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Preface

The physical phenomena and processes that take place in nature gen-
erally have complicated nonlinear features. This leads to nonlinear
mathematical models for the real processes. There is much interest in
the practical issues involved, as well as in the development of meth-
ods to investigate the associated nonlinear mathematical problems
including nonlinear wave propagation. An early example of powerful
mathematical methods was the development of the inverse scattering
method for the Korteweg-de Vries (KdV) giving rise to the persistent
interest in soliton theory as applied to many branches of science.

The modern physicist should be aware of the key aspects of non-
linear wave theory developed over the past few decades. This mono-
graph focuses on the interconnections between a variety of different
approaches and methods. The application of the theory of nonlinear
evolution equations to study a new equation is always an important
and sometimes rather nontrivial step. Based on our experience of the
study of the Vakhnenko equation (VE), we acquaint the reader with a
series of methods and approaches that can be applied to a wide class of
nonlinear equations. We outline a way in which an uninitiated reader
could investigate a new nonlinear equation.

Loop-like solitons are a class of interesting wave phenomena, which
have been involved in some nonlinear systems. One remarkable feature
of the VE is that it possesses loop-like soliton solutions.

It is our pleasure to thank and acknowledge our colleague and
co-author of joint researches Dr. A.J. Morrison.

IX
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Chapter 1
Introduction

A variety of methods for examining the properties and solutions of
nonlinear evolution equations are explored by using the Vakhnenko
equation (VE) as an example. It is shown (Chapter 2) how the KdV
equation arises in modeling the propagation of low-frequency waves
in a relaxing medium. While in high-frequency cases the waves in a
relaxing medium are described by an equation called now in scientific
literature as the Vakhnenko equation (VE). The consideration of the
VE has an interest not only from the viewpoint of the investigation of
the propagation of high-frequency perturbations, but more specifically
from the viewpoint of the study of methods and approaches that may
be applied in the theory of nonlinear evolution equations.

By studying the VE in Chapter 3, we traced a way in which
an uninitiated reader could investigate even early unknown nonlinear
equations. As a first step for a new equation, it is necessary to consider
the linear analogue and its dispersion relation (these steps for the
equation considered here are described in Chapter 2). The next step
is, where possible, to link the equation with the known nonlinear
equations, as it is carried out for the VE, for example.

The solution procedure, which was used for the Vakhnenko equa-
tion (see Chapter 4), can be successfully adopted to find implicit peri-
odic and solitary travelling-wave solutions of the Degasperis—Procesi
equation in [69], the Camassa—Holm equation [71], the transformed
Hirota—Satsuma-type ‘shallow water wave’ equation [72] and special
cases thereof, namely the generalised Vakhnenko equation and the
modified generalised Vakhnenko equation, the short-pulse equation
[103] and other equations. An important feature of the method is
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2 Introduction

that it delivers solutions in which both the dependent variable and
the independent variable are given in terms of certain parameters.

In Chapter 5 the VE has been written in an alternative form, now
known as the Vakhnenko-Parkes equation (VPE), by a change of in-
dependent variables. One of the main results of this chapter stated
in Section 5.3 is that we have obtained a way of applying the IST
method to the VPE. Keeping in mind that the IST is the most appro-
priate way of tackling the initial value problem, one has to formulate
the associated eigenvalue problem. We have proved that the system
of equations for the IST problem associated with the VPE does not
contain the isospectral Schrodinger equation. Nevertheless, the anal-
ysis of the VPE in the context of the isospectral Schrodinger equation
allowed us to obtain the two-soliton solution to the VPE even though,
in contrast to the KdV equation, the VPE’s spectral equation is not
the second-order one. These results may be useful in the investiga-
tion of a new equation for which the spectral problem is unknown.
Historically, once this investigation was completed, we were able to
make some progress in the formulation of the IST for the VPE. In
Section 7.1 it has been proved that the spectral problem associated
with the VPE is of the third order.

The VPE can be written in Hirota bilinear form, as this has been
carried out in Chapter 6. It is then possible to show that the VPE
satisfies the ‘N-soliton condition’, in other words that the equation
has an N-soliton solution. This solution is found by using a blend
of the Hirota method and ideas originally proposed by Moloney &
Hodnett. This solution is discussed in detail, including the derivation
of phase shifts due to interaction between solitons. Individual solitons
are hump-like. However, when transformed back into the original
variables, the corresponding solution to the VE comprises N loop-like
solitons. It is established that a dissipative term, with a dissipation
parameter less than some limit value, does not destroy these loop-like
solutions.

The Hirota method not only gives the N-soliton solution, but en-
ables one to find a way from the Bécklund transformation through the
conservation laws and associated eigenvalue problem to the inverse
scattering method. Thus the Hirota method, which can be applied
only for finding solitary wave solutions or traveling wave solutions, al-
lows us to formulate the inverse scattering method which is the most
appropriate way of tackling the initial value problem (Cauchy prob-
lem). Consequently, in this case, the integrability of an equation can
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be regarded as proved.

Chapter 7 deals with the inverse scattering method. The inverse
scattering transform (IST) method is arguably the most important
discovery in the theory of solitons. The method enables one to solve
the initial value problem for a nonlinear evolution equation. Moreover,
it provides a proof of the complete integrability of the equation.

The idea of the inverse scattering method was first introduced
for the KdV equation [94] and subsequently developed for the non-
linear Schrodinger equation [28], the mKdV equation [126, 127], the
sine-Gordon equation [25, 128] and the equation of motion for a one-
dimensional lattice with an exponential form of inter-site interaction
(Toda lattice) [129]. It is to be remarked that the inverse scattering
method is a unique theory whereby the initial value problem for the
nonlinear differential equations can be solved exactly. For the KdV
equation this method was expressed in general form by Lax [130].

The essence of the application of the IST is as follows. The equa-
tion of interest for study (in our case the VPE) is written as the
compatibility condition for two linear equations (the Lax pair). It is
significant that the spectral equation in Lax pair for the VPE is third-
order. The whole Lax pair is given by Eq. (7.1.2) and Eq. (7.1.3).
First, based on the ideas of Kaup and Caudrey, the initial condition
W(X,0) is mapped into the spectral data S(0) (the direct spectral
problem). It is important that, since the variable W (X, T) contained
in the spectral equation evolves according to the VPE, the spectral
parameter A always retains constant values (i.e. demonstrates the
isospectrality). The time evolution of the spectral data S(T) is sim-
ple and linear. From a knowledge of S(T') the relationships obtained
by Caudrey should be invoked to reconstructed W (X, T) (the inverse
spectral problem). The procedure outlined allows solving the Cauchy
problem for the VPE.

In Chapter 8 the standard IST method for third-order spectral
problems is used to investigate solutions corresponding to bound states
of the spectrum and a continuous spectrum. This leads to N-soliton
solutions and M-mode periodic solutions respectively. Interactions
between these types of solutions are investigated. Sufficient conditions
have been proven so that the solutions become the real functions.

In Chapter 9, the standard procedure for the inverse scattering
transform (IST) method is expanded for the case of multiple poles.
Using the VPE as an example, we have shown how, in the IST method,
to take into account the two-multiple poles, among single poles, in the
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discrete part of the spectral data. The special line spectrum of contin-
uum states in the IST method, for which the mathematical procedure
is similar to that for the discrete spectrum for two-multiple poles, is
considered as well. In this case the account of the time-dependence is
shown to be essentially different from t he standard p rocedure. This
approach can be applied to other integrable nonlinear equations.

EBSCChost - printed on 2/13/2023 9:04 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

Chapter 2
Models of relaxing medium

As a rule the behavior of media under the action of high-frequency
wave perturbations is not described in the framework of equilibrium
models of continuum mechanics. So, to develop physical models for
wave propagation through media with complicated inner kinetics, no-
tions based on the relaxational nature of a phenomenon are regarded
to be promising. From the non-equilibrium thermodynamics stand-
point, models of a relaxing medium are more general than equilibrium
models. Thermodynamic equilibrium is disturbed owing to the prop-
agation of fast perturbations. There are processes of interaction that
tend to return the equilibrium. The parameters characterizing this
interaction are referred to as the inner variables unlike the macro-
parameters such as the pressure p, mass velocity v and density p. In
essence, the change of macro-parameters caused by the changes of
inner parameters is a relaxation process.

2.1 Evolution equation for relaxing medium

Starting from a general idea of relaxing phenomena in real media via
a hydrodynamic approach, we will derive a nonlinear evolution equa-
tion for describing high-frequency waves. We restrict our attention
to barotropic media. An equilibrium state equation of a barotropic
medium is a one-parameter equation. As a result of relaxation, an
additional variable £ (the inner parameter) appears in the state equa-
tion

p=p(p,€) (21.1)
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and defines the completeness of the relaxation process. There are two
limiting cases with corresponding sound velocities:

(i) lack of relaxation (inner interaction processes are frozen) for
which £ = 1:

p=p(p,1) =ps(p); (2.1.2)

(ii) relaxation is complete (there is local thermodynamic equilib-
rium) for which £ = 0:

p=p(p,0) = pe(p) (2.1.3)

The state equations (2.1.2) and (2.1.3) are considered to be known.
These relationships enable us to introduce the sound velocities for fast
processes

c?‘- = dpy/dp; (2.1.4)
and for slow processes
¢ = dp./dp. (2.1.5)

Slow and fast processes are compared using the relaxation time 7,.
The following dynamic state equation is applied to account for the
relaxation effects

dp 2 dp
Tp (dt - Cfdt) +(p—pe) =0. (2.1.6)

The equilibrium equations of state are considered to be known

P
Pe — pPo = /ce_2dp. (2.1.7)

Po

Clearly, for the fast processes (wr, > 1) we have the relation (2.1.2),
and for the slow ones (w7, < 1) we have (2.1.3).

The substantiation of equation (2.1.6) within the framework of
the thermodynamics of irreversible processes has been given in [1, 2,
3, 4]. As far as we know the first work in this field was the article
by Mandelshtam and Leontovich [5] (see also Section 81 in [2]). We
note that the mechanisms of the exchange processes are not defined
concretely when deriving the dynamic state equation (2.1.6). In this
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equation the thermodynamic and kinetic parameters appear only as
sound velocities c., ¢y and relaxation time 7,. These are very common
characteristics and they can be found experimentally. Hence it is
not necessary to know the inner exchange mechanism in detail. The
dynamic state equation (2.1.6) enables us to take into account the
exchange processes completely.

The phenomenological approach for describing the relaxation pro-
cesses in hydrodynamics have been developed in many publications [2,
4, 6, 7). The dynamic state equation was used to describe the prop-
agation of sound in a relaxing medium [2], to take into account the
exchange processes within media (gas-solid particles [4]), and to study
wave fields in gas-liquid media [6] and in [7] soils. The well-known
Zener phenomenological model of a standard linear solid [8] is gener-
alized to describe the sandstone deformation [9]. Within the context of
mixture theory, Biot [10] attempted to account for the non-equilibrium
in velocities between components directly in the equations of motion
in the form of dissipative terms. In most works, the state equation
had been derived from the concept of some concrete mechanism for
the inner process.

To analyze the wave motion, we use the following hydrodynamic
equations in the Lagrangian coordinates:

avV. 1 Ou ou 1 Jp
z = =0 4+ 2 =0. 2.1.8
ot pg 0x ot + po Ox ( )

Here V = p~! is the specific volume, and z is the Lagrangian space
coordinate.

The closed system of equations consists of two motion equations
(2.1.8) and the dynamic state equation (2.1.6). The motion equa-
tions (2.1.8) are written in Lagrangian coordinates since the state
equation (2.1.6) is related to the element of mass of the medium.

Let us consider a small perturbation p’ < pg. The equations of
state for fast (2.1.2) and slow (2.1.3) processes are considered to
be known. They can be expanded as the power series with accuracy

O(p")

_ 1 d2V
Vilpo+9') = Vo — V5’ + 2 dp2f P
pP=Po (2 1 9)
- 1 d2V, o
Velpo +9) = Vo = V%' + 5 e PP+
P=Po
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Hereafter, the velocities c., ¢y are related to the initial pressure py.
Combining these two relationships with the equations of motion (2.1.8),
we obtain the equation in one unknown quantity (the dash in p’ is

omitted) [11, 12, 13, 14]:
82p2>
=Po or?

0? 0? 1 d*V, 0?p?
+(22_ 2l D) =o.
Ox? oz 2V§ dp? |,_, O

A similar equation has been obtained in Ref. [1], but without nonlinear
terms.

The hydrodynamic nonlinearity pdp/dx and the complicated dis-
persive law are inherent in a medium which is described by the evolu-
tion equation (2.1.10). Now we consider the dispersive relation which
follows from equation (2.1.10) after a substitution of the slow pertur-
bation in a form p’ ~ expli(kz — wt)],

0 (0% _,0%p 1 d*V
oo | am2 —

oz2 7 o2 T Vg dp?
(2.1.10)

2
. C
o 6~ ) + (4 = ) =0 @.11)

From this relationship we obtain the functional dependence k = k(w)

2 7202 i 2 —c? 1 2
k2= p.<1+1. ! ) (2112)

' 2,52 2,52
c; 1+7w Tpw cz Tpw f

Taking the roots we write the result in the form k& = k' + ik”. It is
clear that k” is associated with the speed of wave attenuation as a
function of the distance [2], while a value ¢ = w/k’ can be considered
as the velocity of the perturbation propagation. The expressions for
k" and k" take the form

/ 1
K = ai\/\/a3 + a3 + as, k" = ai\/1\/a3 + a3 — as,
2,2

T W s —cC

P f f e

a) = — ———, ag =14+ ——53, as 3
\/in,/l—FTgWQ TpwoCe TpWCe

In Fig. 2.1, for example, we show the dependencies ¢ and k” on
Tpw for water-saturation soil with a concentration of air 0.1. For this
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10°
€
%)
5
107 - - - J10*
10 10° 10" 10° 10°

’Ep(x)

Figure 2.1: The dependencies of the velocity ¢ and the attenuation
factor k" on frequency 7,w.

medium ¢; = 1620 m/s and ¢. = 260 m/s [7]. The velocity ¢ increases
monotonically from c. to ¢y at bottom-up sweep 7,w. The dependence
k" = k"(w) indicates that at w — 0 the dispersion is absent, while
at high frequency the variable k& becomes a constant and does not
depend on w (see Fig. 2.1) with the limit value

2 2

1
k" = 20? -

Hence, the energy in the high-frequency wave dissipates always.
For this wave the pressure attenuation is the same as at fixed distance
and does not depend on frequency w.

The equation of state in the form (2.1.9) enables us to describe the
effects associated with bulk viscosity of a medium. Let us show that
for slow processes (since for these processes the notion of viscosity
coefficient is defined, i.e. for processes in which a small deviation
from equilibrium is taken into account in linear approximation) a bulk
viscosity coefficient relates to the relaxation time 7, = 7,¢2/c2 [1, 2, 5

¢ =7pp(ct — ). (2.1.13)
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10 Chapter 2. Models of relaxing medium

Let us rewrite (2.1.9) in a form of the power series p in 7,d/dt. To do it,
we differentiate equation (2.1.9) with respect to time ¢ and substitute
the result into the same equation (2.1.9). Repeating several times this
procedure, we obtain with required accuracy the expression

dp = cdp + Tp(c?c —2)dp — Tg(C?c —A)dp+ ... . (2.1.14)

Let us consider two terms only in this relation. The value c2dp as-
sociates with an increase of a pressure dp. in infinitely slow process,
i.e. dp. = cdp. Tt is noted that value p acquires more general sense
than merely a pressure. With the accuracy of a sign the value (—p)
is nothing other than a stress m;;. By definition, in the low-frequency
approximation the stress is written through the bulk viscosity coeffi-
cient [2]

ou
Mg = —Pe + C%-

Then it is easy to obtain the expression for the bulk viscosity coeffi-
cient in the form (2.1.13).

2.2 Low-frequency perturbations and
high-frequency perturbations

Now we shall show that for low-frequency perturbations the equa-
tion (2.1.10) is reduced to the Korteweg-de Vries-Burgers (KdVB)
equation, while for high-frequency waves we shall obtain the equa-
tion with hydrodynamic nonlinearity and term that appeared in the
Klein-Gordon equation. To analyze the equation (2.1.10) let us apply
the multiscale method [15, 16]. The value ¢ = 7T,w is chosen to be
small (large) parameter where the quantity w is the characteristic fre-
quency of wave perturbation. For the sake of convenience we rewrite
the equation (2.1.10) as follows:

0 d’p o O 9’p?
D) 5 )+

P 50w) \B@w? T o) ) 221
52 92 9292 (2:2.1)
+ P2 9P + Qe P =0
A(zw)?2 ¢ O(tw)? A(tw)? ’
1 d*V; 1 d*V,
YT g T |
0 9P lp=po 0 P lp=po
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and introduce the new independent variables [11, 12, 13, 14]

To=tw, Xo=aw, T o=tw/e®, X ,=aw/e®. (2.2.2)

The dependent variable p is a function of Ty, X, T o, X o, i.e. p =
p(To, X0, T-2,X_2). The existing derivatives in (2.2.1) are to be
rewritten in the new independent variables

0 _ 0,0
A(zw) 9Xy 0X_o’
09,0
O(iw) _ 0Ty 0Ty’
o2 o2 , , O
= — 2 B e — T
D)~ OXZ % T oXe0x s T ° axZ,
2 P , P ,
= — 2 - -
Dw)? _oTe T omor, | ar%,

» P, & P O
o) o8 T arzar, T amar, T ar3,
o8 o8 o8 o8
= 3 +e72 3 +2
0(tw)5‘(mw)2 8X08T0 8X()8T_2 8T0(9X08X_2

83 3 3
4 9 [
e (8T08X22+ aXOaX_QaT_Q)J“E 0X2,07T ,
(2.2.3)
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12 Chapter 2. Models of relaxing medium

It is precisely these variables that cause the equations obtained within
the framework of the multiscale method [15, 16]

o a2p 3 82p 82 2
Okt + — —c;? >:0,
) am <an ‘i oz T o

Fp 20 O
oxz ¢ 0Ty

0(e%)

o o
- 2
0™) <anaT_2+ 8T06X06X2>p

—o  Op 0°p
—3¢r” g, 8o oTeoT ,
82]) ., (92]7 82]32

O(e™?) —0, (2.24)

IXGOX 5 OT,0T 5 e oToT,

B o o
OE™) (aTOaXQQHaXOaXQaTQ)p

L 3 83]?2
=3¢ 8T08T2 3o anore, =0
82p 82p 821)2
—4 _ -2 _
OE™) + gxz, — are, T eqre, =%
0 0%p 0%p 0%p?
-5y . o2 _
O™+ 515 (axz ° orz, T M ore )_07

to be partially uncoupled [17, 18, 19, 20, 21, 22]. The two leading
equations depend on T and X, only, while the last two equations
include the independent variables T_ and X_5 only. Thus, the low-
frequency perturbations are described by the two leading equations,
and the high-frequency perturbations by the last two equations. An
interaction between these perturbations is described by the three cen-
ter equations. A similar approach was applied to obtain the evolution
equation with cubic nonlinearity [23, 24].

Let us write out the equations of motion for low-frequency and
high-frequency perturbations in the initial variables = and ¢. For low-
frequency perturbations the main terms 9?p/0X¢ and c;20%p/dT3
(and only they) appear in the first and second equations of the sys-
tem (2.2.4), while for high-frequency perturbations the main terms
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9?p/0X?, and 0;282p/8T32 (and only they) appear in the sixth and
seventh equations of the system (2.2.4).

For low-frequency perturbations (7,w < 1) propagating in one
direction (9/0x —c;t0/0t ~ 20/0x), we obtain an evolution equation

op op 3 Op *p *p
Tt o 4 @elp— = Boms + Yem—z = 0, 2.2.5
gt Ty TPy ~Pegiz Y egya (2.2.5)
1 d2Ve csz 9 9
“CENE AR, T2
372

o= TG - G -5,

r
This equation can be derived in the following way. A dispersion re-
lation for the linearized equation (2.1.10) can be written down with
an accuracy O(k?) in the form w = c.k + iB:.k% — 7.k3, if the terms
Op/dx and c;'0p/Ot are the main ones. For this dispersion relation
we write a linear equation in which a nonlinear term is reconstructed
in agreement with the initial equation.

The equation (2.2.5) is the well-known KdVB equation. It is en-
countered in many areas of physics to describe nonlinear wave pro-
cesses [25, 26, 27, 28, 29]. In [30] it was shown how hydrodynamic
equations reduce to either the KdV or Burgers equation according
to the choices for the state equation and the generalized force when
analyzing the gasdynamical waves, waves in shallow water [30], hy-
drodynamic waves in cold plasma [31], and ion-acoustic waves in cold
plasma [32].

As is known, the investigation of the KdV equation (5. = 0) in
conjunction with the nonlinear Schrédinger (NLS) and sine-Gordon
equations gives rise to the theory of solitons [25, 27, 28, 29, 30, 33,
34, 35, 36, 37]. As well as having soliton solutions, these equations
have other inherent striking properties, in particular integrability. The
equations can be integrated, for example, by the inverse scattering
method. Details on the study of the aforementioned equations can be
found in the monographs [25, 27, 28]. In general, the existence of soli-
ton solutions to a nonlinear evolution equation points to distinctive
features for the equation such as integrability, the applicability of the
inverse scattering method, the Hirota method and Bécklund trans-
formation, and the existence of conservation laws. Consequently, the
finding of soliton solutions for a new evolution equation is of consid-
erable interest.
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For high-frequency perturbations (r,w > 1), using the last two
equations of the system (2.2.4), we get the following evolution equa-
tion:

Pp 5% 5 0%p? op
@—cf erafcf a2 +Bf%+’}/fp: . (2.2.6)
S S ¥ g oG G-
f= ) f= ; f= .
V¢ dp? — TpCiey 275030?

In addition to the nonlinear term with coeflicient «¢, the equation has
dissipative 870p/0x and dispersive v¢p terms. If ay = fy = 0, thisisa
linear Klein-Gordon equation. There is a Green function for this equa-
tion [38] that enables us to find the solution in quadrature, at least.
The numerical solutions of the Klein-Gordon equation modeling the
propagation of high-frequency perturbations in gas-liquid media have
been presented in [39]. A similar evolution equation for high-frequency
perturbations was described in a monograph by Whitham [40]. How-
ever, it coincides with Eq. (2.2.6) only when ay = 0 and v; = 0.

Landau and Lifshitz showed that for high frequencies the dissipa-
tive term under high transport of heat agrees with the corresponding
term in the equation (2.2.6) (see section 79 and 81 in [2]). Thus,
the dynamic state equation (2.1.9) enables us to take into account
the dissipative processes completely. But the form of the dissipative
terms describing the inner exchange processes (transport of heat and
momentum) are different for the high and low frequencies.

We call attention to the fact that the dispersion relations w = w(k)
for the linearized equations (2.2.5) and (2.2.6) have been restricted by
the finite power series in k and in k~!, respectively:

w = cok + 1Bek? — Vek3, Tpw K 1,

w? =GR (L 418k~ —y5k7?), mw> 1

At the time we were carrying out our research, it turned out
that equation (2.2.6) had not been investigated much. This is likely
connected with the fact, noted by Whitham in Ref. [40], that high-
frequency perturbations attenuate very quickly. However in Whitham’s
monograph [40], the evolution equation (2.2.6) without nonlinear and
dispersive terms was considered. Certainly, the lack of such terms re-
stricts the class of solutions. At least, there is no solution in the form
of a solitary wave which is caused by nonlinearity and dispersion.
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2.3 Evolution equation for high-frequency
perturbations

The equation (2.2.6), which we are interested in,

32 B 82 82 2
12) - f2 7 tagc
Oz ot
is written down in a dimensionless form. Let us restrict our consider-
ation to the propagation of high-frequency waves in positive direction
x, then with necessary accuracy we can write the operator

dp
+ﬁf8 +9p =0

Y

02 o2 T

(20N (D 10 0 (0 a0
“\or °f ot ox °r ot Ox \ Ox °r ot

In the moving coordinates system with velocity cf, the equation has
the form in dimensionless variables

= Q/W?f(a:—cft), t= ,/W?fcft, U= ozfc?ep

(tilde over variables Z,t, @ is omitted) [11, 12, 13, 41]
o ([0 0 ou
— = —_ - =0. 3.1
8x(3t+u8z>u+aax+u 0 (2:3.1)

The constant a = 85/,/27v is always positive. The equation (2.3.1)
without the dissipative term has the form of the nonlinear equa-

tion [41, 42]
9 (0 0

Historically, the equation (2.3.2) has been called the Vakhnenko equa-~
tion (VE) and we shall use this name subsequently.

It is interesting to note that equation (2.3.2) follows as a particular
limit of the following generalized Korteweg-de Vries equation

0 [0Ou ou 93
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derived by Ostrovsky [43] to model small-amplitude long waves in
a rotating fluid (yu is induced by the Coriolis force) of finite depth.
Subsequently, equation (2.3.2) was known by different names in the lit-
erature, such as the Ostrovsky-Hunter equation, the short-wave equa-
tion, the reduced Ostrovsky equation and the Ostrovsky-Vakhnenko
equation depending on the physical context in which it is studied.

The consideration here of equation (2.3.2) has an interest not only
from the viewpoint of the investigation of the propagation of high-
frequency perturbations, but more specifically from the viewpoint of
the study of methods and approaches that may be applied in the
theory of nonlinear evolution equations.
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Chapter 3
The travelling-wave solutions

By investigating equation (2.3.2), we will trace a way in which an
uninitiated reader could investigate a new nonlinear equation. As a
first step for a new equation, it is necessary to consider the linear
analogue and its dispersion relation (these steps for equations (2.2.5)
and (2.2.6) are described already in Chapter 2). The next step is,
where possible, to link the equation with a known nonlinear equation.

3.1 The connection of the VE with the
Whitham equation

Now we show how an evolution equation with hydrodynamic nonlin-
earity can be rewritten in the form of the Whitham equation. The
general form of the Whitham equation is as follows [40]:

% ugz—k/m K(x—s)%ds:& (3.1.1)
On the one hand, this equation (3.1.1) has the nonlinearity of hy-
drodynamic type; on the other hand, it is known (see, Section 13.14
in [40]) that the kernel K (z) can be selected to give the dispersion
required. Indeed, the dispersion relation ¢(k) = w(k)/k and the kernel
K (z) are connected by means of the Fourier transformation

c(k) = F[K(z)], K(z) = F~'e(k)]. (3.1.2)
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Consequently, for the dispersion relation w = —1/k corresponding to
the linearized version of (2.3.2), the kernel is as follows

K(z) = F'[-1/k*] = L]z (3.1.3)

Thus, the VE (2.3.2) is related to the particular Whitham equa-
tion [40]

ou ou 1 [~ ou
EJFU%JFE[OO |z75|%d5f0. (3.1.4)

Since we can reduce the VE to the Whitham equation, we can assert
that the VE shares interesting properties with the Whitham equation;
in particular, it describes solitary wave-type formations, have periodic
solutions and explains the existence of the limiting amplitude [40].
An important property is the presence of conservation laws for waves
decreasing rapidly at infinity, namely

d [ B [ d [* /5 = B
a/_wud;ﬂ—o, a/_ u“dx =0, %/_ (gu —|—Ku)dm—0,

(3.1.5)

where by definition Ku = 25 K(z — s)u(s, t)ds.

For equation (2.3.1) the kernel is K(z) = $[a(20(z) — 1) + |z]],
where O(x) is the Heaviside function. Hence, (2.3.1) can be written
down as

1 oo

aaq;tb+ugll+au+2/oo|m—s|gzds—0. (3.1.6)

It is important that there is no derivative in the dissipative term au
of Eq. (3.1.6).

3.2 Loop-like stationary solutions of the VE

An important step in the investigation of nonlinear evolution equa-
tions is to find travelling-wave solutions. These are solutions that are
stationary with respect to a moving frame of reference. In this case,
the evolution equation (a partial differential equation) becomes an
ordinary differential equation (ODE) which is considerably easier to
solve.
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For the VE (2.3.2) it is convenient to introduce a new dependent
variable z and new independent variables 1 and 7 defined by

z=(u—v)/|v], n=(x—vt—xz0)/|v|"/2 T=tv|'? (3.2.1)

where v and z( are arbitrary constants, and v # 0. Then the VE
becomes

Znr+ (229)n+ 2+ ¢ =0, where c: = |U—| (3.2.2)
v
¢ = *£1 corresponding to whether v = 0. We now seek stationary

solutions of (3.2.2) for which z is a function of 7 only so that z. =0
and z satisfies the ODE

(zzn)y+2+c=0, (3.2.3)

After one integration (3.2.3) gives

3(229)? = f(2),
(3.2.4)
f(z) =328 -1 + LA = —1(2 = 21)(2 — 22) (2 — 23),

where A is a constant. It is easy to verify that if there are complex
roots, the value z tends to minus infinity, and this contradicts the
physical statement of the problem. Indeed, if we have only one real
root, the graph of the function f(z) (see fig. 3.1) crosses the Oz axis
once. Thus as z — +oo0 we have f — —oo and as z — —oo we
have f — 4o0o0. But since the trinomial in (3.2.4) should always be
positive in the integration region, as follows from the Lh.s. of (3.2.4),
this region extends in z from minus infinity to the value of the single
real root. This means the perturbation amplitude u = (z + ¢)v also
tends to minus infinity, which does not correspond to the physical
statement of the problem. So, all roots of the trinomial should be
real. This requires that 0 < A < 1. Note that there are turning
points at z = 0 and z = —c¢. For periodic or solitary-wave solutions,
z1, z9 and z3 are real constants. For definiteness we shall assume that
z1 < zo < z3. Three ways of calculating the roots are given in the
Appendix in Section 3.4. From (A.7), we can deduce that for v > 0
always the root z3 € [0,0.5] as indicated by curve 2 in Fig. 3.1(a);
curve 1 corresponds to A = 1 and curve 3 corresponds to A = 0.
Similarly, for v < 0 always z3 € [1,1.5] as indicated by curve 2 in
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Fig. 3.1(b); curve 1 corresponds to A = 0 and curve 3 corresponds to
A = 1. It also follows from (A.7) that always z; < 0, but 23 < 0 for
v > 0 and z3 > 0 for v < 0. Thus the nature of the solutions depends
on the sign of v. However, the integration of (3.2.4) is not affected by
the sign of v.

(a) o (b)

Figure 3.1: The graph of the trinomial f(z): (a) v > 0, (b) v < 0.
The integration region is the interval (2o, 23).

The integration region of (3.2.4) is the interval (22, z3) where f(2) >
0 (see fig. 3.1). At the points z = 2z and z = z3 the derivatives z, are
zero. Hence, we have the relation

2 Vi zdz
j:\/;7_2/\/(,zz1)(z22)(23z)'

On using results 236.00 and 236.01 of [44], we may integrate (3.2.5)
to obtain

(3.2.5)

1
n= Z;[ZlF(% k) + (23 — z1)E(p, k)], (3.2.6)
where
sin? p= 2 , kZ= I 22, p? = 7(23 — Zl). (3.2.7)
Z3 — 22 Z3 — 21 6
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In the notation of [44], F(¢,k) and E(p, k) are incomplete elliptic
integrals of the first and second kind respectively. We have chosen
the constant of integration in (3.2.6) to be zero so that z = z3 at
1n = 0. The relations (3.2.6) and (3.2.7) give the required solution in
parametric form, with z and 7 as functions of the parameter .

An alternative route to the solution is to follow the procedure
described in [45]. We introduce a new independent variable ¢ defined
by

dn

_— = .2.

i z (3.2.8)
so that (3.2.4) becomes

322 = f(2). (3.2.9)
By means of result 236.00 of [44], (3.2.9) may be integrated to give
w = F (p|m), where m: = k? and w = p(. Here we have used the

notation of Chapter 17 in [110]. Thus, on noting that sin ¢ = sn(w|m),
where sn is a Jacobian elliptic function, we have

2z = 23 — (23 — 22) sn?(w|m). (3.2.10)

With result 310.02 of [44], (3.2.8) and (3.2.10) give
1
n= 5[2110 + (23 — z1) E(w|m)], (3.2.11)

where E(w|m) is the incomplete elliptic integral of the second kind (in
the notaion of [110]). Relations (3.2.10) and (3.2.11) are equivalent
to (3.2.7) and (3.2.6) respectively and give the solution in parametric
form with z and 7 in terms of the parameter w.

We define the wavelength A of the solution as the amount by which
7 increases when ¢ increases by m, or equivalently when w increases
by 2K (m), where K(m) is the complete elliptic integral of the first
kind. It follows from (3.2.11) that

A= %|21K(m) + (25— 2) E(m)], (3.2.12)

where E(m) is the complete elliptic integral of the second kind.

As mentioned previously, the VE has two families of solutions cor-
responding to v > 0 and v < 0, respectively. We now describe these
two cases in detail.
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With v > 0 we have ¢ = 1. Then, with 0 < A < 1, there are
periodic loop solutions with 0 < m < 1, z3 € (—1,0) and 23 € (0,0.5);
an example of such a periodic wave is illustrated by curve 2 in Fig. 3.2.
The loop-like nature of these periodic waves is due to the fact that z =
0 is in the interval (22, z3). For small z, (3.2.4) gives z, ~ ++/A/(3z)
so that |z,| = 0o as z — 0. It follows that, when z = 0, the solution
curve is normal to the n axis. A =1 gives the solitary wave limit for
which z; = 20 = —1l and z3 = 1/2 so that m = 1. Assn(w|l) = tanh w
and E(w|l) = tanhw, (3.2.10) and (3.2.11) reduce to

z=3z— %tanh2 w, 17 = —2w + 3tanhw, (3.2.13)

N

where w = (/2. In terms of the original dependent variable u and the
new independent variable ¢, (3.2.13) gives

u=3v sech?(¢/2), n = —C + 3tanh({/2) (3.2.14)

as illustrated by curve 1 in Fig. 3.2. When u/v = 1, this solution
curve is normal to the n axis at the points n = FW/2, where W is the
maximum width of the loop. On putting z = 0 and n = FW/2 into
(3.2.13), we find that

W =2V3 —4tanh™* <\}§> . (3.2.15)

With v < 0 we have ¢ = —1. Then, with 0 < A < 1, there are
periodic solutions with 0 < m < 1, zo € (0, 1) and 23 € (1, 1.5); an
example of such a periodic wave is illustrated by curve 2 in Fig. 3.3.
With A =0, 21 = 22 = 0 and 23 = 3/2 so that m = 1 and A\ = 6.
(3.2.10) and (3.2.11) reduce to

z=3- %tanh2 w, 1 = 3tanhw, (3.2.16)
where w = (/2. Elimination of tanh w now gives
n?, -3<n<3 (3.2.17)

from which we can construct a weak solution in the form of a spatially
periodic inverted ‘paraboidal” wave (i.e. a corner wave) of amplitude
3/2 given by

z=2z(n—06j), —-3<n—6j<3, j=0,+£1,4+2.... (3.2.18)
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n

Figure 3.2: Travelling wave solutions with v > 0.

In terms of the original dependent variable u, (3.2.17) and (3.2.18)
become

u/lol =1 - n?, -3<n<3 (3.2.19)
and
u/lv] = u(n—65)/|v|, —3<n—6j<3, j=0,41,42, ... (3.2.20)

respectively. The latter is shown by the curve 1 in Fig. 3.3. For A ~ 1
the solution has a sinusoidal form (see curve 3 in Fig. 3.3). Note that
there are no solitary wave solutions with v < 0. This is due to the
fact that z = 0 is not in the interval (z2, 23).

A remarkable feature of the equation (2.3.2) is that it has a soli-
tary wave (3.2.14) which has a loop-like form, i.e. it is a multi-valued
function (see Fig. 3.2). Whilst loop solitary waves (3.2.14) are rather
intriguing, it is the solution to the initial value problem that is of more
interest in a physical context. An important question is the stabil-
ity of the loop-like solutions. Although the analysis of stability does
not link with the theory of solitons directly, however, the method ap-
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Figure 3.3: Travelling wave solutions with v < 0.

plied in Section 3.3.1 is instructive, since it is successful in a nonlinear
approximation.

We note that the notion of a ‘soliton’ will be defined later. We
will prove (see Section 6.5) that the solitary wave (3.2.14) is, in fact,
a soliton. Here we point out only that the soliton is a local travelling
wave pulse with remarkable stability and particle-like properties.

3.3 Stability, ambiguity and interpretation of
the loop-like solutions

3.3.1 Stability

From a physical viewpoint, the stability or otherwise of solutions is
essential to their interpretation. Some methods for the investigation
of the stability of nonlinear waves were discussed by Infeld and Row-
lands in Chapter 8 of [46] and references therein. One such method is
the so-called k-expansion method. It is restricted to long wavelength
perturbations of small amplitude. It has been applied successfully to a
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variety of generic nonlinear evolution equations (see [47] for example)
and specific physical systems (see [48] for example). A particularly
informative description of the method is given in [49] in the context of
the Zakharov-Kuznetsov equation. Some criticism was leveled at the
work in [49] by Das et al [50]; however, after a detailed reinvestigation
of the problem, Das et al [50] vindicated the method used in [49].

The k-expansion method was applied to the VE (2.3.2) in [42] and
is outlined as follows. We assume a perturbed solution of (3.2.4) in
the form

2 = 20(n) + {02(n) expli(kn — wr)] + cc}, (3.3.1)

where zg is the periodic solution given by (3.2.10) and (3.2.11), dz(n)
is a complex function with period A given by (3.2.12)), k is a real
constant, w is a constant (possibly complex), and cc denotes complex
conjugate. Substitution of (3.3.1) into (3.2.2) and linearization with
respect to dz yields

Lz = f, (3.3.2)
where the linear operator £ and f are given by
L6z = (2002) 3y +02, fi = (—wk+k?20) 6z +i[wdz, — 2k(2002) ],

respectively. As (3.2.3) implies that £z, = 0, we may deduce that,
for (3.3.2) to have periodic solutions, the condition

(2020nf) =0 (3.3.3)

must be satisfied, where () denotes an integration over the wavelength
A
Formally, the solution of (3.3.2) is

0z = zon¥, (3.3.4)

where

Uy = (D + /zozo,,f dn) /(z0205)? (3.3.5)

and D is a constant determined from

<(D + /zozo,,f dn) /(zozon)2> =0. (3.3.6)
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As 0z appears on the right-hand side of (3.3.4) via f, we solve (3.3.4)
iteratively by assuming that k is small in comparison with 27/ (so
that the perturbations in (3.3.1) have long wavelength) and introduce
the expansions

6Z:620+k/’621+7 w:kjwl—f—kawgJ'_...,
so that
f:kf1+k2f2+"'7 9 =99+k91+---, D=Dyg+kDi+---.

At zero order in k, the condition (3.3.3) is satisfied identically, (3.3.6)
gives Dy = 0 and then, from (3.3.5), ¢ is constant. Hence, from
(3.3.4), we may take 0zp = zo,. At first order, the condition (3.3.3) is
again satisfied identically. It is straightforward (see [42]) to find D,
from (3.3.6) and 94, from (3.3.5); use of these expressions in (3.3.3)
at second order leads to the desired nonlinear dispersion relation for
the perturbations in the form

ro + riwr + rawi = 0. (3.3.7)

The coefficients rg, 71 and ro depend on z1, 2o and z3 as defined
in (3.2.4). It turns out that the dispersion relation (3.3.7) has real
roots for wy for both the families of solutions (corresponding to ¢ =1
and ¢ = —1, respectively) derived in Section 3.2. Consequently, it is
predicted that both families of solutions are stable to long wavelength
perturbations. For the loop-like solutions, the existence of singular
points at which the derivatives tend to infinity casts some doubts on
the validity of the method. However, in [42] it is argued that, as
the method depends on the average behavior over a wavelength, the
method is indeed valid.

3.3.2 Ambiguous solutions

The ambiguous structure of the loop-like solutions is similar to the
loop soliton solution to an equation that models a stretched rope [51].
Loop-like solitons on a vortex filament were investigated by Hasi-
moto [52] and Lamb, Jr [53]. From the mathematical point of view an
ambiguous solution does not present difficulties whereas the physical
interpretation of ambiguity always presents some difficulties. In this
connection the problem of ambiguous solutions is regarded as impor-
tant. The problem consists of whether the ambiguity has a physical
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nature or is related to the incompleteness of the mathematical model,
in particular to the lack of dissipation.

We will consider the problem related to the singular points when

dissipation takes place. At these points the dissipative term adu

tends to infinity. The question arises: are there solutions of the
equation (3.1.6) in a loop-like form? That the dissipation is likely
to destroy the loop-like solutions can be associated with the follow-
ing well-known fact [27]. For the simplest nonlinear equation without
dispersion and dissipation, namely

ou ou
o + u% =0, (3.3.8)

any initial smooth solution with boundary conditions
U|g—ytoo = 0, U g —0o = ug = const. > 0

becomes ambiguous in the final analysis. When dissipation is consid-
ered, we have the Burgers equation [54]

ou ou Pu

o + U% + M@ =0.
The dissipative term in this equation and Eq. (2.2.5) for low frequency
are coincident. The inclusion of the dissipative term transforms the
solutions so that they cannot be ambiguous as a result of evolution.
The wave parameters are always unambiguous. What happens in our
case for high frequency when the dissipative term has the form au (see
Eq. (3.1.6))7 Will the inclusion of dissipation give rise to unambiguous
solutions?

We derive (see [11]) that the dissipative term, with dissipation
parameter less than some limit value a*, does not destroy the loop-
like solutions.

Let us consider Eq. (3.1.6) in variables (3.2.1) with v > 0 and
c=1

Znr + (22y)n + (2 + 1) + oz, = 0. (3.3.9)

We investigated the solution behavior within the neighborhood of
singular points z = 0 where z,, = o0 and z, < z,. Therefore in the
investigated equation (3.3.9) we neglect the value z in the brackets
(z + 1), and also omitted the term z,, to obtain

(22n)y + 1+ az, = 0. (3.3.10)
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It is convenient to use the inverse function 1 = 7(z). Taking into
account z, = 1/n, and z,, = —n../n3, equation (3.3.10) is rewritten
as

— 2Nz + "72 + 04773 + 1. = 0.

Introducing the definition ¢ = 7, this equation can be integrated to
obtain

| ieran=]%
d?+ag+1) ) z°

Depending on the sign of the quantity 1 — a?/4, the latter expression
has two different forms. We have introduced the critical value a* of
the parameter a defined by

at =2. (3.3.11)
For a < o* (i.e. 1 —a?/4 > 0), we get

2a tan~1 29+ o
% tan ! AT
V4 —a? V4 —a?

and for a > a* (i.e. 1 — a?/4 < 0), we have

2
ln[%(q2+aq+1)} = +lne, (3.3.12)

2 2 Va2 —4
ln{%(q%—aq—&—l)] = a In gratva +Incy. (3.3.13)
q a? —4 2 +a—+Va? -4
We analyze the expression (3.3.12). First let us verify the special case
a = 0. We have
2
)
— @ +1)=c,
7 ( )
or
1
2 + 1(2’2)727 = C1

Hence in the vicinity of z =0

1 dz? 5
7]+"70:i§ 7m:$ c1 — 2%

We arrive at the result given in [41], namely that with the lack of
dissipation a = 0 the integral curves pass over an ellipse at z = 0.
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Now we investigate the case 0 < a < a*. It is easy to show that
the r.h.s. of (3.3.12) is always bounded for any value ¢ = z;l. In the
neighborhood of z = 0 the r.h.s. of relation (3.3.12) is close to the
value

2
— tan~!

a
V4 — o2 V4 — a2

Consequently, we arrive at the equation

+Inec; =lInes.

22 9
2\ tart ) =cs.

Even not integrating this equation, it is easy to show that at z = 0
we must have ¢ = 0 since in general ¢3 # 0. This means that at z = 0
the derivatives have the values

n, =0, zy = *oo.

At z = 0 the solution becomes ambiguous.
In the case a > a* there is the solution

z=0, q=mn.#0, 2y 7 F00.

In fact, at z = 0 we obtain from the r.h.s. of (3.3.13)

q=n.=—%(a+Va?—4)#0. (3.3.14)

Thus, the derivative z, at z = 0 is bounded by a finite value. The
solution is always unambiguous.

Let us consider the solution behavior in the neighborhood of z = 0
as a — a*. We first consider the case a — a* — 0. According
to (3.3.12) the r.h.s. of this equation tends to minus infinity, i.e. at
z ~ 0 we have ¢ = 1, # 0. Consequently, there is no loop-like solution.

When o — a* 40 there is also a solution with g =17, # 0 at z = 0.
The root ¢ = 0 at z = 0 seems possible in this case since (3.3.13)
transforms to

2
Z°, 9 2c
In ?(q +aq+ 1)} = %to +1Incy, (3.3.15)

However, as appears from (3.3.14), the r.h.s. of the equation (3.3.15)
tends to minus infinity so that ¢ # 0 at z = 0. Therefore, in the case
a — o the dissipation destroys the loop-like solutions.
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We have proved the following statement. For values of @ < o*
the inclusion of the dissipative term does not change the loop-like
solutions of equation (3.1.6), while for « > «* there is no solution
with an infinite gradient.

The common form of the dissipative term for high-frequency per-
turbations cu (which does not depend on the nature of the exchange
processes) cannot preclude the possibility of a formation of a multi-
valued solution from an initial single-valued profile. In this case there
are infinite gradients in contrast to the profiles of a wave for the low

2
frequencies when the dissipative term has the form [ %
x

3.3.3 Interpretation of the ambiguous solutions

Now we give a physical interpretation to ambiguous solutions. Since
the solution to the VE has a parametric form (3.2.6), (3.2.7) or (3.2.10),
(3.2.11), there is a space of variables in which the solution is a single-
valued function. Hence, we can solve the problem of the ambiguous
solution. Several states with their thermodynamic parameters can oc-
cupy one microvolume. It is assumed that the interaction between the
separated states occupying one microvolume can be neglected in com-
parison with the interaction between the particles of one thermody-
namic state. Even if we take into account the interaction between the
separated states in accordance with the dynamic state equation (2.1.6)
then, for high frequencies, a dissipative term arises which is similar to
the corresponding term in Eq. (2.2.6), but with the other relaxation
time. In this sense the separated terms are distributed in space, but
describing the wave process we consider them as interpenetratable.
A similar situation, when several components with different hydro-
dynamic parameters occupy one microvolume, has been assumed in
mixture theory (see, for instance [55, 56]). Such a fundamental as-
sumption in the theory of mixtures is physically impossible (see [55],
p.7), but it is appropriate in the sense that separated components are
multi-velocity interpenetratable continua [57].

The KdV and KdVB equations are employed to describe a number
of evolution processes when the low-frequency approach turns out to
be adequate. In these cases thermodynamic parameters of a medium
are close to the equilibrium values, the microvolume state is defined
by one set of thermodynamic values, and the disturbance from the
equilibrium is taken into account by means of an expansion in gradi-
ents [58]. If the low-order expansions within the framework of such
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an approach give rise to an inadequate description, we could take into
account the terms of higher order and as a result consider higher fre-
quencies. For example, if Eq. (3.3.8) has an ambiguous solution (or
discontinuous solution), the improvement of models through adding
higher degree derivatives excludes the ambiguous solutions. So, in the
low-frequency approach, an ambiguity is connected with the incom-
pleteness of the mathematical model.

In contrast to this, in models for the propagation of high-frequency
perturbations, the disturbance from the frozen state is taken into ac-
count by means of an expansion in terms of an integral (see Eq. (3.1.4)
and Eq. (3.1.6)). The integral terms contain the prehistory of the pro-
cess. We have just established that a higher order of expansion (in
particular, the dissipative term) for the high-frequency evolution equa-
tion still allows ambiguous solutions. Consequently, the ambiguity of
solution does not relate to the incompleteness of the mathematical
model, in particular to the lack of dissipation. In addition there is
the space of new independent variables where the solution is a single-
valued function.

Consequently, the following three observations show that, in the
framework of the approach considered here, there are multi-valued so-
lutions when we model high-frequency wave processes: (1) All parts
of the loop-like solution are stable to perturbations. (2) Dissipation
does not destroy the loop-like solutions. (3) The investigation regard-
ing the interaction of the solitons has shown that it is necessary to take
into account the whole ambiguous solution, and not just the separate
parts.

3.4 Appendix

As mentioned in Section 3.2, provided that 0 < A < 1, the real roots
z1, 22 and z3 (with 21 < 25 < z3) of f(2) in (3.2.4) are the roots of
the cubic equation

P43 —LlA=0. (A.1)
There are several ways of calculating these roots. We note that, as
there is only one independent constant A in (A.1), only one constant

needs to be specified in order to determine the roots. Here we consider
three possible choices of this constant.
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First, note that the trigonometrical solution to a cubic equation
given in Section 52 [108] may be used to show that

21 +c|cos< +27T> , (A.2)

c 0 —2m
__°c A.

Z9 2~t—c|cos< 3 ), (A.3)
c 0

=g + || cos <3) ; (A4)

where
cosf = sgn(c)(24 — 1). (A.5)

Hence, given A with 0 < A < 1, we can find 6 from (A.5) and then
21, 22 and zz from (A.2) — (A.4).

Alternatively, by using (A.2) — (A.4) in m = (23 — 22)/(23 — 21)
we find that

0 = 3tan™* (A.6)

1+m

ﬁ(l_m)]'

Hence, given m with 0 < m < 1, we can find 6 from (A.6) and then
z1, z2 and zg from (A.2) — (A.4).
Finally, by dividing the trinomial by z — 23, we find that

Z21 =3 (—q +vq¢? - 423q) , ¢ =3c+z. (A7)

Hence, given z3 with z5 € [0,0.5] for ¢ =1 or z3 € [1,1.5] for ¢ = —1,
we can find z; and z from (A.7).
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Some equations related to the VE

The solution procedure, which was suggested in [41, 42] and used for
the Vakhnenko equation (2.3.2) (see also Section 3.2), can be success-
fully adopted to find implicit periodic and solitary travelling-wave
solutions of the Degasperis—Procesi equation in [69] (see also Sec-
tion 4.2), the Camassa—Holm equation [71] (see also Section 4.3), the
transformed Hirota—Satsuma-type ‘shallow water wave’ equation [72]
and special cases thereof, namely the generalised Vakhnenko equa-
tion and the modified generalised Vakhnenko equation (see also Sec-
tion 4.5), the short-pulse equation [103] (see also Section 4.6) and
other equations. An important feature of the method is that it delivers
solutions in which both the dependent variable and the independent
variable are given in terms of a parameter.

4.1 The peakon b-family equation

Mikhailov and Novikov developed a powerful extension of the symme-
try classification method [59]. Applying this to the equation

U — Utgr + (b + Dutty = Duglipy + Ullgry, (4.1.1)

they found that only the cases with parameter b = 2, 3 could possess
infinitely many commuting symmetries, and so only these two cases
are integrable.

In [61] the family of equations was dubbed the ‘peakon b-family’.
The family of equations (4.1.1) with b > 1 was discussed in [60].
Phase portraits were used to categorize travelling-wave solutions. As
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discussed in [62], the family of Eq. (4.1.1) contains only two integrable
equations, namely the dispersionless Camassa—Holm equation (CHE)
for which b = 2 [63]

Up — Upge + SUUE = 2UgUzy + Ullprs, (4.1.2)
and the Degasperis—Procesi equation (DPE) for which b = 3 [64]

Up — Upge + AU = 3Uglpr + Ullpry, (4.1.3)
or in equivalent form

(up + uty) pe = up + dutiy. (4.1.4)

Originally Eq. (4.1.2) was derived as an equation for shallow water
waves [63]. Later Chen et al. showed that Eq. (4.1.2) can be applied
successfully to describe turbulent flows [65]. Since Hone and Wang [73]
revealed the connection of the DPE and the Vakhnenko equation (see
Section (4.1.2)), Eq. (4.1.3) can be used to model wave perturbations
in relaxing media. As proved by Lenells (and it is important from the
physical point of view), the multivalued solutions of the CHE and the
DPE can be the basis for the construction of one-valued solutions [66].

It has been known for some time that the dispersionless Camassa—
Holm equation has a weak solution in the form of a single ‘peakon’ [63]

u(xz,t) = vexp(—|z — vt]), (4.1.5)

where v is a constant, and an N-peakon solution [67] that is just a
superposition of peakons, namely

N
u(z,t) = ij(t) exp(—|z = ¢; ()], (4.1.6)

where the p;(t) and g;(t) satisfy a certain associated dynamical sys-
tem. (A substantial list of references regarding the properties of the
CHE may be found in [66].) More recently Degasperis, Holm and
Hone [62] proved the integrability of the DPE, and showed that the
equation also has single and N-peakon solutions of the form (4.1.5)
and (4.1.6) respectively; the peakon dynamics were discussed and com-
pared with the analogous results for Camassa—Holm peakons.

A classification of travelling-wave solutions of the CHE was given
in [66]. However, explicit solutions were given only for the solitary
peakon and periodic peakon waves. Periodic smooth-hump waves and
periodic cuspon waves were investigated numerically in [68].
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4.1.1 An integrated form of Eq. (4.1.1)

In order to seek travelling-wave solutions to (4.1.1), it is convenient
to introduce a new dependent variable z defined by

z=(u—v)/|v| (4.1.7)

and to assume that z is an implicit or explicit function of n, where n =
x — vt —xp, v and x( are arbitrary constants, and v # 0. Then (4.1.1
becomes

22Zpnn+b2n2pn— (b+1) 22, —becz, =0, with c¢=wv/jv| = £1. (4.1.8)
After two integrations (4.1.8) gives

(z2)* = f(2), (4.1.9)
where

f(2) = 2 +2¢23 + A2 + B30, (4.1.10)

and A and B are real constants.

Note that for b > 1, f(z) is a quartic for b = 2 or b = 3 only. This
explains why the technique that was used for the DPE in [69] (see
also Section 4.2) also works for the CHE [71] (see also Section 4.3).

For the case b = 3, when (4.1.1) is the DPE (4.1.3), and for the case
b =2, when (4.1.1) is the CHE (4.1.2) we will consider the travelling-
wave solutions in Section (4.2) and Section (4.3), respectively.

4.1.2 Connection of the VE with the DPE

Hone and Wang [73] have shown that there is a subtle connection
between the Sawada—Kotera hierarchy and the VE, between the DPE
and the VE, and between the Lax pairs of the DPE and VE. In par-
ticular they noted that the application of the transformations

t
x%ém—?, t — ét, U—U— - (4.1.11)
5

to the DPE (4.1.3), where £ is a real positive constant, results in
(g + i)y + )y = % (uy + duuy). (4.1.12)
In the limit € — 0, (4.1.12) reduces to the derivative of the VE (2.3.2)

(ug + uttg)y +u = 0.
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We will refer to (4.1.12) as the transformed DPE (see also Section 4.2.2).

The VE has a loop-like solution, hence the DPE should admit
a loop-like solution. However, it engages our attention that soliton
solutions have not been observed for the DPE recently.

4.2 The Degasperis—Procesi equation

Now we investigate the travelling-wave solutions of the DPE and the
transformed DPE. We show that the solutions are characterized by
two parameters. Hump-like, loop-like and coshoidal periodic-wave
solutions are found; hump-like, loop-like and peakon solitary-wave
solutions are obtained as well [69, 70]. In an appropriate limit the
solutions of the DPE lead to the solutions of the VE.

In Section 4.2.1 we show that, for travelling-wave solutions, the
DPE may be reduced to a first order ODE involving two arbitrary
constants A and B. We show that there are four distinct periodic
solutions corresponding to four different ranges of values of A; for a
given allowed value of A, B is restricted to a range of values. By using
results established in the Appendix to this Chapter (see Section 4.7),
we express the periodic solutions in implicit form; these solutions in-
volve elliptic integrals and Jacobian elliptic functions with parameter
m, where 0 < m < 1. We also investigate the limiting form of these
solutions when m = 1.

In Section 4.2.2 we perform the corresponding analysis for the
transformed DPE. We consider the case for which the first-order ODE
to which the transformed DPE may be reduced involves only a single
integration constant B. We find that there are eight distinct solution
regimes corresponding to four different ranges of values of €2 and to
the two possible directions of propagation. In each case B is restricted
to a range of values. We show that, when € — 0 in Eq. (4.1.12), the
periodic and solitary-wave solutions to the VE are recovered.

4.2.1 Solutions of the DPE

In this Section we seek travelling-wave solutions of the DPE (4.1.3).
Note that there are no bound stationary solutions of (4.1.3) that are in
the form w = u(z). That being the case, it is convenient to introduce
the new variables z and 7 as defined in Section 4.1.1. Then (4.1.3)
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becomes

(225 )m = (42 + 3¢) 2, where ¢: = % =+l (4.2.1)

After two integrations, (4.2.1) is reduced to

(229)” = f(2), (4.2.2)

where f(z) is the polynomial given by (4.1.10) with b = 3. This
polynomial can be written in terms of the roots of the equation f(z) =
0 as follows:

f(2):=2"42e2+ A2+ B= (2 —21)(2 — 22) (23— 2) (24 — 2), (4.2.3)

where A and B are real constants. For the solutions that we are
seeking, z1, 2o, 23 and z4 are real constants with 27 < 2z < 2 < 23 < 24
and z1 + 22 + 23 + 24 = —2¢. Equation (4.2.2) is of the same form as
(A.1) in the Appendix to this Chapter (see Section 4.7) with ¢ = 1.
Hence we can make use of the solutions given in the Appendix, but
with € = 1.

Note that (4.2.1) is invariant under the transformation z — —z,
¢ — —c; this corresponds to the transformation v — —u, v — —uv.
Here we will seek the family of solutions of (4.2.1) for which v > 0
and so, from here on in this Section, we set ¢ = 1.

For convenience we define g(z) and h(z) by

f(2) =2%g9(2) + B, where g(2): = 2>+ 2z + A, (4.2.4)
and
f'(2) = 22h(2), where h(z): =22° 432+ A, (4.2.5)

and define zy,, zy, By, and By by

_ £(3+ VI—8A), svi=- 3(3— VIT8A),  (4.2.6)

A? 27 1

2

By = —zg(2v) = —

zr, and zy are the roots of h(z

2 L9 8AWI§A; (428)

Ne}
VOO\‘ﬁ‘ﬂm
[N}

\]
—
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Provided A is non-zero and is such that A < 3, f(z) has three
distinct stationary points that occur at z = zp, 2 = 2y and z = 0,
and comprise two minimums separated by a maximum. Four cases
are possible for the polynomial f(z) corresponding to different ranges
of values of A (see Fig. 4.1). In this case (4.2.2) has periodic and
solitary-wave solutions that have different analytical forms depending

on the values of A and B as described in Sections 4.2.1 a—d as follows.

(@) A<0

WA VQ/Z

() A=t f (d) 1<A<9/8

(b) 0<A<1 2

——
N

\ R\
VAVERVAN

Figure 4.1: Four possible cases for the polynomial f(z).

4.2.1a. A<O0

In this case z;, < 0 < zy with f(z1) < f(zv); see Fig. 4.1(a), where
the lower and upper curves correspond to B = 0 and B = By, respec-
tively. For each value of A satisfying A < 0 there are periodic inverted
loop solutions to (4.2.2) given by (A.5) and (A.7) with 0 < B < By so
that 0 < m < 1, and with wavelength given by (A.8); see Fig. 4.2(a)
for an example.
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| |
N
'
o
e

(©) @

Figure 4.2: Periodic solutions of the DPE with 0 < m < 1: (a)
A= —27, B = 0.75By so m = 0.842, A\ = 0.466; (b) A = 15/16,
B =05By som =0.746, \ = 3.941; (¢) A=1, B = 0.5By = —1/32
so m = 0.746, A = 5.038; (d) A = 135/128, B = 0.5(By + Bp) so
m = 0.729, A = 6.140.

B = By corresponds to the limit z3 = z4 = 2y so that m = 1, and
then the solution is an inverted loop-like solitary wave given by (A.9)
with z9 < z < zy and

zZ1 =

14+V9—-84) — —\/1+V9 -84, (4.2.9)
( )

1 1
4 2
1

Z2:%(1+\/m)+2 1+ VO 84; (4.2.10)

see Fig. 4.3(a) for an example. Note that zo — 0 and zy — 0 as
A — 0. The amplitude zy — zo of the solitary wave increases from 0
as |A| increases from 0.

The loop-like nature of the solitary wave is due to the fact that
z = 0 is in the range 2o < z < zy. For small z, (4.2.2) gives z, ~
+v/By/z and so |z,| = oo as z — 0. It follows that the solution
curve (see Fig. 4.3(a) for example) is normal to the n axis at the
points (FW/2,0), where W is the maximum width of the loop; from
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Figure 4.3: Solutions of the DPE with m = 1: (a) A = —27, B = By,
W =0.788; (b) A = 15/16, B = 0, A = 4.127; (c) A= 1, B = 0; (d)
A =135/128, B = By.

(A.9), W is given by

2
W = 4tanh™* ( = ) — 22U tanh ! (1 [ 22 ) . (4.2.11)
21 p nzy

W increases from 0 as | 4| increases from 0. Near the points (FW/2,0)
the loop is approximately parabolic and given by

22 ~92/By (2/ + n) . (4.2.12)

4.2.1b. 0<A<1

In this case z;, < zp < 0 with f(z1) < f(0); see Fig. 4.1(b), where
the lower and upper curves correspond to B = By and B = 0, respec-
tively. For each value of A satisfying 0 < A < 1 there are periodic
hump solutions to (4.2.2) given by (A.5) and (A.7) with By < B <0
so that 0 < m < 1, and with wavelength given by (A.8); see Fig. 4.2(b)
for an example.
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B = 0 corresponds to the limit z3 = 24 = 0 so that m = 1, and
then the solution has zo < z < 0 and is given by (A.9) with z; and 2,
given by the roots of g(z) = 0, namely

n=-1-VI-A, z=-1+V1-A4A. (4.2.13)

In this case we obtain a weak solution, namely the periodic upward
spike

z = Z(n_anm)a (Qj_l)nm <n< (2j+1)77m, J=0,+£1,£2,...,
(4.2.14)

where
2(n): = [z2—21 tanh®(n/2)] cosh®(n/2) = —1+ /1 — A coshn (4.2.15)

and

- -1 Q = -1 71 .
Nm = 2tanh < - > = cosh <m> ; (4.2.16)

see Fig. 4.3(b) for an example. (4.2.16) is similar in form to the
spatially periodic solution of the Camassa—Holm equation that has
been dubbed a ‘coshoidal wave’ by Boyd [109]. Note that z; — 0 and
Nm — 0 as A — 0, and that zo — —1 and 7,, — 00 as A — 1. Hence
the amplitude |25 of the coshoidal wave (4.2.16) increases from 0 to 1
as A increases from 0 to 1, and its wavelength \: = 27, increases from 0
to infinity.

4.2.1c. A=1

In this case zp < 2y < 0 with f(zp) = f(0); see Fig. 4.1(¢), where
the lower and upper curves correspond to B = By and B = 0, respec-
tively. For A = 1 there are periodic hump solutions to (4.2.2) given
by (A.11) and (A.12) with By < B < 0 so that 0 < m < 1, where
By = —1/16, and with wavelength given by (A.13); see Fig. 4.2(c) for
an example. An alternative solution is given by (A.5) and (A.7); this
is just the former solution phase-shifted by A\/2.

B = 0 corresponds to the limit 21 = 290 = 27, = —1 and z3 =
z4 = 0. In this case neither (A.9) nor (A.14) is appropriate. Instead
we consider (4.2.2) with f(z) = 2%(z + 1)? and note that the bound
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solution has —1 < z < 0. On integrating (4.2.2) and setting z = 0 at
1 = 0 we obtain the weak solution

z=e M _1, (4.2.17)

i.e. a single peakon with amplitude 1; see Fig. 4.3(c). In terms of the
original dependent variable w, (4.2.17) is equivalent to (4.1.5) with
v > 0.

4.2.1d. 1< A<9/8

In this case z;, < zy < 0 with f(zr) > f(0); see Fig. 4.1(d), where
the lower and upper curves correspond to B = By and B = By,
respectively. For each value of A satisfying 1 < A < % there are
periodic hump solutions to (4.2.2) given by (A.11) and (A.12) with
By < B < Bp, so that 0 < m < 1, and with wavelength given by
(A.13); see Fig. 4.2(d) for an example.

B = By, corresponds to the limit z; = 2o = 2, so that m = 1, and
then the solution is a hump-like solitary wave given by (A.14) with
zr, < z < z3 and

2’3:—% (1—@)—%\/1—\/@, (4.2.18)
1

24:—i<1—\/m>+2\/1—\/m; (4.2.19)

see Fig. 4.3(d) for an example. Note that z;, — —1 and 23 — 0 as
A — 1, and that z;, — —3/4 and z3 — —3/4 as A — 9/8. The
amplitude z3 — zp of the solitary wave decreases from 1 to 0 as A
increases from 1 to 9/8.

4.2.2 Solutions of the transformed DPE

In this Section we seek travelling-wave solutions of the transformed
DPE (4.1.12). Note that there are no bound stationary solutions of
(4.1.12) that are in the form uw = wu(xz). That being the case, it is
convenient to introduce a new dependent variable z defined by

z=(u—v)/|v| (4.2.20)
and to assume that z is an implicit or explicit function of 1, where

n=(x—vt—x0)/|v|"?, (4.2.21)
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v and x( are arbitrary constants, and v # 0. Then, with € = é|v\1/2,

(4.1.12) becomes
((zzn)n—&-z—i—c)n = e%(42 +3¢)zy, where ¢: = ﬁ = +1. (4.2.22)
After one integration (4.2.22) gives
(z2y)y + 2 +c=¢e%(22" + 3c2) + c1, (4.2.23)

where ¢; is an arbitrary real constant. Note that, in terms of z and
7, the VE (2.3.2) becomes (3.2.3), namely

(22y)p +2+c=0. (4.2.24)

The solitary-wave solution to (4.2.24) is such that z, — 0, z,, — 0
and z + ¢ — 0, as || — co. We choose ¢; in (4.2.23) so that these
conditions are satisfied. Accordingly, here we restrict attention to
the particular case in which ¢; = ¢?¢2. Then, after one integration,

(4.2.23) gives

(229)% = €21 (2), (4.2.25)
where
fz):=2%— %(1 —3ce?)23 — 5%(1 —ce?)22+ B= (4.2.26)

=(z—21)(z — 22)(23 — 2) (24 — 2)
and B is a real constant. For the solutions that we are seeking, 21,
Zo, 23 and z4 are real constants with z; < 29 < 2 < z3 < z4. Equation
(4.2.25) is of the same form as (A.1) in the Appendix to this Chapter
(see Section 4.7). Hence we can make use of the solutions given in the
Appendix.
For convenience we define g(z) and h(z) by

2
f(2) = 2%g(2)+B, where g¢(z):= Z2—@(1—30<€2)Z—€%(1—C82),

and (4.2.27)
f'(z) = 2zh(z), where h(z):= 22’2—;2(1—3052)2—6%(1—052),
(4.2.28)
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and define zy,, zy, By, and By by
1

TG AT 55 (1—ce?), (4.2.29)
9 c
BL: = —ZLg(ZL) = @ 5 (4230)
1
Bu: = —22g(zy) = w0 3ce?)(1 — ce?)?; (4.2.31)

zr, and zy are the roots of h(z) = 0.

Provided that 2 > 0 and €2 # 1, f(2) has three distinct station-
ary points that occur at z = 21, z = 2z and z = 0, and comprise two
minimums separated by a maximum. In this case (4.2.25) has peri-
odic and solitary-wave solutions that have different analytical forms
depending on the values of €2 and B as described in Sections 4.4.2
a—h as follows.

4.2.2a. c=1,2>1

In this case 2z, < zy < 0 with f(z) < f(0). For each value of &2
satisfying €2 > 1 there are periodic hump solutions to (4.2.25) given
by (A.5) and (A.7) with By < B < 0 so that 0 < m < 1, and with
wavelength given by (A.8); see Fig. 4.4(a) for an example.

B = 0 corresponds to the limit z3 = z4 = 0 so that m = 1, and
then the solution has zo < z < 0 and is given by (A.9) with z; and 2,
given by the roots of g(z) = 0, where g is defined in (4.2.27), namely

1 1
21:@(1—362—\/@)7 222@(1—3524'\/@)-
(4.2.32)

In this case we obtain a weak solution, namely the coshoidal wave

z=2z=2jnm), (27—D)nm <0< (2+1)0m, Jj=0,£1,£2,...,
(4.2.33)

where

2(n): = [22 — 21 tanh?(en/2)] cosh?(en/2) = (4.2.34)
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Figure 4.4: Periodic solutions of the transformed DPE with ¢ = 1 and
0<m<1: (a) e? =8, B=0.25By som = 0.869, A\ = 1.507; (b)
€2 =1/2, B=0.6By som = 0.730, A\ = 0.458; (c¢) €2 =1/3, B =0.75
so m = 0.928, A = 4.562; (d) €2 = 1/4, B = 0.75By, so m = 0.842,
A =0.932.

= é (1 —3e2 4 1/1+ 32 COSh(ET]))

2 . z2> 1 1(352—1>
m = — tanh — | = - cosh — ] 4.2.35
K € ( z1 € V1 + 32 ( )

see Fig. 4.5(a) for an example. Note that zo — 0 as ¢ — 1, and
that 2 — —1 as €2 — oco. Hence the amplitude |23] of the coshoidal
wave increases from 0 to 1 as €2 increases from 1 to infinity. As &2
increases from 1, the wavelength A\: = 27, increases from 0, reaches a
maximum value of 1.827 at 2 = 2.769, and then decreases to 0 as €2 —
00.

and

2

4.2.2b. c=1,1/3<e? <1

In this case z; < 0 < zy with f(z1) < f(zy). For each value of
2 satisfying + < €2 < 1 there are periodic inverted loop solutions to
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Figure 4.5: Solutions of the transformed DPE with ¢ =1 and m = 1:
(a) e2 =8, B=0, A = 1.561; (b) e2 = 1/2, B = By, W = 0.818; (c)
e2=1/3,B=1;(d) e2=1/4, B= Br, W = 1.577.

(4.2.25) given by (A.5) and (A.7) with 0 < B < By so that 0 < m < 1,
and with wavelength given by (A.8); see Fig. 4.4(b) for an example.

B = By corresponds to the limit z3 = z4 = 2y so that m = 1, and
then the solution is an inverted loop-like solitary wave given by (A.9)
with zo < z < zy and

1

A= (_1 3.2 \/m) : (4.2.36)
zFé(_l_%um);

see Fig. 4.5(b) for an example. The maximum width W of the loop is

W:1[4tanh1( Z?)_?thanhl( )] (4.2.37)

9 Z1 P nzi

Note that zo — 0 and 2y — 0 as €2 — 1, and that 2o — —1 and
2y — 1ase? = % As €2 decreases from 1 to %, the amplitude
zy — 2o of the solitary wave increases from 0 to 2, and W increases

from 0 to infinity.

EBSCChost - printed on 2/13/2023 9:04 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

Chapter 4. Some equations related to the VE 47

4.2.2c. c=1,e2=1/3

In this case 2z, < 0 < zy with f(z1) = f(zv). The 2® term in the
expression for f(z) given by (4.2.26) is not present and hence f(z) is
even so that, for 0 < B < 1 (with By = B = 1), 21 = —z4 and
z9 = —z3. Then from the definition of m in (A.6) and the definitions
of nin (A.5) or (A.11) we obtain the relation

m+n?—2n = 0. (4.2.38)

With (4.2.38), the results 141.01 and 414.01 in [44] may be used to
show that A given by (A.8) or (A.13) is zero, and hence that n given by
(A.7) or (A.12) is periodic in w with period 2K, where K: = K (m) and
K (m) is the complete elliptic integral of the first k ind. It follows that,
for each value of B such that 0 < B < 1, the solution to (4.2.25) given
by (A.5) and (A.7), or by (A.11) and (A.12), is just a closed curve
around the origin in the z-n plane. This curve is symmetrical with
respect to z and n and has infinite slope at the two points where z = 0.
A periodic bell solution to (4.2.25), with wavelength \: = 4n(3K/2),
may be constructed in parametric form as follows:

z = z(w) (4.2.39)
B {n(w) +(2+45)n(3K/2),—-K/24+ 2jK <w < K/2+ 2jK
"7 ) + 4nK/2), K/2+ 2K <w < 3K/2 + 2jK

(4.2.40)

where z(w) and n(w) are given by (A.5) and (A.7) respectively, and
j=0,£1,42,...; see Fig. 4.4(c) for an example.

B = By, = By = 1 corresponds to the limit z; = 20 = 2z, = —1
and z3 = z4 = zy = 1. In this case neither (A.9) nor (A.14) is
appropriate. Instead we consider (4.2.25) with f(2) = (2 +1)%(1 — 2)?
and note that the bound solutions have —1 < z < 1. On integrating
(4.2.25) and setting z = 0 at 7 = 0 we find that there are two such
solutions, namely the kink-like solitary waves

JHy-es-2mi/ve), <o,

= (4.2.41)
—\J1— exp(~2ln|/v3), n>0,

z
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and

—\/1—exp(-2l/v3), <0,

_ (4.2.42)
/1 - exp(~20n|/V3), n>0;

z

see Fig. 4.5(c) in which the solid and dashed curves correspond to
(4.2.41) and (4.2.42) respectively.

4.2.2d. c=1,0<e?<1/3

In this case z;, < 0 < zy with f(zy) < f(zr). For each value of 2
satisfying 0 < €2 < i there are periodic loop solutions to (4.2.25)
given by (A.11) and (A.12) with 0 < B < Bp, so that 0 < m < 1,
and with wavelength given by (A.13); see Fig. 4.4(d) for an example.
For a given choice of B, it is easy to verify numerically that, as &2
is made ever smaller (but finite), the aforementioned solution tends
to the solution given by (3.2.10) and (3.2.11) with $c*4 = 2B in
(3.2.4); in other words the periodic loop solution of the VE for the
case v > 0 is recovered in the limit £2 — 0.

B = By, corresponds to the limit z; = 29 = 2z = —1 so that
m = 1, and then the solution is a loop-like solitary wave given by
(A.14) with —1 < z < z3 and

by (1—\/1—352), 2= é (1+\/1—3g2); (4.2.43)

see Fig. 4.5(d) for an example. The maximum width W of the loop is

W= é [4tanh—1 (E) - %tanh_l (\/g)] L (4.2.44)

In the limit €2 — 0, it is straightforward to show analytically that
the solitary-wave solution reduces to (3.2.13) and that (4.2.44) reduces
to (3.2.15); hence, as expected, the loop-like solitary-wave solution of
the VE for the case v > 0 is recovered.

As €2 increases from 0 to 1/3, the amplitude z3 + 1 of the solitary
wave increases from 3/2 to 2, and W increases from the value given
by (3.2.15), namely 0.8302, to infinity.
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4.2.2e. c=-1,0<e2<1/3

In this case 0 < z1, < 2y with f(0) > f(zr). For each value of &2
satisfying 0 < €2 < 1/3/ there are periodic well solutions to (4.2.25)
given by (A.11) and (A.12) with By, < B < 0 so that 0 < m < 1,
and with wavelength given by (A.13); see Fig. 4.6(a) for an example.
For a given choice of B, it is easy to verify numerically that, as &2
is made ever smaller (but finite), the aforementioned solution tends
to the solution given by (3.2.10) and (3.2.11) with $c*A = 2B in
(3.2.4); in other words the periodic well solution of the VE for the
case v < 0 is recovered in the limit €2 — 0.

() (b)

1.5 1.5

z 1 4 1

(o) (d)

U U
Figure 4.6: Periodic solutions of the transformed DPE with ¢ = —1
and 0 <m < 1: (a) €2 = 1/4, B = 0.25B1, so m = 0.842, A = 7.600;
(b) €2 = 1/3, B = 0.25B;, = —0.25 so m = 0.928, A = 9.809; (c)
€2 = 1/2, B = 0.25B; + 0.75By so m = 0.803, A = 11.103; (d)
e2 =8, B=0.25By + 0.75Bz, so m = 0.869, A = 2.258.

B = 0 corresponds to the limit z; = 2o = 0 so that m = 1, and
then the solution has 0 < z < z3 and is given by (A.14) with z3 and z4
given by the roots of g(z) = 0, where g is defined in (4.2.27), namely

1 1
24 —(1+352—\/1—352), 4 —(1—1—352—1—\/1—352).

T 32 T 32
(4.2.45
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In this case we obtain a weak solution, namely the inverted coshoidal
wave

z=2=2jnm), 2j=D)nm <0< (2j+1)0m, j=0,£1,42,...,

(4.2.46)
where
2(n): = [23 — z4tanh?(en/2)] cosh?(en/2) = (4.2.47)
1
= (1 + 362 — /1 — 3¢2 Cosh(en))
3e2
and

2 1 241
N = gtanh_1 ( ZB) = R cosh™* (38 + > ; (4.2.48)
zZ4

see Fig. 4.7(a) for an example.

In the limit e — 0, it is straightforward to show analytically that
the inverted coshoidal-wave solution (4.2.46) reduces, as expected, to
the inverted paraboidal-wave solution (3.2.18) of the VE for the case
v < 0.

As €2 increases from 0 to %, the amplitude z3 of the coshoidal wave
increases from % to 2, and its wavelength A:= 27, increases from 6
to infinity.

4.2.2f c=-1,e2=1/3

In this case 0 < zp, < zy with f(0) = f(zy). With B, < B < 0 so
that 0 < m < 1, where By, = —1, there are periodic well solutions to
(4.2.25) given by (A.5) and (A.7), with wavelength given by (A.8); see
Fig. 4.6(b) for an example. An alternative solution is given by (A.11)
and (A.12); this is just the former solution phase-shifted by A/2.

B = 0 corresponds to the limit zy = 20 = 0 and 23 = 24 = 2y =
2. In this case neither (A.9) nor (A.14) is appropriate. Instead we
consider (4.2.25) with f(z) = 2?(2 — 2)? and note that the bound
solution has 0 < z < 2. On integrating (4.2.25) and setting z = 0 at
7 = 0 we obtain the weak solution

z = 2(1 — exp[—|n|/V3]), (4.2.49)

i.e. a single inverted peakon with amplitude 2; see Fig. 4.7(b).
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n n

2 1
(c) (d)
1.5 0.75
z 1 T Z 0.5
0.5 0.25
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n n

Figure 4.7: Solutions of the transformed DPE with ¢ = —1 and m = 1:
(a) 2 =1/4, B=0, A =7.699; (b) e =1/3, B=0; (c) e = 1/2,
B:BU; (d) 62:87B:BL.

4.2.2g. c=-1,1/3<e% <1

In this case 0 < zp < 2y with f(0) < f(zy). For each value of &2
satisfying 1/3 < €2 < 1 there are periodic well solutions to (4.2.25)
given by (A.5) and (A.7) with By, < B < By so that 0 <m < 1, and
with wavelength given by (A.8); see Fig. 4.6(c) for an example.

B = By corresponds to the limit z3 = z4 = zy so that m = 1,
and then the solution is a well-like solitary wave given by (A.9) with
29 < z < zy and

21:67;(_1%52_@), (4.2.50)
1
22:@(_1+382+\/m);

see Fig. 4.7(c) for an example. Note that zo — 1 and zy — 1 as
¢?2 = 1, and that 2o — 0 and 2y — 2 as €2 — 1/3. As £? decreases
from 1 to 1/3, the amplitude zy — z9 of the solitary wave increases
from 0 to 2.
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4.2.2h. c=—-1,e2>1

In this case 0 < 2y < zz, with f(0) < f(z1). For each value of &2
satisfying e2 > 1 there are periodic well solutions to (4.2.25) given by
(A.5) and (A.7) with By < B < By, so that 0 < m < 1, and with
wavelength given by (A.8); see Fig. 4.6(d) for an example.

B = By, corresponds to the limit z3 = z4 = z;, = 1 so that m =1,
and then the solution is a well-like solitary wave given by (A.9) with
2o < z < zp, and

1 1
2 —(1—\/14—352), z2:@(1+\/1+352);(4.2.51)

T 32

see Fig. 4.7(d) for an example. Note that zo — 1 as €2 — 1, and that
2o — 0 as €2 — 00. As £? increases from 1 to infinity, the amplitude
1 — 29 of the solitary wave increases from 0 to 1.

4.2.3 Summary

We have found expressions for the travelling-wave solutions to the
DPE that travel in the positive z-direction with speed v. These so-
lutions depend, in effect, on two parameters A and m. In addition
to the expected single peakon solution (with A = 1, m = 1) there
are inverted loop-like (A < 0, m = 1) and hump-like (1 < A < 9/8,
m = 1) solitary-wave solutions. For 0 < m < 1 there are periodic
inverted loop (A < 0) and periodic hump (0 < A < 9/8) solutions.
Form =1 and 0 < A < 1 there are (periodic) coshoidal solutions. For
each of the aforementioned solutions expressed with u as the depen-
dent variable, there is a solution for u that is the mirror image in the
z-axis and travels with the same speed but in the opposite direction.

We have also found expressions for the travelling-wave solutions
to the transformed DPE. These solutions depend, in effect, on two
parameters €2 and m, and also on the direction of propagation.

For propagation in the positive z-direction there are inverted loop-
like (1/3 < &2 < 1, m = 1), kink-like (¢2 = 1/3, m = 1) and loop-like
(0 < €2 < 1/3, m = 1) solitary-wave solutions. For 0 < m < 1 there
are periodic hump (2 > 1), periodic inverted-loop (1/3 < &2 < 1),
periodic bell (¢2 = 1/3) and periodic loop (0 < &2 < 1/3) solutions.
For m = 1 and €% > 1 there are (periodic) coshoidal solutions. In the
limit €2 — 0, the periodic loop solutions (0 < m < 1) and loop-like
solitary-wave solutions (m = 1) to the VE are recovered.
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For propagation in the negative z-direction there are inverted
peakon (¢2 = 1/3, m = 1) and well-like (1/3 < €2 < 1 and &2 > 1,
m = 1) solitary-wave solutions. For 0 < m < 1 there are periodic well
(0 < &% <1 and e? > 1) solutions. For m =1 and 0 < €2 < 1/3 there
are (periodic) inverted coshoidal solutions. In the limit €2 — 0, the
periodic well solutions (0 < m < 1) and (periodic) inverted paraboidal
solutions (m = 1) to the VE are recovered.

4.3 The Camassa—Holm equation

A classification o 't ravelling-wave s olutions o f t he C HE w as given
in [66]. However, explicit solutions were given only for the solitary
peakon and periodic peakon waves. Periodic smooth-hump waves and
periodic cuspon waves were investigated numerically in [68].

Using a technique similar to the one we presented in [69] for the
DPE, we obtain explicit travelling-wave solutions of the CHE (4.1.2)

Up — Uppg + ULy = 2UgUzy + Ulgry

for both periodic and solitary smooth-hump, smooth-well, peakon,
inverted-peakon, cuspon and inverted-cuspon waves [71].

4.3.1 Explicit travelling-wave solutions of the CHE

In terms of the new variables z and 7 for travelling-wave solutions as
defined in Section 4.1.1, the CHE (4.1.2) has the form

22+ 220 Znn — 322y — 2¢2;, = 0, where ¢: = v/|v| = £1. (4.3.1)
After two integrations, (4.3.1) is reduced to
(227])2 = f(z)a (432)
where f(2) is the polynomial given by (4.1.9) with b = 2. This poly-
nomial can be written in terms of the roots of the equation f(z) =0
as follows:
f(2): =2 42c2 + A2+ Bz = (2—21) (2 —22) (23 —2) (24 —2). (4.3.3)

For the solutions of (4.3.2) that we are seeking, z1, z2, 23 and z4 are
real constants with z; < 2o <2z <23 < z4and 21+ 23+ 23+ 24 = —2c.
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From (4.3.3) it can be seen that one of 21, 22, z3 and z4 is always
zero. We let the other three be ¢, » and s, where s < r < ¢ and
s = —q —1r — 2¢c. The types of solution to (4.3.2) may be categorized
by an appropriate choice of the two parameters ¢ and r. In [66, 68]
the two parameters that were used, namely M and m in the notation
of [66, 68], are equivalent to g + ¢ and r + ¢ respectively.

Equation (4.3.2) is of the same form as (A.1) in the Appendix to
this Chapter (see Section 4.7) with ¢ = 1. Hence we can make use
of the solutions given in the Appendix, but with ¢ = 1. Note that
(4.3.2) is invariant under the transformation z — —z, ¢ — —c¢; this
corresponds to the transformation v — —u, v — —v in (4.1.7). Here
we will seek the family of solutions of (4.3.2) for which v > 0 in (4.1.7)
and so, from here on in this Section, we will assume that ¢ = 1.

4.3.1a. z4 = 0: Periodic smooth hump with v > 0

Suppose z4 = 0 so that z; = s, z9 = r and z3 = ¢q. Consider the case
21 < 29 < z3 < 0 so that

—q—r—2c<r<qg<0. (4.3.4)

(This is equivalent to the case considered numerically in Section 4.1
of [68].) The solution to (4.3.2) is a periodic hump given by (A.5)
and (A.7), or (A.11) and (A.12), with r <z < g and 0 < m < 1; see
Fig. 4.8 for an example given by (A.5) and (A.7).

0

-0.25

Figure 4.8: Periodic smooth hump solution of the CHE with » = —0.7,
q=—0.3 and v > 0.
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4.3.1b. z4 = 0: Solitary smooth hump with v > 0
In Section 4.3.1a, consider the limit z; = 29 so that we have m = 1

and z; = 29 < z3 < 0. In this case

2
—c<r< —36 4= —2(r + ¢). (4.3.5)

The solution to (4.3.2) is a smooth-hump solitary wave given by (A.14)
with r < z < =2(r + ¢); see Fig. 4.9 for an example.

-0.25

Figure 4.9: Solitary smooth hump solution of the CHE with » = —0.9,
qg=—0.2 and v > 0.

4.3.1c. z4 = 0: Periodic peakon with v > 0

In Section 4.3.1a, consider the limit z3 = z4 so that we have m =1
and z1 < 29 < z3 = 0. In this case

—c<r<0, ¢g=0. (4.3.6)

The solution to (4.3.2) is given by (A.9) and has r < z < 0. From this
we can construct a weak solution, namely the periodic peakon wave
given by

(4.3.7)
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where

2(n): = [22 — 21 tanh?(n/2)] cosh?(1/2) = —c+ (r +¢) cosh 1 (4.3.8)

L -1 2 oLl Y A
Nt = 2 tanh ( P ) 2 tanh ( PSY ) ; (439)

see Fig. 4.10 for an example. The solution given by (4.3.7)—(4.3.9) is
the spatially periodic solution of the CHE that has been dubbed a
‘coshoidal wave’ by Boyd [109].

and

0

-0.25

Figure 4.10: Periodic peakon solution of the CHE with » = —0.9,
qg=0and v > 0.

4.3.1d. z4 = 0: Solitary peakon with v > 0

In Section 4.3.1 a, consider the limit z; = 29 and z3 = z4 so that we
have z;1 = 29 < z3 = 0 and then

r=-—c ¢q=0. (4.3.10)

In this case neither (A.9) nor (A.14) is appropriate. Instead we con-
sider (4.3.2) with f(z) = 2?(z + ¢)? and note that the bound solution
has —c¢ < z < 0. On integrating (4.3.2) and setting z = 0 at n = 0 we
obtain the weak solution

z=cle M 1), (4.3.11)

i.e. a solitary peakon with amplitude c¢; see Fig. 4.11.
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-0.25

-5 -2.5 0 2.5 5

n

Figure 4.11: Solitary peakon solution of the CHE with r = -1, ¢ =0
and v > 0.

4.3.1e. z3 = 0: Periodic cuspon with v >0

Suppose z3 = 0 so that z; = s, 25 = r and 24 = ¢q. First let us consider
the case z1 < z9 < 0 < 24 so that

—q—r—2c<r<0<q. (4.3.12)

(This is equivalent to the case considered numerically in Section 4.2
of [68].) The solution to (4.3.2) is a periodic cuspon given by (A.5)
and (A.7), or (A.11) and (A.12), with r <z <0 and 0 < m < 1; see
Fig. 4.12 for an example given by (A.11) and (A.12).

4.3.1f. z3 = 0: Solitary cuspon with v >0

In Section 4.3.1e, consider the limit z; = 25 so that we have m = 1
and z; = 29 < 0 < z4. In this case

r<-—c, q=-2(r+c). (4.3.13)
The solution to (4.3.2) is a solitary cuspon given by (A.14) with r <
z < 0; see Fig. 4.13 for an example.

4.3.1g. zo = 0: Periodic inverted cuspon with v > 0

Suppose zo = 0 so that z; = s, 23 = r and z4 = ¢. First let us consider
the case z1 < 0 < z3 < 24 so that

—qg—r—2c<0<r<q. (4.3.14)
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-0.5

Figure 4.12: Periodic cuspon solution of the CHE withr = —1, ¢ = 0.1
and v > 0.

The solution to (4.3.2) is a periodic inverted cuspon given by (A.5)
and (A.7), or (A.11) and (A.12), with 0 < z <7 and 0 < m < 1; see
Fig. 4.14 for an example given by (A.5) and (A.7).

4.3.1h. 2o = 0: Solitary inverted cuspon with v >0

In Section 4.3.1g, consider the limit z3 = z4 so that we have m =1
and z1 < 0 < z3 = z4. In this case

0<r=gq. (4.3.15)

The solution to (4.3.2) is a solitary inverted cuspon given by (A.9)
with 0 < z < r; see Fig. 4.15 for an example.

4.3.1i. z7=0and v >0

In this case zo9 + 23 + z4 > 0 and so the condition zo + 23 + 24 = —2¢
cannot be satisfied. Hence there are no solutions with z; = 0.

4.3.2 Further comments

In Sections 4.3.1 a—4.3.1 h we have found explicit expressions for eight
different travelling-wave solutions to the CHE that travel in the posi-
tive z-direction with speed v, i.e. with v > 0. These solutions depend
on two parameters g and r. For each of the aforementioned solutions
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0
-0.5
z
-1
-5
-10 5 0 5 10
n
Figure 4.13: Solitary cuspon solution of the CHE with r = —1.3,

q=0.6 and v > 0.

expressed with u as the dependent variable, there is a solution for u
that is the mirror image in the z-axis and travels with the same speed
but in the opposite direction, i.e. with v < 0. For example, the mirror
image of categories 4.3.1 b and 4.3.1 e respectively are solitary smooth
wells with v < 0 and periodic inverted cuspons with v < 0.

In Theorem 1 in [66], Lenells categorized travelling-wave solu-
tions to the CHE. His categories (a) — (d) correspond to our cate-
gories 4.3.1a — 4.3.1d. His category (e), i.e. periodic cuspons, cor-
respond to our category 4.3.1e, i.e. periodic cuspons with v > 0,
together with the mirror image of our category 4.3.1g, i.e. periodic
cuspons with v < 0. His cate