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INTRODUCTION 

 
 
 
In many problems of nuclear physics at low energies and nuclear 

astrophysics, knowledge of the scattering elastic phase shifts, which can be 
determined from the differential cross sections of the scattering of various 
nuclear particles, is necessary [1]. Such phase shifts are used, in particular, 
for the construction of intercluster interaction potentials, for example, in the 
potential cluster model (PCM) of light nuclei [2]. The procedure of phase 
shift analysis consists of the decomposition of the total scattering amplitude 
in a row by partial waves or amplitudes and the analysis of the parameters 
that appear at the same time, which are termed scattering phase shifts. Such 
phase shifts allow us to obtain data about the nature of strong interactions, 
the structure of resonance states, and the general structure of an atomic 
nucleus [1]. 

Two-body processes with the formation of resonances in nuclear physics 
at low energies can also be investigated by means of phase shift analysis. To 
solve this problem, it is necessary to consider in detail the energetic behavior 
of the resonance partial scattering amplitude [1,3]. As a result, phase shift 
analysis plays a large role in the investigation of nuclear resonances in 
scattering processes and the determination of their quantum numbers. 
Research into scattering processes by means of phase shift analysis can help 
clarify many important aspects of the interactions of nuclear particles, because 
such analysis is based only on the most general laws of conservation and 
displays close connections to the experimental data [1,3]. 

The problem of determining or extracting the nuclear phase shifts from 
cross sections of elastic scattering in the mathematical plane is reduced to a 
multiple parameter variation problem. In other words, using the experimental 
scattering cross sections of nuclear particles and the mathematical expressions 
obtained in the quantum mechanics, which describe these cross sections 
according to some L parameters, the nuclear scattering phase shifts can be 
known. Consequently, a multiple parameter variation problem arises in 
finding these parameters for the set interval of values while taking into 
account the generalized Levinson theorem [4]. In different nuclear systems, 
depending on the energy of the colliding particles, the number of elastic 
scattering phase shifts can change from 1–3 to 10–20 [5]. 

This book is directly based on the results of about twenty scientific 
articles published over the last five to seven years in Russia, Europe, the 
USA, and the CIS countries. It consists of three chapters. The first chapter 
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Introduction viii

is devoted to a description of the general mathematical methods for 
calculating some nuclear characteristics. The general criteria and methods 
of creation of the intercluster potentials in a continuous and discrete 
spectrum, which are used further for the consideration of some nuclei in the 
three-body model (described in the third chapter), are defined. 

The second chapter presents methods and results of the phase shift 
analysis of elastic scattering of the following nuclear particles at low and 
astrophysical energies: 4He4He, n3He, p6Li, p12C, n12C, p13C, p14C, n16O, 
p16O, and 4He12C. These results have been used to construct the potential 
cluster model (PCM) of pair intercluster interaction potentials in a 
continuous spectrum. Here, the various experimental measurements, 
methods of calculating differential cross sections, computer programs, and 
results of the phase shift analysis of elastic scattering of the stated particles, 
are all considered. For the first system, 4He4He, only the main expressions 
for the phase shift analysis, the computer program, and versions of the 
control account are given at 25–29 MeV. For other systems, the 
approximate energy range 1–2.5 MeV is considered. In an elastic 4He12C 
scattering, a phase shift analysis was undertaken in the range 1.5–6.5 MeV. 
The areas of phase shift analysis given here are defined by the existence of 
experimental data on differential cross sections for angular distributions or 
excitation functions. 

The results obtained for the three-body single-channel models of some 
light nuclear nuclei, namely, 7Li, 9Be, and 11B, are given in Chapter Three. 
They allow one to check the adequacy of the construction of pair intercluster 
potentials on the basis of the elastic scattering phase shifts and 
characteristics of the bound states of light atomic nuclei. These results allow 
us to determine the applicability of the obtained potentials to three-body 
problems. The checked potentials are thus used for the calculation of some 
primary characteristics of thermonuclear processes in the preliminary 
nucleosynthesis of the universe and some solar cycles [2]. 

We note that the second and, particularly, the third chapters of this book 
almost completely coincide with the results given in the corresponding 
chapters of other books by the author, including Preliminary 
Nucleosynthesis of the Universe (2014, Lambert Academy Publ. GmbH & 
Co. KG: Saarbrucken, Germany, 668 pages) [2]. This material is found in 
this book (Phase Shift Analysis in Nuclear Astrophysics) primarily in order 
to reduce the size of book [2] and allow the future possibility of its 
enlargement and the addition of new material on thermonuclear reactions in 
the next edition. At the same time, the present book can also be extended by 
the inclusion of new results on phase shift analysis and the three-body 
model. 
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I 

METHODS OF SOLVING  
THE SCHRÖDINGER EQUATION 

 
 
 

Introduction 

The set of problems of theoretical nuclear physics, especially in the field 
of light atomic nuclei and low energies, requires the ability to solve the 
Schrödinger equation or the coupled system of equations of this type. A 
wave function, which describes a quantum state of some system of nuclear 
particles and, in principle, contains all the information about such state is a 
result of the solution. 

There are many varied mathematical methods for the solution of 
differential equations or their second-order systems, of which one is the 
Schrödinger equation. Quite abstract methods of solving such equations, 
which are rather difficult to apply in the solution of a concrete equation, like 
the Schrödinger equation type, are usually given in the mathematical 
literature. The problem usually arises in the choice of the optimum 
mathematical and numerical method applicable to the consideration of 
certain problems based on the solutions of the Schrödinger equation. 

This chapter is devoted to the solution of these problems and describes 
some mathematical methods that are directly applicable to locating the wave 
functions from the Schrödinger equation of scattering problems of nuclear 
particles and their bound states. The numerical methods applicable to the 
problems of a continuous and discrete spectrum of states, which allow us to 
obtain end results with almost complete accuracy, are considered. On the 
basis of these methods, the possibility of writing computer programs in the 
BASIC computer language using the Borland Turbo Basic Compiler and the 
Fortran-90 language is considered, which can assist in solving all problems 
of nuclear physics considered here. 

Many problems of nuclear physics can be considered using only the 
central part of the nuclear forces [6,7]. In this case, we are dealing with only 
one Schrödinger equation or system of unrelated equations (taking into 
account the spin-orbital interaction) and the mathematical problem is solved 
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rather simply. The account of tensor components of nuclear forces leads us 
to the system of bound Schrödinger equations [8,9], the solution of which 
is slightly more difficult, but quite feasible by many methods, including 
those described in [10]. 

We provide the mathematical and numerical methods used for the 
solution of Schrödinger equations for the central potentials at positive and 
negative eigenvalues in this chapter. We also consider their application to 
the analysis of the scattering quantum problem and bound-state energies of 
nuclear particles. In other words, the methods of investigating nuclear 
scattering phase shifts and the calculation of bound-state energies of light 
nuclei within the modified potential two-cluster model (MPCM) [2] are 
given. 

1.1 The general methods of solving  
the Schrödinger equation 

Here the general formulation of the problem for the solution of the 
Schrödinger equation with positive continuous and negative discrete 
eigenvalues is considered. Entry and boundary conditions for solving this 
problem are determined in relation to a description of the physical processes 
and states in nuclear physics and nuclear astrophysics. 

1.1.1 The central real potentials 

The Schrödinger equation for the central forces of interaction between 
two nuclear particles without spin-orbital and tensor potentials has the 
following form [1,6,7,11] 

 

2
c coul 2

( 1)
''( ) ( ) ( ) ( ) 0

L Lu r k V r V r u r
r

 ,         (1.1.1) 

 
where r is the scalar relative distance between particles in fm (1 fermi = 10-15 
m); u is the solution of the equation, i.e. wave function (WF); u'' is its second 
derivative; Vcoul(r) = 2μ/ 2 Z1Z2/r is the Coulomb potential reduced to the 
dimension of fm-2;  is the Plank constant = 1.055 10-34 J s (Joule-second); 
Z1 and Z2 are the charges of particles in terms of their elementary charge (1 
e.c. – elementary charge = 1.60 10-19 C – Coulomb); the constant 2/m0 = 
41.4686 MeV fm2 (1 MeV – megaelectronvolt = 1.60 10-13 Joule); m0 is the 
atomic mass unit (1 amu – atomic mass unit = 1.66 10-27 kg.); Vcf = 
L(L+1)/r2 is the centrifugal potential, which depends on the value of the 
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orbital moment of the relative movement of the L particles; k2 = 2μE/ 2 is 
the wave number of the relative motion in fm2; E is the energy of particles 

in MeV; 1 2

1 2

m m
m m is the reduced mass of two particles in amu; Vc(r) is the 

central part of the nuclear potential, equal to 2μ/ 2 Vn(r); Vn(r) is the radial 
dependence of the potential, which is often accepted in the form V0 exp(-

r2) or V0 exp(- r); V0 is the potential depth in MeV; 1 2
2

Z Z
k

 = 0.0344476 

Z1Z2/k is the Coulomb parameter; the Coulomb potential can be presented 
in the form 
 
Vcoul(r) = 2 k/r = Ac/r. 
 

If the spin-orbital interaction is taken into account, then the central 
potential has the form [1,6,7] 
 
Vc(r) = 2μ/ 2 [Vn(r) + Vsl(r)], 
 
Vsl(r) = (SL) V0sl F(r), 
 
where F(r) is the functional dependence of the potential on the relative 
distance between particles, which can also be accepted in the form of the 
Gaussian function exp(- r2) or exponent exp(- r). 

The (SL) value is called the spin-orbital operator and its values can be 
found from the well-known expression [6,7] 

 
(SL) u(r) = 1/2 [J(J + 1) - L(L + 1) - S(S + 1)] u(r), 
 
where J is the total moment of the system; L is the orbital moment; and S is 
the spin of the system of particles. Taking into account the spin-orbital 
interaction, the Schrödinger equation is split into a system of uncoupled 
equations, each of which allows the finding of the WF for the concrete total 
moment. 

Sometimes, the Coulomb Rc radius is entered into the potential of 
interaction; then the Coulomb part of the potential takes a slightly different 
form 
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1 2

2 2

1 2 2

2
( )

3 2

c

coul

c c
c

Z Z
r R

r
V r

rZ Z R r R
R

.          (1.1.2) 

 
Equation (1.1.1) forms the Cauchy problem with initial conditions that 

lie outside physical reasoning The first initial condition demands equality 
to zero of the WF at u(0) = 0. As the WF reflects the probability of some 
processes or states of the quantum particles, this condition means that two 
particles cannot completely merge and occupy the same volume. The 
second statement of the Cauchy problem involves the determination of the 
value of the first derivative of this function. However, for reasons of 
physical limitation, it is impossible to determine the value of this derivative; 
therefore it is taken to equal some constant, which determines the amplitude 
of the wave function. In numerical calculation, u'(0) = 0.1–1 is usually 
accepted. The real amplitude of the function, which is used for numerous 
physical calculations, is defined from the asymptotic conditions imposed on 
this function at long distances of r R, when the nuclear potential is almost 
equal to zero. 

The asymptotics of the wave function at long distances, when 
Vc(r R) 0, offer the solution of equation (1.1.1) without nuclear 
potential, and can be presented as follows 
 
uL(r R) FL(kr) + tg( L)GL(kr),   1.
 
or 
 
uL(r R) cos( L)FL(kr) + sin( L)GL(kr), 

where FL and GL are the scattering Coulomb functions [12,13]. These are 
partial solutions of equation (1.1.1) without the nuclear part of the potential, 
i.e. when Vc = 0. 

Interlacing the numerical solution u(r) of equation (1.1.1) at long 
distances (R at about 10–20 fm) with these asymptotics, it is possible to find 
the real amplitude of the function and the scattering phase shift L for each 
L at the given energy of the interacting particles. The scattering phase shifts 
in the concrete system of the nuclear particles can be determined from phase 
shift analysis of the experimental data in terms of their elastic scattering 
(Chapter 2). Furthermore, variation of the parameters of nuclear potential in 
the previously determined form in equation (1.1.1) is carried out and those 
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parameters that allow us to describe the results of the phase shift analysis 
are determined. Thus, the problem of the description of scattering processes 
of nuclear particles consists of the search for the parameters of the nuclear 
potential that can describe the results of phase shift analysis and the 
experimental data for the scattering cross sections. 

We consider the procedure of interlacing the wave functions with 
asymptotics in more detail. At r = R, it is possible to write down two 
equalities for the WF along with their derivatives [14] 

 
NuL(R)  FL(kR) + tg( L)GL(kR)
 
Nu'L(R)  F'L(kR) + tg( L)G'L(kR)
 
where N is a normalizing multiplier. It is possible to consider similar 
expressions, not for the function and derivative, but only for the function in 
two different points 
 
NuL(R1) FL(kR1) + tg( L)GL(kR1)    

    (1.1.4) 
NuL(R2) FL(kR2) + tg( L)GL(kR2)  
 
We enter the notations 

 
F1= FL(kR1),  F2= FL(kR2), 
G1= GL(kR1),               G2= GL(kR2), 
u1= uL(R1),  u2= uL(R2), 
 
and find the value N, for example, from the first equation 
 
N = [F1+tg( L)G1]/u1. 

 
Substituting this expression into the second equation, we obtain 

 
tg( L) = (u1F2 - u2F1)/(u2G1 - u1G2) = AL.                         (1.1.5) 
 
then 

L = arctg(AL). 
 

Normalization of the function, for the purposes of investigating phase 
shifts, is of no importance. However, if we need the normalized WF, i.e. the 
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total scattering function is also required, then it is better to consider the 
second equation from (1.1.3), written down in the form of (1.1.4) and having 
performed similar operations to those given above. If the scattering phase 
shift results in the same expression, then we write the normalization in the 
form 
 
N = [cos( L)F1+sin( L)G1]/u1, 
 
or 
 
N = [cos( L)F2+sin( L)G2]/u2. 

 
In so doing, we can completely define the behavior of the wave function, 

its amplitude and phase shift, in all ranges of solutions for equation (1.1.1), 
from zero to some large value of R, which define the WF asymptotics. 

1.1.2 The central complex potentials 

If the inelastic channel of scattering or reactions is open in nuclear 
processes, then it is necessary to use the complex potential of interaction, 
taking into account the decrease in the stream of particles from the elastic 
channel [6]. Now, the potential takes a form 

 
Vc = Vr(r) + iVm(r),                           (1.1.6) 
 
where Vr(r) is the real part of the potential and Vm(r) is its imaginary part. 
The wave function also becomes complex and can be written in the form 
 
u(r) = x(r) + iy(r).             (1.1.7) 
 

Then, the Schrödinger equation (1.1.1) can be rewritten in the form of a 
coupled equation system as 
 
x''(r) + [k2 - Vr(r) - Vcoul(r) - L(L+1)/r2]x(r) = -Vmy(r), 

(1.1.8) 
y''(r) + [k2 - Vr(r) - Vcoul(r) - L(L+1)/r2]y(r) = Vmx(r), 
 
with initial conditions in the form 
 
x(r=0) = 0,  x'(r=0) = const, 
y(r=0) = 0,  y'(r=0) = const. 
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In the numerical calculations, the value of the constant (const.) for the 
derivatives of the wave functions is set at the level 0.1–1. The asymptotics 
of wave functions are represented as follows [6] 

 
u(r) = H+(r) + SH-(r) = [F(r) + iG(r)] + S[F(r) - iG(r)],                       (1.1.9)  
 
where H+ is the Hankel function; F and G are the Coulomb functions; and S 
is the scattering matrix, which has the form 
 
S = e2i  = S1 + iS2 = cos(2 ) + isin(2 ). 
 

In taking into account the inelastic processes, the phase shifts of the 
elastic scattering become complex and are represented as follows 

 
 =  + i  

 
where and  are the real and imaginary parts of the phase shift. Then, the 
scattering matrix can be rewritten in the form 
 
S = e2i = e-2 e2i  = e2i  = (S1+iS2) = [cos(2 )+isin(2 )],       (1.1.10) 
 
where  = e-2 is the inelasticity parameter. For the determination of the 
scattering phase shifts and the parameter of inelasticity, we can write out 
the boundary conditions for the functions in two points in the form of a 
logarithmic derivative 
 

-
1 1 1

-
2 2 2

  

  

u H SH
u H SH

,            (1.1.11) 

 
from which it is easy to find 
 

2 1 1 2

1 2 2 1

 - 

 - 

u H u HS
u H u H

. 

 
Substituting the expressions for the Hankel functions given above 

(1.1.9), and splitting the real and imaginary parts, we obtain 
 

  DC iS K iM
A iB

,            (1.1.12) 
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where 
 

2 2

AC BDK
A B

, 
2 2

AD BCM
A B

,                        (1.1.13) 

 
and 
 
A = b - a,  B = - c - d, 
 
C = a + b,  D = c - d, 
 
a = x2F1 - x1F2, b = y1G2 - y2G1, 
 
c = y2F1 - y1F2, d = x1G2 - x2G1. 
 

Thus, all elements of the S matrix are expressed through the Coulomb 
functions and the solutions of the initial Schrödinger equation (1.1.8) with 
the given nuclear potential. 

Comparing the real and imaginary parts of expressions (1.1.10) and 
(1.1.12), we obtain 

 
S1 = cos(2 ) = K/ , 

(1.1.14)
S2 = sin(2 ) = M/ , 

and 
 
S2 = (S1 + S2)2 =   

      (1.1.15) 
S2 K2 + M2, 
 
from which we find 

 K2 + M2, 
 
giving the inelasticity parameter. Knowing these values, we can obtain 
 

2

1

tg(
1

SA
S

,             (1.1.16) 
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then 
 

 = arctg(A).             (1.1.17) 
 

It is easy enough to check that when Vm = 0 and equation (1.1.8) become 
independent, then  = 1 and the results for the phase shifts (1.1.5) and 
(1.1.16) coincide. 

For the determination of the normalization of the WF, we use 
expressions (1.1.9) and (1.1.7) 

 
N(x+iy) = H+(r) + SH-(r) = [F(r) + iG(r)] + (S1 + iS2) [F(r) - iG(r)], 
 
from which we find 

 

2 2 2 2
  

Ax By Bx AyN i
x y x y

, 

 
where 
 
A = (1 + S1)F(r) + S2G(r), B = (1 - S1)G(r) + S2F(r). 
 

Generally, normalization of a complex WF can be written down in the 
form of a complex value as follows 
 
Nu(r) = (N1 + iN2)(x + iy) = N1x - N2y +i[N1y + N2x] = v + iw. 
 

Here, v and w are already normalized total wave functions of the 
scattering. Equating the real and imaginary parts, we have 

 

1 2 2
  

Ax ByN
x y

,  2 2 2

Bx AyN
x y

, 

 
which are general expressions for determining the normalization of WF 
scattering in the case of complex potentials [15]. 

1.2 The numerical methods of solving  
the Schrödinger equation 

For the numerical solution of the Schrödinger equation, it is possible to 
use the finite-difference method (FDM) [7], presenting the function and its 
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derivative in the form of the central differences and using the Runge-Kutta 
method (RKM) [16] or the Numerov method (NM) [17], which allows us to 
obtain a higher accuracy solution for the initial equation. 

1.2.1 The central real potentials 

We can write the Schrödinger equation for the central nuclear forces 
(1.1.1) in the form of [6] 

 
u''(r) + [k2 - V(r)]u(r) = 0.             (1.2.1) 
 

To solve it, we can use the finite-difference method, for which the 
second derivative can be presented as follows [7] 

 
u''(r) = [u(r + h) - 2u(r) + u(r - h)]/h2 = [u(ri + 1) - 2u(ri) + u(ri-1)]/h2, (1.2.2) 
 
where h is a step of the finite-difference grid, for the determination of which 
the whole interval of h values, from zero to some value of R, are divided 
into N parts 
 
h = R/N. 
 

Here, R is the top limit at which the interlacing of the numerical solution 
of equation (1.2.1) with asymptotics is carried out. Then 
 
ri = hi, ui = u(ri), 
 
where i changes from 0 to N (r0 = 0 and rN = R). Now, expression (1.2.2) 
can be rewritten in the form 
 
u'' = [ui+1 - 2ui + ui-1]/h2, 
 
and the whole equation is rewritten as 
 
[ui+1 - 2ui + ui-1]/h2 + [k2 - V(ri)]ui = 0, 
 
which we find with an order of accuracy O(h2) equal to h2, i.e. the method 
is in proportion to a square of a step [7] 
 

2 2 2 2
i 1 i i i 12 ( ) ( )u h V r h k u u O h .                        (1.2.3) 
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Here, i = 1, 2 …. N - 1. The function at r = 0 has to be equal to zero and 
in the first step it can be accepted as equal to some constant, which defines 
only a function of normalization without affecting its behavior at various 
values of r. From here, the WF on the following step of u2 can be found and 
this process repeats until i does not become equal to N - 1. Such a procedure 
allows us to find the whole array of WF values at all points from zero to R. 
Furthermore, we carry out its interlacing in two points, for example, at rN = 
R and rN-5 = R - 5h, as described in paragraph 1.1.1. The second point is 
defined experimentally in each case and depends on the energy of the 
particles, but at small energies it usually recedes by 3–5 steps [18]. 

Below, we give an example of the program written in Fortran-90 to 
realize the method described. The following designations are set. 

 
U – the array of the WF with a dimension of N, 
H – the look-up of the WF, 
N – the number of steps, 
A0 – the V0 depth of the central part of the potential in fm-2, 
R0 – the width of the central part of the potential in fm-2, 
L – the orbital moment, 
RC – the Coulomb radius Rc in fm, 
AK – the Coulomb coefficient Ac in the description of equation (1.1.1), 
SK – the wave number of k2 in fm-2. 

 
SUBROUTINE FUN(U,H,N,A0,R0,L,RC,AK,SK) 
IMPLICIT REAL(8) (A-Z) 
INTEGER N,L,K 
DIMENSION U(0:N) 
! INITIAL VALUES 
U(0)=0.0D0; U(1)=0.1D0; RR=1.0D0/RC 
LL=L*(L+1); BB=AK/(2.0D0*RCU); HK=H*H; SHS=SK*HK-2.0D0  
! CALCULATION THE VALUES OF THE Vc(R) POTENTIAL 
DO K=1,N-1 
X=K*H; XX=X*X 
V=A0*DEXP(-R0*XX)+LL/XX 
IF (X>RC) THEN 
V=V+AK/X 
ELSE 
V=V+(3.0D0-(X*RR)**2)*BB 
ENDIF 
! CALCULATION THE VALUES OF THE WAVE FUNCTION 
Q=V*HK-SHS 
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U(K+1)=Q*U(K)-U(K-1) 
ENDDO  
END 
 

The WF u(r) is the calculation result at the given L for the Schrödinger 
equation (1.2.1) in the range of values from 0 to R. 

1.2.2 The central complex potentials 

If there is a system of equations (1.1.8) for the complex potential [18] 
 
x''(r) + [ k2 - Vr(r) - Vcoul(r) - L(L+1)/r2 ]x(r) = - Vmy(r), 

 (1.2.4) 
y''(r) + [ k2 - Vr(r) - Vcoul(r) - L(L+1)/r2 ]y(r) = Vmx(r), 
 
then, using the same representation of a derivative in the finite-difference 
form 
 
u'' = [ui+1 - 2ui + ui-1]/h2, 
 
for functions x and y we obtain 
 
xi+1 = [ 2 - Aih2 ]xi - xi-1 - h2Vm(ri)yi, 

 (1.2.5) 
yi+1 = [2 - Aih2 ]yi - yi-1 + h2Vm(ri)xi, 
 
where 
 
Ai = k2 - Vr(ri) - Vcoul(ri) - L(L+1)/ri

2. 
 

In addition, setting the values of functions in the two first points 
 
x0 = 0, x1 = const., y0 = 0, y1 = const., 
 
it is possible to find the values of functions in all other points [18], as well 
as for expression (1.2.3). The interlacing procedure of the numerical 
function with its own asymptotics in the case of complex potentials is 
described in paragraph 1.1.2. 
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1.2.3 The Runge-Kutta method for central real potentials 

Here, we consider the other method of solving such equations. This is 
the fourth-order Runge-Kutta method per step h [16,19,20,21,22]. The 
standard method of the solution of one differential equation of the first order 
is 

 
y' = f(x,y),                            (1.2.6) 
 
with the initial condition 
 
y(x0) = y0, 
 
which consists of the presentation of the solution on an interval from 0 to 
some value of R in the form 
 
yn+1 = yn + yn,               (1.2.7) 
 
where n can change from 0 to N (R = xN = hN); h is a step in the solution; 
and yn is obtained from the expression 
 

yn = 1/6(k1 + 2k2 + 2k3 + k4),                          (1.2.8) 
 
where 
 
k1 = hf(xn,yn),  k2 = hf(xn+h/2, yn+k1/2), 
k3 = hf(xn+h/2, yn+k2/2), k4 = hf(xn+h, yn+k3). 

 
In the case of a system of two differential equations of the first order [16-

22], we have 
 
y' = f(x,y,z),  
                                                                                                             (1.2.9) 
z' = g(x,y,z), 
 
with initial conditions 
 
y(x0) = y0, z(x0) = z0. 
 
The solutions are found from the expressions 
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yn+1= yn + yn,                (1.2.10) 
zn+1= zn + zn, 
 
where 
 

yn = 1/6(k1 + 2k2 + 2k3 + k4),  (1.2.11) 
zn = 1/6(m1 + 2m2 + 2m3 + m4), 

 
and 
 
k1 = hf(xn,yn,zn),   m1 = hg(xn,yn,zn), 
k2 = hf(xn+h/2, yn+k1/2, zn+m1/2), m2 = hg(xn+h/2, yn+k1/2, zn+m1/2), 
k3 = hf(xn+h/2, yn+k2/2, zn+m2/2), m3 = hg(xn+h/2, yn+k2/2, zn+m2/2), 
k4 = hf(xn+h, yn+k3, zn+m3),               m4 = hg(xn+h, yn+k3, zn+m3). 

 
In the case of one differential equation of the second order of the form 

(1.2.1) 
 

y'' = g(x,y,y'),            (1.2.12) 
 
with initial conditions 
 
y(0) = y0, y'(0) = y'0, 
 
we substitute 
 
z = y', 
 
then we obtain a system of the form 
 
y' = z, 

       (1.2.13) 
z' = g(x,y,z), 
 
with initial conditions 
 
y(0) = y0, z(0) = z0. 
 
The solution of which f(x,y,z) = z can be presented as follows 
 

yn = hzn + 1/6h(m1 + m2 + m3),            (1.2.14) 
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zn = 1/6(m1 + 2m2 + 2m3 + m4), 
 
and 
 
k1 = hzn,  m1 = hg(xn,yn,zn), 
k2 = h(zn+m1/2), m2 = hg(xn+h/2, yn+k1/2, zn+m1/2), 
k3 = h(zn+m2/2), m3 = hg(xn+h/2, yn+k2/2, zn+m2/2), 
k4 = h(zn+m3), m4 = hg(xn+h, yn+k3, zn+m3). 

 
The error of the Runge-Kutta method is in the order of O(h4), which is 

higher than for the previous case of the FDM. 
Below we present an example of the program in Fortran-90 to realize 

the method described. The following designations are set. 
 

U – the array of the WF with a dimension of N, 
H – the look-up of the WF, 
N – the number of steps, 
A0 – the V0 depth of the central part of the potential in fm-2, 
R0 – the  width of the central part of potential in fm-2, 
L – the orbital moment, 
RC – the Coulomb radius Rc in fm, 
AK – the Coulomb coefficient Ac in the description of equation (1.1.1), 
SK – the wave number k2 in fm-2. 

 
SUBROUTINE FUNRK(U,H,N,A0,R0,L,RC,AK,SK) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,N,L 
DIMENSION U(0:N) 
! THE SOLUTION OF THE SCHRÖDINGER EQUATION BY RUNGE-
KUTT METHOD IN ALL AREA OF VARIABLES 
VA1=0.0D0;! VA1 - the value of function in zero 
PA1=1.0D-1;! PA1 - Value of a derivative in zero 
DO I=0,N-1 
X=H*I+1.0D-15 
CALL RRUN(VB1,PB1,VA1,PA1,H,X,L,SK,A0,R0) 
VA1=VB1; PA1=PB1; U(I+1)=VA1  
ENDDO 
END  
SUBROUTINE RRUN(VB1,PB1,VA1,PA1,H,X,L,SK,A0,R0) 
IMPLICIT REAL(8) (A-Z) 
INTEGER L 
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! THE SOLUTION OF THE SCHRÖDINGER EQUATION BY THE 
RUNGE-KUTT METHOD BY ONE STEP 
X0=X; Y1=VA1  
CALL FA(X0,Y1,FK1,L,SK,A0,R0)  
FK1=FK1*H; FM1=H*PA1 
X0=X+H/2.0D0; Y2=VA1+FM1/2.0D0  
CALL FA(X0,Y2,FK2,L,SK,A0,R0,A1,R1)  
FK2=FK2*H; FM2=H*(PA1+FK1/2.0D0); Y3=VA1+FM2/2.0D0  
CALL FA(X0,Y3,FK3,L,SK,A0,R0,A1,R1) 
FK3=FK3*H; FM3=H*(PA1+FK2/2.0D0); X0=X+H; Y4=VA1+FM3 
CALL FA(X0,Y4,FK4,L,SK,A0,R0,A1,R1)  
FK4=FK4*H; FM4=H*(PA1+FK3) 
PB1=PA1+(FK1+2.0D0*FK2+2.0D0*FK3+FK4)/6.0D0 
VB1=VA1+(FM1+2.0D0*FM2+2.0D0*FM3+FM4)/6.0D0  
END  
 
SUBROUTINE FA(X,Y,FF,L,SK,A0,R0) 
IMPLICIT REAL(8) (A-Z) 
INTEGER L,L1 
! CALCULATION F (X,Y) FUNCTION IN THE RUNGE–KUTT METHOD 
VC=A0*DEXP(-R0*X*X)+A1*DEXP(-R1*X*X) 
IF (X>RC) GOTO 1 
VK=(3.0D0-(X/RC)**2)*AK/(2.0D0*RCU)  
GOTO 2 
1 VK=AK/X 
2 FF=-(SK-VK-VC-L*(L+1)/(X*X))*Y  
END 
 

The result of the calculation is the wave function u(r) at a given L, which 
is the solution of the Schrödinger equation (1.2.1) in the range of values 
from 0 to R. 

1.2.4 The calculation of wave functions  
by Numerov’s method 

We still have the Schrödinger equation in the general form 
 

0)()()('' ruraru , 

 
where 
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2
c( ) ( )a r k V r , 

 

2 2 1 2
c n 2

2
n 0

( 1)
( ) 2 / ( ) 2 / ,

( ) exp( )

Z Z L LV r V r
r r

V r V r
 

 
where V0 is the potential depth parameter in MeV and  is the parameter of 
its width in fm-2. 

In Numerov’s method [17], the WF at a given energy can be found from 
the expression 

 

2 2
n n n 1 n 1

6
n 1

2
n 1

5 1
2 1

6 12
( )

1
1

12

h a u h a u
u O h

h a
. 

 
Using this method, we can find the WF with a convergence rate of O(h4) 

[17] more easily than with the Runge-Kutta method having a convergence 
of O(h4). Here, 

 
un-1 = u(rn-1),  rn-1 = (n-1)h,  h = R/N, 
 
where R is the upper limit of integration of the equation; N is the number of 
steps of integration; and h is the value of a step, n = 1, … N - 1 and 
 
u(0) = 0, u(1) = const.  
 

We present an example of the program written in Fortran-90 to realize 
the method described. The following designations are set. 

 
U – the array of the WF with a dimension of N, 
H – the look-up of the WF, 
N – the number of steps, 
A0 – the V0 depth of the central part of the potential in fm-2, 
R0 – the  width of the central part of potential in fm-2, 
L – the orbital moment, 
RC – the Coulomb radius Rc in fm, 
AK – the Coulomb coefficient Ac in the description of equation (1.1.1), 
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SK – the wave number of k2 in fm-2. 
 
SUBROUTINE FUN(U,H,N,A0,R0,L,RC,AK,SK) 
IMPLICIT REAL(8) (A-Z) 
INTEGER N,L,I 
DIMENSION U(0:N),V(0:N) 
! INITIAL VALUES 
U(0)=0.0D0; U(1)=0.1D0; Q0=0.0D0; RR=1/RC; HK=H*H; SHS=SK*HK 
LL=L*(L+1); BB=AK/(2.0D0*RC); AA=1.0D0/12.0D0; 
DD=5.0D0/6.0D0 
! CALCULATION OF VALUES FOR THE Vc(r) POTENTIAL 
DO I=1,N-1,2 
X=I*H; XX=X*X; XP=(I+1)*H; XXP=XP*XP 
V(I)=A0*DEXP(-R0*XX) +LL/XX 
V(I+1)=A0*DEXP(-R0*XXP)+LL/XXP 
IF (X>RC) THEN 
V(I)=V(I)+AK/X  
V(I+1)=V(I+1)+AK/XP 
ELSE 
V(I)=V(I)+(3.0D0-(X*RR)**2)*BB  
V(I+1)=V(I+1)+(3.0D0-(XP*RR)**2)*BB 
ENDIF 
ENDDO 
! CALCULATION OF VALUES FOR THE WAVE FUNCTION 
DO I=1,N-1,1 
Q1=SHS-V(I)*HK; Q2=SHS-V(I+1)*HK; B=(1.0D0+AA*Q2) 
U(I+1)=((2.0D0-DD*Q1)*U(I)-(1.0D0+AA*Q0)*U(I-1))/B; Q0=Q1 
ENDDO 
END 
 

The result is the WF u(r) at a given L, which is the solution of the 
Schrödinger equation (1.2.1) in the range of values from 0 to R. 

1.2.5 Methods of calculating the binding energy  
of a two-body system 

Phase shifts can be used for the construction not only of scattering 
potentials, but also of bound states (BS): ground (GS) or excited (ES) states. 
We give two methods for the calculation of the binding energy of a two-body 
nuclear system. Such a situation arises, for example, in the S wave of the 4He2H 
system of 6Li, where the BS potential is constructed by the corresponding 
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phase shift and its parameters are then specified according to the values of the 
binding energy, mean square radius, and asymptotic constant (AC) [23]. 
 
1.2.5.1 The finite-difference method 
 

The first approach is based on the finite-difference method, which is 
described in detail in [7,10]. Here, we briefly present some methods of 
investigating the binding energy and the WF for the bound states and 
scattering processes. The Schrödinger equation [7] for the central potential 
is 

 
u'' + [k2 - V(r)] u = 0, 
 
with this or that boundary condition at k2 < 0 to form the boundary value 
problem of the Sturm-Liouville type with the boundary conditions 
 
u(r = 0) = u0 = 0, 
 
u'(r = R)/u(r = R) = u'N/ uN = f( ,L,ZN), 
 
where f is the logarithmic derivative;  is the Coulomb parameter; ZN = 
2krN; n = 1,2,….; N is the number of steps; and rN = R is the upper bound of 
the interval of integration of the equation. At the transition to the second 
derivative to the final difference [24,25,26] 

 
u'' = [un+1 - 2un+un-1]/h2, 
 

which turns into a determined system of linear algebraic equations 
 
un+1 + [h2k2 - h2V(r) - 2]un +un-1 = 0. 
 

The condition of equality to zero of its determinant DN is 
 

1

2 2

3 3

N

N 1 N 1

N N

1 0 . . . 0

1 0 . . 0

0 1 0 . 0

. . . . . . .

. . . . . . .

0 . 0 0 1

0 . 0 0 0

D  = 0, 
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allowing one to define the eigen binding energy of the system of two 
particles of k0. Here, N is the number of equations; h = R/N is the step of the 
finite-difference grid; R is an interval of the solution of the equation, for 
example, from zero to 30 fm, and 

 

n = 1, N = 2, n = k2h2 - Vnh2 - 2, 
 

N = k2h2 - VNh2 - 2 + 2hf( ,L,ZN), ZN = 2krN, 
 
rn = nh, n = 1,2 …..N, 2kk , 

 

n 2
n n

(
k k Lf L k , 

 
where Vn = V(rn) is the potential of the interaction clusters for point rn. 
Recording of the boundary conditions in the form of a logarithmic 
derivative f( ,L,Zn) allows us to consider the Coulomb interaction, i.e. the 
effects, and an asymptotic of the WF of the Whittaker function for the BS. 

This type of logarithmic derivative of the wave function of the bound 
state in the external area can be obtained from the integrated representation 
of the Whittaker function [27] 

 

2

2 2 ( )
f( ,

k k LL k S
Z Z

, 

 
where 
 

L 1 L 1 t

0

L L t

0

(1 / )

(1 / )

t t z e dt
S

t t z e dt
. 

 
The calculations show that the S value does not exceed 1.05 and its 

influence on the binding energy of the two-body system is negligible. 
The calculation of a determinant of DN is carried out on recurrent 

formulas of the form 
 

D-1 = 0, D0 = 1, (1.2.15) 
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Dn = n Dn-1 - n Dn-2, 
n = 1 … N. 
 

To find the wave functions of bound states, another recurrent process is 
used 

 
u0 = 0, u1 = const.,                                                                             (1.2.16) 
un = - n-1un-1 - un-2, 
n = 2 … N, 
 
where const. is any number—this is usually set in the range 0.01–0.1. 

As such, at the given energy of the system it is possible to find the 
determinant and wave function of the bound state. With the energy leading 
to zero determinants of 
 
DN(k0) = 0, 
 
it considers the eigen energy of system and the wave function at this energy 
presents the eigenfunctions of the problem. 

The last recurrence relation is used also to search for the WF in the case 
of a continuous spectrum of eigenvalues, i.e. at the previously given energy 
(k2 > 0) of particle scattering [10]. The text of the computer program written 
in Fortran-90 is given in [28]. 
 
1.2.5.2 The variation method 
 

The second method for discovering the binding energy is based on 
variation of the decomposition of the wave function on a non-orthogonal 
Gaussian basis (VM). We briefly give a description of this method and the 
computer program written in Fortran-90 is provided in [28]. More detailed 
statements can be found in [10]. Wave functions in the matrix elements for 
the ground and resonance states are presented through decomposition on a 
non-orthogonal Gaussian basis of the form 

 

LL
L i i

i

( )
( )  exp(-

rr r C r
r

, 

 
found by the variation method for the bound states or by the approximation 
of Gaussian functions of the numerical wave functions of resonance levels 
[29]. 
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For the determination of the spectrum of eigen energies and wave 
functions in the standard variation method of decomposition of the WF on 
an orthogonal basis, the matrix problem is solved on the eigenvalues [30] 

 

ij ij i(  - )   0 
i

H EI C , 

 
where H is a symmetric Hamiltonian matrix; I is a unity matrix; E stands 
for the eigenvalues; and C stands for the eigenvectors of the problem. 

In this case, on the non-orthogonal basis of the Gaussian functions, we 
come to a generalized matrix problem of the form [31] 

 

ij ij i(  - )   0 
i

H EL C , 

 
where L is the matrix of overlapping integrals, which, on an orthogonal 
basis, is turned into a unity matrix I. 

By using the WF in the form given above, we can easily find the 
expressions for all two-body matrix elements [31] 

 
2
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In the case of the Gaussian potential of intercluster interaction, the 
matrix element of the Vij potential is defined in the analytical form 

 

ij 0 L+2 L+3/2
ij

(2 1)!!

2 ( )

LV V , 

 
where V0 and  are parameters of the depth and width of the potential. 

 
1.2.5.3 Methods of solving the generalized matrix problem 

 
Here, we briefly present the methods of solving the generalized matrix 

problem [2]. By considering the eigenvalues and eigenfunctions of the 
generalized matrix problem, after the decomposition of the WF on a non-
orthogonal Gaussian basis, we proceed from the standard Schrödinger 
equation in the general form [32] 
 
H  = E  
 
where H is a Hamiltonian; E is the energy of the system; and  is the wave 
function. 

Expanded in a series of WFs on a non-orthogonal variation basis 
 

i i
i

C , 

 
and set in the initial system, we multiply from the left using a complex 

interfaced basic function i  and integrating by all variables. As a result, 

we obtain the known matrix system of the form [33] 
 
(H - EL)C = 0. 
 
This gives the generalized matrix problem for finding eigenvalues and 
eigenfunctions [34,35]. If the decomposition of the WF is carried out on an 
orthogonal basis, the matrix of overlapping integrals L turns into a unity 
matrix I, and we have a standard problem on eigenvalues, for the solution 
of which there is a set of methods [36]. 

For solutions of the generalized matrix problem, there are also a number 
of known methods, given, for example, in [16]. Here at the beginning, we 
will stop using a standard method for the solution of the generalized matrix 
problem for the Schrödinger equation, which arises in the use of the non-

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



I 
 

24

orthogonal variation basis in nuclear physics/nuclear astrophysics. Then, we 
consider its modification or an alternative method, which can be more 
conveniently applied to the solution of this problem in numerical 
calculations by modern computers [34]. 

Therefore, to determine the spectrum of eigenvalues of energy and wave 
functions in the variation method, using the decomposition of the WF on a 
non-orthogonal Gaussian basis, the generalized matrix problem on 
eigenvalues [16] is solved by 
 

ij ij i(  - )   0 
i

H EL C ,          (1.2.17) 

 
where H is a symmetric Hamiltonian matrix; L is the matrix of overlapping 
integrals; E stands for eigenvalues of the energy; and C stands for the 
eigenvectors of the problem. 

Presenting matrix L in the form of multiplication of the lower N and the 
upper V triangular matrices [35], after simple transformations, we move on 
to the usual eigenvalue problem 
 
H'C' = EIC', 
 
or 
 
(H' - EI)C' = 0, 
 
where 
 
H' = N-1HV-1, C' = VC, 
 
and V-1 and N-1 are the inverse matrices in relation to the V and N matrices. 

Furthermore, we find the matrices of N and V, carrying out a 
triangularization of the symmetric L matrix [36], for example, by the 
Khaletsky method [35]. Then, we determine the inverse matrices N-1 and V-

1, for example, by the Gauss method and calculate the matrix elements H' = 
N-1HV-1. Furthermore, we find the total diagonal of the E matrix (H' - EI) 
and calculate its determinant det(H' - EI) at energy E. 

Energy E leads us to the zero determinant of the eigen energy of the 
problem and the eigenvectors of the orthogonal equation correspond to its 
C' vectors. Once we know C', it is not difficult to find the eigenvectors of 
the initial problem C (1.2.17), because the matrix V-1 is already known. The 
method described for the generalized matrix problem, applied to the usual 
matrix problem on eigenvalues and functions, is called Schmidt 
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orthogonalization [27]. However, in some problems, at some values of the 
variation parameters, the procedure for finding the inverse matrix is 
unstable and the working of the computer program results in an overflow. 

As such, we consider an alternative method for the numerical solution 
of the generalized matrix problem on eigenvalues, free of such difficulties 
and having a higher processing speed on the computer. The initial matrix 
equation (1.2.17) is the homogeneous system of linear equations and has 
nontrivial solutions only if its determinant, det(H - EL), is equal to zero. For 
numerical methods realized using a computer, it is not obligatory to 
decompose the matrix L to the triangular matrices and find a new H' matrix 
and new C' vector, defining the inverse matrices as described above in the 
use of the standard method. 

It is possible to decompose at the non-diagonal, the symmetric matrix 
(H - EL) to the triangular matrix and, by numerical methods in the set area 
of values, to look for the energies that give us the zero of its determinant, 
i.e. that are eigen energies. In a real physical problem, it is usually not 
required to look for all eigenvalues and eigenfunctions; rather, it is 
necessary to find only 1 or 2 eigenvalues for a certain system energy and, 
as a rule, the lowest values and eigen wave functions correspond to them. 

As such, using the Khaletsky method for example, the initial (H - EL) 
matrix decomposes in to two triangular matrices and, in the main diagonal 
of the top triangular V matrix, we have the units 

 
A = H - EL = NV. 
 
Its determinant at the condition of det(V) = 1 [35] is calculated  
 

m

ii
i 1

  det   det det   det  
=

D E A N V N n  

 
for zero, by which we find the necessary eigenvalue E, i.e. the value of 
energy looked for. Here, m is the dimension of the matrices and a 
determinant of the triangular N matrix is equal to the product of its diagonal 
elements [35]. 

Thus, the result is quite a simple problem to search for the zero 
functionality of one variable 
 
D(E) = 0, 
 
the numerical solution of which does not display significant complexity and 
can be executed with the desired accuracy, for example, by the bisection 
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method [37]. 
As a result, we remove the need to look for two inverse matrices, V and 

N, and to carry out several matrix multiplications to obtain a new H' matrix 
and then a final eigenvector matrix C. The lack of such operations, 
especially the search for the inverse matrix, considerably increases the 
speed of finding the solution using a computer, irrespective of the 
programming language. 

It is possible to use the concept of residuals [16] for accurate estimation 
of the solution, i.e. the accuracy of the decomposition of an initial matrix to 
two triangular matrices. After the decomposition of matrix A to the 
triangular, the matrix of residuals [16] is calculated as the difference 
between the initial matrix A and the matrix 

 
S = NV, 
 
where N and V are the found numerical triangular matrices. The difference 
of all elements with an initial A matrix is calculated by 
 
AN = S - A. 
 

The AN matrix of residuals gives a deviation of the approximate NV 
value found by the numerical methods from true values of each element of 
an initial A matrix. It is possible to carry out the summation of all elements 
of the AN matrix to obtain the numerical value of the residual. In all 
variational calculations given here, the method described above was used 
and the maximum value of any element of the AN matrix did usually not 
exceed the 10-10 value. 

The stated method, which is appears quite obvious in its numerical 
execution, allows us to obtain good stability for the algorithm of the solution 
of any considered physical problem and does not lead to the overflow 
problem during the working of the computer program [38]. Thus, the 
described alternative method for finding the eigenvalues of the generalized 
matrix problem [10], considered on the basis of variation methods for the 
solution of the Schrödinger equation, and with the use of a non-orthogonal 
variation basis, removes the instability arising in the application of the usual 
methods of the solution of such mathematical problems, i.e. the usual 
method of Schmidt orthogonalization. 

 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Methods of Solving the Schrödinger Equation 
 

27 

1.2.6 Methods of calculating the Coulomb phase shifts 

For the practical calculation of the characteristics of nuclear reactions 
and scattering processes, in many cases, it is necessary to know, as a rule 
with high precision, the numerical values of the Coulomb functions for the 
given point R and Coulomb phase shifts in the wide range of values of the 
Coulomb parameter . There are a number of numerical methods that can 
be applied to find these values; however, the known ways of calculating 
Coulomb phase shifts have a number of shortcomings and in using them it 
is necessary to observe a certain caution. 

The Coulomb phase shifts are defined through the G-function as follows 
[6,39] 

 

L arg{ ( 1 )}L i  and to satisfy the recurrent process 

L L-1+arctg
L

, 

 

where 1 2
2

Z Z
k

 is the Coulomb parameter;  is the reduced mass of two 

particles; k is the wave number of the relative movement and k2 = 2 E/ 2; 
and E is the energy of the colliding particles in the center of mass. From this 
it is possible to obtain the following obvious expression 
 

L

L L 0
n=1

- arctg
n

, 0 = 0.                       (1.2.18) 

 
The most natural impression of the Coulomb phase shifts is gained on 

the basis of an integrated formula for the -function [39,52] 
 

L = arctg(y/x), 
 
where 
 

L

0

L

0

exp( ) ( ln )

exp( ) ( ln )

y t t sin t dt

x t t cos t dt
                                                                (1.2.19) 
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However, the direct calculation of these integrals appears rather a 
complex problem because the subintegral functions are quickly oscillating 
at t  0. Therefore, different approximations and asymptotic 
decomposition, for example, such as the representation of the phase shift at 
L = 0, are often used in the form of [41] 
 

2
0

2 4 2

2 2 2 2 4

7
ln( 16) arctg( / 4) [arctg arctg( / 2) arctg( / 3)]

2 2

1 48 1 160 1280
[1 ....]

12( 16) 30 ( 16) 105 ( 16)

 

 
or for L >> 1 [6] 
 

L 2 4 6

1 sin sin3 sin5 sin7
( 1/ 2) (ln 1) ...

12 360 1260 1680
L  

 
where 
 

2 2arctg , ( 1) .
1

L
L

 

 
Using these formulae, all other phase shifts are defined from the 

recurrent relations (1.2.18). Though both representations can be processed 
at high speed on a computer, the phase shifts come out with some error, 
which can only be estimated by comparing the obtained result with the 
tabular data or calculations of the exact formulae. In addition, the last 
formula is right only at L  100 and the recurrent process gives an additional 
error in the value of the phase shifts. 

Other representations of the Coulomb phase shifts also are known, in 
particular, at >> 1 [42] 

 

s
0 2s-1

s=1

(log 1) ,
4 2 (2 1)

B
s s

         (1.2.20) 

 
where Bs stands for the Bernoulli numbers [39]; however, the application of 
a similar decomposition works well only at  100. In [41,42], it has been 
shown that it is possible to obtain eight true signs taking into account only 
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the first member of the sum (1.2.20) at 85. At small , a row converges 
badly and requires the setting or calculation of the Bernoulli numbers. 

In [41], we find another way to determine the Coulomb phase shifts 
 

L
n=1

( 1) arctg ,L
L n L n

        (1.2.21) 

 
which can be obtained from the known form of the recorded -function [39] 
 

(z) = (x+iy) = rexp(i ) = r(cos  + isin , 
 
where 
 

n n n
n=0

( ) (tg ) , arctg ,
yy x

x n
 

 
and ( )x  is a logarithmic derivative of the -function [39], which, for the 

whole argument has the form 
 

( 1) 1 1/ 2 ..... 1/L C L . 

 
Here, C = 0.5772156649..... is Euler’s constant [39]. Such a series will 

congregate quicker when  is less and L is more. This formula covers the 
area opposite to that represented in (1.2.20) and at 1 < < 50 both 
decompositions show poor convergence. 

To estimate the remainder term of series (1.2.21), we decompose an 
arctangent in series at /n << 1, which is always possible at big n or small 

. Then we obtain 
 

3 5 7

0 3 5 7
n=1

... .
3 5 7

C
n n n

         (1.2.22) 

 
From this, it is clear that the remainder of series will have an order of 

the value 3/n2 [16]. A series (1.2.22) at  > 1 converges rather poorly and 
as for obtaining, for example, a relative accuracy of 10-8, it is necessary to 
take into account the tens of thousands of terms in this series. 

However, such a row allows for the significant improvement of 
convergence at   1 [50] after transformation to the form 
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3
3

0 3
n=1

1 1
arctg ,

3 3
C S

n n n
        (1.2.23) 

where 
3

k=1

1S
k

= 1.202056903... . It is simple to discover that the residual 

term of such a series is equal to 5/n4 and for obtaining eight true signs it is 
necessary to consider only a few hundred members of the series at   1. 

Series (1.2.23), given above, allows additional improvement of 
convergence, after its transformation to the form [50] 

 
3 5

3 5
0 3 5

n=1

1 1 1 1
arctg ,

3 5 3 5
C S D

n n n n
          (1.2.24) 

 

where 
5

k=1

1D
k

= 1.036927751... . Such a series converges very quickly 

and has a residual member of an order of 7/n6. To satisfy the accuracy 
stated above, it is necessary to consider only a few tens of terms. 

A program in BASIC for the calculation of Coulomb phase shifts is 
given below, using the decomposition method described above in a row and 
on the basis of integrated representations (1.2.19) and series (1.2.24). The 
description of some parameters is given in the program. 

 
REM PROGRAM OF THE CALCULATION OF THE COULOMB 
PHASE SHIFTS 
DEFDBL A-Z  
DEFINT I,J,K,L,N,M  
M=4000 
DIM V(M): CLS 
EPS=1.0E-15: REM CALCULATION ACCURACY 
H=1: REM COULOMB PARAMETER 
REM CALCULATION OF PHASE SHIFTS ON THE BASIS OF RANKS 
C=0.577215665: A1=1.202056903/3: A2=1.036927755/5: F=0: S1=0 
3 F=F+1  
B=H/F-ATN(H/F)  
S1=S1+B  
IF B<EPS GOTO 2  
GOTO 3 
2 D=0: S=0 
4 D=D+1 
A=H/D-ATN(H/D)-(H/D)^3/3+(H/D)^5/5 
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S=S+A 
IF A<EPS GOTO 1  
GOTO 4 
1 FAZ=-C*H+A1*H^3-A2*H^5+S 
FAZ1=-C*H+S1  
PRINT "FAZ = ";FAZ; "    N = ";D 
PRINT "FAZ1 = ";FAZ1;"  N = ";F 
REM *** CALCULATION OF THE PHASE SHIFTS ON THE BASIS OF 
INTEGRATED REPRESENTATION *** 
NN=4000: E=1E-300: N=500: R1=0.1: R2=1: R3=40: HH=R1/N 
H1=HH/NN: H2=(R2-R1)/NN: H3=(R3-R2)/NN: YY=0 
FOR K=1 TO N 
AA=(K-1)*HH  
FOR I=0 TO NN  
X=H1*I+AA+E 
V(I)=EXP(-X)*SIN(H*LOG(X))  
NEXT I  
CALL SIM(NN,H1,V(),Y1) 
YY=YY+Y1  
NEXT K  
FOR I=0 TO NN  
X=H2*I+R1 
V(I)=EXP(-X)*SIN(H*LOG(X))  
NEXT  
CALL SIM(NN,H2,V(),Y1) 
YY=YY+Y1  
FOR I=0 TO NN  
X=H3*I+R2 
V(I)=EXP(-X)*SIN(H*LOG(X))  
NEXT 
CALL SIM(NN,H3,V(),Y1)  
YY=YY+Y1  
XX=0 
FOR K=1 TO N 
AA=(K-1)*HH  
FOR I=0 TO NN  
X=H1*I+AA+E 
V(I)=EXP(-X)*COS(H*LOG(X))  
NEXT I  
CALL SIM(NN,H1,V(),X1) 
XX=XX+X1  
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NEXT K  
FOR I=0 TO NN  
X=H2*I+R1 
V(I)=EXP(-X)*COS(H*LOG(X))  
NEXT  
CALL SIM(NN,H2,V(),X1) 
XX=XX+X1  
FOR I=0 TO NN  
X=H3*I+R2 
V(I)=EXP(-X)*COS(H*LOG(X)) 
NEXT  
CALL SIM(NN,H3,V(),X1)  
XX=XX+X1  
AA=ATN(YY/XX) 
PRINT "FAZA = ";AA  
END 
 
SUB SIM(N,H,V(5000),S) 
A=0: B=0  
FOR I=1 TO N-1 STEP 2  
B=B+V(I)  
NEXT 
FOR J=2 TO N-2 STEP 2  
A=A+V(J)  
NEXT 
S=H*(V(0)+V(N)+2*A+4*B)/3  
END SUB 
 

The phase shifts given in Table 1.2.1 have been calculated using this 
program on the basis of formula (1.2.24) [50]. The error makes about half 
of the last sign. 
 
Table 1.2.1. Calculation of the Coulomb phase shifts. 

 

0.1  -0.05732294 0.6  -0.27274381 
0.2  -0.11230222 0.8  -0.30422560 
0.3  -0.16282067 1.0  -0.30164032 
0.4  -0.20715583 1.3  -0.23921678 
0.5  -0.24405830 1.5  -0.16293977 
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We note that, for obtaining identical accuracy when calculating by 
formulae (1.2.24) and (1.2.22), in the last case designated as 1, it is 
necessary to consider approximately seven hundred times more members of 
the term (with an accuracy of 10-15), as is clear from the given results of the 
calculation at  = 1 

 
 = -0.30164032059 for N = 106, 

1 = -0.30164032060 for N = 69337. 
 

The calculation of the Coulomb phase shifts on the basis of integrated 
representation can be executed to divide all intervals of integration into 
several parts. The most strongly subintegral function changes at small t, 
therefore we divide the integration interval into the following parts 0–0.1, 
0.1–1, and 1–40 (at t = 40 the subintegral function has a value of the order 
10-17), and we divide the first part (0–0.1) into N = 500 parts. The calculation 
of the integrals by all parts gives us the phase shift value -0.30164031, 
which differs from the result obtained above on the basis of rank only on 
the unit of the eighth sign. We note that the calculation of such integrals 
(1.2.19) on an Intel Pentium 200 MMX computer takes several minutes, 
while the calculation of a row (1.2.24) takes a fraction of a second. 

1.2.7 Methods of calculating the Coulomb functions 

Here we move on to consideration of the Coulomb scattering functions, 
the regular FL( , ) and irregular GL( , ) parts of which are linearly 
independent solutions of the radial Schrödinger equation (1.2.1), only with 
a Coulomb potential, which has the form [6,9] 

 

''
L L2

2 ( 1)
( ) 1 ( ) 0 ,

L L
         (1.2.25) 

 

where L= FL( , ) or GL( , );  = kr; and 1 2
2

Z Z
k

 is the Coulomb 

parameter. 
The Wronskian of these functions and their derivatives have the 

following appearance [6] 
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' '
1 L L L L

2 L-1 L L L-1 2 2

1 ,

.

W F G F G
LW F G F G

L

          (1.2.26) 

 
The recurrence relations are written in the form 

 

2 2 1/2 2 2 1/2
L+1 L L-1

( 1)
[( 1) ] (2 1) ( 1)[ ] ,

L LL L u L u L L u  

 
2

' 2 2 1/2
L L L+1

( 1)
( 1) [( 1) ]

LL u u L u , 

(1.2.27) 
2

' 2 2 1/2
L L-1[ ]

LLu L u u , 

 
where uL= FL( , ) or GL( , ). The asymptotics at    can be presented 
in the form [40] 
 

L Lsin( ln 2 / 2 ) ,F L                                                   (1.2.28) 

L Los( ln 2 / 2 ) .G L  

 
There are many methods and approximations for the calculation of the 

Coulomb functions [6,41,42,43,44,45,46,47]. However, a quickly 
converging representation allowing one to obtain the values with fine 
precision and for a wide range of values of the variables with only a small 
cost of computer time [48] has been described rather recently. The Coulomb 
functions in such a method are presented in the form of continued fractions 
[49] 
 

' 1
L L L 0

2
1

3
2

3

/ ,

....

af F F b ab ab
b

         (1.2.29) 

 
where 
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b0 = (L + 1)/ + /(L + 1), 
 
bn = [2(L + n) + 1][(L + n)(L + n + 1) + ], 
 
a1 = - [(L + 1)2 + 2](L + 2)/(L + 1), 
 
an = - [(L + n)2 + 2][(L + n)2 - 1], 
 
and 
 

' '
L L 1

L L 0
2L L

1
3

2

3 ....

G iF aiP iQ b aG iF b ab
b

,        (1.2.30) 

 
where 
 
b0=  - ,  bn = 2(b0 + in),         (1.2.31) 
an = - 2 + n(n - 1) - L(L + 1) + i (2n - 1). 
 

Such a method of calculation is applicable in the range 
2 ( 1)L L  and easily allows one to obtain high precision thanks 

to the fast convergence of the continued fractions. As the Coulomb  
parameter usually has the value unit order and L, as a rule, a value of no 
more than 3–5, the method already yields good results at  > 5 fm. In this 
area, it is necessary to know the Coulomb functions by numerical 
calculation of the nuclear functions of scattering and reactions. 

Using (1.2.29–1.2.31) it is possible to obtain good communication 
between the Coulomb functions and their derivatives [50,51] 

 
'

L L L ,F f F             (1.2.32) 
'

L L L L L L L L L

'
L L L L L L L L L L L

( ) / ( ) / ,

[ ( ) / ] .

G F P F Q f P F Q
G P G Q F P f P Q Q F

 

 
As such, setting some FL values in point , we find all other functions 

and their derivatives within the accuracy of a constant multiplier, defined 
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using the Wronskian (1.2.26). Calculation of the Coulomb functions for the 
given formulae and their comparison with the tabular material [52] show 
that it is possible to easily obtain eight to nine correct signs if  meets the 
above condition. 

The text of a computer program for the calculation of the Coulomb 
scattering wave functions is given below. Here, the following designations 
hold. 
 
G – Coulomb parameter, 
L – orbital moment of this partial wave, 
X – distance from the center, on which the Coulomb functions are      

calculated, 
FF and GG – Coulomb functions, 
FP and GP – their derivatives, 
W – the Wronskian, determining the accuracy of calculation of the Coulomb 

functions (the first formula in expression (1.2.26)). 
 
SUB CULFUN(G,X,L,FF,GG,FP,GP,W) 
REM SUBPROGRAMME OF CALCULATION OF THE COULOMB  
FUNCTIONS ***** 
Q=G:R=X: GK=Q*Q: GR=Q*R:RK=R*R: K=1: F0=1 
B01=(L+1)/R+Q/(L+1):BK=(2*L+3)*((L+1)*(L+2)+GR) 
AK= - R*((L+1)^2+GK)/(L+1)*(L+2):DK=1/BK: DEHK=AK*DK 
S=B01+DEHK 
1 K=K+1 
AK= - RK*((L+K)^2 - 1)*((L+K)^2+GK) 
BK=(2*L+2*K+1)*((L+K)*(L+K+1)+GR) 
DK=1/(DK*AK+BK) 
IF DK>0 GOTO 3 
2 F0= - F0 
3 DEHK=(BK*DK - 1)*DEHK  
S=S+DEHK 
IF (ABS(DEHK) - 1E - 10)>0 GOTO 1 
FL=S: K=1:RMG=R - Q 
LL=L*(L+1): CK= - GK - LL:DK=Q: GKK=2*RMG 
HK=2: AA1=GKK*GKK+HK*HK: PBK=GKK/AA1 
RBK= - HK/AA1: OMEK=CK*PBK-DK*RBK 
EPSK=CK*RBK+DK*PBK: PB=RMG+OMEK: QB=EPSK 
4 K=K+1: CK= - GK - LL+K*(K - 1): DK=Q*(2*K - 1) 
HK=2*K: FI=CK*PBK - DK*RBK+GKK: 
PSI=PBK*DK+RBK*CK+HK 
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AA2=FI*FI+PSI*PSI: PBK=FI/AA2: RBK= - PSI/AA2 
VK=GKK*PBK - HK*RBK: WK=GKK*RBK+HK*PBK 
OM=OMEK: EPK=EPSK 
OMEK=VK*OM - WK*EPK - OM 
EPSK=VK*EPK+WK*OM - EPK:  
PB=PB+OMEK 
QB=QB+EPSK 
IF (ABS(OMEK)+ABS(EPSK) - 1E - 10)>0 GOTO 4 
PL= - QB/R: QL=PB/R 
G0=(FL - PL)*F0/QL 
G0P=(PL*(FL - PL)/QL - QL)*F0 
F0P=FL*F0 
ALFA=1/(SQR(ABS(F0P*G0 - F0*G0P))) 
GG=ALFA*G0 
GP=ALFA*G0P 
FF=ALFA*F0 
FP=ALFA*F0P 
W=1 - FP*GG+FF*GP 
END SUB 
 

The results of the control account of the Coulomb functions for  = 1 
[53,54] and their comparison with the tabular data [52] are given in Table 
1.2.2. It is clear that at  = 1 and L = 0, the correct results are given for 

 = kr = 1. The value of the Wronskian (1.2.26) presented in the form 
(W1 - 1) at any  does not exceed 10-15-10-16. 
 
Table 1.2.2. Coulomb functions. 

 
F0  

(Our 
calculation) 

F0 

[52] 
F0' 

(Our 
calculation) 

F0' 
[52] 

1 0.22752621 0.22753 0.34873442 0.34873 
5 0.68493741 0.68494  -0.72364239  -0.72364 

10 0.47756082 0.47756 0.84114311 0.84114 
15  -0.97878958  -0.97879 0.31950815 0.31951 
20  -0.32922554  -0.32923  -0.92214689  -0.92215 

 
G0 G0 [52] G0' G0' [52] 

1 2.0430972 2.0431  -1.2635981  -1.2636 
5  -0.89841436  -0.89841  -0.51080476  -0.51080 

10 0.94287424 0.94287  -0.43325965  -0.43326 
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15 0.34046374 0.34046 0.91053182 0.91053 
20  -0.97242840  -0.97243 0.31370038 0.31370 

 
F2 G2 F'2 G'2 

1 1.47867E-02 1.26407E 01 4.70896E-02 -2.73727E 01 
5 1.18637E 00 3.82961E-01 1.54145E-01 -7.93149E-01 

10 -9.63615E-01 4.81305E-01 4.24848E-01 8.25557E-01 
15 -2.27973E-01 -1.01918E 00 -9.33599E-01 2.12743E-01 
20 -1.01801E 00 -1.62845E-01 -1.55072E-01 -9.57506E-01 

 
The correctness of the function’s calculation at L = 2 is easy to check 

using the recurrent formulae (1.2.27). Knowing the functions and their 
derivatives at L = 0, in the second formula (1.2.27) we find the functions at 
L = 1. Then, using the third formula, we find their derivatives for L = 1. 
Continuing this process it is easy to find all functions and their derivatives 
at any L [50]. 

Below, we provide the text of the same computer program for the 
calculation of the Coulomb scattering wave functions in the algorithmic 
language Fortran-90. The designated parameters practically coincide with 
the previous program. Here, on the basis of (1.2.29) and (1.2.30), the 
functions are defined at L = 0; for finding functions at all other L, the 
recurrence relations are used. To ensure the greatest possible accuracy of 
the results, as in the previous case, double accuracy is used. Here, the 
following designations are set. 
 
Q – Coulomb parameter , 
LM – orbital moment of this partial wave, 
R – distance from the center on which the Coulomb functions are calculated, 
F and G – Coulomb functions, 
W – the Wronskian, determining the accuracy of the calculation of the 

Coulomb functions (the first formula in expression (1.2.26)). 
 
SUBROUTINE CULFUN(LM,R,Q,F,G,W) 
! SUBPROGRAMME OF CALCULATION OF THE COULOMB  
! FUNCTIONS 
IMPLICIT REAL(8) (A-Z) 
INTEGER L,K,LL,LM 
EP=1.0D-015; L=0; F0=1.0D0 
GK=Q*Q; GR=Q*R; RK=R*R 
B01=(L+1)/R+Q/(L+1) 
K=1; BK=(2*L+3)*((L+1)*(L+2)+GR) 
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AK=-R*((L+1)**2+GK)/(L+1)*(L+2) 
DK=1.0D0/BK 
DEHK=AK*DK 
S=B01+DEHK 
15 K=K+1 
AK=-RK*((L+K)**2-1)*((L+K)**2+GK) 
BK=(2*L+2*K+1)*((L+K)*(L+K+1)+GR) 
DK=1.D0/(DK*AK+BK) 
IF (DK>0.0D0) GOTO 35 
25 F0=-F0 
35 DEHK=(BK*DK-1.0D0)*DEHK 
S=S+DEHK 
IF (ABS(DEHK)>EP) GOTO 15 
FL=S; K=1; RMG=R-Q; LL=L*(L+1) 
CK=-GK-LL; DK=Q; GKK=2.0D0*RMG 
HK=2.0D0; AA1=GKK*GKK+HK*HK 
PBK=GKK/AA1; RBK=-HK/AA1 
AOMEK=CK*PBK-DK*RBK 
EPSK=CK*RBK+DK*PBK 
PB=RMG+AOMEK; QB=EPSK 
52 K=K+1 
CK=-GK-LL+K*(K-1); DK=Q*(2*K-1) 
HK=2.0D0*K; FI=CK*PBK-DK*RBK+GKK 
PSI=PBK*DK+RBK*CK+HK 
AA2=FI*FI+PSI*PSI; PBK=FI/AA2 
RBK=-PSI/AA2; VK=GKK*PBK-HK*RBK 
WK=GKK*RBK+HK*PBK; OM=AOMEK 
EPK=EPSK; AOMEK=VK*OM-WK*EPK-OM 
EPSK=VK*EPK+WK*OM-EPK; PB=PB+AOMEK 
QB=QB+EPSK 
IF ((ABS(AOMEK)+ABS(EPSK))>EP) GOTO 52 
PL=-QB/R; QL=PB/R 
G0=(FL-PL)*F0/QL; G0P=(PL*(FL-PL)/QL-QL)*F0; F0P=FL*F0  
ALFA=1.0D0/DSQRT(ABS(F0P*G0-F0*G0P)) 
G=ALFA*G0; GP=ALFA*G0P 
F=ALFA*F0; FP=ALFA*F0P 
W=1.0D0-FP*G+F*GP 
IF (LM==0) GOTO 123 
AA=DSQRT(1.0D0+Q**2) 
BB=1.0D0/R+Q 
F1=(BB*F-FP)/AA 
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G1=(BB*G-GP)/AA 
WW1=F*G1-F1*G-1.0D0/DSQRT(Q**2+1.0D0) 
IF (LM==1) GOTO 234 
DO L=1,LM-1 
AA=DSQRT((L+1)**2+Q**2) 
BB=(L+1)**2/R+Q 
CC=(2*L+1)*(Q+L*(L+1)/R) 
DD=(L+1)*DSQRT(L**2+Q**2) 
F2=(CC*F1-DD*F)/L/AA 
G2=(CC*G1-DD*G)/L/AA 
WW2=F1*G2-F2*G1-(L+1)/DSQRT(Q**2+(L+1)**2) 
F=F1; G=G1; F1=F2; G1=G2 
ENDDO 
234 F=F1; G=G1 
123 END  
 

This program yields the same results in terms of the control account as 
previously shown in BASIC. 

1.3 Program for the calculation of phase shifts  
for the central real potentials 

Below we present a computer program for the calculation of the real 
phase shifts of elastic scattering by the finite-difference method and the 
Runge-Kutta method in BASIC, showing good coincidence of the results 
obtained in both ways. Here the following designations are accepted. 
 
NN – lowest value of the energy cycle, 
NV – top value of the energy cycle, 
NH – step of the energy cycle, 
EH – energy step, 
EN – the lowest value of energy, 
AM1 – the mass of the first particle in amu, 
AM2 – the mass of the second particle in amu, 
PM – the reduced mass of , 
Z1 – charge of the first particle in terms of charge “e”, 
Z2 – charge of the second particle in terms of charge “e”, 
A1 – 2/MN = 41.4686 constant, where MN is the mass of a nucleon in amu, 

equal to 1, 
AK1 – constant at Coulomb potential 1.439975 Z1Z2 2 / 2, 
N – number of steps at the integration of the Schrödinger equation, 
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H – step value for the integration of the Schrödinger equation, 
R00 – distance at which the interlacing of the numerical functions with 

asymptotics is carried out, 
V0 – depth of the nuclear potential, 
R0 – radius of the nuclear potential, 
RCU – Coulomb radius, 
L – orbital moment, 
EL – energy of particles in the laboratory system, 
ECM – energy of particles in the system of the center of masses, 
SK – square of the k2 wave number, 
SS – wave number k, 
G – Coulomb parameter = 3.44476 10 - 2 Z1Z2 /k, 
F1(I) – the phase shift at the set energy obtained by the finite-difference 

method, 
F2(I) – the phase shift shifts at the set energy obtained by the Runge-Kutta 

method, 
ABS(F1(I) - F2(I)) – difference of phase shifts in the degree obtained by the 

different methods, 
 
ABS(F1(I) - F2(I))/ABS(F1(I))*100 – relative difference of the phase shifts 

in percentages. 
 
REM PROGRAM OF CALCULATION OF THE REAL PHASE 
SHIFTS 
REM *** DETERMINATION OF VARIABLES **** 
DEFDBL A - Z: DEFINT I,J,K,L,N,M: CLS 
NN=4000: DIM EL(100), F1(100), ECM(100), F2(100)  
DIM V1(NN), U(NN), V(NN), U1(NN) 
PRINT "    EL    ECM    FKR    FRK   ERR - DEG    ERR - %" 
REM ***** DETERMINATION OF THE INITIAL VALUES ****** 
PI=3.14159265359: NN=1: NV=20: NH=1: EH=1: EN=0 
AM1=2: AM2=4: Z1=1: Z2=2: A1=41.4686 
 PM=AM1*AM2/(AM1+AM2) 
B1=2*PM/A1: AK1=1.439975*Z1*Z2*B1: N=1000: R00=20: H=R00/N 
V0=76.12: R0=.2: A2= - V0*B1: RCU=0: L=0 
REM *********** BEGINNING OF THE CYCLE ON ENERGY ****** 
FOR I=NN TO NV STEP NH: EL(I)=EN+EH*I: ECM(I)=EL(I)*PM/AM1 
SK=ECM(I)*B1: SS=SQR(SK): G=3.44476E - 02*Z1*Z2*PM/SS 
REM ***** CALCULATION OF THE COULOMB FUNCTIONS ***** 
X1=H*SS*(N - 4): X2=H*SS*(N): CALL CUL(G,X1,L0,F1,G1,W1) 
CALL CUL(G,X2,L0,F2,G2,W2) 
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REM *** CALCULATION OF THE PHASE SHIFTS OF BY THE 
FINITE-DIFFERENCE METHOD *** 
CALL FUN(N,H,U1(),L,A2,AK1,SK,R0,RCU) 
D1=U1(N - 4): D2=U1(N): AF= - (F1 - F2*D1/D2)/(G1 - G2*D1/D2) 
FF=ATN(AF): IF FF>0 GOTO 90: FF=FF+PI 
90 XN1=(COS(FF)*F2+SIN(FF)*G2)/D2: F1(I)=FF*180/PI 
REM *** CALCULATION OF THE PHASE SHIFTS BY THE RUNGE-
KUTT METHOD*** 
CALL FUNRK(V(),N,H): D1=V(N - 4): D2=V(N) 
AF= - (F1 - F2*D1/D2)/(G1 - G2*D1/D2): F33=ATN(AF) 
IF F33>0 GOTO 91: F33=F33+PI 
91 XN2=(COS(F33)*F2+SIN(F33)*G2)/D2: F2(I)=F33*180/PI 
REM ********* PHASE SHIFT PRINTING *************** 
PRINT USING "+#.####^^^^ "; EL(I); ECM(I); F1(I); F2(I); ABS(F1(I) - 
F2(I)); ABS(F1(I) - F2(I))/ABS(F1(I))*100: NEXT I 
STOP 
 
SUB CUL(G,X,L,F0,G0,W)  
REM CALCULATION OF COULOMB SCATTERING FUNCTIONS 
Q=G: R=X: F0=1: K=1: GK=Q*Q: GR=Q*R: RK=R*R 
B01=(L+1)/R+Q/(L+1): BK=(2*L+3)*((L+1)*(L+2)+GR) 
AK= - R*((L+1)^2+GK)/(L+1)*(L+2): DK=1/BK: DEHK=AK*DK 
S=B01+DEHK 
1 K=K+1: AK= - RK*((L+K)^2 - 1)*((L+K)^2+GK) 
BK=(2*L+2*K+1)*((L+K)*(L+K+1)+GR): DK=1/(DK*AK+BK) 
IF DK>0 GOTO 3 
2 F0= - F0 
3 DEHK=(BK*DK - 1)*DEHK: S=S+DEHK 
IF (ABS(DEHK) - 1E - 06)>0 GOTO 1: FL=S: K=1: RMG=R - Q 
LL=L*(L+1): CK= - GK - LL: DK=Q: GKK=2*RMG: HK=2 
AA1=GKK*GKK+HK*HK: PBK=GKK/AA1: RBK= - HK/AA1 
OMEK=CK*PBK - DK*RBK: EPSK=CK*RBK+DK*PBK 
PB=RMG+OMEK: QB=EPSK 
5 K=K+1: CK= - GK - LL+K*(K - 1): DK=Q*(2*K - 1): HK=2*K 
FI=CK*PBK - DK*RBK+GKK: PSI=PBK*DK+RBK*CK+HK 
AA2=FI*FI+PSI*PSI: PBK=FI/AA2: RBK= - PSI/AA2 
VK=GKK*PBK - HK*RBK: WK=GKK*RBK+HK*PBK 
OM=OMEK: EPK=EPSK: OMEK=VK*OM - WK*EPK - OM 
EPSK=VK*EPK+WK*OM - EPK: PB=PB+OMEK: QB=QB+EPSK 
IF (ABS(OMEK)+ABS(EPSK) - 1E - 06)>0 GOTO 5: PL= - QB/R 
QL=PB/R: G0=(FL - PL)*F0/QL: G0P=(PL*(FL - PL)/QL - QL)*F0 
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F0P=FL*F0: ALFA=1/(SQR(ABS(F0P*G0 - F0*G0P))): G0=ALFA*G0 
GP=ALFA*G0P: F0=ALFA*F0: FP=ALFA*F0P: W=1 - FP*G0+F0*GP 
END SUB 
 
SUB FUN(N,H,U(5000),L,AV,AK,SK,R0,RCU)  
REM ***** THE SOLUTION OF THE SCHRÖDINGER EQUATION BY 
THE FINITE-DIFFERENCE METHOD ***** 
U(0)=0:  U(1)=0.001: HK=H*H: FOR K=1 TO N - 1: X=K*H 
Q1=AV*EXP( - R0*X*X)+L*(L+1)/(X*X): IF X>RCU GOTO 11 
Q1=Q1+(3 - (X/RCU)^2)*AK/(2*RCU): GOTO 22 
11 Q1=Q1+AK/X 
22 Q2= - Q1*HK - 2+SK*HK: U(K+1)= - Q2*U(K) - U(K - 1): NEXT K 
END SUB 
 
SUB FUNRK(V(5000),N,H)  
REM ****** THE SOLUTION OF THE SCHRÖDINGER EQUATION 
BY THE RUNGE-KUTT METHOD IN ALL AREA OF VARIABLES ** 
VA1=0: REM VA1 – The value of the function in zero 
PA1=1.0E - 05: REM PA1 - The value of function on the first step 
FOR I=0 TO N - 1: X=H*I+1.0E - 05 
CALL RRUN(VB1,PB1,VA1,PA1,H,X) 
VA1=VB1:  PA1=PB1:  V(I+1)=VA1: NEXT  
END SUB 
 
SUB RRUN(VB1,PB1,VA1,PA1,H,X) 
REM ***** THE SOLUTION OF THE SCHRÖDINGER EQUATION BY 
THE RUNGE-KUTT METHOD BY THE ONE STEP ***** 
X0=X: Y1=VA1: CALL F(X0,Y1,FK1): FK1=FK1*H: FM1=H*PA1 
X0=X+H/2: Y2=VA1+FM1/2: CALL F(X0,Y2,FK2): FK2=FK2*H 
FM2=H*(PA1+FK1/2): Y3=VA1+FM2/2: CALL F(X0,Y3,FK3) 
FK3=FK3*H: FM3=H*(PA1+FK2/2): X0=X+H: Y4=VA1+FM3 
CALL F(X0,Y4,FK4): FK4=FK4*H: FM4=H*(PA1+FK3) 
PB1=PA1+(FK1+2*FK2+2*FK3+FK4)/6 
VB1=VA1+(FM1+2*FM2+2*FM3+FM4)/6  
END SUB 
 
SUB F(X,Y,F) 
REM * FUNCTION EVALUATION OF F (X, Y) IN THE RUNGE-KUTT 
METHOD * 
SHARED SK,A2,R0,AK1,L,RCU 
VC=A2*EXP(-R0*X^2): IF X>RCU GOTO 121 
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VK=(3-(X/RCU)^2)*AK1/(2*RCU): GOTO 222 
121 VK=AK1/X 
222 F=-(SK-VK-VC-L*(L+1)/(X^2))*Y  
END SUB 

 
To carry out the control, we used the finite-difference method with the 

classical nucleon-nucleon Reid potential [55]. The form of 1P1 potential and 
calculation of scattering phase shifts are given. Our calculations for phase 
shifts with such potentials are given in Table 1.3.1 in comparison with the 
Reid results. 
 
Table 1.3.1. Comparison of results for the Reid potential. 

 
E, MeV , radian, [55] , radian, 

(Our calculation) 
48 -0.071 -0.072 

144 -0.312 -0.314 
208 -0.456 -0.458 
352 -0.708 -0.710 

 
It is clear from these results that the coincidence of both calculations, at 

an accuracy of about several thousands of radian, presents a good example 
of the efficiency of the numerical methods used and the accuracy of the 
working of the computer program described. 

We thus compare the accuracy with which it is possible to obtain the 
phase shifts by two methods: the Runge-Kutta method and the finite-
difference method. We give the calculation results of phase shifts for these 
two methods (FDM, finite-difference method and RKM, Runge-Kutta 
method) for the S scattering phase shift in the 2H4He system (parameters of 
the potential were obtained by us in [56] V0 = 76.12 MeV,  = 0.2 fm-2, 
Rc = 0 fm, L = 0 and represent the alternative variant of similar potentials 
offered for the first time in [57,58,59,60]) and the extent of their coincidence 
in degrees (ERR - DEG) and percent (ERR - %) [61]. Here EL and ECM 
refer to the energy in the laboratory system and the system of the center of 
mass of the colliding particles, respectively. 
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   EL                ECM                FKR              FRK            ERR - DEG       ERR - % 
+1.0000E+00 +6.6667E-01  +1.5053E+02 +1.5052E+02 +8.4828E-03 +5.6353E-03 
+2.0000E+00 +1.3333E+00 +1.2598E+02 +1.2597E+02 +1.2241E-02 +9.7170E-03 
+3.0000E+00 +2.0000E+00 +1.0892E+02 +1.0890E+02 +1.4219E-02 +1.3055E-02 
+4.0000E+00 +2.6667E+00 +9.5886E+01 +9.5871E+01 +1.5547E-02 +1.6214E-02 
+5.0000E+00 +3.3333E+00 +8.5335E+01 +8.5319E+01 +1.6536E-02 +1.9378E-02 
+6.0000E+00 +4.0000E+00 +7.6457E+01 +7.6440E+01 +1.7629E-02 +2.3057E-02 
+7.0000E+00 +4.6667E+00 +6.8801E+01 +6.8782E+01 +1.8828E-02 +2.7365E-02 
+8.0000E+00 +5.3333E+00 +6.2083E+01 +6.2063E+01 +1.9867E-02 +3.2000E-02 
+9.0000E+00 +6.0000E+00 +5.6102E+01 +5.6081E+01 +2.0743E-02 +3.6974E-02 
+1.0000E+01 +6.6667E+00 +5.0715E+01 +5.0693E+01 +2.1731E-02 +4.2848E-02 
+1.1000E+01 +7.3333E+00 +4.5818E+01 +4.5795E+01 +2.2996E-02 +5.0189E-02 
+1.2000E+01 +8.0000E+00 +4.1334E+01 +4.1310E+01 +2.4399E-02 +5.9028E-02 
+1.3000E+01 +8.6667E+00 +3.7206E+01 +3.7180E+01 +2.5677E-02 +6.9014E-02 
+1.4000E+01 +9.3333E+00 +3.3383E+01 +3.3356E+01 +2.6730E-02 +8.0071E-02 
+1.5000E+01 +1.0000E+01 +2.9825E+01 +2.9798E+01 +2.7712E-02 +9.2913E-02 
+1.6000E+01 +1.0667E+01 +2.6500E+01 +2.6471E+01 +2.8870E-02 +1.0894E-01 
+1.7000E+01 +1.1333E+01 +2.3379E+01 +2.3349E+01 +3.0323E-02 +1.2970E-01 

 
The worst result is shown in the last line with 0.13 % at an energy of 17 

MeV. Following on, we give the results of calculations of the S1/2 phase shift 
for elastic 3H4He scattering at low energies by two methods [61]. For the 
parameters of the potential, the following values were used: V0 = -67.5 
MeV;  = 0.15747 fm-2; Rc = 3.095 fm; and L = 0 [56,61]. 

 
    EL                  ECM              FKR               FRK          ERR - DEG        ERR - % 

+1.0000E-01  +4.2857E-02  +1.8000E+02 +1.8000E+02 +3.0506E-07 +1.6948E-07 
+1.1000E+00 +4.7143E-01  +1.7204E+02 +1.7204E+02 +1.2686E-03 +7.3739E-04 
+2.1000E+00 +9.0000E-01  +1.6139E+02 +1.6138E+02 +2.8364E-03 +1.7575E-03 
+3.1000E+00 +1.3286E+00 +1.5211E+02 +1.5211E+02 +4.0288E-03 +2.6486E-03 
+4.1000E+00 +1.7571E+00 +1.4419E+02 +1.4419E+02 +4.9487E-03 +3.4320E-03 
+5.1000E+00 +2.1857E+00 +1.3729E+02 +1.3729E+02 +5.6562E-03 +4.1198E-03 
+6.1000E+00 +2.6143E+00 +1.3113E+02 +1.3113E+02 +6.2638E-03 +4.7767E-03 
+7.1000E+00 +3.0429E+00 +1.2555E+02 +1.2555E+02 +6.8101E-03 +5.4240E-03 
+8.1000E+00 +3.4714E+00 +1.2045E+02 +1.2044E+02 +7.2653E-03 +6.0317E-03 
+9.1000E+00 +3.9000E+00 +1.1574E+02 +1.1573E+02 +7.6262E-03 +6.5892E-03 
+1.0100E+01 +4.3286E+00 +1.1134E+02 +1.1133E+02 +7.9425E-03 +7.1336E-03 
+1.1100E+01 +4.7571E+00 +1.0721E+02 +1.0720E+02 +8.2671E-03 +7.7111E-03 
+1.2100E+01 +5.1857E+00 +1.0331E+02 +1.0330E+02 +8.6088E-03 +8.3328E-03 
+1.3100E+01 +5.6143E+00 +9.9620E+01 +9.9611E+01 +8.9358E-03 +8.9699E-03 
+1.4100E+01 +6.0429E+00 +9.6112E+01 +9.6103E+01 +9.2141E-03 +9.5868E-03 
+1.5100E+01 +6.4714E+00 +9.2768E+01 +9.2759E+01 +9.4404E-03 +1.0176E-02 
+1.6100E+01 +6.9000E+00 +8.9572E+01 +8.9563E+01 +9.6453E-03 +1.0768E-02 
+1.7100E+01 +7.3286E+00 +8.6509E+01 +8.6499E+01 +9.8700E-03 +1.1409E-02 
+1.8100E+01 +7.7571E+00 +8.3566E+01 +8.3556E+01 +1.0139E-02 +1.2133E-02 

 
The deviation of these results for the last line does not exceed 0.012 %. 
All these results show that the accuracy of the phase shifts of nuclear 

scattering obtained from these calculations, by both methods, is at the level 
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of tenth-hundredths of a percent and thus either of these ways can be applied 
to the real calculation of nuclear phase shifts of elastic scattering in any 
cluster system with central forces. 

We present the text of a computer program in Fortran-90 for calculating 
elastic scattering phase shifts, in this case, of protons on 7Li. The program 
carries out the calculation of the elastic scattering phase shifts of two 
particles using a scattering wave function by the methods described in detail 
above with a given accuracy. In this case, the absolute accuracy is 10-3 
radians. Moving on to the computer program, note that the descriptions of 
the parameters of variables in the calculation and the interaction potential 
blocks of the program and subprograms are listed along with the program. 
 
PROGRAM FAZ_p7Li 
! THE PROGRAM OF CALCULATION OF PHASE SHIFTS OF 
SCATTERING FOR THE SET ACCURACY 
IMPLICIT REAL(8) (A-Z) 
INTEGER(4) I,L,N 
REAL(8) FA1(0:1000),ECM(0:1000),EL(0:1000) 
DIMENSION U1(0:1024000) 
! ***************** The nuclear data ******************* 
AM1=1.00727646577D0; ! The P mass 
AM2=7.01600455D0 ! The 7Li mass 
Z1=1.0D0 ! The P charge 
Z2=3.0D0 ! The 7Li charge 
PI=4.0D0*DATAN(1.0D0) ! The Pi number 
PM=AM1*AM2/(AM1+AM2) ! The reduced mass 
! ***************** The constants ************************ 
A1=41.4686D+00  
B1=2.0D0*PM/A1 
AK1=1.439975D+00*Z1*Z2*B1 
GK=3.44476D-02*Z1*Z2*PM 
! ***************** The initial values **************** 
NN=0 ! The initial value of a step 
NV=30 ! The number of steps at calculation of the phase shifts  
NH=1 ! The step value 
EH=0.01D0 ! The step in MeV for the calculation of the phase shifts 
EN=0.3D0  ! The lower value of energy of the calculation of the phase shifts 
EPF=1.0D-003 ! The accuracy of the calculation of the phase shifts 
! *************** The potentials ************************* 
V0=1685.783D0 ! The potential depth in MeV of the attracting part 
R0=1.D0 ! The potential radius of the attracting part in Fm  
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V1=0.0D0 ! The potential depth in MeV of the repulsive part 
R1=1.0D0 ! The potential radius of the repulsive part in Fm 
A0=-V0*B1; A1=V1*B1 ! The recalculation of depth of potentials in Fm-2 
RCU=0.0D0 ! The coulomb radius in Fm 
L=1 ! The orbital moment 
! ************ The parameters for finding of the phase shifts ******** 
DO I=NN,NV,NH 
N=1000 ! The initial number of steps of calculation of the WF 
RR=10.0D0 ! The initial distance for calculation of the WF 
H=RR/N ! The initial distance for calculation of the WF 
EL(I)=EN+I*EH ! The energy in a lab system 
ECM(I)=EL(I)*PM/AM1 ! The recalculation of energy in the system of the 
center of masses 
SK=ECM(I)*B1 ! The square of the number 
SS1=DSQRT(SK) ! The wave number 
G=GK/SS1 ! Coulomb parameter 
! ******* The subprogramme of calculation of the phase shifts ***** 
CALL 
FAZ(G,SS1,I,RR,EPF,N,PI,H,L,U1,FA1,A0,A1,R0,R1,RCU,AK1,SK) 
PRINT *,EL(I)*1000,FA1(I) 
ENDDO 
! ******************* The record of results in the file ********* 
OPEN (1,FILE='FAZ-P-7Li.DAT') 
DO I=NN,NV,NH 
WRITE(1,*) EL(I)*1000,FA1(I) 
ENDDO 
CLOSE(1)  
END 
 
SUBROUTINE FUN(N,H,A0,A1,R0,R1,L,RCU,AK,SK,U) 
! *** The subprogramme of calculation of the wave function *********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER(4) K,L,N 
DIMENSION U(0:1024000) 
U(0)=0.0D0  
U(1)=0.010D0  
HK=H*H 
DO K=1,N-1 
X=K*H 
Q1=A0*DEXP(-R0*X*X)+L*(L+1)/(X*X)+A1*DEXP(-R1*X*X) 
IF (X>RCU) GOTO 1157 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



I 
 

48

Q1=Q1+(3.0D0-(X/RCU)**2)*AK/(2.0D0*RCU) 
GOTO 1158 
1157 Q1=Q1+AK/X 
1158 Q2=-Q1*HK-2.0D0+SK*HK 
U(K+1)=-Q2*U(K)-U(K-1) 
ENDDO  
END 
 
SUBROUTINE FAZ(G,SS,I,RR,EPF,N,PI,H,L,U,FA,A0,A1, 
R0,R1,RCU,AK,SK) 
! ************ The subprogramme of calculation of the phase shifts **** 
IMPLICIT REAL(8) (A-Z) 
INTEGER(4) N,L,I 
DIMENSION U(0:1024000),FA(0:1000) 
FN=1000.0; FR=1000.0 
125 X1=H*SS*(N-4)  
X2=H*SS*N 
CALL CULFUN(L,X1,G,F1,G1,W0,EP) 
CALL CULFUN(L,X2,G,F2,G2,W0,EP) 
CALL FUN(N,H,A0,A1,R0,R1,L,RCU,AK,SK,U) 
U10=U(N-4); U20=U(N) 
AF=-(F1-F2*U10/U20)/(G1-G2*U10/U20) 
F=DATAN(AF) 
IF(F<0.0D0) THEN 
F=F+PI 
ENDIF 
IF(ABS(F)<1.0D-10) THEN 
F=0.0D0 
ENDIF 
IF (ABS(FN-F)>EPF) THEN 
FN=F 
N=N+100 
H=RR/N 
GOTO 125 
ENDIF 
IF (ABS(FR-F)>EPF) THEN 
FR=F 
RR=RR+1 
N=N+0.2*N 
H=RR/N 
GOTO 125 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Methods of Solving the Schrödinger Equation 
 

49 

ENDIF 
FA(I)=F*180.0D0/PI 
END 
 
SUBROUTINE CULFUN(LM,R,Q,F,G,W,EP) 
! **** Subprogramme of the calculation of the Coulomb functions ***** 
IMPLICIT REAL(8) (A-Z) 
INTEGER L,K,LL,LM 
EP=1.0D-015 
L=0 
F0=1.0D0 
GK=Q*Q 
GR=Q*R 
RK=R*R 
B01=(L+1)/R+Q/(L+1) 
K=1 
BK=(2*L+3)*((L+1)*(L+2)+GR) 
AK=-R*((L+1)**2+GK)/(L+1)*(L+2) 
DK=1.0D0/BK 
DEHK=AK*DK 
S=B01+DEHK 
15 K=K+1 
AK=-RK*((L+K)**2-1.D0)*((L+K)**2+GK) 
BK=(2*L+2*K+1)*((L+K)*(L+K+1)+GR) 
DK=1.D0/(DK*AK+BK) 
IF (DK>0.0D0) GOTO 35 
25 F0=-F0 
35 DEHK=(BK*DK-1.0D0)*DEHK 
S=S+DEHK 
IF (ABS(DEHK)>EP) GOTO 15 
FL=S 
K=1 
RMG=R-Q 
LL=L*(L+1) 
CK=-GK-LL 
DK=Q 
GKK=2.0D0*RMG 
HK=2.0D0 
AA1=GKK*GKK+HK*HK 
PBK=GKK/AA1 
RBK=-HK/AA1 
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AOMEK=CK*PBK-DK*RBK 
EPSK=CK*RBK+DK*PBK 
PB=RMG+AOMEK 
QB=EPSK 
52 K=K+1 
CK=-GK-LL+K*(K-1.) 
DK=Q*(2.*K-1.) 
HK=2.*K 
FI=CK*PBK-DK*RBK+GKK 
PSI=PBK*DK+RBK*CK+HK 
AA2=FI*FI+PSI*PSI 
PBK=FI/AA2 
RBK=-PSI/AA2 
VK=GKK*PBK-HK*RBK 
WK=GKK*RBK+HK*PBK 
OM=AOMEK 
EPK=EPSK 
AOMEK=VK*OM-WK*EPK-OM 
EPSK=VK*EPK+WK*OM-EPK 
PB=PB+AOMEK 
QB=QB+EPSK 
IF (( ABS(AOMEK)+ABS(EPSK) )>EP) GOTO 52 
PL=-QB/R 
QL=PB/R 
G0=(FL-PL)*F0/QL 
G0P=(PL*(FL-PL)/QL-QL)*F0 
F0P=FL*F0 
ALFA=1.0D0/( (ABS(F0P*G0-F0*G0P))**0.5 ) 
G=ALFA*G0 
GP=ALFA*G0P 
F=ALFA*F0 
FP=ALFA*F0P 
W=1.0D0-FP*G+F*GP 
IF (LM==0) GOTO 123 
AA=(1.0D0+Q**2)**0.5 
BB=1.0D0/R+Q 
F1=(BB*F-FP)/AA 
G1=(BB*G-GP)/AA 
WW1=F*G1-F1*G-1.0D0/(Q**2+1.0D0)**0.5 
IF (LM==1) GOTO 234 
DO L=1,LM-1 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Methods of Solving the Schrödinger Equation 
 

51 

AA=((L+1)**2+Q**2)**0.5 
BB=(L+1)**2/R+Q 
CC=(2*L+1)*(Q+L*(L+1)/R) 
DD=(L+1)*(L**2+Q**2)**0.5 
F2=(CC*F1-DD*F)/L/AA 
G2=(CC*G1-DD*G)/L/AA 
WW2=F1*G2-F2*G1-(L+1)/(Q**2+(L+1)**2)**0.5 
F=F1; G=G1; F1=F2; G1=G2 
ENDDO 
234 F=F1; G=G1 
123 CONTINUE 
END 
 

Below, we give the results of the control account using this program for 
the elastic scattering of protons on 7Li in the P wave, i.e. at L = 1 with the 
potential specified in the program. Here, E is the energy of particles in keV 
and  is a phase shift in degrees. Inscriptions for these values (E and ) are 
not provided in the program. 
 

  E, keV                               , degree 
300.000000000000000        1.463012825309583 
310.000000000000000        1.741580427189647 
320.000000000000000        2.045211169193295 
329.999999999999900        2.453917192921778 
339.999999999999900        2.942034339443802 
350.000000000000000        3.523983257335034 
360.000000000000000        4.304066622497790 
370.000000000000000        5.290031443719053 
380.000000000000000        6.616684565601776 
390.000000000000000        8.497854783693313 
400.000000000000000       11.283887289718910 
410.000000000000000       15.871292305763380 
420.000000000000000       24.460811168704080 
430.000000000000000       44.290494570708410 
440.000000000000000       90.056769406018120 
449.999999999999900      131.858294233151700 
459.999999999999900      149.289857654389200 
470.000000000000000      157.183982976260500 
480.000000000000000      161.471562673128100 
490.000000000000000      164.171993502029300 
500.000000000000000      165.996407865298600 
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510.000000000000000      167.276268596475400 
520.000000000000000      168.211429040413200 
530.000000000000000      168.940799322204100 
540.000000000000000      169.548066545885000 
550.000000000000000      170.004755252677600 
560.000000000000000      170.371698377092600 
570.000000000000100      170.660104736125200 
580.000000000000100      170.910851757862900 
590.000000000000000      171.148334224319700 
600.000000000000000      171.325330286482400 

 
It is clear from these results that at 440 keV the P1 phase shift reaches 

resonance value at 90 , which is really at an energy of 441 keV [28]. 

1.4 Program for calculating scattering phase shifts  
for the central complex potentials 

We present the program for calculating complex phase shifts of elastic 
scattering by the finite-difference method in BASIC. The following 
designations are accepted. 

 
NN – the lower value of the energy cycle, 
NV – the upper value of the energy cycle, 
LN – the lower value of the orbital moment, 
LV – the upper value of the orbital moment, 
LH – a step value of the orbital moment, 
AM1 – the mass of the first particle in amu, 
AM2 – the mass of the second particle in amu, 
PM – the reduced mass of , 
Z1 – charge of the first particle in terms of charge “e”, 
Z2 – charge of the second particle in terms of charge “e”, 
A1 – constant 2/MN = 41.4686, where MN is the mass of a nucleon in amu, 

equal to 1, 
AK – constant at the Coulomb potential 1.439975 Z1Z2 2 / 2, 
N – number of steps at the integration of the Schrödinger equation, 
HH – step value at integration of the Schrödinger equation, 
R00 – distance at which the interlacing of numerical functions with 

asymptotics is carried out, 
VR1 – the depth of the real potential, 
RRR – the radius of the real potential, 
AR – the diffusivity of the real potential of the Woods-Saxon potential, 
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VC1 – the depth of the imaginary part of the potential, 
RRC – the radius of the imaginary part of the potential, 
AC – the diffusivity of the imaginary part of the Woods-Saxon potential, 
RCU – the Coulomb radius, 
L – the orbital moment, 
E1 () – the energy of particles in the laboratory system, 
E () – the energy of particles in the system of the center of masses, 
SK – the square of the wave number of k2, 
SS – the k wave number, 
GG – the Coulomb parameter = 3.44476 10 - 2 Z1Z2 /k. 

 
REM ** THE CALCULATION OF THE COMPLEX SCATTERING 
PHASE SHIFTS 
CLS: DEFDBL A-Z: DEFINT I,J,K,L,N,M: NN=4000: N=100 
DIM E(N), DE(N), DEE(N), FAZA(N,15), E1(N), X(NN), Y(NN), 
ETA(N,15), SIG(N,15), SEC(N), FAZ(N,15) 
DIM V(NN),W(NN),FM(20),FR(20),FR1(20),FM1(20),ET(N) 
REM   ******************************************** 
A$ =" THE COMPLEX PHASE SHIFTS" 
B$="   E(CM)       FAZR(EXP)    FAZR(TEOR)   FAZC(EXP)    
FAZC(TEOR)  ETA(TEOR) " 
SAVE=0: G$="C:\BASICA\FAZCOM\FAZALAL1.DAT" 
PRINT "-----------------------------------------------------------------": PRINT 
B$ 
REM ************* THE TYPE OF THE POTENTIALS ************ 
PI=4*ATN(1): NN=1: NV=1: LN=0: LV=10: LH=2: AM1=4: AM2=4 
Z1=2: Z2=2: A1=41.4686: PM=AM1*AM2/(AM1+AM2): B1=2*PM/A1 
AK=1.439975*Z1*Z2*B1: N=2000: R00=20: HH=R00/N 
REM *************** AL - AL 51.1 ******************* 
E1(1)=51.1 
REM ********** THE PHASE SHIFTS AL - AL 51.1 *************** 
FR(0)=291: FR(2)=245: FR(4)=163: FR(6)=28: FR(8)=4.2: FR(10)=0.5 
FM(0)=0.51: FM(2)=0.51: FM(4)=0.53: FM(6)=0.855: FM(8)=0.985  
FM(10)=0.998: FOR I=NN TO NV: E(I)=E1(I)*PM/AM1: NEXT I 
FOR I=LN TO LV STEP LH: FR1(I)=FR(I)*PI/180 
REM FM1(I)=FM(I)*PI/180 
NEXT I: REM ********* THE  INITIAL PARAMETERS   ******** 
V22=122: A22=0.74: R22=1.81: V33=11: A33=0.74: R33=1.81 
RCU=1.81: VN2=-V22*B1: VN3=-V33*B1 
REM  ** CALCULATION OF THE SCATTERING  PHASE SHIFTS ** 
FOR JJ=NN TO NV: SK=E(JJ)*B1: SS=SQR(SK) 
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GG=3.44476E-02*Z1*Z2*PM/SS: SIGMRR=0: SIGMAS=0 
FOR L=LN TO LV STEP LH 
CALL FUN (X(), Y(),  R22, VN2, A22, R33, VN3, A33, RCU, L, SK, AK) 
RR1=HH*SS*(N-5): RR2=HH*SS*N: X1=X(N-5): X2=X(N) 
Y1=Y(N-5): Y2=Y(N) 
REM *********   THE COULOMB FUNCTIONS ******** 
CALL CUL(GG,RR1,L,F1,G1,FP1,GP1) 
CALL CUL(GG,RR2,L,F2,G2,FP2,GP2) 
REM *********** THE SEARCH OF PHASE SHIFTS ********* 
AA1=X2*F1-X1*F2: BB1=Y1*G2-Y2*G1: DD1=X1*G2-X2*G1 
CC1=Y2*F1-Y1*F2: AA=BB1-AA1: BB=-CC1-DD1: CC=AA1+BB1 
DD=CC1-DD1: DD0=AA^2+BB^2: SS1=(AA*CC+BB*DD)/DD0 
SS2=(AA*DD-BB*CC)/DD0: ETA(JJ,L)=SQR(SS1^2+SS2^2) 
SS22=SS2/ETA(JJ,L): SS11=SS1/ETA(JJ,L) 
SIG(JJ,L)=-LOG((ETA(JJ,L)))/2 
FAZ=SS22/(1+SS11): FAZ(JJ,L)=ATN(FAZ): IF FAZ(JJ,L)>0 GOTO 901 
FAZ(JJ,L)=FAZ(JJ,L)+PI 
901 FAZA(JJ,L)=FAZ(JJ,L)*180/PI: IF SIG(JJ,L)>0 GOTO 911 
SIG(JJ,L)=SIG(JJ,L)+PI 
911 SIG(JJ,L)=SIG(JJ,L)*180/PI: A=FAZ(JJ,L) 
SIGMAR = SIGMAR + (2*L+1)*(1 - (ETA(JJ,L))^2) 
SIGMAS = SIGMAS + (2*L+1)*(ETA(JJ,L))^2*(SIN(A))^2 
PRINT USING " +#.###^^^^ "; L; FR(L); FAZA(JJ,L); FM(L); SIG(JJ,L) 
ETA(JJ,L): NEXT L: SIGMAR=10*4*PI*SIGMAR/SK 
SIGMAS=10*4*PI*SIGMAS/SK 
PRINT "         SIGR - THEOR = ";SIGMAR; 
PRINT "         SIGS - THEOR = ";SIGMAS: NEXT JJ 
REM ******* THE CALCULATION OF DIF. CROSS SECTIONS ***** 
FOR J=NN TO NV: SK=E(J)*B1: SS=SQR(SK) 
GG=3.44476E-02*Z1*Z2*PM/SS: SIGMAR=0: SIGMAS=0 
FOR L=LN TO LV STEP LH: A=FR1(L): ET(L)=FM(L) 
SIGMAR = SIGMAR + (2*L+1)*(1 - (ET(JJ,L))^2) 
SIGMAS = SIGMAS + (2*L+1)*(ET(JJ,L))^2*(SIN(A))^2: NEXT L 
SIGMAR=10*4*PI*SIGMAR/SK: SIGMAS=10*4*PI*SIGMAS/SK 
PRINT "         SIGR - EXP = ";SIGMAR; 
PRINT "         SIGS - EXP = ";SIGMAS 
NEXT J: TMI=10: TMA=90: TH=1 
CALL SEC (FR1(), GG, SS, TMI, TMA, TH, SEC(), ET(), LN, LV, LH, 1) 
FOR T=TMI TO TMA/3 STEP TH 
PRINT USING " ####.##  "; T; SEC(T); T+20; SEC(T+20); T+40; 
SEC(T+40); T+60; SEC(T+60): NEXT 
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REM **************   FILE RECORDING ************ 
IF SAVE=0 THEN STOP: OPEN "O",1,G$ 
PRINT#1, "ALPHA-ALPHA FOR LAB E=";: PRINT#1, E1(NN) 
FOR T=TMI TO TMA STEP TH: PRINT#1, USING " #.###^^^^ 
";T;SEC(T) 
NEXT  
END 
 
SUB CUL(GG,RR2,L,F2,G2,FP2,GP2) 
Q=GG: R=RR2: F0=1: GK=Q*Q: GR=Q*R: RK=R*R 
B01=(L+1)/R+Q/(L+1): K=1: BK=(2*L+3)*((L+1)*(L+2)+GR) 
AK=-R*((L+1)^2+GK)/(L+1)*(L+2) 
DK=1/BK: DEHK=AK*DK: S=B01+DEHK 
112 K=K+1: AK=-RK*((L+K)^2-1)*((L+K)^2+GK) 
BK=(2*L+2*K+1)*((L+K)*(L+K+1)+GR): DK=1/(DK*AK+BK) 
IF DK>0 GOTO 132: F0=-F0 
132 DEHK=(BK*DK-1)*DEHK: S=S+DEHK 
IF (ABS(DEHK)-1E-10)>0 GOTO 112: FL=S: K=1: RMG=R-Q 
LL=L*(L+1): CK=-GK-LL: DK=Q: GKK=2*RMG: HK=2 
AA1=GKK*GKK+HK*HK: PBK=GKK/AA1: RBK=-HK/AA1 
OMEK=CK*PBK-DK*RBK: EPSK=CK*RBK+DK*PBK 
PB=RMG+OMEK: QB=EPSK 
152 K=K+1: CK=-GK-LL+K*(K-1): DK=Q*(2*K-1): HK=2*K 
FI=CK*PBK-DK*RBK+GKK: PSI=PBK*DK+RBK*CK+HK 
AA2=FI*FI+PSI*PSI: PBK=FI/AA2: RBK=-PSI/AA2 
VK=GKK*PBK-HK*RBK: WK=GKK*RBK+HK*PBK: OM=OMEK 
EPK=EPSK: OMEK=VK*OM-WK*EPK-OM 
EPSK=VK*EPK+WK*OM-EPK 
PB=PB+OMEK: QB=QB+EPSK 
IF (ABS(OMEK)+ABS(EPSK)-1E-10)>0 GOTO 152: PL=-QB/R 
QL=PB/R: G0=(FL-PL)*F0/QL: G0P=(PL*(FL-PL)/QL-QL)*F0 
F0P=FL*F0: ALFA=1/(SQR(ABS(F0P*G0-F0*G0P))): G2=ALFA*G0 
GP2=ALFA*G0P: F2=ALFA*F0: FP2=ALFA*F0P 
W=1-FP2*G2+F2*GP2  
END SUB 
 
SUB FUN(X(5000), Y(5000), R2, V2, A2, R3, V3, A3, RCU, L, SK, AK) 
SHARED HH,N:  HK=HH*HH: X(0)=0: X(1)=1E-3: Y(0)=0: Y(1)=1E-3 
FOR K=1 TO N-1: R=K*HH: FR1=V2/(1+EXP((R-R2)/A2)) 
FC1=V3/(1+EXP((R-R3)/A3)): FR=SK-FR1-L*(L+1)/R^2 
IF R>RCU GOTO 177: FR=FR-AK/(2*RCU)*(3-(R/RCU)^2): GOTO 188 
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177 FR=FR-AK/R 
188 FC=FC1: F=2-FR*HK: G=FC*HK: X(K+1)=F*X(K)-X(K-1)-G*Y(K) 
Y(K+1)=F*Y(K)-Y(K-1)+G*X(K): NEXT 
END SUB 
 
SUB SEC (F(100), GG, SS, TMI, TMA, TH, S(100), E(100), LMI, LMA, 
LH, NYS) 
SHARED PI: DIM S0(20),P(20) 
RECUL1=0: AIMCUL1=0: CALL CULFAZ(GG,S0()) 
FOR TT=TMI TO TMA STEP TH: T=TT*PI/180: XP=COS(T) 
A=2/(1-XP): BB=-GG*A: ALO=GG*LOG(A)+2*S0(0) 
RECUL=BB*COS(ALO): AIMCUL=BB*SIN(ALO) 
IF NYS=0 GOTO 555 
PT=PI-T: X1P=COS(PT): A1=2/(1-X1P): BB1=-GG*A1 
ALO1=GG*LOG(A)+2*S0(0): RECUL1=BB1*COS(ALO1) 
AIMCUL1=BB1*SIN(ALO1) 
555 RENUC=0: AIMNUC=0: RENUC1=0: AIMNUC1=0 
FOR L=LMI TO LMA STEP LH: AL=E(L)*COS(2*F(L))-1 
BE=E(L)*SIN(2*F(L)): LL=2*L+1: SL=2*S0(L) 
CALL POLLEG(XP,L,P()) 
RENUC=RENUC+LL*(BE*COS(SL)+AL*SIN(SL))*P(L) 
AIMNUC=AIMNUC+LL*(BE*SIN(SL)-AL*COS(SL))*P(L) 
IF NYS=0 GOTO 556: CALL POLLEG(X1P,L,P()) 
RENUC1=RENUC+LL*(BE*COS(SL)+AL*SIN(SL))*P(L) 
AIMNUC1=AIMNUC+LL*(BE*SIN(SL)-AL*COS(SL))*P(L) 
556 NEXT L: RE=RECUL+RECUL1+RENUC+RENUC1 
AIM=AIMCUL+AIMCUL1+AIMNUC+AIMNUC1 
S(TT)=10*(RE^2+AIM^2)/4/SS^2: NEXT TT: END SUB 
SUB POLLEG(X,L,P(20)) 
P(0)=1: P(1)=X: FOR I=2 TO L: P(I)=(2*I-1)*X/I*P(I-1)-(I-1)/I*P(I-2) 
NEXT  
END SUB 
 
SUB CULFAZ(G,F(20)) 
C=0.577215665: S=0: N=50: A1=1.202056903/3: A2=1.036927755/5 
FOR I=1 TO N: A=G/I-ATN(G/I)-(G/I)^3/3+(G/I)^5/5 
S=S+A: NEXT: FAZ=-C*G+A1*G^3-A2*G^5+S: F(0)=FAZ 
FOR I=1 TO 20: F(I)=F(I-1)+ATN(G/(I)): NEXT  
END SUB 
 
 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Methods of Solving the Schrödinger Equation 
 

57 

We provide the results of the control account in this program. The real 
physical scattering process in the 4He4He system of nuclear particles was 
considered at an energy of 51.1 MeV with a complex potential. 
Experimental data on differential cross sections are given in [62]. An 
analysis of these data in the optical model was carried out in the same paper. 
Consequently, the parameters of the Woods-Saxon potential were found 

 

c( ) ( )

exp 1

V iWV r V r
r R

a

,           (1.4.1) 

 
where Vc(r) is the Coulomb potential and 
 
V = -122  3 MeV,  W = -11  2 MeV, 
 
R = 1.81 fm,  a = 0.74  0.03 fm,  Rc = R. 
 

Such a potential leads to scattering phase shifts and parameters of 
inelasticity, which are given in Table 1.4.1. Moreover the total experimental 
cross section of the reaction r = 770  100 mb is given in [62] for this energy. 

Using these parameters of the potential, calculation of the scattering 
phase shifts is given in Table 1.4.1 and the total cross section of the reactions 
of r = 766.1 mb was discovered using the program given above. It is clear 
that, practically speaking, all the calculated values (apart from the last real 
phase shift for L = 10), within the error margin, coincide with the results 
presented in [62]. If we use the phase shift in [62], then the cross section of 
reactions gives a value r = 764.7 mb, which, as previously, is in good 
agreement with the experimental data. 

 
Table 1.4.1. Results of phase shift analysis. 

 
L degree, 

[62] 
 degree, 
 (Our 

calculation)

 
[62] 

  
(Our 

calculation) 
0 111 4 1.123E+02 0.51 0.07 5.102E-01 
2 65 4 6.655E+01 0.51 0.07 5.177E-01 
4 163 4 1.649E+02 0.53 0.07 5.414E-01 
6 28 3 2.935E+01 0.855 0.03 8.501E-01 
8 4.2 0.6 4.422E+00 0.985 0.004 9.841E-01 

10 0.5 0.1 7.464E -01 0.998 0.001 9.972E-01 
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As such, in the case of the real central potentials, the general and 
numerical methods of the solution of the Schrödinger equation are 
considered. The accuracy of the physical calculations that allow one to 
obtain such methods and their full applicability to the finding of the nuclear 
scattering phase shifts is shown. The control calculations of the nuclear 
scattering phase shifts of various nuclear particles by the finite-difference 
method and by the Runge-Kutta method with the real interaction potentials 
are executed and a mutual comparison is carried out, showing the 
coincidence of the results with an accuracy of the order of several-
hundredths of a percent. 

The case when the central potential contains both real and imaginary 
parts is considered. Then, the Schrödinger equation moves into the coupled 
equation system. The general and numerical methods of the solution of such 
a system with rather simple initial and asymptotic conditions are stated. For 
this case, the control calculations of the nuclear scattering phase shifts and 
their comparison with some results obtained in other works are also given. 

1.5 Creation of the intercluster potentials 

Here, we describe in more detail the procedure for the construction of 
the intercluster partial potentials at the given orbital moment L, having 
defined the criteria and the sequence of finding the parameters, and having 
specified their errors and ambiguities. First of all, there are the parameters 
of the BS potentials, which, at the given number of the states allowed and 
forbidden in this partial wave, are fixed quite unambiguously on the binding 
energy, the radius of the nucleus, and an asymptotic constant in the 
considered channel. 

The accuracy on which these parameters of the BS potential are 
determined is connected, first of all, to the AC accuracy, which is usually 
around 10–20 %. The accuracy of the experimental determination of the 
charge radius is usually much higher than 3–5 %. Such a potential does not 
contain other ambiguities as the classification of states according to Young 
tableaux allows one to unambiguously fix the number of BS, forbidden or 
allowed states in this partial wave; the complete determination of its depth 
and potential width entirely depends on the AC value. The principles of 
determining the number of the FS and AS are given in the partial wave 
described, for example, in [2]. 

It is important to note that the calculations of the charge radius in any 
model contain errors, i.e. errors that are a result of the model’s accuracy. In 
any model, the values of such a radius depend on the integral of the model 
WF, i.e. the model errors of such functions are summarized. The values of 
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the AC are determined by an asymptotic of the model of the WF at one point 
of the asymptotic and appear to contain significantly smaller errors. As 
such, generally BS potentials have to be constructed and, first of all, 
coordinated as much as possible with the values of the AC obtained on the 
basis of independent methods, which allow one to take the AC from the 
experimental data [63]. 

The intercluster potential of the non-resonance scattering process on the 
phase shifts at the given number of the BS, allowed and forbidden states in 
the considered partial wave, is also constructed quite unambiguously. The 
accuracy of the determination of the parameters of such a potential is 
connected, first of all, to the accuracy of extraction of the phase shifts from 
the experimental data and can reach 20–30 %. Here, such a potential does 
not contain ambiguities, as the classification of states according to Young 
tableaux allows one to unambiguously fix the number of BS; the complete 
determination of its depth and the potential width with the given depth is 
defined by a form of this phase shift. 

At the creation of the non-resonance scattering potential according to the 
data on the spectra of the nucleus in a certain channel, it is difficult to 
estimate the accuracy of finding its parameters, even at the given number of 
BS; however, it appears that it does not exceed the error in the previous case 
by much. Such a potential is usually supposed for the area of energy up to 
1 MeV, leading to the phase shift closing to zero, or giving a smoothly 
falling phase shift shape, as there are no resonance levels in the spectra of 
the nucleus. 

In the analysis of resonance scattering, when at the considered partial 
wave with an energy of up to 1 MeV there is a rather narrow resonance with 
a width of about 10–50 keV at the given number of BS, the potential is also 
constructed completely unambiguously. At the given number of BS, its 
depth is unambiguously fixed by the resonance energy of the level and the 
width is completely defined by the width of the resonance. The error of its 
parameters usually does not exceed the error of the determination of the 
width of such a level at about 3–5 %. The same applies to the construction 
of the partial potential by phase shifts and the determination of its 
parameters by resonance in the spectra of the nucleus. 

As a result, none of the potentials contain ambiguities, allowing one to 
correctly describe the total cross sections of the processes of radiative 
capture [2,28], without the obvious involvement of such concepts as the 
spectroscopic Sf factor, i.e. its value is accepted as being equal to the unit, 
as used in [64]. In other words, by consideration of the capture reaction in 
the modified PCM [2] for the potentials of the processes correlated in a 
continuous spectrum, with the characteristics of the scattering processes and 
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a discrete spectrum describing the main properties of the BS of the nucleus, 
coordinated in a continuous spectrum, it is not necessary to enter an 
additional multiplier Sf [64] any more. It appears that all the effects present 
in the reaction, including the probability of cluster configuration, are 
considered at the creation of the interaction potentials. 

This is possible because the potentials are constructed while taking into 
account the structure of the FS and on the basis of the description of the 
observed, i.e. the experimental characteristics, of the interacting clusters in 
the initial channel, along with some nuclei formed in the final state in the 
case of the description of its cluster design consisting of the initial particles. 
As such, the presence of Sf, taking into account the wave functions of the 
BS clusters, is defined on the basis of such potentials in the solution of the 
Schrödinger equation (1.1.1). 

In conclusion, we note that in the case of the creation of partial 
interaction potentials, they are considered to not only depend on the L orbital 
moment, but also on the S total spin and the J total moment of the cluster 
system. In other words, for the different moments, L, S, J, we have different 
values for the parameters. Usually the E1 or M1 transitions between 
different states (2S+1)LJ in continuous and discrete spectra are considered and 
thus the potentials of these states will vary. 

1.6 Potentials and wave functions 

The intercluster interaction potentials for each partial wave, i.e. for the 
given orbital moment L, and the pointlike Coulomb member can be chosen 
in the form 
 
V(r) = V0exp(- r2) + V1exp(- r2),            (1.6.1) 
 
or 
 
V(r) = V0exp(- r2).             (1.6.2) 
 

Here the parameters V0 and V1, , and  are the potential parameters. 
They are usually derived from best description of the phase shifts of elastic 
scattering taken during the phase shift analysis from the experimental data 
of the differential cross sections, i.e. angular distributions or excitation 
functions. 

The Coulomb potential at the zero Coulomb radius of Rcoul = 0 is written 
in the form 
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1 2
coul ( ) 1.439975

Z ZV
r

, 

 
where r is the relative distance between the particles of the initial channel 
in fm and Z stands for the charges of the particles in terms of an elementary 
charge “e”. 

The behavior of the wave function of the bound states, including the 
ground states of the nucleus in the cluster channels at long distances, is 
characterized by the asymptotic constant Cw, which is defined by 
Whittaker’s function [65] 

 

L 0 w L 1/2 0( ) 2 2r k C W k r ,             (1.6.3) 

 
where L(R) is the numerical wave function of the bound state obtained from 
the solution of the radial Schrödinger equation and normalized to the unit; 
W- L+1/2 is Whittaker’s function of the bound state defining the asymptotic 
behavior of the WF and being the solution of the same equation without 
nuclear potential, i.e. at long distances R; k0 is the wave number caused by 
the channel binding energy;  is the Coulomb parameter after being 
determined further; and L is the orbital moment of the bound state. 

The asymptotic constant is the important nuclear characteristic defining 
the behavior of the “tail”, i.e. the asymptotics of the wave function at long 
distances. In many cases, the knowledge of A nucleus in the cluster channel 
b+c defines the value of an astrophysical S-factor for the process of 
radiative capture of b(c, )A [63]. The asymptotic constant is proportional to 
the nuclear vertex constant for the virtual process of A b+c, which is a 
matrix element of this process on the mass surface [66]. 

1.7 Methods of phase shift analysis 

Knowing the experimental differential cross sections of the elastic 
scattering, it is possible to find the set of parameters called the phase shifts 

J
S,L , allowing us to describe the behavior of these cross sections with a 

certain accuracy. The quality of the description of the experimental data, on 
the basis of some theoretical function (a functionality of several variables), 
can be estimated using the 2 method, which is presented in the form [6] 

 

i i

i

i

2
t eN N

2 2

e
i 1 i 1

( ) ( )1 1

( )N N
,                          (1.7.1) 
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where e and t are the experimental and theoretical values, i.e. calculated 
at some given values of the phase shift J

S,L  cross sections of the elastic 

scattering of the nuclear particles for the scattering angle i; e is an error 
of the experimental cross sections for this angle; and N is the number of 
experimental measurements. 

The expressions describing the differential cross sections present the 
decomposition of some functionality ( ) /d d  in the numerical series [6]; 

it is necessary to find such variation parameters of the decomposition J
S,L , 

which best describe its behavior. As the expressions for the differential cross 
sections are usually exact [6], with an indefinite increase in members of the 
decomposition of L, the value 2 has to aspire to zero. This criterion was 
used to choose a certain set of phase shifts leading to a minimum 2, which 
could be applied as a global minimum in this multiple parameter variation 
problem [5]. The methods and criteria of the phase shift analysis used in 
these calculations are given in more detail in [5,10]. 

As such, to discover the scattering phase shifts according to the 
experimental cross sections, the procedure for the minimization of 2 
functionality (1.7.1), as functions of a certain number of variables, was 
executed, with each one being a J

S,L  phase shift of some partial wave. For 

the solution of this problem, a minimum 2 in some limited area of values 
of these variables is looked for; however, it is also possible to find a set of 
local 2 minima with the unit order value in this area. The choice of the 
smallest of them may correspond to a global minimum, which is the solution 
of such a variation problem. 

We used the stated criteria and methods to carry out phase shift analysis 
at low energies, which is important for the majority of the astrophysical 
problems. All expressions for the calculation of the differential cross 
sections of the elastic scattering of particles with different spins, which are 
required for carrying out the phase shift analysis in the systems described 
above, are given in the corresponding paragraphs of Chapter 2. 

1.8 General principles of the three-body model 

We consider the radial Schrödinger equation with central nuclear forces 
for the wave function of the system of three particles [67,68] 
 
(H - E) l, (r,R) = 0,             (1.8.1) 
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where 
 
H = T + V, 
 

2 2

1 2

02 2r RT T T ,                                                                  (1.8.2) 

V = V12 + V23 + V13, 
 

2 3 1 23
0

23

,
m m m m
m m

, 

 

23 2 3 1 2 3,m m m m m m m . 

 
Here, m and  are the masses and the reduced mass of three particles;  

is the Laplace operator with the two coordinates of r and R; T and V are 
operators of kinetic and potential energy; H is the complete Hamiltonian of 
the system; and E is the energy of the system, i.e. the eigenvalues of energy 
in this system for the given Hamiltonian. 

The r value in such a record defines the distance between particles 2 and 
3, which are in a triangular formulation of three bodies with the orbital 
moment , while R is the distance between the first particle, which is located 
at the top of the triangle, and the center of mass of the first two particles 
with the orbital moment l. 

The total three-body wave function of such a system has the form [67] 
 

JM
l, LS

l,

( , ) ( , ) ( , )r R r R r R , 

and its angular part JM
LS ( , )r R  is written in the usual form [69,70,71] 

 

L S

S L

JM
LS L S LM SM

M M

( , ) ( , ) ( )r R LM SM JM r R . 

 
Here, L = l +  is the total orbital moment; S is the total spin of the 

system; J is the total moment of the considered system of particles; M 

represents the projections of these moments; JM
LS ( , )r R  is the spin-angular 

function [69-71]; and l,  is the radial wave function, which is usually 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



I 
 

64

written in the form 
 

l 2 2
l, i i i i i

i i

( , ) exp( )r R Nr R C r R N C ,         (1.8.3) 

where r and R are the scalar distances between particles; r and R are the 
angles between the directions of the vectors of r and R and the axis z; YLM 
is the spherical function [72]; and SM is the spin function of the system 
depending on the  spin of the particles, with angular brackets designating 
the Clebsch-Gordan coefficients [72]. 

In the actual calculations, for certain values of the variational parameters 

i and i (1.8.3), we find the energy of the system, which gives the zero 
determinant of the system (1.8.1); then, by varying these parameters, we 
search for the minimum energy. In the following step, we increase the 
dimension of the N basis and repeat all calculations until the size of the 
eigenvalue, i.e. the binding energy EN, on the next step of N does not begin 
and differs from the previous EN-1 value at size  which is usually set at the 
level 0.1–1.0 %. According to the general variation principle [9], this 
minimum energy will also be the real three-body binding energy of the 
system, i.e. the binding energy of an atomic nucleus in the cluster model 
considered here. 

1.9 Variation methods of the three-body model 

The matrix elements of the Hamiltonian system (1.8.2) and the overload 
integrals calculated on the basis of i (1.8.3) functions have the form [73] 
 

2
2 1/2 l 1/2

ij ij ij ijl+
N

(2 1)!!(2 1)!!

16 2

lT N G
m

, 

 

ij ij
ij

ij 0 ij

( , ) ( , )B B l
G ,  

2
i j

ij 2
ij

( , ) (2 3)
2 1

B , 

 

2 3/2 l 3/2
ij ij ijl

(2 1)!!(2 1)!!

16 2

lL N , 

1/2

i j ij
ij

N C C L , 

 
with the potentials (the designations used here are: cb, centrifugal, coul, and 
Coulomb) 
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2
2 3/2 l 1/2

cb R ij ij ijl
0

(2 1)!!(2 1)!!
[( ) ] ( 1)

16 2

lV N l l , 

 
2

2 1/2 l 3/2
cb r ij ij ijl

(2 1)!!(2 1)!!
[( ) ] ( 1)

16 2

lV N , 

 

2
oul r ij 2 3 l 1 l 3/2

ij ij

2 (2 1)!! !
[{ (23)} ]

16 2

lV Z Z N , 

 

2
oul R ij 1 2 l 1 3/2

ij ij

2 (2 1)!! !
[{ (12)} ]

16 2

lV Z Z N , 

 

2
oul R ij 1 3 l 1 3/2

ij ij

2 (2 1)!! !
[{ (13)} ]

16 2

lV Z Z N , 

 

2 3/2 l 3/2
23 ij 23 ij 23 ijl

(2 1)!!(2 1)!!
( ) ( )

16 2

lV N V , 

ij = i + j,  ij = i + j. 
 

Furthermore, for example, at values of l = 1 and  = 0, we have the 
following expressions for the matrix elements from the nuclear potentials of 
the form (1.6.2) 
 

2 2
2 12 12

12 ij 3/2
ij ij 12 ij

3
( ) 1

16 2 ( )

V aV N
A A

, 

 
where 
 

2
ij ij ij 12 ij ij 3 23( ) , / .A a a m m  

 
In the case of l = 0 and  = 0 for this part of the potential, we find the 

expression 
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2 12
12 ij 3/2

ij

( )
16

VV N
A

. 

 
Here, the value 12 is the parameter of the width of the Gaussian potential 

and V12 is its depth between the corresponding couple of particles, which, 
in this case, is 12 or 13. 

For a case of any l when  = 0, it is possible to obtain the expression 
 

l
ij2

12 ij 12 l l 3/2
ij

(2 1)!!
( )

16 2

dlV N V
A

, 

 
where 
 

2
ij 12d a . 

 
The mean square mass radius of a nucleus in such a model is presented 

in the form [74] 
 

2 2 2 2
m 1 m1 2 m2 3 m3/ / / /r m m r m m r m m r A m , 

 

ij2 3/2 l 3/2
i j ij ijl 1

ij
0

ij

2 3

(2 1)!!(2 1)!!

2 316 2

lA N C C
l

, 

 

2 3 1 23
0 23 2 3 1 2 3

23

, , , .
m m m m m m m m m m m
m m

 

 
The mean square charge radius of a nucleus in the three-body model has 

the form 
 

2 2 2 2
z 1 z1 2 z2 3 z3/ / / /r Z Z r Z Z r Z Z r B Z . 

 
Here, the value B is expressed through the moments of particles, 

variation parameters, and coefficients of decomposition of the WF as 
follows. 
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ij2 3/2 l 3/2
i j ij ijl 1

ij

ij

i j2

2 l 2
ij ij ij

2 3

(2 1)!!(2 1)!!

2 316 2

( 1)!( 1)! ,
2

l C
lB N C C

D

C C
N E l

 

 
2 2

1 23 23 1
23 2 32

, ,
Z m Z mC Z Z Z

m
 

 
2 2

2 3 3 2
2
23

,
Z m Z mD

m
 

1
3 2 2 3

23

( ) .
mE Z m Z m

mm
 

 
As the charge and mass radiuses of the clusters—a proton, a deuteron, a 

triton, helium-3, and  particles—the following values were accepted: 
<r>zn = 0 fm, <r>mn = <r>mp = <r>zp = 0.877 fm, <r>md = <r>zd = 1.96 fm, 
<r>mt = <r>zt = 1.72 fm, <r>m3He = <r>z3He = 1.88 fm, <r>m  = <r>z  = 1.67  
fm [75,76,77,78]. 

To find the binding energy of a nucleus in the three-body model, the 
initial values of the variation i and i parameters were found from a linear 
grid of the form 
 

i = i/30,        i = 2 i. 
 

The independent variation of each of these parameters at the given 
number of iterations was carried out to minimize the energy of the system 
with a given accuracy . This variation method differs a little from the 
similar variant of the VM for the usual two-body problem [28,79,80]. 

To check the variation three-body method of calculation and the 
computer program considered above, the model problem for three particles 
interacting in the Afnan-Tang potential [81] with averaging of the triplet 
and singlet states was used. For the binding energy of a system such as that 
described in [81], the value of -7.74 MeV was obtained, while the value -
7.76 MeV was found in [82]; the non-orthogonal variation method, with a 
change in the  and  parameters of the wave function on the basis of a 
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tangential grid, was used. On the basis of the methods stated above, using 
the independent variation of all parameters and the dimension basis N = 5, 
we obtained the value -7.83 MeV. As such, the binding energy of the model 
system considered here, obtained using the methods described above, was 
approximately 1 % different to the results in [81,82]; we consider this to be 
a reasonably good result. 

Conclusion 

All the major mathematical expressions and some programs for 
investigating the elastic scattering phase shifts and calculations of nuclear 
characteristics are given in relation to the three-body model. The alternative 
methods of finding the eigenvalues for the two or three-body generalized 
variation problems have been described. Such methods lead to a steadier 
numerical scheme of the variation solution of the Schrödinger equation in 
comparison to the usual methods of Schmidt orthogonalization. 

The criteria for the creation of two partial potentials on the basis of the 
scattering phase shifts and the general principles of searching for such phase 
shifts to undertake their analysis have been defined. Several ways of 
calculating the values of the wave function applicable to both a scattering 
problem and a discrete spectrum have been described. The finite-difference 
and variation methods of investigating the binding energy of a nuclear 
system, based on two and three partial models, have also been given. 
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PHASE SHIFT ANALYSIS 

 
 
 

In many problems of low energy nuclear physics and nuclear astrophysics, 
knowledge of elastic scattering phase shifts, which can be determined from 
the differential cross sections of elastic scattering of various nuclear particles, 
is necessary [1]. The procedure for phase shift analysis consists of the 
decomposition of the total scattering amplitude in terms of partial waves or 
amplitudes and analyses the parameters that appear, which are called phase 
shifts. Such phase shifts allow us to obtain data on the nature of strong 
interactions, the structure of resonance states, and the general structure of 
atomic nuclei [1]. Phase shifts are used, in particular, for the creation of 
intercluster interaction potentials in the three-body potential cluster model or 
in relation to some astrophysical problems [2]. 

Introduction 

The problem of determining or extracting the nuclear phase shifts from 
the cross sections of elastic scattering in the mathematical plan is reduced 
to a multiple parameter variation problem. In other words, when the 
experimental scattering cross sections of nuclear particles and mathematical 
expressions obtained in the quantum mechanics, which describe these cross 
sections depending on certain parameters with L as the nuclear phase shifts, 
the polyvalent variation problem is used to find the required parameters at 
a given interval of values. This interval is usually in the area of phase shift 
values of 0 and 180 , if we take into account the conclusions of the 
generalized Levinson theorem [4]. 

Since there are no general methods for solving the multi-parameter 
variational problem to find the global minimum, we can expect to find 
mostly only some local minima at each energy and, on the basis of physical 
considerations, we choose those that could be solutions to the original 
problem. One of the criteria of this selection process is the requirement of 
smoothness in the behavior of each partial nuclear phase shift as a function 
of energy in the non-resonance area and the transition of its value through 
90° at resonance energy [1], while also finding a phase shift in the given 
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area of angles. 
In different nuclear systems, depending on the energy of the colliding 

particles, the number of elastic scattering phase shifts can change from 1–3 
to 10–20 [5]. For example, in 4He4He scattering, we used up to 20 partial 
waves and, for example, in the p12C system at low energies, as will be shown 
further, only one partial 2S phase shift was used. In this chapter, the various 
experimental measurements, methods of calculation of differential cross 
sections, including computer programs, and results of the phase shift 
analysis of elastic 4He4He, n3He, p6Li, p12C, n12C, p13C, p14C, n16O, p16O, 
and 4He12C scattering, are all examined. 

For the first system given above, only the control account at energies of 
22 and 30 MeV, used for the verification of the computer program, is 
considered. This system is considered in more detail in [2]. For other 
scattering processes, the area of 1–2.5 MeV was analysed, apart from the 
last system in 4He12C scattering, where a phase shift analysis was made in 
the range 1.5–6.5 MeV. 

2.1 Phase shift analysis of elastic 4He4He scattering 

Here we consider measurements of the elastic scattering differential 
cross sections and the results of the phase shift analysis obtained from these 
cross sections for 4He4He systems at different energies. The basic data of 
these studies, concerning energies up to 120 MeV, but not in all of this area, 
were developed through the serial phase shift analysis of experimentally-
measured differential cross sections of elastic scattering [83]. 

2.1.1 Overview of the experiment on 4He4He elastic scattering 

We provide a short review of the experimental data and results of the 
phase shift analysis of 4He4He elastic scattering in a number of different 
works: 
 

1.  Measurement of the elastic scattering differential cross sections and 
phase shift analysis in the energy range 0.6–3.0 MeV (l.s.) were 
undertaken in [84]. The cross sections and phase shifts are specified 
in the form of a table, which is very convenient and assists in finding 
the phase shifts for any time. 

2.  The energy range 3.0–5.0 MeV was considered in [85], but the phase 
shifts and cross sections of scattering are given only in the figures. 

3.  The energy range 3.8–11.9 MeV was analysed in [86]. The results of 
the phase shift analysis are given in a table while the scattering 
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differential cross sections are shown only in the figures. 
4.  Very accurate measurements of elastic scattering differential cross 

sections and phase shift analysis are found in [87,88], where 
experimental cross sections and scattering phase shifts for the energy 
range 13–22.9 MeV are given in tables. 

5.  The area 12.9–21.6 MeV was also considered in [89], but the cross 
sections and phase shifts are given only in the figures. 

6.  Very good data for energies in the range 18.0–29.5 MeV are 
provided in [90]; the elastic scattering cross sections and results of 
the phase shift analysis are presented in detailed tables. 

7.  Experimental measurements of cross sections and phase shift 
analysis were carried out at energies in the range 23.1–38.4 MeV in 
[91]; however, only the scattering cross section is specified in a table. 

8. Measurements of cross sections and phase shift analysis in the range 
53–120 MeV are presented in [92], but only tabular phase shifts are 
given while the scattering cross sections are given in the figures. 

9.  Experimental study of the elastic scattering cross sections for 
energies in the range 36.8–47.3 MeV was carried out in [93]; detailed 
tables present the measurement results of differential cross sections, 
but phase shift analysis on these data was not carried out. Theoretical 
research into some energies in this area is available only in [94], 
where a search for parameters of the optical potential was undertaken 
and then phase shifts of 4He4He elastic scattering were obtained. The 
quality of the optical adjustment made in this area of energies leaves 
much to be desired, as shown in the figures in [94]. In addition, 
during extraction of the phase shifts of the optical potential, only the 
real part was calculated and an imaginary part was considered that is 
too small, located at 1–2 , which does not seem justified for energies 
in the region of 40 MeV or higher. 

10. The energies of 38.5, 49.9, and 51.1 MeV were considered in 
[95,96,97], respectively, and the differential cross sections were 
measured; however, a phase shift analysis was not carried out for 
these data. Instead, in [95,97] the parameters of the optical potentials 
and, on that basis, those obtained in [97], the elastic scattering phase 
shifts were calculated. 

 
From the review provided, it is clear that a standard phase shift analysis 

of the experimental data, i.e. elastic scattering differential cross sections in 
the 4He4He system at energies of 36.85–51.1 MeV, has not been undertaken. 
The adjustment of the parameters of the optical potentials for the energy 
range 23–47 MeV [94] can hardly be considered satisfactory, which is not 
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surprising, as all these results were obtained in the 1960s when the 
computing facilities and methods of advanced numerical calculation were 
only just beginning to develop. 

Therefore, it is interesting to carry out an accurate and comprehensive 
analysis of the experimental phase shift of elastic scattering differential cross 
sections in the energy range 37–51 MeV. The tabular representation of the 
experimental cross sections of 4He4He elastic scattering in this area of 
energies, provided in [93,95,96], allows us to carry out such an analysis. 
However, we will be limited only by the operational capacity of the computer 
program; the results of such analysis are given in [5,83] and book [2]. 

2.1.2 The phase shift analysis method  
of 4He4He elastic scattering 

We consider here the problem of phase shift analysis and the method of 
determining phase shifts from the experimental data, i.e. we will define the 
ways and approaches used in our phase shift analysis. The elastic scattering 
differential cross section of identical particles with spin 0 + 0 is defined by 
the scattering phase shifts of the identical particles, as follows [6]: 

 
2( )

( ) ( )
d f f

d
,           (2.1.1) 

 
where the scattering amplitude is presented in the form of the sum of 
Coulomb and nuclear amplitudes 
 
f (  = fc( ) + fN( ),              (2.1.2) 

 
and also expressed through the nuclear l and Coulomb l phase shifts [6]: 
 

2
c 02
( ) exp{ ln[sin ( / 2)] 2 },

2 sin ( / 2)
f i i

k
                   (2.1.3) 

 

N l l l
l

1
( ) (2 1)exp(2 )[ 1] (cos )

2
f l i S P

ik
, 

 
where k is the wave number of the relative movement of k2 = 2 E/ 2 
particles; E is the energy of the colliding particles in the center of mass;  
is the reduced mass;  is the Coulomb parameter;  is the scattering angle; 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Phase Shift Analysis 73 

and PL(cos ) stands for the Legendre polynomials. 
Usually, the nuclear phase shifts of elastic scattering are presented in the 

form 
 

L = Re L + iIm L, 
 
then, for a scattering matrix and parameters of inelasticity we obtain 
 
SL(k) = L(k)exp[2iRe L(k)], 
 

L(k) = exp[-2Im L(k)]. 
 

The summation in expression (2.1.3) is carried out only by even-
numbered L, as odd partial waves do not contribute to the total cross section, 
and carried out for some L, the values of which depend on the energy. 

For the Coulomb scattering amplitude (2.1.3), using the expression 
 
D = sin-2( /2) = 2/[1 - cos( )], 
 
it is possible to write the form 
 
fc = - D/2k [cos(C) + isin(C)], 
 
where 
 
C = 2 0 + lnD. 

 
The nuclear amplitude can be provided in the following form 

 

L L

N L
L L L

cos(2 ) sin(2 )1
( )

2 sin(2 ) cos(2 )

B A
f L P x

k i B A
,          (2.1.4) 

where x = cos( ); L  = 2L + 1; A = Lcos(2 L) – 1; and B = Lsin(2 L) 
depending only on the nuclear phase shifts, the parameter of inelasticity, 
and the orbital moment. 

The Coulomb scattering phase shifts are expressed through the gamma-
function [6] 
 

L arg{ ( 1 )}L i , 
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and satisfy the recurrent process 
 

L L 1 arctg
1L

, 

 
by which it is possible to obtain the following expression for the Coulomb 
phase shifts 
 

L

L L 0
n 1

arctg
n

,  0 = 0. 

 
The value l is used in the transformed expression (2.1.3). If we take out 

the general multiplier e p(2i 0), then, l  l with 0 = 0, which relieves 
us of the need to calculate the Coulomb phase shifts in an explicit form; the 
Coulomb amplitude thus takes the following form 

 

2
c 2
( ) exp{ ln[sin ( / 2)]} .

2 sin ( / 2)
f i

k
                        (2.1.5) 

 
In the 4He4He problem with zero spin, the set of phase shifts depends on 

the total moment J and spin S passes into l. As S = 0, the total moment is 
equal to the orbital moment J = L. 

2.1.3 Verification of the computer program 

To carry out this phase shift analysis, a computer program written in 
BASIC using the Turbo Basic Compiler from Borland International Inc. was 
written [98] using the mode of double accuracy; it was then transferred into 
the Fortran-90 language [2]. The program was tested according to the earlier 
phase shift analysis presented in various works at different energies [10]. 
Here we provide only some of these tests. 

For example, at an energy of 6.47 MeV (l.s.), the following phase shifts 
are given in [86]: 0 = 79.5°  2°; 2 = 80.8°  2°. In our phase shift analysis, 
the values 0 = 80.43° and 2 = 80.73° occur at 2 = 0.18. The error in 
determining the cross sections from the figures in [86] was accepted as 
being equal to 10 %, explaining such a small value for 2. 

At an energy of 13 MeV in [88], the following values were obtained: 0 
= 29°  4°, 2 = 103°  8°, 4 = 3°  1.5°; our analysis gives 0 = 28.37°, 

2 = 105.03°, 4 = 2.62° at 2 = 3.43. 
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0 = 7°  2°, 2 = 104°  4°, 4 = 16.2°  2° was found in the same work 
for 17.8 MeV; in our calculations we found the values 0 = 7.25°, 2 = 
103.93°, 4 = 17.0° at 2 = 0.46. 

In [88], the following phase shifts were obtained for an energy of 22.9 
MeV: 0 = 169.7°  2°, 2 = 94.0°  2°, 4 = 59.2°  2°, 6 = 1.09°. Our 
phase shift analysis using these data gives: 0 = 169.30°, 2 = 94.49°, 4 = 
59.55°, 6 = 1.0° at 2 = 1.46. 

At the energies of 13, 17.8, and 22.9 MeV, the differential cross sections, 
their errors, scattering phase shifts, and the value 2 are specified in the 
tables in [88], but it is possible to compare only the scattering phase shifts. 
It is rather difficult to compare 2 because in [86,88] the value of 2 
determined above is not considered (1.7.1), however, its derivative depends 
on some constants connected to the experimental technique. 

We present the control account executed for 4He4He elastic scattering at 
an energy of 29.5 MeV in more detail. In [90], which presents the 
experimental cross sections and results of the phase shift analysis (see Table 
2.1.1), 0.68 was obtained for the average 2 value; however, the methods of 
its calculation differ a little from those stated above and thus this value 
cannot be compared directly to our results. The result obtained from our 
calculations with the phase shifts from [90] for the average 2 on all points 
was 1.086. If we consider the weighting multipliers from [90], it is possible 
to obtain a value of 0.6, which aligns quite well with the results of this work. 

Furthermore, we carried out detailed calculations for the minimization 
of 2 using our program (presented further on) and compared the results 
with the experimental data [90]. For the average , a value of 0.600 was 
obtained (instead of 1.086), i.e. an almost twofold improvement in the 
quality of the description of the observed experiment with very little change 
in the values of the phase shifts, as shown in Table 2.1.1. 

 
Table 2.1.1. Comparison of the results of phase shift analysis from [90] 
and our results at energies of 25.5 MeV and 29.5 MeV. 

 

L  
deg

29.5 MeV 25.5 MeV 
Results [90] Our results Results [90]] Our results 

 150.88 0.17 150.76 160.36 1.01 160.49 

 86.90 0.13 86.61 89.37 1.54 89.00 

 121.19 0.17 121.00 88.64 1.77 88.60 

2.20 0.11 2.16 1.61 0.39 1.41 

0.11 0.08 0.09 0.36 0.19 0.18 
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In [90], the data were obtained for an energy of 25.5 MeV, the phase 
shifts of which are also shown in Table 2.1.1. Our calculation with these 
phase shifts gives us a value of 2 = 2.127. Carrying out an additional 
variation of the scattering phase shifts, we obtain a noticeable improvement 
in the description of the available data with 2 = 0.886. For the phase shift 
values given in the last column of Table 2.1.1, which coincide with the 
results in the limits given in [90], the scattering phase shifts errors were 
obtained. 

Small differences in scattering phase shifts can be caused by the various 
values for constants or masses of particles, which are used in such 
calculations. For example, it is possible to use exact values for the mass of 
particles or their entire quantities, and the constant 2/m0 can be different to 
the value 41.4686 MeV fm2 used here. Therefore, in general, we may 
consider that, in all the cases presented above, which can be used as control 
cases for our results, and in the error limits given in various works for phase 
shifts, a reasonable level of coincidence with data obtained previously by a 
number of authors is achieved. 

2.1.4 The program for 4He4He and 4He12C phase shift analysis 

Below we present the computer program written in Fortran for 4He4He 
and 4He12C phase shift analysis. The analysis made depends on the values 
of the NYS and LH parameters. In the case of 4He4He, they have to be equal 
to 1 and 2, respectively, to carry out 4He12C phase shift analysis with values 
equal to 0 and 1. Additionally, for large energies of about 30–40 MeV, the 
NP parameter has to be equal 

 
NP = 2*LMA+LH, 

 
but not the LMA, which allows us to takie into account the complex part of 
the scattering phase shifts. 

The designations of some initial parameters of the program are given 
below. 
 
Z1=2.0D0; Z2=2.0D0 – charges of particles, 
AM1=4.0D0; AM2=4.0D0 – mass of the alpha particles, 
LMI=0 – the initial orbital moment, 
LH=1 – the step of the moment, 
LMA=2 – the maximum orbital moment, 
EP=1.0D-10 – accuracy of the search for a minimum, 
NI=10 – the number of iterations, 
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NT=22 – the number of experimental points, 
EL=13.0D0 – the laboratory energy of the elastic scattering of particles, 
A1=41.4686D0 – constant value 2/m0, 
PM=AM1*AM2/(AM1+AM2) – the reduced mass of the particles, 
FH=0.010D0 – the initial step in searching for a minimum, 
NYS=1 – call word – if = 1 then 4He4He, and if = 0 then 4He12C for the 
search of phase shifts for two different systems of particles. 
 

Below we present the text of the computer program written in Fortran-
90. 

 
PROGRAM FAZ_AL_AL 
! THE PROGRAM OF THE PHASE SHIFT ANALYSIS FOR AL-AL 
! AND AL-12C 
IMPLICIT REAL(8) (A - Z)  
INTEGER L,I,NT,LMI,LMA,LH,NYS,NP,NTT,NV,NI,LMI1,LH1,NPP 
DIMENSION ST(0:50),FR(0:50),FM(0:50),ET(0:50), 
XP(0:50),ETA(0:50) 
COMMON /A/ PI,NT,TT(0:50),GG,SS,LMI,LMA,LH,NYS,NP 
COMMON /B/ SE(0:50),DS(0:50),DE(0:50),NTT 
COMMON /C/ LH1,LMI1,P1,NPP 
! ************* INITIAL VALUES ************** 
PI=4.0D0*DATAN(1.0D0) 
P1=PI 
Z1=2.0D0; Z2=2.0D0 
AM1=4.0D0; AM2=4.0D0 
AM=AM1+AM2 
A1=41.46860D0 
PM=AM1*AM2/(AM1+AM2) 
B1=2.0D0*PM/A1 
LMI=0; LMI1=LMI; LH=2; LH1=LH 
LMA=4; LMA1=LMA 
NYS=1; ! IF =1 THEN 4HE4HE, IF = 0 THEN 4HE12C 
EP=1.0D-010 
NV=1 
FH=0.010D0  
NI=10 
!NP=2*LMA+LH 
NP=LMA  
NPP=NP 
! ***************** CROSS SECTIONS **************** 
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SE(1)=1357.0D0; SE(2)=1203.0D0; SE(3)=1074.0D0;  
SE(4)=870.0D0; SE(5)=759.0D0 
SE(6)=688.0D0; SE(7)=467.0D0; SE(8)=271.0D0; 
SE(9)=196.0D0; SE(10)=130.0D0 
SE(11)=93.90D0;SE(12)=57.0D0; SE(13)=350D0; 
SE(14)=130D0; SE(15)=280D0 
SE(16)=24.7; SE(17)=86.5; SE(18)=157; SE(19)=270 
SE(20)=337.0D0; SE(21)=408.0D0; SE(22)=418.0D0 
DE(1)=39.0D0; DE(2)=40.0D0; DE(3)=24.0D0;  
DE(4)=20.0D0; DE(5)=16.0D0; 
DE(6)=17.0D0 
DE(7)=12.0D0; DE(8)=7.0D0; DE(9)=4.10D0; 
DE(10)=3.60D0; DE(11)=20D0;  
DE(12)=1.50D0 
DE(13)=1.1; DE(14)=1.0; DE(15)=0.4; DE(16)=0.7;  
DE(17)=2.0; DE(18)=3.6 
DE(19)=6.50D0; DE(20)=7.40D0; DE(21)=8.20D0;  
DE(22)=8.30D0 
TT(1)=22.0D0;  TT(2)=24.0D0;  TT(3)=26.0D0;    
TT(4)=28.0D0; TT(5)=30.0D0 
TT(6)=32.0D0;  TT(7)=35.0D0;  TT(8)=40.0D0;  
TT(9)=42.0D0 
TT(10)=45.0D0; TT(11)=46.0D0; TT(12)=48.0D0;  
TT(13)=50.0D0 
TT(14)=52.0D0; TT(15)=55.0D0; TT(16)=60.0D0;  
TT(17)=65.0D0 
TT(18)=70.0D0; TT(19)=75.0D0; TT(20)=80.0D0;  
TT(21)=85.0D0; TT(22)=90.0D0 
! *************** FOR AL-AL ON E=13 *************** 
NT=22;  NTT=NT; EL=13.0D0 
FR(0)=29.0D0;  FR(2)=103.0D0;  FR(4)=3.0D0 
FM(0)= 0.0D0;  FM(2)=  0.0D0;  FM(4)=0.0D0 
OPEN (4,FILE='FAZ.DAT') 
DO L=LMI,LMA,LH 
READ(4,*) L,FR(L),FM(L) 
ENDDO 
CLOSE(4) 
! ************* ENERGY IN LAB. SYSTEM ************* 
DO L=LMI,LMA,LH 
FM(L)=FM(L)*PI/180.0D0 
FR(L)=FR(L)*PI/180.0D0 
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ET(L)=DEXP(-2.0D0*FM(L)) 
ENDDO 
FH=FH*PI/180.0D0 
DO I=LMI,LMA,LH 
XP(I)=FR(I) 
XP(I+LMA+LH)=FM(I) 
ENDDO 
! *********** TRANSFORM TO C.M. ******************* 
EC=EL*PM/AM1 
SK=EC*B1 
SS=DSQRT(SK) 
GG=3.44476D-002*Z1*Z2*PM/SS 
! ******* DIFFERENTIAL CROSS SECTION ************ 
CALL VAR(ST,FH,NI,XP,EP,XI,NV) 
PRINT*, "XI-KV=; NI=; EL=",XI,NI,EL 
! ********** TOTAL CROSS SECTION ***************** 
SIGMAR=0.0D0; SIGMAS=0.0D0 
DO L=LMI,LMA,LH 
FR(L)=XP(L) 
FM(L)=XP(L+LMA+LH) 
A=FR(L) 
ETA(L)=1 
!ETA(L)=DEXP(-2.0D0*FM(L)) 
SIGMAR=SIGMAR+(2*L+1)*(1-(ETA(L))**2) 
SIGMAS=SIGMAS+(2*L+1)*(ETA(L))**2*(DSIN(A))**2 
ENDDO 
SIGMAR=10.0D0*4.0D0*PI*SIGMAR/SK 
SIGMAS=10.0D0*4.0D0*PI*SIGMAS/SK 
PRINT*, "SIGMR-TOT=",SIGMAR 
PRINT*, "SIGMS-TOT=",SIGMAS 
PRINT*, "     T           SE          ST          XI" 
! ****************** RESULTS ************************ 
DO I=1,NT 
WRITE(*,2) TT(I),SE(I),ST(I),DS(I) 
ENDDO 
PRINT* 
PRINT*, "    L     FR(L)      FM(L)" 
DO L=LMI,LMA,LH 
FM(L)=FM(L)*180.0D0/PI 
FR(L)=FR(L)*180.0D0/PI 
WRITE(*,1) L,FR(L),FM(L) 
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ENDDO 
OPEN (4,FILE='SEC-AL-AL.DAT') 
WRITE(4,*)  "             AL-AL LAB E=; XI=",EL,XI 
WRITE(4,*) "       T              SE              ST              XI" 
DO I=1,NT 
WRITE(4,2) TT(I),SE(I),ST(I),DS(I) 
ENDDO 
WRITE(4,*)  
WRITE(4,*) "    L     FR(L)      FM(L)" 
DO L=LMI,LMA,LH 
WRITE(4,1) L,FR(L),FM(L) 
ENDDO 
CLOSE(4) 
OPEN (4,FILE='FAZ.DAT') 
DO L=LMI,LMA,LH 
WRITE(4,1) L,FR(L),FM(L) 
ENDDO 
CLOSE(4) 
1 FORMAT(1X,I5,E15.6,2X,E15.6) 
2 FORMAT(1X,4(E10.3,2X)) 
3 FORMAT(1X,E15.5,2X,I5) 
END 
 
SUBROUTINE VAR(ST,PHN,NI,XP,EP,AMIN,NV) 
IMPLICIT REAL(8) (A - Z)  
INTEGER I,NP,LMI,LH,NT,NV,NI,IIN,NN,IN 
DIMENSION XPN(0:50),XP(0:50),ST(0:50) 
COMMON /C/ LH,LMI,PI,NP 
COMMON /B/ SE(0:50),DS(0:50),DE(0:50),NT 
!SHARED LH,LMI,NT,PI,DS(),NP 
! ************** SEARCH OF THE MINIMUM **************** 
DO I=LMI,NP,LH 
XPN(I)=XP(I) 
ENDDO 
NN=LMI 
PH=PHN 
CALL DET(XPN,ST,ALA) 
B=ALA 
IF (NV==0) GOTO 3012 
DO IIN=1,NI 
NN=-LH 
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GOTO 1119 
1159 XPN(NN)=XPN(NN)-PH*XP(NN) 
1119 NN=NN+LH 
IF (NN>NP) GOTO 3012 
IN=0 
2229 A=B 
XPN(NN)=XPN(NN)+PH*XP(NN) 
IF (XPN(NN)<0.0D0) GOTO 1159 
IN=IN+1 
CALL DET(XPN,ST,ALA) 
B=ALA 
IF (B<A) GOTO 2229 
C=A 
XPN(NN)=XPN(NN)-PH*XP(NN) 
IF (IN>1) GOTO 3339 
PH=-PH 
GOTO 5559 
3339 IF (ABS((C-B)/(B))<EP) GOTO 4449 
 PH=PH/2.0D0 
5559 B=C 
GOTO 2229 
4449 PH=PHN 
B=C 
IF (NN<NP) GOTO 1119 
AMIN=B 
PH=PH/NI 
ENDDO 
3012  AMIN=B 
DO I=LMI,NP,LH 
XP(I)=XPN(I) 
ENDDO 
END 
 
SUBROUTINE DET(XP,ST,XI) 
IMPLICIT REAL(8) (A - Z)  
INTEGER I,N 
DIMENSION XP(0:50),ST(0:50) 
COMMON /B/ SE(0:50),DS(0:50),DE(0:50),N 
! **************** DETERMINANT ******************** 
S=0.0D0 
CALL SEC(XP,ST) 
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DO I=1,N 
S=S+((ST(I)-SE(I))/DE(I))**2 
DS(I)=((ST(I)-SE(I))/DE(I))**2 
ENDDO 
XI=S/N 
END  
 
SUBROUTINE SEC(XP,S) 
IMPLICIT REAL(8) (A - Z)  
INTEGER I,NP,LH,LMI,LMA,NT,NYS,L 
DIMENSION S0(0:50),P(0:50),FR(0:50),ET(0:50), S(0:50),XP(0:50) 
COMMON /A/ PI,NT,TT(0:50),GG,SS,LMI,LMA,LH,NYS,NP 
! ********** CALCULATION OF THE CROSS SECTIONS ******** 
DO I=LMI,LMA,LH 
FR(I)=XP(I) 
ET(I)=1.0D0 
! IF NP=LMA GOTO 1234 
! ET(I)=EXP(-2*XP(I+LMA+LH)) 
ENDDO 
RECUL1=0.0D0; AIMCUL1=0.0D0 
CALL CULFAZ(GG,S0) 
DO I=1,NT 
T=TT(I)*PI/180.0D0 
X=DCOS(T) 
A=2.0D0/(1-X) 
S00=2.0D0*S0(0) 
BB=-GG*A 
ALO=GG*DLOG(A)+S00 
RECUL=BB*DCOS(ALO) 
AIMCUL=BB*DSIN(ALO) 
IF (NYS==0) GOTO 555 
X1=DCOS(T) 
A1=2.0D0/(1.0D0+X1) 
BB1=-GG*A1 
ALO1=GG*DLOG(A1)+S00 
RECUL1=BB1*COS(ALO1) 
AIMCUL1=BB1*SIN(ALO1) 
555 RENUC=0.0D0; AIMNUC=0.0D0 
DO L=LMI,LMA,LH 
AL=ET(L)*DCOS(2.0D0*FR(L))-1.0D0 
BE=ET(L)*DSIN(2.0D0*FR(L)) 
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LL=2.0D0*L+1.0D0 
SL=2.0D0*S0(L) 
CALL POLLEG(X,L,P) 
RENUC=RENUC+LL*(BE*DCOS(SL)+AL*DSIN(SL))*P(L) 
AIMNUC=AIMNUC+LL*(BE*DSIN(SL)-AL*DCOS(SL))*P(L) 
ENDDO 
IF (NYS==0) GOTO 556 
AIMNUC=2.0D0*AIMNUC 
RENUC=2.0D0*RENUC 
556 RE=RECUL+RECUL1+RENUC 
AIM=AIMCUL+AIMCUL1+AIMNUC 
S(I)=10.0D0*(RE**2+AIM**2)/4.0D0/SS**2 
ENDDO 
END 
 
SUBROUTINE POLLEG(X,L,P) 
IMPLICIT REAL(8) (A - Z)  
INTEGER I,L 
DIMENSION P(0:50) 
! ************** THE LEGENDRE POLINOMIALS ************* 
P(0)=1.0D0 
P(1)=X 
DO I=2,L 
A=I*1.0D0 
P(I)=(2.0D0*A-1)*X/A*P(I-1)-(A-1.0D0)/A*P(I-2) 
ENDDO 
END 
 
SUBROUTINE CULFAZ(G,F) 
! ************** THE COULOMB PHASE SHIFTS ************** 
IMPLICIT REAL(8) (A - Z)  
INTEGER I 
DIMENSION F(0:50) 
C=0.577215665D0 
S=0.0D0; N=50 
A1=1.202056903D0/3.0D0  
A2=1.0369277550D0/5.0D0 
DO I=1,N 
AA=I*1.0D0 
A=G/AA-DATAN(G/AA)-(G/AA)**3/3.0D0+(G/AA)**5/5.0D0 
S=S+A 
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ENDDO 
FAZ=-C*G+A1*G**3-A2*G**5+S 
F(0)=FAZ 
DO I=1,20 
A=I*1.0D0 
F(I)=F(I-1)+DATAN(G/A) 
ENDDO 
END 
 

Furthermore, the control account for finding 4He4He elastic scattering 
phase shifts at an energy of 13 MeV is provided. The phase shifts 0 = 29° 

 4°, 2 = 103°  8°, and 4 = 3°  1.5° are presented in [88]. These phase 
shifts are accepted as initial and present further variations in 10 iterations 
using the previous program in the Turbo Basic Compiler [10] and on the 
basis of the program given above. From this, we find values of 0 = 28.37°, 

2 = 105.03°, and 4 = 2.62° at 2 = 3.43; this is clarified in the following 
with the results of the program written in Fortran-90. 
 
                                                     2                        NI 

3.943880354539536           1 
3.437578175376997           2 
3.432394633290976           3 
3.432107724455588           4 
3.432044190539325           5 
3.432020692528544           6 
3.432007556422437           7 
3.432005733725609           8 
3.432004938728721           9 
3.432004743298262          10 

 
2 = ; NI = 10; EL =  3.43200          10       1300 

                                     e                       t                       2
i 

     .22000E+02       .13570E+04       .12796E+04       .39401E+01 
     .24000E+02       .12030E+04       .11346E+04       .29238E+01 
     .26000E+02       .10740E+04       .10008E+04       .93096E+01 
     .28000E+02       .87000E+03       .87464E+03       .53776E-01 
     .30000E+02       .75900E+03       .75523E+03       .55540E-01 
     .32000E+02       .68800E+03       .64266E+03       .71117E+01 
     .35000E+02       .46700E+03       .48793E+03       .30429E+01 
     .40000E+02       .27100E+03       .27340E+03       .11779E+00 
     .42000E+02       .19600E+03       .20443E+03       .42244E+01 
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     .45000E+02       .13000E+03       .12007E+03       .76028E+01 
     .46000E+02       .93900E+02       .97112E+02       .21321E+01 
     .48000E+02       .57000E+02       .58891E+02       .15896E+01 
     .50000E+02       .32500E+02       .30767E+02       .24826E+01 
     .52000E+02       .12300E+02       .12398E+02       .95282E-02 
     .55000E+02       .22800E+01       .20301E+01       .39027E+00 
     .60000E+02       .24700E+02       .24774E+02       .11250E-01 
     .65000E+02       .86500E+02       .85514E+02       .24313E+00 
     .70000E+02       .15700E+03       .16800E+03       .93323E+01 
     .75000E+02       .27000E+03       .25509E+03       .52640E+01 
     .80000E+02       .33700E+03       .33073E+03       .71799E+00 
     .85000E+02       .40800E+03       .38184E+03       .10177E+02 
     .90000E+02       .41800E+03       .39987E+03       .47720E+01 
  
                                 L            r                        m 

0    .283717E+02      .000000E+00 
2    .105030E+03      .000000E+00 
4    .261561E+01      .000000E+00 

 
For the list of results above, the following designations are accepted:  

is the scattering angle; e is the experimental cross section; t is the 
calculated cross sections; 2

i is partial 2 for the angle i-th; r is the real part 
of the phase shift; m is the imaginary part of the phase shift; 2 is the 
average value for all points; and EL is the energy in the laboratory system. 

The orbital moment of the phase shifts is specified as follows: in the first 
line, L = 0; in the second, L = 2; and in the third, L = 4. In the search for a 
minimum, as in [10], 10 iterations NI were used. However, in this case the 
accuracy of the EP was set to be equal to 10-10, while in the previous version 
it was set as 10-5 [10]. The first 2 and NI columns of the list show the 
convergence of 2 with the number of iterations NI. 

The control account is provided for an energy of 29.5 MeV; as described 
in [10], using the program in BASIC we obtained the following phase shifts 

0 = 150.76, 2 = 86.61, 4 = 121.00, 6 = 2.16, and 8 = 0.09 with 
2 = 0.602 (Table 2.1.1). Looking at the phase shifts given by the program, 
2 = 0.600 is the result for the number of iterations NI = 0. 

 
2 = ; NI = 0; EL =  0.600328        0     29.50 

                                     e                       t                       2
i 

     .22040E+02       .15230E+04       .15134E+04       .64891E+00 
     .24050E+02       .11640E+04       .11664E+04       .55570E-01 
     .26050E+02       .88590E+03       .86843E+03       .38892E+01 
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     .28050E+02       .61610E+03       .61957E+03       .23236E+00 
     .30060E+02       .42260E+03       .41922E+03       .35643E+00 
     .32060E+02       .27000E+03       .26762E+03       .34211E+00 
     .34060E+02       .16020E+03       .16006E+03       .24306E-02 
     .36070E+02       .91500E+02       .91163E+02       .44395E-01 
     .38070E+02       .55530E+02       .55230E+02       .16734E+00 
     .40070E+02       .44680E+02       .44765E+02       .12421E+00 
     .42080E+02       .52960E+02       .52530E+02       .76193E+00 
     .44080E+02       .71740E+02       .71346E+02       .28489E+00 
     .46080E+02       .95440E+02       .94808E+02       .57926E+00 
     .48080E+02       .11846E+03       .11754E+03       .12657E+01 
     .50090E+02       .13558E+03       .13552E+03       .72584E-02 
     .52090E+02       .14562E+03       .14590E+03       .26152E+00 
     .54090E+02       .14760E+03       .14758E+03       .53350E-03 
     .56090E+02       .13986E+03       .14072E+03       .14564E+01 
     .58100E+02       .12710E+03       .12655E+03       .43671E+00 
     .60100E+02       .10783E+03       .10745E+03       .23062E+00 
     .62100E+02       .86660E+02       .86114E+02       .46841E+00 
     .64100E+02       .66120E+02       .65522E+02       .75651E+00 
     .66100E+02       .48430E+02       .48481E+02       .10080E-01 
     .68110E+02       .37430E+02       .37301E+02       .17753E+00 
     .70110E+02       .33770E+02       .33732E+02       .43056E-01 
     .72110E+02       .38340E+02       .38461E+02       .13210E+00 
     .74110E+02       .50740E+02       .51308E+02       .10928E+01 
     .76110E+02       .70820E+02       .71187E+02       .24362E+00 
     .78110E+02       .95550E+02       .96239E+02       .60125E+00 
     .80110E+02       .12420E+03       .12403E+03       .27579E-01 
     .82110E+02       .15340E+03       .15182E+03       .22344E+01 
     .84110E+02       .17750E+03       .17683E+03       .42129E+00 
     .86110E+02       .19700E+03       .19657E+03       .17685E+00 
     .88110E+02       .20974E+03       .20905E+03       .51222E+00 
     .90110E+02       .21120E+03       .21302E+03       .29660E+01 
                              

                  L           r                       m 
0    .150760E+03      .000000E+00 
2    .866100E+02      .000000E+00 
4    .121000E+03      .000000E+00 
6    .216000E+01      .000000E+00 
8    .900000E-01      .000000E+00 
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The difference in value 2 at 0.02 is the result of rounding errors of the 
phase shifts when registering their values in the file from the program in 
BASIC and their subsequent processing in Fortran-90. Hereafter, the 
imaginary part of the phase shift m is equal to zero for all values of the 
orbital moment in this paragraph. 

Using these phase shifts as initial values, with an additional variation 
according to the new program in Fortran-90 given above with 10 iterations 
and with the greatest possible accuracy of 10-15, we obtained the result with 
the smallest 2 value. 
 

2 = ; NI = ; EL = 0.571434      10    29.500 
                                     e                       t                       2

i 
     .22040E+02       .15230E+04       .15144E+04       .52763E+00 
     .24050E+02       .11640E+04       .11671E+04       .90939E-01 
     .26050E+02       .88590E+03       .86891E+03       .36792E+01 
     .28050E+02       .61610E+03       .61990E+03       .27763E+00 
     .30060E+02       .42260E+03       .41943E+03       .31337E+00 
     .32060E+02       .27000E+03       .26775E+03       .30469E+00 
     .34060E+02       .16020E+03       .16015E+03       .33034E-03 
     .36070E+02       .91500E+02       .91219E+02       .30734E-01 
     .38070E+02       .55530E+02       .55273E+02       .12333E+00 
     .40070E+02       .44680E+02       .44803E+02       .25848E+00 
     .42080E+02       .52960E+02       .52569E+02       .62951E+00 
     .44080E+02       .71740E+02       .71391E+02       .22342E+00 
     .46080E+02       .95440E+02       .94863E+02       .48325E+00 
     .48080E+02       .11846E+03       .11761E+03       .10869E+01 
     .50090E+02       .13558E+03       .13560E+03       .13302E-02 
     .52090E+02       .14562E+03       .14600E+03       .47518E+00 
     .54090E+02       .14760E+03       .14770E+03       .17885E-01 
     .56090E+02       .13986E+03       .14085E+03       .19094E+01 
     .58100E+02       .12710E+03       .12668E+03       .25354E+00 
     .60100E+02       .10783E+03       .10757E+03       .10341E+00 
     .62100E+02       .86660E+02       .86228E+02       .29377E+00 
     .64100E+02       .66120E+02       .65613E+02       .54400E+00 
     .66100E+02       .48430E+02       .48542E+02       .48101E-01 
     .68110E+02       .37430E+02       .37326E+02       .11519E+00 
     .70110E+02       .33770E+02       .33722E+02       .70632E-01 
     .72110E+02       .38340E+02       .38419E+02       .55430E-01 
     .74110E+02       .50740E+02       .51240E+02       .84900E+00 
     .76110E+02       .70820E+02       .71105E+02       .14712E+00 
     .78110E+02       .95550E+02       .96154E+02       .46141E+00 
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     .80110E+02       .12420E+03       .12395E+03       .59440E-01 
     .82110E+02       .15340E+03       .15175E+03       .24240E+01 
     .84110E+02       .17750E+03       .17678E+03       .48540E+00 
     .86110E+02       .19700E+03       .19654E+03       .20525E+00 
     .88110E+02       .20974E+03       .20903E+03       .54586E+00 
     .90110E+02       .21120E+03       .21300E+03       .29054E+01 
 
          L            r                        m  

0    .150729E+03      .000000E+00 
2    .865625E+02      .000000E+00 
4    .120914E+03      .000000E+00 
6    .211725E+01      .000000E+00 
8    .662343E-01       .000000E+00 

 
It appears that it is possible to reduce 2 to 0.571 thanks to the increased 

accuracy in finding a minimum for such a multiparameter variation 
problem, in comparison to the programs in BASIC presented in [10]. 

2.2 Phase shift analysis of 4He12C elastic scattering 

We consider here the methods of phase shift analysis for non-identical 
particles with spins 0 + 0 and the results of the phase shift analysis for elastic 
scattering in the 4He12C system at astrophysical energies. To obtain these 
results, the same computer program as that used for 4He4He elastic 
scattering was used, but with other program parameters (see paragraph 
2.1.4) [99]. 

2.2.1 Differential cross sections 

In the case of elastic scattering of non-identical particles with zero spin 
the expression for the cross section takes the simplest form [6] 
 

2( )
( ) ,

d f
d

 

 
where the total scattering amplitude f( ) is presented in the form of the sum 
of the Coulomb fc( ) and nuclear fN( ) amplitudes 
 
f( fc( ) + fN( ), 
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which are expressed through the nuclear L  L + i L and Coulomb L 
scattering phase shifts; the form of the amplitudes is given at the beginning 
of this chapter (see paragraph 2.1.2). 

For the cross section of the elastic scattering at fc = 0, the expression is 
known 
 

2 2 2
s L L L2 2

L L

4
(2 1) 1 (2 1) sinL S L

k k
.        (2.2.1) 

 
The summation in this expression, unlike for 4He4He scattering, is 

carried out for all possible L. 

2.2.2 Phase shift analysis 

We present the results of the phase shift analysis obtained for 4He12C 
elastic scattering in the energy range 1.5–6.5 MeV. Previously, the phase 
shift analysis of the differential cross sections at energies of 2.5–5.0 MeV 
was carried out [100]. A possible description of such scattering phase shifts 
on the basis of potentials with forbidden states was undertaken by us in 
[101]. Here, using the experimental data on the excitation functions at seven 
angles from [100], we have repeated the phase shift analysis [100] in the 
energy range 2.5–4.5 MeV. These results can be considered a control test 
for our new computer program in Fortran-90 and the calculation methods 
used. We note that the measurement of excitation functions at such a small 
number of points on the scattering angles is not enough to reproduce the 
shape of angular distributions of 4He12C elastic scattering, even at low 
energies and with good accuracy. Therefore, it is possible that the phase 
shift analysis does not allow one to obtain completely unambiguous values, 
especially for the S waves, in spite of the fact that the known results of phase 
shift analysis were used [100]. 

Further results of our analysis are presented by points in figs. 2.2.1–
2.2.5. In Fig. 2.2.1, the S phase shift values of average 2, obtained for 
various scattering energies, are shown. As can be seen in these figures, the 
S phase shift differs from the data presented in [100]; this is shown by the 
solid curve; the phase shifts in all other partial waves will show relatively 
good agreement with the results in [100]. However, with the data on 
excitation functions undertaken from the figures in [100], the possible error 
in the present phase shift analysis depends on the accuracy of the data on 
cross sections at about 2–3°, which in general allows us to explain the 
divergence in the results of these analyses for the S elastic scattering phase 
shifts. 
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Fig. 2.2.1. S phase shift of 4He12C elastic scattering. The curve gives data from 
[100]. The points represent the results obtained by us on the basis of data in [100]. 
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Fig. 2.2.2. P phase shift of 4He12C elastic scattering; the designations are the same 
as Fig. 2.2.1. 
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Fig. 2.2.3. D phase shift of 4He12C elastic scattering; the designations are the same 
as Fig. 2.2.1. 
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Fig. 2.2.4. F phase shift of 4He12C elastic scattering. The designations are the 
same as Fig. 2.2.1. 
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Fig. 2.2.5. G phase shift of 4He12C elastic scattering. The designations are the 
same as Fig. 2.2.1. 

 
In [102], a very accurate phase shift analysis of the experimental data at 

49 energies in the range 1.5–6.5 MeV was made. Using these data, we 
carried out phase shift analyses at energies of 1.466, 1.973, 2.073, 2.870, 
3.371, 4.851, 5.799, and 6.458 MeV. 

The results obtained in our analysis are presented in tables 2.2.1–2.2.8 
together with the average 2 values compared to the tabular data presented 
in [102]. The spectrum of resonance levels and their widths observed in 
4He12C elastic scattering and given in the review are shown in Table 2.2.9 
[103]. 

 

Table 2.2.1. The results of phase 
shift analysis of 4He12C elastic 
scattering and their comparison  
to data presented in [102] at an 
energy of 1.466 MeV. 
 

Elab = 1.466 MeV ( 2 = 0.055) 
L Our  [102] 
0 -0.2 0.5 1.0 
1 -0.4 -0.1 1.0 
2 -1.1 -0.8 1.0 

 

Table 2.2.2. The results of phase 
shift analysis of 4He12C elastic 
scattering and their comparison 
to data presented in [102] at an 
energy of 1.973 MeV. 
 

Elab = 1.973 MeV ( 2 = 0.077) 
L Our   [102] 
0 -2.6 -0.5 1.0 
1 0.0 0.9 1.7 
2 1.2 -0.1 1.3 
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Table 2.2.3. The results of phase 
shift analysis of 4He12C elastic 
scattering and their comparison to 
data presented in [102] at an 
energy of 2.073 MeV. 
 

Elab = 2.073 MeV ( 2 = 0.029) 
L Our   [102] 
0 -1.2 0 0.8 
 -0.1 0.1 1.2 
2 -1.1 -0.6 0.9 

 

Table 2.2.4. The results of phase 
shift analysis of 4He12C elastic 
scattering and their comparison 
to data presented in [102] at an 
energy of 2.870 MeV. 

 
Elab = 2.870 MeV ( 2 = 0.038) 

L Our   [102] 
0 -3.1 -1 1.1 
1 21.3 22.0 1 
2 0.0 0.4 0.9 
3 0.5 1.0 0.5 

 

 
Table 2.2.5. The results of phase 
shift analysis of 4He12C elastic 
scattering and their comparison to 
data presented in [102] at an 
energy of 3.371 MeV. 

 
Elab = 3.371 MeV ( 2 = 0.1) 

L Our   [102] 
0 169.4 - 
1 103.4 103.7 1.7 
2 -1.7 0.0 0.7 
3 0.2 0.8 0.6 

 

 
Table 2.2.6. The results of phase 
shift analysis of 4He12C elastic 
scattering and their comparison 
to data presented in [102] at an 
energy of 4.851 MeV. 

 
Elab = 4.851 MeV ( 2 = 0.26) 

L Our   [102] 
0 164.2 164 1.1 
1 128.4 129.5 0.9 
2 177.1 178.8 0.9 
3 15.5 16.4 0.8 
4 176.9 177.2 0.8 
5 -0.3 0.5 0.5 

 

 
Table 2.2.7. The results of phase 
shift analysis of 4He12C elastic 
scattering and their comparison to 
data presented in [102] at an 
energy of 5.799 MeV. 

 
Elab = 5.799 MeV ( 2 = 0.37) 

L Re  (Our) Re   
0 162 - 
1 128.2 - 

 
Table 2.2.8. The results of phase 
shift analysis of 4He12C elastic 
scattering and their comparison 
to data presented in [102] at an 
energy of 6.458 MeV. 

 
Elab = 6.458 MeV ( 2 = 0.41) 

L Our    
0 151.2 153 5 
1 119.8 119.4 1 
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 Looking at these tables, it is clear that the 4He12C scattering energy of 

3.371 MeV falls on the energy level of 3.324 MeV with a width of 480 20 
keV, as specified in Table 2.2.9 and the review in [103]. However, in the 
tables in [102] the phase shift for the S waves is not given (dashes in Table 
2.2.5) at this energy; our phase shift analysis, based on the real phase shifts 
of scattering, allows us to define all scattering phase shifts. 

 
Table 2.2.9. Spectrum of levels of 16O in 4He12C elastic scattering with 
T = 0 isospin [103]. Here, J  is the total moment and parity; Elab is the 
energy of the projectile particle in the laboratory system; and cm is the 
level width in the system of the center of mass. In the table, levels with 
a width of less than 1 keV are italicized and the states are shown in bold 
(discussed in the text). 

 
Elab  MeV J cm, keV 

3.324 1- 480 20 

3.5770 0.5 2+ 0.625 0.1 

4.259 4+ 27 3 

5.245 8 4+ 0.28 0.05 

5.47 0+ 2500 

5.809 18 2+ 73 5 

5.92 20 3- 800 100 

6.518 10 0+ 1.5 0.5 

7.043 4 1- 99 7 

 
The energy of 5.799 MeV falls on the level of 5.809 18 MeV with a 

width of 73(3) keV [103] (see Table 2.2.9); in the tables presented in [102], 
the values of scattering phase shifts for some partial waves are not given 
(dashes in Table 2.2.7). In the phase shift analysis carried out here, it is 

2 83.2 83 0.6 
3 86.0 - 
4 173.8 175.3 0.7 
5 -1.0 0.2 0.4 

 

2 172 172 1.9 
3 120.8 122.0 4 
4 176.4 179.1 1.2 
5 0.8 2 0.8 
6 0.1 0.4 0.4 
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possible to describe the differential elastic scattering cross sections with an 
average value of 2 = 0.37 and find all partial phase shifts (Table 2.2.7). The 
non-resonance energies at 2.870, 4.851, and 6.458 MeV (see tables 2.2.4, 
2.2.6, and 2.2.8) are described by phase shifts, which, within the error limits 
given in [102] and taking into account a possible 10 % error due to the 
extraction of experimental data from the figures [102], coincide with the 
results in [102]. The last three energies of 1.466, 1.973, and 2.073 MeV (see 
tables 2.2.1, 2.2.2, and 2.2.3) are compatible with the zero values of nuclear 
phase shifts, i.e. they have 1  values and correspond purely to the Coulomb 
interaction—Rutherford scattering. 

In figs. 2.2.6–2.2.13, a description of the experimental differential cross 
sections of 4He12C elastic scattering are shown [102] with the scattering 
phase shifts at all considered energies given in tables 2.2.8–2.2.1. In the 
process of our phase shift analysis, it was necessary to transfer the 
differential cross sections and angles given in [102] in the laboratory to the 
system of the center of masses, making the calculations more convenient. 
The small differences in the scattering phase shifts can be caused by various 
values of constants or particle masses that are used in such an analysis. For 
example, it is possible to use exact values for the mass of particles [75] or 
their entire quantities, and the constant 2/m0 can differ from 41.4686 MeV 
fm2. In addition, the accuracy of the definition of scattering phase shifts on 
the basis of the data in [102] has been estimated by us at the level of 1–2°. 

A comparison of results of the last phase shift analysis [104], obtained 
on the basis of the experimental data in [102] (points) and phase shift 
analysis in [100] (squares), is given in figs. 2.2.14–2.2.18. As can be seen 
from the results given in tables 2.2.1–2.2.8 and figs. 2.2.14–2.2.18, the 
phase shifts practically coincide with the conclusions in [102], but differ a 
little from the data in [100], especially for the S scattering wave. The 
analysis in [100] was made in the early 1960s when advanced computing 
facilities did not practically exist and modern programming and computing 
had only just started to develop. The analysis in [102] was performed in the 
late 1980s using far more developed computers and programming systems. 

Thus, as a result of the phase shift analysis described here, it is possible 
to draw the following conclusions: 

 
1.  The energy of 3.371 MeV falls on the level of 3.324 MeV with quite 

a big width of 0.48 MeV; in the P wave, the smooth resonance is 
well represented. 
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Fig. 2.2.6. Cross section of 4He12C elastic scattering at 1.466 MeV. The points 
represent the experimental data of [102], while the curve describes the results of 
phase shift analysis. 
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Fig. 2.2.7. The same as in Fig. 2.2.6, but at an energy of 1.973 MeV. 
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Fig. 2.2.8. The same as in Fig. 2.2.6, but at an energy of 2.073 MeV. 
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Fig. 2.2.9. The same as in Fig. 2.2.6, but at an energy of 2.87 MeV. 
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Fig. 2.2.10. The same as in Fig. 2.2.6, but at an energy of 3.371 MeV. 
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Fig. 2.2.11. The same as in Fig. 2.2.6, but at an energy of 4.851 MeV. 
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Fig. 2.2.12. The same as in Fig. 2.2.6, but at an energy of 5.799 MeV. 
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Fig. 2.2.13. The same as in Fig. 2.2.6, but at an energy of 6.458 MeV. 
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Fig. 2.2.14. The S phase shift of 4He12C elastic scattering. The squares represent 
data from [100], while the circles represent our results [104], obtained on the 
basis of data in [102]. 
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Fig. 2.2.15. P phase shift of 4He12C elastic scattering. The designations are the 
same as Fig. 2.2.14. 
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Fig. 2.2.16. D phase shift of 4He12C elastic scattering. The designations are the same 
as Fig. 2.2.14. 
 

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0
-18

2

22

42

62

82

102

122

F - Phase

4He12C

Elab, MeV

 , 
de

g

 
Fig. 2.2.17. F phase shift of 4He12C elastic scattering. The designations are the same 
as Fig. 2.2.14. 
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Fig. 2.2.18. G phase shift of 4He12C elastic scattering. The designations are the same 
as Fig. 2.2.14. 

 
2.  According to [100,102], in the D wave, a resonance corresponding 

to the level at 3.577 MeV with a very small width of 0.625 keV is 
observed. At this energy, as shown in Fig. 2.2.16, the transition of 
the phase shift through 90 , presented also in tables 2.2.5 and 2.2.6, 
is observed. In addition, in the results of analysis [102] another 
resonance appears at 5.799 MeV; at this energy in the D wave, we 
find the level of 5.809 MeV with a relatively large width of 73 keV. 
For this energy, the value of the phase shift (see Table 2.2.7) is 
almost equal to 90 . As a result, the D phase shift given in Fig. 2.2.16 
passes through 90  twice, i.e. it corresponds to two resonances, 
which are present with this partial wave. 

3.  At an energy of 4.259 MeV with a width of 27 keV in the G wave 
there is a resonance level; in the results of [100] and [102] there is a 
visible disturbance of the phase shift, as shown in Fig. 2.2.18. 

4.  The energy of 5.799 MeV is about a resonance at 5.47 MeV with a 
very large width of 5 MeV and the moment 0+; the S phase shift sees 
a greater increase. 

5.  There is a resonance with a width of 0.8 MeV and J  = 3- for the F 
wave at the energy of 5.92 MeV and the F phase shift shown in Fig. 
2.2.17, at this energy, has a value of about 90  (see also the results 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Phase Shift Analysis 103 

given in tables 2.2.7 and 2.2.8 for the F elastic scattering phase 
shifts). 

6.  At three energies in the range 1.47–2.07 MeV, we can observe that 
pure Rutherford scattering and all nuclear phase shifts are almost 
equal to zero. 

 
Furthermore, the elastic scattering phase shift values obtained in [105] 

are used for the creation of intercluster potentials and the calculation of an 
astrophysical S-factor of the radiative 12C(4He, )16O capture reaction [2,28, 
106,122,123]. This process, alongside the threefold helium cycle, is present 
in a chain of thermonuclear reactions at a hot stage of the development of 
stars with the temperature reaching hundreds of millions of degrees Kelvin 
[107]. At such a high temperature, the interacting particles have sufficient 
energy for the essential increase in the probability of passing through a 
Coulomb barrier. In this case, they approach the area of strong interaction 
leading to an increase in the contribution of such a reaction, i.e. in terms of 
its energy efficiency in the total energy balance of stars. 

2.3 Phase shift analysis of elastic N12C, p14C,  
and N16O scattering 

Methods of phase shift analysis for particles with spins 0 + 1/2 and the 
results of phase shift analysis for the p12C system are considered. The latest 
experimental data obtained at low and astrophysical energies are given in 
the works of the Institute of Nuclear Physics (INP) of the Republic of 
Kazakhstan (RK); they will also be used further in our phase shift analysis. 

2.3.1 Differential cross sections 

Considering elastic scattering in the system of particles with spins 0 and 
1/2, we will examine the spin-orbital splitting of the phase shifts, which 
occurs in the nuclear N4He, 3H4He, and N12C systems. In this case, the 
elastic scattering of nuclear particles can be completely described by two 
independent spin amplitudes (A and B) and the cross section is presented in 
the following form [6] 

 
2 2( )

( ) ( )
d A B

d
,             (2.3.1) 

 
where 
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+ -
c L L L L

L 0

1
( ) ( ) {( 1) (2 1)}exp(2 ) (cos ) ,

2
A f L S LS L i P

ik
 

(2.3.2) 

1
L L L L

L 0

1
( ) ( )exp(2 ) (cos )

2
B S S i P

ik
. 

 
Here, L L Lexp 2± ± ±S = ( i )  is a scattering matrix; L is the inelasticity 

parameters; and the sign “ ” corresponds to the total moment of the system 
J = L  1/2. 

The Coulomb amplitude of fc can be presented in the form 
 

2
c 02
( ) exp{ ln[sin ( / 2)] 2 } ,

2 sin ( / 2)
f i i

k
        (2.3.3) 

 
where m

n ( )P x  stands for the associated Legendre polynomials;  is the 

Coulomb parameter;  is the reduced mass of particles; and k is the wave 
number of the relative movement of particles in the input channel. 

The associated Legendre polynomials or function m
n ( )P x  are presented 

in the form 
 

m
m 2 m/2 n

n m

( )
(x) =(1 - x )

d P xP
dx

, 

 
and for m = 1, they can be found by recurrent formulas of the form 
 

1 1 1
L 1 L L 1

(2 1) 1
( ) ( ) ( )

L x LP x P x P x
L L

, 

 
with the initial values 
 

1 1 2 1/2 1 1
0 1 2 1( ) 0 , ( ) (1 ) , ( ) 3 ( )P x P x x P x xP x . 

 
The values of 2( )nP x , which we investigate further, are calculated by 

other recurrent formulas 
 

2 2 2
L 1 L L 1

(2 1) 2
( ) ( ) ( )

1 1

L x LP x P x P x
L L

, 
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with the initial values 
 

2 2 2 2 2 2
0 1 2 3 2( ) ( ) 0 , 3(1 ) , ( ) 5 ( ).P x P x P x P x xP x  

 
Through the reduced amplitudes A and B, it is possible to express the 

vector polarization in the elastic scattering of such particles [6] 
 

*

2 2

2 Im( )
( )

ABP
A B

. 

 
Writing the expression for the amplitude B( ), we obtain 

 

1
L L L

L 0

1
Re [ sin(2 ) cos(2 )] ( )

2
B a b P x

k
, 

 

1
L L L

L 0

1
Im [ sin(2 ) cos(2 )] ( )

2
B b a P x

k
, 

 
where 
 

L L L Lcos(2 ) cos(2 )a , 

 

L L L Lsin(2 ) sin(2 )b . 

 
Using a similar method for the amplitude of A( ), it is possible to find 

the following recording format [108] 
 

c L L L
L 0

1
Re Re [ sin(2 ) cos(2 )] ( )

2
A f c d P x

k
, 

 

c L L L
L 0

1
Im Im [ sin(2 ) cos(2 )] ( )

2
A f d c P x

k
, 

 
where 
 

L L L L( 1) cos(2 ) cos(2 ) (2 1)c L L L , 
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L L L L( 1) sin(2 ) sin(2 )d L L . 

 
For the total cross section of the elastic scattering, it is possible to obtain 

[6] 
 

2 2

L L2
L

( 1) 1 1s L S L S
k

, 

 
or 
 

2 2
s L L L L2

L

4
( 1)[ sin ] [ sin ]L L

k
. 

 
All these expressions have been used to carry out the phase shift 

analysis of N12C and N16O elastic scattering at energies of 1.0–2.5 MeV 
[109]. 

2.3.2 Control of the computer program 

The text of our computer program for calculating the total and 
differential cross sections of the elastic scattering of particles with half-
integer spin, which was used to carry out the corresponding phase shift 
analysis, is fully described further on and was tested on elastic scattering in 
the p4He system. Here, only one version of the control account for this 
program for p4He scattering is given, in comparison to the data from [110], 
where the phase shift analysis for an energy of 9.89 MeV was made; positive 
D phase shifts and an average on all point value 2 = 0.60 were obtained. 

 
In the analysis in [110], 22 points of the cross section from [111] are 

used at an energy of 9.954 MeV (in [110] it is not specified which 22 points 
have been taken from the 24 points provided in [111]) along with several 
points of polarization from [110,112]. In the latter case, 10 points at 8 angles 
are used: 46.5 , 55.9 , 56.2 , 73.5 , 89.7 , 99.8 , 114.3 , and 128.3 ; and 
three relate to the energies 9.89, 9.84, and 9.82 MeV. 

The phase shifts from [110] are given in Table 2.3.1 along with average 
2  for the differential cross sections according to our program, taking into 

account 24 points from [111] (the energy is, still, equal to 9.954 MeV), and 
these phase shifts turn out to be equal to 0.586. The results of these 
calculations are shown in Table 2.3.2. For the 10 experimental data points 
of the polarization in [110,112], at energies of 9.82–9.89 MeV and at 8 
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scattering angles with the phase shifts from [110], it is possible to obtain the 
value p = 0.589 (the energy is still equal to 9.954 MeV). The results are 
given in Table 2.3.3. 

 
Table 2.3.1. The phase shifts of p4He elastic scattering from [110]. 

 
E, MeV S0, deg. P3/2, deg. P1/2, deg. D5/2, deg. D3/2, deg. 

9.954 119,3 
+2.0 

112,4 
+3.5 

65,7 
+2.7 

5,3 
+1.6 

3,7 
+1.6 

-1.8 -5.2 -3.2 -5 -2.8 
 

Table 2.3.2. The differential cross sections of p4He elastic scattering. 
Here,  is the scattering angle in degrees; e is the experimental cross 
sections; and t is the calculation cross sections. 

 

 e, mb/st t, mb/st i  e, mb/st t, mb/st i 

25.10 371.00 366.85 0.31 109.90 21.00 20.70 0.51 

30.89 339.00 331.54 1.21 120.60 23.00 259 0.79 

35.07 305.00 308.40 0.31 122.80 24.50 24.19 0.40 

49.03 232.00 230.61 0.09 130.13 31.90 31.91 0.00 

54.70 205.00 199.10 2.07 130.90 33.20 32.90 0.21 

60.00 176.00 170.56 39 134.87 37.80 38.44 0.71 

70.10 124.00 120.59 1.89 140.80 47.30 47.69 0.17 

80.00 82.00 79.77 1.85 145.00 54.00 54.62 0.33 

90.00 49.20 48.82 0.15 149.40 61.60 61.88 0.05 

94.07 39.10 39.44 0.19 154.90 70.60 70.54 0.00 

1017 26.20 26.39 0.13 160.00 78.40 77.71 0.19 

106.90 22.00 215 0.12 164.40 83.00 82.94 0.00 

 
If we average the value  by all known points (24 + 10 = 34), i.e. use a 

more general expression for , then 
 

t e t eN N
2 2 2i i i i

pe e
i 1 i 1p i i p

1 1

( ) ( )

P P
N N P N N

, 

 
which gives the value 0.5875  0.59; this is in a good agreement with 
the results of [110]. Here, N  and NP are the number of data points on the 
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cross section (24 points) and polarization (10 points); e, Pe, t, and Pt are 
experimental and theoretical values of the cross sections and polarization; 
and  and P are their errors. 

 
Table 2.3.3. Polarization in p4He elastic scattering. 
Here,  is the scattering angle in degrees; Pe is the experimental 
polarization; Pe is the experimental error for the polarization; and Pt 
is the calculation of polarization. 

 
 Pe, % Pe Pt, % i 

46.50 -330 10 -33.11 0.15 
55.90 -41.30 20 -450 0.30 
56.20 -44.40 0.90 -42.81 3.11 
73.50 -62.60 3.00 -62.84 0.01 
73.50 -64.80 1.90 -62.84 1.06 
89.70 -76.10 3.60 -76.33 0.01 
89.70 -75.50 40 -76.33 0.12 
99.80 -59.30 50 -58.55 0.09 

114.30 48.20 3.20 51.03 0.78 
128.30 99.40 3.30 97.66 0.28 
 

S0 = 119.01 , P3/2 = 1125 , P1/2 = 65.39 , D5/2 = 5.24 , D3/2 = 3.63 . 
 
If we execute additional  minimization using this program, then for 
, according to the cross section, we obtain 0.576; for the p = 0.561 

polarization and average 0.572  0.57 at the following phase shift 
values 
 

S0 = 119.01 , P3/2 = 1125 , P1/2 = 65.39 , D5/2 = 5.24 , D3/2 = 3.63 , 
 
which lie fully in the error band given in [110] and are shown in Table 2.3.1. 

Thus, the program allows us to obtain further results, which coincide 
well with earlier analyses. Furthermore, this was tested according to the 
phase shift analysis, carried out in other works at low energies, and directly 
for the elastic scattering in the p12C system. 

Previously, the phase shift analysis of excitation functions for p12C 
elastic scattering measured in [113], at energies in the range 400–1300 keV 
(l.s.) and angles 106–169 , was carried out in [114]. It was found that, for 
example, at Elab = 900 keV the S phase shift has to lie in the area 153–154 . 
With the same experimental data, we obtained the value 152.7 . To obtain 
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this result, the scattering cross section from the excitation functions of [113] 
at energies of 866–900 keV were used. In Table 2.3.4, the results of our 
calculations of t are compared to the experimental data for e. In the last 
column of the table, the partial 2

i
 values on each point at a 10 % error are 

given for the experimental cross sections; for an average of all experimental 
points of 2, the value 0.11 was obtained. 

 
Table 2.3.4. Comparison of the theoretical and experimental cross 
sections of p12C elastic scattering at an energy of 900 keV. 
 

  
e, mb/st t, mb/st i 

106 341 341.5 1.90E-04 
127 280 281 5.76E-03 
148 241 251.2 1.80E-01 
169 250 237.5 50E-01 

 
At an energy of 751 keV (l.s.) for the S phase shifts, values in the range 

155–157  were found in [114]. The results obtained by us for this energy 
are given in Table 2.3.5. 

 
Table 2.3.5. Comparison of the theoretical and experimental cross 
sections of p12C elastic scattering at an energy of 750 keV. 
 

 
e, mb/st t, mb/st i 

106 428 428.3 3.44E-05 
127 334 342.8 6.91E-02 
148 282 299.1 3.66E-01 
169 307 279.9 7.82E-01 

 
The data on the cross sections of the excitation functions in the energy 

range 749–754 keV were used; for the S phase shifts it was found to be 
156.8  with an average 2 = 0.30. Thus, using our program, at two energies 
of p12C elastic scattering, phase shifts coinciding with the results of the 
analysis made on the basis of excitation functions in [114] were obtained. 

2.3.3 Phase shift analysis of p12C scattering 

The control calculations given above are in good agreement with 
earlier results; therefore, using our program, the phase shift analysis [115] 
of new experimental data on differential cross sections of p12C scattering in 
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the energy range 230–1200 keV (l.s.) were made [116], measured in INP 
RK. The results of this analysis are given in Table 2.3.6 and presented as 
points in Fig. 2.3.1, allowing comparison with the data in [114], which are 
shown by the dashed line. 
 
Table 2.3.6. The results of phase shift analysis of p12C elastic scattering 
at low energies taking into account only the S phase shift. 
 

Ecm, keV S1/2, deg. 2 

213 2.0 1.35 
317 5 0.31 
371 7.2 0.51 
409 36.2 0.98 
422 58.2 3.69 
434 107.8 0.78 
478 153.3 56 
689 156.3 2.79 
900 153.6 55 

1110 149.9 1.77 
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Fig. 2.3.1. The 2S phase shift of p12C scattering at low energies. The points 
represent the results of phase shift analysis for the S phase shifts, taking into 
account the phase shift analysis of S waves; the open squares represent the results 
of the phase shift analysis for the S phase shifts taking into account the S and P 
waves; and the shaped curve represents the results found in [114]. 
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Fig. 2.3.2a. The differential cross sections of p12C elastic scattering. The solid curve 
was obtained on the basis of the phase shift analysis taking into account only the S 
wave; the dotted line represents Rutherford scattering; the dashed line represents 
the results of the phase shift analysis taking into account the S and P waves; and the 
points represent an experiment in [116]. 
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Fig. 2.3.2b. The differential cross sections of p12C scattering with the same sig-
natures as Fig. 2.3.2a. 
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Fig. 2.3.2c. The differential cross sections of p12C scattering with the same sig-
natures as Fig. 2.3.2a. 

 
In figs. 2.3.2a, b, and c, the experimental differential cross sections in 

the resonance range at 457 keV (l.s.) are represented by points; the results 
of the calculation of these cross sections on the basis of Rutherford’s 
formula are repesented by the dotted curve; the cross sections obtained from 
our phase shift analysis, which considers only the S phase shift, are 
represented by the solid line; and the analysis of the S and P scattering phase 
shifts is represented by the dotted curve. Looking at the figures, it is clear 
that in the resonance range it is not possible to describe well the cross 
section only on the basis of one S phase shift. The P wave presented in Fig. 
2.3.3, the understanding of which considerably improves the description of 
the experimental data, begins to play a noticeable role. At a resonance 
energy of 457 keV (l.s.), for which the cross sections are shown in Fig. 
2.3.2b, the account of the P waves reduces the value of 2 from 3.69 to 0.79. 

In Fig. 2.3.3, it is clear that at low energies the P1/2 phase shift goes 
higher than P3/2, but at an energy of about 1.2 MeV they are crossed and P3/2 
goes higher in the negative range of the angles [117,118]. The value of the 
S phase shift taking into account the P wave practically does not change; its 
shape is presented in Fig. 2.3.1 by open squares. Accounting for the D wave 
in the phase shift analysis leads to its value being about one degree in the 
range of the S resonance and practically does not influence the behavior of 
the calculated differential cross sections. 
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Fig. 2.3.3. The 2P phase shifts of p12C scattering at low energies. The points 
represent P3/2 and the squares represent the P1/2 phase shifts, obtained as a result 
of phase shift analysis taking into account the S and P waves. 

 
The total cross section of elastic scattering is represented by points in 

Fig. 2.3.4. These have been calculated on the basis of the experimental 
differential cross sections [116] of the S scattering phase shifts. The total 
cross sections obtained from the phase shift analysis of [114] are 
represented by circles. In Fig. 2.3.4, in the energy range 200–300 keV (l.s.), 
a plateau is observed. At the moment, it is not clear whether this was caused 
by experimental inaccuracy, unforeseen errors of the phase shift analysis, or 
that it really exists at these energies. For the clarification of this question, 
new measurements should be made of angular distributions of elastic p12C 
scattering in the energy range 100–150 to 300–400 keV, with an energy step 
of about 50 keV, or the excitation functions are required at different angles 
[109]. 

In the conclusion of this paragraph, we note that in this case another 
slightly different value than usual, 2/m0 = 41.80159 MeV fm2, was used. 
This was obtained with slightly different values of the fundamental 
constants 2 and m0 where the last value designates the atomic unit of mass. 
However, as will become clear, this distinction practically does not affect 
the results obtained for the scattering phase shifts. 
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Fig. 2.3.4. The total cross sections for p12C elastic scattering. The points represent 
the total cross sections found from the scattering phase shift of [116] and the 
circles represent data from [113,114]. 

2.3.4 Phase shift analysis of n12C  
elastic scattering 

In this paragraph, we continue our consideration of the phase shift 
analysis of elastic scattering for light nuclei. On the basis of the 
measurements in [119], we undertook a phase shift analysis of n12C 
scattering. We did not manage to find the results of an earlier phase shift 
analysis carried out for the n12C system, even at low energies, though they 
differ considerably from a similar analysis of p12C scattering found in [115]. 
The reason for these differences is the significant distinction between the 
spectral structure of 13C and 13N nuclei at energies of up to 1.5–2 MeV above 
the thresholds of n12C and p12C cluster channels [120]. 

In particular, in p12C elastic scattering there is a superthreshold 
resonance level of 13N at an energy of 0.42 MeV with J  = 1/2+, which leads 
to the 2S1/2 resonance of the phase shift; this has been shown in [115] in 
comparison to earlier results of phase shift analysis [113,114]. In the case 
of n12C scattering, there are no resonances in the spectra of 13C up to an 
energy of 1.9 MeV. For this reason it remains interesting to determine the 
shape of the phase shifts of n12C elastic scattering taken from the 
experimental data at low and astrophysical energies. 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Phase Shift Analysis 115 

This is particularly the case because the reaction of radiative capture in 
the n12C channel, at any energy, is included into the chain of thermonuclear 
reactions of preliminary nucleosynthesis [121] 

 
… 7Li(n, )8Li(4He,n)11B(n, )12B( -)12C(n, )13C ... , 
 
which will lead us, finally, to an understanding of the initial formation of 
the Sun, the stars, and the whole of our universe [122,123]. 

Extracting the relevant information from the experimental differential 
cross sections of the elastic scattering phase shift allows us to construct the 
interaction potentials of two particles in the continuous spectrum and 
perform calculations on certain characteristics of their interaction in 
scattering processes and reactions. For example, the focus can be the 
astrophysical S-factors or the total cross sections of the reactions [124], 
including the neutron radiative capture of 12C in the astrophysical energy 
range, which has been considered in our previous work [23,28,122]. 

Therefore, on the basis of the methods described above, phase shift 
analysis of the known experimental data on differential cross sections of 
n12C elastic scattering in the energy range 50-1040 keV (l.s.) was 
undertaken [119]. The results of our analysis for the S and P scattering phase 
shifts are presented in Fig. 2.3.5 and Table 2.3.7. To carry out the analysis, 
the 2 value was calculated for differential cross sections with an 
experimental error of 10 % [119]. The 2 value for each considered energy 
is given in the last column of Table 2.3.7. 
 
Table 2.3.7. The results of the phase shift analysis of n12C elastic 
scattering at low energies for negative values of the 2S phase shifts. 

 

En, keV 2S1/2, deg 2P3/2, deg 2P1/2, deg 2 

50 -15.5 0.6 -0.3 0.023 

100 -22 -2 3 0.016 

157 -28.3 -1.0 -1.0 0.007 

207 -32 -4 0.5 0.014 

257 -35.6 -5 -0.4 0.009 

307 -37.8 -4.6 3.3 0.033 

357 -41.3 -2.7 -1.3 0.007 

407 -43.7 -3.0 -1.8 0.027 

457 -45.3 -5.1 5 0.029 
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507 -48.3 -3.9 -1.6 0.019 

530 -49.1 -3.6 -3.4 0.020 

630 -52.8 -5.4 -1.6 0.015 

730 -56.0 -6.6 -0.6 0.031 

830 -59.5 -6.2 -3.7 0.044 

930 -61 -7.3 -3.7 0.042 

1040 -65.4 -7.7 -4.6 0.096 

 
In Fig. 2.3.5, it is clear that all 2P phase shifts have values in the modulus 

of no more than 10 , but their influence reduces the 2 value by 
approximately an order of magnitude. The value of the 2S phase shift 
gradually decreases and, as can be seen below, is well described by a 
Gaussian potential across the low energy range, included in the analysis. 
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Fig. 2.3.5. Results of the phase shift analysis of n12C elastic scattering for the 
variant with negative values of the 2S phase shifts. The points represent the results 
of phase shift analysis for the 2S1/2 phase shift; the open squares represent the 
results of phase shift analysis for the 2P1/2 phase shift; the black squares represent 
the results of phase shift analysis for the 2P3/2 phase shift; and the curves represent 
the results of calculation with different potentials, as explained in the text. 
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In Fig. 2.3.6, the points represent the differential cross sections for some 
considered energies from [119] and the cross sections obtained from our phase 
shift analysis (the solid line), considering the S and P phase shifts given in Table 
2.3.7. Accounting for the small values obtained for the 2P phase shifts has allowed 
us to considerably improve the quality of the description of differential cross 
sections, even at the lowest energies in the range 50–100 keV. 

Another variant for a set of phase shifts in which the 2S phase shift has 
positive values, as well as the values of both 2P phase shifts, is given in Fig. 
2.3.7 and Table 2.3.8. The 2 values for this phase shift variant do not 
practically differ from the first set in Table 2.3.7, but the 2S phase shift has 
a form close to resonance, although not observed in the spectra of 13C 
resonances [120]. Therefore, the second set of phase shifts apparently does 
not correspond to the real situation and is given only as a demonstration of 
the ambiguity of phase shift sets. 
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Fig. 2.3.6a. The differential cross sections of n12C elastic scattering. The solid 
curve represents the results of the calculation of the cross sections with the found 
phase shifts, while the points represent the experimental differential cross 
sections of scattering [119]. 

 
To avoid this ambiguity, it is necessary to use certain physical princi-

ples, for example, information on the structure of the spectral levels of the 
nucleus, in this case 13C [120]. 
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Fig. 2.3.6b. The same as in Fig. 2.3.6a. 
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Fig. 2.3.6c. The same as in Fig. 2.3.6a. 
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Fig. 2.3.6d. The same as in Fig. 2.3.6a. 
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Fig. 2.3.6e. The same as in Fig. 2.3.6a. 
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Fig. 2.3.6f. The same as in Fig. 2.3.6a. 
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Fig. 2.3.7. Results of the phase shift analysis of n12C elastic scattering for variants 
with positive values of the 2S phase shifts. The points represent the results of 
phase shift analysis for the 2S1/2 phase shift; the open squares represent the results 
of phase shift analysis for the 2P1/2 phase shift; and the black squares represent 
the results of phase shift analysis for the 2P3/2 phase shift. 
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This information allows us to choose the real set of phase shifts of elastic 
scattering, the variants of which can be obtained through a similar analysis. 
In addition, it is possible to use the potential description of the process of 
scattering, which, as will be shown further, allows us to estimate the 
difference of scattering phase shifts for neutrons and protons on one nucleus 
in one potential, i.e. at a change in the Coulomb interaction. 

 
Table 2.3.8. Results of the phase shift analysis of n12C elastic scattering 
at low energies for positive 2S values. 

 
Elab, keV 2S1/2, deg 

2P3/2, deg 2P1/2, deg 2 

50 15.7 0.6 0.06 0.036 

100 24.5 1.1 0.0 0.029 

157 28.3 1.5 0.1 0.007 

207 33 1 0.0 0.014 

257 35.6 2.7 0.0 0.009 

307 38.4 2.7 0.1 0.05 

357 41.3 2.9 1.0 0.007 

407 43.6 3.4 1.0 0.028 

457 45.8 3.8 0.7 0.037 

507 48.3 4.2 1.0 0.019 

530 50.0 4.7 1.2 0.021 

630 52.8 5.6 1.1 0.015 

730 56.1 6.5 0.8 0.031 

830 59.3 7.1 1.6 0.045 

930 61.9 8.1 1.9 0.044 

1040 65.2 8.6 5 0.098 

 
For example, in Fig. 2.3.5 the 2S the phase shift of the potential with the 

point-like Coulomb term having a simple Gaussian form (1.6.2) is shown 
by the dashed curve and has the parameters 
 
V0 = -102.05 MeV,  = 0.195 fm-2.            (2.3.4) 
 

This result was obtained previously for p12C scattering by the description 
of the astrophysical S-factor of proton radiative capture on 12C in [125]. 
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Such a potential describes the resonance form of the 2S phase shift of p12C 
scattering correctly, as shown in Fig. 2.3.1, and acceptably coincides with 
the experimental data in the calculations of the astrophysical S-factor. 

In Fig. 2.3.5, the calculations of the 2S phase shifts were carried out for 
the p12C potential (2.3.4) specified above with the switched-off Coulomb 
interaction, i.e. for n12C scattering. From Fig. 2.3.5, it is clear that the 2S 
phase shift of the n12C scattering process does not contain the resonance. It 
is, however, in complete agreement with the observed spectra of 13C [120]. 
In addition, it is clear that the results of calculation of the 2S phase shift are 
quite acceptable and we can transfer the results of the n12C phase shift 
analysis, especially at low energies. 

For a more exact description of the data obtained by scattering phase 
shifts, it is necessary to change the potential depth at the same geometry to 
give -97.0 MeV, which differs by approximately 5 % from the initial 
parameters. The results of the calculation of the 2S phase shift with such a 
potential are presented in Fig. 2.3.5 by the solid curve, precisely describing 
the position of points of the 2S phase shift of n12C elastic scattering taken 
from the experiment. 

Such a potential, like the previous one, still contains one bound 
forbidden state, the existence of which follows from the structural analysis 
of the forbidden and allowed bound states in the N12C system, as carried out 
in [2,28,122,125]. By averaging slightly the width of the capacity of , we 
obtain 
 
V0 = -99.0 MeV,  = 0.2 fm-2,           (2.3.5) 
 
and the phase shift of such variation of the potential does not differ from 
that provided in Fig. 2.3.5 described by the solid curve. 

As a result of the phase shift analysis of experimental differential cross 
sections carried out, a set of phase shifts of n12C elastic scattering at energies 
of up to 1.0 MeV was obtained, which coordinated with the spectral levels 
of 13C [120] and the potential calculations of the scattering phase shifts 
executed on the basis of the p12C interaction potential described earlier. The 
obtained set of scattering phase shifts allows us to describe the value and 
shape of the differential cross sections of angular distributions of n12C 
elastic scattering at low energies, which are of interest to a number of 
problems of nuclear astrophysics [28,122]. 

Once again, we emphasize that the results of the phase shift analysis, i.e. 
the elastic scattering phase shifts of the system of particles, which is n12C in 
this case, allow us to parametrize the intercluster partial interaction potentials 
of scattering processes in this system. Such potentials, in turn, can be used 
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further for the performance of certain calculations in various astrophysical 
applications, which are partially considered, for example, in [28,120]. 

For the calculation of characteristics of nuclei, the mass of 12C was 
accepted as being equal to 12.0 amu, with the mass of the neutron 
mn = 1.00866491597 amu [75]. We note that in carrying out the phase shift 
analysis, there is no basic value to use as an integer or exact mass of 
particles, because cross section errors are usually around 5–10 %. 

2.3.5 Phase shift analysis of p14C elastic scattering 

Furthermore, we consider the possibility of carrying out phase shift 
analysis for elastic cross sections of p14C scattering. The excitation 
functions of p14C elastic scattering from [126], measured at 90 , 125 , 141 , 
and 165  in the energy range 0.6 to 3 MeV (l.s.) are shown by points in figs. 
2.3.8a, b, c, and d.  
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Fig. 2.3.8a. The excitation functions in p14C elastic scattering in the range of the 
2S1/2 resonance [126]. The solid curve represents their approximation on the basis 
of the obtained phase shifts. 

 
These data were used by us to carry out a phase shift analysis and 

extraction of the resonance shape of the 2S1/2 scattering phase shift at 1.5 
MeV. The methods of such an analysis have already been stated above, and 
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the results are presented in figs. 2.3.9a, b, c, and d by points. The solid 
curves in Fig. 2.3.8 show the cross sections calculated as a result of the 
analysis of scattering phase shifts.In our analysis, about 120 first points 
given in [126] in the energy range stated above were used.  

In addition, the description of cross sections in the excitation functions 
was obtained, at least, at energies of up to 2–3 MeV; it is not necessary to 
consider the 2P or 2D scattering waves, i.e. their values can be accepted as 
being equal to zero. The 2 value at all energies and angles, as only one 
point in the cross sections of excitation functions for each energy and angle, 
has been considered, usually at the level of 10-2–10-10, and taking into 
account the partial scattering phase shift does not lead to its reduction. 
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Fig. 2.3.8b. The excitation functions of p14C elastic scattering in the range of the 
2S1/2 resonance [126]. The solid curve represents their approximation on the basis 
of the obtained phase shifts. 

 
The resonance energy, i.e. the energy at which the phase shift reaches 

90 , as seen in Fig. 2.3.9, was obtained from the excitation function at a 
scattering angle of 90 . It falls in the interval 1535–1562 keV, for which the 
value of the phase shift concludes within the range 87–93  with the value of 
the phase shift of 90  for an energy of 1554 keV.   
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Fig. 2.3.8c. The excitation functions of p14C elastic scattering in the range of the 
2S1/2 resonance [126]. The solid curve represents their approximation on the basis 
of the obtained phase shifts. 
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Fig. 2.3.8d. The excitation functions of p14C elastic scattering in the range of the 
2S1/2 resonance [126]. The solid curve represents their approximation on the basis 
of the obtained phase shifts. 
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Fig. 2.3.9a, b. The 2S1/2 phase shift of p14C elastic scattering at low energies 
obtained on the basis of the excitation functions shown in Fig. 2.3.8. The points 
represent the results of our phase shift analysis made on the basis of data in [126] 
and the curves describe the calculation of the phase shift with the potentials given 
in the text. 
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Fig. 2.3.9c, d. The 2S1/2 phase shift of p14C elastic scattering at low energies 
obtained on the basis of the excitation functions shown in Fig. 2.3.8. The points 
represent the results of our phase shift analysis made on the basis of the dat in 
[126] and the curves describe the calculation of the phase shift with the potentials 
specified in the text. 
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The resonance energy obtained from the excitation functions at 125  lies 
in the interval of 1551–1575 keV, for which the value of the phase shift 
concludes within the range 84–93 . The resonance energy obtained from the 
excitation function at 141  is in the interval 1534–1611 keV, for which the 
value of the phase shift concludes within the range 84–90  with the value of 
90  at 1534, 1564, and 1611 keV. 

The resonance energy obtained from the excitation function at 165  is in 
the interval 1544–1563 keV, for which the value of the phase shift concludes 
within the range 87–91 . At the marked scatter of values, it is possible to 
say only that the resonance value of the phase shift in 90  lies within the 
limits 1534–1611 keV, with an average energy value of 1572 keV in l.s.; 
this is generally in good agreement with the data in [120], where the value 
of the resonance energy 1509 keV is specified in l.s. 

It is important to note that in [126] a detailed analysis of the resonances, 
including at 1.5 MeV, was not carried out, as it had previously been 
undertaken in [127] on the basis of the proton capture reaction on 14C. Here, 
as is clear from the results of phase shift analysis, the resonance energy at 
1.5 MeV is a little overestimated in relation to the results in [127]. However, 
as is clear in Fig. 2.3.8, errors in the experimental data by the scattering 
cross sections of excitation functions are too large to draw unambiguous 
conclusions about the energy of such resonance. 

With additional, more modern, and more exact measurements of cross 
sections of p14C elastic scattering, it becomes necessary to draw more 
certain conclusions about the resonance energy in the 2S1/2 phase shift at 1.5 
MeV on the basis of these data. The difference between the data obtained 
here and in [127] for the energies of this resonance at 63 keV, in general, 
does not play a basic role, but nevertheless it is clear where it is located. 

Moving on to the construction of the potentials of p14C elastic scattering, 
at the beginning we will consider the classification of the orbital states 
according to Young tableaux. We consider that the {4442} tableau 
corresponds to the ground bound state of 14C [123,128,129]. The possible 
orbital Young tableaux for system N = n1 + n2 of particles can be defined as 
the direct external product of orbital tableaux of each subsystem, which, for 
the p14C system within a 1p-shell, gives {1}  {4442}  {5442} + {4443} 
[123,128]. The first of the obtained tableaux is compatible with the orbital 
moment L = 0 and is forbidden because, in an s-shell, there cannot be five 
nucleons and the second tableau is allowed and compatible with the orbital 
moment L, equal to one [123,128,129]. 

Thus, in the potential of the 2S1/2 wave the forbidden bound state is 
contained and the 2P waves only allow BS. The ground state of 15N in the 
p14C channel, which is at an energy of -10.2074 MeV [120], belongs to the 
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2P1/2 wave and does not contain the FS. (We note that the moment of 14C is 
equal to J  = 0+ and the isospin T is equal to 1, as shown in [120].) 

However, we do not have complete tables for the multiplication of 
Young tableaux for the system with more than eight particles [130], as used 
by us previously for similar calculations [123,128,129,131,132]. Therefore, 
the results obtained above should be considered only as the quality standard 
of the possible orbital symmetry for the BS, allowed or forbidden, in 15N for 
the considered p14C channel. 

For the description of our analysis of the 2S1/2 scattering phase shift, a 
simple Gaussian potential of the form (1.6.2) with the bound FS and the 
following parameters are used 

 
V0 = -5037.0 MeV,   = 12.0 fm-2,                      (2.3.6) 
 
which gives us scattering phase shifts with resonance at 1500 keV in l.s. and 
a width of 530 keV in c.m.; these do not coordinate poorly with the available 
experimental data presented in Table 15.11 in [120]. In this work, the values 
1509(4) keV are given in l.s. with a total width of 404.9±6.3 keV in c.m. 
and a proton width of 400.9±6.3 keV. The parameters of the potential (2.3.6) 
were selected so that, in general, it could correctly reproduce the resonance 
data in [120], obtained previously in [127]. 

The phase shift of such a potential is shown in figs. 2.3.9a, b, c, and d 
by the solid curves and at a resonance energy of 1500 keV reaches the value 
of 90(1) . The energy behavior of the scattering phase shift, in general, 
correctly describes the scattering phase shifts obtained in the phase shift 
analysis considering the shift of resonance energy to approximately 70 keV, 
in relation to the results in [120,127]. The calculation curve of the phase 
shifts for this potential goes parallel to the points obtained in our phase shift 
analysis for all four scattering angles. 

For a more exact description of the data obtained in the phase shift 
analysis, the potential required is 

 
V0 = -5035.5 MeV,   = 12.0 fm-2.          (2.3.7) 

 
This gives a resonance energy of 1550 keV, a width of 575 keV, and the 

calculation results of the 2S1/2 phase shift are shown in Fig. 2.3.9 by a dashed 
curve. This curve clearly describes the results of the phase shift analysis. 

All the potentials of the P scattering waves, as they do not contain the 
FS, can be set to equal zero. Such potentials lead to scattering phase shifts, 
which are also equal to zero. In the spectra of 15N, there are two resonance 
levels, which can be carried to the P waves in the p14C channel. One of these 
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lies at approximately 0.53 MeV and has the moment J  = 3/2-. However, 
their width in 0.2 keV and 8(3) keV is so small (see Table 15.11 in [120]) 
that it is not possible to construct the corresponding potentials according to 
these data [133]. 

It should also be noted that, at the known energy of the resonance level in 
the spectra of any nucleus [120] and its width, the potential of the 2S1/2 waves 
is constructed completely unambiguously, if the number of BS, forbidden or 
allowed states in this partial wave is given, in this case being equal to one. In 
other words, it is impossible to find other combinations of the parameters V 
and  that are capable of transferring the resonance energy of the level and its 
width correctly. The depth of such a potential of V unambiguously defines the 
location of the resonance, i.e. the resonance energy of the level and its width 
 sets the certain width of this resonance state [28,122,123,125,128, 

129,132,158] and has to correspond to the experimentally observed values 
[120]. In this case, for the correct reproduction of the resonance width in the 
case of 1509 keV, the potential width would have to be reduced, increasing 
the  parameter. Only in this case would it be possible to obtain a more correct 
resonance width of about 400 keV. 

2.3.6 Phase shifts and potentials of n16O scattering 

To carry out calculations for radiative capture in the frame of the 
modified PCM [2], it is necessary to know the potentials of n16O elastic 
scattering in 2S1/2, 2P1/2, 2P3/2, 2D3/2, and 2D5/2 waves, along with the 
interaction of the 2D5/2 ground and first excited 2S1/2 states of 17O. For the 
transition to these BS, we can use the experimental data on total cross 
sections of radiative capture in [134]. 

For this system, as usual, the potentials of the scattering processes are 
constructed on the basis of elastic scattering phase shifts, at values higher 
than 1.1 MeV obtained in [135,136]. For the energy range 0.2–0.7 MeV, we 
have the results of the phase shift analysis in [137], based on measurements 
of the differential cross sections of n16O elastic scattering [138] in the 
resonance range of 0.433 MeV [103]. In [137], there are also some 
preliminary results of the phase shift analysis given in the range of the 2D3/2 
resonance at energies of 750–1200 keV. 

New experimental data [139] on the excitation function at energies of 
0.5 to 6.2 MeV are listed in the database in [140]; as far as we know, 
energies in the range of the 2D3/2 resonance of 1.0 MeV [103] have not been 
considered in the phase shift analysis. The data in [139] have been used to 
carry out the phase shift analysis and the extraction of the shape of the phase 
shift in the 2D3/2 wave of n16O scattering. The excitation functions used at 
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40  in l.s. or 42.3  in c.m. [139] are shown in Fig. 2.3.10 for the energy 
range 0.75 to 1.25 MeV (l.s.), represented by open circles. In our analysis, 
more than 500 points for the cross sections at different energies from the 
excitation functions obtained in [139] were used. 

Let us note that the lower 0.7–0.8 MeV ambiguity of the data [139] 
sharply increases; however, for the extraction of the 2D3/2 scattering phase 
shift it is sufficient to consider the energy range shown in Fig. 2.3.10, which 
has a rather small ambiguity. Such data can be useful for carrying out a 
phase shift analysis. Details of the method we used to find the phase shifts 
in the elastic scattering of particles with spin 1/2 + 0 are given above and in 
[141].  
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Fig. 2.3.10. Excitation functions of n16O elastic scattering in the range of the 2D3/2 
resonance at 1.0 MeV, shown by open circles [139]; the curve represents the 
calculation of the cross sections with the potential specified in the text. 

 
The main expressions for the cross sections used in the phase shift 

analysis are given in Chapter 1, the beginning of this paragraph, and in 
[6,141]. The results of the present analysis of n16O elastic scattering in the 
energy range 0.75 to 1.25 MeV are shown in Fig. 2.3.11 by open circles. In 
Fig. 2.3.11, the black squares represent the results of the phase shift analysis 
in [135], while the values obtained above 1.1 MeV and the results of the 
analysis in [137] are given by triangles. 
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Fig. 2.3.11. 2D3/2 phase shift of n16O elastic scattering at low energies. The open 
circles ( ) describe the results of our phase shift analysis made on the basis of 
data presented in [139]; the black squares ( ) describe the results of phase shift 
analysis in [135]; the triangles ( ) present the results of the analysis in [137]; 
and the solid curve represents the calculation of the phase shift with the potential 
specified in the text. 

 
For the description of the cross sections in excitation functions [139], at 

least at energies of up to 1.2–1.25 MeV, it is not necessary to consider the 
2S1/2 scattering phase shift as its presence does not change the 2 value, i.e. 
its values can be accepted as being equal to zero. The 2 values, as only a 
single point in the cross sections for each energy level, have been 
considered; the average value is 4.7 10-3 with a maximum partial value 

2
i
 = 0.6 at an energy of 999.5 keV. 
To describe the 2D3/2 scattering phase shift in Fig. 2.3.11 obtained 

through phase shift analysis, it is possible to use a simple Gaussian potential 
(1.6.2) with the parameters 

 
VD3/2 = -95.797 MeV, D3/2 = 0.17 fm-2          (2.3.8) 
 
which does not have a bound FS and leads to the resonance energy of 1000 keV 
at the phase shift of 90.0(1)  with a width of 88 keV in l.s. or 83 keV in c.m. At 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Phase Shift Analysis 133 

the same time, we have values in Table 17.17 [103] for the width value of 96 
keV in c.m or 102 keV in l.s. at an energy of 1000 2 keV in l.s. 

The energy dependence of the 2D3/2 scattering phase shift of the potential 
(2.3.8) is shown in Fig. 2.3.11 by the solid curve. Such a potential describes 
the behavior of the phase shift obtained by us in the range of the resonance 
and agrees quite well with the previous extraction of the scattering phase 
shift carried out in [135,137]. The form of the cross sections of the excitation 
functions calculated with a 2D3/2 phase shift of potential (2.3.8) at zero 
values of other phase shifts is shown in Fig. 2.3.10 by the solid curve. From 
these results, it is clear that the 2D3/2 phase shift almost completely defines 
the behavior of such cross sections in the excitation function. 

Furthermore, we consider the total cross sections for radiative capture, 
taking into account the E1 transitions from the 2P3/2 resonance in n16O scattering 
at 433 keV to the 2D5/2 ground and 2S1/2 first excited state of 17O. For the 
construction of the 2P3/2 scattering potential, apart from the data on the location 
and width of such a level in [103] (see Table 17.17), we have used the results of 
the phase shift analysis [137] shown by triangles in Fig. 2.3.12. 

As a result, we found that for the description of the resonance 2P3/2 
scattering phase shift at 433(2) keV (l.s.) with a width of 45 keV in c.m. or 
48 keV in l.s. [103], the potential without the forbidden or allowed BS with 
the following parameters is required 

 
VP3/2 = -1583.545 MeV, P3/2 = 6.0 fm-2          (2.3.9) 
 
which leads to a width 44 keV in c.m. or 47 keV in l.s. at resonance of 433 
keV (l.s.). The phase shift of such a potential at resonance energy is equal 
to 90.0(0.2)  and the complete dependence of the scattering phase shift from 
energy in the range of resonance is shown in Fig. 2.3.12 by the solid curves. 

Here, again, it is necessary to note that the well-known resonance energy 
level in the spectrum of 17O and its width, the construction of the potential 
is entirely clear. In other words, it is impossible to find other V0 and  
parameters that would be capable of correctly describing the resonance 
energy of the level and its width, if the number of BS were given, which, in 
this case, would be equal to zero. The depth of such a potential 
unambiguously defines the provision of a resonance, i.e. the resonance 
energy of the level and its width sets a certain width of this resonance state. 

In the spectra of 17O below 1.0–1.3 MeV there are no resonance levels 
with J  = 1/2-  5/2+ moment [103], which can be compared to the n16O 
channel. Therefore, the 2P1/2 and 2D5/2 potentials of scattering waves have 
no bound FS or AS and can have zero depth, i.e. zero scattering phase shifts. 
Such an assumption has already been used by us and it use has been repaid 
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for some other systems of particles in the consideration of other processes 
of radiative capture [2]. 

Furthermore, to carry out calculations of radiative capture in the frame 
of the modified PCM, we need the interaction potentials of n16O clusters in 
the BS. We investigated the electromagnetic transitions to the ground bound 
state from J ,T = 5/2+,1/2 at an energy of -4.1436 MeV and first excited with 
J  = 1/2+ at -3.2729 MeV of 17O in the n16O channel [103]. The width of 
such potentials was fixed on the basis of the correct description of the 
binding energy and the charge radius of 17O being equal to 2.710(15) fm 
[103]; then, we compared the calculated asymptotic constants of the n16O 
channel with other independent data. 
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Fig. 2.3.12. 2S1/2 and 2P3/2 phase shifts of n16O elastic scattering at low energies. The 
triangles ( ) represent the results of the phase shift analysis in [137] and the solid 
curve describes the calculation of the phase shift with the potential specified in the 
text. 

 
As a result, for the 2D5/2 potential of the GS of 17O in the n16O channel 

without the FS, the following parameters were found 
 

Vg.s = -102.2656782 MeV, g.s = 0.15 fm-2         (2.3.10) 
 
allowing us to obtain a binding energy of -4.1436000 MeV with an accuracy 
of 10-7 MeV [141], a charge radius of 2.71 fm, a mass radius of 2.73 fm, and 
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the dimensionless asymptotic constant (1.6.3) on an interval of distances of 
6–16 fm equal to C = 0.75(1). The phase shift of such a potential with one 
bound AS decreases smoothly and at an energy of 1.0 MeV accepts the 
value of 179.6º, i.e. it actually has a zero value. 

As the charge radius of the neutron, as usual, the zero value was for the 
mass radius 0.8775(51) fm, equal to the charge radius of the proton specified 
in the base [75]. In [142], for the AC of the GS, the 0.9 fm-1/2 was obtained, 

which, after recalculation with 02k = 0.933 to the dimensionless value, 

gives 0.96. In [65], for the GS the dimensionless value 0.77(8) is given, 
taking into account that the errors were completely coordinated with the 
value obtained above. 

For the 2S1/2 potential of the first excited state of 17O in the n16O channel 
with one bound forbidden state [2], the following parameters were found 

 
VS1= -81.746753 MeV, S1 = 0.15 fm-2,         (2.3.11) 
 
which gives a binding energy of -3.2729000 MeV relative to the threshold 
of the n16O channel, or 0.8707 MeV relative to the GS of 17O with an 
accuracy of 10-7 MeV [141] and a charge radius of 2.71 fm, a mass radius 
of 2.80 fm, and AC on an interval of distances of 6–17 fm equal to 
C = 3.09(1). The phase shift of such a potential is shown in Fig. 2.3.12 by 
the shaped curves, smoothly falling down before reaching 119.6º at 1.0 
MeV. For this 2S1/2 level of [142] for the AC, the value of 3.01 fm-1/2 was 

obtained, which, after recalculation with 02k = 0.88, gives 3.42. It appears 

in this case that, for the value of an asymptotic constant an acceptable 
agreement between the different results arises, with a difference between 
them of approximately 10 %. 

For the additional control of the calculation of the energy of the bound 
state, the variation method [10,141], which, for the ground state, is already 
on a grid with dimension N = 10 with the independent variation of 
parameters for the potential (2.3.10), allowing us to obtain a value for the 
energy of -4.1435998 MeV, was used. The parameters of the variation 
wave function are specified in Table 2.3.9 and the value of the residuals 
does not exceed 10-8 [141]. The charge radius and asymptotic constant on 
the interval of 6–16 fm do not differ from the values obtained above in the 
FDM. As for the real binding energy in such a potential, it is possible to 
accept the average value of -4.1435999(1) MeV, the accuracy of the 
determination of the binding energy by two methods (FDM and VM) 
according to two computer programs was at the level of 0.1 eV and thus 
in full compliance with the given error in the FDM program for the 
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binding energy of 10-7 MeV. 
For the energy of the first excited, but bound state in the n16O channel, 

on a grid with dimensions N = 10 and the independent variation of 
parameters for the potential (2.3.11), the value for an energy of -3.2728998 
MeV was obtained. The parameters of the variation wave function are 
specified in Table 2.3.10 and the value of the residuals does not exceed  
10-10 [141]. 

 
Table 2.3.9. The variation parameters and coefficients of the 
decomposition of the radial WF in the n16O system for the ground 
potential of the 5/2+ state for potential (2.3.10). The WF normalization 
on an interval 0–30 fm is equal to N0 = 9.999999999996603E-001. 

 

i i Ci 

1 2.970820484267648E-002 5.999898648526680E-002 

2 1.355376641105716E-002 -5.268187781652860E-006 

3 2.971441871730051E-002 -6.024647870785407E-002 

4 6.553466412237838E-002 -3.087819670804185E-003 

5 1.253831431831826E-001 -1.906462762571792E-002 

6 2.156627509028788E-001 -6.585296562529887E-002 

7 3.393826502547065E-001 -1.006636861923295E-001 

8 5.166966410860497E-001 -4.627970949895152E-002 

9 1.063579836670607 -1.116683372038532E-003 

10 1.639614546923715 2.440471375269290E-004 

 
Table 2.3.10. The variation parameters and coefficients of the 
decomposition of the radial WF in the n16O system for the potential first 
excited 1/2+ state for potential (2.3.11). The WF normalization on an 
interval of 0–30 fm is equal to N0 = 9.999999975230215E-001. 

 

i i Ci 

1 1.268144327251019E-002 7.701423164869143E-003 

2 4.193709029136675E-003 4.794229107401904E-005 

3 2.881642596445175E-002 5.677769979981124E-002 

4 6.245243687002310E-002 1.570309903921747E-001 

5 1.259974114760052E-001 2.619817602771229E-001 
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6 2.163927688688810E-001 -4.833513946049395E-002 

7 3.383830162751630E-001 -7.529455791580352E-001 

8 5.187698913796229E-001 -4.062518687767323E-001 

9 1.062316903143099 -5.106918680411997E-003 

10 1.867671209905880 4.235490376362463E-004 

 
The charge radius and asymptotic constant at an interval of 6–20 fm do not 

differ from the values obtained in the FDM calculations. For the real binding 
energy, we can accept the average value -3.2728999(1) MeV, i.e. the accuracy 
of determining the energy by two methods according to the two computer 
programs is also at the level of 0.1 eV = 100 meV. In all real calculations of 
the characteristics of 17O for the value of 16O mass, the value m(16O) = 
15.994915 amu was used [143], with the mass of the neutron specified 
previously. 

2.3.7 Phase shift analysis of p16O scattering 

It appears that one of the first measurements for the differential cross 
sections of p16O elastic scattering with phase shift analysis undertaken at 
energies of 2.0–7.6 MeV were done in [144]. This analysis used the results 
of [145] and [146] and some unpublished results of [144] in two areas of 
energy: 2.0–4.26 MeV and 4.25–7.6 MeV. The resonance at 2.66 MeV in 
the laboratory system for the 2P1/2 wave has been considered in detail. 

Subsequently, the polarization of p16O elastic scattering in the range 2.5–
5.0 MeV was measured in [147] and a new phase shift analysis was made 
at these energies, which, however, obviously did not show resonance at 2.66 
MeV [103]. Furthermore, in the figures in [148] and the table in [149] (with 
reference to [148]), the results of the detailed phase shift analysis of p16O 
elastic scattering at energies of 1.5–3.0 and 2.5–3.0 MeV were given and in 
[148] the presence of a narrow resonance specified subsequently at an 
energy of 2.663(7) MeV with a width of 19(1) keV was confirmed. This 
corresponds to the first superthreshold state of 17F at 3.104 MeV with 
J  = 1/2- [103] and is compared to the 2P1/2 wave in p16O elastic scattering. 

Processes of p16O elastic scattering in the energy range 1.0–3.5 MeV 
have been considered in a number of works (see, for example, the review in 
[103] and [150,151]). In particular, in [152,153] the range 0.5–0.6 MeV to 
2.0–2.5 MeV is considered. In [154], the measurements of the excitation 
functions at energies of 0.4 to 2.0 MeV were executed. However, in all these 
works [150-154], a phase shift analysis of the obtained experimental data 
was not made. 
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As a result, the phase shift analyses that are available today were mostly 
carried out in the 1960s and usually for 2.0–2.5 MeV and higher energies. 
There is only one point in the scattering phase shifts at 1.5 MeV obtained in 
[148] that has not subsequently been confirmed in other works. The study 
of an interval of energies from 2.0–2.5 MeV to 7–8 MeV and higher in the 
works given above is connected to the fact that the scattering phase shifts 
were constructed for further consideration of certain problems of nuclear 
physics and did not concern the area of astrophysical energies. Furthermore, 
we consider radiative capture in the field of astrophysical energy at 
approximately 2.0–2.5 MeV. 

The results of the works listed above [150-154] and some other excita-
tion functions and angular distributions are quite enough to carry out a phase 
shift analysis up to 2.0–2.5 MeV and further construction of the p16O inter-
action potentials on the found scattering phase shifts. Therefore, we carried 
out a phase shift analysis of the available experimental data from 0.4 to 2.5 
MeV to obtain an understanding of the exact type of scattering phase shifts 
in this energy area. Additionally, we rechecked the results of some other 
phase shift analyses made in the 1960s.  
 
2.3.7.1 Control of phase shift analyses 

 
Firstly, we consider the results obtained through phase shift analysis, 

made on the basis of the angular distribution in [148] and with the energy 
range 1.5–3.0 MeV at four scattering energies in the range of angles 20–
160 . In other words, we repeated the analysis found in [148], which was 
originally made in the 1960s. The results of the description of cross sections 
with the phase shifts taken in our analysis are represented by solid curves in 
figs. 2.3.13a, b, c, d, and e; the phase shifts are shown by open squares in 
Fig. 2.3.13e and can be compared to the data in [144,147,148,149]. The 2 
value obtained with a 10 % experimental error is shown in figs. 2.3.13a, b, 
c, d, and e. 

From the given results, it is clear that at an energy of 2.978 MeV the 
phase shift values in [148] and those obtained by us differ by 1.5–2 . For 
three other energies the coincidence is at a level of less than 1 , while for 
2.48 MeV the results completely coincide. We further consider proton 
radiative capture on 16O at an energy of around 2.5 MeV without taking into 
account the narrow resonance at 2.66 MeV [103]. The area of this resonance 
will not be considered in detail as the phase shift analysis has been studied 
previously in [144]. This is shown in Fig. 2.3.13e by open circles and also 
in the analysis of [148]. 
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Let us give one more result for the angular distributions from [147] at 
an energy of 2.5 MeV. In Fig. 2.3.14, the differential cross sections 
measured in the angular distributions are shown by points; the results of our 
calculation of these cross sections with the found phase shifts are shown by 
the solid curve. The 2 value is equal to 0.67 with an experimental error of 
10 %; this value was obtained during the analysis of the scattering phase 
shift shown in Fig. 2.3.14 and is equal to S1/2 = 139.8 ; this phase shift is 
shown in Fig. 2.3.13e by the open triangle.  
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Fig. 2.3.13a. The angular distributions of p16O elastic scattering measured in 
[148] at a proton energy of 1.473 MeV. The solid curve represents the calculation 
of these cross sections with the obtained scattering phase shifts. 

 
If we add the P1/2 scattering phase shift to the analysis, then, for 10 

iterations [10], we obtain 2 = 0.58 along with the phase shifts S1/2 = 140.3  
and P1/2 = 5.5 . If we consider the P3/2 phase shift, then after the same 
number of iterations, we find 2 = 0.57 and the phase shifts S1/2 = 139.7 , 
P1/2 = -4.5 , and P3/2 = 4.6 . From this it is clear that taking into account the 
P phase shifts at an energy that adjacent to the narrow resonance region 
barely changes the value of the S phase shift and significantly improves the 

2 value. 
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Fig. 2.3.13b. The same as in Fig. 2.3.13a, but at a proton energy of 1.931 MeV. 
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Fig. 2.3.13c. The same as in Fig. 2.3.13a, but at a proton energy  
of 2.481 MeV. 
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Fig. 2.3.13d. The same as in Fig. 2.3.13a, but at a proton energy of 2.978 MeV. 
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Fig. 2.3.13e. The phase shifts of p16O elastic scattering obtained from the angular 
distributions in [148] as open squares and from [147] by an open triangle. Other 
designations present the results from [144,147,148,149]. 
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A phase shift analysis was also undertaken in [147]; for this energy, the 
following phase shifts were obtained: S1/2 = 143.2 , P1/2 = 2.0 , P3/2 = 2.2 , 
D3/2 = 3.2 , and D5/2 = -1.6 ; the 2 value is not given in the article. With 
such phase shifts, the 2 = 0.62 value with a 10 % experimental error was 
found in our calculations and the results for the cross sections of the elastic 
scattering are given in Fig. 2.3.14 by the dashed curve, which practically 
merges with the solid curve. 
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Fig. 2.3.14. The angular distributions of p16O elastic scattering measured in [147]. The 
curves describe the calculation of cross sections on the basis of various phase shift 
analyses. 

 
If we execute a variation of the phase shifts given in [147], according to our 

program with 10 iterations, we obtain 2 = 0.57 with phase shifts: S1/2 = 140.8 , 
P1/2 = -2.8 , P3/2 = 4.6 , D3/2 = 3.1 , and D5/2 = -2.3 . The scattering cross section 
with such phase shifts is shown in Fig. 2.3.14 by the dotted curves. From this 
figure it is clear that accounting for the D phase shifts does not change the 2 
value. 
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2.3.7.2 New phase shift analysis 
 

As already described in [154], the measurements of excitation functions 
of p16O elastic scattering at energies ranging from 0.4 to 2.0 MeV were 
carried out; however, a phase shift analysis for these data was not executed. 
The measurement results of the excitation functions performed in this work 
at a scattering angle of 171.5  in c.m. is shown in Fig. 2.3.15a by points. 
The results of our phase shift analysis, obtained on the basis of these data, 
are shown in Fig. 2.3.15b by circles and in Table 2.3.11. The phase shift is 
shown in Fig. 2.3.15b from 180  because, as described previously [2], in a 
S wave there has to be a forbidden bound state and at zero energy it is 
necessary to apply the generalized Levinson theorem for the determination 
of the phase shift [4]. 
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Fig. 2.3.15a. The excitation functions of p16O elastic scattering measured in [154]. The 
solid curve represents the calculation of the cross sections with the obtained scattering 
phase shifts. 

 
The values of the cross sections calculated with the obtained phase shifts 

are shown in Fig. 2.3.15a by the solid curve. The 2 value provided in [154] 
with experimental error cross sections in the excitation functions is given in 
Fig. 2.3.15c by the solid curve. As can be seen from this figure, the 2 value 
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at different energies does not exceed 10-5. As a result, one S1/2 phase shift 
was found completely unambiguously. For all other results of the phase shift 
analyses made with excitation functions, the 2 value is approximately at 
the same level. 

For comparison, in Fig. 2.3.15b the results of phase shift analyses from 
[144] are shown with a point at 2 MeV and [148] by squares at 
approximately 1.5 and 2 MeV. New results, represented by circles in Fig. 
2.3.15b, show how the 2S1/2 scattering phase shift forms at the lowest 
energies, playing a primary role in the consideration of thermonuclear 
processes of radiative capture at astrophysical energies.  
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Fig. 2.3.15b. The phase shifts of p16O elastic scattering obtained by us from the 
excitation function of [154] shown by open circles and [152] by open triangles. 
A comparison with the results of the phase shift analyses is given in [144,148]. 

 
It is clear that at energies of 0.6 MeV and less this phase shift is almost 

equal to 180 . At energies higher than 1.5 MeV, there is good agreement 
with the previous results of phase shift analyses observed in [144,148]. The 
differences between the true and former results of scattering phase shifts 
obtained in the 1960s do not exceed 1–2 . Here, we note that the 
measurements of differential cross sections in [154] were performed in the 
mid-1970s and differ little from the data in [144,148]. However, in other 
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work the other value of constant 2/m0 could be used to explain such a 
distinction in the phase shifts. We should note here that the value 2/m0 = 
41.4686 MeV fm2 was usually used. 
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Fig. 2.3.15c. The 2 value obtained with the scattering phase shifts shown in Fig. 
2.3.15b describing the experimental excitation functions [154]. 
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Fig. 2.3.15d. The excitation function of p16O elastic scattering measured in [152]. The 
solid curve represents the calculation of the cross sections with the obtained scattering 
phase shifts. 
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Table 2.3.11. 2S1/2 phase shift obtained by us from the data in [154]. 
 

Ep , MeV Phase shift, deg. 
0.3855 179.59 
0.4871 179.74 
0.6162 179.65 
0.6631 178.11 
0.7162 177.96 
0.759 176.46 
0.8108 174.55 
0.8612 173.37 
0.9058 174.19 
0.979 172.17 
1.1063 169.82 
1.2508 166.43 
1.3704 163.61 
1.5898 158.42 
1.7903 155.78 
1.9909 151.09 

 
We consider the data on excitation functions from [152] at energies of 

0.6–2.0 MeV and a scattering angle of 160  in l.s. or 161.2  in c.m. The 
cross sections specified in [152] are given in l.s. and have been counted by 
us in c.m.—they are given by points in Fig. 2.3.15d with a 5 % error 
specified in [152]. For the recalculation of the cross sections, the following 
expression was used 

 
1.5

cm
cm lab2

cm

1 cos( )

1 2 cos( )
, 

 
where  = m1/m2 and m represent the masses of particles, meanwhile the m1 
particle is colliding. For the recalculation of cross sections, the integer 
values of mass were used. 

As can be seen in Fig. 2.3.15b, the scattering phase shift obtained on the 
basis of data in [152] is shown by triangles; the results of our phase shift 
analysis present reasonably acceptable coordination with the previous 
extraction of phase shifts at energies of up to 2 MeV. An exception is 
provided by the two final points in the scattering phase shifts, which, as with 
the excitation functions [152] for these energies, differ a little from other 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Phase Shift Analysis 147 

results. In Fig. 2.3.15d, the solid curve represents the results of the cross 
section calculation of p16O elastic scattering with the phase shifts found in 
our analysis, which were in good agreement with the measurements 
presented in [152]. 

Furthermore, [155] presents good results for the differential cross sections 
at energies of 0.8–2.5 MeV and an angle of 170  in l.s. or 170.6  in c.m. with 
a 4 % error. However, the phase shift analysis of these data, as far as we know, 
has not yet been carried out. The results for the excitation functions are 
presented in Fig. 2.3.16a by points and the scattering phase shifts 
corresponding to them, obtained in our analysis, are shown in Fig. 2.3.16b by 
triangles. In Fig. 2.3.16a, the differential cross sections calculated with these 
scattering phase shifts are shown by the solid curve. 
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Fig. 2.3.16a. The excitation functions of p16O elastic scattering measured in 
[155]. The solid curve represents the cross sections calculated with the obtained 
scattering phase shifts. 

 
In Fig. 2.3.16b, the coincidence of the results in [154] and [155] can be 

clearly seen, though the measurement of the excitation functions were 
executed at an interval of 10 years. The results of the phase shift analysis of 
the angular distributions taking into account only the 2S1/2 phase shift given 
in [155] at energies of about 1.8 to 2.4 MeV are represented in Fig. 2.3.16b 
by squares. The results of the description of these angular distributions are 
presented in figs. 2.3.16b and c by solid curves and various points show the 
results of the experimental measurements with a 4 % error from [155]. 
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Fig. 2.3.16b. The triangle represents the phase shifts of p16O elastic scattering 
obtained from the excitation functions in [155]. The phase shifts in Fig. 2.3.15b, 
obtained on the basis of data in [154], are shown by circles. The squares present 
the results of the phase shift analysis of angular distributions from [155], shown 
in figs. 2.3.16c and d. 

 
In [156], the excitation functions at angles of 90  and 120  in l.s. or 93.6  

and 123.1  in c.m were measured in the energy range of protons from 0.5 to 
3.5 MeV with a 5 % experimental error. The results for the second angle at 
energies of up to 2.5 MeV are represented by points in Fig. 2.3.17a and 
agreement between the experimental and calculated cross sections with the 
phase shifts, which are shown in Fig. 2.3.17b by black points, is represented 
by the solid curve. 

A comparison of the scattering phase shifts obtained in this work 
(triangles) on the basis of the results [155] for the angle 170.6  in c.m. is 
given in Fig. 2.3.17b and shown in Fig. 2.3.16b by black triangles. The 
results in Fig. 2.3.17b were obtained on the basis of data in [154] at 171.5  
in c.m., which, according to Fig. 2.3.15b, are acceptable and coordinate with 
the results of the phase shift analyses in [144,148], made earlier and shown 
by circles. The measurements in [156] were undertaken in the late 1990s, 
while the data in [144,148] were published in the 1960s. However, the 
results of the phase shift analysis obtained on their basis in the energy range 
0.4–2.5 MeV are acceptable and coordinate well among themselves, as is 
clearly shown in figs. 2.3.15b, 2.3.16b, and 2.3.17b. 
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Fig. 2.3.16c. The angular distributions of p16O elastic scattering measured in 
[155]. The solid curves represent the cross sections calculated with the scattering 
phase shifts obtained in our phase shift analysis. 
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Fig. 2.3.16d. The angular distributions of p16O elastic scattering measured in 
[155]. The solid curves represent the cross sections calculated with the obtained 
scattering phase shifts. 
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Fig. 2.3.17a. The excitation functions of p16O elastic scattering measured in 
[156]. The solid curve represents the cross sections calculated with the obtained 
phase shifts. 

 
Let us consider newer experimental data on the excitation functions in 

[153] and undertake a phase shift analysis. In [153], measurements of the 
excitation functions at energies of 0.6 to 2.5 MeV and angles 140  and 178  
in l.s. or 142.3  and 178.1  in c.m. are presented. In figs. 2.3.18a and 
2.3.18c, the triangles and points show the results of these measurements; the 
results of our phase shift analysis obtained on the basis of such excitation 
functions are given in figs. 2.3.18b and 2.3.18d. 

The values of the cross sections calculated with such phase shifts in figs. 
2.3.18a and 2.3.18c are shown by solid curves. From the obtained results, 
the shape of the scattering 2S1/2 phase shift at the lowest energies is visible—
it exceeds 180  on 1–2  and is visible. 

We should remember that, as the phase shift analysis is made on one 
point in the cross sections, i.e. at one value of the cross section at the given 
energy, the S1/2 phase shift is completely unambiguous. Therefore, the ex-
cess 180  in scattering phase shifts may indicate the real error in determin-
ing the phase shifts of the experimental data. The phase shifts for both scat-
tering angles in comparison to the results obtained by us for data from [154] 
are shown in Fig. 2.3.18d. 
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Fig. 2.3.17b. The phase shift of p16O elastic scattering obtained by us from the 
excitation functions of [156] is shown by black points. The phase shifts shown 
by circles in Fig. 2.3.15b were obtained on the basis of data in [154]. The results 
of the phase shift analysis of data in [155] shown in Fig. 2.3.16b are represented 
by triangles. 
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Fig. 2.3.18a. The excitation functions of p16O elastic scattering measured in 
[153]. The solid curve represents the cross sections calculated with the scattering 
phase shifts obtained in our phase shift analysis. 
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Fig. 2.3.18b. The phase shifts of p16O elastic scattering obtained by us from the 
excitation functions in [153]. 

 
From this figure, it is clear that there is good agreement in the scattering 

phase shifts between the results obtained in 1975 [154] and newer data 
published in 2002 [153]. For the previous results, obtained on the basis of 
data in [154], [155], and [156], a slightly larger divergence in the phase 
shifts is found. However, the results of our analysis of data at energies 
higher than 2.2 MeV [153] show a noticeable divergence in the scattering 
phase shifts obtained for these two angles, reaching 4–5  at an energy of 2.5 
MeV.  

In conclusion, we have considered the results of the phase shift analysis 
of measurements of the differential cross sections of the excitation functions 
and angular distribution of p16O elastic scattering given in [157]. In Fig. 
2.3.19a, the points show the excitation functions and the solid curve shows 
the cross sections obtained by us with the found scattering phase shifts; the 
phase shifts are shown in Fig. 2.3.19b by black triangles. In the same figure, 
a comparison of the phase shifts we obtained on the basis of various 
experimental data are given by points, circles, and squares. 

 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Phase Shift Analysis 153 

0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6
0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

cm=178.10
p16O

 

 Ep, keV

d
/d

 / 
d

/d
(R

ut
h)

 
Fig. 2.3.18c. The excitation functions of p16O elastic scattering measured in 
[153]. The solid curve represents the cross sections calculated with the obtained 
scattering phase shifts. 

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6

140

150

160

170

180  - cm = 142.30

 - cm = 178.10

 - cm = 171.50

p
16

O

2S1/2

 

 Ep, keV

, d
eg

 
Fig. 2.3.18g. The phase shifts of p16O elastic scattering obtained by us from the 
excitation functions in [153]. A comparison with the results in [154] with open 
circles for angle 171.5  (see Fig. 2.3.15b). 
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It is clear that phase shifts below 0.8 MeV, obtained on the basis of data 
in [157], are located slightly below the results of our analysis of data in 
[154] shown by circles and with a difference of about 2–3 . Starting at 0.8 
MeV and going up to 1.0 MeV, the results for our data coincide with the 
phase shifts in [154] at an accuracy of about 1 . Furthermore, the phase 
shifts obtained on the basis of the angular distributions measured in [157], 
represented in Fig. 2.3.19b by open triangles, along with a description of the 
cross sections and the 2 value at three energies are shown in Fig. 2.3.20. In 
Fig. 2.3.20b, it is clear that the greatest 2 value is almost equal to 1. Here, 
at a value higher than a 2S wave, the components of the decomposition of 
the cross section in partial waves can make a contribution. 
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Fig. 2.3.19a. The excitation functions of p16O elastic scattering measured in [157]. 
The curve represents the calculation of these cross sections with the obtained 
scattering phase shifts. 

 
Accounting for the contribution of the 2P waves with 20 iterations gives 

the following values for the scattering phase shifts at 2 = 0.68: S = 172.4 , 
P1/2 = 2.4 , and P3/2 = 2.4 . Accounting for the contribution of the P and D 
waves with the same number of iterations gives the following scattering 
phase shifts at 2 = 0.25: S = 177.0 , P1/2 = -8.8 , P3/2 = 10.9 , D3/2 = 1.7 , 
and D5/2 = 1.3 . The results of calculation of the cross sections with these 
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phase shifts are shown in Fig. 2.3.20c by the dashed curve. Improvement of 
the description of cross sections only in the forward area of angles, i.e. 
approximately up to 70–80 , is observed. Such phase shifts, which agree 
reasonably well with those obtained above (Table 2.3.11) on the basis of the 
excitation functions, but at an energy of less than 0.8 MeV, are located 
below the results of the phase shift analysis obtained on the basis of the data 
in [154]. 
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Fig. 2.3.19b. The phase shifts of p16O elastic scattering obtained by us from the 
differential cross sections in [157] shown by triangles. Other designations present 
the data in [144,148,154]. 

 
The accuracy of the phase shift analysis was estimated by us at the level 

of 2–3 , therefore the observed divergence in the results falls within the 
error limits. As such, new results for phase shifts of p16O elastic scattering, 
with a description of data on the excitation functions from several works for 
different scattering angles in the energy range 0.4–2.5 MeV were obtained. 
A summary of the results of our phase shift analysis is given in Fig. 2.3.21. 
Reasonably good agreement between all the results obtained and the earlier 
phase shift analysis is visible at an energy of approximately up to 2.0 MeV. 

The results of the phase shift analysis, i.e. phase shifts of p16O elastic 
scattering, and the data of resonances of 17F [103], allow us to parametrize 
the intercluster potentials of interaction of the scattering processes in the 
non-resonance 2S1/2 wave. 
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Fig. 2.3.20a. The angular distributions of p16O elastic scattering measured in 
[157] at a proton energy of 0.6 MeV. The solid curve represents the calculation 
of cross sections with the obtained scattering phase shifts. 
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Fig. 2.3.20b. The same as in Fig. 2.3.20a, but at a proton energy of 0.8 MeV. 
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Fig. 2.3.20c. The same as in Fig. 2.3.20a, but at a proton energy of 1.0 MeV. 
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Fig. 2.3.21. All main phase shifts of p16O scattering obtained in this work from 
the excitation functions at angles higher than 120 . 
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Such potentials, in turn, can be used when performing calculations for 
various astrophysical problems, such as the radiative capture of particles on 
light nuclei, and, in this case, determination of the astrophysical S-factor of 
proton radiative capture on 16O at ultra-low energies. 

2.3.8 Program for N12C, p14C, and N16O phase shift analysis 

Below, we provide the text of a computer program in Fortran-90 to carry 
out phase shift analysis of p12C elastic scattering. The program searches the 
elastic scattering phase shifts of two particles with experimental differential 
cross sections, using the methods previously described. 

The description of the key parameters, variables, parameters of the 
interaction potentials, and the units of the program and subprograms are 
given in the list and do not practically differ from the designations used in 
the previous programs. 

 
PROGRAM FAZ_ANAL_p12C 
! * The program of the phase shift analysis of the p12C elastic scattering * 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L,LMA,NI,NV,LMI,LH,LMII,LMAA,LHH,NTTT, 
NTT,NPP,NT,NTP 
CHARACTER(34) AA 
CHARACTER(33) BB 
CHARACTER(25) AC 
CHARACTER(24) BC 
CHARACTER(3) NOM 
CHARACTER(6) EX,EX1 
COMMON /A1/ 
SE(0:50),DS(0:50),DE(0:50),NT,POLE(0:50),POLED(0:50),DS1(0:50),N
TP,XIS,XIP,XI1 
COMMON /A2/ NTTT,GG,SS,LMII,LMAA,LHH,NP 
COMMON /A3/ POL(0:50),TT(0:100),REZ(0:50) 
COMMON /A4/ LH,LMI,NTT,NPP 
COMMON/A5/ PI 
DIMENSION ST(0:50),FP(0:50),FM(0:50),XP(0:50) 
! *************** The initial values ****************** 
PI=4.0D0*DATAN(1.0D0) 
Z1=1.0D0! the P charge 
Z2=6.0D0 ! the 12C charge 
AM1=1.00727646577D0;! The mass of P 
AM2=12.0D0; ! The mass of 12C 
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AM=AM1+AM2 
A1=41.80159D0 
PM=AM1*AM2/AM 
B1=2.0D0*PM/A1 
LMI=0; LH=1; LMA=0  
! The minimum LMI and maximum LMA orbital! moment 
EP=1.0D-05; LMII=LMI; LHH=LH; LMAA=LMA  
! EP – accuracy of the search for a minimum of chi square 
NV=1;! 1 – To carry out the minimization, 0 – without the minimization 
FH=0.0123D0! The initial step 
NI=10! The number of iterations 
NP=2*LMA; NPP=NP 
! *************** The set of the energy in c.m. **************** 
ECM=0.422D0 ! An energy in c.m.  
NT=17; NTT=NT; NTTT=NT! The number of points in the angles 
NOM='422' 
EX='-1.TXT'; EX1='-R.DAT' 
AC='G:\BASICA\FAZ-ANAL\p12C\c' 
BC='G:\BASICA\FAZ-ANAL\p12C\' 
AA=AC//NOM//EX 
BB=BC//NOM//EX1 
OPEN (1,FILE=AA) 
DO L=1,NT 
READ(1,*) TT(L),SE(L),DE(L) 
SE(L)=SE(L)*1000.0D0 
DE(L)=SE(L)*0.10D0 
ENDDO 
CLOSE(1) 
OPEN (1,FILE="G:\BASICA\FAZ-ANAL\p12C\FAZ.DAT") 
DO L=LMI,LMA,LH 
READ(1,*) FP(L),FM(L) 
ENDDO 
CLOSE(1) 
! ******* The transfer of the initial phase shifts to the radians * 
DO L=LMI,LMA,LH 
FM(L)=FM(L)*PI/180.0D0 
FP(L)=FP(L)*PI/180.0D0 
ENDDO 
FH=FH*PI/180.0D0 
DO I=LMI,LMA,LH 
XP(I)=FP(I) 
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IF (I==LMA) GOTO 112 
XP(I+LMA+LH)=FM(I+1) 
112 ENDDO 
! *********** Searching of the minimum of XI**2 *********** 
EL=ECM*AM1/PM 
SK=ECM*B1 
SS=DSQRT(SK) 
GG=3.4495312D-002*Z1*Z2*PM/SS 
CALL VAR(ST,FH,NI,XP,EP,XI,NV) 
FM(0)=XP(0) 
DO I=LMI,LMA,LH 
FP(I)=XP(I) 
IF (I==LMA) GOTO 111 
FM(I+1)=XP(I+LMA+LH) 
111 ENDDO 
! ********** The printing of the results ************************ 
PRINT *,"   EL, ECM, SK, SS=",EL,ECM,SK,SS 
PRINT * 
PRINT *,"            T                     SE                       ST                     XI " 
DO I=1,NT 
PRINT *,TT(I),SE(I),ST(I),DS(I) 
ENDDO 
PRINT * 
PRINT *,"   XI=(XIS+XIP),XIS,XIP=",XI,XIS,XIP 
PRINT * 
PRINT *,"             L               FP               FM" 
DO L=LMI,LMA,LH 
FM(L)=FM(L)*180.0D0/PI 
FP(L)=FP(L)*180.0D0/PI 
PRINT *,L,FP(L),FM(L) 
ENDDO 
OPEN (1,FILE=BB) 
WRITE(1,*) " EL,ECM=",EL,ECM 
WRITE(1,*) "XI=(XIS+XIP),XIS,XIP=",XI,XIS,XIP 
WRITE(1,*) "            T                       SE                         ST                       XI" 
DO I=1,NT 
WRITE(1,*) TT(I),SE(I),ST(I),DS(I) 
ENDDO 
WRITE(1,*) '' 
WRITE(1,*) "           L              FP                  FM" 
DO I=LMI,LMA,LH 
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WRITE(1,*) I,FP(I),FM(I) 
ENDDO 
OPEN (1,FILE="G:\BASICA\FAZ-ANAL\p12C\FAZ.DAT") 
DO I=LMI,LMA,LH 
WRITE(1,*) FP(I),FM(I) 
ENDDO 
CLOSE(1) 
END 
 
SUBROUTINE VAR(ST,PHN,NI,XP,EP,AMIN,NV) 
!  The variation subprogramme for the minimization of a chi-square 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,NI,NT,NV,NP,LMI,LH,NN,IN,NTT,NTP 
COMMON /A1/ 
SE(0:50),DS(0:50),DE(0:50),NT,POLE(0:50),POLED(0:50),DS1(0:50),N
TP,XIS,XIP,XI1 
COMMON /A3/ POL(0:50),TT(0:100),REZ(0:50) 
COMMON /A4/ LH,LMI,NTT,NP 
COMMON/A5/ PI 
DIMENSION XPN(0:50),XP(0:50),ST(0:50) 
DO I=LMI,NP,LH 
XPN(I)=XP(I) 
ENDDO 
NN=LMI 
PH=PHN 
CALL DET(XPN,ST,ALA) 
B=ALA 
IF (NV==0) GOTO 3012 
DO IIN=1,NI 
NN=-LH 
PRINT *,'FF=',ALA,IIN 
1119  NN=NN+LH 
IN=0 
2229 A=B 
XPN(NN)=XPN(NN)+PH*XP(NN) 
IN=IN+1 
CALL DET(XPN,ST,ALA) 
B=ALA 
IF (B<A) GOTO 2229 
C=A 
XPN(NN)=XPN(NN)-PH*XP(NN) 
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IF (IN>1) GOTO 3339 
PH=-PH 
GOTO 5559 
3339 IF (ABS((C-B)/(B))<EP) GOTO 4449 
PH=PH/2.0D0 
5559 B=C 
GOTO 2229 
4449 PH=PHN 
B=C 
IF (NN<NP) GOTO 1119 
AMIN=B 
PH=PHN 
ENDDO 
3012 AMIN=B 
DO I=LMI,NP,LH 
XP(I)=XPN(I) 
ENDDO 
END 
 
SUBROUTINE DET(XP,ST,XI) 
! ******* The subroutine for chi-square calculation ********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,NT,NTP 
COMMON /A1/ SE(0:50),DS(0:50),DE(0:50),NT,POLE(0:50), 
POLED(0:50),DS1(0:50),NTP,XIS,XIP,XI1 
COMMON /A3/ POL(0:50),TT(0:100),REZ(0:50) 
DIMENSION XP(0:50),ST(0:50) 
S=0.0D0 
CALL SEC(XP,ST) 
S1=0.0D0 
DO I=1,NT 
DS(I)=((ST(I)-SE(I))/DE(I))**2 
S=S+DS(I) 
ENDDO 
XI=S/NT 
END  
 
SUBROUTINE SEC(XP,S) 
! *** The subprogramme of the calculation of the scattering cross section * 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,NT,LMI,LMA,LH,L 
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COMMON /A2/ NT,GG,SS,LMI,LMA,LH,NP 
COMMON /A3/ POL(0:50),TT(0:100),REZ(0:50) 
COMMON/A5/ PI 
DIMENSION 
S0(0:50),P(0:50),PP(0:50),FP(0:50),FM(0:50),XP(0:50),S(0:50) 
DO I=LMI,LMA,LH 
FP(I)=XP(I) 
IF (I==LMA) GOTO 111 
FM(I+1)=XP(I+LMA+LH) 
111 ENDDO 
FM(0)=FP(0) 
CALL CULFAZ(GG,S0) 
DO I=1,NT 
T=TT(I)*PI/180.0D0 
X=DCOS(T) 
A=2.0D0/(1.0D0-X) 
S00=2.0D0*S0(0) 
BB=-GG*A 
ALO=GG*DLOG(A)+S00 
REC=BB*DCOS(ALO) 
AMC=BB*DSIN(ALO) 
REZ1=REC**2+AMC**2 
REA=0.0D0 
AMA=0.0D0 
REB=0.0D0 
AMB=0.0D0 
DO L=LMI,LMA,LH 
FPP=2.0D0*FP(L) 
FMP=2.0D0*FM(L) 
AA=DCOS(FPP)-DCOS(FMP) 
BB=DSIN(FPP)-DSIN(FMP) 
SL=2.0D0*S0(L) 
CALL FUNLEG(X,L,PP) 
REB=REB+(BB*DCOS(SL)+AA*DSIN(SL))*PP(L) 
AMB=AMB+(BB*DSIN(SL)-AA*DCOS(SL))*PP(L) 
LL=2*L+1 
JJ=L+1 
AA=JJ*DCOS(FPP)+L*DCOS(FMP)-LL 
BB=JJ*DSIN(FPP)+L*DSIN(FMP) 
CALL POLLEG(X,L,P) 
REA=REA+(BB*DCOS(SL)+AA*DSIN(SL))*P(L) 
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AMA=AMA+(BB*DSIN(SL)-AA*DCOS(SL))*P(L) 
ENDDO 
REA=REC+REA 
AMA=AMC+AMA 
RE=REA**2+AMA**2 
AM=REB**2+AMB**2 
S(I)=10.0D0*(RE+AM)/4.0D0/SS**2 
REZ(I)=REZ1*10.0D0/4.0D0/SS**2 
POL(I)=2.0D0*(REB*AMA-REA*AMB)/(RE+AM) 
ENDDO 
END  
 
SUBROUTINE POLLEG(X,L,P) 
! ***** The subprogramme of calculation of the Legendre polinomials *** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L 
DIMENSION P(0:50) 
P(0)=1.0D0; P(1)=X 
DO I=2,L 
P(I)=(2*I-1)*X/I*P(I-1)-(I-1)/I*P(I-2) 
ENDDO 
END  
 
SUBROUTINE FUNLEG(X,L,P) 
! *** The subprogramme of calculation of the Legendre functions ******* 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L 
DIMENSION P(0:50) 
P(0)=0.0D0; P(1)=DSQRT(ABS(1.-X**2)); P(2)=3.0D0*X*P(1) 
IF (L>=3) THEN 
DO I=2,L 
P(I+1)=(2*I+1)*X/I*P(I)-(I+1)/I*P(I-1) 
ENDDO 
ENDIF 
END  
 
SUBROUTINE CULFAZ(G,F) 
! *** The subprogramme of calculation of the Coulomb phase shifts *** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,N 
DIMENSION F(0:50) 
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C=0.5772156650D0; S=0.0D0; N=50 
A1=1.202056903D0/3.0D0; A2=1.036927755D0/5.0D0 
DO I=1,N 
A=G/I-DATAN(G/I)-(G/I)**3/3.0D0+(G/I)**5/5.0D0 
S=S+A 
ENDDO 
FAZ=-C*G+A1*G**3-A2*G**5+S 
F(0)=FAZ 
DO I=1,20 
F(I)=F(I-1)+DATAN(G/I) 
ENDDO 
END  
 

The following control was carried out at a resonance energy of 422 keV 
(c.m.) for p12C elastic scattering, taking into account the phase shift analysis 
in only one S wave. 

 
EL, ECM, SK, SS =  4.574E-1   4.22E-1   1.87E-2   1.37E-1  

 
              e                     t                                      2

i 
10.83   409561      3256822.3428083          4.194371298676935 
21.63   266969      227766.5412064077      2.156278956304461 
32.39   58583.1     50674.784355610          1.8223143351212 
43.07   17267.6     15925.09271621951      6.044624704055184E-1 
53.66   5839.94     5640.62956376928        1.164778401875084E-1 
64.14   2414.18     2060.5610732571380    2.145515754644307 
74.5     965.24       740.3435278409627      5.428685268597148 
84.71   422.29        265.4550687576415     13.793167214162040 
94.79   217.01       120.1919175449456      19.9046247867550 
104.7   147.11       103.6791667064438      8.715893867706498 
114.5   140.23       133.5569838776437      2.264448667637590E-1 
124.15  204.09      175.8612452117759      1.913110216888019 
133.67  243.52      216.8648984979974      1.198095428652019 
143.08  253.77      251.4932553653157      8.049114108914179E-3 
152.39  267.64      278.2186995788807      1.562293138659170E-1 
161.64  288.94      296.9745596276764      7.732302205565983E-2 
170.84  292.72      308.0225110939944      2.732880319244108E-1 

2 = 3.69 
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L    p   m 
0  58.15  58.15 
 

As a result, we obtained the phase shift S value of 58.15º at a rather large 
value of 2 = 3.69. The value of the phase shifts and some other 
characteristics are shown rounded to the second sign after the comma. If we 
take into account the P wave in the analysis, then, for the scattering phase 
shifts we obtain the following control account: 
 

EL, ECM, SK, SS = 4.57E-1 4.22E-1 1.87E-2 1.37E-1 
 

              e                     t                                      2
i 

10.83   4095610   3264781.541334357       4.115148756111661 
21.63   266969     223190.0387772885       2.689114135211925 
32.39    58583.1   49592.26685532391       2.355348513821907 
43.07    17267.6   16111.41279780082       4.483243796400418E-1 
53.66     5839.94  6059.579098437353       1.414498640631696E-1 
64.14     2414.18   2415.589085838059      3.406713446204295E-5 
74.5       965.24     982.7590318182862       3.294197102373393E-2 
84.71     422.29     414.5062045985828       3.397513798561286E-2 
94.79     217.01     205.28584114367           2.918797023030877E-1 
104.71   147.11     149.1168415589131      1.860980323212324E-2 
114.5     140.23     155.8558179281346      1.241662746301032 
124.15   204.09     185.2840079884762      8.490808445689716E-1 
133.67   243.52     219.3107960699812      9.883067178217969E-1 
143.08   253.77     250.1596154521572      2.024073897229597E-2 
152.39   267.64     274.7849530022851      7.126835104038670E-2 
161.64   288.94     292.3439981186766      1.387916330759821E-2 
170.84   292.72     302.7569167687375      1.175698198093965E-1 

 
2 = 7.90E-1 

L   p   m 
0  52.13  52.13 
1  -8.97  12.82 

 
It is clear that, in assessing the phase shift analysis of the S and P 

scattering waves, the 2 value decreases from 3.69 till 0.79. 
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The following designations are used: EL is the energy of particles in the 
laboratory system; ECM is the energy of particles in the system of the center 
of mass; SK is the square of the wave number k2; SS is the wave number k; 
L is the orbital moment;  is the scattering angle; e is the experimental 
cross sections; t is the calculated cross sections; 2

i is partial 2 for angle 
i; p is a phase shift with J = L + 1/2; m is a phase shift at J = L - 1/2; and 

2 is the average value on all points. 
If we use the normal value of 41.4686 MeV fm2 for the 2/m0 constant, 

then, as seen below, the 2 value changes by approximately 10 % and with 
some phase shifts on 0.5º, which do not practically affect the results even at 
the resonance energy: 

 
2 = 8.85E-1 

              L    p   m 
0  51.63  51.63 
1  -9.40  12.87 

 
From the given results, it is clear that at 422 keV (c.m.), the S phase shift 

almost reaches the resonance value of 90º. At energies in the range of the 
resonance with a width of less than 32 keV [120], a sharp increase in the 
phase shift is observed and the energy change is approximately 1 keV, 
which can lead to a change in the phase shift to 40–50º. Let us note that the 
accuracy of determining the considered experiment comes to about 1 keV, 
and the accuracy of the determination of the energy of the resonance level 
has a value of 0.6 keV [120]. 

The scattering phase shifts found from the phase shift analysis are used 
to construct the p12C intercluster potentials, which, in turn, can be applied 
to the calculations of the astrophysical S-factors of proton radiative capture 
on 12C [2,28,122,123,125]. This process is the first thermonuclear fusion 
reaction of the CNO (carbon-nitrogen-oxygen) cycle, which is present 
during later stages of the development of stable stars with partial hydrogen 
combustion. In this process, the core of the star begins to collapse 
considerably, resulting in an increase in pressure and temperature and, along 
with a proton-proton cycle, the following chain of thermonuclear processes 
called the CNO or carbon cycle [28,122] comes into play. The CNO cycle 
is a set of three interlinked processes, or, more precisely, partially blocked 
cycles. The first and the simplest of them is the CN cycle (the Bethe cycle 
or carbon cycle), which was described by Hans Bethe and, independently, 
by Carl Friedrich von Weizsäcker in 1939 [28,122,123]. 
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2.4 Phase shift analysis of elastic p6Li scattering 

Let us consider the processes of p6Li elastic scattering at astrophysical 
energies and the phase shift analysis of the available experimental data. The 
results of such phase shift analysis are needed for the creation of the 
intercluster interaction potentials in calculating the solutions of astrophysical 
problems [158]. 

2.4.1 The differential cross sections 

Considering the scattering processes in the system of particles with spins 
1/2 and 1 without spin-orbital splitting of phase shifts, the elastic scattering 
cross section is presented in its simplest form [6] 
 

d
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where the indexes d and q belong to the doublet (with spin 1/2) and quartet 
(with spin 3/2) states of the p6Li system and the cross sections themselves 
are expressed through the scattering amplitudes, which are registered like 
the expressions for the phase shift analysis in the 4He4He system 
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where d,q d,q d,q
L L Lexp[2 ( )]S i k  is a scattering matrix in a doublet (d) or 

quartet (k) spin state [6]. 
It is possible to use the simple expressions for the calculation of elastic 

scattering cross sections because, in the range of low energies of the spin-
orbital, little splitting of the phase shifts arises and in the elastic scattering, 
there are no resonances with a certain total moment. This has been 
confirmed by the results of phase shift analysis made in [159], taken into 
account in the spin-orbit splitting of the phase shifts and which did not 
exceed a few degrees. 

2.4.2 Phase shift analysis 

The phase shift analysis of the differential cross sections and excitation 
functions for p6Li elastic scattering, without a clear accounting of the 
doublet 2P wave, was undertaken in [159]. Our phase shift analysis was 
carried out at lower energies, which are relevant to nuclear astrophysics, and 
take into account all of the lower partial waves, including the doublet 2P 
wave, based on the differential cross sections specified in [160,161,162]. 

At an energy of 500 keV, on the basis of data in [162], we found the 2S 
and 4S scattering phase shifts, and these are given in Table 2.4.1 (No. 1). 
The results of calculation of the cross sections obtained agree quite well 
with the experimental data at an average on all points of 2 = 0.15. The error 
of the differential cross sections of these data was accepted as being equal 
to 10 %. Analysis of the doublet 2P and quartet 4P phase shifts has shown 
that their numerical values are less than 0.1°. 

The following five energies were found in new measurement results of 
the differential cross sections in [160,163]. The first of them, 593.0 keV, 
gives us the opportunity to find the 2,4S phase shifts, which differ a little 
from the phase shifts for the previous energy and have the same 2; these 
are shown in Table 2.4.1 (No. 2). The phase shifts for the 2,4P waves also 
tend towards zero. 

 
Table 2.4.1. Results of phase shift analysis of p6Li elastic scattering at 
low energies. 

 

 Ep , keV 2S, deg. 4S, deg. 2P, deg. 4P, deg. 2 

1 500 176.2 178.7 – – 0.15 

2 593.0 174.2 178.8 – – 0.15 

3-1 746.4 170.1 180.0 – – 0.24 
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3-2 746.4 172.5 179.9 1.7 – 0.16 

4-1 866.8 157.8 180.0 – – 0.39 

4-2 866.8 170.2 174.9 3.9 – 0.22 

4-3 866.8 169.6 175.0 3.5 0.1 0.23 

5-1 976.5 160.0 178.5 – – 0.12 

5-2 976.5 167.0 174.5 1.1 – 0.12 

6-1 1136.3 144.9 180.0 – – 0.58 

6-2 1136.3 164.7 171.1 5.8 – 0.32 

6-3 1136.3 166.4 169.9 5.5 0.1 0.32 

 
The 2,4S phase shifts were found at an energy of 746.7 keV (Table 2.4.1, 

No. 3-1), allowing us to describe the cross sections with an accuracy 
of 2 = 0.24. Despite the smallness of the 2 value, an attempt to consider 
2,4P phase shifts was made. In the beginning, it was believed that the quartet 
4P phase shift was negligible following on from the results in [159], with an 
account only for 1.0–1.5 MeV. The results of our analysis, taking into 
account only the 2P phase shifts, are presented in Fig. 2.4.1a and Table 2.4.1 
(No. 3-2). It is clear that the value of the small doublet 2P phase shift 
increases the 2S wave value a little and reduces 2 to a value of 0.16. The 
account of the quartet 4P phase shift has given a negligible value for its 
numerical value at less than 0.1°, which corresponds to the results in [159]. 

The result of the search of phase shifts for an energy of 866.8 keV taking 
into account only the 2,4S waves is given in Table 2.4.1 (No. 4-1) and with 

2 = 0.39. The value of the 2S phase shift appears to fall sharply in 
comparison to the previous energy. The account of the 2P wave considerably 
increases its value (Fig. 2.4.1b and Table 2.4.1, No. 4-2) and reduces the 2 
value by a factor of almost two. The attempt to consider the quartet 4P phase 
shift gave results with a value of about 0.1° (Table 2.4.1, No. 4-3). 

Any change of the 4P wave on the large side, including at other values 
of other phase shifts, led to an increase in 2. At this energy, as well as at all 
other energies considered in [160,161], it is not possible to find any variant 
for a non-zero quartet phase shift at the 2 value tending towards the 
minimum. For the following energy, 976.5 keV, excluding the 2,4P waves, 
the values of the 2S and 4S phase shifts have been found, as shown in Table 
2.4.1 (No. 5-1). The subsequent account of the 2P wave considerably 
increases the values of the 2S phase shift, neglecting the 4P wave, as is made 
clear in Fig. 2.4.1c and Table 2.4.1 (No. 5-2) at 2 = 0.12. 

 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



Phase Shift Analysis 171 

40 60 80 100 120 140 160

102

103

2=0.16
2S=172.50; 4S=179.90

2P=1.70; 4P=0.00

6Li(p,p)6LiEp = 0.7467 MeV
d

/d
c.

m
., m

b/
st

cm
, deg

 
Fig. 2.4.1a. The cross sections of p6Li elastic scattering at 746.7 keV. The solid 
curve represents the calculation of the cross sections with the found phase shifts. 

 
If we include a quartet 4P wave in the analysis, then it aspires to zero at 

the reduction of the 2 value. Energy of 1.1363 MeV considered in 
[160,161], even with an account of only the 2,4S waves, leads to a rather 
small 2 equal to 0.58, as shown in Table 2.4.1 (No. 6-1). In this case, the 
account of the 2P wave leads to a noticeable increase in the value of the 2S 
phase shift and the corresponding results of the calculation of cross sections 
are shown in Fig. 2.4.1d and Table 2.4.1 (No. 6-2). The account of the 
quartet 4P wave at this energy results in a value of about 0.1°, as shown in 
Table 2.4.1 (No. 6-3).  

Thus, in the description of all experimental data from [160,161], 
accounting for the quartet 4P waves in this energy range is not necessary, 
i.e. their values are equal to or less than 0.1°. This is in agreement with the 
results in [159]; however, the doublet 2P phase shift reaches 5.5–6° and its 
value cannot be neglected. The general form of the 2S and 4S scattering phase 
shifts is shown further in Fig. 2.4.2a, while the doublet 2P phase shifts are 
given in Fig. 2.4.2b. Despite the quite wide spacing of the results for the 4S 
phase shifts, the doublet 2S phase shift has a certain tendency to decrease, 
although here much more slowly than follows from the analysis in [159]. 
Not considering the doublet 2P wave in our analysis, then for the 2S phase 
shift the results are very close to the results of the phase shift analysis 
provided in [159]. 
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Fig. 2.4.1b. The cross sections of p6Li elastic scattering at 866.8 keV. The solid 
curve represents the calculation of the cross sections with the found phase shifts. 
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Fig. 2.4.1c. The cross sections of p6Li elastic scattering at 976.5 keV. The solid 
curve represents the calculation of cross sections with the found phase shifts. 
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Fig. 2.4.1d. The cross sections of p6Li elastic scattering at 1136.3 keV. The solid 
curve represents the calculation of cross sections with the found phase shifts. 
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Fig. 2.4.2a. The doublet and quartet S phase shifts of p6Li elastic scattering at low 
energies. The doublet and quartet S phase shifts in the presence of the 2P wave, 
when the phase shift is accepted by 4P is equal to zero, are given. The 2S phase 
shift is shown by points and 4S is shown by triangles [160,161,162]. For 
comparison of open triangles and circles, we have the results of the phase shift 
analysis given in [159]. 
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Fig.2.4.2b. The doublet 2P phase shifts of p6Li elastic scattering at low energies. 
The squares describe the results of our phase shift analysis for the 2P phase shift 
at 4P = 0. 

 
The errors of elastic scattering phase shifts given in Fig. 2.4.2 and 

defined by the ambiguity of the phase shift analysis. At almost the same 2 
value, which can differ by 5–10 %, it is possible to obtain slightly different 
values for the scattering phase shifts. This ambiguity for the 2,4S and 2P 
phase shifts is estimated at the level of 1–1.5°. 

2.4.3 Program for phase shift analysis 

Below, we present the computer program in Fortran-90 to carry out the 
p6Li phase shift analysis at low energies without spin-orbital splitting of the 
phase shifts, which was used for obtaining the results described above. The 
designations of key parameters of the program are the same as in the 
previous descriptions. 
 
PROGRAM FAZ_ANAL_P6LI  
! CALCULATE OF CROSS SECTION WITH COMPLEX  
! PHASE SHIFTS FOR SYSTEM SPIN 1/2+1 WITHOUT LS 
IMPLICIT REAL(8) (A-Z) 
INTEGER 
L,LL,TMA,T,LN,LV,NV,Z1,Z2,LN1,NT,NP,NPP,NI,NYS,NNN 
REAL(8) 
SECT(0:200),FK(0:200),FD(0:200),XP(0:200),FK1(0:200),FD1(0:200),S
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0(0:200) 
COMMON REAL(8) /A/ 
PI,ET(0:200),ES(0:200),ST(0:200),SSE(0:200),TE(0:200) /R/ 
LN1,NT,P1,NP,NPP,LV1,NNN,BB /T/ 
SECE(0:200),DS(0:200),DSEC(0:200),TMA /W/ GG,SS,LN,LV,NYS 
CHARACTER(7) BB 
CHARACTER(12) AA 
CHARACTER(13) CC 
!  *************** INPUT PARAMETERS *************** 
!AA='SEC11363.DAT' 
!AA='SEC9765.DAT' 
!AA='SEC8668.DAT' 
AA='SEC7467.DAT' 
!AA='SEC495.DAT' 
!AA='SEC989.DAT' 
!AA='SEC640.DAT' 
!AA='SEC1585.DAT' 
BB='FAZ.DAT' 
!CC='SECT11363.DAT' 
!CC='SECT9765.DAT' 
!CC='SECT8668.DAT' 
CC='SECT7467.DAT' 
!CC='SECT495.DAT' 
!CC='SECT989.DAT' 
!CC='SECT640.DAT' 
!CC='SECT1585.DAT' 
!EL=1.1363D0 
!EL=0.9765D0 
!EL=0.8668D0 
!EL=0.7467D0 
EL=0.7464D0 
!EL=0.989D0 
!EL=1.585D0 
PI=4.0D0*DATAN(1.0D0) 
P1=PI 
NYS=0; ! =0 - P-6LI; =1 - 3HE-3HE 
NNN=1;! THE NUMBER BY WHICH THE STEP AT EACH 
ITERATION DECREASES 
NV=1! =0 WITHOUT THE VARIATION = 1 WITH THE VARIATION 
FH=0.0123D0;! THE INITIAL STEP 
NI=10;! THE NUMBER OF ITERATIONS 
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EPP=1.0D-010;! THE ACCURACY 
LN=0; LN1=LN  
LV=0 
LV1=LV; NPP=2*LV 
TMA=11 
NT=TMA 
AM1=1.0D0; AM2=6.0D0; Z1=1; Z2=3 
A1=41.4686D0 
PM=AM1*AM2/(AM1+AM2) 
B1=2.0D0*PM/A1 
NP=NPP+2 
! ************** PHASE SHIFTS FOR P- 6LI  ************ 
FD(0)=160.0D0 
FD(1)=5.D0 
FD(2)=1.D00    
FK(0)=179.D0  
FK(1)=3.0D0 
FK(2)=1.1D0 
OPEN (1,FILE=BB) 
DO I=LN,LV 
READ(1,*) FD(I),FK(I) 
ENDDO 
CLOSE(1) 
OPEN (1,FILE=AA) 
DO L=1,NT 
READ(1,*) TE(L),SECE(L) 
!,DSEC(L) 
PRINT *, TE(L),SECE(L),DSEC(L) 
ENDDO 
CLOSE(1) 
DO L=LN,LV 
FD(L)=FD(L)*PI/180.0D0 
FK(L)=FK(L)*PI/180.0D0 
ET(L)=1.0D0 
ES(L)=1.0D0 
ENDDO 
FH=FH*PI/180.0D0 
!DO L=LN,LV 
!XP(L)=FD(L) 
!XP(L+LV+1)=FK(L) 
!ENDDO 
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DO I=LN,LV 
XP(2*I)=FD(I) 
XP(2*I+1)=FK(I) 
ENDDO 
!   *********** TRANSFORM TO C.M. ****************** 
ECM=EL*PM/AM1 
! ********  TOTAL CROSS SECTION  ****************** 
SK=ECM*B1 
SS=DSQRT(SK) 
GG=3.44476D-002*Z1*Z2*PM/SS 
CALL CULFAZ(GG,S0) 
DO I=1,NT 
TT=TE(I)*PI/180.0D0 
S00=2.0D0*S0(0) 
X=DCOS(TT) 
A=2.0D0/(1.0D0-X) 
BBB=-GG*A 
ALO=GG*DLOG(A)+S00 
RECUL=BBB*DCOS(ALO) 
AIMCUL=BBB*DSIN(ALO) 
CUL=RECUL**2+AIMCUL**2 
SCUL=CUL*10.0D0/4.0D0/SS**2 
!SECE(I)=SECE(I)*SCUL 
DSEC(I)=SECE(I)*0.1 
!DSEC(I)=DSEC(I)*SCUL 
ENDDO 
SIGS=0.0D0; SIGT=0.0D0 
DO LL=LN,LV 
FK11=FK(LL) 
FD11=FD(LL) 
SIGS=SIGS+(2.0D0*LL+1.0D0)*DSIN(FK11)**2 
SIGT=SIGT+(2.0D0*LL+1.0D0)*DSIN(FD11)**2 
ENDDO 
SIGS=10.0D0*4.0D0*PI*SIGS/SK 
SIGT=10.0D0*4.0D0*PI*SIGT/SK 
SIG=1.0D0/4.0D0*SIGS+3.0D0/4.0D0*SIGT 
PRINT *,"                        SIGMS-TOT=",SIG 
! **********  DIFFERENTIAL CROSS SECTION  ********** 
CALL VAR(SECT,FH,NI,XP,EPP,XI,NV) 
PRINT *,'      T        SE         ST         XI' 
DO T=1,TMA 
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WRITE(*,1) TE(T),SECE(T),SECT(T),DS(T) 
ENDDO 
1 FORMAT(1X,F8.3,3E15) 
PRINT *,'   FD         FK' 
DO L=LN,LV 
!FD(L)=XP(L)*180.0D0/PI 
!FK(L)=XP(L+LV+1)*180.0D0/PI 
FD(L)=XP(2*L)*180.0D0/PI 
FK(L)=XP(2*L+1)*180.0D0/PI 
IF (FD(L)<+0.0D0) THEN 
FD1(L)=FD(L)+180.0D0 
ELSE 
FD1(L)=FD(L) 
ENDIF 
IF (FK(L)<+0.0D0) THEN 
FK1(L)=FK(L)+180.0D0 
ELSE 
FK1(L)=FK(L) 
ENDIF 
WRITE(*,3) FD1(L),FK1(L) 
ENDDO 
WRITE(*,5) XI 
5 FORMAT(F15) 
OPEN (1,FILE=CC) 
WRITE(1,*)"       EL        ECM        XI" 
WRITE(1,4) EL,ECM,XI 
WRITE(1,*) "    T              SE               DS               ST               XI" 
DO I=1,NT 
WRITE(1,6)TE(I),SECE(I),DSEC(I),SECT(I),DS(I) 
ENDDO 
WRITE(1,*) "     FD            FK" 
DO I=LN,LV 
WRITE(1,3)FD1(I),FK1(I) 
ENDDO 
CLOSE(1) 
OPEN (1,FILE=BB) 
DO I=LN,LV 
WRITE(1,3)FD(I),FK(I) 
ENDDO 
CLOSE(1) 
6 FORMAT(1X,F8.3,4E15) 
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4 FORMAT(3F10.5) 
2 FORMAT(4F10.5) 
3 FORMAT(2F10.5) 
END  
 
SUBROUTINE VAR(ST,PHN,NI,XP,EP,AMIN,NV) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,LMI,NV,NI,NPP,NT,IIN,NN,NP,IN,KK,NNN 
REAL(8) XPN(0:50),XP(0:50),ST(0:50),FD(0:50),FK(0:50) 
COMMON REAL(8) /R/ LMI,NT,PI,NP,NPP,LV,NNN,BB 
CHARACTER(7) BB 
! *************************************************** 
!BB='FAZ.DAT' 
DO I=LMI,NP 
XPN(I)=XP(I) 
ENDDO 
CALL DET(XPN,ST,B) 
IF (NV==0) GOTO 3013 
! -------------------------------------------------------------------- 
KK=1 
DO IIN=1,NI 
PH=PHN/KK 
NN=-1 
1119  NN=NN+1 
IN=0 
2229 A=B 
XPN(NN)=XPN(NN)+PH*XPN(NN) 
IF (XPN(NN)>PI)GOTO 1118 
IF (NN>NPP+2) THEN 
IF (XPN(NN)<0.0D0) GOTO 1118 
ELSE 
IN=IN+1 
ENDIF 
! -------------------------------------------------------------------- 
CALL DET(XPN,ST,B) 
IF (B<A) GOTO 2229 
1118 XPN(NN)=XPN(NN)-PH*XPN(NN) 
IF (XPN(NN)>PI .AND. NN/=0 .AND. NN/=1)THEN 
XPN(NN)=XPN(NN)-PI 
ENDIF 
PRINT *,'1=',B,NN,XPN(NN)*180.0/PI 
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IF (IN>1) THEN 
IF (ABS(B-A)<EP .OR. ABS(PH*XPN(NN))<EP) GOTO 4449 
PH=PH/2.0D0 
ELSE 
PH=-PH/2.0D0 
ENDIF 
GOTO 2229 
! -------------------------------------------------------------------- 
4449 IF (NN+1<NP) THEN 
PH=PHN 
!/KK 
GOTO 1119 
ENDIF 
PRINT *,'---------------------------------------------------------' 
PRINT*, 'B=',B,IIN,PHN/KK/PI*180 
PRINT *,'---------------------------------------------------------' 
DO L=LMI,LV 
FD(L)=XPN(2*L)*180.0D0/PI 
FK(L)=XPN(2*L+1)*180.0D0/PI 
ENDDO 
OPEN (5,FILE=BB) 
DO I=LMI,LV 
WRITE(5,3)FD(I),FK(I) 
ENDDO 
CLOSE(5) 
KK=NNN*KK 
ENDDO 
3013 AMIN=B 
DO I=LMI,NP 
XP(I)=XPN(I) 
3 FORMAT(2F10.5) 
ENDDO 
END  
 
SUBROUTINE DET(XP,ST,XI) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,NT 
REAL(8) XP(0:50),ST(0:50) 
COMMON REAL(8) /T/ SECE(0:200),DS(0:200),DSEC(0:200),NT 
S=0.0D0 
CALL SEC(XP,ST) 
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DO I=1,NT 
DS(I)=((ST(I)-SECE(I))/DSEC(I))**2 
S=S+DS(I) 
ENDDO 
XI=S/NT 
END  
 
SUBROUTINE SEC(XP,ST) 
IMPLICIT REAL(8) (A-Z) 
INTEGER TT,L,TMA,LMA,LMI,NYS 
REAL(8) S0(0:20),P(0:20),ST(0:200),FK(0:200),FD(0:200),XP(0:200) 
COMMON REAL(8) /A/ 
PI,ET(0:200),ES(0:200),SKS(0:200),SDS(0:200),TE(0:200) /T/ 
SE(0:200),DS(0:200),DE(0:200),TMA /W/ GG,SS,LMI,LMA,NYS 
RECUL1=0.0D0; AIMCUL1=0.0D0 
DO L=LMI,LMA 
!FD(L)=XP(L) 
!FK(L)=XP(L+LMA+1) 
FD(L)=XP(2*L) 
FK(L)=XP(2*L+1) 
ENDDO 
CALL CULFAZ(GG,S0) 
DO TT=1,TMA 
T=TE(TT)*PI/180.0D0 
S00=2.0D0*S0(0) 
X=DCOS(T) 
A=2.0D0/(1.0D0-X) 
BB=-GG*A 
ALO=GG*DLOG(A)+S00 
RECUL=BB*DCOS(ALO) 
AIMCUL=BB*DSIN(ALO) 
IF (NYS==0) GOTO 555 
X1=DCOS(T) 
A1=2.0D0/(1.0D0+X1) 
BB1=-GG*A1 
ALO1=GG*DLOG(A1)+S00 
RECUL1=BB1*DCOS(ALO1) 
AIMCUL1=BB1*DSIN(ALO1) 
555 RET=0.0D0; AIT=0.0D0; RES=0.0D0; AIS=0.0D0 
DO L=LMI,LMA 
AL=ET(L)*DCOS(2.0D0*FK(L))-1.0D0 
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BE=ET(L)*DSIN(2.0D0*FK(L)) 
LL=2.0D0*L+1.0D0 
SL=2.0D0*S0(L) 
CALL POLLEG(X,L,P) 
RET=RET+LL*(BE*DCOS(SL)+AL*DSIN(SL))*P(L) 
AIT=AIT+LL*(BE*DSIN(SL)-AL*DCOS(SL))*P(L) 
AL=ES(L)*DCOS(2.0D0*FD(L))-1.0D0 
BE=ES(L)*DSIN(2.0D0*FD(L)) 
RES=RES+LL*(BE*DCOS(SL)+AL*DSIN(SL))*P(L) 
AIS=AIS+LL*(BE*DSIN(SL)-AL*DCOS(SL))*P(L) 
ENDDO 
IF (NYS==0) GOTO 556 
AIT=2.0D0*AIT 
RET=2.0D0*RET 
AIS=2.0D0*AIS 
RES=2.0D0*RES 
556 RETR=RECUL+RECUL1+RET 
AITR=AIMCUL+AIMCUL1+AIT 
RESI=RECUL+RECUL1+RES 
AISI=AIMCUL+AIMCUL1+AIS 
CUL=RECUL**2+AIMCUL**2 
SCUL=CUL*10.0D0/4.0D0/SS**2 
SKS(TT)=10.0D0*(RETR**2+AITR**2)/4.0D0/SS**2 
SDS(TT)=10.0D0*(RESI**2+AISI**2)/4.0D0/SS**2 
ST(TT)=(2.0D0/6.0D0*SDS(TT)+4.0D0/6.0D0*SKS(TT)) 
!/SCUL 
ENDDO 
END  
 
SUBROUTINE POLLEG(X,L,P) 
IMPLICIT REAL(8) (A-Z) 
INTEGER L,I 
REAL(8) P(0:20) 
P(0)=1.0D0; P(1)=X 
DO I=2,L 
P(I)=(2*I-1)*X/I*P(I-1)-(I-1)/I*P(I-2) 
!P(I)=(2.0D0*I-1.0D0)*X/(1.0D0*I)*P(I-1)-(1.0D0*I-
1.0D0)/(1.0D0*I)*P(I-2) 
ENDDO 
END  
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SUBROUTINE CULFAZ(G,F) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,N,J 
REAL(8) F(0:20) 
C=0.577215665D0; S=0.0D0; N=1000 
A1=1.2020569030D0/3.0D0; A2=1.0369277550D0/5.0D0 
DO I=1,N 
A=G/(1.0D0*I)-DATAN(G/(1.0D0*I))-
(G/(1.0D0*I))**3/3.0D0+(G/(1.0D0*I))**5/5.0D0 
S=S+A 
ENDDO 
FAZ=-C*G+A1*G**3-A2*G**5+S; F(0)=FAZ 
DO J=1,10 
F(J)=F(J-1)+DATAN(G/(J*1.0D0)) 
ENDDO 
END  
 

Below, we execute some control accounts in this program to search for 
the scattering phase shifts at an energy of 746.4 keV in c.m. (in Table 2.4.1, 
this is variant 3) taking into account S in the beginning and then S and P of 
the partial waves. The first of the control accounts, which was carried out 
only for a zero partial wave, gives the following results. 

 
                    e                  t                   2

i 
  46.150  .12221E+04  .12206E+04  .14291E-03 
  57.340  .53259E+03  .56204E+03  .30591E+00 
  68.300  .33140E+03  .31229E+03  .33259E+00 
  79.020  .17700E+03  .19794E+03  .13992E+01 
 109.450  .81443E+02  .83291E+02  .51460E-01 
 128.310  .57902E+02  .60517E+02  .20406E+00 
 137.350  .54128E+02  .54215E+02  .25420E-03 
 146.160  .50402E+02  .49847E+02  .12139E-01 
 154.800  .49110E+02  .46852E+02  .21136E+00 
 163.290  .46213E+02  .44907E+02  .79861E-01 
 171.680  .43990E+02  .43811E+02  .16535E-02 

 

d k 
170.08 179.99 

2 = 0.236 
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In this control account, the phase shifts and 2 obtained coincide with 
the results given above in Table 2.4.1 (No. 3-1). The following designations 
are accepted:  is the scattering angle; e is the experimental cross section; 

t is the calculated cross sections; 2
i is partial 2 for the i angle; d is the 

doublet phase shift; k is the quartet phase shift; and 2 is the average value 
on all experimental points. 

For the account of two partial waves in the phase shift analysis, we have 
 

                    e                  t                   2
i 

  46.150  .12221E+04  .11875E+04  .80049E-01 
  57.340  .53259E+03  .54118E+03  .26020E-01 
  68.300  .33140E+03  .29882E+03  .96658E+00 
  79.020  .17700E+03  .18906E+03  .46396E+00 
 109.450  .81443E+02  .80736E+02  .75339E-02 
 128.310  .57902E+02  .59753E+02  .10226E+00 
 137.350  .54128E+02  .54042E+02  .25495E-03 
 146.160  .50402E+02  .50126E+02  .29924E-02 
 154.800  .49110E+02  .47469E+02  .11164E+00 
 163.290  .46213E+02  .45758E+02  .97024E-02 
 171.680  .43990E+02  .44800E+02  .33889E-01 

 

d k 
172.49 179.93 
1.67 0.00 

2 = 0.164 
 

In this version of the account, the results coincide with the data given 
above in Table 2.4.1 (No. 3-2) [163]. The phase shifts of elastic scattering 
presented here were used for the creation of intercluster potentials [163] and 
calculation of the astrophysical S-factor of radiative proton capture on 6Li 
[129,158,161]. 

2.5 Phase shift analysis and computer programs for 
scattering of non-identical particles with 1/2+1/2 spin 

Let us consider some methods and computer programs in Fortran-90 for 
the phase shift analysis of processes of elastic scattering of non-identical 
particles with half-integer spin 1/2 + 1/2; for example, elastic scattering of 
N3He, N3H, or p13C etc. 
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2.5.1 System with spin-orbital interaction 

The expressions used here for the differential cross sections, on the basis 
of which the program was written, are given in [10], together with similar 
programs in BASIC and for a triplet spin state considering only the spin-
orbital splitting of the scattering phase shifts 
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Here, the  value for each state with the total moment of J = L  1 ( + 

and -) and J = L ( 0) is determined.  
For the scattering in the singlet spin state, we have the expression for the 

differential cross section 
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Here, the designations of the variables are the same as for 4He4He 

scattering. The summarized cross section of the elastic scattering can now 
be defined in the form 
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4 4

d dd
d d d

. 

 
Let us present the computer program for the investigation of scattering 

phase shifts in the system of non-identical particles with half-integer spin, 
namely, p3He. This program considers the spin-orbital splitting of the 
scattering phase shifts, but does not take into account singlet-triplet mixing, 
which will be included in the next cross section. 

 
PROGRAM FAZOVIY_ANALIZ_p3He_WITH_LS 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L,Z1,Z2,LMI,LH,LMA,LN,LV,NV,NI,NPP,NT,NTT,NP 
DIMENSION ST(0:50),FT(0:50),XP(0:50) 
COMMON /A/ LH,LMI,NT,PI,NP,NPP 
COMMON /B/ SE(0:50),DS(0:50),DE(0:50),NTT 
COMMON /C/ SS,GG,LN,LV,POL(0:50),TT(0:50) 
COMMON /D/  FP(0:50),FPI(0:50),EP(0:50),F0(0:50),F0I(0:50), 
E0(0:50),M(0:50),FMI(0:50),EM(0:50),FS(0:50),FSI(0:50), ES(0:50) 
CHARACTER(9) BB 
CHARACTER(7) AA 
CHARACTER(15) CC 
!  ********* INPUT PARAMETERS ********************* 
AA='SEC.DAT' 
BB='FAZLS.DAT' 
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PI=4.0D0*DATAN(1.0D0) 
P1=PI 
Z1=1! The p charge 
Z2=2! The 3He charge  
AM1=1.0D0! The p weight 
AM2=3.0D0! The 3He mass 
AM=AM1+AM2 
A1=41.46860D0 
PM=AM1*AM2/(AM1+AM2) 
B1=2.0D0*PM/A1 
LMI=0! The initial orbital moment 
LH=1! A step by the moment 
LMA=2! The maximum moment 
LN=LMI  
LV=LMA 
EPP=1.0D-005 
NV=1! If 1 then to vary the phase shifts if 0 – without variation 
FH=0.01D0 
NI=5! The number of iterations 
NPP=2*LMA 
! ****** EXPERIMENTAL CROSS SECTION 11.48 ******* 
NT=17! The number of the experimental points 
NTT=NT 
! ************ FOR P-3HE ON E=11.48 ****************** 
OPEN (1,FILE=AA) 
DO L=1,NT 
READ(1,*) TT(L),SE(L) 
ENDDO 
CLOSE(1) 
OPEN (1,FILE=BB) 
DO I=LN,LV 
READ(1,*) FP(I),F0(I),FM(I),FS(I) 
ENDDO 
CLOSE(1) 
! ******* TRANSFORM TO RADIANS ******************* 
DO L=LN,LV,LH 
FM(L)=FM(L)*PI/180.0D0 
FP(L)=FP(L)*PI/180.0D0 
F0(L)=F0(L)*PI/180.0D0 
FMI(L)=FMI(L)*PI/180.0D0 
FPI(L)=FPI(L)*PI/180.0D0 
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F0I(L)=F0I(L)*PI/180.0D0 
FT(L)=FT(L)*PI/180.0D0 
FS(L)=FS(L)*PI/180.0D0 
FSI(L)=FSI(L)*PI/180.0D0 
EP(L)=DEXP(-2.0D0*FPI(L)) 
EM(L)=DEXP(-2.0D0*FMI(L)) 
E0(L)=DEXP(-2.0D0*F0I(L)) 
ES(L)=DEXP(-2.0D0*FSI(L)) 
ENDDO 
! *************************************************** 
FH=FH*PI/180.0D0 
NP=2*NPP+1 
DO I=LMI,LMA,LH 
XP(I)=FP(I) 
ENDDO 
DO I=LMI,LMA-1,LH 
XP(I+LMA+1)=F0(I+1) 
ENDDO 
DO I=LMI,LMA-1,LH 
XP(I+2*LMA+1)=FM(I+1) 
ENDDO 
DO I=LMI,LMA,LH 
XP(I+3*LMA+1)=FS(I) 
ENDDO 
DO I=LMI,LMA,LH 
XP(I+4*LMA+2)=FPI(I) 
ENDDO 
DO I=LMI,LMA-1,LH 
XP(I+5*LMA+3)=F0I(I+1) 
ENDDO 
DO I=LMI,LMA-1,LH 
XP(I+6*LMA+3)=FMI(I+1) 
ENDDO 
DO I=LMI,LMA,LH 
XP(I+7*LMA+3)=FSI(I) 
ENDDO 
!   ********** TRANSFORM TO C.M. ******************* 
EL=11.48D0 
CC='SECTLS.DAT' 
EC=EL*PM/AM1 
SK=EC*B1 
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SS=DSQRT(SK) 
GG=3.44476D-002*Z1*Z2*PM/SS 
CALL VAR(ST,FH,NI,XP,EPP,XI,NV) 
PRINT *,"                        XI-KV=",XI 
! ********* TOTAL CROSS SECTION ****************** 
DO I=LMI,LMA,LH 
FP(I)=XP(I) 
ENDDO 
DO I=LMI,LMA-1,LH 
F0(I+1)=XP(I+LMA+1) 
ENDDO 
DO I=LMI,LMA-1,LH 
FM(I+1)=XP(I+2*LMA+1) 
ENDDO 
DO I=LMI,LMA,LH 
FS(I)=XP(I+3*LMA+1) 
ENDDO 
F0(0)=FP(0); FM(0)=FP(0) 
DO I=LMI,LMA,LH 
FPI(I)=XP(I+4*LMA+2) 
ENDDO 
DO I=LMI,LMA-1,LH 
F0I(I+1)=XP(I+5*LMA+3) 
ENDDO 
DO I=LMI,LMA-1,LH 
FMI(I+1)=XP(I+6*LMA+3) 
ENDDO 
DO I=LMI,LMA,LH 
FSI(I)=XP(I+7*LMA+3) 
ENDDO 
F0I(0)=FPI(0); FMI(0)=FPI(0) 
DO L=LN,LV,LH 
EP(L)=DEXP(-2.0D0*FPI(L)) 
EM(L)=DEXP(-2.0D0*FMI(L)) 
E0(L)=DEXP(-2.0D0*F0I(L)) 
ES(L)=DEXP(-2.0D0*FSI(L)) 
ENDDO 
SRT=0.0D0; SRS=0.0D0;   SST=0.0D0;  SSS=0.0D0 
DO L=LN,LV,LH 
AP=FP(L) 
AM=FM(L) 
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A0=F0(L) 
ASS=FS(L) 
L1=2*L+3 
L2=2*L+1 
L3=2*L-1 
SRT=SRT+L1*(1.0D0-EP(L)**2)+L2*(1.0D0-E0(L)**2)+L3*(1.0D0-
EM(L)**2) 
SRS=SRS+L2*(1.0D0-ES(L)**2) 
SST=SST+L1*EP(L)**2*DSIN(AP)**2+L2*E0(L)**2*DSIN(A0)**2+L
3*EM(L)**2*DSIN(AM)**2 
SSS=SSS+L2*ES(L)**2*DSIN(ASS)**2 
ENDDO 
SRT=10.0D0*PI*SRT/SK/3.0D0 
SRS=10.0D0*PI*SRS/SK 
SIGR=1.0D0/4.0D0*SRS+3.0D0/4.0D0*SRT 
SST=10.0D0*4.0D0*PI*SST/SK/3.0D0 
SSS=10.0D0*4.0D0*PI*SSS/SK 
SIGS=1.0D0/4.0D0*SSS+3.0D0/4.0D0*SST 
!PRINT *,"                        SIGMS-TOT=",SIGS 
PRINT *,"     T      SE          ST           XI" 
DO I=1,NT 
WRITE(*,2)TT(I),SE(I),ST(I),DS(I) 
ENDDO 
PRINT *,'    FP       F0       FM      FS' 
DO L=LMI,LMA,LH 
FM(L)=FM(L)*180.0D0/PI 
FP(L)=FP(L)*180.0D0/PI 
FMI(L)=FMI(L)*180.0D0/PI 
FPI(L)=FPI(L)*180.0D0/PI 
F0(L)=F0(L)*180.0D0/PI 
F0I(L)=F0I(L)*180.0D0/PI 
FS(L)=FS(L)*180.0D0/PI 
FSI(L)=FSI(L)*180.0D0/PI 
WRITE(*,2) FP(L),F0(L),FM(L),FS(L) 
ENDDO 
OPEN (1,FILE=CC) 
WRITE(1,*)"       EL        ECM        XI" 
WRITE(1,4) EL,EC,XI 
WRITE(1,*) "    T              SE               ST               XI" 
DO I=1,NT 
WRITE(1,2) TT(I),SE(I),ST(I),DS(I) 
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ENDDO 
WRITE(1,*) "     FP(L)    F0(L)    FM(L)    FS(L)" 
DO L=LN,LV 
WRITE(1,2) FP(L),F0(L),FM(L),FS(L) 
ENDDO 
CLOSE(1) 
OPEN (1,FILE=BB) 
DO L=LN,LV 
WRITE(1,3) FP(L),F0(L),FM(L),FS(L) 
ENDDO 
CLOSE(1) 
4 FORMAT(1x,3F10.3) 
2 FORMAT(1x,4F10.3) 
3 FORMAT(1x,4F14.7) 
END 
 
SUBROUTINE VAR(ST,PHN,NI,XP,EP,AMIN,NV) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,LMI,LH,NV,NI,NPP,NT,IIN,NN,NP 
DIMENSION XPN(0:50),XP(0:50),ST(0:50) 
COMMON /A/ LH,LMI,NT,PI,NP,NPP 
! ************ THE SEARCH OF THE PHASE SHIFTS ******** 
DO I=LMI,NP,LH 
XPN(I)=XP(I) 
ENDDO 
NN=LMI 
PRINT *,NN,XPN(NN)*180.0D0/PI 
PH=PHN 
CALL DET(XPN,ST,ALA) 
B=ALA 
IF (NV==0) GOTO 3013 
PRINT *,ALA 
DO IIN=1,NI 
NN=-LH 
PRINT *,ALA,IIN 
GOTO 1119 
1159 XPN(NN)=XPN(NN)-PH*XP(NN) 
1119  NN=NN+LH 
IN=0 
2229 A=B 
XPN(NN)=XPN(NN)+PH*XP(NN) 
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IF (NP==2*NPP+1) GOTO 7777 
IF (NN<(NP/2)) GOTO 7777 
IF (XPN(NN)<0) GOTO 1159 
7777 IN=IN+1 
CALL DET(XPN,ST,ALA) 
B=ALA 
GOTO 5678 
5678 CONTINUE 
IF (B<A) GOTO 2229 
C=A 
XPN(NN)=XPN(NN)-PH*XP(NN) 
IF (IN>1) GOTO 3339 
PH=-PH 
GOTO 5559 
3339 IF (ABS((C-B)/(B))<EP) GOTO 4449 
PH=PH/2 
5559 B=C 
GOTO 2229 
4449 PH=PHN 
B=C 
IF (NN<NP) GOTO 1119 
AMIN=B 
PH=PHN 
ENDDO 
3013 AMIN=B 
DO I=LMI,NP,LH 
XP(I)=XPN(I) 
ENDDO 
END  
 
SUBROUTINE DET(XP,ST,XI) 
! ****************** THE DETERMINANT **************** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,NT 
DIMENSION XP(0:50),ST(0:50) 
COMMON /B/ SE(0:50),DS(0:50),DE(0:50),NT 
S=0.0D0 
CALL SEC(XP,ST) 
DO I=1,NT 
DS(I)=((ST(I)-SE(I)))**2/(0.025*SE(I))**2 
S=S+DS(I) 
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ENDDO 
XI=S/NT 
END  
 
SUBROUTINE SEC(XP,ST) 
! *************** THE CROSS SECTION ***************** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L,II,LH,LN,LV,NP,NPP,LMI,NT 
COMMON /D/ 
FP(0:50),FPI(0:50),EP(0:50),F0(0:50),F0I(0:50),E0(0:50),FM(0:50),FMI(
0:50),EM(0:50),FS(0:50),FSI(0:50),ES(0:50) 
COMMON /C/ SS,GG,LN,LV,POL(0:50),TT(0:50) 
COMMON /A/ LH,LMI,NT,PI,NP,NPP 
DIMENSION S0(0:50),P(0:50),P1(0:50),P2(0:50),ST(0:50),XP(0:50) 
DO I=LN,LV,LH 
FP(I)=XP(I) 
ENDDO 
DO I=LN,LV-1,LH 
II=I+LV+1 
F0(I+1)=XP(II) 
ENDDO 
DO I=LN,LV-1,LH 
II=I+2*LV+1 
FM(I+1)=XP(II) 
ENDDO 
DO I=LN,LV,LH 
II=I+3*LV+1 
FS(I)=XP(II) 
ENDDO 
F0(0)=FP(0); FM(0)=FP(0) 
DO I=LN,LV,LH 
II=I+4*LV+2 
FPI(I)=XP(II) 
ENDDO 
DO I=LN,LV-1,LH 
II=I+5*LV+3 
F0I(I+1)=XP(II) 
ENDDO 
DO I=LN,LV-1,LH 
II=I+6*LV+3 
FMI(I+1)=XP(II) 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



II 
 

194

ENDDO 
DO I=LN,LV,LH 
II=I+7*LV+3 
FSI(I)=XP(II) 
ENDDO 
F0I(0)=FPI(0); FMI(0)=FPI(0) 
DO L=LN,LV,LH 
 EP(L)=DEXP(-2.0D0*FPI(L)) 
EM(L)=DEXP(-2.0D0*FMI(L)) 
E0(L)=DEXP(-2.0D0*F0I(L)) 
ES(L)=DEXP(-2.0D0*FSI(L)) 
ENDDO 
CALL CULFAZ(GG,S0) 
DO I=1,NT 
T=TT(I)*PI/180.0D0 
X=DCOS(T) 
CALL CULAMP(X,GG,S0,RECUL,AMCUL) 
CALL POLLEG(X,LV,P) 
CALL FUNLEG1(X,LV,P1) 
CALL FUNLEG2(X,LV,P2) 
RES=0.0D0;  AMS=0.0D0; REA=0.0D0; AMA=0.0D0; REB=0.0D0; 
AMB=0.0D0 
REC=0.0D0; AMC=0.0D0; RED=0.0D0; AMD=0.0D0; REE=0.0D0; 
AME=0.0D0 
DO L=LN,LV,LH 
FP1=2.0D0*FP(L); FM1=2.0D0*FM(L); F01=2.0D0*F0(L) 
SL=2.0D0*S0(L); C=DCOS(SL); S=DSIN(SL); FS1=2.0D0*FS(L) 
AL1P=EP(L)*DCOS(FP1)-1.0D0 
AL2P=EP(L)*DSIN(FP1) 
AL1M=EM(L)*DCOS(FM1)-1.0D0 
AL2M=EM(L)*DSIN(FM1) 
AL10=E0(L)*DCOS(F01)-1.0D0 
AL20=E0(L)*DSIN(F01) 
A1=(L+1)*AL1P+L*AL1M 
A2=(L+1)*AL2P+L*AL2M 
REA=REA+(A2*C+A1*S)*P(L) 
AMA=AMA+(A2*S-A1*C)*P(L) 
B1=(L+2)*AL1P+(2*L+1)*AL10+(L-1)*AL1M 
B2=(L+2)*AL2P+(2*L+1)*AL20+(L-1)*AL2M 
REB=REB+(B2*C+B1*S)*P(L)/2.0D0 
AMB=AMB+(B2*S-B1*C)*P(L)/2.0D0 
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IF (L<1) GOTO 2111 
C1=AL1P-AL1M 
C2=AL2P-AL2M 
CC1=1.0D0/(DSQRT(2.0D0)) 
REC=REC+(C2*C+C1*S)*P1(L)*CC1 
AMC=AMC+(C2*S-C1*C)*P1(L)*CC1 
DD1=1.0D0/(DSQRT(2.0D0)*L*(L+1)) 
D1=L*(L+2)*AL1P-(2*L+1)*AL10-(L**2-1)*AL1M 
D2=L*(L+2)*AL2P-(2*L+1)*AL20-(L**2-1)*AL2M 
RED=RED+(D2*C+D1*S)*P1(L)*DD1 
AMD=AMD+(D2*S-D1*C)*P1(L)*DD1 
2111 IF (L<2) GOTO 2222 
EE1=1.0D0/(2*L*(L+1)) 
E1=L*AL1P-(2*L+1)*AL10+(L+1)*AL1M 
E2=L*AL2P-(2*L+1)*AL20+(L+1)*AL2M 
REE=REE+(E2*C+E1*S)*P2(L)*EE1 
AME=AME+(E2*S-E1*C)*P2(L)*EE1 
2222 ENDDO 
RES=0.0D0;  AMS=0.0D0 
DO L=LN,LV,LH 
SL=2.0D0*S0(L) 
C=DCOS(SL) 
S=DSIN(SL) 
FS1=2.0D0*FS(L) 
ALS=ES(L)*DCOS(FS1)-1.0D0 
BS=ES(L)*DSIN(FS1) 
RES=RES+(2*L+1)*(BS*C+ALS*S)*P(L) 
AMS=AMS+(2*L+1)*(BS*S-ALS*C)*P(L) 
ENDDO 
9191 CONTINUE 
RES=RECUL+RES 
AMS=AMCUL+AMS 
SES=10.0D0*(RES**2+AMS**2)/4.0D0/SS**2 
REA=RECUL+REA 
AMA=AMCUL+AMA 
REB=RECUL+REB 
AMB=AMCUL+AMB 
AA=REA**2+AMA**2 
BB=REB**2+AMB**2 
CC=REC**2+AMC**2 
DD=RED**2+AMD**2 
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EE=REE**2+AME**2 
SET=10.0D0*(AA+2*(BB+CC+DD+EE))/4.0D0/SS**2/3.0D0 
S=3.0D0/4.0D0*SET+1.0D0/4.0D0*SES 
ST(I)=S 
ENDDO 
END  
 
SUBROUTINE CULAMP(X,GG,S0,RECUL,AMCUL) 
! ********* THE COULOMB AMPLITUDE *********** 
IMPLICIT REAL(8) (A-Z) 
DIMENSION S0(0:20) 
A=2.0D0/(1.0D0-X)  
S00=2.0D0*S0(0) 
BB=-GG*A  
AL=GG*DLOG(A)+S00 
RECUL=BB*DCOS(AL) 
AMCUL=BB*DSIN(AL) 
END  
 
SUBROUTINE POLLEG(X,L,P) 
! ****************** THE LEGENDRE POLYNOMIALS ********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L 
DIMENSION P(0:20) 
P(0)=1.0D0  
P(1)=X 
DO I=2,L 
P(I)=(2.0D0*I-1.0D0)*X/I*P(I-1)-(I-1.0D0)/I*P(I-2) 
ENDDO 
END 
 
SUBROUTINE FUNLEG1(X,L,P) 
! ****************** LEGENDRE POLYNOMIALS ********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L 
DIMENSION P(0:20) 
P(0)=0.0D0  
P(1)=DSQRT(ABS(1.0D0-X**2)) 
DO I=2,L 
P(I)=(2.0D0*I-1.0D0)*X/(I-1.0D0)*P(I-1)-I/(I-1.0D0)*P(I-2) 
ENDDO 
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END  
 
SUBROUTINE FUNLEG2(X,L,P) 
! ****************** THE LEGENDRE'S FUNCTION ********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER L 
DIMENSION P(0:20) 
P(0)=0.0D0  
P(1)=0.0D0  
P(2)=3.0D0*ABS(1.0D0-X**2) 
DO I=3,L 
P(I)=(2.0D0*I-1.0D0)*X/(I-2.0D0)*P(I-1)-(I+1.0D0)/(I-2.0D0)*P(I-2) 
ENDDO 
END  
 
SUBROUTINE CULFAZ(G,F) 
! ****************** THE COULOMB PHASE SHIFTS ********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,N 
DIMENSION F(0:20) 
C=0.577215665D0  
S=0.D0  
N=50 
A1=1.202056903D0/3.D0  
A2=1.036927755D0/5.D0 
DO I=1,N 
A=G/I-DATAN(G/I)-(G/I)**3/3.D0+(G/I)**5/5.D0 
S=S+A 
ENDDO 
FAZ=-C*G+A1*G**3-A2*G**5+S 
F(0)=FAZ 
DO I=1,20 
F(I)=F(I-1)+DATAN(G/I) 
ENDDO 
END 
 

Here, we give the results of the control account using this program for 
the case of p3He elastic scattering at an energy of 11.48 MeV, taking into 
account singlet-triplet mixing for 2 at a value of 0.45, which was obtained 
in [164,165]. The differential cross sections, their errors, and the scattering 
phase shifts obtained in the phase shift analysis, which we use for the control 
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calculations, i.e. we consider the cross sections and 2 obtained in [164,165] 
phase shifts, are expressed in tabular form in these works. 

In listing these results, the following designations are used:  is the 
scattering angle; e is the experimental cross sections; t is the calculated 
cross sections; 2

i is partial 2 for i angle ; 2 is the average 2 value; m is 
the triplet phase shift with J = L - 1; 0 is the phase shift at J = L; p is the 
phase shift at J = L + 1; and s is the singlet scattering phase shift. 

In the first line below, the phase shifts correspond to the orbital moment 
L = 0, in the second to L = 1, and in the third to L = 2. 

 
2 = 7.375E-001 

                  e            t             2
i 

  27.640   223.100   229.159     1.179 
  31.970   222.000   222.687     0.015 
  36.710   211.900   211.146     0 .020 
  82.530    54.270    53.522       0.302 
  90.000    36.760    36.249       0.309 
  96.030    25.700    25.467       0.133 
103.800    16.780    16.162       2.165 
110.550    13.210    12.598       3.444 
116.570    13.210    13.120       0.075 
125.270    20.260    19.962       0.341 
133.480    32.210    32.333       0.023 
140.790    45.950    46.975       0.794 
147.210    58.820    61.388       3.052 
153.900    75.460    76.517       0.313 
162.140    92.720    93.062       0.022 
165.670    97.700    98.823       0.212 
166.590   101.100   100.157     0.139 
 
      p            0            m           s 
 -88.800   -88.800   -88.800   -84.600 
  66.700     49.400     44.300    21.400 
    2.500       2.500       2.500  -18.600 
 

Because this program does not take into account singlet-triplet mixing, 
the results for 2 are slightly higher than in [164,165]. 

For the purposes of comparison, we give the results with the same phase 
shifts, using the the control calculation performed in BASIC in our previous 
work [10] where a value of 2 = 0.74 was obtained. 
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             e t  
  27.64      223.10         229.16  
  31.97      222.00         222.69 
  36.71      211.90         211.15 
  82.53        54.27           53.52 
  90.00        36.76           36.25 
  96.03        25.70           25.47 
103.80        16.78           16.16 
110.55        13.21           12.60 
116.57        13.21           13.12 
125.27        20.26           19.96 
133.48        32.21           32.33 
140.79        45.95           46.98 
147.21        58.82           61.39 
153.90        75.46           76.52 
162.14        92.72           93.06 
165.67        97.70           98.82 
166.59      101.10         100.16 

 
It is clear that these results coincide within the rounding errors, i.e. they 

do not depend on the language in which the program was written. However, 
the transition to Fortran-90 has allowed us to significantly increase the 
speed of operation of all the computer programs and to achieve higher 
precision in the search for the minimum 2 value. 

If we execute a full variation of the phase shifts according to our new 
computer program in the search for the minimum 2 value, then, after about 
3,000 iterations we obtain the following result for the differential scattering 
cross sections. 
 

2 = 2.27E-001 
               e           t            2

i 
27.640   223.100  224.854    0.099 
31.970   222.000  221.150    0.023 
36.710   211.900  211.107    0.022 
82.530   54.270    53.832      0.104 
90.000   36.760    36.715      0.002 
96.030   25.700    26.026      0.257 
103.800  16.780    16.737     0.011 
110.550  13.210    13.072     0.175 
116.570  13.210    13.423     0.415 
125.270  20.260    19.928     0.430 
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133.480  32.210    31.955     0.100 
140.790  45.950    46.330     0.109 
147.210  58.820    60.563     1.405 
153.900  75.460    75.569     0.003 
162.140  92.720     92.038    0.087 
165.670  97.700     97.785    0.001 
166.590  101.100   99.116    0.616 
 
     p           0             m            s 
-84.530   -84.530   -84.530    -93.630 
 56.144     46.185     42.904    44.694 
   3.404       3.584       4.982   -19.086 

 
The new scattering phase shifts obtained differ only slightly from 

previous results, while the value of 2 has seen a more than threefold 
decrease. 

2.5.2 System with spin-orbital and singlet-triplet mixing 

Let us consider the scattering of non-identical particles with half-integer 
spin, taking into account spin-orbital interactions, the mixing of various 
orbital states at the expense of tensor forces, and the mixing of singlet and 
triplet states. The scattering differential cross section has a more complex 
form because the scattering phase shifts are included in the formulae for the 
cross sections and the coupling of parameters of states with different spin 
and orbital moments; the fullest expressions for such cross sections are 
given in [166] 

 
2 2 2 2 2 2 2 2

2

( ) 1
{ }

2

d A B C D E F G H
d k

.         (2.5.4) 

 
The scattering amplitudes of A, B, C, etc. are registered in the following 

form 
 

' L-1 L+1 L
c L L,1;L-2,1 L,1;L,1 L,1;L,1

L 0

1
( ) ( 1) ( 2) (2 1)

4
A f P x L L U L U L U

L-1 L+1
L,1;L,1 L,1;L+2,1( 1) ( 1)( 2)L U L L U , 
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' L-1 L+1 L
c L L,1;L-2,1 L,1;L,1 L,0;L,0

L 0

1
( ) ( 1) ( 1) (2 1)

4
B f P x L L U L U L U

L-1 L+1
L,1;L,1 L,1;L+2,1( 1)( 2)LU L L U , 

 

L-1 L+1 L
L L,1;L-2,1 L,1;L,1 L,0;L,0

L 0

1
( ) ( 1) ( 1) (2 1)

4
C P x L L U L U L U  

L-1 L+1
L,1;L,1 L,1;L+2,1( 1)( 2)LU L L U ,                                                     (2.5.5) 

' L-1 L+1
L L,1;L-2,1 L,1;L,1

L 1

1
sin ( ) / ( 1) ( 1)( 1) ( 1)

4
D i P x L L L L U L L U

L-1 L+1 L
L,1;L,1 L,1;L+2,1 L,1;L,0( 1) ( 2) (2 1)L L U L L U L U , 

 

' L-1 L+1
L L,1;L-2,1 L,1;L,1

1

1
sin ( ) / ( 1) ( 1)( 1) ( 1)

4 L
E i P x L L L L U L L U

L-1 L+1 L
L,1;L,1 L,1;L+2,1 L,1;L,0( 1) ( 2) (2 1)L L U L L U L U , 

 

2 '' L-1
L L,1;L-2,1

L 2

1
sin ( ) / ( 1) ( 1)( 2) ( 1)( 2)

4
F i P x L L L L L L U

L+1 L
L,1;L,1 L,1;L,1

( 1)( 2) ( 1)( 2)
(2 1)

1 ( 1)

L L L L LU L U
L L L

 

L-1 L+1
L,1;L,1 L,1;L+2,1

( 1)( 1)( 2)
( 1)

L L L U L L U
L

, 

 

' L-1 L+1
L L,1;L-2,1 L,1;L,1

L 1

1
sin ( ) / ( 1) ( 1)( 1) ( 2)

4 1

LG i P x L L L L U L U
L

L L-1 L+1 L
L,1;L,1 L,1;L,1 L,1;L+2,1 L,0;L,1

(2 1) ( 1)
( 1) ( 2) (2 1) ,

( 1)

L LU L U L L U L U
LL L

 

' L-1 L+1
L L,1;L-2,1 L,1;L,1

L 1

1
sin ( ) / ( 1) ( 1)( 1) ( 2)

4 1

LH i P x L L L L U L U
L

L L-1 L+1 L
L,1;L,1 L,1;L,1 L,1;L+2,1 L,0;L,1

(2 1) ( 1)
( 1) ( 2) (2 1)U .

( 1)

L LU L U L L U L
LL L
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The scattering matrix is presented in the form 
 

J J J
L,S;L',S' L',S';L,S L L ' L',S';L,S L,L ' S,S'exp[ ( )]( )U U i S , 

 

and, for example, at L = 1 and J = 1, taking into account the 
1
1,0 , '

J
S S  

coupling of the singlet and triplet states, we have 
 

1 2 1 1 2 1
1,0;1,0 1,0 0,1 1,1 1,1cos exp(2 ) sin exp(2 )S i i , 

 
1 2 1 1 2 1
1,1;1,1 1,0 0,1 1,1 1,1sin exp(2 ) cos exp(2 )S i i , 

 

1 1 1 1 1
1,0;1,1 1,1;1,0 1,0 0,1 1,1

1
sin(2 ) exp(2 ) exp(2 )

2
S S i i , 

 
where k,k' is the Kronecker symbol; x = cos( ); the values without a stroke 
designate an initial state and those with a stroke designate the final at the 
same total J moment; the Coulomb L phase shifts are defined in paragraph 

1, while the nuclear 
J
S,L  phase shifts are considered too complex to allow 

inelastic channels. 
The J

1 S,S'  coupling of the triplet (S and S' spins, with the total 

moment being equal to 1) S and D states is defined by the following 
expressions for a scattering matrix 

 

1

1 2 1 2 1
0,0 1 0 2cos exp(2 ) sin exp(2 )S i i , 

 

1

1 2 1 2 1
2,2 1 0 2sin exp(2 ) cos exp(2 )S i i , 

 

1 1 1 1
0,2 2,0 1 0 2

1
sin(2 ) exp(2 ) exp(2 )

2
S S i i . 

 
The dashes in the Legendre polynomials designate the derivatives, while 

the Coulomb scattering amplitude is written in the form 
 

' 2
c 2
( ) exp ln[sin ( / 2)] .

2sin ( / 2)

if i  
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In the following, the derivatives of the polynomials are bound to the 
Legendre functions, as described earlier 

 
m mm+n 2 n

m 2 m/2 2 m/2 mn n
n m m+n m

( ) (cos )( 1)
( ) (1 ) (1 ) =sin

( cos )

d P x d Pd xP x x x
dx dx d

. 

 
If we neglect tensor interaction and singlet-triplet coupling in the 

expressions given above, then the scattering matrix will take the usual form 
of exp(2i S,L) with a complex phase shift. 

The following program written in Fortran-90 is based on all these 
expressions and includes a singlet-triplet coupling of EPS [166], considered 
for L = 1 only. In the program, the values of the experimental cross sections, 
their errors, and the scattering phase shifts are all clearly given. The 
designations of the variables, parameters, and units are the same as in the 
previous program. 
 
With the operators 

 
READ(1,*) TT(L),SE(L),DE(L) 
 
and 
 
READ(1,*) FP(I),F0(I),FM(I),FS(I),EPS(I) 
 
at the beginning of the program, the following is read from the file 
 
AA='SEC.DAT' 
 
BB='FAZTENZ.DAT' 
 
the same data are given in the program, i.e. the basic data can be used from 
the program or from these files. 
 
PROGRAM FAZ_ANAL_P_3He_WIRH_LS_AND_TS 
IMPLICIT REAL(8) (A-Z) 
INTEGER 
I,L,LH,LN,LV,LMA,LMI,NT,NP,NPP,Z1,Z2,LMI1,LH1,NT2,NT1,NI 
DIMENSION ST(0:50),FP(0:50),F0(0:50),FM(0:50),FS(0:50),ES(0:50) 
DIMENSION 
XP(0:50),FPI(0:50),F0I(0:50),FMI(0:50),FSI(0:50),EPS(0:50),EP(0:50),E
0(0:50),EM(0:50) 
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COMMON /B/ SE(0:50),DS(0:50),DE(0:50),NT 
COMMON /C/ LH,LMI,NT1,PI,NP,NPP 
COMMON /A/ SS,GG,P1,LMI1,LMA,LH1,NT2,POL(0:50), TT(0:50) 
CHARACTER(11) BB 
CHARACTER(7) AA 
CHARACTER(12) CC 
! *************** INPUT PARAMETERS **************** 
AA='SEC.DAT' 
BB='FAZTENZ.DAT' 
CC='SECTTENZ.DAT' 
PI=4.0D0*DATAN(1.0D0) 
P1=PI 
Z1=1 
Z2=2 
AM1=1.0D0 
AM2=3.0D0 
AM=AM1+AM2 
A1=41.4686D0 
PM=AM1*AM2/(AM1+AM2) 
B1=2.0D0*PM/A1 
LMI=0 
LH=1 
LMA=2 
LN=LMI 
LMI1=LMI 
LV=LMA 
LH1=LH 
EPP=1.0D-05 
NV=1 
FH=0.01D0 
NI=500 
NPP=2*LMA 
! **** EXPERIMENTAL CROSS SECTION 11.48 ********* 
SE(1)=223.1D0; SE(2)=222.0D0; SE(3)=211.9D0; SE(4)=54.27D0; 
SE(5)=36.76D0 
SE(6)=25.7D0; SE(7)=16.78D0; SE(8)=13.21D0; SE(9)=13.21D0; 
SE(10)=20.26D0 
SE(11)=321D0; SE(12)=45.95D0; SE(13)=58.82D0; SE(14)=75.46D0 
SE(15)=92.72D0; SE(16)=97.7D0; SE(17)=101.1D0 
DE(1)=5.58D0; DE(2)=5.55D0; DE(3)=5.3D0; DE(4)=1.36D0; 
DE(5)=0.92D0 
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DE(6)=0.64D0; DE(7)=0.42D0; DE(8)=0.33D0; DE(9)=0.33D0; 
DE(10)=0.51D0 
DE(11)=0.81D0; DE(12)=1.15D0; DE(13)=1.47D0; DE(14)=1.89D0 
DE(15)=32D0; DE(16)=44D0; DE(17)=53D0 
TT(1)=27.64D0; TT(2)=31.97D0; TT(3)=36.71D0; TT(4)=853D0 
TT(5)=90.0D0; TT(6)=96.03D0; TT(7)=103.8D0; TT(8)=110.55D0 
TT(9)=116.57D0; TT(10)=125.27D0; TT(11)=133.48D0 
TT(12)=140.79D0; TT(13)=147.21D0; TT(14)=153.9D0 
TT(15)=1614D0; TT(16)=165.67D0; TT(17)=166.59D0 
NT=17 
NT1=NT 
NT2=NT 
! *********** DO P-3HE ON E=11.48 ******************* 
FP(0)=-88.8D0;    FPI(0)=0.D0 
FP(1)=66.7D0;     FPI(1)=0.D0 
FP(2)=5D0;       FPI(2)=0.D0 
FP(3)=1.D0;         FPI(3)=0.D0 
F0(0)=FP(0);              F0I(0)=0.D0 
F0(1)=49.4D0;      F0I(1)=0.D0 
F0(2)=5D0;        F0I(2)=0.D0 
F0(3)=1.D0;          F0I(3)=0.D0 
FM(0)=FP(0);            FMI(0)=0.D0 
FM(1)=44.3D0;    FMI(1)=0.D0 
FM(2)=5D0;      FMI(2)=0.D0 
FM(3)=1.D0;        FMI(3)=0.D0 
FS(0)=-84.6D0;    FSI(0)=0.D0 
FS(1)=21.4D0;     FSI(1)=0.D0 
FS(2)=-18.6D0;    FSI(2)=0.D0 
FS(3)=1.D0;         FSI(3)=0.D0 
EPS(1)=11.2D0 
EPS(3)=0.D0 
OPEN (1,FILE=AA) 
DO L=1,NT 
READ(1,*) TT(L),SE(L),DE(L) 
ENDDO 
CLOSE(1) 
OPEN (1,FILE=BB) 
DO I=LN,LV 
READ(1,*) FP(I),F0(I),FM(I),FS(I),EPS(I) 
ENDDO 
CLOSE(1) 
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! ************ TRANSFORM TO RADIANS ************** 
DO L=LN,LV,LH 
FM(L)=FM(L)*PI/180.0D0 
FP(L)=FP(L)*PI/180.0D0 
F0(L)=F0(L)*PI/180.0D0 
EPS(L)=EPS(L)*PI/180.0D0 
FMI(L)=FMI(L)*PI/180.0D0 
FPI(L)=FPI(L)*PI/180.0D0 
F0I(L)=F0I(L)*PI/180.0D0 
FS(L)=FS(L)*PI/180.0D0 
FSI(L)=FSI(L)*PI/180.0D0 
EP(L)=EXP(-2.0D0*FPI(L)) 
EM(L)=EXP(-2.0D0*FMI(L)) 
E0(L)=EXP(-2.0D0*F0I(L)) 
ES(L)=EXP(-2.0D0*FSI(L)) 
ENDDO 
! *************************************************** 
FH=FH*PI/180.0D0 
NP=5*LMA+2 
IF (NP>(5*LMA+2)) GOTO 9988 
DO L=LN,LV,LH 
FMI(L)=0 
FPI(L)=0 
F0I(L)=0 
FSI(L)=0 
ENDDO 
9988 DO I=LMI,LMA,LH 
XP(I)=FP(I) 
ENDDO 
DO I=LMI,LMA-1,LH 
XP(I+LMA+1)=F0(I+1) 
ENDDO 
DO I=LMI,LMA-1,LH 
XP(I+2*LMA+1)=FM(I+1) 
ENDDO 
DO I=LMI,LMA,LH 
XP(I+3*LMA+1)=FS(I) 
ENDDO 
DO I=LMI,LMA,LH 
XP(I+4*LMA+2)=EPS(I) 
ENDDO 
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DO I=LMI,LMA,LH 
XP(I+5*LMA+3)=FPI(I) 
ENDDO 
DO I=LMI,LMA-1,LH 
XP(I+6*LMA+4)=F0I(I+1) 
ENDDO 
DO I=LMI,LMA-1,LH 
XP(I+7*LMA+4)=FMI(I+1) 
ENDDO 
DO I=LMI,LMA,LH 
XP(I+8*LMA+4)=FSI(I) 
ENDDO 
 ! ************ TRANSFOM TO C.M. ******************* 
EL=11.480D0 
EC=EL*PM/AM1 
SK=EC*B1 
SS=DSQRT(SK) 
GG=3.44476D-002*Z1*Z2*PM/SS 
CALL VAR(ST,FH,LMA,NI,XP,EPP,XI,NV) 
PRINT *,"                        XI-KV=",XI 
 ! ************* TOTAL CROSS SECTION ************* 
DO I=LMI,LMA,LH 
FP(I)=XP(I) 
ENDDO 
DO I=LMI,LMA-1,LH 
F0(I+1)=XP(I+LMA+1) 
ENDDO 
DO I=LMI,LMA-1,LH 
FM(I+1)=XP(I+2*LMA+1) 
ENDDO 
DO I=LMI,LMA,LH 
FS(I)=XP(I+3*LMA+1) 
ENDDO 
DO I=LMI,LMA,LH 
EPS(I)=XP(I+4*LMA+2) 
ENDDO 
F0(0)=FP(0); FM(0)=FP(0) 
DO I=LMI,LMA,LH 
FPI(I)=XP(I+5*LMA+3) 
ENDDO 
DO I=LMI,LMA-1,LH 
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F0I(I+1)=XP(I+6*LMA+4) 
ENDDO 
DO I=LMI,LMA-1,LH 
FMI(I+1)=XP(I+7*LMA+4) 
ENDDO 
DO I=LMI,LMA,LH 
FSI(I)=XP(I+8*LMA+4) 
ENDDO 
F0I(0)=FPI(0); FMI(0)=FPI(0) 
DO L=LN,LV,LH 
EP(L)=EXP(-2.0D0*FPI(L)) 
EM(L)=EXP(-2.0D0*FMI(L)) 
E0(L)=EXP(-2.0D0*F0I(L)) 
ES(L)=EXP(-2.0D0*FSI(L)) 
ENDDO 
SRT=0.0D0; SRS=0.0D0;   SST=0.0D0;  SSS=0.0D0 
DO L=LN,LV,LH 
AP=FP(L) 
AM=FM(L) 
A0=F0(L) 
ASS=FS(L) 
L1=2*L+3 
L2=2*L+1 
L3=2*L-1 
SRT=SRT+L1*(1.0D0-EP(L)**2)+L2*(1.0D0-E0(L)**2)+L3*(1.0D0-
EM(L)**2) 
SRS=SRS+L2*(1.0D0-ES(L)**2) 
SST=SST+L1*EP(L)**2*SIN(AP)**2+L2*E0(L)**2*SIN(A0)**2+L3*E
M(L)**2*SIN(AM)**2 
SSS=SSS+L2*ES(L)**2*SIN(ASS)**2 
ENDDO  
SRT=10.0D0*PI*SRT/SK/3.0D0 
SRS=10.0D0*PI*SRS/SK 
SIGR=1.0D0/4.0D0*SRS+3.0D0/4.0D0*SRT 
SST=10*4*PI*SST/SK/3 
SSS=10.0D0*4*PI*SSS/SK 
SIGS=1.0D0/4.0D0*SSS+3.0D0/4.0D0*SST 
PRINT *,"                        SIGMS-TOT=",SIGS 
PRINT *,"     T       SE         ST        XI" 
DO I=1,NT 
WRITE(*,2) TT(I),SE(I),ST(I),DS(I) 
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ENDDO  
PRINT *,"     FP        F0        FM       FS        EPS" 
DO L=LMI,LMA,LH 
FM(L)=FM(L)*180.0D0/PI 
FP(L)=FP(L)*180.0D0/PI 
FMI(L)=FMI(L)*180.0D0/PI 
FPI(L)=FPI(L)*180.0D0/PI 
F0(L)=F0(L)*180.0D0/PI 
F0I(L)=F0I(L)*180.0D0/PI 
FS(L)=FS(L)*180.0D0/PI 
FSI(L)=FSI(L)*180.0D0/PI 
EPS(L)=EPS(L)*180.0D0/PI 
WRITE(*,2) FP(L),F0(L),FM(L),FS(L),EPS(L) 
ENDDO 
!READ *, A 
!IF (A==0) GOTO 1111 
!PRINT 
!PRINT *,"      T        POL " 
!DO I=1,NT 
!PRINT *,TT(I);POL(I) 
!ENDDO  
OPEN (1,FILE=CC) 
WRITE(1,*)"       EL        ECM        XI" 
WRITE(1,4) EL,EC,XI 
WRITE(1,*) "    T              SE               DE             ST               XI" 
DO I=1,NT 
WRITE(1,3) TT(I),SE(I),DE(I),ST(I),DS(I) 
ENDDO 
WRITE(1,*) "     FP(L)    F0(L)    FM(L)    FS(L)" 
DO L=LN,LV 
WRITE(1,2) FP(L),F0(L),FM(L),FS(L),EPS(L) 
ENDDO 
CLOSE(1) 
OPEN (1,FILE=BB) 
DO L=LN,LV 
WRITE(1,3) FP(L),F0(L),FM(L),FS(L),EPS(L) 
ENDDO 
CLOSE(1) 
!OPEN (1,FILE=AA) 
!DO L=1,NT 
!WRITE(1,3) TT(L),SE(L),DE(L) 
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!ENDDO 
!CLOSE(1) 
4 FORMAT(3F10.5) 
2 FORMAT(5F10.5) 
3 FORMAT(4F14.7) 
END 
 
SUBROUTINE VAR(ST,PHN,LMA,NI,XP,EP,AMIN,NV) 
! ******* THE SEARCH OF PHASE SHIFTS ****************** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,LH,NT,NP,NPP,NN,NI,LMA,LMI 
DIMENSION XPN(0:50),XP(0:50),ST(0:50) 
COMMON /C/ LH,LMI,NT,PI,NP,NPP 
DO I=LMI,NP,LH 
XPN(I)=XP(I) 
ENDDO 
NN=LMI 
PH=PHN 
CALL DET(XPN,ST,ALA) 
B=ALA 
IF (NV==0) GOTO 3013 
DO IIN=1,NI 
NN=-LH 
PRINT *,ALA,IIN 
GOTO 1119 
1159 XPN(NN)=XPN(NN)-PH*XP(NN) 
1119  NN=NN+LH 
IN=0 
2229 A=B 
XPN(NN)=XPN(NN)+PH*XP(NN) 
IF (NN<(5*LMA+3)) GOTO 7777 
IF (XPN(NN)<0) GOTO 1159 
7777 IN=IN+1 
CALL DET(XPN,ST,ALA) 
B=ALA 
IF (B<A) GOTO 2229 
C=A 
XPN(NN)=XPN(NN)-PH*XP(NN) 
IF (IN>1) GOTO 3339 
PH=-PH 
GOTO 5559 
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3339 IF (ABS((C-B)/ABS(B))<EP) GOTO 4449 
PH=PH/2 
5559 B=C 
GOTO 2229 
4449 PH=PHN 
B=C 
IF (NN<NP) GOTO 1119 
AMIN=B 
PH=PHN 
ENDDO  
3013 AMIN=B 
DO I=LMI,NP,LH 
XP(I)=XPN(I) 
ENDDO 
END  
 
SUBROUTINE DET(XP,ST,XI) 
! **************** THE DETERMINANT ******************** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,NT 
DIMENSION XP(0:50),ST(0:50) 
COMMON /B/ SE(0:50),DS(0:50),DE(0:50),NT 
S=0.0D0 
CALL SEC(XP,ST) 
DO I=1,NT 
DS(I)=( (ST(I)-SE(I) )/DE(I) )**2 
S=S+DS(I) 
ENDDO 
XI=S/NT 
END  
 
SUBROUTINE SEC(XP,ST) 
! **************** THE CROSS SECTION *********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,II,L,LN,LV,LH,NT 
COMMON /A/ SS,GG,PI,LN,LV,LH,NT,POL(0:50),TT(0:50) 
DIMENSION 
S0(0:50),P(0:50),P1(0:50),P2(0:50),XP(0:50),ST(0:50),F0(0:50),FP(0:50),
FM(0:50),FS(0:50),EPS(0:50) 
DIMENSION 
F0I(0:50),FPI(0:50),FMI(0:50),FSI(0:50),EP(0:50),EM(0:50),ES(0:50),E0
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(0:50) 
DO I=LN,LV,LH 
FP(I)=XP(I) 
ENDDO 
DO I=LN,LV-1,LH 
II=I+LV+1 
F0(I+1)=XP(II) 
ENDDO 
DO I=LN,LV-1,LH 
II=I+2*LV+1 
FM(I+1)=XP(II) 
ENDDO 
DO I=LN,LV,LH 
II=I+3*LV+1 
FS(I)=XP(II) 
ENDDO 
DO I=LN,LV,LH 
II=I+4*LV+2 
EPS(I)=XP(II) 
ENDDO 
F0(0)=FP(0); FM(0)=FP(0) 
DO I=LN,LV,LH 
II=I+5*LV+3 
FPI(I)=XP(II) 
ENDDO 
DO I=LN,LV-1,LH 
II=I+6*LV+4 
F0I(I+1)=XP(II) 
ENDDO 
DO I=LN,LV-1,LH 
II=I+7*LV+4 
FMI(I+1)=XP(II) 
ENDDO 
DO I=LN,LV,LH 
II=I+8*LV+4 
FSI(I)=XP(II) 
ENDDO 
F0I(0)=FPI(0); FMI(0)=FPI(0) 
DO L=LN,LV,LH 
EP(L)=DEXP(-2.0D0*FPI(L)) 
EM(L)=DEXP(-2.0D0*FMI(L)) 
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E0(L)=DEXP(-2.0D0*F0I(L)) 
ES(L)=DEXP(-2.0D0*FSI(L)) 
ENDDO 
CALL CULFAZ(GG,S0) 
DO I=1,NT 
T=TT(I)*PI/180.0D0 
X=DCOS(T) 
CALL CULAMP(X,GG,S0,RECUL,AMCUL) 
CALL POLLEG(X,LV,P) 
CALL FUNLEG1(X,LV,P1) 
CALL FUNLEG2(X,LV,P2) 
REA=0.0D0; AMA=0.0D0; REB=0.0D0; AMB=0.0D0; REC=0.0D0; 
AMC=0.0D0; RED=0.0D0; AMD=0.0D0  
REE=0.0D0; AME=0.0D0; RRG=0.0D0; AAG=0.0D0; REH=0.0D0; 
AMH=0.0D0; REF=0.0D0; AMF=0.0D0 
DO L=LN,LV,LH 
FP1=2.0D0*FP(L) 
FM1=2.0D0*FM(L) 
F01=2.0D0*F0(L) 
SL=2.0D0*S0(L) 
C=DCOS(SL) 
S=DSIN(SL) 
FS1=2.0D0*FS(L) 
SO=DSIN(EPS(L))**2 
CO=DCOS(EPS(L))**2 
AL1P=EP(L)*DCOS(FP1)-1.0D0 
AL2P=EP(L)*DSIN(FP1) 
AL1M=EM(L)*DCOS(FM1)-1.0D0 
AL2M=EM(L)*DSIN(FM1) 
AL10=SO*ES(L)*DCOS(FS1)+CO*E0(L)*DCOS(F01)-1.0D0 
AL20=SO*ES(L)*DSIN(FS1)+CO*E0(L)*DSIN(F01) 
A1=(L+2.0D0)*AL1P+(2.0D0*L+1.0D0)*AL10+(L-1.0D0)*AL1M 
A2=(L+2.0D0)*AL2P+(2.0D0*L+1.0D0)*AL20+(L-1.0D0)*AL2M 
REA=REA+(A1*C-A2*S)*P(L)/2.0D0 
AMA=AMA+(A1*S+A2*C)*P(L)/2.0D0 
ALS=CO*ES(L)*DCOS(FS1)+SO*E0(L)*DCOS(F01)-1.0D0 
BS=CO*ES(L)*DSIN(FS1)+SO*E0(L)*DSIN(F01) 
RES=(2.0D0*L+1.0D0)*(ALS*C-BS*S) 
AMS=(2.0D0*L+1.0D0)*(ALS*S+BS*C) 
B1=(L+1.0D0)*AL1P+L*AL1M 
B2=(L+1.0D0)*AL2P+L*AL2M 
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REB=REB+(B1*C-B2*S+RES)*P(L)/2.0D0 
AMB=AMB+(B1*S+B2*C+AMS)*P(L)/2.0D0 
REC=REC+(B1*C-B2*S-RES)*P(L)/2.0D0 
AMC=AMC+(B1*S+B2*C-AMS)*P(L)/2.0D0 
IF (L<1) GOTO 1211 
SI2=1.0D0/2.0D0*DSIN(2.0D0*EPS(L)) 
AL1=SI2*(ES(L)*DCOS(FS1)-E0(L)*DCOS(F01)) 
AL2=SI2*(ES(L)*DSIN(FS1)-E0(L)*DSIN(F01)) 
RE1=(2.0D0*L+1.0D0)*(AL2*C+AL1*S)/DSQRT(L*(L+1.0D0)) 
AM1=(2.0D0*L+1.0D0)*(AL2*S-AL1*C)/DSQRT(L*(L+1.0D0)) 
C1=AL1P-AL1M 
C2=AL2P-AL2M 
RED=RED+(C2*C+C1*S-RE1)*P1(L)/2.0D0 
AMD=AMD+(C2*S-C1*C-AM1)*P1(L)/2.0D0 
REE=REE+(C2*C+C1*S+RE1)*P1(L)/2.0D0 
AME=AME+(C2*S-C1*C+AM1)*P1(L)/2.0D0 
D1=(L+2.0D0)/(L+1.0D0)*AL1P-
(2.0D0*L+1.0D0)/(L*(L+1.0D0))*AL10-(L-1.0D0)/L*AL1M 
D2=(L+2.0D0)/(L+1.0D0)*AL2P-
(2.0D0*L+1.0D0)/(L*(L+1.0D0))*AL20-(L-1.0D0)/L*AL2M 
RRG=RRG+(D2*C+D1*S-RE1)*P1(L)/2.0D0 
AAG=AAG+(D2*S-D1*C-AM1)*P1(L)/2.0D0 
REH=REH+(D2*C+D1*S+RE1)*P1(L)/2.0D0 
AMH=AMH+(D2*S-D1*C+AM1)*P1(L)/2.0D0 
1211 IF (L<2) GOTO 2122 
F1=1.0D0/(L+1.0D0)*AL1P-
(2.0D0*L+1.0D0)/(L*(L+1.0D0))*AL10+AL1M/L 
F2=1.0D0/(L+1.0D0)*AL2P-
(2.0D0*L+1.0D0)/(L*(L+1.0D0))*AL20+AL2M/L 
REF=REF+(F2*C+F1*S)*P2(L)/2.0D0 
AMF=AMF+(F2*S-F1*C)*P2(L)/2.0D0 
2122 ENDDO  
RET=0.0D0; AMT=0.0D0; RES=0.0D0;  AMS=0.0D0 
DO L=LN,LV,LH 
SL=2.0D0*S0(L) 
C=DCOS(SL)  
S=DSIN(SL)  
FS1=2.0D0*FS(L) 
ALS=ES(L)*DCOS(FS1)-1.0D0  
BS=ES(L)*DSIN(FS1) 
RES=RES+(2.0D0*L+1.0D0)*(BS*C+ALS*S)*P(L) 
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AMS=AMS+(2.0D0*L+1.0D0)*(BS*S-ALS*C)*P(L) 
ENDDO  
RES=RECUL+RES 
AMS=AMCUL+AMS 
REA=RECUL+REA 
AMA=AMCUL+AMA 
REB=RECUL+REB 
AMB=AMCUL+AMB 
AA=REA**2+AMA**2 
BB=REB**2+AMB**2 
CC=REC**2+AMC**2 
DD=RED**2+AMD**2 
EE=REE**2+AME**2 
FF=REF**2+AMF**2 
HH=REH**2+AMH**2 
GGG=RRG**2+AAG**2 
SUM=AA+BB+CC+DD+EE+GGG+HH+FF 
S=10.0D0*SUM/2.0D0/SS**2/4.0D0 
ST(I)=S 
! POL(I) = -  2*(REA*REE+AMA*AME+REB*REH 
+AMB*AMH+REC*RRG+AMC*AAG+RED*REF+AMD*AMF)/SUM 
ENDDO  
END  
 
SUBROUTINE CULAMP(X,GG,S0,RECUL,AMCUL) 
! ************ THE COULOMB AMPLITUDE ********** 
IMPLICIT REAL(8) (A-Z) 
DIMENSION S0(0:50) 
A=2.0D0/(1.0D0-X) 
S00=2.0D0*S0(0) 
BB=-GG*A 
AL=GG*DLOG(A)+S00 
RECUL=-BB*DSIN(AL) 
AMCUL=BB*DCOS(AL) 
END  
 
SUBROUTINE POLLEG(X,L,P) 
! **************** THE LEGENDRE POLYNOMIALS *********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L 
DIMENSION P(0:50) 
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P(0)=1.0D0; P(1)=X 
DO I=2,L 
P(I)=(2.0D0*I-1.0D0)*X/I*P(I-1)-(I-1.0D0)/I*P(I-2) 
ENDDO 
END  
 
SUBROUTINE FUNLEG1(X,L,P) 
! **************** THE LEGENDRE FUNCTION *********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L 
DIMENSION P(0:50) 
P(0)=0.0D0; P(1)=DSQRT(DABS(1.0D0-X**2)) 
DO I=2,L 
P(I)=(2.0D0*I-1.0D0)*X/(I-1.0D0)*P(I-1)-I/(I-1.0D0)*P(I-2) 
ENDDO 
END  
 
SUBROUTINE FUNLEG2(X,L,P) 
! **************** THE LEGENDRE'S FUNCTION *********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L 
DIMENSION P(0:50) 
P(0)=0.0D0; P(1)=0.0D0; P(2)=3.0D0*DABS(1.0D0-X**2) 
DO I=3,L 
P(I)=(2.0D0*I-1.0D0)*X/(I-2.0D0)*P(I-1)-(I+1.0D0)/(I-2.0D0)*P(I-2) 
ENDDO 
END  
 
SUBROUTINE CULFAZ(G,F) 
! **************** THE COULOMB PHASE SHIFTS *********** 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,N 
DIMENSION F(0:50) 
C=0.577215665D0; S=0.0D0; N=50 
A1=1.202056903D0/3.0D0; A2=1.036927755D0/5.0D0 
DO I=1,N 
A=G/I-DATAN(G/I)-(G/I)**3/3.0D0+(G/I)**5/5.0D0 
S=S+A 
ENDDO 
FAZ=-C*G+A1*G**3-A2*G**5+S 
F(0)=FAZ 
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DO I=1,20 
F(I)=F(I-1)+DATAN(G/(I)) 
ENDDO 
END 

 
With the same phase shifts as in the previous case [164,165], and 

without mixing, using this program we obtain the same result as given by 
the first as the control account for the previous program with 2 = 7.375E-
001 

 
2 = 7.375E-001 

                       e              t              2
i 

27.64000   223.10000  229.15944  1.17923 
31.97000   222.00000  222.68747    .01534 
36.71000   211.90000  211.14558    .02026 
82.53000     54.27000    53.52241    .30217 
90.00000     36.76000    36.24893    .30859 
96.03000     25.70000    25.46703    .13250 
103.80000   16.78000    16.16202  2.16494 
110.55000   13.21000    12.59755  3.44437 
116.57000   13.21000    13.11973    .07482 
125.27000   20.26000    19.96234    .34064 
133.48000   32.21000    32.33282    .02299 
140.79000   45.95000    46.97500    .79443 
147.21000   58.82000    61.38791  3.05158 
153.90000   75.46000    76.51701    .31277 
162.14000   92.72000    93.06232    .02177 
165.67000   97.70000    98.82336    .21196 
166.59000 101.10000  100.15680    .13898 
 
     p           0         m         s             
-88.800 -88.800 -88.800 -84.600    0.000 
 66.700   49.400  44.300  21.400    0.000 
   2.500     2.500    2.500 -18.600    0.000 
 

Initiation of mixing in the P wave, as shown in [164,165], allows us to 
better describe the cross sections of elastic scattering at the same phase 
shifts [164,165] 
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2 =  2.93E-001 
 

                  e              t             2
i 

 27.640     223.100    228.038     0.783 
 31.970     222.000    221.732     0.002 
 36.710     211.900    210.383     0.082 
 82.530      54.270      54.215      0.002 
 90.000      36.760      36.966      0.050 
 96.030      25.700      26.151      0.497 
103.800     16.780      16.739      0.010 
110.550     13.210      13.031      0.295 
116.570     13.210      13.394      0.310 
125.270     20.260      19.972     0.400 
133.480     32.210      32.075     0.028 
140.790     45.950      46.482     0.214 
147.210     58.820      60.704     1.642 
153.900     75.460      75.656     0.011 
162.140     92.720      92.029     0.089 
165.670     97.700      97.733     0.000 
166.590    101.100     99.054     0 .654 
 
     p          0         m          s              
-88.800 -88.800 -88.800 -84.600    0 .000 
 66.700  49.400   44.300  21.400   11.200 
   2.500   2.500     2.500   -18.600    0.000 

 
The average 2 value is slightly less than 0.45, as given in [164,165]. 

The calculations in [164,165] were carried out at the beginning of the 1960s 
on rather simple computers and with rather low precision, leading to such a 
small distinction of the results for 2. 

In the real calculations, a number of other values were used for the 
constants, for example, 2/m0 and the mass of particles, and rounding of 
[164,165] phase shifts, as given in the mentioned articles, to the second sign 
after a comma can also exert an impact on the 2 value. As such, we may 
consider that the provided control accounts for an acceptable 2 value are in 
agreement with the results obtained in [164,165]. 

To make a comparison, we will give the results for the same scattering 
phase shifts and mixing parameters obtained previously in [10], using  
similar programs written in BASIC and with average 2 = 0.29 
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                  e              t             2
i 

  27.64     223.10      228.04        0.78 
  31.97     222.00      221.73        0.00 
  36.71     211.90      210.38        0.08 
  82.53       54.27        54.22        0.00 
  90.00       36.76        36.97        0.05 
  96.03       25.70        26.15        0.49 
103.80       16.78        16.74        0.01 
110.55       13.21        13.03        0.29 
116.57       13.21        13.39        0.31 
125.27       20.26       19.97         0.32 
133.48       32.21       32.07         0.03 
140.79       45.95       46.48         0.21 
147.21       58.82       60.70         1.64 
153.90       75.46       75.66         0.01 
162.14       92.72       92.03         0.09 
165.67       97.70       97.73         0.00 
166.59     101.10       99.05         0.66 
  

Here, the results up to the rounding error coincide with each other and 
do not depend on the programming language. 

If we execute a detailed variation of the scattering phase shifts and the 
mixing parameter , then we will obtain about 10,000 iterations. The best 
description of the available experimental data requires almost zero mixing 

 
2 = 2.25E-001 

                  e              t             2
i 

 27.640    223.100    224.736     0.086 
 31.970    222.000    221.181     0.022 
 36.710    211.900    211.217     0.017 
 82.530     54.270      53.839      0.100 
 90.000     36.760      36.717      0.002 
 96.030     25.700      26.025      0.259 
103.800     16.780     16.736      0.011 
110.550     13.210     13.072      0.175 
116.570     13.210     13.423      0.415 
125.270     20.260     19.927      0.427 
133.480     32.210     31.953      0.101 
140.790     45.950     46.328      0.108 
147.210     58.820     60.562      1.405 
153.900     75.460     75.570      0.003 
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162.140     92.720     92.043      0.085 
165.670     97.700     97.791      0.001 
166.590    101.100     99.123     0.611 
 
    p         0          m           s               
-83.342 -83.342 -83.342  -97.861    0 .000 
 52.520  50.021   50.444    44.905  -0.00017 
   3.222    0.122     2.667  -19.114    0.000 

 
We can suggest that mixing is not required for the best description of the 

available experimental data, though the point at 147 , as well as in the case 
of the calculation in the previous program with 2 = 2.27E-001, is described 
rather poorly, even though the 2 averages practically coincide. Let us note 
that changing the mixing parameter  to any direction leads to a noticeable 
increase in average 2, considerably worsening the description of the 
experimental data. 

The results given in this paragraph have direct relevance to checking the 
operability of the computer programs written on the basis of known methods 
of calculating differential cross sections, but not to obtaining new results in 
the phase shift analysis of p3He elastic scattering [10]. New results for the 
phase shift analysis in a system of particles with spin 1/2 + 1/2 are given as 
an example in the following paragraph for the p13C system. 

2.5.3 Phase shift analysis of p13C elastic scattering  
taking into account the spin-orbit 

Let us consider the p13C system of particles at low energies, to which the 
1/2 + 1/2 spins correspond. At energies lower than 0.5–1 MeV, the 
deviation from the Rutherford value of the measured differential cross 
section can be characterized only by one point at a certain value of the 
scattering angle and the given energy. Such a deviation is fairly 
unambiguously described by one triplet S scattering phase shift, even in the 
resonance range of the p13C system. 

On the basis of these representations, in [167,168] the measurement of 
the differential cross sections, namely, the excitation function for the p13C 
elastic scattering, was executed at energies between 0.25 and 0.75 MeV. 
Measurements of the cross sections at each energy level were taken only at 
one scattering angle and four values of the angles were used for the different 
energies. These data were used to carry out a phase shift analysis of p13C 
elastic scattering at low energies and for the definition of the resonance form 
of the triplet 3S1 phase shift at an energy of 0.55 MeV. 
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Fig. 2.5.1. The triplet 3S1 phase shift of the p13C scattering at low energies. The 
points and squares give the results of our phase shift analysis data [167] at 94.4° 
and 123.8° in c.m., while the circles and open squares give the results of our phase 
shift analysis data [168] at 60° and 120° in c.m. 

 
On the basis of the computer programs presented in the previous 

paragraph for spin-orbital mixing, a phase shift analysis of the experimental 
data on differential cross sections of the p13C elastic scattering (excitation 
functions in the energy range 300–750 keV l.s.) specified in [167,168] was 
undertaken. As a result of the phase shift analysis, it was shown that the 
singlet 1S0 phase shift of the p13C elastic scattering in the considered energy 
range was close to zero with a value not exceeding 2–3 degrees. The form 
of the triplet 3S1 phase shift is shown below in Fig. 2.5.1, while its values 
are given in tables 2.5.1 and 2.5.2. This phase shift has a clearly expressed 
resonance, which corresponds to the level of 14N in the cluster p13C channel 
with J ,T = 1-,1 at an energy of 0.55 MeV (l.s.) [120]. 

Furthermore, the results of the phase shift analysis of the experimental 
data from [167] in the energy ranges 301–732 keV and 495–613 keV at two 
values of the angles, represented in Fig. 2.5.1 by black points and squares 
respectively, are given in Table 2.5.1. Table 2.5.2 contains the results of the 
phase shift analysis of experimental data from [168], represented in Fig. 
2.5.1 by circles (at energies of 526–595 keV) and open squares (for energies 
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of 506–595 keV). According to [167], the extracted elastic scattering phase 
shift passes through 90° at an energy of 551 keV, while for the data in [168] 
this occurs at 557 keV. 

 
Table 2.5.1. The results of the phase shift analysis of p13C elastic 
scattering at low energies for the experimental data in [167].  
In the analysis, only one 3S1 phase shift is considered, the others are 
considered equal or close to zero. 
 

The 3S1 phase shift was obtained from data in [167] at 123.8° (c.m.).  
Black points in Fig. 2.5.1. 

Elab , keV 3S1 , deg 

301 -2.6 

330 3.7 

351 -2.1 

388 -0.8 

432 3.4 

479.8 14.7 

502 17.7 

512 18.6 

520.8 19.5 

526 22.1 

531.2 26.7 

533.7 55.6 

538 59.6 

542.4 72.1 

547.5 84.2 

551.2 93.6 

553.1 103.6 

555.4 117.8 

563.9 126.0 

566 126.0 

568.3 126.0 

577.3 137.5 
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604 149.7 

643.3 158.3 

732.1 161.2 

The 3S1 phase shift was obtained from data in [167] at 94.4° (c.m.).  
Black squares in Fig. 2.5.1. 

Elab , keV 3S1 , deg 

495 12.6 

530 30.4 

544.6 41.9 

550 33.7 

579 145.0 

613 144.0 

 
The width of the resonance is in the range 20–25 keV, which is in good 

agreement with the results of [120], where the value of 23(1) keV at a 
resonance energy of 551 keV is given. The resonance width taken from the 
experimental data for the triplet 3S1 phase shifts has a smaller scattering and 
value than for p12C [115]; its description requires a very narrow potential 
leading us to the width order parameter of  = 2–3 fm-2 [169]. 

 
Table 2.5.2. The results of the phase shift analysis of p13C elastic scat-
tering at low energies for the experimental data in [168].  
In the analysis, only one 3S1 phase shift is considered, the others being 
considered equal or close to zero. 
 

The 3S1 phase shift was obtained from data in [168] at 120° (c.m.).  
Circles in Fig. 2.5.1. 

Elab , keV 3S1 , deg 

526 38.7 

534 38.0 

538 44.4 

541 56.5 

545 66.0 

549.9 76.7 

553 87.0 
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557 93.5 

565.1 103.0 

576.8 154.0 

584.4 155.8 

595.3 159.6 

The 3S1 phase shift was obtained from data in [168] at 60° (c.m.).  
Open squares in Fig. 2.5.1. 

Elab , keV 3S1 , deg 

506.4 38.5 

537.8 60.7 

541.1 69.2 

545.4 81.2 

549.5 97.0 

553.1 97.0 

564.7 109.3 

576.3 127.6 

584.3 134.2 

594.9 141.7 

 
However, a rather exact extraction on the basis of the phase shift analysis 

of the triplet S phase shift from the experimental data gives us hope for the 
quite unambiguous creation of potential p13C interactions. The resonance 
form of the phase shift with such a small resonance width allows us to avoid, 
at the creation of potentials, continuous ambiguity peculiar to the optical 
model [6], because only a relatively certain width of the potential is capable 
of being used to describe its resonance form correctly. 

Furthermore, the obtained scattering phase shifts are used for the 
creation of the intercluster interaction potentials [169] and the calculation 
of the astrophysical S-factor of proton radiative capture on 13C [170] at 
astrophysical energies. This process is included in the CNO thermonuclear 
cycle as its second reaction. It makes an essential contribution to the energy 
exit of the thermonuclear reactions [124,170,171], which leads to the 
combustion of the Sun and other stars in our universe [28,122]. 
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2.5.4. Phase shift analysis of n3He elastic scattering 

On the basis of the methods described above, the phase shift analysis of 
the known experimental data on differential cross sections of elastic n3He 
scattering in the energy range 1–5 MeV (l.s.) was carried out [172,173,174]. 
The results of the first version of the phase shift analysis for the elastic 
scattering phase shifts are presented in Fig. 2.5.2. To carry out the analysis, 
the 2 value was calculated in [172-174] to address experimental errors for 
the differential cross sections. 

In Fig. 2.5.2, it is clear that the S phase shifts of the n3He scattering 
process do not contain resonances in full agreement with the observed 
spectra for 4He [175]. The resonance with J ,T = 0-,0 at 21.01 MeV in c.m. 
with a neutron width of n = 0.2 MeV, which for the 3P0 phase shift is at 
0.576 MeV in l.s., the higher threshold of the n3He channel located at 20.578 
MeV [175], lies below the available experimental data given in [172-174]. 

In Fig. 2.5.3, the differential cross sections are represented by points for 
the energies considered in [172-174] and solid curves show the cross 
sections obtained from our phase shift analysis, i.e. calculated with the n3He 
scattering phase shifts, found here at energies of up to 5.0 MeV. 
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Fig. 2.5.2a. Phase shifts of n3He elastic scattering at low energies. 
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Fig. 2.5.2b. Phase shifts of n3He elastic scattering at low energies. 
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Fig. 2.5.2c. Phase shifts of n3He elastic scattering at low energies. 
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The resonance with J ,T = 2-,0 at 21.84 MeV in c.m. with n = 0.75 MeV 
and J ,T = 2-,1 at 23:33 MeV in c.m. with n = 2.37 MeV, which lie in the 
scattering phase shifts at 1.68 MeV and 3.67 MeV in l.s., are not shown in 
the 3P2 phase shifts. Finally, the two last resonances with 1-1, and 1-,0 at 
23.64 MeV with n = 2.65 MeV and 24.25 MeV in c.m. with n = 2.87 MeV 
[175] for the 3P1 or 1P1 scattering phase shifts, which have to be at energies 
of 4.08 MeV and 4.90 MeV in l.s., are also not shown in the phase shift 
analysis. 

The lack of obvious resonances in the specified scattering phase shifts 
for these partial waves can be explained by the fact that their resonance 
energies lie a little away from the energies considered in this analysis—at 
these energies, the experimental data are just absent. In addition, some of 
these resonances have a width that is too large, being equal, in fact, to half 
the resonance energy, which also complicates the determination of their 
location in the available experimental data. 
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Fig. 2.5.3a. The differential cross sections of n3He elastic scattering, with 
experimental data from [172]. 

 
In this version of the phase shift analysis, the singlet 1S phase shift starts 

from zero, but, according to the Levinson theorem [4], in the presence of 
the bound states forbidden or allowed in this partial wave, the phase shift 
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has to begin with N , where N is the number of such states. In this case, 
there are two bound states: the ground state and the first excited state at an 
energy of 20.21 MeV relative to the ground state. In 4He, it lies below the 
threshold of the n3He channel [175], i.e. in this channel, it is bound at an 
energy of -0.37 MeV. 

Therefore, the 1S0 phase shift has to begin at 360 degrees. We will call 
this the second version of the analysis and its results are presented in Fig. 
2.5.4 (the 1S0 phase shift is shown from 180  to place it with the 3S1 phase 
shift in one figure) with the differential cross sections shown in Fig. 2.5.5. 
In Fig. 2.5.5, the points represent the experimental data for the differential 
cross sections [172-174] and the curves have been calculated using the 
found scattering phase shifts of the scattering cross sections. 
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Fig. 2.5.3b. The differential cross sections of n3He elastic scattering with 
experimental data from [172]. 

 
The variant phase shift analysis taking into account only S and P 

scattering waves, which appear sufficiently frequently for the description of 
the available differential cross sections at the considered energies, is 
discussed here. Comparing these results to the previous analysis, we can see 
that the D wave has a limited effect on the 2 value.  
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Fig. 2.5.3b. The differential cross sections of n3He elastic scattering with 
experimental data from [173]. 
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Fig. 2.5.3d. The differential cross sections of n3He elastic scattering using 
experimental data from [172]. 
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Fig. 2.5.3e. The differential cross sections of n3He elastic scattering with 
experimental data from [174]. 
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Fig. 2.5.4a. The phase shifts of n3He elastic scattering at low energies. The 
points show the singlet phase shifts of p3H elastic scattering in [176]. 
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Fig. 2.5.4b. The phase shifts of n3He elastic scattering at low energies. The 
singlet p3H phase shifts of elastic scattering from [176] shown by points. 
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Fig. 2.5.5a. The differential cross sections of n3He elastic scattering with 
experimental data from [172]. 
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Fig. 2.5.5b. The differential cross sections of n3He elastic scattering with 
experimental data from [172]. 
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Fig. 2.5.5c. The differential cross sections of n3He elastic scattering with 
experimental data from [173]. 
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Fig. 2.5.5d. The differential cross sections of n3He elastic scattering with 
experimental data from [172]. 

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

400

450

500
e

2=6.6
3S=67.20; 1S=154.60

3P2=49.30; 3P1=30.30; 3P0=9.50; 1P=70.30

3He(n,n)3HeEn = 5.0 MeV

d
/d

c.
m

., m
b/

st

cm, deg
Fig. 2.5.5e. The differential cross sections of n3He elastic scattering with 
experimental data from [174]. 
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The error of the obtained scattering phase shifts is estimated at 

approximately 10 %, as shown in Fig. 2.5.4a for the singlet 1S phase shifts, 
corresponding approximately to the error of the differential cross sections 
[172-174] used in the analysis. For the purposes of comparison, the open 
squares in Fig. 2.5.4a show the singlet p3H phase shifts of the elastic 
scattering obtained previously in [176]. From these results it is clear that the 
singlet 1S phase shift of the n3He elastic scattering found in this analysis 
almost coincides with a similar phase shift for p3H scattering [176,177]. 

Conclusion 

As has been shown, the algorithm for the application of numerical 
methods to find the specific solutions of the general multiparameter 
variation problem for the functionality of 2, determining the accuracy of 
the description of the experimental data on the basis of the chosen 
theoretical representation, allows us to define quite unambiguously the 
scattering phase shifts of nuclear particles [10]. The methods and algorithms 
used have allowed us to obtain new results for the phase shift analysis of 
elastic n3He, p6Li, p12C, n12C, p13C, p14C, n16O, p16O, 4He4He, and 4He12C 
scattering at low energies, including astrophysical ones. 

The scattering phase shifts found in this way well describe the 
experimental cross sections of the elastic scattering, determining the 
location of some low-lying resonance levels of the atomic nuclei considered 
in these channels. The scattering phase shifts obtained here can be applied 
further for the creation of the intercluster potentials of interaction, which 
can be used for calculation of the total cross sections of photonuclear 
processes and the astrophysical S-factors at ultralow or thermal energies 
[122,178]. 
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THE THREE-BODY MODEL 

 
 
 
There is no exact theory that can explain all the properties of atomic 

nuclei. As a result, for the description of their structure, several models have 
been developed each of which is based on a specified set of experimental 
facts and allow one to explain certain properties of the nucleus [179]. In this 
chapter, we examine some of the results obtained for the three-body 
variational problem of the discrete spectrum with the decomposition of the 
wave on the basis of a non-orthogonal Gaussian function with independent 
variation of the decomposition parameters. The two-body potentials are 
based on the description of the elastic scattering phase shift of the 
corresponding particles, which have been partly described in the previous 
chapter. The methods of solving this problem are briefly described in the 
first chapter and used to consider some characteristics of the bound states 
of light atomic nuclei in three-body models. 

Introduction 

In the following works [69-71,180,181,182], the possibilities of the 
three-body model of 6Li have been considered in detail. The ability of this 
model to describe almost all the observed characteristics of this nucleus 
have been shown, along with the significant degree of its clusterization in 
the 2H4He channel. Such a result may well explain some successes of the 
simple two-cluster model of light nuclei with forbidden states, in particular 
the 2H4He, 3H4He models of 6Li and 7Li nuclei [4,79,80,183], which give 
good descriptions of many experimental characteristics of the nucleic 
clusters. 

The three-body model of the light atomic nuclei 7Li, 9Be, and 11B, allows 
us to carry out an inspection and assessment of the pair intercluster 
potentials obtained from scattering phase shifts. This model has convinced 
us of the expediency of its further use for similar potentials in calculations 
connected to the consideration of some astrophysical characteristics of 
nuclear systems and processes at thermal, astrophysical, and low energies, 
such as those that take place in the Sun, the stars, and across our universe 
[4,28,80,122,132,184,185].  
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3.1 The three-body configurations of 7Li and  
the three-body program 

Let us consider the three-body single-channel cluster 4He2Hn model of 
7Li. In any single-channel model, three options of an arrangement of 
particles in a triangular configuration are possible, i.e. three possible 
channels. Moreover, one of these channels has the greatest probability of 
existence. As mentioned previously, some characteristics of the separate 
nuclei are caused primarily by one cluster configuration of the three-cluster 
system with smaller contributions from the other possible cluster channels. 
In this case, the single-channel three-cluster model allows us to identify the 
dominant cluster channel and mark out some of the main properties of the 
nuclear system caused by it. 

Allocation of the prevailing cluster channel and testing of the 
intercluster potentials obtained on the basis of the elastic scattering phase 
shifts requires consideration of the single-channel variant of the three-body 
model. Furthermore, such potentials can be used for various astrophysical 
applications, including consideration of thermonuclear processes in the Sun 
and the universe more generally [28,122]. In addition, the single-channel 
model is much simpler in terms of numerical and program execution in 
comparison to the multichannel variant. 

3.1.1 Potentials and phase shifts 

In the variant layout of particles considered, we locate the 2Hn clusters 
(particles 2 and 3) at the base of the triangle with the radius vector of relative 
distance r = r23 and the orbital moment of relative movement of , which 
can accept 1/2 and 3/2 values. The 4He (particle 1) is located at the top of 
the triangle with its location relative to the center of mass of the two-cluster 
system defined by the vector R = R(23),1 and the moment l. Furthermore, we 
define l = l12 + l13, where l1i stands for the orbital moments between 
particles 1 and i possess the values 2 and 3 (see Fig. 3.1.1). 

The total spin of the S = S3 + S2 system can have values of 1/2 and 3/2, 
i.e. the n2H system can be in doublet and quartet spin states. The first of these 
corresponds to the ground state of the nucleus of tritium at  = 0, which we 
will consider further in the single-channel variant of the three-body model of 
7Li used here. The total orbital angular momentum of the L = l +  system, 
equal to 1, can be obtained, for example, from the combinations of 1 and l = 1 
and  = 0, considered as the n2H system for the tritium nucleus [80]. The total 
angular momentum J = S + L of the ground state of 7Li, equal to 3/2, can be 
obtained from the combination of L = 1 and S = 1/2, which leads to J = 1/2 
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and 3/2 with negative parity. The moment J = 3/2- corresponds to the ground 
state of the nucleus and the moment 1/2- corresponds to the first excited state 
at an energy of 0.478 MeV. 

 

 
 

Fig. 3.1.1. Vector scheme of the three-cluster model. 
 

As pair intercluster potentials, interactions of Gaussian form with a 
repulsion core (1.2.1) allowing them to correctly transfer the corresponding 
phase shifts of the elastic scattering were chosen. In the particle couple (13), 
according to the Young tableaux, the n4He potential is used for the S wave 
(l13 = 0) with the parameters describing an experimental phase shift [186], 
as shown in Fig. 3.1.2. 

In the particle couple (12), the triplet P0 potential of the 4He2H 
interaction is used (l12 = 1), the parameters of which, in general, were 
specified by the three-body 7Li binding energy, as the 3P0 phase shifts shown 
in Fig. 3.1.3 and obtained in [187,188,189,190,191] display great 
ambiguity. The particle couple (23) is considered to display pure orbital 
symmetry, 2Hn doublet S interaction (l23 =  = 0) with repulsion, the 
parameters of which are fixed according to the bound state characteristics 
of the tritium nucleus. The phase shifts are shown in Fig. 3.1.4 by the solid 
line and the parameters of these potentials are specified in Table 3.1.1. 

In each particle couple, only one state with a certain orbital moment and 
one potential for the given partial wave and spin state is used. This is 
justified if the states and potentials of other partial waves (in each particle 
couple) make a smaller contribution and lead only to small amendments to 
the calculation of the characteristics of the considered nucleus.  
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Fig. 3.1.2. The phase shifts of n4He elastic scattering for L = 0 with experimental 
data from [186]. 
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Fig. 3.1.3. The phase shifts of 4He2H elastic scattering for L = 1 and J = 0 with 
experimental data from [187-191]. 
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Fig. 3.1.4. The phase shifts of n2H elastic scattering for L = 0. 

 
Table 3.1.1. The parameters of the intercluster pair interaction potential. 
 

Pair System 2S+1LJ V0, MeV , fm-2 V1, MeV , fm-2 
12 4He2H 3P0 -10.0 0.1 72.0 0.2 
13 n4He 2S1/2 -115.5 0.16 500 1.0 
23 2Hn 2S1/2 -78.78 0.3 200 2.0 

 
Table 3.1.2. The characteristics of tritium in the n2H model with 
potential from Table 3.1.1. 

 
System 2S+1LJ E, MeV Rz, fm Rm, MeV Cw (R, fm) 

2Hn 2S1/2 -6.257 2.17 2.13 2.01(1) (5–20) 
 

It is possible to describe such a model as a single-channel model, as only 
one state with a certain orbital moment and spin and its interaction in each 
particle couple is considered. The characteristics of the bound state of the 
tritium nucleus with a potential, as shown in Table 3.1.1, are provided in 
Table 3.1.2. For the calculations of the characteristics of tritium in the 2Hn 
channel and 7Li in the three-body model, the proton radius equals 
0.8768(69) fm [75], a neutron value that is equal to zero is used and the 2H 
radius is accepted as being equal to 1.9660(68) fm [192]. For the 4He radius, 
the value of 1.671(14) fm specified in [175] is used. 
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The value of the dimensionless asymptotic Cw constant for the 2Hn 
system, the determination of which is given by expression (1.2.3), is also 
shown in Table 3.1.2. The specified Cw error is determined by averaging its 
value by the interval of distances given in brackets. The experimental value 
of the 3H radius according to most modern data is equal to 1.7591(363) fm 
[143] and, in the considered channel, its binding energy is equal to -6.257 
MeV [193]. 

3.1.2 Computer program 

Below, we give the text of a computer program written in Fortran-90 for 
the calculation of the binding energy and WF of 7Li in the 4He2Hn three-
body channel. The program is based on the variation method with the 
decomposition of the WF on the basis of non-orthogonal variation and the 
independent variation of all parameters of decomposition, described in 
detail in the first chapter and [194], where a version of this program has 
been given in BASIC using the Borland Turbo Basic Compiler. All the 
parameters and variables are explained in the printout of the program or are 
similar to the parameters described earlier for other computer programs. For 
example, the value of Z with a number always designates a cluster charge, 
while its weight is designated in whole units, in this case, by the letter M 
with a number, and RK and RM with a digit representing the charge and 
mass radiuses of the clusters etc. 
 
PROGRAM THREE_BODY_7LI 
! The three-body program for 7Li 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,J,K,NF, NV, NP,NITER,NP2,IJK,ITER,LA,IA 
DIMENSION FF(0:500000),FU(0:500000),L(0:50,0:50),PH5(0:50) 
COMMON /M/ 
T(0:50,0:50),L1(0:50,0:50),XP(0:50),VN12(0:50,0:50),VN13(0:50,0:50),
VN121(0:50,0:50),VN131(0:50,0:50),VN122(0:50,0:50),VN132(0:50,0:5
0),VN23(0:50,0:50),VN231(0:50,0:50),VN232(0:50,0:50),H(0:50,0:50),S
V(0:50),VK12(0:50,0:50),VK13(0:50,0:50),VK23(0:50,0:50),VCB(0:50,0
:50) 
COMMON /A/ 
PM0,R122,PM23,A11,V122,M23,R121,V121,R132,M3,M2,M1 
COMMON /B/ R131,V131,HC,R232,V232,R231,V231,PI,A23,A13,A12 
COMMON /C/ PVC,EPP,ZYS,V132,PNC,NEV 
CHARACTER(9) FILI,FILO 
BBB(A,AA,K)=K**2/(2.*K+1.)+(2.*K+3.)*A/AA**2-K 
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Z1=2.0D0 
Z2=1.0D0 
Z3=0.0D0 
M1=4.0D0 
M2=2.0D0 
M3=1.0D0 
Z=Z1+Z2+Z3 
M23=M3+M2 
PM23=M3*M2/M23 
AM0=M1+M2+M3 
PM0=M1*M23/AM0 
RK1=1.67D0 
RK2=1.96D0 
RK3=0.0D0 
RM1=1.67D0 
RM2=1.96D0 
RM3=0.877D0 
NF=6000 
HF=0.005D0 
BB=1.0D+030 
LA=1 
HC=0.010D0 
PNC=-10.0D0 
PVC=0.0D0 
A11=41.46860D0 
A12=1.4399750D0*Z1*Z2 
A13=1.4399750D0*Z1*Z3 
A23=1.4399750D0*Z3*Z2 
P1=4.0D0*DATAN(1.0D0) 
PI=DSQRT(P1) 
! 1 - AL; 2 - D; 3 - N;    L  -  N-AL - 0, AL-D - 1, N-D - 0 
! N-D 
V231=-78.78D0; ! J= 1/2  ; LAM=0 E=6.257 RZ=2.17  
! RM=2.13 Cw=2.01(1) 5-20 Fm 
R231=0.3D0 
V232=200.0D0       
R232=2.0D0 
! AL-D 
V121=-10.0D0; ! J=0; L=1 
R121=0.1D0 
V122=72.0D0      
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R122=0.2D0 
! AL-N 
V131=-115.5D0; ! J=1/2; L=0 
R131=0.16D0 
V132=500.0D0        
R132=1.0D0 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
NP=10 
FILI='ALFAA.DAT' 
FILO='ALFA2.DAT' 
EP=3.0D-015;! THE ENERGY ACCURACY 
EPP=2.0D-015;! THE DETERMINANT ACCURACY 
NITER=30;! THE NUMBER OF ITERATIONS 
NV=1;! IF =0 - THERE IS NO VARIATION, =1 - THE VARIATION OF 
ALL PARAMETERS 
PH=0.00001D0 
IA=1 
IF(IA==0) THEN 
DO I=1,NP 
XP(I)=I/10.0D0 
XP(I+NP)=XP(I)*2.0D0 
ENDDO 
ELSE 
OPEN (1,FILE=FILI) 
READ(1,*) 
DO I=1,NP 
READ(1,*) J,XP(I),XP(I+NP) 
ENDDO 
CLOSE(1) 
ENDIF 
NP2=2*NP 
AAA1: DO ITER=1,NITER 
PH55=PH/ITER 
50 FMIN=BB 
DO IJK=1,NP2 
60 PH5(IJK)=XP(IJK)*PH55 
XP(IJK)=XP(IJK)+PH5(IJK) 
IF (XP(IJK)<0.0D0) THEN 
XP(IJK)=XP(IJK)-PH5(IJK) 
GOTO 61 
ENDIF 
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CALL MINIM(NP,F,LA,FILI) 
CC=BB; BB=F 
IF(NV==0) GOTO 7654 
IF(F<CC)THEN 
PRINT*, ITER,IJK,F,ABS(F-CC) 
IF (ABS(F-CC)>=EP) GOTO 60 
ELSE 
XP(IJK)=XP(IJK)-PH5(IJK) 
ENDIF 
61 ENDDO 
PH55=-PH55/2.0D0 
IF (ABS(CC-F)>=EP/2.0D0) GOTO 50 
ENDDO AAA1 
7654 PRINT*, 
"***************************************************" 
PRINT*, "E = ",F 
PRINT* 
PRINT*, "          N            ALFA                   BET" 
DO I=1,NP 
PRINT*,I,XP(I),XP(I+NP) 
ENDDO 
PRINT* 
899  CONTINUE  
ZYS=1.0D0 
ALA=F 
CALL MINIM(NP,ALA,LA,FILI) 
! - - - - - - - - - - - - - - - - - - THE NORMALIZATION - - - - - - - - - - - - - - 
IF (LA==1) THEN 
FA=3.; AF=2. 
ENDIF 
IF (LA==2) THEN 
FA=15.; AF=6. 
ENDIF 
IF (LA<1 .OR. LA>2) STOP 
CALL SVNOR(PI,LA,NP,XP,SV) 
!---------------------CHECK OF THE NORMALIZATION------------------- 
S=0.0D0 
DO I=1,NP 
DO J=1,NP 
AL=XP(I)+XP(J) 
BT=XP(I+NP)+XP(J+NP) 
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DO K=0,NF 
R=HF*K 
RR=(R**2)*AL 
AB=(R**2)*DEXP(-RR) 
FF(K)=AB 
ENDDO 
CALL SIMPS(NF,HF,FF,S1) 
DO K=0,NF 
R=HF*K 
RR=(R**2)*BT 
AC=R**(2*LA+2)*DEXP(-RR) 
FU(K)=AC 
ENDDO 
CALL SIMPS(NF,HF,FU,S2) 
S=S+SV(I)*SV(J)*S1*S2 
ENDDO 
ENDDO 
SNOR=S 
PRINT* 
PRINT*, "   NORM =",SNOR,'        NEV-DET = ',NEV 
PRINT* 
PRINT*, '          N                 SV'          
DO I=1,NP 
PRINT*,  I,SV(I) 
ENDDO 
6622 CONTINUE 
! ******************* THE NORMALIZATION 
****************** 
BN=LA+1.5 
SS=0. 
DO I=1,NP 
DO J=1,NP 
AL=XP(I)+XP(J) 
BT=XP(I+NP)+XP(J+NP) 
L(I,J)=1./AL**1.5/BT**BN 
SS=SS+SV(I)*SV(J)*L(I,J) 
ENDDO 
ENDDO 
SN=DSQRT(FA*P1/16./2.**LA*SS) 
PRINT* 
PRINT*, "  N= ", SN 
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! *******************  RM **************************** 
S=0. 
DO I=1,NP 
DO J=1,NP 
AL=XP(I)+XP(J) 
BT=XP(I+NP)+XP(J+NP) 
S=S+SV(I)*SV(J)/BT**BN/AL**1.5*(3.*PM23/AL+(2.*LA+3.)*PM0/B
T) 
 ENDDO 
 ENDDO 
 RMM=P1*FA*S/2.**(LA+1)/16. 
RRR=M1/AM0*RM1**2+M2/AM0*RM2**2+M3/AM0*RM3**2+RM
M/AM0 
RM=DSQRT(RRR) 
PRINT*, " RM = ", RM 
! ********************  RZ *************************** 
CCC=(Z1*M23**2+(Z2+Z3)*M1**2)/AM0**2 
DDD=(Z2*M3**2+Z3*M2**2)/M23**2 
EEE=-M1/AM0/M23*(Z2*M3-Z3*M2) 
S=0. 
SS=0. 
SSS=0. 
DO I=1,NP 
DO J=1,NP 
AL=XP(I)+XP(J) 
BT=XP(I+NP)+XP(J+NP) 
S=S+SV(I)*SV(J)*(2.*LA+3.)/BT**(LA+2.5)/AL**1.5 
SS=SS+SV(I)*SV(J)*3./BT**(LA+1.5)/AL**2.5 
SSS=SSS+SV(I)*SV(J)*AF/BT**(LA+2)/AL**2 
ENDDO 
ENDDO 
RMM=FA/2**(LA+1)*P1/16.*(CCC*S+DDD*SS)+EEE*SSS 
RRR=Z1/Z*RK1**2+Z2/Z*RK2**2+Z3/Z*RK3**2+RMM/Z 
RZ=DSQRT(RRR) 
PRINT*, " RZ = ",RZ 
! *********************** Q ************************* 
QQ=-10.*2./5.*RMM+2.86 
PRINT*, " Q = ",QQ 
! *************** CONTROL ENERGY  ***************** 
SC=0. 
SK=0. 
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SP=0. 
SL=0. 
S1=0. 
S3=0. 
S2=0. 
SH=0. 
DO I=1,NP 
DO J=1,NP 
S1=S1+SV(I)*SV(J)*VK12(I,J) 
S2=S2+SV(I)*SV(J)*VK13(I,J) 
S3=S3+SV(I)*SV(J)*VK23(I,J) 
SC=SC+SV(I)*SV(J)*VCB(I,J) 
SK=SK+SV(I)*SV(J)*T(I,J) 
SP=SP+SV(I)*SV(J)*(VN12(I,J)+VN13(I,J)+VN23(I,J)) 
SL=SL+SV(I)*SV(J)*L1(I,J) 
SH=SH+SV(I)*SV(J)*H(I,J) 
ENDDO 
ENDDO 
SC1=S1*P1/16.0D0 
SC2=S2*P1/16.0D0 
SC3=S3*P1/16.0D0 
SCU=SC1+SC2+SC3 
SC=SC*P1/16.0D0 
SK=SK*P1/16.0D0 
SP=SP*P1/16.0D0 
SL=SL*P1/16.0D0 
SH=SH*P1/16.0D0 
ST=SCU+SK+SP+SC 
PRINT* 
PRINT*, "COUL. ENERGY  VK = ",SCU," 12 = ",SC1," 13 = ",SC2," 23 
= ",SC3 
PRINT*, "CENTROB. ENERGY =  ",SC 
PRINT*, "KINETICH. ENERGY =  ",SK 
PRINT*, "M.E. OT L1 = ",SL 
PRINT*, "POTENS. ENERGY =  ",SP 
PRINT*, "POLNAY ENERGY ST =  ",ST 
PRINT*, "POLNAY ENERGY SH =  ",SH 
!------------------------------------------------------------------------------ 
PRINT*, "???" 
READ*, AAA 
IF(AAA==0) GOTO 2244 
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OPEN (1,FILE=FILO) 
WRITE(1,*) '         N                    ALFA                         BETTA' 
DO I=1,NP 
WRITE(1,*) I,XP(I),XP(I+NP) 
ENDDO 
WRITE(1,*) 
WRITE(1,*) 'E = ',F 
WRITE(1,*) 
WRITE(1,*)'SUM(H*SV-E*L*SV) FROM SV=',ALA 
WRITE(1,*) 
WRITE(1,*) '         N                     SV'          
DO I=1,NP 
WRITE(1,*) I,SV(I) 
ENDDO 
WRITE(1,*) 
WRITE(1,*) 'NOR= ',SNOR, SN 
WRITE(1,*) 
WRITE(1,*) 'NEV-DET=',NEV 
WRITE(1,*) 
WRITE(1,*) "RM=",RM," RZ=",RZ 
WRITE(1,*) 
WRITE(1,*) "Q=",QQ 
CLOSE(1) 
2244 CONTINUE 
END 
 
SUBROUTINE SIMPS(N,H,F,S) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,N 
DIMENSION F(0:500000) 
A=0.0D0;B=0.0D0 
DO I=1,N-1,2 
B=B+F(I) 
ENDDO 
DO I=2,N-2,2 
A=A+F(I) 
ENDDO 
S=H*(F(0)+F(N)+2.0D0*A+4.0D0*B)/3.0D0 
END 
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MINIM(NP,ALA,L,FILO) 
IMPLICIT REAL(8) (A-Z) 
INTEGER   NP,KK,JJ,L,K,I 
COMMON /M/ 
T(0:50,0:50),L1(0:50,0:50),XP(0:50),VN12(0:50,0:50),VN13(0:50,0:50),
VN121(0:50,0:50),VN131(0:50,0:50),VN122(0:50,0:50),VN132(0:50,0:5
0),VN23(0:50,0:50),VN231(0:50,0:50),VN232(0:50,0:50),H(0:50,0:50),S
V(0:50),VK12(0:50,0:50),VK13(0:50,0:50),VK23(0:50,0:50),VCB(0:50,0
:50) 
COMMON /A/ 
PM0,R122,PM23,A11,V122,M23,R121,V121,R132,M3,M2,M1 
COMMON /B/ R131,V131,HC,R232,V232,R231,V231,PI,A23,A13,A12 
COMMON /C/ PVC,EPP,ZYS,  V132,PNC,NEV 
CHARACTER(9) FILO 
BBB(A,AB,K)=(1.*K)**2/(2.*K+1.)+(2.*K+3.)*A/AB**2-(1.*K) 
P1=4.0D0*DATAN(1.0D0) 
PI=DSQRT(P1) 
IF(L==1) THEN  
FA=3.; FAA=1.;FFA=1. 
ENDIF 
IF(L==2) THEN  
FA=15.; FAA=3.;FFA=2. 
ENDIF 
IF(L<1 .OR. L>2) THEN  
PRINT*, "STOP"; STOP 
ENDIF 
A1: DO KK=1,NP 
A5: DO JJ=1,NP 
AL=XP(KK)+XP(JJ) 
AL1=XP(KK)*XP(JJ) 
BT=(XP(KK+NP)+XP(JJ+NP)) 
BT1=XP(KK+NP)*XP(JJ+NP) 
H1=FA/2.**L*A11/PM23/BT*BBB(AL1,AL,0)/AL**0.5/BT**(L+0.5) 
H2=FA/2.**L*A11/PM0/AL*BBB(BT1,BT,L)/AL**0.5/BT**(L+0.5) 
T(KK,JJ)=H1+H2 
L1(KK,JJ)=FA/2.**L/AL**1.5/BT**(L+1.5) 
AA=AL*BT+R121*(AL+BT*(M3/M23)**2) 
DD=(M3/M23)**2*R121+AL 
VN121(KK,JJ)=FA/2.**L*V121*DD**L/AA**(L+1.5) 
AA=AL*BT+R122*(AL+BT*(M3/M23)**2) 
DD=(M3/M23)**2*R122+AL 
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VN122(KK,JJ)=FA/2.**L*V122*DD**L/AA**(L+1.5) 
VN12(KK,JJ)=VN121(KK,JJ)+VN122(KK,JJ) 
AA=AL*BT+R131*(AL+BT*(M2/M23)**2) 
DD=(M2/M23)**2*R131+AL 
VN131(KK,JJ)=FA/2.**L*V131*DD**L/AA**(L+1.5) 
AA=AL*BT+R132*(AL+BT*(M2/M23)**2) 
DD=(M2/M23)**2*R132+AL 
VN132(KK,JJ)=FA/2.**L*V132*DD**L/AA**(L+1.5) 
VN13(KK,JJ)=VN131(KK,JJ)+VN132(KK,JJ) 
VN231(KK,JJ)=FA/2.**L*V231/BT**(L+1.5)/(AL+R231)**1.5 
VN232(KK,JJ)=FA/2.**L*V232/BT**(L+1.5)/(AL+R232)**1.5 
VN23(KK,JJ)=VN231(KK,JJ)+VN232(KK,JJ) 
VK12(KK,JJ)=2.*FFA*A12/PI/AL**1.5/BT**(L+1) 
VK13(KK,JJ)=2.*FFA*A13/PI/AL**1.5/BT**(L+1) 
VK23(KK,JJ)=2./2.**L*FA*A23/PI/AL/BT**(L+1.5) 
VCB(KK,JJ)=(1.*L)*(1.*L+1.)/2.**L*FAA*A11/AL**1.5/BT**(L+0.5)/
PM0 
H(KK,JJ)=T(KK,JJ)+VN23(KK,JJ)+VN12(KK,JJ)+VN13(KK,JJ)+VCB(
KK,JJ)+VK12(KK,JJ)+VK13(KK,JJ)+VK23(KK,JJ) 
ENDDO A5 
ENDDO A1   
CALL MINI(NP,ALA,DETER) 
EE=ALA 
OPEN (1,FILE=FILO) 
WRITE(1,*) '         N                    ALFA                         BETTA' 
DO I=1,NP 
WRITE(1,*) I,XP(I),XP(I+NP) 
ENDDO 
WRITE(1,*) 
WRITE(1,*) 'E = ',EE 
CLOSE(1) 
IF (ZYS==1.0D0) THEN  
CALL VEC(NP,ALA) 
CALL SVNOR(PI,L,NP,XP,SV) 
ENDIF 
END 
 
SUBROUTINE SVNOR(PI,L,NP,XP,SV) 
IMPLICIT REAL(8) (A-Z) 
INTEGER NP,L,I,J 
DIMENSION SV(0:50),XP(0:50),A(0:50,0:50) 
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IF (L==1) THEN 
FA=3. 
ENDIF 
IF (L==2) THEN 
FA=15. 
ENDIF 
SS=0. 
DO I=1,NP 
DO J=1,NP 
AL=XP(I)+XP(J) 
BT=XP(I+NP)+XP(J+NP) 
A(I,J)=1./AL**1.5/BT**(L+1.5) 
SS=SS+SV(I)*SV(J)*A(I,J) 
ENDDO 
ENDDO 
ANOR=DSQRT(16.*2.**L/FA/SS)/PI 
DO I=1,NP 
SV(I)=ANOR*SV(I) 
ENDDO 
END 
 
SUBROUTINE MINI(NP,COR,D) 
IMPLICIT REAL(8) (A-Z) 
INTEGER C,  NP 
COMMON /A/ 
PM0,R122,PM23,A11,V122,M23,R121,V121,R132,M3,M2,M1 
COMMON /B/ R131,V131,HC,R232,V232,R231,V231,PI,A23,A13,A12 
COMMON /C/ PVC,EPP,ZYS,  V132,PNC,NEV 
PN=PNC; PV=PVC; H=HC; E=EPP 
IF(PN>PV) THEN 
PNN=PV; PV=PN; PN=PNN 
ENDIF 
A=PN  
1 CALL DET(NP,A,D1); B=A+H 
2 CALL DET(NP,B,D2) 
IF (D1*D2>0.0D0) THEN 
B=B+H; D1=D2 
IF (B<=PV .AND. B>=PN) GOTO 2 
C=0; RETURN; ELSE 
A=B-H; H=H*1.0D-001 
IF(ABS(D2)<E .OR. ABS(H)<E) GOTO 3 
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B=A+H; GOTO 1 
ENDIF 
3 C=1; COR=B; D=D2 
END 
 
SUBROUTINE DET(NP,LLA,S) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,J,K,NP   
DIMENSION LLL(0:50,0:50),B(0:50,0:50),C(0:50,0:50),AAA(0:50,0:50) 
COMMON /M/ 
T(0:50,0:50),L1(0:50,0:50),XP(0:50),VN12(0:50,0:50),VN13(0:50,0:50),
VN121(0:50,0:50),VN131(0:50,0:50),VN122(0:50,0:50),VN132(0:50,0:5
0),VN23(0:50,0:50),VN231(0:50,0:50),VN232(0:50,0:50),H(0:50,0:50),S
V(0:50),VK12(0:50,0:50),VK13(0:50,0:50),VK23(0:50,0:50),VCB(0:50,0
:50) 
COMMON /A/ 
PM0,R122,PM23,A11,V122,M23,R121,V121,R132,M3,M2,M1 
COMMON /B/ R131,V131,HC,R232,V232,R231,V231,PI,A23,A13,A12 
COMMON /C/ PVC,EPP,ZYS,  V132,PNC,NEV 
DO I=1,NP 
DO J=1,NP 
LLL(I,J)=(H(I,J)-LLA*L1(I,J)) 
B(I,J)=0.0D0 
C(I,J)=0.0D0 
ENDDO 
ENDDO 
GOTO 234 
PRINT*, "                    THE  LLL=H-E*L1" MATRIX 
PRINT* 
DO II=1,NP 
DO KK=1,NP 
PRINT*, LLL(II,KK) 
ENDDO 
PRINT* 
ENDDO 
234 CONTINUE 
! - - - - LLLL - DECOMPOSITION ON THE TRIANGULAR - - - - - - - 
DO I=1,NP 
C(I,I)=1.0D0 
B(I,1)=LLL(I,1) 
C(1,I)=LLL(1,I)/B(1,1) 
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ENDDO 
DO I=2,NP 
DO J=2,NP 
S=0.0D0 
IF (J>I) GOTO 1 
DO K=1,I-1 
S=S+B(I,K)*C(K,J) 
ENDDO 
B(I,J)=LLL(I,J)-S 
GOTO 2 
1 S=0.0D0 
DO K=1,I-1 
S=S+B(I,K)*C(K,J) 
ENDDO 
C(I,J)=(LLL(I,J)-S)/B(I,I) 
2 CONTINUE 
ENDDO 
ENDDO 
! - - - - CHECK OF THE DECOMPOSITION OF THE LLL MATRIX - -  
SS=0.0D0 
DO I=1,NP 
DO J=1,NP 
S=0.0D0 
DO K=1,NP 
S=S+B(I,K)*C(K,J) 
ENDDO 
AAA(I,J)=S-LLL(I,J) 
SS=SS+AAA(I,J) 
ENDDO 
ENDDO 
NEV=SS 
GOTO 678 
PRINT*, "               FOR THE N=LLL-B*C =0" DETERMINANT 
DO I=1,NP 
PRINT* 
DO J=1,NP 
PRINT*,AAA(I,J) 
ENDDO 
ENDDO 
PRINT* 
678 CONTINUE 
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S=1.0D0 
DO K=1,NP 
S=S*B(K,K) 
ENDDO 
GOTO 991 
PRINT 22, LLA,S,SS 
PRINT*, "       DET=",S 
PRINT*, "       NEV=",SS 
991 CONTINUE 
22 FORMAT(3E15.5) 
END 
 
SUBROUTINE VEC(NP,LLA) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,J,K,J1,I1,NP   
DIMENSION 
LLL(0:50,0:50),D(0:50),Y(0:50),B(0:50,0:50),AD(0:50,0:50),X(0:50),C(0
:50,0:50),E2(50) 
COMMON /M/ 
T(0:50,0:50),L1(0:50,0:50),XP(0:50),VN12(0:50,0:50),VN13(0:50,0:50),
VN121(0:50,0:50),VN131(0:50,0:50),VN122(0:50,0:50),VN132(0:50,0:5
0),VN23(0:50,0:50),VN231(0:50,0:50),VN232(0:50,0:50),H(0:50,0:50),S
V(0:50),VK12(0:50,0:50),VK13(0:50,0:50),VK23(0:50,0:50),VCB(0:50,0
:50) 
COMMON /A/ 
PM0,R122,PM23,A11,V122,M23,R121,V121,R132,M3,M2,M1 
COMMON /B/ R131,V131,HC,R232,V232,R231,V231,PI,A23,A13,A12 
COMMON /C/ PVC,EPP,ZYS,  V132,PNC,NEV 
DO I=1,NP 
DO J=1,NP 
LLL(I,J)=(H(I,J)-LLA*L1(I,J)) 
B(I,J)=0.0D0 
C(I,J)=0.0D0 
ENDDO 
ENDDO 
DO I=1,NP-1 
DO J=1,NP-1 
AD(I,J)=LLL(I,J) 
ENDDO 
ENDDO 
I1=1 
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I2=NP-1 
J=NP 
DO I=I1,I2 
D(I)=-LLL(I,J) 
ENDDO 
NP=NP-1 
CALL TRI(NP,AD,B,C,SOB) 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Y(1)=D(1)/B(1,1) 
DO I=2,NP 
S=0.0D0 
DO K=1,I-1 
S=S+B(I,K)*Y(K) 
ENDDO 
Y(I)=(D(I)-S)/B(I,I) 
ENDDO 
X(NP)=Y(NP) 
DO I=NP-1,1,-1 
S=0.0D0 
DO K=I+1,NP 
S=S+C(I,K)*X(K) 
ENDDO 
X(I)=Y(I)-S 
ENDDO 
DO I=1,NP 
SV(I)=X(I) 
ENDDO 
NP=NP+1 
SV(NP)=1 
S=0.0D0 
DO I=1,NP 
S=S+SV(I)**2 
ENDDO 
!PRINT*,'S=', S 
SS=0.0D0 
DO I=1,NP 
SV(I)=SV(I)/DSQRT(ABS(S)) 
! SS=SS+SV(I)**2 
ENDDO 
!AN=1.0D0/DSQRT(ABS(SS)) 
!AN=1.0D0 
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!PRINT*, "                           H*SV-LA*L*SV=0" 
SSS=0.0D0 
DO I=1,NP 
S=0.0D0 
SS=0.0D0 
DO J=1,NP 
!SV(J)=SV(J)*AN 
S=S+H(I,J)*SV(J) 
SS=SS+LLA*L1(I,J)*SV(J) 
ENDDO 
E2(I)=S-SS 
SSS=SSS+E2(I) 
ENDDO 
LLA=SSS 
!DO I=1,NP 
!PRINT*,"E2 = ",E2(I) 
!ENDDO 
PRINT* 
PRINT*,'            SUM(H*SV-E*L*SV) FROM SV =',LLA 
END 
 
SUBROUTINE TRI(NP,AD,B,C,S) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,J,K,NP 
DIMENSION AD(0:50,0:50),B(0:50,0:50),C(0:50,0:50),AAA(0:50,0:50) 
DO I=1,NP 
C(I,I)=1.0D0 
B(I,1)=AD(I,1) 
C(1,I)=AD(1,I)/B(1,1) 
ENDDO 
DO I=2,NP 
DO J=2,NP 
S=0.0D0 
IF (J>I) GOTO 551 
DO K=1,I-1 
S=S+B(I,K)*C(K,J) 
ENDDO 
B(I,J)=AD(I,J)-S 
GOTO 552 
551 S=0.0D0 
DO K=1,I-1 
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S=S+B(I,K)*C(K,J) 
ENDDO 
C(I,J)=(AD(I,J)-S)/B(I,I) 
552 CONTINUE 
ENDDO 
ENDDO 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
SS=0.0D0 
DO I=1,NP 
DO J=1,NP 
S=0.0D0 
DO K=1,NP 
S=S+B(I,K)*C(K,J) 
ENDDO 
AAA(I,J)=S-AD(I,J) 
SS=SS+AAA(I,J) 
ENDDO 
ENDDO 
GOTO 578 
PRINT*, "                              NEV = AD - B*C =0" 
DO I=1,NP 
DO J=1,NP 
PRINT*,AAA(I,J) 
ENDDO 
ENDDO 
578 S=1.0D0 
DO K=1,NP 
S=S*B(K,K) 
ENDDO 
! GOTO 9753 
! PRINT*, "               DET=",S 
!PRINT*,S 
PRINT*, "               NEV-TRI=",SS 
!PRINT*,SS 
9753 PRINT* 
END 
 
SUBROUTINE WW(SK,L,GK,R,N,H,WH) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,L,N,NN  
DIMENSION V(50000) 
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H=H 
N=N 
SS=DSQRT(ABS(SK)) 
AA=GK/SS 
BB=L 
NN=500 
HH=.02D0 
ZZ=1+AA+BB 
AAA=1.0D0/ZZ 
NNN=2000 
DO I2=1,NNN 
AAA=AAA*I2/(ZZ+I2) 
ENDDO 
GAM=AAA*NNN**ZZ 
RR=R 
CC=RR*SS*2 
DO I=0,NN 
TT=HH*I 
V(I)=TT**(AA+BB)*(1+TT/CC)**(BB-AA)*DEXP(-TT) 
ENDDO 
CALL SIMPS(NN,HH,V,S) 
WH=S*DEXP(-CC/2.0D0)/(CC**AA*GAM) 
END  

3.1.3 The three-body results 

Below, we present the results of analysis using this program for 7Li with 
the variant of three-body configuration considered above for nine members 
of the decomposition of the three-body wave function (1.5.4) by the 
Gaussian functions: 

 
E = -8.7165 04042795002 

 
 

          N            ALPHA ( )  BETA ( ) 
           1   2.695013648564534E-001   5.552519454982658E-002 
           2   6.073846174799727E-002   5.582211053901705E-002 
           3   1.481076486508074E-001   1.500571262902319E-001 
           4   1.219211094860576E-001   2.100593191345530E-001 
           5   1.583008396850423E-001   6.443497149569889E-001 
           6   1.572092636709496E-001   6.485407339616155E-001 
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           7   2.048327219956353E-001   5.160938755052593E-001 
           8   2.920843757329559E-001   3.970902201955188E-001 
           9   1.185843962546213             7.762432248877493E-002 

 
SUM(H*SV-E*L*SV) FROM SV = -3.048700181196296E-011 

 NORM = 9.999999999986114E-001 
NEV-DET = -9.947598300641403E-014 

 
           N   SV 
           1  -2.006282287524374E-002 
           2  -1.041690910372422E-002 
           3  -1.956124177741528E-001 
           4   1.721055580493311E-001 
           5      -33.347719101844450 
           6       31.786460544316070 
           7        2.111064771161292 
           8  -5.187214457242435E-001 
           9   4.082610488279214E-002 

 
RM = 2.771546765454730 

 
For ten members of the decomposition of the WF by the Gaussian 

functions, we obtain the following results: 
 

E = -8.7176 07265169926 
 

N ALPHA ( )                  BETA ( ) 
1   2.667953617399743E-001   5.601125106169563E-002 
2   5.941262333765297E-002   5.493848544738812E-002 
3   1.393163512886810E-001   1.556109489548065E-001 
4   1.235101199700397E-001   1.918288577203961E-001 
5   1.584363057560162E-001   6.454611171440240E-001 
6   1.578191661203245E-001   6.479935485451310E-001 
7   2.037134087039333E-001   5.101654896420405E-001 
8   2.707874198704808E-001   4.030486689121375E-001 
9   1.211284751587861             7.694488373218295E-002 
10 4.678503078478220             7.811004516393501E-002 

 
NEV-TRI = 3.979039320256561E-013 

 
SUM(H*SV-E*L*SV) FROM SV = -3.541195364720196E-009 
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NORM = 9.999999999949636E-001 
NEV-DET = 3.836930773104541E-013 

 
N  SV 
1   2.090487646994713E-002 
2   9.678149889880678E-003 
3   2.816715670580448E-001 
4  -2.562071190446284E-001 
5       65.304218586437270 
6      -63.510565912605150 
7       -2.554362633383337 
8   7.253463724545455E-001 
9  -4.040198847629709E-002 
10   8.813225618937962E-004 

 
NN = 9.999999999997704E-001 

RM = 2.792145900219183 
RZ = 2.517493303959341 
Q = -35.515670530665620 

 
COUL. ENERGY VK = 7.722608537158121E-001 

CENTROB. ENERGY = 1.906186930356347 
KINETICH. ENERGY = 15.485397205276890 
POTENS. ENERGY = -26.881452254540800 

 
POLNAY ENERGY ST = -8.717607265191750 
POLNAY ENERGY SH = -8.717607265145604 

 
The results for different N practically coincide and their difference with 

a value of about 1 keV shows the saturation of the process of the 
convergence calculation for the three-body energy. For the purposes of 
comparison, we give the experimental value of the three-body binding 
energy of -8.724 MeV of 7Li [195]. This differs from the energy obtained 
above by only 6–7 keV. 

For the mass and charge radii, values of 2.79 fm and 2.52 fm, 
respectively, were obtained. The last of these appears significantly greater 
than the values of the experimental data: 2.39(3) fm and 2.35(10) fm [195]. 
However, here, as shown in [80], using the 2Hn potential leads to an 
overestimation of the tritium radius (see Table 3.1.2), which also has an 
influence on the radius of 7Li. As such, the deuteron cluster needs to be 
deformed, both in the tritium kernel and in 7Li, because, in its free state, 
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deuteron presents a very friable system. To obtain the correct charge radius 
of 7Li, equal to 2.39(3) fm, it is necessary to reduce the radius of the 
deuteron cluster by approximately 30 % from the original, as has been 
described previously for a tritium nucleus [80], and to accept it as being 
approximately equal to 1.4 fm. 

The value of -35.5 mb was obtained in the calculations given above for 
the quadrupole moment of 7Li, which is not much less than the values in the 
known data: -40.7(8) mb [195] and -36.6(3) mb [196]. The normalizations 
NORM and NN of the wave function, obtained in two different ways and 
equal in both cases to a unit with fine precision, are given in the results of 
the calculation. The accuracy to which the eigenvectors are determined is 
not less than 10-8 and the residuals of triangularization NEV-TRI and 
calculation of the NEV-DET determinant are at the level of 10-12–10-13. 

In the considered configuration of the cluster layout, there is the 
possibility of variation in the parameters of the P0 potential in the 4He2H 
channel, because of large errors in the elastic scattering phase shifts. This 
allowed us to compensate while not accounting for other orbital 
configurations, i.e. a single-channel model, and to obtain the correct binding 
energy of the nucleus. At the same time, this configuration clearly allocates 
the 4He3H structure of 7Li, which has the highest probability of existence 
[80,197]. Therefore, the additional variation of the P0 parameters of the 
potential allows us to specify the binding energy of 7Li having been brought 
into good agreement with the experimental value. 

In the conclusion of this paragraph, we will pay attention to the 
subsequent lines of the list given above as 

 
E = -8.7176 0726 51 69926 

 
and 
 

POLNAY ENERGY ST = -8.7176 0726 51 91750 
POLNAY ENERGY SH = -8.7176 0726 51 45604 

 
showing the three-body binding energy of 7Li in the calculations given above. 
The difference in the numerical values of this energy shows the accuracy to 
which it is decided by different methods, with an order of 10-10 MeV. 

Let us note that the modern value of the deuteron radius is equal to 
2.1402(28) fm [75], while for 4He it is equal to 1.6753(28) fm [143], which 
is slightly more than the values 1.97 fm and 1.67 fm [76-78,192] used here. 
The most modern value for the charge radius of 7Li is equal to 2.4017(281) 
fm [143] or 2.4173(280) fm, as given in [198]. However, these results for 
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the three-body model were obtained by us in the late 1990s [199] and 
therefore slightly older values of all cluster radiuses were used here. 

3.2 Three-body model of 9Be 

Let us move on to considering 9Be in the model of the three-body cluster 
4He3H2H. Let us assume that there are 3H2H clusters at the base of a triangle 
of three particles (particles 23), with the orbital moment of relative 
movement  = 0 and spin 1/2, i.e. only the doublet status of these clusters is 
considered. 4He (particle 1) is located at the top of the triangle and its 
location is relative to the center of mass of the two-cluster system defined 
by the orbital moment l. 

The total spin of the system of three particles of the orbital moment 
L = l +  is equal to 1 and is considered equal to 1/2, and can be obtained, 
for example, from the combination l = 1 and  = 0 (l = l t + l d) at l t = 1  
l d = 0. Here, it is supposed that this orbital configuration dominates in the 
considered 4He3H2H model, i.e. the single-channel three-body model of this 
nucleus is also considered. In the case of such a configuration of clusters, 
the total moment of the J = L + S system is equal to 3/2- and 1/2-, the first 
of which corresponds to the GS of 9Be. 

3.2.1 Potentials and scattering phase shifts 

In the calculations, the binary intercluster potentials for the 4He3H and 
4He2H systems with a repulsion core and forbidden state in the 3H2H channel 
of usual form are used (1.2.1). The parameters of the pair intercluster 
potentials are given in the first six columns of Table 3.2.1. In the seventh 
column, the channel systems of the 4He3H binding energy are given for 7Li 
and the 4He2H channel for 6Li; in the eighth column, the mean square charge 
radii of the bound states of these particle couples are given; and in the 
ninth column, the dimensionless asymptotic constants of the bound states in 
two-body channels with the Whittaker function are found (1.2.3). 

The parameters of the potentials are used to precisely reproduce the 
corresponding experimental elastic scattering phase shifts, as shown further 
in figs. 3.2.1, 3.2.2, and 3.2.3. 

In the capacity of the potential 3H2H cluster system, pure interactions 
according to Young tableaux [183] are used; the results of the calculation 
of phase shifts with such potentials are represented in Fig. 3.2.1 by a solid 
line. The error band of the determination of pure 3H2H phase shifts [183], 
which comes out from the experimental data described in [200], is shown 
by the dashed line in Fig. 3.2.1. The points and squares show the scattering 
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phase shifts taken from the experimental data and mixed according to 
Young tableaux, which are also given in [200]. The circles and open squares 
describe the RGM (resonating group method) of calculation of the mixed 
scattering phase shifts [201]. 
 
Table 3.2.1. The parameters of the potentials in binary cluster systems 
and the main characteristics of the bound states. 

 

System 2S+1LJ 
V0, 

MeV 
, 

fm-2 
V1, 

MeV 
, 

fm-2 
E, 

MeV 
Rz, 
fm 

CW 

4He3H 2P1/2 -85.82 0.13 90.0 0.2 -1.989 2.6 3.86(1) 

3H2H 2S1/2 -44.5887 0.15 4.5 0.015 – – – 

4He2H 3S1
 -71.91 0.15 70.0 0.2 -1.474 2.66 3.27(1) 

 
The 3H2H potential used for analysis of the peripheral repulsion contains 

the bound forbidden state at an energy of -11.49 MeV. We did not manage 
to find other parameters of the potential, i.e. we were unable to find the 
bound forbidden level using which it would be possible to describe the pure 
doublet 2S1/2 phase shift of 3H2H elastic scattering. This form of interaction, 
with a very small improvement in the depth of the 3H2H potential by 0.0887 
MeV, previously fixed on the scattering phase shifts [80], allows us to 
obtain the correct value of the three-body binding energy of 9Be. Thus, the 
depth of this potential was changed to give the best description of the 
binding energy of 9Be in the three-body channel; this change resulted in a 
value of 0.0877 MeV. 

For the 4He3H systems, the potential of the first excited 2P1/2 state 
without the forbidden bound level is used, the phase shift of which is shown 
by the solid line in Fig. 3.2.2. This successfully describes the scattering 
phase shift [202,203] and gives what appears to be the best description of 
the characteristics of 9Be in the three-body model, in comparison to the 2P3/2 
potential, the phase shift of which is shown in Fig. 3.22 by the dashed curve. 
Thus, on the basis of these results, it is necessary to consider that the cluster 
4He3H system is in 9Be in a virtual excited 2P1/2 state, but not on the basic 
2P3/2 level. Perhaps, in the future, this result can be checked by other 
independent methods or approaches. 

The potential in the 4He2H system, which offers the best way to describe 
the characteristics of the bound state of 6Li in the 4He2H model, is specified 
in Table 3.2.1 and has no FS. The description of the 3S1 scattering phase 
shift [187–191] is shown in Fig. 3.2.3 by the solid line, together with 
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extraction from the experimental data of the scattering phase shifts 
presented by the points. 
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Fig. 3.2.1. The pure phase shifts of 3H2H elastic scattering for the S wave. The 
solid line describes the results of calculation of the phase shift with a potential 
from Table 3.2.1 and the dashed line gives the error band in determining pure 
phase shifts [183], resulting [200] from the experimental data. The points and 
squares represent the scattering phase shifts taken from the experimental data in 
[200]. The circles and open squares give the RGM calculations of the scattering 
phase shifts [201]. 

3.2.2 The three-body results and photo cross sections 

Below, we provide a section of the computer program, described in the 
previous paragraph of this chapter, that sets out the characteristics of 
clusters and pair potentials. 

 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Z1=2.0D0  
Z2=1.0D0 
Z3=1.0D0 
M1=4.0D0 
M2=3.0D0 
M3=2.0D0 
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Fig. 3.2.2. The phase shifts of 4He3H elastic scattering for the P wave. The 
triangles represnts P1/2 and the squares represent P3/2 scattering phase shifts taken 
from the experimental data [202,203]. 
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Fig. 3.2.3. The phase shifts of 4He2H elastic scattering at L = 0. The points 
describe the experimental data in [187-191]. 
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RK1=1.670D0 
RK2=1.70D0 
RK3=1.960D0 
RM1=1.670D0 
RM2=1.70D0 
RM3=1.960D0 
 
! 1 - AL; 2 - T; 3 - D;    L  -  AL-T - 1, AL-D -0, D-T - 0 
! D-T 
V231=-44.5887D0      ; ! J= 1  ; L=0 
R231=0.150D0 
V232=4.50D0        
R232=0.0150D0 
 
! AL-D 
V131=-71.90D0    ; ! J=1/2 ; L=0 
R131=.150D0 
V132=70.0D0        
R132=0.20D0 
 
! AL-T 
V121=-85.820D0    ; ! J=1/2 ; L=1 
R121=.130D0 
V122=90.0D0    
R122=0.20D0 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 

Using the pair intercluster potentials described above, we find the three-
body wave function and the parameters and coefficients of decomposition 
at N = 10, which are given in tables 3.2.2 and 3.2.3. The binding energy of 
9Be along with the normalization of the WF Nor and its charge radius of Rz 
are given in Table 3.2.4. As can be seen in the these tables, the 
characteristics of 9Be obtained are in good agreement with the available 
experimental data and the normalization of the three-body WF is almost 
equal to the unit. 
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Table 3.2.2. The i and i parameters of the decomposition of the three-
body wave function (1.5.4) of 9Be in the three-body model. 

 

i i i 

1 3.273095667111755E-001 8.983828859473847E-002 

2 3.172872902170442 1.207723068311927E-001 

3 1.844963898289113E-001 5.507018219497912E-002 

4 9.153345511558431E-002 1.025123206313353E-001 

5 2.213721392830491E-001 3.620573882275837E-001 

6 2.269904002428514E-001 4.017242168731691E-001 

7 1.985961231123472E-001 1.634388187790707E-001 

8 5.073985961415315E-001 4.769549654021469E-001 

9 5.124708157837092E-001 4.828596792375761E-001 

10 3.843254062764651E-001 2.094550079909185E-001 

 
Table 3.2.3. The Ci coefficients of decomposition of the three-body wave 
function (1.5.4) of 9Be in the three-body model. 

 

i Ci 
1 2.564677848067949E-002 

2 -2.825587985872606E-003 

3 3.379570860934880E-003 

4 1.204452338550613E-002 

5 -6.029327933110736E-001 

6 4.606318693160417E-001 

7 1.677085370227155E-001 

8 -3.310475484431805 

9 3.189208283959322 

10 1.415768198190696E-001 
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Table 3.2.4. Some characteristics of 9Be in the three-body cluster model. 
 

Characteristics Calculation Experiment 

E , MeV -19.1632 -19.1633 [204] 

Rz , fm 2.56 2.519(12) [204] 

Nor. 9.999999999999867E-001 

 
The experiment described in [204] achieves good agreement with the 

calculation of the three-body energy of 9Be; because there are big errors and 
uncertainties in the 3H2H scattering phase shifts and the creation of pure 
phase shifts leads to ambiguities, the depth of this potential varied a little. 
The initial depth of the attracting part with which the phase shift given in 
Fig. 3.2.1 is equal to V0 = -44.5 MeV, while in discovering the three-body 
binding energy, a slightly bigger value V0 = -44.5887 MeV was used. Such 
changes in the depth of the potential do not practically exert an impact on 
the elastic scattering phase shifts. 
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Fig. 3.2.4. The radial functions of the relative movement of clusters in the 6Li+3H 
channel of 9Be: a shows the 4He4Hen model and b gives the 4He3H2H model. 

 
Figs. 3.2.4a and b present a comparison of the radial 3H+6Li functions 

of the relative movement constructed for the 4He4Hen and 4He3H2H models. 
In using the potentials in the single-channel model for 4He3H2H, the 9Be 
brings us to the node-free 1P WF of the relative movement. At the same 
time, the 4He4Hen model, constructed with the pair potentials of deep at-
traction containing the FS, gives the nodal 3P wave function. The solid 
curve in Fig. 3.2.4a corresponds to the resulting wave function. The two-
body wave functions 3H+6Li of the channel are further used in the calcula-
tion of the cross sections of the photodisintegration of 9Be (9Be( ,3H)6Li) 
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[205], presented in figs. 3.2.5a and b, together with the experimental data in 
[206].   

 It should be noted that the shapes of the photodisintegration cross sec-
tion calculated in these two models do not practically differ, although there 
are some quantitative divergences. This is fully explained by the similarity 
of the “tail” of the two different wave functions at large distances, in turn, 
leading to similar results at the relatively low energies for the photodisinte-
gration of 9Be in the two-body 3H6Li channel considered. 
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Fig. 3.2.5a. The differential cross sections of the 9Be( ,3H)6Li process. The 
squares represent the experiment in [206]. In the theoretical calculation for the 
n4He4He model, the dashed line shows the dipole E1 transition and the solid curve 
describes the total cross section. 

 
Thus, within the considered variation methods, new results for the three-

body 4He3H2H cluster model of 9Be are obtained [205]. In these 
calculations, a non-orthogonal variation basis, with the independent 
variation of all parameters of the decomposition of the WF by the Gaussian 
functions and the intercluster potentials, which are pure in certain cases 
according to analysis with Young tableaux and agree with the elastic 
scattering phase shifts in two-body systems, is used. 

It appears that the variants of the interaction potentials between the 
clusters lead to the correct binding energy of 9Be, to the description of some 
other characteristics in the three-body cluster channel, and to a reasonable 
explanation of the experimental differential cross sections of the considered 
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response of the photodisintegration of 9Be in the two-body 3H6Li channel.  
Further development of the theoretical approaches in this direction 

requires the solution of the three-body problem with the coupling of the 
channels, i.e. taking into account the various partial waves in each two-body 
shoulder of the three-body system [205]. However, the single-channel 
approach considered here allows us to obtain the correct cross section of the 
process of photodisintegration in the low energy range. Therefore, it is quite 
natural to execute the calculations further at energies of the -quantum 
tending to zero. Thus, we consider the region of astrophysical energies as 
these are of most interest to problems of nuclear astrophysics and 
thermonuclear processes in the universe. 
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Fig. 3.2.5b. For the differential cross sections of the 9Be( ,3H)6Li process, the 
squares describe the experiment [206]. In the theoretical calculation for the 
4He3H2H model, the dashed line represents the dipole E1 transition and the solid 
curve shows the total cross section. 

3.3 The three-cluster structure of 11B 

Let us consider the possibility of using the three-body model for the 
following odd light atomic 11B nucleus, which can be presented as a three-
body 4He4He3H structure. The moment of the ground state of 11B is equal to 
3/2- and can be formed at  = 0 and l = 1 as the 4He moment is equal to zero, 
and 3H has half-integer spin of 1/2. In the model, the triangle basis still 
consists of particles 2 and 3, with two  particles and zero relative moment 
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. The orbital moment l is equal to 1 and can be obtained from the l12 = 1 and 
l13 = 1 combination. We should remember that here l = l12 + l13 and the 
moments of l12 and l13 are the orbital moments between particles 1 and 2, and 
1 and 3, and particle 1, and lying at the top of the triangle is the nucleus 3H. 

In the capacity of intercluster potentials, the 4He3H interactions in the 
ground 2P3/2 state of 7Li are used. We suppose that this orbital configuration 
dominates in the considered single-channel 4He4He3H model. Of course, in 
the multichannel variant of the three-body model, the contribution, for 
example, of the l12 = 1 and l13 = 0 or l12 = 0 and l13 = 1 configurations, which 
also lead to l = 1, is possible. 

Let us remember that (item 1.6), in the calculations, at each value of the 
variation i and i parameters, which vary independently from each other, 
we find some energy of the system E, giving the zero determinant. Changing 
these parameters, we carry out the search for the minimum three-body 
energy of E, which is the eigen energy of the variation problem. Then, we 
increase the dimension of the basis N and we repeat all calculations until the 
size of the eigenvalue, i.e. the EN binding energy, at the next dimension of 
basis N does not begin to differ from the previous EN-1 value at size , which 
is usually set at the level of 1.0–2.0 keV. This minimum energy will also be 
the real binding energy of the three-particle system, i.e. the binding energy 
of a nucleus in such a model, and the dimension of the non-orthogonal 
Gaussian basis usually does not exceed 10–12 [207]. 

3.3.1 Potentials and phase shifts 

In the present calculations for the 4He3H and 4He4He systems, the binary 
intercluster potentials with the repulsion core (1.2.1), the parameters of 
which are specified in Table 3.3.1, are used. The scattering phase shifts 
corresponding to such potentials are shown in figs. 3.2.2 and 3.3.1 by the 
dashed lines. The experimental data for the 4He4He elastic scattering are 
taken from [84,86,208,209]. 
 
Table 3.3.1. Parameters of pair intercluster potentials. 

 

System 2S+1LJ V0, MeV , fm-2 V1, MeV , fm-2 
4He4He 1S0 -204.0 0.2025 500.0 0.36 
4He3H 2P3/2 -102.317 0.15 90.0 0.2 

 
The 7Li binding energy in the 4He3H channel of -2.467 MeV, with the 

potential from Table 3.3.1 and integer mass values of particles, accurately 
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coincides with the experimental value [195]. The charge radius is equal to 
2.40 fm and the asymptotic constant at an interval of 7–16 fm is equal to 
Cw = 3.57(1) [65,80]. 
 
Table 3.3.2. The convergence of the three-body E binding energy of 11B 
depends on the number of N Gaussian functions in the decomposition 
of the WF. The experimental value of 11B binding energy in this channel 
is equal to -11.131 MeV [210]. 

 

N 4 6 8 10 12 

E, MeV -10.832 -10.985 -11.070 -11.072 -11.079 

 
As the charge and mass radius of a triton the value 1.70 fm and for 4He 

the value 1.67 fm [76-78] were accepted. Let us remember that a modern 
value of the charge radius of 7Li is equal to 2.4017(281) fm [143]: 

 

L(r) = CwW- L+1/2(2k0r).          (3.3.1) 
 

In Fig. 3.3.1, the 1S0 phase shift of 4He4He elastic scattering with the Ali-
Bodmer potential is shown by solid lines, giving a slight underestimation of 
the three-body binding energy of the 4He4He3H system in 11B.  
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Fig. 3.3.1. 4He4He elastic scattering phase shifts at L = 0. The solid line gives the 
result for the Ali-Bodmer [208] potential and the dashed line gives its modified 
variant from Table 3.3.1. The experimental data in the figure are taken from: 
[208] – , [84] – , [209] – , [86] – . 
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It takes a little, approximately 7 %, to increase the depth of its attractive 
part (see Table 3.3.1) and to obtain an almost correct value of the binding 
energy, the convergence of which is shown in Table 3.3.2 based on the 
number of the members of the decomposition of the wave function. The 
phase shift of such a potential is presented in Fig. 3.3.1 by the dashed curve 
and is slightly above the phase shifts taken from the experiment on 4He4He 
elastic scattering. The necessity of changing the depth of the 4He4He 
potential is likely connected to the single-channel of the model used here, 
in which only one admissible orbital configuration with an intercluster 2P3/2 

potential of the bound 4He3H state is considered at l = 1 for l12 and l13 = 1, 
the parameters of which are specified in Table 3.3.1. Accounting for other 
4He3H configurations, also with l = 1, but at l12 = 1 and l13 = 0 or l12 = 0 and 
l13 = 1, we can increase the three-body binding energy; it is not necessary to 
change the depth of the 4He4He potential. 

3.3.2 Three-body results 

3.3.2.1 First variant of the intercluster potentials 
 

Below we give a section of the program, fully printed out in subitem 
3.1.2. The characteristics of clusters and potentials and their interaction are 
written as follows. 

 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Z1=1.0D0 
Z2=2.0D0 
Z3=2.0D0 
M1=3.0D0 
M2=4.0D0 
M3=4.0D0 
… 
RK1=1.7D0 
RK2=1.67D0 
RK3=1.670D0 
RM1=1.7D0 
RM2=1.67D0 
RM3=1.670D0 
… 
! 1 - T; 2 - AL; 3 - AL;   L  -  AL1-AL2 - 0, AL1-T - 1, AL2-T - 1 
! AL-AL 
V231=-204.0D0      ; ! J= 0  ; LAM=0 
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R231=0.2025D0 
V232=500.0D0       
R232=0.36D0 
… 
! AL-T 
V131=-102.317D0 ;    ! J=3/2; L=1 
R131=0.15D0 
V132=90.0D0        
R132=0.2D0 
… 
! AL-T 
V121=V131    ;  ! J=3/2; L=1 
R121=R131 
V122=V132      
R122=R132 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 
The parameters and coefficients of the decomposition of the wave 

function of the system 4He4He3H for N = 10 in 11B are specified below and 
the results for the energy are shown above in Table 3.3.2. 

 
E = -11.072136455745790 (N = 10) 

 
          N  ALPHA ( )  BETA ( ) 
          1   7.731577265613154E-002   1.240840193536184E-001 
          2   1.641040105068961E-001   2.285876535575549E-001 
          3   4.870741010024022E-001   1.536884862684963E-001 
          4   2.513045621382256E-001   3.041700707766410E-001 
          5   2.033807929862554E-001   3.450251748941237E-001 
          6   6.368494296100554E-001   1.898054241645994E-001 
          7   3.430614492885307E-001   1.441809735418989E-001 
          8   3.520135247366762E-001   2.289195177072528E-001 
          9   2.131971494536152E-001   3.314403264542553E-001 
         10  4.968108631879107E-001   2.048954900045679E-001 

 
SUM(H*SV-E*L*SV) FROM SV = -1.776356839400251E-013 

NORM = 9.999999999998579E-001         
NEV-DET = 1.364242052659392E-012 
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          N  SV 
          1   7.141139314701980E-002 
          2   6.873184414416353E-001 
          3   7.416580078033560E-001 
          4        4.203984406616693 
          5        3.779698938600395 
          6       -1.470993620114665 
          7  -6.275457436460156E-001 
          8       -3.525509423084515 
          9       -7.047436459053254 
         10        3.191334856523210 
 

N = 9.999999999999705E-001 
RM = 2.633871831198857 
RZ = 2.630340587104462 

 
COUL. ENERGY VK = 4.106613183539739   

12 = 1.219823574100133   
13= 1.219823574100133 
23= 1.666966035339474 

CENTROB. ENERGY = 4.025371560588050 
KINETICH. ENERGY = 8.030009418604076 
POTENS. ENERGY = -27.234130618489780 

POLNAY ENERGY ST = -11.072136455757920 
POLNAY ENERGY SH = -11.072136455745180 

 
Similar results are achieved for the energy and WF at the dimension 

N = 12. 
 

E = -11.079033093916390 (N = 12) 
         N  ALPHA ( )  BETA ( ) 
          1   6.409144140489247E-002   1.019587659674352E-001 
          2   1.258066165364320E-001   1.811335435670906E-001 
          3   5.502163968570325E-001   1.563736148998969E-001 
          4   1.093264054668316E-001   2.915855267598159E-001 
          5   1.333280173011495E-001   4.867098271947788E-001 
          6   8.577841282629973E-001   1.559124765668210E-001 
          7   2.427745646298275E-001   9.280370272042079E-002 
          8   4.374090344872209E-001   1.607892257131171E-001 
          9   2.506356884255520E-001   3.365880418027703E-001 
         10   5.992286208956132E-001   1.732142250126302E-001 
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         11   2.513360250891818E-001   3.505196617789699E-001 
         12   9.123756893621239E-001   1.549639056362407E-001 

SUM(H*SV-E*L*SV) FROM SV = 4.089173444299377E-012 
NORM = 1.000000000000028 

NEV-DET = 1.818989403545857E-012 
    
          N  SV 
          1   2.405128330550160E-002 
          2   2.838460999953977E-001 
          3        3.355552135939775 
          4   6.347242717086900E-002 
          5  -7.943048747668001E-002 
          6       -5.622161796232756 
          7  -1.975249769693670E-002 
          8       -2.913336286105724 
          9       -1.743989588892319 
         10   9.471131965767997E-001 
         11        1.677487262418139 
         12        4.030809374250345 

 
N = 1.000000000000014 

RM = 2.635529943243490  
RZ = 2.631840422205140 

 
COUL. ENERGY VK = 4.103278121515663   

12 = 1.218338113251590   
13 = 1.218338113251590 
23 = 1.666601895012484 

CENTROB. ENERGY = 4.011294763849525 
KINETICH. ENERGY = 8.028619034600876 
POTENS. ENERGY = -27.222225013883560 

POLNAY ENERGY ST = -11.079033093917500 
POLNAY ENERGY SH = -11.079033093917130 

 
From this, it is clear that the errors in the search for the determinant 

NEV-DET are of the order of 10-12, the total error of the search for the 
energy and eigenvectors determined by the expression (H-EL)C appears less 
than 4.1 10-12, and the normalization of the obtained wave function differs 
from the unit only by the 12–14 sign after a comma. 

 
 

 EBSCOhost - printed on 2/13/2023 7:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



III 
 

276

3.3.2.2 Second variant of the intercluster potentials 
 

It should be noted that calculation of the mean square radius results in a 
value that is slightly greater than the experimental value for the charge 11B 
radius equal to 2.406(29) fm [143], in spite of the fact that the 7Li radius in 
the 4He3H channel has the correct value. We need to pay attention to that 
fact that the radii of 7Li (2.4017(281) fm) [143] and 11B (2.406(29) fm) [143] 
practically coincide. It appears that, in the 4He3H configuration if 7Li is in 
the 11B three-body 4He4He3H model, then it has to be slightly compressed, 
as earlier for the deuteron in 7Li. 

Therefore, we take the 4He3H potential with the parameters of the 
attractive part V0 = -121.405 MeV and  = 0.18 fm-2, with no change in its 
repulsion (see tables 3.3.1 and 3.3.3). This leads to a 7Li binding energy of 
-2.467 MeV with integer values of the mass of particles that completely 
coincide with the experimental value [195]. The charge radius is equal to 
2.24 fm and the asymptotic constant at an interval of 5–15 fm has the value 
Cw = 2.58(1) [65,80]. In this potential, 7Li is slightly deformed, i.e. it is 
compressed in comparison to its free state. 

 
Table 3.3.3. New variant of the parameters of the pair potentials. 

 

System 2S+1LJ V0, MeV , fm-2 V1, MeV , fm-2 
4He4He 1S0 -193.0 0.2025 500.0 0.36 
4He3H 2P3/2 -121.405 0.18 90.0 0.2 

 
Furthermore, to obtain the correct value of the three-body energy, as 

described below, it is necessary to deform the 4He4He potential much less, 
i.e. to accept its depth of -193.0 MeV without changing its other parameters, 
as shown in Table 3.3.3. The phase shift of elastic scattering is described in 
Fig. 3.3.2 by the dashed curves and does not practically differ from the 
results for the standard of the Ali-Bodmer potential, shown by the solid line. 

Further use of the phase shift of the 4He3H interaction potential is shown 
in Fig. 3.3.3, which, in comparison to the results presented in Fig. 3.2.2, 
passes slightly above and, in fact, on the upper bound of the phase shifts of 
4He3H elastic scattering taken from the experimental data [202,203]. 

Let us present a section of the program in which the interaction 
potentials of the clusters are written as follows: 
 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
! 1 - T; 2 - AL; 3 - AL;   L  -  AL1-AL2 - 0, AL1-T - 1, AL2-T - 1 
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Fig. 3.3.2. The phase shifts of 4He4He elastic scattering at L = 0, with the solid line 
giving the results for the Ali-Bodmer [208] potential and the dashed line describing 
its modified variant in Table 3.3.3. The experimental data are taken from: [208] – , 
[84] – , [209] – , [86] – . 
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Fig. 3.3.3. The phase shifts of 4He3H elastic scattering for the P wave. The 
triangles and squares present the elastic scattering phase shifts taken from the 
experimental data [202,203]. The curves describe the calculations with different 
potentials, the parameters of which are shown in the figure and in Table 3.3.3. 
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! AL-AL 
V231=-193.0D0      ; ! J= 0  ; LAM=0 
R231=0.2025D0 
V232=500.0D0       
R232=0.36D0 
 
! AL-T 
V131=-121.405D0 ;    ! J=3/2; L=1 
R131=0.18D0 
V132=90.0D0        
R132=0.2D0 
… 
! AL-T 
V121=V131    ;  ! J=3/2; L=1 
R121=R131 
V122=V132      
R122=R132 
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 
Below, we give the results of the calculation of the three-body binding 

energy of 11B in the 4He4He3H channel with the potentials described above 
for the 10 members of decomposition of the WF by the Gaussian functions. 

 
E = -11.031463381093430 

 
         N            ALPHA ( )  BETA ( ) 
          1   6.860823790482709E-002   1.372018518013886E-001 
          2   1.979200374955967E-001   1.975207162666516E-001 
          3   4.887720500875407E-001   1.729550202313665E-001 
          4   1.536806478562412E-001   3.328419037585270E-001 
          5   9.581401187947329E-002   4.647401165174852E-001 
          6   7.235261491934235E-001   2.130457228008369E-001 
          7   2.517628737184591E-001   1.646905851358956E-001 
          8   3.718525859440748E-001   2.263181658977888E-001 
          9   2.301200947513070E-001   3.053675821366754E-001 
         10   5.342732966940103E-001   2.386280212884875E-001 

 
SUM(H*SV-E*L*SV) FROM SV = 1.456612608308205E-012 

NORM = 9.999999999999014E-001         
NEV-DET = 0.000000000000000E0 
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          N  SV 
          1   5.144041160323528E-002 
          2   6.941910561622631E-001 
          3   5.424054031163350E-001 
          4        1.121880192698402 
          5  -1.131115274640460E-001 
          6  -8.746059242237850E-001 
          7  -5.773075026219299E-001 
          8       -1.357323308702923 
          9       -1.431015963101069 
         10        1.939168998797320 
 

N = 9.999999999999950E-001 
RM = 2.545788338764759 
RZ = 2.554149440825896 

 
COUL. ENERGY VK = 4.549379683245643   

12 = 1.434603714056763   
13 = 1.434603714056763 
23 = 1.680172255132118 

CENTROB. ENERGY = 5.629493999635255 
KINETICH. ENERGY = 9.387040848724377 
POTENS. ENERGY = -30.597377914995690 

POLNAY ENERGY ST = -11.031463383390410 
POLNAY ENERGY SH = -11.031463383390960 

 
The results of calculation for N = 12 give the following: 

 
E = -11.032671516388140 

 
 

          N           ALPHA ( )  BETA ( ) 
          1   6.866999434690753E-002   1.308910045752647E-001 
          2   1.149793056566817E-001   1.884387791693870E-001 
          3   5.539896465720190E-001   1.648434683949910E-001 
          4   1.528193850522205E-001   3.151598143556194E-001 
          5   1.052759959020325E-001   3.918444921609474E-001 
          6   8.827637468448799E-001   1.561502493903658E-001 
          7   2.403581793183441E-001   1.111462488829206E-001 
          8   5.436244156008828E-001   1.700073788396006E-001 
          9   2.569650583366106E-001   3.146550134272712E-001 
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         10   5.752686749704641E-001   1.756637188474036E-001 
         11   2.882071283272155E-001   3.321865686346414E-001 
         12   9.046635125615116E-001   1.547378005133593E-001 

 
SUM(H*SV-E*L*SV) FROM SV = -4.312994406063808E-012 

NORM = 1.000000000006423 
NEV-DET = 9.094947017729282E-013 

 
          N  SV 
          1   4.219506029644921E-002 
          2   6.537938394165033E-002 
          3       10.984160595778020 
          4        1.332911137207201 
          5  -1.904812220035353E-001 
          6      -16.076855570816770 
          7  -3.480370810845272E-002 
          8      -19.639156270511190 
          9       -3.254715851761231 
         10       11.029434819668920 
         11        1.864459157683097 
         12       13.879575716434890 

 
N = 9.999999999999663E-001 

RM = 2.545605920214188 
RZ = 2.553862814168674 

COUL. ENERGY VK = 4.545338040958250 
12 = 1.432617674939411 
13 = 1.432617674939411 
23 = 1.680102691079429 

CENTROB. ENERGY = 5.611694081091503 
KINETICH. ENERGY = 9.392846392977125 
POTENS. ENERGY = -30.582550036090190 

POLNAY ENERGY ST = -11.032671521063310 
POLNAY ENERGY SH = -11.032671521338680 

 
From this, it is clear that even in this case the 11B radii are approximately 

equal to 2.55 fm and appear much greater than the experimental values of 
2.406(29) fm [143]. However, to obtain the correct binding 11B energy, it is 
not practically required to deform the 4He4He potential and the pair 4He3H 
interaction can be coordinated with the scattering phase shifts, as shown in 
Fig. 3.3.3. 
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Of course, it is still possible to change the 4He3H potential; making it 
narrower will lead to a reduction in the 7Li radius and, as a result, we can 
possibly obtain the correct 11B radius. However, as is apparent in Fig. 3.3.3, 
at such a change in the potential it is not possible to correctly describe the 
phase shift of 4He3H elastic scattering from the experiment, which tends to 
see an increase in values with the increase in the depth of the potential, as 
shown in tables 3.3.1 and 3.3.3. This tendency is also clear when we compare 
figs. 3.2.2 and 3.3.3. In this sense, the second variant of the potentials 
considered here is optimal from the point of view of the minimum change in 
the parameters, which is well defined on the basis of the experimental 
scattering 4He4He phase shifts of the potential. 

Meanwhile, such a variant of the potential allows us to maintain a 
reasonable form of the calculation of 4He3H scattering phase shifts, as 
shown in Fig. 3.3.3. On the other hand, it is always possible to consider that, 
because of the large three-body binding energy of 11B, which is greater than 
the binding energy of a triton cluster in the 3N channel, its deformation is 
quite possible, i.e. there is a small compression with a decrease in the radius. 
Indeed, in a free state, the radius of tritium (3H) appears greater than the 
radius of 4He and if the tritium is strongly linked to the nucleus, its radius 
can decrease a little, having reduced thereby the 11B radius. 

It is clear from the results given above that the three-body model in this 
case allows us to obtain a reasonable description of some of the main 
characteristics of an odd 11B nucleus. Though the available errors of the 
phase shift analysis result in uncertainty in the parameters of intercluster 
potentials, in their limits it is practically possible to construct the potentials 
giving quite acceptable results for the description of the main characteristics 
of 11B. 

In addition, the single-channel model also gives some uncertainty as to 
the reduction of the interaction potentials, which, as has already been 
described, allows only the consideration of two and three-channel 
configurations (based on the orbital moment) for some particle couples. 

Conclusion 

The alternative method for finding the eigenvalues of the generalized 
matrix problem, considered on the basis of variation methods of the solution 
of the Schrödinger equation using a non-orthogonal variation basis, avoids 
possible instabilities that arise during the application of the usual methods 
of solving the mathematical model, i.e. Schmidt orthogonalization [194]. 

Using the variation methods, new results for the three-body models of 
7Li, 9Be, and 11B nuclei have been obtained. A non-orthogonal variation 
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basis, independent variation of the parameters, intercluster potentials, pure 
Young tableaux, and coordinated elastic scattering phase shifts in two-body 
channels have all been used for this end. All these results allow us to 
correctly reproduce some of the experimental characteristics of the bound 
states of these nuclei and cross sections of some photonuclear processes. 

Once again, our focus is on the three-body model, which allows us to 
carry out, in particular, an investigation of the pair intercluster potentials 
constructed on the basis of scattering phase shifts. The results obtained on 
this basis convince us of the expediency of further use of similar interactions 
for calculations relevant to the consideration of astrophysical characteristics 
of nuclear systems and thermonuclear reactions. For example, astrophysical 
S-factors or total cross sections of the processes of radiative capture of 
nucleons by light atomic nuclei at low and ultralow energies proceed in the 
universe at different stages of its evolution, formation, and development 
[4,79,80,184]. 
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