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Preface
The study of measure-valued solutions of partial differential equations (PDEs in the
sequel) combines twodistantmathematical areas,measure theory and theory of PDEs.
Since measure-valued solutions describe singularities of solutions of PDEs, a subject
related to the concept of capacity, fundamental results of potential theory also appear
in the discussion.

As a consequence, gathering from the literature what is needed for the study is
often difficult. In books devoted to PDEs, often the results of measure theory (e. g.,
on Young measures) that are strictly necessary for applications are presented, to the
detriment of the understanding of the theory as a whole. On the other hand, books on
measure theory and probability frequently use terminology and arguments unfamiliar
to the PDE scholar, while aspects related to the analytic functional framework remain
in the background. To some extent, similar remarks apply to treatises on potential
theory.

This book is aimed at presenting the topics mentioned above in a unified frame-
work; analytical methods of proof are mostly used, and general aspects of functional
analysis are highlighted. It is written for a wide range of possible interested parties,
including the students and advanced mathematicians. Being self-contained, it is also
intended both for self-study and as a reference book for well-known and less well-
known things. The reader is expected to have a background in real analysis, topology,
and functional analysis at the level of textbooks like [90]. Anyway, necessary prelim-
inaries on topology are recalled in Appendix A at the end of the book.

A detailed description of the contents of the chapters is given at the beginning of
each part. We do not consider it useful to suggest specific paths to the reader, whowill
proceed for himself according to his own taste and interests.

https://doi.org/10.1515/9783110556902-201
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Introduction
Measure-valued solutions have an important role in problems of calculus of variations
and nonlinear partial differential equations (PDEs) suggested by physics, chemistry,
biology, and engineering.

Speaking of “measure-valued solutions” is actually ambiguous, since this term
refers both to Radon measure-valued and to Young measure-valued solutions, two no-
tions that remarkably fit in the same mathematical framework. It is informative to
highlight some areas of research inwhich one or the other notion, or both, have played
an important role. This is the content of the following section, which, though, is not
intended to cover the whole spectrum of evolution problems where measure-valued
solutions arise (in particular, we refer the reader to [6] for the theory of gradient flows
in the Wasserstein space of probability measures and its applications to the transport
equation).

Motivations

1 Radon measure-valued solutions of elliptic and parabolic PDE’s

In the elliptic case, we are concerned with equations of the form

Lu = μ in Ω, (E0)

where Ω ⊆ ℝN is open, u = u(x) (x ∈ Ω), L is a linear or nonlinear elliptic opera-
tor, and μ is a Radon measure on Ω. If Ω ⊂ ℝN properly, boundary conditions at the
boundary 𝜕Ωmust be satisfied:

u = ν on 𝜕Ω, (BC)

the boundary data ν possibly being a Radon measure.
In the parabolic case, we think of initial value problems of the form

{
𝜕tu + Lu = μ in Ω × (0,T) =: Q,
u = u0 in Ω × {0},

(P0)

where Ω is as above, T > 0, u = u(x, t) ((x, t) ∈ Q), and either μ or u0, or both, are
Radon measures. Again, if Ω ⊂ ℝN properly, suitable boundary conditions at the lat-
eral boundary 𝜕Ω × (0,T), possibly involving Radon measures, must be satisfied.

A specimen of equation (E0) and problem (P0) are the Poisson equation and the
Cauchy problem for the heat equation, respectively. These cases (which correspond to
the choice Ω = ℝN , L = −Δ, μ = δx0 in (E0) and μ = 0, u0 = δx0 in (P0), δx0 being the
Dirac mass located at some point x0 ∈ Ω) played a central role in the linear theory of

https://doi.org/10.1515/9783110556902-202
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PDEs, leading to the investigation of fundamental solutions, whose superposition by
linearity allowed representing more general solutions.

On the strength of the linear theory, it seemed natural to study analogous prob-
lems in the nonlinear case. However, it soon became apparent that even in simple
semilinear cases, there were obstacles to the very existence of solutions in the usual
L1-framework.

1.1 The elliptic case
A first case of nonexistence is described in vivid terms in [14] concerning the elliptic
semilinear equation

− Δu + |u|p−1u = μ in ℝN (p > 0) (0.1)

with N ≥ 3. Equation (0.1) is related to the equation

λv − Δ(|v|α−1v) = μ in ℝN (λ, α > 0) (0.2)

(setting u = |v|α−1v, p = 1
α , and scaling out λ), which is the resolvent equation for the

porous medium equation

𝜕tv = Δ(|v|
α−1v) in ℝN × (0,T) (α,T > 0). (0.3)

Since the nonlinear semigroup theory suggests to study equation (0.3) in the function
space L1(ℝN ), it is natural to assume that μ ∈ L1(ℝN ) in (0.1)–(0.2). A different moti-
vation to study (0.1) came from the Thomas–Fermi model for the electron density of
large atoms, in which case μ is a finite superposition of Dirac masses [65].

Let Ω ⊆ ℝN be open and bounded with smooth boundary 𝜕Ω. It was proven in
[28] that for any μ ∈ L1(Ω) and p > 0, there exists a unique solution u ∈ W 1,1

0 (Ω), with
|u|p ∈ L1(Ω), of the homogeneous Dirichlet problem

{
−Δu + |u|p−1u = μ in Ω,
u = 0 in 𝜕Ω.

Well-posedness results for equation (0.1) were subsequently proven in [15].
Concerning the case where the right-hand side of (0.1) is a Radon measure, it was

soon realized that the condition

p < N
N − 2

(0.4)

plays a central role. In fact, letRf (Ω) denote the Banach space of finite (signed) Radon
measures on Ω ⊆ ℝN , endowed with the norm ‖μ‖Rf (Ω) := |μ|(Ω) (|μ|(Ω) <∞ being the
total variation of the measure μ; see Subsection 1.8.2). If (0.4) holds, then for every
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Motivations | XV

μ ∈ Rf (ℝ
N ), there exists a unique function u in the Marcinkiewicz space M

N
N−2 (ℝN )

that solves equation (0.1) in the following sense: we have v := Δu + μ ∈ L1(ℝN ) and
v = |u|p−1u a. e. in ℝN (see [14, Appendix A]). On the other hand, no function exists
that satisfies (0.1) with μ = δx0 (x0 ∈ ℝ

N ) if condition (0.4) is not satisfied (this follows
by a simple direct argument; see [14, Remark A.4]).

The above results are now well understood. In fact, the method used to prove the
existence of solutions of (0.1) is natural and widely used (possibly with some variant;
e. g., see [27]). Consider the family of approximating problems

− Δun + |un|
p−1un = μn in ℝN , (0.5)

where {μn} ⊆ L1(ℝN ) ∩ C∞(ℝN ) is an approximating sequence of μ such that

‖μn‖L1(ℝN ) ≤ ‖μ‖Rf (ℝN ), (0.6)

lim
n→∞ ∫
ℝN

ρ μn dx = ∫
ℝN

ρ dμ for any ρ ∈ C0(ℝ
N) (0.7)

(namely, limn→∞ μn = μ weakly∗ in Rf (ℝ
N ); see Section 5.1). By the results in [15],

for each n ∈ ℕ, there exists a unique solution un ∈ M
N
N−2 (ℝN ) of (0.5). A priori esti-

mates of un and the uniform bound (0.6) ensure that (i) the sequence {un} is relatively
compact in L1loc(ℝ

N ) and (ii) the sequence {vn}, vn := Δun + μn, is bounded in L1(ℝN ).
Moreover, if (0.4) holds, then the sequence {vn} is uniformly integrable on the bounded
subsets of ℝNand hence relatively weakly compact in L1loc(ℝ

N ) by the Dunford–Pettis
theorem (see [14, Lemma A.1] and Theorem 2.8.18). Then letting n → ∞ in (0.5) and
using (0.7) the stated existence result follows.

If (0.4) does not hold, then the uniform integrability of {vn} fails. In view of the
Dunford–Pettis theorem, in this case, {vn} is not relativelyweakly compact in L1loc(ℝ

N ),
in agreement with the above nonexistence statement. However, even in this case the
sequence {vn} is bounded in L1(ℝN ) ⊆ Rf (ℝ

N ) and thus relatively compact in the
weak∗ topology ofRf (ℝ

N ) (see Theorem 5.1.7). Hence there exists a finite Radon mea-
sure v such that

lim
n→∞ ∫
ℝN

ρ vn dx = ∫
ℝN

ρ dv for any ρ ∈ C0(ℝ
N).

This suggests to seek the existence of solutions of (a suitably modified version of)
equation (0.1) in a larger class of Radon measure-valued solutions (see [97]).

On the other hand, the measures μ ∈ Rf (ℝ
N ) for which equation (0.1) has a so-

lution u ∈ Lp(ℝN ) have been characterized in [10] (see also [52]): for any p ∈ (1,∞),
this happens if and only if μ ∈ L1(ℝN ) +W−2,p(ℝN ). By Theorem 3.4.15 an equivalent
statement is that (0.1) has a solution u ∈ Lp(ℝN ) if and only if μ is diffuse with respect
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to the Sobolev capacity C2,q, where q := p
p−1 is the conjugate exponent of p, that is, if

and only if

μ(E) = 0 for any Borel set E ⊆ ℝN such that C2,q(E) = 0 (0.8)

(see Subsections 1.8.4 and 3.3.3).
By Remark 3.3.2(ii) there are no Borel sets E ⊆ ℝN such that C2,q(E) = 0 if p ∈

(1,∞) and 2q > N ⇔ p < N
N−2 , and hence condition (0.8) is void if (0.4) holds (see

Proposition 3.4.11). On the other hand, when p ≥ N
N−2 , we have C2,q({x0}) = 0 for any

x0 ∈ ℝN , thus the Dirac mass δx0 is concentrated with respect to C2,q, and condition
(0.8) is not satisfied (see Definition 1.8.10 and Proposition 3.3.5). In other words, if
p ≥ N

N−2 , then the Dirac mass is not a removable singularity for (0.1) (see [105] and
references therein). This explains the above existence and nonexistence results for
equation (0.1).

Remark 0.1.1. With reference to equation (0.2), it follows from the above remarks that
no function solves

λv − Δ(|v|α−1v) = μ in ℝN (λ, α > 0)

ifN ≥ 3, μ is concentratedwith respect to the Sobolev capacity C2, 11−α , and α ≤ N−2
N . This

is in agreement with the parabolic results in [26] and [80, Theorems 1, 2] (see below).

Let us mention that the above existence and nonexistence results concerning
equation (0.1) stimulated subsequent work in various directions, in particular, con-
cerning different nonlinear elliptic operators in problem (E0) and/or the case where
𝜕Ω ̸= 0 and g ∈ Rf (𝜕Ω) in (BC) (see [14, 13, 37, 55, 69, 106] and references therein).

1.2 The parabolic case
Consider the Cauchy problem for the fast diffusion porous medium equation

{
𝜕tu = Δuα in ℝN × (0,T) =: S,
u = u0 in ℝN × {0},

(C)

where u0 belongs to the cone R+f (ℝN ) of nonnegative finite Radon measures on ℝN

(N ≥ 3), and α ∈ (0, N−2N ]. In [80] a solution of problem (C) is, by definition, any u ∈
L1(S) that satisfies the first equation in distributional sense and the second in the sense
of the narrow convergence, namely,

ess lim
t→0+ ∫
ℝN

ρ u(⋅, t) dx = ∫
ℝN

ρ du0 for any ρ ∈ Cb(ℝ
N)
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(see Definition 5.1.3; here Cb(ℝN ) denotes the space of continuous bounded real
functions on ℝN ). It is proven that such a solution – more precisely, a solution
u ∈ C(0,T ; L1(ℝN )) – exists if and only if u0 is diffuse with respect to the Sobolev
capacity C2, 11−α (ℝN ) (see [80, Theorems 1, 2]). This is in agreement with [26], where it
was observed that such a solution of (C) with u0 = δ0 exists if and only if α ∈ (

N−2
N , 1);

in fact, for a point x0 ∈ ℝN , we have C2, 11−α ({x0}) = 0, and thus the Dirac mass δx0 is
concentrated with respect to C2, 11−α , if and only if α ∈ (0, N−2N ] (see Proposition 3.4.11).
The result also agrees with Theorem 6.7.1 (see equality (6.135)). The connection with
the above elliptic results is apparent (see Remark 0.1.1).

Following (C), initial value problems for quasilinear parabolic equations whose
initial datum is a Radonmeasure have beenwidely investigated (in particular, see [16,
26, 35, 36, 81, 104] and references therein), always seeking function-valued solutions.
To highlight this point, consider the initial-boundary value problem

{{{
{{{
{

𝜕tu = Δϕ(u) in Ω × (0,T) =: Q,
u = 0 on 𝜕Ω × (0,T),
u = u0 in Ω × {0},

(P)

which will be discussed at length in Chapter 6; here Ω ⊆ ℝN is an open bounded set
with smooth boundary 𝜕Ω, T > 0, u0 ∈ Rf (Ω), andϕ is assumed to be continuous and
nondecreasing in ℝ. In our parlance, a solution u of (P) is function-valued if for any
t > 0, u(⋅, t) ∈ L1(Ω). Such a solution can be viewed as a particular Radon measure-
valued solution, namely, a solution u of (P) such that u(⋅, t) ∈ Rf (Ω) for positive times
(see [85, 86, 87] and references therein).Whether or not such a Radonmeasure-valued
solution becomes function-valued for some t > 0 is a regularity problem,which can be
also regarded as a problem of removal of singularities. Not surprisingly, as we will see
below, this issue is related to some characteristic capacity pertaining to the evolution
equation under consideration.

Defining Radon measure-valued solutions of (P) raises the question of how to de-
finenonlinear functions of suchmeasures. In [11] a natural definitionwasproposed for
a similar problem by a heuristic argument, in agreement with the notion of a nonlin-
ear function of measures given in [38, 39]. Accordingly, we think of a Radon measure-
valued solution of (P) as a map from (0,T) toRf (Ω) that satisfies (P) in the following
weak sense:

T

∫
0

⟨u(⋅, t), 𝜕tζ (⋅, t)⟩dt =∬
Q

∇[ϕ(ur)] ⋅ ∇ζ dxdt − ⟨u0, ζ (⋅,0)⟩

for a suitable class of test functions ζ (see Chapter 6 for technical details). Specifically,
the measure u ∈ Rf (Q) is required to belong to the space L∞w∗(0,T ;Rf (Ω)), thus the
Radon measure u(⋅, t) on Ω is defined for a. e. t ∈ (0,T), and the function ϕ(ur) is

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



XVIII | Introduction

required to belong to the space L1(0,T ;W 1,1
0 (Ω)). Here ur ∈ L

1(Q) is the density of the
absolutely continuous part uac of u with respect to the Lebesgue measure, and ⟨⋅, ⋅⟩
denotes the duality map between C0(Ω) andRf (Ω) (see Chapters 2 and 4; by abuse of
notation, we sometimes further identify ur with uac).

Radon measure-valued solutions of (P) can be constructed as outlined before in
the elliptic case, approximating the initial data u0 by a suitable sequence {u0n} ⊆ L1(Ω)
and studying the convergence in L∞w∗(0,T ;Rf (Ω)) of the corresponding sequence of
solutions of the approximating problems (see Chapter 6). As for regularity, if the func-
tion |ϕ(z)| diverges more than |z|

N−2
N as |z| → ∞, then every constructed solution

of (P) belongs to L∞(0,T ; L1(Ω)), that is, an instantaneous Rf -L1 regularization oc-
curs (see Proposition 6.7.9). On the other hand, if for some M > 0 and α ∈ (0, N−2N ],
|ϕ(z)| ≤ M(1 + |z|)α (z ∈ ℝ), then the C2, 11−α -concentrated part of any weak solution of
(P) is constant in time, in agreement with [80] (see Theorem 6.7.1). Therefore, in this
case, every such solution is Radon measure-valued for any positive time.

2 Young and Radon measure-valued solutions of hyperbolic conservation laws

Consider the Cauchy problem

{
𝜕tu + div[ϕ(u)] = 0 in S,
u = u0 in ℝN × {0},

(CL)

with ϕ ≡ (ϕ1, . . . ,ϕN ) ∈ (C1(ℝ))N , ϕj : ℝ → ℝ nonlinear (j = 1, . . . ,N).

2.1 Young measure-valued solutions
Let u0 ∈ L∞(ℝN ). A classical way to prove the existence of weak solutions of (CL) is
the vanishing viscosity method, which relies on the companion parabolic problem

{
𝜕tuϵ + div[ϕ(uϵ)] = ϵ Δuϵ in S
uϵ = u0ϵ in ℝN × {0}

(ϵ > 0), (CLϵ)

where u0ϵ ∈ Cb(ℝN ) and ‖u0ϵ‖L∞(ℝN ) ≤ ‖u0‖L∞(ℝN ). For every ϵ > 0, there exists
a unique classical solution uϵ of (CLϵ), which by the maximum principle satisfies the
inequality

‖uϵ‖L∞(S) ≤ ‖u0‖L∞(ℝN ). (0.9)

By inequality (0.9) and the Banach–Alaoglu theorem there exist a sequence {uk} ≡
{uϵk } ⊆ L

∞(S)with ϵk → 0+ as k →∞ and u ∈ L∞(S) such that limk→∞ uk = uweakly∗
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inL∞(S). Thenu is an obvious candidate to be aweak solution of (CL). However, letting
k →∞ in the right-hand side of the weak formulation of (CLϵk ),

∬
S

{uk 𝜕tζ + ϵkukΔζ } dxdt + ∫
ℝ

u0 ζ (x,0) dx = −∬
S

[ϕ(uk)] ⋅ ∇ζ dxdt, (0.10)

is cumbersome, since the weak∗ convergence in L∞(S) of uk to u does not imply that
of ϕj(uk) to ϕj(u), j = 1, . . . ,N (see Example 2.8.1(i); here ζ is a suitable test function).

To overcome this difficulty, we need further information, for instance, the conver-
gence uk → u a. e. in S (of some subsequence of {uk}, not relabeled for simplicity). In
fact, by inequality (0.9), the continuity ofϕ, and the dominated convergence theorem,
this convergence would imply that

lim
k→∞∬

S

[ϕ(uk)] ⋅ ∇ζ dxdt =∬
S

[ϕ(u)] ⋅ ∇ζ dxdt.

Then letting k →∞ in (0.10), we would obtain, as anticipated,

∬
S

{u 𝜕tζ + [ϕ(u)] ⋅ ∇ζ } dxdt + ∫
ℝ

u0 ζ (x,0) dx = 0. (0.11)

To establish the a. e. convergence of {uk} in S, a typical approach is setting ℝN =
⋃∞n=1 Kn with each Kn compact and then proving by the Fréchet–Kolmogorov theorem
that for any fixed n ∈ ℕ, the sequence of restrictions {uk |Kn×(0,T)} are relatively compact
in L1(Kn × (0,T)). Then by classical results and a diagonal argument the result follows
(see the proof of [68, Theorem 4.62 of Chapter 2]).

Let us outline a different method, which makes use of Young measures (e. g., see
[68] and references therein). Let λN denote the Lebesgue measure on ℝN , let U ⊆ S ⊆
ℝN+1 be open and bounded, and let R+f (U × ℝ) be the cone of finite (positive) Radon
measures onU ×ℝ. By definition a Youngmeasure onU ×ℝ is any ν ∈ R+f (U ×ℝ) such
that

ν(E × ℝ) = λN+1(E) for any Borel set E ⊆ U .

If f : U → ℝ is measurable, then the Young measure νf such that

νf (E × F) = λN+1(E ∩ f −1(F)) for all Borel sets E ⊆ U and F ⊆ ℝ

is called the Young measure associated with the function f (see Definition 2.5.3).
Let us denote by Y(U ;ℝ) the set of Young measures on U × ℝ (U ⊆ S) and by

Cb(U ×ℝ) that of bounded Carathéodory integrands onU ×ℝ (see Definition 5.3.1). The
following results are particular consequences of Proposition 5.3.1, Theorem 5.4.5, and
Proposition 5.4.10.
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Proposition 0.2.1. Let ν ∈ Y(U ;ℝ). Then for a. e. (x, t) ∈ U, there exists a probability
measure ν(x,t) onℝ such that for any g ∈ Cb(U ;ℝ), the map (x, t)→ ∫ℝ g(x, t, y) dν(x,t)(y)
is integrable on U, and

∫
U×ℝ g dν = ∫U dxdt ∫

ℝ

g(x, t, y) dν(x,t)(y).
The family {ν(x,t)} ≡ {ν(x,t)}(x,t)∈U is a parameterized measure on ℝ, called disinte-

gration of ν (see Definitions 5.2.1 and 5.2.2). The function u∗ defined as
u∗(x, t) := ∫

ℝ

y dν(x,t)(y) ((x, t) ∈ U) (0.12)

is called the barycenter of the disintegration {ν(x,t)}.
Theorem 0.2.2. Let {un} ⊆ L1(U) be bounded, and let {νn} ≡ {νun } be the sequence of
associated Young measures. Then:
(i) there exist a subsequence {unk } ⊆ {un} and a Young measure ν on U × ℝ such that

νnk → ν narrowly;
(ii) for any f ∈ C(ℝ) such that the sequence {f (unk )} ⊆ L

1(U) is bounded and uniformly
integrable, we have

∫
U

dxdt ∫
ℝ

f (y)
 dν(x,t)(y) <∞, f (unk )⇀ f ∗ in L1(U),

where

f ∗(x, t) := ∫
ℝ

f (y) dν(x,t)(y) for a. e. (x, t) ∈ U ; (0.13)

(iii) for any Carathéodory function g : U × ℝ → ℝ such that the sequence {g(⋅, unk )} ⊆
L1(U) is bounded and uniformly integrable, we have

lim
k→∞∫

U

g(x, t, unk (x, t)) dxdt = ∫
U×ℝ g dν.

(iv) [Biting lemma] there exist a subsequence {unkj } ≡ {unj } ⊆ {unk } and a sequence
of measurable sets {Uj} such that Uj+1 ⊆ Uj ⊆ U for any j ∈ ℕ, λN+1(Uj) → 0 as
j → ∞, and the sequence {unjχU\Uj

} is uniformly integrable. Moreover, u∗ ∈ L1(U),
and unjχU\Uj

⇀ u∗ in L1(U).
Let us go back to the problem of letting k → ∞ in (0.10). Set again ℝN =

⋃∞n=1 Kn with each Kn compact. For any fixed n ∈ ℕ, consider the sequence of re-
strictions {uk |Kn×(0,T)}, which is bounded in L1(Kn × (0,T)) and uniformly integrable
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by Lemma 2.8.12. Clearly, the same holds for the sequence {ϕ(uk)|Kn×(0,T)}. Then by
Theorem 0.2.2(ii) (see also Remark 5.4.2(ii)) and a diagonal argument there exist a
subsequence of {uk} (not relabeled for simplicity) and a Young measure ν ∈ Y(S;ℝ)
such that

uk ⇀ u∗, ϕj(uk)⇀ ϕ∗j in L1(U)

for any bounded open U ⊆ S, where

ϕ∗j (x, t) := ∫
ℝ

ϕj(y) dν(x,t)(y) for a. e. (x, t) ∈ U (j = 1, . . . ,N). (0.14)

Since limk→∞ uk = u weakly∗ in L∞(S), it follows that u = u∗. We say that the couple
(u, ν) is a weak Young measure-valued solution of (CL), meaning that

u(x, t) = ∫
ℝ

y dν(x,t)(y) for a. e. (x, t) ∈ S, (0.15a)

and for any ζ ∈ C1([0,T];C1c(ℝ)) with ζ (⋅,T) = 0 in ℝ, we have

∬
S

{u 𝜕tζ + ϕ
∗ ⋅ ∇ζ } dxdt + ∫

ℝ

u0 ζ (x,0) dx = 0 (0.15b)

with ϕ∗ ≡ (ϕ∗1 , . . . ,ϕ∗N ) given by (0.14).
So far only inequality (0.9) has been used. More can be said if each component

ϕj of the flux is genuinely nonlinear (see assumption (A2) in Chapter 7). In this case,
it can be proven that ν is in fact the Young measure associated with u, that is, ν = νu.
Then by Proposition 5.3.2 ν(x,t) = δu(x,t) for a. e. (x, t) ∈ S (see (5.53)), whence by (0.14)
ϕ∗ = ϕ(u) a. e. in S, and equality (0.15b) reduces to (0.11). Equivalently, knowing that
ν = νu implies that, up to a subsequence, uk → u a. e. in S (see Proposition 5.4.1(ii)),
and thus we can argue as before to get (0.11).

The proof of the key equality ν = νu relies on the so-called Murat–Tartar equal-
ity, which in turn makes use of the div–curl lemma (see [46, Corollary 1.3.1 and Theo-
rem 5.2.1], [68, Section 3.3]; we will use a similar argument to prove Proposition 7.5.6).

2.2 Radon measure-valued solutions
Problem (CL) in one space dimension,

{
𝜕tu + 𝜕x[ϕ(u)] = 0 in ℝ × (0,∞),
u = u0 in ℝ × {0},

(CL1)
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was studied in [67] with u0 ∈ R+f (ℝ) for a class of fluxes ϕ superlinear at infinity (the
model case being ϕ(u) = um, m > 1). Entropy solutions of (CL1) were meant in the
following sense:
– for positive times, u is a function: u ∈ L∞(0,T ; L1(ℝ)) ∩ L∞((τ,T) × ℝ) for every τ ∈
(0,T);

– for all k ∈ ℝ and ζ ∈ C1c(S), ζ ≥ 0, we have the entropy inequality

∬
S

{|u − k| 𝜕tζ + sgn(u − k)[ϕ(u) − ϕ(k)]𝜕xζ } dxdt ≥ 0;

– the initial condition is satisfied in the sense of the narrow convergence:

ess lim
t→0+ ∫
ℝ

u(⋅, t)ρ dx = ∫
ℝ

ρ du0 for any ρ ∈ Cb(ℝ).

The following result was proven.

Proposition 0.2.3. Let ϕ : [0,∞) → [0,∞), ϕ(0) = 0 be increasing, and let z →
[ϕ(z)]1−α be convex on (0,∞) for some α ∈ (0, 1). Then there exists a unique entropy
solution u ≥ 0 of (CL1).

The existence part of Proposition 0.2.3 follows by a constructive procedure, in
which the initial Radon measure u0 ≥ 0 is approximated by a sequence {u0n} ⊆
L∞(ℝ) ∩ L1(ℝ), u0n → u0 narrowly inℝ. If ϕ(u) = um withm > 1 and u0 = δ0, then this
procedure gives the fundamental solution of the Burgers equation, called N-wave:

u(x, t) = ( x
mt
)
1/(m−1)

χA(x, t), (0.16a)

A := {(x, t) | 0 ≤ x ≤ ( m
m − 1
)
(m−1)/m

t1/m, 0 < t ≤ T}. (0.16b)

Hence the solution of (CL1) in this case is function valued (plainly, the same holds for
m ∈ (0, 1)). Instead, in the linear casem = 1 the initial singularity δ0 obviously persists,
and thus the solution is Radon measure valued for all times.

A novel situation prevails when studying (CL1) with bounded ϕ, a problem (moti-
vated by a mathematical model of ion etching [88]; see also [50]) that is addressed in
Chapter 7. To illustrate its main features, consider the model

{
𝜕tu + 𝜕x[1 −

1(1+u)m ] = 0 in ℝ × (0,∞), m > 0,
u = δ0 in ℝ × {0},

(CL2)

where ϕ(z) = 1 − 1(1+z)m is increasing and concave and belongs to a class for which the
constructed entropy solution of problem (CL2) is unique (see Definition 7.3.1 and The-
orems 7.3.3–7.3.4). As in [67], we construct entropy solutions of (CL2) as limiting points
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(in a suitable topology) of the sequence of entropy solutions of the approximating Rie-
mann problems:

{
{
{

𝜕tun + 𝜕x[1 −
1(1+un)m ] = 0 in S,

un = n χ(− 1
2n , 12n ) in ℝ × {0}.

(Rn)

An elementary analysis of (Rn) shows that a shock starts from the point (− 1
2n ,0), a rar-

efaction fan from ( 12n ,0). They meet at a point (xn, tn),

xn :=
tn
2
[
ϕ(n)
n
+ ϕ′(n)], tn :=

1
ϕ(n) − nϕ′(n) (n ∈ ℕ),

where a new shock starts. It is easily seen that limn→∞ tn = 1 and limn→∞ xn = 0. This
explains the following result (see [18]).

Proposition 0.2.4. The unique (constructed) entropy solution of problem (CL2) is u =
ur + us, where

ur(x, t) := [(
mt
x
)

1
1+m
− 1] χA(x, t), us(⋅, t) := [1 − t]+δ0,

A := {(x, t) | 0 < x ≤ mt,0 ≤ t ≤ 1} ∪ {(x, t) | ξ (t) ≤ x ≤ mt, 1 < t ≤ T},
(0.17)

and ξ solves the problem

{
{
{

ξ ′ = − (mtξ−1)− m
1+m −1(mtξ−1) 1
1+m −1 in (1,T),

ξ (1, 1) = 0.

In view of (0.17), in this case the singular part of the solution of (CL1) is nonzero
until the waiting time t = 1 and vanishes for t ≥ 1, and hence we have deferred regu-
larization. Another important remark is that the singular part us(⋅, t) is concentrated
at x0 = 0 for 0 < t < τ1 = 1 (see (0.17)). When approaching supp us(⋅, t) = {0}, for any
t ∈ (0, τ1), the density ur(⋅, t) satisfies the compatibility conditions

lim
x→0− ϕ(ur(x, t)) ≡ ϕ(ur(0−, t)) = 0, lim

x→0+ ϕ(ur(x, t)) ≡ ϕ(ur(0+, t)) = 1. (0.18)

We refer the reader to Chapter 7 to highlight the essential role played by the compati-
bility conditions in the uniqueness proof for problem (CL1) with bounded ϕ (see Defi-
nition 7.2.1 and Theorem 7.2.4).
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3 Young and Radon measure-valued solutions of ill-posed problems

Let us now consider the forward-backward parabolic equation

𝜕tu = Δϕ(u) in Ω × (0,T) =: Q, (FB)

where Ω ⊆ ℝN (N ≥ 1) is open, and ϕ ∈ C1(ℝ) is nonmonotonic. Equation (FB) can be
seen as the gradient flow (in the H−1 topology) of the functional

ℰ[u] := ∫
Ω

Φ(u) dx, (0.19)

where Φ′ = ϕ. Since ϕ is nonmonotonic, the functional ℰ is nonconvex, and initial-
boundary value problems for (FB) are ill-posed. The dynamics associated with (FB)
is relevant whenever nonconvex functionals arise, e. g., in phase transitions, nonlin-
ear elasticity, and image processing (see [29, 73, 79]). Ill-posedness is revealed by the
lack of uniqueness of solutions (see [59], [108] for ϕ satisfying (A1), respectively, (A2)
below).

In the Landau theory of phase transitions the function Φ(u) = (1 − u2)2 is the
double-well potential, and thus ϕ is a cubic:

{
ϕ′(u) > 0 if u ∈ (−∞, b) ∪ (a,∞), ϕ′(u) < 0 if u ∈ (b, a);
ϕ(u)→ ±∞ as u→ ±∞.

(A1)

The three monotone branches of the graph of v = ϕ(u) are denoted by

u := s1(v), v ∈ (−∞,B) ⇔ v = ϕ(u), u ∈ (−∞, b),
u := s0(v), v ∈ (A,B) ⇔ v = ϕ(u), u ∈ (b, a),
u := s2(v), v ∈ (A,∞) ⇔ v = ϕ(u), u ∈ (a,∞)

(0.20)

(here A := ϕ(a), B := ϕ(b); see Fig. 1). Heuristically, the branches s1 and s2 correspond
to stable phases, s0 corresponds to an unstable phase, and equation (FB) describes
the dynamics of transition between stable phases.

Ill-posedness calls for several refinements of the Landau theory, including in par-
ticular nonlocal spatial effects and/or time delay effects. In the first case, starting from
the so-called Allen–Cahn functional

ℰ[u] := ∫
Ω

{Φ(u) + κ
2
|∇u|2} dx,

we obtain the Cahn–Hilliard equation

𝜕tu = Δ[ϕ(u) − κΔu] (κ > 0), (0.21)
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Figure 1: Cubic ϕ.

namely a fourth-order regularization of (FB). Instead, taking time delay effects into
account leads to the Sobolev regularization of (FB):

𝜕tu = Δ[ϕ(u) + ϵ 𝜕tu] (ϵ > 0).

If both effects are included, then we obtain the viscous Cahn–Hilliard equation

𝜕tu = Δ[ϕ(u) − κΔu + ϵ 𝜕tu].

Other regularizations of (FB), based on time or space discretization, have been used
by several authors [12, 43, 57, 61].

Beside phase transitions, a motivation for studying equation (FB) comes from
population dynamics, where it arises as a quasi-continuous approximation of a dis-
crete model for aggregating populations (see [76, 77] and references therein). In this
framework, u ≥ 0 has the meaning of population density, and ϕ ∈ C2([0,∞)) is a
nonmonotonic function with the following properties:

{{{{{{
{{{{{{
{

ϕ(u) > 0 if u > 0, ϕ(0) = 0;
ϕ′(u) > 0 if 0 ≤ u < ū, ϕ′(u) < 0 if u > ū;
ϕ′(ū) = 0, ϕ′′(ū) ̸= 0, ϕ(u)→ 0 as u→∞;
ϕ ∈ Lp(0,∞) for some p ∈ [1,∞)

(A2)

(see Fig. 2). Functions satisfying (A2) are often called “of Perona–Malik type”, since
for N = 1, the Perona–Malik equation reads

𝜕tz = 𝜕x[ϕ(𝜕xz)] with ϕ(u) = u
1 + u2

(u ≥ 0), (0.22)
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Figure 2: ϕ of Perona–Malik type.

andϕ above satisfies (A2) (see [79]). Equation (0.22) alsomodels the formationof layers
of constant temperature (or salinity) in the ocean [11]. Setting u := 𝜕xz in (0.22) gives

𝜕tu = 𝜕xx(
u

1 + u2
) (u ≥ 0), (0.23)

a particular case of (FB) (let usmention that equation (FB) withN = 1 and cubicϕwas
studied in [77]). Observe that the first equation in (0.22) is the gradient flow of (0.19)
with the Perona–Malik potential Φ(u) = log(1 + u2).

Soundmodeling argumentswere produced in [11] tomotivate the pseudoparabolic
regularization of (0.22):

𝜕tz = 𝜕x[ϕ(𝜕xz)] + ϵ 𝜕tx[ψ(𝜕xz)],

where the regularization term with

ψ(u) := −ϕ(u) +
u

∫
0

ϕ(z)
z

dz (u ≥ 0) (0.24)

is obtained introducing in (FB) time delay effects. For the function ϕ in (0.22), we ob-
tain ψ(u) = − u

1+u2 + arctg u, and hence
ψ′(u) > 0 for all u ≥ 0, ψ(u)→ π

2
as u→∞.

In general, if ϕ satisfies (A2), then the function ψ : [0,∞) → [0,∞) satisfies the fol-
lowing requirements:

ψ′(u) > 0 for all u ≥ 0, ψ(u)→ ψ∞ ∈ (0,∞) as u→∞. (A3)
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Clearly, the pseudoparabolic regularization isweaker than the Sobolev regularization,
which formally corresponds to the case ψ(u) = u. In agreement with the correspon-
dence between (0.22) and (0.23), the pseudoparabolic regularization of (FB) reads

𝜕tu = Δϕ(u) + ϵ 𝜕tΔ[ψ(u)] (u ≥ 0).

3.1 Young measure-valued solutions
Consider the initial-boundary value problem for (FB) with Sobolev regularization:

{{{
{{{
{

𝜕tu = Δv in Q,
𝜕νv = 0 in 𝜕Ω × (0,T),
u = u0 in Ω × {0},

(Sϵ)

where v := ϕ(u) + ϵ 𝜕tu, Ω ⊆ ℝN (N ≥ 1) is open and bounded with smooth boundary
𝜕Ω, and 𝜕ν denotes the outer normal derivative. The following results were proven in
[74] (see also [76]).

Lemma 0.3.1. Let ϕ ∈ C1(ℝ), and let u0 ∈ C(Ω). Then for every ϵ > 0, there exists
Tϵ > 0 such that problem (Sϵ) has a unique strong solution (uϵ, vϵ) in QTϵ := Ω × (0,Tϵ).
Moreover:
(i) let g ∈ C1(ℝ), g′ ≥ 0, and G(u) := ∫u0 g(ϕ(s))ds + c (c ∈ ℝ). Then

∫
Ω

G(uϵ(x, t)) dx ≤ ∫
Ω

G(u0(x)) dx for any t ∈ (0,Tϵ); (0.25)

(ii) let u1, u2 ∈ ℝ, u1 < u2, and

ϕ(u1) ≤ ϕ(u) ≤ ϕ(u2) for any u ∈ [u1, u2]. (0.26)

Let u0(x) ∈ [u1, u2] for every x ∈ Ω. Then uϵ(x, t) ∈ [u1, u2] for every (x, t) ∈ QTϵ .

Proof. Claim (ii) above follows from (i) by a proper choice of the function g. To prove
(i), observe that

𝜕t[G(u
ϵ)] = g(ϕ(uϵ))𝜕tu

ϵ = g(vϵ)Δvϵ + [g(ϕ(uϵ)) − g(vϵ)]Δvϵ

= div[g(vϵ)∇vϵ] − g′(vϵ)|∇vϵ|2 + [g(ϕ(uϵ)) − g(vϵ)] vϵ − ϕ(uϵ)
ϵ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟≤0 .

Integrating on Ω the above inequality gives (0.25).

If (A1) holds, then the functionϕ satisfies (0.26) for a suitable choice of u1 < 0 < u2
with |u1|, |u2| sufficiently large. Hence we get a uniform L∞-estimate of {uϵ}. The other
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estimates in (0.27) below follow similarly from the proof of inequality (0.25), and thus
we have the following result.

Proposition 0.3.2. Let (A1) be satisfied, and let u0 ∈ C(Ω). Then:
(i) for every ϵ > 0, there exists a unique strong solution (uϵ, vϵ), with vϵ = ϕ(uϵ)+ϵ 𝜕tuϵ,

of the regularized problem (Sϵ);
(ii) there exists M > 0 such that for any ϵ > 0,

max{u
ϵL∞(Q), √ϵ 𝜕tuϵL2(Q), vϵL∞(Q), vϵL2(0,T ;H1(Ω))} ≤ M. (0.27)

By inequality (0.27) there exist sequences {ϵk} with ϵk → 0+ as k → ∞, {uk} ≡ {uϵk },
and {vk} ≡ {vϵk }, and u ∈ L∞(Q) and v ∈ L∞(Q) ∩ L2(0,T ;H1(Ω)) such that

{
uk
∗
⇀ u in L∞(Q), ϕ(uk)

∗
⇀ v in L∞(Q),

vk
∗
⇀ v in L∞(Q), vk ⇀ v in L2(0,T ;H1(Ω))

(0.28)

(observe that the sequences {vk} and {ϕ(uk)} admit the sameweak* limit in L∞(Q)). By
(0.28), letting k →∞ in the weak formulation of (Sϵk ), we easily obtain

∬
Q

{u 𝜕tζ − ∇v ⋅ ∇ζ } dxdt + ∫
Ω

u0 ζ (x,0) dx = 0 (0.29)

for any ζ ∈ C1([0,T];C1(Ω)), ζ (⋅,T) = 0 in Ω.
Since the convergences in (0.28) do not imply the equality v = ϕ(u), u need not be

a weak solution of the problem

{{{
{{{
{

𝜕tu = Δ[ϕ(u)] in Q,
𝜕ν[ϕ(u)] = 0 in 𝜕Ω × (0,T),
u = u0 in Ω × {0}.

(S)

However, a weak Young measure-valued solution of (S) is easily obtained. Since
‖uk‖L∞(Q) ≤ M (see (0.27)) and Q is bounded, the sequence {uk} is bounded in L1(Q)
and uniformly integrable (see Lemma 2.8.12), and the same holds for the sequence
{ϕ(uk)}. Then there exist a subsequence of {uk} (not relabeled) and a Young measure
ν ∈ Y(Q;ℝ) such that

uk ⇀ u∗, ϕ(uk)⇀ ϕ∗ in L1(Q),

where u∗ and ϕ∗ are given by (0.12) and (0.13), respectively, with U = Q and f = ϕ.
From (0.28) and the above convergences we get u = u∗, v = ϕ∗, whence by (0.29)

∬
Q

{u 𝜕tζ − ∇ϕ
∗ ⋅ ∇ζ } dxdt + ∫

ℝ

u0 ζ (x,0) dx = 0. (0.30)

Therefore the couple (u, ν) is a weak Young measure-valued solution of (S).
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If ϕ satisfies assumption (A1), then we have the following characterization of the
Young measure ν ([83]; see also [82, 84]):

ν(x,t) = 2
∑
i=0 λi(x, t)δsi(v(x,t)) for a. e. (x, t) ∈ Q. (0.31)

Here the coefficients λi take values in the interval [0, 1], ∑
2
i=0 λi = 1, and the functions

si(v) are defined by (0.20). By equalities (0.12) and (0.31) we have

u(x, t) =
2
∑
i=0 λi(x, t)si(v(x, t)) for a. e. (x, t) ∈ Q. (0.32)

Remark 0.3.1. In view of (0.32), u is a superposition of different phases. By definition
a two-phase solution of (S) is any solution as above such that λ0 = 0 a. e. inQ and λi = 1
a. e. in Vi (i = 1, 2), where Q = V 1 ∪ V2, V1 ∩ V2 = 0 with smooth common boundary
V 1 ∩ V2.

WhenN = 1, amajor qualitative feature of two-phase solutions is that they display
hysteresis effects: the only admissible phase changes are those that take place from
the extremum points (b,B) and (c,A) of the cubic (see Fig. 1). The proof is analogous
to that of the Oleinik entropy condition for piecewise smooth solutions of hyperbolic
conservation laws (which to some extent are the counterpart of two-phase solutions
of (S); see [48, 54, 70, 71, 82, 83, 84, 98]).

Among others, this feature points out that solutions of (S) obtained by Sobolev
regularization are definitely different from those obtained by Cahn–Hilliard regular-
ization. In fact, it was shown in [12] that the limiting dynamics as κ → 0+ of solutions
of (0.21) on the one-dimensional torus is governed by theMaxwell equal area law:

1

∫−1 ϕ∗∗(u) du = 0 =
1

∫−1 ϕ(u) du,
which is incompatible with hysteresis phenomena (here ϕ∗∗ := (Φ∗∗)′, Φ∗∗ being
the convex envelope of the double-well potential Φ). Similar results were obtained by
an implicit variational scheme in [43], concerning an ill-posed problem for a gradient
equation. Problems of the same kind were also investigated by Sobolev and Cahn–
Hilliard regularizations in [30, 95] (see Chapter 8).
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3.2 Radon measure-valued solutions
Let ϕ and ψ satisfy (A2) and (A3), respectively. Since ψ′(u) → 0 as u →∞, the initial-
boundary value problem

{{{
{{{
{

𝜕tu = 𝜕xx[ϕ(u)] + ϵ 𝜕txx[ψ(u)] in Q,
ϕ(u) + ϵ 𝜕t[ψ(u)] = 0 on 𝜕Ω × (0,T),
u = u0 in Ω × {0},

u ≥ 0, (PMϵ)

can be guessed to have for ϵ > 0 the same qualitative features displayed as ϵ → 0+ by
the problem

{{{
{{{
{

𝜕tu = 𝜕xx[ϕ(u)] + ϵ 𝜕txxu in Q,
ϕ(u) + ϵ 𝜕tu = 0 on 𝜕Ω × (0,T),
u = u0 in Ω × {0},

u ≥ 0, (Σϵ)

with Sobolev regularization, as far as the behavior of singularities is concerned.
Problem (PMϵ) with u0 ∈ R+f (Ω) was studied in [99, 100]. Its most striking fea-

ture, clearly connected to the weakness of the pseudoparabolic regularization, is the
spontaneous appearance of singularities for positive times when u0 is smooth (see [22,
Theorem 4.2], Definition 1.8.9 and Theorem 3.1.8):

Proposition 0.3.3. Let (A2)–(A3) be satisfied. There exist solutions of (PMϵ) with u0 ∈
C(Ω), u0 ≥ 0, such that for some t ∈ (0,T), either us(⋅, t) is purely atomic and contains
countably many Dirac masses, or us(⋅, t) is singular continuous.

This result also depends on the negativity of ϕ′(u) for large values of u, which
gives rise to concentration phenomena. It is in formal agreement with the result in [11]
that solutions of the problem

{{{
{{{
{

𝜕tz = 𝜕x[ϕ(𝜕xz)] + ϵ 𝜕tx[ψ(𝜕xz)] in Q,
ϕ(𝜕xz) + ϵ 𝜕t[ψ(𝜕xz)] = 0 in 𝜕Ω × (0,T),
z = z0 ∈ C1(Ω) in Ω × {0},

may become discontinuous with respect to x for positive times.
Finally, it is interesting to compare the effect of (A1) versus (A2) when letting

ϵ → 0+ in problem (Σϵ). If ϕ is a cubic, then every interval [u1, u2] sufficiently large
satisfies condition (0.26), and thus Lemma 0.3.1(ii) gives a uniform L∞-estimate of
{uϵ}. Therefore, as ϵ → 0+, we obtain equality (0.30) with u ∈ L∞(Q), and hence
no singularities arise in this case. On the other hand, if ϕ is of Perona–Malik type,
then only those intervals [u1, u2] ⊆ [0,∞) where ϕ′ is positive satisfy (0.26). Hence a
uniform L∞-estimate of {uϵ} only holds if {uϵ} takes values in the stable phase, which
is trivial.
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However, in the latter case, it can be proven that the half-line [0,∞) is positively
invariant for solutions of (PMϵ) (see [96]). As a consequence, if u0 ∈ L1(Ω), u0 ≥ 0,
then the conservation of mass,

∫
Ω

uϵ(x, t) dx = ∫
Ω

u0(x) dx (t ∈ (0,T)),

gives a uniform estimate of {uϵ} in L∞(0,T ; L1(Ω)):
u

ϵ(⋅, t)L1(Ω) = ∫
Ω

uϵ(x, t) dx = ∫
Ω

u0(x) dx = ‖u0‖L1(Ω).
It follows that

u
ϵL1(Q) ≤ T ‖u0‖L1(Ω) for any ϵ > 0.

Then by the biting lemma (see Theorem 0.2.2(iv) and Theorem 5.4.12) there exist a se-
quence {uk} ≡ {uϵk } ⊆ {uϵ}, a Youngmeasure ν ∈ Y(Q;ℝ), a Radonmeasure σ ∈ R+f (Q),
and a sequenceQk+1 ⊆ Qk ⊆ Q, with Lebesguemeasure λN+1(Qk) vanishing as ϵk → 0+,
such that (possibly up to a subsequence, not relabeled)

ukχQ\Qk
⇀ u∗ := ∫[0,∞) y dν(x,t)(y) in L1(Q)

and

ukχQk

∗
⇀ σ inRf (Q). (0.33)

As in Proposition 0.3.2, it is also easily checked that there exists v ∈ L∞(Q) ∩
L2(0,T ;H1

0(Ω)) such that

vk
∗
⇀ v in L∞(Q), vk ⇀ v in L2(0,T ;H1

0(Ω)),

where vk := ϕ(uk) + ϵk 𝜕tuk . Then letting k → ∞ in the weak formulation of (Σϵk ), we
easily obtain

∬
Q

(u∗ 𝜕tζ − ∇v ⋅ ∇ζ ) dxdt + ∫
Ω

u0 ζ (x,0) dx = −⟨σ, 𝜕tζ ⟩

for any ζ ∈ C1([0,T];C1c(Ω)), ζ (⋅,T) = 0 in Ω.
The right-hand side of the above equality,which arises because of the convergence

in (0.33), accounts for possible concentration phenomena in (Σϵ) as ϵ → 0+ (already
observed in (PMϵ) for ϵ > 0 because of the weaker regularization). On the other hand,
as in the case of cubicϕ, it can be checked that v = ϕ∗ withϕ∗(x, t) := ∫ℝ ϕ(y) dν(x,t)(y)
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for a. e. (x, t) ∈ Q. Therefore both Radon and Young measures are needed to describe
the vanishing viscosity limit of (Σϵ) in the Perona–Malik case.

The above discussion suggests the following picture:
(i) the behavior of ϕ at infinity determines the behavior of the singular part of the

solution with respect to the Lebesgue measure, whereas the changes of mono-
tonicity affect that of the absolutely continuous part;

(ii) the behavior of the singular part is described by Radonmeasures and is related to
disappearance, persistence, or appearance of singularities (concentration or reg-
ularization phenomena);

(iii) the behavior of the absolutely continuous part is described by Young measures
and is related to oscillation phenomena.

Mathematical tools

Let us draw some conclusions from the above discussion.
Addressing nonlinear differential problems that involve measures always makes

use of some approximation procedure. The solutions of the approximating problems
are a family in some function space, which is naturally embedded in the Banach space
of finite Radon measures. The limiting points of the family in some suitable topology,
as some regularization parameter goes to zero, are natural candidates as solutions of
the original problem.

Therefore the main tool to prove the existence of solutions is provided by results
concerning convergence and compactness of sequences of finite Radon measures in
various topologies. These results fit in (and their proofs make use of) the general
framework of Lebesgue spaces of measure-valued functions defined on some given
Banach space. Indeed, the clarity and elegance of the proofs greatly benefit from a
clear understanding of the functional analytic context.

Applying the general theory to the sequence of solutions of the approximating
problems gives convergence results, which allow us to take the limit in the weak for-
mulation of the approximating problems. Depending on the nature of the problem,
such results account both for concentration and for oscillation phenomena, if any (see
Section 5.4).

In this general framework a major issue is that of regularity of Radon measure-
valued solutions and thus of the possible presence, location, and evolution of singu-
larities. As outlined before, these features are related to suitable capacities which are
characteristic of the problem. Hence the theory of capacities is also an important tool
to study problems of this kind.
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Contents and brief user’s guide

Part I of the book is devoted to the general theory. Chapters 1 and 2 have a prelimi-
nary character, presenting general results of abstract measure theory, respectively, of
measurability and integration of scalar functions. Chapters 3, 4, and 5 are the core of
the book, dealing respectively with capacity theory, vector integration, and Lebesgue
spaces of vector functions, and convergence of sequences of finite Radon measures.

In Part II (Chapters 6, 7, and 8), we describe three applications of the general
theory. Each application fits in one of the three research areas (quasilinear parabolic
problems, hyperbolic conservation laws, ill-posed evolution problems) mentioned in
this Introduction.

A description of the content of the chapters is given at the beginning of each part.
Necessary preliminaries on topology are recalled inAppendixA at the end of the book.
Although far frombeing exhaustive, the bibliography contains ample references to the
different topics treated in the book.

Let us add some practical remarks:
1. By a “scalar function” we mean any real-valued function, as opposite to “vector

function”, a map taking values in any Banach space other than ℝ.
2. All vector spaces considered are real.
3. Within each section theorems, propositions, lemmata and corollaries are labeled

sequentially (e. g., Theorem 1.2.1 is followed by Proposition 1.2.2, etc.), whereas
definitions, remarks, and examples are numbered separately. Equations are num-
bered sequentially within each chapter.
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Outline of Part I

The first chapter provides general results of abstract measure theory, including top-
ics like outer measures and abstract capacity, Carathéodory construction, Hausdorff
measure and capacity, general results of decomposition and vector measures.

In the second chapter, after recalling classical results on measurability and inte-
gration of scalar functions, we introduce two subjects which are fundamental in the
development of the book, Young measures and Riesz representation theorems (both
for positive and for bounded functionals). Various notions of convergence in Lebesgue
spaces are then discussed, pointing out the important role of uniform integrability (Vi-
tali Theorem, Dunford–Pettis Theorem). The final section deals with a major result of
differentiation, the Radon–NikodýmTheorem, andwith differentiation of Radonmea-
sures on the Euclidean space ℝN .

In the third chapter first we present somematerial concerning Sobolev and Bessel
potential spaces, then we recall results concerning functions of bounded variations
and Sobolev functions. Building on these notions we discuss in detail various con-
cepts of capacity on subsets of ℝN (Bessel, Riesz, Sobolev and Hausdorff capacities)
and their mutual relationships. The results concerning Bessel and Riesz capacities
are derived from the Meyer’s theory of capacities associated with a kernel. Measures
concentrated or diffuse with respect to the Sobolev capacity are also discussed and
characterized.

Chapter 4dealswith vector integration.After introducing several concepts ofmea-
surability of vector functions and discussing their mutual relationships (in particu-
lar, the Pettis Theorem), we present results concerning both the Bochner integral and
weaker notions of integral. The subsequent step is introducing the vector Lebesgue
spaces Lp(X;Y), Lpw(X;Y) and Lpw∗ (X;Y∗) (where p ∈ [1,∞], and X, Y Banach spaces),
proving completeness and separability results. Then we discuss the duality theory of
such spaces (in particular, of Lpw∗ (X;Y∗) when Y∗ or Y is separable), pointing out the
central role of the so-calledRadon–Nikodýmproperty, or equivalently of theRiesz rep-
resentability of linear continuous operators from L1(X) to Y . The application we have
inmind is the case where Y = C0(Z) and Y∗ = Rf (Z), the Banach space of finite Radon
measures on some metric space Z, since the space L∞w∗ (0,T ;Rf (Ω)) (T > 0, Ω ⊆ ℝN ) is
the natural framework for the evolution problems dealt with in Part II of the book. The
last two sections of the chapter deal with vector Lebesgue spaces where Y is a space
of real functions, and with vector Sobolev spaces, respectively.

Chapter 5 is devoted to convergence of sequences of finite Radon measures.
Whereas boundedness in the Banach spaceRf (X) ensures compactness in the weak∗

topology (by the Riesz and Banach–Alaoglu Theorems), compactness in the stronger
narrow topology requires both boundedness and tightness, a concept which plays
a central role in this context. Criteria both for narrow convergence (given by the
Portmanteau Theorem, or using the Prokhorov distance) and for tightness are pro-
vided.

https://doi.org/10.1515/9783110556902-001
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4 | General theory

The subsequent step is to prove the Disintegration Theorem for finite Radonmea-
sures on the product of Hausdorff spaces. Applying the Disintegration Theorem to
some sequence {νuj } of Young measures associated with measurable functions uj :
X → ℝ (j ∈ ℕ), it is possible to provide a relation between the boundedness of the
sequence {uj} in Lebesgue spaces and the (relative) compactness of {νuj } with respect
to the narrow topology. In particular, if {uj} is bounded in L1(X), the sequence {νuj } of
the associated Young measures converges in the narrow sense (possibly up to a sub-
sequence) to some Young measure ν. On the other hand, by the Banach–Alaoglu The-
orem there exist {ujk } ⊆ {uj} and σ ∈ Rf (X) such that ujk ∗⇀ σ inRf (X). Then the Biting
Lemma (which is also proven) provides an accurate description of the concentration
phenomena connected with such convergence, as well as a relationship between the
limiting measure σ and the aforementioned Young measure ν.
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1 Measure theory

1.1 Preliminaries

We will use the usual notations of set theory. As usual, ℕ, ℤ, ℚ, ℝ, and ℝN (N ∈ ℕ;
ℝ1 ≡ ℝ) denote the natural numbers, integers, rational numbers, real numbers, and
N-tuples of real numbers, respectively. The familiar notations of intervals, (a, b), [a, b],
(a, b], [a, b]will be used also for subintervals of the extended real lineℝ := ℝ ∪ {±∞}.
Occasionally, we use the symbol [−∞,+∞] for ℝ; we also write∞ instead of +∞.

Let X be a set, and let 𝒫(X) := {E | E ⊆ X}. For any E ⊆ X, we denote by Ec :=
{x ∈ X | x ̸∈ E} the complementary set of E in X, by 0 = Xc the empty set, and by
χE : X → [0,∞) the characteristic function of E,

χE(x) := {
1 if x ∈ E,
0 otherwise.

For anyE, F ⊆ X, we denote byE\F := E∩Fc thedifference andbyE△F := (E\F)∪(F\E)
the symmetric difference of E and F. If ℱ1 ⊆ ℱ2 ⊆ 𝒫(X) and f : ℱ2 → [−∞,∞] is any
set function, then the restriction of f to ℱ1 is denoted by f |ℱ1

. For any x ∈ X, the set
{x} ∈ 𝒫(X) is called a singleton. A cover of E ⊆ X is any nonempty family {Fi}i∈I ⊆ 𝒫(X)
such that E ⊆ ⋃i∈I Fi. A family {Fi}i∈I ⊆ 𝒫(X) is disjoint if Fi ∩ Fj = 0 for all i, j ∈ I, i ̸= j.
A finite disjoint family {F1, . . . , Fn} ⊆ 𝒫(X) such thatX = ⋃

n
i=1 Fi is called apartitionofX.

A sequence {En} ⊆ 𝒫(X) is nondecreasing (respectively, nonincreasing) if En ⊆ En+1
(En ⊇ En+1, respectively) for all n ∈ ℕ. Nondecreasing or nonincreasing sequences are
calledmonotone.

1.2 Families of sets

1.2.1 Measurable spaces

Let us recall the following definitions.

Definition 1.2.1. A nonempty family 𝒮 ⊆ 𝒫(X) is called a semialgebra if:
(i) E, F ∈ 𝒮 ⇒ E ∩ F ∈ 𝒮;
(ii) for any E ∈ 𝒮, there exists a partition of Ec.

A family𝒜 ⊆ 𝒫(X) is called an algebra if:
(i) 0 ∈ 𝒜;
(ii) E ∈ 𝒜 ⇒ Ec ∈ 𝒜;
(iii) E, F ∈ 𝒜 ⇒ E ∪ F ∈ 𝒜.

https://doi.org/10.1515/9783110556902-002
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6 | 1 Measure theory

For any family ℱ ⊆ 𝒫(X), the intersection 𝒜0(ℱ) := ⋂{𝒜 | 𝒜 algebra, 𝒜 ⊇ ℱ} is
an algebra, which contains ℱ and is contained in all algebras 𝒜 ⊇ ℱ . It is called the
algebra generated by ℱ or theminimal algebra containing ℱ .

Example 1.2.1. Leta ≡ (a1, . . . , an)andb ≡ (b1, . . . , bn)withai, bi ∈ [−∞,∞]andai < bi
for every i = 1, . . . , n (n ∈ ℕ). Consider the N-cell

(a, b] := {x ≡ (x1, . . . , xn) | xi ∈ [−∞,∞], ai < xi ≤ bi ∀ i = 1, . . . , n}

with volume vol((a, b]) := ∏ni=1(bi − ai) ≤ ∞. It is easily seen that the family ℐn
of the N-cells is a semialgebra and the algebra 𝒜0(ℐn) generated by ℐn consists of
finite disjoint unions of N-cells, that is, for every E ∈ 𝒜0(ℐn), there exist disjoint
(a1, b1], . . . , (ap, bp] such that E = ⋃pk=1(a

k , bk].

Definition 1.2.2. A family𝒜 ⊆ 𝒫(X) is called a σ-algebra if:
(i) 0 ∈ 𝒜;
(ii) E ∈ 𝒜 ⇒ Ec ∈ 𝒜;
(iii) for any sequence {Ek} ⊆ 𝒜, we have⋃

∞
k=1 Ek ∈ 𝒜.

Definition 1.2.3. Let𝒜 ⊆ 𝒫(X)be aσ-algebra. The couple (X,𝒜) is called ameasurable
space, and the elements of𝒜 are called measurable sets.

Remark 1.2.1. LetF ⊆ X. It is easily seen that if𝒜 is aσ-algebra, then the family𝒜∩F :=
{E ∩ F | E ∈ 𝒜} ⊆ 𝒫(F) is also a σ-algebra, called the trace of𝒜 on F. The measurable
space (F,𝒜 ∩ F) is called ameasurable subspace of (X,𝒜).

Definition 1.2.4. A nonempty family ℳ ⊆ 𝒫(X) is called a monotone class if for any
nondecreasing (respectively, nonincreasing) sequence {Ek} ⊆ ℳ, we have ⋃∞k=1 Ek ∈
ℳ (respectively,⋂∞k=1 Ek ∈ℳ).

Clearly, every σ-algebra is a monotone class. As in the case of algebras, for any
family ℱ ⊆ 𝒫(X), we can consider theminimal σ-algebra

σ0(ℱ) :=⋂{𝒜 | 𝒜 σ-algebra, 𝒜 ⊇ ℱ}

and theminimal monotone class

ℳ0(ℱ) :=⋂{ℳ |ℳmonotone class,ℳ ⊇ ℱ}

generated by ℱ .

Definition 1.2.5. Ameasurable space (X,𝒜) is called separable if there exists a count-
able family 𝒮 ⊆ 𝒫(X) such that𝒜 = σ0(𝒮).

Theorem 1.2.1. Let𝒜 ⊆ 𝒫(X) be an algebra. Then the minimal monotone classℳ0(𝒜)
and the minimal σ-algebra σ0(𝒜) coincide.
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Proof. Clearly, 0 ∈ℳ0(𝒜). Let us first show that the monotone classℳ0(𝒜) is an al-
gebra. Set ̃𝒜 := {E ∈ℳ0(𝒜) | Ec ∈ℳ0(𝒜)}. Since𝒜 is an algebra and𝒜 ⊆ℳ0(𝒜), we
have𝒜 ⊆ ̃𝒜. On the other hand, it is easily seen that ̃𝒜 is a monotone class, and hence
ℳ0(𝒜) ⊆ ℳ0( ̃𝒜) ⊆ ̃𝒜. Since by definition ̃𝒜 ⊆ ℳ0(𝒜), it follows that ̃𝒜 = ℳ0(𝒜).
Therefore, for any E ∈ ℳ0(𝒜), we have Ec ∈ ℳ0(𝒜). It is similarly seen that for any
E, F ∈ℳ0(𝒜), we have E ∪ F ∈ℳ0(𝒜). Hence the claim follows.

Let {Ek} ⊆ℳ0(𝒜) and set Fj := ⋃
j
k=1 Ek (j, k ∈ ℕ). Then the sequence {Fj} is non-

decreasing, and {Fj} ⊆ℳ0(𝒜) sinceℳ0(𝒜) is an algebra. Sinceℳ0(𝒜) is a monotone
class, we obtain that⋃∞k=1 Ek = ⋃

∞
j=1 Fj ∈ℳ0(𝒜). Thereforeℳ0(𝒜) is a σ-algebra.

Since ℳ0(𝒜) is a σ-algebra containing 𝒜, we have ℳ0(𝒜) ⊇ σ0(𝒜). On the
other hand, the σ-algebra σ0(𝒜) is a monotone class containing 𝒜, and thus σ0(𝒜) ⊇
ℳ0(𝒜). Hence the conclusion follows.

Let us define the product of twomeasurable spaces (X1,𝒜1) and (X2,𝒜2). Consider
the family ofmeasurable rectanglesℛ ⊆ 𝒫(X1 × X2),

ℛ := {E1 × E2 | E1 ∈ 𝒜1, E2 ∈ 𝒜2}.

Definition 1.2.6. Let (X1,𝒜1) and (X2,𝒜2) be measurable spaces. The minimal σ-alge-
bra σ0(ℛ), denoted𝒜1 ×𝒜2, is called a product σ-algebra. The measurable space (X1 ×
X2,𝒜1 ×𝒜2) is called a product measurable space.

Let E ⊆ X1 × X2. The set

Ex1 := {x2 ∈ X2 | (x1, x2) ∈ E} (x1 ∈ X1) (1.1)

is called the x1-section of E. The x2-section of E with x2 ∈ X2 is similarly defined. Ob-
serve that

(Ec)xi = (Exi )
c, (

∞

⋃
n=1

En)
xi

=
∞

⋃
n=1
(En)xi (i = 1, 2).

Proposition 1.2.2. Let (X1,𝒜1) and (X2,𝒜2) be measurable spaces, and let E ∈ 𝒜1 ×𝒜2.
Then Ex1 ∈ 𝒜2 for any x1 ∈ X1, and Ex2 ∈ 𝒜1 for any x2 ∈ X2.

Proof. Set Ω := {E ∈ 𝒜1 × 𝒜2 | Ex1 ∈ 𝒜2 ∀ x1 ∈ X1}. It is easily checked that Ω is a
σ-algebra containing the familyℛ of measurable rectangles, and hence Ω = 𝒜1 ×𝒜2.
It is similarly seen that Ex2 ∈ 𝒜1 for any x2 ∈ X2, and thus the result follows.

1.2.2 Borel σ-algebras

Definition 1.2.7. Let (X, 𝒯 ) be a topological space. The σ-algebra σ0(𝒯 ) generated by
the topology 𝒯 (denoted ℬ ≡ ℬ(X) ≡ ℬ(X, 𝒯 )) is called the Borel σ-algebra. Every set
E ∈ ℬ is called a Borel set.
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8 | 1 Measure theory

Example 1.2.2. The family 𝒢δ of countable intersections of open sets and the family
ℱσ of countable unions of closed sets are contained in ℬ.

Definition 1.2.8. Let (X, 𝒯 ) be a compact topological space, and let Gδ ⊆ 𝒢δ be the
family of compact sets E ∈ 𝒢δ. The σ-algebra generated by the family Gδ (denoted
ℬa(X)) is called the Baire σ-algebra. Every set E ∈ ℬ is called a Baire set.

Remark 1.2.2. Let X = ℝ, and let 𝒯 = 𝒯 (ℝ) be the real topology. It is easily seen
that the Borel σ-algebra ℬ(ℝ) coincides with the σ-algebra generated by the family
of open bounded intervals. It is generated also by other families of intervals, e. g., by
the family of half-lines {(a,∞) | a ∈ ℝ}. Similar remarks hold for the Borel σ-algebra
ℬ(ℝN ) (N ≥ 2).

Let us mention the following result, concerning the product of Borel σ-algebras.

Theorem 1.2.3. Let (X1, 𝒯1) and (X2, 𝒯2) be topological spaceswith countable bases, and
let (X1,×X2, 𝒯1 × 𝒯2) be the product topological space. Then

ℬ(X1, 𝒯1) × ℬ(X2, 𝒯2) = ℬ(X1 × X2, 𝒯1 × 𝒯2).

In particular, ℬ(ℝM) × ℬ(ℝN ) = ℬ(ℝM+N ) (M,N ∈ ℕ).

1.3 Measures

1.3.1 General properties

Definition 1.3.1. Let 0 ∈ ℱ ⊆ 𝒫(X). A set function φ : ℱ → [0,∞] is called:
(i) monotone if φ(E) ≤ φ(F) for any E, F ∈ ℱ such that E ⊆ F;
(ii) additive if φ(⋃nk=1 Ek) = ∑

n
k=1 φ(Ek) for any finite disjoint family {E1, . . . ,En} ⊆ ℱ

such that⋃nk=1 Ek ∈ ℱ ;
(iii) σ-subadditive if φ(⋃∞k=1 Ek) ≤ ∑

∞
k=1 φ(Ek) for any sequence {Ek} ⊆ ℱ such that

⋃∞k=1 Ek ∈ ℱ ;
(iv) σ-additive if φ(⋃∞k=1 Ek) = ∑

∞
k=1 φ(Ek) for any disjoint sequence {Ek} ⊆ ℱ such that

⋃∞k=1 Ek ∈ ℱ .

Definition 1.3.2. Let (X,𝒜) be a measurable space. A set function μ : 𝒜 → [0,∞] is
called a (positive) measure on 𝒜 (or on X) if μ(0) = 0 and μ is σ-additive. The triple
(X,𝒜, μ) is called a measure space.

A measure μ is called finite if μ(X) < ∞; it is called σ-finite if there exists a se-
quence {Ek} ⊆ 𝒜 such that X = ⋃∞k=1 Ek and μ(Ek) <∞ for all k ∈ ℕ. A measure space
(X,𝒜, μ) is called finite (respectively, σ-finite) if μ is finite (σ-finite, respectively).
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If μ(X) = 1, then the measure μ is called a probability measure, and the space
(X,𝒜, μ) is called a probability space. The set of probability measures on X will be
denoted byP(X).

If ℱ ⊆ 𝒫(X) is any family of subsets, then the above definition can be generalized
as follows. A map μ : ℱ → [0,∞] is ameasure onℱ if μ(0) = 0 when 0 ∈ ℱ and for any
disjoint sequence {Ek} ⊆ ℱ such that ⋃∞k=1 Ek ∈ ℱ , we have μ(⋃

∞
k=1 Ek) = ∑

∞
k=1 μ(Ek).

A measure μ on ℱ is σ-finite if there exists a sequence {Ek} ⊆ ℱ such that X = ⋃∞k=1 Ek
and μ(Ek) <∞ for every k ∈ ℕ.

Remark 1.3.1. Let (X,𝒜, μ) be a measure space, and let F ∈ 𝒜. The restriction μ|𝒜∩F of
μ to the trace σ-algebra𝒜 ∩ F is a measure induced by μ on𝒜 ∩ F. The measure space
(F,𝒜 ∩ F, μ|𝒜∩F) is called ameasure subspace of (X,𝒜, μ).

The following properties of measures are easily proven.

Proposition 1.3.1. Let (X,𝒜, μ) be a measure space. Then:
(i) μ(⋃nk=1 Ek) = ∑

n
k=1 μ(Ek) for any finite disjoint family {E1, . . . ,En} ⊆ 𝒜;

(ii) E ⊆ F ⇒ μ(E) ≤ μ(F) for any E, F ∈ 𝒜;
(iii) μ(⋃∞k=1 Ek) ≤ ∑

∞
k=1 μ(Ek) for any sequence {Ek} ⊆ 𝒜;

(iv) μ(⋃∞k=1 Ek) = limk→∞ μ(Ek) for any nondecreasing sequence {Ek} ⊆ 𝒜;
(v) μ(⋂∞k=1 Ek) = limk→∞ μ(Ek) for any nonincreasing sequence {Ek} ⊆ 𝒜 such that

μ(E1) <∞.

Example 1.3.1. (i) Let X be a set. The map μ# : 𝒫(X)→ [0,∞] defined as

μ#(E) := {
number of elements of E if E is finite,
∞ otherwise

is a measure called the counting measure. Clearly, μ# is σ-finite if X is countable.
(ii) Let X ̸= 0, and let x ∈ X. The map δx : 𝒫(X)→ [0,∞) defined as

δx(E) := {
1 if x ∈ E,
0 otherwise

is a measure called the Dirac measure concentrated in {x}.

1.3.2 Borel and Radon measures

Let (X, 𝒯 ) be a Hausdorff space, and let ℬ = ℬ(X) be the Borel σ-algebra generated by
the topology 𝒯 . Let 𝒦 ⊆ 𝒫(X) denote the family of compact subsets.

Definition 1.3.3. Let𝒜 ⊇ ℬ be a σ-algebra, and let μ : 𝒜→ [0,∞] be a measure.
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10 | 1 Measure theory

(a) μ is called locally finite if for any x ∈ X, there exists a neighborhood U of x such
that μ(U) < ∞. A locally finite measure μ : 𝒜 → [0,∞] is called a Borel measure
on X.

(b) A set E ∈ 𝒜 is called μ-outer regular (or outer regular) if

μ(E) = inf{μ(A) | A ⊇ E, A ∈ 𝒯 }.

The measure μ is called outer regular if every E ∈ 𝒜 is μ-outer regular.
(c) A set E ∈ 𝒜 is called μ-inner regular (or inner regular) if

μ(E) = sup{μ(K) | K ⊆ E, K ∈ 𝒦}.

The measure μ is called inner regular if every E ∈ 𝒜 is μ-inner regular.
(d) A set E ∈ 𝒜 is called μ-regular (or regular) if it is both μ-outer regular and μ-inner

regular. The measure μ is called regular if every E ∈ 𝒜 is μ-regular.
(e) An inner regular Borel measure is called a Radon measure.
(f) A Borel measure is calledmoderate if there exists {An} ⊆ 𝒯 such that X = ⋃∞n=1 An

and μ(An) <∞ for all n ∈ ℕ.
(g) The support of a Borel measure μ (denoted by supp μ) is the closed set of points

x ∈ X such that μ(U) > 0 for any neighborhood U of x.

The collections of Borel and Radon measures on X will be denoted byB+(X) and
R+(X), respectively.

Remark 1.3.2. Let X,𝒜, ℬ, and μ be as in Definition 1.3.3.
(i) A set E ∈ 𝒜 is μ-outer regular if and only if for any ϵ > 0, there exists A ∈ 𝒯 such

that A ⊇ E and μ(A \ E) < ϵ. A set E ∈ 𝒜 is μ-inner regular if and only if for any
ϵ > 0, there exists K ∈ 𝒦 such that K ⊆ E and μ(E \ K) < ϵ. If E ∈ 𝒜 is μ-outer
regular, then there exists G ∈ ℬ such that G ⊇ E and μ(G \ E) = 0.

(ii) A σ-compact set E ⊆ X is μ-inner regular. In fact, by definition there exists a non-
decreasing sequence {Kn} ⊆ 𝒦 such that E = ⋃∞n=1 Kn, and thus E ∈ ℬ. Then by
Proposition 1.3.1(iv) we have

μ(E) = lim
n→∞

μ(Kn) = sup{μ(K) | K ⊆ E, K ∈ 𝒦}.

(iii) If μ is locally finite (in particular, if μ is a Radon measure), then μ(K) <∞ for any
K ∈ 𝒦. In fact, for any K ∈ 𝒦, there exists A ∈ 𝒯 such that A ⊇ K and μ(A) < ∞,
and thus μ(K) ≤ μ(A) <∞.

(iv) If the Hausdorff space X is locally compact, then μ is locally finite if and only if
μ(K) < ∞ for any K ∈ 𝒦. In fact, the “if” part of the claim follows from the very
definition of locally compact space, whereas the “only if” part follows from (iii).
In particular, if X is a locally compact Hausdorff space, then μ ∈ B+(X) if and only
if μ(K) <∞ for any K ∈ 𝒦.
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(v) Every moderate Borel measure is σ-finite. Conversely, every σ-finite outer regular
Borel measure is moderate.

(vi) If the Hausdorff space X is σ-compact, then every Borel measure μ on X is moder-
ate. In fact, let X = ⋃∞n=1 Kn with {Kn} ⊆ 𝒦. Since μ is locally finite, by (iii) for every
n ∈ ℕ, there exists An ∈ 𝒯 such that An ⊇ Kn and μ(An) < ∞, and thus the claim
follows.

Lemma 1.3.2. Let (X, 𝒯 ) be a Hausdorff space, and let μ ∈ R+(X). Then:
(i) if μ(X) <∞, then μ is regular;
(ii) every K ∈ 𝒦 is μ-outer regular.

Proof. (i) Let E ∈ 𝒜 ⊇ ℬ. Since μ is inner regular, the set Ec ∈ 𝒜 is μ-inner regular,

μ(Ec) = sup{μ(K) | K ⊆ Ec, K ∈ 𝒦}.

Therefore

μ(E) = μ(X) − sup{μ(K) | K ⊆ Ec, K ∈ 𝒦}
= inf{μ(X) − μ(K) | K ⊆ Ec, K ∈ 𝒦} = inf{μ(Kc) | Kc ⊇ E, K ∈ 𝒦}.

Since

μ(E) ≤ inf{μ(A) | A ⊇ E, A ∈ 𝒯 } ≤ inf{μ(Kc) | Kc ⊇ E, K ∈ 𝒦},

the claim follows.
(ii) Let K ∈ 𝒦 be fixed. Since μ is locally finite, as in Remark 1.3.2(iii), there exists

A ∈ 𝒯 such that A ⊇ K and μ(A) < ∞. Since μ is inner regular, the set A \ K ∈ ℬ
is μ-inner regular. Then for any ϵ > 0, there exists L ∈ 𝒦, L ⊆ A \ K, such that
μ(L) > μ(A \K) − ϵ. HenceM := A \ L ∈ 𝒯 ,M ⊇ K, and μ(K) ≤ μ(M) = μ(A) − μ(L) <
μ(A) − μ(A \ K) + ϵ = μ(K) + ϵ. Then by the arbitrariness of ϵ the result follows.

Proposition 1.3.3. Let (X, 𝒯 ) be a locally compact Hausdorff space with countable ba-
sis, and let μ ∈ B+(X). Then μ is moderate and regular.

Proof. By Remark A.1 X is σ-compact, and hence by Remark 1.3.2(vi) μ is moderate.
To prove that μ is outer regular, let {An} ⊆ 𝒯 , μ(An) < ∞ for all n ∈ ℕ, and X =

⋃∞n=1 An. For everyE ∈ 𝒜 ⊇ ℬ, setEn := E∩An, and thusE = ⋃
∞
n=1 En andμ(En) ≤ μ(An) <

∞ for all n ∈ ℕ. Then μn := μ|ℬ(An) is finite; moreover, by Remark A.1 every open
subset of An is σ-compact and thus is μn-inner regular (see Remark 1.3.2(ii)). Arguing
as in the proof of Lemma 1.3.2(i) shows that μn is regular and thus in particular outer
regular (see [45, Satz VIII.1.5] for details). Therefore, for any ϵ > 0 and n ∈ ℕ, there
exists A′n ∈ 𝒯 such that En ⊆ A′n ⊆ An and μn(A′n \ En) = μ(A′n \ En) <

ϵ
2n . Then

A′ := ⋃∞n=1 A
′
n ∈ 𝒯 , A

′ ⊇ E, and μ(A′ \ E) ≤ ∑∞n=1 μ(A
′
n \ En) < ϵ. Hence μ is outer regular

(see Remark 1.3.2(i)).
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Let us now prove that μ is inner regular. Let E ∈ 𝒜, En := E ∩ An, and μn as above.
For any α < μ(E), let p ∈ ℕ be so large that μ(⋃pn=1 En) > α; then set ϵ := μ(⋃

p
n=1 En)− α.

For every n = 1, . . . , p, the measure μn is regular and thus inner regular; hence there
exists a compact Kn ⊆ En such that μn(En \ Kn) = μ(En \ Kn) <

ϵ
p (n = 1, . . . , p). Then

K := ⋃pn=1 Kn ∈ 𝒦, K ⊆ ⋃
p
n=1 En, and

μ(
p
⋃
n=1

En \ K) ≤
p
∑
n=1

μ(En \ Kn) < ϵ = μ(
p
⋃
n=1

En) − α.

From the above inequality we get μ(K) > α, and thus the conclusion follows.

Remark 1.3.3. In view of Proposition 1.3.3, in a locally compact Hausdorff space with
countable basis (e. g., in ℝN ), Borel and Radon measures coincide and are regular.

1.3.3 Null sets

Definition 1.3.4. Let (X,𝒜, μ) be a measure space.
(i) A set N ⊆ X is called μ-null (or null) if N ∈ 𝒜 and μ(N) = 0. A set E ⊆ X is called

μ-negligible (or negligible) if there exists a μ-null set N such that E ⊆ N .
(ii) The space (X,𝒜, μ) is called complete if all negligible sets are measurable and

hence null. In such a case, μ is a complete measure, and the σ-algebra 𝒜 is com-
plete for μ.

We denote the family of null sets by 𝒩μ and that of negligible sets by 𝒰μ. Both
families 𝒩μ and 𝒰μ are stable with respect to the countable union. Moreover, 𝒰μ is
hereditary, that is, F ⊆ E, E ∈ 𝒰μ ⇒ F ∈ 𝒰μ. Clearly, Nμ = 𝒰μ if and only if (X,𝒜, μ) is
complete.

Theorem 1.3.4. Let (X,𝒜, μ) be a measure space. Then:
(i) the family

̄𝒜 := {E ⊆ X | ∃ F,G ∈ 𝒜 such that F ⊆ E ⊆ G, μ(G \ F) = 0} (1.2)

is a σ-algebra containing𝒜;
(ii) there exists a complete measure μ̄ : ̄𝒜→ [0,∞] such that μ̄|𝒜 = μ.

Moreover, (X, ̄𝒜, μ̄) is the smallest complete measure space containing (X,𝒜, μ).

Definition 1.3.5. The space (X, ̄𝒜, μ̄) is called the Lebesgue completion of (X,𝒜, μ).

Proof of Theorem 1.3.4. (i) Clearly, ̄𝒜 ⊇ 𝒜; in particular, 0 ∈ ̄𝒜. It follows immediately
from (1.2) that E ∈ ̄𝒜 ⇒ Ec ∈ ̄𝒜. Let, moreover, {En} ⊆ ̄𝒜. Then there exist {Fn} ⊆ 𝒜
and {Gn} ⊆ 𝒜 such that Fn ⊆ En ⊆ Gn, μ(Gn \ Fn) = 0 for any n ∈ ℕ. Hence F :=
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⋃∞n=1 Fn ⊆ ⋃
∞
n=1 En ⊆ ⋃

∞
n=1 Gn =: G,whenceby theσ-subadditivity ofμwehaveμ(G\F) ≤

∑∞n=1 μ(Gn \ Fn) = 0. Hence⋃
∞
n=1 En ∈ ̄𝒜, and thus the claim follows.

(ii) For any E ∈ ̄𝒜, set μ̄(E) := μ(F) = μ(G) with F,G as in (1.2). Observe that the
definition is well posed, since it does not depend on the choice of F,G. In fact, let
F1,G1 ∈ 𝒜 be such that F1 ⊆ E ⊆ G1 and μ(G1 \F1) = 0. Then F1 ⊆ E ⊆ G and F ⊆ E ⊆ G1,
whence G \ F1 = (G \ E) ∪ (E \ F1) ⊆ (G \ F) ∪ (G1 \ F1). It follows that μ(G \ F1) = 0; we
similarly see that μ(G1 \ F) = 0. The equalities

μ(G \ F) = μ(G1 \ F1) = μ(G \ F1) = μ(G1 \ F) = 0

imply that μ(F) = μ(F1) = μ(G1) = μ(G).
Let us show that μ̄ is a measure on ̄𝒜. Clearly, μ̄(0) = 0. To prove the σ-additivity

of μ̄, let {En} ⊆ ̄𝒜 be a disjoint sequence. Thus every sequence {Fn} ⊆ 𝒜 such that
Fn ⊆ En for all n ∈ ℕ is also disjoint. Hence by the σ-additivity of μ

μ̄(
∞

⋃
n=1

En) = μ(
∞

⋃
n=1

Fn) =
∞

∑
n=1

μ(Fn) =
∞

∑
n=1

μ̄(En),

and thus the claim follows. To prove that μ̄ is complete, fix anyN ∈ ̄𝒜 such that μ̄(N) =
0, and let F,G ∈ 𝒜 satisfy F ⊆ N ⊆ G, μ(G \ F) = 0. By the definition of μ̄ we have
μ(G) = μ̄(N) = 0. Then for any E ⊆ N, we have 0 ⊆ E ⊆ G, μ(G \ 0) = μ(G) = 0. This
shows that E ∈ ̄𝒜, and thus μ̄ is complete.

By its very definition we have μ̄|𝒜 = μ. It remains to prove that if (X,𝒜1, μ1) is
a complete measure space such that𝒜 ⊆ 𝒜1 and μ1|𝒜 = μ, then ̄𝒜 ⊆ 𝒜1 and μ1|�̄� = μ̄.
To this purpose, let E ∈ ̄𝒜, and let F,G ∈ 𝒜 be such that F ⊆ E ⊆ G and μ(G \ F) = 0.
Since μ1 is complete, μ1(G\F) = μ(G\F) = 0, andG\E ⊆ G\F, we obtain thatG\E ∈ 𝒜1.
Then E = G \ (G \ E) ∈ 𝒜1, whence ̄𝒜 ⊆ 𝒜1. The remaining claims are clear, and thus
the result follows.

Remark 1.3.4. It is worth observing the following characterization of the σ-algebra ̄𝒜
defined in (1.2):

̄𝒜 = {F ∪ E0 | F ∈ 𝒜, E0 ∈ 𝒰μ}.

Indeed, let E ∈ ̄𝒜. Then by (1.2) we have E0 := E \ F ⊆ G \ F with G \ F ∈ 𝒩μ; hence
E0 ∈ 𝒰μ and E = F ∪ E0. Conversely, let E = F ∪ E0 with F ∈ 𝒜, E0 ∈ 𝒰μ. Then by the
definition of 𝒰μ there exists N0 ∈ 𝒩μ such that E0 ⊆ N0. Set G := F ∪ (N0 \ F). Then we
have F ⊆ E ⊆ G, μ(G \ F) = μ(N0 \ F) = 0, and thus E ∈ ̄𝒜.

Definition 1.3.6. Let (X,𝒜, μ) be a measure space. A property P holds μ-almost every-
where (written μ-a. e. or a. e.) if {x ∈ X | P(x) false} ∈ 𝒩μ.
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As particular cases of the above definition, (a) two functions f , g : X → ℝ are equal
μ-a. e. in X if {x ∈ X | f (x) ̸= g(x)} ∈ 𝒩μ; (b) a sequence {fn} with fn : X → ℝ converges
μ-a. e. in X if {x ∈ X | {fn(x)} does not converge} ∈ 𝒩μ.

Clearly, the equality μ-a. e. is a relation of equivalence:

g ∼ f
def
⇐⇒ g = f μ-a. e. in X. (1.3)

Every class of equivalence with respect to (1.3) is uniquely determined by anyone
of its elements, which is called a representative of the class. It is thus natural to regard
the whole class as a unique map f defined μ-a. e. in X in the following sense.

Definition 1.3.7. Let (X,𝒜, μ) be a measure space, and let Y be a set. A function f :
E → Y (E ∈ 𝒜) is defined μ-a. e. in X if Ec ∈ 𝒩μ.

Whenever appropriate, to stress the difference between Definition 1.3.7 and the
classical pointwise definition we will say that:
(i) a function f : X → ℝ is classical if it is defined at every point x ∈ X;
(ii) a classical function g is equal to a function f defined μ-a. e. if g is a classical rep-

resentative of f .

In this connection, it is worth observing that the limit μ-a. e. of a sequence is unique
in the sense of Definition 1.3.7 (yet not in the pointwise sense): in fact, fn → f μ-a. e.
and fn → g μ-a. e. imply f = g μ-a. e.

Let us prove for further reference the following technical lemma.

Lemma 1.3.5 (Exhaustion lemma). Let (X,𝒜, μ) be a finite measure space. Let P = P(x)
(x ∈ X) be a property such that:
(i) P holds on every μ-null subset of X;
(ii) for any E ∈ 𝒜 with μ(E) > 0, there exists F ∈ 𝒜, F ⊆ E, with μ(F) > 0 such that P

holds on F.

Then there exists a disjoint sequence {Ek} ⊆ 𝒜 such that ⋃∞k=1 Ek = X and P holds on
every set Ek .

Proof. Set Σ := {E ∈ 𝒜 | P holds on E} and c := supE∈Σ μ(E). Let {Fn} ⊆ Σ be such that
limn→∞ μ(Fn) = c. Set Hk := ⋃

k
n=1 Fn. Then for any k ∈ ℕ, the property P holds on Hk,

and Hk ⊆ Hk+1; moreover, we have limk→∞ μ(Hk) = c.
Let us prove that the set E1 := X \ (⋃

∞
k=1 Hk) = ⋂

∞
k=1 H

c
k is μ-null. By absurd let

μ(E1) > 0. Then by assumption (ii) there exists F ∈ 𝒜, F ⊆ E1, with μ(F) > 0 such that
the property P holds on F, and thus F ∈ Σ; moreover, we have F ⊆ Hc

k for all k ∈ ℕ.
Set Gk := Hk ∪ F (k ∈ ℕ). Then {Gk} ⊆ Σ and limk→∞ μ(Gk) = limk→∞(μ(Hk) + μ(F)) =
c + μ(F) > c, a contradiction.

Now set E2 := H1 and Ek := Hk−1 \ Hk−2 for any k ≥ 3. The sequence {Ek} has the
stated properties, and thus the conclusion follows.
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Let us finally prove the following characterization of the support of a Radonmea-
sure.

Lemma 1.3.6. Let (X, 𝒯 ) be a Hausdorff space, and let μ ∈ R+(X). Let A ∈ 𝒯 be the
largest open μ-null set. Then supp μ = Ac.

Proof. Let us first show that the largest open μ-null set does exist. Set𝒩μ ∩ 𝒯 ≡ {Aj}j∈J
and A := ⋃j∈J Aj. Clearly, A ∈ 𝒯 and A ⊇ Aj for all j ∈ J. If𝒩μ ∩ 𝒯 = {0}, then the claim
is obvious. Otherwise, let K ⊆ A be compact. Thus there exist A1, . . . ,An ∈ 𝒩μ ∩𝒯 such
that K ⊆ ⋃nj=1 Aj. It follows that μ(K) = 0, whence μ(A) = 0 by the arbitrariness of K
and the inner regularity of μ.

Let x ∈ [supp μ]c. Then by Definition 1.3.3(g) there exists an open neighborhood
Ã ∋ x such thatμ(Ã) = 0; thus, in particular, Ã ∈ 𝒩μ∩𝒯 . Hencewehave x ∈ Ã ⊆ A. Con-
versely, let x ∈ A. Then A is an open μ-null neighborhood of x, and thus x ∈ [supp μ]c.
Then we have [supp μ]c = A, and the result follows.

1.4 Measures and outer measures

Definition 1.4.1. A map μ∗ : 𝒫(X)→ [0,∞] is called an outer measure if
(i) μ∗(0) = 0;
(ii) μ∗(E1) ≤ μ∗(E2) for any E1 ⊆ E2;
(iii) μ∗(⋃∞n=1 En) ≤ ∑

∞
n=1 μ
∗(En) for any sequence {En} ⊆ 𝒫(X).

As shown further, outer measures are easily constructed, and complete measures
are obtained from them by a general restriction procedure.

1.4.1 Carathéodory construction

Definition 1.4.2. Let μ∗ : 𝒫(X) → [0,∞] be an outer measure. A set E ⊆ X is called
μ∗-measurable if

μ∗(Z) = μ∗(Z ∩ E) + μ∗(Z ∩ Ec) for any Z ⊆ X. (1.4)

Remark 1.4.1. (i) By the subadditivity of μ∗, a set E ⊆ X is μ∗-measurable if and only
if

μ∗(Z) ≥ μ∗(Z ∩ E) + μ∗(Z ∩ Ec) for any Z ⊆ X. (1.5)

(ii) Every set E such that μ∗(E) = 0 (in particular, the empty set) is μ∗-measurable.
Indeed, by the monotonicity of μ∗, for any Z ⊆ X,

μ∗(Z ∩ E) + μ∗(Z ∩ Ec) ≤ μ∗(E) + μ∗(Z) = μ∗(Z).
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Given an outermeasure μ∗, there exists a σ-algebraℒ ⊆ 𝒫(X) such that the restric-
tion μ∗|ℒ is a measure. This is the content of the following theorem.

Theorem 1.4.1 (Carathéodory). Let μ∗ be an outer measure. Then:
(i) the family

ℒ := {E ⊆ X | E μ∗-measurable} (1.6)

is a σ-algebra;
(ii) the restriction μ∗|ℒ is a complete measure on ℒ.

Proof. (i) Let us first prove thatℒ is an algebra. It was already observed that the empty
set is μ∗-measurable. Moreover, it is apparent from (1.4) and (1.6) that for any E ∈ ℒ,
we have Ec ∈ ℒ. Let E and F be μ∗-measurable; then for any Z ⊆ X, we have

μ∗(Z) = μ∗(Z ∩ E) + μ∗(Z ∩ Ec), μ∗(Z ∩ Ec) = μ∗(Z ∩ Ec ∩ F) + μ∗(Z ∩ Ec ∩ Fc).

Therefore

μ∗(Z) = μ∗(Z ∩ E) + μ∗(Z ∩ Ec ∩ F) + μ∗(Z ∩ Ec ∩ Fc). (1.7)

Observe that

(Z ∩ E) ∪ (Z ∩ Ec ∩ F) = Z ∩ [E ∪ (Ec ∩ F)] = Z ∩ [E ∪ (F \ E)] = Z ∩ (E ∪ F),

and thus by subadditivity

μ∗(Z ∩ (E ∪ F)) ≤ μ∗(Z ∩ E) + μ∗(Z ∩ Ec ∩ F). (1.8)

Moreover, since Z ∩ Ec ∩ Fc = Z ∩ (E ∪ F)c, by (1.7)–(1.8) for any Z ⊆ X,

μ∗(Z) ≥ μ∗(Z ∩ (E ∪ F)) + μ∗(Z ∩ (E ∪ F)c).

It follows that E ∪ F is μ∗-measurable, and thus ℒ is an algebra.
Let us now prove that if {Ek} is a sequence of μ∗-measurable disjoint sets and S :=

⋃∞k=1 Ek, then

μ∗(Z ∩ S) =
∞

∑
k=1

μ∗(Z ∩ Ek) for any Z ⊆ X. (1.9)

Set Sn := ⋃
n
k=1 Ek (n ∈ ℕ). Let us first show that for any n ∈ ℕ,

μ∗(Z ∩ Sn) =
n
∑
k=1

μ∗(Z ∩ Ek) for any Z ⊆ X. (1.10)
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Since ℒ is an algebra, the set Sn is μ∗-measurable for any n ∈ ℕ, and

μ∗(Z ∩ Sn+1) = μ
∗(Z ∩ Sn+1 ∩ Sn) + μ

∗(Z ∩ Sn+1 ∩ S
c
n) = μ

∗(Z ∩ Sn) + μ
∗(Z ∩ En+1).

If (1.10) holds for some n, then by the above equality we have

μ∗(Z ∩ Sn+1) =
n
∑
k=1

μ∗(Z ∩ Ek) + μ
∗(Z ∩ En+1),

and thus equality (1.10) holds for n + 1. Clearly, (1.10) holds for n = 1, and hence by
induction the claim follows.

Let us now prove equality (1.9). Since Sn ⊆ S, by the monotonicity of μ∗ and (1.10)
we have

μ∗(Z ∩ S) ≥ μ∗(Z ∩ Sn) =
n
∑
k=1

μ∗(Z ∩ Ek) (n ∈ ℕ) ,

whence, letting n → ∞, we obtain that μ∗(Z ∩ S) ≥ ∑∞k=1 μ
∗(Z ∩ Ek). The inverse in-

equality follows from the σ-subadditivity of μ∗, since Z ∩ S = ⋃∞k=1(Z ∩ Ek). Then (1.9)
follows.

Now we can prove that ℒ is a σ-algebra. Since for any n ∈ ℕ, the set Sn is
μ∗-measurable and Scn ⊇ S

c, by (1.10) and the monotonicity of μ∗ we have

μ∗(Z) = μ∗(Z ∩ Sn) + μ
∗(Z ∩ Scn) ≥

n
∑
k=1

μ∗(Z ∩ Ek) + μ
∗(Z ∩ Sc) (n ∈ ℕ)

for any Z ⊆ X. Letting n→∞ in the above inequality and using (1.9), we get

μ∗(Z) ≥
∞

∑
k=1

μ∗(Z ∩ Ek) + μ
∗(Z ∩ Sc) = μ∗(Z ∩ S) + μ∗(Z ∩ Sc).

Hence the set S is μ∗-measurable. The same holds for any countable union of
μ∗-measurable sets, and hence the claim follows.

(ii) Clearly, μ∗|ℒ(0) = μ∗(0) = 0. Let {Ek} be a sequence of μ∗-measurable dis-
joint sets. Choosing in equality (1.9) Z = S := ⋃∞k=1 Ek, we obtain that μ∗(⋃∞k=1 Ek) =
∑∞k=1 μ

∗(Ek). Since Ek , S ∈ ℒ, it follows that μ∗|ℒ is σ-additive and thus is a measure.
To prove that it is complete, let N ∈ ℒ satisfy μ∗|ℒ(N) = μ∗(N) = 0, and let E ⊆ N . By
the monotonicity of μ∗ we have μ∗(E) ≤ μ∗(N) = 0; hence E ∈ ℒ by Remark 1.4.1(ii).
This completes the proof.

A general procedure to construct outer measures is as follows. Let 𝒞 ⊆ 𝒫(X) with
0 ∈ 𝒞, and let ζ : 𝒞 → [0,∞] satisfy ζ (0) = 0. Define the map μ∗ : 𝒫(X) → [0,∞] as
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18 | 1 Measure theory

follows:

μ∗(E) := inf{
∞

∑
n=1

ζ (En) | E ⊆
∞

⋃
n=1

En, {En} ⊆ 𝒞} (1.11a)

if E can be covered by a countable union of sets En ∈ 𝒞, or

μ∗(E) :=∞ otherwise. (1.11b)

Then the following holds.

Theorem 1.4.2. Let 𝒞 ⊆ 𝒫(X) with 0 ∈ 𝒞, and let ζ : 𝒞 → [0,∞] satisfy ζ (0) = 0. Then
the map μ∗ defined in (1.11a)–(1.11b) is an outer measure on X.

Proof. By (1.11a) we have μ∗(0) ≤ ζ (0) = 0. If E1 ⊆ E2, then the inequality μ∗(E1) ≤
μ∗(E2) follows from (1.11b) if E2 cannot be covered by a countable union of sets En ∈ 𝒞
and from (1.11a) otherwise, since every countable cover of E2 is also a countable
cover of E1. Let us prove that for any sequence {En} ⊆ 𝒫(X), we have μ∗(⋃∞n=1 En) ≤
∑∞n=1 μ

∗(En). This is obvious if the right-hand side is infinite. Otherwise, we have
μ∗(En) < ∞ for any n ∈ ℕ, and thus for any ϵ > 0 and n ∈ ℕ, there exists a sequence
{En,k} ⊆ 𝒞 such that

En ⊆
∞

⋃
k=1

En,k , μ∗(En) +
ϵ
2n
>
∞

∑
k=1

ζ (En,k).

Since⋃∞n=1 En ⊆ ⋃
∞
n,k=1 En,k and {En,k} ⊆ 𝒞 (n, k ∈ ℕ), we get

μ∗(
∞

⋃
n=1

En) ≤
∞

∑
n,k=1

ζ (En,k) <
∞

∑
n=1
[μ∗(En) +

ϵ
2n
] =
∞

∑
n=1

μ∗(En) + ϵ.

Then by the arbitrariness of ϵ the conclusion follows.

Definition 1.4.3. The outer measure μ∗ given by Theorem 1.4.2 is said to be generated
by the couple (𝒞, ζ ).

1.4.2 Extension of measures

Much more can be said about the outer measure μ∗ generated by a couple (𝒞, ζ ) if the
latter has additional properties. Let us first prove the following result.

Proposition 1.4.3 (Coincidence criterion). Let 𝒜 ⊆ 𝒫(X) be an algebra, and let ν be
a σ-finite measure on𝒜. Let μ1 and μ2 be two measures on the minimal σ-algebra σ0(𝒜)
such that μ1|𝒜 = μ2|𝒜 = ν. Then μ1 = μ2.
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Proof. Since ν is a σ-finitemeasure on𝒜, there exists a nondecreasing sequence {En} ⊆
𝒜 such that X = ⋃∞n=1 En, ν(En) < ∞ for every n ∈ ℕ. Set ℰn := {En ∩ F | F ∈ σ0(𝒜)}
(n ∈ ℕ). It is easily seen that the equality

μ1|ℰn = μ2|ℰn for any n ∈ ℕ (1.12)

implies that μ1 = μ2. In fact, if (1.12) holds, for any F ∈ σ0(𝒜), we have

μ1(F) = lim
n→∞

μ1(En ∩ F) = lim
n→∞

μ2(En ∩ F) = μ2(F),

since F = ⋃∞n=1(En ∩ F) and the sequence {En ∩ F} is nondecreasing (see Proposi-
tion 1.3.1(iv)).

Therefore it suffices to prove equality (1.12). Observe that for any n ∈ ℕ, we have
μ1(En ∩ F) ≤ μ1(En) = ν(En) <∞; similarly, μ2(En ∩ F) <∞ , and hence μ1|ℰn and μ2|ℰn
are finite. Let us show that

𝒵n := {F ∈ σ0(𝒜) | μ1(En ∩ F) = μ2(En ∩ F)} (n ∈ ℕ)

is a monotone class. Indeed, for any nondecreasing sequence {Fk} ⊆ 𝒵n, we have

μ1(En ∩ (
∞

⋃
k=1

Fk)) = lim
k→∞

μ1(En ∩ Fk) = lim
k→∞

μ2(En ∩ Fk) = μ2(En ∩ (
∞

⋃
k=1

Fk)) ,

whereas for any nonincreasing sequence {F′k} ⊆ 𝒵n, since μ1|ℰn and μ2|ℰn are finite
measures,

μ1(En ∩ (
∞

⋂
k=1

F′k)) = lim
n→∞

μ1(En ∩ F
′
k) = lim

n→∞
μ2(En ∩ F

′
k) = μ2(En ∩ (

∞

⋂
k=1

F′k))

(see Proposition 1.3.1(v)). Hence the claim follows.
We also have that𝒜 ⊆ 𝒵n. indeed, if F ∈ 𝒜, then we have μ1(En ∩ F) = μ2(En ∩ F),

since by assumption μ1|𝒜 = μ2|𝒜. Then by Theorem 1.2.1 we have σ0(𝒜) ⊆ 𝒵n. Since
𝒵n ⊆ σ0(𝒜) by definition, we obtain that 𝒵n = σ0(𝒜), that is, for any F ∈ σ0(𝒜) and
n ∈ ℕ, we have μ1(En ∩ F) = μ2(En ∩ F). This proves (1.12), and thus the conclusion
follows.

Relying on the coincidence criterion given by Proposition 1.4.3, we can prove the
following refinement of Theorem 1.4.1.

Theorem 1.4.4. Let 𝒜 ⊆ 𝒫(X) be an algebra, and let μ be a measure on 𝒜. Let μ∗ :
𝒫(X)→ [0,∞] be the outer measure generated by the couple (𝒜, μ). Then:
(i) μ∗|𝒜 = μ;
(ii) σ0(𝒜) ⊆ ℒ, where ℒ is defined by (1.6);
(iii) μ̂ := μ∗|σ0(𝒜) is a measure that extends μ to the minimal σ-algebra σ0(𝒜).
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Moreover, let μ be σ-finite. Then:
(iv) μ̂ is the unique extension of μ to a measure on σ0(𝒜);
(v) the measure space (X,ℒ, μ∗|ℒ) is the completion of (X, σ0(𝒜), μ̂).

Proof. (i) By (1.11a)wehaveμ∗(E) ≤ μ(E) for anyE ∈ 𝒜. To prove the inverse inequality,
let E ∈ 𝒜, and let the sequence {En} ⊆ 𝒜 be a cover of E. Set

F1 := E ∩ E1, Fn := En ∩ [E \ (
n−1
⋃
k=1

Ek)] (n ∈ ℕ, n ≥ 2).

Then {Fn} ⊆ 𝒜 since𝒜 is an algebra. Moreover, the sets Fn are disjoint, Fn ⊆ En for any
n ∈ ℕ, and E = ⋃∞n=1 Fn. Then by the monotonicity and σ-additivity of μ on 𝒜 we get
μ(E) = ∑∞n=1 μ(Fn) ≤ ∑

∞
n=1 μ(En), whence μ(E) ≤ μ

∗(E). Hence claim (i) follows.

(ii) Since ℒ is a σ-algebra (see Theorem 1.4.1(i)), it suffices to show that 𝒜 ⊆ ℒ,
that is, that for any E ∈ 𝒜 and Z ⊆ X, inequality (1.5) holds. Let μ∗(Z) <∞ (otherwise,
the conclusion is obvious); then for any ϵ > 0, there exists a sequence {En} ⊆ 𝒜 such
that Z ⊆ ⋃∞n=1 En and ∑

∞
n=1 μ(En) < μ∗(Z) + ϵ. Let E ∈ 𝒜. By the monotonicity and

σ-subadditivity of μ∗, in view of (i), we get

μ∗(Z ∩ E) ≤
∞

∑
n=1

μ(En ∩ E), μ∗(Z ∩ Ec) ≤
∞

∑
n=1

μ(En ∩ E
c).

Therefore by the additivity of μ we have

μ∗(Z ∩ E) + μ∗(Z ∩ Ec) ≤
∞

∑
n=1

μ(En ∩ E) +
∞

∑
n=1

μ(En ∩ E
c) =
∞

∑
n=1

μ(En) < μ
∗(Z) + ϵ.

By the arbitrariness of ϵweobtain that E is μ∗-measurable, and thus the claim follows.

(iii)–(iv) By Theorem 1.4.1(ii) μ∗|ℒ is a measure on ℒ. Then, since σ0(𝒜) ⊆ ℒ, μ̂ is
a measure. Moreover, by (i) we have μ̂|𝒜 = μ∗|𝒜 = μ, whence claim (iii) follows. Claim
(iv) is a consequence of Proposition 1.4.3.

(v) Let σ0(𝒜) be the Lebesgue completion of σ0(𝒜). Since σ0(𝒜) ⊆ ℒ, μ∗|σ0(𝒜) = μ̂,
and by Theorem 1.4.1 (X,ℒ, μ∗|ℒ) is a complete measure space, we have σ0(𝒜) ⊆ ℒ
(see Theorem 1.3.4). Conversely, let us prove that ℒ ⊆ σ0(𝒜). To this purpose, consider
a sequence {En} ⊆ 𝒜 such that X = ⋃∞n=1 En and μ(En) < ∞ for all n ∈ ℕ. Let F ∈ ℒ;
it suffices to prove that En ∩ F ∈ σ0(𝒜) for any n ∈ ℕ, since this implies that F =
⋃∞n=1(En ∩ F) ∈ σ0(𝒜).

We will prove the following:

Claim. For every n ∈ ℕ, there exists F′n ∈ σ0(𝒜) such that

En ∩ F ⊆ F
′
n ⊆ En, μ∗(En ∩ F) = μ̂(F

′
n). (1.13a)
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Using the claim we can conclude the proof. Indeed, since Fc ∈ ℒ, there also exists
F′′n ∈ σ0(𝒜) such that

En \ F ⊆ F
′′
n ⊆ En, μ∗(En \ F) = μ̂(F

′′
n ). (1.13b)

From (1.13) we get

En = F
′
n ∪ F
′′
n , F′n \ (En ∩ F) ⊆ F

′
n ∩ F
′′
n . (1.14)

Since En ∈ 𝒜, we have μ(En) = μ∗(En) (see (i)). Since En ∩ F ∈ ℒ, En \ F ∈ ℒ, and μ∗|ℒ
is a measure, using the equalities in (1.13)–(1.14), we obtain

μ(En) = μ
∗(En) = μ

∗(En ∩ F) + μ
∗(En \ F) = μ̂(F

′
n) + μ̂(F

′′
n )

= μ̂(F′n \ F
′′
n ) + μ̂(F

′
n ∩ F
′′
n ) + μ̂(F

′′
n \ F
′
n) + μ̂(F

′′
n ∩ F
′
n)

= μ̂(F′n △ F
′′
n ) + 2μ̂(F

′
n ∩ F
′′
n ) = μ̂(F

′
n ∪ F
′′
n ) + μ̂(F

′
n ∩ F
′′
n )

= μ(En) + μ̂(F
′
n ∩ F
′′
n )

(recall that F′n △ F
′′
n := (F

′
n \ F
′′
n ) ∪ (F

′′
n \ F
′
n) = F

′
n ∪ F
′′
n \ (F

′
n ∩ F
′′
n )). Since μ(En) <∞, it

follows that μ̂(F′n ∩ F
′′
n ) = 0.

Since F′n \ (En ∩ F) ⊆ F
′
n ∩ F
′′
n (see (1.14)), we obtain that μ̂(F′n \ (En ∩ F)) = 0. On the

other hand, by (1.13) we have

F′n \ F
′′
n ⊆ F

′
n \ (En ∩ F) ⊆ F

′
n, μ̂(F′n \ (F

′
n \ F
′′
n )) = μ̂(F

′
n ∩ F
′′
n ) = 0.

Since F′n, F
′′
n ∈ σ0(𝒜), we obtain that F′n \ (En ∩ F) ∈ σ0(𝒜) (see (1.2)). Then for any

n ∈ ℕ, we have En ∩F = F′n \ (F
′
n \ (En ∩F)) ∈ σ0(𝒜) , and hence the conclusion follows.

It remains to prove the claim. For simplicity, we omit the dependence on n, and
thuswe have that F ∈ ℒ, E ≡ En ∈ 𝒜,G := F∩E ∈ ℒ (since𝒜 ⊆ ℒ by (ii)), and μ(E) <∞.
We must show that there exists F′ ∈ σ0(𝒜) such that

G ⊆ F′ ⊆ E, μ∗(G) = μ̂(F′).

Since G ⊆ E, we have μ∗(G) ≤ μ(E) < ∞ , and thus for any fixed k ∈ ℕ, there exists
a sequence {Gk

n} ⊆ 𝒜 such that

G ⊆
∞

⋃
n=1

Gk
n,
∞

∑
n=1

μ(Gk
n) < μ

∗(G) + 1
k
.

Without loss of generality, we can suppose that Gk
n ⊆ E for all k, n ∈ ℕ.
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Set F′ := ⋂∞k=1[⋃
∞
n=1 G

k
n]. Then F′ ∈ σ0(𝒜), and for any fixed k̃ ∈ ℕ, we have G ⊆

F′ ⊆ ⋃∞n=1 G
k̃
n. It follows that

μ̂(F′) ≤ μ̂(
∞

⋃
n=1

Gk̃
n) ≤

∞

∑
n=1

μ̂(Gk̃
n) < μ

∗(G) + 1
k̃
≤ μ̂(F′) + 1

k̃
.

Since k̃ is arbitrary, we obtain that μ̂(F′) = μ∗(G), and thus the claim follows. This
completes the proof.

Definition 1.4.4. Themeasure μ̂ given by Theorem 1.4.4 is called the Carathéodory ex-
tension of the measure μ on𝒜.

The following result shows that the conclusions of Theorem 1.4.4 can be refined
by extending a measure μ defined on a semialgebra 𝒮 ⊆ 𝒫(X).

Proposition 1.4.5. Let 𝒮 ⊆ 𝒫(X) be a semialgebra containing 0, and let ν be a measure
on 𝒮. Then there exists a unique measure μ on the minimal algebra 𝒜0(𝒮) such that
μ|𝒮 = ν.

Proof. For any E ∈ 𝒜0(𝒮), there exist disjoint sets E1, . . . ,En ∈ 𝒮 such that E = ⋃nk=1 Ek .
Define μ : 𝒜0(𝒮) → [0,∞] by setting μ(E) := ∑nk=1 ν(Ek). It is easily seen that the
definition does not depend on the choice of the sets Ek, thus is well posed, and μ is
a measure on𝒜0(𝒮).

Let μ̃ be a measure on 𝒜0(𝒮) such that μ̃|𝒮 = ν. For any n-tuple of disjoint sets
E1, . . . ,En ∈ 𝒮, we have

μ̃(
n
⋃
k=1

Ek) =
n
∑
k=1

μ̃(Ek) =
n
∑
k=1

ν(Ek) = μ(
n
⋃
k=1

Ek).

Every E ∈ 𝒜0(𝒮) is the union of such an n-tuple, and thus μ̃ = μ on𝒜0(𝒮). This proves
the uniqueness claim and the result.

1.5 Lebesgue and Lebesgue–Stieltjes measures

1.5.1 Lebesgue measure inℝN

Let a ≡ (a1, . . . , aN ) and b ≡ (b1, . . . , bN ) with ai, bi ∈ [−∞,∞] and ai ≤ bi for every
i = 1, . . . ,N (N ∈ ℕ). Consider the N-cell

(a, b] := {x ≡ (x1, . . . , xN ) | xi ∈ [−∞,∞], ai < xi ≤ bi ∀ i = 1, . . . ,N}

with volume vol ((a, b]) := ∏Ni=1(bi − ai) ≤∞ (the subsets of ℝN (a, b), [a, b], and [a, b)
are similarly defined). Recall that the family ℐN of theN-cells is a semialgebra and that
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for every E ∈ 𝒜0(ℐN ), there exist disjoint (a1, b1], . . . , (ap, bp] such that E = ⋃
p
k=1(a

k , bk]
(see Example 1.2.1). Set

λN (E) :=
p
∑
k=1

vol((ak , bk]). (1.15)

It is easily checked that λN is a σ-finite measure on 𝒜0(ℐN ). By the results in Subsec-
tion 1.4 (in particular, Theorem 1.4.1) we can state the following definition.

Definition 1.5.1. The outer measure λ∗N generated by the couple (𝒜0(ℐN ), λN ) with λN
given by (1.15) is called the Lebesgue outer measure. The elements of the σ-algebra

ℒN ≡ ℒ(ℝN) := {E ⊆ ℝN | E λ∗N -measurable}

are called Lebesgue sets. The measure λN := λ∗N |ℒN is called the Lebesgue measure
on ℝN . If N = 1, then we set λ1 ≡ λ and ℒ1 ≡ ℒ ≡ ℒ(ℝ).

Remark 1.5.1. (i) Since the σ-algebra ℬN = ℬ(ℝN ) of Borel sets in ℝN is generated
by the semialgebra ℐN , by Theorem 1.4.4 we have ℬN ⊆ ℒN , and thus λN is a Borel
measure on ℝN , and the measure space (ℝN ,ℒN , λN ) is the completion of the space
(ℝN ,ℬN , λN |ℬN ).

(ii) Since ℝN is a locally compact Hausdorff space with countable basis, λN is a
Radon measure and is regular (see Remark 1.3.3). By the regularity of λN it is easily
seen that for any E ⊆ ℝN , there exist F,G ∈ ℬN such that F ⊆ E ⊆ G and λN (F) =
λN (G) = λ∗N (E).

Some interesting properties of λN are related to the following result, whose ele-
mentary proof is omitted.

Proposition 1.5.1. Let T : ℝN → ℝN be affine,

Tx := Ax + b with A ≡ (aij) and b ∈ ℝ
N (x ∈ ℝN ; i, j = 1, . . . ,N).

Let the determinant det(A) be nonzero. Then:
(i) for any E ⊆ ℝN , we have λ∗N (T(E)) = |det(A) | λ

∗
N (E);

(ii) T(E) := {Tx | x ∈ E} ∈ ℒN if and only if E ∈ ℒN .

Remark 1.5.2. If E ∈ ℒN and T is homothetic (i. e., Tx = Ax with A = a(δij), a > 0),
then from Proposition 1.5.1(i) we obtain that λN (T(E)) = aNλN (E). In particular, if E =
B(x0, r), then λN (B(x0, r)) = κN rN , where

κN :=
π

N
2

Γ (N2 + 1)
, Γ(t) :=

∞

∫
0

xt−1 exp(−x) dx (t > 0), (1.16)
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is the volume of the unitary ball B(0, 1) ⊆ ℝN . In this connection, observe that λN is
a measure of dimension s = N and is doubling with constant cD = 2N (see Defini-
tion 1.6.4).

An interesting geometric inequality is given by the following result, whose proof
will be given in Subsection 2.4.2.

Proposition 1.5.2 (Isodiametric inequality). For any E ⊆ ℝN , we have

λ∗N (E) ≤
κN
2N
[diam(E)]N (1.17)

with κN given by (1.16).

Proposition 1.5.1 implies the invariance of the Lebesgue measure under rotations
and translations. If coupled with a suitable normalization condition, translation in-
variance is a characteristic feature of λN . This is the content of the following proposi-
tion.

Proposition 1.5.3. Let μ : ℬN → [0,∞] be translation invariant and such that
μ((0, 1]N ) = 1. Then μ = λN |ℬN .

Proof. Let (K1, . . . ,KN ) ∈ ℕN , and consider the points ( k1K1 , . . . ,
kN
KN
) with (k1, . . . , kN ) ∈

ℕN , 0 ≤ ki ≤ Ki for i = 1, . . . ,N . These points are the vertices of P := K1K2 . . .KN disjoint
N-cells Ik such that (0, 1]N = ⋃

P
k=1 Ik . Since μ is translation invariant, we have μ(Ik) =

μ(Il) for every k, l = 1, . . . ,P. Therefore, since μ((0, 1]N ) = 1, we have μ(∏
N
i=1(0,

1
Ki
]) =

1
P = λN (∏

N
i=1(0,

1
Ki
]). By the translation invariance of μ and λN the same equality holds

on the family ℐN ,ℚ of the N-cells with vertices inℚN and thus on the family ℐN of the
N-cells. Then by Theorem 1.4.4 and Proposition 1.4.5 the conclusion follows.

The proof of the following covering result is connected with the above remarks.

Definition 1.5.2. Let E ⊆ ℝN . A family ℱ of closed balls of ℝN is a fine cover of E if for
any x ∈ E and any ϵ > 0, there exists a ball B ∈ ℱ such that x ∈ B and diam(B) < ϵ.

Theorem 1.5.4 (Vitali covering lemma). Let E ⊆ ℝN be such that λ∗N (E) < ∞, and let
ℱ be a fine cover of E. Then there exists a disjoint sequence {Bk} ⊆ ℱ such that λ∗N (E \
(⋃∞k=1 Bk)) = 0.

Proof. It suffices to prove that for any ϵ > 0, there exist B1, . . . ,BK ∈ ℱ such that Bj ∩
Bk = 0 for j, k = 1, . . . ,K, j ̸= k, and λ∗N (E \ (⋃

K
k=1 Bk)) < ϵ.

Since λ∗N (E) < ∞, there exists an open set U ⊇ E with λN (U) < ∞, and by Defini-
tion 1.5.2 we can assume that B ⊆ U for all B ∈ ℱ . We construct inductively a disjoint
sequence {Bk} ⊆ ℱ as follows. Suppose that p disjoint closed balls B1, . . . ,Bp ∈ ℱ have
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already been chosen and that E \ (⋃pk=1 Bk) ̸= 0. Set

kp := sup{diam(B) | B ∈ ℱ , B ⊆ E \ (
p
⋃
k=1

Bk)} ≤ sup{diam(B) | B ∈ ℱ} <∞.

Then we can choose Bp+1 such that

diam(Bp+1) ≥
kp
2
, Bp+1 ∩ Bk = 0 for k = 1, . . . , p. (1.18)

Since the sequence {Bk} is disjoint and⋃
∞
k=1 Bk ⊆ U, we have

κN
2N
∞

∑
k=1
[diam(Bk)]

N
=
∞

∑
k=1

λN (Bk)) = λN(
∞

⋃
k=1

Bk) ≤ λN (U) <∞ (1.19)

with κN given by (1.16), whence

lim
k→∞

diam(Bk) = 0. (1.20)

Let ϵ > 0 be fixed. By (1.19) there exists K ∈ ℕ such that

∞

∑
k=K+1
[diam(Bk)]

N
<

2Nϵ
5NκN
. (1.21)

Set R := E \ (⋃Kk=1 Bk). The conclusion will follow if we prove that λ∗N (R) < ϵ.
Let x ∈ R. Since ⋃Kk=1 Bk is closed and x ̸∈ ⋃

K
k=1 Bk, by Definition 1.5.2 there exists

B ∈ ℱ such that x ∈ B and B ∩ Bk = 0 for k = 1, . . . ,K. In general, if B ∩ Bk = 0 for
k = 1, . . . ,M, then for someM ∈ ℕ, we have B ⊆ E \ (⋃Mk=1 Bk), and hence by (1.18)

diam(B) ≤ kM ≤ 2 diam(BM+1).

If there were B ∩ Bk = 0 for all k ∈ ℕ, then we would have a contradiction with (1.20).
Therefore there is a smallest integerm ∈ ℕ such that B∩Bm ̸= 0, and thusm > k. Since
B ⊆ E \ (⋃m−1k=1 Bk), by the above remarks we have

diam(B) ≤ km−1 ≤ 2 diam(Bm). (1.22)

Let Bm ≡ B(xm, rm). Since x ∈ B and B ∩ Bm ̸= 0, we have that

|x − xm| ≤ diam(B) +
1
2 diam(Bm) ≤

5
2 diam(Bm),

and thus x ∈ B(xm, 5rm). Therefore we have R ⊆ ⋃
∞
m=K+1 B(xm, 5rm), which implies that

λ∗N (R) ≤
∞

∑
m=K+1

λN(B(xm, 5rm)) =
5NκN
2N

∞

∑
m=K+1
[diam(Bm)]

N
< ϵ.
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This completes the proof.

Remark 1.5.3. Plainly, the proof of Theorem 1.5.4 also provides the following state-
ment:

Let E ∈ ℬN with λN (E) < ∞, and let ℱ be a fine cover of E. Let δ > 0. Then there
exists a disjoint sequence {Bk} ⊆ ℱ with diamBk < δ for all k ∈ ℕ such that λN (E \
(⋃∞k=1 Bk)) = 0.

A crucial role in the proof of Theorem 1.5.4 is played by Remark 1.5.2. For a gen-
eral Radonmeasure onℝN , more involved arguments must be used, which lead to the
following result (e. g., see [5] for the proof).

Theorem 1.5.5 (Vitali–Besicovitch). Let U ∈ ℬN be bounded, and let ℱ ≡ {Fi}i∈I be
a fine cover of U. Let μ ∈ R+(ℝN ). Then there exists a disjoint sequence {Bk} ⊆ ℱ such
that μ(U \ (⋃∞k=1 Bk)) = 0.

1.5.2 Lebesgue–Stieltjes measure

The above construction canbe generalized as follows (weonly consider the caseN = 1,
referring to [45] for the general case). Let ϕ : ℝ → ℝ be nondecreasing and right-
continuous. Consider the semialgebra ℐ1 of intervals (a, b] with a, b ∈ [−∞,∞] and
the algebra 𝒜0(ℐ1), consisting of finite disjoint unions of elements of ℐ1, that is, for
every E ∈ 𝒜0(ℐ1), there exist disjoint (a1, b1], . . . , (ap, bp]with bk ≤ ak+1 (k = 1, . . . , p−1)
such that E = ⋃pk=1(a

k , bk]. Set

λϕ(E) :=
p
∑
k=1
[ϕ(bk) − ϕ(ak)], (1.23)

where ϕ(bp) := limx→∞ ϕ(x) if bp = ∞ and ϕ(a1) := limx→−∞ ϕ(x) if a1 = −∞. Since
ϕ is nondecreasing and right-continuous, it is easily seen that λϕ is a σ-finite measure
on the algebra𝒜0(ℐ1). Then by the results of Section 1.4 the following definition is well
posed.

Definition 1.5.3. The measure λϕ := (λϕ)∗|ℒϕ
, where (λϕ)∗ is the outer measure gener-

ated by the couple (𝒜0(ℐ1), λϕ) with λϕ given by (1.23), and ℒϕ is the σ-algebra of the
(λϕ)∗-measurable sets, is called the Lebesgue–Stieltjes measure on ℝ.

Analogous results hold in ℝN for N ≥ 2 (see [45, Korollar II.3.10, Beispiel II.4.7]).
The collection of Lebesgue–Stieltjes measures onℝ, corresponding to nondecreasing
right-continuous functionsϕ : ℝ→ ℝ, is denoted by Lϕ(ℝ). These measures coincide
with the Borel measures and thus with the Radon measures on ℝ (see Remark 1.3.3),
as the following proposition shows.
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Proposition 1.5.6. Let Lϕ(ℝ) be the family of Lebesgue–Stieltjes measures on ℝ with
nondecreasing and right-continuous ϕ : ℝ→ ℝ. Then Lϕ(ℝ) = B

+(ℝ) = R+(ℝ).

Proof. Let ϕ be fixed. Since the σ-algebra ℬ(ℝ) is generated by the semialgebra of in-
tervals ℐ1, by Theorem 1.4.4 we have ℬ ⊆ ℒϕ, and thus λϕ is a Borel measure on ℝ.
Conversely, let us show that B+(ℝ) ⊆ Lϕ(ℝ). Let μ be a Radon measure on ℝ. Fix
c ∈ ℝ, and define ϕμ : ℝ→ ℝ as follows:

ϕμ(x) :=
{{{
{{{
{

μ((c, x]) if x > c,
0 if x = c,
−μ((x, c]) if x < c.

(1.24)

Then ϕμ is nondecreasing and right-continuous, and we have

ϕμ(b) − ϕμ(a) = μ((a, b]) (−∞ < a < b ≤∞).

By Proposition 1.4.5 μ coincides with the Lebesgue–Stieltjes measure associated
with ϕμ. Hence the claim follows.

Remark 1.5.4. In view of Proposition 1.5.6, there is one-to-one correspondence be-
tween Radonmeasures onℝ on one side and classes of equivalence of nondecreasing
right-continuous functions ϕ : ℝ→ ℝ on the other, the equivalence relation being

ψ ∼ ϕ
def
⇐⇒ ψ = ϕ + c for some c ∈ ℝ.

If μ ∈ R+(ℝ), then a representative of its class of equivalence is called the distribution
function of μ.

If ϕ : ℝ → ℝ is nondecreasing and continuous, then for each interval I = (a, b],
we have ϕ(I) := {ϕ(x) | x ∈ I} = (ϕ(a),ϕ(b)], and thus

λϕ(I) = ϕ(b) − ϕ(a) = λ(ϕ(I)). (1.25)

For every nondecreasing and right-continuous ϕ : ℝ→ ℝ, set

φ : 𝒫(ℝ)→ 𝒫(ℝ), {
φ(0) := 0,
φ(E) := ⋃x∈E[ϕ(x

−),ϕ(x)] ∀E ⊆ ℝ, E ̸= 0.
(1.26)

Then equality (1.25) can be extended as follows.

Proposition 1.5.7. Let ϕ : ℝ → ℝ be nondecreasing and right-continuous, and let φ be
defined by (1.26). Then:
(i) φ(E) ∈ ℒ(ℝ) for any E ∈ ℬ(ℝ);
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(ii) we have

λϕ(E) = λ(φ(E)) for any E ∈ ℬ(ℝ). (1.27)

Proof. It is easily seen that the family Σ := {E ∈ ℬ(ℝ) | φ(E) ∈ ℒ(ℝ)} is a σ-algebra
containing the semialgebra of intervals ℐ1. Since the Borel σ-algebraℬ(ℝ) is generated
by ℐ1, claim (i) follows by Theorem 1.4.4 and Proposition 1.4.5. As for (ii), it suffices to
prove that the map

m : ℬ(ℝ)→ [0,∞], m(E) := λ(φ(E)),

is a measure on ℬ(ℝ) such that

{
m((a, b]) = ϕ(b) − ϕ(a) if −∞ ≤ a < b <∞,
m((a,∞)) = ϕ(∞) − ϕ(a) if a ∈ ℝ.

(1.28)

Then the conclusion follows by Proposition 1.4.5.
By definition we have m(0) = 0. To prove that m is σ-additive consider a disjoint

sequence {Ek} ⊆ ℬ(ℝ) and denote by F ⊆ ϕ(ℝ) the countable set of points y such that
ϕ−1({y}) is not a singleton. Then the sets φ(Ek) \ F are disjoint, and

∞

⋃
k=1
(φ(Ek) \ F) = [φ(

∞

⋃
k=1

Ek)] \ F.

It follows that

λ(φ(
∞

⋃
k=1

Ek)) = λ([φ(
∞

⋃
k=1

Ek)] \ F) =
∞

∑
k=1

λ(φ(Ek) \ F) =
∞

∑
k=1

λ(φ(Ek)).

Let us finally prove equalities (1.28). From the equality φ((a, b]) = (ϕ(a),ϕ(b)] we
obtain the first one, whence the second follows by the monotonicity of ϕ and Propo-
sition 1.3.1(iv). This completes the proof.

Corollary 1.5.8. Let ϕ : ℝ → ℝ be nondecreasing and right-continuous. Then ϕ is con-
tinuous at x0 ∈ ℝ if and only if λϕ({x0}) = 0.

In connection with Proposition 1.5.7, let us state the following definition.

Definition 1.5.4. A function ϕ : ℝ → ℝ satisfies the Lusin condition if for any λ-null
set E ⊆ ℝ, the value φ(E) of the map (1.26) is λ-null.

Let us discuss two significant cases where the Lusin condition is not satisfied.
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(α) If ϕ is the Heaviside map H := χ[0,∞), then the map (1.26) reads

φ({x}) =
{{{
{{{
{

{0} if x < 0,
[0, 1] if x = 0,
{1} if x < 0.

Then by equality (1.27) for any Borel set E ̸= 0, we have

λH (E) = {
1 if 0 ∈ E,
0 if 0 ̸∈ E,

that is, λH is the Dirac mass δ0. More generally, for the nondecreasing step function

ϕ := c0χ(−∞,x1) +
n−1
∑
p=1

cpχ[xp ,xp+1) + cnχ[xn ,∞) (x1 < x2 < ⋅ ⋅ ⋅ < xn)

with cp ̸= cp+1 (p = 0, . . . , n − 1), we have λϕ = ∑
n
p=1[cp − cp−1]δxp , and thus the Lusin

condition is not satisfied.

(β) Let {mn} ⊆ ℕ ∪ {0} be a decreasing sequence such thatm0 = 1 and 0 < 2mn+1 < mn
for all n = 0, 1, . . . . Set K0 ≡ [0, 1], and let K1 ⊆ K0 be obtained by removing from K0 an
open interval of lengthm0 − 2m1 in the middle (namely, with center 1

2 ). Hence K1 is the
disjoint union of two closed intervals J1,1 and J1,2 of lengthm1. Thenwe remove an open
interval of length m1 − 2m2 in the middle of both J1,1 and J1,2. Iterating the procedure,
after n steps, we obtain a disjoint union Kn of 2n closed intervals Jn,j (j = 1, . . . , 2n)with

λ(Jn,j) = mn, λ(Kc
n) =

n
∑
k=0

2k(mk − 2mk+1) (n ∈ ℕ). (1.29)

The intersection K := ⋂∞n=1 Kn is the Cantor set corresponding to the sequence {mn}.
A possible choice ismn = an with a ∈ (0,

1
2 ) (which for a =

1
3 gives the standard Cantor

middle third set). In this case, from (1.29) we plainly get λ(Kc) = 1, and thus λ(K) = 0.
Let mn = an with a ∈ (0, 1/2), and let V ∈ C([0, 1]) be the uniform limit in [0, 1] of

the sequence of the piecewise linear functions Vn ∈ C([0, 1]), where Vn(0) := 0 and

Vn has slope {
(2a)−n in Jn,j for each j = 1, . . . , 2n,
0 otherwise.

(n ∈ ℕ).

If n ∈ ℕ is fixed, then for every p > n, we have Vp = Vn in the set Kc
n. It follows that

sup
x∈[0,1]

Vn+1(x) − Vn(x)
 = sup

x∈[0,an]



x
(2a)n+1

−
x
(2a)n

=
1 − 2a
a

1
2n+1
,
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and thus for any p > n,

sup
x∈[0,1]

Vp(x) − Vn(x)
 ≤

1 − 2a
a

p−1
∑
k=n

1
2k+1
≤
1 − 2a
a

1
2n
.

By this inequality the sequence {Vn} converges uniformly in [0, 1], and hence the func-
tion V is well defined. Moreover, V is nondecreasing, V(0) = 0, V(1) = 1, and V ′ = 0
a. e. in (0, 1). We extend V to all of ℝ by setting V = 0 in (−∞,0) and V = 1 in (1,∞).
The function V is called the Cantor–Vitali function.

By (1.25) we have that λV (K) = 1, and thus the Lusin condition is not satisfied.
Further remarks concerning λV will be made in Section 2.9.2.

Remark 1.5.5. (i) For any n ∈ ℕ and j = 1, . . . , 2n, by the above construction we have
λV (Jn,j) = 2−n. Since the 2n intervals Jn,j are disjoint, by additivity we get λV (Kn) = 1
for each n, and hence again λV (K) = 1 as n→∞ by Proposition 1.3.1(v).

(ii) Denote by KN
n the product of N copies of the set Kn (n,N ∈ ℕ). The set KN :=

⋂∞n=1 K
N
n is called the N-dimensional Cantor set corresponding to the sequence

{mn} (we set K1 ≡ K).

1.6 Metric outer measures and capacities

1.6.1 Capacities

Definition 1.6.1. Let (X, d) be a metric space, and let ℱ ⊆ 𝒫(X) have the following
properties: (a) the family 𝒦 of compact subsets is contained in ℱ ; (b) for every se-
quence {En} ⊆ ℱ , we have⋃

∞
n=1 En ∈ ℱ .

A map C : ℱ → [0,∞] is called a capacity on ℱ if:
(i) C(0) = 0;
(ii) C(E1) ≤ C(E2) for any E1,E2 ∈ ℱ such that E1 ⊆ E2;
(iii) C(⋃∞n=1 En) ≤ ∑

∞
n=1 C(En) for any sequence {En} ⊆ ℱ .

A capacity on 𝒫(X) is called a capacity on X.

Remark 1.6.1. Ifℱ satisfies the above properties (a)–(b), then by Remark A.1 the fam-
ily 𝒯 of open subsets is contained in ℱ . Moreover, by Definitions 1.4.1 and 1.6.1 a ca-
pacity on X is an outer measure, and an outer measure on a metric space X is a capac-
ity.

Definition 1.6.2. A capacity is called an outer capacity if for any E ∈ ℱ ,

C(E) = inf{C(A) | A ⊇ E, A ∈ 𝒯 },
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and an inner capacity if for any E ∈ ℱ ,

C(E) = sup{C(K) | K ⊆ E, K ∈ 𝒦}.

A set E ∈ ℱ is called C-capacitable if

C(E) = inf{C(A) | A ⊇ E, A ∈ 𝒯 } = sup{C(K) | K ⊆ E, K ∈ 𝒦}. (1.30)

Remark 1.6.2. Let X and ℱ ⊆ 𝒫(X) be as in Definition 1.6.1, and let C be a capacity
on ℱ . For any family ℱ1 ⊆ ℱ , define Cℱ1

: 𝒫(X) → [0,∞] setting

Cℱ1
(E) := inf{C(F) | F ⊇ E, F ∈ ℱ1} (E ⊆ X)

if there exists F ∈ ℱ1 such that F ⊇ E and Cℱ1
(E) := ∞ otherwise. By Theorem 1.4.2

Cℱ1
is an outer measure and thus a capacity on X (see Remark 1.6.1). In particular,

if ℱ1 = 𝒯 is the topology on X, then C𝒯 is by definition an outer capacity, and C is
an outer capacity if and only if C = C𝒯 .

The concepts in Definition 1.6.2 are analogous to those in Definition 1.3.3(b–d).
In Chapter 3, we will use the following result (see [2, Theorem 2.3.11], [32], [109], and
related references therein).

Theorem 1.6.1 (Choquet). Let C be a capacity on ℝN such that:
(i) for any nonincreasing sequence {Kk} of compact subsets of ℝN ,

C(
∞

⋂
k=1

Kk) = lim
k→∞

C(Kk); (1.31)

(ii) for any nondecreasing sequence {Ek} ⊆ 𝒫(ℝN ),

C(
∞

⋃
k=1

Ek) = lim
k→∞

C(Ek). (1.32)

Then every E ∈ ℬ(ℝN ) is C-capacitable.

Remark 1.6.3. The conclusion of Theorem 1.6.1 actually holds for the larger class of
Suslin sets.

In connection with Theorem 1.6.1, let us note the following result.

Proposition 1.6.2. Let X and ℱ ⊆ 𝒫(X) be as in Definition 1.6.1, and let C : ℱ → [0,∞]
be an outer capacity. Then for any nonincreasing sequence {Kn} ⊆ 𝒦, equality (1.31) is
satisfied.
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Proof. Set K := ⋂∞n=1 Kn, and consider any A ⊇ K, A ∈ 𝒯 . Since {Kn} is nonincreasing,
there exists n̄ ∈ ℕ such that Kn ⊆ A for all n > n̄, and thus by the monotonicity of C we
plainly have

C(K) ≤ lim
n→∞

C(Kn) ≤ inf
A⊇K,A∈𝒯

C(A).

On the other hand, by assumption we have infA⊇K,A∈𝒯 C(A) = C(K). Then the result
follows.

Let X and ℱ ⊆ 𝒫(X) be as in Definition 1.6.1, and let C : ℱ → [0,∞] be a capacity.
The following notions are analogous to those of Subsection 1.3.3:
(a) a set E ∈ ℱ such that C(E) = 0 is called C-null;
(b) a property P holds C-quasi-everywhere (written C-q. e. or q. e.) if the set {x ∈ U |

P(x) false} is C-null.

By Definition 1.6.1 the family 𝒩C of C-null sets is stable with respect to the countable
union and inheritance, that is, F ⊆ E, E ∈ 𝒩C ⇒ F ∈ 𝒩C. Particular cases of (b) are
the following:
– let f , fn : X → ℝ (n ∈ ℕ). We say that fn converges to f C-quasi-everywhere in X if

there exists N ∈ 𝒩C such that fn(x) converges to f (x) for any x ∈ Nc;
– two functions f , g : X → ℝ are equal C-q. e. in X if {x ∈ X | f (x) ̸= g(x)} ∈ 𝒩C.

Clearly, the equality C-q. e. is a relation of equivalence:

g ∼ f
def
⇐⇒ g = f C-q. e. in X, (1.33)

and each class of equivalence with respect to (1.33) is uniquely determined by anyone
of its elements, a representative of the class. As for functions equal μ-a. e., we iden-
tify functions that are equal C-q.e, thus regarding the whole class as a unique map f
defined C-q. e. in X.

1.6.2 Metric outer measures

Definition 1.6.3. Let (X, d) be a metric space. An outer measure μ∗ is a metric outer
measure if for any nonempty sets E, F ⊆ X with d(E, F) > 0,

μ∗(E ∪ F) = μ∗(E) + μ∗(F). (1.34)

The existence of metric outer measures can be proven as in Subsection 1.4.1 by a
slight modification of definition (1.11). Let (X, d) be a metric space, and let 𝒞 ⊆ 𝒫(X)
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with 0 ∈ 𝒞 and η : 𝒞 → [0,∞] with η(0) = 0. For any δ ∈ (0,∞], set

η∗δ (E) := inf{
∞

∑
n=1

η(En) | E ⊆
∞

⋃
n=1

En, {En} ⊆ 𝒞, diam(En) ≤ δ ∀n ∈ ℕ} (1.35)

if a countable cover {En} of E as in (1.35) exists and η∗δ (E) := ∞ otherwise. Arguing
as in the proof of Theorem 1.4.2 shows that the map η∗δ : 𝒫(X) → [0,∞] is an outer
measure (in particular, η∗∞ is the outer measure μ∗ defined in (1.11)). It is easily seen
that the map

η∗ : 𝒫(X) → [0,∞], η∗(E) := lim
δ→0+

η∗δ (E) = sup
δ>0

η∗δ (E) (E ⊆ X) (1.36)

also is an outer measure. In fact, for any E ⊆ X, the map δ → η∗δ (E) is nonincreasing;
thus the definition is well posed, and

η∗∞(E) ≤ η
∗
δ (E) ≤ η

∗(E) for any δ ∈ (0,∞). (1.37)

Hence for any {En} ⊆ 𝒫(X) and δ > 0,

η∗δ(
∞

⋃
n=1

En) ≤
∞

∑
n=1

η∗δ (En) ≤
∞

∑
n=1

η∗(En) ⇒ η∗(
∞

⋃
n=1

En) ≤
∞

∑
n=1

η∗(En).

This proves that η∗ is σ-subadditive. Clearly, it is monotone, η∗(0) = 0, and thus η∗ is
an outer measure. The following lemma completes the claim.

Lemma 1.6.3. Let (X, d) be a metric space. Then the outer measure η∗ defined in (1.36)
is a metric outer measure.

Proof. Let E, F ⊆ X be nonempty, and let d(E, F) > 0. The claim follows if we prove that
η∗(E ∪ F) ≥ η∗(E)+ η∗(F). Assume that η∗(E ∪ F) <∞, since otherwise the conclusion
is obvious. Let δ ∈ (0, d(E, F)), and let {Gn} ⊆ 𝒞 with diam(Gn) ≤ δ for all n ∈ ℕ be such
that E ∪ F ⊆ ⋃∞n=1 Gn. Clearly, by the choice of δ no n̄ ∈ ℕ exists such that Gn̄ intersects
both E and F. Hence for all n ∈ ℕ, there existG′n, G

′′
n ⊆ X, such thatG

′
n⋃G
′′
n = Gn; thus

max{diam(G′n),diam(G
′′
n )} ≤ δ, and E ⊆ ⋃

∞
n=1 G
′
n, F ⊆ ⋃

∞
n=1 G
′′
n . Plainly, this implies that

η∗δ (E) + η
∗
δ (F) ≤ η

∗
δ (E ∪ F), whence letting δ → 0+ the result follows.

Remark 1.6.4. By Remark 1.6.1 the outer measures η∗δ (δ ∈ (0,∞]) and η∗ defined
in (1.35)–(1.36) are capacities on X.

Metric outer measures can be characterized as follows.

Proposition 1.6.4. Let (X, d) be a metric space, and let μ∗ : 𝒫(X) → [0,∞] be an outer
measure. Then the following statements are equivalent:
(i) every Borel set is μ∗-measurable;
(ii) μ∗ is a metric outer measure.
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Proof. (i)⇒(ii). By assumption, for any open set A ⊆ X, we have

μ∗(Z) = μ∗(Z ∩ A) + μ∗(Z ∩ Ac) for any Z ⊆ X (1.38)

(see (1.4)). Let E, F ⊆ X be nonempty with 0 < δ < d(E, F). Then G := {x ∈ X | d(x,E) <
δ} is open, and E ⊆ G, F ⊆ Gc. Therefore equality (1.38) with Z = E ∪ F and A = G
reduces to (1.34). Hence the claim follows.

(ii)⇒(i). It suffices to prove that every closed set C ⊆ X is μ∗-measurable. For any set
D ⊆ Cc, set Dn := {x ∈ D | d(x,C) ≥

1
n } ⊆ D (n ∈ ℕ). Let us prove that

lim
n→∞

μ∗(Dn) = μ
∗(D). (1.39)

Indeed, for all n ∈ ℕ, we have μ∗(Dn) ≤ μ∗(D), since Dn ⊆ Dn+1 ⊆ D. It remains to
prove that

lim
n→∞

μ∗(Dn) ≥ μ
∗(D). (1.40)

Let limn→∞ μ∗(Dn) < ∞ (otherwise, the claim is obvious), and set Pn := Dn+1 \ Dn
(n ∈ ℕ). If P2k ̸= 0 (k = 1, . . . , n), it is easily seen that d(⋃

n
k=1 P2k , P2n+2) > 0, and thus

μ∗(
n+1
⋃
k=1

P2k) = μ
∗(

n
⋃
k=1

P2k) + μ
∗(P2n+2)

since μ∗ is a metric outer measure. Arguing inductively, we obtain that

μ∗(
n
⋃
k=1

P2k) =
n
∑
k=1

μ∗(P2k) for all n ∈ ℕ

(notice that the above equality also holds if P2k = 0 for some k = 1, . . . , n).
It is similarly shown that μ∗(⋃nk=0 P2k+1) = ∑

n
k=0 μ
∗(P2k+1). Since ⋃

n
k=1 Pk ⊆ Dn for

all n ∈ ℕ, we obtain that

∞

∑
k=1

μ∗(Pk) = limn→∞
(

n
∑
k=0

μ∗(P2k+1) +
n
∑
k=1

μ∗(P2k)) (1.41)

= lim
n→∞
(μ∗(

n
⋃
k=1

P2k) + μ
∗(

n
⋃
k=0

P2k+1)) ≤ 2 lim
n→∞

μ∗(Dn) <∞.

Finally, since C is closed, for all n ∈ ℕ, we have D = Dn ∪ (⋃
∞
k=n Pk), whence

μ∗(D) ≤ μ∗(Dn) +
∞

∑
k=n

μ∗(Pk) (n ∈ ℕ). (1.42)
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By (1.41) we have limn→∞∑
∞
k=n μ
∗(Pk) = 0 , and thus letting n → ∞ in (1.42), we ob-

tain (1.40). Hence (1.39) follows.
Now let Z ⊆ X be fixed, and choose D = Z ∩ Cc. For any n ∈ ℕ, we have Z ⊇

(Z ∩ C) ∪ Dn, whence by the monotonicity of μ∗

μ∗(Z) ≥ μ∗((Z ∩ C) ∪ Dn) = μ
∗(Z ∩ C) + μ∗(Dn) (n ∈ ℕ),

sinced(Z∩C,Dn) ≥
1
n > 0andμ

∗ is ametric outermeasure. On the other hand, by (1.39)
we have limn→∞ μ∗(Dn) = μ∗(D) = μ∗(Z ∩ Cc), and thus letting n → ∞ in the above
inequality the result follows.

Let us finally add two notions relative to Borel measures on metric spaces.

Definition 1.6.4. Let (X, d) be ametric space. A regular Borel measure μ on X is called:
(i) of dimension s > 0 if there exists c ≥ 1 such that 1

c r
s ≤ μ(B(x, r)) ≤ crs for all x ∈ X

and r > 0;
(ii) doubling if there exists cD ≥ 1 such that μ(B(x, 2r)) ≤ cDμ(B(x, r)) for all x ∈ X and

r > 0.

Remark 1.6.5. (i) If μ is of dimension s, then it is doubling with constant cD = c2 2s.
(ii) If μ is doubling, then it is easily seen that for all x ∈ X and r > 0, we have

μ(B(x, r)) <∞, and if μ ̸≡ 0, then μ(B(x, r)) > 0.
(iii) If μ is doubling and 0 < r < R, then

μ(B(x,R)) ≤ cD(
R
r
)
s
μ(B(x, r)) (1.43)

with s = log2 cD =
log cD
log 2 . To prove (1.43) (if μ ̸≡ 0; otherwise, (1.43) is obvious), let k :=

[log2(
R
r )] be the integer part of log2(

R
r ). Since 2

k ≤ R
r ≤ 2

k+1, using the monotonicity of
μ and iterating the doubling condition give

μ(B(x,R)) ≤ μ(B(x, 2 ⋅ 2kr)) ≤ cD μ(B(x, 2
kr))

≤ c2D μ(B(x, 2
k−1r)) ≤ . . . ≤ ck+1D μ(B(x, r)).

If cD = 1, then the above inequality gives (1.43), since s = 0 in this case. If cD > 1, then
since μ(B(x,R))

μ(B(x,r)) ≤ c
k+1
D , we get

logcD(
μ(B(x,R))
cD μ(B(x, r))

) ≤ k ≤ log2(
R
r
) = logcD(

R
r
) log2 cD = logcD(

R
r
)
s
,

and thus (1.43) also follows in this case. This proves the claim.
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1.7 Hausdorff measure and capacities

Let (X, d) be a metric space. Let h : (0,∞) → (0,∞] be nondecreasing with
limr→0+ h(r) = 0. Arguing as in Subsection 1.6.2, for any δ ∈ (0,∞] and E ⊆ X,
set

ℋ∗h,δ(E) := inf{
∞

∑
k=1

h(diam(Ek)) | E ⊆
∞

⋃
k=1

Ek ,diam(Ek) ≤ δ ∀k ∈ ℕ} (1.44)

if a cover {Ek} of E as in (1.44) exists andℋ∗h,δ(E) := ∞ otherwise (this corresponds to
choosing η = h ∘diam in (1.35)). Then for any δ ∈ (0,∞], the mapℋ∗h,δ : 𝒫(X) → [0,∞]
is an outer measure and thus, in particular, a capacity on X (see Remark 1.6.4). The
same holds for the map

ℋ∗h : 𝒫(X) → [0,∞], ℋ∗h (E) := lim
δ→0+

ℋ∗h,δ(E) = sup
δ>0

ℋ∗h,δ(E) (E ⊆ X), (1.45)

which, moreover, is a metric outer measure (see Lemma 1.6.3).

Definition 1.7.1. Let (X, d) be a metric space.
(i) Each capacityℋ∗h,δ (δ ∈ (0,∞]) on X, as well asℋ

∗
h , is called aHausdorff capacity.

The measure obtained by restriction ofℋ∗h to the σ-algebra of theℋ
∗
h -measurable

sets is called a Hausdorff measure and denoted by ℋh. The function h is called a
gauge function ofℋ∗h .

(ii) If h(r) = rs (s ∈ (0,∞)), then the Hausdorff capacities and the Hausdorff measure
are denoted by ℋ∗s,δ, ℋ

∗
s , and ℋs, respectively, and ℋs is called an s-dimensional

Hausdorff measure. The 0-dimensional Hausdorff measure is by definition the
counting measure μ#.

Remark 1.7.1. (i) Since ℋ∗h is a metric outer measure, by Theorem 1.4.1 the defini-
tion ofℋh is well posed, andℋh is a complete measure. Observe that by Proposi-
tion 1.6.4 all Borel sets areℋ∗h -measurable.

(ii) By its very definition the Hausdorffmeasure is invariant under everymapϕ : X →
X such that d(ϕ(x),ϕ(y)) = d(x, y) (x, y ∈ X), in particular, under rotations and
translations.

The following link between Hausdorff capacities will be used (see Theorem 3.4.4).

Proposition 1.7.1. Let (X, d) be a metric space, and let E ⊆ X. Then for any δ ∈ (0,∞],
we haveℋ∗h,δ(E) = 0 if and only ifℋ

∗
h (E) = 0.

Proof. By inequality (1.37) for any E ⊆ X we have

ℋ∗h,∞(E) ≤ ℋ
∗
h,δ(E) ≤ ℋ

∗
h (E) (δ ∈ (0,∞)), (1.46)
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and thus the “if” part of the claim immediately follows. To prove the “only if” part, let
ℋ∗h (E) > 0, let c ∈ (0,ℋ

∗
h (E)) be fixed, and let δ > 0 be so small thatℋ∗h,δ(E) > c. Then

by definition (1.44) we have∑∞k=1 h(diam(Ek)) > c for all coverings of E by a countable
union of sets Ek with diam(Ek) ≤ δ. For every other covering of the same kind, we have
diam(Ek̄) > δ for some k̄ ∈ ℕ, and thus ∑∞k=1 h(diam(Ek)) ≥ h(δ) > 0. This implies that
ℋ∗h,∞(E) ≥ min{c, h(δ)} > 0, and hence the conclusion follows.

In the same spirit of Proposition 1.7.1, when X = ℝN , we have the following result
of local equivalence between Hausdorff capacities (see [102, Lemma 3.4.1 and Propo-
sition 3.4.15] for the proof).

Proposition 1.7.2. Let α ∈ [0,N), and let E ⊆ B(x0, ρ) ⊆ ℝN (x0 ∈ ℝN , ρ > 0). Then
there exists C1 = C1(α,N) > 0 such that for any δ ∈ (0,∞),

ℋ∗N−α,∞(E) ≤ ℋ
∗
N−α,δ(E) ≤ Cℋ∗N−α,∞(E), (1.47)

where

C := C1
ℋ∗N−α,δ(B(x0, ρ))
ℋ∗N−α,∞(B(x0, ρ))

max{1,(ρ
δ
)
α
}.

Lemma 1.7.3. Let (X, d) be a metric space. Then for any E ⊆ X and s, t ∈ (0,∞):
(i) if s < t, thenℋ∗s (E) <∞ ⇒ ℋ∗t (E) = 0;
(ii) if t < s, thenℋ∗s (E) > 0 ⇒ ℋ∗t (E) =∞.

Proof. Let s < t. By (1.44) for any δ ∈ (0,∞), we have ℋ∗t,δ(E) ≤ δ
t−sℋ∗s,δ(E). Letting

δ → 0+, we obtain that ℋ∗t (E) = 0 if ℋ∗s (E) < ∞. This proves claim (i), whence (ex-
changing s with t) claim (ii) follows.

The lemma motivates the following definition.

Definition 1.7.2. Let (X, d) be a metric space. The Hausdorff dimension of a set E ⊆ X
is the number

dimH (E) := inf{s > 0 | ℋ
∗
s (E) = 0} = sup{s > 0 | ℋ

∗
s (E) =∞}.

Remark 1.7.2. If there exists a measure μ on X of dimension s, then X has Hausdorff
dimension dimH (X) = s, and there exists c > 0 such that

1
c
ℋs(E) ≤ μ(E) ≤ cℋs(E) for all E ∈ ℬ(X)

(e. g., see [49, 2.10], [62, 4.11]). In particular, dimH (ℝ
N ) = N .

Concerning the Hausdorff dimension of Cantor sets, we have the following:
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Proposition 1.7.4. Let KN be the N-dimensional Cantor set corresponding to the se-
quence {an} with a ∈ (0, 12 ). Then dimH (KN ) = N log 2

log(1/a) (N ∈ ℕ).

In particular, the Hausdorff dimension of the one-dimensional Cantor middle
third set is log 2

log 3 . Proposition 1.7.4 follows immediately from the following result (see
[2, Theorem 5.3.1] for the proof).

Theorem 1.7.5. Let h : [0,∞) → [0,∞) be nondecreasing with limr→0+ h(r) = h(0) = 0.
Let KN be the N-dimensional Cantor set corresponding to the sequence {mn}. Then there
exists C > 0 such that

1
C
lim inf
n→∞
(2nN h(mn)) ≤ ℋh(K

N) ≤ C lim inf
n→∞
(2nN h(mn)). (1.48)

Proof of Proposition 1.7.4. Choosing in (1.48) h(r) = rs andmn = an with a ∈ (0,
1
2 ) gives

lim infn→∞(2Nas)n = ℋs(KN ) = 0 for all s > N log 2
log(1/a) . Hence by Definition 1.7.2 the

result follows.

Wefinish this sectionbyproving the following linkbetween theLebesguemeasure
λN and the N-dimensional Hausdorff measureℋN .

Theorem 1.7.6. We have λN =
κN
2N ℋN with κN given by (1.16) (N ∈ ℕ).

Remark 1.7.3. The relationship established by Theorem 1.7.6 in fact holds between the
Lebesgue outermeasure and theHausdorff outermeasure, that is, λ∗N = kNℋ

∗
N (see [45,

Satz III.2.9]). Therefore E ∈ ℒN if and only if E is ℋ∗N -measurable. Also, observe that
κ1
2 =

√π
2 Γ( 32 )
= 1, and thus for N = 1, the Lebesgue and the Hausdorff outer measures

coincide.

Proof of Theorem 1.7.6. SetW := (0, 1]N , kN := [ℋ∗N (W)]
−1 (observe that 0 < ℋ∗N (W) <

∞). Since kNℋ∗N is a metric outer measure, by Proposition 1.6.4 all Borel sets are
ℋ∗N -measurable. Moreover, by Remark 1.7.2 (with μ = λN ) the restriction kNℋ∗N |ℬN is
a locally finite measure and thus a Borel measure, which clearly satisfies the assump-
tions of Proposition 1.5.3. It follows that kNℋ∗N |ℬN = λN |ℬN , and hence λN = kNℋN by
Theorem 1.4.4.

It remains to prove that kN =
κN
2n . By the Vitali covering lemma (see Remark 1.5.3),

for any δ > 0, there exists a disjoint sequence {Bk} of closed balls with Bk ⊆ W and
diamBk < δ for all k ∈ ℕ such that λN (W \ (⋃

∞
k=1 Bk)) = 0. Then we also have that

ℋN (W \ (⋃
∞
k=1 Bk)) = 0. Moreover, by (1.44) for any δ > 0, we have

ℋ∗N ,δ(
∞

⋃
k=1

Bk) ≤
∞

∑
k=1
[diam(Bk)]

N
=
2N

κN

∞

∑
k=1

λN (Bk)

=
2N

κN
λN(
∞

⋃
k=1

Bk) ≤
2N

κN
λN (W) =

2N

κN
.
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Letting δ → 0+ in this inequality, we obtain

ℋN (W) = ℋN(
∞

⋃
k=1

Bk) = ℋ
∗
N(
∞

⋃
k=1

Bk) ≤
2N

κN
. (1.49)

LetW ⊆ ⋃∞k=1 Ek with diam(Ek) ≤ δ for all k ∈ ℕ. Then by inequality (1.17)

1 = λN (W) ≤
∞

∑
k=1

λ∗N (Ek) ≤
κN
2N
∞

∑
k=1
[diam(Ek)]

N
,

whenceℋN (W) ≥
2N
κN
. This inequality and (1.49) prove that kN = [ℋ∗N (W)]

−1 = κN
2N , and

thus the result follows.

1.8 Signed measures

Definition 1.8.1. Let (X,𝒜) be a measurable space. A map μ : 𝒜 → [−∞,∞] is called
a signed measure on𝒜 if:
(i) μ(0) = 0;
(ii) μ(𝒜) is contained either in [−∞,∞) or in (−∞,∞];
(iii) for any disjoint sequence {En} ⊆ 𝒜, we have μ(⋃

∞
n=1 En) = ∑

∞
n=1 μ(En).

A signed measure μ is called finite if μ(𝒜) ⊆ ℝ and σ-finite if there exists a sequence
{Ek} ⊆ 𝒜 such that X = ⋃∞k=1 Ek with μ(Ek)| <∞ for any k ∈ ℕ.

By the above request (ii) the series ∑∞n=1 μ(En) in Definition 1.8.1 is well defined.
Moreover, by (iii) its convergence is absolute: in fact, its sum cannot depend on the
order of its terms since⋃∞n=1 En does not.

Remark 1.8.1. Let (X,𝒜) be a measurable space, and let μ be a signed measure on𝒜.
(i) For any E, F ∈ 𝒜, E ⊆ F, then |μ(F)| <∞ ⇒ |μ(E)| <∞.
(ii) It is easily seen that:

– μ(⋃∞n=1 En) = limn→∞ μ(En) for any nondecreasing sequence {En} ⊆ 𝒜;
– μ(⋂∞n=1 En) = limn→∞ μ(En) for any nonincreasing sequence {En} ⊆ 𝒜 such

that |μ(E1)| <∞.

The set of signed measures on X is a real vector space, denoted byM = M(X). It
is an ordered vector space if the order “≤” is defined as follows:

ν ≤ μ
def
⇐⇒ ν(E) ≤ μ(E) for any E ∈ 𝒜 (μ, ν ∈M).

The subspace of finite signed measures will be denoted by Mf (X) ⊂ M(X), whereas
M+f (X) denotes the cone of finite (positive) measures.
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1.8.1 Hahn and Jordan decompositions

Definition 1.8.2. Let (X,𝒜)be ameasurable space, and letμbe a signedmeasure on𝒜.
(i) A set P ∈ 𝒜 is called μ-positive if μ(E) ≥ 0 for any E ∈ 𝒜, E ⊆ P;
(ii) A set N ∈ 𝒜 is called μ-negative if μ(E) ≤ 0 for any E ∈ 𝒜, E ⊆ N;
(iii) A set F ∈ 𝒜 is called μ-null if μ(E) = 0 for any E ∈ 𝒜, E ⊆ F.

Lemma 1.8.1. Let (X,𝒜) be a measurable space, and let μ be a signed measure on 𝒜
such that μ(𝒜) ⊆ [−∞,∞). Then for any set E ∈ 𝒜 such that μ(E) > −∞, there exists
a μ-positive set P ⊆ E such that μ(P) ≥ μ(E).

Proof. It the set E is μ-positive, then the claim is obviously satisfied. Otherwise, the
conclusion is implied by the following:

Claim. For any ϵ > 0, there existsEϵ ∈ 𝒜,Eϵ ⊆ E, with μ(Eϵ) ≥ μ(E) such that μ(F) ≥ −ϵ
for any F ∈ 𝒜, F ⊆ Eϵ.

In fact, if the claim holds, then the set P := ⋂∞n=1 E1/n has the stated properties.
By contradiction, let the claim be false for some ϵ̄ > 0. Since by assumption E is

not μ-positive, there exists G ∈ 𝒜 such that G ⊆ E and μ(G) < 0. This implies that
E \G ∈ 𝒜 is a subset of E with μ(E \G) = μ(E)−μ(G) > μ(E), whence there exists F1 ∈ 𝒜
such that F1 ⊆ E \ G and μ(F1) < −ϵ̄. Next, we observe that the set E \ F1 ∈ 𝒜 satisfies
the following properties: E \ F1 ⊆ E and μ(E \ F1) = μ(E) − μ(F1) > μ(E) + ϵ̄ > μ(E).
Then there exists F2 ∈ 𝒜 such that F2 ⊆ E \ F1 and μ(F2) < −ϵ̄. Thus, by induction,
there exists a disjoint sequence {Fn} with F1 ⊆ E, Fn ⊆ E \ (⋃

n−1
k=1 Fk) (n ≥ 2) such that

μ(Fn) < −ϵ̄ for all n. It follows that μ(⋃
∞
n=1 Fn) = −∞. However, this is a contradiction,

since⋃∞n=1 Fn ⊆ E and μ(E) > −∞ (see Remark 1.8.1-(i)).

Theorem 1.8.2 (Hahn). Let (X,𝒜) be ameasurable space, and let μ be a signedmeasure
on 𝒜. Then there exist a μ-positive set P and a μ-negative set N such that P⋃N = X,
P ∩ N = 0. Moreover, the couple (P,N) is uniquely determined up to μ-null sets.

Proof. Without loss of generality, let μ(𝒜) ⊆ [−∞,∞). Set α := supE∈𝒜 μ(E). Then by
Lemma 1.8.1 there exists a sequence {Pn} of μ-positive sets Pn such that μ(Pn) → α as
n → ∞. Then P := ⋃∞n=1 Pn is μ-positive and satisfies μ(P) ≥ μ(Pn) for all n, and thus
μ(P) = α (in particular, α ∈ ℝ). It follows easily that N := Pc is μ-negative: in fact,
should G ∈ 𝒜, G ⊆ N, with μ(G) > 0 exist, we would have μ(P⋃G) = α + μ(G) > α,
a contradiction.

To prove the last statement, let a couple (P′,N ′)with μ-positive P′ and μ-negative
N ′ satisfy P′⋃N ′ = X, P′ ∩ N ′ = 0. For any E ∈ 𝒜, E ⊆ P \ P′ = P ∩ N ′, we have both
μ(E) ≥ 0 and μ(E) ≤ 0, and thus E is μ-null. The same holds for every measurable
subset of P′ \ P, and thus μ(P△ P′) = μ(N △ N ′) = 0 (here P△ P′ := (P \ P′) ∪ (P′ \ P),
and similarly for N ,N ′). This proves the result.
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Definition 1.8.3. Let (X,𝒜) be a measurable space, let μ be a signed measure on 𝒜,
and let P,N ∈ 𝒜 be given by Theorem 1.8.2.
(i) The couple (P,N) is called the Hahn decomposition of X.
(ii) The measure μ+, μ+(E) := μ(E ∩ P) for any E ∈ 𝒜 , is called the positive part (or

positive variation) of μ.
(iii) The measure μ−, μ−(E) := −μ(E ∩ N) for any E ∈ 𝒜 , is called the negative part (or

negative variation) of μ.
(iv) The measure |μ|, |μ|(E) := μ+(E) + μ−(E) (E ∈ 𝒜), is called the variation of μ. The

quantity |μ|(X) is called total variation of μ.

In view of Theorem 1.8.2, the above definitions do not depend on the choice of the
couple (P,N) and thus are well posed. In particular, we get

μ = μ+ − μ−, |μ| = μ+ + μ−, (1.50)

whence, in particular,

μ(E)
 ≤ |μ| (E) for all E ∈ 𝒜. (1.51)

Definition 1.8.4. The first equality in (1.50) is called the Jordan decomposition of the
signed measure μ.

Remark 1.8.2. (i) The Jordan decomposition of μ isminimal in the following sense: if
there exist (positive) measures ρ and σ such that μ = ρ − σ, then μ+(E) ≤ ρ(E) and
μ−(E) ≤ σ(E) for all E ∈ 𝒜. Indeed,

μ+(E) := μ(E ∩ P) = ρ(E ∩ P) − σ(E ∩ P) ≤ ρ(E ∩ P) ≤ ρ(E),

and similarly for the other inequality.
(ii) It is easily seen that for any E ∈ 𝒜,

μ+(E) =∞ ⇒ μ(E) =∞, μ−(E) =∞ ⇒ μ(E) = −∞.

By definition a signed measure μ cannot attain both values ±∞, and thus at least one
of μ± is finite.

(iii) A signed measure μ is finite if and only if its total variation is finite. In fact,
if |μ|(X) < ∞, then |μ(E)| ≤ |μ|(E) ≤ |μ|(X) < ∞ for all E ∈ 𝒜, and thus μ is finite.
Conversely, let |μ(E)| <∞ for E ∈ 𝒜. Then by (ii) we have |μ|(E) <∞ for all E ∈ 𝒜, and
thus, in particular, |μ|(X) <∞.

Proposition 1.8.3. Let (X,𝒜) be a measurable space, and let μ be a signed measure
on𝒜. Then for any E ∈ 𝒜,

μ+(E) = sup{μ(F) | F ∈ 𝒜, F ⊆ E}, μ−(E) = − inf{μ(F) | F ∈ 𝒜, F ⊆ E},
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and thus μ− = (−μ)+. Moreover,

|μ| (E) = sup{
n
∑
i=1

μ(Ei)
 | E1, . . . ,En ∈ 𝒜 disjoint, E =

n
⋃
i=1

Ei, n ∈ ℕ}

= sup{
∞

∑
i=1

μ(Ei)
 | Ei ∈ 𝒜 disjoint, E =

∞

⋃
i=1

Ei}. (1.52)

Proof. We only prove (1.52). Denote by Sf and Si the first and second suprema in the
right-hand side. Then

|μ|(E) = μ(E ∩ P)
 +
μ(E ∩ N)

 ≤ Sf ≤ Si.

On the other hand, for any finite disjoint family {E1, . . . ,En} ⊆ 𝒜 with⋃ni=1 Ei ⊆ E,

n
∑
i=1

μ(Ei)
 ≤

n
∑
i=1
[μ+(Ei) + μ

−(Ei)] ≤ μ
+(E) + μ−(E) = |μ| (E),

whence we get Sf ≤ Si ≤ |μ|(E). Hence (1.52) follows.

The following definition extends Definition 1.3.3.

Definition 1.8.5. Let (X, 𝒯 )beaHausdorff space, and letℬ = ℬ(X) = σ0(𝒯 )be theBorel
σ-algebra. A finite signedmeasure μ onℬ is a finite signed Borel measure (respectively,
a finite signed Radonmeasure or a finite signed regular measure) if it is the difference of
two finite Borelmeasures (respectively, two finite Radonmeasures or twofinite regular
measures).

The vector space of finite signed Radon measures on X will be denoted byRf (X),
whereasR+f (X) denotes the cone of finite (positive) Radon measures.

Remark 1.8.3. (i) It is easily seen that the following statements are equivalent:
(a) μ is a finite signed regular measure;
(b) μ± are finite and regular;
(c) |μ| is finite and regular.

Indeed, let μ = μ1 − μ2 with μ1, μ2 finite, positive, and regular. Let E ∈ ℬ. Then for
any ϵ > 0, there exist an open set A and a compact set K such that A ⊇ E ⊇ K and
μi(A \ K) < ϵ, and thus μ±(A \ K) < ϵ (i = 1, 2; see Remark 1.3.2(i) and Remark 1.8.2).
Hence (a)⇒(b); the other implications are clear.

(ii) A finite signed measure is regular if and only if it is a finite signed Radonmea-
sure. Indeed, if μ = μ1 −μ2 with μ1, μ2 finite and regular, then by definition μ1, μ2 are fi-
nite Radonmeasures, and thus μ is a finite signed Radonmeasure. On the other hand,
if μ = μ1 − μ2 and μ1, μ2 are finite Radon measures on X, then they are regular by
Lemma 1.3.2(i), and thus μ is regular.
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(iii) In a locally compact Hausdorff space with countable bases, signed Borel and
signed Radon measures coincide and are regular (see Remark 1.3.3).

1.8.2 The Banach space of finite signed measures

Let (X,𝒜) be a measurable space. It is easily seen that the map ‖ ⋅ ‖ : Mf (X) → ℝ+,
‖μ‖ := |μ|(X) for any μ ∈ M(X), is a norm on the vector space Mf (X) of finite signed
measures on X. A subset M ⊆ Mf (X) is bounded if supμ∈M ‖μ‖ < ∞. Moreover, we
have the following:

Proposition 1.8.4. Let (X,𝒜) be a measurable space. Then the vector spaceMf (X) en-
dowed with the norm ‖ ⋅ ‖ is a Banach space.

Proof. To prove the completeness, let {μk} ⊆ Mf (X) be a Cauchy sequence. Then for
any ϵ > 0, there exists k̄ ∈ ℕ such that for all k, l > k̄ and all E ∈ 𝒜,

μk(E) − μl(E)
 =
(μk − μl)(E)

 ≤ |μk − μl| (E) ≤ ‖μk − μl‖ < ϵ.

Hence there exists μ : 𝒜 → ℝ such that ‖μk − μ‖→ 0 as k →∞. Clearly, μ(0) = 0, and
a standard ϵ/3 argument shows that μ is σ-additive, and thus μ ∈ Mf (X). Hence the
result follows.

1.8.3 Absolutely continuous and singular measures

Definition 1.8.6. Let (X,𝒜)be ameasurable space, and letμbe a signedmeasure on𝒜.
The restriction μ ⌞ E of μ to a set E ∈ 𝒜 is defined as follows:

(μ ⌞ E)(F) := μ(E ∩ F) for every F ∈ 𝒜.

We say that μ is concentrated on a set E ∈ 𝒜 if (μ ⌞ E)(F) = μ(F) for all F ∈ 𝒜.

Remark 1.8.4. (i) It is easily seen that there does not exist a unique set on which μ is
concentrated. For instance, if E, F ∈ 𝒜 and μ(E △ F) = 0, then μ ⌞ E = μ ⌞ F.

(ii) Let (X, 𝒯 ) be a Hausdorff space, and let μ ∈ R+(X). By Lemma 1.3.6 μ is con-
centrated on supp μ, and supp μ is the smallest closed set on which μ is concentrated.

Definition 1.8.7. Let (X,𝒜) be ameasurable space, and let μ, ν be two signedmeasures
on𝒜. We say that:
(i) μ and ν are mutually singular (written μ ⊥ ν) if there exists E ∈ 𝒜 such that μ =

μ ⌞ E and ν = ν ⌞ Ec;
(ii) ν is absolutely continuous with respect to μ (written ν ≪ μ) if for any |μ|-null set

E ∈ 𝒜, we have ν(E) = 0.
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Remark 1.8.5. (i) It is easily seen that μ, ν are mutually singular if and only if there
exists E ∈ 𝒜 such that |μ|(Ec) = |ν|(E) = 0.

(ii) The positive part μ+ and the negative part μ− of any signed measure μ are mu-
tually singular. In fact, let (P,N) be any Hahn decomposition of X. Then P = Nc by
Theorem 1.8.2, and by definition we have μ+ = μ(E ⌞ P), μ− = μ(E ⌞ N).

Lemma 1.8.5. Let (X,𝒜, μ) be a measure space, and let ν be a signed measure on 𝒜.
Then ν ≪ μ if and only if |ν| ≪ μ.

Proof. Let ν ≪ μ, and let (P,N) be the Hahn decomposition of X associated with the
measure ν (see Theorem 1.8.2). Let E ∈ 𝒜 satisfy μ(E) = 0, thus μ(E∩P) = μ(E∩N) = 0.
Then by Definition 1.8.7(ii) we have that ν(E ∩ P) = ν(E ∩ N) = 0, that is, ν+(E) =
ν−(E) = 0. It follows that |ν|(E) = 0, and thus |ν| ≪ μ. The converse is obvious from
inequality (1.51).

Lemma 1.8.6. Let (X,𝒜) be a measurable space, let μ, ν be two signed measures on 𝒜,
and let ν be finite. Then ν ≪ μ if and only if lim|μ|(G)→0 |ν|(G) = 0 (G ∈ 𝒜).

Proof. We only prove the necessity, since the converse is transparent. Let ν ≪ μ, and
by contradiction let lim sup|μ|(G)→0 |ν|(G) > 0. Then there exist ϵ > 0 and a sequence
{Ek} ⊂ 𝒜 such that |ν|(Ek) ≥ ϵ and |μ|(Ek) ≤ 2−k for all k ∈ ℕ. Set Fn := ⋃

∞
k=n Ek (n ∈ ℕ),

and thus |ν|(Fn) ≥ |ν|(En) ≥ ϵ for all n ∈ ℕ. On the other hand, since the sequence
{Fn} is nonincreasing and |μ|(F1) ≤ ∑

∞
k=1 |μ|(Ek) ≤ ∑

∞
k=1 2
−k <∞, we have |μ|(⋂∞n=1 Fn) =

limn→∞ |μ|(Fn) = 0. Since ν ≪ μ by assumption, it follows that |ν|(⋂∞n=1 Fn)) = 0.
Now set G1 := Fc1 and Gn := Fn−1 \ Fn for every n ≥ 2. The sequence {Gn} is disjoint,

and for anym ≥ 2, we have⋃∞n=m Gn = Fm−1 \ (⋂
∞
n=1 Fn)). Moreover, since ν is finite and

⋃∞n=1 Gn = X, we have that

|ν|(
∞

⋃
n=1

Gn) =
∞

∑
n=1
|ν| (Gn) = |ν| (X) <∞.

Since |ν|(⋂∞n=1 Fn)) = 0, it follows that

lim
m→∞
|ν| (Fm−1) = lim

m→∞
|ν|(
∞

⋃
n=m

Gn) = lim
m→∞

∞

∑
n=m
|ν| (Gn) = 0.

However, this contradicts the fact that |ν|(Fn) ≥ ϵ for all n ∈ ℕ. Then the result
follows.

Lemma 1.8.7. Let (X,𝒜, μ) be a measure space, and let ν be a signed measure on 𝒜. If
ν ≪ μ and ν ⊥ μ, then ν = 0.

Proof. Since ν ⊥ μ, by Remark 1.8.5 there exists G ∈ 𝒜 such that μ(G) = |ν|(Gc) = 0,
and thus, in particular, |ν|(E ∩ Gc) = 0 for any E ∈ 𝒜. On the other hand, since ν ≪ μ,
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by Lemma 1.8.5 |ν|(G) = 0, and thus |ν|(E ∩ G) = 0 for all E ∈ 𝒜. Hence |ν|(E) = 0 for
all E ∈ 𝒜, and thus the result follows.

Remark 1.8.6. Let (X,𝒜) be ameasurable space, and let Φ : 𝒜 → [0,∞] bemonotone.
Let ν be a signed measure on𝒜 such that (i) ν(E) = 0 for any E ∈ 𝒜with Φ(E) = 0 and
(ii) ν is concentrated on a set G ∈ 𝒜 such that Φ(G) = 0. Then the same argument used
to prove Lemma 1.8.7 shows that ν = 0.

We will use the following decomposition result ([51]; see Chapter 3).

Proposition 1.8.8 (Fukushima–Sato–Taniguchi). Let (X,𝒜) be a measurable space,
and let ν be a σ-finite signed measure on 𝒜. Let Φ : 𝒜 → [0,∞] be σ-subadditive and
monotone. Then there exists a unique couple (ν1, ν2) of σ-finite signed measures on 𝒜
such that:
(a) ν = ν1 + ν2;
(b) ν1(E) = 0 for any E ∈ 𝒜 such thatΦ(E) = 0;
(c) ν2 is concentrated on a set N ∈ 𝒜 such thatΦ(N) = 0.

Proof. Weonly prove the result when ν is finite and positive, since the extension to the
general case is standard. Let us first prove the uniqueness claim. Let (ν1, ν2) and (ν′1, ν

′
2)

have the stated properties. Then by equality (a) for any E ∈ 𝒜, we get ν1(E) − ν′1(E) =
ν′2(E) − ν2(E). This implies that ν1 − ν′1 satisfies the assumptions of Remark 1.8.6, and
thus ν1 = ν′1, whence ν2 = ν

′
2. Then the claim follows.

To prove the existence, set α := sup{ν(E) | E ∈ 𝒜, Φ(E) = 0} (observe that α < ∞,
since |ν|(X) < ∞ by Remark 1.8.2(iii)). Let {En} ⊆ 𝒜 be a nondecreasing sequence
such that Φ(En) = 0 for each n ∈ ℕ and limn→∞ ν(En) = α. Set E∞ := ⋃

∞
n=1 En. Then

E∞ ∈ 𝒜, ν(E∞) = limn→∞ ν(En) = α, and by the σ-subadditivity of Φ we have Φ(E∞) ≤
∑∞n=1Φ(En) = 0. Therefore, for any E ∈ 𝒜 such that Φ(E) = 0, we have 0 ≤ ν(E \ E∞) =
ν(E) − α ≤ 0, and thus ν(E \ E∞) = (ν ⌞ Ec∞)(E) = 0. On the other hand, the measure
ν ⌞ E∞ is concentrated on the set E∞, and Φ(E∞) = 0. Then by setting N := E∞,
ν1 := ν ⌞ Ec∞, and ν2 := ν ⌞ E∞ the conclusion follows.

Proposition 1.8.8 immediately gives the following result.

Theorem 1.8.9 (Lebesgue). Let (X,𝒜, μ) be a measure space, and let ν be a σ-finite
signed measure on𝒜. Then there exists a unique couple (νac, νs) of σ-finite signed mea-
sures on𝒜 such that νac ≪ μ, νs ⊥ μ, and

ν = νac + νs. (1.53)

Definition 1.8.8. Equality (1.53) is called the Lebesgue decomposition of νwith respect
to μ.

Let us mention for future reference the following result.
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Lemma 1.8.10. Let the assumptions of Theorem 1.8.9 be satisfied. Then

[νac]
± = [ν±]ac, [νs]

± = [ν±]s. (1.54)

Proof. By Definitions 1.8.3 and 1.8.6 we have ν+ = ν ⌞ P and ν− = ν ⌞N with P,N given
by Theorem 1.8.2. Then by (1.53) we get

ν+ = νac ⌞ P + νs ⌞ P, ν− = νac ⌞ N + νs ⌞ N , (1.55)

whence

[ν+]ac = νac ⌞ P, [ν
−]ac = νac ⌞ N (1.56)

and

[ν+]s = νs ⌞ P, [ν
−]s = νs ⌞ N . (1.57)

On the other hand, by (1.55) we have

ν = ν+ − ν− = (νac ⌞ P − νac ⌞ N) + (νs ⌞ P − νs ⌞ N),

and thus

νac = νac ⌞ P − νac ⌞ N , νs = νs ⌞ P − νs ⌞ N . (1.58)

By (1.56) and the first equality in (1.58) the set P is νac-positive, whereas N is νac-neg-
ative. Hence by Definition 1.8.3

[νac]
+ = νac ⌞ P, [νac]

− = νac ⌞ N . (1.59)

From (1.56) and (1.59) we obtain the first equality in (1.54). The proof of the second is
similar using (1.57) and the second equality in (1.58).

Definition 1.8.9. Let (X,𝒜)be ameasurable space, and letμbe a signedmeasure on𝒜.
(i) A setE ∈ 𝒜 is called aμ-atom if |μ|(E) > 0and for allF ∈ 𝒜,F ⊆ E, either |μ|(F) = 0,

or |μ|(E \ F) = 0.
(ii) The measure μ is called nonatomic (or continuous) if no μ-atoms exist.
(iii) The measure μ is called purely atomic if there exists a sequence {En} ⊆ 𝒜 of

μ-atoms such that μ = μ ⌞ (⋃∞n=1 En).

Remark 1.8.7. (i) A signed measure μ is nonatomic if and only if for any E ∈ 𝒜 with
|μ|(E) > 0, there exists F ∈ 𝒜, F ⊆ E, such that 0 < |μ|(F) < |μ|(E). The set of μ-atoms
is at most finite if μ is finite and at most countable if μ is σ-finite.

(ii) If μ is both purely atomic and nonatomic, then μ = 0.
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Proposition 1.8.11. Let (X,𝒜)be ameasurable space, and let μ be a σ-finite signedmea-
sure on 𝒜. Then there exists a sequence (possibly empty or finite) {En} ⊆ 𝒜 of μ-atoms
such that:
(i) μpa := μ ⌞ (⋃

∞
n=1 En) is purely atomic, and μna := μ ⌞ ((⋃

∞
n=1 En)

c) is nonatomic;
(ii) μ is uniquely represented by the sum

μ = μpa + μna. (1.60)

Proof. Claim (i) and equality (1.60) are obvious from the definition of μpa and μna. To
prove the uniqueness, let μ = μ′pa + μ

′
na with μ

′
pa purely atomic and μ′na nonatomic. It

follows that μna − μ′na = μ
′
pa − μpa, and hence μna − μ

′
na and μpa − μ

′
pa are both discrete

and nonatomic. Thus by Remark 1.8.7(ii) the claim follows.

1.8.4 Concentrated and diffuse measures

The following definition is the counterpart for capacities of Definition 1.8.7.

Definition 1.8.10. Let (X, d) be a metric space. Let ν be a signed measure on ℬ(X), and
let C : ℬ(X)→ [0,∞] be a capacity. We say that:

(i) ν is concentrated with respect to C if there exists a C-null set E ∈ ℬ(X) such that
ν = ν ⌞ E;

(ii) ν is diffuse with respect to C if for any C-null set E ∈ ℬ(X), we have |ν|(E) = 0.

We denote by RC,c(X) (respectively, RC,d(X)) the set of finite signed Radon mea-
sures on U that are concentrated (diffuse, respectively) with respect to C. Clearly,
RC,c(X)⋂RC,d(X) = {0}. In view of Proposition 1.8.8, we have the following:

Proposition 1.8.12. Let (X, d) be ametric space. Let ν be a signedmeasure onℬ(X), and
let C : ℬ(X) → [0,∞] be a capacity. Then there exists a unique couple (νC,c, νC,d) such
that νC,c ∈ RC,c(X), νC,d ∈ RC,d(X), and

ν = νC,d + νC,c. (1.61)

Definition 1.8.11. The measures νC,c and νC,d given by Proposition 1.8.12 are called the
concentrated and diffuse parts of ν with respect to C.

1.9 Vector measures

All the measures so far considered are scalarmeasures, as opposed to the vectormea-
sures to be now introduced. Throughout this section, (X,𝒜) is a measurable space,
and Y is a Banach space with norm ‖ ⋅ ‖Y .
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1.9.1 Definitions and general results

Definition 1.9.1. A map μ : 𝒜 → Y is called σ-additive if for any disjoint sequence
{Ek} ⊆ 𝒜,

lim
n→∞



n
∑
k=1

μ(Ek) − μ(
∞

⋃
k=1

Ek)
Y
= 0.

Remark 1.9.1. A σ-additive map μ : 𝒜 → Y is additive, that is, for any finite family
{E1, . . . ,En} ⊆ 𝒜 of disjoint elements, we have μ(⋃nk=1 Ek) = ∑

n
k=1 μ(Ek).

Definition 1.9.2. (i) A σ-additive map μ : 𝒜→ Y such that μ(0) = 0 is called a vector
measure on𝒜.

(ii) The function |μ| : 𝒜 → [0,∞] defined as

|μ| (E) := sup{
n
∑
i=1

μ(Ei)
Y | E1, . . . ,En ∈ 𝒜 disjoint, E =

n
⋃
i=1

Ei, n ∈ ℕ} (E ∈ 𝒜)

(1.62)
is called the variation of μ. The quantity |μ|(X) is called the total variation of μ.

(iii) A vector measure μ : 𝒜→ Y is said to be of bounded variation if |μ|(X) <∞.

Example 1.9.1. Let Y be a Banach space, and let T : L1(0, 1) → Y be a bounded linear
operator. For any Borel set E ∈ ℬ ∩ (0, 1), set μ(E) := T(χE). Clearly, ‖μ(E)‖Y ≤ ‖T‖ λ(E),
and thus, in particular, |μ|(0, 1) ≤ ‖T‖ (here ‖T‖ denotes the operator norm of T). Then
for any disjoint sequence {Ek} ⊆ 𝒜,

lim
n→∞



n
∑
k=1

μ(Ek) − μ(
∞

⋃
k=1

Ek)
Y
= lim

n→∞


μ(
∞

⋃
k=n+1

Ek)
Y
≤ ‖T‖ lim

n→∞
λ(
∞

⋃
k=n+1

Ek) = 0.

Hence μ is a vector measure of bounded variation.

Remark 1.9.2. If Y = ℝ, then the notion of vector measure coincides with that of finite
signed measure.

Proposition 1.9.1. Let μ : 𝒜 → Y be a vector measure. Then its variation |μ| is a mea-
sure.

Proof. By definition |μ|(0) = 0. For any disjoint sequence {Ek} ⊆ 𝒜, set E := ⋃
∞
k=1 Ek,

and let F1, . . . , Fn ∈ 𝒜 be disjoint such that E = ⋃ni=1 Fi. Then by Remark 1.9.1 we get

μ(E)
Y =


n
∑
i=1

μ(Fi)
Y
≤

n
∑
i=1

μ(Fi)
Y =

n
∑
i=1

μ(Fi ∩ E)
Y

≤
n
∑
i=1

∞

∑
k=1

μ(Fi ∩ Ek)
Y ≤
∞

∑
k=1
|μ| (Ek),
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since by (1.62)

Ek = Ek ∩ E =
n
⋃
i=1
(Fi ∩ Ek) ⇒

n
∑
i=1

μ(Fi ∩ Ek)‖Y ≤ |μ| (Ek) (k ∈ ℕ).

It follows that

|μ|(
∞

⋃
k=1

Ek) = |μ| (E) ≤
∞

∑
k=1
|μ| (Ek). (1.63)

On the other hand, it is easily seen that the map |μ| : 𝒜 → [0,∞] is additive and
monotone. Then for any n ∈ ℕ,

n
∑
k=1
|μ| (Ek) = |μ|(

n
⋃
k=1

Ek) ≤ |μ|(
∞

⋃
k=1

Ek),

whence

∞

∑
k=1
|μ| (Ek) ≤ |μ|(

∞

⋃
k=1

Ek). (1.64)

By (1.63)–(1.64) |μ| is σ-additive, and thus the claim follows.

Lemma 1.9.2. Let μ : 𝒜 → Y be a vector measure. Then for any monotone sequence
{Ek} ⊂ 𝒜, the sequence {μ(Ek)} ⊆ Y is convergent in Y.

Proof. If {Ek} ⊆ 𝒜 is nondecreasing, then for every k ∈ ℕ, we have Ek = ⋃
k
i=1 Fi, where

Fi := Ei \ Ei−1 (i ∈ ℕ, E0 := 0). Since μ is σ-additive and {Fi} is a disjoint sequence, we
have

lim
k→∞

μ(Ek) = lim
k→∞

k
∑
i=1

μ(Fi) = μ(
∞

⋃
i=1

Fi) = μ(
∞

⋃
k=1

Ek) in Y ,

and thus the conclusion follows in this case. If {Ek} ⊆ 𝒜 is nonincreasing, then the
sequence {Eck} ⊆ 𝒜 is nondecreasing, and μ(Ek) = μ(X) − μ(Eck) for all k ∈ ℕ. Then the
sequence {μ(Ek)} is convergent in Y by the first part of the proof, and thus the result
follows.

Denote by ⟨⋅, ⋅⟩Y∗ ,Y : Y∗ × Y → ℝ the duality map between the Banach space Y
and its dual space Y∗.

Proposition 1.9.3. Let μ : 𝒜→ Y be a vector measure, and let y∗ ∈ Y∗. Then the map

⟨y∗, μ⟩ : 𝒜 → ℝ, ⟨y∗, μ⟩(E) := ⟨y∗, μ(E)⟩Y∗ ,Y for E ∈ 𝒜 (1.65)

is a finite signed measure.
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Proof. By definition we have ⟨y∗, μ⟩(0) = 0 and ⟨y∗, μ⟩(𝒜) ⊆ ℝ. By Remark 1.9.1 the
map ⟨y∗, μ⟩ is additive, i. e., ⟨y∗, μ⟩(⋃nk=1 Ek) = ∑

n
k=1⟨y
∗, μ⟩(Ek). Then for any disjoint

sequence {Ek} ⊆ 𝒜,

lim
n→∞


⟨y∗, μ⟩(

∞

⋃
k=1

Ek) −
n
∑
k=1
⟨y∗, μ⟩(Ek)


= lim

n→∞


⟨y∗, μ⟩(

∞

⋃
k=n+1

Ek)


= lim
n→∞


⟨y∗, μ(

∞

⋃
k=n+1

Ek)⟩
Y∗ ,Y


≤ y
∗Y∗ limn→∞


μ(
∞

⋃
k=n+1

Ek)
Y
= 0,

and hence the result follows.

Let |⟨y∗, μ⟩| denote the variation of the signed measure ⟨y∗, μ⟩.

Definition 1.9.3. The function |μ|w : 𝒜 → [0,∞),

|μ|w (E) := sup{
⟨y
∗, μ⟩ (E) | y

∗ ∈ Y∗, y
∗Y∗ ≤ 1} (E ∈ 𝒜), (1.66)

is called the semivariation of the vector measure μ : 𝒜→ Y .

Remark 1.9.3. By (1.62) and (1.66) we have |μ|w(E) ≤ |μ|(E) for all E ∈ 𝒜. If Y = ℝ, then
|μ|w = |μ| is the variation of the finite signed measure μ (see Remark 1.9.2).

Lemma 1.9.4. Let μ : 𝒜→ Y be a vector measure. Then for all E ∈ 𝒜,

sup
F∈𝒜,F⊆E

μ(F)
Y ≤ |μ|w (E) ≤ 2 sup

F∈𝒜,F⊆E

μ(F)
Y . (1.67)

Proof. For any E ∈ 𝒜 and F ∈ 𝒜, F ⊆ E, we have

μ(F)
Y = sup

y∗∈Y∗ , ‖y∗‖Y∗≤1

⟨y
∗, μ(F)⟩Y∗ ,Y

 = sup
y∗∈Y∗ , ‖y∗‖Y∗≤1

⟨y
∗, μ⟩(F)

≤ sup
y∗∈Y∗ , ‖y∗‖Y∗≤1

⟨y
∗, μ⟩ (F) = |μ|w (E),

and thus the first inequality in (1.67) follows.
Let E = ⋃ni=1 Fi with disjoint F1, . . . , Fn ∈ 𝒜, and let y∗ ∈ Y∗, ‖y∗‖Y∗ ≤ 1. Let π± be

subsets of {1, . . . , n} such that sgn (⟨y∗, μ⟩(Fi)) = ±1⇔ i ∈ π±. Then

n
∑
i=1

⟨y
∗, μ⟩(Fi)

 = ∑
i∈π+

⟨y∗, μ⟩(Fi) − ∑
i∈π−

⟨y∗, μ⟩(Fi)

= ⟨y∗, ∑
i∈π+

μ(Fi) − ∑
i∈π−

μ(Fi)⟩
Y∗ ,Y

= ⟨y∗, μ(⋃
i∈π+

Fi)⟩
Y∗ ,Y
−⟨y∗, μ(⋃

i∈π−

Fi)⟩
Y∗ ,Y
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≤ 2 sup
F∈𝒜,F⊆E

μ(F)
Y .

Then by (1.52) and (1.66) the second inequality in (1.67) follows.

Proposition 1.9.5. Let μ : 𝒜→ Y be a vector measure. Then |μ|w(X) <∞.

Proof. By contradiction let |μ|w(X) = ∞. Then by the second inequality in (1.67)
supF∈𝒜 ‖μ(F)‖Y =∞. Hence there exists F1 ∈ 𝒜 such that

μ(F1)
Y ≥ 1 +

μ(X)
Y ,

whence

μ(F
c
1 )
Y ≥
μ(F1)
Y −
μ(X)
Y ≥ 1.

It follows that

min{μ(F1)
Y ,
μ(F

c
1 )
Y } ≥ 1. (1.68)

On the other hand, since∞ = |μ|w(X) ≤ |μ|w(F1) + |μ|w(Fc1 ), we also have

max{|μ|w (F1), |μ|w (F
c
1 )} =∞. (1.69)

Set either E1 := F1 or E1 := Fc1 . Then E1 ∈ 𝒜, and by (1.69)–(1.68)

E1 ⊆ X, |μ|w (E1) =∞,
μ(E1)
Y ≥ 1.

Iterating the argument gives a sequence {Ek} ⊂ 𝒜 such that for all k ≥ 2,

Ek ⊆ Ek−1, |μ|w (Ek) =∞,
μ(Ek)
Y ≥ k.

The sequence {Ek} is nonincreasing, and limk→∞ ‖μ(Ek)‖Y = ∞, which contradicts
Lemma 1.9.2. Hence the result follows.

The following definition generalizes Definition 1.8.7(ii).

Definition 1.9.4. Let ν : 𝒜 → Y be a vector measure, and let μ : 𝒜 → [−∞,∞] be
a signed measure. We say that ν is absolutely continuous with respect to μ (written
ν ≪ μ) if for any E ∈ 𝒜,

|μ| (E) = 0 ⇒ ν(E) = 0.

Remark 1.9.4. Let μ, ν be as in Definition 1.9.4, and let lim|μ|(E)→0 ν(E) = 0, that is,
for any ϵ > 0, there exists δ > 0 such that for any E ∈ 𝒜 with |μ|(E) < δ, we have
‖ν(E)‖Y < ϵ. Then, clearly, ν ≪ μ. The converse is true if μ is finite (see [41, Theo-
rem 1.2.1]).
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The following result generalizes the Lebesgue decomposition theorem to vector
measures (see [41, Theorem 1.5.9] for the proof).

Theorem 1.9.6 (Lebesgue decomposition). Let ν : 𝒜 → Y be a vector measure, and
let μ : 𝒜 → ℝ be a finite signed measure. Then there exists a unique couple of vector
measures νac, νs : 𝒜 → Y such that:
(i) νac ≪ μ;
(ii) ⟨y∗, νs⟩ ⊥ μ for all y∗ ∈ Y∗;
(iii) ν = νac + νs.

If ν is of bounded variation, then νac and νs are of bounded variation, and |ν| = |νac|+|νs| ,
|νs| ⊥ μ.
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2 Scalar integration and differentiation

2.1 Measurable functions

2.1.1 Definition and general properties

Definition 2.1.1. Let (X,𝒜) and (X′,𝒜′) be measurable spaces. A function f : X →
X′ is called (𝒜,𝒜′)-measurable (or simply measurable) if for any E′ ∈ 𝒜′, we have
f −1(E′) ∈ 𝒜.
Remark 2.1.1. If X′ is a topological space, then the σ-algebra𝒜′ is the Borel σ-algebra
ℬ(X′). In particular, we say that f : X → ℝN is𝒜-measurable (or simplymeasurable) if
it is (𝒜,ℬ(ℝN ))-measurable.

Proposition 2.1.1. Let (X,𝒜), (X′,𝒜′), and (X′′,𝒜′′) be measurable spaces. Let f : X →
X′ be (𝒜,𝒜′)-measurable, and let g : X′ → X′′ be (𝒜′,𝒜′′)-measurable. Then g ∘ f : X →
X′′ is (𝒜,𝒜′′)-measurable.
Proof. By assumption, for any E′ ∈ 𝒜′, we have f −1(E′) ∈ 𝒜, and for any E′′ ∈ 𝒜′′, we
have g−1(E′′) ∈ 𝒜′. Therefore (g ∘ f )−1(E′′) = f −1(g−1(E′′)) ∈ 𝒜 for any E′′ ∈ 𝒜′′.
Lemma 2.1.2. Let (X,𝒜) and (X′,𝒜′) be measurable spaces. Let 𝒞′ ⊆ 𝒫(X′) be a fam-
ily of sets such that the minimal σ-algebra σ0(𝒞′) = 𝒜′. Then f : X → X′ is (𝒜,𝒜′)-
measurable if and only if

f −1(E′) ∈ 𝒜 for any E′ ∈ 𝒞′. (2.1)

Proof. Let f be (𝒜,𝒜′)-measurable, thus f −1(E′) ∈ 𝒜 for any E′ ∈ 𝒜′. Since 𝒞′ ⊆
σ0(𝒞′) = 𝒜′, the “only if” part of the claim follows. To prove the “if” part, set

Σ := {E′ ⊆ X′ | f −1(E′) ∈ 𝒜}.
Using the equalities

f −1(X′) = X, f −1(X′ \ E′) = X \ f −1(E′), f −1(∞⋃
k=1

E′k) = ∞⋃
k=1

f −1(E′k), (2.2)

it is easily seen that Σ is a σ-algebra. On the other hand, if (2.1) holds, then 𝒞′ ⊆ Σ. It
follows that𝒜′ = σ0(𝒞′) ⊆ Σ.
Proposition 2.1.3. Let (X,𝒜) and (X′,𝒜′) be measurable spaces, and let X = ⋃∞k=1 Ek
with {Ek} ⊆ 𝒜. Then f : X → X′ is (𝒜,𝒜′)-measurable if and only if all restrictions
f |Ek : Ek → X′ are (𝒜 ∩ Ek ,𝒜′)-measurable.
https://doi.org/10.1515/9783110556902-003
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54 | 2 Scalar integration

Proof. Let f |Ek be (𝒜 ∩ Ek ,𝒜′)-measurable for every k ∈ ℕ. For any F′ ∈ 𝒜′, we have(f |Ek )−1(F′) ∈ 𝒜 ∩ Ek ⊆ 𝒜, since Ek ∈ 𝒜 (k ∈ ℕ). Therefore
f −1(F′) = (∞⋃

k=1
Ek)⋂ f −1(F′) = ∞⋃

k=1
(Ek ∩ f −1(F′)) = ∞⋃

k=1
(f |Ek )−1(F′) ∈ 𝒜,

and thus f is (𝒜,𝒜′)-measurable. To prove the converse, observe that f |Ek = f ∘ jEk ,
where jEk denotes the injection of Ek in X. For any E ∈ 𝒜, we have j−1Ek (E) := {x ∈ Ek |
jEk (x) ∈ E} = E ∩ Ek, and thus jEk is (𝒜 ∩ Ek ,𝒜)-measurable. Then by Proposition 2.1.1
f |Ek is (𝒜 ∩ Ek ,𝒜′)-measurable for any k ∈ ℕ, and thus the result follows.

For any f : X → ℝ and α ∈ ℝ, we set {f > α} := {x ∈ X | f (x) > α} = f −1((α,∞));
the sets {f ≥ α}, {f < α}, {f ≤ α}, and {f = α} are similarly defined. For real-valued
functions, we have the following measurability criterion, which easily follows from
Lemma 2.1.2 and Remark 1.2.2.

Proposition 2.1.4. Let (X,𝒜) be a measurable space, and let f : X → ℝ. Then the fol-
lowing statements are equivalent: (i) f is 𝒜-measurable; (ii) {f > α} ∈ 𝒜 for any α ∈ ℝ;(iii) {f ≥ α} ∈ 𝒜 for any α ∈ ℝ; (iv) {f < α} ∈ 𝒜 for any α ∈ ℝ; and (v) {f ≤ α} ∈ 𝒜 for
any α ∈ ℝ.

Using the equality {sup fn > α} = ⋃∞n=1{fn > α}, from Proposition 2.1.4 we clearly
get the following:

Corollary 2.1.5. Let (X,𝒜) be a measurable space.
(i) If f , g : X → ℝare𝒜-measurable, then the functions f+g, fg, |f |,min{f , g},max{f , g},

and f /g (the latter if g ̸= 0 in X) are𝒜-measurable.
(ii) If the functions fn : X → [−∞,∞] are 𝒜-measurable for every n ∈ ℕ, then the

functions supn∈ℕ fn, infn∈ℕ fn, lim supn→∞ fn, and lim infn→∞ fn are𝒜-measurable.
In particular, if the pointwise limit limn→∞ fn exists, then it is𝒜-measurable.

Proposition 2.1.6. Let (X,𝒜, μ) be a completemeasure space, and let (X′,𝒜′) be amea-
surable space. Let f , g : X → X′ be equal μ-a. e. in X. Then f is (𝒜,𝒜′)-measurable if
and only if g is (𝒜,𝒜′)-measurable.
Proof. By assumption there exists a null set N ∈ 𝒜 such that g(x) = f (x) for every
x ∈ Nc. It is easily seen that for all E′ ∈ 𝒜′,

g−1(E′) = (g−1(E′) ∩ N) ∪ (f −1(E′) ∩ Nc).
If f is (𝒜,𝒜′)-measurable, thenwe have f −1(E′)∩Nc ∈ 𝒜. Moreover, since μ is complete
and g−1(E′) ∩ N ⊆ N, we have g−1(E′) ∩ N ∈ 𝒜, and thus g is (𝒜,𝒜′)-measurable. By
inverting the roles of f and g the result follows.
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If μ is not complete, then the above conclusion need not be true. To avoid this
difficulty, it is convenient to extend thedefinitionofmeasurability to functionsdefined
almost everywhere.

Definition 2.1.2. Let (X,𝒜, μ) be a measure space, and let (X′,𝒜′) be a measurable
space. Let N ⊆ X be a null set, and let f : Nc → X′. We say that f is (𝒜,𝒜′)-measurable
if it is (𝒜 ∩ Nc,𝒜′)-measurable.

If N = 0, then the above definition reduces to Definition 2.1.1. If Nc ⊆ X prop-
erly and Definition 2.1.2 holds, then it is easy to extend f to X to obtain an (𝒜,𝒜′)-
measurable function (in the sense of Definition 2.1.1). Clearly, the conclusion of Propo-
sition 2.1.6 is true in the sense of Definition 2.1.2.

The following remark will be tacitly used hereafter.

Remark 2.1.2. Let (X,𝒜, μ) be a complete measure space. If {fn} is a sequence of
𝒜-measurable functions and fn → g μ-a. e. in X, then by Corollary 2.1.5 and Proposi-
tion 2.1.6 g is𝒜-measurable. If μ is not complete, then the same is true in the sense of
Definition 2.1.2, since g := limn→∞ fn is defined on some set E ∈ 𝒜 with μ(Ec) = 0 and
is (𝒜 ∩ E,𝒜′)-measurable by Corollary 2.1.5.

Let us state the following definition.

Definition 2.1.3. Let (X, 𝒯 ) and (X′, 𝒯 ′) be topological spaces, and let ℬ := σ0(𝒯 ) and
ℬ′ := σ0(𝒯 ′) be the relative Borel σ-algebras. A function f : X → X′ is called Borel
measurable (or Borel function) if it is (ℬ,ℬ′)-measurable.

Remark 2.1.3. (i) If (X, 𝒯 ) and (X′, 𝒯 ′) are topological spaces, then from Lemma 2.1.2
it follows that every continuous function f : X → X′ is Borel measurable.

(ii) Let (X, 𝒯 ) be a topological space. A function f : X → (−∞,∞] is lower semicon-
tinuous if and only if for any α ∈ ℝ, the set {f > α} is open. Similarly, a function
f : X → [−∞,∞) is upper semicontinuous if and only if for any α ∈ ℝ, the set{f < α} is open. Then by Proposition 2.1.4 lower and upper semicontinuous func-
tions are Borel measurable.

Definition 2.1.4. Let (X,𝒜) be a measurable space. A function s : X → ℝ is called
simple if there exist c1, . . . , cn ∈ ℝ and a partition {E1, . . . ,En} ⊆ 𝒜 of X such that s =∑ni=1 ciχEi .

Clearly, simple functions are measurable. For any measurable space (X,𝒜), we
will denote byS (X) the set of real-valued simple functions and byS+(X) that of non-
negative simple functions s : X → [0,∞).

The proof of the following result is well known.

Theorem 2.1.7. Let (X,𝒜) be a measurable space, and let f : X → ℝ be𝒜-measurable.
Then there exists a sequence {sn} of simple functions such that sn → f pointwise in X.
Moreover:
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(i) if f ≥ 0, then the sequence {sn} is nondecreasing, and we have 0 ≤ sn ≤ f for any
n ∈ ℕ;

(ii) if f is bounded, then sn → f uniformly in X.

It is convenient for future purposes to address the measurability of functions de-
fined on or taking values in the product of measurable spaces (see Section 1.2).

Definition 2.1.5. Let the sets X, X1, and X2 be given.
(i) The map pk : X1 × X2 → Xk, pk(x1, x2) := xk, is called the projection of X1 × X2 onto

Xk (k = 1, 2).
(ii) Let f : X → X1 × X2. The map fk : X → Xk, fk := pk ∘ f , is called the kth component

of f (k = 1, 2).
(iii) Let f : X1 × X2 → X. For any x1 ∈ X1, the map fx1 : X2 → X, fx1 (x2) := f (x1, x2),

is called the x1-trace of f . Similarly, for any x2 ∈ X2, the x2-trace of f is the map
fx2 : X1 → X, fx2 (x1) := f (x1, x2).

Remark 2.1.4. Let χE be the characteristic function of E ⊆ X1 × X2. Clearly, for any
x1 ∈ X1, the x1-trace (χE)x1 of χE coincides with the characteristic function χEx1 of the
x1-section of E, Ex1 := {x2 ∈ X2 | (x1, x2) ∈ E}. Similarly, for any x2 ∈ X2, the x2-trace(χE)x2 of χE coincides with the characteristic function χEx2 of the x2-section of E, Ex2 :={x1 ∈ X1 | (x1, x2) ∈ E}.
Lemma 2.1.8. Let (X1 × X2,𝒜1 × 𝒜2) be the product of two measurable spaces (X1,𝒜1)
and (X2,𝒜2). Then for each k = 1, 2, the projection pk is (𝒜1 ×𝒜2,𝒜k)-measurable.
Proof. For any E1 ∈ 𝒜1, we have p−11 (E1) := {(x1, x2) ∈ X1 × X2 | x1 ∈ E1} = E1 × X2, a
measurable rectangle. Hence p−11 (E1) ∈ 𝒜1 × 𝒜2. Similarly for p2, and thus the claim
follows.

Proposition 2.1.9. Let (X,𝒜), (X1,𝒜1), and (X2,𝒜2) bemeasurable spaces, and let (X1 ×
X2,𝒜1 × 𝒜2) be the product of (X1,𝒜1) and (X2,𝒜2). Let f : X → X1 × X2. Then f is(𝒜,𝒜1 × 𝒜2)-measurable if and only if each component fk is (𝒜,𝒜k)-measurable (k =
1, 2).
Proof. If f is (𝒜,𝒜1 × 𝒜2)-measurable, then by Proposition 2.1.1 and Lemma 2.1.8 fk
is (𝒜,𝒜k)-measurable for each k = 1, 2. Conversely, let fk be (𝒜,𝒜k)-measurable, and
thus f −1k (Ek) ∈ 𝒜 for any Ek ∈ 𝒜k (i = 1, 2). Let us prove that f −1(E) ∈ 𝒜 for any E ∈ ℛ,
where ℛ denotes the set of measurable rectangles; if so, then the result will follow
from Lemma 2.1.2, since 𝒜1 × 𝒜2 := σ0(ℛ). In fact, let E = E1 × E2, with Ek ∈ 𝒜k(i = 1, 2). Then

f −1(E) = {x ∈ X | (f1(x), f2(x)) ∈ E}= {x ∈ X | f1(x) ∈ E1} ∩ {x ∈ X | f2(x) ∈ E2} = f −11 (E1) ∩ f −12 (E2) ∈ 𝒜.
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Hence the conclusion follows.

Proposition 2.1.10. Let (X1,𝒜1), (X2,𝒜2), and (X,𝒜) be measurable spaces, and let f :
X1 × X2 → X be (𝒜1 ×𝒜2,𝒜)-measurable. Then:
(i) for any x1 ∈ X1, the x1-trace of f is (𝒜2,𝒜)-measurable;
(ii) for any x2 ∈ X2, the x2-trace of f is (𝒜1,𝒜)-measurable.
Proof. For any x1 ∈ X1, we have fx1 = f ∘ g, where g : X2 → X1 × X2 and g(x2) ≡(g1(x2), g2(x2)) := (x1, x2). Clearly, each component gk is (𝒜2,𝒜k)-measurable (k = 1, 2),
and thus by Proposition 2.1.9 g is (𝒜2,𝒜1 ×𝒜2)-measurable. Then by Proposition 2.1.1
fx1 is (𝒜2,𝒜)-measurable. The proof of (ii) is analogous.

Remark 2.1.5. Let χE be the characteristic function of E ⊆ X1 × X2. If E ∈ 𝒜1 × 𝒜2,
then χE is 𝒜1 × 𝒜2-measurable, and by Proposition 2.1.10 the x1-trace (χE)x1 = χEx1 is
𝒜2-measurable (in this connection, observe that Ex1 ∈ 𝒜2 by Proposition 1.2.2). Simi-
larly, for any x2 ∈ X2, the x2-trace (χE)x2 = χEx2 is𝒜1-measurable.

2.1.2 Convergence results

Let (X,𝒜, μ) be a measure space, and let f , fn : X → ℝ be 𝒜-measurable functions(n ∈ ℕ). The following notions of convergence (for which we write fn → f ) are well
known:
– fn converges to f in measure if limn→∞ μ({x ∈ X | |fn(x) − f (x)| > ϵ}) = 0 for all

ϵ > 0;
– fn converges to f almost uniformly if for any δ > 0, there exists E ∈ 𝒜with μ(Ec) < δ

such that

lim
n→∞

sup
x∈E

 fn(x) − f (x) = 0. (2.3)

Let us recall the relationships between the above concepts.

Proposition 2.1.11. Let (X,𝒜, μ) be a measure space, and let f , fn : X → ℝ be 𝒜-meas-
urable.
(i) Let μ(X) <∞. If fn → f μ-a. e., then fn → f in measure.
(ii) If fn → f in measure, then there exists {fnk } ⊆ {fn} such that fnk → f μ-a. e.
(iii) If fn → f almost uniformly, then fn → f μ-a. e. and in measure.

The following result partially inverts Proposition 2.1.11(iii).

Theorem 2.1.12 (Egorov). Let (X,𝒜, μ) be a finite measure space, and let f , fn : X → ℝ
be𝒜-measurable. If fn → f μ-a. e., then fn → f almost uniformly.
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Proof. By assumption there exists a μ-null subset N ⊆ X such that for every x ∈ Nc,
we have limn→∞ |fn(x) − f (x)| = 0. For all k, n, p ∈ ℕ, set

En,k := {x ∈ X | fn(x) − f (x) ≥ 1k} ∈ 𝒜, Fp,k := ∞⋃
n=p

En,k

(see Remark 2.1.2). It is easily seen that for every k ∈ ℕ, we have Gk := ⋂∞p=1 Fp,k ⊆ N .
In fact, let k ∈ ℕ and x ∈ Gk be fixed. Then, by the definition of Fp,k and En,k, for
every p ∈ ℕ, there exists np ≥ p such that |fnp (x) − f (x)| ≥ 1

k . Clearly, this implies that|fnp (x) − f (x)| ↛ 0, thus x ̸∈ Nc, and the claim follows.
Since for any k ∈ ℕ, the setGk ismeasurable andGk ⊆ N, it follows that μ(Gk) = 0.

Moreover, since for every fixed k ∈ ℕ, the sequence {Fp,k} is nonincreasing and
μ(F1,k) ≤ μ(X) < ∞, we have that limp→∞ μ(Fp,k) = μ(Gk) = 0. Then for any δ > 0 and
k ∈ ℕ, there exists pk ∈ ℕ such that μ(Fpk ,k) < δ

2k+1 . Set Fδ := ⋃∞k=1 Fpk ,k . Then we have
μ(Fδ) < δ and

Fcδ = ∞⋂
k=1

Fcpk ,k = ∞⋂
k=1
( ∞⋂
n=pk

Ecn,k).
Fix x ∈ Fcδ . Then for every k ∈ ℕ, there exists pk ∈ ℕ such that x ∈ Fcpk ,k, whence

x ∉ En,k for all n ≥ pk, that is, |fn(x) − f (x)| < 1
k . Since μ(Fδ) < δ with E = Fcδ , the

conclusion follows.

Similar concepts and results hold if we consider capacities instead of measures.

Definition 2.1.6. Let (X, d) be a metric space, let ℱ ⊆ 𝒫(X) be as in Definition 1.6.1,
and let C : ℱ → [0,∞] be a capacity. Let f , fn : X → ℝ (n ∈ ℕ). We say that:
(i) fn converges to f C-quasi-everywhere in X if fn(x) converges to f (x) for C-q. e. x ∈ X;
(ii) fn converges to f in capacity if

lim
n→∞

C({|fn − f | > ϵ}) = 0 for all ϵ > 0;
(iii) fn converges to f C-quasi-uniformly if for any δ > 0, there exists E ∈ ℱ with C(Ec) <

δ such that (2.3) holds.

Remark 2.1.6. Clearly, fn → f in capacity if and only if for any δ > 0 and ϵ > 0, there
exists n̄ ∈ ℕ such that for all n ≥ ̄n, we have C({|fn − f | ≥ ϵ}) < δ.

The following proposition is similar to Proposition 2.1.11; we give its proof for com-
pleteness.

Proposition 2.1.13. Let X and f , fn : X → ℝ (n ∈ ℕ) be as in Definition 2.1.6.
(i) If fn → f C-quasi uniformly, then fn → f in capacity and C-q. e.
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(ii) If fn → f in capacity, then there exists {fnk } ⊆ {fn} such that fnk → f C-quasi-
uniformly.

Proof. (i) Let us prove that fn → f in capacity. By assumption, for any δ > 0 there
exists E ∈ ℱ with C(Ec) < δ such that limn→∞ supx∈E |fn(x) − f (x)| = 0 – namely, for
any ϵ > 0 there exists n̄ ∈ ℕ such that for all n ≥ n̄we have E ⊆ {|fn − f | < ϵ}. Hence we
have Ec ⊇ {|fn − f | ≥ ϵ}, and thus

C({|fn − f | ≥ ϵ}) ≤ C(Ec) < δ.
To sum up, for any ϵ > 0 and δ > 0, there exists n̄ ∈ ℕ such that for all n ≥ n̄, we have
C({|fn − f | ≥ ϵ}) < δ. Hence the claim follows.

Let us now prove that fn → f C-q. e. By assumption, for any k ∈ ℕ, there exists
Ek ∈ 𝒜 such that C(Eck) < 1

k and limn→∞ supx∈Ek |fn(x) − f (x)| = 0. Set E := ⋃∞k=1 Ek .
Then fn(x) → f (x) for any x ∈ E. Moreover, since Ec ⊆ (Ek)c for any k ∈ ℕ, we have
C(Ec) ≤ limk→∞ C(Eck) = 0. Hence claim (i) follows.

(ii) By Remark 2.1.6, for any k ∈ ℕ, there exists nk ∈ ℕ such that C({|fn − f | ≥ 1
2k }) <

1
2k for all n ≥ nk . In particular, choosing n = nk, we get C(Bk) < 1

2k for all k ∈ ℕ, where
Bk := {|fnk − f | ≥ 1

2k }. Clearly, it is not restrictive to assume that nk+1 > nk, so that {fnk }
is a subsequence of {fn}. Set Am := ⋃∞k=m Bk (m ∈ ℕ). Then for every m ∈ ℕ, we have
Am ⊆ Am−1 and C(Am) ≤ ∑∞k=m C(Bk) < ∑∞k=m 1

2k , and thus limm→∞ C(Am) = 0.
Therefore, for any δ > 0, there exists m̄ ∈ ℕ such that C(Am) < δ for allm ≥ m̄. Set

Fm := (Am)c (m ≥ m̄). Then Fm ⊆ (Bk)c for all k ≥ m ≥ m̄, whence
sup
x∈Fm̄

fnk (x) − f (x) ≤ sup
x∈(Bk)c
fnk (x) − f (x) ≤ 1

2k
≤ 1
2m
.

It follows that fnk → f uniformly in Fm̄. This completes the proof.

2.1.3 Quasi-continuous functions

Theorem 2.1.14 (Lusin). Let X be a Hausdorff space, and let μ be a regular measure on
ℬ(X). Let f : X → ℝ be ℬ(X)-measurable. Then for any E ∈ ℬ(X)with μ(E) <∞ and any
δ > 0, there exists a compact subset K ⊆ E such that μ(E \K) < δ, and the restriction f |K
is continuous.

Proof. It suffices to consider the case E = X with μ(X) <∞. Let {Bn} be a countable ba-
sis of open intervals inℝ. Thus f −1(Bn) ∈ ℬ(X) (n ∈ ℕ). Fix δ > 0. Since by assumption
the measure μ is regular, for every n ∈ ℕ, there exist a compact set Kn and an open
set An such that Kn ⊆ f −1(Bn) ⊆ An and μ(An \ Kn) < δ

2n+1 . Set A := ⋃∞n=1(An \ Kn) and
C := Ac; clearly, A is open, thus C is closed, and μ(A) = μ(Cc) ≤ δ

2 . Moreover, for any
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n ∈ ℕ,
An ∩ C = Kn ∩ C ⊆ f −1(Bn) ∩ C ⊆ An ∩ C,

whence

f −1(Bn) ∩ C = (f |C)−1(Bn) = An ∩ C.
Since for any n, the set An ∩ C is open in the relative topology of C, the restriction f |C
is continuous.

Using again the regularity of μ, we can choose a compact subset K ⊆ C such that
μ(C \K) < δ

2 . Therefore μ(Kc) = μ(Cc) + μ(C \K) < δ, and f |K is continuous, since f |C is
continuous and K ⊆ C. Then the conclusion follows.
Definition 2.1.7. Let X be a Hausdorff space, and let μ be a measure on ℬ(X). A func-
tion f : X → ℝ is called μ-quasi-continuous (or simply quasi-continuous) in E ∈ ℬ(X)
if for any δ > 0, there exists a closed subset C ⊆ E such that μ(E \ C) < δ and the
restriction f |C is continuous.

Using this definition, the Lusin theorem can be rephrased by saying that if the
measure μ is finite and regular, then every ℬ(X)-measurable function is μ-quasi-
continuous. The following result states that the converse is true up to null sets.

Proposition 2.1.15. Let X be a Hausdorff space, and let μ be a finite regular measure
on ℬ(X). Let f : X → ℝ be μ-quasi-continuous. Then there exists a ℬ(X)-measurable
function g : X → ℝ such that g = f μ-a. e. in X.
Proof. By Definition 2.1.7, for every n ∈ ℕ, there exists a closed set Cn ⊆ X such that
μ(Ccn) < 1/n and f |Cn is continuous. Set C := ⋃∞n=1 Cn and g := fχC. It is not restrictive
to suppose that {Cn} is nondecreasing, and thus μ(Cc) = limn→∞ μ(Ccn) = 0. More-
over, observe that for every n, the function f |Cn = fχCn is continuous, thus (ℬ(X) ∩ Cn)-
measurable, and fχCn → fχC = g pointwise in X. Then by Proposition 2.1.3 the func-
tion g is (ℬ(X) ∩ C)-measurable and hence ℬ(X)-measurable. Since f = g on C and
μ(Cc) = 0, the result follows.
Proposition 2.1.16. Let X be a locally compact Hausdorff space, and let μ be a regular
measure on ℬ(X). Let f : X → ℝ be μ-quasi-continuous. Then for any open set A ⊆ X
with μ(A) < ∞ and for any δ > 0, there exist a compact subset K ⊆ A and a function
ζ ∈ Cc(X) with supp ζ ⊆ A such that μ({f ̸= ζ }) < δ and ‖ζ ‖∞ = ‖f ‖K := supx∈K |f (x)|.
Proof. Let A ⊆ X be open with μ(A) < ∞, and let δ > 0 be fixed. Then by the Lusin
theorem there exists a compact subsetK ⊆ E such that f |K is continuous. By a standard
compactification argument and the Tietze extension theorem there exists h ∈ C(X)
such that h|K = f |K (e. g., see [45, Korollar VIII.1.19] for details). On the other hand, by
LemmaA.9 there exists g ∈ Cc(X) such that g(X) ⊆ [0, 1], g|K = 1, and supp g ⊆ A. Then
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η := g h|K ∈ Cc(X), supp η ⊆ A, and η|K = h|K = f |K . It is easily seen that the function
ζ (x) := {η(x) if |η(x)| ≤ ‖f ‖K ,‖f ‖K sgn η(x) otherwise

has the stated properties. Hence the result follows.

Remark 2.1.7. By the Lusin theoremProposition 2.1.16 also holds forℬ(X)-measurable
functions.

Similar notions and results hold for capacities.

Definition 2.1.8. Let (X, d) be ametric space, letℱ ⊆ 𝒫(X) be as inDefinition 1.6.1, and
let C : ℱ → [0,∞] be a capacity. A function f : X → ℝ is called C-quasi-continuous in
X if for any δ > 0, there exists a subset E ⊆ X with C(Ec) < δ such that the restriction
f |E is continuous.
Remark 2.1.8. IfC is an outer capacity, then it is not restrictive to assumeEc to be open
in Definition 2.1.8.

Proposition 2.1.17. Let X and f , fn : X → ℝ (n ∈ ℕ) be as in Definition 2.1.8. Let fn be
C-quasi-continuous for each n, and let fn → f in capacity. Then f is C-quasi-continuous.

Proof. By assumption, for every δ > 0 and for every n ∈ ℕ, there exists a subset
En ⊆ X with C(Ecn) < δ

2n+1 such that the restriction fn|En is continuous. Set E := ⋂∞n=1 En.
Then C(Ec) ≤ ∑∞n=1 C(Ecn) ≤ δ

2 , and fn|E is continuous for each n. Moreover, by Propo-
sition 2.1.13(ii) there exist {fnk } ⊆ {fn} and F ⊆ X such that C(Fc) < δ

2 and fnk → f
uniformly in F. Set G := E⋂ F; thus C(Gc) ≤ C(Ec) + C(Ec) < δ. Moreover, fnk |G is con-
tinuous for each nk and fnk → f uniformly in G, and hence f |G is continuous. Then the
result follows.

2.2 Integration

2.2.1 Definition of integral

Let (X,𝒜, μ) be a measure space, and let s ∈ S+(X), that is, s = ∑ni=1 ciχEi with
c1, . . . , cn ≥ 0 and measurable E1, . . . ,En, Ei ∩ Ej = 0 for i ̸= j, and⋃ni=1 Ei = X.
Definition 2.2.1. Let s ∈ S+(X). The quantity ∫X s dμ := ∑Ni=1 ci μ(Ei) is called the inte-
gral of s on X.

This definition is well posed, since the integral ∫X s dμ does not depend on the
choice of the partition {E1, . . . ,EN }. Moreover, the integral ∫X s dμ has all the usual
properties: linearity, additivity, monotonicity, and so on.
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Definition 2.2.2. Let f : X → [0,∞] be𝒜-measurable. The quantity∫
X

f dμ := sup
s∈S+(X), s≤f

∫
X

s dμ (2.4)

is called the integral of f on X. For every measurable set E ⊆ X, we set ∫E f dμ :=∫X fχE dμ.
Remark 2.2.1. It is well known that for any 𝒜-measurable f : X → [0,∞], the set{s ∈ S+(X) | s ≤ f } is nonempty; in fact, there exists a sequence {sn} ⊆ S+(X) such
that

0 ≤ sn ≤ sn+1 ≤ f in X for all n ∈ ℕ, sn → f pointwise in X. (2.5)

Clearly, this implies that ∫
X

f dμ = lim
n→∞
∫
X

sn dμ. (2.6)

For every f : X → [−∞,∞], set f ± := max{±f ,0}.
Definition 2.2.3. An 𝒜-measurable function f : X → [−∞,∞] is called integrable if∫X f ± dμ <∞. It is called quasi-integrable if at least one of the two integrals ∫X f ± dμ is
finite.

For everyquasi-integrable function f : X → [−∞,∞], the (possibly, infinite) quan-
tity ∫X f dμ := ∫X f + dμ − ∫X f − dμ is called the integral of f on X. For every measurable
E ⊆ X, we set ∫E f dμ := ∫X fχE dμ.

We denote the set of integrable functions f : X → [−∞,∞] by L1(X) ≡ L1(X,𝒜, μ).
It is easily seen that f ∈ L1(X) if and only if‖f ‖1 := ∫

X

|f | dμ <∞.
Linearity, additivity, monotonicity, and other usual properties of the integral∫X f dμ are easily proven. By the linearity of the integral, the inequality∫

X

f dμ
 ≤ ∫

X

|f | dμ,
and the triangular inequality, L1(X) is a vector space.
Remark 2.2.2. Any Riemann-integrable f : D ⊆ ℝN → ℝ is integrable in the sense of
Definition 2.2.3. By abuse of notation, the usual symbol ∫D fdx instead of ∫D fdλN will
often be used.
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Remark 2.2.3. Let (X,𝒜, μ) be a measure space, and let f ≥ 0 be 𝒜-measurable. It is
immediately seen that the map

ν : 𝒜 → [0,∞], ν(E) := ∫
E

f dμ (E ∈ 𝒜) (2.7)

is a measure. Similarly, the map

ν : 𝒜 → [−∞,∞], ν(E) := ∫
E

f dμ = ∫
E

f + dμ − ∫
E

f − dμ (E ∈ 𝒜) (2.8)

is a signedmeasure if f is quasi-integrable andafinite signedmeasure if f ∈ L1(X,𝒜, μ).
Moreover, we have

ν±(E) = ∫
E

f ± dμ, (2.9)

whence |ν|(E) = ∫
E

|f | dμ <∞ if f ∈ L1(X,𝒜, μ).
Indeed, set φ±(E) := ∫E f ± dμ. Then for any F ⊆ E, F ∈ 𝒜,

ν(F) = φ+(F) − φ−(F) ≤ φ+(F) ≤ φ+(E) ,
and thus ν+(E) ≤ φ+(E) by Proposition 1.8.3. To prove the inverse inequality, set H :={f ≥ 0}. Clearly, we have φ+(E ∩ Hc) = 0 = φ−(E ∩ H) for any E ∈ 𝒜, and hence

φ+(E) = φ+(E ∩ H) = ν(E ∩ H) ≤ ν+(E ∩ H) ≤ ν+(E).
It follows that ν+ = φ+, whence ν− = (−ν)+ = φ−. This proves the claim.

Remark 2.2.4. It follows fromRemark 2.2.1 (see (2.6)) that the setS (X) of simple func-
tions is dense in L1(X).

The integral with respect to a signed measure is defined as follows (see Subsec-
tion 4.2.3 for a generalization of this notion).

Definition 2.2.4. Let (X,𝒜) be a measurable space, and let μ be a signed measure
on𝒜. We say that f ∈ L1(X,𝒜, μ) if f ∈ L1(X,𝒜, μ±), and we set∫

X

f dμ := ∫
X

f dμ+ − ∫
X

f dμ−. (2.10)
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From (2.10) it easily follows that∫
X

f dμ
 ≤ ∫

X

|f | d|μ|. (2.11)

Let us recall the following classical results.

Theorem 2.2.1 (Beppo Levi). Let (X,𝒜, μ) be a measure space. Let f , fn : X → [0,∞]
be 𝒜-measurable. Suppose that fn ≤ fn+1 μ-a.e. in X for any n ∈ ℕ, and let f be the
μ-pointwise limit in X of the sequence {fn}. Then

lim
n→∞
∫
X

fn dμ = ∫
X

f dμ.
Theorem 2.2.2 (Fatou). Let (X,𝒜, μ) be a measure space. Let fn : X → [0,∞] be
𝒜-measurable. Then ∫

X

(lim inf
n→∞

fn) dμ ≤ lim inf
n→∞
∫
X

fn dμ.
Theorem 2.2.3 (Lebesgue). Let (X,𝒜, μ)beameasure space. Let f , fn be𝒜-measurable,
and let fn → f μ-a. e. in X. Suppose that

there exists g ∈ L1(X), g ≥ 0 such that |fn| ≤ g μ-a. e. in X for all n ∈ ℕ. (2.12)

Then f , fn ∈ L1(X), and
lim
n→∞
∫
X

|fn − f | dμ = 0.
Theorems 2.2.1 and 2.2.3 are usually referred to as the monotone convergence the-

orem and dominated convergence theorem, respectively. Using Theorem 2.2.1, we can
prove the following result.

Proposition 2.2.4. Let (X,𝒜, μ) be a measure space.
(i) Let f : X → [0,∞) be𝒜-measurable, and let ν be themeasure defined by (2.7). Then

for any𝒜-measurable g : X → [0,∞), we have∫
X

g dν = ∫
X

fg dμ. (2.13)

(ii) Let f ∈ L1(X,𝒜, μ), and let ν be the finite signed measure defined by (2.8). Then for
any g ∈ L1(X,𝒜, ν), we have fg ∈ L1(X,𝒜, μ), and (2.13) holds.
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Proof. (i) Equality (2.13) holds by definition when g = χE and thus also when g = s ∈
S+(X). For any𝒜-measurable g : X → [0,∞), there exists a sequence {sn} ⊆ S+(X) as
in (2.5), and hence by Theorem 2.2.1 the claim follows.

(ii) By (2.9)–(2.10) we have∫
X

g dν = ∫
X

(g+ − g−) dν+ − ∫
X

(g+ − g−) dν−
= ∫

X

g+ dν+ − ∫
X

g− dν+ − ∫
X

g+ dν− + ∫
X

g− dν−. (2.14)

From (2.13) we have that ∫X g± dν± = ∫X g± f ± dμ; moreover, ∫X g± dν± < ∞ since by
assumption g ∈ L1(X,𝒜, ν±) (see Definition 2.2.4). Then from (2.14) we obtain∫

X

g dν = ∫
X

(f + − f −)(g+ − g−) dμ = ∫
X

fg dμ,
and thus the result follows.

2.3 Product measures

2.3.1 Tonelli and Fubini theorems

Let (X1,𝒜1, μ1) and (X2,𝒜2, μ2) be measure spaces. Let E ∈ 𝒜1 × 𝒜2. Thus Ex1 ∈ 𝒜2 for
any x1 ∈ X1 and Ex2 ∈ 𝒜1 for any x2 ∈ X2 (see Proposition 1.2.2). Then the maps from X1
to [0,∞], x1 → μ2(Ex1 ) (x1 ∈ X1), and from X2 to [0,∞], x2 → μ1(Ex2 ) (x2 ∈ X2), are well
defined. We have the following:

Proposition 2.3.1. Let (X1,𝒜1, μ1) and (X2,𝒜2, μ2) be σ-finite measure spaces. Let E ∈
𝒜1 ×𝒜2. Then:
(i) the map X1 → [0,∞], x1 → μ2(Ex1 ) (x1 ∈ X1), is 𝒜1-measurable, and the map X2 →[0,∞], x2 → μ1(Ex2 ) (x2 ∈ X2), is𝒜2-measurable;
(ii) we have ∫

X1

μ2(Ex1 ) dμ1 = ∫
X2

μ1(Ex2 ) dμ2; (2.15a)

(iii) the map μ1 × μ2 : 𝒜1 ×𝒜2 → [0,∞] defined by(μ1 × μ2)(E) := ∫
X1

μ2(Ex1 ) dμ1 = ∫
X2

μ1(Ex2 ) dμ2 (E ∈ 𝒜1 ×𝒜2) (2.15b)

is a σ-finite measure.
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Remark 2.3.1. It is easy to produce exampleswhere equality (2.15a) is false ifμ1 and/or
μ2 are not σ-finite.

By Proposition 2.3.1 the following definition is well posed.

Definition 2.3.1. Let (X1,𝒜1, μ1) and (X2,𝒜2, μ2) be σ-finite measure spaces. The mea-
sure μ1×μ2 defined by (2.15b) is called a productmeasure, and (X1×X2,𝒜1×𝒜2, μ1×μ2)
is called a product measure space.

Remark 2.3.2. Let (X1 × X2,𝒜1 × 𝒜2, μ1 × μ2) be a product measure space, and let P =
P(x1, x2) be some property. Using (2.15b), it is easily seen that the following statements
are equivalent: (i) P is true μ1 × μ2-a. e. in X1 × X2; (ii) P(x1, ⋅) is true μ2-a. e. in X2 for
μ1-a. e. x1 ∈ X1; (iii) P(⋅, x2) is true μ1-a. e. in X1 for μ2-a. e. x2 ∈ X2.
Remark 2.3.3. Simple examples show that the product of complete measure spaces
neednot be complete. However, it canbe shown that the Lebesgue space (ℝM+N ,ℒM+N ,
λM+N ) is the completion of the product (ℝM+N ,ℒM × ℒN , λM × λN ) (M,N ∈ ℕ; see Defi-
nition 1.5.1).

Let (X1,𝒜1, μ1) and (X2,𝒜2, μ2) be measure spaces, and let f : X1 × X2 → [0,∞) be
𝒜1 ×𝒜2-measurable. By Proposition 2.1.10 the x1-trace fx1 is𝒜2-measurable, and thus
the function

X1 → [0,∞], x1 → ∫
X2

fx1dμ2 (2.16a)

is well defined; similarly for the map

X2 → [0,∞], x2 → ∫
X1

fx2dμ1. (2.16b)

Theorem 2.3.2 (Tonelli). Let (X1,𝒜1, μ1) and (X2,𝒜2, μ2) be σ-finite measure spaces. Let
f : X1 × X2 → [0,∞) be𝒜1 ×𝒜2-measurable. Then:
(i) the functions defined in (2.16) are𝒜1- and𝒜2-measurable, respectively;
(ii) we have ∫

X1×X2

f d(μ1 × μ2) = ∫
X1

dμ1 ∫
X2

fx1dμ2 = ∫
X2

dμ2 ∫
X1

fx2dμ1. (2.17)

Remark 2.3.4. Observe that equality (2.15b) is a particular case of (2.17) with f = χE,
E ∈ 𝒜1 × 𝒜2. Therefore the assumption in Theorem 2.3.2 that μ1 and μ2 are σ-finite
cannot be relaxed (see Remark 2.3.1).

For integrable real-valued functions, we have the following:
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Theorem 2.3.3 (Fubini). Let (X1,𝒜1, μ1) and (X2,𝒜2, μ2) be σ-finite measure spaces. Let
f ∈ L1(X1 × X2,𝒜1 ×𝒜2, μ1 × μ2). Then:
(i) fx1 ∈ L1(X2,𝒜2, μ2) for μ1-a. e. x1 ∈ X1, and fx2 ∈ L1(X1,𝒜1, μ1) for μ2-a. e. x2 ∈ X2;
(ii) the functions from X1 toℝ, x1 → ∫X2 fx1dμ2, and from X2 toℝ, x2 → ∫X1 fx2dμ1, belong

to L1(X1,𝒜1, μ1) and L1(X2,𝒜2, μ2), respectively;
(iii) we have ∫

X1×X2

f d(μ1 × μ2) = ∫
X1

dμ1 ∫
X2

fx1dμ2 = ∫
X2

dμ2 ∫
X1

fx2dμ1. (2.18)

The assumption of integrability of f in Theorem 2.3.3 cannot be relaxed, as simple
examples show. Therefore, to apply the Fubini theorem, the following consequence of
the Tonelli theorem is expedient.

Theorem 2.3.4. Let (X1,𝒜1, μ1) and (X2,𝒜2, μ2) be σ-finite measure spaces. Let f : X1 ×
X2 → ℝ be𝒜1 ×𝒜2-measurable. Then the following statements are equivalent:
(i) f ∈ L1(X1 × X2,𝒜1 ×𝒜2, μ1 × μ2);
(ii) ∫X1 dμ1 ∫X2 |fx1 | dμ2 <∞;
(iii) ∫X2 dμ2 ∫X1 |fx2 | dμ1 <∞.
2.4 Applications

2.4.1 A useful equality

Let (X,𝒜, μ) be a measure space, and let f : X → [0,∞] be 𝒜-measurable. Then the
function from [0,∞) to [0,∞], t → μ({f > t}), is nonincreasing, and by the Chebychev
inequality we have limt→∞ μ({f > t}) = 0 if f ∈ L1(X,𝒜, μ).
Proposition 2.4.1. Let (X,𝒜, μ) be a σ-finite measure space, and let f : X → [0,∞] be
𝒜-measurable. Then for any α > 0, we have∫

X

f α dμ = α ∫
[0,∞)

μ({f > t}) tα−1dt. (2.19)

Proof. Let us use the Tonelli theorem with (X1,𝒜1, μ1) = (X,𝒜, μ) and (X2,𝒜2, μ2) =([0,∞),ℬ∩[0,∞), λϕ),where λϕ is the Lebesgue–Stieltjesmeasure onℬ∩[0,∞) associ-
atedwithϕ(t) = tα (t ≥ 0). It is easily seen that the set E := {(x, t) ∈ X×[0,∞) | f (x) > t}
is𝒜1 ×𝒜2-measurable. Then from (2.17) with f = χE we get

α ∫
[0,∞)

μ({f > t}) tα−1dt = ∫
[0,∞)

μ({f > t}) dλϕ(t)
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= ∫
[0,∞)

dλϕ(t)∫
X

χ{f (x)>t} dμ(x)= ∫
X

dμ(x) ∫
[0,∞)

χ{f (x)>t} dλ
ϕ(t)

= ∫
X

dμ(x)λϕ({f (x) > 0}) = ∫
X

f α(x) dμ(x).
2.4.2 Steiner symmetrization

For any x ∈ ℝN , set x ≡ (x1, x̂)with x1 ∈ ℝ and x̂ ∈ ℝN−1. Let E be a Borel subset of ℝN ,
and for any x̂ ∈ ℝN−1, let Ex̂ := {x1 ∈ ℝ | (x1, x̂) ∈ E} be its x̂-section. By Proposition 1.2.2
the function

f : ℝN−1 → [0,∞], f (x̂) := λ(Ex̂), (2.20)

is well defined. Consider the symmetric interval Ix̂ := (− f (x̂)2 , f (x̂)2 ) if f (x̂) ̸= 0 and Ix̂ := 0
otherwise, and define

S1(E) := ⋃
x̂∈ℝN−1(Ix̂ × {x̂}) = {(x1, x̂) ∈ ℝN | |x1| ≤ f (x̂)2 }. (2.21)

Definition 2.4.1. The set S1(E) defined in (2.21) is called the Steiner symmetrization of
E with respect to the plane x1 = 0. The Steiner symmetrization of E with respect to the
plane xj = 0 (j = 2, . . . ,N) is similarly defined. The Steiner symmetrization of E with
respect to the origin is

S(E) := SN(SN−1(. . . S1(E) . . . )). (2.22)

Some relevant properties of the set S1(E) are proven in the following lemma.

Lemma 2.4.2. Let E ∈ ℬN , and let S1(E) be defined by (2.21). Then:
(i) (x1, x̂) ∈ S1(E)⇒ (−x1, x̂) ∈ S1(E);
(ii) S1(E) ∈ ℬN ;
(iii) λN (S1(E)) = λN (E);
(iv) diam(S1(E)) ≤ diam(E).
Proof. (i) is clear from (2.21). To prove (ii), let {sk} ⊆ S+(ℝN−1) be a nondecreasing
sequence of simple functions such that sk → f pointwise in ℝN−1 as k → ∞, f being
defined by (2.20). For any k ∈ ℕ, define

gk : ℝN → ℝ, gk(x1, x̂) := sk(x̂)2 − | x1|.
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Clearly, gk is ℬN -measurable, and hence Fk := {gk > 0} ∈ ℬN (k ∈ ℕ). Since sk ≤ sk+1
for all k ∈ ℕ, it is easily checked that the sequence {Fk} is nondecreasing and S1(E) =⋃∞k=1 Fk . Then (ii) follows. Concerning (iii), it suffices to observe that by (2.15b) (see
also Remark 2.3.3) we have

λN (E) = ∫ℝN−1 λ(Ex̂) dλN−1(x̂) = ∫ℝN−1 f (x̂) dλN−1(x̂) = λN(S1(E)).
Let us finally prove (iv). Suppose diam(E) < ∞; otherwise, the conclusion is ob-

vious. Let Ex̂ ̸= 0, and define Kx̂ := [infEx̂ , supEx̂]. Clearly, we have
λ(Kx̂) = supEx̂ − infEx̂ ≥ λ(Ex̂) = f (x̂). (2.23)

Let (x1, x̂), (y1, ŷ) ∈ S1(E) be such that
diam(S1(E)) ≤ √|x1 − y1|2 + |x̂ − ŷ|2 + ϵ. (2.24)

It is not restrictive to assume that

supEŷ − infEx̂ ≥ supEx̂ − infEŷ . (2.25)

Since | x1| ≤ f (x̂)
2 and | y1| ≤ f (ŷ)

2 , by (2.23) and (2.25) we clearly get

|x1 − y1| ≤ f (x̂) + f (ŷ)2
≤ supEx̂ − infEx̂

2
+ supEŷ − infEŷ

2= supEŷ − infEx̂
2

+ supEx̂ − infEŷ
2

≤ supEŷ − infEx̂ . (2.26)

Then by (2.24) and (2.26) we have[diam(S1(E)) − ϵ]2 ≤ |x1 − y1|2 + |x̂1 − ŷ1|2 ≤ |x̂1 − ŷ1|2 + [supEŷ − infEx̂]2 ≤ [diam (E)]2,
whence by the arbitrariness of ϵ claim (iv) follows. This completes the proof.

By Lemma 2.4.2 we have the following result.

Theorem 2.4.3 (Steiner symmetrization). Let E ∈ ℬN , and let S(E) be its Steiner sym-
metrization with respect to the origin. Then:
(i) x ∈ S(E)⇒ −x ∈ S(E);
(ii) S(E) ∈ ℬN ;
(iii) λN (S(E)) = λN (E);
(iv) diam(S(E)) ≤ diam(E).

As an application of Theorem 2.4.3, we can now prove the isodiametric inequality
(see Proposition 1.5.2).
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Proof of Proposition 1.5.2. If diam(E) = ∞, then the conclusion is obvious, thus sup-
pose E ⊆ ℝN to be bounded.Moreover, by Remark 1.5.1(ii) it is not restrictive to assume
thatE ∈ ℬN . Let S(E)be defined by (2.22). By Theorem2.4.3(i, iv) S(E) is symmetricwith
respect to the origin, and diam(S(E)) ≤ diam(E), and hence S(E) ⊆ B(0, diam(E)2 ). Then
by Theorem 2.4.3(iii) we have

λN (E) = λN(S(E)) ≤ κN(diam(E)2
)N

with κN given by (1.16). Then the conclusion follows.

2.5 Young measure

Let (X,𝒜, μ) be ameasure space, and let (X′,𝒜′) be ameasurable space. Let f : X → X′

be (𝒜,𝒜′)-measurable. Using (2.2), we immediately see that the map

μf : 𝒜′ → [0,∞], μf (E′) := μ(f −1(E′)) for E′ ∈ 𝒜′, (2.27)

is a measure.

Definition 2.5.1. The measure μf defined by (2.27) is called the image of μ under f .

Let (X1×X2,𝒜1×𝒜2) be the product of twomeasurable spaces (X1,𝒜1) and (X2,𝒜2),
and let μ : 𝒜1 ×𝒜2 → [0,∞] be a measure. Then by Lemma 2.1.8 the image measures

μp1 : 𝒜1 → [0,∞], μp1 (E1) := μ(p−11 (E1)) = μ(E1 × X2) for E1 ∈ 𝒜1, (2.28a)

μp2 : 𝒜2 → [0,∞], μp2 (E2) := μ(p−12 (E2)) = μ(X1 × E2) for E2 ∈ 𝒜2, (2.28b)

are well defined.

Definition 2.5.2. Themeasure μpi defined by (2.28) is called the projection of μ onto Xi(i = 1, 2).
Definition 2.5.3. Let X and Y be locally compact Hausdorff spaces, and let μ ∈ R+f (X).
(i) Any measure ν ∈ R+f (X × Y) such that ν(E × Y) = μ(E) for all E ∈ ℬ(X) is called the

Young measure.
(ii) Let f : X → Y be (ℬ(X),ℬ(Y))-measurable. The Young measure ν such that

ν(E × F) = μ(E ∩ f −1(F)) for all E ∈ ℬ(X), F ∈ ℬ(Y) (2.29)

is called the Young measure associated with f .

By definition we have νpX = μ, pX denoting the projection of X ×Y on X. We denote
the set of Young measures byY+(X,ℬ(X), μ;Y) ≡ Y+(X;Y).
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Remark 2.5.1. It is easily checked thatY+(X;Y) is a bounded subset ofR+f (X × Y). In
fact, for any ν ∈ Y+(X;Y), we have‖ν‖Rf (X×Y) = ν(X × Y) = μ(X).
HenceY+(X;Y) is contained in the sphere 𝜕B(0, ‖μ‖Rf (X)) ⊆ R+f (X × Y).
Remark 2.5.2. According to (2.29), the Young measure associated with f is concen-
trated on the graph of f , i. e., on the set {(x, f (x)) | x ∈ X} (see Definition 1.8.6). It is
also easily seen that if f1, f2 : X → Y are (ℬ(X),ℬ(Y))-measurable, and ν1, ν2 are the
associated Young measures, we have ν1 = ν2 if and only if f1 = f2 μ-a. e. in X. In fact, if
ν1 = ν2, then we have

μ(X) = ν2({(x, f2(x)) | x ∈ X}) = ν1({(x, f2(x)) | x ∈ X}) = μ({x ∈ X | f1(x) = f2(x)}),
and thus f1 = f2 μ-a. e. in X. The opposite implication immediately follows from (2.29).

Let us finally mention the following result.

Lemma 2.5.1. Let (X,𝒜, μ) be a measure space, and let (X′,𝒜′) be a measurable space.
Let f : X → X′ be (𝒜,𝒜′)-measurable, and let μf be the image of μ under f . Then for any
g ∈ L1(X′,𝒜′, μf ), we have g ∘ f ∈ L1(X,𝒜, μ), and∫

F

g dμf = ∫
f −1(F)

g ∘ f dμ for any F ∈ 𝒜′. (2.30)

Proof. Let s ∈ S (X′), that is, s=∑ni=1 ciχE′i with c1, . . . , cn ∈ ℝ and partition {E′1, . . . ,E′n}⊆
𝒜′ of X′. Since s ∘ f = ∑ni=1 ciχf −1(E′i ), equality (2.30) with g = s immediately follows
from (2.27). Then by the denseness of S (X′) in L1(X′,𝒜′, μf ) (see Remark 2.2.4) the
result follows.

2.6 Riesz representation theorem: positive functionals

Let X,Y be normed vector spaces. By X∗ we denote the dual space of X with norm

X∗ ∋ x∗ → ‖x∗‖X∗ := sup
‖x‖X≤1

⟨x∗, x⟩X∗ ,X ,
where ⟨⋅, ⋅⟩X∗ ,X denotes the duality map between X and X∗,⟨⋅, ⋅⟩X∗ ,X : X∗ × X → ℝ, (x∗, x) → ⟨x∗, x⟩X∗ ,X .
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Let (X, 𝒯 ) be a Hausdorff space, and let μ be a Borel measure on X. For any f ∈
Cc(X), we have |f | ≤ ‖f ‖∞χsupp f , and thus Cc(X) ⊆ L1loc(X,ℬ, μ). Hence the map

F : Cc(X)→ ℝ, ⟨F, f ⟩ := ∫
X

f dμ,
is a linear functional on Cc(X), which is positive in the following sense.
Definition 2.6.1. A linear functional F : Cc(X) → ℝ is called positive if ⟨F, f ⟩ ≥ 0 for
any f ∈ Cc(X), f ≥ 0.

Conversely, the following theorem proves that every positive linear functional F :
Cc(X) → ℝ, X locally compact, can be represented as ⟨F, f ⟩ = ∫X f dμ, where μ is a
suitable Radonmeasure.

Theorem 2.6.1 (Riesz). Let X be a locally compact Hausdorff space, and let F : Cc(X)→ℝ be a positive linear functional. Then there exists a unique Radonmeasure μ on X such
that ⟨F, f ⟩ = ∫

X

f dμ for any f ∈ Cc(X). (2.31)

Moreover, μ has the following properties:
(i) we have

μ(A)=sup{⟨F, f ⟩ | f ∈ Cc(X), f (X) ⊆ [0, 1], supp f ⊆ A} for any open A ⊆ X, A ̸= 0,
(2.32)

μ(K) = inf{⟨F, f ⟩ | f ∈ Cc(X), f ≥ χK} for any compact K ⊆ X; (2.33)

(ii) μ is finite if and only if F is bounded. In such case, we have μ(X) = ‖F‖, where‖F‖ := sup{⟨F, f ⟩ | f ∈ Cc(X), ‖f ‖∞ = 1}.
For simplicity, we will prove Theorem 2.6.1 under the additional assumption that

X has a countable basis (see [45] for the general case). The existence statement relies
on the following lemma.

Lemma 2.6.2. Let X be a locally compact Hausdorff space with countable basis, and let
F : Cc(X)→ ℝ be a positive linear functional. Then there exists a Radonmeasure μ on X
such that (2.32)–(2.33) hold.

Proof. Set μ0(0) := 0 and
μ0(A) := sup{⟨F, f ⟩ | f ∈ Cc(X), f (X) ⊆ [0, 1], supp f ⊆ A} (2.34)
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for any nonempty A ∈ 𝒯 . For any E ⊆ X, define
μ∗(E) := inf{∞∑

n=1
μ0(An) | E ⊆ ∞⋃

n=1
An, {An} ⊆ 𝒯 } (2.35)

(observe that a countable cover of anyE ⊆ Xwithopen sets exists, sincebyassumption
X has a countable basis). By Theorem 1.4.2 the map μ∗ is an outer measure on X. Then
by Theorem 1.4.1 the family of μ∗-measurable sets is a σ-algebra, and the restriction μ
of μ∗ on this σ-algebra is a complete measure on X.

Let us prove that every A ∈ 𝒯 is μ∗-measurable, that is,

μ∗(Z) ≥ μ∗(Z ∩ A) + μ∗(Z \ A) for any Z ⊆ X (2.36)

(see Remark 1.4.1). Since ℬ = σ0(𝒯 ), from this it will follow that every Borel set is
μ∗-measurable, and thus μ is defined on ℬ. Moreover, since μ∗(A) = μ0(A) for every
A ∈ 𝒯 (see (2.35)), equality (2.32) will follow.

Let μ∗(Z) < ∞ (otherwise, (2.36) is obvious), and suppose first that Z ∈ 𝒯 . Then
Z ∩A ∈ 𝒯 , and thus μ∗(Z ∩A) = μ0(Z ∩A). Hence by the definition of μ0, for any ϵ > 0,
there exists f ∈ Cc(X) with f (X) ⊆ [0, 1] and supp f ⊆ Z ∩ A such that⟨F, f ⟩ > μ0(Z ∩ A) − ϵ. (2.37)

Similarly, since Z \ supp f ∈ 𝒯 , we have μ∗(Z \ supp f ) = μ0(Z \ supp f ), and thus for
any ϵ > 0, there exists g ∈ Cc(X) with g(X) ⊆ [0, 1] and supp g ⊆ Z \ supp f such that⟨F, g⟩ > μ0(Z \ supp f ) − ϵ. (2.38)

In particular, we have f + g ∈ Cc(X) with (f + g)(X) ⊆ [0, 1] and supp(f + g) ⊆ Z. Then
by (2.37)–(2.38) we get

μ∗(Z) = μ0(Z) ≥ ⟨F, f + g⟩ = ⟨F, f ⟩ + ⟨F, g⟩≥ μ0(Z ∩ A) + μ0(Z \ supp f ) − 2ϵ = μ∗(Z ∩ A) + μ∗(Z \ supp f ) − 2ϵ≥ μ∗(Z ∩ A) + μ∗(Z \ A) − 2ϵ,
and thus by the arbitrariness of ϵ we get (2.36) when Z is open. In the general case,
by (2.35) for any ϵ > 0, there exists W ∈ 𝒯 such that Z ⊆ W and μ0(W) < μ∗(Z) + ϵ.
Then by the above considerations and the monotonicity of μ∗ we have

μ∗(Z) > μ0(W) − ϵ = μ∗(W) − ϵ≥ μ∗(W ∩ A) + μ∗(W \ A) − ϵ ≥ μ∗(Z ∩ A) + μ∗(Z \ A) − ϵ,
and thus the claim follows.
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Let us now prove (2.33). Fix any K ∈ 𝒦, and let f ∈ Cc(X), f ≥ χK . For any ϵ ∈ (0, 1),
set Aϵ := {f > 1 − ϵ}. Thus Aϵ is open, and K ⊆ Aϵ. Let g ∈ Cc(X), g(X) ⊆ [0, 1], and
supp g ⊆ Aϵ. Hencewe have (1−ϵ)g(x) ≤ f (x) for any x ∈ X, and thus ⟨F, g⟩ ≤ 1

1−ϵ ⟨F, f ⟩.
Moreover, since every K ∈ 𝒦 is μ∗-measurable, we have that μ∗(K) = μ(K). Then by
the monotonicity of μ∗ and (2.34) we get

μ(K) = μ∗(K) ≤ μ∗(Aϵ) = μ0(Aϵ)= sup{⟨F, f ⟩ | g ∈ Cc(X), g(X) ⊆ [0, 1], supp g ⊆ Aϵ} ≤ 1
1 − ϵ ⟨F, f ⟩, (2.39)

whence by the arbitrariness of f and ϵ ∈ (0, 1) we get
μ(K) ≤ inf{⟨F, f ⟩ | f ∈ Cc(X), f ≥ χK}. (2.40)

Now observe that from (2.39) with ϵ = 1
2 we get μ(K) ≤ ⟨F, 2f ⟩ <∞ for any K ∈ 𝒦,

and thus clearly μ is locally finite (see Remark 1.3.2(iv); recall that by assumption X
is locally compact). Since μ is defined on a σ-algebra containing ℬ, it follows that μ ∈
B+(X), and thus by Proposition 1.3.3 it is regular. In particular, μ is inner regular and
thus is a Radon measure.

Nowwe can prove the inverse inequality of (2.40). Since μ is outer regular, for any
K ∈ 𝒦 and ϵ > 0, there exists A ∈ 𝒯 such that K ⊆ A and μ(A) < μ(K) + ϵ. Then by
Lemma A.9 there exists ̂f ∈ Cc(X) such that ̂f (X) ⊆ [0, 1], ̂f |K = 1, thus ̂f ≥ χK , and
supp ̂f ⊆ A. By (2.32) it follows that

inf{⟨F, f ⟩ | f ∈ Cc(X), f ≥ χK} ≤ ⟨F, ̂f ⟩ ≤ μ(A) < μ(K) + ϵ,
whence by the arbitrariness of ϵ

inf{⟨F, f ⟩ | f ∈ Cc(X), f ≥ χK} ≤ μ(K). (2.41)

By (2.40)–(2.41) we obtain (2.33), and the result follows.

Proof of Theorem 2.6.1. (i) Let f ∈ Cc(X); it is not restrictive to suppose f (X) ⊆ [0, 1].
Set K0 := supp f , Kj,n := {f ≥ j

n } for any n ∈ ℕ and j = 1, . . . , n. Clearly, every set Kj,n is
compact, and we have Kn,n = {f = 1} ⊆ ⋅ ⋅ ⋅ ⊆ Kj,n ⊆ Kj−1,n ⊆ ⋅ ⋅ ⋅ ⊆ K0. For any x ∈ X, set

fj,n(x) := {{{{{{{
1
n if x ∈ Kj,n,
f (x) − j−1

n if x ∈ Kj−1,n \ Kj,n,
0 if x ∈ X \ Kj−1,n.

Then for all j, n, as above, we have fj,n ∈ Cc(X), fj,n(X) ⊆ [0, 1],∑nj=1 fj,n = f , and
χKj,n
n
≤ fj,n ≤ χKj−1,nn

⇒ 1
n

n∑
j=1

χKj,n ≤ f ≤ 1n n∑
j=1

χKj−1,n . (2.42)
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Let μ be the Radon measure given by Lemma 2.6.2. Then from (2.42), for every
n ∈ ℕ, we obtain

1
n

n∑
j=1

μ(Kj,n) ≤ ∫
X

fdμ ≤ 1
n

n∑
j=1

μ(Kj−1,n). (2.43)

Let us prove that also

1
n

n∑
j=1

μ(Kj,n) ≤ ⟨F, f ⟩ ≤ 1n n∑
j=1

μ(Kj−1,n) (n ∈ ℕ). (2.44)

Indeed, from the first inequality in (2.42) we get nfj,n ≥ χKj,n , and hence by (2.33)
μ(Kj,n) ≤ ⟨F, nfj,n⟩ = n⟨F, fj,n⟩ ⇒ μ(Kj,n)

n
≤ ⟨F, fj,n⟩.

Moreover, we have supp fj,n ⊆ Kj−1,n by definition and nfj,n ≤ χKj−1,n by (2.42). On the
other hand, since by Lemma 1.3.2(ii) the compact set Kj−1,n is μ-outer regular, there
exists a decreasing sequence {Am} ⊆ 𝒯 such that Kj−1,n ⊆ Am for any m ∈ ℕ and
μ(Kj−1,n) = limm→∞ μ(Am). Then by (2.32) we obtain that⟨F, nfj,n⟩ = n⟨F, fj,n⟩ ≤ μ(Am) ∀m ∈ ℕ ⇒ ⟨F, fj,n⟩ ≤ μ(Kj−1,n)n

.
Therefore, for any n ∈ ℕ and j = 1, . . . , n, we have

μ(Kj,n)
n
≤ ⟨F, fj,n⟩ ≤ 1nμ(Kj−1,n),

whence (2.44) follows.
From (2.43)–(2.44) we obtain⟨F, f ⟩ − ∫

X

fdμ
 ≤ 1n n∑

j=1
[μ(Kj−1,n) − μ(Kj,n)] = μ(K0) − μ(Kn,n)n

≤ μ(K0)
n
.

Letting n→∞ in this inequality gives (2.31).
Let us prove the uniqueness statement. To this purpose, it suffices to show that

every Radon measure μ such that (2.31) holds also satisfies (2.33) (in fact, by inner
regularity twoRadonmeasures that coincide on𝒦 coincide onX). Let (2.31) hold. Then
for any K ∈ 𝒦 and any f ∈ Cc(X), f ≥ χK we have⟨F, f ⟩ = ∫

X

f dμ ≥ μ(K) ⇒ μ(K) ≤ inf{⟨F, f ⟩ | f ∈ Cc(X), f ≥ χK}.
 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



76 | 2 Scalar integration

Conversely, by Lemma 1.3.2(ii) every K ∈ 𝒦 is μ-outer regular, and thus for any ϵ > 0,
there exists A ∈ 𝒯 such that K ⊆ A and μ(A) < μ(K) + ϵ. Then by Lemma A.9 there
exists ̄f ∈ Cc(X) such that χK ≤ ̄f ≤ χA. Therefore, for any ϵ > 0, we have⟨F, ̄f ⟩ = ∫

X

̄f dμ ≤ μ(A) < μ(K) + ϵ,
whence by the arbitrariness of ϵ

μ(K) ≥ inf{⟨F, f ⟩ | f ∈ Cc(X), f ≥ χK}.
Hence the claim follows.

(ii) If μ is finite, then from (2.31) we get⟨F, f ⟩ = ∫
X

f dμ
 ≤ ‖f ‖∞ μ(X) for any f ∈ Cc(X),

and thus F is bounded, and ‖F‖ ≤ μ(X). Conversely, if F is bounded, then by (2.31) we
have ∫

X

f dμ
 = ⟨F, f ⟩ ≤ ‖F‖‖f ‖∞ for any f ∈ Cc(X).

Then for any K ∈ 𝒦 and f ∈ Cc(X) such that f (X) ⊆ [0, 1] and f ≥ χK , we have μ(K) ≤‖F‖, whence by the inner regularity of μ
μ(X) = sup{μ(K) | K ∈ 𝒦} ≤ ‖F‖.

This completes the proof.

Let us prove a companion result of Theorem 2.6.1 for the space C0(X).
Theorem 2.6.3. Let X be a locally compact Hausdorff space, and let F : C0(X) → ℝ be
a positive linear functional. Then there exists a unique Radon measure μ on X such that
C0(X) ⊆ L1(X,ℬ, μ) and ⟨F, f ⟩ := ∫

X

f dμ for all f ∈ C0(X). (2.45)

Moreover, μ is finite and satisfies (2.32)–(2.33).

For the proof, we need the following lemma of independent interest.

Lemma 2.6.4. Let X be a locally compact Hausdorff space. Then every positive linear
functional F : C0(X)→ ℝ is bounded.

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.6 Riesz representation theorem: positive functionals | 77

Proof. By contradiction let F be unbounded. Then there exists a sequence {fn} ⊆ C0(X)
such that ‖fn‖∞ = 1 and |⟨F, fn⟩| ≥ n3 for all n ∈ ℕ. It is not restrictive to assume that
fn ≥ 0, since |⟨F, fn⟩| ≤ ⟨F, |fn|⟩ (n ∈ ℕ). Since ∑∞n=1 ‖fn‖∞n2 < ∞, the series ∑∞n=1 fn

n2

converges in C0(X). Set f := ∑∞n=1 fn
n2 . Then

fn
n2 ≤ f for all n ∈ ℕ, and thus n ≤ ⟨F,fn⟩n2 ≤⟨F, f ⟩ <∞, a contradiction.

Proof of Theorem 2.6.3. By Theorem 2.6.1(i) there exists a unique Radon measure μ
such that the restriction F̂ := F|Cc(X) can be represented as in (2.31), and (2.32)–(2.33)
hold. By Lemma 2.6.4 F is bounded, and thus F̂ is also bounded. Hence by Theo-
rem 2.6.1(ii) the measure μ is finite, and thus the linear functional

G : Cc(X)→ ℝ, ⟨G, f ⟩ := ∫
X

f dμ,
is well defined and bounded. Since Cc(X) is dense in C0(X) and F = G on Cc(X), the
result follows.

It is useful to extend the above considerations to the space Cb(X). The following
analogue of Lemma 2.6.2 can be proven (see [45, Lemma VIII.2.11]).

Lemma 2.6.5. Let X be a locally compact Hausdorff space. Then for any positive linear
functional F : Cb(X)→ ℝ, there exists μ ∈ R+f (X) such that∫

X

f dμ ≤ ⟨F, f ⟩ for all f ∈ Cb(X), f ≥ 0. (2.46)

In particular, we have Cb(X) ⊆ L1(X,ℬ(X), μ).
The proof of Lemma 2.6.5 requires a suitable modification of that of Lemma 2.6.2.

Let us only mention that

μ(A) = sup{μ0(K) | K compact, K ⊆ A} for any open A ⊆ X, A ̸= 0, (2.47)

where

μ0(K) := inf{⟨F, f ⟩ | f ∈ Cc(X), f ≥ χK} for any compact K ⊆ X. (2.48)

Now we can prove the following result.

Proposition 2.6.6. Let X be a locally compact Hausdorff space. Let F : Cb(X) → ℝ
be linear and positive, and let μ ∈ R+f (X) be given by Lemma 2.6.5. Then the following
statements are equivalent:
(i) we have ⟨F, f ⟩ = ∫

X

f dμ for any f ∈ Cb(X); (2.49)
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(ii) for any ϵ > 0, there exists a compact subset K ⊆ X such that ⟨F, f ⟩ < ϵ for all
f ∈ Cb(X) such that f (X) ⊆ [0, 1] and f |K = 0.

If any of these statements holds, then μ is the unique element ofR+f (X) such that (2.49)
is satisfied.

Proof. The uniqueness statement follows from (2.49) and Theorem 2.6.3.
(i)⇒(ii). Choosing f = 1 in (2.49) gives ⟨F, 1⟩ = μ(X). Let ϵ > 0 be fixed. By Propo-

sition A.2 X is σ-compact, and thus there exists a compact subset K ⊆ X such that
μ(K) > μ(X) − ϵ. Then using inequality (2.46), for all f ∈ Cb(X) with f (X) ⊆ [0, 1] and
f |K = 0, we get

μ(X) − ⟨F, f ⟩ = ⟨F, 1⟩ − ⟨F, f ⟩ = ⟨F, 1 − f ⟩ ≥ μ(K) > μ(X) − ϵ,
whence the claim follows.

(ii)⇒(i). by (2.46) we have μ(X) ≤ ⟨F, 1⟩. Let us prove the inverse inequality. Let
ϵ > 0 be fixed. Then by assumption there exists a compact subset K ⊆ X such that⟨F, f ⟩ < ϵ for all f ∈ Cb(X) such that f (X) ⊆ [0, 1] and f |K = 0. By (2.47)–(2.48) and
Lemma 1.3.2(ii) there exists g ∈ Cb(X) such that g(X) ⊆ [0, 1], g|K = 1, and ⟨F, g⟩ <
μ(K) + ϵ. Then we have ⟨F, 1 − g⟩ < ϵ, whence⟨F, 1⟩ = ⟨F, g⟩ + ⟨F, 1 − g⟩ < μ(K) + 2ϵ ≤ μ(X) + 2ϵ.
By the arbitrariness of ϵ we obtain that ⟨F, 1⟩ ≤ μ(X). It follows that ⟨F, 1⟩ = μ(X).

We can now prove equality (2.49) for any f ∈ Cb(X) such that f (X) ⊆ [0, 1] (whence
the general case plainly follows). Applying inequality (2.46) to the function 1 − f , we
get

μ(X) − ∫
X

f dμ = ∫
X

(1 − f ) dμ ≤ ⟨F, 1 − f ⟩ = ⟨F, 1⟩ − ⟨F, f ⟩ = μ(X) − ⟨F, f ⟩,
whence ∫X f dμ ≥ ⟨F, f ⟩. Combining the above inequality with (2.46) proves the re-
sult.

2.7 Riesz representation theorem: bounded functionals

LetX be a locally compactHausdorff space. Consider theBanach spaceC0(X) endowed
with the supremum norm and the Banach space Rf (X) of finite signed Radon mea-
sures on X endowed with the norm

μ → ‖μ‖Rf (X) := |μ|(X).
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We want to prove that the dual space (C0(X))∗ can be identified withRf (X). More ex-
actly, consider the map

T : Rf (X)→ (C0(X))∗, ⟨T(μ), f ⟩ := ∫
X

f dμ, (2.50)

for μ ∈ Rf (X) and f ∈ C0(X). Then the following holds.
Theorem 2.7.1. Let X be a locally compact Hausdorff space. Then the map T defined
in (2.50) is an isometric isomorphism ofRf (X) onto (C0(X))∗.

The proof of Theorem 2.7.1 relies on the following lemma, whose proof is given at
the end of this subsection.

Lemma 2.7.2. Let X be a locally compact Hausdorff space, and let F : C0(X) → ℝ be a
bounded linear functional. Then there exist positive linear functionals F± : C0(X) → ℝ
such that

F = F+ − F−. (2.51)

Moreover:
(i) we have ⟨F+, f ⟩ = sup{⟨F, g⟩ | g ∈ C0(X), 0 ≤ g ≤ f }; (2.52)

(ii) decomposition (2.51) is minimal in the following sense: if we have F = F1 − F2 with
positive linear functionals F1, F2 on C0(X), then the linear functionals F1 − F+ =
F2 − F− are positive.

Remark 2.7.1. Decomposition (2.51) is called the Jordan decomposition of F. Observe
that the minimality statement (ii) is the counterpart of that in Remark 1.8.2(i).

Proof of Theorem 2.7.1. Let us first prove that T is surjective. Fix F ∈ (C0(X))∗, and let
F± : C0(X)→ [0,∞) be the positive linear functionals given by Lemma 2.7.2 (recall that
by Lemma 2.6.4 F± are bounded). Then by Theorem 2.6.3 there exist two finite Radon
measures μ± on X such that ⟨F±, f ⟩ := ∫X f dμ± for any f ∈ C0(X). Then μ := μ+ − μ−
belongs toRf (X) (see Definition 1.8.5(ii)), and by equalities (2.10), (2.50), and (2.51) we
obtain ⟨F, f ⟩ = ∫

X

f dμ = ⟨T(μ), f ⟩ for all f ∈ C0(X).
Hence F = T(μ) in (C0(X))∗, and thus the claim follows.
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Let us now prove that T is isometric and thus injective. Clearly, by its very defini-
tion we have T(μ)(C0(X))∗ ≤ |μ|(X) = ‖μ‖Rf (X) for all μ ∈ Rf (X).
To prove the inverse inequality, fix ϵ > 0. By the first equality in (1.52) there exist
disjoint E1, . . . ,En ∈ ℬ such that X = ⋃ni=1 Ei and ∑ni=1 |μ(Ei)| > |μ|(X) − ϵ. Then by the
regularity of μ there exist K1, . . . ,Kn ∈ 𝒦 and disjoint A1, . . . ,An ∈ 𝒯 such that:
(a) ∑ni=1 |μ(Ki)| > |μ|(X) − 2ϵ;
(b) Ki ⊆ Ei ⊆ Ai, |μ|(Ai \ Ki)| < ϵ

n for every i = 1, . . . , n.
Moreover, by Lemma A.9, for every i = 1, . . . , n, there exists fi ∈ Cc(X) such that fi(X) ⊆[0, 1], fi|Ki = 1, and supp fi ⊆ Ai.

Set g := ∑ni=1[sgn μ(Ki)]fi. Then ‖g‖∞ ≤ 1, and we have∫
X

g dμ
 ≥ ∫

X

g dμ = n∑
i=1
∫
Ai

g dμ = n∑
i=1
( ∫
Ai\Ki

g dμ + [sgn μ(Ki)] ∫
Ki

fi dμ)
≥ n∑

i=1
(−|μ|(Ai \ Ki) + μ(Ki)) > |μ|(X) − 3ϵ.

By the arbitrariness of ϵ, from the above inequality we getT(μ)(C0(X))∗ ≥ ⟨T(μ), g⟩ = ∫
X

g dμ
 ≥ |μ|(X) = ‖μ‖Rf (X).

Then the conclusion follows.

Proof of Lemma 2.7.2. Set⟨F+, f ⟩ := sup
g∈Sf
⟨F, g⟩, Sf := {g ∈ C0(X) | 0 ≤ g ≤ f } for all f ∈ C0(X), f ≥ 0,⟨F+, f ⟩ := ⟨F+, f +⟩ − ⟨F+, f −⟩ for all f ∈ C0(X).

Clearly, we have ⟨F+, f ⟩ ≥ 0 for f ≥ 0 and⟨F+, f ⟩ ≤ ⟨F+, f +⟩ + |⟨F+, f −⟩ ≤ ‖F‖(C0(X))∗‖f ‖∞
for all f ∈ C0(X), and thus F+ is positive and bounded with ‖ F+‖(C0(X))∗ ≤ ‖ F‖(C0(X))∗ .
Moreover, by definition we have ⟨F+, f ⟩ ≥ ⟨F, f ⟩ for all f ∈ C0(X), f ≥ 0.

Let us prove that F+ is linear. It is immediately seen that ⟨F+, cf ⟩ = c ⟨F+, f ⟩ for all
c ≥ 0 and f ≥ 0. Then for all f ∈ C0(X):

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.7 Riesz representation theorem: bounded functionals | 81

(a) if c ≥ 0, then⟨F+, cf ⟩ = ⟨F+, (cf )+⟩ − ⟨F+, (cf )−⟩ = ⟨F+, cf +⟩ − F+(cf −)= c⟨F+, f +⟩ − c⟨F+, f −⟩ = c⟨F+, f ⟩;
(b) if c < 0, then⟨F+, cf ⟩ = ⟨F+, (cf )+⟩ − ⟨F+, (cf )−⟩ = ⟨F+, |c|f −⟩ − ⟨F+, |c|f +⟩= |c|[⟨F+, f −⟩ − ⟨F+, f +⟩] = c[⟨F+, f +⟩ − ⟨F+, f −⟩] = c⟨F+, f ⟩.
Hence we have ⟨F+, cf ⟩ = c ⟨F+, f ⟩ for all c ∈ ℝ and f ∈ C0(X). The conclusion will
follow if we prove that⟨F+, f1 + f2⟩ = ⟨F+, f1⟩ + ⟨F+, f2⟩ for all f1, f2 ∈ C0(X), f1, f2 ≥ 0; (2.53)

in fact, by the definition of F+ this entails that the same equality holds for all f1, f2 ∈
C0(X).

Let f1, f2 ∈ C0(X), f1, f2 ≥ 0, be fixed. For any g1 ∈ Sf1 and g2 ∈ Sf2 we have⟨F, g1⟩ + ⟨F, g2⟩ = ⟨F, g1 + g2⟩ ≤ sup
g∈Sf1+f2
⟨F, g⟩ = ⟨F+, f1 + f2⟩,

and thus ⟨F+, f1 + f2⟩ ≥ ⟨F+, f1⟩ + ⟨F+, f2⟩. To prove the reverse inequality, let 0 ≤ g ≤
f1 + f2. Set g1 := min{g, f1}. Thus g1 ∈ Sf1 , and g2 := g − g1, whence plainly g2 = [g − f1]+.
Since

g2 − f2 = [g − f1]+ − f2 = {−f2 if g ≤ f1,
g − (f1 + f2) if g > f1,

we obtain that 0 ≤ g2 ≤ f2, that is, g2 ∈ Sf2 . It follows that⟨F, g⟩ = ⟨F, g1 + g2⟩ = ⟨F, g1⟩ + ⟨F, g2⟩ ≤ ⟨F+, f1⟩ + ⟨F+, f2⟩
for all g ∈ Sf , whence ⟨F+, f1 + f2⟩ ≤ ⟨F+, f1⟩ + ⟨F+, f2⟩.

Therefore F+ is a positive linear functional on C0(X). Set F− := F+ − F; then F− :
C0(X) → ℝ is linear and positive, since ⟨F−, f ⟩ = ⟨F+, f ⟩− ⟨F, f ⟩ ≥ 0 for all f ≥ 0. Hence
equality (2.51) and claim (i) follow. To prove claim (ii), let f ∈ C0(X), f ≥ 0. Since F1
and F2 are positive, for any g ∈ Sf , we have ⟨F1, f ⟩ ≥ ⟨F1, g⟩ ≥ ⟨F1, g⟩ − ⟨F2, g⟩ = ⟨F, g⟩,
and thus ⟨F1, f ⟩ ≥ ⟨F+, f ⟩. This completes the proof.

Let us briefly discuss how the above situation changes when C0(X) is replaced by
Cc(X). Let μ1, μ2 be (positive) Radon measures. For any f ∈ Cc(X), set⟨F, f ⟩ := ∫

X

f dμ1 − ∫
X

f dμ2; (2.54)
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the definition is well posed since both integrals in the right-hand side are finite. Then
for any compact set K ⊆ X and for any f ∈ Cc(X) with supp f ⊆ K, we have⟨F, f ⟩ ≤ [μ1(K) + μ2(K)]‖f ‖∞.
By this inequality F is locally bounded in the following sense.

Definition 2.7.1. A linear functional F : Cc(X)→ ℝ is locally bounded, if for anyK ∈ 𝒦,
there exists cK > 0 such that⟨F, f ⟩ ≤ cK‖f ‖∞ for all f ∈ Cc(X) with supp f ⊆ K.
Lemma 2.7.3. Let X be a locally compact Hausdorff space.
(i) Every positive linear functional on Cc(X) is locally bounded.
(ii) Let F : Cc(X) → ℝ be a locally bounded linear functional. Then there exist positive

linear functionals F± : Cc(X)→ ℝ such that equality (2.51) holds, and claims (i)–(ii)
of Lemma 2.7.2 are satisfied.

Proof. We only prove (i), since the proof of (ii) is the same as that of Lemma 2.7.2 with
C0(X) replaced by Cc(X). Let K ∈ 𝒦, and letφK ∈ Cc(X),φK(X) ⊆ [0, 1],φK = 1 in K (see
Lemma A.9). For any f ∈ Cc(X) with supp f ⊆ K, we have‖f ‖∞ φK ± f = (‖f ‖∞ ± f )φK ≥ 0 in X.
Since ‖f ‖∞ φK ± f ∈ Cc(X) and F is positive and linear, it follows that⟨F, ‖f ‖∞φK ± f ⟩ = ⟨F,φK⟩‖f ‖∞ ± ⟨F, f ⟩ ≥ 0,
and hence |⟨F, f ⟩| ⩽ cK‖f ‖∞ with cK := ⟨F,φK⟩.

From Lemma 2.7.3 and Theorem 2.6.1 we get the following result.

Theorem 2.7.4. Let X be a locally compact Hausdorff space, and let F : Cc(X) → ℝ be
a locally bounded linear functional. Then there exists a unique couple μ1, μ2 of mutually
singular Radon measures on X such that equality (2.54) holds.

Proof. Since the measures μ1 and μ2 in equality (2.54) are mutually singular, the
uniqueness claim is easily checked.

Let us address the existence part. Let F± : Cc(X) → ℝ be the positive linear func-
tionals associatedwith F by Lemma 2.7.3. Thus equality (2.51) holds, and claims (i)–(ii)
of Lemma 2.7.3 are satisfied. Moreover, by Theorem 2.6.1 there exists a unique pair of
Radon measures μ1 and μ2 such that⟨F+, f ⟩ = ∫

X

f dμ1, ⟨F−, f ⟩ = ∫
X

f dμ2 (2.55)
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for all f ∈ Cc(X). By equalities (2.51) and (2.55) the measures μ1 and μ2 satisfy (2.54).
Since, by inner regularity, two Radon measures that coincide on𝒦 are the same mea-
sure, the conclusion will follow if we prove the following:

Claim. For every K ∈ 𝒦, the measures μ1 ⌞ K and μ2 ⌞ K are mutually singular.

To prove the claim, fix K ∈ 𝒦 and set μ := μ1 ⌞ K − μ2 ⌞ K. Clearly, |μ|(X) ≤ μ1(K) +
μ2(K) <∞, and thus μ ∈ Rf (X). The claim will follow if we prove that μ1 ⌞ K = μ+ and
μ2 ⌞ K = μ−, where μ = μ+ − μ− is the Jordan decomposition of μ. In fact, it suffices to
show that

μ1 ⌞ K ≤ μ+, μ2 ⌞ K ≤ μ−, (2.56)

since the inverse inequalities follow from the very definition of μ± (see Remark 1.8.2).
To prove (2.56), let Fi : Cc(X)→ ℝ (i = 1, 2) be the positive linear functionals⟨F1, f ⟩ := ∫

X

f dμ+, ⟨F2, f ⟩ := ∫
X

f dμ− (f ∈ Cc(X)).
Set

G± := F±|Cc(K), G := F|Cc(K) = G+ − G−.
Then we have G+ − G− = G = F1 − F2 on Cc(K), and by Lemma 2.7.3(ii) the linear

functionals F1 − G+ and F2 − G− are positive on Cc(K). This implies that∫
K

f dμ1 ≤ ∫
K

f dμ+, ∫
K

f dμ2 ≤ ∫
K

f dμ− for all f ∈ Cc(K), f ≥ 0,
whence (2.56) follows. This completes the proof.

Following [24], we state the following definition.

Definition 2.7.2. Let (X, 𝒯 ) be a Hausdorff space. By a signed Radon measure on X we
mean a locally bounded linear functional on Cc(X).
Remark 2.7.2. In view of Theorem 2.7.4, there is one-to-one correspondence between
signed Radon measures and ordered couples (μ1, μ2) of (positive) mutually singular
Radon measures. Carefully observe that the measures μ1, μ2 given by Theorem 2.7.4
need not be finite, and thus in general their difference is not defined (also observe
that a signed Radon measure need not be a signed measure; see Definition 1.8.1(ii)).
However,
a) Definition 2.7.2 reduces toDefinition 1.8.5, that is, namely, a signedRadonmeasure

is a finite signed Radon measure if both μ1 and μ2 are finite;
b) a signed Radon measure is a signed measure if at least one of μ1, μ2 is finite.
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The vector space of signed Radon measures on X will be denoted byR(X). It is a
locally convex space with topology generated by seminorms

pK(μ) := (μ1 + μ2)(K) for all K ∈ 𝒦, μ ≡ (μ1, μ2) ∈ R(X).
2.8 Convergence in Lebesgue spaces

2.8.1 Preliminary remarks

Let (X,𝒜, μ) be a measure space. We denote by the usual symbol Lp(X) ≡ Lp(X,𝒜, μ)
the Lebesgue space of order p ∈ [1,∞]:

Lp(X) := {f : X → ℝ 𝒜-measurable | ‖f ‖p <∞},
where

‖f ‖p := (∫
X

|f |p dμ) 1
p

if p ∈ [1,∞),‖f ‖∞ := ess sup |f | = inf{C > 0 | f (x) ≤ C for μ-a. e. x ∈ X}.
The map ‖ ⋅ ‖p : Lp(X) → [0,∞), f → ‖f ‖p, is a seminorm. As usual, we identify

functions that are equal μ-a. e. in X. More exactly:
(i) we replaceLp(X)by its quotientLp(X)/∼with respect to the relation of equivalence

“f ∼ g ⇔ f = g μ-a.e.”;
(ii) by abuse of notation we denote again Lp(X)/∼ by Lp(X).
ThenLp(X) is anormedvector space (in fact, aBanach space)withnorm f → ‖f ‖Lp(X) :=‖f ‖p (p ∈ [1,∞]).
Remark 2.8.1. For any open setU ⊆ ℝN , we set Lp(U) ≡ Lp(U ,ℬN ∩U , λN |ℬN∩U ), where
ℬN ∩ U is the trace of the Borel σ-algebra ℬN on U, and λN |ℬN∩U is the restriction of
the Lebesgue measure λN . We will say that f ∈ Lploc(U) if f ∈ Lp(V ,ℬN ∩ V , λN |ℬN∩V ) for
every open subset V ⊂⊂ X (i. e., the closure V is compact, and V ⊂ U).

An easy application of the dominated convergence theorem gives the following
result.

Lemma 2.8.1. Let (X,𝒜, μ) be a measure space. Then for any p ∈ [1,∞), the set Sℚ(X)
of simple functions with rational coefficients is dense in Lp(X).
Theorem 2.8.2. Let (X,𝒜) be a separable measurable space, and let μ : 𝒜 → [0,∞] be
σ-finite. Then for any p ∈ [1,∞) the space Lp(X) ≡ Lp(X,𝒜, μ) is separable.
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Proof. Fix f ∈ Lp(X) and ϵ > 0. Then there exists t ∈ Sℚ such that μ({t ̸= 0}) <∞ and‖f − t‖p < ϵ. Indeed, let {En} ⊆ 𝒜 be a nondecreasing sequence such that X = ⋃∞n=1 En,
μ(En) <∞ for all n ∈ ℕ. By Lemma 2.8.1 there exists s ∈ Sℚ such that ‖f − s‖p < ϵ

2 . Set
tn := sχEn (n ∈ ℕ). Then {tn} ⊆ Sℚ, and ‖tn − s‖pp = ∫Ecn |s|p dμ→ 0 as n→∞. Hence the
claim follows.

Therefore it is not restrictive to assume that μ(X) <∞. Since by assumption (X,𝒜)
is separable, there exists a countable family 𝒞 ⊆ 𝒫(X) such that σ0(𝒞) = 𝒜. Clearly,
both the algebra𝒜0 ≡ 𝒜0(𝒞) generated by 𝒞 and the set

Sℚ,𝒜0
:= { n∑

k=1
ckχGk
| Gk ∈ 𝒜0, ck ∈ ℚ, n ∈ ℕ}

are countable. It is a routine matter to show thatSℚ,𝒜0
is dense inSℚ, and hence the

result follows.

Let us also prove the following result.

Lemma 2.8.3. LetX bea locally compactHausdorff space, and let μ ∈ R+(X)beσ-finite.
Then for any p ∈ [1,∞), the space Cc(X) is dense in Lp(X).
Proof. It is not restrictive to suppose μ(X) <∞, and thus by Lemma 1.3.2(i) μ is regular.
Fix E ∈ ℬ(X). By Lemma 2.8.1 it suffices to prove that there exists {gn} ⊆ Cc(X) such that
gn → g := χE inLp(X). To this purpose, observe that by the regularity ofμ, for any δ > 0,
there exist a compact setK andopen setA such thatK ⊆ E ⊆ Aandμ(A\K) < δ. Arguing
as in the proof of Proposition 2.1.16, we obtain a function ζ ∈ Cc(X) with supp ζ ⊆ A
such that μ({g ̸= ζ }) < δ and ‖ζ ‖∞ = 1. Set δ = 1

n (n ∈ ℕ). Then there exists a sequence{gn} ⊆ Cc(X) such that gn → g in measure and thus in Lp(X) for any p ∈ [1,∞) (see
Proposition 2.8.8(i)). Hence the result follows.

2.8.2 Uniform integrability

Let us first state the following definition.

Definition 2.8.1. Let p ∈ [1,∞). A subset F ⊆ Lp(X) is called p-uniformly integrable if
for any ϵ > 0:
(i) there exists E ∈ 𝒜 with μ(E) <∞ such that supf∈F ∫Ec |f |p dμ < ϵ;
(ii) there exists δ > 0 such that supf∈F ∫F |f |p dμ < ϵ for all F ∈ 𝒜 with μ(F) < δ.
We say that F ⊆ L1(X) is uniformly integrable if it is 1-uniformly integrable.

Remark 2.8.2. (i) Let f ∈ Lp(X). Themap σ : 𝒜→ [0,∞), σ(E) := ∫E |f |p dμ for E ∈ 𝒜,
is a finite measure on (X,𝒜); moreover, σ ≪ μ. Hence every singleton F = {f },
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f ∈ Lp(X) (more generally, every finite set F = {f1, . . . , fn} ⊆ Lp(X)) is p-uniformly
integrable.

(ii) Condition (i) of Definition 2.8.1 is trivially satisfied with E = X if μ is finite.

If p = 1, then uniformly integrable subsets are characterized as follows.

Proposition 2.8.4. Let (X,𝒜, μ) be a measure space. Then the following statements are
equivalent:
(i) F ⊆ L1(X) is uniformly integrable;
(ii) for any nonincreasing sequence {En} ⊆ 𝒜 with⋂∞n=1 En = 0, we have

lim
n→∞

sup
f∈F
∫
En

|f | dμ = 0.
Proof. (i)⇒(ii). Fix ϵ>0, and let δ > 0 be as in Definition 2.8.1(ii). Since limn→∞ μ(En)=
0, there exists n̄ ∈ ℕ such that μ(En) < δ for all n ∈ ℕ, and thus supf∈F ∫En |f | dμ < ϵ.
Hence the claim follows.

(ii)⇒(i). Let us show that both requirements of Definition 2.8.1 are satisfied.
By contradiction, let Definition 2.8.1(i) not hold. Thus there exists k > 0 such that

for any F ∈ 𝒜 with μ(F) < ∞, we have ∫Fc |f | dμ ≥ k for some f ∈ F . Let F1 ∈ 𝒜 with
μ(F1) <∞, let f1 ∈ F be such that∫Fc1 |f1| dμ ≥ k, and let F2 ∈ 𝒜, F2 ⊇ F1, with μ(F2) <∞
be such that ∫Fc2 |f1| dμ < k

2 . Then we have∫
F2\F1

|f1| dμ = ∫
Fc1

|f1| dμ − ∫
Fc2

|f1| dμ ≥ k2 .
Arguing recursively gives a nondecreasing sequence {Fn} ⊆ 𝒜 and a sequence {fn} ⊆ F

such that ∫Fn+1\Fn |fn| dμ ≥ k
2 for any n. Set F := ⋃∞n=1 Fn, En := F \ Fn (n ∈ ℕ). Then the

sequence {En} is nonincreasing, and⋂∞n=1 En = 0, and for all n, we have
sup
f∈F
∫
En

|f | dμ ≥ ∫
En

|fn| dμ ≥ ∫
Fn+1\Fn

|fn| dμ ≥ k2 ,
a contradiction.

We also argue by absurd to prove that Definition 2.8.1(ii) holds. Indeed, let there
exist k > 0 such that for any n ∈ ℕ, there exist Fn ∈ 𝒜with μ(Fn) < 1

2n and fn ∈ F such
that ∫Fn |fn| dμ ≥ k. Set F∞ := ⋂∞m=1⋃∞n=m Fn, En := ⋃∞m=n(Fm \ F∞) (n ∈ ℕ). It is easily
seen that μ(F∞) ≤ limm→∞∑∞n=m 1

2n = 0. Then the sequence {En} is nonincreasing and⋂∞n=1 En = 0, and for all n, we have
sup
f∈F
∫
En

|f | dμ ≥ sup
f∈F
∫
Fn

|f | dμ ≥ ∫
Fn

|fn| dμ ≥ k,
again a contradiction. Hence the result follows.
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Remark 2.8.3. If F ⊆ L1(X), then set F± := {f± | f ∈ F } and Fh := {f − h | f ∈ F } for
h ∈ L1(X). It is easily seen that F is uniformly integrable if and only if the same holds
for F± and Fh.

We will use the following lemma.

Lemma 2.8.5. Let (X,𝒜, μ)be ameasure space, and letF ⊆ L1(X)be not uniformly inte-
grable. Then there exist a sequence {En} ⊆ 𝒜with⋂∞n=1 En = 0 and limp→∞ μ(⋃∞n=p En) =
0 and a sequence {fn} ⊆ F with the following property: for any h ∈ L1(X), there exists
k = kh > 0 such that for all n ∈ ℕ, we have∫

En

(fn − h) dμ ≥ k. (2.58)

Proof. Let us first show that if F is not uniformly integrable, then there exist se-
quences {En} ⊆ 𝒜 with ⋂∞n=1 En = 0 and limp→∞ μ(⋃∞n=p En) = 0 and {fn} ⊆ F and a
numberm > 0 such that ∫

En

fn dμ
 ≥ 2m for all n ∈ ℕ. (2.59)

In fact, by Remark 2.8.3 at least one of the sets F± is not uniformly integrable. Let
F+ be not uniformly integrable (for F−, the argument is analogous). Then by Propo-
sition 2.8.4 we can findm > 0, {fn} ⊆ F , and a nonincreasing sequence {E′n} ⊆ 𝒜 with⋂∞n=1 E′n = 0 such that ∫

E′n

f +n dμ ≥ 2m for all n ∈ ℕ.
Set En := E′n ∩ {fn ≥ 0}. Then we have ⋂∞n=1 En = 0 and limp→∞ μ(⋃∞n=p En) =
limp→∞ μ(E′p) = 0 since⋃∞n=p En ⊆ ⋃∞n=p E′n = E′p. Moreover,∫

En

fn dμ
 = ∫

E′n

f +n dμ ≥ 2m for all n ∈ ℕ,
and thus (2.59) follows.

Now observe that for every h ∈ L1(X), we have∫
En

fn dμ
 ≤ ∫

En

(fn − h) dμ + ∫
En

|h| dμ.
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Since limn→∞ μ(En) = limn→∞ μ(⋃∞j=n Ej) = 0, there exists n̄ ∈ ℕ such that ∫En |h| dμ <
m for all n > n̄. Then by the above inequality and (2.59)∫

En

(fn − h) dμ ≥ m for all n > n̄.
Then setting

k := min{m, min
j=1,...,n̄
{∫
Ej

(fj − h) dμ}},
we obtain (2.58). This proves the result.

Proposition 2.8.6. Let (X,𝒜, μ) be a finite measure space, and let F ⊆ L1(X). Then the
following statements are equivalent:
(i) F is bounded and uniformly integrable;
(ii) limt→∞ supf∈F ∫{|f |≥t} |f | dμ = 0;
(iii) (de la Vallée-Poussin criterion) there exists a continuous increasing function ψ :[0,∞)→ [0,∞] such that ψ(t)

t →∞ as t →∞ and supf∈F ∫X ψ(|f |) dμ <∞.
Proof. (i)⇒(ii). Set C := supf∈F ‖f ‖1 <∞. By the Chebyshev inequality we have

sup
f∈F

μ({|f | ≥ t}) ≤ 1
t
sup
f∈F
∫
{|f |≥t}

|f | dμ ≤ C
t
(t > 0). (2.60)

Fix ϵ > 0, and set t0 := C
δ with δ given by Definition 2.8.1(ii). Then for any t > t0,

from (2.60) we get supf∈F μ({|f | ≥ t}) < δ, whence supf∈F ∫{|f |≥t} |f | dμ ≤ ϵ by the
uniform integrability of F . Hence the claim follows.

(ii)⇒(i). For any ϵ > 0, there exists t0 > 0 such that supf∈F ∫{|f |≥t} |f | dμ < ϵ
2 t for

all t ≥ t0. Then for all F ∈ 𝒜,
sup
f∈F
∫
F

|f | dμ ≤ sup
f∈F
∫

F∩{|f |≤t0}

|f | dμ + sup
f∈F
∫

F∩{|f |>t0}

|f | dμ ≤ t0μ(F) + ϵ2 . (2.61)

If F = X, then from (2.61) we obtain

sup
f∈F
‖f ‖1 ≤ t0μ(X) + ϵ2 <∞,

and thus F is bounded. Moreover, set δ := ϵ
2t0
. Then for any F ∈ 𝒜 with μ(F) < δ,

inequality (2.61) gives

sup
f∈F
∫
F

|f | dμ ≤ t0μ(F) + ϵ2 = ϵ.
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Hence the claim follows.

(iii)⇒(ii). Set D := supf∈F ∫X ψ(|f |) dμ. Since ψ(t)
t → ∞ as t → ∞, for any ϵ > 0,

there exists t0 > 0 such that t
ϵ ≤ ψ(t) for all t > t0, and thus

sup
f∈F
∫
{|f |≥t}

|f | dμ ≤ ϵ sup
f∈F
∫
{|f |≥t}

ψ(|f |) dμ ≤ Dϵ.
Hence the claim follows.

(ii)⇒(iii). By assumption there exists a diverging sequence {tk} ⊆ ℕ such that
sup
f∈F
∫
{|f |≥tk}

|f | dμ ≤ 1
2k+1
.

For every t > 0, set Et := {n ∈ {tk} | n < t} and
ψ(t) := t cardEt = t ∫ℕ χEt (n) dμ#(n) (t > 0),

where μ# : 𝒫(ℕ)→ [0,∞] is the counting measure.
Clearly, ψ : [0,∞) → [0,∞] is increasing, and we have ψ(t)

t → ∞ as t → ∞. In
addition, for any f ∈ F , by the Tonelli theorem we have∫

X

ψ(|f |) dμ = ∫
X

dμ(t) f (t) ∫ℕ χE|f (t)| (n) dμ#(n)= ∫ℕ dμ#(k) ∫{|f |≥tk} |f | dμ = ∞∑k=1 ∫{|f |≥tk} |f | dμ ≤ ∞∑k=1 1
2k+1
≤ 1.

Hence supf∈F ∫X ψ(|f |) dμ < ∞, and thus the result follows by a standard regulariza-
tion of the function ψ.

Definition 2.8.2. Let F ⊆ L1(X) be bounded. The quantity
η(F ) := lim

t→∞
sup
f∈F
∫
{|f |≥t}

|f | dμ (2.62)

is called themodulus of uniform integrability of F .

Remark 2.8.4. By Proposition 2.8.6 a bounded subset F ⊆ L1(X) is uniformly inte-
grable if and only if η(F ) = 0.

Let us prove the following result for future reference.
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Lemma 2.8.7. Let F ⊆ L1(X) be bounded. Then
η(F ) = lim

δ→0+
sup{∫

E

|f | dμ | f ∈ F , E ∈ ℬ such that μ(E) < δ}. (2.63)

Proof. Set η ≡ η(F ), and denote by η1 ≡ η1(F ) the right-hand side of equality (2.63).
The result will follow if we prove both inequalities η1 ≥ η and η1 ≤ η.

Set C := supf∈F ‖f ‖1 <∞ and

Hδ := sup{∫
E

|f | dμ | f ∈ F , E ∈ ℬ such that μ(E) < δ},
and fix arbitrary δ > 0. By (2.62) there exists t0 > 0 such that for all t > t0, there exists̄f ∈ F satisfying ∫

{| ̄f |≥t}

| ̄f | dμ ≥ η − δ. (2.64)

Set t1 := C
δ . Then for all t > t1, by the Chebyshev inequality we have

μ{| ̄f | ≥ t} ≤ 1
t
∫
X

| ̄f | dμ ≤ C
t
< δ. (2.65)

By (2.64)–(2.65) and the definition of Hδ, for any t > max{t0, t1}, we have
Hδ ≥ ∫
{| ̄f |≥t}

| ̄f | dμ ≥ η − δ for all δ > 0,
whence letting δ → 0+, we obtain η1 ≥ η.

To prove the reverse inequality, fix arbitrary ϵ > 0 and t > 0. By the definition of
η1 there exists δ0 ∈ (0, ϵt ) with the following property: for all δ ∈ (0, δ0), there exist̄f ∈ F and E ∈ ℬ with μ(E) < δ such that∫

E

| ̄f | dμ ≥ η1 − ϵ. (2.66)

Since tμ(E) < tδ < tδ0 < ϵ, from (2.66) we get∫
{| ̄f |≥t}

| ̄f | dμ ≥ ∫
E∩{| ̄f |≥t}

| ̄f | dμ = ∫
E

| ̄f | dμ − ∫
E∩{| ̄f |<t}

| ̄f | dμ≥ η1 − ϵ − tμ(E) > η1 − 2ϵ.
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In view of definition (2.62), from this inequality we obtain η ≥ η1 − 2ϵ, whence η ≥ η1
by the arbitrariness of ϵ. This completes the proof.

2.8.3 Strong convergence

If f , fn ∈ Lp(X) (n ∈ ℕ, p ∈ [1,∞]), we say that fn converges to f strongly in Lp(X)
(written fn → f ) if limn→∞ ‖fn − f ‖p = 0.
Proposition 2.8.8. Let (X,𝒜, μ) be a measure space, and let p ∈ [1,∞).
(i) Let fn → f in measure, and let condition (2.12) be satisfied. Then fn → f strongly in

Lp(X).
(ii) If fn → f strongly in Lp(X), then there exists {fnk } ⊆ {fn} such that fnk → f μ-a. e.
(iii) If fn → f strongly in Lp(X), then fn → f in measure.
(iv) If f , fn ∈ Lp(X), fn → f μ-a. e., and ‖fn‖p → ‖f ‖p, then fn → f strongly in Lp(X).
Proof. We only prove claim (iv). By the Fatou lemma we have

2p‖f ‖pp ≤ lim inf
n→∞
∫
X

[2p−1(|f |p + |fn|p) − |f − fn|p]dμ = 2p‖f ‖pp − lim sup
n→∞
‖f − fn‖pp,

and thus the claim follows.

Concerning strong convergence in L∞(X), we have the following:
Proposition 2.8.9. Let fn → f strongly in L∞(X). Then:
(i) fn → f μ-a. e., in measure and almost uniformly;
(ii) if μ(X) < ∞, then there exists {fnk } ⊆ {fn} such that fnk → f strongly in Lp(X) for all

p ∈ [1,∞);
(iii) if condition (2.12) is satisfied, then there exists {fnk } ⊆ {fn} such that fnk → f strongly

in L1(X).
The following result relies on the concept of p-uniform integrability.

Theorem 2.8.10 (Vitali). Let p ∈ [1,∞). Let {fn} ⊆ Lp(X), and let fn → f μ-a. e. in X. Then
the following statements are equivalent:
(i) f ∈ Lp(X), and fn → f in Lp(X);
(ii) the sequence {fn} is p-uniformly integrable.
Proof. (i)⇒(ii). Fix ϵ > 0. Since fn → f in Lp(X), there exists n̄ ∈ ℕ such that ‖fn − f ‖pp <
ϵ
2p for all n > n̄. Then for every F ∈ 𝒜, we have

sup
n>n̄
(∫
F

|fn|p dμ) 1
p ≤ sup

n>n̄
‖fn − f ‖p + (∫

F

|f |p dμ) 1
p ≤ ϵ 1

p

2
+ (∫

F

|f |p dμ) 1
p . (2.67)
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Moreover (see Remark 2.8.2(i)):
(a) there exists E ∈ 𝒜 with μ(E) <∞ such that ∫Ec |f |p dμ < ϵ

2p ;
(b) there exists δ > 0 such that ∫F |f |p dμ < ϵ

2p for all F ∈ 𝒜 with μ(F) < δ.
Then from (2.67) the claim follows.

(ii)⇒(i). By Remark 2.1.2 the function f is 𝒜-measurable. Fix arbitrary ϵ > 0, and
let E ∈ 𝒜 and δ > 0 be as in Definition 2.8.1. Let us first prove that f ∈ Lp(X). Since
by assumption μ(E) <∞, by the Egorov theorem there exists a measurable set Fδ ⊆ E
such that μ(Fδ) < δ and

lim
n→∞

sup
x∈E\Fδ
|fn(x) − f (x)| = 0. (2.68)

On the other hand,
(a) for both G = Ec and G = Fδ, by the Fatou lemma∫

G

|f |p dμ ≤ lim inf
n→∞
∫
G

|fn|p dμ ≤ ϵ;
(b) the sequence {∫x∈E\Fδ |fn(x) − f (x)|p dμ} is bounded, since by (2.68) we have

lim
n→∞
∫

E\Fδ

fn(x) − f (x)p dμ ≤ μ(E) limn→∞
sup
x∈E\Fδ

fn(x) − f (x) = 0,
and thus ∫E\Fδ |f |p dμ <∞.

By (a)–(b) we have∫
X

|f |p dμ = ∫
Ec
|f |p dμ + ∫

E\Fδ

|f |p dμ + ∫
Fδ

|f |p dμ <∞,
and hence f ∈ Lp(X). Now write‖fn − f ‖pp = ∫

Ec
|fn − f |p dμ + ∫

E\Fδ

|fn − f |p dμ + ∫
Fδ

|fn − f |p=: In,1 + In,2 + In,3. (2.69)

Arguing as in (a), by the Fatou lemma we get In,k ≤ 2pϵ (k = 1, 3). Since by (2.68)
we have limn→∞ In,2 = 0, we obtain that lim supn→∞ ‖fn − f ‖pp ≤ 2p+1ϵ. Then by the
arbitrariness of ϵ the claim follows. This completes the proof.

From the Vitali theorem we get the following generalization of the Lebesgue the-
orem (see Theorem 2.2.3).
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Theorem 2.8.11. Let p ∈ [1,∞). Let f , fn ∈ Lp(X) (n ∈ ℕ), and let fn → f μ-a. e. in X.
Suppose that

there exists g ∈ Lp(X), g ≥ 0 such that sup
n∈ℕ |fn| ≤ g μ-a. e. in X. (2.70)

Then f ∈ Lp(X) and fn → f in Lp(X).
Proof. By Remark 2.8.2(i) and condition (2.70) the sequence {fn} is p-uniformly inte-
grable. Then by Theorem 2.8.10 the conclusion follows.

Let us mention the following result.

Lemma 2.8.12. Let μ(X) < ∞, and let 1 ≤ p < q ≤ ∞. Then every bounded subset
F ⊆ Lq(X) is p-uniformly integrable.
Proof. Property (i) of Definition 2.8.1 is obviously satisfied, since by assumptionμ(X) <∞. Concerning (ii), let Cq := supf∈F ‖f ‖q <∞. For any F ∈ 𝒜 with μ(F) < δ, we have

sup
f∈F
∫
F

|f |p dμ ≤ μ(F) q−pq sup
f∈F
‖f ‖pq ≤ Cpq δ q−p

q if q <∞
by the Hölder inequality and

sup
f∈F
∫
F

|f |p dμ ≤ μ(F) sup
f∈F
‖f ‖p∞ ≤ Cp∞ δ if q =∞.

By these inequalities property (ii) of Definition 2.8.1 holds with δ := ( ϵCpq ) q
q−p if q < ∞

and δ := ϵ
Cp∞

if q =∞. Hence the result follows.
The following result is an immediate consequence of the Vitali theorem and

Lemma 2.8.12.

Proposition 2.8.13. Let μ(X) <∞, and let 1 ≤ p < q ≤∞. Let {fn} ⊆ Lq(X) be a bounded
sequence converging μ-a. e. in X to some function f : X → ℝ. Then fn → f strongly in
Lp(X).
2.8.4 Weak and weak∗ convergence

Let q be the Hölder conjugate of p ∈ [1,∞]:
q := {{{{{{{

1 if p =∞,
p
p−1 if p ∈ (1,∞),∞ if p = 1. (2.71)
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Concerning duality of Lebesgue spaces, the following result is well known.

Theorem 2.8.14 (Riesz). Let p ∈ [1,∞) and q be as in (2.71); if p = 1, let μ be σ-finite.
Then the map

Θ : Lq(X)→ (Lp(X))∗, Θg := Tg (g ∈ Lq(X)),
where ⟨Tg , f ⟩ := ∫

X

fg dμ (f ∈ Lp(X)),
is an isometric isomorphism.

Accordingly, the weak and weak∗ convergence in Lp(X) are as follows.
Definition 2.8.3. (i) For any p ∈ [1,∞), fn converges weakly to f in Lp(X) (written

fn ⇀ f ) if

lim
n→∞
∫
X

fng dμ = ∫
X

fg dμ for all g ∈ Lq(X).
(ii) For any p ∈ (1,∞], fn converges weakly∗ to f in Lp(X) (written fn ∗⇀ f ) if

lim
n→∞
∫
X

fng dμ = ∫
X

fg dμ for all g ∈ Lq(X).
Weak and weak∗ convergence coincide for p ∈ (1,∞), since in this range of values

of p the space Lp(X) is uniformly convex and thus reflexive (e. g., see [25, 58]).

Example 2.8.1. Let (X,𝒜, μ) = (I ,ℬ ∩ I , λ|ℬ∩I ), where I ≡ (0, 1).
(i) Consider the sequence fn(x) := sin(2nπx) (n ∈ ℕ, x ∈ I). By the Riemann–

Lebesgue lemma, for all p ∈ [1,∞), we have fn ⇀ 0 in Lp(I); however, fn  0 in
Lp(I) since ‖fn‖Lp(I) = cp > 0 (n ∈ ℕ, p ∈ [1,∞)). It is often said in such cases thatmass
concentration occurs (this loose parlance is used also for other phenomena; see Exam-
ple 5.1.1(ii)). Observe that in this case the inequality given by the lower semicontinuity
of the norm, ‖f ‖Lp(I) ≤ lim inf

n→∞
‖fn‖Lp(I),

is strict. This is expressed by saying that a loss of mass occurs in the weak limit.
The members of the above sequence are oscillating functions, the frequency of

the oscillations growing to infinity as n→∞. Sequences of oscillating functions often
converge weakly, but not strongly, a feature often called the oscillation phenomenon.
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Alternatively, observe that fn weakly converges to 0, but the sequence {h ∘ fn}with non-
linear h(s) = |s|p does not. It is often said in this connection that nonlinearity destroys
weak convergence.

(ii) Consider the sequence fn := n 1
q χ(0, 1n ) (n ∈ ℕ, q ∈ [1,∞)). we have fn → 0 λ-a. e.

in I; however, ‖fn‖Lq(I) = 1, thus fn  0 strongly in Lq(I). Observe that the sequence{fn} is not q-uniformly integrable (otherwise, we would have a contradiction with the
Vitali Theorem). Indeed, if q = 1, then a direct calculation shows that

sup{n∫
E

χ(0, 1n ) dλ | n ∈ ℕ, E ∈ ℬ ∩ I such that λ(E) < δ}= sup(nλ(E ∩ (0, 1
n
))) ≤ sup

n∈ℕmin{nδ, 1} = 1.
On the other hand, choosing E = En = (0, 1n ) with n > 1

δ plainly gives λ(E) < δ and
n∫E χ(0, 1n ) dλ = 1, whence

sup{n∫
E

χ(0, 1n ) dλ | n ∈ ℕ, E ∈ ℬ ∩ I such that λ(E) < δ} = 1.
Then by (2.63) we have η = 1. Observe that the positivity of the modulus of uniform
integrability is associated with concentration phenomenon (in this connection, see
Remark 5.4.6(iii)). Also observe that for q = 1, fn ⇀̸ 0 in L1(I), since for all g ∈ C(I), as
n→∞, ∫

I

fn(x)g(x) dx = n ∫
(0, 1n )

g(x) dx = ∫
I

g( ξ
n
) dξ → g(0)

(a similar situation will be discussed in Example 5.1.1).
Let us finally notice that if 1 ≤ p < q, then ‖fn‖Lp(I) = n p

q −1 for all n ∈ ℕ (i. e.,
there is no mass concentration in Lp(I) with p < q). Hence fn → 0 strongly in Lp(I), in
agreement with Proposition 2.8.13.

The following results concern the relationship between weak convergence and
other types of convergence.

Proposition 2.8.15. Let p ∈ (1,∞). Let {fn} ⊆ Lp(X) be such that {‖fn‖p} is bounded and
fn → f μ-a. e. in X. Then f ∈ Lp(X) and fn ⇀ f in Lp(X).
Proof. The fact that f ∈ Lp(X) follows by the Fatou lemma, since the sequence {‖fn‖p}
is bounded. Moreover, for any fixed ϵ > 0 and g ∈ Lq(X), there exist δ > 0 such
that ∫E |g|q dμ < ϵq if μ(E) < δ and F ∈ 𝒜 with μ(F) < ∞ such that ∫Fc |g|q dμ <
ϵq. Also, by the Egorov theorem there exists Fδ ⊆ F such that μ(F \ Fδ) < δ and
limn→∞ supx∈Fδ |fn(x) − f (x)| = 0. Writing X = Fc ∪ (F \ Fδ) ∪ Fδ, by the additivity
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of the integral and the Hölder inequality we obtain

lim sup
n→∞

∫
X

(fn − f ) g dμ ≤ 2C{(∫
Fc
|g|q dμ) 1

q + ( ∫
F\Fδ

|g|q dμ) 1
q } < 4Cϵ,

where C := supn ‖fn‖p <∞. Then by the arbitrariness of ϵ the result follows.
Remark 2.8.5. It is easily seen that the same conclusion holds if the convergence
μ-a. e. in X is replaced by the convergence in measure.

Proposition 2.8.16 (Radon). Let p ∈ (1,∞). Let fn ⇀ f in Lp(X), and ‖fn‖p → ‖f ‖p. Then
fn → f in Lp(X).
Proof. If p = 2, then the conclusion immediately follows from the identity‖fn − f ‖22 = ‖fn‖22 + ‖f ‖22 − 2∫

X

fnf dμ.
For the general case, see, e. g., [40, Proposition V.11.1].

Concerning weak compactness of Lp(X), for any p ∈ (1,∞) the following holds.
Theorem 2.8.17. Let (X,𝒜, μ) be a separable measure space, and let μ be σ-finite. Let
p ∈ (1,∞). Then the following statements are equivalent:
(i) F ⊆ Lp(X) is bounded;
(ii) F is relatively sequentially compact in the weak topology.

Proof. (i)⇒(ii). Since Lp(X) is separable and reflexive, the claim follows by the
Banach–Alaoglu theorem.

(ii)⇒(i). Were F unbounded, there would exist {fn} ⊆ Lp(X) such that ‖fn‖p →∞,
and hence ‖fnk ‖p →∞ for every {fnk } ⊆ {fn}. On the other hand, by assumption for any{fn} ⊆ F , there exists {fnk } ⊆ {fn} weakly convergent and hence bounded. From the
contradiction the result follows.

In the case p = 1 the situation is as follows.
Theorem 2.8.18 (Dunford–Pettis). Let X be a σ-compact Hausdorff space, and let μ ∈
R+f (X). Then the following statements are equivalent:
(i) F is bounded in L1(X) and uniformly integrable;
(ii) F ⊆ L1(X) is relatively sequentially compact in the weak topology.

To prove Theorem 2.8.18, we need the following lemma.

Lemma 2.8.19. Let (X,𝒜, μ) be a measure space. Then the following statements are
equivalent:
(i) {fn} ⊆ L1(X) is weakly convergent;
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(ii) {fn} is bounded in L1(X), and for any E ∈ 𝒜, the sequence {∫E fn dμ} ⊆ ℝ is conver-
gent.

Proof. If Y is a metric space and {yn} ⊆ Y , then yn is weakly convergent if and only if it
is bounded, and the sequence ⟨y∗, yn⟩Y∗ ,Y converges for any y∗ in a subsetY ′ ⊆ Y∗, the
linear span of Y ′ being dense in Y∗ (e. g., see [66, Theorem IV.15.1]). Since ∫E fn dμ =∫X fnχE dμ and S (X) is dense in L∞(X), the result follows.
Proof of Theorem 2.8.18. (i)⇒(ii). Since L1(X) is canonically injected in the Banach
space Rf (X), by assumption F is a bounded subset of Rf (X) (see Remark 2.2.3 and
Section 5.1). Also, observe that C0(X) is separable. Then by the Banach–Alaoglu the-
orem and Theorem 2.7.1 for any {fn} ⊆ F , there exist {fnk } ⊆ {fn} and ν ∈ Rf (X) such
that fnk

∗⇀ ν in Rf (X). In view of Lemma 2.8.19, ν can be identified with a function
f ∈ L1(X) (i. e., there exists f ∈ L1(X) such that ν(X) = ∫X f dμ) if we prove that for any
E ∈ 𝒜, the sequence {∫E fnk dμ} ⊆ ℝ is a Cauchy sequence.

To this purpose, let E ∈ 𝒜 be fixed. By Proposition 2.1.16 and Remark 2.1.7 there
exists a sequence {ζm} ⊆ Cc(X) such that ζm → χE μ-a. e. in X and ‖ζm‖∞ = 1 for all
m ∈ ℕ. Fix ϵ > 0, and let δ = δ(ϵ) > 0 be given by Definition 2.8.1(ii). Since by
assumption μ is finite, by the Egorov theorem there exists Eδ ∈ 𝒜 such that μ(Ecδ) <
ϵ and limm→∞ supx∈Eδ |ζm(x) − χE(x)| = 0. Therefore there exists m0 ∈ ℕ such that
supx∈Eδ |ζm(x) − χE(x)| < ϵ for allm ≥ m0.

Now observe that for any k, l ∈ ℕ,∫
E

(fnk − fnl ) dμ= ∫
X

(fnk − fnl )χE dμ≤ ∫
Ecδ

(fnk − fnl )(χE − ζm0
) dμ + ∫

Eδ

(fnk − fnl )(χE − ζm0
) dμ + ∫

X

(fnk − fnl )ζm0
dμ
=: I1 + I2 + I3.

By the above considerations we have

I1 ≤ 2 ∫
Ecδ

(|fnk | + |fnl |) dμ < 4ϵ, since μ(Ecδ) < ϵ and F is uniformly integrable;

I2 ≤ sup
x∈Eδ

ζm0
(x) − χE(x) ∫

Eδ

(|fnk | + |fnl |) dμ < 2ϵM, whereM := sup
f∈F
‖f ‖1.

Moreover, we have I3 < ϵ for any k, l ∈ ℕ sufficiently large because {fnk } is weakly∗
convergent in Rf (X), and thus the sequence {∫X fnk ζm0

dμ} ⊆ ℝ is convergent since
ζm0
∈ C0(X).
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To summarize, we proved that for any E ∈ 𝒜 and ϵ > 0, there exists k0 ∈ ℕ such
that for all k, l ≥ k0, we have ∫

E

(fnk − fnl ) dμ < (2M + 5)ϵ,
that is, {∫E fnk dμ} ⊆ ℝ is a Cauchy sequence for any E ∈ 𝒜. Hence the claim follows.

(ii)⇒(i). The boundedness of F follows as in the proof of Theorem 2.8.17. Let us
prove that F is uniformly integrable. By contradiction let the opposite hold. Then
there exist a sequence {En} ⊆ 𝒜 and a sequence {fn} ⊆ F with the properties stated in
Lemma 2.8.5. On the other hand, since by assumption F is relatively weakly sequen-
tially compact, there exist a subsequence of {fn} (not relabeled) and f ∈ L1(X) such that
fn ⇀ f in L1(X). Choosing h = f in Lemma 2.8.5, we have that there exists k = kf > 0
such that for all n ∈ ℕ, we have ∫

En

(fn − h) dμ ≥ k. (2.72)

Using (2.72), we can find g ∈ L∞(X) such that
lim
n→∞
∫
X

fng dμ ̸= ∫
X

fg dμ, (2.73)

a contradiction, whence the claim follows.
In fact, set F1 := E1 and n1 := 1, and let ϵ1 > 0 be such that∫

E

|fn1 − f |dμ < k3 for all E ∈ 𝒜 such that μ(E) < ϵ1.
Let n2 ∈ ℕ be the smallest integer greater than n1 such that

μ( ∞⋃
n=n2

En) < ϵ1, ∫
F1

(fn2 − f ) dμ < k3 .
Observe that such n2 exists, since limp→∞ μ(⋃∞n=p En) = 0, and

lim
n→∞
∫
F1

(fn − f ) dμ = lim
n→∞
∫
X

(fn − f )χF1 dμ = 0,
since χF1 ∈ L∞(X) and fn ⇀ f in L1(X).
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Set F2 := En2 , and observe that∫
⋃∞n=n2 En

|fn1 − f | dμ < k/3,
since μ(⋃∞n=n2 En) < ϵ1. Further, fix ϵ2 > 0 such that∫

E

|fn2 − f |dμ < k3 for all E ∈ 𝒜 such that μ(E) < ϵ2,
and let n3 ∈ ℕ be the smallest integer greater that n2 such that

μ( ∞⋃
n=n3

En) < ϵ2,  ∫
F1∪F2

(fn3 − f ) dμ < k3
(as before, it is easily seen that such n3 exists).

Set F3 := En3 , and observe that∫
⋃∞n=n3 En

|fn2 − f | dμ < k/3,
since μ(⋃∞n=n3 En) < ϵ2. Iterating the argument, we can construct two subsequences{Fp} ≡ {Enp } ⊆ {En} and {fp} ≡ {fnp } ⊆ {fn} and a sequence {ϵp} ⊆ (0,∞) such that

μ( ⋃
q≥p+1

Fq) ≤ μ( ∞⋃
n=np+1

En) < ϵp ⇒  ∫
⋃q>p Fq

(fp − f ) dμ < k3 (2.74a)

(this follows by construction, since⋃q≥p+1 Fq ⊆ ⋃∞n=np+1 En) and ∫
⋃q<p Fq

(fp − f ) dμ < k3 , (2.74b)∫
Fp

(fp − f ) dμ ≥ k for all p ∈ ℕ. (2.74c)

Now set g := χ⋃∞q=1 Fq . By (2.74a)–(2.74c) we have∫
X

(fp − f ) g dμ =  ∫
⋃q<p Fq

(fp − f ) dμ + ∫
Fp

(fp − f ) dμ + ∫
⋃q>p Fq

(fp − f ) dμ ≥ k3 > 0.
This proves (2.73), and hence the conclusion follows.
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2.9 Differentiation

2.9.1 Radon–Nikodým derivative

Theorem 2.9.1 (Radon–Nikodým). Let (X,𝒜, μ) be a σ-finite measure space, and let
ν ≪ μ be a signed measure on 𝒜. Then there exists a unique quasi-integrable function
νr : X → [−∞,∞] such that

ν(E) = ∫
E

νr dμ for all E ∈ 𝒜. (2.75)

Moreover: (i) νr ≥ 0 in X if and only if ν is positive; (ii) νr ∈ L1(X,𝒜, μ) if and only if ν is
finite; and (iii) νr : X → ℝ if and only if ν is σ-finite.
Definition 2.9.1. The function νr ≡ dν

dμ in equality (2.75) is called the Radon–Nikodým
derivative (or the density) of ν with respect to μ.

To prove Theorem 2.9.1, we need the following result.

Lemma 2.9.2 (von Neumann). Let (X,𝒜, μ) be a finite measure space, and let ν ≤ μ be
a finite measure on 𝒜. Then there exists an 𝒜-measurable function h : X → [0, 1] such
that

ν(E) = ∫
E

h dμ for all E ∈ 𝒜. (2.76)

Proof. The map from L2(X,𝒜, μ) to ℝ, f → ∫ℝN f dν, is linear and continuous, since ∫ℝN f dν ≤ ∫ℝN |f | dν ≤ [ν(X)] 12(∫ℝN |f |2 dν) 12 ≤ [μ(X)] 12(∫ℝN |f |2 dμ) 12 .
Hence there exists h ∈ L2(X,𝒜, μ) such that∫ℝN f dν = ∫ℝN fh dμ for all f ∈ L2(X,𝒜, μ). (2.77)

Choosing f = χE (E ∈ 𝒜) in the above equality gives (2.76). Clearly, h ≥ 0 since μ, ν
are positive. Were μ({h > 1}) > 0, from (2.76) we would get ν({h > 1}) > μ({h > 1}),
a contradiction. Hence the result follows.

Remark 2.9.1. (i) Let the assumptions of Lemma 2.9.2 be satisfied. Then for every
𝒜-measurable function f : X → [0,∞] and E ∈ 𝒜, we have∫

E

f dν = ∫
E

fh dμ, (2.78)
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where h : X → [0, 1] is the𝒜-measurable function associated with ν in equality (2.76).
(ii) Under the assumptions of Lemma 2.9.2, we have h ∈ L1(X). Conversely, by

abuse of language, we can say that ν ∈ L1(X) if there exists h ∈ L1(X) such that (2.76)
holds.

Proof of Theorem 2.9.1. For the uniqueness, it suffices to recall that if μ is σ-finite and
two quasi-integrable functions h, h′ satisfy ∫E h dμ = ∫E h′ dμ for all E ∈ 𝒜, then h′ = h
μ-a. e. in X (e. g., see [45, Satz IV.4.5]). Concerning the existence, it suffices to prove the
result when ν is positive, since we have ν ≪ μ if and only if ν± ≪ μ (see Lemma 1.8.5).
We will give the proof in three steps: a) both μ and ν are finite; b) μ is finite; and c) μ
is σ-finite.

a)Letμ, ν bepositive andfinite,with ν ≪ μ. Setρ := μ+ν. Thenρ is finite,μ ≤ ρ, and
ν ≤ ρ. Then by Lemma 2.9.2 there exist two 𝒜-measurable functions g, h : X → [0, 1]
such that μ(E) = ∫E g dρ and ν(E) = ∫E h dρ (E ∈ 𝒜). Set N := {g = 0}; then we have
μ(N) = 0, and thus ν(N) = 0 since ν ≪ μ. Define

f (x) := {0 if x ∈ N ,
h(x)
g(x) if x ∈ Nc.

Then f is𝒜-measurable nonnegative, and

ν(E) = ν(E⋂Nc) = ∫
E⋂Nc

h dρ = ∫
E

fg dρ = ∫
E

f dμ

(here equality (2.78) was used). Then equality (2.75) follows in this case with νr := f .
Moreover, since ν is positive and finite, by (2.75) νr is nonnegative, and νr ∈ L1(X,𝒜, μ).

b) Let μ, ν be positive, μ finite, and ν ≪ μ. Arguing as in the proof of Proposi-
tion 1.8.8, set α := sup{μ(E) | E ∈ 𝒜, ν(E) <∞} (clearly, α ≤ μ(X) <∞). Let {En} ⊆ 𝒜 be
a nondecreasing sequence such that ν(En) <∞ for each n ∈ ℕ and limn→∞ μ(En) = α.
Set E∞ := ⋃∞n=1 En. Then E∞ ∈ 𝒜 and μ(E∞) = limn→∞ μ(En) = α. Therefore, for any
E ∈ 𝒜, E ⊆ Ec∞, such that ν(E) <∞, we have

α + μ(E) = lim
n→∞

μ(En) + μ(E) = lim
n→∞

μ(En⋃E) ≤ α,
since En⋂E = 0 for each n ∈ ℕ, and ν(En⋃E) ≤ ν(En) + ν(E) < ∞. Then we have
μ(E) = 0, and thus ν(E) = 0 since ν ≪ μ. It follows that for any E ∈ 𝒜, E ⊆ Ec∞, we
have either μ(E) = ν(E) = 0, or μ(E) > 0 and ν(E) =∞.

Now set Fn := En \ En−1 (n ∈ ℕ, F1 := 0). Then {Fn} ⊆ 𝒜 is a disjoint sequence such
that E∞ = ⋃∞n=1 Fn and ν(Fn) = ν(En) − ν(En−1) < ∞ for all n ∈ ℕ. Define νn := ν ⌞ Fn(n ∈ ℕ), ν∞ := ν ⌞ Ec∞, and observe that

∞∑
n=1

νn(E) = ∞∑
n=1

ν(Fn⋂E) = ν(E∞⋂E) for all E ∈ 𝒜. (2.79)
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Also, for each n ∈ ℕ, we have νn(X) = ν(Fn) < ∞ and νn ≪ ν ≪ μ. Then by step a)
there exists a nonnegative function fn ∈ L1(X,𝒜, μ) such that

νn(E) = ∫
E

fn dμ for all E ∈ 𝒜 (2.80)

and fn = 0 in Fcn (n ∈ ℕ). Set also
g(x) := {0 if x ∈ E∞,∞ if x ∈ Ec∞.

Then g is 𝒜-measurable and nonnegative, and by (2.79)–(2.80) and the monotone
convergence theorem we have

ν(E) = ν(E∞⋂E) + ν(Ec∞⋂E) = ∞∑
n=1

νn(E) + ν(Ec∞⋂E)
= ∞∑

n=1
∫
E

fn dμ + ν(Ec∞⋂E) = ∫
E

(∞∑
n=1

fn) dμ + ν(Ec∞⋂E) = ∫
E

(∞∑
n=1

fn + g) dμ.
(2.81)

Hence (2.75) follows also in this case with νr := ∑∞n=1 fn + g.
c) Let μ, ν be positive, μ σ-finite, and ν ≪ μ. Let {Xn} ⊆ 𝒜 be a disjoint sequence

such that ⋃∞n=1 Xn = X and μ(Xn) < ∞ for all n ∈ ℕ. Clearly, for any n ∈ ℕ, the mea-
sures μn := μ ⌞ Xn and νn := ν ⌞ Xn satisfy the assumptions of step b), and hence there
exists an𝒜-measurable function ĥn : X → [0,∞] such that

νn(E) = ∫
E⋂Xn

ĥn dμ for all E ∈ 𝒜. (2.82)

For every n ∈ ℕ, define
hn(x) := {ĥn(x) if x ∈ Xn,

0 if x ∈ Xc
n.

Then for all n ∈ ℕ and E ∈ 𝒜, we have ∫E hn dμ = ∫E⋂Xn ĥn dμ, and thus from (2.82) we
get

ν(E) = ∞∑
n=1

ν(E ∩ Xn) = ∞∑
n=1

νn(E) = ∞∑
n=1
∫
E

hn dμ = ∫
E

(∞∑
n=1

hn) dμ.
This completes the proof of equality (2.75) with νr := ∑∞n=1 hn.
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It remains to prove the final claims (i)–(iii) of the statement. Claims (i)–(ii) are
immediate from (2.75). Concerning (iii), let νr : X → ℝ, and let {En} ⊆ 𝒜 be a non-
decreasing sequence such that ⋃∞n=1 En = X and μ(En) < ∞ for each n ∈ ℕ. Then the
sequence {Fn} ⊆ 𝒜, where Fn := En ∩ {|νr | ≤ n}, is nondecreasing, with ⋃∞n=1 Fn = X;
moreover, we have |ν(Fn)| ≤ nμ(En) <∞ for each n ∈ ℕ. Hence ν is σ-finite.

Conversely, let ν be σ-finite. Let {Xn} ⊆ 𝒜 be a disjoint sequence such that⋃∞n=1 Xn = X and |ν(Xn)| <∞ for all n ∈ ℕ, whence |ν|(Xn) <∞ (see Remark 1.8.2(iii)).
Set νn := ν⌞Xn. Then plainly νn is a finite signedmeasure, andwe have νn ≪ μ (n ∈ ℕ).
Hence by claim (ii) νn has a density νnr ∈ L1(Xn,𝒜, μ), and thus |νnr(x)| <∞ for μ-a. e.
x ∈ Xn. Define νnr := 0 in Xc

n. Since ν = ∑∞n=1 νn, by uniqueness we have νr = ∑∞n=1 νnr,
and thus (possibly, changing its definition on a μ-null set) νr is a quasi-integrable
real-valued function on X. This completes the proof.

Remark 2.9.2. Let (X,𝒜, μ) be a σ-finitemeasure space, and let ν and ρ be finite signed
measures on𝒜. Suppose that ρ ≪ ν and ν ≪ μ. Then ρ ≪ μ, and from (2.13) we plainly
obtain that dρ

dμ = dρ
dν

dν
dμ .

2.9.2 Differentiation of Radon measures onℝN

In this section, we deal with signed Radon measures, which can be identified with
the ordered couples μ = (μ1, μ2) of (positive) mutually singular Radon measures (see
Definition 2.7.2 and Remark 2.7.2). As already remarked, a signed Radonmeasure need
not be a signed measure in the sense of Definition 1.8.1, since μ1 and μ2 need not be
finite, and thus in general their difference is not defined (however, for every Borel set
E ⊂⊂ U, μ ⌞ E := μ1 ⌞ E − μ2 ⌞ E is a finite signed measure). Clearly, these two notions
coincide if at least one of μ1 and μ2 is finite.

Let μ and ν be (positive) Radon measures on an open subset U ⊆ ℝN . For any
x0 ∈ U, set

Dμν(x0) := {lim supr→0+
ν(Br(x0))
μ(Br(x0))

if μ(Br(x0)) > 0 for all r > 0,∞ if μ(Br(x0)) = 0 for some r > 0, (2.83)

Dμν(x0) := {lim infr→0+
ν(Br(x0))
μ(Br(x0))

if μ(Br(x0)) > 0 for all r > 0,∞ if μ(Br(x0)) = 0 for some r > 0; (2.84)

here Br(x0) denotes the open ball with center at x0 and radius r. It is easily checked
that these definitions do not change if we replace open balls by closed balls.

Definition 2.9.2. (i) Let μ and ν be positive Radon measures on U . If Dμν(x0) =
Dμν(x0) <∞, then we say that ν is differentiable with respect to μ at x0 with derivative
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at x0

Dμν(x0) := limr→0+
ν(Br(x0))
μ(Br(x0)) . (2.85)(ii) Let μ be a positive and ν ≡ (ν1, ν2) a signed Radon measure on U . We say that ν

is differentiable with respect to μ at x0 if so are ν1 and ν2, and we set

Dμν(x0) := Dμν1(x0) − Dμν2(x0). (2.86)

Themeasure ν is differentiable with respect to μ in a subset V ⊆ U if it is differentiable
at each x0 ∈ V . The function Dμν : V → ℝ (nonnegative in case (i)) is called the
derivative (or the density) of ν with respect to μ.

In the next theorem, as always in this section, a (ℬd ∩ U)-measurable function is
shortly called measurable.

Theorem 2.9.3. Let μ be a positive and ν a signed Radon measure on an open subset
U ⊆ ℝN . Then:
(i) the derivative Dμν(x0) exists for μ-a. e. x0 ∈ U and is measurable;
(ii) if ν ⌞ U ′ ≪ μ ⌞ U ′ for every open subset U ′ ⋐ U, then Dμν ∈ L1loc(U ,ℬd⋂U , μ), and

ν(E) = ∫
E

Dμν dμ for every Borel set E ⊆ U ′, (2.87)

Dμν = d(ν ⌞ U ′)dμ
μ-a. e. in U ′. (2.88)

Remark 2.9.3. If μ and ν are (positive) Radon measures on an open subset U ⊆ ℝN ,
such that ν ≪ μ, it follows that Dμν : U → [0,∞] and equality (2.87) is satisfied for
any Borel set E ⊆ U . The same holds for every Borel set E ⊆ U if ν is a finite signed
measure, in which case Dμν ∈ L1(U ,ℬd⋂U , μ).

The proof of Theorem 2.9.3 relies on the following lemma, which is a consequence
of Theorem 1.5.5.

Lemma 2.9.4. Let μ and ν be (positive) Radon measures on an open subset U ⊆ ℝN .
Then:
(i) the sets {x0 ∈ U | Dμν(x0) < Dμν(x0)} and {x0 ∈ U | Dμν(x0) =∞} are μ-null;
(ii) the set {x0 ∈ U | Dμν(x0) = 0} is ν-null.
Proof. It is easily seen that for any r > 0, the maps from U to ℝ+, x → μ(B(x, r)) and
x → ν(B(x, r)), are upper semicontinuous andhencemeasurable (see Remark 2.1.3(ii)).
Then by (2.83)–(2.84) and Corollary 2.1.5 the functions Dμν, Dμν, and Dμν are measur-
able, and thus the sets under considerations are also measurable.
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Fix any compact subset K ⊂ U with μ(K) > 0. Observe that{x0 ∈ K | Dμν(x0) < Dμν(x0)} = ⋃
α,β∈ℚ+ , α<β(Aβ⋂Bα), (2.89){x0 ∈ K | Dμν(x0) =∞} ⊆ Aβ for all β ∈ ℚ+, (2.90){x0 ∈ K | Dμν(x0) = 0} ⊆ Bα for all α ∈ ℚ+, (2.91)

whereℚ+ := {q ∈ ℚ | q > 0}, and
Aβ := {x0 ∈ K | Dμν(x0) ≥ β}, Bα := {x0 ∈ K | Dμν(x0) ≤ α}.

We will prove the following statements:

{(i) for any Borel set E ⊆ Aβ, we have ν(E) ≥ βμ(E),
(ii) for any Borel set E ⊆ Bα, we have ν(E) ≤ αμ(E) (2.92)

(α, β ∈ (0,∞)). Relying on (2.92), the result is easily proven. In fact, we obtain that
βμ(Aβ⋂Bα) ≤ ν(Aβ⋂Bα) ≤ αμ(Aβ⋂Bα) for all α, β ∈ ℚ+, α < β,

whence μ(Aβ⋂Bα) = 0. Then by (2.89) we obtain
μ({x0 ∈ K | Dμν(x0) < Dμν(x0)}) = 0.

Similarly, we have

μ(Aβ) ≤ ν(Aβ)β ≤ ν(K)β for all β ∈ ℚ+, (2.93)

ν(Bα) ≤ αμ(Bα) ≤ αμ(K) for all α ∈ ℚ+. (2.94)

Letting β →∞ in (2.93) and using (2.90), we get

μ({x0 ∈ K | Dμν(x0) =∞}) = 0,
whereas letting α→ 0+ in (2.94) and using (2.91) give

ν({x0 ∈ K | Dμν(x0) = 0}) = 0.
Then by the arbitrariness of K the result follows.

It remains to prove (2.92).Weonly prove part (i), since the proof of (ii) is analogous.
Fix any open bounded A ⊇ E and ϵ ∈ (0, β). Set

ℱ := {Br(x0) ⊂ A | x0 ∈ E, ν(Br(x0)) ≥ (β − ϵ) μ(Br(x0))}.
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Since x0 ∈ E ⊆ Aβ, two cases are possible (see (2.83)): (i) there exists r0 > 0 such that
μ(Br0 (x0)) = 0, and thus ν(Br(x0)) ≥ 0 = (β−ϵ)μ(Br(x0)) for all r ∈ (0, r0); (ii)μ(Br(x0)) >
0 for all r > 0, and limr→0+ supρ∈(0,r)

ν(Bρ(x0))
μ(Bρ(x0))

≥ β (recall that in (2.83)–(2.84), we can
replace open balls by closed balls). This proves that ℱ is a fine cover of E. Then by
Theorem 1.5.5 there exists a disjoint familyℱ ′ ⊆ ℱ that is a μ-a. e. cover of E. Therefore(β − ϵ) μ(E) ≤ (β − ϵ) μ( ⋃

Bρ(x0)∈ℱ ′
μ(Bρ(x0))) ≤ (β − ϵ) ∑

Bρ(x0)∈ℱ ′
μ(Bρ(x0))≤ ∑

Bρ(x0)∈ℱ ′
ν(Bρ(x0)) ≤ ν(A).

Then by the arbitrariness of ϵ and the outer regularity of ν the claim follows.

Proof of Theorem 2.9.3. Suppose first ν to be positive. Then claim (i) follows from
Lemma 2.9.4(i) and its proof. Concerning (ii), let {Kk} be an increasing sequence of
compact sets such that⋃∞k=1 Kk = ℝN . For any k ∈ ℕ, set

Fk := {x0 ∈ E⋂Kk | ∃Dμν(x0)}.
In view of claim (i), Fk is measurable, and we have μ(Fk) = μ(E⋂Kk), and thus ν(Fk) =
ν(E⋂Kk) since ν ≪ μ. Set also

F0k := {x0 ∈ Fk | Dμν(x0) = 0},
and for anym ∈ ℤ and fixed t > 1,

Fk,m := {x0 ∈ Fk | tm ≤ Dμν(x0) < tm+1}.
Then

Fk = F0k ⋃(⋃
m∈ℤ Fk,m) for every k ∈ ℕ.

By Lemma 2.9.4(ii) we have ν(F0k ) = 0 for all k ∈ ℕ, and thus
ν(Fk) = ν(E⋂Kk) = ∑

m∈ℤ ν(Fk,m). (2.95)

On the other hand, by (2.92) and the very definition of Fk,m we get

1
t
∫
Fk,m

Dμν dμ ≤ tmμ(Fk,m) ≤ ν(Fk,m) ≤ tm+1μ(Fk,m) ≤ t ∫
Fk,m

Dμν dμ.
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Letting t → 1+ in the above inequality gives

ν(Fk,m) = ∫
Fk,m

Dμν dμ for all k ∈ ℕ andm ∈ ℤ,
whence by (2.95)

ν(E⋂Kk) = ∫
Fk

Dμν dμ for all k ∈ ℕ.
Letting k →∞ in the above equality proves (2.87) in the present case.

If ν ≡ (ν1, ν2) is a signed Radon measure, claims (i)–(ii) hold for the derivatives
Dμν1 and Dμν2. Then by the very definition of Dμν (see (2.86)) claim (i) also holds in
this case, and, given any open subset U ′ ⊂⊂ U, the equality in (2.87) is satisfied for
every Borel set E ⊆ U ′. Finally, from equalities (2.75) and (2.87), for any measurable
E ⊆ U ′, we get

∫
E

(Dμν − d(ν ⌞ U ′)dμ
)dμ = 0.

Then by the arbitrariness of E we obtain (2.88), and thus the conclusion follows.

Corollary 2.9.5. Let μ be a Radon measure on U ⊆ ℝN . Then for μ-a. e. x0 ∈ U:
(i) if f ∈ L1loc(U), then

lim
r→0+

1
μ(Br(x0)) ∫

Br(x0)

f dμ = f (x0); (2.96)

(ii) if f ∈ Lploc(U) (p ∈ [1,∞)), then
lim
r→0+

1
μ(Br(x0)) ∫

Br(x0)

f − f (x0)p dμ = 0. (2.97)

Proof. Equality (2.96) coincides with (2.88) when ν(E) = ∫E f dμ for any measurable E,
and hence claim (i) follows. To prove (ii), fix p ∈ [1,∞). By (2.96), for any q ∈ ℚ, there
exists a μ-null set Nq such that for every x0 ∈ Nc

q ,

lim
r→0+

1
μ(Br(x0)) ∫

Br(x0)

|f − q|p dμ = f (x0) − qp.
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Set N := ⋃q∈ℚ Nq, which is μ-null. Then for every x0 ∈ Nc, we have

lim sup
r→0+

1[μ(Br(x0))] 1p ( ∫Br(x0) f − f (x0)p dμ)
1
p

≤ lim
r→0+

1[μ(Br(x0))] 1p ( ∫Br(x0) |f − q|p dμ)
1
p + f (x0) − q = 2 f (x0) − q.

Then by the denseness ofℚ equality (2.97) follows.
Definition 2.9.3. A point x0 ∈ U such that (2.97) holds is called a Lebesgue point of f
with respect to μ.

Corollary 2.9.6. Let μ and ν be (positive) Radon measures on an open subset U ⊆ ℝN .
Let νac ≪ μ and νs ⊥ μ be the absolutely continuous and singular parts of ν with respect
to μ, respectively. Then

Dμν = Dμνac, Dμνs = 0 μ-a. e. in U , (2.98)

and for every Borel set E ⊆ U,
ν(E) = ∫

E

Dμν dμ + νs(E) = ∫
E

Dμνac dμ + νs(E). (2.99)

Proof. It suffices to prove that Dμνs = 0 μ-a. e. in U, whence the first equality in (2.98)
and (2.99) (applying (2.87) to νac and using Remark 2.9.3) easily follow. Let N ⊆ U be
μ-null (thus νac(N) = 0) such that νs(U \ N) = 0. Set Cβ := {x ∈ U \ N | ∃Dμνs(x) ≥ β}(β > 0). Since Dμνs(x) exists for μ-a. e. x ∈ U and νs(Cβ) = νs(U \ N) = 0, by (2.92)(i)
we have that βμ(Cβ) ≤ νs(Cβ) = 0 for all β > 0. By the arbitrariness of β it follows that
μ({x ∈ U \ N | Dμνs(x) > 0}) = 0, whence Dμνs(x) = 0 μ-a. e. in U .
Remark 2.9.4. If ν ≡ (ν1, ν2) is a signed Radon measure on U ⊆ ℝN , applying Corol-
lary 2.9.6 to both ν1 and ν2 proves that (2.98) holds also in this case. Similarly, given
any open subset U ′ ⋐ U, (2.99) is satisfied for every Borel set E ⊂ U ′.
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3.1 Function spaces

In this section, we recall some basic notions of scalar distribution theory and Sobolev
spaces to fix notations and to make the presentation reasonably self-contained. We
refer the reader, e. g., to [1, 64] for lucid and exhaustive accounts of the subjects.

3.1.1 Distributional derivative

Let U ⊆ ℝN be open. Set

Cm(U) := {f : U → ℝ | ∃Dαf , and Dαf ∈ C(U) ∀|α| ≤ m} (m ∈ ℕ),

where ℕ := ℕ ∪ {0}, α ≡ (α1, . . . , αN ) with αk ∈ ℕ for k = 1, . . . ,N, |α| := ∑Nk=1 αk, and
Dα ≡ 𝜕|α|

𝜕α1x1 ...𝜕αN xN
(if |α| = 0, then we set Dαf ≡ f ). We also write xα ≡ xα11 ⋅ ⋅ ⋅ x

αN
N . Also, set

C0(U) ≡ C(U), C∞(U) := ⋂∞m=0 C
m(U), and C∞c (U) := C

∞(U)⋂Cc(U).

Definition 3.1.1. Let U ⊆ ℝN be open.
(i) The space 𝒟(U) of test functions is the space C∞c (U) with the following notion of

convergence: a sequence {ζk} ⊆ C∞c (U) converges to ζ in 𝒟(U) if there exists a
compact set K ⊂ U that contains supp ζ and supp ζk (k ∈ ℕ), and Dαζk → Dαζ
uniformly in K for all α ≡ (α1, . . . , αN ) ∈ ℕ

N .
(ii) A function f ∈ C∞(U) belongs to the Schwartz class 𝒮(U) if supx∈U |xαDβf (x)| <∞

for all α, β ∈ ℕN .
(iii) The space of distributions (denoted𝒟∗(U)) is the dual space of continuous linear

functionals on 𝒟(U). Namely, T ∈ 𝒟∗(U) if T : 𝒟(U) → ℝ is linear and for any
sequence ζk → ζ in𝒟(U), we have |⟨T , ζk⟩ − ⟨T , ζ ⟩|→ 0.

In (iii) and in the following, the duality map between𝒟(U) and𝒟∗(U) is denoted
(T , ζ ) → ⟨T , ζ ⟩ ∈ ℝ (T ∈ 𝒟∗(U), ζ ∈ 𝒟(U)).

Definition 3.1.2. A sequence of distributions {Tk} ⊆ 𝒟∗(U) converges in 𝒟∗(U) to T ∈
𝒟∗(U) (written Tk → T in𝒟∗(U)) if |⟨Tk , ζ ⟩ − ⟨T , ζ ⟩|→ 0 for all ζ ∈ C∞c (U).

Definition 3.1.3. Let T ∈ 𝒟∗(U). For any α ∈ ℕN , by the αth distributional derivative of
T (denoted DαT) we mean the distribution

⟨DαT , ζ ⟩ := (−1)|α|⟨T ,Dαζ ⟩ for all ζ ∈ C∞c (U).

If |α| = 0, then DαT = T. If |α| = 1, αk = 1, and αl = 0 for all l ̸= k (k, l = 1, . . . ,N),
then we write 𝜕T𝜕xk (or

dT
dx if N = 1) instead of DαT. We denote by ∇T ≡ ( 𝜕T𝜕x1 , . . . ,

𝜕T
𝜕xN
)

https://doi.org/10.1515/9783110556902-004
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the distributional gradient and by divT := ∑Ni=1
𝜕Ti
𝜕xi

the distributional divergence of T ≡
(T1, . . . ,TN ) ∈ (𝒟∗(U))N .

Definition 3.1.4. (i) The product of T ∈ 𝒟∗(U) with a function f ∈ C∞(U) is defined
by ⟨fT , ζ ⟩ := ⟨T , fζ ⟩ for ζ ∈ C∞c (U).

(ii) The convolution of T ∈ 𝒟∗(ℝN )with ρ ∈ C∞c (ℝ
N ) is defined by ⟨T∗ρ, ζ ⟩ := ⟨T , ζ ∗ρ̂⟩

for ζ ∈ C∞c (ℝ
N ), where ρ̂(x) := ρ(−x) (x ∈ ℝN ).

If T = f ∈ L1loc(ℝ
N ), then it is easily seen that (T ∗ ρ) = ∫ℝ ρ(⋅ − y)f (y) dy (that is,

Definition 3.1.4(ii) reduces to the definition for locally integrable functions, which is
well posed by the Fubini theorem).

Let ρϵ be a standard mollifier, that is, ρϵ(x) := ϵ−Nρ(
x
ϵ ) (ϵ > 0) with ρ ∈ C∞c (ℝ

N )
such that ρ ≥ 0 and ∫ℝN ρ dx = 1.

Proposition 3.1.1. (i) Let T ∈ 𝒟∗(ℝN ). Then T ∗ ρϵ ∈ C∞c (ℝ
N ), and (DαT) ∗ ρϵ → DαT

in𝒟∗(ℝN ) as ϵ → 0+ for all α ∈ ℕN .
(ii) Let f ∈ Lp(ℝN ) (p ∈ [1,∞)). Then {ρϵ ∗ f } ⊂ Lp(ℝN ) ∩ C∞(ℝN ), ‖ρϵ ∗ f ‖p ≤ ‖f ‖p for

all ϵ > 0, and ρϵ ∗ f → f in Lp(ℝN ) as ϵ → 0+.
(iii) Let f ∈ C(ℝN ). Then ρϵ ∗ f → f as ϵ → 0+ uniformly on the compact subsets of ℝN .

Remark 3.1.1. (i) Every Radon measure on U defines a positive distribution, namely,
to every μ ∈ R+(U) there corresponds Tμ ∈ 𝒟∗(U) such that ⟨Tμ, ζ ⟩ ≥ 0 for any non-
negative ζ ∈ 𝒟(U), with

⟨Tμ, ζ ⟩ ≡ ⟨μ, ζ ⟩ = ∫
U

ζ dμ (ζ ∈ C∞c (U)). (3.1)

Similarly, every signed Radon measure on U defines a distribution via (3.1), that is,
R(U) ⊆ 𝒟∗(U).

(ii) Conversely, a slight refinement of Theorem 2.6.1 (e. g., see [64] for details)
proves that to every positive T ∈ 𝒟∗(U) there corresponds μT ∈ R+(U) such that

⟨T , ζ ⟩ = ⟨μT , ζ ⟩ = ∫
U

ζ dμT (ζ ∈ 𝒟(U)).

Proposition 3.1.2. Let μ be a Radonmeasure onℝ, and let ϕμ : ℝ→ ℝ be a distribution
function of μ. Then the distributional derivative of ϕμ is equal to μ.

Proof. Let ζ ∈ C∞c (ℝ) with supp ζ ≡ [a, b] (−∞ < a < b < ∞). Then by (1.24) and the
Fubini theorem we have

⟨
dϕμ

dx
, ζ⟩ = −

b

∫
a

ϕμ(x) ζ
′(x) dx = −

b

∫
a

μ((a, x]) ζ ′(x) dx
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= −
b

∫
a

dx ζ ′(x)
x

∫
a

dμ(y) = −
b

∫
a

dμ(y)
b

∫
y

ζ ′(x) dx =
b

∫
a

ζ (y) dμ(y) = ⟨μ, ζ ⟩.

Hence the result follows.

Remark 3.1.2. By Proposition 3.1.2 the distributional derivative of the step function

ϕ := c0χ(−∞,x1) +
n−1
∑
p=1

cpχ[xp ,xp+1) + cnχ[xn ,∞) (cp ∈ ℝ; p = 0, . . . , n)
is the finite signed Radon measure ∑np=1[cp − cp−1]δxp . Similarly, the distributional
derivative of the Cantor–Vitali function V is the Radon measure λV (see Subsec-
tion 1.5.1).

3.1.2 Sobolev spaces

Definition 3.1.5. Let U ⊆ ℝN be open, and let m ∈ ℕ and p ∈ [1,∞]. The function
f ∈ Lp(U) belongs to the Sobolev space Wm,p(U) if Dαf ∈ Lp(U) for all α ∈ ℕN such
that |α| ≤ m. The spaceWm,p

loc (U) is defined by replacing L
p(U) by Lploc(U). Elements of

Wm,p
loc (U) are called Sobolev functions.

Clearly,W0,p(U) ≡ Lp(U), andW0,p
loc (U) ≡ L

p
loc(U) (p ∈ [1,∞]). The spaceW

m,p(U)
is in fact a vector space, and the map fromWm,p(U) to [0,∞), f → ‖f ‖m,p, with

‖f ‖m,p := ( ∑
|α|≤m
‖Dαf ‖pp)

1/p
if p ∈ [1,∞), (3.2a)

‖f ‖m,p := max
|α|≤m
‖Dαf ‖∞ if p =∞ (3.2b)

is a norm. The spaceWm,p(U) endowed with this norm is a Banach space.

Definition 3.1.6. Let U ⊆ ℝN be open, and let m ∈ ℕ and p ∈ [1,∞]. ByWm,p
0 (U) we

mean the closure of C∞c (U) with respect to the norm ‖ ⋅ ‖m,p.

For p = 2, the norm ‖ ⋅ ‖m,p is induced by the scalar product

(f , g) → (f , g)m,2 := ( ∑
|α|≤m
∫
U

DαfDg dx),

and henceHm(U) ≡ Wm,2(U) is a Hilbert space.We also denoteHm
loc(U) ≡ W

m,2
loc (U) and

Hm
0 (U) ≡ W

m,2
0 (U). As in the casem = 0, we have the following:

Theorem 3.1.3. Wm,p(U) is separable if p ∈ [1,∞) and reflexive and uniformly convex if
p ∈ (1,∞).
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For all m ∈ ℕ and p ∈ [1,∞), we denote by W−m,q(U), with the Hölder conju-
gate q of p, the dual space ofWm,p

0 (U) (that is,W
−m,q(U) := (Wm,p

0 (U))
∗; when p = 2,

we set H−m(U) := (Hm
0 (U))

∗). Let us prove the following characterization ofW−1,q(U)
(a similar result holds forW−m,q(U) with anym ∈ ℕ; e. g., see [1, Theorem 3.8]).

Proposition 3.1.4. Let q ∈ (1,∞]. The following statements are equivalent:
(i) ω ∈ W−1,q(U);
(ii) there exists f ≡ (f0, f1, . . . , fN ) ∈ [Lq(U)]N+1 such that ω = f0 +∑

N
k=1
𝜕fk
𝜕xk

in𝒟∗(U).

Proof. We only prove that (i) implies (ii), since the inverse is immediate. Let X :=
[Lp(U)]N+1 be endowed with the norm f → ‖f ‖X := (∑

N
k=0 ‖fk‖

p
p)
1/p (p ∈ [1,∞)). Clearly,

the map T : W 1,p
0 (U) → [L

p(U)]N+1, T(f ) := (f , 𝜕f𝜕x1 , . . . ,
𝜕f
𝜕xN
), is isometric.

Let ω ∈ W−1,q(U). SinceW 1,p
0 (U) can be identified with a closed subspace of X, by

the Hahn–Banach theorem there exists U ∈ X∗ that extendsω, and ‖ω‖ = ‖U‖. On the
other hand, by the Riesz theorem X∗ = [Lq(U)]N+1 with Hölder conjugate q of p, and
hence there exists (f0,−f1, . . . ,−fN ) ∈ [Lq(U)]N+1 such that

⟨U , ζ ⟩X∗,X = ∫
U

(f0 ζ −
N
∑
k=1

fk
𝜕ζk
𝜕xk
) dx for all ζ ∈ W 1,p

0 (U).

Hence the claim follows.

Let us finally recall the following definition.

Definition 3.1.7. We say that f : U ⊆ ℝN → ℝ is Lipschitz continuous and write f ∈
Lip(U) if

LU (f ) := sup
x,y∈U
x ̸=y

|f (x) − f (y)|
|x − y|

<∞.

We say that f is locally Lipschitz continuous and write f ∈ Liploc(U) if for any compact
K ⊂ U,

LK(f ) := sup
x,y∈K
x ̸=y

|f (x) − f (y)|
|x − y|

<∞.

Observe that by definition every f ∈ Liploc(U) is defined in the classical sense.
Moreover, every f ∈ Lip(U) is uniformly continuous and thus bounded inU . The vector
space Lip(U) is a Banach space with norm

f → ‖f ‖Lip(U) := ‖f ‖∞ + LU (f ).
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3.1.3 Bessel potential spaces

For any r > 0, consider the Bessel kernel

gr(x) :=
1

2
N+r−2

2 π
N
2 Γ( r2 )
|x|

r−N
2 K N−r

2
(|x|) (x ∈ ℝN), (3.3)

where Γ denotes the gamma function, and Kν is the modified Bessel function of the
third kind of order ν. Let us mention the following properties of gr:
(i) gr > 0, gr(x) = gr(|x|) is a decreasing function of |x|;
(ii) gr ∈ L1(ℝN ) with ‖gr‖1 = 1, and its Fourier transform

ĝr(ξ ) :=
1
(2π)

N
2

∫

ℝN

gr(x) e
−iξ ⋅x dx = 1

(2π)
N
2 (1 + |ξ |2)

r
2

; (3.4)

(iii) equality (3.4) yields gr ∗ gs = gr+s;
(iv) by convolution gr maps the Schwartz class 𝒮(ℝN ) onto itself in a one-to-one man-

ner;
(v) as |x|→ 0+, up to a constant, we have

gr(x) ∼
{{{
{{{
{

|x|r−N if r ∈ (0,N),
− log |x| if r = N ,
continuous in x = 0 if r > N ;

(3.5)

(vi) as |x|→∞, up to a constant, we have

gr(x) ∼ |x|
r−N−1

2 e−|x|. (3.6)

Let f : ℝN → [0,∞) be Borel measurable. The Bessel potential (with density f ) is

(Grf )(x) := (gr ∗ f )(x) = ∫
ℝN

gr(x − y)f (y) dy (x ∈ ℝ
N). (3.7)

Let r > 0 and p ∈ [1,∞]. The Bessel potential space is

Lr,p(ℝN) := {gr ∗ f | f ∈ L
p(ℝN)}

with norm ‖gr ∗ f ‖Lr,p(ℝN ) := ‖f ‖p. We refer the reader to [1, Theorem 7.63] for the main
properties of these spaces. In particular, we have the following;

Theorem 3.1.5 (Calderón). Let m ∈ ℕ and p ∈ (1,∞). Then Lm,p(ℝN ) = Wm,p(ℝN ), and
there exists M > 0 (depending on m, p,N) such that

M−1‖h‖Lm,p(ℝN ) ≤ ‖h‖m,p ≤ M‖h‖Lm,p(ℝN ) for all h ∈ Wm,p(ℝN ). (3.8)
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Remark 3.1.3. Closely related to the Bessel kernel gr is the Riesz kernel

γr(x) :=
Γ(N−r2 )

2rπ
N
2 Γ( r2 )
|x|r−N ≡ Γr |x|

r−N (r ∈ (0,N), x ∈ ℝN). (3.9)

For any Borel-measurable f ≥ 0 on ℝN , the Riesz potential (with density f ) is the con-
volution γr ∗ f . Integral representations of the Riesz and Bessel kernels (see [2, Sec-
tion V1.2.4]) show that for any r ∈ (0,N),

0 < gr(x) < γr(x) (x ∈ ℝ
N). (3.10)

We will also deal with the inhomogeneous Riesz kernels γr, ρ (ρ ∈ (0,∞))

γr, ρ(x) := {
Γr |x|r−N if 0 < |x| < ρ,
0 otherwise

(r ∈ (0,N), x ∈ ℝN). (3.11)

By (3.5), for any r ∈ (0,N) and ρ ∈ (0,∞), there existsM > 0 (depending on r, ρ, andN)
such that

0 < Mγr, ρ(x) < gr(x) (x ∈ ℝ
N). (3.12)

3.1.4 Functions of bounded variation

Definition 3.1.8. Let U ⊆ ℝN be open, and let f ∈ L1(U). We say that f is a function of
bounded variation in U and write f ∈ BV(U) if for every k = 1, . . . ,N, the distributional
derivative 𝜕f𝜕xk is a finite signed Radon measure on U . The quantity

V(f ;U) :=
N
∑
k=1



𝜕f
𝜕xk


(U) <∞ (3.13)

(where | 𝜕f𝜕xk |(U) denotes the total variation of the measure 𝜕f𝜕xk in U) is called the total
variation of f in U .

We say that f ∈ L1loc(U) is of local bounded variation in U and write f ∈ BVloc(U) if
f is of bounded variation inW for any openW ⊂⊂ U .

Wedenote byBV(U) the Banach space of functions of bounded variation inU with
norm

‖f ‖BV(U) := ‖f ‖L1(U) + V(f ;U) = ‖f ‖L1(U) +
N
∑
k=1



𝜕f
𝜕xk


(U).
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Remark 3.1.4. (i) Let f ∈ L1(U). Arguing as in [5, Section 3.1] shows that f ∈ BV(U) if
and only if

Γ(f ;U) := sup{∫
U

f div(φ) dx | φ ∈ C∞c (U ;ℝ
N), |φ| ≤ 1} <∞;

moreover, V(f ;U) = Γ(f ;U).
(ii) The mapping BV(U) ∋ f → Γ(f ;U) is lower semicontinuous with respect to the

L1(U)-topology. Indeed, let {fk} ⊆ BV(U) be any sequence such that fk → f in
L1(U). Then by (i) for any ϵ > 0, there exists φϵ ∈ C∞c (U ;ℝ

N ) such that |φ| ≤ 1 and

Γ(f ;U) − ϵ ≤ ∫
U

f div(φϵ) dx,

whence

Γ(f ;U) − ϵ ≤ ∫
U

f div(φϵ) dx = lim
k→∞
∫
U

fk div(φϵ) dx ≤ lim inf
k→∞

Γ(fk ;U).

Since ϵ is arbitrary, the claim follows.

If N = 1, then the following definition gives a different concept of variation for
classical functions.

Definition 3.1.9. (i) Let I ≡ [a, b] with −∞ < a < b < ∞, and let f : I → ℝ. The
quantity

V J(f ; I) := sup{
m
∑
k=1

f (xk) − f (xk−1)
 | m ≥ 2, a ≡ x0 < x1 < ⋅ ⋅ ⋅ < xm ≡ b} (3.14)

is called the Jordan variationof f in I. IfV J(f ; I) <∞, thenwe say that f isa function
of bounded Jordan variation in I and write f ∈ BV J(I).

(ii) Let U ⊆ ℝ be open, and let f : U → ℝ. We say that f is of locally bounded Jordan
variation in U (written f ∈ BV J

loc(U)) if f ∈ BV
J(I) for any I ≡ [a, b] ⊂ U .

Remark 3.1.5. (i) Every signed Radon measure ν ≡ (ν1, ν2) on ℝ is an ordered couple
of two Stieltjes measures λϕνi (i = 1, 2), where

ϕνi (x) :=
{{{
{{{
{

νi((c, x]) if x > c,
0 if x = c,
−νi((x, c]) if x < c

with c ∈ ℝ arbitrarily fixed (see Proposition 1.5.6). Since the functionsϕνi are non-
decreasing, it is well known that ϕν := ϕν1 −ϕν2 has locally bounded Jordan varia-
tion in ℝ.
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(ii) If f ∈ BV J(I), then supx∈I |f (x)| ≤ |f (a)| + V J(f ; I) < ∞. Hence BV J
loc(U) ⊆ L

∞
loc(U),

and BV J(U) ⊆ L∞(U).

The following result is well known.

Proposition 3.1.6. Let I ≡ [a, b] with −∞ < a < b <∞.
(i) Let f ∈ BV J(I). Then the map x → V J(f ; [a, x]) (x ∈ [a, b]) is nondecreasing and

right- or left-continuous at any point where f is.
(ii) f ∈ BV J(I) if and only if f = f1 − f2 with nondecreasing f1, f2 : I → ℝ.
(iii) Let f ∈ BV J(I). Then f is differentiable λ-a. e. in I, that is, for λ-a. e. x0 ∈ I, the limit

limr→0
f (x0+r)−f (x0)

r exists and is finite.

Remark 3.1.6. By Remark 2.2.3 to every function f = f1 − f2 ∈ BV
J
loc(ℝ), we associate

a signed Radon measure νf := (λf1 , λf2 ) with Stieltjes measures λfi (i = 1, 2) on ℝ. Then
by Theorem 2.9.3(i) for λ-a. e. x0 ∈ ℝ, there exists

Dλν
f (x0) = limr→0+( f1(x0 + r) − f1(x0 − r)2r

−
f2(x0 + r) − f2(x0 − r)

2r
)

= (f1)
′(x0) − (f2)

′(x0) = f
′(x0). (3.15)

Conversely, for any signed Radon measure ν ≡ (ν1, ν2), equality (3.15) holds with νf

replaced by ν, and f replaced byϕν := ϕν1 −ϕν2 , whereϕνi is any distribution function
of νi (i = 1, 2).

By Theorems 1.8.9, 2.9.1, and 2.9.3, Corollary 2.9.6, and equality (3.15) we have the
following:

Theorem 3.1.7. Let ν be a signed Radon measure on ℝ, and let ϕν be any distribution
function of ν. Then

ϕ′ν = Dλν = Dλνac λ-a. e. in ℝ, (3.16)

and for every bounded Borel set E ⊆ ℝ, we have

ν(E) = ∫
E

ϕ′ν dλ + νs(E), νac(E) = ∫
E

ϕ′ν dλ, (3.17)

where νac ≪ λ and νs ⊥ λ are the absolutely continuous and singular parts of ν, respec-
tively, with respect to the Lebesgue measure λ.

Remark 3.1.7. Let ν be a signed Radon measure on ℝ. Since ν coincides with the dis-
tributional derivative dϕν

dx of the function ϕν (see Proposition 3.1.2), by (3.16) Dλν = ϕ′ν
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is the Radon–Nikodým derivative of dϕν
dx with respect to λ. In view of (3.17), we get

⟨
dϕν
dx
, ζ⟩ = ∫

ℝ

ϕ′ν(x) ζ (x) dx +⟨(
dϕν
dx
)
s
, ζ⟩.

Let us mention the following refinement of Theorem 3.1.7, where the singular part
νs of a (positive) Radon measure ν is split into the sum of a discretemeasure νN (that
is, νN is concentrated on a countable subset S ⊂ ℝ, and thus νN ⊥ λ) and a singular
continuousmeasure νsc (that is, νsc({x}) = 0 for all x ∈ ℝ) with respect to the Lebesgue
measure λ.

Theorem 3.1.8. Let ν be a (positive) Radon measure on ℝ. Then there exists a unique
triple (νac, νsc, νN ) of (positive) Radon measures on ℝ such that:
(i) νac ≪ λ, νsc ⊥ λ, νN ⊥ λ, νsc ⊥ νN ;
(ii) νN is discrete, and νsc is singular continuous;
(iii) ν = νac + νsc + νN .

Analogous statements for signed Radon measure ν ≡ (ν1, ν2) follow applying The-
orem 3.1.8 to both ν1 and ν2.

It is informative for further purposes to compare the concepts of variation given
by (3.13) and (3.14). This is the content of the following proposition.

Proposition 3.1.9. Let U ⊆ ℝ be open. Then for any f ∈ L1loc(U) and for any I ≡ [a, b] ⊂
U, we have

Γ(f ; I) = inf{V J(g; I) | g : I → ℝ classical representative of f }. (3.18)

Proof. (i) Let g be defined at each point of I, and let g = f λ-a. e. in I; thus Γ(f ; I) =
Γ(g; I). Let us first show that Γ(f ; I) ≤ V J(g; I). Let V J(g; I) < ∞, since otherwise the
claim is obviously satisfied. Let Δ ≡ {a ≡ x0 < x1 < ⋅ ⋅ ⋅ < xm ≡ b}, and let |Δ| :=
maxi=1,...,m |xi − xi−1|. Set

gΔ(x) :=
m−1
∑
i=0

g(xi)χ[xi ,xi+1)(x)
with distributional derivative dgΔ

dx = ∑
m
i=1[g(xi) − g(xi−1)]δxi . Then by (3.13)

V(gΔ; I) =
m
∑
i=1

g(xi) − g(xi−1)
 ≤ V

J(g; I) (3.19)

for every partition Δ of I. Now observe that gΔ → g pointwise in I and thus in L1(I)
as |Δ| → 0, since the family {gΔ} is bounded in L∞(I) (see Remark 3.1.5(ii)). Then by
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Remark 3.1.4 and inequality (3.19) we get that g ∈ BV(I) (thus f ∈ BV(I)) and

V(f ; I) = V(g; I) ≤ lim inf
|Δ|→0

V(gΔ; I) ≤ V
J(g; I).

By the arbitrariness of g it follows that

Γ(f ; I) ≤ inf{V J(g; I) | g : I → ℝ classical representative of f }.

To complete the proof it suffices to exhibit a classical representative g of f such
that Γ(f ; I) ≥ V J(g; I). Clearly, it suffices to assume that Γ(f ; I) < ∞, and thus by
Remark 3.1.4 f ∈ BV(I) and Γ(f ; I) = V(f ; I) := ‖ dfdx ‖Rf (I). Consider the distribution
function F : I → ℝ associated with df

dx defined as F(x) := df
dx ([a, x)) (x ∈ I). Then by

Proposition 3.1.2 and Remark 1.5.4 there exists c ∈ ℝ such that f = F + c λ-a. e. in I,
and thus g := F + c is a classical representative of f in I. Moreover, for every partition
{a ≡ x0 < x1 < ⋅ ⋅ ⋅ < xm ≡ b} of I, we have

m
∑
k=1

g(xk) − g(xk−1)
 =

m
∑
k=1

F(xk) − F(xk−1)
 =

m
∑
k=1



df
dx
([xk−1, xk))


≤ V(f ; I).

Taking the supremum of the left-hand side over all partitions of I proves that V(f ; I) ≥
V J(g; I). Hence the conclusion follows.

Remark 3.1.8. The proof of equality (3.18) shows that for every f ∈ BVloc(U) and I =
[a, b] ⊂ U, the infimum in the right-hand side is achieved, that is, there exists a clas-
sical representative ̃f of f such that V(f ; I) = V J( ̃f ; I). Any representative of f with
this property is called a good representative. Clearly, f ∈ BVloc(U) if and only if ̃f ∈
BV J

loc(U). Moreover, the Radon–Nikodým derivative of the measure df
dx with respect to

the Lebesgue measure λ is equal to ̃f ′.

Let us recall the following definition.

Definition 3.1.10. (i) Let I ≡ [a, b] with −∞ < a < b < ∞. We say that f : I → ℝ is
absolutely continuous and write f ∈ AC(I) if for any ϵ > 0, there exists δ > 0 such
that for any finite disjoint family of subintervals (ak , bk) ⊆ I (k = 1, . . . ,m),

m
∑
k=1
(bk − ak) < δ ⇒

m
∑
k=1

f (bk) − f (ak)
 < ϵ.

(ii) Let U ⊆ ℝ be open, and let f : U → ℝ. We say that f ∈ ACloc(U) if f ∈ AC(I) for any
I ≡ [a, b] ⊂ U .

It is well known that equality (3.17) holds with νs = 0 (that is, ν = νac) if and
only if ϕν ∈ ACloc(ℝ) (e. g., see [45]). On the other hand, it is apparent from (3.17)
that ν = νs if and only if ϕ′ν = 0 λ-a. e. in ℝ, that is, if and only if the distribution
function ϕν is singular. Prototypes of singular functions are the Heaviside function H
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and the Cantor–Vitali function V , and hence the associated Stieltjes measures λH and
λV are singularwith respect to λ (see Subsection 1.4);moreover, λH is discrete, whereas
λV is singular continuous (see Corollary 1.5.8).

Bearing in mind that neitherH nor V satisfies the Lusin condition, further light is
shed by the following characterization of the absolutely continuous functions (see [7,
Theorem 3.9]).

Theorem 3.1.10 (Vitali–Banach–Zaretskii). Let I ≡ [a, b] with −∞ < a < b < ∞. Then
the following statements are equivalent:
(i) f ∈ AC(I);
(ii) f ∈ C(I)⋂BV J(I) and satisfies the Lusin condition.

Remark 3.1.9. Clearly, AC(I) ⊂ BV J(I) for any I ≡ [a, b] (−∞ < a < b < ∞) (see
Definitions 3.1.9 and 3.1.10). Hence every f ∈ AC(I) is differentiable λ-a. e. in I, and
f (d) − f (c) = ∫dc f ′dλ. for all a ≤ c ≤ d ≤ b.

3.1.5 Sobolev functions

It is interesting to study the differentiability a. e. in the sense of the following defini-
tion, of Sobolev functions (in this connection, see [47]).

Definition 3.1.11. Let f : U ⊆ ℝN → ℝ be defined a. e. in U . We say that f is differ-
entiable at x0 ∈ U if there exists Df (x0) ∈ ℝN , called the differential of f at x0, such
that

ess lim
x→x0

|f (x) − f (x0) − Df (x0) ⋅ (x − x0)|
|x − x0|

= 0.

If N = 1, then Df (x0) ≡ f ′(x0) is the derivative of f at x0.

Proposition 3.1.11. Let f ∈ W 1,p
loc(U) with N < p ≤ ∞. Then f is differentiable a. e. in U,

and Df = ∇f a. e.

Proof. SinceW 1,∞
loc (U) ⊆ W

1,p
loc(U), it is not restrictive to assume that N < p < ∞. Then

by Morrey’s inequality there exists C = C(m, p) > 0 such that for a. e. x0, x ∈ U,

|f (x) − f (x0) − ∇f (x0) ⋅ (x − x0)|
|x − x0|

≤ (
C

λN (B|x−x0|(x0))
∫

B|x−x0 |(x0)
∇f (y) − (∇f )(x0)


p dy)

1
p

.

Since ∇f ∈ (Lploc(U)), letting |x − x0|→ 0 and using (2.97), the result follows.
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Theorem 3.1.12. Let U ⊆ ℝN be open. Then f ∈ W 1,∞
loc (U) if and only if f has a classical

representative g ∈ Liploc(U).

Proof. (i) Let g ∈ Liploc(U), and let V ,W open bounded subsets such that V ⋐ W ⋐ U .
Clearly, g ∈ L∞(V). Let ek be the kth unit vector (k = 1, . . . ,N), and for any h ∈
(0,dist(V , 𝜕W)), define

g(k)h : V → ℝ, g(k)h (x) :=
g(x + h ek) − g(x)

h
.

Observe that for any ζ ∈ C1c(V),

∫
U

g(k)h (x) ζ (x + h ek) dx = −∫
U

g(x)
ζ (x + h ek) − ζ (x)

h
dx. (3.20)

On the other hand, for any p ∈ (1,∞),

sup
h∈(0,dist(V ,𝜕W))

g
(k)
h
Lp(V) ≤ [λN (V)]

1
p sup
h∈(0,dist(V ,𝜕W))

g
(k)
h
L∞(V)

≤ [λN (V)]
1
p LW (g) <∞,

wherewe have denoted by LW (g) the Lipschitz constant of g inW (see Definition 3.1.7).
Then by the Banach–Alaoglu theorem and the reflexivity of Lp(V), there exist a se-
quence {hm} and a function g(k) ∈ L∞(V) such that g(k)hm ⇀ g(k) in Lp(V) as m → ∞.
Then writing (3.20) with h = hm and letting m → ∞ gives g(k) = 𝜕g𝜕xk , and thus
𝜕g
𝜕xk
∈ L∞(V). Hence the claim follows.
(ii) Let f ∈ W 1,∞

loc (U), and let B ⋐ U be any ball. Thus ‖∇f ‖L∞(B) <∞. For any x ∈ U
and ϵ ∈ (0,dist(x, 𝜕U)), set fϵ(x) := ∫U f (y)ρϵ(x − y) dy, where ρϵ is a standard mollifier.
Then for any x, x + h ∈ B and ϵ sufficiently small, we have

fϵ(x + h) − fϵ(x)
 =


1

∫
0

∇fϵ(x + th) ⋅ h dt

≤ ‖∇f ‖L∞(B) |h| for λ-a. e. x ∈ B.

Letting ϵ → 0 in this inequality, we obtain that

f (x + h) − f (x)
 ≤ ‖∇f ‖L∞(B) |h|

for a. e. x ∈ B. Then the conclusion easily follows.

Remark 3.1.10. It is easily seen that every f ∈ Lip(U)⋂ L∞(U) belongs to W 1,∞(U).
However, the inverse implication is in general false (see [5, Section 2.3]).

From Theorem 3.1.12 and Proposition 3.1.11 we immediately obtain the following:
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Corollary 3.1.13 (Rademacher). Let f ∈ Liploc(U). Then f is differentiable a. e. in U.

Proposition 3.1.14. Let U ⊆ ℝ be open. Then f ∈ W 1,1
loc(U) if and only if f has a classical

representative g ∈ ACloc(U).

Proof. Let I = [a, b] ⊂ U be fixed. If g ∈ AC(I), then dg
dx ∈ L

1(I), g is differentiable
λ-a. e., and

dg
dx
= g′ λ-a. e. in I, ∫

I

|g′| dλ ≤ V J(g; I) <∞

(see Remark 3.1.9). Moreover, g ∈ L∞(I) ⊆ L1(I), and thus g ∈ W 1,1(I).
Conversely, let f ∈ W 1,1(I). Consider the distribution function F : I → ℝ associated

with df
dx , F(x) :=

df
dx ([a, x)) = ∫

x
a

df
dx dλ (x ∈ I). As in the proof of Proposition 3.1.9, there

exists c ∈ ℝ such that f = F+c λ-a. e. in I, and thus g := F+c is a classical representative
of f in I.

Now let E := ⋃Nk=1[xk−1, xk] with {a ≡ x0 < x1 < ⋅ ⋅ ⋅ < xm ≡ b}. Then λ(E) =
∑Nk=1(xk − xk−1), and

N
∑
k=1

g(xk) − g(xk−1)
 =

N
∑
k=1

F(xk) − F(xk−1)
 ≤

N
∑
k=1

xk

∫
xk−1


df
dx


dλ = ∫

E



df
dx


dλ.

Then by elementary results the conclusion follows.

Theorem 3.1.12 and Proposition 3.1.14 are usually stated by saying, respectively,
that f ∈ Liploc(U) if and only if f ∈ W 1,∞

loc (U) and that f ∈ W 1,1
loc(U) if and only if f ∈

ACloc(U).

3.2 Capacities associated with a kernel

In this section, we present for later use some results from the theory of capacities de-
veloped in [72].

3.2.1 Preliminaries and definitions

Hereafter, by a kernel on ℝN × ℝN we mean a lower semicontinuous function g :
ℝN × ℝN → [0,∞]. By Remark 2.1.3(ii) g is ℬ(ℝN ) × ℬ(ℝN )-measurable, and hence
g(x, ⋅) and g(⋅, y) are ℬ(ℝN )-measurable for any fixed x, y ∈ ℝN , respectively (see
Proposition 2.1.10). Then for any μ, ν ∈ R+(ℝN ), the following quantities are well-
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defined:

g(x, μ) := ∫
ℝN

g(x, y) dμ(y) (x ∈ ℝN), (3.21a)

g(ν, y) := ∫
ℝN

g(x, y) dν(x) (y ∈ ℝN), (3.21b)

g(ν, μ) := ∫
ℝN×ℝN

g d(μ × ν) = ∫
ℝN

g(x, μ)(x) dν(x) = ∫
ℝN

g(ν, y) dμ(y). (3.21c)

Observe that g(x, μ) = g(δx , μ) and g(ν, y) = g(ν, δy). If μ̃(E) = ∫E f dμ (E ∈ ℬ(ℝN ))
with f nonnegative and ℬ(ℝN )-measurable, then we write g(ν, fμ) ≡ g(ν, μ̃); we also
set

(Gμf )(x) := g(x, fμ) = ∫
ℝN

g(x, y)f (y) dμ(y) (x ∈ ℝN). (3.22)

The quantities g(fν, μ) and (Gνf )(y) (y ∈ ℝN ) are similarly defined.
The functions g(⋅, μ), g(ν, ⋅), and g in (3.21) are called the potentials and themutual

energy of μ and ν, respectively.
In connection with the following result, observe that the weak∗ topology on

R+f (ℝ
N ) is characterized by Theorem 2.7.1 (see Definition 5.1.2).

Lemma 3.2.1. Let g be a kernel, let f be nonnegative and ℬ(ℝN )-measurable, and let
ν ∈ R+f (ℝ

N ). Then for any μ ∈ R+f (ℝ
N ):

(i) the map Gμf is lower semicontinuous;
(ii) the map ν → g(ν, fμ) is lower semicontinuous in the weak∗ topology onR+f (ℝ

N ).

The same holds for the maps Gνf and μ → g(fν, μ).

Proof. (i) Let x̄ ∈ ℝN be fixed, and let {xn} ⊆ ℝN , xn → x̄, be such that (Gμf )(xn) →
lim infx→x̄(Gμf )(x). Since g(⋅, y) is lower semicontinuous at x̄ for any y ∈ ℝN , by Fatou’s
lemma we have

(Gμf )(x̄) = ∫
X

g(x̄, y)f (y) dμ(y) ≤ ∫
X

lim inf
n→∞

g(xn, y)f (y) dμ(y)

≤ lim inf
n→∞
∫
X

g(xn, y)f (y) dμ(y) = lim
n→∞
(Gμf )(xn) = lim inf

x→x̄
(Gμf )(x).

Hence the claim follows.

(ii) Sinceby (i)Gμf is lower semicontinuous, byRemark 2.1.3(ii) and standard regu-
larization arguments there exists a sequence {φk} ⊆ Cc(ℝN ) such that φk ≤ φk+1 ≤ Gμf
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for all k ∈ ℕ and limk→∞ φk = Gμf inℝN . Then by themonotone convergence theorem

g(ν, fμ) = ∫
ℝN

Gμf dν = lim
k→∞
∫

ℝN

φk dν. (3.23)

Let {νn} ⊆ R+f (ℝ
N ) converge weakly∗ to ν. Then for any k ∈ ℕ,

∫

ℝN

φk dν = lim
n→∞
∫

ℝN

φk dνn ≤ lim inf
n→∞
∫

ℝN

Gμf dνn = lim inf
n→∞

g(νn, fμ). (3.24)

From (3.23)–(3.24) the conclusion follows.

3.2.2 The capacities Cg,p

Fix μ ∈ R+(ℝN ). Set for simplicity Gf ≡ Gμf and Lp(ℝN ) ≡ Lp(ℝN ,ℬ(ℝN ), μ) (p ∈
[1,∞)).

Definition 3.2.1. Let g be a kernel, and let p ∈ (1,∞). For any E ⊆ ℝN , the p-capacity
of E associated with g is

Cμ,g,p(E) ≡ Cg,p(E) := inf
f∈VE,p ‖f ‖pp, (3.25a)

where

VE,p ≡ VE,g,p := {f ∈ L
p(ℝN) | f ≥ 0, (Gf )(x) ≥ 1 ∀x ∈ E}, (3.25b)

If VE,p = 0, then Cg,p(E) :=∞.

Definition 3.2.2. Let g be a kernel. For any E ⊆ ℝN , we set

Cg,1(E) := inf
σ∈VE,1 ‖σ‖, (3.26a)

VE,1 ≡ VE,g,1 := {σ ∈ R
+
f (ℝ

N) | g(x, σ) ≥ 1 ∀x ∈ E}. (3.26b)

If VE,1 = 0, then Cg,1(E) :=∞.

Remark 3.2.1. The restriction f ≥ 0 in (3.25b) can be removed. Indeed, for all p ∈
(1,∞), we clearly have

Cg,p(E) ≥ inf
f∈Lp(ℝN ), Gf≥1 inE

‖f ‖pp.

On the other hand, for any f ∈ Lp(ℝN ) such that Gf ≥ 1 in E, we have Gf + ≥ Gf − + 1 ≥ 1
in E, and thus f + ∈ VE,p; moreover, ‖f +‖p ≤ ‖f ‖p. Hence the inverse inequality and the
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claim follow. It is similarly seen that the requirement of nonnegativity in (3.26b) can
be avoided, namely,

Cg,1(E) = inf
σ∈Rf (ℝN ), g(x,σ)≥1∀x∈E

‖σ‖.

Theorem 3.2.2. Let g be a kernel, and let p ∈ [1,∞). Then Cg,p is an outer capacity
on ℝN .

Proof. Consider first the case p > 1. Since V0,p = {f ∈ Lp(ℝN ) | f ≥ 0}, we have
Cg,p(0) = 0. If E1 ⊆ E2 then VE2 ,p ⊆ VE1 ,p, and hence Cg,p(E1) ≤ Cg,p(E2). Let En ⊆ ℝN

(n ∈ ℕ), and set E := ⋃∞n=1 En. Let us prove that

Cg,p(E) ≤
∞
∑
n=1

Cg,p(En).

If ∑∞n=1 Cg,p(En) = ∞, then there is nothing to prove. Otherwise, let ϵ > 0. Then for
any n ∈ ℕ, there exists fn ∈ VEn ,p such that ‖fn‖pp < Cg,p(En) +

ϵ
2n . Set E := ⋃

∞
n=1 En

and f := supn∈ℕ fn. Since Gfn ≥ 1 in En (n ∈ ℕ), we have (Gf )(x) ≥ 1 for all x ∈ E.
Moreover, we have that ‖f ‖pp ≤ ∑

∞
n=1 ‖fn‖

p
p ≤ ∑

∞
n=1 Cg,p(En) + ϵ. It follows that f ∈ VE,p

and Cg,p(E) ≤ ∑
∞
n=1 Cg,p(En) + ϵ. Then by the arbitrariness of ϵ the claim follows, and

thus Cg,p is a capacity.
To complete the proof, we must show that for any E ⊆ ℝN ,

Cg,p(E) = inf{Cg,p(A) | A ⊇ E, A open}. (3.27)

If VE,p = 0, then VA,p = 0, and thus the equality is satisfied. Let VE,p ̸= 0. Then Cg,p(E) <
∞. Let ϵ ∈ (0, 1), and let f ∈ VE,p satisfy ‖f ‖pp < Cg,p(E)+ϵ. By Lemma 3.2.1(i)Gf is lower
semicontinuous, and thus the set Aϵ := {Gf > 1 − ϵ} is open. Moreover, since f ∈ VE,p,
we have (Gf )(x) ≥ 1 > 1 − ϵ for all x ∈ E, and thus E ⊆ Aϵ. Obviously, we also have
fϵ :=

f
1−ϵ ∈ VAϵ,p since by definition Gfϵ > 1 in Aϵ. It follows that

inf{Cg,p(A) | A ⊇ E, A open} ≤ Cg,p(Aϵ) ≤ ‖fϵ‖
p
p ≤

1
(1 − ϵ)p
[Cg,p(E) + ϵ],

whence by the arbitrariness of ϵ

inf{Cg,p(A) | A ⊇ E, A open} ≤ Cg,p(E).

The inverse inequality clearly follows by the monotonicity of Cg,p. Hence equal-
ity (3.27) and the result follow in this case.

Now let p = 1. It is easily seen that Cg,1(0) = 0 and Cg,1(E1) ≤ Cg,1(E2) if E1 ⊆ E2.
To prove that Cg,1(⋃

∞
n=1 En) ≤ ∑

∞
n=1 Cg,1(En), we can argue as above, with f replaced

by σ := ∑∞n=1 σn. Similarly, equality (3.27) with p = 1 follows as before by the lower
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semicontinuity of the map x → g(x, σ) for all σ ∈ R+f (ℝ
N ) (see Lemma 3.2.1(i) with

μ = σ and f = 1). This completes the proof.

In view of Theorem 3.2.2, the terminology and results concerning capacities in
Chapters 1–2 can be used for Cg,p. For shortness, we say that a set E ⊆ ℝN is (g, p)-null
if it is Cg,p-null, and similarly for other notions. In particular, we say that a function f :
ℝN → ℝ is (g, p)-quasi-continuous if it is Cg,p-quasi-continuous (see Definition 2.1.8).
Then by Proposition 2.1.17 we have the following:

Proposition 3.2.3. Let g be a kernel, and let p ∈ (1,∞). Let f , fn : ℝN → ℝ (n ∈ ℕ).
Let fn be (g, p)-quasi-continuous for each n, and let fn → f in Cg,p-capacity. Then f is
(g, p)-quasi-continuous.

The following lemma characterizes the (g, p)-null sets.

Lemma 3.2.4. Let g be a kernel, and let p ∈ (1,∞). Then the following statements are
equivalent:
(i) E ⊆ ℝN is (g, p)-null;
(ii) there exists f ∈ Lp(ℝN ), f ≥ 0, such that E ⊆ {Gf =∞}.

Proof. (i)⇒(ii). if Cg,p(E) = 0, then by (3.25) there exists {fn} ⊆ Lp(ℝN ) such that for
each n ∈ ℕ, we have fn ≥ 0, Gfn ≥ 1 in E, and ‖fn‖p ≤

1
2n . Then f := ∑

∞
n=1 fn satisfies (ii).

(ii)⇒(i). By (3.25), for any f ∈ Lp(ℝN ) and t > 0, we have

tp Cg,p({Gf ≥ t}) ≤ ∫
ℝN

f p dμ. (3.28)

Letting t →∞ in this inequality, we get Cg,p({Gf =∞}) = 0. Hence the result follows.

Proposition 3.2.5. Let g be a kernel, and let p ∈ (1,∞). Let {fn} ⊆ Lp(ℝN ) be a Cauchy
sequence. Then there exists a subsequence {fnk } ⊆ {fn} such that {Gfnk } converges
(g, p)-q. e. in ℝN , in Cg,p-capacity, and (g, p)-quasi-uniformly.

Proof. Since {fn} is a Cauchy sequence in Lp(ℝN ), for every k ∈ ℕ, there exists nk ∈ ℕ
such that ‖fm − fn‖p < 2−kk−2 for all m, n ≥ nk . Without loss of generality, we may
assume that nk+1 > nk, an thus there exists a subsequence {fnk } ⊆ {fn} such that

∞
∑
k=1
(2k‖fnk − fnk+1‖p)p <∞.

Set Ek := {G |fnk − fnk+1 | > 1
2k } (k ∈ ℕ). Then 2

k |fnk − fnk+1 | ∈ VEk ,p for all k ∈ ℕ, and thus

Cg,p(Ek) ≤ 2
kp‖fnk − fnk+1‖pp.
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Set Fj := ⋃
∞
k=j Ek . Then by the σ-subadditivity of Cg,p we get

Cg,p(Fj) ≤
∞
∑
k=j

Cg,p(Ek) ≤
∞
∑
k=j

2kp‖fnk − fnk+1‖pp
for any j ∈ ℕ, whence limj→∞ Cg,p(Fj) = 0. Moreover, for all m > j and l > m > m, we
have

sup
x∈Fcj

Gfnl (x) − Gfnm (x)
 ≤ sup

x∈Fcj
(

l−1
∑
i=m
|Gfni (x) − Gfni+1 (x)|) ≤ l−1

∑
i=m

1
2i
≤

1
2m−1
,

which implies the uniform convergence of {Gfnk } in F
c
j .

To sum up, we have shown that for any δ > 0, we can choose j ∈ ℕ so large that
Cg,p(Fj) < δ and {Gfnk } converges uniformly in Fcj . Hence {Gfnk } converges (g, p)-quasi-
uniformly. Then by Proposition 2.1.13(i) the conclusion follows.

Let us now characterize the closure of the set VE,p in (3.25).

Lemma 3.2.6. Let g be a kernel, and let p ∈ (1,∞). Then

VE,p = {f ∈ L
p(ℝN) | f ≥ 0, Gf ≥ 1 (g, p)-q. e. on E}.

Proof. Set V ′E,p := {f ∈ L
p(ℝN ) | f ≥ 0, Gf ≥ 1 (g, p)-q. e. in E}. Clearly, VE,p ⊆ V ′E,p. We

will prove below that V ′E,p is closed, and thus VE,p ⊆ V ′E,p.
On the other hand, let f ∈ V ′E,p. Then f ∈ Lp(ℝN ), f ≥ 0, and there exists a (g, p)-

null set F ⊆ ℝN such that Gf (x) ≥ 1 for all x ∈ E \ F. The proof of Lemma 3.2.4 can be
easily modified to show that for any ϵ > 0, there exists g ∈ Lp(ℝN ), g ≥ 0, such that
‖g‖p < ϵ and Gg = ∞ on F. Then f1 := f + g ∈ VE,p and ‖f1 − f ‖p = ‖g‖p < ϵ, and thus
f ∈ VE,p. Then V ′E,p ⊆ VE,p, and the result follows.

It remains to prove that V ′E,p is closed. Let {fn} ⊆ V ′E,p and f ∈ Lp(ℝN ) be such
that limn→∞ ‖fn − f ‖p = 0. Then f ≥ 0, and by Proposition 3.2.5 there exists a subse-
quence {fnk } ⊆ {fn} such that limk→∞ Gfnk = Gf (g, p)-q. e. on E. By usual arguments
this implies that Gf ≥ 1 (g, p)-q. e. on E. This proves that f ∈ V ′E,p and completes the
proof.

Now we can prove that the infimum in (3.25) is in fact attained.

Proposition 3.2.7. Let g be a kernel, and let p ∈ (1,∞). Let E ⊆ ℝN be such that
Cg,p(E) <∞. Then there exists a unique nonnegative fE ∈ Lp(ℝN ) such that (GfE)(x) ≥ 1
(g, p)-q. e. in E and Cg,p(E) = ‖fE‖pp.

Proof. For any p ∈ (1,∞), the space Lp(ℝN ) is uniformly convex, and thus in the closed
convex subset VE,p ⊆ Lp(X), there exists a unique element fE of the least norm (e. g.,
see [2, Corollary 1.3.4]). Then by Lemma 3.2.6 the result follows.

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.2 Capacities associated with a kernel | 127

Theminimizer fE given by Proposition 3.2.7 andGfE are called the capacitary func-
tion and capacitary potential of the set E, respectively.

The following result is analogous to Proposition 1.3.1(iv) for measures.

Proposition 3.2.8. Let g be a kernel, and let p ∈ (1,∞). Then for any nondecreasing
sequence {Ek} of subsets of ℝN , we have

Cg,p(
∞
⋃
k=1

Ek) = lim
k→∞

Cg,p(Ek). (3.29)

Proof. Set E := ⋃∞k=1 Ek . By monotonicity we have limk→∞ Cg,p(Ek) ≤ Cg,p(E). To prove
the reverse inequality, we may assume that limk→∞ Cg,p(Ek) < ∞. Let fk ≡ fEk be the
capacitary function of the set Ek given by Proposition 3.2.7. If k < l, then Ek ⊆ El, and
thus Gfl ≥ 1 (g, p)-q. e. on Ek . By Lemma 3.2.6 it follows that fl ∈ VEk ,p, and thus



fk + fl
2



p

p
≥ Cg,p(Ek).

By this inequality and the uniform convexity of Lp(ℝN ) the sequence {fk} is
a Cauchy sequence (e. g., see [2, Corollary 1.3.3]), and hence there exists f ∈ Lp(ℝN )
such that limk→∞ ‖fk − f ‖p = 0. Then by Proposition 3.2.7 we have

‖f ‖pp = lim
k→∞
‖fk‖

p
p = lim

k→∞
Cg,p(Ek). (3.30)

On the other hand, by Proposition 3.2.5 for any fixed k ∈ ℕ, we have liml→∞ Gfl =
Gf ≥ 1 (g, p)-q. e. on Ek, and thus Gf ≥ 1 (g, p)-q. e. on E. It follows that f ∈ VE,p,
whence

‖f ‖pp ≥ Cg,p(E). (3.31)

From (3.30)–(3.31) we obtain that limk→∞ Cg,p(Ek) ≥ Cg,p(E). Hence the conclusion
follows.

The following result shows that every Borel subset of ℝN is (g, p)-capacitable.

Proposition 3.2.9. Let g be a kernel, and let p ∈ (1,∞). Then for any Borel set E ⊆ ℝN ,

Cg,p(E) = inf{Cg,p(A) | A ⊇ E, A open} = sup{Cg,p(K) | K ⊆ E, K compact}.

Proof. By Theorem 3.2.2 Cg,p is an outer capacity on ℝN , and thus Proposition 1.6.2
applies. Therefore, in view of Proposition 3.2.8, the assumptions of Theorem 1.6.1 are
satisfied. Hence the result follows.
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3.2.3 Dependence of Cg,p on p ∈ [1, ∞)

Fix μ ∈ R+(ℝN ). Unless explicitly stated, in this subsection we write Cμ,g,p instead
of Cg,p; similar notations are used in analogous cases. In particular, for any f ∈
Lp(ℝN ,ℬ(ℝN ), μ), we write ‖f ‖pμ,p ≡ ∫ℝN |f |

p dμ (instead of ‖f ‖pp as we made so far).
Let us investigate the behavior of Cμ,g,p(E) as a function of p, E ⊆ ℝN being fixed.

To this purpose, we need the following two lemmas.

Lemma 3.2.10. Let μ ∈ R+(ℝN ), νR ∈ R+f (ℝ
N ), and νR := μ ⌞ B(0,R) (R > 0). Let g be a

kernel, and let p ∈ (1,∞). Then for all E ⊆ ℝN ,

Cμ,g,p(E) ≤ CνR ,g,p(E). (3.32)

Proof. Set ν ≡ νR for simplicity. Let

f ∈ VE,ν,g,p := {f ∈ L
p(ℝN ,ℬ(ℝN), ν) | f ≥ 0, (Gνf )(x) ≥ 1 ∀x ∈ E}

(see (3.25b)). Set F := fχB(0,R). Then F ∈ Lp(ℝN ,ℬ(ℝN ), μ), F ≥ 0, and (GμF)(x) =
(Gνf )(x) ≥ 1 for all x ∈ E. It follows that F ∈ VE,μ,g,p, and thus

Cμ,g,p(E) ≤ ‖F‖Lp(ℝN ,ℬ(ℝN ),μ) = ‖f ‖Lp(ℝN ,ℬ(ℝN ),ν).

Hence the result follows.

Lemma 3.2.11. Let μ ∈ R+f (ℝ
N ), let g be a kernel, and let p ∈ [1,∞). Then for any

E ⊆ ℝN , the map p → (Cg,p(E)‖μ‖ ) 1p is nondecreasing.
Proof. By Hölder’s inequality, for any f ∈ VE,q and 1 < p < q <∞, we have

∫

ℝN

f p dμ ≤ (∫
ℝN

f q dμ)
p
q

μ(ℝN)
q−p
q ,

whence (Cμ,g,p(E)‖μ‖ ) 1p ≤ (Cμ,g,q(E)‖μ‖ ) 1q .
Let 1 = p < q <∞ and f ∈ VE,q. Then by (3.22) the measure σ = f μ, σ(F) := ∫F f dμ

(F ∈ ℬ(ℝN )) belongs to VE,1, and

‖σ‖ = ∫
ℝN

f dμ ≤ (∫
ℝN

f q dμ)
1
q

μ(ℝN)
q−1
q .

From this inequality we get Cg,1(E)
‖μ‖ ≤ (

Cg,q(E)
‖μ‖ )

1
q , and thus the result follows.
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Let us denote by S0(ℝ
N ) ⊆ S+(ℝ

N ) the set of nonnegative simple functions that
vanish outside a subset of finite measure μ. For any p ∈ (1,∞), set

Sμ,g,p(E) := infs∈ΣE
‖s‖pμ,p, (3.33a)

where

ΣE ≡ ΣE,μ,g := {s ∈ S0(ℝ
N) | (Gμs)(x) ≥ 1 ∀x ∈ E}. (3.33b)

If ΣE = 0, then Sμ,g,p(E) :=∞.

Proposition 3.2.12. Let μ ∈ R+(ℝN ). Let g be a kernel, and let p ∈ (1,∞). Then for any
compact K ⊆ ℝN :
(i) Sμ,g,p(K) = Cμ,g,p(K);
(ii) the map p → Cμ,g,p(K) is upper semicontinuous. Moreover, if μ ∈ R+f (ℝ

N ), it is
continuous from the right in (1,∞).

Proof. (i) By definition we have ΣK ⊆ VK,p (see (3.25b)), and hence Sμ,g,p(K) ≥ Cμ,g,p(K).
If Cμ,g,p(K) =∞, then the conclusion follows. Otherwise, let ϵ ∈ (0, 1), and let f ∈ VK,p

satisfy ‖f ‖pμ,p < Cμ,g,p(K) + ϵ. Set fϵ :=
f
1−ϵ . By standard results (see Lemma 2.8.1) there

exists {sn} ⊆ S0(ℝ
N ) such that limn→∞ ‖sn − fϵ‖μ,p = 0. We will prove the following:

Claim. There exists n̄ ∈ ℕ such that Gμsn ≥ 1 in K for all n > n̄.

It follows from this claim that for every n > n̄, we have {sn} ⊆ ΣK , and thus
Sμ,g,p(K) ≤ ‖sn‖pμ,p. Letting n→∞ in the previous inequality, we get

Sμ,g,p(K) ≤
1
(1 − ϵ)p

‖f ‖pμ,p ≤
1
(1 − ϵ)p
[Cμ,g,p(K) + ϵ],

whence Sμ,g,p(K) ≤ Cμ,g,p(K) by the arbitrariness of ϵ.
To prove the claim, suppose by contradiction that there exist {snk } ⊆ {sn} and

{xk} ⊆ K such that (Gμsnk )(xk) < 1 for each k ∈ ℕ. Since K is compact, there exist
a subsequence of {xk} (not relabeled) and x̄ ∈ K such that xk → x̄ as k → ∞. Arguing
as in the proof of Lemma 3.2.1(i), this implies that

(Gμfϵ)(x̄) = ∫
ℝN

g(x̄, y) fϵ(y) dμ(y) ≤ lim inf
k→∞
∫

ℝN

g(xk , y) snk (y) dμ(y)

= lim inf
k→∞
(Gμsnk )(xk) ≤ 1,

which is a contradiction since Gμfϵ ≥
1
1−ϵ > 1 on K. Hence both the claim and claim (i)

follow.
(ii) If ΣK = 0, by (i) we have Cμ,g,p(K) =∞ for all p, and hence the claim is obvious.

Otherwise, for every s ∈ ΣK , we have s = ∑
js
k=1 ck,sχEk,s for some js ∈ ℕ, ck,s > 0, and

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



130 | 3 Function spaces and capacity

Ek,s ∈ ℬ(ℝN ). Hence by (i) we have

Cμ,g,p(K) = infs∈ΣK
‖s‖pμ,p = infs∈ΣK

js
∑
k=1

cpk,sμ(Ek,s).

By this equalityCμ,g,p(K) is the infimumof continuous functions of p and thus is an up-
per semicontinuous function of p. Therefore

lim sup
q→p+ Cμ,g,q(K) ≤ Cμ,g,p(K). (3.34a)

On the other hand, by Lemma 3.2.11 we have (Cμ,g,p(K)‖μ‖ ) qp ≤ Cμ,g,q(K)
‖μ‖ for every q > p,

whence

Cμ,g,p(K) ≤ lim inf
q→p+ Cμ,g,q(K). (3.34b)

From (3.34) the conclusion follows.

Proposition 3.2.13. Let μ ∈ R+(ℝN ). Let g be a kernel, and let p ∈ (1,∞). Let K ⊆ ℝN

be compact, and let the following hold:

lim
R→∞
∫
{|y|≥R}

(sup
x∈K

g(x, y)) dμ(y) = 0, (3.35a)

lim sup
|y|→∞
(sup
x∈K

g(x, y)) =: M0 <∞. (3.35b)

Then the map p → Cμ,g,p(K) is continuous from the right in (1,∞).

Proof. Wemay assume thatCμ,g,p(K) <∞ for any p ∈ (1,∞), since otherwise by Propo-
sition 3.2.12(i) Cμ,g,p(K) = ∞ for all p ∈ (1,∞), and the claim is obviously satisfied. It
suffices to prove the result for p ∈ [p1, q1] with p1 ∈ (1, 2) and q1 :=

p1
p1−1

. By Propo-
sition 3.2.12(ii) the map p → Cμ,g,p(K) is upper semicontinuous, and thus it attains a
maximum value in the closed interval [p1, q1], that is, there exists

max
p∈[p1 ,q1]

Cμ,g,p(K) =: M1 <∞. (3.36)

Set

ϵ1 :=
1

[(M0 + 1)(M1 + 1)]q1/p1
∈ (0, 1),

and fix ϵ ∈ (0, ϵ1). For any p ∈ [p1, q1], there exists fp ∈ VK,μ,g,p such that

‖fp‖
p
μ,p < Cμ,g,p(K) + ϵ ≤ M1 + ϵ (3.37)
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(see (3.36)). Let νR ∈ R+f (ℝ
N ) and νR := μ⌞B(0,R) (R > 0). We will prove the following:

Claim. For any ϵ ∈ (0, ϵ1), there exists R̄ > 0 such that fϵ,p := fp[1− ( ϵϵ1 )
1/q1 ]−1 ∈ VK,νR ,g,p

for all R > R̄ and p ∈ [p1, q1].

If so, then from (3.37) it follows that for any ϵ ∈ (0, ϵ1) and R > R̄,

CνR ,g,p(K) ≤ ‖fϵ,p‖
p
νR ,p = ∫

Br

[fϵ,p(y)]
p dμ(y)

≤
‖fp‖pμ,p
[1 − ( ϵϵ1 )

1/q1 ]p
≤

Cμ,g,p(K) + ϵ
[1 − ( ϵϵ1 )

1/q1 ]q1
. (3.38)

By (3.38) and (3.32) we obtain

0 ≤ sup
p∈[p1 ,q1]

CνR ,g,p(K) − Cμ,g,p(K) ≤ ([1 − (
ϵ
ϵ1
)
1/q1
]
−q1
− 1)M1 + ϵ[1 − (

ϵ
ϵ1
)
1/q1
]
−q1
.

Now let ϵ → 0+ and thus R → ∞. It follows that CνR ,g,p(K) → Cμ,g,p(K) uniformly in
[p1, q1] as R →∞. On the other hand, by Proposition 3.2.12(ii) the map p → CνR ,g,p(K)
is continuous from the right on [p1, q1] for each R > 0. Hence the result follows.

To prove Claim, observe that, clearly, fϵ,p ∈ Lp(ℝN ,ℬ(ℝN ), νR) and fϵ,p ≥ 0. Set
BR ≡ B(0,R), let q =

p
p−1 be the conjugate exponent of p, and fix x ∈ K. In view of (3.35)

and (3.37), for any ϵ ∈ (0, ϵ1), there exists R̄ > 0 such that for all R > R̄,

∫
BcR

g(x, y)fp(y) dμ(y) ≤ ‖fp‖μ,p{∫
BcR

(sup
x∈K

g(x, y))
q
dμ(y)}

1/q

≤ ‖fp‖μ,p(sup
x∈K

g(x, y))
1
p
{∫
BcR

sup
x∈K

g(x, y) dμ(y)}
1/q

≤ [(M0 + 1)(M1 + 1)]
1/p1 ϵ1/q ≤ ( ϵ

ϵ1
)
1/q1
,

since q ≤ q1 and ϵ ∈ (0, 1). Therefore, for all ϵ,R as above and for any x ∈ K,

1 ≤ (Gμfp)(x) = ∫
BR

g(x, y)fp(y) dμ(y) + ∫
BcR

g(x, y)fp(y) dμ(y)

≤ (GνR fp)(x) + (
ϵ
ϵ1
)
1/q1
.

From the above inequality we get (GνR fϵ,p)(x) ≥ 1 for all x ∈ K, and thus fϵ,p ∈ VK,νR ,g,p.
This completes the proof.
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In the remainingpart of this subsection,we always takeμ = λN , the Lebesguemea-
sure onℝN , and omit the dependence on μ in our notations. Hencewe set Cg,p ≡ CλN ,g,p
(see definitions (3.25) and (3.26)). We also set Lp(ℝN ) ≡ Lp(ℝN ,ℬ(ℝN ), λN ), dμ(y) ≡ dy,
and ‖ ⋅ ‖p ≡ ‖ ⋅ ‖λN ,p.

Let us prove that for any compact K ⊆ ℝN , the map p → Cg,p(K) (p ∈ [1,∞)) is
continuous from the right at p = 1. For this purpose, set

Sg,1(E) := inf
s∈Σ′E ‖s‖1, (3.39a)

where

Σ′E ≡ Σ
′
E,g := {s ∈ S0(ℝ

N)  ∫

ℝN

g(x, y)s(y) dy ≥ 1 ∀x ∈ E}. (3.39b)

If Σ′E = 0, then Sg,1(E) :=∞.
The following result is analogous to Proposition 3.2.12.

Proposition 3.2.14. Let g be a kernel. Then for any compact K ⊆ ℝN :
(i) Sg,1(K) = Cg,1(K);
(ii) the map p → Cg,p(K) is upper semicontinuous in [1,∞).

Proof. (i) Since Σ′K ⊆ VK,1,wehave Sg,1(K) ≥ Cg,1(K). IfCg,1(K) =∞, then the conclusion
follows. Otherwise, let ϵ ∈ (0, 1), and let μ ∈ VK,1 satisfy ‖μ‖ < Cg,1(K) + ϵ (see (3.26)).
Set μϵ :=

μ
1−ϵ . Let ρ ∈ C

∞
c (ℝ

N ), ∫ℝN ρ dy = 1, ρk(y) := k
Nρ(ky) (k ∈ ℕ, y ∈ ℝN ), and

fk := μϵ ∗ ρk . Then {fk} ⊆ C∞(ℝN ), fk ≥ 0, ‖fk‖1 ≤ ‖μϵ‖, and ∫ℝN fkφdy → ∫ℝN φdμϵ for
every φ ∈ Cc(ℝN ). On the other hand, since fk is nonnegative and belongs to L1(ℝN ), it
can be approximated strongly in L1(ℝN ) and from below by a sequence of functions in
S0(ℝ

N ). Therefore there exists a sequence {sk} ⊆ S0(ℝ
N ) such that ‖sk‖1 ≤ ‖μϵ‖ and

∫ℝN skφdy → ∫ℝN φdμϵ for everyφ ∈ Cc(ℝN ). As in the proof of Proposition 3.2.12(i), we
can prove that {sk} ⊆ Σ′K for all k large enough, whence Sg,1(K) ≤ Cg,1(K), and claim (i)
follows.

Concerning (ii), it suffices to observe that by (i) and Proposition 3.2.12(i) we have

Cg,p(K) = inf
s∈Σ′K

js
∑
k=1

cpk,sλN (Ek,s) for all p ∈ [1,∞)

(where s = ∑jsk=1 ck,sχEk,s for some js ∈ ℕ, ck,s > 0, and Ek,s ∈ ℬ(ℝN )). Then arguing as
in the proof of Proposition 3.2.12(i), the conclusion follows.

Remark 3.2.2. Let νR := λN ⌞ BR (BR ≡ B(0,R),R > 0). In view of Lemma 3.2.11 and
Proposition 3.2.14(ii), the map p → CνR ,g,p(K) is continuous from the right in [1,∞) for
any R > 0.
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Now we have the following analogue of Proposition 3.2.13.

Proposition 3.2.15. Let g be a kernel. Let K ⊆ ℝN be compact, and let

∫
{|y|≥R0}

(sup
x∈K
[g(x, y)]α) dy =: M2 <∞ (3.40a)

for some R0 > 0 (depending on K) and

lim
|y|→∞
(sup
x∈K

g(x, y)) = 0 (3.40b)

for some α ∈ [1,∞). Then

lim
p→1+ Cg,p(K) = Cg,1(K). (3.41)

Proof. Let β ∈ (1,∞] be the conjugate exponent of α. Fix any p1 ∈ (1, β), and let p ∈
[1, p1]. By Proposition 3.2.14(ii) themap p → Cg,p(K) is upper semicontinuous in [1, p1],
and thus there exists

max
p∈[1,p1]

Cg,p(K) =: M3 <∞. (3.42)

Set

ϵ2 :=
1

[(M2 + 1)(M3 + 1)]1−α/q1
∈ (0, 1),

where q1 :=
p1
p1−1

(observe that α < q1), and fix ϵ ∈ (0, ϵ2). For any p ∈ [1, p1], there exists
sp ∈ Σ′K ⊆ VK,p such that

‖sp‖
p
p < Cg,p(K) + ϵ ≤ M3 + ϵ (3.43)

(this follows from Propositions 3.2.14(i) and 3.2.12(i) if p = 1 and p ∈ (1,∞), respec-
tively). Let νR ∈ R+f (ℝ

N ), νR := λN ⌞ BR (BR ≡ B(0,R),R > 0). We will prove the follow-
ing: for any ϵ ∈ (0, ϵ2), there exists R̄ > 0 such that for all R > R̄ and p ∈ [1, p1], we
have sϵ,p :=

sp
1−( ϵϵ2 )

1−α/q1 ∈ ΣK,νR ⊆ VK,νR ,p.

If so, then by (3.43) for any ϵ ∈ (0, ϵ2) and R > R̄, we have

CνR ,g,p(K) ≤ ‖sϵ,p‖
p
νR ,p = ∫

BR

[sϵ,p(y)]
p dy

≤
‖sp‖pp

[1 − ( ϵϵ2 )
1−α/q1 ]p

≤
Cg,p(K) + ϵ
[1 − ( ϵϵ2 )

1−α/q1 ]p1
. (3.44)
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On the other hand, arguing as in the proof of Lemma 3.2.10, we easily see that for any
p ∈ [1,∞), E ⊆ ℝN , and R > 0, we have

Cg,p(E) ≤ CνR ,g,p(E). (3.45)

Letting ϵ → 0+ and thusR→∞, from (3.44)–(3.45) we obtain that CνR ,g,p(K)→ Cg,p(K)
uniformly in [1, p1]. Since themap p → CνR ,g,p(K) is continuous from the right on [1, p1]
for each R > 0 (see Remark 3.2.2), the result follows.

To complete the proof, we must prove the above claim. Let q be the conjugate ex-
ponent of p, and fix x ∈ K. By (3.40) and (3.43), for any ϵ ∈ (0, ϵ2), there exists R̄ > R0
such that for all R > R̄:
(a) if p = 1, then

∫
BcR

g(x, y)sp(y) dy ≤ ‖sp‖1 sup
x∈K, |y|≥R

g(x, y) < (M3 + 1) ϵ; (3.46a)

(b) if p ∈ (1, p1], then

∫
BcR

g(x, y)sp(y)dy ≤ ‖sp‖p{∫
BcR

(sup
x∈K

g(x, y))
q
dy}

1/q

≤ ‖sp‖p{∫
BcR

(sup
x∈K

g(x, y))
α
dy}

1/q
( sup
x∈K, |y|≥R

g(x, y))
1− αq

≤ (M2 + 1)(M3 + 1) ϵ
1− αq ≤ (

ϵ
ϵ2
)
1−α/q1
, (3.46b)

since ϵ ∈ (0, 1) and 1 − α
q ≥ 1 −

α
q1
> 0.

By (3.46), for all ϵ,R as above and for all p ∈ [1, p1] and x ∈ K, we have

∫
BcR

g(x, y)sp(y) dy ≤ (
ϵ
ϵ2
)
1−α/q1
.

Therefore, for any x ∈ K,

1 ≤ (Gsp)(x) = ∫
BR

g(x, y)sp(y) dy + ∫
BcR

g(x, y)sp(y) dy

≤ (GνRsp)(x) + (
ϵ
ϵ2
)
1−α/q1
.

From the above inequality we get (GνRsϵ,p)(x) ≥ 1 for all x ∈ K, and thus sϵ,p ∈ ΣK,νR .
This completes the proof.
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Remark 3.2.3. If condition (3.35a) in Proposition 3.2.13 is replaced by

lim
R→∞
∫
{|y|≥R}

(sup
x∈K
[g(x, y)]α) dy = 0 (3.47)

for some α ∈ [1,∞), arguing as in the proof of Proposition 3.2.13, we get that for
any compact K ⊆ ℝN , the map p → Cμ,g,p(K) is continuous from the right in (1, α′),
where α′ denotes the conjugate exponent of α. On the other hand, condition (3.47)
implies (3.40a). Hence, if also (3.40b) is satisfied, then by Proposition 3.2.15 the con-
clusion holds in [1, α′).

3.3 Bessel, Riesz, and Sobolev capacities

The results of this section rely on the general theory of capacities outlined in Sec-
tion 3.2.

3.3.1 Bessel and Riesz capacities

Let gr = gr(x) and γr = γr(x) (r > 0, x ∈ ℝN ) be the Bessel and Riesz kernels, re-
spectively (see Subsection 3.1.3). As a particular case of Definition 3.2.1 and (3.26) (see
Remark 3.2.1), we have the following definition.

Definition 3.3.1. Let r > 0 and E ⊆ ℝN .
(i) Let p ∈ (1,∞). The Bessel capacity of E, of order r and degree p, is

Br,p(E) := inf
f∈VE,p ‖f ‖pp, VE,p := {f ∈ L

p(ℝN) | (gr ∗ f )(x) ≥ 1 ∀x ∈ E}. (3.48)

If VE,p = 0, then Br,p(E) :=∞.
(ii) The Bessel capacity of E, of order r and degree 1, is

Br,1(E) := inf
σ∈VE,1 ‖μ‖, (3.49a)

VE,1 := {σ ∈ Rf (ℝ
N)  ∫

ℝN

gr(x − y) dσ(y) ≥ 1 ∀x ∈ E}. (3.49b)

If VE,1 = 0, then Br,1(E) :=∞.

Let r ∈ (0,N) and p ∈ [1,∞). The Riesz capacity Rr,p(E) is defined replacing gr by γr .

Proposition 3.3.1. (i) Let p ∈ (1,∞)andE ⊆ ℝN . ThenBr,p(E)andRr,p(E)are invariant
under orthogonal transformations and translations of the set E.
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(ii) For any p ∈ [1,∞), Br,p and Rr,p are outer capacities on ℝN . Moreover, for any p ∈
(1,∞), every Borel subset of ℝN is Br,p-capacitable:

Br,p(E) = inf{Br,p(A) | A ⊇ E, A open} = sup{Br,p(K) | K ⊆ E, K compact},

and similarly for Rr,p.
(iii) For any compact K ⊆ ℝN , themap p → Br,p(K) is continuous from the right in [1,∞).
(iv) For any compact K ⊆ ℝN the map p → Rr,p(K) (r ∈ (0,N)) is continuous from the

right in [1, Nr ).

Proof. Claim (i) is easily checked, whereas (ii) follows from Theorem 3.2.2 and Propo-
sition 3.2.9. Since g(x, y) = gr(x − y) satisfies conditions (3.35) and (3.40), claim (iii)
follows from Propositions 3.2.12 and 3.2.15. Concerning (iv), it is easily checked that
the Riesz kernel γr (r ∈ (0,N)) satisfies condition (3.47) for any α > N

N−r . Hence by
Remark 3.2.3 the conclusion follows.

3.3.2 Metric properties of the Bessel capacity

In this subsection, we always set VE ≡ VE,p (see Definition 3.3.1) for notational sim-
plicity. It is informative to point out the relationship between Bessel capacity and
Lebesgue measure. Concerning this point, we have the following:

Proposition 3.3.2. Let r > 0 and p ∈ (1,∞). Then there exists a constant M > 0 (de-
pending on r, p, and N) such that for any E ⊆ ℝN :
(i) if rp < N, then Br,p(E) ≥ M[λ∗N (E)]

N−rp
N ;

(ii) if rp = N, then Br,p(E) ≥ M[λ∗N (E)]
ϵ for all ϵ ∈ (0, 1];

(iii) if rp > N, then Br,p(E) ≥ M if E ̸= 0.

Proof. Since Br,p is an outer capacity (see Proposition 3.3.1(ii)), it suffices to prove the
claims when E = A is open, bounded, and nonempty.
(i) For any f ∈ VA, we have

λN (A) ≤ ∫
A

(gr ∗ f )(x) dx ≤ ‖gr ∗ f ‖p∗[λN (A)]1− 1
p∗ , (3.50)

where p∗ := Np
N−rp . By Sobolev embedding results there existsM0 > 0 (depending

on r, p, and N) such that ‖gr ∗ f ‖p∗ ≤ M0‖f ‖p. Then from (3.50) we get

[λN (A)]
p
p∗ ≤ Mp

0‖f ‖
p
p, (3.51)

whence by the arbitrariness of f ∈ VA the claim follows.
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(ii) Arguing as in (i), instead of (3.51)m we now have

[λN (A)]
p
q ≤ Mp

0‖f ‖
p
p for all q ≥ p.

The claim follows by setting ϵ := p
q .

(iii) Using (3.5)m we easily check that in this case, gr ∈ L
p
p−1 (ℝN ). Let A ∋ 0. Then for

any f ∈ VA,

1 ≤ (gr ∗ f )(0) ≤ ‖gr‖ p
p−1 ‖f ‖p,

whence Br,p(A) ≥ Br,p({0}) ≥ [‖gr‖ p
p−1 ]−p. Then by Proposition 3.3.1(i) the claim

follows. This completes the proof.

Remark 3.3.1. Let r > 0 and p ∈ (1,∞). By Proposition 3.3.2 Br,p-null sets in ℝN can
only exist if rp ≤ N, and in such case, they are λN -null. Therefore a property that is
trueBr,p-quasi-everywhere also holds λN -a. e. In particular, functions that areBr,p-q. e.
equal are also λN -a. e. equal, and fn → f λN -a. e. if fn → f Br,p-q. e. Hence, for any fixed
f , a representative of its equivalence class with respect to (1.33) is also equal to f a. e.
and thus is a representative of its equivalence class with respect to (1.3).

Set, for convenience, βρ ≡ B(x0, ρ) (x0 ∈ ℝN , ρ > 0).

Proposition 3.3.3. Let r > 0, p ∈ (1,∞), and rp < N. Then there exists a constant C > 0
(depending on r, p, and N) such that

C−1ρN−rp ≤ Br,p(βρ) ≤ Cρ
N−rp for all ρ ∈ (0, 1]. (3.52a)

Proposition 3.3.4. Let r > 0, p ∈ (1,∞), and rp = N. Let ρ0 ∈ (0, 1). Then there exists a
constant C̃ > 0 (depending on N and ρ0) such that

C̃−1(− log ρ
ρ0
)
1−p
≤ Br,p(βρ) ≤ C̃(− log

ρ
ρ0
)
1−p

for all ρ ∈ (0, 1]. (3.52b)

We only prove Proposition 3.3.3, referring the reader to [109, Theorem 2.6.14] for
the proof of Proposition 3.3.4.

Proof of Proposition 3.3.3. The first inequality in (3.52a) follows from Proposition
3.3.2(i). As for the second, let f ∈ Vβ4 , and thus gr ∗ f ≥ 1 on β4. By a change of
variable this implies that

ρ−N ∫
ℝN

gr(
x − z
ρ
)f( z

ρ
) dz ≥ 1 on β4ρ. (3.53)
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On the other hand, by (3.5) and (3.6) there exists C0 > 0 (depending on r and N)
such that

C−10 |x|
r−N e−2|x| ≤ gr(x) ≤ C0 |x|

r−Ne−
|x|
2 (x ∈ ℝN)

(recall that gr is a decreasing function of |x| and observe that r < rp < N). It follows
that

gr(
x
ρ
) ≤ C0 ρ

N−r |x|r−N e−
|x|
2ρ ≤ C0 ρ

N−r |x|r−N e−2|x|

≤ C20 ρ
N−rgr(x) for all ρ ∈ (0, 14 ]. (3.54)

From (3.53)–(3.54) we obtain

C20 ρ
−r ∫

ℝN

gr(x − z)f(
z
ρ
) dz ≥ 1 on β4ρ for all ρ ∈ (0,

1
4 ]. (3.55)

Inequality (3.55) shows that C20 ρ
−r f ( zρ ) ∈ Vβ4ρ for all ρ ∈ (0,

1
4 ]. Since


C20 ρ
−rf( ⋅

ρ
)


p

p
= C2p0 ρ−rp ∫

ℝN

[f(x
ρ
)]

p
dx = C2p0 ρN−rp ‖f ‖pp,

we clearly get

Br,p(β4ρ) ≤ C
2p
0 ρN−rp Br,p(β4) for all ρ ∈ (0, 14 ].

This inequality yields

Br,p(βρ) ≤ 4
rp−NC2p0 Br,p(β4) ρ

N−rp for all ρ ∈ (0, 1], (3.56)

whence by a proper definition of C the conclusion follows.

Proposition 3.3.5. Let r > 0, p ∈ (1,∞), and rp ≤ N. Then for every countable E ⊆ ℝN ,
we have Br,p(E) = 0.

Proof. Letting ρ→ 0+ in (3.52), we obtain that Br,p({x0}) = 0 for all x0 ∈ ℝN . Since Br,p
is σ-subadditive, the result follows.

Remark 3.3.2. (i) Let r > 0, p ∈ (1,∞), and rp < N . By the monotonicity and Proposi-
tion 1.6.2 from (3.56) we get

Br,p(βρ) ≤ 4
rp−NC2p0 Br,p(β4) ρ

N−rp for all ρ ∈ (0, 1), (3.57)

whence letting p→ 1+ (see Proposition 3.3.1(iii)), we get

Br,1(βρ) ≤ 4
r−NC20Br,1(β4) ρ

N−r for all ρ ∈ (0, 1).
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Since r < N, it follows from this inequality that Br,1({x0}) = 0 for each x0 ∈ ℝN (thus
Br,1(E) = 0 for every countable E ⊆ ℝN ). If r = N, then from (3.52b) we similarly obtain
that Br,1({x0}) > 0 for all x0 ∈ ℝN .

(ii) By (i) and Proposition 3.3.2(iii) no Br,p-null set in ℝN exists if either p = 1 and
r = N, or p ∈ (1,∞) and rp > N . In the remaining cases the considerations of Re-
mark 3.3.1 hold.

3.3.3 Sobolev capacity

Definition 3.3.2. Letm ∈ ℕ and p ∈ [1,∞).
(i) The Sobolev capacity, of order m and degree p, of any compact K ⊆ ℝN is

Cm,p(K) := inf
f∈WK
‖f ‖pm,p, WK := {f ∈ C

∞
c (ℝ

N) | f (x) ≥ 1 ∀x ∈ K}. (3.58a)

(ii) For any open A ⊆ ℝN , we set

Cm,p(A) := sup{Cm,p(K) | K ⊆ A, K compact}. (3.58b)

(iii) For any E ⊆ ℝN , we set

Cm,p(E) := inf{Cm,p(A) | A ⊇ E, A open}. (3.58c)

By definition, Cm,p is an outer capacity on ℝN . Sometimes, we will speak of
(m, p)-capacity instead of Cm,p-capacity. We say that a property holds (m, p)-quasi-
everywhere if it is true Cm,p-quasi-everywhere (see Subsection 1.6.1). When m = 1, we
set Cp ≡ C1,p, and thus we say that a set is p-null instead of (1, p)-null, and so on.

Remark 3.3.3. The well-posedness of Definition 3.3.2 requires that for any compact
K ⊆ ℝN ,

Cm,p(K) := inf
f∈WK
‖f ‖pm,p = inf{Cm,p(A) | A ⊇ K, A open}. (3.59)

Let us prove equality (3.59). Let ϵ > 0. It is easily seen that there exists f ∈ WK such that
f (x) > 1 for any x ∈ K and ‖f ‖pm,p < Cm,p(K) + ϵ. Set K1 := {f ≥ 1}, ad thus K ⊆ K̊1 ⊆ K1,
where K̊1 denotes the interior of K1. Since K1 is compact, it easily follows from (3.58a)
that for any compact K ⊆ K1, we have Cm,p(K) ≤ Cm,p(K1). Therefore, since K̊1 is open
and K ⊆ K̊1 ⊆ K1, by (3.58b) we have that

Cm,p(K) ≤ Cm,p(K̊1) ≤ Cm,p(K1).

On the other hand, f belongs toWK1 , and thus

Cm,p(K1) ≤ ‖f ‖
p
m,p < Cm,p(K) + ϵ.
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By the arbitrariness of ϵ, from the above inequalities we get Cm,p(K) = Cm,p(K̊1), which
implies (3.59) since K̊1 is open and K̊1 ⊇ K.

It is often useful to use a different version of Definition 3.3.2, where the setWK is
replaced by

W ′K := {f ∈ 𝒮(ℝ
N) | f (x) ≥ 1 ∀x ∈ K}. (3.60)

Then we set C′m,p(K) := inff∈W ′K ‖f ‖pm,p for every compact K ⊆ ℝN , subsequently extend-
ing the definition of C′m,p as in (3.58b)–(3.58c).

We say that two capacities C, C′ on ℝN are equivalent if there exists A > 0 such
that A−1C(E) ≤ C′(E) ≤ AC(E) for all E ⊆ ℝN . It is easily seen that Cm,p and C′m,p are
equivalent capacities.

Remark 3.3.4. Other definitions of Sobolev capacity are present in the literature; in
particular:
(a) Definition 3.3.2 withWK replaced by

W ′′K := {f ∈ C
∞
c (ℝ

N) | 0 ≤ f ≤ 1 in ℝN , f = 1 in K}; (3.61)

(b) alternatively, for any E ⊆ ℝN , set

C′′m,p(E) := inff∈ZE
‖f ‖pm,p, (3.62a)

where

ZE := {f ∈ W
m,p(ℝN) | f ≥ 1 a. e. in a neighborhood of E}, (3.62b)

and C′′m,p(E) :=∞ if ZE = 0;
(c) instead of the set ZE, consider in (3.62a) the set

YE := {f ∈ ZE | 0 ≤ f ≤ 1 a. e. in ℝ
N , f = 1 a. e. in a neighborhood of E}. (3.62c)

Addressing their (possibly, partial) equivalence is lengthy, and thus we omit it.
Let us only mention that Cm,p and C′′m,p are equivalent if p ∈ (1,∞).

Let us state the following related definition (see [27]).

Definition 3.3.3. For any compact K ⊆ ℝN , the Laplacian capacity of K is

CΔ,1(K) := inf
f∈ΩK
‖Δf ‖1, (3.63a)

where

ΩK := {f ∈ C
∞
c (ℝ

N) | f (x) ≥ 1 in a neighbourhood of K}. (3.63b)
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The following characterization of (m, p)-null sets is an immediate consequence of
Definition 3.3.2 and Remark 3.3.4.

Proposition 3.3.6. Let m ∈ ℕ and p ∈ (1,∞).
(i) Let K ⊆ ℝN be compact. Then the following statements are equivalent:
(i1) Cm,p(K) = 0;
(i2) there exists a sequence {fk} ⊆ C∞c (ℝ

N ) such that for all k ∈ ℕ, fk ≥ 1 a. e. in
a neighborhood of K (depending on k), and limk→∞ ‖fk‖m,p = 0.

(ii) Let E ⊆ ℝN . Then the following statements are equivalent:
(ii1) Cm,p(E) = 0;
(ii2) there exists a sequence {fk} ⊆ Wm,p(ℝN ) such that for all k ∈ ℕ, fk ≥ 1 a. e. in a

neighborhood of E (depending on k), and limk→∞ ‖fk‖m,p = 0.

Remark 3.3.5. Let m ∈ ℕ and p ∈ (1,∞), and let K ⊆ ℝN be compact and (m, p)-null.
It is easily seen that for any open A ⊇ K, there exists a sequence {fk} ⊆ C∞c (A) such
that 0 ≤ fk ≤ 1 in ℝN , fk = 1 in a neighborhood of K, and limk→∞ ‖fk‖m,p = 0 (see [10,
Lemma 2.1]).

We finish this subsection with a result concerning (m, p)-quasi-continuous func-
tions.

Theorem 3.3.7. Let m ∈ ℕ and p ∈ (1,∞). Then every h ∈ Wm,p(ℝN ) has an (m, p)-
quasi-continuous representative ĥ. Moreover, ĥ is (m, p)-essentially unique.

Proof. By standard density results, for any h ∈ Wm,p(ℝN ), there exists {hn} ⊆
Wm,p(ℝN )⋂C(ℝN ) such that ‖hn − h‖m,p → 0 as n → ∞. Then by Theorem 3.1.5
there exist f ∈ Lp(ℝN ) and {fn} ⊆ Lp(ℝN ) such that h = gm ∗ f , hn = gm ∗ fn, and
‖fn − f ‖p → 0. It follows from Proposition 3.2.5 and Theorem 3.4.8 that there exists
a subsequence {hnk } ⊆ {hn} that converges in Cm,p-capacity and (m, p)-quasi-uniformly
to some ĥ ∈ Wm,p(ℝN ). Then ĥ is an (m, p)-representative of h, and by Proposition 3.2.3
it is (m, p)-quasi-continuous. This proves the existence claim.

To prove the uniqueness, let u ∈ Wm,p(ℝN ), and let û be an (m, p)-quasi-contin-
uous representative. Then by (3.28) for any λ > 0, we have

λp Cm,p({|ĥ − û| ≥ λ}) ≤ ∫
ℝN

|h − u|p dμ,

whence Cm,p({|ĥ − û| ≥ λ}) = 0 if h = u. By the σ-subadditivity of Cm,p this implies that

Cm,p({|f − g| > 0}) ≤
∞
∑
k=1

Cm,p({|f − g| >
1
k
}) = 0.

Hence the conclusion follows.
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Remark 3.3.6. It is customary to identify every function h ∈ Wm,p(ℝN ) with its (m, p)-
quasi-continuous representative ĥ, as we do in the following.

3.4 Relationship between different concepts of capacity

We now address the relationships between the concepts of capacity introduced so far.

3.4.1 Bessel versus Hausdorff

Let r > 0 and p ∈ (1,∞). Consider the function hr,p : (0,∞)→ (0,∞] defined as

hr,p(ρ) := {
ρN−rp if rp < N ,
[− log ρ]1−p+ if rp = N .

(3.64)

Letℋ∗hr,p ,δ (δ ∈ (0,∞]) andℋ∗hr,p be the Hausdorff capacities, and letℋhr,p be the Haus-
dorff measure relative to the gauge function (3.64) (see Definition 1.7.1).

Proposition 3.4.1. Let r > 0, p ∈ (1,∞), and rp ≤ N. Then there exists c1 > 0 (depending
on r, p, and N) such that for any E ⊆ ℝN , we have

Br,p(E) ≤ c1ℋ
∗
hr,p ,1(E) ≤ c1ℋ∗hr,p (E). (3.65)

Moreover,

ℋ∗hr,p (E) <∞ ⇒ Br,p(E) = 0. (3.66)

Proof. We only prove (3.65), referring the reader to [2, Theorem 5.1.9] for the proof
of (3.66). Ifℋ∗hr,p ,1(E) =∞, then the result is obvious. Otherwise, let E ⊆ ⋃∞n=1 B(xn, ρn)
with ρn ≤

δ
2 for all n ∈ ℕ and δ ∈ (0, 1). Then by the σ-subadditivity of Br,p we have

Br,p(E) ≤
∞
∑
n=1

Br,p(B(xn, ρn)).

If rp = N, then from this inequality and (3.52b) we get

Br,p(E) ≤ C̃0
∞
∑
n=1
[− log(2ρn)]

1−p
= C̃0
∞
∑
n=1

hr,p(2ρn)

with C̃0 := C̃(N ,
1
2 ) > 0. If rp < N, then from (3.57) we similarly get

Br,p(E) ≤ 4
rp−NC2p0 Br,p(β4)

∞
∑
n=1

ρN−rpn = 8
rp−NC2p0 Br,p(β4)

∞
∑
n=1

hr,p(2ρn).
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Set c1 := C̃0 if rp = N and c1 := 8rp−NC
2p
0 Br,p(β4) if rp < N . Taking the infimum over all

coverings of E by balls as above gives the first inequality in (3.65), whereas the second
follows from (1.46).

The following proposition provides a lower estimate of Br,p in terms of the Haus-
dorff capacity with δ =∞ (see [2, Corollary 5.1.14] for the proof).

Proposition 3.4.2. Let r, s > 0, p, q ∈ (1,∞), and 0 < sq ≤ rp ≤ N. Then there exists
c2 > 0 (depending on s, q, r, p, and N) such that for any compact set K ⊆ ℝN ,

[ℋ∗N−sq,∞(K)]
N−rp
≤ c2[Br,p(K)]

N−sq if sq < rp < N, (3.67a)

(1 + [− logℋ∗N−sq,∞(K)]+)
1−p
≤ c2 Br,p(K) if sq < rp = N, (3.67b)

[ℋ∗hs,q ,∞(K)]p−1 ≤ c2[Br,p(K)]q−1 if sq = rp = N and p < q. (3.67c)

Corollary 3.4.3. Let r > 0, p ∈ (1,∞), and 0 < rp < N. Let E ⊆ ℝN have Hausdorff
dimension N − n (n ∈ (0,N)), and let ℋ∗N−n(E) < ∞. Then Br,p(E) = 0 if and only if
rp ≤ n.

Proof. If rp ≤ n, then

N − rp ≥ N − n = dimH (E) = sup{s > 0 | ℋ
∗
s (E) =∞}

(see Definition 1.7.2). This inequality and the assumptionℋ∗N−n(E) <∞ imply that for
rp ≤ n, we haveℋ∗N−rp(E) <∞, and thus Br,p(E) = 0 by (3.66).

Conversely, let Br,p(E) = 0. Then by (3.67a) and the second inequality in (1.47)
ℋ∗N−sq(E) = 0 for every s > 0 and q ∈ (1,∞) such that sq < rp. Since by Definition 1.7.2
dimH (E) = inf{s > 0 | ℋ∗s (E) = 0}, we obtain that N − rp ≥ dimH (E) = N − n. Hence the
result follows.

From Propositions 3.4.1–3.4.2 we obtain a relationship between Bessel capacities
with different order and/or degree:

Theorem 3.4.4. Let r, s > 0, p, q ∈ (1,∞), and 0 < sq ≤ rp ≤ N. Let E ⊆ ℝN be any Borel
set with diamE ≤ d (d > 0). Then there exists c3 > 0 (depending on s, q, r, p, d, and N)
such that

[Bs,q(E)]
N−rp
≤ c3[Br,p(E)]

N−sq if sq < rp < N, (3.68a)

(1 + [log
c3

Bs,q(E)
]
+
)
1−p
≤ c3 Br,p(E) if sq < rp = N, (3.68b)

[Bs,q(E)]
p−1
≤ c3[Br,p(E)]

q−1 if sq = rp = N and p < q, (3.68c)
Bs,q(E) ≤ c3 Br,p(E) if sq = rp < N and p < q, (3.68d)
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Moreover, in all cases of (3.68), there exists a Borel set E ⊆ ℝN such that Bs,q(E) = 0 and
Br,p(E) > 0.

Proof. By Proposition 1.7.2 there exist x0 ∈ ℝN and C1 = C1(s, q,N) > 0 such that

ℋ∗N−sq,1(E) ≤ Cℋ∗N−sq,∞(E), (3.69a)

where

C ≡ C(s, q,N) := C1
ℋ∗N−sq,1(B(x0,

d
2 ))

ℋ∗N−sq,∞(B(x0,
d
2 ))

max{1, ( d2 )
sq
}.

Moreover, by Proposition 3.4.1 there exists c1 = c1(s, q,N) > 0 such that

Bs,q(E) ≤ c1ℋ
∗
N−sq,1(E). (3.69b)

Inequality (3.68a) follows from (3.67a) and (3.69) by setting c3 := (c1C)N−rpc2. The proof
of inequalities (3.68b)–(3.68c) is similar using (3.67b)–(3.67c) and (3.69). We refer the
reader to [2, Theorem 5.5.1] for the proof of the remaining claims.

Theorem 3.4.4 suggests the following definition (which, in particular, extends to
capacities the notion of absolute continuity; see Definition 1.8.7(ii)).

Definition 3.4.1. Let r, s > 0 and p, q ∈ [1,∞). The Bessel capacity Br,p is:
(i) stronger than Bs,q if Br,p(E) = 0⇒ Bs,q(E) = 0 for all E ⊆ ℝN ;
(ii) strictly stronger than Bs,q if, moreover, there exists E ⊆ ℝN such that Bs,q(E) = 0

and Br,p(E) > 0.

We say that Bs,q is weaker than Br,p if Br,p is stronger than Bs,q. The Bessel capacities
Br,p and Bs,q are equivalent if Br,p(E) = 0⇔ Bs,q(E) = 0 for all E ⊆ ℝN .

The same holds for Riesz and Sobolev capacities.

Then we have the following result (see [3] for the proof).

Theorem 3.4.5 (du-Plessis, Fuglede). Let r, s > 0 and p, q ∈ (1,∞). Let rp ≤ N and
either sq < rp, or sq = rp and p < q. Then Br,p is strictly stronger than Bs,q.

Corollary 3.4.6. Let r > 0, 1 < q < p < ∞, and 0 < rp ≤ N. Then Br,p is stronger
than Br,q.

Proof. Fix p ∈ (1,∞) such that rp ≤ N . By Theorem 3.4.5, for any E ⊆ ℝN such that
Br,p(E) = 0, we have Br,q(E) = 0 for all q ∈ (1, p).

Remark 3.4.1. Let r > 0, p ∈ (1,∞), and 0 < rp ≤ N . By Corollary 3.4.6 and Proposi-
tion 3.3.1(iii), if K ⊆ ℝN is compact and Br,p(K) = 0, then Br,1(K) = 0.
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3.4.2 Bessel versus Riesz

In view of (3.10), it is apparent that

Rr,p(E) ≤ Br,p(E) for all E ⊆ ℝN (r ∈ (0,N); p ∈ [1,∞)). (3.70)

Proposition 3.4.7. Let r ∈ (0,N), p ∈ (1,∞), and rp < N.
(i) Let E ⊆ ℝN have diamE ≤ 2P (P > 0). Then there exists M > 0 such that

Br,p(E) ≤ MRr,p(E). (3.71)

(ii) Let E ⊆ ℝN be bounded. Then Br,p(E) = 0 if and only if Rr,p(E) = 0.

Proof. Claim (ii) follows by (3.70)–(3.71). To prove (i), it is not restrictive to assume that
E ⊆ B(0,P) (see Proposition 3.3.1(i)). Let h ∈ Lp(ℝN ) such that h ≥ 0 and γr ∗ h ≥ 1 on E
satisfy ‖h‖pp ≤ 2Rr,p(E). Then by (3.70), the monotonicity of Br,p, and (3.52a) we have

‖h‖pp ≤ 2Br,p(β2P) ≤ 2
N−rp+1CPN−rp.

Then there existsM1 > 0 (depending on r, p, and N) such that for all x ∈ E,

0 ≤ (γr ∗ h)(x) − (γr, ρ ∗ h)(x) ≤ ‖h‖p‖γr − γr, ρ‖ p
p−1 ≤ M1(

P
ρ
)

N−rp
p

, (3.72)

where γr, ρ denotes the inhomogeneous Riesz kernel (see (3.11)). Since γr ∗ h ≥ 1 on
E, by (3.72) we have γr, ρ ∗ h ≥

1
2 on E for all ρ ≥ (2M1)

p
N−rp P. Moreover, for any ρ ≥

(2M1)
p

N−rp P, there exists M2 > 0 such that γr, ρ ≤ M2 gr, and thus gr ∗ (2M2h) ≥ 1 on E.
Hence for any h as above, there exists f := 2M2h ∈ VE,r,p (see (3.48)), and thus Br,p(E) ≤
(2M2)

pRr,p(E). Then inequality (3.71) and the result follow.

Remark 3.4.2. Let r ∈ (0,N) and 1 < p < N
r . Then there existsM > 0 such that for any

E ⊆ ℝN ,

Br,p(E) ≤ M[Rr,p(E) + Rr,p(E)
N

N−rp ] (3.73)

(see [2, Subsection 5.6.1] for the proof). By (3.70) and (3.73) the second statement of
Proposition 3.4.7 in fact holds for any E ⊆ ℝN (namely, Br,p and Rr,p are equivalent; see
Definition 3.4.1).

3.4.3 Bessel versus Sobolev

Let us prove that, under the assumptions of the Calderón theorem (see Theorem 3.1.5),
the capacities Bm,p and Cm,p are equivalent.
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Theorem 3.4.8. Let m ∈ ℕ and p ∈ (1,∞). Then for any Borel set E ⊆ ℝN ,

M−pCm,p(E) ≤ Bm,p(E) ≤ M
pCm,p(E) (3.74)

with M > 0 as in (3.8).

Proof. By Proposition 3.3.1(ii) and Definition 3.3.2 it suffices to prove (3.74) when E = K
is compact. Let us first prove that Bm,p(K) ≤ MpCm,p(K). Indeed, let h ∈ WK . Then
h ∈ C∞c (ℝ

N ) ⊆ Wm,p(ℝN ) = Lm,p(ℝN ) by the Calderón theorem. Hence there exists
f ∈ Lp(ℝN ) such that gm ∗ f = h and M‖h‖m,p ≥ ‖gm ∗ f ‖Lm,p(ℝN ) = ‖f ‖p ≥ ‖f +‖p.
Moreover, gm ∗ f + ≥ gm ∗ f = h ≥ 1 on K, and thus f + belongs to VK,m,p. It follows that

Bm,p(K) ≤ ‖f
+‖pp ≤ M

p‖h‖pm,p for all h ∈ WK .

Taking the infimum over h ∈ WK of the right-hand side of the above inequality proves
that Bm,p(K) ≤ Mp Cm,p(K).

Conversely, let us prove that M−p Cm,p(K) ≤ Bm,p(K). Let f ∈ VK satisfy gm ∗ f > 1
in K and ‖f ‖pp < Bm,p(K) + ϵ for some ϵ > 0. Set

fn(x) := {
min{f (x), n} if |x| ≤ n,
0 otherwise

(n ∈ ℕ).

By definition, for any n ∈ ℕ, we have fn ∈ L∞(ℝN ), supp fn ⊆ B(0, n), and 0 ≤ fn ≤
fn+1 ≤ f in ℝN , whence by the monotone convergence theorem we get limn→∞ ‖fn‖pp =
‖f ‖pp and limn→∞ gm ∗ fn = gm ∗ f pointwise in ℝN . Therefore, since gm ∗ f is lower
semicontinuous (see Lemma 3.2.1-(i)) and gm ∗ f > 1 in K, there exist n̄ ∈ ℕ and η > 0
such that gm ∗ fn̄ ≥ 1 + η on K and ‖fn̄‖pp < Bm,p(K) + ϵ.

Now observe that for any q ∈ [1,∞), there exists h ∈ C∞c (ℝ
N )with supp h ⊆ B(0, n̄)

such that ‖fn̄ − h‖q < ϵ. Then gm ∗ h ∈ 𝒮(ℝN ), and for q > max{Nm , p}, we have that:
a) by Sobolev embedding results gm ∗ h approximates uniformly gm ∗ fn̄, and hence

by a proper choice of h we have gm ∗ h ≥ 1 on K;
b) by Hölder’s inequality we have

‖fn̄ − h‖p ≤ ‖fn̄ − h‖q[λN(B(0, n̄))]
q−p
pq < ϵ[λN(B(0, n̄))]

q−p
pq . (3.75)

By the above remarks it follows that gm ∗h ∈ W ′K (see (3.60)). Then by inequality (3.75)
we get

Cm,p(K) ≤ ‖gm ∗ h‖
p
m,p ≤ M

p‖gm ∗ h‖
p
Lm,p(ℝN ) = Mp‖h‖pp

≤ Mp{‖fn̄‖p + ϵ[λN(B(0, n̄))]
q−p
pq }

p

≤ Mp{[Bm,p(K) + ϵ]
1
p + ϵ[λN(B(0, n̄))]

q−p
pq }

p
.
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By the arbitrariness of ϵ from the above inequality we get Cm,p(K) ≤ MpBm,p(K). This
completes the proof.

3.4.4 Sobolev versus Hausdorff

In view of Theorem 3.4.8, if m ∈ ℕ and p ∈ (1,∞), then the metric properties of the
Bessel capacity Bm,p proved in Subsection 3.3.2 and their consequences in Subsec-
tions 3.4.1–3.4.2 hold for the Sobolev capacity Cm,p. In particular, results analogous
to Propositions 3.4.1–3.4.2 hold with r = m and Bm,p replaced by Cm,p; we leave their
formulation to the reader.

When p = 1, we have the following (see [102, Theorem 3.5.5], where the definition
of Cm,1 is the same as in Definition 3.3.2(i) with WK replaced by the set W ′′K defined
in (3.61)).

Theorem 3.4.9. Let m ∈ ℕ, m ∈ [1,N). Then there exist M1, M2 > 0 (depending on m
and N) such that for any compact K ⊆ ℝN ,

M1ℋ
∗
N−m,1(K) ≤ Cm,1(K) ≤ M2ℋ

∗
N−m,1(K). (3.76)

3.4.5 Laplacian capacity versus Sobolev

The following result was proven in [27].

Proposition 3.4.10. For any compact K ⊆ ℝN , we have

CΔ,1(K) = 2C1,2(K). (3.77)

Proof. We only prove that for any compact K ⊆ ℝN , CΔ,1(K) ≥ 2C1,2(K), referring the
reader to [27, Lemma E.1] for the inverse inequality. Let f ∈ ΩK . Set h := min{f +, 1}.
Then 0 ≤ h ≤ 1 in ℝN , and h = 1 in some open A ⊇ K. By standard regularization
arguments there exists ĥ ∈ C∞c (ℝ

N ) such that 0 ≤ h ≤ 1 in ℝN and ĥ = 1 in A. Then
ĥ ∈ W ′K (see (3.60)), whence

C1,2(K) ≤ ∫
ℝN

∇ĥ

2 dx ≤ ∫

ℝN

|∇h|2 dx = ∫
ℝN

∇h ⋅ ∇f dx = − ∫
ℝN

hΔf dx.

Since f ∈ C∞c (ℝ
N ), we have ∫ℝN Δf dx = 0. Then from the above inequality we get

C1,2(K) ≤ − ∫
ℝN

(h − 1
2
)Δf dx ≤ 1

2
‖Δf ‖1.

Then by the arbitrariness of f ∈ ΩK the result follows.
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3.4.6 (m, p)-concentrated and (m, p)-diffuse measures

Let U be an open bounded subset of ℝN . We say that a signed measure on ℬ(U) is
(m, p)-concentrated if it is Cm,p-concentrated, and (m, p)-diffuse if it is Cm,p-diffuse (see
Definition 1.8.10).

Proposition 3.4.11. Let m ∈ ℕ.
(i) Let either p = 1 and m = N, or p ∈ (1,∞) and mp > N. Then every μ ∈ Rf (U) is

Bm,p-diffuse.
(ii) Let p ∈ (1,∞) and mp > N. Then every μ ∈ Rf (U) is (m, p)-diffuse.

Proof. By Remark 3.3.2(ii) no Bm,p-null set in ℝN exists if either p = 1 and m = N, or
p ∈ (1,∞) and mp > N . Therefore by Theorem 3.4.8 no (m, p)-null set in ℝN exists if
p ∈ (1,∞) andmp > N . Hence the result follows.

We denote by Rc,m,p(U) and Rd,m,p(U) the sets of (m, p)-concentrated and (m, p)-
diffuse finite signed Radon measures on U, respectively. Clearly, Rc,m,p(U)⋂
Rd,m,p(U) = {0}. A common parlance is that “measures belonging to Rd,m,p(U) do
not charge (m, p)-null sets” (e. g., see [10]). We always set Rc,p(U) ≡ Rc,1,p(U) and
Rd,p(U) ≡ Rd,1,p(U).

Remark 3.4.3. (i) If μ ∈ Rd,m,p(U), then every (m, p)-quasi-continuous function is
μ-measurable. In fact, if v is (m, p)-quasi-continuous, then there exist an (m, p)-
null set E ⊆ U and a sequence {vn} ⊆ C(U) such that vn → v pointwise in U \ E
(see [2, Section 7.1]). Since μ ∈ Rd,m,p(U), the set E is μ-null, and thus the claim
follows.

(ii) If μ ∈ Rd,m,p(U), then every function v ∈ Wm,p
0 (U)⋂ L

∞(U) also belongs to
L∞(U , μ). In fact, v can be identified with its (m, p)-quasi-continuous representa-
tive v̂ (see Remark 3.3.6), which is μ-measurable by (i).

By Proposition 1.8.12 we have the following:

Proposition 3.4.12. Let m ∈ ℕ and p ∈ [1,∞). Then there exists a unique couple
(μc,m,p, μd,m,p) such that μc,m,p ∈ Rc,m,p(U), μd,m,p ∈ Rd,m,p(U), and s

μ = μd,m,p + μc,m,p. (3.78)

Definition 3.4.2. The measures μc,m,p and μd,m,p given by Proposition 3.4.12 are called
the (m, p)-concentrated and (m, p)-diffuse parts of μ, respectively.

In the following, we set μc,p ≡ μc,1,p and μd,p ≡ μd,1,p. Set

Rs(U) := {μ ∈ Rf (U) | μ ⊥ λN}, Rac(U) := {μ ∈ Rf (U) | μ ≪ λN}.
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By Proposition 3.3.2 and Theorem 3.4.8 every (m, p)-null set is Lebesgue measurable
and λN -null. This plainly implies that for everym ∈ ℕ and p ∈ (1,∞),

Rc,m,p(U) ⊆ Rs(U), Rac(U) ⊆ Rd,m,p(U). (3.79)

Combining the Lebesgue decomposition of μ (see (1.53) written with ν = μ) with (3.78)
and using (3.79) gives

μc,m,p = [μs]c,m,p, (3.80)
μd,m,p = μac + [μs]d,m,p (3.81)

for every μ ∈ Rf (U). From (3.78)–(3.81) we obtain the decomposition

μ = μac + [μs]d,m,p + μc,m,p. (3.82)

Remark 3.4.4. Analogously to equalities (1.54), we have

[μd,m,p]
± = [μ±]d,m,p, [μc,m,p]

± = [μ±]c,m,p. (3.83)

In particular, by (3.80) and (3.83) we have

[μ±s ]c,m,p = [μ
±]c,m,p = [μc,m,p]

±. (3.84)

The following result is a simple consequence of Theorem 3.4.5.

Proposition 3.4.13. Let m, n ∈ ℕ and p, q ∈ (1,∞). Let mp ≤ d and either nq < mp, or
nq = mp and p < q. Then (i)Rd,n,q(U) ⊆ Rd,m,p(U) and (ii)Rc,m,p(U) ⊆ Rc,n,q(U).

It has been already observed thatRf (U) ⊆ 𝒟∗(U) (see Remark 3.1.1), and thus, in
particular, a measure μ ∈ Rf (U) can belong to the dual spaceW−m,q(U) = (W

m,p
0 (U))

∗

(wherem ∈ ℕ, p ∈ [1,∞), and q ∈ (1,∞] is the conjugate exponent of p). If p ∈ (1,∞),
then measures of this kind are diffuse with respect to the (m, p)-capacity. In fact, let
p ∈ (1,∞), and let μ ∈ W−m,q(U) be a nonnegative Radon measure. Let K ⊆ U be
compact, and let f ∈ Lp(ℝN ) be such that f ≥ 0 and gm ∗ f ≥ 1 in K. Then

μ(K) ≤ ∫
U

dμ(x) ∫
ℝN

gm(x − y)f (y) dy = ∫
ℝN

dy f (y)∫
U

gm(x − y)dμ(x)

≤ ‖gm ∗ μ‖q‖f ‖p.

By the arbitrariness of f this implies that μ(K) ≤ M ‖gm ∗ μ‖q[Cm,p(K)]
1
p with M > 0

as in (3.8) (see (3.48) and Theorem 3.4.8). The latter inequality can be extended to any
Borel subset of U by regularity of μ and capacitability of Cm,p, and hence the claim
follows.
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The following proposition extends the above remark removing the requirement of
nonnegativity of μ (see [2, Subsection 7.6.1], [56]).

Proposition 3.4.14 (Grun–Rehomme). Let m ∈ ℕ and p ∈ [1,∞). Then

Rf (U) ∩W
−m,q(U) ⊆ Rd,m,p(U).

Proof. Let μ ∈ Rf (U) ∩ W−m,q(U), and let E ∈ ℬ(U) be such that Cm,p(E) = 0. By
the Hahn decomposition (see Definition 1.8.3) there exists E+ ∈ ℬ(U), E+ ⊆ E, such
that μ+(E+) = μ(E+) and μ−(E+) = 0. Moreover, since μ± ∈ R+f (U), for any 0 < k <
μ+(E+) = μ+(E) and any ϵ > 0, there exist a compact set K ⊆ E+ and an open set
A ⊇ E+, A ⊆ U, such that μ+(K) > k and μ−(A) < ϵ. By the monotonicity of Cm,p we
have Cm,p(K) ≤ Cm,p(E+) ≤ Cm,p(E) = 0. Then there exists a sequence {fj} ⊆ C∞c (U) such
that for any j ∈ ℕ, we have 0 ≤ fj ≤ 1 in U, fj = 1 in K, and fj → 0 strongly inWm,p

0 (U)
as j → ∞ (see Proposition 3.3.6). Clearly, the sequence {gj}, gj := fjψ with ψ ∈ C∞c (A)
such that 0 ≤ ψ ≤ 1 and ψ = 1 in K, has the same properties. It follows that

k < μ+(K) ≤ ∫
U

gj dμ
+ = ∫

U

gj dμ + ∫
U

gj dμ
− ≤ ∫

U

gj dμ + μ
−(A) < ∫

U

gj dμ + ϵ.

Since gj → 0 strongly in Wm,p
0 (U) and μ ∈ W−m,q(U), letting j → ∞ in the above

inequality, we obtain k ≤ ϵ for any k < μ+(E), whence μ+(E) ≤ ϵ. By the arbitrariness
of ϵ it follows that μ+(E) = 0. It is similarly proven that μ−(E) = 0, and hence the claim
follows.

The above result is a part of the following characterization ofRd,m,p(U), where, as
usual, we denote L1(U) +W−m,q(U) ≡ (Wm,p

0 (U)⋂ L
∞(U))∗.

Theorem 3.4.15. Let m ∈ ℕ and p ∈ (1,∞). Let μ ∈ Rf (U). Then the following state-
ments are equivalent:
(i) μ ∈ L1(U) +W−m,q(U);
(ii) μ ∈ Rd,m,p(U).

Theorem 3.4.15 is stated for m = 2 in [10] and proven in [52, Theorem B] (see [23,
Theorem 2.1] for the case m = 1). Clearly, L1(U) ⊆ Rac(U) ⊆ Rd,m,p(U) (see (3.79)),
and thus the implication (i)⇒(ii) follows by Proposition 3.4.14. To prove the opposite
implication, we need the following lemma (see [10, Lemma 4.2] for the proof).

Lemma 3.4.16. Let m ∈ ℕ and p ∈ (1,∞), and let μ ∈ Rd,m,p(U) be nonnegative. Then
there exists a sequence {μk} ⊆ W−m,q(U) ∩ Rf (U) such that 0 ≤ μk ≤ μk+1 ≤ μ for all
k ∈ ℕ and limk→∞ ‖μk − μ‖Rf (U) = 0.

Proof of Theorem 3.4.15. Weonlymust prove that (ii)⇒(i). It is not restrictive to assume
that μ is nonnegative. For any k ∈ ℕ, set νk := μk−μk−1, where {μk} ⊆ W−m,q(U) is given
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by Lemma 3.4.16, and μ0 := 0. Then

∞
∑
k=1
‖νk‖ =

∞
∑
k=1

νk(U) = lim
k→∞

μk(U) = μ(U) <∞. (3.85)

Let {ρj} ⊆ C∞c (U) be a standardmollifier. For any fixed k ∈ ℕ, we have limj→∞ ‖νk−
νk ∗ ρj‖W−m,q(U) = 0, and thus there exists jk ∈ ℕ such that

‖νk − νk ∗ ρjk ‖W−m,q(U) ≤ 1
2k
. (3.86)

Set

νk = (νk − νk ∗ ρjk ) + νjk ∗ ρjk =: ωk + fk (k ∈ ℕ). (3.87)

Observe that by Lemma 3.4.16 νk ∈ R+f (U), and thus fk ≥ 0. By (3.86) we have that
∑∞k=1 ‖ωk‖W−m,q(U) ≤ 1, and hence there exists ω := ∑∞k=1 ωk ∈ W−m,q(U). On the other
hand, by (3.85) we have ∑∞k=1 ‖fk‖L1(U) ≤ ‖μ‖ + 1, and hence there exists f := ∑

∞
k=1 fk ∈

L1(U). Since limn→∞ ‖∑
n
k=1 νk − μ‖Rf (U) = 0, from (3.87) we obtain μ = f + ω. Then the

result follows.

Remark 3.4.5. In view of Theorem 3.4.15, the duality symbol ⟨μ, ζ ⟩ makes sense for
any μ ∈ Rd,m,p(U) and ζ ∈ W

m,p
0 (U)⋂ L

∞(U).
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4 Vector integration

4.1 Measurability of vector functions

4.1.1 Measurability

Let (X,𝒜) be a measurable space, and let Y be a Banach space with norm ‖ ⋅ ‖Y . The
following concept of measurability (whereℬ(Y) denotes the Borel σ-algebra on Y gen-
erated by the norm topology) is a particular case of Definition 2.1.1.

Definition 4.1.1. A function f : X → Y is measurable (or (𝒜,ℬ(Y))-measurable) if
f −1(E) ∈ 𝒜 for all E ∈ ℬ(Y).

The following proposition partly generalizes Corollary 2.1.5(ii).

Proposition 4.1.1. Let fn : X → Y be measurable (n ∈ ℕ), and

lim
n→∞
fn(x) − f (x)

Y = 0 for every x ∈ X. (4.1)

Then the function f is measurable.

Proof. Let U ⊆ Y be open. It is easily seen that

f −1(U) ⊆ ⋃
k≥m

f −1k (U) for everym ∈ ℕ. (4.2)

In fact, fix x ∈ f −1(U). Then f (x) ∈ U, and thus there exists r > 0 such that the open
ball B(f (x), r) is contained in U . On the other hand, by (4.1) there exists k̄ ∈ ℕ such
that fk(x) ∈ B(f (x), r) for all k > k̄, whence (4.2) immediately follows.

By the arbitrariness ofm in (4.2) we get

f −1(U) ⊆
∞

⋂
m=1
⋃
k≥m

f −1k (U), (4.3)

whereas for every closed set C ⊆ Y ,

∞

⋂
m=1
⋃
k≥m

f −1k (C) ⊆ f
−1(C). (4.4)

Set Un := {y ∈ U | d(y,Uc) > 1
n } and Cn := Un (n ∈ ℕ). Clearly, Un is open, and

U = ⋃∞n=1 Un = ⋃
∞
n=1 Cn. From (4.3)–(4.4) we get

f −1(U) =
∞

⋃
n=1

f −1(Un) ⊆
∞

⋃
n=1

∞

⋂
m=1
⋃
k≥m

f −1k (Un) ⊆
∞

⋃
n=1

∞

⋂
m=1
⋃
k≥m

f −1k (Cn) ⊆
∞

⋃
n=1

f −1(Cn) = f
−1(U).

https://doi.org/10.1515/9783110556902-005
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It follows that f −1(U) = ⋃∞n=1⋂
∞
m=1⋃k≥m f −1k (Un) ∈ 𝒜, and thus by Lemma 2.1.2 the

conclusion follows.

Remark 4.1.1. If f : X → Y is measurable, then the real-valued function

‖f ‖Y : X → [0,∞), ‖f ‖Y (x) :=
f (x)
Y (x ∈ X) (4.5)

is measurable. In fact, themap ‖ ⋅ ‖Y : Y → ℝ, y → ‖y‖Y (y ∈ Y) is continuous and thus
Borel measurable (see Remark 2.1.3). Then the claim follows from Proposition 2.1.1.

Definition 4.1.2. A function s : X → Y is simple if there exist y1, . . . , yp ∈ Y and a par-
tition {E1, . . . ,Ep} ⊆ 𝒜 of X, with yi = 0 if μ(Ei) =∞, such that s = ∑

p
i=1 yiχEi .

Simple functions aremeasurable.We denote the set of simple functions s : X → Y
by S (X;Y), with S (X) ≡ S (X;ℝ).

4.1.2 μ-measurability

Let (X,𝒜, μ) be a measure space.

Definition 4.1.3. A function f : X → Y is μ-measurable if there exists a sequence {sn} ⊆
S (X;Y) such that

lim
n→∞
sn(x) − f (x)

Y = 0 for μ-a. e. x ∈ X. (4.6)

Remark 4.1.2. (i) Let f , g : X → Y . If f is μ-measurable and g = f μ-a. e. in X, then
g is also μ-measurable. In fact, let N1,N2 ∈ 𝒜 be μ-null such that limn→∞ ‖sn(x) −
f (x)‖Y = 0 for all x ∈ Nc

1 and f (x) = g(x) for all x ∈ N
c
2 . Then N := N1 ∪ N2 is μ-null,

and limn→∞ ‖sn(x) − g(x)‖Y = 0 for all x ∈ Nc. Thus by Definition 4.1.3 the claim
follows.

(ii) If f : X → Y is μ-measurable, then there exist a μ-null set N ∈ 𝒜 and a sequence
{sn} ⊆ S (X;Y) such that limn→∞ ‖sn(x) − f (x)‖Y = 0 for all x ∈ Nc. Since simple
functions are measurable, by Proposition 4.1.1 the function f is (𝒜 ∩ Nc,ℬ(Y))-
measurable and thus measurable in the sense of functions defined μ-a. e. (see
Definitions 2.1.2 and 4.1.1). Moreover, it is measurable in the usual sense if μ is
complete (see Proposition 2.1.6). We tacitly summarize these remarks by saying
that “μ-measurable functions are measurable”.

(iii) By (ii) and Remark 4.1.1, if f : X → Y is μ-measurable, then the function ‖f ‖Y
defined by (4.5) is measurable.

The set of μ-measurable functions is a vector space. The following result (analo-
gous to Proposition 4.1.1) shows that if μ is σ-finite, then it is closed with respect to
μ-a. e. convergence.
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Proposition 4.1.2. Let μ be σ-finite, and let fn : X → Y be μ-measurable (n ∈ ℕ). Then
every function f : X → Y such that

lim
n→∞
fn(x) − f (x)

Y = 0 for μ-a. e. x ∈ X

is μ-measurable.

To prove Proposition 4.1.2, we need the following general form of the Egorov the-
orem (see Theorem 2.1.12). The proof is almost verbatim the same as in the case Y = ℝ
and thus is omitted.

Theorem 4.1.3 (Egorov). Let μ(X) < ∞. Let fn : X → Y be μ-measurable (n ∈ ℕ),
and let limn→∞ ‖fn(x) − f (x)‖Y = 0 for μ-a. e. x ∈ X. Then for every δ > 0, there exists
a measurable set E ⊆ X such that μ(Ec) < δ and

lim
n→∞

sup
x∈E

fn(x) − f (x)
Y = 0.

Proof of Proposition 4.1.2. (i) Let us first prove the resultwhen μ(X) <∞.Wewill prove
the following:

Claim. Let (Z,𝒜, μ) be a finitemeasure space. Let gn : Z → Y be μ-measurable (n ∈ ℕ),
and let g : Z → Y satisfy limn→∞ ‖gn(z) − g(z)‖Y = 0 for μ-a. e. z ∈ Z. Then for every
δ > 0, there exist Zδ ⊆ Z such that μ(Zδ) < δ and a sequence {sδ,m} ⊆ S (Z;Y) such that

sup
z∈Zcδ

sδ,m(z) − g(z)
Y ≤

1
m

for allm ∈ ℕ. (4.7)

Using the claim, we can argue as follows. For every k ∈ ℕ, choose Z = Zk−1 (Z0 :=
X), gn = fn, g = f , and δ =

1
k (by abuse of notation we set Zk ≡ Z 1

k
). Then there exist

Zk ⊆ Zk−1 such that μ(Zk) <
1
k and a sequence {sk,m} ⊆ S (Zk−1;Y) such that

sup
x∈Xk

sk,m(x) − f (x)
Y ≤

1
m

for allm ∈ ℕ, (4.8)

where Xk := Zk−1 \Zk (k ∈ ℕ). Observe that the sequence {Zk} is nonincreasing, the sets
Xk are disjoint, and Zk = ⋂

k
j=1 X

c
j = (⋃

k
j=1 Xj)

c for all k ∈ ℕ. Without loss of generality,
we can assume that sk,m(x) = 0 for all x ∈ Xc

k , and thus sk,m = sk,mχXk in X (k,m ∈ ℕ).
Set tm := ∑

m
k=1 sk,m = ∑

m
k=1 sk,mχXk (m ∈ ℕ). Clearly, {tm} ⊆ S (X;Y). Let x ∈ ⋃∞k=1 Xk,

and thus x ∈ Xj for some j ∈ ℕ. By (4.8) we have

tm(x) − f (x)
Y ≤ sup

x∈Xj

sj,m(x) − f (x)
Y ≤

1
m

for allm ∈ ℕ,
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whence

lim
m→∞
tm(x) − f (x)

Y = 0 for all x ∈ ⋃∞k=1 Xk . (4.9)

On the other hand, since {Zk} is nonincreasing, and Zk = (⋃
k
j=1 Xj)

c, μ(Zk) <
1
k for all

k ∈ ℕ, by Proposition 1.3.1 we have μ((⋃∞j=1 Xj)
c) = limk→∞ μ(Zk) = 0. Therefore the

convergence in (4.9) takes place μ-a. e. in X, and thus f is μ-measurable. Hence the
result follows in this case.

It remains to prove the claim. By Theorem 4.1.3, for any δ > 0, there exists Z1 ⊆ Z
with μ(Z1) <

δ
2 such that

sup
z∈Zc1

gn(z) − g(z)
Y → 0 as n→∞.

Hence for everym ∈ ℕ, there exists nm ∈ ℕ such that

sup
z∈Zc1

gnm (z) − g(z)
Y ≤

1
2m
. (4.10)

Since gnm : Z → Y is μ-measurable, there exists a sequence {um,k} ⊆ S (Z;Y) such that

lim
k→∞
um,k(z) − gnm (z)

Y = 0 for μ-a. e. z ∈ Z.

Then by Theorem 4.1.3 there exists Z2,m ⊆ Z such that μ(Z2,m) <
δ

2m+1 and

sup
z∈Zc2,m

um,k − gnm (z)
Y → 0 as k →∞.

Hence there exists km ∈ ℕ such that

sup
z∈Zc2,m

um,km (z) − gnm (z)
Y ≤

1
2m
. (4.11)

Set Zδ := Z1 ∪ (⋃
∞
m=1 Z2,m) and sδ,m := um,km (m ∈ ℕ). Then μ(Zδ) < δ and {sδ,m} ⊆

S (Z;Y), and by (4.10)–(4.11) we get (4.7). Hence the claim follows.

(ii) In the general case, let {Ek} ⊆ 𝒜 satisfy μ(Ek) < ∞ for all k ∈ ℕ, Ek ∩ El = 0
for k ̸= l, and X = ⋃∞k=1 Ek . For every k, n ∈ ℕ, the restriction fn|Ek is μ-measurable,
and fn|Ek → f |Ek μ-a. e. in Ek as n → ∞. Since μ(Ek) < ∞, it follows by (i) that f |Ek
is μ-measurable (k ∈ ℕ). Then there exists a sequence {vk,m} ⊆ S (Ek ;Y) of simple
functions such that

lim
m→∞
vk,m(x) − f (x)

Y = 0 for every k ∈ ℕ and μ-a. e. x ∈ Ek .
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Set vk,m(x) := 0 for x ∈ Eck and sm := ∑
m
k=1 vk,m = ∑

m
k=1 vk,mχEk (m ∈ ℕ). Then {sm} ⊆

S (X;Y), and

lim
m→∞
sm(x) − f (x)

Y → 0 for μ-a. e. x ∈ ⋃∞k=1 Ek = X.

Hence the conclusion follows.

The following proposition gives conditions under which the converse of Re-
mark 4.1.2(ii) is true.

Proposition 4.1.4. Let μ be σ-finite, and let Y be separable. Then every measurable
function f : X → Y is μ-measurable.

Proof. Let us prove the claim when μ(X) < ∞, the general case following as in the
proof of Proposition 4.1.2. Fix n ∈ ℕ, and letDn ≡ {yn,k} be a countable dense set in the
open ball B(0, n) ⊆ Y . Consider the open balls B(yn,k ,

1
n ) ⊆ Y , and set

Wn,1 := B(yn,1,
1
n
) ∩ B(0, n),

Wn,k := [B(yn,k ,
1
n
) ∩ B(0, n)] \ (

k−1
⋃
j=1

Wn,j) (k ≥ 2).

Then

Wn,k ∩Wn,l = 0 for k ̸= l,
∞

⋃
k=1

Wn,k = B(0, n). (4.12)

In fact, the sets Wn,k are disjoint, and ⋃
∞
k=1Wn,k ⊆ B(0, n). Conversely, for every y ∈

B(0, n), there exists a sequence {yn,kj } ⊆ Dn such that ‖yn,kj − y‖Y → 0 as j →∞. Hence
for some j0 ∈ ℕ, ‖yn,kj0 − y‖Y <

1
n , that is, y ∈ ⋃

∞
k=1Wn,k . Therefore⋃

∞
k=1Wn,k ⊇ B(0, n).

Observe that by the second equality in (4.12) we have Y = ⋃∞n,k=1Wn,k .
Now set Cn,k := f −1(Wn,k) ⊆ X. Since Wn,k ∈ ℬ(Y) and f is measurable, we have

holds Cn,k ∈ 𝒜. Hence for all n, p ∈ ℕ, the function

sn,p : X → Y , sn,p(x) :=
p
∑
k=1

yn,kχCn,k (x) (x ∈ X)

is simple. Moreover, by (4.12) we have

Cn,k ∩ Cn,l = f
−1(Wn,k ∩Wn,l) = f

−1(0) = 0 for k ̸= l,

X = f −1(Y) =
∞

⋃
n,k=1

Cn,k .
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Set

fn : X → Y , fn(x) :=
∞

∑
k=1

yn,kχCn,k (x) (n ∈ ℕ, x ∈ X);

observe that for every x ∈ X, the above sum reduces to a single term, since the sets Cn,k
are disjoint.

By the above remarks we have

lim
p→∞
sn,p(x) − fn(x)

Y = 0 for every x ∈ X,

and thus fn is μ-measurable. Then by Proposition 4.1.2 the conclusion follows if we
prove that

lim
n→∞
fn(x) − f (x)

Y = 0 for every x ∈ X. (4.13)

To this purpose, fix x0 ∈ X, and let n̄ be the least integer greater than ‖f (x0)‖Y . Then
f (x0) ∈ B(0, n) for every n ≥ n̄, and thus by (4.12) there exists a unique kn ∈ ℕ such that
f (x0) ∈ Wn,kn , that is, x0 ∈ Cn,kn . By the definition of fn this implies that fn(x0) = yn,kn . It
follows that

f (x0) − fn(x0)
Y =
f (x0) − yn,kn

Y <
1
n
.

Lettingn→∞ in this inequality, by the arbitrariness of x0weobtain (4.13). This proves
the result.

Let us state the following definition.

Definition 4.1.4. A function f : X → Y is:
(i) separably valued if the range f (X) ⊆ Y is separable;
(ii) μ-a. e. separably valued if there exists a μ-null set N ⊆ X such that f (Nc) ⊆ Y is

separable.

Proposition 4.1.5. Let μ be σ-finite. Let f : X → Y be separably valued, and let D ≡
{yn} ⊆ f (X) be countable and dense in f (X). Then f is μ-measurable if and only if for
every n ∈ ℕ, the map Fn : X → [0,∞), x → Fn(x) := ‖f (x) − yn‖Y , is measurable.

Proof. We only prove the result when μ is finite. If f is μ-measurable, then there exists
a sequence {sk} ⊆ S (X;Y) such that limk→∞ ‖sk(x) − f (x)‖Y = 0 for μ-a. e. x ∈ X. Fix
n ∈ ℕ. Since

Fn(x) −
sk(x) − yn

Y
 ≤
sk(x) − f (x)

Y for all k ∈ ℕ,
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we have Fn(x) = limk→∞ ‖sk(x) − yn‖Y for μ-a. e. x ∈ X. On the other hand, {sk − yn} ⊆
S (X;Y) for all n ∈ ℕ, and thus the map x → ‖sk(x) − yn‖Y is measurable. Hence by
Corollary 2.1.5(ii) the claim follows.

Conversely, let Fn be measurable for every n ∈ ℕ. Since f −1(B(yn,
1
k )) = F

−1
n ((0,

1
k ))

(k ∈ ℕ), we have f −1(B(yn,
1
k )) ∈ 𝒜 (see Proposition 2.1.4; here B(yn,

1
k ) := {y ∈ Y |

‖y − yn‖Y <
1
k }). On the other hand, since D is dense in f (X), the countable family

{B(yn,
1
k ) | n ∈ ℕ, k ∈ ℕ} is a basis for the relative topology on f (X), and thus by

Lemma 2.1.2 f −1(F) ∈ 𝒜 for all F ∈ ℬ(Y). Hence f is measurable and thus μ-measurable
by Proposition 4.1.4. Then the result follows.

Let usmention the following consequence of Remark 2.1.3(i) andProposition 4.1.4.

Corollary 4.1.6. Let (X, 𝒯 ) be a topological space, let μ be a σ-finite measure on
(X,ℬ(X)), and let Y be separable. Then every continuous function f : X → Y is
μ-measurable.

The following result can be viewed as a partial converse of Proposition 4.1.4. As
its proof shows, it is a natural consequence of the definition of μ-measurability.

Proposition 4.1.7. Let μ be σ-finite, and let f : X → Y be μ-measurable. Then f is μ-a. e.
separably valued.

Proof. Suppose first that μ(X) <∞. By (4.6) and Theorem 4.1.3, for every k ∈ ℕ, there
exists a μ-measurable set Ek ⊆ X such that μ(Ek) <

1
k and

lim
n→∞

sup
x∈Eck

sn(x) − f (x)
Y = 0. (4.14)

Since the range sn(X) ⊆ Y is finite for all n ∈ ℕ, the set ⋃∞n=1 sn(X) is countable.
Then by (4.14) the set f (Eck) ⊆ Y is separable for every k ∈ ℕ, and thus f (⋃∞k=1 E

c
k) =

⋃∞k=1 f (E
c
k) is also separable. Setting N := ⋂∞k=1 Ek, we have f (N

c) = f (⋃∞k=1 E
c
k) and

μ(N) = limk→∞ μ(Ek) = 0. Hence the claim follows in this case.
In the general case, let {Ek}be adisjoint sequence ofmeasurable sets such thatX =

⋃∞k=1 Ek and μ(Ek) <∞ for all k ∈ ℕ. By the above considerations, for every k ∈ ℕ, the
restriction f |Ek is μ-a. e. separably valued, that is, there exists a μ-null subset Nk ⊆ Ek
such that the set f (Ek \Nk) is separable. Therefore the set⋃

∞
k=1 f (Ek \Nk) = f (⋃

∞
k=1(Ek \

Nk)) is separable. Set N := ⋃
∞
k=1 Nk . Then N is μ-null, and f (Nc) = f (⋃∞k=1(Ek \ Nk)).

Hence the result follows.

4.1.3 Weak and weak∗ measurability

Let (X,𝒜, μ) be ameasure space, let Y be a Banach space, and let Y∗ be the dual space
of Y . Henceforth in this chapter, we denote by ⟨⋅, ⋅⟩ ≡ ⟨⋅, ⋅⟩Y∗ ,Y the duality map be-
tween Y and Y∗.
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Definition 4.1.5. (i) A function f : X → Y is weakly measurable if for every y∗ ∈ Y∗,
the function from X to ℝ, x → ⟨y∗, f (x)⟩, is measurable.

(ii) A function f : X → Y∗ is weakly∗ measurable if for every y ∈ Y , the function from
X to ℝ, x → ⟨f (x), y⟩, is measurable.

Remark 4.1.3. (i) A μ-measurable function f : X → Y is weakly measurable. In fact,
let {sn} ⊆ S (X;Y) satisfy (4.6). Then for all y∗ ∈ Y∗,

lim
n→∞
⟨y∗, sn(x)⟩ = ⟨y

∗, f (x)⟩ for μ-a. e. x ∈ X. (4.15)

For every n ∈ ℕ, the function x → ⟨y∗, sn(x)⟩ : X → ℝ is simple and thus mea-
surable. Then by (4.15) and Corollary 2.1.5(ii) for all y∗ ∈ Y∗, the real-valued map
x ∈ X → ⟨y∗, f (x)⟩ is measurable.

(ii) Clearly, a weakly measurable function f : X → Y∗ is weakly∗ measurable. Then
by (i) a μ-measurable function f : X → Y∗ is weaklymeasurable and thusweakly∗

measurable.

Remark 4.1.4. The set of weakly measurable functions (respectively, of weakly∗ mea-
surable functions) is a vector space. If {fn} is a sequence of weakly measurable func-
tions and fn(x) ⇀ f (x) for all x ∈ X, f : X → Y is also weakly measurable. Similarly,
if {fn} is a sequence of weakly

∗ measurable functions and fn
∗
⇀ f , then f : X → Y∗ is

weakly∗ measurable.

Let us recall the following definition (e. g., see [44]).

Definition 4.1.6. (i) Let Z ⊆ Y . The polar set of Z is the set

Zp := {y
∗ ∈ Y∗ | ⟨y

∗, y⟩ ≤ 1 for all y ∈ Z} ⊆ Y
∗.

(ii) Let Z∗ ⊆ Y∗. The polar set of Z∗ is the set

Z∗p := {y ∈ Y |
⟨y
∗, y⟩ ≤ 1 for all y

∗ ∈ Z∗} ⊆ Y .

Remark 4.1.5. Let

B1 := {y ∈ Y | ‖y‖Y ≤ 1} and B∗1 := {y
∗ ∈ Y∗ | ‖y∗‖Y∗ ≤ 1}

be the closed unit balls in Y and Y∗, respectively. Then

(B1)p = B
∗
1 and (B∗1 )p = B1. (4.16)

Let us prove a preliminary result (see [44, Section 8.15, Lemma 1]).

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 Measurability of vector functions | 161

Proposition 4.1.8. Let S be a separable subspace of Y, let B1 be the unit closed ball of Y,
and let (B1)p be the polar set of B1. Then there exists a countable set W ⊆ (B1)p such that

‖y‖Y = sup
a∈W

⟨a, y⟩
 for all y ∈ S. (4.17)

Proof. Since ‖y‖Y = supa∈(B1)p |⟨a, y⟩| (see (4.16)), it suffices to prove the existence of
a countable setW ⊆ (B1)p such that

‖y‖Y ≤ sup
a∈W

⟨a, y⟩
 for all y ∈ S. (4.18)

Let D ≡ {yn} be a dense countable subset in S, and fix n ∈ ℕ. Since ‖yn‖Y =
supa∈(B1)p |⟨a, yn⟩|, there exists a sequence {an,j} ⊆ (B1)p such that

‖yn‖Y = sup
j∈ℕ

⟨an,j, yn⟩
. (4.19)

Consider the countable setW := {ak,j | k, j ∈ ℕ}. Then by (4.19) we have that

‖yn‖Y ≤ sup
k,j∈ℕ

⟨ak,j, yn⟩
 = sup

a∈W

⟨a, yn⟩
. (4.20)

Now fix z ∈ S. By the denseness of D, for any ϵ > 0, there exists ym ∈ D such that
‖z − ym‖Y < ϵ. Then by (4.20)

‖z‖Y ≤ ‖z − ym‖Y + ‖ym‖Y ≤ sup
k,j∈ℕ

⟨ak,j, ym⟩
 + ϵ. (4.21)

On the other hand, sinceW ⊆ (B1)p, we have

sup
k,j∈ℕ

⟨ak,j, ym⟩
 ≤ sup

k,j∈ℕ

⟨ak,j, z⟩
 + sup

k,j∈ℕ

⟨ak,j, z − ym⟩


≤ sup
k,j∈ℕ

⟨ak,j, z⟩
 + ‖z − ym‖Y ≤ sup

k,j∈ℕ

⟨ak,j, z⟩
 + ϵ. (4.22)

From (4.21)–(4.22) we obtain

‖z‖Y ≤ sup
a∈W

⟨a, z⟩
 + 2ϵ,

whence by the arbitrariness of ϵ inequality (4.18) follows. This proves the result.

Proposition 4.1.9. (i) Let f : X → Y be weakly measurable and μ-a. e. separably val-
ued. Then the function x → ‖f (x)‖Y is measurable.

(ii) Let f : X → Y∗ be weakly∗ measurable and μ-a. e. separably valued. Then the
function x → ‖f (x)‖Y∗ is measurable.

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



162 | 4 Vector integration

Proof. (i) It is not restrictive to assume that f (X) itself is separable. Then by Proposi-
tion 4.1.8 and the first equality in (4.16) there exists a countable setW ⊆ B∗1 such
that

f (x)
Y = sup

a∈W

⟨a, f (x)⟩
 for all x ∈ X. (4.23)

Since f is weakly measurable and | ⋅ | is continuous, for any a ∈ W , the map x →
|⟨a, f (x)⟩| is measurable. Then by (4.23) and Corollary 2.1.5(ii) the claim follows.

(ii) Arguing as in (i) and using the second equality in (4.16), there exists a countable
setW ⊆ B1 such that

f (x)
Y∗ = sup

a∈W

⟨f (x), a⟩
 for all x ∈ X. (4.24)

Since f is weakly∗ measurable and | ⋅ | is continuous, for any a ∈ W , the map
x → |⟨a, f (x)⟩| is measurable. Then by (4.24) and Corollary 2.1.5(ii) the conclusion
follows.

Remark 4.1.6. Observe that Y∗ is the topological dual both of Y with the weak topol-
ogy σ(Y ,Y∗) and of Y∗∗ with the weak∗ topology σ(Y∗∗,Y∗). Therefore, since the em-
bedding Y ⊆ Y∗∗ is isometric, applying Proposition 4.1.9(ii) to Y∗∗ = (Y∗)∗ is in agree-
ment with Proposition 4.1.9(i).

In particular, by Proposition 4.1.9(ii) the function x → ‖f (x)‖Y∗ is measurable if
Y∗ is separable, and f : X → Y∗ is weakly∗ measurable. The same conclusion holds if
Y is separable, as the following proposition shows.

Proposition 4.1.10. Let Y be separable, and let f : X → Y∗ be weakly∗ measurable.
Then the function x → ‖f (x)‖Y∗ is measurable.

Proof. Let D ≡ {yn} ⊆ Y be countable and dense. For every n ∈ ℕ, the function ln :
X → ℝ, ln(x) := |⟨f (x), yn⟩|, is measurable, and thus the map l : X → ℝ, l(x) :=
supyn∈D, ‖yn‖Y≤1 ln(x), is measurable (see Corollary 2.1.5(ii)). Then the conclusion will
follow if we prove that for all x ∈ X,

l(x) = f (x)
Y∗ . (4.25)

To this purpose, observe first that

f (x)
Y∗ = sup

y∈Y , ‖y‖Y≤1

⟨f (x), y⟩
 ≥ sup

yn∈D, ‖yn‖Y≤1

⟨f (x), yn⟩
 = l(x).

To prove the reverse inequality, set α := ‖f (x)‖Y∗ > 0 (if ‖f (x)‖Y∗ = 0, then equal-
ity (4.25) is obvious). For any k ∈ ℕ, choose uk ∈ Y such that ‖uk‖Y ≤ 1 and

⟨f (x), uk⟩
 ≥ α −

1
2k
. (4.26)

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 Measurability of vector functions | 163

By the denseness of D there exists yk ∈ D such that ‖uk − yk‖Y <
1

4αk , whence

‖yk‖Y ≤ ‖yk − uk‖Y + ‖uk‖Y ≤
1

4αk
+ 1, (4.27)

⟨f (x), uk − yk⟩
 ≤

α
4αk
=

1
4k
. (4.28)

Set

ȳk := {
yk
‖yk‖Y

if ‖yk‖Y > 1,
yk if ‖yk‖Y ≤ 1.

If ‖yk‖Y > 1, then by (4.27)–(4.28)

⟨f (x), uk − ȳk⟩
 ≤
⟨f (x), uk − yk⟩

 +
⟨f (x), yk − ȳk⟩



≤
1
4k
+ α(‖yk‖Y − 1) ≤

1
4k
+

α
4αk
=

1
2k
. (4.29)

By (4.26) and (4.28)–(4.29), for every k ∈ ℕ, there exists ȳk ∈ D such that ‖ȳk‖Y ≤ 1 and

⟨f (x), ȳk⟩
 ≥
⟨f (x), uk⟩

−
⟨f (x), ȳk − uk⟩

 ≥ α −
1
k
.

This proves (4.25), and thus the conclusion follows.

The relationship between μ-measurability and weak measurability is clarified by
the following theorem.

Theorem 4.1.11 (Pettis). Let μ be σ-finite, and let f : X → Y. Then the following state-
ments are equivalent:
(i) f is μ-measurable;
(ii) f is weakly measurable and μ-a. e. separably valued.

Proof. (i)⇒(ii). By Remark 4.1.3 f is weakly measurable, whereas the fact that f is
μ-a. e. separably valued follows from Proposition 4.1.7. Hence the claim follows.

(ii)⇒(i). It is not restrictive to assume that f (X) is separable. Let D ≡ {yn} be a
dense countable subset in f (X). By Proposition 4.1.9(i) the function x → ‖f (x) − yn‖Y
is measurable for any yn ∈ D, and thus by Proposition 4.1.5 f is μ-measurable. Hence
the result follows.

In the same way, Proposition 4.1.9(ii) gives the following result.

Proposition 4.1.12. Let μ be σ-finite, and let f : X → Y∗. Then the following statements
are equivalent:
(i) f is μ-measurable;
(ii) f is weakly∗ measurable and μ-a. e. separably valued.
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Remark 4.1.7. Let μ be σ-finite, and let Y∗ be separable. By Theorem 4.1.11 and Propo-
sition 4.1.12, for every f : X → Y∗, the three notions of μ-measurability, weak measur-
ability, and weak∗ measurability coincide.

4.2 Integration of vector functions

4.2.1 Bochner integrability

Definition 4.2.1. Let s : X → Y be a simple function, s = ∑pi=1 yiχEi with y1, . . . , yp ∈ Y
and a partition {E1, . . . ,Ep} ⊆ 𝒜 of X, such that yi = 0 if μ(Ei) =∞. The quantity

∫
X

s dμ :=
p
∑
i=1

yi μ(Ei)

is called the integral of s on X.

Remark 4.2.1. (i) It is easily seen that the above definition is well posed, since the
integral ∫X s dμ does not depend on the choice of the partition {E1, . . . ,Ep}. A similar
calculation shows that themap fromS (X;Y) toY , s → ∫X s dμ, is linear: if s = ∑

p
i=1 yiχEi

and t = ∑qj=1 y
′
j χFj are simple functions, then for all α, β ∈ ℝ,

∫
X

(αs + βt)dμ = α∫
X

s dμ + β∫
X

t dμ. (4.30)

(ii) By the triangular inequality we have


∫
X

s dμ
Y
≤ ∫

X

‖s‖Y dμ, (4.31)

where ‖s‖Y := ∑
p
i=1 ‖yi‖YχEi .

Definition 4.2.2. A μ-measurable function f : X → Y is called Bochner integrable if
there exists a sequence {sn} ⊆ S (X;Y) such that sn → f μ-a. e. in X and

lim
n→∞
∫
X

‖sn − f ‖Y dμ = 0. (4.32)

Every such sequence {sn} ⊆ S (X;Y) is called an approximating sequence of f . The
quantity

∫
X

f dμ := lim
n→∞
∫
X

sn dμ, (4.33)
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the limit existing in the sense of strong convergence inY , is called theBochner integral
of f on X.

If f : X → Y is Bochner integrable, then we set

∫
E

f dμ := ∫
X

fχE dμ for E ∈ 𝒜. (4.34)

The set of Bochner-integrable functions f : X → Y is denoted by L1(X;Y) ≡
L1(X,𝒜, μ;Y); if Y = ℝ, then we set L1(X;ℝ) ≡ L1(X) ≡ L1(X,𝒜, μ). It is easily seen
that if Y = ℝ, then the notions of Bochner integrability and Bochner integral coincide
with those in Definitions 2.2.2–2.2.3.

Remark 4.2.2. (i) For every n ∈ ℕ, the integral in the right-hand side of (4.32) is well
defined (see Remark 4.1.1 and Definition 2.2.2). Also, the Bochner integral is well de-
fined, since the limit in (4.33) exists anddoes not dependon the choice of the sequence
{sn}. Indeed, if {sn} is an approximating sequence of f , then by (4.30)–(4.31) we have


∫
X

(sm − sn) dμ
Y
≤ ∫

X

‖sm − sn‖Ydμ ≤ ∫
X

‖sm − f ‖Y dμ + ∫
X

‖sn − f ‖Y dμ.

Hence {∫X sn dμ} ⊆ Y is a Cauchy sequence and thus has a strong limit in Y . Moreover,
let {sn} and {tn} be two approximating sequences for f . Then, as n→∞, we get


∫
X

(sn − tn) dμ
Y
≤ ∫

X

‖sn − tn‖Y dμ ≤ ∫
X

‖sn − f ‖Y dμ + ∫
X

‖tn − f ‖Y dμ→ 0,

and thus the sequences {∫X sn dμ} and {∫X tn dμ} have the same limit in Y .
(ii) If f : X → Y is Bochner integrable and E ∈ 𝒜, then the function fχE : X → Y is

Bochner integrable. Then the definition in (4.34) is well posed.

Remark 4.2.3. (i) By (4.30) and (4.33), for all f , g ∈ L1(X;Y) and α, β ∈ ℝ, we have
αf + βg ∈ L1(X;Y), and thus L1(X;Y) is a vector space. Moreover,

∫
X

(αf + βg)dμ = α∫
X

f dμ + β∫
X

g dμ. (4.35)

(ii) By (4.34)–(4.35) the Bochner integral is finitely additive: if E1, . . . ,Ep ∈ 𝒜 are
disjoint, then

∫

⋃pi=1 Ei

f dμ =
p
∑
i=1
∫
Ei

f dμ. (4.36)

The following result provides a simple criterion for the Bochner integrability.
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Proposition 4.2.1. A μ-measurable function f : X → Y is Bochner integrable if and only
if

∫
X

‖f ‖Y dμ <∞. (4.37)

Proof. Let f be Bochner integrable, and let {sn} be an approximating sequence. Then
for every ϵ > 0, there exists n̄ ∈ ℕ such that

∫
X

‖f ‖Y dμ ≤ ∫
X

‖f − sn̄‖Y dμ + ∫
X

‖sn̄‖Y dμ < ∫
X

‖sn̄‖Y dμ + ϵ <∞,

and thus (4.37) follows. Conversely, let f : X → Y be a μ-measurable function satis-
fying (4.37), and let {tn} ⊆ S (X;Y) be any sequence such that tn → f μ-a. e. in X. For
every n ∈ ℕ, set sn := tnχEn , where

En := {x ∈ X |
tn(x)
Y ≤ 2
f (x)
Y }.

Let us show that sn → f μ-a. e. in X and (4.32) holds, and thus f is Bochner integrable.
Indeed, since tn → f μ-a. e. in X, there exists a μ-null set N ⊆ X such that

limn→∞ tn(x) = f (x) for all x ∈ Nc. Hence for every x ∈ Nc, there exists n̄ ∈ ℕ such that
‖tn(x)‖Y ≤ 2‖f (x)‖Y for all n ≥ n̄, that is, x ∈ En for all n ≥ n̄, and thus limn→∞ χEn (x) = 1.
Hence for all x ∈ Nc, limn→∞ sn(x) = limn→∞ tn(x) = f (x). Since μ(N) = 0, it follows
that sn → f μ-a. e. in X.

By the very definition of sn we have ‖sn(x)‖Y = 0 for all x ∈ Ecn and ‖sn(x)‖Y =
‖tn(x)‖Y ≤ 2‖f (x)‖Y for all x ∈ En. Therefore

sn(x) − f (x)
Y ≤ 3
f (x)
Y for all x ∈ X.

Since sn → f μ-a. e. in X and ‖f ‖Y ∈ L1(X) by (4.37), from the above inequality and the
dominated convergence theorem we obtain (4.32). Then the result follows.

Proposition 4.2.2. Let f be Bochner integrable. Then:
(i) for all E ∈ 𝒜, we have


∫
E

f dμ
Y
≤ ∫

E

‖f ‖Y dμ; (4.38)

(ii) limμ(E)→0 ∫E f dμ = 0;
(iii) the Bochner integral is σ-additive: for any disjoint sequence {Ei} ⊆ 𝒜,

∫

⋃∞i=1 Ei

f dμ =
∞

∑
i=1
∫
Ei

f dμ, (4.39)

the series in the right-hand side being absolutely convergent in Y.
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Proof. Let {sn} ⊆ S (X;Y) be an approximating sequence of f . By (4.32), (4.34), and the
triangle inequality, for any E ∈ 𝒜, we get

lim
n→∞


∫
E

‖sn‖Ydμ − ∫
E

‖f ‖Ydμ


≤ lim
n→∞
∫
E

‖sn‖Y − ‖f ‖Y
dμ ≤ lim

n→∞
∫
X

‖sn − f ‖Y dμ = 0. (4.40)

On the other hand, for all n ∈ ℕ and E ∈ 𝒜, we have


∫
E

sn dμ
Y
≤ ∫

E

‖sn‖Y dμ

(see (4.31)). By (4.33) and (4.40), letting n → ∞ in the above inequality gives (4.38),
and thus claim (i) follows. Claim (ii) follows from (4.38) since limμ(E)→0 ∫E ‖f ‖Y dμ = 0
(see Remark 2.8.2(i)). Concerning (iii), observe that by (i) and Proposition 4.2.1

∞

∑
i=1


∫
Ei

f dμ
Y
≤
∞

∑
i=1
∫
Ei

‖f ‖Ydμ = ∫
⋃∞i=1 Ei

‖f ‖Y dμ ≤ ∫
X

‖f ‖Ydμ <∞,

and hence the series in the right-hand side of (4.39) is absolutely convergent. As for its
sum, by (4.36) and (4.38) we have


∫

⋃∞i=1 Ei

f dμ −
p
∑
i=1
∫
Ei

f dμ
Y
=

∫

⋃∞i=p+1 Ei

f dμ
Y
≤ ∫

⋃∞i=p+1 Ei

‖f ‖Y dμ

=
∞

∑
i=p+1
∫
Ei

‖f ‖Y dμ→ 0 as p→∞,

since

∞

∑
i=1
∫
Ei

‖f ‖Y dμ = ∫
⋃∞i=1 Ei

‖f ‖Y dμ ≤ ∫
X

‖f ‖Y dμ <∞.

This proves (4.39), and hence the result follows.

Let Y , Z be Banach spaces, and let B1 denote the closed unit ball in Y . We denote
byL (Y ; Z) the Banach space of linear continuous operators T : Y → Z endowed with
the operator norm ‖T‖L (Y ;Z) := supy∈B1 ‖Ty‖Z .

Proposition 4.2.3. Let Z be a Banach space, let T ∈ L (Y ; Z), and let f : X → Y be
Bochner integrable. Then the function Tf : X → Z, (Tf )(x) := T(f (x)), is Bochner inte-
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grable, and

T(∫
X

f dμ) = ∫
X

(Tf ) dμ. (4.41)

Proof. Let {sn} be an approximating sequence of f , sn = ∑
pn
k=1 yn,kχEn,k with yn,k ∈ Y and

a partition {En,1, . . . ,En,pn } ⊆ 𝒜 of X. Then {Tsn} ⊆ S (X; Z), since Tsn = ∑
pn
k=1(Tyn,k)χEn,k .

By the continuity of T we have that Tsn → Tf μ-a. e. in X and

∫
X

‖Tsn − Tf ‖Z dμ ≤ ‖T‖L (Y ;Z) ∫
X

‖sn − f ‖Y dμ→ 0 as n→∞.

Hence {Tsn} is an approximating sequence for Tf , and thus Tf is Bochner integrable.
Finally, for every n ∈ ℕ, we have

T(∫
X

sn dμ) =
pn
∑
k=1
(Tyk) μ(Ek) = ∫

X

(Tsn) dμ.

Since {sn} and {Tsn} are approximating sequences for f and Tf , respectively, and T is
continuous, letting n → ∞ in the previous equality gives (4.41). This completes the
proof.

Corollary 4.2.4. Let f : X → Y be Bochner integrable. Then for every y∗ ∈ Y∗, the
function ⟨y∗, f ⟩ : X → ℝ, ⟨y∗, f ⟩(x) := ⟨y∗, f (x)⟩, is integrable, and for every E ∈ 𝒜, we
have

⟨y∗,∫
E

f dμ⟩ = ∫
E

⟨y∗, f (x)⟩ dμ. (4.42)

Let us prove the following generalization of Corollary 2.9.5.

Proposition 4.2.5. Let f : U ⊆ X → Y be Bochner integrable. Then for μ-a. e. x0 ∈ X,

lim
r→0+

1
μ(Br(x0))

∫
Br(x0)

f − f (x0)
Y dμ = 0, (4.43a)

lim
r→0+



1
μ(Br(x0))

∫
Br(x0)

f dμ − f (x0)
Y
= 0. (4.43b)

Proof. Equality (4.43b) follows from (4.43a) and (4.38). To prove (4.43a), observe that
by Proposition 4.1.7 f is μ-a. e. separably valued, since by assumption it is Bochner
integrable and thus μ-measurable.Without loss of generality, wemay assume that the
range f (U) is separable. LetD ≡ {yn} be a countable dense subset of f (U). By (2.96), for
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every n ∈ ℕ, there exists a μ-null set Nn ⊆ U such that for all x0 ∈ U \ Nn,

lim
r→0+

1
μ(Br(x0))

∫
Br(x0)

‖f − yn‖Y dμ =
f (x0) − yn

Y . (4.44)

Then the set N := ⋃∞n=1 Nn is μ-null, and for any x0 ∈ U \ N equality (4.44), holds for
every n ∈ ℕ.

Fix x0 ∈ U \ N . Then for any n ∈ ℕ,

lim sup
r→0+

1
μ(Br(x0))

∫
Br(x0)

f − f (x0)
Y dμ

≤ lim sup
r→0+

1
μ(Br(x0))

∫
Br(x0)

‖f − yn‖Y dμ +
f (x0) − yn

Y = 2
f (x0) − yn

Y .

On the other hand, by the denseness of D in f (U), for any ϵ > 0, there exists n̄ ∈ ℕ
such that ‖f (x0)− yn‖Y <

ϵ
2 for every n > n̄. Then by the above inequality for any ϵ > 0,

we get

lim sup
r→0+

1
μ(Br(x0))

∫
Br(x0)

f − f (x0)
Y dμ ≤ ϵ,

whence (4.43a) follows. This proves the result.

Proposition 4.2.6. Let f : X → Y be Bochner integrable. Then the linear operator

T : L∞(X)→ Y , Tg := ∫
X

fg dμ (g ∈ L∞(X)),

is compact.

Proof. Let {sn} ⊆ S (X;Y) be an approximating sequence of f with sn = ∑
pn
k=1 yn,kχEn,k ,

yn,k ∈ Y , and a partition {En,1, . . . ,En,pn } ⊆ 𝒜 of X such that yn,k = 0 if μ(En,k) = ∞. For
all n ∈ ℕ, define Tn ∈ L (L∞(X);Y) by

Tng := ∫
X

sn g dμ =
pn
∑
k=1

yn,k ∫
En,k

g dμ (g ∈ L∞(X)).

Clearly, every Tn has finite rank. Moreover, by (4.32) and (4.38) we have

‖Tn − T‖L (L∞(X);Y) = sup
g∈L∞(X), g ̸=0

‖(Tn − T)g‖Y
‖g‖∞

≤ ∫
X

‖sn − f ‖Y dμ→ 0 as n→∞.

Hence the result follows.
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The following result establishes a link between the Bochner integral and vector
measures, generalizing Remark 2.2.3.

Proposition 4.2.7. Let f be Bochner integrable. Then the map

ν : 𝒜→ Y , ν(E) := ∫
E

f dμ (E ∈ 𝒜), (4.45)

is a vector measure absolutely continuous with respect to μ with bounded variation

|ν|(E) = ∫
E

‖f ‖Y dμ (E ∈ 𝒜). (4.46)

Proof. By Proposition 4.2.2(iii) and Definition 1.9.2(i) the map ν is a vector measure,
and by (4.46) ν ≪ μ (see Definition 1.9.4). To prove (4.46), let E ∈ 𝒜, E = ⋃ni=1 Ei with
disjoint E1, . . . ,En ∈ 𝒜. By (4.38) we have

n
∑
i=1

ν(Ei)
Y =

n
∑
i=1


∫
Ei

f dμ
Y
≤

n
∑
i=1
∫
Ei

‖f ‖Y dμ = ∫
E

‖f ‖Y dμ,

whence |ν|(E) ≤ ∫E ‖f ‖Y dμ for all E ∈ 𝒜 (see (1.62)). In particular, |ν|(X) ≤ ∫X ‖f ‖Y dμ <
∞ since f is Bochner integrable (see Proposition 4.2.1). Then ν is of bounded variation
(see Definition 1.9.2(ii)).

Let us prove the inverse inequality |ν|(E) ≥ ∫E ‖f ‖Y dμ. Let {sn} ⊆ S (X;Y) be an ap-
proximating sequence of f , and thus for any ϵ > 0, there exists n̄ ∈ ℕ such that

∫
X

‖sn̄ − f ‖Y dμ < ϵ. (4.47)

Let sn̄ = ∑
p
l=1 ylχGl

with y1, . . . , yp ∈ Y and {G1, . . . ,Gp} ⊆ 𝒜 a partition of X such that
yi = 0 if μ(Gi) = ∞. Fix E ∈ 𝒜, and set Fl := Gl ∩ E (l = 1, . . . , p). Then the sets
F1, . . . , Fp ∈ 𝒜 are disjoint, and E = ⋃pl=1 Fl. It is easily checked that

p
∑
l=1


∫
Fl

sn̄ dμ
Y
= ∫

E

‖sn̄‖Y dμ. (4.48)

By (4.47)–(4.48) we have



p
∑
l=1


∫
Fl

f dμ
Y
− ∫

E

‖sn̄‖Y dμ


=


p
∑
l=1


∫
Fl

f dμ
Y
−

p
∑
l=1


∫
Fl

sn̄ dμ
Y


≤

p
∑
l=1




∫
Fl

f dμ
Y
−

∫
Fl

sn̄ dμ
Y
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≤
p
∑
l=1


∫
Fl

f dμ − ∫
Fl

sn̄ dμ
Y
≤

p
∑
l=1
∫
Fl

‖sn̄ − f ‖Y dμ = ∫
E

‖sn̄ − f ‖Y dμ < ϵ.

From the above inequality, (1.62), and (4.47), for all E ∈ 𝒜, we get

|ν|(E) ≥
p
∑
l=1


∫
Fl

f dμ
Y
≥ ∫

E

‖sn̄‖Y dμ − ϵ ≥ ∫
E

‖f ‖Y dμ − 2ϵ,

whence |ν|(E) ≥ ∫E ‖f ‖Y dμ by the arbitrariness of ϵ. Then the conclusion follows.

Remark 4.2.4. In view of Proposition 4.2.7, it is natural to ask if the converse state-
ment holds, namely:

Let ν : 𝒜 → Y be a vector measure of bounded variation such that ν ≪ μ. Does
there exist a Bochner-integrable function f : X → Y such that ν(E) = ∫E f dμ for all
E ∈ 𝒜?

If Y = ℝ, then by the Radon–Nikodým theorem the answer is affirmative (see The-
orem 2.9.1). Remarkably, this is not the case for a general infinite-dimensional Banach
space Y (see Section 4.4.1).

Let us finally state the following definition, which generalizes Definition 2.2.4.

Definition 4.2.3. Let (X,𝒜) be a measurable space, let Y be a Banach space, and let μ
be a signed measure on 𝒜. A function f : X → Y is Bochner integrable with respect to
μ if f ∈ L1(X,𝒜, μ±;Y). In such case, we set

∫
X

f dμ := ∫
X

f dμ+ − ∫
X

f dμ−.

The results of Propositions 4.2.2–4.2.3 are easily generalized to the case of Defini-
tion 4.2.3. In particular, inequality (4.38) is replaced by


∫
E

f dμ
Y
≤ ∫

E

‖f ‖Y d |μ| for all E ∈ 𝒜,

which generalizes inequality (2.11).

4.2.2 Fubini theorem

Let us prove the following generalization of Theorem 2.3.3.

Theorem 4.2.8 (Fubini). Let (X1,𝒜1, μ1) and (X2,𝒜2, μ2) be σ-finite measure spaces. Let
f ∈ L1(X1 × X2,𝒜1 ×𝒜2, μ1 × μ2;Y). Then:
(i) fx1 ∈ L

1(X2,𝒜2, μ2;Y) for μ1-a. e. x1 ∈ X1, and fx2 ∈ L
1(X1,𝒜1, μ1;Y) for μ2-a. e. x2 ∈ X2;
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(ii) the function

X1 → Y , x1 → ∫
X2

fx1dμ2, (4.49)

belongs to L1(X1,𝒜1, μ1;Y), and

X2 → Y , x2 → ∫
X1

fx2dμ1, (4.50)

belongs to L1(X2,𝒜2, μ2;Y);
(iii) we have

∫
X1×X2

f d(μ1 × μ2) = ∫
X1

dμ1 ∫
X2

fx1 dμ2 = ∫
X2

dμ2 ∫
X1

fx2 dμ1. (4.51)

Proof. (i) By assumption, f is μ1 ×μ2-measurable. Hence there exists a sequence {sn} ⊆
S (X1 × X2;Y), sn = sn(x1, x2), such that sn → f (μ1 × μ2)-a. e. in X1 × X2. Therefore,
for μ1-a. e. x1 ∈ X1, the sequence of x1-traces {(sn)x1 } converges to fx1 μ2-a. e. in X2 as
n → ∞ (see Remark 2.3.2). Recall that for every E ∈ 𝒜1 × 𝒜2, we have Ex1 ∈ 𝒜2 and
that χE(x1, ⋅) = χEx1 (x1 ∈ X1) (see Remark 2.1.5). Hence {(sn)x1 } ⊆ S (X2;Y), and thus fx1
is μ2-measurable for μ1-a. e. x1 ∈ X1.

Now observe that by the Tonelli theorem and Proposition 4.2.1 we have

∫
X1×X2

‖f ‖Y d(μ1 × μ2) = ∫
X1

dμ1 ∫
X2

‖fx1‖Ydμ2 <∞,

and hence ∫X2 ‖fx1‖Ydμ2 < ∞ for μ1-a. e. x1 ∈ X1. Then by Proposition 4.2.1 fx1 ∈
L1(X2,𝒜2, μ2;Y) for μ1-a. e. x1 ∈ X1. Similar arguments hold for fx2 , and thus claim (i)
follows.

(ii) Since f ∈ L1(X1 × X2,𝒜1 ×𝒜2, μ1 × μ2;Y) and sn → f (μ1 × μ2)-a. e. in X1 × X2, by
the dominated convergence theorem and Proposition 4.2.1 we get

lim
n→∞
∫

X1×X2

‖sn − f ‖Y d(μ1 × μ2) = 0,

whence by the Tonelli theorem

lim
n→∞
∫
X1

dμ1 ∫
X2

(sn)x1 − fx1
Ydμ2 = 0.
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Therefore (possibly up to a subsequence, not relabeled for simplicity) we have that

lim
n→∞
∫
X2

(sn)x1 − fx1
Ydμ2 = 0 for μ1-a. e. x1 ∈ X1,

whence by Proposition 4.2.2(i)

lim
n→∞
∫
X2

(sn)x1dμ2 = ∫
X2

fx1dμ2 for μ1-a. e. x1 ∈ X1. (4.52)

It is easily seen that for every n ∈ ℕ, the map x1 → ∫X2 (sn)x1dμ2 is μ1-measurable.
Indeed, let

sn =
pn
∑
k=1

yn,kχEn,k ⇒ (sn)x1 =
pn
∑
k=1

yn,kχ(En,k)x1 (k = 1, . . . , pn)

with yn,k ∈ Y and En,k ∈ 𝒜1 ×𝒜2. For all n ∈ ℕ and k = 1, . . . , pn, by the Tonelli theorem
the real-valued function x1 → ∫X2 χ(En,k)x1dμ2 is 𝒜1-measurable, and thus plainly the
map x1 → yn,k ∫X2 χ(En,k)x1dμ2 = ∫X2 yn,kχ(En,k)x1dμ2 is μ1-measurable (see (4.41)). Since
the set of μ1-measurable functions is a vector space, the claim follows.

By equality (4.52) and the above remarks the function defined by (4.49) is μ1-meas-
urable. Moreover, by Proposition 4.2.2(i) and the Tonelli theorem we have

∫
X1

dμ1

∫
X2

fx1dμ2
Y
≤ ∫
X1

dμ1 ∫
X2

‖fx1‖Ydμ2 = ∫
X1×X2

‖f ‖Y d(μ1 × μ2) <∞,

and hence the function (4.49) belongs to L1(X1,𝒜1, μ1;Y). It is similarly seen that the
function (4.50) belongs to L1(X2,𝒜2, μ2;Y), and thus claim (ii) follows.

(iii) By Corollary 4.2.4, for every y∗ ∈ Y∗, we have

⟨y∗, ∫
X1×X2

f d(μ1 × μ2)⟩ = ∫
X1×X2

⟨y∗, f ⟩ d(μ1 × μ2), (4.53)

since f ∈ L1(X1 × X2,𝒜1 ×𝒜2, μ1 × μ2;Y);

⟨y∗,∫
X2

fx1 dμ2⟩ = ∫
X2

⟨y∗, fx1⟩ dμ2 for μ1-a. e. x1 ∈ X1, (4.54)

since fx1 ∈ L
1(X2,𝒜2, μ2;Y) for μ1-a. e. x1 ∈ X1; and

⟨y∗,∫
X1

dμ1 ∫
X2

fx1 dμ2⟩ = ∫
X1

dμ1⟨y
∗,∫
X2

fx1 dμ2⟩, (4.55)
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since the function in (4.49) belongs to L1(X1,𝒜1, μ1;Y). From (4.53)–(4.55) and the Fu-
bini theorem for real-valued functions (see the first equality in (2.18)), we get

⟨y∗, ∫
X1×X2

f d(μ1 × μ2)⟩ = ⟨y
∗,∫
X1

dμ1 ∫
X2

fx1 dμ2⟩

for every y∗ ∈ Y∗, and thus the first equality in (4.51) follows. The second equality is
similarly proven, and hence the result follows.

4.2.3 Integration with respect to vector measures

Conceptually related to the Bochner integral is the integration of scalar functionswith
respect to vectormeasures. Let us outline some results in this direction,while referring
the reader to [41] for a more general treatment.

Let (X,𝒜) be a measurable space, let Y be a Banach space, and let μ : 𝒜 → Y
be a vector measure such that |μ|w(X) < ∞ (see Definition 1.9.3). Let s ∈ S (X), s =
∑ni=1 αiχEi . The quantity

∫
X

s dμ :=
n
∑
i=1

αiμ(Ei) ∈ Y (4.56)

is called the integral of s.

Remark 4.2.5. If Y = ℝ, then μ is a finite signed measure, and equality (4.56) reads

∫
X

s dμ = ∫
X

s dμ+ − ∫
X

s dμ− (4.57)

in agreement with Definition 2.2.4.

For any y∗ ∈ Y∗, from (4.56) we get

⟨y∗,∫
X

s dμ⟩ =
n
∑
i=1

αi⟨y
∗, μ(Ei)⟩ =

n
∑
i=1

αi⟨y
∗, μ⟩(Ei) = ∫

X

s d⟨y∗, μ⟩,

where ⟨y∗, μ⟩ is the map defined in (1.65). It follows that if ‖s‖∞ ̸= 0, then


⟨y∗,∫

X

s dμ⟩

≤

n
∑
i=1
|αi|
⟨y
∗, μ⟩(Ei) ≤ ‖s‖∞

n
∑
i=1

|αi|
‖s‖∞
⟨y
∗, μ⟩(Ei) ≤ ‖s‖∞

⟨y
∗, μ⟩(X),
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whence by (1.66)


∫
X

s dμ
Y
≤ ‖s‖∞ |μ|w(X). (4.58)

Now let f : X → ℝbemeasurable andbounded, and let {sn} ⊆ S (X), ‖sn−f ‖∞ → 0
as n→∞. By inequality (4.58)


∫
X

sm dμ − ∫
X

sn dμ
Y
≤ ‖sm − sn‖∞ |μ|w(X)

for allm, n ∈ ℕ, and hence {∫X sn dμ} is a Cauchy sequence in Y . The limit

lim
n→∞
∫
X

sn dμ =: ∫
X

f dμ (4.59)

is called the integral of f .
From (4.58)–(4.59) we obtain


∫
X

f dμ
Y
≤ ∫

X

|f | d|μ|w ≤ ‖f ‖∞ |μ|w(X). (4.60)

Remark 4.2.6. If Y = ℝ, then the integral defined in (4.59) coincides with that given
by (2.10) (see (4.57)).

4.2.4 Weaker notions of integral

For clearness, in this subsection, we use the explicit duality symbols ⟨⋅, ⋅⟩Y∗ ,Y and
⟨⋅, ⋅⟩Y∗∗ ,Y∗ . If Y is thought of as embedded inY∗∗, thenwe set ⟨y, y∗⟩Y∗∗ ,Y∗ ≡ ⟨y∗, y⟩Y∗ ,Y .
Let us prove the following result.

Proposition 4.2.9. (i) Let f : X → Y be weakly measurable, and let the map x →
⟨y∗, f (x)⟩Y∗ ,Y belong to L1(X) for every y∗ ∈ Y∗. Then for every E ∈ 𝒜, there exists
y∗∗E ∈ Y

∗∗ such that

⟨y∗∗E , y
∗⟩Y∗∗ ,Y∗ = ∫

E

⟨y∗, f (x)⟩Y∗ ,Ydμ(x) for all y∗ ∈ Y∗. (4.61)

(ii) Let f : X → Y∗ be weakly∗ measurable, and let the map x → ⟨f (x), y⟩Y∗ ,Y belong to
L1(X) for every y ∈ Y. Then for every E ∈ 𝒜, there exists y∗E ∈ Y

∗ such that

⟨y∗E , y⟩Y∗ ,Y = ∫
E

⟨f (x), y⟩Y∗ ,Ydμ(x) for all y ∈ Y . (4.62)
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Proof. We only prove claim (i), the proof of (ii) being similar. For every E ∈ 𝒜, set

TE : Y
∗ → L1(X), TE y

∗ := ⟨y∗, fχE⟩Y∗ ,Y (y
∗ ∈ Y∗).

Wewill prove that the linear operator TE is closed and thus bounded since it is defined
on the whole space Y∗. Then


∫
E

⟨y∗, f (x)⟩Y∗ ,Ydμ(x)

≤ ∫

E

⟨y
∗, f (x)⟩Y∗ ,Y

 dμ(x)

= ‖TE y
∗‖L1(X) ≤ ‖TE‖L (Y∗ ;L1(X))‖y

∗‖Y∗ .

It follows that the map from Y∗ to ℝ, y∗ → ∫E⟨y
∗, f (x)⟩Y∗ ,Ydμ(x), is linear and contin-

uous. Hence claim (i) follows.
It remains to prove that TE is closed. Let {y∗n } ⊆ Y

∗, y∗ ∈ Y∗, and g ∈ L1(X) be such
that ‖y∗n −y

∗‖Y∗ → 0 and ‖TE y∗n −g ‖L1(X) → 0 as n→∞. Then by classical results there
exists a subsequence {y∗nk } ⊆ {y

∗
n } such that TE y

∗
nk = ⟨y

∗
nk , fχE⟩Y∗ ,Y → g μ-a. e. in X. On

the other hand, since y∗n → y∗ strongly in Y∗, we have

lim
k→∞
⟨y∗nk , fχE⟩Y∗ ,Y = ⟨y

∗, fχE⟩Y∗ ,Y μ-a. e. in X.

It follows that g = ⟨y∗, fχE⟩Y∗ ,Y = TE y∗. This completes the proof.

Definition 4.2.4. Let the assumptions of Proposition 4.2.9 be satisfied, and let E ∈ 𝒜.
The element y∗∗E ∈ Y

∗∗ in (4.61) is called the Dunford integral of f on E. If y∗∗E belongs
to Y , that is, if there exists yE ∈ Y such that

⟨y∗, yE⟩Y∗ ,Y = ∫
E

⟨y∗, f (x)⟩Y∗ ,Ydμ(x) for all y∗ ∈ Y∗, (4.63)

then the element yE ∈ Y is called the Pettis integral of f on E. If y∗∗X belongs to Y , then
the function f is called Pettis integrable on X.

The element y∗E ∈ Y
∗ in (4.62) is called the Gelfand integral of f on E.

To avoid confusion between the above notions, if necessary, we will use the fol-
lowing notation:

y∗∗E ≡ D ∫
E

f dμ(x), yE ≡P ∫
E

f dμ(x), y∗E ≡ G ∫
E

f dμ(x).

Hence equalities (4.61)–(4.63) read

⟨D ∫
E

f dμ, y∗⟩
Y∗∗ ,Y∗
= ∫

E

⟨y∗, f (x)⟩Y∗ ,Ydμ(x) for all y∗ ∈ Y∗; (4.64a)
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⟨y∗,P ∫
E

f dμ⟩
Y∗ ,Y
= ∫

E

⟨y∗, f (x)⟩Y∗ ,Ydμ(x) for all y∗ ∈ Y∗; (4.64b)

⟨G ∫
E

f dμ, y⟩
Y∗ ,Y
= ∫

E

⟨f (x), y⟩Y∗ ,Ydμ(x) for all y ∈ Y . (4.64c)

Remark 4.2.7. (i) If f is Bochner integrable, then the Bochner integral and the Pettis
integral of f coincide (see Corollary 4.2.4).

(ii) The Dunford integral and the Pettis integral of f coincide if X is reflexive; oth-
erwise, this need not be the case (see [41, Example II.3.3]).

4.3 The spaces Lp(X ; Y ), Lpw(X ; Y ) and L
p
w∗(X ; Y

∗)

4.3.1 Definition and general properties

Let (X,𝒜, μ) be a measure space, let Y be a Banach space with norm ‖ ⋅ ‖Y , and let Y∗

be the dual space of Y with norm ‖ ⋅ ‖Y∗ . Let f : X → Y , and let ‖f ‖Y : X → [0,∞),
‖f ‖Y (x) := ‖f (x)‖Y . For any p ∈ [1,∞], define

Lp(X;Y) := {f : X → Y μ-measurable | ‖f ‖Y ∈ L
p(X)};

Lpw(X;Y) := {f : X → Y weakly measurable | ‖f ‖Y ∈ L
p(X)};

Lpw∗(X;Y
∗) := {f : X → Y∗weakly∗measurable | ‖f ‖Y∗ ∈ L

p(X)}.

If necessary, the extended notations Lp(X,𝒜, μ;Y) ≡ Lp(X;Y) and Lpw(X,𝒜, μ;Y),
Lpw∗ (X,𝒜, μ;Y

∗) will be used. We also set Lp(X) ≡ Lp(X;ℝ).

Remark 4.3.1. (i) The sets Lp(X;Y), Lpw(X;Y), and L
p
w∗ (X;Y

∗) are vector spaces. By Re-
mark 4.1.3(i) we have Lp(X;Y) ⊆ Lpw(X;Y), with equality if μ is σ-finite and Y is separa-
ble (see Theorem 4.1.11). Similarly, by Remark 4.1.3(ii) we have Lp(X;Y∗) ⊆ Lpw(X;Y

∗) ⊆
Lpw∗ (X;Y

∗), with equality if μ is σ-finite and Y∗ is separable (see Proposition 4.1.12).
(ii) The definition of Lp(X;Y) and Lpw(X;Y) requires the map x → ‖f (x)‖Y to be

measurable. This is ensured by the μ-measurability (see Remark 4.1.2(iii)) or by the
weak measurability of f : X → Y if Y is separable (see Proposition 4.1.9(i)). Similarly,
the definition of Lpw∗ (X;Y

∗) requires themeasurability of themap x → ‖f (x)‖Y∗ , which
is ensured by the weak∗ measurability of f : X → Y∗ if Y is separable (see Proposi-
tions 4.1.10 and 4.1.9(ii)).

Remark 4.3.2. Let p ∈ [1,∞], and fix ȳ ∈ Y with ‖ȳ‖Y = 1. It is easily seen that the
map T : Lp(X) → Lp(X;Y), Tf := f ȳ (f ∈ Lp(X)), is an isometric isomorphism between
Lp(X;Y) and its image. Hence the Lebesgue space Lp(X) of real-valued functions is
embedded in Lp(X;Y).
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Remark 4.3.3. (i) LetU ⊆ ℝN be open. Consider the traceℬN ∩U of the Borel σ-algebra
ℬN ≡ ℬ(ℝN ) and the induced Lebesgue measure λN |ℬN∩U . Generalizing Remark 2.8.1,
we set Lp(U ;Y) ≡ Lp(U ,ℬN ∩U , λN |ℬN∩U ;Y) (similarly for Lpw(U ;Y) and L

p
w∗ (U ;Y

∗)). We
will say that f ∈ Lploc(U ;Y) if f ∈ L

p(V ,ℬN ∩ V , μ|ℬN∩V ) for every open subset V ⋐ U .
(ii) If f ∈ L1loc(U ;Y), then the map μ : ℬN ∩ U → Y , μ(E) := ∫E f dx for any Borel

subset E ⊆ U, is a vector measure (see Proposition 4.2.7).

Let f : X → Y with ‖f ‖Y : X → [0,∞)measurable. Set

‖f ‖p := (∫
X

‖f ‖pY dμ)
1
p

if p ∈ [1,∞), (4.65a)

‖f ‖∞ := ess sup ‖f ‖Y . (4.65b)

Similarly, for any f : X → Y∗ with ‖f ‖Y∗ : X → [0,∞)measurable, set

‖f ‖∗p := (∫
X

‖f ‖pY∗ dμ)
1
p

if p ∈ [1,∞), (4.66a)

‖f ‖∗∞ := ess sup ‖f ‖Y∗ . (4.66b)

Themap f → ‖f ‖p is a seminorm on Lp(X;Y) and Lpw(X;Y), and f → ‖f ‖
∗
p is a semi-

norm on Lpw∗ (X;Y) (p ∈ [1,∞]). As in the case Y = ℝ, we identify functions that are
equal μ-a. e. inX. Then Lp(X;Y) and Lpw(X;Y) are normed vector spaceswith norm ‖⋅‖p,
and Lpw∗ (X;Y

∗) is a normed vector space with norm ‖ ⋅ ‖∗p .

Definition 4.3.1. Let p ∈ [1,∞]. The normed vector spaces Lp(X;Y), Lpw(X;Y), and
Lpw∗ (X;Y

∗) are called vector Lebesgue spaces.

If no confusion arises, then vector Lebesgue spaces are simply called “Lebesgue
spaces” for shortness.

Remark 4.3.4. Ifμ isσ-finite, then Lp(X;Y) is a closed subspace of Lpw(X;Y) (p ∈ [1,∞];
see Remark 4.3.1(i)). Indeed, let {fn} ⊆ Lp(X;Y) and f ∈ Lpw(X;Y), and let ‖fn − f ‖p → 0
as n → ∞. Then the sequence of real-valued functions gn := ‖fn − f ‖Y converges to
0 in Lp(X) as n → ∞, and thus there exists a subsequence {gnk } ⊆ {gn} such that
gnk (x) = ‖fnk (x)−f (x)‖Y → 0 as k →∞ for μ-a. e. x ∈ X. Since every fnk is μ-measurable,
by Proposition 4.1.2 f is μ-measurable as well, and thus f ∈ Lp(X;Y).

Proposition 4.3.1. Let μ be finite, and let 1 ≤ p < r ≤ ∞. Then Lr(X;Y) ⊆ Lp(X;Y).
Similarly, Lrw(X;Y) ⊆ L

p
w(X;Y) and L

r
w∗ (X;Y

∗) ⊆ Lpw∗ (X;Y
∗).

Proof. If r = ∞, then the claim follows from the inequality ‖f ‖p ≤ [μ(X)]
1
p ‖f ‖∞. If

r ∈ [1,∞), then by the Hölder inequality we have ‖f ‖p ≤ [μ(X)]
r−p
pr ‖f ‖r . Hence the result

follows.
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Theorem 4.3.2. Let p ∈ [1,∞]. Then Lp(X;Y) is a Banach space.

Proof. We only prove the result for p ∈ [1,∞); the proof for p = ∞ is the same as
in the case Y = ℝ, replacing the absolute value in ℝ by the norm ‖ ⋅ ‖Y and using
Proposition 4.1.2.

Let {fk} ⊆ Lp(X;Y) satisfy ∑
∞
k=1 ‖fk‖p =: M < ∞, and set Sn := ∑

n
k=1 fk (n ∈ ℕ). By a

well-known characterization of Banach spaces (e. g., see [66, Theorem 8.1]) it suffices
to prove that there exists S ∈ Lp(X;Y) such that limn→∞ ‖Sn − S‖p = 0.

For all n ∈ ℕ and μ-a. e. x ∈ X, define Fn : X → [0,∞], Fn(x) := ∑
n
k=1 ‖fk(x)‖Y .

Hence by Remark 4.1.2(iii) and Corollary 2.1.5 Fn is𝒜-measurable, and

‖Fn‖Lp(X) ≤
n
∑
k=1
‖fk‖p ≤ M (n ∈ ℕ).

Then by Corollary 2.1.5 (see also Remark 2.1.2) the function F : X → [0,∞],

F(x) := lim
n→∞

Fn(x) =
∞

∑
k=1

fk(x)
Y ,

is𝒜-measurable, and by the Fatou lemma we have

∫
X

Fp dμ ≤ lim inf
n→∞
∫
X

(Fn)
p dμ = lim inf

n→∞
‖Fn‖

p
Lp(X) ≤ M

p <∞. (4.67)

By (4.67) the functionF is finiteμ-a. e. inX, that is, the series∑∞k=1 ‖fk(x)‖Y is convergent
forμ-a. e. x ∈ X. As a consequence, forμ-a. e. x ∈ X and for any ϵ > 0, there exists n̄ ∈ ℕ
such that for all n > n̄ and p ∈ ℕ,

Sn+p(x) − Sn(x)
Y =


n+p
∑

k=n+1
fk(x)
Y
≤

n+p
∑

k=n+1

fk(x)
Y < ϵ.

Hence for μ-a. e. x ∈ X, {Sn(x)} ⊆ Y (n ∈ ℕ) is a Cauchy sequence. Since Y is a Banach
space, this implies that for μ-a. e. x ∈ X, there exists limn→∞ Sn(x) ∈ Y .

Define

S : X → Y , S(x) := lim
n→∞

Sn(x) for μ-a. e. x ∈ X. (4.68)

Then by Proposition 4.1.2 S is μ-measurable. Moreover, for μ-a. e. x ∈ X,

S(x)
Y = lim

n→∞
Sn(x)
Y ≤ lim

n→∞
Fn(x) = F(x). (4.69)

By (4.67) and (4.69) S ∈ Lp(X;Y). Moreover, by the Fatou lemma

‖Sn − S‖
p
p = ∫

X

Sn(x) − S(x)

p
Y dμ ≤ lim inf

m→∞
∫
X



m
∑

k=n+1
fk(x)


p

Y
dμ
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≤ lim inf
m→∞
∫
X

(
m
∑

k=n+1

fk(x)
Y)

p

dμ ≤ ∫
X

(
∞

∑
k=n+1

fk(x)
Y)

p

dμ

= ∫
X

[F(x) − Fn(x)]
p dμ (n ∈ ℕ). (4.70)

By (4.67) and the dominated convergence theorem, letting n → ∞ in the above in-
equality proves the result.

Remark 4.3.5. Let p ∈ [1,∞]. By Theorem 4.3.2 and Remark 4.3.1(i), Lpw(X;Y) is a Ba-
nach space if μ is σ-finite and Y is separable. The same holds for Lpw∗ (X;Y

∗) if μ is
σ-finite and Y∗ is separable.

4.3.2 Spaces of continuous functions

Let U ⊆ ℝN be open. We denote by C(U ;Y) the vector space of continuous functions
f : U → Y and by Cb(U ;Y) ⊆ L∞(U ;Y) the closed subspace of bounded continuous
functions. We set C(U ;ℝ) ≡ C(U) and similarly for its subspaces.

Definition 4.3.2. Let U ⊆ ℝN be open, and let α ∈ (0, 1). The space of Hölder functions
of exponent α is

Cα(U ;Y) := {f : U → Y | ∃C > 0 such that f (x) − f (y)
Y ≤ C|x − y|

α ∀ x, y ∈ U}.

Every Hölder function is uniformly continuous and thus bounded inU . The space
Cα(U ;Y) endowed with the norm

f → ‖f ‖C0,α(U ;Y) := ‖f ‖∞ + sup
x,y∈U
x ̸=y

‖f (x) − f (y)‖Y
|x − y|α

is a Banach space. Formally, for α = 1, we obtain the Banach space of Lipschitz contin-
uous functions f : U → Y endowed with the norm

f → ‖f ‖Lip(U ;Y) := ‖f ‖∞ + sup
x,y∈U
x ̸=y

‖f (x) − f (y)‖Y
|x − y|

.

If U is bounded, then for any 0 < α < β < 1,

Lip(U ;Y) → Cβ(U ;Y) → Cα(U ;Y) → Cb(U ;Y).

For any m ∈ ℕ, we denote by Cm(U ;Y) the vector space of maps f : U → Y that
arem times Fréchet differentiable in U . Themth Fréchet derivative f (m)(x0) of f at any
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point x0 ∈ U is an element of

L (U ;L (U ; . . .⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
m−1 times

L (U ;Y)) . . .) ∼ Lm(U ;Y),

where Lm(U ;Y) denotes the space of linear continuous maps from Um to Y . For any
m ∈ ℕ, there is a natural isometry between Lm(U ;Y) and Y , and thus f (m) : U →
Lm(U ;Y) can be identified with a map from U to Y . We denote by Dαf ≡ 𝜕|α|f

𝜕α1x1 ...𝜕αnxn
(α ≡ (α1, . . . , αn) with integer αk, |α| := ∑

N
k=1 αk) any partial derivative of f of order |α|,

and thus Dαf (x0) ∈ Y for any x0 ∈ U . We set D0f ≡ f , C0(U ;Y) ≡ C(U ;Y), C∞(U ;Y) :=
⋂∞m=0 C

m(U ;Y), and C∞c (U ;Y) := C
∞(U ;Y)⋂Cc(U ;Y). The space Cm(U ;Y) is a Banach

space with norm ‖f ‖Cm(U ;Y) := ∑|α|≤m ‖D
αf ‖∞.

4.3.3 Convergence theorems

The following concepts and results generalize some of those in Subsection 2.8.3. The
proofs are an easy adaptation of those for the case Y = ℝ and thus are omitted.

Definition 4.3.3. Let p ∈ [1,∞). A subsetF ⊆ Lp(X;Y) is called p-uniformly integrable
if for any ϵ > 0:
(i) there exists E ∈ 𝒜 with μ(E) <∞ such that supf∈F ∫Ec ‖f ‖

p
Y dμ < ϵ;

(ii) there exists δ > 0 such that supf∈F ∫F ‖f ‖
p
Y dμ < ϵ for all F ∈ 𝒜 with μ(F) < δ.

We say that F ⊆ L1(X;Y) is uniformly integrable if it is 1-uniformly integrable.

Remark 4.3.6. Definition 4.3.3 amounts to require that the set ̃F := {‖f ‖Y | f ∈ F } ⊆
Lp(X) is p-uniformly integrable. Hence the criteria of uniform integrability given by
Propositions 2.8.4–2.8.6 can be used in the present case.

Theorem 4.3.3 (Vitali). Let p ∈ [1,∞). Let {fn} ⊆ Lp(X;Y) be a sequence converging
μ-a. e. in X to some function f : X → Y. Then the following statements are equivalent:
(i) f ∈ Lp(X;Y) and fn → f in Lp(X;Y);
(ii) the sequence {fn} is p-uniformly integrable.

Theorem 4.3.4 (Dominated convergence theorem). Let p ∈ [1,∞). Let {fn} ⊆ Lp(X;Y)
be a sequence converging μ-a. e. in X to some function f : X → Y. Let there exist g ∈
Lp(X) such that ‖fn‖Y ≤ g μ-a. e. in X for all n ∈ ℕ. Then fn → f in Lp(X;Y).

Corollary 4.3.5. Let μ(X) <∞, and let 1 ≤ p < r <∞. Let {fn} ⊆ Lr(X;Y) be a bounded
sequence, converging μ-a. e. in X to some function f : X → Y. Then fn → f in Lp(X;Y).

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



182 | 4 Vector integration

4.3.4 Approximation results and separability

Proposition 4.3.6. Let p ∈ [1,∞).
(i) The set S (X;Y) of simple functions is dense in Lp(X;Y).
(ii) Let X be a σ-compact Hausdorff space, and let μ ∈ R+(X). If D ⊆ Y is dense in Y,

then the set

ED(X;Y) := {
m
∑
j=1

yjgj
 yj ∈ D, gj ∈ Cc(X), m ∈ ℕ} (4.71)

is dense in Lp(X;Y).

Proof. (i) Let f ∈ Lp(X;Y). By definition there exists {sn} ⊆ S (X;Y) such that
limn→∞ ‖sn(x) − f (x)‖Y = 0 for μ-a. e. x ∈ X. Set tn := snχEn , where En := {x ∈ X |
‖sn(x)‖Y ≤ 2‖f (x)‖Y } (n ∈ ℕ). Then limn→∞ ‖tn(x) − f (x)‖Y = 0 for μ-a. e. x ∈ X and
‖tn − f ‖Y ≤ 3‖f ‖Y ∈ Lp(X), whence limn→∞ ∫X ‖tn − f ‖

p
Y dμ = 0 by the dominated

convergence theorem. Hence claim (i) follows.
(ii) In view of (i), it suffices to show that for any s ∈ S (X;Y), there exists a se-

quence {fn} ⊆ ED(X;Y) that converges to s in Lp(X;Y). This follows if we show that, for
all E ∈ ℬ(X) and y ∈ Y , yχE can be approximated in Lp(X;Y) by elements of ED(X;Y).
Moreover, since μ is σ-finite, it suffices to assume that μ(E) <∞.

Let E ∈ ℬ(X), μ(E) < ∞, and let y ∈ Y be fixed. By Lemma 2.8.3 there exists
{gn} ⊆ Cc(X) such that gn → χE in Lp(X). Moreover, by the denseness of D in Y there
exists {yn} ⊆ D such that ‖yn − y‖Y → 0. Then for any n ∈ ℕ sufficiently large,

‖yngn − yχE‖p ≤
(yn − y)χE

p +
yn(gn − χE)

p

≤ ‖yn − y‖Y [μ(E)]
1
p + 2‖y‖Y ‖gn − χE‖Lp(X).

Letting n→∞ in the above inequality, the conclusion follows.

Theorem 4.3.7. Let X be a σ-compact Hausdorff space, let μ ∈ R+(X), and let Y be
separable. Then for every p ∈ [1,∞), the space Lp(X;Y) is separable.

Proof. By assumption there exists a nondecreasing sequence of compact subsets Kn
such that X = ⋃∞n=1 Kn. By the dominated convergence theorem, for any f ∈ Lp(X;Y),
the sequence {fχKn } converges to f in L

p(X;Y). Hence it suffices to prove the result when
X is compact.

Let X be compact. By assumption there exists D ⊆ Y countable and dense, and
by Proposition 4.3.6 the corresponding set ED(X;Y) (see (4.71)) is dense in Lp(X;Y). On
the other hand, by the Stone–Weierstrass theorem the countable set

̂ED(X;Y) := {
m
∑
j=1

yjpj,k | yj ∈ D, pj,k polynomial with rational coefficients; k,m ∈ ℕ}
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is dense in ED(X;Y) in the ‖ ⋅ ‖∞ norm, and thus in Lp(X;Y) for all p ∈ [1,∞) since
μ(X) <∞. Then the conclusion follows.

Remark 4.3.7. It iswell known that L∞(X) is not separable, andhence byRemark 4.3.2
the same holds for L∞(X;Y).

Using the denseness ofS (X;Y) in L1(X;Y) (see Proposition 4.3.6(i)), we can prove
the following generalization of Lemma 2.5.1. The proof is the same, and thus we omit
it.

Proposition 4.3.8. Let (X,𝒜, μ) be a measure space, and let Y be a Banach space. Let
(X′,𝒜′) be a measurable space, let f : X → X′ be (𝒜,𝒜′)-measurable, and let μf :
𝒜′ → ℝ+ be the image of μ under f . Then for any g ∈ L1(X′,𝒜′, μf ;Y), we have g ∘ f ∈
L1(X,𝒜, μ;Y) and

∫
F

g dμf = ∫
f −1(F)

g ∘ f dμ for all F ∈ 𝒜′. (4.72)

4.4 Duality of vector Lebesgue spaces

4.4.1 The Radon–Nikodým property

Let (X,𝒜, μ) be ameasure space, letY be a Banach space, and let f : X → Y be Bochner
integrable. By Proposition 4.2.7 the map ν : 𝒜→ Y , ν(E) := ∫E f dμ is a vector measure
of bounded variation, and ν ≪ μ. As already observed (see Remark 4.2.4), it is natural
to wonder if the converse is true, namely:

(Q1) Let ν : 𝒜 → Y be a vector measure of bounded variation such that ν ≪ μ. Does
there exist a Bochner-integrable function f : X → Y such that ν(E) := ∫E f dμ for
all E ∈ 𝒜?

Stated equivalently, the question is whether the Radon–Nikodým theorem (see
Theorem 2.9.1) can be extended to vector-valued measures. If a function f as in (Q1)
exists, then it is called the Bochner density of the vector measure ν.

A related interesting question can be raised. If the measure μ is σ-finite, by Theo-
rem 2.8.14 (L1(X))∗ = L∞(X), that is, for every continuous linear map T ∈ L (L1(X);ℝ),
there exists a unique function g ∈ L∞(X) such that

⟨T , f ⟩ = ∫
X

fg dμ for all f ∈ L1(X)
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(we always denote by ⟨⋅, ⋅⟩ the duality map between any Banach space and its dual
space). It is natural to ask if this result can be generalized to vector-valued maps,
namely:

(Q2) Let T ∈ L (L1(X);Y). Does there exist g ∈ L∞(X;Y) such that Tf = ∫X fg dμ for all
f ∈ L1(X)?

In general, the answer to both above questions is negative, as the following examples
show (see [41, Examples III-1, III-1’]).

Example 4.4.1. Let (X,𝒜, μ) = (I ,ℬ∩ I , λ|ℬ∩I ), where I ≡ (0, 1). For all E ∈ 𝒜 and n ∈ ℕ,
set

νn(E) := ∫
E

sin(2nπx)dx. (4.73)

Then |νn(E)| ≤ λ(E) = 1 for all n ∈ ℕ, and limn→∞ νn(E) = 0 by the Riemann–Lebesgue
lemma.

Let c0 := {{an} ⊆ ℝ | limn→∞ an = 0}, ‖{an}‖c0 := supn∈ℕ |an|. Then the map

ν : 𝒜→ c0, ν(E) := {νn(E)} (E ∈ 𝒜) (4.74)

is well defined, and ‖νn(E)‖c0 ≤ λ(E) for all E ∈ 𝒜 and n ∈ ℕ. Hence ν is a vector
measure of bounded variation (in fact, |ν|(I) ≤ 1; see Definition 1.9.2), and ν ≪ λ. Let
there exist Bochner-integrable g : I → c0 such that

ν(E) = ∫
E

g(x) dx for all E ∈ 𝒜. (4.75)

Then g ≡ {gn} with gn : I → ℝ, gn(x) = sin(2nπx) for a. e. x ∈ I (see (4.73)–(4.75)). Set

E0 :=
∞

⋂
k=1

∞

⋃
n=k

En, En := {x ∈ I

sin(2

nπx) ≥
√2
2
} (n ∈ ℕ).

Observe that λ(En) =
1
2 for every n, and thus

λ(E0) = lim
k→∞

λ(
∞

⋃
n=k

En) ≥ lim
k→∞

λ(Ek) =
1
2
.

Now fix x ∈ E0. By definition, for any k ∈ ℕ, there exists n ≥ k such that x ∈ En,
and thus | sin(2nπx)| = |gn(x)| ≥

√2
2 . Hence the sequence {gn(x)} cannot converge to 0

as n→∞, and thus g(x) ̸∈ c0 for a. e. x ∈ E0. Since λ(E0) > 0, we have a contradiction
with (4.75). Hence for Y = c0, the answer to question (Q1) is negative.
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Example 4.4.2. Let (X,𝒜, μ) be as in Example 4.4.1. Set

T : L1(I)→ c0, Tf := ∫
I

f (x) sin(2nπx)dx (f ∈ L1(I)). (4.76)

By the Riemann–Lebesgue lemma the definition iswell posed. Themap T is linear and
continuous:

‖Tf ‖c0 ≤ supn∈ℕ
∫
I

f (x) sin(2
nπx) dx ≤ ‖f ‖1.

By absurd, let there exist g ∈ L∞(I ; c0) such that Tf = ∫I fg dx for all f ∈ L
1(I). In

particular, TχE = ∫E g dx = ν(E) for all E ∈ 𝒜, where ν is the vector measure defined
in (4.73)–(4.74). However, by Example 4.4.1 no Bochner integrable function g exists
such that this equality holds, a contradiction. Hence for the operator defined in (4.76),
the answer to question (Q2) is negative.

The above examples motivate the following definitions.

Definition 4.4.1. (i) Let (X,𝒜, μ) be a σ-finite measure space. A Banach space Y has
the Radon–Nikodým property with respect to (X,𝒜, μ) if for any vector measure ν :
𝒜 → Y of bounded variation and absolutely continuous with respect to μ, there
exists g ∈ L1(X;Y) such that ν(E) = ∫E g dμ for all E ∈ 𝒜. The map g is called the
Bochner density of the vector measure ν.

(ii) A Banach space Y has the Radon–Nikodým property if it has the Radon–Nikodým
property with respect to every σ-finite measure space (X,𝒜, μ).

Definition 4.4.2. Let (X,𝒜, μ) be a σ-finitemeasure space.We say that an operator T ∈
L (L1(X);Y) isRiesz representable (or simply representable) if there exists g ∈ L∞(X;Y)
such that Tf = ∫X fg dμ for all f ∈ L

1(X).

Weak andweak∗ versions of the Radon–Nikodýmproperty involving the Pettis in-
tegral instead of the Bochner integral are considered in [101, Definitions (7-1-3)–(7-1-7)].

A simple casewhere the Radon–Nikodýmproperty holds is given by the following
proposition.

Proposition 4.4.1. Let (X,𝒜, μ) be a measure space with σ-finite and purely atomic μ.
Then every Banach space Y has the Radon–Nikodým property with respect to (X,𝒜, μ).

Proof. Let {Fn} ⊆ 𝒜 be a disjoint sequence of μ-atoms such that ⋃∞n=1 Fn ⊆ X and μ =
μ ⌞ (⋃∞n=1 Fn) (see Definition 1.8.9(iii)). Let ν : 𝒜 → Y be a vector measure of bounded
variation and absolutely continuous with respect to μ. Set

g : X → Y , g :=
∞

∑
n=1

ν(Fn)
μ(Fn)

χFn .
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Clearly, we have

∫
X

‖g‖Y dμ =
∞

∑
n=1

ν(Fn)
Y ≤ |ν|(X) <∞.

By the definition of a μ-atom, for all E ∈ 𝒜 and n ∈ ℕ, either μ(E ∩ Fn) = 0, and
thus ν(E ∩ Fn) = 0, or μ(E ∩ Fn) = μ(Fn), which in turn implies ν(Fn) = ν(E ∩ Fn).
Therefore, for all E ∈ 𝒜,

∫
E

g dμ =
∞

∑
n=1

ν(Fn)
μ(Fn)

μ(E ∩ Fn) =
∞

∑
n=1

ν(E ∩ Fn) = ν(E).

Hence the result follows.

Let us prove a necessary condition for the Radon–Nikodým property to hold.

Proposition 4.4.2. If Y has the Radon–Nikodým property, then the same holds for each
its closed subspace.

Proof. LetY1 be a closed subspace ofY .We only prove thatY1 has the Radon–Nikodým
property with respect to every finite measure space (X,𝒜, μ) (the general case where μ
is σ-finite follows by usual arguments).

Let ν : 𝒜 → Y1 ⊆ Y be a vector measure of bounded variation such that ν ≪ μ. By
assumption there exists g ∈ L1(X;Y) such that ν(E) := ∫E g dμ for all E ∈ 𝒜. For every
n ∈ ℕ, let {F1, . . . , Fn} be a partition of X with μ(Fi) ̸= 0 for all i = 1, . . . , n. Set

Pn : L
1(X;Y) → L1(X;Y), Pnf :=

n
∑
i=1

∫Fi f dμ

μ(Fi)
χFi .

Clearly, ‖Pnf ‖1 ≤ ∑
n
i=1 ∫Fi ‖f ‖Y dμ = ‖f ‖1, and thus Pn is a bounded linear operator with

norm ‖Pn‖ ≤ 1 (n ∈ ℕ). Moreover, let s ∈ S (X;Y), s = ∑mj=1 yjχEj with yj ∈ Y and
{E1, . . . ,Em} a partition of X. Therefore, for all n ∈ ℕ,

Pns =
n
∑
i=1

m
∑
j=1

μ(Ej ∩ Fi)
μ(Fi)

yjχFi .

By the above remarks the sequence {Pn} ⊆ L (L1(X;Y); L1(X;Y)) is bounded, and
it is easily checked that

lim
n→∞
‖Pns − s‖1 = 0 for all s ∈ S (X;Y).

By the denseness of S (X;Y) in L1(X;Y) it follows that

lim
n→∞
‖Pnf − f ‖1 = 0 for all f ∈ L1(X;Y).
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In particular, this holds for f = g, and thus there exists a subsequence of {Png}
(not relabeled for simplicity) such that

Png =
n
∑
i=1

∫Fi g dμ

μ(Fi)
χFi =

n
∑
i=1

ν(Fi)
μ(Fi)

χFi → g μ-a. e. in X as n→∞.

Since by assumption ν(Fi) ∈ Y1 for i = 1, . . . , n and Y1 is a closed subspace of Y , it
follows that g(x) ∈ Y1 for μ-a. e. x ∈ X. Hence g ∈ L1(X;Y1), and thus the conclusion
follows.

A partial converse of Proposition 4.4.2 holds (see [41, Theorem III.3.2]).

Proposition 4.4.3. If every closed separable subspace of a Banach space Y has the
Radon–Nikodým property, then the same holds for Y.

The following result plays an important role in the sequel (see Theorem 4.4.12).

Theorem 4.4.4 (Dunford–Pettis). Every separable dual space has the Radon–Nikodým
property.

Proof. Let ν : 𝒜 → Y∗ be a vector measure of bounded variation and absolutely con-
tinuous with respect to μ. We will prove that there exists f ∈ L∞(X,𝒜, |ν|;Y∗) such
that

ν(E) := ∫
E

f d|ν| for all E ∈ 𝒜 (4.77)

(by Proposition 4.3.1 L∞(X,𝒜, |ν|;Y∗) ⊆ L1(X,𝒜, |ν|;Y∗), since |ν| is finite). On the other
hand, since ν ≪ μ implies |ν| ≪ μ, it is easily seen that f ∈ L∞(X,𝒜, μ;Y∗), and by
the Radon–Nikodým theorem |ν|(E) := ∫E

d|ν|
dμ dμ (E ∈ 𝒜) with d|ν|

dμ ∈ L
1(X,𝒜, μ). Then

g := f d|ν|dμ belongs to L1(X;Y∗) ≡ L1(X,𝒜, μ;Y∗), and ν(E) = ∫E g dμ for all E ∈ 𝒜. Hence
by Remark 2.9.1(i) the result follows.

Let y ∈ Y be fixed. Define

νy : 𝒜→ ℝ, νy(E) := ⟨ν(E), y⟩ for E ∈ 𝒜. (4.78)

Clearly, νy is a finite signed measure such that

νy(E)
 ≤
ν(E)
Y∗‖y‖Y ≤ |ν|(E)‖y‖Y for all y ∈ Y and E ∈ 𝒜. (4.79)

Hence νy ≪ |ν|, and thus by Theorem 2.9.1 there exists fy ∈ L1(X,𝒜, |ν|) such that

νy(E) = ∫
E

fy d|ν| for all y ∈ Y and E ∈ 𝒜. (4.80)
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By Proposition 4.2.5 and inequality (4.79), for |ν|-a. e. x0 ∈ X, we have

fy(x0) = limr→0+
1

|ν|(Br(x0))


∫

Br(x0)

fy d|ν|

≤ ‖y‖Y ,

whence fy ∈ L∞(X,𝒜, |ν|), and ‖fy‖∞ ≤ ‖y‖Y for all y ∈ Y . In particular, there exists
a |ν|-null set Ny,1 ∈ 𝒜 such that |fy(x)| ≤ ‖y‖Y for all x ∈ (Ny,1)

c.
Now observe that Y is separable, since by assumption Y∗ is separable. Let D ⊆ Y

be countable and dense. Set

DS := {y =
n
∑
i=1

αiyi | α1, . . . , αn ∈ ℝ, y1, . . . , yn ∈ D for some n ∈ ℕ},

Dℚ := {y =
n
∑
i=1

qiyi | q1, . . . , qn ∈ ℚ, y1, . . . , yn ∈ D, for some n ∈ ℕ}.

By (4.78) and (4.80), for any y ∈ Dℚ, we get

∫
E

fy d|ν| =⟨ν(E),
n
∑
i=1

qiyi⟩ =
n
∑
i=1

qi⟨ν(E), yi⟩

=
n
∑
i=1

qi ∫
E

fyi d|ν| = ∫
E

(
n
∑
i=1

qifyi)d|ν|.

Therefore, for any y = ∑ni=1 qiyi ∈ Dℚ, there exists a |ν|-null set Ny,2 ∈ 𝒜 such that
f∑ni=1 qiyi = ∑

n
i=1 qifyi for all x ∈ (Ny,2)

c.
Set N := ⋃y∈Dℚ (Ny,1 ∪ Ny,2). Since Dℚ is countable and |ν|(Ny,1) = |ν|(Ny,2) = 0 for

each y ∈ Dℚ, we also have |ν|(N) = 0. In addition, for any x ∈ Nc = ⋂y∈Dℚ ((Ny,1)
c ∩

(Ny,2)
c), we have



n
∑
i=1

qifyi (x)

= f∑ni=1 qiyi (x)

 ≤


n
∑
i=1

qiyi
Y

for all q1, . . . , qn ∈ ℚ, y1, . . . , yn ∈ D (n ∈ ℕ), since we may use the inequality |fy(x)| ≤
‖y‖Y for any x ∈ (Ny,1)

c with y = ∑ni=1 qiyi. By the denseness of ℚ in ℝ, for all x ∈ N
c,

we get

f∑ni=1 αiyi (x)
 =


n
∑
i=1

αifyi (x)

≤


n
∑
i=1

αiyi
Y

for all α1, . . . , αn ∈ ℝ, y1, . . . , yn ∈ D (n ∈ ℕ), and thus for all x ∈ Nc,

fy(x)
 ≤ ‖y‖Y for all y ∈ DS. (4.81)
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By (4.81), for each x ∈ Nc, there exists f (x) ∈ Y∗ such that ‖f (x)‖Y∗ ≤ 1 and

⟨f (x), y⟩ = fy(x) for all y ∈ DS. (4.82)

Set f (x) := 0 for x ∈ N . The function f : X → Y∗ thus defined satisfies (4.82) |ν|-a. e. in
X. By the denseness ofDS in Y f is weakly∗measurable, and thus by Proposition 4.1.12
it is |ν|-measurable. Moreover, ‖f (x)‖Y∗ ≤ 1 for |ν|-a. e. x ∈ X, thus f ∈ L∞(X,𝒜, |ν|;Y∗),
and by (4.80) and (4.82)

νy(E) = ∫
E

⟨f (x), y⟩ d|ν|(x) for all y ∈ DS and E ∈ 𝒜. (4.83)

Now let y ∈ Y , and let {yn} ⊆ DS be such that ‖yn − y‖Y → 0 as n → ∞. By the
above considerations, for |ν|-a. e. x ∈ X, we have

⟨f (x), yn⟩→ ⟨f (x), y⟩, sup
n∈ℕ

⟨f (x), yn⟩
 ≤ sup

n∈ℕ
‖yn‖Y ≤ 2‖y‖Y .

Since |ν| is finite, by the dominated convergence theorem we obtain that ⟨f , y⟩ ∈
L1(X,𝒜, |ν|) and for any E ∈ 𝒜,

∫
E

⟨f (x), y⟩ d|ν|(x) = lim
n→∞
∫
E

⟨f (x), yn⟩ d|ν|(x)

= lim
n→∞

νyn (E) = lim
n→∞
⟨ν(E), yn⟩ = ⟨ν(E), y⟩ (4.84)

(see (4.83) and (4.78)). On the other hand, by Proposition 4.2.3 we have

∫
E

⟨f , y⟩ d|ν| = ⟨∫
E

f d|ν|, y⟩. (4.85)

By the arbitrariness of y ∈ Y , from (4.84)–(4.85) we obtain (4.77). Then the conclusion
follows.

Corollary 4.4.5 (Phillips). Reflexive Banach spaces have the Radon–Nikodým property.

Proof. LetY be a reflexive Banach space. Then every closed separable subspace ofY is
a separable dual space and thus by Theorem 4.4.4 has the Radon–Nikodým property.
Hence by Proposition 4.4.3 the result follows.

Let us now go back to the notion of Riesz representability (see Definition 4.4.2).
The relationship between Examples 4.4.1 and 4.4.2 is elucidated by the following the-
orem.

Theorem 4.4.6. Let (X,𝒜, μ) be a finite measure space. Then the following statements
are equivalent:
(i) Y has the Radon–Nikodým property with respect to (X,𝒜, μ);
(ii) every operator T ∈ L (L1(X);Y) is Riesz representable.
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Proof. (i)⇒(ii). Let T ∈ L (L1(X);Y). Set ν : 𝒜 → Y , ν(E) := TχE (E ∈ 𝒜). For every
E ∈ 𝒜, we have

ν(E)
Y ≤ ‖T‖L (L1(X);Y)‖χE‖1 = ‖T‖L (L1(X);Y) μ(E), (4.86)

and thus ν is a vector measure of bounded variation (recall that μ is finite) and abso-
lutely continuous with respect to μ. Since by assumption Y has the Radon–Nikodým
property, there exists g ∈ L1(X;Y) such that ν(E) = ∫E g dμ for all E ∈ 𝒜. Then by
Proposition 4.2.7, Definition 1.9.2(ii), and (4.86) we have

|ν|(E) = ∫
E

‖g‖Y dμ ≤ ‖T‖L (L1(X);Y) μ(E) (E ∈ 𝒜).

Then by Proposition 4.2.5 g ∈ L∞(X;Y) with ‖g‖∞ ≤ ‖T‖L (L1(X);Y) (see (4.43b)).
To summarize, we proved that there exists g ∈ L∞(X;Y) such that TχE = ∫E g dμ

for all E ∈ 𝒜. By the denseness of S (X) in L1(X) it follows that Tf = ∫X fg dμ for all
f ∈ L1(X). This proves the claim.

(ii)⇒(i). Let ν be a vector measure of bounded variation such that ν ≪ μ. Then |ν| ≪ μ,
and hence by the Radon–Nikodým theorem there exists h ∈ L1(X), h ≥ 0, such that
|ν|(E) = ∫E h dμ for all E ∈ 𝒜. For any n ∈ ℕ, set Fn := {n− 1 ≤ h < n}. Thus Fm ∩Fn = 0 if
m ̸= n and⋃∞n=1 Fn = X. Let s ∈ S (X), s = ∑mi=1 ciχEi with c1, . . . , cm ∈ ℝ and a partition
{E1, . . . ,Em} of X. For every n ∈ ℕ, define

Tn : S (X)→ Y , Tns := ∫
Fn

s dν =
m
∑
i=1

ciν(Ei ∩ Fn). (4.87)

For any n ∈ ℕ and s ∈ S (X), we have

‖Tns‖Y ≤
m
∑
i=1
|ci||ν|(Ei ∩ Fn) =

m
∑
i=1
|ci| ∫

Ei∩Fn

h dμ ≤ n
m
∑
i=1
|ci| μ(Ei) = n‖s‖1,

and thus Tn uniquely extends to a bounded linear operator from L1(X) to Y , denoted
again by Tn. Since by assumption every T ∈ L (L1(X);Y), every Tn is Riesz repre-
sentable for every n ∈ ℕ, that is, there exists gn ∈ L∞(X;Y) such that Tnf = ∫X fgn dμ
for all f ∈ L1(X). In particular (see (4.87)),

ν(E ∩ Fn) = TnχE = ∫
E

gn dμ for all E ∈ 𝒜. (4.88)

Define g : X → Y by g := ∑∞n=1 gn. It is easily checked that gn = 0 μ-a. e. in Fcn.
Since Fn ∩ Fm = 0 for all n ̸= m and μ(X) < ∞, it follows that g ∈ L∞(X;Y) ⊆ L1(X;Y).
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From (4.88) for anym ∈ ℕ, we get

ν(E ∩ (
m
⋃
n=1

Fn)) = ∫

E∩(⋃mn=1 Fn)

g dμ (E ∈ 𝒜).

By Lemma 1.9.2, letting m → ∞ in this equality, we get ν(E) = ∫E g dμ for all E ∈ 𝒜.
Then the conclusion follows.

4.4.2 Duality and Radon–Nikodým property

For any f : X → Y and g : X → Y∗, we set

⟨g, f ⟩Y∗ ,Y : X → ℝ, ⟨g, f ⟩Y∗ ,Y (x) := ⟨g(x), f (x)⟩Y∗ ,Y (x ∈ X).

Let p ∈ [1,∞], and let q be its Hölder conjugate,

q :=
{{{
{{{
{

1 if p =∞,
p
p−1 if p ∈ (1,∞),
∞ if p = 1.

(4.89)

Under proper assumptions, by Theorem 2.8.14 we can identify the dual space (Lp(X))∗

withLq(X). It is natural to askwhether the analogous statement (Lp(X;Y))∗ = Lq(X;Y∗)
holds for vector Lebesgue spaces. This depends on the Radon–Nikodým property for
the dual space Y∗ by the following:

Theorem 4.4.7. Let (X,𝒜, μ) be a finitemeasure space, and let Y be aBanach space. Let
p ∈ [1,∞), and let q be its Hölder conjugate. The following statements are equivalent:
(i) Y∗ has the Radon–Nikodým property with respect to (X,𝒜, μ);
(ii) the map

Θ : Lq(X;Y∗)→ (Lp(X;Y))∗, Θg := Tg , (4.90a)

where

Tg : L
p(X;Y)→ ℝ, Tgf := ∫

X

⟨g, f ⟩Y∗ ,Y dμ (f ∈ L
p(X;Y)), (4.90b)

is an isometric isomorphism.

Remark 4.4.1. Let f ∈ Lp(X;Y) and g ∈ Lq(X;Y∗). Since g is μ-measurable, there exists
a sequence {tn} ⊆ S (X;Y∗), say tn = ∑

kn
k=1 y
∗
k χEk (y

∗
k ∈ Y

∗,Ek ∈ 𝒜), such that ‖tn(x) −
g(x)‖Y∗ → 0 for μ-a. e. x ∈ X. Also, f is μ-measurable and thus weakly measurable;
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hence ⟨tn, f ⟩Y∗ ,Y : X → ℝ is 𝒜-measurable for every n ∈ ℕ. Moreover, ⟨tn, f ⟩Y∗ ,Y →
⟨g, f ⟩Y∗ ,Y as n→∞ μ-a. e. in X, since

⟨tn, f ⟩Y∗ ,Y − ⟨g, f ⟩Y∗ ,Y
 ≤
tn(x) − g(x)

Y∗‖f ‖Y .

Therefore the real-valued function ⟨g, f ⟩Y∗ ,Y is 𝒜-measurable, and definition (4.90b)
is well posed.

By the Hölder inequality we have

∫
X

⟨g, f ⟩Y∗ ,Y
 dμ ≤ ∫

X

‖g‖Y∗‖f ‖Y dμ ≤ ‖g‖Lq(X;Y∗)‖f ‖Lp(X;Y). (4.91)

Then the map defined in (4.90b) is linear and continuous, and thus Tg ∈ (Lp(X;Y))∗.
Hence definition (4.90a) is well posed.

A direct consequence of Theorem 4.4.7 is the following result.

Proposition 4.4.8. Let (X,𝒜, μ) be a finite measure space, and let p ∈ (1,∞). Then the
space Lp(X;Y) is reflexive if and only if Y is reflexive.

Proof. If Y is reflexive, then Y∗ is also reflexive, and by Corollary 4.4.5 both have the
Radon–Nikodým property. Hence by Theorem 4.4.7

(Lq(X;Y))∗∗ = (Lp(X;Y∗))∗ = Lq(X;Y∗∗) = Lq(X;Y) for any q ∈ (1,∞).

This proves the sufficiency. As for the necessity, observe that Y is isometrically iso-
morphic to the closed subspace {y χX | y ∈ Y} ⊆ Lp(X;Y) and recall that every closed
subspace of a reflexive space is reflexive. Hence the result follows.

To prove Theorem 4.4.7, we need two preliminary results.

Proposition 4.4.9. Let (X,𝒜, μ) be a finite measure space, and let Y be a Banach space.
Let p ∈ [1,∞), and let q be its Hölder conjugate. Then Lq(X;Y∗) is isometrically isomor-
phic to a closed subspace of (Lp(X;Y))∗.

Proof. By (4.91) we have ‖Tg‖(Lp(X;Y))∗ ≤ ‖g‖Lq(X;Y∗). The conclusion will follow if we
prove the reverse inequality.

To this purpose, let g ∈ Lq(X;Y∗), g = ∑∞k=1 y
∗
k χEk , where {Ek} ⊆ 𝒜 is a disjoint

sequence such that⋃∞k=1 Ek = X and μ(Ek) > 0 for all k. Set ĝ : X → ℝ, ĝ(x) := ‖g(x)‖Y∗
(x ∈ X), and

T̂ĝ : L
p(X)→ ℝ, T̂ĝu := ∫

X

ĝ u dμ (u ∈ Lp(X)).
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Clearly, ĝ ∈ Lq(X), T̂ĝ ∈ (Lp(X))∗, and by Theorem 2.8.14

T̂ĝ
(Lp(X))∗ = sup

u∈Lp(X), ‖u‖p≤1

T̂ĝu
 = ‖ĝ‖q = ‖g‖Lq(X;Y∗).

Then for any ϵ > 0, there exists h ∈ Lp(X) with 0 < ‖h‖p ≤ 1 and h ≥ 0 such that

‖g‖Lq(X;Y∗) −
ϵ
2
< T̂ĝh
 = ∫

X

g(x)
Y∗h dμ. (4.92)

On the other hand, let {y∗k } ⊆ Y
∗ be the sequence of coefficients of g. Plainly, there

exists a sequence {yk} ⊆ Y such that ‖yk‖Y ≤ 1 for all k ∈ ℕ and

‖y∗k ‖Y∗ −
ϵ

2‖h‖1
< ⟨y∗k , yk⟩Y∗ ,Y (4.93)

(observe that h ∈ Lp(X) ⊆ L1(X) since μ(X) <∞).
Set f : X → Y , f := (∑∞k=1 ykχEk )h. Thus f ∈ L

p(X;Y) and ‖f ‖Lp(X;Y) ≤ ‖h‖p ≤ 1.
By (4.90b)–(4.93) we obtain

Tgf = ∫
X

⟨g(x), f (x)⟩Y∗ ,Y dμ(x) = ∫
X

h(
∞

∑
k=1
⟨y∗k , yk⟩Y∗ ,YχEk)dμ

≥ ∫
X

h
∞

∑
k=1
(‖y∗k ‖Y∗ −

ϵ
2‖h‖1
)χEkdμ

= ∫
X

‖g‖Y∗ h dμ −
ϵ

2‖h‖1
∫
X

h dμ > ‖g‖Lq(X;Y∗) − ϵ.

By the arbitrariness of ϵ > 0 it follows that Tgf = |Tgf | ≥ ‖g‖Lq(X;Y∗).
To sum up, we exhibited f ∈ Lp(X;Y) with ‖f ‖Lp(X;Y) ≤ 1 such that |Tgf | ≥

‖g‖Lq(X;Y∗). Hence ‖Tg‖(Lp(X;Y))∗ ≥ ‖g‖Lq(X;Y∗), and thus the result follows.

Remark 4.4.2. By similar methods it can be proved that for any p ∈ [1,∞), the dual
space (Lp(X;Y))∗ is isometrically isomorphic to the space Vq(X;Y∗) := {ν : 𝒜 → Y∗ |
ν vector measure} (here q is the Hölder conjugate of p) endowed with the norm

‖ν‖q := supπ
(

n
∑
i=1

‖ν(Ei)‖
q
Y∗

[μ(Ei)]q−1
)

1
p

if q ∈ (1,∞)

(π ≡ {E1, . . . ,En} being any partition of X with μ(Ei) > 0 for each i = 1, . . . , n),

‖ν‖∞ := inf{C > 0 | ‖ν(E)‖Y∗ ≤ Cμ(E) for any E ∈ 𝒜}

(see [41, Section IV.6], [44, Section 8.20]).
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Lemma 4.4.10. Let (X,𝒜, μ) be a finite measure space, and let Y be a Banach space. Let
ν : 𝒜 → Y∗ be a vector measure of bounded variation and absolutely continuous with
respect to μ. Suppose that for any E ∈ 𝒜 with μ(E) > 0, there exist F ∈ 𝒜, F ⊆ E with
μ(F) > 0, and a Bochner integrable function hF : F → Y∗ such that

ν(G) = ∫
G

hF dμ for all G ∈ 𝒜, G ⊆ F. (4.94)

Then Y∗ has the Radon–Nikodým property with respect to (X,𝒜, μ).

Proof. Let us apply the exhaustion lemma (see Lemma 1.3.5) with the following prop-
erty:

{
there exists a Bochner-integrable function hE : E → Y∗

such that (4.94) is satisfied for all G ⊆ E.
(P)

Then there exist a disjoint sequence {Ek} ⊆ 𝒜 such that ⋃∞k=1 Ek = X and a sequence
{hk} of Bochner-integrable functions hk : Ek → Y∗ such that

ν(E ∩ Ek) = ∫
E∩Ek

hk dμ for all E ∈ 𝒜 and k ∈ ℕ.

Set g : X → Y∗, g := ∑∞k=1 hkχEk . Then g is Bochner integrable, and for all E ∈ 𝒜,
we have

ν(E ∩ (
n
⋃
k=1

Ek)) =
n
∑
k=1

ν(E ∩ Ek) =
n
∑
k=1
∫

E∩Ek

hk dμ = ∫
E

g χ⋃nk=1 Ek dμ. (4.95)

By Lemma 1.9.2, letting n→∞ in (4.95), we obtain

ν(E) = lim
n→∞
∫
E

g χ⋃nk=1 Ek dμ = ∫
E

g dμ. (4.96)

By the arbitrariness of E in (4.95) and Proposition 4.2.7 we also get

∫
X

‖g‖∗Yχ⋃nk=1 Ek dμ ≤ |ν|(X) for all n ∈ ℕ,

whence∫X ‖g‖
∗
Y dμ ≤ |ν|(X) <∞ by themonotone convergence theorem. It follows that

g ∈ L1(X;Y∗), and thus by (4.96) the result follows.

Now we can prove Theorem 4.4.7.
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Proof of Theorem 4.4.7. (i)⇒(ii). Let Θ be defined by (4.90a). Observe preliminarily
that, in view of (4.90b), for any g ∈ Lq(X;Y∗) and f ∈ Lp(X;Y), we have

⟨Θg, f ⟩(Lp(X;Y))∗ ,Lp(X;Y) = ∫
X

⟨g, f ⟩Y∗ ,Y dμ. (4.97)

By Proposition 4.4.9 the map Θ is isometric and thus injective. The claim will follow if
we prove that it is also surjective.

To this purpose, fix any T ∈ (Lp(X;Y))∗. Define

νT : 𝒜→ Y∗, ⟨νT (E), y⟩Y∗ ,Y := ⟨T , χEy⟩(Lp(X;Y))∗ ,Lp(X;Y) (E ∈ 𝒜, y ∈ Y).

Plainly, the map νT is σ-additive and thus is a vector measure. Moreover,

⟨νT (E), y⟩Y∗ ,Y
 ≤ ‖T‖(Lp(X;Y))∗‖χEy‖Lp(X;Y) = ‖T‖(Lp(X;Y))∗(μ(E))

1
p ‖y‖Y ,

whence

νT (E)
Y∗ ≤ ‖T‖(Lp(X;Y))∗(μ(E))

1
p for all E ∈ 𝒜.

Then νT is of bounded variation (since μ(X) <∞ by assumption), and νT ≪ μ.
Since Y∗ has the Radon–Nikodým property with respect to (X,𝒜, μ), there exists

g ∈ L1(X;Y∗) such that νT (E) := ∫E g dμ for all E ∈ 𝒜. Then for any s ∈ S (X;Y),
s = ∑ki=1 yiχEi , there holds

⟨T , s⟩(Lp(X;Y))∗ ,Lp(X;Y)

=
k
∑
i=1
⟨T , yiχEi⟩(Lp(X;Y))∗ ,Lp(X;Y) =

k
∑
i=1
⟨νT (Ei), yi⟩Y∗ ,Y

=
k
∑
i=1
⟨∫
Ei

g dμ, yi⟩
Y∗ ,Y
=

k
∑
i=1
∫
X

⟨g, yi⟩Y∗ ,YχEi dμ = ∫
X

⟨g, s⟩Y∗ ,Y dμ. (4.98)

Let {Fk} ⊆ 𝒜 be a nondecreasing sequence such that⋃∞k=1 Fk = X, and let the func-
tion ‖g‖Y∗ : X → [0,∞) is boundedon eachFk (a possible choice isFk = {‖g(⋅)‖Y∗ ≤ k}).
Fix k̄ ∈ ℕ, and consider the space Lp(Fk̄ ;Y) ≡ L

p(Fk̄ ,𝒜 ∩ Fk̄ , μ|𝒜∩F ̄k ;Y). Set

Tk̄ : L
p(Fk̄ ;Y)→ ℝ, Tk̄f := ∫

F ̄k

⟨gχF ̄k , f ⟩Y∗ ,Y dμ (f ∈ L
p(Fk̄ ;Y)). (4.99)

Since ‖g‖Y∗ is bounded on Fk̄, we have gχF ̄k ∈ L
q(Fk̄ ;Y

∗). Hence by Proposition 4.4.9
Tk̄ is an element of (Lp(Fk̄ ;Y))

∗, and ‖Tk̄‖(Lp(F ̄k ;Y))∗ = ‖gχF ̄k ‖Lq(F ̄k ;Y∗).
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Observe that Lp(Fk̄ ;Y) can be identified with the subspace

Lp(Fk̄ ;Y) ≃ {f ∈ L
p(X;Y) | f = 0 μ-a. e. in Fck̄}

of Lp(X;Y); moreover, the simple functions s ∈ S (Fk̄ ;Y), s = ∑
k
i=1 yiχEi∩F ̄k , are dense in

Lp(Fk̄ ;Y). Then from (4.98)–(4.99) for every f ∈ Lp(X;Y), we obtain

⟨T , fχF ̄k ⟩(Lp(X;Y))∗ ,Lp(X;Y) = ∫
X

⟨g, fχF ̄k ⟩Y∗ ,Y dμ = Tk̄(fχF ̄k ),

and thus T = Tk̄ on Fk̄ . It follows that

‖Tk̄‖(Lp(F ̄k ;Y))∗ = ‖gχF ̄k ‖Lq(F ̄k ;Y∗) ≤ ‖T‖(Lp(X;Y))∗ ,

whence ‖g‖Lq(X;Y∗) ≤ ‖T‖(Lp(X;Y))∗ by the arbitrariness of k̄ and the monotone conver-
gence theorem.

Therefore we have that g ∈ Lq(X;Y∗). Moreover, by the denseness of S (X;Y) in
Lp(X;Y) (see Proposition 4.3.6(i)) from (4.98) we obtain

⟨T , f ⟩(Lp(X;Y))∗ ,Lp(X;Y) = ∫
X

⟨g, f ⟩Y∗ ,Y dμ for all f ∈ Lp(X;Y). (4.100)

By the arbitrariness of f , from (4.97) and (4.100) we obtain that T = Θg. Hence the
claim follows.

(ii)⇒(i). Let ν : 𝒜→ Y∗ be a vectormeasure of bounded variation such that ν ≪ μ.
Let us prove that for any E ∈ 𝒜 with μ(E) > 0, there exist F ∈ 𝒜, F ⊆ E with μ(F) >
0, and a Bochner-integrable function hF : F → Y∗ such that (4.94) holds. Then by
Lemma 4.4.10 the conclusion will follow.

Fix E ∈ 𝒜with μ(E) > 0. Let us apply the Hahn decomposition (see Theorem 1.8.2)
to the signed finite measure |ν| − τμ (τ > 0). Then there exist τ̄ > 0 and F ⊆ E with
μ(F) > 0 such that |ν|(G) ≤ τ̄μ(G) for all G ∈ 𝒜, G ⊆ F. Let s ∈ S (X;Y), s = ∑ki=1 yiχEi
(where {Ei, . . . ,Ek} is a partition of X such that μ(Ei) > 0 for each i = 1, . . . , k); thus
‖s‖pLp(X;Y) = ∑

k
i=1 μ(Ei)‖yi‖

p
Y . Define

T : S (X;Y)→ ℝ, Ts :=
k
∑
i=1
⟨ν(F ∩ Ei), yi⟩Y∗ ,Y (s ∈ S (X;Y)). (4.101)

The map T is linear, and

|Ts| ≤
k
∑
i=1

⟨ν(F ∩ Ei), yi⟩Y∗ ,Y


≤
k
∑
i=1

ν(F ∩ Ei)
Y∗‖yi‖Y ≤

k
∑
i=1
|ν|(F ∩ Ei)‖yi‖Y
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≤
k
∑
i=1

τ̄μ(F ∩ Ei)‖yi‖Y ≤ τ̄‖s‖L1(X;Y) ≤ τ̄[μ(X)]
1
q ‖s‖Lp(X;Y). (4.102)

By (4.102) themapT is linear andboundedonS (X;Y), and thusbyProposition4.3.6(i)
it can be uniquely extended to an element of (Lp(X;Y))∗, denoted again by T.

Since by assumption (Lp(X;Y))∗ = Lq(X;Y∗), by the above remarks there exists
g ∈ Lq(X;Y∗) such that

⟨T , f ⟩(Lp(X;Y))∗ ,Lp(X;Y) = ∫
X

⟨g, f ⟩Y∗ ,Y dμ for all f ∈ Lp(X;Y). (4.103)

Set hF := gχF . Let y ∈ Y and f = yχG with G ∈ 𝒜, G ⊆ F, μ(G) > 0. Then from (4.101)
and (4.103) we get

⟨ν(G), y⟩Y∗ ,Y = ⟨T , yχG⟩(Lp(X;Y))∗ ,Lp(X;Y) = ∫
G

⟨hF , y⟩Y∗ ,Y dμ = ⟨∫
G

hF dμ, y⟩
Y∗ ,Y

(see Corollary 4.2.4), whence ν(G) = ∫G hF dμ by the arbitrariness of y. This completes
the proof.

4.4.3 Duality results

This subsection is devoted to the proof of the following duality result.

Theorem 4.4.11. Let (X,𝒜, μ) be a σ-finite measure space, and let Y be a separable Ba-
nach space. Let p ∈ [1,∞), and let q be its Hölder conjugate. Then the map

Θ : Lqw∗(X;Y
∗)→ (Lpw(X;Y))

∗
, Θg := Tg (g ∈ L

q
w∗(X;Y

∗)), (4.104a)

where

Tgf := ∫
X

⟨g(x), f (x)⟩Y∗ ,Y dμ (f ∈ L
p
w(X;Y)), (4.104b)

is an isometric isomorphism.

Observe that Lpw(X;Y) = L
p(X;Y) in the above statement, since Y is separable (see

Remark 4.3.1(i)).

Remark 4.4.3. Let f ∈ Lpw(X;Y) and g ∈ Lqw∗ (X;Y
∗). Since Y is separable, by Theo-

rem 4.1.11 f is μ-measurable. Hence there exists a sequence {sn} ⊆ S (X;Y), say sn =
∑knk=1 ykχEk (yk ∈ Y ,Ek ∈ 𝒜) as in Definition 4.1.2, such that ‖sn(x) − f (x)‖Y → 0 for
μ-a. e. x ∈ X.
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Since g is weakly∗ measurable, the real-valued function ⟨g, sn⟩Y∗ ,Y : X → ℝ is
𝒜-measurable for every n ∈ ℕ. Moreover, ⟨g, sn⟩Y∗ ,Y → ⟨g, f ⟩Y∗ ,Y as n → ∞ μ-a. e. in
X, since

⟨g(x), sn(x)⟩Y∗ ,Y − ⟨g(x), f (x)⟩Y∗ ,Y
 ≤
sn(x) − f (x)

Y
g(x)
Y∗ (x ∈ X).

Therefore the real-valued function x → ⟨g(x), f (x)⟩Y∗ ,Y is measurable, and the defini-
tion in (4.104b) is well posed. Arguing as in Remark 4.4.1 shows that the map defined
in (4.104b) is linear and continuous, and thus Tg ∈ (Lpw(X;Y))

∗, and definition (4.109a)
below is also well posed.

For shortness, if μ is σ-finite and Y is separable, then the conclusion of Theo-
rem 4.4.11 can be expressed by the equality

(Lp(X;Y))∗ = (Lpw(X;Y))
∗
= Lqw∗(X;Y

∗), (4.105)

where p, q are conjugate exponents. In particular, if μ is σ-finite and Y∗ is separable,
then equality (4.105) reads

(Lp(X;Y))∗ = Lq(X;Y∗) (4.106)

(see Remark 4.3.1(i)), in agreement with Theorem 4.4.12 below.
We will prove Theorem 4.4.11 in the case p = 1 and q = ∞, which is relevant for

our purposes (see Subsection 4.4.5); the proof for p ∈ (1,∞) will be given under the
stronger assumption of separability of Y∗ (see Subsection 4.4.4), referring the reader
to [44, Section 8.20] for the general case.

4.4.4 Duality results: separable Y∗

As already observed, equalities (4.105) and (4.106) coincide if Y∗ is separable. There-
fore, if we assume the separability of Y∗, then Theorem 4.4.11 is a consequence of the
following result.

Theorem 4.4.12. Let (X,𝒜, μ) be a σ-finite measure space, and let Y∗ be separable. Let
p ∈ [1,∞), and let q be its Hölder conjugate. Then (4.106) holds.

Proof. If μ is finite, then the result follows by Theorems 4.4.4 and 4.4.7. Let us prove
that it also holds if μ is σ-finite. Let {Ek} ⊆ 𝒜 be a nondecreasing sequence such that
μ(Ek) < ∞ for every k and ⋃∞k=1 Ek = X. Set 𝒜k := 𝒜 ∩ Ek, μk := μ|𝒜∩Ek , and consider
the space Lp(Ek ;Y) ≡ Lp(Ek ,𝒜k , μk ;Y) (k ∈ ℕ). Observe that Lp(Ek ;Y) can be identified
with the subspace

Lp(Ek ;Y) ≃ {f ∈ L
p(X;Y) | f = 0 μ-a. e. in Eck}

of Lp(X;Y).
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Let T ∈ (Lp(X;Y))∗. For any k ∈ ℕ, set Tk := T|Lp(Ek ;Y). Clearly, Tk ∈ (L
p(Ek ;Y))∗,

and ‖Tk‖(Lp(Ek ;Y))∗ ≤ ‖T‖(Lp(X;Y))∗ . Since μk(Ek) < ∞, by Theorem 4.4.7 there exists a
unique gk ∈ Lq(Ek ;Y∗) such that

⟨Tk , f ⟩(Lp(Ek ;Y))∗ ,Lp(Ek ;Y) = ∫
Ek

⟨gk , f ⟩Y∗ ,Y dμk for all f ∈ Lp(Ek ;Y), (4.107)

‖gk‖Lq(Ek ;Y∗) = ‖Tk‖(Lp(Ek ;Y))∗ ≤ ‖T‖(Lp(X;Y))∗ (k ∈ ℕ). (4.108)

Without loss of generality, we can suppose that gk+1|Ek = gk for every k. Then the
map g : X → Y∗, g|Ek := gk (k ∈ ℕ), is well defined and μ-measurable. Letting
k →∞ in (4.108), by the monotone convergence theorem we obtain that ‖g‖Lq(X;Y∗) ≤
‖T‖(Lp(X;Y))∗ , and thus g ∈ Lq(X;Y∗). Rewriting (4.107) as

⟨T , fχEk ⟩(Lp(X;Y))∗ ,Lp(X;Y) = ∫
X

⟨g, fχEk ⟩Y∗ ,Y dμ for all f ∈ Lp(X;Y)

and letting k →∞ give

⟨T , f ⟩(Lp(X;Y))∗ ,Lp(X;Y) = ∫
X

⟨g, f ⟩Y∗ ,Y dμ for all f ∈ Lp(X;Y).

Hence the conclusion follows.

4.4.5 Duality results: separable Y

The assumption of separability of Y∗ is too strong in many cases, e. g., where Y =
C0(U) with open and bounded U ⊆ ℝN . In this case, by Theorem 2.7.1 Y∗ = Rf (U),
which is not separable, whereas Y = C0(U) is separable. The following result (see [44,
Theorem 8.17.5], [93, Corollaire (2.3)]) often provides the mathematical framework to
address situations of this kind, as we will see further.

Theorem 4.4.13. Let (X,𝒜, μ) be a σ-finite measure space, and let Y be separable. Then
the map

Θ : L∞w∗(X;Y
∗)→ (L1w(X;Y))

∗
, Θg := Tg (g ∈ L

∞
w∗(X;Y

∗)), (4.109a)

where

Tgf := ∫
X

⟨g(x), f (x)⟩Y∗ ,Y dμ (f ∈ L
1
w(X;Y)), (4.109b)

is an isometric isomorphism.
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To prove Theorem 4.4.13, we need some preliminary remarks. Let E and F be Ba-
nach spaces. By L2(E, F;ℝ) we denote the space of bilinear continuous maps from
E × F to ℝ, endowed with the norm

L2(E, F;ℝ) ∋ B ≡ B(e, f ) → ‖B‖ := sup
‖e‖E≤1,‖f ‖F≤1

B(e, f )
.

Let us recall the following result (e. g., see [31, Subsection 1.9], [44, Subsection 8.17.4]).

Proposition 4.4.14. Let E and F be Banach spaces. Then L2(E, F;ℝ) is isometrically
isomorphic to both L (E; F∗) and L (F;E∗).

Now we can prove the following result.

Proposition 4.4.15. Let (X,𝒜, μ) be a σ-finite measure space, and let Y be separable.
Let T : L1(X)→ Y∗ be linear and continuous. Then there exists a unique g ∈ L∞w∗ (X;Y

∗)
such that

⟨T ̂f , y⟩Y∗ ,Y = ∫
X

̂f (x)⟨g(x), y⟩Y∗ ,Y dμ(x) for all ̂f ∈ L1(X) and y ∈ Y . (4.110)

Moreover, ‖T‖ = ‖g‖∗∞ = ess supx∈X ‖g(x)‖Y∗ .

Proof. Applying Proposition 4.4.14 with E = L1(X), F = Y , shows that L (L1(X);Y∗) is
isometrically isomorphic to L (Y ; L∞(X)). Then for any T ∈ L (L1(X);Y∗), there exists
a unique S ∈ L (Y ; L∞(X)) such that ‖S‖ = ‖T‖ and

⟨Sy, ̂f ⟩L∞(X),L1(X) = ⟨T ̂f , y⟩Y∗ ,Y for all y ∈ Y , ̂f ∈ L1(X). (4.111)

For μ-a. e. x ∈ X, consider the linear map from Y to ℝ, y → (Sy)(x) (y ∈ Y). Since

(Sy)(x)
 ≤ ‖Sy‖L∞(X) ≤ ‖S‖‖y‖Y , (4.112)

this map is continuous, thus there exists gx ∈ Y∗ such that ⟨gx , y⟩Y∗ ,Y = (Sy)(x). Set

g : X → Y∗, g(x) := gx for μ-a. e. x ∈ X.

Since Sy ∈ L∞(X), the map x → (Sy)(x) = ⟨g(x), y⟩Y∗ ,Y is measurable, and hence g is
weakly∗ measurable. Moreover, by (4.112) for μ-a. e. x ∈ X, we have

⟨g(x), y⟩Y∗ ,Y
 =
⟨gx , y⟩Y∗ ,Y

 =
(Sy)(x)
 ≤ ‖S‖‖y‖Y .

It follows that

‖g‖∗∞ = ess supx∈X
g(x)
Y∗ ≤ ‖S‖ = ‖T‖, (4.113)

and thus g ∈ L∞w∗ (X;Y
∗).
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Now observe that by (4.111) and the very definition of g, for any ̂f ∈ L1(X) and
y ∈ Y , we have

⟨T ̂f , y⟩Y∗ ,Y = ⟨⟨g(⋅), y⟩Y∗ ,Y , ̂f ⟩L∞(X),L1(X)

= ∫
X

̂f (x)⟨g(x), y⟩Y∗ ,Y dμ(x),

and thus (4.110) follows. By (4.110) we plainly obtain that ‖T‖ ≤ ‖g‖∗∞. Since the oppo-
site inequality has been proven (see (4.113)), it follows that ‖T‖ = ‖g‖∗∞.

It remains to prove the uniqueness. To this purpose, let there exist g1, g2 ∈
L∞w∗ (X;Y

∗) satisfying (4.110). Then

∫
X

̂f (x)[⟨g1(x), y⟩Y∗ ,Y − ⟨g2(x), y⟩Y∗ ,Y ] dμ(x) = 0 for all ̂f ∈ L1(X) and y ∈ Y .

By the arbitrariness of ̂f , for any y ∈ Y , there exists a μ-null subset Ny ⊆ X such that

⟨g1(x), y⟩Y∗ ,Y = ⟨g2(x), y⟩Y∗ ,Y for all x ∈ Nc
y . (4.114)

SinceY is separable, there exists a dense countable setD ≡ {yk} ⊆ Y . SetN := ⋃
∞
k=1 Nyk .

ThenN is μ-null, and by (4.114) ⟨g1(x)−g2(x), yk⟩Y∗ ,Y = 0 for all x ∈ Nc and yk ∈ D, and
thus g1 = g2 μ-a. e. in X by the denseness of D. Hence the conclusion follows.

Remark 4.4.4. Equality (4.110) can be restated as follows:

T ̂f = 𝒢 ∫
X

̂f g dμ for all ̂f ∈ L1(X),

that is, T ̂f is the Gelfand integral of ̂f g on X (see (4.64c); observe that ̂f g : X → Y∗

is weakly∗ measurable, and the map x → ⟨ ̂f (x)g(x), y⟩Y∗ ,Y belongs to L1(X) for every
y ∈ Y). In view of Proposition 4.4.15, this amounts to saying that the operator T is
Riesz representable or that Y∗ has the Radon–Nikodým property in a weaker sense
(see Definitions 4.4.1–4.4.2 and [101, Chapter 7]; see also [93]).

Now we can prove Theorem 4.4.13.

Proof of Theorem 4.4.13. Choosing in (4.109b) f = ̂f y (y ∈ Y , ̂f ∈ L1(X)) and argu-
ing as in the uniqueness proof of Proposition 4.4.15 show that the operator Θ defined
in (4.109) is injective (here the separability of Y is used). Moreover,

⟨Θg, f ⟩(L1w(X;Y))∗ ,L1w(X;Y)
 ≤ ∫

X

⟨g(x), f (x)⟩Y∗ ,Y
 dμ ≤ ∫

X

g(x)
Y∗
f (x)
Y dμ ≤ ‖g‖

∗
∞ ‖f ‖1,

and thus Θ is continuous, and ‖Θg‖(L1w(X;Y))∗ ≤ ‖g‖
∗
∞.
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Let us prove that Θ is surjective. For any F ∈ (L1w(X;Y))
∗, set

TF : L
1(X)→ Y∗, ⟨TF ̂f , y⟩Y∗ ,Y := ⟨F, ̂f y⟩(L1w(X;Y))∗ ,L1w(X;Y) (

̂f ∈ L1(X), y ∈ Y).

Clearly, TF is linear, and

⟨TF ̂f , y⟩Y∗ ,Y
 ≤ ‖F‖(L1w(X;Y))∗


̂f 1‖y‖Y ;

thus TF is continuous, and ‖TF‖ ≤ ‖F‖(L1w(X;Y))∗ .
Since TF ∈L (L1(X);Y∗), by Proposition 4.4.15 there exists a unique gF ∈ L∞w∗ (X;Y

∗)
such that

⟨TF ̂f , y⟩Y∗ ,Y = ∫
X

⟨gF(x), ̂f (x)y⟩Y∗ ,Y dμ(x) for all ̂f ∈ L1(X) and y ∈ Y , (4.115)

and ‖TF‖ = ‖gF‖∗∞. By the definition of TF and equality (4.115) we also have that

⟨F, ̂f y⟩(L1w(X;Y))∗ ,L1w(X;Y) = ∫
X

⟨gF(x), ̂f (x)y⟩Y∗ ,Y dμ(x),

whence plainly

⟨F, s⟩(L1w(X;Y))∗ ,L1w(X;Y) = ∫
X

⟨gF(x), s(x)⟩Y∗ ,Y dμ(x) for all s ∈ S (X;Y).

By the denseness of S (X;Y) in L1(X;Y) = L1w(X;Y) (see Proposition 4.3.6(i)) it
follows that for any f ∈ L1w(X;Y),

⟨F, f ⟩(L1w(X;Y))∗ ,L1w(X;Y) = ∫
X

⟨gF(x), f (x)⟩Y∗ ,Y dμ(x). (4.116)

By the arbitrariness of f , comparing (4.116)with (4.109) shows thatF = ΘgF , and thusT
is surjective. Moreover, from (4.116) we get

‖F‖(L1w(X;Y))∗ ≤ ‖gF‖
∗
∞ = ‖TF‖.

The opposite inequality has already been proven, and thus we obtain that

‖ΘgF‖(L1w(X;Y))∗ = ‖F‖(L1w(X;Y))∗ = ‖gF‖
∗
∞.

Hence the result follows.

If Z is a σ-compact metric space, then the space C0(Z) is separable (see Proposi-
tion A.2 and paragraph A.7 in Appendix A). Then by Theorems 2.7.1 and 4.4.13 we have
the following result.
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Proposition 4.4.16. Let (X,𝒜, μ) be a σ-finite measure space, and let Z be a σ-compact
metric space. Then

(L1(X;C0(Z)))
∗
= (L1w(X;C0(Z)))

∗
= L∞w∗(X;Rf (Z)). (4.117)

4.5 Vector Lebesgue spaces of real-valued functions

In this section,wewill often dealwith the Lebesguemeasure on someEuclidean space
ℝd (d ∈ ℕ). We set for shortness dx ≡ dλd(x), dy ≡ dλd′ (x), and dxdy ≡ dλd+d′ (x, y).

Let U ⊆ ℝM be open. It is interesting to characterize the space Lp(U ;Y) when Y
is a Lebesgue or Sobolev space of real functions. A natural question is whether the
space Lp(U ; Lp(V)), V ⊆ ℝN open, can be identified with Lp(U ×V),U ×V ⊆ ℝM+N . The
answer is given by the following results.

Proposition 4.5.1. Let U ⊆ ℝM and V ⊆ ℝN be open. Let p ∈ [1,∞] and r ∈ [1,∞). Then
the following statements are equivalent:
(i) f ∈ Lp(U ; Lr(V));
(ii) f ∈ L1loc(U × V), and

∫
U

(∫
V

f (x, y)

rdy)

p
r

dx <∞ if p ∈ [1,∞), (4.118a)


∫
V

f (⋅, y)

rdy
L∞(U)
<∞ if p =∞. (4.118b)

Proof. (i)⇒(ii). Let us first prove that f : U × V → ℝ, f (x, y) := f (x)(y) (x ∈ U , y ∈ V), is
ℬ(U) × ℬ(V)-measurable. For any x ∈ U, set

̃f (x, y) := {
f (x, y) if y ∈ V ,
0 if y ∈ ℝN \ V .

The claim will follow if we prove that ̃f : U × ℝN → ℝ is ℬ(U) × ℬN -measurable.
Since f ∈ Lp(U ; Lr(V)), the map ̃f : U → Lr(ℝN ), ̃f (x)(y) := ̃f (x, y) (y ∈ ℝN ),

is λN -measurable. Then there exists a sequence {sj} ⊆ S (U ; Lr(ℝN )) such that (see
Definition 4.1.3)

lim
j→∞
∫

ℝN

sj(x, y) − ̃f (x)(y)

rdy = 0 for a. e. x ∈ U . (4.119)
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Let ρ1/m (m ∈ ℕ) be a standard mollifier. For any (x, y) ∈ U × ℝN , set

̃fm(x)(y) := ∫
ℝN

̃f (x, y − z)ρ1/m(z) dz,

sj,m(x, y) := ∫
ℝN

sj(x, y − z)ρ1/m(z) dz.
(4.120)

By the convergence in (4.119), for any fixedm ∈ ℕ and for a. e. x ∈ U, we have

lim
j→∞

sup
y∈ℝN
sj,m(x, y) − ̃fm(x)(y)

 = 0. (4.121)

Clearly, every sj,m is ℬ(U)×ℬN -measurable. On the other hand, by (4.121) the function
̃fm(x, y) : U×ℝN → ℝ, ̃fm(x, y) := ̃fm(x)(y), is the limit of sj,m(x, y) for a. e. (x, y) ∈ U×ℝN .
Then ̃fm is also ℬ(U) × ℬN -measurable.

Now observe that for a. e. x ∈ U, we have ̃fm(x, ⋅)→ ̃f (x, ⋅) a. e. in ℝN (possibly, ex-
tracting a subsequence, not relabeled; see Proposition 4.6.1(ii)). Then by Remark 2.3.2
̃f is the limit a. e. inU ×ℝN of a sequence ofℬ(U)×ℬN -measurable functions, and thus
is ℬ(U) × ℬN -measurable.

Now the fact that f ∈ L1loc(U × V) follows easily from inequalities (4.118), which in
turn are an obvious consequence of the assumption. Hence the claim follows.

(ii)⇒(i) By (4.118) f (x, ⋅) ∈ Lr(V) for a. e. x ∈ U . Then the claim will follow
from (4.118) if we prove that the map x → f (x, ⋅) from U to Lr(V) is λN -measurable. In
turn, by the separability of Lr(V) (q ∈ [1,∞)) this follows from Proposition 4.1.5 if we
show that the map x → ∫V |f (x, y) − d(y)|

rdy (x ∈ U) is measurable for every d = d(y)
belonging to a countable and dense subset of Lr(V). To this purpose, observe that the
map (x, y) → |f (x, y) − d(y)|r from U × V to ℝ is ℬ(U) × ℬ(V)-measurable, since f is
ℬ(U) × ℬ(V)-measurable by assumption and d ∈ Lr(V), and thus is ℬ(V)-measurable.
Then by Theorem 2.3.2(i) we obtain the result.

Corollary 4.5.2. Let U ⊆ ℝM andV ⊆ ℝN be open, and let p ∈ [1,∞). Then the following
statements are equivalent: (i) f ∈ Lp(U ; Lp(V)) and (ii) f ∈ Lp(U × V).

Proof. The proof follows immediately from Proposition 4.5.1 with p = r ∈ [1,∞), ob-
serving that inequality (4.118a) by the Tonelli theorem gives

∫
U×V

|f |p dxdy = ∫
U

(∫
V

f (x, y)

p dy)dx <∞.

The separability of the space Lr(V) for r ∈ [1,∞) was important in the proof of
Proposition 4.5.1. Hence the following result is not surprising.

Proposition 4.5.3. There exists a function f ∈ L∞(ℝ2) that does not belong to
L∞(ℝ; L∞(ℝ)).
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Proof. Let f : ℝ2 → ℝ, f (r, x) := χIr (x) with Ir ≡ (−|r|, |r|) ((r, x) ∈ ℝ2). It is easily seen
that f (r, x) = χE with E := {(r, x) ∈ ℝ2 | |x| < |r|}. Since E ∈ ℬ2, f is ℬ2-measurable, and
thus f ∈ L∞(ℝ2).

Set F : ℝ → L∞(ℝ), F(r) := f (r, ⋅) = χIr for a. e. r ∈ ℝ. The result will follow if we
prove that F is not (ℬ(L∞(ℝ)),ℬ(ℝ))-measurable (and hence not λ-measurable; see
Remark 4.1.2(ii)). To this purpose, let S ⊆ ℝ be symmetric with respect to the origin,
and suppose S ̸∈ ℬ(ℝ). Consider the open subset A ⊆ L∞(ℝ), A := ⋃s∈S B(χIs ,

1
2 ), where

B(χIs ,
1
2
) := {f ∈ L∞(ℝ) | ‖f − χIs‖∞ <

1
2
} (4.122)

denotes the open ball with center χIs and radius
1
2 in L
∞(ℝ). Since ‖χIr − χIs‖∞ = 1 for

r ̸= s, the family of balls in (4.122) is disjoint. Hence

F−1(A) = {r ∈ ℝ | ∃s ∈ S such that ‖F(r) − χIs‖∞ <
1
2
}

= {r ∈ ℝ | |r| = |s|} = S,

since the condition

F(r) − χIs
∞ = ‖χIr − χIs‖∞ <

1
2

implies that χIr ∈ B(χIs ,
1
2 ), and thus χIr = χIs since the family of balls in (4.122) is

disjoint. Therefore there exists an open subset A ⊆ L∞(ℝ) such that F−1(A) ̸∈ ℬ(ℝ).
This proves the result.

Let us now address the case where Y = Wm,r(U) (m ∈ ℕ, r ∈ [1,∞)). Let U ⊆ ℝM

and V ⊆ ℝN be open, and let f ∈ L1loc(U × V), f = f (x, y) (x ∈ U , y ∈ V). For any
k = 1, . . . ,N, we distinguish the distributional derivative

⟨
𝜕f
𝜕yk
, ζ⟩ = − ∫

U×V

f 𝜕ζ
𝜕yk

dxdy for ζ ∈ C∞c (U × V) (4.123a)

from the distributional derivative 𝜕yk f (x, ⋅) defined for a. e. x ∈ U as follows:

⟨𝜕yk f (x, ⋅), η⟩ = −∫
V

f (x, y) 𝜕η
𝜕yk
(y) dy for η ∈ C∞c (V). (4.123b)

For simplicity, we only state the result for Y = W 1,r(U).

Proposition 4.5.4. Let U ⊆ ℝM and V ⊆ ℝN be open. Let p ∈ [1,∞] and r ∈ [1,∞).
Then the following statements are equivalent:
(i) f ∈ Lp(U ;W 1,r(V));
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(ii) f ∈ L1loc(U × V), and for all k = 1, . . . ,N,

∫
U

(∫
V

f (x, y)

rdy)

p
r

dx <∞, ∫
U

(∫
V



𝜕f
𝜕yk
(x, y)


r
dy)

p
r

dx <∞ (4.124a)

if p ∈ [1,∞), and


∫
V

f (⋅, y)

rdy
L∞(U)
<∞,


∫
V



𝜕f
𝜕yk
(x, y)


r
dy
L∞(U)
<∞ (4.124b)

if p =∞. Moreover, for a. e. x ∈ U, we have

𝜕yk f (x, ⋅) =
𝜕f
𝜕yk
(x, ⋅) a. e. in V . (4.125)

Proof. (i)⇒(ii). By Proposition 4.5.1 f ∈ L1loc(U × V), and the first inequality in either
statement (4.124) is satisfied. Moreover, by Proposition 4.5.1 we also have that for all
k = 1, . . . ,N,

∫
U

(∫
V

𝜕yk f (x, y)

rdy)

p
r

dx <∞ if p ∈ [1,∞),


∫
V

𝜕yk f (⋅, y)

rdy
L∞(U)
<∞ if p =∞.

Hence the claim follows if we prove equality (4.125). In (4.123a), set ζ (x, y) = ξ (x)η(y)
with ξ ∈ C∞c (U) and η ∈ C

∞
c (V). Then by (4.123b) and the Fubini theorem

⟨
𝜕f
𝜕yk
, ζ⟩ = − ∫

U×V

f ξ 𝜕η
𝜕yk

dxdy = −∫
U

dx ξ (x)∫
V

f (x, y) 𝜕η
𝜕yk
(y) dy

= ∫
U

dx ξ (x)⟨𝜕yk f (x, ⋅), η⟩ = ⟨𝜕yk f (x, ⋅), ζ ⟩,

whence by standard arguments we obtain (4.125).
(ii)⇒(i). By (4.124)–(4.125) we have that f , 𝜕yk f ∈ L

p(U ; Lr(V)) (k = 1, . . . ,N) if we
prove that themap fromU toW 1,r(V), x → f (x, ⋅), is λN -measurable. By the separability
of W 1,r(V) (r ∈ [1,∞)) this follows from Proposition 4.1.5 arguing as in the proof of
Proposition 4.5.1. This completes the proof.

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.6 Vector Sobolev spaces | 207

4.6 Vector Sobolev spaces

The main purpose of this section is to prove two useful embedding results (Theo-
rems 4.6.7–4.6.8).

4.6.1 Vector distributions

Let U ⊆ ℝN be open. Let D(U) be the space of test functions on U, and let Y be a
Banach space with norm ‖ ⋅ ‖Y .

Definition 4.6.1. The space of vector distributions fromU toY (denotedD ′(U ;Y)) is the
space of continuous linear maps T : D(U) → Y . Namely, T ∈ D ′(U ;Y) if T : D(U)→ Y
is linear, and for any sequence ζk → ζ in D(U), we have ‖⟨T , ζk⟩ − ⟨T , ζ ⟩‖Y → 0.

Hereafter we use the symbol Tζ ≡ ⟨T , ζ ⟩ ∈ Y (T ∈ D ′(U ;Y), ζ ∈ D(U)). We also set
D ′(U ;ℝ) ≡ D∗(U).

Remark 4.6.1. To every vector measure μ : ℬ(U) → Y , there corresponds Tμ ∈
D ′(U ;Y) defined by

⟨Tμ, ζ ⟩ ≡ ⟨μ, ζ ⟩ = ∫
U

ζ dμ (ζ ∈ C∞c (U)),

and by inequality (4.60) we have

⟨Tμ, ζ ⟩
Y ≤ ∫

U

|ζ | d|μ|w ≤ ‖ζ ‖∞ |μ|w(U).

In particular, by Remark 4.3.3(ii) to every f ∈ L1loc(U ;Y), there corresponds Tf ∈
D ′(U ;Y) such that

⟨Tf , ζ ⟩ = ∫
U

f ζ dx (ζ ∈ C∞c (U)),

⟨Tf , ζ ⟩
Y ≤ ∫

U

‖f ‖Y |ζ | dx ≤ ‖ζ ‖∞ ∫
U

‖f ‖Y dx.

Definition 4.6.2. A sequence {Tk} ⊆ D ′(U ;Y) converges in D ′(U ;Y) to T ∈ D ′(U ;Y)
(written Tk → T in D ′(U ;Y)) if ‖⟨Tk , ζ ⟩ − ⟨T , ζ ⟩‖Y → 0 for all ζ ∈ C∞c (U).

Definition 4.6.3. Let T ∈ D ′(U ;Y). By the αth distributional derivative of T, denoted
DαT (α ∈ ℕN ), we mean the vector distribution DαT ∈ D ′(U ;Y),

⟨DαT , ζ ⟩ := (−1)|α|⟨T ,Dαζ ⟩ for all ζ ∈ C∞c (U).
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We will use the same notations for distributional derivatives as in the scalar case
Y = ℝ, e. g., dTdx ≡ D

1T if N = 1.

Definition 4.6.4. The convolution of T ∈ D ′(ℝ;Y) with ρ ∈ C∞c (ℝ) is

⟨T ∗ ρ, ζ ⟩ := ⟨T , ζ ∗ ρ̂⟩ for all ζ ∈ C∞c (U),

where ρ̂(x) := ρ(−x) (x ∈ ℝ).

If T = f ∈ L1loc(ℝ;Y), then it is easily seen that

T ∗ ρ = ∫
ℝ

ρ(⋅ − y)f (y) dy.

If ρϵ is a standard mollifier, then we have the following:

Proposition 4.6.1. (i) Let T ∈ D ′(ℝ;Y). Then T∗ρϵ ∈ C∞(ℝ;Y), and (DαT)∗ρϵ → DαT
in D ′(ℝ;Y) as ϵ → 0+ (α ∈ ℕN ).

(ii) Let f ∈ Lp(ℝN ;Y) (p ∈ [1,∞)). Then {ρϵ∗f } ⊆ Lp(ℝN ;Y)∩C∞(ℝN ;Y), ‖ρϵ∗f ‖p ≤ ‖f ‖p
for all ϵ > 0, and ρϵ ∗ f → f in Lp(ℝN ;Y) as ϵ → 0+.

Definition 4.6.5. Let Y and Z be Banach spaces, and let L ∈ L (Y ; Z). The image of
T ∈ D ′(U ;Y) under L is the vector distribution L(T) ∈ D ′(U ; Z) defined by

⟨L(T), ζ ⟩ := L(⟨T , ζ ⟩) for all ζ ∈ C∞c (U).

Remark 4.6.2. The following claims are easily checked:
(i) if Tk → T in D ′(U ;Y), then L(Tk)→ L(T) in D ′(U ; Z);
(ii) for any T ∈ D ′(U ;Y), Dα(L(T)) = L(DαT) ∈ D ′(U ; Z).

4.6.2 Definition and general properties

Definition 4.6.6. Let U ⊆ ℝN be open, and let m ∈ ℕ and p ∈ [1,∞]. The function
f ∈ Lp(U ;Y) belongs to the Sobolev space Wm,p(U ;Y) if Dαf ∈ Lp(U ;Y) for all α ∈ ℕN ,
|α| ≤ m. The spaceWm,p

loc (U ;Y) is defined by replacing L
p(U ;Y) by Lploc(U ;Y).

We setWm,p(U ;ℝ) ≡ Wm,p(U). Wewill use the same notations as in the scalar case
(see Subsection 3.1.2), e. g., we set Hm(U ;Y) ≡ Wm,2(U ;Y)

The spaceWm,p(U ;Y) is a normed vector space endowed formally with the same
norm ‖ ⋅ ‖m,p as in the scalar case (see (3.2)), where now

D
αf 

p
p = ∫

U

D
αf 

p
Y dx if p ∈ [1,∞),

D
αf ∞ = ess sup

D
αf Y if p =∞.
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The spaceWm,p(U ;Y) endowedwith this norm is a Banach space, as it is easily proved.
The following result is the counterpart of Theorem 3.1.3.

Theorem 4.6.2. Let Y be separable. Then:
(i) if p ∈ [1,∞), then Wm,p(U ;Y) is separable;
(ii) if p ∈ (1,∞) and Y is reflexive, then Wm,p(U ;Y) is also reflexive.

Proof. We only consider the case N = m = 1 for simplicity. Let I ⊆ ℝ be an open
interval. As in the proof of Proposition 3.1.4, set X := [Lp(I ;Y)]2 with norm

(f , g) → (f , g)
X := (‖f ‖

p
p + ‖g‖

p
p)

1/p
(p ∈ [1,∞)).

Clearly, the map T : W 1,p(I ;Y) → [Lp(I ;Y)]2, T(f ) := (f , dfdx ), is an isometric isomor-
phism, and Z := T(W 1,p(I ;Y)) ⊆ X is a closed subspace and thus a Banach space with
norm ‖ ⋅ ‖X . Also, observe that (f , g) ∈ Z if and only if df

dx = g.
(i) Since Y is separable, by Theorem 4.3.7 so is the space Lp(I ;Y), and hence X

and Z are separable. Let D ⊆ Z be countable and dense, and set E := T−1(D). Let
h ∈ W 1,p(I ;Y). Then Th = (h, dhdx ) ∈ Z. By the denseness of D there exists a sequence
{(fk , gk)} ⊆ D such that limk→∞ ‖(fk , gk) − Th‖X = 0. Then for any k ∈ ℕ, we have
dfk
dx = gk, {fk} ⊆ E, and

lim
k→∞
(fk , gk) − Th


p
X = lim

k→∞
(‖fk − h‖

p
p +


dfk
dx
−
dh
dx



p

p
) = 0,

hence fk → h inW 1,p(I ;Y), and claim (i) follows.
(ii) If Y is reflexive and p ∈ (1,∞), then the spaces Lp(I ;Y) and hence X and Z are

also reflexive. SinceW 1,p(I ;Y) is isomorphic to Z, claim (ii) follows.

Remark 4.6.3. Let Y and Z be Banach spaces, and let L ∈ L (Y ; Z). For any f ∈
Wm,p(U ;Y) (m ∈ ℕ, p ∈ [1,∞]), set

l(f )(x) := L(f (x, ⋅)) for a. e. x ∈ U .

Since Dα
y (l(f )(x)) = L(Dα

y f (x, ⋅)), we have l(f ) ∈ W
m,p(U ; Z) (see Remark 4.6.2(ii)). It

follows that l ∈ L (Wm,p(U ;Y);Wm,p(U ; Z)).
For instance, let U = I ⊆ ℝ be an open interval, let V ⊆ ℝN be open, and let

L : L1(V)→ ℝ, L(g) = ∫
V

g dx (g ∈ L1(V)).

Then the map

l : W 1,p(I ; L1(V))→ W 1,p(I), l(f )(x) := ∫
V

f (x, y) dy for λ-a. e. x ∈ I,
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is linear and continuous. Moreover, for λ-a. e. x ∈ I,

d
dx
∫
V

f (x, y) dy = ∫
V

𝜕f
𝜕x
(x, y) dy.

WhenY is a Lebesgue space,wehave the following characterizationofWm,p(U ;Y),
analogous to Propositions 4.5.1 and 4.5.4. We only deal with the case where U is an
open interval I ⊆ ℝ. Let V ⊆ ℝN be open. By Corollary 4.5.2 the space L1loc(I ×V) can be
identified with L1loc(I ; L

1
loc(V)). If f ∈ L

1
loc(I ×V), then we distinguish the distributional

derivative 𝜕f𝜕x ∈ D∗(I × V),

⟨
𝜕f
𝜕x
, ζ⟩ = − ∫

I×V

f 𝜕ζ
𝜕x

dxdy for all ζ ∈ C∞c (I × V), (4.126)

from the distributional derivative df
dx ∈ D ′(I ; L1loc(V)),

⟨
df
dx
, ξ⟩ = −∫

I

f (x, ⋅) ξ ′(x) dx for all ξ ∈ C∞c (I). (4.127)

The proof of the following result is analogous to that of Proposition 4.5.4, thus is omit-
ted (see [43, Proposition 2.6.1] for details).

Proposition 4.6.3. Let I ⊆ ℝ be an open interval, and let V ⊆ ℝN be open. Let p, r ∈
[1,∞). Then the following statements are equivalent:
(i) f ∈ W 1,p(I ; Lr(V));
(ii) f , 𝜕f
𝜕x
∈ L1loc(I × V), and

∫
I

(∫
V

f (x, y)

rdy)

p
r

dx <∞, ∫
I

(∫
V



𝜕f
𝜕x
(x, y)


r
dy)

p
r

dx <∞. (4.128)

Moreover, for λ-a. e. x ∈ I,

df
dx
(x) = 𝜕f
𝜕x
(x, ⋅) a. e. in V. (4.129)

4.6.3 Continuous embedding

LetW and Y be Banach spaces. We writeW → Y ifW is continuously embedded in
Y , andW c

→ Y if the embedding is compact. The following result will be proven.

Theorem 4.6.4. Let I ⊆ ℝ be an open interval. Then:
(i) W 1,p(I ;Y) → C1−

1
p (I ;Y) for any p ∈ (1,∞);

(ii) W 1,∞(I ;Y) → Lip(I ;Y).
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To prove Theorem 4.6.4, we must show that:
(i) for any p ∈ (1,∞), every f ∈ W 1,p(I ;Y) has a representative ̃f ∈ C1−

1
p (I ;Y), and

there existsM0 > 0 such that


̃f C0,1− 1p (I ;Y) ≤ M0‖f ‖1,p; (4.130a)

(ii) every f ∈ W 1,∞(I ;Y) has a representative ̃f ∈ Lip(I ;Y), and there exists M0 > 0
such that


̃f Lip(I ;Y) ≤ M0‖f ‖1,∞. (4.130b)

To this purpose, we need elementary Lemma 4.6.5 below, where for any g ∈ L1loc(I ;Y),
we set

x2

∫
x1

g(x) dx :=
{
{
{

∫(x1 ,x2) g dx if x1 < x2,

−∫(x2 ,x1) g dx if x1 > x2.

It is easily checked that

p−1
∑
j=1

xj+1

∫
xj

g(x) dx =
xp

∫
x1

g(x) dx (x1, . . . , xp ∈ I). (4.131)

Lemma 4.6.5. Let f ∈ W 1,p(I ;Y) (p ∈ [1,∞]). Then
(i) f has a uniformly continuous representative ̃f ;
(ii) for any x1, x2 ∈ I, we have

̃f (x2) − ̃f (x1) =
x2

∫
x1

df
dx
(x) dx. (4.132)

Proof. Set g(ξ ) := ∫ξx̄
df
dx (x) dx (x̄, ξ ∈ I). The definition is well posed since df

dx ∈
Lp(I ;Y) ⊆ L1loc(I ;Y). Moreover, by (4.131) we have

g(x2) − g(x1)
Y ≤


x2

∫
x1



df
dx

Y
(x) dx

.

Since ‖ dfdx ‖Y ∈ L
1
loc(I), by the above inequality g is uniformly continuous in I, and thus,

in particular, g ∈ L1loc(I ;Y). It is easily checked that its distributional derivative
dg
dx is

equal to df
dx . Plainly, this implies that there exists y ∈ Y such that f = g +y is inD ′(I ;Y)

(e. g., see [43, Proposition 2.1.2]) and thus in L1loc(I ;Y). Then ̃f := g + y is a uniformly
continuous representative of f , which clearly satisfies (4.132).
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Proof of Theorem 4.6.4. Let p ∈ (1,∞). From (4.132) we get


̃f (x2) − ̃f (x1)

Y ≤


x2

∫
x1



df (x)
dx

Y
dx

≤


df
dx

p
|x2 − x1|

1− 1p . (4.133)

Now observe that the function x → ‖ ̃f (x)‖Y is uniformly continuous in I, and thus
‖ ̃f (⋅)‖Y ∈ Cb(I). Let x0 ∈ I be a maximum point, that is, ‖ ̃f (x0)‖Y = ‖ ̃f ‖∞. Then
from (4.132) we get

̃f (x0) = ̃f (x) +
x

∫
x0

df
dx
(x) dx for all x ∈ I . (4.134)

Fix a ∈ (0,min{1, λ(I)2 }). At least one of the intervals (x0 − a, x0) and (x0, x0 + a) is con-
tained in I. Suppose that (x0, x0 + a) ⊆ I. Then from (4.134) we get


̃f ∞ ≤

̃f (x)Y +

x

∫
x0



df
dx
(x)
Y

dx for all x ∈ (x0, x0 + a).

Integrating the above inequality over Ia := (x0, x0 + a), for any p ∈ (1,∞), we get


̃f ∞ ≤

1
a
‖f ‖L1(Ia ;Y) +



df
dx

L1(Ia ;Y)
≤ a−

1
p ‖f ‖p + a

1− 1p


df
dx

p
. (4.135)

By a suitable choice ofM0 > 0 from (4.133) and (4.135) we obtain (4.130a). This proves
the result for p ∈ (1,∞). If p =∞, then from (4.132) we get


̃f (x2) − ̃f (x1)

Y ≤


x2

∫
x1



df
dx

Y
(x) dx

≤


df
dx

∞
|x2 − x1| if p =∞. (4.136)

From (4.136) we obtain (4.130b) withM0 = 1, and thus the result follows.

For further purposes, let us state the following prolongation result (see [43, Corol-
laire 2.3.1] for the proof).

Proposition 4.6.6. Let I ⊆ ℝ be a bounded open interval. Then there exists a linear
bounded operator T : L1(I ;Y)→ L1(ℝ;Y) such that:
(i) (Pf )(x) = f (x) for a. e. x ∈ I;
(ii) there exists M1 > 0 (only depending on λ(I)) such that for all p ∈ [1,∞] and for any

Banach space Z,

f ∈ L1(I ;Y)⋂ Lp(I ; Z) ⇒ Pf ∈ Lp(ℝ; Z), ‖Pf ‖Lp(ℝ;Z) ≤ M1‖f ‖Lp(I ;Z),
(4.137a)

f ∈ L1(I ;Y)⋂W 1,p(I ; Z) ⇒ Pf ∈ W 1,p(ℝ; Z), ‖Pf ‖W 1,p(ℝ;Z) ≤ M1‖f ‖W 1,p(I ;Z).
(4.137b)
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4.6.4 Compact embedding

Let us prove the following results (see [94]).

Theorem 4.6.7 (Aubin). Let I ⊆ ℝ be a bounded open interval, and let p ∈ (1,∞]
and r ∈ [1,∞]. Let W ,Y , Z be Banach spaces such that W c

→ Y → Z. Let E ⊆
W 1,p(I ; Z)⋂ Lr(I ;W) be bounded in both spaces, that is,

sup
f∈E
(‖f ‖W 1,p(I ;Z) + ‖f ‖Lr(I ;W)) <∞. (4.138)

Then E is relatively compact in both C(I ; Z) and Lr(I ;Y).

Theorem 4.6.8 (Simon). Let I ⊆ ℝ be a bounded open interval, and let r ∈ [1,∞). Let
W ,Y , Z be Banach spaces such that W c

→ Y → Z. Let E ⊆ W 1,1(I ; Z)⋂ Lr(I ;W) be
bounded in both spaces, that is,

sup
f∈E
(‖f ‖W 1,1(I ;Z) + ‖f ‖Lr(I ;W)) <∞. (4.139)

Then E is relatively compact in both Lp(I ; Z) (p ∈ [1,∞)) and Lr(I ;Y).

To prove Theorems 4.6.7–4.6.8, we need two preliminary lemmas.

Lemma 4.6.9. Let I ⊆ ℝ be a bounded open interval, and let p ∈ [1,∞]. Let W ,Y , Z be
Banach spaces such that W c

→ Y → Z. Let E ⊆ W 1,p(I ; Z)⋂ Lr(I ;W) satisfy (4.138). For
every f ∈ E and k ∈ ℕ, set

fk : I → Z, fk := (Pf ) ∗ ρ1/k |I (k ∈ ℕ),

where P : L1(I ; Z) → L1(ℝ; Z) is the prolongation operator given by Proposition 4.6.6,
and ρ1/k is a standard mollifier. Then for all k ∈ ℕ, the set Ek := {fk | f ∈ E} is relatively
compact in C(I ; Z).

Proof. Fix k ∈ ℕ. Observe preliminarily that for any f ∈ E ⊆ W 1,p(I ; Z)⋂ Lr(I ;W), we
have Pf ∈ W 1,p(ℝ; Z)⋂ Lr(ℝ;W), and hence fk ∈ C∞(I ; Z). The result will follow by the
Ascoli–Arzelà theorem if we prove that (a) the set Ek ⊆ C(I ; Z) is equicontinuous and
(b) for any x ∈ I, the set Ek,x := {fk(x) | f ∈ E} is relatively compact in Z.
(a) Wemust show that for any ϵ > 0 there exists δ > 0 such that |fk(x1)− fk(x2)| < ϵ for

all f ∈ E and any x1, x2 ∈ I such that |x1 − x2| < δ. To this aim, it suffices to prove
that the set Fk := {f ′k | fk ∈ Ek} is bounded in C(I ; Z), that is, there exists Ck > 0
such that

‖f ′k‖C(I ;Z) ≤ Ck for all f ∈ Z. (4.140)
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In fact, for any fixed f ∈ E, by definition fk(x) = ∫ℝ(Pf )(y)ρ1/k(x − y) dy, and hence
f ′k (x) = ∫ℝ(Pf )(y)ρ

′
1/k(x − y) dy. Therefore by (4.137a)

f
′
k (x)
Z ≤
ρ
′
1/k
Lq(ℝ)‖Pf ‖Lp(ℝ;Z) ≤ C

ρ
′
1/k
Lq(ℝ)‖f ‖Lp(I ;Z),

where q denotes the Hölder conjugate of p. Taking the supremum over x ∈ I and
using (4.138), from the above inequality we obtain that (a) is satisfied.

(b) By (4.137a) for any x ∈ I, we have

fk(x)
W ≤ ‖ρ1/k‖Ls(ℝ)‖Pf ‖Lr(ℝ;Z) ≤ C‖ρ1/k‖Ls(ℝ)‖f ‖Lr(I ;W),

where s denotes the Hölder conjugate of r. Then by (4.138) the set Ek,x := {fk(x) |
f ∈ E} is bounded in W and hence relatively compact in Z. This proves (b), and
thus the result follows.

Lemma 4.6.10. Let W ,Y , Z be Banach spaces such that W c
→ Y → Z. Then for any

η > 0, there exists Cη > 0 such that for all f ∈ W,

‖f ‖Y ≤ η ‖f ‖W + Cη ‖f ‖Z . (4.141)

Proof. By contradiction, let there exist η > 0 such that for every k ∈ ℕ, there exists
fk ∈ W satisfying

‖fk‖Y > η ‖fk‖W + k‖fk‖Z . (4.142)

Set gk :=
fk
‖fk‖Y
(k ∈ ℕ). Then ‖gk‖Y = 1 for all k ∈ ℕ, and thus by (4.142)

‖gk‖W ≤
1
η
, ‖gk‖Z ≤

1
k
. (4.143)

By the first inequality in (4.143) the sequence {gk} is bounded in W . Then since
W c
→ Y → Z, there exist a subsequence (not relabeled) of {gk} and g ∈ Z such

that limk→∞ ‖gk − g‖Y = limk→∞ ‖gk − g‖Z = 0. By the second inequality in (4.143)
g = 0, whence limk→∞ ‖gk‖Y = 0. This is absurd since ‖gk‖Y = 1 for all k ∈ ℕ, and
hence the result follows.

Proof of Theorem 4.6.7. (i) Let us prove that E is relatively compact in C(I ; Z). To this
purpose, we first prove that

lim
k→∞

sup
f∈E
‖fk − f ‖C(I ;Z) = 0, (4.144)
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where {fk} is the sequence associated with f by Lemma 4.6.9. For any x ∈ I, we have
(Pf )(x) = f (x), and thus

fk(x) − f (x)
Z =

∫
ℝ

[(Pf )(x − y) − (Pf )(x)] ρ1/k(y) dy
Z

≤ ∫
ℝ

(Pf )(x − y) − (Pf )(x)
Z ρ1/k(y) dy. (4.145)

By (4.130a) and (4.137b), from (4.145) we get

fk(x) − f (x)
Z ≤ M0‖Pf ‖W 1,p(ℝ;Z) ∫

(− 1k ,
1
k )

|y|1−
1
p ρ1/k(y) dy

≤
M0M1

k1−
1
p
‖f ‖W 1,p(I ;Z).

Therefore

sup
f∈E
‖fk − f ‖C(I ;Z) ≤

M0M1

k1−
1
p
sup
f∈E
‖f ‖W 1,p(I ;Z).

In view of (4.138), letting k →∞ in the above inequality, we obtain (4.144).
Fix ϵ > 0. By (4.144) there existsm ∈ ℕ such that

‖f ‖C(I ;Z) ≤ ‖fm‖C(I ;Z) +
ϵ
3

for all f ∈ E. (4.146)

It follows that E ⊆ Fm := {g ∈ C(I ; Z) | d(g,Em) <
ϵ
3 } (recall that Em := {fm | f ∈ E};

see Lemma 4.6.9). On the other hand, since by Lemma 4.6.9 Em is relatively compact in
C(I ; Z), there exist nm ∈ ℕ and f (1)m , . . . , f

(nm)
m ∈ Em (corresponding to f (1), . . . , f (nm) ∈ E)

such that

Em ⊆
nm
⋃
l=1

B(f (l)m ,
ϵ
3
) ⊆

nm
⋃
l=1

B(f (l), 2ϵ
3
), (4.147)

whereB(g, r) ⊆ C(I ; Z) is the open ball with center g and radius r, and (4.146)was used.
By (4.147) we have

E ⊆ Fm ⊆
nm
⋃
l=1

B(f (l), ϵ) with f (1), . . . , f (nm) ∈ E,

and thus the claim follows.
(ii) Let us now prove that E is relatively compact in Lr(I ;Y). By (i) E is relatively

compact inC(I ; Z) and thus in Lr(I ; Z). Then for any {fi} ⊆ E, there exists a subsequence
(not relabeled for simplicity) converging in Lr(I ; Z) (r ∈ [1,∞]). On the other hand, for
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any fixed ϵ > 0, set η := ϵ
4 supf∈E ‖f ‖Lr (I;W)

. Then by Lemma 4.6.10 there exists Cη > 0 such
that for all i, j ∈ ℕ,

‖fi − fj‖Lr(I ;Y) ≤ η ‖fi − fj‖Lr(I ;W) + Cη ‖fi − fj‖Lr(I ;Z). (4.148)

Since {fi} is converging in Lr(I ; Z), there exists l ∈ ℕ such that ‖fi − fj‖Lr(I ;Z) <
ϵ
2Cη

for
all i, j ≥ l. Then from (4.148) we obtain that ‖fi − fj‖Lr(I ;Y) < ϵ for i, j ≥ l, and thus {fi}
converges in Lr(I ;Y). This completes the proof.

Proof of Theorem 4.6.8. (i) Let us prove that E is relatively compact in L1(I ; Z). To this
purpose, observe that by Lemma 4.6.9 the set Ek := {fk | f ∈ E} (k ∈ ℕ) is relatively
compact in C(I ; Z). Since C(I ; Z) → L1(I ; Z), Ek s relatively compact in L1(I ; Z). Let us
prove that

lim
k→∞

sup
f∈E
‖fk − f ‖L1(I ;Z) = 0. (4.149)

Arguing as for (4.145), we have that

‖fk − f ‖L1(I ;Z) ≤ ∫
I

dx∫
ℝ

(Pf )(x − y) − (Pf )(x)
Z ρ1/k(y) dy

= ∫

(− 1k ,
1
k )

dy ρ1/k(y)∫
I

(Pf )(x − y) − (Pf )(x)
Z dx

≤ sup
|y|≤ 1k

∫
I

(Pf )(x − y) − (Pf )(x)
Z dx. (4.150)

On the other hand, we have

∫
I

(Pf )(x − y) − (Pf )(x)
Z dx ≤ ∫

I

dx∫
ℝ

(Pf )
′(ξ )ZχJx−y,y (ξ ) dξ

= ∫
ℝ

dξ (Pf )
′(ξ )Z ∫

I

χKξ ,ξ+y (η) dη ≤ |y|∫
ℝ

dξ (Pf )
′(ξ )Z , (4.151)

where Jx−y,y andKξ ,y denote the intervalswith extremes x−y, y and ξ , ξ+y, respectively.
By (4.150)–(4.151), using (4.137b), we get

‖fk − f ‖L1(I ;Z) ≤
M1
k
‖f ‖W 1,1(I ;Z).

In view of (4.139), letting k →∞ in this inequality, we obtain (4.149).
Fix ϵ > 0. By (4.149) there existsm ∈ ℕ such that

‖f ‖L1(I ;Z) ≤ ‖fm‖L1(I ;Z) +
ϵ
3

for all f ∈ E. (4.152)
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Hence E ⊆ Fm := {g ∈ L1(I ; Z) | d(g,Em) <
ϵ
3 }. On the other hand, since Em is rela-

tively compact in L1(I ; Z), there exist nm ∈ ℕ and f (1)m , . . . , f
(nm)
m ∈ Em (corresponding to

f (1), . . . , f (nm) ∈ E) such that

Em ⊆
nm
⋃
l=1

B(f (l)m ,
ϵ
3
) ⊆

nm
⋃
l=1

B(f (l), 2ϵ
3
), (4.153)

where B(g, r) ⊆ L1(I ; Z) denotes the open ball with center g and radius r, and inequal-
ity (4.152) was used. By (4.153) we have

E ⊆ Fm ⊆
nm
⋃
l=1

B(f (l), ϵ) with f (1), . . . , f (nm) ∈ E,

and thus the claim follows.
(ii) Now we can prove that E is relatively compact in Lp(I ; Z) for all p ∈ (1,∞). By

(i) E is relatively compact in L1(I ; Z), and thus for any {fi} ⊆ E, there exists a subse-
quence (not relabeled for simplicity) converging in L1(I ; Z) and hence λ-a. e. in I. On
the other hand, since E is bounded inW 1,1(I ; Z) → C(I ; Z) → Lp(I ; Z) (p ∈ (1,∞)), by
Corollary 4.3.5 the sequence {fi} converges in Lp(I ; Z) for all p ∈ (1,∞). Hence the claim
follows.

(iii) To prove that E is relatively compact in Lr(I ;Y), observe that by (ii) E is rela-
tively compact in Lr(I ; Z) (r ∈ [1,∞)). Then for any {fi} ⊆ E, there exists a subsequence
(not relabeled for simplicity) converging in Lr(I ; Z). Arguing as in the proof of Theo-
rem 4.6.7 shows that {fi} converges in Lr(I ;Y). Then the result follows.
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5 Sequences of finite Radon measures

5.1 Notions of convergence

Let X be a locally compact Hausdorff space. The vector space Rf (X) of finite signed
Radon measures on X, endowed with the norm ‖μ‖ := |μ|(X) (|μ| being the variation
of the measure μ), is a Banach space; in fact, it is a closed subspace of the Banach
space (Mf (X), ‖ ⋅ ‖) of finite signed measures on X. In this chapter, we first discuss
different types of convergence in this space, and then we establish their relationship
with analogous concepts of convergence for Young measures. Once this is made, we
draw conclusions about the convergence of bounded sequences in L1(X).
5.1.1 Strong convergence

Proposition 1.8.4 suggests the following definition, which in particular applies to
Rf (X) if X is a locally compact Hausdorff space endowed with the Borel σ-algebra.

Definition 5.1.1. Let (X,𝒜) be a measurable space. A sequence {μk} ⊆ Mf (X) strongly
converges to μ ∈Mf (X) (written μk → μ) if

lim
k→∞
‖μk − μ‖ = lim

k→∞
|μk − μ|(X) = 0.

The strong topology onMf (X) is the metric topology associated with the norm ‖ ⋅ ‖.
For clearness, we denote by ‖ ⋅ ‖Rf (X) the restriction of the above norm to the sub-

spaceRf (X) ⊆Mf (X).
5.1.2 Weak∗ convergence

Theorem 2.7.1 suggests the following definition.

Definition 5.1.2. Let X be a locally compact Hausdorff space. A sequence {μk} ⊆ Rf (X)
converges weakly∗ to μ ∈ Rf (X) (written μk ∗⇀ μ) if

lim
k→∞
∫
X

g dμk = ∫
X

g dμ for all g ∈ C0(X). (5.1)

The weak∗ topology on Rf (X), denoted 𝒯w∗ , is the weakest topology that makes all
maps μ → ∫X g dμ, g ∈ C0(X), continuous.
Remark 5.1.1. Since C0(X) ⊆ Cb(X) ⊆ L1(X,ℬ(X), |μ|) and C0(X) ⊆ Cb(X) ⊆ L1(X,ℬ(X),|μk |) for all k ∈ ℕ, the integrals in (5.1) and (5.3) are well defined (see Definition 2.2.4).
https://doi.org/10.1515/9783110556902-006
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220 | 5 Sequences of finite Radon measures

A basis for 𝒯w∗ is the following family of subsets ofRf (X):
Bg1 ,...,gn ;ϵ(μ0) := {μ ∈ Rf (X)  ∫

X

gj dμ − ∫
X

gj dμ0
 < ϵ ∀ j = 1, . . . , n}, (5.2)

where g1, . . . , gn ∈ C0(X), μ0 ∈ Rf (X), n ∈ ℕ and ϵ > 0.
Under suitable assumptions on X, the weak∗ topology 𝒯w∗ restricted to bounded

subsets ofRf (X) is metrizable:

Proposition 5.1.1. LetX bea locally compactHausdorff spacewith countable basis, and
let M ⊆ Rf (X) be bounded. Then the relative weak∗ topology 𝒯w∗ ∩M is metrizable.

Proof. The space C0(X) endowed with the ‖ ⋅ ‖∞ norm is separable (see Appendix A,
Subsection A.7). Then by Theorem 2.7.1 and Proposition A.11 the result follows.

5.1.3 Narrow convergence

Choosing in Definition 5.1.2 a different class of test functions leads to another notion
of convergence onRf (X).
Definition 5.1.3. Let X be a locally compact Hausdorff space. A sequence {μk} ⊆ Rf (X)
converges narrowly to μ ∈ Rf (X) (written μk n⇀ μ) if

lim
k→∞
∫
X

g dμk = ∫
X

g dμ for all g ∈ Cb(X). (5.3)

The narrow topology on Rf (X), denoted 𝒯n, is the weakest topology that makes all
maps μ → ∫X g dμ, g ∈ Cb(X), continuous.

The narrow topology is called “weak topology” by some authors (e. g., see [45]).
A basis for 𝒯n is the family of subsets Bg1 ,...,gn ;ϵ(μ0) ⊆ Rf (X) defined by (5.2), yet with
g1, . . . , gn ∈ Cb(X).
Remark 5.1.2. The vague convergence of a sequence {μk} ⊆ Rf (X) to μ ∈ Rf (X) is
defined by

lim
k→∞
∫
X

g dμk = ∫
X

g dμ for all g ∈ Cc(X)
(e. g., see [42]). Clearly, inRf (X), strong convergence⇒ narrow convergence⇒weak∗

convergence⇒ vague convergence.
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Remark 5.1.3. From the lower semicontinuity of the norm it follows that if μk
∗⇀ μ (in

particular, if μk
n⇀ μ), then|μ|(X) = ‖μ‖Rf (X) ≤ lim inf

k→∞
‖μk‖Rf (X) = lim inf

k→∞
|μk |(X). (5.4)

In particular, μ(X) ≤ lim infk→∞ μk(X) if {μk} ⊆ R+f (X). Specifically, if μk n⇀ μ, then
choosing g = 1 in (5.3) gives limk→∞ μk(X) = μ(X), and hence “no mass is lost”. This
need not be the case if μk

∗⇀ μ: if X = ℝ and μk = δk (k ∈ ℕ), then μk
∗⇀ 0 and

μk(ℝ) = 1 for all k. Hence in this case, inequality (5.4) is strict. Similar phenomena
were encountered for sequences of functions (see Example 2.8.1(i)).

Remark 5.1.4. Let X be a locally compact Hausdorff space, and let μ ∈ R+f (X). Let{hk} ⊆ L1(X,ℬ(X), μ), and for any k ∈ ℕ, set
νk(E) := ∫

E

hk dμ (E ∈ ℬ(X)). (5.5)

Clearly, {νk} ⊆ Rf (X), and νk ≪ μ for all k ∈ ℕ. There are obvious connections between
the convergence of {hk} in L1(X,ℬ(X), μ) and that of {νk} inRf (X):
– if hk → h strongly in L1(X) and ν(E) := ∫E h dμ (E ∈ ℬ(X)), then ‖νk − ν‖Rf (X) =|νk − ν|(X) = ∫X |hk − h| dμ→ 0, and hence νk → ν strongly inRf (X);
– if hk → h weakly in L1(X), then, in particular,

lim
k→∞
∫
X

ghk dμ = ∫
X

gh dμ for all g ∈ Cb(X),
and thus

lim
k→∞
∫
X

g dνk = ∫
X

g dν for all g ∈ Cb(X)
with ν as above. Hence νk

n⇀ ν.

More generally, even if the sequence {hk} does not converge in L1(X), the sequence{νk} defined by (5.5) can converge (weakly∗ or narrowly) to some ν ∈ Rf (X) (see Ex-
ample 5.1.1(i)). By abuse of notation, in such cases, we occasionally write hk

∗⇀ ν or
hk

n⇀ ν.

Having Remark 5.1.4 in mind, let us point out some phenomena related to conver-
gence inRf (X).
Example 5.1.1. (i) Every ν ∈ R+f (ℝ) is the weak∗ limit of a sequence {hk} ⊆ C∞c (ℝ)
bounded in L1(ℝ) ≡ L1(ℝ,ℬ, λ) (more exactly, of the sequence of measures νk with
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density hk defined in (5.5)). In fact, let ρ1/k be a mollifier, ρ1/k(x) := kρ(kx) with ρ ∈
C∞c (ℝ), ρ ≥ 0, ∫ℝ ρ dλ = 1 (k ∈ ℕ). For any k ∈ ℕ, consider the convolution ν ∗ ρ1/k ∈
C∞c (ℝ),∫ℝ g(x)(ν ∗ ρ1/k)(x) dλ(x) := ∫ℝ dν(x)∫ℝ ρ1/k(y − x)(x)g(y) dλ(y) (g ∈ C∞c (ℝ))
(see Definition 3.1.4(ii) and Remark 3.1.1). Set hk := ν ∗ ρ1/k and νk(E) := ∫E hk dλ for
E ∈ ℬ. By Proposition 3.1.1(i)

lim
k→∞
∫ℝ g dνk = lim

k→∞
∫ℝ ghk dλ = ∫ℝ g dν for all g ∈ C∞c (ℝ).

It is easily seen that ‖hk‖L1(ℝ) ≤ ‖ν‖ = ν(X) <∞, and hence by standard arguments the
above equality holds for any g ∈ C0(ℝ).

(ii) In particular, the above considerations apply if ν is an atomic measure, e. g.,
if ν = δ0. Hence a sequence {νk} ⊆ R+f (ℝ), νk ≪ λ for all k ∈ ℕ, can converge weakly∗
to a measure ν ⊥ λ. Also, in this case, we say that mass concentration occurs (see
Example 2.8.1). Conversely, consider themeasure space (I ,ℬ∩I , λ|ℬ∩I ), where I ≡ (0, 1).
For any fixed h ∈ Cb(I), set ν(E) := ∫E h dλ (E ∈ ℬ ∩ I) and consider the sequence of
atomic measures νk := 1

k ∑kj=1 h( jk )δ j
k
(k ∈ ℕ). By elementary results we have

lim
k→∞
∫
I

g dνk = lim
k→∞

1
k

k∑
j=1

g( j
k
)h( j

k
) = ∫

I

gh dλ = ∫
I

g dν for all g ∈ Cb(I).
Hence in this case, νk ⊥ λ for all k ∈ ℕ, ν ≪ λ, and νk

n⇀ ν.

Henceforth we will mostly deal with sequences of finite (positive) Radon mea-
sures. Results for sequences of finite signed Radon measures can be easily obtained
from those proven below (see Remark 2.7.2).

The narrow convergence can be characterized as follows.

Theorem 5.1.2 (Portmanteau theorem). Let X be a locally compact Hausdorff space
with countable basis, and let {μk} ⊆ R+f (X), μ ∈ R+f (X). Then the following statements
are equivalent:
(i) μk

n⇀ μ;
(ii) for every uniformly continuous g ∈ Cb(X),

lim
k→∞
∫
X

g dμk = ∫
X

g dμ; (5.6)
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(iii) μk(X)→ μ(X), and for any closed subset C ⊆ X,
lim sup
k→∞

μk(C) ≤ μ(C); (5.7)

(iv) μk(X)→ μ(X), and for any open subset A ⊆ X,
lim inf
k→∞

μk(A) ≥ μ(A); (5.8)

(v) for all E ∈ ℬ(X) such that μ(𝜕E) = 0,
lim
k→∞

μk(E) = μ(E). (5.9)

Proof. (i)⇒(ii). Obvious from Definition 5.1.3.
(ii)⇒(iii). Choosing g = 1 shows that μk(X) → μ(X). Let X be endowed with met-

ricd compatiblewith the given topology. Inequality (5.7) is obvious ifC = 0. Otherwise,
for any n ∈ ℕ, setC1/n := {x ∈ X | d(x,C) < 1/n}. Clearly,C1/n is open, andC = ⋂∞n=1 C1/n,
and thus μ(C) = limn→∞ μ(C1/n). Set fn : X → [0,∞), fn(x) := max{1 − nd(x,C),0}(n ∈ ℕ). Plainly, for any n ∈ ℕ, the function fn is uniformly continuous in X, and
χC ≤ fn ≤ χC1/n . Then by (5.6) for any fixed n ∈ ℕ, we get

lim sup
k→∞

μk(C) ≤ lim
k→∞
∫
X

fn dμk = ∫
X

fn dμ ≤ μ(C1/n).
Letting n→∞ in this inequality, we get (5.7), and thus the claim follows.

(iii)⇔(iv). By (5.7), for any open subset A ⊆ X,
lim inf
k→∞

μk(A) = lim
k→∞

μk(X) − lim sup
k→∞

μk(Ac) ≥ μ(X) − μ(Ac) = μ(A),
and thus (5.8) follows. Inverting the argument proves the claim.

(iv)⇒(v). By assumptionwe have μ(𝜕E) = μ(E)−μ(E∘) = 0, and thus μ(E) = μ(E∘) =
μ(E). Then by (5.7)–(5.8)

μ(E) = μ(E∘) ≤ lim inf
k→∞

μk(E∘) ≤ lim inf
k→∞

μk(E)≤ lim sup
k→∞

μk(E) ≤ lim sup
k→∞

μk(E) ≤ μ(E) = μ(E).
Hence (5.9) follows.

(v)⇒(i). For any g ∈ Cb(X) and t > 0, set Et := {g > t}. Since g is continuous, for
λ-a. e. t ∈ (0,∞), we have μ(𝜕Et) ≤ μ({g = t}) = 0, and thus by (5.9)

lim
k→∞

μk({g > t}) = μ({g > t}) for λ-a. e. t ∈ (0,∞). (5.10)
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Then by equalities (2.19) (with α = 1), (5.10), and the dominated convergence theorem
we get that for any g ∈ Cb(X)

lim
k→∞
∫
X

g dμk = lim
k→∞
∫
[0,∞)

μk({g > t}) dλ(t) = ∫
[0,∞)

μ({g > t}) dλ(t) = ∫
X

g dμ.
This completes the proof.

Remark 5.1.5. As already mentioned in Remark 5.1.3, Theorem 5.1.2 shows that if{μk} ⊆ R+f (X), μ ∈ R+f (X), and μk n⇀ μ, then ‖μk‖Rf (X) → ‖μ‖Rf (X).

5.1.4 Prokhorov distance

The results of this subsection are formulated for a metric space (X, d). However, by
PropositionA.2 they also hold ifX is a locally compact Hausdorff spacewith countable
basis and d is a metric compatible with its topology.

Let (X, d) be a metric space. For any E ⊆ X and r > 0, set Er := {x ∈ X | d(x,E) < r}.
For any μ1, μ2 ∈ R+f (X), define

dP(μ1, μ2) := inf{r > 0 | μ1(E) ≤ μ2(Er) + r, μ2(E) ≤ μ1(Er) + r ∀E ∈ ℬ(X)}. (5.11)

Observe that every r ≥ max{‖μ1‖Rf (X), ‖μ2‖Rf (X)} is contained in the set in the right-
hand side, and thus dP(μ1, μ2) <∞.
Proposition 5.1.3. (R+f (X), dP) is a metric space.
Proof. Let us prove that the map (μ1, μ2) → dP(μ1, μ2) is a metric on R+f (X). Clearly,
dP(μ1, μ2) = dP(μ2, μ1). Moreover:
(i) for all E ∈ ℬ(X), we have E ⊆ Er, and thus μ(E) ≤ μ(Er) for all μ ∈ R+f (X) and r > 0.

Therefore

dP(μ, μ) := inf{r > 0 | μ(E) ≤ μ(Er) + r ∀E ∈ ℬ(X)} = 0;
(ii) if dP(μ1, μ2) = 0, then there is a sequence rn → 0+ such that μ1(E) ≤ μ2(Ern ) + rn,

μ2(E) ≤ μ1(Ern ) + rn for all n, and E ∈ ℬ(X). Since ⋂∞n=1 Ern = E, it follows that
μ1(E) ≤ μ2(E) and μ2(E) ≤ μ1(E) for all E ∈ ℬ(X), and hence μ1(C) = μ2(C) for
all closed sets C ∈ ℬ(X). In particular, μ1(X) = μ2(X), whence μ1(A) = μ2(A) for
any open set A ∈ ℬ(X). Then by the regularity of μ1, μ2 (see Lemma 1.3.2(i)) we get
μ1 = μ2;

(iii) let μ1, μ2, μ3 ∈ R+f (X) and r, s > 0 be such that dP(μ1, μ2) < r and dP(μ2, μ3) < s.
Then for all E ∈ ℬ(X), we have

μ1(E) ≤ μ2(Er) + r ≤ μ3(Er+s) + r + s, μ3(E) ≤ μ2(Es) + s ≤ μ1(Er+s) + r + s,
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whence dP(μ1, μ3) ≤ r + s. Taking the infimum over r, s, we obtain that

dP(μ1, μ3) ≤ dP(μ1, μ2) + dP(μ2, μ3),
that is, the triangle inequality. Hence the result follows.

Definition 5.1.4. The metric dP onR+f (X) defined in (5.11) is called the Prokhorov met-
ric.

Let us now prove the following result.

Lemma 5.1.4. Let (X, d) be a metric space, and let μ1, μ2 ∈ R+f (X) satisfy
μ1(E) ≤ μ2(Er) + r for all E ∈ ℬ(X) (r > 0). (5.12)

Then for all F ∈ ℬ(X),
μ2(F) ≤ μ1(Fr) + r + ‖μ2‖Rf (X) − ‖μ1‖Rf (X). (5.13)

Remark 5.1.6. In view of Lemma 5.1.4, if (5.12) is satisfied and ‖μ1‖Rf (X) = ‖μ2‖Rf (X),
then

dP(μ1, μ2) = inf{r > 0 | μ1(E) ≤ μ2(Er) + r ∀E ∈ ℬ(X)}= inf{r > 0 | μ2(E) ≤ μ1(Er) + r ∀E ∈ ℬ(X)}. (5.14)

Proof of Lemma 5.1.4. Choosing E = (Fr)c in (5.12), we plainly get
μ1(Fr) = ‖μ1‖Rf (X) − μ1((Fr)c) = ‖μ1‖Rf (X) − μ1(E) ≥ ‖μ1‖Rf (X) − μ2(Er) − r= ‖μ1‖Rf (X) − ‖μ2‖Rf (X) + μ2((Er)c) − r ≥ ‖μ1‖Rf (X) − ‖μ2‖Rf (X) + μ2(F) − r.

(observe that E ⊆ (Fr)c ⇔ F ⊆ (Er)c).
Example 5.1.2. Let (X, d) be a metric space. Then for all x1, x2 ∈ X,

dP(δx1 , δx2 ) = min{1, d(x1, x2)}. (5.15)

To prove (5.15), observe that by (5.14)

dP(δx1 , δx2 ) = inf{r > 0 | χE(x1) ≤ χEr (x2) + r ∀E ∈ ℬ(X)}.
Since χE(x1) ≤ 1, we have dP(δx1 , δx2 ) ≤ 1. Moreover, if r > d(x1, x2), then χE(x1) ≤
χEr (x2) + r for all E ∈ ℬ(X): indeed, if x1 ∈ E (otherwise, the inequality is trivial) and
r > d(x1, x2), then x2 ∈ Er, and thus χEr (x2) = 1, and the inequality is satisfied. To sum
up, we have dP(δx1 , δx2 ) ≤ min{1, d(x1, x2)}.
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To prove the reverse inequality, choose E = {x1}, and thus χE(x1) = 1. If d(x1, x2) ≥ 1
and r ∈ (0, 1), then x2 ∈ (Er)c, and thus χEr (x2) = 0. It follows that

χE(x1) = 1 > r = χEr (x2) + r, (5.16)

and hence dP(δx1 , δx2 ) ≥ 1 = min{1, d(x1, x2)}. Similarly, if d(x1, x2) < 1 and r ∈(0, d(x1, x2)], then x2 ∈ (Er)c, and thus inequality (5.16) againholds.HencedP(δx1 , δx2 ) ≥
d(x1, x2) = min{1, d(x1, x2)}. Hence equality (5.15) follows.
Remark 5.1.7. By Example 5.1.2 the map from X to R+f (X), x → δx, is an isometric
injection of (X,min{1, d}) into (R+f (X), dP). Observe thatmin{1, d} is ametric equivalent
to d on X.

Now we can prove that the narrow topology onR+f (X) is metrizable.

Proposition 5.1.5. Let (X, d) be a separable metric space. Then the narrow topology on
R+f (X) and the metric topology associated with the Prokhorov metric coincide.
Remark 5.1.8. In view of Proposition 5.1.5, if (X, d) is a separable metric space, then:
(i) there holds μk

n⇀ μ if and only if dP(μk , μ)→ 0;
(ii) a subset M ⊆ R+f (X) is relatively sequentially compact in the narrow topology if

and only if it is relatively compact in (R+f (X), dP).
To prove Proposition 5.1.5, we first establish the following lemma.

Lemma 5.1.6. Let (X, d) be a metric space, and let {μk} ⊆ R+f (X), μ ∈ R+f (X) satisfy
dP(μk , μ)→ 0. Then μk

n⇀ μ.

Proof. Let {ϵk} ⊆ (0,∞) satisfy ϵk → 0+ as k →∞ and dP(μk , μ) < ϵk for all k ∈ ℕ. For
any closed subset C ⊆ X, set Ck ≡ Cϵk := {x ∈ X | d(x,C) < ϵk}, and thus C = ⋂∞k=1 Ck
and μ(C) = limk→∞ μ(Ck). Since dP(μk , μ) < ϵk, by definition (5.11) for any k ∈ ℕ, we
have

μk(C) ≤ μ(Ck) + ϵk , μ(C) ≤ μk(Ck) + ϵk . (5.17)

Since limk→∞ μ(Ck) = μ(C) and limk→∞ ϵk = 0, letting k → ∞ in the first inequal-
ity in (5.17), we obtain (5.7). On the other hand, choosing C = X both in the second
inequality in (5.17) and in (5.7) gives

μ(X) ≤ lim inf
k→∞

μk(X) ≤ lim sup
k→∞

μk(X) ≤ μ(X),
and thus limk→∞ μk(X) = μ(X). Hence by Theorem 5.1.2 (see claims (i) and (iii)) the
result follows.

Proof of Proposition 5.1.5. In view of Lemma 5.1.6, we only must prove that μk
n⇀ μ

implies dP(μk , μ) → 0. To this purpose, let D ≡ {xk} be a countable dense subset of X.
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For any fixed ϵ > 0, set E1 := Bϵ/2(x1) and Em+1 := Bϵ/2(xm+1)\(⋃mk=1 Ek) (m ∈ ℕ). Clearly,
diam(Em) ≤ ϵ for allm ∈ ℕ, El ∩ Em = 0 for all l,m ∈ ℕ, l ̸= m, and⋃∞m=1 Em = X.

Since μ(X) = ∑∞m=1 μ(Em) <∞, there exists m̄ ∈ ℕ such that
μ( ∞⋃

m=m̄+1
Em) = ∞∑

m=m̄+1
μ(Em) < ϵ. (5.18)

Consider the finite family

S := {U = Em1
∪ Em2
∪ ⋅ ⋅ ⋅ ∪ Emp

| 1 ≤ m1 < m2 < ⋅ ⋅ ⋅mp ≤ m̄} ⊆ 𝒫(X),
and for any U ∈ S, set Uϵ := {x ∈ X | d(x,U) < ϵ}. Since Uϵ is open and by assumption
μk

n⇀ μ, by the portmanteau theorem lim infk→∞ μk(Uϵ) ≥ μ(Uϵ). Therefore, since S is
finite, there exists k̄ ∈ ℕ such that

μk(Uϵ) ≥ μ(Uϵ) − ϵ for all k ≥ k̄ and U ∈ S. (5.19)

Now observe that for all F ∈ ℬ(X),
F = [F ∩ ( m̄⋃

m=1
Em)] ∪ [F ∩ ( ∞⋃

m=m̄+1
Em)] ⊆ [F ∩ Uϵ] ∪ [F ∩ ( ∞⋃

m=m̄+1
Em)] (5.20)

for someU = Em1
∪Em2
∪ ⋅ ⋅ ⋅∪Emp

∈ S such that Emj
∩F ̸= 0 for all j = m1, . . . ,mp (observe

that this implies Uϵ ⊆ F2ϵ, since diam(Em) ≤ ϵ for any m ∈ ℕ). From (5.18)–(5.20) we
get

μ(F) ≤ μ(Uϵ) + ϵ ≤ μk(Uϵ) + 2ϵ ≤ μk(F2ϵ) + 2ϵ for all k ≥ k̄. (5.21)

By the arbitrariness of F ∈ ℬ(X) and Lemma 5.1.4, from (5.21) we get

μk(G) ≤ μ(G2ϵ) + 2ϵ + ‖μk‖Rf (X) − ‖μ‖Rf (X) ≤ μ(G3ϵ) + 3ϵ (5.22)

for all G ∈ ℬ(X) and all k ∈ ℕ large enough, since limk→∞ ‖μk‖Rf (X) = ‖μ‖Rf (X) (see
Remark 5.1.5).

On the other hand, by (5.21) we also have that for all k ∈ ℕ large enough and any
G ∈ ℬ(X),

μ(G) ≤ μk(G3ϵ) + 3ϵ. (5.23)

In view of definition (5.11), from (5.22)–(5.23) we obtain that for all ϵ > 0 and k ∈ ℕ
large enough, dp(μk , μ) < ϵ. Hence the conclusion follows.
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5.1.5 Narrow convergence and tightness

It is interesting to characterize relatively sequentially compact subsets of Rf (X), in
both weak∗ and narrow topologies. Concerning the weak∗ convergence, we have the
following:

Theorem 5.1.7. Let X be a locally compact Hausdorff space with countable basis, and
let M ⊆ Rf (X). Then the following statements are equivalent:
(i) M is relatively sequentially compact in the weak∗ topology;
(ii) M is bounded.

Proof. (i)⇒(ii). By Theorem 2.7.1 the Banach space Rf (X) is the dual space of C0(X).
Were M unbounded, there would exist {μk} ⊆ M such that ‖μk‖Rf (X) → ∞. On the
other hand, by assumption every {μk} ⊆ M contains a subsequence that converges
weakly∗ in Rf (X) and thus is bounded by the uniform boundedness principle. The
contradiction proves the claim.

(ii)⇒(i) follows from the Banach–Alaoglu theorem.

Concerning the narrow convergence, we begin by the following:

Definition 5.1.5. Let X be a locally compact Hausdorff space. A subset M ⊆ Rf (X) is
called tight if for any ϵ > 0, there exists a compact subset K ⊆ X such that |μ|(Kc) < ϵ
for all μ ∈M .

Example 5.1.3. Let X = ℝ and μ = δx̄ (x̄ ∈ ℝ). Thus μ(E) = χE(x̄) for all E ∈ ℬ(ℝ).
Clearly, for any F ⊆ ℝ, the set M = {δx̄ | x̄ ∈ F} is tight if and only if F is bounded.
Observe that if F is bounded, then the set {αδx̄ | x̄ ∈ F, α > 0} is tight but unbounded.

Let us prove for future reference the following result.

Proposition 5.1.8. Let X be a locally compact Hausdorff space with countable basis,
and let M ⊆ R+f (X) be tight. Then the narrow topology on M and the weak∗ topology
on M coincide, that is, 𝒯n ∩M = 𝒯w∗ ∩M .

Proof. It suffices to prove that for any sequence {μk} ⊆ M such that μk
∗⇀ μ, we have

μk
n⇀ μ. For fixed ϵ > 0, by Definition 5.1.5 there exists a compact subset K ⊆ X such

that μk(Kc) < ϵ for all k ∈ ℕ. On the other hand, by Proposition A.9 for any open set
A ⊆ X, A ⊇ K, there exists f ∈ Cc(X) such that f (X) ⊆ [0, 1], f |K = 1, and supp f ⊆ A.

Fix g ∈ Cb(X). Then fg ∈ C0(X), and∫
X

g dμk − ∫
X

g dμ
≤ ∫

K

g dμk − ∫
K

g dμ
 + ∫

Kc

g dμk − ∫
Kc

g dμ
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≤ ∫
X

fg dμk − ∫
X

fg dμ
 + ∫

X

[χK − f ]g dμk  + ∫
X

[χK − f ]g dμ + ∫
Kc

g dμk
 + ∫

Kc

g dμ
=: I1 + I2 + I3 + I4 + I5.

Since by assumption μk
∗⇀ μ, there exists k̄ ∈ ℕ such that for all k > k̄,

I1 = ∫
X

fg dμk − ∫
X

fg dμ
 < ϵ.

We also have that for all k ∈ ℕ,
I2 + I4 = ∫

X

[χK − f ]g dμk  + ∫
Kc

g dμk
 ≤ 2‖g‖∞ μk(Kc) < 2‖g‖∞ ϵ.

Moreover,

I3 + I5 = ∫
X

[χK − f ]g dμ + ∫
Kc

g dμ
 ≤ 2‖g‖∞ μ(Kc) ≤ 2‖g‖∞ ϵ,

since μ(Kc) ≤ lim infk→∞ μk(Kc) by the lower semicontinuity of the norm (see Re-
mark 5.1.3).

To summarize, we have proved that for any fixed g ∈ Cb(X) and for any ϵ > 0, there
exists k̄ ∈ ℕ such that for all k > k̄,∫

X

g dμk − ∫
X

g dμ
 < (1 + 4‖g‖∞)ϵ.

Hence the result follows.

The following result, which is the counterpart of Theorem 5.1.7 for weak∗ conver-
gence, shows that narrow convergence and tightness are deeply intertwined.

Theorem 5.1.9 (Prokhorov). Let X be a locally compact Hausdorff space with countable
basis, and let M ⊆ R+f (X). Then the following statements are equivalent:
(i) M is relatively sequentially compact in the narrow topology;
(ii) M is bounded and tight.

Remark 5.1.9. More generally, Theorem 5.1.9 holds if X is a Polish space (see Subsec-
tion A6, Appendix A). The same holds for Proposition 5.1.10.

The proof of Theorem 5.1.9 will be given in two steps, which correspond to Propo-
sitions 5.1.10–5.1.11.
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Proposition 5.1.10 (Ulam). Let X be a locally compact Hausdorff space with countable
basis, and let M ⊆ R+f (X) be relatively sequentially compact in the narrow topology.
Then M is bounded and tight.

Proof. By assumption, for any sequence {μk} ⊆ M , there exist {μkl } ⊆ {μk} and μ ∈
Rf (X) such that μkl

n⇀ μ, and thus ‖μkl‖Rf (X) → ‖μ‖Rf (X) (see Remark 5.1.5). Plainly,
this implies that M is bounded.

To prove thatM is tight, observe preliminarily that X is a Polish space, and hence
there exists a compatible metric d such that (X, d) is complete. Fix ϵ > 0, and let D ≡{xk} be a countable dense subset of X. For any fixed p ∈ ℕ, set En,p := ⋃nk=1 B1/p(xk)
(where B1/p(xk) := {x ∈ X | d(xk , x) < 1/p}; n ∈ ℕ). Clearly, every set En,p is open, and
En,p ⊆ En+1,p for all n ∈ ℕ,⋃∞n=1 En,p = X. We will prove the following:

Claim. Let {An} ⊆ 𝒫(X) be an increasing sequence of open subsets such that⋃∞n=1 An =
X. Then for every ϵ > 0, there exists n̄ ∈ ℕ such that μ(Acn̄) < ϵ for all μ ∈M .

By the claim, for any p ∈ ℕ, there exists np ∈ ℕ such that
μ((Enp ,p)c) < ϵ

2p
for all μ ∈M ,

and thus, in particular,

μ((Enp ,p)c) < ϵ
2p

for all μ ∈M . (5.24)

Set

K := ∞⋂
p=1

Enp ,p ⊆ ∞⋂
p=1

np⋃
k=1

B1/p(xk).
By (5.24) μ(Kc) < ϵ for all μ ∈M , and hence the result will follow if we prove that K is
compact. To this purpose, observe that for every p ∈ ℕ, the set K is contained in the
finite union ⋃npk=1 B1/p(xk) with diamB1/p(xk) = 2/p (p ∈ ℕ). By a diagonal argument
it follows that every sequence {x′j } ⊆ K contains a Cauchy subsequence {x′jl } ⊆ {x′j }.
Then since K is closed and X is complete, there exists x′ ∈ K such that d(x′jl , x′) → 0
as l → ∞. Therefore K is sequentially compact and thus compact. Hence the result
follows.

It remains to prove the claim. By contradiction let there exist an increasing se-
quence {An} of open subsets with ⋃∞n=1 An = X and ϵ > 0 with the following property:
for all n ∈ ℕ, there exists μn ∈ M such that μn(Acn) ≥ ϵ. Since M is relatively sequen-
tially compact in the narrow topology, there exist {μnk } ⊆ {μn} and μ ∈ Rf (X) such that
μnk

n⇀ μ. Then by Theorem 5.1.2 and the monotonicity of {An}, for every fixed n ∈ ℕ,
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we have

μ(Acn) ≥ lim sup
k→∞

μnk (Acn) ≥ lim sup
k→∞

μnk (Acnk ) ≥ ϵ.
However, since μ is finite, we get limn→∞ μ(Acn) = 0, a contradiction. Hence the claim
follows, which completes the proof.

Proposition 5.1.11. Let X be a locally compact Hausdorff space with countable basis
space, and let M ⊆ R+f (X) be bounded and tight. Then M is relatively sequentially
compact in the narrow topology.

Proof. By assumption we have

sup
μ∈M
‖μ‖Rf (X) = supμ∈M

μ(X) =: C <∞. (5.25)

Recall that by Proposition A.2 the space X is σ-compact. Let us first prove the result
assuming that it is compact. Let D ≡ {fk} be a countable dense subset of Cb(X) (which
is separable since X is compact; see Proposition A.3). Then

sup
μ∈M

∫
X

f1 dμ
 ≤ ‖f1‖∞ sup

μ∈M
‖μ‖Rf (X) = ‖f1‖∞C <∞,

and thus the set {∫X f1 dμ | μ ∈ M } ⊆ ℝ is bounded. Then there exist a sequence{μ1j } ⊆M and a1 ∈ ℝ such that
lim
j→∞
∫
X

f1 dμ
1
j = a1. (5.26)

Since

sup
j∈ℕ ∫

X

f2 dμ
1
j

 ≤ ‖f2‖∞ supj∈ℕ μ1j  ≤ ‖f2‖∞C <∞,
the set {∫X f2 dμ1j | j ∈ ℕ} ⊆ ℝ is also bounded. Then there exist a subsequence {μ2j } ⊆{μ1j } and a2 ∈ ℝ such that

lim
j→∞
∫
X

f2 dμ
2
j = a2.

Clearly, by (5.26) we also have limj→∞ ∫X f1 dμ2j = a1. Iterating the argument, for every
k ∈ ℕ, k ≥ 3, there exist a subsequence {μkj } ⊆ {μk−1j } and ak ∈ ℝ such that

lim
j→∞
∫
X

fl dμ
k
j = al for all l = 1, . . . , k.
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By a diagonal argument it follows that the sequence {μj} ⊆M , where μj := μjj (j ∈ ℕ),
satisfies

lim
j→∞
∫
X

fk dμj = ak for all k ∈ ℕ. (5.27)

Now consider the map F0 : D→ ℝ, F0(fk) := ak (k ∈ ℕ). By (5.27) F0 is linear, positive,
and continuous, sinceF0(fk) = |ak | ≤ limj→∞

∫
X

fk dμj
 ≤ ‖fk‖∞C for all k ∈ ℕ.

Since D is dense in Cb(X), F0 can be uniquely extended to a functional F ∈ (Cb(X))∗,
which is positive and satisfies ‖F‖ ≤ C. We will prove the following:

Claim. For any ϵ > 0, there exists a compact subset K ⊆ X such that ⟨F, f ⟩ < ϵ for all
f ∈ Cb(X) such that f (X) ⊆ [0, 1] and f |K = 0.

Relying on the claim, we can complete the proof when X is compact. In fact, by
Proposition 2.6.6 there exists a unique μ ∈ R+f (X) such that⟨F, f ⟩ = ∫

X

f dμ for all f ∈ Cb(X) (5.28)

(see (2.49)); moreover, by Theorem 2.6.1(ii) ‖μ‖Rf (X) = ‖F‖ ≤ C. Let g ∈ Cb(X), and let{fl} ⊆ D be a sequence such that liml→∞ ‖fl − g‖∞ = 0. Fix ϵ > 0, and let l0 ∈ ℕ be so
large that ‖fl0 − g‖∞ < ϵ

4C . By (5.27)–(5.28) we have⟨F, fl0⟩ = F0(fl0 ) = al0 = ∫
X

fl0 dμ = limj→∞
∫
X

fl0 dμj,
and hence there exists j0 ∈ ℕ such that∫

X

fl0 dμj − ∫
X

fl0 dμ
 < ϵ2 for all j > j0.

Then for all j > j0,∫
X

g dμj − ∫
X

g dμ
≤ ∫

X

(g − fl0 ) dμj + ∫
X

(g − fl0 ) dμ + ∫
X

fl0 dμj − ∫
X

fl0 dμ
≤ ‖fl0 − g‖∞(supj∈ℕ ‖μj‖ + ‖μ‖Rf (X)) + ϵ2 < 2C( ϵ4C) + ϵ2 = ϵ.
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To sum up, we proved that there exist a sequence {μj} ⊆ M and μ ∈ R+f (X) such that
μj

n⇀ μ, and hence the result follows.
Let us now prove the above claim. Since by assumption M is tight, for any ϵ > 0,

there exists a compact subset K ⊆ X such that supμ∈M μ(Kc) < ϵ
6 . Let f ∈ Cb(X) satisfy

f (X) ⊆ [0, 1] and f |K = 0. Since D is dense in Cb(X), there exists a sequence {fl} ⊆ D,
fl ≥ 0 for all l ∈ ℕ, such that liml→∞ ‖fl − f ‖∞ = 0; thus, in particular,‖fl‖∞ < 1 + ϵ6 , ‖fl|K‖∞ < ϵ

6C
for all l ∈ ℕ sufficiently large.

Then for any l ∈ ℕ sufficiently large,⟨F, fl⟩ = al = limj→∞
∫
X

fl dμj ≤ lim sup
j→∞
∫
K

fl dμj + lim sup
j→∞
∫
Kc

fl dμj

≤ ϵ
6C

sup
j∈ℕ μj(X) + (1 + ϵ6) supj∈ℕ μj(Kc) < ϵ

6
+ (1 + ϵ

6
) ϵ
6
< ϵ
2
.

Since ‖fl − f ‖∞ → 0 and F is continuous, from this inequality we get⟨F, f ⟩ = lim
l→∞
⟨F, fl⟩ ≤ ϵ2 < ϵ,

and thus the claim follows. This completes the proof when X is compact.
In the general case, let {Kl} be an increasing sequence of compact subsets of X

such that⋃∞l=1 Kl = X. By (5.25) we have
sup
μ∈M
‖μ‖Rf (Kl) ≤ supμ∈M

‖μ‖Rf (X) = C for every l ∈ ℕ.
By the above considerations, for every l ∈ ℕ, there exist a sequence {μlj} ⊆ M and
μl ∈ R+f (X) such that μlj n⇀ μl as j → ∞. Then by a diagonal argument the conclusion
follows.

In view of Theorem 5.1.9, it is useful to have criteria for tightness. Let us state the
following definition.

Definition 5.1.6. Let X be a locally compact Hausdorff space. A function φ : X →(−∞,∞] is called inf-compact if the set {φ ≤ r} := {x ∈ X | φ(x) ≤ r} is compact
for every r ∈ ℝ.
Example 5.1.4. If X = ℝ, then every continuous function φ : ℝ → [0,∞) such that
φ(x)→∞ as |x|→∞ is inf-compact. Indeed, for every r ∈ ℝ, the set {φ ≤ r} is closed
and bounded, and thus compact.

Definition 5.1.6 leads to the following characterization of tight subsets ofR+f (X).
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Proposition 5.1.12. Let X be a locally compact Hausdorff space with countable basis.
Then the following statements are equivalent:
(i) M ⊆ R+f (X) is tight;
(ii) there exists an inf-compact φ : X → [0,∞) such that

sup
μ∈M
∫
X

φdμ <∞. (5.29)

Proof. (i)⇒(ii). By PropositionA.2 there exists an increasing sequence {Kn} of compact
subsets ofX such thatμ(Kc

n) < 1
2n for allμ ∈M . Setφ := ∑∞n=1 χKc

n
. Then for everyμ ∈M ,

sup
μ∈M
∫
X

φdμ ≤ ∞∑
n=1

1
2n
<∞,

and thus inequality (5.29) is satisfied.
To show that φ is inf-compact, let x ∈ X be fixed. For every n ∈ ℕ, we have either

(a) x ∈ Kn or (b) x ∈ Kc
n. Since K

c
n ⊇ Kc

n+1 for each n,
– in case (a), φ(x) ≤ n − 1;
– in case (b), φ(x) = n if x ∈ Kc

n \ Kc
n+1 = Kc

n ∩ Kn+1 and φ(x) ≥ n + 1 if x ∈ Kc
n+1.

It follows that {φ ≤ n} = Kn+1, whence plainly {φ ≤ r} = K[r]+1 for all r > 0, [r] denoting
the largest integer n < r. Since K[r]+1 is compact, the claim follows.

(ii)⇒(i). By assumption there exists φ : X → [0,∞) such that the set Kr ≡ {φ ≤ r}
is compact for every r > 0 and (5.29) is satisfied. Then by the Chebyshev inequality,
for every μ ∈M ,

rμ(Kc
r ) < ∫

Kc
r

φdμ ≤ ∫
X

φdμ ≤ sup
μ∈M
∫
X

φdμ,
whence by the arbitrariness of r the conclusion follows.

Remark 5.1.10. In view of the above proof, if X = ℝ, then we can choose Kn = Bn(0),
the closed ball with center 0 and radius n ∈ ℕ. In this case, φ can be rewritten as
φ(x) := ∑∞n=0 nχ(n,n+1](|x|) (x ∈ X); observe that it is radial, nondecreasing, and diverg-
ing at infinity.

5.2 Parameterized measures and disintegration

Let X and Y be locally compact Hausdorff spaces, and let ℬ(X) and ℬ(Y) be the associ-
ated Borel σ-algebras. Recall that by Theorem 2.7.1 the Banach spaceRf (X) is the dual
space of C0(X). Then we can state the following definition.
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Definition 5.2.1. Let X and Y be locally compact Hausdorff spaces. Aweakly∗measur-
able map from X toRf (Y) is called a parameterized measure on Y .

For parameterizedmeasures onY , wewill use the notation {νx}x∈X with νx ∈ Rf (Y)
for every x ∈ X.
Remark 5.2.1. Let us point out two alternative formulations of Definition 5.2.1 (e. g.,
see [5]). Firstly, by Definition 4.1.5(ii) and Theorem 2.7.1 a family {νx}x∈X ⊆ Rf (Y) is
a parameterized measure on Y if and only if

x → ⟨νx , g⟩ = ∫
Y

g(y) dνx(y) is ℬ(X)-measurable for every g ∈ C0(Y). (5.30)

Secondly, condition (5.30) can be rephrased as follows:

x → νx(F) is ℬ(X)-measurable for every F ∈ ℬ(Y). (5.31)

In fact, by (5.31) the map x → ∫Y χF(y) dνx(y) is ℬ(X)-measurable for every F ∈
ℬ(Y), and thus the same holds with χF replaced by any simple function s ∈ 𝒮(Y). On
the other hand, for every g ∈ C0(Y), there exists a sequence {sn} ⊆ 𝒮(Y) such that‖sn − g‖∞ → 0 as n→∞ (see Theorem 2.1.7(ii)). Hence

lim
n→∞
∫
Y

[sn(y) − g(y)]dνx(y) = 0,
for all x ∈ X, whence by Corollary 2.1.5(ii) we obtain (5.30).

Conversely, let (5.30) hold, and let F ∈ ℬ(Y). By Proposition 2.1.16 (see also Re-
mark 2.1.7) there exists a sequence {ζm} ⊆ Cc(Y) such that ζm → χF μ-a. e. in Y and‖ζm‖∞ ≤ 1 for all m ∈ ℕ. Then writing (5.30) with g = ζm, letting m → ∞, and using
the dominated convergence theorem, we obtain (5.31).

Remark 5.2.2. If {νx}x∈X is a parameterized measure on Y , then the real-valued func-
tion x → |νx|(F) is also ℬ(X)-measurable for every F ∈ ℬ(Y). Indeed, by Corol-
lary 2.1.5(i) the function x → ∑ni=1 |νx(Fi)| is ℬ(X)-measurable for any partition{F1, . . . , Fn} ⊆ ℬ(Y) of F, and thus by Proposition 1.8.3 (see (1.52)) and Corollary 2.1.5(ii)
the claim follows.

Let X and Y be locally compact Hausdorff spaces with countable bases. Then the
topological product X × Y is a locally compact Hausdorff space with countable basis,
and by Theorem 1.2.3

ℬ(X × Y) = ℬ(X) × ℬ(Y).
By Lemma 2.1.8 the projection

pX : X × Y → X, pX(x, y) := x,
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is (ℬ(X × Y),ℬ(X))-measurable, and the projection

pY : X × Y → Y , pY (x, y) := y,
is (ℬ(X × Y),ℬ(Y))-measurable. Hence for any μ ∈ Mf (X × Y), the image measures
(see (2.28))

μpX : ℬ(X) → ℝ, μpX (E) := μ(p−1X (E)) = μ(E × Y) for all E ∈ ℬ(X), (5.32)

μpY : ℬ(Y) → ℝ, μpY (F) := μ(p−1Y (F)) = μ(X × F) for all F ∈ ℬ(Y), (5.33)

are well defined. If μ ∈ Rf (X × Y), then by Proposition 1.3.3 μpX ∈ Rf (X) and μpY ∈
Rf (Y).
Theorem 5.2.1 (Disintegration). Let X and Y be locally compact Hausdorff spaces with
countable bases. Let ν ∈ Rf (X×Y), and let |ν|pX ∈ R+f (X)be the projection of its variation|ν| onto the space X. Then there exists a parameterized measure ν ≡ {νx}x∈X on Y with
the following properties:
(i) |νx|(Y) = 1 for |ν|pX -a. e. x ∈ X;
(ii) for every h ∈ L1(X × Y ,ℬ(X × Y), |ν|),

h(x, ⋅) ∈ L1(Y ,ℬ(Y), |νx|) for |ν|pX -a. e. x ∈ X, (5.34)

the map x → ∫
Y

h(x, y) dνx(y) belongs to L1(X,ℬ(X), |ν|pX ), (5.35)

and ∫
X×Y

h(x, y) dν(x, y) = ∫
X

d |ν|pX (x)∫
Y

h(x, y) dνx(y). (5.36)

Moreover, the parameterized measure {νx}x∈X is unique in the following sense: let{ν′x}x∈X be a parameterized measure on Y such that

the map x → ∫
Y

h(x, y) dν′x(y) belongs to L1(X,ℬ(X), |ν|pX ) (5.37)

and ∫
X×Y

h(x, y) dν(x, y) = ∫
X

d |ν|pX (x)∫
Y

h(x, y) dν′x(y) (5.38)

for every bounded ℬ(X ×Y)-measurable h : X ×Y → ℝwith compact support. Then
ν′x = νx for |ν|pX -a. e. x ∈ X.
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Definition 5.2.2. The parameterizedmeasure {νx}x∈X is called the disintegration of the
measure ν.

Remark 5.2.3. (i) Let G ∈ ℬ(X × Y), and let Gx := {y ∈ Y | (x, y) ∈ G} ∈ ℬ(Y) be its
x-section (see Proposition 1.2.2). Setting h = χG in (5.36) and recalling that χG(x, ⋅) = χGx

(see Remark 2.1.5), we get

ν(G) = ∫
X

νx(Gx) d |ν|pX (x) for all G ∈ ℬ(X × Y). (5.39)

If ν is positive, then by (5.39) and the arbitrariness of G it follows that νx is positive for|ν|pX -a. e. x ∈ X.
(ii) Let νpY ∈ Rf (Y) be the projection of ν onto Y (see (5.33)). For any F ∈ ℬ(Y)

from (5.39) with G = X × F (thus Gx = F for every x ∈ X), we get
νpY (F) = ν(X × F) = ∫

X

νx(F) d |ν|pX (x). (5.40)

Proof of Theorem 5.2.1. For any g ∈ C0(Y), g = g(y), set
μg : ℬ(X)→ [0,∞), μg(E) := ∫

E×Y

g dν for all E ∈ ℬ(X). (5.41)

Clearly, μg ∈ Rf (X), andμg(E) ≤ ‖g‖∞ |ν|(E × Y) = ‖g‖∞ |ν|pX (E) for all E ∈ ℬ(X). (5.42)

By inequality (5.42) we have μg ≪ |ν|pX , and thus by the Radon–Nikodým theorem
there exists (μg)r ∈ L1(X,ℬ(X), |ν|pX ) such that

μg(E) = ∫
E

(μg)rd |ν|pX for all E ∈ ℬ(X). (5.43)

Moreover, by (5.42) and Proposition 4.2.5 (see (4.43b)) (μg)r ∈ L∞(X,ℬ(X), |ν|pX ), and‖(μg)r‖∞ ≤ ‖g‖∞.
Clearly, the map g → μg with g ∈ C0(Y) and μg defined in (5.41) is linear. Let

D ⊆ C0(Y) be countable and dense (observe that the space C0(Y) is separable; see
paragraph A.7 in Appendix A). Then by (5.43) there exists a |ν|pX -null set N ∈ ℬ(X)
such that(μαg+βg′ )r(x) = α(μg)r(x) + β(μg′ )r(x) for all x ∈ Nc, α, β ∈ ℝ, and g, g′ ∈ D. (5.44)

Set

Tx : D→ ℝ, Txg := (μg)r(x) for all x ∈ Nc and g ∈ D.
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By (5.44) Tx is linear. Moreover,|Txg| = (μg)r(x) ≤ (μg)r∞ ≤ ‖g‖∞ (x ∈ Nc), (5.45)

and thus Tx is bounded. Since D is dense in C0(Y), Tx admits a unique continuation,
denoted again Tx, to the whole space C0(Y). Hence Tx ∈ (C0(Y))∗ for all x ∈ Nc, and
thus by Theorem 2.7.1 there exists νx ∈ Rf (Y) such that

Txg = (μg)r(x) = ∫
Y

g(y) dνx(y) for all g ∈ C0(Y) (x ∈ Nc) (5.46)

and ‖νx‖ = |νx|(Y) = ‖Tx‖ ≤ 1 (5.47)

(see (5.45)). We can complete the definition of νx in X by setting νx := δȳ for any x ∈ N
with arbitrary fixed ȳ ∈ Y .

Let us show that the function x → νx(F) isℬ(X)-measurable for every F ∈ ℬ(Y) and
thus the family {νx}x∈X is a parameterizedmeasure on Y (see Remark 5.2.1). Indeed, by
definitionwehaveTxg = (μg)r(x) for all x ∈ Nc; since (μg)r belongs toL∞(X,ℬ(X), |ν|pX )
and thus is ℬ(X)-measurable, the map x → Txg is (ℬ(X) ∩ Nc)-measurable for any
g ∈ C0(Y). Now observe that for every F ∈ ℬ(Y), there is a sequence {gn} ⊆ C0(Y) such
that gn → χF in L1(Y ,ℬ(Y), νx) as n → ∞ (see Proposition 2.1.16 and Remark 2.1.7).
Then

Txgn = ∫
Y

gn(y) dνx(y)→ νx(F) as n→∞,
and thus by Corollary 2.1.5(ii) the map x → νx(F) is ℬ(X) ∩ Nc-measurable. On the
other hand, clearly, the map x → νx(F) = δȳ(F) (x ∈ N) is (ℬ(X) ∩ N)-measurable for
all F ∈ ℬ(Y). Then by Proposition 2.1.3 the claim follows.

In view of the above remarks, it is clear that every map h(x, y) := s(x)g(y) with s ∈
𝒮(X) and g ∈ C0(Y) satisfies (5.34)–(5.35) (see Remark 5.2.1). Moreover, equality (5.36)
also holds with this choice of h(x, y). In fact, by (5.41), (5.43), and (5.46) for any g ∈
C0(Y) and E ∈ ℬ(X), we have

μg(E) = ∫
X×Y

χE(x)g(y) dν = ∫
E

(μg)r(x) d |ν|pX (x)= ∫
X

d |ν|pX (x)∫
Y

χE(x)g(y) dνx(y),
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whence ∫
X×Y

s(x)g(y) dν = ∫
X

d |ν|pX (x)∫
Y

s(x)g(y) dνx(y)
for all s ∈ 𝒮(X) and g ∈ C0(Y). By Lemma 2.8.3 and the dominated convergence
theorem the above equality also holds for all s ∈ 𝒮(X) and g ∈ 𝒮(Y). Since the set{s(x)g(y) | s ∈ 𝒮(X), g ∈ 𝒮(Y)} is dense in L1(X × Y ,ℬ(X × Y), ν), claim (ii) follows.

By Remark 5.2.2, Proposition 1.8.3, and Corollary 2.1.5(ii), for every F ∈ ℬ(Y), the
function x → |νx|(F) is ℬ(X)-measurable. Then from (5.39) we getν(G) ≤ ∫

X

|νx|(Gx) d |ν|pX (x) for all G ∈ ℬ(X × Y),
whence by the arbitrariness of G and the definition of |ν| we have|ν|(G) ≤ ∫

X

|νx|(Gx) d |ν|pX (x).
Choosing G = X × Y in this inequality and using (5.47), we obtain|ν|(X × Y) ≤ ∫

X

|νx|(Y) d |ν|pX (x) ≤ |ν|(X × Y)
(see (5.32)), and thus claim (i) follows.

Finally, let {ν′x}x∈X be a parameterized measure on Y satisfying (5.37)–(5.38) for
all bounded ℬ(X × Y)-measurable h with compact support. From (5.36) and (5.38) we
obtain ∫

X

d |ν|pX (x)∫
Y

h(x, y) dνx(y) = ∫
X

d |ν|pX (x)∫
Y

h(x, y) dν′x(y)
for all h as above, whence plainly ν′x = νx for |ν|pX -a. e. x ∈ X. This completes the
proof.

Remark 5.2.4. Let X and Y be as in Theorem 5.2.1, let ν ∈ R+f (X × Y), and let {νx}x∈X
be its disintegration. By equality (5.40), for every F ∈ ℬ(Y) such that νpY (F) = 0, there
exists a νpX -null set N ⊆ X such that νx(F) = 0 for all x ∈ Nc. Since Y has a countable
basis, the measurable space (Y ,ℬ(Y)) is separable (see Definition 1.2.5). Then by a
standard argument the choice of the νpX -null set N can be made independent of F ∈
ℬ(Y). It follows that νx ≪ νpY for νpX -a. e. x ∈ X.
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5.3 Young measures revisited

Let X be a locally compact Hausdorff space, and let {uk} ⊆ L1(X,ℬ(X), μ) be weakly
convergent. It has already been observed (see Example 2.8.1(i)) that the same need not
hold for {h ∘ uk}with nonlinear h such that {h ∘ uk} ⊆ L1(X,ℬ(X), μ). To get information
about the behavior of {h ∘ uk}, Remark 5.1.4 suggests to address the sequence {νk} ⊆
Rf (X) associatedwith {h∘uk} as in (5.5). In this framework the sequence {νuk } of Young
measures associated with {uk} plays an important role.

Let μ ∈ R+f (X), and let ν ∈ Y+(X,ℬ(X), μ;Y) ≡ Y+(X;Y) be a Youngmeasure. Then
by definition νpX = μ (see Definition 2.5.3), and since Y+(X;Y) ⊆ R+f (X × Y), from
Theorem 5.2.1 we obtain the following result.

Proposition 5.3.1 (Disintegration of Young measures). Let X and Y be locally compact
Hausdorff spaces with countable bases. Let μ ∈ R+f (X), and let ν ∈ Y+(X;Y). Then there
exists a parameterized measure ν ≡ {νx}x∈X on Y with the following properties:
(i) νx ∈ P(Y) ⊆ R+f (Y) for μ-a. e. x ∈ X;
(ii) for every h ∈ L1(X × Y ,ℬ(X × Y), ν), we have

h(x, ⋅) ∈ L1(Y ,ℬ(Y), νx) for μ-a. e. x ∈ X, (5.48)

the map x → ∫
Y

h(x, y) dνx(y) belongs to L1(X,ℬ(X), μ), (5.49)

and ∫
X×Y

h(x, y) dν(x, y) = ∫
X

dμ(x)∫
Y

h(x, y) dνx(y). (5.50)

If {ν′x}x∈X is a parameterized measure on Y such that

the map x → ∫
Y

h(x, y) dν′x(y) belongs to L1(X,ℬ(X), μ) (5.51)

and ∫
X×Y

h(x, y) dν(x, y) = ∫
X

dμ(x)∫
Y

h(x, y) dν′x(y) (5.52)

for every bounded ℬ(X × Y)-measurable h : X × Y → ℝ with compact support, then
ν′x = νx for μ-a. e. x ∈ X.
It is interesting to characterize the disintegration of Young measures associated

with functions (see Definition 2.5.3). Recall that the Youngmeasure νu associated with
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u is defined as

νu(E × F) := μ(E ∩ u−1(F)) for all E ∈ ℬ(X) and F ∈ ℬ(Y).
Proposition 5.3.2. Let X and Y be locally compact Hausdorff spaces with countable
bases. Let μ ∈ R+f (X), let u : X → Y be (ℬ(X),ℬ(Y))-measurable, and let νu ∈ Y+(X;Y)
be the Young measure associated with u. Then(νu)x = δu(x) for μ-a. e. x ∈ X. (5.53)

Proof. For any F ∈ ℬ(Y) from (5.36), we get

νu(X × F) = ∫
X×Y

χF(y) dνu(x, y) = ∫
X

(νu)x(F) dμ(x).
On the other hand, by definition

νu(X × F) = μ(u−1(F)) = ∫
X

χu−1(F)(x) dμ(x).
From (2.29), for every F ∈ ℬ(Y), there exists a μ-null set N ⊆ X such that for all x ∈ Nc,

(νu)x(F) = χu−1(F)(x) = {1 if u(x) ∈ F,
0 otherwise.

Since X has a countable basis, the measurable space (X,ℬ(X)) is separable (see Def-
inition 1.2.5), and thus by a standard argument the choice of the μ-null set N can be
made independent of F ∈ ℬ(Y). Then the result follows.

From equalities (5.36) and (5.53) we immediately obtain the following result.

Corollary 5.3.3. Let X andY be locally compactHausdorff spaceswith countable bases.
Let μ ∈ R+f (X), let u : X → Y be (ℬ(X),ℬ(Y))-measurable, and let νu ∈ Y+(X,ℬ(X), μ;Y)
be the Young measure associated with u. Then for every h ∈ L1(X × Y ,ℬ(X × Y), νu), we
have ∫

X×Y

h(x, y) dνu(x, y) = ∫
X

h(x, u(x)) dμ(x). (5.54)

In view of Proposition 5.3.1, it is interesting to consider the set of weakly∗measur-
able functions from X to Rf (Y), which for μ-a. e. x ∈ X take values in the set P(Y) ⊆
R+f (Y) of probability measures on Y . We denote byP(X;Y) ≡ P(X,ℬ(X), μ;Y) this set,
called the set of parameterized probabilities on Y . It is easily seen that P(X;Y) is a
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closed convex subset of the unit ball of the space L∞w∗ (X;Rf (Y)),
U := {ν ∈ L∞w∗(X;Rf (Y)) | ess supx∈X ‖νx‖Rf (Y) ≤ 1}. (5.55)

Corollary 5.3.4. Let X andY be locally compactHausdorff spaceswith countable bases,
and let μ ∈ R+f (X). Then there is a one-to-one correspondence between Y+(X;Y) and
P(X;Y).
Proof. By Proposition 5.3.1 to each ν ∈ Y+(X;Y) corresponds a parameterized proba-
bility on Y . Conversely, let {νx}x∈X ∈ P(X;Y), and set

ν : ℬ(X × Y)→ [0,∞), ν(G) := ∫
X

νx(Gx) dμ(x) (G ∈ ℬ(X × Y))
(observe that byRemark 5.2.1 the definition iswell posed). By Proposition 1.3.3wehave
ν ∈ R+f (X × Y), and choosing G = E × Y with E ∈ ℬ(X), we get

ν(E × Y) = ∫
E

νx(Y) dμ(x) = μ(E).
Hence ν ∈ Y+(X;Y) (see Definition 2.5.3), and thus the result follows.

By Corollary 5.3.4 and previous remarks it is natural to endow Y+(X;Y) with the
topology of weak∗ convergence on L∞w∗ (X;Rf (Y)) (see Subsection 5.3.1). Another topol-
ogy onY+(X;Y), related to narrow convergence,will be introduced in Subsection 5.3.2.
To this purpose, we need the following definition.

Definition 5.3.1. Let (X,𝒜, μ) be a finite measure space, and let Y be a topological
space.
(i) By a Carathéodory function we mean any h : X × Y → ℝ such that

{(a) h(x, ⋅) ∈ C(Y) for μ-a. e. x ∈ X;(b) h(⋅, y) is𝒜-measurable for all y ∈ Y .
(ii) By a bounded Carathéodory integrand we mean any Carathéodory function such

that{{{{{(a) h(x, ⋅) ∈ Cb(Y) for μ-a. e. x ∈ X;(b) the map x → ‖h(x, ⋅)‖∞ is𝒜-measurable, and ∫
X

‖h(x, ⋅)‖∞ dμ(x) <∞.
C0-Carathéodory integrands are defined by replacing Cb(Y) by C0(Y) in (a).
Two Carathéodory functions h and h′ belong to the same equivalence class if
h(x, ⋅) = h′(x, ⋅) for μ-a. e. x ∈ X.
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The vector space of (equivalence classes of) Carathéodory functions will be de-
noted by C (X × Y), and those of bounded Carathéodory integrands and C0-Carathéo-
dory integrands will be denoted by Cb(X × Y) and C0(X × Y), respectively.

It is immediately seen that the map from Cb(X × Y) to [0,∞),
h → ‖h‖Cb(X×Y) := ∫

X

h(x, ⋅)∞ dμ(x), (5.56)

is a norm. Then we have the following result.

Proposition 5.3.5. Let (X,𝒜, μ)beafinitemeasure space, and let Y bea locally compact
Hausdorff space with countable basis. Then the map

T : C0(X × Y)→ L1(X;C0(Y)), (Th)(x) := h(x, ⋅) for μ-a. e. x ∈ X, (5.57)

is an isometric isomorphism of (C0(X × Y), ‖ ⋅ ‖C0(X×Y)) onto L1(X;C0(Y)). In particular,
C0(X × Y) endowed with the norm ‖ ⋅ ‖Cb(X×Y) is a Banach space.

Proof. Let us first prove that the operator T is well defined. For any h ∈ C0(X × Y) and
g ∈ C0(Y), the function (x, y) → h(x, y) − g(y) belongs to C0(X × Y), and thus for every
α ∈ ℝ, the set {x ∈ X | ‖h(x, ⋅) − g‖∞ < α} belongs to 𝒜 (see Definition 5.3.1(ii)). On the
other hand, C0(Y) is separable (see Appendix A, Subsection A.7), and thus the Borel
σ-algebra ℬ ≡ ℬ(C0(Y)) is generated by a countable basis of open balls B(gk , α) :={g ∈ C0(Y) | ‖g − gk‖∞ < α} (k ∈ ℕ). It follows that the map x → h(x, ⋅) = (Th)(x) is(𝒜,ℬ)-measurable and thus μ-measurable by Proposition 4.1.4, since C0(Y) is separa-
ble. Moreover, ‖h‖Cb(X×Y) = ∫

X

h(x, ⋅)∞ dμ(x)= ∫
X

(Th)(x)∞ dμ(x) = ‖Th‖L1(X;C0(Y)) <∞. (5.58)

Hence Th ∈ L1(X;C0(Y)), and thus the claim follows.
Since T is linear and isometric (see (5.58)), it is injective. To prove the surjectivity,

fix any ĥ ∈ L1(X;C0(Y)). Then ĥ(x) ∈ C0(Y) for μ-a. e. x ∈ X, and the map x → ‖ĥ(x)‖∞
belongs to L1(X). Moreover, for any y ∈ Y , the map x → ĥ(x)(y) is 𝒜-measurable,
since the map x → ‖ĥ(x)‖∞ is 𝒜-measurable and the map from C0(Y) to ℝ, g → g(y)(g ∈ C0(Y), y ∈ Y), is continuous. Therefore the function (x, y) → ĥ(x)(y) belongs to
C0(X × Y), and thus T is surjective. Hence the result follows.

By Proposition 5.3.5, Theorem 4.3.7, and Proposition 4.4.16 we have the following:

Corollary 5.3.6. Let (X,𝒜, μ) be a finite measure space, and let Y be a locally compact
Hausdorff space with countable basis. Then:
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(i) the space C0(X × Y) is separable;
(ii) we have (C0(X × Y))∗ = L∞w∗(X;Rf (Y)).
Remark 5.3.1. Let (X,𝒜, μ) be a finite measure space, and let Y be a compact space.
Then Cb(Y) is separable, and the proof of Proposition 5.3.5 shows that the map

T : Cb(X × Y)→ L1(X;Cb(Y)), (Th)(x) := h(x, ⋅) for μ-a. e. x ∈ X, (5.59)

is an isometric isomorphism of (Cb(X × Y), ‖ ⋅ ‖Cb(X×Y)) onto L1(X;Cb(Y)).
5.3.1 Weak∗ convergence

As already observed, by Corollary 5.3.4 and previous remarks it is natural to endow
Y+(X;Y) with the topology of weak∗ convergence on L∞w∗ (X;Rf (Y)). Then by Corol-
lary 5.3.6(ii) we have the following definition (recall that by definition Y+(X;Y) ⊆
R+f (X × Y)).
Definition 5.3.2. Let X and Y be locally compact Hausdorff spaces with countable
bases. A sequence {νk} ⊆ Y+(X;Y) converges weakly∗ to ν ∈ L∞w∗ (X;Rf (Y)) (written
νk
∗⇀ ν) if

lim
k→∞
∫

X×Y

h dνk = ∫
X×Y

h dν for all h ∈ C0(X × Y).
The weak∗ topology on Y+(X;Y), denoted 𝒯w∗ , is the weakest topology that makes
continuous all maps ν → ∫X×Y h dν with h ∈ C0(X × Y).

A basis for 𝒯w∗ is the family of subsets

Bh1 ,...,hn ;ϵ(ν0) := {ν ∈ Y+(X;Y)   ∫
X×Y

hj dν − ∫
X×Y

hj dν0
 < ϵ ∀ j = 1, . . . , n}, (5.60)

where h1, . . . , hn ∈ C0(X × Y), ν0 ∈ Y+(X;Y), n ∈ ℕ, and ϵ > 0.
Remark 5.3.2. By Definition 5.3.2 and the lower semicontinuity of the norm in
L∞w∗ (X;Rf (Y)) the weak∗ limit ν belongs to the unit ballU ⊆ L∞w∗ (X;Rf (Y)) (see (5.55)).
However, due to possible “loss of mass”, ν need not be a parameterized probability
on Y (see Remark 5.1.3). Also, observe that ν ∈ L∞w∗ (X;R+f (Y)) since {νk} ⊆ Y+(X;Y).
Theorem 5.3.7. Let X and Y be locally compact Hausdorff spaces with countable bases.
Then for every sequence {νk} ⊆ Y+(X;Y), there exist a subsequence {νkl } ⊆ {νk} and
ν ∈ U ⊆ L∞w∗ (X;Rf (Y)) such that νkl ∗⇀ ν.
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Proof. By Theorem 4.3.7 the space L1(X;C0(Y)) is separable, and hence by Proposi-
tion 4.4.16 and the Banach theorem the unit ball U ⊆ L∞w∗ (X;Rf (Y)) is weakly∗ com-
pact. Then by Corollary 5.3.6 the result follows.

Remark 5.3.3. Since L1(X;C0(Y)) = C0(X×Y) is separable, the relativeweak∗ topology
𝒯w∗ ⋂U ismetrizable. In fact, by PropositionA.11 it coincideswith themetric topology
induced on L∞w∗ (X;Rf (Y)) by the norm

ν → |||ν||| := ∞∑
k=1

1
2k
( |∫X×Y hk dν|
1 + ∫X ‖hk(x, ⋅)‖∞ dμ(x)), (5.61)

where D ≡ {hk} ⊆ C0(X × Y) is a dense countable subset.
5.3.2 Narrow convergence and tightness

Definition 5.3.3. Let X and Y be locally compact Hausdorff spaces with countable
bases. A sequence {νk} ⊆ Y+(X;Y) converges narrowly to ν ∈ Y+(X;Y) (written νk n⇀ ν)
if

lim
k→∞
∫

X×Y

h dνk = ∫
X×Y

h dν for all h ∈ Cb(X × Y).
The narrow topology onY+(X;Y), denoted 𝒯n, is the weakest topology thatmakes con-
tinuous all maps ν → ∫X×Y h dν with h ∈ Cb(X × Y).

A basis for 𝒯n is the family (5.60), yet with h1, . . . , hn ∈ Cb(X × Y).
The following lower semicontinuity result will be used.

Proposition 5.3.8. Let X and Y be locally compact Hausdorff spaces with countable
bases, and let h : X × Y → [0,∞) be a Carathéodory function. Then the map from
Y+(X;Y) to [0,∞], ν → ∫X×Y h dν, is lower semicontinuous in the narrow topology.

Proof. Wemust prove that if νk
n⇀ ν inY+(X;Y), then∫

X×Y

h(x, y) dν(x, y) ≤ lim inf
k→∞
∫
X

dμ(x)∫
Y

h(x, y) d(νk)x(y). (5.62)

Let d denote a compatible metric on the space Y , which by Proposition A.2 is metriz-
able. For every n ∈ ℕ, define hn : X × Y → [0,∞) by

hn(x, y) := min{inf
ζ∈Y
[h(x, ζ ) + n d(ζ , y)], n} (x ∈ X, y ∈ Y).
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It is easily seen that for every n ∈ ℕ, hn is ℬ(X × Y)-measurable, hn ∈ Cb(X × Y),
hn ≤ hn+1, and hn → h pointwise in X×Y . Then by themonotone convergence theorem∫

X×Y

h dν = lim
n→∞
∫

X×Y

hn dν = sup
n∈ℕ ∫

X×Y

hn dν.
For every n ∈ ℕ, the map ν → ∫X×Y hn dν is continuous by Definition 5.3.3, since hn ∈
Cb(X × Y). Hence the map ν → ∫X×Y h dν is lower semicontinuous as the supremum of
a sequence of continuous functions. This proves the result.

For Young measures, the definition of tightness is as follows.

Definition 5.3.4. Let X and Y be locally compact Hausdorff spaces with countable ba-
sis. A subsetN ⊆ Y+(X;Y) is called tight if for any ϵ > 0, there exists a compact subset
K ⊆ Y such that ν(X × Kc) < ϵ for all ν ∈ N .

Remark 5.3.4. By Definition 5.3.4 a subset N ⊆ Y+(X;Y) is tight if and only if the set
of projections onto Y , {νpY | ν ∈ N } ⊆ R+f (Y), is tight in the sense of Definition 5.1.5.

The proof of the following result is strictly analogous to that of Proposition 5.1.8,
and thus we omit it.

Proposition 5.3.9. Let X and Y be locally compact Hausdorff spaces with countable
bases, and let N ⊆ Y+(X;Y) be tight. Then the narrow topology on N and the weak∗

topology on N coincide, that is, 𝒯n ∩N = 𝒯w∗ ∩N .

As a criterion for tightness, from Remark 5.3.4 and Proposition 5.1.12 we get the
following result.

Proposition 5.3.10. Let X and Y be locally compact Hausdorff spaces with countable
bases. Then the following statements are equivalent:
(i) N ⊆ Y+(X;Y) is tight;
(ii) there exists an inf-compact φ : Y → [0,∞) such that

sup
ν∈N
∫
Y

φdνpY <∞. (5.63)

For Young measures, we have the following analogue of Theorem 5.1.9.

Theorem 5.3.11. Let X and Y be locally compact Hausdorff spaces with countable
bases. Let N ⊆ Y+(X;Y). Then the following statements are equivalent:
(i) N is relatively sequentially compact in the narrow topology;
(ii) N is tight.
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Proof. (i)⇒(ii). By assumption, for any sequence {νk} ⊆ N , there exist a subsequence{νkj } ⊆ {νk} and ν ∈ Y+(X;Y) such that
lim
j→∞
∫

X×Y

h dνkj = ∫
X×Y

h dν for all h ∈ Cb(X × Y). (5.64)

Let us choose h(x, y) = g(y) with g ∈ Cb(Y). Since∫
X×Y

g(y) dν(x, y) = ∫
Y

g(y) dνpY (y),∫
X×Y

g(y) dνkj (x, y) = ∫
Y

g(y) d(νkj )pY (y)
(see Remark 2.5.1(i)), from (5.64) we get

lim
j→∞
∫
Y

g(y) d(νkj )pY (y) = ∫
Y

g(y) dνpY (y) for all g ∈ Cb(Y).
It follows that the set {νpY | ν ∈ N } is relatively sequentially compact in the narrow
topology onR+f (Y) and thus by Theorem 5.1.9 is tight. Then by Remark 5.3.4 the claim
follows.

(ii)⇒(i). By Remark 2.5.1 N is a bounded subset ofR+f (X × Y). Let us show that it
is also a tight subset ofR+f (X × Y), that is, for any ϵ > 0, there exists a compact subset
K̃ ⊆ X × Y such that ν(K̃c) < ϵ for all ν ∈ N (see Definition 5.1.5). By assumption, for
any ϵ > 0, there exists a compact subset K ⊆ Y such that νpY (Kc) = ν(X × Kc) < ϵ

2
for all ν ∈ N . Moreover, by Proposition A.2 X is σ-compact, and hence there exists a
compact subset K0 ⊆ X such that μ(Kc

0) < ϵ
2 . Observe that, by the definition of Young

measure, νpX (Kc
0) = ν(Kc

0 ×Y) = μ(Kc
0) for every ν ∈ N . Set K̃ := K0 ×K ⊆ X ×Y . Clearly,

K̃ is compact, and K̃c ⊆ (X × Kc) ∪ (Kc
0 × Y). Then for all ν ∈ N ,

ν(K̃c) ≤ ν(X × Kc) + ν(Kc
0 × Y) = νpY (Kc) + μ(Kc

0) < ϵ,
whence the claim follows.

By the above remarks and Proposition 5.1.11 (see also Remark 5.1.9), for any se-
quence {νk} ⊆ N , there exist a subsequence {νkj } ⊆ {νk} and ν ∈ R+f (X × Y) such
that

lim
j→∞
∫

X×Y

g dνkj = ∫
X×Y

g dν for all g ∈ Cb(X × Y). (5.65)
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It is easily seen that ν ∈ Y+(X;Y). Indeed, since {νkj } ⊆ N ⊆ Y+(X;Y), by the disinte-
gration theorem equality (5.65) reads

lim
j→∞
∫
X

dμ(x)∫
Y

g(x, y) d(νkj )x(y) = ∫
X

d νpX (x)∫
Y

g(x, y) dνx(y)
for all g ∈ Cb(X × Y). Choosing g = g(x) in this equality, we obtain∫

X

g(x)dμ(x) = ∫
X

g(x) d νpX (x) for all g ∈ Cb(X).
By Proposition 4.3.6(ii) (see also Proposition A.2), from this equality we plainly get
νpX (E) = μ(E) for all E ∈ ℬ(X). Hence the claim follows.

In particular, the equality in (5.65) holds for all g ∈ C0(X × Y). Since the space
C0(X × Y) is dense in L1(X;C0(Y)) = C0(X × Y) (see Proposition 4.3.6(ii) and Proposi-
tion 5.3.5), for any h ∈ L1(X;C0(Y)), there exists a sequence {gm} ⊆ C0(X × Y) such
that limm→∞ ‖gm − h‖L1(X;C0(Y)) = 0. Fix ϵ > 0, and let m0 ∈ ℕ be so large that‖gm0
− h‖L1(X;C0(Y)) < ϵ

3 . On the other hand, by (5.65) there exists j0 ∈ ℕ such that ∫
X×Y

gm0
dνkj − ∫

X×Y

gm0
dν
 < ϵ3 for all j > j0.

Then for all j > j0, ∫
X×Y

h dνkj − ∫
X×Y

h dν
≤  ∫

X×Y

(h − gm0
) dνkj  +  ∫

X×Y

(h − gm0
) dν +  ∫

X×Y

gm0
dνkj − ∫

X×Y

gm0
dν
<  ∫

X×Y

(h − gm0
) dνkj  +  ∫

X×Y

(h − gm0
) dν + ϵ3 .

Since {νkj } ⊆ N ⊆ Y+(X;Y), by the disintegration theorem we get ∫
X×Y

(h − gm0
) dνkj  = ∫

X

dμ(x)∫
Y

(h − gm0
)(x, y) d(νkj )x(y) ≤ ‖gm0

− h‖L1(X;C0(Y)) < ϵ3 .
Since ν ∈ Y+(X;Y), we similarly obtain ∫

X×Y

(h − gm0
) dν = ∫

X

dμ(x)∫
Y

(h − gm0
)(x, y) dνx(y) ≤ ‖gm0

− h‖L1(X;C0(Y)) < ϵ3 .
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In view of the above inequalities, for any ϵ > 0, there exists j0 ∈ ℕ such that for all
j > j0,  ∫

X×Y

h dνkj − ∫
X×Y

h dν
 < ϵ for all h ∈ C0(X × Y).

To sum up, we proved that for any sequence {νk} ⊆ N , there exist a subsequence{νkj } ⊆ {νk} and ν ∈ Y+(X;Y) such that νkj ∗⇀ ν. Since N is tight, by Proposition 5.3.9
the conclusion follows.

The following result is similarly proven.

Proposition 5.3.12. Let X and Y be locally compact Hausdorff spaces with countable
bases. Let {νk} ⊆ Y+(X;Y) and ν ∈ Y+(X;Y) satisfy (νk)x n⇀ νx in R+f (Y) for μ-a. e.
x ∈ X. Then νk n⇀ ν inY+(X;Y).
Proof. Let h ∈ Cb(X × Y). By Definition 5.3.1(ii) we have h(x, ⋅) ∈ Cb(Y) for μ-a. e. x ∈ X.
Then for μ-a. e. x ∈ X,

lim
k→∞
∫
Y

h(x, y) d(νk)x(y) = ∫
Y

h(x, y) dνx(y)
(see Definition 5.1.3). On the other hand, for all k ∈ ℕ,∫

Y

h(x, y) d(νk)x(y) ≤ h(x, ⋅)∞(νk)x(Y) = h(x, ⋅)∞,
and by Definition 5.3.1(ii) the map x → ‖h(x, ⋅)‖∞ belongs to L1(X). Then by the domi-
nated convergence theorem we have

lim
k→∞
∫
X

dμ(x)∫
Y

h(x, y) d(νk)x(y) = ∫
X

dμ(x)∫
Y

h(x, y) dνx(y),
whence the result follows.

5.4 Sequences of Young measures associated with functions

Let X and Y be locally compact Hausdorff spaces with countable bases, and let uj :
X → Y be (ℬ(X),ℬ(Y))-measurable (j ∈ ℕ). Applying the above results to the sequence{νuj } ⊆ Y+(X;Y) of Young measures associated with {uj}, we can obtain information
about the convergence of the sequence {uj} itself. A first result in this direction is the
following:
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Proposition 5.4.1. Let X and Y be a locally compact Hausdorff spaces with countable
bases. Let uj, u : X → Y be (ℬ(X),ℬ(Y))-measurable, and let νuj , νu ∈ Y+(X;Y) be the
Young measures associated with uj, respectively, u (j ∈ ℕ). Then:
(i) if uj → u μ-a. e. in X, then νuj

n⇀ νu inY+(X;Y);
(ii) if νuj

n⇀ νu inY+(X;Y), then there exists a subsequence {ujk } ⊆ {uj} such that ujk → u
μ-a. e. in X.

Proof. Observe preliminarily that by Proposition A.2 the space Y is metrizable, and
hence there exists a compatible metric d.
(i) By equality (5.53)wehave (νuj )x = δuj(x) and (νu)x = δu(x) forμ-a. e. x ∈ X.Moreover,

by equality (5.15)

dP((νuj )x , (νu)x) = dP(δuj(x), δu(x)) = min{1, d(uj(x), u(x))},
where dP denotes the Prokhorov metric on R+f (Y). Since uj → u μ-a. e. in X, it
follows that

dP((νuj )x , (νu)x)→ 0 for μ-a. e. x ∈ X.
Then by Lemma 5.1.6 and Proposition 5.3.12 the claim follows.

(ii) Plainly, the map h : X × Y → ℝ, h(x, y) := min{1, d(y, u(x))} belongs to Cb(X × Y).
Since by assumption νuj

n⇀ νu, we have

lim
j→∞
∫
X

dμ(x)∫
Y

min{1, d(y, u(x))} d(νuj )x(y) = ∫
X

dμ(x)∫
Y

min{1, d(y, u(x))} d(νu)x(y),
which by (5.54) reads

lim
j→∞
∫
X

min{1, d(uj(x), u(x))} dμ(x) = ∫
X

min{1, d(u(x), u(x))} dμ(x) = 0.
Hence (possibly extracting a subsequence, not relabeled) d(uj(x), u(x)) → 0 for
μ-a. e. x ∈ X. Then the result follows.

5.4.1 Weak∗ convergence of {νuj }

Henceforth we are dealing with the case Y = ℝ (similar results hold for Y = ℝd with
d ∈ ℕ, d ≥ 2). Let F be a family of ℬ(X)-measurable functions from X to ℝ, and let
NF := {νu | u ∈ F } ⊆ Y+(X;ℝ) denote the set of the associated Young measures. By
Corollary 5.3.4 NF is contained in the unit ball U of the space L∞w∗ (X;Rf (ℝ)),

U := {ν ∈ L∞w∗(X;Rf (ℝ)) | ess supx∈X ‖νx‖Rf (ℝ) ≤ 1}.
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Moreover, L∞w∗ (X;Rf (ℝ)) = (L1(X;C0(ℝ)))∗ = (C0(X × ℝ))∗ (see Propositions 4.4.16
and 5.3.5), and by Theorem 4.3.7 the space L1(X;C0(ℝ)) is separable. Then we have the
following result (see [8]).

Theorem 5.4.2 (Ball). Let X be a locally compact Hausdorff space with countable basis,
and let μ ∈ R+f (X). Let F be a family of ℬ(X)-measurable functions from X to ℝ. Then
for any sequence {uj} ⊆ F :
(i) there exist a subsequence {ujk } ⊆ {uj} and ν ≡ {νx}x∈X ∈ U such that

g ∘ ujk ∗⇀ g∗ in L∞(X) for all g ∈ C0(ℝ), (5.66)

where

g∗(x) := ∫ℝ g(y) dνx(y) for μ-a. e. x ∈ X; (5.67)

(ii) if for some closed subset K ⊆ ℝ,
lim
j→∞

μ(u−1j (Ac)) = 0 for any open neighborhood A ⊃ K, (5.68)

then supp νx ⊆ K for μ-a. e. x ∈ X.
Proof. (i) By the Banach–Alaoglu theorem, for any {νuj } ⊆ NF ⊆ U , there exist {νujk } ⊆{νuj } and ν ∈ U such that νujk

∗⇀ ν in L∞w∗ (X;Rf (ℝ)), that is,
lim
k→∞
∫
X

dμ(x)∫ℝ h(x, y) d(νujk )x(y) = ∫X dμ(x)∫ℝ h(x, y) dνx(y) (5.69)

for all h ∈ L1(X;C0(ℝ)). Choosing in (5.69) h(x, y) = f (x)g(y) with f ∈ L1(X) and g ∈
C0(ℝ) gives

lim
k→∞
∫
X

dμ(x) f (x)∫ℝ g(y) d(νujk )x(y) = ∫X dμ(x) f (x)∫ℝ g(y) dνx(y),
whence by equality (5.54)

lim
k→∞
∫
X

f (x)g(ujk (x)) dμ(x) = ∫
X

dμ(x) f (x)∫ℝ g(y) dνx(y)
for all f ∈ L1(X). By (5.49) the map x → ∫ℝ g(y) dνx(y) is ℬ(X)-measurable; moreover,
ess supx∈X |∫ℝ g(y) dνx(y)| ≤ ‖g‖∞, and thus the function g∗ defined in (5.67) belongs
to L∞(X). Hence the claim follows.
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(ii) If K = ℝ, then the claim is obvious. Let K ⊂ ℝ satisfy (5.68), and let g ∈ C0(ℝ),
g|K = 0. Clearly, for any ϵ > 0, the set Aϵ := {y ∈ ℝ | |g(y)| < ϵ} is open, and Aϵ ⊃ K.
Then by assumption we have

lim
j→∞

μ(u−1j ((Aϵ)c)) = limj→∞
{x ∈ X | g(uj(x)) ≥ ϵ} = 0,

and thus g(uj)→ 0 in measure. Since the sequence {g(uj)} is bounded in L∞(X) and μ
is finite, by the dominated convergence theorem (see Proposition 2.8.8(i)) we have

lim
j→∞
∫
X

f (x) g(uj(x)) dμ(x) = 0 for all f ∈ L1(X).
From this equality and (5.66)–(5.67) we obtain that ∫ℝ g(y) dνx(y) = 0 for μ-a. e. x ∈ X.
Since by assumption g|K = 0, the conclusion follows.
5.4.2 Narrow convergence of {νuj }

Let us now apply the results of Subsection 5.3.2 to sequences of Youngmeasures asso-
ciated with functions. A preliminary step in this direction is the following:

Proposition 5.4.3. Let X be a locally compact Hausdorff space with countable basis, let
μ ∈ R+f (X), and let F ⊆ L1(X) be bounded. Then the set NF := {νu ∈ Y+(X;ℝ) | u ∈ F }
of the associated Young measures is tight.

Proposition 5.4.3 is an easy consequence of the following lemma.

Lemma 5.4.4. Let X be a locally compact Hausdorff space with countable basis, let μ ∈
R+f (X), and let F ⊆ L1(X). Then the following statements are equivalent:
(i) the set NF := {νu ∈ Y+(X;ℝ) | u ∈ F } is tight;
(ii) there exists an inf-compact ψ : [0,∞)→ [0,∞) such that

sup
u∈F
∫
X

ψ(|u|)(x) dμ(x) <∞; (5.70)

(iii) we have

lim
k→∞
(sup
u∈F

μ({|u| ≥ k})) = 0.
Proof. (i)⇒(ii). By Proposition 5.3.10 there exists an inf-compact φ : ℝ → [0,∞) such
that

sup
νu∈NF

∫ℝ φ(y) d(νu)pℝ (y) <∞, (5.71)
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where (νu)pℝ denotes the projection of νu onto ℝ (see (5.33)). By Remark 5.1.10 we can
assume that φ(y) = ψ(|y|) with ψ(t) := ∑∞n=0 nχ(n,n+1](t) (t ∈ [0,∞)). Clearly, ψ is inf-
compact, and by (5.71)

sup
νu∈NF

∫ℝ ψ(|y|) d(νu)pℝ (y) <∞. (5.72)

On the other hand, by (5.53) and (5.36), for any u ∈ F , we have∫
X

ψ(|u|)(x) dμ(x) = ∫
X

dμ(x)∫ℝ ψ(|y|) d(νu)x(y)= ∫
X×ℝ ψ(|y|) dνu(x, y) = ∫ℝ ψ(|y|) d(νu)pℝ (y). (5.73)

From (5.72)–(5.73) we obtain (5.70), and hence the claim follows.

(ii)⇒(i). If ψ : [0,∞) → [0,∞) is inf-compact, then the map φ : ℝ → [0,∞),
φ(y) := ψ(|y|) (y ∈ ℝ) is also inf-compact. Now from (5.70) and (5.73) we get (5.72) and
thus (5.71). Then by Proposition 5.3.10 the claim follows.

(ii)⇒(iii). By Remark 5.1.10 it is not restrictive to assume thatψ nondecreasing and
diverging at infinity. Then by the Chebyshev inequality

sup
u∈F

μ({|u| ≥ k}) ≤ 1
ψ(k) supu∈F

∫
X

ψ(|u|)(x) dμ(x) for all k > 0,
whence by (5.70), as k →∞, the claim follows.

(iii)⇒(ii). By assumption there exists a nondecreasing diverging sequence {kl} ⊆[0,∞) such that
sup
u∈F

μ({|u| ≥ kl}) ≤ 1
l3

for all l ∈ ℕ.
Define ψ(t) := ∑∞l=0 lχ(kl ,kl+1](t) (k0 := 0; t ∈ [0,∞)). Clearly, ψ : [0,∞) → [0,∞) is
inf-compact, and for all u ∈ F ,∫

X

ψ(|u|)(x) dμ(x) = ∞∑
l=0

lμ({kl ≤ |u| < kl+1}) ≤ ∞∑
l=1

1
l2
<∞.

This completes the proof.

Proof of Proposition 5.4.3. By assumption we have

sup
u∈F
‖u‖L1(X) = sup

u∈F
∫
X

|u| dμ <∞,
 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



254 | 5 Sequences of finite Radon measures

and thus in (5.70) we can choose ψ : [0,∞) → [0,∞), ψ(y) = y (which is obviously
inf-compact). Then by Lemma 5.4.4 the result follows.

Remark 5.4.1. Observe that condition (ii) of Lemma 5.4.4 is weaker than the de
la Vallée-Poussin criterion (see Proposition 2.8.6(iii)). This is in agreement with
Propositions 2.8.6 and 5.4.3; indeed, the boundedness of F implies condition (ii)
of Lemma 5.4.4, whereas the de la Vallée-Poussin criterion is equivalent to both the
boundedness and the uniform integrability of F .

By Proposition 5.4.3 and Theorem 5.3.11, if F ⊆ L1(X) is bounded, then the set
NF of the associated Youngmeasures is relatively sequentially compact in the narrow
topology. Hence we have the following:

Theorem 5.4.5. Let X be a locally compactHausdorff spacewith countable basis, let μ ∈
R+f (X), and letF ⊆ L1(X) be bounded. Then for any {uj} ⊆ F , there exist a subsequence{ujk } ⊆ {uj} and a Young measure ν ∈ Y+(X;ℝ) such that for all h ∈ Cb(X × ℝ),

lim
k→∞
∫
X

h(x, ujk (x)) dμ(x) = ∫
X

dμ(x)∫ℝ h(x, y) dνx(y). (5.74)

Proof. Fix arbitrary {uj} ⊆ F . By Proposition 5.4.3 the setNF of the associated Young
measures is tight, and hence there exist a subsequence {νujk } ⊆ {νuj } and a Youngmea-

sure ν ∈ Y+(X;ℝ) such that νujk n⇀ ν, that is, for all h ∈ Cb(X × ℝ), we have
lim
k→∞
∫

X×ℝ h(x, y) dνujk (x, y) = ∫X×ℝ h(x, y) dν(x, y).
By (5.54) we have that ∫

X×ℝ h(x, y) dνujk (x, y) = ∫X h(x, ujk (x)) dμ(x),
whereas by (5.36) ∫

X×ℝ h(x, y) dν(x, y) = ∫X dμ(x)∫ℝ h(x, y) dνx(y).
Hence equality (5.74) follows.

By Proposition 5.4.3, Corollary 5.3.3, and Proposition 5.3.8 we have the following
result.

Corollary 5.4.6. Let X be a locally compact Hausdorff space with countable basis, let
μ ∈ R+f (X), and let F ⊆ L1(X) be bounded. Then for any {uj} ⊆ F , there exist a subse-
quence {ujk } ⊆ {uj} and a Young measure ν ∈ Y+(X;ℝ) such that for any Carathéodory
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function h : X × ℝ→ [0,∞),∫
X×ℝ h(x, y) dν(x, y) ≤ lim inf

k→∞
∫
X

h(x, ujk (x)) dμ(x). (5.75)

Proof. For any {uj} ⊆ F , there exist a subsequence {νujk } ⊆ {νuj } and a Young measure

ν ∈ Y+(X;ℝ) such that νujk n⇀ ν. Then by inequality (5.62) and equality (5.54) the result
follows.

It is natural to regard the limitingmeasure ν ∈ Y+(X;ℝ) given by Theorem 5.4.5 (or
byTheorem5.4.2, sincenarrowconvergence impliesweak∗ convergence) as associated
with the subsequence {ujk } mentioned in the same theorem. It is sometimes possible
to calculate explicitly this measure, as the following result shows.

Proposition 5.4.7. Let I ⊆ ℝ be an interval of unit length, and let u : ℝ → K with
compact K ⊆ ℝ be ℬ-measurable and 1-periodic. Set uk(x) := u(kx) (k ∈ ℕ, x ∈ I),
and let {νuk } ⊆ Y+(I ;K) be the sequence of the associated Young measures. Then νuk
converges narrowly inY+(I ;K) to the product measure ν = λ|I ×λu, where λu denotes the
image of the Lebesgue measure λ under u:∫

I

g ∘ u dλ = ∫ℝ g dλu for all g ∈ L1(ℝ,ℬ, λu).
Proof. For simplicity, set I = (0, 1). Since K ⊆ ℝ is compact, Cb(K) is separable, and
by Remark 5.3.1 Cb(X × K) = L1(X;Cb(K)). Hence by Proposition 4.3.6(ii) it suffices to
prove that for all f ∈ Cc(I) and g ∈ Cb(K), we have

lim
k→∞
∫
I

f (x) g(uk(x)) dλ(x) = ∫
I

f (x) dλ(x)∫
I

g(u(x)) dλ(x). (5.76)

For anyfixed k ∈ ℕ, let {I1, . . . , Ik}be apartition of I, Im being the intervalwith extremes
m−1
k , m

k (m = 1, . . . , k). Then∫
I

f (x) g(uk(x)) dλ(x) = ∫
I

f (x) g(u(kx)) dλ(x)
= 1
k

k∑
m=1
∫
Ik

f( ξ
k
) g(u(ξ ))dλ(ξ ) = 1

k

k∑
m=1
∫
I

f( ξ +m
k
)g(u(ξ ))dλ(ξ ).

(5.77)

Since

lim
k→∞

1
k

k∑
m=1

f( ξ +m
k
) = ∫

I

f (x) dλ(x)
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for all ξ ∈ I, by the dominated convergence theorem, letting k →∞ in (5.77),we obtain
equality (5.76). Hence the result follows.

Example 5.4.5. (i) Let I = (− 12 , 12 ),K = [−1, 1], andu(x) = sen(πx) (x ∈ I). By elementary
results on the Riemann integral we have

∫
I

(g ∘ u)(x) dλ(x) = 1
2∫
− 12

g(u(x)) dx = π 1∫
−1

g(y)√1 − y2 dy.
Hence for λ-a. e. x ∈ I and all F ∈ ℬ ∩ [−1, 1],

νx(F) = π ∫
F

dλ(y)√1 − y2 = constant.
(ii) Let I = (0, 1), K = {−1, 1} and u(x) = sgn[sen(2πx)] (x ∈ I). Then

∫
I

(g ∘ u)(x) dλ(x) = 1
2∫
0

g(u(x)) dx + 1∫
1
2

g(u(x)) dx,
and hence λu = δ1+δ−1

2 . Then for λ-a. e. x ∈ I, we have
νx = 12 (δ1 + δ−1) = constant.

Observe carefully that the limiting measure ν ∈ Y+(X;ℝ) given by Theorem 5.4.5
or 5.4.2 need not be associated with any ℬ(X)-measurable function (for instance, this
was the case in Example 5.4.5(ii)). This point is made clear by the following proposi-
tion, whose proof is deferred until next subsection.

Proposition 5.4.8. Let X be a locally compact Hausdorff space with countable basis,
and let μ ∈ R+f (X). Let {uj} ⊆ L1(X) and u ∈ L1(X) satisfy uj ⇀ u but uj  u strongly
in L1(X). Let {νuj } be the sequence of the associated Young measures. Then there exist
a subsequence {νujk } ⊆ {νuj } and a Young measure ν ∈ Y+(X;ℝ) such that:
(i) νujk

n⇀ ν;
(ii) ν is not associated with any ℬ(X)-measurable function.
5.4.3 Uniform integrability of {uj}

If F ⊆ L1(X) is both bounded and uniformly integrable, further information is gath-
ered combining the above results with the Dunford–Pettis theorem (Theorem 2.8.18).
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In this direction, let us first show that uniform integrability allows us to drop the sign
condition on the function h in Corollary 5.4.6.

Lemma 5.4.9. Let X be a locally compact Hausdorff space with countable basis, let μ ∈
R+f (X), and letF ⊆ L1(X) be bounded. Suppose that for some h ∈ C (X ×ℝ), the set Gh :={h∘u | u ∈ F } is bounded in L1(X) and uniformly integrable. Then for any {uj} ⊆ F , there
exist a subsequence {ujk } ⊆ {uj} and a Young measure ν ∈ Y+(X;ℝ), both independent
of h, such that inequality (5.75) holds.

Proof. Let {ujk } ⊆ {uj} be the subsequence and ν ∈ Y+(X;ℝ) the Young measure given
by Corollary 5.4.6. Since Gh is bounded and uniformly integrable, its modulus η(Gh) of
uniform integrability is equal to zero (see Definition 2.8.2 and Remark 2.8.4). Thus, in
particular,

lim
t→∞

sup
k∈ℕ ∫
{|h∘ujk |≥t}

|h ∘ ujk | dμ = 0.
Let h− denote the negative part of h, h− := max{−h,0}. Since η(Gh) = 0, using Propo-
sition 2.8.6, it is easily seen that η(Gh− ) = 0 as well. Hence for any ϵ > 0, there exists̄t > 0 such that for any t ≥ ̄t,∫

{h−∘ujk≥t}
(h− ∘ ujk )dμ = − ∫

Akt

(h ∘ ujk )dμ < ϵ for all k ∈ ℕ, (5.78)

where Akt := {h ∘ ujk ≤ −t} (k ∈ ℕ, t > 0).
For any t > 0, set ht := max{h,−t}. On the complementary set (Akt)c, we have

h ∘ ujk > −t, and hence h ∘ ujk = ht ∘ ujk , whereas on Akt, we have that ht ∘ ujk = −t.
Therefore, using inequality (5.78), we get∫

X

(h ∘ ujk )dμ = ∫
Akt

(h ∘ ujk )dμ + ∫
(Akt)c

(h ∘ ujk )dμ= ∫
Akt

(h ∘ ujk )dμ + ∫
(Akt)c

(ht ∘ ujk )dμ= ∫
X

(ht ∘ ujk )dμ + ∫
Akt

(h ∘ ujk )dμ − ∫
Akt

(ht ∘ ujk )dμ= ∫
X

(ht ∘ ujk )dμ + ∫
Akt

(h ∘ ujk )dμ + tμ(Akt)≥ ∫
X

(ht ∘ ujk )dμ + ∫
Akt

(h ∘ ujk )dμ > ∫
X

(ht ∘ ujk )dμ − ϵ. (5.79)
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Now observe that ht + t ≥ 0 in X × ℝ for all t > 0, and thus by (5.75)∫
X×ℝ[ht(x, y) + t]dν(x, y) ≤ lim inf

k→∞
∫
X

[ht(x, ujk (x)) + t]dμ(x).
Since μ(X) <∞ and h ≤ ht (t > 0), we get∫

X×ℝ h(x, y) dν(x, y) ≤ ∫X×ℝ ht(x, y) dν(x, y) ≤ lim inf
k→∞
∫
X

ht(x, ujk (x)) dμ(x). (5.80)

From (5.80)–(5.79), for any ϵ > 0, we obtain∫
X×ℝ h(x, y) dν(x, y) ≤ lim inf

k→∞
∫
X

h(x, ujk (x)) dμ(x) + ϵ,
whence by the arbitrariness of ϵ inequality (5.75) follows. This completes the
proof.

Then we have the following result.

Proposition 5.4.10. Let X be a locally compact Hausdorff space with countable basis,
let μ ∈ R+f (X), and let F ⊆ L1(X) be bounded. Suppose that for some h ∈ C (X × ℝ),
the set Gh := {h ∘ u | u ∈ F } is bounded in L1(X) and uniformly integrable. Then for any{uj} ⊆ F , there exist a subsequence {ujk } ⊆ {uj} and a Youngmeasure ν ∈ Y+(X;ℝ), both
independent of h, such that h ∘ ujk ⇀ h∗ in L1(X) with

h∗(x) = ∫ℝ h(x, y) dνx(y) for μ-a. e. x ∈ X. (5.81)

Proof. Let {ujk } ⊆ {uj} be the subsequence and ν ∈ Y+(X;ℝ) the Young measure given
by Lemma 5.4.9. Since by assumptions Gh is bounded in L1(X) and uniformly inte-
grable, by theDunford–Pettis theorem it is relatively sequentially compact in theweak
topology of L1(X). Then we can extract a subsequence of {h ∘ ujk } ⊆ Gh, denoted again
h ∘ ujk for simplicity, which converges weakly to some h∗ ∈ L1(X), that is, for all f ∈
L∞(X),

lim
k→∞
∫
X

f (x) h(x, ujk (x)) dμ(x) = ∫
X

f (x) h∗(x) dμ(x). (5.82)

It remains to prove equality (5.81). To this purpose, recall that by Lemma 5.4.9 we
have both (5.75) and− ∫

X×ℝ h(x, y) dν(x, y) ≤ lim inf
k→∞
(−∫

X

h(x, ujk (x)) dμ(x)),
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that is, ∫
X×ℝ h(x, y) dν(x, y) ≥ lim sup

k→∞
(∫
X

h(x, ujk (x)) dμ(x)).
It follows that

lim sup
k→∞
∫
X

h(x, ujk (x)) dμ(x) ≤ ∫
X×ℝ h(x, y) dν(x, y) ≤ lim inf

k→∞
∫
X

h(x, ujk (x)) dμ(x),
and thus

lim
k→∞
∫
X

h(x, ujk (x)) dμ(x) = ∫
X×ℝ h(x, y) dν(x, y). (5.83)

Now observe that for any f ∈ L∞(X) and h ∈ C (X × ℝ), the function ĥ(x, y) :=
f (x)h(x, y) belongs to C (X × ℝ). Since by assumption the set Gh is bounded in L1(X),
the same holds for the set Gĥ := {ĥ ∘ u | u ∈ F }. Moreover, since by assumption Gh
is uniformly integrable, using Remark 2.8.3 and Proposition 2.8.6, it is easily checked
that Gĥ is uniformly integrable as well. Therefore we can replace h by ĥ in (5.83), thus
obtaining, for any f ∈ L∞(X),

lim
k→∞
∫
X

f (x) h(x, ujk (x)) dμ(x) = ∫
X

dμ(x)f (x)∫ℝ h(x, y) dνx(y). (5.84)

By the arbitrariness of f , from (5.82) and (5.84) we obtain (5.81). This completes the
proof.

Remark 5.4.2. (i) If F ⊆ L1(X) is bounded and uniformly integrable, the same holds
for the set Fk,f := {k|u| + f | u ∈ F } with k > 0 and f ∈ L1(X) (see Remark 2.8.3).
It plainly follows that the conclusions of Proposition 5.4.10 hold if: (a) F ⊆ L1(X) is
bounded and uniformly integrable; (b) h is a Carathéodory function such that y →
h(x, y) has at most linear growth, that is, there exist k > 0 and f ∈ L1(X) such thath(x, y) ≤ k |y| + f (x) for μ-a. e. x ∈ X and all y ∈ ℝ.

(ii) Let {uj} ⊆ L1(X) be bounded and uniformly integrable. Applying (i) with h(y) =
y shows that for some subsequence {ujk } ⊆ {uj}, we have ujk ⇀ u∗ in L1(X), where

u∗(x) := ∫ℝ y dνx(y) for μ-a. e. x ∈ X. (5.85)

The element u∗ is called the barycenter of the disintegration {νx}x∈X .
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Similarly, applying (i) with h(y) = y± := max{±y,0} shows that for some subse-
quence of {ujk } (not relabeled for simplicity), we have u±jk ⇀ u± in L1(X), where

u±(x) := ∫ℝ y± dνx(y) for μ-a. e. x ∈ X. (5.86)

Clearly,

u∗ = u+ − u− in L1(X). (5.87)

We finish this subsection by proving Proposition 5.4.8.

Proof of Proposition 5.4.8. Since uj  u strongly in L1(X), there exist ϵ > 0 and a sub-
sequence {ujk } ⊆ {uj} such that‖ujk − u‖L1(X) ≥ ϵ for all k ∈ ℕ. (5.88)

Since ujk ⇀ u, by the Dunford–Pettis theorem the subsequence {ujk } is bounded and
uniformly integrable. Therefore by Proposition 5.4.10 and Remark 5.4.2 there exist{ujl } ≡ {ujkl } ⊆ {ujk }, a subsequence {νujl } of associated Young measures, and a Young

measure ν such that νujl
n⇀ ν and ujl ⇀ u∗, u∗ ∈ L1(X) denoting the barycenter of the

disintegration {νx}x∈X (see (5.85)).
By contradiction suppose that for any subsequence {νujk } and for any Young mea-

sure τ ∈ Y+(X;ℝ) such that νujk
n⇀ τ, there exists a ℬ(X)-measurable function with

which τ is associated. In particular, this would hold for νujl and ν above, i. e., ν = νf
for some f . Then by (5.53) νx = (νf )x = δf (x) for μ-a. e. x ∈ X, and thus from (5.85) we
get u∗ = f . Since by assumption ujk ⇀ u in L1(X), by the uniqueness of the limit we get
that u = f . Moreover, since νujl n⇀ νf inY+(X;Y), by Proposition 5.4.1 (possibly up to a
subsequence, not relabeled) ujl → f = u μ-a. e. in X.

To sum up, by the absurd assumption there would exist a uniformly integrable
subsequence {ujl } ⊆ {ujk } such that ujl → u μ-a. e. in X. However, by the Vitali theorem
this would imply liml→∞ ‖ujl − u‖L1(X) = 0, which contradicts (5.88), from which the
result follows.

5.4.4 Biting lemma

If a sequence {uj} ⊆ L1(X) is bounded but not uniformly integrable, it is possible to
associate with it a uniformly integrable subsequence by removing sets of small mea-
sure. This is the content of the following theorem (see [78, Theorem 6.6] and [103, The-
orem 23]).
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Theorem 5.4.11 (Biting lemma). Let X be a locally compactHausdorff spacewith count-
able basis, let μ ∈ R+f (X), and let F ⊆ L1(X) be bounded. Then for any {uj} ⊆ F , there
exist {ujk } ⊆ {uj} and a nonincreasing sequence {Em} ⊆ ℬ(X) with μ(⋂∞m=1 Em) = 0 such
that the sequence {ujkχEck } is uniformly integrable.
Proof. Let {uj} ⊆ F , and let

η ≡ η({uj}) := limt→∞
sup
j∈ℕ ∫
{|uj|≥t}

|uj| dμ
be its modulus of uniform integrability (see Definition 2.8.2). If η({uj}) = 0, then by
Remark 2.8.4 the sequence {uj} is uniformly integrable, and hence choosing Em = 0 for
everym ∈ ℕ the result follows. If η({uj}) > 0, then set

gm(t) := sup
j≥m
∫
{|uj|≥t}

|uj| dμ (m ∈ ℕ, t ≥ 0). (5.89)

For everym∈ℕ, the function gm is nonincreasing, and thus there exists limt→∞ gm(t)=:
Lm ≥ 0, and gm ≥ gm+1 in [0,∞). Moreover,

lim
t→∞

gm(t) = η for allm ∈ ℕ. (5.90)

In fact, equality (5.90) withm = 1 holds by the very definition of η. For anym ≥ 2, set
ḡm(t) := max

j=1,...,m−1
∫
{|uj|≥t}

|uj| dμ,
and thus g1(t) = max{ḡm(t), gm(t)} (m ≥ 2, t ≥ 0). By Remark 2.8.2 and Proposition 2.8.6
limt→∞ ḡm(t) = 0 for any fixedm ≥ 2. Were also Lm = 0, we would have limt→∞ g1(t) =
η = 0, a contradiction. It follows that Lm > 0, and thus gm(t) > ḡm(t) for t sufficiently
large, whence g1(t) = gm(t). Therefore, for everym ∈ ℕ,

lim
t→∞

gm(t) = limt→∞
g1(t) = η.

By the above remarks there exists a nondecreasing diverging sequence {tk} ⊆(0,∞) such that
η ≤ gm(tk) ≤ g1(tk) < η + 1k for all k,m ∈ ℕ. (5.91)
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Fix k ∈ ℕ. Since by definition g1(tk) = supj∈ℕ ∫{|uj|≥tk} |uj| dμ, there exists jk ∈ ℕ such
that ∫

{|ujk |≥tk}

|ujk | dμ > g1(tk) − 1k
(observe that the sequence {jk} is nondecreasing and diverging). From this inequality
and the first inequality in (5.91) we get∫

{|ujk |≥tk}

|ujk | dμ > η − 1k for all k ∈ ℕ. (5.92)

Now set Fk := {x ∈ X | |ujk (x)| ≥ tk}. We shall prove the following:

Claim. The sequence {ujkχFck } is uniformly integrable.

Using the claim, we can complete the proof. By the Chebyshev inequality, for all
k ∈ ℕ, we have

tk μ(Fk) ≤ ∫
X

ujk (x) dμ ≤ supj∈ℕ ‖uj‖L1(X,ℝ) <∞,
and thus limk→∞ μ(Fk) = 0. Hence there exists a subsequence of {Fk} (not relabeled
for simplicity) such that μ(Fk) < 1

2k for all k ∈ ℕ. Define Em := ⋃∞k=m Fk (m ∈ ℕ). Then
for any m, we have Em ∈ ℬ(X), Em ⊇ Em+1, and μ(Em) ≤ ∑∞k=m 1

2k , thus μ(⋂∞m=1 Em) =
limm→∞ μ(Em) = 0. Moreover, since Ecm = ⋂∞k=m Fck ⊆ Fcm, for all k ∈ ℕ, we have|ujk | χFck ≥ |ujk | χEck ⇒ {|ujk | χFkc ≥ t} ⊇ {|ujk | χEkc ≥ t} (t ≥ 0). (5.93)

Since by the claim the sequence {ujkχFck } is uniformly integrable, by Proposition 2.8.6
and (5.93) we have

0 = lim
t→∞

sup
k∈ℕ ∫
{|ujk | χFck

≥t}

|ujk | χFck dμ ≥ limt→∞
sup
k∈ℕ ∫
{|ujk | χEck

≥t}

|ujk | χEck dμ.
Then by Proposition 2.8.6 the sequence {ujkχEck } is uniformly integrable, and thus the
conclusion follows.

It remains to prove the claim. To this purpose, observe that the function

t → ∫
{|ujk |≥t}

|ujk | χFck dμ = ∫
{t≤|ujk |<tk}

|ujk |dμ (k ∈ ℕ, t ≥ 0)
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is nonincreasing. The same holds for the map

hm(t) := sup
k≥m
∫
{|ujk |≥t}

|ujk | χFck dμ (m ∈ ℕ, t ≥ 0),
and thus there exists limt→∞ hm(t) =: L̃m. Since {|ujk | χFck ≥ t} ⊆ {|ujk | ≥ t} (t ≥ 0), it
follows that

sup
k∈ℕ ∫
{|ujk | χFck

≥t}

|ujk | χFck dμ ≤ h1(t).
Hence the claim follows by Proposition 2.8.6 if we show that L̃1 = 0.

To this purpose, for anym ≥ 2, set
h̄m(t) := max

k=1,...,m−1
∫
{|ujk |≥t}

|ujk | χFck dμ,
and thus h1(t) = max{h̄m(t), hm(t)} (m ≥ 2, t ≥ 0). Since h̄m ≤ ḡm in (0,∞) (see (5.89)),
we have limt→∞ h̄m(t) = 0. Plainly, this implies L̃1 = L̃m for any m ∈ ℕ. In particular,
for anym ∈ ℕ,

lim
l→∞

h1(tl) = liml→∞
hm(tl). (5.94)

By (5.91)–(5.92), for any fixed l ∈ ℕ, we have
hm(tl) = sup

k≥m
( ∫
{|ujk |≥tl}

|ujk | dμ − ∫
{|ujk |≥tk}

|ujk | dμ)
≤ sup

k≥m
(g1(tl) − ∫

{|ujk |≥tk}

|ujk | dμ)
≤ sup

k≥m
(η + 1

l
− η + 1

k
) = 1

l
+ 1
m
. (5.95)

From (5.94)–(5.95) we get

L̃1 = liml→∞
hm(tl) ≤ 1

m
for allm ∈ ℕ,

and thus L̃1 = 0 by the arbitrariness ofm ∈ ℕ. This proves the claim,whence the result
follows.

Remark 5.4.3. Let X be a locally compact Hausdorff space, and let μ ∈ R+f (X). In view
of the biting lemma, some authors (e. g., see [53]) say that a sequence {uj} ⊆ L1(X)
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converges in the biting sense in L1(X) (written uj
b⇀ u) if there exist u ∈ L1(X) and

a nonincreasing sequence {Em} ⊆ ℬ(X) such that μ(⋂∞m=1 Em) = 0 and ujkχEcm ⇀ uχEcm in
L1(X) for everym ∈ ℕ.

From the biting lemma we get the following result (see [92, Theorem 4.5] and [4,
Section 2]).

Theorem 5.4.12. Let X be a locally compact Hausdorff space with countable basis, let
μ ∈ R+f (X), and let {uj} ⊆ L1(X) be bounded. Then there exist {ujk } ⊆ {uj}, ν ∈ Y+(X;ℝ),
σ ∈ Rf (X), a nonincreasing sequence {Em} ⊆ ℬ(X) with μ(⋂∞m=1 Em) = 0, and F ∈ ℬ(X)
(Em, F possibly empty) with the following properties:
(i) ujkχEcm ⇀ u∗χEcm in L

1(X) for every fixed m ∈ ℕ, with u∗ given by (5.85) belonging to
L1(X);

(ii) ujkχEck ⇀ u∗ in L1(X), and ujkχEk ∗⇀ σ inRf (X);
(iii) ujkχFc → u∗χFc μ-a. e. in X, and ujkχFc\Em → u∗χFc\Em strongly in L

1(X) for every fixed
m ∈ ℕ;

(iv) η({ujk }) = η, where η({ujk }) and η ≡ η({uj}) are the moduli of uniform integrability of{ujk } and {uj}, respectively;
(v) for all u ∈ L1(X),

lim
k→∞
‖ujk − u‖L1(X) = η + ∫

X

dμ(x)∫ℝ y − u(x) dνx(y)= η + (u − u∗)χFcL1(X) + ∫
F

dμ(x)∫ℝ y − u(x) dνx(y). (5.96)

Here η ≡ η({uj}) is the modulus of uniform integrability of {uj}, and {νx}x∈X is the
disintegration of the Young measure ν ∈ Y+(X;ℝ) associated with the subsequence{ujk } ⊆ {uj} by Theorem 5.4.5.

Proof. (i)–(ii) Without loss of generality, we may assume that the sequence {uj} has
the properties stated in Theorem 5.4.5, Corollary 5.4.6, and Proposition 5.4.10 for some
Youngmeasure ν ∈ Y+(X;ℝ). Hence the function u∗ defined in (5.85) belongs to L1(X),
since {uj} is bounded in L1(X) (see Corollary 5.4.6 with h(x, y) = h(y) = y).

Let {ujk } ⊆ {uj} and {Em} ⊆ ℬ(X) be as in the proof of Theorem 5.4.11. Then there
exists ũ ∈ L1(X) such that (possibly up to a subsequence, not relabeled) ujkχEck ⇀
ũ in L1(X). Clearly, it is not restrictive to assume that the sequence {ujkχEck } has the
properties stated in Theorem 5.4.5, Corollary 5.4.6, and Proposition 5.4.10 for some ν̃ ∈
Y+(X;ℝ). Then from (5.85) we get

ũ(x) = ∫ℝ y dν̃x(y) for μ-a. e. x ∈ X.
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Moreover, by (5.74) for every h ∈ Cb(X × ℝ) ∩ L∞(X × ℝ), we have∫
X×ℝ h(x, y) dν̃(x, y) = ∫X dμ(x)∫ℝ h(x, y) dν̃x(y)= lim

k→∞
∫
X

h(x, ujkχEck (x)) dμ(x)= lim
k→∞
{∫
Eck

h(x, ujk (x)) dμ(x) + ∫
Ek

h(x,0) dμ(x)}
= lim

k→∞
∫
X

h(x, ujk (x)) dμ(x) + limk→∞
∫
Ek

[h(x,0) − h(x, ujk (x))] dμ(x)≤ ∫
X

dμ(x)∫ℝ h(x, y) dνx(y) + 2‖h‖∞ lim
k→∞

μ(Ek) = ∫
X×Y

h(x, y) dν(x, y),
since limk→∞ μ(Ek) = 0. By the arbitrariness of h in the above equality, we obtain that
ν = ν̃, and thus u∗ = ũ in L1(X). Then the first convergence in (ii) follows.

Fix m ∈ ℕ. Since the sequence {Ecm} is nondecreasing, Ecm ⊆ Eck for all k > m, and
thus ujkχEcm = ujkχEck μ-a.e. in Ecm. Hence claim (i) follows from the first convergence
in (ii).

To complete the proof of claim (ii), consider the sequence {σk} ⊆ Rf (X), σk(E) :=∫E ujkχEk dμ (E ∈ ℬ(X)). Since‖σk‖Rf (X) = |σk |(X) ≤ μ(X) supj∈ℕ ‖uj‖L1(X) <∞,
by theBanach–Alaoglu theorem there existsσ ∈ Rf (X) such that (possibly up to a sub-
sequence, not relabeled) σk

∗⇀ σ. Hence the claim follows.

(iii) Set F := {x ∈ X | νx ̸= δu∗(x)}. Then (possibly extracting a subsequence, not
relabeled) ujk → u∗ μ-a. e. in Fc by Proposition 5.4.1. Moreover, since for every fixed
m ∈ ℕ, the sequence {ujkχEcm } is uniformly integrable, the assumptions of the Vitali
theorem are satisfied in Fc ∩ Ecm = Fc \ Em. Hence ujkχFc\Em → u∗χFc\Em strongly in
L1(X), and thus claim (iii) follows.

(iv) Clearly, η({ujk }) ≤ η (see (2.62)). Hence the claimwill follow if we prove that for
any subsequence {ujl } ≡ {ujkl } ⊆ {ujk }, there holds η({ujl }) ≥ η. To this purpose, observe
that since {ujl } ⊆ {ujk }, by (5.92) we have∫

{|ujl |≥tl}

|ujl | dμ > η − 1l for all l ∈ ℕ. (5.97)
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On the other hand, the sequence {tl} is nondecreasing and diverging (see the proof of
Theorem 5.4.11), and thus for any t > 0, there exists t ̄l > t. Then from (5.97) we obtain∫

{|uj ̄l |≥t}
|uj ̄l | dμ > η − 1 ̄l for all l ∈ ℕ,

whence

sup
l∈ℕ ∫
{|ujl |≥t}

|ujl | dμ ≥ η.
Letting t →∞ in this inequality, we get η({ujl }) ≥ η, and thus the claim follows.
(v) It suffices to prove the first equality in (5.96), whence the second follows by the
definition of the set F. For any fixed u ∈ L1(X), set‖ujk − u‖L1(X) − (η + ∫

X

dμ(x)∫ℝ y − u(x) dνx(y)) = 4∑
k=1

Ik ,
where

I1 := − ∫
Em

dμ(x)∫ℝ y − u(x) dνx(y),
I2 := ‖ujk − u‖L1(Em ;ℝ) − ‖ujk ‖L1(Em ;ℝ),
I3 := ‖ujk − u‖L1(Ecm ;ℝ) − ∫

Ecm

dμ(x)∫ℝ y − u(x) dνx(y),
I4 := ‖ujk ‖L1(Em ;ℝ) − η.

Fix ϵ > 0. Concerning I1, by inequality (5.75) we have that∫
X×ℝ y − u(x) dν(x, y) ≤ lim inf

k→∞
∫
X

ujk (x) − u(x) dμ(x)≤ sup
j∈ℕ ‖uj‖L1(X) + ‖u‖L1(X) <∞.

Hence the function h(x, y) = |y − u(x)| belongs to L1(X × ℝ,ℬ(X) × ℬ(ℝ), ν). Since I1 =−∫X×ℝ χEm (x)|y − u(x)|dν(x, y) and χEm → 0 as m → ∞, for jk sufficiently large, by
the dominated convergence theorem we get |I1| < ϵ

4 for all m ∈ ℕ sufficiently large.
Similarly, for anym ∈ ℕ large enough, we have |I2| ≤ ‖u‖L1(Em ;ℝ) < ϵ

4 .
Fixm ∈ ℕ so large that |I1| + |I2| < ϵ

2 . Concerning I3, observe that‖ujk − u‖L1(Ecm ;ℝ) = ∫
Ecm

ujk (x) − u(x) dμ(x)
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= ∫
Ecm

dμ(x)∫ℝ y − u(x) d(νjk )x(x).
As shown above, the sequence {ujkχEcm } is uniformly integrable, and hence the same
holds for the sequence {|ujk (x) − u(x)| χEcm }. Then applying Proposition 5.4.10 with
h(x, y) = |y − u(x)|, we obtain that |I3| < ϵ

4 for all jk sufficiently large.
Let us now address I4. Recall from the proof of Theorem 5.4.11 that by definition

Em := ⋃∞k=m Fk, where Fk := {|ujk (x)| ≥ tk}, and thus Fk ⊆ Em for all k ≥ m. Then for any
fixedm ∈ ℕ, by (5.92) we have∫

Em

|ujk | dμ ≥ ∫
{|ujk |≥tk}

|ujk | dμ > η − 1k for all k ≥ m.
If m ≥ [ 4ϵ ] + 1, where [ 4ϵ ] denotes the largest integer not exceeding 4

ϵ , then from the
above inequality we get

‖ujk ‖L1(Em ;ℝ) ≥ η − ϵ4 for all k ≥ [4
ϵ
] + 1. (5.98)

On the other hand, by Lemma 2.8.7 η = limδ→0+ Hδ, where

Hδ := sup{∫
E

|uj| dμ | j ∈ ℕ, E ∈ ℬ such that μ(E) < δ}.
Let δ > 0 be so small that Hδ < η + ϵ

4 . Since limm→∞ μ(Em) = 0, we can choose m so
large that μ(Em) < δ, and thus for each jk, we obtain‖ujk ‖L1(Em ;ℝ) ≤ Hδ < η + ϵ4 . (5.99)

By such a choice ofm and jk from (5.98)–(5.99) we get |I4| < ϵ
4 .

To summarize, for any ϵ > 0, there exists k̄ ∈ ℕ such that for all k > k̄,‖ujk − u‖L1(X) − η − ∫
X

dμ(x)∫ℝ y − u(x) dνx(y) < ϵ.
This completes the proof.

Remark 5.4.4. Let {uj} ⊆ L1(X) be bounded. Then by Theorem 5.4.12(ii) there exists{ujk } ⊆ {uj} such that
ujk = ujkχEck + ujkχEk ∗⇀ u inRf (X), (5.100a)
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where

u(E) := ∫
E

u∗dμ + σ(E) for all E ∈ ℬ(X) (5.100b)

with u∗ ∈ L1(X) and σ ∈ Rf (X) given by the same theorem. By abuse of notation,
instead of (5.100), we often write ujk

∗⇀ u := u∗ + σ, and similarly in analogous cases.

Since the measure E → ∫E u∗ dμ (E ∈ ℬ(X)) is absolutely continuous with respect
to μ, a natural question is whether the measure σ is singular with respect to μ or not.
In general, the answer is negative, as the following example shows (see [4, 9]).

Example 5.4.6. Let X = (0, 1), μ = λ ⌞ X, and
uk = k∑

i=1
k χ( ik − i

k2
, ik )
.

It is easily seen that

uk
∗⇀ μ in Rf (X). (5.101)

On the other hand, since uk → 0 in measure, its associated sequence of Young mea-
sures {νk} converges narrowly to a Young measure ν ∈ Y+(X;ℝ) with disintegration
νx = δ0 for λ-a. e. x ∈ (0, 1). By (5.100) (possibly up to a subsequence, not relabeled)
we have

uk
∗⇀ u∗ + σ in Rf (X) (5.102)

withu∗ = 0. By (5.101)–(5.102)σ = μ, and thusσ is not singularwith respect toμ = λ⌞X.
Remark 5.4.5. Let {uj} ⊆ L1(X) be bounded, and thus the sameholds for the sequences{u±j }. Hence by Theorem 5.4.12(ii) there exist {ujk } ⊆ {uj}, ν ∈ Y+(X;ℝ), and σ± ∈ R+f (X)
such that

u±jk
∗⇀ u± + σ± inRf (X) (5.103)

with u± ∈ L1(X), u± ≥ 0, given by (5.86) (without loss of generality, we may assume
that {uj} and ν have the properties stated in Theorem 5.4.5, Corollary 5.4.6, and Propo-
sition 5.4.10). By (5.100)–(5.103) we get u∗ = u+ − u− (in agreement with (5.87)) and
σ = σ+ − σ−; however, the latter equality is not the Jordan decomposition of σ, since
σ± need not be mutually singular.

Remark 5.4.6. Let {uj} ⊆ L1(X) be bounded.
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(i) If {uj} is uniformly integrable, hence η = 0, then from each of its subsequences
we can extract a subsequence {ujk } for which equality (5.96) reads as

lim
k→∞
‖ujk − u‖L1(X) = (u − u∗)χFcL1(X) + ∫

F

dμ(x)∫ℝ y − u(x) dνx(y). (5.104)

If, moreover, uj → u μ-a. e. in X, by Proposition 5.4.1 u = u∗ and F = 0. Then we obtain
that ujk → u strongly in L1(X), whence plainly uj → u strongly in L1(X). The argument
can be inverted, in agreement with the Vitali theorem (see Theorem 2.8.10).

(ii) In particular, equality (5.104) holds if uj ⇀ u in L1(X). If uj  u strongly in
L1(X), then the argument used in (i) shows that some of its subsequences does not
converge μ-a. e. in X. Then using Proposition 5.4.1 gives Proposition 5.4.8 again.

(iii) Clearly, concentration phenomena depend on whether η > 0 or not. For in-
stance, if uj → u μ-a. e. in X, then u = u∗ and F = 0, and thus from (5.96) we get

lim
k→∞
ujk − u∗L1(X) = η. (5.105)

In agreement with the Vitali theorem, this equality shows that such a sequence
strongly converges to u∗ if and only if it is uniformly integrable. Observe that (5.105) is
satisfied by the sequence uk = kχ(0, 1k ) considered in Example 2.8.1(ii) with u∗ = 0 and‖uk‖L1(0,1) = η = 1 (k ∈ ℕ).
Proposition 5.4.13. Let X be a locally compact Hausdorff space with countable basis,
let μ ∈ R+f (X), and let {uj} ⊆ L1(X) be bounded. Let {ujk } ⊆ {uj}, ν ∈ Y+(X;ℝ), and
σ± ∈ R+f (X) be given by Remark 5.4.5. Let f ∈ C(ℝ), and let there exist

lim
y→±∞

f (y)
y
=: M±f ∈ ℝ. (5.106)

Then (possibly extracting a subsequence, not relabeled for simplicity) we have

f ∘ ujk ∗⇀ f ∗ +M+f σ+ −M−f σ− in Rf (X). (5.107)

Here

f ∗ ∈ L1(X), f ∗(x) := ∫ℝ f (y) dνx(y) for a. e. x ∈ X, (5.108)

{νx}x∈X being the disintegration of the Young measure ν ∈ Y+(X;ℝ) associated with the
subsequence {ujk } by Theorem 5.4.5.

Proof. By (5.106) there exists L > 0 such thatf (y) ≤ L (1 + |y|) for all y ∈ ℝ, (5.109)
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and for every ϵ > 0, there exists yϵ > 0 such that(M±f ∓ ϵ) y ≤ f (y) ≤ (M±f ± ϵ) y if ±y ≥ yϵ. (5.110)

Let l > yϵ be fixed, and let g0,l ∈ C(ℝ), g±,l ∈ C(ℝ) satisfy:
a) 0 ≤ g0,l(y) ≤ 1, 0 ≤ g±,l(y) ≤ 1, g−,l(y) + g0,l(y) + g+,l(y) = 1 for all y ∈ ℝ;
b) supp g−,l ⊆ (−∞,−l], supp g0,l ⊆ [−l − 1, l + 1], supp g+,l ⊆ [l,∞).
Then plainly(M+f − ϵ) y g+,l(y) + f (y) g0,l(y) + (M−f + ϵ) y g−,l(y) ≤ f (y)≤ (M+f + ϵ) y g+,l(y) + f (y) g0,l(y) + (M−f − ϵ) y g−,l(y) for all y ∈ ℝ. (5.111)

For μ-a. e. x ∈ X, define
G∗0,l(x) := ∫ℝ f (y) g0,l(y) dνx(y), G∗±,l(x) := ∫ℝ y g±,l(y) dνx(y), (5.112)

and thus G∗0,l ∈ L1(X), G∗±,l ∈ L1(X). Since liml→+∞ g±,l(y) = 0 for every y ∈ ℝ and|y g±,l(y)| ≤ |y| ∈ L1(ℝ,ℬ, νx) for μ-a. e. x ∈ X (this follows from (5.86) since u± ∈ L1(X)),
by the dominated convergence theorem we get that liml→+∞ G∗±,l(x) = 0 for μ-a. e.
x ∈ X. Moreover, |G∗±,l(x)| ≤ ∫ℝ y±dνx(y) for μ-a. e. x ∈ X. Since themap x → ∫ℝ y±dνx(y)
belongs to L1(X), by the dominated convergence theorem we obtain

lim
l→+∞

G∗±,l = 0 in L1(X). (5.113)

Similarly, since liml→+∞ g0,l(y) = 1 for every y ∈ ℝ and |f (y) g0,l(y)| ≤ |f (y)| for μ-a. e.
x ∈ X with f ∈ L1(ℝ,ℬ, νx) (this follows from (5.109) and (5.86) since u± ∈ L1(X)), we
have that liml→+∞ G∗0,l(x) = f ∗(x) for μ-a. e. x ∈ X, with f ∗ as in (5.108). On the other
hand, by inequality (5.109) |G∗0,l(x)| ≤ L∫ℝ(1 + |y|) dνx(y) for μ-a. e. x ∈ X. Since the
map x → ∫ℝ(1 + |y|)dνx(y) belongs to L1(X), by the dominated convergence theorem it
follows that

lim
l→+∞

G∗0,l = f ∗ in L1(X). (5.114)

We will prove that as k → ∞ (possibly extracting a subsequence, not relabeled),
we have

ujkg±,l(ujk ) ∗⇀ G∗±,l ± σ±, f (ujk ) g0,l(ujk ) n⇀ G∗0,l in Rf (X), (5.115){ujk } ⊆ {uj} and σ± ∈ R+f (X) being given by Remark 5.4.5.
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Using the convergence statements in (5.115), we can conclude the proof. Indeed,
by inequality (5.111) μ-a. e. in X we have(M−f + ϵ) ujk g−,l(ujk ) + f (ujk )g0,l(ujk ) + (M+f − ϵ) ujk g+,l(ujk ) ≤ f (ujk )≤ (M−f − ϵ) ujk g−,l(ujk ) + f (ujk )g0,l(ujk ) + (M+f + ϵ) ujk g+,l(ujk ).
By (5.115), letting k →∞ in the above inequality gives for every ζ ∈ Cc(X), ζ ≥ 0:(M−f + ϵ)(∬

X

G∗−,l ζ dμ − ⟨σ−,l, ζ ⟩) +∬
X

G∗0,l ζ dμ

+ (M+f − ϵ)(∬
X

G∗+,l ζ dμ + ⟨σ+, ζ ⟩) ≤ lim inf
k→∞
∬
X

f (ujk ) ζ dμ≤ lim sup
k→∞
∬
X

f (ujk ) ζ dμ ≤ (M−f − ϵ)(∬
X

G∗−,l ζ dμ − ⟨σ−,l, ζ ⟩)
+∬

X

G∗0,l ζ dμ + (M+f + ϵ)(∬
X

G∗+,l ζ dμ + ⟨σ−, ζ ⟩).
By (5.113)–(5.114), letting l →∞ in this inequality, we obtain(M+f − ϵ)⟨σ+,l, ζ ⟩ +∬

X

f ∗ζ dμ − (M−f + ϵ)⟨σ−, ζ ⟩≤ lim inf
k→∞
∬
X

f (ujk ) ζ dμ ≤ lim sup
k→∞
∬
X

f (ujk ) ζ dμ≤ (M+f + ϵ)⟨σ+, ζ ⟩ +∬
X

f ∗ζ dμ − (M−f − ϵ)⟨σ−, ζ ⟩ (5.116)

for all nonnegative ζ ∈ Cc(X) and ϵ > 0. By the arbitrariness of ϵ and ζ , from (5.116)
we obtain (5.107), and hence the result follows.

It remains to prove (5.115). We only prove the first statement with “+”, since the
other case is similar. To this purpose, observe that

y g+(y) − y+ ≤ y − y+ ≤ 0 for all y ∈ ℝ, y g+(y) − y+ = 0 if y ∈ (−∞,0] ∪ [l + 1,∞),
whence y g+(y) − y+ = y+ − y g+(y) ≤ |y| for all y ∈ ℝ.
Then by Proposition 5.4.10 and Remark 5.4.2, as k →∞, we have

ujkg+(ujk ) − u+jk ⇀ ∫ℝ [yg+(y) − y+]dνx(y) in L1(X)
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(possibly extracting a subsequence, not relabeled), and thus, in particular,

ujkg+(ujk ) − u+jk n⇀ ∫ℝ [yg+(y) − y+]dνx(y) inRf (X). (5.117)

On the other hand, by Remark 5.4.4, as k →∞,(ujk )+ ∗⇀ ∫ℝ y+dνx(y) + σ+ inRf (X). (5.118)

From (5.117)–(5.118) we obtain that ujkg+,l(ujk ) ∗⇀ G∗+,l + σ+.
Concerning the second statement in (5.115), observe that

sup
x∈X

f (ujk (x)) g0,l(ujk (x)) ≤ max
y∈[−l−1,l+1]

f (y) <∞.
Then the sequence {f (ujk )g0,l(ujk )} is bounded in L∞(X) and thus is bounded in L1(X)
and uniformly integrable (see Lemma 2.8.12). Then by Proposition 5.4.10 (possibly ex-
tracting a subsequence, not relabeled) we have

lim
k→∞
∫
X

f (ujk (x)) g0,l(ujk (x)) ζ (x) dμ(x) = ∫
X

dμ(x) ζ (x)∫ℝ f (y) g0,l(y) dνx(y)= ∫
X

G∗0,l(x) ζ (x) dμ(x)
for any ζ ∈ Cb(X). This completes the proof.

Let us finally prove the following consequence of Theorem 5.4.12, which improves
Proposition 2.8.8(iv).

Proposition 5.4.14. Let {uj} ⊆ L1(X) and u ∈ L1(X). Let uj → u μ-a. e. in X, and let

lim sup
j→∞
‖uj‖L1(X) ≤ ‖u‖L1(X). (5.119)

Then uj → u strongly in L1(X).
Proof. By contradiction let there exist ϵ > 0 and a subsequence {ujk } ⊆ {uj} such that‖ujk − u‖L1(X) ≥ ϵ for all k ∈ ℕ. (5.120)

By (5.119) there exists a subsequence of {ujk } (not relabeled for simplicity) bounded in
L1(X). Moreover, since ujk → u μ-a. e. in X, by Proposition 5.4.1 νujk

n⇀ νu with (νu)x =
δu(x) for μ-a. e. x ∈ X. Then by Theorem 5.4.12 there exists a further subsequence, again
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not relabeled, such that

lim sup
k→∞
‖ujk ‖L1(X) = η + ‖u‖L1(X) (5.121)

(see (5.96)). From (5.119) and (5.121) we get η = 0, and hence {ujk } is uniformly in-
tegrable. Then by the Vitali theorem ujk → u strongly in L1(X), a contradiction
with (5.120), whence the result follows.

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



|
Part II: Applications

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



Outline of Part II

In Chapter 6 we study the initial-boundary value problem

{{{
{{{
{

𝜕tu = Δϕ(u) in Ω × (0,T)
u = 0 on 𝜕Ω × (0,T)
u = u0 in Ω × {0},

where u0 is a finite Radon measure on Ω ⊆ ℝN (N ≥ 3), Ω open and bounded, and the
function ϕ is nondecreasing, with at most polynomial growth at infinity. We discuss
well-posedness of the problem and regularity results of Radon measure-valued solu-
tions, depending on the behaviour of ϕ at infinity and on properties of u0 related to
suitable Sobolev capacities.

Chapter 7 deals with the Cauchy problem for the scalar conservation law

{
𝜕tu + 𝜕x [ϕ(u)] = 0 in ℝ × (0,T)
u = u0 in ℝ × {0},

where u0 is a positive finite Radon measure on ℝ, whose singular part typically is a
finite superposition of Dirac masses, and ϕ is sublinear at infinity. We discuss well-
posedness of theproblemandqualitativeproperties of entropyRadonmeasure-valued
solutions, depending on u0 and on the behaviour of ϕ at infinity.

Finally, Chapter 8 is devoted to study the Sobolev regularization of the ill-posed
initial-boundary value problem

{{{
{{{
{

𝜕tu = ∇ ⋅ [ϕ(∇u)] in Ω × (0,T)
u = 0 in 𝜕Ω × (0,T)
u = u0 in Ω × {0}.

Here Ω ⊆ ℝN is open and bounded, u0 belongs to some Sobolev space and ϕ satisfies
suitable growth conditions at infinity. Studying the vanishing viscosity limit of the
regularization, the existence of a Youngmeasure-valued solution is proven. Moreover,
the limiting Young measure is characterized in terms of the properties of ϕ, and the
asymptotic behaviour of solutions for large times is investigated.

https://doi.org/10.1515/9783110556902-007
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6 Case study 1: quasilinear parabolic equations

6.1 Statement of the problem and preliminary results

In this chapter, we study the problem

{{{
{{{
{

𝜕tu = Δϕ(u) in Ω × (0,T) =: Q,
u = 0 on 𝜕Ω × (0,T) =: Γ,
u = u0 in Ω × {0},

(P)

where Ω ⊆ ℝN (N ≥ 3) is a bounded open set with smooth boundary 𝜕Ω, T > 0, u0 is
a finite Radon measure, and

u0 ∈ Rf (Ω). (A0)

As for the diffusion function ϕ : ℝ→ ℝ, we will use the following assumptions:

ϕ ∈ Cb(ℝ) ∩ C
∞(ℝ) is nondecreasing and nonconstant in ℝ, with ϕ(0) = 0; (A1)

ϕ ∈ W 1,∞(ℝ). (A2)

More general hypotheses will be used in Section 6.7.
By assumption (A1) there exist

lim
s→±∞ϕ(s) =: ϕ±∞ ∈ ℝ. (6.1)

If ϕ′ has a limit at ±∞, then this limit is zero, and thus problem (P) is degenerate
parabolic at ±∞.

Henceforth for any u ∈ Rf (Q), we denote by ur ∈ L1(Q) and us ∈ Rf (Q) the densi-
ties of the absolutely continuous part uac and, respectively, the singular part of uwith
respect to the Lebesgue measure (see Definition 1.8.7). Similar notations are used for
the space Rf (Ω), e. g., for u0. We will denote by u(⋅, t) (t ∈ (0,T)) the disintegration
{ut}t∈(0,T) of any measure u ∈ Rf (Q) (see Definition 5.2.2). “Almost everywhere” is al-
ways meant with respect to the Lebesgue measure. We set for shortness dt ≡ dλ(t),
dx ≡ dλN (x), and dx dt ≡ dλN+1(x, t). As usual, by ⟨⋅, ⋅⟩ we denote the duality map
betweenRf (Ω) and C0(Ω). By abuse of notation, we also set

⟨μ, ρ⟩ ≡ ∫
Ω

ρ dμ for ρ ∈ Cb(Ω).

6.1.1 Weak solutions

Let us introduce our main concept of solution.

https://doi.org/10.1515/9783110556902-008
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280 | 6 Case study 1: quasilinear parabolic equations

Definition 6.1.1. Let (A0)–(A1) hold. By a weak solution of problem (P) we mean any
u ∈ L∞w∗(0,T ;Rf (Ω)) such that:
(i) ϕ(ur) ∈ L2(0,T ;H1

0(Ω));
(ii) for every ζ ∈ C1([0,T];C1c(Ω)) such that ζ (⋅,T) = 0 in Ω, we have

T

∫
0

⟨u(⋅, t), 𝜕tζ (⋅, t)⟩ dt =∬
Q

∇ϕ(ur) ⋅ ∇ζ dxdt − ⟨u0, ζ (⋅,0)⟩. (6.2)

Set C1,2(Q) := {ζ ∈ C(Q) | ∃ 𝜕tζ , 𝜕xi ζ , 𝜕2xixj ζ ∈ C(Q) ∀ i, j = 1, . . . ,N}. A weaker notion
of solution is the following:

Definition 6.1.2. Let (A0)–(A1) hold. A very weak solution of (P) is any u ∈ L∞w∗(0,T ;
Rf (Ω)) such that

T

∫
0

⟨u(⋅, t), 𝜕tζ (⋅, t)⟩dt = −∬
Q

ϕ(ur)Δζ dxdt − ⟨u0, ζ (⋅,0)⟩ (6.3)

with ζ ∈ C1,2(Q) vanishing on Γ ∪ (Ω × {T}).
Remark 6.1.1. By standard approximation arguments we can choose in (6.2) test func-
tions ζ ∈ C1(Q) that vanish on Γ ∪ (Ω × {T}). Therefore every weak solution of (P) is a
very weak solution.

Claim (ii) of the following proposition explains how the initial condition in (P) is
satisfied.

Proposition 6.1.1. Let (A0)–(A1) hold, and let u be a very weak solution of problem (P).
Then:
(i) there exists a null set F∗ ⊆ (0,T) such that for every t ∈ (0,T) \F∗ and all ρ ∈ C2c(Ω),

⟨u(⋅, t), ρ⟩ − ⟨u0, ρ⟩ =
t

∫
0

ds∫
Ω

ϕ(ur(x, t))Δρ(x)dx, (6.4)

(ii) for every ρ ∈ C0(Ω), we have

ess lim
t→0+⟨u(⋅, t), ρ⟩ = ⟨u0, ρ⟩, (6.5a)

ess lim
t→t0⟨u(⋅, t), ρ⟩ = ⟨u(⋅, t0), ρ⟩ for a. e. t0 ∈ (0,T). (6.5b)
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Proof. (i)Wewill show that there exists a null set F∗ ⊆ (0,T) such that for all ρ ∈ Cb(Ω)
and t ∈ (0,T) \ F∗,

lim
q→∞(2q

t+ 1q
∫

t− 1q
⟨u(⋅, s), ρ⟩ − ⟨u(⋅, t), ρ⟩

 ds) = 0. (6.6)

Using (6.3) and (6.6), we can prove equality (6.4). Let ρ ∈ C2c(Ω) and t1 ∈ (0,T) \F
∗.

By standard regularization arguments we can choose ζ (x, t) = ρ(x)kq(t) in (6.3) with
q ∈ ℕ, q ≥ 1

T−t1 + 1, and
kq(t) := χ(0,t1](t) + [q(t1 − t) + 1]χ(t1 ,t1+ 1q ](t) (t ∈ [0,T]). (6.7)

Then from (6.3) we get

q

t1+ 1q
∫
t1

⟨u(⋅, t), ρ⟩dt − ⟨u0, ρ⟩ =∬
Q

ϕ(ur)Δρ(x) kq(t)dxdt.

Since limq→∞ kq(t) = χ(0,t1](t) for all t ∈ (0,T), letting q → ∞ in this equality and
using (6.6), we obtain

⟨u(⋅, t1), ρ⟩ − ⟨u0, ρ⟩ =
t1

∫
0

dt ∫
Ω

ϕ(ur(x, t))Δρ(x)dx,

that is, (6.4) by changing notations.
To prove equality (6.6), observe that since u ∈ L∞w∗ (0,T ;Rf (Ω)), by Theorem 5.2.1

there exists a null set F0 ⊆ (0,T) such that the disintegration u(⋅, t) ∈ Rf (Ω) is defined
for every t ∈ (0,T) \ F0; moreover, for any ρ ∈ Cb(Ω), the map t → ψρ(t) := ⟨u(⋅, t), ρ⟩
belongs to the space L∞(0,T). Let D ≡ {ρk} be a countable dense subset of Cb(Ω).
Since ψρk ∈ L

∞(0,T), there exists a null set Fk ⊆ (0,T) such that (6.6) holds for every
t ∈ (0,T) \ Fk (see Corollary 2.9.5(ii)). It is not restrictive to assume that F0 ⊆ Fk for
every k ∈ ℕ. Set F∗ := ⋃∞k=1 Fk . Then for all t ∈ (0,T) \ F∗ and k ∈ ℕ, we have

lim
q→∞(2q

t+ 1q
∫

t− 1q
⟨u(⋅, s), ρk⟩ − ⟨u(⋅, t), ρk⟩

 ds) = 0.

Then by the denseness of D in Cb(Ω) equality (6.6) plainly follows. This proves the
claim.

(ii) Let {tn} ⊆ (0,T) \ F∗ and tn → 0+ as n→∞. Since ϕ(ur) ∈ L∞(Q), writing (6.4)
with t = tn and letting n→∞ give

⟨u(⋅, tn), ρ⟩→ ⟨u0, ρ⟩ for all ρ ∈ C2c(Ω).
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Moreover, since u ∈ L∞w∗(0,T ;Rf (Ω)), we have supn∈ℕ ‖u(⋅, tn)‖Rf (Ω) <∞. Hence by the
Banach–Alaoglu theorem there exist μ0 ∈ Rf (Ω) and a subsequence {tnk } ⊆ {tn} such
that u(⋅, tnk )

∗
⇀ μ0 in Rf (Ω). By standard density arguments this implies that μ0 = u0

in Rf (Ω). Hence u(⋅, tn)
∗
⇀ u0 in Rf (Ω) along the whole sequence {tn}, and (6.5a)

follows from the arbitrariness of {tn}. Applying the same argument to the equality

⟨u(⋅, t), ρ⟩ − ⟨u(⋅, t0), ρ⟩ =
t

∫
t0

ds∫
Ω

ϕ(ur(x, t))Δρ(x)dx,

which is an elementary consequence of (6.4) for a. e. t0, t ∈ (0,T), we prove (6.5b).
Hence the conclusion follows.

Remark 6.1.2. Relying on Proposition 6.1.1, it is easily seen that the map t → u(⋅, t)
admits a representative defined for all t ∈ [0,T], such that u(⋅,0) = u0 and for every
ρ ∈ C0(Ω),

lim
t→0+⟨u(⋅, t), ρ⟩ = ⟨u0, ρ⟩, (6.8a)

lim
t→t0⟨u(⋅, t), ρ⟩ = ⟨u(⋅, t0), ρ⟩ for all t0 ∈ [0,T]. (6.8b)

Hereafter we refer to this continuous representative whenever properties of the map
t → u(⋅, t) are stated for every t in some subinterval of [0,T]. In doing so, equality (6.4)
holds for every t ∈ (0,T), and equalities (6.5) are replaced by (6.8).

6.1.2 Weak entropy solutions

Let us introduce for future purposes another type of solutions to problem (P). Let (A1)
be satisfied. For every nondecreasing f ∈ C(ℝ), set

Fϕ(y) :=
y

∫
0

f (ϕ(z))dz (y ∈ ℝ), (6.9)

M±Fϕ := lim
y→±∞ Fϕ(y)

y
= lim

y→±∞ f (ϕ(y)) ∈ ℝ. (6.10)

Definition 6.1.3. Let (A0)–(A1) hold. An entropy solution of problem (P) is any weak
solution u of (P) that satisfies the entropy inequalities:

∬
Q

{Fϕ(ur)𝜕tζ − f (ϕ(ur))∇ϕ(ur) ⋅ ∇ζ } dxdt
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+M+Fϕ T

∫
0

⟨u+s (⋅, t), 𝜕tζ (⋅, t)⟩dt −M−Fϕ T

∫
0

⟨u−s (⋅, t), 𝜕tζ (⋅, t)⟩dt
≥ −∫

Ω

Fϕ(u0r)ζ (x,0) dx −M
+
Fϕ⟨u
+
0s, ζ (⋅,0)⟩ +M

−
Fϕ⟨u
−
0s, ζ (⋅,0)⟩ (6.11)

for any nondecreasing f ∈ C(ℝ) and ζ ∈ C1([0,T];C1c(Ω)) such that ζ ≥ 0 and ζ (⋅,T) = 0
in Ω.

It is easily seen that all terms in (6.11) are well defined, and thus Definition 6.1.3 is
well posed.

6.2 Persistence

A remarkable property of very weak solutions of (P) is that their 2-concentrated part
(see Definition 1.8.10 and Subsection 3.3.3) is persistent in time:

Theorem 6.2.1. Let (A0)–(A1) hold, and let u be a very weak solution of problem (P).
Then for every t ∈ (0,T), we have

[u(⋅, t)]c,2 = [u0]c,2 in Rf (Ω). (6.12)

Remark 6.2.1. Let u be a very weak solution of (P). In view of Theorem 6.2.1, for all
t ∈ (0,T), u(⋅, t) is 2-diffuse if and only if the same holds for u0.

Proof of Theorem 6.2.1. Let K ⊆ Ω be any compact set such that C2(K) = 0. By Propo-
sition 3.4.10 there exists a sequence {fn} ⊆ C∞c (Ω) such that: (i) fn(Ω) ⊆ [0, 1], and
fn|K = 1; and (ii) ‖Δfn‖L1(Ω) → 0 as n→∞. In particular, since

∫
Ω

|∇fn|
2 dx = −∫

Ω

fn Δfn dx ≤ ∫
Ω

|Δfn| dx,

we have limn→∞ ‖fn‖H1
0(Ω) = 0.

Let U ⊆ Ω be open and such that U ⊇ K. By Lemma A.9 and standard regulariza-
tion arguments there exists ρU ∈ C∞c (U) such that ρU (U) ⊆ [0, 1] and ρU |K = 1. For all
t ∈ (0,T] and n ∈ ℕ, from equality (6.4) we get (see (3.80)–(3.82))

⟨[u(⋅, t)]c,2, fn ρU⟩ − ⟨[u0]c,2, fn ρU⟩
=

t

∫
0

ds∫
Ω

ϕ(ur(x, t))Δ(fn ρU )(x)dx + ⟨[u0]d,2, fn ρU⟩ − ⟨[u(⋅, t)]d,2, fn ρU⟩ (6.13)

Since ‖fn‖H1
0(Ω) → 0, we have fn ρU

∗
⇀ 0 in L∞(Ω) and fn ρU → 0 in H1

0(Ω). More-
over, by Theorem 3.4.15 both [u0]d,2 and [u(⋅, t)]d,2 (t ∈ (0,T)) belong to L1(Ω)+H−1(Ω).
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It follows that

lim
n→∞⟨[u(⋅, t)]d,2, fn ρU⟩ = lim

n→∞⟨[u0]d,2, fn ρU⟩ = 0 (t ∈ (0,T)). (6.14)

On the other hand, since ϕ(ur) ∈ L∞(Q), ‖Δfn‖L1(Ω) → 0 and ‖fn‖H1
0(Ω) → 0, we get

lim
n→∞ t

∫
0

∫
Ω

ϕ(ur)Δ(fn ρU ) dxds = 0. (6.15)

Now observe that since χK ≤ fn ρU ≤ χU for all n ∈ ℕ, for all n ∈ ℕ, we have

[u0]
±
c,2(K) ≤ ⟨[u0]±c,2, fn ρU⟩ ≤ [u0]±c,2(U), (6.16a)

and

[u(⋅, t)]±c,2(K) ≤ ⟨[u(⋅, t)]±c,2, fn ρU⟩ ≤ [u(⋅, t)]±c,2(U) (t ∈ (0,T)). (6.16b)

Moreover, for any t ∈ (0,T),

lim sup
n→∞ ⟨[u(⋅, t)]c,2, fn ρU⟩ ≤ lim sup

n→∞ ⟨[u0]c,2, fn ρU⟩, (6.17)

since by (6.14)–(6.15) the right-hand side of (6.13) vanishes as n → ∞. From (6.16)–
(6.17), for any t ∈ (0,T), we obtain

[u(⋅, t)]+c,2(K) − [u(⋅, t)]−c,2(U) ≤ ⟨[u(⋅, t)]c,2, fn ρU⟩
≤ lim sup

n→∞ ⟨[u(⋅, t)]c,2, fn ρU⟩ ≤ lim sup
n→∞ ⟨[u0]c,2, fn ρU⟩

≤ lim sup
n→∞ ⟨[u0]+c,2, fn ρU⟩ − lim inf

n→∞ ⟨[u0]−c,2, fn ρU⟩ ≤ [u0]+c,2(U) − [u0]−c,2(K). (6.18)

It is similarly seen that

[u0]
+
c,2(K) − [u0]−c,2(U) ≤ [u(⋅, t)]+c,2(U) − [u(⋅, t)]−c,2(K) (t ∈ (0,T)). (6.19)

By inequalities (6.18)–(6.19) and the regularity of the measures [u0]±c,2 and [u(⋅, t)]±c,2
(see Lemma 1.3.2) we have that

[u(⋅, t)]+c,2(K) + [u0]−c,2(K) ≤ [u0]+c,2(K) + [u(⋅, t)]−c,2(K)
and

[u0]
+
c,2(K) + [u(⋅, t)]−c,2(K) ≤ [u(⋅, t)]+c,2(K) + [u0]−c,2(K).
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By these inequalities, for all t ∈ (0,T), we have

[u(⋅, t)]c,2(K) = [u0]c,2(K) for every 2-null compact K ⊆ Ω,

whence, by the arbitrariness of K and the regularity of [u0]c,2, [u(⋅, t)]c,2,
[u(⋅, t)]c,2(E) = [u0]c,2(E) for every 2-null E ∈ ℬ(Ω). (6.20)

On the other hand, by definition of 2-concentrated measure, for every t ∈ (0,T),
there exists a 2-null set E1(t) ∈ ℬ(Ω) such that [u(⋅, t)]c,2 = [u(⋅, t)]c,2 ⌞ E1(t). Similarly,
there exists a 2-null setE2 ∈ ℬ(Ω) such that [u0]c,2 = [u0]c,2⌞E2. Then by equality (6.20)
we have

[u(⋅, t)]c,2(E1(t) \ E2) = [u0]c,2(E1(t) \ E2) = 0,
[u0]c,2(E2 \ E1(t)) = [u(⋅, t)]c,2(E2 \ E1(t)) = 0.

Therefore both [u(⋅, t)]c,2 and [u0]c,2 are concentrated on the set F(t) := E1(t) ∩ E2.
Clearly, for any E ∈ ℬ(Ω), we have C2(E ∩ F(t)) = C2(F(t)) = 0. Then by (6.20) we
have

[u(⋅, t)]c,2(E) = [u(⋅, t)]c,2(E ∩ F(t)) = [u0]c,2(E ∩ F(t)) = [u0]c,2(E)
for every E ∈ ℬ(Ω). Hence the conclusion follows.

6.3 Uniqueness

The persistence property in Theorem 6.2.1 plays an important role when proving the
uniqueness of weak solutions to problem (P), since it completely characterizes their
2-concentrated part. On the other hand, since Definition 6.1.1 does not provide any
prescription about the 2-diffuse part [us(⋅, t)]d,2 (see equalities (3.80)–(3.82)), unsur-
prisingly, weak solutions of (P) are not a uniqueness class of the problem (see Re-
mark 6.3.2). This makes the following definition important.

Definition 6.3.1. Let (A0)–(A1) hold. Aweak solution u of (P) satisfies the compatibility
conditions, if for a. e. t ∈ (0,T),

[u±s (⋅, t)]d,2 = [u±s (⋅, t)]d,2 ⌞ 𝒮t±, (6.21a)

where

𝒮t± := {x ∈ Ω | ϕ±(ur(x, t)) = ±ϕ±∞}. (6.21b)
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In this definition and henceforth, every statement where the symbols ± and ∓ ap-
pear must be read as a couple of independent statements, which correspond to the
upper and lower choice of signs, respectively.

Remark 6.3.1. By Definition 6.1.1(i) ϕ(ur(⋅, t)) ∈ H1
0(Ω) for a. e. t ∈ (0,T), and hence

ϕ(ur(⋅, t)) has a 2-quasi continuous representative v(⋅, t) ∈ H1
0(Ω) (see Definition 2.1.7)

In (6.21b), we identify the functions ϕ±(ur(⋅, t)) with their 2-quasi-continuous repre-
sentatives v±(⋅, t) ∈ H1

0(Ω), which satisfy 0 ≤ v± ≤ ±ϕ±∞ 2-quasi everywhere in ℝ.
In (6.21a), we always identify the sets St± with S̃t± := {x ∈ Ω | v±(x, t) = ±ϕ±∞}. Since
v±(⋅, t) is defined up to 2-null sets, the same holds for the sets S̃t±.

The uniqueness for problem (P) is the content of the following theorem, which
makes use of the compatibility conditions in Definition 6.3.1.

Theorem 6.3.1. Let (A0)–(A1) hold. Then for every u0 ∈ Rf (Ω), there exists at most one
weak solution of problem (P) that satisfies the compatibility conditions (6.21a).

Remark 6.3.2. The existence of weak solutions of (P) satisfying the compatibility con-
ditionswill beprovenbelow (seeTheorem6.4.2). On theotherhand, it is easy to exhibit
weak solutions of (P) that do not satisfy the compatibility conditions and thus cannot
be those given by Theorem 6.4.2. Therefore weak solutions are not a uniqueness class
for problem (P).

Let (A0) hold with u0s ̸= 0. Define u ∈ L∞w∗(0,T ;Rf (Ω)) by

u(⋅, t) := w(⋅, t) + u0s for a. e. t ∈ (0,T), (6.22)

where w ∈ L∞(0,T ; L1(Ω)) is the unique weak solution of (P) with initial data u0r (the
existence and uniqueness ofw is ensured by Theorem 6.4.3). Plainly, u is a weak solu-
tion of (P) with ur = w a. e. in Q and singular part us(⋅, t) = u0s constant in time, and
thus u satisfies the compatibility conditions if and only if

[u±0s]d,2 = [u±0s]d,2 ⌞ {x ∈ Ω | ϕ±(w(x, t)) = ±ϕ±∞} for a. e. t ∈ (0,T).

Examples where these equalities are not satisfied are easily given, and thus the claim
follows.

Proof of Theorem 6.3.1. Let u1 and u2 be two weak solutions of problem (P). For short-
ness, set u1r ≡ (u1)r and u1s ≡ (u1)s (and similarly for u2). Let u1 and u2 satisfy the
compatibility conditions

[u±is(⋅, t)]d,2 = [u±is(⋅, t)]d,2 ⌞ 𝒮t
i,±, (6.23)

where

𝒮t
i,± := {x ∈ Ω | ϕ(uir)(x, t) = ϕ±∞} (i = 1, 2).
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From (6.2) we immediately get

T

∫
0

⟨u1(⋅, t) − u2(⋅, t), 𝜕tζ (⋅, t)⟩dt = ∫∫
Q

∇[ϕ(u1r) − ϕ(u2r)] ⋅ ∇ζ dxdt (6.24)

for every ζ ∈ C1([0,T];C1c(Ω)) such that ζ (⋅,T) = 0 in Ω. Moreover, by equality (6.12),
for all t ∈ (0,T), we have

[u1(⋅, t)]c,2 = [u0]c,2 = [u2(⋅, t)]c,2 in Rf (Ω). (6.25)

By (6.24)–(6.25) we get

T

∫
0

⟨[u1(⋅, t)]d,2 − [u2(⋅, t)]d,2, 𝜕tζ (⋅, t)⟩dt =∬
Q

∇[ϕ(u1r) − ϕ(u2r)] ⋅ ∇ζ dxdt (6.26)

for every ζ ∈ C1([0,T];C1c(Ω)) such that ζ (⋅,T) = 0 in Ω.
By standard regularization arguments this equality also holds for any ζ ∈

C([0,T];H1
0(Ω)) with 𝜕tζ ∈ L∞(Q) ∩ L2(0,T ;H1

0(Ω)) and ζ (⋅,T) = 0 a. e. in Ω. This
allows us to choose in (6.26) the test function

ζ (x, t) := −
T

∫
t

[ϕ(u1r) − ϕ(u2r)](x, s) ds ((x, t) ∈ Q),

thus obtaining

T

∫
0

⟨[u1(⋅, t)]d,2 − [u2(⋅, t)]d,2, [ϕ(u1r) − ϕ(u2r)](⋅, t)⟩dt
= −∫∫

Q

∇[ϕ(u1r) − ϕ(u2r)] ⋅ (
T

∫
t

∇[ϕ(u1r) − ϕ(u2r)](x, s) ds) dxdt. (6.27)

By equality (3.81) we have

T

∫
0

⟨[u1(⋅, t)]d,2 − [u2(⋅, t)]d,2, [ϕ(u1r) − ϕ(u2r)](⋅, t)⟩dt
=

T

∫
0

⟨[u1s(⋅, t)]d,2 − [u2s(⋅, t)]d,2, [ϕ(u1r) − ϕ(u2r)](⋅, t)⟩dt
+ ∫∫

Q

(u1r − u2r) [ϕ(u1r) − ϕ(u2r)] dxdt, (6.28)
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whereas, by the compatibility conditions (6.23),

T

∫
0

⟨[u1s(⋅, t)]d,2 − [u2s(⋅, t)]d,2, [ϕ(u1r) − ϕ(u2r)](⋅, t)⟩dt
=

T

∫
0

⟨[u+1s(⋅, t)]d,2, ϕ+∞ − ϕ(u2r)(⋅, t)⟩dt
−

T

∫
0

⟨[u−1s(⋅, t)]d,2, ϕ−∞ − ϕ(u2r)(⋅, t)⟩dt
−

T

∫
0

⟨[u+2s(⋅, t)]d,2, ϕ(u1r)(⋅, t) − ϕ+∞⟩dt
+

T

∫
0

⟨[u−2s(⋅, t)]d,2, ϕ(u1r)(⋅, t) − ϕ−∞⟩dt ≥ 0. (6.29)

By (6.28)–(6.29) we obtain

T

∫
0

⟨[u1(⋅, t)]d,2 − [u2(⋅, t)]d,2, [ϕ(u1r) − ϕ(u2r)](⋅, t)⟩dt
≥ ∫∫

Q

(u1r − u2r) [ϕ(u1r) − ϕ(u2r)] dxdt. (6.30)

Concerning the right-hand side of (6.27), we have that

− ∫∫
Q

∇[ϕ(u1r) − ϕ(u2r)] ⋅ (
T

∫
t

∇[ϕ(u1r) − ϕ(u2r)](x, s) ds) dxdt

=
1
2
∫∫

Q

d
dt



T

∫
t

∇[ϕ(u1r) − ϕ(u2r)](x, s) ds


2

dxdt

= −
1
2
∫
Ω



T

∫
0

∇[ϕ(u1r) − ϕ(u2r)](x, s) ds


2

dx. (6.31)

From (6.27) and (6.30)–(6.31) we get

∫∫
Q

(u1r − u2r) [ϕ(u1r) − ϕ(u2r)] dxdt ≤ −
1
2
∫
Ω



T

∫
0

∇[ϕ(u1r) − ϕ(u2r)](x, t) dt


2

dx ≤ 0,
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whence

ϕ(u1r(x, t)) = ϕ(u2r(x, t)) for a. e. (x, t) ∈ Q. (6.32)

Now let us choose in equality (6.24) ζ (x, t) = ρ(x)kq(t) with ρ ∈ C2c(Ω) and kq as
in (6.7). Arguing as in the proof of (6.4) and using equality (6.32), for a. e. t1 ∈ (0,T),
we obtain

⟨u1(⋅, t1) − u2(⋅, t1), ρ⟩ = 0.

By the arbitrariness of ρ this implies u1(⋅, t1) = u2(⋅, t1) in Rf (Ω) for a. e. t1 ∈ (0,T).
Hence the result follows.

6.4 Existence and regularity results

6.4.1 Existence

Theproof of our first existence result is constructive. In fact,we exhibit aweak solution
of (P) by studying the sequence {un} of solutions of the approximating problems

{{{
{{{
{

𝜕tun = Δϕn(un) in Q,
un = 0 on Γ,
un(⋅,0) = u0n in Ω

(Pn)

(see Section 6.5). Here ϕn(z) := ϕ(z) +
z
n (z ∈ ℝ), and u0n is a suitable regularization of

the initial measure u0 (see (6.48)–(6.49)).

Theorem 6.4.1. Let (A0)–(A2) hold. Then there exists a weak solution of problem (P),
which is obtained as a limiting point in the weak* topology of L∞w∗(0,T ;Rf (Ω)) of the
sequence of solutions to problems (Pn). Moreover:
(i) for a. e. 0 < t1 < t2 < T,

u±s (⋅, t2) ≤ u±s (⋅, t1) ≤ u±0s in Rf (Ω). (6.33)

(ii) u ∈ L∞(0,T ; L1(Ω)) if u0 ∈ L1(Ω).
In view of Theorem 6.3.1, for the well-posedness of (P), it is important to prove the

existence of weak solutions satisfying the compatibility conditions. This is ensured by
the following result.

Theorem 6.4.2. Let (A0)–(A2) hold. Then weak solutions of problem (P) given by Theo-
rem 6.4.1 satisfy the compatibility conditions.
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By Theorems 6.3.1, 6.4.1, and 6.4.2 we have the following result.

Theorem 6.4.3. Let (A0)–(A2) hold. Then for every u0 ∈ Rf (Ω), there exists a unique
weak solution u of problem (P) satisfying the compatibility conditions. Moreover, claims
(i)–(ii) of Theorem 6.4.1 hold.

Weak solutions of (P) constructed in the proof of Theorem 6.4.1 have several im-
portant properties (in particular, by Theorem 6.4.2 they satisfy the compatibility con-
ditions). This motivates the following definition.

Definition 6.4.1. Weak solutions of problem (P) given by Theorem 6.4.1 are called con-
structed solutions.

Another interesting property of constructed solutions is as follows:

Proposition 6.4.4. Let (A0)–(A2) hold. Then every constructed solution of problem (P)
is an entropy solution.

6.4.2 Regularity

An interesting feature of entropy solutions is that their singular parts can neither ap-
pear spontaneously nor increase in time:

Theorem 6.4.5. Let (A0)–(A1) hold. Assume that

there exists L0 ≥ 0 such that ϕ′(s) > 0 if |s| > L0. (6.34)

Let u be an entropy solution of problem (P). Then for a. e. t1, t2 ∈ (0,T) such that t1 < t2,
inequality (6.33) holds.

Proof. Let u be an entropy solution u of problem (P). Let us first prove that for all ρ ∈
C1c(Ω), ρ ≥ 0, and h ∈ C

1([0,T]) such that h(T) = 0, we have

T

∫
0

⟨u±s (⋅, t), ρ⟩h′(t) dt ≥ −h(0) ⟨u±0s, ρ⟩. (6.35)

We only prove (6.35) with “+”. Sinceϕ is strictly increasing in [L0,+∞) (see (6.34)), by
standard approximation results we can choose Fϕ(y) = [y − m]+ with m > L0 in (6.11)
(this corresponds to choosing f = χ[ϕ(m),+∞) in (6.9)). ThenM+Fϕ = 1 andM−Fϕ = 0, and
thus we get

∬
Q

{[ur −m]
+ζt − χ[m,+∞)(ur)∇ϕ(ur) ⋅ ∇ζ } dxdt + T

∫
0

⟨u+s (⋅, t), ζt(⋅, t)⟩ dt
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≥ −∫
Ω

[u0r −m]
+ζ (x,0) dx − ⟨u+0s, ζ (⋅,0)⟩ (6.36)

for every ζ ∈ C1([0,T];C1c(Ω)) such that ζ ≥ 0 and ζ (⋅,T) = 0 in Ω. Choosing in this
inequality ζ (x, t) = ρ(x)h(t) with ρ, h as above and lettingm →∞ give (6.35). Now fix
t1 ∈ (0,T). For any p ∈ ℕ large enough, set

hp(t) := χ[0,t1](t) + p(t1 + 1p − t)χ(t1 ,t1+ 1p ](t) (t ∈ [0,T]).
Choosing h = hp in (6.35) gives, for all nonnegative ρ ∈ C1c(Ω),

p

t1+ 1p
∫
t1

⟨u±s (⋅, t), ρ⟩ dt ≤ ⟨u±0s, ρ⟩. (6.37)

Since by Definition 6.1.3 the mapping t → ⟨u±s (⋅, t), ρ⟩ belongs to L∞(0,T), by Corol-
lary 2.9.5(i) we have

lim
p→∞ p

t1+ 1p
∫
t1

⟨u±s (⋅, t), ρ⟩ dt = ⟨u±s (⋅, t1), ρ⟩.
Then letting p → ∞ in (6.37), for a. e. t1 ∈ (0,T), we get ⟨u±s (⋅, t1), ρ⟩ ≤ ⟨u±0s, ρ⟩ for all
ρ ∈ C1c(Ω), ρ ≥ 0, whence the second inequality in (6.33) plainly follows. The first is
similarly proven with the following choice of h = hp in (6.35):

hp(t) := p(t − t1)χ[t1 ,t1+ 1p ](t) + χ(t1+ 1p ,t2)(t) + p(t2 + 1p − t)χ[t2 ,t2+ 1p ](t) (t ∈ [0,T]).
Hence the result follows.

Theorem 6.4.5 can be regarded as a regularity result for entropy solutions. In par-
ticular, in view of Proposition 6.4.4, it applies to constructed solutions. Remarkably,
constructed solutions of (P) display a number of further regularizing effects. To dis-
cuss this point, we state the following definition.

Definition 6.4.2. A weak solution u of problem (P) undergoes an Rf -L1 regularizing
effect, if there exists a waiting time τ ∈ [0,T) such that u(⋅, t) ∈ L1(Ω) for all t ∈ (τ,T).
If τ = 0, then instantaneousRf -L1 regularization occurs.

Sufficient conditions for the occurrence ofRf -L1 regularizing effects are provided
by the following proposition, which relies on a suitable convergence rate of ϕ to the
saturation values ϕ±∞ (see [87, Proposition 3.8] for the proof).
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Proposition 6.4.6. Let (A0)–(A2) hold. Let there exist s± ∈ (0, 1) and M± ∈ (0,ϕ±∞]
such that

± ϕ±∞ ∓ ϕ(y) ≥ M±
(1 + |y|)s±

for ±y ≥ 0. (6.38)

Moreover, let u±0 ∈ R+d,p(Ω) with p ∈ (1, 2
1+s± ), and let u be the unique weak solution of

(P) satisfying the compatibility conditions. Then u± ∈ L∞(0,T ; L1(Ω)).
On the contrary, the following two propositions point out cases where instan-

taneous Rf -L1 regularization does not occur. This happens either for suitable u0 ∈
Rd,2(Ω) if ϕ is strictly increasing or for any constructed solution in the most singular
case whereϕ is constant near ±∞. We refer the reader to [87, Propositions 3.9, 3.10] for
the proofs.

Proposition 6.4.7. Let (A0)–(A2) hold with strictly increasing ϕ. Then there exists u0 ∈
R+d,2(Ω), with u0s ̸= 0, such that for the unique weak solution of (P) satisfying the com-
patibility conditions, we have

ess lim
t→0+us(⋅, t) − u0sRf (Ω) = 0. (6.39)

Proposition 6.4.8. Let (A0)–(A2) hold, and let u be the unique weak solution of (P) sat-
isfying the compatibility conditions. Let there exist ±c± ≥ 0 and ±d± ≥ 0 such that
ϕ(y) = c± if ±y ≥ ±d±. Then for every open subset Ω̃ ⋐ Ω, we have

ess lim
t→0+u±s (⋅, t) − u±0sRf (Ω̃) = 0. (6.40)

6.5 Proof of existence results: the approximating problems (Pn)

6.5.1 Approximation of the initial data

Let (A0) hold. To address problem (P), we need a proper approximation of the initial
data u0. To this purpose, we will use the following technical lemma.

Lemma 6.5.1. For any μ ∈ R+f (Ω), there exists a sequence {(αn, βn, γn)} ⊆ [C∞c (Ω)]3,
αn ≥ 0, βn ≥ 0, γn ≥ 0 in Ω, with the following properties:

αn → μr in L1(Ω), (6.41a)

αn
∗
⇀ μac, βn

∗
⇀ [μs]d,2, γn

∗
⇀ μc,2 inRf (Ω), (6.41b)

∫
Ω

βn fn ρ dx → ⟨[μs]d,2, fρ⟩ (6.41c)

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.5 Proof of existence results: the approximating problems (Pn) | 293

for all ρ ∈ Cc(Ω) and all {fn} ⊆ H1(Ω) ∩ L∞(Ω) such that supn∈ℕ ‖fn‖∞ < ∞ and fn ⇀ f
in H1(Ω).

Set μn := αn + βn + γn ∈ C∞c (Ω). Then αn, βn, and γn can be chosen so that
‖μn‖L1(Ω) ≤ ‖μ‖Rf (Ω), ‖μn‖L∞(Ω) ≤ M ‖μ‖Rf (Ω) 4√n for some M > 0, (6.41d)

μn → μr a.e. in Ω, μn
∗
⇀ μ in Rf (Ω). (6.41e)

Proof. Set μ̃ := μ̃r + μ̃s ∈ R+f (ℝN ),
μ̃r(x) := μr(x)χΩ(x) for x ∈ ℝN , μ̃s(E) := μs(Ω ∩ E) for E ∈ ℬd.

By definition μ̃ = μ̃ ⌞ Ω, and thus μ̃(E) = μ(E) for every E ∈ ℬd ∩ Ω. Consider the
sequence {ζn} ⊆ C∞c (ℝN ) defined by

ζn(x) :=
ndθ

∫ℝN ζ (x) dx
ζ (nθx) (x ∈ ℝN), (6.42)

where ζ ∈ C∞c (ℝN ) is a standard mollifier, and θ > 0 is to be chosen. For any n ∈ ℕ,
set

α̃n := μ̃ac ∗ ζn, β̃n := [μ̃s]d,2 ∗ ζn, γ̃n := μ̃c,2 ∗ ζn, μ̃n := α̃n + β̃n + γ̃n = μ̃ ∗ ζn

(see (3.82) with p = 2 and m = 1). Let Ωn be open, Ωn ⋐ Ωn+1 ⋐ Ω for every n ∈ ℕ,
⋃∞n=1 Ωn = Ω, and let ηn ∈ C∞c (Ωn+1) be such that 0 ≤ ηn ≤ 1 and ηn = 1 in Ωn (n ∈ ℕ).
Let us prove that the functions

αn := α̃nηn, βn := β̃nηn, γn := γ̃nηn, μn := μ̃nηn = αn + βn + γn (n ∈ ℕ)

(which clearly are nonnegative in Ω) have the properties stated in (6.41).
The convergence statements in (6.41a)–(6.41b) follow by standard convolution re-

sults. To prove (6.41c), fix ρ ∈ C1c(Ω). Set Fn := (fnρ) ∗ ζn and choose n so large that
supp ρ ⊆ Ωn and supp Fn ⊆ Ω. Recalling that ηn = 1 in Ωn, we get

⟨[μs]d,2, Fn⟩ = ⟨[μ̃s]d,2 ∗ ζn, ηnfnρ⟩ = ∫
Ω

βnfnρ dx. (6.43)

Now observe that by the Banach–Alaoglu theorem fn
∗
⇀ f in L∞(Ω), since by as-

sumption {fn} is bounded in L∞(Ω). Plainly, it follows that Fn ∗⇀ fρ in L∞(Ω). Indeed,
for every ζ ∈ L1(Ω), we have

lim
n→∞∫

Ω

Fn ζ dx = limn→∞∫
Ω

(fnρ) ∗ ζn ζ dx
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= lim
n→∞∫

Ω

ζ (x)(∫
Ω

fn(y)ρ(y) ζn(x − y) dy)dx

= lim
n→∞∫

Ω

fn(y)ρ(y) dy∫
Ω

ζ (x) ζn(x − y)dx = ∫
Ω

f ρ ζ dx. (6.44)

By (6.44)we also have thatFn ⇀ fρ in L2(Ω). Since fnρ ∈ H1
0(Ω), wehaveFn ∈ H

1
0(Ω)

for every n sufficiently large, with weak gradient ∇Fn = [∇(fnρ)] ∗ ζn. Then we plainly
get that Fn ⇀ fρ in H1

0(Ω), since by assumption fn ⇀ f in H1(Ω).
Since [μs]d,2 belongs to L1(Ω) + H−1(Ω) (see Theorem 3.4.15), by the above conver-

gence results we obtain

lim
n→∞⟨[μs]d,2, Fn⟩ = ⟨[μs]d,2, fρ⟩.

Then letting n → ∞ in (6.43) gives (6.41c) for all ρ ∈ C1c(Ω), whence by standard ap-
proximation results the claim follows.

The first inequality in (6.41d) follows from the very definition of μn, whereas the
second follows by choosing θ ∈ (0, 14N ] in (6.42):

‖μn‖L∞(Ω) ≤ CnNθ‖μ‖Rf (Ω) ≤ C 4√n ‖μ‖Rf (Ω).
Let us address (6.41e). Set

[μs]n := βn + γn ≡ (μ̃s ∗ ζn)ηn, (6.45)

and observe that by the Radon–Nikodým theorem for a. e. x ∈ Ω, we have

lim
n→∞ αn(x) = μr(x), (6.46)

lim sup
n→∞ [μs]n(x) ≤ 1

∫ℝN ζ (x)dx
lim
n→∞ nNθμ̃s(B(x, 1nθ )) = 0 (6.47)

(see the second inequality in (2.98), Corollary 2.9.6). Since

μn = αn + [μs]n,

combining (6.46) and (6.47) gives

μn(x)→ μr(x) for a. e. x ∈ Ω,

and the proof of the first convergence in (6.41e) is completed (see also (6.41b) for the
second convergence in (6.41e)).

For any u0 ∈ Rf (Ω), consider the Jordan decomposition u0 = u+0 − u−0, where u±0 ∈
R+f (Ω) and u+0 ⊥ u−0. Let u±0r ∈ L1(Ω) be the density of [u±0]ac, and let δ± := [u±0]d,2,
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γ± := [u±0]c,2 be, respectively, the diffuse and concentrated parts of u±0 with respect to
the 2-capacity. Then by (3.80)–(3.82) we have u±0 = γ± + δ±. Let

[u±0]n := γ±n + δ±n ≥ 0, u0n := [u
+
0]n − [u

−
0]n, (6.48)

with {γ±n } ⊆ C∞c (Ω), {δ±n } ⊆ C∞c (Ω), γ±n ≥ 0, δ±n ≥ 0 such that
[u
±
0]n
L1(Ω) ≤ u±0ℳ(Ω), [u±0]nL∞(Ω) ≤ Mu±0ℳ(Ω) 4√n, (6.49a)

[u±0]n → u±0r a. e. in Ω, (6.49b)

[u±0]n ∗⇀ u±0 inℳ(Ω), (6.49c)

δ±n ∗⇀ [u±0]d,2, γ±n ∗⇀ [u±0]c,2 inℳ(Ω), (6.49d)

∫
Ω

δ±n fn ρ dx → ⟨[u±0]d,2, fρ⟩ (6.49e)

for all ρ ∈ Cc(Ω) and {fn} ⊆ H1(Ω) ∩ L∞(Ω) such that supn∈ℕ ‖fn‖L∞(Ω) <∞ and fn ⇀ f
in H1(Ω). Hereafter we always assume that the initial data u0n of (Pn) have proper-
ties (6.49).

Remark 6.5.1. For any u0 ∈ Rf (Ω), consider the decomposition (see (3.82) with p = 2
andm = 1)

u±0 = [u±0]ac + [u±0s]d,2 + [u±0]c,2. (6.50)

Applying Lemma 6.5.1 to μ = u±0, we get a sequence {(α±n , β±n , γ±n )} ⊆ [C∞c (Ω)]3 satisfy-
ing (6.41). Then, setting δ±n := α±n + β±n , properties (6.49) follow at once.

Lemma 6.5.2. Let {u0n} satisfy (6.48) and (6.49a)–(6.49c). Let f ∈ C(ℝ) satisfy (5.106).
Then there exists a subsequence of {u0n} (not relabeled) such that

f ∘ u0n
∗
⇀ f ∘ u0r +M

+
f u
+
0s −M

−
f u
−
0s in Rf (Ω). (6.51)

In particular, u0n
∗
⇀ u0 inRf (Ω).

Proof. Let {νn} ⊆ Y+(Ω;ℝ) be the sequence of Young measures associated with {u0n}.
By the first inequality in (6.49a) the sequence {u0n} is bounded in L1(Ω), and thus by
Theorem 5.4.5 there exists a Young measure ν ∈ Y+(Ω;ℝ) such that (possibly extract-
ing a subsequence, not relabeled) νn → ν narrowly. By the convergence in (6.49b),
Proposition 5.4.1, and equality (5.53) the disintegration {νx}x∈Ω of ν satisfies νx = δu0r(x)
for a. e. x ∈ Ω. It follows that

∫
ℝ

y±dνx(y) = u±0r(x) for a. e. x ∈ Ω.
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Therefore, arguing as in Remark 5.4.4, there exist a subsequence of {u0n} (not rela-
beled) and σ± ∈ R+f (Ω) such that

[u0n]
± ∗⇀ u±0r + σ± inRf (Ω). (6.52)

By the definition of u0n (see (6.48)) and (6.49c) we have u0n
∗
⇀ u+0 − u−0 = u0, whereas

by (6.52) u0n
∗
⇀ u0r + σ with σ := σ+ − σ−.

Now observe that by the second equality in (6.48) [u0n]± ≤ [u±0]n for all n ∈ ℕ,
whence by (6.49b)–(6.49c) and (6.52) we get σ± ≤ u±0s in Rf (Ω). This implies that σ±
are singular with respect to the Lebesgue measure and mutually singular. Hence the
equalityu0 = u0r+σ and theuniqueness of Lebesguedecomposition imply thatσ = u0s
and σ± = u±0s. Then as in the proof of Proposition 5.4.13 the result follows.
6.5.2 A priori estimates

By classical results, for any n ∈ ℕ, there exists a unique classical solution un ∈ C∞(Q)
of problem (Pn) (e. g., see [63]); moreover, for any n ∈ ℕ, we have

‖un‖L∞(0,T ;L1(Ω)) ≤ ‖u0n‖L1(Ω), ‖un‖L∞(Q) ≤ ‖u0n‖L∞(Ω). (6.53)

We need a priori estimates for both sequences {un} and {ϕ(un)}. This is the content
of the following statements.

Lemma 6.5.3. Let (A0)–(A1) hold, and let {un} be the sequence of solutions of problems
(Pn). Then for all n ∈ ℕ, we have

‖un‖L∞(0,T ;L1(Ω)) ≤ ‖u0‖Rf (Ω), (6.54)

‖un‖L∞(Q) ≤ M‖u0‖Rf (Ω) 4√n, (6.55)

whence

ϕn(un) − ϕ(un)
L∞(Q) ≤ ‖un‖L∞(Q)n

≤ M‖u0‖Rf (Ω) n−3/4, (6.56)

∬
Q

∇[ϕ(un)]

2dxdt + 1

n
∬
Q

ϕ′(un)|∇un|2 dxdt ≤ 2 ‖ϕ‖∞‖u0‖Rf (Ω). (6.57)

Proof. Inequalities (6.49a) and (6.53) immediately give (6.54) and (6.55), whence (6.56)
follows by the very definition ofϕn (recall thatϕn(z) := ϕ(z)+

z
n , z ∈ ℝ). To prove (6.57),

we multiply the first equation of (Pn) by ϕ(un) and integrate over Q. Using (6.54), we
obtain

∬
Q

∇[ϕ(un)]

2 dxdt + 1

n
∬
Q

ϕ′(un)|∇un|2 dxdt = −∬
Q

ϕ(un) 𝜕tun dxdt
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= ∫
Ω

dx
u0 n(x)
∫
0

ϕ(y) dy − ∫
Ω

dx
un(x,T)
∫
0

ϕ(y) dy

≤ ‖ϕ‖∞[‖u0n‖L1(Ω) + un(⋅,T)L1(Ω)] ≤ 2 ‖ϕ‖∞‖u0‖Rf (Ω).
Hence the result follows.

For every h ∈ C(ℝ), set

H(y) :=
y

∫
0

h(z) dz (y ∈ ℝ). (6.58)

Lemma 6.5.4. Let (A1) be satisfied, and let {un} be the sequence of solutions of prob-
lems (Pn).
(i) For all h ∈ Lip(ℝ), ζ ∈ C1([0,T];C1c(Ω)), and t ∈ (0,T], we have

∫
Ω

H(un(x, t)) ζ (x, t) dx

+∬
Qt

h′(un)∇un ⋅ ∇ϕn(un) ζ dxds −∬
Qt

H(un) 𝜕sζ dxds

= ∫
Ω

H(u0n(x)) ζ (x,0) dx −∬
Qt

h(un)∇ϕn(un) ⋅ ∇ζ dxds, (6.59)

where Qt := Ω × (0, t). If h(0) = 0, then (6.59) holds for all ζ ∈ C1(Q).
(ii) For every nondecreasing h ∈ C(ℝ), ζ ∈ C1([0,T];C1c(Ω)), ζ ≥ 0, and t ∈ (0,T],

∬
Qt

H(un) 𝜕sζ dxds −∬
Qt

h(un)∇ϕn(un) ⋅ ∇ζ dxds

≥ ∫
Ω

H(un(x, t)) ζ (x, t) dx − ∫
Ω

H(u0n(x)) ζ (x,0) dx. (6.60)

If h(0) = 0, then (6.60) holds for all ζ ∈ C1(Q), ζ ≥ 0.

Proof. Since un is smooth, equality (6.59) plainly follows bymultiplying the first equa-
tion in (Pn) by h(un) ζ with h ∈ Lip(ℝ), h(0) = 0, and ζ ∈ C1(Q), and integrating overQ.
Moreover, the condition h(0) = 0 can be omitted if ζ ∈ C1([0,T];C1c(Ω)). Hence claim (i)
follows.

Since ∇un ⋅ ∇ϕn(un) ≥ 0 for all n ∈ ℕ, from (6.59) we get (6.60) for every nonde-
creasing h ∈ Lip(ℝ). Since every nondecreasing h ∈ C(ℝ) can be locally approximated
by a sequence of nondecreasing functions in Lip(ℝ), the conclusion follows.
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Remark 6.5.2. Let (A0)–(A1) hold, let f ∈ C(ℝ)benondecreasing, and letFϕ bedefined
by (6.9). Setting g = f ∘ ϕ in (6.60), we obtain the inequality

∫
Ω

Fϕ(un(x, t2)) ζ (x, t2) dx − ∫
Ω

Fϕ(un(x, t1)) ζ (x, t1) dx

≤
t2

∫
t1

∫
Ω

{Fϕ(un) 𝜕tζ − f (ϕ(un)∇[ϕn(un)] ⋅ ∇ζ } dxdt (6.61)

for all t1, t2 ∈ [0,T], t1 < t2, and ζ ∈ C1([0,T];C1c(Ω)), ζ ≥ 0.

Lemma 6.5.5. Let (A0)–(A1) hold, and let {un} be the sequence of solutions of prob-
lems (Pn). Then:
(i) there exists C1 = C1(λN (Ω), ‖u0‖Rf (Ω)) > 0 such that for all n ∈ ℕ,

∬
Q

|∇un|
2 dxdt ≤ C1 n

3
2 , (6.62)

(ii) there exists C2 = C2(λN (Ω), ‖ϕ‖∞, ‖u0‖Rf (Ω)) > 0 such that for all n ∈ ℕ,
∬
Q

∇[ϕn(un)]

2dxdt ≤ C2. (6.63)

Proof. Multiplying 𝜕tun = Δϕn(un) by
un
n and integrating over Q plainly give

1
2n
∫
Ω

u2n(x,T) dx −
1
2n
∫
Ω

u20n(x)dx ≤ −∬
Q

|∇un|2

n2
dxdt.

From this inequality and the second inequality in (6.49a) we get

∬
Q

|∇un|2

n2
dxdt ≤ 1

2n
∫
Ω

u20ndx ≤
M2λN (Ω)
2√n
‖u0‖

2
Rf (Ω) =: C1√n .

This proves (6.62). Combining (6.57) and (6.62) plainly gives (6.63), and thus the result
follows.

Lemma 6.5.6. Let (A1) be satisfied, and let {un} be the sequence of solutions of prob-
lems (Pn). Let h ∈ Lip(ℝ) be bounded and nondecreasing with h(0) = 0, and let H be the
function in (6.58). Then for any ρ ∈ C1c(Ω), there exists Mh,ρ > 0 such that for all n ∈ ℕ,

T

∫
0


d
dt
∫
Ω

H(un(x, t)) ρ dx

dt ≤ Mh,ρ. (6.64)
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Proof. For any ρ ∈ C1c(Ω), set

Sn,ρ(t) := ∫
Ω

H(un(x, t)) ρ(x) dx (t ∈ (0,T)).

Choosing in (6.59) ζ (x, t) = β(t)ρ(x) with β ∈ C1c(0,T) shows that Sn,ρ has the weak
derivative

S′n,ρ(t) = −∫
Ω

h(un(x, t))∇ϕn(un(x, t)) ⋅ ∇ρ(x) dx

− ∫
Ω

h′(un(x, t))∇un(x, t) ⋅ ∇ϕn(un(x, t)) ρ(x) dx (6.65)

for a. e. t ∈ (0,T). By (6.63) we have that

∬
Q

h(un)∇ϕn(un) ⋅ ∇ρ
 dxdt

≤ ‖h‖L∞(ℝ)‖ρ‖C1(Ω)∬
Q

∇ϕn(un)
 dxdt ≤ C2‖h‖L∞(ℝ)‖ρ‖C1(Ω). (6.66)

Let us estimate the second term in the right-hand side of (6.65). From (6.59) with
ζ = 1 and t = T, using the first inequality in (6.49a), we plainly get

0 ≤∬
Q

h′(un)∇un ⋅ ∇ϕn(un) dxdt

≤ ∫
Ω

H(u0n) dx ≤ ‖h‖L∞(ℝ)‖u0n‖L1(Ω) ≤ ‖h‖L∞(ℝ)‖u0‖Rf (Ω) (6.67)

(observe that H(un(⋅,T)) ≥ 0 a. e. in Ω, since h is nondecreasing and h(0) = 0). By
(6.65)–(6.67) we have S′n,ρ ∈ L1(0,T) and

T

∫
0

S
′
n,ρ(t) dt ≤ (C2‖ρ‖C1(Ω) + ‖ρ‖C(Ω)‖u0‖Rf (Ω))‖h‖L∞(ℝ) T . (6.68)

Hence the result follows.

Lemma 6.5.7. Let (A0)–(A1) hold, and let {un} be the sequence of solutions of prob-
lems (Pn). Then:
(i) for every t ∈ (0,T),

∫
Ω

∇[ϕn(un)]

2(x, s) dx ≤ C2

t
for all s ∈ (t,T] and n ∈ ℕ (6.69)

with C2 > 0 given by Lemma 6.5.5(ii);

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



300 | 6 Case study 1: quasilinear parabolic equations

(ii) for all t ∈ (0,T) and n ∈ ℕ,

T

∫
t

∫
Ω

[ϕ′n(un)](𝜕τun)2dxdτ ≤ C22t . (6.70a)

Moreover, if (A2) is satisfied, then for every t ∈ (0,T),

T

∫
t

∫
Ω

(𝜕τ[ϕn(un)])
2dxdτ ≤ C2(1 + ‖ϕ

′‖∞)
2t

. (6.70b)

Proof. (i) For any fixed t ∈ (0,T), set h(s) := s
t χ[0,t)(s) + χ[t,T)(s) (s ∈ (t,T]). Multiplying

𝜕tun = Δϕn(un) by h(t)𝜕t[ϕn(un)] and integrating overQs = Ω×(0, s), for every s ∈ (t,T),
we obtain

0 ≤∬
Qs

h(τ)ϕ′n(un)(𝜕τun)2 dxdτ
= −

s

∫
0

dτ h(τ)∫
Ω

𝜕τ{∇[ϕn(un)]} ⋅ ∇[ϕn(un)] dx

= −
1
2

s

∫
0

h(τ) d
dτ
(∫
Ω

∇[ϕn(un)]

2 dx) dτ

= −
1
2
∫
Ω

∇[ϕn(un)]

2(x, s) dx + 1

2t

t

∫
0

dτ∫
Ω

∇[ϕn(un)]

2 dx. (6.71)

Using (6.63), from the above inequality we get (6.69). Hence claim (i) follows.

(ii) From (6.71) with s = T we get

T

∫
t

∫
Ω

[ϕ′n(un)](𝜕τun)2dxdτ ≤∬
Q

h(τ)ϕ′n(un)(𝜕τun)2 dxdτ
≤

1
2t

t

∫
0

dτ∫
Ω

∇[ϕn(un)]

2 dx ≤ 1

2t
∬
Q

∇[ϕn(un)]

2dxdt ≤ C2

2t
.

This proves (6.70a), whence (6.70b) plainly follows. The proof is complete.

Remark 6.5.3. Since

∇[ϕn(un)]

2 = (ϕ′(un) + 1n)2|∇un|2 ≥ (ϕ′(un))2|∇un|2 = ∇ϕ(un)2,
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from (6.69), for all 0 < t < s ≤ T, we obtain

∫
Ω

∇ϕ(un)

2(x, s) dx ≤ C2

t
. (6.72)

Similarly, since |𝜕τϕ(un)|2 ≤ |𝜕τ[ϕn(un)]|2, from (6.70b) we get

T

∫
t

∫
Ω

(𝜕τ[ϕ(un)])
2dxdτ ≤ C2(1 + ‖ϕ

′‖∞)
2t

. (6.73)

Lemma 6.5.8. Let (A0)–(A1) hold, and let {un} be the sequence of solutions of prob-
lems (Pn). Then:
(i) for all k > 0 and n ∈ ℕ, we have

∬{±un>k} ∇ϕ(un)2 dxdt ≤ ‖u±0‖Rf (Ω) [±ϕ±∞ ∓ ϕ(±k)], (6.74)

(ii) there exists M0 > 0 such that for all k > 0 and n ∈ ℕ,

∬{±un>k} ∇ϕn(un)

2 dxdt ≤ M0[±ϕ±∞ ∓ ϕ(±k) + n−1/2]. (6.75)

Proof. We only prove (6.74) with the choice of the upper signs, since the other case is
similar. For any k > 0, set

F(y) := χ(k,+∞)(y) y∫
k

[ϕ(z) − ϕ(k)] dz (y ∈ ℝ).

Thus F′ ∈ W 1,∞
loc (ℝ), and

0 ≤ F(y) ≤ [ϕ+∞ − ϕ(k)](y − k) χ(k,+∞)(y). (6.76)

Multiplying 𝜕tun = Δϕn(un) by F′(un) and integrating in Q, by (6.76) and (6.49a) we
obtain

∬{un>k} ∇ϕ(un)2 + 1n ∬{un>k} ϕ′(un)|∇un|2 dxdt
= ∫

Ω

F(u0n(x)) dx − ∫
Ω

F(un(x,T)) dx

≤ [ϕ+∞ − ϕ(k)] ∫{u0n≥k}[u0n(x) − k] dx ≤ ‖u+0‖Rf (Ω)[ϕ+∞ − ϕ(k)].
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Then (6.74) follows. Concerning (6.75), by (6.74) and (6.62) we have that

∬{±un>k} ∇ϕn(un)

2 dxdt ≤ 2 ∬{±un>k}(∇ϕ(un)2 + |∇un|

2

n2
)dxdt

≤ 2‖u0‖Rf (Ω) [±ϕ±∞ ∓ ϕ(±k)] + 2C1n−1/2
with C1 > 0 as in Lemma 6.5.5(i). SettingM0 := 2max{‖u0‖Rf (Ω),C1}, we obtain (6.75),
and thus the result follows.

6.6 Proof of existence results: letting n → ∞

The proof of Theorem 6.4.1 relies on the following result, whose proof requires several
steps.

Theorem 6.6.1. Let (A0)–(A2) hold, and let {un} be the sequence of solutions of prob-
lems (Pn). Then there exists a subsequence {unk } ⊆ {un} with the following properties:
(i) there exists u ∈ L∞w∗(0,T ;Rf (Ω)) such that ϕ(ur) ∈ L2(0,T ;H1

0(Ω)) and

unk
∗
⇀ u in L∞w∗(0,T ;Rf (Ω)), (6.77)

(ii) the sequence {νnk } ⊆ Y+(Q;ℝ) of the Young measures associated with {unk } con-
verges narrowly to a Young measure ν ∈ Y+(Q;ℝ), and for a. e. (x, t) ∈ Q, we have

ur(x, t) = ∫
ℝ

y dν(x,t)(y), (6.78)

supp ν(x,t) ⊆ ϕ−1({ϕ(ur(x, t))}), (6.79)

where {ν(x,t)}(x,t)∈Q is the disintegration of ν;
(iii) for every f ∈ C(ℝ) satisfying (5.106) and for all ζ ∈ C([0,T];Cc(Ω)), we have

lim
k→∞∬

Q

f (unk ) ζ dxdt

=∬
Q

f ∗ζ dxdt +M+f T

∫
0

⟨u+s (⋅, t), ζ (⋅, t)⟩dt −M−f T

∫
0

⟨u−s (⋅, t), ζ (⋅, t)⟩dt, (6.80)

where f ∗ ∈ L∞(0,T ; L1(Ω)) is defined by
f ∗(x, t) := ∫

ℝ

f (y) dν(x,t)(y) for a. e. (x, t) ∈ Q. (6.81)

To prove Theorem 6.6.1, we need the following result.
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Proposition 6.6.2. Let (A0)–(A2) hold, and let {un} be the sequence of solutions of
problems (Pn). Then there exist a subsequence {unk } ⊆ {un} and a Young measure
ν ∈ Y+(Q;ℝ) such that:

ϕ(unk )
∗
⇀ ϕ∗ in L∞(Q), ϕ(unk )⇀ ϕ∗ in L2(Q), (6.82)

where

ϕ∗(x, t) := ∫
ℝ

ϕ(y) dν(x,t)(y) ∈ L2(0,T ;H1
0(Ω)), (6.83)

and {ν(x,t)}(x,t)∈Q is the disintegration of ν;
∇ϕ(unk ), ∇ϕnk (unk )⇀ ∇ϕ

∗ in [L2(Q)]N ; (6.84)

for any τ ∈ (0,T),

𝜕t[ϕ(unk )], 𝜕t[ϕnk (unk )]⇀ 𝜕tϕ
∗ in L2(Ω × (τ,T)), (6.85)

ϕ(unk ), ϕnk (unk )⇀ ϕ∗ in H1(Ω × (τ,T)), (6.86)

ϕ(unk ), ϕnk (unk )→ ϕ∗ a. e. in Q; (6.87)

and for a. e. t ∈ (0,T),

ϕ(unk (⋅, t)), ϕnk (unk (⋅, t))→ ϕ∗(⋅, t) a. e. in Ω, (6.88)

ϕ(unk (⋅, t))⇀ ϕ∗(⋅, t) in H1
0(Ω). (6.89)

Proof. Since the sequence {ϕ(un)} is bounded in L∞(Q), by the Banach–Alaoglu the-
orem there exist a subsequence {unk } ⊆ {un} and v ∈ L∞(Q) such that ϕ(unk )

∗
⇀ v in

L∞(Q). At the same time the sequence {un} is bounded in L1(Q), and hence its associ-
ated sequence of Young measures {νn} is relatively compact in the narrow topology of
Youngmeasures overQ×ℝ, and the existence of the limiting Youngmeasure ν follows
at once. Moreover, since Q is bounded, the subsequence {ϕ(unk )} is bounded in L

1(Q)
and uniformly integrable (see Lemma 2.8.12). Hence by Proposition 5.4.10 there exist
a subsequence of {ϕ(unk )} (not relabeled) such that ϕ(unk ) ⇀ ϕ∗ in L1(Q) with ϕ∗ as
in (6.83). Then v = ϕ∗, and (6.82) follows.

Concerning (6.84), observe that by (6.57) and (6.63) there exist two subsequences
{∇ϕ(unk )} and {∇ϕnk (unk )} weakly convergent in [L2(Q)]N . By (6.82) we obtain that
∇ϕ(unk )⇀ ∇ϕ

∗ in [L2(Q)]N . Since
ϕnk (unk ) − ϕ(unk )

 =
|unk |
nk
→ 0 in L1(Q) (6.90)

(see (6.56)), we also get the second convergence in (6.84). By (6.84) the second conver-
gence in (6.82) and the semicontinuity of the norm we have ϕ∗ ∈ L2(0,T ;H1

0(Ω)).
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Let us prove (6.85). By the second convergence in (6.82), for all ζ ∈ C1c(Q), we have

lim
k→∞∬

Q

𝜕t[ϕ(unk )] ζ dxdt = − limk→∞∬
Q

ϕ(unk ) 𝜕tζ dxdt = −∬
Q

ϕ∗ 𝜕tζ dxdt. (6.91)

On the other hand, by (6.70b) for any τ ∈ (0,T), the sequence {𝜕t[ϕ(unk )]} is bounded
in L2(Ω× (τ,T)), and thus there exist a subsequence of {𝜕t[ϕ(unk )]} (not relabeled) and
gτ ∈ L2(Ω × (τ,T)) such that for all ζ ∈ L2(Ω × (τ,T)),

lim
k→∞ ∬

Ω×(τ,T) 𝜕t[ϕ(unk )] ζ dxdt = ∬Ω×(τ,T) gτ ζ dxdt. (6.92)

In view of (6.91)–(6.92), for every ζ ∈ C1c(Ω × (τ,T)), we have

∬
Ω×(τ,T) gτ ζ dxdt = −∬Q ϕ∗ 𝜕tζ dxdt. (6.93)

Then the distributional derivative 𝜕tϕ∗ can be identified with an element of L2(Ω ×
(τ,T)), and thus the first convergence in (6.85) follows. The second is similarly proven.

The convergence in (6.86) is obvious by (6.84)–(6.85). Hence both sequences
{ϕ(unk )} and {ϕnk (unk )} are bounded inH

1(Ω× (τ,T)). Then by embedding results (pos-
sibly extracting a subsequence, not relabeled for simplicity), for every τ ∈ (0,T), we
have ϕnk (unk ), ϕ(unk )→ ϕ∗ a. e. in Ω × (τ,T). By the arbitrariness of τ and a standard
diagonal argument we can construct a subsequence (not relabeled for simplicity)
along which both convergences in (6.87) take place.

Finally, the convergences in (6.88) follow from (6.87), whereas (6.89) is a plain
consequence of (6.88) and (6.69). This completes the proof.

Proposition 6.6.3. Let (A0)–(A1) hold, let {un} be the sequence of solutions of problems
(Pn), and let ν ∈ Y+(Q;ℝ) be the Young measure given in Proposition 6.6.2. Then there
exist a subsequence {unk } ⊆ {un} and σ± ∈ L∞w∗ (0,T ;R+f (Ω)) such that

u±nk ∗⇀ ub,± + σ± in L∞w∗(0,T ;Rf (Ω)), (6.94)

where ub,± ∈ L∞(0,T ; L1(Ω)),
ub,±(x, t) := ∫

ℝ

y± dν(x,t)(y) ≥ 0 for a. e. (x, t) ∈ Q. (6.95)

Proof. By inequality (6.54) the sequence {un} is bounded in L∞(0,T ; L1(Ω)) ⊆
L∞w∗ (0,T ;Rf (Ω)). Then by Proposition 4.4.16 and the Banach–Alaoglu theorem there
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exist μ± ∈ L∞w∗ (0,T ;R+f (Ω)) such that
u±nk ∗⇀ μ± in L∞w∗(0,T ;Rf (Ω)). (6.96)

On the other hand, since the sequence {unk } is bounded in L
1(Q), by Remark 5.4.4 there

exist a subsequence of {unk } (not relabeled) and σ± ∈ R+f (Q) such that
u±nk ∗⇀ ub,± + σ± inRf (Q). (6.97)

By (6.96)–(6.97) μ± = ub,± + σ±, and hence the result follows.
Proposition 6.6.4. Let (A0)–(A1) hold, and let {un} be the sequence of solutions of prob-
lems (Pn). Let {unk } ⊆ {un}, ν ∈ Y

+(Q;ℝ), and σ± ∈ L∞w∗ (0,T ;R+f (Ω)) be given by Propo-
sition 6.6.3. Then for every f ∈ C(ℝ) satisfying (5.106) and for all ζ ∈ C([0,T];Cc(Ω)), we
have

lim
k→∞∬

Q

f (unk ) ζ dxdt

=∬
Q

f ∗ζ dxdt +M+f T

∫
0

⟨σ+(⋅, t), ζ (⋅, t)⟩dt −M−f T

∫
0

⟨σ−(⋅, t), ζ (⋅, t)⟩dt (6.98)

with f ∗ ∈ L∞(0,T ; L1(Ω)) defined by
f ∗(x, t) := ∫

ℝ

f (y) dν(x,t)(y) for a.e. (x, t) ∈ Q. (6.99)

Proof. By (5.106) there exists L > 0 such that |f (y)| ≤ L(1 + |y|) for all y ∈ ℝ, whence by
inequality (6.54)

sup
n∈ℕf (un)L∞(0,T ;L1(Ω)) = supn∈ℕf (un)L∞w∗(0,T ;Rf (Ω)) ≤ L[λN (Ω) + ‖u0‖Rf (Ω)].

Then by the Banach–Alaoglu theorem there exist a subsequence {f (unk )} ⊆ {f (un)} and
μ ∈ L∞w∗ (0,T ;Rf (Ω)) such that

f (unk )
∗
⇀ μ in L∞w∗(0,T ;Rf (Ω)). (6.100)

Moreover, arguing as in the proof of Proposition 5.4.13, we obtain that

f (unk )
∗
⇀ f ∗ +M+f σ+ −M−f σ− inRf (Q). (6.101)

By (6.100)–(6.101) the conclusion follows.
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Set

ub(x, t) := ub,+(x, t) − ub,−(x, t) = ∫
ℝ

y dν(x,t)(y) for a. e. (x, t) ∈ Q, (6.102a)

u := ub + σ+ − σ−. (6.102b)

By Propositions 6.6.3 and 6.6.4 we have the following result.

Proposition 6.6.5. Let (A0)–(A1) hold, and let {un} be the sequence of solutions of prob-
lems (Pn). Let {unk } ⊆ {un} and σ± ∈ L∞w∗ (0,T ;R+f (Ω)) be given by Proposition 6.6.3, and
let u ∈ L∞w∗ (0,T ;Rf (Ω)) be defined by (6.102b). Then the convergence in (6.77) holds.
Moreover,

ur = ub a. e. in Q, (6.103a)
u±s = σ± in L∞w∗ (0,T ;Rf (Ω)). (6.103b)

Proof. The convergence in (6.77) is a direct consequence of (6.94)–(6.95) and (6.102).
Moreover, the remaining claims (6.103a)–(6.103b) will follow if we prove that σ± are
both mutually singular and singular with respect to the Lebesgue measure.

To this aim, we shall prove the following:

Claim. For any k ∈ ℕ, p > 0, and ζ ∈ C1([0,T];C2c(Ω)) with ζ ≥ 0 in Q and ζ (⋅,T) = 0,
we have

−∬
Q

[unk ∓ p]
±𝜕tζ dxdt ≤ ∫

Ω

[u0nk ∓ p]
±ζ (x,0) dx + ‖ζ ‖C1(Ω)(C2 T ‖u0‖Rf (Ω)

p
)

1
2

, (6.104)

where C2 = C2(λN (Ω), ‖ϕ‖∞, ‖u0‖Rf (Ω)) > 0 is the constant given in Lemma 6.5.5(ii).

Relying on the above claim, we can prove that

σ±(⋅, t) ≤ u±0s inR+f (Ω) for a. e. t ∈ (0,T). (6.105)

Since the measures σ± are nonnegative, this implies that σ±(⋅, t) are absolutely contin-
uous with respect to u±0s for a. e. t ∈ (0,T). Hence the conclusion follows.

We only prove (6.105) with “+”, the proof with “−” being analogous. Using (6.51)
with f (y) = [y − p]+ (y ∈ ℝ, p > 0) gives

[u0nk − p]
+ ∗⇀ [u0r − p]+ + u+0s inRf (Ω), (6.106)

whereas with the same choice of f from (6.98)–(6.99), we get

lim
k→∞∬

Q

[unk − p]
+𝜕tζ dxdt =∬

Q

(∫
ℝ

[y − p]+dν(x,t)(y)) 𝜕tζ dxdt + T

∫
0

⟨σ+(⋅, t), 𝜕tζ (⋅, t)⟩dt
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for all ζ ∈ C1([0,T];C2c(Ω)). By this equality, choosing the upper signs in (6.104), letting
k →∞, and using (6.106), we get

−∬
Q

(∫
ℝ

[y − p]+dν(x,t)(y)) 𝜕tζ dxdt − T

∫
0

⟨σ+(⋅, t), 𝜕tζ (⋅, t)⟩dt
≤ ∫

Ω

[u0r − p]
+ζ (x,0) dx + ⟨u+0s, ζ (⋅,0)⟩ + ‖ζ ‖C1(Ω)(C2 T ‖u0‖Rf (Ω)

p
)

1
2

(6.107)

for every ζ ∈ C1([0,T];C2c(Ω)) with ζ ≥ 0 in Q, ζ (⋅,T) = 0 in Ω.
Since limp→+∞[y−p]+ = 0 for every y ∈ ℝ and [y−p]+ ≤ y+ ∈ L1(ℝ,ℬ, ν(x,t)) for a. e.

(x, t) ∈ Q (see Proposition 5.3.1-(i)), by the dominated convergence theorem we have
that

lim
p→∞∫
ℝ

[y − p]+dν(x,t)(y) = 0 for a. e. (x, t) ∈ Q.

Moreover, for a. e. (x, t) ∈ Q, we have ∫ℝ[y − p]
+dν(x,t)(y) ≤ ∫ℝ y+dν(x,t)(y) = ub,+(x, t)

(see (6.95)). Since ub,+ ∈ L∞(0,T ; L1(Ω)) ⊆ L1(Q), by the dominated convergence theo-
rem we get

lim
p→∞∬

Q

(∫
ℝ

[y − p]+dν(x,t)(y))𝜕tζ dxdt = 0. (6.108a)

It is similarly seen that

lim
p→∞∫

Ω

[u0r − p]
+ζ (x,0) dx = 0. (6.108b)

By (6.108), as above, letting p→∞ in (6.107), for every ζ , we get

−
T

∫
0

⟨σ+(⋅, t), 𝜕tζ (⋅, t)⟩dt ≤ ⟨u+0s, ζ (⋅,0)⟩. (6.109)

Let t0 ∈ (0,T), and for any q > 0 sufficiently large, set

hq(t) := χ[0,t0− 1q ](t) + q(t0 − t)χ(t0− 1q ,t0](t) (t ∈ (0,T)).
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By standard approximation arguments we can choose in (6.109) ζ (x, t) = ρ(x) hq(t)
with ρ ∈ C2c(Ω), ρ ≥ 0. Then we get

q
t0

∫

t0− 1q ⟨σ+(⋅, t), ρ⟩dt ≤ ⟨u
+
0s, ρ⟩,

whence, as q →∞,

⟨σ+(⋅, t0), ρ⟩ ≤ ⟨u+0s, ρ⟩ for a. e. t0 ∈ (0,T),.

Then by the arbitrariness of ρ inequality (6.105) with “+” follows.
Lets us finally prove the claim. By standard approximation arguments, for every

p > 0, we can choose h = χ(p,∞) in (6.58), and thus H(y) = [y − p]+ in (6.59). Then for
every nonnegative ζ ∈ C1([0,T];C1c(Ω)) with ζ (⋅,T) = 0 in Ω, we get (see (6.60))

−∬
Q

[unk − p]
+𝜕tζ dxdt ≤ ∫

Ω

[u0nk − p]
+ζ (x,0) dx − ∬{unk>p} ∇ϕnk (unk ) ⋅ ∇ζ dxdt. (6.110)

By Lemma 6.5.5(ii) there exists C2 = C2(λN (Ω), ‖ϕ‖∞, ‖u0‖Rf (Ω)) > 0 such that
∬{unk>p}
∇ϕnk (unk )

 |∇ζ | dxdt ≤ C
1
2
2 ‖ζ ‖C1(Q)[λN+1({unk > p})] 12 ,

whence by the Chebyshev inequality

∬{unk>p}
∇ϕnk (unk )

 |∇ζ | dxdt ≤ ‖ζ ‖C1(Ω)(C2 ‖unk ‖L1(Q)p
)

1
2

. (6.111)

From (6.54) and (6.110)–(6.111) we obtain (6.104)with the upper signs. Hence the result
follows.

Proposition 6.6.6. Let (A0)–(A2) hold, and let {un} be the sequence of solutions of prob-
lems (Pn). Let {unk } ⊆ {un} and ν ∈ Y+(Q;ℝ) be given by Proposition 6.6.3, and let
u ∈ L∞w∗ (0,T ;Rf (Ω)) be defined by (6.102b). Then for a. e. (x, t) ∈ Q:
(i) we have

supp ν(x,t) ⊆ ϕ−1({ϕ∗(x, t)}) (6.112)

with ϕ∗ given by (6.83);
(ii) we have

ϕ∗(x, t) = ϕ(ur(x, t)), ϕ(ur) ∈ L
2(0,T ;H1

0(Ω)), (6.113)
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supp ν(x,t) ⊆ ϕ−1({ϕ(ur(x, t))}). (6.114)

Proof. For every f ∈ C(ℝ), the sequence {(f ∘ϕ)(unk )} is bounded in L
1(Q) anduniformly

integrable, and thus (possibly extracting a subsequence, not relabeled) by Proposi-
tion 5.4.10 we get

f (ϕ(unk ))⇀ (f ∘ ϕ)
∗ in L1(Q), (f ∘ ϕ)∗(x, t) := ∫

ℝ

f (ϕ(y)) dν(x,t)(y). (6.115)

Now observe that by the convergence in (6.87) we have

f (ϕ(unk ))→ f (ϕ∗) a. e. in Q,

whence (recall that ϕ is bounded)

f (ϕ(uun ))→ f (ϕ∗) in L1(Q).

From the above convergence and (6.115) we get

f (ϕ∗(x, t)) = ∫
ℝ

f (ϕ(y)) dν(x,t)(y) for all (x, t) ∈ Q \ N , (6.116)

where N ⊆ Q is a null set.
Fix (x, t) ∈ Q \ N, and let B = ℝ \ ϕ−1({ϕ∗(x, t)}). Choosing f ∈ C(ℝ) such that

f (z) > 0 for all z ̸= ϕ∗(x, t) and f (z) = 0 if z = ϕ∗(x, t), from (6.116) we obtain

0 = ∫
B

f (ϕ(y)) dν(x,t)(y).
Since f (ϕ(y)) > 0 for all y ∈ B, the above equality ensures that ν(x,t)(B) = 0. Since
B = ℝ \ ϕ−1({ϕ∗(x, t)}) is open, claim (i) follows.

Concerning (ii), observe that by (6.102a), (6.103a), and (6.112)

ur(x, t) = ∫
ℝ

y dν(x,t)(y) = ∫
ϕ−1({ϕ∗(x,t)}) y dν(x,t)(y) ∈ ϕ−1({ϕ∗(x, t)}),

since ϕ−1({ϕ∗(x, t)}) is a closed interval and ν(x,t) is a probability measure. Then for
a. e. (x, t) ∈ Q, we have ϕ(ur(x, t)) = ϕ∗(x, t), whence the second statement in (6.113)
follows, since by (6.82) and (6.84) ϕ∗ ∈ L2(0,T ;H1

0(Ω)). Since ϕ(ur) = ϕ
∗, from (6.112)

we obtain (6.114). This completes the proof.

Proof of Theorem 6.6.1. Let u ∈ L∞w∗ (0,T ;Rf (Ω)) be defined by (6.102b). Then by Propo-
sitions 6.6.3–6.6.6 the result follows.

Now we can prove Theorem 6.4.1.

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



310 | 6 Case study 1: quasilinear parabolic equations

Proof of Theorem 6.4.1. Let us show that the measure u ∈ L∞w∗(0,T ;Rf (Ω)) given by
Theorem 6.6.1 is a weak solution of problem (P). Since ϕ(ur) ∈ L2(0,T ;H1

0(Ω)), con-
dition (i) of Definition 6.1.1 is satisfied. Let {unk } be a subsequence of solutions of ap-
proximating problems such that unk

∗
⇀ u in L∞w∗(0,T ;Rf (Ω)) (see (6.77)). Consider the

weak formulation of (Pnk ),

∬
Q

{unk 𝜕tζ − ∇ϕnk (unk ) ⋅ ∇ζ } dxdt = −∫
Ω

u0nk (x) ζ (x,0) dx

with ζ ∈ C1([0,T];C1c(Ω)) such that ζ (⋅,T) = 0 in Ω. Letting k → ∞ and using (6.77),
(6.84) with (6.113), and (6.49c) we get (6.2). Then the first part of the result follows.

Let us prove claims (i) and (ii) with the upper sign “+”. To this purpose, observe
that by (6.103b) and inequality (6.109)

−
T

∫
0

⟨u+s (⋅, t), ζ (⋅, t)⟩ dt ≤ ⟨u+0s, ζ (⋅,0)⟩
for all ρ ∈ C([0,T];Cc(Ω) such that ζ ≥ 0 in Q and ζ (⋅,T) = 0 in Ω. Set ζ (x, t) = ρ(x)h(t)
with ρ ∈ Cc(Ω), ρ ≥ 0, in the previous inequality. As in the proof of Theorem 6.4.5, by
proper choices of the function h both claims (i) and (ii) easily follow.

Assume that ±ϕ±∞ > 0 and let fc,± : [0,±ϕ±∞] → [0, 1] and fc ∈ C1([0,±ϕ±∞])
satisfy

fc,±(y) = {0 if y ∈ [0, c],
1 if y ∈ [ c±ϕ±∞2 ,±ϕ±∞] (6.117)

for some c ∈ (0,±ϕ+∞). To prove Theorem 6.4.2, we need the following lemma.

Lemma 6.6.7. Let (A0)–(A2) hold with ±ϕ±∞ > 0, and let u be the weak solution of
problem (P) given by Theorem 6.4.1. Then for a. e. t ∈ (0,T), for any c ∈ (0,±ϕ±∞), and
for any ρ ∈ C1c(Ω), ρ ≥ 0, we have

⟨[u±s (⋅, t)]d,2, ρ⟩ ≤ ⟨[u±0s]d,2, fc(ϕ±(ur(⋅, t))) ρ⟩. (6.118)

Proof of Theorem 6.4.2. We only prove equality (6.21a) with “+”, the proof with “−”
being analogous. Observe that ϕ+∞ = 0 implies ϕ(y) = 0 for all y ∈ [0,∞), and thus
in this case, ϕ+ ≡ 0, 𝒮t+ = Ω, and (6.21) is obviously satisfied.

Let ϕ+∞ > 0, and set fc ≡ fc,+ for simplicity (see (6.117)). Fix any t ∈ (0,T) such
that

⟨[u+s (⋅, t)]d,2, ρ⟩ ≤ ⟨[u+0s]d,2, fc(ϕ+(ur(⋅, t))) ρ⟩
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for all nonnegative ρ ∈ C1c(Ω), and let gc ∈ C
1(ℝ) be any function such that gc ≥ 0 and

supp gc ⊆ [0, c). Then by the definition of fc (see (6.117)) we have fcgc = 0 in [0,∞).
Now recall that for a. e. t ∈ (0,T), the functionϕ+(ur(⋅, t)) is identified with its 2-quasi-
continuous representative, which is defined up to 2-null sets (see Remark 6.3.1). Hence
for a. e. t ∈ (0,T) and for any c ∈ (0,ϕ+∞), we have

fc(ϕ
+(ur(x, t))) gc(ϕ+(ur(x, t))) = 0 for all x ∈ Ω∗, (6.119)

for some subset Ω∗ ⊆ Ω such that C2(Ω \ Ω∗) = 0.
Since gc((ϕ+(ur)(⋅, t)) ∈ H1(Ω) ∩ L∞(Ω), the function gc((ϕ+(ur)(⋅, t)) ρ̃ with ρ̃ ∈

C1c(Ω), ρ̃ ≥ 0, belongs to H1
0(Ω) ∩ L

∞(Ω) and thus can be used as a test function in
inequality (6.118). Then by (6.119) we obtain

⟨[us(x, t)]d,2, gc(ϕ+(ur(x, t))) ρ̃⟩
≤ ⟨[u±0s]d,2, fc(ϕ±(ur(x, t))) gc(ϕ+(ur(x, t))) ρ̃⟩ = 0 (6.120)

for every gc and ρ̃ as above and x ∈ Ω∗.
Choose c = cq := ϕ+∞ − 1

q , so that supp gcq ⊆ [0,ϕ+∞ − 1
q ) (q ∈ ℕ). Plainly, this

implies that

[us(⋅, t)]d,2(Etq) = 0, (6.121)

where

Etq := {x ∈ Ω∗ | ϕ+(ur(x, t)) ≤ ϕ+∞ − 2q}.
Since Etq ⊆ E

t
q+1 for all q ∈ ℕ and

Ft := {x ∈ Ω∗ | ϕ+(ur(x, t)) < ϕ+∞} = ∞⋃
q=1Etq,

from equality (6.121) we obtain

[us(⋅, t)]d,2(Ft) = lim
q→∞[us(⋅, t)]d,2(Etq) = 0.

It follows that

[us(⋅, t)]d,2 ⌞ Ω∗ = [us(⋅, t)]d,2 ⌞ {x ∈ Ω∗ | ϕ+(ur(x, t)) = ϕ+∞}. (6.122)

On the other hand, [us(⋅, t)]d,2(Ω \ Ω∗) = 0 since C2(Ω \ Ω∗) = 0. Therefore by (6.122)
the result follows.
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Proof of Lemma 6.6.7. We only prove the result with “+” in (6.21a), the proof in the
other case being analogous. Let ϕ+∞ ∈ (0,∞). For everym ∈ ℕ, set

hm(y) := (y −m)χ[m,m+1](y) + χ(m+1,+∞)(y), Hm(y) :=
y

∫
0

hm(z) dz (y ∈ ℝ).

Let {unk } and u be given by Theorem 6.6.1. Since ‖hm‖∞ = 1, by (6.54) and (6.64) for all
ρ ∈ C1c(Ω) and m ∈ ℕ, the sequence {∫Ω Hm(unk (x, ⋅)) ρ(x) dx} is bounded in BV(0,T).
Then there exist a null set N1 ⊆ (0,T) and a subsequence of {unk } (not relabeled for
simplicity) such that the sequence {∫Ω Hm(unk (x, t)) ρ(x) dx} converges in L

1((0,T)) for
all t ∈ (0,T) \ N1. By the separability of C0(Ω) and a standard diagonal argument the
null set N1 can be chosen independently both of ρ ∈ C1c(Ω) and of m ∈ ℕ. Since
{∫Ω Hm(unk (x, t)) ρ(x) dx} converges for t ∈ (0,T) \ N1, since limy→+∞ Hm(y)

y = 1, and
limy→−∞ Hm(y)

y = 0, by (6.98) with ζ (x, t) = ρ(x)h(t) and (6.103b) we obtain, for all
t ∈ (0,T) \ N1, ρ ∈ C1c(Ω), andm ∈ ℕ,

lim
k→∞∫

Ω

Hm(unk (x, t)) ρ dx = ∫
Ω

(∫
ℝ

Hm(y) dν(x,t)(y)) ρ(x) dx + ⟨u+s (⋅, t), ρ⟩. (6.123)

In view of (6.88)–(6.89) and (6.113), there exists a null set N2 ⊆ (0,T) such that for
all t ∈ (0,T) \ N2,

ϕ(unk (⋅, t))→ ϕ+(ur(⋅, t)) a. e. in Ω, (6.124a)

ϕ(unk (⋅, t))⇀ ϕ+(ur(⋅, t)) in H1
0(Ω). (6.124b)

Set N := N1 ∪N2, and fix t0 ∈ (0,T) \N . Observe that for everym ∈ ℕ large enough, we
have

Hm(s)[1 − fc(ϕ(s))] = 0 for every s ∈ ℝ

with fc ≡ fc,+ given by (6.117). Then for all m ∈ ℕ large enough and ρ ∈ C1c(Ω), ρ ≥ 0,
by (6.60), (6.62), (6.74), and (6.124) we have

∫
Ω

Hm(unk (x, t0)) ρ(x) dx

= ∫
Ω

Hm(unk (x, t0)) fc(ϕ(unk (x, t0))) ρ(x) dx

≤

∬{unk>m} hm(unk ) ∇ϕnk (unk ) ⋅ ∇(fc(ϕ(unk (x, t0))) ρ) dxdt
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+ ∫
Ω

Hm(u0nk ) fc(ϕ(unk (x, t0))) ρ(x) dx

≤ fc(ϕ(unk (⋅, t0)))ρ
H1

0(Ω)( ∬{unk>m}
∇ϕnk (unk )


2 dxdt)

1
2

+ ∫
Ω

Hm(u0nk ) fc(ϕ(unk (x, t0))) ρ(x) dx

≤ Mc[ϕ+∞ − ϕ(m) + n−1/2k ]
1
2 + ∫

Ω

[u+0]nk fc(ϕ(unk (x, t0)))ρ(x) dx
≤ Mc[ϕ+∞ − ϕ(m) + n−1/2k ]

1
2 + ∫

Ω

[δ+]nk fc(ϕ(unk (x, t0)))ρ(x) dx + ∫
Ω

[γ+]nk ρ(x) dx.
The above constantMc is chosen so thatM0‖fc(ϕ(unk (⋅, t0)))ρ‖H1

0(Ω) ≤ Mc for all k ∈ ℕ,
where M0 is the constant in (6.75). By the second convergence in (6.49d), (6.49e),
and (6.123)–(6.124), letting first k → +∞ and then m → +∞ in the previous inequal-
ity, we get, for all c ∈ (0,ϕ+∞) and ρ as above,

⟨u+s (⋅, t0), ρ⟩ ≤ ⟨[u+0]d,2, fc(ϕ+(ur(⋅, t0))) ρ⟩ + ⟨[u+0]c,2, ρ⟩. (6.125)

By Theorem6.2.1 (see (6.12)) and equality (3.80), for a. e. t∈ (0,T), we have [u±s (⋅, t)]c,2 =
[u±(⋅, t)]c,2 = [u±0]c,2. Therefore inequality (6.125) gives (6.118). This proves the result.
Proof of Proposition 6.4.4. By Definition 6.4.1 every constructed solution u of (P) is the
weak∗ limit in L∞w∗(0,T ;ℳ(Ω)) of a subsequence {unk } of solutions of the approximat-
ing problems (see Theorem 6.4.1). From inequality (6.61) with t1 = 0 and t2 = T we
get

∬
Q

{Fϕ(unk )𝜕tζ − f (ϕ(unk ))∇ϕnk (unk ) ⋅ ∇ζ } dxdt

≥ −∫
Ω

Fϕ(u0nk (x))ζ (x,0) dx (6.126)

for all ζ ∈ C1([0,T];C1c(Ω)) such that ζ ≥ 0 in Q and ζ (⋅,T) = 0 in Ω and for all nonde-
creasing f ∈ C(ℝ), the function Fϕ being defined by (6.9).

By the convergence in (6.84), (6.87), and the equality in (6.113), we plainly get

lim
k→∞∬

Q

f (ϕ(unk ))∇ϕnk (unk ) ⋅ ∇ζ dxdt =∬
Q

f (ϕ(ur))∇ϕ(ur) ⋅ ∇ζ dxdt, (6.127)
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whereas by (6.51) we have

lim
k→∞∫

Ω

Fϕ(u0nk (x))ζ (x,0) dx

= ∫
Ω

Fϕ(u0r)ζ (x,0) dx +M
+
Fϕ⟨u
+
0s, ζ (⋅,0)⟩ −M

−
Fϕ⟨u
−
0s, ζ (⋅,0)⟩ (6.128)

withM±Fϕ ∈ ℝ as in (6.10). On the other hand, by Propositions 6.6.4 and 6.6.5 we have
that

lim
k→∞∬

Q

Fϕ(unk )𝜕tζ dxdt

=∬
Q

F∗ϕ𝜕tζ dxdt +M+Fϕ T

∫
0

⟨u+s (⋅, t), 𝜕tζ (⋅, t)⟩Ω dt −M−Fϕ T

∫
0

⟨u−s (⋅, t), 𝜕tζ (⋅, t)⟩Ω dt (6.129)

(see (6.102)), where for a. e. (x, t) ∈ Q,

F∗ϕ(x, t) = ∫
ℝ

Fϕ(y) dν(x,t)(y),
and the Young measure ν ∈ Y+(Q;ℝ) is given by Proposition 6.6.4. By (6.114) we have

∫
ℝ

Fϕ(y) dν(x,t)(y) = ∫
supp ν(x,t)

Fϕ(y) dν(x,t)(y)
= ∫
supp ν(x,t)

dν(x,t)(y) y∫
0

f (ϕ(z)) dz = Fϕ(ur(x, t)) (6.130)

for a. e. (x, t) ∈ Q.
By the above remarks, letting k →∞ in (6.126) and using (6.127)–(6.130), we prove

that u satisfies the entropy inequality (6.11). Hence the result follows.

6.7 The case of unbounded ϕ

This section is devoted to the study of problem (P) under more general assumptions,
in particular, allowing the function ϕ to be unbounded. Apart from the short proof of
Theorem 6.7.1, we only describe the main results and give an outline of the proofs (for
complete proofs, we refer the interested reader to [87]).
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Henceforth assumptions (A1)–(A2) are replaced by the following two hypotheses:

ϕ ∈ C(ℝ) is nondecreasing and nonconstant in ℝ, with ϕ(0) = 0; (A1′)
there existM0 > 0 and α ∈ [1,∞) such that |ϕ(y)| ≤ M0(1 + |y|

α) (y ∈ ℝ). (A2′)
By assumption (A1′) there exist

lim
y→±∞ϕ(y) =: ϕ±∞ ∈ ℝ. (6.131)

Both cases whereϕ±∞ are finite or infinite are allowed, and eitherϕ−∞ ≤ 0 < ϕ+∞, or
ϕ−∞ < 0 ≤ ϕ+∞. The only restriction on ϕ is that it grows at most like a power; no es-
timates from below are used (except for the regularization result in Proposition 6.7.9),
and no assumptions about existence of the diffusivity ϕ′ are made.

6.7.1 Definition of solution

Let us denote by TK(y) := max{−K,min{y,K}} (y ∈ ℝ, K > 0) the standard truncation
function.

Definition 6.7.1. Let (A0) hold. By a weak solution of problem (P) we mean any u ∈
L∞w∗(0,T ;Rf (Ω)) such that:
(i) ϕ(ur) ∈ Lq(0,T ;W

1,q
0 (Ω)) for any q ∈ [1, 1 +

1
αN+1 ), and TK(ϕ(ur)) ∈ L2(0,T ;H1

0(Ω))
for any K > 0;

(ii) for every ζ ∈ C1([0,T];C1c(Ω)) such that ζ (⋅,T) = 0 in Ω, we have

T

∫
0

⟨u(⋅, t), 𝜕tζ (⋅, t)⟩dt =∬
Q

∇ϕ(ur) ⋅ ∇ζ dxdt − ⟨u0, ζ (⋅,0)⟩. (6.132)

It is easily seen that also in the present case equality (6.5a) holds, that is, the initial
condition is satisfied in the weak∗ sense ofRf (Ω).

Remark 6.7.1. (i) Since [TK(ϕ)]± = TK(ϕ±), for every weak solution of (P), we have
ϕ±(ur) ∈ L2(0,T ;H1

0(Ω)) if ±ϕ±∞ < +∞. Hence in such a case, Definition 6.7.1 reduces
to Definition 6.1.1.

(ii) Ifϕ is bounded, then everyweak solution u of (P) has the following properties:

ϕ(ur) ∈ L
2(0,T ;H1

0(Ω)), (6.133a)

u(⋅, t) − u0 ∈ H
−1(Ω) for a. e. t ∈ (0,T), (6.133b)

ess lim
t→0+u(⋅, t) − u0H−1(Ω) = 0. (6.133c)
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In fact, (6.133a) has already been pointed out in (i), whereas from equality (6.132) we
get

u(⋅, t) − u0 = Δ(
t

∫
0

ϕ(ur(⋅, s)) ds) in D∗(Ω) for a. e. t ∈ (0,T). (6.134)

In view of (6.133a), equality (6.134) gives

u(⋅, t) − u0

2
H−1(Ω) = ∫

Ω


∇

t

∫
0

ϕ(ur(x, s)) ds


2

dx ≤
t

∫
0

∫
Ω

∇ϕ(ur)

2 dxds,

whence (6.133b) and (6.133c) follow. This proves the claim.

6.7.2 Persistence and uniqueness

A persistence property forϕ sublinear at infinity (analogous to Theorem 6.2.1) is given
by the following result.

Theorem 6.7.1. Let (A0) and (A1′) hold, and let there exist M > 0 and α ∈ (0, N−2N ] such
that |ϕ(y)| ≤ M(1 + |y|)α (y ∈ ℝ). Let u be a weak solution of problem (P). Then there
exists a null set F ⊆ (0,T) such that for every t ∈ (0,T) \ F, the C2, 11−α -concentrated part
of u(⋅, t) is constant in time:

[u(⋅, t)]c,2, 11−α = [u0]c,2, 11−α . (6.135)

Remark 6.7.2. Observe that Theorem 6.7.1 is in agreement with the results in [26, 80]
concerning the Cauchy problem for the fast diffusion porousmediumequation. In par-
ticular, let u0 ∈ R+c,2(ℝN ) ∩R+d,2, 11−α (ℝN ) (recall thatRc,2, 11−α (ℝN ) ⊆ Rc,2(ℝN ) by Propo-
sition 3.4.13). Then a solution in the sense of [26, 80] satisfies u(⋅, t) ∈ L1(ℝN ) for all
t ∈ (0,T), and thus in this case, equality (6.12) is not satisfied. This suggests the fol-
lowing interpretation of Theorem 6.7.1: when diffusivity near infinity is stronger, only
measures that are concentrated with respect to stronger capacities remain constant in
time.

In this connection, observe that for any α, β ∈ (0, N−2N ], α < β,
(a) the C2, 11−β -capacity is stronger than the C2, 11−α -capacity;
(b) measures concentrated with respect to the C2, 11−β -capacity are also concentrated

with respect to the C2, 11−α -capacity (see Theorem 3.4.5 and Proposition 3.4.13).

Moreover, a measure concentrated with respect to the C2, 11−α -capacity, α ∈ (0, N−2N ], is
also concentrated with respect to the Newtonian capacity (see Proposition 3.4.13).
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Observe that no analogue of Theorem 6.7.1 exists for α ∈ (N−2N , 1), since in this case,
every measure is diffuse with respect to the C2, 11−α -capacity (see Proposition 3.4.11).
Proof of Theorem 6.7.1. Let u be a weak solution of problem (P). By (6.132), for every
ρ ∈ C2c(Ω) and h ∈ C

1([0,T]) such that h(0) = 1 and h(T) = 0, we get

T

∫
0

⟨u(⋅, t), ρ⟩h′(t) dt = −∬
Q

ϕ(ur)Δρ h(t) dxdt − ⟨u0, ρ⟩.

By standard approximation arguments, from the above equality for a. e. t ∈ (0,T) we
get

⟨u(⋅, t) − u0, ρ⟩
 =


t

∫
0

∫
Ω

ϕ(ur)Δρ dxdt


≤ M T1−α(∬
Q

(1 + |ur |) dxdt)
α
(∫
Ω

|Δρ|
1

1−α dx)
1−α
. (6.136)

By the above inequality there exists a null set F ⊆ (0,T) such that u(⋅, t) − u0 ∈
W−2, 1α (Ω) = (W2, 11−α

0 (Ω))
∗ for all t ∈ (0,T) \ F. By [10, Lemma 4.1] this implies that for

any such t, the measure u(⋅, t) − u0 is C2, 11−α -diffuse, and thus the C2, 11−α -concentrated
part of u(⋅, t) − u0 is zero. Hence equality (6.135) follows.

As already observed, persistence properties of solutions are connected with
uniqueness, and additional conditions are needed to detect a uniqueness class for
problem (P). In the present case, these conditions are given by the following defini-
tion, which generalizes Definition 6.3.1.

Definition 6.7.2. Let (A0) and (A1′) hold. Aweak solution u of problem (P) satisfies the
compatibility conditions if for a. e. t ∈ (0,T):
(i) if ϕ±∞ ∈ ℝ, then condition (6.21) is satisfied;
(ii) if ϕ±∞ = ±∞, then

[u±s (⋅, t)]d,2 = 0. (6.137)

Remark 6.3.1 also applies in the present case to ϕ±(ur) if ϕ±∞ ∈ ℝ.
The importance of the compatibility conditions is highlighted by the following

uniqueness result, which by Remark 6.7.1(ii) includes Theorem 6.3.1 as a particular
case.

Theorem 6.7.2. Let (A0) and (A1′) hold. Let u1 and u2 be two weak solutions of problem
(P) satisfying the compatibility conditions, such that

ϕ(u1r) − ϕ(u2r) ∈ L
2(τ,T ;H1

0(Ω)) for all τ ∈ (0,T), (6.138a)
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u1(⋅, t) − u2(⋅, t) ∈ H
−1(Ω) for a. e. t ∈ (0,T), (6.138b)

ess lim
t→0+u1(⋅, t) − u2(⋅, t)H−1(Ω) = 0. (6.138c)

Then u1 = u2 in L∞w∗(0,T ;Rf (Ω)).

6.7.3 Existence

Again, we follow the constructive approach to the existence outlined in Section 6.4,
and thus our first existence is the counterpart of Theorem 6.4.1.

Theorem 6.7.3. Let (A0) and (A1′)–(A2′) hold. Then there exists aweak solution of prob-
lem (P), which is obtained as a limiting point in the weak* topology of Rf (Q) of the se-
quence of solutions to problems (Pn).

To prove the existence of weak solutions satisfying the compatibility conditions,
now we use a two-step procedure, which uses the following additional assumptions
on u0:

[u±0]d,2 ∈ H−1(Ω), (A3)
[u±0]c,2 = [u±0]c,2 ⌞ K±0 with K±0 ⊆ Ω compact such that C2(K

±
0 ) = 0 (A4)

First, we prove the following result (see [87, Proposition 3.4]).

Proposition 6.7.4. Let (A0) and (A1′)–(A2′) hold. If ϕ±∞ = ±∞, then let u±0 also satisfy
(A3)–(A4). Then there exists a weak solution of problem (P) that satisfies the compati-
bility conditions.

By Proposition 6.7.4, if (A1′)–(A2′) hold with ϕ bounded, then there exists a weak
solution of (P) that satisfies (6.21), a result already known by Proposition 6.4.2. If ϕ is
unbounded, then a further approximation procedure is needed to get rid of assump-
tions (A3)–(A4). For every i, j ∈ ℕ, consider the problem

{{{
{{{
{

𝜕tui,j = Δϕ(ui,j) in Q,
ui,j = 0 on Γ,
ui,j = u0,i,j in Ω × {0},

(Pi,j)
where the initial data u0,i,j ∈ Rf (Ω) satisfy conditions (A3)–(A4) if ϕ±∞ = ±∞, have
suitable monotonicity properties with respect to i, j, and converge to u0 in a suitable
sense as i, j → ∞ (see [87, Section 7]; the existence of such a sequence is ensured by
[10, Lemma 4.2]). By Proposition 6.7.4, for all i, j ∈ ℕ, there exists a weak solution ui,j of
(Pi,j) that satisfies the compatibility conditions. By monotonicity methods it is proven
that the limit in L∞w∗(0,T ;Rf (Ω)) of ui,j as i, j →∞ exists and is a weak solution of (P)
satisfying the compatibility conditions. Then we have the following result.
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Theorem 6.7.5. Let (A0) and (A1′)–(A2′) hold. Then there exists aweak solution of prob-
lem (P) that satisfies the compatibility conditions.

Now we call constructed solutions weak solutions of problem (P) given by Theo-
rem6.7.5. Ifϕ is bounded, then the constructed solutions are givenbyProposition 6.7.4,
and this definition agrees with Definition 6.4.1. We conclude that also in the present
case the constructed solutions satisfy the compatibility conditions.

By Theorems 6.7.2 and 6.7.5 we have the following result, which generalizes The-
orem 6.4.3 (recall that by Remark 3.1.1 a measure μ ∈ Rf (Ω) can belong to the dual
space H−1(Ω) = (H1

0)
∗).

Theorem 6.7.6. Let (A0) and (A1′)–(A2′) hold.
(i) Let ϕ be bounded. Then for every u0 ∈ Rf (Ω), there exists a unique weak solution u

of problem (P) satisfying (6.21).
(ii) Let ϕ be unbounded. Then for every u0 ∈ Rf (Ω)∩H−1(Ω), there exists a uniqueweak

solution u of problem (P) satisfying the compatibility conditions. Moreover,

ϕ(ur) ∈ L
2(τ,T ;H1

0(Ω)) for all τ ∈ (0,T), (6.139a)

u(⋅, t) ∈ H−1(Ω) for a. e. t ∈ (0,T), (6.139b)
ess lim

t→0+u(⋅, t) − u0H−1(Ω) = 0. (6.139c)

6.7.4 Regularization

Also, in the present case the singular parts of constructed solutions canneither appear
spontaneously nor increase in time.

Theorem 6.7.7. Let (A0) and (A1′)–(A2′) hold, and let u be a constructed solution of
problem (P). Then for a. e. t1, t2 ∈ (0,T), t1 < t2, inequality (6.33) holds.

Let us finally mention two Rf -L1 regularizing effects (see [87, Remark 3.7 and
Proposition 3.11]).

Proposition 6.7.8. Let (A0) and (A1′)–(A2′) hold with ϕ±∞ = ±∞. Then for every con-
structed solution of problem (P)with 2-diffuse initial data, instantaneous regularization
occurs.

Proposition 6.7.9. Let (A0) and (A1′)–(A2′) hold, and let u be a constructed solution of
problem (P). Let there exist α± > N−2

N and a±, b± > 0 such that
± ϕ(z) ≥ a±|z|α± − b± for ±z ≥ 0. (6.140)

Then u± ∈ L∞(0,T ; L1(Ω)).
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7 Case study 2: hyperbolic conservation laws

7.1 Statement of the problem

In this chapter, we consider the Cauchy problem

{
ut + [ϕ(u)]x = 0 in ℝ × (0,T) =: S,
u = u0 in ℝ × {0},

(P)

where T > 0, and u0 is a positive finite Radon measure on ℝ. We refer the reader to
[19] for the case where u0 is a finite signed Radon measure on ℝ.

7.1.1 Assumptions and preliminary remarks

We suppose that

u0 ∈ R
+
f (ℝ), (A0)

ϕ ∈ Lip([0,∞)), and lim
y→∞

ϕ(y)
y
= 0 (A1)

(without loss of generality we can assume that ϕ(0) = 0). Let us mention that the
general case where limy→∞

ϕ(y)
y = Cϕ ̸= 0 can be treated replacing x by x − Cϕt (see

[18] for details). By (A1) (and the condition ϕ(0) = 0) there existsM > 0 such that

ϕ
′(y) ≤ M,

ϕ(y)
 ≤ My for every y > 0. (7.1)

We will also use the following stronger assumption (see Section 7.2):

the singular part u0s of u0 is a finite superposition of Dirac masses,

u0s =
p
∑
j=1

cjδxj (x1 < x2 < ⋅ ⋅ ⋅ < xp; cj > 0 for 1 ≤ j ≤ p). (A0′)

For specific purposes, we make the following assumptions (see Section 7.3):

{
ϕ ∈ C1([0,∞)), and for every y1 > 0, there exist a, b ≥ 0, a + b > 0,
such that ϕ′ is strictly monotone in [y1 − a, y1 + b],

(A2)

{
ϕ ∈ C∞([0,∞)); limy→∞

ϕ(y)
y = 0; there exist α ≥ −1 and β ∈ ℝ such that

ϕ′′(y) [αϕ(y) + β] ≤ −[ϕ′(y)]2 < 0 for all y ∈ [0,∞).
(A2′)

Remark 7.1.1. By (A2′) the map y → ϕ′′(y) [αϕ(y) + β] is strictly negative and contin-
uous in [0,∞), and hence two cases are possible: either (a) αϕ + β > 0 and ϕ′′ < 0,

https://doi.org/10.1515/9783110556902-009
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322 | 7 Case study 2: hyperbolic conservation laws

or (b) αϕ + β < 0 and ϕ′′ > 0 in [0,∞). In case (a), 0 < ϕ′ ≤ ϕ′(0) in [0,∞), since
ϕ′′ < 0 and limy→∞ ϕ′(y) = 0. Similarly, in case (b), we plainly have ϕ′(0) ≤ ϕ′ < 0 in
[0,∞). In particular, in both cases, (A2′) implies (A2) and (A1). Moreover, if ϕ(0) = 0,
then αϕ + β > 0 in [0,∞) if and only if β > 0.

Problem (P) with a superlinear ϕ of the type ϕ(y) = yp, p > 1, was studied in [67],
where the existence anduniqueness of nonnegative entropy solutionswas proved (see
also [33]). By definition, in that paper, for positive times, the solution takes values in
L1(ℝ), although u0 is a finite Radon measure. Interesting results concerning (P) with
ϕ at most linear at infinity can be found in the pioneering paper [39].

When ϕ(y) = Cy (C ∈ ℝ), problem (P) is the Cauchy problem for the linear trans-
port equation

{
ut + Cux = 0 in S,
u = u0 in ℝ × {0},

whose the solution is trivially u0 translated along the lines x = Ct + x0 (x0 ∈ ℝ). In
particular, the singular part us(⋅, t) of the solution is nonzero for t > 0 if and only if it
is nonzero for t = 0.

It is natural to ask what happens if ϕ is sublinear, as suggested by several math-
ematical models (see [50, 88, 89]). In this case the natural space to seek solutions of
(P) is L∞w∗ (0,T ;R+f (ℝ)), as it is assumed in the following definitions.

7.1.2 Definition of solution

Throughout this subsection, we assume that assumptions (A0)–(A1) are satisfied.

Definition 7.1.1. A Young measure solution of problem (P) is a pair (u, ν) such that:
(i) u ∈ L∞w∗ (0,T ;R+f (ℝ)), ν ∈ Y(S;ℝ);
(ii) supp ν(x,t) ⊆ [0,∞) for a. e. (x, t) ∈ S, and

ur(x, t) = ∫
[0,∞)

y dν(x,t)(y), (7.2)

where {ν(x,t)}(x,t)∈S is the disintegration of ν;
(iii) for every ζ ∈ C1([0,T];C1c(ℝ)) with ζ (⋅,T) = 0 in ℝ, we have

∬
S

[ur𝜕tζ + ϕ
∗𝜕xζ ] dxdt +

T

∫
0

⟨us(⋅, t), 𝜕tζ (⋅, t)⟩ dt = −⟨u0, ζ (⋅,0)⟩, (7.3)
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where

ϕ∗(x, t) := ∫
[0,∞)

ϕ(y) dν(x,t)(y) for a. e. (x, t) ∈ S. (7.4)

Set H+(y) := χ(0,∞)(y), H−(y) := −χ(−∞,0)(y), and sgn(y) := H+(y) + H−(y) (y ∈ ℝ).

Definition 7.1.2. A Young measure entropy solution of problem (P) is a Youngmeasure
solution such that

∬
S

[E∗l 𝜕tζ + F
∗
l 𝜕xζ ] dxdt +

T

∫
0

⟨us(⋅, t), 𝜕tζ (⋅, t)⟩ dt

≥ −∫
ℝ

El(u0r(x)) ζ (x,0) dx − ⟨u0s, ζ (⋅,0)⟩ (7.5)

for any ζ as above, ζ ≥ 0, and l ∈ [0,∞), where El(y) = |y − l|, Fl(y) = sgn(y − l)[ϕ(y) −
ϕ(l)] (y ∈ [0,∞)), and

E∗l := ∫
[0,∞)

El(y) dν(y), F∗l := ∫
[0,∞)

Fl(y) dν(y).

Young measure entropy subsolutions of (P) are defined by requiring (7.5) to hold for
any ζ and l as above, with El(y) = [y − l]+ and Fl(y) = H+(y − l)[ϕ(y) − ϕ(l)]. A similar
definition holds for Young measure entropy supersolution.

Remark 7.1.2. (i) By (7.1), (7.2), and (7.4) we have

ϕ
∗(x, t) ≤ M ∫

[0,∞)

y dν(x,t)(y) = Mur(x, t) for a. e. (x, t) ∈ S. (7.6)

Since ur ∈ L∞(0,T ; L1(ℝ)), by (7.6) we have that ϕ∗ ∈ L∞(0,T ; L1(ℝ)).

For any open Ω ⊆ ℝ and τ ∈ (0,T), set Qτ := Ω × (0, τ).

Definition 7.1.3. A measure u ∈ L∞w∗ (0,T ;R+f (Ω)) is called a solution of (P) in Qτ if for
any ζ ∈ C1([0, τ];C1c(Ω)), ζ (⋅, τ) = 0 in Ω, we have

∬
Qτ

[ur𝜕tζ + ϕ(ur) 𝜕xζ ] dxdt +
τ

∫
0

⟨us(⋅, t), 𝜕tζ (⋅, t)⟩ dt = −⟨u0, ζ (⋅,0)⟩. (7.7)

Solutions of (P) in S are referred to as solutions of (P).
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Definition 7.1.4. A solution of (P) in Qτ is called an entropy solution in Qτ if it satisfies
the entropy inequality

∬
Qτ

{El(ur) 𝜕tζ + Fl(ur) 𝜕xζ } dxdt +
τ

∫
0

⟨us(⋅, t), 𝜕tζ (⋅, t)⟩ dt

≥ −∫
Ω

El(u0r(x)) ζ (x,0) dx − ⟨u0s, ζ (⋅,0)⟩ (7.8)

for all ζ ∈ C1([0, τ];C1c(Ω)) such that ζ ≥ 0 and ζ (⋅, τ) = 0 in Ω and for all l ∈ [0,∞).

Definition 7.1.5. Entropy subsolutions and supersolutions of (P) in Qτ are defined by
requiring the following inequalities to hold:

∬
Qτ

{[ur − l]+ 𝜕tζ + H+(ur − l)[ϕ(ur) − ϕ(l)]𝜕xζ } dxdt +
τ

∫
0

⟨us(⋅, t), 𝜕tζ (⋅, t)⟩Ω dt

≥ −∫
Ω

[u0r − l]+ ζ (x,0) dx − ⟨u0s, ζ (⋅,0)⟩Ω, (7.9)

respectively,

∬
Qτ

{[ur − l]− 𝜕tζ + H−(ur − l)[ϕ(ur) − ϕ(l)]𝜕xζ } dxdt ≥ −∫
Ω

[u0r − l]− ζ (x,0) dx (7.10)

for all ζ and l as above.

It is easily seen that every entropy solution is both an entropy subsolution and an
entropy supersolution of (P).

Remark 7.1.3. (i) Equality (7.7) also reads

⟨u, 𝜕tζ ⟩ +∬
S

ϕ(ur) 𝜕xζ dxdt = −⟨u0, ζ (⋅,0)⟩,

showing that ut = −[ϕ(ur)]x in𝒟∗(S).
(ii) A solution of problem (P) is also a Young measure solution. Moreover, it fol-

lows from (7.1) thatϕ(ur) ∈ L∞(0,T ; L1(ℝ)). Similar remarks hold for entropy solutions,
subsolutions, and supersolutions.

The following result is analogous to Proposition 6.1.1. The proof is similar, and
thus we omit it (see [17, Proposition 3.5]).

Proposition 7.1.1. Let (A1) hold, let (u, ν) be a Young measure solution of (P). Then:
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(i) there exists a null set F∗ ⊆ (0,T) such that for all t ∈ (0,T) \ F∗ and ρ ∈ C1c(ℝ),

⟨u(⋅, t), ρ⟩ − ⟨u0, ρ⟩ =
t

∫
0

∫
ℝ

ϕ∗(x, s)ρ′(x) dxds; (7.11)

(ii) for all ρ ∈ Cc(ℝ),

ess lim
t→0+⟨u(⋅, t), ρ⟩ = ⟨u0, ρ⟩, (7.12)

ess lim
t→t0
⟨u(⋅, t), ρ⟩ = ⟨u(⋅, t0), ρ⟩ for a. e. t0 ∈ (0,T). (7.13)

Remark 7.1.4. As in Remark 6.1.2, it is easily seen that the map t → u(⋅, t) has a repre-
sentative defined for any t ∈ [0,T] and such that

lim
t→t0
⟨u(⋅, t), ρ⟩ = ⟨u(⋅, t0), ρ⟩ for all t0 ∈ [0,T] and ρ ∈ Cc(ℝ). (7.14)

Now we refer to this continuous representative whenever properties of the map t →
u(⋅, t) are stated for every t in some subinterval of [0,T].

As in the parabolic problem dealt with in Chapter 6 (see Section 6.3), informa-
tion about regularity will be important to prove the uniqueness. A first result in this
direction, partly reminiscent of inequality (6.33), is as follows.

Proposition 7.1.2. Let (A0)–(A1) hold.
(i) Let u be a Young measure entropy solution of (P). Then

us(⋅, t2) ≤ us(⋅, t1) inR+f (ℝ) for a. e. 0 ≤ t1 ≤ t2 ≤ T . (7.15)

In particular,

us(⋅, t) ≤ u0s inR+f (ℝ) for a. e. t ∈ (0,T). (7.16)

(ii) Let u be a solution of problem (P). Then there is conservation of mass:

u(⋅, t)
Rf (ℝ)
= ‖u0‖Rf (ℝ) for a. e. t ∈ (0,T). (7.17)

7.2 Uniqueness

In this section,we consider the casewhereϕ is bounded (seeRemark 7.3.1 for a unique-
ness result when ϕ is unbounded).

Let us define the waiting time t0 ∈ [0,T] for solutions u of (CL):

t0 := inf{τ ∈ (0,T] | us(⋅, t) = 0, ur(⋅, t) ∈ L
∞(ℝ) for a. e. t ∈ (τ,T)}. (7.18)
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Proposition 7.2.1. Let ϕ be bounded, and let assumptions (A0)–(A1) hold. Let
u0s({x0}) > 0 for some x0 ∈ ℝ, and let u be a solution of problem (P). Then the waiting
time t0 defined by (7.18) satisfies

t0 ≥ min{T , u0s({x0})
2‖ϕ‖∞

} > 0. (7.19)

Remark 7.2.1. In connection with equality (7.12), observe that, if u0s ̸= 0 and the wait-
ing time t0 is equal to 0, then the map t → u(⋅, t) cannot be continuous at t = 0 in the
strong topology ofRf (ℝ). Instead, the strong continuity may occur if the waiting time
is positive (see [18, Theorem 4.1]).

An upper bound of the waiting time in terms of ϕ and u0 is the content of the
following proposition. We refer the reader to [18, Theorem 3.11(ii)] for its proof, which
relies on estimates of the density ur of the Aronson–Bénilan type. Refined estimates
of the waiting time can also be found in [20].

Proposition 7.2.2. Let (A0′) and (A2′) hold with bounded ϕ bounded, α > −1, and
|β| < limy→∞ |ϕ(y)| =: γ. Let u be the entropy solution of problem (P) given further
by Theorem 7.3.4. Then the waiting time t0 defined by (7.18) satisfies

t0 ≤ min{T ,
(α + 1) ‖u0‖Rf (ℝ)

γ − |β|
}. (7.20)

Remark 7.2.2. If ϕ(y) = 1 − (1 + y)p (p < 0), then the proof of Proposition 0.2.4 shows
that the waiting time defined in (7.18) is t0 = 1. Hence, in this case, estimate (7.20) is
sharp, since assumption (A2′) is satisfied with α = p/(1−p) and β = −p/(1−p), whence

(α + 1) ‖δ0‖Rf (ℝ)

γ − |β|
=
(p/(1 − p) + 1) ‖δ0‖Rf (ℝ)

1 + p/(1 − p)
= 1.

Relying on Propositions 7.1.2 and 7.2.1, whose proofs will be given in Section 7.6,
we can now address the uniqueness. Let (A0′) and (A1) be satisfied (the latter with ϕ
bounded). Then u0s = ∑

p
j=1 cjδxj , and we set I1 := (−∞, x1), Ij := (xj−1, xj) for j = 2, . . . , p,

Ip+1 := (xp,∞), and Sj := Ij × (0,T) for j = 1, . . . , p + 1. In view of Proposition 7.2.1, if u is
a solution of problem (P), then

∀xj ∃tj ∈ (0,T] such that {
us(⋅, t)({xj}) > 0 for a. e. t ∈ [0, tj),
us(⋅, t)({xj}) = 0 for a. e. t ∈ (tj,T).

Then we can state the following definition.

Definition 7.2.1. Let ϕ be bounded, let (A0′)–(A1) hold, let j = 1, . . . , p, and let τ ∈
(0, tj]. An entropy solution of (P) satisfies the compatibility condition at xj in [0, τ] if for
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all β ∈ C1c(0, τ), β ≥ 0, and l ∈ [0,∞),

± ess lim
x→x±j

τ

∫
0

H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt ≤ 0. (C±)

The following lemma shows that Definition 7.2.1 is well posed.

Lemma 7.2.3. Let u be an entropy supersolution of (P), and let β ∈ C1c(0,T), β ≥ 0.
Then:
(i) for every l ∈ [0,∞), the distributional derivative of the function

x → −
T

∫
0

H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt + l T
β
′∞ x (7.21)

is nonnegative;
(ii) for all x0 ∈ ℝ and l ∈ [0,∞), there exist finite limits

ess lim
x→x±0

T

∫
0

H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt. (7.22)

Proof. Let α ∈ C1c(ℝ), α ≥ 0. Choosing ζ (x, t) = α(x)β(t) in (7.10) with Qτ = S gives

∬
S

{[ur(x, t) − l]− α(x)β
′(t) + H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]α

′(x)β(t)} dxdt ≥ 0.

Since 0 ≤ [ur − l]− ≤ l, from the above inequality we get

−∫
ℝ

(
T

∫
0

H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt) α
′(x) dx ≤ l T β

′∞ ∫
ℝ

α(x) dx,

whence claim (i) follows.
Therefore the distributional derivative of function (7.21) is a Radon measure.

Clearly, the same holds for the distributional derivative, say μ, of the function H̃ ∈
L1loc(ℝ),

H̃(x) := −
T

∫
0

H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt.

Fix any x̄ ∈ ℝ and set fμ(x) := μ((x̄, x]) if x ≥ x̄ and fμ(x) := −μ((x, x̄]) if x < x̄. Then
fμ is continuous from the right and coincides a. e. with H̃ on every compact K ⊂ ℝ up
to a constant, possibly depending on K (e. g., see [5, Theorem 3.28]). Hence the claim
follows.
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Now we can state a uniqueness result.

Theorem 7.2.4. Let ϕ be bounded, and let (A0′)–(A1) hold. Then there exists at most
one entropy solution of problem (P), which belongs to C([0,T];R+f (ℝ)) and satisfies the
compatibility condition at xj in [0, tj] for all j = 1, . . . , p.

To prove Theorem 7.2.4, we need a few lemmas.

Lemma 7.2.5. Let ϕ be bounded, let (A0′)–(A1) hold, and let u be an entropy solution
of (P). Then for all β ∈ C1c(0,T), β ≥ 0, l ∈ [0,∞), and j = 1, . . . , p, there exist the finite
limits

ess lim
x→x±j

T

∫
0

sgn(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt. (7.23)

Proof. We only prove the claim for the limit from the right, the proof being similar for
that from the left. Let j = 1, . . . , p be fixed. In view of Proposition 7.1.2, the singular part
of every entropy solution of (P) is nonincreasing in time, and hence by (A0′) we have
us(⋅, t)(Ij+1) = 0 for all t ∈ [0,T]. Let α ∈ C1c(Ij+1), α ≥ 0. Choosing ζ (x, t) = α(x)β(t)
in (7.8) with Qτ = S gives

∬
Sj+1 {
ur(x, t) − l

α(x)β
′(t) + sgn(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]α

′(x)β(t)} dxdt ≥ 0.

Since 0 ≤ |ur − l| ≤ ur + l, we have

− ∫
Ij+1 α
′(x)(

T

∫
0

sgn(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt) dx

≤ β
′∞ ∫

Ij+1 α(x)(
T

∫
0

ur(x, t) dt + l T) dx

= − β
′∞ ∫

Ij+1 α
′(x)(

T

∫
0

x

∫
xj

ur(y, t) dydt + l Tx) dx.

This inequality implies that the distributional derivative of the map

x → −
T

∫
0

sgn(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt

+ β
′∞(

T

∫
0

x

∫
xj

ur(y, t) dydt + l Tx)
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is nonnegative in Ij+1. Arguing as in the proof of Lemma 7.2.3, the claim follows.

Lemma 7.2.6. Let (A0′)–(A′1) hold, and let u be an entropy solution of (P). Then for every
j = 1, . . . , p:
(i) there exist h−j , h

+
j ∈ L
∞(0,T) such that for all β ∈ C1c(0,T),

ess lim
x→x±j

T

∫
0

ϕ(ur(x, t))β(t) dt =
T

∫
0

h±j (t)β(t) dt; (7.24)

(ii) if u satisfies the compatibility condition (C±) at xj in [0, τ], then

h−j ≤ lim inf
l→∞

ϕ(l) ≤ lim sup
l→∞

ϕ(l) ≤ h+j a. e. in (0, τ). (7.25)

Remark 7.2.3. By standard density arguments, from (7.24) we get

ess lim
x→x±j

T

∫
0

ϕ(ur(x, t))ζ (x, t) dt =
T

∫
0

h±j (t)ζ (xj, t) dt (7.26)

for every ζ ∈ L1(0,T ;Cc(Uj)) with xj ∈ Uj ⊆ ℝ, Uj open.

Proof of Lemma 7.2.6(i). Weonly prove the limit from the right. Since sgn y = 1+2H−(y)
for y ∈ ℝ, by (7.22)–(7.23) the limit in the left-hand side of (7.24) exists and is finite. On
the other hand, for every sequence {xn} converging to x+j , the sequence {ϕ(ur(xn, ⋅))} is
bounded in L∞(0,T), and hence there exist a subsequence {xnk } ⊆ {xn} and a function
h+j ∈ L

∞(0,T) such that {ϕ(ur(xnk , ⋅))}
∗
⇀ h+j in L∞(0,T). Since the limit in the left-

hand side of (7.24) exists for all β ∈ C1c(0,T), by separability arguments it is easily seen
that the function h+j is independent of the choice of the sequence {xn}. Hence claim (i)
follows.

(ii) Since u is a solution of (P) in Ij+1 × (0, τ) and us ⌞ (Ij+1 × (0, τ)) = 0, by (7.7) we
have

τ

∫
0

∫
Ij+1 {(ur − l)yt + [ϕ(ur) − ϕ(l)] yx} dxdt = − ∫Ij+1 [u0r(x) − l] y(x,0) dx

for all l ∈ [0,∞) and y ∈ C1([0, τ];C1c(Ij+1)) such that y(⋅, τ) = 0 in Ij+1. Let

ηϵ(x) :=
2(x − xj) − ϵ

ϵ
χ[xj+ϵ/2,xj+ϵ](x) + χ(xj+ϵ,xj+1](x) (x ∈ Ij+1), (7.27)
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and let ζ ∈ C1([0, τ];C1c([xj, xj+1))) be such that ζ (⋅, τ) = 0 in Ij+1 (here xj+1 =∞ if j = p).
By standard arguments we can choose y = ζηϵ in the above equality and obtain

τ

∫
0

∫
Ij+1 {(ur − l)ζtηϵ + [ϕ(ur) − ϕ(l)] ζxηϵ} dxdt + ∫Ij+1 [u0r(x) − l]ζ (x,0)ηϵ(x) dx

= −
2
ϵ

τ

∫
0

xj+ϵ

∫
xj+ϵ/2

[ϕ(ur) − ϕ(l)]ζ dxdt.

Letting ϵ → 0+ in the above equality plainly gives (see (7.26))

τ

∫
0

∫
Ij+1 {(ur − l)ζt + [ϕ(ur) − ϕ(l)] ζx} dxdt + ∫Ij+1 [u0r(x) − l] ζ (x,0) dx

= −ess lim
x→x+j

τ

∫
0

[ϕ(ur(x, t)) − ϕ(l)] ζ (x, t) dt

= −
τ

∫
0

[h+j (t) − ϕ(l)] ζ (xj, t) dt. (7.28)

Since u is an entropy solution of (P) in Ij+1 × (0, τ), arguing as before, we obtain

τ

∫
0

∫
Ij+1 {|ur − l| ζt + sgn(ur − l)[ϕ(ur) − ϕ(l)]ζx} dxdt + ∫Ij+1

u0r(x) − l
ζ (x,0) dx

≥ −ess lim
x→x+j

τ

∫
0

sgn(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]ζ (x, t) dt

for all ζ as above, ζ ≥ 0. Choosing ζ (x, t) = α(x)β(t) with α ∈ C1c([xj, xj+1)), α ≥ 0, and
β ∈ C1([0, τ]), β ≥ 0, β(τ) = 0, by the compatibility condition (C±) we have

τ

∫
0

∫
Ij+1 {|ur − l| ζt + sgn(ur − l)[ϕ(ur) − ϕ(l)]ζx} dxdt

+ ∫
Ij+1
u0r(x) − l

ζ (x,0) dx + ess limx→x+j
τ

∫
0

[ϕ(ur(x, t)) − ϕ(l)]ζ (x, t) dt

≥ −2 ess lim
x→x+j

τ

∫
0

H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]ζ (x, t) dt
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= −2 α(xj) ess limx→x+j
τ

∫
0

H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)]β(t) dt ≥ 0, (7.29)

since sgn(y) = 1 + 2H−(y). From inequalities (7.28) and (7.29) we obtain

τ

∫
0

∫
Ij+1 {[ur − l]+ζt + H+(ur − l)[ϕ(ur) − ϕ(l)] ζx} dxdt + ∫Ij+1 [u0r(x) − l]+ ζ (x,0) dx

≥ −
τ

∫
0

[h+j (t) − ϕ(l)] ζ (xj, t) dt.

Letting l →∞ in the above inequality gives

lim inf
l→∞

τ

∫
0

[h+j (t) − ϕ(l)] ζ (xj, t) dt =
τ

∫
0

[h+j (t) − lim sup
l→∞

ϕ(l)] ζ (xj, t) dt ≥ 0,

whence the last inequality in (7.25) follows by the arbitrariness of ζ .
Replacing Ij+1 × (0, τ) by Ij × (0, τ), we obtain, similarly to (7.28) and (7.29),

τ

∫
0

∫
Ij

{(ur − l)ζt + [ϕ(ur) − ϕ(l)] ζx} dxdt + ∫
Ij

[u0r(x) − l] ζ (x,0) dx

= ess lim
x→x−j

τ

∫
0

[ϕ(ur(x, t)) − ϕ(l)] ζ (x, t) dt =
τ

∫
0

[h−j (t) − ϕ(l)] ζ (xj, t) dt, (7.30)

τ

∫
0

∫
Ij

{|ur − l| ζt + sgn(ur − l)[ϕ(ur) − ϕ(l)]ζx} dxdt

+ ∫
Ij

u0r(x) − l
 ζ (x,0) dx − ess limx→x−j

τ

∫
0

[ϕ(ur(x, t)) − ϕ(l)]ζ (x, t) dt ≥ 0, (7.31)

whence

τ

∫
0

∫
Ij

{[ur − l]+ζt + H+(ur − l)[ϕ(ur) − ϕ(l)] ζx} dxdt + ∫
Ij

[u0r(x) − l]+ ζ (x,0) dx

≥
τ

∫
0

[h−j (t) − ϕ(l)] ζ (xj, t) dt
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and

lim sup
l→∞

τ

∫
0

[h−j (t) − ϕ(l)] ζ (xj, t) dt =
τ

∫
0

[h−j (t) − lim inf
l→∞

ϕ(l)] ζ (xj, t) dt ≤ 0.

Since ζ is arbitrary, we obtain the first inequality in (7.25).

Remark 7.2.4. By standard density arguments and (7.26) it follows from (7.31) that

τ

∫
0

∫
I1

{|ur − l| ζt + sgn(ur − l)[ϕ(ur) − ϕ(l)]ζx} dxdt + ∫
I1

u0r(x) − l
 ζ (x,0) dx

≥
τ

∫
0

[h−1 (t) − ϕ(l)]ζ (x1, t) dt (7.32)

if ζ ∈ C1([0, τ];C1c((−∞, x1])), ζ ≥ 0, and ζ (⋅, τ) = 0 in (−∞, x1], and from (7.29) that

τ

∫
0

∫
Ip+1 {|ur − l| ζt + sgn(ur − l)[ϕ(ur) − ϕ(l)]ζx} dxdt + ∫Ip+1

u0r(x) − l
 ζ (x,0) dx

≥ −
τ

∫
0

[h+p(t) − ϕ(l)]ζ (xp, t) dt

for all ζ ∈ C1([0, τ];C1c([xp,∞))) such that ζ ≥ 0 and ζ (⋅, τ) = 0 in [xp,∞). Moreover,
arguing as in the proof of Lemma 7.2.6 with ηϵ in (7.27) replaced by

2(x − xj) − ϵ
ϵ

χ[xj+ϵ/2,xj+ϵ] + χ[xj+ϵ,xj+1−ϵ] + 2(xj+1 − x) − ϵϵ
χ[xj+1−ϵ,xj+1−ϵ/2],

we obtain that, for any j = 1, . . . , p − 1,

τ

∫
0

∫
Ij+1 {|ur − l| ζt + sgn(ur − l)[ϕ(ur) − ϕ(l)]ζx} dxdt + ∫Ij+1

u0r(x) − l
 ζ (x,0) dx

≥ −
τ

∫
0

[h+j (t) − ϕ(l)]ζ (xj, t) dt +
τ

∫
0

[h−j+1(t) − ϕ(l)]ζ (xj+1, t) dt

for all ζ ∈ C1([0, τ];C1c([xj, xj+1])) such that ζ ≥ 0 and ζ (⋅, τ) = 0 in [xj, xj+1].
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Remark 7.2.5. Let us mention the following inequalities, which hold for all ζ ∈
C1([0, τ];C1c((−∞, x1])) such that ζ ≥ 0 and ζ (⋅, τ) = 0 in (−∞, x1]:

τ

∫
0

∫
I1

{[ur − l]+ ζt + H+(ur − l)[ϕ(ur) − ϕ(l)]ζx} dxdt + ∫
I1

[u0r(x) − l]+ ζ (x,0) dx

≥
τ

∫
0

[h−1 (t) − ϕ(l)]ζ (x1, t) dt, (7.33)

τ

∫
0

∫
I1

{[ur − l]− ζt + H−(ur − l)[ϕ(ur) − ϕ(l)]ζx} dxdt + ∫
I1

[u0r(x) − l]− ζ (x,0) dx ≥ 0.

(7.34)

The proof is analogous to that of (7.32), starting from (7.9) and (7.10) instead of (7.8).
Similar inequalities hold in Sj for j = 2, . . . , p + 1.

Now we can prove Theorem 7.2.4.

Proof of Theorem 7.2.4. Letu, v ∈ C([0,T];R+f (Ω))be entropy solutions of (P) satisfying
the compatibility condition at every xj in [0, tj], and let

τ := min{tu, tv}, where {
tu := sup{t ∈ [0,T) | supp us(⋅, t) = supp u0s}
tv := sup{t ∈ [0,T) | supp vs(⋅, t) = supp u0s}.

(7.35)

It suffices to show that

u = v inRf (Sτ), (7.36)

since if τ < T, then a standard iteration procedure proves the result. Plainly, (7.36)
follows if we prove that

ur = vr a. e. in Sτ. (7.37)

In fact, equalities (7.7) and (7.37) imply that

τ

∫
0

⟨us(⋅, t) − vs(⋅, t), 𝜕tζ (⋅, t)⟩ dt = −∬
Sτ

{(ur − vr) 𝜕tζ + [ϕ(ur) − ϕ(ur)]𝜕xζ } dxdt = 0

for all ζ ∈ C1([0, τ];C1c(ℝ)) such that ζ (⋅, τ) = 0 in ℝ. Hence ⟨us(⋅, t) − vs(⋅, t), α⟩ = 0 for
a. e. t ∈ (0, τ) and all α ∈ C1c(ℝ). Therefore us = vs in L

∞(0, τ;Rf (ℝ)), and (7.36) follows
from (7.37).
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It remains to prove (7.37), which is equivalent to showing that

ur = vr a. e. in Ij × (0, τ) for any j = 1, . . . , p + 1. (7.38)

We only prove (7.38) for j = 1, since in the other cases the proof is similar. Set Q1 :=
(−∞, x1]×(0, τ).Weapply theKružkovmethodof doubling variables adapted tobound-
ary value problems (see [68, 75, 91]). Let ξ = y(x, t, y, s) ≥ 0 defined in Q1 × Q1 be such
that ξ (⋅, ⋅, y, s) ∈ C1c(Q1) for every (y, s) ∈ Q1 and ξ (x, t, ⋅, ⋅) ∈ C1c(Q1) for every (x, t) ∈ Q1.
It follows from (7.32) that

∬
Q1

{sgn(ur(x, t) − v(y, s))[ϕ(ur(x, t)) − ϕ(vr(y, s))]ξx(x, t, y, s)

+ ur(x, t) − vr(y, s)
ξt(x, t, y, s)} dxdt ≥

τ

∫
0

[h−1 (t) − ϕ(vr(y, s))]ξ (x1, t, y, s) dt,

∬
Q1

{sgn(ur(x, t) − v(y, s))[ϕ(ur(x, t)) − ϕ(vr(y, s))]ξy(x, t, y, s)

+ ur(x, t) − vr(y, s)
ξs(x, t, y, s)} dyds ≥

τ

∫
0

[g−1 (s) − ϕ(ur(x, t))]ξ (x, t, x1, s) ds,

where, by Lemma 7.2.6(i), g±j ∈ L
∞(0,T) satisfies, for each j = 1, . . . , p,

ess lim
x→x±j

T

∫
0

ϕ(vr(x, t))β(t) dt =
T

∫
0

g±j (t)β(t) dt if β ∈ C1c(0,T). (7.39)

Let ρϵ (ϵ > 0) be a symmetric mollifier in ℝ, and in the previous inequalities, set

ξ (x, t, y, s) = η(x + y
2
,
t + s
2
) ρϵ(x − y) ρϵ(t − s) (7.40)

with η ∈ C1c((−∞, x1] × (0, τ)), η ≥ 0. Then we obtain

∬
Q1×Q1

ρϵ(x − y) ρϵ(t − s){
ur(x, t) − vr(y, s)

 ηt(
x + y
2
,
t + s
2
)

+ sgn(ur(x, t) − vr(y, s))[ϕ(ur(x, t)) − ϕ(vr(y, s))]ηx(
x + y
2
,
t + s
2
)} dxdtdyds

≥
τ

∫
0

∬
Q1

[g−1 (s) − ϕ(ur(x, t))] η(
x + x1
2
,
t + s
2
) ρϵ(x1 − x) ρϵ(t − s) dxdtds
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+
τ

∫
0

∬
Q1

[h−1 (t) − ϕ(vr(y, s))]η(
x1 + y
2
,
t + s
2
) ρϵ(y − x1) ρϵ(t − s) dydsdt. (7.41)

Concerning the right-hand side of (7.41), by thewell-knownproperties ofmollifiers
we have

τ

∫
0

∬
Q1

g−1 (s) η(
x + x1
2
,
t + s
2
) ρϵ(x1 − x) ρϵ(t − s) dxdtds→

1
2

τ

∫
0

g−1 (s) η(x1, s) ds

and
τ

∫
0

∬
Q1

h−1 (t) η(
x1 + y
2
,
t + s
2
) ρϵ(y − x1) ρϵ(t − s) dydsdt →

1
2

τ

∫
0

h−1 (t) η(x1, t) dt

as ϵ → 0+. Moreover, since∬Q1
ρϵ(x1 − x) ρϵ(t − s) dxds =

1
2 for ϵ < min{t, τ − t},



τ

∫
0

∬
Q1

ϕ(ur(x, t))η(
x + x1
2
,
t + s
2
)ρϵ(x1 − x)ρϵ(t − s) dxdtds −

1
2

τ

∫
0

h−1 (t) η(x1, t) dt


≤∬
Q1

ρϵ(x1 − x) dxds
τ

∫
0

ρϵ(t − s)ϕ(ur(x, t))

η(x + x1

2
,
t + s
2
) − η(x1, t)


dt

+

∫
I1

ρϵ(x1 − x) dx
τ

∫
0

[ϕ(ur(x, t)) − h
−
1 (t)] η (x1, t) dt

τ

∫
0

ρϵ(t − s) ds


≤
‖ϕ‖L∞
2

sup
0≤x1−x≤ϵ

τ

∫
0

sup
|s−t|≤ϵ


η(x1 + x

2
,
t + s
2
) − η(x1, t)


dt

+ ‖ρ1‖∞
1
ϵ

x1

∫
x1−ϵ



τ

∫
0

[ϕ(ur(x, t)) − h
−
1 (t)]η (x1, t) dt


dx.

By the smoothness of η and equality (7.26) the right-hand side of the above inequality
vanishes as ϵ → 0+. Therefore

τ

∫
0

∬
Q1

ϕ(ur(x, t))η(
x + x1
2
,
t + s
2
)ρϵ(x1 − x)ρϵ(t − s) dxdtds→

1
2

τ

∫
0

h−1 (t) η(x1, t) dt.

It is similarly seen that

τ

∫
0

∬
Q1

ϕ(vr(y, s))η(
x1 + y
2
,
t + s
2
)ρϵ(y − x1)ρϵ(t − s) dydsdt →

1
2

τ

∫
0

g−1 (s)η (x1, s) ds.
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Letting ϵ → 0+ in (7.41), we obtain that, for every η ∈ C1c((−∞, x1] × (0, τ)), η ≥ 0, we
have

∬
Q1

{ur(x, t) − vr(x, t)
 ηt(x, t)

+ sgn(ur(x, t) − vr(x, t))[ϕ(ur(x, t)) − ϕ(vr(x, t))]ηx(x, t)} dxdt ≥ 0. (7.42)

Now fix t′ and t′′ such that 0 < t′ < t′′ < τ, and let x0 < x1. Let αδ = αδ(x) and
βϑ = βϑ(t) be two families of mollifiers such that 0 < δ < 1 and 0 < ϑ < min{t′, τ − t′′}.
In (7.42), set

η(x, t) = ηδ,ϑ(x, t) :=
t−t′
∫

t−t′′ βϑ(z) dz
x1+δ

∫
‖ϕ′‖∞(t−t′′)+x0

αδ(x − y) dy (δ > 0)

with x ∈ (‖ϕ′‖∞(t − t′′) + x0, x1] and t ∈ (t′ − ϑ, t′′ + ϑ) (clearly, ηδ,ϑ is nonnegative and
belongs to C∞c ((−∞, x1] × (0, τ))). Since αδ(x − x1 − δ) = 0 if x ∈ (−∞, x1],

∬
Q1

|ur − vr | [βϑ(t − t
′) − βϑ(t − t

′′)](
x1+δ

∫
‖ϕ′‖∞(t−t′′)+x0

αδ(x − y) dy) dxdt

−∬
Q1

{ϕ
′∞ |ur − vr | + sgn(ur − vr)[ϕ(ur) − ϕ(vr)]}

× αδ(x −
ϕ
′∞ (t − t

′′) − x0)(
t−t′
∫

t−t′′ βϑ(z) dz) dxdt ≥ 0.
Since ‖ϕ′‖∞|y1 − y2| + sgn(y1 − y2)[ϕ(y1) − ϕ(y2)] ≥ 0 for all y1, y2 ≥ 0, it follows that

∬
Q1

|ur − vr | [βϑ(t − t
′) − βϑ(t − t

′′)](
x1+δ

∫
‖ϕ′‖∞(t−t′′)+x0

αδ(x − y) dy) dxdt ≥ 0.

Let δ → 0+ in this inequality. Then by the dominated convergence theoremwe get

τ

∫
0

x1

∫
‖ϕ′‖∞(t−t′′)+x0

ur(x, t) − vr(x, t)
 [βϑ(t − t

′) − βϑ(t − t
′′)] dxdt ≥ 0,

whence as ϑ → 0+ (recall that ur , vr ∈ C([0,T]; L1(ℝ)) as u, v ∈ C([0,T];R+f (Ω))),

x1

∫
x0

ur(x, t
′′) − vr(x, t

′′) dx ≤
x1

∫
x0−‖ϕ′‖∞(t′′−t′)

ur(x, t
′) − vr(x, t

′) dx. (7.43)
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Since u, v ∈ C([0,T];R+f (Ω)), letting t
′ → 0+ in (7.43), for all (x0, t′′) ∈ Q1, we obtain

x1

∫
x0

ur(x, t
′′) − vr(x, t

′′) dx ≤
x1

∫
x0−‖ϕ′‖∞t′′

ur(x,0) − vr(x,0)
 dx = 0

for ur(⋅,0) = vr(⋅,0) = u0r . By the arbitrariness of t′′ ∈ (0, τ) it follows that ur = vr
in Q1.

Remark 7.2.6. Arguing as in Remark 6.3.2, it is easy to exhibit entropy solutions of
problem (P) that do not satisfy (C±) thus are not constructed solutions (see Defini-
tion 7.3.1 and Theorem 7.3.3). Hencewithout compatibility conditions uniqueness fails.

7.3 Existence and regularity results

The existence of solutions is proven by an approximation procedure. Consider the ap-
proximating problem

{
𝜕tun + 𝜕x[ϕ(un)] = 0 in S,
un = u0n in ℝ × {0} (n ∈ ℕ).

(Pn)

Studying the limiting points of the sequence {un}, we will prove the following result.

Theorem 7.3.1. Let (A0)–(A1) hold. Then problem (P) has a solution u, which is obtained
as a limiting point of the sequence {un} of entropy solutions to problems (Pn). In addition,
u is a Young measure entropy solution of (P).

Theorem 7.3.2. Let (A0)–(A2) hold, and let u be the solution of (P) given by Theo-
rem 7.3.1. Then u is an entropy solution of (P).

The following definition is the counterpart of Definition 6.4.1.

Definition 7.3.1. Solutions of (P) given by Theorems 7.3.1 and 7.3.2 are called con-
structed solutions and constructed entropy solutions, respectively.

As in Section 6.4, constructed entropy solutions of (P) have several important
properties. In particular, under the additional requirement (A2′) (which in turn im-
plies (A1) and (A2)), they satisfy the compatibility conditions. This is the content of
the following proposition.

Theorem 7.3.3. Let (A0) and (A2′) hold. Let u be a constructed entropy solution u of
problem (P). Then for every τ ∈ (0,T):
(i) if ϕ is bounded, then u satisfies the compatibility conditions (C±) in [0, τ] at every

point xj ∈ supp us(⋅, τ);
(ii) if ϕ is unbounded, then u = ur ∈ L∞(ℝ × (τ,T)).
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Remark 7.3.1. If ϕ is unbounded and satisfies assumption (A2′), then by [67, Theo-
rem 1.1] and Theorem 7.3.3(ii) for every u0 ∈ R+f (ℝ)) there exists a unique entropy
solution of problem (P) with waiting time t0 = 0. In fact, by Theorem 7.3.3(ii) ev-
ery constructed entropy solution u is a solution in the sense of [67], since u = ur ∈
L∞(ℝ × (τ,T)) for every τ ∈ (0,T) and ess limt→0+ u(⋅, t) = u0 narrowly in Rf (ℝ) (see
Definition 5.1.3). This follows from (7.12) and Proposition 7.1.2(ii) (see also [53, Propo-
sition 2, p. 38]).

When ϕ is bounded and u0 is as in (A0′), by [17, Proposition 3.20] every con-
structed entropy solution of (P) satisfies u ∈ C([0,T];R+f (Ω)) with u(⋅,0) = u0. Thus
by Theorems 7.3.3 and 7.2.4 we have the following existence and uniqueness result.

Theorem 7.3.4. Let ϕ be bounded, and let (A0′)–(A2′) hold. Then there exists a unique
entropy solution u ∈ C([0,T];R+f (Ω)) of problem (P) that satisfies the compatibility con-
ditions.

Let us finally mention the following regularization result.

Proposition 7.3.5. Let (A0) and (A2′) hold. Then for a.e. t ∈ (0,T), the support of the
singular part us(⋅, t) is a null set.

7.4 Proof of existence results: the approximating problems

We assume that the initial data u0n ∈ L1(ℝ)∩ L∞(ℝ) of (Pn) have the following proper-
ties (see Lemma 6.5.1 and (6.49b)–(6.49c)):

u0n ≥ 0 in ℝ, ‖u0n‖L1(ℝ) ≤ ‖u0‖Rf (ℝ) , (7.44)

u0n
∗
⇀ u0, u0n → u0r a. e. in ℝ, ‖u0n − u0r‖L1loc(ℝ\supp u0s) → 0. (7.45)

Let {uϵ0n} ⊆ C
∞
c (ℝ), u

ϵ
0n ≥ 0, be any family such that

u
ϵ
0n
L1(ℝ) ≤ ‖u0n‖L1(ℝ) ≤ ‖u0‖Rf (ℝ) ,

u
ϵ
0n
L∞(ℝ) ≤ ‖u0n‖L∞(ℝ) , (7.46)

uϵ0n → u0n in L1(ℝ), uϵ0n
∗
⇀ u0n in L∞(ℝ) as ϵ → 0+. (7.47)

Let η ∈ C∞c (ℝ) be a standard mollifier. Set ηϵ(y) :=
1
ϵη(

y
ϵ ) (ϵ > 0) and

ϕϵ(y) := (ηϵ ∗ ϕ)(y) − (ηϵ ∗ ϕ)(0) (y ∈ ℝ), (7.48)

where ϕ := ϕχ[0,∞). The regularized problem associated with (Pn),

{
𝜕tuϵn + 𝜕x[ϕϵ(uϵn)] = ϵ 𝜕xxu

ϵ
n in S,

uϵn = u
ϵ
0n in ℝ × {0},

(Pϵn)
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has a unique strong solution uϵn ∈ C([0,T];H
2(ℝ)) ∩ L∞(S) such that 𝜕tuϵn ∈ L

2(S) and
uϵn ≥ 0 (e. g., see [68]).

Someproperties of the family {uϵn} are collected in the following lemmas. Theproof
of the first is almost standard (e. g., see [34]), and thus we omit it.

Lemma 7.4.1. Let uϵn be the solution of problem (Pϵn) (ϵ > 0, n ∈ ℕ). Then:

uϵn ≥ 0 in S, u
ϵ
n
L∞(S) ≤ ‖u0n‖L∞(ℝ) , (7.49)

u
ϵ
n(⋅, t)
L1(ℝ) =

u
ϵ
0n
L1(ℝ) (t ∈ (0,T)), (7.50)

u
ϵ
n
L∞(0,T ;L1(ℝ)) ≤ ‖u0n‖L1(ℝ) ≤ ‖u0‖Rf (ℝ) , (7.51)

u
ϵ
n(⋅ + h, ⋅) − u

ϵ
n
L∞(0,T ;L1(ℝ)) ≤ uϵ0n(⋅ + h) − uϵ0nL1(ℝ) for all h ∈ ℝ. (7.52)

Lemma 7.4.2. Let (7.1) hold. Then there exists C > 0 (only depending on ‖u0‖Rf (ℝ)) such
that for any n ∈ ℕ, ϵ ∈ (0, 1), and p ∈ (0, 1),

ϵ∬
S

(1 + uϵn)
p−2 (𝜕xu

ϵ
n)

2 dxdt ≤ C
p (1 − p)

. (7.53)

Proof. Let U ∈ C2([0,∞)) with U ′ ≥ 0 in (0,∞). Set

ΛU ,ϵ(y) :=
y

∫
0

U ′(z)ϕ′ϵ(z) dz + ϑU (ϑU ∈ ℝ). (7.54)

By (7.1) and (7.48), for all y ≥ 0,

ΛU ,ϵ(y)
 ≤

y

∫
0

U ′(z) ϕ
′
ϵ(z)
 ds + |ϑU | ≤ M [U(y) − U(0)] + |ϑU |. (7.55)

Multiplying the first equation in (Pϵn) by U
′(uϵn) gives

𝜕t[U(u
ϵ
n)] + 𝜕x[ΛU ,ϵ(u

ϵ
n)] = ϵ 𝜕xx[U(u

ϵ
n)] − ϵ U

′′(uϵn)(𝜕xu
ϵ
n)

2 in S. (7.56)

Hence for all ζ ∈ C1([0,T];C2c(ℝ)),

ϵ∬
S

U ′′(uϵn)(𝜕xu
ϵ
n)

2ζ dxdt + ∫
ℝ

U(uϵn(x,T))ζ (x,T) dx

= ∫
ℝ

U(uϵ0n)ζ (x,0) dx +∬
S

[U(uϵn) 𝜕tζ + ΛU ,ϵ(u
ϵ
n) 𝜕xζ + ϵ U(u

ϵ
n) 𝜕xxζ ] dxdt. (7.57)

Choose ϑU = 0, U(y) = (1 + u)p − 1 with p ∈ (0, 1), and

ζ = ρk := χ[−k,k] + ρ(⋅ − k)χ[k,k+1) + ρ(⋅ + k)χ{(−k−1,−k] (k ∈ ℕ)
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with any ρ ∈ C2c((−1, 1)) such that ρ(0) = 1, 0 ≤ ρ ≤ 1, and ρ′(0) = ρ′′(0) = 0. Then
0 ≤ U(y) ≤ y for y ≥ 0, and, by (7.51), (7.55), and (7.57) we have

ϵ p(1 − p)∬
S

(1 + uϵn)
p−2(𝜕xu

ϵ
n)

2ρk dxdt

≤ ∫
ℝ

uϵ0n(x) dx +∬
S

[M uϵn
ρ
′
k
 + ϵu

ϵ
n
ρ
′′
k
] dxdt

≤ [1 + (M + 1)T‖ρ‖C2([−1,1])] ‖u0‖Rf (ℝ) =: C

for all ϵ ∈ (0, 1) and k ∈ ℕ. Letting k →∞ in this inequality gives (7.53), and hence the
result follows.

Lemma 7.4.3. Let (7.1) hold, and let U ∈ C2([0,∞)). Let there exist K ≥ 0 and p ∈ (0, 1)
such that

U
′′(y) ≤ K (1 + y)

p−2 for all y ∈ [0,∞). (7.58)

Then there exists Cp > 0 such that for all n ∈ ℕ and ϵ > 0,

ϵ∬
S

U
′′(uϵn)
 (𝜕xu

ϵ
n)

2 dxdt ≤ Cp. (7.59)

Proof. The result immediately follows from (7.53) and (7.58).

Lemma 7.4.4. Let (7.1) hold, and let U ∈ C2([0,∞)) with U ′ ∈ L∞(0,∞) satisfy (7.58).
For any ρ ∈ C2c(ℝ) and t ∈ (0,T), set

Uϵ
n,ρ(t) := ∫

ℝ

U(uϵn(x, t))ρ(x) dx, Un,ρ(t) := ∫
ℝ

U(un(x, t))ρ(x) dx. (7.60)

Then the family {Uϵ
n,ρ} is bounded in BV(0,T).

Proof. By equality (7.56) we have

(Uϵ
n,ρ)
′(t) = ∫

ℝ

[ΛU ,ϵ(u
ϵ
n)ρ
′ + ϵ U(uϵn)ρ

′′ − ϵ U ′′(uϵn) (𝜕xu
ϵ
n)

2ρ](x, t) dx. (7.61)

Since U ′ ∈ L∞(0,∞), there exists N > 0 such that

U(y)
 ≤ N (1 + y) for all y ≥ 0. (7.62)

Hence by (7.1), (7.48), and (7.54) we have

ΛU ,ϵ(u
ϵ
n)
 ≤ M
U
′∞
u
ϵ
n
 + |ϑU | =: M̃uϵn + |ϑU |,
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whence by (7.61)

(U
ϵ
n,ρ)
′(t) ≤ ‖ρ‖C2(ℝ) ∫

supp ρ

{(M̃ + ϵN)uϵn(x, t) + ϵN + |ϑU |} dx

+ ϵ ‖ρ‖L∞(ℝ) ∫
ℝ

[U
′′(uϵn)
 (𝜕xu

ϵ
n)

2](x, t) dx. (7.63)

By (7.63), (7.51), and (7.59) there exists Cp,ρ > 0 such that

(U
ϵ
n,ρ)
′L1(0,T) ≤ ‖ρ‖C2(ℝ)[(M̃ + N)T ‖u0‖Rf (ℝ) + Cp,ρ]. (7.64)

On the other hand, by (7.51) and (7.62) we have

U
ϵ
n,ρ
L1(0,T) ≤ NT‖ρ‖L∞(ℝ) [‖u0‖Rf (ℝ) + λ(supp ρ)] (7.65)

(as usual, λ denotes the Lebesgue measure in ℝ). From (7.64)–(7.65) the claim fol-
lows.

Set RL := IL × (0,T), IL := (−L, L). From the above lemmas we get the following
convergence results.

Lemma 7.4.5. Let ϕ ∈ C([0,∞)). Then there exist a subsequence {uϵjn } ⊆ {uϵn}, with ϵj →
0+ as j →∞, and un ∈ L∞(S) ∩ L∞(0,T ; L1(ℝ)), un ≥ 0, such that, as j →∞,

uϵjn
∗
⇀ un in L∞(S), (7.66)

uϵjn (⋅, t)
∗
⇀ un(⋅, t) in L∞(ℝ) for a. e. t ∈ (0,T), (7.67)

uϵjn (⋅, t)→ un(⋅, t) in L1(IL) for a. e. t ∈ (0,T) and all L > 0, (7.68)

uϵjn → un in L1(RL) for all L > 0, (7.69)

uϵjn → un, ϕϵj(u
ϵj
n )→ ϕ(un) a. e. in S. (7.70)

Moreover,

‖un‖L∞(S) ≤ ‖u0n‖L∞(ℝ) , ‖un‖L∞(0,T ;L1(ℝ)) ≤ ‖u0n‖L1(ℝ) ≤ ‖u0‖Rf (ℝ). (7.71)

Proof. The convergence in (7.66), the nonnegativity of un, and the first inequality
in (7.71) immediately follow from (7.49). To prove (7.67), for any ρ ∈ C2c(ℝ), set

Iϵjn,ρ(t) := ∫
ℝ

uϵjn (x, t) ρ(x) dx (t ∈ (0,T)).
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By Lemma 7.4.4 with U(y) = y the sequence {Iϵjn,ρ} is bounded in BV(0,T). Hence there
exist a subsequence {Iϵjn,ρ} (not relabeled for simplicity) and In,ρ ∈ BV(0,T) such that

Iϵjn,ρ → In,ρ in L1(0,T) and a.e. in (0,T). (7.72)

On the other hand, by (7.66)

T

∫
0

Iϵjn,ρ(t) dt =∬
S

uϵjn (x, t) ρ(x) dxdt →∬
S

un(x, t) ρ(x) dxdt =
T

∫
0

dt ∫
ℝ

un(x, t) ρ(x) dx,

whence In,ρ = ∫ℝ un(x, t) ρ(x) dx for a. e. t ∈ (0,T)), and (7.72) holds for the whole se-
quence {Iϵjn,ρ}. To sum up, for any ρ ∈ C2c(ℝ), there exists a null set N ⊆ (0,T) such that

∫
ℝ

uϵjn (x, t) ρ(x) dx → ∫
ℝ

un(x, t) ρ(x) dx

for all t ∈ (0,T) \ N . Since C2c(ℝ) is separable, the choice of the set N can be made
independent of ρ, and thus (7.67) follows.

By (7.51), (7.52), and the Fréchet–Kolmogorov theorem, for all t ∈ (0,T) and L > 0,
the sequence {uϵjn (⋅, t)} is relatively compact in L1(IL). Arguing as before, by (7.67) we
plainly obtain (7.68). From (7.51) and (7.68) we get

‖un‖L∞(0,T ;L1(IL)) ≤ ‖u0n‖L1(ℝ) ≤ ‖u0‖Rf (ℝ) for all L > 0,

whence by the arbitrariness of L the second inequality in (7.71) follows. From (7.51)
and (7.68) by thedominated convergence theoremwealso get the convergence in (7.69).

Finally, the first convergence in (7.70) follows from (7.69) (possibly extracting a
subsequence, not relabeled). Since for any compact subset K ⊆ ℝ, ‖ϕϵ −ϕ‖C(K) → 0 as
ϵ → 0+, the second convergence in (7.70) also follows. This completes the proof.

Lemma 7.4.6. Let (7.1) hold, and let U ∈ C2([0,∞)) with U ′ ∈ L∞(0,∞) satisfy (7.58).
For any ρ ∈ C2c(ℝ) and t ∈ (0,T), set

Un,ρ(t) := ∫
ℝ

U(un(x, t))ρ(x) dx (7.73)

with un ∈ L∞(S) ∩ L∞(0,T ; L1(ℝ)) given by Lemma 7.4.5. Then:
(i) there exists a subsequence {Uϵj

n,ρ} ⊆ {Uϵ
n,ρ}with ϵj → 0+ as j →∞ (Uϵ

n,ρ being defined
by (7.60)) such that

Uϵj
n,ρ → Un,ρ in L1(0,T); (7.74)

(ii) the family {Un,ρ} is bounded in BV(0,T).
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Proof. Concerning claim (i), let {uϵjn } be the subsequence in Lemma 7.4.5. Then for a. e.
t ∈ (0,T), by the first convergence in (7.70) we have U(uϵjn (⋅, t)) → U(un(⋅, t)) a. e. in
ℝ, whence (7.74) follows by the dominated convergence theorem. As for (ii), by (7.74)
and (7.65) we get

Un,ρ
L1(0,T) = limj→∞

U
ϵj
n,ρ
L1(0,T) ≤ NT‖ρ‖L∞(ℝ) [‖u0‖Rf (ℝ) + λ(supp ρ)]. (7.75)

On the other hand, by (7.64) and the lower semicontinuity of the total variation in the
L1(0,T)-topology (see Remark 3.1.4(ii)) we have

U
′
n,ρ
Rf (0,T)

≤ ‖ρ‖C2(ℝ)[(M̃ + N)T ‖u0‖Rf (ℝ) + Cp,ρ]. (7.76)

From (7.75)–(7.76) claim (iii) follows. This completes the proof.

Let us recall the following definition (e. g., see [34]).

Definition 7.4.1. A function un ∈ L∞(0,T ; L1(ℝ)) ∩ L∞(S) is called an entropy solution
of problem (Pn) if for every ζ ∈ C1([0,T];C1c(ℝ)), ζ (⋅,T) = 0 in ℝ, ζ ≥ 0 and for any
l ∈ [0,∞) there holds

∬
S

[El(un) 𝜕tζ + Fl(un) 𝜕xζ ] dxdt + ∫
ℝ

El(u0n) ζ (x,0) dx ≥ 0, (7.77)

where El(y) = |y − l|, Fl(y) = sgn(y − l)[ϕ(y) − ϕ(l)] (y ∈ [0,∞)).

Remark 7.4.1. Entropy solutions are weak solutions: if ζ ∈ C1([0,T];C1c(ℝ)) with
ζ (⋅,T) = 0 in ℝ, then

∬
S

[un𝜕tζ + ϕ(un)𝜕xζ ] dxdt + ∫
ℝ

u0n ζ (x,0) dx = 0. (7.78)

Proposition 7.4.7. Let ϕ ∈ C([0,∞)). Then the function un given by Lemma 7.4.5 is an
entropy solution of problem (Pn) (n ∈ ℕ). Moreover,

un(⋅, t)
L1(ℝ) = ‖u0n‖L1(ℝ) for a. e. t ∈ (0,T) (7.79)

and

un(⋅ + h, ⋅) − un
L∞(0,T ;L1(ℝ)) ≤ u0n(⋅ + h) − u0nL1(ℝ) for all h ∈ ℝ. (7.80)

If ϕ is locally Lipschitz continuous, then un is the unique entropy solution of (Pn).

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



344 | 7 Case study 2: hyperbolic conservation laws

Proof. Let ζ be as in Definition 7.4.1, and let El(y) = |y − l|, Fl,ϵ(y) = sgn(y − l)[ϕϵ(y) −
ϕϵ(l)] (y, l ∈ [0,∞)). Then by a standard calculation from (Pϵn) we get

∬
S

{El(u
ϵ
n)(𝜕tζ + ϵ ζxx) + Fl,ϵ(u

ϵ
n) 𝜕xζ } dxdt + ∫

ℝ

El(u
ϵ
0n) ζ (x,0) dx ≥ 0. (7.81)

Let {uϵjn } ⊆ {uϵn} be given by Lemma 7.4.5. By (7.48)–(7.49) we have

ϕϵj(u
ϵj
n )
L∞(S) ≤ sup

|y|≤‖u0n‖L∞(ℝ)ϕϵj (y)
 ≤ sup
|y|≤‖u0n‖L∞(ℝ)ϕ(y).

Then by (7.70), the above inequality, and the dominated convergence theorem

∬
S

Fl,ϵj(u
ϵj
n ) 𝜕xζ dxdt →∬

S

Fl(un) 𝜕xζ dxdt.

By (7.69) and (7.47) we also have that

∬
S

El(u
ϵj
n )(𝜕tζ + ϵj ζxx) dxdt →∬

S

El(un) 𝜕tζ dxdt

and

∫
ℝ

El(u
ϵj
0n) ζ (x,0) dx → ∫

ℝ

El(u0n) ζ (x,0) dx,

respectively. Then letting j → ∞ in (7.81) (written with ϵ = ϵj), we obtain (7.77), and
thus un is an entropy solution of problem (Pn). The uniqueness claim follows from
Kružkov’s uniqueness theorem (e. g., see [91]).

Inequality (7.80) follows from (7.52) and (7.68). Concerning (7.79), from (7.78) by
a standard argument it follows that

∫
ℝ

un(x, t) ρ(x) dx − ∫
ℝ

u0n(x) ρ(x) dx =
t

∫
0

∫
ℝ

ϕ(un)(x, s) ρ
′(x) dxds (7.82)

for a. e. t ∈ (0,T) and all ρ ∈ C1c(ℝ). Let ρk ∈ C
1
c(ℝ) (k ∈ ℕ) satisfy

ρk(x) = {
1 if |x| ≤ k,
0 if |x| ≥ k + 1,
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and ‖ρ′k‖L∞(ℝ) ≤ 2. Since un ∈ L1(S), letting k →∞ in (7.82) with ρ = ρk and using (7.1),
we get



t

∫
0

∫
ℝ

ϕ(un)(x, s) ρ
′
k(x) dxds


≤ 2M

t

∫
0

∫
{k≤|x|≤k+1}

un(x, s)
 dxds→ 0.

On the other hand, by the monotone convergence theorem we have

∫
ℝ

un(x, t) ρk(x) dx → ∫
ℝ

un(x, t) dx, ∫
ℝ

u0n(x) ρk(x) dx → ∫
ℝ

u0n(x) dx.

Then equality (7.79) follows from (7.82). This completes the proof.

Let us prove the following result for future reference.

Lemma 7.4.8. Let (7.1) hold, and let U ∈ C2([0,∞)) ∩ L∞(0,∞) satisfy (7.58). Set

ΛU (y) :=
y

∫
0

U ′(z)ϕ′(z) dz + ϑU (y, ϑU ∈ ℝ), (7.83)

and let ΛU ∈ L∞(0,∞). Let un be the entropy solution of problem (Pn) (n ∈ ℕ) given by
Proposition 7.4.7. Then for any n ∈ ℕ, there exists σn ∈ Rf (S) such that for all ζ ∈ C1c(S),

∬
S

{U(un) 𝜕tζ + ΛU (un) 𝜕xζ } dxdt = ⟨σn, ζ ⟩. (7.84)

In addition, we have

‖σn‖Rf (S) ≤ Cp (7.85)

with Cp > 0 as in (7.59).

Proof. By inequality (7.59), for anyfixedn ∈ ℕ, the family {ϵ U ′′(uϵn)(𝜕xu
ϵ
n)
2} is bounded

in L1(S) ⊆ Rf (S). Hence by the Banach–Alaoglu theorem there exist a sequence {ϵk}
such that ϵk → 0+ as k →∞ and σn ∈ Rf (S) such that

ϵk U
′′(uϵkn )(𝜕xu

ϵk
n )

2 ∗⇀ σn as k →∞. (7.86)

Inequality (7.85) follows from (7.86) by the lower semicontinuity of the norm (see Re-
mark 5.1.3).

Let ζ ∈ C2c(S). Then by (7.56) we have

ϵ∬
S

U ′′(uϵn)(𝜕xu
ϵ
n)

2ζ dxdt =∬
S

[U(uϵn) 𝜕tζ + ΛU ,ϵ(u
ϵ
n) 𝜕xζ + ϵ U(u

ϵ
n) 𝜕xxζ ] dxdt (7.87)
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with ΛU ,ϵ defined by (7.54). By (7.1) and the second inequality in (7.49), for any fixed
n ∈ ℕ, we have

ΛU ,ϵ(u
ϵ
n)
 ≤ M

‖u0n‖L∞(ℝ)
∫
0

U
′(z) ds + | ϑU | <∞,

and thus for fixed n ∈ ℕ, the family {ΛU ,ϵ(uϵn)} is bounded in L∞(S). Then letting
k → ∞ in (7.87) written with ϵ = ϵk and arguing as in the proof of Proposition 7.4.7,
equality (7.84) follows.

7.5 Proof of existence results

The proof of Theorem 7.3.1 relies on the following result, which is the counterpart of
Theorem 6.6.1. As in the case of Theorem 6.6.1, the proof requires several preliminary
results.

Theorem 7.5.1. Let (A0)–(A1) hold, and let {un} be the sequence of entropy solutions of
problems (Pn). Then there exists a subsequence {unk } ⊆ {un} with the following proper-
ties:
(i) there exists u ∈ L∞w∗(0,T ;R

+
f (ℝ)) such that

unk
∗
⇀ u in L∞w∗(0,T ;Rf (ℝ)); (7.88)

(ii) the sequence {νnk } ⊆ Y+(S;ℝ) of the Young measures associated with {unk } con-
verges narrowly to a Young measure ν ∈ Y+(S;ℝ), and for a. e. (x, t) ∈ S, we have

ur(x, t) = ∫
[0,∞)

y dν(x,t)(y) (7.89)

and

ϕ(ur(x, t)) = ∫
[0,∞)

ϕ(y) dν(x,t)(y), (7.90)

where {ν(x,t)}(x,t)∈S is the disintegration of ν;
(iii) for every U ∈ C([0,∞)) satisfying

lim
y→∞

U(y)
y
=: MU ∈ ℝ (7.91)
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and every ζ ∈ C([0,T];Cc(ℝ)), we have

lim
k→∞
∬
S

U(unk ) ζ dxdt =∬
S

U∗ζ dxdt +MU

T

∫
0

⟨us(⋅, t), ζ (⋅, t)⟩ dt, (7.92)

where U∗ ∈ L∞(0,T ; L1loc(ℝ)) is defined as

U∗(x, t) := ∫
[0,∞)

U(y) dν(x,t)(y) for a. e. (x, t) ∈ S. (7.93)

To prove Theorem 7.5.1, we need the following.

Proposition 7.5.2. Let (A0)–(A1) hold, and let {un} be the sequence of entropy solutions
of problems (Pn). Then there exist a subsequence {unk } ⊆ {un}, a Young measure ν ∈
Y+(S;ℝ), and σ ∈ L∞w∗ (0,T ;R+f (ℝ)) such that

unk
∗
⇀ ub + σ in L∞w∗(0,T ;Rf (ℝ)), (7.94)

where ub ∈ L∞(0,T ; L1(ℝ)) is defined as

ub(x, t) := ∫
[0,∞)

y dν(x,t)(y) for a. e. (x, t) ∈ S. (7.95)

Proof. By the second inequality in (7.71) the sequence {un} is bounded in
L∞(0,T ; L1(ℝ)) ⊆ L∞w∗ (0,T ;Rf (ℝ)). Then by Proposition 4.4.16 and the Banach–
Alaoglu theorem there exist μ ∈ L∞w∗ (0,T ;R+f (ℝ)) such that

unk
∗
⇀ μ in L∞w∗(0,T ;Rf (ℝ)). (7.96)

On the other hand, since the sequence {unk } is bounded in L1(S), by Remark 5.4.4(ii)
there exist a subsequence of {unk } (not relabeled) and σ ∈ R

+
f (S) such that

unk
∗
⇀ ub + σ inRf (S). (7.97)

By (7.96)–(7.97) we have μ = ub + σ, and hence the result follows.

Proposition 7.5.3. Let (A0)–(A1) hold, and let {un} be the sequence of entropy solutions
of problems (Pn). Let {unk } ⊆ {un}, ν ∈ Y

+(S;ℝ), and σ ∈ L∞w∗ (0,T ;R+f (ℝ)) be given by
Proposition 7.5.2. Let U ∈ C([0,∞)) satisfy (7.91). Then for any ζ ∈ C([0,T];Cc(ℝ)), we
have

lim
k→∞
∬
S

U(unk ) ζ dxdt =∬
S

U∗ζ dxdt +MU

T

∫
0

⟨σ(⋅, t), ζ (⋅, t)⟩ dt (7.98)
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with U∗ ∈ L∞(0,T ; L1loc(ℝ)) given by (7.93).

Proof. Fix arbitrary L > 0. By (7.91), for any ϵ > 0, there exists yϵ > 0 such that

− ϵ y < U(y) −MUy < ϵ y for all y > yϵ. (7.99)

For any j ∈ ℕ, j ≥ [yϵ] + 1, let fj1, fj2 ∈ C([0,∞)) satisfy

{
0 ≤ fj1 ≤ 1, 0 ≤ fj2 ≤ 1, fj1 + fj2 = 1 in [0,∞),
supp fj1 ⊆ [0, j + 1], supp fj2 ⊆ [j,∞).

(7.100)

Then, using (7.99) and (7.71), for any fixed k ∈ ℕ and t ∈ (0,T), we get

∫
IL

U(unk (x, t))
 dx

= ∫
IL

fj1(unk (x, t))
U(unk (x, t))

 dx + ∫
IL

fj2(unk (x, t))
U(unk (x, t))

 dx

≤ 2L ‖U‖L∞([0,j+1]) + ∫
{unk (⋅,t)>yϵ}

U(unk (x, t))
 dx

≤ 2L ‖U‖L∞([0,j+1]) + (|MU | + ϵ) ∫
IL

unk (x, t)
 dx

≤ 2L ‖U‖L∞([0,j+1]) + (|MU | + ϵ)‖u0‖Rf (ℝ)

(recall that IL = (−L, L)), whence
U(unk )
L∞(0,T ;L1(IL)) ≤ 2L ‖U‖L∞([0,j+1]) + (|MU | + ϵ)‖u0‖Rf (ℝ). (7.101)

In view of this inequality, by the Banach–Alaoglu theorem there exist a subsequence
of {U(unk )} (not relabeled) and μ ∈ L

∞
w∗ (0,T ;Rf (IL)) such that

U(unk )
∗
⇀ μ in L∞w∗(0,T ;Rf (IL)). (7.102)

Moreover, arguing as in the proof of Proposition 5.4.13, we obtain that

U(unk )
∗
⇀ U∗ +MUσ inRf (RL). (7.103)

By (7.102)–(7.103) we obtain that for any ζ ∈ C([0,T];Cc(IL)),

lim
k→∞
∬
RL

U(unk ) ζ dxdt =∬
RL

U∗ζ dxdt +MU

T

∫
0

⟨σ(⋅, t), ζ (⋅, t)⟩ dt (7.104)

with U∗ defined by (7.93) a. e. in RL.
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Equality (7.98) follows from (7.104), since for any ζ ∈ C([0,T];Cc(ℝ)), we can
choose L > 0 so large that supp ζ ⊆ ((−L, L) × [0,T]). In addition, by (7.91) there exists
M > 0 such that |U(y)| ≤ M(y + 1) for all y ≥ 0, and hence |U∗| ≤ M(ub + 1) a. e. in S
(see (7.93) and (7.95)). Since ub ∈ L∞(0,T ; L1(ℝ)), it follows that U∗ ∈ L∞(0,T ; L1loc(ℝ)).
Then the result follows.

To proceed, we need the following lemma, whose proof is given at the end of the
section.

Lemma 7.5.4. Let (A0)–(A1) hold, and let U ∈ C([0,∞)) satisfy (7.91). Let {unk }, σ, and
U∗ ∈ L∞(0,T ; L1loc(ℝ)) be as in Proposition 7.5.3. Then for every ζ ∈ C([0,T];Cc(ℝ)),

lim
k→∞

T

∫
0


∫
ℝ

U(unk (x, t)) ζ (x, t) dx−∫
ℝ

U∗(x, t) ζ (x, t) dx−MU⟨σ(⋅, t), ζ (⋅, t)⟩

dt = 0. (7.105)

Remark 7.5.1. Choosing ζ (x, t) = ρ(x) with ρ ∈ Cc(ℝ), from (7.105) we obtain

lim
k→∞

T

∫
0


∫
ℝ

U(unk (x, t)) ρ(x) dx − U
∗
ρ (t) −MU⟨σ(⋅, t), ρ⟩


dt = 0, (7.106a)

where

U∗ρ (t) := ∫
ℝ

U∗(x, t)ρ(x) dx. (7.106b)

By (7.106a) and the separability of Cc(ℝ), for every L > 0 andU as in Lemma 7.5.4, there
exist a null set N ⊆ (0,T) and a subsequence of {unk } (not relabeled) such that for all
t ∈ (0,T) \ N,

U(unk )(⋅, t)
∗
⇀ U∗(⋅, t) + MU σ(⋅, t) inRf (IL). (7.107)

Proposition 7.5.5. Let (A0)–(A1) hold, and let {un} be the sequence of entropy solutions
of problems (Pn). Let {unk } ⊆ {un} and σ ∈ L

∞
w∗ (0,T ;R+f (ℝ)) be given by Proposition 7.5.2,

and let u ∈ L∞w∗ (0,T ;R+f (ℝ)) be given as
u := ub + σ. (7.108)

Then

ur = ub a. e. in S, (7.109a)

us = σ in L∞w∗(0,T ;Rf (ℝ)). (7.109b)
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Proof. For any nonnegative ζ ∈ C1([0,T];C1c(ℝ)) such that ζ (⋅,T) = 0, adding (7.77)
and (7.78) gives

∬
S

{Uj(unk ) 𝜕tζ + ΛUj
(unk ) 𝜕xζ } dxdt ≥ −∫

ℝ

Uj(u0nk )(x) ζ (x,0) dx,

where for all j ∈ ℕ,

Uj(y) := (y − j)χ[j,∞)(y), ΛUj
(y) :=

y

∫
0

U ′j (z)ϕ
′(z) dz = [ϕ(y) − ϕ(j)]χ[j,∞)(y). (7.110)

By standard approximation arguments, for every ζ as above and for a.e. τ ∈ (0,T), we
have

∫
ℝ

Uj(unk )(x, τ) ζ (x, τ) dx − ∫
ℝ

Uj(u0nk )(x) ζ (x,0) dx ≤∬
Sτ

{Uj(unk ) 𝜕tζ + ΛUj
(unk ) 𝜕xζ } dxdt,

(7.111)

where Sτ := ℝ × (0, τ). SinceMUj
= 1 andMΛUj

= 0, by (7.105) we have

lim
k→∞

τ

∫
0


∫
ℝ

[Uj(unk )𝜕tζ ](x, t) dx − ∫
ℝ

[U∗j 𝜕tζ ](x, t) dx − ⟨σ(⋅, t), 𝜕tζ (⋅, t)⟩

dt = 0, (7.112a)

lim
k→∞

τ

∫
0


∫
ℝ

[ΛUj
(unk )𝜕xζ ](x, t) dx − ∫

ℝ

[Λ∗Uj
𝜕xζ ](x, t) dx


dt = 0, (7.112b)

where

U∗j := ∫
[0,∞)

Uj(y) dν(y), Λ∗Uj
:= ∫
[0,∞)

ΛUj
(y) dν(y).

From (7.112) it follows that

lim
k→∞
∬
Sτ

{Uj(unk ) 𝜕tζ + ΛUj
(unk ) 𝜕xζ } dxdt

=∬
Sτ

{U∗j 𝜕tζ + Λ
∗
Uj
𝜕xζ } dxdt +

τ

∫
0

⟨σ(⋅, t), 𝜕tζ (⋅, t)⟩ dt. (7.113)
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On the other hand, by (7.107) and a diagonal argument there exist a null set N ⊆ (0,T)
and a subsequence of {unk } (not relabeled) such that for all τ ∈ (0,T) \ N and j ∈ ℕ,

lim
k→∞
∫
ℝ

Uj(unk )(x, τ) ζ (x, τ) dx = ∫
ℝ

U∗j (x, τ) ζ (x, τ) dx + ⟨σ(⋅, τ), ζ (x, τ)⟩. (7.114)

Moreover, since the sequence {Uj(u0nk ) − u0nk } is bounded in L
∞(ℝ) and

lim
k→∞
(Uj(u0nk ) − u0nk ) = Uj(u0r) − u0r a. e. in ℝ

(see (7.45)), it follows from (7.45) that

lim
k→∞
∫
ℝ

Uj(u0nk )(x)ζ (x,0) dx = ∫
ℝ

Uj(u0r)(x)ζ (x,0) dx + ⟨u0s, ζ (⋅,0)⟩. (7.115)

Letting k →∞ in (7.111), by (7.113)–(7.115), for all τ ∈ (0,T) \ N and j ∈ ℕ, we obtain

∫
ℝ

U∗j (x, τ) ζ (x, τ) dx + ⟨σ(⋅, τ), ζ (⋅, τ)⟩ ≤∬
Sτ

{U∗j 𝜕tζ + Λ
∗
Uj
𝜕xζ } dxdt

+
τ

∫
0

⟨σ(⋅, t), 𝜕tζ (⋅, t)⟩ dt + ∫
ℝ

Uj(u0r)(x)ζ (x,0) dx + ⟨u0s, ζ (⋅,0)⟩. (7.116)

Since 0 ≤ Uj(y) ≤ yχ[j,∞)(y) and |ΛUj
(y)| ≤ My χ[j,∞)(y) for all y ≥ 0 (see (7.1)), we

have |U∗j | ≤ ub and |Λ
∗
Uj
| ≤ Mub (j ∈ ℕ). Since ub ∈ L∞(0,T ; L1(ℝ)), it plainly follows

that

lim
j→∞

U∗j = limj→∞
Λ∗Uj
= 0 a. e. in S and in L1(S), (7.117)

and thus letting j →∞ in (7.116) gives, for all τ ∈ (0,T) \ N and ζ ∈ C1([0,T];C1c(ℝ)),

⟨σ(⋅, τ), ζ (⋅, τ)⟩ ≤
τ

∫
0

⟨σ(⋅, t), 𝜕tζ (⋅, t)⟩ dt + ⟨u0s, ζ (⋅,0)⟩. (7.118)

Choosing ζ (x, t) = ρ(x) in (7.118) gives ⟨σ(⋅, τ), ρ⟩ ≤ ⟨u0s, ρ⟩ for any nonnegative ρ ∈
C1c(ℝ), whence σ(⋅, τ) ≪ u0s (recall that σ is nonnegative). Hence for any τ ∈ (0,T) \N,
σ(⋅, τ) is singular with respect to the Lebesgue measure. On the other hand, since ub ∈
L∞(0,T ; L1(ℝ)), the measure E → ∬E ub dxdt (E ∈ ℬ(ℝ

2) ∩ S) is absolutely continu-
ous with respect to the Lebesgue measure. Then from the uniqueness of the Lebesgue
decomposition (see Theorem 1.8.9) the conclusion follows.
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Proposition 7.5.6. Let (A0)–(A1) hold. Let ν ∈ Y+(S;ℝ) be given by Proposition 7.5.2,
and let u ∈ L∞w∗ (0,T ;Rf (ℝ)) be defined by (7.108). Then

ϕ∗(x, t) = ϕ(ur(x, t)) for a. e. (x, t) ∈ S (7.119)

with ϕ∗ defined by (7.4).

Proof. Let U ,V ∈ C2([0,∞)) ∩ L∞(0,∞) satisfy (7.58), and assume that ΛU , ΛV ∈
L∞(0,∞) (see (7.83)). In view of Lemma 7.4.8, for any n ∈ ℕ, there exist σn, τn ∈ Rf (S)
such that for all ζ ∈ C1c(S),

∬
S

{U(un) 𝜕tζ + ΛU (un) 𝜕xζ } dxdt = ⟨σn, ζ ⟩, (7.120a)

∬
S

{V(un) 𝜕tζ + ΛV (un) 𝜕xζ } dxdt = ⟨τn, ζ ⟩, (7.120b)

where un is the entropy solution of (Pn) given by Proposition 7.4.7.
Let A ⋐ S be a bounded open set, and let Yn, Zn : A → ℝ2 be defined by

Yn := (ΛU (un),U(un)), Zn := (V(un),−ΛV (un)).

By (7.120) we have

divYn = −σn, curl Zn = −τn in D∗(A). (7.121)

Since U, ΛU , V , ΛV are bounded in (0,∞), the sequences {U(un)}, {ΛU (un)},
{V(un)}, and {ΛV (un)} are bounded L∞(A) and thus are bounded in L1(A) and uni-
formly integrable. Then by Proposition 5.4.10 in L1(A) we have

U(un)⇀ U∗ := ∫
[0,∞)

U(y) dν(y), ΛU (un)⇀ Λ∗U := ∫
[0,∞)

ΛU (y) dν(y),

V(un)⇀ V∗ := ∫
[0,∞)

V(y) dν(y), ΛV (un)⇀ Λ∗V := ∫
[0,∞)

ΛV (y) dν(y).

By the same token, {U(un)}, {ΛU (un)}, {V(un)}, and {ΛV (un)} are bounded and thus
weakly converging in L2(A). It follows that, as n→∞,

Yn ⇀ Y∗ := (Λ∗U ,U
∗), Zn ⇀ Z∗ := (V∗,−Λ∗V ) in L2(A;ℝ2). (7.122)

By a similar argument we have that

Yn ⋅ Zn :=ΛU (un)V(un) − ΛV (un)U(un)⇀ ∫
[0,∞)

[ΛU (y)V(y) − ΛV (y)U(y)]dν(y) in L2(A).

(7.123)
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By (7.85) (applied to both σn and τn) and (7.121), {divYn} and {curl Zn} are precompact
in H−1(A). Then by (7.122) and the div-curl lemma we get

Yn ⋅ Zn → Y∗ ⋅ Z∗ = Λ∗UV
∗ − Λ∗VU

∗ in D∗(A) (7.124)

(e. g., see [46, Corollary 1.3.1 and Theorem 5.2.1]). By (7.123)–(7.124) it follows that

∫
[0,∞)

[ΛU (y) − Λ
∗
U ]V(y) dν(y) = ∫

[0,∞)

[U(y) − U∗]ΛV (y) dν(y) a. e. in A. (7.125)

Let U be as above, with U ′ > 0 in (0,∞). By a standard approximation argument
we may choose V(y) = |U(y) − U∗|, and thus by a proper choice of ϑV we obtain

ΛV (y) =
y

∫
0

V ′(z)ϕ′(z) dz + ϑV = sgn(U(y) − U
∗)[ΛU (y) − ΛU(U

−1(U∗))],

whence by (7.125)

[Λ∗U − ΛU(U
−1(U∗))] ∫

[0,∞)

U(y) − U
∗ dν(y) = 0 a. e. in A. (7.126)

Let Up ∈ C2([0,∞)) ∩ L∞(0,∞), Up(0) = 0 (p ∈ ℕ), satisfy (7.58) and

0 < U ′p ≤ U
′
p+1 ≤ 1, lim

p→∞
U ′p(y) = 1 in [0,∞), (7.127)

and thus limp→∞ Up(y) = y for all y ∈ [0,∞). Then by the monotone convergence
theorem, (7.95), and (7.109a) we get

lim
p→∞

U∗p = lim
p→∞
∫
[0,∞)

Up(y) dν(y) = ur a. e. in A. (7.128)

We will prove that

lim
p→∞
[Λ∗Up
− ΛUp
(Up
−1(U∗p ))] = ϕ

∗ − ϕ(ur) a. e. in A. (7.129)

Using (7.128)–(7.129), we can complete the proof. Indeed, by (7.128) and the domi-
nated convergence theorem we plainly get, for a. e. (x, t) ∈ A,

lim
p→∞
∫
[0,∞)

Up(y) − U
∗
p (x, t)
 dν(x,t)(y) = ∫

[0,∞)

y − ur(x, t)
 dν(x,t)(y). (7.130)
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Letting p→∞ in (7.126) written with U = Up, by (7.129)–(7.130) we obtain that for a. e.
(x, t) ∈ A,

[ϕ∗(x, t) − ϕ(ur)(x, t)] ∫
[0,∞)

y − ur(x, t)
 dν(x,t)(y) = 0.

By the arbitrariness of A the above equality implies (7.119).
It remains to prove (7.129). Observe that

Λ∗Up
− ΛUp
(Up
−1(U∗p )) = ∫

[0,∞)

(
y

∫
0

U ′p(z)ϕ
′(z) dz)dν(y) −

Up
−1(Up

∗)
∫
0

U ′p(z)ϕ
′(z) dz. (7.131)

By (7.1) and (7.127) we have U ′p(y)→ 1 and |U ′p(y)ϕ
′(y)| ≤ M for all y ≥ 0, and hence by

the dominated convergence theorem

lim
p→∞

Λ∗Up
(x, t) = ϕ∗(x, t) for a. e. (x, t) ∈ A. (7.132)

On the other hand,

Up
−1(U∗p (x,t))
∫
0

U ′p(z)ϕ
′(z) dz − ϕ(ur)(x, t)

=
ur(x,t)

∫
0

[U ′p(z) − 1]ϕ
′(z) dz +

Up
−1(U∗p (x,t))
∫

ur(x,t)

U ′p(z)ϕ
′(z) dz. (7.133)

Arguing as for (7.132) shows that

lim
p→∞

ur(x,t)

∫
0

[U ′p(z) − 1]ϕ
′(z) dz = 0 for a. e. (x, t) ∈ A. (7.134)

Concerning the second term in the right-hand side of (7.133), observe that for some
δ > 0,



Up
−1(U∗p (x,t))
∫

ur(x,t)

U ′p(z)ϕ
′(z) dz

≤ Mur(x, t) − Up

−1(U∗p (x, t))


≤ M {ur(x, t) − U
−1
p (ur(x, t))



+ ( sup
z∈(ur(x,t))−δ,ur(x,t))+δ)

[U ′1(z)]
−1)ur(x, t) − U

∗
p (x, t)
}
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for all p ∈ ℕ sufficiently large (see (7.127)). By (7.128), letting p → ∞ in the above
inequality, we get

lim
p→∞

Up
−1(U∗p (x,t))
∫

ur(x,t)

U ′p(z)ϕ
′(z) dz = 0 for a. e. (x, t) ∈ A. (7.135)

By (7.133)–(7.135) we get

Up
−1(U∗p (x,t))
∫
0

U ′p(z)ϕ
′(z) dz → ϕ(ur)(x, t) for a. e. (x, t) ∈ A. (7.136)

Then (7.129) follows from (7.131), (7.132), and (7.136). This completes the proof.

Proof of Theorem 7.5.1. Let u ∈ L∞w∗ (0,T ;Rf (Ω)) be defined by (7.108). Then by Propo-
sitions 7.5.2–7.5.6 the result follows.

Now we can prove Theorem 7.3.1.

Proof of Theorem 7.3.1. Let us prove that u ∈ L∞w∗ (0,T ;Rf (Ω)) defined by (7.108) satis-
fies the equality

∬
S

[ur𝜕tζ + ϕ(ur) 𝜕xζ ] dxdt +
T

∫
0

⟨us(⋅, t), 𝜕tζ (⋅, t)⟩ dt = −⟨u0, ζ (⋅,0)⟩ (7.137)

for all ζ ∈ C1([0,T];C1c(ℝ)), ζ (⋅,T) = 0 in ℝ and thus is a solution of (P) (see Def-
inition 7.1.3). Let {unk } ⊆ {un} be the subsequence given by Theorem 7.5.1. Applying
Theorem 7.5.1(iii) with U(y) = y and U(y) = ϕ(y) gives

lim
k→∞
∬
S

unk𝜕tζ dxdt =∬
S

ur𝜕tζ dxdt +
T

∫
0

⟨us(⋅, t), 𝜕tζ (⋅, t)⟩ dt, (7.138a)

lim
k→∞
∬
S

ϕ(unk )𝜕xζ dxdt =∬
S

ϕ(ur)𝜕xζ dxdt (7.138b)

(see (7.89), (7.4), and (7.119)). By thefirst convergence in (7.45) and (7.138), letting k →∞
in (7.78) written with n = nk gives (7.137). Inequality (7.5) is proven similarly letting
k → ∞ in (7.77) written with n = nk, applying Theorem 7.5.1(iii) with U(y) = El(y) and
U(y) = Fl(y), and arguing as in Proposition 7.5.3 to prove that El(u0nk )

∗
⇀ El(u0r) + u0s

inRf (ℝ). Hence the result follows.

To prove Theorem 7.3.2, we need the following result, which characterizes the dis-
integration of the Young measure ν.
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Proposition 7.5.7. Let (A0)–(A2) hold. Let u ∈ L∞w∗ (0,T ;Rf (ℝ)) and ν ∈ Y+(S;ℝ) be
given by Theorem 7.5.1. Then for a. e. (x, t) ∈ S,

ν(x,t) = δur(x,t). (7.139)

Proof. Fix (x, t) ∈ S. If ur(x, t) = 0, then by (7.89) equality (7.139) immediately follows.
Let y1 ≡ ur(x, t) > 0. For all y2 > y1 and p ∈ ℕ sufficiently large, set

Vp(y) := p(y − y1)χ(y1 ,y1+ 1p )(y) + χ[y1+ 1p ,y2)(y) + p(y2 +
1
p
− y)χ[y2 ,y2+ 1p )(y),

ΛVp
(y) :=

y

∫
0

V ′p(z)ϕ
′(z)dz (y ∈ [0,∞)).

Then for any y ∈ [0,∞),

lim
p→∞

Vp(y) = χ(y1 ,y2](y), (7.140a)

lim
p→∞

ΛVp
(y) = ϕ′(y1)χ(y1 ,y2](y) + [ϕ

′(y1) − ϕ
′(y2)]χ(y2 ,∞)(y). (7.140b)

Let {Up}be the sequenceused in the proof of Proposition 7.5.6. By standard approx-
imation arguments we can choose U = Up, V = Vp in equality (7.125), thus obtaining

∫
[0,∞)

[ΛUp
(y) − Λ∗Up

(x, t)]Vp(y)dν(x,t)(y) = ∫
[0,∞)

[Up(y) − U
∗
p (x, t)]ΛVp

(y)dν(x,t)(y).

By (7.128), (7.132), and (7.119) for all y ≥ 0, we have

lim
p→∞

Up(y) − U
∗
p (x, t) = y − y1, (7.141a)

lim
p→∞

Λ∗Up
(x, t) − ΛUp

(y) = ϕ(y1) − ϕ(y). (7.141b)

From (7.140)–(7.141) we get a. e. in S

lim
p→∞
∫
[0,∞)

[ΛUp
(y) − Λ∗Up

]Vp(y) dν(y) = ∫
(y1 ,y2]

[ϕ(y) − ϕ(y1)] dν(y),

lim
p→∞
∫
[0,∞)

[Up(y) − U
∗
p ]ΛVp
(y) dν(y)

= ∫
(y1 ,y2]

ϕ′(y1)(y − y1) dν(y) + [ϕ
′(y1) − ϕ

′(y2)] ∫
(y2 ,∞)

(y − y1) dν(y),
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whence

∫
(y1 ,y2]

[ϕ(y) − ϕ(y1) − ϕ
′(y1)(y − y1)]dν(y) = [ϕ

′(y1) − ϕ
′(y2)] ∫
(y2 ,∞)

(y − y1)dν(y). (7.142a)

It is similarly seen that for any y0 ∈ (0, y1),

∫
(y0 ,y1)

[ϕ(y) − ϕ(y1) − ϕ
′(y1)(y − y1)]dν(x,t)(y) = [ϕ

′(y1) − ϕ
′(y0)] ∫

[0,y0]

(y − y1)dν(x,t)(y).

(7.142b)
By assumption (A2), ϕ′ is strictly monotone in at least one of the intervals [y0, y1]

and [y1, y2]. Suppose that this occurs in [y1, y2], the other case being similar. Then
by (7.142a), for a. e. (x, t) ∈ S, we have that

∫
(y1 ,y2]

ϕ(y) − ϕ(y1) − ϕ
′(y1)(y − y1)

 dν(x,t)(y) +
ϕ
′(y1)−ϕ

′(y2)
 ∫
(y2 ,∞)

|y1 − y| dν(x,t)(y)=0,

whence supp ν(x,t) ⊆ [0, y1]. Since ν(x,t) is a probability measure, it follows that

ur(x, t) = ∫
[0,ur(x,t)]

y dν(x,t)(y) = ∫
[0,ur(x,t)]

[y − ur(x, t)] dν(x,t)(y) + ur(x, t),

and thus

∫
[0,ur(x,t)]

y − ur(x, t)
 dν(x,t)(y) = 0.

By the above equality we have supp ν(x,t) = {ur(x, t)}, whence (7.139) follows since ν(x,t)
is a probability measure. This completes the proof.

Remark 7.5.2. By (7.139) and Proposition 5.4.1, possibly extracting a subsequence (not
relabeled), we have

unk → ur a. e. in S. (7.143)

In particular, if ϕ is bounded, then by the dominated convergence theorem ϕ(unk ) →
ϕ(ur) in L1(RL) for any L > 0.

Remark 7.5.3. Let (A0)–(A1) hold, and letϕ′ be constant in the interval Ia,b = [ur(x, t)−
a, ur(x, t) + b] for some a > 0, b > 0, and (x, t) ∈ S. In this case, it can be proved
that supp ν(x,t) ⊆ I(x,t), I(x,t) being the maximal interval where ϕ′ = ϕ′(ur) (see [18,
Proposition 5.9]).

Proof of Theorem 7.3.2. By Theorem 7.3.1 u is a Young measure entropy solution of (P),
and thus inequality (7.5) is satisfied. From (7.5) and (7.139) we get (7.8), and thus the
result follows.
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Let us finally prove Lemma 7.5.4.

Proof of Lemma 7.5.4. By standard approximationarguments it suffices toprove equal-
ity (7.106a).

(i) Let us first prove (7.106a) assuming that U ∈ C2([0,∞)) with U ′ ∈ L∞(0,∞)
satisfies (7.58) and (7.91). Let ρ ∈ C2c(ℝ), h ∈ Cc(0,T), and supp ρ ⊆ IL for some L > 0.
Let Unk ,ρ be defined by (7.60). Then by (7.104) we have

lim
k→∞

T

∫
0

Unk ,ρ(t)h(t) dt =
T

∫
0

U∗ρ (t)h(t) dt +MU

T

∫
0

⟨σ(⋅, t), ρ⟩h(t) dt. (7.144)

On the other hand, by Lemma 7.4.6 the sequence {Unk ,ρ} is bounded in BV(0,T), and
hence there exists a subsequence (not relabeled) that clearly converges in L1(0,T) to
U∗ρ +MU⟨σ(⋅, ⋅), ρ⟩ (see (7.144)). Since {U(unk )} is bounded in L

∞(0,T ; L1(IL)) and U∗ ∈
L∞(0,T ; L1(IL)) (see Proposition 7.5.3 and inequality (7.101)), the condition ρ ∈ C2c(ℝ)
may be relaxed to ρ ∈ Cc(ℝ). Hence (7.106a) follows in this case.

(ii) Let us now prove (7.106a) for all U ∈ Cb([0,∞)) (observe that MU = 0 in this
case). Set

Up : [0,∞)→ ℝ, Up(y) := ((Uχ[0,p]) ∗ θp)(y) for y ≥ 0,

where θp(y) := pθ(py), and θ ∈ C∞c (ℝ) is a standard mollifier (p ∈ ℕ). Then {Up} ⊆
C2c([0,∞)),Up → U uniformly on compact subsets of [0,∞), and ‖Up‖L∞(ℝ) ≤ ‖U‖L∞(ℝ).
Moreover, U ′p ∈ L

∞(0,∞), and Up satisfies (7.58) and (7.91) with MUp
= 0, and hence

by (i) we get

lim
k→∞

T

∫
0


∫
ℝ

Up(unk (x, t)) ρ(x) dx − U
∗
p,ρ(t)

dt = 0, (7.145)

where U∗p := ∫[0,∞) Up(y) dν(y), and U∗p,ρ := ∫ℝ U
∗
p (x, t)ρ(x) dx for all ρ ∈ Cc(ℝ) (p ∈ ℕ).

Now observe that

T

∫
0


∫
ℝ

U(unk (x, t)) ρ(x) dx − U
∗
ρ (t)

dt

≤∬
S

U(unk (x, t)) − Up(unk (x, t))

ρ(x)
 dxdt

+
T

∫
0


∫
ℝ

Up(unk (x, t)) ρ(x) dx − U
∗
p,ρ(t)

dt +

T

∫
0

U
∗
ρ (t) − U

∗
p,ρ(t)
 dt. (7.146)
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Concerning the first term in the right-hand side of (7.146), for all p ∈ ℕ andM > 0, by
the Chebyshev inequality and the second inequality in (7.71) we have

∬
S

U(unk ) − Up(unk )
 |ρ| dxdt

≤ ∬
{unk≤M}

U(unk ) − Up(unk )
 |ρ| dxdt + ∬

{unk>M}

U(unk ) − Up(unk )
 |ρ| dxdt

≤ ‖ρ‖L∞(ℝ) T{λ(supp ρ) ‖U − Up‖L∞(0,M) + 2
M ‖

u0‖Rf (ℝ) ‖U‖L∞(ℝ)}. (7.147)

As for the third term in the right-hand side of (7.146), for all p ∈ ℕ andM > 0, we have

T

∫
0

U
∗
ρ (t) − U

∗
p,ρ(t)
 dt

≤∬
S

U
∗ − U∗p
 |ρ| dxdt

≤∬
S

ρ(x)
 dxdt ∫

[0,∞)

Up(y) − U(y)
 dν(x,t)(y)

=∬
S

ρ(x)
 dxdt ∫

{0≤y≤M}

Up(y) − U(y)
 dν(x,t)(y)

+∬
S

ρ(x)
 dxdt ∫

{y>M}

Up(y) − U(y)
 dν(x,t)(y)

≤ ‖ρ‖L∞(ℝ){λ(supp ρ)T ‖U − Up‖L∞(0,M)
+ 2 ‖U‖L∞(ℝ) ∬

supp ρ×(0,T)

ν(x,t)({y > M}) dxdt}. (7.148)

By (7.145)–(7.148), for all ρ ∈ Cc(ℝ), p ∈ ℕ, andM > 0, we have that

lim sup
k→∞

T

∫
0

dt

∫
ℝ

U(unk (x, t)) ρ(x) dx − U
∗
ρ (t)


≤ 2 ‖ρ‖L∞(ℝ){ λ(supp ρ)T ‖U − Up‖L∞(0,M)
+ ‖U‖L∞(ℝ) [ TM + ∬

supp ρ×(0,T)

ν(x,t)({y > M}) dxdt]}.
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Since Up → U uniformly on compact sets in [0,∞), letting p → ∞ in the above in-
equality gives

lim sup
k→∞

T

∫
0


∫
ℝ

U(unk ) ρ(x) dx − U
∗
ρ (t)

dt

≤ 2 ‖ρ‖L∞(ℝ) ‖U‖L∞(ℝ) { TM + ∬
supp ρ×(0,T)

ν(x,t)({y > M}) dxdt}. (7.149)

Since ν(x,t) is a probabilitymeasure, by the dominated convergence theoremweplainly
have

lim
M→∞

∬
supp ρ×(0,T)

ν(x,t)({y > M}) dxdt = 0.

Then lettingM →∞ in (7.149), we obtain (7.106a).

(iii) Now let U ∈ C([0,∞)) be any function satisfying (7.91). As in the proof of
Proposition 7.5.3, let fj1, fj2 ∈ C2([0,∞)) satisfy (7.100) (j ∈ ℕ, j ≥ [yϵ] + 1). Then

U = Uj1 + Uj2, U∗ = U∗j1 + U
∗
j2, U∗ρ = U

∗
j1,ρ + U

∗
j2,ρ, (7.150)

where Ujl := fjlU, U∗jl := ∫[0,∞) Ujl(y) dν(y), and U∗jl,ρ := ∫ℝ U
∗
jl (x, t)ρ(x) dx for ρ ∈ Cc(ℝ)

(l = 1, 2). Therefore

T

∫
0


∫
ℝ

U(unk (x, t)) ρ(x) dx − U
∗
ρ (t) −MU⟨σ(⋅, t), ρ⟩


dt

≤
T

∫
0


∫
ℝ

Uj1(unk (x, t)) ρ(x) dx − U
∗
j1,ρ(t)

dt

+
T

∫
0


∫
ℝ

Uj2(unk (x, t)) ρ(x) dx − U
∗
j2,ρ(t) −MU⟨σ(⋅, t), ρ⟩


dt =: Ijk1 + Ijk2. (7.151)

Since Uj1 ∈ Cb([0,∞)) and thusMUj1
= 0, by (ii) from (7.106a) we get

lim
k→∞

Ijk1 = 0 (j ∈ ℕ, j ≥ [yϵ] + 1). (7.152)

On the other hand,

Ijk2 ≤
T

∫
0


∫
ℝ

[Uj2(unk (x, t)) −MU fj2(unk (x, t)) unk (x, t)]ρ(x) dx

dt
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+MU

T

∫
0

dt

∫
ℝ

fj2(unk (x, t)) unk (x, t) ρ(x) dx − ∫
ℝ

F∗j2(x, t) ρ(x) dx − ⟨σ(⋅, t), ρ⟩


+∬
S

U
∗
j2 −MU F

∗
j2
(x, t)
ρ(x)
 dxdt, (7.153)

where F∗j2 := ∫[0,∞) fj2(y)y dν(y).
We address separately the three terms in the right-hand side of (7.153). By (7.99)

and the second inequality in (7.71) we have

T

∫
0


∫
ℝ

[Uj2(unk (x, t)) −MU fj2(unk (x, t)) unk (x, t)]ρ(x) dx

dt

≤ ϵ∬
S

|unk | |ρ| dxdt ≤ ϵ ‖ρ‖L∞(ℝ) T ‖u0‖Rf (ℝ) . (7.154)

Moreover, the map y → fj2(y)y belongs to C2([0,∞)), has bounded derivative, and
satisfies (7.58) and (7.91) withMU = 1. Then by (i)

lim
k→∞

T

∫
0

dt

∫
ℝ

fj2(unk (x, t)) unk (x, t) ρ(x) dx − ∫
ℝ

F∗j2(x, t) ρ(x) dx − ⟨σ(⋅, t), ρ⟩

= 0. (7.155)

Let us show that

lim
j→∞
∬
S

U
∗
j2 −MU F

∗
j2
(x, t)
ρ(x)
 dxdt = 0. (7.156)

For a. e. (x, t) ∈ S, we have

U
∗
j2(x, t) −MU F

∗
j2(x, t)
 ≤ ∫
[0,∞)

Uj2(y) −MU fj2(y)y
 dν(x,t)(y)

= ∫
[0,∞)

fj2(y)
U(y) −MUy

 dν(x,t)(y) ≤ ϵ ∫
[j,∞)

y dν(x,t)(y) ≤ ϵub(x, t)

(see (7.95)). Since ub ∈ L∞(0,T ; L1(ℝ)) and limj→∞ ∫[j,∞) y dν(x,t)(y) = 0 for a. e. (x, t) ∈
S, equality (7.156) follows by the dominated convergence theorem.

By (7.153)–(7.156) we have

lim sup
j→∞
(lim sup

k→∞
Ijk2) ≤ ϵ ‖ρ‖L∞(ℝ) T ‖u0‖Rf (ℝ) ,
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whence by (7.151)–(7.152)

lim sup
k→∞

T

∫
0


∫
ℝ

[U(unk ) − U
∗](x, t) ρ(x) dx −MU⟨σ(⋅, t), ρ⟩


dt

≤ ϵ T ‖u0‖Rf (ℝ) ‖ρ‖L∞(ℝ) .
By the arbitrariness of ϵ from this inequality we get (7.106a). Hence the result follows.

7.6 Proof of regularity results

Proof of Proposition 7.1.2. (i) We only prove (7.15), the proof of (7.16) being similar. Let
̃ζ ∈ C1([0,T];C1c(ℝ)) be such that ̃ζ (⋅,T) = 0 and ̃ζ ≥ 0. Then it is easily seen that as
l →∞ in (7.9),

T

∫
0

⟨us(⋅, t), 𝜕t ̃ζ (⋅, t)⟩ dt ≥ −⟨u0s, ̃ζ (⋅,0)⟩. (7.157)

By the separability of C([0,T];Cc(ℝ)) there exists a null set N ⊆ (0,T) such that
for all ζ ∈ C([0,T];Cc(ℝ)) and τ ∈ (0,T) \ N, we have

lim
h→0

1
h

τ+h

∫
τ

⟨us(⋅, t), ζ (⋅, t)⟩ dt = ⟨us(⋅, τ), ζ (⋅, τ)⟩. (7.158)

Let t1, t2 ∈ (0,T) \ N, 0 < t1 < t2 < T. By standard approximation arguments we can
choose ̃ζ (x, t) = gh(t)ζ (x, t) in (7.157), where

gh(t) :=
1
h
(t − t1)χ[t1 ,t1+h](t) + χ(t1+h,t2)(t) +

1
h
(t2 + h − t)χ[t2 ,t2+h](t)

with h ∈ (0,min{t2 − t1,T − t2}). Letting h→ 0 in (7.157) and using (7.158) gives

⟨us(⋅, t2), ζ (⋅, t2)⟩ ≤
t2

∫
t1

⟨us(⋅, t), 𝜕tζ (⋅, t)⟩ dt + ⟨us(⋅, t1), ζ (⋅, t1)⟩. (7.159)

Choosing ζ (x, t) = ρ(x) in (7.159) gives (7.15), and hence the claim follows.
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(ii) Arguing as for (7.158), there exists anull setN ⊆ (0,T) such that for all ρ ∈ Cc(ℝ)
and τ ∈ (0,T) \ N,

lim
h→0

1
h

τ+h

∫
τ

⟨u(⋅, t), ρ⟩ dt = ⟨u(⋅, τ), ρ⟩. (7.160)

Set Ωj := [−j − 1,−j] ∪ [j, j + 1] and Qj,τ := Ωj × (0, τ) (τ ∈ (0,T), j ∈ ℕ). Let {ρj} ⊆ C1c(ℝ)
be such that ρj = 1 in [−j, j], supp ρj ⊆ [−j − 1, j + 1], 0 ≤ ρj ≤ 1, and |ρ′j | ≤ 2 in ℝ. Let us
choose ζ (x, t) = fh(t)ρj(x) in (7.7) with

fh(t) := χ[0,τ)(t) +
1
h
(τ + h − t)χ[τ,τ+h](t)

and h sufficiently small. Then we get

∬
Qj,τ fh(t)ϕ(ur)(x, t) ρ

′
j (x) dxdt =

1
h

τ+h

∫
τ

⟨u(⋅, t), ρj⟩ dt − ⟨u0, ρj⟩.

Letting h→ 0 in this equality and using (7.160), we obtain

∬
Qj,τ ϕ(ur)(x, t) ρ

′
j dxdt = ⟨u(⋅, τ), ρj⟩ − ⟨u0, ρj⟩. (7.161)

Since |ϕ(ur)| ≤ Mur (see (7.1)) and ur ∈ L∞(0,T ; L1(ℝ)), letting j → ∞ in (7.161), we
plainly obtain (7.17). Hence the result follows.

Proof of Proposition 7.2.1. We will prove the following:

Claim 1. For a. e. t ∈ (0,T), the map x → Y(x, t) := ∫t0 ϕ(ur(x, s)) ds belongs to BV(ℝ),
and for any a, b ∈ ℝ, a ≤ b, we have

u(⋅, t)([a, b]) − u0([a, b]) = Y(a
−,0, t) − Y(b+,0, t). (7.162)

Let a = b = x0. By (7.162), for a. e. 0 ≤ t ≤ T,

us(t)({x0}) = u0s({x0}) + Y(x
−
0 ,0, t) − Y(x

+
0 ,0, t) ≥ u0s({x0}) − 2 ‖ϕ‖∞t,

whence us(t)({x0}) > 0 if t ∈ (0,
u0s({x0})
2 ‖ϕ‖∞ ). Hence (7.19) follows.

It remains to prove the claim. Arguing as in the proof of (7.161), we get

∫
ℝ

Y(x, τ)ρ′(x) dx = ⟨u(⋅, τ), ρ⟩ − ⟨u0, ρ⟩. (7.163)
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Hence the distributional derivative 𝜕xY(x, t1, t2) belongs toRf (ℝ). On the other hand,
by (7.1) we have |Y(⋅, t)| ≤ M ∫t0 ur(⋅, s) ds ∈ L

1(ℝ), and thus for a. e. t ∈ (0,T), Y(⋅, t)
belongs to BV(ℝ).

To prove (7.162), observe that by standard regularization arguments in (7.163) we
can choose ρ = ρj,

ρj(x) := j(x − a +
1
j
)χ[a− 1j ,a](x) + χ(a,b)(x) + j(b +

1
j
− x)χ[b,b+ 1j ](x)

with a, b ∈ ℝ, a < b, and j ∈ ℕ. Then we get

⟨u(⋅, τ), ρj⟩ − ⟨u0, ρj⟩ = j
a

∫

a− 1j

Y(x, τ) dx − j

b+ 1j

∫
b

Y(x, τ) dx. (7.164)

Letting j →∞ in (7.164) plainly gives (7.162). This completes the proof.

Remark 7.6.1. The proof of Proposition 7.2.1 in fact relies on the correspondence (in
one space dimension) between entropy solutions of hyperbolic conservation laws and
viscosity solutions of Hamilton–Jacobi equations (on this subject, see [21, 20]).

It suffices to prove Theorem 7.3.3 and Proposition 7.3.5 assuming that (A2′) holds
with ϕ′′ < 0, ϕ′ > 0 in (0,∞), and ϕ(0) = 0 (hence αϕ + β > 0, β > 0, and assump-
tion (A1) is satisfied as well; see Remark 7.1.1). Consider the following regularization of
problem (Pn) (different from the regularization (Pϵn) used in Section 7.4):

{
𝜕tyϵn + 𝜕x[ϕ(y

ϵ
n)] = ϵ 𝜕xx[ϕ(y

ϵ
n)] in S,

yϵn = u
ϵ
0n in ℝ × {0},

(Vϵ
n )

where {uϵ0n} satisfies (7.46)–(7.47). The existence, uniqueness, and regularity results re-
called in Section 7.4 for problem (Pϵn), as well as the a priori estimates in Lemma 7.4.1
and the convergence results in Lemma 7.4.5, continue to hold for solutions of (Vϵ

n )
(see [63]). Some properties of the family {yϵn} are the content of the following two lem-
mas.

Lemma 7.6.1. Let (A′′2 ) hold, and let ϕ(0) = 0, ϕ′′ < 0, ϕ′ > 0 in (0,∞). Let un be
the unique entropy solution of problem (Pn) given by Proposition 7.4.7. Then there exists
a subsequence {yϵjn } of solutions of (Vϵ

n ) such that

yϵjn
∗
⇀ un in L∞(S), yϵjn → yn in L1(RL) for all L > 0. (7.165)

Proof. In view of (7.66) and (7.69), there exist a sequence {yϵjn } and yn ∈ L∞(S) ∩
L∞(0,T ; L1(ℝ)) such that (7.165) holds. Moreover, for any convex function E, a func-
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tion F such that F′ = E′ϕ′, and ζ as in Definition 7.4.1, we have

∬
S

{E(yϵjn ) 𝜕tζ + F(y
ϵj
n ) 𝜕xζ } dxdt + ∫

ℝ

E(uϵj0n) ζ (x,0) dx

≥ ϵj∬
S

F′(yϵjn )𝜕xy
ϵj
n 𝜕xζ dxdt.

Letting j → ∞ in this inequality and arguing as in the proof of Proposition 7.4.7, we
get

∬
S

[E(yn) 𝜕tζ + F(yn) 𝜕xζ ] dxdt ≥ −∫
ℝ

E(u0n) ζ (x,0) dx.

Then yn is an entropy solution of (Pn), and thus by Kružkov’s uniqueness theorem we
get yn = un. Hence the result follows.

Lemma 7.6.2. Let (A0) and (A′′2 ) hold, and let ϕ(0) = 0, ϕ
′′ < 0, ϕ′ > 0 in (0,∞). Then

for all t ∈ (0,T), ϵ > 0, and n ∈ ℕ, we have

±
𝜕
𝜕t
[
αϕ(yϵn(⋅, t)) + β

tα
] ≤ 0 in ℝ if ±α > 0, (7.166a)

𝜕
𝜕t
[ϕ(yϵn(⋅, t)) − β log t] ≤ 0 in ℝ if α = 0. (7.166b)

Proof. For convenience, we set A ≡ ϵ 𝜕
2

𝜕x2 −
𝜕
𝜕x , and thus 𝜕ty

ϵ
n = A[ϕ(y

ϵ
n)] in S. Let

zϵn := t 𝜕ty
ϵ
n − g(y

ϵ
n), where g(yϵn) :=

αϕ(yϵn) + β
ϕ′(yϵn)

(n ∈ ℕ).

It follows from (A′′2 ) and a straightforward calculation that

𝜕tz
ϵ
n = A[ϕ

′(yϵn)z
ϵ
n] + [α + 1 − g

′(yϵn)]
[zϵn + g(y

ϵ
n)]

t

≤ A[ϕ′(yϵn)z
ϵ
n] + [α + 1 − g

′(yϵn)]
zϵn
t

in S.

Since zϵn(⋅,0) = −g(u
ϵ
0n) ≤ 0 in ℝ, by comparison results we have zϵn ≤ 0 in S (n ∈ ℕ). It

follows that t 𝜕tyϵn(⋅, t) ≤ g(y
ϵ
n)(⋅, t) in ℝ for all t ∈ (0,T), which implies (7.166).

To prove Theorem 7.3.3(i), we need another lemma.

Lemma 7.6.3. Let (A0)–(A1) hold, and let u be a constructed solution. Let {unk } be as
in the proof of Theorem 7.5.1. Then for a. e. t ∈ (0,T) and every x0 ∈ supp us(⋅, t), there
exist a sequence {xp} ⊆ ℝ and a subsequence {unp } ⊆ {unk } such that xp → x0 and
unp (xp, t)→∞ as p→∞.
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Proof. By Remark 7.5.1 there exist a null set N ⊆ (0,T) and a subsequence of {unk } (not
relabeled) such that

unk (⋅, t)
∗
⇀ ur(⋅, t) + us(⋅, t) in Rf (IL) (7.167)

for all t ∈ (0,T) \ N and L > 0 (see (7.107) with U(y) = y and (7.109a)–(7.109b)).
Let x0 ∈ supp us(⋅, t). Then no neighborhood Iδ(x0) exists such that the sequence

{unk (⋅, t)} lies in a bounded subset of L
∞(Iδ(x0)); otherwise, there would exist a subse-

quence of {unk (⋅, t)} (not relabeled) and ft ∈ L
∞(Iδ(x0)), ft ≥ 0, such that unk (⋅, t)

∗
⇀ ft

in L∞(Iδ(x0)). However, in view of (7.167), this would imply that us(⋅, t) = 0 in Iδ(x0), a
contradiction.

It follows that supnk∈ℕ ‖unk (⋅, t)‖L∞(I1/p(x0)) = ∞ for all p ∈ ℕ. Then there exist
{unkp } ⊆ {unk } and {xp} such that xp ∈ I1/p(x0) and unp (xp, t) ≥ p for every p ∈ ℕ. Hence
the result follows.

Proof of Theorem 7.3.3. As already pointed out, we only prove the result when ϕ′′ < 0
and ϕ′ > 0 in (0,∞).

(i) Letϕbebounded, and let {unk }beas in theproof of Lemma7.6.3. ByLemma7.6.1,
for every nk ∈ ℕ, there exists a subsequence {y

ϵj
nk } of solutions of (V

ϵ
nk ) such that for

a. e. t ∈ (0,T),

yϵjnk (⋅, t)→ unk (⋅, t) in L1loc(ℝ) as j →∞. (7.168)

On the other hand, by the proof of Lemma 7.6.2, for any t ∈ (0,T), we have

ϵj 𝜕xx ϕ(y
ϵj
nk (⋅, t)) − 𝜕x ϕ(y

ϵj
nk (⋅, t)) = 𝜕t y

ϵj
nk (⋅, t) ≤

g(yϵjnk (⋅, t))
t

in ℝ, (7.169)

where g(y) := αϕ(y)+β
ϕ′(y) > 0.

Let a, b ∈ ℝ, a < b, be fixed, and let ρ ∈ C1c(a, b), ρ ≥ 0. Set

Z(y) :=
y

∫
0

[ϕ′(z)]2

αϕ(z) + β
dz.

Then Z is increasing, and 0 ≤ Z(y) ≤ ϕ′(0) for all y ≥ 0. Multiplying inequality (7.169)
by ρ

g(y
ϵj
nk (⋅,t))

and integrating, we get

b

∫
a

Z(yϵjnk )(x, t)[ϵjρ
′′(x) + ρ′(x)] dx

≤
1
t

b

∫
a

ρ(x) dx − ϵj

b

∫
a

ϕ′(yϵjnk ) g
′(yϵjnk ) [𝜕xy

ϵj
nk ]

2

[g(yϵjnk )]
2

(x, t) ρ(x) dx ≤ 1
t

b

∫
a

ρ(x) dx.
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By (7.168), letting j →∞ in the above inequality, we obtain

b

∫
a

Z(unk (x, t)) ρ
′(x) dx ≤ 1

t

b

∫
a

ρ(x) dx. (7.170)

For a. e. t ∈ (0,T), let x0 ∈ supp us(⋅, t). Let us prove that

ess lim
x→x+0 ur(x, t) =∞. (7.171)

Let {xp} and {unp } ⊆ {unk } be given by Lemma 7.6.3, and let b > x0 be fixed. Since
xp → x0 as p → ∞, there exists p̄ ∈ ℕ such that b > xp for all p > p̄. For any such p
andm ∈ ℕ sufficiently large, set

ρp,m(x) := m(x − xp)χ[xp ,xp+ 1
m ]
(x) + χ(xp+ 1

m , b−
1
m )
(x) +m(b − x)χ[b− 1

m ,b]
(x).

Choosing a = xp and ρ = ρp,m in (7.170), we get

m
xp+

1
m

∫
xp

Z(unp (x, t)) dx −m
b

∫

b− 1
m

Z(unp (x, t)) dx ≤
1
t

b

∫
xp

ρp,m(x) dx,

whence, asm→∞,

Z(unp (xp, t)) ≤ Z(unp (b, t)) +
b − xp
t

for all p > p̄.

By the proof of Lemma 7.6.3 we have unp (xp, t) ≥ p. Then letting p → ∞ and us-
ing (7.143), we get, for a. e. b > x0,

lim
y→∞

Z(y) ≤ Z(ur(b, t)) +
b − x0
t
, (7.172)

whence

lim
y→∞

Z(y) ≤ ess lim
b→x+0 Z(ur(b, t)).

Since Z is continuous and increasing, from the previous inequality we obtain (7.171).
Now we can prove that u satisfies the compatibility conditions in [0, τ] at x0 ∈

supp us(⋅, τ). Concerning (C−), this follows from the increasing character of ϕ: in fact,
H−(ur − l) = 0 if ur > l, whereas if ur ≤ l, then H−(ur(x, t) − l)[ϕ(ur(x, t)) − ϕ(l)] =
ϕ(l) − ϕ(ur(x, t)) ≥ 0, and thus (C−) is satisfied. As for (C+), by equality (7.171), for
all l ∈ [0,∞), we have ess limx→x+0 H−(ur(⋅, t) − l) = 0 for a.e. t ∈ (0, τ) (recall that
by monotonicity x0 ∈ supp us(⋅, t) for such t). Hence by the dominated convergence
theorem (C+) follows.
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(ii) Let ϕ be unbounded. By (7.166), for all 0 < t1 ≤ t ≤ T and x ∈ ℝ,

t

∫
t1

ϕ(yϵjn )(x, s) ds =
1
α

t

∫
t1

αϕ(yϵmn )(x, s) + β
sα

sαds − β
α
(t − t1)

≥
αϕ(yϵjn )(x, t) + β

α tα
tα+1 − tα+11
α + 1

−
β
α
(t − t1) if α ̸= 0,

t

∫
t1

ϕ(yϵjn )(x, s) ds =
t

∫
t1

[ϕ(yϵjn )(x, s) − β log s] ds + β
t

∫
t1

log s ds

≥ [ϕ(yϵjn )(x, t)−β log t](t − t1)+β[t log t − t] − β[t1 log t1 − t1] if α = 0,

where {yϵjn } is the subsequence used in the proof of Lemma 7.6.1. Letting ϵj → 0,
by (7.165) we obtain that for a. e. t ∈ (t1,T) and a. e. x ∈ ℝ,

t

∫
t1

ϕ(un(x, s)) ds ≥
{{
{{
{

αϕ(un)(x, t) + β
α tα

tα+1 − tα+11
α + 1

−
β
α
(t − t1) if α ̸= 0,

[ϕ(un)(x, t) − β] (t − t1) + β t1 log
t
t1

if α = 0.
(7.173)

On the other hand, arguing as in the proof of Proposition 7.2.1, by the weak
formulation (7.78) it is easily seen that for every t ∈ (0,T], the map x → Yn(x) :=
∫t0 ϕ(un(x, s)) ds belongs toW

1,1(ℝ), with weak derivative Y ′n(⋅) = u0n − un(⋅, t) a.e. inℝ.
Therefore

0 ≤ Yn ≤ ‖u0n‖L1(ℝ) ≤ ‖u0‖Rf (ℝ).

Combining this inequality with (7.173) and letting t1 → 0+, we get

ϕ(un)(x, t) ≤
(α + 1)‖u0‖Rf (ℝ)

t
+ β for a. e. t ∈ (0,T) and a. e. x ∈ ℝ (7.174)

(recall that for unbounded ϕ, we have α ≥ 0, since we have assumed that ϕ′ > 0
and αϕ + β > 0 in [0,∞)). By (7.174) the sequence {un} lies in a bounded subset of
L∞(ℝ×(τ,T)) for every τ ∈ (0,T), and thus by Theorem 7.3.1, as n→∞, the conclusion
follows.

Proof of Proposition 7.3.5. By the proof of Theorem 7.3.3, for a. e. t ∈ (0,T), inequal-
ity (7.172) is satisfied for all xj ∈ supp us(⋅, t). Let x1 ∈ supp us(⋅, t), and set I1 := (x1 −
ϵ, x1 + ϵ) (ϵ > 0). Since Z is invertible, by (7.172) we have

∫
I1

ur(x, t) dx ≥
x1+ϵ

∫
x1

Z−1( lim
y→∞

Z(y) − 1
t
(x − x1)) dx
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=
ϵ

∫
0

Z−1( lim
y→∞

Z(y) − y
t
) dy =: Bϵ,

where

lim
ϵ→0+ Bϵϵ = Z−1( limy→∞

Z(y)) =∞. (7.175)

If supp us(⋅, t) ̸⊆ I1, then let x2 ∈ supp us(⋅, t) \ I1 and set I2 := (x2 − ϵ, x2 + ϵ). Since
(x1, x1 + ϵ) ∩ (x2, x2 + ϵ) = 0, it follows that

∫
I1∪I2

ur(x, t) dx ≥
x1+ϵ

∫
x1

ur(x, t) dx +
x2+ϵ

∫
x2

ur(x, t) dx ≥ 2Bϵ.

Arguing recursively, as long as supp us(⋅, t) ̸⊆ ⋃
n−1
i=1 Ii with Ii := (xi−ϵ, xi+ϵ), there exists

xn ∈ supp us(⋅, t) \ {⋃
n−1
i=1 Ii} such that

nBϵ ≤ ∫
⋃ni=1 Ii

ur(x, t) dx ≤ ‖u0‖Rf (ℝ),

where In := (xn − ϵ, xn + ϵ). Hence the procedure ends at some n = nϵ such that nϵBϵ ≤
‖u0‖Rf (ℝ). It follows that supp us(⋅, t) ⊆ ⋃

nϵ
i=1 Ii, and thus

λ(supp s(⋅, t)) ≤ λ(
nϵ
⋃
i=1

Ii) ≤ 2nϵ ϵ ≤ 2‖u0‖Rf (ℝ)
ϵ
Bϵ
.

Letting ϵ → 0+ in this inequality and using (7.175), we get the result.
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8 Case study 3: forward–backward parabolic
equations

8.1 Statement of the problem and preliminary results

In this chapter, we consider the initial-boundary value problem

{{{
{{{
{

𝜕tu = ∇ ⋅ [ϕ(∇u)] in Ω × (0,T) =: QT ,

u = 0 in 𝜕Ω × (0,T) =: ΓT ,
u = u0 in Ω × {0}.

(P)

Here Ω ⊆ ℝN is a bounded domain with smooth boundary 𝜕Ω if N ≥ 2, T ∈ (0,∞], and
the dot “⋅” denotes the scalar product in ℝN .

If N = 1, then on ϕ : ℝ→ ℝ and u0, we assume the following:

u0 ∈ W
1,∞
0 (Ω); (8.1a)

{
for every R > 0, there exists LR > 0 such that
|ϕ(y1) − ϕ(y2)| ≤ LR |y1 − y2| for all y1, y2 ∈ (−R,R);

(8.1b)

{
there exist y0 > 0, p ∈ (1,∞), and C1 > 0 such that
C1|y|p−1 ≤ |ϕ(y)| for all |y| > y0; (8.1c)

ϕ(y)y ≥ 0 for all y ∈ ℝ. (8.1d)

By abuse of notation, in (8.1a) and hereafter, we setW 1,∞
0 (Ω) := W

1,∞(Ω) ∩ C0(Ω).
If N ≥ 2, then concerning u0 and ϕ : ℝN → ℝN , ϕ ≡ (ϕ1, . . . ,ϕN ), we will use the

following assumptions:

u0 ∈ W
1,p
0 (Ω) with p ∈ (1, 2]; (8.2a)

{
there exists L > 0 such that
|ϕ(y1) − ϕ(y2)| ≤ L |y1 − y2| for all y1, y2 ∈ ℝN ;

(8.2b)

{
there exist y0 > 0, p ∈ (1, 2], and C0 > 0 such that
|ϕ(y)| ≤ C0(1 + |y|p−1) for all |y| > y0; (8.2c)

there exists Φ ∈ C1(ℝN) such that ϕ = ∇Φ; (8.2d)

{
there exist y0 > 0, q ∈ (1, 2], and C1 > 0 such that
C1|y|q ≤ Φ(y) for all |y| > y0;

(8.2e)

ϕ(y) ⋅ y ≥ 0 for all y ∈ ℝN . (8.2f)

https://doi.org/10.1515/9783110556902-010
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372 | 8 Case study 3: forward–backward parabolic equations

Remark 8.1.1. For N ≥ 2, we assume the global Lipschitz continuity of ϕ, instead of
local Lipschitz continuity as in the case N = 1; this implies the stronger restriction
p ∈ (1, 2] (instead of p ∈ (1,∞) as for N = 1) on the allowed values of p. Observe also
that by (8.2c)–(8.2e) we have

C1|y|
q ≤ Φ(y) ≤ C3|y|

p for all |y| > y0 (8.3)

with some C3 > 0, which implies the compatibility condition q ≤ p. In the following,
we always assume that (8.2c)–(8.2e) hold with some fixed p = q ∈ (1, 2] and (8.2a)
holds with the same p.

As explained in the Introduction, if the function ϕ is not increasing, then prob-
lem (P) is ill posed. Let us study problem (P) using the Sobolev regularization. First,
we address, for ϵ > 0, the initial-boundary value problem

{{{
{{{
{

𝜕tu = ∇ ⋅ [ϕ(∇u)] + ϵ Δ 𝜕tu in QT ,

u = 0 in ΓT ,
u = u0 in Ω × {0}.

(Pϵ)

Then we study the limit as ϵ → 0+ of the family {uϵ} of solutions of the approximat-
ing problems (Pϵ), proving the existence of a Young measure-valued solution of the
original problem (P) (see Definition 8.1.1). We also study the asymptotic behavior of
such a solution as t →∞ using compactness and ω-limit set techniques; in doing so,
a major point is the proof of tightness of sequences {νm} of time translates of the lim-
iting Young measure ν. Finally, for N = 1, we calculate explicitly the limiting Young
measure ν, extending the characterization given in [83] for analogous cases.

8.1.1 Notions of solution

Solutions of (P) are meant in the following sense.

Definition 8.1.1. Let either N = 1 and (8.1) or N ≥ 2 and (8.2a)–(8.2e) hold. By a Young
measure-valued solution of problem (P) in QT we mean a pair (u, ν) such that:
(i) u ∈ L∞(0,T ;W 1,p

0 (Ω)) ∩ C([0,T); L
2(Ω)) for all p ∈ [1,∞)with ux ∈ L∞(Ω × (0,T)) if

N = 1, or u ∈ L∞(0,T ;W 1,p
0 (Ω)) ∩ C([0,T); L

p(Ω)) (p ∈ (1, 2]) if N ≥ 2;
(ii) 𝜕tu ∈ L2(QT ), ν ∈ Y+(QT ;ℝ

N );
(iii) for a. e. (x, t) ∈ QT , we have

∇u(x, t) = ∫
ℝN

y dν(x,t)(y), (8.4)

where {ν(x,t)}(x,t)∈QT
denotes the disintegration of ν;
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(iv) for all ζ ∈ C1([0,T);C1c(Ω)) and t ∈ (0,T), we have

t

∫
0

∫
Ω

{u 𝜕sζ − ϕ
∗ ⋅ ∇ζ ](x, s) dxds = ∫

Ω

u(x, t)ζ (x, t) dx − ∫
Ω

u0(x) ζ (x,0) dx, (8.5)

where ϕ∗ ≡ (ϕ∗1 , . . . ,ϕ∗N ),
ϕ∗i (x, t) := ∫

ℝN

ϕi(y) dν(x,t)(y) (i = 1, . . . ,N) (8.6)

for a. e. (x, t) ∈ QT .

A Young measure-valued solution of problem (P) in Q∞ is called global.

As a particular case of Definition 8.1.1, we have the following definition.

Definition 8.1.2. By a Young measure equilibrium solution of problem (P) we mean
a pair (ū, ν̄) ∈ W 1,p

0 (Ω) × Y
+(QT ;ℝ

N ) for every p ∈ (1,∞) if N = 1 or p ∈ (1, 2] if N ≥ 2
such that for a. e. (x, t) ∈ QT ,

∫
ℝN

ϕi(y) dν̄(x,t)(y) = 0 (i = 1, . . . ,N), (8.7)

∇ū(x) = ∫
ℝN

y dν̄(x,t)(y). (8.8)

Concerning solutions of the regularized problem (Pϵ), we have the following defi-
nitions. If N = 1, then setting

v := 𝜕xu, w := ϕ(v) + ϵ 𝜕tv, (8.9)

problem (Pϵ) reads

{{{
{{{
{

𝜕tu = 𝜕xw in QT ,

u = 0 in ΓT ,
u = u0 in Ω × {0}.

(8.10)

Definition 8.1.3. Let N = 1 and (8.1a) hold. By a solution of problem (Pϵ) in QT we
mean any function uϵ ∈ C1([0,T);W 1,∞

0 (Ω)) with wϵ ∈ C([0,T);W2,∞(Ω) ∩ C(Ω)) and
𝜕xwϵ ∈ C([0,T);W 1,∞

0 (Ω)) that satisfies (8.10) in the classical sense.
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Definition 8.1.4. Let N ≥ 2, and let u0 ∈ H1
0(Ω). By a solution of problem (Pϵ) in QT we

mean any uϵ ∈ C1([0,T);H1
0(Ω)) such that uϵ(⋅,0) = u0ϵ and

∫
Ω

𝜕tuϵ(x, t)ρ(x) dx + ∫
Ω

ϕ(∇uϵ)(x, t) ⋅ ∇ρ(x) dx + ϵ∫
Ω

∇𝜕tuϵ(x, t) ⋅ ∇ρ(x) dx = 0 (8.11)

for all t ∈ (0,T) and ρ ∈ H1
0(Ω).

Definition 8.1.5. Let N ≥ 1. A solution of problem (Pϵ) in Q∞ is said to be global if it is
a solution in QT for all T ∈ (0,∞).

8.2 The regularized problem

8.2.1 Existence

Let us prove the following well-posedness result.

Theorem 8.2.1. Let either N = 1 and (8.1) or N ≥ 2, u0 ∈ H1
0(Ω), and (8.2b). Then for

each ϵ > 0, there exists a unique global solution uϵ of (Pϵ).

8.2.1.1 The case N = 1
Let us first prove Theorem 8.2.1 when N = 1. A first step is the following local well-
posedness result.

Lemma 8.2.2. Let N = 1 and (8.1a)–(8.1b) hold. Then for any ϵ > 0, there exists Tϵ > 0
such that problem (8.10) has a unique solution uϵ in QTϵ .

Proof. Consider the problem

{{{
{{{
{

𝜕tv = 𝜕xxw in QT ,

𝜕xw = 0 in ΓT ,
v = v0 := u′0 in Ω × {0},

(8.12)

with w as in (8.9). Then for each ϵ > 0, there exist Tϵ > 0 and a unique function vϵ ∈
C1([0,T); L∞(Ω))withwϵ ∈ C([0,T);W2,∞(Ω)∩C(Ω̄)) and 𝜕xxwϵ ∈ C([0,T); L∞(Ω)) that
satisfies (8.12) in QTϵ in the classical sense (see [74, Theorem 2.1]). Suppose Ω ≡ (a, b)
for simplicity. Defining

uϵ(x, t) :=
x

∫
a

vϵ(y, t) dy ((x, t) ∈ Ω × [0,Tϵ)), (8.13)

the conclusion follows.
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A priori estimates of the local solution uϵ given by Lemma 8.2.2 are now to be
proved. Following [74], for any g ∈ C1(ℝ) with g′ ≥ 0, set

Gϕ(y) :=
y

∫
0

g(ϕ(z)) dz + k (y, k ∈ ℝ). (8.14)

By (8.9)–(8.10), in QTϵ , we have

𝜕tGϕ(𝜕xuϵ) = g(ϕ(𝜕xuϵ)) 𝜕xtuϵ = g(wϵ) 𝜕xxwϵ + [g(ϕ(𝜕xuϵ)) − g(wϵ)]𝜕xxwϵ

= 𝜕x[g(wϵ)𝜕xwϵ] − g
′(wϵ)|𝜕xwϵ|

2 + [g(ϕ(𝜕xuϵ)) − g(wϵ)]
wϵ − ϕ(𝜕xuϵ)

ϵ
.

Then integrating in Ω, we obtain

d
dt
∫
Ω

Gϕ(𝜕xuϵ(x, t)) dx ≤ 0 in (0,Tϵ). (8.15)

Using the above inequality (conceptually analogous to inequality (6.61); see Re-
mark 6.5.2), we can prove the following result (see [74, Proposition 2.7]).

Proposition 8.2.3. Let

ϕ(y1) ≤ ϕ(y) ≤ ϕ(y2) for all y ∈ [y1, y2], (8.16)

and let u′0(x) ∈ [y1, y2] for a. e. x ∈ Ω. Then 𝜕xuϵ(x, t) ∈ [y1, y2] for a. e. (x, t) ∈ QTϵ .

Proof. Possibly modifying the shape of ϕ, we can suppose that ϕ(y) < ϕ(y1) if y < y1
and ϕ(y) > ϕ(y2) if y > y2. Fix g ∈ C1(ℝ) with g′ ≥ 0 such that g = 0 in [ϕ(y1),ϕ(y2)],
g(s) < 0 if s < ϕ(y1), and g(s) > 0 if s > ϕ(y2); moreover, choose the constant k in
(8.14) such that Gϕ(y) = ∫

y
y1
g(ϕ(z)) dz. Plainly, this implies G ≡ 0 in [y1, y2] and G > 0

in (−∞, y1) ∪ (y2,∞). Then by inequality (8.15) the conclusion follows.

Let us now prove Theorem 8.2.1 in the case N = 1.

Proposition 8.2.4. Let N = 1 and (8.1) hold. Then for each ϵ > 0, there exists a unique
global solution uϵ of problem (Pϵ).

Proof. By assumptions (8.1c)–(8.1d) we haveϕ(y)→ ±∞ as y → ±∞, and hence there
exists C0 > ||u′0||∞ such that inequality (8.16) holds with [y1, y2] = [−C0,C0]. Then by
Proposition 8.2.3 we have

uϵ(⋅, t)
W 1,∞

0 (Ω) ≤ C0[λ(Ω) + 1] for all t ∈ (0,Tϵ), (8.17)

where, as usual, λ denotes the Lebesgue measure in ℝ. Hence from Lemma 8.2.2 by
standard prolongation arguments the result follows.
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8.2.1.2 The case N ≥ 2
To prove Theorem 8.2.1 in this case, set

(I − ϵΔ)−1 : H−1(Ω)→ H1
0(Ω), (I − ϵΔ)

−1z := v for z ∈ H−1(Ω),
where v ∈ H1

0(Ω) is the unique solution of the elliptic problem

{
−ϵΔv + v = z in Ω,
v = 0 in 𝜕Ω,

(8.18)

with z ∈ H−1(Ω). The following result is easily proven (see [30, Proposition 4.4]).
Proposition 8.2.5. Let (8.2b) hold. Then the operator

L : H1
0(Ω)→ H1

0(Ω), L(u) := (I − ϵΔ)−1 ∇ ⋅ [ϕ(∇u)] (u ∈ H1
0(Ω)), (8.19)

is Lipschitz continuous.

Proof of Theorem 8.2.1. We must only consider the case N ≥ 2. By Proposition 8.2.5,
for all u0 ∈ H1

0(Ω) and ϵ > 0, there exists a unique solution uϵ ∈ C1([0,∞);H1
0(Ω)) of

the abstract Cauchy problem

{
𝜕tu = L(u) in (0,∞),
u(0) = u0

(8.20)

(e. g., see [31, Théorème II.16.1 and II.1.7.1]). Therefore uϵ satisfies problem (Pϵ) in QT
(for any T ∈ (0,∞)) in the sense of C1([0,T);H−1(Ω)), and thus equality (8.11) follows
for all t ∈ (0,T) and all ρ ∈ H1

0(Ω). Since T ∈ (0,∞) is arbitrary, uϵ is a global solution.
Hence the result follows.

8.2.2 A priori estimates

A priori estimates of the solution uϵ (uniformwith respect to ϵ) are needed to study its
limit as ϵ → 0+.
8.2.2.1 The case N = 1
Proposition 8.2.6. Let N = 1 and (8.1) hold. Let uϵ be the solution of problem (Pϵ) given
by Theorem 8.2.1. Then there exists C > 0 (possibly, depending on ‖u0‖W 1,∞

0 (Ω)) such that
for all ϵ > 0,

sup
t∈(0,∞)uϵ(t)W 1,∞

0 (Ω) + ‖𝜕tuϵ‖L2(Q∞) +√ϵ ‖𝜕xtuϵ‖L2(Q∞) ≤ C. (8.21)
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Proof. Set

Φ(y) :=
y

∫
0

ϕ(z) dz + k (y, k ∈ ℝ) (8.22)

(this amounts to choose g(s) = s in (8.14)). By (8.9)–(8.10) we have

𝜕tΦ(𝜕xuϵ) = ϕ(𝜕xuϵ) 𝜕xtuϵ = wϵ 𝜕xxwϵ + [ϕ(𝜕xuϵ) − wϵ]𝜕xxwϵ

= wϵ𝜕xxwϵ −
|wϵ − ϕ(𝜕xuϵ)|2

ϵ
= wϵ𝜕xxwϵ − ϵ |𝜕xtuϵ|

2,

whence plainly

∬
Q∞ {|𝜕xwϵ|

2 + ϵ |𝜕xtuϵ|
2}dxdt ≤ ∫

Ω

Φ(u0) dx. (8.23)

On the other hand, since the solution is global, from (8.17) we obtain the a priori esti-
mate

sup
t∈(0,T)uϵ(t)W 1,∞

0 (Ω) ≤ C0[λ(Ω) + 1]. (8.24)

Then from (8.23)–(8.24) the result follows.

Remark 8.2.1. Let uϵ be the solution of problem (Pϵ) given by Theorem 8.2.1, and let
vϵ, wϵ be given by (8.9). Since 𝜕tuϵ = 𝜕xwϵ, estimate (8.21) also reads

‖vϵ‖L∞(Q∞) + ‖𝜕xwϵ‖L2(Q∞) +√ϵ ‖𝜕tvϵ‖L2(Q∞) ≤ C. (8.25)

Plainly, this implies that there exists C̃ > 0 (only depending on ‖u0‖W 1,∞
0 (Ω)) such that

for all ϵ > 0 small enough,

ϕ(vϵ)
L∞(Q∞) ≤ C̃, (8.26)

‖wϵ‖L2(0,∞;H1(Ω)) ≤ C̃. (8.27)

In fact, by assumption (8.1b) and inequality (8.25) there exists C1 > 0 (only depending
on ‖u0‖W 1,∞

0 (Ω)) such that ‖ϕ(vϵ)‖L∞(Q∞) ≤ C1 for all ϵ > 0. Then by the definition of wϵ
and inequality (8.25) we get

‖wϵ‖L2(Q∞) ≤ C1 +√ϵ C.
By the above inequality and (8.25) there exists a constant C̃ ≥ C1 such that (8.26)–(8.27)
hold.
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8.2.2.2 The case N ≥ 2
Let us prove analogous estimates for N ≥ 2 and any fixed u0 ∈ W

1,p
0 (Ω) (p ∈ (1, 2]).

Consider a family {u0ϵ} ⊆ H1
0(Ω) (ϵ > 0) such that

‖u0ϵ‖W 1,p
0 (Ω) ≤ ‖u0‖W 1,p

0 (Ω), u0ϵ → u0 in W 1,p
0 (Ω). (8.28)

Proposition 8.2.7. Let N ≥ 2 and (8.2a)–(8.2e) hold. Let uϵ be the solution of prob-
lem (Pϵ), with Cauchy data u0ϵ ∈ H1

0(Ω) as in (8.28), given by Theorem 8.2.1. Then there
exists C > 0 (depending on ‖u0‖W 1,p

0 (Ω)) such that for all ϵ > 0,
‖uϵ‖L∞(0,∞;W 1,p

0 (Ω)) + ‖𝜕tuϵ‖L2(Q∞) +√ϵ ‖∇𝜕tuϵ‖L2(Q∞) ≤ C. (8.29)

Proof. Since 𝜕tuϵ(⋅, t) ∈ H1
0(Ω) for all t ∈ (0,∞), we can choose ρ = 𝜕tuϵ(⋅, t) in (8.11).

Then by assumption (8.2d) we obtain
t

∫
0

∫
Ω

𝜕tu
2
ϵ(x, s) dxds = −

t

∫
0

(
d
ds
∫
Ω

[Φ(∇uϵ)](x, s) dx)ds − ϵ∬
Qt

|∇𝜕tuϵ|
2(x, s) dxds,

whence for all t > 0,

∫
Ω

[Φ(∇uϵ)](x, t) dx +
t

∫
0

∫
Ω

{𝜕tu
2
ϵ + ϵ|∇𝜕tuϵ|

2}(x, s) dxds = ∫
Ω

[Φ(∇u0ϵ)](x) dx. (8.30)

On the other hand, by the first inequality in (8.3) (with q = p) we have

C1 ∫
Ω

|∇uϵ|
p(x, t) dx

= C1 ∫{|∇uϵ |>y0} |∇uϵ|p(x, t) dx + C1 ∫{|∇uϵ |≤y0} |∇uϵ|p(x, t) dx
≤ ∫{|∇uϵ |>y0}[Φ(∇uϵ)](x, t) dx + C1yp0 λN (Ω)
= ∫

Ω

[Φ(∇uϵ)](x, t) dx − ∫{|∇uϵ |≤y0}[Φ(∇uϵ)](x, t) dx + C1yp0 λN (Ω) (8.31)

with y0 as in (8.2c). Then by equality (8.30) we have

C1 ∫
Ω

|∇uϵ|
p(x, t) dx +

t

∫
0

∫
Ω

{𝜕tu
2
ϵ + ϵ|∇𝜕tuϵ|

2}(x, s) dxds

≤ ∫
Ω

[Φ(∇u0ϵ)](x) dx − ∫{|∇uϵ |≤y0}[Φ(∇uϵ)](x, t) dx + C1yp0 λN (Ω)
≤ ∫

Ω

[Φ(∇u0ϵ)](x) dx + K1 (8.32)
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with some constant K1 > 0, only depending on y0 and λN (Ω) (here we used the conti-
nuity of Φ).

Arguing as for (8.31), by the second inequality in (8.3) and the inequality in (8.28)
we get

∫
Ω

[Φ(∇u0ϵ)](x) dx

= ∫{|∇u0ϵ |>y0}[Φ(∇u0ϵ)](x) dx + ∫{|∇u0ϵ |≤y0}[Φ(∇u0ϵ)](x) dx
≤ C3 ∫{|∇u0ϵ |>y0} |∇u0ϵ|p(x) dx + ∫{|∇u0ϵ |≤y0}[Φ(∇u0ϵ)](x) dx
≤ C3 ∫

Ω

|∇u0|
p(x) dx + K2 (8.33)

with someconstantK2 > 0dependingon y0 only. Sinceu→ ‖|∇u|‖Lp(Ω) is an equivalent
norm onW 1,p

0 (Ω), from (8.32)–(8.33) we obtain, for some constant K3 > 0,

‖uϵ‖
p
L∞(0,∞;W 1,p

0 (Ω)) + ‖𝜕tuϵ‖2L2(Q∞) + ϵ ‖∇𝜕tuϵ‖2L2(Q∞)
≤

1
min{1,C1K3}

(C3‖u0‖
p
W 1,p

0 (Ω) + K1 + K2) =: C4,
whence

‖uϵ‖L∞(0,∞;W 1,p
0 (Ω)) + ‖𝜕tuϵ‖L2(Q∞) +√ϵ ‖∇𝜕tuϵ‖L2(Q∞) ≤ C4 + 3.

Then defining

C := C4 + 3,

we obtain inequality (8.29). This completes the proof.

Remark 8.2.2. In view of estimates (8.21) and (8.29), the family {uϵ} is contained in
abounded subset ofL∞(0,∞;W 1,q

0 (Ω)) for all 1 ≤ q <∞ ifN = 1 or ofL∞(0,∞;W 1,p
0 (Ω))

ifN ≥ 2. In addition, ifN ≥ 2 and p ∈ (1, 2], then by estimate (8.29) for every T ∈ (0,∞),
there exists a constant C̄T > 0 (depending on ‖u0‖W 1,p

0 (Ω)) such that for all ϵ > 0,
‖uϵ‖W 1,p(QT ) ≤ C̄T . (8.34)

Similarly, if N = 1, then by estimate (8.21) for all ϵ > 0, we have

‖uϵ‖H1(QT ) ≤ C̄T . (8.35)
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8.2.3 Letting ϵ → 0+
If N ≥ 2, then by (8.29) we have the following:

Proposition 8.2.8. Let N ≥ 2 and (8.2a)–(8.2e) hold. Let uϵ be the solution of prob-
lem (Pϵ), with Cauchy data u0ϵ ∈ H1

0(Ω) as in (8.28), given by Theorem 8.2.1. Then there
exist a sequence {uϵk } ⊆ {uϵ} and u ∈ L

∞(0,∞;W 1,p
0 (Ω)) ∩ C([0,∞); L

p(Ω)) ∩W 1,p(QT )
with 𝜕tu ∈ L2(Q∞) such that

uϵk → u in C([0,T); Lp(Ω)) for all T ∈ (0,∞); (8.36a)

uϵk ⇀ u in Lr(0,T ;W 1,p
0 (Ω)) for all T ∈ (0,∞) (r ∈ [1,∞)); (8.36b)

uϵk ⇀ u in W 1,p(QT ) for all T ∈ (0,∞); (8.36c)

𝜕tuϵk ⇀ 𝜕tu, ϵk ∇𝜕tuϵk → 0 in L2(Q∞); (8.36d)

Proof. Concerning (8.36a), observe that by inequality (8.34) the family {uϵ} is bounded
inW 1,p(QT ), andhence there exists a sequence {uϵk } ⊆ {uϵ} (possibly, dependingonT ∈
(0,∞)) that strongly converges in Lp(QT ). Let us show that {uϵk } is a Cauchy sequence
in C([0,T]; Lp(Ω)) for all T ∈ (0,∞). Indeed, for all t ∈ [0,T], we have


∫
Ω

|uϵk − uϵm |
p(x, t) dx − ∫

Ω

|u0ϵk − u0ϵm |
p(x) dx


≤ p∬
Qt

[|uϵk − uϵm |
p−1 |𝜕tuϵk − 𝜕tuϵm |](x, s) dxds

≤ p(∬
Qt

|uϵk − uϵm |
pdxds)

1− 1p
(∬
Qt

|𝜕tuϵk − 𝜕tuϵm |
pdxds)

1
p

≤ p |QT |
2−p
2p ‖uϵk − uϵm‖

p−1
Lp(QT )‖𝜕tuϵk − 𝜕tuϵm‖L2(QT ),

since p ∈ (1, 2]. Then by inequality (8.29) we have

‖uϵk − uϵm‖C([0,T];Lp(Ω)) ≤ K‖uϵk − uϵm‖1− 1pLp(QT ) + ‖u0ϵk − u0ϵm‖Lp(Ω), (8.37)

where

K := 2Cp |QT |
2−p
2p .

Then by (8.28) and (8.37) the claim follows. Hence by a diagonal argument there exist
a sequence {uϵk } ⊆ {uϵ} and u ∈ C([0,∞); Lp(Ω)) such that (8.36a) holds for all T ∈
(0,∞).

Concerning the convergence in (8.36b), observe that by (8.29) we have

‖uϵk ‖Lr(0,T ;W 1,p
0 (Ω)) ≤ C T 1

r (8.38)
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for all T ∈ (0,∞) and r ∈ [1,∞). Hence by a diagonal argument there exist a subse-
quence of {uϵk } (not relabeled for simplicity) and a function u : (0,∞)→ W 1,p

0 (Ω) such
that (8.36b) holds for allT ∈ (0,∞) and r ∈ [1,∞). To prove thatu ∈ L∞(0,∞;W 1,p

0 (Ω)),
observe that by (8.29)

uϵk (⋅, t)
W 1,p

0 (Ω) ≤ C for a. e. t ∈ (0,∞). (8.39)

Then there exist a subsequence of {uϵk (⋅, t)} (possibly, depending on t), denoted again
by {uϵk (⋅, t)} for simplicity, and a function ft ∈ W

1,p
0 (Ω) such that

uϵk (⋅, t)⇀ ft inW 1,p
0 (Ω). (8.40)

Hence by inequality (8.39) and the lower semicontinuity of the norm we have

‖ft‖W 1,p
0 (Ω) ≤ C for all t ∈ (0,∞). (8.41)

On the other hand, by (8.36a) and (8.40) we have ft = u(⋅, t). Therefore by (8.41) we
obtain that u ∈ L∞(0,∞;W 1,p

0 (Ω)), as claimed.
The convergences in (8.36d) follow immediately from (8.29), since both sequences

{𝜕tuϵk } and {√ϵk ∇𝜕tuϵk } belong to a bounded subset of L2(Q∞). This completes the
proof.

Similarly, for N = 1, by estimate (8.21) we have the following:

Proposition 8.2.9. Let N = 1 and (8.1) hold. Let uϵ be the solution of problem (Pϵ) given
by Theorem 8.2.1. Then there exist a sequence {uϵk } ⊆ {uϵ} and u ∈ L

∞(0,∞;W 1,p
0 (Ω)) ∩

C([0,∞); L2(Ω)) ∩ H1(QT ) for all p ∈ [1,∞) and T ∈ (0,∞) with ux ∈ L∞(Q∞) and
𝜕tu ∈ L2(Q∞) such that, as k →∞,

uϵk → u in C([0,T); L2(Ω)) for all T ∈ (0,∞); (8.42a)

uϵk ⇀ u in Lr(0,T ;W 1,p
0 (Ω)) for all T ∈ (0,∞) (r ∈ [1,∞), p ∈ (1,∞)); (8.42b)

uϵk ⇀ u in H1(QT ) for all T ∈ (0,∞); (8.42c)

𝜕xuϵk
∗
⇀ 𝜕xu in L∞(Q∞); (8.42d)

𝜕tuϵk ⇀ 𝜕tu, ϵk 𝜕xtuϵk → 0 in L2(Q∞). (8.42e)

Proof. The proof of (8.42a) is the same as that of (8.36a) using inequality (8.35) instead
of (8.34). Concerning (8.42b), by (8.21) we have

‖uϵk ‖Lr(0,T ;W 1,p
0 (Ω)) ≤ C T 1

r [λN (Ω)]
1
p (8.43)

for all T ∈ (0,∞), r ∈ [1,∞), and p ∈ (1,∞). Hence by a diagonal argument there exist
a subsequence of {uϵk }, denoted again by {uϵk }, and a function u : (0,∞) → W 1,p

0 (Ω)
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such that (8.42b)holds. Toprove thatu ∈ L∞(0,∞;W 1,p
0 (Ω))∩C([0,∞); L

2(Ω)) for allp ∈
[1,∞) with ux ∈ L∞(Q∞), we argue as in the proof of Proposition 8.2.8. As for (8.42d),
it suffices to observe that inequality (8.21) implies

‖𝜕xuϵ‖L∞(Q∞) ≤ C. (8.44)

The proof of (8.42e) is the same as that of (8.36d), and thus the result follows.

Remark 8.2.3. In view of inequality (8.27), there exist a sequence {wϵk } ⊆ {wϵ} and
w ∈ L2(0,∞;H1(Ω)) such that

wϵk ⇀ w in L2(0,∞;H1(Ω)). (8.45)

Without loss of generality, we can assume that the convergence results of Proposi-
tion 8.2.9 hold with the same sequence of indices {ϵk}. In particular (see (8.42d)),

vϵk
∗
⇀ v in L∞(Q∞) (8.46)

with v := 𝜕xu, where u is the limiting function given by Proposition 8.2.9.

Remark 8.2.4. Let the assumptions of Proposition 8.2.9 hold if N = 1 or u0 ∈ H1
0(Ω),

(8.2c)–(8.2e) with p = q = 2, and (8.2f) hold if N ≥ 2 (thus, in particular, let
Proposition 8.2.8 hold with p = 2). Let u be the limiting function given by Proposi-
tions 8.2.8–8.2.9. Under these assumptions, themap t → ‖u(⋅, t)‖2L2(Ω) is nonincreasing
on (0,∞). Indeed, since the global solution uϵ of problem (Pϵ) satisfies uϵ(⋅, t) ∈ H1

0(Ω)
for every t ∈ (0,∞), from (Pϵ) by assumption (8.2f) we easily get

d
dt
(uϵ(⋅, t)


2
L2(Ω) + ϵ ∇uϵ(⋅, t)2L2(Ω)) = −2∫

Ω

[ϕ(∇uϵ) ⋅ ∇uϵ](x, t) dx ≤ 0.

It follows that

uϵ(⋅, t + τ)

2
L2(Ω) + ϵ ∇uϵ(⋅, t + τ)2L2(Ω) ≤ uϵ(⋅, t)2L2(Ω) + ϵ ∇uϵ(⋅, t)2L2(Ω) (8.47)

for every t ∈ (0,∞), τ > 0, and ϵ > 0. Setting ϵ = ϵk in the last inequality, with {uϵk } ⊆
{uϵ} given by Propositions 8.2.8–8.2.9, and letting k →∞, we obtain ‖u(⋅, t + τ)‖2L2(Ω) ≤
‖u(⋅, t)‖2L2(Ω) for all t ∈ (0,∞) and τ > 0 (here we use the convergence in (8.36a) and
estimate (8.29) with p = 2 if N ≥ 2, respectively, the convergence in (8.42a) and esti-
mate (8.21) if N = 1). Hence the claim follows.

8.3 Existence

Relying on the results of the previous section, we can prove the following existence
theorem.

 EBSCOhost - printed on 2/10/2023 4:29 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.3 Existence | 383

Theorem 8.3.1. Let either N = 1 and (8.1) or N ≥ 2 and (8.2a)–(8.2e) hold. Then there
exists a global Youngmeasure-valued solution (u, ν) of problem (P), obtained as the limit
of a subsequence {uϵk } of solutions of the regularized problems (Pϵk ). Moreover,
(i) if N = 1, then u ∈ L∞(0,∞;W 1,p

0 (Ω)) ∩ C([0,∞); L
2(Ω)) ∩ H1(QT ) for all p ∈ [1,∞),

and ux ∈ L∞(Q∞);
(ii) if N ≥ 2, then u ∈ L∞(0,∞;W 1,p

0 (Ω)) ∩ C([0,∞); L
p(Ω)) ∩W 1,p(QT ) (p ∈ (1, 2]);

(iii) ν ∈ Y+(Q∞;ℝN ).
Proof. Suppose first that N ≥ 2. Consider the sequence {uϵk } and the function u given
by Proposition 8.2.8. The weak formulation of problem (Pϵk ) reads

∬
Qt

[uϵk 𝜕sζ − ϕ(∇uϵk ) ⋅ ∇ζ − ϵk∇uϵks ⋅ ∇ζ ](x, s) dxds

= ∫
Ω

uϵk (x, t)ζ (x, t) dx − ∫
Ω

u0ϵk (x) ζ (x,0) dx (8.48)

for all t > 0 and ζ ∈ C1([0,∞);C1c(Ω)). By (8.36a), as k →∞, for all t > 0, we get

lim
k→∞∬

Qt

uϵk (x, s)𝜕sζ (x, s) dxds =∬
Qt

u(x, s)𝜕sζ (x, s) dxds, (8.49)

lim
k→∞∫

Ω

uϵk (x, t)ζ (x, t) dx = ∫
Ω

u(x, t)ζ (x, t) dx, (8.50)

whereas by (8.36d) and (8.28) we have that

lim
k→∞(ϵk∬

Qt

∇𝜕suϵk ⋅ ∇ζ dxds) = 0, (8.51)

respectively,

lim
k→∞∫

Ω

u0ϵk (x)ζ (x,0) dx = ∫
Ω

u0(x)ζ (x,0) dx. (8.52)

Since by inequality (8.29) the sequence {|∇uϵk |} is bounded in Lp(QT ) with p ∈
(1, 2], by Lemma 2.8.12 it is uniformly integrable; hence the same holds for the se-
quence {ϕ(∇uϵk )}, since by assumption (8.2b) |ϕ(∇uϵk )| ≤ L |∇uϵk | + |ϕ(0)|. Then
by Proposition 5.4.10 and a standard diagonal argument there exist a subsequence
of {∇uϵk } (not relabeled for simplicity) and a measure ν ∈ Rf (Q∞ × ℝN ) with ν ∈
Y+(QT ;ℝ

N ) for all T ∈ (0,∞) such that

ϕ(∇uϵk )⇀ ϕ∗ in L1(QT ;ℝ
N) (8.53)
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with ϕ∗ defined by (8.6). Then letting k → ∞ in (8.48) and using (8.49)–(8.53), we
obtain equality (8.5). Similarly, applying Proposition 5.4.10 with h = ρi, where ρi(y) :=
yi, we have that

(∇uϵk )i ⇀ ∫
ℝN

yi dν(x,t)(y) in L1(QT ) (i = 1, . . . ,N),

which, together with the convergence in (8.42b), implies equality (8.4).
Therefore the pair (u, ν) is a Young measure-valued solution of problem (P) in QT .

It follows from Proposition 8.2.8 that u ∈ L∞(0,∞;W 1,p
0 (Ω)) ∩ C([0,∞); L

p(Ω)) and
𝜕tu ∈ L2(Q∞). Moreover, since ν ∈ Y+(QT ;ℝ

N ) for every T ∈ (0,∞), by elementary
properties of measures we have

λN+1(E) = lim
k→∞ λN+1(E ∩ Qk) = lim

k→∞ ν((E ∩ Qk) × ℝ
N) = ν(E × ℝN)

for all Borel sets E ⊆ Q∞, and thus ν ∈ Y+(Q∞;ℝN ).
Since (u, ν) is a Young measure-valued solution of problem (P) in QT for all T ∈

(0,∞), it is a global solution; hence the result follows in the case N ≥ 2. The proof
when N = 1 is the same using inequality (8.21) and Proposition 8.2.9 instead of (8.29)
and Proposition 8.2.8, respectively. This completes the proof.

Remark 8.3.1. Let N = 1, and let {uϵk } be the sequence used in the proof of Theo-
rem 8.3.1. By inequality (8.25) for all T ∈ (0,∞), we have

ϕ(𝜕xuϵk ) − wϵk
L2(QT ) = ϵk‖𝜕xtuϵk ‖L2(QT ) → 0,

and thus by (8.45) we have that ϕ(𝜕xuϵk ) ⇀ w in L2(QT ). On the other hand, by (8.53)
we have ϕ(𝜕xuϵk ) ⇀ ϕ∗ := ∫ℝ ϕ(y)dν(y) in L1(QT ). It follows that w = ϕ∗, and thus,
in particular, ϕ∗ ∈ L2(0,∞;H1(Ω)) ∩ L∞(QT ).

Remark 8.3.2. Arguing as in the proof of Theorem 8.3.1 shows that if N ≥ 2 and as-
sumption (8.2c) is satisfied, then every function ϕ∗i defined by (8.6) belongs to Lr(QT )
for all T ∈ (0,∞) and r = p

p−1 with p ∈ (1, 2] (clearly, if N = 1, then by (8.21) ϕ∗ ∈
L∞(Q∞)). Indeed, fix T ∈ (0,∞). By (8.2c) there existsM > 0 such that

|ϕ∗i |(x, t) ≤ M ∫
ℝN

(1 + |y|p−1) dν(x,t)(y) (8.54)

for a. e. (x, t) ∈ QT . By (8.54) and the Jensen inequality we have

|ϕ∗i |r ≤ M̄ ∫
ℝN

(1 + |y|p) dν(x,t)(y) (8.55)
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with some M̄ > 0. Let fj ∈ Cc([0,∞)) (j ∈ ℕ) satisfy 0 ≤ fj ≤ 1 and

fj(z) = {
1 if z ∈ [0, j],
0 if z ∈ [j + 1,∞).

(8.56)

Let {uϵk } be the sequence used in the proof of Theorem 8.3.1. By (8.29), for every j ∈ ℕ,
the sequence {fj(|∇uϵk |) |∇uϵk |

p} is bounded inQT and thus uniformly integrable. Then
by Proposition 5.4.10 there exists a subsequence (not relabeled) such that

∬
QT

dxdt ∫
ℝN

(1 + fj(|y|) |y|
p) dν(x,t)(y)

= lim
k→∞∬

QT

(1 + fj(|∇uϵk |) |∇uϵk |
p) dxdt ≤ lim

k→∞∬
QT

(1 + |∇uϵk |
p) dxdt ≤ C̃ (8.57)

for some C̃ > 0 independent of j (recall that ν(x,t)(ℝN ) = 1 for a. e. (x, t) ∈ QT ). Since
limj→∞ fj(|y|) |y|p = |y|p for all y ∈ ℝN , from (8.57) and the Fatou lemma we get

∬
QT

dxdt ∫
ℝN

(1 + |y|p) dν(x,t)(y) ≤ C̃,
whence by (8.55) the claim follows.

For future reference, let us prove the following result (see [100, Proposition 6]).

Proposition 8.3.2. Let N = 1, let Ω ≡ (a, b), and let (8.1) hold. Let (u, ν) be a Young
measure-valued solution of (P) given by Theorem 8.3.1. Let Gϕ be as in (8.14) with g ∈
C1c(ℝ), and let f ∈ C

1(ℝ) ∩W 1,∞(ℝ). Then for a. e. (x, t) ∈ QT , we have

∫
ℝ

f (ϕ(y))Gϕ(y) dν(x,t)(y) = ∫
ℝ

f (ϕ(y)) dν(x,t)(y)∫
ℝ

Gϕ(y) dν(x,t)(y). (8.58)

To prove Proposition 8.3.2, we need a technical lemma (we refer the reader to [83,
Lemma 2.1] for the proof). Let {ηi} ⊆ H1(Ω) be a sequence of eigenfunctions of the
operator −Δ with homogeneous Neumann conditions on 𝜕Ω, and let {μi} be the corre-
sponding sequence of eigenvalues. For any ϵ > 0, setℕϵ := {i ∈ ℕ | μi ≤

1
ϵ }, and let

Pϵ, Qϵ : L2(Ω)→ H1(Ω), Pϵ + Qϵ = I, be the projection operators defined as follows:

Pϵf := ∑
i∈ℕϵ fiηi, Qϵf := ∑

i∈ℕcϵ fiηi, fi := ∫
Ω

f ηi dx (f ∈ L
2(Ω)). (8.59)
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Lemma 8.3.3. Let N = 1, and let (8.1) hold. Let uϵ be the solution of problem (Pϵ) given
by Theorem 8.2.1, and let vϵ := 𝜕xuϵ. Then there exists C > 0 such that for all ϵ > 0,

Pϵ ϕ(vϵ)
L2(0,T ;H1

0(Ω)) + 1
√ϵ
Qϵϕ(vϵ)

L2(QT ) ≤ C. (8.60)

Proof of Proposition 8.3.2. Let {vϵk } be the converging sequence in (8.46). Under the
present assumptions, we have f ∘ϕ ∈ Cb(ℝ), whereas |Gϕ(y)| ≤ ‖g‖L∞(ℝ)|y| for all y ∈ ℝ.
By (8.25) the sequence {vϵk } is bounded in L∞(QT ) and hence uniformly integrable
in QT . Hence by Proposition 5.4.10 in L1(QT ) we have

f (ϕ(vϵk ))⇀ (f ∘ ϕ)∗, Gϕ(vϵk )⇀ (Gϕ)∗, f (ϕ(vϵk ))Gϕ(vϵk )⇀ ((f ∘ ϕ)Gϕ)∗,
where

(f ∘ ϕ)∗ := ∫
ℝ

f (ϕ(y)) dν(y), (Gϕ)∗ := ∫
ℝ

Gϕ(y) dν(y),

((f ∘ ϕ)Gϕ)∗ := ∫
ℝ

f (ϕ(y))Gϕ(y) dν(y).

Then the conclusion follows if we prove that

f (ϕ(vϵk ))Gϕ(vϵk ) ⇀ (f ∘ ϕ)∗(Gϕ)∗ in L1(QT ). (8.61)

Set F := f ∘ ϕ, Fϵk := f (Pϵk ϕ(vϵk )), where Pϵk is the projection operator defined
in (8.59) with ϵ = ϵk . Since by assumption ‖f ′‖L∞(ℝ) <∞, we have that

F
ϵk − F(vϵk )

L2(QT ) = f (Pϵk ϕ(vϵk )) − f (ϕ(vϵk ))L2(QT )
≤ ‖f ′‖L∞(ℝ) Qϵkϕ(vϵk )

L2(QT ). (8.62)

On the other hand, by (8.25) there exists C > 0 such that ‖Gϕ(vϵk )‖L2(QT ) ≤ C. Then
from (8.60) and (8.62) we obtain

lim
k→∞[Fϵk − F(vϵk )]Gϕ(vϵk )

L2(QT ) = 0.
Therefore, to prove (8.61), it suffices to show that for every ζ ∈ C1c(QT ),

lim
k→∞∬

QT

FϵkGϕ(vϵk ) ζ dxdt =∬
QT

(f ∘ ϕ)∗(Gϕ)∗ ζ dxdt. (8.63)

Set Γϵk (x, t) := ∫xa Gϕ(vϵk (z, t)) dz ((x, t) ∈ QT ). Then we have

∬
QT

FϵkGϕ(vϵk ) ζ dxdt = −∬
QT

𝜕x(F
ϵk ζ ) Γϵkdxdt. (8.64)
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Since ‖f ′‖L∞(ℝ) <∞, by inequality (8.60) there exists C̄ > 0 such that
𝜕xF

ϵk L2(QT ) ≤ ‖f ′‖L∞(ℝ)𝜕x[Pϵk [ϕ(vϵk )]]L2(QT ) ≤ C‖f ′‖L∞(ℝ).
Since f ∈ L∞(ℝ), the sequence {Fϵk } is bounded in L∞(QT ) and thus in L2(QT ); hence
by the above inequality it is also bounded in L2(0,T ;H1(Ω)). Then there exists F̄ ∈
L2(0,T ;H1(Ω)) such that Fϵk ⇀ F̄ in L2(0,T ;H1(Ω)). By (8.62) this implies that F(vϵk )⇀
F̄ in L2(QT ), whence (f ∘ ϕ)∗ = F̄ in QT . Therefore (f ∘ ϕ)∗ ∈ L2(0,T ;H1(Ω)), and

𝜕x(F
ϵk ζ ) ⇀ 𝜕x[(f ∘ ϕ)∗ ζ ] in L2(QT ). (8.65)

On the other hand, since the sequence {Gϕ(vϵk )} is bounded inL
∞(QT ), there exists

G ∈ L∞(QT ) such that (possibly, extracting a subsequence, not relabeled)Gϕ(vϵk )
∗
⇀ G

in L∞(QT ). Since Gϕ(vϵk ) ⇀ (Gϕ)∗ in L1(QT ), we have G = (Gϕ)∗. Then a routine proof
shows that for a. e. (x, t) ∈ QT ,

Γϵk (x, t)→ Γ∗(x, t) := x

∫
a

(Gϕ)∗(z, t) dz (8.66)

(see [100, Propositions 5 and 6] for details). Since the family {Γϵk } is bounded in
L∞(QT ), from (8.66) by the dominated convergence theorem we get

Γϵk → Γ∗ in L2(QT ). (8.67)

By (8.65) and (8.67), as k →∞, the right-hand side of equality (8.64) converges to

−∬
QT

𝜕x[(f ∘ ϕ)∗ ζ ] Γ∗ dxdt =∬
QT

(f ∘ ϕ)∗(Gϕ)∗ζ dxdt.
This proves (8.63), and thus the conclusion follows.

8.4 Asymptotic behavior

Let us now address the asymptotic behavior as t → ∞ of the global Young measure-
valued solution (u, ν) of (P) given by Theorem 8.3.1. Set

um(x, t) := u(x, t + tm), νm(x,t) := ν(x,t+tm) (8.68)

for a. e. (x, t) ∈ QT , where {tm} is any diverging sequence, and Xp ≡ W
1,p
0 (Ω) with p ∈

(1,∞) if N = 1 or p ∈ (1, 2] if N ≥ 2.
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Definition 8.4.1. Let ũ ∈ L∞(0,∞;Xp) ∩ C([0,∞); Lp(Ω)) (with p = 2 if N = 1 and
p ∈ (1, 2] if N ≥ 2), and let ν̃ ∈ Y+(Q∞;ℝN ). The pair (ũ, ν̃) is called an ω-limit point of
a global Young measure-valued solution (u, ν) of problem (P) if:
(i) there exists a diverging sequence {tm} ⊆ (0,∞) such that

a) um ⇀ ũ in Lr(0,T ;Xp) for all T ∈ (0,∞) and r ∈ [1,∞),
b) νm n
⇀ ν̃ inY+(QT ;ℝ

N ) for all T ∈ (0,∞);
(ii) (ũ, ν̃) is a global Young measure-valued solution of problem (P) with initial data

function ũ(⋅,0).

The set of the ω-limit points of (u, ν) is called the ω-limit set of (u, ν).

We will prove the following results.

Theorem 8.4.1. Let either N = 1 and (8.1) or N ≥ 2 and (8.2) hold. Let (u, ν) ∈
L∞(0,∞;Xp) ×Y+(Q∞;ℝN ) be a global Young measure-valued solution of problem (P),
whose existence is ensured by Theorem 8.3.1. Then:
(i) the ω-limit set of (u, ν) is nonempty;
(ii) if u0 ∈ H1

0(Ω) and (8.2) holds with p = 2 if N ≥ 2, then for every ω-limit point (ũ, ν̃),

supp ν̃(x,t) ⊆ S := {y ∈ ℝN |ϕ(y) ⋅ y = 0} (8.69)

for a. e. (x, t) ∈ Q∞.
Theorem 8.4.2. Let the assumptions of Theorem 8.4.1 be satisfied. Let u0 ∈ H1

0(Ω), and
let (8.2) hold with p = 2 if N ≥ 2. Suppose that S = {y ∈ ℝN |ϕ(y) = 0}. Then every
ω-limit point (ũ, ν̃) of (u, ν) is a Young measure equilibrium solution of problem (P).

To prove Theorem 8.4.1, we need some preliminary results.

Lemma 8.4.3. Let the assumptions of Theorem 8.4.1 be satisfied. Then there exist a sub-
sequence of the sequence {um} defined in (8.68) (not relabeled for simplicity) and ũ ∈
L∞(0,∞;Xp) ∩ C([0,∞); Lp(Ω)) ∩W 1,p(QT ) (p ∈ (1, 2]) with 𝜕t ũ ∈ L2(Q∞) such that for
all T ∈ (0,∞),

um → ũ in C([0,T); Lp(Ω)) (p ∈ (1, 2]); (8.70a)

um ⇀ ũ in H1(QT ) if N = 1, um ⇀ ũ in W 1,p(QT ) if N ≥ 2; (8.70b)
um ⇀ ũ in Lr(0,T ;Xp) (r ∈ [1,∞)); (8.70c)

um
∗
⇀ ũ in L∞(0,T ;Xp); (8.70d)

∇um
∗
⇀ ∇ũ in L∞(0,T ; Lp(Ω)) (p ∈ (1, 2]). (8.70e)

Moreover,

𝜕tum ⇀ 𝜕t ũ in L2(Q∞). (8.70f)
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Proof. Recall that u ∈ L∞(0,∞;Xp) and 𝜕tu ∈ L2(Q∞); moreover, u ∈ W 1,p(QT ) ∩
C([0,∞); Lp(Ω)) for all T ∈ (0,∞) (p ∈ (1, 2]; see Propositions 8.2.8 and 8.2.9 and
Theorem 8.3.1).

Clearly, for all n ∈ ℕ, we have

‖um‖L∞(0,∞;Xp) + ‖𝜕tum‖L2(Q∞) ≤ ‖u‖L∞(0,∞;Xp) + ‖𝜕tu‖L2(Q∞), (8.71)

‖um‖H1(QT ) ≤ {T‖u‖2L∞(ℝ+ ,Xp) + ‖ut‖2L2(Q∞)} 12 if N = 1, (8.72)

‖um‖W 1,p(QT ) ≤ {T‖u‖pL∞(ℝ+ ,Xp) + (λ(Ω)T)1− p2 ‖ut‖pL2(Q∞)} 1p if N ≥ 2 (p ∈ (1, 2]) (8.73)

for all T ∈ (0,∞). As in the proof of Proposition 8.2.8, the convergence in (8.70a)–
(8.70b) follows from inequalities (8.72)–(8.73), whereas the convergence in (8.70c)–
(8.70f) follows from inequality (8.71). Hence the result follows.

Lemma 8.4.4. Let the assumptions of Theorem 8.4.1 be satisfied. Then the sequence
{νm}⊆Y+(Q∞;ℝN ) of translated Youngmeasures defined in (8.68) is tight inY+(QT ;ℝ

N )
for all T ∈ (0,∞).

Proof. Fix T ∈ (0,∞). By estimates (8.21) and (8.29) the sequence {|∇uϵk |} is bounded
in Lp(Q∞) with p ∈ (1,∞) if N = 1 or p ∈ (1, 2] if N ≥ 2 and thus by Lemma 2.8.12
is q-uniformly integrable in Qτ = Ω × (0, τ) for every τ > 0 and q ∈ (1, p). Then by
Proposition 5.4.10, for everym ∈ ℕ,

C ≥ lim
k→∞ ∬

Qm,T |∇uϵk |
q dxdt = ∬

Qm,T dxdt ∫ℝN |y|
q dν(x,t)(y)

=∬
QT

dxdt ∫
ℝN

|y|q dν(x,t+tm)(y) =∬
QT

dxdt ∫
ℝN

|y|q dνm(x,t)(y) (8.74)

with some constant C > 0, where Qm,T := Ω × (tm, tm + T).
Let Kj := {y ∈ ℝN | |y| ≤ j}, and thus Kj is compact, and |y| > j (j ∈ ℕ) on the

complementary set Kc
j . Then by the Chebyshev inequality and (8.74) we have

jq νm(QT × K
c
j ) ≤∬

QT

dxdt ∫
ℝN

|y|q dνm(x,t)(y) ≤ C,
whence

νm(QT × K
c
j ) ≤

C
jq

for all j,m ∈ ℕ (8.75)

(see (8.74)). Fix arbitrary ϵ > 0, and choose j0 > (
C
ϵ )

1
q . Then by (8.75) we have that

νm(QT ×Kc
j0 ) < ϵ for allm ∈ ℕ, and thus by Definition 5.3.4 the conclusion follows.
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Lemma 8.4.5. Let the assumptions of Theorem 8.4.1 be satisfied. Then there exist a sub-
sequence of the sequence {νm} defined in (8.68) (not relabeled for simplicity) and ν̃ ∈
Y+(Q∞;ℝN ) such that νm n

⇀ ν̃ inY+(QT ;ℝ
N ) for all T ∈ (0,∞).

Proof. The result follows fromLemma8.4.4 and Theorem 5.3.11 by a standard diagonal
argument.

Lemma 8.4.6. Let the assumptions of Theorem 8.4.1 be satisfied. Let {νm}⊆Y+(Q∞;ℝN )
be the sequence defined in (8.68), and let ρ ∈ C(ℝN ) satisfy |ρ(y)| ≤ M(1 + |y|q) for some
M > 0 and q ∈ (0, p) (with p ∈ (1,∞) if N = 1 or p ∈ (1, 2] if N ≥ 2). Then for every
T ∈ (0,∞):
(i) the map (x, t) → ∫ℝN ρ(y) dν

m(x,t)(y) belongs to L1(QT );
(ii) for all ζ ∈ L∞(QT ),

lim
j→∞∬

QT

ζ (x, t) dxdt ∫
ℝN

fj(|y|)ρ(y) dν
m(x,t)(y) =∬

QT

ζ (x, t) dxdt ∫
ℝN

ρ(y) dνm(x,t)(y) (8.76)

with fj ∈ Cc([0,∞)) as in (8.56), uniformly with respect to m ∈ ℕ.

Proof. (i) In view of inequalities (8.21) and (8.29), by Lemma 2.8.12, for every q ∈ (0, p),
the sequence {|∇uϵk |

q} ⊆ L1(Qm,T ) is bounded and uniformly integrable. Then by the
growth assumption on ρ and Proposition 5.4.10 we have

∬
QT

dxdt

∫
ℝN

ρ(y) dνm(x,t)(y) ≤ M∬
QT

dxdt ∫
ℝN

(1 + |y|q) dνm(x,t)(y)
= M ∬

Qm,T dxdt ∫ℝN (1 + |y|
q) dν(x,t)(y)

= M lim
k→∞ ∬

Qm,T (1 + |∇uϵk |
q) dxdt < ∞

(possibly extracting a subsequence of {uϵk }, not relabeled). Hence the claim follows.
(ii) Set gj := 1 − fj; then 0 ≤ gj ≤ 1 in [0,∞) and gj = 0 in [0, j] (j ∈ ℕ). Since

the sequence {|∇uϵk |
q} ⊆ L1(Qm,T ) is bounded and uniformly integrable (see (i)), by

the growth assumption on ρ and Remark 2.8.3 the same holds for every sequence
{gj(|∇uϵk |)|ρ(∇uϵk )|} (j ∈ ℕ). Then by Proposition 5.4.10 there exists a subsequence
of {gj(|∇uϵk |)|ρ(∇uϵk )|} (not relabeled, possibly depending on j, m) such that for all
ζ ∈ L∞(QT ),

∬
Qm,T ζ (x, t) dxdt ∫ℝN gj(|y|)

ρ(y)
 dν(x,t)(y)

= lim
k→∞ ∬

Qm,T [gj(|∇uϵk |)
ρ(∇uϵk )

](x, t) ζ (x, t) dxdt (j,m ∈ ℕ). (8.77)
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It follows that for all ζ ∈ L∞(QT ) and j,m ∈ ℕ,


∬
Qm,T ζ (x, t) dxdt ∫ℝN gj(|y|)ρ(y) dν(x,t)(y)



≤ ‖ζ ‖L∞(QT ) supk∈ℕ ∬
Qm,T [gj(|∇uϵk |)

ρ(∇uϵk )
](x, t) dxdt. (8.78)

By the growth condition on ρ there exists M0 > 0 such that |ρ(y)| ≤ M0 |y|q for
all y ∈ ℝN , |y| ≥ 1. Set Ej,k,m := {(x, t) ∈ Qm,T | |∇uϵk |(x, t) ≥ j}; thus gj(|∇uϵk |) = 0 on
(Ej,k,m)c and gj(|∇uϵk |) ≤ 1 on Ej,k,m. Then for any fixed j, k,m ∈ ℕ, we get

∬
Qm,T [gj(|∇uϵk |)

ρ(∇uϵk )
](x, t) dxdt

= ∬
Ej,k,m [gj(|∇uϵk |)

ρ(∇uϵk )
](x, t) dxdt

≤ M0 ∬
Ej,k,m |∇uϵk |

q(x, t) dxdt

≤ M0(∬
Ej,k,m |∇uϵk |

p(x, t) dxdt)
q
p

[λN+1(Ej,k,m)]1− qp . (8.79)

On the other hand, by the Chebyshev inequality we have

λN+1(Ej,k,m) ≤ (∬
Ej,k,m |∇uϵk |

p(x, t) dxdt) j−p,
whence by (8.79) we have that

∬
Qm,T [gj(|∇uϵk |)

ρ(∇uϵk )
](x, t) dxdt

≤ M0( ∬
Ej,k,m |∇uϵk |

p(x, t) dxdt) j−(p−q)
≤ M0T sup

t∈(0,∞)(∫
Ω

|∇uϵk |
p(x, t) dx) j−(p−q) ≤ KM0T j

−(p−q) (8.80)
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for some K > 0 only depending on u0 and λN (Ω) (see the proof of inequalities (8.21)
and (8.29)). From (8.78) and (8.80) we get


∬
QT

ζ (x, t) dxdt ∫
ℝN

ρ(y) dνm(x,t)(y) −∬
QT

ζ (x, t) dxdt ∫
ℝN

fj(|y|)ρ(y) dν
m(x,t)(y)

=

∬
Qm,T ζ (x, t) dxdt ∫ℝN gj(|y|)ρ(y) dν(x,t)(y)


≤ KM0T j

−(p−q) ‖ζ ‖∞,
and thus claim (ii) follows. This completes the proof.

Now we can prove Theorem 8.4.1.

Proof of Theorem 8.4.1. (i) Let (ũ, ν̃) be the pair with components mentioned in Lem-
mas 8.4.3 and 8.4.5. It follows by these lemmas that requirement (i) of Definition 8.4.1
is satisfied by (ũ, ν̃). Then claim (i) will follow if we prove that (ũ, ν̃) also satisfies equal-
ities (8.4) and (8.5) (with Cauchy data ũ(⋅,0)) of Definition 8.1.1.

Let us first show that (ũ, ν̃) satisfies equality (8.4), that is,

∇ũ(x, t) = ∫
ℝN

y dν̃(x,t)(y) for a. e. (x, t) ∈ QT , (8.81)

where ν̃(x,t) ∈ 𝒫↕∞(ℝN ) denotes the disintegration of ν̃. Recalling definitions (8.68),
from equality (8.4) we get

∇um(x, t) = ∫
ℝN

y dνm(x,t)(y) (8.82)

for a. e. (x, t) ∈ QT and allm ∈ ℕ. By the convergence in (8.70c), for all ζ ∈ L∞(QT ), we
have

lim
m→∞∬

QT

∇um(x, t)ζ (x, t) dxdt =∬
QT

∇ũ(x, t)ζ (x, t) dxdt. (8.83)

Let {fj} ⊆ Cc([0,∞)) (j ∈ ℕ) satisfy (8.56), and let ζ ∈ L∞(QT ) be arbitrarily chosen.
By Lemma 8.4.6(ii) we have

lim
j→∞∬

QT

ζ (x, t) dxdt ∫
ℝN

fj(|y|)y dν
m(x,t)(y) =∬

QT

ζ (x, t) dxdt ∫
ℝN

y dνm(x,t)(y) (8.84)

uniformly with respect to m ∈ ℕ. On the other hand, since the function hj(x, t, y) :=
fj(|y|) y ζ (x, t) belongs to Cb(QT × ℝ

N ) (see Definition 5.3.1), by Lemma 8.4.4 we get

lim
m→∞∬

QT

ζ (x, t) dxdt ∫
ℝN

fj(|y|) y dν
m(x,t)(y) =∬

QT

ζ (x, t) dxdt ∫
ℝN

fj(|y|) y dν̃(x,t)(y). (8.85)
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Then by (8.82) and (8.84)–(8.85)

lim
m→∞∬

QT

∇um(x, t)ζ (x, t) dxdt

= lim
m→∞∬

QT

ζ (x, t) dxdt ∫
ℝN

y dνm(x,t)(y)
= lim

m→∞ lim
j→∞∬

QT

ζ (x, t) dxdt ∫
ℝN

fj(|y|) y dν
m(x,t)(y)

= lim
j→∞ lim

m→∞∬
QT

ζ (x, t) dxdt ∫
ℝN

fj(|y|) y dν
m(x,t)(y)

= lim
j→∞∬

QT

ζ (x, t) dxdt ∫
ℝN

fj(|y|) y dν̃(x,t)(y)
=∬

QT

ζ (x, t) dxdt ∫
ℝN

y dν̃(x,t)(y), (8.86)

where the last equality follows by the dominated convergence theorem, since
ν̃(x,t)(ℝN ) = 1 for a. e. (x, t) ∈ QT , and the barycenter of ν̃ belongs to L1(QT ) (see Re-
mark 5.4.2(ii)). By the arbitrariness of ζ from equalities (8.83)–(8.86) we obtain (8.81).

It is similarly seen that (ũ, ν̃) satisfies (8.5) with initial data ũ(⋅,0), that is,

t

∫
0

∫
Ω

{ũ(x, s) 𝜕sζ (x, s) −
N
∑
i=1 ∫ℝN ϕi(y) dν̃(x,s)(y) 𝜕xi ζ (x, s)} dxds

= ∫
Ω

ũ(x, t)ζ (x, t) dx − ∫
Ω

ũ(x,0) ζ (x,0) dx (8.87)

for all ζ ∈ C1([0,T);C1c(Ω)) and t ∈ (0,T) (T ∈ (0,∞)). By abuse of notation denote by ζ
also any extension ζ ∈ C1((−∞,T);C1c(Ω)), and thus for any sequence {tm} ⊆ (0,∞) and
(x, t) ∈ QT , the translate ζm(x, t) := ζ (x, t−tm) is well defined, and ζm ∈ C1([0,T);C1c(Ω)).
Then from (8.5) we get

t+tm
∫
tm

∫
Ω

{u(x, s) 𝜕sζ (x, s − tm) −
N
∑
i=1 ∫ℝN ϕi(y) dν(x,s)(y) 𝜕xi ζ (x, s − tm)} dxds

= ∫
Ω

u(x, t + tm)ζ (x, t) dx − ∫
Ω

u(x, tm) ζ (x,0) dx
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for every sequence {tm} ⊆ (0,∞) and all t ∈ (0,T) and T ∈ (0,∞) with 0 < tm <
t + tm < T. The above equality reads

t

∫
0

∫
Ω

{um(x, s) 𝜕sζ (x, s) −
N
∑
i=1 ∫ℝN ϕi(y) dν

m(x,s)(y) 𝜕xi ζ (x, s)} dxds
= ∫

Ω

um(x, t)ζ (x, t) dx − ∫
Ω

um(x,0) ζ (x,0) dx. (8.88)

By the convergence in (8.70a) and (8.70c) we have

lim
m→∞ t

∫
0

∫
Ω

um(x, s) 𝜕sζ (x, s) dxds =
t

∫
0

∫
Ω

ũ(x, s) 𝜕sζ (x, s) dxds, (8.89a)

lim
m→∞∫

Ω

um(x, t)ζ (x, t) dx = ∫
Ω

ũ(x, t)ζ (x, t) dx, (8.89b)

lim
m→∞∫

Ω

um(x,0) ζ (x,0) dx = ∫
Ω

ũ(x,0) ζ (x,0) dx. (8.89c)

As before, let {fj} ⊆ Cc([0,∞)) satisfy (8.56). By Lemma 8.4.6 we have

lim
j→∞ t

∫
0

∫
Ω

𝜕xi ζ (x, s) dxds ∫
ℝN

fj(|y|)ϕi(y) dν
m(x,s)(y)

=
t

∫
0

∫
Ω

𝜕xi ζ (x, s) dxds ∫
ℝN

ϕi(y) dν
m(x,s)(y) (8.90)

uniformly with respect tom ∈ ℕ. Then arguing as for (8.86) plainly shows that

lim
m→∞ t

∫
0

∫
Ω

𝜕xi ζ (x, s) dxds ∫
ℝN

ϕi(y) dν
m(x,s)(y)

=
t

∫
0

∫
Ω

𝜕xi ζ (x, s) dxds ∫
ℝN

ϕi(y) dν̃(x,s)(y) (i = 1, . . . ,N). (8.91)

From (8.89) and (8.91) we obtain equality (8.87). Hence claim (i) follows.
(ii) Let f ∈ C([0,∞)) satisfy f (z) = 1 if z ≤ 1, 0 < f (z) < 1 for every z ∈ (1,∞), and

f (z) → 0 as z → ∞ so fast that the function h : ℝN → (0,∞), h(y) := f (|y|)ϕ(y) ⋅ y,
belongs to C0(ℝN ). Since f (|y|) > 0 for every y ∈ ℝN , we have

S := {y ∈ ℝN |ϕ(y) ⋅ y = 0} = {y ∈ ℝN | h(y) = 0}.
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Hence the conclusion will follow if we prove that

∬
QT

dxdt ∫
ℝN

h(y) dν̃(x,t)(y) = 0 (8.92)

(see inequalities (8.1d) and (8.2f)).
To this purpose, observe that since h ∈ C0(ℝN ) ⊆ Cb(QT ×ℝ

N ), by Lemma 8.4.4 we
have

∬
QT

dxdt ∫
ℝN

h(y) dν̃(x,t)(y) = lim
m→∞∬

QT

dxdt ∫
ℝN

h(y) dνm(x,t)(y). (8.93)

Moreover, since h is bounded inℝN , by Lemma 2.8.12 the sequence {h(∇uϵk )} ⊆ L
1(QT )

is bounded and uniformly integrable (T ∈ (0,∞)). Hence by Proposition 5.4.10, for
everym ∈ ℕ,

∬
QT

dxdt ∫
ℝN

h(y) dνm(x,t)(y) = lim
k→∞ ∬

Qm,T h(∇uϵk )(x, t) dxdt. (8.94)

From (8.93)–(8.94) it follows that

∬
QT

dxdt ∫
ℝN

h(y) dν̃(x,t)(y) = lim
m→∞ lim

k→∞ ∬
Qm,T h(∇uϵk )(x, t) dxdt. (8.95)

Now observe that by Remark 8.2.4

0 ≤ ∬
Qm,T h(∇uϵk )(x, t) dxdt ≤ ∬Qm,T [ϕ(∇uϵk ) ⋅ ∇uϵk ](x, t) dxdt
= −

1
2
{uϵk (⋅,T + tm)


2
L2(Ω) − uϵk (⋅, tm)2L2(Ω)

+ ϵk(
∇uϵk (⋅,T + tm)


2
L2(Ω) − ∇uϵk (⋅, tm)2L2(Ω))}.

As k →∞ in the above inequality, using the convergence in (8.36a) and estimate (8.29)
with p = 2 if N ≥ 2, respectively, the convergence in (8.42a) and estimate (8.21) if N = 1
(see Remark 8.2.4), by equality (8.94) we obtain

0 ≤∬
QT

dxdt ∫
ℝN

h(y) dνm(x,t)(y) ≤ − 12 [u(⋅,T + tm)2L2(Ω) − u(⋅, tm)2L2(Ω)]
for every m ∈ ℕ. Since the map t → ‖u(⋅, t)‖2L2(Ω) is nonincreasing on (0,∞) (see Re-
mark 8.2.4), there exists limt→∞ ‖u(⋅, t)‖2L2(Ω) ∈ ℝ. Then letting m → ∞ in the above
inequality and using (8.93), we obtain (8.92). This completes the proof.
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Proof of Theorem 8.4.2. By Theorem 8.4.1(ii), under the present assumptions, we have
supp ν̃(x,t) ⊆ {ϕ = 0} for a. e. (x, t) ∈ QT , and thus equality (8.7) is satisfied. Hence for
all ρ ∈ C1c(Ω), from (8.87) we get

∫
Ω

ũ(x, t)ρ(x)dx = ∫
Ω

ũ(x,0)ρ(x)dx

for all t ∈ (0,∞), whence ũ(x, t) = ũ(x,0) by the arbitrariness of ρ. Therefore ũ does not
depend on t, and from equality (8.4) we obtain (8.8). Then the conclusion follows.

8.5 Characterization of the limiting Young measure

Let (u, ν) be a global Young measure-valued solution of problem (P) given by Theo-
rem 8.3.1. In this section, we give an explicit expression of the Young measure ν when
N = 1 (in this connection, see Subsection 5.4.2).

Let us state some preliminaries. We suppose that ϕ changes the monotonicity
character finitely many times; observe that this number is even, say 2n (n ∈ ℕ), by
assumptions (8.1c)–(8.1d). Hence

ℝ = (
n
⋃
l=0 Il ) ∪ ( n

⋃
m=1 ̂Im) (n ∈ ℕ), (8.96)

where

I0 := (−∞, b1], Il := (al, bl+1] (l = 1, . . . , n − 1), In := (an,∞),
̂Im := (bm, am] (m = 1, . . . , n)

and bl is a local maximum point, al a local minimum point of the graph of ϕ. Set Jl :=
ϕ(Il) and ̂Jm := ϕ( ̂Im) (l = 0, . . . , n; m = 1, . . . , n); since ϕ is increasing on each interval
Il and decreasing on each interval ̂Im, we have

J0 := (−∞,ϕ(b1)], Jl := (ϕ(al),ϕ(bl+1)] (l = 1, . . . , n − 1), Jn := (ϕ(an),∞),
̂Jm := [ϕ(am),ϕ(bm)) (m = 1, . . . , n).

Wealso consider n+1 increasing functions sl : Jl → Il and sl := (ϕ|Il )
−1 (l = 0, . . . , n) and

n decreasing functions tm : ̂Jm → ̂Im and tm := (ϕ| ̂Im )−1 (m = 1, . . . , n). Following [83],
we will use the following assumption:

{
The functions s′0, . . . , s′n, t′1, . . . , t′n are
linearly independent on any open subset of ℝ.

(C)

Now we can state the following result.
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Theorem 8.5.1. Let N = 1, letΩ ≡ (a, b), and let (8.1) hold. Let ϕ change the monotonic-
ity finitely many times. Let (u, ν) be a global Young measure-valued solution of (P) given
by Theorem 8.3.1. Then for a. e. (x, t) ∈ Q∞, we have

ν(x,t) = n
∑
l=0 cl(x, t) δsl(w(x,t)) + n

∑
m=1 dm(x, t) δtm(w(x,t)), (8.97)

where w ∈ L2(0,∞;H1(Ω))∩L∞(Q∞) is the limiting function in (8.45). Moreover, cl, dm ∈
L∞(Q∞), and for a. e. (x, t) ∈ Q∞:
(i) 0 ≤ cl(x, t) ≤ 1, 0 ≤ dm(x, t) ≤ 1;
(ii) ∑nl=0 cl(x, t) +∑nm=1 dm(x, t) = 1;
(iii) c0(x, t) = 1 if w(x, t) ≤ A := min{ϕ(a1), . . . ,ϕ(an)}, and cn(x, t) = 1 if w(x, t) ≥ B :=

max{ϕ(b1), . . . ,ϕ(bn)}.

Remark 8.5.1. Under the assumptions of Theorem 8.5.1, by equality (8.97) and Re-
mark 8.3.1, for a. e. (x, t) ∈ Q∞, we have

𝜕xu(x, t) =
n
∑
l=0 cl(x, t) sl(ϕ∗(x, t)) + n

∑
m=1 dm(x, t) tm(ϕ∗(x, t)).

To address Theorem 8.5.1, we argue as in the proof of Proposition 6.6.6. Let (u, ν)
be a global Youngmeasure-valued solution of (P) given by Theorem 8.3.1, and let {uϵk }
be the sequence used to construct it. Since the family {ϕ(vϵ)}, vϵ := 𝜕xuϵ, is bounded
in L∞(Q∞) (see (8.26)), by Proposition 5.4.10 and a diagonal argument there exist a
sequence {ϕ(vϵk )} and a Young measure τ ∈ Y+(Q∞;ℝ) such that for all T ∈ (0,∞)
and f ∈ Cc(ℝ),

f (ϕ(vϵk )) ⇀ f∗ in L1(QT ), f∗(x, t) := ∫
ℝ

f (y) dτ(x,t)(y). (8.98)

On the other hand, for every f ∈ Cc(ℝ), the sequence {f (ϕ(vϵk ))} is bounded in L1(Q)
and uniformly integrable, and thus (possibly, extracting a subsequence, not rela-
beled) by Proposition 5.4.10 we get

f (ϕ(vϵk )) ⇀ (f ∘ ϕ)
∗ in L1(QT ), (f ∘ ϕ)

∗(x, t) := ∫
ℝ

f (ϕ(y)) dν(x,t)(y). (8.99)

By equalities (8.98)–(8.99) we have

τ(x,t) = (ν(x,t))ϕ for a. e. (x, t) ∈ Q∞, (8.100)

that is, τ(x,t) is the image of (ν(x,t)) under ϕ (see Definition 2.5.1).
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Theorem 8.5.2. Let the assumptions of Theorem 8.5.1 hold. Let τ ∈ Y+(Q∞;ℝ) be the
Young measure in (8.98). Then

τ(x,t) = δw(x,t) for a. e. (x, t) ∈ Q∞. (8.101)

For a. e. (x, t) ∈ Q∞ and all l = 0, . . . , n,m = 1, . . . , n, set

σl(x,t) := (ν(x,t))ϕ|Il , σ̂m(x,t) := (ν(x,t))ϕ| ̂Im , (8.102a)

σ(x,t) := n
∑
l=0 σl(x,t) + n

∑
m=1 σ̂m(x,t). (8.102b)

Plainly, for any (x, t) and l,m as above, we have

supp σl(x,t) ⊆ Jl, supp σ̂m(x,t) ⊆ ̂Jm, supp σ(x,t) ⊆ ϕ(ℝ) = ℝ. (8.103)

By (8.102a), for every f ∈ C(ℝ), we have that

∫
Jl

f (y) dσl(x,t)(y) = ∫
Il

(f ∘ ϕ)(y) dν(x,t)(y), (8.104a)

∫̂Jm f (y) dσ̂m(x,t)(y) = ∫̂Im (f ∘ ϕ)(y) dν(x,t)(y). (8.104b)

Clearly, by (8.104) and (8.102b) we have σ(x,t) ∈ P(ℝ).
In view of equality (8.100), Theorem 8.5.2 is an immediate consequence of the

following proposition.

Proposition 8.5.3. Let the assumptions of Theorem 8.5.1 be satisfied. Then for a. e.
(x, t) ∈ Q∞, we have

σ(x,t) = (ν(x,t))ϕ, σ(x,t) = δw(x,t). (8.105)

Remark 8.5.2. Thefirst equality in (8.105) is easily proven. In fact, by (8.96) and (8.104),
for all f ∈ C(ℝ) and a. e. (x, t) ∈ Q∞, we have

∫
ℝ

(f ∘ ϕ)(y) dν(x,t)(y)
=

n
∑
l=0∫Il (f ∘ ϕ)(y) dν(x,t)(y) +

n
∑
m=1∫̂Im (f ∘ ϕ)(y) dν(x,t)(y)

=
n
∑
l=0∫Jl f (y) dσl(x,t)(y) +

n
∑
m=1∫ℝ f (y) dσ̂m(x,t)(y) = ∫ϕ(ℝ) f (y) dσ(x,t)(y),

and hence the claim follows.
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Relying on Theorem 8.5.2, we can prove Theorem 8.5.1.

Proof of Theorem 8.5.1. Let {ϵk} be a sequence of indices such that the convergence
results in Proposition 8.2.9 and (8.45) hold. For k ∈ ℕ, set

Qk,l := {(x, t) ∈ Q∞ | vϵk (x, t) ∈ Il} (l = 0, . . . , n),
Qk,m := {(x, t) ∈ Q∞ | vϵk (x, t) ∈ ̂Im} (m = 1, . . . , n).

Clearly, a. e. in Q∞ for all f ∈ C(ℝ), we have

f (vϵk ) =
n
∑
l=0 χQk,l f ((sl ∘ ϕ)(vϵk )) + n

∑
m=1 χQk,m f ((tm ∘ ϕ)(vϵk )). (8.106)

For any fixed l,m ∈ ℕ, the sequences {χQk,l } and {χQk,m } are bounded in L∞(Q∞).
Hence there exist two subsequences of {χQk,l } and {χQk,m } (not relabeled for simplicity)
and cl, dl ∈ L∞(Q∞) such that for all T ∈ (0,∞),

χQk,l ∗⇀ cl, χQk,m ∗⇀ dm in L∞(QT ). (8.107)

It is easily seen that the functions cl, dm (l = 0, . . . , n; m = 1, . . . , n) have the stated
properties.

We will prove that for all l = 0, . . . , n and m = 1, . . . , n, in L∞(QT ) (T ∈ (0,∞)), we
have

χQk,l f ((sl ∘ ϕ)(vϵk )) ∗⇀ cl f (sl(w)), (8.108a)

χQk,m f ((tm ∘ ϕ)(vϵk )) ∗⇀ dm f (tm(w)). (8.108b)

On the other hand, since by (8.25) the family {vϵ} is bounded in L∞(Q∞) and thus
bounded and uniformly integrable, by Proposition 5.4.10 f (vϵk ) ⇀ f ∗ := ∫ℝ f (y) dν(y)
in L1(QT ) for all T ∈ (0,∞). Therefore, letting k →∞ in (8.106) and using (8.108a), we
obtain

∫
ℝ

f (y) dν(x,t)(y) = n
∑
l=0 cl f (sl(w)) + n

∑
m=1 dm f (tm(w)) a. e. in QT ,

whence by the arbitrariness of f equality (8.97) follows.
We only prove (8.108a), since the proof of (8.108b) is similar. For any ζ ∈ L1(QT )

(T ∈ (0,∞)), we have that

∬
QT

[χQk,l f ((sl ∘ ϕ)(vϵk )) − cl f (sl(w))] ζ dxdt
=∬

QT

(χQk,l − cl) f (sl(w)) ζ dxdt
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+∬
QT

χQk,l[f ((sl ∘ ϕ)(vϵk )) − f (sl(w))] ζ dxdt. (8.109)

Since w ∈ L∞(QT ) and f ∘ sl is continuous, we have f (sl(w)) ∈ L∞(QT ). Hence by the
first convergence in (8.107)

lim
k→∞∬

QT

(χQk,l − cl) f (sl(w)) ζ dxdt = 0. (8.110)

As for the second integral in the right-hand side of (8.109), observe that by equal-
ity (8.101) and Proposition 5.4.1 ϕ(vϵk ) → w, and thus (up to a subsequence) f ((sl ∘
ϕ)(vϵk ))→ f (sl(w)) a. e. in Q∞. Then by the dominated convergence theorem

lim
k→∞∬

QT

χQk,l[f ((sl ∘ ϕ)(vϵk )) − f (sl(w))] ζ dxdt = 0. (8.111)

From (8.109)–(8.111) the convergence in (8.108a) follows. This completes theproof.

It remains to prove Proposition 8.5.3. By Remark 8.5.2 only the second equality
in (8.105) must be proven. We outline the proof, referring the reader to [30] for details.

Denote by e1 ≤ ⋅ ⋅ ⋅ ≤ e2n the set of the local extrema ϕ(al), ϕ(bl) (l = 1, . . . , n) of
the graph of ϕ. Let E ≡ Ek := [ek , ek+1] (k = 1, . . . , 2n − 1). Hence e1 = A, e2n = B, and
ℝ = (−∞,A] ∪ (⋃2n−1k=1 Ek) ∪ [B,∞). For every l = 0, . . . , n, we have either E ∩ Jl = 0 or
E ∩ Jl = E, and similarly for E ∩ ̂Jm (m = 1, . . . , n). Therefore there exist p + 1 intervals Jli
and p intervals ̂Jmj

(p = 1, . . . , n; li ∈ {0, . . . , p}; mj ∈ {1, . . . , p}) such that

E ⊆ (
p
⋂
i=0 Jli) ∩ ( p

⋂
j=1 ̂Jmj
). (8.112)

Without loss of generality, l0 ≤ ⋅ ⋅ ⋅ ≤ lp andm1 ≤ ⋅ ⋅ ⋅ ≤ mp. Relying on Proposition 8.3.2,
we can prove the following lemma.

Lemma 8.5.4. Let the assumptions of Theorem 8.5.1 be satisfied. Then for a. e. (x, t) ∈
Q∞, we have:
(i) let K ⊆ (−∞,A] with A := min{ϕ(a1), . . . ,ϕ(ap)} be compact, and let σ(x,t)(K) > 0.

Then for a. e. y ∈ (−∞,A],

σ0(x,t)((−∞, y]) σ(x,t)(K) = σ0(x,t)((−∞, y] ∩ K); (8.113)

(ii) let K ⊆ [B,∞) with B := max{ϕ(b1), . . . ,ϕ(bp)} be compact, and let σ(x,t)(K) > 0.
Then for a. e. y ∈ [B,∞),

σn(x,t)([y,∞)) σ(x,t)(K) = σn(x,t)([y,∞) ∩ K); (8.114)
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(iii) let E ≡ [ek , ek+1] (k = 1, . . . , 2n − 1), let K ⊆ E be compact, and let σ(x,t)(K) > 0. Then
for a. e. y ∈ E,

p+1
∑
i=1 Di(y){

σli(x,t)(K)
σ(x,t)(K) − σli(x,t)(E)} + p

∑
j=1Dj+1(y){ σ̂mj(x,t)(K)

σ(x,t)(K) − σ̂mj(x,t)(E)}
=

p+1
∑
i=1 s′li (y){ρli(x,t)(y) − ρliK(y)

σ(x,t)(K)} + p
∑
j=1 t′mj
(y){ρ̂mj(x,t)(y) − ρ̂mj

K (y)
σ(x,t)(K)},

where

D1(y) := 0, Di(y) :=
i−1
∑
k=1(s′lk − t′mk

)(y) (i = 2, . . . , p + 1),

ρli(x,t)(y) := σli(x,t)([y,ϕ(bli+1)]), ρ̂mj(x,t)(y) := σ̂mj(x,t)([y,ϕ(bmj
)]),

ρliK(y) := σ
li(x,t)([y,ϕ(bli+1)] ∩ K), ρ̂mj

K (y) := σ̂
mj(x,t)([y,ϕ(bmj

)] ∩ K).

Proof. We only prove claims (i)–(ii), the proof of (iii) being analogous but more in-
volved (see [30, Lemma 5.5]). SinceK ⊆ (−∞,A] is compact, by LemmaA.9 there exists
a sequence {fh} ⊆ Cc(ℝ) such that 0 ≤ fh ≤ 1, fh = 1 on K, and limh→∞ fh(y) = χK(y) for
all y ∈ ℝ. Let a0 ∈ I0 be the unique point such that ϕ(a0) = A, and choose k in (8.14)
such that Gϕ(y) = ∫

y
a0
g(ϕ(z))dz (y ∈ ℝ) with g ∈ C1c(ℝ) such that supp g ⊆ (−∞,A]. By

equality (8.58) we have

∫
ℝ

fh(ϕ(y))Gϕ(y) dν(x,t)(y) = ∫
ℝ

fh(ϕ(y)) dν(x,t)(y)∫
ℝ

Gϕ(y) dν(x,t)(y),
whence, by the choice of g and Remark 8.5.2,

∫(−∞,A] fh(y) (Gϕ ∘ s0)(y) dσ
0(x,t)(y) = ∫

ϕ(ℝ) fh(y) dσ(x,t)(y) ∫(−∞,A](Gϕ ∘ s0)(y) dσ
0(x,t)(y).

Letting h→∞ in this equality, we get

∫
K

(Gϕ ∘ s0)(y) dσ
0(x,t)(y) = σ(x,t)(K) ∫(−∞,A](Gϕ ∘ s0)(y) dσ

0(x,t)(y),
whence plainly

∫(−∞,A] dσ0(x,t)(y)
y

∫
A

g(z)s′0(z) dz = 1
σ(x,t)(K) ∫K dσ0(x,t)(y) y∫

A

g(z)s′0(z) dz.
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Interchanging the order of integration in this equality gives (8.113). In case (ii), it is
similarly seen that

∫[B,∞) dσn(x,t)(y)
y

∫
B

g(z)s′0(z) dz = 1
σ(x,t)(K) ∫K dσn(x,t)(y) y∫

B

g(z)s′0(z) dz,
whence (8.114) follows. This completes the proof.

Now we can prove Proposition 8.5.3.

Proof of Proposition 8.5.3. Suppose that supp σ(x,t)|(−∞,A] ̸= 0 and set
q0 ≡ q0(x, t) := max{y ∈ supp σ(x,t)|(−∞,A]}.

Consider for any δ > 0 the compact set K = [q0 − δ, q0]. Then σ(x,t)(K) > 0, and
σ0(x,t)((−∞, y] ∩ K) = 0 for all y ∈ (−∞, q0 − δ].

By equality (8.113) and the arbitrariness of δ we obtain that σ0(x,t)((−∞, q0), and thus
supp σ(x,t)|(−∞,A] = {q0}. Moreover, equality (8.113) with K = {q0} gives σ0(x,t)({q0}) =
σ(x,t)({q0}) = 1. Using (8.114), it is similarly seen that supp σ(x,t)|[B,∞) consists at most
of one point, say {q2n}, and if it is nonempty, then σn(x,t)({q2n}) = σ(x,t)({q2n}) = 1. Amore
involved argument relying on Lemma 8.5.4(iii) shows that the same holds for every
interval Ek := [ek , ek+1] (k = 1, . . . , 2n − 1), that is, if supp σ|Ek ̸= 0, then supp σ(x,t)|Ek =
{qk}, and σ(x,t)({qk}) = 1 for some qk ∈ Ek (see the proof of [30, Proposition 5.2] for
details).

To summarize, the support of themeasureσ(x,t) consists of atmost 2n+1 points {qk}
such that σ(x,t)({qk}) = 1 for each k = 0, . . . , 2n. However, since σ(x,t) ∈ P(ℝ), this
implies that supp σ(x,t) consists of one point, say q = q(x, t), and σ(x,t) = δq(x,t). Then
by the first equality in (8.105) we have

q(x, t) = ∫
ℝ

y dσ(x,t)(y) = ∫
ℝ

ϕ(y) dν(x,t)(y) = ϕ∗(x, t),
whence by Remark 8.3.1 we get σ(x,t) = δϕ∗(x,t) = δw(x,t) for a. e. (x, t) ∈ Q∞. This com-
pletes the proof.
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Appendix A Topological spaces
Some topology concepts and results are collected for convenience of the reader (e. g.,
see [60]).

A.1

A family 𝒯 ⊆ 𝒫(X) is called a topology on X if (i) 0 ∈ 𝒯 , X ∈ 𝒯 ; (ii) for any family
{Ai}i∈I ⊆ 𝒯 , we have ⋃i∈I Ai ∈ 𝒯 ; and (iii) for any finite family {A1, . . . ,An} ⊂ 𝒯 , we
have⋂nk=1 Ak ∈ 𝒯 .

The couple (X, 𝒯 ) is called a topological space. SetsA ∈ 𝒯 are called open, whereas
C ⊆ X is called closed if Cc ∈ 𝒯 . If 𝒯1, 𝒯2 are topologies on X, then 𝒯1 isweaker than 𝒯2,
and 𝒯2 is stronger than 𝒯1 if 𝒯1 ⊆ 𝒯2. The topology𝒫(X) is called discrete. For any family
𝒢 ⊆ 𝒫(X), the intersection 𝒯0(𝒢) := ⋂{𝒯 topology | 𝒯 ⊇ 𝒢} is the topology called the
topology generatedby𝒢 or theminimal topology containing𝒢. For anyF ⊆ X, the family
𝒯 ∩ F := {A ∩ F | A ∈ 𝒯 } is the topology on F called the relative topology or the trace
of 𝒯 on F. The topological space (F, 𝒯 ∩ F) is called a topological subspace of (X, 𝒯 ).

Let (X, d) be ametric spacewithmetric d. Consider the family {B(x0, r) | x0 ∈ X, r >
0} of open balls B(x0, r) := {x ∈ X | d(x0, x) < r} with center x0 and radius r. The family
{E ⊆ X | ∀x0 ∈ E∃r > 0 such that B(x0, r) ⊆ E} is a topology on X called a metric
topology (hence every metric space is a topological space).

A topological space (X, 𝒯 ) is called:
(i) metrizable if there exists ametric d onX such that the correspondingmetric topol-

ogy coincides with 𝒯 ;
(ii) completely metrizable if there exists a metric d on X such that the corresponding

metric topology coincides with 𝒯 and (X, d) is a completemetric space.

Let (X, d) be a metric space. For any nonempty E, F ⊆ X the distance between E and F
is the quantity d(E, F) := infx∈E,y∈F d(x, y), whereas the distance of a point x ∈ X from
a nonempty E ⊆ X is d(x,E) := d({x},E). By definition, d(x, 0) := ∞ for all x ∈ X. The
diameter of a nonempty set E ⊆ X is the quantity diam(E) := supx,y∈E d(x, y) ∈ [0,∞],
and diam(0) := −∞. A subset E ⊆ X is bounded if diam(E) <∞.

A.2

Let (X1, 𝒯2) and (X2, 𝒯2) be topological spaces. The topology generated by the family
{A1 × A2 | A1 ∈ 𝒯1, A2 ∈ 𝒯2} ⊆ 𝒫(X1 × X2) is called the product topology and denoted
𝒯1 × 𝒯2. The topological space (X1 × X2, 𝒯1 × 𝒯2) is called the topological product of X1
and X2.

https://doi.org/10.1515/9783110556902-012
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A.3

Let (X, 𝒯 ) be a topological space. A neighborhood of a set E ⊆ X is any set F ⊆ X such
that there exists A ∈ 𝒯 with E ⊆ A ⊆ F. A neighborhood of a singleton {x} is called
a neighborhood of x.

A topological space X is called aHausdorff space if for any x1, x2 ∈ X, x1 ̸= x2, there
exist a neighborhood E1 of x1 and a neighborhood E2 of x2 such that E1 ∩ E2 = 0. Every
metric space is a Hausdorff space.

A.4

Let (X, 𝒯 ) be a topological space. A family {Ai}i∈I ⊆ 𝒯 is called a basis of 𝒯 if for ev-
ery A ∈ 𝒯 , there exists I0 ⊆ I such that A = ⋃i∈I0 Ai. If X is a metric space, then the
family {B(x0, r) | x0 ∈ X, r > 0} is a basis of the metric topology.

Let E ⊆ X. The set E̊ := ⋃{A ∈ 𝒯 | A ⊆ E} is called the interior of E. The closure of
E is the set E := ⋂{C ⊇ E | Cc ∈ 𝒯 }. The boundary 𝜕E of E is defined as 𝜕E := E \ E∘.

Let E, F ⊆ X. Then E is dense in F if F ⊆ E; in particular, E is dense in X if E = X.
The space X is called separable if there exists a countable dense set E ⊆ X.

Proposition A.1. (i) A topological space with countable basis is separable. (ii) A sepa-
rable metric space has a countable basis.

A.5

Let (X, 𝒯 ) be a topological space. A family {Ai}i∈I ⊆ 𝒯 is called an open cover of a set
E ⊆ X if E ⊆ ⋃i∈I Ai. The space X is compact if every open cover of X contains a finite
subcover. A subset K ⊆ X is compact if the topological space (K, 𝒯 ∩K) is compact and
relatively compact if the closure K is compact. Every closed subset of a compact space
is compact, and every compact subset of a Hausdorff space X is closed. If X1 and X2
are compact spaces, then the topological product X1 × X2 is compact.

Concerning covers of subsets of ℝn with closed balls, we have the following defi-
nition.

Definition A.1. A family 𝒢 of closed balls {Br(x0) | x0 ∈ ℝn, r > 0} is a fine cover of a set
U ⊆ ℝn if inf{r | Br(x0) ∈ 𝒢} = 0 for all x0 ∈ U .

Let (X, 𝒯 ) be a topological space. A sequence {xn} ⊆ X is convergent to x0 ∈ X if
for every neighborhood F of x0, there exists n̄ ∈ ℕ such that xn ∈ F for all n > n̄; x0
is an accumulation point of {xn} if every neighborhood of x0 contains infinitely many
elements of {xn}. A metric space is called complete if every Cauchy sequence {xn} ⊆ X
converges to some x ∈ X.
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A topological space (X, 𝒯 ) is countably compact if every countable open cover of
X contains a finite subcover; X is sequentially compact if every sequence {xn} ⊆ X con-
tains a converging subsequence. A subset F ⊆ X is sequentially compact if the topolog-
ical space (F, 𝒯 ∩ F) is sequentially compact and relatively sequentially compact if the
closure F is sequentially compact; X is countably compact if and only if every {xn} ⊆ X
has an accumulation point. If X is a metric space, then the following statements are
equivalent: (i) X is compact; (ii) X is countably compact; (iii) X is sequentially com-
pact. Every relatively sequentially compact subset of a metric space is bounded.

A.6

A topological space X is locally compact if every x ∈ X has a compact neighborhood.
A locally compact Hausdorff space is σ-compact if it is a countable union of compact
sets.

Remark A.1. Every locally compactHausdorff spaceXwith countable basis isσ-compact
with all its open subsets. In fact, let {An} ⊆ 𝒯 be a countable basis, and let A ∈ 𝒯 . For
every x ∈ A, there exists a compact neighborhood Kx ⊂ A of x, and hence for some
k ∈ ℕ, we have x ∈ ⋃kn=1 An ⊂ ⋃

k
n=1 An ⊂ Kx. Clearly, every set ⋃

k
n=1 An is compact;

moreover, the family of these sets is countable, and A is equal to their union.

In agreement with Remark A.1, the following result can be proven.

Proposition A.2. Let X be a locally compact Hausdorff space. Then the following state-
ments are equivalent: (i) X has a countable basis; (ii) X is metrizable and σ-compact.

A completely metrizable topological space with countable basis is called a Polish
space. Separable Banach spaces and locally compactHausdorff spaceswith countable
basis are examples of Polish spaces.

A.7

Let X be a topological space, and let Y be a metric space. We denote by C(X;Y) the
space of continuous functions f : X → Y and by Cb(X;Y) ⊆ C(X;Y) the subspace of
bounded continuous functions. We set C(X) ≡ C(X;ℝ) and Cb(X) ≡ Cb(X;ℝ). If Y is
a Banach space, then Cb(X;Y) endowed with norm f → ‖f ‖∞ := supx∈X ‖f (x, ⋅)‖Y is
a Banach space. Let us recall the following result (e. g., see [107, Theorem I.5.1]).

Proposition A.3. Let X be a compact metric space, and let Y be a complete separable
metric space. Then Cb(X;Y) endowed with norm ‖ ⋅ ‖∞ is separable.
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Let X be a topological space. A function f : X → ℝ is upper semicontinuous (re-
spectively, lower semicontinuous) if for each α ∈ ℝ, the set {f < α} (respectively, {f > α})
is open.

Proposition A.4. Let X be a countably compact topological space, and let f : X → ℝ be
upper semicontinuous. Then f is bounded from above and has a maximum.

Let (X, dX) and (Y , dY ) be metric spaces. A function f : X → Y is uniformly contin-
uous if for every ϵ > 0, there exists δ > 0 such that for all x, x′ ∈ X with dX(x, x′) < δ,
we have dY (f (x), f (x′)) < ϵ. If X is compact, then every f ∈ C(X;Y) is bounded and
uniformly continuous.

We denote by Cc(X) ⊆ C(X) the subspace of continuous real functions with com-
pact support (recall that supp f := {f ̸= 0}). By C0(X) ⊆ C(X)we denote the subspace of
continuous functions with the following property: for every ϵ > 0, there exists a com-
pact subset K ⊆ X such that |f |Kc | < ϵ. Clearly, Cc(X) ⊆ C0(X). Plainly, C0(X) endowed
with norm f → ‖f ‖∞ := supx∈X |f (x)| is a Banach space. If X is a locally compact Haus-
dorff space with countable basis, then C0(X) endowed with norm ‖ ⋅ ‖∞ is a separable
Banach space.

Proposition A.5 (Dini). Let X be a countably compact topological space. Let {fn} be a
nonincreasing sequence of upper semicontinuous functions such that limn→∞ fn(x) = 0
for all x ∈ X. Then limn→∞ ‖fn‖∞ = 0.

A.8

A topological space X is completely regular if for all x ∈ X and all closed C ⊆ X with
x ̸∈ C, there exists f ∈ C(X) such that f (X) ⊆ [0, 1], f (x) = 0, and f |C = 1. The space X is
normal if for any closed E, F ⊂ X with E ∩F = 0, there exist a neighborhood U of E and
a neighborhood V of F such that U ∩ V = 0. Every metric space is completely regular
and normal.

Proposition A.6 (Urysohn lemma). A topological space X is normal if and only if for any
closed disjoint E, F ⊂ X, there exists f ∈ C(X) such that f (X) ⊆ [0, 1], f |E = 0, and f |F = 1.

Corollary A.7. Every locally compact Hausdorff is completely regular.

Proposition A.8 (Tietze’s extension theorem). Let X be a normal topological space, let
F be a closed subset of X, and let f ∈ C(F). Then there exists g ∈ C(X) such that g|F = f .

The following lemma implies that Cc(X) is dense in C0(X) with norm ‖ ⋅ ‖∞ if X is
locally compact.

Lemma A.9. Let X be a locally compact Hausdorff space, K ∈ 𝒦, and A ∈ 𝒯 with A ⊃ K.
Then there exists f ∈ Cc(X) such that f (X) ⊆ [0, 1], f |K = 1, and supp f ⊆ A.
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Proof. Since X is locally compact, there exists B ∈ 𝒯 with A ⊇ B ⊇ K. By Corollary A.7
X is completely regular, and hence for every x ∈ K, there exists fx ∈ Cc(X) such that
fx(X) ⊆ [0, 1], fx(x) = 1, and fx|Bc = 0. Since K is compact and every set {fx >

1
2 }

(x ∈ K) is open, there exist x1, . . . , xp such that K ⊆ ⋃pk=1{fxk >
1
2 }. For every x ∈ X,

set g(x) := 2max{fx1 (x), . . . , fxp (x)}, so that g ∈ Cc(X), g|K > 1, and g|Bc = 0. Then
f := min{1, g} has the stated properties.

A.9

Lemma A.10. Let Y be a separable normed vector space, and let D ≡ {yk | k ∈ ℕ} ⊆ Y
be a dense countable subset. Then the map from Y∗ to [0,∞) defined as

Y∗ ∋ y∗ → ||| y∗||| :=
∞

∑
k=1

|⟨y∗, yk⟩Y∗ ,Y |
2k(1 + ‖yk‖Y )

(A.1)

is a norm on Y∗.

Proposition A.11. Let Y be a separable normed vector space, and let

V := {y∗ ∈ Y∗ | ‖y∗‖Y∗ ≤ 1}. (A.2)

Let 𝒯w∗ be theweak
∗ topology on Y∗, and let ̃𝒯 be the metric topology on Y∗ associated

with the norm ||| ⋅ ||| defined in (A.1). Then the relative topologies 𝒯w∗ ⋂V and ̃𝒯 ⋂V

coincide.
Therefore

lim
n→∞
⟨y∗n , y⟩Y∗ ,Y = ⟨y

∗, y⟩Y∗ ,Y for every y ∈ Y ⇔ lim
n→∞
||| y∗n − y

∗||| = 0.
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