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Preface 
Fatigue is one of the most important and conventional failure modes for engineering 
components. The significance of this phenomenon is that the failure may occur even 
when the stresses in the critical regions are below the elastic limit. In order to 
thoroughly estimate the fatigue life of a metallic component, it is necessary to start the 
investigation from the very beginning steps of fatigue. The very fundamental stage 
during the course of fatigue is the initiation of fatigue microcracks on slip bands within 
the microstructure. For some alloys the crack initiation step can acquire even up to 90% 
of the total fatigue life of the component. Nevertheless, it is worth mentioning that 
engineering materials perform various behavior during the different fatigue stages. Due 
to this fact a multiscale approach is required for modelling the whole fatigue life of a 
component.  

The main aim of this book is the multiscale modelling of metallic materials 
performance during the different stages of the fatigue life, as well as the investigation 
of the involved parameters for each stage.  

The first chapter of this book is about “The numerical determination of Paris law 
constants for carbon steel using a two-scale model”. The Paris law represents the 
correlation between the range of stress intensity factor (∆𝐾𝐾) and fatigue crack growth 
rate (da/dN) under the impression of the material constants C and m. In order to avoid 
expensive experimental tests for the determination of Paris law constants C and m for 
carbon steel, a two-scale method is employed in this chapter. In this regard, to calculate 
the fatigue crack growth rate at the crack tip, by using the Tanaka-Mura (TM) equation, 
a microstructural model is generated at this area. A macro-model is employed as well to 
calculate the stress intensity factor. With this micro-macro approach, a correlation 
between the stress intensity factor and the crack growth rate for the specified crack 
lengths comes in hand which is used to determine the Paris law constants.  

Chapter 2 is about the “Calculation of the Wöhler (S-N) curve using a two-scale 
model”. In this chapter the estimation of the complete fatigue life of carbon steel under 
cyclic loading is represented by the Wöhler (S-N) curve. This estimation is achieved by 
modelling the initiation of a short crack and subsequent growth of the long crack. In 
this regard, a two scale model which includes the microstructure of the carbon steel is 
developed using the Finite Element Method, in order to obtain the grain based stress 
distribution. The required number of cycles for crack initiation based on this 
nonuniform stress distribution is calculated by employing again the Tanaka-Mura 
model. Finally, the analysis of the long crack growth is performed using the Paris law.  
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The 3rd chapter “On the critical resolved shear stress and its importance in the fatigue 
performance of steels and other metals with different crystallographic structures”, is 
dealing with the numerical estimation of the fatigue life in the form of Wöhler S-N 
curves of metals with different crystallographic structures. Again, in this chapter, the 
whole fatigue life of the material is divided in two steps, which includes fatigue micro-
crack initiation which is modelled by a TM formulation followed by long crack growth 
analysis which is conducted by using the Paris law. It is shown that the fatigue life 
curve of metals is not predominately determined by their crystallographic structures, 
but it is determined by the material parameter which is known as critical resolved shear 
stress (CRSS).  

The book closes with chapter 4 with the title: “A newly discovered relation between the 
critical resolved shear stress and fatigue endurance limit for metallic materials”. This 
chapter introduces a better understanding of the fatigue process of metallic materials by 
specifying the correlation between the fatigue strength and the critical resolved shear 
stress (CRSS) which is an intrinsic property of metallic materials. In this respect a 
multiscale approach of fatigue modelling is employed in order to correlate the 
endurance limit to the CRSS rather than the ultimate strength, as often done in the past. 

Contributions of the working group at the Institute for Materials Testing, Materials 
Science and Strength of Materials (IMWF) in Stuttgart and the Faculty of Mechanical 
Engineering and Naval Architecture at the University of Zagreb can be found in the 
first two chapters.  

With the contained articles in this book, the significance of multiscale modelling in 
terms of fatigue performance of metallic materials is shown. We hope that the content 
of this book being inspiring for the readers and helps to develop new ideas. 

Stuttgart, October 2021 Siegfried Schmauder 

   Kiarash J. Dogahe 

   Marijo Mlikota 

Željko Božić 
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Chapter 1 

 
Numerical Determination of Paris Law Constants for 

Carbon Steel Using a Two-Scale Model 
 

M. Mlikota1, S. Staib2, S. Schmauder 1, Ž. Božić2 

1 Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University 
of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany 

2 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, I. Lučića 5, 
10000 Zagreb, Croatia 

 

Abstract 

For most engineering alloys, the long fatigue crack growth under a certain stress level can 
be described by the Paris law. The law provides a correlation between the fatigue crack 
growth rate (FCGR or da/dN), the range of stress intensity factor (ΔK), and the material 
constants C and m. A well-established test procedure is typically used to determine the 
Paris law constants C and m, considering standard specimens, notched and pre-cracked. 
Definition of all the details necessary to obtain feasible and comparable Paris law constants 
are covered by standards. However, these cost-expensive tests can be replaced by 
appropriate numerical calculations. In this respect, this paper deals with the numerical 
determination of Paris law constants for carbon steel using a two-scale model. A micro-
model containing the microstructure of a material is generated using the Finite Element 
Method (FEM) to calculate the fatigue crack growth rate at a crack tip. The model is based 
on the Tanaka-Mura equation. On the other side, a macro-model serves for the calculation 
of the stress intensity factor. The analysis yields a relationship between the crack growth 
rates and the stress intensity factors for defined crack lengths which is then used to 
determine the Paris law constants. 

Keywords 

Paris Law, Fatigue Crack Growth Rate (FCGR), Stress Intensity Factor (ΔK), Finite 
Element Method (FEM), Tanaka-Mura Equation 
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1. Introduction 

Structural health monitoring and detection of failures are highly important for fitness and 
service assessment of structures. Failure of structures under fatigue loading can occur at 
load levels below the yield stress of the used material. Therefore, it is of special importance 
to be able to make predictions of life cycles until catastrophic fracture occurs. A well-
known example of such catastrophic failure is the huge train accident in Eschede where 
one wheel of the train broke due to cyclic loading (Fig. 1) has not been considered during 
construction [1]. On the other hand, not every single crack has to be critical immediately. 
Often structures can withstand cracks up to a certain crack length until unstable fracture 
occurs. In order to determine the point where crack growth becomes unstable, it is 
necessary to develop methods to describe crack growth mathematically.   

Figure 1. Fracture surface of the broken train wheel [1]. 
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A very common and often used method for the characterization of the long crack growth 
is the Paris law which gives a relationship between the fatigue crack growth rate (FCGR 
or da/dN) and the stress intensity factor (ΔK) at the crack tip during the stable crack growth 
[2], Eq. 1. A typical fatigue growth rate curve – also known as da/dN versus ΔK curve – is 
shown in Fig. 2. The curve is defined by regions I, II and III. The Paris law relationship 
can be visualized as a straight line for the region of stable crack growth – region II [3]. The 
accompanying mathematical equation contains two material parameters C and m, where m 
represents the slope of the line in Fig. 2 and C the y-axis-intercept [4]: 

 

d𝑎𝑎
d𝑁𝑁

= 𝐶𝐶(∆𝐾𝐾)𝑚𝑚 (1)  

The crack growth rates in the region II are typically in the order of 10-9 to 10-6 m/cycle and 
correspond to stable crack growth. The constants C and m are usually determined in 
experiments [5-9] and depend on the material and various influencing factors such as 
temperature, environmental medium and loading ratio [5, 10]. The last is probably the most 
significant and usually results in closely spaced lines parallel to each other. For metals the 
exponent is typically of the order m = 2…4 [10]. 

 

 

Figure 2. Typical growth behavior of long fatigue cracks [3]. 

 

Since the experimental determination of the Paris law constants is typically tedious and 
time consuming, the objective of this paper is to determine them numerically considering 
the influence of microstructure on the crack growth rate.  

ΔK

da
/d

N

Region I Region II

Region IIIm

ΔKth

Kc

da/dN = C(ΔK)m
Paris law

l

C
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2. Modelling approach and details 

The simulations for determination of the Paris law constants are done with the Finite 
Element (FE) software ABAQUS and by applying a two-scale model. The model contains 
the microstructural submodel of a material that is used to calculate the fatigue crack growth 
rate da/dN at a crack tip and the macro-model that serves for the calculation of the stress 
intensity factor ΔK. In order to get the typical da/dN versus ΔK curve, the crack growth 
rate and stress intensity factors for six different crack lengths are determined. The constants 
are then determined from the interpolated straight line, representing region II in Fig. 2, as 
the slope m and the y-axis-intercept C. 

 

Figure 3. Schematic illustration of the two different approaches. 

 

The input data for the common diagram is calculated using the two aforementioned 
approaches, as shown in Fig. 3. On the one hand the stress intensity factor is determined 
using the full-scale macro-model with a center crack and on the basis of Linear Elastic 
Facture Mechanics (LEFM). The crack growth rate on the other hand is determined using 
the submodel based on the Tanaka-Mura equation [11, 12]; the submodel is placed in the 
area behind the crack tip. The grain structure is assigned to the submodel to consider micro-
crack initiation processes in the vicinity of the crack tip. 

The Tanaka-Mura equation is typically used to estimate the number of cycles that are 
attributed to the crack nucleation in a single grain [11, 12]. Jezernik et al. [13, 14] 
introduced a modification of the original equation in the sense that the crack does not form 
instantaneously through the whole grain but it forms in segmental manner: 

𝑁𝑁𝑠𝑠 =
8𝐺𝐺𝑊𝑊𝑐𝑐

𝜋𝜋(1 − 𝜈𝜈)𝑑𝑑𝑠𝑠(∆𝜏𝜏̅ − 2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)2 (2)  

ΔK

da
/d

N

Microstructural 
model

Macro-model
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where ,𝑁𝑁𝑠𝑠 is the number of cycles required to form a crack segment in a single grain, i.e. 
crystal. Furthermore, Eq. 2, contains two microstructure-related parameters, namely the 
length of slip line segment 𝑑𝑑𝑠𝑠 and the average shear stress range ∆𝜏𝜏̅ on it. Other material 
constants (such as shear modulus 𝐺𝐺, crack initiation energy 𝑊𝑊𝑐𝑐 and Poisson’s ratio 𝜈𝜈) can 
be either found in literature for most materials or can alternatively be obtained 
experimentally. The critical resolved shear stress (CRSS) is particularly interesting since it 
can be obtained by means of Molecular Dynamics (MD) simulations [15]. The CRSS 
represents a critical value of the shear stress along the slip direction that must be overcome 
for the dislocation to move, i.e. if the magnitude of the resolved shear stress is below the 
value of the CRSS, no dislocation movement is allowed and consequently no pile up at the 
grain boundary takes place [16]. 

2.1 Geometry of the macro-models 

In order to accomplish the goal of the present paper it was necessary to create two slightly 
different full-scale macro-models. Both models represent the same geometry, however, the 
ways of modelling the crack for determination of stress intensity factor ΔK on the one side 
and fatigue crack growth rate da/dN on the other require certain adjustments at the regions 
of interest, i.e. on the crack-affected path. More specifically, the macro-model for the 
calculation of ΔK requires the usage of some special ABAQUS techniques to represent the 
crack – in this case the seam crack is used – while the macro-model (further: global model) 
for determination of da/dN needs to be geometrically adjusted to the submodel that is 
placed at the tip of the structural crack. A seam defines an edge or a face in a model that is 
originally closed but can open as a crack during an analysis [17].  

The models were built on the basis of a specimen with central pre-crack prepared for 
fatigue testing, shown in Fig. 4, considered in the paper of Božić et al. [3]. At the initial 
state the specimen has a notch and a pre-crack of 2a = 8 mm (Fig. 4, A – Crack detail). 
Only half of the specimen has to be modeled due to symmetry with respect to the vertical 
y-axis. The symmetry with respect to the x-axis is aligned with the crack and, therefore, 
cannot be used in either case; for ΔK determination the applied seam cannot extend along 
the boundaries of a part and must be embedded within a face of a two-dimensional (2D) 
part or within a cell of a solid part [17]. In the other case, the used submodel 
(microstructural model) at the crack tip area requires the transfer of boundary conditions – 
in this case displacements – from both parts of the global model, the upper and the lower 
one.  
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Figure 4. Geometry of the used specimen with a central pre-crack [3]. 
 

The structural crack lengths which were used for this study were taken from [3], where ΔK 
values were determined using the FE software ANSYS. Nevertheless, ΔK values were 
calculated again – this time with ABAQUS – first to compare the results with previous 
simulations and second to ensure that the models are built properly. The considered crack 
lengths for the simulations are listed in Table 1. 

Table 1. Considered structural crack lengths. 
  

Crack 
designation 

Crack 
length 
(mm) 

a1 9.9 
a2 20.1 
a3 29.9 
a4 39.1 
a5 49.3 
a6 59.3 

 

All models which are used here are built as 2D, in accordance to the geometry of the 
specimen and the fact that the main central part has a thickness of just 4 mm along the z-
direction. The areas in the upper and lower part of the models with relatively higher 
thickness (54 mm) were also modelled as 2D. Those two parts are used to apply loading 
conditions and movement constraints, respectively, as shown in Fig.5. The stress state in 

 EBSCOhost - printed on 2/14/2023 2:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Multiscale Fatigue Modelling of Metals  Materials Research Forum LLC 
Materials Research Foundations 114 (2022) 1-15  https://doi.org/10.21741/9781644901656-1 

 

7 

the middle part of the cracked plate is assumed to be plane stress. The thicknesses of the 
specimen in both regions, the central and outer, were considered by assigning plane stress 
thickness to their belonging sections.  

As already mentioned only one half of the specimen has to be modelled. The symmetry is 
realized by using boundary conditions on the vertical y-axis which fix displacements in x-
direction as well as rotations of any kind (Fig.5). 

 

 

Figure 5. The half of full-scale model with applied 
boundary and loading conditions, and with the seam 

crack in the ΔK case. 
 

The material behaviour is assumed to be purely linear elastic; only a small plastic zone at 
the crack tip is expected (Fig.7), therefore, no plastic material data are necessary to be used. 
The isotropic material data for the specimen made of conventional mild carbon steel were 
adopted from the study of Božić et al. [3]. The material parameters applied to both models 
are: Young modulus E = 206 GPa, Poisson’s ratio 𝜈𝜈 = 0.3, yield stress Re = 235 MPa and 
shear modulus G = 80 GPa. It is opportune to introduce the experimentally obtained Paris 
law constants for the selected material in order to provide validation data for the numerical 
results that follow later; m = 2.75 and C = 1.43x10-11 [3]. 

As the material data, loading and boundary conditions were taken from [3], the testing 
specimen was exposed to constant amplitude cyclic tension load in a hydraulic fatigue 
testing machine. The load was applied to the pin which was placed in the hole in the upper 
part of the model while the pin in the lower hole was fixed (Fig.5). The force range and the 
stress ratio applied to the half-model are denoted by F = Fmax - Fmin and R = Fmin ⁄ Fmax, and 

Seam crack

F
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were F = 76 800 N and R = 0.0253 [3]. In contrast to the experiments, simulations on the 
macro-models were performed with static loading conditions, however, in combination 
with LEFM for the ΔKs determination and with the Tanaka-Mura equation for the 
determination of da/dN. 

For both models continuum plane stress 4-node bilinear elements with reduced integration 
and hourglass control (CPS4R) were used. In order to deal with the stress singularity at the 
crack tip in the case of ΔKs calculation, special elements have to be used that are able to 
indicate the infinite stresses properly. In ABAQUS this is done by collapsing one side of 
an 8-node isoparametric element connected to the crack tip [17], as can be seen in Fig.7. 

2.2 Submodel (microstructural model) details  

The submodel or microstructural model is placed right at the tip of the global model 
structural cracks (Table 2) where their extension is expected. As already mentioned, the 
Tanaka-Mura equation is typically used to estimate the duration of the short crack initiation 
stage. In this paper, however, the equation is applied within the microstructural model 
(Fig.6) with the aim to estimate the rate of the infinitesimal crack extension. The geometry 
of the submodel can be seen in Fig.6, as well as the location where it is placed with respect 
to the global model. Its size is selected to 0.4 mm x 0.4 mm including the tip of the 
structural crack of 0.1 mm radius, which can be identified as a notch. As mentioned before, 
displacements of the global model are applied to the coinciding edges of the submodel, 
marked bold in Fig.6. 

 

 

Figure 6. Geometry of the submodel containing a 
microstructure of the material and its location with 

respect to the global model. 
 

Submodel
Global model

Zoomed view

 EBSCOhost - printed on 2/14/2023 2:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Multiscale Fatigue Modelling of Metals  Materials Research Forum LLC 
Materials Research Foundations 114 (2022) 1-15  https://doi.org/10.21741/9781644901656-1 

 

9 

Moreover, the submodel takes into consideration the microstructure of the investigated 
material and its influence on the crack growth rate in the initial extension phase. 
Accordingly, the submodel is partitioned into individual grains using the random Voronoi 
tesselation. Each individual grain possesses a local coordinate system (Fig.6) and 
individual slip band orientation. The resulting average grain size, i.e. average slip band 
length is 50 µm, what is appropriate for the used material. 

Concerning the material description, the microstructural model requires orthotropic 
material data, i.e. elastic constants of cubic crystals. These constants reflect cubic 
symmetry where C11 = C22 = C33, C12 = C13 = C23 and C44 = C55 = C66, and are calculated 
using the following equations:  

𝐶𝐶11 =
𝐸𝐸(1 −  𝜈𝜈)

(1 −  𝜈𝜈 −  𝜈𝜈2)
 (3)  

𝐶𝐶12 =
𝐸𝐸(1 −  𝜈𝜈)

(1 −  𝜈𝜈 −  2𝜈𝜈2)
 (4)  

C44 = G (5)  

With the isotropic material data from above this gives C11 = 277 307 MPa, C12 = 118 846 
MPa and C44 = 80 000 MPa. Furthermore, the microstructural model enriched with the 
Tanaka-Mura equation requires two additional material properties, namely the critical 
resolved shear stress (CRSS) and the crack initiation energy (𝑊𝑊𝑐𝑐). With respect to this, the 
following values were applied: CRSS = 117 MPa [15] and 𝑊𝑊𝑐𝑐 = 69 N/mm [18]. 

The submodel was very fine meshed with the same elements as the global model (CPS4R); 
what in the end gives smooth stress distribution in the undamaged as well as in the damaged 
submodel (Fig.9-12). To depict the mesh fineness, a single grain has 120 elements in 
average. 

3 Results 

The stress intensity factor ΔK as well as the J-Integral and other fracture mechanics 
characteristics, can be requested in ABAQUS as history output data. In order to get ΔK for 
each individual crack of six in total from Table 1, the same number of variations of the 
macro-model were modelled. Fig.7 gives the von Mises stress distribution at the crack tip 
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of a macro-model. As already mentioned in Chapter 2, the geometry itself with the 
structural pre-crack stays the same for all variations, however, the used seam length varies. 
By evaluating ΔK for each crack length and putting the results into a common diagram 
gives the expected linear relationship (see region II in Fig.2) between ΔK and the crack 
length a (Fig.8). 

 

Figure 7. Stress field at the crack tip of the macro-model 
that is used to calculate the ΔK values. 

 

Figure 8. ΔK in dependence of the crack length. 

 

In the submodel, the crack can form in a grain on different slip bands depending on the 
grain orientation, i.e. on the stress field inside and in the vicinity of the grain – generally, 
the stress field in the microstructural model (Fig.9-12) is influenced by boundary conditions 
(displacements from the global model), microstructural configuration (i.e. orientation and 
shape of crystals), elastic constants and geometrical factors (notch, formed cracks etc.). 
The slip bands of a certain grain have the same orientation and are distanced one from each 
other with an offset. Furthermore, each slip band is divided in four segments meaning that 
a crack does not form instantaneously through the whole grains but it forms in a segmental 
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manner. The condition for the formation of crack segments is contained in the Tanaka-
Mura (Eq. 2) and it reads as follows: the average shear stress ∆𝜏𝜏̅ on a slip band segment 
needs to exceed two times the CRSS. Additionally, the Eq. 2 gives the number of cycles 
dN (i.e. Ns) that are spent for every formed crack segment. Furthermore, after the crack 
condition has been satisfied in one step, the model gets updated with the latest crack and 
remeshed in the following step where the condition is applied again and a new weakest 
crack segment is traced. 

The von Mises stress state before the first formed crack segment is shown in Fig.9. Figures 
from 10 to 12 show the stress states after 5, 15 and 25 broken crack segments. Those four 
figures show the simulation results for the crack length of 20.1 mm. Results for other 
considered structural cracks from table 1 are principally similar and, therefore, not shown 
in the paper. 

 

 

 

 

Figure 9. Von Mises stress 
distribution in the undamaged 

microstructural model(a=20.1mm).  

 Figure 10. Microstructural model 
with 5 broken crack segments. 

 

 

 

Figure 11. Microstructural model 
with 15 broken crack segments. 

 Figure 12. Microstructural model 
with 25 broken crack segments. 
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Generally what happens for all considered structural cracks is that the formation of cracks 
in the submodel ceases after a certain number of steps – the number varies from one model 
setup to another. The reason for this is that grains that are favourable for cracking on the 
basis of the aforementioned condition fade out. 

In order to determine the fatigue crack growth rate da/dN, both the cycles dN and the 
accompanying length da of each individual crack segment that formed in the 
microstructural model have to be determined. The crack length da can easily be quantified 
using the ABAQUS graphical interface or can be rather gathered from output data. 

By taking the measured da and the correlated dN one can evaluate the growth rate da/dN 
for each step. It is necessary to indicate that the common growth rate da/dN is not a constant 
value, but it fluctuates as it can be seen in Fig.13, for the case of the 20.1 mm long structural 
crack. It can be noticed that Fig.12 contains 25 broken segments while only 11 are 
considered in Fig.13, where da/dN is plotted. An explanation for this is that starting from 
step 12 in Fig.13, the number of required cycles for further formed cracks becomes 
significantly higher, meaning directly that the da/dN drops down to a negligible value. This 
leads to the assumption and consequence that the crack growth rate should be neglected in 
this relatively advanced stage. 

 

 

Figure 13. Crack growth rate in relation to the number of 
broken segments for the extension of the 20.1 mm long 

structural crack. 
 

In order to get a typical da/dN versus ΔK plot as in Fig.2, the fluctuating crack growth rate 
from, e.g. Fig.13, needs to be averaged. For the structural crack length of 20.1 mm this 
results in da/dN = 8.49421x10-9, which seems to be appropriate according to literature [3, 
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19]. This averaged growth rate can be considered as extensional growth rate for the 
structural crack. Similarly, for the remaining structural crack lengths. Finally, the results 
for da/dN and for ΔKs (Fig.8) are put into a common log da/dN versus log ΔK diagram, 
Fig.14. The resulting six single points were interpolated with a straight line from which the 
material constants of Paris equation (1) were determined, the slope of the line is m = 2.75 
and the y-axis intercept C = 3.8x10-12, which agree quite well with the experimentally 
determined values of m = 2.75 and C = 1.43x1011 [3].  

 

 

Figure 14. Extensional crack growth rate da/dN of different 
structural cracks versus ΔK of the same cracks. Data are 

shown in log-log scale. 

4. Discussion and conclusions  

The aim of this chapter was to numerically determine the Paris law material constants C 
and m and this was successfully accomplished by applying a two-scale model. Namely, 
stress intensity factors for six different structural cracks were calculated using the macro-
model based on classical LEFM. In the second part, the fatigue crack growth rates at the 
tips of same structural cracks were determined by using the microstructural model enriched 
by the Tanaka-Mura equation.  

Having determined the stress intensity factors and the crack growth rates separately, the 
values have been visualized afterwards in the common log-log diagram (figure 14). 
Considering that the Paris law can be approximated by a straight line in the diagram for the 
case of stable crack growth, the material constants have been determined then as m = 2.75 
and C = 3.8x10-12. 
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Since this study was the first, to the authors’ knowledge, attempt to determine the Paris 
constants in a numerical way as well as taking into account the microstructure of the 
material, and considering that the literature values of the investigated material (m = 2.75 
and C = 1.43x10-11) match the numerically obtained ones quite good, the study and its 
working hypothesis seem to prove their worthiness. It is to be supposed that the results 
determined here may even become better during further research. 
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Abstract 

This chapter deals with the initiation of a short crack and subsequent growth of the long 
crack in a carbon steel under cyclic loading, concluded with the estimation of the complete 
lifetime represented by the Wöhler (S-N) curve. A micro-model containing the 
microstructure of the material is generated using the Finite Element Method followed by 
the calculation of respective non-uniform stress distribution is calculated afterwards. The 
number of cycles needed for crack initiation is estimated on the basis of the stress 
distribution in the microstructural model and by applying the physically-based Tanaka-
Mura model. The long crack growth is handled using the Paris law. The analysis yields 
good agreement with experimental results from literature.  
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1. Introduction 

Fatigue is one of the most important modes of failure in many mechanical components 
since it may occur even if the stresses in the critical regions are below the elastic limit. This 
kind of failure can be understood by a simple example. If one tries to break a wire by hands, 
it can be done in two ways. One way is to stretch it, shear it or bend it in one direction what 
would typically require a lot of effort. On the other hand, if one tries to bend it cyclically 
by a hogging-sagging method it would take considerable less time and effort to cause the 
breakage [1]. This fact highlights the specificity and importance of the fatigue process. 

As described above, fatigue is characterized by a series of forward and reverse loadings. 
Over the course of experienced cycles, defects in the form of dislocations multiply and 
accumulate within the material. This behavior results in an increase in the dislocation 
density [2-3]. Consequently, in many materials, strain is localized in the form of slip bands 
or slip lines, which appear fine and sharp in favorably oriented grains (crystals) within the 
microstructure. As more cycles accumulate, more grains display signs of slip bands, the 
existing bands widen, and ultimately some of them develop into short cracks [4]. The 
number of slip systems in metals is usually high, and those that are active possess an 
orientation near to the planes with maximum shear stress. Under uniaxial loading the planes 
of cracks are always inclined approximately 45o to the direction of the applied loading. In 
the course of further cyclic loading, cracks formed along these slip bands grow and link 
together (Fig. 1). 

 

Figure 1. Stages of fatigue crack during its growth: Left – A microstructurally short 
crack (MSC) on the grain size scale; Middle – a physically short crack (PSC) on the 

microstructure size scale (Stage I); and Right – a long crack (LC) on the specimen size 
scale (Stage II). 

LC
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Once cracks have nucleated due to strain accumulation, i.e. cyclic slip, they grow in an 
early stage as microstructurally short cracks (MSC). In this early stage, the MSCs are 
typically in the order of the material’s grain size (Fig. 1 – Left) [5-6]. In metals and alloys 
they grow predominantly along crystallographic planes at erratic rate because they are 
highly affected by microstructural barriers such as grain boundaries or other 
microstructural features [6].  

Further, as cracks have grown through several grains they are considered as being 
physically short crack (PSC) – the length of PSCs is usually in the range from several 
grains up to 1-2 mm – Fig. 1 – Middle [5]. The crack growth in this stage is predominantly 
influenced by the microstructure – Fig. 2. 

 

 

Figure 2.  Crack path influenced by microstructure (Stage I growth) [7]. 

 

Upon reaching the end of the PSC regime, the microstructural influences become negligible 
and such a crack starts propagating in a continuous manner perpendicularly to the outer 
loading direction, i.e. it develops into a long crack (LC) – Fig. 1 – Right.  When the 
dominant crack has grown to such a size that the remaining ligament can no longer carry 
the applied load, the component fractures [6]. The change from PSC to LC regime is called 
the transition from Stage I (crystallographic growth) to Stage II (non-crystallographic 
growth) or transition from the crack initiation to crack the growth stage [8]. In engineering 
applications, the first two stages are usually termed as the crack initiation period, while LC 
growth is the crack growth or propagation period. Those two stages form the complete 
fatigue lifetime of a specimen or a component. The crack initiation period generally 
accounts for most of the service life, especially in the high-cycle fatigue (HCF) regime [9], 
Fig. 3 [10]. Furthermore, by approaching the fatigue limit, the long crack growth 
contribution diminished. 
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Figure 3. Schematic illustration of the two stages of fatigue in ductile metals until 
failure [10]. 

 

In the LC regime the fatigue crack growth rate (FCGR), da/dN, can be characterized by the 
stress intensity factor range, ΔK, as a dominant driving force. On the other hand, PSCs 
usually exhibit a faster growth rate than predicted on the basis of the LC methodology, and 
they even grow below the threshold of the stress intensity factor, ΔKth, for LC [6,11,12] - 
Fig. 7 – Right. The fast growth rate of PSCs has often been attributed to the lack of 
significant crack closure at the early stage of propagation  [6,12-14]. In the case of LC 
growth, crack closure is caused by residual plastic deformations left in the wake of an 
advancing crack. A crack nucleating at an inclusion particle, a void or a weak grain does 
not have the prior plastic history to develop closure [14]. 

Different natures of the crack initiation and propagation stages give rise to the importance 
of understanding the complete fatigue lifetime and of being able to estimate the lifetime 
quantitatively. In connection with this, numerical investigation and quantitative evaluation 
of the fatigue crack initiation and fatigue crack growth processes are of high practical 
interest. 

2. Fatigue crack initiation and long crack growth calculation  

A dislocation model of a double pileup on a single slip band proposed by Tanaka and Mura 
in 1981 [15-16] is used in this study to numerically describe the crack initiation stage. The 
number of loading cycles up to fatigue crack initiation is determined by summing the cycles 
spent for the nucleation of individual micro-cracks that form within the microstructural 
model of the investigated steel AISI 1141. The number of cycles Ng required for micro-
crack nucleation in a single grain can be determined using the physically-based Tanaka-
Mura (TM) equation [15-16]: 
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𝑁𝑁𝑔𝑔 =
8𝐺𝐺𝑊𝑊𝑐𝑐

𝜋𝜋(1 − 𝜈𝜈)𝑑𝑑(Δ𝜏𝜏̅ − 2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)2 (1) 

Eq. 1 presumes that cracks form along slip bands of grains, depending on the slip band 
length, d, the average shear stress range on the slip band, Δ𝜏𝜏̅, the shear modulus, G, the 
crack initiation energy, Wc, the Poisson’s ratio, 𝜈𝜈, and the critical resolved shear stress 
(CRSS) [17]. 

A very common and often used method for the characterization of the long crack growth 
is the Paris law, Eq. 1, which gives a relationship between the fatigue crack growth rate, 
FCGR or da/dN, and the stress intensity factor, ΔK(= Kmax - Kmin), at the crack tip during 
the stable crack growth [18]. 

A typical fatigue crack growth rate curve – also known as da/dN versus ΔK curve – is 
shown in Fig. 4. The curve is defined by regions I, II and III.  

 

 

Figure 4. Typical fatigue crack growth behavior for long cracks [18]. 

 

The Paris law relationship can be visualized as a straight line for the region of stable crack 
growth – region II [19]. The accompanying mathematical equation contains two material 
parameters C and m, where m represents the slope of the line in Fig. 4 and C the y-axis-
intercept [20]: 
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The stable crack growth rates in the region II are typically in the order of 10-9 to 10-6 
m/cycle. The constants C and m are usually determined as shown in experiments [21-23] 
and also depend on the material and various influencing factors such as temperature, 
environmental medium and loading ratio [21,24]. Numerical determination of this 
constants could also be done [25].  

Even though various standardized approaches are available, it is necessary to validate the 
approaches for the long crack growth characterization. The long crack modelling is well 
utilized in the field of fatigue research, and accordingly well understood. The methodology 
is used in this research primarily to accomplish the aim, which is to numerically determine 
the complete Wöhler (S-N) curve.  

The two-scale approach consisting of initiation simulation based on the Tanaka-Mura 
equation and long crack growth simulation based on Fracture Mechanics has previously 
been reported [17], [25] and [26]. To differentiate the works published there from the one 
that follows in Chapters 3 and 4, perhaps it is helpful to repeat the major achievement from 
the past. In [17], the authors introduced the idea of simulating the fatigue behavior of a 
material by means of multiscale approach, consisted of Molecular Dynamics based 
parameter determination, Tanaka-Mura based initiation and Fracture Mechanics based long 
crack growth. The key aspect of this approach is that the Wöhler curve can be obtained for 
new materials without need to perform expensive experiments. However, besides of 
introducing this idea and detailed description of the workflow, the approach has not been 
applied to any specific case, i.e., no results for numerically obtained Wöhler curve have 
been published at this time. The aim in [25] was to numerically determine the Paris law 
material constants C and m and this was successfully accomplished by applying the two-
scale model. No results on Wöhler curve determination have been shown. The capability 
of the crack initiation model based on Tanaka-Mura equation was used in [26] to simulate 
fatigue crack initiation within the microstructure of medium carbon steel AISI 1141 and to 
analyse the influence of the overload on the crack initiation process. However, no results 
on long crack simulation and on Wöhler curve determination have been documented. 

3. Numerical determination of the Wöhler (S-N) curve  

In order to achieve the objective of determining the complete Wöhler (S-N) curve of a 
specimen made out of AISI 1141 steel [27] in this study, a Finite Element Method based 
two-scale model is applied. The model is split into a macro-model (global model) for the 
assessment of the global stress field that is transferred to a micro-model (submodel), which 
was used for the assessment of crack initiation based on the TM equation. Additionally, 
the macro-model is used to calculate stress intensity factors, ΔK, which are input to the 
Paris law [18] for the evaluation of the long crack growth.  
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3.1 Crack initiation modelling 

A specimen analyzed in this work is taken from the study of Fatemi et al. [27]. The right 
image in Fig. 5 shows the stressed three-dimensional (3D) model of the specimen; in this 
case a half of the specimen due to applied symmetry boundary conditions. The numerical 
model of the specimen is created and analyzed by using the Finite Element Method (FEM) 
based software Abaqus. The model is meshed with C3D8R elements, from the ABAQUS 
element library [28]. The relevant dimensions of the specimen are 141.73 mm height (y-
axis) and width of 63.50 mm (x-axis), while the thickness is 2.54 mm (z-axis) and the notch 
radius 9.128 mm. All other relevant information on the specimen geometry is provided in 
[27]. The critical site of the specimen – marked with a red square – that becomes vulnerable 
under cyclic loading is given in Fig. 5 – Right. The specimen failed in experiments from 
[27] under stress-controlled cyclic loading conditions with the loading ratio R = 0, i.e. under 
fully tensional cyclic loading. The range of applied stress (180–255 MPa) is given in Fig. 
10. The model was loaded under the same conditions as the specimen in the experiments 
[27]. Furthermore, this global model served to provide boundary conditions for 
microstructural, i.e. crack initiation, analyses. The used submodel (microstructural model; 
Fig. 5 - Left), located at the notch of the global model, requires the transfer of boundary 
conditions – in this case displacements – from the global model. 

The global model, or macro-model, has been loaded in elastic regime – this especially 
counts for the notch region where the connection between the global model and the 
submodel has been established. In this region, the stresses are below the yield stress in all 
investigated cases, meaning that the transferred displacements from the global model to the 
microstructural one should not cause stresses at the boundary region between the models 
that are higher than the yield limit (564 MPa). 

The microstructure in the submodel was created on the basis of a typical etched 
microstructure of AISI 1141 from the study of Mirzazadeh and Plumtree [29]. The average 
grain size in the model is given as 60 µm, in accordance with the data from the study. There 
are 253 grains in the model, which are meshed with 171 288 elements in total. Although 
looking like a 2D model in Fig. 5 – Left, the microstructural model is a 3D deformable 
shell model meshed with membrane elements with reduced integration (M3D4R). The 
model is created as a 3D representative volume element (RVE) generated by the Voronoi 
tessellation technique. According to [28], general membrane elements are often used to 
represent thin stiffening components in solid structures, such as a reinforcing layer in a 
continuum. In this study, they are similarly used to model a layer of material inside a bulk, 
taking additionally the microstructure of the bulk into account. On the other hand, the 
global model is 3D model with thickness in z-direction of 2.54 mm. Furthermore, 
according to Abaqus documentation, general membrane elements should be used in 3D 
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models in which the deformation of the structure can evolve in three dimensions, what is 
the case in the present investigation. Additionally, the software uses a membrane section 
definition to define the section properties, including the thickness. The thickness can be 
defined as constant or as spatially varying thickness for membranes using a distribution.  
In general, the submodelling technique can be used to drive a local part (submodel) of the 
model (global model) by nodal results, such as displacements (Node-based submodeling), 
or by the element stress results (Surface-based submodeling) from the global mesh [28]. 
The reason that the microstructural shell model is driven in this study by the displacements 
of the global solid model is that the applied FEM based software Abaqus allows application 
of the stress-based submodelling only when solid-to-solid models are combined. 

 

 

Figure 5. Left – Shear stresses in a 3D deformable shell submodel, where loading is 
accomplished by applying stress distributions from the 3D global model to the boundary 
edges of the submodel; Right – 3D global model of the notched tensile specimen (half). 

 

Concerning the material model definition, an elastic orthotropic material behavior is 
assumed in the micro-model while pure isotropic elasticity (Young’s modulus E = 200 
GPa, shear modulus G = 78125 MPa and Poisson’s ratio 𝜈𝜈 = 0.3. [27]) is adopted in the 
macro-model. The components of the material stiffness matrix in elastic orthotropic 
description, i.e. the material elastic constants for cubic crystal symmetry applied in the 
micro-model are: C11 = C22 = C33 = 255 682 MPa, C12 = C13 = C23 = 99 432 MPa, C44 = C55 
= C66 = 78 125 MPa. The constants are calculated using the following equations: 
  

1.0 mm

1.2 mm

Notch
R = 9.128 mm

253 grains
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𝐶𝐶11 =
𝐸𝐸(1 −  𝜈𝜈)

(1 −  𝜈𝜈 −  𝜈𝜈2)
 (3)  

𝐶𝐶12 =
𝐸𝐸(1 −  𝜈𝜈)

(1 −  𝜈𝜈 −  2𝜈𝜈2)
 (4)  

C44 = G (5)  

The material parameters of the Tanaka-Mura model, Eq. (1), used in this study are Wc = 
19.0 kJ/m2 [30] and the CRSS = 117 MPa [17,31]. 

Fig. 5 – Left gives the shear stress distribution obtained in the FE analysis for the 256 MPa 
alternating loading conditions, with an evident influence of the microstructure. Gray and 
black grains are those where the condition for crack nucleation is satisfied according to the 
Tanaka-Mura model, which says that the absolute value of average shear stress on a slip 
band has to be higher than two times the CRSS, i.e. 234 MPa. It is noticeable that these 
grains, which are conditioned for cracking, are located near the notch. 

3.2 Crack growth modelling 

In order to characterize the long crack growth numerically, the macro-model for the 
determination of the stress intensity factor, ΔK, requires certain adjustments at the region 
of interest, i.e. at the crack-affected region. More specifically, the macro-model requires 
the usage of a special ABAQUS technique to represent the crack, namely the seam crack. 
A seam defines in a model an edge or a face that is originally closed but can open as a crack 
during an analysis [28]. 

As already mentioned only one half of the specimen needs to be modelled, Fig. 6 – Left. 
The symmetry is realized by using boundary conditions on the vertical y-axis, which fix 
displacements in x-direction as well as rotations of any kind. 

The long crack growth analysis was performed using classical Linear Elastic Fracture 
Mechanics (LEFM), where ΔK was calculated in all considered loading cases (180-256 
MPa) using Abaqus software.  
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Figure 6. Left – Macro-model for determining the stress intensity factor ΔK; Right – 
Seam crack and collapsed elements at the crack tip (256 MPa loading case). 

 

The material behaviour is assumed to be purely linear elastic; only a small plastic zone at 
the crack tip is expected (Fig. 6) thus, no plastic material data are necessary to be used. The 
isotropic material data for the specimen made of AISI 1141 carbon steel are the same as 
those that were used in the crack initiation modelling, E = 200 GPa, G = 78125 MPa and 𝜈𝜈 
= 0 [27].  

For this model, continuum plane stress 8-node elements with reduced integration (CPS8R) 
were used. Reduced integration has been often used as mean to avoid shear locking in thin 
shell structures [32], such as the one investigated in this paper. In order to deal with the 
stress singularity at the crack tip in the case of ΔK calculation, special elements have to be 
used that are able handling the infinite stresses. This is done in ABAQUS by collapsing 
one side of an 8-node isoparametric element so that all three nodes from that side have the 
same geometric location (on the crack tip) [28], as can be seen in Fig. 6 - Right. The crack 
tip is modelled with a ring of collapsed quadrilateral elements. 

4. Results 

A micro-model with a corresponding microstructure selected for the numerical analysis of 
the fatigue crack initiation lifetime of the specimen made out of AISI 1141 steel is shown 
in Fig. 5 – Left. The model was loaded with 4 different stress amplitudes, 180, 200, 224 
and 256 MPa, in accordance with the data available from the experimental study, Fig. 10.  

In the microstructural model consisting of aggregate of grains, the crack can form on 
different slip bands in each grain depending on the stress field inside and in the vicinity of 
the grain. Generally, the stress field in the microstructural model (Fig. 5 - Left) is 
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influenced by loading boundary conditions (own and/or transferred from global model), 
microstructural configuration (orientation and shape of crystals), material properties (e.g. 
elastic constants) and geometrical factors (e.g. presence of a notch and/or voids in the 
microstructure, already formed cracks etc.). The slip bands of a certain grain have the same 
orientation and are equi-distanced one from each other with an offset, as shown in [33]. 
Furthermore, each slip band is divided into segments meaning that in each simulated 
sequence solely one slip line segment of a particular grain gets cracked, i.e. if a segment 
belonging to one grain breaks in one sequence, it can happen that in the succeeding 
sequence a segment belonging to another grain breaks [25,26]. Accordingly, the Tanaka-
Mura equation, Eq. 1, was adjusted by replacing the grain-breaking cycles Ng with 
segment-breaking cycles Ns and slip line length d with slip line segment length ds [33]. The 
average shear stress range on the slip line segment, Δ𝜏𝜏̅s, is an input to the modified Eq. 1, 
too. In the present investigation, each slip line of each grain is divided into four equally 
sized segments. 

The grains with highest stresses, i.e. the weakest grains in which first MSCs are expected 
to nucleate, are identified using the Python language based Abaqus plug-in enhanced with 
the Tanaka-Mura model. The criterion for the identification says that the absolute value of 
average segmental shear stress, Δ𝜏𝜏̅s, has to be higher than two times the CRSS, i.e. 234 
MPa, according to the TM equation – Eq. 1. Namely, the denominator of the equation 
contains part (Δ𝜏𝜏̅ – 2CRSS), which is the indirect explanation for the criterion. It is visible 
from Fig. 5 – Left, which presents the undamaged micro-model, that the shear stresses 
differ from grain to grain as well as inside each individual grain. Those grains, identified 
as vulnerable, are marked with gray and black color in Fig. 5 – Left. Based on that, the first 
micro-crack is nucleated along the grain slip line segment with the shortest lifetime 
estimated using the Tanaka-Mura equation, Eq. 1. This means in particular that there can 
be more segments in the model that fulfilled the stress criterion (Δ𝜏𝜏̅ > 2CRSS), however, 
the sequence of breaking depends on sequence of fulfilling the condition with respect to 
the lowest number of cycles for the formation of cracks. The average shear stress range, 
Δ𝜏𝜏̅s, on the slip line segment is an input to the Eq. 1, from the FEM analysis and accordingly 
has one of the key roles in the simulation of the fatigue crack initiation process.  

Upon nucleation of a first segmental crack in the model, the cycles required to nucleate a 
new crack are again calculated for all grains and all slip line segments in the microstructure 
on the basis of the new stress field that is locally influenced by the newly nucleated crack. 
The new stress field can also change the likelihood of some grains for the crack formation, 
in both directions. In the same manner as in the case of the undamaged microstructure, the 
next segment that is stressed beyond 2CRSS and that needs a minimal number of cycles 
for crack nucleation is identified and a crack is introduced in the RVE. Each MSC is formed 
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in the model in a separate simulation sequence. After the crack condition has been satisfied 
in one simulation sequence, the model gets updated with the latest crack and remeshed for 
the following sequence where the condition is applied again and a new weakest slip line 
segment is traced. The crack generation and remeshing process are done automatically by 
Python based Abaqus plug-in in every single sequence – by entering the Interaction (Seam 
Crack option) and Mesh module (Mesh option) of Abaqus software. The simulation 
sequences run automatically one after the other, too. 

Every MSC or segmental crack that formed in the micro-model on the basis of the Tanaka-
Mura equation possesses its length, da, and its formation lifetime, dN. By dividing those 
two output values, one can easily derive the crack growth rate, da/dN. Such a crack growth 
rate curve plotted as a function of the number of broken slip line segments can be seen in 
Fig. 7 – Left. It was observed in the present study as well as in a previous one [1] that the 
crack growth rate develops in an oscillating manner and that it drops down after a certain 
time. Fig. 7 – Left shows such a behavior in the analysis at 180 MPa loading level. 
Furthermore, a rough stabilization of the crack growth rate was observed after the drop in 
the majority of investigations. A similar descending behavior for the short crack growth 
was reported by Newman et al. [14] and illustrated in Fig. 8 – Right; the dashed lines 
representing the short crack (PSC) growth and lying to the left of the LC curve (full line) 
give quite high growth rates at ΔK values less than the LC threshold, ΔKth. For higher 
loading levels (S2 and S3), as the crack length increases, the data points of the short cracks 
drop down and eventually approach the LC curve, being coincident with it [14]. In the case 
of a lower loading (S1), the short crack may even stop growing. This appearance was used 
to estimate when the crack initiation process finishes; namely, as soon as the crack growth 
rate drops significantly (Fig. 7 – Left) it was assumed the crack exits in the initiation stage 
and transits to the long crack growth regime. Accordingly, the number of cycles for the 
initiation can be estimated by summing the cycles required for all segmental cracks that 
nucleated until the observed rate drop.  

Fig. 8 shows results of the crack initiation analysis for the 256 MPa loading level, i.e. the 
moment when the initiation stage is considered as completed in terms of required cycles. 
The left image in Fig. 8 depicts the micro-model containing nucleated cracks, which can 
be easily perceived with the help of the grain boundaries and the von Mises stress 
distribution field. The image on the right (Fig. 8) presents the accompanying crack growth 
rate and the cycles for the initiation completion that were estimated on the basis of the 
aforementioned assumption that the short crack initiation finishes with the drop of the crack 
growth rate (red cross), according to Newman et al. [14]. In this case the number of cycles 
is equal to 29 116 (see Table 1). However, development of cracks proceeded further, what 
can be realized by the lightly fluctuating curve on the right hand side from the red cross in 
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Fig. 8 – Right. The number of cycles for the complete crack initiation, Nini, equals the sum 
of cycles required for all segmental cracks that nucleated until the observed rate drop.  

 

 

Figure 7. Left – Fatigue crack growth rate from simulations; Right – Fatigue crack 
growth rates from experiments for short and long cracks, respectively [14]. 

 

 

Figure 8. Left – Damaged microstructural model (256 MPa) at the end of the crack 
initiation stage; Right – Accompanying fatigue crack growth rate. 

 

Concerning the damage evolution, cracks tend to nucleate in the model (Fig. 8 – Left) in a 
scattered manner and in those grains that are favorably oriented. The cracks occur in the 
grains where the conditions for micro-crack nucleation according to the Tanaka-Mura 
equation are fulfilled. Already nucleated crack segments tend to elongate along the whole 
grain, causing local stress relaxation as well as concentrations at their tips and by that 
amplifying the likelihood for new crack formation in the vicinity. 

0,00E+00

2,00E-06

4,00E-06

6,00E-06

8,00E-06

1,00E-05

0 10 20 30

Cr
ac

k 
gr

ow
th

 ra
te

 [m
m

/c
yc

le
s]

Number of broken segments

long 
crack

short crack
S3

S2

S1

constant-amplitude loading
R = const.

S1 < S2 < S3

long crack
(ΔK decreasing test)

ΔKth

short crack

Stress intensity factor, ΔK

 
 

 

0E+00

4E-04

8E-04

1E-03

2E-03

2E-03

0 20 40 60 80 100

Cr
ac

k 
gr

ow
th

 ra
te

 [m
m

/c
yc

le
]

Number of broken crack segments

Nini = 29 116 cycles

 EBSCOhost - printed on 2/14/2023 2:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Multiscale Fatigue Modelling of Metals  Materials Research Forum LLC 
Materials Research Foundations 114 (2022) 16-36  https://doi.org/10.21741/9781644901656-2 

 

29 

By means of Abaqus visualization method, it has been noticed that stresses in the 
microstructural model, even though purely elastic, go beyond the theoretical yield limit of 
the material (564 MPa). This happens due to microstructural effects such as grain 
boundaries, grain shapes and orientations and due to formed cracks whose tips act as stress 
concentrators. The gray-colored regions in Fig. 8 – Left visualize stresses that surpass the 
yield limit of the investigated AISI 1141 carbon steel. Even though visualized as “plastic”, 
those regions behave in purely elastic regime, which is defined by the elastic constants for 
cubic crystal, as described earlier. The gray-colored regions are created by user-defined 
interval values for output variable (von Mises stress) in Abaqus/Visualization module. 

The analysis was performed for different loading levels, given in Fig. 10, and furthermore 
with 2 different microstructures for each loading case. Both microstructures were generated 
by the Voronoi technique process and were assigned with the same material properties. 
The results for crack initiation for all such cases are tabulated in Table 1. 

Table 1. Resulting crack initiation cycles for different loading levels. 
Stress level [MPa] 180 200 224 256 
Cycles 259 580 

369 179 
179 197 
220 186 

117 901 
141 613 
77 004 

64 935 
60 262 
73 063 

22 346 
24 890 
29 116 

Average cycles 257 032 112 173 66 087 25 451 
 

It is assumed in all investigated cases, as exemplarily shown in Fig. 8, that the damage in 
the microstructural model after the initiation completion is large enough to reach the 
transition to the long crack growth regime. The initiation number of cycles, Nini, for all 
loading levels were derived by averaging the values from Table 1, what resulted e.g. for 
the level of 256 MPa in 25 451 cycles. These cycles were prescribed as a starting number 
in the long crack growth analysis.  

As described earlier, the long crack growth analysis was performed in the next step using 
the LEFM parameter ΔK, which was calculated using the seam crack and contour integral 
[28]. The crack size where final failure occurs was estimated by integrating the Paris law 
(Eq. 2), which is based on ΔK values, and in combination with the critical value of ΔK or 
fracture toughness, KIc, that is equal to 67 MPa√m [34]. According to Table 2, the modelled 
specimen loaded with 180 MPa failed at the crack length of 7.0 mm, where ΔK equals KIc 
(ΔK = KIc, marked in bold in the table). Table 2 contains all ΔK values calculated for 
different crack lengths under 180 MPa loading stress. The same procedure was performed 
for other loads.  
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Table 2: Calculated ΔK values for different crack lengths. 
Crack length, 
(mm) 

1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

ΔK,  
(MPa√m) 

36.47 39.82 44.97 49.45 54.16 59.66 66.58 76.06 90.72 118.47 

 

Since KIc was reached at a crack length of 7 mm, according to Table 2, the number of cycles 
to propagate the crack up to failure, Nf, can be easily obtained. This is done by drawing a 
vertical line from the point where the a-N curve (colored in blue) which is obtained by 
integrating the Paris law – intersects the magnitude of the crack length a of 7mm (Fig. 9). 
Besides of that, Fig. 9 depicts the lifetime results of both simulations, i.e. of short crack 
initiation and long crack growth, including the overall lifetime. Paris constants used here 
are m = 3.57 and C = 1.00x10-12 [35]. 

 

 

Figure 9. Dependence of the life cycles on the crack length for the 180 MPa loading case. 
 

The initiation number of cycles, Nini, for the 180 MPa loading case were derived by 
averaging the four values from Table 1, what resulted in 220 239 cycles. These cycles were 
prescribed as a starting number for the long crack growth. On the other hand, by applying 
the line intersection method described above, it can be seen that final failure occurs after 
240 080 cycles. Furthermore, the number of cycles required to propagate the long crack, 
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Nprop, was calculated by subtracting the Nini (220 239 cycles) from the complete lifetime, 
Nf, giving Nprop equal to 19 841 cycles. 

The same procedure was executed for other loading levels. Finally, the complete results 
(Nf) for all loading cases are presented in Fig. 10 in the form of an Wöhler (S-N) curve and, 
at the same place, compared with the experimental results. The variance of the crack 
initiation cycles from Table. 1 is introduced by means of error bars (green horizontal lines). 

 

 

Figure 10. Comparison between simulation and experimental lifetime results [27]. 

 

Besides on the slope of the Wöhler curve, the modelling approach allows to determine the 
fatigue limit, too. The fatigue limit can be derived by just calculating the initiation number 
of cycles, according to Mughrabi et al. [10] – Fig. 3. The loading amplitude was decreased 
incrementally, starting from 150 MPa, until the point where there were no cracks appearing 
inside the microstructural model or where extreme values (> 2E+06 cycles) for the 
initiation are reached. Already at the loading of around 150 MPa, a noticeable change of 
the slope was observed. Accordingly, the fatigue limit was chosen to be that one. The 
results are also given in Fig. 10. 

5. Discussions and conclusion 

In the elastic region, the relationship between stress and strain remains linear.  When a load 
cycle is applied and removed, the material returns to its original shape and/or length.  This 
conditions are also present in the High Cycle Fatigue, where series of cycles are applied. 
Nevertheless, the significance of fatigue process lies in the fact that a high number of stress 
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cycles, at a low amplitude - lower than the elastic limit - can cause the part to fail. With 
respect to that, it is sufficient to use linear elastic models for damage analysis (e.g. LEFM 
for long crack growth) but also elastically based constitutive laws, in order to obtain 
satisfactory results. However, the plasticity could be taken into account with respect to 
constitutive definition in order to sharpen the results and get even better understanding of 
the process of fatigue. This especially concerns the very small local plastic regions, which 
in reality form in front of micro-cracks that nucleate in the microstructure. This aspect is 
one of the prime tasks that need to be tackled in the future work related to the Tanaka-Mura 
based modelling. However, not a significant influence of this local micro-crack tip 
plasticity on end result is expected due to negligible crack closure presence at this stage of 
crack growth, as aforementioned in Chapter 1. On the other hand, it is important to mention 
that the Tanaka-Mura model itself can be considered (intrinsically) as a plasticity based 
damage model due to the fact that the dislocations build up has been explicitly considered 
in its formulation. 

The two-scale approach has already been reported in [17], [25] and [26]. However, this is 
the first time that the approach is applied to numerically construct the Wöhler (S-N) curve 
in its whole extend, including the fatigue limit. Especially, the fatigue limit is a new aspect 
brought in the research with respect to the quoted papers. Furthermore, a crack initiation 
criterion based on the crack growth rate drop is a next novelty introduced here. 

To conclude, fatigue crack initiation and subsequent long crack growth in a polycrystalline 
material was successfully simulated using a two-scale fatigue model. The TM equation was 
applied in the modelling of the crack initiation stage while the classical LEFM was used 
for the long crack growth, up to the final failure. By combining those two approaches, it 
was possible to construct the Wöhler (S-N) curve numerically. Good agreement was 
achieved when numerical and experimental Wöhler curves were compared for the case of 
investigated specimen made out of AISI 1141 steel. It is expected that even better 
agreement with the experimental results can be achieved by selecting other values for the 
Tanaka-Mura model parameters, especially the value of CRSS. The aim is to capture this 
in a future modelling analysis where a parametric study on the influence of these 
parameters would be performed. The current analysis leads to the following conclusions:  

• The process of fatigue crack initiation can be described very well by combining the 
physically-based TM model with a random grain structure. 

• According to Fig. 10, there is a slight shift to the right of the numerically obtained 
Wöhler curve. 

• A potential reason for the slight overestimation of the lifetime curve could be the 
CRSS value (117 MPa), which was probably overestimated for the AISI 1141 steel 
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in this study. According to the Tanaka-Mura model, the higher the CRSS, the better 
the durability of a material; or in other words, with higher value of the CRSS, the 
Wöhler curve shifts to the right. 

The 3D shell model based approach that is applied to simulate crack initiation inside the 
microstructure of the AISI 1141 steel - even though computationally very expensive - 
leaves a lot of space for further development and numerous future studies; and finally yet 
importantly delivers satisfactory results in its present state. Nevertheless, a full 3D 
modelling is one of the important aspects that are planned to be tackled by the authors in 
future research. 
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Abstract 

This study deals with the numerical estimation of the fatigue life represented in the form 
of strength-life (S-N, or Wöhler) curves of metals with different crystallographic structures, 
namely body-centered cubic (BCC) and face-centered cubic (FCC). Their life curves are 
determined by analyzing the initiation of a short crack under the influence of microstructure 
and subsequent growth of the long crack, respectively. Micro-models containing 
microstructures of the materials are set up by using the finite element method (FEM) and 
are applied in combination with the Tanaka-Mura (TM) equation in order to estimate the 
number of cycles required for the crack initiation. The long crack growth analysis is 
conducted using the Paris law. The study shows that the crystallographic structure is not 
the predominant factor that determines the shape and position of the fatigue life curve in 
the S-N diagram, but it is rather the material parameter known as the critical resolved shear 
stress (CRSS). Even though it is an FCC material, the investigated austenitic stainless steel 
AISI 304 shows an untypically high fatigue limit (208 MPa), which is higher than the 
fatigue limit of the BCC vanadium-based micro-alloyed forging steel AISI 1141 (152 
MPa). 

Keywords 

Fatigue, Fatigue Life Curves, Numerical Analysis, Microstructure, Crystallographic 
Structure, Critical Resolved Shear Stress, Fatigue Limit 
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1. Introduction 

The approaches for the fatigue design and analysis are used to estimate when, if ever, a 
cyclically loaded specimen or machine component will lose its integrity over a period of 
time due to the fatigue. For the purpose of representing the practical recommendations of 
such approaches, the strength-life (S-N) diagram is often used. The S-N diagram provides 
the bearable stress (or the fatigue strength) S versus life cycles N of a material. The results 
are generated typically from tests by using standard laboratory-controlled specimens 
subjected to a cyclic loading as well as numerical approaches that are becoming more and 
more relevant recently. The approaches or methods of fatigue failure analysis combine 
science and engineering [1]. 

A scientific approach to the question of fatigue strength is to consider the effects of crystal 
structure on fatigue mechanisms [2–5]. Researchers from the field of fatigue are aware of 
the ratio between endurance (or fatigue) limit and ultimate tensile strength, σe/σu. This ratio 
is also known as the fatigue ratio and is typically higher for ferrous materials (including 
steels), which are of the body-centered cubic (BCC) type, than for non-ferrous materials, 
which are face-centered cubic (FCC). Furthermore, ferrous materials generally show a 
sharp "knee" in the S-N diagram at about 106 cycles, after which the strength-life curve 
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increasingly flattens. The strength at this point is known as the fatigue limit. Interestingly, 
most other materials exhibit a gradual flattening between 107–108 cycles (Fig. 1). Although 
these effects have been explained by some researchers in terms of strain ageing and 
dislocation locking [5], there is also evidence that crystal structure plays an important role. 

Ferro et al. [2,5] examined two groups of iron-nickel alloys, which included an alloy with 
96.5% iron and pure nickel (Fig. 1). In these tests, the ferrous or iron-rich group (BCC) 
exhibited consistently higher fatigue strengths than the nickel-rich group (FCC), as well as 
showing a definite fatigue limit at about 106 cycles. Fig. 1 illustrates these effects. All 
materials had the same geometry (More-type specimens), all had the same preparation 
process (annealing) and all have been tested under same cyclic conditions. More details on 
the preparation and fatigue experiments can be found in [2,5]. 

 

Figure 1. Comparison of fatigue life curves of iron-rich, which are of the body-centered 
cubic (BCC) type, with nickel-rich alloys, which are face-centered cubic (FCC). Fatigue 
life curves illustrate the existence of definite fatigue limits in BCC materials, reproduced 

from [2,5], with permission from Taylor & Francis, 1964. 
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These same authors collected data on the fatigue ratio, σe/σu, for a large number of pure 
materials with different crystal structures and concluded that the ratios of BCC materials 
were consistently higher than for FCC and HCP (hexagonal close-packed) materials [3]. 
Table 1, lists fatigue ratios for a number of materials in the various crystal systems. The 
comparisons are most meaningful for pure metals in which the effects of alloying, aging, 
etc., are absent. 

According to Grosskreutz [5], there is certainly evidence that the crystal structure plays a 
contributory role in determining the fatigue limit under constant stress amplitude loading. 
Besides the importance of the crystal structure, the aforementioned differences could be 
explained in terms of dislocation movement through the crystal. A question that can be 
posed is why should this influence exist. Since the reasons have not been proven, some 
general statements can be made. First, coherent slip leading to well-defined bands is not as 
likely in BCC structures simply because there are so many available slip systems, usually 
24 compared to 12 in FCC structures and 3 to 6 in HCP materials, depending on the material 
(titanium is a special case, with 12 possible slip systems). Therefore, slip is well dispersed 
in BCC metals and slip band cracking is not as easily achieved. Furthermore, slip activity 
at a crack tip in BCC metals is not “exhausted” easily by hardening. Therefore, energy is 
consumed that might otherwise be available for crack extension. This capability to keep 
well-dispersed dislocation mobility, also in the case of extended fatigue cycling, is 
seemingly the most significant characteristic of the BCC system with respect to fatigue 
resistance. A second, assumingly related and equally relevant, reason for the superior 
performance of the BCC-based systems under fatigue conditions is the larger stress 
required to move dislocations. This stress is called the critical resolved shear stress (CRSS) 
and may be 100 times as large in BCC as in FCC structures. The yield stress of BCC metals 
is correspondingly higher, too. This fact, together with the work hardening rates, which are 
higher in BCC-based systems, affects the fatigue limit. Namely, BCC metals possess higher 
fatigue limits than FCC metals, placing them for that reason closer to the ultimate strength. 

Accordingly, the effects of crystal structure and the CRSS provide an interesting 
investigation site, which could eventually provide clues on effective prediction of materials 
that are more fatigue resistant. Materials Science and numerical methods are promising in 
combination that possesses capabilities to shed light on this not sufficiently resolved 
research topic. The aim of this paper is to provide relevant information on the CRSS and 
to numerically investigate its importance in the fatigue performance of steels and other 
metals with different crystallographic structures. 
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Table 1. Fatigue ratios for a number of materials in the various crystal systems, data 
from [5]. 

Lattice Material σu (MPa) σe (MPa) σe/σu 

BCC 

W 1372 834 0.61 
Mo 696 500 0.72 
Ta 308 265 0.86 
Nb 294 225 0.77 

Fe (+0.2% Ti) 265 182 0.69 
Mild steel (0.13% C) 421 224 0.53 

4340 steel 1103 482 0.44 

FCC 

Ni 303 108 0.36 
Cu 301 110 0.37 
Al 90 34 0.38 

2024-T3 Al 483 138 0.29 
7075-T6 Al 572 159 0.28 

HCP 

Ti 703 414 0.59 
Co (+0.5% Ti) 521 165 0.32 

Zn 145 26 0.18 
Mg 182 30 0.16 

 

2. Materials and Methods 

2.1 Compression Testing of Small Pillars 

A major interest in present-day Materials Science is to understand material deformation 
and failure mechanisms that are present in a vast number of applications and at different 
scales (predominantly at micro- and nanoscales). A method based on a new type of 
compression testing of pillars of the order of nano- and micrometer size has been developed 
and thereby opened a novel perspective on the investigation and measurement of the CRSS 
value for various materials. The method is becoming increasingly popular due to its cost-
efficient and relatively simple procedure and the ability to analyze deformation 
mechanisms and material properties by focusing attention on a restricted material volume 
isolated from single crystals (Fig. 2). The experimental technique used to isolate these 
small-sized pillars is Focused Ion Beam (FIB) machining. Furthermore, the method of 
pillar compression testing enables the investigation of specific areas on the surface of a 
polycrystalline material, and thereby deeper insight into the underlying dislocation 
mechanisms that eventually contribute to the plastic flow resistance [6]. 

The pioneering research in the field of pillar testing published by Uchic et al. [7] in 2004 
showed the example of cylindrical Ni micropillars, which at that time was an entirely new 
behavioral regime. Namely, the investigated pillar exhibited low hardening rates and 
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discrete strain bursts (see Figure. 3 for the two effects), and a power-law relationship 
between CRSS and pillar diameter, or the so-called size effect (see Fig. 4e) [8]. It has been 
noted that the CRSS values of both FCC and BCC pillars decrease as the pillar size 
increases, conforming with inverse power-law scaling [7,9,10]. A large amount of 
publications [7–36] regarding small-scale plasticity are available today. 

 

 
(a) 

 
  (b)              (c) 

Figure 2. Example of (a) 5 µm and (b) 15 µm pillars cut within large grains, and (c) 
deformed large pillar after compression testing, reproduced from [11], with permission 

from Elsevier, 2013. 

 

Fig. 2 (a, b) show an example of a pillar cut within the austenitic grain (austenitic stainless 
steel 316L), done by Monnet and Pouchon [11]. After compression, the deformation 
markings visible as slip traces on the surface of investigated cylindrical single-crystalline 
pillars indicate single slip mechanism, as Fig. 2c depicts. Fig. 3 gives resolved shear stress 
vs. strain curves (deduced from the force vs. displacement curves by using Schmid factors) 
of the pillars considered in the study. The strain bursts that emerge as flat regions have 
been observed as in the study of Uchic et al. The first strain burst has been understood to 
be a product of the first motion of a dislocation while the succeeding strain bursts represent 
collective movement of dislocations in an avalanche-like manner [11–14]. The small-scale 
yield (shear) stress, i.e. CRSS, for pillars is determined as the stress at which the first strain 
burst occurs [10]. 
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(a) 

 
(b) 

Figure 3. Resolved shear-stress vs. strain curves of (a) 5 µm pillars and (b) 15 µm 
pillars, reproduced from [11], with permission from Elsevier, 2013. 

A significant discrepancy in the value of the CRSS measured for the 5 µm pillars, 160 MPa 
(Fig. 3a), is to be noted with respect to the larger 15 µm pillar, where the CRSS is equal to 
110 MPa (Fig. 3b). This confirms that the size effect is also present in 316L steel. Another 
observation that is in analogy to the general findings from the pillar compression testing 
are the fluctuations of the CRSS that decrease as the pillar size increases (Fig. 3) [11]. 

 

 

Figure 4. Compression tests of single-crystalline micropillars of the equiatomic 
CrMnFeCoNi HEA. (b,c) Selected stress-strain curves of single-crystalline micropillars 
with loading-axis orientations of (b) [1�26], and (c) [1�23], respectively; (d) Secondary-

electron image taken in a scanning electron microscope showing {111} slip traces on the 
side surfaces of a deformed micropillar with [1�23] orientation; (e) Size dependence of 
critical resolved shear stress (CRSS) for {111} <101> slip, reproduced from [15], with 

permission from the author, 2016. 
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Okamoto et al. [15] investigated the behavior of high-enthalpy alloy (HEA) CrMnFeCoNi-
based pillars (see Fig. 4) under similar compression tests. Fig. 4 (b,c) show cases where 
these researchers applied two different loading-axis orientations ([1�26] and [1�23], Fig. 4a) 
in order to obtain stress-strain curves of micropillars. Values of the CRSS are calculated 
by using the small-scale yield stress magnitudes and the Schmid factors that correspond to 
the two investigated orientations (0.488 and 0.467 for [1�26] and [1�23], respectively) and 
are given in Fig. 4e versus micropillar size. It follows from Fig. 4e that the CRSS values 
for the two considered orientations match to each other over the whole range of 
investigated micropillar sizes. This undoubtedly indicates that the CRSS value for slip on 
(111)[101] are independent of crystal orientation. This has been used by the authors [15] 
to combine the data points from the two tests into one master curve, shown in Fig. 4e by 
the red dashed line. Similar to what has been recognized in single crystalline micropillars 
of many other FCC and BCC metals [7,9,12,16–18], the size effect has been also observed 
for the CrMnFeCoNi HEA. 

2.2 Size Effect or A Power-Law Relationship between CRSS and Pillar Diameter 

A size effect, invoked in previous section, is known to affect two features of plastic 
deformation: (i) the CRSS becomes stochastic and increases with decreasing pillar 
dimension; (ii) the hardening rate decreases strongly in pillars of micron scale. However, 
concerning the CRSS, several studies have shown that the size effect vanishes beyond a 
given pillar size Db. In pure nickel, Db was found being close to 20 µm by Uchic et al. [7] 
and 30 µm by Dimiduk et al. [19]. In gold, the size effect seems to decrease strongly in 
pillars of sizes larger than 7 µm [20]. However, in heterogeneous materials, such as Ni-
base superalloys, the effect on the CRSS persists even in large pillars [7,11,21]. However, 
as concluded by various researches [7,8,14,15,17,19,20,22,23], this decrease in CRSS 
continues until the micropillar size reaches a value of 20 to 30 μm, at which the estimated 
CRSS may be further taken, for e.g. finite element method (FEM)-based simulations, as 
the representative value of bulk. In other words, by extrapolating the micropillar data 
obeying the inverse power-law scaling to the critical pillar size, the bulk CRSS values can 
be estimated. Accordingly, the bulk CRSS value for the HEA is estimated to between 33 
and 43 MPa (Fig. 4e), what fits the range of determined values for pure FCC metals (e.g., 
~14 MPa for Al [8]). 

The increased strength with reduced size follows a power law that explains the general 
relationship: 

 EBSCOhost - printed on 2/14/2023 2:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Multiscale Fatigue Modelling of Metals  Materials Research Forum LLC 
Materials Research Foundations 114 (2022) 37-65  https://doi.org/10.21741/9781644901656-3 

 

45 

𝜏𝜏𝑐𝑐 = 𝐾𝐾𝐷𝐷−𝑛𝑛 (1) 

where τc is the CRSS, D is the top-surface diameter of a cylindrical pillar sample, K is the 
power-law coefficient and n is the power-law exponent, i.e. the power-law slope [6]. 

Despite being a matter of major discussions, it is generally agreed that the size effect is a 
consequence of the dislocation nucleation-governed plasticity, which is apparent from the 
higher stresses that arise during mechanical deformation of small-sized nanopillars. The 
explanation of the dislocation nucleation-governed plasticity can be found in its 
dependency on dislocation storage ability of FCC and BCC systems. Namely, dislocations 
moving inside the small-sized pillars are attracted to the free surface, and in order to sustain 
further deformation, new dislocations have to nucleate either inside the pillars or at their 
surface. This phenomenon especially concerns the strained FCC pillars deep in the sub-
micron region where they experience the so-called “hardening by dislocation starvation”. 
In such cases, the pillars remain without dislocations, which vanish from the free surface 
at faster rates than they multiply inside the bulk [8,20,24]; and to nucleate new dislocations, 
higher stresses are required. According to experiments on FCC and BCC pillars [18,25–
27], the more pronounced size effect in FCC materials, with respect to BCC materials, is 
related to the lattice resistance to plastic flow (see Section 1). A dislocation-starved 
condition is unlikely in the BCC system as a longer residence time is attributed to its 
dislocations, together with the ability to multiply new dislocations before the existing ones 
exit the pillar surface [27]. On contrary, the longer residence time of dislocations in BCC 
systems might be an explanation for their higher strength at higher scales, what is also in 
accordance to the statement from Section 1 about higher values of the CRSS in the BCC 
systems and their superiority in fatigue performance with respect to the FCC systems. 

2.3 Strengthening Mechanisms 

Strengthening mechanisms in single-crystals, such as dislocation density (as explained in 
Section 2.2 in relation to the dislocation residence time) and solute atoms, directly 
influence the deformation behavior in pillars, and thus the CRSS magnitude. An important 
strengthening source in industrial materials is the solid solution strengthening, or the alloy 
friction, that results from solute alloying elements, especially from substitutional elements, 
within the matrix. Furthermore, a significant content of added elements usually induces 
formation of precipitates within the matrix of the host material, leading to another 
strengthening mechanism known as precipitation strengthening. In some industrial 
materials, like annealed 316L-type austenitic stainless steel, no precipitation is observed, 
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leaving the solid solution strengthening as the prevailing source to the strengthening 
process [11]. 

The resistance for the dislocation to move through the crystal, or the CRSS (τc), is dictated 
by the present strengthening mechanisms in the crystal [6]. To recall, the CRSS for 
compressive failure may have several components: The Peierls-Nabarro stress τ0, the 
dislocation hardening τdh, the solid solution hardening τssh, and the strengthening induced 
by precipitates τph. Irrespective if all or just particular strengthening components are 
present, the linear superposition may be applied when calculating the CRSS (τc) [11]: 

τc = τ0 + �τdh + τssh + τph� (2) 

In the case of high purity materials, with zero dislocation density and with no added 
alloying elements, the CRSS comprises merely of the Peierls-Nabarro stress τ0, which is 
the minimum requirement for initial dislocation motion [28]. 

Furthermore, the global yield stress Re comprises of the CRSS and further strengthening 
mechanisms that are present in bulk metals, namely the grain boundary hardening τgbh and 
the phase boundary hardening τpbh. Eq. 3 summarize all the mechanisms that contribute to 
the strength of metallic materials. 

Re = τc + τgbh + τpbh = τ0 + τdh + τssh + τph + τgbh + τpbh (3) 

An example of strengthening can be given with iron; The shear strength of large single-
crystal samples, in mm size, can go below 10 MPa [6,29,30] at room temperature in the 
case of high purity iron. Previous studies on iron with different impurity contents [6,31] 
confirm the importance of interstitial solute atoms in the strengthening of crystals. In 
general, increased amounts of impurity elements lead to an increased shear strength in the 
crystal due to more resulting obstacles that hinder the gliding of dislocations. Based on 
these results, it was estimated that the strengthening contribution of C and O is about 40 
MPa; which is significantly higher than the 10 MPa for the high purity single-crystal iron. 
The strengthening from solute atoms and impurities is the same in different-sized pillars; 
and it should not be partially responsible for the size effect that has been discussed in 
Section 2.2 [6]. 

An interesting study was done by Guo et al. [32] on the measurement of the CRSS for 
phases in a multiphase material. In this work, coupled with electron backscatter diffraction 
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(EBSD) technique, micropillar compression was used to evaluate the CRSS of ferrite, 
which is BCC, and FCC austenite in a cast duplex stainless steel (Z3CN20-09M). 
Compression tests were carried out by compressing free-standing micropillars of ~5 μm 
diameter that were fabricated by FIB. The results reveal that BCC ferrite has a much higher 
strength than FCC austenite; while austenite possesses better ductility than ferrite. The 
CRSS values are, quantified to be ~194 MPa and ~318 MPa for austenite and ferrite, 
respectively. Strengthening mechanisms can be regarded as responsible for the higher 
strength of ferrite. Firstly, solid solution strengthening is introduced by the higher alloying 
content of substitutional chromium in ferrite (26.74 wt.%) than in austenite (21.11 wt.%) 
[37]. Although austenite contains a higher nickel content than ferrite, i.e. 9.14 wt.% in 
austenite compared to 5.18 wt.% in ferrite, it was reported that the solid solution 
strengthening caused by chromium is greater than that of nickel [38]. Secondly, as already 
stated in Section 2.2, the low mobility of screw dislocations in BCC crystals usually results 
in higher strengthening as well as a higher strain hardening rate through dislocation-
dislocation interactions or kinetic pileups of the screw dislocation in the area close to the 
dislocation sources, which in turn leads to an enhanced strength of ferrite phase [25,26,32]. 

Quantification of the strengthening components is a challenging task but is also necessary 
for the understanding and eventual modelling of the mechanical behavior of metals. For 
BCC and FCC materials, the slip event is usually activated in unique crystal systems when 
the applied stress is higher than their CRSS, which is associated with the intragranular 
crystal plasticity [32]. Therefore, it is of great importance to be able to determine the CRSS 
of a phase or more different phases in metallic materials to understand the mechanical 
behavior of their bulks and to further establish appropriate material and damage models 
(e.g. Crystal Plasticity and/or Tanaka-Mura (TM) equation/model) for simulation studies. 

2.4 Numerical Estimation of Fatigue Behavior with the Help of CRSS  

Structural integrity monitoring and characterization of existing damage are of high 
importance for the service life assessment. An important aspect of the fatigue process is 
the failure of structures that can occur at load levels accompanied with stresses in the 
critical regions that are below the material yield stress. This raises the importance of being 
able to predict the life of these structures before the catastrophic fracture occurs. However, 
in many cases structures can tolerate cracks up to a certain length, meaning that not every 
crack is detrimental immediately after its formation. In order to estimate the moment when 
the crack reaches unstable growth, it is essential to ensure methods being able to describe 
and quantify the crack growth precisely. 

In order to numerically analyse the total fatigue life of structures, i.e. structural components 
or a specimen, from the moment when the first micro-crack nucleates within a grain up to 
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the moment when the dominant crack evolves into a critical one leading to final failure, a 
proper multiscale simulation approach is required. Fig. 5 shows a scheme of scales that 
need to be considered, starting with the nanoscale, going up to micro-/mesoscales and 
ending up with the macroscale. The up-to-date nanoscale, i.e. atomistic, simulation 
techniques like ab-initio [39–41] or Molecular Dynamics (MD) [42–44] can provide the 
relevant material parameters needed at higher length scales of fatigue modelling and 
simulation scheme. One such parameter is the CRSS on the most active slip plane in a 
grain, that can be derived from MD simulations, e.g. by using the approach of Hummel et 
al. [45,46]. Other methods for the derivation of the CRSS are micro-pillar tests, as 
discussed in previous sections. The CRSS can be used as the input parameter for the 
micromechanics-based model providing information on the number of loading cycles to 
nucleate a micro-crack and subsequent growth of a short crack inside the microstructure of 
the investigated material; or in other words, comprising both the number of cycles to 
initiate the short crack (TM model [47,48]). These initiation cycles are further transferred 
to the macroscale fatigue crack growth model based on power law equations (e.g. Paris 
law), which are finally used to estimate the total fatigue life, up to final fracture. By using 
the presented modelling workflow, the fatigue of metals can be simulated more or less 
independently of the experimental input [45,46,49–52]. 

 

 

Figure 5. Multiscale approach—Coupling of methodologies at the relevant scales, and 
accompanying outputs (O/P) (CRSS, da/dN—crack growth rate, Nini—number of stress 

cycles for crack initiation, Nprop—number of stress cycles for crack propagation), 
reproduced from [34,45,50,53], with permissions from Elsevier, 2016 and John Wiley 

and Sons, 2014, 2017. 
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A dislocation model of a double pileup proposed by Tanaka and Mura in 1981 [47,48] is 
frequently used for fatigue crack initiation analysis (Fig. 5) to determine when a grain, 
subjected to an outer cyclic loading, will develop a slip band and subsequently a crack [54]. 
According to their theory of fatigue crack nucleation, the forward and reverse plastic flows 
within slip bands under cyclic loading are caused by edge dislocations with different signs 
gliding on two adjacent crystallographic planes. It is assumed that their mobility is 
irreversible. As reported by the founders of this model, the monotonic build-up of 
dislocations evolves from the theory of dislocations in a systematic manner. One of the 
parameters of the model, Eq. 4, is the CRSS on a slip plane. As stated in previous sections, 
the CRSS is a threshold value of the shear stress along the glide direction that a dislocation 
needs to surpass in order to start moving. If the resolved shear stress is lower than the 
CRSS, no dislocation is moving on the glide plane and, consequently, no pile takes place 
at the grain boundary. 

As mentioned above, the number of cycles Ns needed for micro-crack nucleation within a 
single grain can be derived by means of the physically-based TM equation [47,48]: 

𝑁𝑁𝑠𝑠 =
8𝐺𝐺𝑊𝑊𝑐𝑐

(1 − 𝜐𝜐)(Δ𝜏𝜏𝑠𝑠 − 2CRSS)2𝜋𝜋𝑑𝑑𝑠𝑠
 (4) 

According to TM, micro-cracks form along slip band segments, depending on segmental 
length ds, the average shear stress range on the segment Δτs, the shear modulus G, the crack 
initiation energy Wc, the Poisson’s ratio ν, and the CRSS [49,52,55,56]. 

A more detailed description of the implementation of the TM equation into FEM-based 
modelling and simulation of the crack initiation process has been reported in publications 
of the authors of this study [45,46,49–52] and by other researchers, too [55–58]. Some 
details about mesh, boundary and loading conditions are also given in Section 3. 

A well-known and often used method for the quantification of the long crack growth is the 
Paris law [59], which gives the fatigue crack growth rate, FCGR or da/dN, in relation to 
the stress intensity factor, ΔK (= Kmax − Kmin), at the crack tip during the stable crack 
growth. Despite being standard, this well-accepted and proven method is applied in many 
cases for the characterization of long crack growth. Long crack modelling is used 
extensively in the fatigue related research and is accordingly well documented and well 
understood. 

The multiscale approach for fatigue simulation, consisting of the CRSS determination, 
crack initiation simulation based on the TM equation and long crack growth simulation 
based on Fracture Mechanics, has been previously reported in References [45,46,51,52]. 
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The methodology forms the basis of the presented research work, which has been 
conducted with the aim to determine numerically the complete S-N curve of considered 
materials. 

3. Results 

In order to approach the question of fatigue strength in a proper way, it is necessary to 
consider the effects of crystal structure on fatigue mechanisms. The purpose of this section 
is to present the derivation of the CRSS parameter for materials of interest by using 
different methods of determination (micro-pillar tests and MD simulations) and its 
implementation in numerical analyses of fatigue initiation life, based on the TM model. 
During the numerical estimation of the fatigue life curves of materials with different 
magnitudes of the CRSS, an attention has been paid to their crystal structures, too. It has 
long been known that ferrous materials (BCC) typically show a sharp "knee" (fatigue limit) 
in the S-N diagram at about 106 cycles, while most other metals (FCC) exhibit a gradual 
flattening between 107–108 cycles. 

Besides the importance of the crystal structure, an assumption that the reason for superior 
fatigue behavior of BCC metals in general is the higher stress needed to move dislocations, 
i.e. the CRSS, through their system. Therefore, it is of high interest to analyze numerically 
the fatigue life curves of materials with different CRSS values, but also by having their 
crystal structures in view. For this purpose, four materials are selected and are tabulated in 
Table 2. Besides of the AISI 1141 steel with BCC crystal structure that has been analyzed 
in [52], three additional materials taken into account are FCC austenitic stainless steel AISI 
304, high purity iron (Fe 99.9%) that is BCC and high purity aluminum (Al 1050) with an 
FCC structure. Their life curves are determined by analyzing the initiation of a short crack 
and subsequent growth of the long crack separately. Micro-models containing 
microstructures of the materials are set up by using the FEM and are applied in combination 
with the Tanaka-Mura equation in order to estimate the number of cycles needed for crack 
initiation. The long crack growth quantification is accomplished by using the Paris law. 

Table 2. CRSS (critical resolved shear stress) values for different materials. 
Material CRSS (MPa) Method Source 

AISI 304 (X5CrNi18-10) 160 MPT Monnet and Pouchon [11] 
AISI 1141 (40Mn2S12) 117 MD Hummel et al. [45,46] 

Fe 99.9% 35 MPT Rogne and Thaulow [6] 
1050A (Al 99.5%) 14 MPT Jennings et al. [17] 
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Values of the CRSS from Table 2 are estimated by using methods presented in Section 2. 
Namely, the CRSS of 160 MPa for AISI 304 steel is taken from the micro-pillar tests 
(MPT) performed by Monnet and Pouchon [11]. The 117 MPa high CRSS is taken from 
the study of Hummel et al. [45,46] performed by using the MD method. This value has 
been applied for AISI 1141 steel in the numerical determination of fatigue life curves. To 
quantify the size-strengthening effect and to determine the CRSS of 99.9% pure iron, the 
experimental data from Reference [6] were plotted and extrapolated, as introduced in 
Reference [15] (Fig. 4e), as a function of pillar diameter in the double logarithmic plot in 
Fig. 6. The CRSS is estimated to be 35–45 MPa for this material by applying the 
aforementioned methodology, explained in Section 2 in detail. Another example is given 
in Fig. 6 where the data for high purity aluminum from [8] were plotted and extrapolated 
as a function of pillar diameter. Here the values of CRSS are estimated to be 11–16 MPa. 
A third example found in literature is for copper [17] with an estimated CRSS of 19–25 
MPa. The data for copper are given for comparison reasons, but have not been considered 
in the numerical study. It is worth noting the observation that the power-law slopes of all 
three investigated metals (BCC iron and FCC aluminum and copper) are in the same range, 
namely −0.618 for pure iron, −0.602 for copper and −0.625 for aluminum. Furthermore, 
the slope of a BCC HEA from the study of Okamoto et al. [15] is given as −0.63.  

 

 

Figure 6. CRSS (critical resolved shear stress) of iron [6], copper [17] and aluminum 
[8], respectively, as a function of pillar diameter D. Plots of data for different materials 

show the power law relationship, i.e. the size effect, between pillar diameter and the 
CRSS, data from [6,8,17]. 
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A notched specimen from the experimental study of Fatemi et al. [60] has been analysed 
in this work by using the presented multiscale approach for fatigue life prediction (Section 
2.4). Fig. 7b contains the three-dimensional (3D) model of the specimen, in a stressed state. 
The model represents a half of the specimen due to applied symmetry boundary conditions. 
The FEM-based software ABAQUS has been used to create and analyse the numerical 
model of the specimen. The model is meshed with 25 752 linear hexahedral elements of 
type C3D8R, from the ABAQUS element library [53]. Concerning the relevant 
dimensions, the considered specimen is 141.73 mm high (y-axis), 63.50 mm wide (x-axis), 
2.54 mm thick (z-axis) with the notch radius of 9.128 mm. All other details about the 
specimen are provided in Reference [60]. The spot at the notch visualized by the help of a 
red square in Fig. 7b becomes critical after putting the specimen in cyclic loading. The 
specimen fractured, starting from that site, in experiments from Fatemi et al. [60] under 
stress-controlled cyclic conditions with the loading ratio R = 0, i.e. under fully tensional 
cyclic loading. The ranges of applied stress amplitudes vary from material to material and 
are given in Fig. 7. Furthermore, this global model serves to provide boundary conditions 
(in this case displacements) to the microstructural submodel (Fig. 8a), which is located at 
the notch ground of the global model and is used for the crack initiation analysis. 

 

Figure 7. Simulation-based fatigue life curves, which illustrate the existence of definite 
fatigue limits in BCC and FCC materials depending on the magnitudes of the CRSS. 
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Numerical models of the 3D global model and of the 3D deformable shell submodel, which 
have been analyzed in this study for different materials are shown in Fig. 8. In this case, 
the resulting stresses are given for the models that have material properties of the 
vanadium-based microalloyed forging steel AISI 1141, and that are loaded with stress 
amplitude of 256 MPa. Other applied stress amplitudes for this and all other investigated 
materials are given in Fig. 7. Fig. 8a shows shear stresses in a 3D deformable shell 
submodel, where loading is accomplished by applying the displacements from the 3D 
global model to the boundary edges (upper, right and bottom) of the submodel. This 
specific submodel contains 249 grains and is meshed with 154 708 linear quadrilateral 
elements of type M3D4R; meaning that each grain contains approximately 621 elements. 
The microstructures of the investigated materials (Table 3), i.e. their grains, are created by 
using a Voronoi tessellation technique. The average sizes of grains are given in Table 3. 
The micro-crack modelling within the microstructural models of these materials has been 
accomplished by using the TM model, i.e. the model-based criterion that says that the 
average shear stress on a slip band segment needs to be two times higher than the CRSS of 
the specific material (Δτs > 2CRSS). The average shear stresses in the microstructural 
model (see Fig. 8a) are an input from the FEM-based analysis. The slip band segment that 
fulfills the criterion and which, next to that, needs the lowest number of cycles to nucleate 
the crack according to the TM model gets cracked. The microstructural model is remeshed 
after introducing a newly nucleated crack and the process is repeated until the moment 
when there are no more segments favorable for cracking. The TM model-based micro-
crack modelling considers just the transgranular cracking. Intergranular cracks along the 
grain boundaries occur in rare situations and only if two already nucleated transgranular 
cracks are located near the same grain boundary. In such cases, the yield stress is the 
cracking criterion and no cycles are prescribed to the event. 

Fig.8b gives the global model of the notched tensile specimen (half). The same model has 
been applied for the long crack modelling and simulation by using the Stress Intensity 
Factors-based Paris Law [59]. The details on this well-established and well-known 
approach can be found in a previous publication of the authors [52] on the example of AISI 
1141. Due to the relative simplicity and general presence of this long crack modelling and 
simulation approach in the fatigue community, further details are not repeated in this 
chapter. 
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Figure 8. (a) Shear stresses in a 3D deformable shell submodel of the AISI 1141 steel; (b) 
3D global model of the notched tensile specimen (half), reproduced from [52], with 

permission from Elsevier, 2018. 

 

Table 3, contains other simulation-relevant material properties; namely the Young’s 
modulus E, the shear modulus G, the Poisson’s ratio υ, the three elastic constants C11, C12 
and C44, the crack initiation energy Wc, and the average grain size d for all materials 
considered in this study. The length of slip band segment ds, which is the input to the TM 
equation, is calculated from the grain size d (ds = d/4) [49,52,55,56]. The constitutive laws 
of the materials are purely linear elastic, defined by using orthotropic elasticity [53], i.e. 
the three elastic constants. 

Table 3. Mechanical properties of the considered metallic materials. 

Material E 
(GPa) 

G 1 
(MPa) 

υ 1 
- 

C11 
(MPa) 

C12 
(MPa) 

C44 
(MPa) 

Wc 1 
(N/mm) 

d 1 
(µm) 

AISI 304 188 79 000 0.26 233 026 80 820 79 000 69 ~30 
AISI 1141 200 78 125 0.28 255 682 99 432 78 125 19 ~60 
Fe 99.9% 205 81 000 0.28 262 073 101 918 81 000 19 ~65 

1050A 72 26 000 0.33 106 678 52 543 26 000 11 ~65 
1 TM model parameters. 

Fig.9 shows an example of damaged microstructural model of Fe 99.9% after the analysis 
has been performed. The model contains visible micro-cracks, which have been introduced 
by applying the TM equation for the crack nucleation to the FEM-based analysis. A 
damaged state in the figure represents the end of the crack initiation stage, under a 75 MPa 
loading stress amplitude. 
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The method for the estimation of the moment when the crack initiation Nini has been 
accomplished is well-documented in previous publications of the authors of this study 
[51,52]. An example has been given in Fig. 10 where the fatigue crack growth rate da/dN 
estimated for the damaged model from Fig. 9 has been plotted in relation to the number of 
nucleated micro-cracks, i.e. number of broken crack segments. The da/dN can be easily 
derived by dividing the length, da, of each individual micro-crack that has been nucleated 
within microstructure and its accompanying nucleation lifetime, dN. 

 

Figure 9. Damaged microstructural model of the Fe 99.9% at the end of the crack 
initiation stage, under 75 MPa loading stress amplitude. 

 

Namely, it has been observed in the present as well as in previous studies [49–52] that the 
rate drops down and stabilizes after certain time. Interestingly, Newman et al. in [61] 
reported a similar declining behaviour during the short crack growth. In such cases, the 
short crack most likely exits the initiation and enters the long crack growth stage. This 
appearance, when crack growth enters the regime characterized by significantly low rates 
(Fig. 10a), is used within the multiscale fatigue simulation to determine cycles related to 
the crack initiation process. The methodology of initiation estimation can be facilitated in 
many cases by plotting the averaged da/dN (Fig. 10b), where every point is averaged with 
two preceding and two following neighbouring points. The number of cycles for the 
initiation is estimated by summing all the cycles spent for nucleation of individual 
segmental cracks that occurred in the microstructural model until the observed rate drop. 
When combined together, the initiation and the succeeding fracture mechanics-based long 
crack growth allow estimation of the complete fatigue life. The combined results are 
typically given as the finite life region (slope region) of the S-N diagram. 
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(a) (b) 

Figure 10. (a) Fatigue crack growth rate of the Fe 99.9% at the end of the crack 
initiation stage; (b) Averaged fatigue crack growth rate of the Fe 99.9%. 

 

With the decrease of the loading stress amplitude, the finite life region comprises more and 
more of just the crack initiation stage and eventually transforms into an infinite life region, 
as reported by Mughrabi [62]. The aforementioned knee in the diagram, which also 
represents the fatigue endurance limit, can be typically recognized as the transition point 
between definite life (slope in the typical S-N curve) and infinite life (below the fatigue 
limit). Thus, the fatigue limit can be determined by solely calculating the initiation number 
of cycles as the transition of a short crack into the long crack does not take place in the 
fatigue limit region [62]. Accordingly, the loading amplitude can be decreased 
incrementally in the microstructurally-based crack initiation modelling approach, until the 
point where just few or no cracks appear inside the microstructural model and where 
extreme cycles are reached for those few nucleated cracks. An example is given for 1050A 
in Fig. 11, where extreme cycles as well as relatively low crack growth rates have been 
reached for only two nucleated cracks in the microstructural model. Such situations of the 
short crack retardation are considered as run-outs in the simulation analysis. Fig. 7, 
comprises results for fatigue life curves of all considered materials in this study. Points in 
Fig. 7 are average values of results from two different microstructures analyzed per 
material. 
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(a) (b) 

Figure 11. (a) Damaged microstructural model of the 1050A; (b) Fatigue crack growth 
rate of the 1050A at the end of the crack initiation stage, under 15 MPa loading stress 

amplitude. 
 

The magnitudes of the fatigue (endurance) limits (Se) of the investigated materials have 
been extracted from the numerically obtained S-N diagram, tabulated, and compared with 
the experimental values in Table 4, and further discussed in Section 4. 

Table 4. Fatigue limits of the investigated materials. 
Material Se (MPa)/Sim. Se (MPa)/Exp. 
AISI 304 208 190–222 [63–65] 
AISI 1141 152 155 [60] 
Fe 99.9% 44 - 

1050A 18 10-14 [66] 
 

4. Discussion and Conclusions 

As reported by several researchers, the CRSS may be up to 100 times as large in BCC 
steels as in metals with FCC crystal structures. However, after a detailed survey, it has been 
observed that there are certain FCC steels (e.g. austenitic stainless steel AISI 304) which 
have an unusually high CRSS. Besides of that, BCC metals typically show the “knee” and, 
on the other hand, certain FCC metals with a low CRSS show no sharp “knee” in the S-N 
diagram. Fatigue life curves in Fig. 7 illustrate the existence of definite fatigue limits in 
both the BCC (AISI 1141) and the FCC steels (AISI 304). According to the numerical 
observations, the magnitude of the CRSS is directly responsible for the occurrence or 
absence of the definite fatigue limit. From the microstructurally- and TM equation-based 
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modelling point of view and from the resulting fatigue life curves in Fig. 7, the following 
explanations for this recognition are listed: 

• The transition from infinite life (below the fatigue limit) to definite life (slope in the 
typical S-N curve) happens when a sufficient number of micro-cracks in the material 
microstructure (typically >10) have reached a condition for cracking. The cracking 
condition according to the TM equation says that the absolute magnitude of average 
shear stress on a grain slip band has to be higher than two times the CRSS. 

• The higher the CRSS magnitude of the metal of interest, the higher the loading stress 
amplitude needed to accomplish the transition from the infinite to definite life, as 
shown in Fig. 7. In other words, the higher the CRSS magnitude, the higher the 
accompanying fatigue endurance limit. Despite having different crystal structures, 
FCC austenitic stainless steel AISI 304 and BBC vanadium-based micro-alloyed 
forging steel AISI 1141 have relatively high CRSS values (160 MPa and 117 MPa, 
respectively) and as a result fatigue limits at considerably high positions in the S-N 
diagram, Fig. 7. 

• In the case of very high CRSS values, the stresses within the microstructural model 
are at a relatively high level at the moment of transition from infinite life to definite 
life, resulting in a high number of grains that are favorable for cracking. The higher 
the number of cracking favorable grains after the transition from infinite life to 
definite life, the steeper the slope of the finite life region in the S-N diagram. 

• The study showed that the crystallographic structure is not the predominant factor 
that determines the shape and position of a fatigue life curve in the S-N diagram, but 
it is rather the CRSS magnitude. Namely, the higher the CRSS of a certain material, 
the higher the curve position is in the diagram, and the more pronounced the 
transition between the definite and the indefinite life region. Despite being an FCC 
material, the austenitic stainless steel AISI 304 showed an untypically high fatigue 
limit (208 MPa), which is higher than the fatigue limit of the BCC vanadium-based 
micro-alloyed forging steel AISI 1141 (152 MPa). The remaining two investigated 
FCC metals, the pure iron (Fe 99.9%) and the high purity aluminum (Al 99.5%) 
possess, according to this numerical study, relatively low fatigue limits, i.e. 44 and 
19 MPa, respectively. 

• The numerical study provided good agreement of the fatigue limits of the 
investigated materials with the experimentally determined fatigue limits. This 
observation refers firstly to AISI 1141 steel whose numerical fatigue limit of 152 
MPa [52] is almost perfectly matching the experimental one, which is 155 MPa [60]. 
The value determined numerically for AISI 304 is fitting the span of experimental 
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values that can be found in literature, too [63–65]. A relatively good agreement, 
however with a slight overestimation, has been achieved for aluminum 1050A (18 
MPa vs. 10-14 MPa [66]). Reliable experimental data for Fe 99.9% could not be 
found. These results are summarized in Table 4 and depicted in Fig. 7. 

To conclude, the analysis yields a fundamental understanding of the difference between 
the shapes of the fatigue life curves for steels and other metals with different crystal 
structures and the importance of the material parameter CRSS. The effects of crystal 
structure and the CRSS provide a facet of fatigue theory that is numerically predictive and 
which allows us to select those types of materials, which are more likely to be fatigue 
resistant. 
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Abstract 

The chapter introduces a valuable new description of fatigue strength in relation to material 
properties and thus a new perspective on the overall understanding of the fatigue process. 
Namely, a relation between the endurance limits and the accompanying values of the 
critical resolved shear stress (CRSS) for various metallic materials has been discovered by 
means of a multiscale approach for fatigue simulation. Based on the uniqueness of the 
relation, there is a strong indication that it is feasible to relate the endurance limit to the 
CRSS and not to the ultimate strength, as often done in the past. 
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1. Introduction 

A scientific approach to the question of fatigue strength would be to consider the effects of 
crystal structure on fatigue mechanisms [1–4]. Researchers from the field of fatigue are 
aware of the ratio between endurance limit and ultimate tensile strength, Se/Rm (see Fig. 
1b). This ratio is also known as the fatigue ratio and is typically higher for ferrous materials 
(including steels—see red line in Fig. 1b), which are of the body-centered cubic (BCC) 
type, than for non-ferrous materials (see, e.g., blue line in Fig. 1b), which possess a face-
centered cubic (FCC) crystallographic structure. Furthermore, ferrous materials generally 
show a pronounced “knee” in the strength-life (S-N, or Wöhler) diagram at about 106 
cycles, after which the fatigue life curve flattens (Fig. 2). The fatigue strength at this point 
is known as the endurance limit (Se). Interestingly, non-ferrous materials exhibit a gradual 
flattening between 107–108 cycles. Although some researchers have explained these effects 
in terms of strain ageing and dislocation locking [4], there is also evidence that the involved 
crystal structure plays an important role [1,2]. 

However, the study from [5] showed that the crystallographic structure is not the 
predominant factor that determines the shape and position of the fatigue life curves in the 
S-N diagram, but it is rather the parameter critical resolved shear stress (CRSS). Mlikota 
and Schmauder [5] reported the existence of a pronounced transition from finite life (slope 
in the typical S-N curve; see Fig. 2) to the infinite life region (below the endurance limit) 
as well as high Se values even in some FCC metals with relatively high CRSS magnitudes. 
Namely, the higher the CRSS of a certain material, the more pronounced is the transition 
between the finite and the infinite life region, the higher is the curve position in the diagram 
and accordingly the higher is its Se magnitude [5]. The present study is the follow-up study 
of the one published in [5] and brings new insights to the simulation-based understanding 
of CRSS for the fatigue performance of metallic materials. 
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(a) (b) 

Figure 1. (a) Relation between endurance limit (Se) values (from [5] and updated with 
the new results for the Fe 99.9% and for the steel AISI 1141, marked with diamonds and 
with *) of the investigated metals and their critical resolved shear stress (CRSS) values 

[6–9]. (b) Relation between Se and ultimate tensile strength (Rm) values for various 
metals [4,10–14], including new simulation-based Se values (diamonds) and those from 
[5] (circles). Simulation-based Se values for the standard loading case characterized by 

loading ratio R = −1 and stress concentration factor Kt = 1 are obtained from the values 
characteristic for R = 0 and Kt ≅ 2.45 by using an approach taking into account mean 

stress and/or loading ratio [10] in combination with the notch sensitivity approach [15] 
(see Appendix A for more details). 
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Figure 2. Comparison between simulated and experimental Se values for AISI 1141 steel 
[13]. For details on the numerical determination of Se values, see [5,16,17]. 

2. Methods and Materials 

2.1 Methods and Reference to Previous Work  

A study published in [5] by Mlikota and Schmauder dealt with the numerical estimation of 
the fatigue life represented in the form of S-N curves of metals with BCC and FCC 
crystallographic structures and with different magnitudes of CRSS. An example of a 
simulation-based S-N curve is shown in Fig. 2 for BCC steel AISI 1141. Such fatigue life 
curves are obtained by determining the number of cycles for initiation of a short crack 
under the influence of microstructure (Nini; Fig. 3b) and subsequent number of cycles for 
the growth of a long crack (Nprop; Fig. 3c), respectively. Final failure of a specimen or a 
component occurs at the number of cycles Nf = Nini + Nprop. Micro-models containing 
microstructures of the materials are set up by using the finite element method (FEM) and 
are analyzed in combination with the Tanaka-Mura (TM) equation [18,19] in order to 
estimate the number of cycles required for crack initiation (see Fig. 3b and especially [5] 
for more details). Long crack growth analysis is typically based on classical fracture 
mechanics. 

A dislocation model forms the physical basis of the TM equation (Equation (1)), which is 
frequently used to determine when a grain, subjected to an outer cyclic loading, will 
develop a slip band and subsequently a micro-crack. The number of cycles, Ng, needed for 
micro-crack nucleation within a single grain can be derived as follows [18,19]: 
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𝑁𝑁𝑠𝑠 =
8𝐺𝐺𝑊𝑊𝑐𝑐

(1 − 𝜐𝜐)(Δ𝜏𝜏𝑠𝑠 − 2CRSS)2𝜋𝜋𝑑𝑑𝑠𝑠
 (1) 

One of the parameters of the TM model (Eq. 1) is the CRSS, which is a threshold value of 
the shear stress along the glide direction that a dislocation needs to surpass in order to start 
moving. According to the TM model, micro-cracks form along slip bands (Fig. 3b), 
depending on grain size (i.e., slip band length) d, the average shear stress range Δτ on the 
slip band, the shear modulus G, the crack initiation energy Wc, Poisson’s ratio ν, and the 
CRSS [16,17,20–22]. A more extended and detailed description of the implementation of 
the TM equation into FEM-based modelling and simulation of the crack initiation process 
has been reported in publications of the authors of this study in [5,16,17,20,23–25] and by 
other researchers, too, in [21,22,26,27]. 

 

(a) (b) (c) 

Figure 3. Multiscale approach—coupling of methodologies at the relevant scales and 
accompanying outputs (O/P). (a) Determination of the parameter CRSS either from 

molecular dynamics (MD) simulations or from micro-pillar tests (MPT). (b) 
Determination of crack growth rate (da/dN) and number of stress cycles for crack 

initiation (Nini) from crack initiation analysis. (c) Determination of number of stress 
cycles for crack propagation (Nprop) [5,8,23,30]. 
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The multiscale approach for fatigue simulation, consisting of CRSS determination either 
from micro-pillar tests (MPT) or from molecular dynamics (MD) simulations (both in Fig. 
3a), crack initiation simulations based on the TM equation (Fig. 3b) and long crack growth 
simulations based on fracture mechanics principles (Fig. 3c), has been previously reported 
in [8,16,24,25,28,29]. The methodology forms the basis of the past [5] and present research 
work, which has been conducted with the aim to further elucidate the relevance of the 
parameter CRSS for fatigue strength in general. 

2.2 Materials 

Table 1, contains metallic materials considered in the study from [5] and their mechanical 
properties, namely, the Young’s modulus E, the shear modulus G, the Poisson’s ratio υ, the 
yield strength Rp0.2, the ultimate strength Rm, their average grain size d, and eventually the 
CRSS values. The details on boundary and loading conditions as well as on specimen 
geometry that were applied in the study can be found in [5], too. It is suitable to indicate 
here that all the materials’ constitutive laws have been defined as purely elastic, i.e., just 
by using the elastic material constants. In another study of Mlikota and Schmauder [17] on 
aluminum alloy AlSi8Cu3, it has been shown that plasticity does influence the fatigue 
performance of this alloy, however, not significantly. 

Table 1. Mechanical properties of the considered metals. 

Material E  
(GPa) 

G 
(GPa) υ Rp0.2 

(MPa) Rm (MPa) d 
(µm) 

CRSS 
(MPA) 

AISI 304 188 79.0 0.26 322 [31] 574 [31] 30 160 [9] 
AISI 1141 200 78.125 0.28 564 [13] 875 [13] 60 117 [8] 
Fe 99.9% 205 81.0 0.28 260 [32] 414 [34] 65 35 [7] 
AA 1050 72 26.0 0.33 95 [33] 110 [33] 65 14 [6] 

 

2.3 New Insights into Previous Work 

As reported by several researchers, the CRSS may be up to 100 times larger in BCC steels 
than in metals with FCC crystal structures [4]. However, after a detailed survey, it was 
observed that certain FCC steels also exist which have an unusually high CRSS (e.g., 
austenitic stainless steel AISI 304 with a 160 MPa high CRSS, see Table 1). As already 
mentioned, BCC metals typically show a pronounced transition from finite life to the 
endurance limit region, and on the other hand, certain FCC metals with a low CRSS show 
relatively smoother transition between the two regions in the S-N diagram. In addition to 
that, the results from [5] illustrate (Table 2) the existence of definite endurance limits in 
the considered BCC (AISI 1141 and Fe 99.9%) as well as FCC steels (AISI 304 and AA 
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1050). Despite being an FCC material, the austenitic stainless steel AISI 304 shows an 
untypically high Se value of 103 MPa (expressed in terms of nominal stress amplitude Sa 
for loading ratio R = 0 and stress concentration factor Kt ≅ 2.45), which is higher than the 
Se value estimated for the BCC steel AISI 1141 (76 MPa for CRSS = 117 MPa). The 
remaining two investigated metals, the BCC-based pure iron (Fe 99.9%) and the FCC-
based high purity aluminum alloy (AA) 1050 possess, according to the numerical study 
from [5], relatively low endurance limits, i.e., 22 and 8 MPa, respectively. 

According to the observations from [5], the magnitude of the CRSS seems to be directly 
responsible for the magnitude of the simulated Se values of all investigated materials. The 
simulation-based magnitudes of Se from [5] have been tabulated in Table 2 (see fourth 
column). Furthermore, these values from the fourth column of Table 2 have been converted 
to the case of an unnotched sample (Kt = 1) with purely alternating stress (R = −1) in order 
to compare them with the experimental Se values; see fifth and sixth columns, respectively. 
It is opportune to indicate that the authors realized in the time after publication of the first 
paper [5] on the CRSS relevance for the fatigue performance of metallic materials and 
before performing the present study that the values of Se in [5] represent maximum nominal 
stress (Smax) and not nominal stress amplitude (Sa) as given there. Since the R ratio selected 
in the present simulations was 0 (for axial loading and Kt ≅ 2.45), the revised Se values in 
Table 2 (fourth column) are two times lower than those published in [5] (Sa = Smax/2 for R 
= 0).  

Table 2. Simulation-based endurance limits (Se) from [5] of the investigated materials in 
comparison with experimental values (Se values are expressed in terms of nominal stress 

amplitude Sa). For details on how to deduct Se values for R = -1 and Kt = 1 (axial 
loading), see Appendix A. 

Material Lattice CRSS (MPa) Se (MPa)/Sim. 
R = 0, Kt ≅ 2.45 

Se (MPa)/Sim. 
R = −1, Kt = 1 

Se (MPa)/Exp. 
R = −1, Kt = 1 

AISI 304 FCC 160 [9] 103 [5] 303.7 325 [14] 
AISI 1141 BCC 117 [8] 76 [5] 190.7 450 [13] 
Fe 99.9% BCC 35 [7] 22 [5] 49.7 222 [12] 
AA 1050 FCC 14 [6] 8 [5] 19.5 29 [11] 

 

As visible in Table 2, the numerical study provided relatively good agreement between the 
calculated Se values and the experimentally determined Se values of some investigated 
materials (AISI 304 and AA 1050). This observation refers firstly to AISI 304 steel whose 
numerically determined Se value of 303.7 MPa well fits the experimental value of 325 MPa 
that can be found in literature [14]. A relatively good agreement, however with a slight 
underestimation, was achieved for the aluminum alloy AA 1050 (19.5 versus 29 MPa [11]). 
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An exception is the value determined for the steel AISI 1141 of 190.7 MPa, which is 
considerably lower than the experimental counterpart (450 MPa [13]). It is expected that a 
better agreement with the experimental results can be achieved by selecting another—
considerably higher—CRSS magnitude. The CRSS of 117 MPa calculated by means of 
MD for BCC α-Fe by Hummel [8] was used in the initial study [5] due to the lack of a more 
appropriate value for the steel AISI 1141. The reason to expect a higher CRSS magnitude—
and by that a higher Se value—for the considered steel, AISI 1141, are its improved 
mechanical properties over iron—achieved by microstructural modifications, i.e., by the 
addition of small amounts of the micro-alloying elements such as vanadium (V, 0.053 wt%) 
[13,35]. It is known that such alloying elements contribute to the strength in general, but 
also to the CRSS magnitude. Another reason to expect a higher CRSS is the relatively high 
Rp0.2 of around 560 MPa for this steel. Another divergence from the values that can be 
found in literature is seen for Fe 99.9%; the numerically obtained Se value of 49.7 MPa is 
considerably lower than the experimental value of 222 MPa, as reported in [12]. Here again 
the CRSS magnitude could be considered as a reason for the discrepancy. Namely, the 
CRSS value of 35 MPa extracted from MPT of Rogne and Thaulow [7] and used in [5] is 
considerably lower than the MD-based 117 MPa [8] for BCC α-Fe. 

Interestingly, when these four simulation-based Se values of the investigated metals (Table 
2) are plotted versus their Rm values (Table 1), again a similar observation from Figure 1b 
follows; namely, the Se-Rm points of AA 1050 (green circle denoted with number 1) and 
AISI 304 (golden circle denoted with number 4)—agreeing well with the Se experiments 
in Table 2—fall into the range of points characteristic for their groups of materials, i.e., to 
light metals and steels, respectively. On the other hand, the Se-Rm points of the two other 
metals—Fe 99.9% (purple circle denoted with number 2 in Fig. 1b) and AISI 1141 (blue 
circle denoted with number 3 in Fig. 1b)—deviate considerably from the data representing 
steels and BCC metals, the same as they deviate from the experimental Se values from 
Table 2 (see red crosses in Fig.1b). This observation suggests that the Se values and by that 
the CRSS values, too, of the last two metals might be too low. It is necessary to point out 
once again that simulation-based Se values for the standard loading case characterized by 
loading ratio R = −1 and stress concentration factor Kt = 1 (Fig.1b) are obtained from the 
Se values characteristic for R = 0 and Kt ≅ 2.45 (direct results from the simulations) by 
using an approach taking into account mean stress and/or loading ratio [10] in combination 
with the notch sensitivity approach [15] (see Figure 1a as well as Appendix A for more 
details).  
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3. Results 

3.1 Relation between the Critical Resolved Shear Stress and the Fatigue 
Endurance Limit  

When the numerically determined Se values of the four investigated metals from the initial 
study published in [5] are plotted with respect to their initially prescribed CRSS values (see 
both values in Table 2), an interesting relation can be observed, as shown in Fig. 1a. 
Namely, the Se and CRSS values relate to each other in a linear manner, despite considering 
incorrect CRSS values in some cases (Fe 99.9% and AISI 1141). This newly discovered 
relation can be expressed by a power-law: 

Se = m0CRSSs (2) 

where m0 is the intercept with the y-axis in Fig. 1a and s the slope of the dotted lines. 
According to the power-law approximation, m0 equals 0.5142 and s is 1.0477 for loading 
ratio R = 0 and stress concentration factor Kt ≅ 2.45. Interestingly, the slope factor s is 
approximately equal to 1 in this case. The Se-CRSS relation can also be expressed by using 
a linear function, as Se = 0.65CRSS for these specific R (= 0) and Kt (≅ 2.45) values. 
However, the power-law approximation is preferably used due to higher accuracy, while 
the simple linear relationship is practically simpler and easier to use. It is noteworthy that 
the parameters m0 and s of Eq. 2 are dependent on R ratio, Kt, etc. For the standard loading 
case (R = −1 and Kt = 1), m0 = 1.0331 and s = 1.1123, while the slope of the linear function 
is equal to 1.8625 (Fig. 1a). 

3.2 Application of the Newly Discovered Relation  

Even though based purely on the simulation results and just partly validated, the Se-CRSS 
relation (Eq. 2) can be used as a valuable tool in the next step to shed some light on the two 
cases in Table 2 (Fe 99.9% and AISI 1141) where the discrepancies with respect to the 
experimental results have been observed. A rather straightforward case to clarify is the one 
of Fe 99.9%, where by using the CRSS = 117 MPa [8] for BCC α-Fe directly in the Se-
CRSS relation (for R = 0 and Kt ≅ 2.45), an endurance limit of 75.5 MPa is obtained. To 
prove the approach also from the numerical side, an additional simulation with the CRSS 
value of 117 MPa was performed, resulting in an Se value of 74 MPa, which matches well 
the experimental Se = 222 MPa [12] when translated to the case characterized by R = −1 
and Kt = 1 .This could be a confirmation that the initially used [5] and MPT-based CRSS 
of just 35 MPa [7] is too low. The other case of AISI 1141 can be approached from another 
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side; namely, by knowing the target Se = 155 MPa from the experimental study of Fatemi 
et al. [13] (R = 0 and Kt ≅ 2.45), an estimation of the necessary CRSS to reach this Se value 
using the multiscale fatigue simulation approach (Fig. 3) can be done by means of the Se-
CRSS relation, CRSS= 232.5 MPa. To validate this estimation, is was necessary to perform 
additional simulations to determine the endurance limit by taking all the input parameters 
the same as in the study on AISI 1141 from [5] and just by replacing the previously used 
CRSS of 117 MPa [8] with the new Se-CRSS relation-based value of 232.5 MPa. The 
failure cycles resulting from the Se simulations are presented in Fig. 2 versus the applied 
amplitude levels (Sa = 145–160 MPa, R = 0) and are, at the same place, compared with the 
experimental result. These results confirm the estimation of the CRSS magnitude of 232.5 
MPa for the steel AISI 1141 by using the Se-CRSS relation as being correct; the numerically 
obtained Se = 152 MPa is slightly lower than the experimentally derived Se = 155 MPa [13] 
(= 450 MPa for R = −1 and Kt = 1; Table 3), which seems to be an acceptable deviation of 
2% only. 

Moreover, data from Table 2 can now be revised with the new results for the steel AISI 
1141 and for Fe 99.9% in Table 3. Aside from that, these new simulation-based results are 
added to Figure. 1 and at the same place visually compared with the experimental values 
for these metals (see red crosses in Fig. 1b). 

Table 3. Simulation-based Se values of the investigated materials (revised with the new 
results for the steel AISI 1141 and for the Fe 99.9%, marked with * in comparison with 

experimental values. For details on how to deduct Se values for R = -1 and Kt = 1, see 
Appendix A). 

Material Rm (MPa) CRSS (MPa) Se (MPa)/Sim. 
R = 0, Kt ≅ 2.45 

Se (MPa)/Sim. 
R = −1, Kt = 1 

Se (MPa)/Exp. 
R = −1, Kt = 1 

AISI 304 574 [31] 160 [9] 103 [5] 303.7 325 [14] 
AISI 1141* 875 [13] 232.5 (Eqn.2)  152 438.5 450 [13] 
AISI 1141 875 [13] 117 [8] 76 [5] 190.7 450 [13] 
Fe 99.9%* 414 [34] 117 [8] 74 200 222 [12] 
Fe 99.9% 414 [34] 35 [7] 22 [5] 49.7 222 [12] 
AA 1050 110 [33] 14 [6] 8 [5] 19.5 29 [11] 

 

It is important to note that no matter whether there is a correct (i.e., validated by a correct 
resulting Se value of an investigated existing material) or incorrect CRSS value, there is 
always a linear relation between the used CRSS value and the numerically obtained Se 
value, as can be seen in Fig. 1a. 
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In addition, and in contrast to the initial data from Fig. 1b (see circles denoted with numbers 
2 and 3), the Se-Rm points of the two revised metals—Fe 99.9% (purple diamond denoted 
with number 2) and AISI 1141 (blue diamond denoted with number 3)—agree well with 
the experimental values for these metals (see red crosses) as well as falling into the 
acceptable range of points characteristic for steels and BCC metals. This suggests that the 
revised Se values of these two metals should be correct—as well as the accompanying 
CRSS values—similar to those of AA 1050 (green circle denoted with number 1 in Fig.1b) 
and AISI 304 (golden circle denoted with number 4 in Fig. 1b), which were already 
considered correct in the initial study from [5]. 

4. Discussions 

It follows from these observations that the Se-CRSS relation (Eq. 2) introduces a valuable 
new description of fatigue strength relations in material properties and a new perspective 
on the overall understanding of the fatigue process, especially in comparison to 
contemporary relations where Se is being related to, e.g., Rm in a non-unique manner (Fig. 
1b). Accordingly, it seems to be more logical to relate Se to CRSS and not to Rm due to the 
scattering of Rm that results from different strain hardening levels (i.e., cold-working) of 
the material [36], in addition to other strengthening mechanisms like grain boundary 
strengthening and phase boundary strengthening, which on the other hand have no 
influence on the CRSS. (see [5] for more details on the known and applicable linear super 
positioning principle of the strengthening mechanisms that contribute to the CRSS 
magnitude).  

5. Conclusions 

To conclude, the presented analysis yields a groundbreaking view on the importance of the 
parameter critical resolved shear stress (CRSS) for estimating the fatigue strength of 
metallic materials. The newly discovered linear relation between the endurance limit (Se) 
and CRSS provides a facet of fatigue theory which is numerically predictive and which 
allows the selection of fatigue resistant materials. Even though additional simulations as 
well as experimental studies are planned to uphold this finding, the Se-CRSS relation can 
already now be used to estimate endurance limits of metallic materials solely from their 
CRSS values—which can be on the other hand estimated from micro-pillar tests, from 
molecular dynamics simulations or by using the linear super positioning principle of the 
strengthening mechanisms that contribute to its magnitude. 
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Appendix A 

The endurance limit (Se) value for the stress concentration factor (Kt) equal to 1 (i.e., notch 
radius r = 0 mm—unnotched sample) can be deduced from any Se value determined at Kt 
> 1 (i.e., r > 0) by multiplying it by a factor Kfat, which is commonly called fatigue stress 
concentration factor, i.e., [15,37]: 

Se,Kt1 = SeKfat (A1) 

The factor Kfat is determined from the factor Kt by using the expression 

Kfat = 1 + q(Kt − 1) (A2) 

where q is the notch sensitivity and can be obtained for different types of metals from a 
diagram q versus r, as shown in Figure A1 [15]. 

 

Figure A1. Notch sensitivity charts for steels with different ultimate strengths (Rm) and 
aluminum alloys AA 2024 subjected to reversed bending or reversed axial loads. For 

larger notch radii, the use of the values of q corresponding to r = 4 mm is recommended 
[15]. 
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Furthermore, any Se value determined for a non-zero mean stress (Sm ≠ 0, i.e., R ≠ −1) can 
be translated to the zero Sm case (Sm = 0, R = −1; often referred to as the standard loading 
case) as follows [10]: 

Se,R-1 = Se √[1 − (Sm/Rm)] (A3) 

By combining these two approaches (Equations (A1) and (A3)), it can explained how the 
Se values characterizing purely alternating stress (R = −1) and for an unnotched sample (Kt 
= 1) from Tables 2 and 3 were determined. Table A1 shows the translation of the 
simulation-based Se values of the investigated metals from loading and geometry 
conditions defined by R = 0 and Kt ≅ 2.45 values to the R = −1 and Kt = 1 case. 

Table A1. Simulation-based Se values of the investigated materials (revised with the new 
results for the steel AISI 1141 and for the Fe 99.9%, marked with *, see Section 3 for 

more details) translated to the case of an unnotched sample (Kt = 1) and of purely 
alternating stress (R = −1). 

Material 
Se (MPa) 

R = 0 
Kt ≅ 2.45 

Kt q Kfat 
Se (MPa) 

R = 0 
Kt = 1 

Sm (MPa) Rm (MPa) 

Se (MPa) 
R = −1 
Kt = 1 
(Axial) 

AISI 304 103 [5] 2.53 0.83 2.27 233.8 233.8 574 [31] 303.7 
AISI 1141 * 152 2.39 0.90 2.25 342.2 342.2 875 [13] 438.5 
AISI 1141 76 [5] 2.39 0.90 2.25 171.1 171.1 875 [13] 190.7 
Fe 99.9% * 74 2.41 0.80 2.13 157.5 157.5 414 [34] 200.0 
Fe 99.9% 22 [5] 2.41 0.80 2.13 46.8 46.8 414 [34] 49.7 
AA 1050 8 [5] 2.46 0.84 2.23 17.8 17.8 110 [33] 19.5 

 

A1 Stress concentration factors (Kt) are determined from the numerical model of the 
notched sheet sample from [13] and vary between each material slightly due to different 
material properties defining their stress-strain responses. Kt = 2.45 is the average value. 

The translation of the experimental Se values (from Tables 2 and 3) of the investigated 
metals from loading and geometry conditions defined by different R and Kt values to the R 
= −1 and Kt = 1 case is shown in Table A2. 
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Table A2. Experimental Se values of the investigated materials translated to the case 
defined by Kt = 1 and R = −1. 

Material Se 
(MPa) R L Kt q Kfat 

Se 
(MPa) 
R = 0 
Kt = 1 

Sm 
(MPa) 

Rm 
(MPa) 

Se 
(MPa) 
R = −1 
Kt = 1 
(Axial) 

AISI 304 217 [14] −1 a 1.6 0.83 1.50 -> - 574 [31] 325 
AISI 
1141 155 [13] 0 a 2.39 0.90 2.25 348.9 348.9 875 [13] 450 

Fe 99.9% 150 [12] −1 a 1.6 0.80 1.48 -> - 414 [34] 222 

AA 1050 34.5 
[11] −1 b 1 - - -> - 110 [33] 29 

 

A2 Stress concentration factor of the AISI 1141 steel (Kt = 2.39) is determined from the 
numerical model of the notched sheet sample from [13] and varies slightly from the value 
reported in the same source (Kt = 2.75). The Kt values for the notched sheet specimens of 
AISI 304 steel (see [14]) and of Fe 99.9% (see [12]) are determined as recommended in 
[15]—see page 1034, Figure A-15-3. L—loading type; a—axial, b—bending. 

The Se value for high purity aluminum (AA 1050/1100) reported in [11] (34.5 MPa, Table 
A2) is obtained for purely alternating stress (R = −1) conditions and by using an R.R. 
Moore machine and unnotched rotating-beam specimen. In such a case, a Marin equation 
[15,38] can be used to adjust the Se value to the axial loading case by applying load 
modification factor kc: 

Se,axial = kcSe,bending (A4) 

where kc is equal to 0.85 for axial loading [15]. 
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