
C
o
p
y
r
i
g
h
t

2
0
2
2
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 11:46 AM via
AN: 3164521 ; Robert Nagy.; Simplifying Application Development with Kotlin Multiplatform Mobile : Write Robust Native Applications for IOS and Android
Efficiently
Account: ns335141

Simplifying Application
Development with
Kotlin Multiplatform Mobile

Write robust native applications for iOS and Android
efficiently

Róbert Nagy

BIRMINGHAM—MUMBAI

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Simplifying Application Development with
Kotlin Multiplatform Mobile
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Associate Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Shalita Aranha
Senior Editor: Mark Dsouza
Content Development Editor: Divya Vijayan
Technical Editor: Joseph Aloocaran
Copy Editor: Safis Editing
Project Coordinator: Rashika Ba
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Ponraj Dhandapani
Marketing Coordinator: Elizabeth Varghese

First published: March 2022

Production reference: 2240222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-258-0

www.packt.com

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com

Contributors

About the author
Róbert Nagy is a Senior Android Developer at Octopus Energy. He is an Android and
Kotlin developer with a Bachelor of Science in Computer Science. He has designed,
developed, and maintained multiple sophisticated Android apps ranging from 100K+
downloads to 10M+ in the financial, IoT, health, social, and energy industries. Some
projects that he has been a part of include a social platform for kids, a lightning system
controller, and Bloom and Wild.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewers
John O'Reilly is a Kotlin Google Developer Expert with over 30 years of hands-on
software development experience. He has been developing Android apps since 2010, and
he worked on server-side Java applications in the 2000s and desktop clients in the 1990s.
He has taken a keen interest over the last few years in all things Kotlin Multiplatform
and, in particular, when combined with use of declarative UI frameworks such as Jetpack
Compose and SwiftUI.

Yev Kanivets is an experienced native mobile developer working on both Android and
iOS applications since 2014. He became an early adopter of Kotlin Multiplatform in 2019
sharing everything up to the presentation level for a multitude of production apps.

His work experience includes multiple consultancies and product companies, as well as
holding the CTO and co-founder positions at xorum.io, a company dedicated to Kotlin
Multiplatform solutions. There he is responsible for tech decisions, tech talks (.droidcon,
VKUG, and so on), workshops, articles for the Medium blog, and other tech stuff.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Preface

Section 1 - Getting Started with
Multiplatform Mobile Development Using
Kotlin

1
The Battle Between Native, Cross-Platform, and
Multiplatform

Understanding the
compounding costs of native
development� 4
The cost of native app development� 5
Synchronization� 6

Exploring the pitfalls of
cross-platform solutions� 8
Assumed cross-platform
development costs� 8
Actual cross-platform technology costs� 12

Adopting a multiplatform
approach� 13
The multiplatform approach� 13
How KMP works� 14
Platform abstractions (expect-actual)� 15
The different use cases for KMP� 17
KMM cost implications� 20

Summary� 22

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

vi Table of Contents

2
Exploring the Three Compilers of Kotlin Multiplatform

Kotlin compilers in general� 24
The Kotlin/JVM compiler� 25
How it works� 25
Executing Java code on Android� 26

The Kotlin/Native compiler� 28
How it works� 29
Interoperability on iOS� 29

The concurrency model� 32
Annotation processing� 34
Intermediate source sets and the
Commonizer� 35

The Kotlin/JS compiler� 38
How it works� 38

Summary� 39

3
Introducing Kotlin for Swift Developers

Technical requirements� 41
Introducing Gradle� 42
Structure of Gradle� 43

Exploring Kotlin's core features� 46
Null safety� 46
Data classes� 48
Extensions� 49
Functional programming features� 49
Objects� 50

COW in Kotlin� 50

Understanding Kotlin coroutines�51
Suspend functions� 51
CoroutineScope� 52
Executing coroutines� 52
Switching threads� 53
Streams in Kotlin� 54

Summary� 56

Section 2 - Code Sharing between Android
and iOS

4
Introducing the KMM Learning Project

Technical requirements� 60
Getting to know our
project – Dogify� 60
Exploring prerequisites� 62

Skill requirements� 62
Required tools� 62

Understanding the technical
decisions� 66

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents vii

Architecture� 66
The shared code� 69

Library choices� 70

Summary� 70

5
Writing Shared Code

Technical requirements� 71
Initial project setup� 71
Project structure� 76

Fetching data from the Dog API� 84
Persisting data in a
local database� 91

Exploring how to set up SQLDelight in
a multiplatform module� 91
Implementing the BreedsLocalSource� 94

Connecting our database to the rest of

the components� 95

Summary� 97

6
Writing the Android Consumer App

Technical requirements� 99
Setting up the Android module� 100
Enabling Jetpack Compose� 100
Adding the necessary dependencies� 101

Tying the Android app to the

shared code� 103
Implementing the UI on
Android� 107
Summary� 112

7
Writing an iOS Consumer App

Technical requirements� 113
Setting up the iOS app� 114
Tying the iOS app together with
the shared code� 115

Implementing the UI on iOS� 126
Summary� 129

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

viii Table of Contents

Section 3 - Supercharging Yourself for the
Next Steps

 8
Exploring Tips and Best Practices

Technical requirements� 134
Testing shared code� 134
Architectural decisions� 135
Interacting with coroutines� 135
Interacting with data transfer
objects (DTOs)� 136

Interacting with shared code� 136

Managing concurrency� 137
New memory manager� 139

App size best practices� 140
Summary� 141

9
Integrating KMM into Existing Android and iOS Apps

Deciding on a mono repository
or a shared library� 144
Mono repository� 144
Multiple repositories� 146
Conclusion� 149

Exploring team structure
and tooling� 150
Team structure� 150
Tooling� 151

Learning some adoption tips� 153
Summary� 154

10
Summary and Your Next Steps

Recapitulating what you have
learned � 156
Managing your KMP
expectations� 156
Will it change the mobile development
landscape?� 156

Kotlin/Native's direct interoperability
with Swift� 157
Shared UI� 157

Learning resources� 157
Summary� 158

Index

Other Books You May Enjoy

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Kotlin Multiplatform is the new tool in the toolkit of native developers. It provides gradual
code-sharing capabilities between multiple platforms, including Android and iOS.

This book introduces this new technology from the perspective of mobile development. It
gives you the necessary knowledge to extend your development toolset and build a more
effective native development process.

After reading this book, you should have a clear understanding of Kotlin Multiplatform's
strengths and how you can leverage the tool to build mobile applications more effectively.

Who this book is for
This book is for native Android and iOS developers who want to build high-quality apps
using an efficient development process. Knowledge of the framework and the languages
used is necessary, that is, Android with Java or Kotlin and iOS with Objective-C or Swift.
For Swift developers, the book assumes no knowledge of Kotlin as this will be covered in
the context of Swift.

What this book covers
Chapter 1, The Battle Between Native, Cross-Platform, and Multiplatform, compares the
available cross-platform frameworks with native frameworks and introduces Kotlin
Multiplatform.

Chapter 2, Exploring the Three Compilers of Kotlin Multiplatform, describes the architecture
of Kotlin Multiplatform and how it solves code sharing between different platforms.

Chapter 3, Introducing Kotlin for Swift Developers, provides a brief introduction to Kotlin,
to bring everyone up to speed before the learning project.

Chapter 4, Introducing the KMM Learning Project, describes the learning project and its
prerequisites.

Chapter 5, Writing Shared Code, gives you practical advice on writing shared code with
Kotlin Multiplatform.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

x Preface

Chapter 6, Writing the Android Consumer App, explains how the shared code written
previously can be consumed on Android.

Chapter 7, Writing an iOS Consumer App, explains how the shared code written previously
can be consumed on iOS.

Chapter 8, Exploring Tips and Best Practices, dives deeper into the current state of the art
of writing shared code with Kotlin Multiplatform.

Chapter 9, Integrating KMM into Existing Android and iOS Apps, provides tips and answers
to possible questions regarding the integration of KMM into existing production apps.

Chapter 10, Summary and Your Next Steps, points you in the next direction in terms of
consolidating your KMM knowledge.

To get the most out of this book
You should have basic programming skills, such as familiarity with Object-Oriented
Programming (OOP), asynchronous programming, and the general concepts used in
mobile development.

Familiarity with Kotlin and Android-related tools (Gradle) is not required as there is a
quickstart chapter to bring everyone up to speed on what's needed to start coding the
example project.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Simplifying-Application-
Development-with-Kotlin-Multiplatform-Mobile. If there's an update to the
code, it will be updated in the GitHub repository.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile

Preface xi

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801812580_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "For every Gradle module/project, you'll have a build.gradle (or
.kts) file describing the build steps for that specific module."

A block of code is set as follows:

plugins {

 kotlin("multiplatform")

 id("com.android.library")

 kotlin("plugin.serialization") version

 Versions.KOTLIN_VERSION

 id("org.jetbrains.kotlin.native.cocoapods")

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

// Swift unwrapping

if let string = optional {

 print(string.count)

} else {

 print("I'm nil")

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801812580_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801812580_ColorImages.pdf

xii Preface

Any command-line input or output is written as follows:

$ mkdir css

$ cd css

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Open the
Android Studio New Project wizard (Android Studio | New Project). From the Phone
and Tablet tab, select KMM Application."

Tips or Important Notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://customercare@packtpub.com
http://www.packtpub.com/support/errata
http://copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Preface xiii

Share Your Thoughts
Once you've read Simplifying Application Development with Kotlin Multiplatform Mobile,
we'd love to hear your thoughts! Please click here to go straight to the
Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://packt.link/r/1801812586

https://packt.link/r/1801812586

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 1 -
Getting Started with

Multiplatform Mobile
Development Using Kotlin

This section covers the core concepts of Kotlin Multiplatform. Comparing cross-platform
to native technologies, it describes the market gap that Kotlin Multiplatform fills.

Moreover, it explains the rationale behind why this new technology is one to learn
and adopt while giving a deep dive into its architecture and how it makes sharing code
between different platforms possible.

This section comprises the following chapters:

•	 Chapter 1, The Battle Between Native, Cross-Platform, and Multiplatform

•	 Chapter 2, Exploring the Three Compilers of Kotlin Multiplatform

•	 Chapter 3, Introducing Kotlin for Swift Developers

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

1
The Battle Between

Native, Cross-
Platform, and
Multiplatform

The proliferation of smartphones has led to the development of a large number of
applications, making app development an important field. Because the same service in the
form of an application needs to be developed on multiple platforms, various technologies,
in addition to native solutions, have started to arise – first, cross-platform and now
multiplatform. These technologies have been developed mainly to cut costs and make the
application development process more efficient.

We'll start by learning about the issues with native development, why cross-platform can
solve some of these issues with compromises, and how multiplatform can be a better
solution. Also, if you're at the start of your career, we'll dive into why it may be better to
focus on a multiplatform technology stack, rather than a cross-platform technology stack.
I realize that this chapter is quite theoretical, but I encourage you to bear with me – it
should help you build up that dopamine release, which is going to be paramount in the
following chapters to maximize your learning.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

4 The Battle Between Native, Cross-Platform, and Multiplatform

In this chapter, we're going to cover the following topics:

•	 Understanding the compounding costs of native development

•	 Exploring the pitfalls of cross-platform solutions

•	 Adopting a multiplatform approach

Understanding the compounding costs of
native development
The manufacturer of every platform or operating system provides a software
development kit (SDK), which contains everything necessary for someone to
develop applications on that specific platform or OS. Here, we are referring to a native
development process, where someone uses that SDK to develop applications for that
single platform.

Cross-platform frameworks have a separate SDK, which is usually a layer on top of a
native SDK.

Cross-platform solutions are becoming more and more popular; for example, as of May
2021, out of ~5 million apps on the Google Play Store, more than 200,000 are Flutter-
based apps, which is not bad for fairly new technology (4-6% of all the apps published
in Google Play Store).

For a more detailed look at some of Google Play's statistics, visit https://www.
appventurez.com/blog/google-play-store-statistics.

If you are interested in learning a bit more about Flutter-based applications, check out
https://www.youtube.com/watch?v=a553D0s7HeE&t=1779s.

To understand why there is an increasing demand for cross-platform solutions, we need to
understand what issues people face with native development.

One of the reasons for the increase in demand for cross-platform solutions is developer
convenience. Becoming an expert nowadays, and especially staying one, in any
programming language or framework is not an easy job. While transferring concepts
and general knowledge can be achieved in varying degrees, depending on the similarity
between two platforms, becoming an expert in a new language still requires learning.
Therefore, those people who'd like to become an all-around frontend developer with
considerable expertise in Android, the web, and iOS have to learn not only three different
frameworks but their primary languages as well: Swift/Obj-C, Kotlin/Java, and JavaScript.
This is the case unless there is a shortcut providing passage between these worlds, which is
generally covered by cross-platform technologies.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.appventurez.com/blog/google-play-store-statistics
https://www.appventurez.com/blog/google-play-store-statistics
https://www.youtube.com/watch?v=a553D0s7HeE&t=1779s

Understanding the compounding costs of native development 5

This explains the openness developers have toward using cross-platform, but it's only one
part of the equation – the supply – and we still need demand for it.

There is another major reason for developers steering away from native solutions: cost.

The cost of native app development
So, why doesn't everyone want to go with a native development process? This choice is
somewhat similar to buying tailored garments versus ready-made garments from clothing
stores: it's cheaper.

Before we understand the costs associated with Native development, let's introduce the
concept of nativeness first. Nativeness is a measure of the degree to which the quality of a
product conforms with the peculiarities of a platform. For example, imagine the differences
between a native English speaker and a non-native one (potentially the author of this book,
who has an imperfect Hungarian accent). The differences can range from subtle to more
obvious, based on the complexity of the words and the non-native speaker's skills.

Now, why would anyone give up nativeness? It's mainly because people can achieve lower
costs (or at least they think they can).

To get a better picture of the cost variance between native, cross-platform, and
multiplatform, we're going to examine the relationship between a feature's complexity and
the development cost that's needed to bring it to life in a simplistic manner. Features can
consist of multiple sub-features. So, for example, a delivery app can be thought of as an
app with one delivery feature, where the complexity of this feature is the sum of all of its
sub-features.

In the case of native development, since there is little to no cost reduction, the cost of
development is determined as follows:

Cost of development (n) = n * FC

Here, n is the number of platforms and FC is the feature complexity, which, as we
mentioned earlier, is the sum of all the sub-features that comprise a feature.

Important Note
This and the following calculations are approximations and only describe
the reality simplistically. Nevertheless, they should provide you with a better
picture to understand the cost differences between frameworks.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

6 The Battle Between Native, Cross-Platform, and Multiplatform

This is what costs would look like if you were developing a product on two (blue line) and
three (red line) platforms, respectively, where there is no cost reduction by sharing code:

Figure 1.1 – Cost of native development as a function of feature complexity

Unfortunately, there is a little beast known as synchronization between platforms that we
didn't take into account, which can significantly increase development costs, bit by bit; it's
hard to plan for it, so it can be an unknown variable in calculations.

Synchronization
What is the specialty of frontend and mobile products in general? They are mostly
similar, though they do have some differences. Thus, the goal of developers is to achieve
consistency between platforms while paying attention to nativeness. This is a lot harder
than it sounds. Why? There are a couple of reasons for this:

•	 People think differently.

•	 Platforms are different (an option that's easy to implement on iOS may not even be
available to Android).

•	 Creating software requirements documentation that covers everything is impossible.

•	 Communication is costly, but no communication is costlier.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the compounding costs of native development 7

Because people think differently and are biased, communication is not easy, and platforms
can drive developers toward different solutions, platform-native apps will likely have
differences. As feature complexity increases, implementations will likely begin to differ
more and more, causing greater and greater differences between platforms. Due to this,
the costs of synchronization will compound. At some point, the development team will
have to account for the differences between the implementations on the platforms as well.

Taking the synchronization costs into account, we could update our cost of development
calculation as follows:

Cost of development (n) = n * FC + Sync Costs ^ FC

Here, n is the number of platforms and FC is the feature complexity.

Synchronization costs typically depend on your team's processes and its ability to
communicate. The following chart provides an example of how synchronization in the
native world could increase your costs significantly as feature complexity grows:

Figure 1.2 – The cost of native development with and without synchronization costs as a function of
feature complexity

Here, we can see why the outlook of costs scares clients and directs them toward cross-
platform solutions. But do cross-platform technologies save costs? Yes, though not in all
cases and they may lure you into traps.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

8 The Battle Between Native, Cross-Platform, and Multiplatform

Exploring the pitfalls of cross-platform
solutions
The main objective of cross-platform technologies is to allow you to write code that can
be used across platforms (Android, iOS, and the web). Due to this, you don't have to write
separate code for the same feature multiple times, depending on the platform; the cross-
platform framework will provide the tools for you to interpret this code and translate it into
platform-specific versions. The power of the cross-platform framework depends on those
tools that interpret and translate the cross-platform code into platform-specific code.

Let's learn what the assumed cross-platform development costs are and what you should
know about cross-platform in general to avoid some common pitfalls.

Assumed cross-platform development costs
People often estimate cross-platform product costs by cutting the costs that are needed
for native apps in half (or even into three, if there is a possibility of deploying the cross-
platform app on the web too).

Under this assumption, our formula becomes as follows:

Cost of development (n) = FC

Here, n is the number of platforms and FC is the feature complexity.

Let's compare this to the costs of native development:

Figure 1.3 – The cost of native development versus the cost of cross-platform development as a function
of feature complexity

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the pitfalls of cross-platform solutions 9

Looking at the preceding diagram and keeping the aforementioned assumption in mind,
no wonder there is an increasing demand for cross-platform solutions.

Though this assumption may hold for greenfield projects, this probably won't be the case
for real-world projects. To understand this, let's go over some of the currently available
cross-platform technologies and how they work. We will review two of the most popular
cross-platform frameworks: React Native and Flutter.

React Native
React Native is an open source framework for developing mobile applications. It is based
on the React library and converts React components and JavaScript code into native
Android and iOS components. For example, a Text component in React Native will
be converted into a UITextView component on iOS and a TextView component
on Android. This sounds like a good approach and it is a plausible one, especially for
developers coming from the Web/React world. But how does this conversion work and
what are the tradeoffs and risks of React Native development?

React Native creates a thread where it runs the respective JavaScript code, which
communicates with the native code by running on the traditional main thread, through a
bridge that asynchronously sends serializable data:

Figure 1.4 – The architecture of React Native

Going back to our example, when a UIView or TextView is clicked in the native
component, the appropriate data is then sent through the bridge to the JavaScript code,
and then back again. Now, if you're thinking about the performance costs of this bridge
mechanism, then you're in the right place. Let's look at the drawbacks of React Native:

•	 Performance: It's not native, especially for resource-intensive features.

•	 New features support: Because you're relying on React Native to provide support
for new things, you can expect a bit of a delay.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

10 The Battle Between Native, Cross-Platform, and Multiplatform

There are also some application development specifics, such as permissions, notifications,
in-app purchases, and media where you'd like more control over the native platform's
API. In those cases, React Native lets you create native modules in regular native code,
though it's not the primary purpose of the framework. If you arrive at a point where you
need a native module, which is likely unless you have a really simple app, you will face the
following issues:

•	 As a Developer: If you planned to reuse your JavaScript and/or React knowledge to
create mobile applications, you will have to acquire native mobile development skills
anyway.

•	 As a Client: Every roadblock that pushes you toward implementing a native module
means higher costs than writing the same feature with native solutions, simply
because there is a need for native expertise. Plus, it has to be integrated with React
Native as well.

We'll update our charts and calculations in a moment, but first, let's check out Flutter.

Flutter
Flutter is an open source UI software development kit that's developed by Google and
used for developing cross-platform applications. It has three layers from an architectural
perspective – the framework, the engine, and the platform – and relies on Dart's language
specifics, such as ahead-of-time compilation.

As a developer, you interact with the framework and you write the app and the widgets (UI
components in Flutter) in a declarative way using Dart, which the engine then renders to a
canvas called Skia Canvas. This canvas is then sent to the native platforms: Android, iOS, or
the web. The native platform will show the canvas and send the occurring events back:

Figure 1.5 – The architecture of Flutter

Flutter's architecture may be similar to React Native, but there is a big difference in terms
of performance. One key component of how Flutter achieves better performance than
React Native is by going one level lower on the native side, meaning that it doesn't use
the traditional SDKs that are used by native developers. Instead, it uses SDKs that need
more developer expertise and can offer higher performance. Flutter uses Android's Native
Development Kit (NDK) and iOS's Low-Level Virtual Machine (LLVM) to compile the
C/C++ code coming from the engine.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring the pitfalls of cross-platform solutions 11

While Flutter has pretty good performance compared to native and is far better than
React Native when it comes to compiling the Dart code into a lower level native code (a
key performance component), it also has a drawback: the cost of writing native code with
Flutter is higher than using React Native to do the same.

At the time of writing, if you don't have support for a certain piece of functionality in
the Flutter framework itself, you can write regular Java/Kotlin and Obj-C/Swift code, but
you'll have to communicate with the Dart code through a channel, sending data through
Map in Dart, HashMap in Java/Kotlin, and Dictionary in Swift. If we compare this
to the regular Java <-> Kotlin or Obj-C <-> Swift interoperability, this can be perceived
more as a workaround than a scalable solution.

Important Note
Both the Flutter and the React Native descriptions only serve as high-level
overviews to help you understand how cross-platform solutions are designed
and what to expect when you're working with them. To get a clearer picture,
please read the official documentation.

To conclude our cross-platform overview, let's summarize the patterns that we observed
in the aforementioned frameworks and see how we can update the general assumption of
cross-platform solutions when it comes to estimating the costs of development.

The main ideology of cross-platform technologies is that you write the same code for
Android and iOS (and the web); the framework provides the tooling to interpret this code
and translate it into the platform-specific version.

While they do provide solutions for writing native code where needed, they are
suboptimal and the goal of any cross-platform project is to avoid situations where
interoperability with native code is needed.

This way, you rely heavily on the framework to make good decisions on your behalf when
you're translating the cross-platform code into the platform-specific version. In short, all of
these frameworks have, or will have, a tough time keeping up-to-date with both Android
and iOS, two platforms that don't have an incentive to stay in sync with each other.

So, unless you plan on accepting big compromises, your cost of maintaining an acceptable
level of nativeness will be relatively high with any cross-platform solution.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

12 The Battle Between Native, Cross-Platform, and Multiplatform

Actual cross-platform technology costs
Going back to our initial cross-platform costs assumption, we can update our formula
with a new variable:

Cost of development (n) = FC * (1 + Cost of going Native)

Here, n is the number of platforms and FC is the feature complexity.

The Cost of going Native can depend on a variety of things:

•	 How much interoperability the cross-platform technology provides with native.
We've seen that this isn't optimal with neither of the aforementioned technologies.

•	 The knowledge gap between the cross-platform and native languages. You'll likely
observe that expertise hardly translates from cross-platform to native.

•	 The more you need to dive into native implementations, the more your costs will
compound because synchronization costs will kick in for the native code as well.

For visualization purposes, a more likely scenario of the costs associated with cross-
platform development could look like this:

Figure 1.6 – Cost of cross-platform development with potential roadblocks as a function of feature
complexity

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adopting a multiplatform approach 13

Again, the number of roadblocks you'll hit heavily depends on how much you're willing to
compromise from nativeness and how much you're relying on platform-specific APIs.

To conclude, if I were to write a project for myself, I'd consider Flutter. If it is a simple
project where I don't have to cover any platform-dependent stuff (permissions,
notifications, in-app purchases), just basic CRUD operations with a backend, a local
database, and some nice UI stuff, then I'd probably go with Flutter. Otherwise, I'd use
a native solution. Knowing how platform-specific things such as permission handling
change on Android, I wouldn't dare trust a third-party framework to keep up-to-date.

That being said, cross-platform will probably still attract many start-ups in the future,
due to the nature of start-ups accepting higher compromises to survive and achieve
their short-term financial goals or to be product-market fit, which requires moving fast.
However, there is another option: the multiplatform approach. This is cost-friendly both
long and short term, and it is a sane approach from all perspectives.

Adopting a multiplatform approach
We have finally arrived at one of my favorite topics. In this section, we'll explore how
multiplatform works, why it's different from cross-platform technologies, and its cost
implications.

The multiplatform approach
As we mentioned previously, cross-platform technologies generally try to take on the
"burden" of dealing with platform-specifics; thus, their main goal is to help facilitate
application development without having to deal with platform-specific decisions. This
has two implications – interoperability with the native platform is not the primary scope
of these technologies and (partly because of this) the framework needs to do most of the
heavy lifting when it comes to making platform-specific decisions.

To overcome these issues, another approach is needed. Kotlin Multiplatform (KMP),
a multiplatform solution, introduces a paradigm shift. It recognizes both the need for
flexible platform-specific decision making and keeping up to date with different platforms,
where these two things go hand-in-hand.

Its aim is not to provide a wrapper layer over the native platforms, but to be a handy tool
in the native development palette, which can help with sharing non-platform-specific
code such as the business logic.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

14 The Battle Between Native, Cross-Platform, and Multiplatform

You may be wondering why understanding the ideology of a framework would be
important for you. There are a couple of reasons, as follows:

•	 You become more aligned with a framework, and you'll know when something goes
against the framework's design.

•	 You'll be able to manage your expectations regarding the framework's future
direction better.

The main objectives of KMP are as follows:

•	 Keeping the native part of development as close to the regular native development
process as possible.

•	 Ensuring that native developers do not find it difficult when they're writing the
shared code.

•	 Facilitating interoperability between native and shared code; interacting with shared
code should be as close to native-like as possible.

Now, let's take a deeper look into how KMP can empower you to write platform-agnostic
code and share that between different platforms.

How KMP works
KMP allows you to write code in Kotlin in a platform-agnostic way and share that code
between different platforms, all while leveraging the native programming benefits.

The Kotlin ecosystem contains three main compilers – Kotlin/JVM, Kotlin/JS, and Kotlin/
Native (we will cover them in more depth in Chapter 2, Exploring the Three Compilers of
Kotlin Multiplatform):

Figure 1.7 – The architecture of KMP

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adopting a multiplatform approach 15

Note
Most developers know Kotlin through the lens of Kotlin/JVM. This is because
of Kotlin's reliable interoperability with Java. It has a wide and quickly growing
adoption rate in the Android community, but server-side development with
Kotlin has also been becoming more and more popular in recent years.

In essence, Kotlin's interoperability power depends on how well these three compilers
work with the respective platforms. For Android, we can consider that the interoperability
cost with KMP is zero since Kotlin/JVM is part of the Android developer ecosystem.
As for iOS (and potentially the web), the costs depend on how well the Kotlin/Native
(and Kotlin/JS) compiler works. We will look at this in more detail in the next chapter.

Shared code must be platform-agnostic, which means the code shouldn't contain any JVM,
JavaScript, iOS, or any other platform-specific references. For example, working with Date
and Time is platform-specific and has different dependencies on iOS than on JVM (or
Android). Don't worry – a lot of these use cases are already covered in libraries that have
been developed by either the Kotlin community or the JetBrains team.

Now, let's learn how to leverage KMP's capabilities to write platform-agnostic code that
will use the proper platform-specific dependencies on the different target platforms,
in case you bump into any uncovered use case from the community.

Platform abstractions (expect-actual)
This mechanism is one of the cores of the whole KMP technology. In a lot of cases, when
you're writing shared code, you need a way to define how certain functionality should be
implemented on the specific native platforms.

Note
Going forward, we will use the terms shared code and common code
interchangeably, both of which refer to code written in a platform-agnostic way
and that could be seamlessly compiled with one of the Kotlin compilers to the
chosen targets.

As you'll see, this could mean being platform-agnostic across Kotlin/Native and
Kotlin/JVM only, depending on what platforms you target.

With KMP, you can write expected declarations using the expect keyword in your
shared code, which will have an actual implementation for every platform that you
specify. Let's look at an example of how to share code between Android and iOS with this
mechanism.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

16 The Battle Between Native, Cross-Platform, and Multiplatform

Let's say you have an application where users can upload certain files to the cloud and
you'd like to share this part of your networking layer. Since file handling is something
platform-specific, you'll need to create some abstractions for this (or potentially check if
it's already covered in a library).

First, you would declare the expected functionality in your shared code; in our case, we'll
need any file to be converted into a byte representation of the file so that we can send it to
the backend:

expect class File {

 fun toByteArray(): ByteArray

}

Don't worry much about the syntax; the important part is the expect/actual
mechanism.

To make KMP able to substitute the expected implementations with the actual
implementations on the different platforms, we need to provide those as well:

// JVM

actual class File(private val file: java.io.File) {

 actual fun toByteArray() = file.readBytes()

}

As you can see, for JVM/Android, we are just wrapping the java.io.File platform-
specific implementation. There is a better way to do this using type aliases, which we'll
cover in Chapter 5, Writing Shared Code.

For iOS/React Native, the implementation could look like this:

// iOS/Native

actual class File(private val fileHandle:

 platform.Foundation.NSFileHandle) {

actual fun toByteArray() =

 with(fileHandle.readDataToEndOfFile()) {

 memScoped {

 ByteArray(length.toInt()).apply {

 usePinned {

 memcpy(it.addressOf(0), bytes, length)

 }

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adopting a multiplatform approach 17

 }

 }

 }

}

As you can see, in the native implementation, you can use the Foundation Kit; there is
also a way to include CocoaPods dependencies, which we will also cover in Chapter 5,
Writing Shared Code.

At this point, KMP will compile the shared code for two different targets (Kotlin/JVM and
Kotlin/Native) with the two different compilers and replace all the expected declarations
with their actual implementations on the specific platform.

I can't emphasize enough how important this mechanism is for multiplatform; this is what
enables the bridge between different platforms and provides the scalability for the whole
platform so that outside contributors can easily build upon the current solutions.

Next, I'm going to touch on a little tool that we're going to cover in more depth in Chapter 2,
Exploring the Three Compilers of Kotlin Multiplatform, which helps out tremendously with
actual implementations – the commonizer.

This tool automates the process of the expect/actual declaration and generates the expect/
actual declarations for us. However, this tool was designed specifically for cases where
targets (such as macOS and different iOS architectures) have very similar dependencies
(such as the POSIX library on OS X and Linux).

Now that we have a bit of an understanding of the KMP framework and how it enables
developers to share code, let's see what it can be used for and how it could help out in a
regular development process.

The different use cases for KMP
The KMP framework is unopinionated about what you use it for. Its main goal is to help you
share code between multiple target platforms with as good interoperability as possible.

This means that the possible combination of potential use cases is close to infinite. You
can play around with the amount of code you plan on sharing and the targets you'd like to
share the code between. You can also scale it later on in the process because you can add
other target platforms and migrate more and more code to your common part as your
project develops.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

18 The Battle Between Native, Cross-Platform, and Multiplatform

You can go from having 1% shared code to sharing your UI layer – the only blocking thing
will be your sense of what needs to stay platform-specific.

With this in mind, let's check out some of the most common use cases.

Kotlin Multiplatform Mobile (KMM)
You may have heard about Kotlin Multiplatform Mobile (KMM) and perhaps you've
been wondering what the difference is between KMP and KMM; allow me to shed a bit of
light on this topic.

Technology-wise, KMM is a specific use case, whereas KMP is used for sharing code
between mobile targets – Android and iOS.

KMM was introduced when JetBrains realized that this concept is, at the time of writing,
one of the main use cases for developers choosing KMP to share code. Hence, a dedicated
KMM team was formed and special tooling was introduced to help support this cause:

Figure 1.8 – Kotlin Multiplatform Mobile in the Kotlin Multiplatform technology

In KMM, your code-sharing capabilities will largely depend on two of the Kotlin
compilers: Kotlin/JVM and Kotlin/Native. To grasp the limits of what's capable when
working with these compilers, we dedicate Chapter 2, Exploring the Three Compilers of
Kotlin Multiplatform to this so that you can know what to expect and how to get the most
out of both the Kotlin/JVM and Kotlin/Native compilers.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adopting a multiplatform approach 19

As we've already mentioned, you can start with any level of code sharing, but here are
some examples:

•	 A Small Part of the Code Base: Kevin Galligan would say to choose one of the
parts that's not so fun to work on, such as analytics.

•	 Networking Layer or Persistence Layer: This is still a relatively small amount of the
code base and it can reduce some of the synchronization costs.

•	 The Entire Data Layer: Managing offline support and syncing logic consistently on
two different platforms can be a burden, so it can be worth doing this for certain apps.

•	 View/Presentation Layer: This can be done, but things get a bit more platform-
specific here. This is also where the line between cross-platform and multiplatform
starts to get a bit blurry.

You can start going from only a small part of the code base and then bring more and more
layers and/or features as you gain more confidence working with KMP.

Another nice benefit of KMM is that it doesn't change the native development cycle
radically. Instead, it builds upon it, with KMP being more of an additional tool in the
existing palette.

Going forward, this use case is going to be the main focus of this book, but we will briefly
explore other potential use cases so that you can get a better picture of what code-sharing
possibilities you have with KMP.

Code sharing between frontend applications
You can do this gradually as well, going from a KMM app to sharing logic between all the
different frontend platforms you plan on supporting.

Since your current shared code is already based on working with the Kotlin/JVM and
Kotlin/Native compilers, adding support for all the different desktop targets such as
macOS, Windows, and Linux is relatively easy and largely depends on how well you
manage the non-shared part of your code.

A slightly bigger step is to bring the Kotlin/JS compiler into play and share code with your
web app through a JS target.

The complexity of this depends on the interoperability power of Kotlin/JS and how well
you can work with it.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

20 The Battle Between Native, Cross-Platform, and Multiplatform

Code sharing between backend and frontend applications
Another interesting use case of KMP is sharing code between your backend and frontend
applications.

In most real-world projects, there is a limited amount of implementation overlap
between backend and frontend apps, so this is why it doesn't get much focus from
cross-platform solutions.

Nevertheless, there is always a piece of the backend that would be awesome to share. I've
had the chance to experience minor modifications that broke the frontend apps, and also
remember doing Git history research to understand why there are differences in the way
frontend platforms use the backend APIs.

Yes, you can minimize these human errors with carefully designed processes, but
enforcing the process itself can be another challenge.

I think that sharing DTOs, API keys, and other useful information, such as base URLs,
can speed up development, especially in the long term. Just think about a continuous
integration (CI) pipeline, where if a backend modification breaks the builds on the apps,
it's immediately visible to the backend team.

I think that the combination of use cases is huge, and as a developer, I would start
getting more and more into this world that KMP offers. The whole approach offers a new
perspective on how we think about developing apps and introduces a new potential team
composition:

•	 Platform Experts: Developers with native Android, iOS, web, or other platform
expertise

•	 Shared Code Experts: The ones who maintain the shared logic and know the ins
and outs of KMP

JetBrains had already started experimenting with this setup while developing their Space
product and as KMP expertise spreads, I suspect we will see even more people follow.

Now, let's close this chapter by talking about the cost implications of a multiplatform
approach.

KMM cost implications
At this point, you hopefully understand the differences between cross-platform, native,
and multiplatform. The latter is in-between a native and cross-platform solution, where
you remain with your native platform development cycle but enhance it with code sharing
capabilities where it makes sense to.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Adopting a multiplatform approach 21

So, how would you calculate the costs for a multiplatform project? It should have native
costs for your non-shared code and cross-platform costs for shared code, except that you
don't face roadblocks with KMP, with interoperability being much better than it is with
cross-platform solutions.

In the case of a real roadblock, you can just decide on not sharing that part of the code so
that your interop costs will be diminishing relative to those of cross-platform solutions.

Based on this reasoning, a possible calculation of KMP costs could look like this:

Cost of development (n) = FC * [n * (1 - α) + α]

Here, n is the number of platforms, FC is the feature complexity, and α ∈ [0,1] represents
the amount of shared code (1: all the code is shared, 0: no code is shared).

Note that in this case, we don't include any synchronization costs. This is because KMP,
when done right, should eliminate the situations where synchronization costs could occur;
thus, the non-shared amount of code should be a representation of the platform-specific
code that's not worth sharing.

Of course, since KMP is a relatively newborn platform, the aforementioned ideal scenario
probably won't manifest for every use case, though it is approachable. To grasp what this
cost calculation means, check out the following chart:

Figure 1.9 – Cost of KMP development versus other options as a function of feature complexity

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

22 The Battle Between Native, Cross-Platform, and Multiplatform

As you can see, as the costs of development increase, cross-platform solutions can be a good
choice for short-term, quick projects. But in the long term, KMP is going to be the winner.

Important Note
I'm going to emphasize again that this is a simplistic estimation of costs and
that the preceding chart is a representation of a fabricated (though possible)
scenario of project development.

Because estimating real-world projects with generic calculation logic and from
the perspective of the different technologies is a hugely complex task, this
should be enough reasoning as to why this simplistic approach was taken.

Nevertheless, I'm confident that this simplistic approach can provide a good
overview of the costs of the different technologies.

Please note that an important aspect is missing from this chart – having an even better
view that shows another dimension of the quality would be required to have complete
reasoning on the technologies.

We won't dive deeper into this topic, but I'd reason about my technology choices in the
following manner:

•	 Are quality and nativeness paramount for my project? If the answer is yes, go as
native as possible.

•	 If both quality and costs are important and you're looking for the highest quality/
cost ratio, then go with multiplatform. Note that KMP is applicable for the first
scenario as well since it offers gradual code sharing; hence, if you only find out that
sharing something affects your quality during the process, you can revert and go
fully native for that feature. The upside is that you'll cut a lot of the costs.

•	 Cross-platform is the most cost-efficient option, but it is likely to require
compromises.

Summary
At this point, you should have a better understanding of the different technologies for
mobile development and their cost-effectiveness. I also hope that you've become eager to
learn more about Kotlin and KMP.

The purpose of this chapter was to provide a good overview of why KMP is different from
other cross-platform technologies, why it can be a good career choice for developers, and
why it would make sense to choose it for a project.

Now that you've had that dopamine pump, let's dive into the more technical aspects and
check out how the Kotlin compilers work and how you can leverage their power.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Exploring the Three
Compilers of Kotlin

Multiplatform
In the previous chapter, we discussed that the interoperability quality of shared code is a
key aspect of multiplatform development. To explore this interoperability quality, we need
to examine how the three different backend compilers of Kotlin – Kotlin/JVM, Kotlin/
Native, and Kotlin/JS – work. This will help you manage your expectations regarding the
performance, future, and interoperability of Kotlin with the different platforms, which will
help you leverage the potential of KMP.

By the end of this chapter, you will have a clearer picture of how the aforementioned
compilers work, what interoperability constraints you'll have when working with them,
and how to leverage their power.

In this chapter, we're going to cover the following topics:

•	 Kotlin compilers in general

•	 The Kotlin/JVM compiler

•	 The Kotlin/Native compiler

•	 The Kotlin/JS compiler

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

24 Exploring the Three Compilers of Kotlin Multiplatform

Kotlin compilers in general
First, let's make sure we are on the same page and have a basic understanding of how
compilers and the Kotlin compiler work in general.

A compiler is a program that translates computer code in a given programming language
into machine code or lower-level code. Compilers generally consist of two components:

•	 Frontend

•	 Backend

A frontend compiler deals with programming-language specifics, such as parsing the
code, verifying syntax and semantic correctness, type checking, and building up the
syntax tree. Generally, there is one frontend compiler and as many backend compilers as
there are targets.

A backend compiler takes an intermediate representation (IR) of the code that's
produced by the frontend compiler and creates an executable based on the IR. This can be
run on the specific target while running certain optimizations.

In Kotlin, there are three different backend compilers: one for each of the Java virtual
machine (JVM), JavaScript (JS), and native targets. All three produce different outputs
that will conform to the target platform.

Until now, the three Kotlin backend compilers were developed pretty much
independently, without much overlap. JetBrains recently started a new direction by
introducing an IR for Kotlin code, which is already adopted in Kotlin/Native.

The Kotlin/JS and Kotlin/JVM backend compilers are being migrated to this new IR
infrastructure at the time of writing; hopefully, they will have more stable versions once
this book has been published.

This new unified IR-based compiler means that all three backend compilers will share
the same logic, thus making feature development and bug fixes easier. It also brings the
possibility of multiplatform compiler extensions, which could be pretty neat.

Now, let's look at the different Kotlin backend compilers.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Kotlin/JVM compiler 25

The Kotlin/JVM compiler
The Kotlin/JVM backend compiler is what helps translate code written in Kotlin into
Java bytecode, which is code that can be run on the JVM or Android. Kotlin was initially
designed for the Java world, including Android, and the Kotlin/JVM compiler was the one
that paved the way for the Kotlin language.

How it works
The Kotlin/JVM compiler generates the same .class executables that the Java compiler
does, which is the Java bytecode that can be run on the JVM:

Figure 2.1 – How Kotlin/JVM works

This means that you can decompile your Java bytecode, the .class executables, and
check the Java code, which is quite handy if you want to see what the generated Kotlin
code looks like.

So, the Kotlin/JVM value proposition was (and still is) that it provides the rich palette of
language features of Kotlin and translates the code you write with it into the same Java
bytecode that has seamless interoperability with any other Java code.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

26 Exploring the Three Compilers of Kotlin Multiplatform

This strong interoperability feature of Kotlin/JVM has led to a rapid rise in the number
of people trusting Kotlin and choosing it over Java when developing Android apps. This
huge community growth and the official Google support for Kotlin have evolved to a point
where many of the official Android libraries are Kotlin-first.

Android is now moving to a new UI toolkit, Jetpack Compose, where the underlying
Compose compiler completely relies on the Kotlin compiler. All this means that the
Google team is now even more invested in Kotlin, which can be seen in their contribution
to the Kotlin/JVM compiler infrastructure as well. The Compose compiler uses a newly
introduced infrastructure of the Kotlin/JVM backend compiler.

See the following talk for more information: https://www.youtube.com/
watch?v=UryyHq45Y_8.

This means that the Kotlin/JVM backend compiler is currently the most supported
compiler by JetBrains, Google, and the huge Android community. Though things have
been changing for the best, since Kotlin 1.5, the new unified IR-based Kotlin/JVM
backend compiler became stable and enabled by default. This means that the other
backend compilers can potentially benefit from any feature and bug fixes on the Kotlin/
JVM compiler.

I also have to mention that the big success of Kotlin/JVM on Android was probably also
helped by the way Android runs Java executables.

Executing Java code on Android
Applications running on mobile phones have more constraints and fewer resources than
applications running on server and desktop environments. Using a VM not only helped
Android support the vast number of hardware but in part also optimized the mobile
environment. Dan Bornstein designed the Dalvik Virtual Machine (DVM), which is
based on JVM and is specifically for Android devices.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.youtube.com/watch?v=UryyHq45Y_8
https://www.youtube.com/watch?v=UryyHq45Y_8

The Kotlin/JVM compiler 27

This means that running the .class Java bytecode on Android isn't exactly as
straightforward, because there isn't a JVM. This bytecode needs to be translated by the
DVM; this is what the d8 Dex compiler does – it takes the Java bytecode and produces
Dalvik bytecode or .dex:

Figure 2.2 – How the DVM works

So, Android needs to support any new Java versions in their Dex compiler before a
developer can use the features of the new Java release.

The key takeaway is that Android developers have to wait for Dex to have support for that
version because of how Java runs on Android.

This means that there's breathing time for Kotlin because until the Dex compiler doesn't
support the new Java release, there is no point in supporting it in Kotlin, at least for
Android developers.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

28 Exploring the Three Compilers of Kotlin Multiplatform

Note that Android replaced DVM with Android Runtime (ART). DVM used just-
in-time (JIT) compilation, which means that every app was compiled before it was
launched. ART introduced ahead-of-time (AOT) compilation, which, during the
application's installation phase, takes the Dalvik bytecode, translates it into the machine
code, and stores it. Note that ART still includes a JIT compiler, which complements
the AOT compiler by continually improving the performance of Android applications
as they run. See https://source.android.com/devices/tech/dalvik/
jit-compiler?hl=en and https://source.android.com/devices/tech/
dalvik#AOT_compilation for more information.

Now that we've finished this small Android detour, you should have a good understanding
of how the Kotlin/JVM backend compiler works, how well it is supported, and the
enabling factors that led to its success.

Now, let's dive into the Kotlin/Native compiler, understand how it works, and how you
can leverage it when you're trying to share code with iOS and other targets from the Apple
ecosystem.

The Kotlin/Native compiler
The Kotlin/Native backend compiler is an LLVM-based compiler (the abbreviation stands
for low-level virtual machine, which was officially deprecated to avoid any confusion since
LLVM now means more than just a virtual machine (VM); we're talking about LLVM IR,
LLVM debugger, and so on) that compiles Kotlin code into native binaries that can be run
without a VM. It can be used to compile code for embedded devices, the Android Native
Development Kit (NDK) or iOS, macOS, and other Apple targets.

We can immediately draw some comparisons here with Flutter, which uses the Android
NDK and LLVM to compile Dart on Android and iOS, respectively; this is known to be
one of the key factors of Flutter's pretty good performance compared to React Native.

One of Kotlin/Native's powers comes from the fact that it can provide complete two-way
interoperability with the Native targets. This means that you can use the C, Swift, and
Objective-C frameworks and static or dynamic C libraries in your shared Kotlin code (we
saw this in Chapter 1, The Battle Between Native, Cross-Platform, and Multiplatform, where
we wrote an actual file implementation based on NSFileHandle).

Note
The Kotlin/Native compiler can create an executable for many platforms, a
static library or dynamic library with C headers for C/C++ projects, and an
Apple framework for Swift and Objective-C projects.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://source.android.com/devices/tech/dalvik/jit-compiler?hl=en
https://source.android.com/devices/tech/dalvik/jit-compiler?hl=en
https://source.android.com/devices/tech/dalvik#AOT_compilation
https://source.android.com/devices/tech/dalvik#AOT_compilation

The Kotlin/Native compiler 29

How it works
First, the Kotlin/Native compiler generates an LLVM IR of the original Kotlin code. Then,
the LLVM compiler can work with this IR and create the necessary executables. This
includes binaries or frameworks in the case of the Apple ecosystem:

Figure 2.3 – How Kotlin/Native works

Interoperability on iOS
Let's look at what the experience of consuming shared code written in Kotlin looks like
on iOS.

With Kotlin/Native, you can generate not only binary executables but Obj-C frameworks
for Apple targets. The way this works is that Kotlin/Native compiles Kotlin directly into
native code with the help of an LLVM and generates some adapters/bridges to make this
compiled Kotlin code accessible from Obj-C and Swift.

This means that if you're using Swift (which you most likely are), you have interoperability
that looks like this: Kotlin <-> Obj-C <-> Swift.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

30 Exploring the Three Compilers of Kotlin Multiplatform

This means that Obj-C acts as sort of a bridge between Kotlin and Swift, so to use a Swift
library in Kotlin, the given library must be usable in Obj-C as well. This can be done by
exporting the Swift library's API to Obj-C via @objc annotations.

Pure Swift modules, without these annotations, cannot be used, which means that you
cannot base your actual implementations on modules such as SwiftUI, for example.

Note
Note that JetBrains has added direct interoperability with Swift to their
roadmap, but its development is currently paused.

This means that the Kotlin/Native compiler will not generate an Obj-C-specific
adapter for the native code, but rather a Swift one.

To get an all-around understanding of what you'll get when you compile your Kotlin code
for an Obj-C framework with Kotlin/Native, the best way is to just compile your code and
check out what its Obj-C representation looks like. The second best way is to check out
this concise one-pager from the official documentation: https://kotlinlang.org/
docs/native-objc-interop.html.

But to get a better idea of what your Kotlin code could look like on Obj-C, let's look at a
relatively common example of a data class. Don't worry if you don't know about the
concept of a data class; in Chapter 3, Introducing Kotlin for Swift Developers, we'll
explore the core features of the Kotlin language.

Let's go with the following example data class:

// Kotlin code

data class Example(val param1: String, val param2: String)

This class will be compiled to the following Obj-C code:

// The generated Obj-C code

__attribute__((objc_subclassing_restricted))

__attribute__((swift_name("Example")))

@interface KotlinIos2Example : KotlinBase

- (instancetype)initWithParam11:(NSString *)param1

 param2:(NSString *)param2

 __attribute__((swift_name("init(param1:param2:)")))

 __attribute__((objc_designated_initializer));

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kotlinlang.org/docs/native-objc-interop.html
https://kotlinlang.org/docs/native-objc-interop.html

The Kotlin/Native compiler 31

- (NSString *)component1

 __attribute__((swift_name("component1()")));

- (NSString *)component2

 __attribute__((swift_name("component2()")));

- (KotlinIos2Example *)doCopyParam1:(NSString *)param1

 param2:(NSString *)param2

 __attribute__((swift_name("doCopy(param1:param2:)")));

- (BOOL)isEqual:(id _Nullable)other

 __attribute__((swift_name("isEqual(_:)")));

- (NSUInteger)hash __attribute__((swift_name("hash()")));

- (NSString *)description

 __attribute__((swift_name("description()")));

@property (readonly) NSString *param1

 __attribute__((swift_name("param1")));

@property NSString *param2

 __attribute__((swift_name("param2")));

@end;

It may seem that the generated Obj-C code has a lot of additional code compared to the
initial Kotlin code, but essentially, what you get with Kotlin data classes is that you can
automatically generate the equals, copy, and hash functions.

Note
The preceding Obj-C code snippet, which was generated by the Kotlin/Native
compiler, is only a snapshot of the compiler's functionality at the time of
writing. As the compiler evolves, the generated code may look different in
future versions.

In mobile applications, efficient asynchronous programming is an important factor, so
there is a huge demand for high-quality language support to ease this. The Kotlin/JVM
compiler does a pretty good job of complying with the Java concurrency model.

Now, let's explore how Kotlin/Native approaches this problem.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

32 Exploring the Three Compilers of Kotlin Multiplatform

The concurrency model
One of the biggest headaches developers have to face in the Kotlin/Native world is
bumping into concurrency-related issues in their code and experiencing the strictness of
the current concurrency model of Kotlin/Native. Let's quickly cover why these restrictions
were introduced and why the JetBrains team is currently working on some changes.

Long story short, because of how the current automatic memory management works
on Apple-based native systems (iOS, macOS, and so on), some concurrency restrictions
needed to be imposed in the Kotlin/Native world. This means that while mobile
developers are pretty much used to being able to share objects between threads freely and
have adopted various best practices and patterns to avoid race conditions when doing so,
they still have to face the really strict world of Kotlin/Native if they plan on sharing logic
that involves concurrency and sharing states across multiple threads.

It is possible to write efficient mobile apps even with these restrictions, but it requires
a higher level of expertise and the current model is not perfect; in some edge cases, it
introduces certain memory leaks.

All this has slowed down the adoption of KMP, and KMM in particular, and pushed
JetBrains toward a new solution. They've announced a new memory management
infrastructure, which should enable a more performant and developer-friendly
concurrency model in Kotlin/Native.

Nonetheless, the current model will still be supported, and it is necessary to understand it
until the new concurrency model arrives at a stable version. We'll start learning about the
current concurrency model next, but I hope that after 1 or 2 years of writing this book,
all the information in this section will be outdated and that people won't need to spend as
much time understanding this topic.

The current state and concurrency model
The strictness of Kotlin/Native's concurrency and state model consists of the following
two main rules, where the second is connected to the first:

•	 Mutable states can't be shared between threads.

•	 States need to be made immutable to be shared between threads. Their value, since
they are immutable, cannot be changed afterward.

KMP shared code, as discussed previously, can be used across multiple platforms from
the JVM, Native, and JS worlds. This means that the Kotlin/Native concurrency model
will have to be enforced in that specific target only (later in this book, we'll see that this
will affect how you design your shared code as well), and in practice, Kotlin/Native's
concurrency rules will be enforced at runtime.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Kotlin/Native compiler 33

So, for the concept of immutability, Kotlin/Native introduces frozen objects:

Frozen = Immutable

In code, this means that you need to make all the states that you want to share between
threads immutable/frozen. Freezing an object can be done in Kotlin/Native using the
freeze() function.

Important note
Using freeze() not only freezes/makes the object itself immutable, but the
whole subgraph, including any other object that can be reached from the object
where freeze() is called.

Freezing is a one-way ticket, so you can't unfreeze any object.

A common source of crashes in Kotlin/Native applications is accidentally
freezing objects that weren't purposefully targeted as freezable objects.

So far, we've discussed that Kotlin/Native enforces the aforementioned rules at runtime;
this means that abusing those rules will result in runtime exceptions. Let's look at what
exceptions you're likely to bump into in a multithreaded application.

IncorrectDereferenceException
This is the result of the first rule: mutable state cannot be shared across threads. Whenever
you get an IncorrectDereferenceException exception, this means that an object
that is unfrozen/mutable is shared across threads.

In practice, this can come up in different scenarios, such as calling a Kotlin function from
Obj-C/Swift that runs on a background thread, with parameters created on another thread
in Obj-C/Swift, or running shared code that was tested on the main thread only.

InvalidMutabilityException
As its name suggests, this exception is the result of the second rule: the value of an
immutable object cannot be changed. This will happen any time you're trying to mutate
an immutable. In other words, changing the value of a frozen object will cause an
InvalidMutabilityException exception at runtime.

Unfortunately, in some cases, this is not that easy to debug because, as we mentioned
previously, freeze()freezes the object itself and any other objects that the target object
touches, which means you'll need to find out how or where a certain object was frozen.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

34 Exploring the Three Compilers of Kotlin Multiplatform

A good practice is to implement the ensureNeverFrozen() function on objects that
you're confident should not be shared across threads. An exception will be thrown right
away if the object is already frozen or later on when an attempt to freeze is made.

That is enough of the basics. Now, let's touch on some additional best practices that you
can apply during development.

Making sure that developers have a unified and consistent development experience when
working with KMP isn't easy because of some of the different features in the JVM, Native,
and JS worlds. Some examples include reflection, the state and concurrency model, the
memory model, and annotation processing.

Annotation processing and reflection are two other big topics that we need to address
since a lot of the libraries that are available in the Kotlin/JVM ecosystem are dependent
on them. Having a Native version of them could unlock those libraries and bring their
capabilities to the KMP world.

Annotation processing
In Java, annotations became popular because a lot of code generation tools can be created
using the Java annotation processor to get rid of boilerplate code. These tools include
libraries such as Dagger's dependency injection (DI), developed by Google, or Room, the
persistence library on Android.

In the Kotlin/JVM world, this is done via the Kotlin Annotation Processing Tool
(KAPT), which has two huge drawbacks:

•	 It has slow performance since KAPT needs to generate intermediate Java stubs,
which can then be processed by the Java annotation processor.

•	 Since it relies on the Java annotation processor, it's impossible to build platform-
agnostic libraries on top of KAPT, which could otherwise be used in KMP projects.

But the good news is that there is already a powerful alternative to KAPT. Kotlin
Symbol Processing (KSP) is a new tool developed by the Google folks that offers
similar functionality to KAPT. However, since it doesn't rely on Java annotations and
the annotation processor, it can offer direct access to Kotlin compiler features, it's
multiplatform friendly, and it's up to two times faster than KAPT.

Since Room and Moshi already provide experimental support for KSP, Android
developers may have a good chance of not having to give up their current well-tried
library choices if they want to build Kotlin Multiplatform apps.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Kotlin/Native compiler 35

In Chapter 1, The Battle Between Native, Cross-Platform, and Multiplatform, we briefly
looked at the Commonizer tool. Let's dive deeper into that topic and see what problems it
solves and why it was needed.

Intermediate source sets and the Commonizer
KMP's goal is to make code sharing across all targets as convenient as possible. On iOS,
there are different CPU architectures. KMP supports the following targets:

•	 Arm64: This is a 64-bit ARM CPU architecture that's supported on iOS 7+. All
devices from iOS 11 onward use this architecture.

•	 Arm32: This was used before Arm64.

•	 x64: This is a 64-bit Intel processor that's available for simulators.

This means that if you're developing a KMM application, you probably want to target both
the Arm64 and x64 CPU architectures; you don't want to duplicate your actual platform
implementations for these targets.

Additionally, if you plan on supporting macOSX64 targets later, you may have some
logic between the Apple targets that relies on the same foundation dependencies and
could be shared.

In these cases, you need an intermediate source set, that is, an iOS for combining the two
Arm64 and x64 targets and Apple for combining the iOS targets with the macOSX64 target:

Figure 2.4 – iOS and Apple intermediate source sets

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

36 Exploring the Three Compilers of Kotlin Multiplatform

As you can see, you should use the targets provided by the KMP framework and combine
them flexibly. By doing this, you would create both iOS and Apple intermediate source
sets and define common platform functionality for the specific target set:

Figure 2.5 – Intermediate source set dependencies

At first, this wasn't possible with the framework, so even though both your iOS and macOS
targets relied on the framework, for example, you had to duplicate actual implementations
for iOSX64, iOSArm64, and macOSX64, which isn't at all scalable. The JetBrains guys came
up with a nice solution and even went one step further to automate things.

With the Commonizer tool, you can create the aforementioned intermediate source
sets, and the tool will be smart enough to infer the common dependencies and create the
related abstract/actual declarations for you. It's even smarter than you'd expect because it
can also infer the subtle differences between the different POSIX dependencies.

At this point, you may be wondering why we don't use it for any shared code. This is
because it works with subtle or no differences at all; it was designed specifically for use
cases such as the POSIX library, where there are many abstractions to make, but the
actual declarations are mostly or completely the same. Also, if it did generate all the
shared code, then it would lose its key multiplatform factor; that is, giving developers the
flexibility to write shared code while working natively on the platform-specific questions.

If you'd like to fully understand how Commonizer works, I highly recommend this talk by
Dmitry Savvinov: https://youtu.be/5QPPZV04-50.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Kotlin/Native compiler 37

If we'd like to achieve the intermediate source sets shown in Figure 2.4, all we have to do is
add the following to Gradle (if you don't know what Gradle is, you'll find out in the next
chapter, but, in brief, it's just a build tool):

 val appleMain by creating {

 dependsOn(commonMain)

 }

 val iosMain by getting {

 dependsOn(appleMain)

 dependencies {

 // Add iOS specific dependencies

 }

 }

 val macOSMain by getting {

 dependsOn(appleMain)

 dependencies {

 // Add macOS specific dependencies

 }

 }

Note
Since providing an intermediate iOS source set for iOSArm64 and iOSX64 is
so common, in that in most cases you probably don't want to write specific
code for the different targets, the framework already provides an intermediate/
shared source set configuration. That's why in the preceding code snippet, we
don't have to manually create this iOS source set, only the Apple source set.

We could say that the Kotlin/Native backend compiler is currently living its community
test phase. It's important to reason why Kotlin/JVM became a success so that we can
compare it to the current state of Kotlin/Native. By doing this, we can see what its future
could look like, which gives you a better perspective of what you should expect before
investing in learning the technology.

I believe that the support of the JetBrains team and the Kotlin community is really good
and that because of the soundness of the KMP approach, the framework will scale well.
Even though technologies come and go, the multiplatform approach, as a concept, is
probably here to stay.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

38 Exploring the Three Compilers of Kotlin Multiplatform

Before we learn how to build KMM apps in more depth, let's cover the Kotlin/JS backend
compiler as well so that you have the full picture and know what to expect if you plan on
targeting a JS platform as well (be it the web, Node.js, or any other JS target).

The Kotlin/JS compiler
The Kotlin/JS compiler is the final piece of the puzzle for sharing code between different
platforms. There are many use cases in which you could leverage this compiler, as follows:

•	 Sharing code between the backend and the frontend. If your backend is written in
Node.js and you'd like to share code between your backends and frontend, Kotlin/JS
can be a great tool.

•	 Sharing code between mobile platforms and the web, which is a great way to keep
your frontend in sync.

So, what do you need to know about the Kotlin/JS backend compiler?

How it works
Kotlin/JS currently targets the ECMAScript 5 (ES5) JavaScript standard. As we saw
with the Kotlin/JVM and Kotlin/Native compilers, Kotlin/JS has a similar process but
produces a different type of executable. In short, it takes Kotlin code that it then translates
into JavaScript code, given that the underlying code uses dependencies that can run on
JavaScript.

It is currently migrating to the IR compiler infrastructure, so instead of directly generating
JavaScript files from the Kotlin source code, it first generates an IR, which then gets
compiled to JavaScript.

Kotlin currently also has experimental support for generating .d.ts TypeScript
declaration files.

If you've been wondering, Kotlin/JS also allows you to use npm dependencies in your
Kotlin/JS code. It's as simple as doing the following:

 dependencies {

 implementation(npm("bootstrap", "5.0.1"))

}

For those unfamiliar with npm, its purpose is similar to Cocoapods on iOS and Gradle on
Android and Java.

As far as concurrency goes in the JS world, because of its single-threaded nature, you

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 39

won't experience a similar strict concurrency model to Kotlin/Native and the complexity
of coroutines may seem obsolete in the Kotlin/JS world.

Coroutines are one of Kotlin's powerful libraries that enable you to write concurrent,
asynchronous code. We'll explore them in more depth in Chapter 3, Introducing Kotlin for
Swift Developers.

Summary
In this chapter, we looked at the three Kotlin compilers that enable code sharing across
different platforms: Kotlin/JVM, Kotlin/Native, and Kotlin/JS.

By now, you should have a better understanding of how KMP uses these compilers, how
they work, and how they can enable you to share code across different platforms.

In the next chapter, we'll provide a brief introduction to Kotlin to help bring iOS
developers up to speed with the Kotlin world. Then, we'll turn to more practical things
and dive into creating a KMM project.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Introducing Kotlin

for Swift Developers
Before we turn things more practical and start developing our Kotlin Multiplatform
Mobile (KMM) apps, I'd like to make sure everyone has the necessary knowledge to
follow the steps. This chapter was designed for iOS and Swift developers, especially for
those who don't have a comprehensive knowledge of Kotlin and Gradle. Most of the
concepts in Swift can be found in Kotlin as well, and in this chapter, we're going to see
how Swift's concepts translate to Kotlin. By the end of this chapter, you should be ready
for KMM development, by understanding the core Kotlin concepts and other KMM
prerequisites. We will be learning about the following topics:

•	 Introducing Gradle

•	 Exploring Kotlin's core features

•	 Understanding Kotlin coroutines

Technical requirements
You can find the code files of his chapter on GitHub at https://github.com/
PacktPublishing/Simplifying-Application-Development-with-
Kotlin-Multiplatform-Mobile.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile

42 Introducing Kotlin for Swift Developers

Introducing Gradle
When writing a KMM application, you'll be using Gradle to build your shared code. For
this reason, it's paramount that you at least know the basics, in order to start developing
KMM apps.

Gradle is an open source build automation tool and dependency manager. It is similar
to CocoaPods on iOS, while covering a broader purpose than pure dependency
management, and it is the build tool on which Kotlin Multiplatform (KMP) is also based.

Gradle provides its own domain-specific language (DSL) for writing build scripts, and
this DSL is available both in Groovy and Kotlin: build.gradle is a build script written
in Groovy, while build.gradle.kts is written in Kotlin.

We will not have an in-depth description of Gradle as it is a huge topic, and without a
doubt, many of us as Android developers use it as someone uses a lightbulb: without
extensive knowledge on how it works, it still proves to be useful. If you want to gain a
more in-depth view of Gradle, I recommend you start with this page: https://docs.
gradle.org/current/userguide/what_is_gradle.html.

In the following sections, we're going to talk about some of the basic building blocks of
Gradle, as well as the features that you'll likely use throughout writing a shared code for a
KMM application.

Gradle runs on the Java Virtual Machine (JVM), and thus you'll need the Java
Development Kit (JDK) in order to use it. But while running on the JVM, it is not limited
to building just Java projects—it is suitable for building native ones too.

The great thing about Gradle is that you can extend its current functionality by using tasks
and plugins. Tasks usually represent an atomic step of the build process, and plugins are a
collection of certain tasks.

For example, KMP provides its own multiplatform Gradle plugin that enables you to use
the Multiplatform DSL for specifying the targets you are supporting (such as Android,
iOSX64, and so on), and it defines tasks for compiling and building the specific targets.
You can read more about the Multiplatform Gradle Plugin DSL here: https://
kotlinlang.org/docs/mpp-dsl-reference.html.

Another good example is the CocoaPods Gradle plugin (https://kotlinlang.org/
docs/native-cocoapods.html) with which you can include pods in your shared
KMP code, among other capabilities. We'll talk more about this in Chapter 5, Writing
Shared Code.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.gradle.org/current/userguide/what_is_gradle.html
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://kotlinlang.org/docs/mpp-dsl-reference.html
https://kotlinlang.org/docs/mpp-dsl-reference.html
https://kotlinlang.org/docs/native-cocoapods.html
https://kotlinlang.org/docs/native-cocoapods.html

Introducing Gradle 43

Structure of Gradle
For every Gradle module/project, you'll have a build.gradle (or .kts) file describing
the build steps for that specific module. If you have a multi-module app, you'll likely have
a top-level build file containing common configurations and options for all modules/
sub-projects.

Let's see what a simplified build.gradle.kts file could look like in your project,
as follows:

plugins {

 kotlin("multiplatform")

 id("com.android.library")

 kotlin("plugin.serialization") version

 Versions.KOTLIN_VERSION

 id("org.jetbrains.kotlin.native.cocoapods")

}

kotlin {

 android() // Configures the android target

 ios() // Configures the iOSX64 and iOSArm64 targets

 sourceSets {

 val commonMain by getting {

 dependencies {

 // Common dependencies

 implementation "org.jetbrains.kotlinx:kotlinx-

 coroutines-core:$coroutinesVersion"

 }

 }

 val androidMain by getting {

 dependencies {

 // Android specific dependencies

 }

 }

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

44 Introducing Kotlin for Swift Developers

 val iosMain by getting {

 dependencies {

 // Native dependencies (for example native

 database drivers)

 }

 }

 }

}

Let's go through the different sections in this build configuration.

Plugins
You can see the plugins {...} block at the top of the build.gradle.kts file.
This specifies which plugins you're going to use in the specific project to configure your
build; this block only applies specific plugins. In the preceding example, you can see the
following plugins:

•	 kotlin("multiplatform")—Official multiplatform plugin for configuring the
multiplatform application

•	 id("com.android.library")—Plugin for configuring the Android target

•	 kotlin("plugin.serialization")—Plugin for serialization

•	 id("org.jetbrains.kotlin.native.cocoapods")—CocoaPods plugin

The kotlin($pluginName) plugin declaration format is essentially the equivalent of
id("org.jetbrains.kotlin.$pluginName").

Kotlin multiplatform configuration
Next, you can observe the kotlin {...} configuration block. This is the top-level
block for configuring your multiplatform builds. Inside this block, you'll see the
android() and ios() blocks, which essentially specify which targets you are
supporting/targeting in your multiplatform project.

You can see the sourceSets{} configuration block as well, which is used for
configuring predefined source sets or declaring new ones. Source sets contain the Kotlin
source files for the specific target and their dependencies.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing Gradle 45

One thing to note: Gradle needs to know in which repositories to look for to find the
specific plugins and dependencies of your project. If you have a single-module project,
you can specify this in the same build script. For multi-module projects, this usually goes
into a common configuration in a top-level build.gradle.kts file, as illustrated in
the following code snippet:

// Top-level build file where you can add configuration

 options common to all sub-projects/modules.

buildscript {

 repositories {

 google() // Google Android repository

 mavenCentral() // Maven Central

 }

 dependencies {

 classpath("com.android.tools.build:gradle:agpVersion")

 // Adds the Android Gradle Plugin to the build-script

 classpath

 classpath("org.jetbrains.kotlin:kotlin-gradle-

 plugin:$kotlinVersion") // Adds the Kotlin Gradle

 Plugin to the build-script classpath

 }

}

allprojects {

 repositories {

 google()

 mavenCentral()

 }

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

46 Introducing Kotlin for Swift Developers

In the preceding top-level Gradle configuration, the following actions occur:

•	 The buildscript {...} block configures the repositories where Gradle should
look for certain plugins—in this case, the Android Gradle plugin and the Kotlin
Gradle plugin.

•	 Under the dependencies {...} block, you can see that the two previously
mentioned plugins get added to the classpath; this is what enables you to later apply
specific plugins in your subprojects.

•	 The allprojects {...} block defines repositories across all the subprojects;
these are the repositories where Gradle will look to find specific dependencies
specified in your subprojects.

Now that you have a basic understanding of Gradle, we should cover some of the
core concepts of Kotlin that you'll likely come across when developing KMM or KMP
applications.

Exploring Kotlin's core features
Kotlin is an object-oriented programming (OOP) language with many functional
programming features. In this section, we'll go over its main features so that you have a
basic understanding of how to express yourself in Kotlin later on. Throughout this chapter,
we'll be comparing Kotlin to Swift in terms of these core concepts.

Null safety
Having null references in code proved to be an underestimated factor of error proneness
in older languages, such as Java and Objective-C (Obj-C), thus it has probably earned
its billion-dollar mistake tag (https://en.wikipedia.org/wiki/Tony_
Hoare#Apologies_and_retractions).

The purpose and solution are pretty much similar in Kotlin and Swift, with slight
syntax and naming differences. They both aim to provide a type system that eliminates
the danger of null references. Swift introduced optional types, which can be found as
nullables in Kotlin.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions

Exploring Kotlin's core features 47

Let's see some code in action, in order to compare unwrapping optionals in Swift to
handling nullables in Kotlin. Both Kotlin and Swift use ? to specify a nullable/optional
type, as illustrated in the following code snippet:

// Swift optional

var optional: String? = nil

// Kotlin nullable

var nullable: String? = null

Let's see how you would unwrap this optional in Swift, as follows:

// Swift unwrapping

if let string = optional {

 print(string.count)

} else {

 print("I'm nil")

}

Kotlin seems to give you more flexibility on how you handle nullables; we could make it
similar to Swift with the following syntax:

// Handling nullables in Kotlin

nullable?.let { string ->

 println(string.length)

 } ?: run {

 println("I'm null")

}

Kotlin has this nice operator, ?:, also called the Elvis operator, for specifying default
values or operations in cases when the value of the nullable is actually null.

Depending on our use case, though, we could make the preceding code much more
concise, as follows:

// Handling Nullables in Kotlin

println("${nullable?.length ?: 0 }")

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

48 Introducing Kotlin for Swift Developers

Data classes
A data class in Kotlin is a special class that is designed to hold some data. It's similar
to Swift's structs, but it doesn't have copy-on-write (COW) functionality and has the
following characteristics:

•	 At least one constructor parameter, which is also a property of the class

•	 equals()/hashCode() is derived by the compiler, based on these constructor
parameters

•	 A derived copy() function for cloning a data class and potentially overriding some
of its properties

Let's see the following code snippet for a demonstration of this:

data class Name(val firstName: String, val lastName:

 String){

Here, we declared a class, with the intent of holding specific information—in this case, a
person's name. Going forward, we'll probably need a way to compare two persons' names.
Luckily, Kotlin helps out with this, as illustrated here:

// Compiler derived functionalities (might be slightly more

complex in reality)

fun equals(other: Name) = firstName == other.firstName &&

 lastName == other.lastName

// Copy with default parameters

fun copy(firstName: String = firstName, lastName: String =

 lastName) = Name(firstName = firstName, lastName =

 lastName)

// Example of using copy

fun createChild(firstName: String) = copy(firstName =

 firstName)

}

As you can see from the preceding code snippet, Kotlin not only generates a way for us to
compare two names but also generates a copy() function, which becomes quite handy
when we want to create a copy of a certain class by modifying one part of the contained
information only.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Kotlin's core features 49

In the preceding example, you can see that "creating a child" in this case consists
of creating a copy of a given name by keeping the lastName and modifying the
firstName only.

Extensions
Extensions are a great way of adding functionality to classes of which you don't have
control. Both Kotlin and Swift support extensions, so let's see what the syntax looks like,
as follows:

// Swift extension example

extension String {

 func appendIf(condition: Bool, suffix: String) ->

 String {

 if(condition){

 return self + suffix

 } else {

 return self

 }

 }

}

// Kotlin extension example

fun String.appendIf(condition: Boolean, suffix: String) =

 if (condition) this + suffix else this

Functional programming features
Kotlin, as well as Swift, has great support for functional programming. Both have first-class
support for features such as function types, higher-order functions (HOFs), and lambdas.

We'll not present a detailed overview of all the possibilities; we'll just see a collection-
processing example in both languages, as follows:

// Map signature in Swift

func map<T>(_ transform: (Element) throws -> T) rethrows ->

 [T]

// Example usage of map in Swift

let words = ["Kotlin", "Swift", "are", "both", "beautiful"]

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

50 Introducing Kotlin for Swift Developers

let letterCounts = words.map { $0.count }

// Map signature in Kotlin

inline fun <T, R> Iterable<T>.map(transform: (T) -> R):

 List<R>

// Example usage of map in Kotlin

val words = listOf("Kotlin", "Swift", "are", "both",

 "beautiful")

val letterCounts = words.map { it.length }

// or

val letterCounts = words.map { word -> word.length }

Objects
Implementing singletons (classes that can have only one instance) is made effortless in
Kotlin, whereby everything is basically taken care of by Kotlin. By declaring an object
instance, you instantly get a singleton, as illustrated here:

// Kotlin object

object MySingleton {

 var someState: State

}

However, you should probably be aware that in most cases, you don't really want
a singleton, or even if you do, you would like to leave the scoping of objects to a
dependency injection (DI) framework instead of the language.

COW in Kotlin
COW is a handy computing technique implemented in Swift that can be a performance
enhancer from a macro-optimization standpoint. In Swift, when you copy a struct, Swift
essentially delays the copying only when it's needed. For example, this way, if you copy
over a large dataset, until you modify the copy, it won't actually have a memory footprint
and the behavior will still be the same.

While Kotlin, apart from some syntax differences, looks really similar to Swift, there is no
struct equivalent in Kotlin and you'll be missing the COW functionality of Swift when
writing Kotlin code.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kotlin coroutines 51

Now that we've covered most of Kotlin's core features, there is one more topic left— one
that facilitates asynchronous programming, an essential aspect of mobile development:
coroutines in Kotlin.

Understanding Kotlin coroutines
Asynchronous programming is at the heart of mobile development. In order to write
efficient applications, leveraging the async capabilities of the framework and language you
are using makes all the difference.

Coroutines are my absolute favorite language feature of Kotlin because of their
expressiveness and how easy it is to express your asynchronous development needs in a
concise way.

In this section, we will be covering the basic concepts of coroutines and compare them to
Swift's async/await and Combine patterns.

Suspend functions
Coroutines are basically suspendable tasks that can suspend and resume execution, and
they are not bound to any particular thread.

When you're writing asynchronous code, you generally need to think about the following
two things:

•	 Which task needs asynchronous attention and has to be suspendable

•	 How you combine asynchronous tasks with the rest of your code

Let's see how you mark any task that needs asynchronous execution first: by writing
suspend functions.

Whether you're calling a backend application programming interface (API) request,
doing a heavy computation, or performing any other long-running task that could block
the user interface (UI) or main thread, you probably want to mark that execution as
suspendable, something that can suspend the execution. Let's see an example here:

suspend fun getSuccessRates() =

 remoteSource.getStudents().map { it.calculateSuccessRate()

 }

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

52 Introducing Kotlin for Swift Developers

In the preceding example, remoteSource.getStudents() returns information
about the students (such as name and their grades) from a given backend API by running
a network request, after which we calculate the success rate (the probability that the
student passes) of each student, supposing that this operation is a costly algorithm that
involves complex calculations.

Note
The way the preceding example code calculates each individual's success rate
could be improved upon, and we'll get back to this later.

The suspend keyword marks the function as suspendable and gives the responsibility to
the caller to handle how it would like to run a suspended function. Let's see how this can
be done.

In order to understand how you can combine these suspended functions with the rest of
the code, we need to tackle CoroutineScope first.

CoroutineScope
To better manage the lifecycle and scoping of coroutines, Kotlin introduced
CoroutineScope; this is what enables structured concurrency in Kotlin. You can create
and manage your own CoroutineScope, and Android also provides first-party support
for most use cases, such as scoping to the lifecycle of ViewModel or View.

CoroutineScope instances can be nested, and canceling a parent scope will cancel all
child scopes and all coroutines running under the scopes.

Now that we have a brief understanding of what a CoroutineScope is, let's see how you
can start to suspend functions and combine them with the rest of your code.

Executing coroutines
In Kotlin, you have mainly two ways for launching Kotlin coroutines: launch and
async.

Let's see some examples, as follows:

fun showSuccessRates() {

 coroutineScope.launch {

 val successRates = getSuccessRates()

 // getSuccessRates is a suspend

 function defined previously

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Kotlin coroutines 53

 showUI(successRates) // create UI components based on

 the successRates data

 }

}

Generally, we use launch when we don't care about the result outside of the coroutine
scope, and we can use async when we'd like to run operations in parallel and return
the result—for example, if we'd like to improve the way we calculate individual student
success rates, as illustrated here:

suspend fun getSuccessRates() = coroutineScope {

 remoteSource.getStudents().map { async {

 it.calculateSuccessRate() } }.awaitAll()

}

In the preceding example, when the code gets to the first item to be mapped, it sees
async, so it knows that this should be launched separately from the current execution,
fires up the success rate calculation, and goes to the next item. When the mapping arrives
at the last item, it sees awaitAll(), which signals that now is the time where we should
wait for all those calculations fired up to be finished before we return it.

There is another aspect of concurrency that we should touch on: multithreading.

Switching threads
Threading is something platform-specific, so whether you're running a multiplatform app
on the JVM or Native Kotlin, it will use different platform-specific threading mechanisms.
This means also that some of the threading mechanisms may be available to a specific
platform only.

Let's see an example of how you could express to the compiler that you'd like to switch
threads for a specific operation, as follows:

suspend fun getSuccessRates() = withContext(Dispatchers.IO) {

 val students = remoteSource.getStudents()

 withContext(Dispatchers.Default) {

 async { it.calculateSuccessRate() } }.awaitAll()

 }

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

54 Introducing Kotlin for Swift Developers

In the preceding example, we're switching the execution to the input/output (I/O)
dispatchers in order to utilize a shared pool of threads designed for offloading networking
operations, such as getting the students with a network API call. Second, we're using
default dispatchers that were designed for computational work. Since both of these
dispatchers work with a shared pool of threads, this means that we might switch threads
only once, and Kotlin coroutines know that thread switching is costly and do this only
when needed.

Note
Dispatchers.IO is currently JVM only. We will see in later chapters how
you can offload work to a background thread in the native world.

Unfortunately, there is no official way (yet) for transforming Kotlin suspend functions
to async/await, and something like that would need a direct Kotlin <-> Swift
interoperability (interop), the development of which is on hold at the time of writing.

Though you can call suspend functions from your Swift code, which will be translated to a
completion handler in Swift, we will practically avoid that in most cases, which we'll see in
later chapters.

Also, this library might prove to be useful for those looking for a suspend ->
async/await mapping later on: https://github.com/rickclephas/
KMP-NativeCoroutines.

Streams in Kotlin
Streams, and Observable patterns in general, can be a huge component in enabling
reactive programming in your apps.

We will have a really quick overview of Kotlin's Flow API to give you a sense of what's out
there and what the general purpose of it is. For a real deep dive, you should head over to
the official documentation at https://kotlinlang.org/docs/flow.html.

We'll not cover how you can consume the exposed flows from Kotlin in your Swift/Obj-C
code in this chapter, but we'll get back to this in later chapters.

Flow is by default a cold observable, and there are many ways to construct such a cold
flow—for example, with the usage of the flow{} builder, as illustrated here:

suspend fun uploadItem(items: List<Item>) = flow {

 items.forEachIndexed { index, item ->

 remoteSource.upload(item)

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/rickclephas/KMP-NativeCoroutines
https://github.com/rickclephas/KMP-NativeCoroutines
https://kotlinlang.org/docs/flow.html

Understanding Kotlin coroutines 55

 emit(index + 1)

 }

}

In the preceding example, we're basically using a flow that will emit the progress of the
upload as we're uploading a number of items. Of course, for an optimal solution, you
would probably either use an async/await pattern in Kotlin.

Apart from cold flows, you'll probably need a way to expose state and events in a reactive
manner. Let's see how you can do that, as follows:

_state = MutableStateFlow<YourState>(DefaultState)

state: StateFlow<YourState> = _state

 _events = MutableSharedFlow<YourEvent>()

events: SharedFlow<YourEvent> = _events

// This is how you could update the state

fun updateState(state: YourState) {

 _state.value = state

}

// This is how you can send out an event

fun sendEvent(event: YourEvent) {

 coroutineScope.launch {

 _events.emit(event)

 // Notice that the emit is suspending, this is

 because unless the event is consumed

 // the emitting function will suspend until a

 subscriber comes along

 }

}

// You can collect any Flow like this:

coroutineScope.launch {

 state.collect { state -> }

 // Notice that collect is also a suspendable; this is

 because it will suspend until the flow is

 completed/terminated

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

56 Introducing Kotlin for Swift Developers

The Flow API is pretty similar to the Combine API in Swift; you can basically think of
flows as Publishers.

Summary
In this chapter, we've gone through basic Kotlin and Gradle concepts that are essential
in order for you to start sharing code between Android and iOS (and other platforms,
potentially) while comparing these concepts to ones that can be found in Swift.

I hope that now you have a proper base knowledge of these tools and you're ready to move
forward to more practical things—developing a KMM application.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 2 - Code
Sharing between
Android and iOS

This section offers a practical, hands-on example of how to share code between Android
and iOS. After this section, you should have a good understanding of how to write a
KMM application.

This section comprises the following chapters:

•	 Chapter 4, Introducing the KMM Learning Project

•	 Chapter 5, Writing Shared Code

•	 Chapter 6, Writing the Android Consumer App

•	 Chapter 7, Writing an iOS Consumer App

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Introducing the

KMM Learning
Project

In this chapter, we're going to introduce the KMM project that we're going to implement
step by step so that you have a complete understanding of what real-world problems
we'll be touching on in the context of the project, what you need before you can start
developing, and what implementation decisions were made for which purpose.

We'll cover the following topics in this short chapter:

•	 Getting to know the project

•	 Exploring prerequisites

•	 Understanding the technical decisions

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

60 Introducing the KMM Learning Project

Technical requirements
You can find the code files for this chapter in this book's GitHub repository at
https://github.com/PacktPublishing/Simplifying-Application-
Development-with-Kotlin-Multiplatform-Mobile.

Getting to know our project – Dogify
Our project is called Dogify. In this app, we'll be showing different breeds of dogs
with images, with the possibility of favoriting them. We'll get our data from a dog API
(https://dog.ceo/dog-api/) and then cache it in our local database:

Figure 4.1 – Dogify on iOS and Android

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile

Introducing the KMM Learning Project 61

We'd also like to have the possibility of seeing our favorite breeds, which will be stored
locally, in our database.

Before we get into the details of our project, let's first understand the objectives that we
want our project to meet. Our app/project was designed/selected with the following
objectives:

•	 It is fairly simple to understand and develop.

•	 It covers most of the common KMM use cases.

•	 It covers production-related questions.

•	 It covers the most-used KMM tools.

Since creating a fairly simple project that covers production-related questions as well is
quite a challenge, and I'd say conflicting also, we'll leave production questions out of the
picture for now.

Rest assured we'll return to it and arm you with tips on where to look for answers to your
production-related questions in Chapter 8, Exploring Tips and Best Practices, and we'll
also tackle some of the most common ones in Chapter 9, Integrating KMM into Existing
Android and iOS Apps.

We designed our app bearing in mind the things that we would like to see in a KMM app
from a technical perspective:

•	 Setup

•	 Expect/actual mechanism in work

•	 Networking

•	 Database operations

•	 Multithreading

•	 Testing

Now, let's go through what you'll need in order to be able to develop and run the project
and to understand what we're doing and why.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

62 Introducing the KMM Learning Project

Exploring prerequisites
First, let's see what the basic skills are that you'll need before starting the following
chapters and the work on Dogify.

Skill requirements
The most essential tools and concepts you will need to be familiar with when writing the
shared code are the following:

•	 A basic understanding of Gradle

•	 An understanding of Kotlin's core concepts

We've covered both of the aforementioned topics in Chapter 3, Introducing Kotlin for
Swift Developers.

Also, since the shared code will be consumed by an iOS and Android app, knowledge of
the following topics, although not necessary, would be good to have:

•	 Android Gradle Plugin (AGP) and its Domain-Specific Language (DSL)

•	 Jetpack Compose (the new declarative UI Toolkit on Android)

•	 SwiftUI (the new declarative UI Toolkit on iOS)

•	 Swift's Combine framework

•	 Experience with Xcode

Since all of the aforementioned is very well documented with multiple sources available
and the scope of this book is more about learning to write shared code between mobile
apps, we'll not cover any of those exhaustively. However, I'll try to provide a bit of
guidance during the development so that even if you don't have extensive knowledge of
the topics, you won't feel lost.

Let's jump now to what tools you'll need during the project development.

Required tools
The development of Dogify will consist of three parts on two (or three) different realms:

•	 Writing the shared code using Kotlin and Gradle

•	 Writing the Android consumer app using Kotlin and Gradle but with more
Android-specific tooling

•	 Writing the iOS consumer app using Swift

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing the KMM Learning Project 63

We'll go through the prerequisites for each realm so that you can gain a better perspective
of the tooling needs.

Writing the shared code with Kotlin and Gradle
For writing the shared code, you'll first need an Integrated Development Environment
(IDE); in fact, if you're more used to a terminal and you're a Command-Line Interface
(CLI) type of person, you might not "need" it, but it's strongly advised.

You can use IntelliJ for starting a KMP app, and in fact, many people do prefer IntelliJ
when writing shared code. I personally use it whenever I leave the KMM world and I want
to create a project or see a setup that has other targets than just Android and iOS.

You can check out the KMP project wizard in Intellij 2021.1.2, as shown in the
following figure:

Figure 4.2 – The KMP project wizard in Intellij 2021.1.2

However, for the purposes of this project, I recommend using Android Studio, as it will
be more suitable for KMM development. You can find the download link for the stable
Android Studio at https://developer.android.com/studio; I recommend
using Android Studio Arctic Fox, as it has support for Jetpack Compose: https://
developer.android.com/studio/preview.

Android Studio is built based on IntellIJ and both have support for Gradle. You won't
have to download Gradle manually, since when creating the project, the wizard will add a
Gradle Wrapper, which has the purpose of specifying the Gradle version the project will
be using (you can change that manually) and fetching it to build your project.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.android.com/studio
https://developer.android.com/studio/preview
https://developer.android.com/studio/preview

64 Introducing the KMM Learning Project

This standardizes the Gradle version that developers use and thus limits inconsistencies
when building the project.

You'll also need the KMM plugin developed by JetBrains: https://plugins.
jetbrains.com/plugin/14936-kotlin-multiplatform-mobile. We will
be using this plugin mostly to create the new KMM app from scratch, but it can also help
with running and debugging the shared code on the iOS target.

Important Note
The KMM plugin is available only on macOS, as it relies on the Xcode
simulators to run and debug the iOS target.

You can install the KMM plugin by going to Android Studio | Preferences | Plugins.
Then, in the search bar, type in Kotlin Multiplatform Mobile:

Figure 4.3 – The KMM plugin in IntelliJ/Android Studio

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile

Introducing the KMM Learning Project 65

The last step is to make sure you have an installed version of the Java Development Kit
(JDK) as well. Android Studio has a bundled version of the latest OpenJDK copy, but you
can verify the installation by running java -version in the terminal. Also, note that
Arctic Fox now requires JDK 11+.

The official documentation also has a good description for setting up an environment for
KMM: https://kotlinlang.org/docs/mobile/setup.html.

Writing the Android consumer app
Now, unless you've started the previous step with IntelliJ, you will have all the tools set up
for this stage.

The only thing worth mentioning is that while using the stable Android Studio version
is perfectly fine for the shared code, for Jetpack Compose, you will need Android Studio
Arctic Fox in order to enjoy the capabilities of Jetpack Compose tooling, such as previews.

At the time of writing, Android Studio Arctic Fox is still in beta, but I do hope that this
becomes quickly irrelevant and you can fully leverage Jetpack Compose tooling in stable
Studio versions as well.

Writing the iOS consumer app using Swift
In order to be able to run the iOS app, you'll need Xcode 11+, as we'll be using SwiftUI
to write the UI layer of the app and Swift Package Manager for managing dependencies,
which you can download from the App Store.

If you'd like to have one IDE experience, trying out AppCode might also be a good idea
(https://www.jetbrains.com/objc/); for the purposes of this project, trying out
the free trial version will be beneficial.

JetBrains has recently brought out a KMM plugin for AppCode that unifies code completion
and code highlighting for both Kotlin and Swift/Objective-C when jumping from one file
to another, but debugging is a much more complete package. You can read more about
the announcement here: https://blog.jetbrains.com/kotlin/2021/06/
kmm-for-appcode/.

Now that you know what tools you need, let's check out the structure of the KMM project
and the technical choices.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kotlinlang.org/docs/mobile/setup.html
https://www.jetbrains.com/objc/
https://blog.jetbrains.com/kotlin/2021/06/kmm-for-appcode/
https://blog.jetbrains.com/kotlin/2021/06/kmm-for-appcode/

66 Introducing the KMM Learning Project

Understanding the technical decisions
In this section, we're going to answer the following questions regarding the project:

•	 What's our architecture of choice for Dogify?

•	 Which pieces will we be sharing between the Android and iOS apps?

•	 What libraries will we be using?

Architecture
Let's address the first question. As we discussed in Chapter 1, The Battle Between Native,
Cross-Platform, and Multiplatform, the purpose of a multiplatform application is to share
business, non-UI, or non-platform-specific logic between the different platforms. To make
this happen, we need an architecture where the layers facilitate this; that is, where it's easy
to divide non-UI layers from the UI layers, essentially.

Luckily, clean architecture suits this well, and we'll be implementing one version of
it. You can read more about Uncle Bob's Clean Architecture here: https://blog.
cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.
html.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Introducing the KMM Learning Project 67

For Dogify, this is what the architecture will look like:

Figure 4.4 – Clean architecture in Dogify

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

68 Introducing the KMM Learning Project

Each layer has different components and different responsibilities:

•	 Data layer – responsible for getting and maintaining the data in the different
sources:

	� BreedsApi – the implementation of the networking layer

	� BreedsRemoteSource – an abstraction over the networking layer

	� BreedsDatabase – the implementation of the database layer

	� BreedsLocalSource – an abstraction over the database layer

	� BreedsRepository – the repository handling the logistics between the different
sources, such as caching and fetching the remote source

•	 Domain layer – facilitates communication between the different repositories:

	� GetBreedsUseCase – responsible for getting breeds

	� FetchBreedsUseCase – responsible for fetching breeds and the most up-to-date
data

	� ToggleFavouriteUseCase – responsible for toggling the favorite state of a breed

•	 View layer – responsible for showing the UI and handling user and system events:

	� BreedsViewModel – the "brain of the UI," containing the state that should be
shown and handling the events coming from the user or the system

Now, let's jump to how we'll share these components between the apps.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introducing the KMM Learning Project 69

The shared code
We'll share both the data layer and the domain layer:

Figure 4.5 – Shared components in Dogify

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

70 Introducing the KMM Learning Project

As you can see in the preceding figure, we will be sharing the data and domain layers
across the apps. We will then create a different view layer for iOS and for Android, which
communicates or uses this shared layer.

Let's discuss now what libraries we are going to leverage to solve the common use cases.

Library choices
I'll list some of the major library choices so that you can gain a better picture of the tech
stack we'll be using. I will explain the specific library choices in Chapter 5, Writing Shared
Code, and also provide alternatives in Chapter 8, Exploring Tips and Best Practices, while
going through an overview of the full palette of currently available KMM libraries (it's
probably impossible not to leave out something, but I'll try).

In Dogify, we'll be using the following libraries:

•	 Kotlin Coroutines, the native-mt branch for multithreaded coroutines:
https://github.com/Kotlin/kotlinx.coroutines/tree/
native-mt

•	 Koin for Dependency Injection (DI): https://insert-koin.io/

•	 Ktor for networking: https://kotlinlang.org/docs/mobile/
use-ktor-for-networking.html

•	 Kotlinx serialization for parsing: https://github.com/Kotlin/kotlinx.
serialization

•	 SQLDelight for database operations: https://github.com/cashapp/
sqldelight

•	 Jetpack Compose for implementing the UI on Android: https://developer.
android.com/jetpack/compose

•	 SwiftUI for implementing the UI for iOS: https://developer.apple.com/
xcode/swiftui/

Summary
By now, you should have a clear understanding of the KMM project we will be building
together, its architecture, what will be shared between Android and iOS, as well as which
libraries we will use along the way.

Thus, I hope you're ready and eager to start coding Dogify in the next chapters.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/Kotlin/kotlinx.coroutines/tree/native-mt
https://github.com/Kotlin/kotlinx.coroutines/tree/native-mt
https://insert-koin.io/
https://kotlinlang.org/docs/mobile/use-ktor-for-networking.html
https://kotlinlang.org/docs/mobile/use-ktor-for-networking.html
https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin/kotlinx.serialization
https://github.com/cashapp/sqldelight
https://github.com/cashapp/sqldelight
https://developer.android.com/jetpack/compose
https://developer.android.com/jetpack/compose
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/

5
Writing Shared Code

We're going to jump into implementing Dogify. We'll start from the core of the application
– the business logic – in this chapter, which we're going to share across the Android and
iOS applications in the following chapters. We're going to focus mainly on the following
topics in this chapter:

•	 Initial project setup

•	 Fetching data from the Dog API

•	 Persisting data in a local database

Technical requirements
You can find the code files present in this chapter on GitHub, at https://github.
com/PacktPublishing/Simplifying-Application-Development-with-
Kotlin-Multiplatform-Mobile.

Initial project setup
By now you should have all the tools ready to start developing Dogify. In case you missed
something, feel free to explore Chapter 4, Introducing the KMM Learning Project, where I
described the tools you'll need.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile

72 Writing Shared Code

So, let's start creating the project. Open the Android Studio New Project wizard (Android
Studio | New Project). From the Phone and Tablet tab, select KMM Application:

Figure 5.1 – KMM Application template

If you can't see such a template, you're probably missing the KMM Plugin for Android
Studio. You can find more about how to install it in Chapter 4, Introducing the KMM
Learning Project.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Initial project setup 73

Now in the next section, you'll see a configuration page. We'll be using Minimum SDK:
API 23 and Kotlin scripts for Gradle build files, so make sure that Use Kotlin script (.kts)
for Gradle build files is checked. Of course feel free to tweak these attributes, though
we're going to use these settings throughout the book.

Figure 5.2 – KMM Application first configuration page

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

74 Writing Shared Code

After the first configuration page, you'll see yet another configuration page:

Figure 5.3 – KMM Application second configuration page

On this page you can specify the names for the modules. We're going to use the default
names for Dogify. Also, you can choose how you'd like to distribute the Shared code to
iOS, with two options currently:

•	 CocoaPods dependency manager

•	 Regular framework

We're going to use the latter, which basically creates a Gradle task called
embedAndSignAppleFrameworkForXcode, which will be used from your iOS app,
as it will consume the shared code in .framework format.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Initial project setup 75

Go ahead and click Finish and wait for Gradle to set up the project. When Gradle sync
has finished, you should be able to run the application:

Figure 5.4 – KMM Run configurations for Android and iOS

You can switch between the configurations and try out the project on both Android and iOS.

Note
You need Xcode and a simulator set up in order to be able to run the iOS app
from Android Studio. In recent versions the KMM plugin has become much
more reliable, though for me what helps when issues occur is to start the
simulator from Xcode first, then I am able to consistently run the iOS app from
Android Studio as well.

After running you should see Hello Android {androidVersion}! and Hello iOS
{iOSVersion}! on your devices.

Let's examine this initial setup now and do a bit of cleanup before we start.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

76 Writing Shared Code

Project structure
This is how the project structure should look like after creating the KMM application with
the KMM project template:

Figure 5.5 – Dogify project structure

As you can see, this is a multi-module Gradle setup, where we have a top-level build.
gradle.kts for common project configurations, as well module-specific build
configurations in the form of individual build.gradle.kts files.

The shared module contains three sourceSets:

•	 androidMain

•	 commonMain

•	 iosMain

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Initial project setup 77

You can find the configuration of these source sets in the build.gradle.kts of the
shared module. In short, the meaning of these source sets in a KMP environment is that
in the commonMain source set, we implement our shared code and potentially define
expected declarations, while the androidMain and iosMain source sets will have to
contain the actual platform-specific implementations. This way KMP will intelligently
replace the expected declarations with the actual implementations for the target that it's
building for at the given time, as discussed in Chapter 1, The Battle Between Native, Cross-
Platform, and Multiplatform.

If you open the build.gradle.kts of the shared module, you should see the
following code:

plugins {

 kotlin("multiplatform")

 id("com.android.library")

}

This is the place where we apply the specific plugins. We need the multiplatform plugin
in order to create the multiplatform configurations for the shared code and the Android
library plugin so that the shared code can be properly set up as an Android library when
consumed from an Android app.

The following section configures the shared code, with two targets, Android and iOS:

kotlin {

 android()

 val iosTarget: (String, KotlinNativeTarget.() -> Unit)

 -> KotlinNativeTarget =

 if

 (System.getenv("SDK_NAME")?.startsWith("iphoneos")

 == true)

 ::iosArm64

 else

 ::iosX64

 iosTarget("ios") {

 binaries {

 framework {

 baseName = "shared"

 }

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

78 Writing Shared Code

 }

 }

 sourceSets {

 val commonMain by getting

 val commonTest by getting {

 dependencies {

 implementation(kotlin("test-common"))

 implementation(kotlin("test-annotations-

 common"))

 }

 }

 val androidMain by getting

 val androidTest by getting {

 dependencies {

 implementation(kotlin("test-junit"))

 implementation("junit:junit:4.13.2")

 }

 }

 val iosMain by getting

 val iosTest by getting

 }

}

This section essentially does two things:

•	 It specifies the targets that we are going to use in our multiplatform module, an
Android and an iOS target respectively.

•	 It configures the source sets. You can see commonMain, androidMain, and
iosMain source sets, and a -Test source set for each. (The reason why you can't
see the test folders in the project structure yet is that we didn't tick the checkbox at
the start when using the project wizard, which would've generated those as well.)

As you can see, the iosTarget is going to be different, based on if we are using a
simulator or a real device to run the shared code: iosArm64 for a real device and
iosX64 for a simulator.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Initial project setup 79

Then you can see the baseName = "shared" command, which specifies the name
of the local framework that will be generated for the iOS app. In case you've run the
app with the iOS configuration, you can see that under shared/build/bin/ios/
debugFramework there is a shared.framework.

The last section is as follows:

android {

 compileSdkVersion(30)

 sourceSets["main"].manifest.srcFile

 ("src/androidMain/AndroidManifest.xml")

 defaultConfig {

 minSdkVersion(23)

 targetSdkVersion(30)

 }

}

This has the Android library-specific configurations.

Let's do a cleanup of the Hello {platform} messages and set up the project for Dogify:

1.	 Delete the Platform.kt files in all source sets: commonMain, androidMain,
and iosMain.

2.	 Delete the Greeting.kt file in the commonMain source set.

There are multiple strategies to choose from when testing your shared code, such as the
following:

•	 Test it only on one target when developing, and when ready test it on all targets.

•	 Always test it on all targets.

•	 Hybrid or in-between: run it only on one target, but test platform-specific
implementations on all targets.

This is something for you or your team to decide when working on a real project, and it
could depend on your project setup and preferences. Testing every change on all targets
can be time-consuming but you probably won't end up having to rewrite anything major
in your shared code. We will cover more of this topic in Chapter 9, Integrating KMM into
Existing Android and iOS Apps.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

80 Writing Shared Code

For this exercise, we'll be testing the shared code on Android as we're writing the shared
code. Once we've finished it, we'll try it out on iOS and make some changes if necessary.

In Chapter 4, Introducing the KMM Learning Project, we introduced the architecture and
components of Dogify, where the two platform-specific View layers will communicate
with the shared Domain layer. More specifically, the Views will interact with a specific use
case (otherwise known as Interactors).

Before we start actually implementing, we'll do the following:

1.	 Create the API contract for the shared code in the form of barebone use cases.
2.	 Set up dependency injection.

Let's look at these steps in detail.

1. Creating the barebone use cases
Under the commonMain source set, in the model directory, create the following Data
Transfer Object (DTO):

data class Breed(val name: String, val imageUrl: String,

 val isFavourite: Boolean = false)

These are the three main information pieces that we will be transmitting to the UI about a
given dog breed:

•	 The breed's name

•	 A URL to an image of the breed

•	 Whether it's a favorite breed or not

Also, in the directory, create the following three Kotlin classes:

•	 FetchBreedsUseCase

•	 GetBreedsUseCase

•	 ToggleFavouriteStateUseCase

These are the three main actions that the apps will run. For now, we will just return some
mocked data.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Initial project setup 81

Both getting and fetching the breeds will return us a list of the previously created Breed,
the difference being that while fetching breeds always returns fresh data from remote,
getting breeds returns breeds from the cache if available or performs a fetch:

class GetBreedsUseCase {

 suspend fun invoke(): List<Breed> = listOf(Breed("Test

 get", ""),)

}

The fetch operation will be different later on in the real implementation, where it'll fetch
data from remote instead of getting it from the cache:

class FetchBreedsUseCase {

 suspend fun invoke(): List<Breed> = listOf(Breed("Test

 fetch", ""),)

}

Toggling the favorite state of a breed will need the breed as a parameter, and it will have no
return type:

class ToggleFavouriteStateUseCase {

 suspend operator fun invoke(breed: Breed) {

 }

}

You might have noticed that we were overriding the invoke operator function in our
code. For those who aren't familiar with this Kotlin pattern, it just makes invoking a use
case a bit nicer – you'll see what I mean after a couple of lines.

2. Setting up the dependency injection
As discussed, we're going to be using Koin – https://insert-koin.io/. Let's work
through these steps:

1.	 First, we'll need to specify the dependency under the commonMain source set in
the build.gradle.kts:

val commonMain by getting {

 ...

 dependencies {

 api("io.insert-koin:koin-core:3.1.2")

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://insert-koin.io/

82 Writing Shared Code

 }

 …

}

We'll declare the dependency as an api as a convenience since we also need to do a
Koin setup in the consumer Android app as well.

2.	 Now create a KoinModule under the di package in the commonMain source set,
with the following code:

private val usecaseModule = module {

 factory { GetBreedsUseCase() }

 factory { FetchBreedsUseCase() }

 factory { ToggleFavouriteStateUseCase() }

}

private val sharedModules = listOf(usecaseModule)

fun initKoin(appDeclaration: KoinAppDeclaration = {})

 = startKoin {

 appDeclaration()

 modules(sharedModules)

}

Here we described the "bean definitions", or how we'd like our use cases to be
instantiated, where factory means a new instance will be created whenever the
dependency is injected.

We also expose the initKoin method, where the caller can extend on the current
Koin configuration.

To be able to test the shared code on Android, go ahead and do the following:
A.	 Create an application class and initialize Koin:

class DogifyApplication: Application() {

 override fun onCreate() {

 super.onCreate()

 initKoin()

 }

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Initial project setup 83

B.	 Log or print out the results of the shared module API.

I've just simply modified the greet() message:
suspend fun greet() =

 "${FetchBreedsUseCase().invoke()}\n" +

 "${GetBreedsUseCase().invoke()}\n" +

 "${ToggleFavouriteStateUseCase().invoke(Breed

 ("toggle favourite state test", ""))}\n"

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 val tv: TextView =

 findViewById(R.id.text_view)

 lifecycleScope.launch {

 tv.text = greet()

 }

 }

}

Since the use cases are suspend functions, you'll need a coroutine scope as well to run
those. You can see that I've used lifecycleScope, which requires the androidx.
lifecycle:lifecycle-runtime-ktx dependency.

The full code is available on the 05/01-initial-setup branch.

Now that we have everything set up, let's start implementing our shared code, first by
fetching the needed data.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

84 Writing Shared Code

Fetching data from the Dog API
To implement shared networking, we will be using Ktor (https://kotlinlang.
org/docs/mobile/use-ktor-for-networking.html) and kotlinx.serialization
(https://github.com/Kotlin/kotlinx.serialization).

First, let's add the dependencies:

1.	 Add the following dependencies to the common source set:

	� io.ktor:ktor-client-core:$ktorVersion

	� io.ktor:ktor-client-json:$ktorVersion

	� io.ktor:ktor-client-logging:$ktorVersion

	� io.ktor:ktor-client-serialization:$ktorVersion

	� org.jetbrains.kotlinx:kotlinx-serialization-core:1.2.1

2.	 We also need to apply the kotlinx-serialization plugin, by adding
kotlin("plugin.serialization") version kotlinVersion to the
plugins block in the shared module's build.gradle.kts.

3.	 And we'll also need to add a dependency for the actual Ktor clients on the different
platforms:

	� Add io.ktor:ktor-client-android:$ktorVersion to the Android
source set.

	� Add io.ktor:ktor-client-ios:$ktorVersion to the iOS source set.

Now let's configure our shared Ktor client:

1.	 We'll start by creating a base class for this configuration. There is probably a
better pattern for this, but for the purposes of this example we'll refrain from
overengineering, so go ahead and create KtorApi under the commonMain source
set in the api directory. We'll make this class as follows:

internal abstract class KtorApi {

You'll notice that we'll pay attention to using internal modifiers where needed, not
only to limit exposing the internals of our shared module, but also because this
actually has an impact on the output binary of the Kotlin/Native compiler. We will
discuss this in Chapter 8, Exploring Tips and Best Practices.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kotlinlang.org/docs/mobile/use-ktor-for-networking.html
https://kotlinlang.org/docs/mobile/use-ktor-for-networking.html
https://github.com/Kotlin/kotlinx.serialization

Fetching data from the Dog API 85

2.	 Then we'll configure kotlinx-serialization's JSON parsing:

private val jsonConfiguration = Json {

 prettyPrint = true

 ignoreUnknownKeys = true

}

We want the JSON to be formatted in a human-readable way and the parsing not to
fail in case of unknown keys.

3.	 Then we'll configure our Ktor client:

val client = HttpClient {

 install(JsonFeature) {

 serializer =

 KotlinxSerializer(jsonConfiguration)

 }

 install(Logging) {

 logger = Logger.SIMPLE

 level = LogLevel.ALL

 }

}

We'll use HttpClient, which under the hood will use the different Android or
iOS HttpClientEngine from the platform-specific dependencies that we've
added.

We also specify the serializer for Ktor to be Kotlinx's Serializer with our previously
defined JSON configuration and configure the logging.

4.	 Now as our last step, we'll expose a method for configuring the API endpoints:

fun HttpRequestBuilder.apiUrl(path: String) {

 url {

 takeFrom("https://dog.ceo")

 path("api", path)

 }

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

86 Writing Shared Code

Let's see now how we can get the data with our configured Ktor client:

1.	 Let's create the DTOs that define how we'd like to parse the data. Create
BreedsResponse and BreedImageResponse in the commonMain source set
in the api/model directory:

@Serializable

internal data class

 BreedsResponse(@SerialName("message") val breeds:

 List<String>)

@Serializable

internal data class BreedImageResponse(

 @SerialName("message")

 val breedImageUrl: String

)

The two DTOs defined here are self-explanatory in terms of how and what we're
parsing out about the responses.

2.	 Now create a BreedsApi under the commonMain source set in the api directory
that extends our previously configured KtorApi:

internal class BreedsApi : KtorApi() {

 suspend fun getBreeds(): BreedsResponse =

 client.get {

 apiUrl("breeds/list")

 }

 suspend fun getRandomBreedImageFor(breed: String):

 BreedImageResponse = client.get {

 apiUrl("breed/$breed/images/random")

 }

}

Ktor internally uses the native-mt version of coroutines from version 1.4+ and it
provides "main-safety" as it switches to a background thread when running the requests.

However, I'd personally consider it a best practice not to rely on a third-party
implementation for this and make sure your Local- and RemoteSources are
responsible from this perspective.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fetching data from the Dog API 87

We're going to introduce an abstraction over the DispatcherProvider in coroutines
for two reasons:

•	 Testing.

•	 Kotlin/Native doesn't have an I/O dispatcher at the moment and we'll need to use
the default dispatcher to move tasks to a background thread for iOS. Since we don't
want to compromise on Android, we'll want this to be platform-specific and use the
classic I/O dispatcher.

Before we create the abstraction, we need to add a dependency on the native
multithreaded coroutines in the common source set: org.jetbrains.
kotlinx:kotlinx-coroutines-core:${coroutinesVersion}-native-mt.

Let's create the following DispatcherProvider file under the util package in the
commonMain source set:

interface DispatcherProvider {

 val main: CoroutineDispatcher

 val io: CoroutineDispatcher

 val unconfined: CoroutineDispatcher

}

internal expect fun getDispatcherProvider():

 DispatcherProvider

As you can see, we've introduced our first expected declarations in our shared code, so
we'll need to define the actual implementations for these on both Android and iOS:

Create a DispatcherProvider file under the util package in the iosMain source set:

internal actual fun getDispatcherProvider():

 DispatcherProvider = IosDispatcherProvider()

private class IosDispatcherProvider : DispatcherProvider {

 override val main = Dispatchers.Main

 override val io = Dispatchers.Default

 override val unconfined = Dispatchers.Unconfined

}

As you can see, we're using the default dispatcher for I/O-related tasks in Kotlin/Native.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

88 Writing Shared Code

Now let's create a DispatcherProvider file under the util package in the
androidMain source set:

internal actual fun getDispatcherProvider():

 DispatcherProvider = AndroidDispatcherProvider()

private class AndroidDispatcherProvider:

 DispatcherProvider{

 override val main = Dispatchers.Main

 override val io = Dispatchers.IO

 override val unconfined = Dispatchers.Unconfined

}

Here, you can see that we'll be using the same I/O dispatcher as we would've probably
used for I/O-related tasks on Android.

Now let's create the definition for our BreedRemoteSource that will basically have the
purpose of creating an abstraction over our third-party networking library. You can add it
under the repository package in the common source set:

internal class BreedsRemoteSource(

 private val api: BreedsApi,

 private val dispatcherProvider: DispatcherProvider

) {

 suspend fun getBreeds() =

 withContext(dispatcherProvider.io) {

 api.getBreeds().breeds

 }

 suspend fun getBreedImage(breed: String) =

 withContext(dispatcherProvider.io) {

 api.getRandomBreedImageFor(breed).breedImageUrl

 }

}

As you can see our remote source does two main things above the actual networking API.
It makes sure that we're using the I/O dispatcher and it unwraps the data.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fetching data from the Dog API 89

We'll also need to combine the two pieces of information, the list of breed names with
the image URLs. Let's create the BreedRepository under the same repository
package:

class BreedsRepository internal constructor(

 private val remoteSource: BreedsRemoteSource

) {

 suspend fun get() = fetch()

 suspend fun fetch() = supervisorScope {

 remoteSource.getBreeds().map {

 async { Breed(name = it, imageUrl =

 remoteSource.getBreedImage(it)) }

 }.awaitAll()

 }

}

Notice the supervisorScope, which is used to make sure that a failure of a child job
doesn't cancel the execution of the parent.

Since we don't have anything cached, both the get and fetch operations will be identical
and we're just going to fetch the list of breeds from the API, then fetch a random image for
each of those. In case you're confused how async works, we discussed that in Chapter 3,
Introducing Kotlin for Swift Developers.

As a last step, let's connect these things and test it out in our Android app. Let's
add the BreedsRepository dependency to both FetchBreedsUseCase and
GetBreedsUseCase – here's how the latter should look after this update:

class GetBreedsUseCase: KoinComponent {

 private val breedsRepository: BreedsRepository by

 inject()

 suspend fun invoke(): List<Breed> =

 breedsRepository.get()

}

Notice that we're not using Koin's construction injection here, we're using
KoinComponent instead, and this is for two reasons:

•	 It's more convenient than injecting into our Android app's view layer.

•	 It's even more convenient than injecting into our iOS app's view layer with Koin.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

90 Writing Shared Code

The drawback, of course, is that it's harder to test these use cases, as we need to overwrite
the bean definitions in order to provide mock dependencies.

As the final step, we need to update our Koin module and extend it with the new
component's bean definitions. After the modifications, this is how it will look:

private val utilityModule = module {

 factory { getDispatcherProvider() }

}

private val apiModule = module {

 factory { BreedsApi() }

}

private val repositoryModule = module {

 single { BreedsRepository(get()) }

 factory { BreedsRemoteSource(get(), get()) }

}

private val usecaseModule = module {

 factory { GetBreedsUseCase() }

 factory { FetchBreedsUseCase() }

 factory { ToggleFavouriteStateUseCase() }

}

private val sharedModules = listOf(usecaseModule,

 repositoryModule, apiModule, utilityModule)

fun initKoin(appDeclaration: KoinAppDeclaration = {}) =

 startKoin {

 appDeclaration()

 modules(sharedModules)

}

If you run the app on Android you should see the long list of breeds. PS: Don't forget to
add the required Android internet permissions. I always forget to do that.

The full code is available on the 05/02-fetching-data branch.

Now that we have some data in our hands, let's see how we can persist it in a local
database.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Persisting data in a local database 91

Persisting data in a local database
We'll be using SQLDelight (https://github.com/cashapp/sqldelight) for
Dogify, though there are other possibilities including NoSQL solutions as well, such
as Realm (https://github.com/realm/realm-kotlin) and Kodein-DB
(https://github.com/Kodein-Framework/Kodein-DB).

In this section, we're going to do the following:

1.	 Explore how to set up SQLDelight in a multiplatform module.
2.	 Implement the BreedsLocalSource.
3.	 Connect the remaining API functionality to our database.

Let's dive in.

Exploring how to set up SQLDelight in a multiplatform
module
As always, the first thing is to add the needed dependencies, so we need to do the
following chores:

1.	 Add the plugin to the classpath: add classpath("com.squareup.
sqldelight:gradle-plugin:$sqlDelightVersion") to the top-level
build.gradle.kts.

2.	 Apply the plugin to our shared module, by adding id("com.squareup.
sqldelight") to the plugins block.

3.	 Add the "com.squareup.sqldelight:runtime:$sqlDelightVersion"
and "com.squareup.sqldelight:coroutines-
extensions:$sqlDelightVersion" dependencies to the commonMain
source set. The second one is needed so that we can make the persisted data the
single source of truth as a stream of data, in the form of a Kotlin Flow.

4.	 We need to add the platform-specific SQL drivers, so add "com.squareup.
sqldelight:android-driver:$sqlDelightVersion" to the
Android source set and the "com.squareup.sqldelight:native-
driver:$sqlDelightVersion to the iOS source set.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/cashapp/sqldelight
https://github.com/cashapp/sqldelight
https://github.com/cashapp/sqldelight
https://github.com/realm/realm-kotlin
https://github.com/realm/realm-kotlin
https://github.com/realm/realm-kotlin
https://github.com/Kodein-Framework/Kodein-DB

92 Writing Shared Code

Now, with the use of the SQLDelight Gradle plugin, we can configure our database by
adding the following to the Gradle configuration:

sqldelight {

 database("DogifyDatabase") {

 packageName = "com.${yourGroupName}.dogify.db"

 sourceFolders = listOf("sqldelight")

 }

}

In the previous code snippet, we've specified the name for the database, and we've pointed
to the location that should contain the SQL statements for creating and interacting with
the database. We shall write those statements now – first let's create Breeds.sq under
commonMain/sqldelight.com.${yourGroupName}.dogify.db.

Now, in order for SQLDelight to be able to create the SQL table and queries that we need,
we will add the following:

CREATE TABLE breeds(

 name TEXT NOT NULL,

 imageUrl TEXT NOT NULL,

 isFavourite INTEGER AS Boolean DEFAULT 0

);

insert:

 INSERT OR REPLACE INTO breeds(name, imageUrl, isFavourite)

 VALUES (?, ?, ?);

update:

 UPDATE breeds SET imageUrl = ?, isFavourite = ? WHERE name

 = ?;

selectAll:

SELECT * FROM breeds;

clear:

 DELETE FROM breeds;

Here, ? signals the parameters of the generated function.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Persisting data in a local database 93

Now if you build the shared module you should be able to see the generated
DogifyDatabase and BreedsQueries under the shared module's build/
generated/sqldelight/code/DogifyDatabase directory.

As you recall, we've added the two platform-specific SQLite driver dependencies to the
Android and iOS source sets. We need to create an instance of this DogifyDatabase
that's based on the platform-specific drivers. How should we solve this?

Yes, I hope you guessed it, we're going to create an expected declaration. Also,
since we need an Android context we'll try to be clever and leverage Koin's
androidContext() functionality. How? First, let's create the expected declaration as
an extension function on Koin's Scope:

internal expect fun Scope.createDriver(databaseName:

 String): SqlDriver

Now, the actual implementation for iOS is pretty simple:

internal actual fun Scope.createDriver(databaseName:

 String): SqlDriver =

 NativeSqliteDriver(DogifyDatabase.Schema, databaseName)

For Android, let's first add the koin-android dependency "io.insert-koin:koin-
android:$koinVersion" to the Android source set (I've used api as a convenience
method, so that the consumer Android app module can use this same dependency as well).

Now we can define the actual implementation for creating the SQLite driver on Android
as follows:

internal actual fun Scope.createDriver(databaseName:

 String): SqlDriver =

 AndroidSqliteDriver(DogifyDatabase.Schema,

 androidContext(), databaseName)

Note that you also need to make sure to define this androidContext() in your app:

class DogifyApplication : Application() {

 override fun onCreate() {

 super.onCreate()

 initKoin {

 androidContext(this@DogifyApplication)

 }

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

94 Writing Shared Code

 }

}

Now we are able to provide the bean definition for the DogifyDatabase in our Koin
module:

 single { DogifyDatabase(createDriver("dogify.db")) }

Now that you have the DogifyDatabase set up, let's see how we can create the
BreedsLocalSource on top of it.

Implementing the BreedsLocalSource
Our BreedsLocalSource has similar responsibilities to BreedsRemoteSource,
the main difference being that it communicates with our persistence layer instead of a
networking layer.

You can add the following implementation to the commonMain source set's
repository directory:

internal class BreedsLocalSource(

 database: DogifyDatabase,

 private val dispatcherProvider: DispatcherProvider

) {

 private val dao = database.breedsQueries

 val breeds = dao.selectAll().asFlow().mapToList()

 .map { breeds -> breeds.map { Breed(it.name,

 it.imageUrl, it.isFavourite ?: false) } }

 suspend fun selectAll() =

 withContext(dispatcherProvider.io) {

 dao.selectAll { name, imageUrl, isFavourite ->

 Breed(name, imageUrl, isFavourite ?: false) }

 .executeAsList()

 }

 suspend fun insert(breed: Breed) =

 withContext(dispatcherProvider.io) {

 dao.insert(breed.name, breed.imageUrl,

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Persisting data in a local database 95

 breed.isFavourite)

 }

 suspend fun update(breed: Breed) =

 withContext(dispatcherProvider.io) {

 dao.update(breed.imageUrl, breed.isFavourite,

 breed.name)

 }

 suspend fun clear() =

 withContext(dispatcherProvider.io) {

 dao.clear()

 }

}

You probably noticed the following line:

 val breeds = dao.selectAll().asFlow().mapToList()

 .map { breeds -> breeds.map { Breed(it.name,

 it.imageUrl, it.isFavourite ?: false) } }

This maps the underlying data in the database to a Kotlin Flow, so that our data becomes a
reactive stream.

Connecting our database to the rest of the
components
First, we'll update our repository so that it caches the fetched breeds properly, and
retrieves and updates this cache when needed. Let's extend our BreedsRepository:

class BreedsRepository internal constructor(

 private val remoteSource: BreedsRemoteSource,

 private val localSource: BreedsLocalSource

) {

 val breeds = localSource.breeds

 internal suspend fun get() =

 with(localSource.selectAll()) {

 if (isNullOrEmpty()) {

 return@with fetch()

 } else {

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

96 Writing Shared Code

 this

 }

 }

 internal suspend fun fetch() = supervisorScope {

 remoteSource.getBreeds().map {

 async { Breed(name = it, imageUrl =

 remoteSource.getBreedImage(it)) }

 }.awaitAll().also {

 localSource.clear()

 it.map { async { localSource.insert(it) }

 }.awaitAll()

 }

 }

 suspend fun update(breed: Breed) =

 localSource.update(breed)

}

In the preceding code, you can see the following three actions updated:

•	 get() now first checks if some cached breeds exist in the local source, and if yes,
then it returns them, otherwise it starts a fetch.

•	 fetch() gets the data from the remote source, then it saves the returned breeds.

•	 update(breed) simply updates the given breed.

Now that we have the update function implemented, we can also implement
ToggleFavouriteStateUseCase:

class ToggleFavouriteStateUseCase: KoinComponent {

 private val breedsRepository: BreedsRepository by

 inject()

 suspend operator fun invoke(breed: Breed){

 breedsRepository.update(breed.copy(isFavourite =

 !breed.isFavourite))

 }

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 97

As you can see, we're basically switching the current favorite state of the given breed.

The last thing we need to do is to update the repository module in Koin:

private val repositoryModule = module {

 single { BreedsRepository(get(), get()) }

 factory { BreedsRemoteSource(get(), get()) }

 factory { BreedsLocalSource(get(), get()) }

}

Now you should be able to test the code for yourself by running the Android app. The full
code is available on the 05/03-persisting-data branch.

Note
This variation of a "clean architecture" isn't meant to impose any architectural
preference or boilerplate on anyone. I personally always feel that it's easier to
read well-structured code, and this is an effort to define such a code, which has
worked out for me and the people I've worked with so far.

Summary
Having worked through this chapter, you've had the benefit of some hands-on experience
of how to set up a KMM project and have seen how you can leverage KMP's expect/actual
mechanism. We also covered how you can write a shared networking layer between Android
and iOS as well as how to write a shared persistence layer between Android and iOS.

In the next chapter, we're going to put this shared layer to work on Android and see how
it's able to perform.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Writing the Android

Consumer App
Now that we've implemented the shared code, we should put it to the test. We'll start with
the easier step first; that is, consuming the shared module from the Android code. This
chapter will be a more concise one as teaching Android development is outside the scope
of this book. With that said, I consider it important to see how that shared KMM code can
be consumed by the targeted platforms.

In this chapter, we'll cover the following topics:

•	 Setting up the Android module

•	 Tying the Android app to the shared code

•	 Implementing the UI on Android

Technical requirements
You can find the code files for this chapter in this book's GitHub repository at
https://github.com/PacktPublishing/Simplifying-Application-
Development-with-Kotlin-Multiplatform-Mobile.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

100 Writing the Android Consumer App

Setting up the Android module
Since we tested part of the shared code in Chapter 5, Writing Shared Code, we have already
done most of the setup. Let's go through what we need to set up before implementing the
Android app.

Enabling Jetpack Compose
We'll be using Android's new UI Toolkit: Jetpack Compose. So, first, we'll need to enable
it. You can find the official setup guide here: https://developer.android.com/
jetpack/compose/setup#add-compose.

To enable Jetpack Compose, we'll need to add the following configurations to the build.
gradle.kts file of the androidApp module, under the android{} configuration
block:

1.	 Enable the compose build feature:

buildFeatures {

 compose = true

}

2.	 Make sure both the Kotlin and Java compilers target Java 8:

compileOptions {

 sourceCompatibility = JavaVersion.VERSION_1_8

 targetCompatibility = JavaVersion.VERSION_1_8

}

kotlinOptions {

 jvmTarget = "1.8"

}

3.	 We also need to specify the version of the Kotlin compiler extension to be used:

composeOptions {

 kotlinCompilerExtensionVersion =

 composeVersion

}

The last step is to add all the dependencies we'll need to implement Dogify on Android.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.android.com/jetpack/compose/setup#add-compose
https://developer.android.com/jetpack/compose/setup#add-compose

Setting up the Android module 101

Adding the necessary dependencies
Make sure that you add the following dependencies to the build.gradle.kts file of
the androidApp module:

1.	 Add the following dependency of our shared module:

implementation(project(":shared"))

2.	 Now, we must add AppCompat and various Kotlin extensions. Note that instead
of relying on AppCompat, you could just use ComponentActivity; see https://
twitter.com/joreilly/status/1364982668371329025?s=20:

implementation("androidx.appcompat:appcompat:1.3.0")

 // Android Lifecycle

 val lifecycleVersion = "2.3.1"

implementation("androidx.lifecycle:lifecycle-

 viewmodel- ktx:$lifecycleVersion")

implementation("androidx.lifecycle:lifecycle-

 runtime-ktx:2.4.0-alpha02")

 // Android Kotlin extensions

implementation("androidx.core:core-ktx:1.6.0")

kotlinOptions {

 jvmTarget = "1.8"

}

3.	 Now, let's add the Jetpack Compose UI, Foundation, Activity, and the various
tooling support that's required, such as Previews:

implementation("androidx.activity:activity-

 compose:1.3.0-rc02")

implementation("androidx.compose.ui:ui:$composeVersion

 ")

 // Tooling support (Previews, etc.)

implementation("androidx.compose.ui:ui-

 tooling:1.0.0-rc02")

 // Foundation (Border, Background, Box, Image,

 Scroll, shapes, animations, etc.)

 implementation("androidx.compose.
foundation:foundation

 :$composeVersion")

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

102 Writing the Android Consumer App

4.	 Now, add Jetpack Compose Material Design and the necessary icons:

 // Material Design

implementation("androidx.compose.material:material:$co

 mposeVersion")

 // Material design icons

implementation("androidx.compose.material:material-

 icons-core:$composeVersion")

implementation("androidx.compose.material:material-

 icons-extended:$composeVersion")

5.	 Finally, add the Accompanist coil for image loading and swipe to refresh the
capabilities:

val accompanistVersion = "0.13.0"

implementation("com.google.accompanist:accompanist-

 coil:$accompanistVersion")

 implementation("com.google.accompanist:accompanist-

 swiperefresh:$accompanistVersion")

The full code is available at 06/01-android-module-setup.

Note
There is a common pattern for sharing dependency versions between the
shared and Android modules. In most cases, this is done by storing it in a
Kotlin file/object in buildSrc. I've refrained from this pattern for the
following reasons:

• I wanted to keep the practical chapters as simple and to the point as possible.

• �I'm not sure how I feel about the pattern and about tying the dependency
versions for these modules together. It can be great in example projects, but
production KMM apps are not that likely to live in the same repository. This is
typically the case when the project is adopting KMM in already existing apps.

Now that we have all the dependencies in place, we are ready to consume the shared code.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tying the Android app to the shared code 103

Tying the Android app to the shared code
We'll be using a simple ViewModel pattern to interact with the shared code and expose
the needed data and actions to our UI, based on Android's architecture ViewModel to
leverage some life cycle functionality provided by the framework.

We'll create a simple MainViewModel class in the androidApp module. Let's go
through the implementation step by step.

First, let's think about what dependencies this ViewModel has:

class MainViewModel(

 breedsRepository: BreedsRepository,

 private val getBreeds: GetBreedsUseCase,

 private val fetchBreeds: FetchBreedsUseCase,

 private val onToggleFavouriteState:

 ToggleFavouriteStateUseCase

) : ViewModel() {

Since we'll be communicating with the shared code, we'll make use of the three use cases
for running the specific actions, and we'll listen to the stream containing the breeds from
BreedsRepository.

Now, let's look at what will we expose from the ViewModel layer to View. We will do
this with the help of Kotlin's Flows, exposing the whole state of the UI in multiple pieces
of information:

1.	 The "state" will tell the UI some information about the UI, if we have any data, if
something went wrong, or whether we're currently loading the data:

private val _state = MutableStateFlow(State.LOADING)

val state: StateFlow<State> = _state

private val _isRefreshing = MutableStateFlow(false)

val isRefreshing: StateFlow<Boolean> = _isRefreshing

enum class State {

 LOADING,

 NORMAL,

 ERROR,

 EMPTY

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

104 Writing the Android Consumer App

2.	 We must send out events when, for example, a certain action has failed (such as
marking a breed as a favorite):

private val _events = MutableSharedFlow<Event>()

val events: SharedFlow<Event> = _events

enum class Event {

 Error

}

3.	 We must also provide information about whether we are currently filtering out
favorite breeds only:

private val _shouldFilterFavourites =

 MutableStateFlow(false)

val shouldFilterFavourites: StateFlow<Boolean> =

 _shouldFilterFavourites

4.	 Finally, we need to provide the list of breeds, which depends on the breeds
coming from BreedsRepository and whether the user wants to filter out
favorite breeds only:

val breeds =

 breedsRepository.breeds.combine

 (shouldFilterFavourites) { breeds,

 shouldFilterFavourites ->

 if (shouldFilterFavourites) {

 breeds.filter { it.isFavourite }

 } else {

 breeds

 }.also {

 _state.value = if (it.isEmpty())

 State.EMPTY else State.NORMAL

 }

 }.stateIn(

 viewModelScope,

 SharingStarted.WhileSubscribed(),

 emptyList()

)

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tying the Android app to the shared code 105

Now, let's see what actions we can expose for the UI in the form of functions:

1.	 The first thing we need is a refresh action so that users can trigger a force refresh of
the underlying data:

fun refresh() {

 loadData(true)

}

2.	 We also need a way for users to switch between whether they'd like to see their
favorite breeds only or not:

fun onToggleFavouriteFilter() {

 _shouldFilterFavourites.value =

 !shouldFilterFavourites.value

}

3.	 Next, we need an action for marking or unmarking a favorite breed:

fun onFavouriteTapped(breed: Breed) {

 viewModelScope.launch {

 try {

 onToggleFavouriteState(breed)

 } catch (e: Exception) {

 _events.emit(Event.Error)

 }

 }

}

4.	 We also need a trigger for getting the data when ViewModel is initialized:

 init {

 loadData()

}

5.	 At this point, our loadData() function should look like this:

private fun loadData(isForceRefresh: Boolean = false) {

 val getData: suspend () -> List<Breed> =

 { if (isForceRefresh) fetchBreeds.invoke()

 else getBreeds.invoke() }

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

106 Writing the Android Consumer App

 if (isForceRefresh) {

 _isRefreshing.value = true

 } else {

 _state.value = State.LOADING

 }

 viewModelScope.launch {

 _state.value = try {

 getData()

 State.NORMAL

 } catch (e: Exception) {

 State.ERROR

 }

 _isRefreshing.value = false

 }

}

Essentially, we're just checking if we should do a force refresh or not and calling the
appropriate use case from the shared code. Based on the result of this operation, we
update the "state."

This completes the implementation of our MainViewModel. The last thing we need to
do is make sure that Koin knows how to inject this ViewModel. For this, we'll create an
AppModule file that contains the following bean definition of our ViewModel:

val viewModelModule = module {

 viewModel { MainViewModel(get(), get(), get(), get()) }

}

We also need to make sure Koin knows about this newly declared module by adding it to
our initialization:

initKoin {

 androidContext(this@DogifyApplication)

 modules(viewModelModule)

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing the UI on Android 107

The full code is available at 06/02-consuming-shared-code-android.

Now that we've tied together our Android app to the shared code, let's try it out by
building the UI and testing it.

Implementing the UI on Android
Before we start, I'd like to emphasize that I had conflicting thoughts when I was writing
this chapter (as a matter of fact, the whole example project). I wanted to polish the UI as
much as possible, try out the new Android 12 splash screen API, make it edge-to-edge,
and so on. But at the same time, I didn't want to introduce things without explicitly
talking about them in this book as well, and to do that felt out of scope.

So, consider this as me finding an excuse for why the UI looks so barebone.

Now, let's throw some Jetpack Compose code together and see how consuming the shared
code can be presented on an Android UI:

1.	 Let's create a MainScreen that will contain our small number of composable
components. We'll start by creating the MainScreen composable:

@Composable

fun MainScreen(viewModel: MainViewModel) {

 val state by viewModel.state.collectAsState()

 val breeds by viewModel.breeds.collectAsState()

 val events by

 viewModel.events.collectAsState(Unit)

 val isRefreshing by

 viewModel.isRefreshing.collectAsState()

 val shouldFilterFavourites by

 viewModel.shouldFilterFavourites.collectAsState()

As you can see, first, we consume all the state-related information that our
previously defined ViewModel exposes.

2.	 We'll also need two other states to be maintained by this composable:

val scaffoldState = rememberScaffoldState()

val snackbarCoroutineScope = rememberCoroutineScope()

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

108 Writing the Android Consumer App

3.	 Now, our root component will be a Scaffold with a SwipeRefresh so that
users can trigger the refresh action with a pull-to-refresh action:

 Scaffold(scaffoldState = scaffoldState) {

 SwipeRefresh(

 state =

 rememberSwipeRefreshState(isRefreshing =

 isRefreshing),

 onRefresh = viewModel::refresh

)

4.	 Next, we'll split the screen into two parts – a switch for toggling the favorite breeds
filter and one for the content. The latter will either contain the list of breeds, a
loading indicator, or an empty/error placeholder:

 Column(

 Modifier

 .fillMaxSize()

 .padding(8.dp)

) {

 Row(

 Modifier

 .wrapContentWidth(Alignment.End)

 .padding(8.dp)) {

 Text(text = "Filter favourites")

 Switch(

 checked = shouldFilterFavourites,

 modifier = Modifier.padding

 (horizontal = 8.dp),

 onCheckedChange = {

 viewModel.onToggleFavouriteFilter() }

)

 }

 when (state) {

 MainViewModel.State.LOADING -> {

 Spacer(Modifier.weight(1f))

 CircularProgressIndicator(Modifier.align

 (Alignment.CenterHorizontally))

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing the UI on Android 109

 Spacer(Modifier.weight(1f))

 }

 MainViewModel.State.NORMAL -> Breeds(

 breeds = breeds,

 onFavouriteTapped =

 viewModel::onFavouriteTapped

)

 MainViewModel.State.ERROR -> {

 Spacer(Modifier.weight(1f))

 Text(

 text = "Oops something went wrong...",

 modifier =

 Modifier.align(Alignment.CenterHorizontally)

)

 Spacer(Modifier.weight(1f))

 }

 MainViewModel.State.EMPTY -> {

 Spacer(Modifier.weight(1f))

 Text(

 text = "Oops looks like there are no

 ${if (shouldFilterFavourites) "favourites"

 else "dogs"}",

 modifier =

 Modifier.align(Alignment.CenterHorizontally)

)

 Spacer(Modifier.weight(1f))

 }

}

 if (events == MainViewModel.Event.Error) {

 snackbarCoroutineScope.launch {

 scaffoldState.snackbarHostState.apply {

 currentSnackbarData?.dismiss()

 showSnackbar("Oops something went wrong...")

 }

 }

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

110 Writing the Android Consumer App

 }

 }

 }

5.	 The last component will be the Breeds composable, which will show the list of
breeds, their images and their names, and an action for marking that breed as a
favorite in a grid:

@Composable

fun Breeds(breeds: List<Breed>, onFavouriteTapped:

 (Breed) -> Unit = {}) {

 LazyVerticalGrid(cells = GridCells.Fixed(2)) {

 items(breeds) {

 Column(Modifier.padding(8.dp)) {

 Image(

 painter = rememberCoilPainter(request =

 it.imageUrl),

 contentDescription = "${it.name}-image",

 modifier = Modifier

 .aspectRatio(1f)

 .fillMaxWidth()

 .align(Alignment.CenterHorizontally),

 contentScale = ContentScale.Crop

)

 Row(Modifier.padding(vertical = 8.dp)) {

 Text(

 text = it.name,

 modifier = Modifier

 .align(Alignment.CenterVertically)

)

 Spacer(Modifier.weight(1f))

 Icon(

 if (it.isFavourite)

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing the UI on Android 111

 Icons.Filled.Favorite else

 Icons.Outlined.FavoriteBorder,

 contentDescription = "Mark as favourite",

 modifier = Modifier.clickable {

 onFavouriteTapped(it)

 }

)

 }

 }

 }

 }

}

6.	 Finally, we must show these components. We'll need to update our MainActivity
to the following:

class MainActivity : AppCompatActivity() {

 private val viewModel by viewModel<MainViewModel>()

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 MaterialTheme {

 MainScreen(viewModel)

 }

 }

 }

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

112 Writing the Android Consumer App

Here, we're injecting the MainViewModel component we created with Koin's
ViewModel functionality and setting the MainScreen composable as the content of
MainActivity. If you run this code, you should be able to see the following screen:

Figure 6.1 – Dogify on Android

The full code is available on branch 06/ui-android.

Summary
In this chapter, we connected our shared code to our Android application and created the
Dogify UI in Jetpack Compose. We also observed that consuming the shared code was as
easy as consuming a regular Android library.

In the next chapter, we'll try to do the same for iOS and see if we need to make any
modifications to our shared code to make it work and easier to consume via Swift.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Writing an iOS
Consumer App

After trying out the shared code on Android, the next step will be doing the same for iOS.
Spoiler alert—it won't be exactly as seamless as on Android, and we'll need to make some
adaptations to the shared code. For this reason, I believe this chapter should offer a good
insight into what extra work is actually needed for making Kotlin Multiplatform (KMP)
shared code work on iOS and how seamless it can be with the current tech stack on Swift.
This chapter will follow a similar structure to Chapter 6, Writing the Android Consumer
App, and in it, we will explore the following topics:

•	 Setting up the iOS app

•	 Tying the iOS app together with the shared code

•	 Implementing the UI on iOS

Technical requirements
You can find the code files present in this chapter on GitHub, at https://github.
com/PacktPublishing/Simplifying-Application-Development-with-
Kotlin-Multiplatform-Mobile.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile

114 Writing an iOS Consumer App

Setting up the iOS app
The heavy lifting is done for us by the Kotlin Multiplatform Mobile (KMM) plugin we
discussed in Chapter 4, Introducing the KMM Learning Project.

If you open the iosApp.xcodeproj file in the iosApp module with Xcode and open
the Build Phases tab for the iosApp target, under the Run Script phase, you should be
able to see the following command:

./gradlew :shared:embedAndSignAppleFrameworkForXcode

This is an integrational task that, as the name suggests, embeds and signs a generated
Apple framework from the shared code. This task is visible only from Xcode and can't
be used from the command-line interface (CLI). The task is illustrated in the following
screenshot and you can read more about it at https://blog.jetbrains.com/
kotlin/2021/07/multiplatform-gradle-plugin-improved-for-
connecting-kmm-modules/:

Figure 7.1 – embedAndSignAppleFrameworkForXcode build phase in Xcode

After you delete the Greeting from the ContentView, you should be able to build the
project with the shared.framework included.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://blog.jetbrains.com/kotlin/2021/07/multiplatform-gradle-plugin-improved-for-connecting-kmm-modules/
https://blog.jetbrains.com/kotlin/2021/07/multiplatform-gradle-plugin-improved-for-connecting-kmm-modules/
https://blog.jetbrains.com/kotlin/2021/07/multiplatform-gradle-plugin-improved-for-connecting-kmm-modules/

Tying the iOS app together with the shared code 115

Also, if you import the shared module, you should be able to see the public API that we
defined for the shared code—for example, FetchBreedsUseCase, as illustrated in the
following screenshot:

Figure 7.2 – Autocomplete for shared code framework

Note that in production apps, you might not go down on the same pathway for
distributing the shared code to iOS; we'll talk about this more in Chapter 8, Exploring Tips
and Best Practices, and Chapter 9, Integrating KMM into Existing Android and iOS Apps.

Now that we have the shared code near at hand, we are able to put it to the test and create
a Dogify app for iOS on top of it.

Tying the iOS app together with the shared
code
If you try to subscribe to the breeds stream from the BreedsRepository repository,
you'll see that you can't really initialize this repository from the iOS code. This is because
we've made a mistake—we don't really want to deal with Koin from Swift, so we could just
migrate to a similar injection pattern that we've used for the use cases, as illustrated in the
following code snippet:

class BreedsRepository: KoinComponent {

 private val remoteSource: BreedsRemoteSource by

 inject()

 private val localSource: BreedsLocalSource by inject()

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

116 Writing an iOS Consumer App

Now, if you try to call some of our use cases, you can see that you can call
suspend functions, as illustrated in the following screenshot, and you'll get back a
CompletionHandler, since Kotlin 1.4:

Figure 7.3 – Calling suspend functions from Swift

Now, there are a couple of concerns about using this approach, as outlined here:

•	 Collecting Kotlin Flows and running suspend functions from Android is
pretty straightforward because Android provides handy extensions for tying
CoroutineScopes to the life cycle of the components, a good example being
viewModelScope, which we've used to launch suspend functions and collect
Flows. Unfortunately, there is no way to specify a CoroutineScope when running
suspend functions from Swift.

•	 When launching a coroutine in Kotlin, it returns a Job, which you can cancel
manually. Since this is also not available in Swift, you can't really cancel a running
job from your Swift code.

I believe these are the cases when the power of KMP surfaces versus cross-platform
solutions: you're not driven into a corner as you can just go back to the Kotlin world,
handle Kotlin specific things there, and expose an API that can be called from Swift.

You can get creative with the way you handle this, but generally, you would perform the
following steps:

1.	 Create a Native version of your suspend function, as follows:

suspend operator fun invoke(): List<Breed> =

 breedsRepository.fetch()

val nativeScope = YourScope()

// You could keep a Job reference also in this case

fun invokeNative(

 onSuccess: (breeds: List<Breed>) -> Unit,

 onError: (error: Throwable) -> Unit

) {

 try {

 nativeScope.launch {

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tying the iOS app together with the shared code 117

 onSuccess(invoke())

 }

 } catch (e: Throwable) {

 onError(e)

 }

 }

2.	 Expose to Swift a way to cancel the running operation, like this:

fun onCancel(){

 nativeScope.cancel()

}

This example is just a simplified solution, and many questions could arise, depending on
your architecture and preference, such as the following: Do you handle scopes? If so, how
do you handle them? Do you leave it to the shared code, or do you handle individual jobs
instead? We'll talk more about this topic in Chapter 8, Exploring Tips and Best Practices.

One thing is pretty clear: with the current solution for consuming suspend functions and
Kotlin flows, you will likely end up writing a lot of boilerplate code. This is where code-
generation tools come into the picture. Luckily, there are libraries that can help us out with
this, such as the following ones:

•	 https://github.com/FutureMind/koru

•	 https://github.com/rickclephas/KMP-NativeCoroutines

We'll be using the latter for Dogify.

To set up the rickclephas/KMP-NativeCoroutines library, you need to perform
the following steps:

1.	 Apply the id("com.rickclephas.kmp.nativecoroutines") version
"0.4.2" plugin in your shared module's build.gradle.kts file.

2.	 Install CocoaPods by doing the following:

I.	 Open up a terminal in the iosApp module directory.
II.	 Install CocoaPods if you don't have it already by running the following command:

sudo gem install cocoapods.
III.	Run pod init to initialize the Podfile, then pod install.
IV.	Reopen the project, but instead of iosApp.xcodeproj, use iosApp.

xcworkspace.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/FutureMind/koru
https://github.com/rickclephas/KMP-NativeCoroutines

118 Writing an iOS Consumer App

V.	 (Optional) We also need to update the KMM plugin run configuration
similarly, as otherwise, it'll not find our installed pods. To do this, go to Edit
Configurations… (on the iosApp dropdown next to Play), as illustrated in the
following screenshot:

Figure 7.4 – Edit Configurations… location

VI.	Update iosApp.xcodeproj to iosApp.xcworkspace similar to step IV.
You also need to select the Xcode project scheme to be iosApp, as illustrated in
the following screenshot (you'll probably need to wait a couple of seconds until it
loads):

Figure 7.5 – Selecting .xcworkspace instead of .xcodeproj

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tying the iOS app together with the shared code 119

3.	 Add pod 'KMPNativeCoroutinesRxSwift' to the Podfile, then run pod
install.

You'll probably run into an issue, as Xcode won't find the
KMPNativeCoroutinesCombine module when trying to import
it. If you go to Build Settings | Framework Search Paths, you'll see
that there is only one value: $(SRCROOT)/../shared/build/
xcodeframeworks/$(CONFIGURATION)/$(SDK_NAME), which seems to be the
result of the KMM plugin's new project wizard. It's not clear why and how the plugin's
configuration breaks the CocoaPods settings, but adding the pod's path explicitly using
"${PODS_CONFIGURATION_BUILD_DIR}" with a recursive search should fix the
problem.

Now that we have the library set up, we can focus on tying the shared code to our iOS app.
We'll also experience the two most common threading issues, as outlined next, and see
how we can fix them:

1.	 Accessing non-shared/mutable state from another thread
2.	 Mutating state that is frozen/immutable

First, let's mirror the MainViewModel from Android, but now, we're going to use the
Combine pattern to publish the state.

1.	 Create a MainViewModel Swift class that extends ObservableObject
and try to consume the shared module, with the help of the
KMPNativeCoroutinesRxSwift library.

So, for the use cases that expose suspend functions, we'll be using the
createSingle() helper, while for the Kotlin Flow stream of Breeds, we will be
using the createObservable() method. Here's an example to illustrate this:

createObservable(for:

 BreedsRepository.init().breedsNative)

 .subscribe(onNext : { value in

 print("Received value: \(value)")

 }, onError: { error in

 print("Received error: \(error)")

 }, onCompleted: {

 print("Observable completed")

 }, onDisposed: {

 print("Observable disposed")

 })

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

120 Writing an iOS Consumer App

 createSingle(for:

 getBreeds.invokeNative()).subscribe(onSuccess: {

 value in

 print("Received value: \(value)")

 }, onFailure: { error in

 print("Received error: \(error)")

 }, onDisposed: {

 print("Single disposed")

})

2.	 We also need to initialize Koin, which we'll do in the init() method of
ContentView, as follows:

struct ContentView: View {

 private let viewModel: MainViewModel

 init() {

 KoinModuleKt.doInitKoin()

 viewModel = MainViewModel.init()

 }

If you run the project now, you'll get the following error:
illegal attempt to access non-shared

 org.koin.core.context.GlobalContext

 .KoinInstanceHolder@28557e8 from other thread

If you check our use cases and the BreedsRepository repository, you'll see that we're
using by inject() to inject our dependencies. This is a lazy injection method that
will only get triggered when we're actually running the Native GET request from another
coroutine scope. To fix this, we have essentially two options, as follows:

1.	 Make the Koin GlobalContext shareable between threads, which requires
freezing, and then requires making sure we're not mutating it.

2.	 Don't use lazy injection.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tying the iOS app together with the shared code 121

Since the second option is much simpler and it's not a big drawback, we'll be using that
approach instead. So, we'll need to replace by inject() with = get() in all of our use
cases and in the BreedsRepository repository as well.

Note
KMP-NativeCoroutines by default uses a coroutine scope with
Dispatchers.Default when creating native() suspend functions.
If you want other functionality, you can override it and specify your own
coroutine scope. We'll not do this in order to keep things simple.

If you run the app again, you will get another exception again with a long stack trace that
starts with this:

illegal attempt to access non-shared

 org.koin.core.context.GlobalContext

 .KoinInstanceHolder@28557e8 from other thread

If you scroll down, you'll see the root cause, as follows:

Caused by:

 kotlin.native.concurrent.InvalidMutabilityException:

 mutation attempt of frozen

 com.nagyrobi144.dogify.api.BreedsApi@2901a8

And you can see that the mutation happens for our HttpClient in KtorApi.
Essentially, the problem is similar to the previous one—we're initializing the
HttpClient in one thread and capturing it in another thread.

In this case, to fix this issue, we'll make the HttpClient both a singleton and shareable
between threads, as follows:

1.	 We'll move the HttpClient construction from KtorApi and make it a
@SharedImmutable, as follows:

private val jsonConfiguration get() = Json {

 prettyPrint = true

 ignoreUnknownKeys = true

}

@SharedImmutable

private val httpClient = HttpClient {

 install(JsonFeature) {

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

122 Writing an iOS Consumer App

 serializer =

 KotlinxSerializer(jsonConfiguration)

 }

 install(Logging) {

 logger = Logger.SIMPLE

 level = LogLevel.ALL

 }

}

2.	 We'll reference this httpClient from our KtorApi, as follows:

 val client = httpClient

You can probably do this in a much nicer way, but the main thing is to make the
HttpClient a singleton and shareable across threads. We've written the code in such a
way that it requires as few code changes as possible so that it's easier to follow.

Now, if you run the app again, I'm sorry, but you'll hit another exception, as we can see here:

failed with exception:

 kotlin.native.concurrent.InvalidMutabilityException:

 mutation attempt of frozen kotlin.collections.HashMap

You can see that the HTTP request has run, and we've even got a response, so the issue
probably occurred during parsing. After the due diligence of checking if anyone else has a
similar issue with kotlinx-serialization, we can find a workaround—we need to
use it in our JavaScript Object Notation (JSON) configuration, as follows:

 useAlternativeNames = false

Note that the preceding code is fixed in kotlinx-serialization v1.2.2. Until the
current concurrency model is updated, you'll likely see similar issues—in some cases, in
your own code, and in other cases, in third parties. We'll talk more about how to handle
similar issues in Chapter 8, Exploring Tips and Best Practices.

Now that we've adapted our shared code to iOS, we're all set to consume the shared code
and create a proper UI for it.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tying the iOS app together with the shared code 123

To implement the ViewModel, proceed as follows:

1.	 Add the dependencies on the shared module, as follows:

 private let repository = BreedsRepository.init()

 private let getBreeds = GetBreedsUseCase.init()

 private let fetchBreeds = FetchBreedsUseCase.init()

 private let onToggleFavouriteState =

 ToggleFavouriteStateUseCase.init()

2.	 Then, define the state we'll publish to the UI, as follows:

 @Published

 private(set) var state = State.LOADING

 @Published

 var shouldFilterFavourites = false

 @Published

 private(set) var filteredBreeds: [Breed] = []

 @Published

 private var breeds: [Breed] = []

3.	 Now, let's create actions that we'll be exposing to the UI. We'll start with a getData
action for getting the data, as follows:

func getData(){

 state = State.LOADING

 createSingle(for:

 getBreeds.invokeNative())

 .subscribe(onSuccess: { _ in

 DispatchQueue.main.async {

 self.state = State.NORMAL

 }

 }, onFailure: { error in

 DispatchQueue.main.async {

 self.state = State.ERROR

 }

 }).disposed(by: disposeBag)

 }

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

124 Writing an iOS Consumer App

4.	 Then, we'll create a similar fetchData function for refreshing the data, as follows:

func fetchData() {

 state = State.LOADING

 createSingle(for:

 fetchBreeds.invokeNative())

 .subscribe(onSuccess: { _ in

 DispatchQueue.main.async {

 self.state = State.NORMAL

 }

 }, onFailure: { error in

 DispatchQueue.main.async {

 self.state = State.ERROR

 }

 }).disposed(by: disposeBag)

 }

5.	 Next, we'll create an action for marking or unmarking a favorite breed, as follows:

func onFavouriteTapped(breed: Breed){

 createSingle(for:

 onToggleFavouriteState.invokeNative(breed:

 breed)).subscribe(onFailure: { error in

 // We're going to just ignore

 }).disposed(by: disposeBag)

 }

 } catch (e: Exception) {

 _events.emit(Event.Error)

 }

 }

}

As you've seen in the previous code snippets, we're using the following code to
make sure we aren't updating the state from a background thread:

DispatchQueue.main.async {

}

Also, we're using DisposeBag to dispose of the running RxSwift Singles.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tying the iOS app together with the shared code 125

6.	 We also need to subscribe to the breeds stream of the BreedsRepository
repository, as follows:

 init() {

 createObservable(for:

 repository.breedsNative)

 .subscribe(onNext: { breeds in

 DispatchQueue.main.async {

 self.breeds = breeds

 }

 }).disposed(by: disposeBag)

7.	 Then, we tie the list of breeds to the flag, representing whether or not the users want
to filter their favorite breeds, like so:

 $breeds.combineLatest($shouldFilterFavourites, {

 breeds, shouldFilterFavourites -> [Breed] in

 var result: [Breed] = []

 if(shouldFilterFavourites){

 result.append(contentsOf:

 breeds.filter{ $0.isFavourite })

 } else {

 result.append(contentsOf: breeds)

 }

 if(result.isEmpty){

 self.state = State.EMPTY

 } else {

 self.state = State.NORMAL

 }

 return result

 }).assign(to: &$filteredBreeds)

To make sure we have data when MainViewModel is initialized, we'll also start getting
the data by simply calling the getData() function.

Now that our MainViewModel is in place, we can prepare the UI as the last step.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

126 Writing an iOS Consumer App

Implementing the UI on iOS
We're going to leverage SwiftUI to build the UI for our iOS app, and we'll basically mirror
the declarative UI in Jetpack Compose from Android.

We'll also use Kingfisher to load the images, so let's start with the following steps:

1.	 Update the Podfile by adding pod 'Kingfisher' then running pod install.
2.	 Next, update the ContentView, as follows:

@ObservedObject private var viewModel: MainViewModel

 init() {

 KoinModuleKt.doInitKoin()

 viewModel = MainViewModel.init()

 }

 var body: some View {

 VStack{

 Toggle("Filter favourites", isOn:

 $viewModel.shouldFilterFavourites)

 .padding(16)

 Button("Refresh breeds", action: {

 viewModel.fetchData()})

 .frame(alignment: .center)

 .padding(.bottom, 16)

 ZStack{

 switch viewModel.state {

 case MainViewModel.State.LOADING:

 ProgressView()

 .frame(alignment:.center)

 case MainViewModel.State.NORMAL:

 BreedsGridUIView(breeds:

 viewModel.filteredBreeds,

 onFavouriteTapped:

 viewModel.onFavouriteTapped)

 case MainViewModel.State.EMPTY:

 Text("Ooops looks like there are

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing the UI on iOS 127

 no breeds")

 .frame(alignment: .center)

 .font(.headline)

 case MainViewModel.State.ERROR:

 Text("Ooops something went

 wrong...")

 .frame(alignment: .center)

 .font(.headline)

 }

 }

 }

 }

We're basically handling the state coming from our MainViewModel and showing
the appropriate UI elements based on the state.

3.	 Next, we'll need to implement the BreedsGridUIView, which basically sets up
the Grid only. This is achieved with the following code:

struct BreedsGridUIView: View {

 var breeds: Array<Breed>

 var onFavouriteTapped: (Breed) -> Void = {_ in }

 var body: some View {

 let columns = [

 GridItem(.flexible(minimum: 128, maximum:

 256), spacing: 16),

 GridItem(.flexible(minimum: 128, maximum:

 256), spacing: 16)

]

 ScrollView{

 LazyVGrid(columns: columns, spacing: 16){

 ForEach(breeds, id: \.name){ breed in

 BreedUIView(breed: breed,

 onFavouriteTapped: onFavouriteTapped)

 }

 }.padding(.horizontal, 16)

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

128 Writing an iOS Consumer App

 }

 }

}

4.	 The last step is to show the actual breed in the grid, with an action for marking it as
a favorite. Here's the code you'll need:

struct BreedUIView: View {

 var breed: Breed

 var onFavouriteTapped: (Breed) -> Void = {_ in }

 var body: some View {

 VStack{

 KFImage(URL(string: breed.imageUrl))

 .resizable()

 .scaledToFit()

 .cornerRadius(16)

 HStack{

 Text(breed.name)

 .padding(16)

 Spacer()

 Button(action: { onFavouriteTapped(breed)

 }, label: {

 if(breed.isFavourite){

 Image(systemName: "heart.fill")

 .resizable()

 .aspectRatio(1, contentMode: .fit)

 .frame(width: 24)

 } else {

 Image(systemName: "heart")

 .resizable()

 .aspectRatio(1, contentMode: .fit)

 .frame(width: 24)

 }

 }).padding(16)

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 129

 }

 }

 }

}

And that's it—we have created a UI for iOS on top of the shared code that we've written
in Kotlin.

Summary
In this chapter, we've fixed four issues related to the Kotlin/Native concurrency model.
Next, we adapted the Kotlin code to the Native world and the iOS app. We also consumed
the shared code in iOS and created a UI for the iOS app in SwiftUI.

The main purpose of this chapter was to provide a glimpse into how you can consume
shared code implemented in KMP and how to approach the challenges of making your
code work in the Native world.

In the following chapter, we will look at how you can write tests for your shared code.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 3 -
Supercharging Yourself

for the Next Steps

This section will explore tips and best practices about the technology and how to
incorporate it into existing production apps.

This section comprises the following chapters:

•	 Chapter 8, Exploring Tips and Best Practices

•	 Chapter 9, Integrating KMM into Existing Android and iOS Apps

•	 Chapter 10, Summary and Your Next Steps

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

 8
Exploring Tips and

Best Practices
While we've laid down the basics of Kotlin multiplatform development and also created
a minimal KMM app, there is still a lot of ground to be covered. Efficient mobile
development is a much more complex game and different aspects also need to be
discussed. Uber's almost catastrophic Swift rewrite may be a testament to why choosing a
technology is far from being a trivial question: https://twitter.com/StanTwinB/
status/1336890442768547845?s=20.

Due to this, in this and the upcoming chapters, I will cover the different topics that are
affected by a mobile development process based on KMP. More explicitly, in this chapter,
we will cover the following topics:

•	 Testing shared code

•	 Architectural decisions

•	 Managing concurrency

•	 App size best practices

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://twitter.com/StanTwinB/status/1336890442768547845?s=20
https://twitter.com/StanTwinB/status/1336890442768547845?s=20

134 Exploring Tips and Best Practices

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/Simplifying-Application-Development-with-
Kotlin-Multiplatform-Mobile.

Testing shared code
Testing shared code in KMP is similar to writing code in KMP: in your shared code, you
will have to write platform-agnostic code. This means no third-party testing frameworks
or libraries that target a specific platform, JVM, JS, or iOS, such as XCTest or JUnit.
Thankfully, KMP already provides a library that targets JVM, JS, and Native: https://
kotlinlang.org/api/latest/kotlin.test/.

kotlin.test provides an Asserter abstraction with a DefaultAsserter that
is dependency-free, but it also provides JUnitAsserter, JUnit5Asserter, and
TestNGAsserter so that you can choose the one you'd like to use in your JVM or
Android targets.

You can also implement your own Asserter implementations for the different platforms
if you wish. The same expect/actual mechanism can be used in your tests as well.

But what about which test double (https://en.wikipedia.org/wiki/Test_
double) you should choose to test your shared code – Stubs, Mocks, Spies, Fakes, or
Dummies? This is probably a topic that could span a whole book. If you are someone
like me, who likes relying on a third party to create the mocks and spies you use, you'll
probably really miss this currently in your shared code.

Unfortunately, there is no mocking library that supports Kotlin/Native. MockK probably
has the most potential in supporting it in Kotlin/Native and they have an open issue for it:
https://github.com/mockk/mockk/issues/58. Honestly, it's not the end of the
world; fakes have many benefits over mocks. If you are convinced about MockK and using
a mocking library, I highly suggest reading this article: https://medium.com/
@june.pravin/mocking-is-not-practical-use-fakes-e30cc6eaaf4e.

The last topic to discuss regarding testing is async code and threading. The solution here is
simple and many use this pattern in the Kotlin world already:

•	 Make an abstraction over the dispatchers and have it as a dependency in your
components, similar to what we did in DispatcherProvider in Dogify.

•	 Provide a TestDispatcherProvider in your tests.

•	 Use runBlocking{} in your tests to run suspend functions.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://github.com/PacktPublishing/Simplifying-Application-Development-with-Kotlin-Multiplatform-Mobile
https://kotlinlang.org/api/latest/kotlin.test/
https://kotlinlang.org/api/latest/kotlin.test/
https://en.wikipedia.org/wiki/Test_double
https://en.wikipedia.org/wiki/Test_double
https://github.com/mockk/mockk/issues/58
https://medium.com/@june.pravin/mocking-is-not-practical-use-fakes-e30cc6eaaf4e
https://medium.com/@june.pravin/mocking-is-not-practical-use-fakes-e30cc6eaaf4e

Architectural decisions 135

If you'd like to check out an example of testing, I've included one for Dogify in the
08/01-testing branch.

As we move forward, we'll see how KMP may affect your architecture.

In the next section, we'll cover how a shared layer can influence the architecture of
your apps.

Architectural decisions
There is a wide range of opinions regarding which architecture is the most suitable for
traditional apps; there is no one size fits all decision. As we've already experienced, KMP
gives you a lot of flexibility in how you plan on organizing your shared code.

Certain things will be influenced by KMP and probably move you in a certain direction
(such as choosing fakes over mocks). Before we dive into these constraints, I want to
emphasize one key benefit of shared code and KMP. In Chapter 1, The Battle Between
Native, Cross-Platform, and Multiplatform, we discussed the costs of keeping Android and
iOS in sync. While there are best practices to limit working in silos, enforcing a shared
architecture is one of the things that teams find to be one of the immediately evident
benefits of KMP as it becomes easier to communicate between teams.

Thus, I'd say that an ideal architecture in KMP would be "one that accomplishes
sharing the most of the architectural layers, but still allows room for platforms to shine."
– Captain Obvious.

Now, the good thing is that if you feel that the architecture that currently fits on iOS
may not make sense on Android, you don't have to enforce that approach with KMP. I'd
evaluate this decision again before moving forward.

Now, let's discuss what constraints you may face in KMP that may shape your architecture.

Interacting with coroutines
As we saw in Dogify, you can interact with Kotlin coroutines via Swift code. Some teams
decide on another path, handling coroutines completely in your shared code.

In this case, I have found that sharing the ViewModel layer, for example, can work well.
You can manage the coroutine scopes per ViewModel to expose convenient callbacks
for consuming state changes for the UI, as well as a function for clearing the coroutine's
scope, when necessary. You can find an example of this at https://github.com/
halcyonmobile/MultiplatformPlayground/blob/master/common/src/
commonMain/kotlin/com/halcyonmobile/multiplatformplayground/
viewmodel/HomeViewModel.kt.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/halcyonmobile/MultiplatformPlayground/blob/master/common/src/commonMain/kotlin/com/halcyonmobile/multiplatformplayground/viewmodel/HomeViewModel.kt
https://github.com/halcyonmobile/MultiplatformPlayground/blob/master/common/src/commonMain/kotlin/com/halcyonmobile/multiplatformplayground/viewmodel/HomeViewModel.kt
https://github.com/halcyonmobile/MultiplatformPlayground/blob/master/common/src/commonMain/kotlin/com/halcyonmobile/multiplatformplayground/viewmodel/HomeViewModel.kt
https://github.com/halcyonmobile/MultiplatformPlayground/blob/master/common/src/commonMain/kotlin/com/halcyonmobile/multiplatformplayground/viewmodel/HomeViewModel.kt

136 Exploring Tips and Best Practices

While things can get more platform-specific from your ViewModel layer, you can
generally make abstractions over these (using resources such as strings, images, and so
on). I believe that most apps want better consistency between Android and iOS, so sharing
ViewModel layers can be a beneficial step in aligning the platforms.

Sharing resources (such as colors, localization, and so on) may also be something that
you'd like to do. For example, if you plan on sharing the ViewModel layer, you'll find
that this decision will push you toward sharing resources as well since, in many cases,
ViewModel logic exposes the right resources to the view. How easily you can share
resources may also influence this decision. Finally, there are libraries out there for this
already, such as https://github.com/icerockdev/moko-resources.

However, sharing ViewModels may not be suitable in certain situations since you may
want a different UI or navigation on the different platforms, so you may find that sharing
the ViewModel layer doesn't make sense anymore.

Again, the way I'd think of choosing an architectural pattern and the percentage of
shared code would be going for as much alignment and shared code as possible, while
also keeping in mind the freedom of the platforms and platform teams. In my opinion,
aligning architectures and platforms is beneficial and if it's enforced through shared
code, then it will be even better. But if your ways of working with big platform teams are
different, you may be biting off more than you can chew.

Interacting with data transfer objects (DTOs)
Kotlin/Native interoperability with Obj-C and Swift is pretty good, but it's not as perfect as
writing code in that language. We've already talked about trying to work with Kotlin code
in Kotlin when possible. This is, I believe, another pro of the ViewModel layer since most
of the data processing is done in your shared Kotlin code; you just expose the UI models.

You may have observed a general pattern here, which is the result of the interoperability
capabilities of KMP. This can be generalized to any Kotlin code that is consumed on a
specific platform.

Interacting with shared code
In Chapter 2, Exploring the Three Compilers of Kotlin Multiplatform, we discussed the
interoperability qualities of KMP. While K/N interoperability is pretty good, it probably
won't be 100% perfect any time soon. Since KMP gives you a lot of flexibility in terms
of how you interact with this shared code, developers can use their creativity and
programming skills to leverage the framework to make this interaction more robust. Let's
explore what options you have in those cases when you are not satisfied with how you can
consume your shared code in Swift/Obj-C.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/icerockdev/moko-resources

Managing concurrency 137

In general, you have two choices to improve on the experience of working with shared code:

•	 Move the consumer into the shared Kotlin code too. Consuming Kotlin code in
Kotlin is easier.

•	 Decide not to share that part. Consuming code on the platform/language where it
was written is always easier.

We've also discussed KMP's expect/actual declarations. While they sound like a neat
feature of multiplatform development, in reality, you may not use them much since they
rob you of some flexibility. Why is that, and what may be a better solution?

With expect/actual, you get nice IDE warnings, but the drawback is that you always have
to write the platform implementation in Kotlin. But what if you want that implementation
to use pure Swift code?

You can still make abstractions by using interfaces (which will be mapped to protocols
in Obj-C/Swift) and then provide the implementations based on the running platform
by using a DI solution. It may take a bit more effort to tie things together and be able to
provide your implementations from Swift. However, once you've done this, it offers a great
deal of flexibility regarding how you can write your platform-specific code.

Using interfaces also makes testing easier and increases flexibility as your abstractions
won't be tied to platforms – they become more dynamic.

Now, let's look at managing concurrency in KMP apps.

Managing concurrency
Important Note
Starting with Kotlin 1.6.10, the new memory model is enabled by default, with
the official multithreaded coroutines library available for Kotlin/Native. This
change makes the following overview and the freezing concept in Kotlin/Native
obsolete. While you may bump into the freezing model until the new memory
model becomes stable, a pragmatic approach would be revisiting/reading up on
freezing-related concepts when the need arises.

In the previous chapters, we saw how Kotlin/Native's concurrency model differs from
JVM and that while a new model is being made, it will probably take some time until it's
stable. In this section, we'll explore some of the more common concurrency issues that
people have and what best practices you can follow to avoid them.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

138 Exploring Tips and Best Practices

As a quick reminder about Kotlin/Native's concurrency rules, you can only share
immutable states between threads. This is done at runtime and is referred to as a frozen
state. Freezing an object is a one-way operation and can't be reversed; so, once something
is frozen, it can't be mutated afterward.

If you need to work around these rules, options are available, such as atomics and
thread-isolated states, which are documented at https://kotlinlang.org/docs/
mobile/concurrent-mutability.html.

In many cases, concurrency "confusion" arises when Kotlin/Native crosses paths with Swift
code, especially when using lambdas. As we've discussed previously, for a state to be shared
across threads in Kotlin/Native, it needs to be frozen. When you're calling your shared code
from Swift, you can make sure that your parameters are frozen by doing the following:

•	 Freezing them in your shared code.

•	 Exposing a freeze() method to Swift and freezing it before you call the method.

It can also be helpful to use ensureNeverFrozen() to make sure that those objects
that you wouldn't like to be frozen, will never be frozen. This will cause an exception to
occur whenever an attempt is made to freeze that specific object.

Also, keep in mind that freezing can recursively freeze everything that the state touches.
In some cases, it may not be that obvious. Here are a couple of short examples to illustrate
some common issues that may not be straightforward to debug:

•	 Switching threads with withContext() will capture everything under the
function block and freeze it. In this example, breedName will be frozen:

val breedName = "Vizsla"

withContext(Dispatchers.Default) {

 remoteSource.getImageUrl(breedName)

}

•	 The returned value from another thread will also be frozen. Here, the returned
Breed will also be frozen:

fun getBreed() = withContext(Dispatchers.Default) {

 Breed("Vizsla")

}

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kotlinlang.org/docs/mobile/concurrent-mutability.html
https://kotlinlang.org/docs/mobile/concurrent-mutability.html

Managing concurrency 139

•	 Here, the parent class will also be captured, so not only the breedName value but
its parent class, GetBreedsUseCase, will be frozen too:

class GetBreedUseCase(val breedName: String){

 suspend operator fun invoke() =
withContext(Dispatchers.Default){

 getBreed(breedName)

 }

}

The official documentation has matured recently and now covers some common scenarios
as well: https://kotlinlang.org/docs/mobile/concurrency-overview.
html.

There may be other cases that you may be confused by. The best way to approach these is
to do the following:

1.	 Reread the official documentation.
2.	 Look at what happens in your code.
3.	 Ask for help on Stackoverflow or in Slack channels if you can't seem to figure it out.

The community is great and grows every day.

Fortunately, the KMP team has started working on a new memory manager that will make
these tips deprecated. Let's examine what we know so far about this new memory manager.

New memory manager
Starting with Kotlin 1.6, you can try out the new Kotlin memory manager development
preview, which is a simple but not optimal version of the new memory manager. For
production apps, we will still have to wait a bit, but with the new memory manager, you
can forget about all the restrictiveness of the Kotlin/Native concurrency model and the
whole freezing mechanism.

So far, working with this restrictive Kotlin/Native concurrency model has arguably been
the hardest part of KMP. This is in part not only because you had to understand the
freezing mechanism, but because you also had to construct the shared code with Kotlin/
Native's concurrency model in mind, a code smell in shared code. Thus, the concurrency
model was a big blocker for adoption, despite Kevin Galligan's best efforts and good
materials on educating people on the old memory manager.

I think that when the new memory manager reaches production readiness, it will likely
push KMM adoption hugely in the community.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kotlinlang.org/docs/mobile/concurrency-overview.html
https://kotlinlang.org/docs/mobile/concurrency-overview.html

140 Exploring Tips and Best Practices

If you've been thinking about how this change will affect your current code, don't worry –
unless you're working with some internals, you will probably be safe and you'll be advised
to remove code that freezes your objects. Unless you explicitly require certain objects to be
frozen in your code.

To learn more about the changes that have been made in the Kotlin memory manager,
take a look at the following resources:

•	 Kotlin/Native Memory Management Roadmap: https://blog.jetbrains.
com/kotlin/2020/07/kotlin-native-memory-management-
roadmap/

•	 Kotlin/Native Memory Management Update: https://blog.jetbrains.com/
kotlin/2021/05/kotlin-native-memory-management-update/

•	 Try the New Kotlin/Native Memory Manager Development Preview: https://
blog.jetbrains.com/kotlin/2021/08/try-the-new-kotlin-
native-memory-manager-development-preview/

Apart from developer convenience, there is another important aspect that can be crucial
to the success of your app. No matter how nice a weather app you write, it probably won't
get many downloads if it's 1 GB, for example. Now, let's take a quick look at KMP's impact
on app size.

App size best practices
Many people are interested in how big of an impact shared KMP code can have on their
iOS app's size. This will depend on what kind of logic it contains and what third parties
your KMP code uses.

Generally speaking, since Kotlin and Swift are both fairly static languages, there is not much
difference between the binary size of a Kotlin class and a Swift class. So, what's the catch?

As you may recall from Chapter 2, Exploring the Three Compilers of Kotlin Multiplatform,
we discussed how your Obj-C/Swift code can see this native output of the Kotlin/Native
compiler by generating Obj-C adapters. Since Obj-C is a more dynamic language, it
negatively impacts binary size.

So, what can you do to manage binary size? The simple answer is to limit how many
Obj-C adapters you use. How? Mark everything that you don't need to expose through
your shared code as internal.

If you notice that your binary size has increased in a non-linear, exponential fashion, then
it would be a good idea to revisit your visibility modifiers and ensure you only expose
what you need.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://blog.jetbrains.com/kotlin/2020/07/kotlin-native-memory-management-roadmap/
https://blog.jetbrains.com/kotlin/2020/07/kotlin-native-memory-management-roadmap/
https://blog.jetbrains.com/kotlin/2020/07/kotlin-native-memory-management-roadmap/
https://blog.jetbrains.com/kotlin/2021/05/kotlin-native-memory-management-update/
https://blog.jetbrains.com/kotlin/2021/05/kotlin-native-memory-management-update/
https://blog.jetbrains.com/kotlin/2021/08/try-the-new-kotlin-native-memory-manager-development-preview/
https://blog.jetbrains.com/kotlin/2021/08/try-the-new-kotlin-native-memory-manager-development-preview/
https://blog.jetbrains.com/kotlin/2021/08/try-the-new-kotlin-native-memory-manager-development-preview/

Summary 141

Summary
In this chapter, we talked about how to test shared KMP code, how your architectural
decisions may be influenced by shared code, and covered various concurrency and app
size best practices.

In the next chapter, we'll focus on other production and adoption-related questions such
as team and repository structure, tooling, and adoption tips.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Integrating KMM

into Existing Android
and iOS Apps

So far, we've discussed the KMM tech and how it works. While adopting KMM into apps
in production, you'll probably have some questions about the implications of KMM on
the logistics of app development. In this chapter, we're going to focus on the DevOps
perspective of KMM and discuss the following topics:

•	 Deciding on a mono repository or a shared library

•	 Exploring team structure and tooling

•	 Learning some adoption tips

By the end of this chapter, you should be prepared to take the next steps and adopt KMP
in your projects.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

144 Integrating KMM into Existing Android and iOS Apps

Deciding on a mono repository or a shared
library
In this section, we're going to reason about the pros and cons of the following two
repository setups:

•	 Mono Repository: This is where the shared code is just a module/submodule.
This is the choice of most KMM/KMP example projects.

•	 Multiple Repositories: This is where the shared code is like a library that's
consumed by the different platforms; that is, Android and iOS. Most production
apps will likely see this option as more attractive.

Let's start by looking at mono repositories.

Mono repository
In a mono repository structure, your shared code, the Android app, and the iOS app are
all contained in the same repository, as shown in the following diagram:

Figure 9.1 – Mono repository

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deciding on a mono repository or a shared library 145

Some of the KMP examples out there, such as the ones where code is shared not just
between the different frontend applications but in a server-client/backend-frontend mode,
could inspire people to create a more enhanced QA process of the communication layer
between the client and the server:

•	 A communication protocol could be enforced between the backend and the
frontend in the form of data transfer objects (DTOs) and endpoints defined in this
shared KMP module.

•	 A CI pipeline would "govern" the operability of this communication protocol. If you
need to make a change to the communication protocol to suit the backend, you will
be able to see how this affects frontend applications.

Having something like this could shorten the feedback loop of backend changes, which
usually requires direct communication between the backend and the frontend.

One other big advantage of a mono repository structure is that you can avoid the overhead
of publishing the shared library for different types of consumers.

One of the biggest drawbacks is probably how it scales as having one big repository for
multiple purposes may not be ideal for big projects and teams.

This option is also probably not something that published production apps would likely
consider; they usually have different repositories for their different platforms and they
would only share a small part of their business logic to mitigate risk.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

146 Integrating KMM into Existing Android and iOS Apps

Multiple repositories
In a multiple repository structure, the shared code is isolated from the apps and is
contained in a different repository, as shown in the following diagram:

Figure 9.2 – Multiple repositories

Teams with established production apps are often more thoughtful of making big changes
and refactoring, and rightly so. It makes sense for apps that are not starting on fresh
grounds to experiment with KMP in a more isolated way. This helps keep the KMP world
in an isolated repository that's consumed by the platforms in a platform-specific way.
Here, iOS doesn't need Kotlin and/or Gradle-related tools to make sense of the shared
code. They receive the library, ready to be consumed.

This setup can reduce the risk of experimenting with KMP, but at the same time has more
complexity around maintaining the shared library as you need to manage an additional
publishing and versioning process. For many production apps, this can be overkill.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deciding on a mono repository or a shared library 147

To reduce this complexity, in the following subsections, we're going to discuss the
different ways you can publish and consume a shared KMP library. We'll focus on iOS
since publishing and consuming a shared KMP library is the same as for any Kotlin/JVM
library, which is well documented already. In short, we can categorize the publishing
formats as follows:

•	 The Unreadable Shared Code: Easy to consume but hard to read and debug

•	 The Readable Shared Code: Moderately easy to consume; easy to read and debug

•	 The Modifiable Shared Code: Harder to consume but easy to read, debug,
and modify

Publishing binaries
For most teams, this approach sounds the most attractive as it isolates the KMP world and
the shared library from the platform-specific Android and iOS apps.

This means that from the iOS consumer's perspective, you've chosen not to make
compromises on how you consume external libraries – you'll stick with your currently
preferred choice, be it Carthage, CocoaPods, or Swift Package Manager.

From the publisher's perspective, you'll need to create a binary that is well understood by
your preferred dependency manager.

Fortunately, since Kotlin 1.5.30, KMP supports XCFrameworks (the replacement for
fat/universal frameworks in the Apple ecosystem). We won't dive into the details of the
differences between XCFrameworks and universal frameworks, but Carthage, Cocoapods,
and Swift Package Manager support XCFrameworks, which means you can produce a
required binary format and pull it in with your preferred dependency manager on iOS.

You can use the assembleXCFramework Gradle task to generate such a framework.
You can find out more at https://kotlinlang.org/docs/whatsnew1530.
html#support-for-xcframeworks.

One of the main drawbacks of publishing binaries is due to the isolation of the Kotlin world:

•	 It isolates the iOS team from the shared code as they view it as just another external
library, while it makes the shared Kotlin code more unreachable.

•	 Debugging that shared code becomes problematic since the Kotlin/Native compiler
adds absolute paths to files for its debugging purposes. So, binaries that have been
built locally will work, but external binaries that have been pulled in won't.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kotlinlang.org/docs/whatsnew1530.html#support-for-xcframeworks
https://kotlinlang.org/docs/whatsnew1530.html#support-for-xcframeworks

148 Integrating KMM into Existing Android and iOS Apps

This means that, in practice, you and your team are probably better off if your team has an
easy way to enter the Kotlin world. This is what the guys at Touchlab worked on and the
approach needs some applause.

 Xcode-Kotlin plugin
You can find the Xcode-Kotlin plugin at https://github.com/touchlab/xcode-
kotlin.

The main benefit of using this plugin is that it doesn't enforce a whole new ecosystem on
iOS developers. It provides a lightweight tool on top of Xcode that they can use to debug
and become familiar with the Kotlin code.

Once the plugin has been set up, it regularly clones the shared code, which can then be
integrated into your current Xcode project structure. The plugin provides both debugging
support and syntax highlighting for this Kotlin code.

Now, depending on your team, you may want the full experience and would like your
iOS developers to become accustomed to the Kotlin ecosystem. We'll explore that option
next. But in practice, it's probably best to start with the plugin first, monitor the developer
experience, and if the interest is there, include them in the game even more so that they
don't just "read" the shared code.

Klibs
We will be focusing on klibs in this chapter as it will probably become the standard for
sharing Kotlin code in a Kotlin way.

Klib is a pure Kotlin format for distributing Kotlin code and it's a common denominator
across all backends. In Chapter 2, Exploring the Three Compilers of Kotlin Multiplatform,
we discussed the new backend compiler strategy of working with an intermediate
representation (IR) of the code and producing an executable from that. This IR is the
klib format. This new format standardizes how you can publish the different targets of the
shared code:

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/touchlab/xcode-kotlin
https://github.com/touchlab/xcode-kotlin

Deciding on a mono repository or a shared library 149

Figure 9.3 – The klib format

Kotlin bundles the target source sets with common when compiling, so jvmMain is
bundled with commonMain. One of the goals of the KMP developers from JetBrains is
to make source sets a proper compilation unit so that commonMain will be compiled to
a separate klib that is a dependency of jvmMain. This way, you can distribute the shared
code as commonMain only and plug in the supported platform as you wish.

Using this format may need the most tooling from the shared code consumers, but it will
give them the most flexibility.

Conclusion
When it comes to using KMM, where the main goal is to share code between Android
and iOS, you should choose a mono repository or a shared library based on the following
approaches:

•	 0 to 100 approach: If you already have an Android and iOS app but would like
to start sharing code in small steps, it probably makes sense not to restructure
everything but to create your shared code separately and pull that in.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

150 Integrating KMM into Existing Android and iOS Apps

•	 100 to 0 approach: If you're starting fresh and would like to share as much as
possible, going with a mono repository will probably be more advantageous for you.

Note
The number "100" doesn't suggest that you can get to one single code base with
two apps. In reality, this will most likely top out at around 80% (maximum),
but who knows what Jetpack Compose will bring – it may not only be possible
but also worthwhile to write cross-platform with Jetpack Compose.

Any kind of change requires some type of adaptation, and KMP will probably have an
impact on your team's structure and tooling and make some people uncomfortable. I'd
argue that most of these inconveniences are similar to moving into a bigger bedroom
while complaining that the light switch is far from the bed. Nevertheless, it's good to
prepare yourself before you find out that, after moving into a mansion, you don't have the
resources to heat it.

Exploring team structure and tooling
If you're planning on adopting KMP in your team, the following points may be obvious to
you by now, but it's still worth pointing them out:

•	 Your shared code needs mostly Kotlin and Gradle-related expertise.

•	 Android teams will mostly feel natural about working with the shared code, with a
relatively small amount of learning needed for KMP specifics.

•	 iOS teams will have a harder time, even though Kotlin and Swift are not too
different. This is especially true when it comes to a new build tool, integrated
development environment (IDE), and ways of working.

Team structure
Because of the aforementioned points, you should probably evaluate your team structure
and plan carefully so that your shared code doesn't end up being a huge bottleneck that
only a few people of your Android team will touch; it will inevitably drive your shared
code toward Android and you want it to be unbiased toward platforms.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring team structure and tooling 151

One example of a team structure I feel suits KMP is the one that the JetBrains Space
team used:

•	 Have a dedicated team for the shared code with Kotlin and KMP expertise, focusing
on the business logic. This team doesn't need expertise in the relevant platforms.

•	 Have dedicated platform teams (Android, iOS, and the web) that have expertise in
the given platform and know the ins and outs of the specific framework.

To learn more about KMP in terms of JetBrains Space, Maxim's Kotlin in Space
talk at the 2019 KotlinConf is a good watch: https://www.youtube.com/
watch?v=JnmHqKLgYY4&t=25m30s.

If your team doesn't have the resources to pull off this team structure, it's fine to have the
shared code experts from your Android team. Just make sure that the iOS team is part of
the conversations and that they are not overly pushed to learn Kotlin and Gradle. Many
good developers will probably be open to learning about them if they grasp the value
proposition of KMP.

Tooling
A lot of people tend to overlook tooling, but bad or incorrectly used tooling can become
a burden if it disrupts a developer's workflow. In this section, I'm going to try my best to
help you to leverage the most essential tooling out there for your KMP journey.

Choosing the right IDE
If you are the Notepad/Vim + command line type, you can skip this section. Here, I'll
mostly be talking about my experience with suffering through some situations in an
experimental world.

So far, IntelliJ IDEA seems to be the safest choice when it comes to setting up and
configuring KMP projects while offering more flexibility than just a KMM project setup.
I would use IntelliJ IDEA whenever I wanted to check out a more sophisticated KMP
project setup or if I was having strange build configuration issues.

Android Studio with the KMM plugin is also really promising and it is becoming better
and better. For KMM applications, I'd probably use the project template offered by the
KMM plugin. It can also provide a nice IDE experience for trying out and debugging
the shared code on both Android and iOS. While it seems to be maturing, especially in
the early days, it didn't have the stability for me to debug and run the shared code on an
iOS simulator properly. Also, because syntax highlighting and code completion for Swift/
Obj-C is not supported out of the box (you can improve on syntax highlighting with an
IntelliJ plugin), to get the full experience on iOS, I always have Xcode set up.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.youtube.com/watch?v=JnmHqKLgYY4&t=25m30s
https://www.youtube.com/watch?v=JnmHqKLgYY4&t=25m30s

152 Integrating KMM into Existing Android and iOS Apps

So, personally, for an all-round experience of working and testing the shared code, I
recommend the following IDE setup:

•	 IntelliJ IDEA for KMP-related build configurations. This may be needed less and
less, but if you're having trouble with the setup, I'd try it out.

•	 Android Studio with the KMM plugin for setting up a KMM app and running/
debugging shared code on your apps.

•	 Xcode for the full iOS experience (Swift/Obj-C coding, managing pods, and build
configurations) and possibly the Xcode-Kotlin plugin for convenient debugging
on iOS.

If you want a "one" IDE experience, AppCode is a JetBrains product that may have the
potential to become the KMM IDE in the future. They recently announced a KMM plugin
for AppCode that lets you build, run, and debug a KMM app on both Android and iOS
while having syntax highlighting and code completion capabilities for both Kotlin and
Swift/Obj-C.

Debugging
We've touched on the topic of debugging your shared code a little already. On iOS,
since debugging on Android isn't that different, I'd recommend either or both of the
following plugins:

•	 The Android Studio KMM plugin or AppCode KMM plugin

•	 Touchlab's Xcode-Kotlin plugin, for iOS developers that want to stay as Kotlin
ecosystem-free as possible

Crash reporting
Since Kotlin propagates errors/exceptions differently compared to Swift/Obj-C, shared
code-related crashes may be hard to read when you're running on iOS. For this purpose,
Touchlab created a nice library for making sure that these errors are still readable:
https://github.com/touchlab/CrashKiOS.

Kevin gave a nice talk on these production questions, some of which may be or become
outdated. Nevertheless, I highly recommend his talk as some of the aforementioned
topics are also based on their experience: https://www.youtube.com/
watch?v=hrRqX7NYg3Q.

In the next section, I will offer some of my personal views on how teams could leverage
the benefits of KMP while lowering the risk of its adoption.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/touchlab/CrashKiOS
https://www.youtube.com/watch?v=hrRqX7NYg3Q.
https://www.youtube.com/watch?v=hrRqX7NYg3Q.

Learning some adoption tips 153

Learning some adoption tips
Have you decided that KMP is for you and your team and would like to try it out? Here are a
couple of quick tips to help you mitigate risk and gradually descend into the KMP world:

•	 Kotlin/JVM is already used widely for Android development, which you can
leverage. You can start by using Android while you introduce platform-agnostic
concepts and isolate components that shouldn't depend on the Android framework.

Many teams already do this by having Java/Kotlin modules for their business logic.
These teams are already one step closer to making these modules shareable and doing
this doesn't need any KMP expertise and doesn't introduce KMP specific risks.

•	 You can then start educating your Android team on KMP and gradually make
your components platform-agnostic. Make sure that iOS is involved in the
communication as they will be one of the consumers of the shared code. I'd
encourage iOS people to learn about KMP and contribute, but without forcing it
onto anyone.

•	 When you have your platform-agnostic code, you need to try out the consumer
experience from iOS. This can be done iteratively, where you adapt your shared
code so that consuming from iOS brings the best experience.

•	 If you are starting a new project, possibly for a startup, I'd push for having Android
first, which has a proper architecture that can be shared with iOS. Then, you can
bring that shared code to life on the iOS side.

•	 Since the knowledge gap between the Android world and KMP is not big, Android
developers, especially ones with Kotlin knowledge, will probably find learning KMP
easy. But it's not a stable framework yet, which means that some uncomfortable
learning periods will occur in some scenarios and that you will need to get out of
the comfort of reading well-prepared documentation.

To shorten the learning curve and help out with undocumented issues, turning to
and collaborating with already experienced KMP developers is a good shortcut.

•	 While KMP is not stable, you can already leverage its advantages in production
apps. Many big companies already use KMP, such as Netflix, Philips, and Leroy
Merlin, and you can find a list, along with case studies for each, on the official
Kotlinlang website: https://kotlinlang.org/lp/mobile/case-
studies/.

So, the biggest question isn't "is KMP ready for production?" but "are you ready
for KMP?".

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://kotlinlang.org/lp/mobile/case-studies/
https://kotlinlang.org/lp/mobile/case-studies/

154 Integrating KMM into Existing Android and iOS Apps

And without being arrogant, what I mean by this is that the hardest thing with KMP is
finding the right guidance since the road isn't that well known. In the next chapter, I'll
share some of the things that worked out for me when it came to learning about KMP
back in 2019, when even setting up a KMP project was pretty hard.

•	 Again, try not to overuse the expected/actual declarations as they are only known
to the KMP world and they specify platform-specific abstractions. Using a general
abstraction method such as interfaces/protocols can be much more flexible. For
example, you can inject implementations from Swift and Kotlin modules that don't
know about KMP-specific concepts.

Summary
In this chapter, we dived deeper into production-related questions, as well as KMP's
influence on team structure.

We discussed the pros and cons of a mono repository versus a shared library and
explained which one may be more suitable for you and your team.

Then, we explored how KMP could influence your team structure and the current state
of the KMP ecosystem in regards to tooling. We also discussed some adoption tips that,
given KMP's nature and based on your situation, may help you adopt KMP properly, with
low risk and high upside.

I hope that you now have a much better picture of what to expect when you try to adopt
KMP in your new or existing apps. In the next chapter, we'll go over what we've learned
throughout this book and where to look for future knowledge.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Summary and Your

Next Steps
We'll close this book by summarizing all the things that were discussed throughout and
providing guidance for the next steps in your KMP learning journey.

In this chapter, I'd like to provide an overview of what we've learned in this book to
emphasize the central ideas that were covered. We will then provide a quick glimpse into
the future of KMP apps, which will be combined with some personal opinions, so please
take them with a grain of salt. Finally, I will provide the necessary resources for you to
continue your KMP journey.

This chapter will be a short one and will consist of the following topics:

•	 Recapitulating what you have learned

•	 Managing your KMP expectations

•	 Learning resources

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

156 Summary and Your Next Steps

Recapitulating what you have learned
We started this book by reasoning about what market need Kotlin Multiplatform tries
to meet. We explored native applications, why people tend to turn to technologies such
as React Native and Flutter, and why these technologies may not turn out to be the best
solutions, generally speaking.

Furthermore, we discussed how to differentiate multiplatform from cross-platform
notions, what a multiplatform technology tries to achieve, and how Kotlin Multiplatform
leverages its tech stack to provide a sensible multiplatform solution.

After reading the first two chapters, you are expected to have a broader understanding of
which technology is more suitable for a specific use case, project, or client need.

In Chapter 3, Introducing Kotlin for Swift Developers, we made a slight detour to ensure
that iOS developers don't feel alienated by Kotlin and that everyone has the necessary
knowledge to start learning about Kotlin Multiplatform.

Then, we set up our first Kotlin Multiplatform Mobile (KMM) project by writing the
shared code for it, as well as the consumer Android and iOS apps, all while exploring the
issues that you could come across when consuming from iOS and how to overcome them.

After that, we covered the best practices and tips in the realm of KMM and started
exploring questions related to production environments, such as tooling, package
management, team structure, adoption tips, and others. This has led us to this chapter, to
see what we've learned and how to continue learning and exploring.

Managing your KMP expectations
This section will consist of some thoughts on the roadmap of KMP and some questions
regarding its future.

Will it change the mobile development landscape?
In some sense, yes. Think of KMP as a new tool in the native app development palette that
can offer good code sharing capabilities. It's already taking some "market share" from pure
native and cross-platform technologies (such as React Native and Flutter). While the ratio
will probably change (I'm personally bullish on KMP becoming the preferred choice),
I can't see why one of these three approaches would disappear – they can all serve a
specific use case.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning resources 157

Kotlin/Native's direct interoperability with Swift
Many people are excited about this since it's on the JetBrains teams' roadmap. I think that
with the new concurrency model and direct interoperability with Swift, the usability and
experience with the iOS will improve a lot, though it will probably never be perfect since
Kotlin and Swift, in the end, are similar but still different in some aspects.

Tooling and documentation have improved a lot lately, probably due to the introduction
of KMM and there being a dedicated KMM team at Touchlab. Still, those who are
knowledgeable of infrastructure who are skilled in KMP, as well as the relevant Android
and iOS build tools, will probably be needed.

Shared UI
The Compose UI toolkit is interesting and has gained a lot of traction, with more people
trying to make it a toolkit that can be used on iOS as well, making it possible to write two
apps with one piece of source code in KMP. This is already possible with the legacy view
systems if you make the necessary abstractions on platform specifics.

For me, this is where things become cross-platform and unmaintainable as it can be hard
to keep up with two frameworks.

Nevertheless, it's an interesting topic because, with KMP, you get the flexibility of sharing
as much code as you want. So, you could start by sharing your business logic, then trying
to share the UI-related things; if that doesn't work out, you can always go back. With other
technologies, this is a different story.

Next, I'll show you where you learn more about KMP and the best ways to deepen your
knowledge, at least from my experience.

Learning resources
Starting in 2019, trying to experiment with KMP was one of the best learning experiences
I could've asked for. Early on, experimental stuff teaches you how best to be resourceful
and to learn at a deeper level – not just by reading documentation and learning how to
something, but what's behind it and how it works. It can be hard and uncomfortable at the
start, but I highly recommend it for any developer.

First and foremost, I'd like to thank the huge KMP community, who helped me gain the
knowledge I needed to write this book.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

158 Summary and Your Next Steps

Although not indexed by Google, the kotlinlang Slack channel is a great place to start
searching for any Kotlin-related issue and to start a conversation on different topics.
Lately, it has been the starting point for me when searching for something, especially
for experimental things. You can join the Slack channel at https://surveys.
jetbrains.com/s3/kotlin-slack-sign-up; I highly recommend the
#multiplatform and #kotlin-native channels for starters.

John O'Reilly's KMP example projects are incredible and always up to date. Whenever
I was struggling with the compatibility of the different library versions, these libraries
were the go-to for me, and I have the feeling that is the same for a lot of people in the
community. Checking out the https://github.com/joreilly/PeopleInSpace
repository is a good way to become familiar with his work.

Touchlab's work is also amazing in this space: https://github.com/touchlab.
The IceRock team has also contributed with great libraries: https://github.com/
icerockdev.

While it's impossible to list all the great contributors, you can find a list of the available
KMP libraries at the following two links:

•	 https://github.com/AAkira/Kotlin-Multiplatform-Libraries

•	 https://libs.kmp.icerock.dev/

Although KMM-specific documentation was a bit lacked, it has picked up speed.
JetBrains has a pretty good KMM guide at https://kotlinlang.org/docs/
kmm-overview.html.

Last but not least, the Kotlin by JetBrains (https://www.youtube.com/c/Kotlin/)
and JetBrainsTV (https://www.youtube.com/user/JetBrainsTV) YouTube
channels provide a huge collection of great Kotlin talks.

Summary
In this chapter, we provided an overview of the main topics that were covered in the book,
tried to reason about the future direction of KMP, and discussed some of the best ways to
learn more about this technology.

I hope you've enjoyed this book and are eager to try out KMP – the community needs
you! Please note that while I've tried to do my best, I have probably made some mistakes
along the way; if you've noticed anything you don't agree with or require more clarity on
any specific topic, don't hesitate to contact me.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://github.com/joreilly/PeopleInSpace
https://github.com/touchlab
https://github.com/icerockdev
https://github.com/icerockdev
https://github.com/AAkira/Kotlin-Multiplatform-Libraries
https://libs.kmp.icerock.dev/
https://kotlinlang.org/docs/kmm-overview.html
https://kotlinlang.org/docs/kmm-overview.html
https://www.youtube.com/c/Kotlin/
https://www.youtube.com/user/JetBrainsTV

Index

Symbols
0 to 100 approach 149
100 to 0 approach 150

A
actual cross-platform technology

costs 12, 13
ahead-of-time (AOT) 28
Android

Java code, executing on 26-28
Android app

tying, to shared code 103-107
UI, implementing on 107-112

Android consumer app
writing 65

Android module
Jetpack Compose, enabling 100
necessary dependencies,

adding 101, 102
setting up 100

Android Runtime (ART) 28

Android Studio
URL 63

Android Studio Arctic Fox
URL 63

architectural
deciding 135
interacting, with coroutines 135, 136
interacting, with data transfer

objects (DTOs) 136
interacting, with shared code 136

assumed cross-platform
development costs

about 8
Flutter 10, 11
React Native 9, 10

B
backend and frontend applications

code, sharing between 20
barebone

use cases, creating 80, 81
BreedsLocalSource

implementing 94, 95

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

160 Index

C
Clean Architecture

reference link 66
CocoaPods Gradle plugin

reference link 42
Combine API 56
Command-Line Interface (CLI) 63, 114
common code 15
Commonizer 17, 35, 36
Compose UI toolkit 157
concurrency, in KMP apps

Kotlin memory manager 139, 140
managing 137-139

concurrent mutability
reference link 138

continuous integration (CI) 20
coroutines

about 51
executing 52, 53
interacting with 135, 136

CoroutineScope 52
COW 50
cross-platform solutions

exploring 8

D
Dalvik Virtual Machine (DVM) 26
data

fetching, from Dog API 84-90
persisting, in local database 91

database
connecting, to components 95-97

Data Transfer Object (DTO)
about 80, 145
interacting with 136

dependency injection (DI) 34, 50
Dog API

data, fetching from 84-90
reference link 60

Dogify
about 60
objectives 61
on Android 61
on iOS 61
project setup 71-75
project structure 76-79
required tools 62
skill requirements 62

Dogify, project structure
barebone use cases, creating 80, 81
dependency injection, setting up 81-83

Dogify, technical decisions
about 66
architecture 66-68
library choices 70
shared code 69, 70

domain-specific language (DSL) 42

E
EcmaScript 5 (ES5) 38

F
Flow API 54, 56
Flutter 10, 11
Flutter-based applications

reference link 4
Foundation Kit 17

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 161

G
Gradle

about 42
reference link 42
shared code, writing 63
structure 43

H
higher-order functions (HOFs) 49

I
IceRock

reference link 158
IncorrectDereferenceException 33
input/output (I/O) dispatchers 54
Integrated Development

Environment (IDE) 63, 150
IntelliJ 63
intermediate representation (IR) 148
InvalidMutabilityException 33, 34
iOS

interoperability on 29-31
iOS app

setting up 114, 115
tying, together with shared

code 115-125
UI, implementing on 126-129

iOS consumer app
writing, with Swift 65

J
Java code

executing, on Android 26-28
Java Development Kit (JDK) 42, 65
JavaScript Object Notation (JSON) 122
Java Virtual Machine (JVM) 42
JetBrains

URL 65
JetBrainsTV

reference link 158
Jetpack Compose 26

enabling 100
Jetpack Compose, for implementing

UI on Android
reference link 70

just-in-time (JIT) 28

K
klibs 148, 149
KMM guide

reference link 158
KMM plugin

URL 64
KMM plugin, for AppCode

reference link 65
KMP case studies

reference link 153
KMP, impact on iOS app size

best practices 140
KMP libraries

references 158
Kodein-DB

reference link 91

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

162 Index

Koin, for Dependency Injection (DI)
reference link 70

Kotlin
coroutines 51
COW 50
data classes 48
extensions 49
functional programming features 49
interoperability, with Swift 157
multiplatform configuration 44-46
null safety 46, 47
object-oriented programming (OOP) 46
objects 50
shared code, writing 63

Kotlin Annotation Processing
Tool (KAPT) 34

Kotlin by JetBrains
reference link 158

Kotlin Coroutines
reference link 70

Kotlin/JS compiler
about 38
working with 38

Kotlin/JVM compiler
about 25
Java code, executing on Android 26-28
working with 25, 26

kotlinlang slack channel
reference link 158

Kotlin memory manager 139, 140
Kotlin Multiplatform (KMP)

about 13, 42
adoption tips 153, 154
expectations, managing 156, 157
objectives 14
learning resources 157, 158
working 14, 15

Kotlin Multiplatform (KMP), use cases
about 17
code sharing, between backend and

frontend applications 19, 20
Kotlin Multiplatform Mobile

(KMM) 18, 19
Kotlin Multiplatform Mobile (KMM)

about 18, 19
cost implications 20-22

Kotlin Multiplatform Mobile (KMM) 114
Kotlin/Native compiler

about 28
annotation processing 34, 35
Commonizer 35-38
concurrency model 32
current state and concurrency

model 32, 33
IncorrectDereferenceException 33
intermediate source sets 35-38
interoperability, on iOS 29-31
InvalidMutabilityException 33, 34
working with 29

Kotlin Symbol Processing (KSP) 34
kotlin.test

reference link 134
kotlinx.serialization

reference link 84
Kotlinx serialization, for parsing

reference link 70
Ktor for networking

reference link 70

L
local database

data, persisting 91
Low-Level Virtual Machine (LLVM) 10

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 163

M
mono repository 144, 145
multiplatform approach

about 13
adopting 13
platform abstractions 15-17

multiplatform configuration, Kotlin 44-46
Multiplatform Gradle Plugin DSL

reference link 42
multiplatform module

SQLDelight set up, exploring in 91-93
multiple repository

about 144-146
deciding 144
klibs 148, 149
publishing binaries 147, 148
Xcode-Kotlin plugin 148

N
Native

interoperability, with Swift 157
native development

compounding costs 4-6
synchronization 6, 7

Native Development Kit (NDK) 10, 28
nativeness 5
nullables 46

O
Objective-C (Obj-C) 46

P
Platform Experts 20
plugins 44
publishing binaries

about 147
disadvantages 147

publishing formats
categorizing 147

R
React Native

about 9
drawbacks 9
native modules 10

realm-kotlin
reference link 91

S
shared code

about 15
Android app, tying to 103-107
interacting with 136
testing 134
writing, with Gradle 63
writing, with Kotlin 63

Shared Code Experts 20
shared library

deciding 144
software development kit (SDK) 4
SQLDelight

reference link 91
set up, exploring in multiplatform

module 91-93

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

164 Index

SQLDelight, for database operations
reference link 70

streams 54, 55
structure, Gradle

about 43
plugins 44

suspend functions 51, 52
Swift

iOS consumer app, writing 65
SwiftUI, for implementing UI on iOS

reference link 70

T
team structure

about 150, 151
exploring 150

team tooling
about 151
crash reporting 152
debugging 152
exploring 150
IDE, selecting 151, 152

threads
switching 53, 54

Touchlab
reference link 158

U
UI

implementing, on Android app 107-112
implementing, on iOS app 126-129

V
virtual machine (VM) 28

X
XCFrameworks

reference link 147
Xcode 11+ 65
Xcode-Kotlin plugin 148

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://Packt.com
http://packt.com
http://customercare@packtpub.com
http://www.packt.com

166 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

How to Build Android Apps with Kotlin

Alex Forrester, Eran Boudjnah, Alexandru Dumbravan, Jomar Tigcal

ISBN: 978-1-83898-411-3

•	 Create maintainable and scalable apps using Kotlin

•	 Understand the Android development lifecycle

•	 Simplify app development with Google architecture components

•	 Use standard libraries for dependency injection and data parsing

•	 Apply the repository pattern to retrieve data from outside sources

•	 Publish your app on the Google Play store

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/how-to-build-android-apps-with-kotlin/9781838984113

Other Books You May Enjoy 167

Android UI Development with Jetpack Compose

Thomas Künneth

ISBN: 978-1-80181-216-0

•	 Gain a solid understanding of the core concepts of Jetpack Compose

•	 Develop beautiful, neat, and immersive UI elements that are user friendly, reliable,
and performant

•	 Build a complete app using Jetpack Compose

•	 Add Jetpack Compose to your existing Android applications

•	 Test and debug apps that use Jetpack Compose

•	 Find out how Jetpack Compose can be used on other platforms

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/android-ui-development-with-jetpack-compose/9781801812160

168

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Simplifying Application Development with Kotlin Multiplatform
Mobile, we'd love to hear your thoughts! If you purchased the book from Amazon,
please click here to go straight to the Amazon review page for
this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801812586

 EBSCOhost - printed on 2/9/2023 11:46 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1 -
Getting Started with Multiplatform Mobile Development Using Kotlin
	Chapter 1: The Battle Between Native, Cross-Platform, and Multiplatform
	Understanding the compounding costs of native development
	The cost of native app development
	Synchronization

	Exploring the pitfalls of cross-platform solutions
	Assumed cross-platform development costs
	Actual cross-platform technology costs

	Adopting a multiplatform approach
	The multiplatform approach
	How KMP works
	Platform abstractions (expect-actual)
	The different use cases for KMP
	KMM cost implications

	Summary

	Chapter 2: Exploring the Three Compilers of Kotlin Multiplatform
	Kotlin compilers in general
	The Kotlin/JVM compiler
	How it works
	Executing Java code on Android

	The Kotlin/Native compiler
	How it works
	Interoperability on iOS
	The concurrency model
	Annotation processing
	Intermediate source sets and the Commonizer

	The Kotlin/JS compiler
	How it works

	Summary

	Chapter 3: Introducing Kotlin for Swift Developers
	Technical requirements
	Introducing Gradle
	Structure of Gradle

	Exploring Kotlin's core features
	Null safety
	Data classes
	Extensions
	Functional programming features
	Objects
	COW in Kotlin

	Understanding Kotlin coroutines
	Suspend functions
	CoroutineScope
	Executing coroutines
	Switching threads
	Streams in Kotlin

	Summary

	Section 2 - Code Sharing between Android and iOS
	Chapter 4: Introducing the KMM Learning Project
	Technical requirements
	Getting to know our project – Dogify
	Exploring prerequisites
	Skill requirements
	Required tools

	Understanding the technical decisions
	Architecture
	The shared code
	Library choices

	Summary

	Chapter 5: Writing Shared Code
	Technical requirements
	Initial project setup
	Project structure

	Fetching data from the Dog API
	Persisting data in a local database
	Exploring how to set up SQLDelight in a multiplatform module
	Implementing the BreedsLocalSource
	Connecting our database to the rest of the components

	Summary

	Chapter 6: Writing the Android Consumer App
	Technical requirements
	Setting up the Android module
	Enabling Jetpack Compose
	Adding the necessary dependencies

	Tying the Android app to the shared code
	Implementing the UI on Android
	Summary

	Chapter 7: Writing an iOS Consumer App
	Technical requirements
	Setting up the iOS app
	Tying the iOS app together with the shared code
	Implementing the UI on iOS
	Summary

	Section 3 - Supercharging Yourself for the Next Steps
	Chapter 8: Exploring Tips and Best Practices
	Technical requirements
	Testing shared code
	Architectural decisions
	Interacting with coroutines
	Interacting with data transfer objects (DTOs)
	Interacting with shared code

	Managing concurrency
	New memory manager

	App size best practices
	Summary

	Chapter 9: Integrating KMM into Existing Android and iOS Apps
	Deciding on a mono repository or a shared library
	Mono repository
	Multiple repositories
	Conclusion

	Exploring team structure and tooling
	Team structure
	Tooling

	Learning some adoption tips
	Summary

	Chapter 10: Summary and Your Next Steps
	Recapitulating what you have learned
	Managing your KMP expectations
	Will it change the mobile development landscape?
	Kotlin/Native's direct interoperability with Swift
	Shared UI

	Learning resources
	Summary

	Index
	Other Books You May Enjoy

