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Preface

The physical phenomena and processes that take place in nature gen-
erally have complicated nonlinear features. This leads to nonlinear
mathematical models for the real processes. There is much interest in
the practical issues involved, as well as in the development of meth-
ods to investigate the associated nonlinear mathematical problems
including nonlinear wave propagation. An early example of powerful
mathematical methods was the development of the inverse scattering
method for the Korteweg-de Vries (KdV) giving rise to the persistent
interest in soliton theory as applied to many branches of science.

The modern physicist should be aware of the key aspects of non-
linear wave theory developed over the past few decades. This mono-
graph focuses on the interconnections between a variety of different
approaches and methods. The application of the theory of nonlinear
evolution equations to study a new equation is always an important
and sometimes rather nontrivial step. Based on our experience of the
study of the Vakhnenko equation (VE), we acquaint the reader with a
series of methods and approaches t at can be applied to a wide class of
nonlinear equations. We outline a way in which an uninitiated reader
could investigate a new nonlinear equation.

Loop-like solitons are a class of interesting wave phenomena, which
have been involved in some nonlinear systems. One remarkable feature
of the VE is that it possesses loop-like soliton solutions.

It is our pleasure to thank and acknowledge our colleague and
co-author of joint researches Dr. A.J. Morrison.
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Chapter 1

Introduction

A variety of methods for examining the properties and solutions of
nonlinear evolution equations are explored by using the Vakhnenko
equation (VE) as an example. It is shown (Chapter 2) how the KdV
equation arises in modeling the propagation of low-frequency waves
in a relaxing medium. While in high-frequency cases the waves in a
relaxing medium are described by an equation called now in scientific
literature as the Vakhnenko equation (VE). The consideration of the
VE has an interest not only from the viewpoint of the investigation of
the propagation of high-frequency perturbations, but more specifically
from the viewpoint of the study of methods and approaches that may
be applied in the theory of nonlinear evolution equations.

By studying the VE in Chapter 3, traced a way in which
an uninitiated reader could investigate even early unknown nonlinear
equations. As a first step for a new equation, it is necessary to consider
the linear analogue and its dispersion relation (these steps for the
equation considered here are described in Chapter 2). The next step
is, where possible, to link the equation with the known nonlinear
equations, as it is carried out for the VE, for example.

The solution procedure, which was used for the Vakhnenko equa-
tion (see Chapter 4), can be successfully adopted to find implicit peri-
odic and solitary travelling-wave solutions of the Degasperis–Procesi
equation in [69], the Camassa–Holm equation [71], the transformed
Hirota–Satsuma-type ‘shallow water wave’ equation [72] and special
cases thereof, namely the generalised Vakhnenko equation and the
modified generalised Vakhnenko equation, the short-pulse equation
[103] and other equations. An important feature of the method is

we
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2 Introduction

that it delivers solutions in which both the dependent variable and
the independent variable are given in terms of certain parameters.

In Chapter 5 the VE has been written in an alternative form, now
known as the Vakhnenko-Parkes equation (VPE), by a change of in-
dependent variables. One of the main results of this chapter stated
in Section 5.3 is that we have obtained a way of applying the IST
method to the VPE. Keeping in mind that the IST is the most appro-
priate way of tackling the initial value problem, one has to formulate
the associated eigenvalue problem. We have proved that the system
of equations for the IST problem associated with the VPE does not
contain the isospectral Schrödinger equation. Nevertheless, the anal-
ysis of the VPE in the context of the isospectral Schrödinger equation
allowed us to obtain the two-soliton solution to the VPE even though,
in contrast to the KdV equation, the VPE’s spectral equation is not
the second-order one. These results may be useful in the investiga-
tion of a new equation for which the spectral problem is unknown.
Historically, once this investigation was completed, we were able to
make some progress in the formulation of the IST for the VPE. In
Section 7.1 it has been proved that the spectral problem associated
with the VPE is of the third order.

The VPE can be written in Hirota bilinear form, as this has been
carried out in Chapter 6. It is then possible to show that the VPE
satisfies the ‘N -soliton condition’, in other words that the equation
has an N -soliton solution. This solution is found by using a blend
of the Hirota method and ideas originally proposed by Moloney &
Hodnett. This solution is discussed in detail, including the derivation
of phase shifts due to interaction between solitons. Individual solitons
are hump-like. However, when transformed back into the original
variables, the corresponding solution to the VE comprises N loop-like
solitons. It is established that a dissipative term, with a dissipation
parameter less than some limit value, does not destroy these loop-like
solutions.

The Hirota method not only gives the N -soliton solution, but en-
ables one to find a way from the Bäcklund transformation through the
conservation laws and associated eigenvalue problem to the inverse
scattering method. Thus the Hirota method, which can be applied
only for finding solitary wave solutions or traveling wave solutions, al-
lows us to formulate the inverse scattering method which is the most
appropriate way of tackling the initial value problem (Cauchy prob-
lem). Consequently, in this case, the integrability of an equation can
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Introduction 3

be regarded as proved.

Chapter 7 deals with the inverse scattering method. The inverse
scattering transform (IST) method is arguably the most important
discovery in the theory of solitons. The method enables one to solve
the initial value problem for a nonlinear evolution equation. Moreover,
it provides a proof of the complete integrability of the equation.

The idea of the inverse scattering method was first introduced
for the KdV equation [94] and subsequently developed for the non-
linear Schrödinger equation [28], the mKdV equation [126, 127], the
sine-Gordon equation [25, 128] and the equation of motion for a one-
dimensional lattice with an exponential form of inter-site interaction
(Toda lattice) [129]. It is to be remarked that the inverse scattering
method is a unique theory whereby the initial value problem for the
nonlinear differential equations can be solved exactly. For the KdV
equation this method was expressed in general form by Lax [130].

The essence of the application of the IST is as follows. The equa-
tion of interest for study (in our case the VPE) is written as the
compatibility condition for two linear equations (the Lax pair). It is
significant that the spectral equation in Lax pair for the VPE is third-
order. The whole Lax pair is given by Eq. (7.1.2) and Eq. (7.1.3).
First, based on the ideas of Kaup and Caudrey, the initial condition
W (X, 0) is mapped into the spectral data S(0) (the direct spectral
problem). It is important that, since the variable W (X,T ) contained
in the spectral equation evolves according to the VPE, the spectral
parameter λ always retains constant values (i.e. demonstrates the
isospectrality). The time evolution of the spectral data S(T ) is sim-
ple and linear. From a knowledge of S(T ) the relationships obtained
by Caudrey should be invoked to reconstructed W (X,T ) (the inverse
spectral problem). The procedure outlined allows solving the Cauchy
problem for the VPE.

In Chapter 8 the standard IST method for third-order spectral
problems is used to investigate solutions corresponding to bound states
of the spectrum and a continuous spectrum. This leads to N -soliton
solutions and M -mode periodic solutions respectively. Interactions
between these types of solutions are investigated. Sufficient conditions
have been proven so that the solutions become the real functions.

In Chapter 9, the standard procedure for the inverse scattering
transform (IST) method is expanded for the case of multiple poles.
Using the VPE as an example, we have shown how, in the IST method,
to take into account the two-multiple poles, among single poles, in the
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4 Introduction

discrete part of the spectral data. The special line spectrum of contin-
uum states in the IST method, for which the mathematical procedure
is similar to that for the discrete spectrum for two-multiple poles, is
considered as well. In this case the account of the time-dependence is
shown to be essentially different f rom the s tandard p rocedure. This
approach can be applied to other integrable nonlinear equations.
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Chapter 2

Models of relaxing medium

As a rule the behavior of media under the action of high-frequency
wave perturbations is not described in the framework of equilibrium
models of continuum mechanics. So, to develop physical models for
wave propagation through media with complicated inner kinetics, no-
tions based on the relaxational nature of a phenomenon are regarded
to be promising. From the non-equilibrium thermodynamics stand-
point, models of a relaxing medium are more general than equilibrium
models. Thermodynamic equilibrium is disturbed owing to the prop-
agation of fast perturbations. There are processes of interaction that
tend to return the equilibrium. The parameters characterizing this
interaction are referred to as the inner variables unlike the macro-
parameters such as the pressure p, mass velocity u and density ρ. In
essence, the change of macro-parameters caused by the changes of
inner parameters is a relaxation process.

2.1 Evolution equation for relaxing medium

Starting from a general idea of relaxing phenomena in real media via
a hydrodynamic approach, we will derive a nonlinear evolution equa-
tion for describing high-frequency waves. We restrict our attention
to barotropic media. An equilibrium state equation of a barotropic
medium is a one-parameter equation. As a result of relaxation, an
additional variable ξ (the inner parameter) appears in the state equa-
tion

p = p(ρ, ξ) (2.1.1)
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6 Chapter 2. Models of relaxing medium

and defines the completeness of the relaxation process. There are two
limiting cases with corresponding sound velocities:

(i) lack of relaxation (inner interaction processes are frozen) for
which ξ = 1:

p = p(ρ, 1) ≡ pf (ρ); (2.1.2)

(ii) relaxation is complete (there is local thermodynamic equilib-
rium) for which ξ = 0:

p = p(ρ, 0) ≡ pe(ρ). (2.1.3)

The state equations (2.1.2) and (2.1.3) are considered to be known.
These relationships enable us to introduce the sound velocities for fast
processes

c2f = dpf/dρ; (2.1.4)

and for slow processes

c2e = dpe/dρ. (2.1.5)

Slow and fast processes are compared using the relaxation time τp.
The following dynamic state equation is applied to account for the

relaxation effects

τp

(
dp

dt
− c2f

dρ

dt

)
+ (p− pe) = 0. (2.1.6)

The equilibrium equations of state are considered to be known

ρe − ρ0 =

p∫
p0

c−2
e dp. (2.1.7)

Clearly, for the fast processes (ωτp � 1) we have the relation (2.1.2),
and for the slow ones (ωτp � 1) we have (2.1.3).

The substantiation of equation (2.1.6) within the framework of
the thermodynamics of irreversible processes has been given in [1, 2,
3, 4]. As far as we know the first work in this field was the article
by Mandelshtam and Leontovich [5] (see also Section 81 in [2]). We
note that the mechanisms of the exchange processes are not defined
concretely when deriving the dynamic state equation (2.1.6). In this
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Chapter 2. Models of relaxing medium 7

equation the thermodynamic and kinetic parameters appear only as
sound velocities ce, cf and relaxation time τp. These are very common
characteristics and they can be found experimentally. Hence it is
not necessary to know the inner exchange mechanism in detail. The
dynamic state equation (2.1.6) enables us to take into account the
exchange processes completely.

The phenomenological approach for describing the relaxation pro-
cesses in hydrodynamics have been developed in many publications [2,
4, 6, 7]. The dynamic state equation was used to describe the prop-
agation of sound in a relaxing medium [2], to take into account the
exchange processes within media (gas-solid particles [4]), and to study
wave fields in gas-liquid media [6] and in [7] soils. The well-known
Zener phenomenological model of a standard linear solid [8] is gener-
alized to describe the sandstone deformation [9]. Within the context of
mixture theory, Biot [10] attempted to account for the non-equilibrium
in velocities between components directly in the equations of motion
in the form of dissipative terms. In most works, the state equation
had been derived from the concept of some concrete mechanism for
the inner process.

To analyze the wave motion, we use the following hydrodynamic
equations in the Lagrangian coordinates:

∂V

∂ t
− 1

ρ0

∂u

∂x
= 0,

∂u

∂ t
+

1

ρ0

∂ p

∂x
= 0. (2.1.8)

Here V ≡ ρ−1 is the specific volume, and x is the Lagrangian space
coordinate.

The closed system of equations consists of two motion equations
(2.1.8) and the dynamic state equation (2.1.6). The motion equa-
tions (2.1.8) are written in Lagrangian coordinates since the state
equation (2.1.6) is related to the element of mass of the medium.

Let us consider a small perturbation p′ � p0. The equations of
state for fast (2.1.2) and slow (2.1.3) processes are considered to
be known. They can be expanded as the power series with accuracy
O(p′2)

Vf (p0 + p′) = V0 − V 2
0 c
−2
f p′ +

1

2

d2Vf

dp2

∣∣∣∣
p=p0

p′2 + . . . ,

Ve(p0 + p′) = V0 − V 2
0 c
−2
e p′ +

1

2

d2Ve

dp2

∣∣∣∣
p=p0

p′2 + . . . .

(2.1.9)
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8 Chapter 2. Models of relaxing medium

Hereafter, the velocities ce, cf are related to the initial pressure p0.
Combining these two relationships with the equations of motion (2.1.8),
we obtain the equation in one unknown quantity (the dash in p′ is
omitted) [11, 12, 13, 14]:

τp
∂

∂t

(
∂2p

∂x2
− c−1

f

∂2p

∂t2
+

1

2V 2
0

d2Vf

dp2

∣∣∣∣
p=p0

∂2p2

∂t2

)

+

(
∂2p

∂x2
− c−1

e

∂2p

∂t2
+

1

2V 2
0

d2Ve

dp2

∣∣∣∣
p=p0

∂2p2

∂t2

)
= 0.

(2.1.10)

A similar equation has been obtained in Ref. [1], but without nonlinear
terms.

The hydrodynamic nonlinearity p∂p/∂x and the complicated dis-
persive law are inherent in a medium which is described by the evolu-
tion equation (2.1.10). Now we consider the dispersive relation which
follows from equation (2.1.10) after a substitution of the slow pertur-
bation in a form p′ ∼ exp[i(kx− ωt)],

−iωτp
c2e
c2f

(ω2 − c2fk
2) + (ω2 − c2ek

2) = 0. (2.1.11)

From this relationship we obtain the functional dependence k = k(ω)

k2 =
ω2

c2f
· τ2pω

2

1 + τ2pω
2
·
(
1 +

i

τpω
· c

2
f − c2e
c2e

+
1

τ2pω
2
· c

2
e

c2f

)
. (2.1.12)

Taking the roots we write the result in the form k = k′ + ik′′. It is
clear that k′′ is associated with the speed of wave attenuation as a
function of the distance [2], while a value c = ω/k′ can be considered
as the velocity of the perturbation propagation. The expressions for
k′ and k′′ take the form

k′ = a1

√√
a22 + a23 + a2, k′′ = a1

√√
a22 + a23 − a2,

a1 =
τ2pω

2

√
2cf

√
1 + τ2pω

2
, a2 = 1 +

c2f
τ2pω

2c2e
, a3 =

c2f − c2e
τpωc2e

.

In Fig. 2.1, for example, we show the dependencies c and k′′ on
τpω for water-saturation soil with a concentration of air 0.1. For this
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Chapter 2. Models of relaxing medium 9

Figure 2.1: The dependencies of the velocity c and the attenuation
factor k′′ on frequency τpω.

medium cf = 1620 m/s and ce = 260 m/s [7]. The velocity c increases
monotonically from ce to cf at bottom-up sweep τpω. The dependence
k′′ = k′′(ω) indicates that at ω → 0 the dispersion is absent, while
at high frequency the variable k′′ becomes a constant and does not
depend on ω (see Fig. 2.1) with the limit value

τpk
′′ =

c2f − c2e
2c2fc

2
e

.

Hence, the energy in the high-frequency wave dissipates always.
For this wave the pressure attenuation is the same as at fixed distance
and does not depend on frequency ω.

The equation of state in the form (2.1.9) enables us to describe the
effects associated with bulk viscosity of a medium. Let us show that
for slow processes (since for these processes the notion of viscosity
coefficient is defined, i.e. for processes in which a small deviation
from equilibrium is taken into account in linear approximation) a bulk
viscosity coefficient relates to the relaxation time τρ = τpc

2
e/c

2
ρ [1, 2, 5]

ζ = τρρ(c
2
f − c2e). (2.1.13)
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10 Chapter 2. Models of relaxing medium

Let us rewrite (2.1.9) in a form of the power series p in τρd/dt. To do it,
we differentiate equation (2.1.9) with respect to time t and substitute
the result into the same equation (2.1.9). Repeating several times this
procedure, we obtain with required accuracy the expression

dp = c2edρ+ τρ(c
2
f − c2e)dρ̇− τ2ρ (c

2
f − c2e)dρ̈+ . . . . (2.1.14)

Let us consider two terms only in this relation. The value c2edρ as-
sociates with an increase of a pressure dpe in infinitely slow process,
i.e. dpe = c2edρ. It is noted that value p acquires more general sense
than merely a pressure. With the accuracy of a sign the value (−p)
is nothing other than a stress πii. By definition, in the low-frequency
approximation the stress is written through the bulk viscosity coeffi-
cient [2]

πii = −pe + ζ
∂u

∂x
.

Then it is easy to obtain the expression for the bulk viscosity coeffi-
cient in the form (2.1.13).

2.2 Low-frequency perturbations and

high-frequency perturbations

Now we shall show that for low-frequency perturbations the equa-
tion (2.1.10) is reduced to the Korteweg-de Vries-Burgers (KdVB)
equation, while for high-frequency waves we shall obtain the equa-
tion with hydrodynamic nonlinearity and term that appeared in the
Klein-Gordon equation. To analyze the equation (2.1.10) let us apply
the multiscale method [15, 16]. The value ε ≡ τpω is chosen to be
small (large) parameter where the quantity ω is the characteristic fre-
quency of wave perturbation. For the sake of convenience we rewrite
the equation (2.1.10) as follows:

τpω
∂

∂(tω)

(
∂2p

∂(xω)2
− c−2

f

∂2p

∂(tω)2
+ αf

∂2p2

∂(tω)2

)
+

+

(
∂2p

∂(xω)2
− c−2

e

∂2p

∂(tω)2
+ αe

∂2p2

∂(tω)2

)
= 0,

(2.2.1)

αf =
1

2V 2
0

d2Vf

dp2

∣∣∣∣
p=p0

, αe =
1

2V 2
0

d2Ve

dp2

∣∣∣∣
p=p0

,
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Chapter 2. Models of relaxing medium 11

and introduce the new independent variables [11, 12, 13, 14]

T0 = tω, X0 = xω, T−2 = tω/ε2, X−2 = xω/ε2. (2.2.2)

The dependent variable p is a function of T0, X0, T−2, X−2, i.e. p =
p(T0, X0, T−2, X−2). The existing derivatives in (2.2.1) are to be
rewritten in the new independent variables

∂

∂(xω)
=

∂

∂X0
+ ε−2 ∂

∂X−2
,

∂

∂(tω)
=

∂

∂T0
+ ε−2 ∂

∂T−2
,

∂2

∂(xω)2
=

∂2

∂X2
0

+ 2ε−2 ∂2

∂X0∂X−2
+ ε−4 ∂2

∂X2
−2

,

∂2

∂(tω)2
=

∂2

∂T 2
0

+ 2ε−2 ∂2

∂T0∂T−2
+ ε−4 ∂2

∂T 2
−2

,

∂3

∂(tω)3
=

∂3

∂T 3
0

+ 3ε−2 ∂3

∂T 2
0 ∂T−2

+ 3ε−4 ∂3

∂T0∂T 2
−2

+ ε−6 ∂3

∂T 3
−2

,

∂3

∂(tω)∂(xω)2
=

∂3

∂X2
0∂T0

+ ε−2

(
∂3

∂X2
0∂T−2

+ 2
∂3

∂T0∂X0∂X−2

)

+ε−4

(
∂3

∂T0∂X2
−2

+ 2
∂3

∂X0∂X−2∂T−2

)
+ ε−6 ∂3

∂X2
−2∂T−2

.

(2.2.3)
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12 Chapter 2. Models of relaxing medium

It is precisely these variables that cause the equations obtained within
the framework of the multiscale method [15, 16]

O(ε+1) :
∂

∂T0

(
∂2p

∂X2
0

− c−2
f

∂2p

∂T 2
0

+ αf
∂2p2

∂T 2
0

)
= 0,

O(ε0) :
∂2p

∂X2
0

− c−2
e

∂2p

∂T 2
0

+ αe
∂2p2

∂T 2
0

= 0,

O(ε−1) :

(
∂3

∂X2
0∂T−2

+ 2
∂3

∂T0∂X0∂X−2

)
p

−3c−2
f

∂3p
∂T 2

0 ∂T−2
+ 3αf

∂3p2

∂T 2
0 ∂T−2

= 0,

O(ε−2) :
∂2p

∂X0∂X−2
− c−2

e

∂2p

∂T0∂T−2
+ αe

∂2p2

∂T0∂T−2
= 0,

O(ε−3) :

(
∂3

∂T0∂X2
−2

+ 2
∂3

∂X0∂X−2∂T−2

)
p

−3c−2
f

∂3p

∂T0∂T 2
−2

+ 3αf
∂3p2

∂T0∂T 2
−2

= 0,

O(ε−4) :
∂2p

∂X2
−2

− c−2
e

∂2p

∂T 2
−2

+ αe
∂2p2

∂T 2
−2

= 0,

O(ε−5) :
∂

∂T−2

(
∂2p

∂X2
−2

− c−2
f

∂2p

∂T 2
−2

+ αf
∂2p2

∂T 2
−2

)
= 0,

(2.2.4)

to be partially uncoupled [17, 18, 19, 20, 21, 22]. The two leading
equations depend on T0 and X0 only, while the last two equations
include the independent variables T−2 and X−2 only. Thus, the low-
frequency perturbations are described by the two leading equations,
and the high-frequency perturbations by the last two equations. An
interaction between these perturbations is described by the three cen-
ter equations. A similar approach was applied to obtain the evolution
equation with cubic nonlinearity [23, 24].

Let us write out the equations of motion for low-frequency and
high-frequency perturbations in the initial variables x and t. For low-
frequency perturbations the main terms ∂2p/∂X2

0 and c−2
e ∂2p/∂T 2

0

(and only they) appear in the first and second equations of the sys-
tem (2.2.4), while for high-frequency perturbations the main terms
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Chapter 2. Models of relaxing medium 13

∂2p/∂X2
−2 and c−2

f ∂2p/∂T 2
−2 (and only they) appear in the sixth and

seventh equations of the system (2.2.4).
For low-frequency perturbations (τpω � 1) propagating in one

direction (∂/∂x−c−1
e ∂/∂t � 2∂/∂x), we obtain an evolution equation

∂p

∂t
+ ce

∂p

∂x
+ αec

3
ep

∂p

∂x
− βe

∂2p

∂x2
+ γe

∂3p

∂x3
= 0, (2.2.5)

αe =
1

2V 2
0

d2Ve

dp2

∣∣∣∣
p=p0

, βe =
c2eτp
2c2f

(c2f − c2e),

γe =
c3eτ

2
p

8c4f
(c2f − c2e)(c

2
f − 5c2e).

This equation can be derived in the following way. A dispersion re-
lation for the linearized equation (2.1.10) can be written down with
an accuracy O(k3) in the form ω = cek + iβek

2 − γek
3, if the terms

∂p/∂x and c−1
e ∂p/∂t are the main ones. For this dispersion relation

we write a linear equation in which a nonlinear term is reconstructed
in agreement with the initial equation.

The equation (2.2.5) is the well-known KdVB equation. It is en-
countered in many areas of physics to describe nonlinear wave pro-
cesses [25, 26, 27, 28, 29]. In [30] it was shown how hydrodynamic
equations reduce to either the KdV or Burgers equation according
to the choices for the state equation and the generalized force when
analyzing the gasdynamical waves, waves in shallow water [30], hy-
drodynamic waves in cold plasma [31], and ion-acoustic waves in cold
plasma [32].

As is known, the investigation of the KdV equation (βe = 0) in
conjunction with the nonlinear Schrödinger (NLS) and sine-Gordon
equations gives rise to the theory of solitons [25, 27, 28, 29, 30, 33,
34, 35, 36, 37]. As well as having soliton solutions, these equations
have other inherent striking properties, in particular integrability. The
equations can be integrated, for example, by the inverse scattering
method. Details on the study of the aforementioned equations can be
found in the monographs [25, 27, 28]. In general, the existence of soli-
ton solutions to a nonlinear evolution equation points to distinctive
features for the equation such as integrability, the applicability of the
inverse scattering method, the Hirota method and Bäcklund trans-
formation, and the existence of conservation laws. Consequently, the
finding of soliton solutions for a new evolution equation is of consid-
erable interest.
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14 Chapter 2. Models of relaxing medium

For high-frequency perturbations (τpω � 1), using the last two
equations of the system (2.2.4), we get the following evolution equa-
tion:

∂2p

∂x2
− c−2

f

∂2p

∂t2
+ αfc

2
f

∂2p2

∂x2
+ βf

∂p

∂x
+ γfp = 0. (2.2.6)

αf =
1

2V 2
0

d2Vf

dp2

∣∣∣∣
p=p0

, βf =
c2f − c2e
τpc2ecf

, γf =
c4f − c4e
2τ2p c

4
ec

2
f

.

In addition to the nonlinear term with coefficient αf , the equation has
dissipative βf∂p/∂x and dispersive γfp terms. If αf = βf = 0, this is a
linear Klein-Gordon equation. There is a Green function for this equa-
tion [38] that enables us to find the solution in quadrature, at least.
The numerical solutions of the Klein-Gordon equation modeling the
propagation of high-frequency perturbations in gas-liquid media have
been presented in [39]. A similar evolution equation for high-frequency
perturbations was described in a monograph by Whitham [40]. How-
ever, it coincides with Eq. (2.2.6) only when αf = 0 and γf = 0.

Landau and Lifshitz showed that for high frequencies the dissipa-
tive term under high transport of heat agrees with the corresponding
term in the equation (2.2.6) (see section 79 and 81 in [2]). Thus,
the dynamic state equation (2.1.9) enables us to take into account
the dissipative processes completely. But the form of the dissipative
terms describing the inner exchange processes (transport of heat and
momentum) are different for the high and low frequencies.

We call attention to the fact that the dispersion relations ω = ω(k)
for the linearized equations (2.2.5) and (2.2.6) have been restricted by
the finite power series in k and in k−1, respectively:

ω = cek + iβek
2 − γek

3, τpω � 1,

ω2 = c2fk
2(1 + iβfk

−1 − γfk
−2), τpω � 1.

At the time we were carrying out our research, it turned out
that equation (2.2.6) had not been investigated much. This is likely
connected with the fact, noted by Whitham in Ref. [40], that high-
frequency perturbations attenuate very quickly. However in Whitham’s
monograph [40], the evolution equation (2.2.6) without nonlinear and
dispersive terms was considered. Certainly, the lack of such terms re-
stricts the class of solutions. At least, there is no solution in the form
of a solitary wave which is caused by nonlinearity and dispersion.
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Chapter 2. Models of relaxing medium 15

2.3 Evolution equation for high-frequency

perturbations

The equation (2.2.6), which we are interested in,

∂2p

∂x2
− c−2

f

∂2p

∂t2
+ αfc

2
f

∂2p2

∂x2
+ βf

∂p

∂x
+ γfp = 0

is written down in a dimensionless form. Let us restrict our consider-
ation to the propagation of high-frequency waves in positive direction
x, then with necessary accuracy we can write the operator

∂2

∂x2 − c−2
f

∂2

∂t2
=

=

(
∂

∂x
− c−1

f

∂

∂t

)(
∂

∂x
+ c−1

f

∂

∂t

)
→ 2

∂

∂x

(
∂

∂x
+ c−1

f

∂

∂t

)
.

In the moving coordinates system with velocity cf , the equation has
the form in dimensionless variables

x̃ =

√
γf
2
(x− cf t), t̃ =

√
γf
2
cf t, ũ = αfc

2
fp

(tilde over variables x̃, t̃, ũ is omitted) [11, 12, 13, 41]

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ α

∂u

∂x
+ u = 0. (2.3.1)

The constant α = βf/
√
2γf is always positive. The equation (2.3.1)

without the dissipative term has the form of the nonlinear equa-
tion [41, 42]

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0. (2.3.2)

Historically, the equation (2.3.2) has been called the Vakhnenko equa-
tion (VE) and we shall use this name subsequently.

It is interesting to note that equation (2.3.2) follows as a particular
limit of the following generalized Korteweg-de Vries equation

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− β

∂3u

∂x3

)
= γu (2.3.3)
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16 Chapter 2. Models of relaxing medium

derived by Ostrovsky [43] to model small-amplitude long waves in
a rotating fluid (γu is induced by the Coriolis force) of finite depth.
Subsequently, equation (2.3.2) was known by different names in the lit-
erature, such as the Ostrovsky-Hunter equation, the short-wave equa-
tion, the reduced Ostrovsky equation and the Ostrovsky-Vakhnenko
equation depending on the physical context in which it is studied.

The consideration here of equation (2.3.2) has an interest not only
from the viewpoint of the investigation of the propagation of high-
frequency perturbations, but more specifically from the viewpoint of
the study of methods and approaches that may be applied in the
theory of nonlinear evolution equations.
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Chapter 3

The travelling-wave solutions

By investigating equation (2.3.2), we will trace a way in which an
uninitiated reader could investigate a new nonlinear equation. As a
first step for a new equation, it is necessary to consider the linear
analogue and its dispersion relation (these steps for equations (2.2.5)
and (2.2.6) are described already in Chapter 2). The next step is,
where possible, to link the equation with a known nonlinear equation.

3.1 The connection of the VE with the

Whitham equation

Now we show how an evolution equation with hydrodynamic nonlin-
earity can be rewritten in the form of the Whitham equation. The
general form of the Whitham equation is as follows [40]:

∂u

∂t
+ u

∂u

∂x
+

∫ ∞

−∞
K(x− s)

∂u

∂s
ds = 0. (3.1.1)

On the one hand, this equation (3.1.1) has the nonlinearity of hy-
drodynamic type; on the other hand, it is known (see, Section 13.14
in [40]) that the kernel K(x) can be selected to give the dispersion
required. Indeed, the dispersion relation c(k) = ω(k)/k and the kernel
K(x) are connected by means of the Fourier transformation

c(k) = F [K(x)], K(x) = F−1[c(k)]. (3.1.2)
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18 Chapter 3. The travelling wave solutions

Consequently, for the dispersion relation ω = −1/k corresponding to
the linearized version of (2.3.2), the kernel is as follows

K(x) = F−1[−1/k2] = 1
2 |x|. (3.1.3)

Thus, the VE (2.3.2) is related to the particular Whitham equa-
tion [40]

∂u

∂t
+ u

∂u

∂x
+

1

2

∫ ∞

−∞
|x− s|∂u

∂s
ds = 0. (3.1.4)

Since we can reduce the VE to the Whitham equation, we can assert
that the VE shares interesting properties with the Whitham equation;
in particular, it describes solitary wave-type formations, have periodic
solutions and explains the existence of the limiting amplitude [40].
An important property is the presence of conservation laws for waves
decreasing rapidly at infinity, namely

d

dt

∫ ∞

−∞
udx = 0,

d

dt

∫ ∞

−∞
u2dx = 0,

d

dt

∫ ∞

−∞

(
1
3u

3 + K̂u
)
dx = 0,

(3.1.5)

where by definition K̂u =
∫∞
−∞K(x− s)u(s, t)ds.

For equation (2.3.1) the kernel is K(x) = 1
2 [α(2Θ(x) − 1) + |x|],

where Θ(x) is the Heaviside function. Hence, (2.3.1) can be written
down as

∂u

∂t
+ u

∂u

∂x
+ αu+

1

2

∫ ∞

−∞
|x− s|∂u

∂s
ds = 0. (3.1.6)

It is important that there is no derivative in the dissipative term αu
of Eq. (3.1.6).

3.2 Loop-like stationary solutions of the VE

An important step in the investigation of nonlinear evolution equa-
tions is to find travelling-wave solutions. These are solutions that are
stationary with respect to a moving frame of reference. In this case,
the evolution equation (a partial differential equation) becomes an
ordinary differential equation (ODE) which is considerably easier to
solve.
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Chapter 3. The travelling wave solutions 19

For the VE (2.3.2) it is convenient to introduce a new dependent
variable z and new independent variables η and τ defined by

z = (u− v)/|v|, η = (x− vt− x0)/|v|1/2, τ = t|v|1/2, (3.2.1)

where v and x0 are arbitrary constants, and v 	= 0. Then the VE
becomes

zητ+ (zzη)η+ z+ c= 0, where c: =
v

|v| . (3.2.2)

c = ±1 corresponding to whether v ≷ 0. We now seek stationary
solutions of (3.2.2) for which z is a function of η only so that zτ = 0
and z satisfies the ODE

(zzη)η + z + c = 0, (3.2.3)

After one integration (3.2.3) gives

1
2 (zzη)

2 = f(z),

f(z) = − 1
3z

3 − 1
2cz

2 + 1
6c

3A = − 1
3 (z − z1)(z − z2)(z − z3),

(3.2.4)

where A is a constant. It is easy to verify that if there are complex
roots, the value z tends to minus infinity, and this contradicts the
physical statement of the problem. Indeed, if we have only one real
root, the graph of the function f(z) (see fig. 3.1) crosses the Oz axis
once. Thus as z → +∞ we have f → −∞ and as z → −∞ we
have f → +∞. But since the trinomial in (3.2.4) should always be
positive in the integration region, as follows from the l.h.s. of (3.2.4),
this region extends in z from minus infinity to the value of the single
real root. This means the perturbation amplitude u = (z + c)v also
tends to minus infinity, which does not correspond to the physical
statement of the problem. So, all roots of the trinomial should be
real. This requires that 0 ≤ A ≤ 1. Note that there are turning
points at z = 0 and z = −c. For periodic or solitary-wave solutions,
z1, z2 and z3 are real constants. For definiteness we shall assume that
z1 ≤ z2 ≤ z3. Three ways of calculating the roots are given in the
Appendix in Section 3.4. From (A.7), we can deduce that for v > 0
always the root z3 ∈ [0, 0.5] as indicated by curve 2 in Fig. 3.1(a);
curve 1 corresponds to A = 1 and curve 3 corresponds to A = 0.
Similarly, for v < 0 always z3 ∈ [1, 1.5] as indicated by curve 2 in
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20 Chapter 3. The travelling wave solutions

Fig. 3.1(b); curve 1 corresponds to A = 0 and curve 3 corresponds to
A = 1. It also follows from (A.7) that always z1 < 0, but z2 < 0 for
v > 0 and z2 > 0 for v < 0. Thus the nature of the solutions depends
on the sign of v. However, the integration of (3.2.4) is not affected by
the sign of v.

Figure 3.1: The graph of the trinomial f(z): (a) v > 0, (b) v < 0.
The integration region is the interval (z2, z3).

The integration region of (3.2.4) is the interval (z2, z3) where f(z) >
0 (see fig. 3.1). At the points z = z2 and z = z3 the derivatives zη are
zero. Hence, we have the relation

±
√

2
3η =

z3∫
z

zdz√
(z − z1)(z − z2)(z3 − z)

. (3.2.5)

On using results 236.00 and 236.01 of [44], we may integrate (3.2.5)
to obtain

η =
1

p
[z1F (ϕ, k) + (z3 − z1)E(ϕ, k)], (3.2.6)

where

sin2 ϕ =
z3 − z

z3 − z2
, k2 =

z3 − z2
z3 − z1

, p2 =
(z3 − z1)

6
. (3.2.7)
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Chapter 3. The travelling wave solutions 21

In the notation of [44], F (ϕ, k) and E(ϕ, k) are incomplete elliptic
integrals of the first and second kind respectively. We have chosen
the constant of integration in (3.2.6) to be zero so that z = z3 at
η = 0. The relations (3.2.6) and (3.2.7) give the required solution in
parametric form, with z and η as functions of the parameter ϕ.

An alternative route to the solution is to follow the procedure
described in [45]. We introduce a new independent variable ζ defined
by

dη

dζ
= z (3.2.8)

so that (3.2.4) becomes

1
2z

2
ζ = f(z). (3.2.9)

By means of result 236.00 of [44], (3.2.9) may be integrated to give
w = F (ϕ|m), where m: = k2 and w = pζ. Here we have used the
notation of Chapter 17 in [110]. Thus, on noting that sin ϕ = sn(w|m),
where sn is a Jacobian elliptic function, we have

z = z3 − (z3 − z2) sn
2(w|m). (3.2.10)

With result 310.02 of [44], (3.2.8) and (3.2.10) give

η =
1

p
[z1w + (z3 − z1)E(w|m)], (3.2.11)

where E(w|m) is the incomplete elliptic integral of the second kind (in
the notaion of [110]). Relations (3.2.10) and (3.2.11) are equivalent
to (3.2.7) and (3.2.6) respectively and give the solution in parametric
form with z and η in terms of the parameter w.

We define the wavelength λ of the solution as the amount by which
η increases when ϕ increases by π, or equivalently when w increases
by 2K(m), where K(m) is the complete elliptic integral of the first
kind. It follows from (3.2.11) that

λ =
2

p
|z1K(m) + (z3 − z1)E(m)|, (3.2.12)

where E(m) is the complete elliptic integral of the second kind.
As mentioned previously, the VE has two families of solutions cor-

responding to v > 0 and v < 0, respectively. We now describe these
two cases in detail.
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With v > 0 we have c = 1. Then, with 0 < A < 1, there are
periodic loop solutions with 0 < m < 1, z2 ∈ (−1, 0) and z3 ∈ (0, 0.5);
an example of such a periodic wave is illustrated by curve 2 in Fig. 3.2.
The loop-like nature of these periodic waves is due to the fact that z =
0 is in the interval (z2, z3). For small z, (3.2.4) gives zη � ±√

A/(3z)
so that |zη| → ∞ as z → 0. It follows that, when z = 0, the solution
curve is normal to the η axis. A = 1 gives the solitary wave limit for
which z1 = z2 = −1 and z3 = 1/2 so thatm = 1. As sn(w|1) ≡ tanhw
and E(w|1) ≡ tanhw, (3.2.10) and (3.2.11) reduce to

z = 1
2 − 3

2 tanh
2 w, η = −2w + 3 tanhw, (3.2.13)

where w = ζ/2. In terms of the original dependent variable u and the
new independent variable ζ, (3.2.13) gives

u = 3
2v sech

2(ζ/2), η = −ζ + 3 tanh(ζ/2) (3.2.14)

as illustrated by curve 1 in Fig. 3.2. When u/v = 1, this solution
curve is normal to the η axis at the points η = ∓W/2, where W is the
maximum width of the loop. On putting z = 0 and η = ∓W/2 into
(3.2.13), we find that

W = 2
√
3− 4 tanh−1

(
1√
3

)
. (3.2.15)

With v < 0 we have c = −1. Then, with 0 < A < 1, there are
periodic solutions with 0 < m < 1, z2 ∈ (0, 1) and z3 ∈ (1, 1.5); an
example of such a periodic wave is illustrated by curve 2 in Fig. 3.3.
With A = 0, z1 = z2 = 0 and z3 = 3/2 so that m = 1 and λ = 6.
(3.2.10) and (3.2.11) reduce to

z = 3
2 − 3

2 tanh
2 w, η = 3 tanhw, (3.2.16)

where w = ζ/2. Elimination of tanhw now gives

z = 3
2 − 1

6η
2, −3 ≤ η ≤ 3 (3.2.17)

from which we can construct a weak solution in the form of a spatially
periodic inverted ‘paraboidal’ wave (i.e. a corner wave) of amplitude
3/2 given by

z = z(η − 6j), −3 ≤ η − 6j ≤ 3, j = 0,±1,±2, . . . . (3.2.18)
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Figure 3.2: Travelling wave solutions with v > 0.

In terms of the original dependent variable u, (3.2.17) and (3.2.18)
become

u/|v| = 1
2 − 1

6η
2, −3 ≤ η ≤ 3 (3.2.19)

and

u/|v| = u(η−6j)/|v|, −3 ≤ η−6j ≤ 3, j = 0,±1,±2, . . . (3.2.20)

respectively. The latter is shown by the curve 1 in Fig. 3.3. For A � 1
the solution has a sinusoidal form (see curve 3 in Fig. 3.3). Note that
there are no solitary wave solutions with v < 0. This is due to the
fact that z = 0 is not in the interval (z2, z3).

A remarkable feature of the equation (2.3.2) is that it has a soli-
tary wave (3.2.14) which has a loop-like form, i.e. it is a multi-valued
function (see Fig. 3.2). Whilst loop solitary waves (3.2.14) are rather
intriguing, it is the solution to the initial value problem that is of more
interest in a physical context. An important question is the stabil-
ity of the loop-like solutions. Although the analysis of stability does
not link with the theory of solitons directly, however, the method ap-
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Figure 3.3: Travelling wave solutions with v < 0.

plied in Section 3.3.1 is instructive, since it is successful in a nonlinear
approximation.

We note that the notion of a ‘soliton’ will be defined later. We
will prove (see Section 6.5) that the solitary wave (3.2.14) is, in fact,
a soliton. Here we point out only that the soliton is a local travelling
wave pulse with remarkable stability and particle-like properties.

3.3 Stability, ambiguity and interpretation of

the loop-like solutions

3.3.1 Stability

From a physical viewpoint, the stability or otherwise of solutions is
essential to their interpretation. Some methods for the investigation
of the stability of nonlinear waves were discussed by Infeld and Row-
lands in Chapter 8 of [46] and references therein. One such method is
the so-called k-expansion method. It is restricted to long wavelength
perturbations of small amplitude. It has been applied successfully to a
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variety of generic nonlinear evolution equations (see [47] for example)
and specific physical systems (see [48] for example). A particularly
informative description of the method is given in [49] in the context of
the Zakharov-Kuznetsov equation. Some criticism was leveled at the
work in [49] by Das et al [50]; however, after a detailed reinvestigation
of the problem, Das et al [50] vindicated the method used in [49].

The k-expansion method was applied to the VE (2.3.2) in [42] and
is outlined as follows. We assume a perturbed solution of (3.2.4) in
the form

z = z0(η) + {δz(η) exp[i(kη − ωτ)] + cc}, (3.3.1)

where z0 is the periodic solution given by (3.2.10) and (3.2.11), δz(η)
is a complex function with period λ given by (3.2.12)), k is a real
constant, ω is a constant (possibly complex), and cc denotes complex
conjugate. Substitution of (3.3.1) into (3.2.2) and linearization with
respect to δz yields

Lδz = f, (3.3.2)

where the linear operator L and f are given by

Lδz: = (z0δz)ηη+δz, f: = (−ωk+k2z0)δz+i[ωδzη−2k(z0δz)η],

respectively. As (3.2.3) implies that Lz0η = 0, we may deduce that,
for (3.3.2) to have periodic solutions, the condition

〈z0z0ηf〉 = 0 (3.3.3)

must be satisfied, where 〈·〉 denotes an integration over the wavelength
λ.

Formally, the solution of (3.3.2) is

δz = z0ηϑ, (3.3.4)

where

ϑη =

(
D +

∫
z0z0ηf dη

)
/(z0z0η)

2 (3.3.5)

and D is a constant determined from〈(
D +

∫
z0z0ηf dη

)
/(z0z0η)

2

〉
= 0. (3.3.6)
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As δz appears on the right-hand side of (3.3.4) via f , we solve (3.3.4)
iteratively by assuming that k is small in comparison with 2π/λ (so
that the perturbations in (3.3.1) have long wavelength) and introduce
the expansions

δz = δz0 + kδz1 + · · · , ω = kω1 + k2ω2 + · · · ,
so that

f = kf1+k2f2+ · · · , ϑ = ϑ0+kϑ1+ · · · , D = D0+kD1+ · · · .
At zero order in k, the condition (3.3.3) is satisfied identically, (3.3.6)
gives D0 = 0 and then, from (3.3.5), ϑ is constant. Hence, from
(3.3.4), we may take δz0 = z0η. At first order, the condition (3.3.3) is
again satisfied identically. It is straightforward (see [42]) to find D1

from (3.3.6) and ϑ1η from (3.3.5); use of these expressions in (3.3.3)
at second order leads to the desired nonlinear dispersion relation for
the perturbations in the form

r0 + r1ω1 + r2ω
2
1 = 0. (3.3.7)

The coefficients r0, r1 and r2 depend on z1, z2 and z3 as defined
in (3.2.4). It turns out that the dispersion relation (3.3.7) has real
roots for ω1 for both the families of solutions (corresponding to c = 1
and c = −1, respectively) derived in Section 3.2. Consequently, it is
predicted that both families of solutions are stable to long wavelength
perturbations. For the loop-like solutions, the existence of singular
points at which the derivatives tend to infinity casts some doubts on
the validity of the method. However, in [42] it is argued that, as
the method depends on the average behavior over a wavelength, the
method is indeed valid.

3.3.2 Ambiguous solutions

The ambiguous structure of the loop-like solutions is similar to the
loop soliton solution to an equation that models a stretched rope [51].
Loop-like solitons on a vortex filament were investigated by Hasi-
moto [52] and Lamb, Jr [53]. From the mathematical point of view an
ambiguous solution does not present difficulties whereas the physical
interpretation of ambiguity always presents some difficulties. In this
connection the problem of ambiguous solutions is regarded as impor-
tant. The problem consists of whether the ambiguity has a physical
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nature or is related to the incompleteness of the mathematical model,
in particular to the lack of dissipation.

We will consider the problem related to the singular points when

dissipation takes place. At these points the dissipative term α∂u
∂x

tends to infinity. The question arises: are there solutions of the
equation (3.1.6) in a loop-like form? That the dissipation is likely
to destroy the loop-like solutions can be associated with the follow-
ing well-known fact [27]. For the simplest nonlinear equation without
dispersion and dissipation, namely

∂u

∂t
+ u

∂u

∂x
= 0, (3.3.8)

any initial smooth solution with boundary conditions

u|x→+∞ = 0, u|x→−∞ = u0 = const. > 0

becomes ambiguous in the final analysis. When dissipation is consid-
ered, we have the Burgers equation [54]

∂u

∂t
+ u

∂u

∂x
+ μ

∂2u

∂x2
= 0.

The dissipative term in this equation and Eq. (2.2.5) for low frequency
are coincident. The inclusion of the dissipative term transforms the
solutions so that they cannot be ambiguous as a result of evolution.
The wave parameters are always unambiguous. What happens in our
case for high frequency when the dissipative term has the form αu (see
Eq. (3.1.6))? Will the inclusion of dissipation give rise to unambiguous
solutions?

We derive (see [11]) that the dissipative term, with dissipation
parameter less than some limit value α∗, does not destroy the loop-
like solutions.

Let us consider Eq. (3.1.6) in variables (3.2.1) with v > 0 and
c = 1

zητ + (zzη)η + (z + 1) + αzη = 0. (3.3.9)

We investigated the solution behavior within the neighborhood of
singular points z = 0 where zη → ±∞ and zτ � zη. Therefore in the
investigated equation (3.3.9) we neglect the value z in the brackets
(z + 1), and also omitted the term zτ , to obtain

(zzη)η + 1 + αzη = 0. (3.3.10)
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It is convenient to use the inverse function η = η(z). Taking into
account zη = 1/ηz and zηη = −ηzz/η

3
z , equation (3.3.10) is rewritten

as

−zηzz + η3z + αη2z + ηz = 0.

Introducing the definition q ≡ ηz, this equation can be integrated to
obtain∫

dq

q(q2 + αq + 1)
=

∫
dz

z
.

Depending on the sign of the quantity 1−α2/4, the latter expression
has two different forms. We have introduced the critical value α∗ of
the parameter α defined by

α∗ = 2. (3.3.11)

For α < α∗ (i.e. 1− α2/4 > 0), we get

ln
[z2
q2

(q2+αq+1)
]
= − 2α√

4− α2
tan−1 2q + α√

4− α2
+ln c1, (3.3.12)

and for α > α∗ (i.e. 1− α2/4 < 0), we have

ln
[z2
q2

(q2+αq+1)
]
=

α√
α2 − 4

ln

∣∣∣∣∣2q + α+
√
α2 − 4

2q + α−√
α2 − 4

∣∣∣∣∣+ln c2. (3.3.13)

We analyze the expression (3.3.12). First let us verify the special case
α = 0. We have

z2

q2
(q2 + 1) = c1,

or

z2 +
1

4
(z2)2η = c1.

Hence in the vicinity of z = 0

η + η0 = ±1

2

∫
dz2√
c1 − z2

= ∓
√
c1 − z2.

We arrive at the result given in [41], namely that with the lack of
dissipation α = 0 the integral curves pass over an ellipse at z = 0.
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Now we investigate the case 0 < α < α∗. It is easy to show that
the r.h.s. of (3.3.12) is always bounded for any value q ≡ z−1

η . In the
neighborhood of z = 0 the r.h.s. of relation (3.3.12) is close to the
value

− 2α√
4− α2

tan−1 α√
4− α2

+ ln c1 ≡ ln c3.

Consequently, we arrive at the equation

z2

q2
(q2 + αq + 1) = c3.

Even not integrating this equation, it is easy to show that at z = 0
we must have q = 0 since in general c3 	= 0. This means that at z = 0
the derivatives have the values

ηz = 0, zη = ±∞.

At z = 0 the solution becomes ambiguous.
In the case α > α∗ there is the solution

z = 0, q = ηz 	= 0, zη 	= ±∞.

In fact, at z = 0 we obtain from the r.h.s. of (3.3.13)

q = ηz = − 1
2 (α+

√
α2 − 4) 	= 0. (3.3.14)

Thus, the derivative zη at z = 0 is bounded by a finite value. The
solution is always unambiguous.

Let us consider the solution behavior in the neighborhood of z = 0
as α → α∗. We first consider the case α → α∗ − 0. According
to (3.3.12) the r.h.s. of this equation tends to minus infinity, i.e. at
z ≈ 0 we have q = ηz 	= 0. Consequently, there is no loop-like solution.

When α → α∗+0 there is also a solution with q = ηz 	= 0 at z = 0.
The root q = 0 at z = 0 seems possible in this case since (3.3.13)
transforms to

ln
[z2
q2

(q2 + αq + 1)
]
=

2α

2q + α
+ ln c2, (3.3.15)

However, as appears from (3.3.14), the r.h.s. of the equation (3.3.15)
tends to minus infinity so that q 	= 0 at z = 0. Therefore, in the case
α → α∗ the dissipation destroys the loop-like solutions.
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We have proved the following statement. For values of α < α∗

the inclusion of the dissipative term does not change the loop-like
solutions of equation (3.1.6), while for α ≥ α∗ there is no solution
with an infinite gradient.

The common form of the dissipative term for high-frequency per-
turbations αu (which does not depend on the nature of the exchange
processes) cannot preclude the possibility of a formation of a multi-
valued solution from an initial single-valued profile. In this case there
are infinite gradients in contrast to the profiles of a wave for the low

frequencies when the dissipative term has the form β ∂
2u

∂x2 .

3.3.3 Interpretation of the ambiguous solutions

Now we give a physical interpretation to ambiguous solutions. Since
the solution to the VE has a parametric form (3.2.6), (3.2.7) or (3.2.10),
(3.2.11), there is a space of variables in which the solution is a single-
valued function. Hence, we can solve the problem of the ambiguous
solution. Several states with their thermodynamic parameters can oc-
cupy one microvolume. It is assumed that the interaction between the
separated states occupying one microvolume can be neglected in com-
parison with the interaction between the particles of one thermody-
namic state. Even if we take into account the interaction between the
separated states in accordance with the dynamic state equation (2.1.6)
then, for high frequencies, a dissipative term arises which is similar to
the corresponding term in Eq. (2.2.6), but with the other relaxation
time. In this sense the separated terms are distributed in space, but
describing the wave process we consider them as interpenetratable.
A similar situation, when several components with different hydro-
dynamic parameters occupy one microvolume, has been assumed in
mixture theory (see, for instance [55, 56]). Such a fundamental as-
sumption in the theory of mixtures is physically impossible (see [55],
p.7), but it is appropriate in the sense that separated components are
multi-velocity interpenetratable continua [57].

The KdV and KdVB equations are employed to describe a number
of evolution processes when the low-frequency approach turns out to
be adequate. In these cases thermodynamic parameters of a medium
are close to the equilibrium values, the microvolume state is defined
by one set of thermodynamic values, and the disturbance from the
equilibrium is taken into account by means of an expansion in gradi-
ents [58]. If the low-order expansions within the framework of such
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an approach give rise to an inadequate description, we could take into
account the terms of higher order and as a result consider higher fre-
quencies. For example, if Eq. (3.3.8) has an ambiguous solution (or
discontinuous solution), the improvement of models through adding
higher degree derivatives excludes the ambiguous solutions. So, in the
low-frequency approach, an ambiguity is connected with the incom-
pleteness of the mathematical model.

In contrast to this, in models for the propagation of high-frequency
perturbations, the disturbance from the frozen state is taken into ac-
count by means of an expansion in terms of an integral (see Eq. (3.1.4)
and Eq. (3.1.6)). The integral terms contain the prehistory of the pro-
cess. We have just established that a higher order of expansion (in
particular, the dissipative term) for the high-frequency evolution equa-
tion still allows ambiguous solutions. Consequently, the ambiguity of
solution does not relate to the incompleteness of the mathematical
model, in particular to the lack of dissipation. In addition there is
the space of new independent variables where the solution is a single-
valued function.

Consequently, the following three observations show that, in the
framework of the approach considered here, there are multi-valued so-
lutions when we model high-frequency wave processes: (1) All parts
of the loop-like solution are stable to perturbations. (2) Dissipation
does not destroy the loop-like solutions. (3) The investigation regard-
ing the interaction of the solitons has shown that it is necessary to take
into account the whole ambiguous solution, and not just the separate
parts.

3.4 Appendix

As mentioned in Section 3.2, provided that 0 ≤ A ≤ 1, the real roots
z1, z2 and z3 (with z1 ≤ z2 ≤ z3) of f(z) in (3.2.4) are the roots of
the cubic equation

z3 + 3
2cz

2 − 1
2c

3A = 0. (A.1)

There are several ways of calculating these roots. We note that, as
there is only one independent constant A in (A.1), only one constant
needs to be specified in order to determine the roots. Here we consider
three possible choices of this constant.
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First, note that the trigonometrical solution to a cubic equation
given in Section 52 [108] may be used to show that

z1 = − c

2
+ |c| cos

(
θ + 2π

3

)
, (A.2)

z2 = − c

2
+ |c| cos

(
θ − 2π

3

)
, (A.3)

z3 = − c

2
+ |c| cos

(
θ

3

)
, (A.4)

where

cos θ = sgn(c)(2A− 1). (A.5)

Hence, given A with 0 ≤ A ≤ 1, we can find θ from (A.5) and then
z1, z2 and z3 from (A.2) – (A.4).

Alternatively, by using (A.2) – (A.4) in m = (z3 − z2)/(z3 − z1)
we find that

θ = 3 tan−1

[√
3(1−m)

1 +m

]
. (A.6)

Hence, given m with 0 ≤ m ≤ 1, we can find θ from (A.6) and then
z1, z2 and z3 from (A.2) – (A.4).

Finally, by dividing the trinomial by z − z3, we find that

z2,1 = 1
2

(
−q ±

√
q2 − 4z3q

)
, q: = 3

2
c+ z3. (A.7)

Hence, given z3 with z3 ∈ [0, 0.5] for c = 1 or z3 ∈ [1, 1.5] for c = −1,
we can find z1 and z2 from (A.7).
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Some equations related to the VE

The solution procedure, which was suggested in [41, 42] and used for
the Vakhnenko equation (2.3.2) (see also Section 3.2), can be success-
fully adopted to find implicit periodic and solitary travelling-wave
solutions of the Degasperis–Procesi equation in [69] (see also Sec-
tion 4.2), the Camassa–Holm equation [71] (see also Section 4.3), the
transformed Hirota–Satsuma-type ‘shallow water wave’ equation [72]
and special cases thereof, namely the generalised Vakhnenko equa-
tion and the modified generalised Vakhnenko equation (see also Sec-
tion 4.5), the short-pulse equation [103] (see also Section 4.6) and
other equations. An important feature of the method is that it delivers
solutions in which both the dependent variable and the independent
variable are given in terms of a parameter.

4.1 The peakon b-family equation

Mikhailov and Novikov developed a powerful extension of the symme-
try classification method [59]. Applying this to the equation

ut − utxx + (b+ 1)uux = buxuxx + uuxxx, (4.1.1)

they found that only the cases with parameter b = 2, 3 could possess
infinitely many commuting symmetries, and so only these two cases
are integrable.

In [61] the family of equations was dubbed the ‘peakon b-family’.
The family of equations (4.1.1) with b > 1 was discussed in [60].
Phase portraits were used to categorize travelling-wave solutions. As
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discussed in [62], the family of Eq. (4.1.1) contains only two integrable
equations, namely the dispersionless Camassa–Holm equation (CHE)
for which b = 2 [63]

ut − utxx + 3uux = 2uxuxx + uuxxx, (4.1.2)

and the Degasperis–Procesi equation (DPE) for which b = 3 [64]

ut − utxx + 4uux = 3uxuxx + uuxxx, (4.1.3)

or in equivalent form

(ut + uux)xx = ut + 4uux. (4.1.4)

Originally Eq. (4.1.2) was derived as an equation for shallow water
waves [63]. Later Chen et al. showed that Eq. (4.1.2) can be applied
successfully to describe turbulent flows [65]. Since Hone andWang [73]
revealed the connection of the DPE and the Vakhnenko equation (see
Section (4.1.2)), Eq. (4.1.3) can be used to model wave perturbations
in relaxing media. As proved by Lenells (and it is important from the
physical point of view), the multivalued solutions of the CHE and the
DPE can be the basis for the construction of one-valued solutions [66].

It has been known for some time that the dispersionless Camassa–
Holm equation has a weak solution in the form of a single ‘peakon’ [63]

u(x, t) = v exp(−|x− vt|), (4.1.5)

where v is a constant, and an N -peakon solution [67] that is just a
superposition of peakons, namely

u(x, t) =
N∑
j=1

pj(t) exp(−|x− qj(t)|), (4.1.6)

where the pj(t) and qj(t) satisfy a certain associated dynamical sys-
tem. (A substantial list of references regarding the properties of the
CHE may be found in [66].) More recently Degasperis, Holm and
Hone [62] proved the integrability of the DPE, and showed that the
equation also has single and N -peakon solutions of the form (4.1.5)
and (4.1.6) respectively; the peakon dynamics were discussed and com-
pared with the analogous results for Camassa–Holm peakons.

A classification of travelling-wave solutions of the CHE was given
in [66]. However, explicit solutions were given only for the solitary
peakon and periodic peakon waves. Periodic smooth-hump waves and
periodic cuspon waves were investigated numerically in [68].
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4.1.1 An integrated form of Eq. (4.1.1)

In order to seek travelling-wave solutions to (4.1.1), it is convenient
to introduce a new dependent variable z defined by

z = (u− v)/|v| (4.1.7)

and to assume that z is an implicit or explicit function of η, where η =
x− vt−x0, v and x0 are arbitrary constants, and v 	= 0. Then (4.1.1)
becomes

zzηηη+bzηzηη−(b+1)zzη−bczη = 0, with c = v/|v| = ±1. (4.1.8)

After two integrations (4.1.8) gives

(zzη)
2 = f(z), (4.1.9)

where

f(z) = z4 + 2cz3 +Az2 +Bz3−b, (4.1.10)

and A and B are real constants.
Note that for b > 1, f(z) is a quartic for b = 2 or b = 3 only. This

explains why the technique that was used for the DPE in [69] (see
also Section 4.2) also works for the CHE [71] (see also Section 4.3).

For the case b = 3, when (4.1.1) is the DPE (4.1.3), and for the case
b = 2, when (4.1.1) is the CHE (4.1.2) we will consider the travelling-
wave solutions in Section (4.2) and Section (4.3), respectively.

4.1.2 Connection of the VE with the DPE

Hone and Wang [73] have shown that there is a subtle connection
between the Sawada–Kotera hierarchy and the VE, between the DPE
and the VE, and between the Lax pairs of the DPE and VE. In par-
ticular they noted that the application of the transformations

x → ε̃x− t

3ε̃
, t → ε̃t, u → u− 1

3ε̃2
(4.1.11)

to the DPE (4.1.3), where ε̃ is a real positive constant, results in

((ut + uux)x + u)x = ε̃2(ut + 4uux). (4.1.12)

In the limit ε̃ → 0, (4.1.12) reduces to the derivative of the VE (2.3.2)

(ut + uux)x + u = 0.
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We will refer to (4.1.12) as the transformed DPE (see also Section 4.2.2).

The VE has a loop-like solution, hence the DPE should admit
a loop-like solution. However, it engages our attention that soliton
solutions have not been observed for the DPE recently.

4.2 The Degasperis–Procesi equation

Now we investigate the travelling-wave solutions of the DPE and the
transformed DPE. We show that the solutions are characterized by
two parameters. Hump-like, loop-like and coshoidal periodic-wave
solutions are found; hump-like, loop-like and peakon solitary-wave
solutions are obtained as well [69, 70]. In an appropriate limit the
solutions of the DPE lead to the solutions of the VE.

In Section 4.2.1 we show that, for travelling-wave solutions, the
DPE may be reduced to a first order ODE involving two arbitrary
constants A and B. We show that there are four distinct periodic
solutions corresponding to four different ranges of values of A; for a
given allowed value of A, B is restricted to a range of values. By using
results established in the Appendix to this Chapter (see Section 4.7),
we express the periodic solutions in implicit form; these solutions in-
volve elliptic integrals and Jacobian elliptic functions with parameter
m, where 0 < m < 1. We also investigate the limiting form of these
solutions when m = 1.

In Section 4.2.2 we perform the corresponding analysis for the
transformed DPE. We consider the case for which the first-order ODE
to which the transformed DPE may be reduced involves only a single
integration constant B. We find that there are eight distinct solution
regimes corresponding to four different ranges of values of ε̃2 and to
the two possible directions of propagation. In each case B is restricted
to a range of values. We show that, when ε̃ → 0 in Eq. (4.1.12), the
periodic and solitary-wave solutions to the VE are recovered.

4.2.1 Solutions of the DPE

In this Section we seek travelling-wave solutions of the DPE (4.1.3).
Note that there are no bound stationary solutions of (4.1.3) that are in
the form u = u(x). That being the case, it is convenient to introduce
the new variables z and η as defined in Section 4.1.1. Then (4.1.3)

 EBSCOhost - printed on 2/13/2023 9:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 4. Some equations related to the VE 37

becomes

(zzη)ηη= (4z+ 3c)zη, where c: =
v

|v| = ±1. (4.2.1)

After two integrations, (4.2.1) is reduced to

(zzη)
2 = f(z), (4.2.2)

where f(z) is the polynomial given by (4.1.10) with b = 3. This
polynomial can be written in terms of the roots of the equation f(z) =
0 as follows:

f(z): = z4+2cz3+Az2+B≡ (z−z1)(z−z2)(z3−z)(z4−z), (4.2.3)

where A and B are real constants. For the solutions that we are
seeking, z1, z2, z3 and z4 are real constants with z1 ≤ z2 ≤ z ≤ z3 ≤ z4
and z1 + z2 + z3 + z4 = −2c. Equation (4.2.2) is of the same form as
(A.1) in the Appendix to this Chapter (see Section 4.7) with ε = 1.
Hence we can make use of the solutions given in the Appendix, but
with ε = 1.

Note that (4.2.1) is invariant under the transformation z → −z,
c → −c; this corresponds to the transformation u → −u, v → −v.
Here we will seek the family of solutions of (4.2.1) for which v > 0
and so, from here on in this Section, we set c = 1.

For convenience we define g(z) and h(z) by

f(z) = z2g(z) +B, where g(z): = z2 + 2z +A, (4.2.4)

and

f ′(z) = 2zh(z), where h(z): = 2z2 + 3z +A, (4.2.5)

and define zL, zU , BL and BU by

zL: =− 1

4
(3 +

√
9− 8A ), zU: =− 1

4
(3−√

9− 8A ), (4.2.6)

A2

4

9A

8
BL: =−z2Lg(zL) =−+

27

32
+

1

32
(9− 8A)

√
9− 8A , (4.2.7)

A2

4

9A

8
BU: =−z2U g(zU ) =−+

27

32
− 1

32
(9−8A)

√
9− 8A ; (4.2.8)

zL and zU are the roots of h(z) = 0.
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Provided A is non-zero and is such that A < 9
8 , f(z) has three

distinct stationary points that occur at z = zL, z = zU and z = 0,
and comprise two minimums separated by a maximum. Four cases
are possible for the polynomial f(z) corresponding to different ranges
of values of A (see Fig. 4.1). In this case (4.2.2) has periodic and
solitary-wave solutions that have different analytical forms depending
on the values of A and B as described in Sections 4.2.1 a–d as follows.

( )a ( )b

( )c ( )d

f f

f
f

z z

z z

A<0 0< <1A

A=1 1< <9/8A

Figure 4.1: Four possible cases for the polynomial f(z).

4.2.1 a. A < 0

In this case zL < 0 < zU with f(zL) < f(zU ); see Fig. 4.1(a), where
the lower and upper curves correspond to B = 0 and B = BU , respec-
tively. For each value of A satisfying A < 0 there are periodic inverted
loop solutions to (4.2.2) given by (A.5) and (A.7) with 0 < B < BU so
that 0 < m < 1, and with wavelength given by (A.8); see Fig. 4.2(a)
for an example.
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Figure 4.2: Periodic solutions of the DPE with 0 < m < 1: (a)
A = −27, B = 0.75BU so m = 0.842, λ = 0.466; (b) A = 15/16,
B = 0.5BU so m = 0.746, λ = 3.941; (c) A = 1, B = 0.5BU = −1/32
so m = 0.746, λ = 5.038; (d) A = 135/128, B = 0.5(BU + BL) so
m = 0.729, λ = 6.140.

B = BU corresponds to the limit z3 = z4 = zU so that m = 1, and
then the solution is an inverted loop-like solitary wave given by (A.9)
with z2 ≤ z < zU and

z1 = −1

4

(
1 +

√
9− 8A

)
− 1

2

√
1 +

√
9− 8A , (4.2.9)

z2 = −1

4

(
1 +

√
9− 8A

)
+

1

2

√
1 +

√
9− 8A ; (4.2.10)

see Fig. 4.3(a) for an example. Note that z2 → 0 and zU → 0 as
A → 0. The amplitude zU − z2 of the solitary wave increases from 0
as |A| increases from 0.

The loop-like nature of the solitary wave is due to the fact that
z = 0 is in the range z2 ≤ z < zU . For small z, (4.2.2) gives zη �
±√

BU/z and so |zη| → ∞ as z → 0. It follows that the solution
curve (see Fig. 4.3(a) for example) is normal to the η axis at the
points (∓W/2, 0), where W is the maximum width of the loop; from
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Figure 4.3: Solutions of the DPE with m = 1: (a) A = −27, B = BU ,
W = 0.788; (b) A = 15/16, B = 0, λ = 4.127; (c) A = 1, B = 0; (d)
A = 135/128, B = BL.

(A.9), W is given by

W = 4 tanh−1

(√
z2
z1

)
− 2zU

p
tanh−1

(√
z2
nz1

)
. (4.2.11)

W increases from 0 as |A| increases from 0. Near the points (∓W/2, 0)
the loop is approximately parabolic and given by

z2 � 2
√
BU

(
W

2
± η

)
. (4.2.12)

4.2.1 b. 0 < A < 1

In this case zL < zU < 0 with f(zL) < f(0); see Fig. 4.1(b), where
the lower and upper curves correspond to B = BU and B = 0, respec-
tively. For each value of A satisfying 0 < A < 1 there are periodic
hump solutions to (4.2.2) given by (A.5) and (A.7) with BU < B < 0
so that 0 < m < 1, and with wavelength given by (A.8); see Fig. 4.2(b)
for an example.
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B = 0 corresponds to the limit z3 = z4 = 0 so that m = 1, and
then the solution has z2 ≤ z ≤ 0 and is given by (A.9) with z1 and z2
given by the roots of g(z) = 0, namely

z1 = −1−√
1−A , z2 = −1 +

√
1−A . (4.2.13)

In this case we obtain a weak solution, namely the periodic upward
spike

z = z(η−2jηm), (2j−1)ηm ≤ η ≤ (2j+1)ηm, j = 0,±1,±2, . . . ,

(4.2.14)

√
1−A cosh η (4.2.15)

where

z(η): = [z2−z1 tanh
2(η/2)] cosh2(η/2)≡−1+

and

ηm = 2 tanh−1

(√
z2
z1

)
≡ cosh−1

(
1√

1−A

)
; (4.2.16)

see Fig. 4.3(b) for an example. (4.2.16) is similar in form to the
spatially periodic solution of the Camassa–Holm equation that has
been dubbed a ‘coshoidal wave’ by Boyd [109]. Note that z2 → 0 and
ηm → 0 as A → 0, and that z2 → −1 and ηm → ∞ as A → 1. Hence
the amplitude |z2| of the coshoidal wave (4.2.16) increases from 0 to 1
as A increases from 0 to 1, and its wavelength λ: = 2ηm increases from 0
to infinity.

4.2.1 c. A = 1

In this case zL < zU < 0 with f(zL) = f(0); see Fig. 4.1(c), where
the lower and upper curves correspond to B = BU and B = 0, respec-
tively. For A = 1 there are periodic hump solutions to (4.2.2) given
by (A.11) and (A.12) with BU < B < 0 so that 0 < m < 1, where
BU = −1/16, and with wavelength given by (A.13); see Fig. 4.2(c) for
an example. An alternative solution is given by (A.5) and (A.7); this
is just the former solution phase-shifted by λ/2.

B = 0 corresponds to the limit z1 = z2 = zL = −1 and z3 =
z4 = 0. In this case neither (A.9) nor (A.14) is appropriate. Instead
we consider (4.2.2) with f(z) = z2(z + 1)2 and note that the bound
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solution has −1 < z ≤ 0. On integrating (4.2.2) and setting z = 0 at
η = 0 we obtain the weak solution

z = e−|η| − 1, (4.2.17)

i.e. a single peakon with amplitude 1; see Fig. 4.3(c). In terms of the
original dependent variable u, (4.2.17) is equivalent to (4.1.5) with
v > 0.

4.2.1 d. 1 < A < 9/8

In this case zL < zU < 0 with f(zL) > f(0); see Fig. 4.1(d), where
the lower and upper curves correspond to B = BU and B = BL,
respectively. For each value of A satisfying 1 < A < 9

8 there are
periodic hump solutions to (4.2.2) given by (A.11) and (A.12) with
BU < B < BL so that 0 < m < 1, and with wavelength given by
(A.13); see Fig. 4.2(d) for an example.

B = BL corresponds to the limit z1 = z2 = zL so that m = 1, and
then the solution is a hump-like solitary wave given by (A.14) with
zL < z ≤ z3 and

z3 = −1

4

(
1−√

9− 8A
)
− 1

2

√
1−√

9− 8A , (4.2.18)

z4 = −1

4

(
1−√

9− 8A
)
+

1

2

√
1−√

9− 8A ; (4.2.19)

see Fig. 4.3(d) for an example. Note that zL → −1 and z3 → 0 as
A → 1, and that zL → −3/4 and z3 → −3/4 as A → 9/8. The
amplitude z3 − zL of the solitary wave decreases from 1 to 0 as A
increases from 1 to 9/8.

4.2.2 Solutions of the transformed DPE

In this Section we seek travelling-wave solutions of the transformed
DPE (4.1.12). Note that there are no bound stationary solutions of
(4.1.12) that are in the form u = u(x). That being the case, it is
convenient to introduce a new dependent variable z defined by

z = (u− v)/|v| (4.2.20)

and to assume that z is an implicit or explicit function of η, where

η = (x− vt− x0)/|v|1/2, (4.2.21)
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v and x0 are arbitrary constants, and v 	= 0. Then, with ε = ε̃|v|1/2,
(4.1.12) becomes(

(zzη)η+z+c
)
η
= ε2(4z+3c)zη, where c: =

v

|v| = ±1. (4.2.22)

After one integration (4.2.22) gives

(zzη)η + z + c = ε2(2z2 + 3cz) + c1 , (4.2.23)

where c1 is an arbitrary real constant. Note that, in terms of z and
η, the VE (2.3.2) becomes (3.2.3), namely

(zzη)η + z + c = 0. (4.2.24)

The solitary-wave solution to (4.2.24) is such that zη → 0, zηη → 0
and z + c → 0, as |η| → ∞. We choose c1 in (4.2.23) so that these
conditions are satisfied. Accordingly, here we restrict attention to
the particular case in which c1 = c2ε2. Then, after one integration,
(4.2.23) gives

(zzη)
2 = ε2f(z), (4.2.25)

where

f(z): = z4− 2

3ε2
(1− 3cε2)z3 − c

ε2
(1− cε2)z2 +B ≡ (4.2.26)

≡ (z − z1)(z − z2)(z3 − z)(z4 − z)

and B is a real constant. For the solutions that we are seeking, z1,
z2, z3 and z4 are real constants with z1 ≤ z2 ≤ z ≤ z3 ≤ z4. Equation
(4.2.25) is of the same form as (A.1) in the Appendix to this Chapter
(see Section 4.7). Hence we can make use of the solutions given in the
Appendix.

For convenience we define g(z) and h(z) by

f(z) = z2g(z)+B, where g(z) := z2− 2

3ε2
(1−3cε2)z− c

ε2
(1−cε2),

(4.2.27)and

f ′(z) = 2zh(z), where h(z) := 2z2− 1

ε2
(1−3cε2)z− c

ε2
(1−cε2),

(4.2.28)
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and define zL, zU , BL and BU by

zL: =−c, zU: =
1

2ε2
(1− cε2) , (4.2.29)

BL: =−z2Lg(zL) =
c

3ε2
, (4.2.30)

BU: =−z2U g(zU ) =
1

48ε8
(1 + 3cε2)(1− cε2)3; (4.2.31)

zL and zU are the roots of h(z) = 0.
Provided that ε2 > 0 and ε2 	= 1, f(z) has three distinct station-

ary points that occur at z = zL, z = zU and z = 0, and comprise two
minimums separated by a maximum. In this case (4.2.25) has peri-
odic and solitary-wave solutions that have different analytical forms
depending on the values of ε2 and B as described in Sections 4.4.2
a–h as follows.

4.2.2 a. c = 1, ε2 > 1

In this case zL < zU < 0 with f(zL) < f(0). For each value of ε2

satisfying ε2 > 1 there are periodic hump solutions to (4.2.25) given
by (A.5) and (A.7) with BU < B < 0 so that 0 < m < 1, and with
wavelength given by (A.8); see Fig. 4.4(a) for an example.

B = 0 corresponds to the limit z3 = z4 = 0 so that m = 1, and
then the solution has z2 ≤ z ≤ 0 and is given by (A.9) with z1 and z2
given by the roots of g(z) = 0, where g is defined in (4.2.27), namely

z1 =
1

3ε2

(
1− 3ε2 −

√
1 + 3ε2

)
, z2 =

1

3ε2

(
1− 3ε2 +

√
1 + 3ε2

)
.

(4.2.32)

In this case we obtain a weak solution, namely the coshoidal wave

z = z(η−2jηm), (2j−1)ηm ≤ η ≤ (2j+1)ηm, j = 0,±1,±2, . . . ,

(4.2.33)

where

z(η): = [z2− z1 tanh
2(εη/2)] cosh2(εη/2)≡ (4.2.34)
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Figure 4.4: Periodic solutions of the transformed DPE with c = 1 and
0 < m < 1: (a) ε2 = 8, B = 0.25BU so m = 0.869, λ = 1.507; (b)
ε2 = 1/2, B = 0.6BU so m = 0.730, λ = 0.458; (c) ε2 = 1/3, B = 0.75
so m = 0.928, λ = 4.562; (d) ε2 = 1/4, B = 0.75BL so m = 0.842,
λ = 0.932.

≡ 1

3ε2

(
1− 3ε2 +

√
1 + 3ε2 cosh(εη)

)
and

ηm =
2

ε
tanh−1

(√
z2
z1

)
≡ 1

ε
cosh−1

(
3ε2 − 1√
1 + 3ε2

)
; (4.2.35)

3

see Fig. 4.5(a) for an example. Note that z2 → 0 as ε2 → 1, and
that z2 → −1 as ε2 → ∞. Hence the amplitude |z2| of the coshoidal
wave increases from 0 to 1 as ε2 increases from 1 to infinity. As ε2

increases from 1, the wavelength λ: = 2ηm increases from 0, reaches a
maximum value of 1.827 at ε2= 2.769, and then decreases to 0 as ε2→
∞.

4.2.2 b. c = 1, 1/3 < ε2 < 1

In this case zL < 0 < zU with f(zL) < f(zU ). For each value of

ε2 satisfying 1 < ε2 < 1 there are periodic inverted loop solutions to
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Figure 4.5: Solutions of the transformed DPE with c = 1 and m = 1:
(a) ε2 = 8, B = 0, λ = 1.561; (b) ε2 = 1/2, B = BU , W = 0.818; (c)
ε2 = 1/3, B = 1; (d) ε2 = 1/4, B = BL, W = 1.577.

(4.2.25) given by (A.5) and (A.7) with 0 < B < BU so that 0 < m < 1,
and with wavelength given by (A.8); see Fig. 4.4(b) for an example.

B = BU corresponds to the limit z3 = z4 = zU so that m = 1, and
then the solution is an inverted loop-like solitary wave given by (A.9)
with z2 ≤ z < zU and

z1 =
1

6ε2

(
−1− 3ε2 −

√
2(9ε4 − 1)

)
, (4.2.36)

z2 =
1

6ε2

(
−1− 3ε2 +

√
2(9ε4 − 1)

)
;

see Fig. 4.5(b) for an example. The maximum width W of the loop is

W =
1

ε

[
4 tanh−1

(√
z2
z1

)
− 2zU

p
tanh−1

(√
z2
nz1

)]
. (4.2.37)

Note that z2 → 0 and zU → 0 as ε2 → 1, and that z2 → −1 and
zU → 1 as ε2 → 1

3 . As ε2 decreases from 1 to 1
3 , the amplitude

zU − z2 of the solitary wave increases from 0 to 2, and W increases
from 0 to infinity.
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4.2.2 c. c = 1, ε2 = 1/3

In this case zL < 0 < zU with f(zL) = f(zU ). The z3 term in the
expression for f(z) given by (4.2.26) is not present and hence f(z) is
even so that, for 0 < B < 1 (with BU = BL = 1), z1 = −z4 and
z2 = −z3. Then from the definition of m in (A.6) and the definitions
of n in (A.5) or (A.11) we obtain the relation

m+ n2 − 2n = 0. (4.2.38)

With (4.2.38), the results 141.01 and 414.01 in [44] may be used to
show that λ given by (A.8) or (A.13) is zero, and hence that η given by
(A.7) or (A.12) is periodic in w with period 2K, where K: = K(m) and
K(m) is the complete elliptic integral of the first k ind. It follows that,
for each value of B such that 0 < B < 1, the solution to (4.2.25) given
by (A.5) and (A.7), or by (A.11) and (A.12), is just a closed curve
around the origin in the z-η plane. This curve is symmetrical with
respect to z and η and has infinite slope at the two points where z = 0.
A periodic bell solution to (4.2.25), with wavelength λ: = 4η(3K/2),
may be constructed in parametric form as follows:

z = z(w) (4.2.39)

η =

{
η(w) + (2 + 4j)η(3K/2),−K/2 + 2jK ≤ w ≤ K/2 + 2jK

η(w) + 4jη(3K/2), K/2 + 2jK ≤ w ≤ 3K/2 + 2jK

(4.2.40)

where z(w) and η(w) are given by (A.5) and (A.7) respectively, and
j = 0,±1,±2, . . . ; see Fig. 4.4(c) for an example.

B = BL = BU = 1 corresponds to the limit z1 = z2 = zL = −1
and z3 = z4 = zU = 1. In this case neither (A.9) nor (A.14) is
appropriate. Instead we consider (4.2.25) with f(z) = (z+1)2(1−z)2

and note that the bound solutions have −1 < z < 1. On integrating
(4.2.25) and setting z = 0 at η = 0 we find that there are two such
solutions, namely the kink-like solitary waves

z =

⎧⎪⎨⎪⎩
+
√
1− exp(−2|η|/√3 ), η < 0,

−
√
1− exp(−2|η|/√3 ), η > 0,

(4.2.41)
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and

z =

⎧⎪⎨⎪⎩
−
√

1− exp(−2|η|/√3 ), η < 0,

+
√
1− exp(−2|η|/√3 ), η > 0;

(4.2.42)

see Fig. 4.5(c) in which the solid and dashed curves correspond to
(4.2.41) and (4.2.42) respectively.

4.2.2 d. c = 1, 0 < ε2 < 1/3

In this case zL < 0 < zU with f(zU ) < f(zL). For each value of ε2

satisfying 0 < ε2 < 1
3 there are periodic loop solutions to (4.2.25)

given by (A.11) and (A.12) with 0 < B < BL so that 0 < m < 1,
and with wavelength given by (A.13); see Fig. 4.4(d) for an example.
For a given choice of B, it is easy to verify numerically that, as ε2

is made ever smaller (but finite), the aforementioned solution tends
to the solution given by (3.2.10) and (3.2.11) with 1

3c
3A = ε2B in

(3.2.4); in other words the periodic loop solution of the VE for the
case v > 0 is recovered in the limit ε2 → 0.

B = BL corresponds to the limit z1 = z2 = zL = −1 so that
m = 1, and then the solution is a loop-like solitary wave given by
(A.14) with −1 < z ≤ z3 and

z3 =
1

3ε2

(
1−

√
1− 3ε2

)
, z4 =

1

3ε2

(
1 +

√
1− 3ε2

)
; (4.2.43)

see Fig. 4.5(d) for an example. The maximum width W of the loop is

W =
1

ε

[
4 tanh−1

(√
z3
z4

)
− 2

p
tanh−1

(√
z3
nz4

)]
. (4.2.44)

In the limit ε2 → 0, it is straightforward to show analytically that
the solitary-wave solution reduces to (3.2.13) and that (4.2.44) reduces
to (3.2.15); hence, as expected, the loop-like solitary-wave solution of
the VE for the case v > 0 is recovered.

As ε2 increases from 0 to 1/3, the amplitude z3 +1 of the solitary
wave increases from 3/2 to 2, and W increases from the value given
by (3.2.15), namely 0.8302, to infinity.
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4.2.2 e. c = −1, 0 < ε2 < 1/3

In this case 0 < zL < zU with f(0) > f(zU ). For each value of ε2

satisfying 0 < ε2 < 1/3/ there are periodic well solutions to (4.2.25)
given by (A.11) and (A.12) with BL < B < 0 so that 0 < m < 1,
and with wavelength given by (A.13); see Fig. 4.6(a) for an example.
For a given choice of B, it is easy to verify numerically that, as ε2

is made ever smaller (but finite), the aforementioned solution tends
to the solution given by (3.2.10) and (3.2.11) with 1

3c
3A = ε2B in

(3.2.4); in other words the periodic well solution of the VE for the
case v < 0 is recovered in the limit ε2 → 0.

Figure 4.6: Periodic solutions of the transformed DPE with c = −1
and 0 < m < 1: (a) ε2 = 1/4, B = 0.25BL so m = 0.842, λ = 7.600;
(b) ε2 = 1/3, B = 0.25BL = −0.25 so m = 0.928, λ = 9.809; (c)
ε2 = 1/2, B = 0.25BL + 0.75BU so m = 0.803, λ = 11.103; (d)
ε2 = 8, B = 0.25BU + 0.75BL so m = 0.869, λ = 2.258.

B = 0 corresponds to the limit z1 = z2 = 0 so that m = 1, and
then the solution has 0 ≤ z ≤ z3 and is given by (A.14) with z3 and z4
given by the roots of g(z) = 0, where g is defined in (4.2.27), namely

z3 =
1

3ε2

(
1 + 3ε2 −

√
1− 3ε2

)
, z4 =

1

3ε2

(
1 + 3ε2 +

√
1− 3ε2

)
.

(4.2.4
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In this case we obtain a weak solution, namely the inverted coshoidal
wave

z = z(η−2jηm), (2j−1)ηm ≤ η ≤ (2j+1)ηm, j = 0,±1,±2, . . . ,

(4.2.46)

where

z(η): = [z3− z4 tanh
2(εη/2)] cosh2(εη/2)≡ (4.2.47)

≡ 1

3ε2

(
1 + 3ε2 −

√
1− 3ε2 cosh(εη)

)
and

ηm =
2

ε
tanh−1

(√
z3
z4

)
≡ 1

ε
cosh−1

(
3ε2 + 1√
1− 3ε2

)
; (4.2.48)

see Fig. 4.7(a) for an example.
In the limit ε2 → 0, it is straightforward to show analytically that

the inverted coshoidal-wave solution (4.2.46) reduces, as expected, to
the inverted paraboidal-wave solution (3.2.18) of the VE for the case
v < 0.

As ε2 increases from 0 to 1
3 , the amplitude z3 of the coshoidal wave

increases from 3
2 to 2, and its wavelength λ:= 2ηm increases from 6

to infinity.

4.2.2 f. c = −1, ε2 = 1/3

In this case 0 < zL < zU with f(0) = f(zU ). With BL < B < 0 so
that 0 < m < 1, where BL = −1, there are periodic well solutions to
(4.2.25) given by (A.5) and (A.7), with wavelength given by (A.8); see
Fig. 4.6(b) for an example. An alternative solution is given by (A.11)
and (A.12); this is just the former solution phase-shifted by λ/2.

B = 0 corresponds to the limit z1 = z2 = 0 and z3 = z4 = zU =
2. In this case neither (A.9) nor (A.14) is appropriate. Instead we
consider (4.2.25) with f(z) = z2(2 − z)2 and note that the bound
solution has 0 ≤ z < 2. On integrating (4.2.25) and setting z = 0 at
η = 0 we obtain the weak solution

z = 2(1− exp[−|η|/
√
3 ] ), (4.2.49)

i.e. a single inverted peakon with amplitude 2; see Fig. 4.7(b).
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Figure 4.7: Solutions of the transformed DPE with c = −1 andm = 1:
(a) ε2 = 1/4, B = 0, λ = 7.699; (b) ε2 = 1/3, B = 0; (c) ε2 = 1/2,
B = BU ; (d) ε

2 = 8, B = BL.

4.2.2 g. c = −1, 1/3 < ε2 < 1

In this case 0 < zL < zU with f(0) < f(zU ). For each value of ε2

satisfying 1/3 < ε2 < 1 there are periodic well solutions to (4.2.25)
given by (A.5) and (A.7) with BL < B < BU so that 0 < m < 1, and
with wavelength given by (A.8); see Fig. 4.6(c) for an example.

B = BU corresponds to the limit z3 = z4 = zU so that m = 1,
and then the solution is a well-like solitary wave given by (A.9) with
z2 ≤ z < zU and

z1 =
1

6ε2

(
−1 + 3ε2 −

√
2(9ε4 − 1)

)
, (4.2.50)

z2 =
1

6ε2

(
−1 + 3ε2 +

√
2(9ε4 − 1)

)
;

see Fig. 4.7(c) for an example. Note that z2 → 1 and zU → 1 as
ε2 → 1, and that z2 → 0 and zU → 2 as ε2 → 1/3. As ε2 decreases
from 1 to 1/3, the amplitude zU − z2 of the solitary wave increases
from 0 to 2.
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4.2.2 h. c = −1, ε2 > 1

In this case 0 < zU < zL with f(0) < f(zL). For each value of ε2

satisfying ε2 > 1 there are periodic well solutions to (4.2.25) given by
(A.5) and (A.7) with BU < B < BL so that 0 < m < 1, and with
wavelength given by (A.8); see Fig. 4.6(d) for an example.

B = BL corresponds to the limit z3 = z4 = zL = 1 so that m = 1,
and then the solution is a well-like solitary wave given by (A.9) with
z2 ≤ z < zL and

z1 =
1

3ε2

(
1−

√
1 + 3ε2

)
, z2 =

1

3ε2

(
1 +

√
1 + 3ε2

)
; (4.2.51)

see Fig. 4.7(d) for an example. Note that z2 → 1 as ε2 → 1, and that
z2 → 0 as ε2 → ∞. As ε2 increases from 1 to infinity, the amplitude
1− z2 of the solitary wave increases from 0 to 1.

4.2.3 Summary

We have found expressions for the travelling-wave solutions to the
DPE that travel in the positive x-direction with speed v. These so-
lutions depend, in effect, on two parameters A and m. In addition
to the expected single peakon solution (with A = 1, m = 1) there
are inverted loop-like (A < 0, m = 1) and hump-like (1 < A < 9/8,
m = 1) solitary-wave solutions. For 0 < m < 1 there are periodic
inverted loop (A < 0) and periodic hump (0 < A < 9/8) solutions.
For m = 1 and 0 < A < 1 there are (periodic) coshoidal solutions. For
each of the aforementioned solutions expressed with u as the depen-
dent variable, there is a solution for u that is the mirror image in the
x-axis and travels with the same speed but in the opposite direction.

We have also found expressions for the travelling-wave solutions
to the transformed DPE. These solutions depend, in effect, on two
parameters ε2 and m, and also on the direction of propagation.

For propagation in the positive x-direction there are inverted loop-
like (1/3 < ε2 < 1, m = 1), kink-like (ε2 = 1/3, m = 1) and loop-like
(0 < ε2 < 1/3, m = 1) solitary-wave solutions. For 0 < m < 1 there
are periodic hump (ε2 > 1), periodic inverted-loop (1/3 < ε2 < 1),
periodic bell (ε2 = 1/3) and periodic loop (0 < ε2 < 1/3) solutions.
For m = 1 and ε2 > 1 there are (periodic) coshoidal solutions. In the
limit ε2 → 0, the periodic loop solutions (0 < m < 1) and loop-like
solitary-wave solutions (m = 1) to the VE are recovered.
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For propagation in the negative x-direction there are inverted
peakon (ε2 = 1/3, m = 1) and well-like (1/3 < ε2 < 1 and ε2 > 1,
m = 1) solitary-wave solutions. For 0 < m < 1 there are periodic well
(0 < ε2 < 1 and ε2 > 1) solutions. For m = 1 and 0 < ε2 < 1/3 there
are (periodic) inverted coshoidal solutions. In the limit ε2 → 0, the
periodic well solutions (0 < m < 1) and (periodic) inverted paraboidal
solutions (m = 1) to the VE are recovered.

4.3 The Camassa–Holm equation

A classification o f t ravelling-wave s olutions o f t he C HE w as given
in [66]. However, explicit solutions were given only for the solitary
peakon and periodic peakon waves. Periodic smooth-hump waves and
periodic cuspon waves were investigated numerically in [68].

Using a technique similar to the one we presented in [69] for the
DPE, we obtain explicit travelling-wave solutions of the CHE (4.1.2)

ut − utxx + 3uux = 2uxuxx + uuxxx

for both periodic and solitary smooth-hump, smooth-well, peakon,
inverted-peakon, cuspon and inverted-cuspon waves [71].

4.3.1 Explicit travelling-wave solutions of the CHE

In terms of the new variables z and η for travelling-wave solutions as
defined in Section 4.1.1, the CHE (4.1.2) has the form

zzηηη+2zηzηη−3zzη−2czη= 0, where c: = v/|v|=±1. (4.3.1)

After two integrations, (4.3.1) is reduced to

(zzη)
2 = f(z), (4.3.2)

where f(z) is the polynomial given by (4.1.9) with b = 2. This poly-
nomial can be written in terms of the roots of the equation f(z) = 0
as follows:

f(z): = z4+2cz3+Az2+Bz≡ (z−z1)(z−z2)(z3−z)(z4−z). (4.3.3)

For the solutions of (4.3.2) that we are seeking, z1, z2, z3 and z4 are
real constants with z1 ≤ z2 ≤ z ≤ z3 ≤ z4 and z1+z2+z3+z4 = −2c.
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From (4.3.3) it can be seen that one of z1, z2, z3 and z4 is always
zero. We let the other three be q, r and s, where s ≤ r ≤ q and
s = −q − r − 2c. The types of solution to (4.3.2) may be categorized
by an appropriate choice of the two parameters q and r. In [66, 68]
the two parameters that were used, namely M and m in the notation
of [66, 68], are equivalent to q + c and r + c respectively.

Equation (4.3.2) is of the same form as (A.1) in the Appendix to
this Chapter (see Section 4.7) with ε = 1. Hence we can make use
of the solutions given in the Appendix, but with ε = 1. Note that
(4.3.2) is invariant under the transformation z → −z, c → −c; this
corresponds to the transformation u → −u, v → −v in (4.1.7). Here
we will seek the family of solutions of (4.3.2) for which v > 0 in (4.1.7)
and so, from here on in this Section, we will assume that c = 1.

4.3.1 a. z4 = 0: Periodic smooth hump with v > 0

Suppose z4 = 0 so that z1 = s, z2 = r and z3 = q. Consider the case
z1 < z2 < z3 < 0 so that

−q − r − 2c < r < q < 0. (4.3.4)

(This is equivalent to the case considered numerically in Section 4.1
of [68].) The solution to (4.3.2) is a periodic hump given by (A.5)
and (A.7), or (A.11) and (A.12), with r ≤ z ≤ q and 0 < m < 1; see
Fig. 4.8 for an example given by (A.5) and (A.7).

Figure 4.8: Periodic smooth hump solution of the CHE with r = −0.7,
q = −0.3 and v > 0.
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4.3.1 b. z4 = 0: Solitary smooth hump with v > 0

In Section 4.3.1 a, consider the limit z1 = z2 so that we have m = 1
and z1 = z2 < z3 < 0. In this case

−c < r < −2

3
c, q = −2(r + c). (4.3.5)

The solution to (4.3.2) is a smooth-hump solitary wave given by (A.14)
with r < z ≤ −2(r + c); see Fig. 4.9 for an example.

Figure 4.9: Solitary smooth hump solution of the CHE with r = −0.9,
q = −0.2 and v > 0.

4.3.1 c. z4 = 0: Periodic peakon with v > 0

In Section 4.3.1 a, consider the limit z3 = z4 so that we have m = 1
and z1 < z2 < z3 = 0. In this case

−c < r < 0, q = 0. (4.3.6)

The solution to (4.3.2) is given by (A.9) and has r ≤ z ≤ 0. From this
we can construct a weak solution, namely the periodic peakon wave
given by

z = z(η−2jηm), (2j−1)ηm ≤ η ≤ (2j+1)ηm, j = 0,±1,±2, . . . ,

(4.3.7)
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where

z(η): = [z2−z1 tanh
2(η/2)] cosh2(η/2) =−c+(r+c) cosh η (4.3.8)

and

ηm: = 2 tanh−1

(√
z2
z1

)
= 2 tanh−1

(√ −r

r + 2c

)
; (4.3.9)

see Fig. 4.10 for an example. The solution given by (4.3.7)–(4.3.9) is
the spatially periodic solution of the CHE that has been dubbed a
‘coshoidal wave’ by Boyd [109].

Figure 4.10: Periodic peakon solution of the CHE with r = −0.9,
q = 0 and v > 0.

4.3.1 d. z4 = 0: Solitary peakon with v > 0

In Section 4.3.1 a, consider the limit z1 = z2 and z3 = z4 so that we
have z1 = z2 < z3 = 0 and then

r = −c, q = 0. (4.3.10)

In this case neither (A.9) nor (A.14) is appropriate. Instead we con-
sider (4.3.2) with f(z) = z2(z + c)2 and note that the bound solution
has −c < z ≤ 0. On integrating (4.3.2) and setting z = 0 at η = 0 we
obtain the weak solution

z = c(e−|η| − 1), (4.3.11)

i.e. a solitary peakon with amplitude c; see Fig. 4.11.
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Figure 4.11: Solitary peakon solution of the CHE with r = −1, q = 0
and v > 0.

4.3.1 e. z3 = 0: Periodic cuspon with v > 0

Suppose z3 = 0 so that z1 = s, z2 = r and z4 = q. First let us consider
the case z1 < z2 < 0 < z4 so that

−q − r − 2c < r < 0 < q. (4.3.12)

(This is equivalent to the case considered numerically in Section 4.2
of [68].) The solution to (4.3.2) is a periodic cuspon given by (A.5)
and (A.7), or (A.11) and (A.12), with r ≤ z ≤ 0 and 0 < m < 1; see
Fig. 4.12 for an example given by (A.11) and (A.12).

4.3.1 f. z3 = 0: Solitary cuspon with v > 0

In Section 4.3.1 e, consider the limit z1 = z2 so that we have m = 1
and z1 = z2 < 0 < z4. In this case

r < −c, q = −2(r + c). (4.3.13)

The solution to (4.3.2) is a solitary cuspon given by (A.14) with r <
z ≤ 0; see Fig. 4.13 for an example.

4.3.1 g. z2 = 0: Periodic inverted cuspon with v > 0

Suppose z2 = 0 so that z1 = s, z3 = r and z4 = q. First let us consider
the case z1 < 0 < z3 < z4 so that

−q − r − 2c < 0 < r < q. (4.3.14)
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Figure 4.12: Periodic cuspon solution of the CHE with r = −1, q = 0.1
and v > 0.

The solution to (4.3.2) is a periodic inverted cuspon given by (A.5)
and (A.7), or (A.11) and (A.12), with 0 ≤ z ≤ r and 0 < m < 1; see
Fig. 4.14 for an example given by (A.5) and (A.7).

4.3.1 h. z2 = 0: Solitary inverted cuspon with v > 0

In Section 4.3.1 g, consider the limit z3 = z4 so that we have m = 1
and z1 < 0 < z3 = z4. In this case

0 < r = q. (4.3.15)

The solution to (4.3.2) is a solitary inverted cuspon given by (A.9)
with 0 ≤ z < r; see Fig. 4.15 for an example.

4.3.1 i. z1 = 0 and v > 0

In this case z2 + z3 + z4 > 0 and so the condition z2 + z3 + z4 = −2c
cannot be satisfied. Hence there are no solutions with z1 = 0.

4.3.2 Further comments

In Sections 4.3.1 a – 4.3.1 h we have found explicit expressions for eight
different travelling-wave solutions to the CHE that travel in the posi-
tive x-direction with speed v, i.e. with v > 0. These solutions depend
on two parameters q and r. For each of the aforementioned solutions
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Figure 4.13: Solitary cuspon solution of the CHE with r = −1.3,
q = 0.6 and v > 0.

expressed with u as the dependent variable, there is a solution for u
that is the mirror image in the x-axis and travels with the same speed
but in the opposite direction, i.e. with v < 0. For example, the mirror
image of categories 4.3.1 b and 4.3.1 e respectively are solitary smooth
wells with v < 0 and periodic inverted cuspons with v < 0.

In Theorem 1 in [66], Lenells categorized travelling-wave solu-
tions to the CHE. His categories (a) – (d) correspond to our cate-
gories 4.3.1 a – 4.3.1 d. His category (e), i.e. periodic cuspons, cor-
respond to our category 4.3.1 e, i.e. periodic cuspons with v > 0,
together with the mirror image of our category 4.3.1 g, i.e. periodic
cuspons with v < 0. His category (f), i.e. solitary cuspons, correspond
to our category 4.3.1 f, i.e. solitary cuspons with v > 0, together with
the mirror image of our category 4.3.1 h, i.e. solitary cuspons with
v < 0. His categories (a′) – (f ′) are the mirror images of his categories
(a) – (f) respectively.

In Section 4.2 (see also [69]), we investigated the DPE. As is the
case for the CHE, for v > 0 we found explicit expressions for smooth-
hump and peakon solitary waves and their periodic equivalents. Un-
like the CHE, for which we have found cuspon and inverted-cuspon
solutions, we showed in Section 4.2 that the DPE has inverted loop-
like solutions instead. However, it should be noted that it is possible
to construct other explicit solutions for the DPE as composite waves
by using the results in Section 4.2. Some examples are given in Ap-
pendix B in [71].
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Figure 4.14: Periodic inverted cuspon solution of the CHE with r =
0.6, q = 0.7 and v > 0.

4.4 The generalized Degasperis–Procesi

equation

4.4.1 The classification of travelling-wave
solutions

Since the different polynomials in (4.2.3) and (4.3.3) can be writ-
ten in the same form, as is shown by the right-hand sides in (4.2.3)
and (4.3.3), we anticipate that there is a nonlinear equation which,
for travelling-wave solutions, will reduce to

(zzη)
2 = f(z), (4.4.1)

with

f(z) = z4+2cz3+Az2+Dz+B = (z−z1)(z−z2)(z−z3)(z−z4),

where A, B and D are real constants. It follows that this equation
should be solvable in a way similar to that for the CHE and the DPE.

Let us consider the new nonlinear evolution equation [99]

(ut+uux)
b−1(ut−utxx+(b+1)uux−buxuxx−uuxxx)+

1
2 (2−b)D|v|bub

x = 0.

(4.4.2)

Equation (4.4.2) generalises Eq. (4.1.1) due to the inclusion of an addi-
tional factor and an additional term. For travelling waves, Eq. (4.4.2)

 EBSCOhost - printed on 2/13/2023 9:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 4. Some equations related to the VE 61

Figure 4.15: Solitary inverted cuspon solution of the CHE with r =
q = 0.6 and v > 0.

in terms of the variables z and η as defined in Section 4.1.1 has the
form

zb−1(zzηηη+bzηzηη−(b+1)zzη−bczη)− 1
2 (2−b)Dzη = 0, with c = ±1.

(4.4.3)

It can be seen that Eq. (4.4.3) generalises Eq. (4.1.8) due to the in-
clusion an additional factor zb−1 and an additional term 1

2 (2− b)Dzη.
After two integrations we get

(zzη)
2 = f(z), with f(z) = z4 +2cz3 +Az2 +Dz4−b +Bz3−b.

(4.4.4)

With b = 3, Eq. (4.4.2) becomes

(ut+uux)
2(ut−utxx+4uux−3uxuxx−uuxxx)− 1

2D|v|3u3
x = 0. (4.4.5)

This will be referred to hereafter as the generalized Degasperis–Procesi
equation (GDPE). Also, with b = 3, Eq. (4.4.3) becomes

z2(zzηηη + 3zηzηη − 4zzη − 3czη) +
1
2Dzη = 0

and Eq. (4.4.4) becomes Eq. (4.4.1). Eq. (4.4.1) with B = 0 corre-
sponds to the CHE for which f(z) is given by (4.3.3); Eq. (4.4.1) with
D = 0 corresponds to the DPE for which f(z) is given by (4.2.3).
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In principle, as the polynomial in (4.4.1) is a quartic, we can use
the method of integration we applied to the CHE and the DPE to
integrate the GDPE (4.4.5) and obtain travelling-wave solutions in
the forms given by Eqs. (A.5) and (A.7), or (A.11) and (A.12), in the
Appendix to this Chapter (see Section 4.7).

It is necessary to note that f(z) in (4.4.1) involves three arbitrary
constants A, B, D in contrast to f(z) in (4.2.3) and (4.3.3) where
there are only two constants. Hence, the GDPE should possess a
wider variety of travelling-wave solutions than either the CHE or the
DPE.

Since Eq. (4.4.1) is invariant under the transformation z → −z,
c → −c, D → −D, we need to consider only the case c = 1 (i.e. v > 0).
Note that there is a restriction on the roots; they cannot be arbitrary
because z1 + z2 + z3 + z4 = −2c and they must be real.

In Table 4.1 we classify the different types of travelling-wave solu-
tions of the GDPE (4.4.5) according to the disposition of the real roots
of the polynomial f(z). With distinct roots, the solutions are shown
in the first column of Table 4.1 (Figs. 1.1–1.5). When z1 	= z2 and
z3 = z4, the solutions take the forms which are shown in the second
column of Table 4.1 (Figs. 2.1–2.5). When z1 = z2 and z3 	= z4 the
solutions are shown in the third column of Table 4.1 (Figs. 3.1–3.3).
Finally, in the fourth column of Table 4.1 (Figs. 4.1–4.3), there are
the solutions with z1 = z2 and z3 = z4.

It should be noted that it is possible to construct other explicit
solutions as composite waves [66] by using separate parts of the so-
lutions from Table 4.1. Examples of this procedure have been given
in Appendix B in [71]. In particular, the closed curve in Fig. 1.3b in
Table 4.1 can be used to construct a periodic bell-like solution (see
Fig. 4.5(c) in Section 4.2.2), while the two-valued solution in Fig. 4.3a
and Fig. 4.3b in Table 4.1 can be used to construct a kink-like solu-
tion with infinite slope (see Fig. 4.6(c) in Section 4.2.2). Since these
solutions are combined only from parts of the solutions we show in
Table 4.1, such composite solutions are not presented in Table 4.1.

4.4.2 The graphical interpretation of the
solutions

In this Section we suggest a graphical interpretation of the solutions
from the Table 4.1. Let us consider a 3D spiral. It is shown in the
colour black in the first column of Table 4.2. If we project the spi-
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ral perpendicularly to the spiral axis, then we will see the periodic
hump given by the blue curve in Fig. 1.1 in Table 4.2. (All solutions
are shown in the colour blue in Table 4.2.) At a specific projection
angle to the spiral axis, the projection of the spiral will appear as a
periodic cuspon (Fig. 1.2 in Table 4.2). Changing the angle between
the direction of observation and the axis of the spiral, we can then see
a periodic-loop solution (Fig. 1.3a in Table 4.2). In the exceptional
case, when the observation takes place along the spiral axis, the spiral
appears as a closed curve (Fig. 1.3b in Table 2). Thereafter the so-
lutions are repeated in the reverse sequence: a periodic inverted loop
solution (Fig. 1.3c in Table 4.2), a periodic inverted cuspon (Fig. 1.4
in Table 4.2), a periodic-hump solution (Fig. 1.5 in Table 4.2). Hence,
we see all the solutions from the first column of Table 4.1.

To interpret the solutions from the second and third columns of
Table 4.1, let us consider the black curves in the relevant columns
of Table 4.2. These curves comprise one loop taken from a spiral.
In the second column in Table 4.2, the upper part of the loop is
extended, whereas in the third column the lower part is extended. At
different projection angles for these curves on the plane, we observe
a solitary smooth hump (Fig. 2.1 in Table 4.2), a hump-like solitary
wave (Fig. 3.1 in Table 4.2), a periodic peakon (Fig. 2.2 in Table 4.2), a
solitary cuspon (Fig. 3.2 in Table 2), a loop-like solitary wave (Figs. 2.3
and 3.3 in Table 4.2), a solitary inverted cuspon (Fig. 2.4 in Table 4.2),
and an inverted hump (Fig. 2.5 in Table 4.2).

Finally, let us consider the 3D curve, which is shown in the fourth
column of Table 4.2 in the colour black. It is none other than a half
loop of a spiral with expanded upper and lower parts. This curve
enables us to interpret the solutions (colour blue) from the fourth
column. The projections give a kink-like solitary wave (Fig. 4.1 in
Table 4.2), a single peakon solution (Fig. 4.2 in Table 4.2), and finally,
a two-valued solution (Fig. 4.3 in Table 4.2).

Consequently, all the types of the solution from Table 4.1 are in-
terpreted in Table 4.2.

4.4.3 Summary

We have suggested a new nonlinear evolution equation generalizing
both the CHE and the DPE. This equation can be applied to describe
shallow water waves, turbulent flows, and wave propagation in relax-
ing media. It can be integrated in a similar way to the CHE and
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the DPE in order to find travelling wave solutions. It turns out that
the solutions of this new equation can be interpreted as the projec-
tion of a spiral on a plane at different projection angles to the axis
of the spiral. The classification of the travelling wave solutions that
we have presented in Section 4.4 may be of help in the understanding
and description of the physical processes being investigated.

4.5 The Hirota–Satsuma-type ‘shallow water

wave’ equation

We consider a Hirota–Satsuma-type ‘shallow water wave’ equation [97]
of the form

UXXT +pUUT −qUX

∫ ∞

X

UT (X
′, T )dX ′+βUT +qUX = 0, (4.5.1)

where p 	= 0, q 	= 0 and β are arbitrary constants.
Two special cases of (4.5.1) (with the rescaling T → −T/q) have

been studied in the literature. The case p = 2q and β = −1 was
discussed by Ablowitz et al. [98] and was shown to be integrable by
inverse scattering. This case, and the case p = q with β = −1,
were discussed by Hirota and Satsuma [100] and were shown to be
integrable by using the Hirota bilinear technique.

By using the transformation (for details, see Section 5.1)

x = θ(X,T ) = T+

∫ X

−∞
U(X ′, T ) dX ′+x0, t = X, u(x, t) = U(X,T ),

(4.5.2)

where x0 is a constant, we obtain the following equation:

∂

∂x

(
D2u+

1

2
pu2 + βu

)
+ qDu = 0, (4.5.3)

where the operator D is defined by

D: =
∂

∂t
+ u

∂

∂x
. (4.5.4)

We shall refer to the transformed form of equation (4.5.1), namely
equation (4.5.3), as a transformed ‘shallow water wave’ equation.
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As in [101], we refer to (4.5.3) with p = q = 1, and β an arbitrary
non-zero constant, as a generalised VE (GVE), namely

∂

∂x

(
D2u+

1

2
u2 + βu

)
+Du = 0 (4.5.5)

or equivalently(
∂u

∂x
+D

)(
∂

∂x
Du+ u+ β

)
= 0. (4.5.6)

As in [102], we refer to (4.5.3) with p = 2q, and β 	= 0, as a modified
generalised Vakhnenko equation (mGVE), namely

∂

∂x

(D2u+ qu2 + βu
)
+ qDu = 0. (4.5.7)

Note that if β = 0, Eq. (4.5.6) can be reduced to the VE given
by (2.3.2) as expected, namely

∂

∂x
Du+ u = 0.

4.5.1 An integrated form of the Eq. (4.5.3)

We find implicit periodic and solitary travelling-wave solutions of the
transformed ‘shallow water wave’ equation (4.5.3), such that have the
property that they reduce to the bounded solutions of the VE (2.3.2)
for the appropriate choice of parameters, namely p = q = 1 and
β = 0. This consideration leads us to seek solutions of the transformed
‘shallow water wave’ equation subject to the restrictions p + q 	= 0,
qv − β 	= 0 [72].

In order to seek travelling-wave solutions of equation (4.5.3), it is
convenient to introduce a new dependent variable z defined by

z =
(p+ q)u

2|qv − β| − c, where c: =
qv − β

|qv − β| = ±1, (4.5.8)

and to assume that z is an implicit or explicit function of η which is
defined by

η =
χ

|qv − β|1/2 , where χ: = x− vt− x0. (4.5.9)
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It is also convenient to introduce the variable ζ defined by the relation

dη

dζ
=

u− v

|qv − β| . (4.5.10)

(Note that ζ is not a new spatial variable; it is the parameter in the
parametric form of solution that we obtain eventually.) Then (4.5.3)
becomes

zζζζ + 2zzζ + czζ = 0. (4.5.11)

After one integration, (4.5.11) gives

zζζ + z2 + cz = B, (4.5.12)

where B is a constant of integration.
We impose the requirement that, for p = q = 1 and β = 0, the

solutions that we seek reduce to the corresponding solutions of the VE.
It turns out that Eq. (4.5.12) with B = 0 reduces to the corresponding
relation for the VE. Accordingly we set B = 0 from here on.

With B = 0, equation (4.5.12) can be integrated once more to give

z2ζ = f(z): =− 2
3z

3 − cz2 + 1
3c

3A, (4.5.13)

where A is a real constant. Equation (4.5.13) is equivalent to (3.2.4)
which arises as one of the differential equations in solving the VE.

4.5.2 Travelling-wave solutions of the Eq. (4.5.3)

The bounded solutions of equation (4.5.13) that we seek are such
that z1 ≤ z2 ≤ z ≤ z3, where z1, z2 and z3 are the three real roots
of f(z) = 0. In equations (A.2)–(A.4) and (A.6) in the Appendix
in Chapter 3 (Section 3.4), we gave expressions for these roots and
m: = (z3 − z2)/(z3 − z1) in terms of an angle θ. By eliminating θ, we
obtain z1, z2 and z3 in terms ofm, namely

z1 = − c

2
+

m− 2

2
√
m2 −m+ 1

, (4.5.14)

z2 = − c

2
+

1− 2m

2
√
m2 −m+ 1

, (4.5.15)

z3 = − c

2
+

1 +m

2
√
m2 −m+ 1

, (4.5.16)
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where 0 ≤ m ≤ 1. As in obtaining (3.2.10), we may integrate equa-
tion (4.5.13) by using result 236.00 in [44] to obtain

z = z3 − (z3 − z2) sn
2(w|m), where w =

√
z3 − z1

6
ζ. (4.5.17)

Result 310.02 in [44] leads to∫
zdw = z1w + (z3 − z1)E(w|m) + const . (4.5.18)

As in (3.2.10), sn(w|m) in (4.5.17) is a Jacobian elliptic function; as
in (3.2.11), E(w|m) in (4.5.18) is the incomplete elliptic integral of
the second kind.

In view of the definition of c in (4.5.8), it is convenient to let

qv − β = 4cκ2, (4.5.19)

where κ is a positive constant. It is also convenient to define the
positive constant κ by

κ2 = k2
√
m2 −m+ 1 . (4.5.20)

By using (4.5.14)–(4.5.20) in (4.5.8)–(4.5.10), we obtain

u =
4k2

p+ q

[
m+ 1 + c

√
m2 −m+ 1− 3m sn2(w|m)

]
. (4.5.21)

χ =
4k2

p+ q

[
(m− 2 + c

√
m2 −m+ 1)w + 3E(w|m)

]
− (β + 4cκ2)w

kq
.

(4.5.22)

The travelling-wave solution to the transformed ‘shallow water wave’
equation (4.5.3) is given in parametric form by (4.5.21) and (4.5.22)
with w as the parameter, so that u is an implicit function of χ. With
respect to w, u in (4.5.21) is periodic with period 2K(m), where
K(m) is the complete elliptic integral of the first kind. It follows
from (4.5.22) that the wavelength λ of u regarded as an implicit func-
tion of χ is

λ = | 8k

p+ q
[(m− 2 + c

√
m2 −m+ 1)K(m) + 3E(m)]−

−2(β + 4cκ2)K(m)

kq
|,

(4.5.23)
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where E(m) is the complete elliptic integral of the second kind.
When m = 1, the solution given by (4.5.21) and (4.5.22) becomes

u =
4k2

p+ q

[
2 + c− 3 tanh2 w

]
, (4.5.24)

χ =
4k

p+ q
[(c− 1)w + 3 tanhw]− (β + 4ck2)w

kq
. (4.5.25)

4.5.3 Examples

We illustrate the results in Section 4.5.2 by considering two examples.

Example 1

We consider the simplest case, namely the VE (for which p = q = 1
and β = 0). In this case, with c = 1, we have v > 0. Analysis shows
that the solution comprises periodic upright loops for 0 < m < 1 and
a solitary upright loop for m = 1. On the other hand, for c = −1, we
have v < 0. As result we obtain that the solution comprises periodic
smooth humps for 0 < m < 1 and a periodic corner-wave for m = 1.
These are the results first given in [41, 42] (see also Section 3.2).

Example 2

We consider the GVE (4.5.5) (for which p = q = 1) with c = 1 and
arbitrary β. (Note that the particular case for which β = 0 is just the
VE with c = 1 as discussed in Example 1.) To illustrate the results in
Section 4.5.2, we let k = 1 and consider the cases m = 0.5 and m = 1
separately.

Figs. 4.16–4.22 correspond to seven choices of β with k = 1 and
m = 0.5. In each figure, χ is plotted as an explicit function of w,
and u is plotted as an implicit function of χ. In Figs. 4.16–4.21, the
wave profile is periodic. In Fig. 4.22, the solution is a closed curve
in the (χ, u) plane. Fig. 4.23 illustrates the corresponding composite
solution.

Figs. 4.24–4.28 correspond to five choices of β with k = 1 and m =
1. In Figs. 4.24–4.27, the wave profile is a solitary wave. In Fig. 4.28,
the solution is a solitary wave with compact support. Fig. 4.29 illus-
trates the corresponding composite solution comprising periodic cor-
ner waves. The solitary waves for β/k2 	= −4 with c = 1, i.e. v 	= 0,
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Figure 4.16: GVE with β = 2.1: The wave profile comprises periodic
smooth humps with v > 0.

Figure 4.17: GVE with β � 1.27: The wave profile comprises periodic
cuspons with v > 0.

coincide with the single soliton solutions given in [101] for the GVE as
derived via Hirota’s method and illustrated in Fig. 4 in [101]. In [101]
it was shown that Hirota’s method fails when v = 0. Now we know
that, in this case, the solution is a solitary wave with compact support
or a periodic corner wave.

The multi-valued solution illustrated in Fig. 4.26 may be regarded
as a composite solution of three single-valued solutions, but the three
single-valued solutions may also be combined in different ways so as
to give a variety of composite single-valued solutions. One of these
possibilities is illustrated in Fig. 4.30. Note that, in this solution, η is a
monotonic increasing function of the parameter w. The corresponding
periodic single-valued composite solution may be constructed from the
single-valued solutions making up the multi-valued waves in Figs. 4.18
and 4.19.
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Figure 4.18: GVE with β = 0.5: The wave profile comprises periodic
loops with v > 0.

Figure 4.19: GVE with β = −0.9: The wave profile comprises periodic
inverted loops with v > 0.

4.6 The short-pulse equation

The short-pulse equation (SPE), namely

uxt = u+
1

6
(u3)xx (4.6.1)

models the propagation of ultra-short light pulses in silica optical
fibres [104].

In [105] it was shown that the SPE has a Lax pair that is of
the Wadati–Konno–Ichikawa-type (see [106], for example). Because
of this result, it is not surprising that the SPE has a loop-soliton
solution. This solution was found in [107] together with several other
forms of solution.

In passing we note that there several other equations that have
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Figure 4.20: GVE with β � −1.73: The wave profile comprises peri-
odic inverted cuspons with v > 0.

Figure 4.21: GVE with β = −3: The wave profile comprises periodic
smooth humps with v > 0.

loop-soliton solutions; in [90] we gave a list of references in which some
of these equations are discussed. We have presented two more such
equations, namely the generalized Vakhnenko equation [101] and the
modified generalized Vakhnenko equation [102] (see also Section 4.5).

In [105] it was shown that the SPE and the sine-Gordon equation
(SGE) are equivalent to one another through a chain of transforma-
tions. In [107] various known solutions of the SGE were used to gen-
erate solutions to the SPE. The kink solution to the SGE leads to a
travelling-wave solution of the SPE in the form of a loop soliton. The
two-kink and kink-antikink solutions of the SGE also lead to multi-
valued solutions of the SPE but they are not travelling waves. The
breather solution to the SGE leads to a wave packet solution of the
SPE. In the context of light pulses, the latter is the physically relevant
solution.
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Figure 4.22: GVE with β = −0.36: The solution for u is a closed
curve.

Figure 4.23: A composite solution for the GVE corresponding to
Fig. 4.22. The wave profile comprises periodic bells.

We complement the work in [107] by presenting other travelling-
wave solutions to the SPE [103]. The solution method is similar
to the one that we have used previously to find periodic and soli-
tary travelling-wave solutions to the Degasperis–Procesi equation [69]
(see also Section 4.2), the Camassa–Holm equation [71] (see also Sec-
tion 4.3) and the Vakhnenko equation [41, 42] (see also Section 3.2).

4.6.1 The direct method of integration

In order to seek travelling-wave solutions to the SPE it is convenient
to introduce new variables z and η defined by

z = u/|v|1/2, η = (x− vt− x0)/|v|1/2, (4.6.2)
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Figure 4.24: GVE with β = 5: The wave profile is a solitary smooth
hump with v > 0.

Figure 4.25: GVE with β = 2: The wave profile i s a solitary cuspon
with v > 0.

where z is an implicit or explicit function of η, and v 	= 0. In this
case (4.6.1) becomes

(z2+ 2c)zηη+ 2z(1 + zη
2) = 0, where, c: = v/|v|=±1. (4.6.3)

After one integration (4.6.3) gives

z2ζ = f(z), (4.6.4)

(4.6.5)

where

f(z): =B2− (z2+ 2c)2,

B is a real positive constant and ζ is defined by

dη

dζ
= z2 + 2c. (4.6.6)
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Figure 4.26: GVE with β = 0: The wave profile is a solitary loop with
v > 0.

Figure 4.27: GVE with β = −5: The wave profile is a solitary smooth
hump with v < 0.

We note that (4.6.3) is invariant under the transformation z → −z.
Also, when c = −1, (4.6.6) indicates that the solutions will have
infinite slope when z2 = 2.

4.6.2 Exact travelling-wave solutions of the SPE

For each choice of c, the possible types of travelling-wave solution of
the SPE depend on the value, or range of values, of B. The types
may be classified as described in Sections 4.6.2 a–d as follows:

4.6.2 a. c = 1, B > 2

In this case (4.6.5) may be written

f(z): = (a2+z2)(b2−z2), where a2=B+2, b2=B−2. (4.6.7)
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Figure 4.28: GVE with β = −4: The solution for u is a solitary wave
with compact support and v = 0.

Figure 4.29: A composite solution of the GVE corresponding to
Fig. 4.28. The wave profile comprises periodic corner waves.

The bounded solutions to (4.6.3) are such that −b ≤ z ≤ b. By using
results 213.00 and 310.02 from [44] to integrate (4.6.4) and (4.6.6), we
find that these solutions are given in parametric form by

z = ±
√

4m

1− 2m
cn(w|m), η =

[−w + 2E(w|m)]√
1− 2m

, (4.6.8)

where w(= 2ζ/
√
1− 2m) is the parameter and

m =
B − 2

2B
so that 0 < m <

1

2
.

In (4.6.8), cn(w|m) is a Jacobian elliptic function and E(w|m) is the
incomplete elliptic integral of the second kind.
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Figure 4.30: A single-valued composite solution of the GVE corre-
sponding to Fig. 4.26.

The solution (4.6.8) is a periodic hump or a periodic well corre-
sponding respectively to the upper or lower choice of sign in (4.6.8).
The wavelength of these solutions is

λ =
4| −K(m) + 2E(m)|√

1− 2m
, (4.6.9)

where K(m) and E(m) are the complete elliptic integrals of the first
and second kind, respectively. Note that λ increases from 2π to in-
finity as m increases from 0 to 0.5. An example of the periodic hump
solution is illustrated in Fig. 4.31.

4.6.2 b. c = −1, B = 2

In this case (4.6.5) may be written

f(z): = z2(4− z2). (4.6.10)

The bounded solutions to (4.6.3) are such that 0 ≤ z2 ≤ 4. Straight-
forward integration of (4.6.4) and (4.6.6) gives

z = ±2 sechw, η = −w + 2 tanhw, (4.6.11)

where w(= 2ζ) is the parameter. The solution (4.6.11) is either an
upright or an inverted solitary loop corresponding respectively to the
upper or lower choice of sign in (4.6.11). The upright solitary loop
solution is illustrated in Fig. 4.32. With the upper choice of sign,
(4.6.11) is equivalent to Eq. (13) in [107]. The latter solution was
derived from a transformation of the kink solution of the SGE.
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Figure 4.31: A typical periodic-hump solution of the SPE with c = 1
for which B = 4 so that m = 0.25 and λ = 7.0664.

4.6.2 c. c = −1, 0 < B < 2

In this case (4.6.5) may be written

f(z): = (a2−z2)(z2−b2), where a2= 2+B, b2= 2−B. (4.6.12)

The bounded solutions to (4.6.3) are such that b2 ≤ z2 ≤ a2. By using
results 218.00 and 310.02 from [44] to integrate (4.6.4) and (4.6.6), we
find that these solutions are given in parametric form by

z = ± 2√
2−m

dn(w|m), η =
[−(2−m)w + 2E(w|m)]√

2−m
, (4.6.13)

where w(= 2ζ/
√
2−m) is the parameter and

m =
2B

B + 2
so that 0 < m < 1.

The solution (4.6.13) is either periodic upright loops or periodic in-
verted loops corresponding to the upper or lower choice of sign in (4.6.13),
respectively. The wavelength of these solutions is

λ =
2| − (2−m)K(m) + 2E(m)|√

2−m
. (4.6.14)

Note that λ increases from zero to infinity as m increases from 0 to
1. An example of the periodic upright loop solution is illustrated
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Figure 4.32: The solitary upright-loop solution of the SPE with c =
−1 for which B = 2 so that m = 1.

in Fig. 4.33. In the limit B → 2 (so that m → 1), (4.6.13) be-
comes (4.6.11), i.e. the periodic loops degenerate to a solitary loop.

4.6.2 d. c = −1, B > 2

In this case (4.6.5) may be written

f(z): = (a2+z2)(b2−z2), where a2=B−2, b2=B+2. (4.6.15)

The bounded solutions to (4.6.3) are such that −b ≤ z ≤ b. By using
results 213.00 and 310.02 from [44] to integrate (4.6.4) and (4.6.6), we
find that these solutions are given in parametric form by

z = ±
√

4m

2m− 1
cn(w|m), η =

[−w + 2E(w|m)]√
2m− 1

, (4.6.16)

where w(= 2ζ/
√
2m− 1) is the parameter and

m =
B + 2

2B
so that

1

2
< m < 1.

The solution (4.6.16) is periodic with wavelength

λ =
4| −K(m) + 2E(m)|√

2m− 1
. (4.6.17)
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Figure 4.33: A typical periodic upright-loop solution of the SPE with
c = −1 for which B = 1.2 so that m = 0.75 and λ = 0.48931.

Note that λ = 0 at m = mc = 0.826115 and that λ increases from zero
to infinity as m decreases from mc to 0.5, and as m increases from mc

to 1. In the limit B → 2 (so that m → 1), (4.6.16) becomes (4.6.11).
When m = mc the solution (4.6.16) is a ‘figure-of-eight’ centered

on the origin in the (η, z) plane as shown in Fig. 4.34. For 0.5 < m <
mc the solution comprises alternating upright and inverted ‘bells’,
whereas for mc < m < 1 the solution comprises alternating upright
and inverted loops. Examples corresponding to the upper choice of
sign in (4.6.16) are illustrated in Figs. 4.35 and 4.36, respectively.

For m = mc, periodic composite solutions of (4.6.3) may be con-
structed. (The notion of composite waves is discussed in [66], for
example.) Fig. 4.37 shows the periodic composite solution given in
parametric form by

z = z(w), (4.6.18)

η =

⎧⎪⎨⎪⎩
η(w) + 8jη(w1), −w1 + 4jK ≤ w < w1 + 4jK,
η(w) + (6 + 8j)η(w1), w1 + 4jK ≤ w < −w1 + (2 + 4j)K,
η(w) + (4 + 8j)η(w1), −w1 + (2 + 4j)K ≤ w < w1 + (2 + 4j)K,
η(w) + (2 + 8j)η(w1), w1 + (2 + 4j)K ≤ w < −w1 + (4 + 4j)K,

where K := K(mc), z(w) and η(w) are given by (4.6.16) with the
upper choice of sign and m = mc, w1 is the root of z(w) =

√
2 such

K
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Figure 4.34: The ’figure-of-eight’ solution of the SPE with c = −1
and m = mc = 0.826115 so that B = 3.06641 and λ = 0.

that 0 < w1 < K, and j = 0,±1,±2, . . . , . The wavelength of this
solution is λ = 8η(w1). The construction of the solution (4.6.18) is
similar to the example in Section 4.2.2 c and illustrated in Fig. 4.4(c).

4.6.3 Concluding remarks

We have found exact expressions for travelling-wave solutions to the
SPE. For each of the two choices of c these solutions depend on one
parameter B. There is one type of periodic-wave solution that propa-
gates in the positive x–direction. There are several types of periodic-
wave solution and one type of solitary-wave solution that propagate
in the negative x–direction; there are places on the wave profile of
these solutions where the slope goes infinite. Each solution has a cor-
responding solution that propagates in the same direction and is a
mirror image in the x–axis.

4.7 Appendix

Here we consider solutions to

(zzη)
2 = ε2f(z), (A.1)
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Figure 4.35: A typical periodic solution of the SPE with c = −1
comprising alternating upright bells and inverted bells for which B =
5 so that m = 0.7 and λ = 2.58028.

where

f(z): = (z− z1)(z− z2)(z3− z)(z4− z); (A.2)

for the solutions that we are seeking, z1, z2, z3 and z4 are real con-
stants with z1 ≤ z2 ≤ z ≤ z3 ≤ z4.

Following [42] we introduce ζ defined by

dη

dζ
=

z

ε
(A.3)

so that (A.1) becomes

z2ζ = f(z). (A.4)

The solutions to (A.4) are found by integration, where the interval
of integration is between the roots z2 and z3. (A.4) has two possible
forms of solution.

The first form of solution of (A.4) is found using result 254.00 in
[44]. It is

z =
z2 − z1n sn2(w|m)

1− n sn2(w|m)
with n =

z3 − z2
z3 − z1

, (A.5)
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Figure 4.36: A typical periodic solution of the SPE with c = −1
comprising alternating upright loops and inverted loops for which B =
2.5 so that m = 0.9 and λ = 1.64817.

where

w = pζ, p = 1
2

√
(z4 − z2)(z3 − z1) and m =

(z3 − z2)(z4 − z1)

(z4 − z2)(z3 − z1)
.

(A.6)

In (A.5), sn(w|m) is a Jacobian elliptic function, where the notation
is as used in Chapter 16 of [110]. On using result 400.01 in [44] we
find from (A.5) and (A.3) that

η =
1

εp
[wz1 + (z2 − z1)Π(n;w|m)], (A.7)

where Π(n;w|m) is the incomplete elliptic integral of the third kind
and the notation is as used in �17.2.15 of [110]. The solution to (A.1) is
given in parametric form by (A.5) and (A.7) with w as the parameter.
With respect to w, z in (A.5) is periodic with period 2K(m), where
K(m) is the complete elliptic integral of the first kind. It follows from
(A.7) that the wavelength λ of the solution to (A.1) is

λ =
2

εp

∣∣∣ z1K(m) + (z2 − z1)Π(n|m)
∣∣∣ , (A.8)
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Figure 4.37: The composite periodic solution (4.6.18) of the SPE with
c = −1 and m = mc so that λ = 5.90747.

where Π(n|m) is the complete elliptic integral of the third kind. When
z3 = z4, m = 1 and so (A.5) and (A.7) become

z =
z2 − z1n tanh2 w

1− n tanh2 w
, η =

1

ε

[
wz3
p

− 2 tanh−1(
√
n tanhw)

]
. (A.9)

In (A.9), η was obtained by using

Π(n;w|1) = 1

1− n

[
w −√

n tanh−1(
√
n tanhw)

]
, (A.10)

cf. result 111.04 in [44].

The second form of solution of (A.4) is found using result 255.00
in [44]. It is

z =
z3 − z4n sn2(w|m)

1− n sn2(w|m)
with n =

z3 − z2
z4 − z2

, (A.11)

where w, p and m are as in (A.6). On using result 400.01 in [44] we
find from (A.11) and (A.3) that

η =
1

εp
[wz4 − (z4 − z3)Π(n;w|m)]. (A.12)
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The solution to (A.1) is given in parametric form by (A.11) and (A.12)
with w as the parameter. The wavelength of this solution is

λ =
2

εp

∣∣∣ z4K(m)− (z4 − z3)Π(n|m)
∣∣∣ . (A.13)

When z1 = z2, m = 1 and so (A.11) and (A.12) become

z =
z3 − z4n tanh2 w

1− n tanh2 w
, η =

1

ε

[
wz2
p

+ 2 tanh−1(
√
n tanhw)

]
.

(A.14)
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<<< =<< <<= =<=

< <= < <=

= == = ==

>< >< >=<=

><

>< >=< >=<=

−=+++ −=+++

= >==

−=+++ −=+++

>< =><

Table 4.1: Classification of travelling-wave solutions for the GDPE.
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−=+++ −=+++

−=+++ −=+++

Table 4.2: Graphical interpretation of solutions for the GDPE.
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Chapter 5

The Vakhnenko-Parkes equation

5.1 New independent coordinates

The multi-valued solutions obtained in Section 3.2 mean that the
study of the VE (2.3.2), namely

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0, (5.1.1)

in the the original coordinates (x, t) leads to certain difficulties. These
difficulties can be avoided by writing down the VE in new independent
coordinates. We have succeeded in finding these coordinates. Histor-
ically, working separately, we (Vyacheslav Vakhnenko in the Ukraine
and John Parkes in the UK) independently suggested such indepen-
dent coordinates in which the solutions become one-valued functions.
It is instructive to present the two derivations here. In one derivation
a physical approach, namely a transformation between Euler and La-
grange coordinates, was used whereas in the other derivation a pure
mathematical approach was used.

Let us define new independent variables (X,T ) by the transforma-
tion

ϕdT = dx− u dt, X = t. (5.1.2)

The function ϕ is to be obtained. It is important that the functions
x = θ(X,T ) and u = U(X,T ) turn out to be single-valued. In terms
of the coordinates (X,T ) the solution of the VE (5.1.1) is given by
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single-valued parametric relations. The transformation into these co-
ordinates is the key point in solving the problem of the interaction of
solitons as well as explaining the multiple-valued solutions [11]. The
transformation (5.1.2) is similar to the transformation between Eule-
rian coordinates (x, t) and Lagrangian coordinates (X,T ). We require
that T = x if there is no perturbation, i.e. if u(x, t) ≡ 0. Hence ϕ = 1
when u(x, t) ≡ 0.

The function ϕ is the additional dependent variable in the equation
system (5.1.4), (5.1.6) to which we reduce the original Eq. (5.1.1). We
note that the transformation inverse to (5.1.2) is

dx = ϕdT + U dX, t = X, U(X,T ) ≡ u(x, t). (5.1.3)

It follows that

∂x

∂X
= U,

∂x

∂T
= ϕ,

∂t

∂X
= 1,

∂t

∂T
= 0.

Hence

∂ϕ

∂X
=

∂U

∂T
(5.1.4)

and

∂

∂X
=

∂

∂t
+ u

∂

∂x
,

∂

∂T
= ϕ

∂

∂x
. (5.1.5)

By using (5.1.5), we can write Eq. (5.1.1) in terms of ϕ(X,T ) and
U(X,T ), namely

UXT + ϕU = 0. (5.1.6)

For use in Section 5.3, we note that, with (5.1.4), (5.1.6) may be
written in the form

ϕXX + Uϕ = 0. (5.1.7)

(5.1.4) and (5.1.6) or (5.1.7) is the main system of equations. It can be
reduced to a nonlinear equation (5.1.10) in one unknown W defined
by

WX = U. (5.1.8)
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From (5.1.4) and (5.1.8) and the requirement that ϕ = 1 when U ≡ 0,
we have

ϕ = 1 +WT . (5.1.9)

Then, by eliminating ϕ and U between (5.1.6), (5.1.8) and (5.1.9), we
arrive at a transformed form of the VE (5.1.1), namely

WXXT + (1 +WT )WX = 0. (5.1.10)

Alternatively, by eliminating ϕ between (5.1.4) and (5.1.6), we obtain

UUXXT − UXUXT + U2UT = 0. (5.1.11)

Furthermore it follows from (5.1.3) that the original independent co-
ordinates (x, t) are given by

x = θ(X,T ) = x0 + T +W, t = X, (5.1.12)

where x0 is an arbitrary constant. Since the functions θ(X,T ) and
U(X,T ) are single-valued, the problem of multi-valued solutions has
been resolved from the mathematical point of view.

Alternatively, in a pure mathematical approach, we may start by
introducing new independent variables X, T defined by

x = T +

∫ X

−∞
U(X ′, T ) dX ′ + x1, t = X, (5.1.13)

where x1 is an arbitrary constant. From (5.1.13), we obtain (5.1.5)
but with

ϕ(X,T ) = 1 +

∫ X

−∞
UT dX ′. (5.1.14)

Now, on introducing (5.1.8), (5.1.13) and (5.1.14) may be identified
with (5.1.12) and (5.1.9), respectively. The derivation of (5.1.10) and
(5.1.11) proceeds as before.

The transformation into new coordinates, as has already been
pointed out, was obtained by us independently of each other; nev-
ertheless, we published the result together [74, 75, 76]. Following
the papers [77, 78, 79, 80, 81, 82, 83], hereafter equation (5.1.10) (or
in alternative form (5.1.11)) is referred to as the Vakhnenko-Parkes
equation (VPE).
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5.2 The travelling-wave solutions in new

coordinates

In this Section we show that the travelling-wave solution (3.2.10) and
(3.2.11) for equation (5.1.1) is also a travelling-wave solution when
written in terms of the transformed coordinates (X,T ). In order to
do this, we need to express the independent variable ζ, as introduced
in (3.2.8), in terms of X and T .

Figure 5.1: Travelling-wave solutions with v > 0 in coordinates (X,T ).

From the expressions for z in (3.2.1) and (3.2.8), we obtain

dη

dζ
=

U − v

|v| (5.2.1)

so that

|v|η =

∫
U dζ − vζ. (5.2.2)

From the definition of η in (3.2.1), and the expressions for x and t
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Figure 5.2: Travelling-wave solutions with v < 0 in coordinates (X,T ).

(5.2.3)

(5.2.4)

given by (5.1.12), we obtain

|v|η= |v|1/2[W− v(X− V T )], where V: = v−1.

The expressions for |v|η in (5.2.2) and (5.2.3) are equivalent if

ζ= |v|1/2Z, where Z: =X− V T−X0

and X0 is an arbitrary constant, so that

W =

∫
U dZ and U = WZ . (5.2.5)

Hence, from (3.2.11) and (5.2.3), it follows that

W =

√|v|
p

[(z1 + c)w + (z3 − z1)E(w|m)]+W0, where w = p
√
|v|Z

(5.2.6)
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and W0 is an arbitrary constant. From (3.2.1) and (3.2.10), it follows
that

U

|v| = c+ z3 − (z3 − z2) sn
2(w|m), where w = p

√
|v|Z. (5.2.7)

(5.2.6) and (5.2.7) give the travelling-wave solutions to the VPE in the
forms (5.1.10) and (5.1.11), respectively. (5.2.7) is also the travelling-
wave solution of the VE (5.1.1) expressed in terms of the new coordi-
nates (X,T ). In the limiting case m = 1, (5.2.7) gives a solitary wave
in the following two forms: For v > 0

U/v = 3
2 sech

2
(
1
2

√
vZ

)
(5.2.8)

and, for v < 0,

U/|v| = −1 + 3
2 sech

2
(

1
2

√
|v|Z

)
. (5.2.9)

These two solutions are illustrated by the curve 1 in Fig. 5.1 and
Fig. 5.2, respectively. The other curves illustrate examples of the
solution given by (5.2.7) when m 	= 1. The curves 1 and 2 in Fig. 5.1
relate to the curves 1 and 2, respectively, in Fig. 3.2. The curves 1,
2 and 3 in Fig. 5.2 relate to the curves 1, 2 and 3, respectively in
Fig. 3.3.

There are two important observations to be made. Firstly, all the
travelling-wave solutions in terms of the new coordinates are single-
valued. Secondly, the periodic solution shown by curve 1 in Fig. 3.3,
i.e. the solution consisting of parabolas, is not periodic in terms of the
new coordinates. Hence, we reveal some accordance between curve 1
in Fig. 3.2 and curve 1 in Fig. 3.3. These features are important for
finding the solutions by the inverse scattering method [76, 84, 85, 86,
87, 88, 89, 90] (see also Chapters 7–9).

5.3 The Vakhnenko-Parkes equation from the
viewpoint of the inverse scattering method

for the KdV equation

In this Section we use elements of the inverse scattering transform
(IST) method as developed for the KdV equation [76]. The formula-
tion of the IST method is discussed for the Vakhnenko-Parkes equation
(VPE) in the form (5.1.10). It is shown that the equation system for
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the inverse scattering problem associated with the VPE cannot con-
tain the isospectral Schrödinger equation. The results of this Section
were completed before we made appreciable progress in formulation
of the IST problem for the VPE.

As we will prove later in Section 7.1, the spectral problem associ-
ated with the VPE is of third order [84, 91, 92, 93]. At first reading,
the present Section can be omitted. Nevertheless, methods stated
here may be useful in the investigation of a new equation for which
the spectral problem is unknown.

5.3.1 One-soliton solutions as reflectionless
potentials

As was noted previously, the VE (see (2.3.2) or (5.1.1)) and the KdV
equation

ut + 6uux + uxxx = 0 (5.3.1)

have the same hydrodynamic nonlinearity and do not contain dissi-
pative terms; only the dispersive terms are different. The similarity
between these equations indicates that, in studying the VE (5.1.1)
and the VPE (5.1.10), the application of the IST method should be
possible. The IST method is the most appropriate way of tackling ini-
tial value problems. The results of applying the IST method would be
useful in solving the Cauchy problem for both the VE and the VPE.
The study of the VPE is of scientific interest from the viewpoint of
the general problem of integrability of nonlinear equations.

The method of the IST is a powerful method to use as a means for
solving nonlinear differential equations. Let us recall that the KdV
equation (5.3.1) is associated with the system of the equations (the
Lax pair)

ψxx + uψ = λψ, (5.3.2)

ψt + 3λψx + ψxxx + 3uψx = 0. (5.3.3)

The equation system (5.3.2), (5.3.3) is a case of the IST method pre-
sented in the classic paper [34] by Gardner et al. Since the system
(5.3.2), (5.3.3) contains the Schrödinger equation (5.3.2), we will use
the elements of the IST method as applied to the KdV equation in
order to analyze the VPE. The known one-soliton solution of the KdV
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equation (5.3.1) has the form (without the time-dependence)

u = 2�2 sech2 �x. (5.3.4)

Here, as an example, we will consider the case � = 1.
The results in Section 5.3 are based on the assumption that the

system of equations associated with the VPE (5.1.10), which are anal-
ogous to (5.3.2) and (5.3.3), are unknown.

Now let us focus on the fact that Eq. (5.1.7) is the Schrödinger
equation

∂2ψ

∂X2
−Qψ = λψ

with the eigenvalue (energy) λ = 0 and potential Q = −U . Equa-
tion (5.1.7) determines the dependence on the coordinate X, and time
T appears here as a parameter. However, the time-dependence is de-
termined by Eq. (5.1.4).

The known one-soliton solution of Eq. (5.1.10), namely (5.2.8)
which we obtained in Section 5.2, has the form

U =
3v

2
sech2

(
vX − T

2
√
v

)
. (5.3.5)

If it is not otherwise noted, for convenience here we will consider v = 4,
T = 0, and then Eq. (5.3.5) reduces to

U = 6 sech2 X. (5.3.6)

The principal fact is that both u = 2 sech2 x from (5.3.4) and U =
6 sech2 X from (5.3.6) relate to reflectionless potentials. The general
form of the reflectionless potentials is (see Section 2.4 in [27])

u = m(m+ 1) sech2 x. (5.3.7)

We have m = 1 for the potential (5.3.4) and m = 2 for the potential
(5.3.6). It is known [27, 28] that for integrable nonlinear equations, re-
flectionless potentials generate soliton solutions (which, in the general
case, are N -soliton solutions).

5.3.2 Two-level reflectionless potential

Let us consider the one-soliton solution of the system (5.3.2), (5.3.3)
in the framework of the IST method for the KdV equation. For this
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purpose let us analyze the Schrödinger equation with the potential
Q ≡ −U = −6 sech2 X, namely

d2ψ

dX2
−Qψ = −k2ψ, k2 = −λ. (5.3.8)

(Recall that here T is a parameter.) For the scattering problem, the
solution of Eq. (5.3.8) should satisfy the boundary conditions

ψ(X, k) =

{
e−ikX , X → −∞
b(k) eikX + a(k) e−ikX , X → +∞ , (5.3.9)

where b(k) and a(k) are the coefficients of reflection and transmission,
respectively.

In Section 2.4 in [27], the original method for finding the wave-
functions ψ and eigenvalues for the reflectionless potential Qm =
−m(m+1) sech2 X was described. The general solution ym of Eq. (5.3.8)
for the potential Qm connects with the general solution Y0 for Q0 = 0
by the relationship

ym(X, k) =
m∏

m′=1

(
m′ tanhX − d

dX

)
Y0(X, k), (5.3.10)

and then

a(k) =

m∏
m′=1

ik +m′

ik −m′
, b(k) = 0. (5.3.11)

In our case (m = 2), Eq. (5.3.8) has two bound states, namely

−ik1 ≡ κ1 = 1, ψ1 =
√

3
2 tanh X sech X,

−ik2 ≡ κ2 = 2, ψ2 =
√
3
2 sech2 X.

(5.3.12)

The wave-functions ψi are normalized, i.e.
∫ +∞
−∞ |ψi|2dX = 1, and this

conforms to the requirement used in the IST method.

Here the main difference between the VPE and known integrable
nonlinear equations appears. It is connected with the existence of
only one bound state for the known equations associated with the
isospectral Schrödinger equation, while for the VPE two bound states
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occur. Indeed, for the known integrable equations, the potential cor-
responding to the one-soliton solution has the following dependence
on the space coordinate (see Eq. (4.3.9) in [27])

u(x) = 2�2 sech2 �x. (5.3.13)

It is easy to see that this is related to the case m = 1 in Eq. (5.3.7),
i.e. there is only the one bound state

ψ =
√
�/2 sech �x, (5.3.14)

ψ → c
√
� exp(−�x), c =

√
2, as x → +∞. (5.3.15)

5.3.3 Reconstruction of the one-soliton solution
for the VPE

Keeping in mind that there is an incomplete analogy of our problem to
known integrable equations, we shall try to reconstruct the potential
(the solution of the VPE) from the scattering data as well as to find
afterwards the time-dependence for the scattering data and for the
one-soliton solution.

As is well known [27, 28], in order to reconstruct the potential for
the Schrödinger equation (5.3.8), we have to know the scattering data.
From the relationships (5.3.12) we obtain, as X → ∞,

ψ1 → c1e
−κ1X , c1 =

√
6, κ1 = 1,

ψ2 → c2e
−κ2X , c2 =

√
12, κ2 = 2.

(5.3.16)

Clearly, κ1 = 1
2κ2 = 1 is in agreement with (5.3.5), (5.3.6) and (5.3.4).

However, we shall abandon this condition, i.e. v = 4 in Eq. (5.3.5),
and in the final formulas.

For convenience we reproduce the well known procedure for the
reconstruction of the potential. The function B(X;T ) is constructed
from the scattering data (T is the parameter)

B(X;T ) =
n∑

m=1

c2m(t)e−κmX +
1

2π

+∞∫
−∞

b(k, T )eikXdk.

In the next step, the following Marchenko–Gelfand–Levitan equation
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is to be solved [95] for the unknown K(X, y;T ):

K(X, y;T )+B(X+y;T )+

+∞∫
X

B(y+z;T )K(X, z;T ) dz = 0. (5.3.17)

The potential is then obtained by means of the relationship

−U = Q = −2
d

dX
K(X,X;T ). (5.3.18)

In particular, for the reflectionless potential (5.3.7), b(k) = 0 in (5.3.9),
and the solution can be found in the form

K(X, y;T ) = −
N∑

m=1

cm(T )ψm(X;T )e−κmy. (5.3.19)

This procedure, as is well known, leads to the equation system in ψm

AΨ = C, (5.3.20)

where the matrix A = [amn] has elements

amn = δmn + cn(T )cm(T )
e−X(κm+κn)

κm + κn
,

and Ψ = [ψm] and C = [cm(T )e−κmX ] are column-vectors.
In Eqs. (5.3.17)–(5.3.20), T is a parameter. Although we took

T = 0 earlier, we preserve the variable T in these relationships in
order to use them later to find the time-dependence of the scattering
data.

It is known [27, 28] that for a reflectionless potential the value
of the determinant Δ = det[amn] is sufficient for reconstructing the
potential. Then Eq. (5.3.18) is reduced to

K(X,X;T ) =
d ln |Δ|
dX

, −U = −2
d2 ln |Δ|
dX2

. (5.3.21)

We use (5.3.20), (5.3.21) to obtain the one-soliton solution of the
VPE. The scattering data (5.3.16) and b(k) = 0 enable us to define
the determinant

Δ =

∣∣∣∣∣∣ 1 +
c21
2 e−2X c1c2

3 e−3X

c1c2
3 e−3X 1 +

c22
4 e−4X

∣∣∣∣∣∣ = (1 + e−2X)3 (5.3.22)
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and then the potential

−U = 12
d

dX

(
e−2X

1 + e−2X

)
= −6 sech2 X.

Thus we have repeated the standard method for reproducing the po-
tential by means of scattering data (as yet without time-dependence).
It is clear from U = WX and (5.3.21) that

W = 2K(X,X;T ).

It is noted that the determinant for the one-soliton solution of the
KdV equation (5.3.1) has the form

Δ = 1 + e−2x, u = 2 sech2 x. (5.3.23)

The interpretation of (5.3.22) is important. In the matrix, two
states (5.3.16) are involved. Clearly, the time-dependence for an indi-
vidual state is its own characteristic. However, since these two states
relate to the common soliton, there must be a connection between
them, i.e. c1(T ) and c2(T ) must be connected. The relation (5.3.22)
determines this connection.

In the first instance we considered the dependence of the potential
on the space coordinate, and the time was a parameter. Let us now
find the time-dependence of the scattering data c1(T ), c2(T ) that
enables us to find the functional dependence of the potential (5.3.6)
on T , i.e. the time-dependence of the one-soliton solution. We start
from the relation (see Eq. (22), Chap. 1, Section 2 in [28])

ψ(X, k;T ) = e−ikX +

+∞∫
X

K(X, y;T )e−ikydy. (5.3.24)

Hence, there is a linear operator that reduces the solution e−ikX of
the Schrödinger equation with null potential Q = 0 to the solution
of this equation with the potential U(X). The function K(X, y;T ) is
the kernel of the transformation operator.

We write Eq. (5.3.24) for k = 0; this procedure is correct and an
appropriate theorem has been proved (see Section 3.3 in [27])

ψ(X, k = 0;T ) = 1 +

+∞∫
X

K(X, y;T )dy. (5.3.25)
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Clearly, ψ(X, k = 0;T ) = ϕ(X,T ), where ϕ(X,T ) satisfies the equa-
tion system (5.1.4), (5.1.7). Taking into account (5.3.18) and (5.3.25),
we obtain from the relationship (5.1.4)

1 +

+∞∫
X

K(X, y;T )dy = 2
∂K(X,X, T )

∂T
+ C. (5.3.26)

Since this equation must be valid at arbitrary X, and taking into
account that the function K(X, y;T ) → 0 at |X| → ∞, we define the
constant of integration C = 1. We write, once again, K(X, y;T ) as in
(5.3.19) because the potential is reflectionless, and from (5.3.26) we
obtain

2∑
m=1

cm(T )

κm
ψm(X;T )e−κmX = 2

2∑
m=1

∂cm(T )ψm(X;T )

∂T
e−κmX .

(5.3.27)

In this equation we must substitute the values ψm that are the solution
of system (5.3.20). Here we consider the values cm already as functions
of T , i.e. cm = cm(T ). For example ψ1 is given by

ψ1 = Δ−1

(
c1e

−κ1X +
c1c

2
2

2κ2
e−(κ1+2κ2)X − c1c

2
2

κ1 + κ2
e−(κ1+2κ2)X

)
.

(5.3.28)

Here Δ is the determinant (5.3.22) with time-dependence of cm =
cm(T ). We can calculate the following terms which are required for
(5.3.27) (with κ1 = 1, κ2 = 2):

2∑
m=1

cm(T )
κm

ψm(X;T )e−κmX = Δ−1
(
c21e

−2X + 1
2c

2
2e
−4X

)
,

2∑
m=1

cm(T )ψm(X;T )e−κmX = Δ−1
(
c21e

−2X + c22e
−4X + 1

12c
2
1c

2
2e
−6X

)
.

(5.3.29)

Then, on substituting (5.3.29) into (5.3.27) and equating to zero the
coefficients of e−2jX , (j = 1, . . . , 6), we obtain the following system
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of differential equations for cm(T ), (m = 1, 2):

e−2X :
(
c21

)′
= 1

2c
2
1,

e−4X :
(
c22

)′
= 1

4 (c
2
2 + c41),

e−6X : 1
3 (c

2
1c

2
2)
′ + c21

(
c22

)′ − c22
(
c21

)′
= c21c

2
2,

e−8X : c21
(
c21c

2
2

)′ − c21c
2
2

(
c21

)′
= 1

4

(
c41c

2
2 + 9c42

)
,

e−10X : c22
(
c21c

2
2

)′ − c21c
2
2

(
c22

)′
= 1

2c
2
1c

4
2,

e−12X : c21c
2
2

(
c21c

2
2

)′
= c21c

2
2

(
c21c

2
2

)′
,

(5.3.30)

where the prime denotes the derivative with respect to time T .
The equation system (5.3.30) is an over-determined one; only the

first two equations are independent. Consequently, we solve them
with initial conditions c21(0) = 6, c22(0) = 12. At first, we write the
general solution of the system (5.3.30) as

c21(T ) = r1e
T/2, c22(T ) = r2e

T/4 + 1
3r

2
1e

T , (5.3.31)

where r1, r2 are arbitrary constants. Hence, in the general case, the
time-dependence of the first and second states are different. Never-
theless, we have r2 ≡ 0 due to the relationship between c1(0) and
c2(0) and then

c21(T ) = c21(0)e
T/2 = 6eT/2, c22(T ) =

1
3c

4
1(0)e

T = 12eT . (5.3.32)

Thus, the time-dependences satisfy the condition c21(T )/c2(T ) = const.
Indeed, if the time-dependences is as in (5.3.32), the determinant
(5.3.22) can be rewritten as a perfect cube, namely

Δ =
(
1 + e−2(X−T/4)

)3

. (5.3.33)

For convenience, up to this point we have used κ1 = 1, κ2 = 2. Now
we return to one arbitrary parameter κ1 (with κ2 = 2κ1) and rename
it as α ≡ κ1, and then we obtain

Δ =

{
1 + exp

[
−2α

(
X − T

4α2

)]}3

. (5.3.34)

The potential for the one-soliton solution can easily be found by use
of Eq. (5.3.21) so that

U = 2
d2 ln |Δ|
dX2

= 6α2 sech2 Θ, Θ = α

(
X −X0 − T

4α2

)
. (5.3.35)
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This is the one-soliton solution for the VPE.
For reference we give the complete equations for finding the so-

lution of the VE (2.3.2) in terms of the initial variables x, t, (for
convenience T is renamed as μ ≡ T because here μ is a parameter):

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0,

u =

(
∂W

∂t

)
μ

, x = x0 + μ+W, W = 2

(
∂ ln |Δ|

∂t

)
μ

, (5.3.36)

Δ = (1 + q2)3, q = exp(−Θ), Θ = α

(
t− μ− μ0

4α2

)
, (5.3.37)

α = const., μ0 = const.

Thus we have obtained the one-soliton solution of the VE as well
as the VPE using elements of the IST method for the KdV equation.
The proposed method is also applicable for finding the two-soliton
solution. It is likely that this procedure will shed light upon the
formulation of the IST problem that enable one to make progress in
the study of the Cauchy problem for the VE (2.3.2).

5.3.4 Two-soliton solution

Let us consider the two-soliton solution for the VE (2.3.2). The key
for constructing this solution is the value which is assigned to the
determinant in (5.3.36) in the one-soliton solution. For information
we rewrite the values (5.3.37) once again

Δ = (1 + q2)3, q = exp

[
−α

(
t− μ− μ0

4α2

)]
. (5.3.38)

It can be seen that there is the some analogy to the one-soliton solution
of the KdV equation (5.3.23), namely

Δ = 1 + q2, q = exp(αx− 4α3t).

Moreover, as we noted, the potentials corresponding to the one-soliton
solution
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(a) for the VPE (T = 0, α = 1)

U = 6 sech2 X, (5.3.39)

(b) for the KdV equation (t = 0, � = 1)

u = 2 sech2 x, (5.3.40)

differ from each other by their coefficients. Bearing in mind Eq. (5.3.18)
and that K = (ln |Δ|)X (see (5.3.21)), one can see that the coefficient
6 in (5.3.39), in contrast to the coefficient 2 in (5.3.40), is generated
by the exponent 3 in the relationship (5.3.38).

Now, if it is recalled that the two-soliton solution for the KdV has
the form [36]

F̃ = Δ = 1 + q21 + q22 + Ã12q
2
1q

2
2 ,

Ã12 =
(α1 − α2)

2

(α1 + α2)2
, (5.3.41)

qi = exp[αi(x− x0i)− 4α3
i t],

we can expect that the two-soliton solution for the VE can be found
in the form (5.3.36) with the following value of F instead of Δ in
relation (5.3.21):

F =
(
1 + q21 + q22 +A12q

2
1q

2
2

)3
, qi = exp

[
−αi

(
t− μ− μi

4α2
i

)]
.

(5.3.42)

The value of A12 is to be determined. It should be noted that F is
not equal to the determinant Δ of the matrix in (5.3.20) which is
constructed from four states with q1, q

2
1 , q2, q

2
2 , (each soliton has two

bound states (5.3.12)), namely

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + 3q21 2
√
2q31

6
√
α1α2

α1 + α2
q1q2

6
√
2α1α2

α1 + 2α2
q1q

2
2

2
√
2q31 1 + 3q41

6
√
2α1α2

2α1 + α2
q21q2

6
√
α1α2

α1 + α2
q21q

2
2

6
√
α1α2

α1 + α2
q1q2

6
√
2α1α2

2α1 + α2
q21q2 1 + 3q22 2

√
2q32

6
√
2α1α2

α1 + 2α2
q1q

2
2

6
√
α1α2

α1 + α2
q21q

2
2 2

√
2q32 1 + 3q42

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(5.3.43)
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If the relation F = Δ were true, we would have A12 = Ã12. Moreover,
these conditions would lead us to the statement that the problem
for the scattering data for the VE (2.3.2) should connect with the
isospectral Schrödinger equation. This statement was made in the
paper by Hirota and Satsuma [96] as well as in the monograph by
Newell (see Chaps. 3 and 4 in [29]). However, because F 	= Δ and
A12 	= Ã12, we can state that the equation system for the IST problem
associated with the VPE (5.1.10) does not contain the isospectral
Schrödinger equation.

The value A12 for (5.3.42) can be determined in the following way.
The functional relation (5.3.42), with A12 regarded as unknown, is
substituted into Eq. (5.3.36), and then into Eq. (5.1.10). Equating to
zero the coefficients of exp[−2(iα1+jα2)X], (i, j = 0, . . . , 4, i+j 	= 0),
we obtain a system of equations in one unknown A12. It turns out
that the equations are dependent. As a result we obtain

A12 =
(α1 − α2)

2

(α1 + α2)2
· α

2
1 + α2

2 − α1α2

α2
1 + α2

2 + α1α2
. (5.3.44)

Thus the relationships (5.3.36) (with F instead of Δ), (5.3.42) and
(5.3.44) are the exact two-soliton solution of the VE (2.3.2). In terms
of x and t, we have

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0,

u =

(
∂W

∂t

)
μ

, x = x0 + μ+W, W = 2

(
∂ ln |F |

∂t

)
μ

, (5.3.45)

F =
(
1 + q21 + q22 +A12q

2
1q

2
2

)3
, qi = exp(−Θi), (5.3.46)

A12 =
(α1 − α2)

2

(α1 + α2)2
· α

2
1 + α2

2 − α1α2

α2
1 + α2

2 + α1α2
,

Θi = αit− μ− μi

4αi
, αi = const., μi = const.

The function W (X,T ) in space (X,T ) is the two-soliton solution for
the VPE.

An equivalent result has been obtained, independently of the method
presented here, in Section 6.5.4 by the means of the Hirota method
[96, 35, 36] in terms of other variables.
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5.3.5 Concluding remarks

The main result of Section 5.3 is that we have obtained a way of apply-
ing the IST method to the VPE. Keeping in mind that the IST is the
most appropriate way of tackling the initial value problem, one has
to formulate the associated eigenvalue problem. We have proved that
the equation system for the IST problem associated with the VPE
does not contain the isospectral Schrödinger equation. Nevertheless,
the analysis of the VPE in the context of the isospectral Schrödinger
equation allowed us to obtain the two-soliton solution. Thus the re-
sults stated here may be useful in the investigation of a new equation
for which the spectral problem is unknown.

Historically, once this investigation was completed, we were able
to make some progress in the formulation of the IST for the VPE. In
Section 7.1 we will prove that the spectral problem associated with
the VPE is of third order.
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The Hirota method

Now let us define the notion ‘soliton’ more precisely. Apart from the
fact that a soliton is a stable solitary wave with particle-like properties,
a soliton must possess additional properties. One property is that two
such solitary waves may pass through each other without any loss of
identity. Consider two solitons with different speeds, the faster one
chasing the slower one. The faster soliton will eventually overtake the
slower one. After the nonlinear interaction, two solitons again will
emerge, with the faster one in front, and each will regain its former
identity precisely. The only interaction memory will be a phase shift;
each soliton will be centered at a location different from where it would
have been had it traveled unimpeded. However, this property is still
not sufficient in order that the solitary wave be a soliton. There are
equations which possess solutions which are a nonlinear superposition
of two solitary waves but which do not have all the properties enjoyed
by soliton equations. A soliton equation, when it admits solitary
wave solutions, must possess a solution which satisfies the ‘N -soliton
condition’ (see Section 6.5.1). The solitary wave with these properties
defines a soliton. The term ‘soliton’ was originally coined by Zabusky
and Kruskal in 1965 [111].

One of the key properties of a soliton equation is that it has an in-
finite number of conservation laws. These soliton equations satisfy the
Hirota condition (‘N -soliton condition’) and are exactly integrable.

The Hirota method not only gives the N -soliton solution, but en-
ables one to find a way from the Bäcklund transformation through the
conservation laws and associated eigenvalue problem to the inverse
scattering method. Thus the Hirota method, which can be applied
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only for finding solitary wave solutions or traveling wave solutions, al-
lows us to formulate the inverse scattering method which is the most
appropriate way of tackling the initial value problem (Cauchy prob-
lem). Consequently, in this case, the integrability of an equation can
be regarded as proved.

6.1 The D-operator and N-soliton solution

Various effective approaches have been developed to construct exact
wave solutions of completely integrable equations. One of the funda-
mental direct methods is undoubtedly the Hirota bilinear method [35,
36, 96, 112], which possesses significant features that make it practical
for the determination of multiple soliton solutions.

In the Hirota method, the equation under investigation should first
be transformed, if possible, into Hirota bilinear form [35]. There are
several possibilities, the most common of which is

F (DX , DT )f · f = 0, (6.1.1)

where F is a polynomial in DT and DX . Each equation has its own
polynomial. The Hirota bilinear D-operator is defined as (see Section
5.2 in [35])

Dn
TD

m
Xa · b = (6.1.2)

=

(
∂

∂T
− ∂

∂T ′

)n (
∂

∂X
− ∂

∂X ′

)m

a(T,X)b(T ′, X ′)
∣∣∣∣
T=T ′, X=X′

.

If the polynomial F satisfies conditions (see (5.41), (5.42) in [35])

F (DX , DT ) = F (−DX ,−DT ), F (0, 0) = 0, (6.1.3)

then the Hirota method can be applied successfully.
According to [35], the N -soliton solution reads as follows

f =
∑
μ=0,1

exp

[
2

( N∑
i=1

μiηi +

(N)∑
i<j

μiμj ln bij

)]
, (6.1.4)

where

b2ij = − F [2(ki − kj),−2(ωi − ωj)]

F [2(ki + kj),−2(ωi + ωj)]
, ηi = kiX−ωiT +αi. (6.1.5)
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The connection between ki and ωi is found by the dispersion relations

F (2ki,−2ωi) = 0, i = 1, . . . , N. (6.1.6)

In (6.1.4),
∑

μ=0,1 means the summation over all possible combina-

tions of μ1 = 0 or 1, μ2 = 0 or 1, . . . , μN = 0 or 1, and
∑(N)

i<j means
the summation over all possible combinations of N elements under
the condition i < j.

Moreover, for there to be an N -soliton solution (NSS) to (6.1.1)
with N(≥ 1) arbitrary, F (DX , DT ) must satisfy the ‘N -soliton condi-
tion’ (NSC) [35], namely

n = 1, 2, . . . , N, (6.1.7)

(6.1.8)

G(n)(p1, . . . , pn) = 0,

where

G(1)(p1): = 0

and, for n≥ 2,

G(n)(p1, . . . , pn): = C
∑

σ=±1

{
F

(∑n
i=1 σipi,

∑n
i=1 σiΩi

)
×∏(n)

i>j F (σipi − σjpj , σiΩi − σjΩj)σiσj

}
.

(6.1.9)

In (6.1.9), the Ωi are given in terms of the pi by the dispersion relations
F (pi,Ωi) = 0 (i = 1, . . . , N),

∑
σ=±1 means the summation over all

possible combinations of σ1 = ±1, σ2 = ±1, . . . , σn = ±1, and C
is a function of the pi that is independent of the summation indices
σ1, . . . , σn.

From (6.1.8) it follows that (6.1.7) is satisfied for n = 1. If
F (p,Ω) = F (−p,−Ω), then (6.1.7) is satisfied for n = 2. However,
whether or not (6.1.7) is satisfied for n ≥ 3 depends on the particular
form of F (p,Ω), i.e. on the original equation being studied.
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6.2 Bilinear form of the Vakhnenko-Parkes

equation

In order to find soliton solutions to the VPE

WXXT + (1 +WT )WX = 0 (6.2.1)

by using Hirota’s method [35], we need to express it in Hirota form
[74]. This is achieved by taking

W = 6(ln f)X . (6.2.2)

Then we find that

WX =
3D2

Xf · f
f2

and WXXT +WXWT =
3DTD

3
Xf · f

f2
(6.2.3)

and so the bilinear form of the VPE is

F (DX , DT )f · f = 0, F (DX , DT ) : =DTD
3
X +D2

X . (6.2.4)

The solution procedure for the VPE is to solve (6.2.4) for f by
using Hirota’s method and hence to find the explicit solution W (X,T )
for the VPE (6.2.1) by using (6.2.2). We can find U(X,T ) from the
relation U = WX and then, as shown in Section 5.1, the implicit
solution u(x, t) to the VE (5.1.1) is given in parametric form by

u(x, t) = U(t, T ), x = θ(t, T ), (6.2.5)

where

θ(X,T ) = T +W (X,T ) + x0. (6.2.6)

In passing we note that the Hirota–Satsuma equation (HSE) for
shallow water waves [100]

−ut + uxxt + uut + ux

x∫
−∞

ut dx
′ + ux = 0 (6.2.7)

may be written as

Wxxt + (1 +Wt)Wx −Wt = 0, u = Wx = 6(ln f)xx (6.2.8)
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or in bilinear form

(DtD
3
x +D2

x +DtDx)f · f = 0. (6.2.9)

Clearly (6.2.8) and (6.2.9) are similar to, but cannot be transformed
into, (5.1.10) and (6.2.4), respectively. Hence solutions to the HSE
cannot be transformed into solutions of the VPE. The solution to the
HSE by the Hirota method is given in [100].

6.3 Bäcklund transformation for the VPE

In Section 6.2 we wrote the VPE (5.1.10)

WXXT + (1 +WT )WX = 0

in the Hirota bilinear form (6.2.4)

(DTD
3
X +D2

X)f · f = 0.

It turns out that a Bäcklund transformation follows from the bilinear
form of the nonlinear evolution equation [84].

The definition of a Bäcklund transformation which was given by
Rund in [113] is now the generally accepted one. Let u(x, t) and
ũ(x, t) satisfy the partial differential equations E(u) = 0 and D(ũ) =
0, respectively. Then the set of relations Ri((u), (ũ), (ζ)) = 0 (j =
1, . . . , n), where (u) and (ũ) denote strings, not necessarily of equal
length, consisting of u, ũ and their various partial derivatives, is called
a Bäcklund transformation if these relations ensure that ũ satisfies
D(ũ) = 0 whenever u satisfies E(u) = 0 and vice versa. If u and ũ
satisfy the same equation, the adjective “auto” is inserted in front of
Bäcklund transformation.

The main significance of Bäcklund transformations is that they
have typically associated nonlinear superposition principles whereby
infinite sequences of solutions to nonlinear equations may be gen-
erated by purely algebraic procedures. A Bäcklund transformation
achieves the passage between different solution types, whether it is a
one-soliton, two-soliton, bound state, etc. Multi-soliton solutions of
many important nonlinear evolution equations can thereby be con-
structed. We will show that a special form of the Bäcklund trans-
formation suggested by Hirota [114] is a key for finding an infinite
number of conservation laws as well as allowing one to formulate the
inverse scattering problem.
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Thus, the next step in the investigation of nonlinear evolution
equations should be directed to obtaining the bilinear form of the
Bäcklund transformation from the bilinear form of the nonlinear equa-
tion.

6.3.1 Bäcklund transformation in bilinear form

Now we present a Bäcklund transformation for the VPE (5.1.10) writ-
ten in the bilinear form (6.2.4). This type of Bäcklund transformation
was first introduced by Hirota [114] and has the advantage that the
transformation equations are linear with respect to each dependent
variable. This Bäcklund transformation is easily transformed to the
ordinary one.

We follow the method developed in [114] and described in [84].
First we define P as follows:

P : = 2
{
[(DTD

3
X +D2

X)f ′ · f ′]ff − f ′f ′[(DTD
3
X +D2

X)f · f ]} ,

(6.3.1)

where f 	= f ′. We aim to find a pair of equations such that each
equation is linear in each of the dependent variables f and f ′, and
such that together f and f ′ satisfy P = 0. (It then follows that if
f is a solution of (6.2.4) then so is f ′ and vice-versa.) The pair of
equations is the required Bäcklund transformation.

We show that the Bäcklund transformation is given by pair of the
equations

(D3
X − λ)f ′ · f = 0, (6.3.2)

(3DXDT + 1 + μDX)f ′ · f = 0, (6.3.3)

where λ = λ(X) is an arbitrary function of X and μ = μ(T ) is an
arbitrary function of T .

We prove that together f and f ′, as determined by Eqs. (6.3.2)
and (6.3.3), satisfy P = 0 as follows. By using the identities (VII.3),
(VII.4) and Eq. (5.86) from [35] we may express P in the form

P =DT [(D
3
Xf ′ · f) · (f ′f)− 3(D2

Xf ′ · f) · (DXf ′ · f)]
+DX [3(DTD

2
Xf ′ · f) · (f ′f)]− 6(DXDT f

′ · f) · (DXf ′ · f)
− 3(D2

Xf ′ · f) · (DT f
′ · f) + 4(DXf ′ · f) · (f ′f)]. (6.3.4)
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We can rewrite P in the form

P =4DT ({D3
X − λ(X)}f ′ · f) · (f ′f)

− 4DX({3DTDX + 1 + μ(T )DX}f ′ · f) · (DXf ′ · f)
(6.3.5)

if we use the following identities:

D3
X [(DT f

′ · f) · (ff ′)] = (6.3.6)

= DT

[
(D3

Xf ′ · f) · (ff ′)− 3(D2
Xf ′ · f) · (DXf ′ · f)] ,

4DT (D
2
Xf ′ · f) · (DXf ′ · f) = (6.3.7)

= DX [(DTD
2
Xf ′ · f) · (f ′f) + 2(DTDXf ′ · f) · (DXf ′ · f)−

−(D2
Xf ′ · f) · (DT f

′ · f)]−D3
X(DT f

′ · f) · (f ′f).
Identities (6.3.6) and (6.3.7) come from

exp(D1)[exp(D2)f
′ · f ] · [exp(D3)f

′ · f ] =
= exp( 12{D2 −D3})

[
exp

{
1
2 (D2 +D3) +D1

}
f ′ · f]

& · [exp{
1
2 (D2 +D3)−D1

}
f ′ · f] (6.3.8)

which is Eq. (5.83) in [35], whereDi : = εiDX+ δiDT . In the order ε31δ3,
(6.3.8) yields (6.3.6), and in the order δ1ε

2
2ε3, (6.3.8) yields (6.3.7).

From (6.3.5) it follows that if (6.3.2) and (6.3.3) hold then P= 0 as
required.

Thus we have proved that the pair of Eqs. (6.3.2) and (6.3.3) con-
stitute a Bäcklund transformation in bilinear form for Eq. (6.2.4).
Separately these equations appear as part of the Bäcklund transforma-
tion for other nonlinear evolution equations. For example, Eq. (6.3.2)
is the same as one of the equations that is part of the Bäcklund trans-
formation for a higher order KdV equation (see Eq. (5.139) in [35]),
and Eq. (6.3.4) is similar to (5.132) in [35] that is part of the Bäcklund
transformation for a model equation for shallow water waves.

The inclusion of μ in the operator 3DT +μ which appears in (6.3.6)

corresponds to a multiplication of f and f ′ by terms of the form
eg(T ) and eg

′(T ), respectively; however, this has no effect o nW or
W ′ because, from (6.2.2), W = 6(ln f)X . Hence, without loss of
generality, we may take μ = 0 in Eq. (6.3.3) if we wish.
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6.3.2 Bäcklund transformation in ordinary form

Following the procedure given in [35, 115], we can rewrite the Bäck-
lund transformation in ordinary form in terms of the potential W =∫ X

−∞ U dX ′ which arises as a result (5.1.8). In new variables defined
by

φ = ln f ′/f, ρ = ln f ′f, (6.3.9)

Eqs. (6.3.2) and (6.3.3) have the form

φXXX + 3φXρXX + φ3
X − λ = 0, (6.3.10)

3 (ρXT + φXφT ) + 1 + μφX = 0, (6.3.11)

respectively, where we have used results similar to (XI.1)–(XI.3) in
[35]. From the definitions (6.2.2) and (6.3.9), different solutions W ,
W ′ of the VPE (5.1.10) are related to φ and ρ by

W ′ −W = 6φX , W ′ +W = 6ρX . (6.3.12)

Substitution of (6.3.12) into (6.3.10) and (6.3.11) with μ = 0 leads to

(W ′−W )XX+ 1
2 (W

′−W )(W ′+W )X+ 1
36 (W

′−W )3−6λ = 0, (6.3.13)

3λ(W ′ −W )T + [(1−WT )((W
′ −W )X+ (6.3.14)

1
6 (W

′ −W )2)−WXT (W
′ −W )]X = 0,

respectively. The required Bäcklund transformation in ordinary form
is given by the equations (6.3.13) and (6.3.14).

Thus, by using the VPE as an example, we have traced how the
bilinear and ordinary forms of the Bäcklund transformation can be
found from the bilinear form of an evolution equation.

6.4 The infinite sequence of conservation laws

An important property of a soliton equation is that it has conservation
laws. The existence of an infinite number of conserved quantities is
associated with the intergrability of an equation [29].

A systematic way to derive higher conservation laws via the Bäck-
lund transformation has been developed by Satsuma; he applied it
to the KdV equation [116]. Later Satsuma and Kaup [115] applied
the method to a higher order KdV equation. Following [116], from

 EBSCOhost - printed on 2/13/2023 9:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 6. The Hirota method 113

the Bäcklund transformation we now construct the recurrence formula
which gives the infinite sequence of conserved quantities for the VPE.
An infinite sequence of conservation laws having the form

∂In
∂T

+
∂Fn

∂X
= 0 (6.4.1)

provides, in most cases, a corresponding sequence of integrals of mo-
tion given by the functionals

∫
IndX. Let us rewrite (6.3.13) (one of

the Bäcklund transformation equations) in the form

W ′−W = 6ζ 3

√
1− 1

6ζ3
(
(W ′ −W )XX + 1

2 (W
′ −W )(W ′ +W )X

)
,

(6.4.2)

ζ3 = λ.

Assuming 1/|ζ| is small, we may consider Eq. (6.4.2) to be an infinites-
imal transformation fromW toW ′. Indeed, in the first approximation
W ′ � W + 6ζ and the next approximation with respect to |ζ|−1

W ′ = W + 6ζ +
1

6ζ
I1.

Thus, we put W in the form

W ′ = W + 6ζ +
∞∑

n=1

1

6nζn
In(W,WX ,WXX , . . .). (6.4.3)

Substituting Eq. (6.4.3) into Eq. (6.3.13), and equating the coefficients
for the higher powers of 1/|ζ|, we have

O(ζ1) : I1 = −2WX ,

O(ζ0) : I2 = 2WXX ,

O(ζ−1) : I3 = − 4
3WXXX , (6.4.4)

O(ζ−2) : I4 = 2
3WXXXX ,

O(ζ−3) : I5 = − 2
9WXXXXX + 1

9 (W
2
X)XX − 2

9W
2
XX + 2

27W
3
X .
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The general recursion relations for n ≥ 5 are as follows:

In = −1

3
In−2,XX − In−1,X − 1

6

n−3∑
i=1

IiIn−i−2,X − 1

3
WXIn−2

−1

6

n−2∑
i=1

IiIn−i−1 − 1

108

∑
i+j+l=n−2

IiIjIl. (6.4.5)

The fact that these quantities are the conserved densities can be shown
as follows. Let us calculate the integral

∫
(W ′ − W − 6ζ)T dX with

suitable boundary conditions. Taking into account Eq. (6.4.3), we
have(∫

(W ′ −W − 6ζ) dX

)
T

=

[
1

6nζn

∞∑
i=1

(∫
In dX

)]
T

= 0. (6.4.6)

Thus we deduce that the VPE has an infinite sequence of conservation
laws.

6.5 The N-soliton solution for the VPE

The Hirota method for the VPE can be applied successfully if we can
prove the ‘N -soliton condition’ (NSC) (6.1.7)–(6.1.9) for Eq. (6.2.4).
Let us present this proof [75].

6.5.1 The ‘N-soliton condition’ for the VPE

Since for Eq. (6.2.4), we have F (p,Ω) = F (−p,−Ω), then (6.1.7) is
satisfied for n = 2.

With F given by (6.2.4), the dispersion relations give Ωi = −1/pi
and (6.1.7) may be written

G(n)(p1, . . . , pn): = (6.5.1)

: =

( n∏
i=1

pi

) ∑
σ=±1

{( n∑
i=1

σipi

)2[
1−

( n∑
i=1

σi

pi

)( n∑
i=1

σipi

)]
×

×
(n)∏
i>j

(σipi − σjpj)
2(p2i + p2j − σiσjpipj)

}
.
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The presence of the first product term in (6.5.1) ensures that G(n)

is a homogeneous polynomial in the pi.

In passing we remark that previous work suggests, but does not
prove, that (6.2.4) does have an NSS for all N ≥ 1. The expression
for F given by (6.2.4) is a special case of one proposed by Ito (see
Eq. (B.10) in [117]). Ito claimed that this F satisfies the 3SC. Hietar-
inta [118] performed a search for bilinear equations of the form (6.2.4)
that have an F that satisfies the 3SC. One such F was found to be the
one given by (6.2.4). Hietarinta [119] later claimed that this F also
passed the 4SC. The bilinear equation (6.2.4) is a special case of one
given in Grammaticos et al. (see Eq. (4.4) in [120]); they showed that
this equation has the Painlevé property. According to Hietarinta [119]
a bilinear equation that has a 4SS and the Painlevé property is almost
certainly integrable. All this evidence suggests that it is highly likely
that (6.2.4) does have an NSS for all N ≥ 1. Here we remove any
doubt by using induction to prove that the condition (6.1.7) is satis-
fied with G(n) given by (6.5.1).

We need the following properties of G(n) (as given by (6.5.1)) for
n ≥ 3:

(i) G(n)(p1, . . . , pn)|p1=0 ≡ 0,

(ii) G(n)(p1, . . . , pn)|p1=±p2
=

± 24p61

[ n∏
i=3

(p2i − p21)
2(p4i + p41 + p2i p

2
1)

]
G(n−2)(p3, . . . , pn),

(iii) G(n)(p1, . . . , pn)|p2
1+p2

2±p1p2=0 = ±(p1 ∓ p2)(p
2
1 − p22)(p

2
1 + p22 ∓

p1p2) ×
[ n∏
i=3

[{(p1 ± p2)
2 + p2i }2 − (p1 ± p2)

2p2i ]

]
G(n−1)(p1 ±

p2, p3, . . . , pn).

(We established property (iii) by adapting the argument used to ob-
tain equation (28) in [121] in the context of a shallow water wave
equation.) Furthermore, because of the σ summation in (6.5.1), G(n)

is an odd, symmetric function of the pi. As already noted, the con-
dition (6.1.7) is satisfied for n = 1 and n = 2. We now assume that
the condition is satisfied for all n ≤ m − 1, where m ≥ 3; then the
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properties of G(n) imply that it may be factorised as follows:

G(m)(p1, . . . , pm) = (6.5.2)[ m∏
i=1

pi

][ (m)∏
i>j

(p2i − p2j )
2(p2i + p2j + pipj)(p

2
i + p2j − pipj)

]
×G̃(m)(p1, . . . , pm),

where G̃(m) is a homogeneous polynomial. It follows that the degree
of G(m) is at least 4m2 − 3m. On the other hand, from (6.5.1) the
degree of G(m) is at most 2m2 −m+2. As 4m2 − 3m > 2m2 −m+2
for m ≥ 3, it follows that G(m) ≡ 0. It now follows by induction that
the NSC is satisfied.

6.5.2 The N-soliton solution

With F given by (6.2.4) for the VPE

WXXT + (1 +WT )WX = 0,

the dispersion relations (6.1.6) F (2ki,−2ωi) = 0 (i = 1, . . . , N) give
ωi = 1/4ki and then

ηi = ki(X − ciT ) + αi with ci = 1/4k2i . (6.5.3)

Also, without loss of generality, we may take k1 < · · · < kN and then

bij =
kj − ki
ki + kj

√
k2i + k2j − kikj

k2i + k2j + kikj
, where i < j, (6.5.4)

so that 0 < bij < 1.
Consequently, the relationship (6.1.4) with (6.5.3) and (6.5.4) gives

f for the VPE. Finally, substitution of (6.1.4) into (6.2.2) gives the
N -soliton solution W (X,T ) of the VPE [75].

However, following Moloney & Hodnett [122], it is more convenient
to express f in the form

f = hi + ĥie
2ηi (6.5.5)

for a given i with 1 ≤ i ≤ N , where

hi =
∑
μ=0,1

exp

[
2

( N∑
r=1
(r �=i)

μrηr +

(N)∑
r<s

(r �=i,s �=i)

μrμs ln brs

)]
, (6.5.6)
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ĥi =
∑
μ=0,1

exp

[
2

(∑N
r=1
(r �=i)

μrηr +
∑(N)

r<s
(r �=i,s �=i)

μrμs ln brs

+
∑i−1

r=1 μr ln bri +
∑N

r=i+1 μr ln bir

)]
.(6.5.7)

Then we may write the N -soliton solution for the VPE (5.1.10) in the
form

W (X,T ) =
N∑
i=1

Wi, (6.5.8)

where Wi = 6ki(1 + tanh gi), gi(X,T ) = ηi +
1
2 ln

[
ĥi

hi

]
.

From (6.5.8) and the relationship U = WX , the corresponding expres-
sion for U(X,T ) is

U(X,T ) =
N∑
i=1

Ui, where Ui = 6ki
∂gi
∂X

sech2 gi. (6.5.9)

From Section 6.2, it follows that the Moloney–Hodnett form of the N
loop soliton solution to the VE (2.3.2) is given in parametric form by

u(x, t) = U(t, T ), x = θ(t, T ), θ(X,T ) = T +W (X,T ) + x0

(6.5.10)

with W and U given by (6.5.8) and (6.5.9), respectively.
The Moloney–Hodnett formulation provides a convenient way of

tracking individual solitons (see Sections 6.5.4 and 6.5.5, for example).

6.5.3 The one loop soliton solution for the VE

The solution to (6.2.4) corresponding to one soliton is given by

f = 1 + e2η, where η = kX − ωT + α, (6.5.11)

and k, ω and α are constants. The dispersion relation (6.1.6) is
F (2k,−2ω) = 0 from which we find that ω = 1/4k and then

η = k(X − cT ) + α with c = 1/4k2. (6.5.12)
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Substitution of (6.5.11) into (6.2.2) gives

W (X,T ) = 6k(1 + tanh η) (6.5.13)

so that

U(X,T ) = 6k2 sech2 η. (6.5.14)

The one loop soliton solution to the VE is given by (6.5.10) with
(6.5.13) and (6.5.14). From (6.5.10) with v = 1/c we have

x− vt = −v(X− cT )+6k(1+tanh[k(X− cT )+α])+x0. (6.5.15)

Clearly, from (6.5.14) and (6.5.15), U(X,T ) and x − vt are related
by the parameter χ = X − cT so that u(x, t) is a soliton that travels
with speed v in the positive x-direction. That this soliton is a loop
may be shown as follows. From (5.1.5) we have ux = φ−1UT , and on
using (6.5.12) and (6.5.14) we also have φ = 1− cU and UT = −cUX .
Hence

ux = −cUX/(1− cU). (6.5.16)

Thus, as χ goes from ∞ to −∞ in (6.5.15), so that x− vt goes from
−∞ to +∞, UX changes sign once and remains finite whereas ux given
by (6.5.16) changes sign three times and goes infinite twice. The one
loop soliton solution may be written in terms of the parameter χ as

u =
3v

2
sech2

(√
v χ

2

)
, x− vt = x̃0 − vχ+3

√
v tanh

(√
v χ

2

)
(6.5.17)

with v(> 0) and x̃0 arbitrary. The solution (6.5.17) is essentially the
one loop soliton solution given by (3.2.14) (see [41, 42] too).

Usually it is assumed that the value α is real o that the solution
U(X, T ) is a real function. However, a real solution is ob-tained also
with α = iπ/2 + α̃, where α̃ is real. In this case we have f = 1 − e2η in
(6.5.11). Hence, with α = iπ/2 + α̃ (α̃ real) in (6.5.13) and (6.5.14), we
obtain alternative real solutions forW and U , namely

W (X,T ) = 6k(1+coth η), where η = k(X − cT )+ α̃, (6.5.18)

and

U(X,T ) = −6k2 cosech2 η. (6.5.19)

Equation (6.5.18) is equivalent to equation (34) (with k1 written as
2k) in [123], and (6.5.19) is discontinuous (a singular soliton).

 EBSCOhost - printed on 2/13/2023 9:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 6. The Hirota method 119

6.5.4 The two loop soliton solution for the VE

The solution to (6.2.4) corresponding to two solitons is given by

f = 1+e2η1+e2η2+b2e2(η1+η2), where ηi = kiX−ωiT+αi, (6.5.20)

b2 = − F [2(k1 − k2),−2(ω1 − ω2)]

F [2(k1 + k2),−2(ω1 + ω2)]
, (6.5.21)

and ki, ωi and αi are constants. The dispersion relations (6.1.6) are
F (2ki,−2ωi) = 0 (i = 1, 2) from which we find that ωi = 1/4ki and
then

ηi = ki(X − ciT ) + αi with ci = 1/4k2i . (6.5.22)

Without loss of generality we may take k2 > k1 and then

b =
k2 − k1
k2 + k1

√
k21 + k22 − k1k2
k21 + k22 + k1k2

. (6.5.23)

Substitution of (6.5.20) into (6.2.2) gives the two soliton solution of
the VPE. Following Hodnett & Moloney [122, 124] and (6.5.8), we
may write W (X,T ) in the form

W = W1 +W2, where Wi = 6ki(1 + tanh gi) (6.5.24)

and

g1(X,T ) = η1 +
1

2
ln

[
1 + b2e2η2

1 + e2η2

]
,

g2(X,T ) = η2 +
1

2
ln

[
1 + b2e2η1

1 + e2η1

]
.

(6.5.25)

As in (6.5.9), it follows that U may be written

U = U1 + U2, where Ui = 6ki
∂gi
∂X

sech2 gi. (6.5.26)

The two loop soliton solution to the VE is given by (6.5.10) with
(6.5.24)–(6.5.26) [74].

We now consider the two loop soliton solution in more detail. First
it is instructive to consider what happens in X-T space.
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As c1 > c2, we have

X− c2T → ±∞ as T → ±∞ with X− c1T fixed, (6.5.27)

and

X− c1T → ∓∞ as T → ±∞ with X− c2T fixed. (6.5.28)

From (6.5.25) and (6.5.26) with (6.5.27) it follows that, with X − c1T
fixed,

U1 ∼ 6k21 sech
2 η1 as T → −∞,

U1 ∼ 6k21 sech
2(η1 + ln b) as T → +∞.

(6.5.29)

Similarly, from (6.5.25) and (6.5.26) with (6.5.28), with X−c2T fixed,

U2 ∼ 6k22 sech
2(η2 + ln b) as T → −∞,

U2 ∼ 6k22 sech
2 η2 as T → +∞.

(6.5.30)

Hence it is apparent that, in the limits T → ±∞, U1 and U2 may
be identified as individual solitons moving with speeds c1 and c2 re-
spectively in the positive X-direction. In contrast to the familiar
interaction of two KdV ‘sech squared’ solitons [125], here it is the
smaller soliton that overtakes the larger one.

The shifts Δi of the two solitons U1 and U2 in the positive X-
direction due to the interaction are

Δ1 = −(ln b)/k1 and Δ2 = (ln b)/k2 (6.5.31)

respectively. As ln b < 0, the smaller soliton is shifted forwards and
the larger soliton is shifted backwards. Since the ‘mass’ of each soliton
is given by

∫∞
−∞ UidX = 12ki, where we have used (6.5.26), and the

shifts satisfy k1Δ1+ k2Δ2= 0, ‘momentum’ is conserved.
Let r: = k1/k2 and recall that here we are assuming that 0 < r < 1.

(From (6.5.29) and (6.5.30), r2 is the ratio of the amplitudes of the in-
dividual smaller and larger solitons.) Note that UXX(Xint, Tint) = 0
for r = R = 0.53862, where (Xint, Tint) is the centre of the inter-
action. For R < r < 1, we have UXX(Xint, Tint) > 0 and the two-
soliton solution in X-T space always has two peaks; during interac-
tion the two humps exchange amplitudes. For 0 < r < R, we have
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UXX(Xint, Tint) < 0 and the two humps of the individual solitons co-
alesce into a single hump for part of the interaction, the smaller hump
appears to pass through the larger one

Now let us consider what happens in x-t space. From (6.5.10) with
vi = 1/ci we have

x− vit = −vi(X − ciT ) +W (X,T ) + x0. (6.5.32)

Note that in (6.5.29) taking the limits T → ±∞ with X − c1T fixed
is equivalent to taking the limits X → ±∞ with X − c1T fixed; also
note that X = t from (5.1.12). Accordingly from (6.5.29) and (6.5.32)
with i = 1 we see that in the limits t → ±∞ with X − c1T fixed,
U1(X,T ) and x−v1t are related by the parameter X−c1T . Similarly,
from (6.5.30) and (6.5.32) with i = 2, in the limits t → ±∞ with
X − c2T fixed, U2(X,T ) and x − v2t are related by the parameter
X − c2T . It follows that in the limits t → ±∞, u1 and u2 may be
identified as individual loop solitons moving with speeds v1 and v2
respectively in the positive x-direction, where ui(x, t) = Ui(X,T ). As
v2 > v1, the larger loop soliton overtakes the smaller loop soliton.

The shifts, δi, of the two loop solitons u1 and u2 in the positive
x-direction due to the interaction may be computed from (6.5.32)
as follows. From (6.5.29), as T → −∞, U1 = U1max = 6k21 where
X − c1T = −α1/k1; then W1 = 6k1 and, by use of (6.5.27), W2 = 0.
Similarly, as T → ∞, U1 = U1max = 6k21 where X − c1T = −(α1 +
ln b)/k1; then W1 = 6k1 and W2 = 12k2. Use of these results in
(6.5.32) with i = 1 gives

δ1 = 4k1 ln b+ 12k2. (6.5.33)

By use of (6.5.28), (6.5.30) and (6.5.32) with i = 2, a similar calcula-
tion yields

δ2 = −4k2 ln b− 12k1. (6.5.34)

From (6.5.34) it is found that, for 0 < r < 1, δ2 > 0 so that the larger
loop soliton is always shifted forwards by the interaction. However,
for δ1 we find that

(a) for rc < r < 1, δ1 < 0 so the smaller loop soliton is shifted
backwards.

(b) for r = rc, where rc = 0.88867 is the root of ln b+3/r = 0, δ1 = 0
so the smaller loop soliton is not shifted by the interaction;
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(c) for 0 < r < rc, δ1 > 0 so the smaller loop soliton is shifted
forwards;

At first sight it might seem that the behaviour in (b) and (c)
contradicts conservation of ‘momentum’. That this is not so is justi-
fied as follows. By integrating (2.3.2) with respect to x we find that∫∞
−∞ u dx = 0; also, by multiplying (2.3.2) by x and integrating with

respect to x we obtain
∫∞
−∞ xu dx = 0. Thus, in x-t space, the ‘mass’

of each soliton is zero, and ‘momentum’ is conserved whatever δ1 and
δ2 may be. In particular δ1 and δ2 may have the same sign as in (c),
or one of them may be zero as in (b).

Cases (a), (b) and (c) are illustrated in figures 6.1, 6.2 and 6.3
respectively; in these figures u is plotted against x for various values
of t. For convenience in the figures, the interactions of solitons are
shown in coordinates moving with speed (v1 + v2)/2.

6.5.5 Discussion of the N loop soliton solution

We now interpret the N loop soliton solution found in Section 6.5.2
in terms of individual loop solitons [75].

First it is instructive to consider what happens in X-T space.
From (6.5.8) and (6.5.9) and the fact that c1 > · · · > cN we deduce
the following behavior: with X − ciT fixed and T → −∞,

Ui ∼

⎧⎪⎨⎪⎩
6k21 sech

2 η1, if i = 1,

6k2i sech
2

(
ηi +

i−1∑
r=1

ln bri

)
, if 2 ≤ i ≤ N ;

(6.5.35)

with X − ciT fixed and T → +∞,

Ui ∼

⎧⎪⎨⎪⎩ 6k2i sech
2

(
ηi +

N∑
r=i+1

ln bir

)
, if 1 ≤ i ≤ N − 1,

6k2N sech2 ηN , if i = N.

(6.5.36)

Hence it is apparent that, in the limits T → ±∞, each Ui may be
identified as an individual soliton moving with speed ci in the positive
X-direction. Smaller solitons overtake larger ones.

The shifts, Δi, of the solitons in the positive X-direction due to
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the interactions between the N solitons are given by

Δ1 = − 1

k1

N∑
r=2

ln b1r,

Δi =
1

ki

(i−1∑
r=1

ln bri −
N∑

r=i+1

ln bir

)
, 2 ≤ i ≤ N − 1,(6.5.37)

ΔN =
1

kN

N−1∑
r=1

ln brN .

Since the ‘mass’ of each soliton is given by
∫∞
−∞ Ui dX = 12ki, where

we have used (6.5.9), and the shifts satisfy

N∑
i=1

kiΔi = 0, (6.5.38)

‘momentum’ is conserved.
Now let us consider what happens in x-t space. From (6.5.10) with

vi = 1/ci we have

x− vit = −vi(X − ciT ) +W (X,T ) + x0. (6.5.39)

Note that in (6.5.35) and (6.5.36) taking the limits T → ±∞ with
X−ciT fixed is equivalent to taking the limits X → ±∞ with X−ciT
fixed; also note that X = t from (5.1.12). Accordingly from (6.5.35),
(6.5.36) and (6.5.39), with a given i, we see that in the limits t → ±∞
with X− ciT fixed, Ui(X,T ) and x−vit are related by the parameter
X − ciT . It follows that in the limits t → ±∞, ui may be identified
as an individual loop soliton moving with speed vi in the positive x-
direction, where ui(x, t) = Ui(X,T ). As v1 < · · · < vN , larger loop
solitons overtake smaller ones.

In order to calculate the shifts, δi, of the loop solitons ui in the
positive x-direction due to the interactions between the N loop soli-
tons, we need the following results: from (6.5.35), as T → −∞,
Ui → Uimax = 6k2i where

X−ciT=

⎧⎪⎨⎪⎩
−α1

k1
, for i = 1 and then W → 6k1,

−αi

ki
− 1

ki

i−1∑
r=1

ln bri, for 2 ≤ i ≤ N and then W → 6ki +

i−1∑
r=1

12kr;
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from (6.5.36), as T → ∞, Ui → Uimax = 6k2i where

X−ciT =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−αi

ki
− 1

ki

N∑
r=i+1

ln bir,

for 1 ≤ i ≤ N − 1 and then W → 6ki +

N∑
r=i+1

12kr.

−αN

kN
, for i = N and then W → 6kN .

Use of these results in (6.5.39) gives

δ1 =
N∑
r=2

(4k1 ln b1r + 12kr),

δi =
N∑

r=i+1

(4ki ln bir+12kr)−
i−1∑
r=1

(4ki ln bri+12kr), 2 ≤ i ≤ N−1,

(6.5.40)

δN = −
N−1∑
r=1

(4kN ln brN + 12kr).

Example: N = 3

As an example, here we consider the interaction of three solitons [75].
The interaction process is more complicated than that for the two
loop soliton solution [74] given in Section 6.5.4.

For N = 3, (6.5.36) gives

f = 1 + e2η1 + e2η2 + e2η2 + b212e
2(η1+η2) + b213e

2(η1+η3) + b223e
2(η2+η3)

+b212b
2
13b

2
23e

2(η1+η2+η3)

(6.5.41)

so that, for example, (6.5.8) gives

W1 = 6k1(1 + tanh g1), (6.5.42)

where

g1(X,T ) = η1 =
1

2
ln

[
1 + b212e

2η2 + b213e
2η3 + b212b

2
13b

2
23e

2(η2+η3)

1 + e2η2 + e2η2 + b223e
2(η2+η3)

]
.

(6.5.43)
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Also (6.5.40) give

δ1 = 4k1(ln b12 + ln b13) + 12(k2 + k3), (6.5.44)

δ2 = 4k2(ln b23 − ln b12) + 12(k3 − k1), (6.5.45)

δ3 = −4k3(ln b13 + ln b23)− 12(k1 + k2). (6.5.46)

It is found that δ3 > 0 so that the largest loop soliton is always shifted
forwards by the interaction with the other two loop solitons. However,
δ1 and δ2 may be positive or negative depending on the values of the
ratios r12: = k1/k2 and r23: = k2/k3. (Note that 0 < r12< 1 and 0 < r23
< 1.) This is illustrated in figures 6.4 and 6.5, respectively. It is clear
that it is possible to choose k1, k2 and k3 such that δ1, δ2 and δ3 are all
positive. At first sight it might seem that this contradicts conservation
of momentum. However, as pointed out in [74], the mass of each loop
soliton is zero, and momentum is conserved whatever the values of δ1,
δ2 and δ3.

It is of interest to investigate the nature of the interactions between
the three loop solitons. Here we consider the case where all three
solitons arrive at x = 0 at time t = 0. For the interactions to be
centred at X = 0 and T = 0 in X–T space, we require

α1 = − 1
2 (ln b12 + ln b13),

α2 = − 1
2 (ln b12 + ln b23),

α3 = − 1
2 (ln b13 + ln b23),

and

x0 = −6(k1 + k2 + k3).

Before discussing the interaction process it is helpful to recall some
results for the two loop soliton solution given in [74]. It was shown that
there are three characteristic types of behaviour during the interaction
process and that these depend on the value of the ratio r12 as follows:

(1) for 0.759 68 < r12 < 1, the two loops exchange their amplitudes
during the interaction but never overlap;

(2) for 0.556 76 < r12 < 0.759 68, the two loops exchange their am-
plitudes during the interaction and, for part of the interaction,
the loops overlap;
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(3) for 0 < r12 < 0.556 76, the larger loop catches up the smaller
loop which then travels clockwise around the larger loop before
being ejected behind the larger loop.

For the three loop soliton solution, the behaviour during the in-
teraction process clearly depends on both ratios r12 and r23. Similar
types of behaviour to the above can be observed for the interaction
between loops 1 and 2, and between loops 2 and 3, where we have de-
noted the loop corresponding to ki as loop i. Below we consider three
illustrative examples. For each example we present a figure in which
u is plotted against x− v2t at several equally spaced values of t, and
give the values of δi (i = 1; 2; 3) as calculated from (6.5.44)–(6.5.46).

First, consider the case where k1 = 0.36, k2 = 0.9 and k3 = 1 so
that r12 = 0.4 and r23 = 0.9. From the results in [74] we might expect
loop 1 to travel clockwise around loop 2 before being ejected behind
it, and loops 2 and 3 to exchange their amplitudes but never overlap.
As can be seen from figure 6.6 this is indeed what happens. In this
case δ1 = 19.50, δ2 = −0.54 and δ3 = 3.18.

Second, consider the case where k1 = 0.35, k2 = 0.5 and k3 = 1
so that r12 = 0.7 and r23 = 0.5. From the results in [74] we might
expect loops 1 and 2 to overlap for part of the interaction and to
exchange their amplitudes during the interaction, and for loop 2 to
travel clockwise around loop 3. As can be seen from figure 6.7 not
only does this happen but after loops 1 and 2 overlap, they both
travel around loop 3 before both are ejected behind loop 3. In this
case δ1 = 13.38, δ2 = 9.24 and δ3 = 0.10.

Third, consider the case where k1 = 0.405, k2 = 0.45 and k3 = 1
so that r12 = 0.9 and r23 = 0.45. From the results in [74] we might
expect loops 1 and 2 to exchange their amplitudes but never overlap,
and loop 2 to travel clockwise around loop 3. As can be seen from
figure 6.8 both loops 1 and 2 travel clockwise around loop 3 and
exchange amplitudes, but they overlap for a while near and at t = 0.
In this case δ1 = 9.77, δ2 = 10.97 and δ3 = 0.08.

Clearly many other types of interaction are possible and, as demon-
strated by our third example, it is not always possible to predict what
will happen on the basis of the results in [74] (see also Section 6.5.4)
alone. The interaction process for the three loop soliton solution is
more complicated than that for the two loop soliton solution; we have
been unable to classify the interactions into distinct characteristic
cases for ranges of values of the ratios r12 and r23 in a way similar
to that for the two loop solution. Nevertheless, the results of Sec-
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tion 6.5.4 can give us a rough indication as to what might happen
during the interaction process for the three loop soliton solution.

6.6 The N-soliton solution for the GVPE

6.6.1 The GVPE

In Section 6.2 we observed that the VPE

WXXT + (1 +WT )WX = 0 (6.6.1)

may be written in the bilinear form

F (DX , DT )f ·f = 0, where F (DX , DT ): = DTD
3
X+D2

X . (6.6.2)

We now consider a slightly more general form of (6.6.2), namely

F (DX , DT )f ·f= 0, where F (DX , DT ): =DTD
3
X+D2

X+βDXDT

(6.6.3)

and β is a free parameter. Now, on using the identities (6.2.3) together
with the identity

WT =
3DXDT f · f

f2
, (6.6.4)

we may write (6.6.3) as

WXXT + (1 +WT )WX + βWT = 0. (6.6.5)

We refer to (6.6.5) as the generalised VPE (GVPE).

We note that, by using the relationships (5.1.5), (5.1.8) and (5.1.9),
we may transform the GVPE into the GVE given by (4.5.5), namely

∂

∂x

(
D2u+

1

2
u2 + βu

)
+Du = 0. (6.6.6)

In Section 4.5 this equation was derived in a different way via a dis-
cussion of a Hirota–Satsuma-type ‘shallow water wave’ equation.
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6.6.2 The N-soliton solution for the GVPE

In Section 6.5.1 we discussed the ‘N -soliton condition’ (NSC) for the
F in (6.6.2) associated with the VPE. A similar discussion for the F
in (6.6.3) associated with the GVPE is given in the appendix of [101]
where it is shown that the NSC is satisfied. The N -soliton solution to
the GVPE is found by an appropriate generalisation of the procedure
for the VPE given in Section 6.5.2.

With F given by (6.6.3) the dispersion relations (6.1.6)
F (2ki,−2ωi) = 0 (i = 1, . . . , N) give ωi = ki/(4k

2
i + β) and then

ηi = ki(X − ciT ) + αi with ci = 1/(4k2i + β). (6.6.7)

Also, without loss of generality, we may take k1 < · · · < kN and then

bij =
kj − ki
ki + kj

√
4k2i + 4k2j − 4kikj + 3β

4k2i + 4k2j + 4kikj + 3β
, where i < j, (6.6.8)

so that 0 < bij < 1.

Consequently, the relationship (6.1.4) with (6.6.7) and (6.6.8) gives
f for the GVPE. Finally, substitution of (6.1.4) into (6.2.2) gives
the N -soliton solution W (X,T ) of the GVPE [101]. As described in
Section 6.5.2, the solution may also be expressed in the Moloney–
Hodnett form (6.5.8). The corresponding N -soliton solution u(x, t) of
the GVE (6.6.6) may then be expressed in parametric form given by
(6.5.9) and (6.5.10).

A discussion of the properties of the N -soliton solution of the
GVPE and the corresponding N -soliton solution of the GVE is given
in Section 6 in [101]. The one-soliton and two-soliton solutions are
discussed in more detail in Sections 4 and 7, respectively.

6.7 The N-soliton solution for the mGVPE

6.7.1 The mGVPE

In Section 4.5 we observed that the modified generalised VE (mGVE),
namely

∂

∂x

(D2u+ qu2 + βu
)
+ qDu = 0, (6.7.1)
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where q and β are arbitrary non-zero constants, may be derived from
a Hirota–Satsuma-type ‘shallow water wave’ equation of the form

UXXT +2qUUT −qUX

∫ ∞

X

UT (X
′, T ) dX ′+βUT +qUX = 0, (6.7.2)

In terms of W , where WX = U , (6.7.2)becomes

WXXXT +2qWXWXT + qWXXWT +βWXT + qWXX = 0. (6.7.3)

Equation (6.7.3) is the mGVPE. In order to put it into bilinear form,
following Hirota and Satsuma [100], we introduce an auxiliary variable
τ . By taking

W =
4

q
(ln f)X , (6.7.4)

we find that (6.7.3) may be expressed as the two coupled bilinear
equations

F (DX , DT , Dτ )(f · f) = 0 (6.7.5)

and

G(DX , Dτ )(f · f) = 0, (6.7.6)

where

F (DX , DT , Dτ ) := βDXDT +D3
XDT +qD2

X− 1

3

(
DτDT +D3

XDT

)
(6.7.7)

and

G(DX , Dτ ): =DX

(
Dτ +D3

X

)
. (6.7.8)

6.7.2 The N-soliton solution for the mGVPE

In the appendix of [102] the N -soliton conditions for F and G in
(6.7.5) and (6.7.6), respectively, are shown to be satisfied. The solu-
tion procedure for the mGVPE is to solve (6.7.5) subject to (6.7.6)
for f by using Hirota’s method and then to find W (X,T ) by using
(6.7.4).
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The solution of (6.7.5) and (6.7.6) corresponding to N solitons is
given by

f =
∑
μ=0,1

exp

[
2

( N∑
i=1

μiηi +

(N)∑
i<j

μiμj ln bij

)]
, (6.7.9)

where ηi = kiX − ωiT − diτ + αi,

b2ij = −F [2(ki − kj),−2(ωi − ωj),−2(di − dj)]

F [2(ki + kj),−2(ωi + ωj),−2(di + dj)]
(6.7.10)

= −G[2(ki − kj),−2(di − dj)]

G[2(ki + kj),−2(di + dj)]
, (6.7.11)

and ki, ωi, di and αi are constants. From the dispersion relations
G(2ki,−2di) = 0 (i = 1, . . . , N) we obtain di = 4k3i and then, from
the dispersion relations F (2ki,−2ωi,−2di) = 0 (i = 1, . . . , N), we
obtain ωi = qki/(4k

2
i + β) so that

ηi = ki(X − ciT )− 4k3i τ + αi with ci = q/(4k2i + β). (6.7.12)

Also, without loss of generality, we may take k1 < · · · < kN and then,
using either (6.7.10) or (6.7.11),

bij =
kj − ki
kj + ki

, where i < j, (6.7.13)

so that 0 < bij < 1.
In principle, substitution of (6.7.9) with (6.7.12) and (6.7.13) into

(6.7.4) gives the N -soliton solution W (X,T ) for the mGVPE. The
solution may also be expressed in Moloney–Hodnett form. It is

W (X,T ) =
N∑
i=1

Wi, (6.7.14)

where Wi =
4

q
ki(1 + tanh gi), gi(X,T ) = ηi +

1
2 ln

[
ĥi

hi

]
,

and ĥi and hi are given by (6.5.6) and (6.5.7), respectively. The
corresponding N -soliton solution u(x, t) for the mGVE (6.7.1) may
then be expressed in parametric form given by

U(X,T ) =
N∑
i=1

Ui, where Ui =
4

q
ki

∂gi
∂X

sech2 gi, (6.7.15)
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together with (6.5.10).
A discussion of the properties of the N -soliton solution of the

mGVPE and the correspondingN -soliton solution of the GVE is given
in Section 6 in [102]. The one-soliton and two-soliton solutions are dis-
cussed in more detail in Sections 4 and 7, respectively.
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Figure 6.1: The interaction process for two loop solitons with
k1 = 0.99 and k2 = 1, so that r = 0.99 and δ1 < 0.
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Figure 6.2: The interaction process for two loop solitons with
k1 = 0.88867 and k2 = 1, so that r = 0.88867 and δ1 = 0.
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Figure 6.3: The interaction process for two loop solitons with k1 = 0.5
and k2 = 1, so that r = 0.5 and δ1 > 0.
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Figure 6.4: δ1 as given by (6.5.44) is positive in the larger region and
negative in the smaller region.
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Figure 6.5: δ2 as given by (6.5.45) is positive in the larger region and
negative in the smaller region.
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Figure 6.6: The interaction process for three loop solitons with
r12 = 0.4 and r23 = 0.9.
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Figure 6.7: The interaction process for three loop solitons with
r12 = 0.7 and r23 = 0.5.
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Figure 6.8: The interaction process for three loop solitons with
r12 = 0.9 and r23 = 0.45.
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Chapter 7

The inverse scattering method

The inverse scattering transform (IST) method is arguably the most
important discovery in the theory of solitons. The method enables
one to solve the initial value problem for a nonlinear evolution equa-
tion. Moreover, it provides a proof of the complete integrability of the
equation.

The idea of the inverse scattering method was first introduced
for the KdV equation [94] and subsequently developed for the non-
linear Schrödinger equation [28], the mKdV equation [126, 127], the
sine-Gordon equation [25, 128] and the equation of motion for a one-
dimensional exponential lattice (Toda lattice) [129]. It is to be re-
marked that the inverse method is a unique theory whereby the initial
value problem for the nonlinear differential equations can be solved
exactly. For the KdV equation this method was expressed in general
form by Lax [130].

The essence of the application of the IST is as follows. The equa-
tion of interest for study (in our case the VPE (5.1.10)) is written as
the compatibility condition for two linear equations. These equations,
(7.1.2) and (7.1.3), will be derived below. Then W (X, 0) is mapped
into the scattering data S(0) for (7.1.2). It is important that, since the
variableW (X,T ) contained in the spectral equation (7.1.2) evolves ac-
cording to Eq. (5.1.10), the spectrum λ always retains constant values.
The time evolution of S(T ) is simple and linear. From a knowledge
of S(T ), we may reconstruct W (X,T ).
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7.1 Formulation of the inverse scattering

eigenvalue problem

Since we have obtained theN -loop soliton solution to the VPE (5.1.10)
by use of the Hirota method (see Section 6.5), we can state that the
VPE (5.1.10) is integrable. The use of the IST is the most appropriate
way of tackling the initial value problem. In order to apply the IST
method, one first has to formulate the associated eigenvalue problem.
This can be achieved by finding a Bäcklund transformation associ-
ated with the VPE. We have already shown in Section 6.3 that the
Bäcklund transformation is one of the analytical tools for dealing with
soliton problems. The main aim of Section 7.1 is to give the details
of the IST method for solving the VPE, so first we will formulate the
scattering problem.

Now we will show that the IST problem for the VPE in the form
(5.1.10) has a third-order eigenvalue problem that is similar to the one
associated with a higher order KdV equation [115, 131], a Boussinesq
equation [131, 132, 133, 134, 135], and a model equation for shallow
water waves [96, 35].

Introducing the function

ψ = f ′/f, (7.1.1)

and taking into account (6.2.1), we find that (6.3.2) and (6.3.3) reduce
to

ψXXX +WXψX − λψ = 0, (7.1.2)

3ψXT + (1 +WT )ψ + μψX = 0, (7.1.3)

respectively, where we have used results similar to (X.1) – (X.3) in
[35]. Recall that λ = λ(X) is an arbitrary function of X and μ = μ(T )
is an arbitrary function of T .

From (7.1.2) and (7.1.3) it can be shown that

3λψT +(1+WT )ψXX−WXTψX+[WXXT +(1+WT )WX+μλ]ψ = 0

(7.1.4)

and

[WXXT + (1 +WT )WX ]Xψ + (3ψT + μψ)λX = 0. (7.1.5)
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In view of (5.1.10), (7.1.4) becomes

3λψT + (1 +WT )ψXX −WXTψX + λμψ = 0, (7.1.6)

and (7.1.5) implies that λX = 0 so the spectrum λ of (7.1.2) remains
constant. Constant λ is what is required in the IST problem. Note
that, with constant λ, equation (7.1.5) yields the equation

WXXT + (1 +WT )WX = h(T ),

where h(T ) is an arbitrary function of T . Now, according to (7.1.17)
and (7.1.30), the inverse scattering method restricts the solutions to
those that vanish as |X| → ∞, so h(T ) is to be identically zero. Thus
the pair of equations (7.1.2), (7.1.3) or (7.1.2) and (7.1.5) can be
considered as the Lax pair for the VPE (5.1.10).

Since (7.1.2) and (7.1.3) are alternative forms of Eqs. (6.3.2) and
(6.3.3), respectively, it follows that the pair of equations (7.1.2) and
(7.1.3) is associated with the VPE (5.1.10) considered here. Thus the
IST problem is directly related to a spectral equation of third order,
namely (7.1.2). As for the VPE, the third-order spectral equation is
associated with a Boussinesq equation [132, 131, 133, 140, 134, 135],
a higher order KdV equation [131, 115], a model equation for shallow
water waves [96, 35]. The inverse problem for certain third-order spec-
tral equations has been considered by Kaup [131] and Caudrey [132,
133]. As expected, (7.1.2) and (7.1.3) are similar to, but cannot be
transformed into, the corresponding equations for the Hirota–Satsuma
equation (HSE) (see Eqs. (A8a) and (A8b) in [136]). Clarkson and
Mansfield [137] note that the scattering problem for the HSE is similar
to that for the Boussinesq equation which has been studied compre-
hensively by Deift et al. [135].

After the Lax pair for the VPE was derived in [84], in [73] the
Lax pair was written in its original variables as a zero curvature con-
dition. Moreover, in [73] Hone and Wang have shown that there is a
subtle connection between the Sawada-Kotera hierarchy and the VE,
between the Degasperis-Procesi equation (DPE) and the VE (see also
[69, 70]), and between the Lax pairs of the DPE and the VE. For the
Cauchy problem at long-time, the IST approach presents throughout
a Riemann-Hilbert problem [138, 139] in original (physical) indepen-
dent variables for the VE in [139].
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7.1.1 Example of the use of the IST method to
find the one-soliton solution

Here we re-derive the one-soliton solution (6.5.13) of the VPE as ob-
tained in Section 6.5.3 by the Hirota method, but instead by applica-
tion of the IST method. Let the initial perturbation be

W (X, 0) = 6k(1 + tanh(η)), η = kX + α. (7.1.7)

For convenience we introduce new notation ξ1, β1 instead of parame-
ters k and α by

k =
√
3
2 ξ1, α = 1

2 ln(β1/2
√
3ξ1) (7.1.8)

then

W (X, 0) = 6
∂

∂X
ln

[
1 +

β1

2
√
3ξ1

exp(
√
3ξ1X)

]
(7.1.9)

is the initial condition for the VPE.
The first step in the IST method is to solve the spectral equa-

tion (7.1.2) with spectral parameter λ for the given initial condi-
tion W (X, 0). In our example it is (7.1.9). The solution is studied
over the complex ζ-plane, where ζ3 = λ. One can verify by direct
substitution of (7.1.10) in (7.1.2) that the solution ψ(X, 0; ζ) of the
linear ODE (7.1.2), normalized so that ψ(X, 0; ζ) exp(−ζX) → 1 at
X → −∞, is given by

ψ(X, 0; ζ) exp(−ζX) = (7.1.10)

= 1− β1 exp (
√
3ξ1X)

1 + β1
exp(

√
3ξ1X)

2
√
3ξ1

[
ω2

iω2ξ1 − ζ
+

ω3

−iω3ξ1 − ζ

]
,

where ωj = ei2π(j−1)/3 are the cube of roots of 1 (j = 1, 2, 3). The
constants β1 and ξ1, as we will show, are associated with the local
spectral data.

The second step in the IST method is to obtain the evolution of
β1 and ξ1 with respect to T . The time-dependence of the solution
ψ(X,T ) is described by equation (7.1.3). Analyzing equation (7.1.3),
we may assume that

ξ1(T ) = ξ1(0) = ξ1 = const.,

β1(T ) = β1(0) exp

(
− 1√

3ξ1
T

)
= β1 exp

(
− 1√

3ξ1
T

)
.

(7.1.11)
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Below, the assumption of these relationships will be justified. Indeed,
we know that the spectrum λ in (7.1.2) remains constant if W (X,T )
evolves according to Eq. (5.1.10). Therefore, as will be proved, the
spectrum data evolve as in (7.1.28). In the notations (7.2.5), (7.2.6),
from (7.1.28) we obtain the relations (7.1.11).

The final step in the IST method is to select the solution W (X,T )
from (7.1.10) with ξ1(T ), β1(T ) as in (7.1.11). According to Eq. (2.7)
in [131] we expand ψ(X,T ; ζ) as an asymptotic series in ζ−1 to obtain

ψ(X, 0; ζ) exp(−ζX) = 1− 1

3ζ
[W (X)−W (−∞)]+O(ζ−2), (7.1.12)

i.e.
W (X)−W (−∞) = lim

ζ→∞
[3ζ(1− ψ exp(−ζX))].

Taking into account the functional dependence (7.1.11), we find the
required one-soliton solution of the VPE in form

W (X,T ) = 6
∂

∂X
ln

[
1 +

β1

2
√
3ξ1

exp

(√
3ξ1X − 1√

3ξ1
T

)]
+const.

(7.1.13)

This expression (7.1.13) may be written in the form (6.5.13). Thus,
for the example of the one-soliton solution, we have demonstrated the
IST method.

7.1.2 The direct spectral problem

Let us consider the principal aspects of the inverse scattering trans-
form problem for a third-order equation. The inverse problem for
certain third-order spectral equations has been considered by Kaup
[131] and Caudrey [132, 133]. The time evolution of ψ is determined
from (7.1.3) or (7.1.6).

Following the method described by Caudrey [132], the spectral
equation (7.1.2) can be rewritten

∂

∂X
ψ = [A(ζ) +B(X, ζ)] ·ψ (7.1.14)

with

ψ =

⎛⎝ ψ
ψX

ψXX

⎞⎠ ,A =

⎛⎝ 0 1 0
0 0 1
λ 0 0

⎞⎠ ,B =

⎛⎝ 0 0 0
0 0 0
0 −WX 0

⎞⎠ .

(7.1.1 )
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The matrix A has eigenvalues λj(ζ) and left- and right-eigenvectors
ṽj(ζ) and vj(ζ), respectively. These quantities are defined through a
spectral parameter λ as

λj(ζ) = ωjζ, λ3
j (ζ) = λ,

vj(ζ) =

⎛⎝ 1
λj(ζ)
λ2
j (ζ)

⎞⎠ , ṽj(ζ) =
(
λ2
j (ζ) λj(ζ) 1

)
,

(7.1.16)

where, as previously, ωj = e2πi(j−1)/3 are the cube roots of 1 (j =
1, 2, 3). Obviously the λj(ζ) are distinct and they and ṽj(ζ) and
vj(ζ) are analytic throughout the complex ζ-plane.

The solution of the linear equation (7.1.2) (or equivalently (7.1.14))
has been obtained by Caudrey [132] in terms of Jost functions φj(X, ζ)
which have the asymptotic behaviour

Φj (X, ζ): = exp{−λj (ζ)X}φj (X, ζ)→ vj (ζ) asX→−∞. (7.1.17)

Caudrey [132] showed how the Eq. (7.1.14) can be solved by expressing
it as a Fredholm integral equation.

The complex ζ-plane is to be divided into regions such that, in the
interior of each region, the order of the numbers Re(λi(ζ)) is fixed. As
we pass from one region to another this order changes and hence, on a
boundary between two regions, Re(λi(ζ)) = Re(λj(ζ)) for at least one
pair i 	=j . The Jost f unction φj i s regular throughout the complex ζ -
plane apart f rom poles and f inite s ingularities on the boundaries
between the regions. At any point in the interior of any region of
the complex ζ-plane, the solution of Eq. (7.1.14) is obtained by the
relation (2.12) from [132]. It is the direct spectral problem.

7.1.3 The spectral data

The information about the singularities of the Jost functions φj(X, ζ)
reside in the spectral data. First let us consider the poles. It is

assumed that a pole ζ
(k)
i in φi(X, ζ) is simple, does not coincide with

a pole of φj(X, ζ), j 	= i, and does not lie on a boundary between two

regions. Note that, for φj(X, ζ
(k)
i ), the point ζ

(k)
i lies in the interior

of a regular region. First, we need the well-known relations for simple
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poles [132, 140]. Second, in Chapter 9 we will take into account the
two-multiple poles. The residue of a simple pole can be calculated
as [132, 140]

Resφi(X, ζ
(k)
i ) =

n∑
j=1
j �=i

γ
(k)
ij φj(X, ζ

(k)
i ) (7.1.18)

and it can be found once we know the solution of (7.1.2) in any regular
regions from solving the direct problem (see Section 7.1.2).

For convenience now we repeat the proof of relation (7.1.18) pre-
sented by Caudrey [132, 140]. If the Wronskian of fundamental solu-
tions for the spectral equation

Wr = det [φ1(λ1), φ2(λ2), . . . ,φn(λn) ] (7.1.19)

is non-zero at least at one point X0, then it is proved in [141] (see
p. 132 there) to be finite and non-zero even when ζ approaches a

pole. Let φ1(λ1(ζ)) have pole at ζ = ζ
(k)
1 . Then (ζ − ζ

(k)
1 )Wr =

det
[
(ζ − ζ

(k)
1 )φ1(λ1), φ2(λ2), . . . ,φn(λn)

]
and taking the limit ζ →

ζ
(k)
1 we obtain

0 = det [ Resφ1(λ1), φ2(λ2), . . . ,φ6(λ6) ] . (7.1.20)

Thus the columns (vectors) are linearly dependent. Hence, the rela-
tion (7.1.18) has been proved.

The quantities ζ
(k)
i and γ

(k)
ij constitute the discrete part of the

spectral data.
Now we consider the singularities on the boundaries between re-

gions. However, in order to simplify matters, we first make some
observations. The solution of the spectral problem can be facilitated
by using various symmetry properties. In view of (7.1.2), we need
only consider the first elements of

φi(X, ζ) =

⎛⎝ φi(X, ζ)
φi(X, ζ)X
φi(X, ζ)XX

⎞⎠ , (7.1.21)

while the symmetry

φ1(X, ζ/ω1) = φ2(X, ζ/ω2) = φ3(X, ζ/ω3) (7.1.22)
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means we need only consider φ1(X, ζ). In our case, for φ1(X, ζ), the
complex ζ-plane is divided into four regions by two lines (see Fig. 7.1)
given by

(i) ζ ′ = ω2ξ, where Re(λ1(ζ)) = Re(λ2(ζ)),

(ii) ζ ′ = −ω3ξ, where Re(λ1(ζ)) = Re(λ3(ζ)),
(7.1.23)

where ξ is real (see Fig. 7.1). The singularity of φ1(X, ζ) can appear
only on these boundaries between the regular regions on the ζ-plane
and it is characterized by functions Q1j(ζ

′) at each fixed j 	= 1. We
denote the limit of a quantity, as the boundary is approached, by the
superfix ± in according to the sign of Re(λ1(ζ)−λj(ζ)) (see Fig. 7.1).

Figure 7.1: The regular regions for Jost functions φ1(X, ζ) in the
complex ζ-plane. The dashed lines determine the boundaries between
regular regions. These lines are lines where the singularity functions
Q1j(ζ

′) are given. The dotted lines are the lines where the poles
appear.

In [132] (see Eq. (3.14) there) the jump of φ1(X, ζ) on the bound-
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aries is calculated as

φ+
1 (X, ζ)− φ−1 (X, ζ) =

3∑
j=2

Q1j(ζ)φ
−
j (X, ζ), (7.1.24)

where, from (7.1.23), the sum is over the lines ζ ′ = ω2ξ and ζ ′ = −ω3ξ
given by

(i) ζ ′ = ω2ξ, with Q
(1)
12 (ζ

′) 	= 0, Q
(1)
13 (ζ

′) ≡ 0,

(ii) ζ ′ = −ω3ξ, with Q
(2)
12 (ζ

′) ≡ 0, Q
(2)
13 (ζ

′) 	= 0.

(7.1.25)

The singularity functionsQ1j(ζ
′) are determined byW (X, 0) through

the matrix B(X, ζ) (7.1.15) (see Eq. (3.13) in [132])

Q1j(ζ) =
1

ṽj(ζ) · vj(ζ)
ṽj(ζ)·

∞∫
−∞

exp[(λ1(ζ)−λj(ζ))z]B(z, ζ)·φ−1 (X, ζ) dz.

(7.1.26)

The quantities Q1j(ζ
′) along all the boundaries constitute the contin-

uum part of the spectral data.
Thus, the spectral data are

S = {ζ(k)1 , γ
(k)
1j , Q1j(ζ

′); j = 2, 3, k = 1, 2, . . . , m}. (7.1.27)

One of the important features which is to be noted for the IST
method is as follows. After the spectral data have been found from
B(X, 0; ζ), i.e. at initial time, we need to seek the time-evolution of the
spectral data from the equation (7.1.3). Analyzing (7.1.3) at X → ∞
together with (7.1.17)

φi(X,T, ζ) = exp
[
− (3λi(ζ))

−1
T
]
φi(X, 0, ζ),

the T -dependence is revealed as

ζ
(k)
j (T ) = ζ

(k)
j (0),

γ
(k)
1j (T ) = γ

(k)
1j (0) exp

{[
−

(
3λj(ζ

(k)
1 )

)−1

+
(
3λ1(ζ

(k)
1 )

)−1
]
T

}
,

Q1j(T ; ζ
′) = Q1j(0; ζ

′) exp
{[

− (3λj(ζ
′))−1

+ (3λ1(ζ
′))−1

]
T
}
.

(7.1.28)
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The final step in the application of the IST method is to recon-
struct B(X,T ; ζ) from the evaluated spectral data. In the next sec-
tion, we show how to do this.

7.1.4 The inverse spectral problem

The final procedure in IST method is that of the reconstruction of the
matrix B(X,T ; ζ) and W (X,T ) from the spectral data S.

The spectral data define Φ1(X, ζ) uniquely in the form (see Eq.
(6.20) in [132]))

Φ1(X,T ; ζ) =

1−
K∑

k=1

3∑
j=2

γ
(k)
1j (T )

exp{[λj(ζ
(k)
1 )− λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

Φ1(X,T ;ωjζ
(k)
1 )

+
1

2πi

∫ 3∑
j=2

Q1j(T ; ζ
′)
exp{[λj(ζ

′)− λ1(ζ
′)]X}

ζ′ − ζ
Φ−1 (X,T ;ωjζ

′)dζ′.

(7.1.29)

Equation (7.1.29) contains the spectral data, namely K poles with the

quantities γ
(k)
1j for the bound state spectrum as well as the functions

Q1j(ζ
′) given along all the boundaries of regular regions for the con-

tinuous spectrum. The integral in (7.1.29) is along all the boundaries
(see the dashed lines in Fig. 7.1). The direction of integration is taken
so that the side chosen to be Re(λ1(ζ) − λj(ζ)) < 0 is shown by the
arrows in Fig. 7.1 (for the lines (7.1.23), ξ sweeps from −∞ to +∞).

It is necessary to note that we should carry out the integration
along the lines ω2(ξ + iε) and −ω3(ξ + iε) with ε > 0. In this case
the condition (7.1.17) is satisfied. Passing to the limit ε → 0 we can
obtain the solution which does not satisfy the condition (7.1.17) (see
Section 7.1.2). However, for any finite ε > 0, the restricted region
on X can be determined where the solution associated with a finite
ε > 0 (for which the condition (7.1.17) is valid) and the solution
associated with ε = 0 are sufficiently close to each other. In this
sense, taking the integration at ε = 0, we remain within the inverse
scattering theory [132], and so the condition (7.1.17) can be omitted.
The solution obtained at ε = 0 can be extended to sufficiently large
finite X. Thus, we will interpret the solution obtained at ε = 0 as the
solution of the VPE (5.1.10) which is valid for arbitrary but finite X.
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By choosing appropriate values for ζ, the left-hand side in (7.1.29)

can be Φ1(X,T ;ωjζ
(k)
1 ), or by allowing ζ to approach the boundaries

from the appropriate sides, the left-hand side can be Φ−1 (X,T ;ωjζ
′).

We acquire a set of linear matrix/Fredholm equations in the unknowns

Φ1(X,T ;ωjζ
(k)
1 ) and Φ−1 (X,T ;ωjζ

′). The solution of this equation
system enables one to define Φ1(X,T ; ζ) from (7.1.29).

By knowing Φ1(X,T ; ζ), we can take extra information into ac-
count, namely that the expansion of Φ1(X,T ; ζ) as an asymptotic se-
ries in λ−1

1 (ζ) connects withW (X,T ) as follows (cf. Eq. (2.7) in [131]):

Φ1(X,T ; ζ) = 1− 1

3λ1(ζ)
[W (X,T )−W (−∞)]+O(λ−2

1 (ζ)). (7.1.30)

Consequently, the solution W (X,T ) and the matrix B(X,T ; ζ) can
be reconstructed from the spectral data.

In Sections 7.2 and 7.3, we show how the IST method can be
applied to the VPE and the GVPE.

7.2 The multi-soliton solutions of the VPE by

the inverse scattering method

In this Section the procedure for finding the exact N -soliton solution
of the VPE via the inverse scattering method will be described [84,
91, 92, 93]. To do this we consider (7.1.29) with Q1j(ζ) ≡ 0. Then
there is only the bound state spectrum which is associated with the
soliton solutions.

Let the bound state spectrum be defined by K poles. The rela-
tion (7.1.29) is reduced to the form

Φ1(X,T ; ζ) = (7.2.1)

= 1−
K∑

k=1

3∑
j=2

γ
(k)
1j (T )

exp{[λj(ζ
(k)
1 )− λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

Φ1(X,T ;ωjζ
(k)
1 ).

Eq. (7.2.1) involves the spectral data, namely the poles ζ
(k)
1 and the

quantities γ
(k)
1j . Until (7.2.13) we omit the T -dependence. First we

will prove that Reλ = 0 for compact support. From Eq. (7.1.2) we
have

(ψX)XXX + (UψX)X − λψX = 0, (7.2.2)
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and together with Eq. (7.1.2) this enables us to write

∂

∂X

(
∂2

∂X2
ψXψ∗ − 3ψXXψ∗X + UψXψ∗

)
−2ReλψXψ∗ = 0. (7.2.3)

Integrating Eq. (7.2.3) over all values of X, we obtain that, for com-
pact support, Reλ = 0 since, in the general case,

∫∞
−∞ ψXψ∗dX 	= 0.

As follows from Eqs. (2.12), (2.13), (2.36) and (2.37) of [131],
ψX(ζ) is related to the adjoint states ψA

X(−ζ). In the usual man-
ner, using the adjoint states and Eq. (14) from [133], and Eq. (2.37)
from [131], one can obtain

φ1X(X, ζ) = (7.2.4)

=
i√
3
[φ1X(X,−ω2ζ)φ1(X,−ω3ζ)− φ1X(X,−ω3ζ)φ1(X,−ω2ζ)] .

It is easily seen that if ζ
(1)
1 is a pole of φ1(X, ζ), then there

is a pole either at ζ
(2)
1 = −ω2ζ

(1)
1 (if φ1(X,−ω2ζ) has a pole), or

at ζ
(2)
1 = −ω3ζ

(1)
1 (if φ1(X,−ω3ζ) has a pole). For definiteness

let ζ
(2)
1 = −ω2ζ

(1)
1 . Then, as follows from (7.2.4), −ω3ζ

(2)
1 should

be a pole. However, this pole coincides with the pole ζ
(1)
1 , since

−ω3ζ
(2)
1 = −ω3(−ω2)ζ

(1)
1 = ζ

(1)
1 . Hence the poles appear in pairs,

ζ
(2n−1)
1 and ζ

(2n)
1 , under the condition ζ

(2n)
1 /ζ

(2n−1)
1 = −ω2, where n

is the pair number.
Let us consider N pairs of poles, i.e. in all there are K = 2N

poles over which the sum is taken in (7.2.4). For the pair n (n =
1, 2, . . . , N) we have the properties

(i) ζ
(2n−1)
1 = iω2ξn, (ii) ζ

(2n)
1 = −iω3ξn. (7.2.5)

Since U is real and λ is imaginary, ξk is real. The relation-
ships (7.2.5) are in line with the condition (2.33) from [131]. These
relationships are also similar to Eqs. (6.24) and (6.25) in [132], while

γ
(k)
1j turns out to be different from γ̃

(k)
1j for the Boussinesq equation

(see Eqs. (6.24) and (6.25) in [132]). Indeed, by considering (7.2.4)

in the vicinity of the first pole ζ
(2n−1)
1 of the pair n and using the

relation (7.2.1), one can obtain a relation between γ
(k)
12 and γ

(k)
13 . In

this case the functions φ1, X(X, ζ), φ1(X,−ω2ζ), φ1, X(X,−ω2ζ) also
have poles here, while the functions φ1(X,−ω3ζ), φ1, X(X,−ω3ζ) do
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not have poles here. Substituting φ1(X, ζ) in the form (7.2.1) into

Eq. (7.2.4) and lettingX → −∞, we have the ratio γ
(2n)
13 /γ

(2n−1)
12 = ω2

and γ
(2n)
12 = γ

(2n−1)
13 = 0. Therefore the properties of γ

(k)
ij should be

defined by the relationships

(i) γ
(2n−1)
12 = ω2βk, γ

(2n−1)
13 = 0,

(ii) γ
(2n)
12 = 0, γ

(2n)
13 = ω3βk,

(7.2.6)

where, as it will be proved below, βk is real when U = WX is real.
The equation (7.2.1) allows us to define the functions Φ1(X, ζ).

Indeed, substituting the values ζ = ω1ζ
(k)
1 , ζ = ω3ζ

(k)
2 in the left-

hand side of these equations, we obtain a system of 2N linear algebraic

equations in the unknowns Φ1(X,ω2ζ
(k)
1 ), Φ1(X,ω3ζ

(k)
1 ). Hence, we

could take the function Φ1(X, ζ) from Eq. (7.2.1).
However, there is a more direct method, in which there is no

need to obtain the variables Φ1(X,ω2ζ
(k)
1 ), Φ1(X,ω3ζ

(k)
1 ) explicitly.

It turns out that we need to calculate only a determinant of some
matrix. This approach is similar to the method referred to in [132,
140, 84, 85, 86, 87]. It is convenient to use new variables introduced
by the definition

Ψk(X) =
3∑

j=2

γ
(k)
1j (0) exp{λj(ζ

(k)
1 )X}Φ1(X;ωjζ

(k)
1 ). (7.2.7)

We may rewrite the relationship (7.2.1) as

Φ1(X; ζ) = 1−
2N∑
k=1

exp{−λ1(ζ
(k)
1 )X}

λ1(ζ
(k)
1 )− λ1(ζ)

Ψk(X). (7.2.8)

Taking into account (7.1.30), namely

Φ1(X; ζ) = 1− 1

3λ1(ζ)
[W (X)−W (−∞)] +O(λ−2

1 (ζ)),

and (7.2.7) and (7.2.8), the following relationship may be found

−1

3
[W (X)−W (−∞)] =

2N∑
k=1

exp{−λ1(ζ
(k)
1 )X}Ψk(X). (7.2.9)
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Eq. (7.2.8) with (7.2.7) can be rewritten as follows:

exp(λ1(ζ)X)Φ1(X; ζ) = exp(λ1(ζ)X)

−
2N∑
k=1

exp{(λ1(ζ)− λ1(ζ
(k)
1 ))X}

λ1(ζ
(k)
1 )− λ1(ζ)

Ψk(X).

(7.2.10)

Substituting the values ζ = ω2ζ
(k)
1 , ζ = ω3ζ

(k)
1 in the left-hand side of

these equations, we obtain a system of 2N linear algebraic equations
in the unknowns Ψk(X), for k = 1, . . . , 2N . The matrix form of this
system of equations is

MΨ = b, (7.2.11)

where

Ψ =

⎛⎜⎜⎝
Ψ1(X)
Ψ2(X)
. . .

Ψ2N (X)

⎞⎟⎟⎠ , b =

⎛⎜⎜⎜⎝
γ
(1)
12 exp(ω2ζ

(1)
1 X)

γ
(2)
13 exp(ω3ζ

(1)
1 X)

. . .

γ
(2N)
13 exp(ω3ζ

(N)
1 X)

⎞⎟⎟⎟⎠ . (7.2.12)

With account of the T -evolution (7.1.2) for the spectral data, the
elements of 2N × 2N matrix M are

Mkl(X,T ) = δkl− (7.2.13)

−
3∑

j=2

γ
(k)
1j (0)

exp

{[
−
(
3λj(ζ

(k)
1 )

)−1
+
(
3λ1(ζ

(k)
1 )

)−1
]
T+

(
λj(ζ

(k)
1 )−λ1(ζ

(l)
1 )

)
X

}

λj(ζ
(k)
1 )− λ1(ζ

(l)
1 )

,

and

n = 1, 2, . . . , N,

λ1(ζ
(2n−1)
1 ) = iω2ξn, λ2(ζ

(2n−1)
1 ) = iω3ξn,

λ1(ζ
(2n)
1 ) = −iω3ξn, λ3(ζ

(2n)
1 ) = −iω2ξn,

γ
(2n−1)
12 = ω2βn, γ

(2n−1)
13 = 0,

γ
(2n)
12 = 0, γ

(2n)
13 = ω3βn.
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Since for any column j of the matrix M we have

exp(ωlξnX)
∂

∂X
Mij = bi, l =

{
2, if i = 2n− 1
3, if i = 2n

,

the sum for (7.2.9) is

2N∑
k=1

exp{−λ1(ζ
(k)
1 )X}Ψk(X,T ) =

1

detM

∂ detM

∂X
.

Consequently, from the relation (7.2.9), the following key relationship
may be obtained

W (X,T )−W (−∞) = 3
∂

∂X
ln(detM(X,T )). (7.2.14)

For the N -soliton solution there are N arbitrary constants ξn and N
arbitrary constants βn.

The final result for the N -soliton solution of the VPE is defined
by relationship (7.2.14) with (7.2.13).

7.2.1 Examples of one- and two-soliton solutions

In order to obtain the one-soliton solution of the VPE (5.1.10)

WXXT + (1 +WT )WX = 0,

we need first to calculate the 2 × 2 matrix M according to (7.2.13)
with N = 1. We find that the matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− ω2β1√
3ξ1

× iω3β1
2ξ1

×
× exp[

√
3ξ1X − (

√
3ξ1)

−1T ] × exp[2iω3ξ1X − (
√
3ξ1)

−1T ]

−iω2β1
2ξ1

× 1− ω3β1√
3ξ1

×
× exp[−2iω2ξ1X − (

√
3ξ1)

−1T ] × exp[
√
3ξ1X − (

√
3ξ1)

−1T ]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(7.2.15)

and its determinant is

detM(X,T ) =

{
1 +

β1

2
√
3ξ1

exp

[√
3ξ1

(
X − T

3ξ21

)]}2

. (7.2.16)

 EBSCOhost - printed on 2/13/2023 9:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



156 Chapter 7. The inverse scattering method

Consequently, from Eq. (7.2.14) we have the one-soliton solution of
the VPE

U(X,T ) = WX(X,T ) =
9

2
ξ21 sech

2

[√
3

2
ξ1

(
X − T

3ξ21

)
+ α1

]
,

(7.2.17)

where α1 = 1
2 ln(β1/2

√
3ξ1) is an arbitrary constant. Since U is

real, it follows from (7.2.17) that β1 is real. By writing
√
3ξ1/2 = k

in (7.2.17), with the condition β1/ξ1 > 0 we recover the one-soliton
solution as we found previously by Hirota’s method (see Eq. (3.4)
in [74] and/or (6.5.14)).

Note that with β1/ξ1 < 0 we have the real solution in the form of
the singular soliton (??) [123]. Analysis of the singular soliton solution
is presented in Section 8.4.

It is of interest to compare Eq. (7.2.17) with the solution of the
fifth-order KdV-like equation discussed in [131]. The spectral equa-
tion (7.1.2) is the same as that given by (1.1) (with R = 0) in [131],
whereas the equation that governs the time dependence of ψ, i.e. (7.1.3),
is different from (1.2) in [131]. Thus the X dependence of (7.2.16)
should agree with the x dependence of the solution given by (3.30)
in [131]. With the identification U = 6Q, ξ1 = η, this is indeed the
case.

Let us now consider the two-soliton solution of the VPE. In this
case M(X,T ) is a 4×4 matrix. We will not give the explicit form
here, but we find that

detM(X,T ) =
(
1 + q21 + q22 + b2q21q

2
2

)2
, (7.2.18)

where

qi = exp

[√
3

2
ξi

(
X − T

3ξ2i

)
+ αi

]
, b2 =

(
ξ2 − ξ1
ξ2 + ξ1

)2
ξ21 + ξ22 − ξ1ξ2
ξ21 + ξ22 + ξ1ξ2

,

(7.2.19)

and αi = 1
2 ln(βi/2

√
3ξi) are arbitrary constants. The two-soliton

solution to the VPE as found by the IST method is given by (7.2.9)
together with (7.2.18). With the identification

√
3ξi/2 = ki (i = 1, 2)

we recover the two-soliton solution as given by Hirota’s method (see
Eqs. (4.1)–(4.5) in [74] and/or (6.5.24)).
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Finally we note that comparison of (7.2.9) with W = 6(ln f)X
from (6.2.2) shows that

ln(detM(X,T )) = 2 ln(f). (7.2.20)

so that detM(X,T ) is a perfect square for arbitrary N .

7.3 The inverse scattering transform

method for the generalised VPE

In this Section, following [90], we extend the investigation of the VPE
by means of the IST method as given in Section 7.2 (and [84]) to the
generalised Vakhnenko-Parkes equation (GVPE) [101].

7.3.1 The bilinear Hirota form of the GVPE

The transformed version of the GVE (4.5.5)

∂

∂x

(D2u+ 1
2 u

2 + βu
)
+Du = 0 (7.3.1)

has the form given by (3.5) in [101], namely

UXXT +UUT +UX

∫ X

−∞
UT (X

′, T ) dX ′+UX + βUT = 0, (7.3.2)

or equivalently

WXXT + (1 +WT )WX + βWT = 0. (7.3.3)

in variables

x= θ(X, T ): = T+W (X, T ) + x0, (7.3.4)

t = X, u(x, t) = U(X,T ) = WX(X,T ),

where β is a real arbitrary constant.
Since the VE as transformed by means of (7.3.4) is known as

the VPE, we refer to the transformed GPE (7.3.2) or (7.3.3), as ob-
tained by means of the same transformation (7.3.4), as the generalised
Vakhnenko-Parkes equation (GVPE). The GVPE was solved by the
Hirota method in Section 6.6.
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In bilinear Hirota form the equation (7.3.3) is

F (DX , DT )f ·f= 0, F (DX , DT ): =D3
XDT+D2

X+βDXDT . (7.3.5)

We noted in Section 4.5 that with β = −1 and T → −T , (7.3.3) and
(7.3.5) are associated with the Hirota-Satsuma equation (HSE) for
shallow water waves [35, 100]. As far as we are aware, the solution by
the IST method to the HSE (i.e. equation (7.3.2) with β = −1 and
T → −T ) has not been given explicitly in the literature. In Sections
7.3.2 and 7.3.3, following [90], we present the IST method to solve
(7.3.2) for arbitrary non-zero β and hence find theN -soliton solution
to (7.3.1) subject to the boundary condition u → 0 as |x| → ∞.

7.3.2 Bäcklund transformation, Lax pair and
conservation laws for the GVPE

We will show that the Bäcklund transformation for (7.3.5) is given by
the two equations

(D3
X + βDX − λ(X))f ′ · f = 0, (7.3.6)

(3DXDT + 1 + μ(T )DX)f ′ · f = 0, (7.3.7)

where λ(X) is an arbitrary function of X and μ(T ) is an arbitrary
function of T . We follow the method developed in [114].

Consider the expression P defined by

P : = [(DTD
3
X+D2

X+ βDXDT )f
′ · f ′]ff− (7.3.8)

−f ′f ′[(DTD
3
X +D2

X + βDXDT )f · f ],
where f 	= f ′. In [84] it was shown that

[(DTD
3
X +D2

X)f ′ · f ′]ff − f ′f ′[(DTD
3
X +D2

X)f · f ] (7.3.9)

= 2DT (D
3
Xf ′ · f) · (f ′f)− 2DX({3DTDX + 1}f ′ · f) · (DXf ′ · f).

By using (7.3.9) and the identities (II.1) and (VII.2) from [96], P given
by (7.3.8) can be reduced to the form

P = 2DT ({D3
X + βDX − λ(X)}f ′ · f) · (f ′f)−

−2DX({3DTDX + 1 + μ(T )DX}f ′ · f) · (DXf ′ · f). (7.3.10)

It is clear from (7.3.10) that if (7.3.6) and (7.3.7) hold then P = 0.
Furthermore it then follows from (7.3.8) that if f is a solution of (7.3.5)
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then so is f ′ and vice-versa. Consequently, we have proved that the
two equations (7.3.6) and (7.3.7) constitute a Bäcklund transforma-
tion for equation (7.3.5). As expected, with β = −1 and T → −T ,
(7.3.6) and (7.3.7) become the Bäcklund transformation for the HSE
(see equations (5.131) and (5.132) in [35]).

The inclusion of μ in the operator 3DT + μ(T ) which appears in
(7.3.7) corresponds to a multiplication of f and f ′ by terms of the
form eg(T ) and eg

′(T ) respectively; from W = 6(ln f)X (6.2.2) we see
that this has no effect on W or W ′. Hence, without loss of generality,
we may take μ = 0 in (7.3.7) if we wish.

By introducing the function

ψ = f ′/f, (7.3.11)

and taking into account (6.2.2), we find that (7.3.6) and (7.3.7) reduce
to

ψXXX + (β +WX)ψX − λψ = 0, (7.3.12)

3ψXT + (1 +WT )ψ + μψX = 0 (7.3.13)

respectively, where we have used results similar to (X.1) – (X.3) in
[35].

From (7.3.12) and (7.3.13) it can be shown that

3λψT+(1+WT )ψXX−WXTψX+[WXXT+(β+WX)(1+WT )+μλ]ψ = 0

(7.3.14)

and

[WXXT +(1+WT )WX +βWT ]Xψ+(3ψT +μψ)λX = 0. (7.3.15)

In view of (7.3.3), (7.3.13) becomes

3λψT + (1 +WT )ψXX −WXTψX + (β + λμ)ψ = 0, (7.3.16)

and (7.3.15) implies that λX = 0 so the spectrum λ of (7.3.12) remains
constant. Constant λ is what is required in the IST problem discussed
in Section 7.3.3. (7.3.12) and (7.3.16) are the Lax pair for (7.3.3). As
expected, with β = −1 and T → −T , (7.3.12), (7.3.13) and (7.3.16)
are the corresponding equations for the HSE (cf. equations (A8a),
(A8b) and (A10b) respectively in [136]).

Following the procedure given in [35, 115], we can rewrite (7.3.12)
and (7.3.16) in terms of the potentialW . Recalling that ψ = f ′/f , and
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noting that W ′ −W = 6ϕX and W ′ +W = 6ρX , where ϕ = ln f ′/f
and ρ = ln f ′f , we find that (7.3.12) and (7.3.16) give the following
Bäcklund transformation in ordinary form:

(W ′ −W )XX + 1
2 (W

′ −W )(W ′ +W )X + 1
36 (W

′ −W )3

+β(W ′ −W )− 6λ = 0, (7.3.17)

3λ(W ′ −W )T +
[
(1 +WT )((W

′ −W )X + 1
6 (W

′ −W )2)

− WXT (W
′ −W )]X = 0. (7.3.18)

A systematic way to derive higher conservation laws via the Bäck-
lund transformation has been developed by Satsuma; he applied it to
the KdV equation [116]. Later Satsuma and Kaup [115] applied the
method to a higher order KdV equation. Since our Eq. (7.3.17) is
(apart from a scaling factor) the same as Eq. (29) in [115], and our
Eq. (7.3.18) is in conservation form, we can apply the results on higher
conservation laws in �4 of [115] to the GVPE in the form (7.3.2). Thus
we deduce that an infinite sequence of conservation laws is associated
with (7.3.2). For example, the first two nontrivial conserved densities
are U and (U3 − 3U2

X + 3βU2).

7.3.3 The IST problem and its N-soliton solution

As shown in Section 7.3.2, the IST problem for the GVPE (7.3.3)
has a spectral equation for ψ of third order, namely (7.3.12). The
inverse problem for certain third-order spectral equations has been
considered by Kaup [131] and Caudrey [132, 133]. The time evolution
of ψ is determined from (7.3.13) or (7.3.16).

Following the method described by Caudrey [132], the spectral
equation (7.3.12) can be rewritten

∂

∂X
ψ = [A(ζ) +B(X, ζ)] ·ψ (7.3.19)

with

ψ =

⎛
⎝ ψ

ψX

ψXX

⎞
⎠ , A =

⎛
⎝ 0 1 0

0 0 1
λ −β 0

⎞
⎠ , B =

⎛
⎝ 0 0 0

0 0 0
0 −WX 0

⎞
⎠ .

(7.3.20)

We find the eigenvalue λj(ζ) of the matrix A from the equation

det(A− λjE) = −λ3
j − βλj + λ = 0, (7.3.21)
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where E is the identity matrix. The relation (7.3.21) between the val-
ues λ and λj can be rewritten in parametric form with ζ as parameter,
namely

λj =

(
β

3

)1/2 (
ωjζ − 1

ωjζ

)
, (7.3.22)

λ =

(
β

3

)3/2 (
ζ3 − 1

ζ3

)
, (7.3.23)

where ωj = ei2π(j−1)/3 are the cube of roots of 1 (j = 1, 2, 3).
Because of the properties λ1(ζ) = λ1(−ζ−1), λ2(ζ) = λ3(−ζ−1)’
λ3(ζ) = λ2(−ζ−1) and λ(ζ) = λ(−ζ−1), it is sufficient to consider
the values ζ located outside (or inside) of the circle |ζ| = 1 only.

The right- and left-eigenvectors are

vj(ζ) =

⎛⎝ 1
λj

λ2
j

⎞⎠ , ṽj(ζ) =
(
λ2
j + β, λj , 1

)
. (7.3.24)

It should be √noted that the passage to the limit β → 0 must be
carried out with β ζ held constant.

The general theory of the inverse scattering problem for N spectral
equations has been developed in [132]. The solution of the linear equa-
tion (7.3.19) (or equivalently (7.3.3)) has been obtained by Caudrey
[132] in terms of Jost functions φj(X, ζ) which have the asymptotic
behaviour

Φj (X, ζ): = exp{−λj (ζ)X}φj (X, ζ)→ vj (ζ) asX→−∞. (7.3.25)

Here T is regarded as a parameter until the T -evolution of the scatter-
ing data is taken into account later. The solution of the direct problem
is given by the equation system (4.5) in [132]. We shall restrict our
attention to the N -soliton solution. To do this we consider equation
(6.20) from [132] by putting Qij(ζ) ≡ 0. Then there is only the bound
state spectrum which is associated with the soliton solutions.

Let the bound state spectrum be defined byK p oles l ocated, for
definiteness, o utside t he c ircle |ζ|= 1 . The r elation ( 4.5) f rom [132]
is reduced to the form

Φ1(X, ζ) = 1−
K∑

k=1

3∑
j=2

γ
(k)
1j

exp{[λj(ζ
(k)
1 )− λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

Φ1(X,ωjζ
(k)
1 ).
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(7.3.26)

We need only consider the function Φ1(X, ζ) since there is a set of
symmetry properties as for the Boussinesq equation, namely the prop-
erties (6.15), (6.16) in [132] for Jost functions φj(X, ζ)

φ1(X, ζ/ω1) = φ2(X, ζ/ω2) = φ3(X, ζ/ω3), φj(X, ζ) = φj(X,−ζ−1)

(7.3.27)

that follow from equations (7.3.20) and (7.3.22).

(7.3.26) involves the spectral data, namely the poles ζ
(k)
i and the

quantities γ
(k)
ij . First we will prove that Reλ = 0 for compact support.

Indeed, from (7.3.12) we have

(ψX)XXX + [(β +WX)ψX ]X − λψX = 0, (7.3.28)

and together with (7.3.13) this enables us to write

∂

∂X

(
∂2

∂X2
ψXψ∗ − 3ψXXψ∗X + (β +WX)ψXψ∗

)
−2ReλψXψ∗ = 0.

(7.3.29)

Integrating (7.3.29) over all values of X, we obtain that for compact
support Reλ = 0 since, in the general case,

∫∞
−∞ ψXψ∗dX 	= 0.

As follows from equations (2.12), (2.13), (2.36) and (2.37) of [131],
ψX(ζ) is related to the adjoint states ψA(−ζ). In the usual manner,
using the adjoint states and equation (14) from [133], and equation
(2.37) from [131], one can obtain

φ1X(X, ζ) =
i√
3
[φ1X(X,−ω2ζ)φ1(X,−ω3ζ)− (7.3.30)

−φ1X(X,−ω3ζ)φ1(X,−ω2ζ)].

It is easily seen that if ζ
(1)
1 is a pole of φ1(X, ζ), then there is a

pole either at ζ
(2)
1 = −ω2ζ

(1)
1 (if φ1(X,−ω2ζ) has a pole), or at

ζ
(2)
1 = −ω3ζ

(1)
1 (if φ1(X,−ω3ζ) has a pole). For definiteness, let

ζ
(2)
1 = −ω2ζ

(1)
1 , then as follows from equation (7.3.30) the point

−ω3ζ
(2)
1 should be a pole. However, this pole coincides with the pole

ζ
(1)
1 , since −ω3ζ

(2)
1 = −ω3(−ω2)ζ

(1)
1 = ζ

(1)
1 . Hence, the poles appear
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in pairs ζ
(2n−1)
1 , ζ

(2n)
1 under the condition ζ

(2n)
1 /ζ

(2n−1)
1 = −ω2, where

n is the number pair.

Let us consider N pairs of poles, i.e. in all there are K = 2N
poles over which the sum is taken in (7.3.26). For the pair n (n =
1, 2, . . . , N) we have the properties

(i) ζ
(2n−1)
1 = iω2ξn, (ii) ζ

(2n)
1 = −iω3ξn. (7.3.31)

Since U is real and λ is imaginary, either ξn is real when β > 0 or ξn
is imaginary when β < 0, i.e.

√
β ξn is real.

By considering equation (7.3.30) in the vicinity of the first pole

ζ
(2n−1)
1 of the pair n and using the relation (7.3.26), one can ob-

tain a relation between γ
(2n−1)
12 and γ

(2n)
13 . In this case the functions

φ1X(X, ζ), φ1(X,−ω2ζ), φ1X(X,−ω2ζ) also have poles here, while
the functions φ1(X,−ω3ζ), φ1X(X,−ω3ζ) do not have poles here.
Substituting φ1(X, ζ) in the form given by (7.3.25) and (7.3.26) into

equation (7.3.30) and letting X → −∞, we have γ
(2n)
12 = γ

(2n−1)
13 = 0

and the ratio

γ
(2n−1)
12

γ
(2n)
13

=
ω2ξn + (ω2ξn)

−1

ω3ξn + (ω3ξn)−1
. (7.3.32)

Therefore the properties of γ
(k)
ij should be defined by the relationships

(i) γ
(2n−1)
12 =

√
β γn[ω2ξn + (ω2ξn)

−1], γ
(2n−1)
13 = 0,

(ii) γ
(2n)
12 = 0, γ

(2n)
13 =

√
β γn[ω3ξn + (ω3ξn)

−1],

⎫⎪⎪⎬⎪⎪⎭ (7.3.33)

where γn are arbitrary constants. We will show below that γn is real
when WX is real.

Following [84] we expand Φ1(X, ζ) as an asymptotic series in λ−1
1 (ζ)

to obtain

Φ1(X, ζ) = 1− 1

3λ1(ζ)
[W (X)−W (−∞)] +O(λ−2

1 (ζ)). (7.3.34)

On the other hand, we may rewrite the relationship (7.3.26) as (see,
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for instance, equations (6.33) and (6.34) in [132])

Φ1(X, ζ) = 1−
K∑

k=1

exp{−λ1(ζ
(k)
1 )X}

λ1(ζ
(k)
1 )− λ1(ζ)

Ψk(X), (7.3.35)

Ψk(X) =
3∑

j=2

γ
(k)
1j exp{λj(ζ

(k)
1 )X}Φ1(X,ωjζ

(k)
1 ).

From (7.3.34) and (3.2.19) it may be shown that (cf. equation (6.38)
in [132])

W (X)−W (−∞) = −3
K∑

k=1

exp{−λ1(ζ
(k)
1 )X}Ψk(X) = 3

∂

∂X
ln(detM).

(7.3.36)

The matrix M is defined as in the relationship (6.36) in [132] by

Mkl(X) = δkl −
3∑

j=2

γ
(k)
1j

exp{[λj(ζ
(k)
1 )− λ1(ζ

(l)
1 )]X}

λj(ζ
(k)
1 )− λ1(ζ

(l)
1 )

. (7.3.37)

Now let us consider the T -evolution of the spectral data. By ana-
lyzing the solution of equation (7.3.13) when X → −∞ together with
(7.3.25), we find that

φi(X,T, ζ) = exp
[
− (3λi(ζ))

−1
T
]
φi(X, 0, ζ).

Hence the T -evolution of the scattering data is given by the relation-
ships (with k = 1, 2, . . . , K)

ζ
(k)
j (T ) = ζ

(k)
j (0),

γ
(k)
1j (T ) = γ

(k)
1j (0) exp

{[
−

(
3λj(ζ

(k)
1 )

)−1

+
(
3λ1(ζ

(k)
1 )

)−1
]
T

}
.

(7.3.38)

The final result, including the T -evolution, for the N -soliton solution
of the GVPE (7.3.2) is

U(X,T ) = WX(X,T ) = 3
∂2

∂X2
ln (detM(X,T )) , (7.3.39)
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where M is the 2N×2N matrix given by

Mkl = δkl −
3∑

j=2

γ
(k)
1j (0)×

×
exp

{[
−
(
3λj(ζ

(k)
1 )

)−1
+
(
3λ1(ζ

(k)
1 )

)−1
]
T+

(
λj(ζ

(k)
1 )−λ1(ζ

(l)
1 )

)
X

}

λj(ζ
(k)
1 )−λ1(ζ

(l)
1 )

,

(7.3.40)

and

n = 1, 2, . . . , N, m = 2n− 1,

λ1(ζ
(m)
1 ) = i

√
β/3 [ω2ξm + (ω2ξm)−1],

λ2(ζ
(m)
1 ) = i

√
β/3 [ω3ξm + (ω3ξm)−1],

γ
(m)
12 (0) =

√
β γm(0)[ω2ξm + (ω2ξm)−1],

γ
(m)
13 = 0,

λ1(ζ
(m+1)
1 ) = −i

√
β/3 [ω3ξm + (ω3ξm)−1],

λ3(ζ
(m+1)
1 ) = −i

√
β/3 [ω2ξm + (ω2ξm)−1],

γ
(m+1)
12 = 0,

γ
(m+1)
13 (0) =

√
β γm(0)[ω3ξm + (ω3ξm)−1].

For the N -soliton solution there are N arbitrary constants ξm and N
arbitrary constants γm. We note that comparison of W = 6(ln f)X
(6.2.2) with (7.3.39) shows that

ln(detM) = 2 ln f (7.3.41)

so that detM should be a perfect square for arbitrary N .
Finally, the N -soliton solution of the untransformed GVE (7.3.1)

is given in parametric form by

u(x, t) = U(t, T ), x = θ(t, T ), (7.3.42)

where θ(X,T ) is defined in (7.3.4).
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7.3.4 Examples of one- and two-soliton solutions

In order to obtain the one-soliton solution of the GVPE (7.3.2) we
need first to calculate the 2×2 matrix M according to (7.3.40) with
N = 1. The elements of the matrix are

M11 = 1−
√
β γ1
2k

[ω2ξ1 + (ω2ξ1)
−1] exp [2k(X − cT )],

M12 =

√
3 γ1i
2

{
[ω2ξ1 + (ω2ξ1)

−1]
[ω3ξ1 + (ω3ξ1)

−1]

}
×

× exp
{
2i
√
β/3 [ω3ξ1 + (ω3ξ1)

−1]X − 2kcT
}
,

M21 = −
√
3 γ1i
2

{
[ω3ξ1 + (ω3ξ1)

−1]
[ω2ξ1 + (ω2ξ1)

−1]

}
×

× exp
{
−2i

√
β/3 [ω2ξ1 + (ω2ξ1)

−1]X − 2kcT
}
,

M22 = 1−
√
β γ1
2k

[ω3ξ1 + (ω3ξ1)
−1] exp [2k(X − cT )],

(7.3.43)

and the determinant of the matrix is

detM =

{
1 +

γ1
2

(
ξ21 + 1

ξ21 − 1

)
exp [2k(X − cT )]

}2

, (7.3.44)

where k =
√
β (ξ1 − ξ−1

1 )/2 and c−1 = β(ξ21 + ξ−2
1 − 1). Notice that

this determinant is a perfect square; this is consistent with (7.3.41).
From (7.3.39) and (7.3.44), the one-soliton solution of the GVPE

(7.3.2), as obtained by the IST method, is

U(X,T ) = 6k2 sech2 [k(X − cT ) + α1] , (7.3.45)

where

α1 =
1

2
ln

[
γ1
2

(
ξ21 + 1

ξ21 − 1

)]
.

α1 is an arbitrary constant. Since U is real, it follows from (7.3.45)
that α1 is real; moreover, since

√
β ξ1 is real, γ1 is also real. (7.3.45)

agrees with the one-soliton solution to the GVPE as found by Hirota’s
method in Section 6.6 and given by (4.1) – (4.4) in [101].

In a similar way (details omitted) we find that, for the two-soliton
solution, M is a 4×4 matrix for which detM is a perfect square given
by

detM =
(
1 + q21 + q22 + b212q

2
1q

2
2

)2
, (7.3.46)
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where

qi = exp [2ki(X − ciT ) + αi] , (7.3.47)

b212 =

(
ξ3 − ξ−1

3 − ξ1 + ξ−1
1

ξ3 − ξ−1
3 + ξ1 − ξ−1

1

)3
ξ33 − ξ−3

3 + ξ31 − ξ−3
1

ξ33 − ξ−3
3 − ξ31 + ξ−3

1

,(7.3.48)

ki =
√

β (ξ2i−1 − ξ−1
2i−1)/2, c−1

i = β(ξ22i−1 + ξ−2
2i−1 − 1),

αi =
1

2
ln

[
γ2i−1

2

(
ξ22i−1 + 1

ξ22i−1 − 1

)]
.

The αi are real arbitrary constants. The relationship (7.3.39) together
with (7.3.46) gives the two-soliton solution of (7.3.2). (7.3.46), (7.3.47)
and (7.3.48) agree with the two-soliton solution as found by Hirota’s
method in Section 6.6 and given by (7.1) – (7.7) in [101].

In passing we note that in the limit β → 0 with
√
β ξi held con-

stant, the one- and two-soliton solutions given above reduce to the
ones obtained in [84] for the VPE.

Consequently, in Section 6.6 (see [101, 102] too) the Vaknenko-
Parkes equation has been generalized to an equation that is known
as the generalised Vakhnenko-Parkes equation. It turns out that this
new evolution equation possesses a wider variety of solutions, is inte-
grable, and has been solved by both the Hirota method in Section 6.6
(see [101, 102] too) and the IST method in Section 7.3 (see [89, 90]
too). Now this equation is investigated very actively in the scientific
literature.
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Chapter 8

Accounting for the continuum part of

spectral data

Now, in addition to the bound state spectrum, we consider the con-
tinuous spectrum of the associated eigenvalue problem [85, 86, 87, 88],
i.e. we assume that at least some of the functions Q1j(ζ

′) are nonzero.
At each fixed j 	= 1, the functions Q1j(ζ

′) characterize the singular-
ity of Φ1(X, ζ). As we have shown, this singularity can appear only
on boundaries between the regular regions on the ζ-plane, where the
condition Re(λ1(ζ

′) − λj(ζ
′)) = 0 constitutes these boundaries [132].

For the VPE (5.1.10)

WXXT + (1 +WT )WX = 0,

as we know, the complex ζ-plane is divided into four regions by two
lines (7.1.25)

(i) ζ ′ = ω2ξ, with Q
(1)
12 (ζ

′) 	= 0, Q
(1)
13 (ζ

′) ≡ 0,

(ii) ζ ′ = −ω3ξ, with Q
(2)
12 (ζ

′) ≡ 0, Q
(2)
13 (ζ

′) 	= 0,

where ξ is real (see Fig. 7.1) and sweeps from −∞ to +∞.

8.1 Special continuous spectrum in

δ-function form

Let us consider the singularity functions Q1j(ζ
′) on the boundaries,

on which the Jost function φ1(X, ζ) is singular, in the form (m =
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1, 2, ...,M)

Q
(1)
12 (ζ

′) = −2πi
M∑

m=1

q
(2m−1)
12 δ(ζ′ − ζ′2n−1)

Q
(1)
13 (ζ

′) = −2πi
M∑

m=1

q
(2m−1)
13 δ(ζ′ − ζ′2n−1) ≡ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

on the line ζ′ = ω2ξ,

Q
(2)
12 (ζ

′) = −2πi
M∑

m=1

q
(2m)
12 δ(ζ′ − ζ′2n) ≡ 0

Q
(2)
13 (ζ

′) = −2πi
M∑

m=1

q
(2m)
13 δ(ζ′ − ζ′2n)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

on the line ζ′ = −ω3ξ.

(8.1.1)

For the singularity functions (8.1.1) and for N pairs of poles, the
relationship (7.1.29) is reduced to the form (provisionally the time-
dependence is not written)

Φ1(X, ζ)=1−
2N∑
k=1

3∑
j=2

γ
(k)
1j

exp{[λj(ζ
(k)
1 )− λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

Φ1(X,ωjζ
(k)
1 )

−
2M∑
l=1

3∑
j=2

q
(l)
1j

exp{[λj(ζ
′
l)− λ1(ζ

′
l)]X}

ζ ′l − ζ
Φ1(X,ωjζ

′
l).

(8.1.2)

In Section 7.2 (see [84] too) it is proved that the poles appear in

pairs only ζ
(2n−1)
1 = iω2ξn and ζ

(2n)
1 = −iω3ξn, under the condi-

tions γ
(2n−1)
12 = ω2βn, γ

(2n−1)
13 = 0, γ

(2n)
12 = 0, γ

(2n)
13 = ω3βn, (n =

1, 2, ..., N). If we consider both the bound state spectrum and the
continuous spectrum, the constants βn are complex values in the gen-
eral case. The restrictions on the βn for real solutions U = WX follow
from a separate problem which will be analyzed in Section 8.2.

As follows from the relationships (7.2.4) and (8.1.2), the singu-
larities in the form (8.1.1) appear in pairs ζ ′2m−1 = ω2ξm and ζ ′2m =
−ω3ξm. From (7.2.4), on considering the limits ζ → ζ ′l and X → −∞,
it immediately follows that

q
(2m−1)
12 ω2 = q

(2m)
13 for m = 1, 2, ..., M. (8.1.3)

Insofar as we have 2N poles and 2M coefficients q
(2m−1)
12 and

q
(2m)
13 in the adopted specifications (8.1.1) of the singularity functions
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Q1j(ζ
′), it is convenient to introduce the notation

μji =

{
λj(ζ

(i)
1 )

λj(ζ
′
(i−K))

, p
(i)
1j =

{
γ
(i)
1j at i = 1, ...,K

q
(i−K)
1j at i = K + 1, ...,K + L

,

(8.1.4)

where K = 2N and L = 2M . Then the relationship (8.1.2) is rewrit-
ten as follows:

Φ1(X, ζ) = 1−
K+L∑
i=1

3∑
j=2

p
(i)
1j

exp[(μji − μ1i)X]

μ1i − ζ
Φ1(X,μji). (8.1.5)

By defining

Ψi(X) =
3∑

j=2

p
(i)
1j exp(μjiX)Φ1(X,μji), (8.1.6)

we may rewrite the relationship (8.1.5) as

Φ1(X, ζ) = 1−
K+L∑
i=1

exp(−μ1iX)

μ1i − ζ
Ψi(X). (8.1.7)

Taking into account (7.1.30), namely

Φ1(X, ζ) = 1− 1

3λ1(ζ)
[W (X)−W (−∞)] +O(λ−2

1 (ζ)),

and (8.1.6) and (8.1.7), the following key relationship may be found
(see also Eq. (7.2.9))

W (X)−W (−∞) = −3
L+M∑
k=1

exp(−μjkX)Ψk(X) = 3
∂

∂X
ln(detM(X)).

(8.1.8)

Here the matrix M(X) is defined as follows:

Mil(X) = δil −
3∑

j=2

p
(i)
1j

exp[(μji − μ1l)X]

μji − μ1l
. (8.1.9)
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Restoring the T -evolution in the relationships, the final result for the
solution of the VPE (5.1.11), when we consider the spectral data from
both the bound state spectrum and the continuous spectrum, is as
follows:

U(X,T ) = WX(X,T ) = 3
∂2

∂X2
ln (detM(X,T )) . (8.1.10)

Here M(X,T ) is the (K + L)×(K + L) matrix given by

Mkl(X,T ) = δkl− (8.1.11)

−
3∑

j=2

p
(k)
1j

exp{(μjk − μ1l)X + [−(3μjk)
−1 + (3μ1k)

−1]T}
μjk − μ1l

,

where, for i ≤ N ,

μ1(2i−1) = λ1(ζ
(2i−1)
1 ) = iω2ξi, μ2(2i−1) = λ2(ζ

(2i−1)
1 ) = iω3ξi,

p
(2i−1)
12 = γ

(2i−1)
12 = ω2βi, p

(2i−1)
13 = γ

(2i−1)
13 = 0,

μ1(2i) = λ1(ζ
(2i)
1 ) = −iω3ξi, μ3(2i) = λ3(ζ

(2i)
1 ) = −iω2ξi,

p
(2i)
12 = γ

(2i)
12 = 0, p

(2i)
13 = γ

(2i)
13 = ω3βi,

(8.1.12)

and for N < i ≤ N +M ,

μ1(2i−1) = λ1(ζ
′
2(i−M)−1) = ω2ξi, μ2(2i−1) = λ2(ζ

′
2(i−M)−1) = ω3ξi,

p
(2i−1)
12 = q

(2(i−M)−1)
12 = ω2βi, p

(2i−1)
13 = q

(2(i−M)−1)
13 = 0,

μ1(2i) = λ1(ζ
′
2(i−M)) = −ω3ξi, μ3(2i) = λ3(ζ

′
2(i−M)) = −ω2ξi,

p
(2i)
12 = q

(2(i−M))
12 = 0, p

(2i)
13 = q

(2(i−M))
13 = ω3βi.

(8.1.13)

For the solution (8.1.10), (8.1.11) there are (N + M) arbitrary con-
stants ξi and (N + M) arbitrary constants βi. The constants ξi are
real, while the constants βi, in the general case, are complex.

As will be clear from the examples in Section 8.2, the solution
(8.1.10), (8.1.11) includes M discrete frequencies from the contin-
uum part of the spectral data. For this reason, the solution (8.1.10),
(8.1.11) without solitons (i.e. with N = 0) will be referred to as an M -
mode solution of the VPE (5.1.11). Evidently these discrete modes
emanate from the special choice (8.1.1) of the singularity functions
Q1j(ζ

′).
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The solution obtained through the matrix (8.1.11) is in general a
complex function. Consequently, there is a problem in selecting the
real solutions from the complex solutions. It turns out that we can
obtain the real solutions by means of restriction of arbitrariness in
the choice of the constants βi. We have succeeded in finding these
restrictions.

8.2 Real solutions for the VPE

Now we select the real solutions U = WX from (8.1.10), (8.1.11).
We analyze a number of examples, as well as the general case, for the
interaction of the solitons and multi-mode waves [85, 86, 87, 88]. To
obtain the solutions of the VPE, one has to calculate the determinant
of the matrix (8.1.11). Firstly, we present four results of such a cal-
culation for N + M ≤ 4. For convenience we will use the auxiliary
function F (X,T ) given by the definition F (X,T ) =

√
detM(X,T ).

In particular, from (8.1.11),
1) for N +M = 1 we have

F = 1 + c1q1; (8.2.1)

2) for N +M = 2 we have

F = 1 + c1q1 + c2q2 + b12c1c2q1q2; (8.2.2)

3) for N +M = 3 we have

F = 1 + c1q1 + c2q2 + c3q3 + b12c1c2q1q2 + b13c1c3q1q3

+b23c2c3q2q3 + b12b13b23c1c2c3q1q2q3;
(8.2.3)

4) for N +M = 4 we have

F = 1 + c1q1 + c2q2 + c3q3 + c4q4 + b12c1c2q1q2 + b13c1c3q1q3

+b14c1c4q1q4 + b23c2c3q2q3 + b24c2c4q2q4 + b34c3c4q3q4

+b12b13b23c1c2c3q1q2q3 + b12b14b24c1c2c4q1q2q4

+b13b14b34c1c3c4q1q3q4 + b23b24b34c2c3c4q2q3q4

+b12b13b14b23b24b34c1c2c3c4q1q2q3q4. (8.2.4)
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For N +M > 4, the explicit expression for the function F (X,T ) can
be obtained in a similar manner. It is helpful to present the quantities
ci, qi and bij involved in the above formulas (8.2.1) – (8.2.4) separately
for three distinct cases:

1. The purely solitonic case (i, j) ≤ N has

qi = exp(2θi), 2θi =
√
3ξiX − (

√
3ξi)

−1T, ci =
βi

2
√
3ξi

,

bij =

(
ξi − ξj
ξi + ξj

)2 ξ2i + ξ2j − ξiξj

ξ2i + ξ2j + ξiξj
, bij ≥ 0;

(8.2.5)

2. The case of purely multi-mode waves N < (i, j) ≤ N +M has

qi = exp(2θi), 2θi = −i
√
3ξiX + (i

√
3ξi)

−1T, ci =
iβi

2
√
3ξi

,

bij =

(
ξi − ξj
ξi + ξj

)2 ξ2i + ξ2j − ξiξj

ξ2i + ξ2j + ξiξj
, bij ≥ 0;

(8.2.6)

3. The case of a combination of solitons (i, i′) ≤ N and multi-mode
waves N < (j, j′) ≤ N +M has

qi = exp(2θi), 2θi =
√
3ξiX − (

√
3ξi)

−1T, ci =
βi

2
√
3ξi

,

qj = exp(2θj), 2θj = −i
√
3ξjX + (i

√
3ξj)

−1T, cj =
iβj

2
√
3ξj

,

bii′ =

(
ξi − ξi′

ξi + ξi′

)2
ξ2i + ξ2i′ − ξiξi′

ξ2i + ξ2i′ + ξiξi′
, 0 ≤ bii′ ≤ 1,

bjj′ =

(
ξj − ξj′

ξj + ξj′

)2 ξ2j + ξ2j′ − ξjξj′

ξ2j + ξ2j′ + ξjξj′
, 0 ≤ bjj′ ≤ 1,

bij =

(
ξi + iξj
ξi − iξj

)2 ξ2i − ξ2j + iξiξj

ξ2i − ξ2j − iξiξj
, |bij | ≡ 1.

(8.2.7)
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With the above found representation of the auxiliary function F (X,T )
and taking into account the key relationship (8.1.10), we can write the
explicit solution to the basic nonlinear evolution equation (5.1.10) in
the following concise form:

W (X,T ) = 6
∂

∂X
ln(F (X,T )) + const. (8.2.8)

The function F is complex-valued in the general case because the
values of βi (and hence of ci) are complex constants.

Since we are interested only in the real solution WX with real con-
stants ξi, we need restrictions on the constants ci in (8.2.1) – (8.2.4).

8.3 The solutions associated with the continuous

spectrum

We study the multi-mode solutions for N = 0 and M = 1, 2, 3, 4,
while for M ≥ 5 all formulas can easily be obtained by means of a
generalization of these examples.

8.3.1 The one-mode solution

In order to obtain the one-mode solution of the VPE (5.1.10) we need
first to calculate the 2×2 matrix M(X,T ) according to (8.1.11) with
N = 0 and M = 1. For the matrix elements Mkl(X,T ) we have

M11(X,T ) = 1− iω2β1√
3ξ1

exp[−i
√
3ξ1X + (i

√
3ξ1)

−1T ],

M12(X,T ) = −ω3β1

2ξ1
exp[2ω3ξ1X + (i

√
3ξ1)

−1T ],

M21(X,T ) =
ω2β1

2ξ1
exp[−2ω2ξ1X + (i

√
3ξ1)

−1T ],

M22(X,T ) = 1− iω3β1√
3ξ1

exp[−i
√
3ξ1X + (i

√
3ξ1)

−1T ],

(8.3.1)

so that the respective determinant is

detM(X,T ) =
[
1 + c1 exp(−i

√
3ξ1X + (i

√
3ξ1)

−1T )
]2

, c1 =
iβ1

2
√
3ξ1

.

(8.3.2)
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As has been noted already, the singularity functions in the form (8.1.1)
with M = 1 give rise to a single frequency for the continuous part of
the spectral data. Hence, the expression (8.3.2), having been sub-
stituted into the concise formula (8.2.8), must provide us with the
one-mode solution.

The condition that WX is real requires a restriction on the constant
β1 (if the constant ξ1 is arbitrary but real). We have succeeded in
obtaining this restriction (see Appendix A at end of this Chapter),
namely that the constant c1, which in general is a complex valued
one with c1 = |c1| exp(iχ1), should possess unit modulus |c1| = 1,
while the arbitrary real constant χ1 defines an initial shift of solution
X1 = χ1/(

√
3ξ1) so that

detM(X,T ) =

[
1 + exp

(
−i

√
3ξ1(X −X1) +

T

i
√
3ξ1

)]2
. (8.3.3)

The final result for one mode of the continuous spectrum is the solu-
tion (8.2.8) with (8.3.3), namely

W (X,T ) = −3
√
3 ξ1 tan

(√
3

2
ξ1(X −X1) +

T

2
√
3ξ1

)
+const. (8.3.4)

The corresponding solution for U = WX was obtained recently
by other methods, for example, by the sine-cosine method [142], the
(G′/G)-expansion method [78], and the extended tanh-function method
[142, 143]. However, only the approach developed here and the solu-
tion in the form (8.1.10), (8.1.11) enable us to study the interaction
of solitons and periodic waves.

We obtain periodic solutions even for M = 1. Let us call atten-
tion once again to the condition (7.1.17) which in the final result is
shown below to restrict the region of X for periodic solutions. At first
glance it would seem that there is a contradiction between the condi-
tion (7.1.17) and the periodic solution. Indeed, on the one hand, the
condition (7.1.17) demands that the solution W (X,T ) should vanish
as X → −∞; on the other hand, the periodic solution obtained here
does not satisfy the condition (7.1.17). Nevertheless, consideration of
the details enables us to find a reasonable explanation. So, in [132],
for the derivation of the relation (7.1.29) (see also (4.5) in [132]), the
integral in (7.1.29) appears as a result of the integration on two sides
of the boundaries between regular regions. For an understanding of
this fact, the relationship (8.1.10) from [132] plays an important role.
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Hence, the integration in (7.1.29) (also as in (4.5) in [132]) should
be carried out over the lines ω2(ξ + iε) and −ω3(ξ + iε) as ξ sweeps
from −∞ to ∞, where ε > 0. As a result, in the relationship (8.3.3)
we should exchange ξ1 for (ξ1 + iε) and that enables us to define the
solution in the form

W (X,T ) = (8.3.5)

= −i6
√
3 (ξ1+iε)

exp(
√
3εX) exp

(
−i

√
3ξ1(X −X1) +

T
i
√
3ξ1

)
1 + exp(

√
3εX) exp

(
−i

√
3ξ1(X −X1) +

T
i
√
3ξ1

) ,
which tends to constants as |X| → ∞ at arbitrary ε > 0. Thus, on
the one hand, the condition (7.1.17) is satisfied, and, on the other
hand, at small ε > 0 we have a sufficiently large region over X where
the solution associated with a finite ε > 0 and the periodic solution
associated with ε = 0 are sufficiently close to each other. The region
of X with periodic solutions can be extended to sufficiently large, but
finite, |X|. For any sequence εn → 0, we remain within the inverse
scattering theory [132] where the condition (7.1.17) is not violated.
Consequently, the periodic solution obtained at ε = 0 is to be inter-
preted as the solution of the VPE which is valid on arbitrary but finite
|X|.

8.3.2 The two-mode solution

Let us consider a two-mode solution of the VPE. In this case M(X,T )
is a 4×4 matrix. For its determinant, according to (8.2.2) we find√

detM(X,T ) = F (X,T ) = 1+ c1q1+ c2q2+ b12c1c2q1q2, (8.3.6)

where qi, ci, and b12 are defined by (8.2.6).
Since the solution WX should be real and the constants ξi are arbi-

trary, but real, there are restrictions on the constants ci = |ci| exp(iχi).
The real constants χi define the initial shifts of solutions
Xi = χi/(

√
3ξi). The analysis in considerable detail shows (see Ap-

pendix A at end of this Chapter) that the relations |c1| = |c2| =
1/
√
b12 are the sufficient conditions in order that WX be real. Thus,

the interaction of two periodic waves for the VPE is described by the
relationship (8.2.8) with

F (X,T ) = 1 +
1√
b12

q1 +
1√
b12

q2 + q1q2, (8.3.7)
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where b12 is as in (8.2.6), and the dependencies in qi now contain the
phaseshifts Xi = χi/(

√
3ξi) as follows:

qi = exp(−i
√
3ξi(X −Xi) + (i

√
3ξi)

−1T ). (8.3.8)

8.3.3 The three-mode solution

For N = 0 and M = 3, in the relationship

F (X,T ) = 1 + c1q1 + c2q2 + c3q3 + c1c2b12q1q2 + c1c3b13q1q3

+c2c3b23q2q3 + c1c2c3b12b13b23q1q2q3

(8.3.9)

obtained from (8.1.11) (see, also (8.2.3)) with qi, ci, and bij as in (8.2.6),
we write ci = |ci| exp(iχi). Then the arguments χi determine the ini-
tial phaseshifts of modes Xi = χi/(

√
3ξi). As is proved in Appendix

A at end of this Chapter, the conditions on the constants ci are

|c1| = 1/
√
b12b13, |c2| = 1/

√
b12b23, |c3| = 1/

√
b13b23.

(8.3.10)

Hence the three-mode solution is the relation (8.2.8) with

F (X,T ) = 1 +
1√

b12b13
(q1 + q2q3) +

1√
b12b23

(q2 + q1q3)

+
1√

b13b23
(q3 + q1q2) + q1q2q3.

(8.3.11)

Here the phaseshifts Xi are taken into account in qi by way of (8.3.8).

8.3.4 The four-mode solution

For N = 0 and M = 4, the restrictions have the form (see Appendix
A at end of this Chapter)

|ci| =
4∏

j=1
j �=i

b
− 1

2
ij , 0 ≤ bij = bji ≤ 1, i = 1, 2, 3, 4. (8.3.12)
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The function F for the real solution (8.2.8) is

F (X,T ) = 1 +
1√

b12b13b14
(q1 + q2q3q4) +

1√
b12b23b24

(q2 + q1q3q4)

+
1√

b13b23b34
(q3 + q1q2q4) +

1√
b14b24b34

(q4 + q1q2q3)

+
1√

b13b14b23b24
(q1q2 + q3q4) +

1√
b12b14b23b34

(q1q3 + q2q4)

+
1√

b12b13b24b34
(q1q4 + q2q3) + q1q2q3q4.

(8.3.13)

As before, the bij and qi are defined by (8.2.6) and (8.3.8), respectively.

8.4 The solutions associated with bound state

spectrum

The features of the solutions associated with the bound state spectrum
can be shown by considering the two-soliton solution for which N = 2,
M = 0. The solution (8.2.8) can be obtained through (8.2.2) with
(8.2.5), i.e.

F (X,T ) = 1 + c1q1 + c2q2 + b12c1c2q1q2 (8.4.1)

with

qi = exp(2θi), 2θi =
√
3ξiX − (

√
3ξi)

−1T, ci =
βi

2
√
3ξi

,

bij =

(
ξi − ξj
ξi + ξj

)2 ξ2i + ξ2j − ξiξj

ξ2i + ξ2j + ξiξj
, bij ≥ 0.

(8.4.2)

In Appendix B at end of this Chapter it is proved that the constants ci
have to be real. Moreover, the signs of αi = ci/|ci| can independently
take the values ±1, i.e. we have four variants, namely α1 = α2 = 1,
α1 = α2 = −1, α1 = −α2 = 1, and α1 = −α2 = −1. Note that in
[123] only the first two variants are discussed. The standard soliton
solution for which α1 = α2 = 1, and the singular soliton solutions
for which α1 = α2 = −1, α1 = −α2 = 1 and α1 = −α2 = −1, are
obtained by means of the relation (8.2.8) to give

U(X,T ) = W (X,T )X = 6
∂2

∂X2
ln(F ) = 6

∂2

∂X2
ln(Gi), (8.4.3)
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where Gi are defined by (B.6) – (B.9).
The forms (B.3), (B.6) – (B.9) for F are more preferable, since we

see that the solution is dependent on two combinations of the spectral
parameters ξ1+ ξ2 and ξ1− ξ2, but not three values ξ1, ξ2, and ξ1+ ξ2
as it may appear from the relation (8.4.3).

For N ≥ 3 we give the conditions without proof. All the constants
ci are to be real and the signs of αi = ci/|ci| can be equal to ±1
independently of each other.

8.5 Real soliton and multi-mode solutions of the

VPE

In this subsection we will consider the general case, when both the
bound state spectrum and the continuous spectrum are taken into
account in the associated spectral problem. We will find the conditions
on ci for real solutions of the VPE. To obtain the solution, we need
to know the function F (see (8.2.1) – (8.2.4)).

Let the indexes i and i′ be related to the values involved in the
bound state spectrum for which (i, i′) ≤ N , while the indexes j and j′

are related to the values involved in the continuous part of the spectral
data for which N < (j, j′) ≤ N +M .

8.5.1 The interaction of a soliton with a
one-mode wave

The interaction of a standard soliton with a periodic one-mode wave
can be described by means of the relation (8.2.2) with N = 1 and
M = 1, namely

F (X,T ) = 1 + c1q1 + c2q2 + b12c1c2q1q2 (8.5.1)

with qi and b12 as in (8.2.7), namely

q1 = exp(
√
3ξ1X − (

√
3ξ1)

−1T ), c1 =
β1

2
√
3ξ1

,

q2 = exp(−i
√
3ξ2X + (i

√
3ξ2)

−1T ), c2 =
iβ2

2
√
3ξ2

,

b12 =

(
ξ1 + iξ2
ξ1 − iξ2

)2
ξ21 − ξ22 + iξ1ξ2
ξ21 − ξ22 − iξ1ξ2

, |b12| ≡ 1.

(8.5.2)
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First, we emphasize that the soliton and one-mode wave (8.3.4) prop-
agate in opposite directions. The soliton propagates in the positive
direction of the X-axis, while the one-mode wave (8.3.4) propagates
in the negative direction of the X-axis.

Here we restrict ourselves to the simplest case b12c1c2 = 1 that
describes the interaction of a standard soliton with a one-mode wave.
As follows immediately from Appendix C at end of this Chapter, for
real solutions (8.2.8),

W (X,T ) = 6
∂

∂X
ln(F (X,T )) + const.,

where F (X,T ) is

F (X,T ) = 1 +
1√
b12

q1 +
1√
b12

q2 + q1q2. (8.5.3)

There is an exceptional case at ξ1 = ξ2. Then we have b12 = 1,
and F = (1+q1)(1+q2). Consequently, the solution (8.2.8) is reduced
to the relation

W = W1 +W2 = 3
√
3ξ1 tanh

(√
3

2
ξ1(X −X1)− T

2
√
3ξ1

)

−3
√
3 ξ1 tan

(√
3

2
ξ1(X −X0) +

T

2
√
3ξ1

)
+ const.

(8.5.4)

Here W1 is the one-soliton solution and W2 is the solution (8.3.4) as-
sociated with one mode in the continuous part of the spectral data.
The relationship W = W1+W2 is easily verified also by direct substi-
tution into the VPE (5.1.10). The two waves W1 and W2 propagate
in different directions with the same speed without change of wave
profile and phaseshift. In other words, only in the case ξ1 = ξ2 is
there a simple superposition of the solutions W1 and W2. It is obvi-
ous that interactions of two solitons with a one-mode wave and/or of
the two-mode solution with one soliton do not satisfy this form of the
interaction.
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8.5.2 Real solutions for N solitons and the
M-mode wave

The interaction of N solitons and the M -mode wave (8.3.4) can be
obtained by means of the function F (X,T ) with restrictions (C.7)
given in Appendix C, namely

ci = ±1

/√√√√√N+M∏
j=1
j �=i

bij , bij = bji, i = 1, ..., N +M, (8.5.5)

and with the retention of the phaseshifts Xi in the quantities qi (C.2).
The signs for ci in (8.5.5) can be chosen independently of each other.
If the index i in (8.5.5) is connected with the continuous part of the
spectral data (N < i ≤ N + M), then the solutions generated by
plus and minus signs in (8.5.5) are different only in the phaseshifts.
However, for the index i from the bound state spectrum (i ≤ N),
the solutions have different forms of function dependence. Here it is
relevant to remember that there are standard soliton solutions and
singular soliton solutions generated by different signs in the constants
ci (8.5.5).

The solution will contain (N+M) real constants ξi for determining
the values bij and (N+M) real constants Xi to define the phaseshifts.

We have described the procedure for finding the solutions of the
Vakhnenko-Parkes equation by means of the inverse scattering method.
Both the bound state spectrum and the continuous spectrum are taken
into account in the associated eigenvalue problem. The special form
of the singularity functions enables us to obtain the multi-mode so-
lutions. Sufficient conditions have been proved in order that the so-
lutions become real functions. Finally we studied the interaction of
solitons and the multi-mode wave.

8.6 Appendices

A. The conditions on the constants ci for
multi-mode waves

In this appendix we will prove the conditions on the constants ci =
|ci| exp(iχi) for solutions associated with the continuous part of the
spectral data only. We use the case M = 4 as an example to prove
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the restrictions on the constants, at which the solution WX(X,T ) is
real. The auxiliary function F (X,T ) =

√
detM(X,T ) for finding the

solution is (8.2.4), namely

F (X,T ) = 1 + c1q1 + c2q2 + c3q3 + c4q4 + c1c2b12q1q2 + c1c3b13q1q3

+c1c4b14q1q4 + c2c3b23q2q3 + c2c4b24q2q4 + c3c4b34q3q4

+c1c2c3b12b13b23q1q2q3 + c1c2c4b12b14b24q1q2q4

+c1c3c4b13b14b34q1q3q4 + c2c3c4b23b24b34q2q3q4

+c1c2c3c4b12b13b14b23b24b34q1q2q3q4.

(A.1)

Here we redefine the values ci in such a way that ci = |ci|, since
the arguments χi can always be introduced into the variables qi =
exp(i2θi) with 2θi = −√

3ξi(X−Xi)−(
√
3ξi)

−1T and Xi = χi/(
√
3ξi)

serving as the shifts of solutions. The solution to the VPE (5.1.10)
then has the form (8.2.8)

W (X,T ) = 6
∂

∂X
ln(F (X,T )) + const. (A.2)

The function F is complex-valued, i.e.

F = FRe+iFIm = |F | exp(iχF ), FRe = Re(F ), FIm = Im(F ),

(A.3)

tan(χF ) = FIm/FRe,

hence

W (X,T )/6 =
∂

∂X
ln(|F |) + i

∂χF

∂X
+ const. (A.4)

If we succeed in making ∂2χF /∂X
2 ≡ 0 by the choice of the constants

ci, then WX(X,T ) will be a real function.
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Let us write FIm and FRe in explicit forms, namely

FIm = c1 sin(2θ1) + c2 sin(2θ2) + c3 sin(2θ3) + c4 sin(2θ4)

+c1c2b12 sin[2(θ1 + θ2)] + c1c3b13 sin[2(θ1 + θ3)]

+c1c4b14 sin[2(θ1 + θ4)] + c2c3b23 sin[2(θ2 + θ3)]

+c2c4b24 sin[2(θ2 + θ4)] + c3c4b34 sin[2(θ3 + θ4)]

+c1c2c3b12b13b23 sin[2(θ1 + θ2 + θ3)]

+c1c2c4b12b14b24 sin[2(θ1 + θ2 + θ4)]

+c1c3c4b13b14b34 sin[2(θ1 + θ3 + θ4)]

+c2c3c4b23b24b34 sin[2(θ2 + θ3 + θ4)]

+c1c2c3c4b12b13b14b23b24b34 sin[2(θ1 + θ2 + θ3 + θ4)],

(A.5)

FRe = 1 + c1 cos(2θ1) + c2 cos(2θ2) + c3 cos(2θ3) + c4 cos(2θ4)

+c1c2b12 cos[2(θ1 + θ2)] + c1c3b13 cos[2(θ1 + θ3)]

+c1c4b14 cos[2(θ1 + θ4)] + c2c3b23 cos[2(θ2 + θ3)]

+c2c4b24 cos[2(θ2 + θ4)] + c3c4b34 cos[2(θ3 + θ4)]

+c1c2c3b12b13b23 cos[2(θ1 + θ2 + θ3)]

+c1c2c4b12b14b24 cos[2(θ1 + θ2 + θ4)]

+c1c3c4b13b14b34 cos[2(θ1 + θ3 + θ4)]

+c2c3c4b23b24b34 cos[2(θ2 + θ3 + θ4)]

+c1c2c3c4b12b13b14b23b24b34 cos[2(θ1 + θ2 + θ3 + θ4)].

(A.6)

Let us try to present FIm and FRe in the forms

FIm = 2G sin(θ1 + θ2 + θ3 + θ4) (A.7)
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and

FRe = 2G cos(θ1 + θ2 + θ3 + θ4), (A.8)

where G is the same in both the above formulas (A.7) and (A.8). This
can be done if the following conditions are satisfied:

c1 = c2c3c4b23b24b34, c2 = c1c3c4b13b14b34, c3 = c1c2c4b12b14b24,

c4 = c1c2c3b12b13b23, c1c2b12 = c3c4b34, c1c3b13 = c2c4b24,

c1c4b14 = c2c3b23, c1c2c3c4b12b13b14b23b24b34 = 1.

(A.9)

It turns out that all these relations are valid when

c1 =
1√

b12b13b14
, c2 =

1√
b12b23b24

, c3 =
1√

b13b23b34
,

c4 =
1√

b14b24b34
.

(A.10)

With the conditions (A.10), the expression for G reads as follows:

G = cos(θ1 + θ2 + θ3 + θ4) +
1√

b12b13b14
cos(θ1 − θ2 − θ3 − θ4)

+
1√

b12b23b24
cos(θ2 − θ1 − θ3 − θ4)

+
1√

b13b23b34
cos(θ3 − θ1 − θ2 − θ4)

+
1√

b14b24b34
cos(θ4 − θ1 − θ2 − θ3)

+
1√

b13b14b23b24
cos(θ1 + θ2 − θ3 − θ4)

+
1√

b12b14b23b34
cos(θ1 + θ3 − θ2 − θ4)

+
1√

b12b13b24b34
cos(θ1 + θ4 − θ2 − θ3).

(A.11)

Now it is readily seen from (A.3) that

χF = θ1 + θ2 + θ3 + θ4 (A.12)
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and as consequence we have

∂2χF

∂X2
=

∂2χF

∂X∂T
= 0. (A.13)

Hence, as follows from (A.4), the four-mode solution of the VPE
(5.1.11) can be reduced to real form with four real constants Xi and
four real constants ξi (see (8.3.13)).

Here, without proof, we give the following conditions on the con-
stants ci that ensure the real M -mode solution of the VPE:

|ci| =
M∏
j=1
j �=i

b
− 1

2
ij , bij = bji, i = 1, ..., M, (A.14)

where the M constants ξi determine the values bij and the M con-
stants Xi define the phaseshifts for each mode. Note that these rela-
tions (A.14) are sufficient conditions, but not necessary ones.

B. The conditions on the constants ci under the
interaction of two solitons

Here we consider the conditions on signs for the constants ci under
the interaction of two solitons (N = 2, M = 0). We start with the
relationship (8.2.2) and (8.2.5)

F = 1 + c1q1 + c2q2 + b12c1c2q1q2. (B.1)

Let us present the constants ci in the form

ci = αi|ci| exp(iχi) = b
−1/2
12 exp

(−√
3ξiXi + iσi

)
,

σi = χi + π(1− αi)/2.
(B.2)

All the new constants χi and Xi = − ln(|ci
√
b12|)/(

√
3ξi) are real. We

assume that −π/2 < χi ≤ π/2, then the values αi retain the signs of
the constants Re(ci), i.e. αi = Re(ci)/|Re(ci)|. It is convenient for
analyzing to rewrite (B.1) (the same as (8.2.2)) in the form

F = 2 exp

(
θ1 + θ2 +

i

2
(σ1 + σ2)

)
G (B.3)
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with

G = cosh
(
θ1 + θ2 +

i
2 (σ1 + σ2)

)
+b
−1/2
12 cosh

(
θ1 − θ2 +

i
2 (σ1 − σ2)

)
,

(B.4)

2θi =
√
3ξi(X −Xi)− (

√
3ξi)

−1T.

It is easily seen that only G defines the solution, since
∂2

∂X2
ln(F ) =

∂2

∂X2
ln(G), while the conditions that the function G is real are as

follows:

χi = 0, σi + σ2 = 2πk1, σi − σ2 = 2πk2 (B.5)

with ki = 0, 1. These restrictions (B.5) lead to the requirements
α1 = ±1, α2 = ±1, independently of each other, and χi = 0. Then
the function F has the following forms:

1. for α1 = α2 = 1

F = 2 exp (θ1 + θ2)G1,

G1 = cosh (θ1 + θ2) + b
−1/2
12 cosh (θ1 − θ2) ;

(B.6)

2. for α1 = α2 = −1

F = 2 exp (θ1 + θ2)G2,

G2 = cosh (θ1 + θ2)− b
−1/2
12 cosh (θ1 − θ2) ;

(B.7)

3. for α1 = −α2 = 1

F = 2 exp (θ1 + θ2)G3,

G3 = − sinh (θ1 + θ2) + b
−1/2
12 sinh (θ1 − θ2) ;

(B.8)

4. for α1 = −α2 = −1

F = 2 exp (θ1 + θ2)G4,

G4 = − sinh (θ1 + θ2)− b
−1/2
12 sinh (θ1 − θ2) .

(B.9)
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Hence, the standard soliton solution that follows from (B.6) and the
singular soliton solutions that follow from (B.7) – (B.9) are the real
functions

U(X,T ) = WX(X,T ) = 6
∂2

∂X2
ln(Gi). (B.10)

Now we rewrite the restrictions in a somewhat different form. By
retaining the values of the phaseshifts Xi in the quantities qi, we
require

c1 = ±1/
√
b12 , c2 = ±1/

√
b12 , (B.11)

where the signs are independent of each other. Note that for this
case there are two arbitrary real constants ξi, and two arbitrary real
constants Xi (i = 1, 2).

The notation in (B.6) – (B.9) shows that the solution is defined
by two combinations of the spectral parameters, namely ξ1 + ξ2 and
ξ1−ξ2, but not three values ξ1, ξ2, ξ1+ξ2 as it may appear from (B.1).

The foregoing proof points to a way for finding the restrictions for
any N with M = 0. Here it should be underlined that only at real ci
with any sign of αi = ci/|ci|, the soliton (or singular soliton) solutions
are determined by a real function. The conditions on the constants ci
are as follows:

ci = ±1

/√√√√√ N∏
j=1
j �=i

b12 i = 1, ..., N (B.12)

with the retention of the phaseshifts Xi in the quantities qi. The
signs for ci are independent of each other. The solution will contain
the N real constants ξi for determining the values bij and the N real
constants Xi to define the phaseshifts.

C. The restrictions on the constants ci in the
general case

In this Appendix we will obtain the restrictions on the constants ci
for real solutions, in the general case, taking into account the spectral
data from both the bound state spectrum and the continuous spec-
trum. All features are inherent in the case N+M = 4 considered here
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as an example. To find the solution by means of the inverse scattering
method, one needs to know the function (8.2.4)

F = 1 + c1q1 + c2q2 + c3q3 + c4q4 + b12c1c2q1q2 + b13c1c3q1q3

+b14c1c4q1q4 + b23c2c3q2q3 + b24c2c4q2q4 + b34c3c4q3q4

+b12b13b23c1c2c3q1q2q3 + b12b14b24c1c2c4q1q2q4

+b13b14b34c1c3c4q1q3q4 + b23b24b34c2c3c4q2q3q4

+b12b13b14b23b24b34c1c2c3c4q1q2q3q4.

(C.1)

For convenience we rewrite the variables qi in the somewhat different
form

qi = exp(2θi), qj = exp(i2θj), 2θi =
√
3ξi(X −Xi)− (

√
3ξi)

−1T,

2θj = −√
3ξj(X −Xj)− (

√
3ξj)

−1T.

(C.2)

The phaseshiftsXi are arbitrary real constants. The values bij in (C.1)
are as in (8.2.7), namely

bii′ =

(
ξi − ξi′

ξi + ξi′

)2
ξ2i + ξ2i′ − ξiξi′

ξ2i + ξ2i′ + ξiξi′
, 0 ≤ bii′ ≤ 1,

bjj′ =

(
ξj − ξj′

ξj + ξj′

)2 ξ2j + ξ2j′ − ξjξj′

ξ2j + ξ2j′ + ξjξj′
, 0 ≤ bjj′ ≤ 1,

bij =

(
ξi + iξj
ξi − iξj

)2 ξ2i − ξ2j + iξiξj

ξ2i − ξ2j − iξiξj
, |bij | ≡ 1,

(C.3)

where (i, i′) ≤ N , and N < (j, j′) ≤ N +M . Note that bii′ and bjj′
are real values, and b∗ij = 1/bij .

Without loss of generality, we will consider one set of values N
and M , for example N = 1 and M = 3. Now we will show that the
restrictions (A.10)

c1 = ±1/
√
b12b13b14 , c2 = ±1/

√
b12b23b24 ,

c3 = ±1/
√
b13b23b34 , c4 = ±1/

√
b14b24b34

(C.4)
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(with bij determined by (C.3)) are sufficient in order to obtain the
real solutions.

For definiteness, we assume that
√

bij is a root of the equation

x2 = bij with −π/2 < arg
√
bij ≤ π/2. Let us rewrite the rela-

tions (C.4) in the form ci = αi/
4∏

j=1
j �=i

√
bij , where αi = ±1. It is

evident that we can always attain α2 = α3 = α4 = 1 by choosing the
phaseshifts X2, X3 and X4, while we need to consider the two cases
α1 = ±1. By defining σ = (1 − α1)/2, we can rewrite the auxiliary
function F from (C.1) in the form

F (X,T ) = 2Geiπσ(b12b13b14)
−1/4 exp(θ1+iπσ/2+ iθ2+iθ3+iθ4),

Geiπσ =
[
(b12b13b14)

1/4 cos(−iθ1 + πσ/2 + θ2 + θ3 + θ4)

+(b12b13b14)
−1/4 cos(−iθ1 + πσ/2− θ2 − θ3 − θ4)

]
+(b23b24)

−1/2
[
(b13b14/b12)

1/4 cos(iθ1 − πσ/2 + θ2 − θ3 − θ4)

+ (b13b14/b12)
−1/4 cos(−iθ1 + πσ/2 + θ2 − θ3 − θ4)

]
+(b23b34)

−1/2
[
(b12b14/b13)

1/4 cos(iθ1 − πσ/2 + θ3 − θ2 − θ4)

+ (b12b14/b13)
−1/4 cos(−iθ1 + πσ/2 + θ3 − θ2 − θ4)

]
+(b24b34)

−1/2
[
(b12b13/b14)

1/4 cos(iθ1 − πσ/2 + θ4 − θ2 − θ3)

+ (b12b13/b14)
−1/4 cos(−iθ1 + πσ/2 + θ4 − θ2 − θ3)

]
.

(C.5)

Since b23, b24, and b34 are real, and b∗1j = 1/b1j for j = 2, 3, 4, it is
evident that G∗ = G, i.e. the variable G in the solution is a real-valued
function. Hence the solution of the VPE (5.1.11), namely

U(X,T ) = WX(X,T ) = 6
∂2

∂X2
ln(F ) = 6

∂2

∂X2
ln(G), (C.6)

is a real quantity.
Using this example, one can prove without difficulty that the pro-

cedure considered above can be extended to any N and M with re-
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strictions (see also (A.14), (B.12), (C.4))

ci = ±1

/√√√√√N+M∏
j=1
j �=i

bij , bij = bji, i = 1, ..., N +M, (C.7)

while the quantities qi retain the phaseshifts Xi (see (C.2)). The
signs in (C.7) can be chosen independently of each other. For the
interaction of N solitons and the M -mode wave there are (N + M)
real constants ξi and (N +M) real constants Xi.

Note that the restrictions (C.7) are sufficient conditions in order
that the solution of the VPE is real.
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Chapter 9

From simple poles to multiple poles

In this Chapter, the standard procedure for the inverse scattering
transform (IST) method is expanded for the case of multiple poles. It
is known that the IST method is one of the fundamental methods for
solving various nonlinear evolution equations. The method enables
one both to provide a proof of the complete integrability of the equa-
tion and to solve the initial value problem for this evolution equation
(see Chapters 7 and 8). In the IST method, the equation is written
as the compatibility condition for two linear equations (the Lax pair).
Then the initial condition is mapped into the scattering data. It is
important that the spectrum always retains constant values. The time
evolution of scattering data is simple and linear. From a knowledge
of scattering data evolution, the solution is reconstructed. Hence, for
this method the direct spectral problem and the inverse spectral prob-
lem are considered. The latter consists of reconstructing the solution
of the nonlinear equation from the spectral data. In the general case it
is necessary to analyze both the discrete part and the continuum part
of the spectral data. It is well-known that the discrete part is associ-
ated with soliton solutions, while the continuum part of the spectral
data is related to the periodical solutions.

For the spectrum of bound states, we expand the standard proce-
dure from simple poles to the multiple poles. Moreover, for continuum
states, a special form of the spectral data is considered where, in the
mathematical sense, the problems for the bound states and for contin-
uum states are similar. The spectrum of continuum states is taken as
a line spectrum that in first order approximates the step-function. In
Section 9.2 onwards we reconstruct the solution from spectral data of
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the special form. The scope for the suggested spectral data is demon-
strated through the analysis of the Vakhnenko-Parkes equation that
allows new solutions to be obtained.

9.1 The spectral problem for simple poles

Based on our experience of the study of the Vakhnenko-Parkes equa-
tion (VPE), we acquaint the reader with the expanded procedure for
taking into account the multiple poles in the discrete part of the spec-
tral data. Using the VPE [84, 91, 85, 86, 87]

WXXT + (1 +WT )WX = 0 (9.1.1)

or, in alternative form with U ≡ WX ,

UUXXT − UXUXT + U2UT = 0

as an example, we aim to examine both the two-multiple poles and
some special forms of the spectral data for which the inverse problem
can be solved. In Section 7.1 (see [84] too) it was proved that the Lax
pair has the form

ψXXX +WXψX − λψ = 0, (9.1.2)

3ψXT + (1 +WT )ψ + μψX = 0. (9.1.3)

For convenience and for comparison with new results (see Sec-
tion 9.2), we repeat some results from Chapter 7 for simple poles.
The spectral equation (9.1.2) is known to have a matrix form (7.1.14)

∂

∂X
ψ = [A(ζ) +B(X, ζ)] ·ψ (9.1.4)

with

ψ =

⎛⎝ ψ
ψX

ψXX

⎞⎠ , A =

⎛⎝ 0 1 0
0 0 1
λ 0 0

⎞⎠ , B =

⎛⎝ 0 0 0
0 0 0
0 −WX 0

⎞⎠ .

(9.1.5)

The matrix A has eigenvalues λj(ζ) and left- and right-eigenvectors
ṽj(ζ) and vj(ζ), respectively. These quantities are defined through a

 EBSCOhost - printed on 2/13/2023 9:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 9. From simple poles to multiple poles 195

spectral parameter λ as

λj(ζ) = ωjζ, λ3
j (ζ) = λ,

vj(ζ) =

⎛⎝ 1
λj(ζ)
λ2
j (ζ)

⎞⎠ , ṽj(ζ) =
(
λ2
j (ζ) λj(ζ) 1

)
,

(9.1.6)

where ωj = e2πi(j−1)/3 are the cube roots of 1 (j = 1, 2, 3). Obvi-
ously the λj(ζ) are distinct and they and ṽj(ζ) and vj(ζ) are analytic
throughout the complex ζ-plane.

The solution of the system of the linear equations (9.1.4) has been
obtained by Caudrey [132, 140] in terms of Jost functions φj(X, ζ)
which have the asymptotic behaviour

Φj (X, ζ): = exp{−λj (ζ)X}φj (X, ζ)→ vj (ζ) asX→−∞. (9.1.7)

Caudrey [132] showed how the Eq. (9.1.4) can be solved by expressing
it as a Fredholm integral equation.

The complex ζ-plane is to be divided into regions such that, in the
interior of each region, the order of the numbers Re(λi(ζ)) is fixed (see
Fig. 7.1). As we pass from one region to another this order changes
and hence, on a boundary between two regions, Re(λi(ζ)) = Re(λj(ζ))
for at least one pair i 	= j. The Jost function φj is regular throughout
the complex ζ-plane apart from poles and finite singularities on the
boundaries between the regions. At any point in the interior of any
region of the complex ζ-plane, the solution of Eq. (9.1.4) is obtained
by the relation (2.12) from [132]. It is the direct spectral problem.

We will consider only the inverse spectral problem, i.e. from pre-
assigned spectral data we will reconstruct the solution W . The infor-
mation about the singularities of the Jost functions φj(X, ζ) reside in
the spectral data. First let us consider the poles. It is assumed that a

pole ζ
(k)
i of φi(X, ζ) does not coincide with a pole of φj(X, ζ), j 	= i

and does not lie on a boundary between two regions. Note that, for

φj(X, ζ
(k)
i ), the point ζ

(k)
i lies in the interior of a regular region. We

will need the well-known relations for simple poles [132, 140] in order
to compare them with new results which will be obtained in Sec. 9.2.
As proven in [132] (see Eq. (7.1.18)), the residue of a simple pole can
be calculated as

Resφi(X, ζ
(k)
i ) =

n∑
j=1
j �=i

γ
(k)
ij φj(X, ζ

(k)
i ). (9.1.8)
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The quantities ζ
(k)
i and γ

(k)
ij constitute the discrete part of the spectral

data in the case of simple poles.
In contrast to Chapter 7 (see [132, 140] too) we do not restrict our-

selves to simple poles. Indeed, one of the results we will prove in the
next section is that the two-multiple poles can be taken into account
in the discrete part of the spectral data. As result the relation (9.1.8)
is changed.

Let us consider the singularities on the boundaries between re-
gions. The solution of the spectral problem can be facilitated by
using various symmetry properties. In view of (9.1.4), we need only
consider the first elements of

φi(X, ζ) =

⎛⎝ φi(X, ζ)
φi(X, ζ)X
φi(X, ζ)XX

⎞⎠ , (9.1.9)

while the symmetry

φ1(X, ζ/ω1) = φ2(X, ζ/ω2) = φ3(X, ζ/ω3) (9.1.10)

means we need only consider φ1(X, ζ). In our case, for φ1(X, ζ), the
complex ζ-plane is divided into four regions by two lines (see Fig. 7.1)
given by

(i) ζ ′ = ω2ξ, where Re(λ1(ζ)) = Re(λ2(ζ)),

(ii) ζ ′ = −ω3ξ, where Re(λ1(ζ)) = Re(λ3(ζ)),
(9.1.11)

where ξ is real. The singularity of φ1(X, ζ) can appear only on these
boundaries between the regular regions on the ζ-plane and it is char-
acterized by functions Q1j(ζ

′) at each fixed j 	= 1. We denote the
limit of a quantity, as the boundary is approached, by the superfix ±
in according to the sign of Re(λ1(ζ)− λj(ζ)) (see Fig. 7.1).

In [132] (see Eq. (3.14) there) the jump of φ1(X, ζ) on the bound-
aries is calculated as

φ+
1 (X, ζ)− φ−1 (X, ζ) =

3∑
j=2

Q1j(ζ)φ
−
j (X, ζ), (9.1.12)

where, from (9.1.11), the sum is over the lines ζ ′ = ω2ξ and ζ ′ = −ω3ξ
given by

(i) ζ ′ = ω2ξ, with Q
(1)
12 (ζ

′) 	= 0, Q
(1)
13 (ζ

′) ≡ 0,

(ii) ζ ′ = −ω3ξ, with Q
(2)
12 (ζ

′) ≡ 0, Q
(2)
13 (ζ

′) 	= 0.
(9.1.13)
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The quantities Q1j(ζ
′) along all the boundaries constitute the contin-

uum part of the spectral data.
The singularity functionsQ1j(ζ

′) are determined byW (X, 0) through
the matrix B(X, ζ) (7.1.15) (see Eq. (3.13) in [132])

Q1j(ζ) =
1

ṽj(ζ) · vj(ζ)
ṽj(ζ)·

∞∫
−∞

exp[(λ1(ζ)−λj(ζ))z]B(z, ζ)·φ−1 (X, ζ) dz.

(9.1.14)

The quantities Q1j(ζ
′) along all the boundaries constitute the contin-

uum part of the spectral data.
Thus, for simple poles, the spectral data are [132, 140]

S = {ζ(k)1 , γ
(k)
1j , Q1j(ζ

′); j = 2, 3, k = 1, 2, . . . , m}. (9.1.15)

One of the important features which is to be noted for the IST
method is as follows. After the spectral data have been obtained, we
need to seek the time-evolution of the spectral data. In Refs. [84, 91,
85, 86, 87] it is proved that for the VPE the T -dependence is revealed
as

φi(X,T, ζ) = exp
[
− (3λi(ζ))

−1
T
]
φi(X, 0, ζ),

then for spectral data (9.1.15)

ζ
(k)
j (T ) = ζ

(k)
j (0),

γ
(k)
1j (T ) = γ

(k)
1j (0) exp

{[
−

(
3λj(ζ

(k)
1 )

)−1

+
(
3λ1(ζ

(k)
1 )

)−1
]
T

}
,

Q1j(T ; ζ
′) = Q1j(0; ζ

′) exp
{[

− (3λj(ζ
′))−1

+ (3λ1(ζ
′))−1

]
T
}
.

(9.1.16)

The final step in the application of the IST method is to recon-
struct the matrix B(X,T ; ζ) and the solution W (X,T ) from the spec-
tral data S (9.1.15).

Caudrey has proved that for simple poles the spectral data define
Φ1(X, ζ) uniquely in the form (see Eq. (6.20) in [132]))

Φ1(X,T ; ζ) = 1− Ωd(X,T ; ζ) + Ωc(X,T ; ζ), (9.1.17)
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where

Ωd(X,T ; ζ) ≡
K∑

k=1

3∑
j=2

γ
(k)
1j (T )

exp{[λj(ζ
(k)
1 )− λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

×Φ1(X,T ;ωjζ
(k)
1 ),

(9.1.18)

Ωc(X,T ; ζ) ≡ 1

2πi

∫ 3∑
j=2

Q1j(T ; ζ
′)
exp{[λj(ζ

′)− λ1(ζ
′)]X}

ζ ′ − ζ

×Φ−1 (X,T ;ωjζ
′)dζ ′.

(9.1.19)

Equations (9.1.17)–(9.1.19) contain the spectral data, namely K sim-

ple poles with the quantities γ
(k)
1j for the bound state spectrum as

well as the functions Q1j(ζ
′) given along all the boundaries of regular

regions for the continuous spectrum. The integral in (9.1.18) is along
all the boundaries (see the dashed lines in Fig. 7.1). The direction of
integration is taken so that the side chosen to be Re(λ1(ζ)−λj(ζ)) < 0
is shown by the arrows in Fig. 7.1 (for the lines (9.1.11), ξ sweeps from
−∞ to +∞).

By knowing Φ1(X,T ; ζ), we can take extra information into ac-
count, namely that the expansion of Φ1(X,T ; ζ) as an asymptotic se-
ries in λ−1

1 (ζ) connects withW (X,T ) as follows (cf. Eq. (2.7) in [131]):

Φ1(X,T ; ζ) = 1− 1

3λ1(ζ)
[W (X,T )−W (−∞, T )] +O(λ−2

1 (ζ)).

(9.1.20)

Consequently, the solution W (X,T ) and the matrix B(X,T ; ζ) can
be reconstructed from the spectral data.

In the remaining sections we will study both the multiple poles for
the discrete part of the spectral data and the continuum part of the
spectral data in special form. Apart from the relations (9.1.18) and
(9.1.8), all other formulas are true for the suggested spectral data and
will be used subsequently.
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9.2 The two-multiple poles

For single poles the formula (9.1.18) are true. Now we take into ac-
count the two-multiple poles. Let us consider the additional equation
to the spectral equation (9.1.2)

χXXX +WζXψX +WXχX − ζ3χ− 3ζ2ψ = 0. (9.2.1)

For χ = ψζ the equation (9.2.1) stems from (9.1.2) by differentiation
with respect to ζ. For convenience, the spectral parameter λ is written
as λ = ζ3 by virtue of (9.1.6).

The matrix form of the system of equations (9.1.2) and (9.2.1) is
as (9.1.4) with

ψ =

⎛⎜⎜⎜⎜⎜⎜⎝
ψ
ψX

ψXX

χ
χX

χXX

⎞⎟⎟⎟⎟⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 1 0 0 0
ζ3 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3ζ2 0 0 ζ3 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 −WX 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −WζX 0 0 −WX 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

(9.2.2)

The matrix A has three pairs of 2-multiple eigenvalues and right-
eigenvectors

λj(ζ) = λj+3(ζ), λj(ζ) = ωjζ, λ3
j (ζ) = λ,

vj(ζ) =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
1

λj(ζ)
λ2
j (ζ)

⎞⎟⎟⎟⎟⎟⎟⎠ = vj+3(ζ) =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
1

λj+3(ζ)
λ2
j+3(ζ)

⎞⎟⎟⎟⎟⎟⎟⎠ , j = 1, 2, 3.

(9.2.3)
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It is known [141] that for the system (9.1.2), (9.2.1) at W = 0 to
every pair of vectors vj(ζ), vj+3(ζ) (j = 1, 2, 3), there corresponds a
system of solutions

ψj = vj exp(λjX), ψj+3 = (vj +Xv2j) exp(λjX), (9.2.4)

where (see p. 97 in [141])

Avj = λjvj , Av2j = λjv2j + vj . (9.2.5)

The multiplicity of eigenvalues does not allow us to obtain the
fundamental system of solutions for the system (9.1.2), (9.2.1). To
avoid this obstacle we introduce the equation

χXXX +WζXψX +WXχX − (ζ + ε)3χ− 3(ζ + ε)2ψ = 0 (9.2.6)

instead of equation (9.2.1). The system (9.1.2), (9.2.6) in matrix form
has the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 1 0 0 0
ζ3 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3(ζ + ε)2 0 0 (ζ + ε)3 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (9.2.7)

with different eigenvalues and right-eigenvectors, which in the first
approximation O(ε) have the forms

λj(ζ) = ωjζ, λj+3(ζ) = ωj(ζ + ε),

vj(ζ) =

⎛⎜⎜⎜⎜⎜⎜⎝

−ε
−ελj

−ελ2
j

1
λj

λ2
j

⎞⎟⎟⎟⎟⎟⎟⎠ , vj+3(ζ) =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
1

λj+3

λ2
j+3

⎞⎟⎟⎟⎟⎟⎟⎠ , j = 1, 2, 3.

(9.2.8)

As ε → 0 the relations (9.2.8) tend to (9.2.3). At W = 0 the solutions
of the system (9.1.2), (9.2.6) are

ψj = vj exp(λjX), j = 1, . . . , 6. (9.2.9)
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In the accepted approximation O(ε), we take
ψj+3 = vj+3(1 + ωjεX) exp(λjX) (here j = 1, 2, 3) then (9.2.9) is in
accord with (9.2.4).

Since the eigenvalues (9.2.8) for the matrix A (9.2.7) are different,
we can state that a fundamental system of solutions for the system of
the equations (9.1.2), (9.2.6) exists (here, for the sake of convenience,
the variable X is omitted), namely

φj(λj(ζ)), j = 1, . . . , 6. (9.2.10)

According to [132, 140] we consider the Wronskian

Wr = det [φ1(λ1), φ2(λ2), . . . ,φ6(λ6) ] . (9.2.11)

If the Wronskian Wr is non-zero at least at one point X0, then it is
proved in [141] (see p. 132 there) to be finite and non-zero even when
ζ approaches a pole.

Let φ1(λ1(ζ)) have poles at ζ = ζ
(k)
1 , (k = 1, 2). Then

(ζ − ζ
(k)
1 )Wr = det

[
(ζ − ζ

(k)
1 )φ1(λ1), φ2(λ2), . . . ,φ6(λ6)

]
and taking the limit ζ → ζ

(k)
1 we obtain

0 = det [ Resφ1(λ1), φ2(λ2), . . . ,φ6(λ6) ] . (9.2.12)

Thus the columns (vectors) are linearly dependent. The dependence
on the vector φ4(λ4) is omitted, since it has the same poles as φ1(λ1)
at ε → 0.

As a result from (9.2.12), we obtain the solution of the spectral
equation (9.1.2) for the bound state spectrum

Φ1(X; ζ)= 1−
2∑

k=1

3∑
j=2

[
γ̃
(k)
1j

exp{[λj(ζ
(k)
1 )− λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

(9.2.13)

×Φ1(X;ωjζ
(k)
1 )

+γ̃
(k)
1j+3

exp{[λj(ζ
(k)
1 + ε(k))− λ1(ζ

(k)
1 + ε(k))]X}

λ1(ζ
(k)
1 + ε(k))− λ1(ζ)

×Φ1(X;ωj(ζ
(k)
1 + ε(k)))

]
.
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By expanding the functions depending on ε(k) in series within accu-
racy of O(ε(k)), we rewrite the solution

Φ1(X; ζ) = 1−
2∑

k=1

3∑
j=2

{
γ
(k)
1j

exp{[λj(ζ
(k)
1 )− λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

× Φ1(X;ωjζ
(k)
1 )

+
∂

∂ζ
(k)
1

[
γ
(k)
1j+3

exp{[λj(ζ
(k)
1 )− λ1(ζ

(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

×Φ1(X;ωjζ
(k)
1 )

]}
,

(9.2.14)

where γ
(k)
1j = γ̃

(k)
1j + γ̃

(k)
1j+3, γ

(k)
1j+3 = ε(k)γ̃

(k)
1j+3. It is important to note

that the solution (9.2.14) is independent of ε(k) now.
The relationship (9.2.14) formally passes into (9.3.9), (9.3.10) with

appropriate change of variables. For this reason the reconstruction of
the solution W for (9.2.14) is similar to the problem we will consider
for the special form of continuum states (9.3.9).

9.3 The inverse spectral problem for a special

continuum spectrum

9.3.1 Special form for the continuum part of the
spectral data

Now we consider the continuous spectrum of the associated eigenvalue
problem (9.1.4), (9.1.5), (9.1.6), i.e. assume that at least some of the
functions Q1j(ζ

′) are non-zero. At each fixed j 	= 1 the functions
Q1j(ζ

′) characterize the singularity of Φ1(X, ζ). As we have shown,
this singularity can appear only on boundaries between the regular
regions on the ζ-plane, where the condition Re(λ1(ζ

′) − λj(ζ
′)) = 0

defines these boundaries [132]. For the VPE (9.1.1), as we know, the
complex ζ-plane is divided into four regions by two lines (9.1.13)

(i) ζ ′ = ω2ξ, with Q
(1)
12 (ζ

′) 	= 0, Q
(1)
13 (ζ

′) ≡ 0,

(ii) ζ ′ = −ω3ξ, with Q
(2)
12 (ζ

′) ≡ 0, Q
(2)
13 (ζ

′) 	= 0,
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where ξ is real (see Fig. 7.1) and sweeps from −∞ to +∞.
Recently in [85, 86, 87] we have considered the singularity functions

Q1j(ζ
′) on the boundaries, on which the Jost function φ1(X, ζ) is

singular, in the form (m = 1, 2, ...,M) on the line ζ ′ = ω2ξ

Q
(1)
12 (ζ

′) = −2πi
M∑

m=1
q
(2m−1)
12 δ(ζ ′ − ζ ′2n−1),

Q
(1)
13 (ζ

′) = −2πi
M∑

m=1
q
(2m−1)
13 δ(ζ ′ − ζ ′2n−1) ≡ 0,

(9.3.1)

and on the line ζ ′ = −ω3ξ

Q
(2)
12 (ζ

′) = −2πi
M∑

m=1
q
(2m)
12 δ(ζ ′ − ζ ′2n) ≡ 0,

Q
(2)
13 (ζ

′) = −2πi
M∑

m=1
q
(2m)
13 δ(ζ ′ − ζ ′2n).

(9.3.2)

Now we extend the functional dependence for Q1j(ζ
′). We focus

on the step-function as a possible singularity function

f(x) =
1

h
(Θ(x)−Θ(x− h)), (9.3.3)

where Θ(x) is a Heavyside function. Expanding the Heavyside func-
tion Θ(x − h) into a Taylor series in the neighborhood of the point
x

Θ(x− h) = Θ(x) +
∞∑

n=1

(−1)n
hn

n!
Θ(n)(x), (9.3.4)

the step-function (9.3.3) can be rewritten in terms of the derivatives
δ(n)(x) = Θ(n+1)(x) as follows

f(x) =
∞∑

n=1

(−1)n+1h
n−1

n!
Θ(n)(x) =

∞∑
n=0

(−1)n
hn

(n+ 1)!
δ(n)(x)

= δ(x)− 1
2hδ

(1)(x) + . . . .

(9.3.5)

We restrict our consideration to only two terms of the series (9.3.5) for
modelling the singularity functions Q1j(ζ

′). In the limit h → 0, the
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functions Q1j(ζ
′) =

−2πi

h
q1j(Θ(ζ ′) − Θ(ζ ′ − h)) have to be subject

to the relations (9.3.1), (9.3.2). Therefore the singularity functions
Q1j(ζ

′) that we will examine have the following forms (m = 1) on the
line ζ ′ = ω2ξ:

Q
(1)
12 (ζ

′) = −2πi
(
q
(1)
12 δ(ζ

′ − ζ ′1)− 1
2q

(1)
12 h1δ

(1)(ζ ′ − ζ ′1)
)
,

Q
(1)
13 (ζ

′) ≡ 0, i.e. q
(1)
13 ≡ 0,

h1 = h(1),

(9.3.6)

and on the line ζ ′ = −ω3ξ:

Q
(2)
12 (ζ

′) ≡ 0, i.e. q
(2)
12 ≡ 0,

Q
(2)
13 (ζ

′) = −2πi
(
q
(2)
13 δ(ζ

′ − ζ ′2)− 1
2q

(2)
13 h2δ

(1)(ζ ′ − ζ ′2)
)
,

h2 = h(2).

(9.3.7)

Consequently, the spectral data for the continuum spectrum with spe-
cial singularity functions (9.3.6), (9.3.7) are

S = {ζ ′l , q(l)1j , hl ; j = 2, 3, l = 1, 2}. (9.3.8)

9.3.2 Reconstructing the solution

Let us consider the problem of reconstructing the solution W (X) from
the spectral data (9.3.8). This will be straightforward if we can find
the vectors Φ1(X,T ; ζ). Now we study only the special form of the
continuum part of the spectral data (9.3.6), (9.3.7), while the variable
Ωd(X,T ; ζ) given in (9.1.18) is considered to be identically zero. For
the singularity functions (9.3.6), (9.3.7) the relationship (9.1.17) with
(9.1.19) is reduced to the form (provisionally the time-dependence is
not written)

Φ1(X, ζ) = 1−
2∑

l=1

3∑
j=2

⎡⎣ q
(l)
1j Lj(X; ζ ′l , ζ)Φ1(X,ωjζ

′
l)

+
1

2
q
(l)
1j hl

(
∂

∂ζ ′
Lj(X; ζ ′, ζ)Φ1(X,ωjζ

′)
)
ζ′=ζ′

l

]
,

(9.3.9)
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where

Lj(X; ζ ′, ζ) ≡ exp{[λj(ζ
′)− λ1(ζ

′)]X}
ζ ′ − ζ

. (9.3.10)

We note once again that the relationships (9.2.14) and (9.3.9) are
similar.

As was proved in Refs.[85, 86, 87], the singularities appear in pairs

ζ ′1 = ω2ξ1, ζ ′2 = −ω3ξ1, (9.3.11)

where ξ1 is a real constant. Moreover

ω2q
(1)
12 = q

(2)
13 . (9.3.12)

It is evident that from (9.3.11)

h1 = ω2h, h2 = −ω3h,

where h is a real constant.
Here it is convenient to note that the time-evolution of the spectral

data appears through (9.1.16) in the form

ξ1 = const, h = const, q
(k)
1j (T ) = q

(k)
1j (0) exp

(
1

i
√
3

T

ξ1

)
. (9.3.13)

The equation (9.3.9) allows us to define the functions Φ1(X, ζ).
Indeed, differentiating this equation (9.3.9) with respect of ζ, and
substituting the values ζ = ω2ζ

′
1, ζ = ω3ζ

′
2 in the left-hand side of

these equations, we obtain a system of four linear algebraic equations
in the unknowns

Φ1(X,ω2ζ
′
1),Φ1(X,ω3ζ

′
2),

∂

ω2∂ζ
Φ1(X,ω2ζ)

∣∣∣∣
ζ=ζ′

1

,
∂

ω3∂ζ
Φ1(X,ω3ζ)

∣∣∣∣
ζ=ζ′

2

.

Hence, we could take the function Φ1(X, ζ) from Eq. (9.3.9).
However, there is a more direct method, in which there is no need

to obtain the variables Φ1(X,ω2ζ
′
1), Φ1(X,ω3ζ

′
2) explicitly. It turns

out that we need to calculate only a determinant of some matrix. This
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approach is similar to the method referred to in [132, 140, 84, 85, 86,
87]. It is convenient to use new variables introduced by the definition

Ψl(X; ζ ′l) =
3∑

j=2

q
(l)
1j exp(λj(ζ

′
l)X)Φ1(X,ωjζ

′
l), l = 1, 2, (9.3.14)

i.e.

Ψ1(X; ζ ′1) = q
(1)
12 exp(λ2(ζ

′
1)X)Φ1(X,ω2ζ

′
1),

Ψ2(X; ζ ′2) = q
(2)
13 exp(λ3(ζ

′
2)X)Φ1(X,ω3ζ

′
2).

We may rewrite the relationship (9.3.9) as

Φ1(X; ζ) = 1−
2∑

l=1

exp(−λ1(ζ
′
l)X)

ζ ′l − ζ
Ψl(X; ζ ′l)

+
2∑

l=1

1

2
hl

∂

∂ζ ′l

(
exp(−λ1(ζ

′
l)X)

ζ ′l − ζ
Ψl(X; ζ ′l)

)
.

(9.3.15)

Here we introduce the notations

L(X; ζ, ζ ′l) ≡ exp{[λ1(ζ)− λ1(ζ
′
l)]X}

ζ ′l − ζ

= −
∫
X

exp{[λ1(ζ)− λ1(ζ
′
l)]X

′}dX ′,
(9.3.16)

and then

∂

∂ζ ′l
L(X; ζ, ζ ′l) =

∫
X

X ′ exp{[λ1(ζ)− λ1(ζ
′
l)]X

′}dX ′, (9.3.17)

∂2

∂ζ∂ζ ′l
L(X; ζ, ζ ′l) =

∫
X

X ′ 2 exp{[λ1(ζ)− λ1(ζ
′
l)]X

′}dX ′. (9.3.18)

Taking into account (9.1.20), namely

Φ1(X, ζ) = 1− 1

3λ1(ζ)
[W (X)−W (−∞)] +O(λ−2

1 (ζ)),

 EBSCOhost - printed on 2/13/2023 9:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 9. From simple poles to multiple poles 207

and (9.3.14) and (9.3.15), the following relationship may be found

−1

3
[W (X)−W (−∞)] =

2∑
l=1

[
exp(−λ1(ζ

′
l)X)Ψl(X; ζ ′l)

− 1

2
hl

∂

∂ζ ′l
exp(−λ1(ζ

′
l)X)Ψl(X; ζ ′l)

]
.

(9.3.19)

Eq. (9.3.15) with (9.3.14) in notations (9.3.16)–(9.3.18) can be
rewritten as follows:

exp(λ1 (ζ)X)Φ1(X; ζ) = exp(λ1(ζ)X)−
2∑

l=1

L(X; ζ, ζ ′l)Ψl(X; ζ ′l)

+
2∑

l=1

1

2
hlΨl(X; ζ ′l)

∫
X

X ′ exp{[λ1(ζ)− λ1(ζ
′
l)]X

′}dX ′

+
2∑

l=1

1

2
hlL(X; ζ, ζ ′l)

∂

∂ζ ′l
Ψl(X; ζ ′l) .

(9.3.20)

In contrast to the standard procedure, here it is necessary to take

into account the time-evolution for q
(k)
1j (T ) (9.3.13). Differentiating

Eq. (9.3.20) with respect to ζ, and substituting the values ζ = ω2ζ
′
1,

ζ = ω3ζ
′
2 in the left-hand side of these equations, we obtain a sys-

tem of four linear algebraic equations in the unknowns Ψl(X; ζ ′l),
∂

∂ζ ′l
Ψl(X; ζ ′l) for l = 1, 2. The matrix form of this system of equations

is

MΨ = b, (9.3.21)

where

Ψ =

⎛⎜⎜⎜⎜⎜⎝
Ψ1(X; ζ ′1)
Ψ2(X; ζ ′2)

ω3
∂

∂ζ ′1
Ψ1(X; ζ ′1)

ω2
∂

∂ζ ′2
Ψ2(X; ζ ′2)

⎞⎟⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎝
q
(1)
12 exp(ω2ζ

′
1X)

q
(2)
13 exp(ω3ζ

′
2X)

q
(1)
12 X exp(ω2ζ

′
1X)

q
(2)
13 X exp(ω3ζ

′
2X)

⎞⎟⎟⎟⎠ .

(9.3.22)
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The elements of matrix M are

M11 = 1−q
(1)
12

exp(−i
√
3ξ1X)

−i
√
3ξ1

− 1

2
q
(1)
12 h1

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′,

M12 = −q
(1)
12

exp(2ω3ξ1X)

2ω3ξ1
− 1

2
q
(1)
12 h2

∫
X

X ′ exp(2ω3ξ1X
′)dX ′,

M13 =
1

2
q
(1)
12 ω2h1

exp(−i
√
3ξ1X)

−i
√
3ξ1

,

M14 =
1

2
q
(1)
12 ω3h2

exp(2ω3ξ1X)

2ω3ξ1
,

M21 = −q
(2)
13

exp(−2ω2ξ1X)

−2ω2ξ1
− 1

2
q
(2)
13 h1

∫
X

X ′ exp(−2ω2ξ1X
′)dX ′,

M22 = 1−q
(2)
13

exp(−i
√
3ξ1X)

−i
√
3ξ1

− 1

2
q
(2)
13 h2

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′,

M23 =
1

2
q
(2)
13 ω2h1

exp(−2ω2ξ1X)

−2ω2ξ1
,

M24 =
1

2
q
(2)
13 ω3h2

exp(−i
√
3ξ1X)

−i
√
3ξ1

, (9.3.23)

M31 = −q
(1)
12

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′

−1

2
q
(1)
12 h1

∫
X

X ′ 2 exp(−i
√
3ξ1X

′)dX ′ +
T

i
√
3ω3ξ21

,

M32 = −q
(1)
12

∫
X

X ′ exp(2ω3ξ1X
′)dX ′

−1

2
q
(1)
12 h2

∫
X

X ′ 2 exp(2ω3ξ1X
′)dX ′,

M33 = 1 +
1

2
q
(1)
12 ω2h1

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′,
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M34 =
1

2
q
(1)
12 ω3h2

∫
X

X ′ exp(2ω3ξ1X
′)dX ′,

M41 = −q
(2)
13

∫
X

X ′ exp(−2ω2ξ1X
′)dX ′

−1

2
q
(2)
13 h1

∫
X

X ′ 2 exp(−2ω2ξ1X
′)dX ′,

M42 = −q
(2)
13

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′

−1

2
q
(2)
13 h2

∫
X

X ′ 2 exp(−i
√
3ξ1X

′)dX ′ − T

i
√
3ω2ξ21

,

M43 =
1

2
q
(2)
13 ω2h1

∫
X

X ′ exp(−2ω2ξ1X
′)dX ′,

M44 = 1 +
1

2
q
(2)
13 ω3h2

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′.

Note that the time-dependence in the matrix elements appears both

through q
(k)
1j and, in contrast to the standard procedure, through the

last terms in M31 and M42 which appear because
∂q

(k)
1j

∂ξ1
	= 0.

Since for any column j of the matrix M we have

exp(ωkξ1X)
∂

∂X
Mij = bi, k =

{
2, if i = 2n+ 1
3, if i = 2n+ 2

,

the sum for (9.3.19) is

2∑
l=1

[
exp(−ζlX)Ψl(X; ζl)− 1

2
hl

∂

∂ζl
exp(−ζlX)Ψl(X; ζl)

]

=
1

detM

∂ detM

∂X
.

Finally, from the relation (9.3.19), the following key relationship may
be obtained

W (X)−W (−∞) = 3
∂

∂X
ln(detM(X)). (9.3.24)
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9.3.3 Calculating the determinant of the matrix
M

We will prove that the determinant of the matrix M is given by

detM =

[
1 +

(
s1 + ir1

{
X − T

3ξ21

})
exp(θ1) + p1 exp(2θ1)

]2
,

(9.3.25)

where

s1 = c1

(
1 +

h

2ξ1

)
, r1 =

√
3

2
hc1, p1 = − h2c21

3 · 24ξ21
, (9.3.26)

c1 =
β1

−i2
√
3ξ1

, θ1 = −i
√
3ξ1X +

T

i
√
3ξ1

.

Since the singularities occur in pairs, detM is to be a perfect square
for some auxiliary function F . This statement is not proved directly.
However, numerical calculations using the softwareMaple showed that

the matrix M has two pairs of equal eigenvalues λ
(M)
i (i = 1, . . . , 4),

i.e. λ
(M)
1 = λ

(M)
2 , λ

(M)
3 = λ

(M)
4 . It is known that the coefficient in

O(λ2) in the eigenfunction of the [4× 4] matrix is written

4∑
i,j=1
i<j

det

(
Mii Mij

Mji Mjj

)
.

On the other hand, under conditions λ
(M)
1 = λ

(M)
2 , λ

(M)
3 = λ

(M)
4 this

coefficient is equal to 2λ
(M)
1 λ

(M)
3 +

(
λ
(M)
1 + λ

(M)
3

)2

. Thus, we have

the relationship

4∑
i,j=1
i<j

det

(
Mii Mij

Mji Mjj

)
= 2λ

(M)
1 λ

(M)
3 +

(
λ
(M)
1 + λ

(M)
3

)2

. (9.3.27)

In as much as TrM =
4∑

i=1

Mii = 2
(
λ
(M)
1 + λ

(M)
3

)
, and detM =(

λ
(M)
1 λ

(M)
3

)2

, the relationship (9.3.27) enables us to find the auxiliary
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function F =
√
detM as follows:

F (X) =
√
detM =

1

4

4∑
i,j=1
i<j

MiiMjj − 1

2

4∑
i,j=1
i<j

MijMji − 1

8

4∑
i=1

M2
ii.

(9.3.28)

Omitting the cumbersome calculation, we finally obtain the relation
(9.3.25).

There are three constants, namely ξ1, h which are real, and β1

which could be complex in the general case.
The substitution of the relation (9.3.28) into (9.3.24) and the tak-

ing into account of the T–evolution of the spectral data for the VPE
[84] (see also (9.1.16)) allows one to find the solution for the special
continuum spectrum (9.3.6), (9.3.7) as

W (X,T )−W (−∞, T ) = 6
∂

∂X
ln(F (X,T )). (9.3.29)

The problem of selecting the real solution from the complex relation
(9.3.29) is open for study.

9.4 The solution for discrete spectral data with

two-multiple poles

The results for the continuum part of the spectral data obtained in
Sec. 9.3.2 and Sec. 9.3.3 can be reduced to the bound state spectrum
since the relationships (9.2.14) and (9.3.9) are similar to each other.
The formal replacements

h → ih, ξ1 → iξ1 (9.4.1)

lead to the solution (9.3.24) of the VPE for the discrete spectrum with
two-multiple poles (9.2.14), namely

W (X,T )−W (−∞, T ) = 6
∂

∂X
ln(F (X,T )) (9.4.2)

with auxiliary function
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F (X,T ) = 1+

(
s2 + r2

{
X +

T

3ξ21

})
exp(θ2)+p2 exp(2θ2) , (9.4.3)

s2 = c2

(
1 +

h

2ξ1

)
, r2 = −

√
3

2
hc2 , p2 = − h2c22

3 · 24ξ21
,

c2 =
β1

2
√
3ξ1

, θ2 =
√
3ξ1X − T√

3ξ1
.

The constants ξ1, h are real. There is one arbitrary constant β1. It is
to be real for a real solution.

Note that the auxiliary function F is associated with the τ -function
(see, for example, [29, 144, 145]).

By taking into account the transformation (9.4.1), we can apply
all mathematical manipulations stated in Sec. 9.3.2 and Sec. 9.3.3 to
the discrete part of the spectral data.

Since p2 < 0 for arbitrary real β1, we have lim
X→−∞

F = 1, and

lim
X→+∞

F = −∞, hence there is Xr such that F (Xr) = 0. Thus the

real solution (9.4.2) with (9.4.3) is a singular function.

If we determine the value β1 as an imaginary one, the solutions
will be smooth but complex. The selection of the real solutions from
complex ones is an open problem.

9.5 Two-multiple poles and a single pole

Now we consider the interaction of a soliton with a wave which is
associated with a two-multiple pole. Let the soliton be defined by a

single pole with value ξ3. This soliton has the values c3 =
β1

2
√
3ξ3

,

θ3 =
√
3ξ3X − T√

3ξ3
.

For convenience, we rewrite the relation (9.4.3) in an alternative
form, with the auxiliary function denoted by index 2p, i.e. F2p(X,T ) ≡
F (X,T ), namely

F2p(X,T ) = 1 + c2 (1 + gh) exp(θ2) + p2 exp(2θ2) , (9.5.1)

1 3 T

3ξ21

√ ( )
where g =

2ξ1
−

2
X + . Adding this wave to the soliton,

we can obtain the solution (9.4.2) by means of the auxiliary function
in the form
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F2ps(X,T ) = 1 + c2 (1 + gh) exp(θ2) + c3 exp(θ3)+

p2 exp(2θ2) + b13[1 + (g + g3)h]c2c3 exp(θ2) exp(θ3)+

p2b
2
13c3 exp(2θ2) exp(θ3),

(9.5.2)

where

g3 = − 1

2ξ3

b13p
b13

, b13 =
(y − 1)3

(y + 1)3
y3 + 1

y3 − 1
, y =

ξ1
ξ3

, b13p =
d b13
d y

.

Thus, we have obtained the solution associated with the interaction
of a soliton and a wave that is generated by a two-multiple pole in the
discrete spectrum.

9.6 Conclusion

Using the VPE as an example, we have shown how, in the IST method,
to take into account the two-multiple poles, among single poles, in
the discrete part of the spectral data. The special line spectrum of
continuum states in the IST method, for which the mathematical
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[104] Schäfer, T. and Wayne, C.E. (2004) Propagation of ultra-short
optical pulses in cubic nonlinear media. Physica D, 196, 90–105.

[105] Sakovich, A. and Sakovich, S. (2005) The short pulse equation
is integrable. J. Phys. Soc. Japan, 74, 239–241.

[106] Wadati, M., Konno, K. and Ichikawa, Y.H. (1979) New inte-
grable nonlinear evolution equations. J. Phys. Soc. Japan, 47,
1698–1700.

[107] Sakovich, A. and Sakovich, S. (2006) Solitary wave solutions of
the short pulse equation. J. Phys. A: Math. Gen., 39, L361(7).

[108] Turnbull, H.W. (1952) Theory of Equations, Edinburgh: Oliver
and Boyd.

[109] Boyd, J.P. (1997) Peakons and coshoidal waves: traveling wave
solutions of the Camassa–Holm equation. Applied Mathematics
and Computation, 81, 173–187.

[110] Abramowitz, M. and Stegun, I.A. (1972) Handbook of Mathe-
matical Functions, New York: Dover.

[111] Zabusky, N.J. and Kruskal, M.D. (1965) Interaction of “soli-
tons” in a collisionless plasma and the recurrence of initial states.
Phys. Rev. Lett., 15. 240–243.

223

 EBSCOhost - printed on 2/13/2023 9:04 PM via . All use subject to https://www.ebsco.com/terms-of-use
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