000
54 7.6397 −0.0299 21.5995 20.8424 −5.1302 −25.0317 −22.8271 1.5368 2.1983 0.2210

Table 11.5: λi (i = 1, . . . , 10) parameters of Ar, Kr, and Xe according to Cox and Bonham [7].

Z λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

18 2.1236 46.3176 5.7689 16.7556 4.5419 15.8867 0.0000 0.0000 0.0000 0.0000
36 7.2780 85.3334 13.1155 33.2254 2.8197 11.3682 32.3498 2.0998 0.0000 0.0000
54 13.6666 137.4095 24.0007 48.7608 7.8087 21.1625 47.4972 9.1558 4.9962 0.8904

Figure 11.10: Radial atomic density of Ar calculated using the Cox and Bonham screening function [7].
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Figure 11.11: Radial atomic density of Kr calculated using the Cox and Bonham screening function [7].

Figure 11.12: Radial atomic density of Xe calculated using the Cox and Bonham screening function
[7].

11.18 Exercise 18

Calculate the radial atomic density of Ar, Kr, and Xe using the Salvat et al. screening
function [24].
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Solution

The Salvat et al. parameters γi and λi (atomic units) for Ar, Kr, and Xe are given in Ta-
ble 11.6 (i = 1, 2, 3). From Poisson’s equation, it follows that the radial atomic density
is given by

ρ(r) = Z
4πr

3
∑
i=1

γi λ
2
i exp[−λi r] . (11.61)

Using Eq. (11.61) and Table 11.6, we have represented the radial atomic densities of Ar,
Kr, and Xe in Figs. 11.13, 11.14, and 11.15, respectively. Not surprisingly, the analytical
screening function of Salvat et al., considering just two or three Yukawa potentials,
only partially reproduces the oscillations of the radial atomic density due to the dif-
ferent shell contributions [24].

Table 11.6: γi and λi (i = 1, 2, 3) parameters of Ar, Kr, and Xe according to Salvat et al. [24].

Z γ1 γ2 γ3 λ1 λ2 λ3

18 2.1912 −2.2852 1.0940 5.5470 4.5687 2.0446
36 0.4190 0.5810 0.0000 9.9142 1.8835 0.0000
54 0.4451 0.5549 0.0000 11.805 1.7967 0.0000

Figure 11.13: Radial atomic density of Ar calculated using the Salvat et al. screening function [24].
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Figure 11.14: Radial atomic density of Kr calculated using the Salvat et al. screening function [24].

Figure 11.15: Radial atomic density of Xe calculated using the Salvat et al. screening function [24].

11.19 Exercise 19

Calculate the phase shifts for 1,000 eV electrons in Al using the Mott theory. Compute
the atomic potential utilizing the Cox and Bonham screening function. Demonstrate
that, apart from the initial behavior, the phase shifts go quickly to zero as l increases.
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Solution

To calculate the phase shifts given by:

tan η±l =
Kjl+1(Kr) − jl(Kr)[(E +m) tan ϕ̃±l + (1 + l + k)/r]
Knl+1(Kr) − nl(Kr)[(E +m) tan ϕ̃±l + (1 + l + k)/r]

, (11.62)

it is necessary to calculate ϕ̃±l , where

ϕ̃±l = limr→∞
ϕ±l (r) . (11.63)

The functions ϕ±l (r) are the solutions to the differential equation:

dϕ±l (r)
dr
=
k
r
sin 2ϕ±l (r) −m cos 2ϕ±l (r) + E − V(r) . (11.64)

that can be numerically solved using the fourth-order Runge–Kutta method. The ini-
tial value of ϕ±l , necessary to start the numerical solution of the differential equation,
are given by Eqs. (9.108)–(9.111). Using this procedure, the first ≈ 60 phase shifts for
1,000 eV electrons in Al are presented in Figs. 11.16 (η+) and 11.17 (η−).

Figure 11.16: η+ as a function of l for 1,000 eV electrons in Al according to the Mott theory (symbols).
Cox and Bonham screening function [7]. Solid line is a guide for the eyes.
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Figure 11.17: η− as a function of l for 1,000 eV electrons in Al according to the Mott theory (symbols).
Cox and Bonham screening function [7]. Solid line is a guide for the eyes.

11.20 Exercise 20

Calculate the differential elastic scattering cross-section for 1,000 eV electrons in Au
using the Mott theory. Compute the atomic potential using the Salvat et al. screening
function [24].

Solution

According to the Mott theory, once phase shifts η+ and η− have been calculated, the
scattering amplitudes can be obtained by

f (ϑ) = 1
2iK

∞
∑
l=0
{(l + 1)[exp(2iη+l ) − 1] + l[exp(2iη

−
l ) − 1]}Pl(cos ϑ) , (11.65)

g(ϑ) = 1
2iK

∞
∑
l=0
{exp(2iη−l ) − exp(2iη

+
l )}P

1
l (cos ϑ) , (11.66)

and the differential elastic scattering cross-section, for a completely unpolarized elec-
tron beam, can be obtained by

dσ
dΩ
= |f |2 + |g|2 . (11.67)

The differential elastic scattering cross-section of 1,000 eV electrons, calculated for Au
using the previously described procedure, is shown in Fig. 11.18.
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Figure 11.18: The differential elastic scattering cross-section of 1,000 eV electrons calculated for Au
using the Dirac equation (relativistic partial wave expansion method). The Salvat et al. screening
function [24] was used to calculate the electrostatic potential.

11.21 Exercise 21

Calculate the differential elastic scattering cross-section for 1,000 eV electrons in
H2O using the Mott theory. Compute the atomic potential using the Cox and Bonham
screening function [7].

Solution

Once phase shifts η+ and η− have been calculated for H and O using the Cox and
Bonham atomic potential [see Tables 11.7 and 11.8 for the calculation of the respec-
tive screening functions], we can obtain the scattering amplitudes fH, gH, fO, and gO
for both H and O (as in the previous exercise). The differential elastic scattering cross-
section can thus be calculated byusingEq. (9.131). For the case ofH2O, it canbewritten

Table 11.7: γi (i = 1, . . . , 10) parameters of H and O according to Cox and Bonham [7].

Z γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

1 0.0524 5.0360 −4.0876 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 1.3017 −0.1670 2.6221 1.5881 −2.8644 −1.4804 0.0000 0.0000 0.0000 0.0000
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Table 11.8: λi (i = 1, . . . , 10) parameters of H and O according to Cox and Bonham [7].

Z λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

1 1.9986 1.8954 2.1161 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 2.2491 19.5541 6.9101 10.7798 6.0560 9.9776 0.0000 0.0000 0.0000 0.0000

as

(
dσ
dΩ
)
H2O
= 2( dσ

dΩ
)
H
+ (

dσ
dΩ
)
O

+ 2 sin qrOH
qrOH
[fOf
∗
H + fHf

∗
O + gOg

∗
H + gHg

∗
O]

+ 2 sin qrHH
qrHH
(|fH|

2 + |gH|
2) , (11.68)

where rOH = 0.9572Å and rHH = 1.514Å. Please note that the use of the additivity
approximation:

(
dσel
dΩ
)
H2O
= 2(dσel

dΩ
)
H
+ (

dσel
dΩ
)
O
, (11.69)

provides results in very good agreement (for this electron energy) with the use of
Eq (11.68), the differences becoming appreciable for only small angles of scattering
[see Fig. 11.19].

Figure 11.19: The differential elastic scattering cross-section of 1,000 eV electrons in H2O calculated
using the Dirac equation (relativistic partial wave expansion method). Cox and Bonham screening
function [7] was used to calculate the electrostatic potential. Solid line: Eq. (11.68). Dashed line:
Eq. (11.69).
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11.22 Exercise 22

Calculate the differential elastic scattering cross-section for 1,000 eV electrons in H2O
using the Mott theory. Compute the atomic potential using the Salvat et al. screening
function [24] and including the exchange effects according to the Furness and Mc-
Carthy formula [13].

Solution

The differential elastic scattering cross-section, calculated by using Eq. (11.68), is pre-
sented in Fig. 11.20. Please note that the parameters for the calculation of the screen-
ing function can be found in Table 11.9 and that the exchange effect can be taken into
account by using the Furness and McCarthy formula [13]:

Vex =
1
2
(E − V) − 1

2
√(E − V)2 + 4π a0 e4ρ , (11.70)

where E is the electron kinetic energy, V = V(r) the electrostatic scalar potential, e
the electron charge, a0 the Bohr radius, and ρ the atomic electron density (obtained
from Poisson’s equation).

Figure 11.20: The differential elastic scattering cross-section of 1,000 eV electrons in H2O calculated
using the Dirac equation (relativistic partial wave expansion method). Salvat et al. screening func-
tion [24] was used to calculate the electrostatic potential. Furness and McCarthy exchange effect [13]
was included in the calculation of the atomic potential.
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Table 11.9: γi and λi (i = 1, 2, 3) parameters of H and O according to Salvat et al. [24].

Z γ1 γ2 γ3 λ1 λ2 λ3

1 −184.39 185.39 0.0000 2.0027 1.9973 0.0000
8 0.0625 0.9375 0.0000 14.823 2.0403 0.0000

11.23 Exercise 23

Calculate the Sherman function S(ϑ) of 1,000 eV, 1,500 eV, and 2,000 eV electrons im-
pinging on Au atoms. Compute the atomic potential using the Salvat et al. screening
function [24].

Solution

Once known, the scattering amplitudes f (ϑ) and g(ϑ) (calculated using the relativistic
partial wave expansion method), the Sherman function can be computed by using
Eq. (9.62). It is represented in Fig. 11.21 for 1,000 eV, 1,500 eV, and 2,000 eV electrons
impinging on gold atoms.

Figure 11.21: The Sherman function S(ϑ) of 1,000 eV (solid line), 1,500 eV (dashed line), and 2,000 eV
(dotted line) electrons impinging on Au atoms calculated using the Dirac equation (relativistic partial
wave expansion method). The Salvat et al. screening function [24] was used to calculate the electro-
static potential.
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11.24 Exercise 24

Calculate the functions T(ϑ) and U(ϑ) of 1,500 eV electrons impinging on Au atoms.
Compute the atomic potential using the Salvat et al. screening function [24].

Solution

Once known, the scattering amplitudes f (ϑ) and g(ϑ) (calculated using the relativistic
partial wave expansion method), the functions T(ϑ) and U(ϑ) can be computed by
using Eqs. (10.84) and (10.85). They are represented in Fig. 11.22 for 1,500 eV electrons
impinging on gold atoms.

Figure 11.22: T (ϑ) (solid line) and U(ϑ) (dashed line) functions of 1,500 eV electrons impinging on Au
atoms calculated using the Dirac equation (relativistic partial wave expansion method). The Salvat
et al. screening function [24] was used to calculate the electrostatic potential.

11.25 Exercise 25

Calculate the cumulative probability P(θ) for 1,500 eV electrons impinging on Au
atoms. Use the relativistic partial wave expansion method. Compute the atomic po-
tential using the Salvat et al. screening function [24].
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Solution

The cumulative probability P(θ) is given by

P(θ) =
2π ∫θ0 (dσ/dΩ) sin ϑ dϑ

2π ∫π0 (dσ/dΩ) sin ϑ dϑ
=

2π
σ

θ

∫
0

dσ
dΩ

sin ϑ dϑ , (11.71)

where σ is the total elastic scattering cross-section:

σ = 2π
π

∫
0

dσ
dΩ

sin ϑ dϑ . (11.72)

The function P(θ), represented in Fig. 11.23 for 1,500 eV electrons impinging on gold
atoms, was obtained using the Bode quadrature rule to calculate the integrals.

Figure 11.23: Cumulative probability P(θ) for 1,500 eV electrons impinging on Au atoms calculated
using the Dirac equation (relativistic partial wave expansion method). The Salvat et al. screening
function [24] was used to calculate the electrostatic potential.

11.26 Exercise 26

Calculate the transport cross-section of electrons impinging on Al atoms in the energy
range from100 eV to 100 keV.Use the relativistic partialwave expansionmethod. Com-
pute the atomic potential using the Cox and Bonham screening function [7]. Include
the exchange effect by using the Furness and McCarthy formula [13].
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Solution

The transport cross-section is given by

σtr = 2π
π

∫
0

(1 − cos ϑ) dσ
dΩ

sin ϑ dϑ . (11.73)

The transport cross-sections of electrons of 100 eV, 1,000 eV, 10,000 eV, and
100,000 eV impinging on Al were obtained using the Bode quadrature rule and are
presented in Table 11.10.

Table 11.10: Transport cross-sections σtr of electrons (kinetic energy from 100 eV to 100 keV) imping-
ing on Al. Cox and Bonham screening function [7] was used to calculate the electrostatic potential.
The Furness and McCarthy exchange effect [13] was included in the calculation of the atomic poten-
tial.

Electron
energy (eV)

σtr (Å2)

102 2.11
103 1.2010−1

104 2.6810−3

105 4.5610−5

11.27 Exercise 27

Calculate the transport cross-section of positrons impinging on Al atoms in the en-
ergy range from 100 eV to 100 keV. Use the relativistic partial wave expansionmethod.
Compute the atomic potential using the Cox and Bonham screening function [7].

Solution

Since the impinging particles are positrons, the potential energy can be calculated as

V(r) = Ze2

r
ξ (r), (11.74)

where ξ (r) is the Cox and Bonham screening function [7]. The transport cross-sections
of positrons of 100 eV, 1,000 eV, 10,000 eV, and 100,000 eV impinging on Al were ob-
tained using the Bode quadrature rule and are presented in Table 11.11.
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Table 11.11: Transport cross-sections σtr of positrons (kinetic energy from 100 eV to 100 keV) im-
pinging on Al. The Cox and Bonham screening function [7] was used to calculate the electrostatic
potential.

Positron
energy (eV)

σtr (Å2)

102 6.9010−1

103 6.1710−2

104 2.2410−3

105 4.3010−5
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