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Preface
“One is amazedby thedramatic changes that occurred in analysis during the twentieth century. In
the 1930s complex methods and Fourier series played a seminal role. After many improvements,
mostly achieved by the Calderón–Zygmund school, the action takes place today on spaces of ho-
mogeneous type. No group structure is available, the Fourier transform is missing, but a version
of harmonic analysis is still present. Indeed the geometry is conducting the analysis.”

Yves Meyer, preface to [33]

This book is in many ways the brainchild of Pencho Petrushev. During the au-
thor’s visit to University of South Carolina in 2004, Pencho began drawing ellipses on
the boardwhose shape changed frompoint to point and scale to scale and said: “Shai,
I have a dream…”. Penchowas looking for the right geometric setup that would bridge
the gap between the classical isotropic setting of ℝn equipped with the Euclidean
metric and the more abstract setup of spaces of homogeneous type. The “dream”
was to extend work that began as early as the 1960s and to generalize, in highly
anisotropic setting, the entire scope of classical approximation, modern harmonic
analysis, and function space theories. Meanwhile, Wolfgang Dahmen added his vi-
sion to the project. He was interested in establishing solid theoretical background for
“meshless methods”, which serve as a platform for the numerical solutions of par-
tial differential equations. Indeed, solutions of many classes of differential equations
exhibit anisotropic phenomena.

The authorwas fortunate enough to be invited by these two incrediblemathemati-
cians for a two week visit at the University of Aachen in 2005. In Aachen, the author’s
twomain contributions were: being a good listener during the days’ working sessions
and being a reasonably good beer drinking companion during the evenings. Themain
outcomes of the visit were the first joint paper [22] and the basic foundations of [23].
The fundamental insights that lay the basis for the construction of the ellipsoid covers
(see Section 2.2) were:
(i) The anisotropic construction should take place in ℝn and use multilevel convex

elements, so as to have the machinery of local algebraic polynomial approxima-
tion available. Since ellipsoids are the prototype of convex domains (see Propo-
sition 1.6), they are the natural selection as building blocks.

(ii) The setup should support a generalized form of pointwise variable anisotropy
and thus include as a very particular case the theory of classic anisotropic
spaces, where the “directionality” is fixed over all points x ∈ ℝn. Therefore the
setup should allow the ellipsoids’ shape to change rapidly from point to point
and from scale to scale.

(iii) The collection of ellipsoids should satisfy the notions of the abstract “balls” as in
Stein’s book [61, Section 1.1], since this implies a corresponding induced quasi-
distance. As we will see, this necessitates that locally, in space and scale, inter-
secting ellipsoids need to have “equivalent” shapes.

https://doi.org/10.1515/9783110761795-201
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VIII | Preface

As will become apparent in Section 2.5, any space of homogeneous type over ℝn,
equipped with the Lebesgue measure, whose anisotropic balls are “quasi-convex”,
naturally fits into this framework.

In January 2020 the author visited Marcin Bownik at the University of Oregon to
work on topics relating to Chapter 7 in this book. This visit served as an inception point
for the book and Marcin, who is an amazing mathematician and wonderful person,
provided tremendous help during the writing process.

Anisotropic phenomena naturally appear in nature and in various contexts in
mathematical analysis and its applications. One example is the formation of shocks,
which results in jump discontinuities of solutions of hyperbolic conservation laws
across lower-dimensional manifolds. Another example arises in signal processing,
where input functions have sharp edge or surface discontinuities separating between
smooth areas. The central objective of this book is a very flexible framework,where the
geometry of the anisotropic phenomena may change rapidly across space and scale.

Obviously, there is an incredible body of work that addresses the generalization
of the isotropic theory to more general setting. Already in 1967, in proving the hypoel-
lipticity of certain operators, Hörmander [47] studied differentiability and L2 Lipschitz
continuity along noncommuting vector fields. In the early 1970s, the development of
modern “real-variable” harmonic analysis enabled Coifman andWeiss to begin devel-
oping parts of the theory such as singular operators and Hardy spaces in the setting
of spaces of homogeneous type [19, 20]. Calderón and Torchinsky began studying in
1975 maximal operators based on an anisotropic dilation matrix subgroups [16, 17].
This line of research was generalized by Folland and Stein [39] in 1982, where they
investigated the Hardy spaces over homogeneous groups. Nagel, Stein, and Wainger
[56] established results in 1985, relating to basic properties of certain balls andmetrics
that can be naturally defined in terms of a given family of vector fields. As an appli-
cation, they used these properties to obtain estimates for the kernels of approximate
inverses of some nonelliptic partial differential operators, such as Hörmander’s sum
of squares. In their book from 1987, Schmeisser and Triebel [59] devoted a full chapter
to anisotropic function spaces, equipped with a fixed directional anisotropy. In 2003,
Bownik [7] further developed and expanded anisotropic spaces based on powers of an
anisotropic dilation matrix. In fact, his book is the main precursor to this book and in
many ways inspired its writing. Marcin Bownik and Baode Li also helped with useful
comments during the writing of the book.

Shai Dekel 2022
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1 Local polynomial approximation over convex
domains inℝn

In this chapter, we review the theory of local approximation using multivariate alge-
braic polynomials of fixed total degree over “regular” domains in ℝn. By “regular”
domains we mean domains that have nice geometric properties precisely defined in
Section 1.1. The local smoothness analysis and approximation by algebraic polynomi-
als are the critical components that allow us to construct anisotropic spaces that are
a “true” generalization of the classical isotropic function spaces over ℝn. This is in
contrast to general spaces of homogeneous type (see Definition 2.2) that do not have
enough “structure”, and thus function spaces defined over them are limited in vari-
ous ways. In Section 1.2, we review the analysis tools we use to quantify local function
smoothness. In Section 1.3, we provide some properties of algebraic polynomials over
convex domains. We then provide estimates for the degree of polynomial approxima-
tion over domains, where Section 1.4 is focused on approximation in the p-norm, with
1 ≤ p ≤∞, of the Sobolev class, and Section 1.5 is mostly dedicated to approximation
in the p quasi-norm, with 0 < p < 1.

1.1 Geometric properties of regular bounded domains

Definition 1.1. We denote by B(x0, r) the Euclidean ball inℝn with center x0 ∈ ℝn and
radius r > 0. The imageof theEuclideanunit ballB∗ := B(0, 1) via anaffine transforma-
tion is called an ellipsoid. For a given ellipsoid θ, we let Aθ be an affine transformation
such that θ = Aθ(B∗). Denoting by vθ := Aθ(0) the center of θ, we have

Aθ(x) = Mθx + vθ , ∀x ∈ ℝ
n, (1.1)

where we may assumeMθ is a positive definite n × nmatrix.

Any positive definite n × n real-valued matrix M may be represented in the form
M = UDU−1, where the matrix U is an n × n orthogonal matrix, and the matrix D =
diag (σ1, σ2, . . . , σn) is diagonal with σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σn > 0. It is easy to see that
σ1 ≥ ⋅ ⋅ ⋅ ≥ σn are the eigenvalues ofM and σ−11 ≤ ⋅ ⋅ ⋅ ≤ σ

−1
n are the eigenvalues ofM−1.

Hence

‖M‖ℓ2→ℓ2 = σ1 and M
−1ℓ2→ℓ2 = 1/σn. (1.2)

These norms have a clear geometric meaning. Thus ifMθ is as in (1.1), then diam(θ) =
2‖Mθ‖ℓ2→ℓ2 = 2σ1. We may also say that the width of θ is 2σn, since σn is the length of
the smallest axis of θ.

https://doi.org/10.1515/9783110761795-001
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2 | 1 Local approximation

Lemma 1.2. If two ellipsoids θ = Mθ(B∗) + vθ and η = Mη(B∗) + vη satisfy η ⊆ θ, then
Mη(B∗) ⊆ Mθ(B∗).

Proof. Without loss of generality, we can assume that vη = 0. This implies that B∗ ⊆
M(B∗) + v, where M := M−1η Mθ, and v := M−1η vθ, and therefore it suffices to prove
that B∗ ⊆ M(B∗). We first show that if B∗ ⊆ D(B∗) + v, where D := diag(σ1, . . . , σn)
is a diagonal matrix and v ∈ ℝn, then B∗ ⊆ D(B∗). Indeed, if B∗ − v ⊆ D(B∗), then
|σi| ≥ max(|1 − vi|, | − 1 − vi|) ≥ 1, Therefore B∗ ⊆ D(B∗).

Next, since MMT is a positive symmetric matrix, there exist a diagonal matrix D
and an orthogonal matrix U such that UMMTUT = D2. Then

D(B∗) = {Dx ∈ ℝn : xxT ≤ 1}

= {y ∈ ℝn : yTD−2y ≤ 1}

= {y ∈ ℝn : yT(UM(UM)T)−1y ≤ 1}

= {UMz ∈ ℝn : zzT ≤ 1}
= UM(B∗).

Since B∗ ⊆ M(B∗) + v, we obtain

B∗ = U(B∗) ⊆ UM(B∗) + Uv = D(B∗) + Uv.

From the first part of the proof this implies B∗ ⊆ D(B∗) = UM(B∗) ⇒ B∗ = UT (B∗) ⊆
M(B∗).

Definition 1.3. Let θ ⊂ ℝn be an ellipsoid such that θ = vθ +Mθ(B∗), and let Q > 0. We
denote by

Q ⋅ θ := vθ + QMθ(B
∗)

the Q-dilation of θ.

Theorem 1.4 ([13]). For two ellipsoids θ, η inℝn that satisfy η ⊆ θ, the following converse
is true:

θ ⊆ 2 |θ|
|η|
⋅ η,

where |Ω| denotes the volume (Lebesgue measure) of a measurable set Ω ⊂ ℝn. Fur-
thermore, if the two ellipsoids have the same center, then this holds without the factor
of 2.

Proof. Let θ = Mθ(B∗)+ vθ and η = Mη + vη. Without loss of generality, wemay assume
that vη = 0. LetM := M−1η Mθ. By Lemma 1.2

η ⊆ θ ⇒ Mη(B
∗) ⊆ Mθ(B

∗)⇒ B∗ ⊆ M(B∗).
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1.1 Geometric properties of regular bounded domains | 3

Also, as in the proof of Lemma 1.2, let UMMTUT = D2, where U is orthogonal and
D = diag(σ1, . . . , σn), |σi| ≥ 1, 1 ≤ i ≤ n, and UTD(B∗) = M(B∗). We have with σmax :=
max1≤i≤n |σi|

|θ|
|η|
=
|M−1η Mθ(B∗)|
|B∗|

=
|UTD(B∗)|
|B∗|

=
n
∏
i=1
|σi| ≥ σmax.

Therefore

M−1η Mθ(B
∗) = M(B∗) = UTD(B∗) ⊆ σmaxB

∗ ⊆
|θ|
|η|

B∗.

This gives

Mθ(B
∗) ⊆
|θ|
|η|

Mη(B
∗), (1.3)

which also proves the theorem for the case where vθ = vη.
Next, since η ⊆ θ,

B∗ = U(B∗) = UM−1η (η)

⊆ UM−1η (Mθ(B
∗) + vθ)

= UM(B∗) + UM−1η vθ
= D(B∗) + UM−1η vθ .

In particular, since 0 ∈ D(B∗) + UM−1η vθ, this gives that

−UM−1η vθ ∈ D(B
∗) ⊆ σmaxB

∗,

and so

M−1η vθ ∈ σmaxB
∗ ⊆
|θ|
|η|

B∗. (1.4)

We conclude using (1.3) and (1.4) that

θ = MηM
−1
η (Mθ(B

∗) + vθ) ⊆ 2
|θ|
|η|

Mη(B
∗) = 2 |θ|
|η|
⋅ η.

The ellipsoids are in fact the prototypical example of bounded convex domains.

Definition 1.5. A set Ω ⊆ ℝn is convex if for any two points x, y ∈ Ω, the line segment
[x, y] is contained in Ω. The convex hull of a set A ⊂ ℝn is the “minimal” convex set
containing A, which is given by the intersection of all convex sets containing A.
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4 | 1 Local approximation

Proposition 1.6 (John’s lemma [48]). For any bounded convex domain Ω ⊂ ℝn, there
exists an ellipsoid θ ⊆ Ω such that

θ ⊆ Ω ⊆ n ⋅ θ.

As depicted in Figure 1.1, this implies that the affine transformation A−1θ (x) := M
−1
θ (x−vθ)

gives

B(0, 1) ⊆ A−1θ (Ω) ⊆ B(0, n). (1.5)

Figure 1.1: A−1θ (Ω), where Ω ⊂ ℝ
n is a bounded convex domain.

It is interesting to note that John’s ellipsoid θ is the ellipsoid with maximal volume
such that θ ⊆ Ω. In some sense, this means that θ “covers” Ω sufficiently well. Our
approximation theoretical applications of John’s lemma use the fact that bounded
convex domains are essentially equivalent to the Euclidean ball B∗ up to an affine
transformation and scale n.

Definition 1.7. A domain Ω ⊂ ℝn is star-shapedwith respect to a Euclidean ball B ⊆ Ω
(or a point x0 ∈ Ω), if for any point x ∈ Ω, the convex hull of {x}∪B (or the line segment
[x, x0]) is contained in Ω.

Definition 1.8. We call the set

V := {x ∈ ℝn : 0 ≤ |x| ≤ ρ,∠(x, v) ≤ κ/2},

a finite cone of axis direction v, height ρ, and aperture angle κ, where ∠(x, v) is the
angle between x and v. For z ∈ ℝn, the set z + V := {z + y, y ∈ V} is a translate of V ,
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1.1 Geometric properties of regular bounded domains | 5

which is a finite cone with head vertex at z. A cone V ′ is congruent to V if it can be
obtained from V through a rigid motion.

We now define notions of “minimally smooth” domains (see [1, pp. 81–83], [60,
p. 189]). Although we will be mostly dealing with bounded convex domains and, in
particular, the particular case of ellipsoids, some of the results we use or prove hold
for more general types of domains.

Definition 1.9. A domain Ω ⊂ ℝn is said to satisfy the uniform cone property if there
exist numbers δ > 0,L > 0, afinite cover of open sets {Uj}

J
j=1 of 𝜕Ω, anda corresponding

collection {Vj}
J
j=1 of finite cones, each congruent to some fixed cone V , such that

(i) diam(Uj) ≤ L, 1 ≤ j ≤ J.
(ii) For any x ∈ Ω such that dist(x, 𝜕Ω) < δ, we have x ∈ ⋃Jj=1 Uj.
(iii) If x ∈ Ω ∩ Uj, then x + Vj ⊆ Ω, 1 ≤ j ≤ J.

We will say the domain satisfies the overlapping uniform cone property if in addition
the following condition is satisfied:
(iv) For every pair of points x1, x2 ∈ Ω such that |x1 − x2| < δ and dist(xi, 𝜕Ω) < δ,

i = 1, 2, there exists an index j such that xi ∈ Uj, i = 1, 2.

Theorem 1.10. Let Ω ⊂ ℝn be a convex domain such that B(0,R1) ⊆ Ω ⊆ B(0,R2) for
some fixed 0 < R1 < R2. Then Ω satisfies the overlapping uniform cone property with
parameters that depend only on n, R1, and R2. Moreover, there exist δ > 0 and a fixed
cover {Uj}

J
j=1 with cones {Vj}

J
j=1, all congruent to a fixed cone V, that may be uniformly

applied to all such convex domains.

Proof. Our construction is based on the fact that if B(0,R1) ⊊ Ω, then for any x ∈
Ω \ B(0,R1), the convex closure of {x} ∪ B(0,R1) is, by convexity, contained in Ω and
also contained in a cone with head at x, axis direction of −x, and an aperture angle ≥
2 arcsin(R1/R2).

Let {vj}
J
j=1 be a finite set of normalized vector directions from the origin to be se-

lected later. Let Vj,1 be the cone with head at the origin, axis vj, height 9R1/10, and
aperture angle κ < min(π/4, arcsin(R1/R2)). Let Vj,2, be the cone with head at the ori-
gin, axis direction vj, height R2 + 1, and the same aperture angle κ. Our covering of 𝜕Ω
consists of {Uj}

J
j=1, Uj := Vj,2 \ Vj,1. Thus diam(Uj) ≤ diam(B(0,R2 + 1)) ≤ 2(R2 + 1) =: L,

and property (i) of Definition 1.9 is satisfied. With sufficient distribution of axis direc-
tions {vj}, the cones {Vj,2} overlap, cover B(0,R2), and thus also cover any Ω ⊆ B(0,R2).
Observe that this requires

J > Sn−1
κ
=

2πn/2

Γ(n/2)κ
.

Therefore {Uj}
J
j=1 cover B(0,R2) \ B(0,R1) and, in particular, 𝜕Ω, since 𝜕Ω ⊂ B(0,R2) \

B(0,R1). Thus property (ii) is satisfied for any 0 < δ < R1/10.
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6 | 1 Local approximation

We now construct for eachUj the corresponding cone Vj. It is in fact the cone with
axis direction −vj, aperture angle κ, and height of R1/10. Thus all cones Vj are congru-
ent to a single cone V .

Now for any convex Ω, B(0,R1) ⊆ Ω ⊆ B(0,R2), let x ∈ Ω ∩ Uj. There are two cases.
If x ∈ B(0,R1), then |x| > 9R1/10, and so x + Vj ⊂ B(0,R1) ⊆ Ω. The second case is
x ∈ Ω \ B(0,R1). Let Ωx be the convex closure of {x} ∪ B(0,R1). By convexity, Ωx ⊂ Ω.
We have that the angle between −x and −vj is smaller than κ/2, the aperture angle of
Vj is κ, whereas the aperture angle of Ωx is ≥ 2κ. Also, the height of Vj is R1/10, which
implies that x +Vj ⊂ Ωx ⊂ Ω, which ensures property (iii). It remains to select {vj}

J
j=1 to

be sufficiently dense, so that {Uj}
J
j=1 have sufficient overlap, to ensure property (iv). It

is sufficient to ensure that if x, y ∈ B(0,R2) \ B(0, 9R1/10) and |x − y| < δ < R1/10, then
there exists 1 ≤ j ≤ J such that x, y ∈ V2,j.

1.2 Moduli of smoothness

From this point, we assume that domains Ω ⊂ ℝn are measurable with a nonempty
interior and that all functions are measurable as well.

1.2.1 Definitions and basic properties

Definition 1.11. LetW r
p(Ω), 1 ≤ p < ∞, r ∈ ℕ, denote the Sobolev spaces, namely, the

spaces of functions g : Ω→ ℂ, g ∈ Lp(Ω), that have all their distributional derivatives
of order up to r as functions in Lp(Ω). For p = ∞, we take W r

∞(Ω) = C
r(Ω), that is,

the functions with continuous bounded derivatives of order up to r. The norm of the
Sobolev space is given by

‖g‖W r
p(Ω) := ‖g‖r,p = ∑

|α|≤r

𝜕
αgLp(Ω), (1.6)

where for α ∈ ℤn+, |α| := ∑
n
i=1 αi, whereas the seminorm is given by

|g|W r
p(Ω) := |g|r,p = ∑

|α|=r

𝜕
αgLp(Ω). (1.7)

It is known [1] that

‖g‖W r
p(Ω) ∼ ‖g‖Lp(Ω) + |g|W r

p(Ω). (1.8)

Definition 1.12. The K-functional of order r of f ∈ Lp(Ω), 1 ≤ p ≤ ∞ (see, e. g., [35]) is
defined by

Kr(f , t)p := K(f , t, Lp(Ω),W
r
p(Ω)) := inf

g∈W r
p(Ω)
{‖f − g‖p + t|g|r,p}, t > 0. (1.9)
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1.2 Moduli of smoothness | 7

For a bounded domain Ω, we denote

Kr(f ,Ω)p := K(f ,diam(Ω)
r)p. (1.10)

It is important to note that the K-functional is unsuitable as a measure of smooth-
ness if 0 < p < 1. In fact, it is shown in [36] that for any finite interval [a, b] ⊂ ℝ,
0 < p < 1, 0 < q ≤ ∞, r ≥ 1, and t > 0, Kr(f , tr , Lq([a, b]),W r

p([a, b])) = 0 for any
f ∈ Lq([a, b]). This necessitates using other formsof smoothness in the range0 < p < 1.

For f : Ω → ℂ, f ∈ Lp(Ω), 0 < p ≤ ∞, h ∈ ℝn, and r ∈ ℕ, we define the rth order
difference operator Δrh : Lp(Ω)→ Lp(Ω) by

Δrh(f , x) := Δ
r
h(f ,Ω, x) := {

∑rk=0 (−1)
r+k(rk)f (x + kh), [x, x + rh] ⊂ Ω,

0, otherwise,
(1.11)

where [x, y] denotes the line segment connecting any two points x, y ∈ ℝn.

Definition 1.13. Themodulus of smoothness of order r is defined by

ωr(f , t)p = ωr(f ,Ω, t)p := sup
|h|≤t

Δ
r
h(f ,Ω, ⋅)

Lp(Ω), t > 0, (1.12)

where |h| denotes the l2-norm of a vector h ∈ ℝn. For a bounded domain Ω, we also
denote

ωr(f ,Ω)p := ωr(f ,diam(Ω))p. (1.13)

We list some of the properties of the modulus of smoothness that we will use
throughout the book (see [35]) for more detail),

Proposition 1.14. Let Ω ⊆ ℝn and f , g ∈ Lp(Ω), 0 < p ≤∞. Then, for any t > 0:
(i) ωr(f , t)p ≤ c(r, p)‖f ‖p. In a more general form, for any 0 ≤ k < r, ωr(f , t)p ≤

c(r, k, p)ωk(f , t)p (where ω0(f , ⋅)p = ‖f ‖p).
(ii) ωr(f + g, t)p ≤ c(p)(ωr(f , t)p + ωr(g, t)p).
(iii) For any λ ≥ 1, ωr(f , λt)p ≤ (λ + 1)rωr(f , t)p for 1 ≤ p ≤ ∞, and ωr(f , λt)pp ≤ (λ +

1)rωr(f , t)pp for 0 < p < 1.
(iv) If Ω1 ⊆ Ω2 ⊆ ℝ

n, then

ωr(f ,Ω1, t)p ≤ ωr(f ,Ω2, t)p.

Also, for any vector h ∈ ℝn and domain Ω ⊆ ℝn,

Δ
r
h(f ,Ω1, ⋅)

Lp(Ω) ≤
Δ

r
h(f ,Ω2, ⋅)

Lp(Ω). (1.14)
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8 | 1 Local approximation

1.2.2 K-functionals and moduli of smoothness

We now present the relationship of the difference and derivative operators using
B-splines. We recall the univariate B-spline of order 1 (degree 0), N1(u) := 1[0,1](u).
Then the B-spline of order r (degree r − 1) is defined by Nr := Nr−1 ∗N1. The B-spline of
order r is supported on [0, r], is in Cr−1, and is a piecewise polynomial of degree r − 1
over the integer intervals. For h1 > 0, we define Nr(u, h1) := h−11 Nr(h−11 u). Let g ∈ Cr(Ω),
and let h ∈ ℝn with |h| = h1 > 0. If the segment [x, x + h] is contained in Ω, then for
ξ := h−11 h and G(u) := g(x + uξ ), u ∈ ℝ, we have

h−11 Δh(g, x) = h
−1
1

h1

∫
0

G′(u)du

= ∫
ℝ

G′(u)N1(u, h1)du

= ∫
ℝ

Dξg(x + uξ )N1(u, h1)du,

where

Dξg(y) := limu→0

g(y + uξ ) − g(y)
u

.

By induction, for r ≥ 1, we get

h−r1 Δrh(g, x) = ∫
ℝ

G(r)(u)Nr(u, h1)du = ∫
ℝ

Dr
ξg(x + uξ )Nr(u, h1)du. (1.15)

Based on relation (1.15), we can bound the modulus of smoothness of the Sobolev
class.

Theorem 1.15. For g ∈ W r
p(Ω), r ≥ 1, 1 ≤ p ≤∞,

ωr(g, t)p ≤ c(n, r)t
r |g|r,p, t > 0. (1.16)

Proof. Let g ∈ Cr(Ω) ∩W r
p(Ω). Since Dξg = ∑

n
i=1 ξi
𝜕g
𝜕xi

and |ξ | = 1, we have that ‖Dξg‖p ≤
|g|1,p. We can see by induction that Dr

ξg = ∑|α|=r cα𝜕
αg with |cα| ≤ c(n, r). This implies

that ‖Dr
ξg‖p ≤ c(n, r)|g|r,p. Let h ∈ ℝ

n with 0 < |h| = h1 ≤ t, let ξ := h−11 h, and denote
Ωr,h := {x ∈ Ω : [x, x + rh] ⊂ Ω}. Applying (1.11), (1.15), and then Minkowski’s inequality
for 1 ≤ p ≤∞ yields

Δ
r
h(g, ⋅)
Lp(Ω) =

Δ
r
h(g, ⋅)
Lp(Ωh,r)

≤ tr

∫
ℝ

Dr
ξg(⋅ + uξ )Nr(u, h1)du

Lp(Ωh,r)
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1.2 Moduli of smoothness | 9

≤ trD
r
ξg
Lp(Ω)

≤ c(n, r)tr |g|r,p.

Taking the supremum over all h ∈ ℝn, |h| ≤ t, gives (1.16) for functions in Cr(Ω). For
1 ≤ p < ∞, we apply a standard density argument to obtain (1.16) for the Sobolev
class.

Proposition 1.16 ([49]). Let Ω ⊂ ℝn satisfy the uniform cone property (Definition 1.9),
and let 1 ≤ p ≤∞ and r ≥ 1. Then there exist constants c1(Ω, p, n, r) > 0 and c2(n, r) > 0
such that for any f ∈ Lp(Ω),

c1Kr(f , t
r)p ≤ ωr(f , t)p ≤ c2Kr(f , t

r)p, 0 < t ≤ diam(Ω). (1.17)

Proof. To see the right-hand side of (1.17), let g be any function in W r
p(Ω). We apply

(1.16) to obtain

ωr(f , t)p ≤ ωr(f − g, t)p + ωr(g, t)p
≤ 2r‖f − g‖p + C(n, r)t

r |g|r,p
≤ C(n, r)(‖f − g‖p + t

r |g|r,p).

Therefore by taking the infimumover all such g ∈ W r
p(Ω)we obtain the right-hand side

of (1.17). The left-hand side is the main result of [49]. We note that the uniform cone
property is a slightly stronger assumption than that used in [49].

Note that although c2 in (1.17) depends only on n and r, the constant c1may further
depend on the geometry of Ω (e. g., the parameters of the uniform cone property). We
can obtain a more specific left-hand side inequality for convex domains. A first result
for convex domains is the following:

Corollary 1.17. Let Ω ⊂ ℝn be a convex domain such that B(0,R1) ⊆ Ω ⊆ B(0,R2) for
some fixed 0 < R1 < R2. Then for f ∈ Lp(Ω), 1 ≤ p ≤∞, r ≥ 1, and 0 < t ≤ 2R2,

c1(r, p, n,R1,R2)Kr(f , t
r)Lp(Ω) ≤ ωr(f , t)Lp(Ω) ≤ c2(n, r)Kr(f , t

r)Lp(Ω). (1.18)

Proof. The right-hand side of (1.18) holds by (1.17) for more general domains. To prove
the left-hand side inequality, we observe that by Theorem 1.10 Ω satisfies the uniform
cone property with parameters that depend only on n, R1, and R2. Therefore by the
method of proof of [49] the left-hand side of (1.18) holds with constant c1(r, p, n,R1,R2).

The proof of the second result on the relationship between K-functional andmod-
uli of smoothness over convex domains actually requires using the “local” polynomial
approximation results of the next chapter. We state it here.
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10 | 1 Local approximation

Proposition 1.18 ([26]). Let Ω ⊂ ℝn be a bounded convex domain. Then, for any f ∈
Lp(Ω), 1 ≤ p ≤∞, and r ≥ 1,

Kr(f , t
r) ≤ c(n, r, p)((1 − tr

diam(Ω)r
)μ(Ω, t)−(r−1+1/p) + 1)ωr(f , t)p,

where

μ(Ω, t) := min
x∈Ω

|B(x, t) ∩ Ω|
|B(x, t)|

, 0 < t ≤ diam(Ω).

1.2.3 Marchaud inequalities

We saw that the modulus of smoothness has the property that for any 1 ≤ k < r,
ωr(f , t)p ≤ c(r, k, p)ωk(f , t)p, t > 0. Marchaud-type inequalities serve as the inverse.
They are easier to prove for the simple cases of Ω = ℝn or where Ω is a univariate
segment. We will require the following results over regular domains.

Proposition 1.19 ([49]). Let Ω be a domain with the uniform cone property, and let f ∈
Lp(Ω), 1 ≤ p ≤∞. Then for any 1 ≤ k < r and 0 < t < 1,

ωk(f , t)p ≤ ct
k(

1

∫
t

ωr(f , s)p
sk+1

ds + ‖f ‖p),

where the constant c depends on n, k, r and the uniform cone properties of Ω.

The proof of Proposition 1.19 for the case 1 ≤ p ≤ ∞ is facilitated by the equiva-
lence (1.17). In the case 0 < p < 1, we are not equipped with the K-functional and need
construct a “direct” proof [30]. We begin with a technical lemma.

Lemma 1.20. Let Ω be a bounded open domain, ̃t > 0, and H ∈ ℝn a unit vector. Let
U ⊂ Ω be an open subdomain such that for any x ∈ U, [x, x + ̃tH] ⊂ Ω. Let S(x,Ω), be the
connected segment of the line passing through x ∈ U with direction H that is contained
in Ω. We denote

ΩU := ⋃
x∈U

S(x,Ω).

For 1 ≤ k ≤ r and f ∈ Lp(Ω), 0 < p ≤ 1, we denote

ωH
k (f , t)

p
p := sup
|s|≤t
∫
ΩU

Δ
k
sH (f ,Ω, x)


pdx, 0 < t ≤

̃t
2r
. (1.19)
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1.2 Moduli of smoothness | 11

Then

ωH
k (f , t)

p
p ≤ c(r, p, ̃t)t

kp(

̃t

∫
t

ωr(f ,Ω, s)pp
skp+1

ds + ‖f ‖pLp(Ω)).

Proof. The setup of the lemma enables us to apply an induction process similar to
the proof in the univariate case (see, e. g., Theorems 2.8.1 and 2.8.2 in [35]). First, as-
sume that r = k + 1. We partition ΩU = Ω1 ∪ Ω2, where Ω1 := ⋃x∈U S1(x,Ω) and
Ω2 := ⋃x∈U S2(x,Ω) with each segment partitioned S(x,Ω) = S1(x,Ω) ∪ S2(x,Ω) at its
midpoint. Observe that we are ensured that the length of each S(x,Ω) is at least ̃t.

Now let h = sH, where 0 < s ≤ t ≤ ̃t/4r. For any x ∈ Ω1, we have that [x, x + 2kh] ⊂
ΩU . This implies that

(Th − I)
k = 2−k(T2h − I)

k + Q(Th)(Th − I)
k+1 (1.20)

is well defined on Lp(Ω1) with Thf := f (⋅ + h) and

Q(z) := 1 − 2
−k(z + 1)k

z − 1
∈ Πk−1(ℝ).

Next, observe that if Q(z) = ∑k−10 aizi and g ∈ Lp(Ω), then

Q(Th)g

p
Lp(Ω1)
≤

k−1
∑
0
api
T

i
hg

p
Lp(Ω1)
≤ C(k, p)‖g‖pLp(ΩU )

.

Applying (1.20) with definition (1.19) gives

Δ
k
hf

p
Lp(Ω1)
≤ 2−kpΔ

k
2hf

p
Lp(Ω1)
+ CΔ

k+1
h f 

p
Lp(ΩU )

≤ 2−kpΔ
k
2hf

p
Lp(Ω1)
+ CωH

k+1(f , s)
p
p.

By repeated application we get, for 2ms ≤ ̃t/4r,

Δ
k
hf

p
Lp(Ω1)
≤ C(2−mkp‖f ‖pLp(ΩU )

+
m
∑
j=0

2−jkpωH
k+1(f , 2

js)pp).

Our next step is bounding the kth difference operator on Lp(Ω2). If x+kh ∈ Ω2, then
there exists x0 ∈ U such that x + kh ∈ S2(x0,Ω). This implies that [x − kh, x + kh] ⊂ ΩU .
Using the equality |Δkh(f , x)| = |Δ

k
−h(f (⋅ + kh), x)|, we can apply the same machinery as

above on Ω2 for the function f (⋅ + kh) and the difference vector −h to obtain

Δ
k
hf

p
Lp(Ω2)
= Δ

k
−hf (⋅ + kh)


p
Lp(Ω2)

≤ C(2−mkp‖f ‖pLp(ΩU )
+

m
∑
j=0

2−jkpωH
k+1(f , 2

js)pp).
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12 | 1 Local approximation

Combining the above two estimates on Ω1 and Ω2 gives

ωH
k (f , t)

p
p ≤ C(2

−mkp‖f ‖pLp(ΩU )
+

m
∑
j=0

2−jkpωH
k+1(f , 2

jt)pp).

By induction we may conclude that, for 2mt ≤ ̃t/4r,

ωH
k (f , t)

p
p ≤ C(2

−mkp‖f ‖pLp(ΩU )
+

m
∑
j=0

2−jkpωH
r (f , 2

jt)pp).

Now choosem such that

2mt ≤
̃t

4r
≤ 2m+1t.

Then

2−m ≤ 8rt̃t
⇒ 2−mkp ≤ C(r, p, ̃t)tkp.

This allows us to obtain the desired result:

ωH
k (f ,Ω, t)

p
p ≤ Ct

kp(‖f ‖pLp(ΩU )
+

m
∑
j=0

ωH
r (f , 2

jt)pp

2(j+1)t
∫

2jt

1
skp+1

ds)

≤ Ctkp(‖f ‖pLp(ΩU )
+

m
∑
j=0

2(j+1)t
∫

2jt

ωH
r (f , s)

p
p

skp+1
ds)

≤ Ctkp(‖f ‖pLp(ΩU )
+

̃t/4r

∫
t

ωH
r (f , s)

p
p

skp+1
ds)

≤ Ctkp(‖f ‖pLp(Ω) +
̃t

∫
t

ωr(f ,Ω, s)pp
skp+1

ds).

Theorem 1.21. Let Ω satisfy the overlapping uniform cone property, and let f ∈ Lp(Ω),
0 < p ≤ 1. Then for any r ≥ 2, there exists ̃t > 0 such that for 0 < t ≤ ̃t,

ω1(f , t)
p
p ≤ ct

p(

̃t

∫
t

ωr(f , s)p

sp+1
ds + ‖f ‖pp), (1.21)

where the constant c depends on n, p, r and overlapping uniform cone properties of Ω.

Proof. Using Definition 1.9, it is easy to see that we may “normalize” the collection of
finite cones {Vj}

J
j=1 to all be congruent to a single fixed cone V by taking the minimum
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1.2 Moduli of smoothness | 13

over the cones’ heights and aperture angles. Obviously, after this process, we still have
that x+Vj ⊂ Ω for any x ∈ Uj. We also ensure that the height of the fixed cone is smaller
than δ. We denote this height by ρ := ρ(Ω). Thenwe addUJ+1 := {x ∈ Ω : dist(x, 𝜕Ω) >
δ} to the cover. If UJ+1 is not empty, then we can apply Lemma 1.20 with U = UJ+1 and
arbitrary unit vector H to obtain

ω1(f ,Ω, t)
p
Lp(UJ+1) ≤ Ctp(

δ

∫
t

ωr(f , s)p

sp+1
ds + ‖f ‖pp), t ≤ δ/r.

Later we will need that for any constant ̃t ≤ δ,

δ

∫
t

ωr(f , s)p

sp+1
ds + ‖f ‖pp ≤

̃t

∫
t

ωr(f , s)p

sp+1
ds + C( ̃t, r, p)‖f ‖pp, t ≤ ̃t/r,

which gives

ω1(f ,Ω, t)
p
Lp(UJ+1) ≤ Ctp(

̃t

∫
t

ωr(f , s)p

sp+1
ds + ‖f ‖pp), t ≤ ̃t/r. (1.22)

We now proceed to estimate on the regions “near” 𝜕Ω. Let h ∈ ℝn, |h| ≤ ̃t/r, where
̃t satisfies 0 < ̃t(ρ, κ) ≤ ρ ≤ δ and will be determined later. We argue that for this
difference vector, it only remains to estimate ‖Δh(f , ⋅)‖Lp(U𝜕Ω,h), with

U𝜕Ω,h := {x ∈ Ω : [x, x + h] ⊂ Ω,dist(x, 𝜕Ω) < δ,dist(x + h, 𝜕Ω) < δ}.

Indeed, if [x, x+h] is not a subset of Ω, then by definition Δh(f , x) = 0. If either x or x+h
are away from the boundary, then |f (x + h) − f (x)| was already part of the integration
over UJ+1. The technical difficulty we are facing when dealing with U𝜕Ω,h is that there
might not be “sufficient intersection” of the infinite line going through [x, x+h]withΩ.
This requires to use the overlapping uniform cone properties of Ω. Since |h| ≤ δ, by
property (iv) in Definition 1.9 there exists 1 ≤ j ≤ J such that x, x + h ∈ Uj (note that
[x, x + h]may not be a subset of Uj), x + Vj, and x + h + Vj ⊂ Ω.

By geometric consideration, as depicted in Figure 1.2, there exist c̃ > 0 and 0 <
̃t ≤ ρ such that if |h| ≤ c̃, then the cones x + Vj and x + h + Vj intersect, and there is a
point z ∈ (x + Vj) ∩ (x + h + Vj) such that |x − z|, |x + h − z| ≤ ̃t, where the constants
depend on the hight ρ and the head-angle κ of the reference cone V . For example, if
x + h ∈ x + Vj, then we may choose z = x + h. In any case, now the lines going through
the segments [x, z] and [x + h, z] have “sufficient intersection” with Ω of the height of
the reference cone at least ρ.
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14 | 1 Local approximation

Figure 1.2: The points x and x + h are contained in some Uj , and z ∈ (x + Vj) ∩ (x + h + Vj).

This leads to the partition

U𝜕Ω,h =
J
⋃
j=1

Uh,j, Uh,j := {x ∈ U𝜕Ω,h : x, x + h ∈ Uj}.

It follows from the discussion above that there exist two unit vectors Hj,1 and Hj,2
such that if x ∈ Uh,j, then
(i) h = a1Hj,1 − a2Hj,2 with 0 ≤ a1, a2 ≤ C|h|,
(ii) [x, x + a1Hj,1] ⊂ x + Vj and [x + h, x + h + a2Hj,2] ⊂ x + h + Vj,
(iii) the connected components of the intersection of Ω with the infinite lines con-

taining the segments [x, x+a1Hj,1] and [x+h, x+h+a2Hj,2] are at least of length ̃t.

The above properties allow us to apply Lemma 1.20 twice with U = UJ+1 and H =
Hj,1,Hj,2 which gives

‖Δhf ‖Lp(Uh,j) ≤ ‖Δa1Hj,1 f ‖Lp(Uh,j) + ‖Δa2Hj,2 f ‖Lp(Uh,j)
≤ Ctp(

̃t

∫
t

ωr(f ,Ω, s)pp
sp+1

ds + ‖f ‖pLp(Ω)).

We now sum this estimate over all Uh,j and then take the supremum on h ≤ ̃t/r. Fi-
nally, the proof of the theorem is completed by adding estimate (1.22) over UJ+1 to the
estimate over⋃Jj=1 Uj.

Corollary 1.22. LetΩ be a convex domain with B(0,R1) ⊆ Ω ⊆ B(0,R2) for 0 < R1 < R2 <
∞. Then for any r ≥ 2, there exists ̃t > 0 such that for any 0 < t ≤ ̃t/r, 0 < p ≤ 1, and
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1.3 Algebraic polynomials over domains | 15

f ∈ Lp(Ω),

ω1(f , t)
p
p ≤ ct

p(

̃t

∫
t

ωr(f , s)p

sp+1
ds + ‖f ‖pp), (1.23)

where the constant c depends on R1, R2, n, p, r.

1.3 Algebraic polynomials over domains

Let Πr−1 := Πr−1 = Πr−1(ℝ
n) denote the multivariate polynomials of total degree r − 1

(order r) in n variables. This is the collection of functions of the type P(x) = ∑|α|<r cαx
α,

where for α ∈ ℤn+, cα ∈ ℂ, |α| := ∑
n
i=1 αi, and x ∈ ℝ

n, xα := ∏ni=1 x
αi
i . By |Ω|we denote the

Lebesgue measure of a set Ω.

Lemma 1.23 ([30]). Let P ∈ Πr−1, and let Ω1,Ω2 ⊂ ℝ
n be bounded convex domains such

that Ω1 ⊆ Ω2 and |Ω2| ≤ ρ|Ω1| for some ρ > 1. Then for 0 < p ≤∞,

‖P‖Lp(Ω2) ≤ c(n, r, p, ρ)‖P‖Lp(Ω1).

Proof. Let Ax = Mx + b be the affine transformation for which (1.5) holds for Ω1. Since
A−1(Ω1) ⊆ B(0, n), we have

A
−1(Ω2)
 =
A
−1(Ω1)

|A−1(Ω2)|
|A−1(Ω1)|

≤ B(0, n)
ρ := C(n, ρ).

(1.24)

Observe that A−1(Ω2) is a convex domain that contains A−1(Ω1) and therefore also con-
tains B(0, 1). Together with (1.24), this implies that the diameter of A−1(Ω2) must be
bounded by a constant that depends on n and ρ, i. e., A−1(Ω2) ⊆ B(0,R), R := R(n, ρ).
Hence applying the equivalence of finite-dimensional (quasi-)normed spaces, we ob-
tain

‖P‖Lp(Ω2) =
det(M)


1/p
‖P‖Lp(A−1(Ω2))

≤ det(M)

1/p
‖P‖Lp(B(0,R))

≤ Cdet(M)

1/p
‖P‖Lp(B(0,1))

≤ Cdet(M)

1/p
‖P‖Lp(A−1(Ω1))

= C‖P‖Lp(Ω1).
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16 | 1 Local approximation

Lemma 1.24 ([30]). For any bounded convex domain Ω ⊂ ℝn, P ∈ Πr−1, and 0 < p,
q ≤∞, we have

‖P‖Lq(Ω) ∼ |Ω|
1/q−1/p‖P‖Lp(Ω) (1.25)

with constants of equivalency depending only on n, r, p, and q.

Proof. Let Ax = Mx + b be the affine transformation for which (1.5) holds. Since
A(B(0, 1)) = θ, from the properties of John’s ellipsoid we get |det(M)| ∼ |Ω| with
constants of equivalency depending only on n. Also, by the equivalence of finite-
dimensional (quasi-)normed spaces, for any polynomial P̃ ∈ Πr−1, we have that
‖P̃‖Lp(B(0,1)) ∼ ‖P̃‖Lq(B(0,n)) with constants of equivalency that depend only on n, r,
p, and q. Let P ∈ Πr−1, and denote P̃ := P(A⋅). Then

‖P‖Lq(Ω) =
det(M)


1/q
‖P̃‖Lq(A−1(Ω))

≤ det(M)

1/q
‖P̃‖Lq(B(0,n))

≤ Cdet(M)

1/q
‖P̃‖Lp(B(0,1))

≤ Cdet(M)

1/q
‖P̃‖Lp(A−1(Ω))

≤ Cdet(M)

1/q−1/p
‖P‖Lp(Ω)

≤ C|Ω|1/q−1/p‖P‖Lp(Ω).

Wewill need the following Bernstein–Markov-type inequality, which provides an
estimate for the norms of derivatives of algebraic polynomials (see also [51]):

Proposition 1.25 ([57]). Let Ω ⊂ ℝn be a bounded convex domain. Then, for 1 ≤ p ≤∞,
any polynomial P ∈ Πr−1, and α ∈ ℤn+ such that |α| := ∑

n
i=1 αi ≤ r − 1,

𝜕
αPLp(Ω) ≤ C(n, |α|)width(Ω)

−|α|‖P‖Lp(Ω), (1.26)

where width(Ω) is the diameter of the largest n-dimensional Euclidean ball contained
in Ω.

Theorem 1.26. Let Ω ⊂ ℝn be a bounded domain, and let 0 < p < ∞. Then, for any
P ∈ Πr−1, we have that ωr(P, t)p = 0, 0 < t ≤ diam(Ω). In the other direction, if Ω is also
open and connected and f ∈ Lp(Ω) is such that ωr(f ,Ω)p = 0 for some r ≥ 1, then there
exists a polynomial P ∈ Πr−1 such that f = P a. e. on Ω.

Proof. The first part is a direct application of identity (1.15), since it implies that
Δrh(P, x) = 0 for any x ∈ Ω and h ∈ ℝn. To prove the second part, we apply the Whit-
ney decomposition of Ω into interior disjoint cubes (see, e. g., the appendix in [41]).
Namely, there exists a family of closed cubes {Qk}

∞
k=1 such that:
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1.4 The Bramble–Hilbert lemma for convex domains | 17

(i) ⋃k Qk = Ω, and the cubes Qk, have disjoint interiors,
(ii) √nl(Qk) ≤ dist(Qk ,Ωc) ≤ 4√nl(Qk), where l(Qk) is the side length of Qk,
(iii) if the boundaries of Qk and Qj touch, then

1
4
≤
l(Qj)

l(Qk)
≤ 4,

(iv) for any Qk, there are at most 12n cubes Qj that touch it.

Now from theWhitney decompositionwe construct a cover of “substantially” overlap-
ping cubes {Q̃k}

∞
k=1, simply by symmetrically extending the lengths of the cubes, such

that l(Q̃k) = 2l(Qk), 1 ≤ k ≤∞. By property (ii) of theWhitney decomposition we know
that each Q̃k is contained in Ω, and thus ⋃k Q̃k = Ω. Also, for touching cubes Qk and
Qj, the extensions have a “substantial” intersection, i. e.,

|Q̃k ∩ Q̃j| ≥ min{l(Qk)/2, l(Qj)/2}
n
.

As we will see, in the subsequent sections, we work hard to prove the anisotropic
theory of “local” polynomial approximation. In particular, we produce uniform
bounds for polynomial approximation on bounded convex domains in the p-norms,
0 < p ≤ ∞. However, here, on the cubes {Q̃k}, we may apply the isotropic theory.
Namely, we may use the Whitney-type inequality on the unit cube [62], which by the
invariance under dilations implies that there exists a constant c(p, n, r) > 0 such that
Er−1(f , Q̃k)p := infP∈Πr−1 ‖f −P‖Lp(Q̃k)

≤ cωr(f , Q̃k)p. This means that f = Pk a. e. on Q̃k for
some Pk ∈ Πr−1, 1 ≤ k ≤ ∞. Since Ω is a connected domain, using the “substantial”
intersections of the extended cubes of touching cubes yields that for touching cubes
Qk, Qj, we have that Pk = Pj. From this we may conclude by induction (on a sequence
of cubes touching at least one cube from the set of previous cubes) that there exists a
unique P ∈ Πr−1 such that P = Pk for all k. This concludes the proof.

Remark 1.27. Note that we should take care not to use the anisotropic Whitney theo-
rem (Theorem 1.34) in the proof of the second part of Theorem 1.26 for the case 0 < p <
1, since we would end up with a circular argument.

1.4 The Bramble–Hilbert lemma for convex domains

Given a bounded regular domain Ω ⊂ ℝn, our goal is estimating the degree of approx-
imation of a function f ∈ Lp(Ω), 0 < p ≤ ∞, by algebraic polynomials of total degree
r − 1,

Er−1(f ,Ω)p := inf
P∈Πr−1 ‖f − P‖Lp(Ω).
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For a star-shaped domain Ω (see Definition 1.7), we denote

ρmax := max{ρ | Ω is star-shaped with respect to a ball B ⊆ Ω of radius ρ}.

The chunkiness parameter of Ω [15] is defined as

γ := diam(Ω)
ρmax
. (1.27)

Note that the chunkiness parameter γ becomes larger in cases where the domain is
longer and thinner. This leads to the followingBramble–Hilbert formulation (see, e. g.,
[15]).

Theorem 1.28 (Bramble–Hilbert lemma for star-shaped domains). Let Ω be a bound-
ed domain that is star-shaped with respect to some ball B with chunkiness parameter γ,
and let g ∈ W r

p(Ω), 1 ≤ p ≤∞, r ≥ 1. Then there exists a polynomial P ∈ Πr−1 such that

|g − P|k,p ≤ C(n, r)(1 + γ)
n diam(Ω)r−k |g|r,p, k = 0, 1, . . . , r − 1. (1.28)

Before we proceed with the proof of Theorem 1.28, we need some preparation. Let
g ∈ Cr(Ω) and recall that the classical Taylor polynomial of order r (degree r − 1) at
x ∈ Ω about a point y ∈ B is given by

Tryg(x) := ∑
|α|<r

𝜕αg(y)
α!
(x − y)α, (1.29)

where α! := ∏ni=1 αi!. Then the Taylor remainder of order r is given by

Rryg(x) := g(x) − T
r
yg(x) = r ∑

|α|=r

(x − y)α

α!

1

∫
0

sr−1𝜕αg(x + s(y − x))ds, (1.30)

which is meaningful, since the segment [x, y] is contained in Ω. Then we have

g(x) = Tryg(x) + R
r
yg(x), x ∈ Ω.

Our construction of an approximating polynomial relies on averaging the Taylor poly-
nomials over the ball B. It can be shown that there exists a cut-off functionϕ ∈ C∞ for
B(0, 1) with the following properties:
(i) ∫ℝn ϕ(x)dx = 1,
(ii) supp(ϕ) = B(0, 1),
(iii) ‖ϕ‖∞ ≤ 1.

For any ball B(x0, ρ), the cut-off function ϕB := ρ−nϕ(ρ−1(⋅− x0)) satisfies the following
properties:
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(i) ∫ℝn ϕB(x)dx = 1,
(ii) supp(ϕB) = B(x0, ρ),
(iii) ‖ϕB‖∞ ≤ ρ−n.

The averaged Taylor polynomial of g ∈ Cr(Ω) over B ⊆ Ω of order r (degree r−1) is given
by

TrBg(x) := ∫
B

Tryg(x)ϕB(y)dy, x ∈ Ω. (1.31)

We also denote the averaged Taylor remainder by

RrBg(x) := g(x) − T
r
Bg(x).

Lemma 1.29. For x ∈ Ω, where Ω is star-shaped with respect to B(x0, ρ) ⊂ Ω, and g ∈
Cr(Ω),

RrBg(x) = r ∑
|α|=r
∫

V(x)

Kα(x, z)𝜕
αg(z)dz, (1.32)

where V(x) is the convex closure of {x} ∪ B, and Kα =
1
α! (x − z)

αK(x, z) with

K(x, z)
 ≤ C(γ + 1)

n|x − z|−n, γ = diam(Ω)
ρ
. (1.33)

Proof. We fix x ∈ Ω and observe that, by properties (i) and(ii) of ϕB,

RrBg(x) = g(x) − T
r
Bg(x)

= ∫
B

(g(x) − Tryg(x))ϕB(y)dy

= ∫
B

Rryg(x)ϕB(y)dy

= r ∑
|α|=r
∫
B

(x − y)α

α!
ϕB(y)

1

∫
0

sr−1𝜕αg(x + s(y − x))dsdy.

We nowmake the change of variables (y, s) to (z, s)with z = x + s(y − x) and define the
integration domain

A := {(z, s) : s ∈ [0, 1], s
−1(z − x) + x − x0

 ≤ ρ}
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to obtain

RrBg(x) = r ∑
|α|=r

1
α!
∫
A

(x − z)αϕB(s
−1(z − x) + x)𝜕αg(z)s−n−1dzds

= r ∑
|α|=r
∫

V(x)

𝜕αg(z) 1
α!
(x − z)α

1

∫
0

1A(z, s)ϕB(s
−1(z − x) + x)s−n−1dsdz

= r ∑
|α|=r
∫

V(x)

𝜕αg(z)Kα(x, z)dz,

where

Kα(x, z) :=
1
α!
(x − z)αK(x, z), K(x, z) :=

1

∫
0

1A(z, s)ϕB(s
−1(z − x) + x)s−n−1ds.

We now prove estimate (1.33). Observe that

(z, s) ∈ A⇒ |z − x|
|x − x0| + ρ

< s.

So with t := |z − x|/(|x − x0| + ρ) and property (iii) of ϕB, we get

K(x, z)
 =


1

∫
0

1A(z, s)ϕB(s
−1(z − x) + x)s−n−1ds



≤ ‖ϕB‖∞

1

∫
t

s−n−1ds

≤ C(n)ρ−nt−n

= C(n)ρ−n|x − z|−n(|x − x0| + ρ)
n

= C(n)(1 + 1
ρ
|x − x0|)

n
|x − z|−n

≤ C(n)(1 + γ)n|x − z|−n.

Next, we provide the following commutativity of Taylor polynomials and differen-
tiation under affine transformations.

Lemma 1.30 ([29]). Let A(x) = Mx + b be a nonsingular affine transformation, and let
g ∈ Cr(Ω). Then, for any x ∈ Ω and α ∈ ℤn+ with 1 ≤ |α| ≤ r, we have

𝜕αx [T
r
y(g(A⋅))(A

−1x)] = Tr−|α|y (𝜕
αg(A⋅))(A−1x), (1.34)
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which implies that for a star-shaped domain (with respect to B),

𝜕αx [T
r
B(g(A⋅))(A

−1x)] = Tr−|α|B (𝜕
αg(A⋅))(A−1x). (1.35)

Proof. Observe that it is sufficient to prove that for any 1 ≤ k ≤ r − 1 and 1 ≤ s ≤ n,

𝜕esx [ ∑
|β|=k

𝜕βy g̃(y)
β!
(A−1x − y)β] = ∑

|γ|=k−1

𝜕γy g̃xs (y)
γ!
(A−1x − y)γ , (1.36)

where g̃ := g(A⋅), g̃xs := gxs (A⋅), gxs :=
𝜕g
𝜕xs

, and {es}s=1,...,n is the standard basis of ℝn.
The case of a general multivariate derivative 𝜕αx follows by repeated applications of
(1.36), and the Taylor series formulation (1.34) is obtained by adding all the degrees
1 ≤ k ≤ r − 1. To prove the above, let M =: (ai,j)1≤i,j≤n and M−1 =: (bi,j)1≤i,j≤n. In the
calculations below, if βi = 0, then differentiating (A−1x − y)β with respect to xs does
not produce the term βibi,s(A−1x − y)β−ei , we rather have 0, and it does not appear in
the summation. Hence in this case, we regard βibi,s(A−1x−y)β−ei := 0 and (β−ei)! =∞,
and again the term is not there. This takes care of itself automatically when we switch
below the summation from β to γ = β − ei:

𝜕esx [ ∑
|β|=k

𝜕βy g̃(y)
β!
(A−1x − y)β] = ∑

|β|=k

𝜕βy g̃(y)
β!
𝜕esx ((A

−1x − y)β)

= ∑
|β|=k

𝜕βy g̃(y)
β!

n
∑
i=1

βibi,s(A
−1x − y)β−ei

= ∑
|β|=k

n
∑
i=1

𝜕βy g̃(y)
(β − ei)!

bi,s(A
−1x − y)β−ei

= ∑
|γ|=k−1

(A−1x − y)γ

γ!

n
∑
i=1

bi,s𝜕
γ+ei
y g̃(y)

= ∑
γ|=k−1

(A−1x − y)γ

γ!

n
∑
i=1

bi,s𝜕
γ
y(

n
∑
j=1

aj,igxj (Ay))

= ∑
|γ|=k−1

(A−1x − y)γ

γ!

n
∑
j=1
𝜕γy (gxj (Ay))

n
∑
i=1

aj,ibi,s

= ∑
|γ|=k−1

(A−1x − y)γ

γ!

n
∑
j=1
𝜕γy (gxj (Ay))δj,s

= ∑
|γ|=k−1

𝜕γy (g̃xs (y))
γ!
(A−1x − y)γ .
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Proof of Theorem 1.28. We first assume that g ∈ Cr(Ω) and diam(Ω) = 1. We need the
following Riesz potential inequality [15, Lemma 4.3.6]: for a given

h(x) = ∫
Ω

|x − z|r−nf (z)
dz,

where f ∈ Lp(Ω), 1 ≤ p ≤∞, we have

‖h‖Lp(Ω) ≤ C(n, r)diam(Ω)
r‖f ‖Lp(Ω). (1.37)

For k = 0, we use (1.32), (1.33), and (1.37) with diam(Ω) = 1 to proceed with

g − T
r
Bg
Lp(Ω) =

R
r
Bg
Lp(Ω)

≤ r ∑
|α|=r


∫
Ω

Kα(⋅, z)

𝜕
αg(z)dz

Lp(Ω)

≤ C(n, r)(γ + 1)n ∑
|α|=r


∫
Ω

|x − z|r−n𝜕
αg(z)dz

Lp(Ω)

≤ C(n, r)(γ + 1)n|g|W r
p(Ω).

For 0 < k < r, let α ∈ ℤn+ with |α| = k, and let h := 𝜕
αg. Applying (1.35) with A(x) = x

and the estimate above for h give

𝜕
α(g − TrBg)

Lp(Ω) =
h − T

r−k
B hLp(Ω)

≤ C(n, r)(γ + 1)n|h|W r−k
p (Ω)

≤ C(n, r)(γ + 1)n|g|W r
p(Ω).

Summing up over all α ∈ ℤn+ with |α| = k, we conclude

g − T
r
Bg
Wk

p (Ω)
≤ C(n, r)(γ + 1)n|g|W r

p(Ω), k = 0, . . . , r − 1.

This finishes the proof for the case g ∈ Cr(Ω) and diam(Ω) = 1. For an arbitrary
bounded domain Ω that is star-shaped with respect to B, let Ω̃ = A−1(Ω), where A is an
affine transform defined through its inverse A−1(x) := diam(Ω)−1(x − x0), where x0 is
the center of B. Observe that Ω̃ satisfies diam(Ω̃) = 1 and is star-shaped with respect to
the ball A−1(B), having the same chunkiness parameter γ as Ω. For g̃ := g(A⋅), by the
previous part in the proof

g̃ − T
r
A−1(B)g̃Wk

p (Ω̃)
≤ C(n, r)(γ + 1)n|g̃|W r

p(Ω̃)
, k = 0, . . . , r − 1.
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Thus, with P := TrA−1(B)g̃(A−1⋅) ∈ Πr−1, for 1 ≤ p <∞ (the proof for p =∞ is exactly the
same with no need for the change of variables), we obtain

‖g − P‖Lp(Ω) = diam(Ω)
−1/pg̃ − T

r
A−1(B)g̃Lp(Ω̃)

≤ C(n, r)diam(Ω)−1/p(γ + 1)n|g̃|W r
p(Ω̃)

≤ C(n, r)diam(Ω)−1/p(γ + 1)n diam(Ω)r ∑
|α|=r

𝜕
αg(A⋅)Lp(Ω̃)

= C(n, r)(γ + 1)n diam(Ω)r ∑
|α|=r

𝜕
αgLp(Ω)

= C(n, r)(γ + 1)n diam(Ω)r |g|W r
p(Ω).

For 0 < k < r, let α ∈ ℤn+ with |α| = k, and let h := 𝜕
αg. Applying (1.35) with the affine

transformation A defined above and the above estimate for h gives

𝜕
α(g − P)Lp(Ω) =

h − 𝜕
α[TrA−1(B)g̃(A−1⋅)]Lp(Ω)

= h − T
r−k
A−1(B)hLp(Ω)

≤ C(n, r)(γ + 1)n diam(Ω)r−k |h|W r−k
p (Ω)

≤ C(n, r)(γ + 1)n diam(Ω)r−k |g|W r
p(Ω).

Summing up over all α ∈ ℤn+ with |α| = k, we conclude

|g − P|Wk
p (Ω) ≤ C(n, r)(γ + 1)

n diam(Ω)r−k |g|W r
p(Ω), k = 0, . . . , r − 1.

This concludes the proof for g ∈ Cr(Ω). Since C∞(Ω) is dense inW r
p(Ω), 1 ≤ p <∞,

wemay apply a standard density argument to obtain (1.28) for g ∈ W r
p(Ω), that is, there

exist sequences {gk}, gk ∈ Cr(Ω), and {Pk}, Pk ∈ Πr−1, k ≥ 1, for which (1.28) is satisfied
and also ‖g − gk‖W r

p(Ω) → 0. Then from {Pk}we may extract a subsequence converging
to P ∈ Πr−1 (e. g., in the L∞ norm), such that (1.28) is satisfied for g with P.

The Bramble–Hilbert lemma for star-shaped domains implies that for Ω, a star-
shaped domain with respect to some ball B, with chunkiness parameter γ and f ∈
Lp(Ω), 1 ≤ p ≤∞, we have

Kr(f ,Ω)p ≤ Er−1(f ,Ω)p ≤ C(n, r)(γ + 1)
nKr(f ,Ω)p. (1.38)

If we further assume that the domain satisfies the uniform cone property, then apply-
ing (1.17), for t = diam(Ω), we obtain the equivalence

Er−1(f ,Ω)p ∼ Kr(f ,Ω)p ∼ ωr(f ,Ω)p (1.39)
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for 1 ≤ p ≤ ∞ with constants that also depend on the shape of the domain Ω. An ap-
plication of Theorem 1.28 is the following:

Theorem 1.31 ([29]). LetΩ ⊂ ℝn be a bounded domain, and let A be a nonsingular affine
map such that B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n) and A−1(Ω) is star-shaped with respect to
B(0, 1). Then, for g ∈ W r

p(Ω), r ≥ 1, 1 ≤ p ≤ ∞, there exists a polynomial P ∈ Πr−1 such
that

|g − P|Wk
p (Ω) ≤ C(n, r)diam(Ω)

r−k |g|Wk
p (Ω), k = 0, 1, . . . , r. (1.40)

For the case of g ∈ Cr(Ω), P(x) = TrB(0,1)(g(A⋅))(A
−1x) satisfies (1.40).

Proof. Note that we can bound the chunkiness parameter (1.27) as follows:

γ(A−1(Ω)) ≤ 2n. (1.41)

Since A(x) = Mx + b maps B(0, 1) into Ω, we get that ‖M‖2 ≤ diam(Ω). This gives that
max1≤i,j≤n |ai,j| ≤ diamΩ, where M = (ai,j)1≤i,j≤n. With g̃ := g(A⋅) and Ω̃ := A−1(Ω), for
y ∈ Ω̃ and α ∈ ℤn+ with |α| = k, k = 1, . . . , r, we get

𝜕
αg̃(y) ≤ diam(Ω)

k ∑
|β|=k

(𝜕
βg)(Ay).

In particular,

∑
|α|=r

𝜕
αg̃Lp(Ω̃) ≤ c(n, r)diam(Ω)

r ∑
|α|=r

(𝜕
αg)(A⋅)Lp(Ω̃). (1.42)

We can now prove (1.40) for k = 0. Let P̃ := TrB(0,1)g̃ ∈ Πr−1 and P := P̃(A−1⋅). Then since
the chunkiness parameter of Ω̃ satisfies (1.41), using (1.28) and (1.42), for 1 ≤ p < ∞
(the proof for p =∞ is exactly the same with no need for the change of variables), we
obtain

‖g − P‖Lp(Ω) =
det(M)


1/p
‖g̃ − P̃‖Lp(Ω̃)

≤ c(n, r)det(M)

1/p
|g̃|W r

p(Ω̃)

≤ c(n, r)det(M)

1/p diam(Ω)r ∑

|α|=r

𝜕
αg(A⋅)Lp(Ω̃)

= c(n, r)diam(Ω)r ∑
|α|=r

𝜕
αgLp(Ω)

= c(n, r)diam(Ω)r |g|W r
p(Ω).

For 0 < k < r, we proceed as in the proof of Theorem 1.28. Let α ∈ ℤn+ with |α| = k,
and let h := 𝜕αg. Applying (1.35) with the affine transformation A defined above, in the
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case k = 0 for h, we get

𝜕
α(g − P)Lp(Ω) =

h − 𝜕
α[TrB(0,1)g̃(A

−1⋅)]Lp(Ω)

= h − T
r−k
B(0,1)h
Lp(Ω)

≤ C(n, r)diam(Ω)r−k |h|W r−k
p (Ω)

≤ C(n, r)diam(Ω)r−k |g|W r
p(Ω).

Summing up over all α ∈ ℤn+ with |α| = k, we conclude

|g − P|Wk
p (Ω) ≤ C(n, r)diam(Ω)

r−k |g|W r
p(Ω), k = 0, . . . , r − 1.

This concludes the proof for g ∈ Cr(Ω). Since C∞(Ω) is dense inW r
p(Ω), 1 ≤ p <∞,

we may apply a standard density argument as in the proof of Theorem 1.28 to obtain
(1.40) for g ∈ W r

p(Ω).

An immediate application of John’s lemma (Proposition 1.6) and Theorem 1.31
gives the following:

Corollary 1.32 (Bramble–Hilbert lemma for convex domains [29]). Let Ω ⊂ ℝn be a
bounded convex domain, and let g ∈ W r

p(Ω), r ∈ ℕ, 1 ≤ p ≤ ∞. Then there exists a
polynomial P ∈ Πr−1 such that

|g − P|k,p ≤ C(n, r)diam(Ω)
r−k |g|r,p, k = 0, 1, . . . , r − 1. (1.43)

For the case of g ∈ Cr(Ω), P(x) = TrB(0,1)(g(A⋅))(A
−1x) satisfies (1.43), where TrBh is the

averaged Taylor polynomial of h with respect to the ball B, given by (1.31). In particular,
for the case k = 0, we obtain

Er−1(g,Ω)p ≤ C(n, r)diam(Ω)
r |g|r,p. (1.44)

For the general case of functions in Lp(Ω), we also get the following:

Corollary 1.33. Let Ω ⊂ ℝn be a bounded convex domain, and let f ∈ Lp(Ω), 1 ≤ p ≤∞.
Then, for any r ≥ 1,

Er−1(f ,Ω)p ∼ Kr(f ,Ω)p, (1.45)

where the constants of equivalency depend only on n and r and not on f or Ω.

Proof. Let gi ∈ W r
p(Ω), i ≥ 1, be a sequence such that

Kr(f ,diam(Ω)
r)p = infi {‖f − gi‖p + diam(Ω)

r |gi|r,p}.
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By (1.43) there exist polynomials Pi ∈ Πr−1, i ≥ 1, such that

‖gi − Pi‖p ≤ C(n, r)diam(Ω)
r |gi|r,p.

Therefore

Er−1(f ,Ω)p ≤ infi ‖f − Pi‖p

≤ inf
i
{‖f − gi‖p + ‖gi − Pi‖p}

≤ inf
i
{‖f − gi‖p + C(n, r)diam(Ω)

r |gi|r,p}

≤ C(n, r)Kr(f ,diam(Ω)
r)p

= C(n, r)Kr(f ,Ω)p.

To prove Kr(f ,Ω)p ≤ Er−1(f ,Ω)p, let P be an arbitrary polynomial in Πr−1. Then
using (1.9), it is easy to see that

Kr(f ,diam(Ω)
r)p ≤ ‖f − P‖p + diam(Ω)

r |P|r,p = ‖f − P‖p.

Since P was chosen arbitrarily, we get that

Kr(f ,Ω)p = Kr(f ,diam(Ω)
r)p ≤ inf

P∈Πr−1 ‖f − P‖p = Er−1(f ,Ω)p.

1.5 The Whitney theorem for convex domains

In the previous section, where the polynomial approximation was taking place in the
Lp space with 1 ≤ p ≤ ∞, we were able to apply the tools of Sobolev spaces and the
K-functional. However, for the case of 0 < p < 1, we need to directly estimate “local”
low-order polynomial approximation over convex domains explicitly using moduli of
smoothness. The critical emphasis is on estimates where the leading constant does
not further depend on the geometry of the domain. The main result of this section is
the following:

Theorem 1.34 ([30]). Let Ω ⊂ ℝn be a bounded convex domain, and let f ∈ Lp(Ω), 0 <
p ≤∞. Then for any r ≥ 1,

Er−1(f ,Ω)p ≤ C(n, r, p)ωr(f ,Ω)p, (1.46)

where ωr(f ,Ω)p is defined in (1.13).

Before we proceed with the proof of Theorem 1.34, we review two corollaries that
can be derived from it. By the first part of Theorem 1.26 we have that ωr(P,Ω)p = 0 for
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any polynomial P ∈ Πr−1. Thus

ωr(f ,Ω)p ≤ ωr(f − P,Ω)p ≤ C‖f − P‖p,

which gives

ωr(f ,Ω)p ≤ CEr−1(f ,Ω)p.

Combining this with (1.45) and (1.46) yields the following:

Corollary 1.35. For all bounded convex domainsΩ ⊂ ℝn, functions f ∈ Lp(Ω), and r ≥ 1,
for 1 ≤ p ≤∞, we have the equivalence

Er−1(f ,Ω)p ∼ Kr(f ,Ω)p ∼ ωr(f ,Ω)p, (1.47)

and for 0 < p < 1, we have the equivalence

Er−1(f ,Ω)p ∼ ωr(f ,Ω)p, (1.48)

where the constants depend on n, r, and p but not on Ω or f .

Corollary 1.36. For any bounded convex domain Ω ⊂ ℝn, r ≥ 1, and 1 ≤ p < ∞, there
exists a linear projector PΩ,p : Lp(Ω)→ Πr−1 that realizes the Whitney inequality

‖f − PΩ,pf ‖Lp(Ω) ≤ C(n, r, p)ωr(f ,Ω)p.

This also implies that the projectors {PΩ,p}Ω are uniformly bounded over all bounded
convex domains.

Proof. Recall that by (1.43), for any g ∈ Cr(Ω), the linear projector

PΩg(x) := T
r
B(0,1)(g(A⋅))(A

−1x)

realizes the Bramble–Hilbert lemma

‖g − PΩg‖Lp(Ω) ≤ C(n, r)diam(Ω)
r |g|W r

p(Ω).

By (1.47) this further implies that

‖g − PΩg‖Lp(Ω) ≤ C(n, r, p)ωr(g,Ω)p.

Observe that this also gives that PΩ is bounded on Cr(Ω) ∩ Lp(Ω):

‖PΩg‖p ≤ ‖PΩg − g‖p + ‖g‖p
≤ Cωr(g,Ω)p + ‖g‖p
≤ C‖g‖p.
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Since Cr(Ω) is dense in Lp(Ω), 1 ≤ p < ∞, we may extend PΩ to a bounded projector
PΩ,p that realizes the Whitney estimate for functions in Lp(Ω).

We prove Theorem 1.34 separately for 1 ≤ p ≤ ∞ and 0 < p < 1. As we will see,
in the former case, we can use the equivalence of the modulus of smoothness and the
K-functional and then apply themachinery of K-functionals. In the latter case,wehave
to work significantly harder as the classical K-functional in Lp, 0 < p < 1, is trivial.

Proof of Theorem 1.34 for the case 1 ≤ p ≤∞. Let A(x) = Mx + b be the affine transfor-
mation for which (1.5) holds. Corollary 1.33 implies that for Ω̃ := A−1(Ω) and f̃ := f (A⋅),
there exists a polynomial P̃ ∈ Πr−1 such that

‖f̃ − P̃‖Lp(Ω̃) ≤ C(n, r)Kr(f̃ , Ω̃)p.

Since B(0, 1) ⊆ Ω̃ ⊆ B(0, n), Ω̃ fulfills the conditions of Corollary 1.17 with R1 = 1 and
R2 = n, we may apply (1.18) with t = diam(Ω̃) to obtain

‖ ̃f − P̃‖Lp(Ω̃) ≤ C(n, r)Kr(
̃f , Ω̃)p

≤ C(n, r, p)ωr( ̃f , Ω̃)p.

Denoting P := P̃(A−1⋅) yields

‖f − P‖Lp(Ω) =
det(M)


1/p
‖ ̃f − P̃‖Lp(Ω̃)

≤ Cdet(M)

1/pωr( ̃f , Ω̃)p

= Cωr(f ,Ω)p.

This proves Theorem 1.34 for the case 1 ≤ p ≤∞.

We now turn to the proof of the Whitney theorem for 0 < p < 1 [30]. We first
consider the case r = 1.

Lemma 1.37. Let Ω ⊂ ℝn be a bounded domain, and let f ∈ Lp(Ω), 0 < p < ∞. Then
there exists a constant c such that

∫
Ω

f (x) − c

pdx ≤ 1
|Ω|
∫

|h|≤diam(Ω)

∫
Ω

Δh(f ,Ω, x)

pdxdh, (1.49)

where |Ω| denotes the volume of Ω.

Proof. By a standard density argument wemay assume that f is continuous. Consider
the function ϕ(y) := ∫Ω |f (x) − f (y)|

p dx, y ∈ Ω. Clearly, there exists y0 ∈ Ω such that

ϕ(y0) ≤
1
|Ω|
∫
Ω

ϕ(y) dy.
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Therefore with c := f (y0) we get

∫
Ω

f (x) − c

p dx = ϕ(y0)

≤
1
|Ω|
∫
Ω

ϕ(y) dy

=
1
|Ω|
∫
Ω

∫
Ω

f (x) − f (y)

p dx dy.

By definition, for any domain Ω and every x ∈ Ω, if x + h ̸∈ Ω, then Δh(f ,Ω, x) = 0.
Therefore the substitution h = y − x yields (1.49).

Corollary 1.38. LetΩ ⊂ ℝn be a bounded convex domain, and let f ∈ Lp(Ω), 0 < p <∞.
Then there exists a constant c such that

‖f − c‖Lp(Ω) ≤ (2n)
n/pω1(f ,Ω)p. (1.50)

Proof. Let Ω̃ := A−1(Ω), where A is the affine transformation for which (1.5) holds.
Denote ̃f := f (A⋅). By Lemma 1.37 there exists a constant c such that

∫

Ω̃


̃f (x) − c

p dx ≤ 1
|Ω̃|
∫
|h|≤2n

∫

Ω̃

Δh( ̃f , Ω̃, x)

p dx dh.

Hence

∫

Ω̃


̃f (x) − c

p dx ≤ |B(0, 2n)|
|B(0, 1)|

ω1( ̃f , Ω̃)
p
p

= (2n)nω1( ̃f , Ω̃)
p
p.

As we have seen in the proof of Theorem 1.34 for the case 1 ≤ p ≤ ∞, the Whit-
ney inequality is invariant under affine maps, and therefore the above inequality im-
plies (1.50).

Lemma 1.39. LetΩ ⊂ ℝn be a convex domain such that B(0,R1) ⊆ Ω ⊆ B(0,R2) for some
0 < R1 < R2, and let f ∈ Lp(Ω), 0 < p < ∞. Then, for each m ∈ ℕ, there exists a step
function

ϕ =
K
∑
k=1

1Qk
ck

with the following properties:
(1) Qk , 1 ≤ k ≤ K ≤ C1(n,R2)mn, are cubes taken from the uniform grid of side length

m−1 and thus have disjoint interiors;
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(2) Ω ⊆ ⋃Kk=1 Qk;
(3) ‖f − ϕ‖Lp(Ω) ≤ C(n,R1,R2)ω1(f , 1/m)Lp(Ω);
(4) ‖ϕ‖Lp(ℝn) ≤ C(n,R1,R2, p)‖f ‖Lp(Ω).

Proof. For m ∈ ℕ, we select from the uniform grid of length m−1 all the cubes Qk,
1 ≤ k ≤ K̃ ≤ (2R2)nmn, for which int(Qk ∩ Ω) ̸= 0. For each 1 ≤ k ≤ K̃, we construct
from Qk, by a symmetric extension, the cube Q̃k with side length 3m−1. For example,
the cube [0,m−1]n is extended to [−m−1, 2m−1]n. We claim that there exists a constant
C2(n,R1,R2) such that

|Q̃k ∩ Ω| ≥ C2(n,R1,R2)m
−n, 1 ≤ k ≤ K̃. (1.51)

Indeed, given 1 ≤ k ≤ K̃, take a point x0 ∈ Qk ∩ Ω. If x0 ∈ B(0,R1), then it is easy to see
that there exists a constant C3(n,R1) for which

|Ω ∩ Q̃k | ≥
B(0,R1) ∩ Q̃k

 ≥ C3(n,R1)m
−n.

Otherwise, x0 ̸∈ B(0,R1), and we denote by V(x0) the cone defined by the convex clo-
sure of the set {x0} ∪ B(0,R1) ⊆ Ω. Since B(0,R1) ⊂ V(x0) ⊂ B(0,R2), it follows that
the head angle α of the cone V(x0) satisfies sin(α/2) ≥ R1/R2. Therefore the volume
of V(x0) ∩ Q̃k is bounded from below by the volume of a cone in ℝn with head angle
2 arcsin(R1/R2) and height m−1. This implies that there exists a constant C4(n,R1,R2)
such that

|Ω ∩ Q̃k | ≥
V(x0) ∩ Q̃k

 ≥ C4(n,R1,R2)m
−n.

We conclude that (1.51) holds with C2 := min(C3,C4).
Next, we augment cubes Qk, K̃ < k ≤ K, with K ≤ C1(n,R2)mn, taken from the

uniform grid of lengthm−1, to ensure that⋃Kk=1 Qk = ⋃
K̃
k=1 Q̃k .

We first assume that f ≥ 0. This will allow us to show that ϕ constructed below
satisfies property (4). We also focus on the case 0 < p ≤ 1. Lemma 1.37 implies that for
each 1 ≤ j ≤ K̃, there exists a constant c̃j that satisfies

∫

Q̃j∩Ω

f (x) − c̃j

p dx ≤ 1
|Q̃j ∩ Ω|

∫

|h|≤3√nm−1 ∫Ω
Δh(f , Q̃j ∩ Ω, x)


p dx dh.

We denote by {Q̃k,j : 1 ≤ j ≤ J(k) ≤ 3n} the collection of larger cubes that contain the
cube Qk, 1 ≤ k ≤ K, and set

ck :=
1

J(k)

J(k)
∑
j=1

c̃k,j.
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We claim that

ϕ :=
K
∑
k=1

1Qk
ck

satisfies properties (3) and (4). We proceed to prove property (3). Recalling that only
the cubes Qk, 1 ≤ k ≤ K̃, intersect with the interior of Ω and applying the properties of
the modulus of smoothness from Proposition 1.14 and (1.51), we have

‖f − ϕ‖pLp(Ω) =
K̃
∑
k=1
∫

Qk∩Ω

f (x) − ck

p dx

=
K̃
∑
k=1
∫

Qk∩Ω



1
J(k)

J(k)
∑
j=1
(f (x) − c̃k,j)



p

dx

≤
K̃
∑
k=1

J(k)
∑
j=1
∫

Qk∩Ω

f (x) − c̃k,j

p dx

=
K̃
∑
j=1
∫

Q̃j∩Ω

f (x) − c̃j

p dx

≤
K̃
∑
j=1

1
|Q̃j ∩ Ω|

∫

|h|≤3√nm−1 ∫Q̃j∩Ω

Δh(f , Q̃j ∩ Ω, x)

p dx dh

≤ C(n,R1,R2)m
n

K̃
∑
k=1
∫

|h|≤3√nm−1 ∫Qk∩Ω

Δh(f ,Ω, x)

p dx dh

= C(n,R1,R2)m
n ∫

|h|≤3√nm−1 ∫Ω
Δh(f ,Ω, x)


p dx dh

≤ C(n,R1,R2)ω1(f , 3√n/m)
p
Lp(Ω)

≤ C(n,R1,R2)ω1(f , 1/m)
p
Lp(Ω)
.

This proves (3). To prove property (4), we note that since we assumed that f ≥ 0, it
follows from the proof of Lemma 1.37 that we may take c̃j ≥ 0, 1 ≤ j ≤ K̃, and hence
that ck ≥ 0, 1 ≤ k ≤ K. Applying (1.51) yields

‖ϕ‖pLp(ℝn) = m
−n

K
∑
k=1

cpk

= m−n
K
∑
j=1
(

1
J(k)

j(k)
∑
j=1

c̃k,j)
p
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≤ C(n,R1,R2)
K
∑
j=1

J(k)
∑
j=1

c̃pk,j|Q̃k,j ∩ Ω|

≤ C(n,R1,R2)
K̃
∑
j=1

c̃pj |Q̃j ∩ Ω|.

Using the norm equivalence of finite-dimensional spaces, we may proceed with

K̃
∑
j=1

c̃pj |Q̃j ∩ Ω| =
K̃
∑
k=1
(
J(k)
∑
j=1

c̃pk,j)|Qk ∩ Ω|

≤ C(n, p)
K̃
∑
k=1
∫

Qk∩Ω

cpk dx

= C(n, p)‖ϕ‖pLp(Ω)
≤ C(n, p)(‖f ‖pLp(Ω) + ‖f − ϕ‖

p
Lp(Ω)
)

≤ C(n, p)(‖f ‖pLp(Ω) + ω1(f , 1/n)
p
Lp(Ω)
)

≤ C(n, p)‖f ‖pLp(Ω).

The proof of the case 1 ≤ p < ∞ is similar, and this completes the proof of (4) for
nonnegative functions.

For anarbitrary function f ∈ Lp(Ω), 0 < p <∞,weuse the representation f = f+−f−
where f+(x) := max(0, f (x)) and f−(x) := max(0,−f (x)) ≥ 0. Using the above method,
we construct approximating step functions ϕ1, ϕ2 such that

‖f+ − ϕ1‖Lp(Ω) ≤ Cω1(f+, 1/n)p, ‖f− − ϕ2‖Lp(Ω) ≤ Cω1(f−, 1/n)p,

and

‖ϕ1‖Lp(ℝn) ≤ C‖f+‖Lp(Ω), ‖ϕ2‖Lp(ℝn) ≤ C‖f−‖Lp(Ω).

It is easy to see that for any x, h ∈ ℝn, |Δh(f±, x)| ≤ |Δh(f , x)|. Therefore ω1(f±⋅)p ≤
ω1(f , ⋅)p. Also, it is clear that ‖f±‖Lp(Ω) ≤ ‖f ‖Lp(Ω). We conclude that the step function
ϕ := ϕ1 − ϕ2 fulfills properties (1)–(4).

Definition 1.40. Let Ω ⊂ ℝn be a bounded convex domain containing the origin. We
denote by ϕΩ ∈ C(𝕊n−1) the unique continuous function that describes 𝜕Ω, where 𝕊n−1

is the unit sphere. Namely, for θ ∈ 𝕊n−1,ϕΩ(θ) = r if and only if (r, θ) is the unique point
in ℝn in polar representation for which (r, θ) ∈ 𝜕Ω. Observe that the norm of C(𝕊n−1)
induces a metric on the collection of such domains.
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Lemma 1.41. Let {Ωm}m≥1 be convex domains in ℝn such that B(0,R1) ⊆ Ωm ⊆ B(0,R2)
for some 0 < R1 < R2. Then there exists a subsequence {Ωmi

}i≥1 that converges in the
sense of Definition 1.40 to a convex domain Ω such that B(0,R1) ⊆ Ω ⊆ B(0,R2).

Proof. Let ϕΩm
(θ), m ≥ 1, θ ∈ 𝕊n−1, be the corresponding continuous function that

describes the boundary of Ωm. A similar argument to that used in Theorem 1.10 shows
that all the functions {ϕΩm

} are uniformly bounded in the Lip-1 norm with a uniform
constant M := M(n,R1,R2). By the Arzelà–Ascoli theorem there exists a convergent
subsequence to some function ϕ. It is easy to verify that the function ϕ describes the
boundary of a convex domain Ω with B(0,R1) ⊆ Ω ⊆ B(0,R2).

Proof of Theorem 1.34 for the case 0 ≤ p ≤ 1. Estimate (1.50) is (1.46) for r = 1. Assume
on the contrary that for fixed parameters n, r > 1, and 0 < p ≤ 1, there does not exist a
constant C(n, r, p) for which (1.46) holds for all bounded convex domains Ω ⊂ ℝn and
functions f ∈ Lp(Ω). In view of the invariance of the Whitney estimate under affine
maps, by John’s lemma (Proposition 1.6) this implies the existence of a sequence of
convex domains {Ω̃m}m≥1, B(0, 1) ⊆ Ω̃m ⊆ B(0, n), and functions ̃fm ∈ Lp(Ω̃m) for which

Er−1( ̃fm, Ω̃m)
p
p > mωr( ̃fm, Ω̃m)

p
p, m ≥ 1.

By Lemma 1.41 we may assume that {Ω̃m}m≥1 converges to a convex domain Ω such
that B(0, 1) ⊆ Ω ⊆ B(0, n) in the sense of Definition 1.40. For any sequence ϵk ↓ 0, there
existmk ↑∞ such that

B(0, 1/2) ⊆ Ωmk
:= (1 − ϵk)Ω̃mk

⊆ Ω ⊆ B(0, n).

Hence, for the functions fmk
:= (1 − ϵk)−n/p ̃fmk

((1 − ϵk)−1⋅), we have

Er−1(fmk
,Ωmk
)pp = Er−1( ̃fmk

, Ω̃mk
)p

> mkωr( ̃fmk
, Ω̃mk
)pp

= mkωr(fmk
,Ωmk
)pp.

Clearly, {Ωmk
}k≥1, B(0, 1/2) ⊆ Ωmk

⊆ Ω ⊆ B(0, n), also converges to Ω in the sense of
Definition 1.40. We simplify the notation by setting fk := fmk

and Ωk := Ωmk
, Ωk ⊆ Ω,

and we let Pk ∈ Πr−1 be the best approximation to fk on Ωk, i. e.,

‖fk − Pk‖
p
Lp(Ωk)
= Er−1(fk ,Ωk)

p
p > kωr(fk ,Ωk)

p
p.

Setting gk := λk(fk − Pk) with λk defined by ‖gk‖Lp(Ωk) = 1, we have a sequence of do-
mains {Ωk}k≥1 and functions {gk}k≥1 with the following properties:
(i) ‖gk‖Lp(Ωk) = Er−1(gk ,Ωk)p = 1,
(ii) ωr(gk ,Ωk)

p
p ≤ 1/k,

(iii) B(0, 1/2) ⊆ Ωk ⊆ Ω, and {Ωk} converges to Ω in the sense of Definition 1.40.
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By Corollary 1.22 the Marchaud inequality holds with a uniform constant for all the
above domains {Ωk}. Thus, for sufficiently small 0 < δ < ̃t, where ̃t(n, r, p) is deter-
mined in Corollary 1.22, from property (ii) we get

ω1(gk , δ)
p
Lp(Ωk)
≤ C(n, r, p)δp(

̃t

∫
δ

u−(p+1) 1
k
du + 1)

≤ C(n, r, p)( 1
k
+ δp).

It follows that for each ϵ > 0, there exist δ0 and k0 such that

ω1(gk , δ)
p
Lp(Ωk)
≤ ϵ for δ < δ0 and k ≥ k0.

Applying Lemma 1.39 with R1 = 1/2 and R2 = n, we get that for any ϵ > 0, there exist
functions ϕk,m, k ≥ k0, m := m(ϵ), that are piecewise constant over the grid of length
m−1 and for which

‖gk − ϕk,m‖
p
Lp(Ωk)
≤ Cω1(gk ,m

−1)
p
Lp(Ωk)
≤ ϵ, k ≥ k0(ϵ). (1.52)

Lemma 1.39(4) and property (i) also yield

‖ϕk,m‖
p
Lp(ℝn)
≤ C(n, p). (1.53)

Since ϕk,m is constant over the cubes of side lengthm−1, we may apply (1.53) to obtain

‖ϕk,m‖L∞(Ω) ≤ C(mn ∫
Ω

ϕk,m(x)

pdx)

1/p

≤ Cmn/p =: M.

Consider the setΦ := Φ(ϵ) of all step functions over the uniformgrid of side lengthm−1

that take the values

jϵ1/pB(0, n)

−1/p
, j = 0,±1, . . . ,±⌈ϵ−1/pB(0, n)


1/pM⌉.

Clearly,

inf
φ∈Φ
‖ϕk,m − φ‖

p
Lp(Ω)
≤ ∫

Ω

(ϵ1/pB(0, n)

−1/p
)
pdx ≤ ϵ.

Hence the set Φ is a finite ϵ-net for {ϕk,m}
∞
k=k0(ϵ) in Lp(Ω). Thus there exist φϵ ∈ Φ and

infinite subsequences {ϕϵ
k,m}k≥1 and {g

ϵ
k}k≥1 such that ‖ϕ

ϵ
k,m−φϵ‖

p
Lp(Ω)
≤ ϵ, and, in turn,
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1.5 The Whitney theorem for convex domains | 35

‖gϵk −φϵ‖
p
Lp(Ωk)
≤ 2ϵ. Applying the above process for ϵi := 1/(2i), i ≥ 2, we can construct

a sequence {φi}i≥2 with the following properties:
(i) 0 < C1 ≤ ‖φi‖Lp(Ω) ≤ C2 <∞.
(ii) For each i ≥ 2, ‖φi − gi,j‖Lp(Ωi,j) ≤ 1/i for all j ≥ 1, where {gi,j}j≥1 is an infinite

subsequence of {gk}.
(iii) Er−1(φi,Ω)pp ≥ 1/2.
(iv) ωr(φi,Ω)pp ≤ C/i, where C = C(r).

Let us prove property (iii). Since Ωi,j ⊆ Ω, j ≥ 1, it follows that

Er−1(φi,Ω)
p
p ≥ inf

Q∈Πr−1 ‖φi − Q‖
p
Lp(Ωi,j)

≥ inf
Q∈Πr−1 ‖gi,j − Q‖pLp(Ωi,j) − ‖φi − gi,j‖

p
Lp(Ωi,j)

≥ 1 − 1/i ≥ 1/2.

We now prove property (iv). For a fixed i ≥ 2, let h ∈ ℝn, |h| ≤ diam(Ω), be such that

ωr(φi,Ω)
p
p ≤ 2∫

Ω

Δ
r
h(φi,Ω, x)


p dx.

Now let

Ωi,j,h := {x ∈ Ω : [x, x + rh] ⊂ Ω, [x, x + rh] ̸⊂ Ωi,j}

and

Ω̃i,j,h := ⋃
x∈Ωi,j,h[x, x + rh].

As the domains Ωi,j converge to Ω as j → ∞ in the sense of Definition 1.40, it follows
that the measure of the sets Ω̃i,j,h tends to zero as j →∞. Consequently,

∫

Ω̃i,j,h
φi(x)

p dx → 0, j →∞. (1.54)

This gives

ωr(φi,Ω)
p
p ≤ 2∫

Ω

Δ
r
h(φi,Ω, x)


p dx

≤ 2( ∫
Ω\Ωi,j,h
Δ

r
h(φi,Ω, x)


p dx + ∫

Ωi,j,h
Δ

r
h(φi,Ω, x)


p dx)
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≤ C(∫
Ωi,j
Δ

r
h(φi,Ωi,j, x)


p dx + ∫

Ω̃i,j,h
φi(x)

p dx)

≤ C(∫
Ωi,j
Δ

r
h(gi,j,Ωi,j, x)


p dx + ‖φi − gi,j‖

p
Lp(Ωi,j) + ∫

Ω̃i,j,h
φi(x)

p dx)

≤ C(ωr(gi,j,Ωi,j)
p
p + ‖φi − gi,j‖

p
Lp(Ωi,j) + ∫

Ω̃i,j,h
φi(x)

p dx)

=: C(I1 + I2 + I3).

Finally, I1 = ωr(gi,j,Ωi,j)
p
p → 0 as j → ∞, and by (1.54) I3 → 0 as j → ∞, whereas by

(ii) I2 ≤ 1/i for all j ≥ 1. This completes the proof of (iv).
We now repeat the proof with the sequence {φi}i≥2 on the fixed domain Ω in place

of sequences {gk}k≥1 and {Ωk}k≥1. This can be done because properties (i), (iii), and
(iv) of {φi} are almost the same as properties (i) and (ii) of {gk}, and, in addition, we
have the major advantage of a fixed domain Ω. Thus we obtain sequences {Ψi,m} of
piecewise constants on the grid of lengthm−1 for which

‖φi −Ψi,m‖
p
Lp(Ω)
≤ ϵ

and which possess the finite ϵ-net property, that is, for each ϵ > 0, we have Ψϵ such
that ‖φϵ

i − Ψ
ϵ‖pLp(Ω) ≤ 2ϵ for an infinite subsequence of {φi}. Taking ϵl = 1/(2l) and

repeating the argument for l = 2, 3, . . . , each time taking a subsequence of the previous
one, in summary, we obtain a sequence {Ψl}l≥2 and a sequence {φj}j≥2 such that

‖Ψl − φj‖
p
Lp(Ω)
≤
1
l
, ∀j ≥ l.

Hence {Ψl}l≥2 is a Cauchy sequence in Lp(Ω) and therefore converges to some Ψ ∈
Lp(Ω). This implies that φj → Ψ in Lp(Ω) and, in turn, that, on the one hand,
ωr(Ψ,Ω)p = 0, whereas, on the other hand,

Er−1(Ψ,Ω)
p
p ≥ inf

Q∈Πr−1 ‖φj − Q‖
p
Lp(Ω)
− ‖Ψ − φj‖

p
Lp(Ω)

≥
1
2
− ‖Ψ − φj‖

p
Lp(Ω)
→

1
2

as j →∞,

contradicting Theorem 1.26.
We conclude that Theorem 1.34 holds, that is, there exists a constantC(n, r, p) such

that for all bounded convex domains Ω and all functions f ∈ Lp(Ω), 0 < p < 1,

Er−1(f )p ≤ C(n, r, p)ωr(f ,Ω)p.
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2 Anisotropic multilevel ellipsoid covers ofℝn

Spaces of homogeneous type serve as a platform for significant generalization of the
Euclidean space equipped with the Lebesgue measure [33]. However, function spaces
defined over general spaces of homogeneous type are limited in many ways. Kernels
can only have limited regularity, Hardy spaces are only defined for values of p ≤ 1
“close” to 1, Besov spaces can only be defined for limited smoothness α > 0, etc. In
fact, these limitations are determined by the parameter α of Proposition 2.4. Thus the
goal of the construction presented in Section 2.2 is providing a platform for spaces of
homogeneous type that are sufficiently general on one hand but, at the same time,
do not have these limitations and allow almost complete generalization of their Eu-
clidean function space counterparts. Our setup is over the space ℝn and uses the
Lebesgue measure. However, the Euclidean distance is replaced by quasi-distances
derived from replacing the Euclidean balls by (possibly) anisotropic ellipsoids that
may change rapidly frompoint to point and fromscale to scale. This pointwise variable
control over the local geometry of the homogeneous space overℝn allows us to apply
local smoothness analysis using machinery such as moduli of smoothness and rep-
resentations/approximations by algebraic polynomials. In Section 2.5, we precisely
characterize the spaces of homogeneous type that induce ellipsoid covers, which al-
lows us to provide examples showing that our setting is quite comprehensive.

2.1 Spaces of homogeneous type

Definition 2.1. Aquasi-distance ona setX is amapping ρ : X×X → [0,∞) that satisfies
the following conditions for all x, y, z ∈ X:
(i) ρ(x, y) = 0⇔ x = y,
(ii) ρ(x, y) = ρ(y, x),
(iii) there exists κ ≥ 1 such that

ρ(x, y) ≤ κ(ρ(x, z) + ρ(z, y)). (2.1)

Any quasi-distance ρ defines a topology for which the balls Bρ(x, r) := {y ∈ X :
ρ(x, y) < r} form a base.

Definition 2.2 ([19]). A space of homogeneous type (X, ρ, μ) is a set X together with a
quasi-distance ρ and a nonnegative measure μ such that 0 < μ(Bρ(x, r)) < ∞ for all
x ∈ X and r > 0 and such that the following doubling condition holds for some fixed
c0 > 0:

μ(Bρ(x, 2r)) ≤ c0μ(Bρ(x, r)), ∀x ∈ X, ∀r > 0. (2.2)

https://doi.org/10.1515/9783110761795-002

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110761795-000


38 | 2 Ellipsoid covers

Obviously, we assume that μ is defined on a σ-algebra that contains all Borel sets and
balls B(x, r). Throughout the book, we will frequently use the notation |Ω| := μ(Ω) for
measurable Ω ⊆ X. The doubling condition (2.2) implies, with the “upper dimension’’
d := log2 c0, the following growth condition on the volume of balls:

Bρ(x, λr)
 ≤ c0λ

dBρ(x, r)
, ∀x ∈ ℝ

n, r > 0, λ ≥ 1. (2.3)

A Normal Space of Homogeneous Type is a homogeneous space for which (2.2) is re-
placed by the stronger condition μ(Bρ(x, r)) ∼ r with constants that do not depend on
x and r.

Remark 2.3. Given ametric spaceX equippedwith distance ρ andmeasure μ, the con-
dition μ(Bρ(x, r)) ∼ r, x ∈ X, r > 0, is a particular case of Ahlfors–David q-regularity
with q = 1. In fact, this condition, also known asAhlfors-1 regularity, already appeared
in Ahlfors’ paper from 1935 [2].

Proposition 2.4 ([54]). Let ρ be a quasi-distance on a set X satisfying (2.1) with κ ≥ 1.
Then there exist a quasi-distance ρ′ on X and constants c > 0 and 0 < α < 1 such that
any x, y, z ∈ X and r > 0,
(i) ρ′(x, y) ∼ ρ(x, y),
(ii) |ρ′(x, z) − ρ′(y, z)| ≤ cr1−αρ′(x, y)α whenever ρ′(x, z), ρ′(y, z) ≤ r.
Moreover, we may choose

α := log(2)
log(3κ2)

, (2.4)

where κ is given by (2.1).

Proposition 2.5 ([54]). Let (X, ρ, μ) be a space of homogeneous type such that all the
balls are open sets. Then the function

ρ′(x, y) := inf{μ(Bρ) : Bρ is a ball, x, y ∈ Bρ}, x, y ∈ X, x ̸= y,

and ρ′(x, x) := 0, x ∈ X, is a quasi-distance on X inducing the same topology as ρ, and
(X, ρ′, μ) is a normal space of homogeneous type.

The above results (e. g., [33]) are typically applied to “correct” a given quasi-
distance ρ of a space of homogeneous type (X, ρ, μ) and derive from it a quasi-distance
ρ′ such that (X, ρ′, μ) is a normal space of homogeneous type, where also property (ii)
of Proposition 2.4 holds.

In the Euclidean setting, when n = 1, the notions of distance and volume are
equivalent, and therefore ρ(x, y) = ρ′(x, y) = |x − y|. However, it is interesting to note
that “normalizing” the Euclidean distance in dimensions n ≥ 2 as above by using the
volume of minimal balls simplifies computations where the dimension n comes into
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2.1 Spaces of homogeneous type | 39

play. As wewill see later, the spaces constructed and analyzed in this book are normal
spaces of homogeneous type. For normal spaces, the condition μ(Bρ(x, r)) ∼ r allows
us to show that integration of the quasi-distance “behaves” similarly to integration of
the Euclidean distance.

Theorem 2.6. Let (X, ρ, μ) be a normal space of homogeneous type, Then, for any δ > 0,
there exist constants of equivalency such that for all x ∈ X, r > 0, and β > 0,

∫
Bρ(x,r) ρ(x, y)δ−1dμ(y) ∼ rδ, (2.5)

∫
Bρ(x,r)c ρ(x, y)−(δ+1)dμ(y) ∼ r−δ, (2.6)

∫
X

1
(β + ρ(x, y))(1+δ) dμ(y) ∼ β−δ. (2.7)

Proof. We will prove (2.5). The other two equivalences are proved in similar manner.
For the upper bound, it is sufficient to use dyadic rings:

∫
Bρ(x,r) ρ(x, y)δ−1dμ(y) =

∞
∑
k=0 ∫

2−(k+1)r≤ρ(x,y)<2−kr ρ(x, y)δ−1dμ(y)
≤ C
∞
∑
k=0 (2−kr)δ−1Bρ(x, 2−kr)

≤ Crδ
∞
∑
k=0 2−kδ

≤ Crδ.

For the lower bound, we need to make sure that the rings have “substantial” volume.
Let 0 < c1 < c2 < ∞ be constants such that c1r ≤ μ(Bρ(x, r)) ≤ c2r for all x ∈ X and
r > 0. Then for M ∈ ℕ, satisfying Mc1 > c2, and c̃1 := Mc1 − c2, we have that for all
x ∈ X and r > 0

Bρ(x,Mr) \ Bρ(x, r)
 ≥ c̃1r.

We use these constants to estimate

∫
Bρ(x,r) ρ(x, y)δ−1dμ(y) =

∞
∑
k=0 ∫

M−(k+1)r≤ρ(x,y)<M−kr ρ(x, y)δ−1dμ(y)
≥ C
∞
∑
k=0 (M−kr)δ−1Bρ(x,MM−(k+1)r) \ Bρ(x,M−(k+1)r)
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40 | 2 Ellipsoid covers

≥ C
∞
∑
k=0 (M−kr)δ−1M−(k+1)r

≥ Crδ
∞
∑
k=0M−kδ

≥ Crδ.

Definition 2.7. Let (X, ρ, μ) be a space of homogeneous type. For f ∈ Lloc1 (X), we define
themaximal function

Mf (x) := sup
x∈Bρ 1
|Bρ|
∫
Bρ

f (y)
dy (2.8)

and the central maximal function

MBf (x) := sup
r>0 1
|Bρ(x, r)|

∫
Bρ(x,r) f (y)dy. (2.9)

It is well known and easy to see thatMf (x) ∼ MBf (x) for all x ∈ X. Thus from this
point we will use the central maximal function. It is a classic result [33, 61] that the
maximal theorem holds in the general setup of spaces of homogeneous type.

Proposition 2.8 ([19]). Let (X, ρ, μ) be a space of homogeneous type. Then there exists
a constant c > 0 such that for all f ∈ L1(X) and α > 0,

{x : MBf (x) > α}
 ≤ cα

−1‖f ‖1. (2.10)

For 1 < p <∞, there exists a constant Ap > 0 such that for all f ∈ Lp(X),

‖MBf ‖p ≤ Ap‖f ‖p. (2.11)

Wewill also need the Fefferman–Stein vector-valuedmaximal function inequality
in the setting of spaces of homogeneous type.

Proposition 2.9 ([42]). For 1 < p, q < ∞, there exists a constant c = c(p, q) such that
for all measurable functions {fj} on X,


(∑

j
|MBfj|

q)
1/qLp(X) ≤ c(∑j |fj|q)

1/qLp(X). (2.12)
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2.2 Construction and properties of ellipsoid covers | 41

2.2 Construction and properties of ellipsoid covers

Definition 2.10. We say that

Θ := ⋃
t∈ℝΘt ,

is a continuousmultilevel ellipsoid cover ofℝn if it satisfies the following,wherep(Θ) :=
{a1, . . . , a6} are positive constants:

For all x ∈ ℝn and t ∈ ℝ, there exist an ellipsoid θ(x, t) ∈ Θt and an affine transfor-
mation Ax,t(y) = Mx,ty + x such thatMx,t is positive definite and θ(x, t) = Ax,t(B∗) (see
Definition 1.1). We require the following two conditions:
(a) The “volume condition”

a12
−t ≤ θ(x, t) ≤ a22−t . (2.13)

(b) The “shape condition”: For any x, y ∈ ℝn, t ∈ ℝ, and ν ≥ 0, if θ(x, t)∩θ(y, t + ν) ̸= 0,
then

a32
−a4ν ≤ 1/M−1y,t+νMx,t ≤ M−1x,tMy,t+ν ≤ a52−a6ν . (2.14)

Here ‖ ⋅ ‖ is the matrix norm given by ‖M‖ := maxv∈ℝn ,|v|=1 |Mv|. As depicted in
Figure 2.1 and we explain below, the “shape condition” (b) ensures that, locally in
scale and space, ellipsoids have similar shape. However, in some cases, for technical
reasons, we will require an additional stronger assumption.

Figure 2.1: Ellipsoids at a fixed scale have equivalent volume, but their shape may change across
space.
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42 | 2 Ellipsoid covers

Definition 2.11. We say that a continuous cover Θ is a pointwise continuous cover if for
any x ∈ ℝn and t ∈ ℝ,

‖Mx′ ,t −Mx,t‖→ 0 as x′ → x. (2.15)

Aswewill see (Theorem2.28 below), the requirement of pointwise continuity does
not impose a real restriction. However, we also define a rigid form of continuous cov-
ers, where the anisotropy does not changes across space.

Definition 2.12. A continuous cover Θ is said to be t-continuous if for each t ∈ ℝ,
Mx,t(B∗) = Mx′ ,t(B∗) for all x, x′ ∈ ℝn. This implies that for each t ∈ ℝ, we can select a
fixed matrixMt such that θ(x, t) = Mt(B∗) + x for all x ∈ ℝn. Obviously, a t-continuous
cover is pointwise continuous.

Next, we proceed with a discretization of the scale parameter.

Definition 2.13. We call

Θ = ⋃
m∈ℤΘm

a multilevel semi-continuous ellipsoid cover of ℝn if the following conditions are
obeyed, where p(Θ) := {a1, . . . , a6} are positive constants:
(a) For all x ∈ ℝn and m ∈ ℤ, there exist an ellipsoid θ(x,m) ∈ Θm and an affine

transform Ax,m such that

a12
−m ≤ θ(x,m) ≤ a22−m,

θ(x,m) = Ax,m(B∗), and Ax,m is of the form Ax,m(y) = Mx,my + x, where Mx,m is
positive definite.

(b) For any v, y ∈ ℝn,m ∈ ℤ, and ν ≥ 0, if θ(v,m) ∩ θ(y,m + ν) ̸= 0, then

a32
−a4ν ≤ 1/M−1y,m+νMv,m ≤ M−1v,mMy,m+ν ≤ a52−a6ν . (2.16)

We readily see that any continuous ellipsoid cover Θ of ℝn induces a semicontin-
uous ellipsoid cover by sampling at t = m, m ∈ ℤ. As we will see in the next chapter,
further discretization of the space variable at each levelm facilitates the construction
of multilevel function representations. This leads to the following:

Definition 2.14. We call

Θ = ⋃
m∈ℤΘm

a discrete multilevel ellipsoid cover ofℝn if the following conditions are obeyed, where
p(Θ) := {a1, . . . , a8,N1} are positive constants:
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(a) Every level Θm, m ∈ ℤ, consists of a countable number of ellipsoids θ ∈ Θm such
that

a12
−m ≤ |θ| ≤ a22−m (2.17)

and Θm is a cover of ℝn, i. e., ℝn = ⋃θ∈Θm
θ.

(b) For any θ ∈ Θm and θ′ ∈ Θm+ν, ν ≥ 0, with θ ∩ θ′ ̸= 0, we have
a32
−a4ν ≤ 1/M−1θ′ Mθ

 ≤
M
−1
θ Mθ′
 ≤ a52

−a6ν . (2.18)

(c) Each θ ∈ Θm can intersect with at most N1 − 1 other ellipsoids from Θm.
(d) For any x ∈ ℝn andm ∈ ℤ, there exists θ ∈ Θm such that x ∈ θ⬦, where θ⬦ := a7 ⋅ θ

is the dilated version of θ by a factor of a7 < 1.
(e) If θ ∩ η ̸= 0 with θ ∈ Θm and η ∈ Θm ∪ Θm+1, then |θ ∩ η| ≥ a8|η|.
Examples
(i) The regular cover ofℝn consisting of all Euclidean balls is the simplest example

of a t-continuous ellipsoid (ball) cover of ℝn. Observe that the induced quasi-
distance ρ defined in (2.35) uses the volume of the Euclidean balls and not their
radii, which provides a “normalized” quasi-distance where |Bρ(x, r)| ∼ r. In this
case, we have a4 = a6 = 1/n.

(ii) Let w : ℝn → ℝ+ be a positive weight function such that 0 < c1 ≤ w(x) ≤ c2 <∞
for all x ∈ ℝn. Define the following distance: For any two points x, y ∈ ℝn, if x = y,
then ρ(x, y) = 0, else

ρ(x, y) := inf
γ
{

l(γ)
∫
0

w(γ(t))dt, γ : [0, l(γ)]→ ℝn, γ ∈ C1, γ(0) = x, γ(l(γ)) = y},

where l(γ) is the length of a curve γ in natural parameterization. It is easy to see
that

B(x, c−12 r) ⊆ Bρ(x, r) ⊆ B(x, c
−1
1 r), ∀x ∈ ℝn, r > 0.

This implies that ρ satisfies the doubling condition (2.2) and is a quasi-convex
distance (see Definition 2.34). By Theorem 2.36 ρ induces a continuous ellipsoid
cover.

(iii) The one parameter family of diagonal dilation matrices

Dt = diag(2
−tb1 , 2−tb2 , . . . , 2−tbn)

with ∑nj=1 bj = 1, bj > 0, j = 1, . . . , n, induces a t-continuous ellipsoid cover of ℝn,
withMx,t = Dt for all x ∈ ℝn and t ∈ ℝ. Here a4 = maxj bj and a6 = minj bj.
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(iv) Calderón and Torchinsky [16, 17] developed the so-called parabolic Hardy spaces
generated by continuous dilation matrices associated with a continuous semi-
groupMt, t > 0,Mst := MtMs, satisfying

tα ≤ ‖Mt‖ℓ2→ℓ2 ≤ tβ, t ≥ 1,

where 1 ≤ α ≤ β < ∞. We easily see that any such semigroup of matrices gives
rise to a t-continuous ellipsoid cover of ℝn.

(v) Consider an arbitrary n × n real matrix M with eigenvalues λ satisfying |λ| > 1.
Then we easily see that the affine transformations Ax,m(y) := M−my + x, x ∈ ℝn,
m ∈ ℤ, define a semicontinuous ellipsoid cover (dilations) in the sense of Defi-
nition 2.13. The dilations of this particular kind are used in [7, 8, 11] for the de-
velopment of anisotropic Hardy, Besov, and Triebel–Lizorkin spaces.

(vi) In Section 5.3.2, we present constructions of bivariate anisotropic continuous
covers that are pointwise variable and adapted to the edge singularities of the
indicator functions of a circle and a square [23]. This allows us to demonstrate
that prototypical piecewise constant functions have higher anisotropic smooth-
ness when compared with their classic isotropic Besov smoothness.

(vii) Consider the example of vector fields from [61, I.2.6], which is a relatively sim-
ple example from a general class of balls and metrics studied by Nagel, Stein,
and Wainger [56]. Here, for some k ∈ ℕ, we define in ℝ2 two vector fields X1 =
𝜕/𝜕x1 and X2 = xk1 𝜕/𝜕x2, which are associated with a quasi-distance ρ and the
anisotropic balls

Bρ(x, r) := {y ∈ ℝ
2 : |x1 − y1| < r, |x2 − y2| < max(rk+1, |x1|kr)}.

Observe that the pointwise variable anisotropic balls are in fact rectangles and
hence convex. It is easy to see (this is a particular case of John’s theorem 1.6) that
there exist ellipses {θx,r} such that

θx,r ⊂ Bρ(x, r) ⊂ 2 ⋅ θx,r , ∀x ∈ ℝ2, r > 0.
As we will see in Section 2.5, since ρ is a quasi-convex quasi-distance satisfying
thedoubling condition, the ellipses {θx,r} induce apointwise variable continuous
ellipsoid cover associated with the vector fields.

We now list some properties of ellipsoid covers that are used throughout the book:
1. It is important to note that the set of all ellipsoid covers of ℝn is invariant under

affine transformations. More precisely, the images A(θ) of all ellipsoids θ ∈ Θ of
a given cover Θ of ℝn via an affine transformation A of the form A(x) = Mx + v
with |det(M)| = 1 form an ellipsoid cover of ℝn with the same parameters as the
parameters of Θ. If |det(M)| ̸= 1, then only the constants a1 and a2 in (2.13) or (2.17)
change accordingly.
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2. Conditions (2.14) or (2.18) of the covers indicate that if θ ∩ θ′ ̸= 0, then locally the
ellipsoids θ and θ′ cannot change uncontrollably in shape and orientation when
they are fromclose levels.Moreprecisely, denoteM := M−1θ Mθ′ and letM = UDV be
the singular value decomposition of M, where U and V are orthogonal matrices,
and D = diag(σ1, σ2, . . . , σn) is diagonal with σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σn > 0. As in (1.2),

‖M‖ℓ2→ℓ2 = σ1 and M
−1
θ′ Mθ
ℓ2→ℓ2 = M−1ℓ2→ℓ2 = 1/σn.

Therefore conditions (2.14), (2.18) are equivalently expressed as

a32
−a4ν ≤ σn ≤ ⋅ ⋅ ⋅ ≤ σ1 ≤ a52−a6ν . (2.19)

This condition also has a clear geometric interpretation: The affine transforma-
tion A−1θ , which maps the ellipsoid θ onto the unit ball B∗, maps the ellipsoid θ′
onto an ellipsoid with semiaxes σ1, σ2, . . . , σn satisfying (2.19).

3. Evidently, the sign of ν in condition (b) can be reversed. Namely, condition (b) for
discrete covers is equivalent to the following condition:
(b′) If θ ∈ Θm and θ′ ∈ Θm−ν (ν ≥ 0) with θ ∩ θ′ ̸= 0, then

(1/a5)2
a6ν ≤ 1/M

−1
θ′ Mθ
ℓ2→ℓ2 ≤ M−1θ Mθ′

ℓ2→ℓ2 ≤ (1/a3)2a4ν . (2.20)

Therefore, if M := M−1θ Mθ′ = UDV with D = diag(σ1, σ2, . . . , σn) as above, then
(2.20) is equivalent to

(1/a5)2
a6ν ≤ σn ≤ ⋅ ⋅ ⋅ ≤ σ1 ≤ (1/a3)2

a4ν . (2.21)

4. We need to interrelate the semiaxes of intersecting ellipsoids from Θ. For θ ∈ Θ,
denote

σmax(θ) := ‖Mθ‖ℓ2→ℓ2 and σmin(θ) :=
M
−1
θ

−1ℓ2→ℓ2 . (2.22)

These are the maximum and minimum semiaxes of the ellipsoid θ.

Lemma 2.15. If θ ∈ Θt (or θ ∈ Θm in the discrete case), θ′ ∈ Θt+ν (or θ′ ∈ Θm+ν in the
discrete case), ν ≥ 0, and θ ∩ θ′ ̸= 0, then

a32
−a4νσmax(θ) ≤ σmax(θ

′) ≤ a52−a6νσmax(θ) (2.23)

and

a32
−a4νσmin(θ) ≤ σmin(θ

′) ≤ a52−a6νσmin(θ). (2.24)

Proof. By the shape condition (2.14) we have

‖Mθ′‖ ≤ ‖Mθ‖
M
−1
θ Mθ′
 ≤ a52

−a6ν‖Mθ‖
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and

‖Mθ‖ ≤
M
′
θ

M
−1
θ′ Mθ
 ≤ (1/a3)2

a4ν‖Mθ′‖,

which yield (2.23). We similarly prove (2.24).

5. We can generalize the volume conditions (2.13) and (2.17) by adding an additional
parameter a0 and allowing the volume of θ ∈ Θt (θ ∈ Θm in the discrete case) to
satisfy a12−a0t ≤ |θ| ≤ a22−a0t (a12−a0m ≤ |θ| ≤ a22−a0m in the discrete case). The
methods introduced in this book still apply under this generalization without too
much change.

6. The shape conditions (2.14) and (2.18) imply that the parameters a3 and a5 satisfy
0 < a3 ≤ 1 ≤ a5. This is an immediate consequence of the trivial choice of the same
ellipsoid (e. g., x = y and ν = 0 in the continuous case, so thatMx,t = My,t+ν). Also,
as we will see, we should assume that a6 ≤ a4.

7. By (2.23), if (θt)t≤0 ((θm)m≤0 in the discrete case) is a set of ellipsoids θt ∈ Θt (θm ∈
Θm in the discrete case) that contain a fixed point x ∈ ℝn, then ⋃t≤0 θt = ℝn
(⋃m≤0 θm = ℝn). Also, we have the following:

Lemma 2.16. For any bounded set Ω ⊂ ℝn,

min{diam(θ) : θ ∈ Θt , θ ∩ Ω ̸= 0}→∞, t → −∞, (2.25)

and in the other direction, there exists a constant c(Ω,p(Θ)) > 0 such that

‖Mx,t‖ ≤ c2−a6t , ∀x ∈ Ω, t ≥ 0. (2.26)

This gives

max{diam(θ) : θ ∈ Θt , θ ∩ Ω ̸= 0}→ 0, t →∞. (2.27)

Furthermore, there exist constants 0 < c1 < c2 < ∞, depending on p(Θ) and Ω, such
that for any ellipsoid θ ∈ Θ0 with θ ∩ Ω ̸= 0, we have that c1 ≤ diam(θ) ≤ c2.

Proof. We may choose any point x ∈ Ω and a set of ellipsoids θt ∈ Θt, t ≤ 0, all
containing x, and apply (2.23) to obtain that there exists an ellipsoid θΩ ∈ Θt0 for some
t0 ≤ 0 (t0 ∈ ℤ in the discrete case) such that Ω ⊂ θΩ. Let θ ∈ Θt with t ≤ t0 be such that
θ ∩ Ω ̸= 0. Therefore θ ∩ θΩ ̸= 0, and we may apply again (2.23) to obtain

diam(θ) ≥ a−15 2a6(t0−t) diam(θΩ),
which proves (2.25). In the other direction, any θ ∈ Θt, t ≥ 0, that satisfies θ ∩ Ω ̸= 0,
also satisfies θ ∩ θΩ ̸= 0, and therefore (2.23) can be used to derive (2.27) by

diam(θ) ≤ a52
a6(t−t0) diam(θΩ).
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Finally, applying (2.23) implies that for any θ ∈ Θ0,

c1 := a32
−a4t0 diam(θΩ) ≤ diam(θ) ≤ a52−a6t0 diam(θΩ) =: c2.

8. Property (c) of discrete covers allows us to “color” ellipsoids at a fixed level us-
ing N1 colors in a way that intersecting ellipsoids do not have the same color (see
Section 3.2.1).

9. Property (d) of the discrete covers indicates that every point x ∈ ℝn is contained in
the “core” and thus is “well covered” by at least one ellipsoid from every level Θm.

10. The properties of ellipsoid covers imply the following multilevel relations.

Theorem 2.17. Let Θ be a continuous cover. Then there exists J1(p(Θ)) > 0 such that for
any x ∈ ℝn, t ∈ ℝ, and λ ≥ 1,

λ ⋅ θ(x, t) = x + λMx,t(B∗) ⊆ θ(x, t − J1λ). (2.28)

Choosing λ = 1 gives

θ(x, t) ⊂ θ(x, t − J1), (2.29)

whereas choosing λ = 2 and denoting J := 2J1 give

Mx,t(B∗) ⊆ 12Mx,t−J(B∗), θ(x, t) ⊂ θ(x, t − J). (2.30)

Proof. Fix x ∈ ℝn and t ∈ ℝ. Note that (2.28) holds if and only if

M−1x,t−J1λMx,t(B∗) ⊆ 1λB∗, λ ≥ 1.

From (2.14) we have M−1x,t−J1λMx,t(B∗) ⊆ a52−a6J1λB∗. Therefore we should choose large
enough J1 such that a52−a6J1λ ≤ λ−1 for all λ ≥ 1. Indeed, choosing

J1 :=
log(a5) + 1
log(2)a6

gives, for all λ ≥ 1,

J1 ≥
log(a5) + λ
λ log(2)a6

≥
log(a5λ)
λ log(2)a6

⇒ log(2a6J1λ) ≥ log(a5λ)⇒ a52
−a6J1λ ≤ 1

λ
.

Lemma 2.18. For a cover Θ, there is a parameter γ ∈ ℕ depending only on p(Θ) such
that for any ellipsoid θ ∈ Θt , t ∈ ℝ (θ ∈ Θm, m ∈ ℤ in the discrete case), and any γ̃ ≥ γ
(γ̃ ∈ ℕ in the discrete case), there exists an ellipsoid η ∈ Θm− ̃γ that satisfies the following:
For any θ′ ∈ Θt+ν, ν ≥ 0 (θ′ ∈ Θm+ν, ν ∈ ℕ, in the discrete case) with θ ∩ θ′ ̸= 0, we have
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that θ ∪ θ′ ⊂ η. Moreover, if Θ is a continuous cover, then we can choose η = θ(v, t − γ̃) if
θ = θ(v, t).

Proof. We prove the result for a discrete cover. The case of continuous cover is similar
and easier. Let ω′ := A−1θ (θ′) and recall that A−1θ (θ) = B∗. By property (2.18) it follows
that

diam(ω′) = 2M−1θ Mθ′
 ≤ 2a52

−νa6 ≤ 2a5,
and hence, since B∗ ∩ ω′ ̸= 0

A−1θ (θ ∪ θ′) = B∗ ∪ ω′ ⊂ B(0, 1 + 2a5). (2.31)

By property (d) of the discrete covers, for any j ≥ 1, there exists θj ∈ Θm−j such that
vθ ∈ θ⬦j , where θ⬦j := a7 ⋅ θj is the dilated θj by a factor of a7 < 1 (we note in passing
that for a continuous cover, we simply choose θj = θ(vθ , t − j) for any scalar j > 0 if
θ = θ(vθ , t)). Denoteωj := A−1θ (θj) and letω⬦j = a7 ⋅ωj. Also, denote by σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σn
the semiaxes of the ellipsoid ωj. By (2.21) it follows that

σn ≥
1
a5
2a6j. (2.32)

On the other hand, by a simple geometric property of ellipsoids

dist(ω⬦j , 𝜕ωj) = (1 − a7)σn,

where dist(E1,E2) denotes the (minimal) Euclidean distance between the sets E1,E2 ⊂
ℝn. From this and (2.32) it follows that

dist(ω⬦j , 𝜕ωj) ≥
1 − a7
a5

2a6j. (2.33)

Now choose γ ≥ 1 so that

1 − a7
a5

2a6γ ≥ 1 + 2a5. (2.34)

Let j ≥ γ. Since vθ ∈ θ⬦j , we have 0 ∈ ω⬦j , and using (2.31), (2.33), and (2.34) we
infer A−1θ (θ ∪ θ′) ⊂ ωj, which implies θ ∪ θ′ ⊂ Aθ(ωj) = θj =: η. This completes the
proof.

Lemma 2.19. Let Θ be a discrete cover. Then there is a positive integer N2(p(Θ)) such
that for any θ ∈ Θm, m ∈ ℤ, the number of ellipsoids from Θm+j, j ≥ 1, that intersect θ is
bounded by N22j.
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Proof. Let θ ∈ Θm,m ∈ ℤ. By Lemma 2.18 there exists η ∈ Θm−γ such that θ ∪ θ′ ⊂ η for
any θ′ ∈ Θm+j, θ∩θ′ ̸= 0. Nowpick any such θ′ ∈ Θm+j, and let𝒳θ′ := ⋃θ∗∈Θm+j ,θ∗∩θ′ ̸=0 θ∗.
Consider 𝒳θ′ as a first cluster. We then pick θ′′ ∈ Θm+j such that θ′′ ∩ θ ̸= 0, θ′′ ∩ θ′ = 0
and create a second cluster𝒳θ′′ (that possibly intersects with the first). By property (c)
of discrete covers each such cluster contains at most N1 ellipsoids, and the number of
them can be bounded by

|η|
|θ′| ≤ a22−(m−γ)a12−(m+j) ≤ a2a1 2γ+j, ∀θ′ ∈ Θm+j, θ ∩ θ′ ̸= 0.

This implies that we can choose

N2 := N1⌈a
−1
1 a2⌉2

γ .

The following two covering lemmas for ellipsoid covers are versions of classic re-
sults on ball coverings in arbitrary spaces of homogeneous type (see, e. g., [61]). They
are essential for the Calderón–Zygmunddecomposition,which is used for the analysis
of Hardy spaces Hp(Θ), 0 < p ≤ 1 (see Chapter 6). The first is a Wiener-type lemma:

Lemma 2.20. Let Θ be a continuous cover of ℝn. There exists a constant γ(p(Θ)) > 0
such that for any open set Ω ⊂ ℝn and a bounded from below function t : Ω → ℤ such
that θ(x, t(x)) ⊂ Ω for all x ∈ Ω, the following holds: there exists a sequence of points
{xj} ⊂ Ω (finite or infinite) such that the ellipsoids θ(xj, t(xj)) are mutually disjoint and
Ω ⊂ ⋃j θ(xj, t(xj) − γ).

Proof. By Lemma 2.18 there exists γ > 0 such that for all x, y ∈ ℝn and t, s ∈ ℝ, if
θ(x, t) ∩ θ(y, s) ̸= 0 with t ≤ s, then θ(y, s) ⊂ θ(x, t − γ).

Since t : Ω → ℤ is bounded from below, we may pick x1 ∈ Ω, with t(x1) =
minx∈Ω t(x). Next, if Ω ⊆ θ(x1, t(x1) − γ), we are done. Otherwise, we proceed induc-
tively. Assume that we have picked x1, . . . , xj, and set Ω′ = Ω \ ⋃ji=1 θ(xi, t(xi) − γ). If
Ω′ = 0, we are done. Else, pick xj+1, with t(xj+1) = minx∈Ω′ t(x). We claim that dur-
ing our construction process, it is not possible that θ(xi, t(xi)) ∩ θ(xj, t(xj+1)) ̸= 0 for
i < j + 1. Indeed, if this holds, then there are two possible cases: If t(xi) ≤ t(xj+1), then
θ(xj+1, t(xj+1)) ⊂ θ(xi, t(xi) − γ), and so xj+1 ∉ Ω′, a contradiction. If t(xi) > t(xj+1), then
xj+1 ∈ θ(xk , t(xk) − γ) for some k < i, since otherwise, xj+1 would have been picked
before xi. But this is a contradiction because it implies again that xj+1 ∉ Ω′. Thus we
have proved that the ellipsoids {θ(xj, t(xj))} are mutually disjoint. Since the process
terminates only when Ω′ = 0, we obtain that any point x ∈ Ω is covered.

The next result is an anisotropic variant of the Whitney lemma.

Lemma 2.21. Let Θ be a continuous cover. There exists a constant γ(p(Θ)) > 0 such
that for any open Ω ⊂ ℝn with |Ω| <∞ and any m ≥ 0, there exist a sequence of points
{xj}j∈ℕ ⊂ Ω and a sequence {tj}j∈ℕ such that
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(i) Ω = ⋃j θ(xj, tj),
(ii) θ(xj, tj + γ) are pairwise disjoint,
(iii) for every j ∈ ℕ, θ(xj, tj −m − γ) ∩ Ωc = 0, but θ(xj, tj −m − γ − 1) ∩ Ωc ̸= 0,
(iv) θ(xj, tj −m) ∩ θ(xi, ti −m) ̸= 0⇒ |ti − tj| < γ + 1,
(v) for every j ∈ ℕ,

#{i ∈ ℕ : θ(xi, ti −m) ∩ θ(xj, tj −m) ̸= 0} ≤ L,

where L depends only on the parameters of the cover and m.

Proof. As in the Wiener lemma, we choose the constant γ ∈ ℕ from Lemma 2.18. For
every x ∈ Ω, define

t(x) := inf{s ∈ ℤ : θ(x, s −m − γ) ⊂ Ω} + γ.

Since Ω is open and since by (2.27), for each point x ∈ ℝn, the diameters of the el-
lipsoids θ(x, t) decrease as t → ∞, we get that t(x) is well defined. Also, since Ω
has finite volume, t(x) is bounded from below on Ω. By Lemma 2.20 we can find for
the function t(x) a sequence {xj} ⊂ Ω such that {θ(xj, tj + γ)} are disjoint and Ω =
⋃j θ(xj, tj). This gives properties (i) and (ii). By construction, θ(xj, tj −m − γ) ∩ Ω

c = 0,
but θ(xj, tj −m − γ − 1)∩Ωc ̸= 0, which implies property (iii). To prove property (iv), as-
sumeby contradiction that there exist indices i, j such that θ(xi, ti −m)∩θ(xj, tj −m) ̸= 0
with tj ≤ ti − γ − 1. This gives that θ(xi, ti −m − γ − 1) ∩ θ(xj, tj −m) ̸= 0 with tj − m ≤
ti − m − γ − 1. The choice of γ guarantees that θ(xi, ti −m − γ − 1) ⊂ θ(xj, tj −m − γ).
However, we arrive at a contradiction with the established property (iii), since

0 ̸= θ(xi, ti −m − γ − 1) ∩ Ω
c ⊂ θ(xj, tj −m − γ) ∩ Ω

c = 0.

We now prove property (v). For j ≥ 1, let I(j) := {i : θ(xi, ti −m) ∩ θ(xj, tj −m) ̸= 0}. From
property (iv) we derive that tj < ti + γ + 1 for all i ∈ I(j). Therefore

⋃
i∈I(j) θ(xi, ti −m) ⊂ θ(xj, tj −m − 2γ − 1).

On the other hand, since tj > ti − γ − 1, we have by (2.13) that for all i ∈ I(j),

θ(xj, tj −m − 2γ − 1)
 ≤ a22

−(tj−m−2γ−1)
≤ a22
−(ti−m−3γ−2)

= La12
−(ti+γ)

≤ Lθ(xi, ti + γ)
,
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where L := a−11 a22m+4γ+2. This, coupled with property (ii), gives
#I(j) ≤ 1

mini∈I(j) |θ(xi, ti + γ)| ∑i∈I(j) θ(xi, ti + γ) ≤ |θ(xj, tj −m − 2γ − 1)|mini∈I(j) |θ(xi, ti + γ)| ≤ L.
2.3 Quasi-distances induced by covers

The continuous and discrete ellipsoid covers induce a natural quasi-distance on ℝn.
Let Θ be a cover. We define ρ : ℝn × ℝn → [0,∞) by

ρ(x, y) := inf
θ∈Θ{|θ| : x, y ∈ θ}. (2.35)

Theorem 2.22. The function ρ in (2.35), induced by a discrete or a continuous ellipsoid
cover, is a quasi-distance on ℝn. For a continuous cover,

ρ(x, y) ∼ inf
y∈θ(x,t)θ(x, t) ∼ inf

x∈θ(y,t)θ(y, t), ∀x, y ∈ ℝn. (2.36)

Proof. Weneed to ensure that ρ satisfies the three conditions ofDefinition 2.1. Property
(i) of the quasi-distance is derived from (2.27). Property (ii) is obvious by the definition
of ρ(⋅, ⋅) in (2.35). Let us showproperty (iii) of the quasi-triangle inequality in the case of
a discrete cover. Let x, y, z ∈ ℝn and assume that ρ(x, z) = |θ|, x, z ∈ θ, and ρ(z, y) = |θ′|,
z, y ∈ θ′, where θ ∈ Θm and θ′ ∈ Θm+ν. Without loss of generality, we may assume that
ν ≥ 0. We now apply Lemma 2.18 to conclude that there exists an ellipsoid η ∈ Θm−γ
such that θ ∪ θ′ ⊂ η, and hence

ρ(x, y) ≤ |η| ≤ a22
−(m−γ)

≤ a2a
−1
1 2γ(|θ| + θ

′)
= κ(ρ(x, z) + ρ(z, x)),

where κ := a2a−11 2γ.
We now prove (2.36) for the case of continuous covers. From the definition it is

obvious that ρ(x, y) ≤ infy∈θ(x,t) |θ(x, t)| for all x, y ∈ ℝn. Now let x ̸= y, x, y ∈ θ′, θ′ ∈ Θs,
with ρ(x, y) = |θ′|. By Lemma 2.18, θ(x, s) ∪ θ′ ⊂ θ(x, s − γ), and so y ∈ θ(x, s − γ). Thus

inf
y∈θ(x,t)θ(x, t) ≤ θ(x, s − γ) ≤ a−11 a22

γθ
′ = Cρ(x, y).

Let Θ be an ellipsoid cover inducing a quasi-distance ρ. We recall the notation

Bρ(x, r) := {y ∈ ℝ
n : ρ(x, y) < r}. (2.37)
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Evidently, (2.35) implies that

Bρ(x, r) = ⋃
θ∈Θ {θ : |θ| < r, x ∈ θ}.

Theorem 2.23. Let Θ be an ellipsoid cover inducing a quasi-distance ρ. For each ball
Bρ(x, r), x ∈ ℝn, r > 0, there exist ellipsoids θ′, θ′′ ∈ Θ such that θ′ ⊂ Bρ(x, r) ⊂ θ′′
and |θ′| ∼ |Bρ(x, r)| ∼ |θ′′| ∼ r, where the constants of equivalency depend on p(Θ). In
particular, this implies that (ℝn, ρ, dx), where dx is the Lebesgue measure, is a normal
space of homogeneous type (see Definition 2.2). In the case where Θ is a continuous
cover, we may choose θ′ and θ′′ with centers at x.

In the other direction, for any ellipsoid θ ∈ Θ with center vθ, there exist balls B′ρ, B′′ρ
with center at vθ such that B′ρ ⊂ θ ⊂ B′′ρ and |B′ρ| ∼ |θ| ∼ |B′′ρ |, where the constants of
equivalency depend on p(Θ).

Proof. Wemostly prove the case where ρ(⋅, ⋅) is generated by a discrete ellipsoid cover
of ℝn and point out in passing the technique for the case of continuous covers. Let
Bρ(x, r), x ∈ ℝn, r > 0, be an anisotropic ball. Choosem so that a22−m < r ≤ a22−(m−1).
There exists θ′ ∈ Θm such that x ∈ θ′ and hence, by the “volume property” of Θ,

a12
−m ≤ θ′ ≤ a22−m < r.

From this and the definition of ρ(⋅, ⋅) it follows that θ′ ⊂ Bρ(x, r), and hence
Bρ(x, r)

 ≥
θ
′ ≥ a12−m ≥ a1

2a2
r =: c1r.

We note that in the case of a continuous cover, we may choose θ′ = θ(x,m). Next,
observe that

Bρ(x, r) = ⋃
θ∈Θ: x∈θ,|θ|<r θ.

Suppose θ ∈ Θm is at the minimum level such that x ∈ θ and |θ| < r. An application of
Lemma 2.18 gives that there exists θ′′ ∈ Θm−γ such that Bρ(x, r) ⊆ θ′′. Also,

θ
′′ ≤ a22−(m−γ) ≤ a−11 a22

γ|θ| ≤ c2r.

For the case of a continuous cover, let t′ := inf{t ∈ ℝ : θ(x, t) ⊆ Bρ(x, r)}. For any
“small” ε > 0, let t := t′ + ε. Then θ(x, t) ⊆ Bρ(x, r). Next, observe that any θ′ ⊆ Bρ(x, r),
x ∈ θ′, is of scale ≥ t′ and by Lemma 2.18 is contained in θ(x, t′−γ). ThereforeBρ(x, r) ⊆
θ(x, t′ − γ). We obtain that θ(x, t) ⊆ Bρ(x, r) ⊆ θ(x, t − ε − γ) with equivalent volumes.
This completes the proof of the first part of the theorem.
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Now let θ ∈ Θm. Denote x′′ := vθ (the center of θ), r′′ := a22−m, andB′′ρ := B′′ρ (x′′, r′′).
Then since x′′ ∈ θ and |θ| ≤ r′′, by definition θ ⊂ B′′ρ . By the first part of the theorem
we also have that |B′′| ≤ c2r′′ ≤ c2a−11 a2|θ|.

Next, let θ′ ∈ Θm+ν, ν ≥ 0, be such that x′ := vθ ∈ θ′. Applying (2.23) on the cover
A−1θ (Θ) gives

σmax(A
−1
θ (θ
′)) ≤ a52−a6νσmax(A

−1
θ (θ)) = a52

−a6ν .
Therefore if ν ≥ a−16 log2(a5), then σmax(A−1θ (θ′)) ≤ 1. Since we also know that 0 =
A−1θ (vθ) ∈ A−1θ (θ′), we get that A−1θ (θ′) ⊂ B∗ = A−1θ (θ), which in turn implies θ′ ⊂ θ.
Thus setting ν := ⌈a−16 log2(a5)⌉ and r′ := a12−(m+ν) gives that any θ′ ∈ Θ satisfying
x′ ∈ θ′ and |θ′| ≤ r′ must be contained in θ. Therefore for B′ρ := Bρ(x′, r′) ⊂ θ, we have
|B′ρ| ∼ r′ ∼ |θ|.
Remark 2.24. As Theorem 2.23 shows, the framework of ellipsoid covers is a special
case of spaces of homogeneous type. However, we point out that since the construc-
tion supports pointwise variable anisotropy, there is no assumption of an underlying
group structure, translation invariance, etc. and so there is actually no ‘homogene-
ity’ property associated with the setup (see also the discussion in [20, example (13),
p. 590]).

Definition 2.25. Let ρ be a quasi-distance on ℝn, and let τ = (τ0, τ1), 0 < τ0 ≤ τ1 ≤ 1.
For any x, y ∈ ℝn and d > 0 we define,

τ(x, y, d) := {
τ0, ρ(x, y) < d,
τ1, ρ(x, y) ≥ d,

τ̃(x, y, d) := {
τ1, ρ(x, y) < d,
τ0, ρ(x, y) ≥ d.

(2.38)

For t ∈ ℝ, we define

τ(t) := {
τ1, t ≤ 0,
τ0, t > 0,

τ̃(t) := {
τ0, t ≤ 0,
τ1, t > 0.

(2.39)

Theorem 2.26. LetΘbe an ellipsoid cover, and let ρ be the quasi-distance (2.35). Denote
τ := (τ0, τ1) = (a6, a4), where 0 < a6 ≤ a4 ≤ 1 are the parameters from either (2.14) or
(2.18). Then, for each fixed y ∈ ℝn (or all y ∈ Ω, where Ω is a bounded set), there exist
constants 0 < c1 < c2 <∞ that depend on y (or Ω) and p(Θ) such that

c1ρ(x, y)
τ̃(x,y,1) ≤ |x − y| ≤ c2ρ(x, y)τ(x,y,1), ∀x ∈ ℝn, (2.40)

where |x − y| is the usual Euclidean distance between x and y.

Proof. We prove the theorem for discrete covers (the proof for continuous covers is
similar). Take an ellipsoid θ0 ∈ Θ0 such that y ∈ θ0 ∈ Θ0. For any x ∈ ℝn, let θ ∈ Θm be
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such that ρ(x, y) = |θ|. Applying (2.23) yields

|x − y| ≤ diam(θ)

≤ C diam(θ0)2
−τ(m)m

≤ C diam(θ0)a
−τ(m)
1 |θ|

τ(m)
≤ Cρ(x, y)τ(x,y,1).

We now prove the left-hand side of (2.40). Since θ ∈ Θm is the ellipsoid with minimal
volume containing both x and y, we may apply property (a) and then (d) of discrete
covers to conclude that for an integer ν := ⌈log2(a−11 a2)⌉, there exists θ1 ∈ Θm+ν such
that y ∈ θ⬦1 (the dilated version of θ1 by a factor a7) and x ∉ θ1. Denote by σmin(θ1) the
minimal semiaxis of θ1. From (2.24) we get that σmin(θ1) ≥ cσmin(θ0)2−τ̃(m+ν)(m+ν). Thus

|x − y| ≥ (1 − a7)σmin(θ1)

≥ C2−τ̃(m+ν)(m+ν)
≥ Cρ(x, y)τ̃(m+ν)
≥ Cρ(x, y)τ̃(x,y,1).

For the case of y ∈ Ω, where Ω is a bounded set, the proof is almost identical, since by
Lemma 2.16 we have that all ellipsoids θ0 ∈ Θ0, θ0 ∩Ω ̸= 0, have equivalent shape.

Observe that in the case where all ellipsoids in Θ0 are equivalent in shape (for
example, to the Euclidean ball), we get that the constants c1, c2 in (2.40) depend only
on p(Θ) and not on the points y. In the particular case where the ellipsoid cover is
composed of Euclidean balls, we have that the parameters in (2.14) and (2.18) satisfy
a4 = a6 = n−1, and (2.40) is easily verified by

|x − y| ∼ B(x, |x − y|)

1/n
∼ ρ(x, y)1/n ∼ ρ(x, y)τ(x,y,1) = ρ(x, y)τ̃(x,y,1).

Although the equivalence (2.40) of the anisotropic quasi-distance and the Eu-
clidean distance is very “rough” in nature, it is nevertheless sufficient to produce
the equivalence of isotropic and anisotropic test functions. Recall that the space of
Schwartz functions 𝒮 is the set of all functions φ ∈ C∞(ℝn) such that for any α ∈ ℤn+
and N ≥ 1, there exists a constant Cα,N for which

𝜕
αφ(x) ≤ Cα,N(1 + |x|)−N , ∀x ∈ ℝn.

We then define by 𝒮′ the space tempered distributions, which is the space of linear
functionals on 𝒮. Applying the equivalence (2.40) for y = 0 yields

𝜕
αφ(x) ≤ C̃α,N(1 + ρ(x,0))−Na6 , ∀x ∈ ℝn.
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In the other direction, we will also frequently use the fact that a function φ ∈ C∞(ℝn)
supported on some ellipsoid θ ∈ Θ is by (2.40) also compactly supported with respect
to the Euclidean distance and hence in 𝒮.

2.4 Equivalency of covers

Definition 2.27. We say that two covers (continuous or discrete) Θ, Θ̃ are equivalent if
for any θ ∈ Θ, there exist θ̃1, θ̃2 ∈ Θ̃ such that θ̃1 ⊆ θ ⊆ θ̃2 and |θ̃1| ∼ |θ| ∼ |θ̃2|, and visa
versa, with constants of equivalency depending only on p(Θ) and p(Θ̃).

We have the following equivalent conditions for cases where both covers are of
the same type:
(i) For the case of continuous covers, an equivalent condition is that there exists a

constant c > 0 such that for all x ∈ ℝn and t ∈ ℝ,

θ̃(x, t + c) ⊆ θ(x, t) ⊆ θ̃(x, t − c).

(ii) Another equivalent condition for the case of continuous covers is the existence
of constants 0 < c1 ≤ 1 ≤ c2 <∞ such that

x + c1M̃x,t(B∗) = c1 ⋅ θ̃(x, t) ⊆ θ(x, t) ⊆ c2 ⋅ θ̃(x, t) = x + c2M̃x,t(B∗).
(iii) Two discrete covers are equivalent if there exists a constant K ∈ ℕ such that for

any θ ∈ Θm, there exist θ̃′ ∈ Θ̃m+K and θ̃′′ ∈ Θ̃m−K such that θ̃′ ⊆ θ ⊆ θ̃′′ and visa
versa.

We now show that in essence, requiring a cover to be pointwise continuous (see Defi-
nition 2.11) is not a significant restriction.

Theorem 2.28 ([12]). Given a continuous cover, there exists an equivalent pointwise
continuous cover.

To prove the theorem, we first need the following lemmas.

Lemma 2.29. For any ellipsoid cover Θ and fixed t ∈ ℝ, there exists a bounded contin-
uous function r : ℝn → (0,∞) such that B(x, r(x)) ⊂ θ(x, t) for all x ∈ ℝn.

Proof. Fix t ∈ ℝ. For x ∈ ℝn, let rx := σmin(Mx,t) = ‖M−1x,t‖−1. Note that by (2.13), rx ≤
c2−t/n, ∀x ∈ ℛn. Obviously, we have that

B(x, rx) ⊂ x +Mx,t(B∗) = θ(x, t). (2.41)

This implies that if B(x′, rx′ ) ∩ B(x, rx) ̸= 0 for x′ ∈ ℝn, then θ(x′, t) ∩ θ(x, t) ̸= 0, and we
may apply the shape condition to obtain

M
−1
x′ ,t ≤ M−1x′ ,tMx,tM−1x,t ≤ a5M−1x,t.
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Hence a−15 rx ≤ ‖M−1x′ ,t‖−1 = rx′ . Similarly, we have rx′ ≤ a5rx. Therefore

a−15 rx ≤ rx′ ≤ a5rx , ∀x
′ ∈ ℝn, B(x′, rx′) ∩ B(x, rx) ̸= 0. (2.42)

By (2.41) we have |rx|n ∼ |B(x, rx)| ≤ |θ(x, t)| ≤ a22−t for all x ∈ ℝn. Applying the
classical isotropic Vitali covering lemma for the cover {B(x, 110 rx)}x∈ℝn , there exists a
sequence {xi}i∈ℕ inℝn such that the balls B(xi, 110 rxi ), i ∈ ℕ, are mutually disjoint, and
ℝn = ⋃∞i=1 B(xi, 12 rxi ). For simplicity, we denote ri := rxi . For j ∈ ℕ, we let

I(j) := {i : B(xi, ri) ∩ B(xj, rj) ̸= 0}.

By (2.42) we have that for any i ∈ I(j),

B(xi,
1
10

ri) ⊂ B(xi, ri) ⊂ B(xj, (2a5 + 1)rj),

and hence⋃i∈I(j) B(xi, 110 ri) ⊂ B(xj, (2a5 + 1)rj). From this and (2.42) it follows that

♯I(j) ≤
∑i∈I(j) |B(xi, ri)|
mini∈I(j) |B(xi, ri)| ≤ ∑i∈I(j) 10n|B(xi, 110 ri)||B(xj,

1
a5
rj)|

(2.43)

≤
10n|B(xj, (2a5 + 1)rj)|
|B(xj,

1
a5
rj)|

= [10a5(2a5 + 1)]
n
=: L.

Choose a function ϕ ∈ C∞ such that supp(ϕ) = B∗, 0 ≤ ϕ ≤ 1, and ϕ ≡ 1 on 1
2B
∗.

For every i ∈ ℕ, define

ϕi(x) :=
r∘i
a5L

ϕ(x − xi
ri
),

where r∘i := min{rj : B(xi, ri) ∩ B(xj, rj) ̸= 0}, and L is as in (2.43). For x ∈ ℝn, we define

r(x) :=
∞
∑
i=1ϕi(x).

This is a well-defined continuous function since on each ball B(xj, rj) the above series
has ≤ L nonzero terms corresponding to i ∈ I(j). More precisely, if x ∈ B(xj, rj), then

r(x) ≤ ∑
i∈I(j)ϕi(x) ≤ ∑

i∈I(j) r∘ia5L ≤ ∑i∈I(j) rj
a5L
≤

rj
a5
≤ rx . (2.44)

This, together with (2.41), implies that B(x, r(x)) ⊂ B(x, rx) ⊂ θ(x, t).
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Also note that for any x ∈ ℝn, there exists i, such that x ∈ B(xi,
1
2 ri), this gives that

r(x) ≥
r∘i
a5L
> 0.

Lemma 2.30. Assume thatΘ is a continuous cover and that there exist a constant c > 0
and positive definite matrices {M̃x,t} such that ‖M−1x,tM̃x,t‖ ≤ c, ‖M̃−1x,tMx,t‖ ≤ c, x ∈ ℝn,
t ∈ ℝ. Then Θ̃ = {θ̃(x, t)}, and θ̃(x, t) = x + M̃x,t(B∗) is a valid continuous cover (as per
Definition 2.10) that is also equivalent to Θ.

Proof. From the conditions of the lemma it is obvious that c−1‖Mx,t‖ ≤ ‖M̃x,t‖ ≤ c‖Mx,t‖
for all x ∈ ℝn and t ∈ ℝ. Therefore |θ̃(x, t)| ∼ |θ(x, t)| ∼ 2−t, and Θ̃ satisfies condi-
tion (2.13). Next, we see that there exists a constant μ(c,p(Θ)) such that for all x, y ∈ ℝn

and t ∈ ℝ, if θ̃(x, t) ∩ θ̃(y, t + ν) ̸= 0 for some ν > 0, then θ(x, t − μ) ∩ θ(y, t + ν) ̸= 0.
Therefore wemay apply the right-hand side of the shape condition (2.14) for Θ to prove
that Θ̃ also satisfies it by

M̃
−1
x,tM̃y,t+ν = M̃−1x,tMx,tM−1x,tMy,t+νM−1y,t+νM̃y,t+ν

≤ c2M
−1
x,tMy,t+ν

= c2M
−1
x,tMx,t−μM−1x,t−μMy,t+ν

≤ c2a32
a4μM

−1
x,t−μMy,t+ν

≤ c2a32
(a4+a6)μ2−a6ν =: ã52−a6ν .

The left-hand side of (2.14) is proved in a similar manner. We derive that Θ̃ is a valid
continuous cover with parameters p(Θ̃).

To see that the two covers are equivalent, observe that for all x ∈ ℝn and t ∈ ℝ,
M̃x,t(B∗) ⊆ cMx,t(B∗), which implies θ̃(x, t) ⊆ x+cMx,t(B∗). Application of Theorem 2.17
gives that there exists J1(p(Θ)) for which θ̃(x, t) ⊆ θ(x, t − cJ1). Applying the same the-
orem to Θ̃ gives the inclusion θ(x, t) ⊆ θ̃(x, t − c ̃J1) for some fixed ̃J1.

Proof of Theorem 2.28. Fix t ∈ ℝ. Let r := rt : ℝn → (0, ∞) be the continuous function
as in Lemma 2.29. Choose a (nonredundant) sequence {xk} of points in ℝn such that
⋃k∈ℕ B(xk , r(xk)) = ℝn. Choose a partition {Ek}k∈ℕ ofℝn intomeasurable sets such that
Ek ⊆ B(xk , r(xk)) for all k ∈ ℕ. For example, define

Ek = {
B(x1, r(x1)), k = 1,
B(xk , r(xk)) \⋃

k−1
i=1 B(xi, r(xi)), k ≥ 2.

Define M̃x,t = Mxk ,t if x ∈ Ek for some k ∈ ℕ. We nowdefine the set of ellipsoids (which,
as we will prove, is a valid continuous cover)

Ξ := {ξ (x, t) := x + Nx,t(B∗) : x ∈ ℝn, t ∈ ℝ}
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using positive definite matrices

Nx,t := ( 1
|B(x, r(x))|

∫
B(x,r(x))(M̃y,t)−2 dy)−1/2. (2.45)

Since the function r is bounded, for any y ∈ ℝn, we choose k ∈ ℕ such that y ∈ Ek and
apply (2.44) to obtain the estimate

(M̃y,t)−1 = (Mxk ,t)−1 ≤ 1
r(xk)
≤ sup

x∈B(y,‖r‖∞) 1
r(x)
.

Therefore the vector-valued integral in (2.45) is well defined with values in positive
definite matrices. By the continuity of the function r we can easily show that

x → 1
|B(x, r(x))|

∫
B(x,r(x))(M̃y,t)−2 dy

is a continuous positive definite matrix-valued function. Then, using the facts that the
square root mappingM → M1/2 is continuous on the space of all positive definite n×n
matricesM and that the inversemappingM → M−1 is continuous on the space of n×n
invertible matrices, we deduce that x → Nx,t is also continuous.

It remains to show that the positive definite matrices {Nx,t} satisfy the conditions
of Lemma 2.30 with respect to the reference cover Θ, since this will imply that Ξ is a
valid continuous cover equivalent to Θ. Fix x ∈ ℝn. Take any y ∈ B(x, r(x)) and let
k ∈ ℕ be such that y ∈ Ek . Since y ∈ θ(x, t) ∩ θ(xk , t) ̸= 0 by the shape condition (2.14),

M
−1
x,tMxk ,t, M−1xk ,tMx,t ≤ a5.

This implies that

a−25 (Mx,t)−2 ≤ (Mxk ,t)−2 ≤ a25(Mx,t)−2,
where we recall that for two positive definite matricesM1,M2, the notationM−21 ≤ M−22
means that

⟨M−21 v, v⟩ ≤ ⟨M−22 v, v⟩, ∀v ∈ ℝn.

Hence

a−25 (Mx,t)−2 ≤ (M̃y,t)−2 ≤ a25(Mx,t)−2.
Integrating the above inequality over y ∈ B(x, r(x)) as in (2.45) yields

a−25 (Mx,t)−2 ≤ (Nx,t)−2 ≤ a25(Mx,t)−2.
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This in turn gives

M
−1
x,tNx,t, N−1x,tMx,t ≤ a5.

Thus the conditions of Lemma 2.30 are satisfied, and we may conclude proof of the
theorem.

Condition (e) in Definition 2.14 of the discrete coversmay also seem restrictive, but
the next observation shows that this is not the case.

Theorem 2.31. Suppose Θ is a discrete multilevel ellipsoid cover ofℝn satisfying condi-
tions (a)–(d) of Definition 2.14. Then there exists an equivalent discrete multilevel ellip-
soid cover Θ̃ satisfying properties (a)–(e) (with possibly different constants) obtained by
dilating every ellipsoid θ ∈ Θ by a factor rθ satisfying (a7 + 1)/2 ≤ rθ ≤ 1.

Proof. By Lemma 2.19 there exist constantsN0,N1, andN2, depending on the parame-
ters of Θ, such that each ellipsoid θ ∈ Θm,m ∈ ℤ, can be intersected by atmostN0 from
Θm−1,N1−1 ellipsoids fromΘm, andN2 ellipsoids fromΘm+1. Now setN := N0+N1+N2,
b := (a7 + 1)/2, and δ := (1 − b)/N .

For a fixed θ ∈ Θm, denote θj := (b + jδ) ⋅ θ and Γj := {η ∈ Θm−1 ∪ Θm ∪ Θm+1 : η ̸=
θ, η ∩ θj ̸= 0}, j = 0, 1, . . . ,N . We then start an inductive process in j where our initial
candidate is θ = θ0. If there exists someη ∈ Γ0\Γ1, thenηpotentially hasno substantial
intersection with θ0, and so we proceed to inspect θ1. Observe that the ellipsoids in
Γ0 \ Γ1 from this point onward in the process will no longer intersect our candidate
ellipsoid. If, on the other hand, Γ0 \ Γ1 = 0, then this implies that all the ellipsoids in
Γ0 intersectwith θ1, which is a sufficiently substantial “core” of θ0. Recalling that these
ellipsoidshave equivalent volumeand shapewith θ0,we get that theyhave substantial
intersection with θ0, and we may terminate the process.

Since there are at most N − 1 intersecting ellipsoids and N possible steps, at some
point in our process, we must arrive at an index 0 ≤ j0 ≤ N such that Γj0 \ Γj0+1 = 0. We
then set θj0 as the new ellipsoid to replace θ.

We complete the proof of this proposition inductively by processing as above all
ellipsoids from Θ ordered in a sequence. The rule is that once an ellipsoid from Θ has
been processed, it will never be touched again.

Theorem 2.32. For every continuous or semicontinuous ellipsoid coverΘ ofℝn, through
an adaptive sampling and dilation process, there is an equivalent discrete ellipsoid
cover Θ̂.

Proof. We may assume that Θ is a semicontinuous ellipsoid cover of ℝn, since other-
wise we would construct one from the given continuous cover.

We first construct for every m ∈ ℤ a countable set Θ̂m ⊂ Θm satisfying conditions
(c)–(d) ofDefinition 2.14. This canbedone, e. g., in two steps as follows:Wefirst choose
countably many ellipsoids from Θm so that condition (d) is fulfilled with a7 = 1/2 and
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then inductively remove from this collection one-by-one all ellipsoids that do not de-
stroy condition (d). After that, condition (c) will be automatically fulfilled with some
constant N1 because of condition (b) on Θ. Conditions (a)–(b) on Θ̂m will be inherited
from Θm.

Secondly, Theorem 2.31 enables us to correct {Θ̂m} so that condition (e) is obeyed
as well.

2.5 Spaces of homogeneous type induced by covers

In this section, we strengthen the results of [13] and characterize the quasi-distances
on ℝn that may be induced by ellipsoid covers. We start with some definitions.

Definition 2.33. We say that a bounded domain Ω ⊂ ℝn is Q-quasi-convex if there
exists an ellipsoid θ such that

θ ⊆ Ω ⊆ Q ⋅ θ, (2.46)

where Q ⋅ θ is the Q-dilation of Definition 1.3. We say it is Q-quasi-convex with respect
to x ∈ ℝn if there exists an ellipsoid θ with center at x such that (2.46) holds.

Observe that by Theorem 1.6 any bounded convex domain Ω ⊂ ℝn is n-quasi-
convex.

Definition 2.34. Let ρ be a quasi-distance onℝn. We say that ρ is quasi-convex if there
exists Q ≥ 1 such that any ball Bρ(x, r), x ∈ ℝn, r > 0, is Q-quasi-convex with respect
to x, that is, for all x ∈ ℝn and r > 0, there exists an ellipsoid θx,r with center at x such
that

θx,r ⊆ Bρ(x, r) ⊆ Q ⋅ θx,r .
This obviously implies

|θx,r | ≤ Bρ(x, r) ≤ Qn|θx,r |.
In this case, we define the corresponding (possibly not unique) family of ellipsoids

Θρ := {θx,r : x ∈ ℝn, r > 0}. (2.47)

Theorem 2.35. LetΘ be a continuous cover, and let ρ be the quasi-distance (2.35). Then,
ρ is Q-quasi-convex for any Q > a−13 2a4γ, where γ is given by Lemma 2.18.

Proof. As in the proof of Theorem 2.23, let t′r := inf{t ∈ ℝ : θ(x, t) ⊆ Bρ(x, r)}. For
any “small” ε > 0, let tr := t′r + ε. Then θ(x, tr) ⊆ Bρ(x, r). Next, since any θ′ ∈ Θ,
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θ′ ⊆ Bρ(x, r), x ∈ θ′, is of scale ≥ t′r , by Lemma 2.18 it is contained in θ(x, t′r − γ).
Therefore Bρ(x, r) ⊆ θ(x, t′r − γ). We now conclude by (2.20) that

M
−1
x,trMx,t′r−γ ≤ a−13 2a4(γ+ε) ⇒ Mx,t′r−γ(B∗) ⊆ a−13 2a4(γ+ε)Mx,tr (B∗)

⇒ Bρ(x, r) ⊆ θ(x, t
′
r − γ) ⊆ Q ⋅ θ(x, tr)

with Q := a−13 2a4(γ+ε).
We see that a continuous cover induces a quasi-distance that is quasi-convex. The

main result of this section is the converse.

Theorem 2.36. Let ρ be a quasi-distance on ℝn that is quasi-convex and satisfies the
doubling condition (2.2). Then the corresponding family of ellipsoids Θρ given by (2.47)
induces a continuous cover of ℝn satisfying all the conditions of Definition 2.10.

Before we proceed with the proof of Theorem 2.36, we need some preparation.

Lemma 2.37. Let ρ be a quasi-distance on ℝn that is Q-quasi-convex and such that the
doubling condition (2.2) holds. Let Θρ be the corresponding family of ellipsoids given
by (2.47). Suppose that for c̃ > 0, x, y ∈ ℝn, r, s > 0

Bρ(x, r) ∩ Bρ(y, s) ̸= 0, s ≤ c̃r.

Then there exists a constant c > 0, depending on c0 of (2.2), Q, κ of (2.1), and c̃, such
that θy,s ⊆ c ⋅ θx,r .
Proof. Since Bρ(x, r)∩Bρ(y, s) ̸= 0 and s ≤ c̃r, the quasi-triangle inequality of ρ and the
quasi-convexity yield

θy,s ⊆ Bρ(y, s) ⊆ Bρ(x, (2c̃κ2 + κ)r) = Bρ(x, c3r) ⊆ Q ⋅ θx,c3r , (2.48)

where c3 := 2c̃κ2 + κ ≥ 1. Obviously, we also have

θx,r ⊆ Bρ(x, r) ⊆ Bρ(x, c3r) ⊆ Q ⋅ θx,c3r . (2.49)

By the quasi-convexity of ρ and the “upper dimension” inequality (2.3)

|Q ⋅ θx,c3r | = Qn|θx,c3r |
≤ QnBρ(x, c3r)



≤ Qnc0c
d
3
Bρ(x, r)



≤ Q2nc0c
d
3 |θx,r | =: c|θx,r |.
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Combining this with (2.48), (2.49), and Theorem 1.4 allows us to conclude

θy,s ⊆ Q ⋅ θx,c3r ⊆ |Q ⋅ θx,c3r ||θx,r | ⋅ θx,r ⊆ c ⋅ θx,r .
Definition 2.38. For any bounded set Ω ⊂ ℝn, v ∈ ℝn, and a positive scalar a > 0, we
denote

a(Ω + v) := {a(x + v) : x ∈ Ω}.

We then say that a quasi-distance ρ on ℝn satisfies the inner property if there exist
constants 0 < a, b ≤ 1 such that for any x ∈ ℝn, r > 0, and λ ≥ 1,

aλb(Bρ(x, r) − x) ⊆ Bρ(x, λr) − x.

Observe that in the setting of spaces of homogeneous type, (2.3) holds with d :=
log2 c0:

Bρ(x, λr)
 ≤ c0λ

dBρ(x, r)
, ∀x ∈ ℝ

n, r > 0, λ ≥ 1,

whereas the inner property gives the inverse

aλbBρ(x, r)
 ≤
Bρ(x, λr)

, ∀x ∈ ℝ
n, r > 0, λ ≥ 1. (2.50)

Lemma 2.39. Let ρ be a quasi-convex quasi-distance on ℝn, and let Θρ be the corre-
sponding family of ellipsoids as in (2.47). Then ρ satisfies the inner property iff there
exist constants ã, b̃ > 0 such that for any x ∈ ℝn, r > 0, and λ ≥ 1,

ãλb̃ ⋅ θx,r ⊆ θx,λr . (2.51)

Proof. Assume first that ρ satisfies the inner property. Since ρ is quasi-convex, for any
x ∈ ℝn, r > 0, and λ ≥ 1, we get

aλb(θx,r − x) ⊆ aλb(Bρ(x, r) − x) ⊆ Bρ(x, λr) − x ⊆ Q(θx,λr − x).
Therefore Θρ satisfies (2.51) with ã = a/Q, b̃ = b. In the other direction, if Θρ satis-
fies (2.51), then

ãλb̃(Bρ(x, r) − x) ⊆ ãλ
b̃(Q ⋅ θx,r − x) ⊆ Q(θx,λr − x) ⊆ Q(Bρ(x, λr) − x).

Therefore ρ satisfies the inner property with a = ã/Q, b = b̃.

Theorem 2.40. Let ρ be a quasi-convex quasi-distance on ℝn for which the doubling
condition (2.2) holds. Then it satisfies the inner property.
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Proof. First, we will show that there exists 0 < a < 1 such that

a−1(Bρ(x, r) − x) + x ⊆ Bρ(x, 2κr), ∀x ∈ ℝn, r > 0. (2.52)

For any x ∈ ℝn, r > 0, and y ∈ Bρ(x, r), it is obvious that Bρ(x, r)∩Bρ(y, r) ̸= 0. Therefore
the conditions of Lemma 2.37 are satisfied, and we have both inclusions

θy,r ⊆ c ⋅ θx,r , θx,r ⊆ c ⋅ θy,r .
Applying further Lemma 1.2 gives

θy,r − y ⊆ c(θx,r − x), θx,r − x ⊆ c(θy,r − y).
There exists 0 < a < 1 such that (a−1 − 1)Qc = 1. With this choice,

(a−1 − 1)Q(θx,r − x) ⊆ θy,r − y. (2.53)

For any z ∈ a−1(Bρ(x, r) − x) + x, let y ∈ Bρ(x, r) be such that
z = a−1(y − x) + x = y + (a−1 − 1)(y − x).

Since y − x ∈ Bρ(x, r)− x ⊆ Q(θx,r − x), using (2.53), we get that z ∈ θy,r ⊆ Bρ(y, r). By the
triangle inequality

ρ(z, x) ≤ κ(ρ(x, y) + ρ(y, z)) ≤ 2κr,

which yields z ∈ Bρ(x, 2κr) and proves (2.52).
We now define b := log(a−1)/ log(2κ). For any λ ≥ 1, let m ∈ ℕ0 be such that

(2κ)m ≤ λ < (2κ)m+1. Then, using a−1 = (2κ)b and (2.52), we may conclude

aλb(Bρ(x, r) − x) ⊆ a(2κ)
b(m+1)(Bρ(x, r) − x)

= a−m(Bρ(x, r) − x)
⊆ Bρ(x, (2κ)

mr) − x

⊆ Bρ(x, λr) − x.

Proof of Theorem 2.36. For any x ∈ ℝn and t ∈ ℝ, let ̃r(x, t) := sup{r : |Bρ(x, r)| ≤ 2−t}
and then r(x, t) := 0.75 ̃r(x, t). Observe that ̃r(x, t) < ∞ for all x ∈ ℝn, t ∈ ℝ, since
(2.51) ensures sufficient growth of volume with increased radii. Define the cover Θ by
θ(x, t) ∈ Θt, θ(x, t) := θx,r(x,t), where {θx,r} are defined by (2.47).

First, we verify that Θ satisfies the volume condition (2.13). By definition of r(x, t)

θ(x, t)
 = |θx,r(x,t)| ≤ Bρ(x, r(x, t)) ≤ 2−t .
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In the other direction, using the doubling condition we have

2−t ≤ Bρ(x, 2r(x, t)) ≤ c0Bρ(x, r(x, t)) ≤ c0Q|θx,r(x,t)| = c0Qθ(x, t).
This implies that Θ satisfies the volume condition (2.13) with a1 = (c0Q)−1 and a2 = 1.

Next, we show Θ satisfies the shape condition (2.14). Observe that it is suffi-
cient to show there exist constants a3, a4, a5, a6 > 0 such that for any two ellipsoids
θ(x, t), θ(y, t + ν) ∈ Θ, ν ≥ 0, such that θ(x, t) ∩ θ(y, t + ν) ̸= 0,

a32
−a4νMx,t(B∗) ⊆ My,t+ν(B∗) ⊆ a52−a6νMx,t(B∗). (2.54)

To prove (2.54), it is sufficient to verify the following two sets of inclusions:

a′3Mx,t(B∗) ⊆ My,t(B∗) ⊆ a′5Mx,t(B∗), (2.55)
a′′3 2−a4νMy,t(B∗) ⊆ My,t+ν(B∗) ⊆ a′′5 2−a6νMy,t(B∗). (2.56)

We start with (2.55). Let s := r(y, t) and r := r(x, t). We claim that Bρ(y, s) ∩
Bρ(x, r) ̸= 0. Indeed, s = r(y, t) ≥ r(y, t + ν), which gives

θ(y, t + ν) = θy,r(y,t+ν) ⊆ Bρ(y, r(y, t + ν)) ⊆ Bρ(y, s),
and so

θ(x, t) ∩ θ(y, t + ν) ⊆ Bρ(x, r) ∩ Bρ(y, s)⇒ Bρ(x, r) ∩ Bρ(y, s) ̸= 0.

Without loss of generality, s ≤ r, since otherwise we can prove the inclusions
a′′′3 My,t(B∗) ⊆ Mx,t(B∗) ⊆ a′′′5 My,t(B∗). Under the assumption s ≤ r, we may apply
Lemma 2.37 to obtain that θ(y, t) = θy,s ⊆ c ⋅ θx,r = c ⋅ θ(x, t). Using Lemma 1.2, we get
that

My,t(B∗) ⊆ cMx,t(B∗),
which is the right-hand side of (2.55) with a′5 := c. Next, by Theorem 1.4 we obtain that

cMx,t(B∗) ⊆ 2cn|θ(x, t)||θ(y, t)|
My,t(B∗)⇒ c1−na1

2a2
Mx,t(B∗) ⊆ My,t(B∗).

This gives the left-hand side of (2.55) with

a′3 := c1−na12a2
.

We now turn to prove (2.56). From the definition it is obvious that s := r(y, t + ν) ≤
r(y, t) =: r. Under this condition, we may apply Lemma 2.37 to obtain that θ(y, t + ν) =
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θy,s ⊆ c ⋅ θy,r = c ⋅ θ(y, t). Using Lemma 1.2, we get that

My,t+ν(B∗) ⊆ cMy,t(B∗).
Next, by Theorem 1.4 we obtain that

cMy,t(B∗) ⊆ cn|θ(y, t)|
|θ(y, t + ν)|

My,t+ν(B∗)⇒ c1−na1
2a2

2−νMy,t(B∗) ⊆ My,t+ν(B∗).
This gives the left-hand side of (2.56) with

a′′3 := c1−na12a2
, a4 := 1.

Next, we show that the right-hand side of (2.56) is satisfied. By Theorem 2.40 ρ satisfies
the inner property, and so by Lemma 2.39 there exist constants ã, b̃ > 0 such that for
any y ∈ ℝn, r > 0, and λ ≥ 1, ãλb̃ ⋅ θy,r ⊆ θy,λr . The ellipsoid inner property (2.51) for
λ := r/s implies

ãλb̃ ⋅ θ(y, t + ν) = ãλb̃ ⋅ θy,s ⊆ θy,λs = θy,r = θ(y, t).
Wemay apply Lemma 1.2 to obtain

ãλb̃My,t+ν(B∗) ⊆ My,t(B∗). (2.57)

We now use (2.3) and the Q-quasi-convexity of ρ to derive

2−t ≤ a−11 θ(y, t)
= a−11 |θy,r |
≤ a−11 Bρ(y, r)
≤ a−11 c0(

r
s
)
d
Bρ(y, s)



≤ a−11 c0Q
n(

r
s
)
d
|θy,s|

= a−11 c0Q
n(

r
s
)
d
θ(y, t + ν)



≤ a−11 c0Q
n(

r
s
)
d
2−(t+ν).

This gives

2ν ≤ c̃λd
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with c̃ := a−11 c0Qn. Combining this with (2.57) yields

My,t+ν(B∗) ⊆ ã−1λ−b̃My,t(B∗) ⊆ ã−1c̃b̃/d(2−ν)b̃/dMy,t(B∗).
This is the right-hand side of (2.56) with a′′5 = ã−1c̃b̃/d and a6 = b̃/d. We may conclude
that the ellipsoid cover Θ satisfies (2.54). This in turn implies that the shape condi-
tion (2.14) holds, and so Θ satisfies all the conditions of a continuous cover as per
Definition 2.10.
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3 Anisotropic multiresolution analysis

In this chapter, we focus on multiresolution analysis constructions that are subordi-
nate to the anisotropic quasi-distance induced by the ellipsoid covers. In contrast to
the general case of spaces of homogeneous type, our multiresolution analysis con-
structions overℝn provide polynomial reproduction of arbitrary (but fixed) order and
have arbitrarily high (but fixed) regularization.

3.1 Multiresolution kernel operators

In the setting of a general space of homogeneous type (see Definition 2.2), there exists
a very useful construction of multiresolution kernel operators [33].

Definition 3.1. Let (X, ρ, μ) be a space of homogeneous type with κ satisfying (2.1) and
α the corresponding constant fromProposition 2.4. A sequence {Sm}m∈ℤ of kernel oper-
ators, formally definedby Smf (x) := ∫X Sm(x, y)f (y)dμ(y), is said to be anapproximation
to the identity if there exist 0 < τ ≤ α, δ > 0, and c > 0 such that for all x, x′, y, y′ ∈ X
andm ∈ ℤ,

Sm(x, y)
 ≤ c

2−mδ

(2−m + ρ(x, y))1+δ
,

Sm(x, y) − Sm(x
′, y) ≤ c(

ρ(x, x′)
2−m + ρ(x, y)

)
τ 2−mδ

(2−m + ρ(x, y))1+δ

for ρ(x, x′) ≤ 1
2κ (2
−m + ρ(x, y)),

Sm(x, y) − Sm(x, y
′) ≤ c(

ρ(y, y′)
2−m + ρ(x, y)

)
τ 2−mδ

(2−m + ρ(x, y))1+δ

for ρ(y, y′) ≤ 1
2κ (2
−m + ρ(x, y)),

∫
X

Sm(x, y)dμ(y) = 1, ∀x ∈ X,

∫
X

Sm(x, y)dμ(x) = 1, ∀y ∈ X.

Our setting of normal spaces of homogeneous spaces induced by ellipsoid covers
of ℝn allows us to generalize the above approximation to the identity of order one to
arbitrary (but fixed) higher orders and regularity with kernels that reproduce polyno-
mials of arbitrary (but fixed) higher degrees.

https://doi.org/10.1515/9783110761795-003
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Let K(x, y) be a smooth kernel. For x, y ∈ ℝn, we have the Taylor representation of
the kernel about the point x with y fixed:

K(z, y) = Trx(K(⋅, y))(z) + R
r
x(K(⋅, y))(z), (3.1)

where Trx is the Taylor polynomial of degree r − 1 (order r) from (1.29), and Rrx is the
Taylor remainder of order r from (1.30).

Definition 3.2. Let (ℝn, ρ, μ) be a normal space of homogeneous type, where μ is the
Lebesguemeasure. A sequence of kernel operators {Sm}, formally defined by Smf (x) :=
∫ℝn Sm(x, y)f (y)dy, is a multiresolution of order (τ, δ, r), τ = (τ0, τ1), 0 < τ0 ≤ τ1 ≤ 1,
δ > 0, r ≥ 1, if there exists a constant c > 0 such that for all x, x′, y, y′, z ∈ ℝn, and
1 ≤ k ≤ r, the following conditions are satisfied:

Sm(x, y)
 ≤ c

2−mδ

(2−m + ρ(x, y))1+δ
, (3.2)

R
k
x(Sm(⋅, y))(z)



≤ cρ(x, z)τ(x,z,2
−m)k(

2−mδ

(2−m + ρ(x, y))1+δ+τ(x,z,2−m)k
+

2−mδ

(2−m + ρ(y, z))1+δ+τ(x,z,2−m)k
),

(3.3)

R
k
y(Sm(x, ⋅))(z)



≤ cρ(y, z)τ(y,z,2
−m)k(

2−mδ

(2−m + ρ(x, y))1+δ+τ(y,z,2−m)k
+

2−mδ

(2−m + ρ(x, z))1+δ+τ(y,z,2−m)k
),

(3.4)

R
k
y(R

k
x(Sm(⋅, ⋅))(x

′))(y′),
R

k
x(R

k
y(Sm(⋅, ⋅))(y

′))(x′)

≤ cρ(x, x′)τ(x,x
′ ,2−m)kρ(y, y′)τ(y,y

′ ,2−m)k

× (
2−mδ

(2−m + ρ(x, y))1+δ+τ(x,x′ ,2−m)k+τ(y,y′ ,2−m)k

+
2−mδ

(2−m + ρ(x, y′))1+δ+τ(x,x′ ,2−m)k+τ(y,y′ ,2−m)k

+
2−mδ

(2−m + ρ(x′, y))1+δ+τ(x,x′ ,2−m)k+τ(y,y′ ,2−m)k

+
2−mδ

(2−m + ρ(x′, y′))1+δ+τ(x,x′ ,2−m)k+τ(y,y′ ,2−m)k
),

(3.5)

P(x) = ∫
ℝn

Sm(x, y)P(y)dy, P(y) = ∫
ℝn

Sm(x, y)P(x)dx, ∀P ∈ Πr−1. (3.6)

Here we used τ(⋅, ⋅, ⋅) defined by (2.38). Also, to clarify our notation, denote
gm(x, x′, y) := Rkx(Sm(⋅, y))(x

′). Then for fixed x, x′ ∈ ℝn, Rky(R
k
x(Sm(⋅, ⋅))(x

′))(y′) =
Rky(gm(x, x

′, ⋅))(y′).
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We will use the fact that condition (3.3) implies

R
k
x(Sm(⋅, y))(z)

 ≤ cρ(x, z)
τ0k 2−mδ

(2−m + ρ(x, y))1+δ+τ0k
(3.7)

if ρ(x, z) ≤ 1
2κ (2
−m + ρ(x, y)) and condition (3.4) implies

R
k
y(Sm(x, ⋅))(z)

 ≤ cρ(y, z)
τ0k 2−mδ

(2−m + ρ(x, y))1+δ+τ0k
(3.8)

if ρ(y, z) ≤ 1
2κ (2
−m + ρ(x, y)). Furthermore, condition (3.5) implies

R
k
y(R

k
x(Sm(⋅, ⋅))(x

′))(y′) ≤ cρ(x, x
′)
τ0kρ(y, y′)τ0k 2−mδ

(2−m + ρ(x, y))1+δ+2τ0k
(3.9)

if ρ(x, x′) ≤ 1
2κ (2
−m + ρ(x, y)) and ρ(y, y′) ≤ 1

2κ (2
−m + ρ(x, y)).

Given an ellipsoid cover, our goal is to construct multiresolution kernels for any
given decay parameter δ > 0 and given order r, satisfying all the above properties.
Recall that in the cases where the ellipsoid cover is continuous or semicontinuous, we
can apply Theorem 2.32 and sample from it a discrete cover that produces an equiva-
lent quasi-distance. Therefore in our constructions below,we focus on discrete covers.

3.2 A multilevel system of bases

We will provide constructions of several types of anisotropic locally stable bases, be-
ginning with the multiresolution {Φm}m∈ℤ described in the next subsection. The basis
Φm consists of bumps supported over the ellipsoids of Θm, and thus its span may be
regarded as the functions at level m of the anisotropic multiresolution. We will later
also construct a second type of basis, also composed of bumps, this time supported
over interactions of ellipsoids from adjacent levels. This basis will be used to con-
struct “two-level splits”, which in turn are used to represent the difference between
two projections on adjacent levels of the multiresolution. Summing up over all such
differences provides a wavelet-type representation of a given function.

3.2.1 Coloring the ellipsoids in Θ

Our constructionbeginswith a coloring schemeof ellipsoids required for the construc-
tion of stable bases.We split a discrete ellipsoid cover Θ into nomore than 2N1 disjoint
subsets (colors) {Θν}2N1

ν=1 so that for anym ∈ ℤ, none of two ellipsoids θ
′, θ′′ ∈ Θm∪Θm+1

with θ′ ∩ θ′′ ̸= 0 are of the same color. Indeed, using property (c) of Θ (see Defini-
tion 2.14), it is easy to color (inductively) any level Θm by using nomore thanN1 colors.
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So we use at most N1 colors to color the ellipsoids in {Θ2j}j∈ℤ and further at most N1
colors to color the ellipsoids in {Θ2j+1}j∈ℤ.

Thus we may assume that we have the following disjoint splitting:

Θ =
2N1

⋃
ν=1

Θν and Θ2j =
N1

⋃
ν=1

Θν
2j, Θ2j+1 =

2N1

⋃
ν=N1+1

Θν
2j+1, j ∈ ℤ, (3.10)

where if θ′ ∈ Θν1
m1

and θ′′ ∈ Θν2
m2

with |m1 −m2| ≤ 1 and θ′ ∩ θ′′ ̸= 0, then ν1 ̸= ν2.

Remark 3.3. In this chapter we will only use different colors of intersecting ellipsoids
on a single level for the construction of {Φm}m∈ℤ below. The two-level coloring scheme
will come into play in the next chapter when we construct the two-level splits.

3.2.2 Definition of single-level bases

Wefirst introduce 2N1 smooth piecewise polynomial bumps associatedwith the colors
from above. For fixed positive integers L and r, L ≥ r, we define

ϕν(x) := (1 − |x|
2)
L+νr
+ , ν = 1, 2, . . . , 2N1, x+ := max{x,0}. (3.11)

Notice that ϕν ∈ CL+νr−1 ⊂ CL.

Remark 3.4. The bumps ϕν can be modified to be C∞ functions. To this end, let h ∈
C∞(ℝn) be such that supp h = B(0, 1), h ≥ 0, and ∫ℝn h = 1. Denote hδ(x) := δ

−nh(δ−1x).
Then for 0 < δ < 1, the bumps ϕ∗ν := ϕν ∗ hδ apparently have the following properties:
ϕ∗ν ∈ C

∞, ϕ∗ν is a polynomial of degree exactly 2(L + νr) on B(0, 1 − δ), and suppϕ∗ν =
B(0, 1 + δ). Now the bumps {ϕ∗ν }, dilated by a factor of 1 + δ with δ sufficiently small
(depending on the parameters of Θ) can be successfully used in place of {ϕν}.

For any θ ∈ Θ, let Aθ denote the affine transform from Definition 1.1 such that
Aθ(B∗) = θ (recall B∗ := B(0, 1)) and set

ϕθ := ϕν ∘ A
−1
θ if θ ∈ Θν , 1 ≤ ν ≤ 2N1. (3.12)

By the properties of discrete covers there exist constants 0 < c1 < c2 <∞ such that

0 < c1 ≤ ∑
θ∈Θm

ϕθ(x) ≤ c2, ∀x ∈ ℝ
n. (3.13)

Indeed, the constant c2 is derived from property (c) of discrete covers, which assumes
that a point x ∈ ℝn is contained in at most N1 ellipsoids. The constant c1 is derived by
property (d), which states that any point is contained in the “core” θ⬦ = a7 ⋅θ of at least
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one ellipsoid θ ∈ Θm. This allows us to introduce locally stablemth-level partitions of
unity by defining for any θ ∈ Θm

φθ :=
ϕθ

∑θ′∈Θm
ϕθ′
, ∑

θ∈Θm

φθ(x) = 1, ∀x ∈ ℝ
n. (3.14)

Let

{Pβ : |β| ≤ r − 1}, where degPβ = |β|, (3.15)

be an orthonormal basis in L2(B∗) for the space Πr−1 of all polynomials in n variables
of total degree r − 1. Since ‖Pβ‖L2(B∗) = 1

‖Pβϕν‖L2(B∗) ∼ ‖Pβϕν‖L∞(B∗) ∼ 1, ν = 1, 2, . . . , 2N1. (3.16)

For any θ ∈ Θ and |β| < r, we define

Pθ,β := |θ|
−1/2Pβ ∘ A

−1
θ . (3.17)

Let us now introduce the more compact notation

Λm := {λ := (θ, β) : θ ∈ Θm, |β| < r}, (3.18)

and if λ := (θ, β), then we denote by θλ and βλ the components of λ. With this notation,
we define

φλ := Pλφθλ = Pθλ ,βλφθλ . (3.19)

Notice that ‖φλ‖2 ∼ 1 and, in general, ‖φλ‖p ∼ |θ|1/p−1/2, 0 < p ≤∞. Also, φλ ∈ CL.

Definition 3.5. We define themth-level basis Φm by

Φm := {φλ : λ ∈ Λm} (3.20)

and set

𝒮m := span(Φm), (3.21)

that is, 𝒮m is the set of all functions f on ℝn of the form

f (x) = ∑
λ∈Λm

cλφλ(x), x ∈ ℝn, (3.22)

where {cλ} is an arbitrary collection of complex numbers.
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Remarks
(i) Since each x ∈ ℝn is contained in at mostN1 ellipsoids fromΘm, the sum in (3.22)

is finite and hence well defined.
(ii) By the partition of unity (3.14) it readily follows that Πr−1 ⊂ 𝒮m.
(iii) Φm is linearly independent, i. e., if ∑λ∈Λm

cλφλ = 0 a. e., then cλ = 0 for all λ ∈
Λm. More importantly, Φm is locally linearly independent and Lp stable, as we
establish in the next theorem.

Theorem 3.6. Any function f ∈ 𝒮m has a unique representation

f (x) = ∑
λ∈Λm

⟨f , g̃λ⟩φλ(x), (3.23)

where for every x ∈ ℝn, the sum is finite, and the functions g̃λ have the following proper-
ties: For every θ ∈ Θm, there exists an ellipsoid θ∗ := Aθ(B∗θ ) ⊂ θ for some ball B

∗
θ ⊂ B
∗

with |θ∗| ∼ |θ| such that for 0 < p ≤∞,

⟨φλ, g̃λ′⟩ = δλ,λ′ , ∀λ, λ
′ ∈ Λm, (3.24)

supp(g̃λ) ⊂ θ∗λ , ‖g̃λ‖p ∼ |θλ|
1/p−1/2. (3.25)

Moreover, if f ∈ 𝒮m ∩ Lp, 0 < p ≤∞, and f = ∑λ∈Λm
cλφλ, then

‖f ‖p ∼ ( ∑
λ∈Λm

‖cλφλ‖
p
p)

1/p
, (3.26)

with the obvious modification when p = ∞. Here all constants of equivalence depend
only on p(Θ), L, p, and r.

Proof. We first construct the balls B∗θ ⊂ B
∗. Fix θ ∈ Θm (m ∈ ℤ) and let 𝒳θ be the set of

all θ′ ∈ Θm such that θ′ ∩ θ ̸= 0. Denote

𝒳 ∗θ := {A
−1
θ (θ
′) : θ′ ∈ 𝒳θ}.

We claim that there exists a ball B∗θ ⊂ B
∗ such that |B∗θ | ∼ 1 and for each η ∈ 𝒳

∗
θ , either

B∗θ ⊂ η or B∗θ ∩ η = 0. Indeed, 𝒳
∗
θ partitions B∗ into a bounded number of interior

disjoint subdomains c(N1) > 0, so there exists at least one such subdomain Ω∗ ⊂ B∗

with |Ω∗| ≥ c(N1)
−1|B∗|. Obviously, any Euclidean ball B ⊂ Ω∗ satisfies the property

that for each η ∈ 𝒳 ∗θ , either B ⊂ η or B ∩ η = 0. So it remains to prove that there exists
a ball B∗θ ⊂ Ω

∗ of “substantial” volume. Indeed, by property (e) of discrete covers, for
any η ∈ 𝒳 ∗θ , we have |η ∩ B

∗| ≥ a8|B∗|. Also, the shape similarity of the set 𝒳θ with θ
implies that the set 𝒳 ∗θ is similar in shape to B∗. Thus Ω∗ is created by set operations
of “unit ball” like ellipsoids. Define θ∗ := Aθ(B∗θ ).
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Denote by 𝒴θ the set of all θ′ ∈ 𝒳θ such that θ∗ ⊂ θ′ and set

ℱθ := {g
⬦
θ′ ,β := φθ′ ,β1θ∗ : θ

′ ∈ 𝒴θ , |β| < r}.

It is an important observation that the set of functions ℱθ is linearly independent. In-
deed, every two ellipsoids in𝒴θ contain θ∗ and thus intersect and have distinct colors.
If θ′ ∈ 𝒴θ and θ′ ∈ Θν

m for some 1 ≤ ν ≤ 2N1, then ϕθ′Pθ′ ,β′ is a polynomial of degree
exactly L + νr + |β′| on θ∗, and L + νr ≤ L + νr + |β′| < L + (ν + 1)r. Consequently, the
functions {ϕθ′Pθ′ ,β1Bθ : θ

′ ∈ 𝒴θ , |β| < r} are linearly independent on θ∗, and hence ℱθ
is linearly independent.

Define g∗θ′ ,β := |θ|
1/2g⬦θ′ ,β ∘Aθ. Notice that supp g

∗
θ′ ,β = B

∗
θ and ‖g

∗
θ′ ,β‖2 ∼ ‖g

∗
θ′ ,β‖∞ ∼ 1.

Let

ℱ∗θ := {g
∗
θ′ ,β : θ

′ ∈ 𝒴θ , |β| < r} and Λθ := {λ := (θ
′, β) : θ′ ∈ 𝒴θ , |β| < r}.

As ℱθ is linearly independent, ℱ∗θ is linearly independent as well. Consequently, the
Gram matrix

Gθ := (⟨g
∗
θ′ ,β′ , g

∗
θ′′ ,β′′⟩)(θ′ ,β′),(θ′′ ,β′′)∈Λθ

is nonsingular, and hence its inverse

G−1θ =: (R(θ′ ,β′),(θ′′ ,β′′))(θ′ ,β′),(θ′′ ,β′′)∈Λθ

exists.
We next show that the functions

g̃θ,β := ∑
(θ′ ,β′)∈Λθ

R(θ,β),(θ′ ,β′)g
⬦
θ′ ,β′ (3.27)

form a dual system to Φm. Indeed, for θ ∈ Θm, supp(g̃θ,β) = θ∗. if θ′ ∈ Θm and θ′ ̸∈ 𝒴θ,
then θ′ ∩ θ∗ = 0, and hence ⟨φθ′ ,β′ , g̃θ,β⟩ = 0. Otherwise, for θ′ ∈ 𝒴θ and |β′| < r,

⟨φθ′ ,β′ , g̃θ,β⟩ = |θ|⟨φθ′ ,β′ ∘ Aθ , g̃θ,β ∘ Aθ⟩ = ∑
(θ′′ ,β′′)∈Λθ

R(θ,β),(θ′′ ,β′′)⟨g
∗
θ′ ,β′ , g

∗
θ′′ ,β′′⟩

= (G−1θ Gθ)(θ,β),(θ′ ,β′) = δ(θ,β),(θ′ ,β′),

as claimed.
Our next and most important step is showing that

|R(θ′ ,β′),(θ′′ ,β′′)| ≤ c, ∀ (θ
′, β′), (θ′′, β′′) ∈ Λθ , (3.28)

where c > 0 depends only on p(Θ), L, and r. We will use a compactness argument.
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We readily see that the set ℱ∗θ is a particular case of the general case where we
have a collection of linearly independent functions

ℱ = {fj,β :=
(ϕνjPβ) ∘ Lj
∑Jj=1 ϕνj ∘ Lj

⋅ 1B0 : j = 1, 2, . . . , J, |β| < k},

where B0 ⊂ B∗ is a ball with |B0| ≥ c1 > 0, the indices

1 ≤ ν1 < ν2 < ⋅ ⋅ ⋅ < νJ ≤ N1

are fixed, ϕν are from (3.11), and Pβ are as in (3.15) with the normalization from (3.16),
i. e., ‖Pβ‖2 = 1, which implies ‖ϕνPβ‖∞ ∼ 1. We also assume that Lj, j = 1, 2, . . . , J, are
affine transforms of the form Lj(x) = Mjx + vj satisfying the following conditions:
(i) Mj = UjDjVj, where Uj and Vj are orthogonal n × nmatrices,

Dj = diag(τ
j
1, τ

j
2, . . . , τ

j
n) with 0 < c2 ≤ min

ℓ
τjℓ ≤ max

ℓ
τjℓ ≤ c3, and |vj| ≤ c4;

(ii) 0 < c5 ≤ ∑
J
j=1(ϕνj ∘ Lj)(x) ≤ c6 for x ∈ B

∗;
(iii) Lj(B0) ⊂ B∗.

Let Λ := {λ := (j, β) : j = 1, 2, . . . , J, |β| < k}. Since F is linearly independent, the Gram
matrix G := (⟨fλ, fλ′⟩)λ,λ′∈Λ is nonsingular, and hence G−1 =: (Rλ,λ′ )λ,λ′∈Λ exists.

Each of the affine transforms Lj depends on parameters from a subset, say, K of
the set ℝn×n × ℝn × ℝn×n × ℝn. The set of all orthogonal n × n matrices is a compact
subset of ℝn×n. Hence the parameters of all affine transforms Lj satisfying condition
(i) belong to a compact subset, say, K1 of ℝn×n × ℝn × ℝn×n × ℝn. On the other hand,
condition (iii) on Lj can be expressed in the form

max
|x−x0|≤a
|Mjx + vj| ≤ 1,

where x0 and a (a ∼ 1) are the center and radius of B0. Therefore conditions (ii) and
(iii) define K as a closed subset of the compact K1, and hence K is compact.

The entries of G and det(G) apparently depend continuously on the parameters of
the affine transforms Lj, j = 1, 2, . . . , J, and since K is compact,

⟨fλ, fλ′⟩
 ≤ c7, ∀λ, λ

′ ∈ Λ, and 0 < c8 ≤ detG ≤ c9.

From this it follows that

|Rλ,λ′ | ≤ c10 ∀ λ, λ
′ ∈ Λ, (3.29)

where c10 as well as c7, c8, and c9 depend only on c1, . . . , c6, p(Θ), L, and r. Finally, us-
ing that there are only finitely many possibilities for the indices 1 ≤ ν1 < ν2 < ⋅ ⋅ ⋅ < νJ ≤
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N1, we conclude that the constant c10 in estimate (3.29) can be selected independently
of these indices.

Applying the above claim to the specific case at hand, it follows that estimate
(3.28) holds. Then (3.24) follows by (3.27) and (3.28).

The stability properties (3.26) follow by a standard argument from the properties
(3.24) of the dual, as we now show for 0 < p < ∞ (the case p = ∞ is similar and
simpler). Since for each θ ∈ Θm, by property (c) of discrete covers we have that #𝒳θ ≤
N1, ∀θ ∈ Θm, we get

‖f ‖pp ≤ ∑
θ∈Θm

‖f ‖pLp(θ)

≤ C ∑
θ∈Θm

∑
θ′∈𝒳θ ,|β|<r

‖cθ′ ,βφθ′ ,β‖
p
Lp(θ′)

≤ C ∑
θ′∈Θm ,|β|<r

‖cθ′ ,βφθ′ ,β‖
p
Lp(θ′)

= C ∑
λ∈Λm

‖cλφλ‖
p
p.

In the other direction, for 1 ≤ p < ∞, using (3.24), Hölder inequality, and then (3.25)
gives

‖cλφλ‖p =
⟨f , g̃λ⟩φλ

p

≤ ‖f ‖Lp(θλ)‖g̃λ‖p′‖φλ‖p

≤ C‖f ‖Lp(θλ).

Combining this with property (c) of discrete covers yields

∑
λ∈Λm

‖cλφλ‖
p
p ≤ C ∑

λ∈Λm

‖f ‖pLp(θλ)

≤ C‖f ‖pp.

3.2.3 Local projectors onto polynomials

The anisotropic regularity notions we are aiming at rely on appropriate operators,
which map Llocp into 𝒮m, locally preserve Πr−1 and hence provide good local approx-
imation. The form of the operators will differ somewhat for p ≥ 1 and p < 1.

(a) Case 1 ≤ p ≤ ∞. There are in fact a number of ways to construct suitable
operators. A first obvious idea is using the bases {Φm} and their duals G̃m := {g̃λ : λ ∈
Λm} from Theorem 3.6 to introduce projectors mapping Llocp onto the spaces 𝒮m,

Qmf := ∑
λ∈Λm

⟨f , g̃λ⟩φλ. (3.30)
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Alternatively, simpler local projectors onto polynomials are obtained as follows.
Recall that for θ ∈ Θ, {Pθ,β}|β|<r defined by (3.17) is an orthonormal basis for Πr−1 in
L2(θ). Using again our compact notation from (3.19), we define

Pmf := ∑
λ∈Λm

⟨f ,Pλ⟩φλ. (3.31)

Evidently, Pm is a linear operator that maps Llocp into 𝒮m and preserves locally all poly-
nomials from Πr−1. To be more specific, setting

θ∗ := ∪{θ′ ∈ Θm : θ ∩ θ
′ ̸= 0} for θ ∈ Θm, (3.32)

we easily to see that if f |θ∗ = P|θ∗ with P ∈ Πr−1, then Pmf |θ = P|θ.
In Section 3.3, we construct yet another dual system for {φλ}λ∈Λm

that leads to
different projectors and allows the construction of high-order “approximation to the
identity” kernel operators.

(b) Case 0 < p < 1. Apparently, the above operators are no longer usable when
working in Lp with p < 1. Hence we need to modify them. In fact, the following con-
struction covers the full range 0 < p ≤∞. For 0 < p ≤∞ and a given ellipsoid θ ∈ Θ,
we let Pθ,p : Lp(θ)→ Πr−1 be a projector such that

‖f − Pθ,pf ‖Lp(θ) ≤ C(n, r, p)ωr(f , θ)p, f ∈ Lp(θ), (3.33)

where ωr(f , θ)p is the modulus of smoothness of f over θ defined in (1.13). Note that
(3.33) is a consequence of Whitney’s theorem 1.34 and Pθ,pf can simply be defined as
the best (or near best) approximation to f from Πr−1 in Lp(θ). Furthermore, by Corol-
lary 1.36, for 1 ≤ p <∞, there exist linear projectors that realize (3.33).

We now define the operator Pm,p : Llocp → 𝒮m by

Pm,pf := ∑
θ∈Θm

Pθ,pfφθ . (3.34)

Since Pm,pf ∈ 𝒮m, it can be represented in terms of the basis functions {φλ}λ∈Λm
as

Pm,pf := ∑
λ∈Λm

bλ(f )φλ, (3.35)

where bλ(f ) := ⟨Pm,pf , g̃λ⟩ depends nonlinearly on f if p < 1.
In summary, any Tm ∈ {Qm,Pm,Pm,p} defined by (3.30), (3.31), or (3.35) has the

representation

Tmf = ∑
λ∈Λm

bλ(f )φλ, where bλ(f ) =
{{{
{{{
{

⟨f , g̃λ⟩ if Tm = Qm,

⟨f ,Pλ⟩ if Tm = Pm,
⟨Tm,pf , g̃λ⟩ if Tm = Pm,p.

(3.36)
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Theorem 3.7. Let Tm be the operator Qm from (3.30) or Pm from (3.31) or Pm,p from (3.34)
if 1 ≤ p ≤∞, and let Tm := Pm,p if 0 < p < 1. Then for f ∈ Llocp and θ ∈ Θm (m ∈ ℤ),

‖Tmf ‖Lp(θ) ≤ c‖f ‖Lp(θ∗), (3.37)

where θ∗ is from (3.32), and

‖f − Tmf ‖Lp(θ) ≤ c ∑
θ′∈Θm : θ′∩θ ̸=0

ωr(f , θ
′)p. (3.38)

Furthermore, if f ∈ Llocp , then

‖f − Tmf ‖Lp(K) → 0 as m→∞ for any bounded K ⊂ ℝn, (3.39)

and if f ∈ Lp (L∞ := C0), then

‖f − Tmf ‖p → 0 as m→∞. (3.40)

Proof. We first prove (3.37) in the case Tm = Qm and 1 ≤ p ≤∞ (the proof in the other
cases is similar). By (3.30), (3.25), and property (c) of discrete covers it follows that

‖Qmf ‖Lp(θ) ≤ ∑
λ∈Λm :θλ∩θ ̸=0

⟨f , g̃λ⟩
‖φλ‖p

≤ ∑
λ∈Λm :θλ∩θ ̸=0

‖f ‖Lp(θλ)‖g̃λ‖p′‖φλ‖p

≤ C ∑
λ∈Λm :θλ∩θ ̸=0

‖f ‖Lp(θλ)

≤ C‖f ‖Lp(θ∗) (1/p + 1/p
′ = 1),

as claimed.
To prove (3.38), we first show that for 0 < p ≤ ∞ and any θ ∈ Θm, there exists

Pθ ∈ Πr−1 such that

Er−1(f , θ
∗)p ≤ ‖f − Pθ‖Lp(θ∗) ≤ C ∑

θ′∈𝒳θ

ωr(f , θ
′)p, (3.41)

where θ∗ is defined in (3.32), and𝒳θ := {θ′ ∈ Θm : θ′∩θ ̸= 0}. Indeed, byWhitney’s the-
orem 1.34 for convex sets,Er−1(f , θ)p ≤ Cωr(f , θ)p for any ellipsoid θ. For any θ′ ∈ 𝒳θ, let
Pθ′ ∈ Πr−1 be such that ‖f −Pθ′‖Lp(θ′) ≤ 2Er−1(f , θ

′)p. By condition (e) of discrete covers,
for any θ′ ∈ 𝒳θ, |θ′| ≤ a8|θ ∩ θ′|. We combine this with an application of Lemma 1.23
to get

‖Pθ′ − Pθ‖Lp(θ′) ≤ C‖Pθ′ − Pθ‖Lp(θ′∩θ)
≤ C‖f − Pθ′‖Lp(θ′∩θ) + C‖f − Pθ‖Lp(θ′∩θ)
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≤ C‖f − Pθ′‖Lp(θ′) + C‖f − Pθ‖Lp(θ)
≤ Cωr(f , θ

′)p + Cωr(f , θ)p.

Bycondition (c) ondiscrete coversweknow that #𝒳θ ≤ N1. From this and thepreceding
estimate we conclude that

‖f − Pθ‖Lp(θ∗) ≤ C ∑
θ′∈𝒳θ

‖f − Pθ‖Lp(θ′)

≤ C ∑
θ′∈𝒳θ

‖Pθ′ − Pθ‖Lp(θ′) + C ∑
θ′∈𝒳θ

‖f − Pθ′‖Lp(θ′)

≤ C ∑
θ′∈𝒳θ

ωr(f , θ
′)p,

which yields (3.41). Then, using that Tm(Pθ) = Pθ and (3.37), we get

‖f − Tmf ‖Lp(θ) ≤ C‖f − Pθ‖Lp(θ) + C
Tm(Pθ − f )

Lp(θ)

≤ C‖f − Pθ‖Lp(θ∗)
≤ C ∑

θ′∈𝒳θ

ωr(f , θ
′)p,

and (3.38) follows.
By (2.27) for any bounded K ⊂ ℝn,

max{diam θ : θ ∈ Θm, θ ∩ K ̸= 0}→ 0 asm→∞.

This and (3.38) readily imply (3.39), which leads to (3.40).

3.3 Construction of the anisotropic multiresolution kernels

To construct kernels {Sm}m∈ℤ that satisfy properties (3.2)–(3.6), for any given δ > 0 and
r ≥ 1, we need to construct yet another dual basis to Φm. Let Gm be the Gram matrix
given by

Gm := [Aλ,λ′ ]λ,λ′∈Λm
, Aλ,λ′ := ⟨φλ,φλ′⟩.

By (3.26), since ‖φλ‖2 ∼ 1 for all λ ∈ Λm, for any sequence α ∈ l2(Λm), we have

c1‖α‖
2
l2 ≤ ⟨Gmα, α⟩ =


∑
λ∈Λm

αλφλ



2

2
≤ c2‖α‖

2
l2 ,
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where the constants c1, c2 > 0 do not depend on α orm. Thus the operator Gm : l2 → l2
with matrix Gm is symmetric and positive, and c1I ≤ Gm ≤ c2I. Therefore G−1m exists,
and c−12 I ≤ Gm ≤ c−11 I. Denote by G−1m := [Bλ,λ′ ]λ,λ′∈Λm

the matrix of the operator G−1m .
We now introduce a graph-distance d̃m(⋅, ⋅) on Λm. To this end, we first define the

graph-distance dm(θ, θ′) between any θ, θ′ ∈ Θm as the length of the shortest chain
connecting θ and θ′. A chain is a list of ellipsoids in Θm where each consecutive el-
lipsoids have a nonempty intersection and its length is the number of elements – 1.
Evidently, dm is a distance on Θm. Let us order in a sequence, indexed by 0, 1, . . . , the
multiindices β ∈ ℕn in such away that ifN(β)denotes the index of β, thenN(β) < N(β′)
for |β| < |β′|. Denote also Nmax := max|β|<r N(β) + 1. After this preparation, we define
the graph distance d̃m(λ, λ′) between any λ, λ′ ∈ Λm by

d̃m(λ, λ
′) := Nmaxdm(θλ, θλ′ ) +

N(βλ) − N(βλ′ )
.

We readily see that d̃m(⋅, ⋅) is a true distance on Λm, which is dominated by the graph
distance between the ellipsoids. Applying a generalization, given in [53], of a well-
known result of Demko on the inverses of band matrices, we arrive at the following
result,

Lemma 3.8. There exist constants 0 < q < 1 and c > 0, depending only on p(Θ), r, and
our choice of {ϕν}ν=1,...,N1

, such that the following estimates hold for the entries of G−1m ,
m ∈ ℤ:

|Bλ,λ′ | ≤ cq
d̃m(λ,λ′) ≤ cqdm(θλ ,θλ′ ), ∀λ, λ′ ∈ Λm. (3.42)

Further, we need an estimate of the entries Bλ,λ′ using the quasi-distance.

Lemma 3.9. There exist constants 0 < q∗, α < 1 and c > 0, depending only on p(Θ) and
r, such that for all entries Bλ,λ′ , λ, λ′ ∈ Λm, and points x ∈ θλ and y ∈ θλ′ ,

|Bλ,λ′ | ≤ cq
(2mρ(x,y))α
∗ . (3.43)

Proof. Let λ, λ′ ∈ Λm. There exists a connected chain of ellipsoids in Θm of length
dm(θλ, θλ′ ) that starts at θλ and ends in θλ′ . By Lemma 2.18 there exists a fixed con-
stant γ(p(Θ)) ≥ 1 such that there exists a connected chain of ellipsoids in Θm−γ of
length ⌈dm(θλ, θλ′ )/2⌉ whose first element contains θλ and the last θλ′ . After at most
L := 2 log2(dm(θλ, θλ′ )) such iterations, we obtain an ellipsoid η ∈ Θm−Lγ such that
θλ, θλ′ ⊂ η, and therefore

ρ(x, y) ≤ |η| ≤ a22
−(m−Lγ) = a22

−mdm(θλ, θλ′ )
2γ . (3.44)
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Denoting q∗ := qa
−1/2γ
2 , where q is defined by (3.42), and α := 1/2γ, we conclude that

(3.43) holds by combining (3.42) and (3.44):

|Bλ,λ′ | ≤ cq
dm(θλ ,θλ′ ) ≤ cq(a

−1
2 2mρ(x,y))1/2γ = cq(2

mρ(x,y))α
∗ .

Definition 3.10. We define the dual basis Φ̃m := {φ̃λ}λ∈Λm
by

φ̃λ := ∑
λ′∈Λm

Bλ,λ′φλ′ , λ ∈ Λm, (3.45)

and the multiresolution kernel operators {Sm}m∈ℤ by

Sm(x, y) := ∑
λ∈Λm

φλ(x)φ̃λ(y). (3.46)

For λ ∈ Λm, let x0 be any point in θλ. Combining (3.43) and (3.45), we see that

φ̃λ(x)
 ≤ C2

−m/2 ∑
x∈θλ′
|Bλ,λ′ | ≤ C2

−m/2q(2
mρ(x,x0))α
∗ . (3.47)

Therefore each φ̃λ has fast decay with respect to the quasi-distance induced by Θ, and
thus, by Theorem 2.26 it also has fast decay with respect to the Euclidean distance. In
fact, if {ϕν}ν=1,...,2N1

are constructed as C∞ bumps (see Remark 3.4), then φ̃λ is in the
Schwartz class 𝒮 (we omit the proof). Also,

⟨φλ, φ̃λ′⟩ = ∑
λ′′∈Λm

Bλ′ ,λ′′⟨φλ,φλ′′⟩ = (G
−1
m Gm)λ′ ,λ = δλ,λ′ .

Our next step is showing that {Sm}m∈ℤ form a high-order multiresolution analysis
(see Definition 3.2). As we will see, the parameters τ = (τ0, τ1) depend on the parame-
ters of the cover. We begin with the following lemmas.

Lemma 3.11. For any f ∈ Cr(ℝn), we have the following commutativity of Taylor polyno-
mials of degree k − 1, k ≤ r, and affine transformations A:

Tkx (f ∘ A, z) = T
k
A(x)(f ,A(z)), ∀x, z ∈ ℝ

n.

Therefore we have

Rkx(f ∘ A, z) = R
k
A(x)(f ,A(z)). (3.48)
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Proof. Let Ax = Mx + b withM = {ai,j}1≤i,j≤n. Since Az − Ax = Mz −Mx, we have

Tkx (f ∘ A, z) = ∑
|α|<k

𝜕α[f ∘ A](x)
α!
(z − x)α

= ∑
|α|<k

𝜕αf (Ax)
α!

n
∏
j=1
(

n
∑
i=1

ai,j)
αj n
∏
j=1
(zj − xj)

αj

= ∑
|α|<k

𝜕αf (Ax)
α!

n
∏
j=1
(

n
∑
i=1

ai,j(zj − xj))
αj

= ∑
|α|<k

𝜕αf (Ax)
α!
(Az − Ax)α.

Lemma 3.12. Let Θ be a discrete ellipsoid cover of ℝn, denote τ := (a6, a4), and let 1 ≤
k ≤ r. For any λ ∈ Λm and x, z ∈ ℝn, we have

R
k
x(φλ, z)
 ≤ c2

m/2(2mρ(x, z))τ(x,z,2
−m)k
, (3.49)

where τ(⋅, ⋅, ⋅) is defined in (2.38), and Rkx(f , z) is the Taylor remainder of order k about
the point x and at the point z. The constant depends on the parameters of the cover, n,
and the choice of r and {ϕν}ν=1,...,N1

(in the construction of the bases in 3.2.2).

Proof. Assume first that λ = (θ, β), where θ ∈ Θ0 and θ = B∗ (recall B∗ denotes the
Euclidean unit ball in ℝn). Evidently, in this particular case, |φλ|Wk

∞
≤ c∗ with c∗ de-

pending on the aforementioned parameters, where | ⋅ |Wk
∞
is the Sobolev seminorm

defined in (1.7). By definition there exists an ellipsoid θ̃ ∈ Θj for some j ∈ ℤ such that
ρ(x, z) = |θ̃|. Since we may assume that either x or z is in B∗ (otherwise, Rkx(φλ, z) = 0,
and (3.49) is obvious), we get that θ̃ ∩ B∗ ̸= 0. We may consider two cases.

Case 1: j ≥ 0. Since θ̃ ∩ B∗ ̸= 0, then by (2.23) we have

|x − z| ≤ diam(θ̃) ≤ a52
−a6j.

Also, since θ̃ ∈ Θj, by (2.17)wehave that |θ̃| ≥ a12−j. Combining these last two estimates
yields

R
k
x(φB∗ ,β, z)

 ≤ C|φB∗ ,β|Wk
∞
|x − z|k

≤ C2−a6jk

≤ C|θ̃|a6k

≤ Cρ(x, z)a6k .
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Case 2: j < 0. Since θ̃ ∩ B∗ ̸= 0, by (2.23) we have |x − z| ≤ diam(θ̃) ≤ C2−a4j. Similarly
as above, we arrive at

R
k
x(φB∗ ,β, z)

 ≤ Cρ(x, z)
a4k .

These last two estimates prove (3.49) for the case θλ ∈ Θ0 and θλ = B∗.Wenowconsider
the case where both the ellipsoid and the cover are arbitrary. Let θ ∈ Θm and Aθ be the
affine transformation such that θ = Aθ(B∗). Evidently, Θ∗ := {A−1(η)}η∈Θ is an ellipsoid
cover of ℝn with the same parameters a3, a4, a5, a6 as Θ. Denote by ρ∗(⋅, ⋅) the quasi-
distance induced by Θ∗. It is easy to see that

ρ∗(A−1(x),A−1(z)) = |θ|−1ρ(x, z). (3.50)

Denote φB∗ ,β := φB∗Pβ (this is a particular case of (3.19) for the unit ball). Notice that
φθ,β = |θ|−1/2φB∗ ,β ∘ A−1θ . We use (3.48), then (3.49) for the particular case of A−1(θ) =
B∗ ∈ Θ∗, and finally (3.50) to obtain

R
k
x(φθ,β, z)

 = |θ|
−1/2R

k
A−1θ (x)
(φB∗ ,β,A

−1
θ (z))


≤ C|θ|−1/2ρ∗(A−1θ (x),A
−1
θ (z))

τ(A−1θ (x),A
−1
θ (z),1)k

= C|θ|−1/2(|θ|−1ρ(x, z))τ(x,z,2
−m)k
.

The proof of the lemma is complete.

Theorem 3.13. Suppose Θ is a discrete ellipsoid cover of ℝn, denote τ := (a6, a4), and
let Sm, m ∈ ℤ, be defined as in (3.46). Then there exist 0 < q∗, α < 1 and c > 0 such that
for any k ≤ r, x, x′, y, y′, z ∈ ℝn,

Sm(x, y)
 ≤ c2

mq(2
mρ(x,y))α
∗ , (3.51)

R
k
x(Sm(⋅, y), z)

 ≤ c2
m(2mρ(x, z))τ(x,z,2

−m)k
(q(2

mρ(x,y))α
∗ + q(2

mρ(y,z))α
∗ ), (3.52)

R
k
y(Sm(x, ⋅), z)

 ≤ c2
m(2mρ(y, z))τ(x,z,2

−m)k
(q(2

mρ(x,y))α
∗ + q(2

mρ(x,z))α
∗ ), (3.53)

R
k
yR

k
x[Sm(⋅, ⋅)](x

′, y′) =
R

k
xR

k
y[Sm(⋅, ⋅)](x

′, y′)

≤ c2m(2mρ(x, x′))τ(x,x
′ ,2−m)k
(2mρ(y, y′))τ(y,y

′ ,2−m)k (3.54)

× (q(2
mρ(x,y))α
∗ + q(2

mρ(x,y′))α
∗ + q(2

mρ(x′ ,y))α
∗ + q(2

mρ(x′ ,y′))α
∗ ).

Proof. By (3.45) and (3.46) the kernel Sm(x, y) has a representation

Sm(x, y) = ∑
λ,λ′∈Λm

Bλ,λ′φλ(x)φλ′ (y). (3.55)
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We now use ‖φλ‖∞ ∼ 2m/2 for all λ ∈ Λm, the fact that the points x and y are contained
in a bounded number of ellipsoids θ ∈ Θm, and (3.43) to obtain (3.51):

Sm(x, y)
 ≤ ∑

x∈θλ ,y∈θλ′
|Bλ,λ′ |
φλ(x)

φλ′ (y)
 ≤ C2

mq(2
mρ(x,y))α
∗ .

For the proof of (3.52), we use the same tools and further apply (3.49):

R
k
x(Sm(⋅, y))(z)

 ≤ ∑
x∈θλ∨z∈θλ

∑
y∈θλ′
|Bλ,λ′ |
R

k
x(φλ, z)

φλ′ (y)


≤ C2m(2mρ(x, z))τ(x,z,2
−m)
( ∑
x∈θλ ,y∈θλ′

|Bλ,λ′ | + ∑
z∈θλ ,y∈θλ′

|Bλ,λ′ |)

≤ C2m(2mρ(x, z))τ(x,z,2
−m)
(q(2

mρ(x,y))α
∗ + q(2

mρ(y,z))α
∗ ).

The proof of (3.53) is similar. Finally, we prove (3.54) using the same technique:

R
k
y(R

k
x(Sm(⋅, ⋅))(x

′))(y′)
≤ ∑

x∈θλ∨x′∈θλ

∑
y∈θλ′∨y

′∈θλ′
|Bλ,λ′ |
R

k
x(φλ, x

′)
R

k
y(φλ′ , y

′)

≤ C2m(2mρ(x, x′))τ(x,x
′ ,2−m)
(2mρ(y, y′))τ(y,y

′ ,2−m)

× ( ∑
x∈θλ ,y∈θλ′

|Bλ,λ′ | + ∑
x∈θλ ,y′∈θλ′

|Bλ,λ′ | + ∑
x′∈θλ ,y∈θλ′

|Bλ,λ′ | + ∑
x′∈θλ ,y′∈θλ′

|Bλ,λ′ |)

≤ C2m(2mρ(x, x′))τ(x,x
′ ,2−m)
(2mρ(y, y′))τ(y,y

′ ,2−m)

× (q(2
mρ(x,y))α
∗ + q(2

mρ(x,y′))α
∗ + q(2

mρ(x′ ,y))α
∗ + q(2

mρ(x′ ,y′))α
∗ ).

We can now prove that our construction is indeed a high-order multiresolution.

Corollary 3.14. For a discrete ellipsoid cover Θ, the kernels {Sm}m∈ℤ defined by (3.46)
are amultiresolution of order (τ, δ, r)with respect to the quasi-distance (2.35) induced by
the cover. The vector τ can be taken as τ = (a6, a4), the parameter δ can be any positive
scalar, and the parameter r is the total order of the polynomials used in the construction
of the local ellipsoid “bumps” in Section 3.2.2.

Proof. For any δ̃ > 0, denote q̃ := q1/δ̃∗ , where q∗ is given by (3.43). Evidently, for any
0 < q̃, α < 1, there exists a constant c1(q̃, α) > 0 such that q̃t

α
≤ c1(1 + t)−1 for all t ≥ 0.

Therefore, for allm ∈ ℤ, x, y ∈ ℝn, we have

q(2
mρ(x,y))α
∗ = q̃(2

mρ(x,y))αδ̃ ≤ cδ̃1(
1

1 + 2mρ(x, y)
)
δ̃
= c 2−mδ̃

(2−m + ρ(x, y))δ̃
. (3.56)
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Thus, for any δ > 0, setting δ̃ = 1 + δ in (3.56), from (3.51) we get

Sm(x, y)
 ≤ C2

mq(2
mρ(x,y))α
∗

≤ C2m 2−m(1+δ)

(2−m + ρ(x, y))1+δ

= C 2−mδ

(2−m + ρ(x, y))1+δ
,

which is property (3.2) in Definition 3.2. Properties (3.3) and (3.4) are proved similarly
by applying (3.52) and (3.53) for 1 ≤ k ≤ r and setting δ̃ = 1 + δ + τ1k:

R
k
x(Sm(⋅, y), z)



≤ C2m(2mρ(x, z))τ(x,z,2
−m)k
(q(2

mρ(x,y))α
∗ + q(2

mρ(y,z))α
∗ )

≤ C2m(2mρ(x, z))τ(x,z,2
−m)k

× ((
2−m

2−m + ρ(x, y)
)
1+δ+τ(x,z,2−m)k

+ (
2−m

2−m + ρ(y, z)
)
1+δ+τ(x,z,2−m)k

)

= Cρ(x, z)τ(x,z,2
−m)k(

2−mδ

(2−m + ρ(x, y))1+δ+τ(x,z,2−m)k
+

2−mδ

(2−m + ρ(y, z))1+δ+τ(x,z,2−m)k
).

Property (3.5) is proved similarly. Finally, we prove the polynomial reproduction prop-
erty (3.6). Since Πr−1 ⊂ 𝒮m for all m ∈ ℤ by construction, for any P ∈ Πr−1, there exist
coefficients {cλ}λ∈Λm

such that P = ∑λ∈Λm
cλφλ. For fixed y ∈ ℝn, we use the fast decay

of the kernel Sm(⋅, y) away from y to obtain

∫
ℝn

Sm(x, y)P(x)dx = ∫
ℝn

( ∑
λ,λ′∈Λm

Bλ,λ′φλ(x)φλ′ (y))( ∑
λ′′∈Λm

cλ′′φλ′′ (x))dx

= ∑
λ,λ′ ,λ′′∈Λm

cλ′′Bλ,λ′φλ′ (y) ∫
ℝn

φλ(x)φλ′′ (x)dx

= ∑
λ′ ,λ′′∈Λm

cλ′′φλ′ (y) ∑
λ∈Λm

Bλ,λ′Aλ′′ ,λ

= ∑
λ′ ,λ′′∈Λm

cλ′′φλ′ (y)δλ′ ,λ′′

= ∑
λ′′∈Λm

cλ′′φλ′′ (y) = P(y).

The proof that P(x) = ∫ℝn Sm(x, y)P(y)dy is similar. This concludes the proof of the
corollary.
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4 Anisotropic wavelets and two-level splits

4.1 Wavelet decomposition of spaces of homogeneous type

In the isotropic setting, wavelets [24, 34] are bases of L2(ℝn) that are well localized
with respect to the Euclidean metric in space and frequency. Wavelet constructions
have many applications in harmonic analysis, approximation theory, function space
theory, signal processing, and numerical methods for PDEs. The simplest example is
the univariate Haar orthonormal basis, which is perfectly localized in space since it
is compactly supported (and somewhat localized in frequency). It is defined through
dilations and translations {ψj,k}, ψj,k := 2j/2ψ(2j ⋅ −k), j, k ∈ ℤ, where ψ : ℝ → ℝ is the
“mother” wavelet

ψ(x) :=
{{{
{{{
{

1, 0 ≤ x < 1/2,
−1, 1/2 ≤ x ≤ 1,
0, otherwise.

However, most isotropic wavelet constructions, including the Haar, are in fact derived
from an isotropic multiresolution analysis with properties of localization and poly-
nomial reproduction as in the previous chapter. For example, the span of the Haar
wavelets {ψj,k}k∈ℤ can be regarded as “differences” between two consecutive scales
Vj, Vj+1 in the multiresolution {Vj}j∈ℤ, where Vj is the closure of the span of φj,k :=
2j/2φ(2j ⋅ −k), k ∈ ℤ, with φ := 1[0,1].

For anisotropic function spaces,where the anisotropy is constant overℝn, it is also
possible to construct wavelet-type bases that are generated from a single function and
alignedwith the anisotropy. As in the isotropic case, these bases allowus to character-
ize the corresponding anisotropic function spaces such as Besov or Triebel–Lizorkin
[38, 63]. As we will see below, in the general case of pointwise variable anisotropy, it
is possible to start the construction from a fixed set of smooth “bumps”; however, we
need to adapt their dilation pointwise and scalewise, making the wavelet-type con-
structions more complex.

There is a remarkable construction by Auscher and Hytönen using the technique
of randomized dyadic cubes [4] of awavelet orthonormal basis of L2(X), where (X, ρ, μ)
is a space of homogeneous type, which is well localized with respect to the quasi-
metric ρ. Moreover, the wavelet basis {ψi}i∈I satisfies the following properties:
(i) Vanishing moment: ∫X ψidμ = 0 for all i ∈ I;
(ii) Lipschitz regularity 0 < η < 1 with respect to ρ;
(iii) Exponential decay with respect to ρ.

The construction of compactly supported wavelets in this generality remains an open
problem. We note that for the particular case X = ℝn, we can directly construct an

https://doi.org/10.1515/9783110761795-004
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86 | 4 Splits and wavelets

orthonormal basis with similar properties, over an anisotropic nested multilevel tri-
angulation mesh [52], which induces a quasi-distance in a similar way to the ellipsoid
covers.

Since our ellipsoid covers induce a quasi-distance and in turn a space of homo-
geneous type, the construction of [4], combined with Theorem 2.23, implies that we
can construct an orthonormal wavelet basis that has Lipschitz regularity and is well
localized with respect to the ellipsoid cover. However, it is still an open problem if a
higher-order well-localized anisotropic orthonormal basis {ψi}i∈I can be constructed.
By higher-order we mean that for an arbitrarily high but fixed r ≥ 1,

∫
ℝn

Pψi = 0, ∀P ∈ Πr−1, ∀i ∈ I .
Therefore, we follow [28] and focus our attention on frame constructions, in view

of the fact that frames can be thought of as some kind of “generalized bases”, since
they satisfy the following “quasi-Parseval” type property.

Definition 4.1. A family of elements {fi}i∈I contained in a Hilbert spaceℋ is a frame if
there exist constants 0 < A ≤ B <∞ such that for any f ∈ ℋ,

A‖f ‖2ℋ ≤∑
i∈I ⟨f , fi⟩ℋ2 ≤ B‖f ‖2ℋ. (4.1)

Littlewood and Paley initiated a fundamental branch of harmonic analysis in the
1930s, where the Fourier series is split into dyadic blocks f = ∑j Δj(f ), and then most
functional spaces can be characterized by size estimates on Δj(f ). David, Journe, and
Semmes [25] used an idea of R. Coifman to generalize the Littlewood–Paley analysis to
the general setting on spaces of homogeneous type. Useful wavelet representations of
functions (e. g., L2(X)) are constructed [33] based on the approximation of the identity
of Definition 3.1.

Definition 4.2. For an approximation of the identity {Sm}m∈ℤ, we define the wavelet
operators

Dm := Sm+1 − Sm,
so that, formally, the identity operator I = limm→∞ Sm is decomposed by I =
∑∞m=−∞ Dm.

In the general setting of spaces of homogeneous type, the properties of {Sm}m∈ℤ
with constants 0 < τ < α and δ > 0 imply that there exists a constant c > 0 such that
for all x, y ∈ ℝn,

Dm(x, y)
 ≤ c

2−mδ
(2−m + ρ(x, y))1+δ , (4.2)
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Dm(x, y) − Dm(x
′, y) ≤ cρ(x, x′)τ 2−mδ

(2−m + ρ(x, y))1+δ+τ (4.3)

for ρ(x, x′) ≤ 1
2κ (2
−m + ρ(x, y)),
Dm(x, y) − Dm(x

′, y) ≤ cρ(y, y′)τ 2−mδ
(2−m + ρ(x, y))1+δ+τ (4.4)

for ρ(y, y′) ≤ 1
2κ (2
−m + ρ(x, y)),

∫
X

Dm(x, y)dμ(y) = 0, ∀x ∈ X, ∫
X

Dm(x, y)dμ(x) = 0, ∀y ∈ X. (4.5)

These properties of the wavelet kernels mean that for fixed x0, y0 ∈ ℝn, the functions
Dm(x0, ⋅), Dm(⋅, y0) are anisotropic molecules in the following sense.

Definition 4.3. Fix a quasi-distance ρ on ℝn. A function f ∈ C(ℝn) belongs to the
anisotropic test function space ℳ(τ, δ, x0, t), τ, δ > 0, x0 ∈ ℝn, t ∈ ℝ, if there exists
a constant c > 0 such that:
(i) For all x ∈ ℝn,

f (x)
 ≤ c

2−tδ
(2−t + ρ(x, x0))1+δ ;

(ii) For all x, y ∈ ℝn such that

ρ(x, y) ≤ 1
2κ
(2−t + ρ(x, x0))

with κ defined in (2.1),

f (x) − f (y)
 ≤ cρ(x, y)

τ 2−tδ
(2−t + ρ(x, x0))1+δ+τ .

The norm ‖f ‖ℳ(τ,δ,x0 ,t) is the infimumover all such constants. An anisotropic test func-
tion f is said to be amolecule inℳ0(τ, δ, x0, t) if ∫ℝn f = 0.

In Sections 6.6 and 7.2, we show that the setting of ellipsoid covers allows us to
consider the generalization to anisotropic test functions and molecules of higher or-
der of regularity. Meanwhile, the minimal regularity considered in Definition 4.3 is
sufficient to guarantee the following wavelet reproducing formula.

Proposition 4.4 (Continuous Calderón reproducing formula, [33]). Let (ℝn, ρ, dx) be a
normal space of homogeneous type, let {Sm} be an approximation of the identity as per
Definition 3.1, and let Dm := Sm+1 − Sm be the wavelet operators satisfying (4.2)–(4.5) for
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0 < τ, δ < α. Then there exist linear kernel operators {D̃m}m∈ℤ and {D̂m}m∈ℤ, acting on
Lp(ℝn), 1 < p <∞, such that

f (x) = ∑
m∈ℤ D̃mDm(f )(x) = ∑

m∈ℤDmD̂m(f )(x), (4.6)

where the series converges in Lp(ℝn), 1 < p < ∞. Furthermore, the kernels of {D̃m}m∈ℤ
and {D̂m}m∈ℤ also satisfy conditions (4.2)–(4.5) for any τ′ < τ and δ′ < δ.
Proof. Here we only sketch the proof and refer the reader to [33] for an in-depth treat-
ment of analysis of spaces of homogeneous type. What is coined as “Coifman’s idea”
(attributed to Ronald Coifman) consists of writing

I =∑
m
Dm =∑

k
Dk∑

l
Dl =∑

k,l DkDl.

Then for some integer N > 0, we define the operators DN
k := ∑|j|≤N Dk+j and the opera-

tors TN and RN by

I =∑
k,l DkDl = ∑

k∈ℤDN
k Dk + ∑

k∈ℤ ∑|j|>N Dk+jDk =: TN + RN .
One then shows that for any τ′ < τ and δ′ < δ, the singular operator RN is uni-

formly bounded on ℳ0(τ′, δ′, x0, t) for all x0 ∈ ℝn and t ∈ ℝ. Moreover, there exist
constants ε > 0 and c > 0 that do not depend on N, such that for f ∈ℳ0(τ′, δ′, x0, t),

‖RN f ‖ℳ0(τ′ ,δ′ ,x0 ,t) ≤ c2−Nε‖f ‖ℳ0(τ′ ,δ′ ,x0 ,t). (4.7)

This allows us to choose a sufficiently large N such that c2−Nε < 1, which implies
that ‖RN‖ < 1 in the operator norm. Therefore the operator

T−1N := (I − RN )−1 = ∞∑
k=0RkN

exists as a kernel operator and is bounded onℳ0(τ′, δ′, x0, t). Subsequently,
I = T−1N TN =∑

m
(T−1N DN

m)Dm =∑
m
D̃mDm, D̃m := T

−1
N DN

m.

The regularity and vanishing moment conditions of the kernels {Dm} imply that
for any fixed N and y0 ∈ ℝn, the function DN

m(⋅, y0) is in ℳ0(τ, δ, y0,m). This gives
that D̃m(⋅, y0) = T−1N DN

m(⋅, y0) ∈ℳ0(τ′, δ′, y0,m). Similarly, for fixed x0 ∈ ℝn, D̃m(x0, ⋅) ∈
ℳ0(τ′, δ′, x0,m). This implies that {D̃m}m∈ℤ satisfy conditions (4.2)–(4.5) for any τ′ < τ,
δ′ < δ.
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Wemay also write

I = TNT
−1
N =∑

m
Dm(D

N
mT
−1
N ) =∑

m
DmD̂m, D̂m := D

N
mT
−1
N .

Similar arguments imply that {D̂m}m∈ℤ also satisfy conditions (4.2)–(4.5) for all τ′ < τ
and δ′ < δ.

In the general setting of spaces of homogeneous type, we also have the Little-
wood–Paley characterization of Lp spaces.

Proposition 4.5 ([25]). Let (X, ρ, μ), be a space of homogeneous type, and let {Sm}m∈ℤ
be an approximation of the identity satisfying the conditions of Definition 3.1. Then for
Dm := Sm+1 − Sm, m ∈ ℤ, and 1 < p <∞, there exist constants 0 < c1 < c2 <∞ such that

c1‖f ‖Lp(X) ≤ ( ∑m∈ℤDm(f )

2
)
1/2Lp(X) ≤ c2‖f ‖Lp(X). (4.8)

4.2 Two-level splits

We have seen that we may define wavelet operators as the differences of two-level
adjacent quasi-projection kernels Dm = Sm+1 − Sm. Using the representation of the
operators Sm with localized anisotropic “bumps”, we can construct useful localized
representations of the difference between two adjacent scales in the multiresolution
ladder and in particular Dm using two-level splits [23].

Definition 4.6. Let Θ be a discrete cover and denote

ℳm := {ν = (η, θ, β) : η ∈ Θm+1, θ ∈ Θm, η ∩ θ ̸= 0, |β| < r}, m ∈ ℤ.

We define using (3.14) and (3.17) the two-level split basis

Fν := Pη,βφηφθ = φη,βφθ , ν = (η, θ, β) ∈ℳm. (4.9)

We denote ℱm := {Fν : ν ∈ ℳm} and set Wm := span(ℱm). Finally, we also denote
ℱ := {Fν ∈ℳ}, whereℳ := {ℳm}.

Note that Fν ∈ CL, supp(Fν) = θ ∩ η if ν = (η, θ, β), and, by property (e) in Defini-
tion 2.14, ‖Fν‖p ∼ |η|1/p−1/2, 0 < p ≤∞.

Let the coefficients {Aθ,ηα,β} be determined from

Pθ,α = ∑|β|<r Aθ,ηα,βPη,β, θ ∈ Θm, η ∈ Θm+1. (4.10)
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We will use the fact that there exists a constant c(p(Θ), n, r) > 0 such that

A
θ,η
α,β ≤ c, ∀θ ∈ Θm, η ∈ Θm+1, θ ∩ η ̸= 0. (4.11)

For any λ = (θ, α) ∈ Λm, we obtain, through application of the partition of unity (3.14)
at the levelm + 1 and then (4.10), the followingmeshless two-scale relationship

φλ = Pθ,αφθ

= ∑
η∈Θm+1 , η∩θ ̸=0Pθ,αφθφη

= ∑
η∈Θm+1 , η∩θ ̸=0, |β|<r Aθ,ηα,βPη,βφθφη

= ∑
η∈Θm+1 , η∩θ ̸=0, |β|<r Aθ,ηα,βFη,θ,β,

and hence φλ ∈ Wm. Also, if λ ∈ Λm+1 and λ = (η, β), then the partition of unity at the
levelm gives

φλ = Pη,βφη = ∑
θ∈Θm :θ∩η ̸=0Pη,βφηφθ = ∑

θ∈Θm :θ∩η ̸=0 Fη,θ,β.
Combining the last two results, we find that span(Φm ∪Φm+1) ⊂ Wm.

These two representations of the local bumps using two-scale splits naturally lead
to a representation of the difference operator Tm+1 − Tm, where Tm ∈ {Qm,Pm,Pm,p}
are defined by (3.30), (3.31), or (3.35). Using the representation Tmf = ∑λ∈Λm

bλ(f )φλ,
defined by (3.36) and the polynomial two-scale relation (4.10), we obtain

Tm+1f − Tmf = ∑
ν∈ℳm

dν(f )Fν , (4.12)

where

dν(f ) = d(η,θ,β)(f ) := bη,β(f ) − ∑|α|<r Aθ,ηα,βbθ,α(f ).
The next result concerns the local anisotropic smoothness of a two-level split el-

ement and will be applied later on in the setting of Besov spaces.

Lemma 4.7. For any 1 ≤ k ≤ r and 0 < p < ∞, there exists a constant c(p(Θ), k, p) > 0
such that for any σ ∈ Θm and Fν ∈ ℱj, j ≤ m, σ ∩ ην ̸= 0,

ωk(Fν , σ)
p
p ≤ c2

j−m−a6k(m−j)p‖Fν‖pp, (4.13)

where ωk(⋅, ⋅)p is a moduli of smoothness defined in (1.12).
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Proof. Denote briefly η := ην, θ := θν, β := βν, and F := Fν. Also, let σ∗ := A−1η σ,
θ∗ := A−1η θ, and F∗ := F ∘Aη. Recall that F = Pη,βφηφθ with Pη,β := |η|−1/2Pβ ∘A−1η . Hence
F∗ = |η|−1/2Pβφη(Aη⋅)φθ(Aη⋅). Applying (2.18) for any η ∈ Θm+1 and θ ∈ Θm such that
η ∩ θ ̸= 0 implies that for α = (α1, . . . , αn) with |α| ≤ L,

𝜕
α(φθ ∘ Aη)

∞ ≤ C,
where C depends only on L and p(Θ). This gives that |F∗|Wk∞ ≤ C(p(Θ), k). Now for any
h ∈ ℝn, with h∗ := M−1η h, we have

Δ
k
hF

p
Lp(σ) = det(Mη)


Δ

k
h∗F∗pLp(σ∗)

≤ C|η|h
∗kpF∗pWk∞ σ∗

≤ C|η|1−p/2σ∗diam(σ∗)kp.
Here we assumed that k|h∗| ≤ diam(σ∗), since otherwise Δkh∗F∗(x) ≡ 0. Next, observe
that

σ
∗ = det(M−1η Mσ)

 =
det(M

−1
η )

det(Mσ)

 = |η|
−1|σ|

and by (2.18)

diam(σ∗) = 2M−1η Mσ
ℓ2→ℓ2 ≤ 2a52−a6(m−j).

We use these observations to obtain

ωk(F, σ)
p
p ≤ C|σ||η|

−p/22−a6(m−j)kp
≤ C|σ||η|−12−a6(m−j)kp|η|1−p/2
≤ C2j−m−a6(m−j)kp‖F‖pp.

Next, we claim that for each m ∈ ℤ, ℱm = {Fν : ν ∈ ℳm} satisfies the crucial
property of representation stability.

Theorem 4.8. If f ∈ Wm ∩ Lp(ℝn), 0 < p ≤∞, and f = ∑ν∈ℳm
aνFν, then

‖f ‖p ∼ {
(∑ν∈ℳm

‖aνFν‖pp)
1/p ∼ 2m( 12− 1p )(∑ν∈ℳm

|aν|p)1/p, 0 < p <∞,
supν∈ℳm

‖aνFν‖∞ ∼ 2m/2 supν∈ℳm
|aν|, p =∞.

(4.14)

The proof of Theorem 4.8 is a mere repetition of the proof of Theorem 3.6, where
the stability of Φm = {φλ}λ∈Λm

was established. Here we specifically use the two-level
coloring scheme (3.10) to ensure the linear independence of {Fν}ν∈ℳm

.
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4.3 Anisotropic wavelet operators

Let {Sm}m∈ℤ be a multiresolution analysis of order (τ, δ, r) (see Section 3.1). Then it is
clear that the kernels of the wavelet operators

Dm := Sm+1 − Sm (4.15)

satisfy conditions (3.2)–(3.5) of Definition 3.2 (with possibly different constants),
whereas the polynomial reproduction condition (3.6) is replaced with the vanishing
moments property

∫
ℝn

Dm(x, y)P(y)dy = 0, ∫
ℝn

Dm(x, y)P(x)dx = 0, ∀P ∈ Πr−1. (4.16)

In fact, the kernels {Dm}m∈ℤ are a particular case of Approximation of the Identity with
Exponential Decay [45], since they inherit their regularity from {Sm}m∈ℤ, which in turn
satisfy by Theorem 3.13 the exponential decay properties.

Proposition 4.9. The dual operators {D̃m}m∈ℤ and {D̂m}m∈ℤ, constructed for the con-
tinuous Calderón reproducing formula (4.6), also satisfy the higher vanishing moments
properties (4.16).

Proof. Recall from the proof of Proposition 4.4 that for sufficiently largeN, I = TN +RN
with ‖RN‖ < 1, where the norm is the operator norm acting on molecules. This gives
that for anym ∈ ℤ,

D̃m = T
−1
N DN

m

= (
∞
∑
j=0RjN)DN

m

= (
∞
∑
j=0( ∑|i|>N ∑k∈ℤDk+iDk)

j
)DN

m.

Therefore D̃m satisfies the rth vanishing moments conditions (4.16), since it is a limit
of finite compositions of wavelet operators, all satisfying (4.16). A similar argument
shows that D̂m also satisfies (4.16).

Remark 4.10. Whereas the dual operators {D̃m}m∈ℤ and {D̂m}m∈ℤ inherit the vanishing
moments properties from the operators {Dm}m∈ℤ, there remains an open question on
their regularity. In the setting of ellipsoid covers ofℝn, the wavelet operators {Dm}m∈ℤ
inherit their regularity from the anisotropic multiresolution analysis, whose kernels
{Sm}m∈ℤmay be constructed to have any prescribed higher regularity, faster decay and
higher-order Lipschitz properties (Definition 3.2). Meanwhile, the dual wavelet opera-
tors are constructed using a more general framework of singular operators acting on
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low-order molecules in spaces of homogeneous type. This means, for example, that
we only claim “modest” decay for the duals

D̃m(x, y)
,
D̂m(x, y)

 ≤ C
2−mδ′

(2−m + ρ(x, y))1+δ′ ,
where δ′ is given in Proposition 4.4, and α is given by (2.4) with δ′ < α < 1.

Observe that the operator RN is in fact an anisotropic singular operator. So the
question is in what sense we can correctly define higher-order molecule spaces and if
RN are bounded operators on these higher-order molecule spaces with ‖RN‖∗ ≤ C2−εN
for some fixed C > 0 and ε > 0, with an appropriate operator norm ‖ ⋅ ‖∗. In Section 7.2,
we demonstrate how an anisotropic singular operator indeed maps a smooth atom to
a smoothmolecule, yet with some quantifiable regularity lost. Such an estimate is not
applicable in a scenario where we wish to apply the singular operators RjN as j →∞.

Recall that our construction in Section 3.3 of multiresolution kernels over a dis-
crete cover Θ yields the multiresolution analysis kernels

Sm(x, y) = ∑
λ∈Λm

φ̃λ(y)φλ(x),

where {φλ}λ∈Λm
are supported over ellipsoids at level Θm, whereas (3.47) implies that

theduals {φ̃λ}λ∈Λm
have rapiddecay.Weuse thepartition of unity (3.14) and thepolyno-

mial two-scale relation (4.10) to compute the following two-level split representation
of the wavelet kernel:

Dm(x, y) = ∑
λ∈Λm+1 φ̃λ(y)φλ(x) − ∑

λ∈Λm

φ̃λ(y)φλ(x)

= ∑
θ∈Θm

∑(η,β)∈Λm+1 φ̃η,β(y)φη(x)Pη,β(x)φθ(x)

− ∑
η∈Θm+1 ∑(θ,α)∈Λm

φ̃θ,α(y)φθ(x)Pθ,α(x)φη(x)

= ∑
η∈Θm+1 ∑θ∈Θm ,θ∩η ̸=0 ∑|β|<r (φ̃η,β(y) − ∑|α|<r Aθ,ηα,βφ̃θ,α(y))Pη,β(x)φη(x)φθ(x)

= ∑
ν∈ℳm

Gν(y)Fν(x),

where {Fν}ν∈ℳm
are given by (4.9), and

Gν := G(η,θ,β) := φ̃η,β − ∑|α|<r Aθ,ηα,βφ̃θ,α. (4.17)

Observe that since θ∩η ̸= 0 for each ν = (η, θ, β) ∈ℳm, (3.47) implies that theduals {Gν}
have fast decaywith respect to the quasi-distance induced by the cover. Consequently,
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we obtain the two-level split representation for the wavelet operators

Dm(f ) = ∑
ν∈ℳm

⟨f ,Gν⟩Fν , m ∈ ℤ. (4.18)

Theorem 4.11. The duals {Gν}ν∈ℳ of the two-level splits {Fν}ν∈ℳ are a frame.

Proof. For any f ∈ L2(ℝn), by (4.18) we have

f =∑
m
Dm(f ) =∑

m
∑

ν∈ℳm

⟨f ,Gν⟩Fν .

We combine (4.8) with (4.14) to obtain

‖f ‖22 ∼∑
m
∫
ℝn

Dm(f )(x)

2dx

∼∑
m
∑

ν∈ℳm

⟨f ,Gν⟩Fν

2
2

∼∑
m
∑

ν∈ℳm

⟨f ,Gν⟩

2
.

We now show that two wavelet operators (kernels) from different scales are “al-
most orthogonal”. This generalizes known results for the isotropic case and the case
r = 1 in the setting of spaces of homogeneous type (see [33, 45]).

Theorem 4.12. Assume that two kernels operators {D1
m} and {D

2
m}, m ∈ ℤ, satisfy condi-

tions (3.2)–(3.4) of a multiresolution with order (τ, δ + τ1r, r), τ = (τ0, τ1), r ≥ 1, δ > τ1r,
and the vanishing moments condition with r (4.16). Then, for all k, l ∈ ℤ,

D
1
kD

2
l (x, y)
 =

∫
ℝn

D1
k(x, z)D

2
l (z, y)dz


≤ C2−|k−l|τ0r 2−min(k,l)δ

(2−min(k,l) + ρ(x, y))1+δ .
Proof. For simplicity of notation, we assume that {Dm} = {D1

m} = {D
2
m} and prove the

bound on the kernel DkDl(x, y). The proof of the other cases are similar, where the
technique of using the vanishingmoments property on the Taylor polynomial and the
bound on the Taylor remainder is applied on the integration coordinate z. We further
assume that l ≤ k. The proof for the case k < l is similar. We apply the vanishing
moments property (4.16) to obtain

DkDl(x, y)
 =

∫
ℝn

Dk(x, z)Dl(z, y)dz


≤ ∫
ℝn

Dk(x, z)

R

r
x(Dl(⋅, y))(z)

dz
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≤ ∫

ρ(x,z)≤ 1
2κ (2−l+ρ(x,y))

Dk(x, z)

R

r
x(Dl(⋅, y))(z)

dz

+ ∫
ρ(x,y)≤ρ(y,z) Dk(x, z)


R

r
x(Dl(⋅, y))(z)

dz

+ ∫

ρ(x,y)>ρ(y,z)∧ρ(x,z)> 1
2κ (2−l+ρ(x,y))

Dk(x, z)

R

r
x(Dl(⋅, y))(z)

dz

=: I + II + III .

Weseparately estimate the three integrals. Applying theproperties of thekernels, (3.7),
and then (2.7), we derive

I = ∫

ρ(x,z)≤ 1
2κ (2−l+ρ(x,y))

Dk(x, z)

R

r
x(Dl(⋅, y))(z)

dz

≤ C ∫

ρ(x,z)≤ 1
2κ (2−l+ρ(x,y))

2−kδ
(2−k + ρ(x, z))1+δ ρ(x, z)τ0r 2−lδ

(2−l + ρ(x, y))1+δ+τ0r dz
≤ C2−kδ 2−lδ

(2−l + ρ(x, y))1+δ+τ0r ∫
ℝn

ρ(x, z)τ0r

(2−k + ρ(x, z))1+δ dz
≤ C2−kδ 2−lδ

(2−l + ρ(x, y))1+δ+τ0r 2k(δ−τ0r)
≤ C2(l−k)τ0r 2−lδ

(2−l + ρ(x, y))1+δ .
The estimate of the second integral is similar, only here we use property (3.3), the fact
that ρ(x, y) ≤ ρ(y, z), and (2.7):

II = ∫
ρ(x,y)≤ρ(y,z) Dk(x, z)


R

r
x(Dl(⋅, y))(z)

dz

≤ C ∫
ρ(x,y)≤ρ(y,z) 2−kδ

(2−k + ρ(x, z))1+δ ρ(x, z)τ(x,z,2−l)r 2−lδ
(2−l + ρ(x, y))1+δ+τ(x,z,2−l)r dz

≤ C2−kδ 2−lδ
(2−l + ρ(x, y))1+δ+τ0r ∫

ρ(x,z)≤2−l ρ(x, z)τ0r

(2−k + ρ(x, z))1+δ dz
+ C2−kδ 2−lδ

(2−l + ρ(x, y))1+δ+τ1r ∫
ρ(x,z)>2−l ρ(x, z)τ1r

(2−k + ρ(x, z))1+δ dz
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≤ C2−kδ( 2−lδ
(2−l + ρ(x, y))1+δ+τ0r 2k(δ−τ0r) + 2−lδ

(2−l + ρ(x, y))1+δ+τ1r 2k(δ−τ1r))
≤ C2(l−k)τ0r 2−lδ

(2−l + ρ(x, y))1+δ .
We proceed with the estimate of III and further subdivide the integration domain:

III = ∫

ρ(x,y)>ρ(y,z)∧ρ(x,z)> 1
2κ (2−l+ρ(x,y)),ρ(x,z)≤2−l ⋅ + ∫

ρ(x,y)>ρ(y,z)∧ρ(x,z)> 1
2κ (2−l+ρ(x,y)),ρ(x,z)>2−l ⋅

=: III1 + III2.

We show the bound of III2, where on the integration domain, τ(x, z, 2−l) = τ1 (the
bound of III1 is similar with τ(x, z, 2−l) = τ0):

III2 ≤ ∫

ρ(x,y)>ρ(y,z)∧ρ(x,z)> 1
2κ (2−l+ρ(x,y))

Dk(x, z)

R

r
x(Dl(⋅, y))(z)

dz

≤ C ∫

ρ(x,z)> 1
2κ (2−l+ρ(x,y))

Dk(x, z)
ρ(x, z)

τ1r 2−lδ
(2−l + ρ(z, y))1+δ+τ1r dz

≤ C2−lδ ∫

ρ(x,z)> 1
2κ (2−l+ρ(x,y))

2−kδ
(2−k + ρ(x, z))1+δ ρ(z, y)τ1r

(2−l + ρ(z, y))1+δ+τ1r dz
+ C2−lδ ∫

ρ(x,z)> 1
2κ (2−l+ρ(x,y))

2−k(δ+τ1r)
(2−k + ρ(x, z))1+δ+τ1r ρ(x, y)τ1r

(2−l + ρ(z, y))1+δ+τ1r dz
≤ C2−kδ 2−lδ

(2−l + ρ(x, y))1+δ ∫
ℝn

ρ(z, y)τ1r

(2−l + ρ(z, y))1+δ+τ1r dz
+ 2−k(δ+τ1r) 2−lδ

(2−l + ρ(x, y))1+δ+τ1r ∫
ℝn

ρ(x, y)τ1r

(2−l + ρ(z, y))1+δ+τ1r dz
≤ C2−kδ 2−lδ

(2−l + ρ(x, y))1+δ 2lδ + C2−k(δ+τ1r) 2−lδ
(2−l + ρ(x, y))1+δ+τ1r ρ(x, y)τ1r2l(δ+τ1r)

≤ C2(l−k)τ0r 2−lδ
(2−l + ρ(x, y))1+δ .

4.4 Anisotropic discrete wavelet frames

Our goal is to construct frames of L2(ℝn) (see (4.1)), that are well localizedwith respect
to the anisotropic distance induced by an ellipsoid cover. This is achieved through a
discrete Calderón reproducing formula, which is obtained by “sampling” the contin-

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.4 Anisotropic discrete wavelet frames | 97

uous Calderón reproducing formula (4.6). First, we introduce the following sampling
process.

Definition 4.13. Letρbeaquasi-distanceonℝn.We call a set of closeddomains {Ωm,k},
m ∈ ℤ, k ∈ Im, and points ym,k ∈ Ωm,k, a sampling set if it satisfies the following
properties:
(a) For eachm ∈ ℤ, the sets Ωm,k, k ∈ Im, are pairwise interior disjoint;
(b) For allm ∈ ℤ, ℝn = ⋃k∈Im Ωm,k;
(c) Each set Ωm,k satisfies Ωm,k ⊂ Bρ(xm,k , c2−m) for some point xm,k ∈ ℝn and fixed

c > 0;
(d) There exists a constant c′ > 0 such that for any m ∈ ℤ and k ∈ Im, we have that

ρ(ym,k , ym,j) > c′2−m for all j ∈ Im, j ̸= k, except perhaps for a bounded set.

Examples
(i) We can construct a sampling set from a discrete ellipsoid cover. We begin by pick-

ing a maximal set of disjoint ellipsoids as follows: For each level Θm, we enumer-
ate the ellipsoids as θm,j, j ≥ 1. We define θ′m,1 := θm,1 and then inductively for
k, j > 1, θ′m,k := θm,j if int((⋃k−1i=1 θ′m,i) ∩ θm,j) = 0. We also select xm,k and ym,k as
the center of θ′m,k . After this step, we denote Ω′m,k := θ′m,k and observe that these
domains and the sampling points {xm,k}, {ym,k} satisfy properties (a), (c), and (d)
but are still open sets and do not satisfy property (b). To see that property (d) is in-
deed satisfied, recall that by Theorem 2.23 there exists a ball B′ρ with center at ym,k
such that B′ρ ⊆ θ′m,k and |B′ρ| ∼ |θ′m,k |. This immediately implies that there exists a
constant c′ > 0 such that ρ(ym,k , ym,j) > c′2−m for all j ̸= k.
Next, observe that each θm,j that was not selected at the previous step must inter-
sect one of the selected ellipsoids θ′m,k . We iterate on these ellipsoids and update
the domains Ω′m,k . For each such ellipsoid θm,j, we add the domain θm,j \(⋃∞i=1 Ω′m,i)
(if not empty at this stage) to one of the domains Ω′m,k only if θm,j intersects θ′m,k .
Observe that the domains Ω′m,k are possibly enlarged during this process, but this
is controlled by the fact that each ellipsoid θ′m,k has nomore thanN1 − 1 neighbors
from the levelm. This means that property (c) can still hold by enlarging the con-
stant c, so that the anisotropic ball contains ⋃θj,m∩θ′m,k ̸=0 θj,m. Evidently, we attain
domains {Ωm,k} as the closures of {Ω′m,k} that satisfy all the conditions.

(ii) Christ’s “dyadic cube” construction for spaces of homogeneous type [18] also
satisfies the above conditions. As the name suggests, it has similar properties to
those of the regular isotropic dyadic cube cover ofℝn. For example, each sampling
“cube” Ωm+1,k is contained in a unique sampling “cube” Ωm,k′ for some k′ ∈ Im.
Also, each sampling domain at the level m is “substantial” in the sense that it
contains a ball of radius ≥ c′2−m. Therefore property (d) is satisfied, provided that
the sampling points ym,k ∈ Ωm,k are picked from these inner balls.
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Theorem 4.14 (Discrete Calderón reproducing formula). Let {Sm}m∈ℤ be ananisotropic
multiresolution of order (τ, δ, r), τ = (τ0, τ1), with respect to the quasi-distance induced
by a discrete ellipsoid cover Θ. Denote Dm := Sm+1 − Sm and let {Ωm,k} and {ym,k}, ym,k ∈
Ωm,k , be a sampling set for Θ. Then there exist N > 0 and linear kernel operators {Êm}
such that for all f ∈ Lp(ℝn), 1 < p <∞,

f (x) = ∑
m∈ℤ ∑k∈Im+N |Ωm+N ,k |Êm(f )(ym+N ,k)Dm(x, ym+N ,k). (4.19)

Furthermore, the kernels of {Êm} satisfy conditions (4.2)–(4.4) for 0 < τ0, δ0 < α, (α is
defined in Proposition 2.4) and the vanishing moments property (4.16) for r.

Proof. The proof is similar to that in [43]. The discrete formula (4.19) is obtained from
the continuous formula (4.6) as follows. We fix some N > 0 and apply (4.6) to obtain,
for f ∈ Lp(ℝn),

f (x) =∑
m
DmD̂m(f )(x)

=∑
m
∑

k∈Im+N ∫Ωm+N ,k Dm(x, y)D̂m(f )(y)dy

=∑
m
∑

k∈Im+N |Ωm+N ,k |Dm(x, ym+N ,k)D̂m(f )(ym+N ,k)
+ {∑

m
∑

k∈Im+N ∫Ωm+N ,k [Dm(x, y) − Dm(x, ym+N ,k)]D̂m(f )(y)dy

+∑
m
∑

k∈Im+N ∫Ωm+N ,k Dm(x, ym+N ,k)[D̂m(f )(y) − D̂m(f )(ym+N ,k)]dy}
=: T̃N f (x) + R̃N f (x).

It is shown in [43] that for sufficiently large N > 0, the operator R̃N is bounded on
ℳ0(τ0, δ0, x0, t) for 0 < τ0, δ0 < α and any x0 ∈ ℝn, t ∈ ℝ, and its norm is strictly
smaller than 1. Similarly, for sufficiently large N, it is bounded on Lp, 1 < p < ∞,
with norm smaller than 1. Therefore, there exists the inverse operator T̃−1N , and with
Êm := D̂mT̃−1N , we get

f (x) = T̃N T̃
−1
N (f )(x)

=∑
m
∑

k∈Im+N |Ωm+N ,k |Dm(x, ym+N ,k)D̂m(T̃
−1
N (f ))(ym+N ,k)

=∑
m
∑

k∈Im+N |Ωm+N ,k |Dm(x, ym+N ,k)Êm(f )(ym+N ,k).
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Denoting the index set Km := Im+N , the discrete wavelets
ψm,k(x) := |Ωm+N ,k |1/2Dm(x, ym+N ,k), m ∈ ℤ, k ∈ Km, (4.20)

and the dual wavelets

ψ̃m,k(x) := |Ωm+N ,k |1/2Êm(ym+N ,k , x), m ∈ ℤ, k ∈ Km, (4.21)

we obtain the following discrete wavelet representation:

f (x) =∑
m
∑
k∈Km ⟨f , ψ̃m,k⟩ψm,k(x). (4.22)

Observe that the anisotropic wavelet representation (4.22) resembles a classical
isotropic wavelet representation (see [24]). However, here the wavelets are specifically
“tuned” to the geometry of the given ellipsoid cover and the induced quasi-distance.
Compared with the orthonormal wavelet basis constructed in [4], the wavelets {ψm,k}
also have fast decay but can be constructed to be smoother and have more vanishing
moments. However, the duals {ψ̃m,k} only enjoy the higher vanishing moments prop-
erty but potentially may suffer from slow decay and lower regularity. We now proceed
to show that the anisotropic wavelets constitute a frame (see Definition 4.1).

Theorem 4.15. Let {Sm}m∈ℤ be an anisotropic multiresolution of order (τ, δ + τ1r, r)with
τ = (τ0, τ1), δ > τ1r, and r > τ−10 . Denote Dm := Sm+1 − Sm and let {Ωm,k} and {ym,k},
ym,k ∈ Ωm,k , be a sampling set for Θ. Then there exist constants 0 < A ≤ B < ∞ such
that for any f ∈ L2(ℝn),

A‖f ‖22 ≤∑
m
∑
k∈Km ⟨f , ψ̃m,k⟩2 ≤ B‖f ‖22, (4.23)

where {ψ̃m,k} are defined by (4.21).
Proof. The proof is similar to that in [43]. We begin with a proof of the right-hand side
of (4.23). From (4.20), Theorem 4.12, and property (c) in Definition 4.13 of the sampling
set we obtain

⟨ψm,k ,ψm′ ,k′⟩ = |Ωm+N ,k |1/2|Ωm′+N ,k′ |1/2∫
ℝn

Dm(x, ym+N ,k)Dm′ (x, ym′+N ,k′ )dx
≤ C|Ωm+N ,k |1/2|Ωm′+N ,k′ |1/2
× 2−|m−m′|τ0r 2−min(m,m′)δ

(2−min(m,m′) + ρ(ym+N ,k , ym′+N ,k′ ))1+δ
≤ C2−|m−m′|τ0r( 2−min(m,m′)

2−min(m,m′) + ρ(ym+N ,k , ym′+N ,k′ ))
1+δ
.
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We denote ω(m, k) := 2−m and apply this estimate, property (d) of the sampling set
(Definition 4.13), and the condition r > τ−10 to compute for fixedm ∈ ℤ, k ∈ Km,

∑
m′ ,k′ ⟨ψm,k ,ψm′ ,k′⟩ω(m′, k′)
≤ C ∑

m′ ,k′ 2−m′2−|m−m′|τ0r( 2−min(m,m′)
2−min(m,m′) + ρ(ym+N ,k , ym′+N ,k′ ))

1+δ
≤ C∑

m′ 2−m′2−|m−m′|τ0r2m′∑k′ 2−m′( 2−min(m,m′)
2−min(m,m′) + ρ(ym+N ,k , ym′+N ,k′ ))

1+δ
≤ C∑

m′ 2−m′2−|m−m′|τ0r2m′2−min(m,m′)
≤ C( ∑

m′≤m 2−m′2−(m−m′)τ0r + ∑m′>m 2−m′2−(m′−m)τ0r2m′2−m)
≤ C(2−m ∑

m′≤m 2−(m−m′)(τ0r−1) + 2−m ∑m′>m 2−(m′−m)τ0r)
≤ Cω(m, k).

The above estimate is exactly the condition of Schur’s lemma (see [55, Section 8.4] for
the case of isotropic dyadic cubes and wavelets), which we use here to show that the
infinite matrix M := {⟨ψm,k ,ψm′ ,k′⟩} is bounded on l2 sequences over the “sampling”
index space. In particular, for the sequence α := {⟨f , ψ̃m,k⟩}m∈ℤ,k∈Km , we obtain

‖f ‖22 = ⟨Mα, α⟩ ≤ ‖M‖‖α‖2 ≤ B∑
m,k ⟨f , ψ̃m,k⟩2.

Next, we prove the right-hand side inequality of (4.23). By definition we have

∑
m
∑
k∈Km ⟨f , ψ̃m,k⟩2 =∑

m
∑
k∈Km |Ωm+N ,k |Êm(f )(ym+N ,k)2

=∑
m
∑
k∈Km ∫Ωm+N ,k

Êm(f )(ym+N ,k)2dy.
Proposition 4.4 shows that there exist operators {D̃m}m∈ℤ that satisfy the regularity
conditions (4.2)–(4.5) with constants 0 < τ̃, δ̃ < α and have r vanishing moments and
for which f = ∑m D̃mDm(f ). We can show (using a similar, but simpler, approach to the
proof of Theorem 4.12) that form, j ∈ ℤ,

ÊmD̃j(x, y)
 ≤ c2
−|m−j|ε 2−min(m,j)ε
(2−min(m,j) + ρ(x, y))1+ε , (4.24)
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where ε := min(τ̃, δ̃), We use the continuous Calderón formula, (4.24), and the maxi-
mal function (2.8) to estimate each coefficient:

⟨f , ψ̃m,k⟩2 = ∫
Ωm+N ,k
Êm(f )(ym+N ,k)2dy

= ∫
Ωm+N ,k

∑
j
ÊmD̃jDj(f )(ym+N ,k)2dy

≤ C ∫
Ωm+N ,k (∑j ∫ℝn 2

−|m−j|ε 2−min(m,j)ε
(2−min(m,j) + ρ(ym+N ,k , z))1+ε Dj(f )(z)

dz)
2
dy

≤ C ∫
Ωm+N ,k (∑j 2

−|m−j|εMDj(f )(y))
2
dy.

Applying the discrete Hölder inequality, the maximal inequality (2.11) and then (4.8),
we get

∑
m
∑
k∈Km ⟨f , ψ̃m,k⟩2 ≤ C∑

m
∫
ℝn

(∑
j
2−|m−j|εMBDj(f )(y))

2
dy

≤ C∑
m
∫
ℝn

(∑
j
2−|m−j|ε)(∑

j
2−|m−j|ε(MBDj(f )(y))

2
)dy

≤ C∑
j

MBDj(f )

2
2

≤ C∑
j

Dj(f )

2
2

≤ C‖f ‖22.
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5 Anisotropic smoothness spaces

The classical anisotropic Sobolev spaces overℝn [5, 21, 58], introduced by the Russian
school in the 1970s, are associated with directional vectors l = (l1, . . . , ln), li ∈ ℕ+,
1 ≤ i ≤ n. The spaceW l

p(ℝ
n), 1 ≤ p ≤ ∞, is defined as the collection of f ∈ 𝒮′(ℝn) for

which f , 𝜕lf ∈ Lp(ℝn) with

‖f ‖W l
p
:= ‖f ‖p +

𝜕
lf p.

The mean smoothness s is defined by

1
s
=
1
n
(
1
l1
+ ⋅ ⋅ ⋅ +

1
ln
),

from which we derive the anisotropy vector a = (a1, . . . , an), ai := s/li, 1 ≤ i ≤ n.
Obviously, a1 + ⋅ ⋅ ⋅ + an = n. An anisotropic distance to the origin is a continuous
function v : ℝn → ℝ, v(0) = 0, v(x) > 0 for x ̸= 0, satisfying v(ta1x1, . . . , tanxn) = tv(x)
for all x ∈ ℝn and t > 0. For example, we may define

vλ(x) := (
n
∑
i=1
|xi|

λ/ai)

1/λ

, 0 < λ <∞.

Farkas [38] proved that there exists a smooth distance to the origin | ⋅ |a ∈ C∞(ℝn \ {0})
with the following property: for any α ∈ ℝ and β ∈ ℤn+, there exists c(α, β) > 0 such
that

𝜕
α(|x|αa)
 ≤ c|x|

α−a⋅β
a , ∀x ∈ ℝ

n \ {0}.

This allows us to adapt the isotropic notation of decomposition of frequency windows
to this anisotropic setting. We construct ϕ0 ∈ C∞ such that

ϕ0(x) = 1, ∀|x|a ≤ 1, supp(ϕ0) ⊆ {x ∈ ℝ
n : |x|a ≤ 2}.

Denoting

ϕm(x) := ϕ0(2
−ma1x1, . . . , 2

−manxn) − ϕ0(2
(−m+1)a1x1, . . . , 2

(−m+1)anxn), m ∈ ℕ,

we obtain the partition of unity subordinate to a,

∞

∑
m=0

ϕm = 1.

https://doi.org/10.1515/9783110761795-005
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104 | 5 Smoothness spaces

Finally, the anisotropic Besov space with smoothness index α ∈ ℝ, 0 < p, q < ∞,
subordinate to a is defined as [59]

Bα,apq := {f ∈ 𝒮
′ : ‖f ‖Bα,apq := ( ∞∑

m=0
[2mα(ϕm

̂f )∨p]
q
)

1/q

<∞}.

In this chapter, we generalize the above classic anisotropic spaces, where the
anisotropy a is fixed over ℝn, to the pointwise variable anisotropic setting, where
the anisotropic phenomena can change rapidly from point to point and across scale.
Thereforewe use the “local”machinery ofmoduli of smoothness over the ellipsoids of
a discrete ellipsoid cover, whereas the multiresolution Fourier multipliers {(ϕm

̂f )∨}m
are replaced by the pointwise variable projections {Tmf }m defined by (3.36).

5.1 Anisotropic moduli of smoothness

The moduli of smoothness over ℝn introduced in Section 1.2 were used in the context
of “local” approximation estimates. Yet, they are isotropic, i. e., associated with the
standard Euclidean distance. We now generalize them to moduli that are subordinate
to anisotropic ellipsoid covers or, equivalently, to the induced quasi-distances [23, 27].

5.1.1 Definition and properties

Definition 5.1. Let Θ be a discrete cover. For any r ≥ 1 and m ∈ ℤ, we define the
anisotropic moduli of smoothness of f ∈ Llocp (ℝ

n) at parameters t = 2−m,m ∈ ℤ, by

ωΘ,r(f , 2
−m)p := {

(∑θ∈Θm
ωr(f , θ)pp)

1/p, 0 < p <∞,
supθ∈Θm

ωr(f , θ)∞, p =∞,
(5.1)

where ωr(⋅, θ)p is defined in (1.13).

Although the underlying geometry can possibly be highly anisotropic, the aniso-
tropicmoduli (5.1) corresponding to ellipsoid covershave similar properties to the clas-
sic isotropic moduli (1.12).

Theorem 5.2. LetΘbe adiscrete cover inducing the quasi-distance ρ of (2.35). Themod-
uli ωΘ,r(⋅, ⋅)p have the following properties:
(a) There exists a constant c(r,N1) such that for any f ∈ Lp(ℝn), 0 < p ≤ ∞, we have

ωΘ,r(f , 2−m)p ≤ c‖f ‖p for all m ∈ ℤ. More generally, for any 0 ≤ k < r, there exists a
constant c(r, k,N1) such that ωΘ,r(f , 2−m)p ≤ cωΘ,k(f , 2−m)p for all m ∈ ℤ.

(b) For any f ∈ Lp(ℝn), 1 ≤ p <∞, we have that ωΘ,r(f , 2−m)p → 0 as m→∞.
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(c) For r ≥ 1, 0 < p ≤ ∞, there exists a constant λ(Θ, r, p) ≥ 1 such that for any f ∈
Lp(ℝn), m ∈ ℤ, and k ≥ 1,

ωΘ,r(f , 2
−m)p ≤ λ

kωΘ,r(f , 2
−(m+k))p. (5.2)

(d) If another discrete cover Θ̃ induces an equivalent quasi-distance ρ̃, i. e., c1ρ(x, y) ≤
ρ̃(x, y) ≤ c2ρ(x, y) for all x, y ∈ ℝn, then for any r ≥ 1, 0 < p ≤∞, and m ∈ ℤ,

ωΘ,r(f , 2
−m)p ∼ ωΘ̃,r(f , 2

−m)p, (5.3)

where the constants of equivalency depend only on c1, c2 and the parameters of the
covers.

Proof. (a) The boundedness of ωΘ,r(f , ⋅)p by c(r,N1)‖f ‖p is obvious from the fact that
each ellipsoid θ ∈ Θm intersects with at most N1 − 1 neighbors from Θm and the bound
ωr(f , θ)p ≤ C‖f ‖Lp(θ) from Proposition 1.14.

(b) For any ε > 0, let Qε := [−M,M]n, M > 0, be such that ∫ℝn\Qε
|f |pdx ≤ ε. By

Lemma 2.16 there exists d0(M, p(Θ)) > 0 such that for any θ ∈ Θ0, θ ∩ Qε ̸= 0, we have
that diam(θ) ≤ d0. From (2.23) we get for any θ ∈ Θm, m ≥ 0, that if θ ∩ Qε ̸= 0, then
diam(θ) ≤ a5d02−a6m. This “quasi-uniform” property on the compact set Qε ensures
that, as in the uniform (isotropic) case,

∑
θ∈Θm ,θ∩Qε ̸=0

ωr(f , θ)
p
p → 0 asm→∞.

We also have

∑
θ∈Θm ,θ∩Qε=0

ωr(f , θ)
p
p ≤ C ∑

θ∈Θm ,θ∩Qε=0

‖f ‖pLp(θ)

≤ C‖f ‖pLp(ℝn\Qε)
≤ Cε.

(c) It is sufficient to prove that ωΘ,r(f , 2−m)p ≤ λωΘ,r(f , 2−(m+1))p, since the general
case (5.2) followsby repeated application. ByLemma2.19 there exists a positive integer
N2(p(Θ)) such that for any θ ∈ Θm,

#{η ∈ Θm+1 : η ∩ θ ̸= 0} ≤ N2.

It is sufficient to show that there exists a constant λ̃ = λ̃(Θ, r, p) such that for each
θ ∈ Θm,

ωr(f , θ)p ≤ λ̃{
(∑η∈Θm+1 :θ∩η ̸=0 ωr(f , η)pp)

1/p, 0 < p <∞,
maxη∈Θm+1 :θ∩η ̸=0 ωr(f , η)∞, p =∞.

(5.4)
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Assume first thatm = 0 and θ = B∗ (the Euclidean unit ball). From (2.23) and (2.24) it
follows that each η ∈ Θ1 such that η ∩ θ ̸= 0 is an ellipsoid “equivalent” to a Euclidean
ball with a32−a4 ≤ σmin(η) ≤ σmax(η) ≤ a52−a6 . Property (d) in Definition 2.14 ensures
that for each x ∈ θ, there exists η ∈ Θ1 such that x is in the “core” η⬦. Combining these
two observations implies that dist(x, 𝜕η) ≥ (1 − a7)a32−a4 =: c̃, and so B(x, c̃) ⊂ η.

Recall from Definition (1.13) that

ωr(f , θ)p = ωr(f ,B
∗)p = sup

|h|≤2/r

Δ
r
h(f , ⋅)
Lp(B∗).

Observe that for any h ∈ ℝn such that |h| ≤ 2/r and for h̃ := K−1h with K := 2⌈c̃−1⌉, we
have that |h̃| ≤ c̃/r. Using a well-known identity for the difference operator (see, e. g.,
[35, Chapter 2]), we have

Δrh(f , x) =
K−1
∑
k1=0
⋅ ⋅ ⋅

K−1
∑
kr=0

Δrh̃(f , x + k1h̃ + ⋅ ⋅ ⋅ + kr h̃).

For anydomainΩ ⊆ ℝn, denoteX(Ω, h) := {x ∈ Ω : [x, x + rh] ⊂ Ω}. Then if x ∈ X(B∗, h),
then also y := x+k1h̃+⋅ ⋅ ⋅+kr h̃ ∈ B∗ for all 0 ≤ k1, . . . , kr < K. Furthermore, since r|h̃| ≤ c̃,
for any y ∈ B∗, there exists η ∈ Θ1, η ∩ B∗ ̸= 0, such that B(y, c̃) ⊂ η ⇒ [y, y + rh̃] ⊂ η.
From this we conclude that for 0 < p < ∞ and any h ∈ ℝn, |h| ≤ 2/r, there exists a
constant λ̃(p,K) > 0 such that

∫
B∗
Δ

r
h(f , x,B

∗)
pdx = ∫

X(B∗ ,h)
Δ

r
h(f , x)

pdx

≤ λ̃p ∑
η∈Θ1 :η∩B∗ ̸=0 ∫X(η,h̃)

Δ
r
h̃(f , y)

pdy

≤ λ̃p ∑
η∈Θ1 :η∩B∗ ̸=0ωr(f , η)

p
p.

This proves (5.4) for the case m = 0, θ = B∗, and 0 < p < ∞ (the case p = ∞ is
similar). In the case where Θ is an arbitrary cover and θ ∈ Θm, let Θ̃ := A−1θ (Θ), where
Aθ(x) = Mx+v is an affine transform satisfyingAθ(B∗) = θ. Observe that Θ̃ is a discrete
cover with parameters equivalent to p(Θ). Denoting ̃f := f (Aθ ⋅), we have

ωr(f , θ)
p
p =
det(M)

ωr( ̃f ,B
∗)

p
p

≤ λ̃pdet(M)
 ∑
η̃∈Θ̃1 :B∗∩η̃ ̸=0ωr( ̃f , η̃)

p
p

≤ λ̃p ∑
η∈Θm+1 :θ∩η ̸=0ωr(f , η)

p
p.

This proves (5.4) and completes the proof of (5.2) for 0 < p < ∞. The proof for p = ∞
is similar.
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(d) Let Θ, Θ̃ be two discrete covers with parameters p(Θ), p(Θ̃) and equivalent in-
ducedquasi-distances ρ ∼ ρ̃. Let θ ∈ Θm. By Theorem2.23 there exists a ballBρ(x, c2−m)
such that θ ⊂ Bρ(x, c2−m). By the equivalence of the quasi-distances there exists a con-
stant c̃ such that Bρ(x, c2−m) ⊆ Bρ̃(x, cc̃2−m), and in turn there exists a positive integer
K(c, c̃,p(Θ̃)) such that there exists θ̃ ∈ Θ̃m−K satisfying Bρ̃(x, cc̃2−m) ⊆ θ̃. This gives
θ ⊆ θ̃ with θ and θ̃ on “equivalent” levels where the parameters of the equivalence
depend on p(Θ) and p(Θ̃). Evidently, ωr(f , θ)p ≤ ωr(f , θ̃)p for all f ∈ Llocp . Using this
and (5.2) for the cover Θ̃, we conclude that

ωΘ,r(f , 2
−m)p ≤ ωΘ̃,r(f , 2

−m+K)p ≤ CωΘ̃,r(f , 2
−m)p.

The proof of the inverse inequality is identical.

We can now formulate an anisotropic Jackson-type theorem.

Theorem 5.3. For a cover Θ, 1 ≤ k ≤ r, 0 < p ≤∞, and any m ∈ ℤ,

‖f − Tmf ‖p ≤ cωΘ,k(f , 2
−m)p, (5.5)

where {Tm}m∈ℤ are the “projection” operators defined in (3.36), with Tm = Pm,p from
(3.34) for the case 0 < p < 1.

Proof. We prove the theorem for 0 < p <∞ (the case p =∞ is similar). From (3.38) we
get that for any θ ∈ Θm,

‖f − Tmf ‖
p
Lp(θ)
≤ C ∑

θ′∈Θm : θ′∩θ ̸=0ωk(f , θ
′)
p
p.

Thus

‖f − Tmf ‖
p
Lp(ℝn)
≤ ∑

θ∈Θm

‖f − Tmf ‖
p
Lp(θ)

≤ C ∑
θ∈Θm

∑
θ′∈Θm : θ′∩θ ̸=0ωk(f , θ

′)
p
p

≤ C ∑
θ∈Θm

ωk(f , θ)
p
p

= CωΘ,k(f , 2
−m)

p
p.

5.1.2 The anisotropic Marchaud inequality

From Proposition 1.14 we know that for isotropic moduli of smoothness, we have the
following: for any 1 ≤ k < r, ωr(f , t)p ≤ Cωk(f , t)p for all f ∈ Lp(ℝn) and t > 0. The
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classical isotropic Marchaud inequality over the domain ℝn with 0 < p ≤ ∞ (see
Section 1.2 for the case of regular domains) is the following inverse [35]:

ωk(f , t)p ≤ ct
k(
∞

∫
t

ωr(f , s)
γ
p

skγ+1
ds)

1/γ

, t > 0,

where γ := min(1, p). We easily obtain a discrete form for t = 2−m by estimating the
above integral over dyadic intervals:

ωk(f , 2
−m)p ≤ c2

−mk(
m
∑

j=−∞
[2jkωr(f , 2

−j)p]
γ
)

1/γ

. (5.6)

In the anisotropic setting, Theorem 5.2(a) gives an equivalent form to the first
inequality, Namely, for any 1 ≤ k < r, there exists a constant c > 0 such that
ωΘ,r(f , 2−m)p ≤ cωΘ,k(f , 2−m)p for all f ∈ Lp(ℝn) and m ∈ ℤ. Next, we present
an anisotropic generalization of the isotropic discrete form (5.6).

Theorem 5.4. For a discrete cover Θ, 1 ≤ k < r, and 0 < p ≤ ∞, there exists a constant
c(p(Θ), k, r, p) > 0 such that for any f ∈ Lp(ℝn) and m ∈ ℤ,

ωΘ,k(f , 2
−m)p ≤ c2

−a6mk(
m
∑

j=−∞
[2a6jkωΘ,r(f , 2

−j)p]
γ
)

1/γ

, (5.7)

where γ := min(1, p), and a6 is defined in (2.18).

Proof. Assume first that 0 < p < ∞. We use a telescopic sum of the operators {Tj}
from (3.36), which provide “local” approximation order r, and apply Theorem 5.2(a)
and then (5.5) to obtain

ωΘ,k(f , 2
−m)

γ
p ≤ ωΘ,k(f − Tmf , 2

−m)
γ
p +

m
∑

j=−∞
ωΘ,k(Tjf − Tj−1f , 2

−m)
γ
p

≤ C(ωΘ,r(f , 2
−m)

γ
p +

m
∑

j=−∞
ωΘ,k((Tj − Tj−1)f , 2

−m)
γ
p).

It remains to show that

ωΘ,k((Tj − Tj−1)f , 2
−m)p ≤ C2

a6k(j−m)ωΘ,r(f , 2
−j)p, j ≤ m. (5.8)

Recall that Wj−1 is the span of ℱj−1 = {Fν : ν ∈ℳj−1} defined in (4.9) and that
span(Φj ∪Φj−1) ⊂ Wj−1. Therefore (Tj − Tj−1)f ∈ Wj−1, and there exists a represen-
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tation

(Tj − Tj−1)f = ∑
ν∈ℳj−1 cνFν

for some coefficients {cν}ν∈ℳj−1 . By (4.13) for any θ ∈ Θm and Fν ∈ ℱj−1, j ≤ m, such that
θ ∩ ην ̸= 0, we have

ωk(Fν , θ)
p
p ≤ C2

j−m−a6k(m−j)p‖Fν‖
p
p.

Applying this estimate, Lemma 2.19, Theorem 4.8, and then (5.5), we conclude (5.8) for
1 ≤ p <∞:

ωΘ,k((Tj − Tj−1)f , 2
−m)

p
p = ∑

θ∈Θm

ωk((Tj − Tj−1)f , θ)
p
p

≤ C ∑
θ∈Θm

( ∑
ν∈ℳj−1 :θ∩ην ̸=0ωk(cνFν , θ)p)

p

≤ C2j−m−a6k(m−j)p ∑
θ∈Θm

( ∑
ν∈ℳj−1 :θ∩ην ̸=0 ‖cνFν‖p)

p

≤ C2j−m−a6k(m−j)p(max
η∈Θj

#{θ ∈ Θm : θ ∩ η ̸= 0}) ∑
ν∈ℳj−1 ‖cνFν‖

p
p

≤ C2−a6k(m−j)p(Tj − Tj−1)f

p
p

≤ C2−a6k(m−j)pωΘ,r(f , 2
−j)

p
p.

The proofs of (5.8) for the cases 0 < p < 1 and p =∞, are similar.

5.1.3 The anisotropic Ul’yanov inequality

The classic Ul’yanov inequality relates moduli of smoothness for different indices
p ≤ q. The first result proved by Ul’yanov [64] for periodic functions f ∈ Lp(𝕋) and
1 ≤ p ≤ q <∞ is

ω1(f , t)q ≤ c(
t

∫
0

(u−(
1
p−

1
q )ω1(f , u)p)

q du
u
)

1/q

.

A higher-order (but slightly weaker) version [35] for f ∈ Lp(ℝ) and 1 ≤ p ≤ q <∞ is

ωr(f , t)q ≤ c
t

∫
0

u−(
1
p−

1
q )ωr(f , u)p

du
u
.
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The following anisotropic version is a discrete generalization of the sharp isotropic
result of [37] for the “full range” of indices,

Theorem 5.5. For a discrete cover Θ, r ≥ 1, and 0 < p ≤ q ≤ ∞, there exists a constant
c(p(Θ), r, p, q) such that for any f ∈ Lp(ℝn),

‖f ‖q ≤ c((
∞

∑
j=0

2j(
1
p−

1
q )γωΘ,r(f , 2

−j)
γ
p)

1/γ

+ ‖f ‖p), (5.9)

and for any m ∈ ℤ,

ωΘ,r(f , 2
−m)q ≤ c(

∞

∑
j=m

2j(
1
p−

1
q )γωΘ,r(f , 2

−j)
γ
p)

1/γ

, (5.10)

where

γ := {
q, 0 < q <∞,
1, q =∞.

To prove Theorem 5.5, we need some results. In all of them, it will be convenient
to use the operators Tm = Pm,p defined by (3.34). The first result is a Nikolskii-type
estimate.

Theorem 5.6. For f ∈ Lp(ℝn), 0 < p ≤ q ≤∞, and m ∈ ℤ,

‖Tm+1f − Tmf ‖q ≤ c2
m( 1p−

1
q )ωΘ,r(f , 2

−m)p. (5.11)

Proof. Recall again that Wm is the span of ℱm = {Fν : ν ∈ℳm} defined in (4.9) and
that span(Φm ∪Φm+1) ⊂ Wm. Therefore (Tm+1 − Tm)f ∈ Wm, where Tm = Tm,p, and
there exists a representation

(Tm+1 − Tm)f = ∑
ν∈ℳm

cνFν

with some coefficients {cν}ν∈ℳj
. Applying (4.14) for the q-norm, q < ∞, then the as-

sumption p ≤ q, then (4.14) for the p-norm and finally the Jackson inequality (5.5) at
the levelsm andm + 1 yields

‖Tm+1f − Tmf ‖q ≤ C2
m( 12−

1
q )( ∑

ν∈ℳm

|cν|
q)

1/q

≤ C2m(
1
p−

1
q )2m(

1
2−

1
p )( ∑

ν∈ℳm

|cν|
p)

1/p
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≤ C2m(
1
p−

1
q )‖Tm+1f − Tmf ‖p

≤ C2m(
1
p−

1
q )ωΘ,r(f , 2

−m)p.

The proof for the case q =∞ is similar.

Lemma 5.7. For f ∈ Lp(ℝn) and 0 < p ≤ q ≤∞,

ωΘ,r(f , 2
−m)q ≤ c(‖f − Tmf ‖q + 2

m( 1p−
1
q )ωΘ,r(f , 2

−m)p), (5.12)

where Tm = Tm,p are defined by (3.34).

Proof. First, observe that

ωΘ,r(f , 2
−m)q ≤ C(ωΘ,r(f − Tmf , 2

−m)q + ωΘ,r(Tmf , 2
−m)q).

Since Theorem 5.2(a) gives

ωΘ,r(f − Tmf , 2
−m)q ≤ C‖f − Tmf ‖q,

it suffices to show that

ωΘ,r(Tmf , 2
−m)q ≤ C2

m( 1p−
1
q )ωΘ,r(f , 2

−m)p.

By definition, for 0 < q <∞,

ωΘ,r(Tmf , 2
−m)

q
q = ∑

θ∈Θm

ωr(Tmf , θ)
q
q.

By the partition of unity of {φθ}θ∈Θm
and property (c) of discrete covers we have

ωr(Tmf , θ)
q
q = ωr( ∑

θ′∈Θm ,θ′∩θ ̸=0Pθ′ ,p(f )φθ′ , θ)q
q

= ωr(Pθ,p(f ) + ∑
θ′∈Θm ,θ′∩θ ̸=0 (Pθ′ ,p(f ) − Pθ,p(f ))φθ′ , θ)q

q

≤ C ∑
θ′∈Θm ,θ′∩θ ̸=0,θ′ ̸=θ

Pθ′ ,p(f ) − Pθ,p(f )qLq(θ).
By property (e) of discrete covers, Lemma 1.23, Lemma 1.24, and (3.33) we have, for
each θ′ ∈ Θm, θ′ ̸= θ, θ′ ∩ θ ̸= 0,

Pθ′ ,p(f ) − Pθ,p(f )qLq(θ) ≤ CPθ′ ,p(f ) − Pθ,p(f )qLq(θ∩θ′)
≤ C2mq(

1
p−

1
q )Pθ′ ,p(f ) − Pθ,p(f )qLp(θ∩θ′)
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≤ C2mq(
1
p−

1
q )(f − Pθ,p(f )


q
Lp(θ) +
f − Pθ′ ,p(f )qLp(θ′))

≤ C2mq(
1
p−

1
q )(ωr(f , θ)

q
p + ωr(f , θ

′)
q
p).

We apply this and q ≥ p to obtain

ωΘ,r(Tmf , 2
−m)

q
q ≤ C2

mq( 1p−
1
q ) ∑

θ∈Θm

ωr(f , θ)
q
p

≤ C2mq(
1
p−

1
q )( ∑

θ∈Θm

ωr(f , θ)
p
p)

q/p

= C2mq(
1
p−

1
q )ωΘ,r(f , 2

−m)
q
p.

This concludes the proof of the lemma for 0 < q < ∞. The proof for q = ∞ is similar.

Proof of Theorem 5.5. By (5.12) we have

ωΘ,r(f , 2
−m)q ≤ C(‖f − Tmf ‖q + 2

m( 1p−
1
q )ωΘ,r(f , 2

−m)p).

Let us replace for a moment the first right-hand side term ‖f − Tmf ‖q by ‖TM f − Tmf ‖q
for a “large”M > m. Observe that for any j ∈ ℤ, Tjf = Tj,pf ∈ Lq(ℝn), since using (4.14)
with q ≥ p,

‖Tjf ‖q ≤ C2
j( 1p−

1
q )‖Tjf ‖p ≤ C2

j( 1p−
1
q )‖f ‖p.

For 0 < q ≤ 1, by (5.11) we have

‖TM f − Tmf ‖
q
q ≤

M−1
∑
j=m
‖Tj+1f − Tjf ‖

q
q ≤ C

M−1
∑
j=m

2j(
1
p−

1
q )qωΘ,r(f , 2

−j)
q
p.

For 1 ≤ q ≤∞, we similarly get

‖TM f − Tmf ‖q ≤
M−1
∑
j=m
‖Tj+1f − Tjf ‖q ≤ C

M−1
∑
j=m

2j(
1
p−

1
q )ωΘ,r(f , 2

−j)p.

However, note that for 1 < q < ∞, we claim a sharper estimate in (5.10) using the
lq-norm of {2j(1/p−1/q)ωΘ,r(f , 2−j)p} instead of the l1-norm. Indeed, this is achieved using
exactly the proof of Lemma 3.1 in [37], which requires the Nikolskii-type estimate (5.11)
and gives, for 1 < q <∞,

‖TM f − Tmf ‖q ≤ C(
M−1
∑
j=m

2j(
1
p−

1
q )qωΘ,r(f , 2

−j)
q
p)

1/q

.
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Therefore, to prove (5.10), it remains to show that if the right-hand side of (5.10) is
finite, then

‖TM f − Tmf ‖q → ‖f − Tmf ‖q asM →∞. (5.13)

Indeed, it is easy to see that if the right hand side of (5.10) is finite then {TM f } is a
Cauchy sequence in Lq. At the same time, we know {TM f } converges to f in Lp asM →
∞. Therefore {TM f } converge in Lq to f and thus (5.13) is proved.

From the above we can easily obtain (5.9) by

‖f ‖q ≤ C(‖f − T0f ‖q + ‖T0f ‖q)

≤ C((
∞

∑
j=0

2j(
1
p−

1
q )γωΘ,r(f , 2

−j)
γ
p)

1/γ

+ ‖f ‖p).

5.2 Comparing the moduli ωr(⋅, ⋅)p and ωΘ,r(⋅, ⋅)p

Here we wish to show that the anisotropic moduli of smoothness over ellipsoid covers
are a true generalization of the isotropic moduli. To this end, we need the following
“inverse”-type inequality that bounds a sum of local moduli over the elements of a
cover by the moduli over the covered domain (ℝn in our application)

Proposition 5.8 ([37]). Suppose the following conditions hold for a convex domain Ω ⊆
ℝn and t > 0:
(i) There exist convex sets Ω̃i, i ∈ I, where I is some countable index set, such that

Ω = ⋃i∈I Ω̃i.
(ii) Each point x ∈ Ω is contained in at most N1 sets Ω̃i.
(iii) There exist 0 < c1 < c2 < ∞ such that each Ω̃i contains an Euclidean ball of

radius ≥ c1t and is contained in an Euclidean ball of radius ≤ c2t.

Then, for any f ∈ Lp(Ω), 0 < p <∞,

∑
i∈I

ωr(f , Ω̃i)
p
p ≤ C(n, r, p,N1, c1, c2)ωr(f , t)

p
Lp(Ω)
,

and for p =∞,

sup
i∈I

ωr(f , Ω̃i)∞ ≤ C(n, r, c2)ωr(f , t)L∞(Ω).
Theorem 5.9. Let Θ be a discrete cover of ellipsoids in ℝn that are equivalent to Eu-
clidean balls with fixed parameters. Then ωΘ,r(⋅, 2−mn)p ∼ ωr(⋅, 2−m)p, where ωr(⋅, ⋅)p is
the classic isotropic modulus of smoothness over ℝn defined in (1.12).
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Proof. By our assumption, in this special case, there exist two fixed constants 0 <
R1 < R2 < ∞ such that for every θ ∈ Θmn, there exist two Euclidean balls satisfying
B(x1,R12−m) ⊆ θ ⊆ B(x2,R22−m). Also, from the properties of discrete covers we obtain
that there exists a positive integer J(p(Θ),R1,R2, r) such that for any x ∈ ℝn andm ∈ ℤ,
there exists an ellipsoid θ ∈ Θmn−J such that B(x, r2−m) ⊆ θ, where r is the order of the
moduli.

For each θ ∈ Θmn−J , denote byX(θ) the set of points x ∈ ℝn forwhichB(x, r2−m) ⊂ θ.
Sinceℝn = ⋃θ∈Θmn−J X(θ) and each setX(θ) intersects with atmostN1 neighboring sets,
we get, for 0 < p <∞,

ωr(f ,ℝ
n, 2−m)pp = sup

|h|≤2−m ∫
ℝn

Δ
r
h(f ,ℝ

n, x)
pdx

≤ C sup
|h|≤2−m ∑θ∈Θmn−J ∫X(θ)

Δ
r
h(f ,ℝ

n, x)
pdx

≤ C ∑
θ∈Θmn−J sup

|h|≤2−m ∫
θ

Δ
r
h(f , θ, x)


pdx

≤ C ∑
θ∈Θmn−J ωr(f , θ)

p
p

= CωΘ,r(f , 2
−(mn−J))

p
p

≤ CωΘ,r(f , 2
−mn)

p
p,

where we applied (5.2) to obtain the last inequality. The case p = ∞ is similar and
easier.

In the other direction, observe that our conditions ensure that the conditions of
Proposition 5.8 are satisfied, from which the inverse inequality is immediate.

5.3 Anisotropic Besov spaces

5.3.1 Definitions and properties

The classical isotropic homogeneous Besov space Bαp,q(ℝ
n) with 0 < p, q ≤ ∞ and

smoothness index α > 0 is defined as the space of functions f ∈ Lp(ℝn) such that

|f |Bαp,q := {(∫ℝn (t−αωr(f , t)p)q
dt
t )

1/q, 0 < q <∞,
supt>0 t−αωr(f , t)p), q =∞,

(5.14)
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is finite, where r ≥ ⌊α⌋ + 1. By sampling at dyadic points t = 2−m,m ∈ ℤ, one can show
that [35]

|f |Bαp,q ∼ {(∑m∈ℤ (2αmωr(f , 2−m)p)q)1/q, 0 < q <∞,
supm∈ℤ 2αmωr(f , 2−m)p, q =∞.

(5.15)

This leads to the following generalization in the anisotropic setting [23, 27].

Definition 5.10. We define the homogeneous B-space Bαp,q(Θ) induced by a discrete
ellipsoid cover Θ with 0 < p, q ≤ ∞ and smoothness index α > 0 as the space of
functions f ∈ Lp(ℝn) such that

|f |Bαp,q(Θ) := {(∑m∈ℤ (2αmωΘ,r(f , 2−m)p)q)1/q, 0 < q <∞,
supm∈ℤ 2αmωΘ,r(f , 2−m)p, q =∞,

(5.16)

is finite, whereωΘ,r(⋅, ⋅)p are the anisotropicmoduli of smoothness defined in (5.1), and
r ≥ 1 satisfies

r > α
a6
, (5.17)

where a6 is defined in (2.18). We also have the (quasi-)norm

‖f ‖Bαp,q(Θ) := ‖f ‖p + |f |Bαp,q(Θ). (5.18)

In contrast to the classical case, our definition of anisotropic B-space is in fact
“normalized” in the sense that thedimensionndoesnot come intoplay later in various
embeddings or inequalities. Referring to (5.16), we note that for each m ∈ ℤ, 2−m is
equivalent to the volume of ellipsoids on the levelm, whereas in the classical isotropic
case (5.14), it is the side length of a dyadic cube with volume 2−mn. By Theorem 5.9 we
have that in the particular case where all the ellipsoids of a cover Θ are equivalent to
Euclidean balls,

Bαp,q(Θ) ∼ B
nα
p,q(ℝ

n).

In a similar manner to the isotropic case, we have the following:

Theorem 5.11. The seminorms (5.16) are equivalent for different values of r satisfying
(5.17).

Proof. Assume that r, r′ satisfy (5.17) with r′ < r. By Theorem 5.2(a) we have that
ωΘ,r(f , 2−m)p ≤ C(r′, r,N1)ωΘ,r′ (f , 2−m)p for all m ∈ ℤ, which gives the first direction.
To obtain the inverse direction, we apply the anisotropic Marchaud inequality (5.7),
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which for anym ∈ ℤ gives

ωΘ,r′(f , 2−m)p ≤ C2−a6mr′( m
∑

j=−∞
[2a6jr

′
ωΘ,r(f , 2

−j)p]
γ
)

1/γ

, (5.19)

where γ := min(1, p).
We now recall a certain variant of the discrete Hardy inequality [35]. For a se-

quence of nonnegative numbers a := {am}m∈ℤ, we denote

‖a‖α,q := {
(∑m∈ℤ (2

αmam)q)1/q, 0 < q <∞,
supm∈ℤ 2αmam, q =∞.

Then, if a = {am} and b = {bm} are two sequence of non-negative numbers and for
some C0 > 0, γ > 0, and μ > α > 0,

bm ≤ C02
−mμ(

m
∑

j=−∞
[2jμaj]

γ
)

1/γ

, ∀m ∈ ℤ,

then

‖b‖α,q ≤ C‖a‖α,q.

Therefore, equipped with (5.19), we can apply this variant of the discrete Hardy in-
equality with am := ωΘ,r(f , 2−m)p, bm := ωΘ,r′ (f , 2−m)p, and μ := a6r′ > α to conclude
the theorem.

As in the isotropic case, the Ul’yanov inequality can be applied to obtain embed-
ding results for the anisotropic Besov spaces beyond the obvious embeddingBα2p,q(Θ) ⊂
Bα1p,q(Θ) for α1 ≤ α2,

Theorem 5.12. Let Θ be a cover of ℝn, 0 < p < q ≤∞, and denote λ := 1/p − 1/q. Then,
for α > 0, the following (continuous) embeddings hold:
(i) Bα+λp,∞(Θ) ⊂ B

α
q,∞(Θ),

(ii) Bα+λp,q (Θ) ⊂ B
α
q,q(Θ).

Proof. (i) Let f ∈ Bα+λp,∞(Θ). For 0 < p ≤ q <∞, by (5.9) we have

‖f ‖q ≤ C((
∞

∑
j=0

2jλqωΘ,r(f , 2
−j)

q
p)

1/q

+ ‖f ‖p)

≤ C(|f |Bα+λp,∞(Θ)(∞∑
j=0

2jλq2−j(α+λ)q)
1/q

+ ‖f ‖p)

≤ C(|f |Bα+λp,∞(Θ) + ‖f ‖p)
= C‖f ‖Bα+λp,∞ .
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Then, for anym ∈ ℤ, by (5.10) we have

ωΘ,r(f , 2
−m)

q
q ≤ C

∞

∑
j=m

2jλqωΘ,r(f , 2
−j)

q
p

≤ C|f |qBα+λp,∞(Θ)
∞

∑
j=m

2jλq2−j(α+λ)q

≤ C|f |qBα+λp,∞(Θ)2−mαq.
The proof for q =∞ is similar.

(ii) For 0 < p ≤ q <∞, an application of (5.9) yields

‖f ‖q ≤ C((
∞

∑
j=0

2jλqωΘ,r(f , 2
−j)

q
p)

1/q

+ ‖f ‖p)

≤ C((
∞

∑
j=0

2j(α+λ)qωΘ,r(f , 2
−j)

q
p)

1/q

+ ‖f ‖p)

≤ C‖f ‖Bα+λp,q .
Inequality (5.10) gives

|f |qBαq,q(Θ) =∑m (2mαωΘ,r(f , 2
−m)q)

q

≤ C∑
m

∞

∑
j=m

2mαq2jλqωΘ,r(f , 2
−j)

q
p

= C∑
j
2jλqωΘ,r(f , 2

−j)
q
p

j
∑

m=−∞
2mαq

= C∑
j
2jq(α+λ)ωΘ,r(f , 2

−j)
q
p

j
∑

m=−∞
2(m−j)αq

≤ C∑
j
2jq(α+λ)ωΘ,r(f , 2

−j)
q
p

≤ C|f |qBα+λp,q (Θ).
The proof for q =∞ is easier.

5.3.2 Examples of adaptive covers

We consider two simple examples of discontinuous functions on ℝ2, the characteris-
tic function 1B∗ of the unit disk and the characteristic function 1◻ of a square. We will
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show that using ellipse covers that are adaptive to the curve singularities of these in-
dicator functions, each of them has higher anisotropic Besov smoothness compared
with its (classical) isotropic Besov space smoothness [23]. For a cover Θ, α > 0, and
τ > 0, we denote

Bατ(Θ) := B
α
ττ(Θ).

Observe that for 0 < τ < p satisfying

1
τ
= α + 1

p
,

by (5.9) we have an embedding analogous to the isotropic case

Bατ(Θ) ⊂ Lp(ℝ
n).

Example 5.13. There exists an anisotropic ellipse cover Θ of ℝ2 such that 1B∗ ∈ Bατ(Θ)
for any α < 2

3τ . In comparison, if Θ̃ is a cover of Euclidean balls related to classical
isotropic Besov smoothness, then 1B∗ ∈ Bατ(Θ̃) = B2ατ (ℝn) only for α < 1

3τ . Here the
bounds on α are sharp.

Proof. We begin by constructing an appropriate continuous ellipse cover Θc ofℝ2. For
arbitrary t ≤ 0 and v ∈ ℝ2, we define

θ(v, t) := 2−t/2B∗ + v,

that is, the disk of radius 2−t/2 centered at v.
For the scales t > 0, the cover is adaptive to the “geometry” of the function, i. e.,

to the boundary of the disk. The idea of construction is that the ellipses intersecting
with the edge singularity of the indicator function at S1 essentially have a semiaxis
of length ∼ 2−t/3 aligned with the gradient of the boundary and a semiaxis of length
∼ 2−2t/3 alignedwith the normal to the boundary. This allows for a tighter ellipse cover
of the singularity at each scale when comparing to nonadaptive Euclidean balls. Let
t > 0. For any v = (v1,0), v1 > 0, which obeys the condition |1 − v1| ≤ 2−t/3, we define
θ(v, t) as the set of all point x ∈ ℝ2 such that

(x1 − v1)2

σ21
+
x22
σ22
≤ 1,

where

σ1 := (|1 − v1| + 2
−t/2)2−t/6, σ2 := (|1 − v1| + 2

−t/2)
−12−5t/6.

If v = (v1,0), v1 ≥ 0, satisfies |1 − v1| > 2−t/3, then we set θ(v, t) := 2−t/2B∗ + v. Observe
that in both cases, |θ(v, t)| ∼ 2−t, and so the “volume condition” (2.13) is satisfied. For
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any point v that does not lie on the positive x1-axis, we define θ(v, t) by a rotation of
the ellipse θ((|v|,0), t) defined above about the origin that takes (|v|,0) to v.

We now show that the collection of ellipses Θc defined above is a continuous el-
lipse cover of ℝ2 in the sense of Definition 2.10. Fix v = (v1,0), v1 > 0. Let t, s > 0 and
assume that |1 − v1| ≤ 2−(t+s)/3 (other cases are similar or easier to prove). Denote by
σ1(t) the x1-semiaxis of θ(v, t). By the definition we have

σ1(t + s)
σ1(t)
=
|1 − v1| + 2−(t+s)/2

|1 − v1| + 2−t/2
⋅ 2−s/6,

which leads to

2−2s/3 ≤ σ1(t + s)
σ1(t)
≤ 2−s/6.

A similar computation gives

2−5s/6 ≤ σ2(t + s)
σ2(t)
≤ 2−s/3.

Together, these estimates imply

2−5s/6 ≤ 1/M
−1
v,t+sMv,t

 ≤
M
−1
v,tMv,t+s

 ≤ 2
−s/6. (5.20)

The case where v does not lie on the positive x1-axis reduces to the above by rotation.
Now fix t > 0 and let θ := θ(v, t) and θ′ := θ(v′, t) be such that θ ∩ θ′ ̸= 0. Assume

that |1 − |v|| ≤ 2−t/3 and |1 − |v′|| ≤ 2−t/3 (other cases are similar or easier to prove).
Since Θc is rotation invariant, we may assume that v = (v1,0), v1 > 0. Denote by σ1,
σ2 the semiaxes of θ and by σ′1, σ

′
2 (σ
′
1 < σ

′
2) the semiaxes of θ′. It is easy to see that

||v| − |v′|| ≤ 22−t/3; however, the assumption θ ∩ θ′ ̸= 0 provides the stronger bound


v
′ − |v|
 ≤ σ
′
1 + σ1 = (

1 −
v
′
 +
1 − |v|
 + 2 ⋅ 2

−t/2)2−t/6 ≤ 4 ⋅ 2−t/2,

which implies

σ′1 ≤ (
1 − |v|
 +

v
′ − |v|
 + 2
−t/2)2−t/6 ≤ (1 − |v|

 + 5 ⋅ 2
−t/2)2−t/6 ≤ 5σ1.

Therefore

1/5 ≤
σ′1
σ1
≤ 5, 1/5 ≤

σ′2
σ2
≤ 5. (5.21)

We may assume that t ≥ 3 (the case t < 3 is trivial). Then 1/2 ≤ |v|, |v′| ≤ 3/2. Since
θ ∩ θ′ ̸= 0, the ellipse θ′ can be obtained by rotating θ(|v′|, t) about the origin about an
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angle γ such that

|γ| ≤ 2σ2 + 2σ
′
2 ≤ 4 ⋅ 2

−t/3. (5.22)

Let Aθ be the affine transform that maps B∗ onto θ. Then Aθ(x) = Mθx + v, where
Mθ = diag(σ1, σ2). The affine transform Aθ′ mapping B∗ onto θ′ is of the form Aθ′ (x) =
Mθ′x + v′, where Mθ′ can be represented as the product of a diagonal and a rotation
matrix, namely,

Mθ′ = Mγ diag(σ
′
1, σ
′
2), Mγ := (

cos γ − sin γ
sin γ cos γ

) .

It is straightforward to show that

M−1θ Mθ′ = ((σ′1/σ1) cos γ −(σ′2/σ1) sin γ(σ′1/σ2) sin γ (σ
′
2/σ2) cos γ

) .

From (5.22) it follows that

(σ′2/σ1)| sin γ| ≤ 4 and (σ′1/σ2)| sin γ| ≤ 4.

This and (5.21) imply that all entries of M−1θ Mθ′ are bounded in absolute value by 5.
Hence

M
−1
θ Mθ′ℓ2→ℓ2 ≤ C, M−1θ′ Mθ

ℓ2→ℓ2 ≤ C.

Combining this with (5.20) implies that Θc also satisfies the “shape condition” (2.14)
with a4 = 5/6 and a6 = 1/6, and so it is a valid continuous ellipse cover of ℝ2.

Applying Theorem 2.32 to Θc, through an adaptive sampling and dilation process,
implies there exists an equivalent discrete ellipse cover Θ of ℝ2 satisfying the condi-
tions of Definition 2.14. It remains to show that 1B∗ ∈ Bατ(Θ) for all α < 2

3τ .
Denote by Θ′m the set of all ellipses from Θm that intersect the unit circle S1 in ℝ2.

We need to estimate #Θ′m. By condition (c) on discrete ellipsoid covers onlyN1 ellipses
fromΘmmay intersect at a time. This and the construction of Θc andΘ yield, form > 0,

#Θ′m ≤ C2
m

⋃
θ∈Θ′m θ


≤ C2m2−2m/3 = C2m/3.

Evidently, #Θ′m ≤ c if m ≤ 0. Next, observe that ωr(1B∗ , θ)τ = 0 if θ ∈ Θm \ Θ′m. For
θ ∈ Θ′m, if m ≤ 0, then ωr(1B∗ , θ)τ ≤ c‖1B∗‖Lτ(ℝ2) ≤ c, and if m > 0, then ωr(1B∗ , θ)τ ≤
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c|θ|1/τ ≤ c2−m/τ. We get, for α < 2
3τ ,

|1B∗ |τBατ (Θ) = ∑
m∈ℤ
∑
θ∈Θ′m |θ|

−ατωr(1B∗ , θ)ττ
≤ C

0
∑

m=−∞
2mατ + C

∞

∑
m=1
(#Θ′m)2

−m(1−ατ)

≤ C + C
∞

∑
m=1

2−m(2/3−ατ) ≤ C.

Consequently, 1B∗ ∈ Bατ(Θ) for α < 2
3τ . Here the bound is sharp since S1 cannot be

covered by ≤ C2m/3 ellipsoids of area 2−m whenever C > 0 is sufficiently small.

Example 5.14. For any square ◻ in ℝ2, there exists an anisotropic ellipsoid cover Θ of
ℝ2 such that 1◻ ∈ Bατ(Θ) for any 0 < α <

1
τ . In comparison, if Θ̃ is a cover of Euclidean

balls relating to classical isotropic Besov smoothness, then 1◻ ∈ Bατ(Θ̃) = B
2α
τ (ℝ

n) only
for α < 1

3τ . Here the bounds for α are sharp.

Proof. Without loss of generality, using dilation of the function and the constructed
cover, we may assume that ◻ = [−1, 1] × [0, 2]. As in the previous example, we first
construct an appropriate continuous ellipse cover and then discretize it. We first con-
struct ellipses θ(v, t) of our continuous cover Θc with centers v from the triangle△0 :=
[(0,0), (1,0), (0, 1)] and t > 0. Then we use symmetry about the x2-axis to define θ(v, t)
for v in the triangle [(−1,0), (0,0), (0, 1)]. We next apply symmetry about the x1-axis to
define the ellipses θ(v, t) for v in the triangle [(−1,0), (0,−1), (1,0)]. Again by symme-
try about the line x2 = −x1 + 1 we define θ(v, t) on the square [(1,0), (2, 1), (1, 2), (0, 1)].
Symmetry about the line x2 = x1 + 1 enables us to define θ(v, t) for v in the rectangle
[(−1,0), (1, 2), (0, 3), (−2, 1)]. In this way the ellipses θ(v, t) would be defined with cen-
ters v from the square S := [(0,−1), (2, 1), (0, 3), (−2, 1)]. Finally, we define the ellipses
θ(v, t) with centers v ∈ ℝ2 \ S by

θ(v, t) := 2−t/2B∗ + v.

In going further, for t ≤ 0, we define θ(v, t) for all centers v ∈ ℝ2 by θ(v, t) :=
2−t/2B∗ + v.

It remains to define the ellipses θ(v, t)with centers v ∈ △0 and t > 0. We begin by
introducing a parameter δ > 0 satisfying the condition

δ
2
< 1 − ατ. (5.23)

The idea of the construction is to have near the edges of ◻ long and thin ellipses that
are aligned with the edges and Euclidean balls away from the edges of ◻ and at the
vertices. To this end, for every v = (v1, v2) ∈ △0, set u := uv := 1 − v1 − v2 and define
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θ(v, t) as the set of all x ∈ ℝ2 such that

(x1 − v1)2

σ21
+
(x2 − v2)2

σ22
≤ 1,

where σ1 := (uv2t/2 + 1)1−δ2−t/2 and σ2 := (uv2t/2 + 1)δ−12−t/2. Evidently, |θ(v, t)| ∼ σ1σ2 =
2−t, which implies that the cover Θc satisfies the “volume condition” (2.13).

We next show that Θc satisfies the “shape condition” (2.14) with parameters de-
pending only on δ. Fix v ∈ △0 and for any t ∈ ℝ, denote by σ1(t) and σ2(t) the semiaxes
of θ(v, t). Then from the construction we have that for t, s > 0,

σ1(t + s)
σ1(t)
= (

uv + 2−(t+s)/2

uv + 2−t/2
)
1−δ

2−δs/2,

which readily implies

2−s/2 ≤ σ1(t + s)
σ1(t)
≤ 2−δs/2.

A similar computation gives

2−s(1−δ/2) ≤ σ2(t + s)
σ2(t)
≤ 2−s/2.

Together, these two estimates imply

2−s(1−δ/2) ≤ 1/M
−1
v,t+sMv,t

 ≤
M
−1
v,tMv,t+s

 ≤ 2
−δs/2. (5.24)

Now fix t > 0 and let θ(v, t) ∩ θ(v′, t) ̸= 0, v, v′ ∈ △0. Assume that uv′ > uv. Since by
construction σ1(x, s) ≥ σ2(x, s) for all x ∈ ℝn and s ∈ ℝ, we may estimate

uv′ ≤ uv + σ1(v, t) + σ1(v′, t)
≤ uv + (uv + 2

−t/2)
1−δ2−δt/2 + (uv′ + 2−t/2)1−δ2−δt/2

≤ uv + u
1−δ
v 2−δt/2 + 2−t/2 + u1−δv′ 2−δt/2 + 2−t/2.

If uv′ ≥ 2−t/2, then this leads to
uv′ ≤ uv + u1−δv 2−δt/2 + 2 ⋅ 2−t/2 ≤ 2(uv + 2

−t/2),

which yields

σ1(v
′)/σ1(v) ≤ c, c = c(δ).
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If uv′ < 2−t/2, then the same estimate immediately follows with a different constant
c = c(δ). This yields

M
−1
v,tMv′ ,t, M−1v′ ,tMv,t

 ≤ C.

Combining this with (5.24), we get that the “shape condition” (2.14) is also satisfied
with a4 = 1 − δ/2 and a6 = δ/2 and that Θc is a continuous ellipse cover of ℝ2 in the
sense of Definition 2.10.

By Theorem 2.32, through an adaptive sampling and dilation process, the above
cover Θc induces a discrete ellipse cover Θ of ℝ2. Our next task is showing that 1◻ ∈
Bατ(Θ). To this end, we need an upper bound for the number of all ellipses fromΘm that
intersect the boundary of ◻. Denote this set by Θ′m. By condition (c) on discrete covers
and the construction of Θc and Θ it follows that form > 0,

#Θ′m ≤ C2
m

⋃
θ∈Θ′m θ


≤ C2m
1

∫
0

σ2(θ(v1,0), 2
−m)dv1

≤ C2m/2
1

∫
0

((1 − v1)2
m/2 + 1)δ−1dv1 = C2

δm/2.

Evidently, #Θm ≤ c ifm ≤ 0.
We are now prepared to estimate |1◻|Bατ (Θ). Using the estimate of #Θ′m and (5.23),

we get

|1◻|
τ
Bατ (Θ) = ∑

m∈ℤ
∑
θ∈Θ′m |θ|

−ατωr(1◻, θ)
τ
τ

≤ C
0
∑

m=−∞
2mατ + C

∞

∑
m=1
(#Θ′m)2

−m(1−ατ)

≤ C + C
∞

∑
m=1

2−m(1−ατ−δ/2) ≤ C.

5.3.3 Equivalent seminorms

LetTm,m ∈ ℤ, be the operators from (3.36)with order r satisfying (5.17). For f ∈ Lp(ℝn),
we define

|f |TBαp,q(Θ) := {(∑m∈ℤ (2
αm‖(Tm+1 − Tm)f ‖p)q)1/q, 0 < q <∞,

supm∈ℤ 2αm‖(Tm+1 − Tm)f ‖p, q =∞.
(5.25)

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use



124 | 5 Smoothness spaces

Recall from (4.12) that we have the two-scale split representation (Tm+1 − Tm)f =
∑ν∈ℳm

dν(f )Fν and that by Theorem 4.8 for 0 < p <∞, we have

(Tm+1 − Tm)f
p ∼ ( ∑

ν∈ℳm

dν(f )Fν

p
p)

1/p
,

with a similar equivalence for p =∞. Thus, for 0 < p <∞,

|f |TBαp,q(Θ) ∼ ( ∑
m∈ℤ
(2αm( ∑

ν∈ℳm

dν(f )Fν

p
p)

1/p
)
q
)
1/q
. (5.26)

Using the “two-level splits” from Definition 4.6, we also define the atomic (quasi-)
norm

|f |ABαp,q(Θ) := inf
f=∑ν∈ℳ aνFν

( ∑
m∈ℤ
( ∑
ν∈ℳm

(|ην|
−α‖aνFν‖p)

p
)
q/p
)
1/q
. (5.27)

Theorem 5.15 ([23]). For a discrete cover Θ, 0 < p, q ≤∞, and α > 0, if (5.17) is obeyed,
then the (quasi-)seminorms |⋅|Bαp,q(Θ), |⋅|TBαp,q(Θ), and |⋅|ABαp,q(Θ) are equivalent.
Proof. By (5.5) and (5.2) we have that for anym ∈ ℤ,

(Tm+1 − Tm)f
p ≤ C(‖f − Tm+1f ‖p + ‖f − Tmf ‖p)

≤ C(ωΘ,r(f , 2
−(m+1))p + ωΘ,r(f , 2

−m)p)

≤ CωΘ,r(f , 2
−(m+1))p.

This gives

|f |TBαp,q(Θ) ≤ C|f |Bαp,q(Θ).
Using representation (4.12), we have

Tm+1f − Tmf = ∑
ν∈ℳm

dν(f )Fν ,

and by the equivalence (4.14) we get that for 0 < p <∞,

(Tm+1 − Tm)f

p
p ∼ ∑

ν∈ℳm

dν(f )Fν

p
p,

and for p =∞,

(Tm+1 − Tm)f
∞ ∼ sup

ν∈ℳm

dν(f )Fν
∞.
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Since for ν = (η, θ, β) ∈ℳm, |ην| ∼ 2−m, this yields

|f |ABαp,q(Θ) ≤ C|f |TBαp,q(Θ).
It remains to prove that

|f |Bαp,q(Θ) ≤ C|f |ABαp,q(Θ).
We only consider the least favorable case where 1 < p < q <∞. Let f = ∑ν∈ℳ aνFν, be
a “near-best” atomic decomposition in the following sense:

( ∑
m∈ℤ

2mαq( ∑
ν∈ℳm

‖aνFν‖
p
p)

q/p
)
1/q
≤ 2−αaα2( ∑

m∈ℤ
( ∑
ν∈ℳm

(|ην|
−α‖aνFν‖p)

p
)
q/p
)
1/q

≤ 2−αaα22|f |
A
Bαp,q(Θ).

For any ellipsoid σ ∈ Θj, using (4.13) and (4.14), we have

ωr(f , σ)p ≤ ωr( ∑
ν∈ℳm :m<j,ην∩σ ̸=0

aνFν , σ)
p
+ C

∑

ν∈ℳm :m≥j,ην∩σ ̸=0
aνFν
p

≤ C
∞

∑
k=1
( ∑
ν: ην∈Θj−k ,ην∩σ ̸=0 |aν|

pωr(Fν , σ)
p
p)

1/p

+ C
∞

∑
k=0
( ∑
ν: ην∈Θj+k ,ην∩σ ̸=0 ‖aνFν‖

p
p)

1/p

≤ C
∞

∑
k=1
( ∑
ν: ην∈Θj−k ,ην∩σ ̸=0 2

−k−a6rkp‖aνFν‖
p
p)

1/p

+ C
∞

∑
k=0
( ∑
ν: ην∈Θj+k ,ην∩σ ̸=0 ‖aνFν‖

p
p)

1/p
.

We use this in the definition of |f |Bαp,q(Θ) to obtain

|f |qBαp,q ≤ C ∑m∈ℤ( ∑σ∈Θm

[
∞

∑
k=1
( ∑
ν: ην∈Θm−k ,ην∩σ ̸=0 2

mαp−k−a6rkp‖aνFν‖
p
p)

1/p
]

p

)

q/p

+ C ∑
m∈ℤ
( ∑
σ∈Θm

[
∞

∑
k=0
( ∑
ν: ην∈Θm+k ,ην∩σ ̸=0 2

mαp‖aνFν‖
p
p)

1/p
]

p

)

q/p

=: C(Σ1 + Σ2).
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To estimate Σ1, we apply Hölder’s inequality and condition (5.17) to get

Σ1 ≤ C ∑
m∈ℤ
( ∑
σ∈Θm

(
∞

∑
k=1

∑
ν: ην∈Θm−k ,ην∩σ ̸=0 2

−k(a6r−α)p/22−k2(m−k)αp‖aνFν‖
p
p)

× (
∞

∑
k=1

2−k(a6r−α)p
′/2)p/p

′
)

q/p

≤ C ∑
m∈ℤ
( ∑
σ∈Θm

∞

∑
k=1

∑
ν: ην∈Θm−k ,ην∩σ ̸=0 2

−k(a6r−α)p/22−k2(m−k)αp‖aνFν‖
p
p)

q/p

.

In going further, we switch the order of summation, use Lemma 2.19, apply Hölder’s
inequality with s := q/p > 1, and switch the order again to obtain

Σ1 ≤ C ∑
m∈ℤ
(
∞

∑
k=1

2−k(a6r−α)p/22−k max
η∈Θm−k #{σ ∈ Θm : σ ∩ η ̸= 0} ∑

ν∈ℳm−k 2
(m−k)αp‖aνFν‖

p
p)

q/p

≤ C ∑
m∈ℤ
(
∞

∑
k=1

2−k(a6r−α)p/2 ∑
ν∈ℳm−k 2

(m−k)αp‖aνFν‖
p
p)

q/p

≤ C ∑
m∈ℤ
[
∞

∑
k=1

2−k(a6r−α)q/4( ∑
ν∈ℳm−k 2

(m−k)αp‖aνFν‖
p
p)

q/p
][
∞

∑
k=1

2−k(a6r−α)ps
′/4]q/ps

′

≤ C ∑
m∈ℤ

m−1
∑

j=−∞
2−(m−j)(a6r−α)q/4( ∑

ν∈ℳj

2jαp‖aνFν‖
p
p)

q/p

≤ C∑
j∈ℤ

2jαq( ∑
ν∈ℳj

‖aνFν‖
p
p)

q/p ∞
∑

m=j+1
2−(m−j)(a6r−α)q/4

≤ C(|f |ABαp,q(Θ))q.
We estimate Σ2 in a similar fashion. Recall that an ellipsoid η ∈ Θm+k, k ≥ 0, only
intersects with a bounded number of ellipsoids σ ∈ Θm. Applying Hölder’s inequality,
switching the order of summation, and applying Hölder’s inequality again with s :=
q/p > 1, we get

Σ2 ≤ C ∑
m∈ℤ
[ ∑
σ∈Θm

(
∞

∑
k=0

2kαp/2 ∑
ν: ην∈Θm+k ,ην∩σ ̸=0 2

(m−k)αp‖aνFν‖
p
p)(
∞

∑
k=0

2−kαp
′/2)p/p

′
]

q/p

≤ C ∑
m∈ℤ
[ ∑
σ∈Θm

∞

∑
k=0

2kαp/2 ∑
ν: ην∈Θm+k ,ην∩σ ̸=0 2

(m−k)αp‖aνFν‖
p
p]

q/p
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≤ C ∑
m∈ℤ
[
∞

∑
k=0

2kαp/2 ∑
ν∈ℳm+k 2

(m−k)αp‖aνFν‖
p
p]

q/p

≤ C ∑
m∈ℤ
[
∞

∑
k=0

2kαq/4( ∑
ν∈ℳm+k 2

(m−k)αp‖aνFν‖
p
p)

q/p
][
∞

∑
k=0

2−kαps
′/4]q/ps

′

≤ C ∑
m∈ℤ

∞

∑
j=m

2−(j−m)αq/4( ∑
ν∈ℳj

2jαp‖aνFν‖
p
p)

q/p

≤ C∑
j∈ℤ
( ∑
ν∈ℳj

2jαp‖aνFν‖
p
p)

q/p j
∑

m=−∞
2−(j−m)αq/4

≤ C(|f |ABαp,q(Θ))q.
Theorem 5.15 provides a pointwise variable anisotropic variant of wavelet char-

acterization of Besov spaces (see [46] for the case of fixed anisotropy). Namely, since
‖Fν‖p ∼ |ην|1/p−1/2 for ν = (ην , θν , βν), the characterization Bαp,q(Θ) ∼ B

α
p,q(Θ)

T gives

|f |Bαp,q(Θ) ∼ ( ∑
m∈ℤ
(2m(α+1/2−1/p)( ∑

ν∈ℳm

dν(f )

p
)
1/p
)
q
)
1/q

for 0 < p, q < ∞. This form of characterization of Besov spaces is exactly the same
as characterizations over spaces of homogeneous type [33, Theorem 4.21], except that
here the smoothness index α is not bounded from above by a constant related to the
geometry of the space (see (2.4)), and the indices p, q are similarly not bounded from
below.

5.4 Adaptive approximation using two-level splits

Our goal is approximating functions in the p-norm using N-term adaptive two-level
split elements. Let

Bατ(Θ) := B
α
ττ(Θ),

where

1
τ
= α + 1

p
. (5.28)

Recall that by (5.9) we have the embedding

Bατ(Θ) ⊂ Lp(ℝ
n).
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Thus, if f ∈ Bατ(Θ), then f ∈ Lp(ℝ
n), and we have a representation f = ∑ν∈ℳ dν(f )Fν in

Lp(ℝn). We claim that

|f |Bατ (Θ) ∼ ( ∑
ν∈ℳ

dν(f )Fν

τ
p)

1/τ
. (5.29)

Indeed, by (5.26), the equivalence ‖Fν‖p ∼ |ην|1/p−1/2, and (5.28) we have

|f |Bατ (Θ) ∼ ( ∑
m∈ℤ

2αmτ ∑
ν∈ℳm

dν(f )Fν

τ
τ)

1/τ

∼ ( ∑
m∈ℤ

2αmτ ∑
ν∈ℳm

dν(f )

τ2m(1/2−1/τ)τ)

1/τ

∼ ( ∑
m∈ℤ

2αmτ ∑
ν∈ℳm

dν(f )Fν

τ
p2
−mατ)

1/τ

= ( ∑
ν∈ℳ

dν(f )Fν

τ
p)

1/τ
.

Let us define the nonlinear set of all N-term two-level split elements by

ΣN := {
N
∑
i=1

aiFνi : Fνi ∈ℳ, 1 ≤ i ≤ N}.

We denote the degree of nonlinear approximation from ΣN in the p-norm by

σN (f )p := inf
g∈ΣN
‖f − g‖p.

We have the following Jackson theorem.

Theorem 5.16. If f ∈ Bατ(Θ), where α > 0, 0 < p <∞, and τ > 0 satisfy (5.28), then

σN (f )p ≤ cN
−α|f |Bατ (Θ).

Proof. The proof follows the method of [50] (which can be applied in a more general
setting). Since f ∈ Bατ(Θ), by the embedding f ∈ Lp(ℝn) and (5.29) we have

𝒩τ(f ) := ( ∑
ν∈ℳ

dν(f )Fν

τ
p)

1/τ
∼ |f |Bατ (Θ).

Let us reorder the two-scale split elements by their significance:

dν1 (f )Fν1
p ≥
dν2 (f )Fν2

p ≥ ⋅ ⋅ ⋅ .

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.4 Adaptive approximation using two-level splits | 129

We then denote the reordered elements Φi := dνi (f )Fνi , i = 1, 2, . . . , and define

fN :=
N
∑
i=1

Φi ∈ ΣN .

Since σN (f )p ≤ ‖f − fN‖p, it is sufficient to prove that

‖f − fN‖p ≤ cN
−α𝒩τ(f ). (5.30)

Case I: 0 < p < 1. To estimate ‖f − fN‖p, we will use the following inequality for an
ordered nonnegative scalar sequence {ai}i∈ℕ, a1 ≥ a2 ≥ ⋅ ⋅ ⋅ and 0 < τ < p [50, Ap-
pendix B]:

(
∞

∑
i=N+1

api )
1/p

≤ N1/p−1/τ(
∞

∑
i=1

aτi )
1/τ

.

Applying this with ai := ‖Φi‖p gives (5.30):

‖f − fN‖p =


∞

∑
i=N+1

Φi

p

≤ (
∞

∑
i=N+1
‖Φi‖

p
p)

1/p

≤ N1/p−1/τ(
∞

∑
i=1
‖Φi‖

τ
p)

1/τ

= N−α𝒩τ(f ).

Case II: 1 ≤ p <∞. Since Φi = dνi (f )Fνi , we have that Ei := supp(Φi) = supp(Fνi ) = ηνi .
We claim that there exists c(p(Θ), p) > 0 such that for x ∈ Em,

∑
x∈Ei ,|Ei|≥|Em|

(
|Em|
|Ei|
)
1/p
≤ c. (5.31)

Indeed, depending on the parameters of the cover, any ellipsoid θ ∈ Θj intersects with
a only bounded number of ellipsoids η ∈ Θ such that |η| ≥ |θ|, and they only appear
in levels lower than j + c1 for some fixed constant c1. Since |θ| ≥ a12−j and |η| ≤ a22−k,
for η ∈ Θk, we get

∑
x∈θ,|η|≥|θ|

(
|θ|
|η|
)
1/p
≤ C

j+c1
∑

k=−∞
2(k−j)/p ≤ C.

We need the following lemma.
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Lemma 5.17. Let H := ∑i∈Λ |Φi|, where #Λ ≤ M, and ‖Φi‖p ≤ L for i ∈ Λ, 1 ≤ p < ∞.
Then

‖H‖p ≤ CLM
1/p.

Proof. The claim is obvious for p = 1. Let 1 < p < ∞. Recall that ‖Fν‖q ∼ |ην|1/q−1/2,
which implies

‖Φi‖∞ ≤ C
dνi (f )
|ηνi |
−1/2

≤ Cdνi (f )
‖Fνi‖p|ηνi |

−1/p

= C‖Φi‖p|ηνi |
−1/p

≤ CL|Ei|
−1/p.

Therefore

‖H‖p ≤

∑
i∈Λ
‖Φi‖∞1Ei (⋅)

p

≤ CL

∑
i∈Λ
|Ei|
−1/p1Ei (⋅)

p
.

Denote E := ⋃i∈Λ Ei and ε(x) := mini∈Λ{|Ei| : x ∈ Ei} for x ∈ E. For x ∉ E, set ε(x) = 0.
By (5.31) we have

∑
i∈Λ
|Ei|
−1/p1Ei (x) ≤ Cε(x)

−1/p.

Therefore

‖H‖p ≤ CL
ε(⋅)
−1/pp

= CL(∫
E

ε(x)−1dx)
1/p

≤ CL(∑
i∈Λ
|Ei|
−1 ∫
ℝn

1Ei)
1/p

= CLM1/p.

Wemay now complete the proof of (5.30) for the case 1 ≤ p <∞. Denote

Λk := {i : 2
−k𝒩τ(f ) < ‖Φi‖p ≤ 2

−k+1𝒩τ(f )}, k ≥ 1.
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Recall that the sequence space lτ embeds into the weak sequence space lτ,∞, and so
for any nonnegative sequence a = {aj}, we have ‖a‖τ,∞ ≤ ‖a‖τ. Thus

#Λm ≤ ∑
k≤m

#Λk

= # ⋃
k≤m

Λk

= #{i : 2−m𝒩τ(f ) < ‖Φi‖p}

≤ {‖Φi‖p}

τ
τ,∞2

mτ𝒩τ(f )
−τ

≤ {‖Φi‖p}

τ
τ2

mτ𝒩τ(f )
−τ

= 𝒩τ(f )
τ2mτ𝒩τ(f )

−τ = 2mτ.

Let N := ∑k≤m #Λk ≤ 2mτ, fN := ∑i∈Λk ,k≤mΦi, and Hk := ∑i∈Λk
Φi. We apply Lemma 5.17,

the estimate #Λk ≤ C2kτ, and (5.28) to obtain (5.30) for these particular cases of N:

‖f − fN‖p ≤


∞

∑
k=m+1

Hk

p

≤
∞

∑
k=m+1
‖Hk‖p

≤ C
∞

∑
k=m+1

2−k+1𝒩τ(f )(#Λk)
1/p

≤ C𝒩τ(f )
∞

∑
k=m+1

2−k+12kτ/p

≤ C𝒩τ(f )2
−m(1−τ/p)

= C𝒩τ(f )2
−mτα

≤ C𝒩τ(f )N
−α.

The proof for the cases where N is not perfectly aligned with a sum of slice sizes #Λk
is almost identical, and we omit it.

5.5 Anisotropic Campanato spaces

The Campanato spaces are a family of smoothness spaces, where the smoothness is
measured locally.

Definition 5.18. Let Θ be an ellipsoid cover (continuous or discrete) over ℝn, and let
α ≥ 0, 1 ≤ q ≤∞.Wedefine theCampanato-type space 𝒞αq,r(Θ) as the space of functions
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f ∈ Llocq (ℝ
n) such that

‖f ‖𝒞α
q,r(Θ) := supθ∈Θ

|θ|−αωr(f , θ)q <∞, (5.32)

whereωr(f , θ)q is defined in (1.13), and r ≥ 1 satisfies (5.17).We denote 𝒞αq (Θ) := 𝒞
α
q,r(Θ),

where r is the smallest integer that satisfies (5.17).

A few remarks are in order.
(i) Observe that 𝒞α∞(Θ) = Bα∞,∞(Θ), where Bα∞,∞(Θ) is the Besov space defined

by (5.16).
(ii) By (1.47), for any bounded convex domain Ω ⊂ ℝn and f ∈ Lq(Ω), we have the

equivalence

Er−1(f ,Ω)q := inf
P∈Πr−1 ‖f − P‖Lq(Ω) ∼ ωr(f ,Ω)q, (5.33)

where the equivalence constants are independent of f and Ω. This leads to the
following equivalent form of the norm:

‖f ‖𝒞α
q,r(Θ) ∼ supθ∈Θ

|θ|−αEr−1(f , θ)q. (5.34)

(iii) By Theorem 2.23 we can replace the ellipsoids in (5.32) by anisotropic balls to get
an equivalent norm.

(iv) It is easily seen that Campanato-type spaces constructed over equivalent covers
(see Definition 2.27) are equivalent.

(v) It is readily seen that 𝒞αq,r(Θ)/Πr−1 is a Banach space.
(vi) In Section 6.8, we will identify the Campanato spaces as duals of Hardy spaces.

As a result (see Corollary 6.65), we will see that 𝒞αq,r1 (Θ)/Πr1−1 ∼ 𝒞
α
q,r2 (Θ)/Πr2−1 for

α > 1/q and sufficiently high orders r1, r2.

Theorem 5.19. For a discrete cover Θ, 1 ≤ q < ∞, α ≥ 1/q, and r ≥ 1, the smallest
integer satisfying condition (5.17), there exists a constant c(p(Θ), α, r, q) > 0 such that
for all f ∈ 𝒞αq (Θ) := 𝒞

α
q,r(Θ),

‖Tmf ‖𝒞α
q (Θ) ≤ c‖f ‖𝒞α

q (Θ), ∀m ∈ ℤ, (5.35)

where Tm = Tm,q, m ∈ ℤ, are the operators (3.36) of order r defined over the cover Θ if it
is discrete or over a “discretization” of a continuous cover per Theorem 2.31.

Proof. Without loss of generality, Θ is a discrete cover, and the operators Tm are well
defined over it. We need to show that for any j ∈ ℤ and θ ∈ Θm

|θ|−αωr(Tjf , θ)q ≤ C‖f ‖𝒞α
q (Θ).

There are two cases.
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Case I:m ≤ j. Let

Λ(θ, j) := {η ∈ Θj : η ∩ θ ̸= 0}, Ω(θ, j) := ⋃
η∈Λ(θ,j)

η.

By Proposition 1.14, (3.38), and Lemma 2.19, we have

ωr(f − Tjf , θ)
q
q ≤ C‖f − Tjf ‖

q
Lq(θ)

≤ C ∑
η∈Λ(θ,j)
‖f − Tjf ‖

q
Lq(η)

≤ C ∑
η′∈Θj ,η′∩Ω(θ,j) ̸=0ωr(f , η

′)
q

≤ C2j−m2−jαq‖f ‖q𝒞α
q (Θ)
.

Using α ≥ 1/q andm ≤ j, this gives

2mαωr(Tjf , θ)q ≤ 2
mαωr(Tjf − f , θ)q + 2

mαωr(f , θ)q
≤ C(2(m−j)(α−1/q)‖f ‖𝒞s

q′ ,l(Θ) + ‖f ‖𝒞α
q (Θ))

≤ C‖f ‖𝒞α
q (Θ).

Case II:m > j. We apply a telescopic sum argument:

ωr(Tjf , θ)q ≤
m−1
∑
k=j

ωr((Tk − Tk+1)f , θ)q + ωr(Tmf , θ)q.

Assume for a moment that for β := a6r − α > 0 and k < m,

2mαωr((Tk − Tk+1)f , θ)q ≤ c2
(k−m)β‖f ‖𝒞α

q (Θ). (5.36)

Then

2mαωr(Tjf , θ)q ≤
m−1
∑
k=j

2mαωr((Tk − Tk+1)f , θ)q + 2
mαωr(Tmf , θ)q

≤ C(
m−1
∑
k=j

2(k−m)β)‖f ‖𝒞α
q (Θ) + C‖f ‖𝒞α

q (Θ)

≤ C‖f ‖𝒞α
q (Θ).

To prove (5.36), we use the “two-level split” representation (4.12) at the level k over θ:

((Tk − Tk+1)f )(x) = ∑
ν∈ℳk , ην∩θ ̸=0

aνFν(x), ∀x ∈ θ.
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By Lemma 4.13, for θ ∈ Θm, Fν ∈ ℱk, k ≤ m, such that ην ∩ θ ̸= 0, we have

ωr(Fν , θ)
q
q ≤ C2

(k−m)(1/q+a6r)q‖Fν‖
q
q

= C2(k−m)(1/q+α+β)q‖Fν‖
q
q.

Let

Λ(θ, k + 1) := {ην ∈ Θk+1 : ην ∩ θ ̸= 0}, Ω(θ, k + 1) := ⋃
ην∈Λ(θ,k+1)

ην ,

and

Λ(θ, k) := {θν ∈ Θk : θν ∩ Ω(θ, k + 1) ̸= 0}, Ω(θ, k + 1) := ⋃
θν∈Λ(θ,k)

θν .

Since k < m, #Λ(θ, k+1) is bounded, which also implies that #Λ(θ, k) is bounded. This,
together with Theorem 4.8, yields

ωr((Tk − Tk+1)f , θ)
q
q ≤ C ∑

ν∈ℳk ,ην∈Λ(θ,k+1)
ωr(aνFν , θ)

q
q

≤ C2(k−m)(1/q+α+β)q ∑
ν∈ℳk ,ην∈Λ(θ,k+1)

‖aνFν‖
q
q

≤ C2(k−m)(1/q+α+β)q(Tk − Tk+1)f

q
Lq(Ω(θ,k+1)).

By (3.38) we also have

(Tk − Tk+1)f
Lq(Ω(θ,k+1)) ≤ ‖Tkf − f ‖Lq(Ω(θ,k)) + ‖f − Tk+1f ‖Lq(Ω(θ,k+1))

≤ C( ∑
θν∈Λ(θ,k)

‖Tkf − f ‖Lq(θν) + ∑
ην∈Λ(θ,k+1)

‖Tkf − f ‖Lq(ην))

≤ C( ∑
θ′∈Θk ,θ′∩Ω(θ,k) ̸=0ωr(f , θ

′)q + ∑
η′∈Θk+1 ,η′∩Ω(θ,k+1) ̸=0ωr(f , η

′)q)

≤ C2−kα‖f ‖𝒞α
q
.

We apply the last two estimates to conclude (5.36) by

2mαωr((Tk − Tk+1)f , θ)q ≤ C2
mα2(k−m)(1/q+α+β)2−kα‖f ‖𝒞α

q (Θ)

≤ C2(k−m)β‖f ‖𝒞α
q (Θ).
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6 Anisotropic Hardy spaces
The theory of real Hardy spaces inmore “geometric” settings has receivedmuch atten-
tion. Coifman and Weiss [19, 20] pioneered this field in the 1970s. Then Folland and
Stein [39] in the 1980s studied Hardy spaces over homogeneous groups. The complete
real-variable theory of Hardy spaces on spaces of homogeneous type appears in [44].
In this general setting the Hardy spaces are limited to the range d/(d + η) < p ≤ 1,
where d is the “upper dimension” defined in (2.3), and 0 < η < 1 is the Lipschitz reg-
ularity of the wavelets constructed in [4]. As we will see, for p values “closer” to zero,
we need the machinery of higher order local approximation by algebraic polynomi-
als or, conversely, higher order of vanishing moments of the building blocks, atoms,
molecules, etc. The Hardy spaces we construct over ellipsoid covers ofℝn have the re-
quired structure that allows us to deal with the full range 0 < p ≤ 1 and to generalize
the Hardy spaces of Bownik [7] to the case of pointwise variable anisotropy.

6.1 Ellipsoid maximal functions

Definition 6.1. Let Θ be a continuous ellipsoid cover.Wedefine the following ellipsoid
maximal function for f ∈ Lloc1 (ℝ

n):

MΘf (x) := sup
t∈ℝ

1
|θ(x, t)|

∫
θ(x,t)

|f |. (6.1)

Lemma 6.2. Let Θ be a continuous ellipsoid cover. Then for f ∈ Lloc1 (ℝ
n),

MBf (x) ∼ MΘf (x), ∀x ∈ ℝ
n, (6.2)

where MBf is the central maximal function (2.9) corresponding to the quasi-distance
(2.35), and the constants of equivalence depend only on p(Θ).

Proof. Let us fix x ∈ ℝn. By Theorem 2.23, for any anisotropic ball Bρ(x, r), there exists
an ellipsoid θ ∈ Θ with center at x such that Bρ(x, r) ⊆ θ and |θ| ∼ r. Therefore

1
|Bρ(x, r)|

∫
Bρ(x,r)

|f | ≤ C 1
|θ|
∫
θ

|f | ≤ CMΘf (x).

Taking the supremum over all balls Bρ(x, r), r > 0, yields the first inequality of (6.2). In
the other direction, for θ := θ(x, t), we have by definition θ ⊆ Bρ(x, |θ|). Theorem 2.23
yields |Bρ(x, |θ|)| ∼ |θ|, which implies

1
|θ|
∫
θ

|f | ≤ C 1
|Bρ(x, |θ|)|

∫
Bρ(x,|θ|)

|f | ≤ CMBf (x).

https://doi.org/10.1515/9783110761795-006
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Taking the supremum over all ellipsoids θ(x, t), t ∈ ℝ, provides the second inequality
of (6.2) and concludes the proof.

Combining Lemma 6.2with Proposition 2.8 yields amaximal function theorem for
the ellipsoid maximal function.

Theorem 6.3. Let Θ be a continuous ellipsoid cover. Then there exists a constant
C(p(Θ), n) > 0 such that for all f ∈ L1(ℝn) and α > 0,

{x : MΘf (x) > α}
 ≤ Cα

−1‖f ‖1. (6.3)

For 1 < p <∞, there exists a constant Ap(p(Θ), n, p) > 0 such that for all f ∈ Lp(ℝn),

‖MΘf ‖p ≤ Ap‖f ‖p. (6.4)

Let 𝒮 denote the Schwartz class of rapidly decreasing C∞ functions (with respect
to the Euclidean metric), and let 𝒮′ the dual space of tempered distributions. In this
book, we simply call f ∈ 𝒮′ a distribution.

Definition 6.4. For a function φ ∈ CN (ℝn) and α ∈ ℤn+, |α| ≤ N ≤ Ñ, let

‖φ‖α,Ñ := sup
y∈ℝn
(1 + |y|)Ñ 𝜕

αφ(y),

‖φ‖N ,Ñ := max
|α|≤N
‖φ‖α,Ñ .

We then define the class of normalized Schwartz functions

𝒮N ,Ñ := {φ ∈ 𝒮 : ‖φ‖N ,Ñ ≤ 1}. (6.5)

Let Θ be a continuous cover where θ(x, t) = Mx,t(B∗) + x for all x ∈ ℝn and t ∈ ℝ.
For φ ∈ 𝒮, denote the pointwise variable anisotropic dilation

φx,t(y) :=
det(M

−1
x,t)
φ(M
−1
x,ty), y ∈ ℝn. (6.6)

A pointwise variable anisotropic dilated version of a Schwartz function φ ∈ 𝒮, corre-
sponding to a point x ∈ ℝn and scale t ∈ ℝ, acts on a distribution f ∈ 𝒮′ through a
convolution

f ∗ φx,t(y) =
det(M

−1
x,t)
⟨f ,φ(M

−1
x,t(y − ⋅))⟩.

We now provide the pointwise variable anisotropic variants that generalize the classi-
cal isotropic maximal functions [61]: the nontangential, the grand nontangential, the
radial, the grand radial, and the tangential maximal functions.
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Definition 6.5. Let Θ be a continuous ellipsoid cover of ℝn. Let φ ∈ 𝒮, f ∈ 𝒮′, and
N , Ñ ∈ ℕ, N ≤ Ñ . The nontangential maximal function is defined as

Mφf (x) := sup
t∈ℝ

sup
y∈θ(x,t)

f ∗ φx,t(y)
, x ∈ ℝn. (6.7)

The grand nontangential maximal function is defined as

MN ,Ñ f (x) := sup
φ∈𝒮N ,Ñ Mφf (x), x ∈ ℝn. (6.8)

The radial maximal function is defined as

M∘φf (x) := sup
t∈ℝ

f ∗ φx,t(x)
, x ∈ ℝn. (6.9)

The grand radial maximal function is defined as

M∘N ,Ñ f (x) := sup
φ∈𝒮N ,Ñ M∘φf (x), x ∈ ℝn. (6.10)

The tangential maximal function is defined as

TNφ f (x) := sup
t∈ℝ

sup
y∈ℝn
f ∗ φx,t(y)

(1 +
M
−1
x,t(x − y)

)
−N
, x ∈ ℝn. (6.11)

It is easy to see that we have the following pointwise estimates for the radial, non-
tangential, and tangential maximal functions: for any φ ∈ 𝒮 and f ∈ 𝒮′,

M0
φf (x) ≤ Mφf (x) ≤ 2

NTNφ f (x), x ∈ ℝn. (6.12)

Another relatively simple pointwise equivalence is the following:

Lemma 6.6. For any 0 < N ≤ Ñ and f ∈ 𝒮′,

M∘N ,Ñ f (x) ≤ MN ,Ñ f (x) ≤ 2
ÑM∘N ,Ñ f (x), x ∈ ℝn. (6.13)

Proof. The first inequality is obvious. To show the second inequality, note that

MN , Ñ f (x) = sup{
f ∗ φx, t(x +Mx, ty)

 : y ∈ B
∗, t ∈ ℝ, φ ∈ 𝒮N ,Ñ}

= sup{f ∗ ϕx,t(x)
 : ϕ(z) := φ(z + y), y ∈ B

∗, t ∈ ℝ, φ ∈ 𝒮N , Ñ}

= sup{M∘ϕf (x) : ϕ(z) = φ(z + y), y ∈ B
∗, t ∈ ℝ, φ ∈ 𝒮N ,Ñ}.
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For ϕ(z) = φ(z + y) with y ∈ B∗, we have

‖ϕ‖N , Ñ = sup
|α|≤N

sup
x∈ℝn
(1 + |x|)Ñ 𝜕

αφ(x + y)

= sup
|α|≤N

sup
x∈ℝn
(1 + |x − y|)Ñ 𝜕

αφ(x)

≤ 2Ñ sup
|α|≤N

sup
x∈ℝn
(1 + |x|)Ñ 𝜕

αφ(x) = 2
Ñ‖φ‖N , Ñ .

Combining the above, we have

MN , Ñ f (x) ≤ sup{M
∘
ϕf (x) : ϕ ∈ 𝒮 , ‖ϕ‖N ,Ñ ≤ 2

Ñ} ≤ 2ÑM∘N , Ñ f (x).

Recall that by Theorem 2.28, for any continuous cover, there exists an equivalent
pointwise continuous cover. For the most part of this chapter, we will assume this
pointwise continuity property, as we will require “maximal sets” to be open.

Theorem 6.7. Let Θ be a pointwise continuous cover. Then for any f ∈ 𝒮′, N , Ñ ∈ ℕ,
and λ > 0, the set

Ω = {x ∈ ℝn : M∘N ,Ñ f (x) > λ}

is open.

Proof. Let f ∈ 𝒮′. We first observe that for any fixed φ ∈ 𝒮 and t ∈ ℝ,

x → f ∗ φx,t(x)

is a continuous function onℝn. Indeed, let x′ → x. Then under the assumption that Θ
is pointwise continuous, ‖Mx′ ,t −Mx,t‖→ 0. This implies that φx′ ,t → φx,t in ‖ ⋅ ‖N ,Ñ for
any N , Ñ ∈ ℕ. Hence f ∗ φx′ ,t(x′)→ f ∗ φx,t(x) as x′ → x.

Now, for any x ∈ Ω, there exist φ ∈ 𝒮N ,Ñ and t ∈ ℝ such that

f ∗ φx,t(x)
 > λ.

Since f ∗φ⋅,t(⋅) is continuous,wededuce that for x′ in a sufficiently small neighborhood
of x, |f ∗ φx′ ,t(x′)| > λ. This implies that x′ ∈ Ω, and hence Ω is open.

The next result is a pointwise variable anisotropic variant of Lemma 3.1.2 in [61].
It enables to relate maximal functions constructed over different Schwartz functions.

Theorem 6.8 ([65]). Let Θ be a continuous cover of ℝn, and let φ ∈ 𝒮 with ∫ℝn φ ̸= 0.
Then, for any ψ ∈ 𝒮, x ∈ ℝn, and t ∈ ℝ, there exists a sequence {ηk}∞k=0, η

k ∈ 𝒮, such
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that

ψ =
∞

∑
k=0

ηk ∗ φk (6.14)

converges in 𝒮, where

φk := det(M
−1
x,t+kJMx,t)

φ(M
−1
x,t+kJMx,t ⋅), k ≥ 0,

where J > 0 is given by (2.30). Furthermore, for any positive integers N, Ñ, and L, there
exists a constant c > 0, depending on φ, L, N, Ñ, p(Θ) but not on ψ, such that

η
kN ,Ñ ≤ c2

−kL‖ψ‖N+n+1+⌈L/(a6J)⌉,Ñ+n+1. (6.15)

Proof. By scaling φ we can assume without loss of generality that |φ̂(ξ )| ≥ 1/2 for
|ξ | ≤ 2. This assumption only impacts the constant in (6.15). Let ζ ∈ 𝒮 be such that 0 ≤
ζ ≤ 1, ζ ≡ 1 on B∗, and supp(ζ ) ⊆ 2B∗. We fix x ∈ ℝn and t ∈ ℝ, denoteMk := Mx,t+kJ ,
and define the sequence of functions {ζk}∞k=0, where ζ0 := ζ and

ζk := ζ ((M
−1
x,tMk)

T
⋅) − ζ ((M−1x,tMk−1)

T
⋅), k ≥ 1,

whereMT denotes the transpose of a matrixM. We claim that

supp(ζk) ⊆ {ξ ∈ ℝ
n : a−15 2−a6J2a6kJ ≤ |ξ | ≤ 2a−13 2a4kJ}. (6.16)

Indeed, by the properties of ζ , (2.30), and the “shape condition” (2.14) we have

ξ ∈ supp(ζk)⇒ (M
−1
x,tMk)

T
(ξ ) ∈ 2B∗ ∨ (M−1x,tMk−1)

T
(ξ ) ∈ 2B∗

⇒ ξ ∈ 2(M−1k Mx,t)
T
(B∗) ∨ ξ ∈ 2(M−1k−1Mx,t)

T
(B∗)

⇒ ξ ∈ 2a−13 2a4kJB∗.

In the other direction, (2.30) and the properties of ζ yield

ξ ∈ (M−1k−1Mx,t)
T
(B∗)⇒ (M−1x,tMk)

T
(ξ ), (M−1x,tMk−1)

T
(ξ ) ∈ B∗

⇒ ζk(ξ ) = 0.

Applying (2.14), we have

ξ ∉ (M−1k−1Mx,t)
T
(B∗)⇒ |ξ | ≥ a−15 2a6(k−1)J .

This proves (6.16). Also, by (2.14), for any ξ ∈ ℝn,

(M
−1
x,tMk)

Tξ  ≤
M
−1
x,tMk
|ξ | ≤ a52

−a6kJ |ξ |→ 0, k →∞.
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From this we deduce that for any ξ ∈ ℝn and for k large enough, (M−1x,tMk)
Tξ ∈ B∗. This

implies that

∞

∑
k=0

ζk(ξ ) = 1, ∀ξ ∈ ℝ
n.

Thus, formally, a Fourier transform of (6.14) is given by

ψ̂ =
∞

∑
k=0

η̂kφ̂((M−1x,tMk)
T
⋅), η̂k := ζk

φ̂((M−1x,tMk)T ⋅)
ψ̂.

Observe that ηk is well defined and is in 𝒮. Indeed, η̂k is well defined with 0/0 := 0,
since by our assumption on φ

ξ ∈ supp(ζk)⇒ ξ ∈ 2(M−1k Mx,t)
T
(B∗)

⇒ (M
−1
x,tMk)

Tξ  ≤ 2

⇒ φ̂((M
−1
x,tMk)

Tξ ) ≥
1
2
.

From this it is obvious that η̂k ∈ 𝒮, and so ηk ∈ 𝒮. We now proceed to prove (6.15).
First, observe that for any η ∈ 𝒮 and N , Ñ ∈ ℕ,

‖η‖N ,Ñ ≤ C(N , Ñ , n)‖η̂‖Ñ ,N+n+1. (6.17)

Next, we claim that for any K ∈ ℕ,

max
|α|≤K
𝜕

α(ζk/φ̂((M
−1
x,tMk)

T
⋅))∞ ≤ C(K, n,φ). (6.18)

Indeed, on its support, any partial derivative of ζk/φ̂((M−1x,tMk)
T ⋅) has a representation

of a denominator whose absolute value is bounded from below and a numerator that
is a superposition of compositions of partial derivatives of ζ and φ̂ with contractive
matrices of the type (M−1x,tMk)

T . Using (6.16), (6.17), and (6.18), we obtain

η
kN ,Ñ ≤ C

η̂k
Ñ ,N+n+1

≤ C sup
|ξ |≥a−15 2−a6J2a6kJ max

|α|≤Ñ

𝜕
αη̂k(ξ )(1 + |ξ |)

N+n+1

≤ C sup
|ξ |≥a−15 2−a6J2a6kJ max

|α|≤Ñ

𝜕
αψ̂(ξ )(1 + |ξ |)

N+n+1

= C sup
|ξ |≥a−15 2−a6J2a6kJ max

|α|≤Ñ

𝜕
αψ̂(ξ )(1 + |ξ |)

N+n+1+⌈L/(a6J)⌉(1 + |ξ |)−⌈L/(a6J)⌉
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≤ C2−kL‖ψ̂‖Ñ ,N+n+1+⌈L/(a6J)⌉
≤ C2−kL‖ψ‖N+n+1+⌈L/(a6J)⌉,Ñ+n+1.

The next lemma is needed to show that (up to a constant) the grand radial maxi-
mal function can be defined using Schwartz functions supported on B∗.

Lemma 6.9. LetΘ be a continuous cover, and let N ≥ 1. Denote by Ñ theminimal integer
that satisfies Ñ > (a4N + 1)/a6, where a4, a6 are defined by (2.14). Then there exist
constants c1, c2 > 0, which depend on p(Θ), the dimension n, and N, such that for any
ψ ∈ 𝒮N ,Ñ , x ∈ ℝ

n, and s ∈ ℝ, there exists a representation

ψx,s =
∞

∑
i=0

ϕi
x,si ,

where
(i) s0 = s and si+1 = si − J, i = 0, 1, 2, . . . , for J(p(Θ)) > 0 defined by (2.30),
(ii) ϕi ∈ 𝒮 and supp(ϕi) ⊆ B∗,
(iii) ‖ϕi‖N ,Ñ ≤ c1‖ψ‖N ,Ñ2

−c2i, where c2 := J(a6Ñ − a4N − 1) > 0.

Proof. Without loss of generality, by applying an affine transform argument we may
assume that x = 0, s = 0, and θ(x, s) = B∗. By (2.30) there exists a constant J(p(Θ)) > 0
such that

2M0,t(B
∗) ⊆ θ(0, t − J), ∀t ∈ ℝ.

Let φ ∈ 𝒮 be radial such that supp(φ) = B∗, 0 ≤ φ ≤ 1, and φ = 1 on 2−1B∗. Then
ϕ0 := ψφ, satisfies the following properties:
(i) ϕ0 ∈ 𝒮, supp(ϕ0) ⊆ B∗,
(ii) ϕ0(y) = ψ(y) on 2−1B∗ and therefore by (2.30) also on θ(0, J) ⊆ 2−1B∗,
(iii) ‖ϕ0‖N ,Ñ ≤ c̃‖ψ‖N ,Ñ .

Assume by induction that for k ≥ 0, we have constructed a seriesψk := ∑
k
i=0 ϕ

i
0,−iJ with

the following properties:
(i) ϕi ∈ 𝒮, supp(ϕi) ⊆ B∗, 0 ≤ i ≤ k,
(ii) supp(ψk) ⊆ θ(0,−kJ),
(iii) ψk = ψ on θ(0,−(k − 1)J),
(iv) ‖ϕi‖N ,Ñ ≤ c1‖ψ‖N ,Ñ2

−c2i, 0 ≤ i ≤ k.

Let

gk+1(y) :=
{{{
{{{
{

(ψ − ψk)(y), y ∈ θ(0,−kJ),
ψ(y), y ∈ θ(0,−(k + 1)J) \ θ(0,−kJ),
0 otherwise.
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Notice that gk+1(y) = 0 for y ∈ θ(0,−(k − 1)J), since by our induction process ψ = ψk
on this ellipsoid. Let

hk+1(y) := det(M0,−(k+1)J)
g
k+1(M0,−(k+1)Jy).

For ϕk+1 := hk+1φ, we have the following:
(i) ϕk+1 ∈ 𝒮, and supp(ϕk+1) ⊆ B∗,
(ii) ϕk+1(y) = hk+1(y) for y ∈ M−10,−(k+1)JM0,−kJ(B∗),
(iii) ‖ϕk+1‖N ,Ñ ≤ c̃‖h

k+1‖N ,Ñ .

Case I: y ∈ B∗ \M−10,−(k+1)JM0,−kJ(B∗). In this case,

ϕk+1(y) = det(M0,−(k+1)J)
ψ(M0,−(k+1)Jy)φ(y).

With c2 := J(a6Ñ − a4N − 1) > 0, for any α ∈ ℤn+, |α| ≤ N, using (2.13) and (2.23), we
estimate

𝜕
αϕk+1(y) ≤ C

det(M0,−(k+1)J)
max
|γ|≤N
𝜕
γ[ψ(M0,−(k+1)J ⋅)](y)



≤ C2J(k+1)(1+a4N)max
|γ|≤N
𝜕
γψ(M0,−(k+1)Jy)



≤ C2J(k+1)(1+a4N)(1 + |M0,−(k+1)Jy|)
−Ñ
‖ψ‖N ,Ñ

≤ C‖ψ‖N ,Ñ2
J(k+1)(1+a4N−a6Ñ)

≤ c1‖ψ‖N ,Ñ2
−c2(k+1).

Case II: y ∈ M−10,−(k+1)JM0,−kJ(B∗) \M−10,−(k+1)JM0,−(k−1)J(B∗). This case is similar to case I.
Case III: y ∈ M−10,−(k+1)JM0,−(k−1)J(B∗). In this case, hk+1(y) = 0, which implies
ϕk+1(y) = 0.

Note that ϕk+1
0,−(k+1)J is supported on θ(0,−(k + 1)J) \ θ(0,−(k − 1)J) with ϕ

k+1
0,−(k+1)J =

ψ − ψk on θ(0,−kJ) \ θ(0,−(k − 1)J). Therefore for

ψk+1 =
k+1
∑
i=0

ϕi
0,−iJ = ψk + ϕ

k+1
0,−(k+1)J ,

we have thatψk+1 = ψ on θ(0,−kJ). This proves the induction and concludes the proof
of the lemma.

Theorem 6.10. For any cover Θ, N ≥ 1, and Ñ > (a4N + 1)/a6, there exist constants
c1, c2 > 0, depending on the parameters of the cover N, Ñ, such that for any f ∈ 𝒮′,

M∘N ,Ñ f (x) ≤ c1 sup
ψ∈𝒮N ,Ñ ,supp(ψ)⊆B∗M∘ψf (x), x ∈ ℝn, (6.19)
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and for any f ∈ Lloc1 (ℝ
n),

M∘N ,Ñ f (x) ≤ c2MΘf (x), x ∈ ℝn. (6.20)

Therefore the maximal theorem (Theorem 6.3) also holds for M∘N ,Ñ .

Proof. To prove (6.19), let M∘ := M∘N ,Ñ , and let M
∘
C be the restriction of M∘ defined by

only using functions in 𝒮N ,Ñ with support in B∗. For any ψ ∈ 𝒮N ,Ñ , s ∈ ℝ, and x ∈ ℝ
n,

letψx,s = ∑
∞
j=1 ϕ

j
x,sj be the representation of Lemma 6.9, where ϕj are supported on B∗.

Thus

f ∗ ψx,s(x)
 ≤
∞

∑
j=1

f ∗ ϕ
j
x,sj (x)


≤ M∘Cf (x)
∞

∑
j=1

ϕ
jN ,Ñ

≤ c1M
∘
Cf (x).

Therefore

M∘f (x) = sup
ψ∈𝒮N ,Ñ sups∈ℝ

f ∗ ψx,s(x)
 ≤ c1M

∘
Cf (x).

Inequality (6.20) is a simple consequence of (6.19), and the maximal theorem for M∘

is a direct application of (6.20) and Theorem 6.3.

Our next goal is providing some results relating to the “approximation of the iden-
tity” of the pointwise anisotropic convolutions.

Theorem 6.11. Let φ ∈ L1(ℝn) with ∫φ = 1.
(i) For any f ∈ L∞(ℝn),

f ∗ φx,t(x)→ f (x) as t →∞

at each point x ∈ ℝn where f is continuous.
(ii) For any continuous f and compact domain Ω ⊂ ℝn,

f ∗ φ⋅,t(⋅) − f
L∞(Ω) → 0 as t →∞.

(iii) Assume further that φ ∈ 𝒮. Then, for any f ∈ Lp(ℝn), 1 < p <∞,

f ∗ φ⋅,t(⋅) − f
p → 0 as t →∞.
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Proof. (i) Let x ∈ ℝn be a continuity point of f , and let ε > 0. If ‖f ‖∞ = 0 we are done.
Otherwise, since φ ∈ L1 and f is bounded, there exists R > 0 such that

∫
|y|>R

|φ| ≤ ε
4‖f ‖∞
.

Since f is continuous at x, there exists δ > 0 such that

f (x) − f (y)
 ≤

ε
2‖φ‖1
, ∀y ∈ ℝn, |x − y| ≤ δ.

By (2.14)

‖Mx,t‖ ≤ a5‖Mx,0‖2
−a6t , t ≥ 0. (6.21)

This implies that there exists t0 such that for t ≥ t0,

|Mx,ty| ≤ δ, y ∈ ℝn, |y| ≤ R.

Using the above estimates and also ∫φ = 1 gives, for t ≥ t0,

f ∗ φx,t(x) − f (x)
 ≤ ∫
ℝn

f (x −Mx,ty) − f (x)

φ(y)
dy

≤ ∫
|y|≤R

f (x −Mx,ty) − f (x)

φ(y)
dy + ∫
|y|>R

f (x −Mx,ty) − f (x)

φ(y)
dy

≤ ‖φ‖1 sup
z∈ℝn ,|x−z|≤δ

f (z) − f (x)
 + 2‖f ‖∞ ∫

|y|>R

φ(y)
dy

≤ ε.

(ii) Since f is uniformly continuous on Ω, the proof is similar to that of (i), where we
use (2.26) to replace (6.21) by

‖Mx,t‖ ≤ c(Ω,p(Θ))2
−a6t , ∀x ∈ Ω, t ≥ 0.

(iii) By (6.20) and (ii), for any continuous compactly supported g ∈ C0(ℝn), we have

g(x)
 ≤ sup

t

g ∗ φx,t(x)
 ≤ CMΘg(x), ∀x ∈ ℝ

n,

and so |g ∗ φx,t(x) − g(x)| is dominated by cMΘg(x) with MΘg ∈ Lp, 1 < p < ∞. By
Lebesgue’s dominated convergence theorem from (ii) we get

g − g ∗ φ⋅,t(⋅)
p → 0 as t → 0. (6.22)
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Now, for any f ∈ Lp and ε > 0, there exists g ∈ C0(ℝn) such that ‖f − g‖p < ε. By (6.22)
there also exists t0 > 0 such that ‖g − g ∗ φ⋅,t(⋅)‖p < ε for all t ≥ t0. Applying also the
maximal function inequality (6.4), using t ≥ t0, we conclude

f − f ∗ φ⋅,t(⋅)
p ≤ ‖f − g‖p +

g − g ∗ φ⋅,t(⋅)
p +
(g − f ) ∗ φ⋅,t(⋅)

p

≤ 2ε + CMΘ(g − f )
p

≤ 2ε + C‖g − f ‖p
≤ Cε.

We have seen thatM∘N ,Ñ satisfies the maximal inequality, which also implies that
for any φ ∈ 𝒮N ,Ñ , we also have the maximal inequality, e. g., ‖M∘φf ‖p ≤ C‖f ‖p for any
f ∈ Lp, 1 < p ≤∞. The following is a converse.

Theorem 6.12. Suppose φ ∈ 𝒮, ∫φ ̸= 0, and 1 ≤ p ≤∞. If
(i) Θ is a continuous cover and f ∈ C(ℝn), or
(ii) Θ is a t-continuous cover and f ∈ 𝒮′(ℝn),

then M∘φf ∈ Lp(ℝ
n)⇒ f ∈ Lp(ℝn).

Proof. Without loss of generality, we may assume that ∫φ = 1. Let us first prove the
theorem under condition (i). Using Theorem 6.11(ii), we have that on any compact do-
main Ω ⊂ ℝn,

f ∗ φ⋅,t(⋅) − f
L∞(Ω) → 0 as t →∞. (6.23)

With this, the proof for the case p =∞ is obvious. Let 1 < p <∞. Since for any t ∈ ℝ,
‖f ∗φ⋅,t(⋅)‖p ≤ ‖M∘φf ‖p, the set {f ∗φ⋅,t(⋅)}t∈ℝ is uniformly bounded in Lp. By the Banach–
Alaoglu theorem there exists a subsequence {tk}, tk →∞ as k →∞, such that f∗φ⋅,tk (⋅)
converges weakly-∗ in Lp to f̃ ∈ Lp. Let Ω ⊂ ℝn be compact. Using (6.23) and applying
both f and f̃ as functionals in Lp(Ω) to appropriately selected test functions in C∞0 (and
hence in Lp′ ), supported in Ω, wemay deduce that f = f̃ a. e. on Ω. Since Ω is arbitrary,
we may deduce that f = f̃ also in Lp(ℝn). The proof of the case p = 1 is similar, where
by the Banach–Alaoglu theorem there exists a subsequence {tk}, tk → ∞, such that
f ∗ φ⋅,tk (⋅) converges weakly-∗ to an absolutely continuous measure. This concludes
the proof for case (i).

Now assume condition (ii). In this case, due to the strong assumption of a
t-continuous cover, the proof is similar to that of [7, Theorem 3.9]. We sketch the
case 1 < p <∞. For a t-continuous cover, we have that for fixed t ∈ ℝ, φx,t is constant
for x ∈ ℝn, which implies φt := φx,t ∈ 𝒮. Since for a t-continuous cover, the matri-
ces {Mx,t} are constant for fixed t and diam(θ(x, t)) → 0 as t → ∞, this allows us to
show that for any sequence {tk}, tk → ∞, and for f ∈ 𝒮′, f ∗ φtk → f in 𝒮′ (see [7,
Lemma 3.8]). At the same time, as in the previous case, there exists a sequence {tk},
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tk → ∞ as k → ∞, such that f ∗ φt converges weakly-∗ in Lp to f̃ ∈ Lp. Thus f = f̃ in
𝒮′ and so also in Lp.

6.2 Anisotropic Hardy spaces defined by maximal functions

Let Θ be a continuous cover of ℝn with parameters p(Θ) = (a1, . . . , a6), and let 0 < p ≤
∞. We define Np := Np(Θ) as the minimal integer satisfying

Np >
max(1, a4)n + 1
a6min(p, 1)

, (6.24)

and then Ñp := Ñp(Θ) as the minimal integer satisfying

Ñp >
a4Np(Θ) + 1

a6
. (6.25)

Definition 6.13. Let Θ be a continuous ellipsoid cover, and let 0 < p ≤ ∞. Denoting
M∘ := M∘Np ,Ñp

, we define the anisotropic Hardy space corresponding to Θ as

Hp(Θ) := {f ∈ 𝒮′ : M∘f ∈ Lp}

with the (quasi-)norm ‖f ‖Hp(Θ) := ‖M∘f ‖p.

Remarks
(i) Theorem 6.10 implies that the maximal theorem holds forM∘, and Theorem 6.12

gives a converse. Therefore, for any cover Θ and 1 < p ≤ ∞, Hp(Θ) ∼ Lp(ℝn).
Thus, exactly as in the classical isotropic case, we focus our attention on the
range 0 < p ≤ 1. Moreover, in Section 6.5, we show that in contrast to the case
1 < p ≤ ∞, the equivalence H1(Θ) ∼ H1(Θ′) holds if and only if Θ and Θ′ induce
equivalent quasi-distances.

(ii) We note again that in the general case of spaces of homogeneous type, we can
only define and analyze atomic Hardy spaces (see Section 6.3) for values of p
“close” to 1.

(iii) We will obtain in Section 6.3, through the equivalence with the anisotropic
atomic Hardy spaces, that

M
∘
N ,Ñ f
p ∼
M
∘f p, ∀N ≥ Np, Ñ ≥ Ñp, ∀f ∈ 𝒮

′, (6.26)

where the constants of equivalency do not depend on f .

Theorem 6.14. For a continuous cover Θ, Hp(Θ), 0 < p ≤ 1, is continuously embedded
in 𝒮′.
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Proof. For ψ ∈ 𝒮 and x ∈ θ(0,0), denote ψx(y) := |det(Mx,0)|ψ(−Mx,0y + x). Since
by (2.14) all of the ellipsoids θ(x,0), x ∈ θ(0,0), have “equivalent” shapes, it is not
difficult to see that there exists a constant c(p(Θ)) such that

ψ
xN ,Ñ ≤ c‖ψ‖N ,Ñ , ∀x ∈ θ(0,0).

Observe that (using notation (6.6)) for any f ∈ 𝒮′,

⟨f ,ψ⟩
 =
f ∗ ψ

x
x,0(x)
 ≤ c‖ψ‖N ,ÑM

∘f (x), ∀x ∈ θ(0,0).

Therefore, if f ∈ Hp(Θ), for any ψ ∈ 𝒮

⟨f ,ψ⟩

p
≤ C‖ψ‖p

N ,Ñ
∫

θ(0,0)

M∘f (x)pdx

≤ C‖ψ‖p
N ,Ñ
‖f ‖pHp(Θ).

Theorem 6.15. For a continuous cover Θ, Hp(Θ) is complete.

Proof. The proof is identical to that of [7, Proposition 3.12]. To prove thatHp(Θ) is com-
plete, it suffices to show that for any sequence {fi}, ‖fi‖Hp(Θ) < 2−i, i ∈ ℕ, the series∑i fi
converges inHp(Θ). Theorem 6.14 implies that fi ∈ 𝒮′ for all i and that the partial sums
are Cauchy in 𝒮′. Since 𝒮′ is complete,∑i fi converges in 𝒮′ to some f ∈ 𝒮′. Therefore


f −

M
∑
i=1

fi


p

Hp(Θ)
=


∞

∑
i=M+1

fi


p

Hp(Θ)

≤
∞

∑
i=M+1
‖fi‖

p
Hp(Θ)

≤
∞

∑
i=M+1

2−ip → 0 asM →∞.

Themain result of this section is the following generalization of the isotropic case
[41, 61] to the pointwise variable anisotropic case. It essentially determines that the
Hardy space Hp(Θ) can be equivalently determined using anisotropic convolutions
with a single Schwartz function. However, we formulate and prove a partial result for
general covers and the full equivalency in the stricter setting of t-continuous covers
(see Definition 2.12).

Theorem 6.16 ([65]). Let 0 < p ≤ 1, φ ∈ 𝒮 with ∫φ ̸= 0, and f ∈ 𝒮′. Then
(i) IfΘ is a continuous cover, then there exist constants c1, c2 > 0, which do not depend

on f , such that

M
∘
φf
p ≤ ‖Mφf ‖p ≤ c1‖f ‖Hp(Θ) ≤ c2

T
N
φ f
p, N > 1

a6p
.
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(ii) If Θ is a t-continuous ellipsoid cover, then

M∘φf ∈ Lp ⇐⇒ Mφf ∈ Lp ⇐⇒ f ∈ Hp(Θ) ⇐⇒ TNφ f ∈ Lp, N > 1
a6p
,

where the constants do not depend on f .

The proof is rather technical and requires several other auxiliary maximal func-
tions with truncations, decay terms and apertures.

Lemma 6.17. Let Θ be a pointwise continuous cover. Let F : ℝn × ℝ → (0,∞) be a
Lebesgue-measurable function. Then, for fixed aperture k ∈ ℤ and truncation t0 ∈ ℝ,
the maximal function of F,

Ft0k (x) := supt≥t0
sup

y∈θ(x,t−kJ)
F(y, t), (6.27)

is lower semicontinuous, i. e.,

{x ∈ ℝn : Ft0k (x) > λ}

is open for any λ > 0. Here J is defined by (2.30).

Proof. If Ft0k (x) > λ for x ∈ ℝ
n, then there exist t ≥ t0 and y ∈ θ(x, t − kJ) such that

F(y, t) > λ. Under the assumption that the cover Θ is pointwise continuous (see Defi-
nition 2.11), there exists δ > 0 such that if x′ ∈ B(x, δ), then y ∈ θ(x′, t − kJ). Therefore
Ft0k (x
′) ≥ F(y, t) > λ. We conclude that {x ∈ ℝn : Ft0k (x) > λ} is open.

Next, we show some estimates for Ft0k .

Lemma 6.18. Let Θ be a pointwise continuous cover, and let Ft0k be as in (6.27). There
exists a constant c > 0 such that for any k′ < k, t0 < 0, and λ > 0, we have

{x ∈ ℝ
n : Ft0k (x) > λ}

 ≤ c2
(k−k′)J {x ∈ ℝn : Ft0k′ (x) > λ} (6.28)

and

∫
ℝn

Ft0k ≤ c2
(k−k′)J ∫

ℝn

Ft0k′ . (6.29)

Proof. Let Ω := {x ∈ ℝn : Ft0k′ (x) > λ}. We claim that there exists c1(p(Θ)) > 0 such that

{x ∈ ℝn : Ft0k (x) > λ} ⊆ {x ∈ ℝ
n : MΘ(1Ω)(x) ≥ c12

(k′−k)J}. (6.30)
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Under this assumption, applying the weak-L1 maximal inequality (6.3) gives (6.28) by

{x ∈ ℝ
n : Ft0k (x) > λ}

 ≤
{x ∈ ℝ

n : MΘ(1Ω)(x) ≥ c12
(k′−k)J}

≤ Cc−11 2(k−k
′)J‖1Ω‖1

= Cc−11 2(k−k
′)J {x ∈ ℝn : Ft0k′ (x) > λ}.

Integrating (6.28) on (0,∞) with respect to λ yields (6.29).
Thus it remains to prove (6.30). Let x ∈ ℝn with Ft0k (x) > λ. Then there exist t ≥ t0

and y ∈ θ(x, t − kJ) such that F(y, t) > λ. We claim that

a−15 ⋅ θ(y, t − k
′J) = y + a−15 My,t−k′J(B∗) ⊆ θ(x, t − kJ − γ) ∩ Ω, (6.31)

where γ is given by Lemma 2.18. Since a5 ≥ 1, if z ∈ a−15 ⋅θ(y, t−k
′J), then z ∈ θ(y, t−k′J).

Since k′ < k, using Lemma 2.18 gives that z ∈ θ(x, t − kJ − γ). This also means that
θ(z, t − k′J) ∩ θ(y, t − k′J) ̸= 0, and we may apply (2.14) to obtain ‖M−1z,t−k′JMy,t−k′J‖ ≤ a5.
From this we have

a−15 My,t−k′J(B∗) ⊆ Mz,t−k′J(B∗)
and

y ∈ z + a−15 My,t−k′J(B∗) ⊆ z +Mz,t−k′J(B∗) = θ(z, t − k′J).
We may deduce that Ft0k′ (z) ≥ F(y, t) > λ, which implies that z ∈ Ω and proves (6.31).
By (6.31) we have

θ(x, t − kJ − γ) ∩ Ω
 ≥ a
−n
5
θ(y, t − k

′J) ≥
a1
an5

2k
′J−t .

We apply this to conclude (6.30) by

MΘ(1Ω)(x) ≥
1

|θ(x, t − kJ − γ)|
∫

θ(x,t−kJ−γ)

1Ω(y)dy

≥ a−12 2t−kJ−γθ(x, t − kJ − γ) ∩ Ω


≥
a1

a2an52γ
2(k
′−k)J

=: c12
(k′−k)J .

Next, we define pointwise variable anisotropic maximal functions that are trun-
cated by t ≥ t0 and contain additional decay terms with a decay parameter L:

M∘(t0 ,L)φ f (x) := sup
t≥t0

f ∗ φx,t(x)
(1 +
M
−1
x,t0x
)
−L
(1 + 2t+t0)−L,
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M(t0 ,L)φ f (x) := sup
t≥t0

sup
y∈θ(x,t)

f ∗ φx,t(y)
(1 +
M
−1
x,t0y
)
−L
(1 + 2t+t0)−L,

TN(t0 ,L)φ f (x) := sup
t≥t0

sup
y∈ℝn

|f ∗ φx,t(y)|
(1 + |M−1x,t(x − y)|)N (1 + 2t+t0 )L(1 + |M

−1
x,t0y|)

L ,

M∘(t0 ,L)
N ,Ñ

f (x) := sup
φ∈𝒮N ,Ñ M∘(t0 ,L)φ f (x),

M(t0 ,L)
N ,Ñ

f (x) := sup
φ∈𝒮N ,Ñ M(t0 ,L)φ f (x).

Lemma 6.19. LetΘ be a t-continuous cover, p > 0, N > 1/(a6p), and φ ∈ 𝒮. There exists
a constant c > 0 such that for any t0 < 0, L ≥ 0, and f ∈ 𝒮′,

T
N(t0 ,L)
φ f p ≤ c

M
(t0 ,L)
φ f p.

Proof. Under the strict assumption of a t-continuous cover, we may assume that
Mx,t := Mt is constant for all x ∈ ℝn and denote φx,t := φt . Then we consider the
function

F(y, t) := f ∗ φt(y)

p
(1 + M

−1
t0 y
)
−pL
(1 + 2t+t0)−pL.

Let Ft00 be as in (6.27). Observe that Ft00 = (M
(t0 ,L)
φ f )p. Then for t ≥ t0 and y ∈ θ(x, t),

F(y, t)(1 + M
−1
t (x − y)

)
−pN
≤ F(y, t) ≤ Ft00 (x).

When y ∈ θ(x, t − kJ) \ θ(x, t − (k − 1)J), for some k ≥ 1, we have

M−1t (x − y) ̸∈ M
−1
t Mt−(k−1)J(B

∗). (6.32)

By the shape condition (2.14)

M−1t−(k−1)JMt(B
∗) ⊆ a52

−a6(k−1)JB∗ ⇒ a−15 2a6(k−1)JB∗ ⊆ M−1t Mt−(k−1)J(B
∗).

Combining this with (6.32) gives

M
−1
t (x − y)

 ≥ a
−1
5 2a6(k−1)J .

Therefore, for any t ≥ t0,

F(y, t)(1 + M
−1
t (x − y)

)
−pN
≤ apN5 2−pNa6(k−1)JFt0k (x).

Taking the supremum over all y ∈ ℝn and t ≥ t0 yields

(TN(t0 ,L)φ f (x))p ≤ C
∞

∑
k=0

2−pNa6kJFt0k (x).
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We combine this with (6.29), the conditionN > (pa6)−1, and the observation that F
t0
0 =

(M(t0 ,L)φ f )p to conclude

T
N(t0 ,L)
φ

p
p ≤ C

∞

∑
k=0

2−pNa6kJ ∫
ℝn

Ft0k

≤ C
∞

∑
k=0

2−pNa6kJ2kJ ∫
ℝn

Ft00

≤ CM
(t0 ,L)
φ f 

p
p.

Lemma 6.20. Let Θ be a continuous cover, φ ∈ 𝒮, ∫ℝn φ ̸= 0, and f ∈ 𝒮
′. Then for any

N, L, there exist 0 < U ≤ Ũ, U ≥ Np, Ũ ≥ Ñp, large enough and a constant c > 0 such
that for any t0 < 0,

M∘(t0 ,L)
U ,Ũ

f (x) ≤ cTN(t0 ,L)φ f (x), ∀x ∈ ℝn, (6.33)

and

M∘U ,Ũ f (x) ≤ cT
N
φ f (x), ∀x ∈ ℝ

n. (6.34)

Proof. Wewill prove (6.33). The proof of (6.34) is almost identical and simpler. By The-
orem 6.8, for any ψ ∈ 𝒮, x ∈ ℝn, and t ∈ ℝ, there exists a sequence {ηk}∞k=0, η

k ∈ 𝒮,
that satisfies (6.14),

ψ =
∞

∑
k=0

ηk ∗ φk ,

where

φk := det(M
−1
x,t+kJMx,t)

φ(M
−1
x,t+kJMx,t ⋅), k ≥ 0.

Furthermore, for any positive integers U, Ũ, and V ,

η
kU ,Ũ ≤ C2

−kV ‖ψ‖U+n+1+⌈V/(a6J)⌉,Ũ+n+1, (6.35)

where the constant depends on φ, U, Ũ, V , p(Θ) but not on ψ. DenotingMk := Mx,t+kJ
for t ≥ t0, this implies

f ∗ ψx,t(x)


=

[f ∗
∞

∑
k=0
(ηk ∗ φk)x,t](x)
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=

[f ∗
∞

∑
k=0

det(M
−1
k )
 ∫
ℝn

ηk(y)φ(M−1k (⋅ −Mx,ty))dy](x)


=

[f ∗
∞

∑
k=0

det(M
−1
k )
 ∫
ℝn

(ηk)x,t(y)φ(M
−1
k (⋅ − y))dy](x)



=


∞

∑
k=0
[f ∗ (ηk)x,t ∗ φx,t+kJ](x)



≤
∞

∑
k=0
∫
ℝn

f ∗ φx,t+kJ(x − y)

(η

k)x,t(y)
dy

≤ TN(t0 ,L)φ f (x)
∞

∑
k=0
∫
ℝn

(1 + M
−1
k y)

N
(1 + M

−1
x,t0 (x − y)

)
L
(1 + 2t+t0+kJ)L(η

k)x,t(y)
dy.

Thus we derive

M∘(t0 ,L)ψ f (x)

≤ TN(t0 ,L)φ f (x) sup
t≥t0

∞

∑
k=0
∫
ℝn

(1 + |M−1k y|)N (1 + |M−1x,t0 (x − y)|)
L(1 + 2t+t0+kJ)L

(1 + |M−1x,t0x|)
L(1 + 2t+t0 )L

(η
k)x,t(y)
dy

=: TN(t0 ,L)φ f (x) sup
t≥t0

∞

∑
k=0

It,k .

Let us now estimate It,k for t ≥ t0 and k ≥ 0. We begin with simple observations that

(1 + 2t+t0+kJ)L

(1 + 2t+t0 )L
≤ 2kJL,

and

(1 + |M−1x,t0 (x − y)|)
L

(1 + |M−1x,t0x|)
L ≤ (1 +

M
−1
x,t0y
)
L
, ∀x, y ∈ ℝn.

Therefore, using also (2.14) for t ≥ t0, we get

It,k ≤ C2
t+kJL ∫
ℝn

(1 + M
−1
k y)

N
(1 + M

−1
x,t0y
)
Lη

k(M−1x,ty)
dy

≤ C2kJL ∫
ℝn

(1 + M
−1
k Mx,t
|y|)

N
(1 + M

−1
x,t0Mx,t
|y|)

Lη
k(y)dy

≤ C2kJ(L+a4N) ∫
ℝn

(1 + |y|)N+Lη
k(y)dy

≤ C2kJ(L+a4N)η
k0,N+L+n+1.
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We now apply (6.35) with V := ⌈J(L + a4N)⌉ + 1, which gives

It,k ≤ C2
−k‖ψ‖n+1+⌈V/(a6J)⌉,N+L+2n+2.

This yields that for any ψ ∈ 𝒮U ,Ũ where U := max(Np, n + 1 + ⌈V/(a6J)⌉) and Ũ :=
max(Ñp,N + L + 2n + 2),

M∘(t0 ,L)ψ f (x) ≤ CTN(t0 ,L)φ f (x), ∀x ∈ ℝn,

and taking the supremum over ψ ∈ 𝒮U ,Ũ allows us to get (6.33).

The next lemma shows the technical role of the decay parameter L. It is required
to ensure the integrability in Lp ofM

(t0 ,L)
φ f for a given pair φ ∈ 𝒮 and f ∈ 𝒮′.

Lemma 6.21. Let Θ be a t-continuous cover. Then, for any φ ∈ 𝒮, f ∈ 𝒮′, N > 0, and
t0 < 0, there exist L > 0 and N ′ > 0 large enough such that

M(t0 ,L)φ f (x) ≤ c2−t0(2a4N
′+2L+a4L)(1 + |x|)−N , ∀x ∈ ℝn,

where c depends on p(Θ), φ, N ′, and f .

Proof. Since f ∈ 𝒮′, there exist a constant c(f ) and a parameter N ′ such that for any
φ ∈ 𝒮,

f ∗ φ(y)
 ≤ c(f )‖φ‖N ′ ,N ′(1 + |y|)N ′ .

Under the strict assumption of a t-continuous cover, we may again use the notation
Mx,t := Mt and φx,t := φt for x ∈ ℝn. Thus, for any t0 < 0, t ≥ t0, and y ∈ ℝn,

f ∗φt(y)
(1+
M
−1
t0 y
)
−L
(1+ 2t+t0)−L ≤ C2−L(t+t0)‖φt‖N ′ ,N ′(1+ |y|)N ′(1+ M−1t0 y)−L. (6.36)

We first estimate ‖φt‖N ′ ,N ′ :
‖φt‖N ′ ,N ′ ≤ det(M−1t ) sup

z∈ℝn
sup
|α|≤N ′(1 + |z|)N

′ 𝜕α[φ(M−1t ⋅)](z)
≤ C2t sup

z∈ℝn
sup
|α|≤N ′(1 + |Mtz|)

N ′M−1t |α|𝜕αφ(z).
We consider two cases.
Case I: t ≥ 0. By (2.14) we have

M
−1
t
 ≤
M
−1
t M0

M
−1
0
 ≤ a
−1
3 2a4tM

−1
0
 ≤ C2

a4t .

Also,

|Mtz| ≤ ‖M0‖
M
−1
0 Mt
|z| ≤ ‖M0‖2

−a6t |z| ≤ C|z|. (6.37)
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So in this case,

‖φt‖N ′ ,N ′ ≤ C2t2a4tN ′‖φ‖N ′ ,N ′ . (6.38)

Case II: t0 ≤ t < 0. Appealing to (2.14) we have

M
−1
t
 ≤
M
−1
t M0

M
−1
0
 ≤ a52

a6tM
−1
0
 ≤ C

and

|Mtz| ≤ ‖M0‖a
−1
3 2−a4t |z| ≤ C2−a4t0 |z|. (6.39)

We combine these two estimates for the case t0 ≤ t < 0 to derive

‖φt‖N ′ ,N ′ ≤ C2t2−a4t0N ′‖φ‖N ′ ,N ′ . (6.40)

For any N ≥ 1, let L := N + N ′. Using estimates (6.38) and (6.40), for t0 < 0 and t ≥ t0,
we have

2−L(t+t0)‖φt‖N ′ ,N ′ ≤ C2−t0(a4N ′+2L)‖φ‖N ′ ,N ′ .
Inserting this into (6.36), we get

f ∗φt(y)
(1+
M
−1
t0 y
)
−L
(1+2t+t0)−L ≤ C2−t0(a4N

′+2L)‖φ‖N ′ ,N ′(1+|y|)N ′(1+M−1t0 y)−L. (6.41)
Now for any y ∈ θ(x, t), there exists z ∈ B∗ such that y = Mtz + x. We may use (6.37)
and (6.39) to bound |Mtz| ≤ C2−a4t0 , and so

1 + |y| ≤ (1 + |x|)(1 + |Mtz|) ≤ C2
−a4t0(1 + |x|). (6.42)

We also need a sort of inverse using x = y −Mtz and t ≥ t0:

1 + |x| ≤ 1 + ‖M0‖
M
−1
0 Mt0

M
−1
t0 x


≤ C2−a4t0(1 + M
−1
t0 x
)

≤ C2−a4t0(1 + M
−1
t0 y
)(1 +
M
−1
t0 Mt
|z|)

≤ C2−a4t0(1 + M
−1
t0 y
)(1 + a52

−a6(t−t0))

≤ C2−a4t0(1 + M
−1
t0 y
).

So we obtain

1 + M
−1
t0 y
 ≥ C2

a4t0(1 + |x|). (6.43)
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We now plug (6.42) and (6.43) into (6.41) and use L := N + N ′ to obtain

f ∗ φt(y)
(1 +
M
−1
t0 y
)
−L
(1 + 2t+t0)−L ≤ C2−t0(a4N

′+2L)2−a4t0N ′(1 + |x|)N ′2−a4t0L(1 + |x|)−L
≤ C2−t0(2a4N

′+2L+a4L)(1 + |x|)−N ,
where the constant depends on f , φ, N ′, and p(Θ). Taking the supremum over all y ∈
θ(x, t) and t ≥ t0 provides the required estimate forM(t0 ,L)φ f (x) and concludes the proof.

Proof of Theorem 6.16. Let φ ∈ 𝒮 with ∫ℝn φ ̸= 0, and let f ∈ 𝒮′. We first assume the
general casewhereΘ is a continuous cover.Using the simplepointwise estimates (6.12)
and (6.13), we have that

M
∘
φf
p ≤ ‖Mφf ‖p ≤ 2

NT
N
φ f
p,

and if f ∈ Hp(Θ), then

M
∘
φ
p ≤ ‖Mφf ‖p ≤ ‖MNp ,Ñp

f ‖p ≤ c
M
∘f p = c‖f ‖Hp(Θ) <∞.

Then, applying first (6.26) and then (6.34), we also get that for sufficiently largeU ≥ Np
and Ũ ≥ Ñp,

‖f ‖Hp(Θ) ≤ c1
M
∘
U ,Ũ f
p ≤ c2
T

N
φ f
p, N > 1

a6p
.

This concludes the proof of Theorem 6.16(i). From this point we assume the particular
case of a t-continuous cover and proceed to prove (ii). By Lemma 6.19 applied with
L = 0 we have

T
N(t0 ,0)
φ f p ≤ C

M
(t0 ,0)
φ f p.

Taking the limit as t0 → −∞, by the monotone convergence theorem we get

T
N
φ f
p ≤ C‖Mφf ‖p.

We now apply Lemma 6.20 with N > 1/(a6p), and L = 0 and Lemma 6.19 with L = 0,
to conclude there exist 0 < U ≤ Ũ, U ≥ Np, Ũ ≥ Ñp, large enough, such that for any
f ∈ 𝒮′ and t0 < 0,

M
∘(t0 ,0)
U ,Ũ

f p ≤ C
M
(t0 ,0)
φ f p.

Taking the limit as t0 → −∞, by the monotone convergence theorem we get

M
∘
U ,Ũ f
p ≤ C‖Mφf ‖p.
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From this and (6.26) we derive that

‖f ‖Hp(Θ) =
M
∘
Np ,Ñp

p

≤ CM
∘
U ,Ũ f
p

≤ C‖Mφ‖p.

It remains to show that

‖Mφf ‖p ≤ C
M
∘
φf
p.

Assume that M∘φf ∈ Lp. Note that at this point, we do not know if Mφf ∈ Lp. That is
why we now must proceed (exactly as in the classical isotropic case) with the trun-
cated maximal functions with the decay terms. Thus, taking 0 < U ≤ Ũ, U ≥ Np,
Ũ ≥ Ñp, large enough, by applying the pointwise estimate of Lemma 6.20 and then
Lemma 6.19, for any given t0 < 0, we have

M
∘(t0 ,L)
U ,Ũ

f p ≤ C1
M
(t0 ,L)
φ f p, (6.44)

where L > 0 is chosen large enough (not depending on t0) to fulfill the conditions
of Lemma 6.21 for N > n/p, ensuring that the right-hand side of (6.44) is finite. With
C2 := 21/pC1, denote

Ωt0 := {x ∈ ℝ
n : M∘(t0 ,L)

U ,Ũ
f (x) ≤ C2M

(t0 ,L)
φ f (x)}. (6.45)

We claim that

∫
ℝn

(M(t0 ,L)φ f )p ≤ 2 ∫
Ωt0

(M(t0 ,L)φ f )p. (6.46)

Indeed, on ℝn \ Ωt0 , by (6.44) and (6.45) we have

∫
ℝn\Ωt0

(M(t0 ,L)φ f )p ≤ C−p2 ∫
ℝn\Ωt0

(M∘(t0 ,L)
U ,Ũ

f )p

≤
1
2
∫
ℝn

(M(t0 ,L)φ f )p,

and so we may obtain (6.46) by the standard “trick”

∫
ℝn

⋅ = ∫
Ωt0

⋅ + ∫
ℝn\Ωt0

⋅ ≤ ∫
Ωt0

⋅ +
1
2
∫
ℝn

⋅⇒ ∫
ℝn

⋅ ≤ 2 ∫
Ωt0

⋅ .
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Our next step is showing that for 0 < q < p, there exists a constant C3 > 0 such that
for any x ∈ Ωt0 and t0 < 0,

M(t0 ,L)φ f (x) ≤ C3[MΘ(M
∘(t0 ,L)
φ f )q(x)]1/q, (6.47)

whereMΘ is the anisotropic maximal function (6.1). To accomplish, we first recall that
under the strict assumption of a t-continuous cover, we may assume thatMx,t := Mt is
constant for all x ∈ ℝn and denote φx,t := φt . Now we define

F(y, t) := f ∗ φt(y)
(1 +
M
−1
t0 y
)
−L
(1 + 2t+t0)−L, t ≥ t0, y ∈ ℝ

n.

Let Ft00 (x) be as in (6.27) with k = 0, and let x ∈ ℝ
n. Then there exists t′ ∈ ℝwith t′ ≥ t0

and y′ ∈ θ(x, t′) such that

F(y′, t′) ≥
Ft00 (x)
2
=
M(t0 ,L)φ f (x)

2
. (6.48)

Let x′ ∈ θ(y′, t′ + kJ) for some sufficiently large k ≥ 1 to be specified later. This implies
that

M−1t′ (x′ − y′) ∈ M−1t′ Mt′+kJ(B∗). (6.49)

Denote

Φ(z) := φ(z +M−1t′ (x′ − y′)) − φ(z).
Obviously, we have

f ∗Φt′(y′) = f ∗ φt′(x′) − f ∗ φt′(y′). (6.50)

Using (6.49) and the mean value theorem, we may estimate

‖Φ‖U ,Ũ ≤ sup
h∈M−1

t′ Mt′+kJ (B∗)
φ(⋅ + h) − φ

U ,Ũ

= sup
h∈M−1

t′ Mt′+kJ (B∗) supz∈ℝn
sup
|α|≤U
(1 + |z|)Ũ 𝜕

αφ(z + h) − 𝜕αφ(z)

≤ CM
−1
t′ Mt′+kJ sup

w∈M−1
t′ Mt′+kJ (B∗) supz∈ℝn

sup
|α|≤U+1
(1 + |z|)Ũ 𝜕

αφ(z + w).

The shape condition (2.14) gives that

M
−1
t′ Mt′+kJ ≤ a52−a6kJ ⇒ |w| ≤ a52−a6kJ ,
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which for k ≥ 0 also implies

1 + |z| = 1 + |z + w − w| ≤ (1 + |z + w|)(1 + |w|) ≤ C(1 + |z + w|).

We now plug these estimates

‖Φ‖U ,Ũ ≤ C2
−a6kJ sup

z,w∈ℝn
sup
|α|≤U+1
(1 + |z + w|)Ũ 𝜕

αφ(z + w)

≤ C2−a6kJ‖φ‖U+1,Ũ
≤ C42
−a6kJ ,

where C4 depends on p(Θ), U, Ũ, and φ.
Let z ∈ B∗ be such that x′ = y′ +Mt′+kJz. Applying (2.14), for t′ ≥ t0 and k ≥ 0, we

have

1 + M
−1
t0 x
′ = 1 +
M
−1
t0 (y
′ +Mt′+kJz)

≤ (1 + M
−1
t0 y
′)(1 +
M
−1
t0 Mt′+kJ|z|)

≤ (1 + M
−1
t0 y
′)(1 + a52

−a6(t′−t0+kJ))
≤ (1 + a5)(1 +

M
−1
t0 y
′).

Let x ∈ Ωt0 . Using these last two estimates together with (6.50), (6.48), and (6.45), we
obtain

(1 + a5)
LF(x′, t′) = (1 + a5)

Lf ∗ φt′(x′)(1 + M−1t0 x′)−L(1 + 2t′+t0)−L
= (1 + a5)

Lf ∗ φt′(y′) + f ∗Φt′(y′)(1 + M−1t0 x′)−L(1 + 2t′+t0)−L
≥ (f ∗ φt′(y′) − f ∗Φt′(y′))(1 + M−1t0 y′)−L(1 + 2t′+t0)−L
≥
M(t0 ,L)φ f (x)

2
−M(t0 ,L)

U ,Ũ
f (x)‖Φ‖U ,Ũ

≥
M(t0 ,L)φ f (x)

2
− 2ŨM∘(t0 ,L)

U ,Ũ
f (x)C42

−a6kJ

≥
M(t0 ,L)φ f (x)

2
− 2ŨC2M

(t0 ,L)
φ f (x)C42

−a6kJ .

Now choose k large enough such that 2ŨC2C42−a6kJ ≤ 1/4. This yields that for x ∈ Ωt0 ,
x′ ∈ y′ +Mt′+kJ(B∗), and y′ ∈ θ(x, t′),

(1 + a5)
LF(x′, t′) ≥

M(t0 ,L)φ f (x)
4
.
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We also have

x′ ∈ y′ +Mt′+kJ(B∗) ⊆ x +Mt′(B∗) +Mt′+kJ(B∗) ⊆ x + 2Mt′(B∗) ⊆ θ(x, t′ − J).
Thus we are able to conclude (6.47) from

[M(t0 ,L)φ f (x)]q ≤ C
|Mt′+kJ(B∗)| ∫

y′+Mt′+kJ (B∗)
[Fx(x
′, t′)]qdx′

≤ C 2kJ

|θ(x, t′ − J)|
∫

θ(x,t′−J)[M
∘(t0 ,L)
φ f (z)]qdz

≤ C3MΘ([M
∘(t0 ,L)
φ f ]q)(x).

Consequently, (6.46), (6.47), and the maximal inequality for p/q > 1 yield

∫
ℝn

[M(t0 ,L)φ f (x)]pdx ≤ 2 ∫
Ωt0

[M(t0 ,L)φ f (x)]pdx

≤ C ∫
Ωt0

[MΘ([M
∘(t0 ,L)
φ f ]q)(x)]p/qdx

≤ C ∫
ℝn

[M∘(t0 ,L)φ f (x)]pdx.

Recalling that L does not depend on t0 < 0, we may now take the limit as t0 → −∞.
Observe that as t0 → −∞, the decay terms of M(t0 ,L)φ and M∘(t0 ,L)φ converge pointwise
to 1. Indeed, for any y ∈ ℝn and t0 < 0, using (2.14), we have

M
−1
t0 y
 =
M
−1
t0 M0M

−1
0 y

≤ M
−1
t0 M0
‖M0‖|y|

≤ a52
a6t0‖M0‖|y|→ 0, t0 → −∞.

This gives ‖Mφf ‖p ≤ C‖M∘φf ‖p, where the constant does not depend on f ∈ 𝒮
′. This

concludes the proof of (ii).

6.3 Anisotropic atomic spaces

As in the classical case, the anisotropic Hardy spaces can be characterized and then
investigated through the atomic decompositions [31]. In the general setting of a space
of homogeneous type X, equipped with a quasi-distance ρ and measure μ, a (p,∞, 1)-
atom a is a function with the following properties:
(i) supp(a) ⊆ Bρ, where Bρ is a ball subject to the quasi-distance ρ,
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(ii) ‖a‖∞ ≤ μ(Bρ)−1/p,
(iii) ∫ adμ = 0.

We then may proceed (in the same manner we do below) to define the atomic space
H1
∞,1(X) through decompositions of atoms of the type ∑i λiai, where {ai} are atoms,

and ∑i |λi| < ∞ [20]. However, in this general framework, for smaller values of p,
the atoms lack the power of higher vanishing moments, which come into play in the
classic setting of ℝn and the Euclidean distance. In the setting of ellipsoid covers, we
are able to generalize the Euclidean case to the full range 0 < p ≤ 1.

Definition 6.22. For a cover Θ, we say that a triple (p, q, l) is admissible if 0 < p ≤ 1,
1 ≤ q ≤ ∞, p < q, and l ∈ ℕ is such that l ≥ Np(Θ) (see (6.24)). A (p, q, l)-atom is a
function a : ℝn → ℝ such that
(i) supp(a) ⊆ θ for some θ ∈ Θ,
(ii) ‖a‖q ≤ |θ|1/q−1/p,
(iii) ∫ℝn a(y)y

αdy = 0 for all α ∈ ℤn+ such that |α| ≤ l.

Definition 6.23. LetΘbe a continuous ellipsoid cover, and let (p, q, l)be an admissible
triple. We define the atomic Hardy space Hp

q,l(Θ) associated with Θ as the set of all
tempered distributions f ∈ 𝒮′ of the form f = ∑∞i=1 λiai, where ∑

∞
i=1 |λi|

p <∞, and ai is
a (p, q, l)-atom for every i ∈ ℕ. The atomic quasi-norm of f is defined as

‖f ‖Hp
q,l(Θ) := inf{(

∞

∑
i=1
|λi|

p)

1/p

: f =
∞

∑
i=1

λiai}.

Our main goal is to prove the following:

Theorem 6.24 ([31]). Let Θ be a pointwise continuous ellipsoid cover, and let (p, q, l) be
an admissible triple. Then

Hp(Θ) ∼ Hp
q,l(Θ).

The proof of the theorem is composed of two inclusions proved in Theorems 6.26
and 6.43.

6.3.1 The inclusion Hp
q,l(Θ) ⊆ Hp(Θ)

First, we prove that each admissible atom is in Hp(Θ).

Theorem 6.25. Suppose (p, q, l) is admissible for a continuous coverΘ. Then there exists
a constant c(p, q, l, n,p(Θ)) > 0 such that for any (p, q, l)-atom a, ‖M∘a‖p ≤ c.
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Proof. Let θ(z, t) be the ellipsoid associated with an atom a, where z ∈ ℝn and t ∈ ℝ.
We estimate the integral of the function (M∘a)p separately on θ(z, t − J) and on θ(z, t −
J)c, where J is from (2.30).

We begin with the estimate of ∫θ(z,t−J)(M
∘a)p. There are two cases, q > 1 and q = 1.

We start with 1 < q < ∞. Since p ≤ 1, we have q/p > 1, and by the Hölder inequality
we have

∫
θ(z,t−J)

(M∘a)p ≤ ( ∫
θ(z,t−J)

(M∘a)q)
p/q
θ(z, t − J)


1−p/q
. (6.51)

Applying Theorem 6.10 and then property (ii) in Definition 6.22 gives

( ∫
θ(z,t−J)

(M∘a)q)
p/q
≤ M
∘a

p
Lq(ℝn)

≤ C‖a‖pq
≤ Cθ(z, t − J)


p/q−1
,

which, combined with (6.51), gives ∫θ(z,t−J)(M
∘a)p ≤ C. The case q =∞ is simpler.

The second case is q = 1. Since p < q, we have p < 1. Let us denote ωλ := {x ∈ ℝn :
M∘a(x) > λ} for λ > 0. By the maximal theorem we have that

|ωλ| ≤
C
λ
‖a‖1,

which, combined with property (ii) in Definition 6.22, gives

ωλ ∩ θ(z, t − J)
 ≤

C
λ
θ(z, t − J)


1−1/p
.

We use this estimate and p < 1 to obtain

∫
θ(z,t−J)

(M∘a(x))pdx =
∞

∫
0

ωλ ∩ θ(z, t − J)
pλ

p−1dλ

≤

|θ(z,t−J)|−1/p
∫
0

θ(z, t − J)
pλ

p−1dλ

+ C
∞

∫

|θ(z,t−J)|−1/p
θ(z, t − J)


1−1/ppλp−2dλ

≤ C.
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Wenowestimate∫θ(z,t−J)c (M
∘a)p. For every k ≥ 1,wehave that θ(z, t−kJ+J) ⊂ θ(z, t−kJ),

where J is from (2.30). Applying (2.13) gives

∫
θ(z,t−J)c
(M∘a(x))pdx =

∞

∑
k=2

∫
θ(z,t−kJ)\θ(z,t−kJ+J)

(M∘a(x))pdx

≤ C
∞

∑
k=2

2−t2kJ sup
x∈θ(z,t−kJ)\θ(z,t−kJ+J)

(Ma(x))p.

Therefore, to prove the theorem, it is sufficient to show that

sup
x∈θ(z,t−kJ)\θ(z,t−kJ+J)

(M∘a(x))p ≤ c12
t2−c2k (6.52)

for every k ≥ 2, where c2 > J. Furthermore, by (6.19) it is sufficient to prove

sup
ψ∈𝒮Np ,Ñp ,supp(ψ)⊆(B∗) sups∈ℝ

sup
x∈θ(z,t−kJ)\θ(z,t−kJ+J)

a ∗ ψx,s(x)

p
≤ c12

t2−c2k . (6.53)

Therefore let ψ ∈ 𝒮Np ,Ñp
with supp(ψ) ⊆ B∗, s ∈ ℝn, and x ∈ θ(z, t − kJ) \ θ(z, t − kJ + J).

Since supp(a) ⊆ θ(z, t) and supp(ψx,s(x − ⋅)) ⊆ θ(x, s), if θ(z, t) ∩ θ(x, s) = 0, then
a ∗ ψx,s(x) = 0. Thus we may assume that

θ(z, t) ∩ θ(x, s) ̸= 0. (6.54)

Suppose P is a polynomial (to be chosen later) of order Np(Θ). Applying (2.13), the
vanishingmoments property of atoms (Definition 6.22), and the Hölder inequality, for
1 < q ≤∞, we have

a ∗ ψx,s(x)
 ≤ C2

s

∫
ℝn

a(y)ψ(M−1x,s(x − y))dy


≤ C2s

∫
ℝn

a(y)(ψ(M−1x,s(x − y)) − P(M
−1
x,s(x − y)))dy



≤ C2s ∫
θ(z,t)

a(y)

ψ(M
−1
x,s(x − y)) − P(M

−1
x,s(x − y))

dy

≤ C2s‖a‖q( ∫
θ(z,t)

ψ(M
−1
x,s(x − y)) − P(M

−1
x,s(x − y))


q′dy)1/q′

≤ C2s‖a‖q2
−s/q′( ∫

F(θ(z,t))

ψ(y) − P(y)

q′dy)1/q′ ,
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where 1/q + 1/q′ = 1, and

F(θ(z, t)) := M−1x,s(x − [Mz,t(B
∗) + z]) = M−1x,s(x − z) −M

−1
x,sMz,t(B

∗).

Therefore

a ∗ ψx,s(x)

p
≤ C2sp/q‖a‖pq

F(θ(z, t))

p/q′ sup

y∈F(θ(z,t))

ψ(y) − P(y)

p

≤ C2t2(s−t)p/qM
−1
x,sMz,t(B

∗)
p/q′

sup
y∈F(θ(z,t))

ψ(y) − P(y)

p
.

A similar and simpler calculation for q = 1 provides the corresponding estimate

a ∗ ψx,s(x)

p
≤ C2t2(s−t)p sup

y∈F(θ(z,t))

ψ(y) − P(y)

p
.

We now analyze the set F(θ(z, t)). We know that

F(θ(z, t)) = M−1x,s(x − z) −M
−1
x,sMz,t(B

∗),

where

x ∈ θ(z, t − kJ) \ θ(z, t − kJ + J) = Mz,t−kJ(B
∗) \Mz,t−kJ+J(B

∗) + z,

which implies that

x − z ∈ Mz,t−kJ(B
∗) \Mz,t−kJ+J(B

∗).

Therefore

F(θ(z, t)) ⊂ [M−1x,sMz,t−kJ(B
∗) \M−1x,sMz,t−kJ+J(B

∗)] −M−1x,sMz,t(B
∗). (6.55)

Since (2.30) gives for k ≥ 2,

M−1x,sMz,t(B
∗) ⊆ (1/2)M−1x,sMz,t−kJ+J(B

∗),

we have

F(θ(z, t)) ⊆ ((1/2)M−1x,sMz,t−kJ+J(B
∗))

c
. (6.56)

Case 1: t ≤ s. We choose P = 0 and estimate the term |M−1x,sMz,t(B∗)|p/q
′
for q > 1. From

(2.14) and (6.54) we induce that

M−1x,sMz,t(B
∗) ⊂ a−13 2a4(s−t)B∗,
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which implies that

M
−1
x,sMz,t(B

∗)
p/q′
≤ C2a4(s−t)np/q

′
. (6.57)

Using (6.56), (6.57), and ψ ∈ 𝒮Np ,Ñp
⊂ 𝒮Np ,Np

, we derive

a ∗ ψx,s(x)

p
≤ C2t2(s−t)(p/q+na4p/q

′) sup
y∈F(θ(z,t))

(1 + |y|)−pNp . (6.58)

We now estimate the term

sup
y∈F(θ(z,t))

(1 + |y|)−pNp .

Since 2 ≤ k and t ≤ s, we have t − kJ + J ≤ s, which implies by (6.56) and (2.14) that for
y ∈ F(θ(z, t)),

|y| ≥ (2a5)
−12a6(s−t)2a6Jk2−a6J ⇒ (1 + |y|)−pNp ≤ C2−a6(s−t)pNp2−a6JpNpk .

Combining this with (6.58) and applying s − t ≥ 0 and (6.24), we conclude that

a ∗ ψx,s(x)

p
≤ C2t2(s−t)[p/q+pna4/q

′−a6pNp]2−(a6JpNp)k

≤ C2t2−(a6JpNp)k .

Since Np satisfies (6.24), setting c2 := a6JpNp > J provides the desired estimate (6.52)
for the first case.
Case 2: s ≤ t. From (6.54) and (2.14) we have that for q > 1,

M
−1
x,sMz,t(B

∗)
p/q,
≤ C2(s−t)a6pn/q

′
,

which yields for 1 ≤ q ≤∞ and p < q

a ∗ ψx,s(x)

p
≤ C2t2(s−t)(p/q+a6pn/q

′) sup
y∈F(θ(z,t))

ψ(y) − P(y)

p

≤ C2t sup
y∈F(θ(z,t))

ψ(y) − P(y)

p
.

We now choose P to be the Taylor polynomial of order Np (degree Np − 1) of ψ ex-
panded at point M−1x,s(x − z) and estimate supy∈F(θ(z,t)) |ψ(y) − P(y)|p. From (2.14) we
haveM−1x,sMz,t(B∗) ⊂ a52−a6(t−s)B∗. The Taylor remainder theorem gives

sup
y∈F(θ(z,t))

ψ(y) − P(y)
 ≤ C sup

u∈M−1x,sMz,t(B∗) sup|α|=Np

𝜕
αψ(M−1x,s(x − z) + u)

|u|
Np

≤ C2−a6(t−s)Np sup
y∈F(θ(z,t))

(1 + |y|)−Np .
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This allows us to estimate

a ∗ ψx,s(x)

p
≤ C2t2−a6(t−s)pNp sup

y∈F(θ(z,t))
(1 + |y|)−pNp . (6.59)

We have two cases to consider. The first one is where t − kJ + J ≤ s ≤ t, and the second
one is where s ≤ t − kJ + J. We start with the first case. From (2.14) we have

a−15 2−a6J2a6(s−t)2a6kJB∗ ⊂ M−1x,sMz,t−kJ+J(B
∗),

which, combined with (6.56), leads to

(1 + |y|)−pNp ≤ C2a6pN(t−s)2−a6pNpkJ , ∀y ∈ F(θ(z, t)).

Using this estimate with (6.59) allows us to conclude with c2 := a6JpNp > J that

a ∗ ψx,s(x)

p
≤ C2t2c2k .

For the casewhere s ≤ t−kJ+J, from (6.59) we proceed using the estimate (1+|y|)−pNp ≤
C for all y ∈ ℝn, the fact that J(k − 1) ≤ t − s, and assumption (6.24) to obtain

a ∗ ψx,s(x)

p
≤ C2t2−a6(t−s)pNp

≤ C2t2−a6J(k−1)pNp

≤ C2t2−c2k .

Thus we get (6.52) for the case s ≤ t, which completes the proof.

Theorem 6.26. LetΘ be a continuous cover and suppose (p, q, l) is admissible (see Def-
inition 6.22). Then

Hp
q,l(Θ) ⊆ H

p(Θ).

Proof. Let f ∈ Hp
q,l(Θ). For ε > 0, assume that f = ∑∞i=1 λiai, where ∑

∞
i=1 |λi|

p ≤
‖f ‖pHp

q,l(Θ) + ε. Then by Theorem 6.25

‖f ‖pHp(Θ) = ∫
ℝn

[M∘(
∞

∑
i=1

λiai)]
p

≤
∞

∑
i=1
|λi|

p ∫
ℝn

[M∘(ai)]
p

≤ C(‖f ‖pHp
q,l(Θ) + ε).
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6.3.2 The Calderón–Zygmund decomposition

To show the converse inclusion Hp(Θ) ⊆ Hp
q,l(Θ), we need to carefully construct, for

each given distribution, an appropriate atomic decomposition. We achieve this by us-
ing a pointwise variable Calderón–Zygmund decomposition. For a given pointwise
continuous cover Θ, we consider a tempered distribution f such that for every λ > 0,
|{x : M∘f (x) > λ}| <∞. For fixed λ > 0, we define

Ω := {x : M∘f (x) > λ}.

By Theorem 6.7 we know that Ω is an open set, and thus we may apply the Whitney
lemma 2.21. This implies that there exist constants γ(p(Θ)) and L(p(Θ)) such that for
m := J + γ, where J is from (2.30), there exist sequences {xi}i∈ℕ ⊂ Ω and {ti}i∈ℕ such
that

Ω = ⋃
i∈ℕ

θ(xi, ti), (6.60)

θ(xi, ti + γ) ∩ θ(xj, tj + γ) = 0, i ̸= j, (6.61)
θ(xi, ti − J − 2γ) ∩ Ω

c = 0, but θ(xi, ti − J − 2γ − 1) ∩ Ω
c ̸= 0, ∀i ∈ ℕ, (6.62)

θ(xi, ti − J − γ) ∩ θ(xj, tj − J − γ) ̸= 0⇒ |ti − tj| ≤ γ + 1, (6.63)
#Λi ≤ L, Λi := {j ∈ ℕ : θ(xj, tj − J − γ) ∩ θ(xi, ti − J − γ) ̸= 0}, ∀i ∈ ℕ. (6.64)

Fix ϕ ∈ 𝒮 such that supp(ϕ) ⊂ 2B∗, 0 ≤ ϕ ≤ 1, and ϕ ≡ 1 on B∗. For every i ∈ ℕ, we
define

ϕ̃i(x) := ϕ(M
−1
xi ,ti (x − xi)).

By (2.30)

supp(ϕ̃i) ⊆ xi + 2Mxi ,ti(B
∗) ⊆ θ(xi, ti − J).

We define a partition of unity of Ω by

φi(x) :=
{
{
{

ϕ̃i(x)
∑j ϕ̃j(x)

if x ∈ Ω,

0 if x ̸∈ Ω.
(6.65)

Observe that by the properties of the Whitney cover
(i) φi is well defined since for any x ∈ Ω, 1 ≤ ∑i ϕ̃i(x) ≤ L,
(ii) φi ∈ 𝒮 and supp(φi) ⊆ θ(xi, ti − J).
(iii) for every x ∈ ℝn,

∑
i
φi(x) = 1Ω(x),
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which implies that the family {φi} forms a smooth partition of unitary subordinate to
the covering of Ω by the ellipsoids {θ(xi, ti − J)}. Let Πl denote the space of polynomials
of n variables of degree ≤ l, where l ≥ Np(Θ) (see Definition 6.22). For each i ∈ ℕ, we
introduce a Hilbert space structure on the space Πl by setting

⟨P,Q⟩i :=
1
∫φi
∫
ℝn

PQφi, ∀P,Q ∈ Πl. (6.66)

The distribution f ∈ 𝒮′ induces a linear functional on Πl by

Q→ ⟨f ,Q⟩i, ∀Q ∈ Πl,

which by the Riesz lemma is represented by a unique polynomial Pi ∈ Πl such that

⟨f ,Q⟩i = ⟨Pi,Q⟩i, ∀Q ∈ Πl. (6.67)

Obviously, Pi is the orthogonal projection of f with respect to the norm (6.66).
For every i ∈ ℕ, we define the locally “good part” Piφi and “bad part” bi := (f −

Pi)φi. We will show that the series ∑i bi converges in 𝒮′, which will allow us to define
the global “good part” g := f − ∑i bi. Moreover, we will show that for f ∈ Hp(Θ), the
series∑i bi converges in H

p(Θ).

Definition 6.27. The representation f = g + ∑i bi, where g and bi are as above, is a
Calderón–Zygmund decomposition of degree l and height λ associated withM∘.

Lemma 6.28. For any i ∈ ℕ, let zi ∈ θ(xi, ti − K1) and si ∈ ℝ be such that ti ≤ si + K2,
where K1,K2 > 0. Then there exists a constant c > 0, depending on the parameters of
the cover, N, K1, K2, and choice of φ, such that

max
|α|≤N
𝜕

α[φi(zi −Mzi ,si (⋅))]
∞ ≤ c.

Proof. Observe that it is sufficient to bound the derivatives of φi(Mzi ,si (⋅)). Recall that
supp(φi) ⊆ θ(xi, ti − J) for i ∈ ℕ. Also, (6.64) ensures that for Ui := {j ∈ ℕ : θ(xj, tj − J) ∩
θ(xi, ti − J) ̸= 0}, we have that #Ui ≤ #Λi ≤ L. Thus we may write

φi((Mzi ,si (y)) =
ϕ̃i(Mzi ,si (y))

∑j∈ℕ ϕ̃j(Mzi ,si (y))

=
ϕ(M−1xi ,tiMzi ,si (y) −M

−1
xi ,ti (xi))

∑j∈Ui
ϕ(M−1xj ,tjMzi ,si (y) −M

−1
xj ,tj (xj))
.

The desired estimate follows from iterative application of quotient rule combinedwith

max
|α|≤N
𝜕

α[φ(M−1xj ,tjMzi ,si (⋅))]
∞ ≤ C, ∀j ∈ Ui, (6.68)

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use



168 | 6 Hardy spaces

where c > 0depends on theparameters of the cover,N,K1,K2, and choice ofφ. Indeed,
(6.68) holds, since by (6.63) |ti − tj| ≤ γ + 1 for every j ∈ Ui, and so application of (2.14)
yields that ‖M−1xj ,tjMxi ,ti‖ ≤ c1 and ‖M

−1
xi ,tiMzi ,si‖ ≤ c2 for some constants c1, c2 > 0. Thus

we also have ‖M−1xj ,tjMzi ,si‖ ≤ c1c2.

For a fixed i ∈ ℕ, let {πβ : β ∈ ℕn+, |β| ≤ l} be an orthonormal basis for Πl with
respect to the Hilbert space structure (6.66). For |β| ≤ l and a point z ∈ θ(xi, ti − J − 2γ −
1) ∩ Ωc (whose existence is guaranteed by (6.62)), we define

Φβ(y) :=
|det(Mz,ti )|

∫φi
πβ(z −Mz,ti (y))φi(z −Mz,ti (y)). (6.69)

Lemma 6.29. For any N, Ñ, there exists c(N , Ñ , l,p(Θ)) > 0 such that

‖Φβ‖N ,Ñ ≤ c, ∀β ∈ ℕ
n
+, |β| ≤ l.

Proof. We have

supp(Φβ) = supp(φi(z −Mz,ti (⋅)))

⊆ {y ∈ ℝn : y ∈ M−1z,ti (z − xi) +M
−1
z,tiMxi ,ti−J(B

∗)}.

Since z ∈ θ(xi, ti − J − 2γ − 1) = xi +Mxi ,ti−J−2γ−1(B
∗), by (2.14)

M−1z,ti (z − xi) ∈ M
−1
z,tiMxi ,ti−J−2γ−1(B

∗) ⊆ c1B
∗.

Also, by Lemma 2.18, for any s > 0, θ(xi, ti − J) ⊂ θ(xi, ti − J − s − γ), and so

M−1z,tiMxi ,ti−J(B
∗) ⊂ M−1z,tiMxi ,ti−J−2γ−1(B

∗) ⊆ c2B
∗.

Therefore, combining the last two estimates, we conclude that for some c3 > 0,
supp(Φβ) ⊂ c3B∗. Thus, to prove the Lemma, it remains to show that the partial
derivatives of Φβ up to the order N are bounded. We begin with the estimate of the
first term in (6.69). We know that

∫
ℝn

φi = ∫
θ(xi ,ti−J)

φi ≥ ∫
θ(xi ,ti)

1
L
=
1
L
θ(xi, ti)
.

Applying (2.13) gives

|det(Mz,ti )|

∫φi
≤ L |θ(z, ti)|
|θ(xi, ti)|

≤ La−11 a2.
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For the third term in (6.69), we get from Lemma 6.28 with the choice K1 = J + 2γ+ 1 and
K2 = 0 that

max
|α|≤N
𝜕

α[φi(z −Mz,ti (⋅))]
∞ ≤ c.

Wenow estimate the partial derivatives of the second term. SinceΠl is finite vector
space, all the norms are equivalent, and there exists a constant c4(c3,N , l, n) > 0 such
that for every P ∈ Πl,

max
|α|≤N
𝜕

αPL∞(c3B∗) ≤ c4‖P‖L2(B∗).
By Lemma 1.23, since θ(xi, ti) ⊂ θ(xi, ti − J − 3γ − 1)with |θ(xi, ti − J − 3γ − 1)| ≤ c|θ(xi, ti)|,
we also have that

‖P‖L2(θ(xi ,ti−J−3γ−1)) ≤ c‖P‖L2(θ(xi ,ti)).

By Lemma 2.18

θ(z, ti) ⊂ θ(xi, ti − J − 3γ − 1).

Applying the last three estimates together with φi ≥ 1/L on θ(xi, ti) and the fact that πβ
is normalized with respect to (6.66), we get

max
|α|≤N
𝜕

α[πβ(z −Mz,ti ⋅)]
L∞(c3B∗) ≤ c4πβ(z −Mz,ti ⋅)

L2(B∗)
= c4|detMz,ti |

−1/2‖πβ‖L2(θ(z,ti))
≤ c4|detMz,ti |

−1/2‖πβ‖L2(θ(xi ,ti−J−3γ−1))
≤ C|detMz,ti |

−1/2‖πβ‖L2(θ(xi ,ti))
≤ C|detMz,ti |

−1/2‖πβφi‖L2(θ(xi ,ti))

≤ C(∫φi)
−1/2
‖πβφi‖L2

= C.

Now since Φβ is supported on c3B∗ and we have bounded the 𝒮N ,Ñ norm of the
three terms in (6.69) by absolute constants, we can apply the product rule to conclude
the lemma.

Now we can estimate the local good parts of f .

Lemma 6.30. There exists a constant c > 0 such that

‖Piφi‖∞ ≤ ‖Pi‖L∞(θ(xi ,ti−J)) ≤ cλ,
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where φi is defined in (6.65), and Pi is defined by (6.67). If M∘f ∈ L∞, then we also have

‖Piφi‖∞ ≤ c
M
∘f ∞. (6.70)

Proof. Combining supp(φi) ⊆ θ(xi, ti − J) and ‖φi‖∞ ≤ 1, we have

‖Piφi‖∞ ≤ ‖Pi‖L∞(θ(xi ,ti−J)).
For the functionΦβ defined in (6.69) and thepoint z ∈ θ(xi, ti−J−2γ−1)∩Ωc, Lemma6.29
yields

f ∗ (Φβ)z,ti (z)
 ≤ ‖Φβ‖Np ,Ñp

M∘f (z) ≤ cλ,

where Np and Ñp are defined by (6.24) and (6.25). Note that for the caseM∘f ∈ L∞, we
also have

f ∗ (Φβ)z,ti (z)
 ≤ c
M
∘f ∞.

Next, using definition (6.69) and then (6.66), we have

f ∗ (Φβ)z,ti (z)
 =
det(M

−1
z,ti)


∫ f (y)Φβ(M

−1
z,ti (z − y))dy



=


1
∫φi
∫
ℝn

f (y)πβ(y)φi(y)dy


= ⟨f ,πβ⟩i
.

Therefore for all |β| ≤ l,

⟨f ,πβ⟩i
 ≤ Cλ, (6.71)

and ifM∘f ∈ L∞, then

⟨f ,πβ⟩i
 ≤ C
M
∘f ∞. (6.72)

By Lemma 1.24, Lemma 1.23, and (6.66) we have

‖πβ‖L∞(θ(xi ,ti−J)) ≤ Cθ(xi, ti − J)−1/2‖πβ‖L2(θ(xi ,ti−J))
≤ C 1
(∫φi)1/2

‖πβ‖L2(θ(xi ,ti))

≤ C⟨πβ,πβ⟩i
≤ C.
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Recall that by (6.67) we have that

Pi = ∑
|β|≤l
⟨f ,πβ⟩iπβ. (6.73)

Combining with this (6.71), we get

sup
y∈θ(xi ,ti−J)

Pi(y)
 ≤ ∑
|β|≤l

⟨f ,πβ⟩i

πβ(y)
 ≤ Cλ.

Combining this with (6.72) for the caseM∘f ∈ L∞ gives

sup
y∈θ(xi ,ti−J)

Pi(y)
 ≤ C
M
∘f ∞.

Lemma 6.31. There exists a constant c > 0 such that

M∘bi(x) ≤ cM
∘f (x), ∀x ∈ θ(xi, ti − J − γ).

Proof. Letψ ∈ 𝒮Np ,Ñp
, x ∈ θ(xi, ti− J−γ), and s ∈ ℝ. Using (6.19), we can further assume

that supp(ψ) ⊆ B∗. We get

bi ∗ ψx,s(x)
 =
((f − Pi)φi) ∗ ψx,s(x)


≤ |((fφi) ∗ ψx,s(x)| +

(Piφi) ∗ ψx,s(x)


=: I1 + I2.

We first estimate I2. Since ψ ∈ 𝒮Np ,Ñp
and Ñp > n, we have that ‖ψ‖L1 ≤ c, where c > 0

does not depend on ψ. For x ∈ θ(xi, ti − J − γ) ⊂ Ω, we have that M∘f (x) > λ, and
combining this with Lemma 6.30, we have

I2 ≤
det(M

−1
x,s)
 ∫
ℝn

Pi(y)φi(y)

ψx,s(x − y)

dy ≤ Cλ‖ψ‖L1 ≤ CM
∘f (x).

For the estimate of I1, there are two cases.
Case 1: ti ≤ s. For Φ(y) := φi(x −Mx,s(y))ψ(y), we have

I1 =
f ∗Φx,s(x)

 ≤ ‖Φ‖Np ,Ñp
M∘f (x).

Let us estimate the term ‖Φ‖Np ,Ñp
. First, observe that supp(Φ) ⊆ supp(ψ) ⊆ B∗. Now,

since ti ≤ s and x ∈ θ(xi, ti − J − γ), Lemma 6.28 with K1 = J + γ and K2 = 0 yields

max
|α|≤Np

𝜕
α[φi(x −Mx,s(⋅))]

∞ ≤ C.

Therefore by the product rule ‖Φ‖Np ,Ñp
≤ C‖ψ‖Np ,Ñp

≤ C, and hence I1 ≤ CM∘f (x).
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Case 2: s < ti. We define

Φ̃(y) :=
|det(Mx,ti )|

|det(Mx,s)|
φi(x −Mx,ti (y))ψ(M

−1
x,sMx,ti (y)).

Observe that

I1 =
f ∗ Φ̃x,ti (x)

 ≤ ‖Φ̃‖Np ,Ñp
M∘f (x). (6.74)

Therefore it suffices to show that ‖Φ̃‖Np ,Ñp
≤ C. Since s < ti, the first constant term of

Φ̃ is bounded by

|det(Mx,ti )|

|det(Mx,s)|
≤ a−11 a22

s−ti ≤ C.

For the second term, because x ∈ θ(xi, ti − J − γ), we get

supp(Φ̃) ⊂ supp(φi(x −Mx,ti (⋅))) ⊂ cB
∗.

Lemma 6.28 gives

max
|α|≤N
𝜕

α[φi(x −Mx,ti (⋅))]
∞ ≤ C.

Since ψ ∈ 𝒮Np ,Ñp
and ‖M−1x,sMx,ti‖ ≤ C for s ≤ ti, we have

ψ(M
−1
x,sMx,ti ⋅)

Np ,Ñp
≤ C‖ψ‖Np ,Ñp

≤ C.

Collecting the three estimates and applying the chain rule, we conclude that

‖Φ̃|‖Np ,Ñp
≤ C‖ψ‖Np ,Ñp

≤ C.

Lemma 6.32. There exists a constant c > 0 such that for all i ∈ ℕ,

M∘bi(x) ≤ cλν
−k , k ≥ 0,

for all x ∈ θ(xi, ti − J(k + 2) − γ) \ θ(xi, ti − J(k + 1) − γ), where ν := 2a6JNp .

Proof. Fix x ∈ θ(xi, ti − J(k + 2) − γ) \ θ(xi, ti − J(k + 1) − γ) for some k ≥ 0, and let
ψ ∈ 𝒮Np ,Ñp

and s ∈ ℝ. Using (6.19), we may again assume that supp(ψ) ⊆ B∗. Since
supp(bi) ⊂ θ(xi, ti − J), if θ(xi, ti − J)∩θ(x, s) = 0, then bi ∗ψx,s(x) = 0. Hence we assume
that

θ(xi, ti − J) ∩ θ(x, s) ̸= 0. (6.75)
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We then consider two cases.
Case 1: s ≥ ti. By Lemma 2.18, if s ≥ ti, then (6.75) further implies that θ(x, s) ⊂ θ(xi, ti −
J − γ), and so x ∈ θ(xi, ti − J − γ). However, in this particular case the point x does not
satisfy the assumptions of the lemma, and Lemma 6.31 already yieldsM∘bi(x) ≤ cλ.
Case 2: s < ti. For w ∈ θ(xi, ti − J − 2γ − 1) ∩ Ωc, denote z := M−1w,ti (x − w) and ψw,x :=

ψ(M−1x,sMw,ti ⋅), and let Rz := R
Np
z ψw,x be the Taylor remainder (1.30) of ψw,x about z of

order Np. We define the following Schwartz function, which essentially depends on i
and x:

Φ(y) :=
|det(M−1x,s)|
|det(M−1w,ti )|

φi(w −Mw,tiy)Rz(z + y).

By (6.67) our construction of the local bad part bi ensures that it has l ≥ Np vanishing
moments. Thus

bi ∗ ψx,s(x)
 =
det(M

−1
x,s)


∫ bi(y)Rz(M

−1
w,ti (x − y))dy


≤ f ∗Φw,ti (w)

 +
det(M

−1
x,s)

Piφi ∗ Rz(M

−1
w,ti ⋅)(x)


=: I1 + I2.

We begin with the estimate of I1. Since w ∈ Ωc, we have

I1 ≤ ‖Φ‖Np ,Ñp
M∘f (w) ≤ λ‖Φ‖Np ,Ñp

.

Thus, to complete the estimate of I1, it is sufficient to show that ‖Φ‖Np ,Ñp
≤ Cν−k . We

first note that supp(Φ) ⊆ supp(φi(w −Mw,ti ⋅)) ⊆ c1B
∗. Thus it is sufficient to prove that

‖𝜕αΦ‖∞ ≤ Cν−k, ∀α ∈ ℕn+, |α| ≤ Np. We now estimate by (2.13) the first factor using
s < ti:

|det(M−1x,s)|
|det(M−1w,ti )|

≤ a−11 a22
s−ti ≤ C.

Appealing to Lemma 6.28 gives a bound for the second factor,

max
|α|≤Np

𝜕
α[φi(w −Mw,ti ⋅)]

∞ ≤ C.

Wenowdealwith the derivatives of the third factor. Observe that our assumption (6.75)
allows us to use (2.14) to obtain

M
−1
x,sMw,ti
 ≤
M
−1
x,sMxi ,ti−2J−γ−1


M
−1
xi ,ti−2J−γ−1Mw,ti



≤ C2−a6(ti−s).
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Next, since ψ ∈ 𝒮Np ,Ñp
⊂ 𝒮Np ,Np

, we see by (1.34) that for any α ∈ ℤn+, |α| ≤ Np, and
u ∈ B(z, c1)

𝜕
αRz(u)
 =
𝜕
α[RNp

z ψw,x](u)


= R
Np−|α|
z 𝜕αψw,x(u)



≤ C2−a6(ti−s)Np‖ψ‖Np ,Np
(1 + M

−1
x,sMw,tiu

)
−Np

≤ C2−a6(ti−s)Np(1 + M
−1
x,sMw,tiu

)
−Np .

Therefore there exists c2(p(Θ)) > 0 for which

max
|α|≤Np

sup
y∈c1B∗𝜕αRz(z + y) ≤ sup

y∈c2B∗ C2−a6(ti−s)Np(1 + M
−1
x,s(x − w) + y

)
−Np .

Let k̃ := k − ⌈(2γ + 1)/J⌉ ≥ 0 for k ≥ k0(p(Θ)), which implies J(k̃ + 1) + 2γ + 1 ≤ J(k + 1).
We get

θ(w, ti − J − 2γ − 1) ∩ θ(xi, ti − J − 2γ − 1) ̸= 0
⇒ θ(w, ti − J(k̃ + 1) − 2γ − 1) ∩ θ(xi, ti − J(k̃ + 1) − 2γ − 1) ̸= 0
⇒ θ(w, ti − J(k̃ + 1) − 2γ − 1) ⊆ θ(xi, ti − J(k + 1) − γ)
⇒ x ̸∈ θ(w, ti − J(k̃ + 1) − 2γ − 1).

This means that there exists a constant c3(p(Θ)) > 0 for which M−1x,s(x − w) ̸∈
c3M−1x,sMw,ti−Jk(B

∗).
We need to consider two subcases, ti − Jk ≤ s < ti and s < ti − Jk. For the first

subcase, application of assumption (6.75) and (2.14) yields

2a6(s−ti)2a6JkB∗ ⊆ c3M
−1
x,sMw,ti−Jk(B

∗).

This gives

2−a6(ti−s)Np sup
v∈M−1x,s(x−w)+c2B∗(1 + |v|)

−Np ≤ C2−a6(ti−s)Np2a6(ti−s)Np(2a6JNp)
−k

≤ Cν−k .

To show that the bound also holds for the other subcase, s < ti − Jk, we simply
proceed by

2−a6(ti−s)Np sup
v∈M−1x,s(x−w)+c2B∗(1 + |v|)

−Np ≤ C2−a6(ti−s)Np

≤ C2−a6JkNp

= Cν−k .
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From the two subcases for the third factor of Φ, we obtain

max
|α|≤Np

sup
y∈cB∗𝜕αRz(z + y) ≤ Cν−k . (6.76)

Therefore collecting the bounds for all three terms gives ‖Φ‖Np ,Ñp
≤ Cν−k, which im-

plies I1 ≤ Cλν−k .
To complete the proof, we estimate I2 by combining Lemma 6.30 and (6.76):

I2 ≤
det(M

−1
x,s)
 ∫
θ(xi .ti−J)

Pi(y)φi(y)

Rz(M

−1
w,ti (x − y))

dy

≤ Cλdet(M
−1
x,s)

θ(xi.ti − J)

 sup
y∈θ(xi ,ti−J)

Rz(M
−1
w,ti (x − y))



≤ Cλ2s−ti sup
y∈cB∗Rz(z + y)

≤ Cλν−k .

Lemma 6.33. Suppose f ∈ Hp(Θ), 0 < p ≤ 1. Then, for any λ > 0, the series ∑i bi
converges in Hp(Θ), and there exist constants c1, c2 > 0, independent of f , i ∈ ℕ, and
λ > 0, such that
(i) ‖bi‖

p
Hp(Θ) ≤ c1 ∫θ(xi ,ti−J−γ)(M

∘f )p,
(ii) ‖∑i bi‖

p
Hp(Θ) ≤ c2 ∫Ω(M

∘f )p.

Proof. First, observe that assumption (6.24) implies that for ν := 2a6JNp , from Lem-
ma 6.32 we have ν−p2J = 2(1−a6pNp)J < 1. Then recall that since θ(xi, ti − J − γ) ⊂ Ω,
M∘f (x) > λ for all x ∈ θ(xi, ti − J − γ). We use these two observations and further apply
Lemmas 6.31 and 6.32 to obtain (i):

∫
ℝn

(M∘bi)
p
= ∫
θ(xi ,ti−J−γ)

(M∘bi)
p
+
∞

∑
k=0

∫
θ(xi ,ti−J(k+2)−γ)\θ(xi ,ti−J(k+1)−γ)

(M∘bi)
p

≤ C ∫
θ(xi ,ti−J−γ)

(M∘f )p + Cλp
∞

∑
k=0

θ(xi, ti − J(k + 2) − γ)
ν
−kp

≤ C ∫
θ(xi ,ti−J−γ)

(M∘f )p + C2−tiλp
∞

∑
k=0
(ν−p2J)k

≤ C ∫
θ(xi ,ti−J−γ)

(M∘f )p.
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Since by Theorem 6.15 Hp(Θ) is complete, from (i) and (6.64) we have

∫
ℝn

(M∘(∑
i
bi))

p
≤∑

i
∫
ℝn

(M∘bi)
p

≤ C∑
i
∫

θ(xi ,ti−J−γ)

(M∘f )p

≤ C ∫
Ω

(M∘f )p.

Lemma 6.34. If f ∈ Lq(ℝn), 1 ≤ q < ∞, then the series ∑i∈ℕ bi converges in Lq(ℝn).
Moreover, there exists a constant c > 0, independent of f , i, and λ, such that
‖∑i∈ℕ |bi|‖q ≤ c‖f ‖q.

Proof. From the definition of {bi} and Lemma 6.30 we have

∫
ℝn

|bi|
q = ∫
ℝn

(f − Pi)φi

q

≤ C ∫
θ(xi ,ti−J)

|fφi|
q + C ∫

θ(xi ,ti−J)

|Piφi|
q

≤ C ∫
θ(xi ,ti−J)

|f |q + Cλqθ(xi, ti − J)
.

The construction of the Whitney cover of Ω gives that Ω = ⋃i θ(xi, ti) and also that
θ(xi, ti − J) ⊆ θ(xi, ti − J − 2γ) ⇒ θ(xi, ti − J) ⊂ Ω, which in turns means that we also
have Ω = ⋃i θ(xi, ti − J). Therefore property (6.64), (6.20) with constant c2 > 0, and the
maximal theorem (Theorem 6.3) yield, for q = 1,

∫
ℝn

∑
i
|bi| ≤∑

i
∫
ℝn

|bi|

≤∑
i
∫

θ(xi ,ti−J)

|f | + Cλ∑
i

θ(xi, ti − J)


≤ C ∫
Ω

|f | + Cλ|Ω|

= C ∫
Ω

|f | + Cλ{x ∈ ℝ
n : M∘f (x) > λ}

≤ C ∫
Ω

|f | + Cλ{x ∈ ℝ
n : MΘf (x) > c

−1
2 λ}

≤ C‖f ‖1.
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This completes the proof for q = 1. Using the same technique for the case 1 < q < ∞
gives

∫
ℝn

∑
i
|bi|

q ≤ C ∫
Ω

|f |q + Cλq|Ω|

≤ C ∫
Ω

|f |q + CM
∘f 

q
q

≤ C ∫
Ω

|f |q + C‖MΘf ‖
q
q

≤ C‖f ‖qq.

To complete the proof for the case 1 < q < ∞, we observe that the bound ‖∑i |bi|‖
q
q ≤

C ∫ℝn ∑i |bi|
q holds due to the fact that for each i, supp(bi) ⊆ θ(xi, ti − J), and by prop-

erty (6.64) there are at most L locally bad parts bj whose supports intersect supp(bi).

Lemma 6.35. Suppose∑i bi converges in 𝒮′. Then there exist a constant c, independent
of f ∈ 𝒮′ and λ > 0, such that

M∘g(x) ≤ cλ∑
i
ν−ki(x) +M∘f (x)1Ωc (x), (6.77)

where the “good” part g is per Definition 6.27, ν := 2a6JNp is from Lemma 6.32, and

ki(x) = {
k if for k ≥ 0, x ∈ θ(xi, ti − J(k + 2) − γ) \ θ(xi, ti − J(k + 1) − γ),
0, x ∈ θ(xi, ti − J − γ).

(6.78)

Proof. If∑i bi converges in 𝒮′ and x ∈ Ωc, then from Lemma 6.32 we know that

M∘g(x) ≤ M∘f (x) +∑
i
M∘bi(x) ≤ M

∘f (x)1Ωc (x) + cλ∑
i
ν−ki(x).

For any x ∈ Ω, there exists j ∈ ℕ such that x ∈ θ(xj, tj − J). Recall from (6.64) that
#Λ(j) ≤ L, where

Λ(j) := {i ∈ ℕ : θ(xj, tj − J − γ) ∩ θ(xi, ti − J − γ) ̸= 0}.

We have that

M∘g(x) ≤ M∘(f − ∑
i∈Λ(j)

bi)(x) +M
∘( ∑

i ̸∈Λ(j)
bi)(x). (6.79)
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By Lemma 6.32

M∘( ∑
i ̸∈Λ(j)

bi)(x) ≤ Cλ ∑
i ̸∈Λ(j)

ν−ki(x).

So to prove (6.77), it suffices to bound for x ∈ θ(xj, tj − J)

M∘(f − ∑
i∈Λ(j)

bi)(x) ≤ Cλ = Cλν
−kj(x).

We need to bound |(f − ∑i∈Λ(j) bi) ∗ ψx,s(x)| for any ψ ∈ 𝒮Np ,Ñp
and s ∈ ℝ. Using (6.19),

we may again assume that supp(ψ) ⊆ B∗. There are again two cases.
Case 1: s ≥ tj. Defining η := 1 −∑i∈Λ(j) φi, we have


(f − ∑

i∈Λ(j)
bi) ∗ ψx,s(x)


≤ fη ∗ ψx,s(x)

 +

( ∑
i∈Λ(j)

Piφi) ∗ ψx,s(x)


=: I1 + I2.

Since by (6.65) {φi} are a partition of unity on Ω; in particular, η ≡ 0 on θ(xj, tj − J − γ).
On the other hand, for s ≥ tj, supp(ψx,s) ⊆ θ(x, s) ⊆ θ(xj, tj − J − γ). This means that in
this case, I1 = 0.

We continue with the estimate of I2. Sinceψ ∈ 𝒮Np ,Ñp
and #Λ(j) ≤ L, application of

Lemma 6.30 yields

I2 ≤ ∑
i∈Λ(j)

Piφi ∗ ψx,s(x)


≤ Cλ‖ψ‖1
≤ Cλ = Cλν−kj(x).

Case 2: s < tj. For w ∈ θ(xj, tj − J − 2γ − 1) ∩ Ωc, define

Φ(y) :=
|det(M−1x,s)|
|det(M−1w,tj )|

ψ(M−1x,s(x − w) +M
−1
x,sMw,tjy).

As in previous proofs, we obtain that there exist constants c1, c2 > 0, depending only
on p(Θ), such that supp(Φ) ⊆ c1B∗ and ‖Φ‖Np ,Ñp

≤ c2. We apply M∘f (w) < λ, Lem-
mas 6.31 and 6.32, and #Λ(j) ≤ L to conclude


(f − ∑

i∈Λ(j)
bi) ∗ ψx,s(x)


=

(f − ∑

i∈Λ(j)
bi) ∗Φw,tj (w)



≤ f ∗Φw,tj (w)
 + ∑

i∈Λ(j)

bi ∗Φw,tj (w)
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≤ C‖Φ‖Np ,Ñp
λ

≤ Cλν−kj(x).

Lemma 6.36. If f ∈ Hp(Θ), 0 < p ≤ 1, then M∘g ∈ Lq for all 1 ≤ q <∞, and there exists
a constant c1 > 0, independent of f and λ, such that

∫
ℝn

(M∘g)q ≤ c1λ
q−p ∫
ℝn

(M∘f )p. (6.80)

If f ∈ Lq, then g ∈ L∞, and there exists c2 > 0, independent of f and λ, such that

‖g‖∞ ≤ c2λ. (6.81)

Proof. Since f ∈ Hp(Θ), by Lemma 6.33 ∑i bi converges in 𝒮′, and we may apply
Lemma 6.35 to obtain

∫
ℝn

(M∘g(x))qdx ≤ Cλq ∫
ℝn

(∑
i∈ℕ

ν−ki(x))
q
dx + C ∫

Ωc

(M∘f (x))qdx, (6.82)

where ki(x) are defined in (6.78). We start with the case q = 1. Recalling that ν := 2a6JNp

and Np > a−16 , for a fixed i ∈ ℕ, we get

∫
ℝn

ν−ki(x)dx = ∫
θ(xi ,ti−J−γ)

dx +
∞

∑
k=0

∫
θ(xi ,ti−J(k+2)−γ)\θ(xi ,ti−J(k+1)−γ)

ν−ki(x)dx

≤ θ(xi, ti − J − γ)
 +
∞

∑
k=0

θ(xi, ti − J(k + 2) − γ)
ν
−k

≤ C2−ti(1 +
∞

∑
k=0

2Jkν−k)

≤ Cθ(xi, ti)
.

Recall that Ω := {x ∈ ℝn : M∘f (x) > λ}. Therefore from (6.60) and (6.82) we can derive
(6.80) for q = 1 by

∫
ℝn

M∘g ≤ Cλ ∑
i∈ℕ

θ(xi, ti)
 + ∫

Ωc

M∘f

≤ Cλ|Ω| + ∫
Ωc

M∘f

≤ Cλ1−p ∫
ℝn

(M∘f )p.
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Now let 1 < q < ∞. For any i ∈ ℕ and x ∈ θ(xi, ti − J(k + 2) − γ) \ θ(xi, ti − J(k + 1) − γ),
k ≥ 0, by (6.2) we have

2−kJ ≤ C 1
|θ(xi, ti − J(k + 2) − γ)|

∫
θ(xi ,ti−J(k+2)−γ)

1θ(xi ,ti)

≤ CMΘ1θ(xi ,ti)(x)

≤ CMB1θ(xi ,ti)(x).

Since a6Np > 1, we may apply the Fefferman–Stein vector-valued maximal function
inequality (2.12) and then (6.60) to obtain

∫
ℝn

(∑
i
ν−ki(x))

q
dx = ∫
ℝn

(∑
i
2−ki(x)Ja6Np)

q
dx

≤ C ∫
ℝn

{[∑
i
(MB1θ(xi ,ti)(x))

a6Np]
1/(a6N)
}
a6Npq

dx

≤ C ∫
ℝn

[∑
i
(1θ(xi ,ti)(x))

a6Np]
q
dx

≤ C|Ω|.

Plugging into (6.82) now gives (6.80) for 1 < q <∞:

∫
ℝn

(M∘g)q ≤ Cλq|Ω| + C ∫
Ωc

(M∘f )q

≤ Cλq−p ∫
Ω

(M∘f )p + λq−p ∫
Ωc

(M∘f )p

= Cλq−p ∫
ℝn

(M∘f )p.

We now turn to prove (6.81). If f ∈ Lq, then by Lemma 6.34 we have that g and bi,
i ∈ ℕ, are functions and∑i∈ℕ bi converges in Lq. Thus, in Lq

g = f −∑
i
bi = f 1Ωc +∑

i
Piφi.

By Lemma 6.30 and (6.64), for every x ∈ Ω, we have |g(x)| ≤ Cλ. Also, |g(x)| = |f (x)| ≤
M∘f (x) ≤ λ for a. e. x ∈ Ωc. Therefore ‖g‖∞ ≤ cλ.

Corollary 6.37. Hp(Θ) ∩ Lq, 1 < q <∞, is dense in Hp(Θ).
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Proof. Let f ∈ Hp(Θ) and λ > 0. Consider the Calderón–Zygmund decomposition of f
of degree l ≥ Np(Θ) and height λ,

f = gλ + ∑
i∈ℕ

bλi .

By Lemma 6.33 we have

f − g
λHp(Θ) =


∑
i∈ℕ

bλi
Hp(Θ)
→ 0 as λ →∞,

which implies that gλ → f in Hp(Θ). Now Lemma 6.36 gives that M∘gλ ∈ Lq(ℝn). We
apply (6.20) and then the maximal inequality for 1 < q < ∞ to conclude that gλ ∈
Lq(ℝn).

Remark 6.38. Corollary 6.37 is limited to the case 1 < q < ∞, since it leverages on
the maximal function inequality. Once we complete our proof of the equivalence of
the atomic Hardy spaces with Hardy spaces, we will be able to establish the density of
Hp(Θ) ∩ Lq, in Hp(Θ) for the full range 1 ≤ q ≤∞ (see Corollary 6.44).

6.3.3 The inclusion Hp(Θ) ⊆ Hp
q,l(Θ)

Let f ∈ Hp(Θ) for some 0 < p ≤ 1. For each k ∈ ℤ, we consider the Calderón–Zygmund
decomposition of f of degree l ≥ Np(Θ) at height 2k associated with Ωk := {x : M∘f (x) >
2k}. The sequences {xki }i, x

k
i ∈ Ωk, and {tki }i, t

k
i ∈ ℝ, satisfy (6.60)–(6.64) with respect

to Ωk . We then have

f = gk + Σib
k
i , k ∈ ℤ,

where

bki := (f − P
k
i )φ

k
i ,

{φk
i } are defined by (6.65) with supp(φk

i ) = θ
k
i := θ(x

k
i , t

k
i − J), and {P

k
i } are defined

by (6.67).
We now define Pk+1ij as the orthogonal projection of (f −Pk+1j )φ

k
i with respect to the

inner product

⟨P,Q⟩j :=
1
∫φk+1

j
∫
ℝn

PQφk+1
j , ∀P,Q ∈ Πl, (6.83)
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that is, if θ(xki , t
k
i − J) ∩ θ(x

k+1
j , t

k+1
j − J) ̸= 0, then Pk+1ij is the unique polynomial in Πl

such that

∫
ℝn

(f − Pk+1j )φ
k
i Qφ

k+1
j = ∫
ℝn

Pk+1ij Qφk+1
j , ∀Q ∈ Πl;

otherwise, we may take Pk+1i,j = 0.

Lemma 6.39. Suppose θ(xki , t
k
i − J) ∩ θ(x

k+1
j , t

k+1
j − J) ̸= 0. Then

(i) tk+1j ≥ t
k
i − 2γ − 1,

(ii) θ(xk+1j , t
k+1
j − J) ⊂ θ(x

k
i , t

k
i − J − 3γ − 1), and

(iii) there exists L′ > 0 such that for every j ∈ ℕ, #I(j) ≤ L′ with

I(j) := {i ∈ ℕ : θ(xk+1j , t
k+1
j − J) ∩ θ(x

k
i , t

k
i − J) ̸= 0}.

Proof. To prove (i), assume by contradiction that tk+1j < t
k
i −2γ−1. Then by Lemma 2.18,

θ(xki , t
k
i − J) ∩ θ(x

k+1
j , t

k+1
j − J) ̸= 0 implies that

θ(xki , t
k
i − J − 2γ − 1) ⊆ θ(x

k+1
j , t

k+1
j − J − γ).

Since Ωk+1 ⊆ Ωk, we have (Ωk)
c ⊆ (Ωk+1)c. Hence from (6.62) we have

0 ̸= (Ωk)
c
∩ θ(xki , t

k
i − J − 2γ − 1) ⊂ (Ω

k+1)
c
∩ θ(xk+1j , t

k+1
j − J − γ) = 0,

which is contradiction. Property (ii) is a consequence of (i) and Lemma 2.18. We con-
tinue with (iii). For a fixed j, let I1(j) := {i ∈ I(j) : tki ≤ t

k+1
j }. Then for each such i,

θ(xk+1j , t
k+1
j − J) ⊆ θ(x

k
i , t

k
i − J −γ). Since x

k+1
j is contained in each θ(xki , t

k
i − J −γ), i ∈ I1(j),

we obtain by (6.64) that #I1(j) ≤ L. Now denote I2(j) := {i ∈ I(j) : tki > t
k+1
j }. Observe

that

θ(xki , t
k
i + γ) ⊆ θ(x

k
i , t

k
i − J) ⊆ θ(x

k+1
j , t

k+1
j − J − γ).

At the same time, by (i) we have that tki − 2γ − 1 ≤ t
k+1
j , and therefore all the ellipsoids

θ(xki , t
k
i +γ), i ∈ I2(j), are pairwise disjoint, are all contained in the ellipsoid θ(x

k+1
j , t

k+1
j −

J − γ), but also have their volume proportional to it by a multiple constant. Therefore
#I2(j) ≤ L′′. We conclude that (iii) is satisfied with L′ := L + L′′.

Lemma 6.40. There exist a constant c > 0, independent of i, j ∈ ℕ and k ∈ ℤ, such that

P
k+1
ij φk+1

j
∞ ≤ c2

k+1.

Furthermore, if M∘f ∈ L∞, then

P
k+1
ij φk+1

j
∞ ≤ c
M
∘f ∞. (6.84)
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Proof. Let {πβ : β ∈ ℕn+, |β| ≤ l} be an orthonormal basis with respect to the inner prod-
uct (6.83). Since Pk+1ij is the orthogonal projection of (f − Pk+1j )φ

k
i , for x ∈ supp(φ

k+1
j ) =

θ(xk+1j , t
k+1
j − J), we have

P
k+1
ij (x)φ

k+1
j (x)
 ≤
P

k+1
ij (x)


=

∑
|β|≤l
(

1
∫φk+1

j
∫
ℝn

(f − Pk+1j )φ
k
i πβφ

k+1
j )πβ(x)



≤ Cmax
|β|≤l
‖πβ‖L∞(θ(xk+1j ,t

k+1
j −J))
(I1 + I2),

where

I1 :=
1
∫φk+1

j
∑
|β|≤l


∫
ℝn

fφk
i πβφ

k+1
j


, I2 :=

1
∫φk+1

j
∑
|β|≤l


∫
ℝn

Pk+1j φk
i πβφ

k+1
j


.

For β, |β| ≤ l, we have using Lemma 1.24, Lemma 1.23, the properties ofφk+1
j , and (6.83)

that

‖πβ‖L∞(θ(xk+1j ,t
k+1
j −J))
≤ C|θ(xk+1j , t

k+1
j − J))|

−1/2‖πβ‖L2(θ(xk+1j ,t
k+1
j −J))

≤ C 1
(∫φk+1

j )
1/2 ‖πβ‖L2(θ(xk+1j ,t

k+1
j ))

≤ C⟨πβ,πβ⟩
1/2
j

≤ C.

We note in passing that we could also use the equivalence of finite-dimensional Ba-
nach spaces for this last argument. From this point we may assume that

θ(xki , t
k
i − J) ∩ θ(x

k+1
j , t

k+1
j − J) ̸= 0, (6.85)

else Pk+1ij = 0, and we are done.
We now estimate I1. Letw ∈ (Ωk+1)c ∩θ(xk+1j , t

k+1
j − J −2γ− 1), and for each β, |β| ≤ l,

define

Φβ(y) :=
|det(Mw,tk+1j

)|

∫φk+1
j
(φk

i ⋅ πβ ⋅ φ
k+1
j )(w −Mw,tk+1j

(y)).

Under assumption (6.85),wemay apply Lemma6.39 to see that supp(Φβ) ⊆ c1B∗ for all
β, |β| ≤ l, for some fixed constant c1(p(Θ)). Using the method of proof of Lemma 6.29,
we can then show that max|β|≤l ‖Φβ‖Np ,Ñp

≤ c2 for a fixed constant c2(p(Θ)). Using also
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the boundM∘f (w) < 2k+1, we obtain

I1 ≤ ∑
|β|≤l

f ∗Φ
β
w,tk+1j
(w)

≤ Cmax
|β|≤l
Φ

βNp ,Ñp
M∘f (w)

≤ C2k+1.

Note that ifM∘f ∈ L∞, then

I1 ≤ C
M
∘f ∞.

We now estimate I2. Since supp(φk+1
j ) ⊂ θ(x

k+1
j , t

k+1
j − J), for each β, |β| ≤ l, we have

1
∫φk+1

j
∫
ℝn

Pk+1j φk
i πβφ

k+1
j =

1
∫φk+1

j
∫

θ(xk+1j ,t
k+1
j −J)

Pk+1j φk
i πβφ

k+1
j .

From Lemma 6.30 we have

P
k+1
j
L∞(θ(xk+1j ,t

k+1
j −J))
≤ C2k+1,

and ifM∘f ∈ L∞, then

P
k+1
j
L∞(θ(xk+1j ,t

k+1
j −J))
≤ CM

∘f ∞.

We previously showed that

‖πβ‖L∞(θ(xk+1j ,t
k+1
j −J))
≤ C, ∀β, |β| ≤ l.

This leads to

I2 ≤ C2
k+1 1
∫φk+1

j
∫
ℝn

φ
k
i φ

k+1
j


≤ C2k+1,

and ifM∘f ∈ L∞, then

I2 ≤ C
M
∘f ∞.

Lemma 6.41. Let k ∈ ℤ. Then ∑i∈ℕ(∑j∈ℕ P
k+1
ij φk+1

j ) = 0, where the series converges
pointwise and in 𝒮′.
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Proof. By (6.64) we have that for any x ∈ ℝn, #{j ∈ ℕ : φk+1
j (x) ̸= 0} ≤ L. Also,

since Pk+1ij is the orthogonal projection of (f − Pk+1j )φ
k
i with respect to (6.83), we have

Pk+1ij = 0 if θ(xk+1j , t
k+1
j − J) ∩ θ(x

k
i , t

k
i − J) = 0. For a fixed j ∈ ℕ, let I(j) := {i ∈ ℕ :

θ(xk+1j , t
k+1
j − J) ∩ θ(x

k
i , t

k
i − J) ̸= 0}. Lemma 6.39 gives that #I(j) ≤ L′. Combining this

with Lemma 6.40, we get

∑
i∈ℕ
∑
j∈ℕ

P
k+1
ij (x)φ

k+1
j (x)
 ≤ C2

k+1.

By the Lebesgue dominated convergence theorem ∑i∈ℕ∑j∈ℕ P
k+1
ij φk+1

j converges un-
conditionally in 𝒮′.

To conclude the proof, it suffices to show that

∑
i∈ℕ

Pk+1ij = ∑
i∈I(j)

Pk+1ij = 0, ∀j ∈ ℕ.

Indeed, ∑i∈I(j) P
k+1
ij is an orthogonal projection of (f − Pk+1j )∑i∈I(j) φ

k
i onto Πl with

respect to the inner product (6.83). Since ∑i∈I(j) φ
k
i (x) = 1 for x ∈ θ(xk+1j , t

k+1
j − J),

∑i∈I(j) P
k+1
ij is the orthogonal projection of (f − Pk+1j ) onto Πl with respect to the inner

product (6.83), which is zero by the definition of Pk+1j in (6.67).

Lemma 6.42. LetΘ be a pointwise continuous cover and suppose (p,∞, l) is admissible
(see Definition 6.22). Then there exists a constant c > 0 such that for any f ∈ Hp(Θ) ∩
Lq, 1 ≤ q < ∞, there exist a sequence of (p,∞, l)-atoms {aki }k∈ℤ,i∈ℕ and coefficients
{λki }k∈ℤ,i∈ℕ such that

∑
k∈ℤ
∑
i∈ℕ

λ
k
i

p
≤ c‖f ‖pHp(Θ) (6.86)

and

f = ∑
k∈ℤ
∑
i∈ℕ

λki a
k
i converges in Hp(Θ) and Lq. (6.87)

Additionally, recalling the Whitney-type decomposition (6.60)–(6.64)

Ωk := {x ∈ ℝ
n : M∘f (x) > 2k} = ⋃

i∈ℕ
θ(xki , t

k
i ),

the atomic decomposition satisfies the following properties:

supp(aki ) ⊆ θ(x
k
i , t

k
i − J − 3γ − 1) ∩ Ωk , (6.88)

λ
k
i a

k
i
∞ ≤ c2

k . (6.89)
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Proof. Consider the Calderón–Zygmund decomposition f = gk + ∑i b
k of degree l at

height 2k associated withM∘. By Lemma 6.33

f − g
k

p
Hp(Θ) =

∑
i
bki


p

Hp(Θ)

≤ C ∫
Ωk

(M∘f )p → 0, k →∞.

Also, using the assumption that f ∈ Lq, by (6.81) we have that ‖gk‖∞ → 0 as k → −∞.
Therefore

f = ∑
k∈ℤ
(gk+1 − gk) in 𝒮′.

From Lemma 6.41 and the fact that∑i∈ℕ φ
k
i b

k+1
j = 1Ωk

bk+1j = b
k+1
j we have

gk+1 − gk = (f − ∑
j∈ℕ

bk+1j ) − (f − ∑
j∈ℕ

bkj )

= ∑
j∈ℕ

bkj − ∑
j∈ℕ

bk+1j + ∑
i∈ℕ
∑
j∈ℕ

Pk+1ij φk+1
j

= ∑
i∈ℕ

bki − ∑
i∈ℕ
∑
j∈ℕ

φk
i b

k+1
j + ∑

i∈ℕ
∑
j∈ℕ

Pk+1ij φk+1
j

= ∑
i∈ℕ
(bki − ∑

j∈ℕ
[φk

i b
k+1
j − P

k+1
ij φk+1

j ])

=: ∑
i∈ℕ

hki .

Since bki = (f − P
k
i )φ

k
i , we have

hki = (f − P
k
i )φ

k
i − ∑

j∈ℕ
[φk

i (f − P
k+1
j ) − P

k+1
ij ]φ

k+1
j . (6.90)

We now prove that hki = λ
k
i a

k
i , where a

k
i and λ

k
i are the required atoms and coefficients,

respectively, that satisfy all the required properties and claims of the lemma. We start
with the vanishing moments property of atoms. By the construction of Pki (see (6.67))
and Pk+1ij (see (6.83)) we have

∫
ℝn

hki Q = 0, ∀Q ∈ Πl. (6.91)
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The partition of unity∑j∈ℕ φ
k+1
j = 1Ωk+1 allows us to write

hki = f 1(Ωk+1)cφk
i − P

k
i φ

k
i + ∑

j∈ℕ
Pk+1j φk+1

j φk
i + ∑

j∈ℕ
Pk+1ij φk+1

j . (6.92)

Since supp(φk
i ) ⊂ Ωk for all i ∈ ℕ and supp(φk+1

j ) ⊂ Ωk+1 ⊆ Ωk for all j ∈ ℕ, we
have that supp(hki ) ⊂ Ωk . This is the first claim of (6.88). From the definition of Pk+1ij
we know that θ(xk+1j , t

k+1
j − J) ∩ θ(x

k
i , t

k
i − J) = 0 ⇒ Pk+1ij = 0. We also know that

supp(φk+1
j ) ⊂ θ(xk+1j , t

k+1
j − J), and hence from Lemma 6.39 we come to the conclu-

sion that supp(∑j∈ℕ P
k+1
ij φk+1

j ) ⊂ θ(x
k
i , t

k
i − J − 3γ − 1), which implies the second claim

of (6.88),

supp(hki ) ⊂ θ(x
k
i , t

k
i − J − 3γ − 1). (6.93)

From (6.92) we have

h
k
i
∞ ≤
f 1(Ωk+1)cφk

i
∞ +
P

k
i φ

k
i
∞ +

∑
j∈ℕ

Pk+1j φk
i φ

k+1
j

∞
+

∑
j∈ℕ

Pk+1ij φk+1
j

∞
.

We know that |f (x)| ≤ cM∘f (x) ≤ c2k+1 for almost every x ∈ (Ωk+1)c. Also from
Lemma 6.30 we have ‖Pki φ

k
i ‖∞ ≤ c2

k, and from Lemmas 6.39 and 6.40 we conclude
that


∑
j∈ℕ

Pk+1j φk
i φ

k+1
j

∞
≤ c2k+1 and


∑
j∈ℕ

Pk+1ij φk+1
j

∞
≤ c2k+1.

Collecting these last estimates yields

h
k
i
∞ ≤ c2

k , (6.94)

which gives (6.89). From (6.91), (6.93), and (6.94), hki is a multiple of a (p,∞, l)-atom
aki , meaning that

hki = λ
k
i a

k
i , λki ∼ 2

k2−t
k
i /p,

where {aki } and {λ
k
i } satisfy (6.88) and (6.89). From (6.60) and (6.61) we may con-

clude (6.86):

∞

∑
k=−∞
∑
i∈ℕ

λ
k
i

p
≤ C
∞

∑
k=−∞

2kp ∑
i∈ℕ

θ(x
k
i , t

k
i + γ)


≤ C
∞

∑
k=−∞

2kp|Ωk |
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≤ C
∞

∑
k=−∞

p(2k)p−1|Ωk |2
k−1

≤ C
∞

∫
0

pλp−1{x ∈ ℝ
n : M∘f (x) > λ}dλ

= CM
∘f 

p
p

= C‖f ‖pHp(Θ).

Therefore f = ∑∞k=−∞∑i∈ℕ λ
k
i a

k
i in 𝒮′ is an atomic decomposition of f , which implies

‖f ‖Hp
q,l(Θ) ≤ C‖f ‖Hp(Θ).

We also get the convergence in Hp(Θ):


f −

k′
∑

k=−∞
∑
i∈ℕ

λki a
k
i



p

Hp(Θ)
=


∞

∑
k=k′ ∑i∈ℕ λki aki



p

Hp(Θ)

≤ C
∞

∑
k=k′ ∑i∈ℕ
λ
k
i

p
→ 0, k′ →∞.

To see the convergence in Lq, observe that since f ∈ Lq for a. e. x ∈ ℝn, there exists
k(x) ∈ ℤ such that 2k(x) < M∘f (x) ≤ 2k(x)+1. From this it follows that

∑
k∈ℤ
∑
i∈ℕ

h
k
i (x)
 ≤ C ∑

k≤k(x)
2k1Ωk
(x)

≤ C2k(x) ≤ CM∘f (x).

Therefore the series ∑k∈ℤ∑i∈ℕ h
k
i converges absolutely pointwise a. e. to some func-

tion f̃ ∈ Lq. By the Lebesgue dominated convergence theorem we deduce that f̃ =
∑k∈ℤ∑i∈ℕ λ

k
i a

k
i converges unconditionally in Lq. Since the same atomic decomposi-

tion converges in 𝒮′ to f , we necessarily have f = f̃ ∈ Lq, which yields (6.87).

Theorem 6.43. LetΘ be a pointwise continuous cover and suppose (p, q, l) is admissible
(see Definition 6.22). Then Hp(Θ) ⊆ Hp

q,l(Θ).

Proof. By Lemma 6.42 we have for any f ∈ Hp(Θ) ∩ L2 an atomic representation (6.87)
with (p,∞, l)-atoms satisfying (6.86). Observe that a (p,∞, l)-atom is also a (p, q, l)-
atom for any admissible 1 ≤ q < ∞. Applying the density of Hp(Θ) ∩ L2 in Hp (Corol-
lary 6.37), we complete the proof.

Corollary 6.44. If Θ is a pointwise continuous cover, then Hp(Θ) ∩ Lq is dense in Hp(Θ)
for 1 ≤ q ≤∞.

Proof. Theorem 6.43 implies that every f ∈ Hp(Θ) has an atomic decomposition f =
∑i λiai, converging in the Hp(Θ) quasi-norm, where ∑i |λi|

p ≤ C‖f ‖pHp(Θ), and {ai} are
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(p,∞, l)-atoms. The partial finite atomic sums are compactly supported L∞ functions
and thus also Lq functions for any 1 ≤ q <∞. Since the partial finite sums converge to
f in the Hardy norm, we obtain the denseness of Hp(Θ) ∩ Lq in Hp(Θ).

6.4 The space BMO(Θ)
Definition 6.45. Let Θ be a cover, and let f ∈ Lloc1 (ℝ

n). Denote the means over the
ellipsoids by

fθ :=
1
|θ|
∫
θ

f , θ ∈ Θ.

Then f is said to belong to the space of Bounded Mean Oscillation BMO(Θ) if there
exists a constant 0 < M <∞ such that

sup
θ∈Θ

1
|θ|
∫
θ

f (x) − fθ
dx ≤ M.

We denote by ‖f ‖BMO(Θ) the infimum over all such constants.

It is standard to extend the abovedefinition to allowarbitrary constants cθ in place
of the means fθ, θ ∈ Θ. Indeed, if for given {cθ}θ∈Θ, we have

sup
θ∈Θ

1
|θ|
∫
θ

f (x) − cθ
dx ≤ M

′,

then |cθ − fθ| ≤ M′ for all θ ∈ Θ, and ‖f ‖BMO(Θ) ≤ 2M′.
It is obvious that L∞(ℝn) ⊂ BMO(Θ) for any cover. The following is a typical ex-

ample for a nonbounded function in BMO(Θ).

Example 6.46. For any continuous cover Θ ofℝn, we have that log(ρ(⋅,0)) ∈ BMO(Θ),
where ρ is the induced quasi-distance (2.35).

Proof. For any θ ∈ Θ, let a := infy∈θ ρ(y,0).
Case I: |θ| ≤ a. Let {ym}m≥1, ym ∈ θ, ρ(ym,0) → a as m → ∞. Since for any x, ym ∈ θ,
ρ(x,0) ≤ κ(ρ(x, ym) + ρ(ym,0)), where κ ≥ 1 is defined in (2.1). We have, asm→∞,

1
|θ|
∫
θ

(log(ρ(x,0)) − log a)dx ≤ 1
|θ|
∫
θ

(log κ(ρ(x, ym) + ρ(ym,0)) − log a)dx

≤ log κ + 1
|θ|
∫
θ

log( |θ| + ρ(ym,0)
a
)dx
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→ log κ + log( |θ| + a
a
)

≤ log κ + log 2.

Case II: a ≤ |θ|. By the triangle inequality (2.1) θ ⊂ Bρ(0, 2κ|θ|), which in particular
implies that ρ(x,0) ≤ 2κ|θ| for all x ∈ θ. Combining with Theorem 2.23, we get

1
|θ|
∫
θ

(log(2κ|θ|) − log(ρ(x,0)))dx

≤ C 1
|Bρ(0, 2κ|θ|)|

∫
Bρ(0,2κ|θ|)

(log(2κ|θ|) − log(ρ(x,0)))dx.

Applying Theorem 2.23 again, we have

1
|Bρ(0, 2κ|θ|)|

∫
Bρ(0,2κ|θ|)

(log(2κ|θ|) − log ρ(x,0))dx

= log(2κ|θ|) + 1
|Bρ(0, 2κ|θ|)|

∞

∑
j=1

∫

Bρ(0,2κ|θ|2−j+1)\Bρ(0,2κ|θ|2−j)
log ρ(x,0)−1dx

≤ log(2κ|θ|) + 1
|Bρ(0, 2κ|θ|)|

∞

∑
j=1

Bρ(0, 2κ|θ|2
−j+1)\Bρ(0, 2κ|θ|2

−j) log((2κ|θ|)
−12j)

≤ log(2κ|θ|) − log(2κ|θ|) + c′ 1
2κ|θ|

∞

∑
j=1

2κ|θ|2−j+1j

≤ c′
∞

∑
j=1

2−j+1j = c′′.

Recall that a given ellipsoid cover induces a natural quasi-distance ρ and a space
of homogeneous type X = (ℝn, ρ, dx). The space BMO(X) is defined [33] using averages
over balls. So here with

fBρ :=
1
|Bρ|
∫
Bρ

f , ∀Bρ = Bρ(x, r), x ∈ ℝ
n, r > 0,

f is said to belong to the space of Bounded Mean Oscillation BMO(X) if there exists a
constant 0 < M <∞ such that

sup
Bρ

1
|Bρ|
∫
Bρ

f (x) − fBρ
dx ≤ M.

Naturally, ‖f ‖BMO(X) is defined as the infimum over all such constants.

Theorem 6.47. BMO(Θ) ∼ BMO(X).
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Proof. The proof is a simple application of Theorem 2.23, which says that for any ball
Bρ(x, r), there exist ellipsoids θ′, θ′′ ∈ Θ with centers at x such that

θ′ ⊆ Bρ ⊆ θ
′′, θ

′ ∼ |Bρ| ∼
θ
′′.

Conversely, for any θ ∈ Θ, there exist balls B′ρ, B
′′
ρ such that

B′ρ ⊆ θ ⊆ B
′′
ρ ,
B
′
ρ
 ∼ |θ| ∼

B
′′
ρ
. (6.95)

Thus averaging on the anisotropic balls and ellipsoids is equivalent. Namely, for any
θ ∈ Θ, let B′′ρ satisfy (6.95), and let cθ := fB′′ρ . Then there exists c(p(Θ)) > 0 such that
|B′′ρ | ≤ c|θ|, which gives

1
|θ|
∫
θ

|f − cθ| ≤ c
1
|B′′ρ |
∫

B′′ρ
|f − fB′′ρ | ≤ c‖f ‖BMO(X).

Therefore ‖f ‖BMO(Θ) ≤ 2c‖f ‖BMO(X). The proof of the inverse embedding is similar.

Using the method of proof of Theorem 6.47, we can also show that for equivalent
covers (see Definition 2.27), we obtain equivalent BMO spaces.

Next, we recall the definition of the atomic H1(X) space for X = (ℝn, ρ, dx) [20]. In
the general setting of spaces of homogeneous type, we define a (1,∞, 1)-atom a as a
function with the following properties:
(i) supp(a) ⊆ Bρ for some ball Bρ,
(ii) ‖a‖∞ ≤ |Bρ|−1,
(iii) ∫ a = 0.

Then the atomic Hardy space H1
∞,1(X) is defined through atomic decompositions of

such atoms.

Theorem 6.48. We have that
(i) H1(Θ) and BMO(Θ) are dual spaces,
(ii) H1(Θ) ∼ H1

∞,1(X).

Proof. The proof of (i) is a mere repetition of the proof of classic case of the isotropic
BMO and H1 spaces over ℝn (see, e. g., [61]), where atoms supported over ellipsoids
replace atoms supported on Euclidean balls.We note that the anisotropic finite atomic
spaces of Section 6.7 and in particular Corollary 6.63 replace the classic isotropic finite
atomic spaces. The proof of (ii) is immediate from (i), since using Theorem 6.47, these
spaces are duals of the same space BMO(Θ) ∼ BMO(X).

Remark 6.49. We recall that theHardy spacesHp(Θ) canbe defined and characterized
using atomic spaces for arbitrarily small p > 0, whereas this is not possible in the
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general framework of spaces of homogeneous type. Furthermore, in Section 6.8, we
prove that the anisotropic Campanato spaces presented in Section 5.5 are (modulo
polynomials of fixed degree) the dual spaces of Hp(Θ) for any 0 < p < 1.

6.5 Classification of anisotropic Hardy spaces

Since for any cover Θ, the anisotropic Hardy space Hp(Θ) ∼ Lp(ℝn), 1 < p < ∞, an
important question is to what extent are various Hardy spaces over different covers
different for the range 0 < p ≤ 1? Theorem6.51, which is themain result of this section,
shows that for the range 0 < p ≤ 1, two anisotropic Hardy spaces are equivalent if and
only if the associated covers induce an equivalent quasi-distance.

We begin by showing that the anisotropic Hardy spaces are invariant under affine
transformations.

Lemma 6.50. Let Θ be a pointwise continuous cover, let Ax = Mx + b be a non-singular
affine transformation, and let (p, q, l) be an admissible triplet. Then:
(i) a is a (p, q, l)-atom in Hp(Θ) iff |detM|−1/pa(A−1⋅) is a (p, q, l)-atom in Hp(A(Θ)).
(ii) For any f ∈ 𝒮′, f ∈ Hp(Θ) iff f (A−1⋅) ∈ Hp(A(Θ)).

Proof. To prove (i), let a be a (p, q, l)-atom inHp(Θ) and denote ã := |detM|−1/pa(A−1⋅).
We verify that ã satisfies the three properties of an atom in Hp(A(Θ)):
(i′) supp(a) ⊆ θ ⇒ supp(ã) ⊆ A(θ).
(ii′) For 1 ≤ q ≤∞,

‖ã‖q = |detM|
−1/pa(A

−1⋅)q

= |detM|1/q−1/p‖a‖q
≤ |detM|1/q−1/p|θ|1/q−1/p

= A(θ)

1/q−1/p
.

(iii′) For any α ∈ ℤn+, |α| ≤ l, we have the vanishing moment property by

∫
ℝn

ã(x)xαdx = |detM|−1/p ∫
ℝn

a(A−1x)xαdx

= |detM|1−1/p ∫
ℝn

a(y)(Ay)αdy = 0.

Claim (ii) follows directly from the atomic decomposition. If f = ∑j λjaj with ∑j |λj|
p <

2‖f ‖pHp
q,l(Θ), then f (A−1⋅) = ∑j λ̃jãj, where using (i), ãj := |detM|

−1/paj(A−1⋅) are (p, q, l)
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atoms in Hp(A(Θ)), and λ̃j := |detM|1/pλj. Thus

f (A
−1⋅)Hp(A(Θ)) ≤ C

f (A
−1⋅)Hp

q,l(A(Θ))
≤ C(∑

j
|λ̃j|

p)
1/p

= C|detM|1/p(∑
j
|λj|

p)
1/p

≤ C|detM|1/p‖f ‖Hp(Θ).

Theorem 6.51 ([31]). LetΘ1 andΘ2 be twopointwise continuous covers, and let ρ1 and ρ2
be the corresponding induced quasi-distances. Then the following statements are equiv-
alent:
(i) ρ1 ∼ ρ2,
(ii) H1(Θ1) ∼ H1(Θ2),
(iii) Hp(Θ1) ∼ Hp(Θ2) for all 0 < p ≤ 1.

Notice that, in fact, Theorem 6.51 characterizes only the case p = 1. Further gener-
alization of the proof is needed to show that the quasi-distances are equivalent iff the
Hardy spaces are equivalent for some 0 < p0 ≤ 1. The proof of the theorem requires
some preparation. First, we recall some basic definitions from convex analysis.

Definition 6.52. Let K ⊂ ℝn be a bounded convex domain. Let L ⊂ ℝn be a hyperplane
through the origin with normal N . For each x ∈ L, let the perpendicular line through
x ∈ L be Gx := {x + yN : y ∈ ℝ}, and let lx := length(K ∩Gx). The Steiner symmetrization
of K with respect to L is

SL(K) = {x + yN : x ∈ L,K ∩ Gx ̸= 0,−(1/2)lx ≤ y ≤ (1/2)lx}.

It is not hard to see that whenever K is convex, so is SL(K) and that the Steiner
symmetrization preserves volume, i. e., |SL(K)| = |K| (see [6]).

For any hyperplane of the form H := {(y1, . . . , yn−1, h) : yi ∈ ℝ} with fixed h, we
denote H+ := {(y1, . . . , yn−1, yn) : yn ≥ h} and H− := {(y1, . . . , yn−1, yn) : yn ≤ h}.

Lemma 6.53. Let θ be an ellipsoid in ℝn. For 1 ≤ i ≤ n − 1, let Li be the hyperplane
Li := {x = (x1, . . . , xn) ∈ ℝn : xi = 0}. Let Hi = {(y1, . . . , yn−1, hi)}, i = 1, 2, be two
hyperplanes, where h1 > h2. Then the following hold:
(a) The convex body SL1 ∘SL2 ∘ ⋅ ⋅ ⋅ ∘SLn−1 (θ) is symmetric with respect the xi-axis for every

1 ≤ i ≤ n − 1.
(b) |H−1 ∩ H

+
2 ∩ θ| = |H

−
1 ∩ H

+
2 ∩ SL1 ∘ ⋅ ⋅ ⋅ ∘ SLn−1 (θ)|.
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(c) with x̃n := inf(y1 ,...,yn)∈θ yn and ̃zn := sup(y1 ,...,yn)∈θ yn, we have that

H
−
1 ∩ H

+
2 ∩ θ
 ≤ n!((h1 − h2)/( ̃zn − x̃n))|θ|.

Proof. Statements (a) and (b) follow from the construction of SL1 ∘SL2 ∘ ⋅ ⋅ ⋅ ∘SLn−1 (θ). We
now prove (c). First, we show that for any bounded convex domainK ⊂ ℝn, symmetric
with respect the xi-axis for every 1 ≤ i ≤ n − 1,

|K2| ≤ n!|K|, (6.96)

where K2 is the minimal (with respect to volume) box that contains K. By the sym-
metry, without loss of generality, we may assume that for a1, . . . , an−1 > 0, the points
(±a1,0, . . . ,0), (0,±a2,0, . . . ,0), . . . , (0, . . . ,0,±an−1) belong to 𝜕K, the boundary of K,
as well as a− = (0,0, . . . , a−n ), a

+ = (0,0, . . . , a+n ), a
−
n < a
+
n . Let K1 denote the convex hull

of

{(±a1,0 . . . ,0), (0,±a2,0, . . . ,0), . . . , (0, . . . ,0,±an−1), a
−, a+},

and let K2 be the box

[−a1, a1] × [−a2, a2] × ⋅ ⋅ ⋅ × [−an−1, an−1] × [a
−
n , a
+
n].

Obviously,

K1 ⊆ K ⊆ K2.

A simple integral calculation shows that |K1| = (a+n − a
−
n )(∏

n−1
i=1 ai)2

n−1/n! and |K2| =
(a+n − a

−
n )(∏

n−1
i=1 ai)2

n−1, which implies (6.96). Therefore, with K = SL1 ∘ SL2 ∘ ⋅ ⋅ ⋅ ∘ SLn−1 (θ),
we get

|K2| ≤ n!
SL1 ∘ SL2 ∘ ⋅ ⋅ ⋅ ∘ SLn−1 (θ),

where K2 is the minimal box that contains SL1 ∘ SL2 ∘ ⋅ ⋅ ⋅ ∘ SLn−1 (θ). Thus from (6.96) and
(b) we have

H
−
1 ∩ H

+
2 ∩ θ
 =
H
−
1 ∩ H

+
2 ∩ SL1 ∘ ⋅ ⋅ ⋅ ∘ SLn−1 (θ)

≤ H
−
1 ∩ H

+
2 ∩ K2


≤ ((h1 − h2)/( ̃zn − x̃n))|K2|

≤ n!((h1 − h2)/( ̃zn − x̃n))
SL1 ∘ ⋅ ⋅ ⋅ ∘ SLn−1 (θ)

= n!((h1 − h2)/( ̃zn − x̃n))|θ|.
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Lemma 6.54. Let Θ be a cover of ℝn such that B∗ ∈ Θ0. For 1 ≤ i ≤ n, define

gi(x1, . . . , xn) := {
log |xi|, (x1, . . . , xn) ∈ B∗,
0, (x1, . . . , xn) ∉ B∗.

(6.97)

Then gi ∈ BMO(Θ) with 0 < c1 ≤ ‖gi‖BMO(Θ) ≤ c2(p(Θ)).

Proof. Without loss of generality, we assume that n > 1 (the univariate case is known
[61]) and i = n. Thus, for the rest of the proof, we denote g := gn. By the definition of
the BMO space

‖g‖BMO(Θ) ≥
1
|B∗|
∫
B∗
g(x) − cB∗ dx =: c1,

where cB∗ = 1
|B∗| ∫B∗ g(y)dy.

In the other direction, if θ∩B∗ = 0, then g(x) = 0 on θ, andwe are done. Otherwise,
θ ∩ B∗ ̸= 0. Assume that θ = θ(x, t). If t ≤ 0, then

1
|θ|
∫
θ

g(x) − cθ
dx ≤

1
|θ|
∫
B∗
g(x)
dx ≤ c.

We now deal with the case θ ∩ B∗ ̸= 0, θ = θ(x, t) with t ≥ 0. Let a := infy∈θ |yn|. There
are two cases.
Case I: sup(y1 ,...,yn)∈θ |yn − a| ≤ a. Here we have by the monotonicity of the log function

1
|θ|
∫
θ

(log |yn| − log a)dy ≤
1
|θ|
∫
θ

(log(|yn − a| + a) − log a)dy

=
1
|θ|
∫
θ

log( |yn − a|
a
+ 1)dy ≤ log 2.

Case II: sup(y1 ,...,yn)∈θ |yn − a| > a. This condition implies that for θ = θ(x, t), 3 ⋅ θ =
x + 3Mx,t(B∗) intersects the hyperplane {y = (y1, . . . , yn−1,0)}. Let z := (z1, . . . , zn−1,0)
be a point in the intersection. Using (2.28), 3 ⋅ θ ⊆ θ(x, t − 3J1), and by Lemma 2.18,
θ(x, t − 3J1) ⊆ θ(z, t − 3J1 − γ). Therefore

θ = θ(x, t) ⊂ θ(x, t − 3J1) ⊂ θ(z, t − 3J1 − γ) =: η.

Let b := sup(y1 ,...,yn)∈η |yn|. With this definition,

1
|θ|
∫
θ

(log b − log |yn|)dy ≤ C
1
|η|
∫
η

(log b − log |yn|)dy.

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use



196 | 6 Hardy spaces

Denoting

Hj := {(y1, . . . , yn) ∈ η : |yn| ≤ 2
−jb}, j ≥ 0,

we may apply Lemma 6.53(c) with ̃zn = b and x̃n = 0 to conclude

1
|η|
∫
η

(log b − log |yn|)dy = log b +
1
|η|

∞

∑
j=1
∫

Hj−1\Hj

log |yn|
−1dy

≤ log b + 1
|η|

∞

∑
j=1
|Hj−1\Hj| log(b

−12j)

≤ log b − log b + n! log 2 1
|η|

∞

∑
j=1

2−j|η|j

≤ n! log 2
∞

∑
j=1

2−jj = c(n).

Proof of Theorem 6.51. It is obvious that (i) ⇒ (iii) ⇒ (ii), and so it remains to show
that (ii) ⇒ (i). First, observe that for n = 1, any cover induces a quasi-distance equiv-
alent to the Euclidean distance, so the result is obvious. For n ≥ 2, assume to the
contrary that (ii) holds but (i) does not. Then without loss of generality there exists a
sequence of pairs of points um, vm ∈ ℝn, um ̸= vm,m ≥ 1, such that

ρ1(um, vm)
ρ2(um, vm)

→ 0 asm→∞. (6.98)

Assuming that (6.98) holds, we will construct a sequence of compactly supported
piecewise constant functions {fm} such that

‖fm‖H1(Θ1)

‖fm‖H1(Θ2)
→ 0 asm→∞,

thereby contradicting our assumption that H1(Θ1) ∼ H1(Θ2).
Let 0 < ε < 1, and let m ≥ 1 be such that ρ1(um, vm)/ρ2(um, vm) ≤ ε/2. Let θ1 ∈ Θ1

and θ2 ∈ Θ2 be such that

um, vm ∈ θ1, ρ1(um, vm) ≤ |θ1| ≤ (1 + ε)ρ1(um, vm),
um, vm ∈ θ2, ρ2(um, vm) ≤ |θ2| ≤ (1 + ε)ρ2(um, vm).

This implies

|θ1|
|θ2|
≤ ε.

We now choose three ellipsoids centered at zm := (um + vm)/2 as follows:
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(i) θ̃1 := θ(zm, t1) ∈ Θ1 such that |θ̃1| ∼ |θ1| and um, vm ∈ θ̃1,
(ii) θ̃2 := θ(zm, t2) ∈ Θ2 such that |θ̃2| ∼ |θ2| with um, vm ∈ (θ̃2)c,
(iii) θ̂2 := θ(zm, t2 + J2) ∈ Θ2, where J2 := J(p(Θ2)) is the constant of (2.30) related to

Θ2, satisfying 2Mzm ,t2+J2 (B
∗) ⊂ Mzm ,t2 (B

∗).

Take an affine transformation Am incorporating a rotational element that satisfies
(i) Am(B∗) = θ̂2,
(ii) A−1m (θ̃1) is symmetric with respect to the xn = 0 hyperplane.

We define new covers Θ′1 := A
−1
m Θ1 and Θ′2 := A

−1
m Θ2 with equivalent parameters to Θ1

and Θ2, respectively, and new points ũm := A−1m (um) and ṽm := A
−1
m (vm). We now have

the following geometric objects “at the origin” with the following properties:
(i) B∗ = A−1m (θ̂2) ∈ Θ

′
2,

(ii) θ̃′1 := A
−1
m (θ̃1) ∈ Θ

′
1 with ũm, ṽm ∈ θ̃

′
1 and |θ̃

′
1| < cε,

(iii) θ′2 := A
−1
m (θ̃2) ∈ Θ

′
2 with 2B

∗ ⊂ θ′2, ũm, ṽm ∈ (θ
′
2)
c ⊂ (2B∗)c and |θ′2| ∼ 1.

We write θ̃′1 = θ̃
′
1(0, ̃t
′
1) = M0, ̃t′1 (B∗), where ̃t′1 ∈ ℝ. Since θ̃′1 ∩ (2B∗)c ̸= 0, we may define

s′ := sup{s ≥ 0 : (2B∗)c ∩M0, ̃t′1+s(B∗) ̸= 0}, θ′1 := M0, ̃t′1+s′(B∗) ∈ Θ′1.
The newly constructed ellipsoid θ′1 may no longer contain the points ũm, ṽm, but it has
a center at the origin and the following properties:
(i) (2B∗)c ∩ θ′1 ̸= 0,
(ii) |θ′1| ≤ cε,
(iii) |B∗ ∩ θ′1| ∼ |(2B

∗ \ B∗) ∩ θ′1| ∼ |θ
′
1|.

(iv) By rotation about the origin of the entire construction of the covers Θ′1, Θ
′
2 we

may assume that θ′1 has its longest axis along the x1-axis.

Therefore there exist two boxes Ω1 and Ω2, identical up to a shift, that are symmetric
to the main axes and of dimensions d1 × ⋅ ⋅ ⋅ × dn, with the following properties:
(i) Ω1 = [0, d1] × ⋅ ⋅ ⋅ × [0, dn] ⊂ B∗ ∩ θ′1,
(ii) Ω2 ⊂ (2B∗ \ B∗) ∩ θ′1,
(iii) d1 ∼ 1, and there exists 2 ≤ i ≤ n such that di ≤ c n−1√ε,
(iv) |Ω1| = |Ω2| ∼ |θ′1|, which implies that 1/di ∼

d1×⋅⋅⋅×di−1×di+1×⋅⋅⋅×dn
|θ′1| .

We will now construct a function f ′m ∈ H
1(Θ′1)with ‖f

′
m‖H1(Θ′1) ≤ c for which ‖f ′m‖H1(Θ′2) ≥

c′ log(c′′ε−1). This will mean that for fm := f ′m(A
−1
m ⋅), we have

‖fm‖H1(Θ1)

‖fm‖H1(Θ2)
≤ c′′′(log(c′′ε−1))−1,
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which is a contradiction to the assumption H1(Θ1) ∼ H1(Θ2), since ε can be chosen
arbitrarily small.

We define f ′m ∈ H1(Θ′1) by f ′m := |θ
′
1|
−1(1Ω1
− 1Ω2
). Now f ′m is not necessarily an

atom in H1(Θ′1), since it may not have the sufficient N1(Θ′1) vanishing moments as
per Definition 6.22. However, f ′m is a constant multiple of an atom in H1

∞,1(X), where
X = (ℝn, ρ′1, dx) is the space of homogeneous type induced by Θ′1, and therefore, based
on Theorem 6.48, we may deduce that ‖f ′m‖H1(Θ′1) ≤ c. By Lemma 6.54 the function gi
defined by (6.97) is in BMO(Θ′2) with ‖gi‖BMO(Θ′2) ∼ 1. From the properties of gi and the
boxes Ω1 and Ω2, for sufficiently small ε, we have

f
′
m
H1(Θ′2) ≥ C sup

φ∈BMO(Θ′2)
|⟨f ′m,φ⟩|
‖φ‖BMO(Θ′2)

≥ C⟨f
′
m, gi⟩


≥ −C 1
|θ′1|
∫
Ω1

log |xi|dx

= −Cd1 × ⋅ ⋅ ⋅ × di−1 × di+1 × ⋅ ⋅ ⋅ × dn
|θ′1|

di

∫
0

log(xi)dxi

≥ −C 1
di

di

∫
0

log(xi)dxi

≥ c′ log(c′′ε−1).

6.6 Anisotropic molecules

Definition 6.55. Let Θ be a continuous cover, let (p, q, l) be admissible, and let δ >
a4l + 1. Suppose that g is a measurable function onℝn such that for c̃ > 0, θ = θ(z, t) ∈
Θ, z ∈ ℝn, and t ∈ ℝ,

‖g‖Lq(θ) ≤ c̃|θ|
1/q−1/p, (6.99)

g(x)
 ≤ c̃
θ(z, t)

− 1p 2−kJδ, ∀x ∈ θ(z, t − (k + 1)J) \ θ(z, t − kJ), k ≥ 0, (6.100)

∫
ℝn

g(x)xαdx = 0, ∀α ∈ ℤn+, |α| ≤ l. (6.101)

Then, we say that g is amolecule localized around θ.

Theorem 6.56. LetΘ be a pointwise continuous cover, let (p, q, l) be admissible, and let
δ > a4l + 1. If g is a molecule, then g ∈ Hp(Θ) and ‖g‖Hp(Θ) ≤ c̃c(p(Θ), p, q, l, δ).
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Before we prove the theorem, we need the following definition and result. For any
l ∈ ℕ and bounded convex domain Ω ∈ ℝn, define πΩ : L1(Ω) → Πl as the natural
Riesz representation of the action of f ∈ L1(Ω) on Πl,

∫
Ω

πΩ(f )Q = ∫
Ω

fQ, ∀Q ∈ Πl. (6.102)

Lemma 6.57. For any l ∈ ℕ, there exist a positive constant c(n, l) > 0 such that for any
ellipsoid θ ∈ ℝn and f ∈ L1(θ),

‖πθf ‖L∞(θ) ≤ c|θ|−1‖f ‖L1(θ). (6.103)

Proof. Let {Pβ}|β|≤l be an orthonormal basis of Πl in L2(B∗). For f ∈ L1(B∗), we have

πB∗ f = ∑
|β|≤l
(∫
B∗ fPβ)Pβ.

Therefore, since ‖Pβ‖L∞(B∗) ∼ ‖Pβ‖L2(B∗) = 1 for all |β| ≤ l, for any y ∈ B∗, we have
πB∗ f (y) ≤ ∑

|β|≤l
(∫
B∗ |f ||Pβ|)

Pβ(y)
 ≤ C
B
∗
−1
∫
B∗ |f |, (6.104)

which proves the case θ = B∗. Now let θ be an arbitrary ellipsoid in ℝn, and let Aθ be
an affine transform such that θ = Aθ(B∗),Ax = Mx+v. Then by (6.102), for any f ∈ L1(θ)
and Q ∈ Πl,

∫
θ

πB∗(f (Aθ ⋅))(A−1θ x)Q(x)dx = det(M)
 ∫
B∗ πB∗(f (Aθ ⋅))(y)Q(Aθy)dy

= det(M)
 ∫
B∗ f (Aθy)Q(Aθy)dy

= ∫
θ

f (x)Q(x)dx

= ∫
θ

πθf (x)Q(x)dx.

This provides the affine transformation identity

πθf (x) = πB∗(f (Aθ ⋅))(A−1θ x). (6.105)
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From (6.105) and the bound on B∗ (6.104), for any x ∈ θ, we have

πθf (x)
 =
πB∗(f (Aθ ⋅))(A−1θ x)
≤ sup

y∈B∗πB∗(f (Aθ ⋅))(y)
≤ C ∫

B∗
f (Aθy)
dy

≤ Cdet(M)

−1
∫
θ

|f |

= C|θ|−1‖f ‖L1(θ).

Proof of Theorem 6.56. We follow the proof in [12] (see also [3]). For any ellipsoid η and
f ∈ L1(η), define π̃ηf := f − πηf . By (6.103), for 1 ≤ q ≤∞, we get

‖π̃ηf ‖Lq(η) ≤ ‖f ‖Lq(η) + ‖πηf ‖Lq(η)
≤ ‖f ‖Lq(η) + |η|

1/q‖πηf ‖L∞(η)
≤ ‖f ‖Lq(η) + C|η|

1/q−1‖f ‖L1(η)
≤ ‖f ‖Lq(η) + C‖f ‖Lq(η) ≤ C‖f ‖Lq(η).

Furthermore,

∫
η

π̃ηf (x)x
αdx = 0, ∀|α| ≤ l. (6.106)

Let g be amolecule localized around θ := θ(z, t). We want to represent g as a combina-
tion of atoms supported on θ(z, t − kJ), k ≥ 0. Define the sequence of function {gk}∞k=0
by

gk := 1θ(z,t−kJ)π̃θ(z,t−kJ)g.

Clearly, supp(gk) ⊂ θ(z, t − kJ). By (6.106), gk, k ≥ 0, has vanishing moments up to
order l. For k = 0, applying property (6.99) yields with a constant c1 > 0

‖g0‖q = ‖π̃θ(z,t)g‖Lq(θ(z,t)) ≤ C‖g‖Lq(θ(z,t)) ≤ c̃c1|θ|
1/q−1/p.

Therefore g0 is a c̃c1 multiple of a (p, q, l)-atom. The goal now is showing that

g = g0 +
∞

∑
j=0
(gk+1 − gk), (6.107)

where the convergence is both in L1 and Hp(Θ), with gk+1 − gk being appropriate mul-
tiples of (p,∞, l)-atoms supported on θ(z, t − (k + 1)J).
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We claim that gk → g in L1 (and hence in 𝒮′) as k → ∞. It suffices to show that
‖πθ(z,t−kJ)g‖L1(θ(z,t−kJ)) → 0 as k →∞. Indeed, let {Pβ : |β| ≤ l} be an orthonormal basis
of Πl with respect to the L2(B∗) norm. Using (6.105), for x ∈ θ(z, t − kJ), we have

πθ(z,t−kJ)g(x) = πB∗(g(Aθ(z,t−kJ)⋅))(A−1θ(z,t−kJ)x)
= ∑
|β|≤l
(∫
B∗ g(Aθ(z,t−kJ)⋅)Pβ)Pβ(A

−1
θ(z,t−kJ)x)

= det(Mz,t−kJ)

−1
∑
|β|≤l
( ∫
θ(z,t−kJ)

gPβ(A
−1
θ(z,t−kJ)⋅))Pβ(A

−1
θ(z,t−kJ)x).

From the above we obtain the L∞ estimate

‖πθ(z,t−kJ)g‖L∞(θ(z,t−kJ)) ≤ Cdet(Mz,t−kJ)

−1
∑
|β|≤l


∫

θ(z,t−kJ)

gPβ(A
−1
θ(z,t−kJ)⋅)


. (6.108)

To obtain an L1 estimate, we use

Pβ(A
−1
θ(z,t−kJ)⋅)

L1(θ(z,t−kJ)) ≤ C
det(Mz,t−kJ)



with the vanishing moments property of the molecule g (6.101), its decay (6.100), and
the uniform bound ‖Pβ‖∞ ≤ c for all |β| ≤ l to obtain

∫
θ(z,t−kJ)

gPβ(A
−1
θ(z,t−kJ)⋅) = − ∫

θ(z,t−kJ)c
gPβ(A

−1
θ(z,t−kJ)⋅)→ 0 as k →∞.

From this we conclude that

‖πθ(z,t−kJ)g‖L1(θ(z,t−kJ)) → 0 as k →∞,

which shows that gk → g in L1. Next, we estimate

‖gk+1 − gk‖∞ = ‖1θ(z,t−(k+1)J)π̃θ(z,t−(k+1)J)g − 1θ(z,t−kJ)π̃θ(z,t−kJ)g‖∞
= ‖1θ(z,t−(k+1)J)\θ(z,t−kJ)g − 1θ(z,t−(k+1)J)πθ(z,t−(k+1)J)g + 1θ(z,t−kJ)πθ(z,t−kJ)g‖∞
≤ ‖1θ(z,t−(k+1)J)\θ(z,t−kJ)g‖∞ + ‖1θ(z,t−(k+1)J)πθ(z,t−(k+1)J)g‖∞
+ ‖1θ(z,t−kJ)πθ(z,t−kJ)g‖∞
=: I + II + III.
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For the estimate of the term I, we apply (6.100) to get

I = ‖1θ(z,t−(k+1)J)\θ(z,t−kJ)g‖∞

≤ c̃θ(z, t)

−1/p2−kJδ

≤ c̃Cθ(z, t − kJ)

− 1p 2−kJ(δ−1/p).

We now bound the term III (the bound of the term II is similar). Notice that |Pβ(x)| ≤
c|x|l for any x ∈ (B∗)c and some constant c > 0. By (6.101) and (6.100) we have


∫

θ(z,t−kJ)

gPβ(A
−1
θ(z,t−kJ)⋅)


=

∫

θ(z,t−kJ)c
gPβ(A

−1
θ(z,t−kJ)⋅)



≤ C ∫
θ(z,t−kJ)c

g(x)

M
−1
z,t−kJ(x − z)


ldx

≤ c̃Cθ(z, t)

− 1p
∞

∑
i=k

2−iJδ ∫
θ(z,t−(i+1)J)\θ(z,t−iJ)

M
−1
z,t−kJ(x − z)


ldx

≤ c̃Cθ(z, t)

− 1p det(Mz, t−kJ)


∞

∑
i=k

2−iJδ ∫

M−1z,t−kJMz,t−(i+1)J (B∗)
|y|ldy

≤ c̃Cθ(z, t)

− 1p 2−t+kJ

∞

∑
i=k

2−iJδM
−1
z,t−kJMz,t−(i+1)J


l

× det(M
−1
z,t−kJMz,t−(i+1)J)



≤ c̃Cθ(z, t)

− 1p 2−t−kJ(δ−1)

∞

∑
i=k

2−Jδ(i−k)2a4lJ(i−k)2J(i−k)

≤ c̃Cθ(z, t − kJ)

− 1p 2−t−kJ(δ−1−1/p).

The last series converges since δ > a4l + 1. Therefore from (6.108) we may bound III ≤
c̃C|θ(z, t−kJ)|−

1
p 2−kJ(δ−1/p). As already noted,we have a similar bound for II. Combining

the estimates of I, II, and III, we conclude that for some constant c2 > 0, we have

‖gk+1 − gk‖∞ ≤ c̃c2
θ(z, t − (k + 1)J)


− 1p 2−kJ(δ−1/p), k ≥ 0.

Since each gk also has vanishing moments up to order l, gk+1 − gk is a λk multiple of a
(p,∞, l)-atom ak supported on θ(z, t − (k + 1)J), that is, gk+1 − gk = λkak, where ak is an
atom, and λk = c̃c22−kJ(δ−1/p). Since any (p,∞, l)-atom is a (p, q, l)-atom, by (6.107) we
have

‖g‖pHp
q,l(Θ) ≤ c̃pcp1 + c̃pcp2

∞

∑
k=0

2−kpJ(δ−1/p) ≤ c̃pC.
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The last series converges since l ≥ Np(Θ), a4 ≥ a6, and hence

δ − 1/p > a4Np(Θ) − 1/p > a4
max(1, a4)n + 1

a6p
− 1/p > 0.

This finishes the proof of the theorem.

6.7 Finite atomic spaces

In this section,we follow [66] (see also [14]) andanalyzepointwise variable anisotropic
finite atomic spaces. Our main application is the characterization in Section 6.8 of the
dual spaces of the anisotropic Hardy spaces using anisotropic Campanato spaces.

Definition 6.58. Let Θ be a continuous cover, and let (p, q, l) be admissible as in Defi-
nition 6.22. We defineHp

fin,q,l(Θ) as the space of all finite combinations of (p, q, l)-atoms
with the quasi-norm

‖f ‖Hp
fin,q,l(Θ) := inf{(

k
∑
i=1
|λi|

p)

1/p

: f =
k
∑
i=1

λiai, {ai} are (p, q, l)-atoms}.

Theorem 6.59. Let Θ be a pointwise continuous cover. For any admissible (p, q, l), 1 <
q ≤∞,
(i) for 1 < q <∞, ‖ ⋅ ‖Hp

fin,q,l(Θ) and ‖ ⋅ ‖Hp(Θ) are equivalent quasi-norms on H
p
fin,q,l(Θ).

(ii) ‖ ⋅ ‖Hp
fin,∞,l(Θ) and ‖ ⋅ ‖Hp(Θ) are equivalent quasi-norms on H

p
fin,∞,l(Θ) ∩ C(ℝ

n).

Proof. It is obvious from Definitions 6.23 and 6.58 and Theorem 6.24 that Hp
fin,q,l(Θ) ⊂

Hp
q,l(Θ) ∼ H

p(Θ), 1 < q ≤∞, and that for any f ∈ Hp
fin,q,l(Θ),

‖f ‖Hp
q,l(Θ) ≤ ‖f ‖Hp

fin,q,l(Θ).
Hence, to prove (i), it is sufficient to show that there exists c > 0 such that when 1 <
q <∞, for all f ∈ Hp

fin,q,l(Θ),

‖f ‖Hp
fin,q,l(Θ) ≤ c‖f ‖Hp(Θ). (6.109)

A similar claim holds for case (ii). We prove (6.109) in five steps.
Step 1. For any f ∈ Hp

fin,q,l(Θ), by homogeneity we can assume that ‖f ‖Hp(Θ) = 1.
Since f may be represented by a finite combination of atoms, it has compact support,
and by (2.25) there exists t0 ∈ ℝ such that supp(f ) ⊂ θ(0, t0). Recall that for each k ∈ ℤ,
we have Ωk := {x : M∘f (x) > 2k}. Since f has a finite atomic representation, it is easy
to see that f ∈ Hp(Θ) ∩ Lq(ℝn) for 1 < q < ∞. It is also easy to see that for the case
q = ∞, f ∈ Hp(Θ) ∩ L2(ℝn). Therefore by Lemma 6.42 there exists a (possibly infinite)
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(p,∞, l)-atomic representation f = ∑k∈ℤ∑i∈ℕ λ
k
i a

k
i , which holds in Lq (L2 for q = ∞),

the sequence converges to f a. e., and there exists a constant C2 > 0 such that

∑
k∈ℤ
∑
i∈ℕ

λ
k
i

p
≤ C‖f ‖pHp(Θ) ≤ C2. (6.110)

Step 2. We claim that there exists c̃ > 0, which does not depend on f , such that

M∘f (x) ≤ c̃θ(0, t0)

−1/p
, ∀x ∈ θ(0, t0 − γ)

c. (6.111)

Let x ∈ θ(0, t0 − γ)c. We claim that θ(x, t) ∩ θ(0, t0) = 0 for all t > t0. Otherwise, by
Lemma 2.18 θ(x, t) ⊂ θ(0, t0 − γ) ⇒ x ∈ θ(0, t0 − γ), which is a contradiction. Applying
also (6.19), we have

M∘f (x) ≤ C sup
φ∈𝒮Np ,Ñp ,supp(φ)⊆B∗ supt≤t0

f ∗ φx,t(x)
. (6.112)

Therefore it is sufficient to boundM∘f (x) by taking the supremum over supp(φ) ⊆ B∗

and t ≤ t0. Let ψ ∈ 𝒮 be such that supp(ψ) ⊂ 2B∗, 0 ≤ ψ ≤ 1, and ψ ≡ 1 on B∗.
Letting z ∈ θ(0, t0), we have M−10,t0z ⊂ B∗, and hence ψ(M−10,t0z) ≡ 1. From this and
supp(f ) ⊂ θ(0, t0) we deduce that

f ∗ φx,t(x) =
det(M

−1
x,t)
 ∫
θ(0,t0)

f (z)φ(M−1x,t(x − z))ψ(M
−1
0,t0z) dz.

We assume that θ(x, t) ∩ θ(0, t0) ̸= 0. Otherwise, f ∗φx,t(x) = 0, and were are done. We
now define

Φ(z) :=
|det(M−1x,t)|
|det(M−10,t0 )|

φ(M−1x,tx +M
−1
x,tM0,t0z)ψ(−z).

Then we have

f ∗Φ0,t0 (0) =
det(M

−1
0,t0)
 ∫
ℝn

f (z)Φ(M−10,t0 (−z)) dz (6.113)

= det(M
−1
x,t)
 ∫
ℝn

f (z)φ(M−1x,t(x − z))ψ(M
−1
0,t0z) dz

= f ∗ φx,t(x).

By (2.13), since t ≤ t0,

|det(M−1x,t)|
|det(M−10,t0 )|

≤ C2t−t0 ≤ C.
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For any α ∈ ℤn+, |α| ≤ Np, t ≤ t0, by (2.14) we have

𝜕
αΦ(z) ≤ C

𝜕
α
z [φ(M

−1
x,tx +M

−1
x,tM0,t0z)ψ(−z)]



≤ C max
|β|≤Np

M
−1
x,tM0,t0

|β|(𝜕

βφ)(M−1x,tx +M
−1
x,tM0,t0z)



≤ C max
|β|≤Np
[a52
−a6(t0−t)]

|β|(𝜕
βφ)(M−1x,tx +M

−1
x,tM0,t0z)



≤ C max
|β|≤Np

(𝜕
βφ)(M−1x,tx +M

−1
x,tM0,t0z)

,

which, together with ‖φ‖Np ,Ñp
≤ 1 and supp(Φ) ⊆ supp(ψ) ⊆ 2B∗, implies that

‖Φ‖Np ,Ñp
≤ C max
|α|≤Np

sup
z∈2B∗𝜕αΦ(z)

≤ C max
|β|≤Np

sup
z∈2B∗(𝜕βφ)(M−1x,tx +M−1x,tM0,t0z)

(1 +
M
−1
x,tx +M

−1
x,tM0,t0z

)
Ñp

≤ C‖φ‖Np ,Ñp
≤ C.

For any u ∈ θ(0, t0) and any y ∈ θ(u, t0), define

Φ̃(z) :=
|det(M−10,t0 )|
|det(M−1u,t0 )|

Φ(M−10,t0 (Mu,t0z − y)).

By (2.13) it follows that

|det(M−10,t0 )|
|det(M−1u,t0 )|

≤ C.

By supp(Φ) ⊆ 2B∗ and y ∈ θ(u, t0)we obtain that for some c(p(Θ)) > 0, supp(Φ̃) ⊆ cB∗.
Combining this with ‖Φ‖Np ,Ñp

≤ C gives

‖Φ̃‖Np ,Ñp
≤ C max
|α|≤Np

sup
z∈supp(Φ̃)

𝜕
αΦ̃(z)

≤ C max
|α|≤Np

sup
z∈supp(Φ̃)

(𝜕
αΦ)(M−10,t0 (Mu,t0z − y))

(1 +
M
−1
0,t0 (Mu,t0z − y)

)
Ñp

≤ C‖Φ‖Np ,Ñp
≤ C.
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Therefore, noticing that (‖Φ̃‖Np ,Ñp
)−1Φ̃ ∈ 𝒮Np ,Ñp

and applying Lemma 6.6, for any u ∈
θ(0, t0), we obtain

(‖Φ̃‖Np ,Ñp
)
−1f ∗Φ0,t0 (0)

 ≤ C(‖Φ̃‖Np ,Ñp
)
−1f ∗ Φ̃u,t0 (y)



≤ C sup
y∈θ(u,t0)

f ∗ ((‖Φ̃‖Np ,Ñp
)
−1Φ̃)u,t0 (y)



≤ CMNp ,Ñp
f (u) ≤ CM∘f (u),

which, together with ‖f ‖Hp(Θ) = 1, for t ≤ t0, yields

f ∗ φx,t(x)
 =
f ∗Φ0,t0 (0)


≤ C inf

u∈θ(0,t0)
M∘f (u)

≤ Cθ(0, t0)

−1/pM

∘f Lp(θ(0,t0))

≤ Cθ(0, t0)

−1/p
‖f ‖Hp(Θ)

= Cθ(0, t0)

−1/p
.

From this and (6.112) we deduce (6.111).
Step 3. Denote by k′ the largest integer such that 2k

′
< c̃|θ(0, t0)|−1/p, where c̃ is as

in Step 2. Then by (6.111) we have

Ωk ⊂ θ(0, t0 − γ) for k > k′. (6.114)

Using the atomic decomposition satisfying (6.110), let h := ∑k≤k′ ∑i λki aki and g :=
∑k>k′ ∑i λki aki . Now let us show that h is a multiple of a (p, ∞, l)-atom.

By (6.88) supp(aki ) ⊂ Ωk . Together with (6.114), this implies supp(g) ⊂ ⋃k>k′ Ωk ⊂
θ(0, t0−γ). Sincewe also have supp(f ) ⊂ θ(0, t0) ⊂ θ(0, t0−γ), we obtain that supp(h) =
supp(f − g) ⊂ θ(0, t0 − γ).

Since 2k
′
< c̃|θ(0, t0−γ)|−1/p, using also (6.89), we havewith a fixed constantC1 > 0

h(x)
 ≤ ∑

k≤k′∑i
λ
k
i a

k
i (x)
 ≤ C ∑

k≤k′ 2k ≤ C1
θ(0, t0 − γ)


−1/p
.

The third requiredproperty fromhof vanishingmoments is obvious from the represen-
tation of h by (p,∞, l)-atoms and the previous two properties. Thus h is a C1-multiple
of a (p,∞, l)-atom and hence also for q < ∞, a C1-multiple of a (p, q, l)-atom for any
admissible triplet (p, q, l).

Step 4. We now focus on the case 1 < q < ∞. By Lemma 6.42 ∑k>k′ ∑i λki aki con-
verges to g in Lq. For any positive integer K, let FK := {(i, k) : k > k′, |i| + |k| ≤ K} and
gK := ∑(i,k)∈FK λ

k
i a

k
i . If K is large enough, then by the Lebesgue dominated convergence

theorem and g ∈ Lq we have ‖g − gK‖q ≤ |θ(0, t0 − γ)|1/q−1/p. Since supp(g − gK) ⊂
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θ(0, t0−γ) and g−gk has l vanishingmoments, we deduce that g−gK is a (p, q, l)-atom.
Therefore f = h + gK + (g − gK) is a finite atomic decomposition of f . Consequently,
applying Step 3, ‖f ‖Hp(Θ) = 1, and (6.110), we have

‖f ‖pHp
fin,q,l(Θ) ≤ ‖h‖pHp

fin,q,l(Θ) + ∑(i,k)∈FK
λ
k
i

p
+ ‖g − gK‖

p
Hp
fin,q,l(Θ)

≤ Cp1 + C2 + 1 = C = C‖f ‖
p
Hp(Θ),

which proves (6.109) for 1 < q <∞ and ends the proof of (i).
Step 5. We now proceed to prove (ii). Let f ∈ Hp

fin,∞,l(Θ)∩C(ℝ
n). Recall from Step 3

the decomposition f = h + g, where h is a multiple of a (p,∞, l)-atom. So it remains
to decompose g to a finite superposition of (p,∞, l)-atoms. Since we assumed f to be
continuous in ℝn and showed that its support is in the closure of θ(0, t0 − γ), it is
bounded. By Theorem 6.10 there exists a constant c > 0 such that ‖M∘f ‖∞ ≤ c‖f ‖∞.
Let k′′ be the largest integer such that 2k

′′
≤ c‖f ‖∞. For any k > k′′, we have that

2k ≥ c‖f ‖∞, and so Ωk = 0. This implies that in this case, g constructed in Step 3 has a
representation g = ∑k

′′
k′ ∑i λki aki . Recall that for k > k′,

supp(aki ) ⊆ θ(x
k
i , t

k
i − J − 3γ − 1) ∩ Ωk ⊂ θ(0, t0 − γ).

For a given δ > 0, to be chosen momentarily, we decompose g = g1 + g2 so that g1 =
∑(k,i)∈F1 λ

k
i a

k
i and g2 = ∑(k,i)∈F2 λ

k
i a

k
i with

F1 := {(k, i) :
θ(x

k
i , t

k
i − J)
 ≥ δ, k

′ < k ≤ k′′},

F2 := {(k, i) :
θ(x

k
i , t

k
i − J)
 < δ, k

′ < k ≤ k′′}.

Next, we claim that the set F1 is finite. Indeed, for each fixed k′ < k0 ≤ k′′, by prop-
erty (6.61) of the Whitney decomposition the cores {θ(xk0i , t

k0
i + γ)}(k0 ,i)∈F1 are pairwise

disjoint. Furthermore, they are all contained in θ(0, t0 − γ) and have volume ≥ cδ for
some fixed c(p(Θ)) > 0. Thus

#F1 ≤ (k
′′ − k′)c−1δ−1θ(0, t0 − γ)

 ≤ (k
′′ − k′)c−1δ−1a22

−(t0−γ).

Therefore g1 is a finite superposition of (p,∞, l)-atoms, which by (6.110) satisfies

∑
(k,i)∈F1

λ
k
i

p
≤ C2.

Wenow turn to prove that for sufficiently small δ, we can ensure that g2 is constant
multiple of a (p,∞, l)-atom. Since f is continuous, for

ε := (k′′ − k′)−1θ(0, t0 − γ)

−1/p
, (6.115)
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there exists δ′ > 0 such that if |x − y| ≤ δ′, then |f (x) − f (y)| < ε. By Lemma 2.26,
for θ(0, t0 − γ), there exists a constant c(p(Θ), t0) > 0 such that if x ∈ θ(0, t0 − γ) or
y ∈ θ(0, t0 −γ) and ρ(x, y) < 1, then |x−y| ≤ cρ(x, y)a6 . This implies that with the choice

δ := min(1,(δ
′

c
)
a−16
),

we obtain

ρ(x, y) < δ ⇒ |x − y| < δ′ ⇒ f (x) − f (y)
 < ε, x ∈ θ(0, t0 − γ) ∨ y ∈ θ(0, t0 − γ).

For any (k, i) ∈ F2 and x ∈ θ(xki , t
k
i − J), we have that ρ(x, x

k
i ) ≤ |θ(x

k
i , t

k
i − J)| < δ, which

means |f (x) − f (xki )| < ε. Write

̃f (x) := (f (x) − f (xki ))1θ(xki ,tki −J)(x), P̃ki (x) := P
k
i (x) − f (x

k
i ),

where Pki is defined by (6.67). We see that for any Q ∈ Πl,

1
∫φk

i
∫
ℝn

( ̃f − P̃ki )Qφ
k
i =

1
∫φk

i
∫
ℝn

(f − Pki )Qφ
k
i = 0.

Since ‖ ̃f ‖∞ < ε, we have by the maximal theorem that ‖M∘ ̃f ‖∞ ≤ Cε, which in turn
allows us to apply (6.70) to obtain

P̃
k
i φ

k
i
∞ ≤
M
∘ ̃f ∞ ≤ Cε.

We also have P̃k+1i,j = P
k+1
i,j , where Pk+1i,j is defined by (6.83), and so using (6.84), we get

P̃
k
i,jφ

k+1
j
∞ ≤
M
∘ ̃f ∞ ≤ Cε.

So, for x ∈ θ(xki , t
k
i − J) and (k, i) ∈ F2, recalling formula (6.90) for hki = λ

k
i a

k
i and using

Lemma 6.39(iii), we get

λ
k
i a

k
i (x)
 =
h
k
i (x)


=

(f (x) − Pki (x))φ

k
i (x) − ∑

j∈ℕ
[φk

i (x)(f (x) − P
k+1
j (x)) − P

k+1
ij (x)]φ

k+1
j (x)


=

( ̃f (x) − P̃ki (x))φ

k
i (x) − ∑

j∈ℕ
[φk

i (x)( ̃f (x) − P̃
k+1
j (x)) − P̃

k+1
ij (x)]φ

k+1
j (x)


≤ 
̃f (x)1Ωk+1 (x) + P̃ki (x)φk

i (x)
 + ∑

j∈ℕ

φ
k
i (x)P̃

k+1
j (x)φ

k+1
j (x)
 + ∑

j∈ℕ

P̃
k+1
ij (x)φ

k+1
j (x)


≤ Cε.

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.7 Finite atomic spaces | 209

Using (6.115), we get that with a fixed constant C3 > 0,

g2(x)
 ≤ ∑
(k,i)∈F2

λ
k
i a

k
i (x)
 ≤ C(k

′′ − k′)ε = C3
θ(0, t0 − γ)


−1/p
,

which implies that g2 is a C3-multiple of a (p,∞, l)-atom.
Finally, we conclude that f has a finite (p,∞, l)-atomic decomposition f = h +

∑(k,i)∈F1 λ
k
i a

k
i + g2 with

‖f ‖pHp
fin,∞,l(Θ) ≤ Cp1 + C2 + Cp3 = C = C‖f ‖Hp(Θ).

As an application of Theorem 6.59, we establish the boundedness in Hp(Θ) of
quasi-Banach-valued sublinear operators. This will be useful when we will charac-
terize the dual spaces of the anisotropic Hardy spaces using anisotropic Campanato
spaces in Section 6.8. Let us demonstrate with an example where the difficulty may
arise. Assume that for a linear functional F on Hp(Θ), which is not known a priori to
be bounded, we prove a uniform bound |F(a)| ≤ c for all admissible (p, q, l)-atoms a.
This does not automatically guarantee the boundedness of the functional on Hp(Θ).
Indeed, Bownik [9] provided a proof of the existence of a linear functional defined on a
dense subspace of H1(ℝn) that maps all (1,∞,0)-atoms to uniformly bounded scalars
but yet cannot be extended to a bounded linear functional on the whole H1(ℝn). To
this end, we follow [66] to generalize the careful analysis of [7] and [10].

Definition 6.60. Let γ ∈ (0, 1]. A quasi-Banach space ℬγ with quasi-norm ‖ ⋅ ‖ℬγ
is said

to be a γ-quasi-Banach space if for all f , g ∈ ℬγ,

‖f + g‖γℬγ
≤ ‖f ‖γℬγ

+ ‖g‖γℬγ
.

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach
spaces lp, Lp, and Hp(Θ) with p ∈ (0, 1] are typical p-quasi-Banach spaces.

Definition 6.61. For any given γ-quasi-Banach space ℬγ with γ ∈ (0, 1] and a linear
space 𝒴, an operator T from 𝒴 to ℬγ is said to be ℬγ-sublinear if for any f , g ∈ 𝒴 and
a, b ∈ ℂ,
(i) ‖Tf − Tg‖ℬγ

≤ ‖T(f − g)‖ℬγ
,

(ii) ‖T(af + bg)‖γℬγ
≤ |a|γ‖Tf ‖γℬγ

+ |b|γ‖Tg‖γℬγ
.

Theorem 6.62. Let (p, q, l) be an admissible triplet as in Definition 6.22, let γ ∈ (0, 1],
and let ℬγ be a γ-quasi-Banach space. Assume that either of the following two state-
ments holds:
(i) 1 < q <∞, and T : Hp

fin,q,l(Θ)→ ℬγ is a ℬγ-sublinear operator satisfying

‖Tf ‖ℬγ
≤ c‖f ‖Hp

fin,q,l(Θ), ∀f ∈ Hp
fin,q,l(Θ). (6.116)
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(ii) T : Hp
fin,∞,l(Θ) ∩ C(ℝ

n)→ ℬγ is a ℬγ-sublinear operator satisfying

‖Tf ‖ℬγ
≤ c‖f ‖Hp

fin,∞,l(Θ), ∀f ∈ Hp
fin,∞,l(Θ) ∩ C(ℝ

n).

Then T is uniquely extendable to a bounded ℬγ-sublinear operator from Hp(Θ) to ℬγ.

Proof. We first show (i). Since Hp
fin,q,l(Θ) is dense in Hp(Θ), for any f ∈ Hp(Θ), there

exists a Cauchy sequence {fj}∞j=1, fj ∈ H
p
fin,q,l(Θ), such that ‖f − fj‖Hp(Θ) → 0 as j → ∞.

By this, Definition 6.61(i), (6.116), and Theorem 6.59(i) we conclude that, as j, k →∞,

‖Tfk − Tfj‖ℬγ
≤ T(fk − fj)

ℬγ

≤ C‖fk − fj‖Hp
fin,q,l(Θ)

≤ C‖fk − fj‖Hp(Θ) → 0.

Thus {Tfj}∞j=1 is a Cauchy sequence in ℬγ. By the completeness of ℬγ we find that there
exists g ∈ ℬγ such that g = limj→∞ Tfj in ℬγ. Here g is independent of the choice of
{fj}∞j=1. Indeed, suppose another sequence {f

′
j }
∞
j=1 ⊂ H

p
fin,q,l(Θ) satisfies f

′
j → f as j →∞

in Hp(Θ). Then by Definition 6.61(i), (6.116), and Theorem 6.59(i), as j →∞,

Tf
′
j − g

γ
ℬγ
≤ Tf
′
j − Tfj

γ
ℬγ
+ ‖Tfj − g‖

γ
ℬγ

≤ Cf
′
j − fj

γ
Hp(Θ) + ‖Tfj − g‖

γ
ℬγ
→ 0.

Thus we denote Tf := g. From this, (6.116), and Theorem 6.59(i) again we further de-
duce that

‖Tf ‖γℬγ
≤ lim sup

j→∞
[‖Tf − Tfj‖

γ
ℬγ
+ ‖Tfj‖

γ
ℬγ
]

≤ C lim sup
j→∞
‖Tfj‖

γ
ℬγ

≤ C lim sup
j→∞
‖fj‖

γ
Hp
fin,q,l(Θ)

≤ C lim
j→∞
‖fj‖

γ
Hp(Θ)

≤ C‖f ‖γHp(Θ),

which completes the proof of (i).
To prove (ii), we first need to prove thatHp

fin,∞,l(Θ)∩C(ℝ
n) is dense inHp(Θ). Since

Hp
fin,∞,l(Θ) is dense in Hp(Θ), it suffices to prove that Hp

fin,∞,l(Θ) ∩ C(ℝ
n) is dense in

Hp
fin,∞,l(Θ) with respect to the quasi-norm ‖ ⋅ ‖Hp(Θ).
To see this, let f ∈ Hp

fin,∞,l(Θ). Then f may be represented by a finite combination
of (p,∞, l)-atoms, f = ∑ki=1 λiai. Also, it has compact support, and by (2.25) there exists
t0 ∈ ℝ such that supp(f ) ⊂ θ(0, t0).
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Take ϕ ∈ 𝒮 such that ϕ ≥ 0, supp(ϕ) ⊂ B∗, and ∫ℝn ϕ = 1, and denote its dilations
ϕh := h−nϕ(h−1⋅), h > 0.

For i ∈ {1, 2, . . . , k}, assume that supp(ai) ⊂ θ(xi, ti). Using (2.22), let

h ≤ min{M
−1
0,t0

−1
, M
−1
x1 ,t1

−1
, . . . , M

−1
xk ,tk

−1
}

= min{σmin(θ(0, t0)), σmin(θ(x1, t1)), . . . , σmin(θ(xk , tk))}.

Then ϕh ∗ f ∈ C∞(ℝn), and by (2.30) supp(ϕh ∗ f ) ⊂ θ(0, t0 − J), and

supp(ϕh ∗ ai) ⊂ θ(xi, ti − J), 1 ≤ i ≤ k.

Next, we see that

‖ϕh ∗ ai‖∞ ≤ ‖ai‖∞ ≤
θ(xi, ti)

−1/p
, 1 ≤ i ≤ k.

Furthermore, since each atom ai has l vanishing moments, for any α ∈ ℤn+, |α| ≤ l,

∫
ℝn

(ϕh ∗ ai)(x)x
αdx = 0, 1 ≤ i ≤ k.

Thus, for each 1 ≤ i ≤ k,

θ(xi, ti − J)

−1/pθ(xi, ti)


1/pϕh ∗ ai

is a (p,∞, l)-atom. We conclude that ϕh ∗ f = ∑
k
i=1 λiϕh ∗ ai is a finite combination of

smooth (p,∞, l)-atoms.
Next, observe that f −ϕh ∗ f has also l vanishing moments and supp(f −ϕh ∗ f ) ⊂

θ(0, t0 − J). We have ‖f − ϕh ∗ f ‖2 → 0 as h→ 0. Let

λh := ‖f − ϕh ∗ f ‖2|θ0,t0−J |
−(1/2−1/p), ah := (f − ϕh ∗ f )/λh.

Then ah is a (p, 2, l)-atom, f −ϕh ∗ f = λhak, and λh → 0 as h→ 0. From this we deduce
that, as h→ 0,

‖f − ϕh ∗ f ‖Hp(Θ) ≤ Cλh → 0,

which shows that Hp
fin,∞,l(Θ) ∩ C(ℝ

n) is dense in Hp
fin,∞,l(Θ) with respect to the quasi-

norm ‖ ⋅ ‖Hp(Θ). From this and an argument similar to that used in the proof of (i) it
follows that (ii) holds.

Corollary 6.63. Let (p, q, l) be an admissible triplet as in Definition 6.22 with 0 < p ≤
γ ≤ 1, and let ℬγ be a γ-quasi-Banach space. Assume that either of the following two
statements holds:
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(i) 1 < q <∞, and T is a ℬγ-sublinear operator from Hp
fin,q,l(Θ) to ℬγ satisfying

sup{T(a)
ℬγ
: a is any (p, q, l)-atom} <∞. (6.117)

(ii) T is a ℬγ-sublinear operator defined on all continuous (p,∞, l)-atoms satisfying

sup{T(a)
ℬγ
: a is any continuous (p,∞, l)-atom} <∞.

Then T is uniquely extendable to a bounded ℬγ-sublinear operator from Hp(Θ) into ℬγ.

Proof. By similarity we only prove (i). To this end, by Theorem 6.62 it suffices to show
that, for any f ∈ Hp

fin,q,l(Θ), (6.116) holds. Indeed, by definition there exist coefficients
{λi}ki=1, λi ∈ ℂ, and (p, q, l)-atoms {ai}ki=1 such that f = ∑

k
i=1 λiai and

k
∑
i=1
|λi|

p ≤ 2‖f ‖pHp
fin,q,l(Θ).

From this, Definition 6.61(ii), p ≤ γ, and (6.117) we deduce that

‖Tf ‖ℬγ
≤ [

k
∑
i=1
|λi|

γ‖Tai‖
γ
ℬγ
]

1/γ

≤ C[
k
∑
i=1
|λi|

p]

1/p

≤ C‖f ‖Hp
fin,q,l(Θ).

Combined with Theorem 6.62, this provides the proof of the corollary.

6.8 The anisotropic dual Campanato spaces

As noted in Section 6.4, the dual ofH1(Θ) is BMO(Θ). Thus, our analysis of dual spaces
in this section is focused on the case 0 < p < 1, where we provide a generalization of
the classic isotropic case. The anisotropic dual spaces were analyzed in [32], but here
we use a different approach, which applies the finite atomic spaces from Section 6.7.
The main result of this section is the following:

Theorem 6.64. Let Θ be a pointwise continuous ellipsoid cover, and let 0 < p < 1 ≤ q <
∞ and l ≥ Np(Θ). Then

(Hp(Θ))∗ = 𝒞1/p−1/qq′ ,l+1 (Θ)/Πl,

where 𝒞αq′ ,r(Θ) are the Campanato spaces of Section 5.5, and 1/q′ + 1/q = 1.
Corollary 6.65. For any 1 < q′ ≤∞, α > 1/q′, and r1, r2 ≥ Np(Θ) + 1,

𝒞αq′ ,r1 (Θ)/Πr1−1 ∼ 𝒞
α
q′ ,r2 (Θ)/Πr2−1.
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Proof. For fixed α, q′, choose q as the dual of q′ and then 0 < p < 1 by 1/p = α+1/q > 1.
SincebyTheorem6.64both spaces𝒞αq′ ,r1 (Θ)/Πr1−1 and𝒞

α
q′ ,r2 (Θ)/Πr2−1 areduals ofH

p(Θ),
they are equivalent.

The proof of Theorem 6.64 requires the following lemma.

Lemma 6.66. Let (p, q, l) be an admissible triple. Then, for any g ∈ 𝒞1/p−1/qq′ ,l+1 (Θ) and any
(p, q, l)-atom a,


∫ ga

≤ c‖g‖𝒞1/p−1/q

q′ ,l+1 (Θ). (6.118)

Proof. In the case q > 1, for a (p, q, l)-atom a associated with an ellipsoid θ, using the
vanishing moments of the atom and the Whitney theorem (Theorem 1.34), we have


∫ ga

= inf

P∈Πl


∫
θ

(g − P)a


≤ ‖a‖q( infP∈Πl
∫
θ

|g − P|q
′
)
1/q′

≤ C|θ|1/q−1/pωl+1(g, θ)q′
≤ C‖g‖𝒞1/p−1/q

q′ ,l+1 (Θ).
The case q =∞ is similar.

Let g ∈ 𝒞1/p−1/qq′ ,l+1 (Θ). Since by the previous lemma the action of g on atoms is uni-
formly bounded, we may be tempted to define Fgf := ∑i λi ∫ gai for f ∈ H

p(Θ) with
atomic decomposition f = ∑i λiai. However, since we do not a priori know that Fg is a
bounded functional on Hp(Θ), we may not immediately apply this argument. We will
see that the proof of Theorem 6.64 requires an application of the finite atomic spaces
from Section 6.7. Meanwhile, we remark here in passing that if it is known a priori that
a functional is bounded, then its norm may be determined by the action on atoms.

Remark 6.67. Let F be a bounded linear functional on Hp
q,l(Θ), where (p, q, l) is an ad-

missible triple. Then

‖F‖(Hp
q,l(Θ))∗ := sup{|Ff | : ‖f ‖Hp

q,l(Θ) ≤ 1}
= sup{|Fa| : a is a (p, q, l)-atom}.

Proof. By definition 6.23, for every (p, q, l)-atom a, we have ‖a‖Hp
q,l(Θ) ≤ 1. Thus

sup{|Fa| : a is a (p, q, l)-atom} ≤ sup{|Ff | : ‖f ‖Hp
q,l(Θ) ≤ 1}.
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In the other direction, consider f ∈ Hp(Θ) such that ‖f ‖Hp
q,l(Θ) ≤ 1. Then, for every

ε > 0, there exists an atomic representation f = ∑i λiai, in the sense of Hp
q,l(Θ), such

that (∑i |λi|
p)1/p < 1 + ε. Since F is a bounded linear functional, Ff = ∑i λiFai, and

therefore

|Ff | ≤∑
i
|λi||Fai|

≤ (∑
i
|λi|

p)
1/p

sup{|Fa| : a is a (p, q, l)-atom}

≤ (1 + ε) sup{|Fa| : a is a (p, q, l)-atom}.

We are now ready to prove our main result.

Proof of Theorem 6.64. We begin with (Hp(Θ))∗ ⊆ 𝒞1/p−1/qq′ ,l+1 (Θ). To this end, we prove
that for any bounded linear functional Fg ∈ (Hp(Θ))∗, there exists g ∈ Llocq′ (ℝn) such
that

‖g‖𝒞1/p−1/q
q′ ,l+1 (Θ) ≤ C‖Fg‖(Hp(Θ))∗ ,

and for any f ∈ Hp(Θ) ∩ Lq,

Fgf = ∫
ℝn

fg.

Since by Corollary 6.44 Hp(Θ) ∩ Lq is dense in Hp(Θ), this can be extended to provide
adequate representation of Fg . Let (p, q, l) be an admissible triplet, 0 < p < 1 ≤ q <
∞. For any θ ∈ Θ, let L0q(θ) := {f ∈ Lq(θ) : Pθ,qf = 0}, where Pθ,q is the polynomial
approximation (3.33) of degree l. Here we assume that f ∈ L0q(θ) vanishes outside of
θ, and therefore we can identify its normalized version, |θ|1/q−1/p‖f ‖−1q f as an (p, q, l)-
atomwithHp

q,l(Θ)-norm≤ 1. Consequently, sinceFg is assumed tobe apriori a bounded
operator, for all f ∈ L0q(θ),

|Fgf | ≤ ‖Fg‖(Hp
q,l(Θ))∗ |θ|1/p−1/q‖f ‖q. (6.119)

Recall that by (2.30) there exists J(p(Θ)) > 0 such that θ(x, t) ⊂ θ(x, t − J) for any x ∈ ℝn

and t ∈ ℝ. By (6.119), for anym ≥ 0 and f ∈ L0q(θ(0,−Jm)), we have that

|Fgf | ≤ ‖Fg‖(Hp
q,l(Θ))∗ θ(0,−Jm)1/p−1/q‖f ‖q.

By the Hahn–Banach theorem Fg can be extended to the space Lq(θ(0,−Jm)) without
increasing its norm. By the Riesz representation theorem for finitemeasure spaces and
1 ≤ q < ∞ there exists a unique function gm ∈ Lq′ (θ(0,−Jm)) (up to a set of measure
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zero and a polynomial of degree l) such that Fgf = ∫θ(0,−Jm) gmf for all f ∈ L
0
q(θ(0,−Jm)).

We readily see that gm+1|θ(0,−Jm) = gm, and, consequently, we may identify the action
of the functional Fg using g ∈ Llocq′ (ℝn) that is set as g(x) := gm(x) if x ∈ θ(0,−Jm). By
(6.119), for any θ ∈ Θ, the norm of g as a functional on L0q(θ) satisfies

‖g‖L0q (θ)∗ ≤ ‖Fg‖(Hp
q,l(Θ))∗ |θ|1/p−1/q.

Also, as L0q(θ)
∗ = Lq′ (θ)/Πl, we have that

‖g‖L0q (θ)∗ = infP∈Πl
‖g − P‖Lq′ (θ) ≥ 2−(l+1)ωl+1(g, θ)q′ .

Wemay now conclude that

‖g‖𝒞1/p−1/q
q′ ,l+1 (Θ) = supθ∈Θ

|θ|1/q−1/pωl+1(g, θ)q′
≤ C sup

θ∈Θ
|θ|1/q−1/p‖g‖L0q (θ)∗

≤ C‖Fg‖(Hp(Θ))∗ .
We now prove the second direction. For g ∈ 𝒞1/p−1/qq′ ,l+1 (Θ), denote Fgf := ∫ fg for

f ∈ Hp
fin,q,l. Obviously, Fg is a linear functional on H

p
fin,q,l, and by (6.118) it is uniformly

bounded on atoms. Thus Corollary 6.63 implies that Fg can be uniquely extended to
bounded linear functional on Hp(Θ), where for all f ∈ Hp(Θ),

|Fgf | ≤ C‖g‖𝒞1/p−1/q
q′ ,l+1 (Θ)‖f ‖Hp(Θ).
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7 Anisotropic singular operators

Calderón–Zygmund (CZ) operators play an important role in harmonic analysis. They
are bounded not only on the Lp(ℝn) spaces for 1 < p < ∞, but also on their natural
extensions for 0 < p ≤ 1, the Hardy spaces Hp(ℝn). In the classical isotropic setting
of ℝn, we consider a CZ operator T : L2 → L2 of regularity s with a measurable kernel
K(x, y) satisfying

Tf (x) = ∫
ℝn

K(x, y)f (y)dy, ∀x ̸∈ supp(f ), ∀f ∈ C∞c (ℝ
n),

and

𝜕
α
yK(x, y)

 ≤ C|x − y|
−n−|α|, ∀x ̸= y, |α| ≤ s. (7.1)

It is well known [61] that a CZ operator T is bounded on the isotropic Hardy spaces
Hp(ℝn), provided that s > n(1/p − 1) and T preserves vanishing moments T∗(xα) = 0
for |α| < s.

The study of CZ operators on spaces of homogeneous type began with Coifman
and Weiss [19]. Since ellipsoid covers generate spaces of homogeneous type, any re-
sult in the general setting holds here [33, 61] (see, e. g., Theorem 7.3). However, again,
the lack of higher-order regularity and vanishing moments in the general setting of
spaces of homogeneous type limits the analysis. Bownik [7] introduced anisotropic
CZ operators associated with expansive dilations and has shown their boundedness
on anisotropic Hardy spaces, where the anisotropy is fixed and global on ℝn. In this
chapter, we provide a generalization to the setting of pointwise variable anisotropic
ellipsoid covers. In Section 7.1, we show that an anisotropic singular integral operator
mapsHp(Θ), 0 < p ≤ 1, to itself, provided that it has sufficient regularity and vanishing
moments [12]. In Section 7.2, we cover some basic definitions and results concerning
anisotropic CZ operators acting on spaces of anisotropic smooth molecules.

Let Θ be a continuous cover inducing the quasi-distance ρ defined by (2.35).
A pointwise variable anisotropic analogue of an isotropic CZ kernel operator takes the
following form.

Definition 7.1. A locally square-integrable functionK onΩ := {(x, y) ∈ ℝn×ℝn : x ̸= y}
is called a variable anisotropic singular integral kernel with respect to a continuous
ellipsoid cover Θ if there exist two positive constants c1 > 1 and c2 > 0 such that

∫
Bρ(y, c1r)c

K(x, y) − K(x, y
′)dx ≤ c2, ∀y ∈ ℝ

n, y′ ∈ Bρ(y, r), (7.2)

where Bρ(⋅, ⋅) are the anisotropic balls defined in (2.37).

https://doi.org/10.1515/9783110761795-007
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218 | 7 Singular operators

We say that T is a variable anisotropic singular integral operator (VASIO) of order
0 if T : L2 → L2 is a bounded linear operator and there exists a kernel K satisfying (7.2)
such that

Tf (x) = ∫
ℝn

K(x, y)f (y)dy, ∀x ̸∈ supp(f ), ∀f ∈ C∞c (ℝ
n).

We say that T with kernel K such that K(x, ⋅) ∈ Cs for all x ∈ ℝn is a VASIO of order s if
there exists a constant c3 > 0 such that for any x ̸= y and α ∈ ℕn+, |α| ≤ s, we have

𝜕
α
y [K(⋅,My,m⋅)](x,M

−1
y,my)
 ≤

c3
ρ(x, y)
, (7.3)

where m = − log2 ρ(x, y). More precisely, the left-hand side of (7.3) means |𝜕αy K̃(x,
M−1y,m y)|, where K̃(x, y) := K(x,My,m y). The smallest constant c3 satisfying (7.3) is
called the Calderón–Zygmund norm of T, which is denoted by ‖T‖(s). In Section 7.2,
we will also require the following “symmetric condition” for any x ̸= y and α, β ∈ ℕn+,
|α|, |β| ≤ s:

𝜕
α
x𝜕

β
y [K(Mx,m⋅,My,m⋅)](M

−1
x,mx,M

−1
y,my)
 ≤

c4
ρ(x, y)
. (7.4)

Next, we show that the definition of singular integral operators in the setting of
ellipsoid covers is consistent with the CZ operators on spaces of homogeneous type
[19, 33].

Theorem 7.2. Let K be kernel of a VASIO of order 1. Then there exists a positive constant
c such that for all x ̸= y ∈ ℝn, we have

K(x, y)
 ≤

c
ρ(x, y)
, (7.5)

K(x, y) − K(x, y
′) ≤ c

ρ(y, y′)a6
ρ(x, y)1+a6

if ρ(y, y′) ≤ 1
2κ
ρ(x, y). (7.6)

In particular, the kernel K satisfies (7.2).

Proof. Estimate (7.3) with α = 0 implies (7.5). Next, we prove (7.6). For fixed x, y ∈ ℝn

with x ̸= y, let r := (κ+1)ρ(x, y), where κ is defined in (2.1). By Theorem 2.23 there exists
m ∈ ℝ such that

Bρ(x, r) ⊂ θ(x,m) and 2−m ∼ θ(x,m)
 ∼ r. (7.7)

Define the rescaled kernel K̃(u, v) := K(u,My,mv), u, v ∈ ℝn.
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Take any y′ ∈ ℝn such that ρ(y, y′) ≤ 1
2κρ(x, y). By Lagrange’s mean value theorem

there exists ξ ∈ [y, y′] such that

K(x, y) − K(x, y
′) =
K̃(x,M

−1
y,my) − K̃(x,M

−1
y,my
′)

=

∑
|α|=1
𝜕αy K̃(x,M

−1
y,mξ )(M

−1
y,my −M

−1
y,my
′)
α

≤ Cmax
|α|=1
𝜕
α
y [K(⋅,My,m⋅)](x,M

−1
y,mξ )

M
−1
y,m(y − y

′).

Let l := − log2 ρ(x, ξ ). By (7.3) we have

K(x, y) − K(x, y
′)

≤ Cmax
|α|=1
𝜕
α
y [K(⋅,Mξ , lM

−1
ξ , lMy,m⋅)](x, (M

−1
ξ , lMy,m)

−1
(Mξ , l)

−1ξ )
M
−1
y,m(y − y

′)

≤ CM
−1
ξ , lMy,m
max
|α|=1
𝜕
α
y [K(⋅,Mξ , l⋅)](x,M

−1
ξ , lξ )

M
−1
y,m(y − y

′)

≤ CM
−1
ξ , lMy,m


1
ρ(x, ξ )
M
−1
y,m(y − y

′).

Observe that by the convexity of ellipsoids y, y′ ∈ θ ⇒ [y, y′] ⊂ θ ⇒ ξ ∈ θ for any
θ ∈ Θ. This implies that ρ(y, ξ ) ≤ ρ(y, y′), and so

ρ(x, y) ≤ κ(ρ(x, ξ ) + ρ(y, ξ ))
≤ κ(ρ(x, ξ ) + ρ(y, y′))

≤ κ(ρ(x, ξ ) + 1
2κ
ρ(x, y)),

which gives ρ(x, y) ≤ 2κρ(x, ξ ). Likewise,

ρ(x, ξ ) ≤ κ(ρ(x, y) + ρ(y, ξ ))
≤ κρ(x, y) + κρ(y, y′)
≤ (κ + 1/2)ρ(x, y).

Hence, using absolute constants that do not depend on the points, we have

ρ(x, y) ∼ ρ(x, ξ ). (7.8)

Since ρ(x, ξ ) ≤ (κ + 1/2)ρ(x, y) < r, we have that ξ ∈ Bρ(x, r) ⊂ θ(x,m). This implies
θ(x,m)∩θ(ξ , l) ̸= 0. Since ρ(x, y) ∼ ρ(x, ξ ), we have 2−m ∼ 2−l, andhence ‖M−1ξ , lMy,m‖ ≤ C
by (2.14). Combined with (7.8), this gives

K(x, y) − K(x, y
′) ≤ C
|M−1y,m(y − y

′)|

ρ(x, y)
. (7.9)
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Let k ∈ ℤ be such that y′ ∈ θ(y, kJ) \ θ(y, (k + 1)J), where J is given in (2.30). By (7.7) we
have

2−kJ ∼ ρ(y, y′) ≤ Cρ(x, y) ∼ 2−m.

This implies that there exists a constant c > 0 such thatm−kJ ≤ c. SinceM−1y, kJ(y−y
′) ∈

B∗, the shape condition (2.14) implies that

M
−1
y,m(y − y

′) =
M
−1
y,mMy, kJM

−1
y, kJ(y − y

′)
≤ M
−1
y,mMy, kJ


M
−1
y, kJ(y − y

′)
≤ M
−1
y,mMy, kJ+cM

−1
y, kJ+cMy, kJ


≤ M
−1
y,mMy, kJ+c


M
−1
y, kJ+cMy, kJ



≤ C2−a6(kJ−m) ∼ ρ(y, y
′)a6

ρ(x, y)a6
.

Combining this with (7.9) yields (7.6):

K(x, y) − K(x, y
′) ≤ C

1
ρ(x, y)

ρ(y, y′)a6
ρ(x, y)a6

= C ρ(y, y′)a6
ρ(x, y)1+a6

.

Finally, from general results for spaces of homogeneous type it follows that K sat-
isfies (7.2). More precisely, we claim that (7.2) holds with the constant c1 = 2κ. Indeed,
take y′ ∈ Bρ(y, r) for some r > 0. For any x ∈ Bρ(y, 2κr)c,

ρ(y, y′) ≤ r ≤ 1
2κ
ρ(x, y).

This allows us to apply (7.6) and Theorem 2.23 to obtain (7.2):

∫
Bρ(y, 2κr)c

K(x, y) − K(x, y
′)dx ≤ C ∫

Bρ(y, 2κr)c

ra6
ρ(x, y)1+a6

dx

= Cra6
∞

∑
i=1

∫

Bρ(y, 2i+1κr)\Bρ(y, 2iκr)

1
ρ(x, y)1+a6

dx

≤ Cra6
∞

∑
i=1

1
(2iκr)(1+a6)

Bρ(y, 2
i+1κr)

≤ C
∞

∑
i=1

2−ia6 ≤ C.

Since our anisotropic spaces are a particular case of spaces of homogeneous type,
we have the following (see, e. g., [61, Section I.5]):

Theorem 7.3. Let T : L2 → L2 be a VASIO of order 0. Then:
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(i) T is bounded from L1 to weak-L1;
(ii) T can be extended to a bounded linear operator on Lq, 1 < q ≤ 2;
(iii) If the kernel K further satisfies the symmetric condition

∫
Bρ(x, c1r)c

K(x, y) − K(x
′, y)dy ≤ c2, ∀x ∈ ℝ

n, ∀x′ ∈ Bρ(x, r), (7.10)

then T can also be extended by duality to a bounded linear operator on Lq, 2 < q <
∞.

The following lemma proves a useful formulation of the property of VASIO oper-
ators of higher orders.

Lemma 7.4. Suppose that T is a VASIO of order s as in Definition 7.1. Then there exists a
constant c > 0 such that for any z ∈ ℝn, t ∈ ℝ, k ∈ ℕ, x ∈ θ(z, t − (k + 1)J) \ θ(z, t − kJ),
k ≥ 0, and y ∈ θ(z, t), for all α ∈ ℤn+, |α| ≤ s, we have

𝜕
α
y [K(⋅,Mz, t−kJ ⋅)](x,M

−1
z, t−kJy)
 ≤ c2

t−kJ . (7.11)

Here J is given by (2.30), and the constant c depends only on ‖T‖(s) and p(Θ). Further-
more, if T satisfies (7.4), then for all β ∈ ℤn+, |α|, |β| ≤ s, we have

𝜕
α
x𝜕

β
y [K(Mz,t−kJ ⋅,Mz,t−kJ ⋅)](M

−1
z,t−kJx,M

−1
z,t−kJy)
 ≤ c2

t−kJ . (7.12)

Proof. Using Theorem 2.23, it is easy to see that x ∈ θ(y, t − (k + 1)J − γ) \ θ(y, t − kJ + γ)
and

ρ(x, z) ∼ ρ(x, y) ∼ 2−t+kJ . (7.13)

By Definition 7.1 we have

𝜕
α
y [K(⋅,My,m⋅)](x,M

−1
y,my)
 ≤

C
ρ(x, y)
≤ C2m, (7.14)

where m = − log2 ρ(x, y). From (7.13) it follows that 2−m = ρ(x, y) ∼ 2−t+kJ . Hence there
exists a constant c1 > 0 such that

m − (t − kJ)
 ≤ c1. (7.15)

Define M := M−1y,mMz, t−kJ . As y ∈ θ(z, t) ⊂ θ(z, t − kJ) for k ≥ 1, we have that θ(y,m) ∩
θ(z, t − kJ) ̸= 0. Application of (7.15) and the shape condition (2.14) give ‖M‖ ≤ c. Hence
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by (7.14), and (7.15) we conclude that for |α| ≤ s,

𝜕
α
y [K(⋅,Mz, t−kJ ⋅)](x,M

−1
z, t−kJy)
 =
𝜕
α
y [K(⋅,My,mM

−1
y,mMz, t−kJ ⋅)](x, (M

−1
y,mMz, t−kJ)

−1M−1y,my)


≤ CM
−1
y,mMz, t−kJ


|α|𝜕

α
y [K(⋅,My,m⋅)](x,M

−1
y,my)


≤ C2m ≤ C2t−kJ .

This proves (7.11). The proof of (7.12) is similar.

7.1 Anisotropic singular operators on Hp(Θ)

Our goal is to show that anisotropic CZ operators are bounded on Hp(Θ). Generally,
as in the classical isotropic case, we cannot expect this unless we also assume that T
preserves vanishing moments.

Definition 7.5. We say that a VASIO T of order s has l vanishing moments, l < a6s/a4,
if for some 1 < q <∞ and all f ∈ Lq with compact support with vanishing moments

∫
ℝn

f (x)xαdx = 0, ∀α ∈ ℤn+, |α| < s,

we also have

∫
ℝn

Tf (x)xαdx = 0, ∀α ∈ ℤn+, |α| ≤ l.

This definition generalizes the case of covers constructed through expansive di-
lations [7] and the isotropic case [55]. The actual value of q is not relevant in Defini-
tion 7.5, as we merely need that T : Lq → Lq is bounded. The next result justifies the
integrability of ∫ℝn Tf (x)x

αdx in Definition 7.5.

Lemma 7.6. Let T be a VASIO of order s. Suppose that f ∈ Lq, 1 < q < ∞, satisfies
supp(f ) ⊂ θ(z, t) for some z ∈ ℝn and t ∈ ℝ and that ∫ℝn f (x)x

αdx = 0 for all |α| < s.
Then, for some c > 0 depending only ‖T‖(s) and p(Θ), for any x ∈ θ(z, t− (k+1)J)\θ(z, t−
kJ), k ∈ ℕ,

Tf (x)
 ≤ c‖f ‖q

θ(z, t)

−1/q2−kJ(1+a6s). (7.16)

In particular, if l < a6s/a4, then

∫
ℝn

Tf (x)
(1 + |x|

l) dx <∞. (7.17)

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.1 Anisotropic singular operators on Hp(Θ) | 223

Proof. Take any x ∈ θ(z, t − (k + 1)J) \ θ(z, t − kJ), k ∈ ℕ, and y ∈ θ(z, t). Define the
rescaled kernel K̃(u, v) := K(u,Mz, t−kJv), u, v ∈ ℝn. By Lemma 7.4wehave, for all α ∈ ℤn+
with |α| ≤ s,

𝜕
α
y K̃(x,M

−1
z,t−kJy)
 ≤ C2

t−kJ . (7.18)

Since supp(f ) ⊂ θ(z, t), we can write

Tf (x) = ∫
θ(z,t)

K(x, y)f (y)dy = ∫
θ(z,t)

K̃(x,M−1z, t−kJy)f (y)dy. (7.19)

Now we expand K̃ into the Taylor polynomial of degree s − 1 (only in y variable) at the
point (x,M−1z,t−kJz), that is,

K̃(x,M−1z,t−kJy) = ∑
|α|≤s−1

𝜕αy K̃(x,M
−1
z,t−kJz)

α!
(M−1z,t−kJy −M

−1
z,t−kJz)

α

+ RsM−1z,t−kJzK̃(x, ⋅)(M
−1
z,t−kJy).

(7.20)

Then using (7.18) and (2.14), we see that the remainder term satisfies

R
s
M−1z,t−kJz

K̃(x, ⋅)(M−1z,t−kJy)
 ≤ C sup

ξ∈θ(z,t)
sup
|α|=s

𝜕
α
y K̃(x,M

−1
z,t−kJξ )

M
−1
z, t−kJ(y − z)


s

≤ C2t−kJ sup
w∈B∗
M
−1
z,t−kJMz, tw


s

≤ C2t−kJ(1+a6s).

(7.21)

Moreover, by Hölder’s inequality we have

∫
θ(z,t)

|f | ≤ ‖f ‖q
θ(z, t)

1/q′
≤ C2−t/q

′
‖f ‖q, (7.22)

where 1/q + 1/q′ = 1. Finally, using (7.19), (7.20), the vanishing moments of f , (7.21),
and (7.22), we obtain that

Tf (x)
 ≤ ∫

θ(z,t)

R
s
M−1z,t−kJz

K̃(x, ⋅)(M−1z,t−kJy)

f (y)
dy

≤ C2−kJ(1+a6s)2t/q‖f ‖q,

which implies (7.16).
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To show the second part (7.17), we first choose k0 ∈ ℕ large enough such that for
any x ∈ θ(z, t − k0J)c, we have ρ(x, z) > 1. Then we split the integral into two parts:

∫
ℝn

Tf (x)
(1 + |x|

l)dx = ∫
θ(z,t−k0J)

Tf (x)
(1 + |x|

l)dx + ∫
θ(z,t−k0J)c

Tf (x)
(1 + |x|

l)dx

=: I + II .

The first integral is bounded by Hölder’s inequality and the boundedness of T : Lq →
Lq (assuming further (7.10) for 2 < q <∞),

I ≤ C ∫
θ(z,t−k0J)

|Tf |

≤ C( ∫
θ(z,t−k0J)

|Tf |q)
1/q
θ(z, t − k0J)


1/q′
<∞.

We now estimate the second integral. By Theorem 2.26 there exists a constant
c1(z,p(Θ)) > 0 such that for any x ∈ ℝn satisfying ρ(x, z) > 1,

|x − z| ≤ c1ρ(x, z)
a4 .

Furthermore, for x ∈ θ(z, t − (k + 1)J) with k ≥ k0, we have that ρ(x, z) ≤ c22−t+kJ .
Combining the two estimates gives

|x − z| ≤ C2(−t+kJ)a4 .

Hence, for k > k0,

∫
θ(z,t−(k+1)J)\θ(z,t−kJ)

|x − z|l dx ≤ Cθ(z, t − (k + 1)J)
2
(−t+kJ)la4

≤ C2(−t+kJ)(la4+1).

Applying now (7.16) and the assumption la4 − a6s < 0 gives (with a constant that also
depends on |z|)

II =
∞

∑
k=k0

∫
θ(z,t−(k+1)J)\θ(z,t−kJ)

Tf (x)
(1 + |x|

l) dx

≤ C‖f ‖q
θ(z, t)

−1/q ∞
∑
k=k0

2−kJ(1+a6s) ∫
θ(z,t−(k+1)J)\θ(z,t−kJ)

(1 + |z|l + |x − z|l) dx
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≤ C‖f ‖q
θ(z, t)

−1/q ∞
∑
k=k0

2−kJ(1+a6s)(2−t+kJ + 2(−t+kJ)(la4+1))

≤ C‖f ‖q
θ(z, t)

−1/q ∞
∑
k=k0

(2−t−kJa6s + 2−t(la4+1)+kJ(la4−sa6)) <∞.

The main two results of this section are the following theorems.

Theorem 7.7 ([12]). Let Θ be an ellipsoid cover, and let 0 < p ≤ 1. Suppose that T is a
VASIO of order s that satisfies the vanishing moment property, such that

s >
a4
a6

Np(Θ), (7.23)

whereNp(Θ) is defined in (6.24). ThenT extends to abounded linear operator fromHp(Θ)
to itself.

Theorem 7.8 ([12]). Let Θ be an ellipsoid cover, and let 0 < p ≤ 1. Suppose T is a VASIO
of order s with

s > 1/p − 1
a6
. (7.24)

Then T extends to a bounded linear operator from Hp(Θ) to Lp.

To prove Theorems 7.7 and 7.8, we need the following lemma, which shows that a
VASIO preserving vanishingmomentsmaps atoms (Definition 6.22) tomolecules (Def-
inition 6.55).

Lemma 7.9. Under the conditions of Theorem 7.7, Ta is a molecule for any (p, q, s − 1)-
atom a, 1 < q < ∞. Furthermore, there exists a constant c > 0, depending also on the
CZ norm ‖T‖(s) of T, but not on a, such that ‖Ta‖Hp(Θ) ≤ c.

Proof. Let a be a (p, q, s−1)-atom, 1 < q <∞, supp(a) ⊂ θ(z, t), z ∈ ℝn, and t ∈ ℝ. Since
by Theorem 7.3 T is bounded on Lq (we need to further assume (7.10) if 2 < q <∞), by
property (ii) of a we have

( ∫
θ(z,t−J)

|Ta|q)
1/q
≤ C‖a‖q

≤ Cθ(z, t)

1/q−1/p

≤ Cθ(z, t − J)

1/q−1/p
.

Hence Ta satisfies the first property of a molecule (6.99) with respect to θ(z, t − J). By
Lemma 7.6 for x ∈ θ(z, t − (k + 1)J) \ θ(z, t − kJ), k ∈ ℕ, we have

Ta(x)
 ≤ C‖a‖q

θ(z, t)

−1/q2−kJ(1+a6s) ≤ Cθ(z, t − J)


−1/p2−kJ(1+a6s). (7.25)
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Condition (7.23) ensures δ := 1+a6s > 1+a4Np(Θ), and so (7.25) implies that Ta satisfies
the second condition of a molecule (6.100). Next, by the vanishing moments property
of T (see Definition 7.5) and condition (7.23) Ta has

l := ⌊a6s
a4
⌋ ≥ Np(Θ)

vanishing moments. Thus Ta satisfies all the conditions of Definition 6.55 and is
a molecule. This allows us to apply Theorem 6.56 and conclude there exists a con-
stant c > 0 independent of a such that ‖Ta‖Hp(Θ) ≤ c.

Proof of Theorem 7.7. Let f ∈ Hp(Θ)∩Lq. By Lemma 6.42 there exists an atomic decom-
position

f = ∑
k∈ℤ
∑
i∈ℕ0

λki a
k
i , (7.26)

which converges in Lq, such that aki are (p,∞, s)-atoms and hence also (p, q, s)-atoms.
Furthermore,

∑
k∈ℤ
∑
i∈ℕ0

λ
k
i

p
≤ C‖f ‖pHp(Θ). (7.27)

Since by Theorem 7.3 T is bounded on Lq, 1 < q < ∞, it follows that Tf =
∑k∈ℤ∑i∈ℕ0 λ

k
i Ta

k
i in L

q, and hence

Tf = ∑
k∈ℤ
∑
i∈ℕ0

λki Ta
k
i in 𝒮′. (7.28)

Since T is a VASIO of order s with vanishing moments, by Lemma 7.9 we obtain
‖Taki ‖Hp(Θ) ≤ C′. Thus by (7.27) and (7.28) we have

‖Tf ‖pHp(Θ) =
M
∘(Tf )

p
p

≤ ∑
k∈ℤ
∑
i∈ℕ0

λ
k
i

pM
∘(Taki )

p
p

= ∑
k∈ℤ
∑
i∈ℕ0

λ
k
i

pTa

k
i

p
Hp(Θ)

≤ C′ ∑
k∈ℤ
∑
i∈ℕ0

λ
k
i

p

≤ C′C‖f ‖pHp(Θ).

By Corollary 6.44 Lq ∩ Hp(Θ) is dense in Hp(Θ), which by Theorem 6.15 is complete.
Thus we deduce that T extends to a bounded linear operator fromHp(Θ) toHp(Θ).
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Proof of Theorem 7.8. Let a be a (p, q, s)-atom, 1 < q <∞, with supp(a) ⊂ θ(z, t), where
z ∈ ℝn and t ∈ ℝ. We first show that

‖Ta‖p ≤ C
′. (7.29)

By the boundedness of T on Lq, 1 < q < ∞ (assuming further (7.10) for 2 < q < ∞),
and Hölder’s inequality

∫
θ(z,t−J)

|Ta|p ≤ ( ∫
θ(z,t−J)

|Ta|q)
p/q
θ(z, t − J)


1−p/q

≤ C‖a‖pq
θ(z, t − J)


1−p/q
≤ C.

Next, by Lemma 7.6 we deduce that (7.25) holds for x ∈ θ(z, t − (k + 1)J) \ θ(z, t − kJ),
k ∈ ℕ. Hence

∫
θ(z,t−J)c

Ta(x)

pdx =

∞

∑
k=1

∫
θ(z,t−(k+1)J)\θ(z,t−kJ)

Ta(x)

pdx

≤ Cθ(z, t − J)

−1 ∞
∑
k=1

2−pkJ(1+a6s)θ(z, t − (k + 1))J


≤ C
∞

∑
k=1

2−pkJ(1+a6s−1/p) ≤ C.

The last series converges by assumption (7.24). Combining the last two estimates
yields (7.29).

Now we proceed exactly as in the proof of Theorem 7.7. Any f ∈ Lq ∩Hp(Θ) admits
an atomic decomposition (7.26) such that (7.27) holds and Tf = ∑k∈ℤ∑i∈ℕ0 λ

k
i Ta

k
i in

Lq. As p < q, it is easy to see that we have this equality also in Lp. By (7.27) and (7.29)
we deduce that for f ∈ Lq ∩ Hp(Θ),

‖Tf ‖pp =

∑
k∈ℤ
∑
i∈ℕ0

λki Ta
k
i



p

p

≤ ∑
k∈ℤ
∑
i∈ℕ0

λ
k
i

pTa

k
i

p
p

≤ C′ ∑
k∈ℤ
∑
i∈ℕ0

λ
k
i

p

≤ C′C‖f ‖pHp(Θ).

The density of Lq∩Hp(Θ) inHp(Θ) implies that T extends to a bounded linear operator
from Hp(Θ) to Lp.
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7.2 Anisotropic singular operators on smooth molecules

In this section, we touch upon the subject of analysis of smooth anisotropic singu-
lar operators and molecules. The isotropic case is well covered in [40] using “direct”
pointwise estimates techniques, which are independent of L2 and Fourier theories.
One of the goals in [40] is showing that, under certain conditions, a singular opera-
tor may preserve the fundamental properties of a family of building blocks. Here we
will see that, under certain conditions, anisotropic singular operators domap smooth
building blocks to smooth building blocks. However, our results present some quan-
tifiable loss of the regularity. Achieving a generalization of the unifying theory of [40]
to the anisotropic setting is still an ongoing challenge (see also Remark 4.10).

Definition 7.10. Let Θ be a continuous cover inducing a quasi-distance ρ. A function
f ∈ Cs(ℝn), r ≥ 1, is said to belong to the anisotropic test function spaceℳ(s, δ, x0, t),
δ > a6n − 1, x0 ∈ ℝn, t ∈ ℝ, if there exists a constant c > 0 such that

𝜕
α[f (Ax0 ,m⋅)](A

−1
x0 ,mx)
 ≤ c

2−tδ

(2−t + ρ(x, x0))1+δ
, ∀α ∈ ℤn+, |α| ≤ s, (7.30)

wherem = min(t,− log2 ρ(x, x0)).

It is evident that x0 is the center of the test function f and t is the scalewith “width”
2−t . We may verify that ℳ(s, δ, x0, t) is a Banach space with ‖f ‖ℳ := ‖f ‖ℳ(s,δ,x0 ,t) de-
fined by the infimum over all constants c satisfying (7.30).

Definition 7.11. An anisotropic test function f ∈ ℳ(s, δ, x0, t) is said to be a smooth
molecule inℳ0(s, δ, x0, t) if ∫ℝn f (x)x

αdx = 0 for all α ∈ ℤn+, |α| < a
−1
6 (1+δ)−n. A smooth

atom a is a smooth molecule inℳ0(s, δ, x0, t)with support in θ(x0, t). We observe that
for a smooth atom, we can impose the condition

𝜕
α[a(Ax0 ,t ⋅)](A

−1
x0 ,tx)
 ≤ c

2−tδ

(2−t + ρ(x, x0))1+δ
, (7.31)

which is equivalent to (7.30), since a(x) = 0 whenever ρ(x, x0) > a22−t .

Example 7.12. Let Θ be a continuous cover, and let Θ̂ be the equivalent “sampled”
discrete cover guaranteed by Theorem 2.32. Let {Sk}k∈ℤ be the multiresolution kernels
of order r defined by (3.46), and let {Dk}k∈ℤ be the wavelet kernels defined by (4.15)
corresponding to Θ̂. Then, for sufficiently large r, any x0 ∈ ℝn, and any δ > 0,

Sk(x0, ⋅), Sk(⋅, x0) ∈ℳ(r, δ, x0, k), Dk(x0, ⋅),Dk(⋅, x0) ∈ℳ0(r, δ, x0, k).

Proof. It is sufficient to show that Sk(x0, ⋅) ∈ℳ(r, δ, x0, k), since the proof for Sk(⋅, x0)
is symmetric. Also, the wavelet kernels {Dk}k∈ℤ are difference kernels, which inherit
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their regularity from the multiresolution kernels and also possess, in both variables,
the vanishing moments property of molecules (see (4.16)).

For x ∈ ℝn, let m = min(k,− log2 ρ(x, x0)). For any β ∈ ℤn+, |β| ≤ r, using (3.55)
and (3.43), we estimate

𝜕
β[Sk(⋅,Ax0 ,m⋅)](x0,A

−1
x0 ,mx)
 ≤ ∑

x0∈θλ ,x∈θλ′ ,λ,λ
′∈Λk

|Bλ,λ′ |
φλ(x0)

𝜕
β[φλ′ (Ax0 ,m⋅)](A

−1
x0 ,mx)


≤ C2kq(2
kρ(x0 ,x))

α

∗ ∑
x∈θλ′

M
−1
θλ′
Mx0 ,m

|β|

≤ C2kq(2
kρ(x0 ,x))

α

∗
M
−1
x,kMx0 ,m


|β|
,

where the constants and 0 < q∗, α < 1, depend on p(Θ) (since p(Θ̂) depend on p(Θ)).
There are two cases.
Case I:m > k. In this case, by (2.14) we have

M
−1
x,kMx0 ,m

 ≤ a52
−a6(m−k) ≤ C,

and so, as in the proof of Corollary 3.14, for any δ > 0,

𝜕
β[Sk(⋅,Ax0 ,m⋅)](x0,A

−1
x0 ,mx)
 ≤ C2

kq(2
kρ(x0 ,x))

α

∗

≤ C 2−kδ

(2−k + ρ(x, x0))
1+δ .

Case II: m ≤ k. In this case, using (2.14) and recalling that in this case m =
− log2 ρ(x, x0), we have

𝜕
β[Sk(⋅,Ax0 ,m⋅)](x0,A

−1
x0 ,mx)
 ≤ C2

kq(2
kρ(x0 ,x))

α

∗
M
−1
x,kMx0 ,m


|β|

≤ C2kq(2
kρ(x0 ,x))

α

∗ 2a4(k−m)|β|

= C2kq(2
kρ(x0 ,x))

α

∗ (2kρ(x0, x))
a4|β|.

We now proceed similarly to the proof of Corollary 3.14. Let h : ℝ+ → ℝ+, h(z) := qz
α

∗ z
γ

for some 0 < q∗, α < 1, γ > 0. Then there exists a constant c(q∗, α, γ, δ) > 0 such that

h(z) = qz
α

∗ z
γ ≤ c( 1

1 + z
)
1+δ+γ

zγ ≤ c( 1
1 + z
)
1+δ
.

 EBSCOhost - printed on 2/10/2023 3:20 PM via . All use subject to https://www.ebsco.com/terms-of-use



230 | 7 Singular operators

Therefore application with z = 2kρ(x0, x) and γ = a4|β| gives

𝜕
β[Sk(⋅,Ax0 ,m⋅)](x0,A

−1
x0 ,mx)
 ≤ C2

kq(2
kρ(x0 ,x))

α

∗ (2kρ(x0, x))
a4|β|

≤ C2k( 1
1 + 2kρ(x, x0)

)
1+δ

= C 2−kδ

(2−k + ρ(x, x0))1+δ
.

Definition 7.13. We say that a VASIO kernel operator T with kernel K is a smooth VA-
SIO of order and vanishing moments s if it satisfies the regularity “symmetric” condi-
tion (7.4) and also the additional vanishing moments condition

∫
ℝn

𝜕αxK(x, y)y
α̃dy = 0, ∀|α|, |α̃| ≤ s. (7.32)

The vanishingmoments condition (7.32) is stronger than the condition ofDefinition 7.5.
It can be interpreted in the following sense:
(i) There exists a sequence of operators Tj with kernels {Kj}j≥1 such that Kj(x, ⋅),

Kj(⋅, y) ∈ 𝒮 for all x, y ∈ ℝn.
(ii) ∫ℝn 𝜕

αKj(x, y)yα̃dy = 0, ∀x ∈ ℝn, |α|, |α̃| ≤ s,
(iii) For any x0 ∈ ℝn and t ∈ ℝ, 𝜕αTjf → 𝜕αTf pointwise for any f ∈ℳ(s, δ, x0, t).

We now show that a smooth VASIO with vanishing moments maps smooth atoms
to smooth molecules, however, with some quantifiable reduced regularity.

Theorem 7.14. Let T be a smooth VASIO of order and vanishing moments s. Then there
exists a constant c > 0 such that for any atom a ∈ℳ0(s, δ, x0, t),

‖Ta‖ℳ0( ̃s,δ̃,x0 ,t)
≤ c‖a‖ℳ0(s,δ,x0 ,t),

where

̃s < a6
a4

s, δ̃ < a6s.

The constant does not depend on x0 ∈ ℝn or t ∈ ℝ.

Proof. We first prove that Ta is a test function, i. e., Ta ∈ ℳ( ̃s, δ̃, x0, t). Let α ∈ ℤn+,
|α| ≤ ̃s. For x ∈ ℝn, we have two cases.
Case I: x ∈ θ(x0, t − J). In this case, ρ(x, x0) ≤ C2−t, and thus it is sufficient to prove that

𝜕
α[Ta(Mx0 ,t ⋅)](M

−1
x0 ,tx)
 ≤ C2

t , ∀|α| ≤ ̃s.
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In the estimate below we use the notation m = m(y) := − log2(x, y), noting that for
y ∈ θ(x0, t), m ≥ t − c̃. We also apply the vanishing moments of the singular kernel
and (2.5) with a6s − a4|α| ≥ a6s − a4 ̃s > 0:

𝜕
α[Ta(Mx0 ,t ⋅)](M

−1
x0 ,tx)


=

∫

θ(x0 ,t)

𝜕αx [K(Mx0 ,t ⋅, ⋅)](M
−1
x0 ,tx, y)R

s
A−1x0 ,tx
[a(Ax0 ,t ⋅)](A

−1
x0 ,ty)dy


≤ ∫
θ(x0 ,t)

𝜕
α
x [K(Mx,mM

−1
x,mMx0 ,t ⋅, ⋅)]((M

−1
x,mMx0 ,t)

−1
M−1x,mx, y)



× R
s
A−1x0 ,tx
[a(Ax0 ,t ⋅)](A

−1
x0 ,ty)
dy

≤ C‖T‖‖a‖ℳ(r,δ,x0 ,t) ∫
θ(x0 ,t)

ρ(x, y)−1M
−1
x,mMx0 ,t


|α|
2t A
−1
x0 ,tx − A

−1
x0 ,ty

s
dy

≤ C2t‖T‖‖a‖ℳ(s,δ,x0 ,t) ∫
θ(x0 ,t)

ρ(x, y)−12a4(m−t)|α|(|θx0 ,t |
−1ρ(x, y))

a6sdy

≤ C2t‖T‖‖a‖ℳ(s,δ,x0 ,t) ∫
θ(x0 ,t)

ρ(x, y)−1−a4|α|+a6s2t(a6s−a4|α|)dy

≤ C2t‖T‖‖a‖ℳ(s,δ,x0 ,t)2
t(a6s−a4|α|) ∫

ρ(x,y)≤2−t+J

ρ(x, y)−1−a4|α|+a6sdy

≤ C2t‖T‖‖a‖ℳ(s,δ,x0 ,t).

Case II: x ∈ θ(x0, t − J)c. Now fixm := − log2 ρ(x, x0) and assume that x ∈ θ(x0, t − J(k +
1)) \ θ(x0, t − Jk) for some k ≥ 0. This implies that ρ(x, x0) ≥ c2−t+Jk . We apply (7.12), the
vanishing moments of the atom, and δ̃ < a6s to obtain

𝜕
α[Ta(Mx0 ,m⋅)](M

−1
x0 ,mx)


=

∫

θ(x0 ,t)

𝜕αx [K(Mx0 ,m⋅, ⋅)](M
−1
x0 ,mx, y)a(y)dy



=

∫

θ(x0 ,t)

𝜕αx [K(Mx0 ,m⋅,Mx0 ,m⋅)](M
−1
x0 ,mx,M

−1
x0 ,my)a(y)dy



≤ ∫
θ(x0 ,t)

R
s
A−1x0 ,mx0
[𝜕αx [K(Mx0 ,m⋅,Mx0 ,m⋅)](A

−1
x0 ,mx, ⋅)](A

−1
x0 ,my)

a(y)
dy

≤ C2t‖T‖‖a‖ℳ(s,δ,x0 ,t) ∫
θ(x0 ,t)

2t−Jk A
−1
x0 ,mx0 − A

−1
x0 ,my

s
dy

≤ C2t‖T‖‖a‖ℳ(s,δ,x0 ,t) ∫
θ(x0 ,t)

2t−Jk(|θx0 ,m|
−1ρ(x0, y))

a6sdy
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≤ C2t‖T‖‖a‖ℳ(s,δ,x0 ,t) ∫
θ(x0 ,t)

2t−kJ(2t−kJ2−t)
a6sdy

≤ C‖T‖‖a‖ℳ(s,δ,x0 ,t)2
t−kJ(1+a6s)

= C‖T‖‖a‖ℳ(s,δ,x0 ,t)2
−ta6s2(t−kJ)(1+a6s)

≤ C‖T‖‖a‖ℳ(s,δ,x0 ,t)2
−ta6sρ(x, x0)

−(1+a6s)

≤ C‖T‖‖a‖ℳ(s,δ,x0 ,t)
2−ta6s

(2−t + ρ(x, x0))
1+a6s

≤ C‖T‖‖a‖ℳ(r,δ,x0 ,t)
2−tδ̃

(2−t + ρ(x, x0))
1+δ̃
.

Once we have established that Ta has sufficient regularity, then for any |α| < a−16 (1 +
δ̃) − n, we may apply the vanishing moments condition (7.32), which is stronger and
implies the vanishing moments property of Definition 7.5:

∫
ℝn

Ta(x)xαdx = ∫
ℝn

∫
ℝn

K(x, y)a(y)dy xαdx

= ∫
ℝn

a(y)(∫
ℝn

K(x, y)xαdx )dy = 0.
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