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Preface

Quantum mechanics has been labeled magic because it combines
an extremely good efficiency for the prediction of experimental results
with a relatively simple formalism, but it does not provide a picture
of the material world. Furthermore, when one attempts to get an
intuitive picture logical contradictions appear. For instance, there are
empirical facts suggesting that an electron is a point particle, or at
least an object much smaller than an atom. However, interference
effects and other phenomena seem to prove that it is an extended
object (a wave). As a consequence, the interpretation of quantum
mechanics has been the subject of continuous debate from the early
period, almost one century ago, until today. The interpretations range
from the pragmatic one supported by Bohr, with emphasis in the
experiments, to those dazzled by the formalism, like the many-worlds
that claims its universal validity, against common intuitions of human
beings that do not believe to be simultaneously in several branches of
a wave-function of the universe.

There is a dichotomy in current interpretations, namely they ei-
ther reject a quantum picture of the world or offer a picture drastically
departing from what we may derive from our everyday experience. In
contrast, in this book I support ‘realism’, that is the view that science
in general, and physics in particular, should explain how the world is,
rather than just offering rules for the prediction of the results of the
observations or experiments. That is, the book attempts a realistic in-
terpretation that might provide a picture of the material world. Any
picture must be free from contradictions and should be understood
without sophisticated mathematical theories. In summary, realism
includes the view that the world is made up of real stuff, existing in
space and changing with time or, better stated, existing in a spacetime
continuum.

xi
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xii PREFACE

The book may be seen as a kind of scientific memoir of the au-
thor. It is an organized survey of the attempts to understand quantum
mechanics made along more than fifty years. Asides from revisiting
relevant work of the author, the book contains many original contri-
butions.

A fundamental hypothesis of the proposed interpretation of quan-
tum theory is the reality of the vacuum fields. They appear as an un-
avoidable consequence of quantization although there is no agreement
with respect to their nature. For some people they are an artifact of
the formalism having observational consequences. The vacuum fields
are labeled ‘virtual’, a word without a clear meaning that is used
to avoid any commitment about their actual existence. This book
strongly supports the reality of the vacuum fields as stochastic fields.

The interpretation of quantum theory resting on the reality of the
vacuum fields opens a door for the solution of several problems in fun-
damental physics, some of them considered open and other allegedly
closed but the common solution being still disputed by some people. I
will mention six problems that will be discussed in this book: local re-
alism, entanglement, quantum gravity, dark energy, dark matter and
black holes. In the following I will comment briefly on each of them,
stressing my personal opinion, that in most cases does not agree, or
at least not fully, with the common view.

Local realism versus quantum mechanics has been the late stage of
a debate that arose soon after the discovery of quantum mechanics in
1925. As is well known the main actors of the debate were Niels Bohr
and Albert Einstein, who supported completeness and incompleteness
of the theory, respectively. In 1935 Einstein, Podolsky and Rosen
(EPR) introduced locality, or relativistic causality, as an argument
for the incompleteness, but the debate did not end. In 1965, 10 years
after Einstein’s death, John Bell derived his celebrated inequalities
that have been interpreted by most authors as a vindication of Bohr.
I do not agree and the subject is treated extensively in this book,
namely in chapter 1, section 1.1, chapter 2 section 2.3, the whole
chapter 3 and chapter 6 section 6.6, asides from comments in other
parts of the book.

Entanglement is a concept introduced by EPR and discussed in
more detail by Schrödinger the same year 1935. There is a clear
mathematical definition in terms of vectors in a Hilbert space (or
wave-functions) and their consequences are extremely relevant, it be-
ing a crucial concept in the increasingly important field of quantum
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PREFACE xiii

information and quantum computation. However there is no clear
physical interpretation of entanglement. It is closely related to the
Bell inequalities and it is particularly studied in chapter 2 section
2.2.3, chapter 3, section 3.2.5, chapter 5 section 5.4 and chapter 6
section 6.6.

The remaining 4 problems belong to astrophysics or cosmology,
and the whole chapter 7 is devoted to them. In section 2 the idea
of ‘quantizing the gravitational field’ is revisited taking into account
that gravity is not a force. The so-called gravity effects derive from
the curvature of spacetime. Therefore general relativity is not a the-
ory of gravity, but a theory of (curved) spacetime. Quantizing gravity
is actually quantizing the spacetime curvature and this is understood
in this book as an epistemological rather than ontological question.
In fact, as said above ‘quantization’ means the need of studying ev-
erything in the material world as stochastic.

The rest of chapter 7 deals with the consequences of the hypothesis
that the quantum vacuum fields may produce spacetime curvature and
that curvature modifies those fields. In particular, it is necessary to
take into account that the vacuum fields fluctuate. In section 7.4 it
is argued that, as these fluctuations are incompatible with Minkowski
space, it is worth to study the minimal modification produced by
them and the result is that in the absence of matter they give rise to
a cosmological constant term or, in other words, they are plausibly the
origin of the ‘dark energy’. On the other hand, in space containing
baryonic matter the combination of that matter with the vacuum
fluctuations may produce new effects or, in other words, modify the
dark energy. It is also proposed that vacuum fluctuations might give
rise to effects currently attributed to dark matter. This possibility is
studied in section 7.5.

In astrophysical compact objects where the baryonic matter is
able to produce a strong spacetime curvature, it is plausible that the
effect on the quantum vacuum fields should be extremely big. In
section 7.6 it is proposed that these changes might modify the evo-
lution of such compact relativistic objects stopping collapse before a
Schwarzschild singularity is produced.

Plan of the book. The book consists of seven chapters. In chapter 1
a number of nude observations, usually assumed specifically quantal,
are analysed in order to show that they might be explained without
departing from our proposed realistic view of nature. The chapter
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xiv PREFACE

starts with an epistemological introduction that supports the Einstein
(realistic) against the Bohr-Heisenberg (positivistic and pragmatic)
views of science. At the end of the chapter a sketch is presented of
the view about the quantum world.

Chapter 2 is devoted to the standard, or canonical, Hilbert-space
formalism of quantum theory. We start with the postulates of the
theory followed by a critical analysis of the most popular interpre-
tations of the formalism. A purpose of that analysis is to point out
that we should not attempt to interpret the standard formalism, but
rather the observations or experiments, that are independent of any
theory. For the sake of completeness I also include a study of the
proposed logical structure in terms of lattices of propositions and the
comparison with classical logic, the Bell inequalities being a crucial
test.

Chapter 3 deals in more detail with the Bell inequalities, that have
been during half a century most relevant in discussions about the in-
terpretation of quantum mechanics. The inequalities are assumed to
be necessary conditions for a local realistic interpretation of nature. In
fact, Bell’s work seems to prove that there is a conflict between quan-
tum mechanics and local realism, understanding locality as relativistic
causality. I shall discuss to which extent this is true. In addition, a
short survey is presented of the experiments performed or proposed
in order to test the inequalities against the quantum predictions.

In chapter 4 alternative formulations of quantum theory are pre-
sented, namely de Broglie-Bohm, stochastic mechanics, Weyl-Wigner
in phase space, and Feynman path integrals. These formulations ei-
ther contradict some predictions of the standard formalism, and also
experiments, or seem incompatible with a realistic interpretation. For
instance, the Weyl-Wigner function seems to imply ‘negative proba-
bilities’ and Feynman path integrals ‘imaginary probabilities’. I shall
argue that nevertheless both of them might be free from these short-
comings if correctly interpreted.

Chapter 5 is a survey of stochastic electrodynamics, a theory that
studies within classical electrodynamics the motion of charged parti-
cles under the action of given forces but in the presence of a random
electromagnetic radiation field. The theory agrees with quantum pre-
dictions in a limited domain, but disagrees in other cases. The rel-
evance of stochastic electrodynamics is that it provides hints for a
realistic interpretation of the whole quantum theory. In fact, it is a
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theory that may be considered classical but makes predictions that fit
in experiments allegedly quantal.

Chapter 6 provides a realistic analysis of several effects of the
quantum vacuum radiation field that offers, for some experiments, a
clear intuitive picture commonly claimed to be impossible. In par-
ticular, we discuss experiments showing wave-particle behaviour or
violations of Bell inequalities.

Chapter 7 deals with quantum effects in astrophysics and cosmol-
ogy. In the first part a personal view is presented of the meaning
of general relativity, which in several respects differs from the current
view. The rest of the chapter deals with the possibility of understand-
ing dark energy and dark matter as effects of the quantum vacuum
fluctuations. It is also suggested that the quantum vacuum fields
might prevent collapse to black holes.
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Therefore it is my sole responsibility. But the ideas exposed had been
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1.1. The debate about the interpretation of quantum
theory

1.1.1. Early interpretations: Schrödinger, Heisenberg
and Bohr. Quantum theory began with Max Planck’s formula for
the blackbody spectrum, presented in December 14, 1900, a date later
named by Sommerfeld the birthday of quantum theory. After years of
slow progress without a definite theory, quantum mechanics appeared
almost simultaneously during 1925-26 in two different forms: ‘quan-
tum mechanics’ of Heisenberg and ‘wave mechanics’ of Schrödinger.
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2 1. THE QUANTUM IMAGE OF NATURE

Soon afterwards Schrödinger himself and Dirac proved that both the-
ories are equivalent; that is, they make the same predictions for the
experiments. For the history of the early period see Jammer [1].

Quantum mechanics had a rapid and deep impact. It was soon
applied to atoms, molecules and solids with great success. However
the interpretation of the theory was not straightforward. Schrödinger
suggested that his wave-function describes a continuous electric charge
distribution. That picture was abandoned after correct criticisms by
Bohr and other people. In particular a detailed calculation of the
ionization energy of the helium atom proved that the electron should
be seen as a particle much smaller than the atom.

In contrast, Heisenberg introduced his quantum theory as a set
of calculational rules involving arrays of numbers (matrices in math-
ematical language) devoided of any intuitive picture. Furthermore
physics without images should be considered a superior form of sci-
ence because the only condition for the validity of a theory is the
agreement of its predictions with the empirical evidence. That view
was reinforced with Dirac’s formulation in terms of an abstract vector
space.

The approach of Heisenberg was supported by Bohr, who elab-
orated it introducing the ‘complementary principle’, with the aim of
solving the particle (localized)-wave (extended) duality of quantum
objects, and stressing the role of the Planck constant as an indivis-
ible element of ‘action’. This led to the Copenhagen interpretation,
which became dominant for many years. This interpretation may be
labeled as pragmatic because the referent of the theory is not the
physical world but the experiment. However, it produced disconfort
in some people, e.g. Einstein, and a long debate arose that lasts until
today [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. For a recent review
with extensive bibliography, see Drummond [12].

The interpretations usually refer to quantum mechanics as for-
mulated in Hilbert space, a formalism to be treated in chapter 2.
Therefore I postpone to that chapter a discussion of the most popular
interpretations. In the following I comment on the two main classes
of quantum interpretations, namely pragmatic and realistic.

1.1.2. The pragmatic approach to quantum mechanics.
None of the interpretations proposed till now offer a clear intuitive pic-
ture of the quantum world. Nevertheless, most physicists do not worry
for the lack of a picture and embrace a pragmatic approach close to the
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1.1. THE DEBATE ABOUT THE INTERPRETATION 3

Copenhagen interpretation. They accept a minimal interpretational
framework with the following key features [13]:

1. Quantum theory is viewed as a scheme for predicting the prob-
abilistic distribution of outcomes of measurements made on suitably
prepared copies of a system.

2. The probabilities are interpreted in a statistical way as referring
to relative frequencies.

Behind the pragmatic approach there is usually a philosophical
position about physics (or science in general) that may be summa-
rized as follows. It is common wisdom that a physical theory has at
least two components [14]: (1) the formalism, or mathematical appa-
ratus, of the theory, and (2) the rules of correspondence that establish
a link between the formalism and the results of measurements. As an
example let us consider the formalism of quantum mechanics based
on the mathematical theory of Hilbert spaces (to be discussed in more
detail in chapter 2). The formalism involves two kinds of operators:
density operators, ρ̂, that represent states, and self-adjoint operators,
Â, that represent observables. The link with the measurement results
is given by the postulate that the expectation value, Tr(ρ̂Â), corre-
sponds to the statistical mean of the values obtained when one realizes
several measurements on identically prepared systems (which deter-
mines ρ̂) by means of an appropriate apparatus (that corresponds to

Â).
If we assume that the formalism and the correspondence rules are

the only objects required to define a physical theory, in the sense that
the statistical regularities need not be further explained, then we get
what has been called a minimal instrumentalistic interpretation of
the theory [15], [13]. It may be identified with the purely pragmatic
approach mentioned above.

Most people claiming to support that approach accept the follow-
ing positions:

1. The notion of an individual physical system ‘having’ or ‘pos-
sessing’ values for all its physical quantities is inappropriate in the
context of quantum theory.

2. The concept of ‘measurement’ is fundamental in the sense that
the scope of quantum theory is intrinsically restricted to predicting
the results of measurements.

3. The spread in the results of measurements on identically pre-
pared systems must not be interpreted as reflecting a ‘lack of knowl-
edge’ of some objectively existing state of affairs.
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4 1. THE QUANTUM IMAGE OF NATURE

The instrumentalistic approach is quite different from, even op-
posite to, the realistic view traditional of classical physics. Between
these two extremes there are a variety of approaches.

1.1.3. Realistic interpretations. The main opponent to a
purely pragmatic approach to quantum mechanics was Albert Ein-
stein. Indeed, his discussions with Niels Bohr are the paradigm of a
scientific debate, hard in the scientific arguments but hearty from the
personal point of view. One of the most celebrated moments of the
debate was a 1935 article by Einstein, Podolsky and Rosen [16] (EPR)
soon followed by Bohr’s reply [17]. The former begins as follows: “Any
serious consideration of a physical theory must take into account the
distinction between the objective reality, which is independent of any
theory, and the physical concepts with which the theory operates.
These concepts are intended to correspond with the objective reality,
and by means of these concepts we picture this reality to ourselves”
(my emphasis).

It is true that in the years elapsed since the EPR paper the con-
cept of ‘objective reality’ has been questioned as not clear. Due to
the difficulties with the interpretation of quantum mechanics, many
people working on foundations dismiss the ‘realism’ of EPR as ‘naive’.
Thus more sophisticated forms of realism have been proposed [7]. In
any case, a deep discussion about the philosophical aspects of reality
or realism is outside our scope.

In this book I strongly support Einstein’s view. That is, I be-
lieve that a realistic interpretation is possible. The starting point is
the claim that any physical theory should offer a physical model in
addition to the formalism and rules for the connection with the exper-
iments. The latter are obviously essential because they are required
for the comparison of the theory with empirical evidence, which is
the test for the validity of the theory. But in my opinion physical
models are also necessary in order to reach a coherent picture of the
world. Many quantum physicists apparently support the uselessness
of pictures, but it is the case that when they attempt popular explana-
tions of quantum phenomena they frequently propose actual pictures,
many of them rather bizarre. For instance it has been claimed that
quantum mechanics compel us to believe that there are a multiplicity
of ‘me’ in parallel universes, or that an atom may be present in two
distant places at the same time. This is an indication that the need
for a ‘picture the reality to ourselves’ [16] cannot be easily dismissed.
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1.1. THE DEBATE ABOUT THE INTERPRETATION 5

Furthermore the existence of physical models might open the possi-
bility for new developments and applications of quantum theory and
therefore it is not only an academic question.

The contrast between the two great theories of the 20th century,
quantum mechanics and relativity is interesting. The latter provides a
beautiful physical model: There is a four-dimensional manifold with
intrinsic curvature and all material objects (e.g. particles or fields)
are defined in that continuum and the basic quantities of physics, like
mass, energy or momentum, become geometric properties. But the
calculational tool of general relativity (derived from the Riemann ge-
ometry) is rather involved, the fundamental (Einstein) equation being
nonlinear. In quantum mechanics there is a relatively simple linear
formalism involving vectors and operators in a Hilbert space. Indeed,
the fundamental (Schrödinger) equation is linear. However, there is no
coherent physical model behind. I would say that general relativity
has physical beauty, the quantum formalism possesses mathematical
elegance.

Historically the renunciation to physical models in quantum me-
chanics was a consequence of frustration caused by the failure of the
models proposed during the first quarter of the 20th century. This
was specially the case after Bohr’s atom, consisting of point electrons
moving in circular orbits around the nucleus. The model, general-
ized with the inclusion of elliptical orbits, certainly produced progress
in the decade after 1913. However, it was obvious that the model
mixed contradictory laws, namely classical electrodynamics and Bohr
postulates. The success of quantum mechanics in the quantitative in-
terpretation of experiments did not solve the problem, which became
more acute. Thus the failure to find a good physical model of the
microworld led to an almost universal acceptance of the current view
that models may be unnecessary or even misleading.

I do not agree with that view, but this book is a defence of a
realistic interpretation of the quantum phenomena. I am aware that
the task is extremely difficult as is proved by the lack of such an
interpretation after a century of quantum mechanics. However, I am
convinced that many of the obstacles derive from some assumptions
that are not necessary for the interpretation of the experiments. These
assumptions have been introduced along the historical development of
the theory and are now a part of the common view. Pointing out the
main obstacles and how they might be removed is the purpose of this
book. I do not pretend to provide a coherent and complete realistic
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6 1. THE QUANTUM IMAGE OF NATURE

interpretation, but I hope that some of the ideas put forward might
be useful in the progress towards a better understanding of quantum
mechanics.

1.1.4. A note on the epistemology of physics. In order to
practice science some previous philosophical questions should be an-
swered. For instance, what is science? Or, what is the purpose of
science? There are different philosophical positions about these ques-
tions that are closely connected with the different interpretations of
quantum mechanics.

There is some agreement that the criterion to distinguish science
from nonscientific knowledge is the proposal of Karl Popper [18], [19]:
A claim is scientific if it may be refuted by observations or experi-
ments. This definition is a consequence of a well known fact, namely
the possible existence of several different theories all of them predict-
ing correctly the results of experiments in a given domain. In other
words the correctness of a theory is sufficient, but not necessary, for
the appropriate prediction of empirical facts. For this reason a sin-
gle experiment may refute a theory but a theory can never be fully
confirmed empirically, and this is essentially the Popper thesis. As
a consequence several different theories may exist that are able to
predict correctly the empirical results, but suggesting quite different
pictures of the microworld.

Popper’s criterion is good enough as a matter of principle, but it
is not so good in practice. In fact, it is the case that rarely an es-
tablished theory breaks down as a consequence of a single experiment
contradicting it. As Lakatos [20] has pointed out, well tested theories
are protected in the sense that the empirical refutation of a single pre-
diction may be interpreted without rejecting the theory, for instance
assuming that the analysis of the experiment was incorrect. Indeed,
it is a historical fact that established theories are only abandoned, or
better superseded, when there is a new theory in agreement with the
former one in its domain of validity but possessing a wider domain or
other virtues.

Quantum mechanics is today a fully established theory and there-
fore it is very well protected in the sense of Lakatos. I do not only
mean protection in the domain where the theory has been tested.
What I want to stress is that over the years people have introduced
a number of assumptions, today widely accepted, that are additions
without possibility of empirical test. See section 2 below for several
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1.1. THE DEBATE ABOUT THE INTERPRETATION 7

examples. These unnecessary additions are also protected and, in my
opinion, they are the main cause of the strong difficulties in reaching
a realistic physical model of the quantum world.

Most working quantum physicists adhere to the pragmatic ap-
proach as described above. The support has its roots in a ‘positivis-
tic’ attitude. Positivism is the philosophical doctrine that, in a broad
sense, states that all knowledge should be founded on empirical evi-
dence. In this sense it is accepted by everybody. But in a more strict
sense it is a tendency to give value to the crude empirical data in
detriment of the theoretical elaborations. For instance this was the
opinion of Ernst Mach, who rejected the concept of atom because at
that time (around 1900) atoms had not been directly observed.

Positivism was also behind Heisenberg’s initial formulation of
quantum mechanics resting upon the belief that only sets of num-
bers corresponding to the possible results of measurements should
enter the theory. This led him to elaborate quantum mechanics as a
calculational tool involving matrices (it was sometimes called ‘matrix
mechanics’). The combination of mathematical formalism and empir-
ical results almost without further theoretical elaboration permeates
the interpretation of quantum mechanics till now. An illuminating
confrontation between the positivistic and realistic epistemologies is
the conversation of Heisenberg with Einstein that took place in Berlin
in 1926, as remembered by Heisenberg himself [21]. The most relevant
part is the following.

As soon as we were indoors, he [Einstein] opened the
conversation with a question that bore on the philo-
sophical background of my recent work. “What you
have told us sounds extremely strange. You assume
the existence of electrons inside the atom, and you are
probably quite right to do so. But you refuse to con-
sider their orbits, even though we can observe electron
tracks in a cloud chamber. I should very much like to
hear more about your reasons for making such strange
assumptions.”

“We cannot observe electron orbits inside the
atom,” I must have replied, “but the radiation which an
atom emits during discharges enables us to deduce the
frequencies and corresponding amplitudes of its elec-
trons. After all, even in the older physics wave num-
bers and amplitudes could be considered substitutes for
electron orbits. Now, since a good theory must be based
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8 1. THE QUANTUM IMAGE OF NATURE

on directly observable magnitudes, I thought it more
fitting to restrict myself to these, treating them, as it
were, as representatives of the electron orbits.”

“But you don’t seriously believe,” Einstein protes-
ted, “that none but observable magnitudes must go into
a physical theory?”

“Isn’t that precisely what you have done with rel-
ativity?” I asked in some surprise. “After all, you did
stress the fact that it is impermissible to speak of ab-
solute time, simply because absolute time cannot be
observed; that only clock readings, be it in the moving
reference system or the system at rest, are relevant to
the determination of time.”

“Possibly I did use this kind of reasoning,” Einstein
admitted, “but it is nonsense all the same. Perhaps I
could put it more diplomatically by saying that it may
be heuristically useful to keep in mind what one has ac-
tually observed. But on principle, it is quite wrong to
try founding a theory on observable magnitudes alone.
In reality the very opposite happens, it is the theory
which decides what we can observe. You must appre-
ciate that observation is a very complicated process.
The phenomenon under observation produces certain
events in our measuring apparatus. As a result, fur-
ther processes take place in the apparatus, which even-
tually and by complicated paths produce sense impres-
sions and help us to fix the effects in our consciousness.
Along this whole path – from the phenomenon to its
fixation in our consciousness –we must be able to tell
how nature functions, must know the natural laws at
least in practical terms, before we can claim to have
observed anything at all. Only theory, that is, knowl-
edge of natural laws, enables us to deduce the underly-
ing phenomena from our sense impressions. When we
claim that we can observe something new, we ought
really to be saying that, although we are about to for-
mulate new natural laws that do not agree with the
old ones, we nevertheless assume that the existing laws
–covering the whole path from the phenomenon to our
consciousness– function in such a way that we can rely
upon them and hence speak of observations” (my em-
phasis).
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1.2. SPECIFIC FEATURES OF QUANTUM PHYSICS 9

The conversation continued for a while and at the end Einstein
warned: “You are moving on very thin ice. For you are suddenly
speaking of what we know about nature and no longer about what na-
ture really does. In science we ought to be concerned solely with what
nature does.” Einstein’s arguments are a clear support to a realistic
epistemology, and I fully agree with his views.

I believe that, as stated by Einstein “it is wrong to try founding
a theory on observable magnitudes alone”. But I believe that the
following statement more close to Heisenberg’s view is correct: We
should try to interpret as physically real just the observable magni-
tudes alone, but not the intermediate (mathematical) ones that appear
in a calculation. This will be our guide in this book for a realistic
interpretation of quantum mechanics.

1.2. Specific features of quantum physics

I propose that the difficulties for a realistic interpretation of quan-
tum phenomena do not derive from the empirical facts, or not only.
Thus in the following I shall briefly revisit the most relevant of those
phenomena in order to see whether the nude empirical facts do prevent
any picture of the microworld. Actually, most textbooks of quantum
mechanics emphasize the difficulty, or impossibility, to interpret typ-
ical quantum phenomena with a realistic view. The purpose of the
following paragraphs is just the opposite. It will be shown that in fact
those phenomena are compatible in most cases with a picture of the
microworld. Of course, the picture is somewhat different from the one
offered by classical physics, but not dramatically different.

Nevertheless, I shall confess that serious difficulties remain, so
that neither this section nor the whole book will provide a systematic
realistic interpretation free from difficulties.

1.2.1. The stability of atoms. Soon after Rutherford’s exper-
iment of 1911, that lead to the nuclear atom, Bohr proposed in 1913 a
model which involved postulates contradicting classical electrodynam-
ics. The common wisdom was, and it still is, that the contradiction
cannot be avoided. That it appears even for the most basic empirical
fact, the stability of the atom. But this is not true [22].

In fact, if studied with classical electrodynamics a hydrogen atom,
consisting of one proton and one electron, cannot be stable if isolated.
The reason is that an electron moving around the proton would ra-
diate, and therefore it will lose energy until the atom collapses. But
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10 1. THE QUANTUM IMAGE OF NATURE

the argument is not valid if there are many atoms in the universe
because if all atoms radiate the hypothesis of isolation is not appro-
priate. It is more plausible to assume that there is some amount of
radiation filling space. Then every atom would sometimes radiate
but other times it would absorb energy from the radiation, eventu-
ally arriving at a dynamical equilibrium. This may explain, at least
qualitatively, the stability of the atom. The picture that emerges
is that matter and radiation of the universe cannot be treated inde-
pendently, and the complexity of the universe compel us to treat the
radiation as a background stochastic field. Therefore the electron of
a hydrogen atom would move in a random way around the nucleus.
That motion should be so complex that we cannot follow it in detail
but only the probability distribution of positions can be determined.
That distribution is what the Schrödinger wave-function provides via
Born’s rule. The assumption of background fields filling space fits in
the quantum vacuum fields that appear in field quantization. They
are assumed real stochastic fields throughout this book, and make up
the basic hypothesis for the realistic interpretation of quantum theory
as discussed in the following.

1.2.2. The connection between energy and frequency. A
standard method to study the radiation field in free space is to expand
it in plane waves (or in normal modes if it is enclosed in a cavity).
In free space the number of modes, N , per unit volume and unit
frequency interval is

(1) N =
ω2

π2c3
,

and the radiation energy is

(2) E =
1

2
�ω

per normal mode of the radiation. That energy eq.(2) is just 1/2 the
one postulated by Einstein in his 1905 article where he introduced the
concept of quantum of radiation, later named photon. I will discuss
the concept of photon in chapter 6. In the following I will derive some
consequences via an heuristic approach. Firstly I propose to generalize
eq.(2) for all possible vacuum fields, associated to the forces of nature.

If a hydrogen atom is in a dynamical equilibrium with radiation,
it is plausible that the main interaction with the vacuum fields takes
place with the normal modes of the field that have frequencies close
to those of the electron motion. Also, in a dynamical equilibrium
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1.2. SPECIFIC FEATURES OF QUANTUM PHYSICS 11

it is plausible that the mean kinetic energy of the electron should
be close to half the average energy of those normal modes having
greater interaction with the atom (the other half would correspond to
potential energy). Then if the electron moved around the nucleus in a
circle with energy E (i.e. without emission or absorption of radiation),
we might write the following equalities

(3) |E| = 1

2
mv2 =

e2

2r
, v = rω, |E| ∼ 1

2
�ω,

the latter corresponding to the condition of dynamical equilibrium
with radiation. Of course, the motion is perturbed by the action of
the vacuum fields, whence the electron motion would be irregular,
not circular, but it is plausible that eqs.(3) would be roughly fulfilled.
Hence the energy and the size of the atom may be got by eliminating
the quantities v and ω amongst the 4 equalities, which leads to

(4) E ∼ −1

2

me4

�2
, r ∼ �

2

me2
,

in rough agreement with the quantum prediction and with experi-
ments.

1.2.3. Statistical character. The statistical character of mea-
surements in the quantum domain is a consequence of existence of
random vacuum fields as discussed above. However, it is appropriate
to comment on it in more detail due to the great relevance attributed
to it in books and articles about foundations of quantum physics.

In the classical domain typical experiments are affected by sta-
tistical errors. That is, the same experiment performed in similar
conditions may give rise to (slightly) different results. For this rea-
son it is a standard practice to report the results of measurements
accompanied by an uncertainty interval. In the macroscopic domain
the uncertainty is attributed to the difficulty of controlling a very
large number of parameters (the environment), with the consequence
that never (or rarely) an experiment may be repeated in exactly the
same conditions. In any case, it is usual that the uncertainty is only
a small fraction of the measured quantity. In contrast, in the micro-
scopic domain it is frequent that the uncertainties are of the same
order than the measured result. This is equivalent to saying that the
same experiment may give rise to a number of different results, every
one with some probability. However, in contrast with macroscopic
(classical) physics, in quantum physics the probabilities are usually
not atributted to lack of control in the experiment.
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12 1. THE QUANTUM IMAGE OF NATURE

The current view is that quantum probabilities are radically dif-
ferent from the classical, ordinary life, probabilities. The latter are
introduced when there is incomplete knowledge (‘ignorance’), maybe
unavoidable, about the truth of some assertion. For instance we may
attach a probability 1/2 to the appearance of head when throwing a
coin, because we cannot control all relevant variables in the experi-
ment. In contrast, it is a common assumption that quantum probabil-
ities are quite different, that they derive from a lack of strict causality
of the natural laws, i.e. the fact that different effects may follow to
the same cause. This is usually called the fundamental or essential
probabilistic character of the physical laws. This is an example of a
practical difficulty that has been (incorrectly in my opinion) raised to
the rank of an ontological statement: “Natural laws are not strictly
causal”.

Einstein disliked that assumption and strongly criticized it, as ex-
pressed in his celebrated sentence “God does not play dice”. I under-
stand very well Einstein’s opinion. For him the rational understanding
of nature was a kind of religion. The more loose (strict) the natural
laws are, the smaller (greater) could be our rational understanding
of nature. Accepting a weak causality is like accepting poor science.
Nevertheless, some people are happy with the absence of determin-
ism implied by the nonexistence of strict causality. For instance some
claims have been made that the quantum lack of determinism may
explain human free will. This question lies outside the scope of this
book and shall not be further commented on.

But I do not support determinism in the mechanistic view of La-
place. As said above quantum mechanics is a stochastic theory. I
believe that strictly causal laws might perhaps exist, but there is also
a universal noise which permeates everything and prevents any prac-
tical determinism. Strict causality combined with stochasticity (ran-
domness) is in practice indistinguishable from essential probability,
and the former is more plausible. In order to clarify this matter let us
think about Brownian motion. Under macroscopic observations the
random motion of a Brownian particle may appear as lacking causal-
ity; but we assume that, taking into account the molecules of the
liquid where the particle is immersed, the whole motion is governed
by Newtonian dynamics, which is causal.

It may be argued that the uncertainties in the measurements in
the quantum domain do not look like typical uncertainties derived
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1.2. SPECIFIC FEATURES OF QUANTUM PHYSICS 13

from noise. Indeed, the latter may be usually approximated by con-
tinuous probability distributions. In the quantum domain there are
instances, e.g. the Stern-Gerlach experiment, where there is uncer-
tainty between just two values (for more about that experiment see
the subsection about discrete states, below). I shall not discuss fur-
ther this difficulty here, but we will discuss it in more detail in later
chapters.

1.2.4. Heisenberg uncertainty relations. The Heisenberg
‘uncertainty principle’ is the most frequently quoted evidence for the
dramatic splitting between classical and quantum physics. In fact, the
principle appears in popular writings like a kind of mysterious prop-
erty of our world. However, the arguments given below strongly sug-
gest that the Heisenberg inequalities are consequences of the stochas-
ticity inherent to the microworld rather than a fundamental principle.
I shall not discuss here the general relation dealing with conjugate dy-
namical variables, but restrict attention to the experimentally proved
impossibility of determining simultaneously the position and the ve-
locity (or momentum) of a particle. This implies that it is not possible
to prepare a particle with both position and velocity sharply defined,
and also that no measurement may provide the values of both these
quantities at the same time. Hence it is impossible to determine the
path of a particle.

In any motion under the action of a random force some constraints
may appear for the simultaneous determination of position and veloc-
ity, that might be stated in the form of inequalities. As an illustrative
example this is shown to be the case in Brownian motion. A Brownian
particle possesses a highly irregular path whose instantaneous velocity
cannot be measured (with ordinary, macroscopic set-ups). Only the
mean velocity, v, during some time interval may be measured, that
is,

v =
|Δr|
Δt

,

where |Δr| is the distance between the initial and final positions in
the time interval Δt. On the other hand there is a relation, derived
by Einstein in 1905, between the expected value of the square of the
distance, |Δr|2, and the time interval, Δt. Namely,〈

|Δr|2
〉
= DΔt,
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14 1. THE QUANTUM IMAGE OF NATURE

where D is called the diffusion constant and 〈〉 means ensemble aver-
age, that is, the average over many measurements involving the same
time interval. If we eliminate Δt amongst the two equalities we get〈

|Δr|2
〉
=
〈
v2
〉
Δt2 ⇒

〈
|Δr|2

〉 〈
v2
〉 � D2,

a relation having some similarity with the Heisenberg uncertainty re-
lation. We conclude that a plausible interpretation of the Heisenberg
principle is that the quantum motion possesses a random component
having some similarity (not identity!) with Brownian motion. This
similarity has been the basis for the development of stochastic me-
chanics, which provides an intuitive picture of some typically quan-
tum phenomena. However, this theory presents difficulties as will be
discussed in chapter 4. Actually, the Brownian motion inequality de-
rived above is different from the Heisenberg inequalities because v2

is the mean squared velocity during a time interval, rather than the
uncertainty of the velocity. In chapter 5 I will show that Heisenberg
inequalities may be derived as a consequence of the radiation spec-
trum.

The Heisenberg inequalities become an obstacle for a realistic in-
terpretation of quantum mechanics when the practical difficulty (or
impossibility) of simultaneous knowledge of position and velocity is
elevated to the category of an ontological statement: “Trajectories of
quantum particles do not exist”. Of course, the Heisenberg inequalities
are reinforced by the fact that they are predicted by the quantum for-
malism, but the analogy with the Brownian motion inequality suggests
that the quantum formalism may be a disguised form of specifying a
stochastic theory.

1.2.5. Discrete energy states. As is well known, the first
quantum hypothesis, introduced by Planck in 1900, was that material
systems may possess only energies belonging to a discrete set. The
assumption was extended by the Einstein 1905 proposal that light
consists of discrete pieces of energy (photons) and the successful ap-
plication of this principle to the photoelectric effect. In 1913 Bohr
incorporated the idea to his atomic model postulating that atoms can
only exist in states having energies within a discrete set, E0, E1, E2,...
The model also assumed that the absorption and emission of light
takes place with transitions between these states, the frequency, ωjk,
of the light being related to the difference of atomic energies by

(5) �ωjk = Ej − Ek.
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The mere existence of spectra (e.g. of atoms) with a discrete set
of frequencies does not put any problem for a realistic picture of the
atoms. Indeed, discrete frequencies are an essential feature of musi-
cal instruments. Thus it is not strange that Erwin Schrödinger had
this analogy in his mind when he derived his celebrated equation. In
fact, the title of his pioneer paper on wave mechanics was “Quanti-
zation as an eigenvalue problem”. Eigenvalue problems appear in the
mathematical treatment of linear differential equations with bound-
ary conditions, like in the study of vibrations of a string (say of a
piano) fixed by both ends. It is the connection of frequencies with
energy differences, as in Bohr eq.(5), which is difficult to understand.
I suggest that it may be related to the connection energy-frequency
of the normal modes of the vacuum fields, eq.(2), but I do not hold a
fully satisfactory explanation.

We might believe that the frequencies are real but the discrete
states are just an extra assumption introduced via eq.(5) because in
practice the frequencies are observed but the energies usually not.
However, the connection was confirmed by the experiment of Frank
and Hertz in 1914. It consists of the scattering of electrons on mer-
cury atoms in vapour state with the result that, for high enough elec-
tron energies, inelastic scattering was observed with a decrease of
the electron energy by 4.9 eV. This quantity precisely corresponds to
a frequency of the mercury spectrum via the relation eq.(5), whence
the said quantity was interpreted as the energy difference between the
ground state and the first excited state of the atom. As a consequence
of these facts, and others, it has been fully accepted that the set of
energy states of atoms is discrete. Furthermore, the discontinuities
appear naturally in the quantum formalism where physical quantities
correspond to operators in a Hilbert space having a discrete spectrum
(in the mathematical sense of spectrum of an operator). Discrete-
ness has also been ascribed to other dynamical quantities like angular
momentum as mentioned below.

It is true that the quantum discontinuities give rise to difficulties
for an intuitive understanding of quantum physics. I am not able to
offer a plausible picture of the phenomenon, but the difficulty of doing
it increases by the way the fact is presented at an elementary level.
Indeed, the usual statement that material systems (e.g. atoms) may
transition between two different energy states never possessing any in-
termediate energy is wrong. Quantum electrodynamics predicts that
spectral lines are not sharp, but possess some width. Thus Bohr’s
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eq.(5) should be taken as an approximation, the possible atomic ener-
gies actually consisting of a continuous set. Eq.(5) simply recalls that
the probabilities of some energy states are strongly concentrated near
some discrete values. This remark solves one paradox which appears
when the emission or absorption of light is presented at a popular
level, namely the contradiction between assuming that atomic tran-
sitions are instantaneous and assuming that the emitted light has a
sharp frequency. The fact is that the transition has a finite duration,
Δt, and the emitted light has a finite linewidth, Δω, fulfilling the
inequality

(6) ΔωΔt � 1,

which is well known from classical optics. The inequality holds true
for any periodic motion and the quantum formalism also predicts it.
Indeed, sharp energies of atoms appear only in a calculation to lowest
order of approximation (i.e. in the limit when the electron charge goes
to zero, e → 0). However, when radiative corrections of quantum elec-
trodynamics are taken into account the calculation leads to spectral
lines with a finite width. The corrections are small and may be ne-
glected in elementary calculations but they are essential for a realistic
interpretation. This is a typical example of how the emphasis on the
simplicity of the calculations, rather than the clarity of the concepts,
has the consequence that quantum mechanics appears as counterintu-
itive. A realistic picture of the atomic emission is possible assuming
that light is emitted in a continuous process lasting a time Δt that
fulfils the inequality (6), the total energy of atom plus light being
conserved at all times. Indeed, this fits with the quantum evolution
equation of the atom coupled to the electromagnetic field (that is, in
quantum electrodynamics). Of course, the picture does not explain
why the emitted light has large intensity for some frequencies within
a discrete set but very low intensity for other frequencies.

Similar arguments may be used in order to understand the quan-
tization of angular momentum, as shown for instance in the Stern-
Gerlach experiment. In popular expositions the experimental results
are presented as if all atoms arrive at one amongst two sharp lines
in a screen. Then it is difficult to reach a picture of what is taking
place in the interaction between the atom and the inhomogeneous
magnetic field. However, the truth is that what appears in the screen
are two wide spots, something that is less counterintuitive. It is the
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1.2. SPECIFIC FEATURES OF QUANTUM PHYSICS 17

case that an accurate quantum mechanical treatment of the experi-
ment precisely predicts that fact [23]. A picture of the phenomenon
may be reached assuming that during the interaction of the atom
with the magnetic field some fluctuation and dissipation takes place
which tends to align (approximately) the atomic magnetic moment
with the (main) field. After the atomic magnetic moment and the
magnetic field are aligned either parallel or antiparallel, the magnetic
force determines the atomic motion towards the screen.

1.2.6. The apparent lack of objective properties. In clas-
sical physics it is assumed that any observation or measurement just
reveals (‘removes a veil’) a property which exists objectively with in-
dependence of any observation. In quantum mechanics this seems
to be untrue. Let us clarify the motivation for that belief with an
example. We consider a physical system possessing three observable
properties which I shall label A, B and C.

I will assume that the observables A and C may be measured
in the same experiment, and similarly for B and C, but for some
reasons A and B cannot be measured with the same experimental ar-
rangement. Then with repeated measurements in identically prepared
systems it is possible to obtain the joint probability distribution for
the results of the former measurement, which I will represent by the
density, ρ (a, c) , that the observable A takes the value a, and the ob-
servable C the value c. Similarly we may obtain ρ (b, c), but it is
not possible to obtain empirically a joint probability density ρ (a, b)
because we cannot measure A and B simultaneously. Up to here no
problem arises, everything agrees with the intuition.

If we now think that the measurement just reveals preexisting val-
ues of the observable quantities, we are compelled to assume that, in
every state, the system possesses the values a, b and c, independently
of any observation or measurement. More generally, the preparation
procedure should lead to a state with a joint probability distribu-
tion, ρ (a, b, c), for the three observables. If this is the case the joint
probabilities for two observables should be the marginals of the joint
distribution, that is,

(7) ρ (a, c) =

∫
ρ (a, b, c) db, ρ (b, c) =

∫
ρ (a, b, c) da.

However, it has been shown, in some experiments, that there are par-
ticular cases of states and observables where no (positive) joint prob-
ability density ρ (a, b, c) exists such that the marginals eqs.(7) agree
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with the empirical results. The non-existence of a joint probability
fulfilling eqs.(7) in general is predicted from the quantum formalism,
and it is the essential content of the Kochen-Specker theorem (see
chapter 3 section 3.2.4). As in the case of the Heisenberg principle,
the practical impossibility has been raised to the rank of an ontological
statement: “Physical systems do not possess properties independently
of measurements.”

Is that statement justified? It is not. What the experiments have
shown is that the observed properties depend not only on the state
of the system but on the whole experimental set-up. In fact, we may
assume that physical systems possess some properties which in spe-
cific experimental set-ups give rise to observable quantities, but the
observables may not exist independently of the experiment. Actually,
a similar situation also happens in classical physics, as for instance
when we play dice. If we get a number, say 2, we cannot claim that
the value 2 was preexistent to our experiment. The result 2 is ac-
tually created by the experiment of throwing the dice. Returning
to quantum physics, there is a simple explanation for the frequent
inexistence of properties independent of measurements (some partic-
ular properties do exist, for instance the rest mass of particles). We
may assume that the measured properties are contextual, that is, they
depend not only on the state of the system but on the whole experi-
mental context. This point was correctly emphasized by Bohr and, in
my opinion, solves all problems of interpretation which might follow
from the Kochen-Specker theorem. (Of course, the theorem provides
some quantitative statements which should be explained, but here
I am addressing the question whether the practical impossibility of
getting joint probabilities prevents a realistic interpretation.)

The real difficulty arises when people attempt to reach conclusions
which go beyond what follows from the facts. Indeed, we can state
that some properties do not exist independently of measurements in
some particular instances, but we should not extrapolate and say that
in nature there are no properties independent of the observation. This
absurd extrapolation was correctly criticized by Einstein with his cel-
ebrated rhetorical question “Is the moon there when nobody looks?”

One might ask why in the microscopic domain it is frequent that
values of the observables are created by the experiments whilst this
situation is rare at the macroscopic level. An explanation may be
as follows. In the macroscopic world we may study systems with
instruments more fine than the object to be studied. E.g., we may
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look at the interior of an orange using a knife. In the microscopic
domain any macroscopic equipment used for the study of atoms will
consist of atoms. This makes our knowledge less direct in the micro
than in the macroscopic domain, and more dependent on the context.

The fact that the measurement cannot be understood as simply
revealing the values of preexisting properties has led to the introduc-
tion of some ‘postulates of the measurement’ in the Hilbert space
quantum formalism as discussed in the next chapter.

1.2.7. Wave-particle duality. The assumption that all quan-
tum entities have a dual nature, particle and wave, is the source of
most difficulties for an intuitive understanding of quantum mechanics.
But if we do not want to destroy the basic properties of space, the
wave-particle duality really involves a contradiction. In fact particle
means something localized, wave means something extended. More
precisely, particle (wave) means much smaller (much greater) than
some reference length, e.g. a few times the size of an atom in the
nonrelativistic quantum mechanics of atoms and molecules. For this
reason it is bizarre to say that an atom (with radius about 10 nm)
crosses simultaneously through two slits (distant about 1μm). Thus it
is not strange that for some people the interference experiments con-
tain all the mysteries of quantum mechanics (in Feynman’s words).
The problem for a realistic interpretation of the quantum phenomena
posed by the wave-particle duality is certainly hard. It will be con-
sidered for some particular cases in later chapters of the book, but
in the following I sketch a possible general solution. We may assume
that in nature there are both particles and fields (waves), the particle
behaviour of fields deriving from the interaction with particles and
the wave behaviour of particles from the interaction with fields. The
difference with the macroscopic world, where there are also particles
and fields, is that interactions are more relevant and complex in the
microscopic domain.

I think that electrons (or protons, neutrons, atoms, molecules)
are particles, whilst radiation consists of waves. ‘Photons’ are not
particles but mathematical constructs useful for the description of
some phenomena [6]. Then, how can we interpret the interference ex-
periments where we observe fringes typical of waves, but these fringes
appear as sets of localized events which are typical of particles? In the
case of radiation the interference may be easily understood in classical
terms, and the problem is the particle behaviour in detection. The
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20 1. THE QUANTUM IMAGE OF NATURE

opposite is true for particles like atoms. Its localized detection is easy
to understand but their interference puts the problem. Let us study
the two cases separately.

The detection of ‘individual photons’ in a photographic plate is
due to the atomic nature of the plate. In this interpretation, saying
that radiation are particles because they give rise to individual black-
ened grains is like saying that wind is corpuscular because the number
of trees falling in the forest is an integer. Of course, in both cases,
the photo and the forest, there is a random element. This is obvious
for the wind but there is also a random element in the radiation: the
quantum noise or quantum fluctuations of the vacuum fields. The
assumption that vacuum fields are real is an essential hypothesis in
this book. I claim that this hypothesis is crucial for a realistic inter-
pretation of quantum mechanics. The detection process in a photon
counter may be explained as a transfer of energy from the field to
individual atoms or molecules, this energy amplified appropriately by
the detector giving rise to one count. In this process the vacuum fields
would play a relevant role.

The wave behaviour of neutrons, atoms or molecules, for instance
in the two-slits experiments, is more difficult to understand. We might
assume that it is caused by the vacuum fields, consisting of a random
electromagnetic radiation, fluctuations of the spacetime metric and
other components. That noise is what interferes, producing a pattern
which guides the particles. The picture has some similarity with the
old proposal by L. de Broglie (the pilot wave theory) or the picture
offered by ‘Bohmian mechanics’, to be discussed in chapter 4, but
there are two important differences. Firstly in our view there is a clear
physical entity different from the particles, namely the vacuum field
fluctuations (or quantum noise), whilst the particle remains localized
all the time. Secondly there is a random element which is not present
in Bohmian mechanics.

In any case, the wave-particle duality is a big problem for an
intuitive picture of the microscopic world. I will make a more detailed
discussion of some examples in chapters 4 and 6.

1.2.8. Quantum wholeness and nonlocality. Maybe the phe-
nomena that put the greatest difficulties for a realistic interpretation
is the existence of a kind of wholeness in some quantum phenomena.
Indeed, there exist correlations between distant bodies that appar-
ently cannot be explained with an intuitive picture. Usually these
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phenomena are associated to entanglement. I propose that entangle-
ment is a correlation mediated by the vacuum fields. In chapters 5
and 6 we will present examples that fit with this assumption.

More dramatic is the existence, proved by John Bell in 1964, of
inequalities that are necessary for realistic local models. The subject
requires a detailed discussion and the whole chapter 3 is devoted to
it.

1.2.9. Conclusions. The analysis of the most characteristic
quantum phenomena leads us to emphasize a point that is crucial for
the attempt of reaching a picture of the quantum world. The diffi-
culties for a realistic interpretation of quantum mechanics may derive
from a number of unneeded assumptions, adhered to the quantum the-
ory for historical reasons. In some cases the difficulties are caused
by an excess of idealization in the interpretation of the experiments.
The use of idealizations is supposed to contribute to clarity, but in my
opinion it has the opposite effect; it contributes to misunderstanding.
It is true that it may simplify the teaching of how to use quantum
mechanics, but it puts a strong obstacle for an intuitive picture of
the quantum world. A typical example, discussed above, is the use of
first order perturbation theory in the study of emission or absorption
of light, which suggests sudden jumps in the atom thus hiding the
fact that a more accurate treatment (via quantum electrodynamics)
predicts a continuous evolution of atom plus field.

The conclusion of the analysis made in this section is that a re-
alistic interpretation of quantum mechanics should refer to the actual
observations or experiments, but not to the predictions obtained from
the quantum formalism.

1.3. The assumption that the vacuum fields are real

For the realistic interpretation of quantum mechanics proposed
in this book, the hypothesis that the quantum vacuum fields are real
stochastic fields is crucial. Therefore I devote this section to give
arguments supporting that assumption.

1.3.1. The quantum vacuum in field theory. The existence
of random radiation in vacuum, even at zero Kelvin, appears for the
first time in Planck’s second radiation theory of 1912. This zero-
point energy of the electromagnetic field (ZPF) was rejected because
it is divergent, although the consequences of its possible reality were
soon explored by several authors, including Einstein and Nernst [26].
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The ZPF reappeared in 1927 when Dirac quantized the electromag-
netic field via an expansion in normal modes, that is, plane waves in
the case of free space. In the standard (Hilbert-space) formalism the
Hamiltonian operator of the field may be written (see chapter 2) as

(8) H =
1

2
�

∑
js

ωj

(
ajs + a†js

)2
=

1

2
�

∑
js

ωj(a
2
js+a†2js+2a†jsajs+1),

where ωj is the (angular) frequency and s the polarization of a normal

mode, ajs and a†js being the ‘annihilation and creation operators of
photons’ in that mode, and we have taken the commutation rules
into account in the last equality. Energy is given by the vacuum
expectation of the Hamiltonian, that is,

〈0 |H| 0〉 = 1
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〈
0
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�

∑
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=
∑
js

(
1

2
�ωj),(9)

the former expectation being null. The result corresponds to a mean
energy 1

2�ωj per mode, that fits in the arguments of section 1.2.2
above.

A problem is that the total energy density in space diverges when
we sum over all (infinitely many) modes. The standard solution to the
divergence problem is to remove the term that contributes in eq.(9),
a procedure which is known as ‘normal ordering’. It consists of writ-
ing the annihilation operators to the right; that is, assuming that the
correct Hamiltonian is not the first expression in eq.(8), but the last
one with unity removed. It may be realized that the normal ordering
is equivalent to choosing the zero of energies at the level of the vac-
uum. It provides a practical procedure useful in quantum-mechanical
calculations, but it is not a good solution for many authors. They
see it as an ‘ad hoc’ assumption, just aimed at removing unpleasant
divergences. For these authors the ZPF is a logical consequence of
quantization, and the solution of the divergence problem should come
from a more natural mechanism. Furthermore it has been shown that
the assumption of reality of the ZPF combined with the classical laws
of electrodynamics allows explaining some phenomena usually taken
as purely quantum, an approach known as stochastic electrodynamics
that will be reviewed in chapter 5.
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Around 1947 two discoveries reinforced the hypothesis that the
quantum vacuum fields are real, namely the Lamb shift and the Casi-
mir effect. Lamb and Retherford observed an unexpected absorption
of microwave radiation by atomic hydrogen, that was soon explained
in terms of the interaction of the atom with the quantized electro-
magnetic field, that involves the vacuum radiation (ZPF). Indeed,
Willis Lamb claimed to be the discoverer of the ZPF by experiment.
Furthermore he wrote that “photons are the quanta of the electro-
magnetic field, but they are not particles” [6]. The discovery led in a
few years to the development of quantum electrodynamics (QED), a
theory that allows predictions in spectacular agreement with experi-
ments, and it was the starting point for the whole theory of relativistic
quantum fields. The success of QED rests on renormalization tech-
niques, that is, assuming that physical particles, e.g. electrons, are
dressed with ‘virtual fields’ making their physical mass and charge
different from the bare quantities. In my opinion the assumptions
behind renormalization are actually a reinforcement of the reality of
the quantum vacuum fields, although people avoid commitment with
that conclusion using the word ‘virtual’ as an alternative to ‘really
existing’.

The Casimir effect consists of the attraction between two parallel
perfectly conducting plates in vacuum. The force F per unit area
depends on the distance d between the plates,

(10) F = − π2
�c

240d4
,

a force confirmed empirically [26]. The reason for the attraction may
be understood qualitatively as follows. In equilibrium the electric
field of the zero-point radiation, ZPF, should vanish on or be normal
to any plate surface, otherwise a current would be produced. This fact
constrains the possible low frequency normal modes of the radiation,
that is, those having wavelengths of the order the distance between
plates or larger, although the distribution of high frequency modes is
barely modified by the presence of the plates. Therefore, ascribing
an energy 1

2�ωj to every mode, the total energy of the ZPF in space
becomes a function of the distance between plates and the derivative
of that function with respect to the distance leads to eq.(10). Ac-
tually, the calculated energy of the ZPF diverges if we sum over all
radiation modes, including those with arbitrarily high frequency, but
there are regularization procedures that give the correct result [26].
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They essentially subtract the field energy with the plates present mi-
nus the energy with the plates removed. The physical picture of the
phenomenon is that the radiation pressures in both faces of each plate
are different and this is the reason for a net force on the plate. The
Casimir effect is currently considered the most strong argument for
the reality of the quantum vacuum fields. For us it is specially relevant
because it provides an example of the fact that the difference between
the radiation arriving at the two faces of a plate is what matters for
the radiation-plate interaction, rather than the radiation acting on
one side of the plate. We will make a similar assumption in the model
of detector to be proposed in chapter 6 section 6.5.

1.3.2. The quantum vacuum in astrophysics and cosmol-
ogy. In laboratory physics, where gravity usually plays no role, the
reality of the quantum vacuum fields is not too relevant a question. In
fact, their possibly huge, or divergent, energy may be usually ignored
choosing the zero energy at the vacuum level as said above. However,
this choice is no longer innocuous in the presence of gravity because,
according to relativity theory, energy gravitates; whence the huge vac-
uum energy should produce a huge gravitational field. Therefore the
possible existence of a vacuum energy is a relevant question in astro-
physics and cosmology. A more extended study of the question will
be made in chapter 7, summed up as follows.

From long ago the quantum vacuum has been related to the cos-
mological constant, a term that Einstein introduced in general rel-
ativity in order to make possible his 1917 model of universe. The
reason for the relation is that the vacuum, even if it possesses some
energy density, ρ, should be Lorentz invariant. Then it should have
also pressure, P , with the vacuum equation of state P = −ρ, that is,
equivalent to a cosmological constant term. Actually, there was no
empirical evidence for a cosmological constant until 1999 but, even
before that date, many authors speculated about the possibility that
the quantum vacuum fields give rise to a cosmological term. However,
there was a big problem, namely the vacuum energy density appears
to be infinite if no cut-off exists, and the only natural cut-off seems
to be at the Planck scale. This choice would give a cosmological term
about 10123 times the value derived from observations, a huge dis-
crepancy known as the ‘cosmological constant problem’. The most
simple solution is to assume a cancelation between positive and nega-
tive terms of the vacuum energy. However, it seems difficult to believe
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that the cancelation is not exact but it is fine tuned to reduce the dis-
agreement by 123 orders of magnitude. This problem might be an
argument against the reality of the vacuum fields. Nevertheless, the
difficulty with the fine tuning is solved in a plausible way if we assume
that the mean vacuum energy and pressure are exactly balanced but
the cosmological constant derives from the vacuum fluctuations (see
chapter 7 section 7.4 for details).

As a conclusion there are strong arguments for the reality of the
quantum vacuum fields possessing energy and pressure. Firstly the
vacuum fields are a logical consequence of quantization and should
not be removed artificially. Secondly the action of the vacuum fields
in laboratory experiments may be weak, usually not observable, due to
an almost complete cancelation of the effects of radiation traveling in
opposite directions, but it may be measured in some delicate breakings
of balance like the Casimir effect. In astrophysics and cosmology
the alleged huge energy and pressure of the vacuum fields may not
hold, because a cancelation might exists between positive and negative
contributions.

1.4. Sketch of a physical model of the quantum world

A realistic interpretation, providing a physical model of the world,
would make quantum mechanics more palatable to lovers of theory in
the sense of contemplation. It would allow ‘understanding quantum
mechanics’. The picture supported here is sketched in the following.
Nevertheless, as said above, there are real difficulties for a realistic
interpretation that this book does not eliminate completely.

The framework of the physical world is a manifold with four di-
mensions and intrinsic curvature: the spacetime. In physics we use
names like energy, momentum or angular momentum for some prop-
erties of matter that I propose to be types of spacetime curvature.
I believe that the Einstein equation of general relativity is just the
‘dictionary’ that translates the physical concepts to geometrical prop-
erties, the latter summarized in the Einstein curvature tensor and the
former enclosed in the stress-energy tensor (see chapter 7 section 7.2
for details). In spacetime there are fields, that is, scalar, vector or
spinor functions of the spacetime points. The first two kinds (scalar
and vector fields) are named Bose fields and the last Fermi fields.
Maybe the Standard Model of particle physics contains all existing
fields in nature, but we cannot exclude that there is physics beyond
that model.
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The theory stating the appropriate formalism for the study of
the fields and their interactions is relativistic quantum field theory.
Quantization is a name for the process of describing the fields as (pe-
culiar) stochastic processes. To begin with, the quantization should
be applied to spacetime, which should be treated as stochastic. That
is, a probability distribution over possible samples of spacetime or, in
other words, a distribution of metrics. For a more extended discussion
see chapter 7 section 2.

I believe that Bose fields are actually continuous, that is, waves in
popular language. In contrast, Fermi fields describe small, or point-
like, particles. The stochastic characterization of fields is commonly
made using a Hilbert space (more properly C*-algebras). For a sim-
ple presentation the field is written as a linear combination of normal
modes (e.g. plane waves in free space) and the field amplitudes are rep-
resented by operators on the Hilbert space. This provides a formalism
very useful for calculations but lacking a realistic interpretation, that
is, a picture of reality. For the electromagnetic field a picture may
be obtained via the Weyl-Wigner transform, which will be studied in
some detail in chapter 6 section 6.3. In summary it characterizes the
vacuum state of the field as a Gaussian stochastic field with a mean
energy per mode 1

2�ω whence states with additional energy (field exci-
tations in quantum language) may be got using the creation operators
for ‘photons’. I believe that this picture might be extended to all Bose
fields. The picture of Fermi fields is less clear, but I believe that they
consist of particles, as said above. All this refers to fields interacting
via electromagnetic or weak forces alone, because strongly interact-
ing fields, that is, hadrons, probably cannot be studied in isolation;
whence getting a physical picture is more difficult.

The objects that we may study in the laboratory, for instance an
atom or a piece of bulk matter, are built from the fundamental fields.
They are usually quite complex, involving many interacting fields, in
particular the vacuum fields. In any case, an important consequence
is that no system may be fully isolated from the rest of the universe.
Indeed, every system should be effectively interacting with many other
systems via the vacuum fields. But in order to be able to make physics
we should assume that microscopic systems, even if not isolated, may
be treated with a theory that, in some form, takes the interaction with
the environment into account. I believe that this theory is quantum
mechanics. For instance, if we represent the state of an atom by a
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state vector it is plausible to assume that this representation corre-
sponds to the atom ‘dressed’ by all fields that interact with it. This
is consistent with the fact that in quantum electrodynamics the phys-
ical electrons are never ‘bare’ but ‘dressed with virtual photons and
electron-positron pairs’. The word ‘virtual’ is just a name for some-
thing that we know to have observable effects, but we do not want to
be committed with its real existence. In my view the representation of
an atom by a wave-function takes the (approximate) action of the vac-
uum fields into account as is shown by the use of the physical, rather
than bare, mass and charge of the electrons in calculations (say when
solving Schrödinger equation). Thus the magic of quantum theory is
that it allows studying complex objects via a quite simple formalism.

As a consequence it is a daring attitude to pretend that a state
vector represents faithfully the actual state of an individual system.
But it is more plausible to assume that the state vector represents
the relevant information available about the system. The conclusion
is that the quantum-mechanical description is necessarily incomplete
and this is the real cause of the claimed ‘irreducible probabilistic char-
acter of the physical laws’. For instance the fact that an atom decays
at a time that cannot be predicted derives from the fluctuations of
the vacuum fields that actually stimulate the decay.

The concept of isolated system is the cornerstone of classical
physics and, therefore, it is not strange that it was also introduced in
quantum physics. It is true that early authors dealing with quantum
theory, like Planck, Einstein and Nernst, studied the possible existence
and influence of vacuum (i.e. not thermal) fluctuations. However, the
success of the Bohr atomic model, where the concept of fluctuation was
absent, reinforced the idea that quantum systems may be treated as
isolated. These fluctuations reappeared in modern quantum mechan-
ics associated to the zero-point energy of bounded quantum systems.
However, in the alternative of either rejecting the assumption of iso-
lated system or dismissing the reality of the quantum fluctuations, the
mainstream of the community chose the latter. In my opinion that
choice has been the source of most difficulties for a realistic interpre-
tation of the quantum formalism.

The existence of real vacuum fluctuations gives rise to two char-
acteristic traits of quantum physics. Firstly quantum theory should
be probabilistic. Secondly it should present a kind of wholeness, quite
strange to classical physics where the concept of isolated system is cru-
cial. The fact that the vacuum fluctuations at different points may be
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correlated is the origin of the wholeness, which manifests specially in
the phenomenon of entanglement.
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[11] F. Laloë: Do we really understand quantum mechanics? Strange correlations,

paradoxes, and theorems. 2nd. edition, Cambridge Univ. Press, 2019.
[12] B. Drummond: Understanding quantum mechanics: a review and synthesis

in precise language. Open Phys. 17, 390-437 (2019).
[13] C. J. Isham: Lectures on quantum theory. Mathematical and structural foun-

dations. Imperial College Press, London, 1995.
[14] F. Suppe: The structure of scientific theories. University of Illinois Press,

Urbana, 1977.
[15] M. Redhead: Incompleteness, nonlocality and realism. Clarendon Press. Ox-

ford, 1990.
[16] A. Einstein, B. Podolsky, N. Rosen: Can quantum-mechanical description

of physical reality be considered complete? Phys. Rev. 47, 777-780 (1935).
(Reprinted in Wheeler and Zurek (1983)).

[17] N. Bohr: Can quantum-mechanical description of physical reality be consid-
ered complete? Phys. Rev. 48, 696 (1935).

[18] K. R. Popper: The logic of scientific discovery. Hutchinson, London, 1980.
German original, 1934.

[19] K. R. Popper: Conjectures and refutations. The growth of scientific knowl-
edge. Basic books. New York, 1962.

[20] I. Lakatos: The methodology of scientific research programmes. Cambridge
University Press, Cambridge, 1980

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 29

[21] W. Heisenberg: Physics and beyond : encounters and conversations. Harper
& Row, New York, 1971. Chapter 5: Quantum Mechanics and a talk with
Einstein (1925-1926) p. 59-69.

[22] E. Santos: Is there an electromagnetic background radiation underlying the
quantum phenomena? Anales de F́ısica (Madrid), 64, 317-320 (1968).

[23] T. W. Marshall, E. Santos: Can the Stern-Gerlach effect exhibit quantum
nonlocality? In P. Bush, P. Lahti and P. Mittelstaedt (Eds.), Symposium on
the Foundations of Modern Physics. Singapore: World Scientific, pp. 361-368
(1993).

[24] A. Einstein: Remarks concering the essays brought toghether in this co-
operative volume. In P. A. Schilpp (Ed.), Albert Einstein: Philosopher-
Scientist (pp. 665-688). La Salle Illinois. Open Court. 1949.

[25] N. Bohr: The quantum postulate and the recent development of atomic the-
ory. Nature, 121, 580-90 (1928). (Reprinted in Wheeler and Zurek (1983)).

[26] P. W. Milonni: The quantum vacuum. An introduction to quantum electro-
dynamics. Academic Press. New York. 1994.

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER 2

The Hilbert space formulation of quantum
mechanics

2.1. The origin of the formalism 32
2.1.1. Heisenberg, Dirac, and von Neumann 32
2.1.2. The lack of a physical picture 34

2.2. The standard postulates of quantum mechanics 36
2.2.1. States and observables 37
2.2.2. Measurement 39
2.2.3. Evolution 40
2.2.4. Commutation rules 41
2.2.5. Quantization 41
2.2.6. Quantum field theory 42

2.3. Difficulties for a realistic interpretation 43
2.3.1. States with nodal surfaces 43
2.3.2. Entangled states 46
2.3.3. What is a quantum state? 48
2.3.4. Preparation and measurement 49
2.3.5. Proposed weak postulates 51

2.4. Critical comments on current interpretations 53

2.4.1. Copenhagen (Bohr) interpretation 54

2.4.2. John von Neumann 56
2.4.3. The objectification and the quantum jumps problems 58

Collapse theories 59
2.4.4. Many-worlds 59
2.4.5. Ensemble interpretation. Is quantum theory complete? 63
2.4.6. Hidden variables theories 67
2.4.7. Conclusions 69

2.5. The logical structure of quantum theory 69
2.5.1. Quantum logic and quantum probability 69
2.5.2. The Bell inequalities as tests of classical probability 71
2.5.3. The measure of the amount of information 74

Bibliography 76

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



32 2. THE HILBERT SPACE FORMULATION

2.1. The origin of the formalism

The standard formalism of quantum mechanics rests on the math-
ematical theory of Hilbert spaces. Historically the formulation in
terms of abstract mathematical objects is due to Paul Dirac [1], who
proposed it soon after the formulation in terms of matrices by Werner
Heisenberg in the summer 1925. Dirac’s formalism provides a unifica-
tion with Erwin Schrödinger’s wave mechanics published in early 1926.
In the following I comment on the origin of the standard quantum for-
malism which explains the difficulty for the physical interpretation of
the theory. For the history of this period see the books by Jammer
quoted in chapter 1.

2.1.1. Heisenberg, Dirac, and von Neumann. Heisenberg
formulated quantum mechanics substituting matrices for the dynami-
cal variables of classical mechanics. The original article is hard to read
and several aspects were clarified in collaboration with Max Born and
Pascual Jordan. The starting point is the observation that some ob-
servable quantities in atomic spectra depend on two indices, whence
the set of possible values may be arranged as a square matrix. In
particular the frequencies of the emitted or absorbed radiation by an
atom, ωjk, which are related to energy differences via Bohr equation
�ωjk = Ej−Ek. This led Heisenberg to represent all dynamical quan-
tities by square matrices. In the attempt to use the classical laws of
motion for the new theory he was confronted with the novelty that,
unlike classical variables, the product of (square) matrices is not com-
mutative in general. Actually, this proved not to be a problem but
an advantage that Heisenberg exploited postulating that the matri-
ces associated to the position and momentum of a particle fulfil the
commutation rule (in one dimension)

(11)
∑
k

XjkPkl −
∑
k

PjkXkl = i�δjl,

where Xjk is the (j, k) element of the matrix associated to position,
and similar for the momentum, i is the imaginary unit, � is the Planck
constant and δjk is the Kronecker delta (i.e. δjj = 1 and δjk = 0 if
k �= j). From eq.(11) and the classical dynamical laws Heisenberg de-
vised a method for the calculation of atomic spectra and other observ-
able properties of atoms. A more practical method was the equation
postulated by Schrödinger a few months later. But in the meantime
Dirac made an important contribution that I revisit in the following.
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2.1. THE ORIGIN OF THE FORMALISM 33

Dirac started from the fact that square matrices might be inter-
preted as transformations of vectors. Indeed, one of the applications
of matrices is to represent changes in position of bodies. For instance,
a rotation in space may be described via the change in position of any
particle, say r ≡ (x1, x2, x3), to another position, r′ ≡ (x′

1, x
′
2, x

′
3),

that is,

x′
j=
∑
k

Rjkxk ⇒ r → r′ = R̂r,

where Rjk is the (j, k) element of the rotation matrix and R̂ an oper-
ator that transforms any vector in another one. Mathematically the
operator is a mapping of the space V of vectors onto itself. Rota-
tions in two dimensions commute, that is, the order of two mappings
is irrelevant, which may be represented R̂1R̂2 = R̂2R̂1, but this is
not generally true in three dimensions. The same happens with the
associated matrices.

By analogy Dirac assumed that the matrices of Heisenberg cor-
respond to operators acting on the vectors of some linear space. In
particular the evolution of a quantum system might be viewed as a
mapping of the form

(12) | ψ (t)〉 = Û (t, t0) | ψ (t0)〉,
where | ψ (t)〉 is a vector, written with the notation introduced by
Dirac which is now standard. The vector | ψ〉 might be represented
by a column matrix and the operator by a square matrix as those used
by Heisenberg in his quantum mechanics. The vector is supposed to
correspond to a state of a physical system, whence the vector space
becomes the space of states.

After that, it was necessary to characterize the evolution opera-
tor that should be derived from the Heisenberg equations for the time
evolution of the matrices associated to de dynamical variables repre-
senting dynamical variables. The fundamental result is that the time
derivative of Û (t, t0) is related to the Hamiltonian operator so that
eq.(12) leads to

i�
d

dt
| ψ (t)〉 = Ĥ | ψ (t)〉,

where | ψ〉 is a vector of the assumed space. This is the basic quan-
tum equation for the evolution, that bears the name of Schrödinger
although he did not write it in this general form (i.e. with abstract
operators and vectors).
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34 2. THE HILBERT SPACE FORMULATION

As an example let us apply it to a particle in a potential V which
is (in one dimension)

(13) i�
d

dt
| ψ (t)〉 =

(
1

2m
p̂2 + V (x̂)

)
| ψ (t0)〉.

For practical calculations it is convenient to consider the vectors
| ψ〉 to be elements of a linear space of functions {ψ (x, t)} . Then we
shall search for appropriate operators p̂ and x̂ acting on functions. It
may be realized that the following operators are consistent with the
commutation rules in eq.(11)

x̂ | ψ〉 → xψ (x, t) , p̂ | ψ〉 → −i�
∂

∂x
ψ (x, t) .

In fact, for any vector | ψ〉 we have

(p̂x̂− x̂p̂) | ψ〉 = −i� | ψ〉 ↔
[
−i�

∂

∂x
(xψ) + xi�

∂

∂x
ψ = −i�ψ

]
.

Hence we get Schrödinger equation in the form proposed by him, that
is (now in 3 dimensions),

i�
∂

∂t
ψ (x, y, z, t) = − �

2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ + V (x, y, z)ψ.

In summary, taking advantage of the analogy between matrices
and functions of one or several variables, Dirac showed that both
formulations of quantum mechanics (Heisenberg’s and Schrödinger’s)
were physically equivalent, something that the second author also es-
tablished independently. The vector spaces of functions require some
mathematical restrictions. In particular, topological postulates are
needed when the spaces have infinite dimension. For instance, the so-
lutions of Schrödinger equation, usually named wave-functions, should
be twice derivable and normalizable.

In 1932 John von Neumann [2] established the quantum formal-
ism on a rigorous mathematical basis defining the Dirac linear spaces
to be Hilbert spaces. Hilbert spaces became the standard, or canoni-
cal, formulation of quantum mechanics. For practical calculations in
systems of electrons (or atoms, molecules and solids) it proves con-
venient to use Schrödinger equation or the relativistic generalization
due to Dirac in 1928 [1].

2.1.2. The lack of a physical picture. Hilbert spaces supply
an elegant mathematical formalism able to establish general properties
like symmetries. They have also allowed to extend the theory from
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2.1. THE ORIGIN OF THE FORMALISM 35

atoms and molecules to nuclei and later to fundamental particles. It is
not strange that the combination of beautiful formalism and practical
success has dazzled physicists, making the Hilbert space formalism
the standard one for quantum theory. In particular most proposed
interpretations of the theory refer to that formalism as we will discuss
in section 2.4 below. To this fact has contributed also the failure of
alternative formulations like Bohmian or stochastic mechanics and the
difficulties of interpretation for other formalisms like the Weyl-Wigner
(but see chapter 6) or the Feynman path integrals. These alternative
formulations will be revisited in chapter 4.

The abstract character of the formalism darkens the physical in-
terpretation, that is, it makes it difficult to get a picture of the natural
world. In contrast, in classical physics the abstract formulations like
Lagrange’s or Hamilton’s came after a slow process from observations
of particular phenomena, in a route similar to the process of learning,
going from simple cases to general formulations. Indeed, the devel-
opment began with the study of motion and the causes of it, forces.
The naive observation suggests that motion is more rapid if the force
applied is greater, a common experience when we push a body. After
a long process, which included accepting the relevance of friction and
later the existence of forces at a distance, Newton was able to state
the foundations of classical mechanics with his well known laws of
dynamics. The interpretation is not difficult in the sense that these
laws provide an intuitive picture of motion and its relation with forces.
From this point on, a process of increasing abstraction led to the con-
cepts of energy and momentum and later to the elegant mathematical
formulations due to Lagrange and Hamilton. But it seems that no
physical picture could be easily obtained if we started from a formu-
lation in terms of generalized coordinates and momenta.

In sharp contrast, quantum mechanics appeared in abstract form
at the very beginning, in an attempt to have a simple calculational tool
to deal with rather complex phenomena like the emission and absorp-
tion of light by atomic gases, that is atomic spectra. The empirical
evidence was initially interpreted introducing simple assumptions that
evaded a deep understanding of the detailed interaction of atoms with
light. This was the case for the Bohr atomic model, able to predict
atomic spectra. The elaboration of these preliminary theories did not
pursued in the direction of getting a deeper picture of the structure
of atoms but rather with the aim of finding a good calculational tool
free from internal contradictions. At the end the standard formalism
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36 2. THE HILBERT SPACE FORMULATION

did not lead just to modifications of the existing picture of the natural
world (i.e. classical physics), but to a change in the very concept of
what is science. This was indeed the case with the quantum mechan-
ics of Heisenberg, reinforced with the philosophical contributions of
this author and Bohr, as discussed in chapter 1.

Schrödinger wave mechanics attempted a less drastic change of the
old classical laws, more in line with tradition, not questioning that the
purpose of physics is to provide a picture of the natural world. Indeed,
Schrödinger proposed to understand line spectra of atoms by analogy
with the well known sound spectra of musical instrument. This ap-
proach was dismissed because Schrödinger interpreted his equation as
showing that the electron is a continuous charge distribution, which
is untenable as discussed in chapter 1. At present the Schrödinger
equation is fully integrated in the standard formalism, interpreting
that his wave-function does not refer to actual fields or waves but to
probability amplitudes. In my view ‘probability amplitude’ is just the
juxtaposition of two contradictory words. I believe that the wave-
function may be a kind of average of a set of field amplitudes. That
is, I think that the analogy of Schrödinger’s equation with equations
for the vibrations of musical instruments is valid; air in a flute is
similar to vibrations of fields, including vacuum fields, in an atom.
Consequently I think that the correct route to understand quantum
theory is not to start with elementary (nonrelativistic) quantum me-
chanics, extending later the interpretation to field theory, which has
been the historical path. We should try to understand first quantum
field theory, as attempted in chapter 1 section 1.4.

2.2. The standard postulates of quantum mechanics

Here the formalism of quantum mechanics will be summarized
presenting it as a set of postulates, although I will comment on these
standard postulates critically in section 2.2.2. For the sake of clarity,
I will not present the postulates in full generality, but make the fiction
that all operators corresponding to observables possess discrete (nu-
merable) spectrum. For a more rigorous formulation and explanation
of the postulates see any book on quantum mechanics, e.g. the one by
Galindo and Pascual [3].

In classical physics one distinguishes between mechanics and field
theory. The former deals with systems consisting of a finite set of
point particles (or bodies that may be approximated as pointlike)
and the latter with continuous distributions of matter. However, in
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2.2. THE STANDARD POSTULATES OF QUANTUM MECHANICS 37

practice the distinction is rather made between systems possessing
either finite or infinite number of degrees of freedom, so that rigid
bodies are usually studied in books of mechanics, rather than field
theory. On the other hand it is frequent that systems consisting of
a very large (finite) number of particles are more easily treated as
continuous distributions and therefore studied as fields. This is for
instance the case of elasticity theory.

In quantum physics there is also a distinction between mechan-
ics (of finite sets of point particles) and field theory. However, the
standard view is that the latter is the fundamental theory whilst the
former is an approximation valid in a limited domain, when there is
no creation and annihilation of particles, which requires that the ve-
locities involved are small in comparison with that of light. Indeed,
a characteristic trait of quantum field theory is the prediction of the
possible creation or annihilation of particles. Therefore for high veloc-
ities (special) relativistic field theory must be used, but no quantum
relativistic mechanics exists. In fact, kinetic energies of order the rest
mass of particles would allow possible creation, whence a field theo-
retical treatment is necessary. For these reasons it appears that we
should formulate the quantum postulates for field theory and derive
from them those of mechanics. However, it is the case that all exper-
iments would involve measurements with instruments at rest in the
laboratory or moving slowly and, on the other hand, measurement is
a crucial process according to the quantum canonical formalism, that
requires specific postulates. Therefore it is appropriate to establish
the postulates for quantum mechanics and later on to extend them to
field theory. This is what I will do here.

2.2.1. States and observables. 1. To every physical system
it is associated a Hilbert space, H, complex and separable. A pure
state of the physical system at a time t is represented by a unitary
ray belonging to the Hilbert space. A normalized element of the ray,
| ψ (t)〉, is called state vector.

A pure state contains the maximal possible information about the
system. The opposite to pure is ‘mixed state’, which would correspond
to a probability distribution of pure states. That is, if {| ψj〉} is a set
of pure states, a mixed state is defined by a set of probabilities {pj} .
Although it is possible to study more general cases, here I will assume
that every two vectors of the set {| ψj〉} used to define the mixed
state are normalized and orthogonal, that is, 〈ψj | ψl〉 = δjk. Then
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38 2. THE HILBERT SPACE FORMULATION

any mixed state may be represented by a ‘density operator’ defined
in terms of the probabilities of pure states as

(14) ρ̂ =
∑
j

pj | ψj〉〈ψj | .

Density operators fulfil the conditions of being self-adjoint, positive,
and having unit trace, that is,

(15) ρ̂ = ρ̂†, ρ̂ ≥ ρ̂2, Tr (ρ̂) = 1.

Pure states may be also defined as those corresponding to density
operators having only one term in the sum eq.(14) . In this case that
operator is idempotent, that is, it fulfils ρ̂ = ρ̂2. This definition is
equivalent to saying that it corresponds to a ray, as stated above.

2. Every observable, A, of a physical system is represented by
a self-adjoint, linear operator, Â, acting on the Hilbert space of the
system.

Here, and in the following, I will distinguish the physical observ-
able, A, from the operator which represents it, Â. I shall avoid the
name ‘observable’ for an operator in spite of this being a common
practice in books and articles.

Any self-adjoint operator, Â, (with discrete spectrum) may be
represented in the form

(16) Â =
∑
j

ajP̂j ,

where {aj} is the set of eigenvalues of Â and P̂j is a projector (fulfilling

P̂ 2
j = P̂j) onto the subspace associated to aj , that is, the subspace

spanned by the eigenvectors of Â pertaining to eigenvalue aj . Recently
a more general type of observable is used, which is represented by an
operator defined by an expression like eq.(16) with P̂j not necessarily

being a projector but only a positive operator (fulfilling P̂j ≥ P̂ 2
j ).

Operators like eq.(16) are known as ‘positive operator valued measures
(POVM)’. The generalization is useful in some cases, but it is not
needed for a realistic interpretation of quantum mechanics and will
not be used in this book.

After these postulates (Schrödinger’s) wave mechanics of a single
particle may be seen as a realization of the Hilbert space by means
of (square integrable, therefore normalizable) functions ψ (x, y, z) and
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2.2. THE STANDARD POSTULATES OF QUANTUM MECHANICS 39

(Heisenberg’s) quantum mechanics as a realization by means of (infi-
nite) matrices. Some authors, although not all, introduce the linear
superposition principle in the form of a postulate, as follows:

3. If | ψj〉 and | ψl〉 represent two possible pure states of the
system, then any linear combination

α | ψj〉+ β | ψl〉,
where α and β are complex numbers satisfying |α|2 + |β|2 = 1, is
also a possible state of the system, except for superselection rules. A
superselection rule occurs if | ψj〉 and | ψl〉 are eigenvectors, with dif-
ferent eigenvalue, of an operator representing an absolutely conserved
quantity (e.g. the electric charge).

2.2.2. Measurement. 4. If a physical system is in a pure state
represented by the normalized vector | ψ〉, then in a measurement
of the observable A the probability of getting the value aj is Pj =

|〈aj | ψ〉|2, where 〈aj | is the eigenvector of the operator Â corre-
sponding to the eigenvalue aj .

A consequence of this postulate is that the expectation value of
the observable A when the system is in the pure state | ψ〉 is

〈A〉 =
n∑

j=1

Pjaj =

n∑
j=1

aj |〈aj | ψ〉|2 .

For a mixed state the expectation value becomes

〈A〉 =
n∑

k=1

pk〈ψk | Â | ψk〉 = Tr
(
ρ̂Â
)
,

where Tr () means the trace and the density operator ρ̂ was defined
in eq.(14). This may be extended to integer powers of the observable,
that is,

〈An〉 =
n∑

k=1

pk〈ψk | Ân | ψk〉 = Tr
(
ρ̂Ân
)
.

An important application of the postulate is the measurement
of position of a particle. We may get the probability distribution of
positions, ρ (x), via its moments. We have

〈xn〉 = 〈ψ | x̂n | ψ〉.
When we pass to the Schrödinger representation by wave-functions,
rather than vectors in the Hilbert space, the position operator is just
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multiplication times the wave-function. Thus we have

〈xn〉 =
∫

d3xψ∗ (x)xnψ (x) =

∫
d3xxn |ψ (x)|2 ,

which shows that

(17) ρ (x) = |ψ (x)|2 .
This is known as Born’s rule, and it is fundamental for the interpre-
tation of the wave-function. It was introduced as a postulate by Max
Born [4].

An important property is commutativity. Two operators Â and
B̂ commute if [

Â, B̂
]
= ÂB̂ − B̂Â = 0.

Commuting self-adjoint operators possess a complete set of common
eigenvectors and it is said that they are compatible. In fact, it may
be proved from the postulates that if the operators associated to two
observables do not commute, we cannot expect that the observables
can be measured simultaneously because this leads to contradiction
with the postulates. On the other hand it is usually assumed that
compatible observables can be measured simultaneously.

5. In an ideal measurement of the observable Â, the state after
a measurement with the result λ will be one of the eigenstates of Â
belonging to the eigenvalue λ.

In the Hilbert space it is possible to define ‘complete sets of com-
muting (self-adjoint linear) operators’ (CSCO), as a set fulfilling: 1)
Every two operators commute, 2) There is a common basis of eigen-
vectors, 3) No operator may be removed without violating condition
2. The most relevant property is that a pure state is determined by
the eigenvalues of all operators of a CSCO. Thus Postulate 5 implies
that a pure state might be manufactured by the simultaneous mea-
surement of a CSCO on the system.

2.2.3. Evolution. 6. In the time interval between two measure-
ments, pure states of the physical system remain pure, and the repre-
sentative vector evolves according to the Schrödinger equation

i�
d

dt
| ψ (t)〉 = Ĥ | ψ (t)〉,

where Ĥ is a self-adjoint linear operator called Hamiltonian of the
system.
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The Schrödinger equation allows getting the time variation of the
expectation value of any observable. In fact, we have

d

dt
〈ψ (t) | Â | ψ (t)〉 = i

�
〈ψ (t) |

[
Â, Ĥ

]
| ψ (t)〉.

This is called the Schrödinger picture. The same result may be ob-
tained in the Heisenberg picture. It consists of using always the
same wave-function, say ψ (0), but a time dependent operator, ÂH(t),
whose evolution is given by

d

dt
Â(t) =

i

�

[
ÂH (t) , Ĥ

]
(18)

⇒ 〈ψ (t) | Â | ψ (t)〉 = 〈ψ (0) | ÂH (t) | ψ (0)〉
which is called Heisenberg equation.

2.2.4. Commutation rules. 7. If in a physical system the Car-
tesian coordinates of position are x1, x2, . . . , xn and their conjugate
momenta p1, p2, . . . , pn, then the operators representing these observ-
ables should fulfil the commutation rules

[x̂j , x̂k] = 0, [p̂j , p̂k] = 0, [x̂j , p̂k] = i�δjk Î ,

where Î is the identity operator in the Hilbert space and [x̂j , x̂k] ≡
x̂j x̂k − x̂kx̂j .

2.2.5. Quantization. 8. If a system possesses an observable
with classical expression A (xj , pk; t), then the operator corresponding
to this observable is a similar function of the operators x̂j , p̂k and the
time, t, if there is no ambiguity in the ordering of the operators.

9. If a system consists of several subsystems, the Hilbert space is
the direct product of the spaces of the subsystems.

In the case of a system with two subsystems, this means that if
{| ψk〉} form a basis in the space of the first subsystem and {| χl〉} a
basis in the space of the second one, then {| ψk〉⊗ | χl〉} is a basis in
the complete system. For instance, if the states of a particle are rep-
resented by the (square integrable) functions of the position variable
r1, and the states of another particle by functions of the variable r2,
then the states of the two-particle system would be functions of both
variables, r1 and r2.
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2.2.6. Quantum field theory. As said above a simple gener-
alization of quantum mechanics to relativistic systems is not possible
due to the phenomenon of creation and annihilation of particles. It
should be replaced by quantum field theory. From the mathematical
point of view passing from a finite to an infinite number of degrees
of freedom requires going beyond the Hilbert space and to work with
noncommutative algebras, having some mathematical properties not
to be specified here [5]. But for the purposes of this book the Hilbert
space formalism will be sufficient, provided that we use the following
approximation. As shown below a quantum field may be expanded
in (an infinite number of) normal modes. The states of each mode
may be represented by vectors in a Hilbert space, but the states of the
whole field could not. However, we might truncate the set of modes
and deal only with a finite number of them. In this form the states of
the field may be represented by vectors in a Hilbert space.

Postulates 1 to 6 apply to quantum field theory with small mod-
ifications. Postulates 7 and 8 should be replaced because in quantum
field theory the position coordinates are parameters (as is time in
quantum mechanics) and the basic operators represent fields, that is,
functions of the coordinates and time. The typical example is the elec-
tromagnetic field, which may be formulated by means of a four-vector,
whence it is possible to obtain the electric and magnetic fields which
together form an antisymmetric tensor in four-dimensional spacetime.

The quantum fields may be studied by an expansion in normal
modes, the coefficients being operators. For instance, for an scalar
field the expansion would be

φ̂ (r, t) =
∑
j

[
âjFj (r, t) + â†jF

∗ (r, t)
]
,

where Fj (r, t) and its complex conjugated F ∗
j (r, t) are functions for

the mode j, in particular plane waves in the case of free fields. âj and

â†j are called annihilation and creation operators, respectively. Fields

with integer spin (e.g. the electromagnetic field which has spin 1) fulfil
the commutation rules

[âj , âk] = 0,
[
â†j , â

†
k

]
= 0,

[
âj , â

†
k

]
= δjk.

They are called Bose fields.
Fields with half-odd spin, like the Dirac field of electrons and posi-

trons, are called Fermi fields. They may also be expanded in normal
modes, but the coefficients fulfil anticommutation rules. For instance,
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the Dirac field consists of spinors with four components and there

are two kinds of annihilation operators, b̂j and d̂j , for electrons and
positrons respectively, and similarly two kinds of creation operators,

b̂†j and d̂†j , fulfilling the anticommutation rules{
b̂j , b̂k

}
=
{
b̂†j , b̂

†
k

}
=
{
d̂j , d̂k

}
=
{
d̂†j , d̂

†
k

}
= 0,{

b̂j , d̂k

}
=
{
b̂†j , d̂

†
k

}
=
{
b̂j , d̂

†
k

}
=
{
d̂j , b̂

†
k

}
= 0,{

b̂j , b̂
†
k

}
= δjk,

{
d̂j , d̂

†
k

}
= δjk,

where {
b̂j , b̂k

}
≡ b̂j b̂k + b̂k b̂j .

For details see any book on quantum field theory, e.g. [6].

2.3. Difficulties for a realistic interpretation

There are two criticisms that I would make to the standard postu-
lates of quantum theory as presented in section 2.2. Firstly, postulates
1 to 3 about states are stronger than needed; secondly, the measure-
ment postulates 4 and 5 possess an instrumentalist flavor, that is,
they appear as practical rules rather than fundamental hypotheses
and therefore should not be included in a theory. As a consequence I
believe that the usual postulates prevent, or make difficult, finding a
realistic interpretation of quantum theory. In the following I discuss
the question in more detail.

2.3.1. States with nodal surfaces. Postulates 1 to 3 above
are too strong because the set of states of a physical system that can
be found in nature or manufactured in the laboratory may correspond
to a small subset of the vectors of the Hilbert space. This fact is more
or less explicitly recognized in careful textbooks, which assume (as in
our postulate 1) that not all vectors or density operators correspond
to states. However, the weak statement compels us to reject the one to
one correspondence between pure states and vectors, whence the defi-
nition of pure state cannot be derived from the fact that vectors (or,
equivalently, idempotent density operators) correspond to the bound-
ary of the whole set of density matrices. It seems more appropriate to
postulate that physical states correspond to density operators without
any explicit mention to vectors, as in our postulate 1′ in section 2.3.5
below. Thus postulate 3 should be removed as many textbooks do.
Indeed, the postulate, when introduced, has the purpose of making
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the explanation of interference simple. However, this is not neces-
sary because interference follows from the Schrödinger equation even
without the postulate.

The interpretation of some vector states as corresponding to real
physical states leads to a counterintuitive picture. This is the case
when the associated wave-function ψ presents nodal surfaces, that is,
surfaces where ψ = 0, for example the excited states of the hydrogen
atom. In fact, the associated wave-functions are products of a radial
function R(r) times a spherical harmonic function, the latter carry-
ing the angular dependence. The function R(r) is the product of an
exponential times a polynomial and, except in the ground state, the
polynomial possesses zeroes that give rise to spherical surfaces where
ψ = 0. This implies, via Born’s rule, that the probability to find the
electron is zero in these surfaces but finite outside them, which is
very strange. I propose that such wave-functions do not correspond
to actual physical states.

An argument for the one to one correspondence between vectors
and pure states is that the complete set of vectors is required for some
mathematical derivations. However, this is not a valid argument as
shown by the well known example of vector spaces in classical field
theory, involving Fourier analysis. It is the case that, for the solution
of some linear partial differential equations, a complete set of basis
functions is needed in order to be able to write any solution as a
Fourier expansion in that basis. However, this does not imply that
all the basis functions represent physical states. For instance, let us
consider the solution of the diffussion equation, say for the cooling
of a plate with boundaries x = −L and x = L. Assuming that the
temperature, T , does not depend on the coordinates y and z, the
distribution is governed by the diffusion equation

∂T (x, t)

∂t
= σ

∂2T (x, t)

∂x2
,

where t is the time and σ is a constant related to the conductivity of
the medium. The solution may be easily found via a Fourier series
expansion. The analogy is reinforced by the fact that functions in the
Fourier expansion are also vectors in a vector space. For instance, if
the initial and boundary conditions are

T (x, 0) = T0, T (±L, t) = TL < T0,
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then the result is

T (x, t) = TL

+
∑
n

4 (T0 − TL)

(2n+ 1)π
(−1)

n
cos

[
(2n+ 1)πx

2L

]
exp

[
− (2n+ 1)

2
π2σt

4L2

]
.

It is obvious that the functions cos [(2n+ 1)πx/(2L)] do not cor-
respond to actual temperature distributions, they are just auxiliary
mathematical functions. I propose that the same is true for the quan-
tum vectors or wave-functions.

In order to see the argument more clearly I reproduce a calculation
that appears in almost every text of quantum mechanics: The absorp-
tion of light by an atom from a plane electromagnetic wave using time-
dependent perturbation theory. Here the derivation is made without
introducing concepts like photon absorption or transition probability
between atomic states, quite common in text-books but devoid of a
clear (realistic) physical interpretation. Let us consider an atom ini-
tially in the ground state with wave-function | ψ0〉, interacting with a
linearly polarized electromagnetic plane wave. We will represent the
electric field of the wave by F (t), choosing the propagation direction
as Z axis and the direction of the field as X axis. The total Hamil-
tonian of the atom, say with a single electron, interacting with the
radiation may be written as

(19) H = H0 − exF (t),

where e is the electron charge. The Schrödinger equation may be
solved by expanding the atomic state in terms of eigenvectors of the
unperturbed Hamiltonian H0, that is,

i�
d

dt
| ψ (t)〉 =(H0 − exF (t)) | ψ (t)〉
⇒

∑
n

i�ċn (t) | ψn〉 exp (−iEnt/�)

= −
∑
n

cn (t) exF (t) | ψn〉 exp (−iEnt/�) .

The perturbation approximation consists of neglecting all cn on the
right side except c0 which is put equal to unity. Then multiplication
of both terms on the left by 〈ψk | leads to

ċk (t) =
i

�
eF (t)〈ψk | x | ψ0〉 exp (iω0kt) , ω0k =

E0 − Ek

�
.
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The integration is trivial and I omit it. The measurable quantity is
the energy absorbed by the atom from the field in the time interval
(0, T ), that may be got by subtracting the final atomic energy from
the initial one, that is,

ΔE = 〈ψ (T ) | H0 | ψ(T )〉 − 〈ψ0 | H0 | ψ0〉
=
∑
kl

cl (T ) c
∗
k (T ) 〈ψk | H0 | ψl〉 − E0 =

∑
k �=0

|ck (T )|2 (Ek − E0)

= e2�−2
∑
k �=0

|〈ψk | x | ψ0〉|2
∣∣∣∣∣
∫ T

0

F (t) exp (iω0kt) dt

∣∣∣∣∣
2

�ω0k.

The result is quite plausible and easy to understand, namely there
is absorption when the spectrum of the incoming electromagnetic wave
possesses frequencies close to one of the characteristic frequencies of
the atom, ω0k, and the intensity absorbed depends on some properties
of the atom (basically a matrix element). In most books the derivation
goes further by taking the final result as a sum of products, each one
corresponding to a ‘photon energy’ �ω0k times a ‘transition probabil-
ity’ from the ground state ψ0 to an excited state ψk. However, this
gives rise to a lot of interpretation problems. For instance: Was the
photon inside the wave before the absorption? Or, if the energy of one
photon is greater than the energy carried by the wave during the time
interval (0, T ), where did the photon energy come from? These prob-
lems disappear if we respect the rule stated in chapter 1 at the end
of section 1.1.4, that is: We should try to interpret as physically real
just the observed results, but neither the intermediate (mathematical)
steps in the calculation nor additional non-testable results.

2.3.2. Entangled states. Entanglement is a quantum property
of systems with several degrees of freedom that appears when the total
state vector cannot be written as a product of vectors associated to
one degree of freedom each. In formal terms a typical entangled state
is the following

(20) | ψ (1, 2)〉 =
∑
m,n

cmn | ψm (1)〉 | ψn (2)〉,

where 1 and 2 correspond to two different degrees of freedom, usu-
ally belonging to different subsystems that may be placed far from
each other. The essential condition is that the state eq.(20) cannot
be written as a single product. That is, the sum cannot be reduced
to just one term via a change of basis in the Hilbert space. As will
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be discussed in section 2.4 below, entanglement appears as a specifi-
cally quantum form of correlation, which is claimed to be dramatically
different from the correlations in classical physics.

The relevance of entanglement was stressed by Schrödinger [7] in
1935. He wrote that entanglement is not one but the characteristic
trait of quantummechanics. It is a fact that entanglement is extremely
relevant for the interpretation of quantum mechanics. But, in the
ensemble interpretation to be studied in section 2.4.5 below it poses
no difficulty for a realistic interpretation of quantum mechanics, it
is just a way to write some correlations that arise frequently in the
microscopic world. However, if one assumes that quantum mechanics
is complete— that is, a state vector like eq.(20) represents a pure
state— then I believe that a realistic interpretation is impossible.

In fact, if we adhere to the completeness assumption then we are
confronted with consequences in sharp contradiction with the intu-
ition. One should believe that a state vector like eq.(20) represents
complete information about the state of the system but incomplete
information about each of the two subsystems. In fact, the state of
the first subsystem should be obtained by taking the partial trace
with respect to the second subsystem, leading to the following density
matrix (assuming all state vectors normalized)
(21)

ρ (1) = Tr2 [| ψ (1, 2)〉〈ψ (1, 2) |] =
∑
m,n

|cmn|2 | ψm (1)〉〈ψm (1) | .

The density matrix represents a mixed state, where the information
is incomplete, that is, we only know the probability, Pm =

∑
n |cmn|2,

that the first subsystem is in state | ψm (1)〉. It is as if a student
claims to know completely the subject matter of a given book, but
she/he is admittedly ignorant about every chapter. This contradicts
the usual meaning of complete information about the whole as being
information about every part. This property of the entangled state
may be stated more formally in terms of information entropy. The
completeness assumption leads to the following von Neumann entropy,
S, [2]

S = −Tr [ρ log ρ] .

Hence the entropy of the state eq.(20) is 0 whilst the entropy of eq.(21)
is

S1 = −
∑
m

Pm logPm > 0.
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Another important property of entanglement is that it is a neces-
sary and sufficient condition for the violation of the Bell inequalities,
as discussed in more detail in chapter 3 section 3.2.5.

2.3.3. What is a quantum state? After presenting a few prob-
lems for the interpretation of quantum states we see that in order to
understand quantum mechanics it is crucial to know what a quantum
state really is. In classical physics the concept of state is clear, it
rests on the concepts of isolation for either a particle or a wave or any
combination of them. It is common view that neither the concept of
particle nor the concept of wave may be transferred easily to quantum
physics. Thus the standard answer to the question whether the elec-
tron is a particle or a wave is that it is neither. However, the answer
involves a contradiction: anything is either localized (particle) or ex-
tended (wave), of course with respect so some reference size, say for
an electron as compared with an atom. I believe that a more correct
answer is that the electron is both. In fact, an electron cannot be seen
as an isolated point particle. The physical electron corresponds to a
cloud of electrons and positrons, electromagnetic radiation and other
fields like neutrino-antineutrino pairs with a total charge e. The cloud
has a size at least as large as the electron Compton wavelength, but
possibly much larger.

This statement may be put in a different form as follows. The
vacuum consists of a set of real fluctuating fields that are modified
by the presence of the electron. In this book we claim that the fields
are real, in contrast with the common opinion that they are virtual.
I believe that virtual is a word without any clear meaning, used in
order to avoid commitment with either the assertion that the fields
are real or they are not. In summary, in contrast with the classical
view, an electron cannot be seen as a particle whose state is defined
by just its position and its velocity, which is the definition of pure
state in classical mechanics.

Then we may ask what is the physical interpretation of state in
a more complex system like an atom. It is not just a system of Z + 1
point (or small) particles, the nucleus plus Z electrons. In the ground
state of the atom the nucleus might perhaps be treated as a small
particle localized in a region far smaller than the atom, but this is not
the case for the electrons. What exists is a large number of electrons
and positrons that are created (maybe with emission of radiation) or
annihilated (with absorption of radiation) in pairs, with a conservation
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of the total electric charge, that is Ze. Many other quantum fields
are likely involved that correspond to a modification of the vacuum
fields. In summary, I believe that the quantum state of any physical
system is a quite complex structure consisting of many interacting
fields evolving in time.

Sometimes it is argued that in a nonrelativistic treatment the pos-
sible creation or annihilation of electron-positron pairs should not be
taken into account because the energies required are far larger than
typical atomic energies. However, the argument is flawed. The total
mass-energy of say two electrons plus a positron at extremely small
distances may not be greater than the mass of a single electron due
to a possibly strong electrostatic negative energy of interaction. In
other words, the total mass-energy of the atom may be only slightly
smaller than the mass of the nucleus plus the electrons, that mass
defined when they are at a large distance from each other. In sum-
mary the internal structure of quantum systems like atoms should be
always treated taking relativistic quantum fields of the vacuum into
account. Of course, this is actually accepted when it is recognized
that in renormalization calculations the bare mass or charge are quite
different from the physical ones. The relevant fact is that the quantum
formalism has the virtue that quite complex structures like atoms may
be treated via simple equations like Schrödinger’s. Of course, that
equation is just a (fairly good) approximation, but there are small
corrections that may be calculated using not so simple techniques like
renormalization. My view is quite different from the standard one. It
is usual to assume that quantum equations are exact when we ignore
the interaction with the vacuum fields and corrections appear when
the interaction is switched on. I believe that the interaction with the
vacuum fields is precisely what makes quantum theory different from
classical theories. I hope that the point will be more clear in chap-
ter 5 where it is shown that, taking the vacuum electromagnetic field
into account, classical electrodynamics predicts phenomena currently
assumed as purely quantum.

2.3.4. Preparation and measurement. Many authors, in par-
ticular those supporting the Copenhagen interpretation (see section
2.4 below), propose to connect theory and experiments ascribing an
operational meaning to the postulates. Thus states are devoid of
an ontological status and are identified with operational ‘preparation
procedures’ and observable properties with ‘measurements’. These
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identifications may be useful in practice, but I think that it is flawed
to introduce physical operations, like ‘preparation’ or ‘measurement’,
as a part of the postulates. In fact, it is not appropriate to establish
a direct correspondence between ‘preparation’ and ‘density matrix’
or between ‘measurement’ and ‘self-adjoint operator’ (or more gen-
erally POVM, positive operator valued measure). Preparation is a
rather complex set of physical manipulations, whence the density ma-
trix appropriate for a microscopic system may be guessed, rather than
derived, most times after a process of trial and error on the part of the
experimental physicists performing the particular preparation. Simi-
larly for measurement. Indeed, an empirical result is taken as relevant
only after the experiment has been critically analyzed and repeated
by different groups of researchers. This view agrees with Bell’s, who
wrote: “I am now convinced that the word ‘measurement’ has now
been so abused that the field would be significantly advanced by ban-
ning its use altogether, in favor for example of the word ‘experiment’
”[8, page 166].

The existence of measurement postulates is an anomaly of the
quantum formalism and it has been strongly criticized by philosophers
of science like Karl Popper [9] or Mario Bunge [10]. In particular, the
latter stresses that a physical theory should not include any general
theory of measurement, but particular recipes or protocols for every
specific measurement. This is most clear in chemistry. There are
recipes for, say, the preparation of pure alcohol or the analysis of
water from a river. However, it would be absurd to search for a
‘general theory of preparation or analysis’ in chemistry. In my opinion
the same is true in physics, including quantum physics. The existence
of a ‘theory of measurement’ is peculiar and it does not exist in any
other theory in physics (or, more generally, in natural science). It
is true that from a philosophical (epistemological) point of view any
theory requires some assumptions for the connection with the results
of observations or experiments. For instance, in classical mechanics
we use the concepts of time, space, particle, isolated system, etc., and
there are rules telling us how these concepts should be related to the
(mathematical) formalism. However, it would be absurd to search for
a ‘general theory of preparation or measurement’ in any branch of
science, including quantum physics.

Thus I propose to remove the measurement postulates. In a re-
alistic interpretation of the theory, they should be replaced by onto-
logical statements about the properties possessed by systems, rather
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than about the results of measurements. Measurement is a physi-
cal process that ends at the macroscopic level where the results are
recorded, e.g. by a computer. Thus the measurement process should
be studied using the (ontological) postulates of the theory. In the
macroscopic domain no measurement postulates are needed, just the
assumption that the measurement reveals properties of the system,
and this should be the case for quantum theory. I believe that in the
quantum domain the measurement postulates should be replaced by
a weak form of Born’s rule as stated in the following.

2.3.5. Proposed weak postulates. I propose to replace the
standard postulates 1 and 3 in section 2 by the following one:

1’. To every physical system it is associated a Hilbert space, H,
complex and separable. A state of the physical system at a time t is
represented by a density operator, that is, an operator fulfilling the
properties in eq.(15).

From a mathematical point of view it may be appealing to postu-
late also the reciprocal, namely that every density operator represents
a possible state. Of course, if all density operators can be associated
to possible states, it would be plausible to give a special status to the
boundary of the set, that is the density operators of the form

ρ̂ =| ψ〉〈ψ |,
| ψ〉 being a normalized vector. These (idempotent) density operators
are associated to rays in the Hilbert space, representable by normal-
ized vectors, and the associated states might be named ‘pure states’.
Therefore if one assumes that all rays may represent physical states
it is natural to introduce Postulate 1 in terms of state vectors rather
than density matrices and to reinforce the argument introducing the
superposition principle, postulate 3, which nevertheless must be re-
stricted with the superselection rules.

I propose that the postulates should be as weak as possible and
therefore substitute Postulate 1’ for the standard Postulate 1, also
removing the superposition principle Postulate 3. It is interesting that
the assumption that any system, except the whole universe, should be
represented by a density matrix is unavoidable in the popular many-
worlds interpretation of quantum mechanics (see section 4 below).

The proposed postulate 1′ does not contradict the standard pos-
tulates 1 and 3, but it allows some freedom, which will be used in
later chapters to remove obstacles for a realistic interpretation of some
quantum phenomena. On the other hand the superposition principle,
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when it is really required, is a consequence of Schrödinger equation
(e.g. in the study of interference experiments) as said above. The re-
placement of postulates 1 and 3 by 1′ eliminates the concept of pure
states, represented by state vectors, as those with maximal informa-
tion. The almost unavoidable identification, in the standard formula-
tion, of maximal information with complete information has been the
source of the most polemic, and dangerous in my opinion, statements
in quantum mechanics, as I will discuss below. In particular it leads to
a sharp distinction between the probabilities in classical physics (and
other sciences) and the probabilities associated to quantum measure-
ments. It also leads to the assumption that quantum mechanics is
complete thus putting strong difficulties for a realistic interpretation.

If the states of systems are represented by density matrices, rather
than state vectors, then the evolution (Schrödinger) equation should
be more adequately formulated as the evolution of the density opera-
tor. That is, postulate 6 should be replaced by the following one.

6’. The density operator representative of the state of the system
evolves according to the equation

d

dt
ρ̂(t) = − i

�

[
Ĥ, ρ̂ (t)

]
,

where Ĥ is a self-adjoint operator called Hamiltonian of the system.
It is easy to see that from postulate 6′ it is possible to derive eq.(18)
as well as from postulate 6.

Although I believe that postulates of measurement should not
appear in the theory, a connection between the formalism and the
experiments is needed. But I propose to replace postulate 4 by Born’s
rule eq.(17) as follows:

4’ The probability distribution of positions of a particle in a state
represented by the density operator ρ̂, eq.(14) is given, in terms of
wave-functions, by

ρ (x) =
∑
j

pj〈x | ψj〉〈ψj | x〉 =
∑
j

pj | ψj (x) |2, pj > 0.

This postulate is an ontological statement (“the particle position is...”)
and not a measurement statement as is frequently stated it textbooks
(“if we perform a position measurement the result will be...”). I as-
sume (tentatively) that this postulate is sufficient because at the end
all measurements reduce to position measurements (e.g. of a pointer).

In summary, I propose to remove the postulates 3 and 5, and
substitute the new postulates 1’, 4’ and 6’ for the standard ones 1, 4

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.4. CRITICAL COMMENTS ON CURRENT INTERPRETATIONS 53

and 6, maintaining unchanged the remaining postulates, that is, 2, 7
and 9. ‘Postulate’ 8 is not really a postulate but a rule to get (or guess)
quantum equations by analogy with classical equations. This set of
postulates may be named restricted quantum formalism, as opposed
to the standard one. An attempt will be made below to get a realistic
interpretation of this restricted formalism.

2.4. Critical comments on current interpretations

As said above, Heisenberg’s quantum mechanics was proposed as
an abstract formalism without any physical picture behind. Bohr
justified the absence of a model and, on this basis, he elaborated
the ‘Copenhagen interpretation’ [11]. Several modifications or novel
interpretations have appeared later. Relevant papers up to 1983 are
reprinted in a book by Wheeler and Zurek [12]. I shall comment
briefly on the most popular interpretations in the following. I stress
that these interpretations refer to the standard postulates as stated
in section 2.1.1. Our interpretation of the postulates modified as in
section 2.1.3 will be considered later.

For the sake of clarity I will illustrate my comments with the cel-
ebrated ‘Schrödinger cat’ gedanken (imaginary) experiment [7]. It is
a relevant example because it involves the phenomenon of entangle-
ment, crucial for any attempt of interpretation of quantum mechan-
ics. The fanciful experiment consists of a box containing a radioactive
atom and a cat together with a device that kills the cat, say instan-
taneously, when the atom decays. I will assume that both the atom
in the excited state and the live cat are put inside the box at time t1.
The question is what may be said about the atom and the cat at times
t > t1. In particular, what is the prediction of quantum mechanics
for the states of both the cat and the atom when the box is open at
time t2. Any person with knowledge of the law of radioactive decay,
but ignorant of quantum mechanics, would claim that the probability
of being both the cat alive and the atom excited at time t ∈ [t1, t2] is

(22) P (t) = exp [−λ (t− t1)] ,

λ−1 being the mean lifetime of the atom. In particular, the probability
at the moment of opening the box will be P (t2), eq.(22). This may
be named the response of a ‘naive realist’. In contrast, the answer of
an educated quantum physicist will depend on the interpretation that
she/he supports, as I discuss in the following.
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2.4.1. Copenhagen (Bohr) interpretation. According to the
Copenhagen interpretation (CI) the referent of quantum mechanics is
not the material world but the experiments. That is, the theory deals
with the relations between the world and the observers. As Bohr
put it “the finite magnitude of the quantum of action prevents alto-
gether a sharp distinction being made between a phenomenon and the
agency by which it is observed” [11]. Thus CI is close to the prag-
matic approach as described in chapter 1. According to this approach
we should not make assertions about the bodies, but about the re-
sults of possible observations or measurements. Thus a sentence like
“the probability that the atom is in the excited state at time t” is
considered meaningless. A meaningful assertion should be something
like “if we perform a measurement of the state of the atom at time t,
the probability that we get the result ‘excited’ is given by eq.(22)”.
The approach is instrumentalist and it might be called a ‘protocol for
the use of the quantum formalism’ rather than an interpretation.

Bohr elaborated a philosophical background with the introduction
of the ‘complementarity principle’ and the ‘correspondence principle’,
in order to solve two theoretical difficulties of the formalism. Firstly
it is unsatisfactory that quantum mechanics applies only to the mi-
croscopic world whilst the macroscopic one is governed by classical
theories. Bohr’s solution to this problem was to assume that there
is a smooth transition, quantum laws approaching the classical ones
in the limit when Planck constant becomes negligible, formally when
� → 0. This is the essential content of the correspondence principle,
that Bohr also applied to several instances deriving some relevant re-
sults. The second theoretical problem was the existence of apparent
contradictions, in particular those derived from the fact that quantum
entities behave sometimes like particles and other times like waves.
In order to solve that problem Bohr proposed the complementarity
principle, which stresses the incompatibility between causal laws and
spacetime description, due to the finite (nonzero) value of the quan-
tum of action. After that he showed that there is no contradiction in
practice because the behavior of the quantum entities does not derive
from the microscopic system alone, but it also depends on the full
context [11], including macroscopic measuring devices.

The rules of CI for the use of quantum mechanics are to some
extent independent on the two mentioned Bohr’s principles, and I
will comment only on the rules. CI assumes (or at least it does not
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reject the assumption) that macroscopic bodies have objective prop-
erties (that is, independent of any measurement) and their evolution
is governed by the laws of classical physics. Thus it is meaningful to
ask whether a cat is either alive or dead at any time. A more difficult
question is whether we are allowed to assign a probability to each of
these possibilities. The application of quantum mechanics, with the
CI rules, to the ‘cat experiment’ is that for t ∈ (t1, t2) the atomic
state should be represented by the state vector

| ψ (t)〉 = cg(t) | g〉+ ce(t) | e〉, with(23)

ce(t) =
√
exp(−λ (t− t0)), cg(t) =

√
1− exp(−λ (t− t0)),

where | g〉 (| e〉) is the state vector of the atom in the ground (excited)
state. Now there are two possibilities, depending on what is supposed
to be a measurement:

1) If we assume that the actual measurement takes place when
the box is open, then quantum mechanics says nothing about the
atom and the cat for times t ∈ (t1, t2) . At time t2 it predicts that the
probability of both the cat being alive and the atom being excited is
given by the squared modulus of the amplitude cg(t), eq.(23), which
precisely agrees with the naive prediction P (t2), eq.(22) .

2) We might assume that the cat, being a macroscopic system,
can act as a measuring device. In this case, CI tells us that, for any
time t ∈ (t1, t2), the probability of both the cat being alive and the
atom excited is eq.(22). This interpretation (the cat as a measuring
device) is consistent with the fact that, if the cat is found dead at
time t2, a careful study of the corpse (involving macroscopic manipu-
lations) might determine the time of death, say td. This would allow
reconstructing the whole history: The cat was alive and the atom
excited until td. We must assume that, if a similar experiment is per-
formed many times, the distribution of times td would converge to an
agreement with the probability eq.(22) .

Bohr’s approach to the problem of the ‘state vector (or wave func-
tion) collapse’ is interesting. This is the discontinuous change of the
state vector when a measurement is made, e.g. a change from eq.(23)
to | ψ〉 = | g〉 at the time of opening the box. In our example we may
naively believe that the collapse is just a change of our information
as a result of the observation. However, Bohr strongly opposed to the
belief that the wave function just represents our information about
the system, with the implicit consequence that this information may
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be incomplete. See section 2.4.5 for a more detailed discussion of the
completeness question.

2.4.2. John von Neumann. CI is very good from the practi-
cal point of view and avoids any bizarre assumption (which is not the
case in more elaborated interpretations discussed below). The prob-
lem with the CI is that it creates what has been called an ‘infamous
boundary’ [13], that is, a discontinuity between micro and macro-
physics. The former should be studied within quantum mechanics,
the latter using classical physics. In order to remove the boundary
and get an interpretation where quantum mechanics is valid also for
macroscopic systems, John von Neumann [2] introduced a theory of
measurement and he even gave a model for it. His approach has been
also currently named Copenhagen interpretation, but this is mislead-
ing because von Neumann’s interpretation is different from Bohr’s, as
a matter of principle. However, it was an elaboration of the Copen-
hagen interpretation rather than an alternative, which may justify the
name. For short, I shall label it MCI with M standing for modified or
measurement. MCI has been supported in most papers and books of
quantum mechanics until around 1980.

The modification introduced by von Neumann with respect to
Bohr was to take seriously the assumption that quantum mechanics
is the universal theory and that classical theories are just approxima-
tions. Thus he proposed studying the measurement within quantum
mechanics and made a model involving the coupling of the microscopic
system with the measuring apparatus. However, this gave rise to a
number of difficulties that will be discussed below, but previously we
clarify the matter studying the application of von Neumann’s ideas to
the cat experiment.

In MCI both the cat and the atom should be treated as quantum
objects. Therefore eq.(23) is no longer appropriate and we should
represent the state of the whole system, atom plus cat, by

(24) | ψ (t)〉 = cg(t) | g〉 | deadcat〉+ ce(t) | e〉 | livecat〉.
Of course, one may point out that a dead cat does not correspond to
a pure state to be represented by the vector | deadcat〉. Indeed, there
may be very many quantum states corresponding to a dead cat and
similarly for a live cat. However, this is not a real problem because
MCI assumes that any physical system is associated to a well defined
state vector. (When the appropriate state vector is not known we
should use a probability distribution over those vectors, which may
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be formalized via a density matrix. But for ease of understanding let
us use a single state vector as in eq.(24)).

Eq.(24) represents a typical entangled state. If CI had been mod-
ified with the assumption that state vectors actually represent statis-
tical ensembles, this would have lead to the ensemble interpretation,
to be discussed below. However, the mainstream of the scientific com-
munity rejected it and supported the ‘completeness’ of quantum me-
chanics, in the sense that the state vector represents the actual state
of an individual physical system, as opposed to a statistical ensemble.
With this assumption the MCI leads to bizarre consequences, which
was the point that Schrödinger [7] attempted to stress with his cat
example. Indeed, for many people it is impossible to understand the
meaning of a state represented by a superposition of alive and dead
cat. Is it something intermediate between life and death?

The problem is not only the highly counterintuitive character of
superpositions of macroscopic systems, it is the disagreement with em-
pirical evidence. Indeed, those macroscopic superpositions cannot be
manufactured in practice (there is a lot of literature about the actual
preparation of ‘Schrödinger cats’, but they always involve mesoscopic
rather than truly macroscopic systems). Thus it seems that the quan-
tum evolution (the Schrödinger equation) is violated at the macro-
scopic level. This has been called the problem of the objectification
or individuation [14], [15]. That is, the fact that a particular value is
obtained in the measurement amongst several possible values, some-
thing not predicted by the quantum formalism except if an explicit
postulate is included (postulate 5 of section 2.2.1 above). This postu-
late forces us to change the state vector at the time of measurement,
a change usually called the state vector, or wave function, ‘collapse’.
That change is not predicted by the Schrödinger equation and in fact
it precludes the validity of that equation during measurements. In
the CI the collapse was just a change of the mathematical represen-
tation needed for the analysis of the experiment. In MCI, however, it
becomes a real physical change because it is assumed that the state
vector corresponds to an individual system (rather than a statistical
ensemble). In the next subsection I discuss possible solutions that
have been proposed.

A problem related to objectification is the existence of quantum
jumps [16], the typical example being the decay of a radioactive atom.
For instance, an atom of uranium 238 may remain as such during a
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million years but, at some unexpected time, it decays with the emis-
sion of an alpha particle (a nucleus of helium 4). The sudden de-
cay (within a small fraction of a second) apparently contradicts the
Schrödinger equation. People like to say that the observation of the
(spontaneous) decay is a particular case of measurement and therefore
the problem of quantum jumps becomes an example of objectification
after a measurement. In my opinion, however, there is a clear differ-
ence between objectification and quantum jump. The former is more
properly the ‘disentanglement’ of an entangled state involving macro-
scopic bodies. For instance, the fact that we see the cat either alive or
dead at the time of opening the box in the Schrödinger cat example.
In contrast, a quantum jump refers to a discontinuous change of a
microscopic system. In any case the difficulties with both objectifi-
cation and jump may be solved simultaneously, for instance in either
hidden variables or collapse theories. The latter is discussed in the
next subsection and the former later on.

2.4.3. The objectification and the quantum jumps prob-
lems. There are a variety of proposed solutions to the objectification
problem. In the original (Bohr) Copenhagen interpretation there is
no real problem: the Schrödinger equation is just a mathematical
tool able to relate the preparation of a (microscopic) system to mea-
surements made on it. The wave function (or state vector) is just a
convenient form of dealing with the probabilities involved. That is, a
preparation gives rise, after some time, to a set of probabilities when
the system is placed in an appropriate experimental context. The
objectification is a change due to the measurement. But the change
must be postulated because the interaction between the microscopic
system and the macroscopic apparatus can be described neither by
quantum nor by classical theories in CI. The objectification problem
does not exist either in the ‘many worlds interpretation’ (MWI) that
will be discussed in the next subsection.

From the time of von Neumann’s book [2] (1932) until around
1980’s, and for a fraction of the scientific community until today, the
MCI has been the most popular interpretation. For this reason a
very large number of papers and books have been devoted to propose
possible solutions to the objectification problem.

John von Neumann pointed out that a measurement only finishes
when a (human) observer is conscious of the result of the experiment.
This would solve the objectification problem if we assume that the
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mind is not governed by quantum mechanics. This proposition is also
supported by London and Bauer [17] and described byWigner [18]. In
the cat experiment, this seems to imply that the cat really dies when
we look at the box after opening it, or even when we are informed
by another person of the result of the experiment (which leads to the
‘Wigner’s friend’ paradox). Many people dislike this solution.

In practice, many authors (maybe not too fond of the subtleties
of foundational questions) accepted a kind of peaceful coexistence of
the two (contradictory) postulates: the Schrödinger equation and the
quantum theory of measurement. However, the mere existence of a
measurement theory is an anomaly, as discussed above.

Collapse theories. A proposal that became popular around 1985
is to modify the Schrödinger equation in such a way that the change
fulfil two consistency requirements: 1) For microscopic systems it pro-
duces an extremely weak, practically undetectable, modification in
the evolution of the wave function, and 2) For macroscopic systems
it gives rise to a rapid disentanglement, that is, an evolution from
any superposition to a single term. There have been several explicit
models of this type, called ‘collapse theories’. The most satisfactory
one has been proposed by Ghirardi, Rimini, and Weber, and is usu-
ally called the GRW theory [19], [20]. It involves phenomenological
parameters that, if the theory is taken seriously, acquire the status
of new constants of nature. There have been also attempts at deriv-
ing the parameters from fundamental arguments, like the action of
gravitational forces (effects of general relativity).

In spite of their phenomenological character, the collapse theories
have relevance since they have made clear that there are new ways to
overcome the difficulties of the quantum formalism. Moreover, they
have allowed a clear identification of the formal features which should
characterize any unified theory of micro and macro processes. Last
but not least, collapse theories qualify themselves as rival theories of
quantum mechanics and one can identify some of their physical im-
plications which, in principle, would allow crucial tests discriminating
between the two. I shall not review here the collapse theory, which
would lead far from the main purpose of this book. The interested
reader may look at a review by Ghirardi [21].

2.4.4. Many-worlds. The many worlds interpretation (MWI)
offers a radical solution to the objectification problem; it assumes
that objectification never takes place. That is, the evolution of an
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isolated system is always governed by the Schrödinger equation. Now,
no system involving a macroscopic body may be completely isolated,
so in the study of its evolution we should consider the wave vector
of the whole universe. In particular, in the cat experiment we should
include, in addition to the atom and the cat, also the box, the human
observer and everything else. Thus eq.(24) should be replaced by

| ψ (t)〉 = cg(t) | g〉 | deadcat〉 | worldg〉
+ ce(t) | e〉 | livecat〉 | worlde〉,(25)

where | worldg〉 represents the rest of the world associated to the
atom in the ground state and the cat dead, and similarly for | worlde〉.
Eq.(25) seems to say that there are two copies of the human observer
and of the whole world. In the last copy the observer sees the cat
alive and the atom excited, in the first she/he sees the cat dead and
the atom in the ground state. The state vector of the universe is a
linear combination of these copies.

MWI is the unavoidable end of the logical path if we believe that
quantum mechanics (as defined by the standard postulates excluded
those of measurement) is universally valid. It was initially proposed by
Everett [22] with the name ‘relative states interpretation’ and elabo-
rated later by de Witt [23], who introduced the name ‘many worlds’.
The aims of MWI are: 1) to retain the unrestricted validity of the
quantum formalism, 2) to remove the need for the state vector col-
lapse, 3) to remove the need for an external observer, and 4) derive
the Born rule [24]. The latter is the rule for finding the probabilities
of the different possible outcomes as a result of a measurement.

Apart from the difficulty of understanding the real meaning of
‘multiplicity of worlds’, the main problem of MWI is to reproduce
the Born rule without introducing any explicit probabilistic postulate
(like our postulate 4’ of the previous section). The standard approach
for that is the theory of decoherence [25], [26]. Decoherence is the
evolution predicted by quantum mechanics when a system possesses
very many degrees of freedom, as is the case for a measuring device
in contact with the environment. It involves a loss of coherence which
leads from a state vector (representing a pure quantum state) to a
density matrix, as a result of the interaction with the environment.
That density matrix is approximately diagonal in an appropriate basis
(the preferred basis), so that it looks like a probability distribution
defined on a set of pure states, as is exhibited in the example of
eq.(26) below. In the context of MWI the density matrix may be
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seen as coming from taking the partial trace over those degrees of
freedom that are not of interest. For instance, if we take the partial
trace, with respect to the world states, of the (idempotent) density
matrix associated to the state vector eq.(25) we get with very good
approximation

(26) Trworld | ψ〉〈ψ |� |cg(t)|2 | gd〉〈gd | + |ce(t)|2 | el〉〈el |,
where | gd〉 is short for | g〉 | deadcat〉 and | el〉 for | e〉 | livecat〉
and the orthogonality of the state vectors | worldg〉 and | worlde〉 has
been taken into account. Eq.(26) is mathematically identical to the
representation of the quantum state of the atom plus the cat that we
should use when we do not know its actual state, and consequently
we attribute the probability |cg(t)|2 to the atom being in the ground

state and the cat dead, and |ce(t)|2 the probability of the alterna-
tive. The question, to be discussed below, is whether eq.(26) actually
corresponds to a mixture or not.

Decoherence theory is actually more involved than it may appear
from our example. Firstly, we should consider very many terms in the
sum which represents the quantum state of the world, rather than only
two as in our simplified example eq.(25). There is also an ambiguity
in the world state vector because, it being a linear combination of
(tensor) products of state vectors, it could be written in many different
forms depending on the choice of basis in the Hilbert space. This
leads to the problem of the preferred basis, whose solution is one
of the achievements of decoherence theory. I shall not discuss here
the different approaches and the technical issues of the MWI and
decoherence in more detail, and refer to the vast literature on the
subject (see, e.g., [24] and references therein). Related to decoherence
is the ‘consistent histories’ approach [27], which will not be discussed
here.

MWI has the virtue that it makes quantum mechanics a selfcon-
sistent theory resting upon a simple hypothesis: its universal validity.
In this respect it is superior to the old-fashioned CI and MCI. How-
ever, as usually understood it leads to a rather bizarre picture of the
world. For the sake of clarity I will consider a measurement with refer-
ence to eq.(26), although now ‘cat’ means the macroscopic measuring
device able to suffer an irreversible evolution. Once MWI plus deco-
herence theory leads to a reduced density matrix like eq.(26), it seems

plausible to interpret it as representing a mixture, |cg(t)|2 and |ce(t)|2
being probabilities in the usual sense of mathematical measures of
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information. However, this interpretation is not compatible with the
assumption that quantum mechanics is complete. That is, the hy-
pothesis that eq.(26) represents a mixture is not compatible with the
assumption that the state vector of the universe corresponds to an
individual world (although with many branches), rather than a statis-
tical ensemble of possible worlds. However, it is irrelevant in practice
whether we assume that the world state vector represents complete
or incomplete information. In fact, a detailed knowledge of that state
vector would always lie beyond the human capabilities. Therefore the
assumption that eq.(26) represents an actual mixture, and quantum
mechanics is incomplete, is in my opinion the most plausible.

In contrast, the conjunction of assuming universal validity (i.e. MWI)
and completeness of quantum mechanics leads to the extravagant view
that there are many parallel worlds [24]. I think that this belief is
unnecessary. Actually, the view rests on what has been termed a Pla-
tonic paradigm by M. Tegmark [28], who defines it as follows: “The
outside view (the mathematical structure) is physically real, and the
inside view and all the human language we use to describe it is purely a
useful approximation for describing our subjective perceptions.” The
mathematical structure referred to by Tegmark is the formalism of
quantum mechanics. Thus the Platonic paradigm is equivalent to as-
suming that standard quantum mechanics is the absolute truth and
everything else are shadows.

In my opinion scientific theories, quantum mechanics in partic-
ular, are something more modest. They are attempts at describing,
rather imperfectly, “the objective reality, which is independent of any
theory” [29]. In consequence I prefer to retain as much as possible of
the MWI, logically superior to CI or MCI, but without adhering to
the Platonic paradigm. The choice is obvious to me: we should reject
the completeness of quantum mechanics, that rejection leading to the
ensemble interpretation to be discussed in the next subsection. (But
most people assume that MWI is not compatible with an ensemble
interpretation. Even if it is compatible the relation is not trivial and
will not be discussed here).

We have seen that in CI and MCI, discussed above, it is neces-
sary to introduce a probabilistic postulate, which is substituted for
Schrödinger evolution equation during measurement. That postulate
(Born’s rule) allows calculating the probabilities of the different pos-
sible outcomes of a measurement and the corresponding state vector
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after the collapse. In MWI it is controversial whether a probabilis-
tic postulate is introduced. Many authors consider that this is not
the case, that the quantum probabilities may be got from the for-
malism. Actually, Everett introduced in his original formulation a
measure given by the squares of the amplitudes in the sum (of nor-
malized state vectors) which the world state vector consists of. In

our example, eq.(25), that measure may allow to assume that |cg(t)|2
and |ce(t)|2 are probabilities. Therefore it is my opinion that MWI
does introduce a probabilistic postulate, even if it is most natural, as
Everett emphasized [22].

An interesting consequence of the MWI is that a state vector is
only appropriate for the whole world. In contrast, the states of the
systems which we may actually study (subsystems of the universe)
should be represented by density matrices. This leads to the conjec-
ture that only a subset of the whole set of possible density matrices
represents physical states. This conjecture strongly limits the validity
of the superposition principle and gives rise to the problem of deter-
mining what is the subset of the whole set of density matrices which
correspond to physical (realizable) states.

2.4.5. Ensemble interpretation. Is quantum theory com-
plete? The Copenhagen, von Neumann and many worlds interpre-
tations have in common the assumption that the description offered
by quantum mechanics is complete. They may be grouped within the
class of ‘orthodox’ interpretations. An alternative to completeness is
the assumption that the wave function just represents our knowledge
about the actual state of a system. In other words, that the state
vector (or the wave-function) represents a statistical ensemble of sys-
tems rather than a single system. This hypothesis has been named
the ‘ensemble interpretation’ and it was supported by Einstein [30],
and by a few authors in more recent times [31].

The dichotomy between completeness and incompleteness of quan-
tum mechanics or, in modern language, between epistemological and
ontological treatment of the wave-function, has been the subject of
a controversy lasting for the whole existence of quantum mechanics.
As is well known, in the early period the most famous debate took
place between Bohr and Einstein (see references in chapter 1). Maybe
the most important contribution to the debate was the 1935 article
by Einstein, Podolsky and Rosen (EPR) [29]. Due to its relevance
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for the (ensemble) interpretation of quantum mechanics supported in
this book, I discuss it in some detail.

The article introduces, or clarifies, four relevant concepts:

(1) It stresses the need of realism in physical theories as we
discussed in chapter 1 section 1.1.3.

(2) It provides an example of entanglement, a crucial concept in
quantum theory that we have discussed in section 2.3.2 and
will be studied again in section 2.5 and in chapters 3 and 6.

(3) It stated locality as a necessary property of any theory, as
we will discuss in chapter 3.

(4) Finally it shows that either locality or completeness of quan-
tum mechanics does not hold true, this being the declared
purpose of the article.

The authors considered a system consisting of two particles placed at
a distance in a quantum state such that the particles are correlated
in both position and momentum. The state is possible according to
the standard quantum formalism and the authors in fact wrote ex-
plicitly the wave-function of the composite system. According to the
Heisenberg uncertainty principle it is not possible to determine si-
multaneously the position and the momentum of one of the particles,
but nothing forbids measuring only one of the two observables with
good accuracy. Due to the correlation, if the position of one particle,
say number 1, is measured then we will know the position of parti-
cle number 2 without interacting with it in any way. Thus, after the
measurement, we may attribute to the second particle a wave-function
representing a state with definite position (but indefinite momentum).
On the other hand a measurement of the momentum on the first parti-
cle allows attaching to the second particle a wave-function correspond-
ing to a definite momentum (but indefinite position). The point of
the argument is that the actual state of the second particle should be
the same in both cases, because the measurement performed on its
partner has perturbed nothing in its state. Therefore we can describe
that state by means of two different wave functions. Hence the authors
concluded that the wave-function just specifies our knowledge about
the particle. In other words the wave-function should be treated as
epistemological rather than ontological.

Crucial for the EPR [29] argument is the assumption that no in-
fluence could affect a particle due to a measurement performed on
another distant particle, a hypothesis known as ‘locality’ (see chapter
3 section 3.3.2 for the definition of locality in the sense of relativity
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theory). Bohr rebutted [32] the EPR argument claiming that in quan-
tum mechanics there is a kind of wholeness that makes the assumed
locality not to hold true. The common wisdom, resting upon Bell’s
theorem to be discussed in chapter 3, is that Bohr was right and EPR
were wrong, but I do not agree.

In addition to nonlocality, a bizarre consequence of assuming an
ontological status for the wave-function is exhibited in the EPR exam-
ple. According to the orthodox interpretation of the quantum formal-
ism, the wave function of the two-particle system represents a pure
state but the state of each particle is not pure. In fact, the state of
the two-particle system is represented by a wave-function, which in
standard quantum mechanics means that our knowledge of the two-
particle state is complete. However, the state of one of the particles
cannot be represented by a wave-function, but by a density operator
obtained by taking the partial trace of the density operator associated
with the two-particle wave-function. That density operator represents
a statistical mixture, meaning incomplete knowledge. (I must point
out that this fact does not contradict the representation by a wave
function made by EPR as discussed above. In the EPR argument the
quantum state attributed to particle 2 follows from a measurement
performed on particle 1, but now we are considering the state before
any measurement is made). The conclusion is that we have complete
information about a composite system, but incomplete about each
part, contrary to the usual definition of ‘complete’. This contradic-
tion will be discussed more formally in section 2.3.3. In my opinion
this behaviour of entangled quantum systems is another argument for
the epistemological character of the wave-function. If that character
is assumed, our knowledge will be incomplete for both the composite
system and each one of its parts, whence no paradox would arise.

In spite of the above arguments, during the whole history of quan-
tum mechanics the ‘orthodox view’ has been that the theory is com-
plete, as stressed by Bohr and his followers. However, Bohr’s com-
pleteness may be seen as a support to the ‘instrumentalistic approach’
rather than a statement about the relation between the wave-function
and reality. In contrast, for Einstein the relevant question was whether
“the ψ-function corresponds to a single system or to a (statistical) en-
semble of systems” [30] (Einstein carefully avoided the name wave
function— in order not to commit himself to the existence of waves
associated to particles—and used the name ψ-function instead). He
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clearly supported the second assumption, which may be stated say-
ing that he adhered to the interpretation of the wave function as
information. This interpretation has been vindicated by more recent
authors, for instance Chris Fuchs who has written “quantum states
are states of information, knowledge, belief, pragmatic gambling com-
mitments, not states of nature.” [33]. See also Englert and references
therein [34].

At this moment it is appropriate to emphasize that an episte-
mological interpretation of the wave function does not imply for it
a purely subjective character. In many cases the available informa-
tion is such that everybody would attribute the same wave-function
to the physical system, whence it acquires some objective character.
A related question is whether the wave-function collapse after a mea-
surement is a physical change or just a change in our information (see
section 2.3.3). In my opinion, it is wrong to adhere exclusively to one
of the possibilities. Actually both, or a combination of both, may
appear in measurements. The EPR argument provides an example of
a pure change of information, but an atom crossing a Stern-Gerlach
apparatus may suffer an actual physical change in the direction of
the spin. In any case the quantum postulate that “in a measurement
the state of the system goes to an eigenstate of the measured observ-
able” may be appraised as an elegant formal statement, but in actual
experiments things are more involved.

The assumption that the quantum wave-function (or state vec-
tor) represents information is, in some respect, a vindication of some
of Einstein’s views on the interpretation of quantum mechanics. This
vindication does not refer to his opinions (it is generally assumed that
he was wrong in his beliefs on locality, allegedly refuted by Bell’s the-
orem, see below). He is rather vindicated as having pointed out what
are the relevant questions to be answered. In fact, a close scrutiny of
Einstein’s letters to different authors shows that his main interest was
not the question whether the wave-function ψ represents an ensemble
of possible systems—or, what is almost equivalent, if it only rep-
resents our information—but on whether a given real (ontic) state
may correspond to different quantum-mechanical states ψ. Einstein
clarified the point in a letter to Schrödinger [35], [36]. An extended
discussion about Einstein’s opinions, with many references, appears
in a paper by Harrigan and Spekkens [37].
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2.4.6. Hidden variables theories. The ensemble interpreta-
tion poses a question: What is the ensemble of the real (ontic) states
corresponding to a given quantum state (a wave-function), and what
is the probability distribution on the ensemble? That is, we should as-
sume that there is an unknown subquantum theory such that quantum
mechanics is derived from it in the same way that we study classical
statistical mechanics of particles. The statistical approach is usually,
but not necessarily, due to the fact that the number of particles is very
large. In classical statistical mechanics the essential reason is the lack
of sufficient information. The search for such a subquantum theory is
known as the hidden variables programmme. The reason for the name
is that the said subquantum theory would involve variables not (yet)
known and therefore hidden. In my view the ensemble interpretation
and hidden variables (HV) are the natural approach to search for a
realistic understanding of quantum physics. However, many support-
ers of the incompleteness of the quantum description do not propose a
search for specific HV models. For example, Einstein did not support
explicitly the search for hidden variables, rather he advocated for a
new theory from which quantum mechanics could be derived.

The question of hidden variables arose soon after the formulation
of quantum mechanics, during the years 1925–26. It was explicitly
mentioned in the book by von Neumann in 1932 [2], where he derived
a celebrated ‘no hidden variables’ theorem. From that time many
books and articles have been devoted to the subject. Nevertheless,
there is no sharp and widely accepted definition of what a hidden
variables (HV) theory is. I propose the following:

Definition 1. HV is a theory physically equivalent to quantum
mechanics (that is, giving the same predictions for all experiments)
which has the formal structure of classical statistical mechanics.

The definition may be illustrated in the following table giving
the correspondence of concepts in experiments, in standard quantum
theory and in a possible HV theory:

Table I. Correspondence of concepts

EMPIRICAL QUANTUM THEORY HV THEORY
physical system Hilbert space H phase space Λ

state vector | Ψ〉 ∈ H probability density ρ (λ)

observable A self-adjoint operator Â function A (λ)

expectation values 〈Ψ | Ân | Ψ〉 =
∫
[A (λ)]n ρ (λ) dλ

correlations if ÂB̂=B̂Â, 〈Ψ | ÂkB̂l |Ψ〉 =
∫
[A (λ)]k [B (λ)]l ρ (λ) dλ
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For the sake of clarity, in the table we have considered only quan-
tum pure states. The most general states are associated to density
operators, ρ̂, whence the quantum expectation value and correlation
should be written, respectively

Tr
(
ρ̂Ân
)
,Tr
(
ρ̂ÂkB̂l

)
.

The parameter (or parameters) λ is usually called the hidden vari-
able. Two observables, A and B, which are associated to commuting

operators, Â and B̂, are said compatible. The correspondence might
be extended to more than two compatible observables, associated to
commuting operators. The knowledge of all moments of the observ-
ables determines the joint probability distribution. In fact, in order
to prove the equality of the characteristic functions of the probability
distribution in quantum mechanics and in the hidden variables the-

ory it is enough to substitute exp
(
iξÂ
)
for Ân and exp [iξA (λ)] for

[A (λ)]n in the equality. Hence, it is a simple matter to get the prob-
ability distribution. Similarly, for several commuting observables the
joint probability distribution is given in quantum mechanics by

f (a, b) =
1

4π2

∫
dζ

∫
dχ exp (−iζa− iχb) Tr

[
exp
(
iζÂ+ iχB̂

)
ρ̂
]
.

This may be trivially extended to any finite set of commuting onserv-
ables.

However, as is well known, quantum mechanics does not provide
joint distributions of observables that are not compatible (the asso-
ciated operators not commuting). Therefore it is not obvious that
hidden variables models might be generalized to incompatible observ-
ables. Actually, there is no good proposal of a joint probability distri-
bution for sets of not-all-commuting observables; in particular, for the
position and momentum of a particle, as will be studied in chapter 3.

If quantum mechanics admitted hidden variables for all sets of
observables, then a realistic interpretation would be trivial. In fact,
it would be compatible with the existence of real (ontic) pure states
where all relevant observables would possess a definite value. Mixed
states, corresponding to quantum states in the ensemble interpreta-
tion, would possess a joint probability distribution of all observables.
However, this is not possible because hidden variables theories should
fulfil some constraints as studied in more detail in chapter 3.
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2.4.7. Conclusions. In comparison with the Copenhagen and
the von Neumann interpretations, the many worlds (MWI) has the
advantage that it does not require the measurement postulates. It
follows rigorously from the universal validity of quantum mechanics.
However, in order to avoid a Platonic paradigm (see section 2.3.4),
strange to natural science, it should be combined with (or replaced
by) an ensemble interpretation, thus giving rise to an interpretation
which may be realistic and not bizarre.

None of these interpretations leads to a realistic model of the
quantum world. The most obvious alternative is a hidden variables
theory. However, in this book we go beyond a simple change in the
interpretation of the Hilbert space formalism resting on the standard
postulates revisited in section 2.2.1. I believe that we should not be
committed with the interpretation of the standard formalism; the rel-
evant question is the interpretation of the empirical facts, may be
via a completely different formalism. I believe that this was also the
opinion of Einstein, who never supported explicitly hidden variable
theories (within the current formalism) but an alternative (say sub-
quantum) theory from which the present QM should be derived in a
manner similar to the passage from statistical mechanics to thermo-
dynamics. An intermediate possibility is a modification—or rather
weakening—of the standard postulates that would allow a realistic
interpretation, as suggested in section 2.3.5.

The hidden variables approach is closely related to the questions
of completeness of the quantum formalism, locality, entanglement and
the Bell inequalities, that require an extended treatment. Therefore
we will devote the whole chapter 3 to that subject.

2.5. The logical structure of quantum theory

Quantum mechanics looks radically different from all classical the-
ories of physics. Is that difference fundamental or is it due to our
present lack of understanding of quantum mechanics? In this chapter
I revisit several approaches that might suggest that the difference is
indeed fundamental, although that belief will be questioned in later
chapters of the book. Here I also introduce the Bell inequalities as
constraints for hidden variables theories, which will play a relevant
role in following chapters.

2.5.1. Quantum logic and quantum probability. According
to Birkhoff and von Neumann [38] the difference between quantum
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and classical theories is radical because it appears at the most funda-
mental level, the logic. The elements of a logic are the propositions
which, using the language of physics, are observables having the pos-
sible values 1 (the proposition is true) or 0 (false). Some pairs of
propositions are related by the implication (A implies B) if B is true
whenever A is true. This binary relation endows the logic with the
mathematical structure of a partially ordered set (‘poset’). Another
relation associates every proposition with its negation (for each propo-
sition A there exist another one, A′, which is true if and only if the
first is false). This makes the poset orthocomplemented. The internal
operations ‘meet’ and ‘join’ endow the poset with a richer structure
making it an orthocomplemented lattice. Finally it is assumed that
there exists the sure proposition I, always true, and the absurd propo-
sition Φ, always false, which makes the lattice complete. From now
on any complete and orthocomplemented lattice will be called a logic.
Classical logic is a distributive lattice and it is called a Boolean algebra.

In the view of Birkhoff and von Neumann the structure of quan-
tum logic may be derived from the correspondence between proposi-
tions and projection operators (which we shall call projectors in the
following). Accordingly, these authors postulated that the proposition

associated to the projector P̂ is true (or false), for a physical system in

a given state, if the state vector | Ψ〉 is an eigenvector of P̂ (or Î− P̂ ).
This assumption gives rise to a trivalent logic where propositions may
be, in addition to true or false, also undefined (which happens if | Ψ〉
is neither an eigenvector of P̂ nor an eigenvector of Î− P̂ ). As projec-
tors are associated to closed subspaces of the Hilbert space, quantum
logic has the mathematical structure of the set of closed subspaces.

From these assumptions it is straightforward to define the fun-
damental relation of order (or implication) of propositions. We say
that, for two propositions A and B we have A ≤ B ( or A ⇒ B) if the
subspace associated to B contains that associated to A. Hence the
binary operations ‘meet’, �, and ‘join’ ,�, may be defined in a natural
form and it follows that the propositions form a lattice. The lattice
is orthocomplemented (the subspaces associated to the proposition A
and its negation A′ are orthogonal) and complete (there exist the sure
proposition, I, corresponding to the whole Hilbert space and its nega-
tion, Φ, corresponding to the null vector). Up to here everything is
similar to what happens in classical logic. But the quantum lattice is
not distributive (Boolean), unlike the classical one. As a conclusion,
the authors claimed that the non-Boolean character of the lattice of
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propositions is the essential characteristic of quantum theory. The
details may be seen in the original article [38].

In the years elapsed since the work of Birkhoff and von Neumann
many articles and several books have been devoted to the subject of
quantum logic (see e.g. the book of Hooker [39]), in many cases start-
ing from different definitions of quantum propositions. Some criticism
has also arose in the sense that ‘quantum logic’ is not a true logic,
but just a propositional calculus. Indeed, in an ‘actual’ logic the re-
lations amongst proposition like A ⇒ B or A�B = C should be also
considered propositions, which is not necessarily the case in a propo-
sitional calculus. But the described approach to the logic of quantum
mechanics is still widely used.

It is straightforward to define a probability distribution (or ‘state’)
in any logic (orthocomplemented and complete lattice):

Definition 2. If L is a logic, a probability distribution is a map-
ping p : L → [0, 1] with the axioms

1) p(Φ) = 0, p(I) = 1, where Φ (I ) is the absurd (sure) proposi-
tion,

2) If {Ai} is a (countable) sequence such that Ai ≤ A′
j for all

pairs i �= j, A′ being the negation of A, then
∑

i p(Ai) = p (�Ai),
3) For any sequence {Ai}, p(Ai) = 1 ∀i ⇒ p (�Ai) = 1,

Thus from quantum logic, as defined by Birkhoff and von Neu-
mann, we get quantum probability, whilst the classical, Boolean, logic
provides the standard probability theory. Indeed, the above axioms
are simply a generalization of the axioms of probability as stated by
Kolmogorov [40].

2.5.2. The Bell inequalities as tests of classical probabil-
ity. A discrimination between classical and quantum probability is
provided by the Bell inequalities, derived as follows [41]. For any two
propositions A,B ∈ L we may define a function, d(A,B), by

(27) d(A,B) = p (A�B)− p (A�B) .

That function has the properties

(28) 0 ≤ d(A,B) ≤ 1, d(A,A) = 0, d(A,A′) = 1,

and provides some measure of the ‘distance’ between two propositions
in a given state (probability distribution). The function is called a
metric (pseudometric) if the following additional property holds (does
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not hold) true

(29) d(A,B) = 0 ⇒ A = B,

but this property is not very relevant for our purposes. More im-
portant are the following triangle inequalities, which are (are not in
general) fulfilled if the lattice is (is not) Boolean

(30) |d(A,B)− d(A,C)| ≤ d(B,C) ≤ d(A,B) + d(A,C).

As the Boolean character provides the essential difference between
classical and quantum theories, according to Birkhoff and von Neu-
mann [38], the triangle inequalities (30) give a criterium to distin-
guish between them. These inequalities are closely related to the Bell
inequalities as shown in the following [42], although in the mathemat-
ical theory of probability the inequalities (30) were known well before
Bell’s work.

In quantum mechanics, if we consider three compatible propo-
sitions, {A,B,C} (associated to pairwise commuting projectors) the
inequalities (30) hold true because the lattice of commuting projectors
is distributive. On the other hand, if two of the propositions, say A
and B, are not compatible then their mutual distance is not defined
because quantum mechanics does not provide a joint probability of
two incompatible observables (and it is assumed that they cannot be
measured simultaneously). However, there are quadrilateral inequal-
ities, derived from the triangular ones (30), which may be violated
by quantum mechanics and tested empirically. In fact, if we consider
four projectors {A,B,C,D} it is easy to see that the inequalities (30)
lead to

(31) d(A,D) ≤ d(A,B) + d(B,C) + d(C,D).

In contrast with the inequalities (30), now all four distances may be
defined in quantum mechanics if every pair involve commuting pro-
jectors (that is, if [A,D] = [A,B] = [B,C] = [C,D] = 0). We see that
the inequality (31) and the other three obtained by permutations in-
volving the four projectors are necessary conditions for the existence
of a classical joint probability distribution defined on the set of pro-
jectors. There are cases where quantum mechanics predicts violations
of one of the inequalities, which leads to Bell’s theorem (see chapter
3).

Inequality (31) is equivalent to the following one

(32) pB + pC ≥ pAB + pBC + pCD − pDA,
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where pA (or pAB) is the probability that A (or A�B) is true. This
is called a Bell inequality [43] and, in this form, it was derived by
Clauser and Horne [44]. Instead of projectors, taking the values 0
and 1, we might use observables taking the values -1 or +1. They are
trivially related to the projectors by

(33) a = 2A− 1, b = 2B − 1, etc.

and the inequality (32) takes the form of Clauser-Horne-Shimony-Holt
(CHSH) [45]:

(34) |〈ab〉+ 〈bc〉+ 〈cd〉 − 〈ad〉| ≤ 2,

where 〈ab〉 means the expectation value of the product of a and b.
Therefore these CHSH inequalities and the Clauser-Horne inequalities
(32) are equivalent.

If no constraint is put, the left side of eq.(34) might be as large

as 4. However, quantum mechanics forbids it to be larger than 2
√
2

which is named the Cirel’son bound [46]. A proof of the Cirel’son
bound is as follows. In quantum mechanics the left side of the CHSH
inequality(34) should be the expectation value, in some state ψ, of
the operator

M̂ = âb̂+ b̂ĉ+ ĉd̂− d̂â

where all operators â, b̂, ĉ, d̂ have eigenvalues ±1, so that

(35) â2 = b̂2 = ĉ2 = d̂2 = 1.

Thus we get

(36) M̂2 = 4 + âb̂ĉd̂− b̂ĉd̂â+ ĉd̂âb̂− d̂âb̂ĉ,

where I have taken into account eqs.(35), and that each Alice operator,

â and ĉ, commute with every Bob operator, b̂ or d̂ . What remains is
to prove that the expectation of the four last terms in eq.(36) is not
greater than four. This may be shown using the Schwartz inequality,

taking into account that for instance 〈ψ | âb̂ĉd̂ | ψ〉 may be seen as

the scalar product of the vector 〈ψ | âb̂ times the vector ĉd̂ | ψ〉. Thus
we get ∣∣∣〈ψ ∣∣∣âb̂ĉd̂∣∣∣ψ〉∣∣∣2 ≤

〈
ψ
∣∣∣âb̂b̂â∣∣∣ψ〉〈ψ ∣∣∣ĉd̂d̂ĉ∣∣∣ψ〉 = 1,

where again I have taken into account eqs.(35) . As a result I obtain∣∣∣〈ψ ∣∣∣M̂ ∣∣∣ψ〉∣∣∣2 ≤
∣∣∣〈ψ ∣∣∣M̂2

∣∣∣ψ〉∣∣∣ ≤ 8,

which completes the proof.

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



74 2. THE HILBERT SPACE FORMULATION

2.5.3. The measure of the amount of information.
The amount of information is quantified with the concept of entropy.
In classical physics, if we have a continuous random variable, λ, with a
probability distribution ρ (λ), the entropy, SC , as defined by Shannon
is

(37) SC = −
∫

ρ (λ) log ρ (λ) dλ.

The quantum entropy was defined by von Neumann in terms of the
density operator, ρ̂, with an expression which looks similar to that
one, namely

(38) SQ = −Tr (ρ̂ log ρ̂) .

In both cases S ≥ 0 and the entropy increases with the lack of infor-
mation, so that the pure states (maximal information) correspond to
S = 0.

There are two other properties which hold true for both classical
and quantum entropy:

Concavity:

λS (ρa) + (1− λ)S (ρb) ≤ S (λρa + (1− λ)ρb) , 0 ≤ λ ≤ 1,

where ρa stands for either the classical probability density, ρa (λ),
or the quantum density operator, ρ̂a, and similarly ρb for a different
probability density or density operator of the same system.

Subadditivity:

S (ρ12) ≤ S (ρ1) + S (ρ1) ,

where ρ12 stands for either the classical probability density ρ12 (λ1, λ2)
or the quantum density operator ρ̂12, the subindex 1 (2) refers to the
first (second) subsystem of a composite system, and we have

(39) ρ1 (λ1) =

∫
ρ12 (λ1, λ2) dλ2, ρ̂1 = Tr2 ρ̂12.

There is, however, a property which dramatically distinguishes
classical from quantum entropy. In fact, in the case of a system con-
sisting of two subsystems, the classical Shannon entropy fulfils

(40) SC(ρ12) ≥ max
{
SC(ρ1), S

C(ρ2)
}
,

whilst the quantum entropy fulfils the weaker triangle inequality

(41) SQ(ρ̂12) ≥
∣∣SQ(ρ̂1)− SQ(ρ̂2)

∣∣ .
In my opinion, the fact that the quantum entropy does not fulfil

an inequality similar to (40) is highly paradoxical, I would even say
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bizarre. In fact, (41) allows for the possibility that both SQ(ρ̂1) and
SQ(ρ̂2) are positive whilst S

Q(ρ̂12) is zero. This should be interpreted
as saying that we have complete information about a composite system
whilst we have incomplete information about each subsystem. This
contrast with the classical, and intuitive, idea that full information
about the whole means that we have complete information about
every part. In my view this is indicative that the concept of ‘complete’
information in quantum theory is not the same as in classical physics,
and the different meanings of completeness have been the source of
misunderstandings about the interpretation of quantum theory, e.g. in
the debate between Einstein and Bohr.

The violation of an inequality similar to (40) is closely related to
the violation of the Bell inequality. The connection may be stated
more easily if we introduce the concept of linear entropy. Actually,
although the definitions of entropy (37) and (38) are standard and
in some sense an optimum, it is possible to give alternative defini-
tions of entropy which fulfil the essential properties of concavity and
subadditivity. The most simple is the socalled linear entropy

(42) SCL = 1−
∫

ρ (λ)
2
dλ, SQL = 1− Tr

(
ρ̂2
)
.

It is easy to see that SCL = 0 implies a pure state, that is, all probabil-
ity density concentrated in a single value of λ. Similarly SQL = 0 im-
plies pure quantum state, that is, ρ̂2 = ρ̂, see comment after eq.(15) .

The desired connection between linear entropy and the Bell in-
equalities has been studied by several authors in the last few years.
For instance, Horodecki et al. [47] proved that the inequality (40) is a
sufficient condition for the Bell inequalities. A slightly stronger result
may be stated as follows

Theorem 3. The inequality

(43) MNSQL (ρ̂12) +MN −M −N ≥ NSQL (ρ̂1) +MSQL (ρ̂2) ,

where M and N are the dimensions of the Hilbert spaces of the two sub-
systems, is a sufficient condition for all Bell inequalities (32) or (34)
which may be got using two dichotomic observables of each subsystem.

Proof: We consider observables {a, c} for the first particle and
{b, d} for the second, all of which may take values 1 or -1, and the

associated operators, â, b̂, ĉ and d̂. We define the Bell operator, B̂, by

(44) B̂ = â⊗ b̂+ ĉ⊗ b̂+ ĉ⊗ d̂− â⊗ d̂.
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It is easy to see that

(45) TrB̂ = 0, Tr
(
B̂2
)
= 4MN,

and that the Bell inequality (34) is violated if

(46) |β| > 2, β ≡ Tr
(
B̂ρ̂12

)
,

(whilst quantum mechanics predicts just |β| ≤ 2
√
2). Now the obvious

inequality
(47)

Tr

(
ρ̂12 − 1

N
ρ̂1 ⊗ Î2 − 1

M
Î1 ⊗ ρ̂2 +

1

MN
Î1 ⊗ Î2 + λB̂

)2

≥ 0, λ ∈ R,

where Î1( Î2 ) is the identity operator for the first (second) particle,
gives a quadratic expression in the variable λ. We get, after some
algebra

(48) MNTr
(
ρ̂212
)−NTr

(
ρ̂21
)−MTr

(
ρ̂22
) ≥ 1

4

(
β2 − 4

)
.

Hence the inequality (43) implies |β| ≤ 2, which proves the theorem.
Actually, inequality (43) is rather strong, and therefore not very

useful, if either M > 2 or N > 2 or both, and it is trivial if either
M = 1 or N = 1. Consequently its main interest is the case M =
N = 2, where it is a consequence of the inequality (40), characteristic
of classical information theory.
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80 3. REALISM, LOCALITY AND BELL INEQUALITIES

3.1. Introduction

During the past 50 years the Bell inequalities have had an im-
portant role in all discussions about the interpretation of quantum
mechanics. In this chapter we will briefly discuss the origin of the
inequalities, which goes back to the early attempts at explaining the
statistical character of quantum mechanics by means of hidden vari-
ables. There was a vivid discussion as to whether quantum mechanics
is a complete theory, as has been discussed in chapter 2. The com-
pleteness problem was related by Einstein with relativistic locality,
a relation that was the starting point of Bell’s work. In section 3.2
we discuss the consequences of realism and the fact that quantum
mechanics should be interpreted taking context into account. The
conflict between quantum mechanics and local realism will be treated
in section 3.3. The empirical tests of the Bell inequalities, proposed
or performed, will be the matter of section 3.4 (optical test) and 3.5
(other tests). Finally I will include a section about the origin of irre-
versibility in physics, that may help to better understand the differ-
ence between causality and locality.

3.1.1. Theorems against hidden variables theories. Soon
after the proposal of quantum mechanics in the years 1925-26 the
hypothesis was put forward that the probabilistic character of the
theory might be due to the fact that the description offered by the
wave function is not complete. If this is the case additional ‘hidden
variables’ might be included in order to complete the description, thus
producing a subquantum theory whence quantum mechanics could be
derived by appropriate averaging. Hidden variables have been dis-
cussed in chapter 2 section 2.4.6. The mainstream of the scientific
community was positioned against hidden variables (HV) and several
theorems have been proved with the purpose of either excluding HV
theories or restricting the class of theories that are possible. In the
following we will comment on the three most relevant, put forward by
von Neumann, Kochen-Specker and Bell. We comment on the former
now and on the other two in sections 3.2 and 3.3, respectively.

John von Neumann included in his celebrated 1932 book (see
chapter 2) a theorem allegedly proving that any hidden variables
model would contradict the predictions of quantum mechanics. The
theorem was an obstacle for the research on HV during more than
three decades (for details see chapter 2 sections 2.4.5 and 2.4.6 ). Our
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dicussion of this theorem serves also as an introduction to the concept
of contextuality.

The theorem rests on the hypothesis that HV theories should
preserve linear relations. For instance, if three quantum observables

represented by the operators Â, B̂, Ĉ fulfil the relation

(49) Ĉ = Â+ B̂,

then a HV model should allow ascribing dispersion-free values to all
three observables fullfiling a relation similar to eq.(49). It is then
proved that this is not possible in general, that is, without a disagree-
ment between quantum and HV predictions. An illustrative example
will be given in chapter 5 section 5.2.6.1. At this moment it is enough
to mention the criticism of Bell [1], namely that the linearity con-
straint to hidden variables models is actually unphysical. In fact,

when the observables Â and B̂ commute a joint probability for them
exists that provides an explicit HV model, as defined in chapter 2,
section 2.4.6. However, if they do not commute then the observables
are incompatible and the relation eq.(49) cannot be tested empirically.
Nevertheless, HV theories are possible if we just demand that they re-
produce the predictions of quantum mechanics for actual experiments.
This fits in our definition for realistic interpretation made in chapter
1, section 1.2.9. The point is further clarified in section 3.2 below.

3.1.2. The two roles of the Bell inequalities. In 1964 Bell
showed [2] that an important class of HV models are incompatible
with quantum mechanics, namely local HV. This produced a deep
impact in the scientific community, specially on quantum physicists
interested in foundations. In particular, it seemed to support Bohr’s
vs. Einstein’s position about the completeness of quantum mechanics.
In fact, as discussed in chapter 2, section 2.4.5, Einstein had claimed
that quantum mechanics is either incomplete or nonlocal, the second
alternative being inconceivable to him because it suggests a contra-
diction with relativity theory. This is the first and most relevant role
of the Bell inequalities: To show a possible conflict between quan-
tum mechanics and relativistic causality, with the advantage that it
may be put to empirical test. This is the aspect that will be mainly
discussed in this chapter, starting in section 3.3.

The other role of the Bell inequalities is to provide a criterion to
characterize phenomena that are specifically quantum, that is, phe-
nomena that may not be interpreted within classical theories. This
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role of the inequalities is extensively used in quantum information the-
ory because an essential resource in quantum information is quantum
entanglement and it is closely connected with the Bell inequalities as
will be discussed in section 3.2.5 below. The relevance of this role of
the Bell inequalities derives from the exponential growth of work in
quantum information theory during the last few years. This growth
derives from the hope that quantum laws may allow new technological
advances in computation and other areas as well as from the fact that
the size of computer’s components is reaching the atomic level. In
this book I will not deal with this subject which, although extremely
important from the technological point of view, is not too relevant for
the interpretation of the theory.

3.2. Realism and contextuality

In this section we will start defining contextual HV models. After
that we will discuss the following topics: 1) to which extent contex-
tual models contradict, or not, realism, 2) how the standard quantum
formalism seems to demand noncontextuality, 3) the Kochen-Specker
theorem, 4) the relation between the Bell inequalities and entangle-
ment.

3.2.1. A classification of experiments. Our knowledge of the
natural world derives from observations and experiments. In some
cases, in particular astronomy, we cannot prepare the systems at will,
we may just observe them and measure some quantities. For instance,
we may measure the radius, surface temperature and spectrum of a
star. In contrast, in laboratory experiments there are usually three
steps: first we should prepare the state of a system following an appro-
priate protocol, then the state evolves in time, and finally we measure
the relevant properties of the system in the final state. The prepa-
ration defines the initial state (represented by a density matrix in
quantum mechanics) and the measurement the values of the relevant
observables (self-adjoint operators in the quantum formalism). It is
possible to define more general measurements, named positive opera-
tor valued measurements (POVM) but for our aim (finding a realistic
interpretation) this generalization is not necessary.

It is useful to classify experiments in two kinds: simple and com-
posite.

Definition 4. A simple experiment consists of the preparation
of a state of a physical system, followed by the evolution of the system
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and finishing with the measurement of one or a finite set of compatible
observables.

Definition 5. A composite experiment consists of several simple
experiments with the same preparation, as defined by a protocol, and
the subsequent evolution, but measuring different sets of compatible
observables in each simple experiment. Typically the observables mea-
sured in a simple experiment are incompatible with those measured in
another simple experiment.

With these definitions we may state the following consequence for
quantum mechanics: Any simple experiment admits a hidden vari-
ables model. This follows from the fact that all observables that can
be measured in a single experiment are compatible, which implies that
the corresponding operators commute and hence there exists a joint
probability distribution, as discussed in section 2.4.6 of chapter 2.

3.2.2. The implications of realism. Realistic interpretations
of a physical theory rest on the concept of ‘ontic states’, that is, real
physical states of systems, objective and independent of any observer.
Ontic states are assumed to possess objective properties that might
be measured, maybe indirectly. I will define as realistic any theory
aimed to interpret the empirical facts in terms of ontic states, and
not just concerned with providing a set of rules for the calculation
of the results of experiments or observations. A necessary condition
for realism is as follows. Let us assume that in some experiment we
want to measure the observable A, which may possess several possible
values. The value obtained in the measurement, say a, will depend on
the state, say λ, of the system and the observable which we measure,
A. We may write

(50) a = a (λ,A, context) .

where we may interpret λ as the set of values of the variables which
faithfully determine the ontic state of the system. Actually, in the
standard interpretation of eq.(50) it is implicit the ‘arrow of time’
(for a study of the arrow of time see section 3.6 below) because λ
refers to the state of the system before the measurement, but it is
assumed that the result does not depend on anything that happens
after it. Thus we might say that eq.(50) is a condition for ‘time-
ordered realism’ which combined with locality is equivalent to realism
plus relativistic causality. Actually, any theory is related to human
knowledge of nature and humans are unavoidably constrained by the

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use
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arrow of time. The dependence on context takes into account that
the result of the measurement may depend on the full experimental
equipment used for the measurement of the observable A. That is,
the possibility is allowed that two different measurements of the same
observable performed on two identical systems in the same state give
different results, due to a different environment.

In classical physics the influence of the environment is considered
both unavoidable and inconvenient but (most of the times) irrelevant.
In fact, all (or most) measurements have errors, which are attributed
to an incomplete control of the experimental setup (e.g., due to per-
turbations caused by the environment). It is inconvenient because
an ideal measurement should have no errors. It is not too relevant
because we assume that the errors may decrease indefinitely with in-
creasingly better equipment. In quantum physics the situation is dif-
ferent. Indeed, in some cases the errors are not only unavoidable but
as big as the main result. This happens for instance if we attempt to
measure at the same time the position and the velocity of a particle,
as is shown by the Heisenberg uncertainty inequalities. Thus in or-
der to formalize the possible influence of the environment we should
include the context in eq.(50) .

For some people eq.(50) should be called a condition for deter-
minism, rather than realism, because the states of the system and the
context completely determine the result of the measurement. That
is, eq.(50) excludes the possibility that natural laws are not strictly
causal. In order to circumvent this objection I may replace for eq.(50)
the more general one

(51) Prob(a) = Pa (λ,A, context) ,

with the meaning that the states of system and context only determine
the probability of getting the value a. It is compatible both with the
assumption that natural laws are strictly causal and with its denial.
In fact when Pa may take only the values 0 or 1 then eq.(51) reduces
to eq.(50). We see that realism (the necessary condition for which is
eq.(51)) is more general than determinism (or deterministic realism,
which needs eq.(50)).

In eq.(51) the state of the system is represented by a continuous
variable λ with probability density ρ (λ). Introducing a density we
include the possibility that the state of the system is incompletely
known and we attach a probability distribution to our ignorance. This
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is named a mixed state. Actually, many people do not believe that
probability should be always attributed to incomplete information
(which is usually named ignorance interpretation of the probability),
but to the fact that the laws of nature are intrinsically probabilistic. In
any case, the introduction of a mixed state via ρ (λ) may derive from
the incomplete control of the initial state of the system, due to either
a practical imperfection of the set-up or an essential indeterminacy.
(At this moment I point out that the interpretation of probability is
a controversial subject, to which many articles and books have been
devoted. Here I will not discuss this question).

The dependence on context takes into account that the result
of the measurement might depend on the experimental environment.
Therefore a composite experiment consisting of two simple ones, with
the same preparation but different measurements, corresponds to un-
equal contexts at least for the environment. If this is accepted then
contextual realistic models (or hidden variables models) are always
possible [1].

3.2.3. Noncontextual models.

Definition 6. A realistic model for a composite experiment is
noncontextual if there exists a joint probability distribution for all ob-
servables of the system, even if some pairs are not compatible.

Models for simple experiments are always noncontextual because
these models may predict the joint probability distribution of the ob-
servables, all of them obviously compatible. In composite experiments
a necessary, but not sufficient, condition for noncontextuality is the
following. The marginal for the variable A in the joint distribution
of the compatible observables A and B is the same as the marginal
for A in the joint distribution of the compatible observables A and
C. If this was not the case we could say that the observable A in the
first simple experiment is different from A in the second one. With
this convention the condition holds true both in quantum mechanics
and classical physics. For instance, for a given preparation we may
measure the spin of a particle together with its position or measure
spin together with its momentum, and quantum mechanics predicts
that the result for the spin should be the same.

The existence of a joint distribution is a stronger constraint. What
is required is the existence of some function of all the observables,
p(A,B,C . . . ), fulfilling the mathematical properties of a joint prob-
ability distribution and such that the marginals for every subset of
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compatible observables are the ones predicted by quantum mechan-
ics. The said joint distribution is just a mathematical object (it cannot
be measured if some of the observables are not compatible) but their
mere existence puts constraints which may be tested empirically as
discussed in the following.

It is not difficult to see that the existence of a joint distribution
for the observables A,B,C, . . . , is equivalent to the existence of a
positive normalized function, ρ (λ) of the variable or set of variables,
λ, plus functions like A (λ) , B (λ) , C (λ) . . . Then the joint distribu-
tion f (A,B,C, . . . ) may be obtained from the moments that may be
calculated as follows

〈
AαBβCγ . . .

〉
=

∫
ρ (λ) dλ A (λ)

α
B (λ)

β
C (λ)

γ
. . .

A joint probability distribution f (A,B,C, . . . ) cannot be measured
if not all observables are compatible. In quantum mechanics it is as-
sumed that a necessary condition for compatibility is that the asso-

ciated operators Â, B̂, Ĉ,. . . commute pairwise. The situation with
respect to realistic (ontological) models is the following. We may
obtain several ontological (or HV) models, one for each simple experi-
ment. For instance, let us consider a composite experiment consisting
of two simple ones. In the first, where we measure A and B, a realis-
tic model should provide the functions ρ1 (λ), A1 (λ) , B1 (λ). In the
second, where we measure A and C, another model would give ρ2 (λ),
A2 (λ) , C2 (λ). The two models together might be called a model
for the composite experiment. It would be noncontextual if ρ1 (λ)
= ρ2 (λ) and A1 (λ) = A2 (λ); if this does not happen the model is
contextual.

For the sake of clarity I put a more involved example. Let us con-
sider four dichotomic observables, A,B,C and D, each of which may
take the values 0 or 1. We assume that A and C are incompatible, and
B and D are also incompatible, the remaining pairs being compatible.

The corresponding operators will be projectors, i.e. fulfilling Â2 = Â,
etc., all pairs of projectors commuting except

(52)
[
Â, Ĉ
]
�= 0,

[
B̂, D̂

]
�= 0.

Let us label pA the probability of A = 1, pAB the probability that
A = B = 1, etc. The existence of a joint distribution means that
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there are 15 positive quantities

pA, pB , pC , pD, pAB , pAC , pAD, pBC , pBD,

pCD, pABC , pABD, pACD, pBCD, pABCD,(53)

which should fulfil the relations

0 ≤ pABCD ≤ pABC ≤ pAB ≤ pA ≤ 1,(54)

and those obtained by all permutations of the labels. Only 8 of these
quantities may be measured (and they are predicted by quantum me-
chanics), namely

(55) pA, pB , pC , pD, pAB , pAD, pBC , pCD.

The remaining 7 quantities cannot be measured, the corresponding
observables not being compatible, and quantum mechanics predicts
no value for them. The question is whether there exist 7 (not mea-
surable) quantities fulfilling all constraints of the type eq.(54) which
together with the 8 measurable ones provide the desired joint proba-
bility distribution eq.(53).

3.2.4. Kochen-Specker theorem. The impossibility of non-
contextual models compatible with the quantum predictions in all
(composite) experiments is established by the following theorem.

Theorem 7. Noncontextual HV models do not exist in general,
i.e. in agreement with quantum predictions for all possible (composite)
experiments.

This is usually called Kochen-Specker theorem [4] after the au-
thors who proved it in 1967. However, the theorem had been actually
shown one year earlier by Bell [1]. Furthermore, the theorem may
be proved also via the Bell inequality (BI) in two steps. Firstly we
realize that noncontextuality implies BI, which was shown in chapter
2, section 2.5.2. Then we should find examples of composite experi-
ments where the quantum predictions violate BI. Many instances will
be exhibited in sections 3.4 and 3.5 below. At this moment it is appro-
priate to stress that BI holds true for any noncontextual model of an
experiment (simple or composite), that is, a model including a joint
probability distribution for all observables. As this happens always in
classical physics (except some contrived irrelevant examples) then the
BI are fulfilled in classical theories.

The correlations that cannot be explained via noncontextual mod-
els may appear in two different scenarios: 1) Correlations between
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properties of a system localized in a small region of space, 2) Cor-
relations between distant systems. Actually, the difference between
the two scenarios is not sharp, but there is an important case which
belongs clearly to the latter, namely EPR type experiments to be stud-
ied after introducing the constraint of locality. Actually, the Kochen-
Specker theorem poses no real problem for a realistic interpretation
of quantum mechanics; it is enough to assume that the context is
very relevant in the quantum domain. However, a dramatic exception
with great relevance is noncontextuality in EPR type experiments as
studied in section 3.3 below.

3.2.5. Entanglement and contextuality. I discussed the
quantum concept of entanglement in chapter 2, section 2.3.2. Two
subsystems of a physical system are said entangled if the quantum
(Hilbert space vector) representative of the whole cannot be written
as a product of the representatives of the subsystems. That is, if ψa

is the wave-function of the first subsystem and ψb of the second, both
normalized, and the wave function of the whole is

(56) ψ = ψaψb,

then the subsystems are not entangled. The typical wave-vector of a
system consisting of entangled subsystems is (modulo a global phase
factor)

(57) | ψ〉 = c | Ha〉 | Vb〉+
√
1− |c|2 | Va〉 | Hb〉, |c| < 1.

where | Ha〉 and | Va〉 are possible normalized states of the first sub-
system (say measured by Alice) and | Hb〉 and | Vb〉 of the second
(Bob), c being a complex number. The labels H and V are written
by analogy with the state of two photons entangled in polarization
(horizontal or vertical), but our treatment is general. Actually, we
might also consider states of systems where | ψ〉 is a sum of more
than two terms in the form of products, the essential condition for
entanglement being that the state vector of the whole system | ψ〉
cannot be written in the form of eq.(56) via a choice of the subsystem
states.

The relevance of entanglement was pointed out in 1935 in two
articles by Einstein et al. (EPR) and by Schrödinger, respectively,
both critical with the Copenhagen interpretation of quantum me-
chanics. The former (EPR) has been discussed in chapter 2 section
2.4.5. It exhibited an explicit example of entanglement. In the second
one Schrödinger wrote that entanglement is the characteristic trait
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of quantum mechanics and emphasized the strange consequences of
entanglement with his celebrated example of the ‘cat’, discussed in
chapter 2 section 2.4.

Entanglement provides the examples needed to prove Bell’s theo-
rem, that is, the (alleged) incompatibility of quantum mechanics with
local realism. We will prove in section 3.3 below that local realism
implies the Bell inequalities. Now we will show that there are cases
of quantum states violating the inequalities. In fact, entanglement is
both a necessary and a sufficient condition for the violation of Bell
inequalities, in the precise sense stated as follows.

Theorem 8. For any system in a state without entanglement
(whose wave-function may be written as in eq.(56)), and for any set

of observables {Â1, Â2, B̂1, B̂2} the first (last) two acting on the
first (second) subsystem, all with eigenvalues in the range [−1, 1], the
CHSH (Bell type) inequality holds true.

The CHSH inequality was derived in chapter 2 section 2.5.2 from
noncontextuality, that is, the existence of a joint probability distribu-
tion. It will be studied again in section 3.3.3 below.

Proof: For any product Âj B̂k, j, k = 1, 2 the expectation factor-
izes, that is,〈
ψ
∣∣∣ÂjB̂k

∣∣∣ψ〉 =
〈
ψa

∣∣∣Âj

∣∣∣ψa

〉〈
ψb

∣∣∣B̂k

∣∣∣ψb

〉
≡ ajbk; aj , bk ∈ [−1, 1] .

Then the proof reduces to show that any four real numbers all in the
range [−1, 1] fulfil the following inequalities

−2 ≤ a1b1 + a1b2 + a2b1 − a2b2 ≤ 2,

which easily leads to the CHSH eq.(61) below.

Theorem 9. For any system in a state with entanglement (whose
wave-function may be written as in eq.(57)), it is possible to find four

observables {Â1, Â2, B̂1, B̂2} the first (last) two acting on the first
(second) subsystem, all with eigenvalues in the range [−1, 1], such that
the CHSH inequality is violated.

This is usually named Gisin theorem [5] and it has been gener-
alized for all entangled pure states [6]. In the following I sketch the
proof for the entangled state eq.(57) . In analogy with polarization we

associate the operators {Â1, Â2, B̂1, B̂2} with angles in the form

Âj = 2 | θj〉〈θj | −1, B̂j = 2 | φj〉〈φj | −1,
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where | θj〉 is a state with polarization at an angle θj with the hor-
izontal, so that | φj〉〈φj | is a projector onto that state. Hence we
get

〈ψ | ÂjB̂k | ψ〉 = |c|2
〈
Ha

∣∣∣Âj

∣∣∣Ha

〉〈
Vb

∣∣∣B̂k

∣∣∣Vb

〉
+ (1− |c|2)

〈
Va

∣∣∣Âj

∣∣∣Va

〉〈
Hb

∣∣∣B̂k

∣∣∣Hb

〉
+ c

√
1− |c|2

〈
Ha

∣∣∣Âj

∣∣∣Va

〉〈
Vb

∣∣∣B̂k

∣∣∣Hb

〉
+ c

√
1− |c|2

〈
Va

∣∣∣Âj

∣∣∣Ha

〉〈
Hb

∣∣∣B̂k

∣∣∣Vb

〉
,

where 〈
Ha

∣∣∣Âj

∣∣∣Ha

〉
= 2〈Ha | θj〉〈θj | Ha〉 − 1 = 2 cos2 θj − 1,〈

Va

∣∣∣Âj

∣∣∣Va

〉
= 2 sin2 θj − 1,〈

Ha

∣∣∣Âj

∣∣∣Va

〉
= 2 cos θj sin θj − 1,

and similarly for the other cases. Then after some algebra we have

S ≡ 〈ψ | Â1B̂1 + Â1B̂2 + Â2jB̂1 − Â2B̂2 | ψ〉 = S(θ1, θ2, φ1, φ2),

which is a function of the four angles. What remains is the mathe-
matical proof that there are choices of the angles {θ1, θ2, φ1, φ2} such
that either S > 2 or S < −2, thus violating the CHSH inequality (61).

For |c| = −√1/2 the proof is trivial, see section 3.4.1.
These theorems show that quantum predictions for entangled

states violate Bell inequalities, thus proving that quantum mechanics
is not compatible with noncontextual hidden variables models. The
alleged incompatibility with local realism (named Bell’s theorem) is
studied in the following.

3.3. Local realism

3.3.1. Correlations derived from a common origin. Corre-
lations between events are quite common and usually easy to discover,
but it is not always trivial to know whether a simple correlation de-
rives from a causal connection. For instance, in some country a specific
food may be common and a specific disease be highly prevalent, which
might suggest that the latter is a consequence of the former. However,
it may be that the climate in the country favours both the abundance
of the said food and illness, without any causal connection between
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the two. In any case every correlation that does not correspond to
a causal connection should be attributed to a common cause, as the
climate in our example. Indeed, both in classical physics and in other
sciences the correlations between distant systems are assumed to de-
rive from either a causal connection or a common cause in the past.
For instance, the similarity between twins (possibly living in differ-
ent cities) is a correlation between distant bodies. It is an obvious
consequence of the common origin, the twins having a similar genetic
code.

The relevant fact for us is that correlations cannot be interpreted
as due to a common cause whenever a Bell inequality is violated.
Hence a fundamental consequence of Bell’s work is to (allegedly) show
that correlations between distant bodies not deriving from a common
past may exist in nature, this being the case in the correlations violat-
ing a Bell inequality, as predicted by quantum mechanics. I include
the word ‘allegedly’ because I am convinced that Bell’s formulation
of local realism is not general enough. However, most of this chapter
will be written fitting in the common opinion, questioning it just at
the end of this section 3.3 and in chapter 6.

The Bell inequalities are properties of correlations that derive
from a common past, as discussed above. Therefore, they may be
derived from the laws of (standard) probability (see chapter 2, section
2.5.2), a derivation independent of the existence of quantum mechan-
ics. Quantum mechanics enters because it predicts strange correla-
tions able to violate the inequalities in some cases. The counterintu-
itive character of refuting the cherished assumption that correlations
are either causally connected or due to common causes in the past is
strongly reinforced if the measurements are performed in space-like
separated systems in the sense or relativity theory. Actually, Bell
himself reinterpreted the correlation between two measurements, one
by Alice the other one by Bob, within relativity theory [3]. To do that
he considered the set of variables λ to be the union of two sets, λa

and λb, consisting each of all events in the past light cone of the mea-
surement performed by Alice and Bob, respectively. Therefore, the
violation of a Bell inequality with space-like separated measurements,
in the sense of relativity theory, would imply that the correlation does
not derive from events in the intersection of the said past light cones.

The said incompatibility between quantum mechanics and rela-
tivistic causality is called Bell’s theorem. The contradiction looks dra-
matic, but most authors think that there is no real contradiction with
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relativity theory because quantum mechanics does not allow sending
superluminal signals from Alice to Bob or from Bob to Alice (see
below). In order to clarify the subject it is necessary to distinguish
bewteen no-signalling and nonlocal correlations, as will be made in
section 3.3.4 below. Before that we will make a digression on the
meaning of locality and derive from it the BI.

3.3.2. Einstein and Bell locality conditions. It is common
opinion that the most celebrated supporter of local realism was Al-
bert Einstein, whence recalling his views may add clarity. His opinions
about realism have been commented on in chapter 1 section 1.1.3 and
in chapter 2 section 2.4.5, see also [7], and will be discussed again
now. He supported the assumption that a picture of the world fitting
in the tradition of (classical) physics is possible. That is, a world view
where physical systems have properties independently of any observa-
tion (the moon is there when nobody looks), probabilities appear due
to incomplete information, maybe unavoidable, rather than by an es-
sential indeterminacy (God does not play dice) and actions propagate
in spacetime at a speed not greater than that of light (without spooky
actions at a distance), where I have emphasized three well-known sen-
tences by Einstein.

The third sentence is specifically related to local theories, which
Einstein supported emphatically in his autobiographical notes [8]. He
wrote “On one supposition we should, in my opinion, absolutely hold
fast: the real factual situation of the system S2 is independent of what
is done with the system S1, which is spatially separated from the for-
mer”. This quotation is usually interpreted as Einstein’s support for
‘relativistic causality’, this believed to be synonymous of ‘Einstein
locality’, a belief actually not correct. The pioneer paper of John
Bell [2], where he introduced his celebrated inequalities, starts quot-
ing that sentence of Einstein as a justification of his (Bell’s) formula
defining local realism, eqs.(50) below. However, Bell locality includes
two ingredients: Einstein locality, which forbids (relativistic) spacelike
influences, plus an asymmetry of time sometimes named ‘the arrow of
time’. This implies the assumption that the present may influence the
future, but not the past, which in (special) relativity would mean that
an event may be influenced only by events in its past light cone, that
is, influenced neither by spacelike separated events nor by events in
the common future light cone. Therefore, Bell’s locality corresponds
more properly to what is usually named (relativistic) causality.
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Einstein sentence did not exclude influences by events in the fu-
ture light cone. Indeed, he was well aware that the laws of physics
do not distinguish future from past, as in the often quoted passage
from his letter of condolences upon the death of his friend Michele
Besso: “Michele has left this strange world just before me. This is
of no importance. For us convinced physicists the distinction between
past, present and future is an illusion, although a persistent one” [9]
(my emphasis).

I have stressed the difference between Einstein and Bell locality
because it is philosophically interesting, but in practice the additional
ingredient of the latter with respect to the former is unavoidable. We
stress that it involves an anthropic element, namely the fact that we,
human beings, are able to prepare a system at a time and study the
evolution towards the future, but are unable to prepare a system and
study the evolution towards the past. The relevance of the anthropic
element for the subject that we are discussing makes it worth to have
a closer look at the ‘arrow of time’. We will do that in section 3.6.

3.3.3. The Bell inequalities. In his pioneer 1964 paper Bell [2]
introduced local theories, intermediate between contextual and non-
contextual ones. The title of the paper, “On the Einstein-Podolsky-
Rosen paradox”, acknowledges inspiration in the celebrated 1935 EPR
article (see chapter 2 section 2.4.5), where the authors proposed as
evident a locality condition, as discussed above. In practice, the ex-
periments devised by Bell consist of two signals produced in a source
that travel towards two parties, Alice and Bob. Alice measures the
observable A and Bob the observable B, in such a way that the mea-
surements are performed in spatially separated regions in the sense
of relativity theory. In this case no signal travelling with a speed
smaller than light may inform Bob (Alice) about what Alice (Bob) is
measuring. Therefore in the correlation
(58)

〈AB〉 =
∑
ab

ab

∫
ρ (λ) dλPa (λ,A, context(A))Pb (λ,B, context(B)) ,

Pa might depend on the context of the measurement of the observable
A, but it cannot depend on the context of the measurement of B,
and similarly the measurement of B cannot depend on the context
of A. However, non-contextual models may be local, as it happens
for instance in static experiments, where information might go from
Alice to Bob or from Bob to Alice at any velocity. On the other hand
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there are more general (fully contextual) models where the locality
condition is not fulfilled. Thus we may write the following hierarchy

(59) non-contextual ⊆ local ⊆ general (contextual).

Within relativity theory eq.(58) might be interpreted assuming
that λ consists of all events in the intersection of the past light cones
of the measurements of A and B, whilst context(A) and context(B)
would consist of the events in the regions of the respective past light
cones that are not common. The strange fact is that eq.(58) seems to
not always hold true according to quantum mechanics, as we discuss
in the next subsection.

The proof that the local realistic eq.(58) is violated by quantum
mechanics was achieved by Bell in 1964 [2]. The proof is more clear
deriving a Bell inequality (BI) from local realism and then showing
that the BI contradicts QM in some cases. An appropriate BI testable
in experiments was proposed in 1969 by Clauser, Horne, Shimony and
Holt (CHSH) [10]. As pointed out in section 3.2.4, the BI are nec-
essary conditions for noncontextual models, where there is a joint
probability distribution for all measurable quantities in different sim-
ple experiments with similar preparations. In chapter 2, section 2.5.2
we derived the CHSH inequality from that condition. In the following
we shall derive it proving that local realism implies the existence of a
(mathematical) function with the properties of a joint probability dis-
tribution. However, the function is not a joint probability distribution
in the physical sense because it cannot be measured.

We may consider a composite experiment consisting of four sim-
ple ones with the same preparation and four different measurements
by two parties. Alice may measure either the observable A1 or A2,
but only one of these at a time, Bob may measure either B1 or
B2, one at a time. We assume that the four observables are di-
chotomic, having values {−1, 1} and that Alice and Bob perform four
joint measurements. That is, they measure A1B1 and get as a re-
sult either {a′1 = 1, b′1 = 1} or {a′1 = 1, b′1 = −1} or {a′1 = −1, b′1 = 1}
or {a′1 = −1, b′1 = −1} . Then in another run of the experiment they
measure A1B2 with the result a′′1b

′′
2 . Similarly they get a′′′2 b′′′1 in

the measurement of A2B1 and finally a′′′′2 b′′′′2 in the measurement of
A2B2. It is trivial that the following inequalities hold true for any set
of results

(60) −4 ≤ S ≡ a′1b
′
1 + a′′1b

′′
2 + a′′′2 b′′′1 − a′′′′2 b′′′′2 ≤ 4.
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Stronger inequalities can be obtained adding physical constraints.
In fact, if we introduce restrictions derived from local realism then the
CHSH inequality is obtained

(61) −2 ≤ 〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉 ≤ 2,

where 〈ajbk〉 means the expectation value of the product ajbk in a
joint measurement performed of the observables aj bk by Alice and
Bob, respectively.

In four experiments using identically prepared states of the same
system, local realism implies that Alice’s and Bob’s measurements
are independent, see eq.(58) . This implies that the probability Pa

that Alice gets the value a cannot depend on whether Bob measures
B1 or B2, and similar for the Bob probability Pb. Bell formalized these
facts writing the single and coincidence probabilities for the Alice and
Bob measurements as follows (see eq.(58))

PAj = 〈Aj〉 = 〈M (Aj)〉 ≡
∫

ρ (λ) dλM (λ,Aj) ,

PBk
= 〈Bk〉 = 〈M (Bk)〉 ≡

∫
ρ (λ) dλM (λ,Bk) ,

PAjBk
= 〈AjBk〉 = 〈M (Aj)M (Bk)〉
≡
∫

ρ (λ) dλM (λ,Aj)M (λ,Bk) ,(62)

where j = 1, 2, k = 1, 2 , λ is a set of random (‘hidden’) variables
with a probability density ρ (λ), and 〈Aj〉 , 〈Bk〉 and 〈AjBk〉 are the
expectation values of the results of measuring the observables Aj , Bk

or their product AjBk, respectively. The expectations agree with
the probabilities if the variables Aj , Bk have values {0, 1} . It is easy
to see that eqs.(62) and their generalizations provide a method to
obtain a ‘joint probability distribution’ for the observables. In fact,
if we know the function M (λ,Aj) for a set of observables {Aj} (with
values {0, 1}) then the joint probability P (A1, A2, A3, . . . ) for all these
observables may be got from the integral

P (A1, A2, A3, . . . ) =

∫
ρ (λ) dλ

∏
j

M (λ,Aj) .

This completes the proof that eqs.(62) imply the CHSH inequality
(61).
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I shall point out that in papers dealing with the Bell inequalities
it is frequent to call ‘correlation’ the expectation value of a product of
observables like 〈AB〉 . The name does not agree with the standard one
in mathematical statistics, where the correlation between two random
variables, A and B, is usually defined by the dimensionless quantity

(63) Corr(A,B) ≡ 〈AB〉 − 〈A〉 〈B〉√
〈A2〉 − 〈A〉2

√
〈B2〉 − 〈B〉2

.

It has been shown that inequalities similar to CHSH with the corre-
lation eq.(63) substituted for the expectation of the product, 〈AB〉,
may be violated by classical (local realistic) models. This fact has
lead some authors to misunderstand, and criticize, Bell’s work.

3.3.4. No-signalling and nonlocal correlations. No-signal-
ling means that it is not possible to send faster-than-light information.
That is, an observation cannot be affected by a disturbance located
at a point of spacetime such that the distance divided by the time dif-
ference is greater than the speed of light (space-like separation). It is
one of the rules of relativity adopted by quantum mechanics [11], [12].
Indeed, it is a consequence of microcausality, a postulate of quantum
field theory [13]. Microcausality means that two field operators at
spacelike separation commute. Nonlocal correlation is a weaker as-
sumption than no signaling, so that the former may be true but not
the latter. In order to better understand the difference it is convenient
to introduce the following terminology.

In an experiment where Alice and Bob measure some observables
at spacelike separation we may speak about parameter dependence
and outcome dependence [14], [15]. The former means that the result
of a measurement made by Bob could depend on the specific mea-
surements performed by Alice in a distant place. The latter means
that Bob’s result depends on (is correlated with) the result obtained
by Alice, and it might be named just correlation. It may be realized
that a parameter dependence could allow Alice to send signals to Bob
because Bob might know what Alice is measuring. This would be
strange if both measurements are made in distant places, even more
strange if they are space-like separated. On the other hand faster-
than-light signalling cannot be achieved if locality is violated only by
the occurrence of outcome dependence.

For the sake of clarity let us consider the following example with
reference to the CHSH inequality (61). A hypothetical system where
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Alice may measure either the observable a or c and Bob may measure
either b or d has the following expected results, depending on which
variables are measured (I will label P the probability):

• a = 1, b = 1 with P = 1
2 ; a = −1, b = −1 with P = 1

2 .

• c = 1, b = 1 with P = 1
2 ; c = −1, b = −1 with P = 1

2 .• c = 1, d = 1 with P = 1.
• a = 1, d = −1 with P = 1.

In this example it is easy to see that the CHSH inequality (61) is
violated because the left side has the value 4. There is no ‘parameter
independence’ in the sense that the result of the measurement of d
by Bob does depend on what Alice is measuring. In fact, if Alice
is measuring a, Bob will get d = −1 with certainty, whilst if she is
measuring c, he will obtain d = 1. It is intuitively obvious that this
requires a transmission of information from Alice to Bob that, if the
measurements are space-like, should be faster-than-light. This would
allow sending superluminal signals from Alice to Bob. If she chooses
to measure a(b), he will know Alice’s choice because he will get −1(1)
in the measurement of d. On the other hand a situation like the
one of the example is forbidden by quantum mechanics. In fact, the
quantum formalism implies that the expectation of the observable d
should be independent on whether d is measured simultaneously with

a or simultaneously with c, and given by
〈
ψ
∣∣∣d̂∣∣∣ψ〉, where d̂ is the

operator associated to the observable d, and ψ represents the state
of the system. In summary, in the example: 1) a Bell inequality is
violated, 2) there is no parameter independence, 3) it is possible to
send superluminal signals, and 4) quantum predictions are violated.

An example with parameter independence is the following:

• a = 1, b = 1 with P = 1
2 ; a = −1, b = −1 with P = 1

2 .

• c = 1, b = 1 with P = 1
2 ; c = −1, b = −1 with P = 1

2 .

• c = 1, d = 1 with P = 1
2 ; c = −1, d = −1 with P = 1

2 .

• a = 1, d = −1 with P = 1
2 ; a = −1, d = 1 with P = 1

2 .

Here there is parameter independence, because the probability
distribution for both Alice observables, a and c, is p = 1/2 for every
possible value, 1 or −1, independently of what Bob measures and sim-
ilarly for the Bob observables b and d. However, there is no outcome
independence; that is, the result obtained by Bob is correlated with
(depends on) the result obtained by Alice. It is easy to see that the
example again violates the Bell inequality (61), but there is no pos-
sibility to send information from Alice to Bob by means of the said
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measurements. On the other hand this example is not compatible
with quantum mechanics which would require that the left side of the
inequality (61) should not surpass the value 2

√
2 (Cirel’son bound,

see chapter 2 section 2.5). But there are many examples of quantum
mechanical predictions which violate outcome independence.

3.3.5. Attitudes in the presence of Bell inequality viola-
tions. After 50 years of experimental and theoretical effort, a loop-
hole free violation of the Bell inequality has been achieved, aside from
the small possibility that some as yet unknown loophole still exists.
Once the empirical BI violation is confirmed, the possible attitudes
may be summarized as follows:

The real world is quantum. The violation of a BI is a new
confirmation of quantum mechanics, which we must accept as the
correct theory of physics. Consequently, classical physics and our
intuition are wrong. Then labelling quantum mechanics as nonlocal is
flawed because locality should not be defined using classical reasoning,
but within the quantum formalism. Many authors support this view,
see for instance Griffiths [16].

Superluminal influences. Violation of a BI implies superlu-
minal (faster-than-light) influences between Alice and Bob measure-
ments.

Influence of the future on the present. For instance, as-
suming that the state (of entangled particles) is determined to some
extent by the (future) possible detection by Alice or Bob. This fits in
Einstein’s view that faster-than-light influences are not possible and
the distinction between future and past is an illusion (i.e. the laws of
physics do not lead to an arrow of time).

Complete determinism. If the future determines the past, as
well as the past determines the future, then an absolute determinism
seems unavoidable. Most people dislike this possibility (is there free
will in this case?) but again it seemed not too unpleasant to Einstein
who famously stated that “God does not play dice” (which may be
understood as a support to determinism).

Bell’s definition of local realism is too restrictive. The
current wisdom is that Bell’s definition of local realism, eq.(62), is
obvious. However, models in agreement with experiments exist not
fitting in eq.(62) but which could be labeled as realistic and local. This
is the view supported in this book. Indeed, a local model violating a
Bell inequality is exhibited in chapter 6 section 6.6.
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3.4. Tests of Bell inequalities with optical photons

The violation of Bell inequalities by the quantum predictions
seems to show that either local realism or quantum mechanics is
wrong (but see section 3.3.5 above, questioning this common opin-
ion). Therefore it is considered relevant to know whether actual ex-
periments may violate a Bell inequality and many such tests have
been performed in the last 50 years. There are many reviews, e.g. the
article by Brunner et al. [17]. In most performed experiments there
are loopholes for the refutation of local realism. Only a few recent
ones are reported as loophole-free [18], [19]. Thus older experiments
have only a historical interest, but I will comment on some represen-
tative ones in order to stress aspects that are relevant for a realistic
interpretation of quantum mechanics. I will study in particular the
loopholes in the refutation of local realism, because they are not just
practical imperfections of the experimental setup, as usually assumed;
they derive from important physical causes as I will point out.

As said above, the first BI suitable for an experimental test was
derived by CHSH [10] in 1969 and the authors proposed to test it
using entangled photon pairs produced in atomic cascades, that is,
photon pairs produced in the decay of an atom from a stationary
state to another one via an intermediate short lived state. Typically
the final atomic state has spin 0 and the intermediate state spin 1,
whilst the initial state possesses either spin 0 or spin 1. In the 50 years
elapsed since the CHSH proposal many photon experiments have been
performed, most of them in agreement with the quantum predictions
although not suitable to refute local realism.

The loopholes have been attributed to imperfections of the exper-
imental set-up that might be corrected with improved experiments.
This state of opinion is well summarized in the following sentence of
John Bell [3] after the early atomic cascade experiments: “It is hard
for me to believe that quantum mechanics works so nicely for ineffi-
cient practical set-ups and is yet going to fail badly when sufficient
refinements are made.” As a consequence the physical origin of the
loopholes has been scarcely studied, something that I have done, in
collaboration with Trevor W. Marshall from Manchester and other
colleagues, in several papers that will be summarized in the following.

3.4.1. Atomic cascade experiments. The first experimen-
tal test of a Bell inequality involving optical photons was performed
by Freedman and Clauser (FC) in 1972 [20]. The experiment will be
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discussed here in some detail because it is a prototype of tests involv-
ing entangled optical photon pairs. (Optical means that they have
frequencies either in the visible or in near ultraviolet or infrared).

FC used photon pairs produced in the decay of excited calcium
atoms via a 0-1-0 cascade. That is, the initial and final atomic states
had 0 total angular momentum and the intermediate state a unit
(i.e. �) angular momentum. Hence the two emitted photons were
entangled in polarization, that is, the two-photon state might be rep-
resented, ignoring other variables like momenta, by

(64) | ψ〉 = 1√
2
(| V (a)〉 | H(b)〉− | H(a)〉 | V (b)〉) ,

where | V 〉 (| H〉) corresponds to a photon state with vertical (respec-
tively horizontal) polarization along a given direction (say Z) and a, b
label the different frequencies and/or momenta of the two photons.

The most relevant quantity to be measured is the expectation of

the operator φ̂1 (a) φ̂2 (b), where φ̂1 (a) corresponds to the observable
taking the value 1(0) if the photon a is found (is not found) by Alice
with polarization along a plane at an angle φ1 with the vertical. And

similarly for φ̂2 (b) . It may be shown that for the state eq.(64) the
expectation value of the operator depends only on the difference of
angles, so that it may be written in the form〈

ψ
∣∣∣V̂ (a) φ̂ (b)

∣∣∣ψ〉 =
1

2

〈
V (a)

∣∣∣V̂ (a)
∣∣∣V (a)

〉〈
H(b)

∣∣∣φ̂ (b)
∣∣∣H(b)

〉
=

1

2
sin2 φ =

1

4
[1− cos (2φ)] ,(65)

where φ ≡ φ1 − φ2 and I have taken into account that〈
V (a)

∣∣∣V̂ (a)
∣∣∣V (a)

〉
= 1,

〈
H(b)

∣∣∣φ̂ (b)
∣∣∣H(b)

〉
= sin2 φ,

which corresponds to Malus law of classical optics. It is a simple
matter to get the corresponding expectations when there is only one
polarizer in place or none, and also the expectation for a single pho-
ton. With the appropriate corrections for imperfect apparatuses the
quantum predictions are summarized below, eq.(68).

In the FC experiment [20] a beam of (vaporized) calcium atoms,
say moving in the direction Z, and a laser in a perpendicular direction,
say Y , cross each other in a small region which becomes the source of
the photon pairs. The laser excites the calcium atoms from the 4s2
1S0 ground state to a 4p2 1S0 state (via a short lived 3d4p 1P1 state)
whence it decays in a short time to a 4s4p 1P1 which in about 5ns
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decays to the ground sate, thus emitting two entangled photons. If
the two photons of a pair happen to fly in opposite directions (say
along the X axis), they are collected by appropriate lens systems
and each photon eventually crosses a polarizer and a colour filter,
finally arriving at a detector. Each polarizer may be rotated and its
position is determined by an angle which I will label φj . The colour
filters make that Alice may detect only ‘green’ photons and Bob only
‘violet’ photons (these colours correspond to the actual frequencies of
the photons in the experiment).

The dichotomic observables measured were detection or non-detec-
tion of every photon, so that the appropriate Bell inequality would be
eq.(32), which for variables with values {0, 1} may be rewritten in
terms of probabilities as follows

(66) p (a1) + p (b2) ≥ p(a1, b1) + p (a2, b1) + p (a1, b2)− p (a2, b2) ,

where a(b) stands for Alice (Bob) and the subindices 1 and 2 label
two possible positions of each polarizer. The left side of eq.(66) cor-
responds to single counts by either Alice or Bob, respectively, and
the right side to coincidence counts got by both simultaneously (more
properly within a short time window). In practice the probability, p,
is approximated as the ratio between the measured rate, R and the
production rate R0; that is, p = R/R0. Actually, the knowledge of R0

is not needed for the test of eq.(66) because all terms are proportional
to R0. The rate of single counts suffers from a substantial uncertainty
due to the possibility of spurious counts. As a consequence only coin-
cidence counts may be accurately measured and this poses a difficulty
for the test of the Bell inequality eq.(66).

The predictions of quantum mechanics for the experiment may
be summarized as follows, with some simplifications for the sake of
clarity. The measurable quantities in the experiment are the single
rates, Ra and Rb, and the coincidence rates Rab(φai, φbj), Rab(φai,∞),
Rab(∞, φbj), Rab(∞,∞), where φai and φbj are the angles, say with
respect to the vertical, of the polarizer’s planes of Alice and Bob, re-
spectively, and ∞ denotes that the polarizer has been removed. The
quantum predictions may be written in terms of the production rate,
R0, the solid angle covered by the apertures, Ω = 2π (1− cos θ), and
the quantities, ζ, εM , εm, which may be measured in auxiliary exper-
iments involving macroscopic light. I label ζ the quantum efficiency
of the detector (i.e. the probability that a photon arriving at it is
detected) and εM (εm) is the transmission of the polarizer for light
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polarized parallel (perpendicular) to the polarizer axis. The polariza-
tion analyzers used by FC were of the piles of plates type, with the
following values of their relevant parameters: εM � 0.96, εm � 0.04.
Actually, the values of ζ, εM and εm are different for Alice and Bob,
but the small difference is irrelevant for our discussion and I will take
them as equal. In order to simplify the expressions that follow it is
convenient to introduce the new parameters

(67) η =
Ω

4π
ζ, V =

(
εM − εm
εM + εm

)2

where η � 1 is the overall detection efficiency of a photon, which
includes collection efficiency and quantum efficiency of the detectors
(for simplicity we put the same efficiency η for the green and the violet
photons, which is approximately true in practice).

The small value of the collection efficiency derives from the fact
that only a fraction (Ω/4π � 0.07 in the discussed experiment) of the
emitted photons fly in directions appropriate to enter the apertures
placed in front of the lens systems, whence a small fraction of the
emissions ((Ω/4π)2 � 0.005) are such that both photons of the pair
enter. I have taken into account that in the discussed experiment
the photon pair is in a state such that once the linear momentum of
one photon is fixed all momenta are equally probable for the partner
photon, with good enough approximation [20]. The parameter V < 1,
usually called visibility or contrast, takes into account the departure
from ideality of the polarizers (ideal polarizers should have εM = 1,
εm = 0 ⇒ V = 1).

The quantum predictions are

Ra(φi) = Rb(φj) =
1

2
R0η (εM + εm) ,(68)

Rab(∞, φj) = Rab(φi,∞) =
1

2
R0η

2 (εM + εm) ,

Rab(∞,∞) = R0η
2,

Rab(φai, φbj) =
1

4
R0η

2 (εM + εm)
2
(1− F (θ)V cos (2φij)).

where φij = φai − φbj . The quantity F (θ) takes into account the de-
crease in the polarization correlation when the photons do not travel
with opposite momenta. It may be realized in eq.(68) that the quan-
tum prediction for the coincidence rate with both polarizers in place
depends only on the difference of angles, but rates with a single or no
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polarizer in place do not depend on the polarizer’s position. Actually,
the parameters F (θ) and (εM + εm) may be approximated by 1 in the
discussed experiment.

All quantum predictions eq.(68) were confirmed in the experi-
ment, which was certainly a triumph of quantum mechanics in a case
where some doubt might have existed about its validity in view of the
possible contradiction with local realism. However, the experiment
was unable to show the violation of a genuine Bell inequality, as ex-
plained in the following. Identifying the probabilities in eq.(66) with
the ratios between detection rates and production rate, the quantum
predictions eq.(68) inserted into the Bell inequality (66) give

1 ≥ r ≡ 1

2
+

1

4
ηF (εM + εm)V

× [cos (2φ11) + cos (2φ21) + cos (2φ12)− cos (2φ22)] .

Taking into account that φij = φai − φbj , it is a simple mathematical
exercise to prove that the maximum of the right side corresponds to
a choice of angles such that

(69) |φ11| = |φ12| = |φ21| = π/8, |φ22| = 3π/8.

For instance, Alice might choose φ1 = 0, φ2 = π/4, Bob choosing
φ1 = π/8, φ2 = −π/8. Thus the ratio, r, between the right side and
the left side of the Bell inequality (66) becomes

(70) r ≤ 1 +
√
2

2
ηF (εM + εm)V ≈ 10−4,

so that the inequality r ≤ 1 is very well fulfilled. The conclusion is
that the experiment was not a reliable test of quantum mechanics vs.
local realism. Indeed, the experiment is compatible with the former,
but also with the latter.

In order to provide a quantitative measure of the violation of local
realism, FC [20] tested a (pseudo)-Bell inequality derived as follows.
They introduced a hypothesis named no-enhancement (actually pro-
posed by CHSH [10]), assumed plausible, which may be stated in
several more or less equivalent forms. For instance, the following: “all
photons incident in a detector have a probability of detection that
is independent on whether or not the photon has passed through a
polarizer”, used for the derivation of the inequality tested in the first
atomic-cascade experiment [20]. Or, “if a pair of photons emerges
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from the polarizers the probability of their joint detection is inde-
pendent of the angles φ1 and φ2”, used in the first experimental pro-
posal [10]. The assumption may be stated in the form of an inequality,
namely

(71) Pa(λ, φai) ≤ Pa(λ,∞), Pb(λ, φbj) ≤ Pb(λ,∞),

meaning that the detection probability of a photon cannot increase by
the fact that it crosses a polarizer. Of course, the inequalities (71) are
fulfilled in the average (that is, summing over all values of λ), but the
FC assumption was that the inequality holds true for every photon,
that is, for every value of the hidden variable λ, something which
cannot be tested. From (71) the following (pseudo-)Bell inequality
may be derived

p (∞,∞) ≥ p (a1,∞) + p (∞, b2)

≥ p(a1, b1) + p (a2, b1) + p (a1, b2)− p (a2, b2) ,(72)

where again the simbol ∞ means that the corresponding polarizer
has been removed. The maximal violation of this inequality by the
quantum predictions eqs.(68) occurs also for the angles eq.(69), and
for these angles eq.(72) implies

(73) δ ≡ |R (π/8)−R (3π/8)|
R (∞,∞)

≤ 1

4
,

which is the so-called Freedman inequality. Here R (π/8) and R (3π/8)
mean Rab(φai, φbj) with |φai − φbj | = π/8 and |φai − φbj | = 3π/8,
respectively. In the discussed experiment the measured value of the
Freedman parameter was δ = 0.300 ± 0.008, in agreement with the
quantum prediction δ = 0.301 ± 0.007 but violating the Freedman
(pseudo)-Bell inequality (73) by more than 6 standard deviations.

Several experiments similar to the Freedman-Clauser one were
performed in the decade of 1970, that agreed with quantum predic-
tions, with one exception [21], but really they did not test local re-
alism. I will comment only on the experiments performed at Orsay
(near Paris) by Aspect et al. in 1980-82, that are considered the best
in the class. These authors made three atomic-cascade experiments,
in the third one achieving for the first time measurements, by Alice
and Bob, at space-like separation in the sense of relativity theory.

The first experiment [22] was similar to the FC one [20] with
improved source and polarizers which allowed a much better statis-
tics. However, the price paid for the high intensity of the source was
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a very high number of accidental coincidences. The rate of acciden-
tal coincidences was subtracted. That is, the values of Rab(φai, φbj)
and Rab(∞,∞) used in the calculation of the parameter δ were not
the row empirical data, but the difference between those and the
accidental coincidences estimated from the single rates. That is,
Rab (accidental) = RaRb. The procedure has been criticized as in-
appropriate for a test of the whole family of LHV theories, because
it excludes LHV models where a part of the alleged accidental co-
incidence are not accidental, but might be determined by the hidden
variables. The rate of accidental coincidences had not been so relevant
in previous experiments, in particular FC [20].

The second experiment presented a novelty, namely the use of two-
channel polarizers, that has become standard in later experiments.
That is, a photon arriving at a polarizer was either transmitted or
reflected and in both cases the photon was sent to a detector. Thus
four coincidence rates, R++, R+−, R−+ and R−−, could be detected,
where the subindex + (-) means detection in the transmission (reflec-
tion) outgoing channel of the polarizer, the first (second) subindex
corresponding to Alice (Bob). In the discussed experiment a photon
produced in the source may be either detected in the transmission
channel, or detected in the reflection channel or not detected at all.
The latter may happen because the photon either does not enter the
corresponding aperture or is not detected in spite of arriving at a
detector. The relevant point is that now the observable A is not di-
chotomic, it has three possible values rather than two. Consequently
the CHSH inequality does not apply. The authors introduced the
fair sampling assumption that the detected photons are a sample rep-
resentative of the whole set of photons, that is, including those not
detected. This assumption is criticized in the next subsection.

The third experiment [23] was similar to the first one, but with
improvements that achieved for the first time measurements at space-
like separation. There were two polarizers for Alice, with different
orientations, and another two for Bob, also with different orientations.
Every photon entering one of the lens system was sent, at random,
to one of the polarizers by means of an optical switch. The arrange-
ment was equivalent to one in which a single polarizer on each side is
switched quickly between two orientations. The separation between
the switches of Alice and Bob was L = 12m. Switching between the
two channels occurred about once every 10 ns and, since this time in-
terval, as well as the lifetime of the intermediate state of the cascade
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(5 ns), was small compared with L/c (40 ns), the detection event by
Alice and the change of orientation of Bob’s polarizer were separated
by a space-like interval.

The experimental results agreed with the quantum predictions
and a (pseudo)-Bell inequality was violated by about 5 standard de-
viations. (The specific inequality appropriate for the experiment was
somewhat involved and will not be reported here). This experiment
is currently considered to have closed the locality loophole. Hence,
modulo the fair sampling assumption, the third Aspect experiment
has been quoted as a definite disproof of local realism, until the more
conclusive loophole-free experiments to be discussed below.

3.4.2. The loopholes. In atomic-cascade experiments there are
loopholes for the violation of Bell inequalities that usually were dis-
missed as irrelevant non-idealities of the experimental set-up. How-
ever, in my view they were relevant supports for a wave, rather than
particle, nature of photons. Indeed, although the most popular in-
terpretations of quantum mechanics renounce any intuitive picture of
the microworld as mentioned in chapter 2 section 2.3, it is the case
that many quantum physicists have in their minds a picture of the
photon correlation experiments as follows. Photons are small (maybe
pointlike) particles that travel from the source to the polarization
analyzers. Of course, photons behave in some cases like waves, this
being one of the big mysteries of quantum mechanics. If a polariza-
tion analyzer is inserted in the way of a photon then there is some
probability, P1, that the photon crosses the analyzer. There is also
a probability, P2, that a photon arriving at the detector is detected,
this probability being the same for all photons (it is assumed, as in
quantum statistical mechanics, that photons with the same frequency
are identical). In addition there is some probability per unit time that
spurious counts may be recorded due to thermal fluctuations in the
detectors (this being named dark rate). If this picture is accepted
then the following assumptions are plausible in the interpretation of a
Bell experiment: 1) no enhancement, that is, the detection probabil-
ity cannot increase when a polarizer is inserted because P1P2 ≤ P2;
2) fair sampling, namely we may extrapolate the measured detection
efficiency to unity because the fact that P2 < 1 may be attributed to
technical defects of the photon counters; and 3) it is appropriate to
subtract the background of spurious counts via an estimate of the dark
rate, as in [22], discussed above. In my view this picture, not explicit,
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has been the reason why these three assumptions have been believed
as plausible.

The interpretation supported in this book is quite different. We
assume that the electromagnetic radiation is purely wavelike and there
is a vacuum (zero-point) radiation filling the whole space. Although
a more deep discussion will be provided in chapter 6, we may antici-
pate that ‘photons’ produced in atomic decays are long narrow wave-
packets (needles of radiation in the words of Einstein) superposed to
a background random radiation corresponding to the vacuum fluctua-
tions of quantum electrodynamics (the zero-point field, ZPF). In this
picture local realism was not violated in atomic-cascade experiments
but the alleged plausible assumptions are violated instead. Actually,
that violation is plausible as we discuss in the following.

No enhancement. An essential hypothesis in our interpretation is
that vacuum fields are real. Then in a polarizer with two incoming
channels the signal enters one of the channels and radiation from
the vacuum field enters the other channel. The amplitudes of both
signal and vacuum field may interfere constructively, thus making it
possible that the relevant intensity in one of the outgoing channels
is greater than the intensity of the incoming signal, and plausibly
enhancing the detection probability. This point will be discussed in
more detail in chapter 6, devoted to the interpretation of quantum
optics. Our conclusion is that what the FC experiment refuted was the
no-enhancement hypothesis, rather than local realism. Therefore the
experimental results reinforce our realistic interpretation of quantum
mechanics.

Low detection efficiency. For macroscopic light the most frequent
detection method is to measure the energy transferred to the detector.
This is the case for instance for the radiation arriving in Earth from
stars. However, the experiments aimed at testing Bell inequalities
require photon counting. Counters are devices providing a yes-no
response and, as is typical in that kind of test, there is the possibility
of false positive or false negative answers. Furthermore, if we attempt
to minimize the false negative we should increase the sensitivity, but
this would increase the probability of false positives. Thus in photon
counting there is a trade-off between high efficiency and dark rate, that
may be associated to quantum fluctuations. Indeed, the detector may
record a count either due to the arrival of a signal or the arrival of an
eventual intense vacuum fluctuation. Of course, if the temperature
is not low the fluctuations are higher. As a consequence either the
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detector is very efficient and detects a high spurious rate or it has low
efficiency with a low dark rate. This provides the physical reason for
the difficulty to manufacture photon counters with high efficiency and
very low dark rate. In contrast, radiation detectors not intended to
count photons do not have such problem, they may be 100% efficient.
Indeed, the average of the zero-point fluctuations would go to zero in a
large time interval, so that the time average may effectively remove the
fluctuations in photodetectors not attempting to register individual
counts.

Up to here we have considered optical photons. High energy pho-
tons, say gamma rays, have a wavelength smaller than the atomic size
and an energy far greater than typical atomic energies. As a result
the interaction of one photon with bulk matter takes place via a single
atom, which gives rise to energetic electrons (and maybe positrons)
which eventually transfer the energy to many other atoms. The con-
sequence is that high energy photons may be detected with good ef-
ficiency. However, the measurement of their polarization should be
made indirectly and involves a large uncertainty. Thus no experiment
with pairs of gamma rays (e.g. produced in the positronium decay)
might show a true violation of a Bell inequality. In contrast, optical
photons have a size much bigger than atoms and an energy of order
the atomic transitions, so that the detection may not be too efficient,
but the polarization can be measured with macroscopic devices (po-
larization analyzers).

The fair sampling assumption. Fair sampling is the assumption
that we may extrapolate the empirical results to what we believe that
would be obtained if all experimental devices were ideal. For instance,
if our detectors have efficiency η < 1 we should multiply all single
rates by 1/η and coincidence rates times 1/η2. The interpretation of
an experiment using the fair sampling assumption may test quantum
mechanics but not local realism. In fact if the empirical results are
extrapolated via the fair sampling assumption and they agree with
quantum predictions (as has been the case with few exceptions), this
gives a new confirmation of quantum mechanics. If they do not agree,
then quantum mechanics would be refuted. However, the fair sam-
pling assumption may not be valid for some local models, whence those
models may be compatible with the results of the experiment. For in-
stance, the wave picture implies that ideal photon-counters might not
be possible (i.e. with 100% efficiency and nil dark rate) as discussed
above.
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Decrease of entanglement with lower angular correlation. Ato-
mic cascade experiments are unreliable as tests of local realism, as
is proved by the existence of local (hidden variables) models of the
experiments [24, 25]. Indeed, the predictions of quantum mechanics
for atomic-cascade experiments are always compatible with local re-
alism even if the experiment is made with ideal set-up, in particular
100% efficiency detectors, as is shown in the following.

The atomic cascade decay, giving rise to a photon pair, is a three-
body problem with the consequence that the angle, χ, between the di-
rections of emission of the two photons is almost uniformly distributed
over the sphere. The polarization correlation of the photons in the
entangled pair decreases with the angle χ and hence the parameter
F (θ) (see (68)) decreases with the angle θ, which determines de solid
angle Ω covered by the apertures. In particular, in the experiments
involving 0-1-0 cascades, e.g. those of Aspect et al., we have

(74)
Ω

4π
=

1

2
(1− cos θ), F (θ) = 1− 2

3
(1− cos θ)2.

A necessary condition for the violation of a (genuine) Bell inequality
by the quantum prediction is the inequality (see eq.(70))

1 +
√
2

2
η
Ω

4π
F (θ)V =

1 +
√
2

4
η(1− cos θ)

[
1− 2

3
(1− cos θ)2

]
V > 1,

where eq.(74) has been taken into account. But this inequality is

never true, the maximun value of the left side being (2 +
√
2)/12 �

0.28, where I have taken into account that both V and η are smaller
than unity, reaching unity in the ideal case. In summary, taking into
account the low angular correlation of the photon pairs produced in
atomic cascades, these experiments cannot discriminate between local
realism and quantum mechanics. The problem might be solved if the
recoil atom were detected [26], [27] but such experiments have not
been attempted.

3.4.3. Parametric down converted photons.
The advantage of photons not maximally entangled. A source of

entangled optical photon pairs more convenient than atomic cascades
is the process of spontaneous parametric down-conversion (SPDC)
and it has been used in optical photon experiments since about 1984.
Unlike atomic-cascade experiments, here the momenta of the two pho-
tons of the entangled pair are fairly well defined. Thus the predictions
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of quantum mechanics are similar to either eqs.(68) or (66) with unity
substituted for both Ω/π and F (θ), whence a Bell inequality might be
violated if V is close to 1 (which is achievable in actual experiments)

provided that η > 2
(√

2− 1
) � 0.82. Such a high value of the detec-

tion efficiency is difficult to obtain and the low efficiency of detectors
has been a persistent loophole for the disproof of local realism during
more than 40 years.

The problem of the low efficiency of photon counters has been
alleviated by an interesting observation made by Eberhard [28]. In
1993 he realized that an efficiency η > 2/3 is enough to test Bell
inequalities in some two-photon states not maximally entangled. A
state of this type is

(75) | ψ〉 = 1√
1 + r2

(| V 〉A | H〉B + r | H〉A | V 〉B), r �= ±1,

to be compared with the maximally entangled state eq.(64) . The state
eq.(75), with r = −2.9, has been used in the experiment by Giustina
et al. [19], who tested the Eberhard inequality

(76) p++(a1b1)− p+0(a1b2)− p0+(a2b1)− p++(a2b2) ≤ 0.

Here a (b) refers to Alice (Bob), 1 and 2 to two angles of the polarizers
and the subindex + (0) means detection (not detection) in the corre-
sponding photon counter. This inequality is a trivial consequence of
the CH inequality, eq.(66), taking into account that

p+0(a1b2) = p+(a1)− p++(a1b2).

In the experiment by Giustina et al. detectors were used with effi-
ciency about 77%. With appropriate choice of polarizer’s angles the
reported measured value of the left side of eq.(76) was 7.27 × 10−6

whilst under local realism the probability of observing that value did
not exceed a p-value of 3.74× 10−31.

Memory loopholes. Need of random choice for Alice and Bob set-
tings. The memory loophole derives from the fact that tests of the Bell
inequalities require performing many similar experiments on different
entangled pairs of particles in order to estimate the probabilities from
the frequencies actually measured. In practice there is a series of trials
with a given experimental set-up, the trials being separated from each
other by short time intervals. It is usually assumed that any hidden
variables associated with the nth particle pair would be independent
of measurement choices and outcomes for the first (n−1) pairs. Mod-
els which violate this assumption exploit the possible memory effects.
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The strongest type of violation uses a 2-sided memory loophole, in
which the hidden variables for pair n may depend on the previous
measurement choices and outcomes in both wings of the experiment.

The memory loophole has been studied by Barrett et al. [29].
The authors concluded that, although in principle the memory loop-
hole might imply a flaw in existing analyses of Bell experiments, the
data still may refute local realistic models. Here I shall follow the cur-
rent analysis of the experiments, but this analysis will be questioned
in chapter 6. In actual experiments the photon pairs are produced
via SPDC in a nonlinear crystal. Hence, when neither Alice nor Bob
detect a photon in a trial, they cannot know whether two photons
arrived to the parties but none was detected or no photon was pro-
duced in the source in that trial. In fact, the second case is by far
more probable because only a small fraction of the laser pulses in-
cident on the nonlinear crystal produce photon pairs. Thus in the
photon experiments we cannot determine true probabilities but only
relative probabilities. The question arises whether the memory loop-
hole is also irrelevant in these conditions. In the following I give a
simple proof that the answer is affirmative [29].

The division of the laser beam in pulses makes an experiment
consist of a series of trials. During each trial Alice and Bob randomly
choose between one of two measurement settings, denoted a and a′

for Alice and b and b′ for Bob, and record either a ‘+’ if they observe
a detection event or a ‘0’ otherwise. The details of that type of Bell
test may be seen, for instance, in the experiments by Shalm et al. [18]
or by Giustina et al. [19]. Alice may get two possible results in each
one of the two possible measurements of her photon, and the same
for Bob. Therefore there are 16 coincidence probabilities that might
be determined. In practice the Bell test requires just 4 that may be
combined in the CH/Eberhard inequality [28], namely

0 ≤ B ≡P (0+ | ab′) + P (+0 | a′b)(77)

+P (++ | a′b′)− P (++ | ab) .
The terms P (++ | ab) and P (++ | a′b′) correspond to the probability
that both Alice and Bob record detection events (++) when they
choose the measurement settings ab or a′b′, respectively. Similarly,
the terms P (+0 | ab′) and P (0+ | a′b) are the probabilities that only
Alice or Bob record an event for settings ab′ and a′b, respectively.

The joint probability P (x, y; a, b) that the photons yield the out-
comes x and y when subjected to the measurement with the settings
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a and b respectively is given, according to Bell [2], by

(78) P (x, y; a, b) =

∫
dλρ(λ)P (x; a, λ)P (y; b, λ),

where, in our notation, x, y might be either + or 0. Eq.(78) may be
taken as the definition of local hidden variables models. Now let us
assume that there are memory effects such that the hidden variables,
λ, and the action of the measuring devices in the trial n depend on all
previous trials, j = 1, 2, . . . , n−1. This means that we must substitute
the following

(79) Pn(x, y; a, b) =

∫
dλnρn(λn)Pn(x; a, λn)Pn(y; b, λn),

for eq.(78) . That is, all possible memory effects may just change the
probability distribution of the hidden variables, λ, and the probabil-
ity of outcome in the measurement for given settings, a and b. If
the probabilities of the 4 settings ab, ab′, a′b, a′b′ are 1/4 each, as in-
sured by the random choice, then in eq.(77) we get the CH-Eberhard
inequality

0 ≤ Bn ≡Pn (0+ | ab′) + Pn (+0 | a′b)(80)

+Pn (++ | a′b′)− Pn (++ | ab) .
This happens if an entangled pair of photons is produced in the source
in the n-th trial. But if no photons are produced then eq.(77) gives

Bn = 0.

In any case, for a set of trials we shall have∑
j

Bj ≥ 0,

where {j} represents the trials chosen for the test of the CH-Eberhard
inequality. In practice it is common to choose, within some time
interval, all trials such that at least one photon is detected (either by
Alice or by Bob).

I emphasize that the absence of bias in the random choice of the
settings is essential for the proof. For instance, the local model

P (+; a, λ) = P (+; b, λ) = P (+; a′, λ) = 1, P (+; b′, λ) = 0,

gives B = 0, taking eqs.(78) and (77) into account, for unbiased
random choices. However, if the choices a and b have probabilities
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(1 + ε)/2 each and the choices a′ and b′ probabilities (1− ε)/2, then
we get B = −ε in apparent violation of eq.(77) .

We conclude that for photon tests involving the CH-Eberhard
inequality the possible memory loophole is irrelevant provided that
the test consists of a large enough number of trials. For a small
number there may be fluctuations that could give a wrong answer.
The study of fluctuations will not be made here, but it would be
similar to the study made by Barrett et al. [29] in relation with the
CHSH inequality. I point out that the analysis made refers to the
loopholes in the violation of a Bell inequality. However, in chapter
6 we will question that the inequalities are necessary conditions for
local realism.

3.5. Tests not involving photon pairs

Many tests of Bell’s inequalities have been performed not using
photon pairs. In the following I will comment only on experiments
involving atoms, electrons and hadrons.

3.5.1. Tests with entangled atomic states. In experiments
with atoms detection may be very efficient and there is a property
corresponding to the polarization of photons, namely a linear com-
bination of different atomic states. A typical Bell experiment with
atoms has been performed by Rowe et al. [30]. In it the Bell in-
equality (66) has been violated. As a consequence the experiment has
refuted non-contextual hidden variables theories (see section 3.3 for the
proof that the violation of a Bell inequality refutes non-contextual HV
theories). However, the measurements have not been made insuring
spacelike separation, and therefore local HV theories have not been
tested in it.

Another experiment [31] has measured the correlation between
the quantum states of two Yb+ ions separated by a distance of about
1 meter. The results of the experiment violate a CHSH [10] (Bell)
inequality, modulo the locality loophole. The authors claim that the
experiment is relevant because it closes the detection loophole. The
results of the discussed experiment [31] do refute LHV theories if
locality is understood in the sense that the measurements (by Alice
and Bob) are made in separated (distant) parts of space. However,
they did not refute LHV theories with the separation understood in
the sense of relativity theory, which requires that the measurements
are performed in spacetime regions with space-like separation.
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3.5.2. Experiments with spin-1/2 particles. The spin-0
state of a pair of spin-1/2 particles was introduced by Bohm [32]
as a substitute for the position-momentum entanglement in the EPR
paper (see chapter 2 section 2.4.5). It has become the standard exam-
ple of entanglement in textbooks. However, tests of Bell inequalities
using spin entangled particles have proved to be difficult [33].

An experiment measuring correlations of electron spins has been
performed in Delft [34]. Electrons of nitrogen vacancies (NV) of di-
amond placed at a long distance (more than 1 km) were measured.
The setup comprised three separate laboratories, A, B and C. The
boxes at location A and B each contain a single NV centre electron
spin. A quantum random number generator was used to provide the
input to the box. The spin is read out in a basis that depends on
the input bit and the resulting signal provides the output of the box.
A third box at location C records the arrival of single photons that
were previously emitted by, and are entangled with, the spins at A
and B. The detection of two such photons constitutes an event-ready
signal. Successful preparation of the spins is signalled by a specific
coincidence detection pattern. Independent of the event-ready signal,
the setups at location A and B choose a random basis, rotate the spin
accordingly, and start the optical spin-readout.

The experiment was claimed to be loophole-free but the raw data
indicate violation of the no-signalling principle [35]. Violation of this
principle would be a groundbreaking revolution in physics (see sec-
tion 3.3.4 for comments about this principle). Therefore a careful
reproduction and analysis of the experiment should be worthwhile.

3.5.3. Entanglement and Bell inequalities in kaon sys-
tems. The Bell experiments discussed till now involve electromag-
netic interactions, and it is interesting to study entanglement and
possible tests of Bell inequalities with systems governed by strong
and weak interactions. Several papers have been devoted to study en-
tanglement and possible tests with Ko−Ko or Bo−Bo systems [36].
In this section we shall be concerned with the Ko −Ko system pro-
duced in the decay of a φ-meson resonance. Most of the following
may be applied also to other neutral meson-antimeson systems like
Bo −Bo and Bs

o −Bs
o.

Quantum-mechanical predictions for the Ko − Ko system. With
some simplification (i.e. neglecting a small CP violation) we may write
the entangled state of two kaons in terms of four possible quantum
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states:

(81) | Kj〉 ∈
{| Ko〉, | Ko〉, | KS〉, | KL〉

}
,

Ko〉, | Ko〉 being eigenstates of strangeness and | KS〉, | KL〉 eigen-
states of CP. These states are related by

| KS〉 = 1√
2

(| Ko〉+ | Ko〉) , | KL〉 = 1√
2

(| Ko〉 − | Ko〉) .
If a kaon pair is produced by the decay of a φ-meson resonance, the
state after the decay is a maximally entangled state, that is,

| φ (0)〉 =
1√
2

(| Ko〉| Ko〉 − | Ko〉 | Ko〉)
=

1√
2
(| KL〉 | KS〉− | KS〉 | KL〉) ,

with an obvious notation.
In the rest frame of the φ-meson the two neutral K-mesons travel

in opposite directions, say one of them going to Alice and the other one
to Bob. If the kaons move in the vacuum then all quantum predictions
reduce to 16 coincidence probabilities that Alice’s kaon is in one of the
4 states (81) at time ta and Bob’s kaon in another of these 4 states at
time tb. As an example I give just the following

Q (Ko,Ko) = Q
(
Ko,Ko

)
=

1

8
(EL (ta)ES (tb) + ES (ta)EL (tb))

[
1− cos (Δmτ)

cosh(Γτ)

]
,

Q(Ko,Ko) = Q
(
Ko,Ko

)
=

1

8
(EL (ta)ES (tb) + ES (ta)EL (tb))

[
1 +

cos (Δmτ)

cosh(Γτ)

]
.

where τ ≡ ta − tb, and the decay rates are EL (t) ≡ exp (−ΓLt),
ES (t) ≡ exp (−ΓSt), Γ ≡ (ΓS − ΓL)/2. In the following we shall
use units such that � = c = Δm = 1, Δm being the mass difference
KL −KS . In these units ΓS = 2.105 and ΓL � 8.21× 10−4.

These probabilities correspond to travel in free space but if there
are slabs of nucleonic material in the way of one or both kaons, then
after the kaons have crossed the slabs the probabilities are different
due to absorption and rotation in isospin space. The quantum pre-
dictions may be calculated at any time for any number of slabs of
arbitrary width, but the results will not be given here.
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For a fixed set-up it is always possible to construct an explicit
LHV model. The existence of the model proves that no experiment
involving kaon pairs with a fixed set-up may violate a Bell inequality.
Therefore any test of LHV theories should involve the variation of the
set-up in the four measurements (the variation may be made by just
changing the positions of the slabs of nucleonic material). In fact, the
model is specific for a fixed set-up and therefore does not guarantee
the fulfillment of the Bell inequality in a complex experiment involving
measurements with different set-ups, made in different meson pairs.

Actually, Bell inequality cannot be violated by the quantum pre-
dictions in the Ko − K

o
system due to the relatively high value of

ΓS in comparison with Δm, which makes the strangeness oscillations
to be rapidly damped, but tests without inequalities have been pro-
posed [37]. A Bell inequality test has been performed using the decay
products of Bo mesons [38]. Again there is damping making impossi-
ble the violation of the Bell inequality, and only a normalization of the
correlation function to the undecayed pair of Bo leads to a violation.
In any case, the experiments are involved and its relevance for the
test of local realism is scarce in comparison with the optical photon
experiments mentioned above.

3.6. The arrow of time

The name ‘arrow of time’ was introduced by Arthur Eddington
in 1927. He wrote “I shall use the phrase time’s arrow to express this
one-way property of time which has no analogue in space” [39]. Thus
the arrow of time refers to the distinction between past and future
that we observe in nature. At present it is used more specifically
with reference to the problem of explaining the irreversibility that we
experience, which is not trivial taking into account that the laws of
nature are invariant under time reversal. There are many books and
articles devoted to (or discussing) the arrow of time and a review is out
of our scope here [40]. I will only discuss a few points that sometimes
have been a source of confusion. A discussion about the origin of
irreversibility is relevant in order to clarify the difference between
relativistic locality and causality. As we pointed out in section 3.3.2
Einstein’s assumption of no faster-than-light signals is weaker than
Bell’s ‘locality’, whence empirical refutation of the latter does not
refute the former.
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3.6.1. Thermodynamic and statistical Boltzmann expla-
nation. The existence of an arrow of time was formalized by Clausius
with the concept of entropy and its postulated increase for any spon-
taneous evolution of an isolated system. Actually, entropy was intro-
duced in physics as a kind of measure of the ‘quality’ of energy. For
instance, mechanical and gravitational energy have high quality be-
cause they may be transformed completely into other forms, but this
is not the case for heat because only a part of it can be transformed
into work (mechanical energy). In the particular case of energy trans-
fer taking place exclusively in the form of heat, a simple quantitative
calculation of the entropy change, ΔS, of a system is possible, namely

(82) ΔS =

∫
dQ

T
,

Q being the heat entering the system and T the absolute temperature.
For other cases the calculation is more involved. Clausius realized
that in the processes that are possible in the laboratory the total
entropy never decreases. This led to postulate that entropy never
decreases in closed systems, which was the first scientific statement
on the existence of an arrow of time. For instance, if we put a hot
body in contact with a cold one heat goes spontaneously from the
former to the latter until they have equal temperature. This gives an
increase of entropy as is easily derived from eq.(82) leading to

ΔS =

∫
dQ

Tcold
− dQ

Thot
,

which is positive taking into account that dQ > 0 (dQ < 0) is defined
as energy that enters (leaves) the body and obviously Thot > Tcold.

The fundamental step towards the solution of the apparent contra-
diction between the irreversibility of spontaneous (macroscopic) evo-
lution vs. reversibility of the fundamental (microscopic) laws of nature
was made by Boltzmann, who gave a microscopic interpretation of en-
tropy. Boltzmann realized that irreversibility is always associated to
macroscopic systems and he proposed that it is due to the tendency
towards more probable states in the spontaneous evolution. Then
Boltzmann introduced a relation between the entropy, S, of a com-
posite system and the number N of microscopic states of the system
that correspond to a given macroscopic state, that is,

(83) S = kB logN,
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where kB is today named Boltzmann constant. A standard example
is a box divided in two equal parts by a wall with a small hole on it,
filled with an amount of gas consisting of n molecules. If we define
a microscopic state by specifying which gas molecules are present in
each part of the box, there is only one state with all molecules in the
left (or in the right). In this state N = 1 and eq.(83) gives S = 0. If
at time t = 0 the box starts in this state, after some time t = T there
will be several, say j, molecules on the left and n − j on the right.
Hence the number of microstates equals the number of ways to choose
j molecules amongst n, that is,

N =
n!

j!(n− j)!
> 1 ⇒ S > 0.

The most probable state will correspond to j = n/2, whence

Smax = kB logNmax � kBn log 2.

Boltzmann’s work was one of the great achievements in the history
of physics, but it did not solve the problem of the arrow of time as
was soon pointed out by several authors, in particular Loschmidt and
Poincaré. I think that in order to clarify the subject it is important
to distinguish between the evolution of systems in experiments made
in the laboratory and what happens on Earth.

In addition to the thermodynamic arrow of time people speak
about an electromagnetic one. A moving charge produces outgoing
(retarded) radiation in the form of spherical waves, but we never see
ingoing (advanced) spherical waves. However, both are solutions of
the Maxwell equations. It seems that most of the outgoing radia-
tion goes to infinity and never returns, thus producing an asymmetry
between the past and the future. A solution to the problem is the
assumption of a real (zero-point) radiation filling the whole space, as
we will discuss in detail in chapter 5.

3.6.2. Irreversibility on Earth and laboratory experi-
ments. I will speak about LAB experiments in a wide sense, including
processes induced by human beings like those of chemical industry. In
any case, I will refer only to evolution of isolated systems because it
is obvious that evolution subject to external influences may present
irreversibility induced by them. In the example of the box, discussed
in the previous section, the irreversibility is related to

S(T ) > S(0).
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The Loschmidt argument applied to this example is as follows. If
the system was isolated since well before t = 0 then at time t = −T
the gas would be filling both parts of the box. In fact, the evolution
backwards in time between t = 0 and t = −T would be identical to the
evolution forward in time between t = 0 and t = T with all velocities
reversed at time t = 0. Therefore, in terms of entropy we may write

S(−T ) = S(T ) > S(0).

The reversal of velocities is appropriate for classical mechanical sys-
tems consisting of particles. In quantum physics complex conjugation
of the wave-function is substituted for the reversal of velocities.

Of course, nobody has ever seen an isolated box with a quantity
of gas initially having a homogeneous density (say at time t = −T ) to
evolve spontaneously towards a state with all the gas concentrated in
a part of the box (at time t = 0). This is true, but the point is that
we, human beings, are able to prepare a box having gas in only one
part of the box and then observe the evolution towards the future,
t = T , but we are unable to observe towards the past, t = −T , the
evolution of an isolated system prepared at time t = 0. In fact, our
preparation implies that the system was not isolated for t < 0. We
are also unable to prepare a system in such a way that after isola-
tion evolves with decreasing entropy, as for instance a gas with equal
(macroscopic) density in the two parts of the box but with velocities
of molecules such that their motion carries all of them to one of the
parts (making this would require a so-called ‘Maxwell demon’, a de-
vice that we cannot manufacture for macroscopic systems). Summing
up, the irreversibility in the LAB is not a feature of the material sys-
tems themselves, but it derives from our fundamental irreversibility as
living beings.

The conclusion is that closed (isolated) systems are actually re-
versible, this being a straightforward consequence of the reversibility
of the fundamental laws of physics. In particular, if a system is isolated
between times −T and T and at time t = 0 it is out of equilibrium,
then it would be more close to equilibrium both at time T and at time
−T . Of course, this does not apply to the Earth as a whole or to the
living beings, including humans, because they are not isolated.

Explaining the irreversibility of living beings, including humans,
is rather trivial once we know that the universe is expanding. The
universe may be assumed an isolated system, governed by reversible
laws, but its initial state was very special. In that state it was far from
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equilibrium and consequently its evolution has been irreversible. The
expansion, combined with the attractive nature of gravity, caused that
the initial almost homogeneous plasma evolved giving rise to galaxies
and stars. The stars frequently have associated planets giving rise
to solar systems. Every planet receives energy from its star, this
causing irreversible evolution. Incidentally, in a stationary universe
the existence of (irreversible) living beings would be impossible.

Our solar system was formed about 5 billion years ago. After
some period the Earth, initially very hot, became cold arriving at an
approximate stationary state with a separation of the solid crust, the
sea and the atmosphere. In that cold Earth, life emerged and evolved
until the appearance of human beings. The evolution in that period
has been clearly irreversible and the reason is obvious. The (almost
stationary) Earth is not an isolated system. Asides from minor per-
turbations, the main cause of irreversibility is the fact that Earth is
receiving energy at high temperature (Tin � 5800K) from the Sun
and sending away a similar power as radiation at lower temperature
(Tout � 300K). This produces a net increase in entropy of the uni-
verse at a rate

dS

dt
=

W

Tout
− W

Tin
> 0,

where W is the average power received from the Sun or emitted by
the Earth to outer space. The irreversibility of Earth is responsible
for the irreversibility of the living beings, including us. That is, life in
Earth is an irreversible process because living beings are interacting
with the environment and entropy increases in the process [41].
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4.1. Introduction

As said in chapter 1 section 1.1.3, quoting the famous EPR arti-
cle, we “must take into account the distinction between the objective
reality, which is independent of any theory, and the physical concepts
with which the theory operates... by means of which we picture this
reality to ourselves” (my emphasis). Therefore, we shall not bind the
quantum behaviour to the standard Hilbert space formalism. There
may be other theories that predict the same (correct) results for ex-
periments, at least in restricted domains, and nevertheless might pro-
vide a better picture of reality. For this reason it is useful to explore
different formulations of the theory.

It is true that the canonical formalism of quantum mechanics, in
terms of Hilbert spaces (or C*-algebras in field theory), has proved
to be extremely useful and there is no alternative that may compete
with it; but some interesting formalisms are worth study as is done in
the following. The mathematical theories behind these formalisms are
however quite different from each other and, what is more relevant for
us, they suggest different physical pictures of nature. I shall consider
only ‘elementary quantum mechanics’, that is, the quantum theory
of a finite number of particles in the nonrelativistic approximation,
excluding both spin and the required symmetry or antisymmetry of
the many-particle wave-function with respect to the exchange of any
two particles (e.g. the Pauli principle for electrons).

Asides from the historical interest of the formalisms studied in this
chapter, they give hints for possible solutions to some counterintuitive
features of the standard Hilbert space formalism, for instance the
wave-particle duality. Also, some of them may be useful calculational
tools for specific problems. This is the case for the Wigner function
and the Feynman path integrals. However, none of the formalisms,
or theories, analyzed here provide a clear interpretation of quantum
mechanics, although the path integrals studied in section 4.6 suggest
a modification that is close to achieve that goal.

A theory that supplies a clear picture of the quantum world is
stochastic electrodynamics, although its domain of validity is limited.
Due to its relevance for a realistic interpretation of quantum mechan-
ics, we devote the whole chapter 5 to that theory.
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4.2. Theory of de Broglie-Bohm

4.2.1. Early interpretations of wave mechanics. The origin
of the de Broglie-Bohm theory may be traced back to the proposal
by Louis de Broglie [1] of associating a wave to every particle. For
a free motion the wavelength, λ, is related to the particle’s linear
momentum, p, via

λ =
h

p
.

As is well known this hypothesis led Schrödinger to the development
of wave mechanics. The cornerstone of the theory is Schrödinger cel-
ebrated equation which, for a single particle in a potential, V (r), may
be written

(84) i�
∂

∂t
ψ (r, t) = − �

2

2m
∇2ψ (r, t) + V (r)ψ (r, t) ,

where ∇2 is the Laplacian operator.
Initially Schrödinger interpreted this equation as representing a

field, the apparent particles (e.g. electrons) actually being wave-packets
of that field. That interpretation was soon abandoned due to sev-
eral strong difficulties to maintain it, pointed out mainly by Bohr
and Heisenberg. Here I shall mention two of them. First, a local-
ized wave-packet would spread out indefinitely, according to eq.(84),
whilst a particle is always localized at a point when it is detected. Sec-
ond, when the Schrödinger equation is generalized to N particles, it
is necessary to define the wave-function ψ in the 3N dimensional con-
figuration space. In particular, the electrostatic interaction between
two electrons should appear in the Schrödinger equation in the form
e2/r12, where r12 is the distance between the (pointlike) electrons.
This fact was confirmed by the detailed calculation, by Hylleraas in
1927, of the ionization energy of the helium atom. Both these facts
suggest that electrons are particles.

At about the same time L. de Broglie proposed his ‘pilot wave
interpretation’ assuming that every (pointlike or very small) particle
is accompanied by a wave (extended over a much bigger region) that
guides the motion of the particle [2]. He abandoned it around 1930
and accepted the dominant Copenhagen interpretation. However, de
Broglie returned to his early ‘particle plus wave’ assumption after
the work of David Bohm that we discuss below. In fact, de Broglie
modified his original interpretation assuming that the particle was
actually a singularity in the wave, what he named ‘theory of the double
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solution’ [3]. This interpretation never became very popular, whilst
Bohm’s approach, conceptually very similar to the de Broglie ‘pilot
wave interpretation’, has survived.

The most relevant step for the interpretation of wave mechanics
in the early period was the 1926 Born hypothesis [4] that the squared

modulus of the wave-function, ρ (r,t) ≡ |ψ (r,t)|2, is the probability
density for the particle being in the spacetime point (r,t). This in-
terpretation is compatible with eq.(84) because ρ fulfils a continuity
equation, that is,

(85)
∂ρ

∂t
+∇ · j = 0, j ≡ − i�

2m
(ψ∗∇ψ − ψ∇ψ∗) ,

where ψ∗ is the complex conjugate function of ψ. Born’s interpretation
(or, rather, postulate) has become a cornerstone of quantum mechan-
ics until today. Any viable interpretation of quantum mechanics must
include it either as a postulate or as a consequence of the postulates.
In particular, it is a fundamental assumption in the Copenhagen in-
terpretation discussed in chapter 2.

4.2.2. Bohmian mechanics. The continuity equation (85) sug-
gests writing the wave-function in polar form as follows

(86) ψ (r, t) =
√
ρ (r, t) exp [iS (r, t) /�] ,

where the introduction of � in the exponential makes S to have dimen-
sions of action. If this is inserted in the Schrödinger eq.(84) and we
separate the real and imaginary parts, we get two equations involving
only real quantities:

(87)
∂ρ

∂t
− 1

m
∇ (ρ∇S) = 0,

(88)
∂S

∂t
=

1

2m
(∇S)

2
+ V (r)− �

2

2m

(∇2√ρ√
ρ

)
.

The passage from eq.(84) to eqs.(87) and (88) was proposed by Madel-
ung in 1926 [5], who gave an hydrodynamical interpretation not agree-
ing with the mentioned one by de Broglie in terms of particles accom-
panied by waves (see below section 4.3.1).

Eq.(87) is just the same continuity eq.(85), although writing the
current velocity j/ρ as the gradient of a scalar S resembles the equa-
tion of an inviscid fluid. The interpretation of eq.(88) is still less
obvious, but its classical limit is clear. In fact, when � → 0 it be-
comes the Hamilton-Jacobi equation of classical mechanics. This led
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David Bohm in 1951 [6] to interpret eq.(88) as governing the motion
of a particle. That is, the particle moves under the action of two
forces, the first one derives from the potential V (r) and the second
one from the additional ‘quantum potential’

(89) U (r, t) ≡ − �
2

2m

(
∇2
√
ρ (r, t)√

ρ (r, t)

)
.

In this form Bohm elaborated a ‘quantum theory of motion’ [7], some-
times known as Bohmian mechanics.

Essentially, Bohm’s theory assumes that particles have well de-
fined trajectories that may be obtained assuming that

(90) v ≡ dr

dt
= − 1

m
∇S (r, t) ,

is the actual velocity of the particle when it is placed at (r,t) . If
we know the function S (r, t) we may obtain the path of the particle
by solving this (vector first order) ordinary differential eq.(90) . As
in classical mechanics we must previously solve the partial differen-
tial ‘Hamilton-Jacobi’ eq.(88). However, unlike in classical mechan-
ics, here the ‘Hamilton-Jacobi equation’ contains an unknown func-
tion ρ (r, t), so that eqs.(88) and (87) are coupled and it is necessary
to solve them simultaneously. These two non-linear first order par-
tial differential equations are equivalent to the complex, but linear,
Schrödinger eq.(84), which in practice is easier to solve.

In order to better understand the calculational procedure involved
in Bohmian mechanics, I will consider the simple example of a one-
dimensional harmonic oscillator. The Schrödinger equation may be
written

i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
+

1

2
kx2ψ.

I shall study only two particular solutions, corresponding to the ground
state and a coherent state, respectively. These solutions are [8]

(91) ψ =

√
mω

π�
exp

(
−1

2
ξ2
)
, ω ≡

√
k

m
, ξ ≡

√
mω

�
x,

ψ =

√
mω

π�
exp

[
−1

2
(ξ − ξ0 cos (ωt))

2

]
× exp

[
−i

(
1

2
ωt+ ξξ0 sin (ωt)− 1

4
ξ20 sin (2ωt)

)]
,(92)
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where ξ0 is a constant measuring the amplitude of the oscillation (see
below). The study of the ground state eq.(91) is straightforward be-
cause there is no phase depending on position. Thus v, eq.(90), is zero
and the picture provided by Bohmian mechanics is that the particle
is at rest but its position is unknown, the probability density of the
possible positions being determined by the squared modulus of the
wave-function ψ, eq.(91) . The result is general, the particle is at rest
in any stationary state where the ψ-function may be taken as real.
The wave is stationary and possesses an amplitude given by eq.(91) .
As an aid to the intuition we might replace the actual particle by a
statistical ensemble of particles whose density would agree with the
“probability density of finding the particle at r if a position measure-
ment is performed”, using the standard (Copenhagen) language of
quantum mechanics.

I shall now study the coherent state in terms of the dimensionless
position variable ξ. The velocity of the particle placed at (ξ, t) is
given by eq.(95) applied to the phase of the complex function eq.(92) .

Introducing a ‘dimensionless velocity’ ν ≡√m/(�ω)v we get

ν (ξ, t) =
∂

∂ξ

(
1

2
ωt+ ξξ0 sin (ωt)− 1

4
ξ20 sin (2ωt)

)
= ξ0 sin (ωt) .

Thus the motion of a particle belonging to the statistical ensemble
depends on the position only via the time dependence of ξ. In fact, it
fulfils

(93) ν (ξ, t) =
1

ω

dξ

dt
= ξ0 sin (ωt) ⇒ ξ (t) = −ξ0 cos (ωt)+ const.

The probability density is given by the squared modulus of eq.(92),
that is,

(94) ρ (ξ, t) dξ =
1√
π
exp
[−(ξ − ξ0 cos (ωt))

2
]
dξ,

which is consistent with the velocity field derived in eq.(93), as it
should because both are related by eqs.(88) and eq.(87) . The picture
that emerges is a ‘cloud’ of particles that oscillates of frequency ω
without deformation. In addition to the actual particle there is a
wave whose amplitude, ψ, evolves according to Schrödinger eq.(92) .

4.2.3. The ontology of Bohm’s theory. The interpretation
of eq.(88) as the quantum counterpart of the Hamilton-Jacobi equa-
tion poses a difficult problem, at least for a realistic interpretation of
Bohm’s theory. In fact, in classical mechanics the potential V (r), or
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at least its gradient, corresponds to a real field present at all points
of some region, e.g. an electric field. In sharp contrast a probability
density like ρ (r, t), and consequently the quantum potential eq.(89),
does not correspond to any real field, it is just a mathematical function
containing the available information about the presence of the parti-
cle. Thus it is difficult to understand how the quantum potential,
devoid of physical reality, may have any effect on an actual particle.
The solution to the difficulty is to assume that ρ (r, t) and therefore
U and S, which are related to ρ via eqs.(88) and (90), are real fields.
This leads to an interpretation of Bohm’s law of motion very similar
to the pilot wave theory of L. de Broglie. That is, for every actual
particle, e.g. an electron, there is an associated wave. The wave is
governed by Schrödinger eq.(84) (or, what is equivalent, eqs.(88) and
(90)), and the wave guides the motion of the particle.

For us the relevant question is: Does Bohmian mechanics provide
the correct ontology for a realistic understanding of quantum theory?
On the positive side I must concede that it is a viable hidden vari-
ables theory, it offers a realistic ontology without changing at all the
(successful) predictions of quantum mechanics (at least in the non-
relativistic domain here studied). Indeed, Bohmian mechanics has
become the paradigm of hidden-variable theories. For these reasons
a group of physicists, relatively small, has supported Bohmian me-
chanics as the solution of all interpretational problems of quantum
mechanics [7]. In contrast, the mainstream of the scientific commu-
nity is not very enthusiastic about the theory, precisely because they
do not like hidden variables theories. Indeed, from a pragmatic point
of view Bohmian mechanics does not present any calculational advan-
tage over standard wave mechanics because it is necessary to solve
the Schrödinger equation in the first place. However, it has been
pointed out that the theory may allow calculating some quantities
which cannot be found using standard quantum mechanics, such as
first passage times. It also provides interesting pictures of some phe-
nomena like interference in the two-slit experiment or the evolution
of molecules during a collision.

There is however an important difficulty for Bohmian mechanics.
It is the problem for the interpretation of systems of N particles. In
fact, in this case the Schrödinger equation is an equation in the con-
figuration space of 3N dimension. That is, with reference to eq.(84)
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the wave-function and the Laplacian operator become

ψ = ψ (r1, r2, . . . , rN , t) ,∇2 =

N∑
j=1

(
∂2

∂x2
j

+
∂2

∂y2j
+

∂2

∂z2j
).

It is very difficult to understand the nature of a ‘physical wave living
in a non-physical 3N-dimensional space’. Actually, a similar problem
appears in the early Schrödinger interpretation, as discussed above.
In Bohmian mechanics it is possible to assume that there is a wave
associated to every particle, but the set of waves gives rise to a force
on every particle which happens to be calculable via the generaliza-
tion to 3N dimensions of the 3 dimensional eqs.(88) and (90). This
assumption however seems contrived and not too satisfactory. Also
if the hypothesis is not accompanied by the evolution equations of
the different waves then it is not too informative. Indeed, it does not
explain how the complexity of multiple waves leads to the relatively
simple Schrödinger equation in 3N dimension. The use of the config-
uration space might be avoided formulating the theory for relativistic
quantum fields, rather than nonrelativistic quantum mechanics. In-
deed, quantum field theory is elaborated in ordinary 3D space (plus
time). Attempts in these directions have been made with partial suc-
cess, but at the price of losing simplicity. In particular, the intuitive
picture of particles moving along deterministic paths, which is one of
the virtues of Bohmian mechanics, is lost.

Finally there is also another shortcoming of the theory, namely
the lack of any stochastic element. This implies that the probability
needs to be introduced so to speak ‘by hand’. For instance, in any
stationary state there is a probability density for the position of the
particle, but the particle is at rest and there is no apparent dynamical
mechanism able to produce the randomness. For all these reasons my
personal attitude towards Bohmian mechanics is negative, although
I admit that this opinion is to some extent a matter of taste, and
therefore it is difficult to provide more clear arguments. In any case,
if I am compelled to choose amongst the existing ontologies aimed at a
realistic interpretation of wave mechanics, I prefer stochastic theories,
like stochastic mechanics, the theory to be studied in the following;
or, even better, the stochastic electrodynamics studied in chapter 5.
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4.3. Stochastic mechanics

4.3.1. Madelung hydrodynamical interpretation. As said
above, Madelung [5] proposed in 1926 to write the Schrödinger wave-
function in terms of modulus and phase, as in eq.(86), but interpreting
eqs.(87) and (88) as corresponding to a fluid with density, ρ, and
velocity, v, given by

(95) v (r, t) ≡ −∇S/m.

Thus the continuity eq.(87) becomes

(96)
∂ρ

∂t
+∇ (ρv) = 0,

and eq.(88) leads to an equation which may be written in terms of ρ
and v. In fact, if we apply the gradient operator, ∇, to eq.(88) we get,
taking eq.(95) into account,
(97)
dv

dt
=

∂v

∂t
+ (v.∇)v = − 1

m
∇ [V (r) + U(r)] , U(r) = − �

2

2m2

∇2√ρ√
ρ

.

This allows a hydrodynamical interpretation of Schrödinger equation.
Indeed, for � = 0 eq.(97) becomes the Euler equation of motion of an
inviscid fluid under the action of an external force. The modification
introduced by quantum mechanics derives from the term U(r,t), the
‘quantum potential’ in the de Broglie-Bohm theory.

If we accept Born’s interpretation of ρ(r,t) as a probability den-
sity, it is natural to look at the Madelung fluid as a fictitious fluid
consisting of a statistical ensemble of particles that represent our in-
formation about the unique particle of our system. Thus the term
U(r,t) has the resemblance of a diffusion term produced by some ran-
dom field, which would provide an explanation for the quantum be-
haviour. Indeed, many people have attempted to make a derivation
of Schrödinger equation or to provide an interpretation of wave me-
chanics, via explaining the origin of the term eq.(97) (e.g. [9]). The
most elaborated approach along these lines is stochastic mechanics,
proposed in 1966 by E. Nelson [10], [11].

4.3.2. Dynamics of Markov stochastic processes. I now
start presenting a theory which rests upon the assumption that the
motion of a (quantum) particle may be treated as a stochastic process,
that is, as a probability distribution on the set of possible paths. I
shall consider the particle in one dimension for simplicity, and later I
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shall comment on the modifications needed for a 3N-dimensional the-
ory. The presentation here follows L. de la Peña [12]. We assume that
the particle’s path may be represented by a continuous, but nowhere
differentiable, function of time, x(t). Lack of differentiability means
that it is not possible to get the velocity as the time derivative of the
position. However, if we consider a Markov stochastic process, it is
possible to define two stochastic time derivatives, forward, D+ and
backward, D−, as follows

v+(t) ≡ D+x(t) ≡ lim
Δt→0

〈x (t+Δt)− x (t)〉
Δt

,(98)

v−(t) ≡ D−x(t) ≡ lim
Δt→0

〈x (t)− x (t−Δt)〉
Δt

,

where 〈〉 means ensemble average, and v+(t) and v−(t) are called
forward and backward velocities, respectively. A stochastic process
is a Markov process in case the past and future are conditionally
independent given the present. The notion is time symmetric. We
also assume that the following limits exist and they are equal and
independent of time:

2D = lim
Δt→0

〈
[x (t+Δt)− x (t)]

2
〉

Δt
(99)

= lim
Δt→0

〈
[x (t)− x (t−Δt)]

2
〉

Δt
.

On the other hand we assume that

lim
Δt→0

〈[x (t+Δt)− x (t)]
n〉

Δt
= lim

Δt→0

〈[x (t)− x (t−Δt)]
n〉

Δt
= 0,

for n > 2. As we shall see below these assumptions lead to a correct
dynamics in the case of Brownian motion, what makes them plausible.

Now we may consider an analytic function of x and t, f(x, t), and
apply to it the operators of time derivative. We get

D+f(x, t) =
∂f

∂t
+ v+(x, t)

∂f

∂x
+D

∂2f

∂x2
,

D−f(x, t) =
∂f

∂t
+ v−(x, t)

∂f

∂x
−D

∂2f

∂x2
.

The particle’s position x(t) being a stochastic process, a convenient
procedure to study the evolution is to introduce a statistical ensemble
of particles with density ρ (x, t), so that ρdx is the probability that
the actual particle is placed between x and x + dx at time t. It is
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interesting to obtain equations for the evolution of the density. To
do that we consider a function f(x, t) that represents a conserved
quantity; that is, we assume

D±f = 0.

If we multiply these equations times the density, ρ, and perform an
integration with respect to x we obtain

0 =

∫ ∞

−∞
dxρD±f =

∫ ∞

−∞
dxf

[
−∂ρ

∂t
− ∂

∂x
(v±ρ)±D

∂2ρ

∂x2

]
,

where the last equality derives from an integration by parts (assuming
ρ (x, t) → 0 for x → ±∞ and for t → ±∞). This equality being true
for any (conserved) quantity f , the quantity inside the squared bracket
should vanish, which gives rise to two equations. The sum and the
difference of them lead to

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂x
(uρ) = D

∂2ρ

∂x2
,(100)

v ≡ (v+ + v−)/2, u ≡ (v+ − v−)/2

where I have introduced the current velocity, v, and the osmotic ve-
locity, u. The first eq.(100) is the continuity equation, and the latter
may be integrated to give

(101) u = Dρ−1 ∂ρ

∂x
= D

∂

∂x
(log ρ) .

Actually, the integration is not so simple in three dimensions, because
the solution contains an additional term of the form ρ−1∇×w(r, t),
where w is an arbitrary vector field. Here I shall ignore that possi-
bility (which however could be interesting because the term might be
associated to the spin angular momentum).

In order to have a complete description of the particle’s motion
we need, in addition to the continuity equation, another equation for
the systematic velocity. Depending on our choice of that equation we
may obtain different theories, and I study briefly the most relevant:
Brownian motion and stochastic mechanics.

The theory of Brownian motion was studied by Einstein in 1905
for the case where no external force acts on the particle, and it was
generalized to the case involving external forces by Smoluchowski.
In the former case there are no privileged directions in space which
implies that the (ensemble) mean position at time t + Δt equals the
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position at time t. This implies that the forward velocity v+, eq.(98),
is zero, which leads to

0 = v+ = v + u = v +D
∂

∂x
(log ρ) .

This is the second equation we were searching for. Combined with
the continuity equation we obtain the diffusion equation

(102)
∂ρ

∂t
= D

∂2ρ

∂x2
.

If there is an external force, f(x, t), a plausible assumption is that
the forward velocity is proportional to the force, which is appropriate
for a dissipative phenomenon. Thus we get

(103) f = Cv+ ⇒ ∂ρ

∂t
= − 1

C

∂ (ρf)

∂x
+D

∂2ρ

∂x2
,

which is Smoluchowski equation for Brownian motion in the presence
of an external force field (e.g. gravity.) Clearly eqs.(102) and (103)
may be used only for the evolution towards the future. If we know the
position of the particle at a time and we ask for the previous positions
we should use the conditions v− = 0 or f = Cv− leading to similar
equations with −D substituted for D. The Einstein-Smoluchowsky
theory of Brownian motion involves particle’s paths where the in-
stantaneous velocity is not defined (‘it is infinite’). A more physical
(although more involved) theory was later developed by Ornstein and
Uhlenbeck, but we will not comment on it here.

4.3.3. Stochastic mechanics. Now I will study a non-dissipa-
tive theory where the force is proportional to the acceleration. Actu-
ally, there are four accelerations, obtained by application of the two
operators D± to the two velocities v±. It is more convenient to define
two new operators of time derivative as follows

Dc ≡ 1

2
(D+ +D−) =

∂

∂t
+ v

∂

∂x
,(104)

Ds =
1

2
(D+ −D−) = u

∂

∂x
+D

∂2

∂x2
,

and to write the accelerations in terms of these operators and the
velocities v and u defined in eq.(100), that is,

(105) Dcv, Dsu, Dcu, Dsv.

In order to postulate the law of dynamics we shall choose amongst
the possible linear combinations of these four accelerations. Firstly it
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is necessary to choose a time-reversal invariant acceleration in order
to obtain a non-dissipative theory. Only the two first accelerations
in eq.(105) fulfil this condition, the last two changing sign under the
reversal of time. Thus the required acceleration must be of the form
aDcv + bDsu. Now Dcv should enter with coefficient a = 1 in order
to insure the correct deterministic limit (see below). Thus the only
free parameter will be the coefficient, b. However, from eqs.(101) and
(104) we obtain

Dsu = D2 ∂

∂x

[
1

2
ρ−2

(
∂ρ

∂x

)2

+ ρ−1 ∂

∂x

(
∂ρ

∂x

)]
(106)

= 2D2 ∂

∂x

(
1√
ρ

∂2√ρ

∂x2

)
,

so that the parameter b may be absorbed in D2 except for its sign.
Consequently our freedom reduces to choosing a sign, and I postulate
b = −1. Hence

(107) f = m (Dcv −Dsu) ,

which is the dynamical law generalizing Newton’s second law. Eq.(107)
may be rewritten, taking eqs.(100) and (106) into account

(108)
∂v

∂t
+ v

∂v

∂x
− 2D2 ∂

∂x

(
1√
ρ

∂2√ρ

∂x2

)
=

f

m
= − 1

m

∂V (x)

∂x
,

where m is the mass of the particle. The last equation corresponds
to the case where the force f is conservative and it agrees with the
Madelung eq.(97) provided we identify 2D = �/m. This is the basis
for the interpretation of the Schrödinger equation as the equation for
evolution of the probability density of a particle moving under the
action of a given conservative force plus a non-dissipative random
force of some kind characterized by the assumptions made above.

4.3.4. Does stochastic mechanics provide a realistic in-
terpretation of quantum mechanics? Firstly I shall comment on
a subject related to stochastic mechanics named ‘stochastic quanti-
zation’ [13]. It consists of using a fictitious time, τ , related to the
real time, t, by τ = −it, where i is the imaginary unit. In this form
the time-dependent Schrödinger eq.(84) looks like a diffusion equation
and the expansion in terms of eigenfunctions of the Hamiltonian

Ψ(x, t) =
∑
j

ψj exp (iEjt) =
∑
j

ψj exp (−τEj) ,
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looks like a partition function of statistical mechanics, provided we
identify τ with the inverse of the temperture. The method may be
extended to quantum field theory. Thus the change to imaginary time
allows dealing with quantum mechanics with the methods of statis-
tical mechanics or stochastic processes. Stochastic quantization adds
no hint for a realistic interpretation of quantum mechanics, it is just a
formal convenient method for some calculations; therefore, I will not
study it further in this book. In contrast, stochastic mechanics appar-
ently provides an ontology, that is, a physical model where particles
have actual trajectories. Thus it is similar to Bohmian mechanics
with the advantage that the paths present stochasticity, which fits
in the probabilistic character of quantum mechanics. In this respect
stochastic mechanics has had successes but also failures which will be
summarized in what follows [14].

The main success is of course the derivation of Schrödinger equa-
tion with the correct relation between the wave-function and the prob-
ability density of the particle positions (i.e. Born’s rule). It is also
possible to explain why identical particles satisfy either Bose-Einstein
or Fermi-Dirac statistics and why particles have integer or half-odd
spin [15]. Nelson ([14], Section 17) has pointed out that it is also
possible to get a stochastic picture of the two-slit experiment, explain-
ing how particles have trajectories going through just one slit or the
other, but nevertheless produce a probability density as for interfer-
ing waves. All these developments are rather formal and it is difficult
to get an intuitive picture from them. The stochastic processes as-
sociated to these phenomena are rather strange, to say the least. In
particular, the existence of nodal surfaces in the stationary states of
the Schrödinger equation is counterintuitive. We might believe that
there are stochastic processes which, for unexplained reasons, give rise
to barriers which cannot be crossed ([14]). However, those processes
look bizarre. Actually, it is not necessary to attribute a real existence
to the stationary states of the Schrödinger equation, as discussed in
chapter 2 section 2.3.1.

More difficult is to understand many-body (nonrelativistic) quan-
tum mechanics. It is necessary to assume that every particle has an
influence on all other particles via the quantum potential, that is, the
third term of eq.(108) . In fact, in the many-body equation that term
contains derivatives with respect to all the particle’s positions. The
result is that, if there are two uncoupled systems, an alteration of the
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second one affects the first one. This makes unrealistic to regard the
trajectories as physically real.

In summary stochastic mechanics does not provide a clear intu-
itive model of the behaviour of quantum systems. However, some
modification of stochastic mechanics could provide the ontology we
are searching for. The modification might come from a different more
physical approach, resting also upon stochastic processes, namely sto-
chastic electrodynamics, a theory studied in chapter 5.

4.4. The Weyl-Wigner formalism

4.4.1. Introduction. Historical note. The Weyl-Wigner for-
malism may be seen as an attempt to formulate nonrelativistic quan-
tum mechanics in the phase space of coordinates and momenta. A rel-
evant question is whether it is possible to get a realistic interpretation
of quantum mechanics from the formalism. The answer is negative as
will be discussed in section 4.4.4.

Hermann Weyl [16], in a context related to representation theory
in mathematics, proposed in 1927 to map classical phase space func-
tions into operators. The procedure gives a method of phase space
quantization. However, it is now understood that Weyl quantization
is not always well defined and sometimes gives unphysical answers.
More interesting is the inverse Weyl transform that leads from oper-
ators in Hilbert space to phase space functions. For states this repre-
sentation is known as Wigner function, reviewed in the following. An
application to optics will be studied in chapter 6.

The Wigner function (or Wigner quasiprobability distribution)
was introduced by Eugene Wigner in 1932 [17] in order to study
quantum corrections to classical statistical mechanics. It provides
an invertible mapping between functions in the quantum phase space
formulation and Hilbert space operators in the Schrödinger picture.
Within quantum mechanics the mapping is well defined and, in con-
trast with Weyl original intention in seeking a consistent quantization
scheme, this map amounts to a mere change of representation.

In the 1940s, H. J. Groenewold [18] and José E. Moyal [19] elu-
cidated how the Wigner function provides the integration measure
(analogous to a probability density function) in phase space, which
allows to formulate quantum mechanics in phase space. For reviews
see [20] and [21].

In 1948 Jean Ville [22] rederived the Wigner function, out of the
context of quantum mechanics, as a quadratic representation of the
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local time-frequency energy of a signal. For instance, in music it may
be used to study the frequencies of sound as a function of time. In
this case eq.(122) should be interpreted so that ψ corresponds to the
sound wave amplitude, r and t fix a spacetime point and p is the
wave-vector of one plane-wave component of the sound. The use of
the Wigner function in (classical) signal theory will not be studied
here, and the interested reader may look at the books dealing with
the subject [23].

4.4.2. Weyl transform. A naive method to associate phase
space functions to the Hilbert space operators in the quantum me-
chanics of particles is as follows. If we consider a single particle in one

dimension, a method to get the image of the operator M̂ may be

F
̂M
(x, p) = Tr

{
M̂δ (x̂− x) δ (p̂− p)

}
,

where δ () is Dirac’s delta. However, the mathematical problem of
defining properly the delta distribution of an operator is not trivial.
We might define F

̂M
(x, p) in the form

F
̂M
(x, p) =

(109)

=
1

4π2�2

∫ ∞

−∞
dα

∫ ∞

−∞
dβTr

{
M̂ exp [iα (x̂− x) /�] exp [iβ (p̂− p) /�]

}
,

where TrÂ means the trace of the operator Â and the Planck constant
� is introduced here to agree with common usage. As the operators x̂
and p̂ do not commute, a different definition would be

F ′
̂M
(x, p) =

(110)

=
1

4π2�2

∫ ∞

−∞
dβ

∫ ∞

−∞
dαTr

{
M̂ exp [iβ (p̂− p) /�] exp [iα (x̂− x) /�]

}
.

The Weyl transform is intermediate amongst the two possibilities:

W
̂M

=
1

4π2�2

∫ ∞

−∞
dα

∫ ∞

−∞
dβ exp (−iαx/�− iβp/�)(111)

×Tr
{
M̂ exp [(i/�) (αx̂+ βp̂)]

}
,

where we have taken into account that the numbers x and p may be
put outside of the trace operation. I point out that the 3 transforms,
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eqs.(109) , (110) and (111) might be, and have been, used but here I
will study only the last one.

The order of the operators x̂ and p̂ within an exponential is irrel-
evant, as may be shown expanding the exponential in powers. But,
as the operators x̂ and p̂ do not commute, the product of the ex-
ponentials is not equal to the exponential of the sum. In fact, the
Campbell-Haussdorf formula

(112) exp
(
Â+ B̂

)
= exp

(
Â
)
exp
(
B̂
)
exp

(
−1

2

[
Â, B̂

])
,

that holds true if
[
Â, B̂

]
commutes with Â and with B̂, applied to

eq.(111) gives

exp [(i/�) (αx̂+ βp̂)] = exp [(i/�)αx̂] exp [(i/�)βp̂] exp ((i/2�)αβ)

= exp [(i/�)βp̂] exp [(i/�)αx̂] exp (−(i/2�)αβ) ,(113)

where we have taken into account the commutation rules, eqs.(114)
below. This exhibits the relation of the Weyl transform of the operator

M̂ , eq.(111), with the choices eqs.(109) and (110) .
The generalization to the Hilbert space associated to a system

with n degrees of freedom is straightforward. The coordinates and
momenta operators {x̂j ,p̂j} , j = 1, 2, . . . , N fufill the standard com-
mutation relations

(114) [x̂j ,x̂k] = [p̂j ,p̂k] = 0, [x̂j ,p̂k] = i�δjk.

To any trace-class operator ρ̂ in that space we may associate a func-
tion, W , in a 2n-dimensional space spanned by the complex numbers
{xj ,pj}, j = 1, 2, . . . , N , through the following Weyl-Wigner trans-
form

Wρ̂ ({xj ,pj}) = (2π�)
−n
∫

Tr
{
ρ̂ exp

[
(i/�)

∑
j

(αj x̂j + βj p̂j)
]}

× exp
[
(−i/�)

∑
j

(αjxj + βjpj)
]∏

j

dαjdβj .(115)
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The transform is invertible in the sense that given the function
W ({xj ,pj}) we get the operator ρ̂ through

ρ̂ = (2π�)
−2n
∫ ∏

k

exp
[
(−i/�)

∑
k

(αkx̂k + βkp̂k)
]
dαkdβk

×
∫

Wρ̂ ({xj ,pj})
∏
j

exp [(i/�) (αjxj + βjpj)] dxjdpj .(116)

Here the operator ρ̂ is obtained as a function of the coordinate and
momentum operators {x̂j , p̂j} .

Several relevant properties of the Weyl-Wigner transform are:
1) Linearity. If ρ̂1 and ρ̂2 are two trace-class operators (of the

same Hilbert space) with transformsWρ̂1 ({xj ,pj}), Wρ̂2 ({xj ,pj}), the
transform of the sum is the sum of the transforms, that is,

(117) Wρ̂1+̂ρ2
({xj ,pj}) = Wρ̂1 ({xj ,pj}) +Wρ̂2 ({xj ,pj}) .

The proof is straightforward.
2) Trace. The trace of an operator in terms of the Weyl-Wigner

transform is

(118) Trρ̂ =

∫
Wρ̂ ({xj ,pj})

∏
j

dxjdpj ,

as may be easily proved.
3) If the operator ρ̂ is a function of the position (momentum)

operators alone, then the transform is obtained through the simple
change r̂j → rj (p̂j → pj , respectively). The proof is not difficult but
it is omitted.

As a consequence, taking linearity into account, the Hamiltonian
operator is transformed as follows
(119)

Ĥ =
∑
j

(
p̂2
j

2mj
+ V (r̂j)

)
→ W

̂H =
∑
j

(
p2
j

2mj
+ V (rj)

)
.

4.4.3. Wigner function. The most interesting Weyl transform
happens when ρ̂ is a density operator representing the state (generally
mixed) of the physical system. In this case ρ̂ fulfils the conditions of
being Hermitian, normalized and positive, that is,

(120) ρ̂† = ρ̂; Trρ̂ = 1; ∀ψ ∈ H, 〈ψ | ρ̂ | ψ〉 ≥ 0.
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ThenWρ̂ ({xj ,pj}) becomes the Wigner function of the quantum state.
In particular, for a pure state ρ̂ = |ψ〉〈ψ| and eq.(115) becomes

W (r,p) = (2π�)
−1
∫

exp (−iα · r/�) exp (−iβ · p/�)
× 〈ψ | exp [i (α · r̂+ β · p̂) /�] | ψ〉dαdβ.(121)

(From now on we consider systems of one particle, although the gen-
eralization to many particles is straightforward). I stress that writing
the exponential of a sum as a product of exponentials is possible for
numbers, but not for operators. Eq.(121) leads to
(122)

W (r,p,t) =
1

(2π�)
3

∫
ψ

(
r+

1

2
u,t

)
ψ∗
(
r−1

2
u,t

)
exp (−ip · u/�) du,

for any wave-function ψ (r,t) in the Schrödinger representation. It
may be generalized to density matrices and many-particle systems.

The Wigner function encodes all information about the quantum
system and therefore it gives rise to an alternative formulation of
quantum mechanics. Specifically it yields expectation values from a
phase-space scalar function g (r,p) uniquely associated to the operator

Ĝ through an appropriate (Weyl) transform. Thus the expectation of
the operator looks like ‘a phase-space average’ for the Weyl transform
of the operator, that is,

(123)
〈
Ĝ
〉
=

∫
dr dpW (r,p)g(r,p).

The three properties eqs.(120) of the density matrices give rise to
the following properties of the Wigner function:

1) It is a real function, that is, W (r,p) = W ∗ (r,p),
2) It is normalized, that is,

∫
W (r,p) dr dp = 1,

3) It is ‘positive’ in the following sense∫
W (r,p)W

̂Θ (r,p) drdp ≥0,

for any pure state Θ̂.
However, this kind of positivity property does not guarantee the

usual positivity, that is, W (r,p) ≥ 0. Indeed, it has been shown [24]
that for pure quantum states a necessary and sufficient condition for
nonnegativity in one dimension is that the wave-function is Gaussian,
which for instance corresponds to either the ground state or a coher-
ent state of the one-dimensional oscillator. This theorem has been
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generalized to many dimensions [25]. For mixed states there is no
simple criterion. The fact that the Wigner function is not always pos-
itive prevents its interpretation as a probability distribution in phase
space (for this reason it is called a pseudo-probability distribution).
In section 4.4.4 we will return to this problem.

Other relevant properties of the Wigner function are the following
1) Marginals. The quantum r and p distributions are given by

the marginals, i.e.

ρ (r) =

∫
W (r,p,t) dp, f (p) =

∫
W (r,p,t) dr,

which easily follows from the definition in eq.(122) . It is interesting
that in points where ρ (r) = 0 we may haveW (r,p,t) �= 0 . This would
not be possible if W (r,p,t) ≥ 0 everywhere because the integral of a
nonnegative quantity is zero only if the quantity is zero (except for a
set of zero measure.)

2) Overlap. State overlap is calculated as

(124) |〈ψ | χ〉|2 =

∫
Wψ ({xj ,pj})Wχ ({xj ,pj})

∏
j

dxjdpj .

The proof in one dimension is as follows. Writing the right side of
eq.(124) taking eq.(122) into account we get

I =
1

(2π�)
2

∫
dx dp du dv ψ

(
x+

u

2

)
ψ∗
(
x− u

2

)
×χ
(
x+

v

2

)
χ∗
(
x− v

2

)
exp [−ip (u+ v) /�]

=
1

2π�

∫
dx duψ

(
x+

u

2

)
ψ∗
(
x− u

2

)
χ
(
x+

u

2

)
χ∗
(
x− u

2

)
,

where we have performed the p integral and then the v integral. Hence
the change of variables s = x+ u

2 , w = x− u
2 leads to

I =
1

2π�

∫
ds dw ψ (s)χ∗ (s)ψ∗ (w)χ (w) = |〈ψ | χ〉|2 .

3) Boundedness. By virtue of the Cauchy-Schwartz inequality,
for a pure state in one dimension W is constrained by

−2

�
≤ W (x, p) ≤ 2

�

Property eq.(124) leads to the possibility of obtaining the expec-

tation value of an ‘observable’ operator Â in the quantum state with
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density operator ρ̂ (t) through

(125) Tr
(
ρ̂Â
)
=

∫
W

̂A (r,p)Wρ̂ (r,p,t) dr dp.

This is crucial in order to allow the formulation of quantum mechanics
using the Wigner formalism. The proof of eq.(125) is easy taking

into account that any observable Â may be written in terms of its
eigenvalues, aj , and eigenvectors, | ψj〉, as follows

Â =
∑
j

aj |ψj〉〈ψj | .

Hence the linearity eq.(117) and the overlap property eq.(124) prove
eq.(125) .

Time dependence may be studied with the evolution equation of
the Wigner function, which may be obtained from the von Neumann
evolution equation for the density operators

(126)
dρ̂

dt
=

1

�

(
Ĥρ̂− ρ̂Ĥ

)
, Ĥ =

1

2m
p̂2 + V (r̂) .

The Weyl-Wigner transform of this equation gives,

∂W

∂t
= − 1

m
p · ∇W − 1

�

∫
dp′

(2π�)3
Ṽ (r,p′)W (r,p+ p′,t)(127)

Ṽ (r,p′) ≡
∫

du sin
(
p′·u/�3) [V (r+ u/2)− V (r− u/2)] .

The proof involves the Weyl transform eq.(111) of the different
terms and it is straightforward although lengthy. As an illustration we
present the transform of one of the terms in one dimension assuming
that ρ̂ corresponds to a pure state, i.e. ρ̂ = |ψ0〉〈ψ0|. I will calculate

the transform of V̂ ρ̂, that is,

W
̂V ρ̂ = (2π�)

−1
∫

exp [(−i/�) (αx+ βp)] dα dβ(128)

× Tr {V (x̂) ρ̂ exp [(i/�) (αx̂+ βp̂)]}

= (2π�)
−1
∫

exp [(−i/�) (αx+ βp+ αβ/2)]Tdα dβ,

T ≡ Tr {V (x̂) ρ̂ exp(iαx̂/�) exp(iβp̂/�)} .
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Now we use a basis of vectors, {| ψj〉}, and consider that ρ̂ = | ψ〉〈ψ |,
that is, it represents a pure state. Thus we get

T =
∑
j

〈ψj | V (x̂) | ψ〉〈ψ | exp(iαx̂/�) exp(iβp̂/�) | ψj〉

= 〈ψ | exp(iαx̂/�) exp(iβp̂/�)V (x̂) | ψ〉,
where the projective decomposition of the identity,

∑
j | ψj〉〈ψj |= 1,

has been used. In the coordinates representation this leads to

T =

∫
dx′ψ∗ (x′) exp(iαx′/�)V (x′ + β)ψ (x′ + β) dx′.

Inserting this into eq.(128) leads, after integrating over α and x′,

W
̂V ρ̂ =

∫
exp(−iβp/�)dβψ∗ (x+ β/2)V

(
x− 1

2
β

)
ψ

(
x− 1

2
β

)
,

which may be written introducing a Dirac’s delta as

V

(
x− 1

2
β

)
=

∫
δ (β − u)V

(
x− 1

2
u

)
du

=
1

2π�

∫
dp′
∫

du exp [i (u− β) p′/�]V
(
x− 1

2
u

)
.

Hence it follows

W
̂V ρ̂ =

∫
dp′Wρ̂ (x, p+ p′)

∫
du exp (iup′/�)V

(
x− 1

2
u

)
.

W
̂V ρ̂ gives an analogous result with x+ 1

2u substituted for x− 1
2u. The

calculation of W
̂V p̂2 and Wp̂2 ̂V is more involved but similar. Combin-

ing these results leads to the one-dimensional analog of eq.(127) .
It is interesting to write this equation explicitly in powers of

Planck’s constant, �. I will do that in one dimension. Firstly we
change the variable p′ = �v, which leads, after expansion in powers of
�, to

∂W

∂t
= − 1

m
p
∂W

∂x
− 1

2π�

∫ ∞

∞
dv

∞∑
k=0

(�v)
k

k!

∂kW (r, p,t)

∂pk
(129)

×
∫ ∞

∞
du sin (vu) [V (x+ u/2)− V (x− u/2)] .

Performing the v integral first, we get zero if k is even, while for
k = 2l + 1 we obtain

I2l+1 (u) ≡
∫ ∞

∞
v2l+1 sin (�vu) dv = −2π (−1)

l d2l+1

du2l+1
δ (u) ,
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whence, after integrating by parts 2l + 1 times, we obtain∫ ∞

∞
du [V (x+ u/2)− V (x− u/2)] I2l−1 (u) = −π (−1)

l d2l+1

du2l+1
V (x).

If this is put in eq.(129) we get

(130)
∂W

∂t
= − 1

m
p
∂W

∂x
+

∞∑
l=0

(−1)
l
�
2l

(2l + 1)!

∂2l+1V (x)

∂x2l+1

∂2l+1W (x, p, t)

∂p2l+1
.

This is called the Moyal equation [19], although it is usually written
for the more general case where the Hamiltonian’s dependence on p
is not so simple as eq.(126). In this case,
(131)
∂W

∂t
=

{
2

�
sin

[
�

2

(
∂

∂x′
∂

∂p′′
− ∂

∂x′′
∂

∂p′

)]
W (x′, p′, t)H(x′′, p′′)

}
x,p

,

where {}x,p means making x′ = x′′ = x, p′ = p′′ = p after performing
the derivatives. The right hand side is named Moyal bracket and
becomes the classical Poisson bracket in the limit � → 0. In this limit
eq.(131) reproduces the classical Liouville equation.

The Wigner function may be extended to field theory, although
its meaning is quite different there. In particular, the application to
the electromagnetic field (quantum optics) will be studied in detail
in chapter 6. There are also other distribution functions in phase
space, in particular the Husimi function that is positive semidefinite.
However, the Wigner function presents clear advantages over the al-
ternatives, that will not be presented here [20], [21].

4.4.4. Does the Wigner function allow a realistic inter-
pretation? In classical mechanics, given a collection of particles, the
probability of finding a particle at a certain position in phase space
is specified by a probability distribution, the Liouville density. This
strict interpretation fails in quantum mechanics. Instead, the above
quasiprobability Wigner distribution plays an analogous role, but it
does not satisfy all the properties of a conventional probability distri-
bution; and, conversely, it satisfies boundedness properties not always
true in classical distributions.

For instance, the Wigner distribution can and normally does go
negative for states which have no classical model. Smoothing the
Wigner distribution through a filter of size larger than h results in
a positive-semidefinite function, i.e. it may be thought to have been
coarsened to a semi-classical one. Regions of such negative value are
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provable (by convolving them with a small Gaussian) to be ‘small’:
they cannot extend to compact regions larger than a few times h, and
hence they disappear in the classical limit. They are shielded by the
uncertainty principle, which does not allow precise location within
phase-space regions smaller than h, and thus renders such ‘negative
probabilities’ less paradoxical. Nevertheless, it is obvious that we
cannot interpret W as a probability distribution of the particles in
phase space.

We may try to get some hint about the possible paths of particles
if we integrate both sides of eq.(127) with respect to p. It is easy to
see that the integral of the second term vanishes and we obtain the
continuity eq.(85) with the density ρ and current density j given by

(132) ρ =

∫
W (r,p,t)dp, j =

1

m

∫
pW (r,p,t) dp.

Thus the moments of orders 0 and 1 of the momentum p play the
same role as if W was a true probability distribution. However, this
is no longer true for higher moments.

As a conclusion the Wigner function does not provide a realis-
tic interpretation of nonrelativistic quantum mechanics. However, we
shall see in chapter 6 that the Weyl-Wigner formalism may be ap-
plied to the electromagnetic field and provides an alternative to at
least some domain within quantum optics that allows a realistic in-
terpretation.

4.5. Path integrals

4.5.1. The Feynman formulation of quantum mechanics.
The path integral formulation of quantum mechanics was introduced
by Feynman in 1948 [26]. In a book on the subject [27] the formalism
is shown to be a straightforward consequence of the superposition
principle with the following argument. Let us assume that there is a
source of particles at point x = x0, y = 0, a screen with two slits at
x = ±a, y = b, and the particles may be detected at any point in the
plane y = c. (For simplicity I ignore here the z coordinate). Assuming
that a particle leaves the source at time t = 0, crosses the screen with
the slits at t1 and arrives at the detector at t2, the probability, P (x), of
reaching a point with coordinate x in the plane y = c is proportional
to the squared modulus of a ‘probability amplitude’, the latter being
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the sum of two amplitudes, that is,

P (x) ∝ |A(x0, 0 | x, t2)|2 ,(133)

A(x0, 0 | x, t2) = A(x0, 0 | a, t1)A(a, t1 | x, t2)
+A(x0, 0 | −a, t1)A(−a, t1 | x, t2).

Now we consider the case of many screens at positions y1, y2, . . . ,
where the particle may arrive at times t1, t2, . . . , respectively, and
that every screen possesses many slits. In this case the amplitude
eq.(133) should be written

A(x0, 0 | x, t) =(134)∑
j

∑
k

· · ·
∑
q

A(x0, 0 | xj , t1)A(xj , t1 | xk, t2) . . . A(xq, tn | x, t).

Here the set of positions {x0, xj , xk, . . . , xq, x} may be called a path,
so that the amplitude A(x0, 0 | x, t) is a sum of amplitudes, every one
corresponding to one possible path. If the number of slits in every
screen is increased indefinitely, at the end there will be no screen at
all. Then the discrete values xl, xk,. . . become continuous and the
sums become integrals, that is,

A(x0, 0 | x, t) =(135) ∫
dx1 . . .

∫
dxn−1A(x0, 0 | x1, t1) . . . A(xn−1, tn−1 | x, t).

The time intervals may be chosen identical, that is, tj+1−tj = ε, with
ε as small as desired. In the limit ε → 0, A(x0, 0 | x, t) becomes an
integral of paths.

The given derivation shows that eq.(135) is not specific of Feyn-
man’s formulation of quantum mechanics, but it may be valid for any
field fulfilling a superposition property, e.g. classical optics. In this
case, however, the P (x) of eq.(133) would not be a probability but a
light field intensity, as we will illustrate below with Huygen’s princi-
ple. Also, an expression formally similar to eq.(134) may be used in
the study of random motion when the probability that a particle goes
from one position to another one in some time interval is the sum of
probabilities corresponding to different paths, a method pioneered by
Norbert Wiener in the study of Brownian motion. This will be illus-
trated below with a derivation of the diffusion law via a path integral.
In this case the probability density is given directly, rather than via
the squared modulus of an amplitude.

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



148 4. ALTERNATIVE FORMULATIONS

What is specific of Feynman’s formulation of Schrödinger equation
is the choice of A to be the exponential of i/� times the (classical)
Lagrangian, L, of the particle’s motion, an idea taken from Dirac [28].
For instance, in the case of one-dimensional motion in a potential V (x)
we have L = 1

2mẋ2 − V (x) whence

A (xj−1, tj−1 | xj , tj) =

√
m

2πi�ε
exp(

iε

�
L),(136)

L ≡
[
1

2
m

(
xj − xj−1

ε

)2

− 1

2
V (xj−1)− 1

2
V (xj)

]

where m is the mass of the particle. (This expression differs from the
original one of Feynman [27] because I have substituted 1

2V (xj−1) +
1
2V (xj) for V [(xj−1 + xj) /2] for later convenience. Both formula-
tions agree in the limit ε → 0). It is common to take the continuous
limit and write eq.(134) in the form

A(x0, 0 | x, t) =

∫
D(paths) exp

[
i

�

∫ t

0

dtL(x, ẋ)

]
=

∫
D(paths) exp

[
i

�

∫ t

0

dt

(
1

2
mẋ2 − V (x)

)]
.(137)

But we should take into account that this symbolic equation actually
means the limit ε → 0 of eq.(135) with A given by eq.(136) .

The amplitude eq.(137) may be calculated explicitly for simple
potentials. For illustrative purposes I will reproduce the case of a free
particle, i.e. V (x) = 0. From eqs.(135) and (136) we obtain

A(x0, 0 | x, t) =(138)

lim
ε→0

( m

2πi�ε

)n/2 ∫
dx1· · ·

∫
dxn−1

n∏
j=1

exp

[
im

2�ε
(xj − xj−1)

2

]
,

where xn = x. It is straightforward to calculate A(x0, 0 | x, t) by
iteration, starting with the integral in x1, then the integral in x2, and
so on [27]. Here I will use an alternative procedure. I change to
new variables uj = xj − xj−1 and integrate over u1, u2, . . . , un−1.
However, the variables uj are not independent, but fulfill

x− x0 = u1 + · · ·+ un.

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.5. PATH INTEGRALS 149

This condition may be introduced in eq.(138) via a Dirac’s delta, that
is,

δ (u1 + · · ·+ un − x+ x0)

=
1

2π

∫ ∞

−∞
exp [iζ (u1 + · · ·+ un − x+ x0)] dζ,

where I have used a well known integral representation of the delta
distribution. After that, changing the order of the integrals it is pos-
sible to perform them as if all uj were independent, leading to

A(x0, 0 | x, t) = lim
ε→0

( m

2πi�ε

)n/2 1

2π

∫ ∞

−∞
exp [−iζ(x− x0)] dζ

×
[∫ ∞

−∞
du exp

(
im

2�ε
u2 + iζu

)]n
=

1

2π

∫ ∞

−∞
exp

[
−iζ(x− x0)− i�nεζ2

2m

]
dζ

=

√
m

2πi�t
exp

[
im(x− x0)

2

2�t

]
.(139)

The calculation of the path integrals eqs.(138) or (139) either by
iteration [27] or via the method presented above lacks mathemati-
cal rigour, because the integrals involved are not convergent. The
problem may be easily surmounted via including either the factor
exp
[−γ
∑

x2
j

]
or exp

[−γ
(∑

u2
j − ζ2

)]
, respectively, and taking the

limit γ → 0 after performing the integrals. In the derivation of
eq.(139) I have used implicitly this regularization procedure. More
relevant is the difficulty to get a physical interpretation of the path
integral, which will be discussed below.

In the general case, when V (x) �= 0, the amplitude A(x0, 0 |
x, t) is named the ‘propagator’. The interesting property is that the
propagator allows getting the wave-function at time t from the wave-
function at time 0, that is,

(140) ψ (x, t) =

∫
dx0ψ (x0, 0)A(x0, 0 | x, t),

I omit the general proof but for one dimension it is not difficult. It is
enough to check that eq.(140) with the amplitude A given by eq.(139)
fulfils Schrödinger equation and that the limit t → 0 of the amplitude
gives a Dirac’s delta, that is

lim
t→0

A(x0, 0 | x, t) = δ (x− x0) .
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Thus the propagator is the Green’s function of the Schrödinger equa-
tion. The conclusion is that Feynman’s formalism resting on the prop-
agator eq.(137) combined with eq.(140) is equivalent to Schrödinger’s
wave mechanics.

The path integral formulation can be generalized to 3N dimen-
sions, that is, N particles in 3D, and also to relativistic field theory.
It has an extremely important role in modern theoretical physics,
both because it is well adapted in order to derive general properties,
e.g. symmetries, and due to its relevance for actual calculations, as
shown by the use of Feynman graphs in covariant perturbation the-
ory [29].

The use of Feynman’s formalism in order to make perturbative
calculations may be understood with an example in one dimension.
Let us assume that we must calculate the probability amplitude that a
particle placed in the point x0 at time t = 0 arrives to point x at time
t. If we consider discrete time, the amplitude is given by eqs.(135)
and (136) . Now we assume that the potential consists of two terms,
that is,

(141) V (x) = V0 (x) + λV1 (x) ,

where the calculation involving V0 (x) is assumed easy and we want to
get the general solution as an expansion in powers of the parameter
λ. It may be checked that the term of order λ is obtained putting λV1

in one of the factors in eq.(135) and V0 (x) in all other factors. Thus
we get

A1(x0, 0 | x, t) = iε

�
λ

n−1∑
k=1

∫
dxkA(x0, 0 | xk)V1 (xk)A(xk | x, t).

Similarly the term of order λ2 will be

A2(x0, 0 | x, t) = − ε2

�2
λ2

n−2∑
l=1

n−1∑
k=l+1

∫ ∫
dxldxkA(x0, 0 | xl)V1 (xl)

×A(xl | xk)V1 (xk)A(xk | x, t),
and so on. Going to the continuous limit we get an easy method to get
the terms of the perturbation expansion. In quantum field theory the
procedure is much more involved because there are usually several
interacting fields. In this case an efficient method to take account
of the different terms is the use of the Feynman graphs, each graph
corresponding to a term in the perturbation calculation.
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Dealing with calculational aspects lies out of the scope of this
book, which is devoted to the physical interpretation of the quantum
formalism. For the path integrals the question is studied in section
4.5.4 below.

The use of path integrals is not exclusive of Feynman’s formalism.
From the mathematical point of view path integrals might be used for
any evolution governed by a partial differential equation of first order
in time. In physics such equations appear in two types of evolution:
1) The motion of particles that may be represented by a stochastic
process, and 2) the evolution of fields. In the former case the condition
that the differential equation is first order in time means that the
evolution after a time t+Δt depends only on the state at time t, with
independence of the states at earlier times. This is called Markov
property and gives rise to an equation formally similar to eq.(135) .
The typical example is Brownian motion or, more generally, diffusion
theory, see section 4.5.3 below.

The evolution of fields (e.g. classical optics or acoustics) is usu-
ally governed by second order equations whence the above criterion
does not apply. However, it is the case that the second order equa-
tion involving real numbers may be rewritten as a first order equation
involving complex numbers. The use of complex numbers to change
second order to first order equations is common in optics, as discussed
in the following. Also it may be that this is also the reason for com-
plex functions in Schrödinger’s wave mechanics as suggested in the
Madelung interpretation studied in section 4.3.1 above.

In the following I will revisit the use of a formula similar to
eq.(135) in classical optics and in diffusion theory.

4.5.2. Huygens principle. Historically the antecedent of a for-
mulation in terms of ‘path integrals’ goes back to Christian Huygens,
more than three centuries ago. In fact, Huygens proposed that light
are waves (in contrast with the corpuscular theory of his contempo-
rary Isaac Newton) and he was able to explain the straight line prop-
agation and other properties of light from his celebrated principle.
Huygens principle states that light propagation may be understood
as if every point where light arrives becomes the source of a spherical
wave, and the waves coming from different points are able to inter-
fere. In practice this implies that from each point of a given wavefront
at time t spherical wavelets originate. At time t + Δt each wavelet
will have a radius cΔt and the envelopes of these wavelets will form a
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new wavefront. Huygens principle may be formalized stating that the
light arriving at time t at a point r may be calculated from the three-
dimensional generalization of eq.(135) with an appropriate transition
amplitudes A (rj , tj | rj+1, tj+1). In contrast with the cases of Feyn-
man’s formalism, eq.(137) or diffusion (see below eq.(147)), where the
velocities of the particles are not fixed, light travels in vacuum with
the velocity, c, which puts the constraint |rj+1 − rj | = c (tj+1 − tj) .
Hence the transition amplitude should be of the form
(142)
A (rj , tj | rj+1, tj+1) = f (rj | rj+1) δ (|rj+1 − rj | − c (tj+1 − tj)) .

Light consists of transverse waves (that is, the electric and mag-
netic fields are perpendicular to the direction of propagation) which
implies that the function f should depend also on the angle between
the electric field and the rj−rj+1 vectors. I shall avoid this complica-
tion, irrelevant for our purposes, considering in the following longitu-
dinal waves, e.g. sound propagation in air instead of light in vacuum.

For monocromatic sound waves in air the function f of eq.(142)
is specially simple, namely

(143) f (rj | rj+1) =
exp(ik |rj+1 − rj |)
2πi |rj+1 − rj | .

where the denominator takes into account that the intensity from a
point source decreases as the inverse of the distance squared. I stress
that here the use of complex amplitudes, i.e. the introduction of the
imaginary unit number i, has no deep meaning, it is just a convenient
mathematical procedure to simplify the calculations. Actually, the
wave amplitudes might be always represented by real numbers (in-
deed the light amplitude may be taken to be the electric field of the
radiation and the amplitude of sound vaves in air to be the excess
pressure).

Due to the constraint of constant velocity, see eq.(142), it is not
useful to study the case of a source emitting a signal at time t = 0
from the point r = 0, as in the Feynman’s formalism (or diffusion,
see below). We will consider instead that at time t = 0 there is an
amplitude, ψ0 (r), extended in space and we want the amplitude at
time t, ψ (r,t). This may be calculated inserting eqs.(142) and (143)
in the path integral formula eq.(135). For instance, we may consider
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n equal time intervals tm+1 − tm = ε, thus getting

ψ (r,t) =(144)

=

∫
ds1· · ·

∫
dsn−1ψ0 (r1)

exp(ik |r1 − r2|)
2πi |r1 − r2| . . .

exp(ik |rn−1 − r|)
2πi |rn−1 − r| ,

where dsm means integration over a spherical surface of radius

|rm−1 − rm| = cε

centered at the point rm−1, where c is the sound velocity.
Eq.(144) is a natural formulation of Huygen’s principle by means

of path integrals. In practice, however, it is most frequent to use very
simple paths consisting of just three points, namely {r1, r2, r}, with
a straight line propagation between points. For instance, a typical
problem solved via eq.(144) is the diffraction by a small hole. In this
case we might consider an initial signal represented by

ψ0 (r1) = F (r1) exp (ikz1) ,

if the wave is monochromatic. Here F (r1) is a slowly varying function
of r1 with support in a domain having a size small in comparison with
the distance from the source to the hole, but large in comparison with
the wavelength, k−1. The values of r2 ≡ (x2, y2, z2) are constrained
by the hole. For instance, in a simple model we might write

z2 = d, x2
2 + y22 ≤ R2,

R being the radius of the hole. Finding the diffraction pattern in a
screen after the hole is straightforward although lengthy and will not
be given here (see any book of electromagnetic theory, e.g. [30]).

4.5.3. Diffusion. We may also derive the diffusion probability
via a path integral approach. This is possible provided that the as-
sociated stochastic process is Markovian whence the transition prob-
abilities fulfil a Chapman-Kolmogorov equation, that is,

P (x0, 0 | x, t) =
∫

dxP (x0, 0 | x1, t1)P (x1, t1 | x, t).(145)

which by iteration leads to an equation similar to eq.(135) but with
probabilities P substituted for the amplitudes A. In the simple case
of Brownian motion, or the mathematically equivalent problem of
diffusion with neither drift nor external forces, we assume that in every
step of duration T the particle may travel any distance, Δx, with a
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probability proportional to exp
(
− Δx2

2DT

)
. Then the probability of a

path going from 0 to x will be

P ∝
∫

dx1

∫
dx2· · ·

∫
dxn−1 exp

[
− 1

4D

n−1∑
k=0

(
xk+1 − xk

tm+1 − tm

)2
]
,

xn = x.(146)

In the limit of large n, but given t = nT , this may be written substi-
tuting integrals for the sums, that is,

(147) P ∝
∫

D(paths) exp

(
1

4D

∫ t

0

dtẋ2

)
,

which is formally similar to the Feynman path integral eq.(137). There
are however two fundamental differences. Firstly in the diffusion case
eq.(147) gives directly the probability, rather than the amplitude, and
secondly the quantity inside the exponential is real positive, so that
the sum involves positive probabilities, rather than complex numbers.
The integrals in eq.(146) are rather simple and the result is the Green’s
function of the diffusion equation

∂

∂t
ρ(0, 0 | x, t) = D

∂2

∂x2
ρ(0, 0 | x, t).

A technique similar to the one illustrated here for diffusion may be
applied to any process where the probability of going from an initial
state to a final one is the sum of the probabilities of the different
paths.

4.5.4. Difficulties for a physical interpretation of Feyn-
man paths. It is sometimes stated that Feynman’s path integral
formalism provides an intuitive picture of the quantum mechanical
evolution, but this is not true. In fact, unlike Huygens’ formalism for
diffusion via path integrals, Feynman’s formalism is counterintuitive
for two reasons. Firstly because in an intuitive picture the probability
of travel of a particle between two points should be a sum of proba-
bilities rather than amplitudes involving complex numbers. Secondly
because Feynman ‘paths’ are just sets of disconnected points, rather
than (continuous) paths in the usual sense of the word. In the follow-
ing I comment on the last shortcoming that might be less obvious.

The alleged path represented by the successive positions {x0, x1,
x2, . . . , xn, x} is actually a set of points, each one separated from the
previous one by a long distance. Indeed, the position xj−1 may have

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.6. MOTION OF PARTICLES IN TERMS OF PATH PROBABILITIES 155

values in the interval of integration (−∞,∞), all values having the
same weight according to the Riemann measure of the integral (see
eq.(135)). Similarly the position xj may have values in the interval
(−∞,∞) all values having the same weight. Thus the step uj = xj −
xj−1 between two positions may be arbitrarily large. Indeed, its mean
square value,

〈
u2
j

〉
, diverges. The counterintuitive character of this is

enhanced by the fact that the (indefinitely long) step uj takes place
in an infinitesimal time interval ε. Thus Feynman’s eq.(135) should
be seen as a purely mathematical construction, a useful calculational
tool where the physical meaning appears only in the final result of the
calculation.

In sharp contrast, Huygens’ path integrals, eqs.(142), are contin-
uous. In fact, the quantities |rj+1 − rj | are never too large due to the
denominator in eq.(143) and, above all, they decrease to zero when
the time interval, tj+1 − tj , goes to zero. Thus the sum or integral
involved is over continuous paths. A similar thing happens in the
diffusion problem defined via eq.(146) where the probability that the
mean velocity in a step, (xk+1 − xk)/(tm+1 − tm), surpasses a value
K goes exponentially to zero when K → ∞.

From a physical rather than formal point of view, Feynman’s path
integral is more similar to Huygen’s principle of classical optics than
to the diffusion problem. Indeed, the use of an amplitude suggests
a wave picture, although the fact that the squared modulus of the
amplitude is a probability, rather than an intensity, gives a particle
appearance. However, the particle picture is misleading. In fact, in
spite of the frequent use of the expression ‘probability amplitude’ in
quantum theory, it is not possible to give a real meaning to these two
words in order to get a realistic interpretation of quantum mechan-
ics. In field theory the counterintuitive character of Feynman’s path
integrals is less obvious if we assume that an amplitude squared repre-
sents field intensity, i.e. energy flux per unit time. Then the apparent
particle behaviour at detection might be interpreted assuming that
the detection probability is proportional to the intensity arriving at
the detector during some activation time interval. See chapter 6 for
an extended discussion for the case of quantum radiation field.

4.6. Motion of particles in terms of path probabilities

In the following I propose an elaboration of Feynman’s formalism
that leads to a transition probability P (a → b) as a sum of path’s
weights. The idea is to substitute a single path of the new formalism
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for an equivalence class of pairs of Feynman paths, in such a way
that the sum (or integral) of the probabilities of the former paths
gives directly the transition probability, rather than the transition
amplitude as in the original Feynman’s proposal.

This formalism may allow getting predictions for the results of
some experiments in agreement with Feynman and Schrödinger for-
malisms. However, the advantage of the new formalism is not cal-
culational, its virtue is that it offers a realistic interpretation as a
stochastic picture of the quantum motion. Also it might allow pre-
dictions going beyond standard quantum mechanics, that might be
tested empirically. Some of them will be mentioned in section 4.6.2
below.

4.6.1. Transition probability in terms of particle paths.
General formulation. In the Feynman path integral formulation

the transition probability is the squared modulus of the transition
amplitude. That is, from eq.(137) we have

P (ra, ta → rb, tb) = |A(ra, ta → rb, tb)|2

=

∫
D(path pairs) exp

[
i

∫ tb

ta

dt

(
1

2
ẏ2 − V (y)

)]
(148)

× exp

[
−i

∫ tb

ta

dt

(
1

2
ẋ2 − V (x)

)]
,

where x0 = y0 = ra, xn = yn = rb, and
∫ D represents a functional

integral. Taking eq.(136) into account the symbolic eq.(148) may be
written explicitly as

P = lim
ε→0

( m

2π�ε

)3n ∫
dxn−1

∫
dyn−1· · ·

∫
dx1

∫
dy1

n∏
j=1

expLj

(149)

Lj ≡ im

2ε�

[
(yj − yj−1)

2 − (xj − xj−1)
2
]
− iε

�
[V (xj)− V (yj)] ,

where
∫
dxj ,

∫
dyj are (triple) integrals over the whole space and I

have included the parameters m and � following Feynman [27]. With
this choice the quantity P (a → b) has dimensions of probability per
square volume and it should be interpreted as a relative probability. I
shall point out that we use the words ‘transition probability’ in a wide
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sense, but in a restricted sense they are used only when (Chapman-
Kolmogorov) equations of the form of eq.(146) hold, which is not the
case here. See section 4.5.3 above.

Our aim is to obtain, from eqs.(149), a formulation for the mo-
tion of a particle in terms of probabilities (rather than amplitudes!)
of paths; that is, to get the transition probability as a sum of proba-
bilities of paths, that we may write as

(150) P (ra, ta → rb, tb) =
∑
k

Wk(ra, ta → rb, tb),

where every value of the index k corresponds to a possible path of
the particle with end points (ra, ta) and (rb, tb). Our problem is to
find positive ‘weights’ Wk in order to be able to interpret them as
probabilities, which would provide an intuitive picture of the quantum
evolution as a random motion of particles.

In this section I will study a simple method to get ‘weights’ Wk

such that eq.(150) is fulfilled, ignoring for the moment the positivity
requirement Wk ≥ 0. I start from eq.(149) and make a change of
variables, that is,

(151) rj =
1

2
(xj + yj) , uj= (xj−yj)/�, 0 ≤ j ≤ n− 1.

Hence eq.(149) becomes, reordering the terms,

P (ra, ta → rb, tb) = lim
ε→0

( m

2π�ε

)3 ∫
drn−1· · ·

∫
dr1

n−1∏
j=1

Qj ,

Qj =
( m

2π�ε

)3 ∫
duj exp

[
− im

ε
uj · (rj−1−2rj+rj+1)

]
× exp

{
iε

�

[
V (rj − �

2
uj)− V (rj +

�

2
uj)

]}
,(152)

where r0 = ra, rn = rb and u0 = un = 0.
A sufficient, although not necessary, condition for the positivity

of Wk is that all quantities Qj are positive, a question that is studied
below.

Classical limit, free particle and quadratic potentials. Before pro-
ceeding with the general treatment we exhibit a few simple examples.
For the quantum free particle the potential is a constant, whence
eq.(152) with V = 0 may be easily integrated via a method similar
to eq.(139) . However, we shall use a different more convenient proce-
dure here, although lacking mathematical rigour, that involves Dirac
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deltas. After performing the uj integrals we get

P (a → b) =(153)

lim
ε→0

( m

2π�ε

)3∫
drn−1 . . .

∫
dr1

n−1∏
j=1

δ3
(
rj−1−2rj+rj+1

ε2

)
.

The rj integrals are now easy and we obtain

P (a → b) = lim
ε→0

( m

2π�ε

)3
n−3 =

[
m

2π� (tb − ta)

]3
.

The final result says nothing interesting although it shows the need
of the global factor ε−3 in eq.(152), in order to get a finite result
when ε → 0. Actually, the interesting information of the formalism
appears before integrating the coordinates {rj}, namely to provide
the probabilities of different paths. Indeed, eq.(153) predicts that the
particle travels with certainty in straight line with constant velocity.

When the potential is quadratic we also get a single path with
probability one, namely the classical path. In fact, let us assume the
potential

(154) V = A · r+Br2,

where A and B are constant, vector and scalar respectively. Then the
last exponential in eq.(152) becomes

exp

{
iε

�

[
V (rj − �

2
uj)− V (rj +

�

2
uj)

]}
=exp {−iε (A · uj+2Brj ·uj)} ,

whence performing the uj integrals gives the classical equation of
motion. This might provide an explanation as to why the quantum
harmonic oscillator has a behaviour sometimes resembling the classical
motion (e.g. in the coherent states). See also chapter 5 sections 5.2
and 5.3.

The classical limit � → 0 in eq.(152) gives, after performing the
uj integrals,

(155) W ∝
n−1∏
j=1

δ3
(
rj−1−2rj+rj+1

ε2
+

1

m
� · V (rj)

)
,

where the argument of the three-dimensional Dirac’s delta leads again
to Newton’s law in the limit ε → 0. There is a single path corre-
sponding to the classical motion, all other possible paths having zero
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probability. This is a form of showing the passage from quantum to
classical mechanics in the limit � → 0.

Path weights in terms of the Fourier transform of the potential.
From now on I shall use units such that m = � = 1 for simplicity of
writing, but these parameters will be restored sometimes for clarity.
For later developments it is convenient to introduce velocity variables

vj =
rj+1 − rj

ε
,(156)

sj =vj − vj−1 = (rj+1 − 2rj + rj−1)/ε, j = 1, . . . , n− 1.

The quantity sj has the physical meaning of the velocity change, so
that sj/ε might be interpreted as the mean acceleration in the time
interval ε. However, the limit of that quantity for ε → 0 does not
exist in general, that is, the instantaneous acceleration may not be
well defined. Indeed, the ratio sj/ε may diverge in that limit. It may
be realized that in the definition of a path there are n+1 coordinates
{rj}, n velocities {vj} and n − 1 velocity changes {sj} In order to
define a path it is necessary to choose n − 1 of either, in addition
to the fixed end points. The initial and final velocities of the path
correspond to va = v0,vb = vn−1 with the definitions of eqs.(156).

With these new variables we may write the Qj of eq.(152) (with
m = � = 1) in the form

Qj (rj , sj) ≡ 1

8π3

∫
duj exp (−iuj ·sj)

× exp

{
iε

[
V (rj − 1

2
uj)− V (rj +

1

2
uj)

]}
.(157)

The advantage of eq.(157) in comparison with eq.(152) is that it will
allow studying the positivity of the quantities Qk

j as functions of two
variables, rj and sj , ignoring the fact that actually the variables rj
and sj are not independent but related by eqs.(156) .

A more convenient description of the path weights is possible,
leading however to the same total transition probability. In fact, I
will show that a form equivalent to eq.(152), modulo terms of order
O (ε), is obtained substituting the following for eq.(157)

Qj (rj , sj) =
1

8π3

∫
duj exp [−iuj · sj ]{

1 + iε

[
V (rj − 1

2
uj)− V (rj +

1

2
uj)

]}
.(158)
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The equivalence is proved as follows, labelling for short

Bj ≡ V (rj − 1

2
uj)− V (rj +

1

2
uj).

Expanding in powers of ε the last exponential in eq.(157) we have

I ≡
n−1∏
j=1

exp {iεBj} =

n−1∏
j=1

{
1

k!

∞∑
k=0

(iεBj)
k

}

=

(
1 + iεB1 +

(iε)2

2
B2

1 +
(iε)3

6
B3

1 + . . .

)
×
(
1 + iεB2 +

(iε)2

2
B2

2 + . . .

)
× . . .(159)

Grouping terms by increasing powers of ε we get

I = 1 + iε

n−1∑
j=1

Bj − ε2

⎛⎝n−1∑
j=1

j−1∑
l=1

BjBl +
1

2

n−1∑
j=1

B2
j

⎞⎠
− iε3

⎛⎝n−1∑
j=1

j−1∑
l=1

l−1∑
i=1

BjBlBi +
1

2

n−1∑
j=1

j−1∑
l=1

(BjB
2
l +B2

jBl) +
1

6

n−1∑
j=1

B3
j

⎞⎠
+ . . . ,

where l �= j, i �= j, i �= l. It may be realized that, asides from unity,
there are two different kinds of terms: Terms where every Bj appears
to zeroth or first power, and terms containing some Bj to a power
greater than one. The relevant result is that only terms of the former
class may contribute in the limit ε → 0, provided that all terms Bj

are finite (or zero). For instance, the sum
∑

j Bj consists of n − 1

terms whence the quantity ε
∑

j Bj may have a finite (or zero) limit
when ε → 0 because we assume nε = tb − ta, finite. Similarly there
are (n − 1)(n − 2)/2 terms in the double sum

∑
l

∑
j>l BlBj so that

its product times ε2 may have also a finite limit. However, in a sum

like
∑

j (iε)
k
Bk

j with k > 1 there are (n− 1) terms times (iε)
k
, a

product that goes to zero in the limit ε → 0. The argument may be
extended to all terms, which proves the equivalence between eqs.(158)
and (157) .

The uj integral involved in Qj (rj , sj), eq.(157), is not convergent.
Indeed, the integrand oscillates rapidly when uj → ∞ so that the up-
per limit of the integral is not well defined. The difficulty may be
solved including a regularization factor, depending on a parameter γ,
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that goes to unity in the limit γ → 0, as discussed in the following.
A convenient factor is exp(−γ |uj |), γ > 0 that resembles the regular-
ization introduced before eq.(139) in order to make the integrals that
appear in Feynman’s calculation of the transition amplitude conver-
gent. Thus we shall perform all the calculations with a finite γ > 0
and take the limit γ → 0 at the end. Therefore, we substitute the
following for eq.(152)

(160) P (ra, ta → rb, tb) = lim
ε→0

ε−3

8π3

∫
drn−1· · ·

∫
dr1

n−1∏
j=1

Rj (rj , sj) ,

whence, after performing the uj integral taking the factor exp(−γ |uj |)
into account, we get

Rj (rj , sj ; γ) ≡ Dj (rj , sj ; γ) + Fj (rj , sj ; γ) ,(161)

Dj =
π−2γ(

γ2 + |sj |2
)2 ,

(162)

Fj ≡ iε

8π3

∫
du exp (−iu · sj − γ |uj |)×

[
V (rj − 1

2
u)− V (rj +

1

2
u)

]
.

As a conclusion we shall substitute the following for eq.(160)

(163) P (a → b) = lim
γ→0

lim
ε→0

ε−3

8π3

∫
drn−1· · ·

∫
dr1

n−1∏
j=1

Rj ,

where Rj is given by eqs.(161) and (162) with sj = vj − vj−1. This
will be the starting point for the applications of our formalism.

Actually, the integrals involved in Fj are convergent for γ = 0
provided that the potential V (rj) goes to zero for rj → 0 at least

as rapidly as |rj |−3
, which follows from the constraint eq.(166), see

below. Therefore, in practice we may substitute the following for Fj

in eq.(162)

(164) Fj ≡ F (rj , sj ; 0) =
2

π3
Im
[
Ṽ (2sj) exp (−2imrj ·sj/�)

]
,

where rjand sj are related via eqs.(156) and Ṽ (2s) is the Fourier
transform of the potential, here defined by

(165) Ṽ (2s) ≡
∫

V (x) exp (2mix · s/�) dx.
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162 4. ALTERNATIVE FORMULATIONS

Positivity of the path weights. The transition probability P (a →
b), eq.(163), is equivalent to the squared modulus of the Feynman
amplitude eq.(137) for γ → 0. However, the functions Rj are not
positive definite in general. Therefore, it is not obvious that the weight
of a path is positive, which would be necessary in order to allow an
interpretation of the weight as the relative probability of the path
consisting of the positions {rj} (or the velocities {vj} related to the
positions via eqs.(156)). The difficulty is solved for physically realistic
potentials that I define as follows:

1. The space integral of the absolute value of the potential |V (r)|
is bounded, i.e. there is a positive constant K such that

(166)

∫
|V (r)| dr ≤ K.

2. The gradient of the potential �V is also bounded, that is,

(167) |�V (r)| ≤ L.

Then positivity is guaranteed by the following result.

Theorem 10. For every fixed value of γ > 0 there is a parameter
ε0 > 0 such that the quantity

(168) Rj (rj , sj ; γ) ≡ π−2γ

γ2 + |sj |2
+ F (rj , sj ; γ) ,

with F given by eq.(162) is not negative whenever ε < ε0.

Proof. Eq.(166) implies a bound on the function F (rj , sj ; γ),
eq.(162), namely

|F (rj , sj ; γ)| =
ε

4π3

∣∣∣∣∫ du sin (u · sj) exp (−γ |u|)V (rj − 1

2
u)

∣∣∣∣
≤ ε

4π3

∫
du |sin (u · sj)| exp (−γ |u|)

∣∣∣∣V (rj − 1

2
u)

∣∣∣∣
≤ ε

4π3

∫
du

∣∣∣∣V (rj − 1

2
u)

∣∣∣∣ = ε

π3

∫
dz |V (z)| ≤ ε

π3
K,

where the equality takes into account that V (rj − 1
2u)−V (rj +

1
2u) is

an odd function of u so that only the odd part of exp (−iu · sj − γ |u|)
contributes. The first inequality takes into account that the integral
of a function consisting of a product of terms is not greater than
the integral of the product of the moduli of these terms. The last
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4.6. MOTION OF PARTICLES IN TERMS OF PATH PROBABILITIES 163

inequality follows after removing from the integral a term not greater
than unity. Now the quantity Rj , eq.(168), is positive if

(169)
π−2γ(

γ2 + |sj |2
)2 ≥ ε

π3
K ≥ |F (rj , sj ; γ)| ,

which is fulfilled whenever

(170) ε ≤ ε0 =
πγ

K
(
γ2 + |sj |2

)2 .
The proof of positivity for Rj (rj , sj ; γ) requires that sj remains finite
in the limit ε → 0 so that the left side of eq.(169) remains finite (not
zero). However, if sj diverges in that limit the first inequality eq.(169)
may not hold true. In this case we shall use the equality

V (rj − 1

2
u)− V (rj +

1

2
u) = u·�V (rj) +O

(
|u|2
)

whence eq.(162) may be written as follows

F (rj , sj ; γ) ≡

≡ −i
ε

8π3

∫
du exp (−iu · sj − γ |uj |)

[
u·�V (rj) +O

(
|u|2
)]

=
3επ−2 |sj |4(
γ2 + |sj |2

)4n·�V (rj) +O
(
|sj |−5

)
,

where n is a unit vector in the direction of sj . Therefore, taking
eq.(167) into account, we have

π−2γ(
γ2 + |sj |2

)2 � π−2γ |sj |−4 ≥ |F (rj , sj ; γ)|

� 3επ−2 |sj |−4 |n·�V (rj)|+O
(
|sj |−5

)
for small ε and large |sj | so that again Rj ≥ 0. This completes the
proof.

Actually, the velocity change |sj | cannot be larger than twice the
velocity of light, c, but it would be inconsistent to include this rela-
tivistic condition in our nonrelativistic treatment. Therefore, in the
proof of the theorem we have taken that possibility into account study-
ing the case where sj diverges for ε → 0. Nevertheless, the probability
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of paths where |sj | > 2c should be small in order for the nonrelativis-
tic approximation to be reliable. I assume that this is the case for
realistic examples, but the issue will not be investigated further here.

This result implies that in the limit ε → 0 we may write, instead
of eq.(163) ,

Pγ (a → b) =
∑
k

W γ
k (ra, ta → rb, tb),(171)

Wk ∝ lim
γ→0

n−1∏
j=1

Rj (rj , sj ; γ) ,

where k → {r0, t0; . . . rj , tj ; . . . rn, tn} . As W γ
k ≥ 0 for any γ > 0 such

that ε ≤ ε0 (γ), we may take the limit γ → 0 provided that this is
made after the limit ε → 0, whence all weights Wk are positive or
zero.

I point out that the bounds eqs.(166) and (167) are not fulfilled
for strong ‘classical forces’ (i.e. large gradients of the potential) or
if V (r) does not go to zero rapidly enough for |r| → ∞. This is
the case for instance, for quadratic potentials like eq.(154), which
nevertheless gives nonnegative weight for all paths. This does not
contradict Theorem 10 which provides sufficient, but not necessary,
conditions of positivity. In any case, the bounds eqs.(166) and (167)
may be considered plausible physical requirements for a nonrelativistic
treatment.

4.6.2. A picture of quantum motion. The aim of the for-
malism here developed is to provide a realistic description of (nonrel-
ativistic) quantum motion, which is represented by the possible paths
with some probability every one, given by eqs.(163) and (161) . Sys-
tems where the spin or the associated statistical effects are relevant
will be excluded, for instance the motion of electrons in an atom. Also
the validity is restricted to a domain of quantum mechanics, namely
when the forces are conservative (i.e. the Hamiltonian is the sum of
the kinetic energy plus a potential energy V (x)) and the potential is
bounded. The description might be extended to systems of many par-
ticles, but in the following I will restrict attention to a single particle.
This formalism suggests a picture of nonrelativistic quantum particles
without any explicit reference to waves.

In classical mechanics if the initial position ra of the particle at
time ta and the final position rb at time tb are given, then Newton
equation allows the determination of the path r(t) for the intermediate
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4.6. MOTION OF PARTICLES IN TERMS OF PATH PROBABILITIES 165

times. In the formalism here studied the particle may follow many
different paths and the aim is to determine the relative probability
of each path. As we have shown above the probability of every path
is positive or zero. Thus we may ascribe to the motion a probability
measure in the space of all paths, but in practical calculations we
may consider paths defined by a finite set of spacetime points each
and calculate the relative probability of the different paths so defined.

The formalism may provide information not given by the standard
quantum formalism, for instance the probability that the particle’s
position is in some space region at a given intermediate time tc. To
get this information it is enough to perform the integral of the position
rc, eq.(163), over the desired region rather than in the whole space.
In particular, this might provide knowledge about the probabilities of
passage of a particle for each slit in an interference experiment.

In the following I will study another relevant information that may
be obtained from the formalism, namely the probability P (ra,va;vb)
that the final velocity is vb, at time tb, for a particle that started
in position, ra, with velocity va at time ta. This may be obtained
from eq.(163) as follows. Firstly we avoid performing the integrals
with respect to r1 and rn−1 but fix these positions at the values r1 =
ra + εva and rn−1 = rb − εvb, respectively. Then we change variables
taking eqs.(156) into account so that an integral with respect to vj−1

is substituted for the integral with respect to rj for j = 2, 3, . . . , n −
2. Finally we substitute a parameter C for (2πε)

−3
in front of the

integrals. This parameter should be obtained from the condition that
P (ra,va;vb) becomes a normalized probability distribution of the
variable vb. Thus we get

(172) P (ra,va;vb) = C

∫
dvn−3

∫
dvn−4· · ·

∫
dv1

n−1∏
j=1

Rj {rj , sj} ,

with Rj given by eqs.(160) to (165) . This may be the starting point for
some applications, for instance the derivation of Born’s approximation
for scattering, reported in the following.

Born approximation for scattering. The Born approximation for
scattering is one of the most useful applications of nonrelativistic
quantum mechanics. In the following I will rederive Born’s formula
from the formalism proposed. The purpose is not to make a new
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derivation but to illustrate our approach providing an intuitive pic-
ture of the phenomenon, which is not offered by the standard quantum
formalism.

We may consider a scattering experiment with the following de-
scription. There are three regions namely the source, the target and
the detector, separated by macroscopic distances from each other. A
particle from the source may move freely (see eq.(155)) to the target
region where the potential, V (r), is different from zero. In that re-
gion the velocity will change and then the particle will travel until the
detector again with constant velocity. We fix the origin of the coor-
dinate system at a point on the target and assume that the particle
leaves the source from the position (0, 0,−z0), with a velocity va in
the direction of the Z axis, that is, va(0, 0, va). A more convenient
model for the calculation is to consider a probability distribution of
the particle with the said initial velocity va, but distributed in space
according to a number density ρ (ra) that we will assume uniform
within a narrow slab along the plane XY , that is,

(173) ρ = ρ (za)

independent of the initial coordinates xa, ya within the slab, zero out-
side. In practice, the probability distribution of the particle position
might be seen as an appropriate ensemble of particles.

Once in the target region the particle suffers accelerations by the
action of the potential, leaving the region and eventually arriving at
the detector with velocity vb at time tb. A particle may follow dif-
ferent paths, and we are interested in the probability density, P (vb),
eq.(172), for the final velocity.

The quantity to be derived is the differential cross section, σ (θ, φ),
defined by

(174) σ (θ, φ) =
R (θ, φ)

Φin
=

R (θ, φ)

ρva
,

where Φin is the incoming probability flux, Φin = ρva in our model.
R (θ, φ) is the probability per unit time that a particle leaves the target
with a velocity vector pointing in a given solid angle. It may be got
from P (vb) as follows

(175) R (θ, φ) =

∫ ∞

0

v2bdvb

∫ ∞

−∞
dxa

∫ ∞

−∞
dyaρvaP (ra,va;vb) .

The integral of the flux times P (ra,va;vb) gives the total probability
per unit time that one of the particles in the ensemble leaves the target
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region with velocity vb. The integral in dvb takes into account that
only the direction, but not the modulus, of the final velocity matters
in our calculation.

I will perform the calculation using particle paths consisting of a
discrete set of spacetime points each, going to the continuous at some
stage. The main physical assumption in Born approximation is that
the potential V is weak in comparison with the kinetic energy of the
particles. (The validity of Born approximation in the QM calcula-
tion is discussed in most textbooks). Therefore, we will approximate
P (ra,va;vb) eq.(172), taking eqs.(163) and (161) into account, as
follows

P ∝
n−1∏
j=1

Rj =

n−1∏
j=1

Dj +

n−1∑
k=1

⎛⎝k−1∏
j=1

Dj × Fk ×
n−1∏

l=k+1

Dl

⎞⎠
(176)

+
n−1∑
k=1

n−1∑
s=k+1

⎛⎝k−1∏
j=1

Dj × Fk ×
s−1∏

l=k+1

Dl × Fs ×
n−1∏

i=s+1

Di

⎞⎠+O
(
F 3
)
,

where O
(
F 3
)
means products involving more than 2 terms of type F .

In the limit γ → 0 (see eqs.(162) to (165)) the quantities D become
Dirac deltas, meaning that the particle motion is uniform. Then the
potential acts every time that a term F appears, where the veloc-
ity changes, F giving the probabilities of the possible changes. Thus
eq.(176) provides the following picture: In the zeroth order approxi-
mation the particle travels with constant velocity all the time. First
order gives the probability of paths where the particle travels with
velocity va until the discrete time k, it changes there its velocity to
vb and travels with that velocity until the final time n. The second
order consists of paths where the particle travels with velocity va until
time k, then changes to velocity v until time ts and from that time on
with velocity vb, to the end. I point out that this ‘picture’ is just in-
troduced in order to visualize the mathematical approximations, but
we should refrain from taking it as a physical interpretation. Only the
total probability P (ra,va;vb) could be interpreted as physical, but
not each term of eq.(176).

The (relative) probability associated to the first order path P0 (vb)
is

(177) P0 (vb) = δ(vb − va),
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where δ ( ) is the three-dimensional Dirac delta. In order to get the
normalized probability distribution eq.(177) we have chosen C = 1
in eq.(172). Actually, the parameter C should be chosen in order
that the total probability P =

∑
Pl is normalized, but the choice

C = 1 is a fairly good approximation, as will be discussed below.
Eq.(177) shows that the path of zeroth order does not contribute to
scattering towards a direction different from the initial one, which is
our interest here. (In the standard quantum treatment people speak
about a cross section in the forward direction, but this should require
some elaboration that will not be made here).

The relative probability distribution of the final velocity vb due
to the first order paths is, taking eq.(172) into account,

P1 (va → vb) = 2π−3
n−1∑
k=1

Im
{
Ṽ (2vb − 2va) exp [−2irk· (vb − va)]

}
,

again with C = 1. The integer number k is defined so that εk is the
time travel from the source to some point in the target. The motion
until time εk is uniform with velocity va, whence the position vector
rk is

rk = ra + vaεk ≡ ra + vat

The sum in k may be calculated in the continuous time limit that
corresponds to ε → 0. Thus we shall write ε → dt, and substitute an
integral in t for the sum in k. We get

P1 (va → vb)

= 2π−3

∫ tb

ta

dtIm
{
Ṽ (2vb − 2va) exp [−2i(ra + vat)· (vb − va)]

}
.

The travel times from both the source to the target and the target
to the detector are macroscopic, and may be taken as infinite in com-
parison with typical atomic times. Therefore, we may substitute −∞
for ta and similarly +∞ for tb. Hence there is a contribution only
when va· (vb − va) = 0. Now the integral in xa, ya, see eqs.(175) and
(173), gives the result that vb − va has a finite component only in
the Z-direction, whence vb = va. Thus paths of first order do not
contribute to scattering either.
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The term of order F 2 in eq.(176) may be written taking eq.(164)
into account,

P2 =(178)

=
4

π6

n−1∑
k=1

n−1∑
j=k+1

Im
[
Ṽ (2sk) exp (−2irk·sk)

]
Im
[
Ṽ (2sj) exp (−2irj ·sj)

]

=
4

π6

n−1∑
k=1

n−1∑
j=k+1

Im
[
Ṽ (2v − 2va) exp (−2i (ra + vat

′) · (v − va))
]

×Im
[
Ṽ (2vb − 2v) exp (−2i (ra + vt+ vat

′) · (vb − v))
]
.

where the velocity has changed firstly from va to v and then from v
to vb, whence we have made the substitutions

(179) rj = rk + vt, rk = ra+vat
′, sk = v − va, sj = vb−v.

The product of two ‘imaginary parts’ may be transformed taking into
account the following equality (with aj complex and bj real)

Im [a1 exp (ib1))] Im [a2 exp (ib2))](180)

=
1

2
Re {a1a∗2 exp [i (b1 − b2)]} − 1

2
Re {a1a2 exp [i (b1 + b2)]} .

We get two terms for P2 that I will label P21 and P22 respectively.
The former may be written, in the continuous time limit,

P21 = 2π−6

∫ tb

ta

dt

∫ t

ta

dt′
∫

dvReI,(181)

I ≡ Ṽ ∗ (2vb − 2v) Ṽ (2v − 2va) exp {2i [(ra + vat
′)· (v − va)]}

× exp {−2i [(ra + vat
′+v(t− t′)) · (vb − v)]} .

Putting this in eq.(175) we get

R21 (θ, φ) = 2π−6va

×
∫ ∞

−∞
dx

∫ ∞

−∞
ρdy

∫
v2bdvb

∫ tb

ta

dt

∫ t

ta

dt′
∫

dvReI.(182)

The times ta and tb may be assumed to correspond to the particle
being near the source and near the detector, respectively; therefore
we may take ta → −∞, tb → ∞, whence the integrals with respect to
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dt′ and dt lead to

Re

∫ t

−∞
dt′ exp {2it′ [va· (v − va)− (va − v) · (vb − v)]}

=
π

2
δ [(v − va) · (va + vb − v)]

=
π

2
δ [v· (vb − v) + va · (2v − va − vb)] ,∫ ∞

−∞
dt exp [2itv· (vb − v)] = πδ [v· (vb − v)] .

The product of the results gives, after some algebra,

(183)
π2

2
v−1
a δ [(2v − va − vb)z] 4δ

(
v2b − v2a

)
,

where we have taken into account that the vector va points in the
direction Z, and ()z means Z component. The last Dirac delta insures
energy conservation.

The integrals in dx and dy may be extended to infinity taking
into account that we assume the density ρ uniform in the XY-plane
over a region in that plane that is large in comparison with the size
of the target. Thus we get∫ ∞

−∞
dx

∫ ∞

−∞
dy exp {2ira· (2v − va − vb)}

= π2δ [(2v − va − vb)x] δ
[
(2v − va − vb)y

]
,

where the first delta of eq.(183) has been taken into account. In
summary, after integrating with respect to dv we have

R21 (θ, φ) =
1

2π2
ρ

∫
v2bdvbδ

(
v2b − v2a

) ∣∣∣Ṽ (vb − va)
∣∣∣2

=
1

4π2
ρva

∣∣∣Ṽ (vb − va)
∣∣∣2 ,(184)

whence, taking eqs.(174) and (165) into account, we get

σ (θ, φ) =
1

4π2

∣∣∣∣∫ dx exp [−ix· (vb − va)]

∣∣∣∣2 ,
which is Born’s formula. I stress that in our calculation the conserva-
tion of energy, that is, |vb| = |va| , appears explicitly in eq.(183) .

The calculation of the term P22(vb) is similar to the one of P21(vb)
eq.(181). I skip the details, but the main difference is that δ3 (vb − va)
is substituted for δ3 (2v − va − vb). This implies that the velocity
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does not change in the scattering process and therefore the term does
not contribute to the desired cross section.

Two comments are in order. Firstly, we have chosen the param-
eter in front of eq.(172) to be C = 1 although this choice normalizes
the (partial) probability P0 rather than the sum P0 + P1 + P2 which
is our approximation for the full probability P , see eq.(176) . The jus-
tification for the choice is that with the assumption that F is small
in comparison with D, basic in the Born approximation, we have
P0 � P1 � P2 and normalizing just P0 is fair. Secondly, I comment
on an apparently paradoxical fact, namely the coordinates rj and rk in
eq.(179) should correspond to the target, where the potential V may
act on the particle, but in the calculation it seems that the velocity
change may happen everywhere between the source and the detector.
However, this is not the case. In fact, in eq.(178) we have, taking
eq.(165) into account,

Im
[
Ṽ (2sk) exp (−2irk·sk)

]
= Im

∫
V (x) exp (2ix · sk) dx exp (−2irk·sk) ,

meaning that a velocity change sk �= 0 is produced only if rk ≈ x
belongs to the region where V �= 0.

As a conclusion, the result of our calculation is the same as the
standard one of quantum mechanics, as expected. But in our cal-
culation we deal only with particles rather than waves as the QM
derivation of the Born formula suggests. The picture that emerges
from the calculation is as follows. Every single particle, that trav-
els from source to the detector crossing the target region, may have
many different paths. The weight of every path should be positive in
order to be interpreted as a probability, which is guaranteed by the
discussion in section 4.6.1. However, we should not pretend to have a
physical picture of the intermediate mathematical approximations in
the calculation.

‘Interference’ experiment. Born’s approximation, eq.(184) may
allow a simple calculation of the result of some interference experi-
ments. For instance, let us consider the potential

V (r) = C
{
exp
[
−λ (r+ a)

2
]
+ exp

[
−λ (r− a)

2
]}

, a ≡ (a, 0, 0) ,

(185)
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and a particle with initial velocity v0 = (0, 0, v0), moving in the Z
direction. Obtaining the cross section via Born’s approximation is a
simple exercize. We get

σ = C2 π

λ3
exp

[
−v2 + v2

0 − 2v0vz
2λ

]
cos2 (avx) ,

where v =(vx, vy, vz) is the final velocity. Hence the cross section
becomes, taking the conservation of energy eq.(183) into account,

(186) σ = C2 π

λ3
exp

[
−2v20 sin

2(θ/2)

λ

]
cos2 (av0 sin θ cosφ) .

Assuming that the particles are detected by the spots produced in a
screen parallel to the XY plane we would observe typical interference
fringes with a decreasing intensity in both directions X and Y with a
maximum at x = y = 0.

The point of this calculation is that no waves are involved, only
particles. Therefore, in our formalism the interference picture is an
effect of the nonlocal action of the potential. Of course, we might
assume that the action is mediated by some ‘hidden’ waves that do
interfere. In agreement with the general interpretation of quantum
mechanics supported in this book, I propose that those waves are
associated to the quantum vacuum fields modified by the presence of
either macroscopic devices or the particles and by additional fields
involved in the experiments.

4.6.3. Conclusions. I have shown that in nonrelativistic quan-
tum mechanics (without spin) it is possible to picture the transition
probability in terms of particle paths, every path having a (positive)
probability. A path may be defined by the positions

{ra ≡ r0, . . . rj , . . . , rb ≡ rn}
at times ta, . . . , tj ≡ ta + jε, . . . , tb or, what is equivalent, the end
positions plus the velocity changes {sj} at times tj . Eventually we
should consider the limit n → ∞ with nε = tb − ta. This provides a
stochastic picture where particles travel along continuous paths.

The quantity P , eq.(152), has been defined for the calculation
of the probabilities of the possible paths that start at the spacetime
point (ra, ta) and finish at (rb, tb) . However, our formalism may be
used for other relevant problems, for instance for the calculation of
the probability of the different paths starting at a given point with a
given velocity, (ra,va, ta) . Hence we might study a kind of ‘evolution
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in phase space’, something that quantum mechanics does not provide.
Whether some of the possible additional predictions may be tested
empirically will not be discussed here. In any case, no contradiction
with quantum mechanics is expected.

Is summary our stochastic approach gives an intuitive picture of
nonrelativistic quantum mechanics (without spin) in terms of proba-
bilities of the possible paths of particles. The particle’s motion is rep-
resented by a stochastic process such that there is a random change
of velocity at every time tj , with a probability depending on the po-
tential over a large region around the position of the particle (indeed
it derives from the Fourier transform of the potential, see eq.(165)).
The wave behaviour, e.g. in experiments of atom interference, may be
interpreted assuming that the motion of the particles is governed by a
law (different from Newton’s) where the ‘acceleration’ depends on the
potential on a large spatial region, in contrast with the local action of
classical dynamics. With this interpretation the interference experi-
ments with particles, e.g. atoms, may be explained without assuming
that those particles possess any wave nature or that they may cross
two distant slits at the same time. But I stress again that we remain
at the level of nonrelativistic quantum mechanics. I do not claim that
a similar interpretation may be extended to relativistic quantum field
theory, e.g. photons, electrons when spin plays a role, or even atoms
or molecules when (Bose or Fermi) statistics is relevant.
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5.1. Introduction

In this chapter it is shown that many phenomena that are assumed
purely quantum-mechanical may be interpreted with a classical the-
ory except for the assumption that there is a random background
radiation filling the whole space. The statistical properties of the ra-
diation are Lorentz invariant whence they can be characterized by a
single parameter that fixes the scale. Identifying the parameter with
the Planck constant gives rise to the theory called stochastic electro-
dynamics (SED in the following). Actually, the postulated random
radiation closely parallels the vacuum electromagnetic radiation of
quantum electrodynamics, assumed a real stochastic field. The rele-
vant fact is that SED offers an intuitive picture of microphysics that
provides hints for a realistic interpretation of many quantum phenom-
ena. The hints offered by SED are emphasized in italics throughout
this chapter.

5.1.1. Electrodynamics in the presence of a random ra-
diation field. As stated in chapter 1 the basic assumption in this
book is that the quantum vacuum fields are real stochastic fields. For
the sake of clarity let us consider the best known vacuum field, the
electromagnetic radiation. The spectrum, that here I define as the en-
ergy per unit volume and unit frequency interval, is given by eq.(187)
below. The interesting question is whether the reality of the vacuum
electromagnetic field, combined with classical physics, allows explain-
ing some phenomena believed as typically quantal, thus providing a
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5.1. INTRODUCTION 177

hint for the realistic interpretation of quantum theory. We restrict
our study to a domain defined by:

1) Only one of the interactions of nature, namely electromagnetic.
2) Nonrelativistic energies. Thus we shall study charged particles

in given electromagnetic fields and/or interacting with other charges.
3) The Planck constant � appears exclusively in the vacuum elec-

tromagnetic radiation. Consequently � does not appear in the evo-
lution equations, whence we shall use the dynamical laws of classical
electrodynamics throughout.

SED, also known as random electrodynamics, is the theory so
defined. It has been developed by a small number of people during
the last sixty years. A review of the work made until 1995 is the book
by L. de la Peña and A. M. Cetto [1] and new results are included in
more recent reviews [2], [3]. The application of similar ideas to optics
will be reviewed in chapter 6.

The origin of SED may be traced back to Walter Nernst, who
extended to the electromagnetic field the zero-point fluctuations of
oscillators assumed by Planck in his second radiation theory of 1912.
Nernst also suggested that the zero-point fluctuations might explain
some empirical facts, like the stability of atoms and the chemical bond.
The proposal was soon forgotten due to the success of Bohr’s model
in 1913 and the subsequent development of the (old) quantum theory.
Many years later the idea has been put forward again several times
(e.g. by Braffort et al. in 1954 [5] and by Marshall in 1963 [6]).

SED studies the motion of charged particles immersed in ZPF, but
the back actions of the charged particles on the ZPF are neglected
so that the random field of free space is used. Assuming that the
field is Lorentz invariant (at not too high frequencies) determines the
spectrum, that is, the energy per unit volume and unit frequency
interval [4], [1]. It is given by

(187) ρZPF (ω) =
1

2π2c3
�ω3,

which corresponds to an average energy 1
2�ω per normal mode. The

Planck constant � enters the theory via fixing the scale of the assumed
universal random radiation. Of course, the spectrum eq.(187) implies
a divergent energy density and any cutoff would break Lorentz in-
variance. However, we may assume that it is valid for low enough
frequencies, the behaviour at high frequencies requiring the inclusion
of other vacuum fields and general relativity theory. The spectrum
eq.(187) is appropriate for systems at zero Kelvin, but SED may also
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be studied at a finite temperature, where we should add to eq. (187)
the thermal Planck spectrum. In addition, SED may provide an in-
terpretation of phenomena where the free spectrum is modified by
boundary conditions derived from macroscopic bodies, but the aver-
age energy 1

2�ω per normal mode still holds true. An example is the
Casimir effect, see section 5.6 below.

The study of some simple systems provides an intuitive picture
of several phenomena considered as purely quantum, like the stability
of the classical (Rutherford) atom, Heisenberg uncertainty relations,
entanglement, specific heats of solids, behaviour of atoms in cavities,
etc. For this reason I propose that SED may be considered as a clue
in the search for a realistic interpretation of quantum theory.

5.1.2. Scope of stochastic electrodynamics. Not all predic-
tions that have been claimed to follow from SED derive from the
theory as defined above. In some cases additional assumptions are in-
troduced in order to agree with the quantum predictions. With these
extra assumptions most of nonrelativistic quantum mechanics might
be derived from SED [2]. However, the physical bases of the theory
and the physical picture of the quantum world become less clear.

In this chapter we will study SED, in the strict sense defined in
section 5.1.1. With that definition there are many examples where
SED predicts results in contradiction with quantum mechanics and
with experiments, as discussed in section 5.6 below. In particular,
SED deals only with charged particles whilst QM laws are valid for
both charged and neutral particles. It has been claimed that this
restriction may be avoided taking into account that neutral particles
may contain charged parts (e.g. neutrons possess a magnetic moment).
I think this is flawed, the application to those neutral particles might
be valid in order to explain the stationary equilibrium state, which
is effectively defined over an infinite time and it results independent
on the total charge, as seen for instance in eqs.(205) and (206) be-
low. However, this is not the case for time dependent properties like
eq.(238) where the value of the charge is relevant.

A different approach is to consider that SED is “the closest clas-
sical approximation to quantum theory” [3]. This suggests that there
are two different theories, namely classical and quantum, but it is
assumed that the validity of classical theory may be extended if we
include the hypothesis of a radiation field with a Lorentz invariant
spectrum in free space. I believe that this approach does not solve
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the problem of the ‘infamous boundary’ between macro (classical) and
micro (quantum) physics. Indeed, in the standard view the boundary
is defined by the relative value of the Planck constant as compared
with the typical values of the action variables in the system. That is,
classical theories are approximations of quantum theories when the
Planck constant may be neglected.

In my view SED is a semiclassical theory, that is, an approxima-
tion to quantum theory better than purely classical theories, in some
limited domain. The domain is constrained as follows:

(1) SED ignores metric fluctuations (the gravitational vacuum
field) that I believe are essential to understand quantum the-
ory, as discussed in chapter 1 section 1.3, and in chapter 7
section 7.2.3;

(2) it also ignores all fields in the Standard Model of fundamen-
tal particles, except the electromagnetic (EM) radiation;

(3) SED studies motion of (charged) particles under the action
of the vacuum EM field but it neglects the back action of
the charges on the field.

The last restriction gives rise to the fact that SED usually agrees with
quantum mechanics for linear systems but not for nonlinear ones, as
shown below in sections 5.2, 5.3, 5.4 and 5.7. In the latter, this point
will be discussed in more detail.

5.1.3. Plan of the chapter. In the following some results of
SED are reviewed and the analogies and differences with nonrelativis-
tic quantum mechanics (QM in the following) will be pointed out.
Most of the results have been reviewed in more detail elsewhere [1].
The novelty here is a more careful comparison of SED with QM and
the emphasis on those quantum phenomena that might be better un-
derstood via the analogy with the picture provided by SED.

In sections 5.2 and 5.3 the harmonic oscillator is revisited, with
an application to oscillators in several dimensions in section 5.4. In
sections 5.5 and 5.6 SED is applied to other linear systems, namely
the free particle and the particle in a homogeneous magnetic field.
Section 5.7 is devoted to the application of SED to some nonlinear
systems, showing that a disagreement with QM and with the experi-
ments usually appears in this case. Section 5.8 presents conclusions.
This chapter includes many calculations and, in order for the reader
not to lose the essential points, I will write in italics the relevant
aspects for the comparison between SED and QM.
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5.2. The oscillator: SED equilibrium with radiation vs. QM
ground state

5.2.1. The stability of matter in classical physics, SED
and QM. It is well known that a system of electric charges cannot
reach a state of equilibrium in classical electrodynamics. This is the
case in particular for the ‘miniature solar system’ (Rutherford) model
of the atom, as discussed in chapter 1. In contrast, both QM and
SED predict states of equilibrium, but those states look quite dif-
ferent in both theories. In QM the ground state, the lowest energy
solution of the time-independent Schrödinger equation, seems static,
nothing changing with time. However, in SED the equilibrium state
is dynamical: the charged particles are continuously emitting radi-
ation but also absorbing it from the background random radiation
(ZPF) and the stationary state is reached when emission and absorp-
tion are balanced on the average. I propose that the SED prediction
is the correct realistic interpretation of the phenomenon, whilst the
QM formalism hides that interpretation. This is the first lesson in
our attempt at a realistic interpretation of quantum mechanics: we
should not try to interpret the quantum formalism, but only the QM
predictions for actual or possible observations or experiments.

5.2.2. Equation of motion of the harmonic oscillator in
SED. The harmonic oscillator in one dimension is the most simple
system to be treated within SED (the free particle requires a more
careful study in order to avoid divergences). It is not strange that
it was the first system studied. In this and the following sections we
revisit a well known treatment of the oscillator in SED [7], [1], but
the study of the aspects that may provide a clue for the interpretation
of quantum mechanics is original.

I shall write the differential equation for the one-dimensional mo-
tion of the particle. Radiation acts on the particle via the Lorentz
force, that is

(188) Fx = e

[
E+

ṙ

c
×B

]
x

,

E andB being the electric and magnetic fields of the ZPF. The passage
to more dimensions is straightforward. Here we will neglect magnetic
effects of the ZPF and the dependence of the field on the position
coordinate, which corresponds to the electric dipole approximation,
plausible in a nonrelativistic treatment. Thus the differential equation
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of motion of the particle in a harmonic oscillator potential is

(189) mẍ = −mω2
0x+mτ

...
x + eE (t) ,

where m(e) is the particle mass (charge) and E (t) is the x component
of the electric field of the radiation (the zero-point field, ZPF). The
equation of the mechanical (classical) oscillator is modified by the
two last terms. The second term on the right side of eq.(189), is the
damping force due to emission of radiation. It should appear also
in the classical electrodynamical treatment. Only the third term is
specific to SED because it involves the Planck constant (it is of order
O
(
�
1/2
)
). The parameter τ is given by

(190) τ =
2e2

3mc3
⇒ τω0 =

2

3

e2

�c

�ω0

mc2
� 1.,

so that the dimensionless quantity τω0 is very small, it being the prod-
uct of two small numbers: the fine structure constant, α ≡ e2/�c ∼
1/137, and the nonrelativistic ratio �ω0/mc2 � v2/c2 � 1. Thus the
two last terms of eq.(189) may be considered small, which allows some
useful approximations.

Eq.(189) is a stochastic differential equation of Langevin’s type
with coloured (non-white) noise. It has been named Braffort-Marshall
equation by the early workers on SED [5], [6]. Solving an equation of
this kind usually means finding the evolution of the probability distri-
bution of the relevant quantities as a function of time, starting from
given initial conditions. When time goes to infinity the probability
distributions become independent of the initial conditions, giving rise
to the stationary or equilibrium distribution.

5.2.3. Average values of the potential and kinetic ener-
gies. Several solutions of eq.(189) have been published [7], [1]. The
most simple one is the stationary solution, which may be found by
Fourier transform of eq.(189) as follows. Firstly, we define the Fourier
transform of the stationary process E(t) in a finite time interval by

(191) Ẽ (ω, T ) ≡ 1√
4πT

∫ T

−T

E(t) exp (−iωt) dt.

Hence it may be shown that
∣∣∣Ẽ (ω, T )

∣∣∣2 /8π is the mean energy density

per unit frequency interval associated to one electric field component
in the time interval (−T, T ). Thus the total energy density per unit
frequency interval, ρ (ω) eq.(187), should be 6 times that quantity
(6 because in the ZPF there are 3 components of the electric field
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and another 3 of the magnetic field, all contributing equally on the
average). Consequently we define the spectral density, SE (ω), of the
field E(t) as follows

(192) SE (ω) ≡ lim
T→∞

∣∣∣Ẽ (ω, T )
∣∣∣2 =

4π

3
ρ (ω) =

2

3πc3
�ω3,

the equality giving the relation between the spectral density and the
energy density of the ZPF, eq.(187) . For short, the spectral density
will be called spectrum in the following.

A Fourier transform of all terms of eq.(189) similar to eq.(191)
provides a relation between the spectrum of the field component and
the spectrum of the coordinate, x(t); namely

(193) m(ω2
0 − ω2 + iτω3)x̃ (ω) = eẼ (ω) ,

where x̃ (ω) and Ẽ (ω) are the Fourier transforms of x(t) and E(t)
respectively. Hence the spectrum of x (t) is easily got in terms of the
spectrum of E (t) that is

(194) Sx (ω) =
3c3τ

2m
[
(ω2

0 − ω2)
2
+ τ2ω6

]SE (ω) ,

whence we obtain, taking eq.(192) into account,

(195) Sx (ω) =
�τω3

πm
[
(ω2

0 − ω2)
2
+ τ2ω6

] .
From the spectrum it is easy to get the quadratic mean of the

relevant variables, namely

(196)
〈
x2
〉
=

∫ ∞

0

Sx (ω) dω,
〈
v2
〉
=

∫ ∞

0

ω2Sx (ω) dω,

where 〈〉means time average, and the quantities in eq.(196) are the co-
ordinate of the oscillator and its velocity, respectively. The spectrum
of the velocity is ω2 times the spectrum of the coordinate because the
time derivative leads to multiplication of the Fourier transform times
iω. In our treatment of stationary states in SED an ergodic hypoth-
esis is made; ensemble averages are assumed equal to time averages
for the stationary stochastic processes involved.

Calculating the integral of Sx (ω) is lengthy but it is easy in the
limit τ → 0 where the integrand becomes a Dirac’s delta. In fact, if τ
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is small then the main contribution to the integral comes from values
of ω close to ω0. In the limit τ → 0 the integral becomes trivial:〈

x2
〉
=

∫ ∞

0

Sx (ω) dω

� lim
τ→0

∫ ∞

0

�τω3
0

πm
[
4ω2

0 (ω0 − ω)
2
+ τ2ω6

0

]dω
=

�

2mω0

∫ ∞

−∞
δ (ω − ω0) dω =

�

2mω0
,(197)

whence the mean potential energy is

〈V 〉 = 1

2
mω2

0

〈
x2
〉
=

1

4
�ω0.

The quantity
〈
x2
〉
as a function of τω0 is not analytical and we

cannot calculate it as an expansion in powers of τω0. The correction,〈
x2
〉
hf
, to the result eq.(197) is mainly a contribution of the high fre-

quencies ω � ω0. It may be estimated by the integral of the spectrum
eq.(195) with zero substituted for ω0 and 2ω0 put as lower limit in
order to exclude the contribution of the low frequency part, that was
included in the result eq.(197) . That is,〈

x2
〉
hf

�
∫ ∞

2ω0

�τω3

πm [ω4 + τ2ω6]
dω

� − �τ

πm
log (τω0) ,(198)

which is positive (see eq.(190)). We see that the result depends, but
only slightly, on the lower limit of the integral, provided it is of order
2ω0. A more rigorous calculation will be made in section 5.3.

A similar procedure might be used for the quadratic mean velocity,
by performing the integral of the velocity spectrum. However, that
integral is divergent and we shall assume that there is some frequency
cut-off, ωc. The result of the integral is the sum of two terms. One of
them comes from frequencies near ω0 and is independent of the cut-off
in the limit τ → 0, giving

(199)
〈
v2
〉
=

∫ ωc

0

ω2Sx (ω) dω � �ω0

2m
⇒ 1

2
m
〈
v2
〉
=

1

4
�ω0.

The other term comes from the high frequency region and is divergent
when the cut-off goes to infinity. It may be estimated as in the case
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of
〈
x2
〉
, although here we may put zero as lower limit of the integral,

that is,

(200)
〈
v2
〉
hf

�
∫ ωc

0

�τω5

πm [ω4 + τ2ω6]
dω =

�

2πmτ
log
(
1 + τ2ω2

c

)
.

Actually, calculating that term is a rather academic exercise because
for those frequencies the nonrelativistic approximation breaks down
(see the discussion of the velocity dispersion in the free particle case
below). Adding eqs.(197) and (199) gives the total mean energy in
the limit τω0 → 0, namely

(201) 〈U〉 =
〈
1

2
mω2

0x
2 +

1

2
mv2
〉

=
1

2
�ω0.

An alternative definition of the energy is possible in terms of the
canonical momentum, p, which avoids problems of divergence. The
momentum is defined by

(202) p ≡ mv − e

c
A,U ≡ p2

2m
+

1

2
mω2

0x
2.

Now we take into account that the potential vector, whose x compo-
nent we label A, contains two parts; one coming from the ZPF and
the other one from the particle self-field, the latter producing the ra-
diation reaction. These two terms give rise to the last two terms of
eq.(189) . Taking this relation into account it is straightforward to get
the spectrum of the canonical momentum, that is,

d

dt
p = −mω2

0x ⇒(203)

Sp (ω) =
m2ω4

0

ω2
Sx (ω) =

�mτω4
0ω

π
[
(ω2

0 − ω2)
2
+ τ2ω6

] .
Hence we get

(204)
〈
p2
〉
= m2ω4

0

∫ ∞

0

ω−2Sx (ω) dω =
m�ω0

2
⇒
〈
p2
〉

2m
=

1

4
�ω0,

in the limit τ → 0. We see that the energy defined from the velocity
is divergent (a cut-off was needed), whilst the one derived from the
canonical momentum is finite. Thus the use of the canonical momen-
tum in the definition of the energy seems more convenient. We might
expect that in a more correct relativistic treatment the former would
be also convergent and not too different from the latter.
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5.2.4. Radiative corrections. Calculating the corrections due
to the finite value of the parameter τ in eqs.(197) to (201) is lengthy
and uncertain [7], [1]. The corrections for the variances of x2 and v2

have been estimated roughly in eqs.(198) and (200) . As said above
these corrections are not analytical in τ (or in the fine structure con-
stant α, proportional to τ , see eq.(190)), but the leading term agrees
with the radiative corrections of quantum electrodynamics (Lamb
shift). In any case, they depend on the high frequency region of in-
tegrals like eq.(195), where the nonrelativistic approximation breaks
down.

An interesting aspect in the comparison of SED with QM is that in
the latter the relevant quantities, like variances of coordinate or veloc-
ity or the mean energy, may be calculated simply from the formalism
(as expectations of the appropriate observables in the ground state)
without any reference to the vacuum radiation. After that we may
calculate radiative corrections adding the coupling with the quantized
radiation field. In contrast, in SED the coupling with the zero-point
field is essential in order to get the stationary state, as is shown in
eq.(189) . In other words, in SED the main values and the radiative
corrections appear together, e.g. in eqs.(197) and (199), the separation
of both contributions being a mathematical recourse for easy calcula-
tion. As a consequence the QM calculation of the main contribution
is easier than in SED, but at the price of hiding the physics, namely
the fact that the stability is essentially due to the ZPF.

5.2.5. Probability distributions of position, momen-
tum and energy. In order to fully define the stationary state of
the oscillator immersed in ZPF it is necessary to get the probability
distributions, not just the mean values. Before doing that we need
to clarify the meaning of the probability distributions involved. Up
to now we have considered averages over infinite time intervals, see
eq.(192) . However, we assume that the time dependent quantities are
stochastic processes, that is, probability distributions over functions
of time. Thus we should write x(t, λ) (as is standard in the mathemat-
ical theory of stochastic processes) rather than just x(t), where λ ∈ Λ
and there is a probability distribution on the set Λ. For a fixed value
of t this provides a probability distribution of the random variable
x(t). We assume that the probability distribution of each component,
E(t, λ), of the ZPF (in free space) is Gaussian with zero mean and
also that it is a stationary ergodic process. That is, any time average
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(over an infinite time interval) equals the ensemble average over the
probability distribution of Λ at any single time. The properties of the
ZPF will be studied in more detail in chapter 6.

Eq.(189) is linear, whence the Gaussian character of E(t, λ) gives
rise to Gaussian distributions (with zero mean) for both positions and
velocities. Thus eq.(197) fixes completely the normalized probability
distribution of the positions to be

(205) W (x) dx =

√
mω0

π�
exp

[
−mω0x

2

2�

]
dx.

Similarly eq.(204) fixes the distribution of momenta, that is

(206) W (p) dp =

√
m

π�ω0
exp

[
− p2

2�mω0

]
dp,

which is also normalized. The distribution of velocities is similar to
that one, with mv substituted for p (modulo ignoring the part due to
high frequencies).

In order to get the distribution of energy, U , to lowest order in the
Planck constant � we take into account that, as eqs.(205) and (206)
already contain �, the relation between x, v and U should be written
to zeroth order in �, that is, using the classical relation. Then we get
the following exponential distribution of energies, U ,

W (U) dU =

∫
W (x) dx

∫
W (p) dpδ

(
U − 1

2
mω2

0x
2 − 1

2m
p2
)
dU

=
2

�ω0
exp

(
− 2U

�ω0

)
dU,U ≥ 0.(207)

where δ () is Dirac’s delta. Hence the fluctuation of the energy is

(208)

√
〈U2〉 − 〈U〉2 = 〈U〉 = 1

2
�ω0.

The distributions of positions and momenta, eqs.(205) and (206),
agree with the QM predictions. But the same is not true for the
energy, because QM predicts a sharp energy in the ground state,
in disagreement with the SED stationary state eq.(207) . Below we
shall study this discrepancy, relevant for our realistic interpretation
of quantum theory.

Eqs.(205) and (206) show that the Heisenberg uncertainty rela-
tions,

(209) ΔxΔp ≥ �/2,
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appear in a natural way in SED. Indeed, the probability distributions
eqs.(205) and (206) correspond to a ‘minimum uncertainty wave-pa-
cket’, meaning by this the quantum state where the Heisenberg in-
equality, eq.(209), saturates becoming an equality.

5.2.6. Comparison between the stationary state in SED
and the ground state in QM. The conclusion of the study of the
stationary state of the oscillator in SED is that it is rather similar
to the ground state of the oscillator en QM. Indeed, the probability
distribution of positions and momenta in the stationary state of SED
agree with the predictions of QM for the ground state, in the limit τ →
0, eqs.(205) and (206), whilst the corrections for finite τ , that depend
on the small quantity τω0, correspond to the radiative corrections of
quantum electrodynamics. However, the probability distribution of
the energy does not agree with QM. In the following I study more
carefully this discrepancy.

John von Neumann’s theorem against hidden variables. Firstly I
should mention that the conflict between the QM prediction and the
SED eq.(207) is an example of the general argument used by von
Neumann [8] in his celebrated theorem of 1932 proving that hidden
variable theories are incompatible with QM. That theorem prevented
research in hidden variables theories until Bell’s rebuttal in 1966 [9],
as discussed in chapter 3 section 3.1.1. J. von Neumann starts with
the assumption that any linear relation between quantum observables
should correspond to a similar linear relation between the possible
(dispersion free) values in a hypothetical hidden variables theory.

In our case SED may be seen as a hidden variables theory. The
quantum oscillator fulfills

Ĥ =
1

2m
p̂2 +

1

2
mω2

0 x̂
2.

Thus as the energy predicted by quantum mechanics, U = �ω0/2, is
sharp, any pair of values of v2 and x2 in the hidden variables theory
should fulfil, according to von Neumann’s hypothesis,

(210) U =
1

2
m(v2 + ω2

0x
2) =

1

2
�ω0, p = mv,

which is not compatible with the distributions eqs.(205) and (206)
(for instance, the possible value v2 = 2�ω0/m is incompatible with
eq.(210) because it would imply x2 < 0). Bell rebutted von Neu-
mann pointing out that the contradiction only arises when two of the
quantum observables involved do not commute and in this case the
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measurement of the three observables should be made in, at least, two
different experiments. Thus a contextual hidden variables theory is
possible, that is, a theory where it is assumed that the value obtained
in the measurement depends on both the state of the observed system
and the full experimental context. The matter was studied in more
detail in chapter 3 section 3.2.

In our hidden variables theory (i.e. SED) a sharp energy U would
be obtained in a measurement different from those leading to eqs.
(205) and (206), as explained in the following.

The apparent contradiction between QM and SED. In our case the
apparent contradiction between SED eq.(207) and the QM prediction
of a sharp energy disappears if we take into account how the energy of
a state is defined operationally (i.e. how it may be measured). In SED
the stationary state corresponds to a dynamical equilibrium between
the oscillator and the ZPF. Checking empirically whether a dynamical
equilibrium exists requires a long time, ideally infinite time. If we
define the energy of the oscillator in equilibrium as the average over
an infinite time, it would be obviously sharp. In fact, the probability
distribution of the ‘mean energies over time intervals of size Δt’ has
a smaller dispersion for greater Δt, and will be dispersion free in
the limit Δt → ∞. Thus it is natural to assume that the ground
state energy as defined by QM actually corresponds to measurements
made over infinitely long times. This fits fairly well with the quantum
energy-time uncertainty relation

(211) ΔUΔt ≥ �/2,

which predicts that the measured energy does possess a dispersion ΔU
if the measurement involves a finite time Δt. Thus no contradiction
exists between the observable predictions by SED and QM for the
energy in the ground state.

It is remarkable that QM and SED lead to the same result via
rather different paths. In fact, in QM the state vector of the ground
state of a system is an eigenstate of the Hamiltonian, which implies
a nil dispersion of the state energy, but the uncertainty relation gives
rise to some uncertainty for any actual measurement. The instanta-
neous energy is a badly defined concept. Indeed, the SED distribution
eq.(207) derives from the (classical) definition of total energy in terms
of positions and momenta, but it does not possesses any operational
(measurable) meaning.
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5.2.7. Frequencies of the light emitted or absorbed by the
SED oscillator. There is another trivial agreement between the SED
and QM predictions for the oscillator, namely the spectrum of emit-
ted or absorbed light. In fact, the usual quantum method to derive
the spectrum of a system starts solving the stationary Schrödinger
equation and then calculating the frequencies using the rule

ωjk =
Ej − Ek

�
= (j − k)ω0,

where the eigenvalues of the oscillator Hamiltonian, En = n�ω0, have
been taken into account. However, in the oscillator there is a selection
rule that, within the electric dipole approximation, forbids transitions
except if j−k = ±1, whence the spectrum has a single frequency that
agrees with the classical one. Actually, the spectrum contains also the
frequencies nω0, which correspond to electric multipole transitions,
although these transitions have low probability. The multipoles of
the fundamental frequency may be found also in SED calculations if
the electric dipole approximation is not used, that is, if the Lorentz
force eq.(188) is substituted for the last term of eq.(189). In order to
be consistent, the other terms of eq.(189) should be also changed to
become relativistic. Then the differential equation of motion becomes
nonlinear and it is far more difficult to solve, but this may be achieved
numerically and good agreement with quantum predictions is obtained
for the spectrum of emitted or absorbed light [10].

5.2.8. Lessons for a realistic interpretation of quantum
theory. Our study of a particle in a potential well shows that inclu-
sion of the (vacuum) random electromagnetic field leads to predictions
resembling those of quantum electrodynamics:

The QM ground state corresponds to a SED stationary state.
The spectrum of the field determines the spectrum for the motion

of the particle, whence the SED variances of the coordinate and the
momentum agree with QM.

No contradiction arises between the exponential distribution of en-
ergy in SED and the sharp energy in QM because they are different
operational definitions. This is a good illustration of the flaw in the
celebrated von Neumann theorem against hidden variables.

Radiative corrections (e.g. Lamb shift) appear naturally in SED
with a transparent interpretation.
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5.3. Evolution. Commutators of stochastic processes

5.3.1. Particle motion as a stochastic process. In Newto-
nian mechanics the study of the evolution consists of finding the po-
sition of bodies as a function of time for given initial conditions, for
instance the initial positions and velocities of particles. Thus the evo-
lution describes a curve in phase space parametrized by time. If there
are forces not fully known, which we represent as noise, the evolution
is a stochastic process.

From the mathematical point of view a stochastic process x (t;λ)
is a function of two variables t ∈ (0, T ), λ ∈ Λ with a probability
distribution on the set Λ. The parameter t usually represents time
in applications to physics and Λ is the set of possible realizations of
the function x(t). It is possible to characterize a stochastic process
by the probability distributions of values at one time t, P1 [x (t)] , at
two times P2 [x (t) , x (t

′)], at three times, etc. In some cases, e.g. if
the probability distributions are Gaussian, the required information
consists of just the mean value of x at one time, 〈x (t)〉 , and at two
times 〈x (t)x (t′)〉; the latter is named self-correlation function.

In the study of the oscillator in SED made below we will be inter-
ested in processes that are stationary and ergodic, that is, 〈x (t)x (t′)〉
depends only on the difference of times, t− t′, and ensemble averages
agree with time averages, that is,

〈x (0)x (τ)〉 = lim
T→∞

1

2T

∫ T

−T

x (t)x (t+ τ) dt.

In stationary processes that are ergodic the self-correlation is the co-
sine Fourier transform of the spectrum, a result known as Wiener-
Khinchine theorem. That is,

(212) 〈x (t)x (t+ τ)〉 =
∫ ∞

0

Sx (ω) cos (ωτ) dω.

Particular cases of this relation are eqs.(196) . Also the connection
between spectrum and Fourier transform used in section 2.2 is closely
related to eq.(212) .

A standard method to study time dependent properties is via the
self-correlations or cross-correlations of the relevant stochastic pro-
cesses. We shall use this method for the free particle, but for the
oscillator we will use commutators of stochastic processes, a concept
that we define in the following.
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5.3.2. The free particle. A free particle might be seen as the
limiting case of an oscillator whose characteristic frequency decreases
to zero. This fact may suggest that the differential equation of motion
is like the oscillator’s eq.(189) with ω0 = 0, that is,

(213) mẍ = mτ
...
x + eE (t) .

However, this equation is not appropriate because there is a qualita-
tive difference between the two systems. In fact, the motion in the
oscillator is always bounded, which is not the case for the free par-
ticle. Eq.(213) is a third order equation and therefore it has three
independent solutions, but one of them is runaway, that is, it predicts
that the energy increases without limit, which is physically nonsense.
The reason is that the radiation reaction term, that is, the first term
on the right side of eq.(213), is a linearized approximation not valid
for a free particle (in the oscillator the runaway solution is effectively
cut-off by the potential and an approximation like eq.(189) is good
enough). Thus we shall substitute the following integro-differential
equation for eq.(213)

ẍ = − e

mτ
exp

(
t

τ

)∫ ∞

t

E (t′) exp
(
− t′

τ

)
dt′.

It has the same solutions as eq.(213) except the runaway ones. Hence,
it is easy to get the following equations of evolution for the velocity
and the coordinate, respectively:

v(t) = v0 − e

mτ

∫ t

0

exp
( s
τ

)
ds

∫ ∞

s

E (u) exp
(
−u

τ

)
du,

(214)

x(t) = x0 + v0t− e

mτ

∫ t

0

ds

∫ s

0

exp
(u
τ

)
du

∫ ∞

u

E (w) exp
(
−w

τ

)
dw,

where x0 is the initial position and v0 the initial velocity at time t = 0.
Taking into account that the ensemble average of E (t) is zero, it is
easy to get the mean position of the particle, that is

(215) 〈x (t)〉 = x0 + v0t.

The most interesting quantities are the dispersions of velocity and
position with time. The velocity dispersion may be got from the first
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eq.(214) putting v0 = 0. We obtain, taking eq.(190) into account,

〈
v (t)

2
〉
=

3c3

2mτ

∫ t

0

exp
( s
τ

)
ds

∫ ∞

s

exp
(
−u

τ

)
du

×
∫ t

0

exp

(
s′

τ

)
ds′
∫ ∞

s

exp

(
−u′

τ

)
du′ 〈E (u)E (u′)〉 .(216)

The E(t) self-correlation is the Fourier transform of the spectrum
eq.(192)); that is,

〈E (u)E (u′)〉 =
∫ ∞

0

SE (ω) cos [ω (u− u′)] dω(217)

=
1

2

∫ ∞

−∞
|SE (ω)| exp [iω (u− u′)] dω.

I point out that this relation is correct because E(t) is a stationary
process, but it is not possible to get eq.(216) from the spectrum of
v (t) because in the free particle case we cannot get the spectrum of
v(t) from that of E(t) (as we made in the derivation of eq.(195) for the
equilibrium state of oscillator, where both x(t) and v(t) are stationary
processes). Inserting eq.(217) in eq.(216) we get, after changing the
order of integrations,

Δv2 ≡
〈
v (t)

2
〉
=(218)

=
3c2

2mτ

∫ ∞

−∞
dω |SE (ω)|

∣∣∣∣∫ t

0

exp
( s
τ

)
ds

∫ ∞

s

exp
(
−u

τ
+ iωu

)
du

∣∣∣∣2
=

�

4πmτ

∫ ∞

−∞

|ω| dω
ω2 + τ−2

|1− exp(iωt)|2

=
�τ

πm

∫ ∞

0

ωdω

1 + τ2ω2
[1− cos(ωt)] .

Thus the velocity dispersion consists of two terms. The former is an
ultraviolet divergent integral that may be regularized introducing a
cut-off frequency ωc. We get

(219) Δv21 =
�τ

πm

∫ ωc

0

ωdω

1 + τ2ω2
=

�

2πmτ
log(1 + ω2

cτ
2) � �ω2

cτ

2πm
.
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The last term is convergent for t > 0 and it has an analytical solution
that is

Δv22 =
2�

πmτ

∫ ∞

0

zdz

1 + z2
cos(zt/τ)

= cos(t/τ)Ci (t/τ) + sin(t/τ)
[
Si (t/τ) +

π

2

]
� 2�

πmτ
[C + ln (t/τ)] , t � τ,(220)

where C = 0.577 . . . is the Euler constant. In order that the dispersion
Δv is not greater than the velocity of light the frequency cutoff should
fulfil

ωc <

√
3π

α

mc2

�
≈ 0.2

c

λC
� 1

τ
.

A correct calculation would require a relativistic theory, which will not
be attempted here. Nevertheless, the results obtained show that the
particle performs a random motion with relativistic speed although
the mean velocity remains a constant (see eq.(215)). The results also
suggest that in a relativistic calculation the most relevant wavelengths
would be those not far from the Compton one. The increase of the
velocity of a free charged particle by the action of the ZPF has been
proposed as the possible origen of the observed ultrahigh-energy X
rays coming to Earth from outside the Solar System [15].

It is interesting to compare the velocity dispersion of the free par-
ticle in SED, eq.(219), with the particle in Rayleigh-Jeans (classical)
radiation. Taking into account that the ZPF and the Rayleigh-Jeans
radiation correspond to 1

2�ω and kT per normal mode, respectively,

the replacement 1
2�ω → kT in eq.(219) leads to

Δv2 =
τkT

πm

∫ ∞

0

dω

1 + τ2ω2
[1− cos(ωt)]

∼ kT

m
for t � τ.

We see that the velocity dispersion of the charged free particle does not
increase indefinitely but becomes, after a long enough time, a constant
corresponding to the kinetic energy kT/2 (which is the equipartition
of the energy of classical statistical mechanics).

The dispersion of position of the free particle according to SED
may be obtained by a similar method, that is, inserting the last

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



194 5. STOCHASTIC ELECTRODYNAMICS, A CLUE

eq.(217) in eq.(214) . We obtain

Δx2 =
�τ

2πm

∫ ∞

−∞

|ω| dω
1 + τ2ω2

∣∣∣∣∫ t

0

[1− exp(iωs)] ds

∣∣∣∣2
=

�τ

πm

∫ ∞

0

ωdω

1 + τ2ω2

[
t2 − 2t sin (ωt)

ω
+

2− 2 cos(ωt)

ω2

]
� 2�τω2

c

πm
t2 +

2�τ

πm

[
log

(
t

τ

)
− C − 1

]
,(221)

The first term, which dominates at long times, is a consequence of the
velocity dispersion as may be seen by a comparison with eq.(219).

For the (canonical) momentum the first eq.(203) remains valid
when we put ω0 = 0, showing that the momentum is constant in
time without dispersion. This agrees with the quantum prediction
that the momentum of a free particle is a constant. For a particle
with zero canonical momentum, the typical distance from the original
position increases with about one tenth the velocity of light so that a
relativistic treatment would give a quite different picture.

The picture that emerges, and gives hints for the interpretation
of the free particle in QM, is as follows. The free particle possesses
a conserved canonical momentum with an associated inertial motion
but, superposed to this, it has a random motion with a velocity close
to that of light. This produces an apparently contradictory behaviour
that derives from the form of the spectrum, SE (ω) ∝ ω3, of the
zero-point field: At short times the motion is governed by the high
frequencies where SE (ω) is large, thus inducing a rapid erratic mo-
tion; at long times it is governed by the low frequencies where SE (ω)
is small, whence the memory of the initial velocity is lost very slowly.
This fact contrasts with what happens in Brownian motion and what
our intuition may suggest, namely that memory of the initial condi-
tions should be quickly lost under the action of a noise. The special
behaviour of diffusion in SED is a consequence of the fact that the
spectrum SE (ω) is very different from the popular (Brownian) white
noise, Swhite (ω) � constant.

5.3.3. Commutator vs. self-correlation. Stochastic electro-
dynamics provides a clue for the interpretation of commutation rules,
which are essential ingredients in the standard formulation of quan-
tum mechanics. In fact, we may define the commutator at two times,
{t, t′}, of a stationary stochastic process, x (t), via the Fourier sine
transform of the spectrum. Then I shall show that the stochastic
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commutator applied to the SED oscillator closely resembles the quan-
tum commutator in the Heisenberg picture of QM.

The introduction of the stochastic commutator is suggested by
the standard Fourier transform of the spectrum, Sx (ω) . It consists of
two terms, namely,∫ ∞

0

Sx (ω) exp [iω (t′ − t)] dω = 〈x (t)x (t′)〉+ 1

2
[x (t) , x (t′)] ,

〈x (t)x (t′)〉 =
∫ ∞

0

Sx (ω) cos [ω (t′ − t)] dω,

[x (t) , x (t′)] = 2i

∫ ∞

0

Sx (ω) sin [ω (t′ − t)] dω,(222)

where the spectrum is defined to be zero for negative frequencies,
that is, Sx (ω) = 0 if ω < 0. The real part, 〈x (t)x (t′)〉, is the self-
correlation function of the stochastic process as said above. Therefore,
it is plausible that the imaginary part, [x (t) , x (t′)], is also relevant.
The factor 2 is chosen in order to stress the similarity with the quan-
tum commutator.

The relation between spectrum and stochastic commutator is also
suggested by the fact that in QM there is a similar relation between the
spectrum and the two-times commutator of the coordinate operator
in the Heisenberg picture. That relation is fulfilled for the ground
state of a particle in any potential well. For the proof I consider a
one-dimensional (quantum) problem defining the spectrum, Sx (ω), as
follows

(223) Sx (ω) ≡
∑
n

|〈ψ0 |x̂ (0)|ψn〉|2 δ (ω − ω0n) ,

where x̂ is the quantum position operator of the particle. The coeffi-
cients of the Dirac’s deltas are proportional to the transition probabil-
ities in QM from the ground state to all possible excited states. (Al-
though I stress that in QED the deltas are approximations of highly
peaked functions with a finite width when radiative corrections are
taken into account). The analogy with the last eq.(222) is shown as
follows. From the Heisenberg equation of motion

x̂ (t) = exp(iĤt/�)x̂ (0) exp(−iĤt/�)

we may obtain the expectation value of the commutator in the ground
state,

〈[x̂ (0) , x̂ (t)]〉 = 〈ψ0 |x̂ (0) x̂ (t)|ψ0〉 − 〈ψ0 |x̂ (t) x̂ (0)|ψ0〉 .
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After introducing the resolution of the identity between x̂ (0) and
x̂ (t) and between x̂ (t) and x̂ (0) in terms of eigenvectors of the Hamil-

tonian Ĥ, this gives

〈[x̂ (0) , x̂ (t)]〉 = 2i
∑
n

|〈ψ0 |x̂ (0)|ψn〉|2 sin (ω0nt)

= 2i

∫
Sx (ω) sin (ωt) dω,

where in the last equality we have taken eq.(223) into account. This
equality, similar to the stochastic term in eq.(222), played an impor-
tant role in the origin of quantum mechanics. In fact, the derivative
with respect to t leads to

2im
∑
n

ω0n |〈ψ0 |x̂ (0)|ψn〉|2 cos (ω0nt) = [x̂ (0) , p̂ (t)] ,

which in the limit t → 0 becomes an example of the well known
Thomas-Reiche-Kuhn sum rule. The rule is usually applied to atoms
where a sum over the three coordinates of the Z electrons is performed,
so that it reads

2m
∑
n

ω0n

∣∣∣∣∣∣
〈
ψ0

∣∣∣∣∣∣
Z∑

j=1

rj

∣∣∣∣∣∣ψn

〉∣∣∣∣∣∣
2

= −i
3Z∑
k=1

[x̂k (0) , p̂k (0)] = 3Z�.

For a stationary process both the self-correlation and the commu-
tator depend only on the time difference (t− t′) . In this case the last
term in eq.(222) may be inverted via a time integral. In fact, we get∫ ∞

−∞
sin [ν (t− t′)] [x (t) , x (t′)] dt =(224)

=

∫ ∞

−∞
sin [ν (t− t′)]dt2i

∫ ∞

0

Sx (ω) sin [ω (t′ − t)] dω

= −2i

∫ ∞

0

Sx (ω) dω

∫ ∞

−∞
sin [ν (t− t′)] sin [ω (t− t′)] dt = −iπSx (ν) ,

where in the last equality we take into account that Sx (ν) = 0 for
ν < 0.

5.3.4. Application to the SED oscillator. All stationary
properties of the SED oscillator studied in section 2 may be equally
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well obtained either from the spectrum eq.(195), from the self-correla-
tion or from the commutator, the latter being

[x (t′) , x (t)] = 2i

∫ ∞

0

�τω3 sin [ω (t− t′)] dω

πm
[
(ω2

0 − ω2)
2
+ τ2ω6

]
= i

∫ ∞

−∞

�τω3 exp [iω (t− t′)] dω

πm
[
(ω2

0 − ω2)
2
+ τ2ω6

] .(225)

This equality shows the advantage of the commutator with respect
to the self-correlation in the stochastic process associated to the SED
oscillator. In fact, the last integral may be performed analytically
via the method of residues, whilst getting the self-correlation is more
involved. Of course, all properties derived in the following might be
obtained using self- or cross-correlations (see e.g. [1]), but the use of
commutators will exhibit their advantages and shortcomings.

I propose that the success of the use of noncommuting observables
in QM, and indirectly the adequacy of the Hilbert space formulation,
might be related to the fact that the basic stochastic processes involved
have spectra that are odd with respect to the change ω → −ω. This
contrasts with classical physics where the stochastic processes that
appear most times have spectra that are even in the frequency, as is
the case for white noise in Brownian motion.

Performing the integral eq.(225) is straightforward, extending the
variable ω to the complex plane. First we shall find the poles of the
integrand, which requires the solution of an algebraic equation of third
degree, that is, finding the 6 zeroes of the denominator of the spectrum
eq.(195). The solution is involved, but a fairly good approximation is
as follows, resting on the fact that τω2

0 � 1. There are poles close to
ω0 = ±ω that are solutions of the equation

(
ω2
0 − ω2

)2
= −τ2ω6 � −τ2ω6

0 ⇒ ω = ±(ω0 ± 1

2
iτω3

0).

Two other poles correspond to high values of ω � ω0, that is,

(226) ω6 = −τ−2
(
ω2
0 − ω2

)2 � −τ−2ω4 ⇒ ω = ±iτ−1.
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Finding the zeroes of the denominator allows factorizing it so that we
approximate eq.(225) as

[x (0) , x (t)] �
i�

πm

∫ ∞

−∞

ω3 exp (iωt) dω

τ
[
(ω0 + ω)

2
+ τ2ω4

0

] [
(ω0 − ω)

2
+ τ2ω4

0

]
(ω2 + τ−2)

,

where we have put t′ = 0 without loss of generality because the com-
mutator depends only on the difference of times in a stationary sto-
chastic process. The integral may be evaluated by the method of
residues, taking into account that the 3 poles in the upper (lower)
half of the complex plane of the variable ω contribute for t > 0 (for
t < 0). This leads to a change of sign of the commutator for t → −t,
as expected. Thus we get
(227)

[x (0) , x (t)] =
i�

mω0

{
sin (ω0t) exp

(−τω2
0 |t|
)
+ τω0

t

|t| exp
(
−|t|

τ

)}
.

For the canonical momentum we obtain, taking eq.(203) into account,

(228) [p (0) , p (t)] =
i�m

ω0
sin (ω0t) exp

(−τω2
0 |t|
)
,

where we neglect terms of order τ2ω2
0 . There are no terms proportional

to τ here, like the last one of eq.(227) .
I point out that the commutator of the particle coordinate in the

SED oscillator may be derived from the commutator of the electric
field of the zero-point radiation, taking eqs.(192) and (222) into ac-
count. Actually, the relation between the quantum commutator of
the vacuum field and the commutator of the Heisenberg (time depen-
dent) position operator of a charged particle may be obtained in the
context of quantum mechanics without passing through the spectrum.
Indeed, this was made long ago by Schiller [1], [4].

It is possible to define the derivative of a commutator with respect
to time:

d

dt′
[x (t) , x (t′)] = lim

t′′→t′

[x (t) , x (t′′)]− [x (t) , x (t′)]
t′′ − t′

= lim
t′′→t′

[x (t) , x (t′′)− x (t′)]
t′′ − t′

=

[
x (t) ,

dx (t′)
dt′

]
,
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where the linearity of the commutator has been used. Hence we obtain
from eq.(227)

[x (0) , ẋ (t)] =
i�

m
cos (ω0t) exp

(−τω2
0 |t|
)
+
2i�τ

m
δ (t) = − [ẋ (0) , x (t)] .

Similarly it is easy to get the velocity commutator:

[v (0) , v (t)] = [ẋ (0) , ẋ (t)] =
2i�τω2

0

m
δ′ (t)(229)

+
i�ω0

m

{
sin (ω0t) + 2τω0

t

|t| cos (ω0t)

}
exp
(−τω2

0 |t|
)
.

A most relevant result is that to zeroth order in τ we obtain

[x (0) , p (t)] = m [x (0) , ẋ (t)] = i� cos (ω0t) ⇒ [x (0) , p (0)] = i�,

the latter being similar to the fundamental commutation rule of quan-
tum mechanics for one particle. The first equality is correct because
the canonical momentum p differs from the product mẋ by terms of
order τ.

The stochastic commutator provides a hint for a realistic inter-
pretation of the quantum commutation rules as a disguised form of
establishing the properties of some peculiar stochastic processes. The
main peculiarity is the fact that the spectra of the processes involved
are usually odd in the frequency.

However, I shall point out that the analogy of the stochastic com-
mutator with the commutators of quantum mechanics holds only for
linear problems, this being also the domain of validity of SED (see
section 5.6 below). In fact, the noncommutativity of operators in
quantum mechanics is an essential consequence of the Hilbert space
formulation and it plays a far more relevant role than the commutators
of stochastic processes here studied.

5.3.5. The Hilbert transform. Our definition of commutator
may be generalized to two different stationary stochastic processes as
follows:

Definition 11. Given two stationary stochastic processes, x(t)
and y(t), I define their (stochastic) commutator, [x (t) , y (t′)], as 2i
times the Hilbert transform of the cross-correlation, 〈x (t) y (t′)〉 .

The Hilbert transform, g(u), of a function f(t), t ∈ (−∞,∞) is
defined by

(230) g(u) =
1

π
P

∫ ∞

−∞
f(t)

1

u− t
dt, f (t) =

1

π
P

∫ ∞

−∞
g (u)

1

u− t
du,
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where P means principal part and the second equality corresponds to
the inverse transform. However, the inverse transform does not always
recover the original. For instance, the Hilbert transform of a constant
is zero and the inverse of zero is also zero. The relevant property
for us is that the Hilbert transform changes sin (ωt) into cos (ωu) and
cos (ωt) into -sin (ωu), provided that ω �= 0.

Using the inverse Hilbert transform, the second eq.(230), we may
obtain the self-correlations and cross-correlations of stationary sto-
chastic processes. It is convenient to get them as integrals in the
interval (0,∞) rather than (−∞,∞), writing

f (t) =
2

π
P

∫ ∞

0

g (u)
u

u2 − t2
du if g (−u) = −g (u) ,

f (t) =
2

π
P

∫ ∞

0

g (u)
t

u2 − t2
du if g (−u) = g (u) .

Hence taking eq.(227) into account we get the self-correlation
(231)

〈x (0)x (t)〉 = 1

2i
× 2

π
P

∫ ∞

0

g (u)
u

u2 − t2
du, g (u) ≡ [x (0) , x (u)] ,

leading to

(232) 〈x (0)x (t)〉 = �

2mω0
cos (ω0t) γ (t) +

2�τ

πm

[
log

(
t

τ

)
− C − 1

]
,

where the first term is the product of the result in the limit τ → 0
times a slowly varying function γ (t) that fulfils

γ (t) → 1 for t → 0, γ (t) → 0 for t → ∞.

The last term is valid for t � ω−1
0 because it derives from the last

term of eq.(227) and that term came from the pole eq.(226) that was
obtained neglecting ω0. For that range of values of t the last term
of eq.(232) is the same that appears in the free particle eq.(221) .
Indeed, for these values of t the evolution is dominated by the ZPF and
the effect of the oscillator potential is irrelevant. The self-correlation
of the canonical momentum may be obtained from the commutator
eq.(228) and we get

(233) 〈p (0) p (t)〉 = �mω0

2
cos (ω0t) γ (t) .

The results obtained lead to a picture of the SED oscillator as
follows. The motion of the charged particle may be seen as a super-
position of two motions, one of them smooth and the other one very
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irregular, represented by the two terms of eq.(232) . The latter pre-
vents the possibility of defining an instantaneous velocity, but only
the mean velocity over not too small time intervals. This fits quali-
tatively with the restrictions derived from the Heisenberg uncertainty
relations. Nevertheless, the irregular motion does not produce a loss of
memory of the initial conditions, as shown by the first term, that cor-
responds to a motion close to the classical one. Indeed, if we ignored
the factor γ (t) the self-correlation given by the first term alone would
correspond precisely to an ensemble of classical oscillators. However,
there is a slow passage from one classical path to another neighbour
path.

An alternative way to study the motion of the oscillator in SED
is to introduce new variables, a(t) and b(t), as follows

x (t) = a(t) cos (ω0t) + b(t) sin (ω0t) ,

ẋ (t) = −a(t)ω0 sin (ω0t) + b(t)ω0 cos (ω0t) .(234)

It may be realized that these variables correspond to constants of the
motion of the mechanical oscillator. That is, they would be time-
independent if we ignored the last two terms of the SED eq.(189) . In
order to study the variation we may invert eqs.(234) leading to

a(t) = x (t) cos (ω0t)− ω−1
0 ẋ (t) sin (ω0t) ,

b(t) = x (t) sin (ω0t) + ω−1
0 ẋ (t) cos (ω0t) .(235)

It is straightforward to derive the self-correlations of a(t) and b(t) and
their cross-correlation from the correlations of x (t) and its derivatives
or, alternatively, to use the commutators whence to get the desired
correlations. The results will not be reported here.

It is possible to derive differential equations for the probability
densities of a and b. They have the form of Fokker-Planck (or diffusion)
equation and the result is [1]

(236)
∂ρ(a, t)

∂t
=

1

2
τω2

0

∂

∂a
(aρ) +

�τ

4m

∂2ρ

∂a2
,

and a similar one with b substituted for a. But I point out that the
stochastic processes a(t) and b(t) are correlated.

The conclusion of the calculations is that the classical constants
of the motion, like the parameters a and b or the energy, U , per-
form a slow random motion with typical relaxation time 1/

(
τω2

0

)
. In

particular, the energy is related to these parameters as follows:

(237) U(t) =
1

2
mω2

0x(t)
2 +

1

2
mẋ(t)2 =

1

2
mω2

0

[
a(t)2 + b(t)2

]
,
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where eqs.(234) have been taken into account. The change of the
classical constants of motion of the oscillator in SED is obviously due
to the two last terms of eq.(189) . The term involving the vacuum field
produces diffusion, characterized by D, and the radiation reaction
term gives rise to drift, characterized by A. The diffusion rate is
independent of the particle’s velocity, whence D is a constant, but the
drift increases with the velocity and the result is that A is proportional
to a. The effect of the diffusion is reduced to some extent by the drift,
with the consequence that the probability densities remain localized.
In fact, when time increases indefinitely the densities approach the
stationary solution studied in section 5.2. In particular, the stationary
solution of eq.(236) (with normalized ρ, which implies that ρ vanishes
for a → ±∞) is

ρ =

√
�

πmω2
0

exp

(
− �

mω2
0

a2
)
,

and similar for b. The energy tends to the density given by eq.(207) .

5.3.6. States of the oscillator in stochastic electrodynam-
ics and in quantum mechanics. Every nonnegative definite func-
tion in phase space may be taken as an initial probability density and
thus be considered a state of the SED oscillator. The set of states
in SED is quite different from the set of states in QM (given by a
density operator each). In particular, the pure states in SED are
those whose initial conditions correspond to points in phase space,
whilst the pure states in QM correspond to state vectors (or wave
functions). The comparison between SED and QED becomes more
clear if we define the quantum states by means of functions in phase
space, which might be achieved via the Wigner function formalism
revisited in chapter 4. Thus only a small fraction of pure quantum
states correspond to states in SED. Actually, asides from the ground
state there are only two interesting pure quantum states that corre-
spond precisely to SED states, namely coherent states and squeezed
states. The latter are relevant in case of radiation (squeezed states
of light), but not so much for matter oscillators and they will not be
studied here.

Coherent states in SED appear as solutions of the oscillator eq.
(189) obtained by combining the stationary solution of the equation
with the general solution of the homogenous equation, that is,

ẍ+ ω2
0x+ τω2

0 ẋ = 0 ⇒ x � A cos (ω0t+ φ) exp (−τω0t) ,
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where I have approximated
...
x � −ω2

0 ẋ and neglected a small shift, of
order τ , in the frequency ω0. Hence, taking eq.(205) into account, we
see that the solution of eq.(189) leads to the following time dependent
probability distribution of positions
(238)

W (x, t) �
√

mω0

π�
exp
[
−mω0

2�

[
x−A cos (ω0t+ φ) exp

(−τω2
0t
)]2]

,

which contains two integration constants, A and φ. It must be stressed
that this expression for the probability density derives from eq.(189)
and the ZPF spectrum eq.(192) with the approximation of putting
τ → 0 except in the exponential decay. It may be seen that when τ = 0
the evolution of the position probability density eq.(238) fully agrees
with the one of the coherent states of quantum mechanics, whilst the
expression for finite τ contains the most relevant contribution of the
radiative corrections of quantum electrodynamics to these states (a

decay towards the stationary state with relaxation time
(
τω2

0

)−1
) [7].

In summary we see that a few states of the oscillator in SED cor-
respond to pure quantum states in a phase-space representation. But
no pure state of SED corresponds to a state of QM. Furthermore,
most of the pure states of QM do not correspond to states of SED.
However, for mixed states the agreement is greater, and actually all
(mixed) quantum states possessing a positive Wigner function closely
correspond to mixed states of SED with the same phase-space distri-
bution.

In spite of these differences the quantum theory of the harmonic
oscillator admits a realistic interpretation via SED, provided that the
same predictions may be obtained for actual experiments. In partic-
ular, the quantum states, solutions of Schrödinger equation, might be
just mathematical auxiliary functions used in the QM formalism but
not required in the SED approach for the prediction of empirical re-
sults.

5.4. Coupled oscillators in SED

The generalization of the harmonic oscillator in SED to many
dimensions is straightforward using the appropriate extension of eq.
(189) . In the following I will study two simple examples of coupled
oscillators. Firstly a system of two one-dimensional oscillators at a
long distance as an example of van der Waals force. The system is
interesting because it shows that a phenomenon similar to quantum
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entanglement appears also in SED. The second example is an array
of coupled three-dimensional oscillators at a finite temperature, that
reproduces Debye theory of the specific heat of solids.

5.4.1. A model for quantum entanglement. Entanglement
is a quantum property of systems with several degrees of freedom,
which appears when the total state vector cannot be written as a
product of vectors associated to one degree of freedom each. In formal
terms a typical entangled state fulfils

(239) | ψ (1, 2)〉 =
∑
m,n

cmn | ψm (1)〉 | ψn (2)〉,

where 1 and 2 correspond to two different degrees of freedom, usually
belonging to different subsystems. The essential condition is that the
state eq.(239) cannot be written as a product, that is, the sum cannot
be reduced to just one term via a change of basis in the Hilbert space.
See chapter 2, section 2.3.2. Entanglement appears as a specifically
quantum form of correlation, which is claimed to be dramatically dif-
ferent from the correlations of classical physics. The latter may be
sometimes written in the form

(240) ρ (1, 2) =
∑
m,n

wmnρm (1) ρn (2) ,

where the quantities ρ � 0 are probability densities and the coefficients
play the role of weights fulfilling wmn � 0, in sharp contrast with
eq.(239) where | ψ〉 are vectors in a Hilbert space and cmn are complex
numbers.

Actually, entanglement is quite common in nonrelativistic quan-
tum mechanics of many-particle systems, e.g. for electrons in atoms
or molecules. However, it is most relevant when the state vectors
| ψm (1)〉 and | ψn (2)〉 of eq.(239) belong to different systems placed
far from each other. A study of entanglement and its relation with
‘local realism’ was made in chapter 3 section 3.2.5 and examples of
photon entanglement will be provided in chapter 6. Here I will illus-
trate, with a simple example, that entanglement might be understood
as a correlation induced by quantum vacuum fluctuations acting in
two different places.

An example: London-van der Waals forces. I shall study the Lon-
don theory of the van der Waals forces in a simple model of two
one-dimensional oscillating electric dipoles. Each dipole consists of a
particle at rest and another particle (which we will name electron)
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with mass m and charge e. In the model it is assumed that every
electron moves in a harmonic oscillator potential and that there is an
additional interaction between the electrons. Thus the Hamiltonian
is

(241) H =
p21
2m

+
1

2
mω2

0x
2
1 +

p22
2m

+
1

2
mω2

0x
2
2 −Kx1x2,

where x1(x2) is the position of the electron of the first (second) dipole
with respect to the equilibrium position. The positive parameter K <
mω2

0 depends on the distance between the dipoles, but the dependence
is irrelevant for our purposes. (For a more complete study of this
problem within SED see Refs. [1], [2]). We shall revisit both the QM
and the SED calculations.

Quantum theory of the model. An exact quantum calculation is
not difficult. We take xj , pj and H as operators in the Hilbert space
of the full system, fulfilling the standard commutation relations

(242) [x̂j , x̂l] = [p̂j , p̂l] = 0, [x̂j , p̂l] = i�δjl.

Now we introduce the new operators

x̂+ (t) =
1√
2
[x̂1 (t) + x̂2 (t)] , x̂− (t) =

1√
2
[x̂1 (t)− x̂2 (t)] ,

p̂+ (t) =
1√
2
[p̂1 (t) + p̂2 (t)] , p̂− (t) =

1√
2
[p̂1 (t)− p̂2 (t)] .(243)

It is easy to derive the commutation relations of the new operators,
that are similar to eqs.(242) with the subindices +,− substituted for
1, 2. The Hamiltonian eq.(241) in terms of the new operator is

Ĥ =
p̂2+
2m

+
1

2

(
mω2

0 +K
)
x̂2
+ +

p̂2−
2m

+
1

2

(
mω2

0 −K
)
x̂2
−.

This is equivalent to two uncoupled harmonic oscillators with the same
mass, m, and frequencies

ω+ =
√

ω2
0 +K/m, ω− =

√
ω2
0 −K/m,

(
K < mω2

0

)
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respectively. Thus the wave-function of the two-electron system is

ψ = ψ (x+)ψ (x−)(244)

=

√
m

π�
√
ω+ω−

exp
[
−m

2�

(
ω+x

2
+ + ω−x2

−
)]

=

√
m

π�
√
ω+ω−

exp
{
− m

4�

[
(ω+ + ω−)

(
x2
1 + x2

2

)
+2(ω+ − ω−) (x1x2)

]}
,

and the interaction energy of the system is

ΔE =
�

2

(√
ω2
0 −K/m+

√
ω2
0 −K/m− 2ω0

)
= − �K2

4m2ω3
0

+O
(
K4
)
,

which to lowest nontrivial order in the coupling constant K gives

(245) ψ =

√
mω0

π�

(
1 +

2Kx1x2

mω0

)
exp
[
−mω0

2�

(
x2
1 + x2

2

)]
.

This may be written in terms of the wave-functions of the ground
state, ψ0 (x), and the first excited state, ψ1 (x), of the simple oscillator
as follows

ψ = ψ0 (x1)ψ0 (x2) +
K

mω2
0

ψ1 (x1)ψ1 (x2) .

(The function is not normalized because the normalization was lost
when we truncated at first order the expansion in powers of K). In
quantum language this wave-function ψ may be interpreted saying
that the two-system state is a sum of two amplitudes; one of them
corresponds to both oscillators being in the ground state and the other
one to both being in the first excited state. It is true that eq.(245) is
not an irreducible sum of products like eq.(239) . However, it cannot
be factorized in terms of wave-functions of individual electrons and
therefore it is not a classical correlation that might be represented as
eq.(240). Therefore, it may be considered an entangled state involving
two distant systems.

Although quantum mechanics usually does not offer intuitive pic-
tures of phenomena, in this case it is difficult to refrain from interpret-
ing the entanglement in this example as a correlation of the (random)
motions of the electrons. Indeed, the modulus squared of the wave-
function eq.(245) gives the probability density for the positions of the
electrons, which is larger when the electrons are far from each other
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so that their mutual repulsion energy is smaller. Then the corre-
lation (entanglement) lowers the energy, giving rise to an attractive
force between the oscillators. Of course, this explanation departs from
the Copenhagen interpretation (see chapter 2), that should not speak
about the probability that one electron is in the region x1 > 0 and
the other one is in the region x2 > 0. Instead it compels us to say
something like “if we perform a measurement of the simultaneous po-
sitions of the electrons the probability that we get one of them in the
region x1 > 0 and the other one is in the region x2 > 0 is given by
the squared modulus of eq.(245)”. (Simultaneous measurements are
possible because the observables commute). In any case, the origin of
the correlation is not clear in quantum mechanics.

The model in stochastic electrodynamics. In sharp contrast with
QM the interpretation offered by SED is transparent: the random
motion of the electrons is induced by the ZPF, and the correlation
is produced by the interaction. The SED calculation is as follows.
The differential equations of motion may be obtained from eq.(241)
adding the forces due to the random ZPF and the radiation reaction,
see eq.(189), that is,

mẍ1 = −mω2
0x1 −Kx2 +

2e2

3c3
...
x 1 + eE1 (t) ,

mẍ2 = −mω2
0x2 −Kx1 +

2e2

3c3
...
x 2 + eE2 (t) .(246)

However, neglecting the x dependence of the field, E(x,t), as made
in eq.(189), is not good if the dipoles are at a long distance (on the
other hand the Hamiltonian eq.(241) is not valid for short distances).
We may neglect the x dependence within each dipole; that is we can
approximate E (x1,t) � E (a, t), E (x2, t) � E (b,t), where a and b
are the positions of the first and second dipole, respectively. Also
we will simplify the notation writing E1 (t) for E (a,t) and E2 (t) for
E (a,t) . Furthermore, as we assume that the distance between dipoles
is large, we shall take the stochastic processes E1 (t) and E2 (t) as
uncorrelated.

The coupled eqs.(246) may be decoupled via writing new equa-
tions which are the sum and the difference of the former, and intro-
ducing the new position variables

(247) x+ (t) =
1√
2
[x1 (t) + x2 (t)] , x− (t) =

1√
2
[x1 (t)− x2 (t)] ,
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and similarly definitions for E+ (t) and E− (t) . We get

mẍ+ = −(mω2
0 −K)x+ +

2e2

3c3
...
x+ + eE+ (t) ,

mẍ− = −(mω2
0 +K)x− +

2e2

3c3
...
x− + eE− (t) ,(248)

where the stochastic processes E+ (t) and E− (t) are statistically in-
dependent as a consequence of E1 (t) and E2 (t) being uncorrelated.
It is not difficult to show that the spectra of both E+ (t) and E− (t)
are again given by eq.(192) . With the method used to solve eqs.(197)
and (199) we get

(249)
〈
x2
±
〉
=

�

2m
√
ω2
0 ∓K/m

,
〈
v2±
〉
=

�
√

ω2
0 ∓K/m

2m
.

The Hamiltonian eq.(241) may be written in terms of x+ (t), x− (t)
leading to

H =
p2+
2m

+
1

2
mω2

0x
2
+ +

p2−
2m

+
1

2
mω2

0x
2
− − 1

2
K
(
x2
+ − x2

−
)
.

Hence, defining p± = mv±, it is easy to get the total energy, 〈H〉,
taking eqs.(249) into account. The result is in agreement with the
quantum prediction. The joint probability distribution of positions is
Gaussian and factorizes because eqs.(248) are decoupled. That is,

ρ (x+, x−) dx+dx− = ρ+ (x+) ρ− (x−) dx+dx−.

The densities ρ± should be normalized whence we get

ρ± (x) =

√
2m

π�

(
ω2
0 ∓K/m

)−1/4
exp

[
−m

2�

√
ω2
0 ∓K/mx2

±

]
.

Hence it is easy to get the joint probability in terms of the variables
x1 and x2 taking eqs.(247) into account. The result is in agreement
with the quantum prediction, eq.(245) .

In the equation of motion eq.(246) I have assumed that the ZPF
components, E1 (t) and E2 (t), acting on the two particles are uncor-
related. This is a good approximation if the particles are at a distance
which is large in comparison with wavelength, λ � c/ω0, correspond-
ing to the typical frequencies involved. However, if the distance is of
that order or smaller, the ZPF components will be correlated, which
would cause a much stronger correlation between the particle’s mo-
tions. We might speculate that correlations induced by the ZPF are
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the SED alternative to quantum statistics, that is, behaviour of par-
ticles as either bosons or fermions. But this possibility will not be
further discussed here.

The conclusion of our study of the two coupled oscillators in SED
is the suggestion that quantum entanglement is a correlation between
the quantum fluctuations of different systems, mediated by the vacuum
fields, these fields not being apparent in the quantum formalism.

5.4.2. Specific heats of solids. An application of SED at a
finite temperature is the calculation of the specific heat of solids, which
we summarize in the following [16]. We shall consider a solid as a set
of positive ions immersed in an electron gas. As is well known the
electrons contribute only slightly to the specific heat at not too high
temperatures. In SED we shall study the motion of the ions under
the action of three forces. The first one derives from the interaction
with the neighbour ions and the electron gas, that may be modelled
by an oscillator potential when the distance between neighbour ions
departs from the equilibrium configuration. The second is the random
background radiation with Planck spectrum (including the ZPF) and
the third one is the radiation reaction. The motion under the action
of these forces is governed by a discrete set of coupled third order
differential equations that may be decoupled by the introduction of
normal mode coordinates. After that, every equation is similar to
eq.(189) and may be solved in analogous form. The net result is that
the mean (potential plus kinetic) energy in equilibrium is

(250) E(ω) =
1

2
�ω coth

(
�ω

2kT

)
,

where ω is the frequency of the mode. With an appropriate distri-
bution, ρ (ω), of modes this leads to the quantum result derived by
Debye [17], the specific heat being the derivative of the total energy
with respect to the temperature.

There are other interesting results of SED at a finite temperature,
in particular about magnetic properties. They may be seen in the
books of de la Peña et al. [1], [2] and references therein.

The SED calculation of the specific heat of solids provides another
argument for the continuity (as opposed to discreteness) of the ener-
gies of quantum oscillators. It is hard to accept that electromagnetic
radiation consists of particles (photons) in a realistic interpretation
of quantum physics, but it is still harder to assume that quantized os-
cillations of the ions in a solid (phonons) are particles. It is more
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plausible to assume that the energies of the normal modes of the set of
ions have a continuous, although random, distribution of energies such
that the average for a mode is given by eq.(250). It is also plausible
that the mean energy of a vibration mode of every ion is the same as
the mean energy of the radiation mode of the same frequency, which
is the result here obtained.

5.5. The particle in a homogeneous magnetic field

Another linear problem that has been extensively studied within
SED is the motion of a charged particle in a homogeneous magnetic
field [1]. The most relevant result is the prediction of diamagnetic
properties of a free charge (without magnetic moment), which departs
from classical physics and agrees with QM. Here I shall revisit the
SED calculation of the free charged particle in a homogeneous field of
magnitude B.

5.5.1. Classical and quantum theory. The classical motion
may be got from Newton’s law with the Lorentz force, that is,

(251) mr̈ = − (e/c) ṙ×B.

If we choose the Z axis in the direction of the magnetic field B the
motion in that direction is uniform and in the perpendicular plane it
is given by

x = R cos [2ω0 (t− t0)] + x0,

y = R sin [2ω0 (t− t0)] + y0, ω0 ≡ eB

2mc
,(252)

with four integration constants, namely {R, t0, x0, x0}. The motion is
circular with radius R and constant (Larmor) angular frequency ω0.
The total energy E may be identified with the Hamiltonian, that is

(253) H =
p2x
2m

+
p2y
2m

− ω0 (xpy − ypx) +
1

2
mω2

0

(
x2 + y2

)
.

Taking Hamilton equations into account we get

(254) E =
1

2
m
(
ẋ2 + ẏ2

)
= 2mR2ω2

0 .

Actually, in a classical electrodynamical calculation we should
include the radiation reaction (similar to the second term of the right
side in the oscillator eq.(189)). This term would give rise to a loss of
energy by radiation whence the system will eventually arrive at the
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state of minimal energy, which is zero. This shows that no diamagnetic
effects can be expected to occur in classical physics.

The QM treatment starts from a quantum Hamiltonian operator
which may be got from eq.(253) by promoting the classical coordi-
nates and momenta to operators in a Hilbert space (for a detailed
study see [18]). The Z component of the angular momentum opera-
tor and the Hamiltonian commute and we may search for simultaneous
eigenvectors having eigenvalues

Lz ≡ xpy − ypx → ml�, ml = 0,±1,±2, . . . ,

H → Er = (2k + 1) � |ω0| , k = 0, 1, 2, . . .(255)

We see that the quantum ground state, given by k = 0 and Er =
� |ω0|, has an infinite degeneracy because this energy is shared by
states with all possible values of ml. For this reason it is common
to add to the Hamiltonian a two-dimensional oscillator potential with
characteristic frequency ω1(> 0.) Then the energy eigenvalues have an
additional term (2n+ 1) �ω1 with n = 2k−ml ≥ 0, which breaks the
degeneracy, the ground state now corresponding to k = n = ml = 0.
From eq.(255) we may get the most relevant parameter, which is the
magnetic moment. In the ground state it is

(256) M = −∇BE = −�∇B |ω0| = −MB
B

B
, MB =

� |e|
2mc

where MB is the Bohr magneton. This (or the ground state energy,
second eq.(255)) is the result that we may expect to be reproduced in
SED.

5.5.2. SED treatment. In SED we should add the action of
the ZPF (plus the radiation reaction) to the force derived from the
homogeneous magnetic field, see eq.(251). We will study only the
motion in the XY plane. If u ≡ ẋ and v ≡ ẏ are the components of
the velocity vector then the equations of motion are

(257) mu̇ =
e

c
vB +mτü+ eEu, mv̇ = −e

c
uB +mτv̈ + eEv,

where the first term is the component of the Lorentz force, the second
is the radiation reaction and the third one the action of the ZPF (in the
long wavelength approximation, see eq.(189)). The components of the
electric ZPF, Eu (t) and Ev (t), are assumed statistically independent
stochastic processes.

The small value of τ � 1/ω0 allows an approximation similarly
to the one made in the free particle case, section 5.3.4. We may
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substitute evB/(cmτ) for ü and similar for v̈, thus obtaining two first
order equations from eqs.(257) . Then the solution is straightforward
and we get, with steps similar to those involved in the solution of
eq.(189),

(258)
〈
u2
〉
=

∫ ∞

0

�τω3
(
4ω2

0 + ω2
)

πm
[
(4ω2

0 − ω2)
2
+ 4τ2ω6

]dω � � |ω0|
m

,

and the same result for
〈
v2
〉
. Actually, the integral in eq.(258) is

ultraviolet divergent so that a a high frequency cutoff, ωc, should be
included. It may be seen that for small τ , i.e. τω0 � 1, the main
contributions to the integral eq.(258) come either from frequencies ω
close to 2ω0 or for high frequencies ω � 2ω0 (a similar case happens
in the oscillator, see eqs.(197) and (199)). The first contribution,
given by eq.(258), is independent of both the cut-off frequency and
the precise value of τ. The last, high frequencies, contribution may
be obtained neglecting ω0 in comparison with ω, and putting 4ω0 as
lower limit of the integral in order to exclude the frequency region
around 2ω0 calculated in eq.(258) . Thus we get〈

u2
〉
hf

�
∫ ωc

4ω0

�τω5dω

πm (ω4 + 4τ2ω6)

=
�

8πmτ
log
(
1 + 4τ2ω2

c

) � �τ

2πm
ω2
c ,

where we have assumed 2τωc � 1. A comparison with eq.(219) shows
that this contribution is the same for a free particle. Indeed, it is
independent of the magnetic field, which does appear in eq.(258).

The mean energy in SED is obtained putting eq.(258) in the ex-
pression of the energy (see eq.(254)), giving

(259) 〈E〉 = 1

2
m
〈
u2 + v2

〉
= � |ω0| ,

in agreement with the quantum result. Hence there is also agreement
for the magnetic moment, eq.(256).

Another interesting result from SED is the mean value of the
angular momentum, which is

(260) 〈Lz〉 = 〈xpy − ypx〉 = m 〈xv − yu〉 = − e

|e|�,

independently of the magnitude of the magnetic field and the mass
of the particle. I omit the proof, which is straightforward. Thus
the angular momentum is parallel to the magnetic field if the charge
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is negative and antiparallel if it is positive. We saw that the mag-
netic moment is always antiparallel to the magnetic field. The results
eqs.(259) and (260) correspond to the limit τ → 0. In both cases there
are corrections for finite τ which would requiere a relativistic treat-
ment. If an appropriate cutoff is introduced, say ωc = mc2/�, the
high frequencies contribution is small.

There is however a disagreement between QM and SED for the
angular momentum in the stationary state. SED predicts a finite
value given by eq.(260) but in QM there are many possible angu-
lar momenta in the ground state as shown in eq.(255) . On the other
hand if we include an additional oscillator potential with character-
istic frequency ω1, then the quantum prediction for the ground state
angular momentum is zero, a result that also disagrees with the SED
result. Thus in QM there are two features whose realistic interpreta-
tion is difficult. Firstly, eq.(256) strongly suggests that the angular
momentum in the ground state is the same of the SED prediction,
eq.(260) rather than the degeneracy eq.(255) . Secondly, that an addi-
tional oscillator potential no matter how small breaks the degeneracy,
but leading to zero angular momentum, rather than the most intuitive
value eq.(260) . These facts show that a realistic interpretation of the
angular momentum in some quantum mechanical states is difficult. A
possible solution is proposed in section 6.4.

In summary, the SED treatment of the particle in a homogeneous
magnetic field reproduces the most relevant results of QM and pro-
vides a realistic interpretation for the QM prediction of a diamagnetic
behaviour of the charged particle in the presence of a homogeneous
magnetic field.

5.6. Stochastic electrodynamics in confined space

The vacuum radiation field, which in this book we assume to be
a stochastic real field, may be modified by the presence of macro-
scopic bodies. Usually the modification consists of changing the nor-
mal modes of the field, although maintaining the average energy per
normal mode.

5.6.1. The Casimir effect. The most celebrated example for
the change of the vacuum fields in confined space is the Casimir ef-
fect [11]. It consists of the attraction between two parallel perfectly
conducting plates. As discussed in chapter 1 section 1.3.1 the reason
for the attraction may be understood qualitatively as follows. The
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electric field of the zero-point radiation, ZPF, should be zero or nor-
mal at any plate surface. Otherwise a current would be produced if
the plates are perfectly conducting. This fact constrains the possible
normal modes of the radiation, whence the total energy of the ZPF
will be different from the energy inside the volume when the plates
are removed.

The SED calculation is straightforward using classical electrody-
namics but with the assumption that the ZPF is a real stochastic
field. We should determine the possible radiation modes and assign
a mean energy 1

2�ω to every mode. Then we subtract the energies
found in both cases, with the plates in and out for frequencies up to
ωc. After that we take the limit ωc → ∞. In practice. more sophis-
ticated methods than just the subtraction may be used. In any case,
the picture of the phenomenon is that the radiation pressures in both
faces of each plate are different and this is the reason for the force on
each plate. The quantum calculation is quite similar except that the
mode energies are operators and the quantum vacuum expectation
is substituted for the ZPF average. The details of the calculations
appear in many places [1], [4] and will not be reproduced here.

I point out that similar calculations have been made with different
geometries, like hollow conducting spheres [1] and for other vacuum
fields different from the electromagnetic one, like the positron-electron
field [4].

The Casimir effect is the most relevant support for the reality of
the vacuum fields.

5.6.2. Cavity electrodynamics. SED may also offer intuitive
pictures for cavity quantum electrodynamics, a well established exper-
imental field of research [1]. An atom in a cavity gets its properties
modified, in particular its lifetime. In fact, the atom does not decay
if the modes having the frequency of the emitted radiation are not
possible inside the cavity. In the quantum treatment the intriguing
question is how does the atom ‘know’ in advance that it should not
decay in these conditions. In SED the explanation is simple: sponta-
neous decay is actually stimulated by appropriate modes of the ZPF,
and the modes required for the stimulation do not exist inside the
cavity. For instance, in an early experiment by Haroche et al. [12] the
excited atoms propagate between two metallic mirrors separated by
1.1 μm for about 13 natural lifetimes without appreciable decay. The
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experiment involved a small applied magnetic field in order to demon-
strate the anisotropy of spontaneous emission between mirrors. This
experiment has been studied within SED via modelling the atom by a
harmonic oscillator whence the empirical results have been reproduced
quantitatively, but I will not review that work here [13], [14].

5.7. SED application to nonlinear systems

Several nonlinear systems have been studied in stochastic elec-
trodynamics that provide some results in semiquantitative agreement
with quantum mechanics, but badly fail in other cases. Actually, SED
reproduces quantum results, and agrees with experiments, in a limited
domain, namely for systems of charged particles that may be treated
linearly and with a nonrelativistic approximation. In sharp contrast
the treatment of nonlinear systems gives results that usually disagree
with the quantum predictions. The explanation of this fact is that
SED, as defined in the introduction section, is an approximation to
QED to lowest order in Planck constant �, but quantum mechanics
gives predictions for nonlinear systems that involve � to higher order.
Therefore, to be valid for all physical systems, SED should be gener-
alized, likely including all vacuum fields and taking into account the
back action of the particles on the fields. There is here a paradox; we
might foresee that the final theory should be rather cumbersome due
to the large number of fields involved and the nonlinearity of equa-
tions, while quantum theory has a relatively simple formalism. This is
the magic of quantum theory and one of the reasons for the difficulty
of getting a realistic interpretation.

In the following I comment on some calculations for nonlinear
systems. The best method for the SED study in these cases is to get
the evolution of the classical mechanical ‘constants of the motion’,
one of them being the total energy. These parameters are no longer
constant due to the interaction with the ZPF and the radiation re-
action, but may be slowly varying. The method was used in section
5.3.5 for the oscillator and it will be illustrated in the following for a
nonlinear system, the rigid planar rotor. After that I will comment on
the hydrogen atom in SED and the problem of equilibrium between
radiation and matter.

5.7.1. The planar rigid rotor. The planar rigid rotor is the
most simple nonlinear system studied in SED [19]. A model of the
rotor is a particle of mass m and charge e constrained to move in the
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XY plane always at a distance R of a fixed point. Thus the problem
has a single degree of freedom and the SED equation of motion may
be written in terms of the polar angle φ as follows

mRφ̈ = −mτRφ̇3 +mτ
...
φ + eE,

E = − cosφEx (t) + sinφEy (t) .

The terms of the right side give the tangential component of the radi-
ation reaction force, mτ

...
r , and the tangential component of the force

due to the ZPF, respectively. In terms of the angular velocity, ω = φ̇,
the equation becomes

(261) ω̇ = −τω3 + τ ω̈ +
e

mR
E.

Eq.(261) may be solved perturbatively in two steps. In the first step
we solve the classical equation of motion ω̇ = 0, which trivially gives
ω = ω0 = constant. That constant becomes slowly varying when we
take into account the radiation reaction and the action of the ZPF.
In order to get that variation eq.(261) may be solved substituting ω0

for ω in the perturbation, that is, in all terms of the right side. The
solution with initial condition ω (0) = ω0 becomes

ω(t) = ω0+

∫ t

0

dt′
[
−τω3

0 +
e

mR
(− cos (ω0t

′)Ex (t) + sin (ω0t
′)Ey (t

′))
]

The first term within the integral sign represents drift and the last
term diffusion. The diffusion constant may be calculated via the limit

D = lim
t→∞

1

t

〈[∫ t

0

dt′
e

mR
(− cos (ω0t

′)Ex (t
′) + sin (ω0t

′)Ey (t
′))
]2〉(262)

=
( e

mR

)2
lim
t→∞

1

t

∫ t

0

dt′
∫ t

0

dt
′′
cos [ω0 (t

′ − t′′)] 〈Ex (t
′)Ex (t

′′)〉 ,

where I have taken into account that

〈Ex (t
′)Ex (t

′′)〉 = 〈Ey (t
′)Ey (t

′′)〉 and 〈Ex (t
′)Ey (t

′′)〉 = 0.

The field correlation may be easily obtained from the spectrum, eq.
(192) as follows

〈Ex (t
′)Ex (t

′′)〉 = 2�

3πc3

∫ ∞

0

u3 cos [u (t′ − t′′)] du.

When this is inserted in eq.(262) the variables t′ and t′′ may be
changed to w ≡ (t′ + t′′) /2 and t′−t′′ ≡ s . With good approximation
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the integration may be performed from 0 to t for the w integral and
for the whole real line for the variable s. Then the limit t → ∞ in
eq.(262) is trivial and we get, taking the definition of τ , eq.(190), into
account,

D =
�τ

πmR2

∫ ∞

0

u3du

∫ ∞

−∞
cos (us) cos (ω0s) ds

=
�τ

πmR2

∫ ∞

0

u3duπ [δ (ω0 + u) + δ (ω0 − u)] =
�τ

mR2
ω3
0 .

From the diffusion constant and the damping it is possible to ob-
tain the following Fokker-Planck equation for the probability density,
ρ (ω0), of frequencies of the rotor

∂ρ

∂t
=

∂

∂ω0

(
τω3

0ρ
)
+

1

2

∂2

∂ω2
0

(
�τ

mR2
ω3
0ρ

)
,

whose (regular) stationary solution is

ρ =
2mR2

�
exp

(
−2mR2ω0

�

)
.

A similar method may be used for the three-dimensional rotor [19]
and the result is

(263) ρ =

(
2mR2

�

)2

ω0 exp

(
−2mR2ω0

�

)
.

5.7.2. Comparison between SED and QM. The predictions
of SED for the rigid rotor disagree with those of QM at least in four
aspects, that will be illustrated in the following for the particular case
of the three-dimensional rigid rotor:

1. The distribution of positions or momenta in the minimal energy
state. In quantum mechanics the eigenstates of the angular momen-
tum squared and the Hamiltonian of the rotor are, respectively,

(264) L2 = �
2l(l + 1), El =

�
2

2I
l(l + 1), l = 0, 1, 2, . . .

so that the ground state corresponds to L2 = E = 0. In contrast,
the stationary solution in SED is given by eq.(263) where there is a
spherical distribution of angular momenta given by

(265) W (L)LdL =
4

�2
exp

(
−2L

�

)
LdL.

2. The set of states. As in the oscillator studied in section 5.3.3
the set of possible states is quite different in QM and SED.
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3. The spectrum. In QM the spectrum consists of the set of
frequencies

(266) ωlj = (�/2I) [j(j + 1)− l(l + 1)] → (�/I) (l + 1) ,

the latter corresponding to the transitions allowed in the atomic dipole
approximation. In sharp contrast, SED predicts a continuous spec-
trum, although the most intense absorption from the stationary state
eq.(264) corresponds to the maximum absorption, which may be shown
to be ω = �/I [1], in agreement with the QM result for the transition
from the ground to the first excited state, see eq.(266) . However, QM
predicts a sharp frequency whilst the SED prediction corresponds to
a wide band. In experiments the frequency is not sharp, but it is less
wide than the SED prediction. The disagreement between the QM
prediction and experiments is usually explained because the rigid ro-
tor is not a realistic model of a molecule. For instance, molecules are
not completely rigid. The disagreement with experiments is greater
in SED and it cannot be explained as easily as in QM.

4. The specific heat. There is also a discrepancy as shown in the
comparison between quantum and SED treatments [19]. This point
will not be discussed here.

5.7.3. A difficulty with the angular momentum. The dis-
agreement between the quantum prediction, eq.(264), and the SED
prediction, eq.(265), for the rigid rotor is actually general and it poses
a problem for any realistic model of rotation in quantum physics. For
instance, if we try to get a picture of a rotating molecule. The quan-
tum ground state of the rigid rotor possesses zero angular momentum
and spherical symmetry, but these two properties are contradictory
for any realistic interpretation. For the sake of clarity let us consider
for instance the molecule of carbon oxide, CO, which may be modelled
by a three-dimensional rigid rotor. It consists of an oxygen atom and
a carbon atom at a distance which is very well known empirically. The
ground state of this molecule possesses zero angular momentum and
therefore (according to the quantum formalism) spherical symmetry.
Discarding explanations which are bizarre for any realistic interpreta-
tion, like saying that ‘the form of the molecule emerges during the act
of measurement’, the meaning of spherical symmetry is unclear. The
only meaning compatible with a physical picture is that the molecule
is rotating randomly in such a way that the probability distribution
of the orientations of the axis in space possesses spherical symmetry.
However, this is in conflict with the quantum prediction that the total
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angular momentum is zero, dispersion-free. That is, the squared mean
angular momentum is also zero. This situation is quite common, it
appears in many molecules, atoms or nuclei. It seems that either the
standard quantum prediction is wrong (e.g. the ground state is not
physically achievable) or a realistic physical model is not possible.

A possible solution to the dilemma is that the quantum formalism
actually provides the total angular momentum of the molecule plus the
vacuum fields that interact with it. If the ground state corresponds to
an equilibrium of the system (e.g. the molecule) with the vacuum fields
it is plausible to assume that there is a continuous exchange of angular
momentum between the system and the vacuum fields so that the
total angular momentum (a conserved quantity) remains always zero.
This is the case in the SED treatment of the planar rigid rotor of the
previous section. In fact, eq.(261) may be interpreted as the equation
for the balance of angular momentum. Indeed, the equation may be
rewritten as the Z component of the angular momentum vector, that
is,

d

dt
(Iω) = −τIω3 + τIω̈ + e (R×E)z ,

where the change of the rotor angular momentum equals the radiated
momentum (the first two terms) minus the momentum absorbed from
the ZPF. In summary, there is no real contradiction between the fact
that SED predicts a distribution of angular momenta of the rotor
alone and our interpretation of the QM prediction that the angular
momentum of rotor plus field is stricly zero. I do not believe that SED
is the correct reinterpretation of QM, but I think that it illustrates
adequately the possible solution to the problem.

A similar solution may be given to the strange, if not paradox-
ical, quantum prediction that a charged particle in a homogeneous
magnetic field has zero component of the angular momentum in the
direction of the field, but the energy is precisely the product of the
field times the magnetic moment. The SED results are more intuitive,
namely the energy of the equilibrium state, eq.(259), agrees with the
quantum ground energy, but there is a component of the angular mo-
mentum in the direction of the field, see eq.(260) .

5.7.4. The hydrogen atom. The hydrogen atom is the most
relevant nonlinear system within elementary quantum mechanics, and
therefore a crucial test for the validity of SED. Once the stationary
state of the harmonic oscillator had been solved with success, several
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authors devoted a big effort during the 1970’s to study the hydro-
gen atom in SED. Several approximation methods were proposed for
calculating the stationary state of the atom (modelled as two parti-
cles with opposite charge, one of them at rest). The most successful
method devised for the study of a charged particle in a potential well
rests upon the assumption that the classical constants of the motion
change slowly. That is, the motion is close to the classical one, the
action of the ZPF and the radiation reaction giving rise to a slow
diffusion in the space of classical orbits. As every classical orbit is de-
termined by the initial position and velocity, {r0,v0}, the final result
of the calculation is a probability distribution in the phase space of
positions and velocities, {r,v}, which is the same as the distribution
of initial positions and velocities, {r0,v0}, if the state is stationary.
This is similar to what happens in the planar rigid rotor studied above.

In the case of the hydrogen atom the result of the calculation did
not provide a stationary solution. In fact, the prediction was that the
atom is not stable but ionizes spontaneously due to the orbits passing
close to the nucleus [20].

That work has been criticized because such orbits cannot be
treated with a nonrelativistic approximation, and a relativistic treat-
ment could produce an important change in the results. Actually, the
prediction of spontaneous ionization made by SED analytical calcula-
tion is not a too strong argument against the SED prediction. In fact,
the result depends crucially on the electron orbits passing close to the
nucleus, which would requiere a relativistic treatment. Also, quan-
tum theory predicts that the free atom is unstable against ionization
at any finite temperature, no matter how small. This trivially follows
from the fact that the quantum partition function is divergent, that
is,

Z =

∞∑
n=1

n−1∑
l=0

(2l + 1) exp

(
−E0

n2

)
→ ∞.

Therefore, it is not too relevant if the approximation method used in
SED has an effect (spontaneous ionization) similar to the effect of a
thermal radiation in QM.

Furthermore, numerical solutions of the hydrogen atom in SED
have been made [21] since 2003 that explain the stability of the atom.
They led to a stationary distribution fairly close to the quantum pre-
diction for the position distribution in the ground sate. However,
more powerful calculations made in 2015 [22] predict a ionization of
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the atom. Numerical calculations have the advantage that do not re-
quire approximations in the differential equations, like neglecting the
dependence on position of the ZPF (the electric dipole approxima-
tion). However, the numerical methods have uncertainties that may
explain the discrepancy, as discussed above for the early analytical
treatment. See also [23].

5.7.5. Thermal equilibrium between radiation and mat-
ter. SED derivation of Planck’s Law. Several authors have
claimed that Planck’s law may be derived from classical postulates,
usually within the framework of SED [2], [24]. A derivation of the
thermal radiation should follow from the study of the thermal equi-
librium between radiation and matter. In the framework of standard
quantum theory it leads to Planck’s law, but here we are considering
the question whether the law may be obtained from classical electro-
dynamics. The difficulty is related to the fact that the equilibrium
radiation-matter should involve nonlinear systems. In particular, the
study of equilibrium requires a balance between absorption of energy
from the radiation at a frequency and emission at a different frequency.
Only in these conditions it is possible to study the distribution of en-
ergy amongst the different frequencies, which is the essential purpose
of a radiation law. If we deal only with linear (harmonic) oscillators
then both the absorption and emission of radiation take place at the
same frequency.

The problem of thermal equilibrium was extensively studied in
the first decades of the 20th century and the conclusion was un-
controversial in my opinion: If one assumes classical dynamics then
thermal equilibrium is achieved when the particles have the Maxwell-
Boltzmann distribution and the radiation the Rayleigh-Jeans spec-
trum [25]. Thus there is a contradiction between the derivation re-
ported by van Vleck and the derivations claiming that the classical
equilibrium spectrum is given by Planck’s law. It was suggested that
early derivations involved Newtonian dynamics and that a study with
relativistic dynamics might led to Planck’s law. However, it has been
shown that thermal equilibrium of relativistic particles also leads to
the Rayleigh-Jeans law [26], [27].

Actually, the contradiction is only apparent. In fact, it may be
shown that according to classical electrodynamics a system of par-
ticles may reach dynamical equilibrium with radiation if this has a
ZPF plus Planck spectrum, that is, an energy per normal mode given
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by eq.(250) . But this is so for any values of the parameters T (tem-
perature) and � (Planck constant), in particular in the limit � → 0
when eq.(250) becomes the Rayleigh-Jeans law. The point is that the
derivation of Planck’s law (with ZPF) requires assuming both equi-
librium between matter and radiation and that the limit T → 0 gives
the ZPF spectrum rather than zero. With these assumptions Planck
spectrum has been derived [24], [28].

A related result is the classical derivation of the Davies-Unruh
effect initially derived from quantum electrodynamics [29], [30]. It
is interpreted in quantum theory as the production of photons with
Planck distribution of frequencies when a detector moves in the vac-
uum with accelerated motion. The result may be got in SED with
the interpretation that the spectrum of the ZPF appears as thermal
when seen from an accelerated reference frame [31], [4].

5.8. Conclusions

We have seen that calculations of several linear systems within
SED provide a remarkable agreement with the predictions of QM. On
the other hand the realistic interpretation of SED is rather obvious.
Thus the question arises, does SED offer the realistic interpretation
of QM which we are searching for? Unfortunately the answer is in the
negative; the difficulties of SED for the interpretation of phenomena
associated to nonlinear systems seem insurmountable.

I propose that getting a realistic interpretation of QM would be
possible accepting the general ideas of SED but rejecting many of
the particular assumptions. The general ideas to be retained are the
following: 1) Nuclei, atoms or molecules (but maybe not elementary
particles like electrons) are bodies with well defined size and form
following definite, but highly irregular, trajectories. (If the bodies are
composite, like atoms, they may also suffer deformations). 2) Their
motion is strongly influenced by the fluctuations of the vacuum fields.

In summary the most relevant clue provided by SED for a realistic
interpretation of (nonrelativistic) quantum mechanics is the following:

The attempt at a realistic interpretation of the quantum mechanics
of particles is not possible if the vacuum fields are not included.
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6.1. Introduction

This chapter is devoted to the realistic interpretation of the quan-
tized electromagnetic field. We shall restrict attention to radiation
with frequencies in the visible or near it, except for a short reference
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to the Compton effect. Also, the study of electromagnetic interactions
with microscopic (quantum) objects like atoms, molecules or nuclei,
will be excluded. Therefore, the aim of the chapter is a realistic in-
terpretation of some relevant phenomena in the domain of quantum
optics.

The essential difference between the classical and the quantum
treatment of the radiation field is the particle behaviour predicted
in the latter, in addition to the common wave behaviour. Thus in
section 6.2 I will present a qualitative picture of four typical examples
of alleged particle behaviour: Localized radiation energy in atomic
emissions, the Compton effect, anticorrelation after a beam splitter
and discrete detection events (photocounts).

In section 6.3 I will present a short introduction to the Weyl-
Wigner formalism, equivalent to the common Hilbert-space formalism
but more suited for a realistic interpretation. Then the formalism will
be applied to the interpretation of experiments involving entangled
photon pairs produced via spontaneous parametric dawn-conversion
(SPDC). In section 6.4 we will study the SPDC process, in section 6.5
realistic models of a few relevant experiments, and finally in section
6.6 we will discuss experimental tests of Bell inequalities and show
that their violation may be interpreted via local realistic models.

6.2. The particle behaviour of light

6.2.1. Photons as localized objects. The wave-particle beha-
viour of quantum objects is possibly the main obstacle for an intuitive
understanding of quantum theory. This is the case in particular for
the electromagnetic radiation field. In fact, after Maxwell’s work it
seemed clear that radiation consists of electric and magnetic fields
propagating in space, that is, waves. Einstein changed this simple
picture in 1905 proposing that radiation consists of discrete amounts
of energy, later named photons. Furthermore, in his 1916 study of
absorption and (spontaneous and stimulated) emission of radiation
by atoms, he concluded that photons have also a well defined momen-
tum, the energy and momentum being related to the frequency ν and
wavelength λ, respectively, that is,

E = hν, p = h/λ.

As a consequence of this discovery two facts troubled Einstein. Firstly,
the direction of the emitted photon momentum is random, thus sug-
gesting a breakdown of causality as we discussed in chapter 1, section
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1.2.4. Secondly, photons should have a length much greater than typ-
ical atomic dimension in order for their wavelengths to be defined. In
fact, typical photons of atomic emissions belong to the visible or near
ultraviolet, with wavelengths of the order of microns, whilst atomic
radii are of the order of nanometers, which is about 1000 times smaller.
But the transverse size should not be much larger than atomic di-
mensions. Consequently, Einstein proposed that photons should be
‘needles of radiation’. Both troubles of Einstein are solved with the
hypothesis that radiation consists of just waves but the quantum vac-
uum fields are real stochastic fields. This will be explained in section
6.2.2 below.

The increasing empirical evidence for the particle nature of radi-
ation was reinforced by the Compton experiments in 1924, and from
that date it appears that we can renounce neither the wave nor the
corpuscle nature of light. However, saying that photons are neither
waves nor particles is a paradox rather than a solution. In fact, par-
ticle means energy concentrated in a small region of space and wave
implies energy extended over a large region. The contradiction may be
seen also as follows. In quantum theory it is frequently assumed that
all (normalized) vectors of the Hilbert space are possible pure states
of the system. This would imply that single-photon states are states
of the radiation, in spite of the fact that in free space single-photon
states correspond to plane waves extended over the whole space (more
properly over a very large normalization volume). Nevertheless, it is
also assumed the photons are localized particles. An obvious solution
would be to believe that only some localized wave-packets could corre-
spond to physical photon states, but then the frequency of the single
photon is not well defined, as discussed above. Without solving the
contradiction it is not possible to get a realistic picture of the quan-
tized radiation. The standard ‘solution’ has been to renounce any
picture of photons (and quantum phenomena in general) and to deal
only with the (mathematical) formalism, this being the precept of the
Copenhagen interpretation, as we mentioned in chapter 2, section 2.4.

The particle aspect of radiation is more manifest than the wave
aspect in high energy physics because the photon energies are large
but the wavelength is too small to be easily measured. In contrast,
the wave aspect is more apparent in the macroscopic domain, the
radiation energies being much larger than the energy of one photon
with macroscopic wavelength, so that observable phenomena involve a
very large number of photons. This dependence on the scale suggests
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that the appropriate setting to study the dual behaviour or radiation
is quantum optics, where the photon energies and wavelengths (say of
visible light) are neither too large nor too short in comparison with
atomic energies and sizes, respectively.

6.2.2. Needles of radiation in atomic emissions. In the sto-
chastic approach to the electromagnetic field, supported in this book,
the states of the electromagnetic radiation are probability distribu-
tions of a stochastic field. In particular, if we deal with radiation in
free space (which I will assume except otherwise stated), the ampli-
tudes of plane waves would be random variables. The interplay of the
vacuum zero-point field (ZPF) with any additional radiation may give
rise to fluctuations with a strong concentration of energy, which we
may identify with ‘photons’. An example is the ‘spontaneous’ emis-
sion of radiation by an atom. In our approach the emission is not
spontaneous but induced by the ZPF. Then let us assume that in a
fluctuation a strong plane wave of the ZPF of frequency ν arrives at an
atom and it happens that ν is also one of the possible frequencies for
emission from the excited atom. The arriving plane wave component
of the ZPF may induce the emission of radiation with the same fre-
quency in phase with the incoming wave. Thus the emitted radiation
should correspond to the addition of the amplitudes of the incoming
(plane) wave plus the emitted (spherical) wave. The frequencies being
equal there would be interference and it is not difficult to show that
it will be constructive in the forward direction and mainly destructive
in all other directions.

More quantitatively, the outgoing energy will be concentrated in
a region with a boundary defined by the following relation between
the half angle, θ, as seen from the atom and the distance, d,

d

cos θ
− d ∼ λ

2
⇒ θ ∼

√
λ

d
,

where λ is the wavelength. If we take d to be coherence length of
the emitted ‘photon’, for typical atomic emissions we have d ∼ 1m
and λ ∼ 1μ, so that θ ∼ 10−3. This fits with Einstein’s proposal of
‘needles of radiation’ and, in addition, it explains the random direction
of emission. In our interpretation the stochastic character of the ZPF
is the cause of the randomness. This provides a picture of the photon
as a concentration of radiation energy in the plane perpendicular to
the motion and nevertheless with a frequency relatively well defined.
Indeed, the frequency range may correspond to the inverse of the
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atomic lifetime, roughly the coherence length divided by the velocity
of light.

We may apply the photon model to the case of an atomic cascade
where two photons are emitted within a short time interval. Then
the picture that emerges is the existence of two ‘needles of radiation’
moving in different directions. In particular, if both the initial and
the final state of the atom have zero spin and the photons are emitted
in opposite directions, then the angular momenta of the two photons
should be opposite by angular momentum conservation, whence they
will be strongly correlated in polarization. The quantum formalism
predicts that they will be maximally entangled, but I will not provide
an interpretation of photon entanglement at this moment, see below
section 6.5. The correlation will diminish if the photons are emitted at
an angle smaller than 180o, whence no Bell inequality may be violated
in experiments using photon pairs from atomic cascades (see chapter
3 section 3.4.1 for a survey of those experiments).

6.2.3. A qualitative picture of the Compton effect. As an-
other example I present a qualitative model for the Compton effect.
As is well known, Compton’s was the experiment that the scientific
community accepted as the final proof of the particle character of ra-
diation, that is, the existence of photons. The experiment is usually
understood as a collision between one photon of X-ray of frequency
ω1 and an electron, giving rise to another photon of smaller frequency
ω2 at an angle θ with the incident one and a recoil electron. Indeed,
the (relativistic) kinematics may be explained assuming that the in-
cident and outgoing photons have energies �ω1 and �ω2, respectively,
and the electron is initially at rest. Quantum electrodynamics gives a
quantitative account of the phenomenon, including the cross section
of the process, but it does not offer an intuitive picture except the
proof that photons behave like particles. On the other hand there
have been several attempts at a semiclassical explanation that I will
not revisit here. A qualitative stochastic interpretation is as follows.

We may assume that the incoming X-ray beam is monochromatic
of frequency ω1 and intensity I1. An electron placed in the beam will
suffer a force in the direction of the Poynting vector of the radiation,
which is the field resulting from the addition of the incoming X-ray
beam plus the ZPF. The Pointing vector of the ZPF is zero on the
average due to its mean rotational invariance, but it is fluctuating. At
a given time a large field fluctuation may exist of frequency ω1 and
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phase φ in a direction at angle θ1 with respect to the X-ray beam. The
interference of the incident beam field and the fluctuation of ZPF will
produce another field with maximum intensity in a direction θ2 <
θ1. That intensity I2 at the maximum may be greater than I1, and
accelerate the electron in the direction θ2. The accelerated electron
will emit radiation that would interfere with the incoming field in
such a way that the total energy and momentum are conserved. The
emitted radiation will act like a secondary X-ray radiation, which is
the observed Compton effect.

The moral of these examples is that if we search for a stochastic
interpretation of quantum radiation we should not try to interpret
literally the standard quantum (Hilbert space) formalism but just
the actual experiments or observations. In the following I will study
representative experiments involving radiation, macroscopic bodies
and photon counters. For the interpretation of these experiments
the Hilbert space formalism is not appropriate. The alternative, but
physically equivalent, Weyl-Wigner formalism reviewed below is bet-
ter.

6.2.4. The action of beam-splitters. In the interaction with
macroscopic bodies like lenses or polarizers, light may be usually
treated as waves. However, for the interpretation of some experi-
ments, relevant for our purpose of a realistic understanding of quan-
tum theory, it is essential to devote attention to the behaviour of
beam-splitters and photon counters, as is done in the following two
subsections.

A simple beam-splitter (BS) may consist of just a slab of trans-
parent material. If a light beam impinges on a point of the slab, a part
of the beam intensity is transmitted and another part reflected. The
relative intensities of the outgoing fields depend on the refractive in-
dex of the material and the angle of incidence. In this way we have an
elementary beam-splitter with one incoming channel and two outgo-
ing channels. Now we may have another incoming channel via a light
beam arriving in the opposite side of the slab, which gives rise to two
new outgoing channels. In practice the plate is used so that the trans-
mitted light from one incoming channel is superposed to the reflected
light of the other channel. In this way we would have two incoming
channels and two outgoing ones. Real beam-splitters may be more so-
phisticated, e.g. involving piles of plates (used for instance in many of
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the tests of Bell inequalities studied in chapter 3). Sometimes the BS
polarizes light, thus acting as a polarizer or a polarization analyzer.

In the following I study in more detail a balanced nonpolarizing
BS. If the field amplitudes of the incoming beams are E1 and E2, then
the amplitudes in the outgoing channels will be

(267) Eout1 =
1√
2
(E1 + iE2) , Eout2 =

1√
2
(E2 + iE1) .

The imaginary unit i is appropriate if we treat the electromagnetic
fields in the complex representation, as we will do throughout this
chapter. From eq.(267) it is obvious that the energy is conserved in
the BS. In fact, the sum of intensities in the incoming channels equals
the similar sum in the outgoing ones, that is,

Iout1 + Iout2 = |Eout1|2 + |Eout2|2 = |E1|2 + |E2|2 = Iin1 + Iin2.

In most cases studied in this chapter the field arriving at one of the
incoming channels will be a signal and the field at the other one will be
a vacuum field. An application of the BS is the following experiment.

6.2.5. Anticorrelation-recombination experiment. A dra-
matic exhibition of the wave-particle behaviour of light is the anticorre-
lation-recombination experiment [1]. A weak radiation signal consist-
ing of well separated photons is sent to one of the incoming channels
of a balanced beam splitter BS1, and two photon detectors, A and
B, are placed in front of the outgoing channels. No coincidences are
observed, which shows the corpuscular behaviour of light: a photon
is not divided, but goes to one of the detectors. If the detectors are
removed and the two outgoing radiation beams are recombined via
the two incoming channels of another beam splitter BS2, then the
detection in one of the outgoing channels depends on the length dif-
ference between the two paths from BS1 to BS2, this being a typical
wave behaviour.

Our stochastic interpretation is as follows [2]. If we assumed that
the vacuum quantum fields are not real fields then only the signal
field E entering BS1 should produce outgoing fields in each of the
two outgoing channels. However, if the vacuum fields are real, there
is another (vacuum) field E0 entering in BS1 via the second incoming
channel, whence the outgoing fields will be

(268) EA =
E + iE0√

2
, EB =

iE + E0√
2

.
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Depending on the relative phases, one of the intensities may be large
and the other one small, that is,

IA = |EA|2 =
1

2
(|E|2 + |E0|2) + |E| |E0| cosφ,(269)

IB = |EB |2 =
1

2
(|E|2 + |E0|2)− |E| |E0| cosφ,

where φ is the relative phase of the fields E and E0. On the other
hand the vacuum intensities would ideally be IA0 = IB0 = I0 = |E0|2.

If we assume that detection is roughly proportional to the part of
the arriving intensity that surpasses the ZPF level, then with I = |E|2
and I0 = |E0|2 we obtain

RA = RB =
1

2
(〈I〉 − 〈I0〉), RAB =

1

4
(
〈
I2
〉− 〈I0〉2)− 1

2
〈I〉 〈I0〉 .

This result shows that for weak signals, that is, when I is not much
greater than I0, the coincidence detection rate is inhibited, that is,
RAB � RARB , as observed in the experiment described. (We define
the rate as a dimensionless probability of detection per time window).
In contrast for macroscopic (classical) light I � I0 and the ratio would
be

r ≡ RAB

RARB
�
〈
I2
〉

〈I〉2 .

Hence if the radiation has fixed (nonfluctuating) intensity, like laser
light, then 〈

I2
〉
= 〈I〉2 ⇒ r = 1

meaning that the detections are uncorrelated. On the other hand for
chaotic light, where the field fluctuations are Gaussian, we would have〈

I2
〉
= 2 〈I〉2 ⇒ r = 2,

meaning that the detections by Alice and Bob are positively corre-
lated. The change from r = 1 to r = 2, a phenomenon known as
‘photon bunching’, has been interpreted as a quantum effect attrib-
uted to the Bose character of photons. In our stochastic interpretation
it is the consequence of the correlated fluctuations derived from the
Gaussian character of chaotic light.

In the recombination process the fields of eq.(268) will enter BS2
giving rise to the following intensity in one of the outgoing channels

(270) Irec =

∣∣∣∣ |EA|√
2

+ exp (iθ)
|EB |√

2

∣∣∣∣2 =
1

2
(I + I0) +

1

2
(I − I0) cos θ,
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where θ is the relative phase due to the different path lengths. The
device used in the experiment [1], consisting of two beam splitter and
two mirrors in between, is called Mach-Zehnder interferometer. The
detection rate will be

RA = 〈Irec〉 − 〈I0〉 = 1

2
〈I − I0〉 (1 + cos θ) ,

meaning that a 100% visibility may be achieved. Thus we have a
wave explanation of one of the most dramatic particle behaviour of
light, the anticorrelation after a beam splitter. The anticorrelation is
usually named ‘photon antibunching’ and it is considered a typically
quantum phenomenon, that cannot be explained by classical theories.
Of course, it can be explained if we do assume that the vacuum fields
are real stochastic fields. The evolution of these fields is classical
(Maxwellian) but the assumption of real vacuum fields is alien to
classical physics. I stress that the Planck constant appears as a scale
of the vacuum fields, see eq.(271) .

6.2.6. Photocounters. A fundamental hypothesis in this book
is that the electromagnetic vacuum field is a real stochastic field (the
zero-point field, ZPF). If expanded in normal modes the ZPF has a
(positive) probability distribution of the amplitudes given by

(271) W0 =
∏
j

2

π
exp
(
−2 |aj |2

)
.

(See chapter 5. For the connection of this distribution with the Weyl-
Wigner formalism see section 6.3.2, eq.(277) below). According to
that assumption any photodetector in free space would be immersed
in an extremely strong radiation, infinite if no cut-off existed. Thus,
how might we explain that detectors are not activated by the vacuum
radiation? Firstly, the strong vacuum field is effectively reduced to
a weaker level if we assume that only radiation within some (small)
frequency interval is able to activate a photodetector, that is, the in-
terval of sensitivity (ω1, ω2). However, the problem is not yet solved
because signals involved in experiments may have intensities of the
order of the vacuum radiation in the said frequency interval, whence
the detector would be unable to distinguish a signal from the ZPF
noise. Our proposal is to assume that a detector may be activated
only when the Poynting vector (i.e. the directional energy flux) of the
incoming radiation is different from zero, including both signal and
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vacuum fields. This hypothesis leads us to model the detector as pos-
sessing an active area, the probability of a photocount depending on
the integrated energy flux crossing that area from the front side during
some specific activation time, T , and the probability being zero if the
net flux crosing the area is from rear.

This assumption allows understanding why the signals, but not
the vacuum fields, activate detectors. Indeed, the ZPF arriving at any
point (in particular the detector) would be isotropic on the average,
whence its associated Poynting vector would vanish on the average,
therefore only the signal, which is directional, should produce photo-
counts. A problem remains because the vacuum fields are fluctuating
whence the Poynting vector also fluctuates. Hence we may predict
the existence of some dark rate even at zero Kelvin. The problems
derived from the fluctuations diminish assuming that photocounts are
not produced by an instantaneous interaction of the fields with the de-
tectors; the activation requires some time interval, a known fact in
experiments. Therefore, the effective energy flux is a time average
whose fluctuations are plausibly small.

These arguments are qualitative and a quantitative estimate is
worthwhile. However, making such an estimate is rather involved and
I will just sketch the steps required. We should start calculating the
expectation value of the Poynting vector P due to the ZPF at a point
r in space at time t. If we expand the ZPF in plane waves as usual,
the expectation of the Z component of P may be written as a sum
involving all radiation modes, that is,

(272) 〈Pz〉 =
⎡⎣∑

j

∑
k

Prob (aj , ak)Ej (r,t)×Bk (r,t)

⎤⎦ · uz,

where aj (ak) is the amplitude of the mode j (k), Ej (Bk) its associ-
ated electric (magnetic) field and uz is a unit vector in the Z direc-
tion. The probability density Prob (aj , ak) is related to eq.(271) . We
assume that only field components with frequencies in the sensitivity
interval (ω1, ω2) are effective for detection, whence we should restrict
the double sum to modes with frequencies in that interval. Hence
we might obtain the probability distribution of the integrated energy
flux, Φ, crossing the active area of the detector during the activation
time T . We may assume that a detection event takes place whenever
Φ surpasses a threshold Φth > 0 that may be chosen within some lim-
its by the experimental physicist. Low Φth may increase the detection
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efficiency but also increase the number of spurious counts and the op-
posite happens for high Φth. In fact, if the ZPF is isotropic the flux
crossing the active area of the detector might be positive or negative
with equal probabilities but the ratio Φ/T would be smaller for larger
T , zero for T → ∞. In actual detectors the choice may be made via
adjusting the voltage bias. However, for any finite T there will be a
finite probability that Φ > Φth, thus producing photocounts even in
the absence of signals. These spurious counts give rise to a dark rate r
usually attributed to thermal fluctuations. Indeed, the experimental
dark rate is known to diminish with decreasing temperature, but we
propose that it would remain finite at zero Kelvin. Now we study the
case when there is a signal, superposed to the ZPF, arriving at the
detector. The signal may be weak with respect to a typical short-time
fluctuation of the ZPF, but it is positive at all times because signals
arrive at the detector in the correct (front) direction. Thus a pos-
itive quantity due to the signal should be added to the fluctuating
energy flux derived from the ZPF, calculated via eq.(272) . In a par-
ticular experiment we should choose the sensitivity interval T and the
threshold Φth such that we have high detection efficiency η and small
dark rate r, but there are obvious constraints. For instance, in order
to have a small r for given T we need high Φth, but in this case some
signals will become undetected leading to a decrease of η. This is a
typical behaviour of tests having yes-no answer, where a high sensi-
tivity gives rise to false positive results and lowering the sensitivity
would increase false negative answers. I propose that this trade-off is
the physical reason for the difficulties in manufacturing very efficient
photon counters.

In the following sections of this chapter we will use repeatedly
a detection rule stating that the detection probability, during a time
window T , when a field with intensity I (t) arrives at the photocounter,
is proportional to the integrated intensity during the time T ; that is,

(273) P ∝ Φ =

∫ T

0

I(t)dt.

This rule is convenient for calculations, but it is less plausible than the
assumption that a detection event is produced when Φ surpasses some
threshold Φth , as proposed above. Furthermore, in some calculations
we will have cases where I(t) < 0, eq.(273) becoming meaningless.
A negative value of I corresponds to field intensity arriving at the
detector from rear. I will assume that the threshold rule is more
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plausible while eq.(273) is an approximation whose validity should be
studied.

With this threshold rule the probability of detection during an
activation time (that we may identify with the time window used in
the experiments to be discussed in sections 6.5 and 6.6 below) is given
by the probability that Φ ≥ Φth, which we calculate as follows. We
shall deal with Gaussian fields, whence the probability distribution of
the energy flux Φ would be exponential, that is,

(274) ρ (Φ) = 〈Φ〉−1
exp

[
− Φ

〈Φ〉
]
, Φ ≥ 0,

where 〈Φ〉 is the mean value of Φ. Hence the probability of surpassing
the threshold, thus producing a photocount, will be

(275) Pth =

∫ ∞

Φth

ρ (Φ) dΦ = exp

[
−Φth

〈Φ〉
]
, Pmean = K 〈Φ〉 ,

where for comparison we have written also the detection probability
Pmean predicted from the alternative detection rule, K being a con-
stant. With the Pth rule the detection probability is negligible for
small 〈Φ〉, that is, for weak signals, while for 〈Φ〉 large it becomes
independent on 〈Φ〉. This behaviour is much more plausible than the
one derived from the rule Pmean which gives the absurd prediction
P > 1 for big enough signals.

6.3. The Weyl-Wigner formalism in quantum optics

6.3.1. Definition. The WW formalism was developed for non-
relativistic quantum mechanics, where the basic observables are posi-
tions, x̂j , and momenta, p̂j , of the particles, as reviewed in chapter 4.
It may be trivially extended to quantum optics provided we interpret

x̂j and p̂j to be the sum and the difference of the creation, â†j , and
annihilation, âj , operators of the j-th normal mode of the radiation.
That is,

x̂j ≡ c√
2ωj

(
âj + â†j

)
, p̂j ≡ i�ωj√

2c

(
âj − â†j

)
(276)

⇒ âj =
1√
2

(
ωj

c
x̂j +

ic

�ωj
p̂j

)
, â†j =

1√
2

(
ωj

c
x̂j − ic

�ωj
p̂j

)
.

Here � is the Planck constant, c the velocity of light and ωj the fre-
quency of the normal mode. In the following I will use units � = c = 1.
For the sake of clarity I shall represent the operators in a Hilbert space

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.3. THE WEYL-WIGNER FORMALISM IN QUANTUM OPTICS 237

with a ‘hat’, e.g. âj , â
†
j , and the amplitudes in the WW formalism

without ‘hat’, e.g. aj , a
∗
j .

A complex field representation will be used throughout. Thus
we will speak about the positive frequency part, E+, and its com-
plex conjugate field, the negative frequency part E− = (E+)

∗
such

that the field intensity will be I = E+E− = E−E+. Note that both
fields commute (they are scalars), unlike their Hilbert-space (HS in

the following) counterparts, Ê+ and Ê−, whose commutator is not
zero.

The connection with the HS formalism is made via the Weyl trans-
form as follows, see chapter 4 section 4.4.2. For any trace class opera-

tor M̂ of HS we define its Weyl transform to be an integral transform

involving the field operators
{
âj , â

†
j

}
, that is,

W
̂M

=
1

(2π2)n

n∏
j=1

∫ ∞

−∞
dλj

∫ ∞

−∞
dμj exp [−2iλjReaj − 2iμjImaj ]

×Tr
{
M̂ exp

[
iλj

(
âj + â†j

)
+ μj

(
âj − â†j

)]}
.

The transform is invertible as follows:

M̂ =
1

(2π2)2n

n∏
j=1

∫ ∞

−∞
dλj

∫ ∞

−∞
dμj exp

[
iλj

(
âj + â†j

)
+ μj

(
âj − â†j

)]
×

n∏
j=1

∫ ∞

−∞
dReaj

∫ ∞

−∞
dImajŴM

{
aj , a

∗
j

}
exp[−2iλjReaj − 2iμjImaj ].

The transform is linear, that is, if f is the transform of f̂ and g the

transform of ĝ, then the transform of f̂ + ĝ is f + g.
It is standard wisdom that the WW formalism is unable to pro-

vide any intuitive picture of the quantum phenomena. The reason is
that the Wigner function, which may represent a quantum state, is
not positive definite in general and therefore cannot be interpreted
as a probability distribution (of positions and momenta in quantum
mechanics, or field amplitudes in quantum optics). As discussed in
chapter 4 this is true in nonrelativistic quantum mechanics. However,
we shall see that in quantum optics the formalism in the Heisenberg
picture, where the evolution goes in the field amplitudes, allows the
interpretation of the experiments using the Wigner function for the
vacuum state alone, which is positive definite.
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The use of the WW formalism in quantum optics has the following
features in comparison with the HS formalism:

1. It is just quantum optics, therefore the predictions for experi-
ments are the same.

2. The calculations using the WW formalism are sometimes eas-
ier than those in HS because no problem of noncommutativity arises
in the former. However, the commutation rules of the standard for-
malism frequently produce substantial simplifications, as will be seen
in the following.

3. The formalism suggests a physical picture in terms of random
variables and stochastic processes. In particular, the counterparts of
creation and annihilation operators look like random amplitudes. In
this sense the WW formalism is well adapted for a realistic interpre-
tation.

As said above, here we shall use the formalism in the Heisenberg
picture, where the evolution appears in the observables. On the other
hand the concept of photon, as a particle, does not appear in the WW
formalism. However, localized concentrations of energy and momen-
tum may appear in the form of radiation needles, as mentioned in the
previous section 6.2.2.

6.3.2. Properties. All properties of the WW transform in par-
ticle systems may be translated to quantum optics via eqs.(276) . The
transform allows getting a function of (scalar) amplitudes for any
trace-class operator (e.g. any function of the creation and annihila-
tion operators of ‘photons’). In particular, we may get the (Wigner)
function corresponding to any quantum state. For instance, the vac-
uum state, represented by the density matrix |0〉〈0|, is associated with
the following Wigner function (used already in the previous section,
see eq.(271))

(277) W0 =
∏
j

2

π
exp
(
−2 |aj |2

)
.

This function might be interpreted as a (positive) probability distri-
bution. Hence the picture that emerges is that the quantum vacuum
of the electromagnetic field (the zero-point field, ZPF) consists of sto-
chastic fields that may be defined in terms of radiation modes. The
ZPF probability distribution is independent for every mode and it has
a Gaussian distribution with mean energy 1

2�ω per mode.
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Similarly, in the WW formalism there are functions associated
with the observables. For instance, the following Weyl transforms are
obtained

âj ↔ aj , â†j ↔ a∗j ,
1

2

(
â†j âj + âj â

†
j

)
↔ aja

∗
j = |aj |2 ,(278)

â†j âj =
1

2

(
â†j âj + âj â

†
j

)
+

1

2

(
â†j âj − âj â

†
j

)
↔ |aj |2 − 1

2
,(

â†j + âj

)n
↔ (aj + a∗j

)n
,(

â†j − âj

)n
↔ (aj − a∗j

)n
, n an integer.

I stress that the quantities aj and a∗j are numbers and therefore they
commute with each other. The first eqs.(278) mean that in expres-
sions that are linear in creation and/or annihilation operator the Weyl
transform just implies ‘removing the hats’. However, this is not the
case in nonlinear expressions in general. In fact, from the last two
eqs.(278) plus the linearity property it follows that for a product in
the WW formalism the HS counterpart is

(279) akj a
∗l

j ↔ (âkj â
†l
j )sym,

where the subindex sym means writing the product with all possible
orderings and dividing by the number of terms. Hence the WW field
amplitudes corresponding to products of field operators may be eas-
ily obtained putting first the operators in symmetrical order via the
commutation relations. Particular instances that will be useful later
are the following

â†j âj → |aj |2 − 1

2
, âj â

†
j → |aj |2 + 1

2
,(280)

âj
2 → a2j , â†2j → â∗2j

â†j âj â
†
j âj → |aj |4 − |aj |2 , âj â

†
j âj â

†
j → |aj |4 + |aj |2 ,

â†j â
†
j âj âj → |aj |4 − 2 |aj |2 + 1

2
, âj âj â

†
j â

†
j → |aj |4 + 2 |aj |2 + 1

2
.

Other properties may be obtained from well known results of the
standard Weyl-Wigner formalism in particle quantum mechanics. I
will present them omitting the proofs.

Expectation values may be calculated in the WW formalism as

follows. In the HS formalism they read Tr(ρ̂M̂), or in particular 〈ψ |
M̂ | ψ〉, whence the translation to the WW formalism is obtained
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taking into account that the trace of the product of two operators
becomes

Tr(ρ̂M̂) =

∫
Wρ̂

{
âj , â

†
j

}
W

̂M

{
âj , â

†
j

}∏
j

dReajdImaj .

That integral is the WW counterpart of the trace operation in the HS
formalism. Particular instances are the following expectations that
will be of interest later〈

|aj |2
〉
≡
∫

dΓW0 |aj |2 =
1

2
,

〈
anj a

∗m
j

〉
= 0 if n �= m.〈

0
∣∣∣â†j âj∣∣∣ 0〉 =

∫
dΓ(a∗jaj −

1

2
)W0 = 0,〈

0
∣∣∣âj â†j∣∣∣ 0〉 =

∫
dΓ(|aj |2 + 1

2
)W0 = 2

〈
|aj |2
〉
= 1,(281) 〈

|aj |4
〉
= 1/2, 〈|aj |n |ak|m〉 = 〈|aj |n〉 〈|ak|m〉 if j �= k.

where W0 is the Wigner function of the vacuum, eq.(277). This means
that in the WW formalism the field amplitude aj (coming from the
vacuum) behaves like a complex random variable with Gaussian distri-

bution and mean squared modulus
〈
|aj |2
〉
= 1/2. I point out that the

integral for any mode not entering in the function M
({

aj , a
∗
j

})
gives

unity in the integration due to the normalization of the Wigner func-
tion eq.(277). An important consequence of eq.(281) is that normal
(antinormal) ordering of creation and annihilation operators in the
Hilbert space formalism becomes subtraction (addition) of 1/2 in the
WW formalism. The normal ordering rule is equivalent to subtracting
the vacuum contribution.

6.3.3. Evolution. In the Heisenberg picture of the HS formal-

ism the density matrix is fixed and any observable, say M̂ , evolves
according to

d

dt
M̂ = i

(
ĤM̂ − M̂Ĥ

)
, M̂ = M̂ (t) ,

where Ĥ is the Hamiltonian. Translated to the WW formalism this
evolution of the observables is given by the Moyal equation with the
sign changed. The standard Moyal equation applies to the evolution
of the Wigner function, which represents a quantum state and it is
the counterpart of the density matrix in the Schrödinger picture of
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the HS formalism. Thus in the WW formalism we have

∂W
̂M

∂t
= 2

{
sin

[
1

4

(
∂

∂Rea′j

∂

∂Ima′′j
− ∂

∂Ima′j

∂

∂Rea′′j

)]

× [W
̂M

(
a′j , a

∗′
j , t
)
H
(
a′′j , a

∗′′
j

)]}
aj

,(282)

where {}aj
means making a′j = a′′j = aj and a∗′j = a∗′′j = a∗j after

performing the derivatives.
A simple example is the free evolution of the field amplitude of a

single mode. The Hamiltonian in the WW formalism is easy to obtain
translating the Hamiltonian of the HS formalism, that is,

Ĥfree = ωj â
†
j âj =

1

2
ωj(â

†
j âj + âj â

†
j)−

1

2
ωj

→ Hfree = ωj(|aj |2 − 1

2
) = ωj

[
(Reaj)

2 + (Imaj)
2 − 1

2

]
,

where we have taken the first eq.(281) into account. This leads to

d

dt
aj =

1

2
ωj [2(Imaj)− 2 (Reaj) i] = −iωjaj

⇒ aj (t) = aj (0) exp (−iωjt)(283)

Another example is the down-conversion process in a nonlinear crystal,
to be studied in detail in the next section.

I emphasize again that the WW formalism provides an alterna-
tive formulation of quantum optics, physically equivalent to the more
common HS. But it suggests a picture of the optical phenomena quite
different from the latter, where photons are the fundamental con-
cept. Indeed, the WW picture may provide a realistic interpretation
in terms of random variables and stochastic processes, as presented in
the following.

The mentioned properties of the WW formalism are sufficient for
the interpretation of experiments involving pure radiation fields inter-
acting with macroscopic bodies, defined by their bulk electric proper-
ties like the refractive index or the nonlinear electrical susceptibility.
Within the WW formalism the interaction between the fields (either
signals or vacuum fields) and macroscopic bodies may be treated as in
classical electrodynamics. This is for instance the case for the action
of a laser on the crystal with nonlinear susceptibility, to be discussed
in the following [14], [15].
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6.4. Spontaneous parametric down conversion (SPDC)

6.4.1. Production of correlated signal and idler fields.
SPDC has been the main source of ‘entangled photon pairs’ during the
last forty years. In the following I provide a theoretical interpretation
of SPDC experiments within the WW formalism in the Heisenberg
picture, that was initiated in the nineties of the past century [3]–[13].
In many of those early studies the approach was heuristic and here I
shall provide a more formal foundation. The WW formalism suggests
an intuitive picture for photon entanglement and the interpretation
of SPDC experiments in terms of random variables and stochastic
processes without any reference to photons. Nevertheless, I will use
sometimes the language common in the HS formalism.

Entangled photons are produced when a pumping laser enters
a crystal possessing a nonlinear electric susceptibility. Avoiding a
detailed study of the physics inside the crystal [14], [15] we might
describe the phenomenon with a model Hamiltonian [16]. I shall start
in the standard HS formalism and we will pass to the WW formalism
later on via the Weyl transform. The Hamiltonian is

(284) ĤI = Aâ†sâ
†
i exp (−iωP t) +A∗âsâi exp (iωP t) ,

when the laser is treated as a classically prescribed, undepleted and
spatially uniform field of frequency ωP . The parameter A is propor-
tional to the pump amplitude and the nonlinear susceptibility. In the
WW formalism this Hamiltonian becomes (see eqs.(278))

HI = Aa∗sa
∗
i exp (−iωP t) +A∗asai exp (iωP t) ,

whence, taking eqs.(282) and (283) into account, we get

d

dt
as = −iωsas − iAa∗i exp (−iωP t) ,(285)

d

dt
ai = −iωiai − iAa∗s exp (−iωP t) .

In eqs.(284) to (285) the space dependence has been omitted whence
the propagation direction of the fields is not explicit. It is the case
that the field with amplitude Aa∗i produced by the interaction of the
pumping laser with the incoming vacuummode, as, travels superposed
to the incoming vacuum field ai, while the field Aa∗s produced by the
vacuum mode ai travels superposed to the incoming vacuum field as.
That is, the wave-vectors associated to as and a∗i are parallel and form
a finite angle with the wave-vectors associated to ai and a∗s, that are
also parallel to each other.
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We shall assume that the vacuum field as evolves as in eq.(283)
before entering the crystal and then according to eqs.(285) inside the
crystal, that is, during the time T needed to cross it. In order to get
the radiation intensity to second order in AT ≡ C (see section 6.2.4
below) we must solve the coupled eqs.(285) also to second order. After
some algebra this leads to

as(t) =

(
1 +

1

2
|C|2
)
as(0) exp (−iωst)− iCa∗i (0) exp [i (ωi − ωP ) t]

(286)

=

[(
1 +

1

2
|C|2
)
as(0)− iCa∗i (0)

]
exp (−iωst) ,

where the last equality is usually interpreted as if the signal and idler
photons, with energies �ωs and �ωi, were the result of the division
of one laser photon with energy �ωP , that is, viewed as an ‘energy
conservation’. However, in the WW formalism that relation is a con-
dition of frequency matching, ωP = ωs+ωi, induced by the nonlinear
susceptibility with no reference to photons.

Eq.(286) gives the time dependence of the relevant mode of the
signal after crossing the crystal, but we should take into account the
field dependence on position including a factor exp (iks · r), that is, a
phase depending on the path length. Therefore, the correct form of
eq.(286) would be, modulo a global phase,

(287) as(r,t) =

[(
1 +

1

2
|C|2
)
as(0)− iCa∗i (0)

]
exp (iks·r− iωst) .

A similar result is obtained for ai (t), that is,

(288) ai(r,t) =

[(
1 +

1

2
|C|2
)
ai(0)− iCa∗s (0)

]
exp (iki·r− iωit) .

Eq.(287) may be interpreted saying that the vacuum signal is modified
by the addition of an amplification of the vacuum idler, but it travels
in the same direction of the incoming vacuum signal, and therefore it
makes sense to add the initial vacuum signal plus the amplification of
the idler. And similarly for ai, eq.(288) .

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 6. INTERPRETATION OF THE QUANTUM RADIATION FIELD

We may perform a change from C to the new parameter D =

−i
(
1 + 1

2 |C|2
)−1

C, whence eqs.(280) become, to order O
(
|D|2
)
,

E+
s =

(
1 +

1

2
|D|2
)
[as +Da∗i ] exp (iks·r− iωst) ,(289)

E+
i =

(
1 +

1

2
|D|2
)
[ai +Da∗s] exp (iki·r− iωit) , |D| � 1.

In the following I will ignore the constant global factor
(
1 + 1

2 |D|2
)
∼

1 and write, ignoring also the spacetime dependence,

(290) E+
s = as +Da∗i , E

+
i = ai +Da∗s.

Eqs.(287) and (288), although good enough for calculations, are
bad representations of the physics. In fact, a physical beam corre-
sponds to a superposition of the amplitudes, a∗k, of many modes with
frequencies and wave-vectors close to ωs and ks, respectively. For in-
stance, we may represent the positive frequency part of the idler beam
created in the crystal, to first order in D, as follows
(291)

E
(+)
i (r, t) = D

∫
fi (k) d

3ka∗k exp
[
i (k− ks) ·r−i (ω − ωs) t

]
+E

(+)
ZPF ,

where ω = ω (k) and fi (k) is an appropriate function, with domain

in a region of k around ks. The field E
(+)
ZPF is the sum of ampli-

tudes of all vacuum modes, including the one represented by as in

eq.(289) . (We have neglected a term of order |D|2 so that E
(+)
i is cor-

rect to order |D|). These vacuum modes have fluctuating amplitudes
with a probability distribution given by the vacuum Wigner function
eq.(277) . Therefore, it might appear that the amplitude as is lost ‘as
a needle in the haystack’ within the background of many radiation
modes, but it is actually relevant in photon correlation experiments,
as shown below. In fact, the vacuum amplitude as in the first eq.(289)
is fluctuating and the same fluctuations appear also in the signal am-
plitude a∗s of the second eq.(289). Therefore, coincidence counts will
be favoured when large positive fluctuations of the fields as and ai
arrive simultaneously to Alice and Bob detectors. We shall see that
this corresponds to what is named ‘entanglement between a signal
and the vacuum’ [19] in the HS formalism. Thus in the WW formal-
ism of quantum optics entanglement appears as a correlation between
fluctuating fields in distant places, including the vacuum fields.
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6.4.2. Detection rates. The example of signal-idler cross-
correlation. A quantitative theory of detection in the WW formal-
ism may be obtained translating, via the Weyl transform, the standard
detection theory in the HS formalism. Here I will use this method,
and later on we shall try to provide a realistic stochastic interpreta-
tion of the detection probabilities so derived, taking the assumptions
of section 6.2.6 into account. I will study only detection events in the
form of photocounts ignoring other detection methods, like measur-
ing the total energy arriving at the detector in a time interval, that
are less relevant for experiments with entangled photons. Then the
measured detection rate is proportional to the probability of a count
in one time window. I shall not attempt to present detailed models of
the experiments, which should involve many radiation modes in order
to represent the signals as (narrow) beams, see eq.(291), but use just
a few vacuum radiation modes entering the nonlinear crystal, whence
the signals would involve also a few modes.

I will start with the simple case of an experiment measuring the
cross-correlation between signal and idler fields and then generalize to
more complex experiments. In the HS formalism the field operators
corresponding to eqs.(290) are

Ê+
s =

[
âs +Dâ†i

]
exp (iks·r− iωst) ,

Ê+
i =

[
âi +Dâ†s

]
exp (iki·r− iωit) .(292)

These field operators may be obtained either from the Hamiltonian
eq.(284) or taking eq.(278) into account, just putting ‘hats’ in the field
amplitudes obtained in the WW formalism. In the HS formalism the
Alice single rate is given by the following vacuum expectation to order

O
(
|D|2
)
:

(293)

RA =
〈
0
∣∣∣Ê−

s Ê+
s

∣∣∣ 0〉 =
〈
0
∣∣∣[â†s +D∗âi

] [
âs +Dâ†i

]∣∣∣ 0〉 = |D|2 ,

and similarly for Bob. It is easy to prove that the spacetime factors
of eq.(292) cancel. The coincidence rate is given by

RAB =
1

2

〈
0
∣∣∣Ê−

s Ê−
i Ê+

i Ê+
s

∣∣∣ 0〉+ 1

2

〈
0
∣∣∣Ê−

i Ê−
s Ê+

s Ê+
i

∣∣∣ 0〉 .
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Taking into account that Ê+
i and Ê+

s commute, both terms are equal
and we have

RAB =
〈
0
∣∣∣Ê−

s Ê−
i Ê+

i Ê+
s

∣∣∣ 0〉
=
〈
0
∣∣∣[â†s +D∗âi

] [
â†i +D∗âs

] [
âi +Dâ†s

] [
âs +Dâ†i

]∣∣∣ 0〉
= |D|2

〈
0
∣∣∣âiâ†i âiâ†i ∣∣∣ 0〉+O

(
|D|4
)
= |D|2 +O

(
|D|4
)
.(294)

In the following we will study more complex experiments involving
‘entangled photon pairs’ produced via SPDC, but restricted to cases
where there are only two detectors, say belonging to Alice and Bob. In
general there are a number of devices between the nonlinear crystal,
or crystals, and the detectors, like lens systems, beam splitters, etc.
In any case, the field operator corresponding to the radiation arriving
at the detectors may be written in the form

Alice : Ê+
A = Ê+

A0 + Ê+
A1, Bob : Ê+

B = Ê+
B0 + Ê+

B1,

where for every detector the first term is the field operator that would
appear in case there was no pumping on the crystals, whilst the second
one derives from the fields produced by the action of the pumping. In
the simple experiment studied in eqs.(292) to (294) we have

(295) Ê+
A0 = âs, Ê

+
A1 = Dâ†i , Ê+

B0 = âi, Ê
+
B1 = Dâ†s

but in other experiments the field operators are more involved. How-

ever, there are two features that are general, namely Ê+
A1 is small and

consists of a linear combination of creation operators, whilst Ê+
A0 is

large and consists of a linear combination of annihilation operators.
That is, we may write

(296) Ê+
A0 =

∑
j

cj âj , Ê
+
A1 =

∑
k

dkâ
†
k,

where by analogy with eqs.(295) I shall say that Ê+
A0 is of the order

of unity and Ê+
A1 of order |D| � 1. And similarly for Ê+

B0 and Ê+
B1.

From these field operators the single detection rate by Alice may
be obtained via the following standard rule in the HS formalism

RA = 〈0 | Ê−
A Ê+

A | 0〉 = 〈0 |
(
Ê−

A0 + Ê−
A1

)(
Ê+

A0 + Ê+
A1

)
| 0〉

= 〈0 | Ê−
A0Ê

+
A0 | 0〉+ 〈0 | Ê−

A1Ê
+
A1 | 0〉 = 〈0 | Ê−

A1Ê
+
A1 | 0〉,(297)

where we take into account that

(298) Ê+
A0 | 0〉 = 〈0 | Ê−

A0 = 0.
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In particular, in the simple case of measuring the detection rate of the
signal field, eq.(295) gives

(299) RA = |D|2 〈0 | âiâ†i | 0〉 = |D|2 ,
and identical result for Bob’s rate.

The HS rule for the coincidence rate is

(300) RAB =
1

2
〈0 | Ê−

A Ê−
B Ê+

B Ê+
A | 0〉+ 1

2
〈0 | Ê−

B Ê−
A Ê+

A Ê+
B | 0〉.

If Ê+
A and Ê+

B commute then both terms would be equal, but I shall
work out the general case when this is not true. The first term may
be calculated as follows

〈0 | Ê−
A Ê−

B Ê+
B Ê+

A | 0〉 = 〈0 | Ê−
A1Ê

−
B Ê+

B Ê+
A1 | 0〉

� 〈0 | Ê−
A1Ê

−
B0Ê

+
B0Ê

+
A1 | 0〉

= 〈0 | Ê−
A1Ê

−
B0 | 0〉〈0 | Ê+

B0Ê
+
A1 | 0〉 =

∣∣∣〈0 | Ê+
B0Ê

+
A1 | 0〉

∣∣∣2 ,(301)

where the first equality takes eqs.(298) into account and the second

is valid to order |D|2 (terms of order |D|3 are neglected). Finally the

third equality is justified as follows. The field Ê+
B0

(
Ê+

A1

)
consists

of a linear combination of annihilation (creation) operators whence

Ê+
B0Ê

+
A1 | 0〉 consists of a sum of the form

(302) Ê+
B0Ê

+
A1 | 0〉 =

∑
j

∑
k

cjdkâj â
†
k | 0〉,

where cj and dk are numerical parameters. Terms with j �= k give no
contribution because the operator âj cannot annihilate a photon that
had not been created. Therefore, eq.(302) reduces to the form

Ê+
B0Ê

+
A1 | 0〉 =

∑
j

cjdj âj â
†
j | 0〉 =

∑
j

cjdj | 0〉,

that is, the vacuum state vector times a numerical coefficient. This
justifies the third equality eq.(301) because the inclusion of the oper-
ator | 0〉〈0 | does not modify the result. A similar treatment may be
made for the other term of eq.(300) and we finally get

(303) RAB =
1

2

∣∣∣〈0 | Ê+
B0Ê

+
A1 | 0〉

∣∣∣2 + 1

2

∣∣∣〈0 | Ê+
A0Ê

+
B1 | 0〉

∣∣∣2 .
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For instance, in the simple case of the cross-correlation between signal
and idler we get, taking eq.(295) into account,

(304) RAB =
1

2
|D|2 〈0 | âiâ†i | 0〉+

1

2
|D|2 〈0 | âsâ†s | 0〉 = |D|2 .

Thus the theory predicts a strong positive correlation. In fact, any
count by Alice (Bob) will coincide with a count by Bob (Alice) within
the same detection window.

Now we are in a position to derive the WW detection rules via
a Weyl transform of the stated rules in HS. The following transforms
may be easily derived from eqs.(278)

〈0 | âiâ†i | 0〉 → 〈|ai|2 + 1

2
〉 = 2〈|ai|2〉,

〈0 | â†i âi | 0〉 → 〈|ai|2 − 1

2
〉 = 0.(305)

We must perform the Weyl transform of the general Hilbert-space rule

eq.(297) . If we use the last equality of eq.(297) we realize that Ê−
A1

consists of a sum of annihilation operators and Ê+
A1 a sum of creation

operators. Hence the first eq.(305) leads to
(306)

RA = 〈0 | Ê−
A1Ê

+
A1 | 0〉 → RA = 2〈E−

A1E
+
A1〉, RB = 2〈E−

B1E
+
B1〉.

I stress that the Weyl transform of the first equality in eq.(297) leads
to the same result, that is,

RA = 〈0 | Ê−
A0Ê

+
A0 | 0〉+ 〈0 | Ê−

A1Ê
+
A1 | 0〉 → 0 + 2〈E−

B1E
+
B1〉.

With similar arguments, the HS rule for the coincidence rate, eq.(303) ,
leads to the WW rule

(307) RAB = 2
∣∣〈E+

B0E
+
A1〉
∣∣2 + 2

∣∣〈E+
A0E

+
B1〉
∣∣2 .

Eq.(307) provides the desired WW detection rule, which is rather
simple if written in terms of field amplitudes arriving at Alice and
Bob respectively. By construction it is obvious that, using the rules
eqs.(306) and (307), the WW formalism will give the same predictions
than the standard quantum HS formalism for all experiments involv-
ing entangled photon pairs produced via SPDC. I will analyze below
a few relevant experiments.

6.4.3. Detection rates in terms of intensities. For the re-
alistic interpretation to be discussed later it is interesting to write
the detection rules eqs.(306) and (307) in terms of field intensities
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rather than amplitudes. With this purpose we define several partial
intensities in terms of field components as follows

IA0 = E+
A0E

−
A0, IA1 = E+

A0E
−
A1 + E+

A1E
−
A0, IA2 = E+

A1E
−
A1,

(308)

IB0 = E+
B0E

−
B0, IB1 = E+

B0E
−
B1 + E+

B1E
−
B0, IB2 = E+

B1E
−
B1,

IA = E+
AE−

A = IA0 + IA1 + IA2, IB = E+
BE−

B = IB0 + IB1 + IB2.

Actually, IA1 and IB1 are not true intensities, in particular they are
not positive definite. I point out that IA0, IA1 and IA2 are of order
1, |D| and |D|2, respectively, in the small parameter |D| � 1, and
similarly for IB0, IB1 and IB2. Eq.(306) may easily be obtained in
terms of intensities taking eqs.(308) into account. We get

RA = 2〈IA〉 − 2〈IA0〉 = 2〈IA2〉,
RB = 2〈IB〉 − 2〈IB0〉 = 2〈IB2〉,(309)

the terms IA1 and IB1 not contributing, as may be realized.
In order to put the coincidence detection rate in terms of inten-

sities we start writing 〈IA0IB2〉 in terms of the fields taking eqs.(308)
into account. We get

〈IA0IB2〉 =
〈
E+

A0E
−
A0E

+
B1E

−
B1

〉
,

which may be transformed as follows taking into account that the
fields involved are Gaussian. In fact, the average of the product of
4 Gaussian random variables, say A, B, C, D, may be obtained from
the averages of every pair, that is,

(310) 〈ABCD〉 = 〈AB〉 〈CD〉+ 〈AC〉 〈BD〉+ 〈AD〉 〈BC〉 .
Hence it follows that

〈IA0IB2〉 =
〈
E+

A0E
−
A0E

+
B1E

−
B1

〉
=
〈
E+

A0E
−
A0

〉 〈
E+

B1E
−
B1

〉
+
〈
E+

A0E
+
B1

〉 〈
E−

A0E
−
B1

〉
+
〈
E+

A0E
−
B1

〉 〈
E−

A0E
+
B1

〉
= 〈IA0〉 〈IB2〉+

∣∣〈E+
A0E

+
B1

〉∣∣2 ,
the average

〈
E+

A0E
−
B1

〉
not contributing as may be realized. A similar

method gives
∣∣〈E+

B0E
+
A1

〉∣∣2 in terms of intensities whence eq.(307)
leads to

RAB = 2 [〈IA0IB2〉+ 〈IA2IB0〉 − 〈IA0〉 〈IB2〉 − 〈IA2〉 〈IB0〉]
= 2 〈(IA0 − 〈IA0〉)IB2〉+ 2 〈(IB0 − 〈IB0〉)IA2〉 .(311)

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



250 6. INTERPRETATION OF THE QUANTUM RADIATION FIELD

The conclusion of this section is that the WW formalism is a
useful tool for the study of SPDC. In particular, the predictions for
the experiments may be obtained as easily as in the standard HS using
for the single rates either eq.(306) or eq.(309) and for the coincidence
rates either eq.(307) or eq.(311), respectively. In each case the first
prediction of rates appears in terms of field amplitudes and the second
is in terms of intensities.

6.5. Experiments with entangled photons from SPDC

6.5.1. Experiment of two-photon interference using two
crystals. In the following we illustrate the use of the WW formalism
for the interpretation of two SPDC experiments. The former consists
of two crystals pumped by two coherent beams, obtained via dividing
one laser beam by means of a balanced beam splitter [17], [18], [19].
The signal beams from both crystals are sent to the two incoming
channels of a beam splitter, BS1, and in front of one of the outgoing
channels a detector, say Alice, is placed. Similarly the idler beams of
both crystals are mixed via another beam splitter, BS2, and the field
from one of the outgoing channels goes to another detector, say Bob.
The measured quantity is the coincidence counting rate between A
and B as a function of the path length of one of the beams, which
may be controlled at will.

The interest of the experiment is that it involves second order
field correlation functions, rather than first order correlation as in the
measurement of the crosscorrelation of signal and idler from a single
crystal, studied in section 6.4.2 above. In a simple quantum treat-
ment we may assume that in the first crystal an ‘entangled photon
pair’ is produced with an amplitude ψ1 exp (iφ1), the exponential fac-
tor introduced in order to take account of the space dependence of
the fields (see e.g. eq.(289)). Similarly in the second crystal another
pair is produced with amplitude ψ2 exp (iφ2) . If both pairs arrive at
Alice and Bob detectors, according to the standard quantum rules the
probability of joint detection should be proportional to the total am-
plitude, obtained adding both amplitudes. This is similar to the sum
of amplitudes in the two-slits interference experiment. Therefore, the
coincidence rate (or coincidence detection probability within a time
window) will be

RAB ∝ |ψ1 exp (iφ1) + ψ2 exp (iφ2)|
= |ψ1|2 + |ψ2|2 + 2 |ψ1| |ψ2| cos (φ1 − φ2) .(312)
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In the actual experiments the phase difference is controlled via chang-
ing at will the path length of the signal coming from the second crystal.
If |ψ1| = |ψ2| the main prediction is that 100% interference visibility
is obtained; that is, the coincidence rate may be written

RAB ∝ 1 + cos (φ1 − φ2) .

A detailed calculation has been made [19] that reproduces this
result. The method involves the standard Hilbert-space formalism in
the Heisenberg representation. In our approach, that follows, we use
the WW formalism that closely parallels the HS treatment starting
in eq.(292) for the simple experiment of signal-idler cross-correlation.
This allows the experiment to be interpreted in terms of stochastic
processes involving the vacuum fields as follows.

The signal and idler fields produced in the first and second crystals

are given by eq.(289) . That is, ignoring the factor
(
1 + 1

2 |D|2
)
∼ 1

and the space dependence, we shall write

E+
s1 = [as1 +Da∗i1] exp (−iωst) , E+

i1 = [ai1 +Da∗s1] exp (−iωit) ,

(313)

E+
s2 = [as2 +Da∗i2] exp (−iωst) , E+

i2 = [ai2 +Da∗s2] exp (−iωit) ,

where the subindices 1 and 2 refer to the first and second crystal
respectively, with a notation similar to ref. [19].

The amplitude of the light beam arriving at Alice detector will
consists of an appropriate superposition of the field amplitudes E+

s1

and E+
s2 in the beam-splitter BSA in front of Alice’s detector, see

eq.(267), although here we do not assume that BSA is balanced. We
shall take into account the phase difference between the two beams
mixed at BSA, due to the path length difference that may be changed
at will. We get

(314) E+
A = {[as1 +Da∗i1]r exp (iφ1) + [as2 +Da∗i2]t} exp (−iωst) ,

where t and r are the transmission and reflection coefficients of BSA,
and the imaginary unit in eq.(267) has been absorbed in the (complex)
reflection coefficient r. There is a global factor in front of the right
side of eq.(314) that is irrelevant for our purposes and we ignore. In

this factor we absorb the term in |D|2 of eq.(326), needed to get the
intensity to that order. That is, the parameter D of eq.(314) actually

corresponds to D/(1 + |D|2 /2) of eqs.(287) and (288) .
Similarly, the idler fields of both crystals are sent to another beam

splitter BSB and hence to Bob’s detector. The positive frequency part
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of the field arriving at Bob may be written, assuming that D, r and t
are the same for Alice and Bob beams,

(315) E+
B = {[ai1 +Da∗s1]t+ [ai2 +Da∗s2]r exp (iφ2)} exp (−iωit) .

The notation in eqs.(314) and (315) is similar to Ref. [19].
The interesting quantity to be compared with experiments is the

coincidence counting rate, RAB , of Alice and Bob. In the WW for-
malism we should calculate it using eq.(307) where E+

A and E+
B are

given by eqs.(314) and (315) and E+
A0, E

+
B0 may be written, ignoring

the time-dependent factor,

(316) E+
A0 = ras1 exp (iφ1) + tas2, E+

B0 = tai1 + ai2r exp (iφ2) .

The fields E+
A1, E

+
B1 may be obtained subtracting the first and second

eqs.(316) from eq.(314) and eq.(315) respectively. After some algebra
we get

RAB = 2 |D|2 |rt|2
[
|exp (iφ1) + exp (iφ2)|2

]
� 4 |D|2 |rt|2 [1 + cos (φ2 − φ1)] ,(317)

to order O
(
|D|2
)
. This agrees with the result got using the HS for-

malism [19] as it should.
In our approach the amplitudes as1, as2, ai1, ai2, are random vari-

ables representing the amplitudes of vacuum modes arriving at the
nonlinear crystals, that we assume to be real stochastic fields.

6.5.2. Induced coherence and indistinguishability in two
photon interference. In 1991 Mandel and coworkers performed an
experiment [20] in which fourth order interference is observed in the
superposition of signal photons from two coherently pumped crystals,
when the paths of the idler photons are aligned. The experiment con-
sists of two nonlinear crystals, C1 and C2, pumped by two mutually
coherent, classical pump waves. The two pumping fields come from a
single laser beam divided via a nonpolarizing balanced beam splitter.
The signal fields produced in the two crystals are superposed via a
beam splitter BS and then send to Alice’s detector, put in front of
one outgoing channel of BS. The crystals are placed so that an idler
beam produced in the crystal C1 would enter in the crystal C2 at
a point and with a direction such that it is precisely superposed to
an eventual idler produced in C2. The resulting idler beam would
arrive to Bob’s detector and the set-up is such that when a photon is
detected Bob cannot know whether it was produced in C1 or in C2.
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Therefore, in a quantum calculation we should add the amplitudes of
both possibilities. The difference with the experiment of the previ-
ous subsection is that the idler fields are not superposed via a beam
splitter, but directly superposed because the two crystals are aligned.

In the calculation using the WW formalism [4] the field arriving
at Alice will be the same of eq.(314). However, the field arriving at
Bob will not be eq.(315) but, to order |D|,
(318) E+

B = {[ai10 +Da∗s10] + [ai20 +Da∗s20] exp (iφ2)} exp (−iωit) ,

that is, 1 is substituted for the coefficients t and r. The result is an
interference effect in the coincidence detection rate similar to eq.(317)
with minor changes.

The interest of the experiment is that fourth order interference
disappears when the idlers from C1 and C2 are misaligned or sep-
arated by a beam stop. In this case we know that the idler beam
arriving at Bob has been produced in C2 and therefore we should add
the intensities, not the amplitudes of the fields arriving at Alice from
the two crystals, and the interference effect disappears, because the
fields arriving at Alice are no longer coherent. This is in agreement
with the popular Feynman’s rule for interference in the two-slit exper-
iment: If it is not possible even in principle to know which slit crosses
the particle, then we should add the amplitudes of both paths. If it is
possible to know which slit, then we should add probabilities. From
another point of view when the idlers from C1 and C2 are misaligned
or separated by a beam stop, we should assume that any coincidence
count would derive from a signal and an idler both produced in C2.
In contrast, if the signal is produced in C1, the partner idler will not
arrive at Bob and no coincidence count will take place.

In any case, the peculiarities of the quantum behaviour, if we
interpret the experiment in terms of photons, are such that the ex-
periment has been called ‘mind boggling’ [21]. Indeed, it is difficult
to understand how the interference of two signal photons in detector
A may depend on whether the idler photon arriving to detector B is
surely produced in crystal C2 or we cannot know in which crystal, C1
or C2, it has been produced. In the second case there is interference,
in the first one there is not.

The explanation of the experimental result is simple with our re-
alistic interpretation that assumes that the vacuum fields are actual
stochastic fields. A vacuum field entering C1 produces an idler field
Ei1 that travels towards C2 where another idler field Ei2 is produced
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that is superposed to the former. Then the amplitudes (not the inten-
sities!) of both idler fields should be added because Ei1 and Ei1 are
coherent. On the other hand every signal is coherent with the corre-
sponding idler as shown in section 6.4.2. Hence the fields Es1 and Es2

become coherent and therefore their superposition in the beam split-
ter BS is sensitive to the relative phase, that may be controlled at will
by changing the path lengths. In contrast, if the two idler fields Ei1

and Ei2 are separated by a beam stop they will be incoherent, whence
also Es1 and Es2 become incoherent and no interference can be ob-
served. A quantitative treatment may be made in the WW formalism
that reproduces the empirical results but it will not be included here,
see ref. [4].

6.6. Tests of Bell inequalities

The Bell inequalities have had a deep impact in the foundations of
quantum physics, as mentioned in chapter 3. In the last two decades
most tests of the inequalities have used entangled photon pairs pro-
duced in SPDC. In this section we shall analyze a representative test
similar to those claiming to provide a loophole-free violation of a Bell
inequality [22], [23]. Their empirical violation is usually interpreted
as a refutation of local realism, but in the following it is shown that
the experiments we are discussing may be interpreted as local and
realistic even if a Bell inequality is violated.

6.6.1. Photons entangled in polarization. Many experimen-
tal tests of Bell inequalities using SPDC entangled photon pairs have
been performed. Some of the early tests involved entanglement in
phase and momentum, or energy and time. However, the most rel-
evant experiments used polarization entanglement. In the following
I will apply the WW formalism to the interpretation of these ex-
periments. The loophole-free tests performed [22], [23] did not use
maximally entangled photons for reasons explained in chapter 3 sec-
tion 3.4.3. However, here we will study maximally entangled photons
because it is simpler and our purpose is not to analyze the actual ex-
periments but to provide a counterexample that may be interpreted
as local realistic in spite of violating a Bell inequality.

The electromagnetic radiation is a vector field with two possible
polarizations. Therefore, I should take into account this fact, for
instance including vectors in the description. Thus, after sending the
signal and idler beams to the incoming channels of a polarizer beam
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splitter, we shall have in the outgoing channels,

E+
A = [(as +Da∗i ) exp (−iωst)v + i (ai +Da∗s) exp (−iωit)h],

E+
B = [(as +Da∗i ) exp (−iωst)h− i (ai +Da∗s) exp (−iωit)v],

where h is a horizontal unit vector and v a vertical one. We have not
written explicitly the dependence on position, that could be restored
without difficulty. Furthermore, from now on I will ignore all space-
time dependence, that usually contributes phase factors irrelevant for
our argument. However, that dependence should be taken into ac-
count in more realistic calculations involving many radiation modes,
see eq.(291) . The complex conjugate of these fields will be represented
as follows

(E+
A)

∗ ≡ E−
A, (E+

B)
∗ ≡ E−

B

These equations represent ‘two photons entangled in polarization’ as
seen in the Weyl-Wigner formalism. The beams will arrive at the
Alice and Bob polarization analyzers put at angles θ and φ with the
vertical respectively. Hence the fields emerging from them may be
written as

E+
A = [(as +Da∗i ) cos θ + i (ai +Da∗s) sin θ],

E+
B = [(as +Da∗i ) sinφ− i (ai +Da∗s) cosφ],(319)

and they are polarized at angles θ and φ with the vertical, respec-
tively. E+

A

(
E+

B

)
gives one of the two components of the vector field

arriving at Alice (Bob). The other component corresponds to a vac-
uum field that will no longer enter the calculation. I define also the
fields corresponding to the case when the pumping is off, that is,

(320) E+
A0 = as cos θ + iai sin θ,E

+
B0 = as sinφ− iai cosφ,

The difference with the total fields eqs.(319) is

(321) E+
A1 = Da∗i cos θ+ iDa∗s sin θ, E+

B1 = Da∗i sinφ+ iDa∗s cosφ.

In order to get the single detection rate we shall use eq.(306).
Alice’s single rate becomes

RA = 2
〈∣∣E+

A1

∣∣2〉(322)

= 2 |D|2
(〈

|ai|2
〉
cos2 θ +

〈
|as|2
〉
sin2 θ

)
= |D|2 = RB ,
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Bob’s detection rate being similar. For the coincidence detection rate
we shall use the first eq.(307), leading to

RAB = |〈(as sinφ− iai cosφ) (Da∗i cos θ + iDa∗s sin θ)〉|2
(323)

+ |〈(as cos θ + iai sin θ) (Da∗i sinφ+ iDa∗s cosφ)〉|2

= |D|2
[
1

2
(sinφ sin θ + cosφ cos θ)

]2
× 2 =

1

2
|D|2 cos2(θ − φ).

Eqs.(322) and (323) reproduce the well known quantum result of the
Hilbert-space formalism. The advantage of the WW calculation is
that it suggests a physical interpretation.

Our aim now is to try finding a realistic interpretation for the
WW description of the SPDC experiments resting on the assumption
that the quantum fields are stochastic fields. I will start searching
for an intuitive picture of the detection rules eqs.(309) and (311) via
an elaboration of the ideas put forward in section 6.4.3 above. For
the picture it is convenient to deal with detection probabilities per
time window, say PA, PB for single counts and PAB for coincidences,
rather than detection rates that we have labeled RA, RB and RAB .
They are related via R = NP , where N is the number of windows per
unit time.

6.6.2. Realistic interpretation of entangled photons. The
picture of the quantum optical phenomena suggested by the WW
formalism is quite different from the picture in terms of photons sug-
gested by the HS [24]. In the latter some photons of the (usually
pulsed) laser beam are assumed to split by the interaction with the
nonlinear crystal giving two photons. This produces outgoing radia-
tion whence two beams may be selected, named signal and idler, that
emerge from the crystal in different directions. Each beam consists
of a flow of photons that are paired amongst the two beams, thus
producing a set of entangled photon pairs, one member of the pair
in each beam. After crossing appropriate devices the photons may
arrive at Alice and Bob respectively. The probability of producing
an entangled photon pair by splitting of one laser photon is of order
|D|2 � 1 whence the simultaneous arrival of entangled photons at
Alice and Bob happens for a small fraction of the laser pulses. The
detection, or not, of the photons determines the correlation, which
eventually may violate a Bell inequality. In summary, it is assumed
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that the pumping laser produces entangled photon pairs in the crystal
with a small probability and then there is a detection probability of
the order of unity, conditional to the photon production. The latter
is defined as detection efficiency.

In the WW approach the probability of photocounts by Alice or
Bob does not factorize that way. Furthermore, the concept of photon
does not appear at all, but there are continuous fluctuating fields
including a real ZPF arriving at the detectors that are activated when
the radiation intensity is big enough. As already said I will speak of
single probabilities, PA and PB , and coincidence probability, PAB ,
of photocounts within a time window. They are proportional to the
single and coincidence detection rates. Every time window may agree
with one laser pulse.

It is interesting how the ‘quantum correlation’ appears in the WW
formalism, which is labelled strange from a classical point of view be-
cause it is a consequence of the phenomenon of entanglement. The
origin is the correlation between the signal IB2 produced in the crys-
tal and the part IA0 that comes from the ZPF, see eq.(311) . This
correlation derives from the fact that the same normal modes enter in
both fields, E+

A0 and E+
B1 see eqs.(320) and (321), that go to Alice and

Bob respectively. And similarly for E+
A1 and E+

B0. However, eq.(311)
may look strange because it consists of two terms contributing to the
coincidence detection: The first gives some detection probability by
Alice that is IA0−〈IA0〉, and a different detection probability by Bob,
IB2, and the second gives IA2 and IB0 − 〈IB0〉 to Alice and Bob, re-
spectively. Also the (Alice) ensemble average of IA0 − 〈IA0〉 is zero,
meaning that only the fluctuations are involved, and similarly for Bob
term IB0−〈IB0〉 . Furthermore, it seems that for each party one of the
terms comes from a signal (that is IA2 and IB2) but the other part
comes from the ZPF (that is IA0−〈IA0〉 and IB0−〈IB0〉). This leads
to a physical interpretation of entanglement: it is a correlation be-
tween fluctuations involving the vacuum fields. Usually entanglement
is defined as a mathematical property derived from the HS formula-
tion of quantum theory, without any physical interpretation behind
(see chapter 2). Actually, the picture offered by eq.(311) is not strange
if we take into account the vacuum ZPF field, as we show in the fol-
lowing.

In order to get a plausible picture in terms of stochastic processes
several conditions should hold. Firstly we must assume that a de-
tector cannot distinguish the different partial field intensities defined
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in eq.(308), it responds to the radiation flux arriving at the sensitive
area of the detector within an activation time. The flux corresponds
to the time integral of the component of the Poynting vector in the
direction perpendicular to the active area of the detector. The net
flux will consists of the flux coming from the signal minus the flux of
the ZPF that comes from rear, see section 6.2.6.

The picture offered by our interpretation for the single detection
probability eq.(309) is clear. In agreement with the above hypotheses
we shall assume that the detection probabilities per time window, T ,
by Alice and Bob respectively, are

PA = 〈MA〉 , PB = 〈MA〉 ,

MA ≡ T−1

∫ T

0

�nA · �IAtotal (rA,t) dt,

MB ≡ T−1

∫ T

0

�nB · �IBtotal (rB , t) dt,(324)

where �IAtotal is the Poynting vector of the incoming radiation and �n
a unit vector in the direction of the incoming signals, that I assume
perpendicular to the active area of the detector. I use units such that
both the intensities and the detection rates are dimensionless, the
latter because they are defined as probabilities within a time window
T , this being equal or greater than the photocounter activation time.

The total ZPF arriving at any point has the property of isotropy
on the average, therefore producing nil mean flux in the detector
(modulo fluctuations that might contribute to the dark rate). Hence
the Poynting vector of the radiation arriving at the active area of the
detectors may be written

Alice : �IAtotal (t) =
�IAZPF (t) + �IA (t) ,

Bob : �IBtotal (t) =
�IBZPF (t) + �IB (t) .(325)

�IA, �IB , are due to the fields emerging from the non-linear crystal after
they have been transformed by lens systems, apertures, beam splitters,
etc. These vectors have the direction of �nA and �nB respectively, see
eqs.(324), whence their moduli would be equal to the arriving signal

field intensities. �IAZPF and �IBZPF correspond to radiation belonging
to the vacuum field, ZPF. Therefore, eqs.(324) and (325) become,
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written in terms of intensities,

(326) MA = IAZPF + IA, I
A
ZPF ≡ T−1

∫ T

0

�nA · �IAZPF (rA,t) dt

and similarly for MB . The signal intensities IA and IB should also
be time averaged, but I do not display it explicitly in eq.(326) . From
now on we will use the labels IA and IB for the time averages of
the signal intensities. Also the partial intensities defined in eq.(308),
this is, IA0, IA1, IA2, IB0, IB1, IB2, will be assumed to represent time
averages.

In order to get the Alice single detection rate we need the average
of MA, that we will evaluate by comparison with the case when the
pumping on the nonlinear crystal is off, everything else being iden-
tical. In this case IA becomes IA0, that is, radiation coming from
the nonlinear crystal but not modified by the action of the pumping
field. It is therefore a part of the ZPF arriving at the detector. Then
the Poynting vector of all vacuum fields arriving at Alice, namely
�IAZPF (t) + �IA0 (t), should have nil average due to the isotropy of the
total ZPF . And the same for Bob. As a consequence the intensities
arriving at the detectors fulfil the following equalities

(327)
〈
IAZPF + IA0

〉
=
〈
IBZPF + IB0

〉
= 0.

Of course, there are other components of the ZPF that are balanced
on the average and they will not enter in our calculation. Taking
eqs.(326) and (327) into account we get the single detection rate
eq.(309), that is,

(328) PA = 〈MA〉 = 〈IAZPF + IA〉 = 〈IA − 〈IA0〉〉 = 〈IA〉 − 〈IA0〉 ,
and similarly for PB . There is a factor 2 in comparison with the single
detection rate RA eq.(309) that derives from different conventions
used (compare eq.(299) with eq.(309)).

The coincidence detection probability for a given time window will
be the product of probabilities, whence the detection rate (or mean
detection probability per window) should be written as follows

(329) PAB = 〈MAMB〉 =
〈(
IA + IAZPF

)
(IB + IBZPF )

〉
,

that should be equivalent to eq.(311) except for a factor 2, that derives
also from different conventions. As in the derivation of eq.(328), the
mean detection probability PAB should be zero when the pumping is
off, whence we get

(330)
〈(
IA0 + IAZPF

) (
IB0 + IBZPF

)〉
= 0.
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In order to proceed it is convenient to write IA and IB in terms of the
partial intensities as defined in eqs.(308) and we obtain

(331) PAB = 〈(IA0 + IAZPF + IA1 + IA2

)
(IB0 + IBZPF + IB1 + IB2)〉.

This expression may be simplified as follows. We shall write it as a
sum of products whence, taking eq.(330) into account, we get

PAB = 〈(IA0 + IAZPF

)
(IB1 + IB2)〉+ 〈(IA1 + IA2) (IB0 + IBZPF )〉

+〈(IA1 + IA2) (IB1 + IB2)〉.
We shall show below that the average of IA1 with everything else is
zero, and the same is true for IB1, whence these terms may be removed
and we obtain

PAB = 〈(IA0 + IAZPF

)
IB2〉+ 〈IA2(IB0 + IBZPF )〉+ 〈IA2IB2)〉.

The average 〈IA2IB2〉 gives a contribution of order |D|4 that we may
neglect. Also, we shall take into account that the two ZPF contri-
butions arriving at Alice and Bob are uncorrelated with the signals;
whence we get

PAB = 〈IA0IB2〉+
〈
IAZPF

〉 〈IB2〉+ 〈IA2IB0〉+ 〈IA2〉
〈
IBZPF

〉
= 〈IA0IB2〉 − 〈IA0〉 〈IB2〉+ 〈IA2IB0〉 − 〈IA2〉 〈IB0〉 ,(332)

where we have taken eqs.(327) into account in the last equality. This
agrees with the quantum prediction obtained in the WW formalism
eq.(311), modulo the global factor 2 mentioned above.

The proof that the terms IA1 and IB1 do not enter in the final
result follows. The two terms 〈IA1 (IB0 − 〈IB0〉)〉 and 〈IA1IB2〉 are
nil. In fact, the partial ‘intensities’ IA1 and IB1 eqs.(308) consist of
sums of terms having either the form ajal or a

∗
i a

∗
k , that is, products

of two amplitudes with ‘star’ or two without ‘star’. Therefore, the
products involving IA1 times (IB0 − 〈IB0〉) and IA1 times IB2 will give
no contribution to the average values because the products will contain
a different number of amplitudes with and without ‘star’. Similarly
for the products of IB1 times (IA0 − 〈IA0〉) and IB1 times IA2.

A more extended discussion is needed in order to prove that the
average 〈IA1IB1〉 does not contribute. In fact, writing it in terms of
fields we have

(333) 〈IA1IB1〉 =
〈(
E+

A0E
−
A1 + E+

A1E
−
A0

) (
E+

B0E
−
B1 + E+

B1E
−
B0

)〉
.

Performing the product there are 4 terms that we may calculate using
again the property of the product of four Gaussian variables. The
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first term leads to a null result, namely〈
E+

A0E
−
A1E

+
B0E

−
B1

〉
=
〈
E+

A0E
−
A1〉〈E+

B0E
−
B1

〉
+
〈
E+

A0E
+
B0〉〈E−

A1E
−
B1

〉
+
〈
E+

A0E
−
B1〉〈E−

A1E
+
B0

〉
= 0,

because all the averages are zero, as proved taking eqs.(296) into ac-
count. Similarly

〈
E+

A1E
−
A0E

+
B1E

−
B0

〉
= 0. The two remaining terms

coming from eq.(333) are complex conjugate of each other whence we
may write

(334) 〈IA1IB1〉 = 2Re
〈
E+

A0E
−
A1E

+
B1E

−
B0

〉
.

If we evaluated this expectation using the Gaussian property as pre-
viously, we would get〈

E+
A0E

−
A1E

+
B1E

−
B0

〉
=
〈
E+

A0E
−
A1〉〈E+

B1E
−
B0

〉
+
〈
E+

A0E
+
B1〉〈E−

A1E
−
B0

〉
+
〈
E+

A0E
−
B0〉〈E−

A1E
+
B1

〉
=
〈
E+

A0E
+
B1〉〈E−

A1E
−
B0

〉
+
〈
E+

A0E
−
B0〉〈E−

A1E
+
B1

〉
,

the first term being null. The last two terms consist of a product
of two averages each. Every average consists of a field amplitude
arriving at Alice times another amplitude arriving at Bob. In these
conditions we cannot ignore the phases of the spacetime factors like
exp [ik · r− iωt], see eq.(291), that would be different in the Alice
and Bob beams, and uncorrelated. Therefore, it is plausible that
the average over these phases should result in a null value for the
expectation whence the average eq.(334) will be zero, thus finishing
the proof that the term 〈IA1IB1〉 of eq.(329) does not contribute. I
point out that the phase correlation condition is quite different in the
other terms of eq.(329) because they involve absolute values, making
the spacetime phases irrelevant. This is the case for instance in the

average 〈IA0IB2〉 =
∣∣〈E+

A0E
−
B1〉
∣∣2 .

6.6.3. Local realism weaker than Bell’s. The interpretation
of SPDC experiments in terms of stochastic processes, including the
vacuum fields, allows local models violating a Bell inequality. This
contradicts the wide consensus that Bell’s is the unique local realis-
tic formalism appropriate for experiments measuring correlations be-
tween distant parties.

There are several possible criticisms to our approach. Firstly our
final eq.(332) (or (311)) may seem strange because apparently it does
not fulfil the condition that the detection depends on the total radia-
tion arriving at the detector. However, the physical basis is eq.(331)
that obviously does fulfil the condition. Another possible problem is
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the lack of positivity of the functions MA and MB , with obvious in-
terpretation as probabilities in a single time window. Indeed, in order
to obtain an average probability we should sum only (positive) prob-
abilities. The possible lack of positivity is caused by the fluctuations,
but we may assume that fluctuations will contribute only slightly if
the integration time T in eq.(326) is large enough. This fact would be
clear using the threshold detection rule. This rule is more plausible
as said in section 6.2.6, but it would give a cumbersome calculation.
Therefore, we may assume that MA and MB are positive with fairly
good approximation.

Another objection to our approach is that, if MA and MB are
positive and we use eqs.(328) and (329) in order to obtain the de-
tection probabilities, our starting point would look identical to Bell’s
proposal, see chapter 3 section 3.3.3. If this was the case our model
should fulfil the Bell inequalities and could not agree with quantum
predictions. I believe that the introduction of the vacuum field ef-
fects produces a substantial difference. In fact, in Bell proposal the
correlations derived from the source, but in our approach the vacuum
ZPF contribution is essential. In any case, a more accurate treatment
involving many radiation modes, not just two, is worthwhile.

As a conclusion, our approach suggests that the WW formalism
might provide an interpretation of experimental tests of Bell inequal-
ities that agrees with both the standard quantum predictions and a
local realistic view of nature. But carrying on the program presents
difficulties and further work is needed in order to clarify the matter.
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266 7. QUANTUM EFFECTS IN ASTROPHYSICS AND COSMOLOGY

7.1. Introduction

Quantum effects are relevant in several areas of astrophysics and
cosmology. This chapter is devoted to study some of them, which may
be helpful for the interpretation of quantum theory.

Our understanding of astrophysics and cosmology rests on general
relativity. It is commonly believed that a good treatment of phenom-
ena whose interpretation involves also quantum mechanics requires a
quantum gravity theory. Thus, section 7.2 is devoted to present a per-
sonal view about the possible approach to a unified theory of general
relativity and quantum mechanics.

As said in chapter 1 our interpretation of quantum theory in-
volves the hypothesis that the vacuum fields are real stochastic fields.
Therefore, most of the present chapter will be devoted to the influence
that I believe vacuum fields have in astrophysics. As an introduction,
the vacuum fields of quantum electrodynamics are briefly revisited in
section 7.3.

The possible effects of the quantum vacuum will be studied in
3 areas. In section 7.4 it is proposed that ‘dark energy’ is actually
an effect of the quantum vacuum fluctuations. In section 7.5 we ar-
gue that the vacuum fields may be also the origin of the phenomena
attributed to ‘dark matter’, in particular the observed flat rotation
curves of stars and gas in the haloes of galaxies.

Compact stars, like white dwarves, supermassive stars and neu-
tron stars, may have a mass-to-radius ratio so large that, according
to the standard opinion, they would eventually collapse. In contrast,
ordinary stars, like the Sun, and planets are far from gravitational
instability and quantum theory plays a minor role for them, reduced
to explaining their equations of state. Therefore, our main interest
is the possible quantum effects on the eventual collapse of compact
stars. Section 7.6 is devoted to that matter.

7.2. General relativity

7.2.1. The theory of curved spacetime. General relativity
(GR) proposes that spacetime is a manifold with intrinsic curvature.
In the following I present a brief summary of its fundamental concepts;
see any book on GR, such as [1] or [2], for details.

The analogy with a surface is useful. A sphere has intrinsic curva-
ture, but the curvature of a cylinder is not intrinsic, it makes reference
to the three-dimensional space. We may make a cylinder by folding a
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7.2. GENERAL RELATIVITY 267

sheet of paper, which is not possible for a sphere, as is well known from
maps of large regions in Earth. The intrinsic curvature of a sphere is
said positive and it is measured by a single number, the Gauss cur-
vature, which is the inverse of its squared radius, 1/R2. There are
surfaces with negative intrinsic curvature, the typical example being
a saddle. For any surface we may consider a small region around a
point and identify it with a region of either a sphere or a saddle; that
would define the intrinsic curvature at that point.

The generalization to varieties of N dimensions was done by Rie-
mann. Defining the curvature of a variety requires many numbers,
14 for the spacetime of 4 dimensions. Once a system of coordinates{
x1, x2, x3, x4

}
has been chosen, curvature may be derived from the

metric

(335) ds2 =
∑
μ

∑
ν

gμν
(
x1, x2, x3, x4

)
dxμdxν ,

that allows calculating a kind of distance ds between two near points.
In eq. (335) I have included the

∑
symbols for clarity, but it is stan-

dard practice to omit them. The sum over repeated indices, without
including the

∑
symbol, is named Einstein convention and I shall use

it in the following, with few exceptions. Combining elements of the
metric tensor gμν , and their first and second derivatives with respect
to the coordinates, it is possible to get the Riemann curvature tensor
Rμνλσ, which has 44 = 256 components. However, there are a number
of relations amongst them so that only 14 are independent, as said
above.

Curvature is related to the basic properties of matter like energy,
momentum and angular momentum, and the relation is given by the
Einstein equation. Or, rather, we might say that Einstein’s equation
is just a ‘translator’ from the physical language (velocity, energy, etc.)
to the geometrical one (world line, curvature). Einstein equation of
general relativity is a relation between tensors that may be written
(with the notation of the book of Weinberg [1]) as

(336) Rμν − 1

2
gμνR ≡ Gμν = −8πGTmatt

μν ,

The left side Gμν , named Einstein tensor, combines the Ricci tensor
Rμν and the curvature scalar R, that may be got from the Riemann
tensor, that is,

(337) Rμν =
∑

gλσRλμσν , R =
∑

gμνRμν .
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268 7. QUANTUM EFFECTS IN ASTROPHYSICS AND COSMOLOGY

The right side of eq. (336) is the matter contents, Tmatt
μν being the

stress-energy tensor. If there is no curvature, i.e. in Minkowski space,
both Rμν and R are zero, which would imply Tmatt

μν = 0 according to
eq. (336). That is, matter ‘cannot live’ in Minkowski space.

The relation between the geometry of spacetime and matter de-
termines the fundamental laws of physics like conservation of energy,
momentum and angular momentum, and it governs the motion of par-
ticles, that are compelled to travel along geodetic lines in 4 dimensions
if free, and with appropriate motion if forces (e.g. electromagnetic) act
on them. I stress again that in my view (shared with many people
including Einstein, I believe) gravity is not a force but an effect of the
curvature of spacetime on the motion of bodies.

In practice, solving eq.(336) in order to determine the metric ten-
sor gμν

(
x1, x2, x3, x4

)
requires knowledge of the stress-energy tensor

Tmatt
μν as a function of the coordinates or, more usually, some relations

between its components (e.g. between energy density and pressure,
what is called equation of state). Finding the solution of eq. (336) is
rather difficult and only a few simple cases may be solved exactly. On
the other hand, approximations are problematic due to the nonlin-
ear character of the equations. For a small region all physics may be
studied locally as in flat, Minkowski space, locally meaning an infin-
itesimal region around a point of spacetime. In practice this is the
case in laboratory physics where typical sizes are small in comparison
with astronomical distances. Of course, passing from an infinitesimal
to a finite region is not straightforward. This is the case, for instance,
in the study of quantum fields in curved space.

The belief that GR is fundamentally a theory of spacetime is stan-
dard, although some authors seem reluctant to accept it. I go further
and believe that GR is exclusively a theory of spacetime and its rela-
tion with matter. It is not a theory of gravity because gravity is not a
force. As an example let us consider the motion of Earth around the
Sun. People living on Earth do not experience any force of attraction
from the Sun because that force is balanced by the centrifugal force
(this is correct in the center of Earth, and approximately true on the
surface). Of course, any physics teacher would instruct students that
there is an important difference, the Sun attraction is a true force
whilst centrifugal force is fictitious, it looks like a force because we
are observing from Earth, whose motion is not inertial. However, ac-
cording to GR it is the case that the motion of the Earth is inertial,
it corresponds to travelling along a geodetic in a curved spacetime.
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7.2. GENERAL RELATIVITY 269

Indeed, formulating physics in a curved spacetime is similar to study-
ing physics in an accelerated reference frame. It is so similar that it
was the starting point of GR, that Einstein proposed in 1907 as a
‘principle of equivalence’.

Gravitational force is fictitious like the centrifugal one. In other
words, there are not 4 fundamental forces in nature, just 3: electro-
magnetic, weak and strong (or two if we consider the unification of the
former two). Thus, quantization of gravity is quantization of space-
time, something that for a not educated observer might look bizarre
because quantum phenomena do happen in spacetime.

There is one reason that has lead to treat gravity as the fourth
force. It is the fact that in the absence of matter Einstein eq. (336)
becomes

(338) Rμν − 1

2
gμνR ≡ Gμν = 0,

and this equation may have solutions aside the trivial one without
curvature (i.e. Minkowski space). The most obvious example is the
space curvature outside massive bodies like the Earth. This curvature
may produce acceleration on particles and it is named gravitational
field in the Newtonian approximation.

Other solutions of eq. (338) are the gravity waves. These waves
are produced by motion of matter and travel through space in a form
similar to electromagnetic waves produced by electric charges in mo-
tion; that is, they travel in the absence of charges. In summary, we
cannot have matter without spacetime curvature, but we may have
curvature without matter. In fact, flat (Minkowski) space implies
Gμν = 0 whence Einstein eq. (336) gives Tμν = 0, but Gμν = 0 does
not imply a nil Riemann tensor, that is, absence of curvature. Also,
solutions of eq. (338) might exist in the form of fluctuations of the
metric, that is, fluctuations of the elements gμν of eq. (335). I pro-
pose that such fluctuations may be a fundamental ingredient for the
quantum behaviour [3], but this question will not be studied here
further.

7.2.2. Is general relativity a field theory? The study of
gravitational and electrostatic interactions started from very similar
laws due to Newton and Coulomb. Ignoring their vector character,
irrelevant here, and including the acceleration produced by the force
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we may write, respectively
(339)

FNewton = −G
m1m2

r2
= −m2

d2x2

dt2
, FCoulomb =

q
1
q
2

r2
= m2

d2x2

dt2
,

where mj are masses, qj are charges, and x2 is the position of the
accelerated particle.

But there are two differences between the two theories: firstly,
gravity is always attractive, the mass being positive, but the electro-
static interaction may be either attractive or repulsive because there
are charges qj of either sign. The second difference is more subtle
but very important. Newton law requires the introduction of a con-
stant, G, but in Coulomb law the charges might be defined so that no
constant is necessary. This is because the electric charge just plays
the role of source of the interaction. However, in the first eq. (339)
mass has two (apparently) quite different roles: it is both the source
of gravity on the left side and a measure of inertia on the right side.

We may go further and ask what happens if we remove the con-
stant also in front of the gravity equation putting G = 1. The result
is that we are compelled to define mass as having the dimensions of
length (if we measure times in units of length taking the velocity of
light as unit, consistently with special relativity). This might be in-
terpreted saying that mass is a property of space and GR tells us how
to relate it with spacetime curvature.

Eqs. (339) suggest defining a gravitational field, g, and an elec-
tric field, E, whence it is possible to define a gravitational and an
electrostatic energy, E, in a volume V , namely

Egrav = −G

2

∫
V

|g|2 d3r, Eelect =
1

2

∫
V

|E|2 d3r.

Thus the energy may be believed as distributed in space, the material
particles being just the sources of the fields. The concept of field was
introduced by Faraday, extended by Maxwell to the whole electromag-
netic theory and later applied to all known interactions. Maxwell’s
was a relativistic field theory, or rather it was the origin of relativity.
Once special relativity was clearly formulated, by Einstein in 1905, it
became standard belief that all fundamental fields of nature should be
compatible with relativity theory. This fact suggested the need of a
relativistic theory of gravity, and a big effort was devoted to search for
it in the first few years of the 20th Century. But the dual role of mass
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above mentioned made the new theory much more than just a rela-
tivistic field theory of gravity. The appropriate theory was found by
Einstein, not as a field theory but as a theory of the intimate relation
between spacetime and matter.

The question is whether Einstein’s general relativity is really a
field theory like Maxwell’s electromagnetism. In my opinion it is not.

Actually, it is possible to formulate gravity as a field theory able to
reproduce the predictions of Einstein’s theory. The standard method
is to rewrite the Einstein eq. (336) in a form that looks like a field
equation of gravity (see e.g. the book of Weinberg [1], section 7.6).
This approach may be useful for calculations, but it is artificial and
it darkens the physics, in my opinion.

A different approach has been proposed by Logunov [4, 5] with
the name ‘relativistic theory of gravity’. He took the Einstein eq. (336)
as starting point, so that most tested predictions of general relativity
are reproduced. However, Logunov changes the interpretation: the
tensor gμν

(
x1, x2, x3, x4

)
is not a metric tensor, but a tensor field of

gravity, in analogy with Maxwell theory in terms of a vector field in
4 dimensions. Then both Logunov’s gravitational field and Maxwell’s
field ‘live’ in a flat (Minkowski) spacetime with a metric

ds2 =
∑

hμνdxμdxν ,

where hμν is a tensor such that, in appropriate (Cartesian) coordi-
nates, the metric may be written

ds2 = dx1 + dx2 + dx3 − dx4.

Quantizing a field theory of gravity may be similar to quantizing
the electromagnetic field or, say, the electron-positron field; but quan-
tizing Einstein’s ‘general relativity’ is quite different, as commented
in more detail in the following.

7.2.3. General relativity and quantum mechanics. The
unification of GR with QM is currently viewed as the most important
open problem in theoretical physics. It is also common opinion that
the solution would be to quantize GR. I may agree with the former
sentence, but not fully with the latter. In particular, I do not believe
that QM is more fundamental than GR. Of course, QM has had a
spectacular success in the prediction of empirical facts, specially after
the development of quantum electrodynamics. GR has had also rel-
evant successes in explaining many observations, but it is well below
QM in this regard and, more importantly, it has far smaller impact in
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the technological development. I think that this is why most physi-
cists believe that QM is the fundamental theory of nature, whilst GR
is seen as a theory of gravity, this considered just one of the four
fundamental forces of nature.

In contrast, I believe that GR is more fundamental than QM be-
cause it establishes the structure of spacetime, which is the framework
for the whole physics. On the other hand, as explained in the pre-
vious chapters of this book, I support the view that quantization is
just a mathematical formalism for the statistical description of the
behaviour of matter. Indeed, I believe that the material world is so
complex and our observational possibilities so limited that we should
use a probabilistic approach. It is the case that the statistical prop-
erties of the quantum world are peculiar and demand an appropriate
formalism to characterize them. That formalism seems to be Hilbert
space (or C∗algebras for systems with infinitely many degrees of free-
dom).

The view of nature offered by general relativity is as follows. The
material world consists of a four-dimensional manifold with intrinsic
curvature, that we name spacetime. We believe, with Einstein, that
physics does not deal with the evolution of a three-dimensional object,
but with a four-dimensional object. That is, time is a coordinate with
a role not too different from the space coordinates. The truly special
role of time for us, human beings, is an anthropic prejudice, not a
fundamental physical fact, as discussed in more detail in chapter 3,
section 3.6. Therefore, I will treat time and space in the same footing,
using natural units c = 1 and speaking about length with the meaning
of either spacial length or time interval.

Attached to points of spacetime there are fields, e.g. scalar, vector
or spinor. Field theory provides differential equations that relate the
values of the fields in different points. Thus, constructing a field theory
requires a previously given spacetime. In the most simple case we
assume Minkowski space and this has been the common choice for
the development of (quantum) electrodynamics first and the whole
relativistic (quantum) field theory later on.

General relativity allows connecting the fields with the spacetime
curvature via three steps. Firstly there are equations that provide the
mass-energy contents of the fields in the form of a stress-energy tensor,
although they are usually formulated in Minkowski space, which is an
approximation. Then Einstein equation of GR relates that tensor with
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the Einstein tensor. Finally the mathematical theory of Riemann re-
lates the Einstein tensor with the metric tensor. In summary, general
relativity plus field theory allows connecting field amplitudes with the
metric tensor via 3 steps.

I believe that we make conceptual progress if we reduce the steps
from 3 to 2. We cannot remove the equations of the first and the last
steps, both being rather involved. However, it is very easy to remove
the second step because Einstein equation is conceptually very sim-
ple, it is just an equality of two tensors modulo the Newton constant
G. It is enough to take the Einstein equation as a kind of ‘dictionary’
that just translates an alleged physical property (stress-energy tensor)
to geometrical language (Einstein tensor). A dimensional (Newton)
constant is needed because the units used in either metric or Einstein
tensors (i.e. combinations of lengths) are different from the units used
for the stress-energy tensor (involving mass-energy). With this reduc-
tion from 3 to 2 steps we arrive at interpreting mass-energy, momen-
tum and angular momentum as geometrical properties of spacetime.
Indeed, the equations that relate the values of the fields at different
points are strongly constrained by the need that the Einstein tensor
derived from them represents a possible curvature, that could be de-
scribed by a metric tensor. The constraints lead in particular to the
conservation laws of energy, momentum and angular momentum.

Up to here everything has been conceptually simple because we
have related classical physics with GR, that may be labeled classical
too. The problem appears if the fields are quantum, because then the
two theories (QM and GR) do not match. If the equations of quan-
tum field theory were interpreted as stochastic, the solution of the
problem would be straightforward. We should consider a probability
distribution of Einstein tensors corresponding to the distribution of
stress-energy tensors. The big difficulty is that quantum distributions
are hidden behind a formalism, say Hilbert spaces, that seem appro-
priate for the peculiar stochastic processes involved. However, deci-
phering the stochastic contents of the quantum formalism appears as
extremely difficult to the point that many (or most) physicists believe
that it is not possible, that quantum theory is not a stochastic theory.
This book is precisely devoted to provide some ideas in support of the
opposite belief.

7.2.4. How to quantize general relativity. I stress again that
in my view GR is not a field theory of gravity because gravity is a
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fictitious force, as the centrifugal force. Quantization of GR might
be just a procedure to allow characterizing a stochastic spacetime.
The problem is that we do not know how to do that. We only know
the rules for the quantization of linear fields, and this quantization
is made in Minkowski space, which is necessarily an approximation
because the existence of fields is not compatible with flat spacetime.
I believe that only after we understand quantization as a stochastic
treatment of the fields we could go beyond the standard purely formal
quantization rules.

Shelving the task of interpreting quantum theory as a stochastic
theory we might start quantizing GR by considering that the ele-
ments of the Einstein tensor are operators similar to the operators
of the stress-energy tensor, whence also the elements of the metric
tensor might be got as quantum operators. The problem is that the
relation between the Einstein tensor and the metric tensor, provided
by Riemann geometry, is not linear; whence a difficulty arises with
the ordering of the metric operators. An additional obstacle is the
existence of solutions of eq. (338) (without matter contents), whence
quantization of spacetime is not just a consequence of a possible quan-
tum Einstein eq. (336) after quantizing the stress-energy tensor.

The difficulty of getting appropriate quantum operators for the
metric tensor elements is one of the difficulties to find a ‘quantum
gravity theory’, but it is not the only one. The main problem derives
from the fact that Einstein eq. (336) is not linear in the metric tensor
components. This precludes a straightforward quantization, achieved
e.g. expanding a field in plane waves and promoting the amplitudes
of the waves to (creation and annihilation) operators, a procedure
pioneered by Dirac for the electromagnetic field in 1927. (As an illus-
tration of the quantization procedure see section 7.3.1 below, dealing
with the quantum electromagnetic field).

The early Dirac quantization method evolved to the canonical
method via commutation or anticommutation relations of conjugate
operators, or via path integral quantization. In the former approach
one starts with a variational formulation of the evolution in terms of
a Lagrangian density involving field amplitudes and their derivatives
with respect to the coordinates. Hence, canonical momentum densi-
ties may be derived and then promoted to operators (see any book of
quantum field theory). In this approach the integral of the Lagrangian
density becomes the action in the path integral, whence the propaga-
tion of the fields may be obtained (for a nonrelativistic example see
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chapter 4). In GR the action appears in the Hilbert variational for-
mulation. The problem is that the quantized theory is not renormaliz-
able; it gives rise to divergences that cannot be eliminated so that no
finite predictions may be obtained. Many attempts have been made
to devise modifications that might produce a renormalizable gravity
theory, without too much success till now. In my opinion, this failure
is a hint that general relativity cannot be quantized in the sense com-
monly understood. Indeed, according to the interpretation supported
in this book quantization is just the substitution of random variables
or stochastic processes for classical quantities. More specifically, the
evolution might be deterministic in principle, but we cannot know
the states of the fields with accuracy, whence we must treat them as
random, or stochastic, fields. Quantization is the characterization of
these stochastic fields, that should be made consistently for all fields.
Indeed, the basic idea of the present book is that quantization has
an epistemological, rather than ontological, meaning. It is impossi-
ble for us to have complete information about phenomena, specially
in the microworld, and our approach would require a probabilistic,
stochastic, treatment. That is quantization: the substitution of ap-
propriate random variables for deterministic variables in the study of
the physical world.

7.2.5. Extended gravity theories. General relativity has
passed all observational tests so far, but the real theory of gravity
may well differ from it in some special cases. In fact, the difficulties in
quantizing Einstein’s theory and astrophysical observations not yet ex-
plained in a satisfactory way have led to the study of extended gravity
theory. Some of those theories have been proposed as an explanation
for the observable effects attributed to the hypothetical dark energy
and dark matter or as a possible mechanism to avoid the star collapse
leading to a singularity (i.e. to a black hole). I shall deal with these
three applications in sections 7.4, 7.5 and 7.6 respectively.

Extended gravity theories [6] usually rest upon the same funda-
mental idea of GR, namely that gravity is, or is associated to, curva-
ture of spacetime. Thus the modification of GR consists of changing
the left side of Einstein eq. (336). The change should preserve the
symmetry properties of the theory, that is, covariance under arbitrary
changes of coordinates. The standard method to achieve this is to
formulate GR in terms of the Hilbert action in the form

(340) S =
1

16πG

∫
d4x

√−gR+ Smatter,
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where g is the determinant of the metric tensor, that for a diago-
nal tensor would be just the product of the four nonzero elements.
The integral extends over a region of spacetime. It may be shown
that equating to zero the variation of the action leads to Einstein
equation [1], [2]. In extended gravity theories a function f of the 3
possible scalars that may be obtained from the Riemann tensor via
contractions is added to R. That is,

(341) f = f
(
R,RμνR

μν , RλμσνR
λμσν
)
.

Two important particular cases are f(R)-gravity, where f is only a
function of R [12], and the most general quadratic Lagrangian, that
may be written without loss of generality (with the summation of
repeated indices assumed) as

(342) f = aR2 + bRμνR
μν .

Here Riemann square does not appear because it may be eliminated
using the Gauss-Bonnett combination

RGB ≡ R2 − 4RμνR
μν +RλμσνR

λμσν ,

whose presence in the Hilbert action would not contribute to the field
equations. The extended gravity theory should behave appropriately
in the low gravity limit so that all terrestrial and Solar System observa-
tions are not contradicted, which is a strong constraint. For instance,
in the quadratic Lagrangian, eq. (342), the parameters a and b should
be at most a few millimeters (but see section 7.6.3).

Up to here we have interpreted the function f eq. (341), added to
R in the Hilbert action eq. (340), as a modification of GR; that is, as a
new theory resting on a curvature tensor Gμν different from the tensor
in GR, which is the left side of eq. (336). However, we may pass the
function f eq. (341) to the right side with changed sign and interpret
it as a contribution to the stress-energy tensor, possibly associated to
the vacuum fields. With this interpretation Einstein eq. (336) should
be written

(343) Rμν − 1

2
gμνR ≡ Gμν = −8πG(Tmatt

μν + T vac
μν ).

The vacuum stress-energy tensor could be obtained from the function
f via the variational eq. (340). It is a function of the elements gμν
of the metric tensor and their derivatives with respect to the coor-
dinates. This means that in this approach we are assuming that the
vacuum stress-energy tensor depends on the curvature of spacetime
via the metric, see eq. (335). The argument may be also stated as
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follows. Let us assume that the quantum vacuum contributes a stress-
energy tensor that depends on the curvature of spacetime. Then if we
want that such dependence respects the symmetries of the said curved
space, then it is appropriate to derive it via the Hilbert eq. (340).

The calculation of T vac
μν eq. (343) with f eq. (341) substituted for

R in eq. (340) is straightforward but lenghty. For instance, see the
result for the quadratic Lagrangian eq. (342) in Ref. [13].

7.3. The vacuum fields of quantum electrodynamics

This section is devoted to an illustrative calculation of the ener-
gies and pressures of the fields involved in quantum electrodynamics
(QED), that is, the free electromagnetic and positron-electron fields.
A sketch of the interaction of both is included for completeness. The
purpose is to introduce some properties of the vacuum fields that will
be useful in sections 7.4 and 7.5.

7.3.1. Zeropoint energy, divergences and regularizations.
As a result of the quantization of fields a zero-point energy appears,
as mentioned in chapter 1. If the field is expanded in normal modes
(plane waves in in the case of free space) the zero-point field (ZPF)
contributes an energy 1

2�ω per normal mode, ω being the frequency.
The problem is that this leads to big (quartic) ultraviolet divergence
of the ZPF energy. For instance, if we perform the sum for all normal
modes of the electromagnetic radiation quantum field, we would get
an infinite total energy in any finite volume, that is, an energy density
as follows

(344) ρEM =
1

V

∑
k,s

1

2
�ω → 1

8π3

∫ kmax

0

�ωd3k =
�ω4

max

8π2c2
,

where k is the wave-vector of a plane wave, |k| = k = ω/c, we sum
over 2 polarizations, and ωmax is a cut-off frequency.

In most calculations of quantum mechanics the problem of the di-
vergence is solved in practice with the ‘normal ordering rule’, that is,
putting the annihilation operators to the right as described in chapter
1. The rule amounts to subtracting effectively the ZPF or, equiva-
lently, to fixing the zero of energies at the level of the vacuum. In-
deed, usually only energy differences have a physical meaning and the
zero may be fixed arbitrarily, except if gravity is involved. Also the
ZPF is modified by the presence of matter (e.g., an atom) producing
radiative corrections (e.g., the Lamb shift).
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If we take the electromagnetic vacuum energy eq. (344) as real
then a natural cutoff appears at the Planck scale, due to gravitational
effects, defined in terms of the universal constants c, �, G. Thus, if we
choose

Emax =
1

2
�ωmax = EPlanck =

√
2�

G
c2 = 2.0× 106joule,

in eq. (344) we would get an energy (or mass) density

(345) ρEM =
1

8π2
ρPlanck, ρPlanck =

c5

G2�
� 1097kg/m3,

a huge value indeed. The electromagnetic zero-point pressure is 1/3
the density in units c = 1, that is,

(346) ρEM =
E4

max

8π2�3
, PEM =

E4
max

24π2�3
.

Similarly, we may calculate the energy (or mass) density ρ and the
pressure P of other fields, e.g. for the free electron-positron (Dirac)
field we have

ρD0 = − 1

V

∑
k,ε

E →(347)

− (2π)
−3
∑
s

∫ pmax

0

Ed3p = −π−2

∫ pmax

0

√
m2 + p2p2dp

= −p4max

4π2
− p2maxm

2

4π2
+

m4

8π2
ln
(pmax

m

)
+O
(
p−2
max

)
,

PD0 = − 1

V

∑
k,ε

p2

3E
→(348)

− 1

3π2

∫ pmax

0

(
m2 + p2

)−1/2
p4dp

= −p4max

12π2
+

p2maxm
2

12π2
− m4

8π2
ln
(pmax

m

)
+O
(
p−2
max

)
,

where s is the polarization and I have used units � = c = 1, as will
be made in the rest of this section, although I shall include these pa-
rameters sometimes for clarity. In the subindices, D stands for Dirac
and 0 for free field. In contrast with the positive sign of the density
and the pressure of the electromagnetic field, eqs. (344) and (345),
that were a consequence of the commutation relations of creation and
annihilation operators (for Bose fields), now the sign is negative due
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to the fact that the field operators anticommute (for Fermi fields).
For all massive free fields the ZPF energy and pressure are similar to
eqs. (347) and (348) except that the sign is opposite for Bose fields.
In all cases there is a quartic divergence, another quadratic one, and
finally a logarithmic one. In addition to the free fields, the contribu-
tions of the field interactions should be taken into account. With a
cutoff at the Planck scale, the energies and pressures of the vacuum
fields are of the order of eq.(345).

A popular procedure to deal with the divergences in the calcula-
tion of the vacuum energy is the regularization of the infinities (see
e.g. [7]). Actually, the cutoffs leading to eqs. (344) to (348) are not
covariant, with the consequence that they do not provide a Lorentz
invariant ‘vacuum equation of state’, that would correspond to density
and pressure related by P = −ρ. For instance, for the free electromag-
netic field one obtains a ‘radiation equation of state’ where pressure
and density are related by P = 1/3ρ, which is also the case for the
leading term of the electron-positron field. In contrast, Lorentz co-
variant regularizations, in addition to providing a vacuum equation
of state, may lead to a decrease of the divergence from quartic in
the particle energies to logarithmic. More specifically, in a covari-
ant regularization the terms with quartic and quadratic divergence of
eqs. (347) and (348) usually do not appear and the leading terms are
the logaritmically divergent ones. For instance, in the free electron-
positron field

ρDO =
1

8π2
m4 ln

(pmax

m

)
, PDO = − 1

8π2
m4 ln

(pmax

m

)
,

that correspond to a vacuum equation of state P = −ρ. With a cutoff
at the Planck scale, the energy density and the pressure become of
order 1020kg/m3, still very large but much smaller than eq. (345). In
Minkowski space the vacuum equation of state P = −ρ is satisfactory
because it is Lorentz invariant. But see the comment at the beginning
of section 7.4.5.

Covariant regularizations gives rise to some difficulties, in partic-
ular the ambiguity derived from the fact that different regularizations
may produce different results, even opposite sign for the regularized
quantity [7], [8]. Another strange result is that regularization gives
nil energy density for the radiation vacuum contribution, in sharp
contrast with the fact that the integrals involved in the calculation
of the energy density (similar to those used to get eq. (344)) have a
positive definite integrand. In conclusion, covariant regularizations
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are mathematical procedures useful for some purposes, in particular
renormalization in QED. But I do not think that they provide an ap-
propriate physical picture of the vacuum fields. Of course, a correct
picture should involve finite energies only, which is not available at
the moment. In any case, the most plausible assumption is that the
mean energy and pressure of all vacuum fields taken together are both
zero, as discussed in the next section 7.4.

In summary, the divergencies of the ZPF do not put any difficulty
for calculations not involving gravity, that give finite results using
renormalization techniques, but they present a big unsolved problem
for calculations of gravitational effects. The standard view is that the
problem could not be solved until we have a ‘quantum gravity theory’
unifying general relativity with quantum mechanics, see section 7.2
above. In the meantime we may assume that the contributions to the
vacuum energy and pressure cancel. A hint for this possibility is that
the most divergent terms in the vacuum free fields have opposite signs
for bosons and fermions. Of course, there are also contributions due
to field interactions.

Here I will not comment any more on the problem of divergencies.
In the next three subsections I recall some aspects of the calculation
of the energy density and pressure in the QED fields, that is, electro-
magnetic and electron-positron fields. These calculations are standard
and well known, but I reproduce them as a reference for sections 7.4
and 7.5 respectively.

7.3.2. The free electromagnetic field. We will work in Min-
kowski space, although it is not a good approximation when the space-
time curvature is relevant. I will start calculating the stress-energy
tensor of the free electromagnetic field, ignoring all other vacuum
fields. Assuming homogeneity and isotropy of space, the stress-energy
tensor is defined by just two parameters, energy density ρ and pressure
P .

The quantization of a classical field involves promoting the am-
plitudes of the plane waves expansion to (creation or annihilation)
operators. For instance, the classical free electromagnetic field, in the
Coulomb gauge, may be represented by an expansion in plane waves
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of the vector potential, A(r,t), that is,

A(r,t) =
1√
V

∑
k,ε

(
2π�c

k

)1/2

×

× [αk,εε exp (ik · r−ikt) + α∗
k,εε exp (−ik · r+ikt)

]
,(349)

where k = |k|. In the rest of this section I will use the notation of the
book of Sakurai [9] and units � = c = 1. From eq. (349) it is easy to get
the electric field, E = −∂A/∂t, and the magnetic field, B = �×A.
The polarization vector ε depends on k (in fact k · ε =0) whence there
are two possible values so that we should write εj (k) , j = 1, 2, but I
will use a simplified notation except when some confusion might arise.

In the quantized field an annihilation operator α̂k,ε is substituted

for the amplitude αk,ε, and a creation operator α̂†
k,ε for the ampli-

tude α∗
k,ε; whence the electric and magnetic fields, Ê and B̂, become

vector operators. They may be written via an expansion in plane
waves taking a quantized counterpart of eq. (349) into account. From
these expansions, that I do not write explicitly, it is straightforward
to obtain the energy density operator. We get

ρ̂EM (r, t) ≡1

2

(
Ê2 + B̂2

)
=

1

4V

∑
k,ε

∑
k′,ε′

K1(α̂
†
k′,ε′ α̂k,ε + α̂k,εα̂

†
k′,ε′)

+
1

4V

∑
k,ε

∑
k′,ε′

(
K2α̂k,εα̂k′,ε′ +K∗

2 α̂
†
k,εα̂

†
k′,ε′

)
,

where the functions K1 and K2 are numbers (not operators) given by

K1 =
√
kk′ε ∗ ε′ exp [i (k− k′) · r−i (k − k′) t](350)

K2 =
√
kk′ε ∗ ε′ exp [i (k+ k′) · r−i (k + k′) t] ,(351)

For notational simplicity I have introduced the following ‘star product’

(352) ε ∗ ε′ ≡ ε · ε′ + 1

kk′
[(k× ε) · (k′×ε′)] ,

which satisfies the properties∑
j

(εi ∗ ε′j)(ε′j ∗ ε′′l ) = εi ∗ ε′′l ,
∑
ij

εi ∗ εj = 4

∑
ij

(εi ∗ ε′j)2 = 2

[
1 +

k · k′

kk′

]2
.(353)
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It is convenient to write the terms of ρ̂EM in normal order, that is,
with the annihilation (creation) operators to the right (left). Taking
the commutation rules of the field operators into account we get

ρ̂EM = ρEM0 + ρ̂EM1 + ρ̂EM2,(354)

ρEM0 =
1

2V

∑
k,ε

k.

ρ̂EM1 =
1

2V

∑
k,ε

∑
k′,ε′

K1α̂
†
k′,ε′ α̂k,ε,

ρ̂EM2 =
1

4V

∑
k,ε

∑
k′,ε′

(
K2α̂k,εα̂k′,ε′ +K∗

2 α̂
†
k,εα̂

†
k′,ε′

)
,

where ρEM0 is a numerical constant (times the unit operator).
The Hamiltonian is obtained by performing a space integral of

the energy density eq. (354), that is,

ĤEM = lim
V→∞

∫
V

ρ̂EM (r) d3r =
∑
kε

k(α̂†
k,εα̂k,ε +

1

2
).(355)

The integral removes the spacetime dependence and cancels the de-
nominator V . It is interesting that the space integral also leads to
k′ = −k in K2 eq. (351); whence the term ρ̂EM2 does not contribute
to the Hamiltonian nor, therefore, to the average energy density. It
contributes only to the fluctuations above or below the mean, a rel-
evant fact for our calculations in sections 7.4 and 7.5. In quantum
language these fluctuations consist of the creation or annihilation of
two virtual photons with zero total momentum, as shown by the field
operators involved.

For the free electromagnetic field, the vacuum state |0〉 may be
defined as the state with the minimal energy, that is, as the eigenvector
of the operator eq. (355) with the smallest eigenvalue. It is a state with
zero photons and it has the properties

αk,ε | 0〉 = 0, 〈0 | α†
k,ε = 0.

The state |0〉 is different from the actual QED vacuum |vac〉, which
takes the electron-positron field and the interaction into account. For
the purely electromagnetic vacuum state | 0〉 the expectation of the
energy density is

(356) 〈0 |ρ̂EM | 0〉 = ρEM0 =
1

V

∑
k,ε

1

2
�k =

1

V

∑
k

�k,
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where the last equality derives from the two possible polarizations. We
have taken into account that the ρ̂EM1 term does not contribute to the
expectation value because both the annihilation operator placed on
the right and the creation operator on the left give zero when acting
on the vacuum state. In the limit V → ∞ we obtain eq. (344). I
will not give a detailed calculation of the pressure; for the result see
eq. (346).

In addition to density and pressure we might find the two-point
correlations of vacuum energy density, the most relevant quantity for
the study of the quantum fluctuations. I will define it at equal times
after subtracting the mean density, that is

(357) C (r1, r2) =
1

2
〈0 |ρ̂ (r1) ρ̂ (r2) + ρ̂ (r2) ρ̂ (r1)| 0〉 − ρ2vac,

where the fact that ρ̂ (r1) does not commute with ρ̂ (r2) has been
taken into account. It is easy to see that ρEM0 eq. (354) does not give
a contribution to C (r1, r2) because there is a cancelation in eq. (357).
Similarly ρ̂EM1 gives zero in both terms. Therefore, the whole contri-
bution to the correlation derives from the term ρ̂EM2. We get

C (r1, r2) =

1

16V 2

〈
0

∣∣∣∣∣∣
∑
k,ε

∑
k′,ε′

K2α̂k,εα̂k′,ε′
∑
k′′,ε′′

∑
k′′′,ε′′′

K∗
2 α̂

†
k′′,ε′′ α̂

†
k′′′,ε′′′

∣∣∣∣∣∣ 0
〉
,

whence, putting the operators in normal order via the commutation
rules, we obtain after some algebra

CEM0(r) =
1

4V 2

∑
k,ε

∑
k′,ε′

kk′
[
1 +

k · k′

kk′

]2
exp [i (k+ k′) · r] ,

where eqs. (351) and (353) have been taken into account. Substituting
integrals for the sums this leads to
(358)

CEM0(r) =
1

4 (2π)
6

∫
kd3k

∫
k′d3k′

[
1 +

k · k′

kk′

]2
exp [i (k+ k′) · r] .

The integrals are convergent for any finite r, after a regularization for
k, k′ → ∞, and we get

(359) CEM0 (r) =
3�2

π4c2r8
.
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The correlation strongly diverges as r−8 for r → 0, which is consis-
tent with the quartic divergence of the mean energy density eq. (344).
However, this behaviour is only appropriate for long distances, corre-
sponding to low energies. In fact, for that range the most relevant vac-
uum field is the electromagnetic one, whose excitations (photons) have
zero mass. In contrast, at short distances the vacuum fluctuations
should involve many vacuum fields simultaneously; that is, the fluc-
tuations of all interacting fields together are correlated making them
relatively weak. We may take this fact into account including a cut-
off in eq. (358) by means of the exponential factor exp[−(k + k′)/m],
whence we get

CEM0
(r) =

3m8c6

2π4�6

(2x2 − 4x+ 3)

(x+ 1)6
, x ≡ (mrc/�)2.(360)

7.3.3. The electron-positron vacuum field. We will get the
stress-energy tensor of the Dirac field, that is, the energy density ρ and
the pressure P . In order to avoid any confusion caused by the different
notations used in the literature, I will write ρ and P in terms of the
original Dirac matrices αk and β, rather than the gamma matrices
that have been defined in several different forms by different authors.
Thus the corresponding operators may be written

(361) ρ̂D =
i

2

(
ψ̂† dψ̂

dt
− dψ̂†

dt
ψ̂

)
,

and

(362) P̂
(k
D =

i

2

(
ψ̂†αk

∂ψ̂

∂xk
− ∂ψ̂†

∂xk
αkψ̂

)
,

where ψ̂ and ψ̂† are quantized fields and k may be either 1, 2 or 3,
the resulting pressure being the same in the three cases due to the
assumed isotropy of the vacuum. (Note that in (362) there is no

summation of repeated indices). Expanding ψ̂ and ψ̂† in plane waves
we get

ψ̂ (r, t) =

√
1

V

∑
p,s

√
m

E
b̂psups exp (ip · r− iEt)

+

√
1

V

∑
p,s

√
m

E
d̂†psvps exp (−ip · r+ iEt) ,
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ψ̂† (r, t) =

√
1

V

∑
p,s

√
m

E
b̂†psu

†
ps exp (−ip · r+ iEt)

+

√
1

V

∑
p,s

√
m

E
d̂psv

†
ps exp (ip · r− iEt) ,

where b̂p,s

(
d̂p,s

)
is the annihilation operator of an electron (positron)

with momentum p and spin s(= 1, 2), b̂†p,s
(
d̂†p,s
)
is the corresponding

creation operator and u, u†, v, v† are appropriate spinors. (Our nota-
tion follows the book of Sakurai [9]). m is the electron (or positron)
mass, p the momentum and E the energy of either an electron or a
positron. Inserting these expressions in eq. (361) we get ρ̂D as a sum
of four terms with a product of 2 operators each. We want all the
terms with the creation and annihilation operators in normal order so
that, taking the anticommutation rules into account, we should make
a replacement as follows

d̂ps exp (ip · r− iEt) d̂†p′s′ exp (−ip′·r+ iE′t)

= δpp′δss′ − d̂†p′s′ exp (−ip′·r+ iE′t) d̂ps exp (ip · r− iEt) ,

where δpp′ and δss′ are Kronecker deltas. Thus we obtain 5 terms, all
in normal order, that we shall label as follows

(363) ρ̂D (r, t) = ρD0 + ρ̂b (r, t) + ρ̂d (r, t) + ρ̂bd (r, t) + ρ̂†bd (r, t) .

As in the electromagnetic field, the first term, ρD0, is a number not
an operator (strictly speaking, it is proportional to the unit operator),
that is

(364) ρD0 = − 1

V

∑
p,s

√
m2 + p2.

The term ρ̂b (resp. ρ̂d) may create or destroy one electron (resp.
positron). These two terms contribute neither to the mean energy

density nor to the fluctuations. The term ρ̂†bd may create an electron-
positron pair and the term ρ̂bd may destroy a pair. These two terms
do not contribute to the mean energy density, but they do contribute
to the fluctuations.

Integration of eq. (363) with respect to r gives the Hamiltonian of
the free electron-positron field, which is

(365) HD =
∑
p,s

√
m2 + p2

(
b†p,sbp,s + d†p,sdp,s − 1

)
.
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The vacuum state, |0〉, of the free field corresponds to the eigenvector
of the Hamiltonian eq. (365) with the smallest eigenvalue. It consists
of zero electrons and zero positrons. Therefore, from now on we may
define | 0〉 to be the QED unperturbed vacuum state, which is a
simultaneous eigenvector of both Hamiltonians eqs. (355) and (365).
Thus the state |0〉 is defined as having zero photons, electrons and
positrons. It should be distinguished from the physical vacuum state,
| vac〉, which is an eigenvalue of the total QED Hamiltonian, including
the interactions. From eq. (365) the vacuum energy density eq. (347)
is obtained.

The stresses may be calculated as vacuum expectations of the

operators P̂
(k
D , eq. (362). As in the case of the energy density, eq. (363),

we may write the operator P̂
(k
D as a sum of terms with the creation

and annihilation operators in normal order, that is,

(366) P̂
(k
D (r, t) = P

(k
D0+ P̂

(k
b (r, t)+ P̂

(k
d (r, t)+ P̂

(k
bd (r, t)+ P̂

(k†
bd (r, t) .

The last four terms are similar to those of eq. (363) but I will not
give their explicit expressions. They do not contribute to the mean
pressure. The first term of eq. (366) does contribute and, after some
algebra, it becomes

P
(k
D0 = −m

V

∑
ps

pk
E

v†psαkvps = − 2

V

∑
p

p2k
E

→ − 1

π2

∫ pmax

0

p2k
E

p2dp = − 1

3π2

∫ pmax

0

p4

E
dp,

where the isotropy has been taken into account in the last equality.
That is, the stresses along three orthogonal axes are equal and every
one corresponds to the pressure. The result of the momentum, p,
integration was given in eq. (348).

7.3.4. The interaction between electron-positron and
electromagnetic fields. The physical vacuum of QED, |vac〉, is dif-
ferent from the zeroth order vacuum, |0〉, studied above. The latter
is the eigenvector, with the smallest eigenvalue, of the unperturbed

Hamiltonian Ĥ0 = ĤEM+ĤD, see eqs. (355) and (365). The former is

the eigenvector of Ĥ = ĤEM+ĤD+Ĥint with the smallest eigenvalue,
that is, taking the interactions into account. Finding | vac〉 as an ex-

act eigenvector of Ĥ is not possible and we should use a perturbation
method. That is, we should calculate it as an expansion in powers of
the coupling constant, the positron charge, e. Only even powers of e
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would appear and the result becomes an expansion in powers of the
fine structure constant α ≡ e2/(4π�c) � 1/137.

The interaction Hamiltonian (or energy) operator may be written,
in the Coulomb gauge,

(367) ρ̂int (r,t) = −eψ̂†αψ̂ · Â.

The operators ψ̂, ψ̂† and Â contain two terms each when expanded in
plane waves, every term corresponding to an infinite sum. One of these
terms has creation operators and the other one annihilation operators
(similar to eq. (349) for the electromagnetic potential vector). This
gives rise to 8 terms for ρ̂int, eq. (367). Integrating with respect to r
inside the volume V leads to the interaction Hamiltonian. Only two
terms survive and we get

Ĥint = −e
∑

p,q,k,s,s′,ε

m

V 3/2
√
2kEE′u

†
s (p)α · ε vs′ (q)

×δp+q,kâ
†
k,εb

†
p,sd

†
q,s′ + h.c,(368)

where δp+q,k is a Kronecker’s delta, h.c. means Hermitian conjugate
and

E ≡
√

p2 +m2, E′ ≡
√

q2 +m2.

One of the terms of the Hamiltonian may create triples electron-posi-
tron-photon and the other term may annihilate triples. The integral in
r causes the Hamiltonian eq. (368) to be invariant under translations
and rotations, whence it can couple only states with the same total
momentum and total angular momentum.

I will not detail the calculation of the interaction energy, which
is involved and will not be needed in the forthcoming sections of this
chapter.

7.4. Vacuum fluctuations an alternative to dark energy

7.4.1. The standard cosmological model. Astronomical ob-
servations, in particular the study of type Ia supernovae, anisotropies
in the cosmic background radiation and matter power spectra inferred
from large galaxy surveys, have improved our knowledge of the uni-
verse giving rise to a precision cosmology. The data are compatible
with the universe having a Friedmann–Robertson–Walker metric with
flat spatial slices [17] of the form

(369) ds2 = −dt2 + a(t)2
(
dr2 + r2dΩ

)
.
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The parameter a(t) is related, at present time t0, to the measurable
Hubble constant, H0, and decceleration parameter, q0, via

(370)

[
ȧ

a

]
t0

= H0,

[
ä

a

]
t0

= −H2
0q0.

The observations also provide information about the evolution of a(t)
and the distribution of matter in the past.

The available knowledge is summarized in the ΛCDM model. In
it, the baryonic matter density ρB represents about 4.6% of the matter
content of the universe while two hypothetical ingredients named cold
dark matter (CDM) and dark energy (DE) contribute with densities
ρDM ∼ 23% and ρDE ∼ 73% respectively [10]. These densities are
related to the metric eq. (369) via the Friedmann equations, derived
from general relativity, giving the following relations [11][

ȧ

a

]2
=

8πG

3
(ρB (t) + ρDM (t) + ρDE) ,

ä

a
=

8πG

3

(
1

2
[ρB (t) + ρDM (t)]− ρDE

)
,(371)

where I neglect small effects of radiation and matter pressure. The
baryonic density ρB is well known from the measured abundances
of light chemical elements, which allows calculating ρDE and ρDM

from the empirical quantities H0 and q0 via comparing eqs. (371) and
(370). The values obtained by this method agree with data from other
observations. For instance, cold dark matter, in an amount compatible
with ρDM , is needed in order to explain the observed (almost flat)
rotation curves in galaxies. However, the nature of dark matter and
dark energy remain open problems. The ΛCDM model rests upon the
assumption that general relativity (GR) is indeed the correct theory
of gravity. However, it is conceivable that both cosmic speed-up and
dark matter represent signals of a breakdown of GR.

A common assumption is that, in addition to dark energy density,
there is pressure with a value PDE = −ρDE , corresponding to a cos-
mological constant, as will be discussed in the next subsection. The
hypothesis agrees with observations [10] and it has been used in the
derivation of eq. (371). In any case the problem is the origin of that
stress-energy. A possibility studied in subsections 7.4.3 to 7.4.5 below
is that the dark energy is actually an effect of the quantum vacuum
fluctuations.
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7.4.2. The cosmological constant problem. Many propos-
als have been made for the origin of dark energy (for a review see
Copeland [14]). As said above it is usual to identify it with a cos-
mological constant or, what is equivalent in practice (see below), to
assume that it derives from the quantum vacuum. In fact, Einstein
equation of general relativity may be written (with the notation of
the book of Weinberg [1])

(372) Rμν − 1

2
gμνR− Λgμν = −8πGTmatt

μν ,

where Λ is the cosmological constant and G the Newton constant. In
the original Einstein formulation of 1915 the term with Λ did not ap-
pear (see eq. (336) in the introduction section). It was later included
by Einstein in order to get a stationary (although not stable) universe,
but he proposed to remove it after the discovery of the expansion of
the universe [15]. However, the cosmological constant was a recur-
rent possibility for the next 70 years, but without too much empirical
support. That opinion changed radically in 1999 because it was dis-
covered that the expansion of the universe was accelerating [16], [17]
and the cosmological constant provided an explanation, although the
less committed name ‘dark energy’ was introduced.

The assumption that the quantum vacuum is the origin of the
accelerating expansion derives from the fact that eq. (372) may be
written passing the term Λ to the right side with opposite sign, that
is

(373) Rμν − 1

2
gμνR = −8πG

(
Tmatt
μν + T vac

μν

)
,

where T vac
μν may be interpreted as the stress-energy tensor of the vac-

uum fields. In order to have Lorentz invariance it is generally assumed
that the vacuum stress-energy should be proportional to the metric
tensor, that is, T vac

μν ∝ gμν , whence the identification

8πGT vac
μν = −Λgμν ,

leads from eq. (373) to eq. (372).
The hypothesis that dark energy is a gravitational effect of the

quantum vacuum poses a well known problem [18]. In fact, it is
plausible that the vacuum energy density, ρDE , should correspond to
a combination of the universal constants c, �, G. There is a unique
combination with dimensions of density, given in eq. (345). That is,

(374) ρPlanck =
c5

G2�
� 1097kg/m3,
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a value about 123 orders greater than the required dark energy density,
with current empirical value [19]

(375) ρDE = −PDE � (6.0± 0.2)× 10−27kg/m3,

PDE < 0 being the pressure.
The large discrepancy between eq. (374) and the observed value

eq. (375) is named the ‘cosmological constant problem’ [18], [20], [7].
Many solutions have been proposed [18] that will not be discussed
here. I just mention a recent one assuming that the observed cance-
lation at large scale derives from an averaging of rapid fluctuations
of energy and pressure in regions at the Planck scale [21]. Another
assumption is that the vacuum fields have positive and negative con-
tributions that cancel with each other. A complete cancelation might
appear possible, even plausible, but a partial cancelation giving the
result eq. (375), more than hundred orders smaller than Planck’s den-
sity, looks conspiratorial [18].

In the following I propose a possible solution to the cosmological
constant problem resting on the following assumptions:

1. The energy density and the pressure in the vacuum averaged
over large spacetime regions (free of matter) are both null, as was
suggested in section 7.3.

2. The fluctuations of energy and pressure give rise to an effective
tensor fulfilling eq. (375). This is studied in subsections 7.4.3 to 7.4.5
below.

7.4.3. Vacuum fluctuations as the origin of dark energy.
Any theory aimed at explaining dark energy would lead to a value for
that energy as a combination of some parameters. That value should
agree with eq. (375). We may use the universal constants c, �, G, but
we need another parameter in the form of a mass, length, time or a
combination of them whence a parameter, say μ, may be found such
that the empirical density eq. (375) is obtained in the form

ρDE = ρPlanckf (c, �, G, μ)

where f is a dimensionless function to be derived from the (yet un-
known) theory. Without loss of generality we may choose μ to be a
mass, m, whence dimensional analysis leads to

(376) ρDE =
c5

G2�
f (N) , N =

�c

Gm2
,
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N being the most simple dimensionless quantity that may be got
combining the universal constants with a mass. The introduction of
a parameter different from mass does not give anything new. For
instance, choosing length, λ, or time, τ , we may get the same result
provided the new parameters are related to mass via

(377) λ =
�

mc
, τ =

�

mc2
.

It is the case that without any theory we may guess the function
f . It is plausible that m is of order the mass of a fundamental particle.
If we consider a charged particle then N eq. (377) is of order the ratio
between the electrostatic repulsion and the gravitational attraction
between two of these particles, that is,

(378)
e2

Gm2
=

e2

�c
× �c

Gm2
= αN, α � 1

137
,

where α is the fine structure constant. The (dimensionless) number
N may be recognized as one of Dirac’s large numbers of order 1040.
Therefore, we may guess that the function f (N) should be of order
N−3 because as said above the ratio between eqs. (374) and (375) is
of order 10123. This leads to

(379) ρDE ∼ c5

G2�

(
�c

Gm2

)−3

=
Gm6c2

�4
,

that provides a very good agreement with eq. (375) if we choose m to
be 80 times the electron mass (or about the mass of the pion if we
write h = 2π� rather than � in eq. (379)).

An energy density proportional to the Newton constant G, eq.
(379), suggests that ρDE is a gravitational energy density. Therefore,
the theory of dark energy, that we are searching for, should explain
what is the matter that originates that gravitational energy. Eq. (379)
was proposed by Zeldovich [22] as a possible cosmological constant
more than 40 years ago, well before the discovery of the accelerating
expansion of the universe. Zeldovich also provided an interpretation
writing eq. (379) in terms of a mass m and its associated ‘Compton
wavelength’ λ eq. (377), that is,

(380) ρDE ∼ −Gm2

λc2
× 1

λ3
, λ ≡ �

mc
.

Thus eq. (380) is the mass density (rather than energy density, hence
the division by c2) corresponding to the (Newtonian) gravitational
energy of two particles of mass m placed at a distance λ, assuming
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that such an energy appears in every volume λ3. A problem is that
in eq. (380) the gravitational energy ρg is negative if both masses
are positive. Zeldovich interpreted that the ‘particles’ were actually
vacuum fluctuations, that may involve positive or negative energy
density departures from the mean. Hence the hypothesis that the
dark energy derives from the fluctuations of the quantum vacuum, an
assumption further studied elsewhere [23], [24], [25]. A summary is
presented in the following.

7.4.4. Newtonian treatment of the gravity of density cor-
relations. For the sake of clarity I shall begin with arguments involv-
ing Newtonian gravity (rather than general relativity). I will assume
that the vacuum fields fluctuate. That is, at a given time there are
regions with energy density above the mean (positive energy fluctua-
tions) and other regions with density below it (negative fluctuations).
Thus, assuming that there is a complete cancelation of the vacuum
energy so that its average is zero, the energy density may be repre-
sented by a stochastic field, ρ (r,t) with zero mean. I will assume that
both the ensemble average 〈ρ (r,t)〉 and the spacetime average over a
large region are zero. This fits in our assumption in section 7.4.2 that
the vacuum stress-energy tensor is zero.

We will also assume, as in special relativity, that energy gravi-
tates, because energy is essentially the same as mass. Then we should
accept that Newtonian gravity associates negative (positive) gravita-
tional potential to positive (negative) mass-energy. (Of course, New-
tonian gravity is not consistent with special relativity, but for a simpli-
fied argument we may combine both). Thus, using Newtonian theory,
the gravitational energy, EG, of the vacuum mass density in the vol-
ume V would be

(381) EG = −G

2

∫
V

ρ (r1,t) d
3r1

∫
V

ρ (r2,t)

|r2 − r1|d
3r2,

where G is the Newton constant and V a volume large in comparison
with the range of the fluctuations. Hence we may define the ensemble
average of the gravitational energy in the volume V as
(382)

ρ̄G =
〈EG〉
V

= − G

2V

∫
V

d3r1

∫
V

|r2 − r1|−1 〈ρ (r1,t) ρ (r2,t)〉 d3r2.

If the self-correlation of fluctuations (at a gven time) depends only on
the distance r = |r2 − r1|, consistent with the assumed homogeneity
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and isotropy of the vacuum, then changing from the variables {r1, r2}
to the new ones {r0, r} via

r0 =
r1 + r2

2
, r = r2 − r1,

we may define the two-point correlation, C (r0, r) of the energy density
around the point r0 by

(383) C (r0, r) ≡ 〈ρ (r0+r/2, t) ρ (r0 − r/2, t)〉 .
If there is isotropy and homogeneity the correlation depends only on
r, that is

(384) C(r) ≡ 〈ρ (r0+r/2, t) ρ (r0 − r/2, t)〉 , r ≡ |r| .
In this case the mean gravitational energy density will be

(385) ρ̄G = −G

2

∫
1

r
C (r) d3r =− 2πG

∫ ∞

0

C (r) rdr.

In order that the integral does not diverge at the origin the correlation
should fulfil

(386) |C (r)| < r−2 for r → 0.

This gives a plausible limit on the strength of the vacuum fluctuations
at short distances. Of course, it is also plausible that the correlation of
fluctuations decreases at infinity so rapidly that no divergence would
appear for r → ∞.

The density ρ̄G in eq. (385) may be positive or negative depending
on the form of the function C (r). It is plausible that C (r) is positive
for small r whence the short range part will give a negative contri-
bution to the gravitational energy. At large distances C(r) should
go to zero, but the behaviour at intermediate distances is unknown.
It is plausible that within Newtonian gravity the total gravitational
energy is negative because the 1/r dependence makes the short range
behaviour most relevant. In any case, the question is purely academic
because a treatment with general relativity is required, that will be
made in the next subsection.

Up to here the approach has been classical (including special rel-
ativity) but a quantum treatment is straightforward. It is enough to
substitute operators ρ̂ (r, t) for the classical densities ρ (r, t) and vac-
uum expectation values for ensemble averages. Indeed, in this book
we support that quantum mechanics is a (peculiar) stochastic theory,
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although we are not always able to find the appropriate probabil-
ity distributions of the random variables involved. In particular, the
quantum counterpart of the definition eq. (384) should be
(387)

C (r) ≡ lim
V→∞

[
1

2V

∫
V

〈vac |ρ̂ (r1) ρ̂ (r2) + ρ̂ (r2) ρ̂ (r1)| vac〉 d3r0
]
,

where we have made the plausible assumption that the symmetrical
order is appropriate for the operators that may not commute.

The conclusion from our Newtonian analysis is that, in addition to
the mean energy density of the vacuum, if any, there will be a negative
energy caused by the gravitational interaction of density fluctuations.
However, according to eq. (375) we need a positive energy and a neg-
ative pressure, so that the Newtonian approach fails. In the following
I show that a treatment within GR may provide plausible results.

7.4.5. Vacuum fluctuations in general relativity. A sim-
plified model. The quantum vacuum is incompatible with Min-
kowski spacetime even in the absence of any form of matter, due to
the fluctuations. In fact, according to general relativity Minkowski
space implies a null Einstein tensor Gμν whence the stress energy
tensor Tμν should be also zero, see eq. (336). However, Tμν is different
from zero if there are quantum vacuum fluctuations.

The argument may be presented also in the form of a paradox
as follows. In Minkowski space we should expect that the two-point
density correlation would be Lorentz invariant, whence the correlation
function eq. (387) would depend only on the relativistic invariant

(388) σ2 ≡ (t2 − t1)
2 − |r1 − r2|2 ,

that reduces to r = |r1 − r2| for t2 = t1. Of course, the correlation
might depend on whether the interval is timelike or spacelike (in other
words, on whether σ as defined above is real or imaginary). In the
following I show that in any case the said invariance prevents the
existence of density fluctuations. In fact, let us consider a Minkowski
space and two arbitrary points, A and B, with coordinates (rA, tA)
and (rB , tB), respectively. It is always possible to find another point
C with coordinates (rC , tC) which is lightlike separated from both A
and B. Indeed, any point in the intersection of the light cones of A
and B fulfils that condition. Then eq. (388) implies that the vacuum
energy density in C will be the same as in A and the same as in B.
But the points A and B being arbitrary we conclude that the density

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.4. VACUUM FLUCTUATIONS AN ALTERNATIVE TO DARK ENERGY295

will be the same in all points of Minkowski space. There would be no
fluctuations at all! The solution of the paradox is that, as said above,
if there are fluctuations the spacetime cannot be Minkowskian. Thus
we are compelled to study the deviation from Minkowski space due
to vacuum fluctuations.

We might believe that the modification of Minkowski space caused
by the quantum vacuum fluctuations would consist of just localized
time-dependent fluctuations of the metric, that is, a small region of
curved space around every fluctuation. However, this is not the case.
In fact, in the following we show that, with plausible approximations,
the quantum fluctuations lead to a global change of spacetime that
may be understood as due to the long-range nature of gravity com-
bined with the nonlinear character of GR. That is, masses localized
in a small region give rise to space curvature over large regions.

In order to study the effects of vacuum fluctuations on space cur-
vature I start recalling some well known facts. For a small enough
region of the universe around us, but large in comparison with typ-
ical distances between galaxies, the spacetime metric eq. (369) may
be rewritten, near present time, using spherical coordinates as fol-
lows [11]

ds2 � grrdr
2 + r2(dθ2 + sin2 θdφ2)− gttdt

2,(389)

grr =

[
1 +

[
ȧ

a

]2
0

r2

]
, gtt =

[
1 +

[
ä

a

]
0

r2
]
,

where terms of order O
(
r3
)
have been neglected and it is assumed

that the (slow) change of the metric coefficients with time may be
ignored. The metric elements grr and gtt of eq. (389) may be got from
the known contents of the universe, which is cold matter consisting of
baryonic and dark matter with densities ρB and ρDM respectively and
negligible pressure, plus a hypothetical ‘dark energy’ with density ρDE

and pressure −ρDE . Then Einstein eq. (336) leads to the following
components of the metric tensor from eq. (389)

grr = 1 +
8πG

3
[ρB (t) + ρDM (t) + ρDE ] r

2 +O
(
r3
)
,

gtt = 1 +
8πG

3

[
1

2
[ρB (t) + ρDM (t)]− ρDE

]
r2 +O

(
r3
)
.(390)

This metric corresponds to an expanding universe due to baryonic and
dark matter, with the expansion accelerating due to the ‘dark energy’
term ρDE . In the following I will show that the term ρDE of the metric
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eq. (390) may be a consequence of the vacuum fluctuations without
the need of assuming any dark energy. Of course, the metric eq. (389)
possesses spherical symmetry only after spreading homogeneously in
space both matter and, in some sense to be explained below, the
vacuum fluctuations. Spreading matter, both baryonic and dark, is
standard in cosmology, in spite of the fact that the distribution is
highly inhomogeneous, the mass being concentrated mainly in stars,
grouped in galaxies and clusters.

In order to obtain the effect of the density and pressure due to
vacuum fluctuations in a classical approach we should consider a gen-
eral metric, eq.(335), and solve Einstein eq. (336) for a suitable stress-
energy tensor associated to matter plus vacuum fluctuations. After
that we should perform an ensemble average with respect to the pos-
sible samples of the metric, every metric associated to a possible sam-
ple of vacuum fluctuations. The calculation is lengthy and it has been
performed with several simplifying assumptions [25]. Here I use an
alternative approximate treatment that, being more simple, may help
getting an intuitive understanding of the physics. We shall assume
that a spacetime average of the fluctuations is equivalent to the en-
semble average, a kind of ergodic property.

For simplicity I will ignore matter, both baryonic and dark, in
the following calculation. If our hypothesis that ‘dark energy effects’
actually derive from vacuum fluctuations is correct, then the metric
might be written in the form

(391) ds2 = (1+Λr2)dr2+r2(dθ2+sin2 θdφ2)−(1−Λr2)dt2+O
(
r3
)
,

where Λ may be seen as a cosmological constant related to the hypo-
thetical dark energy ρDE by

(392) Λ ≡ 8πG

3
ρDE .

We will assume that spacetime is globally modified by the vacuum
fluctuations, but only slightly. Indeed, the Newton constant G is small
in the sense that large concentrations of matter are needed to produce
a relatively small curvature of space, as is the case for instance in the
solar system. Also, masses and energies at the atomic or macroscopic
laboratory scale produce a negligible curvature (gravitational field).
Thus I propose studying a vacuum with density and pressure fluctu-
ations using a metric appropriate for spherical symmetry, that is,

(393) ds2 = A (r, t) dr2 + r2(dθ2 + sin2 θdφ2)−B (r, t) dt2,
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ignoring the small local departures due to the vacuum fluctuations. I
will just study the long range modifications with respect to Minkowski.

The elements of the Einstein tensor in terms of the components A
and B of the metric eq. (393) contain derivatives with respect to the
r coordinate, but not to time, whence t appears just as a parameter
that I will ignore for notational simplicity. It is easy to invert those
relations, getting the metric in terms of density ρ (r) and pressure
P (r), that is,

A (r) =

(
1− 2Gm (r)

r

)−1

, m (r) ≡ 4π

∫ r

0

ρ (z) z2dz,

B(r) = exp γ, γ = 2G

∫ r

0

m (x) + 4πx3P (x)

x2 − 2Gm (x)x
dx.(394)

As pointed out Newton constant may be taken as very small whence it
is appropriate to approximate eqs. (394) in powers of G. We must go
up to terms of order G2 because the terms of order G do not contribute
as we will see. The approximation gives

(395) A (r) = 1 +
2Gm (r)

r
+

4G2m (r)
2

r2
+O
(
G3
)
,

and

B (r) = 1 + 2G

∫ r

0

[
x−2m (x) + 4πxP̄ (x)

]
dx

+4G2

∫ r

0

[
x−3m (x)

2
+ 4πm (x) P̄ (x)

]
dx

+2G2

{∫ r

0

[
x−2m (x) + 4πxP̄ (x)

]
dx

}2

+O
(
G3
)
,(396)

where I take P̄ (x) as an angular average of the pressure, that is,
(397)

P̄ (x) → 1

4π

∫ π

0

sin θdθ

∫ 2π

0

dφP (x) =
1

4πx2

∫
P (z) d3zδ (x− z) .

Here δ () is Dirac delta and the z integral may be extended to the
whole space. We take into account that both ρ (x) and P (x) are
fluctuating quantities (i.e. stochastic fields) with zero mean changing
over typical distances and time intervals of atomic size. We will ignore
the details of these changes but take them into account using aver-
ages that involve the two-point density correlation function C (r0, r),
eq. (383), a similar correlation for P and the cross-correlation between
ρ and P .
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Now we proceed to the calculation of the metric elements A and
B via averaging eqs. (395) and (396). In eq.(395) the term of order
G gives zero because the average of m(r) becomes an average of ρ,
which is zero. Indeed, we are assuming that the density fluctuations
may be positive (energy greater than the mean) or negative (smaller
than the mean) and also assume that the mean is zero. For the term
of order G2 we should average m2 and we get

〈
m (r)

2
〉
=

〈[∫
|z|≤r

ρ (x) d3x

]2〉
=

∫
|x|≤r

d3x

∫
|y|≤r

d3y 〈ρ (x) ρ (y)〉

=

∫
|x|≤r

d3x

∫
|y|≤r

d3yC (|x− y|) ,(398)

where C(r) was defined in eq. (384). Hence we should obtain the
metric coefficient eq. (395) to order O

(
G2
)
, that is,

A = 1 +
4G2

r2

〈
m (r)

2
〉

(399)

= 1 +
4G2

r2

∫
|x|≤r

d3x

∫
|y|≤r

d3yC (|x− y|) .

In order to perform the integrals we need the function C (|x− y|)
that was estimated in (360). It is plausible that the function is big-
ger than the estimation at short distances and I propose to use the
following simple function

C(r) =
Kρρ

r2
,(400)

where Kρρ is a constant. A reason for choosing (400) is that dimen-
sional arguments show that a correct dependence on r in eqs. (391) is
achieved with that choice; that is, the leading term after unity in the
two relevant metric elements is proportional to r2.

Eq. (398) gives, taking eq. (400) into account,〈
m (r)

2
〉

= Kρρ

∫
|x|≤r

d3x

∫
|y|≤r

d3y |x− y|−1

= 8π2Kρρ

∫ r

0

xdx

∫ r

0

ydy ln
x+ y

|x− y| = 2π2Kρρr
4
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where we have performed an angular integration in the first equality.
Hence eq. (399) leads to

A = 1 + 8π2G2Kρρr
2 ⇒ Λ = 8π2G2Kρρ ⇒ ρDE = 3πGKρρ.

(401)

Thus our model allows relating the two-point vacuum density corre-
lation with the measured value of the dark energy. For instance, if
we assume eq. (400) for the correlation, we may get Kρρ from the last
eq. (401). We may also relate it with Zeldovich eq. (379) and we get

(402) Kρρ ∼ m6c2

�4
=

(
�

λ3c2

)2

,

where m is about the pion mass and λ its Compton wavelength.
The calculation of the metric element B eq. (396) is more involved.

We shall start defining an expression similar to eq. (400) for the corre-
lations of density and pressure, needed for the averages of the integrals
eqs. (396), that is,

CPP (|x− y|) ≡ 〈P (x)P (y)〉 = KPP

|x− y|2 ,

CρP (|x− y|) ≡ 〈ρ (x)P (y)〉 = KρP

|x− y|2 ,

where we neglect terms of order O
(
|x− y|−1

)
as proposed above.

Then the term of order G has zero average and we should evaluate 5
averages involved in the terms of order G2 of eq. (396). We get

B1 = 4G2

∫ r

0

x−3
〈
m (x)

2
〉
dx = 8π2G2Kρρ

B2 = 4G2

∫ r

0

4π
〈
m (x) P̄ (x)

〉
dx = 16π2G2KρP ,

B3 = 2G2

∫ r

0

x−2dx

∫ r

0

y−2 〈m (x)m (y)〉 dy = 16π2G2Kρρ,

B4 = 2G2

∫ r

0

4πxdx

∫ r

0

4πy
〈
P̄ (x) P̄ (y)

〉
dy

= 16 ln 2π2G2KPP � 11.09π2G2KPP ,
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B5 = 4G2

∫ r

0

x−2dx

∫ r

0

4πy
〈
m (x) P̄ (y)

〉
dy

=

(
128

3
ln 2− 1

3

)
π2G2KρP � 18.91π2G2KρP .

The result of the calculation is

(403) B = 1 +G2π2r2 [32Kρρ + 11.09KPP + 34.91KρP ] ,

while the desired result eq. (391) requires

(404) 32Kρρ + 11.09KPP + 34.91KρP = −ΛG−2π−2 = −8Kρρ.

Plausibly the quantities Kρρ and KPP should be positive, but KρP

negative if we assume that in the quantum vacuum fluctuations the
pressure acts with a sign opposite to the pressure, in agreement with
the Lorentz invariant vacuum equation of state P = −ρ. This also
suggests identifying Kρρ = KPP . Then in order to fulfil eq. (404) we
choose

Kρρ = KPP , KρP � −1.46Kρρ � −3

2
Kρρ.

Up to now the calculation has been classical, but we may define
the two-point correlations as in eq. (387). This makes the treatment
become quantum theoretical, in the semiclassical approximation of
general relativity. That is, we identify the (classical) Einstein tensor
with the (quantum) vacuum expectation of the two-point correlation.

In conclusion, I propose as a plausible possibility that ρDE is not
an actual (dark) energy density, but a parameter taking into account
the effect of the quantum vacuum fluctuations on spacetime curva-
ture. It is satisfactory that the metric elements eqs. (401) and (403)
depart from unity by a term of order O

(
G2
)
, which is required in or-

der that the ‘dark energy’ is proportional to G as in Zeldovich formula
eq. (379). Furthermore, if the theory is correct, and the approxima-
tions made in the calculation are fair, then eq. (404) allows getting
the behaviour of the two-point correlations of vacuum fluctuations at
short distances from the measurable value of the dark energy density
eq. (375). The agreement is a prediction of the theory that could be
supported if an independent calculation of the two-point correlation
of vacuum fluctuations is made from the theory of fundamental fields.
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7.5. Dark matter or effect of the vacuum fields?

The existence of dark matter of unknown origin is the current so-
lution proposed for two different problems which may be called astro-
physical and cosmological, respectively [27]. The astrophysical prob-
lem is the more or less flat rotation curves of stars or gas in the haloes
of galaxies and clusters of galaxies. Flat means that the velocity of
stars and gas around the center of the galaxy is fairly the same for
all approximately circular paths, independently of the radius. This
contrasts with the predicted velocity decreasing outwards if there is
only baryonic matter. In order to account for the flat rotation curves
of spiral galaxies, dark matter should dominate the total mass of the
galaxy and should be concentrated in the outer baryonic regions of
galactic disks, as well as in the surrounding haloes. The cosmological
problem is the need of a large amount of non-baryonic cold matter
in the universe, at the recombination time, in order to explain the
formation of structures. The amount of non-baryonic matter is fairly
the same in both cases, which has lead to the popular assumption that
both may be solved with the same hypothesis, namely dark matter.
As mentioned in the previous section the standard ΛCDM cosmolog-
ical model predicts that about 70% of the mass-energy budget of the
Universe is composed of dark energy and about 30% is the mass, dom-
inated with more than 5/6 by dark matter, whilst ordinary baryonic
matter constitutes less than 1/6 of the total mass [19].

7.5.1. Alternative explanations for the anomalous grav-
ity in galaxies. The existence of dark matter has been discussed for
more than a century [26], the anomaly named initially ‘the missing
mass problem’. In the 1970s, astronomers and cosmologists have be-
gan to build what is generally assumed today as a compelling body of
evidence for this elusive component of the universe, based on a variety
of observations that include temperature anisotropies of the Cosmic
Microwave Background, baryonic acoustic oscillations, type Ia super-
novae, gravitational lensing of galaxy clusters, and rotation curves of
galaxies. However, the Standard Model of particle physics contains no
suitable particle to explain these observations. Proposed candidates
for dark matter span 90 orders of magnitude in mass, ranging from
ultra-light bosons, often referred to as fuzzy dark matter, to massive
primordial black holes.

The class of dark matter candidates that has attracted the most
attention over the past four decades is weakly interacting massive
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particles (WIMPs). They appeared for a long time as a perfect dark
matter candidate, as new particles at the weak scale may be produced
in the early universe. Despite much effort, no particle other than
the Higgs boson has been convincingly detected at the weak scale so
far [27].

The fact that none of the known particles is a good candidate
to form the dark matter and the failure to discover new particles
with the required properties, in spite of the big effort made at the
observational level, has led to alternatives consisting of a modification
of either current gravity theories (i.e. general relativity or Newtonian
gravity) or dynamics. There are also proposals resting on the quantum
vacuum. Actually, these modifications attempt mainly to solve the
astrophysical problem, with less implication in the cosmological one.
In the following I comment briefly on modified gravity or dynamics
and later we study in more detail the possible alternative derived from
vacuum effects.

Modified dynamics. The most popular alternative during sev-
eral years was the ‘modified Newtonian dynamics’ (MOND) [28], for
a review see [29]. MOND proposes, for galaxies approximately spher-
ical, that the flat (i.e. independent of the radius) rotation velocities,
v, in galactic haloes are roughly given by

(405) v2 �
√

a0GMB ,

where G is the Newton constant, MB the baryonic mass of the galaxy,
and a0 a new universal constant, that is,

(406) a0 = 2× 10−10 m/s
2
.

The dependence on the square root of the total baryon mass of the
galaxy fits in the empirical Tully-Fisher law, which is v4 ∝ MB . Also
MOND is able to successfully explain the dynamics of galaxies out-
side clusters. Early in its history, it was appreciated that MOND was
capable of explaining the observed dynamics of many spiral and ellip-
tical galaxies. While MOND does reduce the need for additional mass
in clusters, significant quantities of dark matter are still required [26].

Modified gravity. Modifications of general relativity are the
theory of f(R) gravity or its generalizations (see section 7.2.5). The
former provides sufficient freedom to accommodate also dark matter.
In particular, it allows good fits to the rotation curves in galaxies [30]
which therefore might be explained as a curvature effect. In particular,
for f(R) ∝ R3/2, the MOND acceleration regime is recovered. Also
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f(R) theories of gravity are able to explain the baryonic Tully-Fisher
relation of gas-rich galaxies in a natural way. As discussed in section
7.2.5, modifications of general relativity might be also seen as effects
of the quantum vacuum fields. However, there are effects of vacuum
fields that cannot be seen as modifications of general relativity, for
instance the effect studied in the next section.

7.5.2. Vacuum polarization as an alternative to dark mat-
ter. Another hypothesis proposed to explain the flat rotation curves
of galaxies is gravitational vacuum polarization. In particular, Haj-
dukovic [31]–[35] assumed a gravitational repulsion between particles
and antiparticles which would give rise to a gravitationally polarizable
vacuum. The author attributes the repulsion to a negative gravita-
tional mass (but positive inertial mass) of antiparticles. Then dipoles
would exist in vacuum consisting of virtual particle-antiparticle pairs,
producing a gravitational polarization similar to the electrical or mag-
netic polarization.

The most serious problem of Hajdukovic’s approach is the as-
sumption that antiparticles have negative gravitational mass but pos-
itive inertial mass. This assumption breaks the most cherished prin-
ciple of general relativity, namely the equivalence principle, that re-
quires identity between gravitational and inertial mass. Also no em-
pirical evidence exists for the negative mass of antiparticles.

I propose two mechanisms that might give rise to a gravitational
polarization of the vacuum without assuming Hajdukovic negative
mass of antiparticles. Firstly, the Bose fields contribute positive en-
ergy to the vacuum, but Fermi fields contribute negative, as illustrated
in section 7.3, see also [8].

If we assume that the vacuum fields are real, as supported all
throughout this book, the observed null (or very small) value of the
vacuum energy compels us to believe that the Bose and Fermi field
energies plus the field interactions cancel on the average. Then it
is plausible that an additional gravitational field, say from a galaxy,
attracts Bose fields and repels Fermi fields, giving rise to a polar-
ized vacuum. An attempt for a quantitative approach to this effect
has been made [36] involving just the electromagnetic and the Dirac
electron-positron fields. It failed because most of the calculated quan-
tities are divergent, which may be an indication that the whole set
of fields should be taken into account for any realistic quantitative
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treatment (another example is the two-point correlation of the vac-
uum electromagnetic field alone that leads to the strongly divergent
result eq. (359), see section 7.3.2 above). An alternative mechanism of
gravitational vacuum polarization might be the modification of either
the size or the distribution of the quantum vacuum fluctuations in the
presence of gravity. In fact, according to our treatment in section 7.4,
the quantum vacuum density ρ (r,t) may be treated as a stochastic
field whose fluctuations may have positive or negative energy with
respect to the average value, that we should assume zero. Actually,
both hypotheses, Bose-Fermi displacement and modified vacuum fluc-
tuations, are not contradictory, whence both may contribute.

If we assume a gravitational vacuum polarization, via the mecha-
nisms just mentioned, we may get results similar to those derived by
Hajdukovic [31]–[35]. They are revisited in the following, with some
elaboration. We will work within Newtonian gravity, which is a good
enough approximation for galaxies. In order to have a quantitative

approach we shall define a polarization vector �Pg at every point in
space. This vector makes sense as an average over regions that are
large with respect to the typical sizes of fluctuations, of order atomic
dimensions, although small compared with astrophysical objects. The
quantity of interest will be the polarization mass density ρDM , related

to the polarization vector �Pg via

(407) ρDM = −∇ · �Pg, ρDM =
1

r2
d

dr

(
r2
∣∣∣�Pg

∣∣∣) .
where ρDM would be a mass density alternative to ‘dark matter’. The
second eq. (407) corresponds to the particular instance of spherical
symmetry. We must point out that polarization does not create net
mass or energy, it would just effectively displace some mass to regions
with great negative gravitational potential from other regions. In
particular, to the neighbourhood of a galaxy from far away regions.
We might assume that the displaced mass would contribute to either
the dark energy effects or cancel with a small positive homogeneous
mass density, a kind of ‘dark matter’. I will not discuss this point
further on.

As argued above, it is plausible that the polarization vector is a
function of the gravitational field g, that is,

�Pg = f (|g|)g.
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Without a more detailed theory we cannot determine the function f ,
but it is plausible that it is a constant for low gravitational field, mak-
ing the polarization proportional to the gravitational field. However,
it should either not increase indefinitely, or the increase should be
slowing down for large fields. Thus for large |g| we may assume that

there is a saturation value of �Pg. In fact, a saturation is plausible due
to resistance to depart from the equilibrium state. If the polarization
derives from the change of vacuum fluctuations we may estimate the
saturation value from our study in the previous section. Indeed, the
parameter Kρρ in eq. (400), which characterizes the two-point corre-
lation function, has dimensions of the square of a polarization vector.
Thus, it is plausible to estimate the maximum polarization to be of
order the square root of Kρρ. That is,

(408) Pgmax ∼√Kρρ =

√
ρDE

3πG
,

where ρDE is the dark energy density and we have taken eq. (401) into
account. This gives for the associated critical field

(409) gcr = GPgmax ∼
√

G ρDE

3π
,

where G is the Newton constant. Hajdukovic has shown that the esti-
mate eq.(409) roughly fits with observed properties in galaxies, which
strongly suggests a connection between dark energy ρDE and dark
matter ρDM . The former may be related with the pion mass via Zel-
dovic formula eq. (379), introducing appropriate numerical constants
of order unity [33].

In fact, Hajdukovic proposed the critical field gcr to be of order
the fundamental acceleration as conjectured by MOND, see eq. (405),
that is,

(410) gcr = as,

which is not far from the estimate eq. (409). Then, taking eqs. (402)
and (408) into account, the saturation polarization Pgmax and the
critical field gcr may be written in terms of the (non-reduced) Comp-
ton wavelength λ associated to the pion mass. That is,

(411) Pgmax = A
�

λ2c2
⇒ gcr = A

G�

λ2c2
,

where A � 0.29. Eqs. (411) have been the starting point of Haj-
dukovic for the derivation of several results in fair agreement with
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observations [34]. In the following we summarize the most relevant
ones.

Let us consider a spherical body with mass Mb. We will study
three spherical regions around it separated by two radii R0 and R1.
In the first region r < R0 the gravitational field is sufficiently strong
for the polarization to achieve the maximum value eq. (411), which
taking eqs. (407) into account leads to

(412) ρDM ∝ 1/r ⇒ dM (r)

dr
∝ r,

that is, a constant gravitational field directed towards the body cen-
ter. This result has been related to the Pioneer anomaly, a small,
constant sunward deceleration of spacecrafts Pioneer 10 and Pioneer
11 not predicted by the standard Newtonian treatment of the solar
system [35]. The anomalous acceleration of the Pioneer happens to
be of the order the MOND acceleration eq. (406), but the agreement
might be just an accident.

In the outer region r > R1 the gravitational field will be weak,
thus proportional to the field g, that is,∣∣∣�Pg

∣∣∣ ∝ g =
GM (r)

r2
.

Taking the last eq. (407) into account, this is consistent with ρDM

being small and the mass M(r) roughly constant, increasing with r
but slightly.

In the intermediate region R0 < r < R1, the dependence of |�Pg|
on r should pass from |�Pg| ∝ r0 to |�Pg| ∝ r−2. Thus I will study the
intermediate case with the simple approximation∣∣∣�Pg

∣∣∣ ∝ 1/r ⇒ ρDM ∝ 1/r2 ⇒ M (r) = M (R0)+μ (r −R0) ,

where μ is some constant. Hence the gravitational field g (r) would
be

(413) g (r) =
G [M (R0)− μR0]

r2
+

Gμ

r
.

If the first term is small in comparison with the second one, the ro-
tation velocity of bodies around a galaxy will be approximately flat,
which is the most relevant observation to be explained by the dark
matter hypothesis. Now if the first term is small we shall have

M (R0) � μR0 ⇒ dM (r)

dr
= μ � M (R0)

R0
,
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where eq. (413) has been taken into account. If we identify M (R0)
with the baryonic mass Mb and choose R0 so that the acceleration
at this radius equals the acceleration as of MOND we have, taking
eqs. (409) and (411) into account,

(414)
dMdm (r)

dr
=

B

λ

√
mMb,

where Mb is the baryonic mass, the parameter B � 0.58, and m and
λ are the pion mass and wavelength, respectively. This reproduces
the main features in the rotation curves of galaxies eq. (405) and it
is compatible with solar system and terrestrial observations. In par-
ticular, if Mb is the mass of the Sun, the polarization corresponds to
saturation up to large distances. That is, eq. (412) holds and the only
effect predicted is a small sunwards constant force, as said above.

Many other results in fair agreement with observations have been
derived by Hajdukovic that may be seen in the quoted articles [31]–
[35]. In particular, this author has studied four benchmark measure-
ments: the universality of the central surface density of galaxy dark
matter haloes, the cored dark matter haloes in dwarf spheroidal galax-
ies, the non-existence of dark disks in spiral galaxies, and distribution
of dark matter after collision of clusters of galaxies (the Bullet clus-
ter is a famous example). Hajdukovic has claimed that only some of
these phenomena can in principle be explained by dark matter and by
theories of modified gravity, but the framework of the gravitational
polarization of the quantum vacuum allows the understanding of the
totality of them.

As a conclusion, the gravitational behaviour in galaxies and clus-
ters might be explained from the assumption of a gravitational polar-
ization of the vacuum. It is remarkable that the vacuum fluctuations
are also able to explain phenomena attributed to dark energy. For un-
known reasons the pion mass plays an important role in both cases,
although it is plausible that it appears just as an appropriate average
of the masses in the Standard Model of fundamental particles.

7.5.3. Summary: Dark energy and dark matter as quan-
tum effects. The main empirical data of both dark energy (DE) and
dark matter (DM) may be interpreted almost independently of any
theory. The most relevant feature of DE is its cosmological character,
that is, the fact that it appears everywhere in the universe with the
same value. Thus we might attempt to explain its value as a com-
bination of the universal constants. However, it is the case that the
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unique combination leading to an energy density is Planck’s, which
is about 10123 times too big. This huge value strongly suggests that
this quotient is a ratio between macro and microphysical quantities.
Indeed, we know that the ratio between the electrostatic and the grav-
itational interaction energies of two charged fundamental particles is
of order 1040, one of the Dirac large numbers. This number is also of
order Gm2/�c, whence it is straightforward to derive Zeldovich for-
mula eq. (379), as shown in section 7.4.2. A relevant fact is that the
mass m involved in the formula is of order the pion mass.

The best known effects of dark matter are the rotation curves
in the haloes of galaxies and clusters. The most simple explanation
of this fact is the existence of some non-baryonic mass fulfilling the
condition that the derivative, dMDM (r)/dr, with respect to the radial
coordinate is roughly a constant. On the other hand the squared
rotation velocity in different galaxies is known to be proportional to
the square root of their baryonic mass MB , which is the empirical
Tully-Fisher law. Therefore, in natural units c = � = 1 we should
write

(415)
dMDM

dr
∼ m3/2

√
MB ,

where m is a parameter required by dimensional considerations, that
may be chosen a mass without loss of generality. With this choice
the equation, written in usual units, becomes eq. (414) and the mass
parameter m should be of the order of the pion mass to match ob-
servations. Eq.(415) fits in MOND (405) with m3/2 substituted for√
Ga0.
I believe that it is not an accident that the interpretation of both

DE and DM via eqs. (379) and (414), respectively, requires the same
mass parameter. This suggests that both DE and DM should derive
from similar mechanisms. Eq. (379) makes almost compelling to at-
tribute dark energy to the quantum vacuum fluctuations, as proposed
by Zeldovich long ago [22], and our section 7.4.5 makes this still more
plausible. Then the relation of DM with DE, via the same (pion)
mass parameter, suggests to attribute the dark matter effects also to
vacuum fluctuations. Certainly, this hypothesis for DM is less com-
pelling than the assumption for DE and it presents some problems. In
particular, the approach of section 7.5.2 rests on the assumption that
vacuum fluctuations may lead to a vacuum polarization, which may
explain the effects at the galaxy scale, e.g. the flat rotation curves.
However, gravitational vacuum polarization means that some mass is
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transferred from distant regions to the neighbourhood of the galaxies.
It seems implausible that this mechanism could solve the cosmological
problem of the large amount of non-baryonic cold matter needed in the
universe, at the recombination time, in order to explain the formation
of structures. We conclude that further work is worthwhile.

7.6. Compact stars

7.6.1. From ordinary stars to black holes. Ordinary stars,
like the Sun, appear in the evolution of clouds of hydrogen with small
amounts of helium, called protostars. By the action of gravity the
clouds contract, increasing their temperature and pressure until nu-
clear reactions start, mainly the fusion of hydrogen, provided that the
protostar mass is large enough. As a consequence the gas becomes
a plasma of protons, helium nuclei and electrons. Temperature and
pressure increase again but the contraction stops, giving rise to an
almost stationary state that may last for a hundred million years.
When a large fraction of hydrogen is burn out the evolution is com-
plicated but the star may end as a white dwarf, a compact star with
a radius similar to the Earth whose pressure comes mainly from the
electrons behaving as a Fermi gas (i.e. the pressure is a consequence
of the Pauli principle). After cooling by radiation, the white dwarf
may contract again to a neutron star, a compact object with radius of
a few kilometers. Finally, neutron stars with mass greater than about
two solar masses are assumed to collapse again producing black holes.
Also in the center of most (or all) galaxies there were initially super-
massive stars with mass of order equal to 106 to 1010 solar masses,
that after cooling are assumed to collapse giving supermassive black
holes. Details about the formation, evolution and death of stars may
be seen in astrophysics books. Here I will treat mainly compact stars
and their eventual collapse [37], [38].

7.6.2. Singularities, a stain for Einstein. The actual col-
lapse to black holes, presenting a spacetime singularity, is still ques-
tioned by some people. In order to understand why, it is illustrative
to revisit the historical evolution of the ideas about star collapse [39],
summarized in the following. In 1916, soon after Einstein presented
general relativity (GR in the following), Karl Schwartzschild calcu-
lated terrestrial gravity with the Earth modelled as a sphere of ho-
mogeneous density. He also found that for spheres with homogeneous
density no stationary regular solution of the Einstein equation exists
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if the radius and mass fulfilled the inequality (with units c = 1)

(416) R ≤ 2GM,

(actually the constraint is stronger in stars with homogeneous density,
see section 7.6.3). In fact, the solution regular at infinity presents a
Schwartzschild singularity at the star center. At that moment no
astrophysical object was known fulfilling the inequality and the result
remained purely academic. For the Earth, the left side of eq. (416) is
about 109 times the right side.

The actual possibility of stellar collapse arose in the early 1930’s,
the initial impulse coming when Chandraskhar, then a young student,
proved that white dwarves are not stable if their mass surpasses some
limit. The possibility of collapse to a Schwartzschild singularity was
strongly dismissed by Arthur Eddington, then a respected astrophysi-
cists, whose belief may be summarized as follows: Some unknown
physical mechanism should exist preventing collapse towards a singu-
larity.

The reason for that belief was that GR rests upon the idea that
spacetime is a continuum whose curvature is governed by differential
equations. Therefore, a singularity is a kind of inconsistency or at
least a stain in GR, “the most beautiful theory of physics” according
to Lev Landau. Surely Einstein supported Eddington’s view when he
published an article in 1939 [40] claiming to prove that collapse is im-
possible due to the relativistic limit on the velocity of particles (that
is, the speed of light). Einstein studied a model of star consisting of
non-interacting particles moving in circles all with the same center,
and such that the ensemble of particles contributes a mass density
possessing spherical symmetry. The stars in this model may reach
equilibrium with different mass distributions without in any case ar-
riving at the instability condition eq. (416).

What Chandrashekar calculated around 1930 was that, in the pro-
cess of cooling, the radius of a white dwarf decreases and if the star
is massive enough the pressure becomes unable to support the gravi-
tational force and it collapses. However, it was later shown that the
strong pressure favours a nuclear reaction inverse to neutron β de-
cay, that is, protons and electrons combine to produce neutrons and
neutrinos, the latter leaving the star. Thus, massive white dwarves
indeed collapse, but giving rise to a neutron star possibly without sin-
gularity. Such collapses have been observed as supernovas, processes
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emitting so huge amounts of energy that may be observed even in
stars belonging to distant galaxies.

The next step was to see whether neutron stars also would collapse
to a singularity. A few weeks after Einstein star model appeared in
press [15], Robert Oppenheimer published a relevant article on the
subject in collaboration with G. M. Volkoff [41]. They calculated the
structure of stars consisting of free neutrons and showed that no stable
star would exist with mass greater than about one solar mass. In a
subsequent paper, in collaboration with H. Snider [42] a calculation
was reported about the collapse of a cloud of free point particles. This
is today seen as an idealized model of collapse to a Schwartzschild
singularity.

Oppenheimer and Volkoff (OV) started with the following equa-
tion of hydrostatic equilibrium for spherical symmetry:
(417)

dP

dr
= −g (ρ+ P ) , g =

G
(
m+ 4πr3P

)
r2 − 2Gmr

, m ≡
∫ r

0

4πr2ρdr.

Here ρ (r) is the mass density and P (r) the pressure of matter in the
star, both related by an equation of state (EoS) that gives P as a
function of ρ. The quantity g plays the role of the gravitational field
intensity in Newtonian gravity. Indeed, for P � ρ and 2Gm � r the
GR eq. (417) becomes Newton’s.

The seeming contradiction between the conclusions of Einstein
and OV may be understood as follows. In spherical symmetry the
stress tensor at any point might not be isotropic but possess two
principal pressures, radial and transversal, that I will label p and q
respectively. When p �= q the GR equilibrium equation is no longer
eq. (417) but the following

(418)
dp

dr
+ 2

p− q

r
= −g (ρ+ p) , g ≡ G

(
m+ 4πr3p

)
r2 − 2Gmr

.

In (special) relativity the pressure on a surface perpendicular to the
Z axis corresponds to

(419) Pz =
1

ΔV

∑
j

p2zj
Ej

,

where p2zj is the Z component of the linear momentum of the particle
j, and Ej its energy, the sum extended to all particles present in the
volume ΔV at a given time. In Einstein’s model the particle motions
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have no radial component, whence there is no radial pressure p, only
transverse q. Therefore, the equilibrium eq. (418) becomes

p =
1

2

Gm

r − 2Gm
ρ, m ≡

∫ r

0

4πr2ρdr,

whence the condition that the pressure cannot surpass the density,
which is easily derived from eq. (419), leads to

r ≥ 5

2
Gm.

This puts a lower limit to the radius that a star in equilibrium may
possess for a given mass, but collapse leading to a singularity is not
possible, see eq. (416).

Einstein was actually flawed when he claimed that his proof for the
impossibility of collapse should be valid for any star. The argument
is correct for his model, but the conclusion cannot be extrapolated to
all stars, in particular those with local isotropy p = q. Furthermore, it
is plausible that local equilibrium at every point in the interior of the
star would led to local isotropy, except if there existed a mechanism
not yet known that could produce local anisotropy. Thus, although
equilibrium solutions with local anisotropy (fulfilling eq. (418)) exist,
Einstein model being an example, those stars are not locally stable
because matter in local equilibrium is plausibly isotropic.

In the 1930’s there was an important development in nuclear
physics, that had been initiated after the study of radioactivity by
Becquerel, and Pierre and Marie Curie. This development and the
beginning of World War II made the interest of physicists turn to nu-
clear physics in the 1940’s. E.g., R. Oppenheimer became the scientific
leader of the Manhattan Project aimed at the production of nuclear
weapons. Interest in star collapse arose again in the 1950’s after it was
discovered that there is a strong repulsion between neutrons at short
distances (usually named a ‘hard core’), so that realistic equations of
state for interacting neutrons could support far greater pressure than
free neutrons. However, when J. A. Wheeler and other people stud-
ied in detail equilibrium of stars using realistic neutron equations of
state, the conclusion was that an upper mass limit does exist, although
greater than OV’s, at about 2 solar masses [2]. Wheeler claimed that
as no alternative stopping mechanism had been yet found then prob-
ably none existed. Therefore, he concluded that collapse of massive
enough neutron stars should be unavoidable. Since cooling these stars
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would end their lives as ‘black holes’, a name that he proposed for col-
lapsed objects possessing a Schwartzschild singularity. After that time
the existence of black holes has become a paradigm in theoretical as-
trophysics [38]. Other stars different from neutron’s are assumed to
collapse towards black holes, the limiting mass depending on the equa-
tion of state of matter. In particular, for an electron-proton plasma
at a finite temperature it is several million solar masses, so that su-
permassive stars would collapse when they cool down.

Even in Newtonian gravity a gas of free particles would collapse to
a point if it cools down indefinitely. However, this possibility remains
of purely academic interest because no particles strictly noninteracting
exist and a pressure would arise preventing collapse to a point. In
contrast, in GR the pressure may be unable to stop collapse. The
argument is that what prevents collapse of bodies like the Earth or the
Sun is the pressure that balances the gravitational attraction, but in
GR the pressure contributes also to gravity, whence in massive enough
bodies, where the pressure may be very large, nothing could stop
collapse. More quantitatively, the GR equilibrium eq. (417) contains
two terms that, for given mass and radius, increase with increasing
pressure; namely

(
m+ 4πr3P

)
and (ρ+ P ), both contributing to the

contraction of the star. However, this is not the case if the pressure
is not isotropic, as Einstein model shows. Therefore, a mechanism
stopping collapse might exists involving anisotropic pressure. Also,
the observations could barely distinguish a black hole from a star
having 2GM/R very close to unity [43], which justifies the search for
collapse not leading to a singularity.

In spite of my opinion against the actual existence of black holes
(BH) I remind some features about them in the following. When
R → 2GM the effective field intensity g goes to infinity producing a
number of peculiar, I would say even bizarre, phenomena. Firstly, for a
body of mass M when its radius R approaches 2GM the gravitational
attraction, g eq. (418), diverges so that nothing could escape from the
body, not even light, hence the name ‘black’. (However, BH are very
luminous objects because particles in the surroundings are accelerated
by the strong gravity, with emission of radiation). After all matter of
the star has crossed inwards the surface defined by

(420) R = 2GM,

named event horizon, no particles may escape. In crossing the sur-
face some elements of the metric tensor, determining the curvature of
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spacetime, change sign and the radial (temporal) coordinate becomes
temporal (radial). An observer falling in the BH would arrive at the
surface in a finite time, but due to the relativity of time in GR, for
an external observer that time would be infinite. Hence we, external
observers, should not say that there are BH, but that there will be.
That is, for a collapsing star the information that the process has
finished would require an infinite time to reach us. Eventually, all
matter would arrive at a point, the center of the sphere, which is the
Schwartzschild singularity. It is actually assumed that due to quan-
tum effects BH emit radiation (Hawking radiation) so that BH are
not strictly black, but dark. As a consequence, BH would evaporate
in times that are short for small BH but greater than the age of the
universe for massive ones.

Since about 1965 it is a common view that black holes exist. In-
deed, it is assumed that there are, or have been, from small BH created
in the early universe, to BH with a few solar masses or supermassive
BH with million or billion solar masses. Hundreds of articles and many
books have been devoted to the theoretical study of BH. And there are
also many observations of phenomena attributed to BH, for instance
quasar luminosity [38] or gravitational waves, recently observed, that
are assumed to be created in the collision of two BH.

7.6.3. Attempts to stop collapse to a singularity.
Local anisotropy. The belief in the existence of BH rests upon

observational facts, but it also requires a theoretical argument, namely
that no mechanism exists able to stop the collapse of massive neutron
stars or supermassive stars. Of course, the argument is questionable
from an epistemological point of view because the future discoveries
in physical research are not known. Also, the observable predictions
of phenomena near, but outside, a BH would not be too different
from those taking place near compact objects with a very large but
finite gravitational field intensity |g|. In view of these facts and the
unpleasant presence of a mathematical singularity in BH, the search
for mechanisms that could prevent star collapse makes sense. In the
following I comment on some of these efforts.

The possibility that collapse is prevented by local anisotropy goes
back to Einstein’s model mentioned above [40]. Local anisotropy [44]
has been applied to the study of compact stars in order to esti-
mate its possible influence on equilibrium. White dwarves with local
anisotropy have been studied and configurations of equilibrium with
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mass above the Chandrasekhar limit have been found [45], as well
as supermassive stars [46] and neutron stars [47], [48]. In all cases,
however, spontaneous local anisotropy does not prevent collapse. In
fact, it has been shown that if there exists a locally isotropic stable
star configuration with mass M and baryon number N , then all lo-
cally anisotropic equilibrium configurations having the same N , in the
neighbourhood of that configuration, possess a mass not smaller than
M . Therefore, it appears that local anisotropy might solve the prob-
lem only if there is some mechanism that induces it. This might be the
case by the influence of the quantum vacuum or due to modifications
of general relativity known as ‘extended gravity theories’. Actually,
both vacuum effects and modifications of gravity theory may be equiv-
alent in practice as discussed above in section 7.2.5.

Modified gravity. Many studies applying extended gravity theo-
ries (see subsection 7.2.5) to star equilibrium have been made [6],
[51], [52]. Most of them correspond to f(R) gravity, where the func-
tion f(R) of the Ricci scalar R is added to R in the Hilbert action,
which gives rise to a modification of general relativity. The conclusion
of such studies is that, although they tend to stabilize the stars, they
do not prevent collapse.

A more drastic modification is to substitute for the Ricci scalar
the most general scalar that may be obtained from the Riemann (cur-
vature) tensor [52], namely an arbitrary function of the scalars R and∑

μν
RμνR

μν . An example will be reviewed in section 7.6.3.

Gravastars. An alternative to black holes, rather than a mecha-
nism preventing collapse, is the gravastar [49], a hypothetical object
consisting of a dark energy condensate surrounded by a strongly cor-
related thin shell of anisotropic matter. More specifically, gravastars
have 3 regions with the following equations of state:

interior: 0 ≤ r < r1, ρ = −P,

shell: r1 < r < r2, ρ = +P,

exterior: r2 < r, ρ = P = 0.

For the exterior region the metric is Schwartzschild. The matching
is made assuming continuity of the metric coefficients at r1 and r2.
A large negative pressure in the internal region prevents collapse as
may be seen in the equilibrium hydrostatic eq. (418). Indeed, there
we have

m+ 4πr3P � 4π

3
r3ρ+ 4πr3P =

4π

3
r3 (ρ+ 3P ) = −8π

3
r3ρ < 0,
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whence the effective gravitational field would be repulsive. The model
has been studied by several authors, in particular the comparison of
gravastars with black holes [50].

7.6.4. Change of vacuum equation of state in strongly
curved space. In the following I propose a possible mechanism able
to avoid collapse, resting on the effect of the quantum vacuum fields.
As in sections 7.4 and 7.5 we assume that the vacuum field properties
may be different in diverse conditions. Indeed, in section 7.4 the
effect was studied at cosmic scale with the result that Minkowski space
remains a good approximation for scales as large as galactic. In section
7.5 we considered spacetime with a curvature so small that it may be
studied within Newtonian gravity. Now I consider the possibility of
a big change of the vacuum stress-energy when the curvature is very
large, as may be the case in massive compact objects. I propose
that in these conditions the equation of state of the vacuum might
depart dramatically from the standard one, ρ = −P , appropriate for
Minkowski space. In fact, it is common opinion that in the collapse to
black hole the ratioGM/R is achieved, which implies that the effective
gravitational field intensity g ∼ GM/(R2 − 2GMR) may reach values
indefinitely large. In particular, the effective gravitational field g,
eq. (418) might become as large as the inverse of the atomic, or even
nuclear, radius (in natural units c = 1). In my opinion it is implausible
that the quantum vacuum properties are only slightly modified in
fields so strong. I believe that very big changes should occur so that
the equation of state is far from the free space one P = −ρ.

A simple model. In the following I present a simple model that
illustrates how those changes might prevent collapse to black hole. We
will recall a more elaborate model that presents a similar behaviour
in section 7.6.4. In the simple model I assume that in a curved space
with spherical symmetry the radial, pvac, and the transverse, qvac,
stresses (or pressures) of the vacuum fields may be different from each
other. In this case a more general equation of state that maintains
the mean pressure opposite to the density should fulfil

(421) ρvac = −1

3
pvac − 2

3
qvac.

In order to have an equation of state another relation is needed and the
assumption is made that the ratio pvac/qvac is related to the increase
of lengths in the radial direction, that is, to the metric coefficient

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.6. COMPACT STARS 317

1/
√
1− 2m/r. In particular, I propose the following relation

(422) qvac = pvac
√
1− 2Gm/r.

We may remove qvac amongst eqs. (421) and (422) and we get

(423) ρvac = −1

3
pvac

(
1 + 2

√
1− 2Gm/r

)
,

this being the equation of state to be used in the following.
In the study of equilibrium of the spherical body (that I will name

star in the following) we shall assume that the quantum vacuum and
the matter behave as two independent fluids. Then the hydrostatic
eq. (418) should hold for each fluid, that is,

dpj
dr

+ 2
pj − qj

r
= −g (ρj + pj) .

In our case we have the vacuum for j = 1 and matter for j = 2,
whence

d ln |pvac|
dr

= −2

(
g

3
+

1

r

)(
1−
√
1− 2Gm/r

)
,

dpmat

dr
= −g (ρmat + pmat) ,(424)

where we have taken eqs. (422) and (423) into account in the first, vac-
uum, equation and assumed that the pressure is isotropic in the last,
matter, equation. The quantities m and g depend on both vacuum
and matter, that is,

m =

∫ r

0

4πr2 (ρmat + ρvac) dr,

g =
G
[
m+ 4πr3 (pvac + pmat)

]
r2 − 2Gmr

.(425)

In our model of compact stars I will also assume that the equation
of state of matter fulfils ρmat > pmat. In the following I will make a
qualitative study of eqs. (424) and (425).

We are interested in knowing whether there are equilibrium config-
urations for stars having a definite surface at a radius R and fulfilling
the following conditions

(426) 2Gm/R = 1− ε, 0 < ε � 1.

In order that the external region of the star is similar to that of a
black hole I assume that ε is very small.
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In the external region r > R we have ρmat = pmat = 0 and, for
large values of r, 2Gm � r. Then the first eq. (424) becomes in the
asymptotic region

d ln |pvac|
dr

∼ 0 ⇒ pvac ∼ −K,

and the integration constant K should be identified with the standard
vacuum energy density (the ‘dark energy’). That is, eqs. (422) and
(423) go to the standard vacuum equation of state ρvac = −pvac =
−qvac.

Als,o in both the external region and the part of the internal re-
gion not too close to the star center, eq. (425) leads to g > 0, whence
|pvac| increases inwards. For large enough |pvac| the effective gravita-
tional field g will change sign, say at r = r0. Therefore, in the region
r < r0 gravitation would be repulsive, thus stoping collapse. How-
ever, |pvac| cannot increase indefinitely because for very large |pvac|
the quantity g will become greater than 1/3r; whence, taking eq. (424)
into account, |pvac| would start decreasing inwards. Therefore, the
vacuum radial pressure and density (see eq. (423)) will remain always
finite, and the same will hold for the metric coefficients.

Solving the coupled first-order differential eqs. (424), taking eqs.
(425) into account, may allow the study of particular stars in equilib-
rium once the equation of state of matter is known. In principle, we
expect nonsingular solutions having the asymptotic behaviour for any
central matter density ρmat (0). Every choice of ρmat (0) would re-
quire an appropriate value of the central vacuum pressure pvac (0), in
order to get the asymptotic behaviour for large r � R. The solution
of the differential equations will not be studied here in more detail.

The relation between baryon number and mass. An interesting
feature of any compact star, in particular our model, is the nontrivial
relation between baryon number N and mass M of the star. In a New-
tonian star, that is, when Newtonian gravity is a good approximation,
M is roughly proportional to N . For instance, in ordinary stars like
the Sun the ratio M/N = μ is the mass of a hydrogen atom (actu-
ally slightly larger due to the small amount of helium). We should
take into account also the interaction energy, the thermal energy and
the gravitational energy, but the contribution of these effects is less
than 0.1%. In relativistic stars, however, the gravitational energy may
be quite large and the said approximation fails. The baryon number
should be calculated taking into account the volume element that,
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using the standard metric for spherical symmetry eq. (393), reads

dV = 4πr2grrdr = 4πr2 (1− 2Gm/r)
−1

dr.

Hence the baryon number is given by

(427) N =

∫ R

0

n(r)

1− 2Gm/r
4πr2dr.

where n(r) is the baryon number density. The mass however is not
given in a similar manner, but it is

M =

∫ R

0

ρ(r)4πr2dr

=

∫ R

0

ρ(r)

[
1

1− 2Gm/r
− 2Gm/r

1− 2Gm/r

]
4πr2dr,(428)

where ρ(r) is the mass density and the second term may be interpreted
as the (negative) gravitational energy. The point is that, in contrast
with Newtonian stars where 2Gm/r � 1, in our model we assume
that 2Gm(r)/r may be close to unity. Hence, taking eqs. (428) and
(427) into account, we may have

(429) N � M/μ.

That is, for a family of stars with increasing baryon number N it may
be that the mass M does not always increase; it may decrease for
large N . This suggests that there might be an upper mass limit for
stars, with no limit for the baryon number.

If there was a mechanism preventing collapse to black hole that
would allow equilibrium stars with the ratio 2GM/R very close to
unity, then a hot very massive neutron star should have a decreasing
mass when it cools, but never developing a Schwartzschild singular-
ity. Rather, the mass would decrease by radiation of energy without
any decrease of the baryon number until it arrives at a cold state
of equilibrium with M < Nμ. Therefore, the observed lack of cold
neutron stars with large mass might not be a confirmation of the
Oppenheimer-Volkoff limit, see section 7.6.1, but a consequence of
the inequality eq.(429).

As a simple example, let us consider a star with both homoge-
neous mass density σ and homogeneous mass per baryon μ. Taking
eqs. (428) and (427) into account the total mass and baryon number
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will be, respectively,

M =
4

3
πσR3,

N =
4πσ

μ

∫ R

0

r2dr√
1− 8πGσr2/3

=
4πσR3

μα3

∫ α

0

x2dx√
1− x2

=
2πσR3

α3μ

[
arcsin (α)− α

√
1− α2

]
,

α2 =8πGR2σ/3 =
2GM

R
.

For 2GM/R ≡ α2 � 1 we have M/N � μ, but for greater val-
ues of α the ratio M/N decreases, and for 2GM/R → 1 we get
M/N → 4μ/3π. Actually, for stars with homogeneous density and lo-
cal isotropy (i.e. fulfilling eq. (417)) there is the constraint 2GM/R <
8/9 [1]. However, if we allow for stars with local anisotropy (i.e. ra-
dial pressure different from tangential pressure fulfilling eq. (418)) the
constraint would be 2GM/R < 1.

A similar behaviour appears in the calculation that we report in
the following.

A more realistic model. The main objection to the simple model
presented above is that our starting eq. (423) has no fundamental mo-
tivation. It might be seen as an ad hoc assumption with the aim of
proving that collapse might be stopped. A better way to derive a vac-
uum effect is to use an extended gravity theory, which is equivalent
as discussed in section 7.2.5.

In the following I briefly review a calculation using the quadratic
Lagrangian,

(430) f = aR2 + b
∑
μν

RμνR
μν

(see eq. (342) in section 7.2.4), that does prevent collapse of neutron
stars. The differential equations of the model are involved and the
solution has been obtained numerically [52]. The result of the calcu-
lation is that the star mass increases with increasing central density
until about 1 solar mass, and then it decreases. However, the baryon
number increases monotonically.

The shortcoming of the model is that it requires values of the
parameters a and b that are too large to be compatible with terrestrial
and solar system observations. However, both preventing collapse
and fitting in terrestrial observations would be possible if the actual
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Lagrangian is approximately quadratic at the high densities of neutron
stars, but very small at the low densities of terrestrial observations.
This would be the case for instance if the following Lagrangian is
substituted for eq. (430):

(431) F = f − c ln (1 + f/c) ,

where c is a constant such that f/c is dimensionless. For an appro-
priate choice of the parameters a, b and c the Lagrangian F fulfils the
desired properties. Indeed, for low density, i.e. f/c � 1, expanding
the logarithm in powers of f/c and retaining the lowest nonzero term
we get

F � f − c

(
f

c
− f2

2c2

)
=

f2

2c
� f,

while for large density f/c � 1, the logarithmic term may be ne-
glected:

F = f − c ln(1 + f/c) � f − c ln(f/c) � f.

This makes the model somewhat contrived, but the result shows that
there are possibilities of preventing collapse to black hole in extended
gravity theories.

These arguments suggest that, if we assume that the vacuum
becomes locally anisotropic, with a radial pressure different from the
transverse pressure as in eq. (422), then star collapse may be stopped,
contrary to the standard view.
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missing matter problem through a new fundamental gravitional radius. J.
Cosmol. Astropart. Phys. 1706, 044 (2017).

[31] D. S. Hajdukovic: Quantum vacuum and dark matter. Astrophys. Space Sci.
337, 9-14 (2012).

 EBSCOhost - printed on 2/13/2023 9:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 323

[32] D. S. Hajdukovic: On the gravitational field of a point-like body immersed
in quantum vacuum. MNRAS 491, 4816 (2020).

[33] D. S. Hajdukovic: A few provoking relations between dark energy, dark mat-
ter and pions. Astrophys. Space Sci. 326, 3-5 (2010).

[34] D. S. Hajdukovic: Is dark matter an illusion created by the gravitational
polarization of the quantum vacuum? Astrophys. Space Sci. 334, 215-218
(2011).

[35] D. S. Hajdukovic: On the vacuum fluctuations, Pioneer anomaly and modified
Newtonian dynamics. Astrophys. Space Sci. 330, 207-209 (2010).

[36] E. Santos: Dark matter as an effect of the quantum vacuum. Astrophys. Space
Sci. 363, 74 (2018).

[37] S. L. Shapiro, S. A. Teukolsky: Black holes, white dwarfs and neutron stars:
The physics of compact objects. John Wiley, New York, 1983.

[38] M. Camenzind: Compact objects in astrophysics: White dwarfs, neutron
stars and black holes. Springer-Verlag, Berlin, 2007.

[39] K. S. Thorne: Black holes and time warps. Einstein’s strangeous legacy. Nor-
ton and Co. New York, 1994.

[40] A. Einstein: On a stationary system with spherical symmetry consisting of
many gravitating masses Ann. Math. 40, 922-936 (1939).

[41] J. R. Oppenheimer and G. M. Volkoff: On massive neutron cores. Phys. Rev.
55, 374 (1939).

[42] J. R. Oppenheimer and H. Snider: On continued gravitational contraction.
Phys. Rev. 56, 445 (1939).

[43] M. A. Abramowicz, W. Kuzniak, J. P. Lasota: No observational proof of the
black-hole event-horizon, Astronomy Astrophys. 396, L32 (2002).

[44] L. Herrera, L. O. Santos: Local anisotropy in self-gravitating systems, Phys.

Rep. 286, 53-130 (1997).
[45] E. Santos-Corchero: White darfs with anisotropic pressure in post-Newtonian

gravity. Astrophys. Space Sci. 259, 32 (1998).
[46] E. Santos-Corchero: Equilibrium of spheres with local anisotropy in post-

Newtonian gravity. Aplication to supermasive stars. Class. Quantum Grav.
15, 3645-3654 (1998).

[47] E. Santos-Corchero: Quantum approach to neutron stars leading to configu-
rations with local anisotropy and mass above the Oppenheimer- Volkoff limit.
Astrophys. Space Sci. 275, 259-274 (2001).

[48] E. Santos-Corchero: Quantum ground state of stars consisting of noninter-
acting fermions. Class. Quantum Grav. 19, 417-427 (2002).

[49] P. Mazur, E. Mottola: Gravitational condensate stars. An alternative to black
holes. Proc. Nat. Acad. Sci. USA 101, 9545 (2004).
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