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Preface
The origin of this edited book can be traced back to the IFAC 2017 World Congress,
Toulouse, France. The 20th World Congress of the International Federation of Auto-
matic Control happened from 9–14 July, 2017. Y.C. was visiting the poster session and
was attracted to a poster entitled “Non-Gaussian Assessment of the Benefits from Im-
proved Control”1 presented by P.D. Y.C. immediately recognized this work is valuable
and instantaneously related this paper to fractional calculus thus he started conver-
sation with P.D. and tried to inform him this connection. This paper abstract says that
“Control quality significantly contributes to the process technical and financial per-
formance. Productivity, environmental issues and energy management push systems
towards their technological constraints calling for better regulation closer to process
limitations. Any control improvement initiative should be predated with the estima-
tion of the potential benefits associated with control rehabilitation project. The as-
sessment is based on the appropriatemeasures. Classical methods are based on Gaus-
sian approach. However, investigation of industrial data frequently is not compliant
with normal assumption on control signals. This paper proposes approach using non-
Gaussian probabilistic distributions like Cauchy, Laplace and Lévy. The methodology
is illustrated on the exemplary industrial data.” with keywords “monitoring; perfor-
mance assessment; statistical data analysis; non-Gaussian distributions; same limit
method; control benefits.”

Control engineering perspective of this work is enhanced by M.Ł., whose exper-
tise in advanced control together with the participation in several industrial projects
have increased the domain of our research. Since then, with extensive exchange of in-
formation and several joint works, we have gained deeper understanding on the role
of outliers in control engineering as the outliers are connected to fractional calculus
(FC) via heavytailedness (FT).

We wish to thank all contributors of this book who are directly or indirectly deal-
ing with outliers in control engineering and also control theory. Furthermore, special
thanks go to Professor Changpin Li of Shanghai University, China, the editor-in-chief
of the De Gruyter book series on “Fractional Calculus in Applied Sciences and Engi-
neering”2 for encouraging us to move forward with a book proposal. We are grate-
ful to Leonardo Milla, Editor Engineering/Computer Science, De Gruyter for peer re-
view of our book proposal and the final offer of book project contract during the pan-
demic!

1 See full paper at https://doi.org/10.1016/j.ifacol.2017.08.753
2 https://www.degruyter.com/serial/FCASE-B/html

https://doi.org/10.1515/9783110729122-201
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VIII | Preface

Last but not least, we are thankful to our family members for their patience and
support in this trying time.

January 2022 Paweł D. Domański, Warsaw
YangQuan Chen, Merced

Maciej Ławryńczuk, Warsaw
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Paweł D. Domański, YangQuan Chen, and Maciej Ławryńczuk
1 Outliers in control engineering—they exist,
like it or not

Abstract: Major achievements in control engineering, like the least squares estima-
tion, minimum variance, LQG (Linear Quadratic Gaussian), MPC (Model Predictive
Control) or adaptive control strategies rely on the assumption that process distur-
bances exhibit Gaussian properties. Though this applies to the original algorithms’
formulations and modifications relaxing this assumptions exist, these conditions are
rarely verified. On the other hand, anyone who has worked in industry is very often
confronted with signals and processes that do not meet these conditions. Analysis of
real industrial signals very often discloses their non-Gaussian properties, whichman-
ifests itself in more or less frequent anomalies. The easiest method to identify them
is through statistical analysis as they are responsible for the tails in distributions.
Therefore, statistical analysis should be considered as the appropriate analytical tool.
Fat-tail properties are often closely related to the fractional properties of the process
behind this data and fractional calculus complements statistical methods, giving
further insight into the generating mechanism. Outliers do not have to be artificial
exceptions. Their observation and analysis may enrich our knowledge and give new,
and open up further, perspectives for our research curiosity.

Keywords: outliers, control engineering, fat tails, tail index, fractional calculus

“Corollary to Moore’s Law: every ten years, collective wisdom degrades by half.”

Nassim N. Taleb, The Bed of Procrustes

1.1 Introduction

Outliers exist, not only in the social or natural sciences. We also witness them in the
technical sciences, and control engineering is not an exception. In the beginning they
were considered as strange, occasional events. The fact that they are rare might cause
them to go unnoticed. Unfortunately, there is another feature associated with the out-
lier. The relevance of such an event might be abnormally large, carrying a dispropor-

Paweł D. Domański, Maciej Ławryńczuk,Warsaw University of Technology, Institute of Control and
Computation Engineering, Warsaw, Poland, e-mails: P.Domanski@ia.pw.edu.pl,
M.Lawrynczuk@ia.pw.edu.pl
YangQuan Chen, Department of Mechanical Engineering, University of California, Merced, USA,
e-mail: ychen53@ucmerced.edu

https://doi.org/10.1515/9783110729122-001
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tionately high cost. Sporadic high-magnitude earthquakes and tsunamis, devastating
tornadoes, damaging earthquakes or volcanic eruptions, economic crises or pandemic
outbreaks are extremely rare events from the historical perspective, but they are well
rememberedbymankind for their destructive effects. Anoutlier is often calledbyother
names, such as: anomaly, deviant, oddity, contamination, aberration, an exception or
fringelier reflecting “unusual events which occur more often than seldom” [91]. What-
ever name is used, they are rare and of unknown origin.

An outlier in control engineering is not so spectacular as the eruption of Vesuvius,
however its impact still might be significant. Erroneous measurement observation in
a control system may cause system malfunctioning, a plant shutdown or device de-
struction. It’s only a matter of proportionality.

Human perception is constructed in such a way that we tend towards simplifica-
tions, closing our eyes to rare and strange phenomena. We reject extremes and prefer
more comfortable surroundings. Our attention is raised only after the fact, andusually
by their consequences. We prefer simple linear time-invariant transfer functions over
nonlinear partial differential equations, despite the fact that the process is highly non-
linear and dispersed. Similarly, we use the Gaussian normality assumption, though
we certainly know that the empirical dataset distribution is not even close to the bell-
shape. Yet, we do that. Why? There are many reasons, among whichmay be that it is a
quick theory ready at hand, because everyone does the same, due to education, best
practices and procedures, the power of tradition, etc.

Actually, academia rarely prepares us for their existence. Once we put our hands
on real projects, we start to notice that something does not fit, that theory does not
want to suit the practice. As our experience accumulates, we notice that theory aligns
with practice only in theory. Closing our eyes is no longer a good option. The ad hock-
ery is too close to ignorance as we start to dig into the subject. What happens? What’s
the reason?What are the artifacts doing here? It seems that we have to leave our com-
fort zone.

We see strange observations in data, and we begin to wonder about their cause
and source. We start thinking about what to do with them and, most importantly, we
try to understandwhether they are just randomerrors orwhether they carry important
information. The researchbegins. This study aimsat giving just a general picture of the
subject. It tries to identify the most significant aspects that require deeper attention,
showing the beauty of research challenges. The story begins in Section 1.2 with the
very fact of observing an outlying observation. Once we have seen it, we may try to
identify its sources and origins (Section 1.3) and further to find a way how to detect it
(Section 1.4). Once the outlier is known, i. e., identified and labeled, we may propose
an action appropriate to the situation, like the ones proposed in Section 1.5. The study
concludes with Section 1.6 containing practical comments identifying open research
areas for further research.

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



1 Outliers in control engineering—they exist, like it or not | 5

1.2 Observation: to remove or not to remove
Outliers in data cause various reactions among observers. Some people pretend that
everything happens according to the initial normal and safe assumptions, i. e., as
if nothing had happened. We notice an unknown observation, some unknown un-
knowns, and we decide to remove it from our comfort zone because it may disturb our
approach by challenging the results obtained so far. Actually, this is not a solution. It
sets us back rather than pushing the research forward. Should we always try to falsify
existing hypotheses rather than to confirm them by force [71] We always have to be
aware that things exist that have never been seen before, and if we did not see them
previously, it does not mean that they do not exist. Once aware of them, we mustn’t
deny their existence and remove them from the analysis.

Once we see and accept outliers, we may take them into account in two ways.
They can be treated as erroneous observations resulting from system or human er-
rors, in which case they shall be found and removed. This happens in the case of bad
measurement, human errors, system breaks, etc. In such a situation outliers’ detec-
tion serves to label and remove them [29, 73, 94]. Actually, this approach is the most
popular and considered a common reaction. However, one important should be raised
here—the removal of outliers impacts further analysis and obtained results [70].

In the latter case they are considered informative as a potential focus for further
analysis. Data contamination is considered as a source of important information, and
one should focus on their analysis. Such a situation happens in the case of fraud or
leakage detection, medical diagnosis, cybersecurity, etc. [58, 64, 72].

As was briefly just mentioned, we may treat outliers in various different ways:
we may remove them or not; we may ignore them or investigate. There are dozens of
policies for each decision. There are essential arguments for their rejection. On the
contrary, if we suspect that they carry on important information or that they present
relevant part of the population, they mustn’t be removed. Nonetheless, they should
be isolated for further investigation. As one can see, the analysis of outliers includes
challenging activities: detection, labelling, interpretation and treatment.

The story of their investigation begins with the works of Bernoulli (1777) who
pointed out the practice of deleting them. Probably, this tradition is still alive as it is
customary to remove them. The first statistical approach to treat outliers appeared in
1850 [7], but two opposing practices have existed from the beginning. In the 19th cen-
tury, Boscovitch suggested to delete them through the so-called ad hoc adjustments
similar to Pierce (1852), Chauvenet (1863) orWright (1884). The removal practice exists
today and is still used and proposed [12].

An opposing group argues that these anomalies provide useful information and
should be kept. Legendre (1805) recommended not to erase the extreme observations
“adjusted too large to be admissible”. Bessel and Baeuer (1838) claimed that deleting
leaves a gap in the data that is artificial. As one can see, the dilemma to remove or not
to remove outliers is still an issue today, as it was 200 years ago.
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The first formal outlier definitions were proposed by Dixon [14], who called them
“dubious in the eyes of the researcher’,’ or by Wainer [91], who called them contam-
inants. The most popular definition was formulated by Hawking [33], who called an
outlier “an observation which deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism”. Johnson [45] defined it “as
an observation in a data set which appears to be inconsistent with the remainder of that
set of data”, while Barnett [5] noted that “an outlying observation, or outlier, is one that
appears to deviate markedly from other members of the sample in which it occurs”.

Although some of the above comments seem to be obvious, especially for practi-
tioners, it is worth to highlight these issues. Oncewe agree, we should first, before any
further data analysis, check whether our simplifying assumptions hold and whether
thedata exhibit outliers. Thenext paragraphbringsus closer to the sources and causes
of outliers showing up and how they manifest themselves in the data, while opening
gates to the methods for their detection and labelling.

1.3 Sources and origins

An outlier is a strange being and as the name suggests it comes from outside the sys-
tem. There are as many meanings and interpretations of outliers as there are perspec-
tives for their observation and analysis. Outlying data might have a significant impact
on data analysis, whatever it may be. Outliers increase the data variance and reduce
thepower of statistical tests [63]. Theydeteriorate data statistical properties, likeGaus-
sianity, and introduce tails into the distribution [82] and bias regression analysis [77].

Once we agree that outliers exist and we notice them, then we can start to investi-
gate their origins [8, 63]. Generally,wehave twooptions. Thefirst supposition assumes
that they originate from erroneous observations. Such data artifacts do not come from
the process itself, rather their generating mechanism is unknown and artificial to the
data source. However, it is still an open question whether they carry information or
not. Aberrant observations come out of human errors, intentional or motivated activi-
ties,wrong computer systems (datameasurement, control, sampling or collection) op-
eration or from standardization failures. Identification and treatment of such incorrect
observations is not simple, but procedures, double checking, modelling, validation or
recalculation may help.

The second option is that they belong inherently to some complex, nonlinear and
not fully knownprocess.Wehave to remember that the characteristics of the process is
such that outliers can be originated by the process itself. Process complexity, nonlin-
earity and their not fully understood nature can additionally cause incorrect interpre-
tations and assumptions about the data properties that possibly cause outliers [43].
Such systems can cause multimodal, skewed, asymmetric, heavy-tailed, flat or very
unconventional distributions, depending not only on the generating mechanism, but
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1 Outliers in control engineering—they exist, like it or not | 7

also on data sampling. Complex processes may generate data with properties other
than originally assumed and characterized by tails [6]. Furthermore, there might be
more than one underlying generating mechanism. Data can be infected by nonsta-
tionarities and trends, external cross-correlations with variable delays, and fractal or
multifractal properties [56]. In fact, observed outliers might be just rare, but natural,
consequence of the process. All these reasons cause problems and mislead control
engineers who are accustomed to linear, quadratic and Gaussian simplifications.

It is worth to investigate how these general reflectionsmanifest themselves in con-
trol engineering. First of all,wehave to remember that control cannot existwithout the
process and that each process property is reflected. Moreover, physical control system
is just an IT or embedded system being subject to anything that might happen to it.

Erroneous unintentional outliers that are subject to the forthcoming removal can
be caused by the control system (e. g., measurement unit breaks, data communica-
tion jams, calculation failures, numerical errors, actuator equipment breakdowns) or
by human impacts (misspelled data, wrong interpretation of displayed data or mis-
use of the equipment). Apart from random incidental aberrations of data originating
from unknown reasons, intentional anomalies caused by cyberattacks might occur.
They are intended to be very dangerous, and they differ from previously mentioned
causes. Unlike unintentional erroneous data, which can be just deleted and do not
require in-depth attention, contamination intentionally caused by cyberattacks must
be identified, labeled, isolated, traced and immediately counter-reacted.

The second group of outliers, i. e., those that are generated by internal process
mechanisms, are not so straightforward to interpret. It might be that the process itself
exhibits non-Gaussian properties that frequently generate data lying far from the bulk
of the data. Another reason may be that two different mechanisms are interacting,
even if each of them witnesses only normal Gaussian properties. Cross-correlations
with varying delays may also cause fat and heavy tails containing outlying observa-
tions. One has to be aware that negative feedback, which is fundamental to each con-
trol system, also contributes to the tails [15, 16, 22].

1.4 Detection and labeling

The simplest method of outlier detection is just visual inspection. Process time trends
can be plotted and visually inspected. Any outlier can be identified using human ex-
pert knowledge and delayed. The review in the time domain can be supported by the
investigation of the statistical data histograms [21]. Such manual methods can be im-
proved by automated analytical methods. Initially, statistical approaches have been
investigated [31, 44, 65, 68]. The evaluated methods have applied Gaussian normality
assumptions exploiting different properties of the normal probabilistic distribution
function (PDF) [33, 34, 74, 77]. Formally, a statistical approach follows three steps [43]:
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8 | P.D. Domański et al.

labeling (flagging for further investigation), accommodationwith robust statistics and
finally identification.

There are numerous statistical algorithms, and the decision whether the obser-
vation can be flagged as an outlier depends on the underlying data distribution. The
majority of research concentrates on univariate Gaussian analysis. Control engineer-
ing is not an exception. Robust regression research [40, 77] shows that classical least
squares regression is sensitive to even a single outlier. This observation impacts fur-
ther research using robust regression estimators, such as Z-scores with median and
MADAM (median of the absolute deviations about the median) [43], Hampel filter or
power-law tail index estimator [81]. Finally, the assumption that an α-stable distribu-
tion is responsible for the underlying generation mechanism opens new perspectives
[19] because it may be considered as a signal-generation mechanism in control sys-
tems [15]. It is characterized not only by scale and location, but also by stability and
skewness coefficients.

Recently, research has started to exploit artificial intelligence (AI). In this regard,
there are three different types of algorithms:
– supervised methods apply in training historical normal and abnormal patterns,
– semi-supervised methods use in learning only normal or abnormal patterns,
– while training examples are not used by the unsupervised methods.

Other classification takes into account the resolution of the reference, meaning the
difference between local versus global ranges. However, many methods use hybrid
approaches and cannot be clearly classified. Next, classification takes into consider-
ation algorithm output. Labeling exhibits binary output, naming the objects normal
or abnormal. Scoring approaches give continuous output, as for instance the outlying
probability.

The issue of statistical detection of outliers traces back to the 19th century and
works byPeirce (1852) [68]. The researchhas continued, and the literature is rich.How-
ever, currently this approach is not so popular. Nowadays, AI-based algorithms are
most frequently used [32, 96]. However, it must be remembered that statistics shares
formal simplicity and a rigor that is very attractive. Especially interesting are recent
findings in the area of non-Gaussian and robust methods. [37, 38, 76, 84] gave a new
impulse by improving robustness and reliability. Reviews of statistical outlier analysis
have been assessed by many authors [4, 32, 51, 87].

Statistical approach depends on assumed model of the underlying probabilistic
process. Because there are so manymethods, one has to select those that are the most
appropriate in situationunder consideration [20, 21]. Selectedmethods are listednext,
including well-known algorithms and recent modifications:
(1) Z-Scores methods [43], also called MDist [51], considered the earliest and the

most common, may use different scoring approaches as, for instance: 3σ, modi-
fied 0.6745 ⋅ 3σ or 0.6745 ⋅ 3.5σ, application of robust scale estimators, like MAD,
MADAM, robust M-estimators [40, 88], L-moments [78].
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1 Outliers in control engineering—they exist, like it or not | 9

(2) higher-order moments [3] or joint statistical moments [1],
(3) InterQuartile Range (IQR) method [93] using standard Q1 and Q3 quantiles or

modified ones like 5% [13] or 0.5% [2].
(4) Minimum covariance determinant (MCD) analysis [41],
(5) Extreme Studentized deviate (ESD) test [75],
(6) Grubbs’ [31] and Tietjen–Moore test [86],
(7) Hampel filter [66],
(8) Thompson Tau test [85],
(9) Cupola-based method [54],
(10) analytical tail modellingmethod using Gaussian or power-law tail starting point

estimators [81] or α-stable distribution coefficients [21],
(11) numerical tail index estimators [9, 79].

This list includes methods used for symmetric or not-too-much skewed two-sided dis-
tributions. Such assumptions could have been made because the majority of control
engineering applications and data subject to the analysis exhibit such properties. In
general this is the unwritten supposition. Nonetheless, we have to remember that
there might exist engineering tasks where this assumptions does not hold. Such data
exhibit a single-sided distribution model, like for instance Gamma, lognormal, expo-
nential,Weibull, GeneralizedExtremeValue, generalizedPareto or the four-parameter
Kappa probabilistic density function. In such cases outliers’ investigation, often re-
ferred to as extreme value analysis, may use other methods and aim at other goals [11,
47], as for instance extreme values frequency and repeatability, peaks-over-threshold,
flow duration, return period analysis, etc.

The conclusion is that outliers deteriorate Gaussian assumptions. They do so in
two ways: They change properties of the stochastic process and simultaneously they
bias classical statistical moments estimators. This directs the research towards fat- or
heavy-tailed approaches. This observation naturally opens new research opportuni-
ties. One should take into account observations and results from other research areas
and contexts, as for instance persistence and fractal analysis, non-Gaussian statistics,
robust estimators, various approaches to the tail analysis [28], and fractional calculus,
among others.

1.5 Action

As one can see, the subject is vast, andwhat is themost challenging, themathematical
definition of the outlier per se seems to be not formulated yet [49]. Due to the natural
text volume limitation and authors personal preferences and dislikes, further consid-
erations focus on two issues: fat- and heavy-tails (FT and HT), and fractional-order
calculus (FC).
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1.5.1 Fat- and heavy-tails

The distribution’s tails are built out of very small values on the left side and very large
ones to the right, finally defining the distribution shape. According to the traditional
definition, these are PDFs with fatter tails than the normal Gaussian, which means
that there more realizations within one σ and with kurtosis higher than 3. Once we
take into account the fact that classical moments are biased by extreme values (out-
liers) and many heavy-tailed functions do not have finite moments, we need robust
formulation. L-moments give us such an opportunity [37]. They are formulated as lin-
ear combinations of order statistics. In contrast to product moments, they produce
almost unbiased statistics, even for very small samples simultaneously less sensitive
to outliers [67]. L-kurtosis τ4 ∈ (−1/4, 1)might be used as an alternative. The value for
L-kurtosis for the Gaussian distribution equals τ4 = 0.1226. Therefore, we can assume
that distributions with τ4 > 0.1226 are leptokurtic and can be called fat-tailed. Many
distribution classes belong to this group, like the power law, slowly varying and the
Pareto tail class.

Heavy-tailed distributions are more heavy than fat-tailed ones Al their moments
are infinite above some order. A random variable with some PDF can be called heavy-
tailed if its tail Pareto-like decay is above some threshold [10]. Gaussian distribution
is considered not to be fat-tailed. Fatter tails appear with the subexponential class,
which has all moments (like for instance lognormal distribution). For the supercubic
class (Lévy-stable distribution), there is novariancenorhighermoments.Wecall these
functions power or Pareto laws. In more extreme cases, even a mean does not exist
[82].

An interesting notion of ostensible heavy tails was introduced in [50]. Klebanov
and Volchenkova use this name for a distribution that exhibits “high pike near mean
value, thin or truncated “far” tail and The part of distributions body outside of the pike
changes not too essentially with the remotion from the pike on a distance, but turns into
thin tail after that”. Sample distributions exhibiting various tail fatness are depicted
in Fig. 1.1. The figure shows only the right side for clearness.

It is interesting to notice that observation of the control-engineering data reveals
the fact that Gaussian cases are in the minority. Reviews shows that the share of vari-
ables’ normal properties is significantly low (below 10%) [15]. Therefore the analy-
sis of tails is justified, and HT distribution may be considered as natural models for
control-engineering problems. The tails and observations responsible for their ap-
pearance might have a negative nature, like erroneous observations or intentionally
injected contamination. On the contrary, other outliersmight just reflect some specific
properties of the stochastic data generating process, and they should not be consid-
ered negatively. They are be just a natural consequence of the process behind the data.

Another issue raised in [81] draws attention to the implications of the central limit
theorem and limit distributions. Unknowingly, we tend to assume that the empirical
data distribution obtained from available observations is the right one, i. e., equal to
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Figure 1.1: The tails heaviness versus reference no-tail Gaussian distribution for sample distribu-
tions. The regions are named according to [82].

the underlying theoretical limiting distribution. However, this does not have to be the
true.We never knowwhether the available number of data points is high enough from
the perspective of the limit theorem. This is especially due to the fact that the rate of
convergence for fat-tailed distributions is not fast and slower than for the normal one.
Asymmetries even make the problem harder. Therefore, the scientist or data analyst
has to be very cautious because she/he has to make several proper decisions that may
significantly affect the result.

The literature shows many different ways to analyze the tails. The most common
statistical approach using the kurtosis can be applied in a narrow class of problems,
i. e., when all moments are finite. It enables simple comparison and difference mea-
sures from Gaussian. For fat-tailed cases, one may use tail index or tail exponent. An-
other approach is to apply extreme value theory and use peaks-over-threshold or ex-
ceedance probability methods. Finally, one can try to measure the distance from the
limiting distribution, assumed as the α-stable one [82].

The tail index, denoted α, is the shape parameter determining how fat the tail is
[13]. Its higher values correspond to thinner tails. The use of the tail index gives us a lot
of freedom. The Hill quasi-maximum likelihood estimator [35] is the most often used,
especially due to its simplicity. As we never know how close we are to the limiting
values, it is unclear what should be the number of observations because it may bias
the estimation of α. The wrong choice may cause a trade-off between its variance and
the bias of the estimator.
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Figure 1.2 shows a sampleHill plot (of the discharge level of a river in Poland), i. e.,
dependence of the tail index on the number of highest observations. It is clearly visible
that the estimate varies with the data number quite substantially. Estimator volatility
decreases with number of observations.The literature shows many different methods
for selecting the proper number of observation, thereby determining the tail index α
[13]. Apart from the Hill estimator, there are many others, like for instance minimal
distance, bias-reduced, generalized class, stable distribution tail index, small sample
and robust, peaks-over-random threshold, parametric methods or estimators allow-
ingnegative values. Comprehensive description and comparison of thesemethods can
be found in [28].

Figure 1.2: Sample Hill plot showing tail index α estimates for various numbers of the highest obser-
vations.

Although the literature on the tail index theory and applications is vast, there are only
a few works on its application to the task of outlier detection. Therefore, it seems that
this direction might happen to be a promising opportunity for practical and challeng-
ing research.

1.5.2 Fractional calculus

Fractional-order calculus (FC) is about differentiation and integration of non-integer
orders. Using “fractional” is actually a misnomer, but for historical reasons we con-
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tinue to use FC, meaning that the orders can be any non-integers that can be real
or complex numbers. Denying fractional calculus is like denying there are non-
integers in between integers. This type of “in-between thinking” is called “Fractional-
Order Thinking”whenwe study complex dynamic systems. Fractional calculus-based
fractional-order thinking (FOT) has been shown to help us to better understand com-
plex systems, better process complex signals, better control complex systems, better
perform optimizations and even better enable creativity [92].

Operators definitions, which are recalled in the following [48, 69]:
– Grunwald–Letnikov’s fractional-order derivative/integral definition:

G
aD

α
t f (t) := limh→0

1
hα
[(t−a)/h]
∑
j=0
(−1)j(α

j
)f (t − jh), (α ∈ R)

– Riemann–Liouville’s fractional-order integral definition:

R
aD
−α
t f (t) := 1

Γ(α)

t

∫
a

(t − τ)α−1f (τ)dτ, (α > 0)

– Riemann–Liouville’s fractional-order derivative definition:

R
aD

α
t f (t) :=

1
Γ(n − α)

dn

dtn
[

t

∫
a

(t − τ)n−α−1f (τ)dτ], (n − 1 < α < n)

– Caputo’s fractional-order derivative definition:

C
aD

α
t f (t) :=

1
Γ(n − α)

[
t

∫
a

(t − τ)n−α−1f (n)(τ)dτ], (n − 1 < α < n)

– The Riesz fractional derivative is expressed as

𝜕α

𝜕|x|α
f (x) = − 1

2 cos(πα/2)
[I−α+ f (x) + I

−α
− f (x)], 0 < α ⩽ 2,

where

{{{{{{{
{{{{{{{
{

Iα+f (x) =
1

Γ(α)

x

∫
−∞

(x − ξ )α−1f (ξ )dξ ,

Iα−f (x) =
1

Γ(α)

+∞

∫
x

(ξ − x)α−1f (ξ )dξ .

Based on these definitions, fractional-calculus equations that canmore accurately de-
scribe behaviors of real physical phenomenon and systems have become a hot topic
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in recent decades [80]. A fractional derivative provides a perfect tool when it is used
to describe the memory and hereditary properties of various materials and processes.
This is the main reason that fractional differential equations are being used in mod-
eling mechanical and electrical properties of real materials, rheological properties of
rocks and many other fields. As an important application field of fractional calculus,
fractional-order control and systems has become the work of many researchers. A tra-
ditional fractional-order differential equation that can describe the fractional-order
system’s dynamical properties has the following form:

F(x, 0D
α1
t y, 0D

α2
t y, . . . , 0D

αn
t y) = 0,

where 0D
αi
t , (i = 1, . . . , n) can adopt Riemann-Liouville’s or Caputo’s definition. For

fractional order systems, control and signal processing,we suggest thebooksbyMonje
et al. (2010) and Sheng et al. (2012), respectively, and more fractional calculus books
can be found in the link.1

The deterministic world has almost everywhere the smell of fractional calculus
when the world is complex. But, this is only one side of the coin. The other side of
the coin is the stochastic world. In the previous subsection, we encountered a spe-
cific class of fractional randomness in which we can observe the inverse power law
in the sense of PDF (probabilistic density function), ACF (autocorrelation function) or
PSD (power spectral density). In deterministicmodels, it is not hard to understand the
connection of the inverse power law (IPL) and fractional calculus due to the asymp-
totic behavior of Mittag–Leffler functions. It should be pointed out that integer-order
models correspond to the “exponential law.” However, it is not quite straightforward
to understand the connection between heavy-tailedness and fractional calculus.

Fortunately, Gorenflo and Mainardi’s excellent tutorial paper [30] explains in de-
tail the connection between fractional calculus and stable probability distributions,
including most of the cases in the previous subsection. Even more interestingly, the
reader is suggested to consult the monumental review for more insights into the con-
nection between fractional calculus and fractional (or complex) randomness [59].

It is quite sure that fractional calculus can help us to better characterize outliers
in general.

1.5.3 Case study: the MPC case

Analysis of industrial data indicates that the majority of controlled variables exhibit
non-Gaussian behavior, and significant outliers are very frequent. To solve these prob-
lems, it is recommended to carefully choose and tune the control algorithm and ap-
propriately select the control-performance indicators.

1 https://mechatronics.ucmerced.edu/fcbooks
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When the classical PI or PID controllers are used, the objective of control perfor-
mance assessment is to determinewhether or not they are tuned properly. Let us stress
that, even in the case of multiple-input multiple-output processes, the typical indus-
trial approach is to use a set of single-loop PI or PID controllers. Such an approach
greatly simplifies the controllers’ performance assessment because each control loop
is analyzed separately. For each controller, we have only two or three tuning parame-
ters. Typically, as a result of the analysis, we obtain a set of quite simple to implement
conclusions:
– reduce/increase the controller’s proportional gain,
– reduce/increase the controller’s integration time-constant,
– reduce/increase the controller’s derivative time-constant,
– switch on/off the derivation.

One advanced control approach, namelyModel Predictive Control (MPC) [55, 83], is be-
comingmore andmore popular in practice. In contrast to the classical PI and PID con-
trollers, a dynamicalmodel of the process and an optimization procedure are used on-
line in MPC. The model calculates predictions of controlled variables (and state vari-
ables if necessary) over some time horizon, called the prediction horizon. The numer-
ical optimization procedure calculates the best possible control policy that minimizes
a predefined performance cost-function. Prediction and optimization are repeated at
each sampling instant. Assuming that the number of process manipulated variables
(inputs) is denoted by nu and the number of controlled variables (outputs) is denoted
by ny, the classical cost-function is

J(k) =
N
∑
p=1

ny
∑
n=1

ψp,n(y
sp
n (k + p|k) − ŷn(k + p|k))

2

+
Nu−1
∑
p=0

nu
∑
n=1

λp,n(△un(k + p|k))
2
. (1.1)

The first part of the cost-function measures the control errors predicted over the pre-
diction horizon N . The set-points for the future sampling instant k + p, known at the
current sampling instant k, are denoted by yspn (k + p|k), where the index n indicates
the output number. Similarly, the predicted values of the process outputs for the fu-
ture sampling instant k+p, determined at the current sampling instant k, are denoted
by ŷn(k+p|k). The role of the second part of the cost-function, i. e., the penalty term, is
to minimize unwanted large changes of the manipulated variables over the so-called
control horizon Nu.

As far as the MPC optimization carried out at each sampling instant k is con-
cerned, the cost-function J(k) is minimized subject to some constraints. Typically, the
constraints are imposed on the magnitude and the rate of change of the manipulated
variables. Additionally, in some applications, it is beneficial to impose constraints put
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on predicted values of the output variables. All things considered, the typical MPC op-
timization problem is

min
△u(k)
{J(k)}

subject to (1.2)

umin
n ≤ un(k + p|k) ≤ u

max
n , n = 1, . . . , nu, p = 0, . . . ,Nu − 1

△ umin
n ≤ △un(k + p|k) ≤ △u

max
n , n = 1, . . . , nu, p = 0, . . . ,Nu − 1

ymin
n ≤ ŷn(k + p|k) ≤ y

max
n , n = 1, . . . , ny, p = 1, . . . ,N ,

where umin
n and umax

n define the constraints imposed on the magnitude of the ma-
nipulated variables, respectively; △umin

n and △umax
n specify the limitations related to

changes of the manipulated variables; ymin
n , and ymax

n defines the constraints put on
the predicted values of the controlled variables. The decision vector,△u(k), is defined
as increments of the manipulated variables over the control horizon, which means
that the actual number of computed decision variables is nuNu. Although in MPC at
each sampling instant the whole decision vector △u(k) is found as a result of online
optimization, only its first nu elements, i. e., the increments for the current sampling
instant k, are actually applied to the process. In the consecutive sampling instants,
the entire prediction and optimization procedure is repeated.

Let us briefly mention two essential advantages of MPC. First, due to problem for-
mulation, i. e., the calculation of the control policy fromanoptimization task, it is pos-
sible to control multivariable processes with numerous manipulated and controlled
variables. Interestingly, the numbers of process inputs and outputs may be different.
Let us mention that such processes are always difficult to handle when a set of single-
loop PI or PID controllers are used. Secondly, it is very easy to enforce satisfaction
of constraints in MPC since they are simply parts of the optimization task solved at
each sampling instant. Although simple limiters may be used in the case of the clas-
sical PI and PID structures, satisfaction of some constraints imposed on the predicted
variables is not possible. As a result of their advantages, MPC algorithms have been
applied to many processes. Typically, MPCmethods have been used in industrial con-
trol; example applications are chemical reactors [57] and distillation columns [42]. In
addition to that, due to the availability of fast hardware platforms,MPC algorithms are
more and more popular in embedded control systems; example applications are fuel
cells [53], combustion engines [46], robots [39], electromagnetic mills [62], electrome-
chanical systems [95] and servomotors [36].

On the one hand, in general, MPC algorithms have numerous advantages over the
classical PI/PID structures and a great potential. On the other hand, it is necessary to
emphasize the difficulties of control performance assessment of MPC-based control
systems. The reasons for that are the following:
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1. In the case of the PI and PID controllers, we have only two or three tuning param-
eters, respectively. Conversely, inMPC, we havemanymore parameters that affect
the control quality:
– the prediction horizon N,
– the control horizon Nu,
– the weighting coefficients ψp,n ≥ 0 that prioritize the predicted control errors

of the consecutive controlled variables, n = 1, . . . , ny, and for the consecutive
sampling instant over the prediction horizon, p = 1, . . . ,N,

– the weighting coefficients λp,n > 0 that prioritize the future increments of the
consecutivemanipulated variables,n = 1, . . . , nu, and for the consecutive sam-
pling instant over the control horizon, p = 0, . . . ,Nu − 1.

2. Let us recall that the dynamical model of the controlled process has a funda-
mental role in MPC since it is used for prediction. MPC algorithms are likely to
work successfully, and in many difficult cases they are able to achieve much bet-
ter control performance than the classical PI/PID-based control structures, but
the model utilized for prediction must be precise. Unfortunately, when the model
is only a rough approximation of the process, the predictions computed from the
model and the real values of the process state and/or output variables differ signif-
icantly. As a result, MPC algorithms may produce poor control quality. Of course,
all MPC algorithms have a negative feedback mechanism and the integral action
that compensate for model inaccuracies and external process disturbances. Typ-
ically, when the model–process mismatch is not significant, no steady-state error
is obtained. Unfortunately, when the model–process mismatch is huge, the pre-
dictions are wrong, and the values of the manipulated variables calculated using
such erroneous predictions do not yield good control quality.

3. The process–modelmismatchmay be observed not only when themodel is wrong
but alsowhen the nonlinearmodel is successively linearized online to formulate a
simple-to-solve quadratic optimisation task rather than a complex nonlinear one
[52].

4. The optimization procedure must compute a new vector of decision variables at
each sampling instant online. Therefore, any weakness of the optimization pro-
cess, e. g., too early termination resulting froma short sampling instant and a slow
hardware platform, results in a deterioration of control quality.

All things considered, the control quality possible in MPC-based control system is in-
fluenced by many factors: the horizons, the tuning coefficients, the model accuracy
and the effectiveness of the optimization procedure. There are manymore parameters
than in the case of PI/PID-based control systems.

In addition to typically used control-performance indicators, such as the sum
of squared errors, overshoot and setting time, for control performance assessment
of MPC-based control systems, more sophisticated indices, including fractal and en-
tropy measures [17], are recommended. This is because they can better measure the
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controller’s performance, in particular, when the control errors have a non-Gaussian
nature and outliers are present. The effectiveness of fractal and entropy control-
performance assessment methods is discussed in [23, 24, 26] (for MPC algorithms
based on linear models) and in [25, 27] (for nonlinear MPC algorithms based on non-
linear models). A review of control performance assessment methods for MPC is given
in [18]. It must be stressed that analysis of poor control performance is much more
difficult than in the case of PI/PID-based control systems. It is also necessary to point
out that quite frequently it is impossible to determine exactly the reason for the unsat-
isfactory control quality because different reasons may give very similar results. Let
us give two simple examples. First, when control is too slow, the reasons may be the
following:
– too short or too long horizons,
– too low coefficients ψp,n or too large coefficients λp,n,
– model errors, typically its static gain is much greater than the gain of the process

or the model delay is too long.

Second, when control is too fast, whichmeans large changes of the manipulated vari-
ables, the reasons may be the following:
– too short or too long horizons,
– too low coefficients λp,n in comparison with the coefficients ψp,n,
– model errors, typically its static gain is much lower than the gain of the process

or the model delay is too short.

The recommendedprocedure to properly tune theMPCalgorithm is to verify themodel
first. In particular, since typical processes are in some regions of operation nonlin-
ear, the model must be validated for different operating points and different scenar-
ios of disturbances. Next, the adequate lengths of the prediction and control horizons
must be adjusted, taking into account the speed of the process dynamics and the sam-
pling time used. Finally, the tuning coefficients are tuned. Although, for simplicity, in
manyapplications, the same coefficientsψp,n over thewhole predictionhorizon are as-
sumed, it is beneficial to consider a more sophisticated approach as discussed in [60].
Although tuning takes some time, it is not recommended to use equal coefficientsψp,n.
Similarly, it is discouraged to use the same weights λp,n.

MPC, as an algorithm that ismore complex than commonPID control law, enables
achieving very high system performance. On the other hand, we must not forget that
exorbitant controller tuning and efficiency is vulnerable to the situations that have
not been taken into account during the design and tuning phase. Usually, MPC sacri-
fices robustness at the expense of high performance. And this is where the door opens
for the analysis of outliers, their impact, and of the associated risk. It is not an art to
come up with a cutting-edge control algorithm that achieves sensational quality in a
given specific situation. The trick is to come up with a control law that improves ef-
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ficiency regardless of changing or even previously unforeseen (unknown unknowns)
operating conditions. Outliers may help in that regard.

1.6 Conclusions, what’s next and beyond

The key message from this chapter is clear: outliers exist and matter. In control- engi-
neering practice, we should be aware of, and informed about, outliers. In particular,
we have explicitly pointed out the connection between outliers and fractional calcu-
lus, thus the title of this edited volume. In the following chapters, this theme will un-
fold with interesting new results and insights.

Looking towards the future, we believe in the Big Data era.While Big Data genera-
tors are usually complexdynamic systems, it is inevitable to characterize the “variabil-
ities” hidden in the big data and thus, frequently, wewill meet the heavy-tailedness or
inverse power law (IPL) in a certain sense. So, we wish to make the community aware
that tail information in the outliers, due to complex stochasticity, may be the key en-
abling insight towards better data analytics for BigData. Therefore, fractional calculus
should go hand-in-hand with statistical analysis in the analysis of the outliers.

Outliers are neither anything artificial nor alien. They simply surroundus. Closing
our eyes will not make them disappear. We should not be afraid of outliers, deleting
them in panic. They often carry very important information that ought to be used be-
cause it informs us about complexity and richness of the surrounding environment.

From a control-systems point of view, however, it remains unclear in control-
engineering practice that, when a system is driven by a fractional order noise, what is
the best tail-index matched feedback control law to optimally mitigate the fractional
noises. Some initial attempt in this regard can be found in [89, 90]. Themore complex
the control law (APC, MPC, optimization-based, etc.), the greater the importance of
outliers. Future opportunities to harness the knowledge of outliers are only limited by
our imagination, which could range from human–automation interaction to health-
aware smart control systems, from attack awareness and attack resilience to cognitive
prognostics, etc. We should point out that outliers could also be beneficially utilized,
for example, to enhance system identifiability, more optimal search, more optimal
learning, etc. See [61].
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Stefan Domek
2 On the possibilities of using fractional-order
differential calculus in linear and nonlinear
model predictive control

Abstract: Biological, sociocognitive and economic phenomena, as well as transport,
information and technological systems, often need to be described by means of non-
linear, non-integer order differential equations. As a consequence, control systems
should often also realize nonlinear and non-integer order control algorithms. In this
paper a basic methods of differential calculus and methods for its use to model com-
plex processes are reviewed. The chapter presents developing methods of linear
Model Predictive Control (MPC) with an internal fractional-order process model and
a fractional-order cost function (FO MPC). Further, the concepts of three subopti-
mal nonlinear MPC (NMPC) methods for nonlinear, non-integer order systems are
described. In the first fractional-order NMPC method, the linearized fractional-order
model of the process is used. In the second method the fractional-order model is suc-
cessively linearized online and used only for optimization, but the prediction is made
with a nonlinear model. In the third a linear approximation along the future process
trajectory is also used. In all cases, as a result of linearization, the future control policy
is calculated by means of quadratic optimization. The proposed FO NMPC algorithms
offer an additional degree of freedom in tuning a control loop for higher efficiency. In
the paper the discussion is illustrated with results from some numerical experiments.

Keywords: fractional-order differential calculus, fractional-order dynamic models,
model predictive control, fractional-order nonlinear model predictive control

2.1 Introduction

The idea of MPC, which was put forward several dozen years ago and has been in-
tensely developed since then, is considered to be, after many years of operating expe-
rience in industry, one of the most universally used and effective control methods. In
MPC the future control actions u(t + j|t) are to be found at each instant t ∈ ℤ+ within
the control horizon from j = 0 to j = Nu − 1 to minimize the differences between the
reference values yr(t+j|t) and the predicted values yp(t+j|t)within the prediction hori-
zon from j = N1 to j = N2. The optimal control sequence is computed in the open loop
modewith the use of the plantmodel. Only the first value of the computed sequence is
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fed as the input into the real plant, and the whole procedure is repeated at the follow-
ing discrete time instants (receding horizon principle) [2, 16, 29]. MPC can handle in a
natural way multivariable systems, and, moreover, it can take into account explicitly
various signals constraints and various kinds of disturbances. However, especially in
the case of processes with particularly complex properties, its effectiveness depends
on the accuracy of the process model that is utilized directly to compute the manipu-
lated variable [8, 18, 30, 31]. The use of nonlinear models is an effective and natural
modeling method, but unfortunately in MPC this leads to a very complex nonlinear
optimization problem that must be solved at each sampling step [13, 22, 29]. One of
themethods tomitigate the numerical complexity of a nonlinear MPC algorithm is the
use of methods with nonlinear trajectory prediction and cyclic model linearization for
the needs of ongoing optimization. There are several ways to accomplish this general
principle of simplifying the implementation of nonlinear predictive control, but the
most advanced methods seems to be that labeled with the acronyms NPL (Nonlinear
Prediction of the free response component withmodel Linearization for optimization)
and NPLPT (Nonlinear Prediction and Linearization along the Predicted Trajectory)
[4, 13, 14, 29].

From the opposing perspective, it has been known for several years that the ac-
tual properties of many complex phenomena and nonlinear industrial processes can
be effectively modeled using fractional-order differential calculus [10, 11, 19, 26]. The
theory of fractional-order systems (FOS) has been intensively developing over recent
decades [11, 12, 19–21, 28]. In automation and robotics, as in the case of integer-order
models, the description by means of fractional-order models can be used indirectly
for tuning or directly for synthesis of linear control algorithms [3, 24, 25, 27]. In the
second case, fractional-order differential calculus has been applied to control theory,
which, in its turn, should contribute to the development of new control algorithms
significantly different from the well-known integer-order algorithms, and thus, by im-
plication, provide potentially new opportunities for control performance and robust-
ness [32]. Allowing integration/differentiation of arbitrary orders in classic control al-
gorithms results in increasing the number of degrees of freedom in control-parameter
tuning, and thus creates new potentialities for control performance and robustness.
Excellent examples here are the CRONE algorithm [20] and fractional-order digital
PIλDμ algorithm [21], already regarded as standard, but also the fractional-order it-
erative learning control, linear-quadratic control, model reference adaptive control,
dead-beat control and slidingmode control, which have been proposed in subsequent
years [1, 15, 17]. New possibilities can also naturally create the fractional-order model
predictive control (FO MPC) methods [6, 24].

As is well known, to determine the manipulated variable in MPC, three elements
need to be defined—the reference trajectory, the plant model and the cost function.
In analyzing the possibility and the sense of the use of the fractional-order differen-
tial calculus in predictive control, one can readily see that the reference trajectory is
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not dependent on whether the algorithm of integer or fractional order is considered.
However, fractional-order differential calculusmay be applied both to plantmodel se-
lection and to defining the cost function. Thus, taking this circumstance into account
at the stage of synthesizing the MPC system may increase naturally the applicability
of the controller, which can be regarded as a fractional-order model predictive con-
troller in such a case. A possibility to include the concept of a fractional-order perfor-
mance index into the FO MPC algorithm was proposed in [23]. The multiple employ-
ing of the fractional-order differential calculus in FO MPC, first as a fractional-order
performance index and second one as an internal fractional-order model of the con-
trolled process, was proposed in [7]. The proposition provides potentially new oppor-
tunities for control performance and robustness in the case of fractional-order linear
processes. However, if controlled fractional-order process is nonlinear, a direct use in
FO MPC of a nonlinear model leads to a nontrivial, time-consuming, nonlinear opti-
mization problem, which must be solved on-line. Thus, special fractional-order non-
linear model predictive control (FO NMPC) methods are required.

One of the methods to overcome these difficulties consists of replacing a com-
plex nonlinearmodel by a set of local linear submodels valid for small regions around
various operating points. The idea of this approach boils down to switching over ac-
tive models in time so that the generalized modeling error does not exceed specified
bounds (e. g., in terms of a chosen norm) and to obtain a reduction in the computa-
tional complexity of the description at the same time. By this means a nonlinear time-
invariant process (NLTI) can be treated as a linear time-variant (LTV) one. Instanta-
neous properties of the modeled nonlinear process are described then by a quasilin-
ear switched model, composed of a set of local linear submodels. Selected discrete-
time switched models of non-integer order in the state space are defined, their basic
properties are discussed and examples of simulation results are given in [5, 12]. In [4]
employment of discrete-time switched models of non-integer order for the synthesis
of FONMPC algorithms has been proposed. The introduced nonlinear fractional-order
predictive control methods are based on integer-order MPC NPL and MPC NPLPT and
simplifying the implementation of FO NMPC because the future control policy is cal-
culated by means of well-known quadratic optimization [9, 13, 14, 29].

The chapter is structured as follows: in Section 2.2 the basics of fractional-order
differential and difference calculus are reviewed; in Section 2.3 linear and nonlin-
ear dynamic state-space models of non-integer order based on them is described; in
Section 2.4 a synthesis of linear fractional-order MPC with multiple employment of
fractional-order differential calculus is presented. Also, the effects of various orders
of performance index and various model–plant mismatches results are recalled from
[8]; Finally, in Section 2.5 the concepts of three FO NMPC methods are described; The
entire chapter content is summarized in the conclusions section.
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2.2 Basics of fractional-order differential and
difference calculus

Differential calculus of non-integer order is a generalization of the classic differen-
tial calculus. For a derivative of non-integer order α ∈ ℝ of a real-valued function
f (t), t ∈ ℝ on the interval [t0, t], denoted by the operator t0D

α
t f (t) =

dαf (t)
dtα , there exist

manydefinitions proposed by various researchers, for example, byRiemannandLiou-
ville, Caputo,Weyl, Fourier, Cauchy and Abel. The definitions differ in their properties
and/or area of applicability [12, 19, 21]. In practical applications, especially in digital
control systems where discrete values of the function f (t) taken with the sampling in-
terval h are used in a natural way for computations, the most commonly encountered
is the definition introduced by Grünwald and Letnikov [19]:

A derivative of order α ∈ ℝ of the function f (t), t ∈ ℝ, according to Grünwald and
Letnikov, is given by

GL
t0 D

α
t f (t) = limh→0

h−α
⌊ t−t0h ⌋

∑
j=0

cαj f (t − jh), (2.1)

where the symbol ⌊⋅⌋ denotes the integer part, cαj = (−1)
j(αj) and the so-called general-

ized Newton symbol is defined by

(
α
j
) = {

1 for j = 0,
α(α−1)⋅⋅⋅(α−j+1)

j! for j = 1, 2, 3, . . . .
(2.2)

Remark. It follows from the definition of the generalized derivative that t0D
0
t f (t) = f (t)

and the fractional order derivative of the function f (t) for α < 0 is an integral of the
order −α frequently symbolized by the operator t0 I

−α
t f (t).

For discrete-time functions f (t) the difference calculus of non-integer order is the
counterpart of the differential calculus of non-integer order. Taking for simplicity the
normalized sampling period h = 1, by analogy with (2.1), the following discrete differ-
ence of fractional order α ∈ ℝ of the function f (t), t ∈ ℤ can be formulated [12]:

t0Δ
α
t f (t) =

t−t0
∑
j=0

cαj f (t − j), (2.3)

with t0 = 0 being most commonly adopted. If so, (2.3) takes a simpler form

Δαf (t) =
t
∑
j=0

cαj f (t − j). (2.4)
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2.3 Discrete-time dynamic state-space models of
non-integer order

A fractional-order generalized model of a discrete-time nonlinear process may be de-
fined in the state space as [9]

Δϒx(t + 1) = f (x(t), u(t)) + v(t + 1), (2.5)

y(t) = g(x(t)) + d(t), (2.6)

where

Δϒx(t) = [Δα1x1(t) ⋅ ⋅ ⋅ Δαnxn(t)] =
t
∑
i=0
(−1)iϒix(t − i), (2.7)

ϒi = diag [(α1i ) ⋅ ⋅ ⋅ (
αn
i )] ∈ ℝ

n×n (2.8)

is the generalized backward difference of the state vector x(t) ∈ ℝn with different or-
ders for individual state variables ϒ = {α1, α2, . . . , αn}, while u(t) ∈ ℝm, y(t) ∈ ℝp denote
the input and output vectors and v(t) ∈ ℝn, d(t) ∈ ℝp are the state and output distur-
bance vectors, respectively.

The model (2.5) can be rewritten in the following form:

x(t + 1) = f (x(t), u(t)) −
t+1
∑
i=1
(−1)iϒix(t + 1 − i) + v(t + 1). (2.9)

Note that the unknown vector v(t)may be assessed as the difference between themea-
sured or estimated state at the current and previous sampling instants 0, 1, 2, . . . , t and
the state calculated from the state equation (2.9) for the sampling instant t at the sam-
pling instant t − 1 :

v(t|t) = x(t) +
t
∑
i=1
(−1)iϒix(t − i) − f (x(t − 1), u(t − 1)). (2.10)

The unmeasured output disturbance vector can be calculated just as the differ-
ence between the measured output at the current sampling instants and the state cal-
culated from the output equation (2.6) for the sampling instant t:

d(t|t) = y(t) − g(f (x(t − 1), u(t − 1)) + v(t)). (2.11)

Assuming that the functions f and g in (2.5) and (2.6) are differentiable, the non-
integer order linearized model at the current operating point of a nonlinear process
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may be given in the state space using the Taylor series expansion method as:

x(t + 1) = Ax(t) + Bu(t) −
t+1
∑
i=1
(−1)iϒix(t + 1 − i) + v(t + 1), (2.12)

y(t) = Cx(t) + d(t), (2.13)

where the complemented state matrix A ∈ ℝn×n, input matrix B ∈ ℝn×m and output
matrix C ∈ ℝp×n are the corresponding derivatives of functions f (x, u) and g(x) at the
current operating point of a nonlinear process. For such a linearized model, the con-
secutive predictions of the state vectors can be calculated from the following formula
[4, 12]:

xp(t + j|t) = Φϒ(j)x(t) +
j−1
∑
i=0

Φϒ(j − i − 1)Bu(t + i) + v(t + j|t), (2.14)

where the matrix Φϒ(j) is determined by the recurrence relation

Φϒ(j + 1) = Φϒ(j)(A + ϒ1) +
j+1
∑
i=2
(−1)i+1ϒiΦ

ϒ(j − i + 1), Φϒ(0) = In. (2.15)

For the non-integer order linearized model (2.12), (2.13) the unknown state distur-
bance vector may be assessed as:

v(t|t) = x(t) − Ax(t − 1) − Bu(t − 1) +
t
∑
i=1
(−1)iϒix(t − i). (2.16)

Similarly, the unmeasured output disturbance vector d(t) can be calculated just as
the difference between the measured output at the current sampling instant and the
output predicted for the sampling instant t at the sampling instant t − 1 :

d(t|t) = y(t) − Cxp(t|t − 1). (2.17)

In practical applications of models (2.12), (2.13) it is not possible to take for nu-
merical calculations the state vector x(t + 1 − i) samples, the number of which grows
rapidly with increasing discrete time t. One of the methods to cope with the problem
is to adopt a finite-length memory in which the instantaneous values of the state vec-
tor are stored. Such an approach, taken from the theory of digital filters with a finite
impulse response, leads to the so-called finite fractional differences (FFD) [4, 28]. In
view of this, the discrete difference of fractional order α ∈ ℝ of the state vector x(t),
t ∈ Z (2.4) takes the form:

Δαx(t + 1) =
L
∑
i=0

cαi x(t + 1 − i), (2.18)
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where L is the adopted memory length. However, in the process of calculations, it
should be taken into account that the upper limit of summation must be reduced to
the value of t + 1, until enough samples are accumulated. A similar shortening applies
to the sum in the generalized models (2.5)–(2.8) [6, 12].

2.4 Linear fractional-order MPC with multiple uses
of the fractional-order differential calculus

In the predictive control algorithm of integer order, the cost function depends on the
sum of the weighted squared prediction errors over the prediction horizon and on the
sumof theweighted squared control signal increments to be sought within the control
horizon

J(t) =
N2

∑
j=N1

μ(j)[ep(t + j|t)]2 +
Nu−1
∑
j=0

λ(j)[Δu(t + j|t)]2, (2.19)

with Δu(t + j|t) = 0 for j ≥ Nu, and

ep(t + j|t) = yr(t + j|t) − yp(t + j|t). (2.20)

In [23] it was proposed to introduce a formal generalization of integer-order sums
in the cost function (2.19) as those of the fractional order

J(t) = t+N1
Iβ1t+N2
[ep(t)]2 + λtI

β2
t+Nu−1
[Δu(t)]2, (2.21)

where β1, β2 ∈ ℝ+ are fractional orders of integration (summation) applied to squared
prediction errors and squared control increments, respectively. By thismeans the prin-
ciples of a fractional-order discrete predictive algorithm have been defined by adding
fractional orders β1, β2 as two new tuning parameters, in addition to those typical
ones, namely, the ranges of the prediction horizonN1,N2 and the length of the control
horizonNu. On the other hand, it was proposed in [4] to consider the fractional nature
of the controlled plant at the synthesizing stage. In the case of predictive control, this
is particularly justified because the model of the controlled plant is utilized here di-
rectly to compute the manipulated variable. Hence, the effectiveness of the predictive
control largely depends on towhat extent the employedmodelmatches the controlled
plant. In the case of difficult plants exhibiting properties that can be modeled well by
models of fractional order, taking this circumstance into account at the synthesizing
stage increases naturally the applicability of the controller [6, 8].

Consider a more general case of the fractional-order cost function (2.21) with
weighting coefficients μ(j) and λ(j) as in (2.19).
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In such a case the cost function (2.21) may be rewritten in vector-matrix form [7]
as

J(t) = [Ep(t)↔]
T diag[M← M→][E

p(t)↔]

+ [ΔU(t)↔]
T diag[Λ← Λ→][ΔU(t)↔], (2.22)

where

Ep(t)↔ = [
Ep(t)←
Ep(t)→
] =

[[[[[[[[[[[[[[[[[[[[[[

[

...
ep(t − 1)
ep(t)

ep(t + 1|t)
...

ep(t + N1 − 1|t)
ep(t + N1|t)

ep(t + N1 + 1|t)
...

ep(t + N2|t)

]]]]]]]]]]]]]]]]]]]]]]

]

∈ ℝ∞, (2.23)

ΔU(t)↔ = [
ΔU(t)←
ΔU(t)→
] =

[[[[[[[[[[[

[

...
Δu(t − 1)
Δu(t|t)

Δu(t + 1|t)
...

Δu(t + Nu − 1|t)

]]]]]]]]]]]

]

∈ ℝ∞. (2.24)

Vectors ΔU(t)← and ΔU(t)→ denote the past and the unknown future increments
of themanipulated variable, respectively. Similarly,Yp(t)← denotes the past plant out-
put values, and vectors Yp(t)→, Y r(t)→ stand for future values of the natural response
of the model and those of the reference trajectory, respectively.

The weighting matrices are defined by [4, 23]:

diag [M← M→] = diag [⋅ ⋅ ⋅ wμ(−1) wμ(0) ⋅ ⋅ ⋅ wμ(N1) ⋅ ⋅ ⋅ wμ(N2)] , (2.25)

diag [Λ← Λ→] = diag [⋅ ⋅ ⋅ wλ(−1) wλ(0) wλ(1) ⋅ ⋅ ⋅ wλ(Nu − 1)] (2.26)

and

wμ(j) =
{
{
{

c−β1N2−j
− c−β1N1−j

for j < N1,

μ(j)c−β1N2−j
for N1 ≤ j ≤ N2,

(2.27)
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wλ(j) =
{
{
{

c−β2Nu−1−j
− c−β2−j for j < 0,

λ(j)c−β2Nu−1−j
for 0 ≤ j ≤ Nu − 1.

(2.28)

According to (2.20) the future prediction error can be written in the form

Ep(t)→ = Y
r(t)→ − Y

p(t)→ =
[[[

[

yr(t + N1|t)
...

yr(t + N2|t)

]]]

]

−
[[[

[

yp(t + N1|t)
...

yp(t + N2|t)

]]]

]

, (2.29)

assuming that in linear systems the output prediction is composed as a sum of two
components—the prediction of the forced response yc(t), which depends only on the
future control moves, and of the natural process response y0(t) resulting from equa-
tion (2.14) that takes into account only the past:

Yp(t)→ = Y
c(t)→ + Y

0(t)→ =
[[[

[

yc(t + N1|t)
...

yc(t + N2|t)

]]]

]

+
[[[

[

y0(t + N1|t)
...

y0(t + N2|t)

]]]

]

. (2.30)

To predict the natural process response vector in (2.31), the approach known from
the DMC algorithm [2, 16] is adopted, i. e., constant disturbances (2.16) and (2.17) in
the prediction horizon are assumed:

V(t)→ =
[[[[[

[

v(t|t)
v(t|t)
...

v(t|t)

]]]]]

]

, (2.31)

D(t)→ =
[[[[[

[

d(t|t)
d(t|t)
...

d(t|t)

]]]]]

]

. (2.32)

In view of equations (2.14), (2.15) and (2.30), the output prediction vector assumes the
following form:

Yp(t)→ = EYΔU(t)→ + Y
0(t)→, (2.33)

with a output dynamic matrix of the model

EY = diag[C, . . . ,C] ⋅ EX (2.34)
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and a state dynamic matrix

EX =

[[[[[[[[[[[[

[

∑N1−1
i=0 Φϒ(i)B ⋅ ⋅ ⋅ 0n×m ⋅ ⋅ ⋅ 0n×m
∑N1
i=0Φ

ϒ(i)B ⋅ ⋅ ⋅ B ⋅ ⋅ ⋅ 0n×m
...

. . . . . . . . .
...

∑Nu−1
i=0 Φϒ(i)B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (A + ϒ1)B B

...
...

...
...

∑N2−1
i=0 Φϒ(i)B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∑N2−Nu

i=0 Φϒ(i)B

]]]]]]]]]]]]

]

. (2.35)

Thus, the minimum of the cost function (2.22) with respect to the control increment
ΔU→(t) in the future (within the control horizon) can be found as [4]:

ΔUopt→(t) = (EY
TM→EY + Λ→)

−1EY
TM→[Y

r(t)→ − Y
0(t)→]

= K→[Y
r(t)→ − Y

0(t)→]. (2.36)

It is pertinent to note that the proposed fractional-order predictive algorithm can
be naturally and easily extended to the casewith constraints imposed on process vari-
ables. In such a case, taking into account (2.22)–(2.32), the general FO MPC optimiza-
tion problem takes the form [9, 16]:

min
ΔU(t)→
Emin(t)→
Emax(t)→

J(t) = {󵄩󵄩󵄩󵄩Y
r(t)→ − Y

p(t)→
󵄩󵄩󵄩󵄩
2
M→ +
󵄩󵄩󵄩󵄩ΔU(t)→

󵄩󵄩󵄩󵄩
2
Λ→

+ ρmin󵄩󵄩󵄩󵄩E
min(t)→
󵄩󵄩󵄩󵄩
2
+ ρmax󵄩󵄩󵄩󵄩E

max(t)→
󵄩󵄩󵄩󵄩
2
}, (2.37)

where ‖V‖2W = V
TWV denotes the vector V norm with weighting matrixW ≥ 0, with

rigid constraints imposed on amplitudes of the manipulated variable and its incre-
ments

umin ≤ u(t + j|t) ≤ umax, j = 0, 1, . . . ,Nu − 1, (2.38)

Δumin ≤ Δu(t + j|t) ≤ Δumax, j = 0, 1, 2, . . . ,Nu − 1, (2.39)

and soft constraints on process outputs, as well as

ymin − εmin(t + j|t) ≤ yp(t + j|t) ≤ ymax + εmax(t + j|t), j = N1, . . . ,N2. (2.40)

The vectors

Emin(t)→ =
[[[

[

εmin(t + N1|t)
...

εmin(t + N2|t)

]]]

]

,
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Emax(t)→ =
[[[

[

εmax(t + N1|t)
...

εmax(t + N2|t)

]]]

]

(2.41)

denote additional decision variables that determine the degree of constraint easing
in the case that restrictions (2.38)–(2.40) must be violated to solve the optimization
problem. In practical applications of MPC, the matrices and weighting coefficients in
the cost function (2.37) usually take the following values: M→ = I(N2−N1+1)⋅p or M→ =
0(N2−N1+1)⋅p, Λ→ = λ ⋅ INu ⋅m, λ > 0, ρ

min, ρmax > 0.
Solution (2.36) resembles the solution for predictive control of integer order in its

structure and clearly shows the dual use of fractional differential calculus in FOMPC:
1. In the integer-order predictive controller, the non-negative weighting coefficients

μ(j), λ(j) are chosen by the designer. In the fractional-order predictive controller,
the values of weighting matrices M→, Λ→ depend only partly on μ(j), λ(j) and
more, as canbe seen in (2.27), (2.28) on fractional orders β1, β2. Thus, the fractional
orders of discrete summation β1, β2 offer the controller designer new possibilities,
but at the same time complicate the tuning of FO MPC;

2. The effectiveness of predictive control largely depends on the extent to which the
employed model matches the controlled plant since the model is used directly in
(2.33) the computation of the control signal. If the plant is of non-integer order,
using an internal fractional-order model with α1, α2, . . . , αn other than ones, can
in a natural way improve the control quality.

Remark. For fractional orders β1, β2 and α1, α2, . . . , αn equal to one, the equation (2.36)
is reduced to the formula known for integer-order predictive control.

Example 2.4.1. FO MPC control of the integer-order plant with various fractional or-
ders of summation β1 and β2 in the cost function.

Let us consider a non-integer order linear plant (2.12), (2.13) with

A = [[
[

0.9744 −1.976 ⋅ 10−4 −4.113 ⋅ 10−7

0.9872 0.9999 −2.065 ⋅ 10−7

0.4957 1 1

]]

]

, B = [[
[

0.9872
0.4957
0.1656

]]

]

,

C = [0 0 4.167 ⋅ 10−7] , D = 0,

α1 = α2 = α3 = 0.9.

(2.42)

For the set-point tracking, the FOMPC controller (2.36) with the following parameters
have been used: N1 = 1, N2 = 100, Nu = 8, μi = 1 λi = 0.1 L = 2000, β1 ∈ {0.6, 1.0, 1.3},
β2 ∈ {0.6, 1.0, 1.3}.
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Figure 2.1 shows step responses in the control system with a selected plant for all
tested values β1 and β2.

Figure 2.1: Step responses in the control system with a selected plant for several values β1 and β2.

Example 2.4.2. The effect of the plant–model mismatch on the fractional orders ex-
hibited by the plant αi and the model αMi.

Let us consider a non-integer order linear plant (2.12), (2.13) with

A = [[
[

2.7756 −1.2876 0.7985
2 0 0
0 0.5 0

]]

]

, B = [[
[

0.0313
0
0

]]

]

,

C = [1 0 0] , D = 0,

(2.43)

with various combinations of the fractional orders of the plant and the model:

α1 = α2 = α3 = α ∈ {0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20}. (2.44)
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For the set-point tracking the FO MPC controller (2.36) with the following parameters
have been used: N1 = 1, N2 = 10, Nu = 2, μi = 0.1 for i = 1, 2, . . . , 10, λi = 1 for i = 1, 2,
L = 2000, β1 = β2 = 1.

Figure 2.2 shows examples of step responses in the control systemwith a selected
plant for several values Δα, and Fig. 2.3 gives IAE values for the same cases.

Figure 2.2: Step responses in the control system with a selected plant for several values Δα.

Figure 2.3: IAE indices in the control system with a selected plant for several values Δα.
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2.5 Nonlinear suboptimal fractional-order MPC

Asmentioned inprevious sections, the idea ofmodel predictive controls is general and
true also for nonlinear, aswell as fractional-order, processes. Unfortunately, the direct
use of the nonlinear model (2.5)–(2.8) in a cost function (2.19) in FO NMPC leads to a
nontrivial, time-consuming, nonlinear, and also potentially non-convex optimization
problem that must be solved successively in real-time. Although, the NMPCmethod is
the most accurate and theoretically the most valid, the computational complexity of
nonlinear optimization is usually too high for today’s available automation hardware
platforms [13]. One of the methods to overcome these difficulties, mentioned earlier,
consists of replacing a complex nonlinear fractional-ordermodel (2.5)–(2.8) by a set of
S local piecewise linear fractional-order submodelsℳj, j ∈ {1, 2, . . . , S}, valid for small
regions around various operating points [9, 10]:

x(t + 1) = Ajx(t) + Bju(t) −
t+1
∑
i=1
(−1)iϒi,jx(t + 1 − i) + v(t + 1), (2.45)

yj(t) = Cjx(t) + d(t + 1), j ∈ {1, 2, . . . , S}, t ∈ ℤ, (2.46)

ϒi,j = diag [(
α1,j
i ) ⋅ ⋅ ⋅ (

αn,j
i )] , (2.47)

where Aj is the complemented state matrix of the jth local model, ϒi,j are matrices
of its generalized fractional orders and Bj, Cj are input and output local matrices of
the jth submodel. Therefore, according to (2.42), (2.44), instantaneous properties of
the modeled nonlinear process are described then by a quasilinear switched model,
and hence a suboptimal MPC algorithmwith a quadratic optimization problem can be
developed [9].

To select piecewise linear submodelsℳj, the linear space P = U × Y made up of
the input space u(t) ∈ U ⊆ ℝm and the output space y(t) ∈ Y ⊆ ℝp of the nonlinear
process are divided into S convex polyhedrons P1,P2, . . . ,PS , Pj = Uj×Yj ⊂ P, such that

P =
S
⋃
j=1

Pj and Pj ∩Pi,i ̸=j = ⌀ ∀i, j ∈ {1, 2, . . . , S}, (2.48)

defined by the matrices Syj , S
u
j , S

0
j and the following linear matrix inequalities:

Syj y(t) + S
u
j u(t) ≤ S

0
j , j = 1, 2, . . . , S. (2.49)

It is assumed that inside the polyhedron Pj the linear submodel ℳj is the best local
linearization of the nonlinear process (2.5)–(2.8) and that only one submodel can be
active at the same time.
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Remark. For FO NMPC with state-space submodels (2.45)–(2.47), an alternative for-
mulation is possible with the linear space P = U × X made up of the input space
u(t) ∈ U ⊆ ℝm and the state space x(t) ∈ X ⊆ ℝn of the nonlinear process.

Using the concept of switchedmodels, various strategies of suboptimal non-linear
fractional-order model predictive control can be proposed. All of them are based on
the fact that according to (2.33)–(2.35), for switchedmodels the output prediction vec-
tor (2.30) assumes the following form:

Yp(t)→ = EY ,jΔU(t)→ + Y
0(t)→, (2.50)

with a output dynamic matrix of the model

EY ,j =

[[[[[[[[[[[[

[

Cj ∑
N1−1
i=0 Φϒj (i)Bj ⋅ ⋅ ⋅ 0n×m

Cj ∑
N1
i=0Φ

ϒj (i)Bj ⋅ ⋅ ⋅ 0n×m
...

. . .
...

Cj ∑
Nu−1
i=0 Φϒj (i)Bj ⋅ ⋅ ⋅ CjBj

...
. . .

...
Cj ∑

N2−1
i=0 Φϒj (i)Bj ⋅ ⋅ ⋅ Cj ∑

N2−Nu
i=0 Φϒj (i)Bj

]]]]]]]]]]]]

]

. (2.51)

Thus, adopting strategies known from classic integer-order suboptimal NMPC al-
gorithms [4, 14, 29], for fractional-order nonlinearmodel predictive control the follow-
ing suboptimal algorithms can be proposed:
1. with successive linearization for current operating point—FO MPC SL;
2. with nonlinear prediction and linearization for current operating point—FO MPC

NPL;
3. with nonlinear prediction and linearization for current operating point along the

predicted trajectory—FO MPC NPLPT.

In the FO MPC SL algorithm, the dynamic matrix (2.51) in (2.50) is successively de-
termined at each sampling instant according to the actual solution of (2.49). The lin-
earized free trajectory in (2.50) is also computed successively, according to (2.13)–(2.17)
and (2.31), (2.32) [4].

In te FOMPCNPLalgorithm, it is assumed that, as for linear systems,where the su-
perposition principle in (2.33) applies, one can write (2.50), but only the first, forced
response component is calculated from the linearized model in the form of the dy-
namicmatrix (2.51) successively determined as in FOMPC SL. The second component,
including prediction of the free trajectory depending on the past, as well as estimates
of the unmeasured state disturbance and output disturbance vectors, is calculated on
the basis of a more accurate nonlinear model (2.5)–(2.11).

In the FO MPC NPLPT algorithm, the linearization is carried out not only for the
current operating point, as in the FO MPC NPL, but also along the predicted trajec-
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tory, i. e., the quadratic optimization and nonlinear prediction of the free trajectory
and disturbance vectors are repeated few times at each sampling instant [4]. Once
the membership of the input vector u(t − 1) and the output vector y(t) in the polyhe-
dron Pj = Uj × Yj has been established at each sampling instant t on the basis of the
matrix inequality system (2.49), the initial model dynamics matrix E1Y ,j for the whole
prediction horizon and then the initial predicted trajectory Yp(t)1→ and the initial so-
lution ΔU(t)1→ to the quadratic optimization problem (2.37) are determined. Further
search for the optimal solution ΔU(t)i→ is done iteratively with the index i ≥ 2. Based
on Yp(t)i−1→ and ΔU(t)i−1→ , switching sequences for local submodels, according to the
set of matrix inequalities (2.49), are determined by:

ℳi
k,K i

k |j
, k = 1, 2, . . . , Si, j ∈ {1, 2, . . . , S},

1 ≤ K i
k ≤ N2 − N1 + 1,

Si

∑
k=1

K i
k = N2 − N1 + 1,

(2.52)

i. e., the number of models Si ≤ S switched at the ith iteration step, an ordered list of
switched modelsℳi

k from the set of all submodels {ℳ1,ℳ2, . . . ,ℳS} and the length
{K i

1,K
i
2, . . . ,K

i
Si } of the portion of the prediction horizon where these submodels are

active. On this basis, according to (2.51), the dynamics matrix is created at the ith iter-
ation step

EiY =

[[[[[[[[[[[[[

[

EiY ,j|1 ∈ ℝ
K i
1 ⋅n×Nu ⋅m

EiY ,j|2 ∈ ℝ
K i
2 ⋅n×Nu ⋅m

...
EiY ,j|k ∈ ℝ

K i
k ⋅n×Nu ⋅m

...
EiY ,j|Si ∈ ℝ

K i
Si
⋅n×Nu ⋅m

]]]]]]]]]]]]]

]

, (2.53)

and the suboptimal vector of future sequences of increments in the manipulated vari-
able is determined at the current sampling instant ΔU(t)i→. Iterations are carried out
until one of the two conditions that interrupt the iterative search for the suboptimal
vector of future sequences of increments in the manipulated variable at the current
sampling instant t is fulfilled:

󵄩󵄩󵄩󵄩ΔU(t)
i
→ − ΔU(t)

i−1
→
󵄩󵄩󵄩󵄩 ≤ δu
󵄩󵄩󵄩󵄩ΔU(t)

i−1
→
󵄩󵄩󵄩󵄩 or i > δi, (2.54)

which means a small improvement in the sought vector of increments or exceeding
the time limit allotted for iterative searches. The parameters δu, δi are to be chosen
experimentally.
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Figures 2.4, 2.5, and 2.6 show the general principle for computing a manipulated
variable in the mentioned algorithms.

Figure 2.4: Calculation schemes of FO MPC SL and FO MPC NPL algorithms.

2.6 Conclusion

This work discusses the possibilities of using the fractional differential calculus in
model predictive control. It has been known for several years that the actual properties
of many complex phenomena and nonlinear industrial processes can be effectively
modeled using fractional-order differential or difference calculus. This is of particular
importance in the case of control methods that make direct use of the process model,
as in the model predictive control. Similarly, the fractional orders of discrete summa-
tion in the cost function have a pronounced effect on the control signal and offer the
controller designer new possibilities.

The article describes the two-fold use of fractional-order differential calculus in
linear model predictive control. Next, the fractional-order nonlinear model predictive
control algorithms were considered, and three types of suboptimal, computationally
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Figure 2.5: Calculation schemes of the switched FO MPC NPLPT algorithm at the sampling instants.

Figure 2.6: Calculation schemes of the switched FO MPC NPLPT algorithm–iterative part.
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efficient linearized FO NMPC algorithms with precise calculation schemes were pro-
posed.

For the synthesis of proposed algorithms, quasi-linear switched models of non-
integer order were used. On this basis, it is possible to implement the algorithms in
PAC programmable controllers.
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Tyrone E. Duncan and Bozenna Pasik-Duncan
3 Stochastic control systems with long-range
dependent noise

Abstract: The importance and analysis of noise models other than Brownian mo-
tion for stochastic control systems are described. These processes include fractional
Brownian motions, Gauss–Volterra processes and Rosenblatt processes. The first two
are Gaussian processes with long-range dependence and the third comprises non-
Gaussian processes with long-range dependence. Systems with these noise processes
are important for models of many physical systems where Brownian motions have
been shown to be inadequate. An ergodic optimal control for a two- dimensional lin-
ear stochastic systemwith a quadratic cost and a Rosenblatt noise process is explicitly
solved to demonstrate the solvability of some of these models.

Keywords: Gauss–Volterra processes, fractional Brownian motions, Rosenblatt pro-
cesses, linear-quadratic control

3.1 Introduction

Historically, Brownian motions have been used for models of noise in physical sys-
tems primarily because of their mathematical tractability. The most important math-
ematical properties of these processes are that Brownian motions are Gaussian pro-
cesses and martingales. Both of these properties are very useful for the solutions of
control problems. However the appropriateness of Brownian motion models for mod-
eling physical control systems is often difficult or impossible to justify from the phys-
ical data. Domanski [6] has demonstrated this need for other noise models for many
control systems. Furthermore, there are mathematical justifications from the appro-
priateness of non-Gaussian models from non-Central Limit theorems [5].

In this paper some processes are described that are either Gaussian or non-
Gaussian that have a long-range dependence property. They include fractional Brow-
nian motions, Gauss–Volterra processes, and Rosenblatt processes. The Rosenblatt
processes are non-Gaussian processes that have a stochastic calculus that allows for
the formulation and solution of some stochastic control problems that lead to ex-
plicit optimal controls. An ergodic optimal control problem for a two-dimensional
linear system and a quadratic cost functional is explicitly solved to demonstrate the
feasibility of these models for control problems.

Tyrone E. Duncan, Bozenna Pasik-Duncan, Department of Mathematics, University of Kansas,
Lawrence, KS 66045, USA, e-mails: teduncan@ku.edu, bozenna@ku.edu

https://doi.org/10.1515/9783110729122-003

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



48 | T.E. Duncan and B. Pasik-Duncan

3.2 Some noise processes
Initially, some definitions are given to introduce the various noise processes that are
considered to clarify the subsequent discussion and to fix notation. A fractional Brow-
nian motion is considered for the Hurst parameter, H ∈ ( 12 , 1). It is well known that for
H = 1

2 theGaussianprocess is Brownianmotion and forH ∈ ( 12 , 1) theGaussianprocess
is a fractional Brownianmotion that has a long-range dependence,which is evidenced
by the relatively slow decay of the covariance function. For the discussion here of the
noise processes, they are subdivided into two families, Gaussian and non-Gaussian.
The Gaussian processes are obtained from Brownian motions by single singular inte-
grals, i. e., Wiener integrals having singular integrands or kernels. The general family
of these processes are called Gauss–Volterra processes because they are Gaussian pro-
cesses that are defined via Volterra kernels. They include fractional Brownianmotions
with theHurst parameterH ∈ ( 12 , 1) and some other Gaussian processes that have been
specifically investigated in the literature. The Gauss–Volterra processescan be viewed
as a natural generalization of fractional Brownianmotions as they are now described.
The scalar process (b(t), t ≥ 0) is a Gauss–Volterra process with zero mean that can be
described by its covariance function, R, as

R(t, s) = 𝔼[b(t)b(s)] :=
min(t,s)
∫
0

K(t, r)K(s, r)dr, (3.1)

where the kernel K : ℝ2+ → ℝ satisfies the following four conditions:
– (K1) K(t, s) = 0 for s > t, K(0,0) = 0, and K(t, ⋅) ∈ L2(0, t) for each t ∈ ℝ+.
– (K2) For each T > 0 there are positive constants C, β such that

T

∫
0

(K(t, r) − K(s, r))2dr ≤ C|t − s|β, t, s ∈ (0,T]. (3.2)

– (K3)
(i) K = K(t, s) is differentiable in the first variable in {0 < s < t <∞}, both K and𝜕𝜕tK are continuous and K(s+, s) = 0 for each s ∈ [0,∞)
(ii) | 𝜕K𝜕t (t, s)| ≤ cT (t − s)α−1( ts )α
(iii) ∫t0(K(t, u))

2du ≤ cT (t − s)1−2α on the set {0 < s < t < T}, T < ∞, for some
constants cT > 0 and α ∈ (0,

1
2 ).

– (K4) Let α(t) := 𝜕𝜕t (∫t0(𝒦∗t σ)2(r)dr), and assume that α ∈ C(ℝ+), where
(𝒦∗Tσ)(s) := K(s+, s)σ(s) + T

∫
s

σ(r)K(dr, s) (3.3)

and 𝒦∗T is injective.
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It is assumed that there is a real-valued standard Wiener process (W(t), t ≥ 0) such
that

b(t) =
t

∫
0

K(t, r)dW(r), t ∈ ℝ+ (3.4)

(conditions when a Volterra process admits such a representation (3.4) have been ob-
tained, cf. [13]). From (K2) it easily follows by the Kolmogorov sample-path continuity
test that (b(t), t ≥ 0)has a continuousmodification,which is the version that is chosen
for the subsequent discussion here. It is assumed that, for all s ∈ [0,T), T > 0, K(⋅, s)
has bounded variation on the interval (s,T) and

T

∫
0

|K|2((s,T], s)ds <∞, (3.5)

where |K| denotes the variation of K. Three examples of Gauss–Volterra processes sat-
isfying the above conditions are:
(i) A fractional Brownian motion (FBM) with the Hurst parameter H ∈ ( 12 , 1). In this

case

K(t, s) = CHs
1/2−H t

∫
s

(u − s)H−3/2uH−1/2du, s < t

= 0, t ≤ s. (3.6)

The kernel satisfies conditions (K1)–(K3) with α = H − 1
2 .

(ii) The Liouville fractional Brownian motion (LFBM, cf. [2]) for H ∈ ( 12 , 1), in which
case

K(t, s) = CH (t − s)
H− 12 1(0,t](s), t > s, t, s ∈ ℝ+ (3.7)

satisfies (K1)–(K3) with α = H − 1
2 .

(iii) The multifractional Brownian motion (MBM). A simplified version analogous to
LFBM in Example (ii) is considered. The kernel K : ℝ+ × ℝ+ → ℝ+ is defined as

K(t, s) = (t − s)H(t)− 12 1(0,t](s), t, s ∈ ℝ+,
where H : ℝ+ → [ 12 , 1) is the “time-dependent Hurst parameter”.

The other family of processes considered here are called Rosenblatt processes because
M. Rosenblatt [14] was apparently the first one to consider them. Note that they are a
natural generalization of fractional Brownian motions for H ∈ ( 12 , 1) though they are
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non-Gaussian because they are double Wiener integrals. The definition of the Rosen-
blatt processes indicates how one can define other non-Gaussian processes with a
long-range dependence by taking higher-order multiple Wiener integrals with singu-
lar kernels. The Rosenblatt processes are defined as follows.

Let H ∈ (1/2, 1). The Rosenblatt process RH = (RH (t), t ≥ 0) is defined as

RH (t) = C
R
H ∫

ℝ2

(
t

∫
0

hH2 (u, y1, y2)du)dW(y1)dW(y2)

= CRH

s

∫
0

u( H2 − 14 )(y1)I−( H2 − 14 )s− I( H2 − 14 )t− u( H2 − 14 )(y1)
× 1[s,t)(y1)u( H2 − 14 )(y2)I−( H2 − 14 )s− I( H2 − 14 )t−
× u( H2 − 14 )(y2)1[s,t)(y2)du dW(y1)dW(y2),

and the fractional Brownian motion (BH (t), t ≥ 0) is defined as

BH (t) = C
B
H ∫
ℝ

(
t

∫
0

hH1 (u, y)du)dWy , (3.8)

where for (u)+ = max{u,0} (the positive part of u) and hHk is defined as

hHk (u, y) =
k
∏
j=1 (u − yj) Hk −( 1k + 12 )+ . (3.9)

The constants CRH and CBH are chosen so that the secondmoments of RH and BH at t = 1
are 1.

The normalizing constants CBH and CRH in the previous two definitions are given
explicitly as

CBH = √
H(2H − 1)

B(2 − 2H ,H − 1
2 )
, CRH =

√2H(2H − 1),
2B(1 − H , H2 )

where B is the Beta function. For the subsequent Itô-type formula (change of vari-
ables), it is also convenient to define the following constants

cBH = C
B
H Γ(H −

1
2
), cRH = C

R
H Γ(

H
2
)
2
,
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and

cB,RH =
cHR
cBH

2 + 12 = √ (2H − 1)(H + 1)
Γ(1 − H

2 )Γ(
H
2 )

Γ(1 − H)
, (3.10)

where Γ is the Gamma function.
Some approaches to a stochastic integration for Rosenblatt processes are given in

[1, 4, 15, 16]. The following result is a change of variables (Itô formula) for a Rosenblatt
process [4]. Note that in general there is a third derivative term in the result contrary
to the case for Brownian motion.

Proposition 3.2.1. Let y0 ∈ ℝ be a deterministic constant, ϑ ∈ L1(0,T ;𝔻2,2), and define
the process (yt)t≥0 by

yt
Def.
= y0 +

t

∫
0

ϑsds + R
H
t .

Let f be a function in C 3(ℝ+ ×ℝ) such that its second and third partial derivatives in the
second variable are locally bounded. Consider the following three conditions for T > 0,
where𝔻m,n are suitable Malliavin spaces:
1. The process 𝜕f𝜕x (s, ys) belongs to L 1

H (0,T ;𝔻2,2).
2.

(a) It holds that

T

∫
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(∇

H
2
𝜕f
𝜕x
(s, ys))(s)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
1+H

𝔻1,2
ds <∞.

(b) There is a non-negative function p1 that belongs to the space L
2

1+H (0,T) such
that, for almost every s ∈ [0,T], the estimate

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(∇

H
2
𝜕f
𝜕x
(s, ys))(u)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝔻1,2
≤ p1(s)

holds for almost every u ∈ [s,T].
(c) For almost every s ∈ [0,T], the map from ℝ to𝔻1,2 given by

u 󳨃→ (∇
H
2
𝜕f
𝜕x
(s, ys))(u)

is right continuous at the point s.
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3.
(a) It holds that

T

∫
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(∇

H
2 , H2 𝜕f
𝜕x
(s, ys))(s, s)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)ds <∞.
(b) There is a non-negative function p2 that belongs to the space L1(0,T) such that,

for almost every s ∈ [0,T], the estimate

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(∇

H
2 , H2 𝜕f
𝜕x
(s, ys))(u, u)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω) ≤ p2(s)
holds for almost every u ∈ [s,T].

(c) For almost every s ∈ [0,T], the map from ℝ to L2(Ω) given by

u 󳨃→ (∇
H
2 , H2 𝜕f
𝜕x
(s, ys))(u, u)

is right continuous at the point s.

If conditions (1)–(3c) are satisfied for every T > 0, then the process (Yt)t≥0 defined by
Yt = f (t, yt) satisfies the equation

Yt = Y0 +
t

∫
0

ϑ̃sds + 2c
B,R
H

t

∫
0

φ̃sδB
H
2 + 12
s +

t

∫
0

ψ̃sδR
H
s (3.11)

for every t ≥ 0, where

ϑ̃s =
𝜕f
𝜕s
(s, ys) +

𝜕f
𝜕x
(s, ys)ϑs

+ cRH
𝜕2f
𝜕x2
(s, ys)(∇

H
2 , H2 ys)(s, s)

+ cRH
𝜕3f
𝜕x3
(s, ys)[(∇

H
2 ys)(s)]

2
,

φ̃s =
𝜕2f
𝜕x2
(s, ys)(∇

H
2 ys)(s),

ψ̃s =
𝜕f
𝜕x
(s, ys).

A proof of this result is given in [4]. The stochastic integrals given here are Sko-
rokhod integrals so they have expectation zero.

The change of variables formula contains the following two differential operators,

∇
H
2 = I

H
2+ D, (3.12)
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∇
H
2 , H2 = I H

2 , H2+,+ D2, (3.13)

where D is the Malliavin derivative and

Iα+(f (x)) = x

∫−∞ f (u, v)(x − u)α−1du, (3.14)

(Iα1 ,α2+,+ f )(x1, x2)
Def.
=

1
Γ(α1)Γ(α2)

x1

∫−∞
x2

∫−∞ f (u, v)

× (x1 − u)
α1−1(x2 − v)α2−1dudv.

These operators reflect the singular integral definition of a Rosenblatt process.
Similar to the case for Brownianmotion, the previous change of variables formula

is a basic tool for solving problems of control and estimation for models that contain
a Rosenblatt noise process. Unfortunately, some important structure is lost when the
noise is not a Brownian motion, especially the property of martingales. The controls
are assumed to be feedback functions of only the current state. This approach has
also been effective for the solution of control problems with a fractional Brownian
motion for H ∈ ( 12 , 1) [8] and for more general Gaussian noise processes [9]. Some re-
sults are also available for stochastic differential games with general noise processes
[7]. The properties of non-Gaussian and long-range dependence from Rosenblatt pro-
cesses should make them an attractive alternative to Brownian motion or fractional
Brownian motion noise models, especially given the results of Domanski [6].

To indicate the usefulness of the model with Rosenblatt noise for explicit control
solutions, a two-dimensional stochastic control system is described with a quadratic
cost functional. The controlled stochastic systemsatisfies the following linear stochas-
tic equation:

dX(t) = AX(t)dt + BU(t)dt + dRH (t), (3.15)
X(0) = x0, (3.16)

where X(t) ∈ ℝ2, A ∈ ℒ(ℝ2,ℝ2), B ∈ ℒ(ℝ2,ℝ2) is B = I, (RH (t), t ≥ 0) is a standard
two-dimensional Rosenblatt process with parameter H ∈ ( 12 , 1) for both independent
components of the two-dimensional Rosenblatt process. It is noted that more gener-
ally the two noise components can be correlated, and the components can have differ-
ent H values. These extensions are fairly straightforward. All of the random variables
are defined on the complete probability space (Ω,ℱ ,ℙ).

The quadratic cost, JT (U), is

JT (U) = 𝔼
T

∫
0

(⟨QX(t),X(t)⟩ + ⟨RU(t),U(t)⟩)dt, (3.17)
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where Q and R are symmetric and positive definite linear transformations, and T > 0
is initially fixed. The problem that is solved is an ergodic control problem from this
finite-time problem, i. e.,

J∞ = lim sup
T→∞ 1

T
JT . (3.18)

The family of admissible controls,𝒰 , is the collection of constant linear feedbacks
of the state X, i. e.,

𝒰 = {U(t) = KX(t) | K ∈ ℒ(ℝ2,ℝ2)}. (3.19)

This family of feedback controls is quite natural from the result for a Brownianmotion
noise and to obtain explicit and implementable optimal controls. However, allowing
the controls to be adapted to the past of the state process in this casewould imply func-
tional optimal controls with functional dependence on the past of the state because
the control would be predicting the future of the state process, as is the case with frac-
tional Brownian motions [10]. Such controls are not easily implementable. Further-
more, the approach in this paper has been successful for scalar linear systems driven
by a Rosenblatt process [3, 12] and for multidimensional linear and bilinear systems
driven by fractional Brownian motions and Gauss–Volterra processes [3, 8, 9, 11, 12].

3.3 Optimal feedback control

The Riccati equation, which is used for some computations here, is the one used for
a Brownian motion noise so it is not intrinsic for a Rosenblatt noise but it suffices for
some computations. It is the following equation:

dP
dt
= −ATP − PA + BTPR−1BP − Q, (3.20)

P(T) = 0. (3.21)

The dependence of the solution P on the interval [0,T] is suppressed because it is well
known that these solutions converge to the solution of the algebraic Riccati equation
on the interval [0,∞). The solution of the optimal feedback control for the finite-time
horizon control problem described by (3.15) and (3.17) is given in the following theo-
rem.

Theorem 3.3.1. The stochastic control problem with the stochastic equation (3.15) and
the quadratic cost (3.17) has an optimal feedback control, K∗, given by the minimum
of the following expression, which can be obtained by differentiation. The expression is
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strictly convex in K so the optimal K is determined by the unique zero of the derivative
of g.

g(K) = lim
T→∞ 1

T
[
T

∫
0

󵄨󵄨󵄨󵄨R
− 12 (RKX + BTPX)󵄨󵄨󵄨󵄨2dt

+ C̃H

T

∫
0

e(A+BK+AT+KTBT )rr2H−2dr], (3.22)

where P is the unique solution of the Riccati equation (3.20).

Proof. The change of variables formula for a Rosenblatt process is applied to the real-
valued process (⟨P(t)X(t),X(t)⟩, t ≥ 0), where P satisfies the aforementioned Riccati
equation (3.20). Initially, a change of variables formula for Rosenblatt processes is
applied to (⟨P(t)X(t),X(t)⟩, t ∈ [0,T]), using the result that was just stated. The result
applied here is the following:

⟨P(T)X(T),X(T)⟩ − ⟨P(0)x0, x0⟩

=
T

∫
0

[⟨P(A + BK + AT + KTBT)X,X⟩

+ 2cH tr(∇
H
2 , H2 Xs(s, s))]ds

+ 2
T

∫
0

⟨∇
H
2 Xs(s), dBH⟩ + 2

T

∫
0

⟨X, dRH⟩

+
T

∫
0

⟨
dP
dt

X(s),X(s)⟩ds

=
T

∫
0

[⟨P(A + BK + AT + KTBT)X,X⟩

+ 2cH tr∇
H
2 , H2 Xs(s, s))]ds

+ 2∫⟨∇
H
2 Xs(s), dBH⟩ + 2

T

∫
0

⟨X, dRH⟩

+
T

∫
0

⟨
dP
dt

X(s),X(s)⟩ds. (3.23)

The two stochastic integrals in the equality are Skorokhod integrals so they have
expectation zero. It is necessary to compute∇

H
2 , H2 Xt(u, u). This term is the analog of the
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second derivative in the change of variables formula for a Brownianmotion noise. Ini-
tially, the processX is replaced by the Rosenblatt processRH to determine∇

H
2 , H2 Xt(u, u)

becauseX to a linear transformation ofRH . Recall that thenoise process in the stochas-
tic equation (3.15) is RH , so it is necessary to compute in the change of variables for-
mula, ∇

H
2 , H2 RH , where RH is a two-vector of independent real-valued Rosenblatt pro-

cesses. It follows from computations in [3] that

∇
H
2 , H2 RH ,t(u, u) = C̃H t

∫
0

|u − r|2H−2dr, (3.24)

where the constant, C̃H , is given by

C̃H = 2c
R
H
B(H2 , 1 − H)

2

Γ(H2 )
2
, (3.25)

and B is the Beta function. Note that the integral on the RHS of (3.24) is a two-vector,
each element having the same integrand. Let Ξt(u) = ∇

H
2 , H2 Xt(u, u). Then, it follows

from the solution of (3.15) by the linearity of the differential operator that

Ξt(u) =
t

∫
0

[(A + BK) + (AT + KTBT)]Ξs(u)ds

+ ∇
H
2 , H2 RH .t(u, u) (3.26)

because the operator ∇
H
2 , H2 Xt(u, u) is symmetric. Solving this integral equation, it fol-

lows directly from the linearity of (3.26) using (3.24) that

Ξt(u) = C̃H

t

∫
0

e(A+BK+AT+KTBT )(t−r)|u − r|2H−2dr, (3.27)

which, by an elementary change of variables, letting t = u = s, that

Ξs(s) = ∇
H
2 , H2 Xs(s, s) = C̃H s

∫
0

e(A+BK+AT+KTBT )rr2H−2dr. (3.28)

Note that the term |u − r|2H−2 in (3.27) is a two-vector which has this same scalar term
in both elements. Since A + KB + AT + BTKT is symmetric, it can be diagonalized. Fix
K, and diagonalize the linear operator A + KB + AT + KTBT which will be denoted
diag(a1, . . . , an).
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Substituting the Riccati equation (3.20) in (3.23) and applying expectation, the
following equation results:

𝔼⟨P(T)X(T),X(T)⟩ + 𝔼
T

∫
0

⟨QX,X⟩dt

+ 𝔼
T

∫
0

⟨RKX,KX⟩dt

= 𝔼⟨P(0)x0, x0⟩ + 𝔼
T

∫
0

(⟨RKX,KX⟩dt

+ ⟨P(BK + KTBT)X,X⟩dt

+
T

∫
0

tr(C̃H

t

∫
0

e(A+BK+AT+KTBT )rr2H−2dr))dt
= 𝔼[⟨P(0)x0, x0⟩ +

T

∫
0

󵄨󵄨󵄨󵄨R
− 12 (RKX + BTPX)󵄨󵄨󵄨󵄨2]dt

+ C̃H

T

∫
0

tr(
t

∫
0

e(A+BK+AT+KTBT )rr2H−2dr)dt. (3.29)

Recall that P(T) = 0 from the Riccati equation (3.20).
Now, consider a limit of the inner integral for the last term on the RHS, i. e.,

lim
t→∞ C̃H tr( t

∫
0

e(A+BK+AT+KTBT )rr2H−2dr)
=

2
∑
i=1 Γ(2H − 1)a2H−1i

, (3.30)

where (ai, i = 1, 2) are the eigenvalues of the symmetric transformation (A + BK + AT +
KTBT ). Clearly, averaging this result as 1

T ∫
T
o converges to the same value. Now, divide

the previous equality by T and let T →∞.

lim
T→∞ 1

T
𝔼JT (K)

= lim
T→∞ 1

T
[𝔼

T

∫
0

⟨QX,X⟩dt + 𝔼
T

∫
0

⟨RKX,KX⟩dt]
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= lim
T→∞[ 1T T

∫
0

󵄨󵄨󵄨󵄨R
−1(RKX + BTPX)󵄨󵄨󵄨󵄨2dt]

+
2
∑
i=1 Γ(2H − 1)a2H−1i

. (3.31)

Clearly, the minimum K can be determined from this last equality.
The same method can be used for higher-dimensional systems.

3.4 Concluding remarks
The solution of the ergodic control problem (3.18) shows that some non-Gaussian,
long-range dependent processes can be used as models for noise in control systems,
and optimal controls can be determined. It is important to determine the appropri-
ateness of the Rosenblatt processes for some noise that occurs in physical control sys-
tems. Domanski [6] has demonstrated by empirical studies of control systems the need
to use non-Gaussian noise models, and Rosenblatt processes can be considered as an
important candidate for modeling noise.
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4 Outlier-robust Kalman filtering framework
based on statistical similarity measure

Abstract:This chapter introduces the statistical similaritymeasure toquantify the sim-
ilarity between two random vectors, which is then employed to develop an outlier-
robust Kalman filtering framework. The approximation errors and the stability of the
filter are analyzed and discussed. To implement the filter, a fixed-point iterative algo-
rithm and a separate iterative algorithm are given, their local convergent conditions
are also provided, and comparisons are made. In addition, selection of the similarity
function is considered, and four exemplary similarity functions are established. Then
the relationships between the filter and other existing outlier-robust Kalmanfilters are
revealed. Simulation examples are used to illustrate the effectiveness and potential of
the filtering scheme.

Keywords: Kalman filter, statistical similarity measure, outliers, heavy-tailed noise,
separate iterative algorithm

4.1 Introduction

The estimation problem has been one of the most important issues from industrial
applications to research areas including signal processing, optimal control, naviga-
tion, etc. The actual applications include the parameter estimate [36], system iden-
tification [38], target tracking [42], simultaneous localization and mapping [10] and
many others [35]. The Kalman filter is best-known as an optimal recursive state es-
timator in the sense of minimum variance for a linear system with Gaussian noises
[7, 25]. To solve nonlinear filtering problems, researchers have made many additions
to the Kalman family filters, including extended Kalman filters (EKF) [2], second-order
extended Kalman filters (SEKF) [32], unscented Kalman filters (UKF) [24], cubature
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Kalman filters (CKF) [3] andmany others. EKF is a basic extension of the KF, which ap-
proximates the nonlinear systemby its first-order linearization [2]. SEKFmaintains the
second-order terms of the Taylor expansions of the state and measurement equations
[32]. UKF was derived based on the unscented transform for approximation [24], and
CKF was developed by using a spherical–radial cubature rule for approximating the
Gaussian filter [3]. However, the estimation accuracy of such Kalman filters degrades
dramatically when the system is eroded by state andmeasurement outliers caused by
external interference or unreliable sensors [17]. The state andmeasurement noises are
non-Gaussian distributed in such cases [5].

For such non-Gaussian filtering problems, robust filters have been studied. Exam-
ples include the fixed-lag doubly robust smoothing (DRS) [12], sum-of-norms regular-
ization [29], non-smooth quadratic support (QS) penalties [4], and so on. Moreover,
H∞ filters are robust filters that can solve efficiently the model uncertainty problems
[14, 28, 40]. The finite impulse response (FIR) state estimation are also proposed,
which estimates the current state using the measurements over only an interval of
N most recent neighboring points called a horizon [43]. The particle filter (PF) can
achieve an approximate state estimate by modelling the noises as non-Gaussian
heavy-tailed distributed and approximating the posterior probability density func-
tion (PDF) as a set of weighted random samples using the sequential Monte Carlo
sampling technique [5, 27]. The Gaussian sum filter (GSF) can also be used to address
the non-Gaussian filtering problem by running a group of Kalman filters, in which
a finite sum of Gaussian distributions are employed to model non-Gaussian noises,
and the posterior PDF can be updated as a weighted sum of Gaussian PDFs [1]. More-
over, the interacting multiple model (IMM) filter is a promising approach to address
model uncertainty, in which several sub-filters are performed in parallel based on
the preselected model set and the corresponding model transition probability ma-
trix, and the sub-filters interact with each other by fusing the state estimates and
corresponding estimation error covariance matrices based on the recursive estimates
of the mode probabilities [6]. Normally, the performances of the PF, GSF and IMM
filters rely heavily on the preselected distributions to model non-Gaussian state and
measurement noises. Unfortunately, it is very difficult to select accurate distributions
to model unknown and time-varying non-Gaussian noises that are often induced by
outliers so that the estimation accuracy of the PF, GSF and IMM filter degrades signif-
icantly when inaccurate or even wrong noise distributions are used. The contribution
of thework introduced in this chapter is therefore to provide a unified theoretic frame-
work to solve the non-Gaussian filtering problem for a linear state-space model with
unknown non-Gaussian heavy-tailed noises.

A large number of outlier-robust Kalman filters have been proposed to achieve a
tradeoff between estimation accuracy and computational complexity. As a classic ro-
bust regression technique, the M-estimator is robust to measurement outliers and has
been successfully extended to the Kalman filter setting [23]. By employing the influ-
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ence function approach on the prediction error and residual error,many outlier-robust
Kalman filters have been proposed based on the M-estimate method [13]. The Huber
Kalman filter (HKF) is the most famous extension of the M-estimator to the Kalman
filter setting, which utilizes a combined l1 and l2 norm as a robust cost function, and a
generalized robust maximum likelihood estimate is achieved by minimizing the Hu-
ber cost function [26]. The maximum correntropy Kalman filter (MCKF) is an alterna-
tivemethod to handle state andmeasurement outliers. The sumof theGaussian kernel
functions of the prediction error and residual error are selected as the robust cost func-
tion, andmanyMCKFs have been proposed bymaximizing such robust cost functions
[8, 11, 39]. Motivated by the fact that the outlier contaminated state andmeasurement
noises often have non-Gaussian heavy-tailed distributions, many outlier-robust filters
have been proposed by modelling the state and measurement noises as Student’s t
distributed [16, 21, 30, 33, 37, 44]. These robust filters can be divided into two cate-
gories: Student’s t filters and robust Student’s t based Kalman filters (RSTKF). In the
Student’s t filter, the predicted state and observation are jointlymodelled as Student’s
t-distributed, and then the posterior filtering PDF is recursively approximated by a Stu-
dent’s t-PDFwith fixed degrees of freedom (dof) parameter based on the Bayesian rule
and moment matching method [16, 33]. To address the approximate errors induced
by moment matching method in the Student’s t filter, a Kullback–Leilber divergence
(KLD) minimization based adaptive Student’s t filter has been proposed, where the
scale matrices and the state are jointly estimated by minimizing the upper bound of
the KLD [15]. Nevertheless, in the RSTKF, the one-step prediction PDF and the obser-
vation likelihood PDF are modelled by Student’s t-PDFs and formulated as Gaussian–
Gamma mixture forms, based on which the posterior filtering PDF is approximated
by a Gaussian PDF with adaptively selected covariance matrix using the variational
Bayesian (VB) approach [18, 21]. For a linear systemwithmoderately heavy-tailed state
and measurement noises, the RSTKF can achieve better estimation accuracy than the
Student’s t filter, but at the cost of higher computational complexity. Also, the adaptive
Kalman filter based on the VB approach can to some extent address the heavy-tailed
state and measurement noises induced by outliers based on the adaptive modifica-
tions of the one-step prediction error covariance matrix and measurement noise co-
variance matrix [20].

Although the HKF, MCKF and RSTKF can all achieve better estimation accuracy
than the standard Kalman filter for a linear system with outlier-corrupted state and
measurement noises, their interrelationships have as yet not been revealed. In addi-
tion, they still have the following theoretical problems:
– Essentially, the HKF andMCKF are both generalizedmaximum-likelihood estima-

tors. In the HKF, random state vector is considered determinate, and the optimal
point estimate of state vector is obtained by minimizing the Huber’s cost func-
tion. In MCKF, the correntropy is approximated as a finite sum of Gaussian kernel
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functions, which leads to the MCKF being a sort of point estimator [15]. It can be
observed from these discussions that the uncertainty of the state vector has no
effect on the cost function in the HKF and MCKF, which makes the estimation ac-
curacy of HKF and MCKF limited.

– In the RSTKF, the Student’s t distribution is used to model the non-Gaussian
outlier-corrupted state and measurement noises. The estimation accuracy of the
RSTKF depends heavily on the modeling accuracy of non-Gaussian noise by Stu-
dent’s t distribution. If the Student’s t distribution is mismatched with the real
noise distribution, the estimation accuracy of the RSTKF will degrade greatly.

An advanced outlier-robust Kalman filtering framework based on statistical similarity
measure (SSMKF) is therefore proposed in [22] to reveal the interrelationships between
the HKF, MCKF and RSTKF and further improve their estimation accuracy. The SSMKF
framework can be thought of as improved versions of the HKF and MCKF and a gen-
eralized version of RSTKF. Also, the advantages of the framework are two-fold:
– The statistical similarity measure (SSM) is chosen as an objective function, by

maximizing which, not only the posterior mean but also covariance matrix of the
state vector, can be obtained. Since the randomness of the state vector is consid-
ered, the SSMKF achieves better estimation accuracy, as will be shown in Sec-
tion 4.7.

– When the non-Gaussian noise cannot be well modelled by Student’s t-distri-
bution, the SSMKF can obtain better estimation accuracy by selecting the appro-
priate similarity function.

The SSMKF proposed in [22] is introduced in this chapter. The SSM is firstly presented
to quantify the similarity between two random vectors and then used to develop the
SSMKF framework, in which the lower bounds of the SSM between the state vector
and the predicted state vector and that between the measurement vector and the pre-
dicted measurement vector are maximized, and the posterior PDF of the state is ap-
proximated as Gaussian. To illustrate the effectiveness of the SSMKF, the effects of the
approximation errors on the SSMKF are analyzed in detail, and the numerical and fil-
tering stabilities of the SSMKF are also discussed. The fixed-point iterative algorithm
and the separate iterative algorithm are used to implement the SSMKF, and their local
convergence conditions are also provided and compared in this chapter. Furthermore,
the selections of the similarity functions are presented, and four exemplary similar-
ity functions are provided. Then the relationships between the SSMKF framework and
other existing outlier-robust Kalman filters are revealed. Simulation results of a ma-
noeuvring target-tracking example illustrate that, by selecting appropriate similarity
functions, the SSMKFs have improved estimation accuracy but higher computational
complexities than other existing state-of-the-art filters.
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4.2 Statistical similarity measure

We introduce the SSM to quantify the similarity between two randomvectors. The SSM
s(x, y) for random vectors x and y is defined as follows:

s(x, y) = E[f (‖x − y‖2)] = ∫∫ f (‖x − y‖2)p(x, y)dxdy, (4.1)

where E[⋅] denotes the expectation operation, and p(x, y) denotes the joint PDF of ran-
dom vectors x and y. The scalar function f (⋅) is named as the similarity function, and
it must satisfy the following three conditions:
– Condition 1: f (⋅) is a continuous function defined on [0,+∞);
– Condition 2: f (⋅) is a strictly monotonically decreasing function: ̇f (t) < 0 for t ∈[0,+∞);
– Condition 3: The second derivative of f (⋅) is non-negative: ̈f (t) ≥ 0 for t ∈ [0,+∞).
The monotonically decreasing property of the similarity function f (⋅) can guarantee
that the SSM s(x, y) is increasing as the distance between x and y decreases. As a re-
sult, the SSM conforms to the usual definition of a similarity measure that is in some
sense the inverse of distance metrics. The greater the similarity between random vec-
tors x and y, the larger SSM becomes. The SSM has some basic properties as follows:
– Property 1: The SSM is symmetric: s(x, y) = s(y,x);
– Property 2: TheSSMachieves themaximumvalue if andonly if the randomvectors

x and y are identical;
– Property 3: The SSM includes all the even-ordermoments of the randomvector x−

y: s(x, y) = ∑+∞l=0 f (l)(0)
l! E[‖x−y‖2l] if the Taylor expansion of the similarity function

f (t) exists when t ≥ 0.
Property 1 can be easily verified using the definition of the SSM in (4.1), and Property 3
can be directly derived by exploiting the Taylor series expansion of the similarity func-
tion f (t) at t = 0. Next, we will prove Property 2 in the following Theorem 4.2.1.

Theorem 4.2.1. If the similarity function f (⋅) satisfies Condition 2, then Property 2 holds.
Proof. Using ̇f (t) < 0 and ‖x − y‖2 ≥ 0 yields

f (‖x − y‖2) ≤ f (0). (4.2)

Substituting (4.2) in (4.1) gives

s(x, y) = E[f (‖x − y‖2)] ≤ E[f (0)] = f (0). (4.3)
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Considering that the inequality (4.3) holds for arbitrary random vectors x and y,
we have

max s(x, y) = f (0). (4.4)

It is evident that the SSM s(x, y) is identical to f (0) when x = y, and then x = y is
a maximum point of the SSM s(x, y).

Property 2 guarantees that the SSM has a maximum point, i. e., x = y. It is note-
worthy that the SSM s(x, y) is an upper bound of f (E[‖x−y‖2]), and they have the same
maximum point, i. e., x = y.

The SSM is a generalized similarity measure between two random vectors and en-
compasses existing similarity measures. For example, the SSM s(x, y) is the negative
mean squared error between random vectors x and y when the similarity function is
chosen as f (t) = −t. The SSM s(x, y) is the correntropy between randomvectors x and y
when the similarity function is selected as f (t) = exp(− 1

2σ2 t) [11, 39].More interestingly,
the generalized correntropy [9] between random vectors x and y is also a special case
of the SSM s(x, y)when the similarity function is chosen as f (t) = α

2βΓ(1/α) exp(−t α2 β−α)
and the shape parameter satisfies the constraint 0 < α ≤ 2.

For the SSM, except for the first two conditions, the similarity function f (⋅) has
to satisfy the third condition. The third condition not only can facilitate the design of
an outlier-robust Kalman filter but also can guarantee robustness to outliers and local
convergence of fixed point iterations, as will be shown in the following sections.

The SSM can be used in Bayesian inference. Different SSMs are achievedwhen dif-
ferent similarity functions f (⋅) are selected, based on which different state estimates
can be obtained by maximizing the corresponding SSMs. Next, an outlier-robust
Kalman filtering framework can be derived based on the SSM.

4.3 Outlier-robust Kalman filtering framework based
on SSM

Consider a linear dynamical system described by a linear discrete-time state-space
model as follows

{xk = Fkxk−1 +wk (state equation),
zk = Hkxk + vk (measurement equation), (4.5)

where k is the discrete time index, xk ∈ ℝn is the state vector, zk ∈ ℝm is the measure-
ment vector, Fk ∈ ℝn×n and Hk ∈ ℝm×n are, respectively, the known state transition
matrix andmeasurement matrix andwk ∈ ℝn and vk ∈ ℝm are, respectively, state and
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measurement noise vectors. In this chapter, the state and measurement noises are as-
sumed to have non-Gaussian distributions that are, respectively, induced by state and
measurement outliers.

4.3.1 Design of outlier-robust Kalman filtering framework

Similar to the standard Kalman filter, the SSMKF is also composed of time and mea-
surement updates. In the time update, the one-step predicted state vector x̂k|k−1 and
corresponding nominal prediction error covariancematrix Pk|k−1 are calculated as fol-
lows

{x̂k|k−1 = Fkx̂k−1|k−1,
Pk|k−1 = FkPk−1|k−1FTk + Qk , (4.6)

where x̂k−1|k−1 and Pk−1|k−1 are, respectively, the state estimate and corresponding es-
timation error covariance matrix at time k − 1, andQk denotes the nominal state noise
covariance matrix. Note that Pk|k−1 is called the nominal prediction error covariance
matrix since the used nominal state noise covariance matrix Qk is inaccurate in the
presence of state outliers.

The measurement update aims to achieve an approximate posterior PDF q∗(xk) ≈
p(xk |z1:k) through maximizing the sum of the SSM between S−1k|k−1xk and S−1k|k−1x̂k|k−1
and the SSM between S−1Rk

zk and S−1Rk
Hkxk, i. e.,

q∗(xk) = argmax
q(xk)
{s(S−1k|k−1xk , S−1k|k−1x̂k|k−1) + s(S−1Rk

zk , S−1Rk
Hkxk)}, (4.7)

where Sk|k−1 and SRk
are, respectively, the square roots of the nominal predicted error

covariance matrix Pk|k−1 and the nominal measurement noise covariance matrix Rk,
i. e.,

Pk|k−1 = Sk|k−1STk|k−1, Rk = SRk
STRk
, (4.8)

where Rk denotes the nominal measurement noise covariance matrix. Note that the
one-step statistical similarity measure based cost function in (4.7) is sufficient for de-
signing an outlier-robust Kalman filtering framework, inwhich the one-step predicted
state vector x̂k|k−1 and measurement vector zk at the current time are used to con-
struct the cost function. Such an idea can be extended to derive an outlier-robust
Kalman smoothing framework based on a multiple-steps SSM cost function by resort-
ing to some standard techniques for designing a maximum a-posterior estimator in a
Bayesian framework [34].

Considering that the one-step predicted state vector x̂k|k−1 and measurement
vector zk are known and deterministic quantities in the measurement update of the
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Kalman filter, the maximization problem in (4.7) can be reformulated as

q∗(xk) = argmax
q(xk)
{∫ fx(󵄩󵄩󵄩󵄩S−1k|k−1(xk − x̂k|k−1)󵄩󵄩󵄩󵄩2)q(xk)dxk+ ∫ fz(󵄩󵄩󵄩󵄩S−1Rk
(zk −Hkxk)󵄩󵄩󵄩󵄩2)q(xk)dxk}, (4.9)

where fx(⋅) and fz(⋅) denote the similarity functions of state andmeasurement models,
respectively.

It is very difficult to achieve an optimal solution for the maximization problem in
(4.9) since both the explicit form of posterior PDF q(xk) and closed-form solutions for
the integrals are unavailable. To solve this problem, the posterior PDF q(xk) is approx-
imated as Gaussian, and the lower bound of the cost function is maximized.

Firstly, the posterior PDF q(xk) can be approximated as a Gaussian PDF and given
by

q(xk) ≈ N(xk ;μk ,Σk), (4.10)

where μk and Σk are, respectively, the mean vector and covariance matrix of the pos-
terior PDF q(xk).

Substituting (4.10) into (4.9), the maximization problem with respect to the pos-
terior PDF q(xk) in (4.9) is approximately transformed into a maximization problem
with respect to the posterior mean vector and covariance matrix, i. e.,

{μ∗k ,Σ∗k } ≈ arg max
{μk ,Σk}
{∫ fx(󵄩󵄩󵄩󵄩S−1k|k−1(xk − x̂k|k−1)󵄩󵄩󵄩󵄩2)N(xk ;μk ,Σk)dxk+ ∫ fz(󵄩󵄩󵄩󵄩S−1Rk
(zk −Hkxk)󵄩󵄩󵄩󵄩2)N(xk ;μk ,Σk)dxk} s.t. Σk > 0, (4.11)

where μ∗k and Σ∗k denote the optimal posterior mean vector and covariance matrix.
Next, the cost function in (4.11) will be approximated as its lower bound, and then an
approximate solution can be obtained.

Theorem 4.3.1. If the similarity functions satisfy Condition 3, i. e., ̈fx(t) ≥ 0 and ̈fz(t) ≥ 0
for t ∈ [0,+∞), the maximization problem in (4.11) can be transformed as follows{μ∗k ,Σ∗k } ≈ arg max

{μk ,Σk}
J1(μk ,Σk) s.t. Σk > 0, (4.12)

where J1(μk ,Σk) is the lower bound of the cost function in (4.11) and formulated as
J1(μk ,Σk) = fx(tr(AkP

−1
k|k−1)) + fz(tr(BkR−1k )), (4.13)
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where tr(⋅) denotes the trace operation of amatrix, andAk andBk are, respectively given
by

Ak = ∫(xk − x̂k|k−1)(xk − x̂k|k−1)TN(xk ;μk ,Σk)dxk= Σk + (μk − x̂k|k−1)(μk − x̂k|k−1)T, (4.14)

Bk = ∫(zk −Hkxk)(zk −Hkxk)TN(xk ;μk ,Σk)dxk= (zk −Hkμk)(zk −Hkμk)T +HkΣkH
T
k . (4.15)

Proof. Since ̈fx(t) ≥ 0 and ̈fz(t) ≥ 0 for t ∈ [0,+∞), fx(⋅) and fz(⋅) are convex functions.
Using Jensen’s inequality, we have∫ fx(󵄩󵄩󵄩󵄩S−1k|k−1(xk − x̂k|k−1)󵄩󵄩󵄩󵄩2)N(xk ;μk ,Σk)dxk≥ fx(∫󵄩󵄩󵄩󵄩S−1k|k−1(xk − x̂k|k−1)󵄩󵄩󵄩󵄩2N(xk ;μk ,Σk)dxk), (4.16)∫ fz(󵄩󵄩󵄩󵄩S−1Rk

(zk −Hkxk)󵄩󵄩󵄩󵄩2)N(xk ;μk ,Σk)dxk≥ fz(∫󵄩󵄩󵄩󵄩S−1Rk
(zk −Hkxk)󵄩󵄩󵄩󵄩2N(xk ;μk ,Σk)dxk), (4.17)

where the equalities hold if and only if the similarity functions fx(⋅) and fz(⋅) are linear
or the covariance matrix of q(xk) is zero.

Substituting (4.16)–(4.17) into (4.11), themaximization problemwith respect to the
posteriormeanvector and covariancematrix canbe approximatedas (4.12)–(4.15).

Define four auxiliary variables ξk, λk, ̃ξk and λ̃k as follows
{ξk ≜ −2 ̇fx(tr(AkP−1k|k−1)), λk ≜ −2 ̇fz(tr(BkR−1k )),̃ξk ≜ 2 ̈fx(tr(AkP−1k|k−1)), λ̃k ≜ 2 ̈fz(tr(BkR−1k )) (4.18)

and three auxiliary matrices as follows{{{{{{{{{
Δμk (μk ,Σk) = 𝜕J1(μk ,Σk)𝜕μk

,
ΔΣk (μk ,Σk) = 𝜕J1(μk ,Σk)𝜕Σk

,
Θμk (μk ,Σk) = 𝜕2J1(μk ,Σk)𝜕μk𝜕μTk

, (4.19)

whereΔμk (μk ,Σk) andΔΣk (μk ,Σk) denote the Jacobianmatrices of the approximate cost
function J1(μk ,Σk) with respect to the posterior mean vector and covariance matrix,
respectively, andΘμk (μk ,Σk) denotes the Hessianmatrix of the approximate cost func-
tion J1(μk ,Σk) with respect to the posterior mean vector.
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Theorem 4.3.2. The optimal solution μ∗k of the approximate cost function J1(μk ,Σk) is
formulated as follows:

μ∗k = x̂k|k−1 + K̃∗k (zk −Hkx̂k|k−1), (4.20)

K̃∗k = P̃∗k|k−1HT
k(HkP̃

∗
k|k−1H

T
k + R̃∗k )−1, (4.21)

where P̃∗k|k−1 and R̃
∗
k are, respectively, the modified one-step prediction error covariance

matrix and measurement noise covariance matrix given by

P̃∗k|k−1 = Pk|k−1/ξ∗k , R̃∗k = Rk/λ∗k , (4.22)

and the auxiliary parameters ξ∗k and λ∗k are given by

ξ∗k = −2 ̇fx(tr(A∗kP−1k|k−1)), λ∗k = −2 ̇fz(tr(B∗kR−1k )), (4.23)

and the auxiliary parameters A∗k and B
∗
k are given by

A∗k = Σ∗k + (μ∗k − x̂k|k−1)(μ∗k − x̂k|k−1)T, (4.24)

B∗k = (zk −Hkμ
∗
k )(zk −Hkμ

∗
k )T +HkΣ

∗
kH

T
k . (4.25)

Proof. Using (4.13)–(4.15) and (4.18), the Jacobian matrix Δμk (μk ,Σk) is calculated as
Δμk (μk ,Σk) = −ξkP−1k|k−1(μk − x̂k|k−1) + λkHT

kR
−1
k (zk −Hkμk). (4.26)

According to the maximum criterion, the maximum point μ∗k satisfies the follow-
ing equation

Δμk (μ∗k ,Σ∗k ) = 0. (4.27)

Utilizing (4.23)–(4.25) and (4.26)–(4.27) yields− ξ∗k P−1k|k−1(μ∗k − x̂k|k−1) + λ∗kHT
kR
−1
k (zk −Hkμ

∗
k ) = 0. (4.28)

Solving equation (4.28), we can obtain the maximum point μ∗k as follows:

μ∗k = (P̃∗−1k|k−1 +HT
k R̃
∗−1
k Hk)−1(P̃∗−1k|k−1x̂k|k−1 +HT

k R̃
∗−1
k zk). (4.29)

Substituting (4.22) into (4.29) and employing the matrix inversion lemma [35,
pp. 11–12], we can obtain (4.20)–(4.21).

Next, we will further confirm the extreme point μ∗k in (4.20) is a maximum point
or a minimum point, and present the monotonicity of the approximate cost function
J1(μk ,Σk) with respect to the posterior covariance matrix Σk .
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Theorem 4.3.3. If the similarity functions satisfy Condition 2 and Condition 3 and the
following inequalities hold:− (ξ∗k )2 + 2 ̃ξ∗k < 0, −(λ∗k )2 + 2λ̃∗k < 0, (4.30)

then both the Hessian matrix Θμk (μ∗k ,Σ∗k ) and the Jacobian matrix ΔΣk (μk ,Σk) are nega-
tive definite, i. e.,

Θμk (μ∗k ,Σ∗k ) < 0, ΔΣk (μk ,Σk) < 0. (4.31)

Proof. Using (4.13)–(4.15) and (4.18), the Jacobian matrix ΔΣk (μk ,Σk) and the Hessian
matrix Θμk (μk ,Σk) can be calculated as

ΔΣk (μk ,Σk) = −0.5ξkP−1k|k−1 − 0.5λkHT
kR
−1
k Hk , (4.32)

Θμk (μk ,Σk) = −ξkP−1k|k−1 − λkHT
kR
−1
k Hk + D1(μk ,Σk), (4.33)

where D1(μk ,Σk) denotes the second-order term given by

D1(μk ,Σk) = 2 ̃ξkP−1k|k−1(μk − x̂k|k−1)(μk − x̂k|k−1)TP−1k|k−1+ 2λ̃kHT
kR
−1
k (zk −Hkμk)(zk −Hkμk)TR−1k Hk . (4.34)

Utilizing ξk > 0 and λk > 0 in (4.32), we can obtain ΔΣk (μk ,Σk) < 0, and then the
maximum point Σ∗k can be given by (4.44). Substituting (4.22)–(4.25) into (4.33) yields

Θμk (μ∗k ,Σ∗k ) = −ξ∗k P−1k|k−1 − λ∗kHT
kR
−1
k Hk + D1(μ∗k ,Σ∗k ). (4.35)

Employing (4.20)–(4.21) in (4.34), D1(μ∗k ,Σ∗k ) is calculated as
D1(μ∗k ,Σ∗k ) = 2 ̃ξ∗k P−1k|k−1K̃∗k P̄zzk|k−1(K̃∗k )TP−1k|k−1+ 2λ̃∗kHT

kR
−1
k (Im −HkK̃

∗
k )P̄zzk|k−1(Im −HkK̃

∗
k )TR−1k Hk , (4.36)

where P̄zzk|k−1 denotes an approximate innovation matrix given by

P̄zzk|k−1 = (zk −Hkx̂k|k−1)(zk −Hkx̂k|k−1)T. (4.37)

It can be seen from (4.36) that the second-order term D1(μ∗k ,Σ∗k ) depends on
the real-time measurement zk . As a result, it is very difficult to compare the term−ξ∗k P−1k|k−1 − λ∗kHT

kR
−1
k Hk and the second-order term D1(μ∗k ,Σ∗k ). To solve this problem,

a reasonable approximation is introduced as follows:

P̄zzk|k−1 ≈ P̃zz∗k|k−1 = HkP̃
∗
k|k−1H

T
k + R̃∗k , (4.38)

where P̃zz∗k|k−1 denotes the modified innovation matrix.
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Exploiting (4.21), (4.44) and (4.38) yields

{K̃∗k P̄zzk|k−1(K̃∗k )T ≈ P̃∗k|k−1 − Σ∗k < P̃∗k|k−1,(Im −HkK̃∗k )P̄zzk|k−1(Im −HkK̃∗k )T ≈ R̃∗k (HkP̃∗k|k−1H
T
k + R̃∗k )−1R̃∗k < R̃∗k . (4.39)

Substituting (4.36) into (4.35) and using (4.22) and (4.39) yields

Θμk (μ∗k ,Σ∗k ) = (−ξ∗k + 2 ̃ξ∗k /ξ∗k )P−1k|k−1 − (λ∗k − 2λ̃∗k /λ∗k )HT
kR
−1
k Hk . (4.40)

Employing (4.30) in (4.40), we can obtain Θμk (μ∗k ,Σ∗k ) < 0.
Theorem 4.3.3 implies that the extreme point μ∗k in (4.20) is a maximum point of

the approximate cost function J1(μk ,Σk). It can be also observed from Theorem 4.3.3
that the approximate cost function J1(μk ,Σk) is monotonically decreasing with re-
spect to the posterior covariance matrix Σk, and then the approximate cost function
J1(μk ,Σk) can achieve a unique optimal solution Σ∗k at the lower bound of the posterior
covariance matrix. Next, we will determine the optimal posterior covariance matrix
Σ∗k .

To obtain themaximumpoint Σ∗k , we need to find a reasonable constraint to apply
upon Σk . Motivated by the fact that the covariance matrix of the posterior PDF is the
negative inverse of the Hessian matrix of the least squares cost function in the tradi-
tional maximum a posteriori estimation framework, we introduce a heuristic assump-
tion that Σk is not less than the negative inverse of the Hessian matrix Θμk (μ∗k ,Σ∗k ),
i. e.,

Σk ≥ −Θ−1μk (μ∗k ,Σ∗k ). (4.41)

It is worth noting that the well-known M-estimate employs a similar way to deal
with the posterior covariance matrix, which is set as the negative inverse of the Hes-
sian matrix of the robust cost function [23, 26]. Since the cost function J(μk ,Σk) is
monotonically decreasing with respect to Σk, the optimal covariance matrix should
be the negative inverse of the Hessian matrix, i. e., −Θ−1μk (μ∗k ,Σ∗k ). Unfortunately, the
Hessian matrix can easily lose its negative definiteness during the iterative compu-
tation, and then the filter was often found to halt its operation due to the numerical
problem. To keep the negative definiteness, the positive semi-definite term D1(μ∗k ,Σ∗k )
ismandatorily subtracted from theHessianmatrixΘμk (μ∗k ,Σ∗k ). That is to say, the lower
bound of the posterior covariance matrix is further reduced, i. e.,

Σk ≥ −Θ−1μk (μ∗k ,Σ∗k ) ≥ −[Θμk (μ∗k ,Σ∗k ) − D1(μ∗k ,Σ∗k )]−1. (4.42)

Exploiting (4.42) and (4.33), the maximum point Σ∗k can be formulated as

Σ∗k = (ξ∗k P−1k|k−1 + λ∗kHT
kR
−1
k Hk)−1. (4.43)
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Employing the matrix inversion lemma [35, pp. 11–12] and equations (4.21)–(4.22)
and (4.43) gives

Σ∗k = P̃∗k|k−1 − K̃∗kHkP̃
∗
k|k−1. (4.44)

4.3.2 Error analyses of the SSMKF

In Section 4.3.1, three approximations are employed to derive an analytical solution
for the original maximization problem in (4.9), which are listed as follows:
– Approximation 1: The posterior PDF q(xk) is approximated as a Gaussian PDF in

(4.10);
– Approximation 2: The original cost function is approximated as its lower bound

by Theorem 4.3.1;
– Approximation 3: The original Hessian matrix is approximated as Θμk (μ∗k ,Σ∗k ) −

D1(μ∗k ,Σ∗k ).
First, we discuss the reasonability of Approximation 1. The outlier-contaminated state
and measurement noises often have non-Gaussian distributions, and then the true
posterior PDF p(xk |z1:k) also has a non-Gaussian distribution [31, 33]. Unfortunately,
there is often not amathematical formulation for a general non-Gaussian distribution.
As a result, it is not possible to achieve an optimal solution of the maximization prob-
lem in (4.9) for a general non-Gaussian linear system. Motivated by the fact that the
Gaussian approximation to the posterior PDF has been widely accepted in designing
a cost-effective filter for a linear system with non-Gaussian noises, the posterior PDF
is also approximated as a Gaussian PDF in the SSMKF, as shown in (4.10), based on
which an approximately analytical solution can be obtained. Although such an ap-
proximation may impose an error on the posterior PDF, it often exhibits good estima-
tion accuracy with reasonable computational complexity. Thus, the Gaussian approx-
imation to the posterior PDF can provide a trade-off between estimation accuracy and
computational complexity.

Second, we analyze the effects of Approximation 2 on the optimal solution. To this
end, the relationship between the maximization problem in (4.11) and the maximiza-
tion problem in (4.12)–(4.15) will be further revealed. Define four auxiliary variables
as follows:

{Y1k = ‖S−1k|k−1(xk − x̂k|k−1)‖2, Y∗1k = tr(A∗kP−1k|k−1),
Y2k = ‖S−1Rk

(zk −Hkxk)‖2, Y∗2k = tr(B∗kR−1k ), (4.45)

where Y∗1k and Y
∗
2k are, respectively, the expectations of Y1k and Y2k with respect to the

approximate posterior PDF q∗(xk) = N(xk ;μ∗k ,Σ∗k ).
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Taking the first-order Taylor series expansions of the similarity functions fx(t) and
fz(t) at t = Y∗1k and t = Y∗2k, respectively, we have

{fx(t) = fx(Y∗1k) + ̇fx(Y∗1k)(t − Y∗1k) + o(t − Y∗1k),
fz(t) = fz(Y∗2k) + ̇fz(Y∗2k)(t − Y∗2k) + o(t − Y∗2k), (4.46)

where o(t − Y∗1k) and o(t − Y∗2k) denote the first-order remainder terms of the similarity
functions fx(t) and fz(t) at t = Y∗1k and t = Y∗2k, respectively.

Using (4.46) yields

{fx(Y1k) ≈ fx(Y∗1k) + ̇fx(Y∗1k)(Y1k − Y∗1k),
fz(Y2k) ≈ fz(Y∗2k) + ̇fz(Y∗2k)(Y2k − Y∗2k). (4.47)

Proposition 4.3.4. The maximization problem in Theorem 4.3.1 and the maximization
problem in (4.11) with the first-order Taylor approximations (4.45) and (4.47) have the
same optimal solution {μ∗k ,Σ∗k }.
Proof. Using (4.47), the cost function in (4.11) can be approximated as̃J1(μk ,Σk) = ∫[ ̇fx(Y∗1k)Y1k + ̇fz(Y∗2k)Y2k]N(xk ;μk ,Σk)dxk + c{μk ,Σk}. (4.48)

Substituting (4.45) into (4.48) and using (4.14)–(4.15), (4.18) and (4.23) yields̃J1(μk ,Σk) = −0.5ξ∗k tr(AkP
−1
k|k−1) − 0.5λ∗k tr(BkR−1k ) + c{μk ,Σk}. (4.49)

Employing (4.49), the Jacobianmatrices of ̃J1(μk ,Σk)with respect to μk and Σk and
the Hessian matrix of ̃J1(μk ,Σk) with respect to μk are, respectively, formulated as:{{{{{{{{{

𝜕 ̃J1(μk ,Σk)
𝜕μk
= −ξ∗k P−1k|k−1(μk − x̂k|k−1) + λ∗kHT

kR
−1
k (zk −Hkμk),

𝜕 ̃J1(μk ,Σk)
𝜕Σk
= −0.5ξ∗k P−1k|k−1 − 0.5λ∗kHT

kR
−1
k Hk ,

𝜕 ̃J21 (μk ,Σk)
𝜕μk𝜕μTk
= −ξ∗k P−1k|k−1 − λ∗kHT

kR
−1
k Hk . (4.50)

According to the maximum criterion and utilizing (4.50), the maximum points μ∗k
and Σ∗k can be formulated as (4.20) and (4.44). Thus, the maximization problem in
Theorem 4.3.1 and the maximization problem in (4.11) with the first-order Taylor ap-
proximations (4.45) and (4.47) have the same optimal solution.

Proposition 4.3.4 means that the lower bound of the original cost function and
the first-order approximation of the original cost function have the same maximum
solution. Thus, the effects of Approximation 2 on the optimal solution are determined
by the higher-order approximation errors o(Y1k − Y∗1k) and o(Y2k − Y∗2k). Since Y∗1k and
Y∗2k are the mean values of the random variables Y1k and Y2k, the difference values
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Y1k − Y∗1k and Y2k − Y∗2k depend heavily on the variances of the random variables Y1k
and Y2k . That is to say, the higher are the variances of the random variables Y1k and
Y2k, the larger are the fluctuation ranges of the difference values Y1k −Y∗1k and Y2k −Y∗2k
thatwill be generated and then result in larger higher-order approximation errors, and
vice versa. Thus, the approximation accuracy of Theorem4.3.1 ismainly dominated by
the variances of the random variables Y1k and Y2k . Therefore, next, we will study the
variances of the random variables Y1k and Y2k .

Proposition 4.3.5. The variances of the random variables Y1k and Y2k satisfy the follow-
ing upper bound constraints:{{{Var[Y1k] ≤ (n2 + 2n − 1)[tr(ΣkP−1k|k−1)]2 + ‖2Σ T

2
k P
−1
k|k−1(μk − x̂k|k−1)‖2,

Var[Y2k] ≤ (n2 + 2n − 1)[tr(HkΣkHT
kR
−1
k )]2 + ‖2Σ T

2
k H

T
kR
−1
k (zk −Hkμk)‖2, (4.51)

where Var[⋅] denotes the variance operation.
Proof. Using (4.45) yields{{{Y1k = ‖S−1k|k−1Σ 1

2
k τx‖2 + 2aTxS−1k|k−1Σ 1

2
k τx + ‖ax‖2,

τx = Σ− 12k (xk − μk), ax = S−1k|k−1(μk − x̂k|k−1). (4.52)

Since the posteriormean vector and covariancematrix of theGaussian distributed
random vector xk are, respectively, μk and Σk, the random vector τx has a standard
Gaussian distribution, i. e., τx ∼ N(0, In). Employing (4.52) and τx ∼ N(0, In), the vari-
ance of Y1k is calculated as

Var[Y1k] = E[󵄩󵄩󵄩󵄩S−1k|k−1Σ 1
2
k τx
󵄩󵄩󵄩󵄩4] − [tr(ΣkP−1k|k−1)]2 + 󵄩󵄩󵄩󵄩2Σ T

2
k P
−1
k|k−1(μk − x̂k|k−1)󵄩󵄩󵄩󵄩2, (4.53)

in which note that the cross variance between ‖S−1k|k−1Σ 1
2
k τx‖2 and 2aTxS−1k|k−1Σ 1

2
k τx is zero

since the odd origin moments of τx are all zeros. According to the compatibility of
matrix and vector norms, we have

E[󵄩󵄩󵄩󵄩S−1k|k−1Σ 1
2
k τx
󵄩󵄩󵄩󵄩4] ≤ E[‖τx‖4][tr(ΣkP−1k|k−1)]2. (4.54)

Considering that the random vector τx has a standard Gaussian distribution, then
the random variable ‖τx‖2 is a sum of the squares of n independent Gaussian random
variables and has a chi-square distribution with the dof parameter n, i. e., ‖τx‖2 ∼
χ2(n). According the property of the chi-square distribution, the second- order origin
moment of ‖τx‖2 can be calculated as E[‖τx‖4] = n2 + 2n. Employing E[‖τx‖4] = n2 +
2n and (4.53)–(4.54), we can obtain the upper-bound constraint of Var[Y1k] in (4.51).
Similarly, we can also derive the upper-bound constraint of Var[Y2k] in (4.51).
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It is observed from Proposition 4.3.5 that both the variances of the random vari-
ablesY1k andY2k depend on the state dimension n and the posterior covariancematrix
Σk . It can be observed from (4.51) that the higher the state dimension, the larger will be
the variances of the random variables Y1k and Y2k . Such a result is consistent with the
intuition that the higher the state dimension, the larger the errors will be when the
original cost function is approximated by its lower bound in Theorem 4.3.1. We can
also observe from (4.51) that the larger the posterior covariance matrix Σk, the larger
will be the variances of the random variables Y1k and Y2k . This result is also consistent
with the fact that the approximation errors are mainly dominated by the randomness
of state vector xk (i. e., the covariance matrix) when the original cost function is ap-
proximated by its lower bound based on Jensen’s inequality. In conclusion, the effects
of Approximation 2 on the optimal solution relies mainly on the state dimension and
the posterior covariance matrix of the state vector. Fortunately, the posterior uncer-
tainty is gradually reduced as the filter converges, which can to some extent mitigate
the effects of Approximation 2 on the optimal solution. More importantly, both the er-
rors Y1k − Y∗1k and Y2k − Y∗2k can be deemed as small terms as the filter converges, and
the higher-order derivatives of the similarity functions fx(t) and fz(t) are significantly
smaller than the first-order derivatives for the exemplary similarity functions in Ta-
ble 4.1. As a result, the higher-order approximation errors o(Y1k −Y∗1k) and o(Y2k −Y∗2k)
are significantly smaller than the first-order terms for the exemplary similarity func-
tions, which contributes to the effectiveness and reasonability of Approximation 2.

Finally, we discuss the effects of Approximation 3 on the optimal solution. The
original Hessianmatrix is forcibly reduced by subtracting a positive semi-definite ma-
trix, and the resultant posterior covariance matrix is less than the optimal value. Al-
though such approximation imposes an error on the posterior covariance matrix, it
is beneficial to guarantee the positive definiteness of the posterior covariance matrix
and then improve the numerical and filtering stabilities, as will be shown in next sec-
tion. Moreover, the reduction of the posterior covariance matrix is also beneficial to
mitigate the effects of Approximation 2 on the optimal solution.

4.3.3 Stability discussions of the SSMKF

For the application of the SSMKF in practical engineering, it is necessary to guarantee
the numerical and filtering stabilities of the SSMKF. These will be discussed next.

It is seen from (4.23) that, if the similarity functions fx(⋅) and fz(⋅) satisfy Condi-
tion 2, i. e., ̇fx(t) < 0 and ̇fz(t) < 0 for t ∈ [0,+∞), then both the auxiliary parameters
ξ∗k and λ∗k are greater than zero, i. e.,

ξ∗k > 0, λ∗k > 0. (4.55)

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



4 Outlier-robust Kalman filtering framework based on statistical similarity measure | 77

Using (4.22), (4.43) and (4.55) yields

P̃∗k|k−1 > 0, R̃∗k > 0, Σ∗k > 0. (4.56)

We can see from (4.56) that, if ̇fx(t) < 0 and ̇fz(t) < 0 for t ∈ [0,+∞), then themod-
ified one-step prediction error and measurement noise covariance matrices and the
posterior covariance matrix are all positive definite. Thus, the SSMKF is numerically
stable if the similarity function similarity functions fx(⋅) and fz(⋅) satisfy Condition 2.

In this chapter, the filtering stability means that the state estimation error x̃k|k is
bounded in the sense of the mean square, i. e., E{‖x̃k|k‖2} < +∞ [41]. According to the
theoretical analysis of the filtering stability in [41], if the modified one-step prediction
error andmeasurement noise covariancematrices and the posterior covariancematrix
satisfy the following constraints

{P̃∗k|k−1 ≤ qmaxIn, R̃∗k ≥ rminIm,
pminIn ≤ Σ∗k ≤ pmaxIn, (4.57)

where qmax, rmin, pmin and pmax are all positive real numbers, then the state estimation
error x̃k|k of the SSMKF is bounded in the sense of the mean square, i. e., E{‖x̃k|k‖2} <+∞. Note that the other conditions for guaranteeing the filtering stability in [41] hold
naturally for linear systems.

Proposition 4.3.6. If there exists positive real numbers ξmin, ξmax, λmin and λmax such
that the following constraints are fulfilled

ξmin ≤ ξ∗k ≤ ξmax, λmin ≤ λ∗k ≤ λmax, (4.58)

then the inequalities in (4.57) hold.

Proof. Using (4.58) in (4.22) and (4.43) yields

P̃∗k|k−1 ≤ Pk|k−1/ξmin, R̃∗k ≥ Rk/λmax, (4.59){Σ∗k ≥ (ξmaxP−1k|k−1 + λmaxHT
kR
−1
k Hk)−1,

Σ∗k ≤ (ξminP−1k|k−1 + λminHT
kR
−1
k Hk)−1. (4.60)

Choosing qmax and pmax as the maximum eigenvalues of Pk|k−1/ξmin and(ξminP−1k|k−1 + λminHT
kR
−1
k Hk)−1 and selecting rmin and pmin as the minimum eigenvalues

of Rk/λmax and (ξmaxP−1k|k−1 + λmaxHT
kR
−1
k Hk)−1, we can obtain (4.57).

Proposition 4.3.6 demonstrates that, if both the auxiliary parameters ξ∗k and λ∗k
have lower and upper bounds, then the SSMKF is always stable, which will impose
additional constraints on the similarity functions fx(⋅) and fz(⋅).
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4.4 Novel iterative algorithms for the SSMKF

4.4.1 Fixed-point iterative algorithm

In general, it is very difficult to find analytical solutions for μ∗k and Σ∗k through solv-
ing equations (4.20)–(4.25) and (4.44) directly when the similarity functions fx(⋅) and
fz(⋅) are nonlinear functions. To solve this problem, we employ fixed-point iterations
to solve these equations approximately. The detailed implementation of the SSMKF
based on fixed-point iterations is listed in Algorithm 4.1, where ϵ denotes the iteration
threshold, Nm denotes the maximum number of iterations and i∗ denotes the cyclic
variable at the end of the loop, and δ denotes the lower bounds of the auxiliary param-
eters ξk and λk that is beneficial to guarantee the filtering stability, as will be discussed
in Section 4.5.

Algorithm 4.1: One time step of the SSMKF based on fixed-point iterations.
Inputs: x̂k−1|k−1, Pk−1|k−1, Fk, Hk, zk, Qk, Rk, fx(⋅), fz(⋅), ϵ, Nm, δ.
Time update:

1. x̂k|k−1 = Fk x̂k−1|k−1
2. Pk|k−1 = FkPk−1|k−1FTk + Qk
Iterative measurement update:

3. Initialization: ξ (0)k = 1, λ(0)k = 1
for i = 0 : Nm − 1
Calculate P̃(i+1)k|k−1 and R̃(i+1)k
4. P̃(i+1)k|k−1 = Pk|k−1/ξ

(i)
k , R̃(i+1)k = Rk/λ

(i)
k

Evaluate μ(i+1)k and Σ(i+1)k
5. K̃(i+1)k = P̃

(i+1)
k|k−1H

T
k (Hk P̃

(i+1)
k|k−1H

T
k + R̃
(i+1)
k )
−1

6. μ(i+1)k = x̂k|k−1 + K̃
(i+1)
k (zk − Hk x̂k|k−1)

7. Σ(i+1)k = P̃
(i+1)
k|k−1 − K̃

(i+1)
k Hk P̃

(i+1)
k|k−1

Check the convergence of iteration

8. If
‖μ(i+1)k −μ

(i)
k ‖

‖μ(i)k ‖ ≤ ϵ, stop iteration.

Calculate A(i+1)k and B(i+1)k
9. A(i+1)k = Σ

(i+1)
k + (μ

(i+1)
k − x̂k|k−1)(μ

(i+1)
k − x̂k|k−1)

T

10. B(i+1)k = (zk − Hkμ
(i+1)
k )(zk − Hkμ

(i+1)
k )

T + HkΣ
(i+1)
k HT

k
Evaluate ξ (i+1)k and λ(i+1)k
11. ξ (i+1)k = −2

̇fx(tr(A
(i+1)
k P−1k|k−1))

12. λ(i+1)k = −2
̇fz(tr(B
(i+1)
k R−1k ))

Check the constraints in (4.36)
13. If ξ (i+1)k < δ, then ξ (i+1)k = δ.
14. If λ(i+1)k < δ, then λ(i+1)k = δ.
end for

15. x̂k|k = μ
(i∗)
k , Pk|k = Σ

(i∗)
k

Outputs: x̂k|k and Pk|k
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The premise of applying the SSMKF in practical engineering is to guarantee the
convergence of the fixed-point iterations. To this end, the relationship between the
fixed-point iterative algorithm and the existing nonlinear optimization algorithm is
first revealed.

Proposition 4.4.1. The fixed-point iterative algorithm is identical to the existing New-
ton’s method with the modified Hessian matrix as follows:

Θ̃μk (μ(i)k ,Σ(i)k ) = Θμk (μ(i)k ,Σ(i)k ) − D1(μ(i)k ,Σ(i)k ). (4.61)

Proof. Using (4.61) and (4.33), the modified Hessian matrix is calculated as

Θ̃μk (μ(i)k ,Σ(i)k ) = −ξ (i)k P−1k|k−1 − λ(i)k HT
kR
−1
k Hk . (4.62)

According to Newton’s iterative scheme, we have{μ(i+1)k = μ(i)k − [Θ̃μk (μ(i)k ,Σ(i)k )]−1Δμk (μ(i)k ,Σ(i)k ),
Σ(i+1)k = −[Θ̃μk (μ(i)k ,Σ(i)k )]−1. (4.63)

Employing (4.26) and (4.62) in (4.63) results in

{μ(i+1)k = Σ(i+1)k (ξ (i)k P−1k|k−1x̂k|k−1 + λ(i)k HT
kR
−1
k zk),

Σ(i+1)k = (ξ (i)k P−1k|k−1 + λ(i)k HT
kR
−1
k Hk)−1. (4.64)

By utilizing the matrix inversion lemma [35, pp. 11–12], μ(i+1)k and Σ(i+1)k in (4.64)
can be written as the 6th and 7th equations in Algorithm 4.1. Thus, we can obtain
Proposition 4.4.1.

Proposition 4.4.1means that the fixed-point iterative algorithm is an improved ver-
sion of the existing Newton’s method. The positive semi-definite term D1(μ(i)k ,Σ(i)k ) is
subtracted from the original Hessian matrix so that the negative definiteness can be
preserved. As a result, the fixed-point iterative algorithm has better numerical stabil-
ity than the standard Newton’s method. Normally, to guarantee the local convergence
of Newton’s method, the Hessian matrix needs to satisfy the Lipschitz condition, and
the initial value is sufficiently close to the optimal value. Next, we will provide the
convergence conditions of the fixed-point iterative algorithm.

Theorem 4.4.2. If the initial mean vector μ(0)k is sufficiently close to the optimal mean
vector μ∗k and there are positive and bounded real numbers α1 and α2 making the follow-
ing inequalities hold {0 ≤ ̈fx(t2)t ≤ α1,

0 ≤ ̈fz(t2)t ≤ α2, ∀t ≥ 0, (4.65)

then the fixed-point iterative algorithm has local convergence.
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Proof. Let ΔΘ̃(μk ,Σk) = 𝜕Θ̃μk
(μk ,Σk)
𝜕μk

. Using (4.14), (4.15), (4.18), (4.61) and (4.33) yields

ΔΘ̃(μk ,Σk) = 2 ̃ξk[P−1k|k−1(μk − x̂k|k−1)]⊗P−1k|k−1− 2λ̃k[HT
kR
−1
k (zk −Hkμk)]⊗ [HT

kR
−1
k Hk], (4.66)

where ⊗ denotes the Kronecker product.
Taking the norm on both sides of (4.66) and utilizing the properties of matrix

norms results in󵄩󵄩󵄩󵄩ΔΘ̃(μk ,Σk)󵄩󵄩󵄩󵄩F ≤ 2β1 ̃ξk󵄩󵄩󵄩󵄩S−1k|k−1(μk − x̂k|k−1)󵄩󵄩󵄩󵄩F + 2β2λ̃k󵄩󵄩󵄩󵄩S−1Rk
(zk −Hkμk)󵄩󵄩󵄩󵄩F , (4.67)

where ‖ ⋅ ‖ denotes the Frobenius norm and β1 and β2 are, respectively, given by{{{β1 = ‖S−Tk|k−1‖F‖P−1k|k−1‖F ,β2 = ‖HT
kS
−T
Rk
‖F‖HT

kR
−1
k Hk‖F . (4.68)

Employing (4.8) and (4.14)–(4.15), we have{{{‖S−1k|k−1(μk − x̂k|k−1)‖F ≤ √tr(AkP−1k|k−1),‖S−1Rk
(zk −Hkμk)‖F ≤ √tr(BkR−1k ). (4.69)

Exploiting (4.18), (4.65) and (4.68)–(4.69) in (4.67) gives󵄩󵄩󵄩󵄩ΔΘ̃(μk ,Σk)󵄩󵄩󵄩󵄩F ≤ 4α1β1 + 4α2β2. (4.70)

Define an auxiliary function as follows:

φ(τ) = Θ̃μk (μ2k + τ(μ1k − μ2k),Σk) s.t. τ ∈ [0, 1], (4.71)

where μ1k and μ
2
k are arbitrary two posterior mean vectors.

Taking the first-order derivative of φ(τ) obtains
φ̇(τ) = ΔΘ̃(μ2k + τ(μ1k − μ2k),Σk)(μ1k − μ2k). (4.72)

According to the Lagrangemean value theorem, there is a variable θ ∈ [0, 1] such
that the following equation is fulfilled:

φ(1) − φ(0) = φ̇(θ)(1 − 0). (4.73)
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Substituting (4.71)–(4.72) in (4.73) yields

Θ̃μk (μ1k ,Σk) − Θ̃μk (μ2k ,Σk) = ΔΘ̃(μ2k + θ(μ1k − μ2k),Σk)(μ1k − μ2k). (4.74)

Taking the norm on both sides of (4.74) and using (4.70), we have󵄩󵄩󵄩󵄩Θ̃μk (μ1k ,Σk) − Θ̃μk (μ2k ,Σk)󵄩󵄩󵄩󵄩F ≤ β󵄩󵄩󵄩󵄩μ1k − μ2k󵄩󵄩󵄩󵄩, (4.75)

where β is given by

β = 4α1β1 + 4α2β2. (4.76)

It can be seen from (4.75)–(4.76) that the modified Hessian matrix Θ̃μk (μk ,Σk) sat-
isfies the Lipschitz condition. Thus, if the initial mean vector μ(0)k is sufficiently close
to the optimal mean vector μ∗k , then the fixed-point iterative algorithm has local con-
vergence.

Generally, the initial mean vector μ(0)k is selected as the one-step predicted state
vector x̂k|k−1, i. e., μ

(0)
k = x̂k|k−1, since x̂k|k−1 is the only available information for the

mean vector before the iterative measurement update. It is seen from Theorem 4.4.2
that the initial value μ(0)k , i. e., x̂k|k−1, needs to be sufficiently close to the optimal
value μ∗k to guarantee the local convergence of the fixed-point iterative algorithm.
Unfortunately, the one-step predicted state vector x̂k|k−1 may be far away from the
optimal value μ∗k when the linear system suffers from large process uncertainty
or a state outlier. As a result, the fixed-point iterative algorithm may not converge
to a local optimum when the linear system suffers from large process uncertainty
or a state outlier, which will degrade the filtering accuracy of the SSMKF dramati-
cally.

4.4.2 Separate iterative algorithm

Before introducing the separate iterative algorithm, we first present the problems ex-
isting in the fixed-point iterative algorithm. It can be seen from Algorithm 4.1 that the
Kalman gain K̃(i+1)k plays an important role in the iterative measurement update be-
cause it can adjust the weights of one-step predicted state vector x̂k|k−1 and measure-
ment innovation zk − Hkx̂k|k−1 adaptively. Next, we will discuss the behavior of the
Kalman gain K̃(i+1)k during the iterative measurement update.

Using the 4th and 5th equations in Algorithm 4.1, the Kalman gain K̃(i+1)k can be
rewritten as

K̃(i+1)k = Pk|k−1HT
k(HkPk|k−1H

T
k + ξ (i)kλ(i)k Rk)−1. (4.77)
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It is observed from (4.77) that the behavior of the Kalman gain K̃(i+1)k depends only

on the ratio of auxiliary parameters, i. e., ξ (i)k
λ(i)k , during the iterative measurement up-

date. It can be also observed from the 9th–12th equations in Algorithm 4.1 that the
ratio of auxiliary parameters ξ (i)k

λ(i)k relies on not only the similarity functions fx(⋅) and
fz(⋅) but also the parameters A(i)k and B(i)k , and the parameters A(i)k and B(i)k are adap-
tively adjusted by the iterative posterior mean vector μ(i)k and covariance matrix Σ(i)k at
the same time. As a result, the behavior of the Kalman gain K̃(i+1)k is likely to be indef-
inite and depends heavily on the relative size of state and measurement outliers. The
indefinite behavior of the Kalman gain K̃(i+1)k can easily cause the iterative posterior
mean vector μ(i)k and covariance matrix Σ(i)k to not converge to local optimums.

To solve this problem, [22] propose a heuristic idea that the iterations of auxil-
iary parameters are separated to guarantee the definite behavior of the Kalman gain.
That is to say, the auxiliary parameter λ(i)(0)k is first iterated with fixed auxiliary pa-
rameter ξ (0)(0)k = 1 until convergence, i. e., limi→+∞ λ

(i)(0)
k = λ̄k, and then the auxiliary

parameter ξ (0)(j)k is iterated with fixed auxiliary parameter λ̄k until convergence, i. e.,
limj→+∞ ξ

(0)(j)
k = ̄ξk, where ̄ξk and λ̄k denote the local optimums of the auxiliary pa-

rameters. The detailed implementation of the SSMKF based on the separate iterative
algorithm is listed in Algorithm 4.2, where ϵ1 and ϵ2 denote the iteration thresholds
of ξk and λk, respectively, N1 and N2 denote the maximum numbers of iterations of ξk
and λk, respectively, and i∗1 and j

∗
2 denote the cyclic variables at the end of the first and

second loops, respectively.

Theorem 4.4.3. If the similarity functions fz(⋅) and fx(⋅) satisfy Condition 3 and ̇fz(0)
and ̇fx(0) have lower bounds, then the iterative auxiliary parameters λ(i)(0)k and ξ (0)(j)k
will converge to local optimums λ̄k and ̄ξk , respectively, i. e.,

lim
i→+∞

λ(i)(0)k = λ̄k , lim
j→+∞

ξ (0)(j)k = ̄ξk . (4.78)

Proof. First, we prove the convergence of λ(i)(0)k . To this end,we consider the two cases:
λ(1)(0)k ≥ λ(0)(0)k and λ(1)(0)k ≤ λ(0)(0)k .

Case 1: We first assume λ(i)(0)k ≥ λ(i−1)(0)k . Then, using the 4th–8th equations in
Algorithm 4.2 yields

{B(i+1)(0)k = (Im −HkK̃
(i+1)(0)
k )(zk −Hkx̂k|k−1)(zk −Hkx̂k|k−1)T(Im −HkK̃

(i+1)(0)
k )T,

Im −HkK̃
(i+1)(0)
k = Rk(Hkλ

(i)(0)
k Pk|k−1HT

k + Rk)−1.
(4.79)
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Algorithm 4.2: One time step of the SSMKF based on the separate iterative
algorithm.
Inputs: x̂k−1|k−1, Pk−1|k−1, Fk, Hk, zk, Qk, Rk, fx(⋅), fz(⋅), ϵ1, ϵ2, N1, N2, δ.
Time update:

1. x̂k|k−1 = Fk x̂k−1|k−1
2. Pk|k−1 = FkPk−1|k−1FTk + Qk
Iterative measurement update:

3. Initialization: ξ (0)(0)k = 1, λ(0)(0)k = 1
for i = 0 : N1 − 1
Calculate P̃(i+1)(0)k|k−1 and R̃(i+1)(0)k
4. P̃(i+1)(0)k|k−1 = Pk|k−1/ξ

(0)(0)
k , R̃(i+1)(0)k = Rk/λ

(i)(0)
k

Evaluate μ(i+1)(0)k and Σ(i+1)(0)k
5. K̃(i+1)(0)k = P̃(i+1)(0)k|k−1 HT

k (Hk P̃
(i+1)(0)
k|k−1 HT

k + R̃
(i+1)(0)
k )−1

6. μ(i+1)(0)k = x̂k|k−1 + K̃
(i+1)(0)
k (zk − Hk x̂k|k−1)

7. Σ(i+1)(0)k = P̃(i+1)(0)k|k−1 − K̃
(i+1)(0)
k Hk P̃

(i+1)(0)
k|k−1

Calculate B(i+1)(0)k
8. B(i+1)(0)k = (zk − Hkμ

(i+1)(0)
k )(zk − Hkμ

(i+1)(0)
k )T+ HkΣ

(i+1)(0)
k HT

k
Evaluate λ(i+1)(0)k
9. λ(i+1)(0)k = −2 ̇fz(tr(B

(i+1)(0)
k R−1k ))

Check the constraints in (4.36)
10 If λ(i+1)(0)k < δ, then λ(i+1)(0)k = δ.
Check the convergence of iteration

11. If
|λ(i+1)(0)k −λ(i)(0)k |

|λ(i)(0)k |
≤ ϵ1, stop iteration.

end for

for j = 0 : N2 − 1
Calculate P̃(i

∗
1 )(j+1)

k|k−1 and R̃(i
∗
1 )(j+1)

k

12. P̃(i
∗
1 )(j+1)

k|k−1 = Pk|k−1/ξ
(0)(j)
k , R̃(i

∗
1 )(j+1)

k = Rk/λ
(i∗1 )(0)
k

Evaluate μ(i
∗
1 )(j+1)

k and Σ(i
∗
1 )(j+1)

k

13. K̃(i
∗
1 )(j+1)

k = P̃(i
∗
1 )(j+1)

k|k−1 HT
k (Hk P̃

(i∗1 )(j+1)
k|k−1 HT

k + R̃
(i∗1 )(j+1)
k )−1

14. μ(i
∗
1 )(j+1)

k = x̂k|k−1 + K̃
(i∗1 )(j+1)
k (zk − Hk x̂k|k−1)

15. Σ(i
∗
1 )(j+1)

k = P̃(i
∗
1 )(j+1)

k|k−1 − K̃
(i∗1 )(j+1)
k Hk P̃

(i∗1 )(j+1)
k|k−1

Calculate A(0)(j+1)k

16. A(0)(j+1)k = (μ(i
∗
1 )(j+1)

k − x̂k|k−1)(μ
(i∗1 )(j+1)
k − x̂k|k−1)T + Σ

(i∗1 )(j+1)
k

Evaluate ξ (0)(j+1)k
17. ξ (0)(j+1)k = −2 ̇fx(tr(A

(0)(j+1)
k P−1k|k−1))

Check the constraints in (4.36)
18. If ξ (0)(j+1)k < δ, then ξ (0)(j+1)k = δ.
Check the convergence of iteration

19. If
|ξ (0)(j+1)k −ξ (0)(j+1)k |

|ξ (0)(j)k |
≤ ϵ2, stop iteration.

end for

20. x̂k|k = μ
(i∗1 )(j∗2 )
k , Pk|k = Σ

(i∗1 )(j∗2 )
k

Outputs: x̂k|k and Pk|k
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Employing (4.79) and λ(i)(0)k ≥ λ(i−1)(0)k results in

tr(B(i)(0)k R−1k ) ≥ tr(B(i+1)(0)k R−1k ). (4.80)

Since ̈fz(t) ≥ 0, − ̇fz(t) is a monotonically decreasing function, utilizing (4.80) and
the 9th equation in Algorithm 4.2 yields

λ(i+1)(0)k ≤ λ(i)(0)k . (4.81)

According to the mathematical induction method, we have

λ(0)(0)k ≤ λ(1)(0)k ≤ ⋅ ⋅ ⋅ ≤ λ(i)(0)k ≤ ⋅ ⋅ ⋅ ≤ λ(∞)(0)k . (4.82)

Considering that − ̇fz(t) is a monotonically decreasing function and tr(B(i)(0)k R−1k ) ≥
0, we obtain

λ(i)(0)k = −2 ̇fz(tr(B(i)(0)k R−1k )) ≤ −2 ̇fz(0). (4.83)

It can be seen from (4.82)–(4.83) that {λ(i)(0)k } is a monotonically increasing se-
quence with an upper bound −2 ̇fz(0). Thus, the sequence {λ(i)(0)k } converges when
λ(1)(0)k ≥ λ(0)(0)k and ̇fz(0) has a lower bound.

Case 2: Similar to the Case 1, if λ(1)(0)k ≤ λ(0)(0)k , we have

λ(0)(0)k ≥ λ(1)(0)k ≥ ⋅ ⋅ ⋅ ≥ λ(i)(0)k ≥ ⋅ ⋅ ⋅ ≥ λ(∞)(0)k > 0. (4.84)

It can be seen from (4.84) that {λ(i)(0)k } is a monotonically decreasing sequence
with a lower bound 0. Thus, the sequence {λ(i)(0)k } also converges when λ(1)(0)k ≤ λ(0)(0)k .
Above all, the sequence {λ(i)(0)k } converges if the similarity function fz(⋅) satisfies Con-
dition 3 and ̇fz(0) has lower bound. Similarly, we can also prove that the sequence
ξ (0)(j)k converges if the similarity function fx(⋅) satisfies Condition 3 and ̇fx(0) has lower
bound.

We can see fromTheorem4.4.3 that, if the similarity functions fx(⋅) and fz(⋅) satisfy
Condition 3 and ̇fz(0) and ̇fx(0) have lower bounds, the iterative auxiliary parameters
λ(i)(0)k and ξ (0)(j)k will converge to local optima, and then the corresponding posterior
mean vector and covariance matrix also converge to local optima, which guarantees
the local convergence of the separate iterative algorithm. As compared with the fixed-
point iteration algorithm, the separate iterative algorithm does not require an initial
mean vector to be sufficiently close to the optimal mean vector. Thus, the local con-
vergence conditions of the fixed-point iterative algorithm are more harsh than those
of the separate iterative algorithm.
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4.5 Selections of the similarity functions

It is seen from Algorithm 4.1 and Algorithm 4.2 that the similarity functions fx(⋅) and
fz(⋅) are necessary to implement the SSMKF. Next, wewill provide the selections of the
similarity functions to guarantee that the SSMKF is identical to the standard Kalman
filter for the case of Gaussian noises and robust to the state andmeasurement outliers.

Firstly, the relationships between the approximate one-step prediction error co-
variancematrixA∗k and the true one-step prediction error covariancematrixPk|k−1 and
that between the approximate measurement noise covariance matrix B∗k and the true
measurement noise covariance matrix Rk are studied for a linear state-space model
with Gaussian state and measurement noises.

Proposition 4.5.1. For a linear state-space model with Gaussian state and measure-
ment noises, A∗k and B

∗
k can be, respectively, approximated as the one-step prediction

error covariance matrix and measurement noise covariance matrix, i. e.,

A∗k ≈ Pk|k−1, B∗k ≈ Rk . (4.85)

Proof. Using the Kalman measurement update equations in (4.24)–(4.25) yields

{A∗k = Pk|k + KkP̄zzk|k−1K
T
k ,

B∗k = (Im −HkKk)P̄zzk|k−1(Im −HkKk)T +HkPk|kHT
k . (4.86)

Considering that P̄zzk|k−1 ≈ HkPk|k−1HT
k + Rk for the case of Gaussian noises and

employing (4.86) results in

{A∗k ≈ Pk|k + Kk(HkPk|k−1HT
k + Rk)KT

k ,
B∗k ≈ Rk −HkPk|k−1HT

k +HkKk(HkPk|k−1HT
k + Rk)KT

kH
T
k +HkPk|kHT

k . (4.87)

Substituting the Kalman measurement update equation in (4.87), we can obtain
(4.85).

Second, we study the conditions of the similarity functions fx(⋅) and fz(⋅) to guar-
antee that the SSMKF is identical to the standard Kalman filter for the case of Gaussian
noises. Substituting (4.85) in (4.23), we have

ξ∗k = −2 ̇fx(n), λ∗k = −2 ̇fz(m) (4.88)

where n and m are, respectively, the dimensions of the state vector and the measure-
ment vector.

It is seen from Algorithm 4.1 and Algorithm 4.2 that the SSMKF is identical to the
standard Kalman filter when the modified parameters are unity, i. e., ξ∗k = λ∗k = 1.
Therefore, to guarantee that the SSMKF is identical to the standard Kalman filter when
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there are no state and measurement outliers, the similarity functions fx(⋅) and fz(⋅)
need to satisfy the following equations:̇fx(n) = −0.5, ̇fz(m) = −0.5. (4.89)

Finally, we discuss the conditions of the similarity functions fx(⋅) and fz(⋅) to guar-
antee that the SSMKF is robust to outliers. Define two auxiliary matrices as follows:

Ψk1 = A∗k − Pk|k−1, Ψk2 = B∗k − Rk . (4.90)

In general, if there are state andmeasurement outliers, the approximate one-step
prediction error covariancematrixA∗k is not less than the nominal one-step prediction
error covariance matrix Pk|k−1, and the approximate measurement noise covariance
matrix B∗k is also not less than the nominal measurement noise covariance matrix Rk,
i. e.,

Ψk1 ≥ 0, Ψk2 ≥ 0. (4.91)

Furthermore, the auxiliary matrices Ψk1 and Ψk2 depend on the magnitudes of the
state and measurement outliers, respectively, and the larger the state and measure-
ment outliers, the larger the auxiliary matricesΨk1 andΨk2 that will be generated.

Proposition 4.5.2. For a linear state-space model with outlier-contaminated state and
measurement noises, if the similarity functions fx(⋅) and fz(⋅) satisfy the following condi-
tions

{ ̇fx(t) < 0, ̈fx(t) ≥ 0, ̇fx(n) = −0.5, t ∈ [0,+∞),̇fz(t) < 0, ̈fz(t) ≥ 0, ̇fz(m) = −0.5, t ∈ [0,+∞), (4.92)

then the modified auxiliary parameters ξ∗k and λ∗k satisfy the following equations:

0 < ξ∗k ≤ 1, 0 < λ∗k ≤ 1, (4.93)

and the larger are the state and measurement outliers, the smaller will be the modified
auxiliary parameters ξ∗k and λ∗k obtained.

Proof. Using (4.90)–(4.91) yields

{η1 = tr(A∗kP−1k|k−1) = tr(Ψk1P−1k|k−1) + n ≥ n,
η2 = tr(B∗kR−1k ) = tr(Ψk2R−1k ) +m ≥ m. (4.94)

Substituting (4.94) into (4.23) results in

ξ∗k = −2 ̇fx(η1), λ∗k = −2 ̇fz(η2). (4.95)
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Employing (4.92) in (4.95), we can obtain (4.93). Moreover, the larger are the state
and measurement outliers, the larger are the auxiliary matrices Ψk1 and Ψk2 gener-
ated. Then, the larger η1 and η2 are obtained, based on which the smaller modified
auxiliary parameters ξ∗k and λ∗k are achieved by using (4.92).

Employing (4.93) in (4.22) results in

P̃∗k|k−1 − Pk|k−1 ≥ 0, R̃∗k − Rk ≥ 0. (4.96)

It is observed from (4.96) that themodified prediction error covariancematrix and
themodifiedmeasurement noise covariancematrix are, respectively, not less than the
nominal prediction error covariance matrix and the nominal measurement noise co-
variance matrix when there are, respectively, state and measurement outliers. More-
over, according to Proposition 4.5.2 and (4.22), the larger are the state and measure-
ment outliers, the smaller the modified auxiliary parameters ξ∗k and λ∗k will be, and
the larger are the modified prediction error covariance matrix and the modified mea-
surement noise covariance matrix will become.

Using (4.21)–(4.22), the Kalman gain K̃∗k can be reformulated as

K̃∗k = Pk|k−1HT
k(HkPk|k−1H

T
k + ξ∗kλ∗k Rk)−1. (4.97)

According to Proposition 4.5.2 and (4.97), the Kalman gain K̃∗k depends heavily
on the relative magnitudes of the state and measurement outliers. Specifically, the
Kalman gain is increased if the state outlier has a larger magnitude than the measure-
ment outlier, and vice versa. As a result, the negative effects of outliers on the SSMKF
can be resisted through adjusting the Kalman gain, adaptively.

As an example, some exemplary similarity functions f (⋅) are listed in Table 4.1,
where p denotes the dimension of the state vector when fx(⋅) is selected as f (⋅) and
denotes the dimension of the measurement vector when fz(⋅) is selected as f (⋅), and σ
and ν are, respectively, namedas the kernel size and the dof parameter to be consistent
with the existing MCKF [8] and RSTKF [18], andω is also named as the dof parameter.

It is easy to verify that the exemplary similarity functions listed in Table 4.1 sat-
isfy the conditions of Theorems4.2.1 and4.3.1 andProposition 4.5.2. Theorem4.3.2 and

Table 4.1: Exemplary similarity functions f (⋅) and their first and second derivatives.

f (t) ̇f (t) ̈f (t)

−0.5t −0.5 0
σ2 exp( p−t2σ2 ) −0.5 exp( p−t2σ2 )

1
4σ2 exp(

p−t
2σ2 )

−0.5(ν + p) log(1 + t
ν ) −0.5 ν+p

ν+t 0.5 ν+p
(ν+t)2

−√(ω + p)(ω + t) −0.5√ ω+p
ω+t 0.25√ω+p3√ω+t
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Propositions 4.3.4, 4.3.5, 4.4.1 and 4.5.1 do not need the exemplary similarity functions
to satisfy the additional conditions. Next, we will further confirm whether the exem-
plary similarity functions satisfy the conditions of Theorems 4.3.3, 4.4.2 and 4.4.3 and
Proposition 4.3.6.

Corollary 4.5.3. If the kernel size σ and the dof parameter ν satisfy the following con-
straints:

σ2 exp(n − Y∗1k
2σ2
) > 1, σ2 exp(m − Y∗2k

2σ2
) > 1, ν > 2 − p, (4.98)

then the exemplary similarity functions in Table 4.1 satisfy the equation (4.30) in Theo-
rem 4.3.3.

Proof. Using (4.18) and (4.45), (4.30) can be rewritten as[ ̇fx(Y∗1k)]2 ≥ ̈fx(Y∗1k), [ ̇fz(Y∗2k)]2 ≥ ̈fz(Y∗2k), (4.99)

where Y∗1k and Y
∗
2k are given in (4.45).

Substituting the exemplary similarity functions in Table 4.1 in (4.99), we can ob-
tain (4.98).

It is worth noting that there is no constraint on the dof parameter ω to guarantee
that Theorem4.3.3 holds. It is seen fromCorollary 4.5.3 the constraint on thekernel size
σ depends on the auxiliary parameters Y∗1k and Y

∗
2k . As a result, the constraint on the

kernel size σmay change for various application scenarios. To address this problem, a
reasonable scheme is choosing a sufficiently large kernel size σ so that the constraint
on the kernel size always holds.

It can be seen from (4.93) that ξ∗k and λ∗k have positive upper bounds ξmax =
λmax = 1. Since the second derivatives of the similarity functions are nonnegative,
the minimum values of the negative derivatives of the similarity functions − ̇fx(t) and− ̇fz(t) are achieved at t = +∞. It can be seen from Table 4.1 that the negative deriva-
tives of the exemplary similarity functions approach 0 as t tends to +∞. As a result,
the modified auxiliary parameters ξ∗k and λ∗k do not have positive lower bounds, and
then Proposition 4.3.6 does not hold, whichmay lead to filtering instability. To address
this problem, we can impose a very small lower bound δ on the modified auxiliary
parameters ξ∗k and λ∗k to guarantee filtering stability, as shown in the 13th and 14th
equations of Algorithm 4.1 and the 10th and 18th equations of Algorithm 4.2.

Corollary 4.5.4. For the exemplary similarity functions, if the kernel size σ 󴀀󴀂󴀠 0 and the
dof parameters ν 󴀀󴀂󴀠 0 and ω 󴀀󴀂󴀠 0, then there exists positive and bounded real numbers
α1 and α2, making equation (4.65) in Theorem 4.4.2 hold.

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



4 Outlier-robust Kalman filtering framework based on statistical similarity measure | 89

Proof. Let g(t) = ̈f (t2)t. For the case of exponential similarity function, the first-order
derivative of g(t) is formulated as follows:

ġ(t) = 1
4σ2

exp(p − t2
2σ2
)(1 − t2

σ2
). (4.100)

It can be seen from (4.100) that ġ(t) ≥ 0 when t ∈ [0, σ] and ġ(t) ≤ 0 when t ∈[σ,+∞]. Then, g(t) achieves the maximum value at t = σ, and its maximum value
is 1

4σ exp(0.5p/σ2 − 0.5). Thus, if the kernel size σ 󴀀󴀂󴀠 0, then there is a positive and
bounded α = 1

4σ exp(0.5p/σ2 − 0.5), making (4.65) hold.
Similarly, (4.65) also holds for logarithmic and square-root similarity functions if

the dof parameters satisfy the constraints ν 󴀀󴀂󴀠 0 and ω 󴀀󴀂󴀠 0.
Finally, we discuss the conditions of Theorem 4.4.3. It is easy to verify that, if the

kernel size σ 󴀀󴀂󴀠 0 and the dof parameters ν 󴀀󴀂󴀠 0 and ω 󴀀󴀂󴀠 0, then ̇f (0) has a lower
bound, which guarantees the local convergence of the separate iterative algorithm.
Also, according to Theorem 4.4.2 and Corollary 4.5.4, if the kernel size σ 󴀀󴀂󴀠 0 and the
dof parameters ν 󴀀󴀂󴀠 0 and ω 󴀀󴀂󴀠 0, then the fixed-point iterative algorithm has local
convergence when the initial mean vector μ(0)k is sufficiently close to the optimalmean
vector μ∗k . Thus, for the exemplary similarity functions, the convergence conditions of
the separate iterative algorithm is easier to be satisfied as compared with that of the
fixed-point iterative algorithm.

4.6 Relationships to other outlier-robust Kalman
filters

In this section,we investigate the relationships between SSMKF andM-estimate based
Kalman filters, RSTKFs and standard Kalman filters. In the M-estimate based Kalman
filter, the state estimate is obtained by solving the following minimization problem
[23]

x̂k|k = argmin
xk

J(xk), (4.101)

where J(xk) is formulated as

J(xk) = n∑
i=1

ρ(Nki(xk − x̂k|k−1)) + m∑
j=1

ρ(Mkj(zk −Hkxk)). (4.102)
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Table 4.2: Exemplary similarity functions f (⋅) in SSMKF and their corresponding robust cost func-
tions ρ(⋅) in M-estimation.

Function type f (t) ρ(t)

Exponential function σ2 exp( p−t2σ2 ) −σ2 exp(− t2

2σ2 )

Logarithmic function −0.5(ν + p) log(1 + t
ν )

ν2
2 log(1 + t2

ν )

Square root function −√(ω + p)(ω + t) √ω(ω + t2)

where ρ(⋅) is the robust cost function, and the vectors Nki and Mkj are, respectively,
defined as follows: {{{{{{{

S−1k|k−1 = [NT
k1, . . . ,NT

ki, . . . ,NT
kn]T,

S−1Rk
= [MT

k1, . . . ,MT
kj, . . . ,MT

km]T,
Pk|k−1 = Sk|k−1STk|k−1, Rk = SRk

STRk
. (4.103)

Interestingly, when the robust cost function in (4.102) is chosen as ρ(t) ∝ −f (t2),
as shown in Table 4.2, we can see the connection and difference between the SSMKF
framework and the M-estimator. When the robust cost function is set as ρ(t) =−σ2 exp(− t2

2σ2 ), the M-estimator turn out to be the MCKF. And the M-estimator with
cost function ρ(t) = √ω(ω + t2) is similar to the Huber-based Kalman filter. In ad-
dition, We can obtain the Cauchy-based M-estimator by choosing the cost function
as ρ(t) = ν2

2 log(1 + t2
ν ). Nonetheless, there are obvious difference between the two

theoretical frameworks. It can be spotted from (4.101) and (4.102) that the posterior
covariance matrix is independent of the minimization of the robust cost function in
the M-estimator, and only a point estimate of the state vector can be obtained. Dif-
ferent from the M-estimate based Kalman filter, in the SSMKF, the posterior PDF of
the state can be calculated by maximizing the lower-bound of the SSM. Thanks to the
expectation operations in (4.16) and (4.17), the SSMKF takes advantage of the random-
ness inherent in the state vector, which is not utilized in the M-estimator. Therefore,
the SSMKF framework is an improved version of the M-estimate based Kalman filter.

The RSTKF [18] and standard Kalman filter are both special cases of the SSMKF
framework. It can be found from Algorithm 4.1 that the RSTKF is equivalent to the
SSMKF when the similarity functions are, respectively, selected as fx(t) = −0.5(ν +
n) log(1 + t

ν ) and fz(t) = −0.5(ν + m) log(1 + t
ν ). Hence, the SSMKF can be looked on

as a generalized version of the RSTKF. The SSMKF becomes the standard Kalman fil-
ter when the similarity functions are, respectively, chosen as fx(t) = −0.5t and fz(t) =−0.5t. Besides, it is observed from Table 4.1 that the derivatives of the exemplary sim-
ilarity functions are all −0.5 when the kernel size σ and the dof parameters ν and ω
tend to infinity, i. e., σ → +∞, ν → +∞ and ω → +∞. As a result, the SSMKF based
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on the exemplary similarity functions all reduce to the standard Kalman filter when
the parameters σ, ν and ω tend to infinity.

4.7 Simulation study

4.7.1 Simulation setup and description

We consider a problem of tracking an agile target whose positions are measured in
clutter, and the horizontal positions and corresponding velocities are chosen as el-
ements of the state vector. The state transition matrix and measurement matrix are,
respectively, Fk = [ I2 TI20 I2 ] and Hk = [I2 0], where T = 1 s and I2 denote the sampling
interval and 2-D identitymatrix, respectively. The outlier contaminated state andmea-
surement noises are generated according to [19]{{{{{{{{{{{{{

wk ∼ {N(0,Q) w.p. 0.95,
N(0, 100Q) w.p. 0.05,

vk ∼ {N(0,R) w.p. 0.95,
N(0, 500R) w.p. 0.05, (4.104)

where the nominal state and measurement noise covariance matrices are, respec-

tively, selected as Q = [ T33 I2 T2
2 I2

T2
2 I2 TI2
] and R = 100I2. The true initial state vector is

chosen as x0 = [0, 0, 10, 10]T, the initial estimation error variance is set as
P0 = diag([10000, 10000, 100, 100]) and the initial state estimate is randomly
selected from a Gaussian distribution, i. e., x̂0|0 ∼ N(x0,P0).

As an example, the similarity functions fx(⋅) and fz(⋅) are, respectively, selected as
exponential, logarithmic and square-root functions as in Table 4.1, and the separate
iterative algorithm is employed to implement the SSMKF. Then, three outlier-robust
Kalman filters can be obtained including SSMKF-exp-S, SSMKF-log-S, and SSMKF-
sqrt-S, where SSMKF-exp-S denotes the exponential similarity function and the sep-
arate iterative algorithm-based Kalman filter, and the explanations of the other two
abbreviations are similar to the SSMKF-exp-S.

The SSMKFs are compared with the standard Kalman filter with true noise covari-
ance matrices (KFTNCM), the HKF [26], the MCKF [8], the RSTKF [18], the IMM filter
[6], and the PF [5], where the true noise covariance matrices are used to obtain filter-
ing estimates in the KFTNCM. The tuning parameter of the existing HKF is set as a
common value of γ = 1.345 [26], and the kernel size of the SSMKF-exp-S and the ex-
isting MCKF is selected as σ = 10 to achieve a trade-off between estimation accuracy
and stability [8], and the dof parameter of the SSMKF-log-S and the existing RSTKF is
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set as ν = 10, and the dof parameter of the SSMKF-sqrt-S is set as ω = 5. To guaran-
tee the convergence of the iterations, the iteration threshold and the maximum num-
ber of iterations are, respectively, set as ϵ = 10−16 and Nm = 50 in all outlier-robust
Kalman filters. To guarantee the filtering stability of the SSMKFs, the lower bounds
of the auxiliary parameters are set as δ = 10−8. To better show the advantages of the
SSMKFs, two IMM filters and three particle filters are performed. In the first IMM fil-
ter (IMM-1), the true instantaneous values of state andmeasurement noise covariance
matrices are used, and the four corresponding noise models are, respectively, {Q,R},{Q, 500R}, {100Q,R}, and {100Q, 500R}, and the model transition probability matrix
of the first IMM filter is set as Π1, where Π1(i, i) = 0.85 and Π1(i, j) = 0.05(i ̸= j). In the
second IMMfilter (IMM-2), the inaccurate instantaneous state andmeasurement noise
covariance matrices are employed, and the four corresponding noise models are, re-
spectively, {Q,R}, {Q, 100R}, {1000Q,R}, and {1000Q, 100R}, and the model transition
probability matrix of the first IMM filter is selected asΠ2, where all elements ofΠ2 are
0.25. The initial model probability vectors of the IMM-1 and IMM-2 are both chosen as[0.25, 0.25, 0.25, 0.25]. In the first PF (PF-1) and the third PF (PF-3), the true Gaus-
sian mixture PDFs of state and measurement noises given in (4.104) are used, and the
particle numbers are, respectively, selected as 1000 and 500 in the PF-1 and PF-3. In
the second PF (PF-2), the inaccurate Gaussianmixture PDFs of state andmeasurement
noises are employed, where the used state and measurement noise PDFs are, respec-
tively, p(wk) = 0.98N(wk ;0,Q) + 0.02N(wk ;0, 1000Q) and p(vk) = 0.98N(vk ;0,R) +
0.02N(vk ;0, 100R). Note that the IMM-1 and PF-1 are only used as filtering references
since the true instantaneous values of state andmeasurement noise covariancematri-
ces, and the true state andmeasurement noise PDFs are all unavailable in the presence
of random and unknown state and measurement outliers. All filtering algorithms are
coded with MATLAB and are executed on a computer with Intel Core i7-6900K CPU
@ 3.20GHz. The MATLAB codes of this chapter will be open access and can be freely
downloaded from the link https://www.researchgate.net/profile/Yulong_Huang3.

In this simulation, the simulation time is set as 200 s, and the total number of
Monte Carlo runs is selected as 1,000. The root mean square errors (RMSEs) and av-
eraged RMSEs (ARMSEs) of position and velocity are chosen as performance metrics
to compare the estimation accuracy, whose definitions are given in the literature [18].
To better exhibit the RMSEs of position and velocity of all filters in Figs. 4.1–4.4, the
RMSEs are smoothed using a moving average method with span of 10 s.

4.7.2 Simulation results and comparisons

The RMSEs and ARMSEs (40–200 s) of position and velocity and single-step run time
from the SSMKF-exp-S, SSMKF-log-S and SSMKF-sqrt-S and the existing outlier-robust
Kalman filters are, respectively, illustrated in Figs. 4.1–4.2 and Table 4.3. It can be seen
from Figs. 4.1–4.2 and Table 4.3 that the RMSEs and ARMSEs of position and velocity
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Figure 4.1: RMSEs of positions
of the SSMKF-exp-S, SSMKF-
log-S and SSMKF-sqrt-S and
other outlier-robust Kalman
filters.

Figure 4.2: RMSEs of velocities
of the SSMKF-exp-S, SSMKF-
log-S and SSMKF-sqrt-S and
other outlier-robust Kalman
filters.

from the SSMKF-exp-S, SSMKF-log-S and SSMKF-sqrt-S are all smaller than those from
the existing KFTNCM, HKF, MCKF and RSTKF. We can also see from Table 4.3 that the
SSMKFs all require more run time than the existing outlier-robust Kalman filters. As
compared with the best ARMSEpos from the existing RSTKF and the best ARMSEvel
from the existing MCKF, the ARMSEs of position and velocity from the SSMKF-log-S
improve 20.91% and 5.18%, respectively. Thus, the SSMKF-exp-S, SSMKF-log-S and
SSMKF-sqrt-S all have better estimation accuracy but higher computational complex-
ities than the existing KFTNCM, HKF, MCKF and RSTKF.

Figures 4.3–4.4 and Table 4.3, respectively, show the RMSEs and ARMSEs (40 s–
200 s) of position andvelocity and single-step run time from theSSMKF-exp-S, SSMKF-
log-S and SSMKF-sqrt-S and the existing IMM filters and PFs. It is observed from
Figs. 4.3–4.4 and Table 4.3 that the SSMKF-exp-S, SSMKF-log-S and SSMKF-sqrt-S all

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



94 | Y. Huang et al.

Table 4.3: Single-step run time and ARMSEs over 40–200 s.

Filters ARMSEpos (m) ARMSEvel (m/s) Time (ms)

KFTNCM 37.17 8.44 0.019
HKF 17.11 6.71 0.445
MCKF 17.43 6.56 0.465
RSTKF 16.12 10.48 0.505
IMM-1 10.73 5.91 0.4337
IMM-2 17.04 11.53 0.4337
PF-1 15.00 5.80 80.365
PF-2 16.65 8.95 80.365
PF-3 21.54 6.30 40.183
SSMKF-exp-S 14.38 6.28 0.563
SSMKF-log-S 12.75 6.22 1.359
SSMKF-sqrt-S 14.11 6.29 1.220

Figure 4.3: RMSEs of positions
of the SSMKF-exp-S, SSMKF-
log-S and SSMKF-sqrt-S and the
IMM filters and PFs.

have smaller RMSEs and ARMSEs of position and velocity than the existing IMM-2
(inaccurate noise models), PF-2 (inaccurate noise PDFs and 1,000 particles), and PF-3
(accurate noise PDFs and 500 particles). As compared with the best ARMSEpos from
the PF-2 and the best ARMSEvel from the PF-3, the ARMSEs of position and velocity
from the SSMKF-log-S improve 23.42% and 1.27%, respectively. It can be also ob-
served from Figs. 4.3–4.4 and Table 4.3 that the RMSEs and ARMSEs of position of
the SSMKF-log-S are close to those of the IMM-1 (filtering reference), and the RMSEs
and ARMSEs of velocity of the SSMKF-log-S are close to those of the PF-1 (filtering
reference), and the filters all have smaller RMSEs and ARMSEs of position than the
PF-1. The reason why PF-1 exhibits poor estimation accuracy of position may be that
the heavy-tailed features of posterior PDFs are easily lost during the particle-filtering
process when a limited number of particles are used. Furthermore, we can observe
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Figure 4.4: RMSEs of velocities
of the SSMKF-exp-S, SSMKF-
log-S and SSMKF-sqrt-S and the
IMM filters and PFs.

from Table 4.3 that the SSMKFs have a slightly longer run time than the IMM filters,
but significantly shorter run time than the PFs. Although the computational time of
the PF can be significantly reduced if it is implemented in a parallel fashion, it still
requires accurate knowledge of the probability distributions of the state andmeasure-
ment noises. Thus, the SSMKF-exp-S, SSMKF-log-S and SSMKF-sqrt-S all have better
estimation accuracy than the IMM-2, PF-2 and PF-3, and slightly higher computational
complexities than the IMM filters but significantly lower computational complexities
than the standard PFs.

4.8 Conclusions

This chapter introduced the SSM to quantify the similarity between two random vec-
tors. The measure was then employed to develop the SSMKF. Some theoretical anal-
yses and discussions about the approximate errors and the numerical and filtering
stabilities were provided to illustrate the effectiveness of the SSMKF. The fixed-point
iterative algorithm and the separate iterative algorithm were used to implement the
SSMKF, and their local convergence conditions were also provided and compared. In
addition, the selections of the similarity functions were presented, and four exem-
plary similarity functions were provided. Then the relationships between the SSMKF
and other existing outlier-robust Kalman filters were revealed. Simulation results il-
lustrated that, by selecting appropriate similarity functions, the SSMKF can achieve
improved estimation accuracy but have higher computational complexities than other
existing outlier-robust Kalman filters. Also, as compared with the IMM filter and PF,
the SSMKF ismore suitable for addressing the filtering problemof a linear systemwith
outlier-contaminated state and measurement noises.
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Paweł Oświęcimka and Ludovico Minati
5 Multifractal characteristics of singular
signals

Abstract:Multifractal formalism is one of the most potent tools for characterizing the
singular behavior of signals encountered across various scientific and engineering sit-
uations. This conceptually advanced methodology is made accessible to experimen-
talists via the development of algorithms capable of determining a time-serie’s local
scaling properties through a set of scaling exponents and an associated singularity
spectrum. By determining a signal’s multifractal properties, the temporal organiza-
tion of the underlying various amplitude fluctuations can be quantitatively described
within a unique scheme of the correlation structure. In this work, we demonstrate
that the degree of complexity of a signal and its hierarchical organization’s character
are reflected in the shape of the singularity spectrum. A stark example of this is of-
fered by financial time series, wherein well-developed multifractal spectra quantify
the hierarchical structure of the data and the heterogeneity of singular behavior. On
the other hand, for signals without a cascade-like organization of the singularities,
the singularity spectrum’s interpretation must be undertaken with extreme care. In
such cases, artifactual singularities can be produced by processes that are not firmly
interrelated. Thus, the fluctuation structure does not truly reveal the hierarchy of the
organization. We show examples of such time series produced by nonlinear dynam-
ical systems, particularly the Saito chaos generator, within which twofold dynamics,
one related to periodic component and the other related to hysteresis, are not hierar-
chically nested. Consequently, a local scaling analysis based on thewavelet transform
must be adequately applied to identify the structure of isolated singularities.

Keywords:multifractal analysis, Hölder exponent, singularity, complexity, dynamical
system, time-series analysis

5.1 Introduction

Multifractality is a concept that has found its application across many different areas
of science [2, 6, 10, 12, 13, 24, 26]. Within the framework of this methodology, the set of
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scaling exponents is used to describe the stochastic processes characterized by mul-
tiscaling properties. Hence, multifractal formalism is especially useful when singular
measures or functions, numerously represented in experimental data, are considered.
By decomposing the data’s correlation structure, the subsets related to various signal
amplitudes are quantitatively described within the uniformmethodology. This is par-
ticularly important when temporal data organization is dependent on the data ampli-
tude, as in the multifractal case.

The fundamental concepts of multifractal formalism are the singularity exponent
and the singularity spectrum. The local regularity of a function can be estimated via
the following relationship: 󵄨󵄨󵄨󵄨f (x0 + δ) − f (x0)󵄨󵄨󵄨󵄨 ∼ Cδα(x0), (5.1)

where α(x0), known as the Hölder exponent, determines the singularity strength
around x0; the more singular the function, the lower the Hölder exponent α. The sta-
tistical distribution of α refers to the Hausdorff dimension of the data support with a
particular α and is defined as follows:

f (α) = df ({x0, α(x0) = α}). (5.2)

The shape of f (α) resembles an inverted parabola with a maximum corresponding to
the most well-represented singularity in the data. To assess the singularity spectrum
of a time-series, two common approaches were proposed, i. e., multifractal detrended
fluctuation analysis, MFDFA [16], and wavelet transform modulus maxima, WTMM
[18]. Within the framework of these algorithms, the q-filtering technique is used to
estimate a partition function, and, on this basis, the singularity spectrum. However,
when isolated singularities are present, these techniques have to be used carefully.
This is due to the limitation of these methods in forming a spectrum consisting of iso-
lated points. Thus, considering singular but not fractal functions through the MFDFA
andWTMMalgorithms,we obtain broad spectramistakenly suggesting a complex and
hierarchical structure [21].

In this contribution, we demonstrate the results of the analysis of some systems
considered as multifractals, and of signals being ‘only’ singular but not fractally or-
ganized. In the former case, we consider synthetic multifractals, i. e., the binomial
cascade and time series generated by the Ikeda chaotic system. Then, we present the
analysis of representative financial data: logarithmic returns of the S&P 500 index,
and time intervals between consecutive transactions for Bayer (BAY) company listed
on the German stockmarket DAX. Finally, we present an analysis of the chaotic signal
generated by an electronic realization of the Saito system, an example of a signal with
isolated singularities.
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5.2 Methodology

5.2.1 Multifractal detrended fluctuation analysis

The possibly multiscale temporal organization of a time series may be characterized
employing multifractal detrended fluctuation analysis (MFDFA) [16]. This method is
beneficial for complex, nonstationary time-series whenmore than a single scaling ex-
ponent is needed to characterize the analyzed system sufficiently. The algorithm con-
sists of the following steps. Given a time series xi of length N, i = 1, 2, . . . ,N, the profile
Y(t) is calculated according to the formula:

Y(j) = j∑
i=1[xi − ⟨x⟩], (5.3)

where ⟨ ⟩ denotes the average over the entire time series. Due to the possible fractal
nature of the data, the profile has to be analyzed on various timescales s. Thus, Y(t)
is divided intoNs non-overlapping segments ν of length s (Ns = ⌊int(N/s)⌋). Moreover,
the length of the time series is not necessarily a multiple of the scale s. Thus, to avoid
neglecting data from the analysis, the division is performed starting both from the
beginningand from the endof the time series. Finally, the 2Ns segments are considered
in the analysis. The next step is to remove the possible trend from the data. Therefore,
for each segment, the assumed trend, usually a polynomial P(m)ν of order m, is fitted
and then subtracted from the data. The potential of this procedure to eradicate the
trend is dependent on the degree of the polynomial m [22]. In many numerical and
empirical experiments, the reasonable choice ism = 2, which is also used in the study
presented in this chapter. In each segment, the detrended variance is calculated:

F2(ν, s) = 1
s

s∑
k=1(X((ν − 1)s + k) − P(m)ν (k))2. (5.4)

To assess the scaling properties of the data with respect to the size of their amplitude,
the q-order filtering technique is applied. The fluctuations are filtered according to the
q, which amplifies segments with large (q > 0) or small fluctuations (q < 0). On this
basis, the q-order fluctuation functions are calculated with this equation:

Fq(s) = { 1
2Ns

2Ns∑
ν=1[F2(ν, s)]q/2}1/q, q ∈ ℜ \ {0}. (5.5)

If a time series exhibits fractal patterns, the power-law behavior is observed as

Fq(s) ∼ sh(q), (5.6)
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where h(q) denotes the generalized Hurst exponents. A time series that exhibits
monofractal scaling behavior can be described by a single scaling exponent h(q) = H
equal to theHurst exponent [8, 11]. The value ofH indicates the character and strength
of the linear correlation in the time series. Here, 0.5 < H ≤ 1 means persistent data
that are characterized by long-range positive autocorrelations. Data with 0 ≤ H < 0.5
exhibits antipersistent behavior, i. e., negative autocorrelations. For H = 0.5, only
short-range temporal dependencies are present. However, in the case of multifrac-
tal behavior, the set of scaling exponents is needed to characterize the time series’s
temporal organization. Thus, h(q) is a concave function of q, and the Hurst exponent
is retrieved for h(q = 2). According to the fractal formalism, the generalized Hurst
exponents are recalculated on the singularity spectrum using the formula

αG = h(q) + qh′(q), f (αG) = q[αG − h(q)] + 1, (5.7)

where αG is a local version of the Hurst exponent called the Hölder exponent, and
f (αG) refers to the fractal dimension of the data support with a particular αG. More-
over, we use subscriptG to emphasize that the presentedmethodology uses a “global”
measure (5.5) to assess the set of Hölder exponents [1]. The complexity of the data can
be quantified by the width of the singularity spectrum ΔαG. Thus, the more complex
a time series is (the more developed multifractality), the wider the multifractal spec-
trum, and vice versa. Information about the hierarchical organization of the data is
also provided by the degree of spectrum asymmetry, which can be assessed by the
equation [5]

Aα = (ΔαGL − ΔαGR)/(ΔαGL + ΔαGR), (5.8)

where ΔαGL and ΔαGR denote the distance of the spectrum maximum to the smallest
and the largest values of αG, respectively. Thus, positive values of Aα are an attribute
of the left-sided asymmetry of the spectrum, reflecting a much more complex organi-
zation of the large fluctuations than the smaller ones. On the contrary, in the case of
right-sided asymmetry, one has Aα < 0, and the support of the multifractality consists
mainly of small fluctuations.

5.2.2 Wavelet leader multifractal analysis

One of themost powerful tools for unveiling the data’s hierarchical structure and frac-
tal organization is the wavelet transform (WT) [15, 18]. Within this methodology, em-
ploying the elementary function ψa,s(x) = s−1/2ψ( x−as ), the so-called mother wavelet,
the analyzed signal is decomposed in a scale-space(time) half-plane. s is the scale pa-
rameter (frequency band), and a is thewavelet’s space (time) position (a, s ∈ ℜ, s > 0).
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The wavelet transform of the function f (x) is defined in the following way [1]:
Wf (a, s) = 1

s−1/2 ∞∫−∞ f (x)ψ(x − a
s
)dx. (5.9)

Singular behavior of the function f can be characterized through the scaling behavior
ofWf (a, s). Thus, the strength of singularity (Hölder exponent α) around the point x0
is estimated by the expression

Wf (x0, s) ∼ sαL(x0), s→ 0+, (5.10)

where subscript L denotes that the algorithm uses only local measures to estimate the
Hölder exponent. These properties make the wavelet formalism ideal in estimating
the singularity spectrum f (α) for fractal functions. To improve the stability of the cal-
culations, which can distort the results of the analysis for the most complex signals,
the wavelet leader approach was introduced [14, 15]. In this algorithm, the wavelet
coefficients cj,k for a function f are calculated as [28]

cj,k = 2−j ∫ℜ f (x)ψ(2−jx − k)dx, (5.11)

where sj = 2−j and aj,k = 2−jk (j, k ∈ Z) denote the discrete scale and time parameters,
respectively. Thewavelet leader Lj(x0) in x0 and level j is defined as the largest wavelet
coefficient in spatial the neighborhood of x0 at finer scales

Lj(x0) = sup
λ′⊂3λj,k(x0)󵄨󵄨󵄨󵄨cj,k(λ′)󵄨󵄨󵄨󵄨, (5.12)

where only dyadic intervals λj,k = [2jk, 2j(k + 1)] are considered, and 3λj,k(x0) = λj,k−1 ∪
λj,k ∪ λj,k+1 = [2j(k − 1, 2j(k + 2))] contains x0. Based on this definition, the structure
function S(q, j) can be defined as

S(q, j) = 2j ∑
λ∈Λj

Lqj , (5.13)

where q is a real number and Λj is a set of dyadic intervals at scale j. For fractal time-
series, power-law behavior of the structure functions is expected:

S(q, j) ≈ Cq2jζ (q), (2j → 0). (5.14)

Hence, the estimated scaling exponents ζ (q) are directly used to calculate the multi-
fractal spectrum according to the formula

f (αG) = infq∈R(qαG − ζ (q)) + 1. (5.15)
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5.3 Multifractal synthetic processes

5.3.1 Binomial cascade

The potential of multifractal methodology can be demonstrated when non-homo-
geneous measures, i. e., structures whose singularity spectrum f (α) is supported by
more than a single point, are analyzed [18]. The instructive example in this respect
is a binomial cascade, some variants of which can be regarded as a generalization
of the Cantor set construction. The procedure of generation of the cascade is defined
in the following way [17, 20]: The initial segment with a homogeneously distributed
measure [0, 1] is divided into two parts, and an a and (1 − a) portion of the initial
measure is assigned to the left and right subinterval, respectively. In the following
steps, this procedure is repeated for each subinterval independently, ad infinitum. In
practical application, the number of the cascade levels k is finite, and the size of each
subinterval j is 2−k . The measure Mj at the final stage is a product of k multipliers aij
according to the equation [17]

Mj = k∏
i=1 aij, (5.16)

where i is the particular level of the cascade. In Fig. 5.1a, the generated cascade is de-
picted. It is clear that the measure is not homogeneously distributed for the presented
data, and thus a different degree of singularities α can be identified. The hierarchical
structure of the singularities visualized utilizing the wavelet transform is presented in
Fig. 5.1b. The maxima of the wavelet coefficients form a tree with branches containing
information about the hierarchical construction. For this deterministic structure, the
singularity spectrum is derived straightforwardly as [16]:

α = − 1
log(2) aq log(a) + (1 − a)q log(1 − a)aq + (1 − a)q , (5.17)

f (α) = − q
log(2) aq log(a) + (1 − a)q log(1 − a)aq + (1 − a)q − − log(aq + (1 − a)q)

log(2) , (5.18)

where q ∈ ℜ. The estimated singularity spectrum, and also its theoretical counter-
parts, are depicted in Fig. 5.1c. The width of the spectrum ΔαG ≈ 0.8 unequivocally in-
dicates that the analyzed structure ismultifractal.Moreover, the symmetry of the spec-
trum implies that strong and weak singularities contribute equally to the multifractal
organization of the data. This result is confirmed by local analysis of the singularities.
Through Eq. 5.10, one can detect singular behaviors and assess their strength. The out-
come of this procedure applied to the binomial cascade is presented in Fig. 5.1d. The
continuous distribution of the estimated Hölder exponent and its symmetry confirm a
well-developed multifractality and undiversified distribution of the correlations over
fluctuations having different amplitudes.

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



5 Multifractal characteristics of singular signals | 105

Figure 5.1:Multifractal analysis of the binomial cascade. a) Graph of the binomial cascade generated
with a = 0.65. b) Wavelet transform of the data. c) Multifractal spectrum of the cascade. d) Relative
frequency fr histograms of the Hölder exponents.

5.3.2 Ikeda chaotic system

Another example of a synthetic system that can reproduce multifractal organization
is the chaoticmetronome derived from the Ikedamap [27]. Multifractal analysis of this
dataset is shown in Fig. 5.2. For the binomial cascade, the estimated singularity spec-
trum is broad (ΔαG ≈ 0.6), revealing the heterogeneous distribution of the measure
and nonlinear dependencies among the data (Fig. 5.2b). However, in contrast to the
binomial cascade, the spectrum’s shape is markedly asymmetrical, with the left wing
more developed than the right one. This implies that the primary support of multi-
fractality is related to large fluctuations, which generate a more complex temporal
organization than the small ones. Analysis of the local scaling properties confirms
this conclusion (Fig. 5.2c). The histogram of Hölder exponents presents a continuous
shape, hallmarking a “rich” multifractality. Moreover, left-sided skewness of the dis-
tribution is visible. It is worth noting that distortions in the hierarchical organization
of the correlations expressed by the skewness of the multifractal spectrum are often
observed in experimental data, and their examples are presented in the next section.

5.4 Multifractality of singular financial data

Economics data are an example of time series with extremely complex temporal orga-
nization [7]. On the one hand, the distribution is leptokurtic, with power-law tails (fat
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Figure 5.2: Analysis of the Ikeda map. a) Graph of the Ikeda time series. b) Multifractal spectra of the
data. c) Relative frequency fr histograms of the Hölder exponents.

tails) characterized by a scaling exponent≈ 3 [3, 9]. Hence, large fluctuations aremore
likely compared to aGaussiandistribution.On theother hand, thedatadisplaynonlin-
ear dependencies with a multiscale hierarchy of correlations visible to the multifrac-
tal formalism [4, 23]. Thus, a set of various singularities, even those related to sudden
trend reversal (crashes), is determined by the unique multifractal theory framework.
In Fig. 5.3 we present an example of the multifractal analysis of financial time series.
On the left, the analysis of logarithmic returns (r(t) = log(P(t))− log(P(t −Δt))), where
P(t) denotes the index value in time t) of the American index S&P 500 is presented.
On the right, we show the study of the time intervals (Δti = ti+1 − ti) between consec-
utive transactions i of Bayer (BAY) company listed on the German stock market DAX.
In both cases, the estimated spectra are broad, which confirms multifractality. How-
ever, the asymmetry of the spectrum is dependent on the dataset. For the S&P 500
index, the spectrum demonstrates left-sided asymmetry (Aα = 0.69), indicating that
the large fluctuations’ complex organization is the primary support of the multifrac-
tal behavior. In contrast, the small ones reveal a much poorer organization [5]. The
opposite conclusions can be drawn when results for waiting times Δti of Bayer com-
pany are analyzed. The right-sided asymmetry of the spectrum (Aα = −0.3) suggests a
dominant role of small fluctuations in forming a multifractal data organization. The
large ones are arranged more homogeneously, with singularities of a similar degree.
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Figure 5.3: Analysis of financial time-series. a) Logarithmic returns of S&P 500 index and time inter-
vals between consecutive transactions for Bayer (BAY) company listed on the German stockmarket.
b) Multifractal spectra of the corresponding data. c) Relative frequency fr histograms of the Hölder
exponents.

These results are confirmed by an analysis of the local scaling properties (Fig. 5.3c).
The distribution of the Hölder exponents αL resembles the broad multifractal spec-
trum f (αG) with left- and right-skewness for S&P 500 and BAY data, respectively. This
implies that the singularity spectra identified through MFDFA andWLmethodologies
are a genuine signature of data multifractality. As demonstrated in the next section,
distinguishing between true and artifactual multifractality may be problematic and
has to be done with sufficient care.

5.5 Apparent multifractality of the Saito system
The Saito chaos generator is a four-dimensional nonlinear oscillator defined by the
following state equations [25]:

ẋ = −z − w, (5.19)
ẏ = γ(2δy + z), (5.20)
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̇z = ρ(x − y), (5.21)

ẇ = 1
ϵ
(x − h(w)), (5.22)

wherein

h(w) = {{{{{{{
w − (1 + η) if w ≥ η,−η−1w if |w| < η,
w + (1 + η) if w ≤ −η. (5.23)

The dynamics of the system, spanning periodicity, quasi-periodicity, and several
types of chaotic behavior, is determined by the control parameters γ, δ, ϵ, ν and η.
From the perspective of singular behavior, the w variable is the most interesting one.
The presence of the hysteresis function h(w) (and ϵ → 0) results in slow and fast
motions corresponding to a slow manifold alongside sudden jumps. In comparison
with w, the behavior of the x, y and z variables is considerably less volatile and
smoother [21].

The system can be built experimentally. Results are shown from a circuit includ-
ing two operational amplifiers (type TL082) and a nonlinearity made with two oppos-
ing Zener diodes (type BZT52-C5V1). The corresponding diagram is visible in Fig. 5.4a,
where r1 = r2 = R1 = R2 = R = 10 kΩ, ro = 820 Ω, C1 = C2 = 3.9 nF, L0 = 3.3mH,
L = 32mH (two inductors in series) and UZ = 5.1 V. For these component values, one
has γ = C1/C2 = 1, ε = L0/(r21C1) = 0.0085, η = r1/r2 = 1 and ρ = r21C1/L = 12.2. The sig-
nal from variablewwas recorded from the physical circuit board (Fig. 5.4b) at 1 MSa/s,
tuning g−1 to obtain data with different δ.

As already stated, the dynamics of the system strongly depend on the control pa-
rameters. This chapter presents results from the analysis of time series fromquasiperi-
odic and hyperchaos regimes. The corresponding records for the w variable are de-
picted in Fig. 5.5a. Even a cursory inspection of the data shows that the data organiza-
tion is heterogeneous,with sharp upward and downward jumps in both cases. Thus, it
is anticipated that the multifractal properties of the time series may be strongly influ-
enced by the presence of strong singularities in the data. In Fig. 5.5b, the correspond-
ing singularity spectra are shown. The spectra are broad (Δα = 2.5) and asymmetri-
cal (Aα ≈ 0.3), suggesting a multifractal organization of the data and distortions in a
hierarchy of correlations. However, closer inspection of their shape reveals more in-
triguingdetails. The distribution of the points along the spectrumconcentratesmainly
towards its ends, similarly to the characteristics of a bifractal structure [19]. Moreover,
the analysis of the local scaling properties discloses more subtleties of the data. The
histogram of the local Hölder exponents forms two separable peaks whose locations
coincide with the ends of the multifractal spectrum. The position in time of these sin-
gularities can be determined through the wavelet transform. In Fig. 5.6, the skeleton
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Figure 5.4: Experimental implementation of the Saito chaos generator. a) Circuit diagram, and b)
representative example of physical realization. Reproduced from [21].

of the multiscale organization of the data is presented. The maxima of the wavelet
transform delineate separable lines related to individual singularities. Such a struc-
ture indicates nonfractal data organization, with two kinds of the isolated singulari-
ties, in contrast to the true multifractality where a bifurcation-like structure is visible
on the time-scale wavelet transform map. The observed broad singularity spectrum
obtained using the MFDFA and WL methodology is an effect—in fact, an artifact of
the q-filtering method used by these methods to decompose the data concerning the
amplitude size. When distinct isolated singularities are presented in the data, the fil-
tering technique produces a smooth singularity spectrum, and the wider is the spec-
trum, themore difference between the singularity degree. Thus, in this case, thewidth
of the spectrum is not a measure of data complexity but of the diversity of the isolated
singularities.
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Figure 5.5: a) Experimental time series of variable w recorded from the physical Saito chaos gen-
erator in the hyperchaotic and quasiperiodic regime. b) Corresponding multifractal spectra and
c) relative frequency histograms for the Hölder exponents. Adapted from [21].

5.6 Summary
Development ofmultifractalmethodology creates an opportunity to quantitatively de-
scribe the organization of complex structures within a unique and concise theory.
Thus, it is not surprising that this interdisciplinary concept has found application
across diverse areas of science. It is especially applicable to structures that are char-
acterized by strongly singular behavior. An example of such a process is a mathemati-
cally constructed binomial cascade, for which a set of singularities of different degree
is determined by a singularity spectrum. Such singular behavior is ubiquitous in ex-
perimental signals, and one of the stark examples in this respect is financial data.
Their complex and hierarchical organization has been identified by means of mul-
tifractal algorithms and constitutes one of the stylized financial facts. However, the
results of multifractal analysis have to be interpreted cautiously. This is particularly
important when isolated singularities can be present in the data. In this respect, the
Saito chaos generator, for which, apart from the complicated data organization and
singular signal attributes, the singularities are not hierarchically nested, is a good ex-
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Figure 5.6: Local scaling properties of the w time series from the Saito chaos generator, simulated
in the hyperchaotic regimes. Top: time courses. Middle: wavelet transform obtained via the fourth
derivative of the Gaussian wavelet. Color coding denotes the magnitude of the wavelet coefficients
Wf (x0, s) ranging from dark blue (the smallestWf (x0, s)) to red (the largest one). Bottom: corre-
sponding time localized Hölder exponents.

ample. While it does not lead to multifractal data organization, the algorithms based
on the q-filtering technique, MFDFA and WL, produce a broad singularity spectrum.
A cursory examination of the data may thus lead to overestimating structural com-
plexity. However, the data’s true nature can be uncovered by analyzing the wavelet
transform map where the lack of hierarchical organization is clearly detectable.
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6 Study on robustness of nonlinear model
predictive control performance assessment

Abstract:Model Predictive Control (MPC) has gained the position of a reliable element
of industrial control systems. It is considered as a very efficient solution in the case of
complex, nonlinear, multivariate or other challenging applications. Sustainability of
high operational quality requires close monitoring of MPC performance because in-
dustrial applications are often impeded by disturbances with unknown and complex
properties. Quality indicators should be robust against such impacts to allow detec-
tion of performance degradation. The measures originating from robust statistics and
the factors of α-stable distribution are used in this work. It is shown that they are able
to detect effectively MPC detuning in the case of complex non-linear control. Neutral-
ization benchmark simulations compare various approaches and prove their reliabil-
ity. Model Predictive Control (MPC) has gained the position of a reliable element of
industrial control systems. It is considered as a very efficient solution in the case of
complex, nonlinear, multivariate or other challenging applications. Sustainability of
high operational quality requires close monitoring of MPC performance because in-
dustrial applications are often impeded by disturbances with unknown and complex
properties. Quality indicators should be robust against such impacts to allow detec-
tion of performance degradation. The measures originating from robust statistics and
the factors of α-stable distribution are used in this work. It is shown that they are able
to detect effectively MPC detuning in the case of complex non-linear control. Neutral-
ization benchmark simulations compare various approaches and help to assess their
relative reliabilities.

Keywords: control performance assessment, robust regression, stable distribution,
MPC, pH neutralization

6.1 Introduction

Model Predictive Control (MPC) is an advanced control technique. It exhibits a specific
feature because it utilizes an online mathematical model of the controlled process to
predict its future behavior and to determine an optimal control strategy [23]. Optimiza-
tion is repetitively run for each samplingperiod.MPC is renowned for its high accuracy
and unique ability to take into account process variables’ constraints during control
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rule evaluation. In such a way MPC may deliver tangible benefits. From the start, pre-
dictive control was mostly applied in process industry or production systems. Nowa-
days, due to the availability of fast microcontrollers, MPCs are successfully utilized for
fast embedded systems [1, 13, 17, 25, 26].

Precise control of neutralization processes is crucial in chemical engineering,
biotechnology and waste-water treatment. As the process is significantly non-linear,
it requires an adequate control strategy. Application of the gain scheduling scheme
appears to be the most straightforward [7]. When a nonlinear model is applied inside
the MPC, we obtain a constrained nonlinear optimization problem, which has to be
solved every sampling period. Therefore, MPC with successive model linearization
can be applied [11] to reduce computational complexity because it needs quadratic
optimization only.

Maintenance and the sustainability of high MPC performance are primary in-
dustrial concerns. Experience shows that unsupervised operation can quickly lead
to significant performance degradation that contests confidence in the entire im-
plementation [20]. There are several works addressing MPC quality assessment [3].
A knowledge-based system for Dynamic Matrix Control (DMC) [18] was followed by
benchmarking approaches [8] and data-driven approaches [28]. DMC has been tested
in various application configurations as a single controller or the supervisory level
over PID regulatory control [9]. The model-based method [15] has been accompa-
nied by a minimum variance approach [27]. Even simple linear MPC might require
alternative solutions, like fractal or persistence factors [2].

Nonlinear industrial control generates challenges for reliable MPC monitoring.
It is nonlinear so linear approaches are not suitable. Real-time applications have to
cope with frequent disturbances of unknown origin and complex properties. More-
over, the systems are often impacted by unexpected events like failures, maintenance
activities, sensor calibration, system errors and personnel interventions. They cause
outliers in the data, which may significantly alter a proper analysis. Our presented
analysis focuses on outliers that pose significant challenges for control. Commonly
used mean square error (MSE) is highly sensitive to any kind of outlier [16] because
it is characterized by a 0% breakdown point. Similar breakdown values character-
ize the Gaussian standard deviation. An integral of the absolute error (IAE) index is
only slightly better and similar to the Laplace distribution scaling coefficient. Other
research directions incorporate the concept of general robust statistics [12], propos-
ing robust M-estimators with a 50% breakdown. Specific non-Gaussian properties of
control systems, especially fat tails, are rarely addressed in the research.

An outlier is a strange occurrence in the data [6, 24]. In general, a single outly-
ing observation may come out of an erroneous observation (exogenous outliers), i. e.,
an unknown contaminating mechanism, or can be an intrinsic symptom of some un-
derlying process-generatingmechanism [10] (so-called endogenous outliers). Outliers
seriously impede analysis: They enlarge the variance and reduce the power of statis-
tical tests [14], deteriorate Gaussian properties, introduce fat and heavy tails in the
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histogram [22] and bias regression [16]. An α-stable distribution is a good and robust
approach [19] to model such behavior.

This work proposing using the pH neutralization nonlinear MPC control prob-
lem as a benchmark. Such a known plant enables observation of the impact of non-
Gaussian disturbances on control quality and its assessment. Various scenarios are
introduced to measure the sensitivity of control performance assessment (CPA) indi-
cators that are confronted with a wide spectrum of disturbances.

Results show that standard key performance indicators (KPIs) are not effective.
Thenovelty of thiswork is that the robustM-estimator,with the logisticψ function and
α-stable distribution scale factors, possess high effectiveness and robustness. Model-
based and benchmarking indexes are intentionally not included in the analysis be-
cause they require a priori plant knowledge. Section 6.2 includes the presentation of
theMPC problem, while Section 6.3 describes CPAmeasures. Theoretical introduction
is followed by simulations (Section 6.4). Section 6.5 concludes the paper with obser-
vations and further research directions.

6.2 Nonlinear MPC

6.2.1 Control formulation

AManipulated Variable (MV) is denoted by u and a Controlled Variable (CV) by y. The
vector of decision variables determined at each sampling (k = 0, 1, 2, . . .) by MPC [23]
is denoted as

△ u(k) = [△u(k|k) △ u(k + 1|k) ⋅ ⋅ ⋅ △ u(k + Nu − 1|k)]
T
, (6.1)

where Nu is the control horizon, i. e., the number of future control increments
△u(k|k) = u(k|k)−u(k−1) and△u(k+p|k) = u(k+p|k)−u(k+p−1|k) for p = 1, . . . ,Nu−1.
For p ≥ Nu it is assumed that theMV is constant. Decision variables (6.1) are calculated
from the optimization problem

min
△u(k)
{

N
∑
p=1
(ysp(k + p|k) − ŷ(k + p|k))2 + λ

Nu−1
∑
p=0
(△u(k + p|k))2}

subject to (6.2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . ,Nu − 1
− △umax ≤ △u(k + p|k) ≤ △umax, p = 0, . . . ,Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . ,N .

The first element of the performance index (6.2) minimizes predicted control errors
over some prediction horizonN . The setpoint and predicted values of the process out-
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put for future sampling moment k + p known/calculated for current time k are de-
noted by ysp(k + p|k) and ŷ(k + p|k). The predicted values of the process output are
calculated using process mathematical model. The second part of the cost function
mitigates excessive MV changes. Constraints may be imposed on future values of the
manipulated variable, on the minimal and maximal allowed values umin and umax,
on future changes of that variable, on the maximal value is△umax, and on predicted
values of the controlled variable, the minimal and maximal values of which are ymin

and ymax, respectively. Although the whole sequence of decision variables (6.1) is cal-
culated at each and every sampling, only its first element is applied. During the next
sampling, k + 1, the CV measurement is updated, and the procedure is repeated.

6.2.2 Computationally efficient nonlinear MPC

Future CV values ŷ(k + p|k) are nonlinear functions of calculated decision variables
(6.1) when the nonlinear model is used for prediction. As a result, the original opti-
mization problem (6.2) becomes a constrained nonlinear task. To reduce computation
effort, an algorithmwith aNonlinear Prediction andLinearizationAlong the Predicted
Trajectory (MPC-NPLPT) can be taken into consideration. Unlike the case in simple
MPC formulations with successive model linearization, a linear approximation of the
future CV trajectory predicted on the prediction horizon N is determined online every
sampling period. Linearization is carried out for a future trajectory of MV increments
(6.1). This ends up with a simple quadratic MPC-NPLPT optimization problem [11].

6.3 Control quality assessment
Incessant striving for perfect performance is the ultimate raison d’être of any control
system. The relationship is simple. The better the control system is, the higher pro-
cess quality is reached. Although it is obvious, the majority of industrial controllers
are not well tuned, nor properly set up [21]. The observation is true for any kind of
applied control strategy. Engineers search for tools that enable better assessment of
control system efficiency. Furthermore, they require indications of how to improve an
imperfect system. The CPA research started in the 1960s and continues, andmany ap-
proaches have been investigated [2]. Almost each control strategy, from the univariate
PID loop to advanced multivariate MPC and adaptive controllers, has been assessed
with appropriatemethodologies. Control performance assessmentwas initiated by in-
dustry and is continually used and validated in practice.

We may distinguish two types of approaches: data-driven and model-driven.
The difference is crucial: Model-driven methods require a priori process knowledge
(step response, frequency characteristics, model orders, delay, etc). Data-driven ap-
proaches use only raw plant-operating data. The methods originate from different
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domains and research areas. Classical indexes are not fully efficient, and industry
still demands robust measures that would work under various conditions. This work
compares KPIs utilizing control error (ϵ(k) = ysp(k) − y(k)) time series [2]. We consider
the following indicators:
– the Mean Square Error (MSE)

MSE = 1
Np

Np

∑
k=1

ϵ2(k) = 1
Np

Np

∑
k=1
[ysp(k) − y(k)]2, (6.3)

– the Integral Absolute Error (IAE)

IAE = 1
Np

Np

∑
k=1

󵄨󵄨󵄨󵄨ϵ(k)
󵄨󵄨󵄨󵄨 =

1
Np

Np

∑
k=1

󵄨󵄨󵄨󵄨y
sp(k) − y(k)󵄨󵄨󵄨󵄨, (6.4)

– the Least Median Square (LMS)

LMS = med
k

ϵ(k)2 = med
k
[ysp(k) − y(k)]2, (6.5)

– the Gaussian standard deviation σG,
– the α-stable distribution scaling factor—γ,
– the robust scale M-estimator with logistic ψ function—σH,
– the differential entropy—Hdiff,

Hdiff = −
∞

∫
−∞

γ(x) ln γ(x)dx, (6.6)

– the rational entropy—Hrat

Hrat = −
∞

∫
−∞

γ(x) log( γ(x)
1 + γ(x)

)dx. (6.7)

6.4 Results

A pH neutralization reactor [5] is used as the simulated benchmark plant (Figs. 6.1
and 6.2). An unmeasured disturbance is generated as an α-stable process to introduce
outliers. Gaussiannoise is added to the output as ameasurement noise. Abase (NaOH)
q1, a buffer (NaHCO3) q2 and an acid (HNO3) q3 stream are mixed in a tank. The pro-
cess has one MV, which is the base q1 [ml/s] and one CV—a pH value. The continuous-
time model comprises two state equations (6.8)–(6.9) and an algebraic output equa-
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Figure 6.1: The pH-neutralization reactor.

Figure 6.2: The control-loop simulation environment.

tion (6.10), namely

dWa(t)
dt
=
q1(t)(Wa1 −Wa(t))

V
+
q2(Wa2 −Wa(t))

V
+
q3(Wa3 −Wa(t))

V
, (6.8)

dWb(t)
dt
=
q1(t)(Wb1 −Wb(t))

V
+
q2(Wb2 −Wb(t))

V
+
q3(Wb3 −Wb(t))

V
, (6.9)

Wa(t) + 10
pH(t)−14 − 10−pH(t) +Wb(t)

1 + 2 × 10pH(t)−K2
1 + 10K1−pH(t) + 10pH(t)−K2

= 0. (6.10)

Constants Wa and Wb are reaction invariants. Model parameters are sketched in Ta-
ble 6.1 and the nominal operating point in Table 6.2. The inflow q2(t) is treated as the
disturbance, while q3(t) is kept constant.

Table 6.1: Parameters of the pH-neutralization reactor model.

Wa1 = −3.05 × 10
−3mol Wb1 = 5 × 10

−5mol K1 = 6.35
Wa2 = −3 × 10

−2mol Wb2 = 3 × 10
−2mol K2 = 10.25

Wa3 = 3 × 10
−3mol Wb3 = 0mol V = 2900ml
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Table 6.2: Nominal operating point of a pH reactor.

q1 = 15.55ml/s q3 = 16.60ml/s Wa = −4.32 × 10−4mol
q2 = 0.55ml/s pH = 7 Wb = 5.28 × 10−4mol

6.4.1 Nonlinear MPC tuning scenarios

This described model is used as the simulated plant, while a Wiener process model is
used for prediction. It consists of a linear second-order dynamic part, followed by a
nonlinear static element. The dynamic part is characterized by equation

v(k) = b1u(k − 1) + b2u(k − 2) − a1v(k − 1) − a2v(k − 2), (6.11)

where v denotes the auxiliary variable, i. e., the output of the first model block. The
steady-state part is a continuous function

y(k) = g(v(k)). (6.12)

A neural network is used as the nonlinear steady-state part of the Wiener model. For
modelingpurposes. theprocess variables are scaled:u = (q1−q10)/15, y = (pH−pH0)/5,
where q10 = 15.55ml/s, pH0 = 7 correspond to the initial operating point. Nominal
parameters of the MPC are: N = 10, Nu = 3, λ = 0.5; the constraints imposed on
the manipulated variable are: qmin

1 = 0ml/s, qmax
1 = 30ml/s. Apart from a perfect

tuning scenario (Sc0), six other MPC settings scenarios are considered to represent
poor controller tuning:
Sc0: ideal model and tuning: N = 10, Nu = 3, λ = 0.5,
Sc1: the horizons too short: N = 1, Nu = 1, (λ = 0.5),
Sc2: horizon too long: N = 20 (Nu = 3, λ = 0.5),
Sc3: weighting too small: λ = 0.025 (N = 10, Nu = 3),
Sc4: weighting too large: λ = 10.0 (N = 10, Nu = 3),
Sc5: model gain 50% smaller than the nominal one,
Sc6: model gain 50% bigger than the nominal one.

6.4.2 Disturbance scenarios

Apart from the varying MPC tuning, the analysis takes into account the impac of fat-
ness tails on the mistuning detection. The buffer inflow q2(t) is considered as the dis-
turbance and is simulated as an α-stable stochastic process. The distribution stability
index α of the stable distribution is responsible for the tails. Therefore, testing differ-
ent α values enables us to investigate the impact of the tails fatness, i. e., of the share
of introduced outliers. Eleven values are simulated: α = 1.0, 1.1, . . . , 1.9, 2.0. The small-
est one α = 1.0 reflects the largest tail fatness (Cauchy function), while the largest one
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α = 2.0 represents the Gaussian normal case. The other distribution coefficients re-
main unchanged: β = 0.0, δ = 0.55, γ = 0.01. Finally, the signal is constrained and
truncated into the reactor limitations q2(t) ∈ [0.3,0.8].

Altogether, 77 simulation runs were conducted. The analysis starts from the con-
trol error time series review followed by the preparation of respective histograms and
their analysis. Exemplary disturbance time trends are shown in Fig. 6.3. The presented
time series are limited to the first 50,000 observations, though the analysis uses a full
set of 250,000 samples.

Figure 6.3: Example time series of the q2(t) disturbance for various values of α.

Statistical properties of the disturbances were verified using data histograms. Fig-
ure 6.4 shows a comparison of control-error exemplary data obtained for seven tuning
scenarios (Sc0, . . . , Sc6) for a selected single disturbance realization: α = 1.7, γ = 0.01,
β = 0.0, δ = 0.0. Only the first 50, 000 simulation samples are plotted for the sake
of the readability. Generally, the higher the fluctuation of the control-error signal is,
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Figure 6.4: Histograms for all q2 disturbance tail indexes; n is the number of occurrences.

the broader histogram is obtained, and the controller exhibits poorer performance.
Scenario Sc1 shows the most aggressive operation, while the Sc3 is the most sluggish.

Control-error signal data are obtained after each of the simulations (examples are
sketched in Fig. 6.5). Selected KPIs are calculated for each control-error dataset. The
histogram for each time series enables us to evaluate its statistical factors. The sim-
ulation process produces a table consisting of eight performance indicators for each
simulation. The obtained numbers differ by several orders of magnitude, so they have
been rescaled.

Robustness review of selected indicators against the tail is measured. Various tail
indexes (reflecting the outliers’ impact) are simulated. The stability index changes
from α = 1.0 to α = 2.0, incremented by 0.1. The other parameters are constant:
γ = 0.01, β = 0.0, δ = 0.0. Two main perspectives are investigated:
– A1: At first the impact of the tail fatness on the detectability obtained by each per-

formance measure is analyzed. The index values are scaled against the reference,
i. e., the realization for the normally distributed disturbance (α = 2.0) KPI(2.0, Sc).
The ratio (6.13) is calculated for each measure and the selected disturbance. The
value varies with each tuning Sc0, . . . , Sc6.

ηKPIA1 (α, Sc) =
KPI(α, Sc)
KPI(2.0, Sc)

. (6.13)
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Figure 6.5: Control errors in considered scenarios of MPC tuning (Sc0, . . . ,Sc6): α = 1.7, γ = 0.01,
β = 0.0, δ = 0.0.

– A2: The impact of the tail index on the ability to detect properly poor tuning by
each of the indicators is the second analyzedperspective. The index value for each
disturbance and for the nominal controller tuning (scenario Sc0) is considered as
nominal. The ratio (6.14) between each indicator and its nominal value for the se-
lected disturbance is calculated, showing how the KPI varies against its nominal
scenario Sc0 value in each considered disturbance:

ηKPIA2 (α, Sc) =
KPI(α, Sc)
KPI(α, Sc0)

. (6.14)

Perspective A1, (the impact of outliers on the poor tuning detectability by each KPI)
forms the main consideration, while the A2 is treated as an auxiliary observation.

6.4.2.1 Perspective A1

The analysis consists of two sets of plots. At first, the relationship between the scaled
index ratio ηKPIA1 (α, Sc) and the disturbance tail index is evaluated for each KPI. The
resulting diagrams show seven curves presenting the dependence for each simulated
MPC tuning. The following behavior is expected. First of all, the ratio should not
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change with the tail-characteristic exponent. Moreover, the curves for each tuning
should be distinguishable. Figure 6.6 depicts the robustness against the tail index for
each KPI.

Figure 6.6: Diagrams showing robustness against tail index for each KPI.
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Let us discuss the MSE index. Labels r10 to r20 denote the respective values of the
disturbance stability factor α. Label r20 means α = 2.0, r19 α = 1.9 and so on. The in-
dex value significantly increases, starting from the normally distributed disturbance
(r20) towards fatter tails (more outliers), i. e., as the stability index of the disturbance α
decreases. Simultaneously, the curves for various MPC tuning are hardly distinguish-
able. Actually, only the evidently badly tuned scenario Sc1 (a too short prediction hori-
zon) is easily distinguishable from the others.

Let us discuss the IAE index. It differs from the MSE. The diagrams are character-
ized by a much smaller difference between a normal Gaussian disturbance (r20) and
Cauchy (depicted as r10), which exhibits the fattest tails and the largest number of
outliers. It is almost ten times smaller. It shows higher IAE robustness. The observa-
tion is in compliance with the theory [16]. Simultaneously, MPC tuning scenarios are
distinguishable similarly. The diagram for normal (Gaussian) standard deviation is
very similar to that of the IAE, however the variability is smaller, which means larger
robustness. The discernibility between the scenarios is on the same level as for the
IAE.

Let us discuss the robust standard deviation M-estimator. The properties of the
relationship seem to bemuch better than those of all the previous ones. Robustness is
the highest with only about half the variability of the other curves. Moreover, the dis-
tinguishability between the curves depicting different tuning scenarios is the highest.

Let us discuss the γ scale factor of the stable distribution. It seems to be evenbetter
than for the robust standard deviation. Both parameters, i. e., the robustness and the
discernibility, are the highest.

The diagram depicting the differential entropy Hdiff shows the worst index prop-
erties. Apart from the high sensibility against the fat tails, the curves character is
not monotonous, which may cause incorrect or ambivalent detection. This property
decisively discards the differential entropy. The rational entropy Hrat exhibits better
properties. Though its robustness is deficient, the distinguishability seems to be good
enough.

Let us discuss the LMS index. Its properties are mediocre. Robustness, measured
with the curves variability, is of the samemagnitude as for normal standard deviation
σG. On the contrary, the MPC tuning distinguishability is higher. It must be noted that
the expectations about the LMS index were higher. Statistical analysis shows that the
least median square index exhibits a 50% breakdown, which shouldmake it more ro-
bust than, for instance, the normal standard deviation or IAE (having 0% breakdown
point). The simulations do not confirm the expectations.

It can be noticed that CPA points are arranged according to some shape. Second-
order polynomial approximations have been fitted, and the respective plots for the
MSE and the robust standard deviation σH are sketched in Fig. 6.7.

Comparison of the variability (robustness against fat tails) of the considered CPA
indicators is summarized in Table 6.3. We clearly see that the scale factor γ of stable
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Figure 6.7: Robustness against fat tails for MSE (left) and σH (right) approximated by second- order
polynomials.

Table 6.3: Indexes variability: green—smallest, red—highest.

distribution holds the highest robustness, with good enough discernibility between
different MPC loop-control qualities.

The further diagrams use the same numbers, but show the results in a different
way. They confront all the indicators in a single diagram, but they are grouped sep-
arately for each tuning scenario. Four scenarios (Sc1, Sc3, Sc5, Sc6), reflecting good
curves representatives, are presented for the sake of readability. Robustness exhibited
for the scenario Sc1 (the horizons are too short) is presented in Fig. 6.8a.We clearly see
that two robust indicators of the scale factor γ for the stable distribution and robust
scale M-estimator with the logisticsψ function share very similar, and the highest, ro-
bustness. The diagram presented in Fig. 6.8b shows the relationship for scenario Sc3,
i. e., with a too small weighting coefficient λ = 0.025. The curves character and the re-
sults are very similar to the previous example. Finally, Figs. 6.8c and 6.8d present the
tuning scenarios, for which the embedded model gain is 50% smaller than the nom-
inal one and 50% larger, respectively. The curves’ shape confirm the previous results
and observations about the most robust indexes.

A review of the plots enables us to also determine the least robust indexes. It is
evident that the MSE one is the worst selection. This observation might be confusing
because the mean square error is the most popular and frequent selection utilized by
almost everybody. But, one should take into account a reconsideration of the MSE se-
lection. Two entropies also exhibit very low robustness and should not be considered
as reliable CPA selections. Gaussian standard deviation seems to be a better solution
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Figure 6.8: KPIs robustness for various tuning scenarios.

thanMSE and the entropies, but still it is four timesmore sensitive than two robust in-
dicators. The LMS one LAO seems to be a disappointment. The remaining IAEmeasure
seems to be relatively good, especially once one considers its much easier calculation
complication and a common understanding.

Finally, reviewof the diagrams brings about onemore observation. There is strong
equivalence between two indicators. Scale factor γ for stable distribution and the ro-
bust scale M-estimator with logistics ψ function behave very similarly and share very
close properties for all simulations and perspectives.

6.4.2.2 Perspective A2

The second set of analyzes includes plots of the relationship between the selectedMPC
tuning scenario (Sc0, . . . , Sc6) and the disturbance tail index (α). It is required that the
gap between the improperly tuned MPC algorithms and the nominal one is visible as
being disturbance invariant. The analysis shows that the behavior varies for each KPI.
A typical relationship for the MSE is shown in Fig. 6.9.

A relative measurement of the relationship-curve variability for each index and
scenario has been made in the form of a percentage ratio between the index range
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Figure 6.9:MSE ability to detect poor tuning as a function of the impeded disturbance.

Table 6.4: Indexes variability: green—smallest, red—highest.

and itsmaximumvalue. Table 6.4 presents the combined results for all the simulations
involved. It is clear that the robustM-estimator and the absolute error IAE are themost
robust indices,while both entropymeasuresHdiff andHrat exhibit theworst properties.
The MSE index is sensitive and its efficacy is significantly biased.

6.5 Conclusions

This work presents a sensitivity analysis of various CPA indexes against fat tails for
nonlinear MPC control. The rationale of this work comes from industry. The analysis
covers various sizes of fat tails, reflected by a stable distribution characteristic expo-
nent (called the stability factor or stability index). Furthermore, distribution tails rep-
resent outliers in the considered dataset. Various tails are analyzed, starting from a
normal distribution (α = 2.0) up to the Cauchy function (α = 1.0). It is shown that the
considered indexes behave in different ways. The scaling factor of α-stable distribu-
tion and robust scale M-estimator using logistic ψ-function are the most robust KPIs.
They exhibit similar properties, despite the size of the tail. On the contrary, both kinds
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of entropy Hdiff and Hrat give the worst results. It is also shown that the most popular
mean square error is highly affected by the tails, and the assessment with MSE index
is biased. The standard deviation, IAE and LMS indexes give mediocre performance.

The results confirm observations that commonly used indexes (MSE, IAE, Gaus-
sian standard deviation) are sensitive to fat tails and outliers [4]. A decision to use
the proposed approach should be done after the review of control system properties.
When the loop variables are clearly Gaussian and fat-tails are not relevant, there is no
need to apply robust indexes. Common MSE or standard deviation are enough then.
However, once the tails appear, it is suggested to consider robust indexes (Huber stan-
dard deviation or stable distribution dispersion). Robust indicators work not only for
fat-tail disturbances, but also for standardGaussian ones. On the contrary,MSEor nor-
mal standard deviation works properly only in Gaussian cases, and fails once fat tails
appear. Applicability depends on the control system properties (statistical analysis)
and the character of loop variables.

There is one additional observation to be made. Since the considered robust in-
dexes improve control performance assessment of nonlinear MPC control, they can
also improve the operation of the controller when applied inside the MPC formula-
tion, replacing the quadratic norm. Although this is a challenging task, nonetheless,
it enables having a new degree of freedom in the MPC design.

Extrapolation of these results to the industrial plants requires incorporating vi-
sual inspection of the system variables, identification of the possible outliers, veri-
fication of the statistical properties of the loop signals and eventual addition of the
robust indexes to the assessment procedure. There is no single, universal index. An
assessment engineer has to carefully observe variables’ time trends and histograms
and always use a hybrid approach with some set of indexes because each of the mea-
sures addresses a different control feature.

Further research should assess other properties of the industrial disturbances.
Signals may exhibit non-stationary, asymmetrical, nonlinear or other distributions.
Especially non-stationarity causes unexpected variations to the quality observations.
More complex multivariate systems should be also addressed. It is expected that the
existing problems might be only magnified in MIMO cases. Multivariability elicits ad-
ditional effects of the interactions between channels requiring multicriteria assess-
ment and root-cause analysis.
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7 Causality analysis incorporating outliers
information

Abstract: This paper presents the results of deep analysis of causality detection re-
search inmulti-control loop system. Considerations focus on the Transfer Entropy (TE)
approach application, which has not been widely used during precise construction of
information and material-flow pathways. Data knowledge of an industrial nonlinear
process is not required. Calculations are performed on simple control loop data, ob-
tained from real data objects, whose structure is a priori known. Process data is biased
by a factor in the form of outliers. Methods of determining entropy between process
variables are defined, basined on different variants for calculating probability distri-
bution.

Keywords: transfer entropy, fault propagation, outliers, causality, large-scale indus-
trial systems, process data decomposition, Darbellay–Vajda algorithm, ranking of pro-
cess variables

7.1 Introduction

One of the most difficult issues regarding analysis of large-scale industrial processes
is to find the root causes of faults. Faults that are commonly caused by inappropriate
control loops operation may lead to low productivity of whole system, can increase
operational costs and, in the most dangerous cases, to result in an unwanted system
shutdownor its destruction.However, to begin this type of analysis, causality between
variables of a given process should be determined first. One may use several different
approaches, which have been developed in different domains. None of them are ap-
plied in industry. They are mainly used in medicine or chemistry, and they are based
on amodel (e. g., Granger Causality [16]). It has been shown that building amodel is a
tedious process, and its accuracy depends on many factors [3]. This is a complex and
time-consuming issue; thus, the universality of thesemethods is negligible. Problems
also appears because these approaches work well only for linear systems.

A key solution can be found in the group of data-drivenmodel-freemethods (e. g.,
TR entropy and its derivatives). These approaches are based on historical data of given
processes. TR entropy enables determination of causality (pathways) between vari-
ables with minimal efforts.

Michał Falkowski,Warsaw University of Technology, Institute of Control and Computation
Engineering, Warsaw, Poland, e-mail: 01105966@pw.edu.pl
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This paper presents the results of calculating entropy with a classic approach [12]
based on the Gaussian distribution, using the Darbellay–Vajda algorithm and where
probability density estimation is determined by bin counting with fixed and equally-
spaced bins. Analysis is performed on a rawdataset, detrended signals and noisewith
and without outliers, obtained during decomposition process. The impact of differ-
ent data types on the effectiveness of the TE approach and pathway determination is
shown.

7.2 Data decomposition
Decomposition and further analysis are performed on raw datasets of closed control
loops collected from real large-scale industrial process of ammonia distillation. Sys-
tem is strongly nonlinear and a priori known for calculation of TEs between given
variables. The outputs of given control loop are shown in form of trends in Fig. 7.1.

Figure 7.1: Raw dataset of the closed control loop from an ammonia distillation system.

Data is characterized by fairly stable trends for signals u,w, x and y, with occurring os-
cillations andmultiple outliers. Signal z differs from the others by a visible, significant
change in values.

7.2.1 Trends removal

Trends identification and removal is accomplished by using the most common poly-
nomial interpolation. Choosing the right ith polynomial order is a contentious issue.
Objective evaluation of selection of appropriate polynomial order is carried out by ap-
plying the methodology presented in [13]. An increasingly complex trend is set, then,
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after its removal, the mean absolute deviation (MAD) of a signal is calculated. If the
MAD converges to a relatively small and constant value, then the order of the poly-
nomial is determined. Table 7.1 shows MAD calculations results up to the 9th polyno-
mial order. Regardless of the selected order for the u, w, x, y signals, their MADs do
not change significantly and only the removal of the constant value from the data is
found.

Table 7.1:Mean absolute deviation (MAD) for ith polynomial order.

0 1st 2nd 3rd . . . 6th 7th 8th 9th

u 0.5084 0.5098 0.5099 0.5104 . . . 0.5105 0.5123 0.5113 0.5110
w 0.8920 0.8920 0.8919 0.8918 . . . 0.8917 0.8917 0.8918 0.8917
x 0.2082 0.2082 0.2082 0.2082 . . . 0.2082 0.2082 0.2082 0.2082
y 0.1562 0.1563 0.1563 0.1563 . . . 0.1561 0.1558 0.1555 0.1554
z 0.8699 0.8297 0.6656 0.6273 . . . 0.4239 0.4085 0.4027 0.4027

According to signal z, the fitted 8th order polynomial is unacceptable. Therefore, only
in this case is it decided to use the spline interpolation that is defined piecewise by
polynomials. The result of such operation is shown in Fig. 7.2. The trend is clearly bet-
ter removed from the z signal using spline interpolation for which the MAD converged
to the 0.3625 (2nd order polynomial).

Figure 7.2: Comparison of trend identification and its removal from data z using polynomial and
spline interpolation.
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7.2.2 Noise identification

After removing trends from the dataset, the next step is to identify noise. Due to the
amount of analyzed data and limitations posed by selected identification methods,
this process cannot be performed on the entire dataset. For this purpose, the data is
divided into 30 subsets of equal length. Two approaches were used: Ensemble Empiri-
cal Mode Decomposition (EEMD) and its extension Median Ensemble Empirical Mode
Decomposition (MEEMD). This will make possible allow separation of the noise from
the detrended dataset.

7.2.2.1 Ensemble empirical mode decomposition

Since there is usually noise and signal intermittency in real-world data, it causesmode
mixing andmode splitting (MS) using the EMDmethod. To avoid this issue, EEMD [15]
is proposed. EEMD belongs to a class of noise-assisted EMD methods which are the
most powerful tools for performing time-frequency analysis [8, 11]. They are aimed at
alleviatingmodemixing caused by noise and signal intermittency and can be success-
fully used in noise and oscillation identification process.

An example of using the EEMD algorithm on one of the x signal subsets is pre-
sented inFig. 7.3a.Decomposition stronglydependson thedata lengthand fails during
operations with large datasets. Figure 7.3a can be divided into the following sections:
an analyzed subset (Data) and intrinsic mode function (IMFs), where from d1 to d4
there is noise and from d5 to d10 are oscillations. The mail goal is to achieve not only
noise but also oscillations for further analysis.

Figure 7.3: Example of signal x subset decomposition via: EEMD (a) and MEEMD (b).
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7.2.2.2 Median Ensemble Empirical Mode Decomposition

MMEEMD [6] is a variation of the EEMD algorithm,which uses themedian operator in-
stead of themean operator to the ensemble noisy intrinsic mode function (IMF) trials.
An example of using the MEEMD algorithm on one of the x signal subsets is presented
in Fig. 7.3b.

Despite the different characteristics of both algorithms, results are similar. It is
justified to consider decomposed signals viaMEEMD for further analysis. The addition
of white Gaussian noise in the EEMDmethod alleviates themodemixing problem, but
it inevitably creates new MS.

Due tomultiple number of subsets, it is impossible to showall the calculatednoise
signals for each variable. Based on the identified noise, TE calculation results are pre-
sented in Sec. 7.4.3 and 7.4.4.

7.2.3 Outliers removal

The majority of data is not normal enough to be considered as drawn from a normal
distribution. A possible statistic is the IQR approach [14] in such cases. It is evaluated
as the difference between the upper 75th (Q3) and the lower 25th (Q1) percentile of a
dataset. IQR may be used to find outliers. They are considered as observations that
fall below LL = Q1 − 1.5 or above HH = Q3 + 1.5 thresholds. The detected outliers are
replaced by the threshold level values.

Figure 7.4: Example of outlier removal using the IQR approach on x noise signal.
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Figure 7.5: Diagram of dataset decomposition process.

MEEMD algorithm allows us to decompose data without the trends and obtain noise
signals for individual variables u, w, x, y and z. It was already shown [4] that the IQR
approachhas thebest performance infindingand removingoutliers of a givendataset.
Figure 7.4 shows the results of such an operation on one of the x variable subset.

The final data decomposition operation is represented by the diagram shown in
Fig. 7.5. The following datasets are obtained for analysis using the TE approach: raw
datasets, data without trends, noise with outliers and noise without outliers.

7.3 Transfer entropy
TE is an information-theoretic interpretation of Wiener’s causality definition. TE is a
measure of information transfer from x to y bymeasuring the reduction of uncertainty
while assuming predictability. According to information theory, TE can be described
by the equation

Tx→y = ∑
yi+h ,Yi ,Xj p(yi+h,Yi,Xj) ⋅ log p(yi+h|Yi,Xj)p(yi+h|Yi) , (7.1)

where pmeans the complete or conditional Probability Density Function (PDF), vari-
ables Yi and Xj respectively as Yi = [yi, yi−τ, . . . , yi−(l−1)τ], Xj = [xj, xj−τ, . . . , xj−(k−1)τ], τ is
a sampling and h is a prediction horizon. To summarize, it is the difference between in-
formation about a future observation of x obtained from the simultaneous observation
of past values of both x and y, and the information about the future of x obtained from
the past values of x alone. The phenomenon of entropy in both directions is highly
probable, which is why a measure described as Tx→y = Tx|y − Ty|x is decisively due to
quantity and direction, which is causality.

Due to the fact that TE is based on probability and the usage of the classical Gaus-
sian distribution is not a necessary condition, the TE approach was implemented
using Huber and α-stable distributions [4]. However the applied change does not
significantly affect the results of determining the relationships between given vari-
ables.

To improve the efficiency of calculating entropy coefficients, another probability
density estimation method based on the Darbellay–Vajda (DV) algorithm [2] is pre-
sented. This adaptive histogram-generating process is determined by partitioning the
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observation space into a finite number of non-overlapping rectangular cells that are
obtained in the recursive process [9].

Finally, the simplest estimation approach to obtain the PDFs is implemented,
namely, the Fixed Bins algorithm. It allocates data points to fixed, equally-spaced
bins. To enhance robustness against outliers and sparse regions in the underlying
distribution, there is combined fixed binning with ordinal sampling (ranking). In or-
dinal sampling, the two analyzed time-series values are substituted with their ranks
in those time series, similar to most non-parametric statistical tests [5]. The ranks are
integers ranging from the smallest to the largest values.

7.4 Calculation results
In the following subsections the pathway between five process variables u, w, x, y
and z of the ammonia-distillation closed control loop is determined using the classic
TE approach and its derivatives described in Section 7.3. All the calculations are per-
formed on datasets obtained during decomposition, divided into 30 subsets of equal
length.

The practical implementation of thee TE approach between pairs of variables ac-
cording to equation (7.1) requires its simplification to the form presented in equation
(7.2):

Tx→y = ∑
yi ,yi−t ,xi−τ p(yi, yi−t , xi−τ) ⋅ log p(yi, yi−t , xi−τ)p(yi−t)p(yi−t , xi−τ)p(yi, yi−t) , (7.2)

where pmeans the conditional (PDF) and τ and t are the time lags in x and y, respec-
tively. If the time-series length is short, the t is set to 1 under the assumption that the
maximum auto-transfer of information occurs from the data point immediately be-
fore the target value in y. Due to each subset length equalling 2,000 samples, t is set
to 5. The same assumptions apply to the Darbellay–Vajda (DV) algorithm. The diffi-
culty arises in selecting α parameter, which is a multiplier for scaling in PDF based on
Gaussian Kernel Density Estimation and the optimal number of quantization levels Q
for analyzed pair of signals (i. e. x and y) in the Fixed Bins algorithm due to the lack of
a priori knowledge regarding coupling time lag [7].

To generalize the assumptions for the given 30 subsets andmake the results com-
parable, respectively, for the raw dataset, data without trends, noise with outliers and
noise without outliers, a short analysis of changes in the TE coefficient value as a
function of α and Q parameters for KDE and Fixed Bins algorithm is performed, while
increasing τ. Figure 7.6 illustrate TE estimation for various values of α and Q for the
KDE and fixed-bins methods, respectively. Rejecting the overestimated values of TE
for α = 0.75 and Q = 10, the significant TE can be found at τ = 7. Therefore, arbitrary,
but reasonable, choices of Q = 8, α = 1 and τ = 7 are made.

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



140 | M. Falkowski

Figure 7.6: Parameter selection for the KDE (a) and the fixed-bin (b) methods.

7.4.1 Raw dataset

Due to the large amount of data, it is impossible to illustrate the causality for each
individual dataset. An exemplary TE coefficients calculation results for a random raw
dataset with the KDE approach is presented in Table 7.2.

Table 7.2: Calculated TE coefficients for a random raw dataset with the KDE approach.

Trow→column u w x y z

u NA 0.1003 0.0790 0.0690 0.0629
w 0.0636 NA 0.0772 0.0616 0.0436
x 0.0266 0.0463 NA 0.0488 0.0181
y 0.0634 0.0900 0.0754 NA 0.0435
z 0.0863 0.1186 0.0773 0.0786 NA

The fact is that so far no universal threshold method has been developed for the TE
approach and an unambiguous definition of the relationship between the given vari-
ables. The following assumptions are made for the raw dataset and for each of the
subsequent subsets: If the value of TE is determined in the form ofNan or Inf , it equals
0; the relationship between the variables in a dataset is determined on the basis of the
highest value in a given row, as indicated in the example in Table 7.2. After determin-
ing the TE coefficients for a raw dataset, calculated with the KDE, DV and fixed-bins
algorithms, in Table 7.3, Table 7.4 and Table 7.5, respectively, the results are presented
in the form of a sum of cases where the value of the TE coefficient in a row for a given
variables pair is the highest for all 30 subsets.

It can be seen that, both for KDE and fixed-bins approaches, the results are almost
identical. Despite the different ratios of the number of datasets for which there are the
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Table 7.3: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the KDE approach.

Trow→column u w x y z

u NA 14 5 9 2
w 3 NA 11 14 2
x 3 7 NA 19 1
y 1 12 14 NA 3
z 5 12 6 7 NA

Table 7.4: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—DV approach.

Trow→column u w x y z

u NA 0 0 0 30
w 1 NA 0 0 29
x 0 0 NA 0 30
y 2 1 0 NA 27
z 18 12 0 0 NA

Table 7.5: Sum of cases where the value of the Transfer Entropy coefficient in a row for a given vari-
ables pair is the highest—fixed-bins approach.

Trow→column u w x y z

u NA 26 2 2 0
w 7 NA 10 12 1
x 1 9 NA 20 0
y 0 20 10 NA 0
z 10 18 0 2 NA

highest values of entropy coefficients in a given row, bothmethods show causality be-
tween the same pairs of variables. The only difference is in the y data pair: for KDE
it is y → x and for fixed-bins it is y → w. However, it can be noted that, in the case
of the KDE approach, the number of datasets for which the y dependency is found
is similar—12 and 14. Results obtained with the DV algorithm are completely differ-
ent from the other algorithms. It can be stated with certainty that they do not reflect
the actual causality between the control-loop variables. There may be many reasons:
wrong parameters for the DV algorithm, data type (raw datasets) or just inappropriate
algorithm for such calculations.
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7.4.2 Data without trends

Subsequent calculations are performed on datasets fromwhich the undesirable trend
has been removed, according to the methodology presented in Section 7.2.1. The re-
sults are shown in Table 7.6, Table 7.7 and Table 7.8 for three approaches introduced in
this paper.

Table 7.6: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the KDE approach.

Trow→column u w x y z

u NA 15 5 6 4
w 2 NA 12 15 1
x 3 7 NA 19 1
y 1 13 14 NA 2
z 2 11 8 9 NA

Table 7.7: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the DV approach.

Trow→column u w x y z

u NA 0 0 0 30
w 0 NA 0 0 30
x 0 0 NA 0 30
y 0 0 0 NA 30
z 20 10 0 0 NA

Table 7.8: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—fixed-bins approach.

Trow→column u w x y z

u NA 26 2 1 1
w 7 NA 10 12 1
x 1 9 NA 20 0
y 0 20 10 NA 0
z 4 25 0 1 NA

The results for the KDE and fixed-bins approaches are similar with the same differ-
ences as for the raw datasets analysis. Causality occurs for the following pairs of con-
trol loop signals: u → w, w → y, x → y, z → w and ambiguously for y data—y → x
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or y → w, depending on the methods used. This is mainly because of how trends
are removed from the data. Due to the characteristics of z data, a spline interpolation
is used; for the other signals it is only a shift by the constant value (1st order poly-
nomial). Also in this case, the DV algorithm does not bring the expected effects—the
determined causality cannot be accepted, and the results must be discarded.

7.4.3 Noise with outliers

The choice of noise from the signals for analysis is not accidental—the additive noise
models [10] are often used in many areas, including automation. As it is shown in
Table 7.9, Table 7.10 and Table 7.11 results for the KDE and fixed-bins algorithms have

Table 7.9: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the KDE approach.

Trow→column u w x y z

u NA 22 1 6 1
w 16 NA 1 12 1
x 11 9 NA 8 2
y 10 15 2 NA 3
z 19 6 2 3 NA

Table 7.10: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the DV approach.

Trow→column u w x y z

u NA 0 0 0 30
w 0 NA 0 0 30
x 0 0 NA 0 30
y 0 0 0 NA 30
z 6 21 0 3 NA

Table 7.11: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the fixed-bins approach.

Trow→column u w x y z

u NA 21 2 7 0
w 15 NA 1 13 1
x 8 13 NA 9 0
y 5 22 3 NA 0
z 11 15 2 2 NA
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negligible repeatability, and there is no reference to calculations performed for the
raw datasets and those after trends removal.

The values of the highest entropy coefficient in a given row occur randomly. In
case of determining causality diagrams for the obtained results, no logical consensus
can be reached in any of them. The DV algorithm along with the noise data is also not
working properly and still as in Subsections 7.4.1 and 7.4.2 does not indicate proper
cause–effect relationships. This is only confirmed by the fact that the mentioned al-
gorithm is not applicable in this case.

7.4.4 Noise without outliers

As a result of operation of decomposing the raw dataset and obtaining noise from
the data, the consequence is to determine the entropy coefficients for noise without
outliers. Despite the methodology used as described in the Section 7.2.3 and the sat-
isfactory results of removing outliers from the datasets, it does not have a significant
impact on the quality of the end effects. The KDE approach indicates the causality of
variables with the data u in a given control loop and the fixed-bins with the data w.
The DV algorithm invariably determines the relationship of variables with the given
data z. The causality specified for this type of data is completely incorrect and should
not be analyzed further which is confirmed by results given in Table 7.12, Table 7.13 and
Table 7.14.

Table 7.12: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the KDE approach.

Trow→column u w x y z

u NA 17 2 10 1
w 16 NA 0 14 0
x 15 1 NA 14 0
y 13 13 4 NA 0
z 17 6 2 5 NA

Table 7.13: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the DV approach.

Trow→column u w x y z

u NA 0 0 0 30
w 0 NA 0 0 30
x 0 0 NA 0 30
y 0 0 0 NA 30
z 6 21 0 3 NA
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Table 7.14: Sum of cases where the value of the TE coefficient in a row for a given variables pair is the
highest—the fixed-bins approach.

Trow→column u w x y z

u NA 21 2 7 0
w 15 NA 1 13 1
x 8 13 NA 9 0
y 5 22 3 NA 0
z 11 15 2 2 NA

7.5 Conclusion and further research

The TE approach makes possible determination of the causality between variables,
without any process knowledge. It is a tool with great potential for cause–effect anal-
ysis never used in automation before. In this paper the classic KDE approach with
Gaussiandistribution and itsmodifications using theDVandfixed-bins algorithmsare
introduced in Section 7.3. The calculations of the entropy coefficients are performedon
the control-loop dataset obtained from the real object. The raw dataset is divided into
30 subsets of equal length and decomposed using various methodologies presented
in Section 7.2.1, Section 7.2.2 and Section 7.2.3—therefore the TE index coefficients are
calculated for datasets without trends, noise with outliers and noise without outliers,
respectively. Due to the number of subsets for analysis, it is impossible to show the
values of the entropy coefficients for each one. This also leads to the fact that it is im-
possible to adopt one threshold value for all the algorithms used, due to the range of
the coefficient values that differ depending on the given approach; the only option is
to indicate the pair of variables for which the entropy coefficient value is the highest
in a given row, as presented in Table 7.3 to Table 7.14. As a result of the conducted tests
and calculations, we can generate the causality diagrams in Fig. 7.7.

Figure 7.7: Causality diagrams for KDE (a) and fixed-bins (b) methods.

Reasonable results are achieved only for the KDE and fixed-bins approaches. Due to
the aforementioned limitations, this is the most general form of a causality diagram.
It shows the relationships between the variables of the control-loop outputs. The only
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difference betweenKDE and fixed-bins approaches is the relationships of signal y. The
others are compatible.

The TE calculation method using the DV algorithm is not suitable for presented
data and should be rejected. In this case causality coefficients for each data type and
dataset are repeatable but do not coincide with the results for the other methods. This
is probably caused by the DV algorithm’s properties. It operates and depends only on
two variable parameters: the delays τ and t for given pair of signals. A secondhypothe-
sis is as follows: If no τ value resulted in a significant information flow for subjectively
selected constant delay t, that particular time series should be removed from further
analysis. According to this statement, all datasets should be discarded from analysis.
The inconsistency of the results with the KDE and fixed-bins methods confirms this
hypothesis and rejection of the results obtained for the DV algorithm.

Based on the these considerations, further research should focus on the analysis
of oscillation signals extracted from the data using the MEEMD decomposition algo-
rithm. There are highly probable indications that, thanks to the properties of this type
of signal, there will be a possibility of a sufficiently unambiguous definition of thresh-
old value during calculation of TE coefficients and determination of causality dia-
grams. In conjunction with traditional statistical analysis and a fairly new approach
based on L-moments analysis [1], subsequent findings will be obtained in the ongoing
problem of causality detection and also as root causes of errors in multiple control-
loop systems.
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Furkan Guc and YangQuan Chen
8 Backlash quantification in control systems
using noises with outliers: a benchmark
study

Abstract: Identification and quantification of mechanical backlash in dynamical sys-
tems has been studied for a long time in the literature. One of the key topics in the
field is smart random-noise injection used to analyze the behavior and systemmetrics
and correlate them with the mechanical backlash level. In this context, utilization of
random noises with outliers offers the fulfillment of the gap in the linear dependence
analysis of the backlash level with the corresponding system metrics. In this study,
a set of noise characteristics is utilized with both classical definitions like Gaussian
and uniform distributions; and random noises with outliers like fractional Gaussian
noise distributionswith variousHurst exponents andPareto–Lévy stable distribution.
Then, linear dependence of the backlash level and corresponding system metrics are
analyzed with respect to various noise characteristics.

Keywords: backlash quantification, random noise injection, fractional Gaussian dis-
tribution, Hurst exponent, Pareto–Lévy stable distribution, fractional lower ordermo-
ments (FLOM)

8.1 Introduction

The ball-and-beam structure is one of the key position reference tracking systems that
is studied thoroughly in literature. It has served as a benchmark study for a variety
of applications in nonlinear control [4, 16] and stability analysis [1, 17]. Moreover, it is
highly utilized inmany control laboratories for educational purposes due to thenature
of the experimental setup [2, 11, 15]. As a common nonlinear effect in motion control
and reference tracking applications, the ball-and-beamstructure also suffers fromme-
chanical backlash in various levels. Although the backlash compensation concepts
are well-studied over many years of applications [5, 6, 9], most of the methodology
rely on the model-based approaches that require backlash quantification at a certain
level.

One of the most important points of the concept of backlash quantification is the
utilized methodology. Model-based identification techniques include both parameter
complexity and model dependency [12]. On the other hand, utilization of the noise
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techniques has become a standard tool in system identification [10, 13] and machine
learning [3, 8]. Thereafter, noise study is extended to the methodology of smart noise
injection [18].

In this study, backlash quantification in a control benchmark problem is intro-
duced along with the random noise with outliers and the ball-and-beam structure.
The basic Simscape model for the ball-and-beam system from the Control Tutorials
for MATLAB and Simulink (CTMS) [7] is used. Then, backlash dynamics is introduced
to the model. To quantify the backlash level, a set of random sensor noises is injected
for various levels of backlash in the system, respectively. Finally, the linear depen-
dence between the backlash level and corresponding system metric is analyzed un-
der the influence of dedicated noise with the aid of fractional lower-order moments
[14].

8.2 System definition
The ball-and-beam system is defined as a ball that has one degree of freedomas it rolls
along a beam. To control the position of the ball, one end of the beam is pinned, and a
lever arm is placed at the other end. The lever arm is controlledwith a servo gearwhich
has a turning angle of θwhich causes a change in the angle of the beam αwith respect
to the reference. The main components of the system can be defined as the ball with a
definedmass, inertia and radius; a beamwith a defined length; and a lever-arm offset.
The corresponding benchmark parameters of the ball-and-beam system are defined in
Table 8.1.

Table 8.1: System parameters.

Parameter Definition Value Unit

m Ball Mass 0.1100 kg
R Ball Radius 0.0150 m
d Lever-Arm Offset 0.0300 m
L Beam Length 1.0000 m
J Ball Inertia 9.9900 × 10−6 kgm2

The ball-and-beam system is visualized in Fig. 8.1, and the Simulink block diagram of
the closed-loop structure is given in Fig. 8.2, along with the noise injection subsystem
given in Fig. 8.3. Details of the controller and ball-and-beam subsystem are defined in
the CTMS [7].
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Figure 8.1: The benchmark ball-and-beam system from the
CTMS [7].

Figure 8.2: Simulink block diagram for the closed-loop structure for the benchmark ball-and-beam
system.

Figure 8.3: Simulink block diagram for the noise subsys-
tem.

8.3 Methodology

To analyze the correlation of the underlying dynamics with various backlash levels,
various definitions of noise distributions are utilized with both classical definitions
like Gaussian and uniform distributions, while random noises with outliers, like frac-
tional Gaussian noise distributions with various Hurst exponents (0.3, 0.5 and 0.8)
and Pareto–Lévy stable distributions. Therefore, the need for a systematic way arises
to compare the effect of various injected noise distributions. For each noise scenario,
backlash levels of 0%, 2%,4%,6%,8%and 10%are studiedwithpurposely injected
noise distributions. Then, the corresponding system metrics are defined as the mean
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of the ball-position sensormeasurements. The final step of themethodology is defined
as the investigation of linear dependence between the backlash level and correspond-
ing systemmetrics under the influence of dedicated noise distribution, along with the
fractional lower-order moments. The overall workflow of the presented methodology
is summarized in Fig. 8.4.

Figure 8.4: Summary of the overall workflow of the presented methodology.

Classical definitions like Gaussian and uniform distributions, along with random
noises with outliers like fractional Gaussian noise distributions with various Hurst
exponents (0.3, 0.5 and 0.8) and Pareto–Lévy stable distributions, are visualized in
Fig. 8.5 and Fig. 8.6.

Figure 8.5: Purposely injected noises for Gaussian, uniform and Pareto–Lévy stable distributions.

Considering the systemmeasurement X as x1, x2, . . . , xN after random excitation, stan-
dardized moments are defined as

αr =
μr
σr
, (8.1)
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Figure 8.6: Purposely injected noises for fractional Gaussian noise distributions with various Hurst
exponents (0.3, 0.5 and 0.8).
where

μr = E{(X − μ)
r}, (8.2)

σr = (E{(X − μ)
2})

r/2
, (8.3)

with μ as the mean of the measurements and r as the order. Then, fractional lower-
order moments are defined as

μrF = E{(X − μ)
r} =

1
N

N
∑
i=1((xi − μ)2)r/2. (8.4)

For each scenario of the noise distribution, fractional lower-order moments from 0.5
to 4 are calculated to find the best combination of the noise injection and fractional-
moment order for the linear correlation between the backlash level and outputmetric.
Toquantify the linear correlation, theR-squaredvalue of the linear fit for each scenario
is calculated.

8.4 Results

Tto analyze and quantify the linear correlation between the backlash level and sys-
temmetrics, the R-squared statistical metric is employed. In this context, R-squared is
a measure of explained variance in the linear regression within the range of [0, 1]. An
R-squared value of 1 indicates the best possible linear correlation between the back-
lash level and corresponding metric. To demonstrate the linear correlation and corre-
sponding calculated R-squared values for various noise distributions, the R-squared
values are presented in Table 8.2.
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Table 8.2: R-squared values for various noise distributions and mean ball positions.

Noise distribution R-squared—mean ball position

Gaussian 0.9572
Uniform 0.9991
fGn with H = 0.3 0.9937
fGn with H = 0.5 0.9980
fGn with H = 0.8 0.9726
Pareto–Lévy 0.1344

Moreover, the increasing backlash level of 0%, 2%, 4%, 6%, 8% and 10% vs. mean
ball position for various noise distributions are visualized in Fig. 8.7 to show the linear
correlation and R-squared values.

Figure 8.7:Mean ball position with respect to increasing backlash level.

Then, to quantify and find the best combination of the purposely injected noise distri-
butionand fractionalmoment order, R-squared values for each scenario are calculated
and presented in Fig. 8.8.

From the results that are shown with the R-squared values and various noise dis-
tributions for increasing fractional moment orders, the fractional Gaussian noise dis-
tribution performs better to quantify the linear correlation between the backlash level
and the corresponding systemmetrics, while lower values for the Hurst exponent like
0.3 and 0.5 perform best in the sense of the R-squared metric. Among these fractional
Gaussian noise distributions with lower values for the Hurst exponent like 0.3 and
0.5, lower fractional orders performs better. It can be concluded that a trend reversal
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Figure 8.8: Fractional moment order vs. corresponding R-squared values for each noise distribution.

is more likely, and this may play a critical role in understanding the linear correlation
between the backlash level and the corresponding system metrics.

8.5 Conclusion
In this chapter, backlash quantification in a ball-and-beam benchmark control study
is investigated using both classical definitions like Gaussian and uniform distribu-
tions, as well as random noises with outliers like fractional Gaussian noise distribu-
tions with various Hurst exponents (0.3, 0.5 and 0.8) and Pareto–Lévy stable distri-
bution. To analyze the linear correlation between the backlash level and respective
system metrics of the fractional lower-order moments, a statistical definition of the
R-squaredmetric is used. Byusing a corresponding cost function that utilizes both sys-
temmetrics, it is shown that intentional noise injectionwith fractional Gaussian noise
distribution performs better for the backlash quantification when compared to other
noise characteristics, along with small fractional moment orders. Results presented
in this work are reproduceable since the base Simscape model for the ball-and-beam
system is used from the CTMS [7].
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Kai Liu, YangQuan Chen, and Paweł D. Domański
9 Control performance assessment of the
system with fractional-order dynamics

Abstract: Thousands of control loops comprise a standard industrial operation. The
assessment of control loops plays a significant role for product engineers or system
engineers. The statistical control quality measures are widely used in current indus-
try to assess control loops, which are based on the classical Gaussian approach. The
fractional-order system is the generalization of the conventional integer-order control
system. The task becomes more challenging when the system behaves like fractional-
order dynamics. In this chapter,wedemonstrate that controller tuninghas an effect on
the Hurst exponents and also as crossover points at various time scales. Error signals
from the control system subject to the disturbance with fractional-order dynamics are
analyzed by multiple Hurst fitting lines with crossovers. Simulation results and real
industry data are given to assess the performance of the control systemwith proposed
the detrended fluctuation analysis (DFA)methodwith crossover points. The proposed
method is a promising quantitative description to characterize control systems for
both the short-term and long-term.

Keywords: control performance assessment, fractional-order dynamics, disturbance,
Hurst exponent, detrended fluctuation analysis

9.1 Introduction

In current industry, statistical control quality tests based on the classical Gaussian
method are commonly used to test control loops. Long-range dependence (LRD), self-
similarity, the power law of autocorrelation, infinite variance, and spiky signals are
examples of non-Gaussian signals and noises that cause large-amplitude deviations
from the average value more frequently than Gaussian ones. In fact, most industrial
data contradict the widely held belief that variables are Gaussian. Fractional calculus
is the source of these complex phenomena.

Due to the complexity, correlation, time-varying delays and human intervention,
themajority of real-life industrial process data has the fat-tailed property, after review-
ing such data from industrial processes [1]. Liu et al. proposed a novel control perfor-
mance assessment (CPA) method with fractional-order signal processing (FOSP) tech-
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niques in [6]. Hurst exponent fittingwith FLOMandmultifractal detrendedfluctuation
analysis (MFDFA) with fractional lower-order moments was proposed in [5]. Strong
correlations between process variables at different time instants characterize scenar-
ios of long-range dependence, nonstationary and spiky signals. The non-Gaussian
spiky statistical property is conventionally considered as the source of outliers. How-
ever, such non-Gaussian behavior can be precisely described and modelled by auto-
regressive fractionally integrated moving average (ARFIMA) models [7].

9.2 DFA method with crossover points

9.2.1 Hurst exponent

The Hurst exponent H indicates the smoothness of the time series in general: The
lower the H, the rougher the time series [8]. The Hurst exponent, which characterizes
LRD, indicates that there is a clear coupling effect between values at different time
intervals. Process engineers are generally interested in the prospect of using signifi-
cantly shorter time series for practical purposes. While this asymptotic scaling expo-
nent can be useful for some diagnostic purposes, it has the disadvantage of requiring
very large data sets for statistically robust performance. It is probably due to the fact
that transient control signals are dominated by the relatively smooth fluctuation, thus
resulting in a high local valueH. The repeatable signals represent the intrinsic dynam-
ics of a complex system at larger scales. As a result, the Hurst exponent H is a good
predictor for describing a system’s dynamics over multiple time scales.

9.2.2 Algorithm of the DFA with crossover points

The DFA algorithm is a robust and powerful tool for detecting long-range correlations
buried in nonstationary data [8]. For a series xi with the length N, the DFA process is
as follows:
1. Construct a cumulative series X(i)

X(i) =
i
∑
j=1
(xj − x̄),

x̄ = 1
N

N
∑
i=1

xi.

(9.1)

2. Divide thewhole series intonon-overlapping segments of equal length s. Since the
total lengthNmaynot be divisible by s, someportion ofX(i)will be left unused. To
take the advantage of the whole range series, the same operation will be carried
out from the end side of the series X(i). Accordingly, 2K segments are obtained.
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3. Use the least squares regression algorithm to fit the local polynomial trend for
each of the 2K segments and calculate the variance:

F2(v, s) = 1
s

s
∑
i=1
(X[(v − 1)s + i] − xv(i))

2
. (9.2)

Thus, for the vth segment, v = 1, 2, 3, . . . ,K:

F2(v, s) = 1
s

s
∑
i=1
(X[N − (v − K)s + i] − xv(i))

2
. (9.3)

4. Compute the root-mean-square deviation (RMSD) fluctuation function F(s)

F(s) = √ 1
2K

2K
∑
v=1

F2(v, s). (9.4)

5. Modify the scale s and repeat the above four steps. If xi is long-range depen-
dence (correlated), the Hurst exponent can be illustrated by the following power
law:

F(s) ∼ sH . (9.5)

6. Use the polynomial curves to fit the two parts of F(s) separated by the moving
crossover point c in a log–log plot, respectively. Then, select the crossover point
c∗ with the minimum error sum of squares E of two polynomial-fitting parts:

Ec∗ = min(
c
∑
k=1

e2k +
s
∑
k=c

e2k). (9.6)

9.2.3 Fractional Gaussian noise

In time-series analysis, the auto-regressive (AR) model constructs a short memory of
the previous data, andmoving average (MA) models the random noise. The fractional
integrated (FI) characterizes the long-memory properties. The ARFIMA (p, d, q) model
of a time series Xt is defined as follows [3]:

(1 −
p
∑
i=1

ϕiB
i)(1 − B)d(Xt − μ) = (1 +

q
∑
i=1

θiB
i)εt , (9.7)

whereϕ1, . . . ,ϕp are AR parameters, θ1, . . . , θq are MA parameters, μ is the expectation
of Xt, εt is the white noise and B denotes the unit delay. In contrast to the ordinary
auto-regressive integrated moving average (ARIMA) process, the difference operator
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d in (p, d, q) is allowed to take non-integer (fractional) values. Hosking defined the
fractional difference operator by the binomial series ∇d [4]:

∇d = (1 − B)d =
∞
∑
k=0
(
d
k
)(−B)k =

∞
∑
k=0

Γ(d + 1)
Γ(k + 1)Γ(d + 1 − k)

(−B)k . (9.8)

To the best of our knowledge, the control system under the LRD noise has not yet
been studied in the CPA. In this chapter, wewill construct a control-system simulation
with fractional-order Gaussian noise by changing the value of d in the fractional-order
difference filter (1 − B)d in Eq. (9.7). In the following sections, we focus on two major
questions: How does the LRD noise affect the control system?; and how does one as-
sess the control performances based on various different tunings of the PID controller?

9.3 Simulation analysis

In the simulation, the first-order plus time delay (FOPTD) system 1
2s+1e
−0.5s is used

to simulate the process model in Fig. 9.1. The discrete PID controller parameters are:
P = 1.5, I = 1.0, D = 0.1; and the sampling rate is 50Hz. Control errors et = y∗ − yt are
used to assess the control performance, where y∗ is the setpoint (target) and yt is the
feedback signal. The fractional-order Gaussian noise is modeled and simulated by the
ARFIMA(0, d,0)with LRD disturbances d ∈ [−0.5,0.5]. d = 0 corresponds to the white
noise, and the fractional-order integral (derivative) coefficient d changes the slope H
in the DFA plot.

Figure 9.1: The control system under the fractional-order disturbances. The disturbance is modelled
by the fractional Gaussian noise (fGn), which is driven by the white Gaussian noise (wGn).

Since the originalDFAHurst fittingmethoddoesnot consider the LRD (coupling) prop-
erty of the time series, it should be modified to the multiple-Hurst fitting algorithm

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



9 Control performance assessment of the system with fractional-order dynamics | 161

with multiple polynomial lines. The fractional-order difference parameter d affects
the Hurst exponent H shown in the DFA plot. A larger fractional order d results in
a higher H, meaning control becomes more sluggish. For an LRD disturbance with
larger d values, CPA should choose the multiple-Hurst fitting results in the various
different ranges. The crossover points shift to the smaller range with increasing PID
gains in Fig. 9.2. The DFA results in multiple Hurst exponents under different PID tun-
ings, as summarized in Table 9.1. This explains the response of the systems’ become

Figure 9.2: DFA plots with crossover points in various PID tunings: From (a) to (e), with the increasing
PID gains, the crossover points shift to the small range. In each plot d ∈ [−0.5,0.5], the upper fitting
line represents the DFA plot with d = −0.5, while the lower fitting line is the DFA plot with d = 0.5.

Table 9.1: PID tunings results with multiple Hurst exponents.

d 0.2 PID 0.5 PID 1.0 PID 1.5 PID 2.0 PID
H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

−0.5 1.829 0.836 1.791 0.513 1.749 0.360 1.787 0.448 1.817 0.436
−0.4 1.777 0.787 1.777 0.588 1.709 0.326 1.767 0.436 1.775 0.371
−0.3 1.694 0.641 1.721 0.550 1.701 0.398 1.726 0.396 1.738 0.329
−0.2 1.624 0.594 1.627 0.411 1.642 0.368 1.674 0.361 1.693 0.292
−0.1 1.545 0.546 1.553 0.379 1.574 0.340 1.613 0.328 1.631 0.246
0.0 1.421 0.323 1.472 0.332 1.496 0.264 1.525 0.231 1.597 0.257
0.1 1.354 0.346 1.370 0.245 1.417 0.288 1.467 0.271 1.498 0.194
0.2 1.266 0.305 1.283 0.215 1.322 0.237 1.383 0.245 1.420 0.173
0.3 1.177 0.270 1.194 0.188 1.217 0.164 1.280 0.185 1.336 0.154
0.4 1.085 0.241 1.099 0.143 1.129 0.144 1.190 0.165 1.247 0.138
0.5 0.992 0.220 1.008 0.122 1.038 0.125 1.098 0.145 1.154 0.123
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Table 9.2: Crossover positions at different PID tunings.

d 0.2 PID 0.5 PID 1.0 PID 1.5 PID 2.0 PID

−0.5 2.996, −0.260 2.996, −0.257 2.820, −0.419 2.607, −0.517 2.519, −0.525
−0.4 2.996, −0.048 2.996, −0.058 2.820, −0.231 2.607, −0.347 2.607, −0.347
−0.3 2.996, 0.163 2.950, 0.102 2.820, −0.039 2.607, −0.175 2.607, −0.175
−0.2 2.996, 0.372 2.950, 0.310 2.732, 0.085 2.519, −0.058 2.519, −0.058
−0.1 2.996, 0.580 2.950, 0.520 2.695, 0.237 2.519, 0.117 2.519, 0.117
0.0 3.075, 0.856 2.820, 0.593 2.732, 0.506 2.607, 0.365 2.607, 0.365
0.1 2.820, 0.814 2.820, 0.807 2.695, 0.643 2.519, 0.466 2.519, 0.466
0.2 2.820, 1.032 2.820, 1.018 2.695, 0.844 2.519, 0.640 2.519, 0.640
0.3 2.820, 1.252 2.695, 1.094 2.695, 1.040 2.519, 0.812 2.519, 0.812
0.4 2.695, 1.302 2.695, 1.306 2.820, 1.372 2.519, 0.986 2.519, 0.986
0.5 2.695, 1.529 2.820, 1.651 2.820, 1.573 2.598, 1.254 2.473, 1.116

faster with high PID tunings. From Table 9.2, it clearly shows that the crossover points
move towards shorter memories with aggressive tunings. In addition, the crossover
pointsmove upwards with the increasing fractional integrated-order filter d, since the
Hurst exponents (i. e., the slope of DFA plot) increase accordingly in the small range.
The sluggish control relates to the larger crossover, which indicates longer control and
longer transient periods.

9.4 Case study: real industry data

9.4.1 Non-stationarity tests

Process industry data show that the majority of the available measurements and
process-disturbance time series exhibit nonlinear, non-Gaussian, nonstationary and
self-similar properties. The authors have reviewed a great deal of industrial data for
the validation of this. Some exemplary time series for real process data are presented
in Fig. 9.3.

Visual inspection of the sketched time series shows rapid changes, unexpected
significant spikes (outlier values), oscillations and noise. Since first impressions can
be deceiving, a statistical study has been conducted. The prepared diagrams showhis-
tograms, along with fitted probabilistic density functions (PDF) for three different dis-
tributions: classic bell-shaped Gaussian, fat-tailed alpha-stable and robust (Huber).

The fractional-dynamics hypothesis may be validated using stationarity tests for
one or many samples, estimation of the memory parameter based on sample using
wavelets and re-sampling, estimation of the self-similarity index based on sample
p-variation or by ARFIMA parameter estimation.
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Figure 9.3: Examples of real industrial process variables’ time series.

The stationarity tests were run to verify the non-stationarity hypothesis for the con-
sidered exemplary time series. Running the augmented Dickey–Fuller test (DF–GLS)
and Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) tests over the considered data
confirms in all the cases the non-stationarity hypothesis. As these tests are important
tools useful in the context of the ARFIMA model, the hypothesis that industrial vari-
ables perform similarly to the fractional processes is true. This observation forms a
strong rationale for the presented work.

9.4.2 DFA method with multiple Hurst exponents applied to real
data

Following the algorithm introduced in Section 9.2, the DFA method with multiple
Hurst exponents was applied to the real data in Fig. 9.4. In this regard, it should be
noted that apparent crossovers are exhibited for the scaling behavior indicated with
black circles.

Figure 9.4(a) shows that the DFA fitting line is straight with no significant cross-
over point, indicating the consistency of the control performances. From the perspec-
tive of control engineers, this control behavior is acceptable. The most interesting re-
sult is Fig. 9.4(b). It seems that the DFA fitting plot should be separated into three seg-
ments since periodicities or repeated signals may be contained in the original series.
This can be observed from the original series plot Fig. 9.3(b).

In Fig. 9.4(c), the overall DFA results are of the convex form, i. e., H1 > H2, mean-
ing the system controller performance is going stabilize in the long run. In contrast,
the badly controlled data set shows a very different crossover pattern. In Fig. 9.4(d),
the overall DFA results are of the concave form, i. e.,H1 < H2, meaning the control per-
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Figure 9.4: DFA method with multiple Hurst exponents applied to real data.

formance is degrading (getting worse). For very short time scales, the fluctuation is
quite random since H ≈ 0.5, while for the larger time scales, the fluctuation becomes
smoother and asymptotically approaches Brownian noise,H ≈ 1.5. These findings are
consistent with the previous report in [2]. Thus, the proposed method in this chap-
ter is a good quantitative description that can probably monitor the short-term and
long-term of the control system.

9.5 Conclusions
Using FOSP methodology, this chapter analyzes a control system that is subject to a
disturbance with fractional dynamics. Multiple Hurst fittings with crossover points
are added to the original DFAmethod. We found that the controller tuning has an im-
pact on the crossover points and Hurst exponents in the simulation performance. The
industrial data show that the proposed CPA approach for fractional-order dynamics
systems is useful and can be applied in a variety of situations.
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10 A novel method for control performance

assessment with fractional-order signal
processing

Abstract: Control loops are the most significant components in automation systems
and subsystems. The essential task for control performance assessment (CPA) is to re-
view and evaluate the performance of the control system. The control system in the
semiconductor industry exhibits a complex dynamic behavior, which is hard or even
impossible to analyze. One of the challenging problems is that control loops are often
multivariable and exhibit nonlinear dynamics, stemming either from the plant, the
transducers, the actuators or, even in some cases, the controllers themselves in in-
dustrial applications. This chapter investigates the interesting crossover properties of
Hurst exponent estimations and proposes a novel method for feature extraction of the
nonlinear multi-input multi-output (MIMO) systems. At first, real coupled data from
the industry are analyzed by multifractal detrended fluctuation analysis (MFDFA),
and the resultantmultifractal spectrum is obtained. Second, the crossover points with
spline fit in the scale-law curve are located and then employed to segment the entire
scale-law curve into several different scaling regions, in which a single Hurst expo-
nent can be estimated accordingly. Third, to further ascertain the origin of the multi-
fractality of control signals, the generalized Hurst exponents of the original series are
compared with shuffled data. Finally, non-Gaussian statistical properties, multifrac-
tal properties and Hurst exponents of the process control variables are derived and
compared with different sets of tuning parameters. The results show that CPA of the
MIMO system can be better employed with the help of fractional-order signal process-
ing (FOSP).

Keywords: control performance assessment, fractional-order signal processing, mul-
tifractal detrended fluctuation analysis, MIMO, Hurst exponent

10.1 Introduction

In automation systems, control loops are themost important components. Control sys-
tem efficiency is directly or indirectly related to product quality, operation protection,
material and energy use and, thus, financial performance. Control Performance As-
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sessment (CPA) is a benchmark for identifying and diagnosing the root causes of bad
performance, assessing and analyzing current performance and enhancing or pre-
venting performance deterioration [11].

However, the widely held belief that process signals are Gaussian contributes to
the foundation of CPA analysis algorithms and methods. On the other hand, non-
Gaussian behaviors, such as long-range dependence (LRD), self-similarity, power law
autocorrelation, infinite variance, and spiky signals have been observed in a typical
industrial process with thousands of control loops.

Non-Gaussian signals and noises tend to produce large-amplitude fluctuations
from the average value more frequently than Gaussian ones do [29]. Process control
systems are extremely complex, typically spanning several hierarchical levels, mak-
ing routinemaintenance impossible for plant personnel. In industrial applications, for
example, control loops are oftenmultivariable and exhibit nonlinear dynamics due to
the factory, transducers, actuators or even the controllers themselves.

To address these issues, fractional-order signal processing (FOSP) techniques
have been proposed in recent years to better characterize the control process with the
notions of fractional calculus [29]. FOSP techniques include fractional-order linear
systems, the autoregressive fractional integrated moving average (ARFIMA), Hurst
parameter estimation, fractional-order Fourier transformation (FrFT), fractals, multi-
fractal detrended fluctuation analysis (MFDFA), etc. [1]. In addition, fractional-order
thinking is indispensable to gain more insights to characterize complex objects [33].

CPA is an important asset-management technology to maintain highly efficient
operation performance of automation systems in production plants [10]. There are
many classic performance-assessment approaches, such as mean squared error
(MSE), integral absolute error (IAE), statistical indexes, fractal indexes, etc. Fur-
thermore, they can vary depending on the system under various circumstances, such
as control action restrictions, deterministic disruptions, and setpoint adjustments.
Process engineers must determine how to assess the quality of the control system’s
performance. After some researchers used it with CPA, multifractal analysis has be-
come a hot topic in automation and controls engineering in recent years. The use of
non-Gaussian statistical and fractal measures to track on-line control loop output was
proposed in [3]. Domański presents results of the research on alternative CPA mea-
sures applied to control quality assessment for SISO loop with generalized predictive
control (GPC) controller in [2, 4].

However, since the process complexity, cross-dependencies with varying de-
lays, LRD and human factors are not expressed in simulations, the already cited CPA
analyses and observations are done with a simple linear SISO scenario, in which
the monofractal and multifractal properties are not captured. As a result, various
thought-provoking queries, such as multiple-input multiple-output (MIMO) and sys-
tems with substantial time variant delays, are left unanswered in the cited papers.
Consequently, the roots and explanations of multifractal properties with crossover
phenomena need to be investigated further. As a result, more complicated situations,
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such as nonlinearity, MIMO and processes with large delays, should be investigated
to ensure process applicability and effectiveness.

This chapter targets on thenewdirectionsof the fractional-order signal processing
technique to assess the system performance for hardware engineers such as system
engineers, process engineers, reliability engineers and machine-learning engineers,
etc. Brief summarized, the purposes of this chapter are:
1. Use MFDFA to analyze semiconductor data, derive the multifractal spectrum and

select the characteristic parameters sensitive to changes of the control system;
2. Extract the characteristic parameters from the multifractal spectrum of reference

data to form future reference sets;
3. Develop the standard single-Hurst exponent-estimation with the multiple- Hurst

exponent-fitting method with crossover points;
4. Select multifractal properties and modified Hurst exponents to distinguish differ-

ent types of PID tuning performances.

Section 10.1 starts with a brief introduction to the current FOSP techniques in CPA.
Section 10.2 provides the definition of the fractional Gaussian noise, Hurst exponent
and α-stable distribution for readers with zero knowledge. Section 10.3 proposes the
MFDFA algorithm and Hurst spline fit with crossovers. Data analysis with MFDFA for
each loop of the real MIMO system is carried out in Section 10.4. The results are ana-
lyzed in Section 10.5, followed by the conclusion in Section 10.6.

10.2 Preliminaries

Fractal analysis is especially useful when the data show self-similarity, power-law,
scale-invariant and nonlinear properties [5, 27]. From the fractal theory introduced
by Mandelbrot in [19], the traditional concept of three-dimensional space can be ex-
tended to the fractal (fractional) dimension (FD).

Based on the definitions of fractional-order differential operators, many complex
dynamic systems with complex memory behaviors can be more properly described
by the fractional calculus. Some researchers have found interesting the analytical re-
sults of the linear fractional-order differential equations as represented by theMittag–
Leffler function, which exhibits a power-law asymptotic behavior [13]. Therefore, the
fractional calculus is widely used to analyze the random signals with power-law size
distributions or a power-law decay of correlations [18, 25].

The fractional-order integral of the function f (x) with α ∈ ℝ+ is defined as

aD
−α
t =

1
Γ(α)

t

∫
a

f (τ)
(t − τ)1−α

dτ, (10.1)
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Figure 10.1: Fractional Gaussian noise and fractional Brown noise in monofractal analysis and multi-
fractal analysis.

where Γ(⋅) is the Gamma function and aD−αt is the fractional integral of order α in
[a, t] [25].

Based on the fractional-order integral, the relationship of white Gaussian noise
wGnω(t), fractional Gaussiannoise (fGn),α-stable noiseωα(t), fractional stable noise,
multifractional Gaussian noise and multifractional stable noise can be described as
shown in Fig. 10.1. Besides, the fGn can be expressed as the αth order integration of
wGn [20, 29]:

Xt = 0D
−d
t ω(t). (10.2)

Therefore, from the perspective of fractional signals and fractional-order systems,
the fGn can be simulated by the dth integrator with wGn as the input in Fig. 10.1.

From that figure, themajor difference betweenmonofractal andmultifractal prop-
erties is the time-dependent variable H. The linear multifractional stable motion is
obtained by generalizing the constant Hurst parameter H to a time-dependent local
Hölder exponent H(t).

10.2.1 Hurst parameter

LRD is characterized by the Hurst exponent H. This means that there is a strong cou-
pling between values at various different times. The coupling effect characterized
by the autocorrelation functions (ACF) and power spectrum density (PSD) obeys the
power law, hyperbolically decaying, while the conventional assumptions are based
on the exponentially decaying effects. To quantify the level of the coupling, the Hurst
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exponent and many valuable Hurst exponent estimators have been provided to more
accurately characterize the LRD time series.

The rescaled range (R/S) method is one of the time-domain analyses of the Hurst
parameter defined as follows [7]:

E[R(n)
S(n)
]
n→∞
= CnH , (10.3)

where E(⋅) denotes the expected value of the observations, R(n) is the range of the first
n values, S(n) is their standard deviation and C is a constant. Alternatively, Whittle’s
maximum likelihood estimator (MLE) and wavelet analysis use periodogram-based
analysis in the frequency domain [26].

LRD processes appear in many contexts, as characterized by the Hurst parameter
H (0 < H < 1). The phenomenon of LRD can be observed in hydrology, finance, eco-
nomics, etc. Unlike a stationary process, the autocorrelations between observations
of a long memory series slowly decay to zero. However, according to the survey pa-
per [35], Hurst estimators can be significantly affected by trends and seasonality.

LRD or a long-memory process can be defined by the autocovariance γ(k) in the
time domain or by the power spectrum P(f ) in the frequency domain. The power law
is observed in the long-memory ARFIMA(p, d, q) process {Xt} with d ∈ (−1/2, 1/2) \ {0}
since the asymptotic behavior of the autocovariance function γ(⋅) is given by [9]

γ(k) ≃ Ck2d−1 (k →∞). (10.4)

In particular, if 0 < d < 0.5, then {Xt} is a long-memory process, or long- range
positive dependence, since ∑∞k=0 |γ(k)| = ∞ [34]. The process is said to exhibit in-
termediate memory (anti-persistence) (also known as a mean-reverting process), or
long-range negative dependence, for −0.5 < d < 0. In addition, the process is nonsta-
tionary for |d| ≥ 0.5 because it possesses infinite variance, and first-order difference is
needed to obtain the stationary series. Therefore, the fractional-order difference filter
is the first step for processing long-memory ARFIMA models [17].

Besides, the fractional-order difference (integral) coefficient d has a closed rela-
tionship with the Hurst parameter and characteristic exponent α:

d = H − 1/α, (10.5)

where H is the Hurst parameter and α is from the α-stable distribution, which will
be introduced in the next subsection. The Hurst parameter of fGn is related to d by
Equation (10.5) to identify the long-memory process.
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10.2.2 α-stable Distribution

In real systems, nonstationary, non-Gaussian, spiky signals are usually regarded as
outliers and thus discarded by engineers during signal processing. In fact, however,
each point of data from the real system could tell a “story’,’ such as malfunction-
ing, an inappropriate control philosophy, abnormal human intervention, etc. Non-
Gaussian signals and noises tend to produce large-amplitude fluctuations from the
average value more frequently than Gaussian ones do. Where did non-Gaussian sig-
nals come from? Many researchers have found that they are from fractional calculus
or even more specifically, α-stable processes [6].

The α stable distribution, which is the generalization of the Gaussian distribu-
tion, is used tomodel the non-Gaussian distribution. α-stable distribution-based tech-
niques have been applied to describe many natural or man-made phenomena in var-
ious fields, such as physics, hydrology, biology, financial and network traffic. Stable
distributions provide a useful theoretical tool for this type of signal and noise [23]. The
α-stable characteristic function (or distribution) is determined by four parameters: α,
β, γ and δ. A univariate distribution function F(x) is stable if and only if its character-
istic function has the form

ϕ(t) = exp{jδt − γ|t|α[1 + jβ sign(t)ω(t, α)]}, (10.6)

where

ω(t, α) = {
tan απ

2 , if α ̸= 1,
2
π log |t|, if α = 1,

(10.7)

sign(t) =
{{{
{{{
{

1, if t > 0,
0, if t = 0,
−1, if t < 0,

(10.8)

and

−∞ < δ <∞, γ > 0, 0 < α ⩽ 2, −1 ⩽ β ⩽ 1. (10.9)

α is called the characteristic exponent. A small value of α implies a considerable prob-
ability mass in the tails of the distribution, that is, the smaller α is, the heavier are the
tails. α = 2 corresponds to the Gaussian distribution (for any β). γ is a scaling parame-
ter called the dispersion. It is similar to the variance of the Gaussian distribution. β is
a symmetry parameter. β = 0 indicates a distribution symmetric about δ.

There are two algorithms that provide consistent estimators for all four param-
eters—Koutrouvelis’s method, which is based on empirical characteristic function
methods of Koutrouvelis [14] and McCulloch’s method, which is a simpler and faster,
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but less accurate, method [21]. In this chapter, we apply the Koutrouvelis method to
estimate these parameters in Section 10.4.

10.3 MFDFA algorithm

In early research studies, many researchers were trying to remove periodicity and
trends in a time series to determine the true-scale exponents. However, removal of
periodicity inevitably leads to unintended modification or a smoothing of the fluctu-
ation. MFDFA is an efficient FOSP technique to detect multifractality in a time series
since it does not require any knowledge about the process time delay or other process
parameters [22]. It is a well-established method for determining the scaling behavior
of noisy data in the presence of trends, without knowing the origin and shape. MFDFA
can estimate the multifractal spectrum of the generalized Hurst exponent from a time
series and it does not require any knowledge about the process time delay or other pro-
cess parameters [30]. Currently, MFDFA is being successfully applied to analyze vari-
ous data, such as hydrographic data [36], wind records [31], financial time series [32],
traffic time series [28], mechanical vibration signals [15], etc. It is a powerful tool for
uncovering the multifractality of nonstationary time series in the complex systems.
In this study, MFDFA is applied to detect the presence of multifractal and monofratal
properties in the MIMO systems with external disturbance and noise. Then, the origin
of themultifractality of the control signals and the generalized Hurst exponents of the
original series are compared with shuffled data.

10.3.1 Basic MFDFA algorithm

Detrended fluctuation analysis (DFA) was first proposed by Peng et al. for DNA analy-
sis in 1995 [24], and thenMFDFAwasproposedbyKantelhardt et al. in 2002 [12]. For the
calculation methodology, Ihlen developed MATLAB code in [8], and Domański modi-
fied the algorithm in [2].

The MFDFA method starts with a possibly nonstationary time series {ei} for i =
1, . . . ,N, where N indicates its length.
1. Define the “profile” E and transform the original data into mean-reduced cumu-

lative sums,

Ej =
j
∑
i=1
(ei − ē), j = 1, . . . ,N , (10.10)

where ē is the mean of series, such that the aggregated time series have a zero
mean.
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2. Divide time series Ej intoNs = int (N/s) non-overlapping segments of equal length
s, starting from the beginning. Since the lengthN of the series is often not amulti-
ple of the considered time scale s, so as not to miss any piece of data, another set
of segments starting from the end of data is made from the end progressing to the
beginning. As a result, 2Ns segments are obtained covering the whole dataset.

3. Calculate the local trend pk for each of the segments k = 1, . . . , 2Ns by a least-
square fit of the series.

4. Calculate the mean square error F2(k, s) for the estimate of each segment k of
length s.

F2(k, s) = 1
s

s
∑
i=1
(E[(k − 1)s + i] − pk[i])

2
, (10.11)

for each segment k = 1, . . . ,Ns and

F2(k, s) = 1
s

s
∑
i=1
(E[N − (k − Ns)s + i] − pk[i])

2
, (10.12)

for each segment k = Ns + 1, . . . , 2Ns.
5. Average over all segments to obtain the qth order variance (or fluctuation) func-

tion Fq(s) for each size s:

Fq(s) = (
1
2Ns

2Ns

∑
k=1
[F2(k, s)]q/2)

1/q

. (10.13)

For q = 0 use

F0(s) = exp{
1

4Ns

2Ns

∑
k=1

ln(F2(k, s))}. (10.14)

6. Repeat steps (2)–(5) for different s, evaluating new sets of variances Fq(s).
7. Plot Fq(s) for each q in log–log scale and estimate the linear fit with least squares.

If slope h(q) varies with q, multifractality is suspected. A single slope indicates
monofractal scaling.

8. Calculate multifractal exponent t(q) as

t(q) = qh(q) − 1. (10.15)

9. Use the Legendre transform to evaluate theHölder exponent α(q) andmultifractal
spectrum f (α):

{
α(q) = H(q) + qH′(q),
f (α) = q[α(q) − H(q)] + 1.

(10.16)
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The slope Hq of scaling function Fq with various q orders demonstrates the LRD be-
havior of signals. The multifractal spectrum indicates how dominant are the various
fractal exponents present in the series. The width of the singularity spectrum denotes
the range of the generalized Hurst (Hölder) exponent, which is defined as

Δ(α) = max(hq) −min(hq). (10.17)

It is often used to quantitatively measure the degree of multifractality of the se-
ries. Thus, the wider is the spectrummeans, the more multifractality exists inside the
series.

10.3.2 Defining the source of the multifractality

The origin of the multifractality of a time series can be distinguished as two differ-
ent types, i. e., the multifractality due to: (i) the different long-range correlations of
the number fluctuations; and due to (ii) the broadness of probability density func-
tion (PDF) of the distributions [12].

The easiest way to eliminate the correlations for (i) is shuffling the original series
into a random order since the multifractality is due to the probability density, which
is not affected by the shuffling. For (ii), the surrogate process of data, defined as re-
placing the phase of discrete Fourier transform (DFT) coefficients of the original data
with a set of pseudo independent and identically distributed quantities in (−π,π), can
change the broad PDF of the original data into the Gaussian distribution, while sel-
domly destroying the intrinsic long-range correlations of the original data [12].

10.3.3 Plot fitting Hurst exponents with crossovers

Generally, the conventional R/S plot fitting is performed by Equation (10.3). The stan-
dard estimation with least squares using QR factorization is used for single Hurst ex-
ponent estimation. In the current study, the curve is assumed to be piece-wise linear,
which is achieved by solving the first-order spline least squares (LSQ) fitting problem
with graph log(Fq) versus log(s) identifying crossovers. Each plot includes one, two,
and three linear approximations. In the next section, the red line represents a single
line and estimation of one memory scale, which is the conventional single-Hurst ex-
ponent H1. The green line represents two memory scales H1, H2 with one crossover.
The blue line represents three memory scales H1, H2, H3 separated by two crossovers.
The short-term is important from the perspective of the controller tuning, while the
long-term scale indicates the control system structure. Therefore, the asymptotic and
transient behavior of the system can be characterized with multiple Hurst exponents.
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10.4 Case studies

In today’s increasingly competitive global marketplace, semiconductor manufactur-
ers are facing a slew of high-level production challenges to remain profitable. Key
among these challenges are yield and throughput optimization. Big-data solutions
will be critical in the industry as we scale Advanced Process Control (APC) solutions
to finer levels of control and diagnostics. The main impact, however, will be to better
enable more efficient predictive technologies like Predictive Maintenance (PdM), Vir-
tual Metrology (VM), run-to-tun (R2R) control and yield prediction, which all rely on
data from traditional APC capabilities like fault detection [16].

The challenging parts in front of the big data solution are:
1. Semiconductor products are characterized by rapid changes in both the improve-

ment and deterioration of the quality.
2. The process is nonlinear and nonstationary with unpredictable behaviors.
3. The repeatable or R2Rproperty of thehigh-power plasma etchingmakes it difficult

to analyze the real-time data

This chapter will show how to use Hurst exponents as the temperature control sys-
tem’s main index/matrix. For each recipe, tens of thousands of runs are conducted
overnight, and they may be subject to unidentified interventions. The etching process
relies on the precise regulation of coolant temperature to ensure wafer uniformity.
Data from hundreds of control loops was secretly selected from the phase of dynamic
coolant-supply temperature. The industrial part of the research is focused on real data
from semiconductor manufacturing etching equipment.

For thousands of data logs fromdifferent chambers, how to assess the control per-
formance is a thorny problem for process engineers in the semiconductor industry. In
addition, the tuning of the MIMO system is a challenging task because the optimiza-
tion of PID parameters can be unachievable under coupled loops and nonlinearities.
In Fig. 10.2, r1,2,3, y1,2,3 are set-points and outputs of the control system, respectively.
Accordingly, the three PID controllers C1,2,3 are designed to control the temperature,
flow and coolant level in the tank. Therefore, it is a MIMO system with internal cou-
pling loops and external disturbance and noise with significant delays. In the article,

Figure 10.2: Control structure of the MIMO
system.
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Figure 10.3: Output errors of three loops: Var1, Var2, Var3 with first tuning parameters in blue;
Var1', Var2', Var3' with second tuning parameters in red.

we use Var1, Var2, Var3 to represent the error signals (r1,2,3 − y1,2,3) from each loop as
depicted in Fig. 10.3.

10.4.1 Non-Gaussian statistical analysis

First, the histogram plot Var1, Var2, Var3 with a probabilistic distribution func-
tion (PDF) fitting is frequently carried out to detect if the data are impacted by non-
Gaussian noises or subject to human interventions. This is often used to measure the
heavy-tailedness underlying process during assessment, and frequently it is a suitable
moment to call for further insight. Histogram fitting is significant since some parts
of the process: can be more impacted by the disturbances or can be more exposed to
the process nonstationarity; can be cross-correlated; or might be subject to human
interventions. In real situations it is a challenge to have similar properties for all the
loops.

The etching process during semiconductor manufacturing requires uniform tem-
perature behaviors from batch to batch, therefore Var1 is the major concern in the
current MIMO system. As introduced in Section 10.2.2, the α-stable distribution is per-
formed to detect whether the distributions are Gaussian, Lévy or something else. In
Fig. 10.4, the time series Var1 of the MIMO system has significant fat-tail properties.
Therefore, it can be inferred that there are non-Gaussian noises entering the system.
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Figure 10.4: Histogram of Var1 with PDF fitting.

Figure 10.5: Histogram of Var2 with PDF fitting.

Var2 is the variable of errors from theflow loop. Thehigher flow rate can exchangeheat
efficiently, whereas more turbulence could be introduced at the same time. Therefore,
the flow loop is interacted with the temperature loop. From Figs. 10.4 and 10.5, we can
see the clear correlations between Var1 and Var2.
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Figure 10.6: Histogram of Var3 with PDF fitting.

The histogram of the Var3 (see Fig. 10.6) explicitly shows very poor or even not func-
tioning control. The histogram is highly scattered, almost uniform. The loop is un-
controlled, with possible oscillations, operating on the edge of the stability region or
manually operated.

10.4.2 Hurst exponents fitting with crossovers

Second, in Figs. 10.7, 10.8 and Fig. 10.9, the red line represents single memory-scale
estimation, i. e., one Hurst exponent fitting without crossover H1. The green line rep-
resents two memory scales H1,2 with one crossover. The blue line represents three
memory scales H1,2,3 with two crossovers. All the crossover points are marked in cir-
cles. The phenomenon of the multiple memory scales in Var1 and Var2 are observed
in Figs. 10.7 and 10.8. Therefore, the variation of the memory scales with crossovers
cannot be captured by the conventional Hurst R/S fitting method with the constant
value. After processing the data with MFDFA, the multiple Hurst exponents, along
with crossover point positions, might carry information about the multifractality of
the control performance.

Var3 is the variable of errors from the coolant level loop, which in reality is de-
signed to keep the coolant away from the alarm level. It should be noted that the
control priority is comparatively lower in the design of the MIMO system. Compared
with Var1, Var2, however, themonofractal behavior of Var3 can be validated through
Figs. 10.6, 10.9 and Fig. 10.12.
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Figure 10.7: R/S plot Var1 with crossovers.

Figure 10.8: R/S plot Var1 with crossovers.
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Figure 10.9: R/S plot Var1 with crossovers.

Some further conclusions about the control quality of the loops could be reached. Var1
and Var2 showmulti-persistence behavior with different Hurst exponents in different
memory scales. On the contrary, Var3 is clearly mono-persistent. This means that this
loop isn’t necessarily connected with the others. It has a Hurst exponent of approxi-
mately 1. Its tuning is extremely slow, to the point of being nonexistent. It validates
the initial observationmadewith the histogram. The other two loops are the ones that
are most likely to be closely coupled. The R/S plots and the shortest Hurst exponent
also show dynamically slow power, but the control improves and returns to neutral
on the longer memory scale.

10.4.3 Multifractal analysis

To clearly derive the origin of the multifractal property, the shuffled datasets of Var1,
Var2, Var3 can remove correlations from the data, and any remaining scaling is
caused by probability density function broadness. It is shown that the multifractal
behaviors can be captured by the multifractal spectrum analysis with the shuffled
datasets in Fig. 10.10.

From themultifractal spectrs shown in Figs. 10.10, 10.11 and 10.12, themultifractal
spectrum width is significantly different. Notice that the tiny arcs in Fig. 10.12 demon-
strate the constant Hq for monofractal property in Var3, while the wider arcs of Var1,
Var2 shows the multifractality in the MIMO system. Moreover, the multifractality
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Figure 10.10:Multifractal spectrum for shuffled Var1. The nonparallel behavior with different
scales (left plot) and the arch with large width (right plot) indicate the multifractal behaviors of Var1
in the MIMO system.

Figure 10.11:Multifractal spectrum for shuffled Var2. The nonparallel behavior with different
scales (left plot) and the arch with large width (right plot) indicate the multifractal behaviors of Var2
in the MIMO system.

Figure 10.12:Multifractal spectrum for shuffled Var3. The nonparallel behavior with different
scales (left plot) and the arch with large width (right plot) indicate the multifractal behaviors of Var3
in the MIMO system.
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of the MIMO process has been detected and analyzed for each loop with shuffled
datasets Var1, Var2, Var3.

10.5 Results and discussion

This chapter presented a CPA method with non-Gaussian statistical factors. First, we
extracted four parameters α, β, γ, δ with α stable distribution and calculated the mul-
tifractal spectrum width Δ(α).

It is well known that the PID tuning of the MIMO system is a time consuming
and arduouswork. Two sets of real data Var1, Var2, Var3 and Var1', Var2', Var3'

with different PID parameters are compared at the end of article, of which the initial
settings are conservative and latter ones are more aggressive. In Table 10.1, the pro-
posed FOSPmethodwas conducted according to the previous sections. The aggressive
tuning with small α depicts the broadness and fat tails of the distribution of the un-
derlying process. Moreover, the absolute values of β, γ, δ indicate the poorer behavior
with the latter tuning.

Table 10.1: Indexes for variables with various PID tunings.

Variables α β γ δ hq(−5) hq(5) Δ(α)
Var1 1.241 0.074 0.411 0.101 1.07 0.21 0.881
Var2 1.634 0.056 0.025 −0.030 0.82 0.06 0.757
Var3 2.000 −1.000 0.456 −0.235 0.58 0.46 0.127

Var1' 1.171 −0.156 0.456 −0.235 1.04 0.25 0.798
Var2' 1.695 0.287 0.123 −0.246 0.71 0.41 0.307
Var3' 2.000 1.000 1.567 −0.208 0.57 0.53 0.069

In addition, the multi-scale Hurst spline fits with crossovers are located and com-
paredwith single-Hurst estimation.Usingmultiple-Hurst exponent fittings at different
scales represents the dynamic behavior of the system with noise in Table 10.2.

A review of the persistence properties of the data reveals visible effects of tuning.
We observe changes in H1. For the first loop it moved from a more sluggish value of
0.682 towards neutral tuning, while the second loop Var2 is slightly more sluggish.
Loop Var3 is unchanged. However, the effect of tuning (whatever the set is) is evident
in comparison with the original MIMO system presented in R/S plots in Figs. 10.7, 10.8
and 10.9. Var1, Var2 require disturbance decoupling compared with aggressive tun-
ing, while Var3 possibly requires redesign of the control philosophy and fine tun-
ing.
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Table 10.2: Hurst exponents at different memory scales.

Variables H1 H1, H2 H1, H2, H3

Var1 0.682 0.913, 0.450 0.991, 0.671, 0.392
Var2 0.714 0.926, 0.500 0.964, 0.728, 0.436
Var3 1.010 1.044, 0.974 1.041, 1.035, 0.930

Var1' 0.622 0.827, 0.416 0.905, 0.560, 0.415
Var2' 0.824 1.099, 0.546 1.062, 0.951, 0.350
Var3' 0.968 1.057, 0.878 1.006, 1.066, 0.751

There is no single universal measure that manages and detects all possible features
that may be encountered in industrial control, as is well documented. Each approach
is well suited to the loop’s unique characteristics. Traditional methods, such as inte-
gral, mathematical and minimal-variance methods, can be used in a broad range of
situations. They can, however, encounter difficultieswhendealingwithnonlinear and
complex processes. The FOSP approach allows for the evaluation of controller output,
which is dependent on controller tuning and control theory suitability. It also allows
the control error histogram’s stable properties to be incorporated into the analysis.
Due to the inefficiency of distribution fitting, the multifractal spectrum may reveal
additional details about control properties. The overall system’s complex cascaded
properties, human effects or superposition of different impacts and oscillations (non-
concave spectra) can all be evaluated.

10.6 Conclusions
Fractional-order systemdynamics can be seen in themultifractal properties of process
control variables. We discussed the origins of multifractal properties and how FOSP
techniques contribute to complex phenomena in the control system in this chapter.
More importantly, the CPA of the MIMO control system is first proposed using FOSP
and then applied to semiconductor manufacturing using data from the industry. In-
dicators for control improvement are established, and conclusions about the MIMO
system’s control output are then drawn. The FOSP analysis allows for analysis on
various time scales, allowing for controller dynamics (short scale) and device cross-
dependencies to be addressed (mostly reflected in longer scales). Similar phenomena
have previously been studied in time-delayed systems and networks, allowing for the
evaluation of both system parameterization and structure. As a result, it is expected
that FOSP will take on a growing number of specific roles that traditional signal pro-
cessing approaches will be unable to address.
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Michał W. Okoński and Paweł D. Domański
11 Study on oscillation detection robustness

and outlier filtering impact

Abstract:Accurate oscillation analysis is of vital importance to industrial plants’ prof-
itability and safety. Most of the oscillation detection and characterization procedures
are based on strict assumptions regarding signal and noise properties. Their robust-
ness to outliers is seldom validated and considered. This paper proposes an improved
oscillation detection and characterization procedure that is robust to outliers; the ro-
bustness to single-point outlying observations (deviants), of endogenous or exoge-
nous origin is considered. The proposed improvements use initial signal preprocess-
ing to identify and replace the outliers. In the first part of the paper, the Hampel fil-
ter’s ability to detect outliers in oscillating signals is evaluated. The best-performing
Hampel filter is selected in a thorough simulation study. Furthermore, the limit to aMA
filter’swindowsize, in the context of oscillation characterization, is established. In the
second part of the paper, the original oscillation detection procedure’s robustness to
outliers, with and without initial signal preprocessing, is assessed on simulated ex-
amples. A comparison of preprocessingmethods reveals that Hampel filter is superior
to MA filter. Finally, the proposed improvements are validated on various simulated
benchmark signals and real industrial case studies.

Keywords: oscillation detection and characterization, outlier identification, exoge-
nous and endogenous outliers, EMD, data preprocessing

11.1 Introduction
The oscillation detection and characterization procedure is a vital step in control sys-
tem performance assessment. Its results serve both process tuning and diagnosis and
thus have far-reaching influence on a plants’ profitability and safety. The unstated as-
sumption behind most modern oscillation detection procedures is that the analyzed
datasets exhibit Gaussian properties. The reality however, hardly matches the theory.
The majority of industrial data is driven by nonlinear and nonstationary processes
exhibiting abnormal properties [4], of which the most troublesome and distinct are
the outliers. This paper addresses the issue of outliers in the context of the oscillation
detection Hampel filter and its characterization.
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Over the years, multiple oscillation detection and characterization procedures
have been developed. In general, these methods may be classified into two main cat-
egories: based on time and frequency domain analysis or based on data mining. The
classic time and frequency domain techniques include: detection of spectral peaks in
either Fourier spectrum or a periodogram, the integral of absolute error (IAE), decay-
ratio approach of autocorrelation function (ACF) [14], the regularity of zero-crossings
of ACF [25], wavelets [20] and the discrete cosine transform [13]. More recently, mul-
tiple approaches based on data mining were proposed: hidden Markov models [29],
artificial neural networks (ANN) [31] or linear predictive coding (LPC) analysis [19].

The aforementionedmethods suffer from certain limitations; Their successful op-
eration is either based on strong assumptions, namely, signal linearity and stationar-
ity, or requires large amounts of data. This is why the various time–frequency domain
hybrid methods have been gaining researchers’ attention. These methods start with
an initial step of signal decomposition that splits the signal (information) from noise
and nonstationarity (trend). Such signal decompositionmethods are: empirical mode
decomposition (EMD) [9], local mean decomposition (LMD) [21] and ensemble em-
pirical mode decomposition (EEMD) [27]. The oscillation characterization procedures
based on these methods are: EMD with Thornhill’s index [22] with numerous further
enhancements [15, 24], LMD with Lempel–Ziv complexity [28] and EEMD [26].

The research on oscillation detection and characterization rarely acknowledges
the need to account for the distortions in the analyzed data. White-noise robustness
is usually the only considered aspect: as in noise-assisted multivariate EMD [1] or the
previouslymentionedmethods based on ACF. Specific non-Gaussian properties of the
signal, especially “fat tails”, are seldom considered.

An outlier is a strange occurrence in a dataset [7]. In general, two types of outliers
can be distinguished [6]: deviant, i. e., a single outlying observation that might be fre-
quent, but still appears as an individual observation, and discord in the form of an
anomalous time-series subsequence substituting for the original process over some
given time period.

Outliers may originate from an erroneous observation, an unknown contaminat-
ingmechanism or can be an intrinsic symptom of themain underlying stochastic pro-
cess [11]. Outliers strongly influence data analysis: They enlarge the observed variance
and reduce the power of statistical tests [16], destroy Gaussianity, introduce histogram
tails [23] and bias regression [18].

Several works propose an initial data preprocessing step that is meant to account
for the distorted data, i. e., identification of corrupted data for high-frequency oscilla-
tions detection in EEG data [8], a GaussianM-Distmedian filter applied to data prepro-
cessing for detecting low-frequency oscillations in power systems [12] or time-series
filtering to reduce false alarms in power-system data [2]. This paper proposes an im-
proved robust oscillation detection procedure initially described in [22]. The rationale
behind thisworkoriginates from the authors’ industrial experience:Outliers in signals
are frequent, and process analysis needs to be performed using highly contaminated
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raw process data. The proposed improvements are based on initial signal preprocess-
ing that ismeant to identify and replace the outliers. Although thiswork focuses on the
first type of outliers previously mentioned—individual observations in a time series—
itmakes a clear distinction between outlier sources and their generationmechanisms.
We believe that the generic nature of this study is a vital extension of subject knowl-
edge.

The remainder of this paper is organized as follows. The outlier generation mech-
anisms and signal preprocessingmethods are described in Section 11.2. The proposed
improvements and their benchmarking are presented in Section 11.3. Section 11.4 pro-
vides a comprehensive simulation study of preprocessingmethods and their influence
on the performance of the oscillation characterizationprocedure. Industrial case stud-
ies are discussed in Section 11.5, which is being followed by a summary in Section 11.6.

11.2 Preliminaries

This section is structured in away that resembles the consecutive steps of experiments
discussed in Section 11.4. First of all, noise carrying outliers need to be generated.
Outlier detection in noise, which will serve during Hampel filter’s benchmarking, is
followed by the initial signal preprocessing, signal decomposition and the original
oscillation characterization procedure.

11.2.1 Outlier generation

As mentioned in Section 11.1, points lying far from the bulk of the data can have dif-
ferent origins. When an underlying generation process has fat-tailed properties, these
points are classified as endogenous outliers. If they are a result of erroneous observa-
tion, they are referred to as exogenous outliers. The methods used to simulate these
two distinct types of outliers are described next.

11.2.1.1 Endogenous outliers

Outliers generated by industrial fat-tailed processes can be simulated using noise gen-
erated by α-stable distribution since it exhibits many attractive features [5]. It is ex-
pressed by the characteristics equation (11.1)

Fstabα,β,δ,γ(x) = exp{iδx − |γx|α(1 − iβl(x))}, (11.1)

l(x) = {
sgn(x) tan( πα2 ) for α ̸= 1,
− sgn(x) 2π ln |x| for α = 1,
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where: 0 < α ≤ 2 is the stability index, |β| ≤ 1 is skewness, δ ∈ ℝ is location, and γ > 0
is the scale parameter. Selected combinations of these parameters result in a closed
form of the probabilistic density function (PDF):
– α = 2 and β = 0 denote Gaussian distribution;
– α = 1 and β = 0 denote Cauchy distribution;
– α = 0.5 and β = ±1 denote Lévy distribution.

In this paper, symmetric α-stable (SαS) noise, with α < 2, β = 0 and δ = 0, is used to
generate endogenous outliers.

11.2.1.2 Exogenous outliers

The second type of outliers is needed to describe signal contamination caused by erro-
neous observations such as measurement errors, data transfer artifacts or human in-
terventions. These outliers are simulated by white noise (11.2) with randomly injected
distant points (11.3).

FGaussxo ,σ (x) = 1
√2πσ2

e− (x−x0)22σ2 , (11.2)

F(±D) = p, (11.3)

where: x0 is location (mean), σ is scale (standard deviation), p is the contamination
level and D is the scale of exogenous outliers.

11.2.2 Outlier detection

The research on outlier detection can be traced back to early 1950s. It started with the
use of statistical methods, whereas nowadays data-mining approaches are gaining
popularity. Despite the recent advancements, the simplicity, clearness andmodel-free
formulation of statistical techniques make them still attractive.

A classic outlier detection method is based on the Interquartile Range (IQR). The
IQR is calculated as the difference between upper 75th (denoted as Q3) and lower 25th
(denoted as Q1) percentiles of the dataset. Data points are considered to be outliers
when they lie below Q1 − 1.5 IQR or above Q3 + 1.5 IQR. The method’s results are of-
ten presented in a box-plot: The highest and lowest occurring values are indicated by
whiskers, while the outliers are highlighted by ticks. The breakdown point for IQR is
equal to 25%. The IQR method is especially useful for detecting outliers in bulks of
data, such as real or simulated noise realizations.
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11.2.3 Signal preprocessing

11.2.3.1 Applied estimators

The choice of appropriate statistical estimators of location and scale is of importance
in the context of outlier identification using nonlinear identifiers. A classic approach
assumes Gaussian properties of the noise-generating process. Under such assump-
tions, the sample mean x0 estimates location, while the sample standard deviation σ
estimates the scale.

Unfortunately, these estimators are biased by outliers and are nonrobust [18].
Their breakdown point, i. e., the maximum allowable share of contaminated data not
affecting estimation, equals 0%. Since industrial datasets are commonly contami-
nated with outliers, other robust location and scale estimators need to be used. The
sample median is a simple robust location estimator; it points to the middle of the
dataset of length N . The median absolute deviation (MAD) is a simple robust scale
estimator (11.4):

MAD = median
k
|ϵk | = median

k
|xk − x0|. (11.4)

To refine MAD, the median can be used as the expected value estimator. Median ab-
solute deviation around median (MADAM) is obtained then (11.5) as

MADAM = median
k
|xk − xmed|. (11.5)

The research on robust statistics offers other, more elaborate robust estimators,
namely, M-estimators with Huber ψ-function or logistic function [3]. M-estimator of
location is defined as the solution of the following equation:

N
∑
i=1ψ(xi − x0̂σ0 ) = 0, (11.6)

where ψ is any nondecreasing odd function, x0 is a location estimator and ̂σ0 is a pre-
liminary scale estimator, i. e., MADAM. M-estimators are affine equivariant, and the
equation (11.6) can be solved using the Newton–Raphson algorithm with the sample
median as a starting value. Similarly, M-estimator of scale is defined as the solution
of the equation

1
N

N
∑
i=1 ρ(xi − ̂μ0σ

) = κ, with 0 < κ < ρ(∞), (11.7)

where ρ is an even, differentiable and nondecreasing (on the positive numbers) loss
function, σ is a scale estimator and ̂μ0 is a preliminary location estimator, i. e., the
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sample median. M-Estimators can use the Huber or logisticψ function. The HuberψH
is defined as

ψH (x, b) = max(−b,min(x, b)), (11.8)

where b is a user-defined constant. For b→ 0 the location estimator becomes the me-
dian, whereas for b→∞ it becomes the sample mean. For normally distributed data,
b equal to 1.345 gives 95% efficiency. The efficiency of the M-Estimator increases to-
gether with b, while the robustness is inversely proportional to b. The logistic smooth
ψlog function is defined as:

ψlog(x) =
ex − 1
ex + 1
, (11.9)

whichmay be rewritten asψlog(x) = 2F(x)−1, where F(x) = 1/(1+e−x) is the cumulative
distribution function of the logistic PDF, also known as the sigmoid function. In this
paper, M-Estimators using ψH function are called M-Huber estimators, whereas those
using ψlog are referred to as M-Logistic estimators.

11.2.3.2 Outlier detection in signal

Aclassicmethod for online outlier identification and replacement is amoving-window
Hampel filter [17], whose response is given by

yk = {
xk |xk −mk | ≤ t ⋅ sk ,
mk |xk −mk | > t ⋅ sk ,

(11.10)

where mk and sk are the mean and standard deviation estimators from moving data
window W . Two tunable parameters of the Hampel filter are w (window half-width)
and t (threshold value).

In a typical setup,median is used formk and sk = 1.4826×MADAMas an unbiased
estimator of the standard deviation for normally distributed data. However, due to
the abnormal, fat-tailed character of outlier generating distributions and a potentially
shortwindowW , various other robust estimators presented in Section 11.2.3.1might be
used. The resulting variants of the Hampel identifier H1 . . .H6 are shown in Table 11.1.

Another possible refinement of the Hampel filter is to designate the task of outlier
identification to a different domain. Original signal x(t) can be transformed in a way
that emphasizes the influence outliers with respect to the original signal. Two such
transformations are: absolute changes (11.11) and log returns (11.12), the latter originat-
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Table 11.1: Hampel identifiers for various different estimators.

Hampel identifier Location estimatorm Scale estimator s

H1 median 1.4826 ×MADAM
H2 M-Huber 1.4826 ×MADAM
H3 M-Logistic 1.4826 ×MADAM
H4 median M-Logistic
H5 M-Huber M-Logistic
H6 M-Logistic M-Logistic

ing from the field of economics.

z(k) = x(k + 1) − x(k) ∀k∈⟨1,N−1⟩, (11.11)
zW (k) = log(x(k + 1)) − log(x(k)) ∀W∈⟨1,N−1⟩,k∈W . (11.12)

The subscript in zW is meant to emphasize the fact that log returns transformation is
only valid for a local windowW . If, in a given window, any x(k) < 1, the following step
is needed (11.13):

x′(k) = x(k) + 1 −min
W
(x) ∀k∈W , (11.13)

where minW (x) is the minimum value of x over window W . In this paper the three
outlier identification domains are referred to as A (original), B (absolute changes) and
C (log returns). For domains B, C, the regular A filter’s response (11.10) needs to be
modified as shown in (11.14) and (11.15).

y′k = {0 |zk −mk,z | ≤ t ⋅ sk,z ,
1 |zk −mk,z | > t ⋅ sk,z , (11.14)

yk = {
xk y′k−1 ∧ y′k = 0,
mk y′k−1 ∧ y′k = 1. (11.15)

11.2.3.3 Signal denoising

A centered moving average (MA) filter is an optimal solution for the problem of re-
ducing randomwhite noise, while keeping the sharpest step response. It provides the
lowest possible noise for a given edge sharpness, which is of importance when an-
alyzing time domain modulated signals. While working with oscillatory signals, it’s
convenient to relate window size to the oscillating period T and refer to it as relative
window size wr (11.16)

wr =
w
T
. (11.16)
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11.2.4 Signal decomposition—EMD

Empiricalmodedecomposition (EMD) adaptively decomposes a signal x(t) into a finite
number of oscillatory components called intrinsic mode functions (IMF) [9]. The IMFs
satisfy two conditions: (i) The number of extrema and the number of zero crossings
must be either equal or differ at most by one; (ii) at any time, the mean value of the
envelopes defined by the local extrema equals zero. The IMFs are generated in a sifting
process that results in the decomposition (11.17)

x(k) =
M
∑
i=1 ci(k) + r(k), (11.17)

where ci(k) is the ith IMF and r(k) is the residual (nonstationary component). The EMD
algorithm can be outlined with the following steps:
Step 1: Find the location of local extrema of the signal x(k);
Step 2: Interpolate all the maxima (minima) to obtain the upper (lower) envelope,

emax(k) (emin(k));
Step 3: Calculate the local mean,

m(k) = [emin(k) + emax(k)]/2;
Step 4: Subtract the local mean from the signal:

h(k) = x(k) −m(k);
Step 5: If h(k) satisfies the stopping criteria, set ci(k) = h(k), the ith IMF component,

and proceed to step 6. Otherwise, set x(k) = h(k) and repeat the procedure
starting from step 1;

Step 6: Calculate the residual r(k) = x(k) − ci(k);
Step 7: If r(k) doesn’t satisfy the termination criteria, set x(k) = r(k) and repeat the

procedure starting from step 1; otherwise, finish the decomposition.

Sifting in Step 5 stops when the following limits are reached: the maximum number
of sifting iterations and the relative tolerance of consecutive h(k). Possible EMD termi-
nation conditions in Step 7 are evaluated based on the number of IMFs, the number
of extrema in residual, the energy ratio of signal and the residual.

11.2.5 Oscillation characterization procedure

The following oscillation detection and characterization procedure is suitable for the
detection of multiple, regular oscillations in closed-loop systems:
1. Perform empirical mode decomposition of the process output (PV) signal x(k) to

obtain the IMFs—ci(k);
2. Calculate the normalized correlation coefficient λi between the individual IMFs

and the original signal (11.18). Check if λi > 0.5. Retain only those IMFs that obey

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



11 Study on oscillation detection robustness and outlier filtering impact | 195

this criterion. In the following sections these IMFs are referred to as significant.

λi =
μi

max(μi)
∀i = 1 . . .M, (11.18)

μi = Corr(x(t), ci(t)), (11.19)

where Corr(a, b) is Pearson’s correlation coefficient andM is the number of IMFs
resulting from EMD;

3. For every significant IMF, compute the amplitude spectrum using a Fourier trans-
form. Calculate the sparseness index Spari of the computed amplitude spectra
(11.20). Check if Spari > 0.5. Retain only those IMFs that obey this criterion.

Spari =
√N − (∑Nj=1|fj|)/√∑Nj=1|fj|2

√N − 1
, (11.20)

where fj is the component of the amplitude spectrum f and N is the length of the
vector f ;

4. Compute the autocorrelation function (ACF) of the IMFs obtained in step 3. Calcu-
late the ‘r’ statistic (Thornhill index) for each ACF. Check if ri > 1. The IMFs that
obey this criterion are considered to be oscillatory.

ri =
1
3
μT
σT
, (11.21)

where μT and σT are the mean and standard deviation of the time between suc-
cessive zero crossings of the ACF;

5. Calculate the amplitude of oscillations for oscillatory IMFs.

11.3 Proposed oscillation detection approach

11.3.1 Improved oscillation detection procedure

During our initial studies on the subject of oscillation characterization in signals of
industrial origin, we have noticed that results obtained using the oscillation detec-
tion algorithm described in Section 11.2.5 were unreliable for data characterized by a
low signal-to-noise ratio (SNR). The outcomes are even worse if the signal is contam-
inated with outliers. Preprocessing of data is the obvious solution. Although it would
be tempting to use a linear filter such as themoving average (MA), this approachmight
be insufficient. A linear filter alters every point in a data set, thus creating the risk
of data loss or mode damping. The proposed approach is to filter selectively out of
outliers using a nonlinear filter and maintain as much of the original raw data as un-
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altered as possible. We therefore propose the following 0th step to precede the EMD
oscillation detection algorithm:
Step 0: Signal preprocessing—identify and replace the outliers using a nonlinear

Hampel filter.

11.3.2 Improvements benchmarking

To compare the performance of different Hampel identifiers on a simulated data set,
it is necessary to: (i) A priori define the outliers and (ii) compare the outlier detection
algorithm’s results with (i). Since a test data set x(t) is composed of signal and noise

x(k) = signal(k) + noise(k), (11.22)

an outlier can be a priori defined using the IQR method for the noise realization. (i).
The Hampel identifier’s performance benchmarks: TPR and FPR, based on the error
matrix are used for (ii).

TPR = TP
TP + TN

, FPR = FP
FP + FN

, (11.23)

where TP (FP) is the number of correctly (incorrectly) detected outliers and TN (FN)
is the number of correctly (incorrectly) detected nonoutliers. The effectiveness of im-
provements proposed in Section 11.3.1 will be assessed by comparing the oscillation
characterization procedure’s results with and without initial data preprocessing. The
followingbenchmarks, corresponding to 4th and 5th steps of oscillationdetectionpro-
cedure, are compared:
– Correct detection—the share of experiments with detected oscillations (4th step in

Section 11.2.5) and correctly estimated oscillation period (11.24) is

μT − σT < T < μT + σT , (11.24)

where T is the actual period, μT is the estimated period and σT is the standard
deviation (error) of the estimated period.

– Incorrect detection—the share of experiments with detected oscillations and in-
correctly estimated oscillation period.

– Median σT—median uncertainty of correctly detected period. If a given oscillation
period is detected in more than one IMF, minimum σT is selected.

– MAE of amplitude—median absolute error (11.25) of estimated amplitude, for cor-
rectly detected oscillation,

MAE(k) = median
k
|Ak − A|, (11.25)
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where A is the actual amplitude and Ak is the amplitude estimated in the kth ex-
periment.

Correct and incorrect detection are referred to as detection benchmarks, while theme-
dian σT and MAE of amplitude are referred to as estimation benchmarks. It’s worth
noting that, since multiple oscillating components (correct and incorrect) can be de-
tected in a signal containing just a single oscillation, the sum of correct and incorrect
detection can exceed the value of 100%.

11.4 Simulation study

In Sections 11.4.1 and 11.4.3, the aforementioned signal x(k), consisting of an oscillat-
ing component and noise (containing outliers), is used for simulation purposes.

x(k) = A sin(2π
T
kh) + noise(k), (11.26)

where T and A are the oscillation period and amplitude, k is the sample number and
h is the sampling period. Without loss of generality, h = 1 and A = 1 in all examples.

The level of noise (SNR) of SαS noise (generating endogenous outliers) is calcu-
latedwith the assumption that its power equals the squaredM-Logistic estimate of the
standarddeviation. The SNRofwhite noisewith injected erroneous observations (gen-
erating exogenous outliers) equals the variance of the underlying normal distribution.
To account for the slow convergence (experiment’s repeatability) of SαS distribution,
either the number of samples or the number of experiments needs to be appropriately
high.

Experiments in Section 11.4.1 use only SαS noise (stability index α = 1.7) because
this noise produces outliers in amore general way; the underlying endogenous outlier
generation mechanism has a single adjustable parameter: stability α, whereas exoge-
nous outliers have two: intensity p and scale D. To ensure that the experiments are
exhaustive, x(k) is studied over a wide range of periods and noise levels. So as not
to lose the local character of the signal, the maximum window half-width w = 10.
Thresholds are evaluated up to t = 6. The experiments’ setup is listed in Table 11.2.
The number of used samples is n = 1e5.

Section 11.4.3 uses both SαS andwhite noisewith injected erroneous observations
to generate outliers. Without loss of generality, scale parameter D of exogenous out-
liers is held constant and equals ten times the signal’s amplitude. x(k) is studied over
a wide range of noise levels, outlier intensities, and for various preprocessing meth-
ods. The experiments’ setup is listed in Table 11.3. The results of each simulation are
averaged overM = 1e3 noise realizations. In every experiment, the number of samples
equals tenperiods of oscillations, i. e., forT = 100, thenumber of samples andn = 1e3.
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Table 11.2: Outlier detection experiments’ setup.

T w t Identifier Domain SNR

Example 1 100 1:10 0.1:0.1:6 H1 A, B, C 10
Example 2 100 1:10 0.1:0.1:6 H1 ⋅ ⋅ ⋅H6 A, B, C 10

Example 3 10–1000 1:10 0.1:0.1:6
H6 A

10H6 B
H4 C

Example 4 100 1:10 0.1:0.1:6
H6 A

0:10:20H6 B
H4 C

Example 5 100
8 3.4 H6 A

1010 2.7 H6 B
10 2.8 H4 C

Note: All the experiments are carried out for endogenous outliers—α = 1.7.
Table 11.3: Setup of the oscillation characterization experiments.

T Benchmark Preprocessing
Without wr of MA TPR of Hampel

Example 1 100 Detection Yes 30 30
Example 2 100 Detection No 30, 40, 50 30, 40, 50
Example 3 100 Estimation No 30 30, 50

Example 4 50 Detection No 30 50200

Note: All the experiments are carried out for endogenous outliers—α = 1.5, 1.7, 1.9, and exogenous
outliers with contamination p = 0.5, 1, 1.5 and scale parameter D = 10. In every experiment SNR =−5:5:25.
11.4.1 Hampel identifier performance

11.4.1.1 Example 1

For a better initial understanding of the relationship between Hampel identifiers’ ad-
justable parameters, thewindowhalf-width and threshold, TPR and FPR surface plots
are shown in Figs. 11.1 and 11.2. To focus attention, the plots’ threshold axes are limited
between 2.5 and 6.

It’s clearly visible that in all domains, both TPR and FPR decrease with the in-
crease of the threshold. This observation indicates that there is a trade-off between
TPR and FPR, with respect to the threshold value. The window half-width’s influence
is more subtle and cannot be easily generalized. It’s also worth noting that the surface
plots in transformed domains B and C are similar, and they differ significantly from
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Figure 11.1: TPR surface plots of H1 identifier’s performance in domains A, B, C. Threshold axes limits
are set to 2.5 and 6.

Figure 11.2: FPR surface plots of H1 identifier’s performance in domains A, B, C. Threshold axes limits
are set to 2.5 and 6, while FPR axes limits to 0 and 1. The threshold axis swapped places with the
window half-width axis with respect to Fig. 11.1.

the plots in domain A. This observation reveals that the Hampel identifier’s optimal
parameters are domain-dependent.

11.4.1.2 Example 2

In this example the effect of appropriate estimator selection on theHampel identifiers’
performance is studied. For H1 . . .H6, FPR is plotted as a function of TPR. Plots com-
prised of only the optimal (lowest FPR for a given TPR) Hampel identifier’s parameters
(window half-width and threshold) are shown in Figs. 11.3, 11.4 and 11.5. Since poorly
performing identifiers are of no interest, the FPR axes are limited between 0 and 1.

All the identifiers shown in Figs. 11.3a, 11.4a and 11.5a use scaled MADAM as the
estimator of standard deviation. The plotted curves overlap one another in every fig-
ure, which means that the choice of a right mean estimator has a small influence on
outlier detection performance.

Identifiers using the M-Logistic estimator of standard deviation are shown in
Figs. 11.3b, 11.4b and 11.5b. A “classic” H1 identifier is added to the figures as a ref-
erence. For every identification domain, identifiers H4 . . .H6 perform better than
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Figure 11.3: FPR vs. TPR plots of H1 . . .H6 identifiers’ performance in domain A. FPR axes limits are set
to 0 and 1.

Figure 11.4: FPR vs. TPR plots of H1 . . .H6 identifiers’ performance in domain B. FPR axes limits are
set to 0 and 1.

Figure 11.5: FPR vs. TPR plots of H1 . . .H6 identifiers’ performance in domain C. FPR axes limits are
set to 0 and 1.
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H1 . . .H3, meaning that the M-Logistic estimator of standard deviation is superior
to scaled MADAM.

As previously, the H4 . . .H6 curves also mostly overlap, and thus closer study is
necessary to select the best pair of estimators. Table 11.4 shows their performance (FPR
decrease relative toH1) for an exemplary TPR = 30. Since this ranking holds for nearly
thewholeTPR range, thebest estimators for eachdomainare selected. In the following
sections H6 is used in A, H6 in B and H4 in C.

Table 11.4: FPR decrease relative to H1 for TPR = 30.

11.4.1.3 Example 3

The effectiveness of outlier detection for various oscillation periods is analyzed in this
example. The best FPR vs. TPR plots (as in Section 11.4.1.2) for various oscillation pe-
riods are shown in Fig. 11.6. It’s worth noting the similarity between outlier detection
performance in B and C. In these domains, the effectiveness of outlier detection is
mostly independent of the oscillation period. In domain A, however, the identifiers
behave differently. In this domain, their effectiveness increases with the increase of
the oscillation period. It should also be emphasized that identifiers in domain A are
especially suited for slow oscillations, due to their ability to reach TPR > 60 (while
maintaining low FPR) for periods greater than 200.

Figure 11.6: FPR vs. TPR plots of Hampel identifiers’ performance for various oscillation periods. FPR
axes limits are set to 0 and 1.
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11.4.1.4 Example 4

In this example the effectiveness of outlier detection for various noise levels is stud-
ied, and the simulated signals are shown in Fig. 11.7. For all the SNRs, the oscillating
character of the signal is not hidden in noise, and the outliers are clearly visible.

The best FPR vs. TPR curves (as in Section 11.4.1) for various signal-to-noise ratios
are plotted in Fig. 11.8. Figure 11.8a shows that, for low noise levels, Hampel identifier
computed inA performsworse than inB and C. For an exemplary TPR = 30, the FPR in
A is more than five times larger than in the transformed domains. For medium noise
levels, outlier identification performance in A is slightly better than in B and C, as
shown in Fig. 11.8b. Figure 11.8c shows that, for high noise levels, filtering in A yields
much better results than in B or C.

To conclude, outlier detection in domain A fails at low noise levels, while identi-
fication in domains B and C proves to be satisfactory over a wide range of SNRs. The
performance of outlier detection in transformed domains is muchmore consistent, in
comparison to the original unchanged domain.

Figure 11.7: Simulated oscillating signals for various levels of noise.

Figure 11.8: FPR vs. TPR plots of Hampel identifiers’ performance in domains A, B, C for various noise
levels. FPR axes limits are set to 0 and 1.
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11.4.1.5 Example 5

Although it’s convenient to describe outlier detection performance in terms of bench-
marks: TPR and FPR, it’s also interesting to see which outliers are exactly detected.
The studied signal with marked outliers is shown in Fig. 11.9. The Hampel identifier’s
parameters, window half-width and threshold values, are optimized for TPR = 30
(FPR < 0.2).

Figure 11.9: Simulated oscillating signal with marked outliers. Red circle–outlier defined using IQR
method; 1, 2 and 3—number of domains in which the Hampel filter identified a given point as an
outlier.

First of all, it’s worth noting that the most extreme outliers are detected in all three
domains. It can also be observed that the number of domains in which a particular
outlier is detected is proportional to the outlier’s magnitude. It was verified that the
shares of outliers detected in single, two and three domains are nearly equal.

11.4.1.6 Selecting filtering domain

Sections 11.4.1.4 and 11.4.1.5 showed that transformeddomains outperform theoriginal
domain in terms of outlier detection performance. More specifically, when compared
toA, filtering inB and C is more consistent. It’s suitable for awider range of oscillation
parameters. Of the two transformed domains, filtering in B is more effective than in C
due to its ability to reach lower FPR for a given TPR, as shown in Section 11.4.1.5.
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In the subsequent sections, the best Hampel identifier using M-Logistic estima-
tors of mean and standard deviation (H6), computed in the incremental domain, (B)
is used. Its preprocessing performance is evaluated for TPR = [10, 30, 50].

11.4.2 Moving average filter

11.4.2.1 Selecting window size

Preprocessing a signal using a MA filter affects the oscillation characterization pro-
cedure’s performance in a twofold way. First of all (i), filtering reduces the noise in
the signal, which results in a more accurate EMD decomposition and thus increases
the chance of oscillation detection. Second (ii), it distorts the spectrum of the true
oscillating component in the signal, thus deteriorating the accuracy of oscillation pa-
rameters’ estimation. There is a clear trade-off between the requirement of (i), where
long window improves noise suppression, and (ii), where short window results in low
distortion. Since any non-zero window size improves (i), the limit on window size is
set by (ii).

To establish themaximum limit on the relativewindowsize, it’s necessary to recall
how the amplitude of the oscillating component is calculated—the 5th step of the pro-
cedure in Section 11.2.5. To calculate the amplitude, it is necessary to compute the run-
ning sum of the amplitude spectrum in the estimated period’s region of uncertainty
(11.27). An inequality (11.28) stems from the assumption that the signal is oscillating
(r > 1 in the 4th step of the procedure in Section 11.2.5).

(
1

μT + σT
,

1
μT − σT

), (11.27)

σT <
1
3
μT . (11.28)

Figure 11.10 shows the amplitude spectrum plot of a MA filter, together with the
mentioned region of uncertainty. A horizontal line intersecting the 1st peak is added.
So that the part of the amplitude spectrum lying in the uncertainty region is above
the horizontal line, the intersection of the horizontal line and the amplitude spectrum
needs to be on the right side of the region of uncertainty.We therefore propose to select
themaximumwr in such away that thementioned intersection lies exactly on the right
limit of the region. This “equilibrium” is reached for wr ≈ 55. In accordance with this
result, in the following sections, MA filters with relative window sizeswr = [10, 30, 50]
are evaluated.
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Figure 11.10:MA filter’s amplitude spectrum plot for wr = 55. A horizontal line intersects the 1st peak
of the amplitude spectrum. Vertical lines represent the oscillation frequency’s uncertainty range.
Normalized frequency axis limits are set to 0 and 0.05.

11.4.2.2 Amplitude correction factor

As mentioned in Section 11.4.2.1, an MA filter reduces the estimated amplitude of os-
cillation. Figure 11.11a shows the corresponding MAE for a simulated signal. The error
increases significantly with the increase of the relative window size. To counter this
negative effect, we propose to apply the inverse of the MA filter in the frequency do-
main, before estimating the oscillation amplitude. The results of the proposed correc-
tion are shown in Fig. 11.11b. The MAE becomes significantly lower and this is nearly
irrespective of the relative window size.

Figure 11.11:MAE of estimated amplitude for various relative window sizes and various noise levels,
for endogenous outliers with stability index α = 1.7.
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11.4.3 Oscillation characterization performance
11.4.3.1 Importance of filtering

This example studies the influence of initial signal preprocessing on oscillation de-
tection performance. The results for endogenous and exogenous outliers are shown
in Figs. 11.12a and 11.12b, respectively.

Signal preprocessing has a significant influence on the share of correct detection
for both outlier generation mechanisms. The share of correct detection for unfiltered

Figure 11.12: Oscillation detection performance with and without preprocessing, for various outlier
generation mechanisms. Correct detection axes limits are set to 20 and 105, while incorrect detec-
tion axes limits are 0 and 10.

Table 11.5: Correct detection performance with and without preprocessing.
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data is remarkably lower than 95%, for awide range of noise levels. For the prefiltered
data, though, the correct detection curves are nearly flat. Thanks to prefiltering, the
correct detection ratio is greater than 95% in the whole SNR range. Moreover, filtering
not only increases the number of correct detection, but it can also reduce the share of
incorrect detection. Also verified was the necessity of preprocessing holds for various
outlier intensities (various α and p), as shown in Table 11.5.

11.4.3.2 Oscillation detection performance

This example studies the influence of preprocessing methods’ parameters, i. e., rela-
tive window size of MA filter and TPR of Hampel filter, on oscillation detection per-

Figure 11.13: Oscillation detection performance for different preprocessing filters’ parameters and
endogenous outliers with stability index α = 1.7. Correct detection axes limits are set to 90 and 102,
while incorrect detection axes limits to 0 and 30.

Figure 11.14: Oscillation detection performance for various preprocessing methods’ parameters and
exogenous outliers with contamination level p = 1%. Correct detection axes limits are set to 90 and
102, while incorrect detection axes limits are 0 and 30.

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



208 | M.W. Okoński and P. D. Domański

formance. The results for endogenous and exogenous outliers are shown in Figs. 11.13
and 11.14, respectively.

Figure 11.13a shows that short windows result in an increased number of incorrect
detection, whereas long windows result in a small decrease in the share of correct
ones. Figure 11.13b shows that the correct detection ratio is proportional to the TPR,
while the share of incorrect detection is nearly insensitive to this parameter. Similar
observations can be made for exogenous outliers, as based in Fig. 11.14.

The observations made in the previous paragraph are also valid for a wider range
of outlier intensities, as shown in Table 11.6. It should be highlighted that, for wr =
30, none of the table’s cells is colored gray. This observation reveals that wr = 30 is
the optimal parameter for a MA filter since it never significantly decreases the correct

Table 11.6: Correct detection performance for various preprocessing methods’ parameters.
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detection performance. For the very same reason, Hampel identifiers with TPR = 30
and TPR = 50 are the best-performing ones. Filters with these parameters are studied
if the following section.

11.4.3.3 Oscillation estimation performance

This example studies the performance of oscillation estimation for the best filters’ pa-
rameters selected in the previous section. The results for endogenous and exogenous
outliers are shown in Figs. 11.15a and 11.15b, respectively.

Although for endogenous outliers both types of filters perform similarly, a signif-
icant difference in their performance can be observed for exogenous outliers. When a

Figure 11.15: Oscillation estimation performance for a range of preprocessing methods’ parameters
and outlier generation mechanisms.

Table 11.7:MAE of estimated amplitude for various preprocessing methods.
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signal is contaminatedwith this type of outliers, theHampel filter outperforms theMA
filter significantly since, for the latter, both σT and MAE of the amplitude are remark-
ably higher. It’s also worth noting that of the two Hampel identifiers, the one with a
higher TPR achieves slightly better overall performance.

Table 11.7 shows the MAE of estimated amplitude for various outlier intensities.
Only the better Hampel filter (TPR = 50) is included. It turns out that the observations
from the previous paragraph hold for the whole studied range of outlier intensities.
The cells for which the error of MA filter is more than twice the error of Hampel filter
are highlighted in gray.

11.4.3.4 Oscillation detection under uncertainty

In previous sections, the preprocessing filters’ parameters were optimized for the
known oscillating component of the signal. In this section, however, the filters’ ro-
bustness to uncertainty in oscillation period is studied. In this example, two signals
whose periods’ equal 0.5 and 2 of the filters’ optimal period are used. The results
for endogenous and exogenous outliers are shown in Figs. 11.16a and 11.16b, respec-
tively.

Although, for slow oscillations, both filters perform similarly, differences can be
observed for oscillations faster than the filter’s optimal. For these frequencies, the
Hampel filter outperforms the MA filter since it’s correct detection curve lies mostly
above the MA filter’s curve. These observations are valid for a range of outlier intensi-
ties, as shown in Table 11.8.

Figure 11.16: Oscillation detection performance under uncertainty for various outlier generation
mechanisms. Correct detection axes limits are set to 90 and 102.
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Table 11.8: Correct detection performance under uncertainty.

11.4.3.5 Selecting preprocessing method

Section 11.4.3.2 showed that both types of filters (if properly tuned) can achieve a sim-
ilar performance of oscillation detection. The simulation in Section 11.4.3.3 showed
that the Hampel filter is better suited for estimating an oscillation’s parameters when
a signal is contaminated with exogenous outliers. Section 11.4.3.4 showed that the
performance of the MA filter’s oscillation detection deteriorates when the filter op-
erates outside its optimal range. In accordance with these findings, the Hampel fil-
ter is selected as the best preprocessing method and is utilized in subsequent sec-
tions.

11.4.4 Literature benchmarks

While Section 11.4.3 wasmostly concernedwith generic examples, this section studies
specific scenarios resembling real-life industrial signals. The need for general exam-
ples is obvious: With their help, quantitative conclusions can be made. On the other
hand, the specific examples’ main goal is to familiarize the reader with typical situ-
ations that could benefit from the proposed improvements. Examples in this section
are inspired by benchmarks from [10]. Damped oscillation and multiple oscillations
signals are studied. In these examples, endogenous outlierswith SNR = −5 and exoge-
nous outliers with SNR = 25 are added to the signals. Noise levels are selected based
on Fig. 11.12 so that the need for preprocessing is emphasized. Simulated signals are
shown in Fig. 11.17, whereas oscillation characterization results in Table 11.9.

For both classes of studied signals, the oscillation characterization procedure ac-
curately detects and estimates oscillation parameters. Without prefiltering, though,
either no oscillations are detected (no significant IMFs or r < 1), the period is estimated
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Figure 11.17: Benchmark signals with outliers generated by various mechanisms. Top: damped oscil-
lations; bottom: multiple oscillations. Detected outliers marked with a red circle.

incorrectly or there is a high amplitude error. It should be stressed that, although the
procedure’s outcomes are dependent on the noise realization, signal prefiltering im-
proves the oscillation characterization procedure’s results inmost of the experiments.

11.5 Industrial data validation
In this section, the improved oscillation characterization procedure’s superiority over
the original version of thereof is validated with real data sets. Analyzed signals are
shown in Fig. 11.18. The data sets have different origins: the power industry (power
plant megawatts), control laboratory experiments (mechanical ball and plate system)
[30] andmedicine (muscle electromyography—EMG) and suffer fromboth types of out-
liers. The best preprocessing method selected in Sect 11.4.3.5, namely, the Hampel fil-
ter with TPR = 50, is used for prefiltering. The oscillation characterization procedure’s
results, with and without preprocessing, are shown in Table 11.10.
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Figure 11.18: Real data procedure’s validation with detected outliers marked by a red circle.

Figure 11.18a shows the total power output of a combined-cycle power plant. The data
set is contaminatedwith endogenous outliers, whose parameters are estimated giving
a stability index α = 1.3 and SNR = 2. Without prefiltering, the original procedure
fails to detect oscillation since no significant IMF is detected. Initial filtering enables
a correct detection of period and a coarse (correct order of magnitude) estimation of
amplitude.

Figure 11.18b shows the power output of a steam turbine, while Fig. 11.18c shows
the data from a ball-and-plate system. The first data set is contaminated with endoge-
nous outliers: α = 1.3 and SNR = 6, whereas the second one with exogenous out-
liers: p = 1.2 and SNR = 28. Again, the original procedure fails without prefiltering. In
this case, however, the root cause of failure is a high standard deviation (uncertainty)
of the estimated period. Prefiltering significantly lowers the uncertainty and thus en-
ables a correct detection and estimation (correct order of magnitude in the case of
power output) of the oscillation.

Figure 11.18d shows the EMG of a left tibialis anterior muscle. In this example,
the underlying outlier generation mechanism is unclear. The original procedure de-
tects only a single oscillating component. It skips the faster oscillation, due to a high
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Table 11.10: Oscillation characterization results for real signals.

uncertainty of the period. Prefiltering significantly lowers the standard deviation of
the faster-oscillating component, and thus results in a more detailed analysis of the
oscillation’s nature.

11.6 Conclusions and further research
This paperpresents an improvedoscillation characterizationprocedure. Theproposed
improvement uses initial signal preprocessing to increase procedure’s robustness to
outliers.

In the first part of the paper, various versions of Hampel identifier are assessed
based on their ability to detect outliers in the presence of oscillations. Based on an
exhaustive simulation study, the Hampel filter computed in the incremental domain,
using M-Logistic estimators of mean and standard deviation, is selected as the best
outlier identifier.
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In the second part of the paper, the performance of the original oscillation char-
acterization procedure in the presence of outliers is evaluated. Various outlier genera-
tionmechanisms are analyzed. It is observed that, for endogenous outliers, simulated
using SαS distribution with stability index α < 2, the original procedure fails at low
SNRs, whereas, for exogenous outliers, simulated using normal distribution contam-
inated with intensity p, the procedure’s performance deteriorates at high SNRs. It is
shown that initial signal prefilteringusingaMAorHampel filter significantly increases
the procedure’s performance. A closer comparison of these two preprocessing meth-
ods reveals that the Hampel filter is superior at (i) estimating oscillation amplitude
and (ii) performing in nonoptimal conditions. The improved oscillation characteriza-
tion procedure is validated using both simulated and real data sets.

In our further research, an automatic procedure for Hampel filter parameters’ ad-
justment will be studied. It is also worth analyzing whether the application of a dif-
ferent signal decomposition method (i. e., local mean decomposition (LMD), ensem-
ble empirical mode decomposition (EEMD) or oscillation detection statistic (based on
Lempel–Ziv complexity) has any influence on the procedure’s robustness to outliers.
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12 3D outliers in BIM supported electrical

cable tracing

Abstract: One of the advantages of BIM technology is the ability to transfer construc-
tion risks to the design stage. It enables the detection of collisions not only between
designed installations, but also between new and existing ones. The most useful tool
in this regard is the Point Cloud—the actual 3D scanned image of the existing build-
ing. Although it is still an expensive solution, designers and investors more and more
often employ this emerging opportunity to mitigate construction costs with 3D map-
ping. This document compares the traditional cable-trace design and the opportuni-
ties offered by BIM technology, in particular, 3D point clouds. The presented solutions
demonstrate the possibilities related to the optimization of time and cost. This work
discusses twomainmethods for point cloud generation: the photogrammetricmethod
and laser scanning. It highlights outliers in both methods not only due to user errors,
but also caused by hardware andmethod limitations. The impact of scanning outliers
on further cable optimization is identified and assessed.

Keywords: BIM, point cloud, Revit, electrical installations, cable tracing

12.1 Introduction

For several years, there has been a dramatic increase in interest in BIM methodology.
At the same time, each participant in the construction process defines this concept in
a slightly different way [8]:
– Building Information Model,
– Building Information Modeling,
– Building Information Management.

The common element in these definitions is one, consistent database containing the
necessary geometric (dimensions), as well as nongeometric information (data sheets,
technical inspection dates, etc.), referred to as the BIM Digital Model [19, 21]. This
model is constantly updated throughout the entire building’s life cycle, from concep-
tual design, construction and management phases of the facility to its demolition.
Thus, BIM makes possible the ordering and coordination of information exchanged
between participants in the construction process [3]. An important advantage of the
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BIMmodel is the ability to detect and control risk, in particular, installation and logis-
tics collisions, at an early stage, which significantly reduces construction costs [21].

Currently, the Polish Ministry of Infrastructure is conducting public consulta-
tions in connection with plans to implement BIM in public procurement. During the
consultations, designers have identified the lack of preparation for working with this
technology. Among the issues are the lack of BIM specialists and the costs associated
with the purchase of new software [21]. Moreover, an important aspect is the neces-
sity of increasing the amount of work needed to prepare documentation in BIM. In
addition to the 2D CAD drawings that prepared earlier, it will be necessary to include
additional information that may result in profit reduction for the design firms [21, 26].
The answer to these concerns is undoubtedly the automation of the required work.
Available computer programs for creating 3D models are equipped with program-
ming environments thanks to which it is possible to create customized solutions for
optimizing the design [21].

In the design of all types of building structures, both infrastructure and cubature,
point clouds are increasingly being used. Despite the high costs, it is more and more
often obvious that laser scanning of a building at the design stage results in measur-
able benefits during the construction phase. This allows for the detection of collisions
of the designed installations with the existing ones, and thus significantly simplifies
the execution and shortens its time.

12.2 Literature review
The existing literature studies, to a large extent, can be divided into twomain groups.
The first focuses on obtaining a point cloud with a photogrammetric method or laser
scanning and the scope of application [9, 10, 17] used to transform the photos or laser
scans into the point cloud.

The second group comprises articles on obtaining a digitalmodel based on apoint
cloud.

12.2.1 Point cloud

Modern construction uses point clouds obtained primarily by two methods:
– Photogrammetry [6, 7, 16]—used mainly in linear infrastructure objects, but also

wherever the use of a laser scanner is difficult or impossible (e. g., underwater
[18])

– Laser scanning [16]—other buildings.
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Both this methods enable generation of a set of points defined by spatial coordinates.
[16] Since the number of points depends mainly on the applied resolution, it deter-
mines the accuracy of the obtained point cloud and the size of the object.

12.2.1.1 Photogrammetry method

The photogrammetry method consists of taking multiple 2D photos and combining
them into the 3Dpoint cloud using computer software [16]. In photogrammetry, digital
autographs and digital photogrammetric stations are very often used [10]. Experience
in working with point clouds obtained with the photogrammetric method shows that,
in most cases, nonmetric cameras also are also able to produce point clouds of suffi-
cient quality [20]. This is also confirmed in the literature—many authors report that
taking photos of appropriate quality is possible usingmost of the available nonmetric
cameras, making photogrammetry a relatively low-cost method [2, 15, 16]. Software
developers suggest using a high-resolution camera (5Mpix or more [28]) equipped
with 50mm-focal length lens [1]. According to the results of research carried out at
the Academy of Mining and Metallurgy, camera resolution above 3Mpix does not sig-
nificantly affect the obtained results [7]. In such a case, camera calibration is required
and can be used with free software such as AeroSys [9].

The steps of the photogrammetry method are shown on Fig. 12.1. Virtual points
on the facades are usually associated with characteristic places, such as the corners
of doors, balconies or other point elements, that can be easily observed on the pho-
tograph. On each photograph, there should be at least three virtual points visible,
but every additional point is an advantage. All photos are uploaded to the computer
software, where the user detects the virtual points and the point cloud is generated
[6].

Figure 12.1: Photogrammetry method workflow.

The second advantage of this method is the relatively small demand for hard disk
space. The photogrammetrymethod uses RAW format source files [1], which aremuch
smaller than laser scans. This is particularly important for linear infrastructure facil-
ities such as roads and railroads [17].
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12.2.1.2 Laser scanning

Laser scanning is the preferred method for cubature construction. It is often used as
an inventory aid tool for existing buildings [28] and also during their reconstruction.
In such cases, it is particularly difficult to prepare the scanned space so that only the
elements that should be in the final point cloud are visible.

To perform a laser scan, the measuring points where the be set up are first deter-
mined. Points are distributed over the entire scanned space so that two other points
are visible from each point [14]. Next, calibration points are placed in the form of a
checkerboard (Fig. 12.2) or standardizedmeasuring spheres on the scanned space. The
next step is to make scans at each measurement point. In the end, all scans are com-
bined into a point cloud using computer software.

Figure 12.2: Calibration points.

Laser scanning is a method very sensitive to errors, in particular, to errors caused by
inadequate preparation of the scanned space and people walking across the scanned
area (see Fig. 12.3). Such errors may render the obtained point cloud useless for com-
paring the model with the actual state.

The existing literature indicates problems in scanning glass surfaces, which par-
tially absorb the scanner rays and result in incorrect information about the object [1].
However, as shown in Fig. 12.4, while there are some disturbances observed in the ob-
tained point cloud, their identification is relatively simple.
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Figure 12.3: Various unwanted objects in the range of laser scanner.

Figure 12.4: Glass surface scanning.

12.2.2 Obtaining model from a 3D point cloud

Designers usually use a point cloud to visually compare the modeled objects with its
real image. This makes it a highly valuable tool, but its use is often difficult due to its
large size (see Section 12.4). For this reason, solutions are sought to enable the auto-
matic creation of an object model based on a point cloud.

12.2.2.1 Planes detection

In 2007, theHough transformandRANSACalgorithmwere introducedas tools for auto-
matic detectionof roof planes fromLidarData [23]. Tarsha-Kurdi, Landes andGrussen-
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meyer compared the Hugh transform and RANSAC algorithm, and, since the process-
ing time differences are negligible, they proposed an extension of the RANSAC algo-
rithm. Their work resulted in an increase in the detection efficiency from 70% to 80%
[23].

12.2.2.2 Lines detection

Lines detection is possible using the local feature descriptor LSSHOT 3D proposed by
Xu, Tuttas and Stilla in 2018 [27]. The accuracy of presented descriptor reaches more
than 70% (tests) and enables tubes, toeboards and deck detection (50–70% accuracy
for the real object) [27].

12.3 Point cloud outliers
In terms of their type, point cloud outliers can be divided into several groups:
– Additional components
– Missing components [4]
– Incorrect geometry [4]
– Incorrect location and orientation [4]

12.3.1 Additional components

Scanning of existing buildings is very often carried out during renovation, reconstruc-
tion or duringworkinghours. All thismakes it very difficult or even impossible to prop-
erly prepare a building for a scan. As a result, the obtained point cloud containsmany
undesirable elements, such as people, equipment and other elements not strictly re-
lated to the scanned building object (see Fig. 12.3). Anil et al. in [4] named this type of
outlier.

Figure 12.3b, apart from themovingpeople, shows also thewalls anddoors,which
will be dismantled during further renovation works. To improve the clash detection,
as well as to increase the value of the point cloud for the project team, more andmore
often the scan of the buildings is performed repeatedly at specific time intervals in
such cases.

12.3.2 Missing components

Another example of very common data collection errors [4] are missing components,
which can be divided into two main groups:
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– Inventory errors
Situation C in Fig. 12.7 shows a very common phenomenon, namely, the omission
of an important element during the inventory. In this case, it is the missing struc-
tural column.

– Scanner limitations
One of the basic limitations when creating a point cloud is the range of visibility,
both for the laser scanning and the photogrammetric method. Incorrect place-
ment of scanning points and the inability to make the scanned installation visi-
ble due to a lack of time or access results in a lack of information in the final point
cloud.

12.3.3 Incorrect geometry, location and orientation

Anil et al. in [4] indicate incorrect geometry, location and orientation as three separate
complicating issues, however all of these effects have similar causes:
– Limitations related to the device itself

Scanner resolution or the camera lens may cause a shift of the point by a fewmil-
limeters, even as much as several centimeters.

– User errors
Incorrect placement of scan points may cause disturbances in the geometry of
the scanned space and missing elements described in the point cloud (see Sec-
tion 12.3.2).
Incompetent use of the scanner, or errors in measuring the coordinates of char-
acteristic points, may result in significant deviations of the coordinates of the
scanned points.

– Material characteristics of the elements in the scanned space
It is very difficult to scan glass and mirror surfaces since the reflections can cause
significant disturbances in the measurement [1] (see Fig. 12.4).

12.4 Theoretical office space arrangement
Based on the as-built documentation for the shell and core phase, as well as a site
visit and inventory of one sample Warsaw building and a theoretical arrangement of
the office space is created. Cost analyzes of electric cables are carried out for three
different locations of the electrical distribution board supplying the arranged space.
In each case the same number of electric circuits and the same distribution board
equipment are maintained. The dimensions of the designed distribution board are
120 cm × 20.5 cm × 183 cm (length ×width × height). Designed distribution board ele-
vation is shown in Fig. 12.5.
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Figure 12.5: Designed distribution board.

The point cloud that was used during the described research concerned a fragment
of one floor of an office building (approx. 2,000m2) and with the number of points
exceeding 300 million, and its size exceeded 1GB. The point cloud was provided by
ARUP Poland.

In the next step, a point cloud obtained with a laser scanner is superimposed on
the created model of the building. Then the feasibility analysis is performed, and the
results obtained in the first step were corrected.

12.4.1 Distribution board location—case study

The designed office space (Fig. 12.6) includes the director’s room, reception area, two
open-space areas, kitchen facilities and two conference rooms. The existing electrical
shaft is located in the western part of the arranged space in the immediate vicinity
of the staircase. The electrical shaft is equipped with an existing busbar from which
the tenant’s distribution board will be supplied. This is also the default location for
the tenant’s distribution board, however, as will be shown subsequently, it is not an
optimal location.

Thedesigneddistributionboard is divided into twomain sections. Thefirst section
supplies lighting installation, common sockets, hand dryers, kitchen equipment, etc.
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Figure 12.6: Possible location of a distribution board during the design phase: A—distribution board
located in the corridor between two open space areas, next to the conference room, B—default dis-
tribution board location (electrical shaft), C—distribution board located next to restroom area.

The second section is designed to supply computer loads and rack cabinets in the IT
room. All electrical connections have been modeled using Autodesk Revit software.

The locations of the tenant’s distribution board shown in Fig. 12.6. Average cable
prices were estimated on the basis of data available on the manufacturers’ websites
(see Table 12.1). It should be noted that actual pricesmay vary due to discounts agreed
individually with each electrical contractor. The given prices refer to a running meter
of the cable.

Table 12.1: Average cable cost.

Cable type Bitner [5] Technokabel [24] Lapp Poland [12] Average

N2XH 3 × 1.5 5.547 9.570 11.15 8.75
N2XH 3 × 2.5 13.327 12.440 16.07 13.95
N2XH 5 × 35 73.125 196.750 271.84 180.57

Table 12.2 shows that themost advantageous place for the electrical distribution board
is at point A or C.
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Table 12.2: Cable cost summary.

A B C
Length Cost Length Cost Length Cost

N2XH 3 × 1.5 645m 5,650 PLN 890m 7,796 PLN 716m 6,272 PLN
N2XH 3 × 2.5 1845m 25,738 PLN 2714m 37,860 PLN 2024m 28,234 PLN
N2XH 5 × 35 37m 6,681 PLN 9m 1,625 PLN 23m 4,153 PLN

Total cost 38,069PLN 47,282PLN 38,660PLN

12.4.2 Distribution board location—point cloud confrontation

According to thepreviousanalysis, pointsAandC shouldbe consideredas the location
for the distribution board (see Table 12.2).

Figure 12.7 shows the electrical distribution boards placed in points A, B and C
and the point cloud. In point A there is collision between the designed distribution
board and the visible existing partition wall. However, the designed office-space ar-
rangement requires the demolition of this wall, and therefore the visible collision is
apparent.

Figure 12.7: Point cloud and distribution board locations A, B and C.

No collision at point B results from the omission of the electric shaft at the stage of
laser scanning of the building. However, an on-site inspection confirmed no collision
at this point.

Figure 12.7c shows the collision between the designed distribution board and the
existing structural column, which has not been included in the as-built documenta-
tion of the facility nor during the inventory, which resulted in its absence in the ar-
chitectural and structural models. This collision indicates that placing the designed
distribution board at this point is impossible. Unfortunately, this is a commonmistake
in design practice that could result in serious and costly problems on the construction
site. In such a situation, point C is rejected as a possible distribution board location.
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The obtained architectural model also did not take into account the steel truss
under the slab. The observed structural elements will affect the locations of the final
cable traces. It will also affect the costs of installation and construction.

12.4.3 Outliers samples

The as-built documentation, prepared in a hurry, very often has significant shortcom-
ings. Especially in older buildings, where renovation is relatively frequent, the doc-
umentation that does not include new or rebuilt elements. In such cases, an on-site
inspection, combined with an inventory is carried out, which, in turn, for large areas
is often imprecise.

A point cloud is a relatively easy way to identify discrepancies between a digital
model and the actual state. Figure 12.8 shows examples taken from authentic models
made in Autodesk Revit, with the point clouds overlaid.

Figure 12.8: Incorrect location of the door in the architectural model in relation to the actual state
(a). The structural beam omitted during the inventory. Collisions of cable trays with the existing
beam visible after laser scanning (b).

12.5 Point cloud study

Sample wall point clouds (see Fig. 12.9) shows some of a point cloud’s limitations.
Laser scanner detects just a surface, not a wall itself. And what is more important,
the final points locations depends on the reflection intensity factor, which can be de-
scribed as the possibility that the scanned point was detected in the right position.
Therefore the point cloud surfaces are not flat.

The theoretical space arrangement described in Section 12.4 was prepared on the
basis of a real architectural model and a real point cloud, the size of which is over 1 GB
and contains over 300 millions of points, while the scanned area is only half of one
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Figure 12.9: Sample wall point cloud—57,975 points.

floor in a five-story office building. Therefore, it is easy to imagine the size of point
clouds used in the building digital model. So, one of the basic assumptions of work-
ing with a point cloud should be to limit the number of points and use only points
characteristic for a given surface in further work.

The laser scanners only detect obstacles in the path of the rays, therefore element
categories (walls, lighting luminaries or furniture) detection is impossible. For exam-
ple, scanned wall appear as two surfaces—see Fig. 12.9. In addition, the distances be-
tween points on the same surface can reach up to 3 cm, therefore the obtained surface
is not flat.

BIMuses point clouds prepared as *.rcp files contain the seven-dimensional point
description (compare with [13]):

[x, y, z, i, r, g, b], (12.1)

where x, y, z indicate the 3D location, i is the reflection intensity factor and r, g, b
represent the color in RGB.

12.5.1 Surface detection, clustering and weighted median filter

Surface detection is performed in three planes: x, y, z. Each point was scanned with a
certain reflection intensity factor i, which can be used as a weight in weightedmedian
filter. RGB parameters are important only for the graphical representation, so they are
omitted in further considerations.
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The first stage of surface detection was cutting the point cloud successively along
the OX, OY and OZ axes into 10 cm-wide fragments. Experimentally, the minimum
number of points in each fragment is set at 30,000 points and each fragment con-
taining a lower number of points is omitted in further studies, as in Fig. 12.10.

Figure 12.10: Points clouds with different numbers of filtered points.

For each fragment, using the sklearn python library, clusteringwas carried out, allow-
ing to define groups of points located on the same surfaces. Each cluster was saved in
a separate *.txt file, the name of which contained information about the cutting axis,
fragment number and cluster number.

12.5.1.1 Weighted median filter

A point cloud can be thought of as a 3D set of pixels analogous to graphic images.
In this approach, noise reduction is possible through the use of a median filter—one
of the nonlinear filters [22]. However, in the case of a point cloud, in addition to the
x, y, z coordinates, we also obtain information about the intensity of the reflection i,
which can be interpreted as the certainty with which the laser scanner indicates the
correct position of a given point. Therefore, this additional parameter should be used
as a weight in a weighted median filter.

The reflection intensity factor ranges from 0 to 255, therefore, each weight should
be divided by 255.

ĩ = i
255
. (12.2)
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To eliminate the shift towards the center of the coordinate system, three possibilities
are considered for each point:

∀k ∈ (1, n)
{{{
{{{
{

ak ∗ ĩk ,
ak ,
ak ∗ (1 + (1 − ĩk)),

(12.3)

n—number of points; a—x, y or z—coordinates depending on the cutting axes.
Unlike the graphic images,where themedian filter is applied sequentially to small

parts of the whole, the point cloud uses a median filter for the entire detected cluster.
The weighted median was calculated for the coordinate consistent with the cutting
axis, and then the coordinates along that axis for all points were aligned with the
calculated median value. This makes it possible to obtain surfaces that most accu-
rately reflect the location of real planes—walls, ceilings or floors. But, the summary
files weight is still not acceptable from a modeling point of view. Therefore, the sur-
faces have to be limited to the edges that define them.

Initially, the ConvexHull [11] function from the scipy.spatial [25] library was used
to determine the surface edges. Its unquestionable advantage is quite fast operating
time. It turned out, however, that this algorithm did not cope well with the detection
of edge points in concave polygons. Figure 12.10 (right) shows the yellow points and
a line around the cluster. The figure shows a wall in the form of a yellow patch, and
a fragment of a corridor bounded by another wall perpendicular to the cutting axis.
Meanwhile, the ConvexHull algorithm framed also around the corridor. This makes it
necessary to use a different algorithm.

12.5.2 Normalized point cloud

The total number of points shown in Fig. 12.10 right is 45,197, while there are 41,935
points in the cluster. The other 3,262 points are the outliers, which should be omitted
in further consideration.

Based on the extreme values of the points coordinates, a normalized mesh is cre-
ated, which enables generation of a normalized point cloud. As a result of this op-
eration, some repeated values are omitted, and therefore the number of considered
points is limited to 36,426. A fragment of a point mesh and a normalized point cloud
are shown on Fig. 12.11.

Each point from the normalized point cloud is compared to the adjacent mesh
points, and, in the case where an empty spot was found in its vicinity, it is treated as
a boundary point. The last step is to find the corner points in the obtained edges and
arrange them in order—shown as yellow points on Fig. 12.11.
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Figure 12.11: Fragment of a point mesh (blue), normalized point cloud (red), boundary points (green)
and corner points (yellow).

12.5.3 Revit implementation

12.5.3.1 Clash detection

The corner points obtained as a result of the actions described in Section 12.5 are im-
ported into the Dynamo development environment cooperating with Autodesk Revit.
On their basis, surfaces are created using the default Dynamo nodes Point.ByCoordi-
nates and Surface.ByPerimeterPoints, onwhich the elements of electrical installations
exported from Revit, such as cables and cable trays, are then applied. The collision
between Revit elements and surfaces are detected by use of the default Dynamo node
Geometry.Intersect.

12.5.3.2 Cable traces changes

Th detected collisions are removed by adjusting the location of cable traces to the sur-
faces obtained from the point cloud. The task is donemanuallywith constantmonitor-
ing of changes in Dynamo. After the collision has been removed, another cable length
analysis is carried out.

The change of routes resulting from the necessity to eliminate collisions of cables
and cable trays with the surfaces of the point cloud, slightly affected the cost:
– Location A: increase from 38,069 PLN to 40,265 PLN,
– Location B: increase from 47,282 PLN to 49,582 PLN.
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The main reason for the cost increase is the need to bypass the collision areas, and
in one case a major change of route was necessary. However, the comparison of the
values listed in Tables 12.2 and 12.3 confirms that the best location for the distribution
board is location A (Fig. 12.6).

Table 12.3: Final cable-cost summary.

A B
Length Cost Length Cost

N2XH 3 × 1.5 674m 5,897PLN 942m 8,242 PLN
N2XH 3 × 2.5 1920m 26,784PLN 2821m 39,353 PLN
N2XH 5 × 35 42m 7,584PLN 11m 1,986 PLN

Total cost 40,265PLN 49,582 PLN

12.6 Summary
This study aimed to combine the classic design of electrical installations with an ap-
proach using new technologies, in this case, point clouds. Developing an exact archi-
tectural model based solely on measurements turns out to be an extremely difficult
task. In the presented example, the difference in costs between the installation de-
signed on the basis of the digital model and the installation compared to the real im-
age of the building in the form of a point cloud is 5% of the installation cost. However,
it should be noted that the presented considerations relate to a relatively small office
space.

The method of eliminating outliers seems to be sufficient for the needs of electri-
cal installations, in particular, the main cable traces. The created computer program,
whichdivided thepoint clouds into the fragments, and thendetected clusters of points
andmade their selection based on the number of points in the cluster, fulfilled its task.
The resulting output data made it possible to work with Dynamo software, which is
very sensitive to large amounts of data. However, it is worth noting that the running
time of the program was unsatisfactory because the point-cloud analysis took seven
hours, and the manual collision removal took additional time. Therefore, the possi-
bility of optimizing the code and the algorithms used should be considered.
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13 A radio frequency impedance matching

control benchmark and optimal
fractional-order stochastic extremum
seeking method

Abstract: An impedance-matching network is mandatory between the electric source
and the load to obtain the maximum power transfer in high power applications like
plasma etching technology used on semiconductor wafer processing. This chapter
presents the problem definition and guidelines for a radio frequency (RF) impedance
matching benchmark and its control using an optimal fractional-order stochastic ex-
tremum seeking (FO-SESC) method. The benchmark system (files available online) al-
lows the quantitative study and evaluation of multiple RF impedance matching algo-
rithms. The goal of the benchmark is matching the source and load impedances real
and complex conjugate terms in a minimum time. The reflection coefficient is used as
an evaluation metric to measure the reflected power, which has to be zero to guaran-
tee the maximum power transfer. Some requirements for closed-loop controllers pro-
posed in the literature are tested as sample applications on this benchmark to check
and evaluate their stability performance against various initial conditions and load
impedance values. A novel Feedforward Control (FF) profile generation method, with
a primitive sample feedback control strategy (proportional-integral (PI) controller), is
used as a baseline for the benchmark.

Keywords: impedancematching benchmark, feedforward control, fractional order ex-
tremum seeking, dithering noise

13.1 Introduction

Impedancematching is the practice of designing load and source impedances tomax-
imize the power transfer minimizing the reflected energy from the load. There are two
main impedance matching techniques employed in semiconductor industry. One is
called an automatic matching network, where the value of electrical components like
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“loss-less” passive electrical elements (such as capacitors and inductors) are adjusted
automatically using a control algorithm. The second technique is the so-called gener-
ator frequency tuning, where the RF frequency at the generator is modified to reduce
the reflected power back to the generator. There are cases when both techniques are
used together to obtain a larger window of tune space [23].

The matching network can be designed using various configurations. The most
used architectures are the L [19], Π, and T networks. In the case of the L-Type network
shown in Fig. 13.1, it can provide a unique solution using only two variables, a series
capacitor Cm and a shunt capacitor Ct . Thus, the network can be tuned easily for any
feasible load impedance [18].

Figure 13.1: L-Type network configuration.

The load impedance of the network is R0 + jX0. Thus, by changing the capacitance
of the variable capacitors Ct and Cm, the input impedance Zin can be controlled. Usu-
ally, the impedance measurement through the voltage and current on the load side
employs an expensive sensor due to the high voltage and current values. For this rea-
son, the best point to measure the impedance of the network is on the source side.
It means that the impedance value Zin is equivalent to the right side of the network
as shown in Fig. 13.1. The matching is achieved usually when Zin = Rs = 50Ω. For a
general case, Zin = Z∗s where Zs is the source impedance. In [19] is presented a generic
detector that provides complete information of complex parameters, impedance (Z),
admittance (Y) and reflection coefficient (Γ). However, for some cases, partial informa-
tion on those parameters can be sufficient for proper control, and simplified versions
of the detector can be applied.

Each time the plasma parameters or set-point change (i. e., RF power, pressure,
gas mixture), the plasma impedance also changes [1]. Consequently, the reflected
power Pr increases, and the controller has to tune the matching box to revert this ef-
fect at the minimum time. The reflection coefficient Γ canmeasure this effect by (13.1),
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where Pin is the input power.

|Γ| = √ Pr
Pin
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Zin − 50Ω
Zin + 50Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (13.1)

Beginning in 1993, the research literature has been reported work on various con-
trol strategies intended to solve the requirements of a full-time dedication problem
using neural networks, genetic algorithms, deterministic tuning with look-up tables
and adaptive systems and nonlinear control systems [1]. In all these cases, the load
impedance is not affected by the matching conditions. In [1], a hierarchical structure
controllerwas proposed that is composed of a higher level coarse controller that drives
the system close to the matching point and a lower level feedback controller for fine
tuning. Also, Firrao [7] used two steps: First the imaginary part of the load impedance
is tuned to (almost) zero using a series (or shunt) reactance, and, second, the resulting
real part is transformed to the target real value with a tunable transformer. Hirose in
[9] used a Seek + Follow control for a robust behavior using the phase and amplitude
of the impedance as reference variables. An adaptive requirement for full-time dedica-
tion was proposed by [19] and presented an overview of adaptive controlled matching
networks. Ishida [11] presented the same idea as Hirose, but with different conditions,
and assumed knowledge of the exact value of the network components. The results
showed a controllable region but did not analyze the impedance region correspond-
ing to the series and shunt capacitors values. A tracking controller is shown in [12]
with initial conditions close to the desired value.

The extremum control also is applied to solve this problem in [23]. Besides, a
centralized controller that uses feedback compensation to regulate the power, Feed-
forward correction of impairments to the delivery of RF power is presented in [4, 5].
Finally, binary search can be applied with a great improvement in the convergence
time, but it does not guarantee a monotonic decrease of the reflected power over time
[20, 21].

In addition, ExtremumSeeking Control (ESC) is an adaptivemodel-free technique
that allows optimizing smooth convex function problems, in which the extremum or
optimal point may be unknown and variable [2, 14, 23]. For the requirements of a full-
time dedication problem, [23] showed its application in an L-Type matching network,
using sliding mode and perturb and observe ESC controllers. This approach is ex-
tended into fractional-order ESC by [12, 22], where the fractional-order sliding mode
extremum seeking control was proposed for a class of nonlinear systems, including
the requirements for full-time dedication for single-capacitor L-Type networks. Like-
wise, a fractional-order version of the stochastic perturb and observe ESC controller
introduced by Liu in [13] was presented by [10]. In that case, the perturbation signal
is replaced by a bounded Fractional-order dithering Random Noise (Gaussian (fGn)
or Symmetric Alpha-Stable (SαS)) with Long-Range Dependence (LRD) determined by
the noise Hurst exponent.

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



240 | J. Viola et al.

This chapter presents an RF impedance matching benchmark that can be em-
ployed to evaluate the performance of different control strategies. The system employs
an L-Type network as matching circuit. The model considers not only the electrody-
namics of the network electrical components but also the mechanical behavior and
dynamics of the motor actuators that adjust the variable capacitors Cm and Ct . It in-
clude the effects like the rate limit and the normalized motor initial conditions (0% to
100%) for a closer approach to an industrial environment. A Feedforward + PI Con-
troller is introduced to analyze the robustness and convergence time of the matching
network, which acts as a baseline for the benchmark. Likewise, the control strategies
presented above are tested using this benchmark. The controllers are assessed using
as performance criteria the convergence time, the integral of the reflection coefficient,
and reflected power mean and peak power.

On the other hand, a Stochastic Perturb and Observe FO-ESC controller (P&O FO-
SESC) is employed for the impedance matching problem using the reflected power as
an optimization variable and dithering noise (fractional Gaussian random noise) as
perturbation signal. The P&O FO-SESC controller performance is compared with the
Perturb and Observe sinusoidal ESC controller (P&O ESC) for different plasma loads
and capacitor initial conditions (IC).

13.2 L-type network matching description and
modeling

The RF power generator presented in Fig. 13.1 can deliver amaximum of 15 kW at a fre-
quency of 13.56MHz with a 50 −Ω generator output impedance. Two stepping motors
control the series (Cm) and shunt (Ct) capacitors, where the speed of the motor limits
the change rate. In this case, the rate limit for the motors is 100%/s with a second
order dynamic and a time constant of 20ms. The current profile of the motor uses the
maximum rate limit that does not guarantee a global monotonic decrease of the re-
flected power. The details of the matching box shown in Table 13.1, and the range of

Table 13.1: Parameters of the matching box.

Minimum Maximum

Cm 114pF 445 pF
Ct 20pF 205 pF
Lm 689 nH
Lt 600 nH
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load impedance in the real and imaginary axes for the capacitor values are shown in
Fig. 13.2.

Figure 13.2: Range of the load impedance (real and imaginary parts) for the L-type network.

As mentioned before, there are different configurations a of matching box to match
the impedance between the source and the load. The reference signal to control the
matching box with proper behavior of the system depends on the network configura-
tion. According to [19, 21] for T and L down-converting networks, the correct variable
is the impedance. Nonetheless, for the Π and L up-converting, it is the admittance.
The model of the matching network, including the load impedance, is given by (13.6).
Initially, the impedance in the section Z1 = f (Lm,Cm,X0,R0) is

Z1 = R0 + j(ωLm −
1

ωCm
+ X0), (13.2)

Y1 =
1
Z1
=
R0 − j(ωLm −

1
ωCm
+ X0)

R20 + (ωLm −
1

ωCm
+ X0)2
, (13.3)

Y1 = G1 − jB1. (13.4)

Thus, the input admittance can be obtained as:

Yin = Y1 − j(
ωCt

ω2CtLt − 1
), (13.5)

Yin = G1 − j(B1 +
ωCt

ω2CtLt − 1
) (13.6)
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Figure 13.3: Plot of phase plane with possible trajectories
of Yin as Cm and Ct are changed.

with

G1 =
R0

R20 + (ωLm −
1

ωCm
+ X0)2
, (13.7)

B1 =
ωLm −

1
ωCm
+ X0

R20 + (ωLm −
1

ωCm
+ X0)2
. (13.8)

Taking the equations (13.7), (13.8) and applying Linear Fractional Transformation
(LFT), the phase plane of the system is shown in Fig. 13.3. The global behavior of the
matching network can be understood by plotting the trajectories of Yin in phase space
because Cm and Ct vary. Thus, the manipulation leads to

(Gin −
1
2RL
)
2
+ (Bin +

ωCt
ω2CtLt − 1

)
2
= (

1
2RL
)
2
, (13.9)

indicating that the possible values of Gin and Bin lie on the circle of radius 1/2RL, cen-
tered on the point (1/2RL,−ωCt/(ω2CtLt − 1)). The radius is determined by the load
impedance. Analyzing the geometric of the phase plane, if the pair (Gin,Bin) is in the
upper arc of the circumference (Bin > −ωCt/(ω2CtLt − 1)), the capacitor Cm keeps in-
creasing because the match point can only be achieved with the intersection of the
lower arc and the x-axis. In Section 13.4, it is explained how the Feedforward Control
helps the Feedback Control keeping the correct path.

Figure 13.4 is a Smith Chart illustrating the value of the admittance Yin for all IC
of the matching box. Therefore, the controller has to be able to drive the admittance
value to the center of the Smith Chart that represents Y = 0.02 S or Z = 50Ω. The red
circle and the x-axis represent the unitary circle of admittance (Gin = 0.02 S) and the
imaginary reference (Bin = 0 S). The white region represents the unfeasibility region
according to the value of the capacitors of the network.

The benchmark block diagram is shown in Fig. 13.5. The blocks Rate Limit, Motor
Dynamic, Network Model, Sensor Distortion and Amp & Phase Noise remain the same
for all the strategies, and, by replacing the Controller andGamma blocks, it is possible
to evaluate multiple strategies. The MATLAB code of the benchmark system is avail-
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Figure 13.4: Admittance Smith Chart for the L-type net-
work.

Figure 13.5: Block diagram for the RF impedance matching with L-Type Network.

able at [16]. The second-order dynamic of the motor with a time constant of 20ms
appears in the blockMotor Dynamic. After that, the Network Model block takes as in-
put the capacitors values to calculate the current impedance of the network described
by (13.6). Then, the impedance amplitude and phase values can be disturbed on the
Network Distortion and Phase & Amp Noise blocks by introducing distortion and ran-
dom noise. Finally, the Gamma block computes the value of Γ using the impedance
value of the network.

13.3 Feedforward control

Initially, a feedforward control is proposed as the baseline for the RF impedance
benchmark. It uses the high rate limit of the motors, called (MAX-MAX). This profile
can achieve a low convergence time with zero reflected power but does not guaran-
tee a monotonic decreasing behavior for different IC. Therefore, a new profile design
is proposed using three or four points as shown in Fig. 13.6. The knobs (ri and rj),
respectively, with i = 1, 2, 3 and 1, . . . , 5, were used to build the 3-point and 4-point
profiles.

To find the optimal values, we have the cost function

min
r1...n

J = w1Ttune + w2max{ d
dt
|Γ|}, (13.10)
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Figure 13.6: Comparison of the profiles used in the Feedforward.

where Ttune is the convergence time to 5% of the reflection coefficient and the deriva-
tive of |Γ| guarantee a monotonic decreasing behavior of the reflected power in the
network. The best performance was obtained for w1 = 0.7 and w2 = 0.3. For each IC
and impedance load value, the optimal values of the knobs were obtained, but stor-
age of all this data requires a great amount of space and commutations, so ensemble
values were found for the profiles given by (13.11) and (13.12).

r1 = 0.6425, r2 = 0.3865, r3 = 0.7556, (13.11)
r1 = 0.6425, r2 = 0.3865, r3 = 0.7556, r4 = 0.6448, r5 = 0.3668. (13.12)

Figure 13.7 shows how the 3-points and 4-points profiles guarantee a monotonically
decreasing behavior in the reflection coefficient. in comparison with the (MAX-MAX)
profile.

In Table 13.2, the feedforward controller performance is compared using the pro-
files (MAX-MAX, MAX-0-MAX, MIDDLE, 3 POINTS, and 4-POINTS). The 3-points pro-
file presents the lowest global index; therefore, the application of this profile over the
(MAX-MAX) avoids power peaks and reduces energy consumption. The performance
of the feedforward controller is evaluated using a set of performance criteria defined
by (13.13)–(13.16). These indices are the convergence time of the controller, the integral
of the reflection coefficient magnitude and the maximum and mean reflected power.

Ttune = time to fall within 5% of |Γ|final, (13.13)

Gint =
t

∫
0

󵄨󵄨󵄨󵄨Γ(t)
󵄨󵄨󵄨󵄨dt, (13.14)
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Figure 13.7: Performance of |Γ| using different profiles.
Table 13.2: Performance of the system for different profiles in the Feedforward Control.

PROFILES Ttune Gint mean(Pr ) max(Pr )
mean max mean max mean max mean

MAX-MAX 0.613 1.132 178.962 536 5.468 14.203 8.783
MAX-0-MAX 0.627 1.16 190.205 537.476 5.973 14.040 8.773
MIDDLE 0.618 1.158 182.079 537.177 5.535 13.753 8.754

3-P Optimal 0.612 1.128 180.982 536.256 5.555 14.118 8.753
Ensemble 0.610 1.14 179.875 536.359 5.527 14.118 8.759

4-P Optimal 0.611 1.128 181.357 536.362 5.582 14.118 8.764
Ensemble 0.611 1.148 180.229 536.350 5.533 14.118 8.757

max(Pr) = max
i∈n Pr(i), (13.15)

mean(Pr) = mean(Pr). (13.16)

13.4 Impedance matching feedback control

13.4.1 Proposed controllers in the literature

The RF impedance-matching benchmark compares the controllers proposed by Ba-
celli [1], Hirose [9], Ishida [11], Bezooijen [19], Cottee [3] and our proposed PI + FF.
Bacelli used the reflection coefficient as a controllable variable with the control rule
with τ as a certain time delay. In his work, one IC of the system is analyzed and show
its robustness to variations (steps in the RF power, the gate valve position of O2 and
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Ar flow).

uCt = Im(Γ),

uCm = −(1 − |Γ|)
2 Re(Γ) + 0.1|Γ| sgn(Γ(t) − Γ(t − τ))

(13.17)

Hirose and Ishida [9] used a Seek+ Follow strategy with different switching con-
ditions. Hirose proposes a switch between the controllers under the conditions

Follow = {35 ≤ |Zin| ≤ 65 , −30 ≤ ϕ ≤ 30},
Seek = {|Zin| < 35 or 65 < |Zin| , ϕ < −30 or 30 < ϕ},

(13.18)

while Ishida the conditions

Follow = {40 ≤ |Zin| ≤ 60 , −18 ≤ ϕ ≤ 18},
Seek = {|Zin| < 40 or 60 < |Zin| , ϕ < −18 or 18 < ϕ}.

(13.19)

The Follow controller consists of

ϕ > 0, decrease Cm,
ϕ < 0, increase Cm,
|Z| > 50, decrease Ct ,
|Z| < 50, increase Ct ,

(13.20)

and the Seek controller uses the inverse model of the system to compute the desirable
value of the capacitors to match the impedance value.

On the other hand, Bezooijen [19] analyzed the behavior of the real and imaginary
parts of the impedance with the displacement of the capacitors Ct and Cm. Then, they
proposed a control rule for each impedance matching network type, resulting for the
L-network in the one given by (13.21),

uCt = Kt(Bref − Bin),

uCm = −Km(Gref sign(−Bin) − Gin).
(13.21)

The problem with the previous strategies is that it only analyzed the behavior of the
network under a closed region of the matching value and not globally. Cottee [3] did a
global analysis of the network and proved the local and global stability of the network
under the geometric analysis of the phase plane (see Fig. 13.3). Following his method-
ology for the L-Type network, the control action is defined by (13.22)

uCt = −A sign(s1),

uCm = −B sign(s2),
(13.22)
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with

s1 = Bin, (13.23)

s2 =
{
{
{

−Bin −
1

βmin+ωLt , −Bin − 1
βmin+ωLt ≤ 0,

0.02 − Gin, −Bin −
1

βmin+ωLt > 0; (13.24)

and βmin = −
1

ωCmin
.

13.4.2 Feedforward plus PI control

In this section, a new variation of (13.18) is presented. Based on the information of
the reflection coefficient amplitude (|Γ| ≤ threshold), the system switch between
the Feedforward and Feedback Control, and, using different values (threshold =
0.1,0.3,0.5,0.7,0.9, 1), the performance of the system is studied. When the threshold
is equal to one, the system is under Feedback Control only. All the strategies are avail-
able at [16] by Bacelli.xls, Hirose.slx, Ishida.slx, Bezoo.xls, Cottee.xls and PI.xls. The
proposed control action is defined as

Follow = {|Γ| ≤ threshold},
Seek = {|Γ| > threshold},

(13.25)

and the Follow Controller is

uCt = KpCteI + KiCt

t

∫
0

eI dt,

uCm = −KpCmeR + KiCm

t

∫
0

eR dt,

(13.26)

with Kpx > 0, Kix > 0, eI = −Bin, and eR = 0.02 − Gin.
Finally, Table 13.3 shows the performance indices of the controllers evaluated for

all the initial conditions described in Fig. 13.8. For the 13 extremum values of capaci-
tance and load impedance, a total of 169 cases were obtained. For each case, the opti-
mal values of the controllers were obtained using the cost function (13.10).

As can be seen, for the proposed controller PI + FF with threshold = 0.1, a global
convergence (100%) of precision is reached but decreases as the threshold increases.
This is because the Feedforward Control does not reach the lower section of the phase
plane—see Fig. 13.3—before switching to the Feedback Controller, therefore the con-
troller decreases the value of the capacitor Cm driving the pair (Gin,Bin) in the wrong
direction. Nevertheless, the PI + FF presents a lower convergence time thanks to the
Feedforward Controller and more convergence cases than the other strategies.

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



248 | J. Viola et al.

Table 13.3: Performance of the controllers with optimal parameters.

CONTROLLERS Ttune Gint mean(Pr ) max(Pr ) % Conv.mean max mean max mean max mean

Bacelli [1] 2.89 19.99 736.73 7.38 3.01 12.75 5.63 61.54
Hirose [9] 7.51 14.99 1063 4660 3.01 14.45 8.91 71.01
Ishida [11] 7.11 14.99 1107 7175 3.16 14.10 8.78 85.21
Bezooijen [19] 1.9 4.99 507.32 2407 4.72 14.30 8.82 84.62
Cottee [3] 5.31 47.37 2,188.24 22,290.33 5.28 13.87 8.75 100

PI + FF
0.1 0.64 1.38 180.82 536.41 5.46 14.09 8.75 100
0.3 0.70 1.92 185.69 537.81 5.23 13.81 8.80 99.41
0.5 0.72 3.14 191.09 541.20 5.28 14.03 8.95 96.45
0.7 0.75 3.70 196.61 657.09 5.27 14.211 9.01 94.08
0.9 0.72 2.13 197.08 535.27 5.32 14.102 8.92 91.12
1.0 0.73 1.98 198.53 936.62 4.77 13.634 8.29 82.24

Figure 13.8: Extremum values of load impedance and capacitor.

13.5 Extremum seeking control with dithering noise
Extremum Seeking Control (ESC) is an adaptive model-free technique that allows op-
timizing smooth convex function problems, which extremum or optimal point may
be unknown and variable on time [2, 14, 23]. There are several formulations for con-
trollers, such as perturb and observe [2], sliding mode [6], and relay based [8]. In this
chapter, the sinusoidal P&O ESC and P&O FO-SESC controllers are employed for the
impedance matching problem.

13.5.1 Sinusoidal perturb and observe ESC controller
The structure of the sinusoidal perturb and observe controller is shown in Fig. 13.9 [2].
Initially, a sinusoidal perturbation signal with amplitude a and frequency ω is added
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Figure 13.9: Sinusoidal P&O ESC controller.

to the estimated optimal parameter θ̂. Then, it is applied to the plant by the actuator
U(θ), producing a new value of the cost function f (θ) (13.27), where f ∗ is the optimal
value of f produced by the optimal parameter θ∗. Thus, the produced system output
y (13.28) is passed through a high-pass filter with pole h, acting like a function gra-
dient multiplied by the perturbation signal producing η = θ̇ that is then integrated,
producing a new θ̂with error dynamics ̇θ̂ stable for k, a, f ′′ > 0 as demonstrated by [2],
where k is the integrator gain and a the disturbance scaling factor. As a condition for
the controller stability, f ′′ must exist, and f should be a smooth function.

f (θ) = f ∗ + f ′′
2
(θ∗ − θ)2, (13.27)

y = f ∗ + a2f ′′
4
+
f ′′
2
θ̃2 − af ′′θ̃ sin(wt) + a2f ′′

4
cos(2wt), (13.28)

̇θ̃ = −ka
2f ′′
4

θ̃. (13.29)

13.5.2 Stochastic fractional-order perturb and observe controller

The P&O FO-SESC controller proposed by [10] is shown in Fig. 13.10. Its structure is
similar to the P&O IO-ESC controller. The main difference is that the perturbation sig-
nal ν corresponds to a bounded stochastic dithering noise that can be Integer-Order
Gaussian (Brownian motion), Symmetric Alpha Stable SαS, or Fractional-order Gaus-
sian (fGN). The disturbance signal is passed through a low-pass filter to cut off the
high-frequency components of the random noise to perform better optimum seeking.

Fractional Gaussian noise can be represented as a change in Brownian motion
steps, which is defined using the Riemann–Liouville fractional integral, as shown
by (13.30), where dB(s) is the general definition of white noise, Γ(⋅) is the gamma func-
tion and H is the Hurst exponent, which indicates the LRD property of the random
disturbance signal [15, 17]. According to the value ofH, the dithering-noise time series
can represent a Brownian motion if H = 0.5, positively correlated if 0.5 < H < 1 and
negatively correlated if 0 < H < 0.5. In this case, the dithering noise is considered
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Figure 13.10: Fractional-Order P&O SESC controller.

a fractional-order Brownian motion if H ̸= 0.5. The exponential stability of the P&O
FO-SESC controller is demonstrated in [10] for f ′′(θ̂) > 0 and ka > 0.

BH (t) =
1

Γ(H + 1/2)

t

∫
0

(t − s)H−0.5dB(s). (13.30)

For the analysis, an L-type network (see Fig. 13.1) is employedwith the parameters
425 pF ≤ Ct ≤ 2240 pF, 114 pF ≤ Cm ≤ 445 pF, Lt = 600nH, Lm = 689 nH, and an RF
source frequency of 13.56MHz. Thematching space for the L-type network is shown in
Fig. 13.11. As can be observed, under the current configuration, the matching network
match for the load Zload = R0 + jX0 Ω with real and complex parts between 9 < R0 <
22.8Ω and −57.2 < X0 < 24Ω, respectively.

Figure 13.11: Feasible matching region for L-type network.
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Figure 13.12:MIMO ESC Controller with L-type
matching network.

The ESC control architecture is shown in Fig. 13.12. It employs two independent ESC
controllers, one for the shunt and series capacitors Ct and Cm, respectively. The mo-
tor response should be included in the system model, considering that the electrical
dynamic response of the system is much faster compared with the motor dynamics of
the variable capacitors.

The cost function employed for the P&O ESC and P&O FO-SESC controllers is the
reflected power of the impedance matching network defined by (13.1). In a real L-type
network, the input impedance Zin is measured by a Voltage-Current (VI) probe. Here,
Zin is calculated using (13.6) according to the values of Ct and Cm. The tuning parame-
ters employed for the P&O ESC and P&O FO-SESC controllers are shown in Table 13.4.
In the case of P&O ESC controller, the parameters are selected to ensure the correct ex-
tremum tracking. In addition, the P&O FO-SESC controller parameters include a zero
mean and a small standard deviation dithering noise for Ct and Cm ES controllers.
Larger correction gains and perturbation signal amplitudes are selected for Cm due to
its capacitor range. The dithering noise low-pass filter noise is set to 1, and the Hurst
exponent value range is 0.1 to 0.9.

Table 13.4: P&O ESC and P&O FO-SESC controller parameters.

Parameter P&O ESC Controller FO-SESC Controller
Cm Ct Cm Ct

High-pass filter pole (h) 2π 2π 2π 2π
Integrator gain (k) 100 3,000 300 100
Amplitude correction (a) 1.5 2 0.1 0.1
Sinusoidal disturbance frequency (rad/s) 10 7 – –
Noise mean (μ) – – 0 0
Noise Std (σ) – – 0.2 0.3
Noise-signal amplitude 1 1 150 70
Low-pass noise-filter pole (epsilon) – – 1 1
Hurst exponent (H) 0.1:0.1:0.9

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



252 | J. Viola et al.

13.6 Simulation study: L-type network

Three tests are performed to evaluate the P&O-ESC and P&O FO-SESC controllers. In
the first test, both controllers perform the impedancematching for a power set-point of
1,500Wwith afixed loadof 10−j10Ωundermultiple initial conditions ofCt andCm and
Hurst exponents in the rangeH = 0.1:0.1:0.9 to analyze the influence of anti-persistent
and LRDbehaviors on the SESC searching. The second test evaluates the P&OFO-SESC
performance for the total load matching space given by Fig. 13.11 with H = 0.1:0.1:0.9
under a different capacitor IC. Finally, the third test evaluates the robustness of the
P&O FO-SESC and P&O ESC controllers, analyzing its convergence for all capacitor
initial conditions with Zload = 7.95 + j5.2Ω and the loads in the matching space given
by Fig. 13.11.

13.6.1 Test 1: P&O ESC and FO-SESC controllers time responses
for a single given load impedance

The time responses of the P&O ESC and the P&O FO-SESC controllers are shown in
Fig. 13.13a for the load 10 − j10Ω with capacitor initial conditions at IC = [0,0]. It can
be observed that the P&O FO-SESC controller reaches the steady-state response, with
a smooth control effort given by Ct and Cm for eitherH = 0.5 andH = 0.6. On the other
hand, the sinusoidal P&O ESC controller is not able to converge, reaching a minimum
reflected power coefficient of 0.2. Considering the influence of the capacitor’s initial
conditions on the search, the test is repeated now for IC = [50, 50], and its results are
shown in Fig. 13.13b. It can be appreciated that, under the new initial conditions, the
sinusoidal P&O ESC controller now is able to converge, as well as the P&O FO-SESC
controller. The control action for the P&O ESC controller exhibits a more oscillatory

Figure 13.13: P&O ESC and P&O FO-SESC controller with load 10 − 10j Ω.
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behavior comparedwith the P&OFO-SESC controller. Figure 13.14 shows the evolution
of the average GammaRMS, convergence events, and the settling time for the FO-SESC
controller. As can be observed in Fig. 13.14b, for H = 0.6, the reflected power RMS is
lower for most of the ICs. Likewise, Figs. 13.14a and 13.14c show that the convergence
rate and settling time can reach reasonable values when 0.5 < H < 0.6. Thus, we can
say that, using dithering noises between 0.5 ≤ H ≤ 0.6, the convergence rate of the
ESC controller can be improved.

Figure 13.14: Test 1: P&O FO-SESC controller average vs the Hurst exponent.

13.6.2 Test 2: P&O ESC and FO-SESC controllers global
convergence analysis

This test analyzes the convergence rate, time and reflected power RMS among the
matching region of the L-type network presented in Fig. 13.11. For the ESC controllers’
assessment, an extended set of capacitor initial conditions are defined, which corre-
sponds to IC = [0,0], [10, 20], [35, 40], [50, 50], [100, 100], and each load is tested for
various Hurst exponents H = 0.1:0.1:0.9. As an example, Fig. 13.15 shows the com-
parison of the P&O ESC controller matching zone, regarding the evolution of the P&O
FO-SESC controller under the initial condition IC = [0,0] for H = 0.1:0.1:0.9. As can
be observed, the P&O ESC controller convergence region contains 151 positive events.
Moreover, the P&O FO-SESC controller exhibits a variation of its convergence region
according to the dithering-noise Hurst exponent. If H < 0.3 or H > 0.8, the conver-
gence region is significantly smaller compared with the P&O ESC controller. However,
for 0.5 ≤ H ≤ 0.7, the convergence region shows an increasing trend, reaching its
maximum at H = 0.7 with 171 positive convergence events.

Test 2 is repeated ten times to analyze the average behavior of the P&O FO-SESC
controller. The average convergence rate, settling time and reflection power coefficient
for the ten tests against its Hurst exponent is shown in Fig. 13.16. As can be observed,
the convergence rate in Fig. 13.16a of the P&O FO-SESC controller increases to above
60% when 0.5 <= H < 0.6, with a minimum convergence rate at H < 0.1. On the
other hand, the reflected power RMS and settling time in Fig. 13.16b and 13.16c shows
a decreasing behavior as the Hurst exponent increases; however, the convergence rate
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Figure 13.15: Test 2: P&O FO-SESC controller convergence region evolution against the Hurst expo-
nent (blue is success; red is unsuccessful).

Figure 13.16: Indexes vs Hurst exponent on Test 2 for the overall matching region.

for H > 0.6 suffers a significant decrease, introducing a trade-off between the conver-
gence rate, settling time and reflected power. Thus, we can say that the best operation
range for the P&O FO-SESC controller can be reached for 0.5 ≤ H ≤ 0.6 in the presence
of various loads.

13.6.3 Test 3: ESC controllers capacitor initial condition
robustness analysis

In this test, the ESC controller convergence is evaluated in terms of the capacitor’s
initial condition space. Thus, a set of 25 loads inside thematching space are evaluated
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Figure 13.17: Test 3: P&O FO-SESC controller capacitor initial conditions space vs the Hurst exponent
for Zl = 15 − j25Ω (blue is success; red is unsuccessful).

Figure 13.18: Test 3: P&O ESC and P&O FO-SESC
controller average settling time vs the Hurst expo-
nent.

with 25 ICs in the range Ct = 0:25:100 and Cm = 0:25:100. Figure 13.17 shows the
initial condition capacitor space evolution using the P&O ESC and the P&O FO-SESC
controllers for the load Zl = 15 − j25Ω. As can be seen, increasing the Hurst exponent
can improve the convergence rate of the impedancematching. After repeating this test
ten times, the global average convergence rate of the P&OFO-SESC controller is shown
inFig. 13.18.As canbeobserved, the convergence rate canbe increasedup to 80%with
0.5 ≤ H ≤ 0.6. Likewise, this behavior is consistent with the obtained results from
Tests 1 and 2. Therefore, we can say that, using fractional-order dithering noise, it is
possible to improve the global performance of plasma impedance matching without
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feedforward or additional compensation mechanisms in the presence of a variable
load inside the matching and capacitor spaces.

13.7 Conclusions and future works
This chapter presented a benchmark system for RF impedancematching controller de-
sign and evaluation. A comparison between different impedance matching controller
architectures is performed. In the case of the novel Feedforward controller, the se-
lected profiles improves the convergence of the reflection coefficient with a mono-
tonic decreasing behavior. Likewise, the performance of the PI + FF controller was
contrasted with the other strategies. Using a switching |Γ| ≤ 0.1 the controller shows
a better response; however, it does not achieve global convergence as the Cottee pro-
posal without the Feedforward Control. The advantage of the Feedforward is to speed
the convergence of the system, but it is sensitive to distortion in the sensor.

Likewise, a Perturb and Observe Fractional-Order Stochastic Extremum Seeking
Control (P&O FO-SESC) with dithering noise was designed for plasma impedance
matching. Using the benchmark, the P&O FO-SESC controller was tested for single
and multiple loads under various IC and various levels of LRD with the dithering
noise given by the Hurst exponent. Obtained results show that using a dithering noise
with the P&O FO-SESC controller in the range 0.5 ≤ H ≤ 0.6 can improve the system
convergence rate, settling time, and minimize the total reflected power during the
impedance matching process. The P&O FO-SESC controller is robust under various
load and capacitor initial conditions, indicating that the P&O FO-SESC controller is
suitable for plasma impedance matching, where the plasma load impedance is time
variant and unknown.

Thus, this benchmarkmarks a startingpoint for the analysis of L-TypeRF impedance
matching networks. As future work, more control strategies such as Model Predictive
Control (MPC), Model-Free Adaptive Control (MFAC), P&O FO-SESC, etc. can be tested
to enhance the system performance and evaluate its performance in the presence of
external disturbances and uncertainties, using the admittance model of the match-
ing network. Likewise, introducing feedforward mechanisms based on magnitude
and phase to improve ESC control performance can be considered to accelerate the
impedance matching speed.
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