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Preface

Dynamical systems and ergodic theory is a rapidly evolving field of mathematics with
a large variety of subfields, which use advanced methods from virtually all areas of
mathematics. These subfields comprise but are by no means limited to: abstract er-
godic theory, topological dynamical systems, symbolic dynamical systems, smooth
dynamical systems, holomorphic/complex dynamical systems, conformal dynam-
ical systems, one-dimensional dynamical systems, hyperbolic dynamical systems,
expanding dynamical systems, thermodynamic formalism, geodesic flows, Hamilto-
nian systems, KAM theory, billiards, algebraic dynamical systems, iterated function
systems, group actions, and random dynamical systems.

All of these branches of dynamical systems are mutually intertwined in many in-
volved ways. Each of these branches nonetheless also has its own unique methods
and techniques, in particular embracingmethods which arise from the fields of math-
ematics the branch is closely related to. For example, complex dynamics borrows ad-
vanced methods from complex analysis, both of one and several variables; geodesic
flowsutilizemethods fromdifferential geometry; and abstract ergodic theory and ther-
modynamic formalism rely heavily on measure theory and functional analysis.

Indeed, it is truly fascinating how large the field of dynamical systems is and how
many branches of mathematics it overlaps with. In this book, we focus on some se-
lected subfields of dynamical systems, primarily noninvertible ones.

In the first volume, we give introductory accounts of topological dynamical sys-
temsacting on compactmetrizable spaces, of finite-state symbolic dynamical systems,
andof abstract ergodic theory ofmeasure-theoretic dynamical systemsacting onprob-
ability measure spaces, the latter including the metric entropy theory of Kolmogorov
and Sinai. More advanced topics include infinite ergodic theory, general thermody-
namic formalism, and topological entropy and pressure. This volume also includes a
treatment of several classes of dynamical systems, which are interesting on their own
andwill be studied at greater length in the second volume:we provide a fairly detailed
account of distance expanding maps and discuss Shub expanding endomorphisms,
expansive maps, and homeomorphisms and diffeomorphisms of the circle.

The second volume is somewhat more advanced and specialized. It opens with
a systematic account of thermodynamic formalism of Hölder continuous potentials
for open transitive distance expanding systems. One chapter comprises no dynamics
but rather is a concise account of fractal geometry, treated from the point of view of
dynamical systems. Both of these accounts are later used to study conformal expand-
ing repellers. Another topic exposed at length is that of thermodynamic formalism
of countable-state subshifts of finite type. Relying on this latter, the theory of confor-
mal graph directed Markov systems, with their special subclass of conformal iterated
function systems, is described. Here, in a similar way to the treatment of conformal ex-
panding repellers, the main focus is on Bowen’s formula for the Hausdorff dimension

https://doi.org/10.1515/9783110702682-201
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VIII | Preface

of the limit set and multifractal analysis. A rather short examination of Lasota–Yorke
maps of an interval is also included in this second volume.

The third volume is entirely devoted to the study of the dynamics, ergodic theory,
thermodynamic formalism, and fractal geometry of rational functions of the Riemann
sphere. We present a fairly complete account of classical as well as more advanced
topological theory of Fatou and Julia sets. Nevertheless, primary emphasis is placed
onmeasurable dynamics generated by rational functions and fractal geometry of their
Julia sets. These include the thermodynamic formalism of Hölder continuous poten-
tials with pressure gaps, the theory of Sullivan’s conformal measures, invariant mea-
sures and their dimensions, entropy, and Lyapunov exponents.We further examine in
detail the classes of expanding, subexpanding, and parabolic rational functions. We
also provide, with proofs, several of the fundamental tools from complex analysis that
are used in complex dynamics. These comprise Montel’s Theorem, Koebe’s Distortion
Theorems and Riemann–Hurwitz formulas, with their ramifications.

In virtually each chapter of this book, we describe a large number of concrete se-
lected examples illustrating the theory and serving as examples in other chapters.
Also, each chapter of the book is supplied with a number of exercises. These vary in
difficulty, from very easy ones asking to verify fairly straightforward logical steps to
more advanced ones enhancing largely the theory developed in the chapter.

This book originated from the graduate lecturesMariusz Urbański delivered at the
University of North Texas in the years 2005–2010 and that Sara Munday took notes of.
With the involvement of Mario Roy, the book evolved and grew over many years. The
last 2 years (2020 and 2021) of its writingweremost dramatic and challenging because
of the COVID-19 pandemic. Our book borrowswidely frommany sources including the
books [41, 47, 57]. We nevertheless tried to keep it as self-contained as possible, avoid-
ing to refer the reader too often to specific results from special papers or books. Toward
this end, an appendix comprising classical results, mostly frommeasure theory, func-
tional analysis and complex analysis, is included. The book covers quite amany topics
treated with various degrees of completeness, none of which are fully exhausted be-
cause of their sheer largeness and their continuous dynamical growth.
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Introduction to Volume 1

In the first volume of this book, we give introductory accounts of topological dynami-
cal systems acting on compactmetrizable spaces, of finite-alphabet symbolic systems,
and of ergodic theory of measure-theoretic dynamical systems acting on probability
spaces, the latter including the metric entropy theory of Kolmogorov and Sinai. More
advanced topics include infinite ergodic theory, general thermodynamic formalism,
and topological entropyandpressure. This volumealso includes a treatment of several
classes of dynamical systems,which are interesting on their ownandwill be studied at
greater length in the second volume: we provide a fairly detailed account of distance
expanding maps and discuss Shub expanding endomorphisms, positively expansive
maps, and homeomorphisms and diffeomorphisms of the circle.

We now describe the content of each chapter of this first volume in more detail,
including their mutual dependence and interrelations.

Chapter 1 – Dynamical systems
In the first few sections of Chapter 1, we introduce the basic concepts in the theory
of topological dynamical systems: orbits, periodic points, preperiodic points, ω-limit
sets, factors, and subsystems. In particular, we introduce the concept of topological
conjugacy and identify the number of periodic points of any given period as a simple
(topological conjugacy) invariant. We further examine the following invariants: mini-
mality, transitivity, topological mixing, strong transitivity, and topological exactness.
Finally, we provide the first two classes of examples, namely rotations on compact
topological groups and some continuous maps on compact intervals.

Chapter 2 – Homeomorphisms of the circle
In Chapter 2, we temporarily step away from the general theory of dynamical systems
to considermore specific examples.We investigate homeomorphisms of the unit circle
and examine the notions of lift and rotation number for homeomorphisms. Then we
study inmore detail the subclass of diffeomorphisms of the unit circle. Themain result
of this chapter is Denjoy’s theorem, which states that if a C2 diffeomorphism has an
irrational rotation number, then this diffeomorphism is a minimal system which is
topologically conjugate to an irrational rotation.

Chapter 3 – Symbolic dynamics
In Chapter 3, we discuss symbolic dynamical systems. We treat them as objects in
their own right, but later (in Chapter 4, among others) we apply the ideas developed
here to more general systems. We restrict ourselves to the case of finitely many letters,
as symbolic systems born out of finite alphabets give rise to systems acting on com-
pact metrizable spaces. Nevertheless, note that in Chapter 17 of the second volume,

https://doi.org/10.1515/9783110702682-202
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XII | Introduction to Volume 1

we will consider countable-alphabet symbolic dynamics. In Section 3.1, we introduce
full shifts. In Section 3.2, we study subshifts of finite type and in particular the charac-
terizations of topological transitivity and exactness in terms of the underlying matrix
associated with such systems. Finally, in Section 3.3 we examine general subshifts of
finite type.

Chapter 4 – Distance expanding maps
In Chapter 4, we define and give some examples of distance expanding maps. In Sec-
tion 4.2,we study the properties of their local inverse branches. This is awayof dealing
with the noninvertibility of these maps. In Section 4.3, we examine the all important
concepts of pseudo-orbit and shadowing. In Section 4.4, we introduce the powerful
concept of Markov partitions and establish their existence for open, distance expand-
ing systems. We then show in Section 4.5 how to use Markov partitions to represent
symbolically the dynamics of open, distance expanding systems. This is a beautiful
application of the symbolic dynamics studied in Chapter 3. The final theorem of the
chapter describes the properties of the coding map between the underlying compact
metric space (the phase space) and some subshift of finite type (a symbolic space).

Chapter 5 – Expansive maps
In Chapter 5, we introduce the concept of expansiveness. Amidst the large variety of
dynamical behaviors, which can be thought of as expansionary in some sense, ex-
pansiveness has turned out to be a rather weak but useful notion. Indeed, all distance
expanding maps are expansive and so, more particularly, all subshifts over a finite
alphabet are expansive. But expansiveness is not so far from expandingness, as we
demonstrate in this chapter that every expansive system is in fact expanding with re-
spect to somemetric compatiblewith the topology. Thismeans thatmanyof the results
proved in Chapter 4, such as the existence of Markov partitions and of a nice symbolic
representation, the density of periodic points, the closing lemma, and the shadow-
ing property, hold for all positively expansive maps. Nevertheless, expansiveness is
weaker than expandingness, and we provide at the end of the chapter a class of ex-
pansivemaps that arenot distance expanding. Expansivemapsare important for other
reasons as well. One of them is that expansiveness is a topological conjugacy invari-
ant. More crucially, the measure-theoretic entropy function is upper semicontinuous
within that class of maps. In particular, all expansive maps admit a measure of max-
imal entropy and, more generally, equilibrium states under all continuous potentials
(see Chapter 12).

Chapter 6 – Shub expanding endomorphisms
In Section 6.2, we give a systematic account of Shub’s expanding endomorphisms.
These maps constitute a large, beautiful subclass of distance expanding maps and
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Introduction to Volume 1 | XIII

are far-reaching generalizations of the expanding endomorphisms of the circle, which
will be first introduced in Section 6.1. After a digression into albegraic topology, we
establish in Section 6.4 that Shub expanding endomorphisms are structurally stable,
form an open set in an appropriate topology of smooth maps, are topologically exact,
have at least one fixed point as well as a dense set of periodic points, and their univer-
sal covering space is diffeomorphic to ℝn.

Chapter 7 – Topological entropy
In Chapter 7, we study the central notion of topological entropy, one of themost useful
and widely-applicable topological invariant thus far discovered. It was introduced to
dynamical systems by Adler, Konheim, and McAndrew in 1965. Their definition was
motivated by Kolmogorov and Sinai’s definition of metric/measure-theoretic entropy
introduced less than a decade earlier. The topological entropy of a dynamical sys-
tem, which we introduce in Section 7.2, is a nonnegative extended real number that
measures the complexity of the system. Topological entropy is a topological conju-
gacy invariant but by nomeans a complete invariant. In Section 7.3, we treat at length
Bowen’s characterization of topological entropy in terms of separated and spanning
sets. In Chapter 11, we will introduce and deal with topological pressure, which is a
substantial generalization of topological entropy. Our approach to topological pres-
sure will stem from and extend that for topological entropy. In this sense, this chapter
can be viewed as a preparation to Chapter 11.

Chapter 8 – Ergodic theory
In Chapter 8, we move away from the study of purely topological dynamical systems
to consider instead dynamical systems that come equipped with a measure. That is,
instead of self-maps acting on compact metrizable spaces, we now ask that the self-
maps act upon measure spaces. We introduce in Section 8.1 the basic object of study
in ergodic theory, namely, invariant measures. We also prove Poincaré’s recurrence
theorem. Section 8.2 presents the notion of ergodicity and comprises a demonstration
of Birkhoff’s ergodic theorem. This theorem is one of the most fundamental results in
ergodic theory. It is extremely useful in numerous applications. The class of ergodic
measures for a given transformation is then studied in more detail. The penultimate
Section 8.3 contains an introduction to various measure-theoretic mixing properties
that a system may satisfy, and shows that ergodicity is a very weak form of mixing.
In the final Section 8.4, Rokhlin’s natural extension of any given dynamical system is
described and the mixing properties of this extension are investigated.

Chapter 9 –Measure-theoretic entropy
In Chapter 9, we study the measure-theoretic entropy of a (probability) measure-
preserving dynamical system, also known as metric entropy or Kolmogorov–Sinai
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XIV | Introduction to Volume 1

metric entropy. It was introduced by A. Kolmogorov and Ya. Sinai in the late 1950s.
Since then, its account has been presented in virtually every textbook on ergodic
theory. Its introduction to dynamical systems was motivated by Ludwig Boltzmann’s
concept of entropy in statistical mechanics and Claude Shannon’s work on informa-
tion theory. We first study measurable partitions in Section 9.2. Then we examine the
concepts of information and conditional information in Section 9.3. In Section 9.4, we
finally define the metric entropy of a measure-preserving dynamical system. And in
Section 9.5, we formulate and prove the full version of Shannon–McMillan–Breiman’s
characterization of metric entropy. Finally, in Section 9.6 we shed further light on
the nature of entropy, by proving the Brin–Katok local entropy formula. Like the
Shannon–McMillan–Breiman theorem, the Brin–Katok local entropy formula is very
useful in applications.

Chapter 10 – Infinite invariant measures
In Chapter 10, we deal with measurable transformations preserving measures that
are no longer assumed to be finite. The outlook is then substantially different than
in the case of finite measures. In Section 10.1, we investigate in detail the notions of
quasi-invariantmeasures, ergodicity, and conservativity.Wealso proveHalmos’ recur-
rence theorem, which is a generalization of Poincaré’s recurrence theorem for quasi-
invariant measures that are not necessarily finite. In Section 10.2, we discuss first re-
turn times, first return maps, and induced systems. We further establish relations be-
tween invariantmeasures for the original transformation and the induced one. In Sec-
tion 10.3, we study implications of Birkhoff’s ergodic theorem for finite and infinite
measure spaces. Among others, we demonstrate Hopf’s ergodic theorem, which ap-
plies tomeasure-preserving transformations ofσ-finite spaces. Finally, in Section 10.4,
we seek a condition under which, given a quasi-invariant probability measure, one
can construct a σ-finite invariantmeasurewhich is absolutely continuouswith respect
to the original measure. To this end, we introduce a class of transformations, called
Martensmaps, that have this feature and evenmore. In fact, thesemapshave the prop-
erty that any quasi-invariant probability measure admits an equivalent σ-finite invari-
ant one. Applications of these concepts and results can be found in Chapters 13–14 of
the second volume and Chapters 29–32 of the third volume.

Chapter 11 – Topological pressure
Chapter 12 – The variational principle and equilibrium states
In the last two chapters of this first volume, we introduce and extensively deal with
the fundamental concepts and results of thermodynamic formalism, including topo-
logical pressure, the variational principle, and equilibrium states. This topic has a
continuation throughout the whole second volume, first and perhaps most notably,
in the first chapter of that volume, which is devoted to the thermodynamic formalism
of distance expanding maps and Hölder continuous potentials. It will be enriched by
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Introduction to Volume 1 | XV

the seminal concepts of Gibbs states and transfer (Perron–Frobenius, Ruelle, Araki)
operators.

Thermodynamic formalism originated in the late 1960s with the works of David
Ruelle. The motivation for Ruelle came from statistical mechanics, particularly glass
lattices. The foundations, classical concepts and theorems of thermodynamic formal-
ism were developed throughout the 1970s by Ruelle, Rufus Bowen, Peter Walters, and
Yakov Sinai.

In Chapter 11, we define and investigate the properties of topological pressure.
Like topological entropy, this is a topological concept and a topological conjugacy in-
variant. We further give Bowen’s characterization of pressure in terms of separated
and spanning sets.

In Chapter 12, we relate topological pressure with metric entropy by proving the
variational principle, the very cornerstone of thermodynamic formalism. This prin-
ciple naturally leads to the concepts of equilibrium states and measures of maximal
entropy. Among others, we show that under a continuous potential every expansive
dynamical system admits an equilibrium state.
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1 Dynamical systems

In the first few sections of this chapter, we introduce the basic concepts in the theory
of topological dynamical systems: orbits, periodic points, preperiodic points, ω-limit
sets, factors, and subsystems. In particular, we introduce in Section 1.2 the concept of
topological conjugacy and identify the number of periodic points of any given period
as a simple (topological conjugacy) invariant. In Section 1.5, we examine the following
invariants: minimality, transitivity, topological mixing, strong transitivity, and topo-
logical exactness. Finally, in Section 1.6 we provide the first two classes of examples,
namely rotations on compact topological groups and some continuous maps of com-
pact intervals.

1.1 Basic definitions

Throughout this book, a (discrete) topological dynamical system is a continuous map
T : X → X of a nonempty compact metrizable space X. When emphasis on a metric is
desirable, we write (X, d). The study of a dynamical system consists of determining its
long-term behaviors, also referred to as asymptotic behaviors. That is, if we denote by
Tn the nth iterate of T, which is defined to be

Tn := T ∘ ⋅ ⋅ ⋅ ∘ T⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n times
,

in order to study a dynamical systemT, we investigate the sequence of iterates (Tn)∞n=0.
The long-term behavior of a point x ∈ X can be determined by looking at this sequence
of iterates evaluated at the point x.

Definition 1.1.1. Let x ∈ X. The forward orbit of x under T is the set

𝒪+(x) := {T
n(x) : n ≥ 0}.

Moreover, the backward orbit of x is the set

𝒪−(x) := {T
−n(x) : n ≥ 0} = {Tn(x) : n ≤ 0},

while the full orbit of x is the set

𝒪(x) := {Tn(x) : n ∈ ℤ} = 𝒪−(x) ∪𝒪+(x).

The simplest (forward) orbits that may be observed in a dynamical system are
those that consist of only finitely many points. Among these are the orbits that are
cyclic.

https://doi.org/10.1515/9783110702682-001
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2 | 1 Dynamical systems

Definition 1.1.2. A point x ∈ X is said to be periodic for a system T if

Tn(x) = x

for some n ∈ ℕ. Then n is called a period of x. The smallest period of a periodic point
x is called the prime period of x. The set of all periodic points of period n for T shall be
denoted by Pern(T). In particular, if

T(x) = x

then x is called a fixed point for T. The set of all fixed points will be denoted by Fix(T).
Hence, Fix(T) = Per1(T). Finally, we let Per(T) = ⋃

∞
n=1 Pern(T) denote the set of all

periodic points for T.

Example 1.1.3.
(a) Define the map T : [0, 1]→ [0, 1] by setting

T(x) := { 2x if x ∈ [0, 1/2)
2 − 2x if x ∈ [1/2, 1].

This map is known in the literature as the tent map. Its graph, which makes clear
the reasoning behind the name, is shown in Figure 1.1. The tent map has for fixed
points Fix(T) = {0, 2/3} and has 2n periodic points of period n for each n ∈ ℕ.
These are given by

Pern(T) = {0,
k

2n − 1
,

k
2n + 1
,

2n

2n + 1
: k ∈ {2, 4, 6, . . . , 2n − 2}}.

These periodic points are the points of intersection of the graph of Tn with the
diagonal line y = x.

Figure 1.1: The tent map T : [0, 1]→ [0, 1].

(b) Let 𝕊1 denote the unit circle, where 𝕊1 := ℝ/ℤ, or, equivalently, 𝕊1 := [0, 1] (mod 1).
Fix m ∈ ℕ and define the map Tm : 𝕊1 → 𝕊1 by setting Tm(x) := mx (mod 1). One
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example of such a map is shown in Figure 1.2. The map Tm is simply a piecewise
linear map that sends each interval [i/m, (i + 1)/m], for 0 ≤ i ≤ m − 1, onto 𝕊1. It
can be expressed by the formula

Tm(x) = mx − i, ∀x ∈ [
i
m
,
i + 1
m
], ∀0 ≤ i ≤ m − 1.

Figure 1.2: The map Tm : [0, 1]→ [0, 1], wherem = 5.

Themap Tm hasm− 1 fixed points. They are the points of intersection of the graph
of Tm with the diagonal line y = x. More precisely,

Fix(Tm) = {
i

m − 1
: 0 ≤ i < m − 1}.

Similarly, it can be shown that the nth iterate Tnm has mn − 1 fixed points (see Ex-
ercise 1.7.1). We will return to this example later in the book, specifically in Chap-
ters 4 and 9.

We now observe a general fact about convergent sequences of iterates of a point.

Lemma 1.1.4. Let T : X → X be a dynamical system. Suppose that there exists x ∈ X
such that

lim
n→∞

Tn(x) = y.

Then y is a fixed point for T.

Proof. Using the continuity of T, we obtain that

T(y) = T( lim
n→∞

Tn(x)) = lim
n→∞

Tn+1(x) = y.

Note that this fact applies only when the entire sequence of iterates converges. It
does not generally hold for convergent subsequences.
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Definition 1.1.5. A point x ∈ X is said to be preperiodic for a system T if one of its
(forward) iterates is a periodic point. That is, if there exists k ∈ ℕ such that Tk(x)
is a periodic point. In other words, this means that there exists n ∈ ℕ such that
Tk+n(x) = Tk(x).

The forward orbit 𝒪+(x) is finite if and only if x is periodic or preperiodic. Equiv-
alently, the sequence of forward iterates (Tn(x))∞n=0 consist of mutually distinct points
if and only if x is neither periodic nor preperiodic. Indeed,𝒪+(x) is infinite if and only
if the sequence (Tn(x))∞n=0 consist of mutually distinct points.

1.2 Topological conjugacy and structural stability
Suppose thatwehave two topological dynamical systems,T : X → X and S : Y → Y . In
this section, we describe a particular condition underwhich these two systems should
be considered dynamically equivalent, that is, as dynamically “the same” in some
sense. More precisely, we will establish when the orbits of two systems behave in the
same way. Establishing an equivalence relation between dynamical systems can be
extremely helpful, since it gives us the opportunity to apply our knowledge of systems
we understand well to systems we have less information about.

Definition 1.2.1. Two dynamical systems T : X → X and S : Y → Y are said to be
topologically conjugate if there exists a homeomorphism h : X → Y , called a conjugacy
map, such that

h ∘ T = S ∘ h.

In other words, T and S are topologically conjugate if there exists a homeomorphism
h such that the following diagram commutes:

X T
→ X

h
↑↑↑↑↓

↑↑↑↑↓h

Y →
S

Y

Remark 1.2.2.
(a) Topological conjugacy defines an equivalence relation on the space of all dynam-

ical systems (see Exercise 1.7.6).
(b) If two dynamical systems T and S are topologically conjugate via a conjugacy

map h, then all of their corresponding iterates are topologically conjugate by
means of h. That is,

h ∘ Tn = Sn ∘ h, ∀n ∈ ℕ.

Therefore, there exists a one-to-one correspondence between the orbits of T and
those of S. This is why two topologically conjugate systems are considered dynam-
ically equivalent.
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Example 1.2.3. Recall the definition of the tent map from Example 1.1.3. We shall now
give an example of another system that is topologically conjugate to the tent map.
Define the map F : [0, 1]→ [0, 1] by setting

F(x) := {
x
1−x if x ∈ [0, 12 ]
1−x
x if x ∈ [ 12 , 1].

The map F is called the Farey map and its graph is shown in Figure 1.3.

Figure 1.3: The Farey map F : [0, 1]→ [0, 1].

The Farey map may be familiar to any reader who has studied the continued fraction
expansion of real numbers, as it is related to the Gauss map, also known as the con-
tinued fractionmap. Let us just briefly recall that a continued fraction is an expression
of the form

1
a1 +

1
a2+

1
a3+⋅⋅⋅

,

where ai ∈ ℕ for all i ∈ ℕ. We write [a1, a2, . . .] for the above expression. It turns out
that every continued fraction represents an irrational number in [0, 1] and, conversely,
every irrational number in [0, 1] can be written as a continued fraction. This relation
is a bijection.

For x ∈ (1/2, 1] \ ℚ, the continued fraction representation of x is given by
[1, a2(x), a3(x), . . .], where ai(x) ∈ ℕ for all i ≥ 2. In this case, we deduce that

F(x) = 1
x
− 1 = 1 + [a2(x), a3(x), . . .] − 1 = [a2(x), a3(x), . . .].

For x ∈ [0, 1/2]\ℚ, the first entry of the continued fraction representation of x is strictly
greater than 1 and so it follows that

F(x) = x
1 − x
=

1
1
x − 1
= [a1(x) − 1, a2(x), a3(x), . . .].
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It is known that Minkowski’s question-mark function is a conjugacy map between
the tent map T and the Farey map F. Minkowski’s question-mark function is the map
Q : [0, 1]→ [0, 1] defined by

Q(x) := −2
∞

∑
k=1
(−1)k2−∑

k
i=1 ai(x),

whenever x ∈ [0, 1]\ℚ, where ai(x) is the ith entry of the continued fraction expansion
of x. The map Q is an increasing bijection and is continuous on [0, 1] \ℚ. Recall that
a map f : (Y , dY ) → (Z, dZ) between two metric spaces is said to be Hölder continuous
with exponent α if there exists a constant C ≥ 0 such that

dZ(f (x), f (y)) ≤ C(dY (x, y))
α, ∀x, y ∈ Y .

It was shown by Salem in [62] that the map Q is Hölder continuous with exponent
log 2/(2 logγ), whereγ := (1+√5)/2 is the goldenmean. Furthermore, since [0, 1]\ℚ is
dense in [0, 1], themapQ can be uniquely extended to an increasing homeomorphism
of [0, 1] (this follows from a topological result whose proof is left to Exercise 1.7.5).

Historically, this map was designed by the German mathematician, Hermann
Minkowski (1864–1909), to map the rational numbers in [0, 1] to the set of dyadic
rational numbers ⋃∞n=1{i/2

n : i = 0, 1, . . . , 2n} and the quadratic surds onto the non-
dyadic rationals in an order preserving way. The graph ofQ is shown in Figure 1.4. For
further information on Minkowski’s question-mark function, the reader is referred
to [48] and [36].

Figure 1.4:Minkowski’s question-mark function Q : [0, 1]→ [0, 1].
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Let us now demonstrate that Q really does conjugate the tent and Farey systems. For
this, suppose first that x ∈ [0, 1/2] \ℚ. Then Q(x) ∈ [0, 1/2] and

T(Q(x)) = 2(−2
∞

∑
k=1
(−1)k2−∑

k
i=1 ai(x))

= −2(
∞

∑
k=1
(−1)k2−(a1(x)−1)−∑

k
i=2 ai(x))

= Q([a1(x) − 1, a2(x), a3(x), . . .]) = Q(F(x)).

Now, suppose that x ∈ (1/2, 1] \ ℚ, that is, x = [1, a2(x), a3(x), . . .]. Then Q(x) ∈ (1/2, 1]
and

T(Q(x)) = 2 − 2(2 ⋅ 2−1 − 2
∞

∑
k=2
(−1)k2−1−∑

k
i=2 ai(x))

= −2(
∞

∑
k=2
(−1)k−12−∑

k
i=2 ai(x))

= Q([a2(x), a3(x), . . .]) = Q(F(x)).

Thus, T(Q(x)) = Q(F(x)) for all x ∈ [0, 1] \ℚ. Since this latter set is dense in [0, 1], the
continuity of T, F, and Q guarantees that T(Q(x)) = Q(F(x)) for all x ∈ [0, 1].

Directly from the notion of topological conjugacy, we can derive the following no-
tion of an invariant for a dynamical system.

Definition 1.2.4. A (topological conjugacy) invariant is a property of dynamical sys-
tems that is preserved under a topological conjugacy map.

Remark 1.2.5.
(a) By definition, topologically conjugate dynamical systems share the same set of

topological conjugacy invariants. Thus, if a property is a topological conjugacy
invariant and if a given dynamical system has this property while another one
does not, then we can immediately deduce that these two dynamical systems are
not topologically conjugate.

(b) Among the collection of invariants, there are those which are called complete in-
variants. An invariant is complete if two systems that share this invariant are au-
tomatically topologically conjugate. Note that this is not true of all invariants, as
wewill very shortly see. In fact, there are no known complete invariants that exist
for arbitrary dynamical systems. Later in this chapter, we shall give examples of
topological conjugacy invariants that are complete for a subfamily of dynamical
systems.

(c) If T : X → X is topologically conjugate to S : Y → Y via a conjugacymap h : X → Y
and if x ∈ Pern(T), then by Remark 1.2.2(b) we deduce that

Sn(h(x)) = h(Tn(x)) = h(x),
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that is, h(x) ∈ Pern(S). Thus, h induces a one-to-one correspondence between pe-
riodic points. This correspondence preserves the prime period of a periodic point.
Therefore, the number of periodic points of any given period is a topological con-
jugacy invariant. However, the number of periodic points of any given period is
not a complete invariant. Below we give an example of two dynamical systems
that have the same number of fixed points despite not being topologically conju-
gate. Another example will be given in Chapter 3.

(d) The cardinality of X is also an invariant, but again it is not a complete invariant,
as we show in the examples below.

Example 1.2.6.
(a) Recall the maps Tm : 𝕊1 → 𝕊1 defined in Example 1.1.3. It turns out that the dy-

namical systems (𝕊1,Tn) and (𝕊1,Tm) are not topologically conjugate whenever
n ̸= m. Indeed, by Remark 1.2.5(c), we know that if they were topologically con-
jugate they would have the same number of fixed points. However, Tn has n fixed
points, whereas Tm hasm.

(b) Let f : [0, 1]→ [0, 1] be defined by

f (x) = √x

and let g : [0, 1]→ [0, 1] be defined by

g(x) = 3x(1 − x).

Then Fix(f ) = {0, 1} and Fix(g) = {0, 2/3}. However, these two systems are not
topologically conjugate. This can be seen by supposing h : [0, 1] → [0, 1] to be a
conjugacy map between f and g. Then we would have to have either h(0) = 0 and
h(1) = 2/3, or h(0) = 2/3 and h(1) = 0. In either case, it is impossible to construct a
homeomorphismof the unit interval into itself satisfying these properties, as such
a homeomorphism has to be either strictly increasing or strictly decreasing.

Let us nowdefine the related concept of structural stability. Let (X, d) be a compact
metric space and let C(X,X) be the space of all continuous maps from X to X. Define
the metric d∞ on C(X,X) by setting

d∞(T , S) := sup
x∈X

d(T(x), S(x)).

The topology on C(X,X) induced by the metric d∞ is called the topology of uniform
convergence on X. This terminology is appropriate since limn→∞ d∞(Tn,T) = 0 if and
only if the sequence (Tn)∞n=1 converges to T ∈ C(X,X) uniformly. It is not hard to see
(and we leave it as an exercise for the reader) that the metric space (C(X,X), d∞) is
complete and separable.
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Let 𝒞 be an arbitrary subset of C(X,X). Let τ be a topology on 𝒞 which is finer than
or coincides with the topology of uniform convergence inherited from C(X,X). We say
that an element T of 𝒞 is structurally stable relative to 𝒞 if there exists a neighborhood
U of T in the topology τ on 𝒞 such that for every S ∈ U there is a homeomorphism
h = h(S) ∈ C(X,X) for which

h ∘ T = S ∘ h.

In other words, T is structurally stable relative to 𝒞 if it is topologically conjugate to
all systems S in one of its neighborhoods U in the topology τ on 𝒞. The system T is
strongly structurally stable (relative to 𝒞) if for every ε > 0 there exists a neighborhood
Uε of T in the topology τ on 𝒞 such that for every S ∈ Uε there is a homeomorphism
h ∈ Bd∞ (IdX , ε) for which T ∘ h = h ∘ S. Here, the notation Bd∞ (g, ε) denotes the ε-ball
around the map g:

Bd∞ (g, ε) = {f ∈ C(X,X) : d∞(f , g) < ε}.

Later we will provide classes of structurally stable dynamical systems, most notably
Shub’s expanding endomorphisms (see Chapter 6).

1.3 Factors

Aweaker relationship than that of topological conjugacy between two dynamical sys-
tems is that of a factor.

Definition 1.3.1. Let T : X → X and S : Y → Y be two dynamical systems. If there
exists a continuous surjection h : X → Y such that h ∘T = S ∘h, then S is called a factor
of T. The map h is hereafter called a factor map.

In general, the existence of a factor map between two systems is not sufficient to
make them topologically conjugate. Nonetheless, if S is a factor of T, then every orbit
of T is projected to an orbit of S. As every factor map is by definition surjective, this
means that all of the orbits of S have an analogue in T. However, as a factormap needs
not be injective, more than one orbit of T may be projected to the same orbit of S. In
other words, some orbits of S may have more than one analogue in T. Therefore, the
dynamical systemT canusually be thought of asmore “complicated” than the factor S.
In particular, periodic points of period n for T are projected to periodic points for S
whose periods are factors of n.

Example 1.3.2. Let T : X → X be a dynamical system and let S : Y → Y be given by
Y := {y} and S equal to the identity map. Then the map h : X → Y defined by h(x) := y
for all x ∈ X is a factor map. This is, of course, a trivial example. In Chapter 3, we will
encounter a class of nontrivial examples.
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1.4 Subsystems

Our next aim is to introduce the concept of a subsystem of a dynamical system. In
order to do this, we first define the notion of invariance for sets.

Definition 1.4.1. Let T : X → X be a dynamical system. A subset F of X is said to be
(a) forward T-invariant if T−1(F) ⊇ F.
(b) backward T-invariant if T−1(F) ⊆ F.
(c) completely T-invariant if T−1(F) = F.

If the identity of the map T is clear, then we will sometimes omit it. We also often
refer to forward invariant sets simply as “invariant.” Note that the condition of being
forward invariant is equivalent to T(F) ⊆ F.

Remark 1.4.2.
(a) A set is completely invariant if and only if it is both forward and backward invari-

ant.
(b) The closure of an invariant set is invariant.
(c) A set F is invariant if and only if it is equal to the union of the forward orbits of all

of its points, that is, F = ⋃x∈F 𝒪+(x).
(d) A closed set F is invariant if and only if it is equal to the union of the closure of the

forward orbit of all of its points, that is, F = ⋃x∈F 𝒪+(x). By (c), this means that

⋃
x∈F

𝒪+(x) = F = ⋃
x∈F

𝒪+(x).

We are now in a position to define the concept of subsystem.

Definition 1.4.3. Let T : X → X be a dynamical system. If F ⊆ X is a closed T-invariant
set, then the dynamical system induced by the restriction of T to F, that is, T|F : F → F
is called a subsystem of T : X → X.

Note that as X is a compact metrizable space and, therefore, a compact Hausdorff
space, the word “closed” can be replaced by “compact” in the above definition.

Remark 1.4.4. If a dynamical system S : Y → Y is a factor of a dynamical system T :
X → X via a factormap h : X → Y and ifZ ⊆ Y is forward (resp., backward/completely)
S-invariant, then h−1(Z) is forward (resp., backward/completely) T-invariant. Indeed,
if Z ⊆ Y is forward S-invariant, that is, S−1(Z) ⊇ Z, then

T−1(h−1(Z)) = (h ∘ T)−1(Z) = (S ∘ h)−1(Z) = h−1(S−1(Z)) ⊇ h−1(Z),

that is, h−1(Z) is forward T-invariant.
In particular, if S|Z is a subsystem of S : Y → Y then T|h−1(Z) is a subsystem of

T : X → X. This uses the fact that a compact subset of a Hausdorff space is closed,
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that the preimage of a closed set under a continuous map is closed, and that a closed
subset of a compact space is compact.

If the two systems are topologically conjugate, then any conjugacy map h induces
a one-to-one correspondence between the T-invariant sets and the S-invariant sets. In
particular, h induces a one-to-one correspondence between the subsystems of T and
those of S.

Observe that every orbit is T-invariant, since for every x ∈ X we have

T(𝒪+(x)) = {T(T
n(x)) : n ≥ 0} = {Tn+1(x) : n ≥ 0} ⊆ 𝒪+(x).

By Remark 1.4.2(b), we deduce that the closure of every orbit is T-invariant and, there-
fore, the restriction of a system to the closure of any of its orbits constitutes a subsys-
tem of that system.

Above and beyond the orbits of a system, the limit points, sometimes called accu-
mulation points, of these orbits are also of interest.

Definition 1.4.5. Let x ∈ X. The set of limit points of the sequence of forward iterates
(Tn(x))∞n=0 of x is called the ω-limit set of x. It is denoted by ω(x).

In other words, y ∈ ω(x) if and only if there exists a strictly increasing sequence
(nj)∞j=1 of nonnegative integers such that limj→∞ Tnj (x) = y.

Remark 1.4.6.
(a) In general, the ω-limit set of a point x is not the set of limit points of the forward

orbit𝒪+(x) of x. See Exercises 1.7.12, 1.7.13, and 1.7.14.
(b) By the very definition of an ω-limit set, it is easy to see that ω(x) ⊆ 𝒪+(x). In fact,

𝒪+(x) ∪ ω(x) = 𝒪+(x). See Exercises 1.7.13 and 1.7.15.

Proposition 1.4.7. Every ω-limit set is nonempty, closed, and T-invariant. Furthermore,
for every x ∈ X we have that T(ω(x)) = ω(x).

Proof. Let x ∈ X. Since X is compact, the set ω(x) is nonempty. Moreover, the set ω(x)
is closed as the limit points of any sequence form a closed set (we leave the proof of
this fact to Exercise 1.7.16). It only remains to show that T(ω(x)) = ω(x). Let y ∈ ω(x).
Then there exists a strictly increasing sequence (nj)∞j=1 of nonnegative integers such
that limj→∞ Tnj (x) = y. The continuity of T then ensures that

T(y) = T( lim
j→∞

Tnj (x)) = lim
j→∞

T(Tnj (x)) = lim
j→∞

Tnj+1(x).

This shows that T(y) ∈ ω(x) and, in turn, proves that T(ω(x)) ⊆ ω(x). To establish
the reverse inclusion, again fix y ∈ ω(x). Then there exists a strictly increasing se-
quence (nj)∞j=1 of positive integers such that limj→∞ Tnj (x) = y. Consider the sequence
(Tnj−1(x))∞j=1. Since X is compact, this sequence admits a convergent subsequence
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(Tnjk−1(x))∞k=1, where (njk )
∞
k=1 is some subsequence of (nj)∞j=1. Let z := limk→∞ T

njk−1(x).
Then z ∈ ω(x) and

T(z) = T( lim
k→∞

Tnjk−1(x)) = lim
k→∞

Tnjk (x) = lim
j→∞

Tnj (x) = y.

Consequently, y ∈ T(ω(x)). This proves that ω(x) ⊆ T(ω(x)).

The above proposition shows in particular that the restriction of a dynamical sys-
tem to any of its ω-limit sets is a subsystem of that system.

If T is a homeomorphism, then we can define the counterpart of an ω-limit set by
looking at the backward iterates of a point. For x ∈ X, we define the α-limit set of x as
the set of accumulation points of the sequence of backward iterates (T−n(x))∞n=0 of x. It
is denoted byα(x). In this case,wehave that y ∈ α(x) if and only if there exists a strictly
increasing sequence (nj)∞j=1 of nonnegative integers such that limj→∞ T−nj (x) = y. By
the definition of the α-limit set, we have that α(x) is contained in the closure of the
backward orbit𝒪−(x). The α-limit sets satisfy the same properties under T−1 as those
of the ω-limit sets under T.

Definition 1.4.8. Let T : X → X be a topological dynamical system. A point x is said to
bewandering forT if there exists an openneighborhoodU of x such that the preimages
of U are mutually disjoint, that is,

T−m(U) ∩ T−n(U) = 0, ∀m ̸= n ≥ 0.

Accordingly, a point x is called nonwandering for T if each of its open neighborhoods
U revisits itself under iteration by T, that is, for each neighborhood U of x there is
n ∈ ℕ such that T−n(U) ∩ U ̸= 0. The nonwandering set for T, which consists of all
nonwandering points, is denoted by Ω(T).

Theorem 1.4.9. The nonwandering set Ω(T) of a system T : X → X enjoys the following
properties:
(a) Ω(T) is closed.
(b) 0 ̸= ⋃x∈X ω(x) ⊆ Ω(T).
(c) Per(T) ⊆ Ω(T).
(d) Ω(T) is forward T-invariant.
(e) If T is a homeomorphism, then Ω(T) = Ω(T−1) and is completely T-invariant.

Proof.
(a) The nonwandering set Ω(T) is closed since its complement, the set of wandering

points X \ Ω(T), is open. Indeed, if a point x is wandering, then there exists an
open neighborhood U of x such that the preimages of U are mutually disjoint.
Therefore, all points of U are wandering as well. So X \ Ω(T) is open.
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(b) Let x ∈ X and y ∈ ω(x). Then there is a strictly increasing sequence (nk)∞k=1 of
nonnegative integers such that limk→∞ Tnk (x) = y. Thus, given any open neigh-
borhood U of y, there are numbers nk < nl such that Tnk (x) ∈ U and Tnl (x) ∈ U .
Then, letting n = nl − nk and z = Tnk (x), we have z ∈ U and Tn(z) ∈ U, that is,
T−n(U) ∩ U ̸= 0. As this is true for every open neighborhood U of y, we deduce
that y ∈ Ω(T). Hence,⋃x∈X ω(x) ⊆ Ω(T). In particular, Ω(T) ̸= 0 since ω(x) ̸= 0 for
every x.

(c) Since ω(x) = 𝒪+(x) ∋ x for every periodic point x, all the periodic points of T
belong toΩ(T). More simply, every periodic point is nonwandering as it eventually
returns to itself under iteration.

(d) Let x ∈ Ω(T) and U an open neighborhood of T(x). Then T−1(U) is an open neigh-
borhood of x. As x ∈ Ω(T), there exists n ∈ ℕ such that T−n(T−1(U)) ∩ T−1(U) ̸= 0.
That is, T−1(T−n(U) ∩ U) ̸= 0, which implies that T−n(U) ∩ U ̸= 0. Since this is true
for every open neighborhood U of T(x), we conclude that T(x) ∈ Ω(T), and hence
T(Ω(T)) ⊆ Ω(T).

(e) Suppose T is a homeomorphism. It is easy to show that Ω(T−1) = Ω(T). By (d),
we then have T(Ω(T)) ⊆ Ω(T) and T−1(Ω(T)) ⊆ Ω(T). This implies T−1(Ω(T)) =
Ω(T).

Parts (a) and (d) tell us that the restriction of a system to its nonwandering set forms
a subsystem of that system. Part (b) reveals that this subsystem comprises all ω-limit
subsystems.

Finally, we introduce the notion of invariance for a function.

Definition 1.4.10. Acontinuous function g : X → ℝ is said to beT-invariant if g∘T = g.

Remark 1.4.11. A function g is T-invariant if and only if g ∘ Tn = g for every n ∈ ℕ. In
other words, g is T-invariant if and only if g is constant along each orbit of T, and thus
if and only if g is constant on the closure of each orbit of the system T.

1.5 Mixing and irreducibility

In this section, we investigate various forms of topological mixing and irreducibility
that can be observed in some dynamical systems. For a dynamical system, topolog-
ical mixing can intuitively be conceived as witnessing some parts of the underlying
space becoming mixed under iteration with other parts of the space. Irreducibility of
a dynamical system means that the system does not admit any “nontrivial” subsys-
tem, which takes a different meaning depending on the stronger or weaker form of
irreducibility. In any case, the absence of nontrivial subsystems forces irreducible sys-
tems to exhibit some form of mixing.
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1.5.1 Minimality

We will now define one way in which a dynamical system T : X → X can be said to be
irreducible. Asmentionedabove, by irreducibilitywemean thatT admits nonontrivial
subsystem, for some sense of nontriviality. One natural form of irreducibility would be
that the only subsystems of T are the empty system and T itself. Another way of saying
this is that the only closed T-invariant subsets of X are the empty set and the whole of
X. The concept we need for this is minimality.

Definition 1.5.1. Let T : X → X be a dynamical system. A set F ⊆ X is said to be a
minimal set for T if the following three conditions are satisfied:
(a) The set F is nonempty and closed.
(b) The set F is T-invariant.
(c) If G ⊆ F is nonempty, closed and T-invariant, then G = F.

A minimal set F induces theminimal subsystem T|F : F → F. We now address the
question of the existence of minimal sets.

Theorem 1.5.2. Every dynamical system admits a minimal set (that induces a minimal
subsystem).

Proof. Letℱ be the family of all nonempty, closed, T-invariant subsets of X. This fam-
ily is nonempty, as it at least contains X. It is also partially ordered under the relation
of backward set inclusion ⊇. We shall use the Kuratowski–Zorn lemma (often referred
to simply as Zorn’s lemma) to establish the existence of aminimal set. Accordingly, let
{Fλ}λ∈Λ be a chain inℱ , that is, a totally ordered subset ofℱ , and let F = ⋂λ∈Λ Fλ. Then
F is nonempty and closed (cf. Exercise 1.7.17). Moreover,

T(F) = T(⋂
λ∈Λ

Fλ) ⊆ ⋂
λ∈Λ

T(Fλ) ⊆ ⋂
λ∈Λ

Fλ = F.

Thus, F is T-invariant and constitutes the maximal element of the chain {Fλ}λ∈Λ.
Hence, every chain in ℱ has a maximal element, and by Zorn’s lemma, we infer that
the family ℱ has a maximal element under the relation of backward set inclusion ⊇,
that is, the family ℱ has a minimal element under the relation of set inclusion ⊆. This
element is a minimal set for T.

We can now define the concept of minimality for dynamical systems.

Definition 1.5.3. A dynamical system T : X → X is said to beminimal if X is a minimal
set for T (and thus is the only minimal set for T).

Minimality is a strong form of irreducibility since minimal systems admit no
nonempty subsystems other than themselves.
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Let us now give a characterization of minimal sets. In particular, the next result
shows that the strong form of irreducibility that we call minimality is also a strong
form of mixing, since minimal systems are characterized by having only dense orbits.

Theorem 1.5.4. Let F be a nonempty closed T-invariant subset of X. Then the following
three statements are equivalent:
(a) F is minimal.
(b) ω(x) = F for every x ∈ F.
(c) 𝒪+(x) = F for every x ∈ F.

Proof. We shall prove this theorem by establishing the sequence of implications
(a)⇒(b)⇒(c)⇒(a).

To begin, suppose that F is a minimal set for T, and let x ∈ F. Then, since F is
T-invariant and closed, we obtain thatω(x) ⊆ 𝒪+(x) ⊆ F. Moreover, in light of Proposi-
tion 1.4.7,ω(x) is nonempty, closed and T-invariant. So, by the definition of aminimal
set, we must have that ω(x) = F. This proves that (a) implies (b).

Toward the proof of the second implication, recall that as F is T-invariant and
closed, we have that ω(x) ⊆ 𝒪+(x) ⊆ F. Thus, if ω(x) = F then 𝒪+(x) = F. This proves
that (b) implies (c).

Finally, assume that 𝒪+(x) = F for every x ∈ F. Let E ⊆ F be a nonempty closed
T-invariant set. It suffices to show that E = F. To that end, let x ∈ E. As E is T-invariant
and closed, we have𝒪+(x) ⊆ E. Moreover, x ∈ E ⊆ F implies that𝒪+(x) = F. Therefore,
F = 𝒪+(x) ⊆ E ⊆ F, and hence E = F. Thus, F is minimal. This proves the remaining
implication, namely, that (c) implies (a).

Remark 1.5.5.
(a) Theorem 1.5.4(c) characterizes aminimal set F by the requirement that the orbit of

each point of F stays in F and is dense in F. Another way to think of this is that ir-
reducibility in the sense that a system admits no nonempty subsystem other than
itself, is equivalent to mixing in the sense that every orbit is dense. In particu-
lar, a consequence of this property is that a minimal system must be surjective. It
also implies that an infinite minimal system does not admit any periodic point, as
𝒪+(x) = 𝒪+(x) for any periodic point x.

(b) Minimality is a topological conjugacy invariant. However, it is not a complete in-
variant (see Exercise 1.7.19).

1.5.2 Transitivity and topological mixing

In this section, we introduce a weaker form of mixing called transitivity. We have
shown in the previous section that minimal systems have only dense orbits; transitive
systems are only required to exhibit one dense orbit. Nonetheless, as we shall soon
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see, the existence of one dense orbit forces the existence of a dense Gδ-set of points
with dense orbits.

Definition 1.5.6. Let T : X → X be a dynamical system.
(a) A point x ∈ X is said to be transitive for T if ω(x) = X.
(b) The system T is called transitive if it admits at least one transitive point.
(c) A point x ∈ X is said to be weakly transitive for T if𝒪+(x) = X.
(d) The system T is said to be weakly transitive if it admits at least one weakly transi-

tive point.

Remark 1.5.7.
(a) In light of Theorem 1.5.4(b), every minimal system is transitive. There are, of

course, transitive systems which are not minimal. For instance, we shall see in
Chapter 3 that full shifts are transitive, but not minimal since they admit periodic
points.

(b) Transitivity is a topological conjugacy invariant. However, it is not a complete
invariant. Indeed, as minimality is not a complete invariant and transitivity is
weaker than minimality, transitivity cannot be a complete invariant.

(c) A transitive system is surjective since, given any transitive point x, we have that
T(X) = T(ω(x)) = ω(x) = X.

(d) As 𝒪+(x) = 𝒪+(x) ∪ ω(x), every transitive system is weakly transitive. Note that
there are weakly transitive systems which are not transitive, as Example 1.5.8 be-
low demonstrates.

(e) If T : X → X is weakly transitive, then every continuous T-invariant function is
constant. To see this, let g : X → ℝ be a T-invariant continuous function. Also let
x ∈ X be such that the forward orbit of x is dense in X. Then by Remark 1.4.11, we
have that g|𝒪+(x) = g(x). This means that the continuous function g is constant on
a dense set of points, so it must be constant everywhere.

Example 1.5.8. Let X = {0} ∪ {1/n : n ∈ ℕ} ⊆ ℝ, and let T : X → X be defined by
T(0) = 0 and T(1/n) = 1/(n + 1). Then T is continuous. Moreover, as it is not surjective
(its range does not include 1), T cannot be transitive. Alternatively, we might argue
that ω(x) = {0} for every x ∈ X. However, observe that 𝒪+(1) = {1, 1/2, 1/3, . . .} = {1/n :
n ∈ ℕ}. So,𝒪+(1) = X and, therefore, T is weakly transitive.

In fact, it turns out that surjectivity is the only difference between weakly transi-
tive and transitive systems, as we now show.

Theorem 1.5.9. A dynamical system is transitive if and only if it is weakly transitive and
surjective.

Proof. We have already observed in Remark 1.5.7 that transitive systems are weakly
transitive and surjective. Suppose now that a system T : X → X is weakly transitive
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and surjective. Let x ∈ X be such that 𝒪+(x) = X. Since X = 𝒪+(x) = 𝒪+(x) ∪ ω(x), we
deduce that X \𝒪+(x) ⊆ ω(x).

On one hand, if T−1(x) ∩ 𝒪+(x) = 0 then by the surjectivity of T we have that
0 ̸= T−1(x) ⊆ X \𝒪+(x) ⊆ ω(x). As ω(x) is T-invariant, we obtain that {x} = T(T−1(x)) ⊆
T(ω(x)) = ω(x). Using the T-invariance of ω(x) once again, we deduce that 𝒪+(x) ⊆
ω(x). Therefore X = 𝒪+(x) ⊆ ω(x) ⊆ X, that is, ω(x) = X.

On the other hand, if T−1(x) ∩ 𝒪+(x) ̸= 0, then x is a periodic point, and hence
ω(x) = 𝒪+(x). It follows that X = 𝒪+(x) = 𝒪+(x) ∪ ω(x) = 𝒪+(x) = ω(x). (That is, every
point in X is a periodic point in the orbit of x and X is finite.)

In either case, we have demonstrated that x is a transitive point.

Let us now introduce the concept of topological mixing. We shall very shortly see
the connection between this notion and transitivity.

Definition 1.5.10. A dynamical system T : X → X is said to be topologically mixing if
any of the following equivalent statements hold:
(a) For all nonempty open subsets U and V of X, there exists n ∈ ℕ such that Tn(U)∩

V ̸= 0.
(b) For all nonempty open subsets U and V of X, there exists n ∈ ℕ such that U ∩

T−n(V) ̸= 0.
(c) For all nonempty open subsets U and V of X and for all N ∈ ℕ, there exists n ≥ N

such that Tn(U) ∩ V ̸= 0.
(d) For all nonempty open subsets U and V of X and for all N ∈ ℕ, there exists n ≥ N

such that U ∩ T−n(V) ̸= 0.
(e) For all nonempty open subsets U and V of X, there exist infinitely many n ∈ ℕ

such that Tn(U) ∩ V ̸= 0.
(f) For all nonempty open subsets U and V of X, there exist infinitely many n ∈ ℕ

such that U ∩ T−n(V) ̸= 0.
(g) ⋃n∈ℕ Tn(U) = X for every nonempty open subset U of X.
(h) ⋃n∈ℕ T−n(U) = X for every nonempty open subset U of X.

We leave it to the reader to provide a proof that (a) and (b) are equivalent, (c) and
(d) are equivalent and (e) and (f) are equivalent. It is also straightforward to show the
chain of equivalences (b)⇔(d)⇔(f) by using the fact thatW := T−(N−1)(V) is an open
set. Statement (g) is just a rewriting of (a) while (h) is a reformulation of (b).

Furthermore, note that each of these statements implies that T is surjective. In-
deed, since T(X) ⊆ X, we have by induction that Tn+1(X) ⊆ Tn(X) for all n ∈ ℕ.
So the sequence of compact sets (Tn(X))∞n=0 is descending. By (g), T(X) = T(X) =
⋃n∈ℕ Tn(X) = X.

The next theorem gives the promised connection between transitivity and topo-
logical mixing, in addition to another characterization of transitive systems in terms
of nowhere-dense sets. For more information on nowhere-dense sets, the reader is
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referred to [77] and [54]. The most relevant fact for us is that a closed set is nowhere-
dense if and only if it has empty interior.

Theorem 1.5.11. If T : X → X is a surjective dynamical system, then the following state-
ments are equivalent:
(a) T is transitive.
(b) Whenever F is a closed T-invariant subset of X, either F = X or F is nowhere-dense.

In other words, T admits no subsystem with nonempty interior other than itself.
(c) T is topologically mixing.
(d) {x ∈ X : 𝒪+(x) = X} is a dense Gδ-subset of X.
(e) {x ∈ X : 𝒪+(x) = X} contains a dense Gδ-subset of X.

Proof. We shall prove this theorem by establishing the implications (a)⇒(b)⇒(c)⇒
(d)⇒(e)⇒(a).

To prove the first implication, let x be a transitive point and F a nonempty closed
T-invariant set. Since x is transitive, we have that ω(x) = X. Suppose that F has
nonempty interior. Then there is a nonempty open set U ⊆ F. Therefore, there exists
p ≥ 0 with Tp(x) ∈ U ⊆ F. As F is T-invariant, all higher iterates of x lie in F as well.
Since F is closed, this implies that ω(x) ⊆ F. Therefore X = ω(x) ⊆ F ⊆ X, that is,
F = X. Thus, either F has empty interior or F = X. That is, either F is nowhere-dense
or F = X. This proves that (a) implies (b).

For the second implication, suppose that (b) holds and that U and V are non-
empty open subsets of X. By the surjectivity of T, the union⋃∞n=1 T

−n(V) is a nonempty
open subset of X. Therefore, the closed set F := X \⋃∞n=1 T

−n(V) ̸= X satisfies

T−1(F) = X \ T−1(
∞

⋃
n=1

T−n(V))

= X \
∞

⋃
n=2

T−n(V) ⊇ X \
∞

⋃
n=1

T−n(V) = F.

This means that T(F) ⊆ F, that is, the set F is T-invariant. Thus, either F = X or F is
nowhere-dense. As F ̸= X, the set F is nowhere-dense and its complement⋃∞n=1 T

−n(V)
is dense in X. Consequently, there exists some n ∈ ℕ such that U ∩ T−n(V) ̸= 0. So T is
topologically mixing. This establishes that (b) implies (c).

Now, suppose that T is topologically mixing and let {Un : n ∈ ℕ} be a countable
base for the topology of X. Such a base exists since X is a compact metrizable space.
Then

{x ∈ X : 𝒪+(x) = X} =
∞

⋂
n=1

∞

⋃
m=0

T−m(Un).

Since T is topologically mixing, for each n ∈ ℕ the open set ⋃∞m=0 T
−m(Un) intersects

every nonempty open set, that is, this set is dense in X. By the Baire category theorem,
it follows that⋂∞n=1⋃

∞
m=0 T
−m(Un) is a dense Gδ-set. This proves that (c) implies (d).
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The implication (d)⇒(e) is obvious.
Finally, suppose that {x ∈ X : 𝒪+(x) = X} contains a denseGδ-set. This implies im-

mediately that T is weakly transitive. As T is surjective, we deduce from Theorem 1.5.9
that T is in fact transitive. This demonstrates that (e) implies (a).

In particular, Theorem 1.5.11 shows that transitivity corresponds to a weaker form
of irreducibility than minimality. Indeed, as opposed to minimal systems which ad-
mit only the empty set and the whole of X as subsystems, nonminimal transitive sys-
tems admit nontrivial subsystems. Each of these subsystems is nevertheless nowhere-
dense.

Rotations of the unit circle
We shall now discuss rotations of the unit circle 𝕊1. The unit circle may be defined
in many different homeomorphic ways. It may be embedded in the complex plane by
defining 𝕊1 := {z ∈ ℂ : |z| = 1}. It may also be defined to be the set of all angles
θ ∈ [0, 2π] (mod 2π). Alternatively, as we have already seen in Example 1.1.3(b), it may
be defined to be the quotient space 𝕊1 := ℝ/ℤ or as 𝕊1 := [0, 1] (mod 1). We will use the
form most appropriate to each specific situation.

Let 𝕊1 = [0, 2π] (mod 2π). Let α ∈ ℝ and define the map Tα : 𝕊1 → 𝕊1 by

Tα(x) = x + 2πα (mod 2π).

Thus, Tα is the rotation of the unit circle by the angle 2πα. The dynamics of Tα are
radically different depending on whether the number α is rational or irrational. We
prove the following classical result.

Theorem 1.5.12. Let Tα : 𝕊1 → 𝕊1 be defined as above. The following are equivalent:
(a) α ∈ ℝ\ℚ.
(b) Tα is minimal.
(c) Tα is transitive.

Moreover, when α ∈ ℚ every point in 𝕊1 is a periodic point with the same prime period.

Proof. We shall prove that (b)⇒(c)⇒(a)⇒(b). Remark 1.5.7 already pointed out that
(b)⇒(c).

[(c)⇒(a)] If α ∈ ℚ, say α = p/q for some p, q ∈ ℤwith p and q relatively prime and
q > 0, then Tnα(x) = x + 2πpn/q (mod 2π) for all x ∈ 𝕊1. In particular, Tqα(x) = x + 2πp
(mod 2π) = x (mod 2π) for all x ∈ 𝕊1. Hence, Tqα is the identity map, that is, every
point in 𝕊1 is a periodic point of (prime) period q. In particular, Tα is not transitive.
Therefore, if Tα is transitive then α ∉ ℚ.

[(a)⇒(b)] Suppose now that α ∉ ℚ and that Tα is not minimal. Let F be a min-
imal set for Tα. Such a set exists by Theorem 1.5.2 and F = ω(x) for each x ∈ F by
Theorem 1.5.4. From this and Proposition 1.4.7, we deduce that Tα(F) = F. Since Tα
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is a bijection (in fact, a homeomorphism), we obtain that T−1α (F) = F = Tα(F). Con-
sequently, T−1α (𝕊

1 \ F) = 𝕊1 \ F = Tα(𝕊1 \ F). As by definition F ̸= 𝕊1 and F is closed,
the set 𝕊1 \ F is nonempty and open. So it can be written as a countable union of open
intervals

𝕊1 \ F =
∞

⋃
k=1
(ak , bk),

where the (ak , bk)’s are the connected components of 𝕊1 \ F. For each k, we have that
Tα((ak , bk)) ⊆ 𝕊1 \ F. Since (ak , bk) is connected and Tα is continuous, the image
Tα((ak , bk)) is also connected. This implies that none of the endpoints aj, bj lies in
Tα((ak , bk)). Therefore, there exists a unique ℓ = ℓ(k) ∈ ℕ such that Tα((ak , bk)) ⊆
(aℓ, bℓ). Since Tα(ak) and Tα(bk) are in F, the continuity of Tα implies that Tα((ak ,
bk)) = (aℓ, bℓ). By inductiononn, there exist uniqueakn andbkn such thatT

n
α((ak , bk)) =

(akn , bkn ). We claim that the family

{Tnα((ak , bk)) : n ≥ 0} = {(akn , bkn ) : n ≥ 0}

consists of mutually disjoint open arcs. If not, there would exist some 0 ≤ p < q such
that

Tpα((ak , bk)) ∩ T
q
α((ak , bk)) = (akp , bkp ) ∩ (akq , bkq ) ̸= 0.

As {(aj, bj) : j ∈ ℕ} is a pairwise disjoint family of open arcs, we deduce that

Tpα((ak , bk)) = T
q
α((ak , bk)).

Consequently,

(ak , bk) = T
−p
α ∘ T

q
α((ak , bk)) = T

q−p
α ((ak , bk)).

Writing r := q − p ∈ ℕ, this means that

Trα((ak , bk)) = (ak , bk).

Thus, either Trα(ak) = ak or T
r
α(ak) = bk . In either case, we would have that T

2r
α (ak) =

ak and so ak would be a periodic point of period 2r for Tα. That is, T2rα (ak) = ak + 4πrα
(mod 2π) = ak (mod 2π). This means that 4πrα = 0 (mod 2π) or, in other words, α
would be a rational number, which would contradict our original assumption.

Hence, we have shown that {Tnα((ak , bk))}
∞
n=0 forms a family of mutually disjoint

arcs. Moreover, Leb(Tnα((ak , bk))) = Leb((ak , bk)) > 0 for all n ≥ 0, where Leb denotes
the Lebesgue measure on 𝕊1. So the circle, which has finite Lebesgue measure, appar-
ently contains an infinite family of disjoint arcs of equal positive Lebesgue measure.
This is obviously impossible. This contradiction leads us to conclude that Tα is mini-
mal whenever α ∉ ℚ.
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Remark 1.5.13. An immediate consequence of the above theorem is that the orbit
𝒪+(x) of every x ∈ 𝕊1 is dense in 𝕊1 when α is irrational. This is sometimes called
Jacobi’s theorem.

Finally, among the many other forms of transitivity, let us mention two. First,
strongly transitive systems are those for which all points have a dense backward orbit.

Definition 1.5.14. A dynamical system T : X → X is strongly transitive if any of the
following equivalent statements holds:
(a) ⋃n∈ℕ T−n(x) = X for every x ∈ X.
(b) ⋃n∈ℕ T

n(U) = X for every nonempty open subset U of X.

The proof of the equivalency is left to the reader. It is obvious that a strongly tran-
sitive system is topologically mixing, and thus transitive when the underlying space
X is metrizable. But the converse does not hold in general. In Lemma 4.2.10, we will
find conditions under which a transitive system is strongly transitive.

Definition 1.5.15. A dynamical system T : X → X is very strongly transitive if for every
nonempty open subset U of X, there is N = N(U) ∈ ℕ such that⋃Nn=1 T

n(U) = X.

It is clear that a very strongly transitive system is strongly transitive, as the termi-
nology suggests. The converse is not true in general but, given the compactness of X,
every open strongly transitive system is very strongly transitive.

1.5.3 Topological exactness

Definition 1.5.16. A dynamical system T : X → X is called topologically exact if for
each nonempty open set U ⊆ X, there exists some n ∈ ℕ such that Tn(U) = X.

Note that topologically exact systems are very strongly transitive. However, they
may not be minimal. Full shifts, which we shall study in Chapter 3, are topologically
exact systems, which are notminimal. On the other hand, there are very strongly tran-
sitive systems, which are not topologically exact (see Exercise 1.7.25).

Remark 1.5.17. Topological exactness is a topological conjugacy invariant. However,
it is not a complete invariant.We shall see in Chapter 3 examples of topologically exact
systems that are not topologically conjugate. Among others, two full shifts are topo-
logically conjugate if and only if they are built upon alphabets with the same number
of letters (see Theorem 3.1.14).

1.6 Examples
1.6.1 Rotations of compact topological groups

For our first example, we consider topological groups. For a detailed introduction to
these objects, the reader is referred to [69] and, for a dynamical viewpoint, to [21].
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A topological group is simply a group G together with a topology on G that satisfies
the following two properties:
(a) The product map π : G × G → G defined by setting

π(g, h) := gh

is continuous when G × G is endowed with the product topology.
(b) The inverse map i : G → G defined by setting

i(g) := g−1

is continuous.

Given a ∈ G, we define the map La : G → G by

La(g) := ag.

So La acts on the group G by left multiplication by a. Themap La is often referred to as
the left rotation of G by a. The map La is continuous since La(g) = π(a, g). Moreover,
observe that Lna = Lan for every n ∈ ℤ. In particular, L

−1
a = La−1 . The rotation La is thus

a homeomorphism of G. In a similar way, we define the right rotation of G by a to be
the continuous map Ra : G → G, where

Ra(g) := ga.

For rotations of topological groups, transitivity and minimality are one and the
same property, as the following theorem shows.

Theorem 1.6.1. Let La : G → G be the left rotation of a topological group G by a ∈ G.
Then La isminimal if and only if La is transitive. Similarly, the right rotation Ra isminimal
if and only if it is transitive.

Proof. If La is minimal, then La is transitive by Remark 1.5.7(a). For the converse, let x
be a transitive point and let y ∈ G be arbitrary. According to Theorem 1.5.4, it suffices
to show that ω(y) = G. Let z ∈ ω(x). Then there exists a strictly increasing sequence
(nk)∞k=1 of nonnegative integers such that limk→∞ L

nk
a (x) = z. Observe that

lim
k→∞

Lnka (y) = limk→∞
Lnka (xx

−1y) = lim
k→∞

ankxx−1y = lim
k→∞
(ankx)(x−1y)

= lim
k→∞
(Lnka (x))(x

−1y) = lim
k→∞

Rx−1y(L
nk
a (x))

= Rx−1y( limk→∞
Lnka (x)) = Rx−1y(z).

So Rx−1y(z) ∈ ω(y). Since z ∈ ω(x)was chosen arbitrarily, we deduce that Rx−1y(ω(x)) ⊆
ω(y). As ω(x) = G, we conclude that

G = Rx−1y(G) = Rx−1y(ω(x)) ⊆ ω(y) ⊆ G.
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Hence, ω(y) = G for any arbitrary y ∈ G and so G, and thus La, is minimal. The proof
that Rα is minimal proceeds analogously and is thus left to the reader.

We now give a characterization of all minimal rotations of a topological group.

Proposition 1.6.2. The rotation La : G → G is minimal if and only if

G = 𝒪+(e) = {an : n ≥ 0},

where e denotes the identity element of G.

Proof. First, observe that 𝒪+(e) = {an : n ≥ 0} since Lna(e) = a
ne = an for each n ≥ 0.

Now suppose that La is minimal. By Theorem 1.5.4, we have that 𝒪+(g) = G for every
g ∈ G. In particular,𝒪+(e) = G.

For the converse, suppose that G = 𝒪+(e). According to Theorem 1.6.1, it is suffi-
cient to prove that La is transitive. By Theorem 1.5.9, since La is surjective it is sufficient
to show that La is weakly transitive. This is certainly the case since𝒪+(e) = G.

This characterization shows that minimal rotations can only occur in abelian
groups. Indeed, if La is minimal and x, y ∈ G, then there exist strictly increasing
sequences (nj)∞j=1 and (mk)

∞
k=1 of nonnegative integers such that x = limj→∞ anj and

y = limk→∞ amk . Using the left and right continuity of the product map, we obtain

xy = ( lim
j→∞

anj)y = lim
j→∞
(anjy) = lim

j→∞
(anj lim

k→∞
amk)

= lim
j→∞
( lim
k→∞
(anjamk )) = lim

j→∞
( lim
k→∞
(amkanj))

= lim
j→∞
(( lim

k→∞
amk)anj) = lim

j→∞
(yanj)

= y lim
j→∞

anj = yx.

Rotations of the n-dimensional torus𝕋n = 𝕊1 × ⋅ ⋅ ⋅ × 𝕊1

Weshall nowstudy rotations (also sometimes called translations) of then-dimensional
torus

𝕋n = ℝn/ℤn = 𝕊1 × ⋅ ⋅ ⋅ × 𝕊1,

that is, the n-times direct product of 𝕊1 := [0, 1] (mod 1). Let γ = (γ1,γ2, . . . ,γn) ∈ 𝕋n

and let Lγ : 𝕋n → 𝕋n be the rotation of 𝕋n by γ, which is defined to be

Lγ(x1, x2, . . . , xn) := (x1 + γ1, x2 + γ2, . . . , xn + γn) (mod 1).

The proof of the following theorem uses Fourier coefficients and the Hilbert space
L2(λn) of complex-valued functions whose squaredmodulus is integrable with respect
to the Lebesgue measure λn on the n-dimensional torus. A good reference for those
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unfamiliar with Fourier coefficients or the Hilbert space L2(λn) is Rudin [58]. Those
unfamiliar with measure theory may wish to consult Appendix A first.

Recall that the numbers 1,γ1,γ2, . . . ,γn are said to be linearly independent over the
field of rational numbersℚ if the equation

α0 + α1γ1 + α2γ2 + ⋅ ⋅ ⋅ + αnγn = 0,

where the αj are rational numbers, has for unique solution α0 = α1 = α2 = ⋅ ⋅ ⋅ = αn =
0. Equivalently, the numbers 1,γ1,γ2, . . . ,γn are linearly independent overℚ if

k1γ1 + k2γ2 + ⋅ ⋅ ⋅ + knγn ∈ ℤ,

where each kj ∈ ℤ, only when k1 = k2 = ⋅ ⋅ ⋅ = kn = 0.
We now prove the following classical result, which is a significant generalization

of Theorem 1.5.12 with a consequently more intricate proof.

Theorem 1.6.3. Let Lγ : 𝕋n → 𝕋n bea translation of the torus. The following statements
are equivalent:
(a) The numbers 1,γ1,γ2, . . . ,γn are linearly independent overℚ.
(b) Lγ is minimal.
(c) Lγ is transitive.

Proof. According to Theorem 1.6.1, a rotation of a topological group is minimal if and
only if it is transitive. Therefore, (b)⇔(c). We shall now prove that (a)⇔(c).

Suppose first that Lγ is transitive. Assume by way of contradiction that
∑nj=1 kjγj ∈ ℤ, where each kj ∈ ℤ and at least one of these numbers, say ki, differs
from zero. Let φ : 𝕋n → ℝ be the function defined by

φ(x) = φ(x1, x2, . . . , xn) = sin(2π
n
∑
j=1

kjxj).

Since x is in reality the equivalence class [x] = {x + ℓ : ℓ ∈ ℤn}, we must check that
φ is well-defined, that is, is constant on the entire equivalence class. This straight-
forward calculation is left to the reader as an exercise (see Exercise 1.7.30). As φ is a
composition of continuous maps, it is continuous. Moreover, since φ(0,0, . . . ,0) = 0
but φ(0, . . . ,0, 1/(4ki),0, . . . ,0) = sin(2πki

1
4ki
) = sin( π2 ) = 1, the function φ is not con-

stant. But given that

φ(Lγ(x)) = φ(x1 + γ1, x2 + γ2, . . . , xn + γn) = sin(2π
n
∑
j=1

kj(xj + γj)),

and as we have assumed that∑nj=1 kjγj ∈ ℤ, we deduce that

φ(Lγ(x)) = sin(2π
n
∑
j=1

kjxj + 2π
n
∑
j=1

kjγj) = sin(2π
n
∑
j=1

kjxj) = φ(x).
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Hence, φ is Lγ-invariant. To summarize, φ is a nonconstant function, which is invari-
ant under a transitive system. According to Remark 1.5.7(d+e) this is impossible, and
thus all kj must equal 0. Hence, 1,γ1,γ2, . . . ,γn are linearly independent overℚ.

For the converse implication, suppose that 1,γ1,γ2, . . . ,γn are linearly indepen-
dent overℚ and, again for a contradiction, suppose that Lγ is not transitive. By Theo-
rem 1.5.11, we have that Lγ is not topologically mixing. So there exist nonempty open
sets U and V contained in 𝕋n such that

∞

⋃
n=1

Lnγ(U) ∩ V = 0.

This means thatW := ⋃∞n=1 L
n
γ(U) ⊆ X \ V . ThenW ⊆ X \ V since X \ V is a closed set.

Moreover,

Lγ(W) = Lγ(
∞

⋃
n=1

Lnγ(U)) =
∞

⋃
n=1

Ln+1γ (U) ⊆ W ,

and we thus obtain that Lγ(W) ⊆ W . Also, the continuity of Lγ ensures that Lγ(W) ⊆
Lγ(W). Therefore Lγ(W) ⊆ W . We aim to show that this is in fact an equality. To that
end, let λn denote the Lebesgue measure on𝕋n, and note that λn is translation invari-
ant, which means that

λn(E + v) = λn(E), ∀E ⊆ 𝕋
n, ∀v ∈ 𝕋n.

So

λn(Lγ(W)) = λn(W). (1.1)

If it turned out that Lγ(W) ⊊ W , then there would exist x ∈ W \ Lγ(W) and ε > 0 such
that 0 ̸= B(x, ε) ∩W ⊆ W \ Lγ(W). But B(x, ε) ∩W is a nonempty open set, and hence
has positive Lebesguemeasure. Thus, wewould have λn(W \Lγ(W)) > 0, whichwould
contradict (1.1). Hence, Lγ(W) = W and, since Lγ is invertible, L−1γ (W) = W .

Now, denote by 1A the characteristic function of a subset A of 𝕋n, that is,

1A := {
1 if x ∈ A
0 if x ∉ A.

For any map T and any set A, we have that

1A ∘ T = 1T−1(A).

Since the setW is completely Lγ-invariant, we deduce that

1W ∘ Lγ = 1L−1γ (W) = 1W .

That is, the function 1W is Lγ-invariant.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



26 | 1 Dynamical systems

For every k ∈ ℝn, let ψk : 𝕋
n → ℂ be defined by

ψk(x) = e
2πi⟨k,x⟩ = cos(2π⟨k, x⟩) + i sin(2π⟨k, x⟩),

where ⟨k, x⟩ = ∑nj=1 kjxj is the scalar product of the vectors k and x. Then the family
{ψk}k∈ℤn is an orthonormal basis for the Hilbert space L2(λn). Since 1W ∈ L

2(λn), we
can write

1W (x) = ∑
k∈ℤn

akψk(x) = ∑
k∈ℤn

ake
2πi⟨k,x⟩ for λn-a. e. x ∈ 𝕋

n, (1.2)

where

ak := ∫ 1W (y)ψk(y) dλn(y)

are the Fourier coefficients of 1W . Then, for λn-a. e. x ∈ 𝕋
n, we have

1W (x) = 1W (Lγ(x)) = ∑
k∈ℤn

ake
2πi⟨k,x+γ⟩

= ∑
k∈ℤn

ake
2πi⟨k,γ⟩ψk(x). (1.3)

Since {ψk}k∈ℤn is an orthonormal basis, we deduce from (1.2) and (1.3) that

ak = ake
2πi⟨k,γ⟩

for every k ∈ ℤn. For each such k, this implies that

either ak = 0 or e
2πi⟨k,γ⟩ = 1.

In the latter case,

⟨k,γ⟩ =
n
∑
j=1

kjγj ∈ ℤ.

Since the γi were assumed to be linearly independent over ℚ, this implies that k =
(0,0, . . . ,0). So, for all k ̸= (0,0, . . . ,0), we must be in the former case, that is, we must
have that ak = 0. Hence,

1W (x) = a(0,...,0) = λn(W) for λn-a. e. x ∈ 𝕋
n.

As W is a nonempty open set, it follows that λn(W) > 0, and thus λn(W) > 0. So
1W (x) > 0 for λn-a. e. x ∈ 𝕋n. However, recall that W ∩ V = 0, and thus 1W (V) = 0.
As V is a nonempty open set, λn(V) > 0 and, therefore, 1W (x) = 0 on a set of positive
measure. We have reached a contradiction. This means that Lγ is transitive.
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1.6.2 Maps of the interval

Although there is no known topological conjugacy invariant which is a complete in-
variant for the family of all dynamical systems, some conjugacy invariants turn out to
be complete invariants for subfamilies of systems. By a complete invariant for a sub-
family, wemean that if two systems from the subfamily share this invariant, then they
are automatically topologically conjugate.

For instance, we have seen that the number of periodic points of any given period
is a topological conjugacy invariant, though not a complete invariant. However, the
number of periodic points of a given period sometimes turns out to be a complete
invariant ifwe restrict our attention to an appropriate subfamily of dynamical systems.

In this section, we show that the number of fixed points is a complete invariant for
the family of all self-homeomorphisms of compact intervals which fix the endpoints
of their domain and whose sets of fixed points are finite. These self-homeomorphisms
can be characterized as the strictly increasing continuous self-maps of compact inter-
vals that fix the endpoints of their domain and have only finitely many fixed points.

The proof of the complete invariance of the number of fixed points will be given
in several stages.

Theorem 1.6.4. Any two strictly increasing continuous maps of the unit interval that
fix the endpoints of the interval and that have no other fixed points are topologically
conjugate.

Proof. Let I := [0, 1], and let T1,T2 : I → I be two strictly increasing continuous maps
such that Fix(T1) = Fix(T2) = {0, 1}. By the intermediate value theorem, each Ti is a
surjection. As Ti is a strictly increasing map, it is also injective. Thus, Ti is a bijection
andT−1i exists. Furthermore,T−1i is a strictly increasing continuous bijection. It follows
immediately that Tni is a strictly increasing homeomorphism of I for all n ∈ ℤ.

Let x ∈ (0, 1). Since T1(x) ̸= x, either T1(x) < x or T1(x) > x. Similarly, either
T2(x) < x or T2(x) > x. Let us consider the case in which T1(x) > x and T2(x) > x. The
proofs of the other three cases are similar and are left to the reader. Then T1(y) > y for
every y ∈ (0, 1); otherwise, the continuous map T1 would have a fixed point between 0
and 1 by the intermediate value theorem (because of the change of sign in the values
of the continuous map T1 − IdI ). Similarly, T2(y) > y for each y ∈ (0, 1). As Tni is strictly
increasing for all n ∈ ℤ, it follows easily that for allm < n and all y ∈ (0, 1), we have

Tmi (y) < T
n
i (y)

for each i = 1, 2.
Now, fix 0 < a < 1. Note once again that Ti(a) > a and let△i = [a,Ti(a)]. We now

state and prove three claims that will allow us to complete the proof of the theorem.

Claim 1. For all m, n ∈ ℤ such that m < n, we have

Tmi (Int(△i)) ∩ T
n
i (Int(△i)) = 0.
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Proof. Let j ∈ ℤ. Since T ji is strictly increasing and continuous, we have that

T ji (Int(△i)) = (T
j
i (a),T

j+1
i (a)).

Asm + 1 ≤ n, it follows that Tm+1i (a) ≤ T
n
i (a) and, therefore,

Tmi (Int(△i)) ∩ T
n
i (Int(△i)) = (T

m
i (a),T

m+1
i (a)) ∩ (T

n
i (a),T

n+1
i (a)) = 0.

Claim 2. For all x ∈ (0, 1), we have that

lim
n→∞

T−ni (x) = 0 and lim
n→∞

Tni (x) = 1.

Proof. Let x ∈ (0, 1). We shall establish the second limit; the first limit can be as-
certained analogously. First, note that the limit must exist because the sequence
(Tni (x))

∞
n=0 is (strictly) increasing and bounded above by 1. So, let y = limn→∞ Tni (x).

According to Lemma 1.1.4, y is a fixed point of Ti. Moreover, y is clearly not equal to 0.
Hence, y = 1.

Claim 3.
∞

⋃
n=−∞

Tni (△i) = (0, 1).

Proof. It is clear that ⋃∞n=−∞ T
n
i (△i) ⊆ (0, 1). To prove the opposite inclusion, let x ∈

(0, 1). If x ∈ △i, we are done. So, let x ∉ △i. Then either x < a or x > Ti(a). In the
former case, there exists by Claim 2 a largest n ≥ 0 such that Tni (x) < a. Therefore,
Tn+1i (x) ≥ a. Moreover, since Ti is strictly increasing, T

n
i (x) < a implies Tn+1i (x) < Ti(a).

Hence, Tn+1i (x) ∈ △i, that is, x ∈ T
−(n+1)
i (△i). In the latter case, by Claim 2 there exists

a largest n ≥ 0 such that T−ni (x) > Ti(a). Then T−(n+1)i (x) ≤ Ti(a). Moreover, since
T−1i is strictly increasing, T−(n+1)i (x) > T−1i (Ti(a)) = a. Hence, T

−(n+1)
i (x) ∈ △i, that is,

x ∈ T(n+1)i (△i). In all cases, x ∈ ⋃
∞
n=−∞ T

n
i (△i).

In order tomake the idea behind the sequence of intervals (Tni (△i))n∈ℤ clearer, see
Figure 1.5.

Wewill nowdefine a conjugacymap h between T1 and T2. First of all, suppose that
H : △1 → △2 is any homeomorphism satisfying

H(a) = a and H(T1(a)) = T2(a).

Let x ∈ (0, 1). By Claim 3, there exists n(x) ∈ ℤ such that x ∈ T−n(x)1 (△1). We shall
shortly observe that n(x) is uniquely defined for all x ∉ {Tn1 (a) : n ∈ ℤ}. When x ∈
{Tn1 (a) : n ∈ ℤ}, then n(x) takes the value of any one of two consecutive integers; so
it is not uniquely defined and this will require prudence when defining h. Define the
conjugacy map h by setting

h(x) =
{{
{{
{

T−n(x)2 ∘ H ∘ T
n(x)
1 (x) if x ∈ (0, 1)

0 if x = 0
1 if x = 1.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.6 Examples | 29

Figure 1.5: The map T is an orientation-preserving homeomorphism of the unit interval that fixes
only the endpoints. The vertical dotted lines indicate the intervals (T n(△))n∈ℤ, where△ := [a, T (a)].

We first check that this map is well-defined. Suppose that Tk1 (x),T
ℓ
1 (x) ∈ △1 for some

k < ℓ. Claim 1 above implies that Tk1 (x),T
ℓ
1 (x) ∈ 𝜕△1 and k + 1 = ℓ. It follows that

Tk1 (x) = a and T
ℓ
1 (x) = T

k+1
1 (x) = T1(a). Therefore,

T−ℓ2 ∘ H ∘ T
ℓ
1 (x) = T

−(k+1)
2 (H(T1(a)))

= T−(k+1)2 (T2(a))

= T−k2 (a)

= T−k2 (H(a))

= T−k2 (H(T
k
1 (x)))

= T−k2 ∘ H ∘ T
k
1 (x).

Thus, the map h is well-defined.
We must also show that T2 ∘ h = h ∘ T1. Toward this end, first observe that we have

Tn(x)−11 (T1(x)) = T
n(x)
1 (x) ∈ △1, so we can choose n(T1(x)) to be n(x) − 1, and then we

obtain that

h ∘ T1(x) = T
−n(T1(x))
2 ∘ H ∘ Tn(T1(x))1 (T1(x))

= T−(n(x)−1)2 ∘ H ∘ Tn(x)−11 (T1(x))
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= T2 ∘ T
−n(x)
2 ∘ H ∘ T

n(x)
1 (T

−1
1 (T1(x)))

= T2 ∘ h(x).

To complete the proof, it remains to show that h is a bijection and that it is con-
tinuous (recall that a continuous bijection between compact metrizable spaces is a
homeomorphism). That h is continuous follows from the fact that

h|T−n1 (△1) = T
−n
2 ∘ H ∘ T

n
1 |T−n1 (△1)

for every n ∈ ℤ. Indeed, as Tn1 , H, and T−n2 are continuous, the restriction of h to
each T−n1 (△1) is continuous. Using left and right continuity at the endpoints of the
intervals T−n1 (△1), we conclude from Claim 3 that h is continuous on (0, 1). The con-
tinuity of h at 0 follows from the fact that limx→0 n(x) = ∞, that h(x) ∈ T

−n(x)
2 (△2) =

[T−n(x)2 (a),T
−(n(x)−1)
2 (a)], and, by Claim 2, that limn→∞ T−n2 (a) = 0. A similar argument

establishes the continuity of h at 1.
For the injectivity of h, we shall show that h is strictly increasing. If 0 < x < y < 1,

thenn(x) andn(y) canbe chosen so thatn(x) ≥ n(y). Ifn(x) = n(y) =: n, thenh(x) < h(y)
since the restriction of h to T−n1 (△1) is strictly increasing (because T

n
1 , H and T−n2 are

all strictly increasing). If n(x) > n(y), then T−n(x)2 (△2) lies to the left of T
−n(y)
2 (△2) and,

as h(x) ∈ T−n(x)2 (△2) while h(y) ∈ T
−n(y)
2 (△2), we deduce that h(x) < h(y).

Finally, since h is continuous, h(0) = 0 and h(1) = 1, the map h is surjective by the
intermediate value theorem.

Corollary 1.6.5. Any two strictly increasing continuousmaps of compact intervalswhich
have the same finite number of fixed points, including both endpoints of their respective
domains, are topologically conjugate.

Proof. Wefirst prove that if f : I → I is a strictly increasing continuousmapwhich only
fixes the points 0 and 1 and if g : [a, b]→ [a, b] is a strictly increasing continuousmap
which only fixes a and b, then f and g are topologically conjugate. Let k : [a, b]→ I be
defined by k(x) = x−a

b−a . Then k is a strictly increasing homeomorphism. Consequently,
k ∘ g ∘ k−1 is a strictly increasing continuous map of I which only fixes 0 and 1, just like
f . By Theorem 1.6.4, there is a conjugacy map h : I → I between f and k ∘ g ∘ k−1 (i. e., h
is a homeomorphism such that h ∘ f = k ∘ g ∘ k−1 ∘ h). It follows that k−1 ∘ h : I → [a, b]
is a conjugacy map between f and g.

Recall that topological conjugacy is an equivalence relation. It follows from the
argument above and the transitivity of topological conjugacy that any two strictly in-
creasing continuous maps of compact intervals which only fix the endpoints of their
respective domains, are topologically conjugate.

Now, let T : I → I and S : [a, b] → [a, b] be strictly increasing continuous maps
with the same finite number of fixed points, which include the endpoints of their re-
spective domains. Denote the sets of fixed points of T and S by {0, xT1 , . . . , xTk−1 , 1} and

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.7 Exercises | 31

{a, xS1 , . . . , xSk−1 , b}, respectively. Thesefixedpoints induce twofinite sequences ofmaps

T0 : [0, xT1 ] → [0, xT1 ] S0 : [a, xS1 ] → [a, xS1 ]
T1 : [xT1 , xT2 ] → [xT1 , xT2 ] S1 : [xS1 , xS2 ] → [xS1 , xS2 ]

...
...

Tk−1 : [xTk−1 , 1] → [xTk−1 , 1] Sk−1 : [xSk−1 , b] → [xSk−1 , b]

maps which are the restrictions of T and S, and hence are strictly increasing continu-
ousmaps of compact intervals which only fix the endpoints of their domains. For each
0 ≤ i < k, let hi be a conjugacy map between Ti and Si (such a map exists according to
thediscussion in the previous paragraph). Then seth : I → [a, b] to be themapdefined
by h(x) = hi(x)when x ∈ [xTi , xTi+1 ]. This map h is clearly a bijection and is continuous
(the continuity of h at the points {xT1 , . . . , xTk−1 } can be established bymeans of left and
right continuity). Finally, h ∘ T = S ∘ h since hi ∘ Ti = Si ∘ hi for all 0 ≤ i < k.

Finally, it follows from this and the transitivity of topological conjugacy that any
two strictly increasing continuous maps of compact intervals with the same finite
number of fixed points, among whose are the endpoints of their respective domains,
are topologically conjugate.

However, note that any two strictly increasing continuous maps of compact inter-
vals which have the same finite number of fixed points, one of which fixes the end-
points of its domain while the other does not, are not topologically conjugate (see
Exercise 1.7.34). In particular, this establishes that the number of fixed points is not
a complete invariant for the subfamily of all strictly increasing continuous maps of
compact intervals which have the same given finite number of fixed points.

1.7 Exercises
Exercise 1.7.1. In this exercise, we revisit Example 1.1.3(b). Recall that, given m ∈ ℕ,
we defined themap Tm : 𝕊1 → 𝕊1 by setting Tm(x) := mx (mod 1). Themap Tm is simply
a piecewise linear map that sends each interval [i/m, (i + 1)/m], for 0 ≤ i < m, onto 𝕊1.
It can be expressed by the formula

Tm(x) = mx − i for all i
m
≤ x ≤ i + 1

m
.

Prove that for every n ∈ ℕ the iterates of T can be expressed as

Tnm(x) = m
nx −

n
∑
k=1

mn−k in−k+1

if

1
mn

n
∑
k=1

mn−k in−k+1 ≤ x ≤
1
mn(

n
∑
k=1

mn−k in−k+1 + 1),

where 0 ≤ i1, i2, . . . , in < m. Deduce that Tm hasmn periodic points of period n.
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Exercise 1.7.2. Show that a point x ∈ X is preperiodic for a system T : X → X if and
only if its forward orbit𝒪+(x) is finite.

Exercise 1.7.3. Let Per(T) be the set of periodic points for a system T : X → X. Prove
that

PrePer(T) = ⋃
x∈Per(T)

𝒪−(x),

where PrePer(T) denotes the set of all preperiodic points for the system T.

Exercise 1.7.4. Identify all the preperiodic points for the dynamical systems intro-
duced in Example 1.1.3.

Exercise 1.7.5. Prove that if both X and Y are dense subsets of ℝ and g : X → Y is
an increasing bijection, then g extends uniquely to an increasing homeomorphism
g̃ : ℝ→ ℝ.

Exercise 1.7.6. Prove that topological conjugacy defines an equivalence relation on
the space of dynamical systems.

Exercise 1.7.7. Show that if two dynamical systems T : X → X and S : Y → Y are
topologically conjugate via a conjugacy map h : X → Y , then their corresponding
iterates are topologically conjugate by means of the same conjugacy map h.

Exercise 1.7.8. Prove that for every n ∈ ℕ there exists a one-to-one correspondence
between the periodic points of period n of two topologically conjugate dynamical sys-
tems. Show that this implies for every n ∈ ℕ the existence of a one-to-one correspon-
dence between the periodic points of prime period n.

Exercise 1.7.9. Prove that if two dynamical systems T : X → X and S : Y → Y are
topologically conjugate via a conjugacy map h : X → Y , then h induces a one-to-one
correspondence between preperiodic points. Deduce that the number of preperiodic
points is a topological conjugacy invariant. By means of an example, show also that
the number of preperiodic points is not a complete invariant.

Exercise 1.7.10. Suppose that a dynamical system S : Y → Y is a factor of a system
T : X → X. Show that every orbit of T is projected onto an orbit of S. Show also that
for all n ∈ ℕ every periodic point of period n for T is mapped to a periodic point for S
whose period is a factor of n.

Exercise 1.7.11. Prove that the closure of every invariant set is invariant.

Exercise 1.7.12. Show that if x ∈ X is a periodic point for a system T : X → X, then
ω(x) = 𝒪+(x) = 𝒪+(x). Observe also that the set of limit points of 𝒪+(x) is empty.
Deduce that ω(x) does not coincide with the set of limit points of𝒪+(x).
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Exercise 1.7.13. Prove that if x ∈ X is a preperiodic point for a system T : X → X, then
ω(x) ̸= 𝒪+(x) = 𝒪+(x). Soω(x) ̸= 𝒪+(x). Moreover, as in Exercise 1.7.12, prove thatω(x)
does not coincide with the set of limit points of the forward orbit𝒪+(x).

Exercise 1.7.14. Let T : X → X be a dynamical system. Prove that ω(x) is the set of
limit points of𝒪+(x) if and only if x is not a periodic or preperiodic point.

Exercise 1.7.15. Let T : X → X be a dynamical system. Show that𝒪+(x)∪ω(x) = 𝒪+(x)
for any x ∈ X.

Exercise 1.7.16. Show that the set of limit points of any set is closed.

Hint: Prove that any accumulation point of accumulation points of a set S is an accumu-
lation point of S.

Exercise 1.7.17. Prove that any intersection of a descending sequence of nonempty
compact sets in a Hausdorff topological space is a nonempty compact set.

Exercise 1.7.18. Show that every minimal system is surjective.

Exercise 1.7.19. Prove that minimality is not a complete invariant.

Hint: Construct two finite minimal dynamical systems with different cardinalities.

Exercise 1.7.20. Prove thatminimality is not a complete invariant for infinite systems.

Exercise 1.7.21. Let +2 : {0, 1} → {0, 1} denote addition modulo 2 and endow the set
{0, 1} with the discrete topology. Prove that the dynamical system T : 𝕊1 × {0, 1} →
𝕊1 × {0, 1} given by the formula

T(x, y) := (x +√2 (mod 1), y +2 1)

is minimal.

Exercise 1.7.22. Prove or disprove (by providing a counterexample) that if T : X → X
is minimal then T2 : X → X is also minimal.

Exercise 1.7.23. Prove that the statements in Definition 1.5.10 are equivalent.

Exercise 1.7.24. Prove that topological transitivity, strong transitivity, very strong
transitivity, and topological exactness are topological conjugacy invariants.

Exercise 1.7.25. Construct a very strongly transitive, open system which is not topo-
logically exact. (Recall that amap is said to be open if the image of any open set under
that map is open.)

Exercise 1.7.26. Build a strongly transitive system which is not very strongly transi-
tive.

Exercise 1.7.27. Find a transitive system which is not strongly transitive.
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Exercise 1.7.28. Let T : X → X be a dynamical system. Suppose that for every
nonempty open subset U of X there exists n ≥ 0 such that Tn(U) is a dense sub-
set of X. Prove that T is topologically exact.

Exercise 1.7.29. A continuous map T : X → X is said to be locally eventually onto
provided that for every nonempty open subset U of X there exists n ≥ 0 such that

n
⋃
j=0

T j(U) = X.

Each topologically exact map is locally eventually onto. Provide an example of a lo-
cally eventually onto map that is not topologically exact.

Exercise 1.7.30. Let (k1, k2, . . . , kn) ∈ ℤn. Let φ : 𝕋n → ℝ be the function defined by

φ(x) = φ(x1, x2, . . . , xn) = sin(2π
n
∑
j=1

kjxj).

Show that φ is well-defined.

Exercise 1.7.31. Let T : X → X be a dynamical system. Prove that a subset Y of X is
T-invariant if and only if 1Y is T-invariant, where 1Y denotes the characteristic func-
tion of the set Y , that is,

1Y (x) := {
1 if x ∈ Y
0 if x ∉ Y .

Exercise 1.7.32. Establish graphically that Claims 1, 2, and 3 in the proof of Theo-
rem 1.6.4 hold.

Exercise 1.7.33. Prove Theorem 1.6.4 when T1(x) > x for all x ∈ (0, 1) and T2(x) < x for
all x ∈ (0, 1).

Hint: Prove that Claim 1 still holds. Prove that Claim 2 holds for T1. However, show
that limn→∞ Tn2 (x) = 0 and limn→∞ T−n2 (x) = 1. Then prove that Claim 3 holds. Finally,
show that

h(x) =
{{
{{
{

T−n(x)2 ∘ H ∘ T
n(x)
1 (x) if x ∈ (0, 1)

1 if x = 0
0 if x = 1.

is a conjugacy map between T1 and T2.

Exercise 1.7.34. Prove that any two strictly increasing continuous maps of compact
intervals which have the same finite number of fixed points, one of which fixes the
endpoints of its domain while the other does not, are not topologically conjugate.
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Hint: Let T : [a, b] → [a, b] and S : [c, d] → [c, d] be strictly increasing continuous
maps with T fixing both a and b. Suppose that h : [a, b] → [c, d] is a conjugacy map
between T and S. Using the Intermediate Value Theorem (IVT), show that h(a) is an
extreme (in other words, the leftmost or rightmost) fixed point of S, while h(b) is the
other extreme fixed point. Using the IVT once more, show that h([a, b]) = [h(a), h(b)].
Deduce that S fixes both c and d.
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2 Homeomorphisms of the circle
In this chapter, we temporarily step away from the general theory of dynamical sys-
tems to consider more specific examples. In the preparatory Section 2.1, we first study
lifts of maps of the unit circle. Using lifts, we investigate homeomorphisms of the unit
circle in Section 2.2. Thesehomeomorphisms constitute theprimary class of systemsof
interest in this chapter. After showing that rotations are homeomorphisms, we intro-
duce Poincaré’s notion of rotation number for homeomorphisms of the circle. Roughly
speaking, this number is the average rotation that a homeomorphism induces on the
points of the circle over the long term. In Section 2.3, we examine in more detail dif-
feomorphisms of the circle. Themain result of this chapter is Denjoy’s theorem (Theo-
rem 2.3.4), which states that if a C2 diffeomorphism has an irrational rotation number,
then the diffeomorphism constitutes a minimal system which is topologically conju-
gate to an irrational rotation. Strictly speaking, it suffices that the modulus of the dif-
feomorphism’s derivative be a function of bounded variation. Denjoy’s theorem is a
generalization of Theorem 1.5.12.

The concept of rotation number generalizes to all continuous degree-one self-
maps of the circle. It is then called rotation interval. A systematic account of the theory
of suchmaps and, in particular, an extended treatment of the rotation interval, can be
found in [3].

2.1 Lifts of circle maps
In this section, we discuss general properties that are shared by all circle maps, be
they one-to-one or not. As already mentioned in Section 1.5, the unit circle 𝕊1 can be
defined in many homeomorphic ways. Here, we will regard 𝕊1 as the quotient space
ℝ/ℤ, that is, as the space of all equivalence classes

[x] = {x + n : n ∈ ℤ},

where x ∈ ℝ, with metric

ρ([x], [y]) = inf{(x + n) − (y +m)
 : n,m ∈ ℤ} = inf{|x − y + k| : k ∈ ℤ}

= min{|x − y − 1|, |x − y|, |x − y + 1|}.

To study the dynamics of amapon the circle, it is helpful to lift thatmap from𝕊1 ≅ ℝ/ℤ
to ℝ. This can be done via the continuous surjection

π : ℝ → 𝕊1

x → π(x) = [x].

Definition 2.1.1. Let T : 𝕊1 → 𝕊1 be a continuous map of the circle. A continuous map
T̃ : ℝ → ℝ is called a lift of T to ℝ if π ∘ T̃ = T ∘ π, that is, if the following diagram

https://doi.org/10.1515/9783110702682-002
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commutes:

ℝ

π
??

T̃ ?? ℝ

π
??

𝕊1
T
?? 𝕊1

In other words, T : 𝕊1 → 𝕊1 is a factor of T̃ : ℝ→ ℝ via the factor map π.

Note that π is countably infinite to one, and hence cannot be a conjugacy map. In
fact, π : ℝ → 𝕊1 is a covering map, that is, every [x] ∈ 𝕊1 has an open neighborhood
U[x], which is evenly covered by π. Being evenly covered by πmeans that the preimage
π−1(U[x]) is a union of disjoint open subsets of ℝ, called sheets of π−1(U[x]), each of
which is mapped homeomorphically by π onto U[x]. Observe further that π is a local
isometrywhen𝕊1 ≅ ℝ/ℤ is equippedwith themetric ρ.More precisely, it is an isometry
on any interval of length at most 1/2.

Lemma 2.1.2. Every continuous map T : 𝕊1 → 𝕊1 admits a lift T̃ : ℝ→ ℝ.

Proof. Fix s0 ∈ ℝ and t0 ∈ π−1(T(π(s0))). Define T̃(s0) := t0. Then π(T̃(s0)) = π(t0) =
T(π(s0)). In other words, T̃(s0) is a lift of s0. This is the starting point of our lift. By
considering successive neighborhoods, we will gradually lift the points of 𝕊1 toℝ. For
each t ∈ ℝ, let Uπ(t) ⊆ 𝕊1 be the largest open neighborhood centered on π(t) which is
evenly covered by π, that is,

Uπ(t) = {π(r) : t − 1/2 < r < t + 1/2}.
Wedefine the sought-after lift by successive steps, as follows. LetV0 be the unique

sheet of π−1(Uπ(T̃(s0))), which contains T̃(s0), that is, let
V0 := {r ∈ ℝ : T̃(s0) − 1/2 < r < T̃(s0) + 1/2}.

Since T(π(s0)) = π(T̃(s0)) ∈ Uπ(T̃(s0)), since T is continuous and since Uπ(T̃(s0)) is open,
there exists s′1 > s0 such that T(π(s)) ∈ Uπ(T̃(s0)) for all s0 ≤ s < s′1. Denote by s1 the
supremum of all such s′1. For each s0 ≤ s < s1, define T̃(s) to be the unique point of V0
such that π(T̃(s)) = T(π(s)).

If s1 =∞, then the lift is defined for all s ≥ s0. If s1 <∞, define

T̃(s1) := lims↗s1 T̃(s).
Then

T̃(s1) ∈ {T̃(s0) ± 1/2}

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.1 Lifts of circle maps | 39

and

π(T̃(s1)) = T(π(s1)).

Just like we did from s0, the map T̃ can then be extended beyond s1 as follows.
Let V1 be the unique sheet of π−1(Uπ(T̃(s1))) which contains T̃(s1). Since T(π(s1)) =
π(T̃(s1)) ∈ Uπ(T̃(s1)), sinceT is continuous and sinceUπ(T̃(s1)) is open, there exists s′2 > s1
such that T(π(s)) ∈ Uπ(T̃(s1)) for all s1 ≤ s < s′2. Denote by s2 the supremum of all such
s′2. For each s1 ≤ s < s2, let T̃(s) be the unique point of V1 such that π(T̃(s)) = T(π(s)).
If s2 <∞, define

T̃(s2) := lims↗s2 T̃(s).
Then

T̃(s2) ∈ {T̃(s1) ± 1/2} ⊆ {T̃(s0) ± k/2 : k = 0, 1, 2}

and

π(T̃(s2)) = T(π(s2)).

Continuing in this way, either the procedure ends with some sn = ∞ or it does
not, in which case a strictly increasing sequence (sn)∞n=1 is constructed recursively. We
claim that limn→∞ sn = ∞. Otherwise, let s∗ = limn→∞ sn < ∞. The continuity of T
and π then ensures that T(π(s∗)) = limn→∞ T(π(sn)) = limn→∞ π(T̃(sn)). Note also
that π(T̃(sn)) coincides with π(T̃(s0)) or π(T̃(s0) + 1/2) since T̃(sn) ∈ {T̃(s0) ± k/2 :
k ∈ ℤ}. Therefore, T(π(s∗)) coincides with π(T̃(s0)) or π(T̃(s0) + 1/2), and thus the se-
quenceπ(T̃(sn)), n ≥ 0, is eventually constant. But this is impossible sinceπ(T̃(sn+1)) ∉
Uπ(T̃(sn)) for all n ≥ 0 by definition. This contradiction means that the lift can be ex-
tended indefinitely to the right of s0, and a similar argument shows that it can be in-
definitely extended to the left as well.

Reading the proof of the above lemma, the readermay have acquired the intuition
that, given a starting point, the lift of a map is unique. Moreover, given that starting
points can only differ by an integer, so should entire lifts. This intuition proves to be
correct.

Lemma 2.1.3. Let T̃ : ℝ→ ℝ be a lift of a continuous map T : 𝕊1 → 𝕊1. Then T̂ : ℝ→ ℝ
is a lift of T if and only if T̂ = T̃ + k for some k ∈ ℤ. In particular, given s ∈ ℝ and
t ∈ π−1(T(π(s))), there is a unique lift T̂ so that T̂(s) = t.

Proof. Suppose first that T̂ = T̃ +k for some k ∈ ℤ. It follows that T̂ is continuous since
T̃ is continuous. Moreover, for every x ∈ ℝ we have

π ∘ T̂(x) = π(T̃(x) + k) = π(T̃(x)) = T ∘ π(x).

Thus, T̂ is a lift of T. This proves one implication.
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For the converse implication, suppose that T̂, like T̃, is a lift of T. For every x ∈ ℝ,
we then have

π ∘ T̂(x) = T ∘ π(x) = π ∘ T̃(x).

Therefore, T̂(x) − T̃(x) ∈ ℤ for every x ∈ ℝ. Define the function k : ℝ → ℤ by k(x) =
T̂(x) − T̃(x). Since both T̃ and T̂ are continuous on ℝ, so is the function k. Then k(ℝ),
as the image of a connected set under a continuous function, is a connected set. But
since ℤ is totally disconnected, the set k(ℝ) must be a singleton. In other words, the
function k must be constant. Hence, T̂ = T̃ + k for some constant k ∈ ℤ.

Thus, once a lift is found, all the other lifts can be obtained by translating verti-
cally the graph of the original lift by all the integers. In the following lemma, we shall
describe an important property that all lifts have in common.

Lemma 2.1.4. If T : 𝕊1 → 𝕊1 is continuous, then the number T̃(x + 1)− T̃(x) is an integer
independent of the point x ∈ ℝ and of the choice of lift T̃.

Proof. For every x ∈ ℝ,

π(T̃(x + 1)) = T(π(x + 1)) = T(π(x)) = π(T̃(x)).

Thus T̃(x + 1) − T̃(x) is an integer. Since ℝ ∋ x → T̃(x + 1) − T̃(x) ∈ ℤ is a continuous
function, it follows, as in the proof of Lemma 2.1.3, that it is constant. This implies the
independence from the point x ∈ ℝ.

If T̂ : ℝ → ℝ is another lift of T, then T̂ = T̃ + k for some k ∈ ℤ according to
Lemma 2.1.3. Therefore,

(T̂(x + 1) − T̂(x)) − (T̃(x + 1) − T̃(x))
= (T̂(x + 1) − T̃(x + 1)) − (T̂(x) − T̃(x))
= k − k = 0.

This establishes the independence from the choice of lift.

It then makes sense to introduce the following notion.

Definition 2.1.5. If T : 𝕊1 → 𝕊1 is continuous, then the integer number T̃(x + 1) − T̃(x),
which is independent of the point x ∈ ℝ and of the choice of lift T̃, is called the degree
of the map T and is denoted by deg(T).

We can now reformulate Lemma 2.1.4 as follows.

Lemma 2.1.6. If T̃ : ℝ→ ℝ is a lift of the continuous map T : 𝕊1 → 𝕊1, then

T̃(x + 1) = T̃(x) + deg(T), ∀x ∈ ℝ.

By way of an induction argument, this result yields the following corollary.
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Corollary 2.1.7. If T̃ : ℝ→ ℝ is a lift of the continuous map T : 𝕊1 → 𝕊1, then

T̃(x + k) = T̃(x) + k deg(T), ∀x ∈ ℝ, ∀k ∈ ℤ.

Proof. Let d = deg(T). By Lemma 2.1.6, the statement holds for all x ∈ ℝ when k = 1.
Suppose that the statement holds for all x ∈ ℝ for some k ∈ ℕ. Then

T̃(x + k + 1) = T̃((x + k) + 1) = T̃(x + k) + d = (T̃(x) + kd) + d = T̃(x) + (k + 1)d

for all x ∈ ℝ. Thus, the statement holds for k + 1 whenever it holds for k ∈ ℕ. By
induction, the statement holds for all x ∈ ℝ and all k ∈ ℕ. When k ≤ 0, we have that
−k ≥ 0 and, since the statement holds for −k, we obtain

T̃(x + k) = T̃(x + k) + (−k)d + kd = T̃(x + k + (−k)) + kd = T̃(x) + kd

for all x ∈ ℝ.

The degree has the following property relative to the composition of maps.

Lemma 2.1.8. If S,T : 𝕊1 → 𝕊1 are continuous maps of the unit circle, then

deg(S ∘ T) = deg(S) ⋅ deg(T).

Proof. Let S̃, T̃ be lifts of S and T, respectively. Then S̃ ∘ T̃ is a lift of S ∘ T since

π ∘ (S̃ ∘ T̃) = (π ∘ S̃) ∘ T̃ = (S ∘ π) ∘ T̃ = S ∘ (π ∘ T̃) = S ∘ (T ∘ π) = (S ∘ T) ∘ π.

Let x ∈ ℝ. Using Corollary 2.1.7 once for T and once for S, we obtain that

deg(S ∘ T) = S̃ ∘ T̃(x + 1) − S̃ ∘ T̃(x)
= S̃(T̃(x + 1)) − S̃(T̃(x))
= S̃(T̃(x) + deg(T)) − S̃(T̃(x))
= S̃(T̃(x)) + deg(T) ⋅ deg(S) − S̃(T̃(x))
= deg(S) ⋅ deg(T).

This has the following consequence for iterates of maps.

Corollary 2.1.9. If T : 𝕊1 → 𝕊1 is a continuous map of the unit circle, then

deg(Tn) = (deg(T))n, ∀n ∈ ℕ.

As a direct repercussion of Corollaries 2.1.7 and 2.1.9, we have the following fact.

Corollary 2.1.10. If T : 𝕊1 → 𝕊1 is continuous and T̃ is a lift of T, then

T̃n(x + k) = T̃n(x) + k(deg(T))n

for all x ∈ ℝ, all k ∈ ℤ and all n ∈ ℕ.
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We can further describe the difference between the values of iterates of various
lifts.

Corollary 2.1.11. Let T : 𝕊1 → 𝕊1 be a continuous map and T̃ : ℝ→ ℝ be a lift of T. If T̂
is another lift of T so that T̂ = T̃ + k for some k ∈ ℤ, then

T̂n = T̃n + k
n−1
∑
j=0(deg(T))j

for all n ∈ ℕ.

Proof. By hypothesis, the statement holds when n = 1. Suppose now that it holds for
some n ∈ ℕ. Let x ∈ ℝ. Then

T̂n+1(x) = T̂n(T̂(x))
= T̃n(T̂(x)) + k

n−1
∑
j=0(deg(T))j

= T̃n(T̃(x) + k) + k
n−1
∑
j=0(deg(T))j

= T̃n(T̃(x)) + k(deg(T))n + k
n−1
∑
j=0(deg(T))j

= T̃n+1(x) + k n
∑
j=0(deg(T))j.

The result follows by induction.

We now observe that the degree, as a map, is locally constant.

Lemma 2.1.12. If C(𝕊1,𝕊1) is endowed with the topology of uniform convergence, then
the degree map C(𝕊1,𝕊1) ∋ T → deg(T) ∈ ℤ is locally constant and hence continuous.

Proof. We shall regard 𝕊1 as (ℝ/ℤ, ρ), with the metric ρ as defined at the beginning of
this section. Let T , S ∈ C(𝕊1,𝕊1) be such that ρ∞(T , S) < 1/4, where we recall that

ρ∞(T , S) = sup{ρ(T(x), S(x)) : x ∈ 𝕊1}.
Let T̃ : ℝ→ ℝ be a lift of T. Since ρ∞(T , S) < 1/4, the restriction of π to the real interval
[T̃(0) − ρ∞(T , S), T̃(0) + ρ∞(T , S)] is an isometry. Thus, the connected set π([T̃(0) −
ρ∞(T , S), T̃(0) + ρ∞(T , S)]), which is “centered” on π(T̃(0)) = T(π(0)) ∈ 𝕊1, contains
the point S(π(0)), since ρ(T(π(0)), S(π(0))) ≤ ρ∞(T , S). Therefore, there exists some

t ∈ [T̃(0) − ρ∞(T , S), T̃(0) + ρ∞(T , S)]
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such that π(t) = S(π(0)). There then exists a unique lift S̃ : ℝ → ℝ of S such that
S̃(0) = t. In particular,

T̃(0) − S̃(0)
 ≤ ρ∞(T , S).

We shall prove that

T̃(x) − S̃(x)
 ≤ ρ∞(T , S), ∀x ∈ ℝ. (2.1)

Indeed, suppose by way of contradiction that there exists y ∈ ℝ such that |T̃(y) −
S̃(y)| > ρ∞(T , S). Since the function x → |T̃(x) − S̃(x)| is continuous and |T̃(0) − S̃(0)| ≤
ρ∞(T , S) < 1/4, there must exist w ∈ ℝ such that

ρ∞(T , S) < T̃(w) − S̃(w) < 1/4.
But since the restriction of π to (T̃(w)−1/4, T̃(w)+1/4) is an isometry and S̃(w) belongs
to that real interval, it follows that

ρ∞(T , S) ≥ ρ(T(π(w)), S(π(w))) = ρ(π(T̃(w)),π(S̃(w))) = T̃(w) − S̃(w) > ρ∞(T , S),
which is impossible. This proves (2.1). Using that formula, we deduce that

deg(T) − deg(S)
 =
(T̃(x + 1) − T̃(x)) − (S̃(x + 1) − S̃(x))


= (T̃(x + 1) − S̃(x + 1)) − (T̃(x) − S̃(x))


≤ T̃(x + 1) − S̃(x + 1)

 +
T̃(x) − S̃(x)


≤ 2ρ∞(T , S) < 1.

As deg(S) and deg(T) are integers, we conclude that deg(S) = deg(T).

Remark 2.1.13. Another way of stating (2.1) is to say that if T , S ∈ C(𝕊1,𝕊1) are circle
maps such that ρ∞(T , S) < 1/4, then T and S have lifts T̃ and S̃ such that ρ̃∞(T̃ , S̃) ≤
ρ∞(T , S), where

ρ̃∞(T̃ , S̃) := sup{T̃(x) − S̃(x) : x ∈ [0, 1]} = sup{T̃(x) − S̃(x) : x ∈ ℝ}.
The following lemma gives us more information about lifts and their fixed points.

Lemma 2.1.14. Every continuous map T : 𝕊1 → 𝕊1 with deg(T) ̸= 1 has a lift T̃ : ℝ → ℝ
with a fixed point in [−1/2, 1/2]. Moreover,

dist(0, Fix(T̃))→ 0 whenever T → Ek uniformly,

where Ek([x]) := [kx] and where k = deg(T).
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Proof. Let k = deg(T) and T̂ : ℝ→ ℝ be a lift of T. Define a map D : ℝ→ ℝ by setting

D(x) := T̂(x) − x.

By definition of k, we have that T̂(1/2) = T̂(−1/2 + 1) = T̂(−1/2) + k, and hence

D(1/2) = T̂(1/2) − 1/2 = T̂(−1/2) + k − 1/2 = D(−1/2) + k − 1.

Since k ̸= 1, the interval D([−1/2, 1/2]) has length at least 1, and thus contains an in-
teger, say m. In other words, there exists x0 ∈ [−1/2, 1/2] such that D(x0) = m, that is,
such that T̂(x0) − m = x0. Letting T̃ = T̂ − m, which is also a lift of T by Lemma 2.1.3,
we obtain that T̃(x0) = x0 and the first assertion in our lemma is proved.

For the second part, fix δ > 0. One immediately verifies that Ẽk(x) = kx is a lift of
Ek to ℝ and

Ẽk(−δ) − (−δ) = −kδ + δ = −(k − 1)δ whereas Ẽk(δ) − δ = (k − 1)δ.

Since k ̸= 1, the numbers Ẽk(−δ) − (−δ) and Ẽk(δ) − δ have opposite signs. Therefore,
in view of Remark 2.1.13, if T is sufficiently close to Ek, then there exists a lift T̃ of T
such that T̃(−δ)− (−δ) and T̃(δ)− δ have the same signs as Ẽk(−δ)− (−δ) and Ẽk(δ)− δ,
respectively. Consequently, there exists s ∈ (−δ, δ) so that T̃(s) − s = 0.

Remark 2.1.15. Lemma 2.1.14 does not generally hold for circle maps of degree 1. In-
deed, it clearly does not hold for any irrational rotation.

2.2 Orientation-preserving homeomorphisms of the circle

Every homeomorphism of the unit circle is either orientation preserving or orien-
tation reversing, which means that either the homeomorphism preserves the or-
der of points on the circle or it reverses their order. In this section, we shall study
orientation-preserving homeomorphisms. The differences that occur when consider-
ing orientation-reversing homeomorphisms are covered in the exercises at the end of
the chapter.

By convention, arcs will be traversed in the counterclockwise direction along the
unit circle. That is, the closed arc [a, b] is the arc that consists of all points that are
met whenmoving in the counterclockwise direction from point a to point b, including
these two points. The open arc (a, b) simply excludes the endpoints from the closed
arc [a, b]. Hence, [π(0),π(1/2)] is the upper-half circle while [π(1/2),π(0)] corresponds
to the lower-half circle. The left half circle is represented by [π(1/4),π(3/4)] whereas
the right-half circle is the arc [π(3/4),π(1/4)].

Definition 2.2.1. A homeomorphism f : 𝕊1 → 𝕊1 is said to be orientation-preserving if
f (c) ∈ (f (a), f (b)) whenever c ∈ (a, b).
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We will show that this is equivalent to the fact that any lift f̃ of f is an increasing
homeomorphism of ℝ. Recall that lifts exist by Lemma 2.1.2, and are unique up to
addition by an integer according to Lemma 2.1.3.

Lemma 2.2.2. Let f : 𝕊1 → 𝕊1 be a homeomorphism of the unit circle. Let f̃ : ℝ→ ℝ be
a lift of f . Then f̃ is a homeomorphism of ℝ.

Proof. Let f̃ : ℝ → ℝ be a lift of f . By definition, f̃ is surjective and continuous. It
remains to show that it is injective. Suppose that this is not the case, that is, there exist
x, y ∈ ℝ such that f̃ (x) = f̃ (y).We claim that there then exist x̃, ỹ ∈ ℝ such that |x̃−ỹ| < 1
and f̃ (x̃) = f̃ (ỹ). Indeed, if |x − y| < 1 then simply let x̃ = x and ỹ = y. Otherwise, that
is, if |x − y| ≥ 1 then there exists a unique k ∈ ℕ such that k ≤ |x − y| < k + 1. Without
loss of generality, we may assume that x > y. Then y + k ≤ x < y + k + 1. Moreover,

f̃ (y + k) = f̃ (y) + kdeg(f ) = f̃ (x) + kdeg(f )

while

f̃ (y + k + 1) = f̃ (y) + (k + 1)deg(f ) = f̃ (x) + kdeg(f ) + deg(f ).

If deg(f ) ̸= 0, applying the intermediate value theorem on the intervals [y + k, x]
and [x, y + k + 1] gives that there exist x1 ∈ (y + k, x) and x2 ∈ (x, y + k + 1) such that

f̃ (x1) = f̃ (x2) = f̃ (x) + kdeg(f )/2.

In this case, let x̃ = x1 and ỹ = x2.
If deg(f ) = 0, then

f̃ (y + k) = f̃ (y + k + 1) = f̃ (x).

If there exists y + k < z < y + k + 1 such that f̃ (z) ̸= f̃ (x), then applying the intermediate
value theorem on the intervals [y + k, z] and [z, y + k + 1] yields points z1 ∈ (y + k, z)
and z2 ∈ (z, y + k + 1) such that

f̃ (z1) = f̃ (z2) = (f̃ (x) + f̃ (z))/2.

In this case, let x̃ = z1 and ỹ = z2. Otherwise, f̃ is equal to f̃ (x) on the entire interval
[y + k, y + k + 1] and we let x̃ = x and ỹ ∈ (y + k, y + k + 1) \ {x}.

In all cases, |x̃ − ỹ| < 1 and f̃ (x̃) = f̃ (ỹ). It then follows that

f ∘ π(x̃) = π ∘ f̃ (x̃) = π ∘ f̃ (ỹ) = f ∘ π(ỹ).

Since f is injective, this means that π(x̃) = π(ỹ). But π(x̃) ̸= π(ỹ) since |x̃ − ỹ| < 1. This
contradiction shows that f̃ is injective. In summary, f̃ is a continuous bijection of ℝ.
Then f̃ is either strictly increasing or strictly decreasing. In particular, it is a homeo-
morphism and deg(f ) ̸= 0.
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Corollary 2.2.3. Let f : 𝕊1 → 𝕊1 be a homeomorphism of the unit circle. Let f̃ : ℝ → ℝ
be a lift of f . If f is orientation preserving, then f̃ is an increasing homeomorphism ofℝ.

Proof. By Lemma 2.2.2, we know that f̃ is a homeomorphismofℝ. Therefore, f̃ is either
strictly increasing or strictly decreasing. Suppose for a contradiction that f̃ is strictly
decreasing. Changing lift if necessary, we may assume that f̃ (0) ∈ (0, 1]. Since f̃ is
continuous and strictly decreasing, there exists 0 < δ < 1 such that 0 < f̃ (δ) < f̃ (0).
Consider the arc (a, b) := (π(0),π(δ)) = π((0, δ)) ⊆ 𝕊1. Then

(f (a), f (b)) = (f (π(0)), f (π(δ))) = (π(f̃ (0)),π(f̃ (δ))).

Let c ∈ (a, b). Then there exists 0 < c̃ < δ such that π(c̃) = c. Therefore, 0 < f̃ (δ) <
f̃ (c̃) < f̃ (0) ≤ 1, and hence

f (c) = f (π(c̃)) = π(f̃ (c̃)) ∈ π((f̃ (δ), f̃ (0))) = (π(f̃ (δ)),π(f̃ (0))).

Consequently, f (c) ∉ (f (a), f (b)). This contradicts the hypothesis that f is orientation
preserving. We thus conclude that f̃ must be strictly increasing.

Let us now show that the degree of every orientation-preserving homeomorphism
of the circle is equal to 1, where we recall that the degree of a continuous map T :
𝕊1 → 𝕊1 is defined to be the integer T̃(x + 1)− T̃(x), which is independent of the choice
of the point x ∈ ℝ and of the choice of lift T̃ : ℝ→ ℝ according to Lemma 2.1.4.

Lemma 2.2.4. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism. Then
deg(f ) = 1.

Proof. Let f̃ : ℝ→ ℝ be a lift of f . Since f̃ is strictly increasing and f̃ (1) = f̃ (0)+deg(f ),
it is clear that deg(f ) ≥ 1. Suppose that deg(f ) ≥ 2. Then, as f̃ is continuous and f̃ (1) =
f̃ (0) + deg(f ), the intermediate value theorem guarantees the existence of some real
number 0 < y < 1 such that f̃ (y) = f̃ (0) + 1. But then

f ∘ π(y) = π ∘ f̃ (y) = π(f̃ (0) + 1) = π ∘ f̃ (0) = f ∘ π(0).

Since f is injective (after all, it is a homeomorphism), this means that π(y) = π(0).
However, π(y) ̸= π(0) since 0 < y < 1. This contradiction shows that the assumption
deg(f ) ≥ 2 cannot hold. Thus deg(f ) = 1.

We leave it to the reader to prove that any homeomorphism F of ℝ with the prop-
erty that F(x + 1) = F(x) + 1 for all x ∈ ℝ generates an orientation-preserving homeo-
morphism f of S1 (see Exercise 2.4.3).

Observe that the inverse f −1 : 𝕊1 → 𝕊1 of an orientation-preserving homeomor-
phism f : 𝕊1 → 𝕊1 is also an orientation-preserving homeomorphism. Therefore,
deg(f −1) = deg(f ) = 1. Moreover, note that if f̃ : ℝ → ℝ is a lift of f : 𝕊1 → 𝕊1,
then f̃ −1 : ℝ → ℝ is a lift of f −1 : 𝕊1 → 𝕊1. We deduce the following for orientation-
preserving homeomorphisms.
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Corollary 2.2.5. Let f̃ : ℝ → ℝ be a lift of an orientation-preserving homeomorphism
f : 𝕊1 → 𝕊1. For all x ∈ ℝ, all k ∈ ℤ and all n ∈ ℤ, we have that

f̃ n(x + k) = f̃ n(x) + k.

Proof. The result is trivial when n = 0. In light of Lemma 2.2.4, the result follows di-
rectly from Corollary 2.1.10 for all n ∈ ℕ. Using f −1 instead of f in Lemma 2.2.4 and
Corollary 2.1.10, the result follows for n ≤ −1.

By induction one can also show the following (cf. Exercise 2.4.1).

Corollary 2.2.6. Let f̃ : ℝ → ℝ be a lift of an orientation-preserving homeomorphism
f : 𝕊1 → 𝕊1. Given any k ∈ ℕ, we have that

|x − y| ≤ k ⇒ f̃
n(x) − f̃ n(y) ≤ k, ∀n ∈ ℤ.

Moreover, if the left inequality is strict (< instead of ≤), then so is the right one.

Corollary 2.2.7. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism and
f̃ : ℝ→ ℝ be a lift of f . If g̃ is another lift of f so that g̃ = f̃ + k for some k ∈ ℤ, then

g̃n = f̃ n + nk

for all n ∈ ℤ.

Proof. Apply Corollary 2.1.11 with f and f −1 in lieu of T. Recall that deg(f ) =
deg(f −1) = 1 since both f and f −1 are orientation-preserving homeomorphisms.

Lemma 2.2.4 implies immediately that f̃ − Idℝ is a periodic function with period 1,
where Idℝ : ℝ→ ℝ is the identity map (cf. Exercise 2.4.2).

Corollary 2.2.8. Let f̃ be a lift of f . Then f̃ − Idℝ is a periodic function with period 1.
More generally, an increasing homeomorphism g̃ : ℝ → ℝ is a lift of an orientation-
preserving homeomorphism of the circle if and only if g̃ − Idℝ is a periodic function with
period 1.

Let us now give the simplest example of an orientation-preserving homeomor-
phism of the unit circle: a rotation.

Example 2.2.9. Let α ∈ ℝ. If f ([x]) := [x + α] is the rotation of the unit circle by the
angle α, then f̃ (x) = x + α is a lift of f and for all x ∈ ℝ we have that

lim
n→∞ f̃ n(x)

n
= lim

n→∞ x + nα
n
= α.
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2.2.1 Rotation numbers

In this section, we introduce a number that allows us to think of the dynamics of a
given homeomorphism of the unit circle mimicking, in some sense, the dynamics of
a rotation of the circle. Accordingly, this number will be called the rotation number of
the said homeomorphism.

The first result generalizes to orientation-preserving homeomorphisms the obser-
vation about the ratio f̃ n(x)/nmade for rotations of the circle in Example 2.2.9.

Proposition 2.2.10. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism of
the unit circle and f̃ : ℝ→ ℝ a lift of f . Then the following statements hold:
(a) The number

ρ(f̃ ) := lim
n→∞ f̃ n(x)

n

exists for all x ∈ ℝ and is independent of x.
(b) If g̃ = f̃ + k for some k ∈ ℤ, then ρ(g̃) = ρ(f̃ ) + k. That is, the choice of lift only

changes ρ by an integer.
(c) For every m ∈ ℕ, we have ρ(f̃m) = m ⋅ ρ(f̃ ).
(d) The number ρ(f̃ ) is an integer if and only if f has a fixed point.
(e) The number ρ(f̃ ) is rational if and only if f has a periodic point.
(f) Let x ∈ ℝ. If q ≥ 1 and r are integers such that f̃ q(x) ≤ x + r, then q ρ(f̃ ) ≤ r.
(g) Let x ∈ ℝ. If q ≥ 1 and r are integers such that f̃ q(x) ≥ x + r, then q ρ(f̃ ) ≥ r.

Proof. (a) We prove this proposition in two steps. We first assume the existence of ρ(f̃ )
and prove its independence of the point x chosen.We then prove the existence of ρ(f̃ ).

Step 1: If ρ(f̃ ) exists for some x ∈ ℝ, then it exists for all y ∈ ℝ and is the same for all y.

Suppose that ρ(f̃ ) exists for some x ∈ ℝ. Choose any y ∈ ℝ. Then there exists
k ∈ ℕ such that |y − x| ≤ k. By Corollary 2.2.6, we have that for every n ∈ ℕ,

f̃
n(x) − f̃ n(y) ≤ k.

Therefore, for all n ∈ ℕ we obtain that

f̃ n(x)
n
−
k
n
≤
f̃ n(y)
n
≤
f̃ n(x)
n
+
k
n
.

Passing to the limit as n tends to infinity, we conclude that

lim
n→∞ f̃ n(x)

n
≤ lim inf

n→∞ f̃ n(y)
n
≤ lim sup

n→∞ f̃ n(y)
n
≤ lim

n→∞ f̃ n(x)
n
.
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Consequently,

lim
n→∞ f̃ n(y)

n
= lim

n→∞ f̃ n(x)
n
.

Since y ∈ ℝ is arbitrary, the proof of Step 1 is complete.

Step 2. The rotation number ρ(f̃ ) always exists.

According to Step 1, if the limit ρ(f̃ ) exists for any particular x, it exists for all x.
So, without loss of generality, set x = 0. Fix momentarily m ∈ ℕ. Then there exists a
unique k ∈ ℤ such that

k ≤ f̃m(0) < k + 1.

Using Corollary 2.2.5 and the fact that f̃m is strictly increasing, we deduce by induction
that for any n ∈ ℕ,

nk ≤ f̃ nm(0) < n(k + 1).

It follows that

k
m
≤
f̃m(0)
m
<
k + 1
m

and k
m
≤
f̃ nm(0)
nm
<
k + 1
m
.

Consequently,



f̃m(0)
m
−
f̃ nm(0)
nm


<
k + 1
m
−
k
m
=

1
m
.

Interchanging the roles ofm and n yields the inequality



f̃ n(0)
n
−
f̃ nm(0)
nm


<
1
n
.

By the triangle inequality, we get that



f̃ n(0)
n
−
f̃m(0)
m


<
1
n
+

1
m
.

This shows that the sequence (f̃ n(0)/n)∞n=1 is a Cauchy sequence in ℝ and is therefore
convergent. Hence, ρ(f̃ ) exists.

(b) Suppose that g̃ = f̃ + k. By Corollary 2.2.7, we know that g̃n = f̃ n + nk for all
n ∈ ℕ. It follows that

ρ(g̃) = lim
n→∞ g̃n(x)

n
= lim

n→∞ f̃ n(x)
n
+ k = ρ(f̃ ) + k.
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(c) Given that f̃m is a lift of fm for every m ∈ ℤ, the number ρ(f̃m) is well-defined
for allm due to statement (a). Using any x ∈ ℝ, we obtain that

ρ(f̃m) = lim
n→∞ f̃mn(x)

n
= lim

n→∞ f̃mn(x)
mn
⋅m = ρ(f̃ ) ⋅m.

(d) Assume first that f has a fixed point. This means that there exists z ∈ 𝕊1 such
that f (z) = z. Let x ∈ ℝ be such that π(x) = z. Then

π(x) = z = f (z) = f (π(x)) = π(f̃ (x)).

Therefore, f̃ (x) − x = k for some k ∈ ℤ. Invoking Corollary 2.2.5 once again, we know
that f̃ n(x) = x + nk for each n ∈ ℕ. Therefore,

ρ(f̃ ) = lim
n→∞ f̃ n(x)

n
= lim

n→∞ x + nk
n
= k ∈ ℤ.

This proves one implication. To derive the converse, assume that ρ(f̃ ) ∈ ℤ. We aim to
show that f has a fixed point. Replacing f̃ by f̃ − ρ(f̃ ), which, by Lemma 2.1.3, is also
a lift of f , we may assume that ρ(f̃ ) = 0. Assume by way of contradiction that f̃ has
no fixed point. By the intermediate value theorem, this means that either f̃ (x) > x for
all x ∈ ℝ or f̃ (x) < x for all x ∈ ℝ. Suppose that f̃ (x) > x for all x ∈ ℝ (a similar argu-
ment holds in the other case). This implies in particular that f̃ (0) > 0, and thus the
sequence (f̃ n(0))∞n=1 is increasing.We further claim that f̃ n(0) < 1 for all n ∈ ℕ. Indeed,
if this were not the case, then we would have f̃ N (0) ≥ 1 for some N ∈ ℕ. We would
deduce by induction that f̃ nN (0) ≥ n for all n ∈ ℕ. Hence, we would conclude that

ρ(f̃ ) = lim
n→∞ f̃ nN (0)

nN
≥

1
N
> 0.

But this would contradict the fact that ρ(f̃ ) = 0. Thus, 0 < f̃ n(0) < 1 for all n ∈ ℕ.
Summarizing, (f̃ n(0))∞n=1 is a boundedmonotonic sequence and as such is convergent.
Let L := limn→∞ f̃ n(0). Because of the continuity of f̃ , Lemma 1.1.4 implies that L is a
fixed point of f̃ . This contradicts our assumption that f̃ has no fixed point. Thus, f̃ has
a fixed point and f , as a factor of f̃ , has a fixed point too.

(e) Let f̃ be a lift of f . Note that f has a periodic point if and only if there exists
m ∈ ℕ for which fm has a fixed point. By statements (c) and (d), this is equivalent to
stating that f has a periodic point if and only if ρ(f̃ ) is rational.

(f) Suppose that q ≥ 1 and r are integers such that f̃ q(x) ≤ x + r. Using Corol-
lary 2.2.5 and the fact that f̃ q is increasing, we deduce by induction that f̃ nq(x) ≤ x+nr
for each n ∈ ℕ. Then

ρ(f̃ ) = lim
n→∞ f̃ qn(x)

qn
≤ lim

n→∞ x + nr
qn
=
r
q
.

(g) The proof proceeds analogously to (f) and is left as an exercise for the reader
(see Exercise 2.4.4).
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Proposition 2.2.10, in conjunction with Example 2.2.9, suggests the following def-
inition and terminology.

Definition 2.2.11. The rotation number ρ(f ) of an orientation-preserving homeomor-
phism f : 𝕊1 → 𝕊1 of the unit circle is defined to be ρ(f̃ ) (mod 1), where f̃ : ℝ → ℝ is
any lift of f .

As mentioned at the very beginning of the chapter, the rotation number should
be thought of as the average rotation that the homeomorphism induces on the points
of 𝕊1 over the long term. Statements (a) and (b) of Proposition 2.2.10 ensure that the
rotation number exists and is well-defined. Statements (c), (d), and (e) translate into
the assertions below. Note, though, that statements (f) and (g) have no counterparts
for ρ(f ).

Proposition 2.2.12. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism of
the unit circle. Then the following statements hold:
(c′) For every m ∈ ℕ, we have that ρ(fm) = m ⋅ ρ(f ) (mod 1).
(d′) The rotation number ρ(f ) is equal to zero if and only if f has a fixed point.
(e′) The rotation number ρ(f ) is rational if and only if f has a periodic point.

Given that every orientation-preserving homeomorphism of the circle has an as-
sociated rotation number, it is natural to ask whether the rotation number is a topo-
logical conjugacy invariant. This is, in fact, very nearly the case, as we now show.

Theorem 2.2.13. Let f : 𝕊1 → 𝕊1 and g : 𝕊1 → 𝕊1 be topologically conjugate orientation-
preserving homeomorphisms of the unit circle. If the conjugacy map preserves orienta-
tion, then ρ(f ) = ρ(g). If the conjugacy map reverses orientation, then ρ(f ) + ρ(g) = 0
(mod 1).

Proof. Let f , g : 𝕊1 → 𝕊1 be topologically conjugate orientation-preserving homeomor-
phisms. Let h : 𝕊1 → 𝕊1 be a conjugacy map between them, so that h ∘ f = g ∘ h, and
let h̃ be a lift of h. Then h̃(x + n) = h̃(x) + n for all x ∈ ℝ and n ∈ ℤ if h is orientation
preserving. If h is orientation reversing, then h̃(x+n) = h̃(x)−n for all x ∈ ℝ and n ∈ ℤ.
The proof of this last statement is deferred to Exercise 2.4.5(c). Denoting the integer
and fractional parts of x by ⌊x⌋ and ⟨x⟩, respectively, and observing that h̃(⟨x⟩) lies
between h̃(0) and h̃(1), it follows that for all x ∈ ℝ,

lim
x→∞ h̃(x)

x
= lim

x→∞ h̃(⌊x⌋ + ⟨x⟩)
⌊x⌋ + ⟨x⟩

= lim
x→∞ h̃(⟨x⟩) ± ⌊x⌋

⌊x⌋
⋅
⌊x⌋
⌊x⌋ + ⟨x⟩

= lim
x→∞ h̃(⟨x⟩) ± ⌊x⌋

⌊x⌋
⋅ lim
x→∞ ⌊x⌋⌊x⌋ + ⟨x⟩

= ±1,
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depending on whether h̃ is orientation preserving (+1) or orientation reversing (−1).
The same relation holds for h̃−1 since it is a lift of h−1. If ρ(f ) = ρ(g) = 0, then we
are done. So, suppose that at least one of ρ(f ) and ρ(g) is positive. Without loss of
generality, suppose that ρ(g) > 0. Let g̃ be the lift of g such that ρ(g̃) = ρ(g). Then the
map f̃ := h̃−1 ∘ g̃ ∘ h̃ is a lift of f . Indeed, f̃ is an increasing homeomorphism ofℝ since g̃
is an increasing homeomorphism, while h̃ is either an increasing homeomorphism or
a decreasing homeomorphism, depending on the nature of h. Moreover, for any x ∈ ℝ
notice that

π ∘ f̃ (x) = π ∘ h̃−1 ∘ g̃ ∘ h̃(x) = h−1 ∘ π ∘ g̃ ∘ h̃(x)
= h−1 ∘ g ∘ π ∘ h̃(x) = h−1 ∘ g ∘ h ∘ π(x)
= f ∘ π(x).

Furthermore,

ρ(f̃ )
ρ(g̃)
= lim

n→∞ f̃ n(x)/n
g̃n(h̃(x))/n

= lim
n→∞ f̃ n(x)

g̃n(h̃(x))

= lim
n→∞ h̃−1(g̃n ∘ h̃(x))

g̃n ∘ h̃(x)
= ±1.

Therefore, ρ(f̃ ) = ±ρ(g̃) = ±ρ(g).
When h, and thus h−1, h̃ and h̃−1, is orientation preserving,wehave that ρ(f̃ ) = ρ(g)

and, hence, ρ(f ) = ρ(f̃ ) (mod 1) = ρ(g).
On the other hand, when h, and thus h−1, h̃ and h̃−1, is orientation reversing, we

have that ρ(f ) = ρ(f̃ ) (mod 1) = −ρ(g) (mod 1). It hence follows that ρ(f ) + ρ(g) = 0
(mod 1).

The following lemma provides a partial converse to Theorem 2.2.13. It states that
the rotation number is essentially a complete invariant for rotations of the circle.

Lemma 2.2.14. Two rotations of the circle are topologically conjugate if and only if their
rotation numbers are equal or sum to zero, modulo 1.

Proof. By Theorem 2.2.13, two topologically conjugate rotations of the unit circle have
rotation numbers that are equal or whose sum is 0 (mod 1). For the converse impli-
cation, suppose that f ([x]) = [x + α] and g([x]) = [x + β] for some 0 < α, β < 1. If
α = β, then f is trivially topologically conjugate to g. Ifα+β = 0 (mod 1), then themap
h([x]) = [−x] is a suitable conjugacy map. Indeed,

h ∘ f ([x]) = h([x + α]) = [−x − α]
= [−x + β] = g([−x]) = g ∘ h([x]).

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.3 Minimality for homeomorphisms and diffeomorphisms of the circle | 53

2.3 Minimality for homeomorphisms and diffeomorphisms of the
circle

Ourfirst goal in this section is to give a classificationofminimal orientation-preserving
homeomorphisms of the circle. We will need the following lemma.

Lemma 2.3.1. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism and let
f̃ : ℝ→ ℝ be a lift of f . Let A and B be the sets

A := {f̃ n(0) +m : n,m ∈ ℤ} ⊆ ℝ
B := {nρ(f̃ ) +m : n,m ∈ ℤ} ⊆ ℝ.

If ρ(f ) is irrational, then the map H : A→ B defined by

H(f̃ n(0) +m) = nρ(f̃ ) +m

is well-defined, bijective and increasing.

Proof. The map H is the composition HB ∘ HA of the two maps

HA : A→ ℤ
2, where HA(f̃

n(0) +m) = (n,m)

and

HB : ℤ
2 → B, where HB(n,m) = nρ(f̃ ) +m.

Thus, in order to show thatH is awell-defined bijection, it suffices to show thatHA and
HB arewell-definedbijections. It is clear that themapHB iswell-definedand surjective.
To show that it is injective, suppose that HB(n1,m1) = HB(n2,m2), that is, n1ρ(f̃ ) +m1 =
n2ρ(f̃ ) +m2. If it were the case that n1 ̸= n2, then we would have

ρ(f̃ ) = (m2 −m1)/(n1 − n2) ∈ ℚ,

whichwould contradict the hypothesis that ρ(f ) is an irrational number. Thus, n1 = n2,
which implies immediately that m1 = m2. Hence, HB is injective. Let us now consider
HA. To prove that HA is well-defined, assume that f̃ n1 (0) +m1 = f̃ n2 (0) +m2. If n1 ̸= n2,
then

f n1(π(0)) = π(f̃ n1 (0)) = π(f̃ n2 (0) +m2 −m1) = π(f̃
n2 (0)) = f n2(π(0)).

Applying f −n2 to both sides yields f n1−n2 (π(0)) = π(0), that is, π(0) is a periodic point of
f . But, according to Proposition 2.2.12, the rotation number of f would then be a ratio-
nal number. Once again, this would contradict the hypothesis that ρ(f ) is irrational.
So n1 = n2, which implies immediately that m1 = m2. Thus, HA is well-defined. It is
easy to see that HA is bijective.
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To show that the map H is increasing, suppose that f̃ n(0) +m < f̃ k(0) + l. If k = n
then m < l and obviously nρ(f̃ ) + m < kρ(f̃ ) + l. If k < n then applying f̃ −k to each
side of f̃ n(0) + m < f̃ k(0) + l and using Corollary 2.2.5 along with the fact that f̃ −k
is increasing, we deduce that f̃ n−k(0) < l − m. From part (f) of Proposition 2.2.10, it
follows that (n−k)ρ(f̃ ) ≤ l−m. Since ρ(f̃ ) is irrational, this last inequalitymust be strict:
(n−k)ρ(f̃ ) < l−m. In other words, nρ(f̃ )+m < kρ(f̃ )+ l. Similarly, if k > n then applying
f̃ −n to each side of f̃ n(0)+m < f̃ k(0)+ l yieldsm− l < f̃ k−n(0). FromProposition 2.2.10(g)
and the fact that ρ(f̃ ) is irrational, we conclude thatm− l < (k −n)ρ(f̃ ). In other words,
nρ(f̃ )+m < kρ(f̃ )+ l. In each case, we have shown that nρ(f̃ )+m < kρ(f̃ )+ l, and hence
H is a well-defined, increasing bijection.

Our next result is the main one of this section. It states that every minimal
orientation-preserving homeomorphism of the circle is topologically conjugate to
a minimal rotation.

Theorem 2.3.2. If f : 𝕊1 → 𝕊1 is a minimal orientation-preserving homeomorphism of
the circle, then f is topologically conjugate to the rotation Rρ(f ) : 𝕊1 → 𝕊1 of the unit
circle by the angle corresponding to the rotation number of f .

Proof. If f is minimal, then by Remark 1.5.5 it admits no periodic points. In view of
Proposition 2.2.12, this implies that ρ(f ) is an irrational number. By Lemma 2.3.1, the
map H introduced in that lemma is then a well-defined increasing bijection from A
to B.

We aim to extend H to a homeomorphism of ℝ using Lemma 2.3.1 and the fact
that an increasing bijection between dense subsets of ℝ can be uniquely extended to
an increasing homeomorphismofℝ (see Exercise 1.7.5). Toward that end,we shall now
prove that A is dense in ℝ. To begin, choose an arbitrary x ∈ ℝ. Since f is minimal,
we know that π(x) belongs to ω(π(0)) = 𝕊1 by Theorem 1.5.4. Therefore, there exists a
strictly increasing sequence (nk)∞k=1 of nonnegative integers such that

π(x) = lim
k→∞ f nk (π(0)) = lim

k→∞π(f̃ nk (0)).
Since π(y) = π(z)means that y − z ∈ ℤ, we have that

lim
k→∞dist(f̃ nk (0) − x,ℤ) = 0.

Thus, for each ε > 0 there exists k ∈ ℕ and l ∈ ℤ such that

f̃
nk (0) − x − l < ε.

Therefore, x ∈ A. As x was chosen arbitrarily in ℝ, we conclude that A = ℝ.
Furthermore,B is also dense because, in light of Theorem 1.5.12, the rotationRρ(f ) :

𝕊1 → 𝕊1 is minimal when ρ(f ) is an irrational number. Indeed, observe that the set B
consists of the orbit of 0 under Rρ(f ) translated everywhere by adding each integer.
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Since the rotation Rρ(f ) is minimal, the orbit of 0 under Rρ(f ) is dense in 𝕊1 or, equiva-
lently, in [0, 1]. As it comprises all integer translations of this orbit, the set B is dense
in ℝ.

BecauseA and B are dense inℝ, we infer thatH extends uniquely to an increasing
homeomorphism H : ℝ→ ℝ.

Now, let x = f̃ n(0) +m ∈ A. Note that

H(x + 1) = H(f̃ n(0) +m + 1) = nρ(f̃ ) +m + 1 = H(f̃ n(0) +m) + 1 = H(x) + 1.

Thus, H(x + 1) = H(x) + 1 for all x ∈ A. By continuity, the extension H must satisfy
H(x + 1) = H(x) + 1 for all x ∈ ℝ. Then h(π(x)) := π ∘H(x) is a well-defined orientation-
preserving homeomorphism of the circle. Moreover, for every x = f̃ n(0) + m ∈ A we
have that

H ∘ f̃ (x) = H ∘ f̃ (f̃ n(0) +m) = H(f̃ n+1(0) +m)
= (n + 1)ρ(f̃ ) +m = (nρ(f̃ ) +m) + ρ(f̃ )
= H(f̃ n(0) +m) + ρ(f̃ ) = Tρ(f̃ ) ∘ H(f̃ n(0) +m)
= Tρ(f̃ ) ∘ H(x),

where the map Tρ(f̃ ) : ℝ→ ℝ is the translation by ρ(f̃ ) onℝ. This shows thatH ∘ f̃ (x) =
Tρ(f̃ ) ∘H(x) for all x ∈ A. By continuity,H ∘ f̃ (x) = Tρ(f̃ ) ∘H(x) for all x ∈ ℝ. Observe also
that the real translation Tρ(f̃ ) is a lift of the circle rotation Rρ(f ). It then follows that

h ∘ f (π(x)) = h ∘ π ∘ f̃ (x) = π ∘ H ∘ f̃ (x)
= π ∘ Tρ(f̃ ) ∘ H(x) = Rρ(f ) ∘ π ∘ H(x)
= Rρ(f ) ∘ h(π(x)).

So h is a conjugacy map between f and Rρ(f ).
2.3.1 Denjoy’s theorem

The next result is the first for which we need the map f to be a diffeomorphism, rather
than merely a homeomorphism. Recall that a diffeomorphism f is a homeomorphism
with the property that both f ′ and (f −1)′ exist. We will also need the following defini-
tion.

Definition 2.3.3. The (total) variation var(φ) of a function φ : 𝕊1 → ℝ is defined to be

var(φ) := sup{
n−1
∑
i=0φ(xi) − φ(xi+1) : x0, x1, . . . , xn = x0 partition 𝕊1, n ∈ ℕ},

where the supremum is taken over all finite partitions of the circle. If var(φ) is finite,
then φ is said to be of bounded variation.
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The main result of this section is named after the French mathematician, Arnaud
Denjoy (1884–1974). Denjoy made outstanding contributions to many areas of mathe-
matics, in particular to the theory of functions of a real variable.

Theorem 2.3.4 (Denjoy’s theorem). Suppose that f : 𝕊1 → 𝕊1 is an orientation-
preserving C1 diffeomorphism with derivative f ′ of bounded variation. If ρ(f ) is irra-
tional, then f : 𝕊1 → 𝕊1 is minimal.

Before beginning the proof of Denjoy’s theorem, we first establish three lemmas,
which will be useful in the proof. In the remainder of this section, we adopt the usual
convention that arcs of the unit circle shall be traversed in the counterclockwise direc-
tion. For instance, (x, y) is the open arc of the circle generatedwhenmoving from x to y
along the circle in the counterclockwise direction. Note also that since f is orientation
preserving, it holds that f ((x, y)) = (f (x), f (y)).

Lemma 2.3.5. Assume that x0 ∈ 𝕊1 is such that for some n ∈ ℕ,

(x0, f
n(x0)) ∩ {f

j(x0) : |j| ≤ n} = 0. (2.2)

Then, for all 0 ≤ k ≤ n,

(f k−n(x0), f k(x0)) ∩ {f j(x0) : |j| ≤ n} = 0.
Proof. Assume that x0 is as stated above and, by way of contradiction, suppose that
there exist 0 ≤ k ≤ n and |j| ≤ n such that

f j(x0) ∈ (f
k−n(x0), f k(x0)). (2.3)

Fix the largest k with this property. Of course, j ̸= k. We shall examine two potential
cases.

Case 1: j ≤ 0.

If it turned out that j ≤ 0, then (2.3) and the fact that f preserves orientationwould
result in

f j+1(x0) ∈ f ((f k−n(x0), f k(x0))) = (f k+1−n(x0), f k+1(x0)).
Since −n ≤ j + 1 ≤ n, it follows that (2.3) would also be satisfied with k + 1 in place
of k. Given that k ≤ n was chosen to be the maximal number satisfying this property,
the only way that this could be true is if k + 1 > n, that is, if k = n. Hence, (2.3) would
reduce to f j(x0) ∈ (x0, f n(x0)), whichwould contradict our original hypothesis (2.2). So
this case never takes place.

Case 2: j > 0. This case is divided into two subcases, which are illustrated in Figure 2.1.
Note that for any given x ∈ 𝕊1, we have

f r(x) ≠ f s(x), ∀r, s ∈ ℤ, r ̸= s. (2.4)
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Figure 2.1: On the left, Subcase 2.1: (f j−n(x0), f j(x0)) ⊆ (f k−n(x0), f k(x0)). On the right, Subcase 2.2:
f k−n(x0) ∈ (f j−n(x0), f j(x0)).
Otherwise, f r−s(x) = x and f would have a periodic point, that is, ρ(f ) would be ratio-
nal according to Proposition 2.2.12. This would contradict our hypothesis that ρ(f ) is
irrational.

Subcase 2.1: f j−n(x0) ∈ (f k−n(x0), f j(x0)).
This means that (f j−n(x0), f j(x0)) ⊆ (f k−n(x0), f j(x0)). In light of assumption (2.3),

which we recall states that f j(x0) ∈ (f k−n(x0), f k(x0)), we actually have that
(f j−n(x0), f j(x0)) ⊆ (f k−n(x0), f k(x0)).

Then the continuity and orientation-preserving properties of f yield that

f j−k([f k−n(x0), f k(x0)]) = [f j−n(x0), f j(x0)] ⊆ [f k−n(x0), f k(x0)].
So f j−k maps a closed arc to a closed arc within itself. The intermediate value theo-
rem then asserts that f j−k has a fixed point (recall that j ̸= k). Hence, f has a periodic
point. According to Proposition 2.2.12, this means that ρ(f ) is a rational number. This
contradicts our hypothesis that ρ(f ) is irrational, and thus this subcase cannot occur.

Subcase 2.2: f j−n(x0) ∉ (f k−n(x0), f j(x0)).
In other words, f j−n(x0) ∈ [f j(x0), f k−n(x0)]. Since f r(x0) ̸= f s(x0) for all r ̸= s, this

actually means that f j−n(x0) ∈ (f j(x0), f k−n(x0)). Equivalently, this means that

f k−n(x0) ∈ (f j−n(x0), f j(x0)).
Then, as −n ≤ k − n ≤ n, we have a relation akin to (2.3) but with k − n in place of j and
j in place of k. But since k is maximal with this property, we deduce that j ≤ k. In fact,
as f k(x0) ∉ (f k−n(x0), f k(x0)), we know that j < k. Then, by (2.3), we obtain that

f n+j−k(x0) = f n−k(f j(x0)) ∈ f n−k((f k−n(x0), f k(x0))) = (x0, f n(x0)).
Since −n ≤ n + j − k ≤ n, this contradicts our original hypothesis (2.2). This shows that
this subcase does not happen either.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



58 | 2 Homeomorphisms of the circle

To summarize, neither Case 1 nor Case 2 can occur. So, whatever 0 ≤ k ≤ nmight
be, there is no −n ≤ j ≤ n satisfying (2.3). This contradiction completes the proof.

A rather straightforward consequence of Lemma 2.3.5 is the following.

Lemma 2.3.6. If x0 ∈ 𝕊1 is such that

(x0, f
n(x0)) ∩ {f

j(x0) : |j| ≤ n} = 0

for some n ∈ ℕ, then the arcs {(f k−n(x0), f k(x0)) : 0 ≤ k ≤ n} are mutually disjoint.
Proof. If two such arcs intersected, then an endpoint of one of those arcswould belong
to the other arc, which would contradict the previous lemma.

Finally, we derive an estimate on the derivatives of the iterates of f .

Lemma 2.3.7. There is a universal constant v > 0 with the property that for all x0 ∈ 𝕊1

and n ∈ ℕ such that

(x0, f
n(x0)) ∩ {f

j(x0) : |j| ≤ n} = 0,

we have

(f n)′(x0)(f −n)′(x0) ≥ e−v .
Proof. Let x0 ∈ 𝕊1 and n ∈ ℕ be as stated above. Since f preserves orientation, both
(f n)′(x) and (f −n)′(x) are strictly positive for all x ∈ 𝕊1 and all n ≥ 0. Let

a := inf{f ′(x) | x ∈ 𝕊1}.
As f is a C1 function, its derivative f ′ is continuous, and hence its infimum on the
compact set 𝕊1 is achieved. So a > 0.

By a simple application of the chain rule, we obtain that

log(f n)′(x0) = log(n−1∏
k=0 f ′(f k(x0))) = n−1

∑
k=0 log f ′(f k(x0))

and

log(f −n)′(x0) = log((f n)′(f −n(x0)))−1
= − log(f n)′(f −n(x0))
= − log(

n−1
∏
k=0 f ′(f k(f −n(x0))))

= −
n−1
∑
k=0 log f ′(f k−n(x0)).
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These two equalities yield the estimate

log((f n)′(x0)(f −n)′(x0)) = log(f n)′(x0) + log(f −n)′(x0)
=

n−1
∑
k=0(log f ′(f k(x0)) − log f ′(f k−n(x0)))
≥ −

n−1
∑
k=0log f ′(f k(x0)) − log f ′(f k−n(x0)).

But, by the mean value theorem,

log f
′(f k(x0)) − log f ′(f k−n(x0)) = 1

ck

f
′(f k(x0)) − f ′(f k−n(x0)),

where ck is between f ′(f k(x0)) and f ′(f k−n(x0)). In particular, we have that ck ≥ a.
Moreover, according to Lemma 2.3.6, the family of arcs {(f k−n(x0), f k(x0)) : 0 ≤
k ≤ n} are mutually disjoint. Consequently, the points {f j(x0) : |j| ≤ n} can be arranged
in such a way that they form an ordered partition of 𝕊1 in which f k(x0) immediately
follows f k−n(x0) for each 0 ≤ k ≤ n. Hence,

n−1
∑
k=0f ′(f k(x0)) − f ′(f k−n(x0)) ≤ var(f ′).

Therefore,

n−1
∑
k=0log f ′(f k(x0)) − log f ′(f k−n(x0)) = n−1∑k=0 1

ck

f
′(f k(x0)) − f ′(f k−n(x0))

≤
1
a

n−1
∑
k=0f ′(f k(x0)) − f ′(f k−n(x0))

≤
1
a
var(f ′) =: v <∞.

Then we obtain that

log((f n)′(x0)(f −n)′(x0)) ≥ − n−1∑
k=0log f ′(f k(x0)) − log f ′(f k−n(x0)) ≥ −v.

Hence, (f n)′(x0)(f −n)′(x0) ≥ e−v. Note that v depends only on f .
We are now in a position to prove Denjoy’s theorem.

Proof of Denjoy’s theorem. Suppose, by way of contradiction, that themap f : 𝕊1 → 𝕊1

is notminimal. According to Theorem 1.5.2, every dynamical systemhas aminimal set.
Call this set △ ⊆ 𝕊1. Since we are assuming that f is not minimal, it follows that △ is
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a proper subset of 𝕊1. Recall that△ is a closed f -invariant set. Since f is a homeomor-
phism, not only is f (△) ⊆ △ but, in fact, f (△) = △ = f −1(△). That is,△ is a completely
invariant set. Therefore,

f (𝕊1 \△) = 𝕊1 \△ = f −1(𝕊1 \△).
Because 𝕊1 \△ is an open subset of the circle, we can write 𝕊1 \△ = ⋃∞j=0 Ij, where the
Ij’s form a countable union of maximal disjoint open arcs. This implies in particular
that 𝜕Ij ⊆ △ for each j ≥ 0. We then have∞

∑
j=0 |Ij| = Leb(𝕊1 \△) ≤ 1,

where Leb denotes the Lebesgue measure. Hence, limj→∞ |Ij| = 0.
We now establish two claims about the Ij’s.

Claim 1. For every n ∈ ℤ, there is a unique jn ≥ 0 such that f n(I0) ∩ Ijn ̸= 0. In fact,
f n(I0) = Ijn .

By definition, the Ij’s are the connected components of 𝕊1 \△. Let n be an integer.
Since 𝕊1 \ △ is completely f -invariant and f is a homeomorphism, the set f n(I0) is a
connected component of 𝕊1 \ △. Denote by Ijn this unique component. This proves
Claim 1.

Claim 2. If m ̸= k, then Ijm ∩ Ijk = 0. Moreover, lim|n|→∞ |Ijn | = 0.
Suppose for a contradiction that Ijm ∩ Ijk ̸= 0 for some k < m. Since these arcs are

connected components of 𝕊1 \△, we have that Ijm = Ijk . Then

fm−k(Ijk ) = fm−k(f k(I0)) = fm(I0) = Ijm = Ijk .
Therefore, fm−k(Ijk ) = Ijk . In other words, fm−k maps a closed arc within itself. Thus,
fm−k has a fixed point, and hence f has a periodic point. According to Proposi-
tion 2.2.12, this means that ρ(f ) is a rational number, which contradicts our original
assumption that ρ(f ) is irrational. Consequently, the family (Ijn )

∞
n=0 consists of mutu-

ally disjoint arcs, that is, all the jn’s differ and so there are infinitely many arcs Ijn . It
therefore follows that

lim|n|→∞ |Ijn | = 0.
This completes the proof of Claim 2.

Now, for each n ≥ 0 consider the sets

𝒥 n+ := {x ∈ I0 : (f n)′(x) ≥ e−v/2} and 𝒥 n− := {x ∈ I0 : (f −n)′(x) ≥ e−v/2},
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where v > 0 is the universal constant arising from Lemma 2.3.7. We aim to show that
there exists a strictly increasing sequence (nq)∞q=0 of nonnegative integers such that

I0 = 𝒥
nq+ ∪ 𝒥 nq− , ∀q ≥ 0.

According to Lemma 2.3.7, it suffices to show that

(x0, f
nq (x0)) ∩ {f

j(x0) : |j| ≤ nq} = 0, ∀x0 ∈ I0, ∀q ≥ 0.

To prove this, write I0 := (a, b). We first construct a strictly increasing sequence
of nonnegative integers (pq)∞q=0 and a sequence of integers (mpq )

∞
q=0, where |mpq | ≤ pq

and limq→∞ |mpq | =∞, so that

(b, fmpq (b)) ∩ {f j(b) : |j| ≤ pq} = 0, ∀q ≥ 0. (2.5)

Since b ∈ △ and △ is minimal, we know that ω(b) = △ by Theorem 1.5.4. There-
fore, there is a strictly increasing sequence (pq)∞q=0 of nonnegative integers such that
limq→∞ f pq (b) = b.

Note that

f j(b) ̸= f k(b), ∀j ̸= k. (2.6)

Otherwise, f j−k(b) = b for some j > k and f would have a periodic point, that is, ρ(f )
would be rational according to Proposition 2.2.12. This would contradict the fact that
ρ(f ) is irrational. In particular, this means that f pq (b) ̸= b for every q. By passing
to a subsequence if necessary, we may thus assume that the points of the sequence
(f pq (b))∞q=0 successively edge closer to b.

For every q, denote by fmpq (b) the point among the iterates

f −pq (b), f −pq+1(b), . . . , f −1(b), f (b), . . . , f pq−1(b), f pq (b)
(excluding b) which is closest to the point b. Clearly, fmpq (b)→ b since f pq (b)→ b and
the points of the sequence (fmpq (b))∞q=0 successively edge closer to b since the f pq (b)’s
do. Thus, the sequence (mpq )

∞
q=0 accumulates to∞ or −∞, and hence admits a subse-

quence converging to∞ or −∞. By replacing f with f −1 if necessary, we may assume
without loss of generality that the subsequence in question is positive and converges
to∞. Let us denote that subsequence by the same notation (mpq )

∞
q=0. Then, by con-

struction of the fmpq (b)’s, relation (2.5) holds. In other words,

{f j(b) : |j| ≤ pq} ⊆ [f
mpq (b), b], ∀q ≥ 0. (2.7)

In fact, by (2.6), we have

{f j(b) : |j| ≤ pq} ⊆ (f
mpq (b), b), ∀q ≥ 0. (2.8)
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Moreover,

f j(b) ∈ (b, a], ∀j ̸= 0. (2.9)

Otherwise, f j(b) ∈ (a, b) would imply that f j((a, b)) ∩ (a, b) ̸= 0, which would force j to
be equal to zero by Claims 1 and 2.

In particular, this implies that fmpq (b) ∈ (b, a]. Hence,

(fmpq (b), b) = (fmpq (b), a] ∪ (a, b), ∀q ≥ 0. (2.10)

We deduce from (2.8), (2.9) and (2.10) that

{f j(b) : |j| ≤ pq} ⊆ (f
mpq (b), b) ∩ (b, a] = (fmpq (b), a], ∀q ≥ 0. (2.11)

Finally, by dropping the first few terms of the subsequence (mpq )
∞
q=0 if necessary, we

can also guarantee that all fmpq (b)’s are closer to b than the point a is.
Now, let x0 ∈ (a, b). First, note that f j(x0) ∉ (a, b) for all j ̸= 0; otherwise, wewould

have that f j((a, b)) ∩ (a, b) ̸= 0, and Claims 1 and 2 would force j to be equal to zero. In
particular, this implies that

(x0, b) ∩ {f
j(x0) : |j| ≤ mpq} ⊆ (x0, b) ∩ {f

j(x0) : j ∈ ℤ} = 0. (2.12)

Observe also that f j(x0) ̸= b for all j since x0 ∈ 𝕊1 \ △, the set 𝕊1 \ △ is completely
f -invariant and b ∈ △. In particular, we obtain

{b} ∩ {f j(x0) : |j| ≤ mpq} ⊆ {b} ∩ {f
j(x0) : j ∈ ℤ} = 0. (2.13)

Finally, we show that fmpq (x0) is the point which is closest to b among the points
f −pq (x0), f −pq+1(x0), . . . , f −1(x0), x0, f (x0), . . . , f pq−1(x0), f pq (x0), except possibly x0 itself.
Let q ≥ 0. Suppose that there exists j with −pq ≤ j ≤ pq, j ̸= mpq , such that f j(x0) is
closer to b than fmpq (x0). We already know that f j(x0) ̸= b and f j(x0) ̸= a by the com-
plete f -invariance of 𝕊1 \ △. On one hand, if f j(x0) ∈ (a, b) then f j((a, b)) ∩ (a, b) ̸= 0.
Claims 1 and 2 impose that j equal zero. Then f j(x0) = x0. On the other hand, it might
turn out that f j(x0) ∈ (b, a). In this case, observe that

fmpq (x0) ∈ f
mpq ((a, b)) = fmpq (I0) = Ijmpq = (f

mpq (a), fmpq (b))

= (b, a) ∩ (fmpq (a), fmpq (b))
⊆ (b, fmpq (b)).

Since fmpq (b) is closer to b than the point a is and since f j(x0) is assumed to be closer
to b than fmpq (x0), we would then have f j(x0) ∈ (b, f

mpq (x0)). As f j(b) ∈ (f
mpq (b), a]

according to (2.11), we would then deduce that [fmpq (x0), f
mpq (b)] ⊆ [f j(x0), f j(b)]. As f

is orientation preserving, this would imply that

fmpq−j([x0, b]) = f −j([fmpq (x0), f
mpq (b)]) ⊆ f −j([f j(x0), f j(b)]) = [x0, b].
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Then f would have a periodic point, which is not the case. To summarize, fmpq (x0) is
indeed the point among f −pq (x0), . . . , f pq (x0), which is closest to the point b, except
possibly x0 itself. As noted previously, f

mpq (x0) ∈ (b, a) for every q. This implies that

(b, fmpq (x0)) ∩ {f
j(x0) : |j| ≤ mpq} = 0. (2.14)

From (2.12), (2.13), and (2.14), we conclude that

(x0, f
mpq (x0)) ∩ {f

j(x0) : |j| ≤ mpq} = 0.

Note that the sequence (mpq )
∞
q=0 is independent of x0 ∈ (a, b) = I0. Settingnq := mpq , an

application of Lemma 2.3.7 with n = nq allows us to deduce that (f nq )′(x0) (f −nq )′(x0) ≥
e−v for all q ≥ 0 and all x0 ∈ I0. This implies that I0 = 𝒥 nq+ ∪ 𝒥 nq− , and hence that
max{λ(𝒥 nq+ ), λ(𝒥 nq− )} ≥ |I0|/2 for all q ≥ 0, where λ = Leb denotes the Lebesgue mea-
sure on 𝕊1. If λ(𝒥 nq+ ) ≥ |I0|/2, then

|Ijnq | =
f
nq (I0)
 = ∫

I0

(f nq)′(x) dx
≥ ∫

𝒥 nq+
(f nq)′(x) dλ(x) ≥ ∫

𝒥 nq+
e−v/2 dλ(x)

= e−v/2λ(𝒥 nq+ ) ≥ e−v/22
|I0|.

A similar argument yields the same conclusion if λ(𝒥 nq− ) ≥ |I0|/2. Thus, |Ijnq | ≥
e−v/2|I0|/2 for each q. This contradicts the fact that limn→∞ |Ijn | = 0. Therefore, the
minimal set△must be 𝕊1, which means that f : 𝕊1 → 𝕊1 is minimal.

As an immediate consequence of Denjoy’s theorem,we obtain the following corol-
lary.

Corollary 2.3.8. Suppose that f : 𝕊1 → 𝕊1 is an orientation-preserving C1 diffeomor-
phism with derivative f ′ of bounded variation. If ρ(f ) is irrational, then f is topologically
conjugate to the rotation around the circle by the angle ρ(f ).

Proof. This follows directly from Theorems 2.3.2 and 2.3.4.

Remark 2.3.9. Notice that if φ : 𝕊1 → ℝ is Lipschitz continuous, then φ is of bounded
variation. Indeed, for any finite partition x0, x1, . . . , xn = x0 of the unit circle we have

n−1
∑
i=0φ(xi+1) − φ(xi) ≤ n−1∑i=0 L|xi+1 − xi| = L,

where L is any Lipschitz constant for φ.
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AseveryC1 functionon𝕊1 is Lipschitz continuous, everyC2 function f has aderiva-
tive f ′ which is C1, and hence of bounded variation. Thus the previous corollary yields
the following further result.

Corollary 2.3.10. Suppose that f : 𝕊1 → 𝕊1 is an orientation-preserving C2 diffeomor-
phism. If ρ(f ) is irrational, then f is topologically conjugate to the rotation around the
circle by the angle ρ(f ).

2.3.2 Denjoy’s counterexample

In light of Corollary 2.3.8, it is natural to askwhether all orientation-preservinghomeo-
morphisms with irrational rotation numbers are topologically conjugate to a rotation
around the circle by an irrational angle. This is not the case. In fact, there are even
orientation-preserving C1 diffeomorphisms with irrational rotation numbers which
are not topologically conjugate to an irrational rotation.

We will now construct an orientation-preserving homeomorphismwith irrational
rotation number which is not topologically conjugate to an irrational rotation of the
circle. This construction is also due to Denjoy. The idea is the following. We know that
minimality is a topological invariant. Given that an irrational rotation of the circle is
minimal, it suffices to construct an orientation-preserving homeomorphismwith irra-
tional rotation number which is not minimal. By Theorem 1.5.4, this reduces to devis-
ing an orientation-preserving homeomorphismwith irrational rotation numberwhich
admits a nondense orbit. We will build such a map by performing a “surgery” on an
irrational rotation of the circle. Let Rρ : 𝕊1 → 𝕊1 be an irrational rotation of the cir-
cle. Choose arbitrarily θ ∈ 𝕊1. Cut the unit circle at the point θ, open it up and insert
into the gap an arc I0. Similarly, cut the circle at the point Rρ(θ), open it up and in-
sert into the gap an arc I1. Perform a similar procedure at every point of the orbit of θ.
That is, for every n ∈ ℤ cut the circle at the point Rnρ(θ), open it up and insert into the
gap an arc In. Make sure to choose the arcs {In} small enough that ∑∞n=−∞ |In| < ∞.
These surgeries result in a larger “circle” (more precisely, a simple closed curve). It
only remains to extend the original irrational rotation to the larger curve by defining
the extension on the union of the In’s. Since the extension is required to preserve ori-
entation, choose any orientation-preserving homeomorphism hn mapping In to In+1.
The extension is then an orientation-preserving homeomorphism of the larger circle.
Note that the extension does not admit any periodic point, since the original map did
not and the points in the inserted arcs visit all those arcs in succession without ever
coming back to the same arc. Proposition 2.2.12 therefore allows us to infer that the ex-
tension must have an irrational rotation number. Moreover, the fact that the interior
points of the inserted arcs never come back to their original arc under iteration shows
that all these points have nondense orbits.
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In fact, the above argument can be modified in such a way that the extension
is a C1 diffeomorphism whose derivative is not of bounded variation (see pp. 111–112
of [19]).

2.4 Exercises

Exercise 2.4.1. In this exercise, you shall prove Corollary 2.2.6. We suggest that you
proceed as follows. Let f̃ be a lift of f .
(a) Using Corollary 2.2.5 and the fact that f̃ is increasing, show that if |x − y| ≤ k for

some k ∈ ℤ+, then |f̃ (x) − f̃ (y)| ≤ k.
(b) Deduce that if |x − y| ≤ k for some k ∈ ℤ+, then |f̃ n(x) − f̃ n(y)| ≤ k for any n ∈ ℤ.
(c) Prove that we can replace ≤ by < above.

Exercise 2.4.2. Prove Corollary 2.2.8.

Exercise 2.4.3. Prove that any homeomorphism F : ℝ → ℝ with the property that
F(x + 1) = F(x) + 1 for all x ∈ ℝ generates an orientation-preserving homeomorphism
f : S1 → 𝕊1.

Exercise 2.4.4. Taking inspiration from theproof of statement (f) inProposition 2.2.10,
prove statement (g) of the same proposition.

Exercise 2.4.5. This exercise is concerned with orientation-reversing homeomor-
phisms of the circle. You will be asked to prove several properties of lifts of such
maps. In the end, you will discover that the concept of “rotation” number is useless
for orientation-reversing homeomorphisms.

Let f̃ be a lift of an orientation-reversing homeomorphism f . Prove the following
statements:
(a) Show that any lift f̃ is a decreasing homeomorphism of ℝ (cf. Lemma 2.2.3).
(b) Prove that deg(f ) = −1 (cf. Lemma 2.2.4).
(c) Show that f̃ n(x + k) = f̃ n(x) + (−1)nk for all x ∈ ℝ, all k ∈ ℤ, and all n ∈ ℤ

(cf. Corollaries 2.1.10 and 2.2.5).
(d) Prove that if |x − y| < k for some k ∈ ℤ+, then |f̃ n(x) − f̃ n(y)| < k for any n ∈ ℕ.

(This shows that Corollary 2.2.6 still holds.)
(e) If g̃ is another lift of f so that g̃ = f̃ + k for some k ∈ ℤ, then g̃n = f̃ n + k sin2(nπ/2)

for all n ∈ ℤ (cf. Corollary 2.2.7).
(f) Show that f̃ +Idℝ is a periodic functionwith period 1. More generally, a decreasing

homeomorphism g̃ : ℝ → ℝ is a lift of an orientation-reversing homeomorphism
of the circle if and only if g̃ + Idℝ is a periodic function with period 1 (cf. Corol-
lary 2.2.8).

(g) Show that the reflection of the unit circle in the x-axis is an orientation-reversing
homeomorphism of 𝕊1. Then find its lifts.
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(h) Prove that the number ρ(f̃ ) := limn→∞ f̃ n(x)
n exists for all x ∈ ℝ and is independent

of x (cf. Proposition 2.2.10).
(i) Show that ρ(f̃ ) = 0. This demonstrates that the concept of “rotation” number is

useless for orientation-reversing homeomorphisms.

Exercise 2.4.6. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism of the
circle. Let ε > 0. Show that there exists δ > 0 such that if g : 𝕊1 → 𝕊1 is an orientation-
preserving homeomorphism which is C0-δ close to f , then

ρ(g) − ρ(f )
 < ε.

Hint: Reread the proof of statement (a) in Proposition 2.2.10.

Exercise 2.4.7. Suppose that f , g : 𝕊1 → 𝕊1 are two orientation-preserving homeomor-
phisms of the circle. Show that if f and g commute, then ρ(g ∘ f ) = ρ(g) + ρ(f ).

Exercise 2.4.8. Suppose that f : 𝕊1 → 𝕊1 is an orientation-preserving homeomor-
phism of the circle such that ρ(f ) ∈ ℝ \ℚ. Show that {ρ(f n) : n ∈ ℕ} is dense in 𝕊1.
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3 Symbolic dynamics

Symbolic dynamics is an extremely powerful tool for the analysis of general dynami-
cal systems. The very rough idea is to break up a space into finitely or countably many
parts, assign a symbol to each part and track the orbits of points by assigning se-
quences of symbols to them, representing the orbits visiting successive parts of the
space. In the process, we glean information about the system by analyzing these sym-
bolic orbits.

In this chapter, we exclusively deal with topological aspects of symbolic dynam-
ics. Symbolic dynamics is however equally important, perhaps even more important,
in the context of measure-preserving dynamical systems and ergodic theory, particu-
larly thermodynamic formalism. We will see why in Chapters 4, 8 (especially Subsec-
tions 8.1.1 and 8.2.3) as well as in Chapters 13 and 17 onward in the second volume.

The first successful use of topological aspects of symbolic dynamics can be cred-
ited to Hadamard [26], who applied them to geodesic flows. However, it took another
40 years before the topic received its first systematic account and its name, in the foun-
dational paper by Morse and Hedlund [51]. This paper is the first to treat symbolic dy-
namical systems as objects of study in and of themselves.

Since then, symbolic dynamics has found ever wider applications within dynam-
ical systems as a whole, while still remaining an active area of research. For a deeper
introduction to combinatorial and topological aspects of symbolic dynamics over fi-
nite alphabets, we refer the reader to Lind and Marcus [43]. There is also a nice chap-
ter on symbolic dynamics over finite alphabets in the fairly recent book by Brin and
Stuck [13]. For a treatment of topological symbolic dynamics over countable alpha-
bets, we refer the reader to Kitchens [39].

In this chapter, we discuss symbolic dynamical systems as objects in their own
right, but later on (in Chapter 4, among others mentioned above), we will apply the
ideas developed here to more general systems. We restrict ourselves to finitely many
letters, as symbolic systems over finite alphabets act on compact metrizable spaces.
However, in Chapter 17, we will turn our attention to countable-alphabet symbolic dy-
namics.

In Section 3.1, we discuss full shifts. In Section 3.2, we talk about subshifts of finite
type and in particular the characterizations of topological transitivity and exactness
for such systems. Finally, in Section 3.3 we examine general subshifts of finite type.

3.1 Full shifts

Let us begin by introducing the simplest class of symbolic dynamical systems, namely
the full shifts.

https://doi.org/10.1515/9783110702682-003
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Definition 3.1.1. Let E be a set such that 2 ≤ #E <∞, where #E denotes the cardinality
of E. This set will henceforth be referred to as an alphabet. The elements of E will be
called letters or symbols.
(a) For each n ∈ ℕ, we shall denote by En the set of all words (also called blocks)

comprising n letters from the alphabet E. For convenience, we also denote the
empty word, that is, the word having no letters, by ϵ.
For instance, if E = {0, 1} then E1 = E = {0, 1}, E2 = {00,01, 10, 11} and

E3 = {000, 100,010,001, 110, 101,011, 111}.

(b) We will denote by E∗ := ⋃∞n=1 E
n the set of all finite nonempty words over the

alphabet E.
(c) The set E∞ := Eℕ of all one-sided infinite words over the alphabet E, that is, the

set of all sequences or functions from ℕ to E, is called the one-sided full E-shift,
or, if no confusion about the underlying alphabet may arise, simply the full shift.
In other words,

E∞ := {ω = (ωj)
∞
j=1 : ωj ∈ E, ∀j ∈ ℕ}.

When E = {0, 1, . . . , n − 1} for some n ∈ ℕ, the full E-shift is usually referred to as
the full n-shift.

(d) The length of a wordω ∈ E∗∪E∞ is defined in the natural way to be the number of
letters that it consists of and is denoted by |ω|. That is, |ω| is the unique n ∈ ℕ∪{∞}
such that ω ∈ En. By convention, |ϵ| = 0.
A word of length n is sometimes called an n-word or n-block. In our notation, the
set of all n-words is simply En.

Note that for each n ∈ ℕ the set En is finite, and hence the set E∗ of finite words
is countable. We can enumerate all the finite words by starting with the 1-words, fol-
lowed by the 2-words, the 3-words, and so on. As #E ≥ 2, a classical Cantor diagonal-
ization argument establishes that the full E-shift is uncountable. More precisely, the
full E-shift has the cardinality c of the continuum, that is, it is equinumerous toℝ and
[0, 1].

One of the most common examples of a full shift is the full 10-shift, which can
serve to encode the decimal expansions of the real numbers between 0 and 1. For in-
stance, the word 0∞ = 0000 . . . corresponds to the number 0, while the word 1∞ =
1111 . . . represents the number 0.1111 . . . = 1/9. Furthermore, observe that the words
50∞ = 5000 . . . and 49∞ = 4999 . . . both encode 1/2 since 0.5000 . . . = 0.4999 . . . = 1/2.
More generally, a word ω ∈ {0, 1, . . . , 9}∞ encodes the number

∞

∑
j=1

ωj(
1
10
)
j
.

As noted above, this coding is not one-to-one.
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Another common example of a full shift is the full 2-shift. In computer science,
the symbol 0might correspond to having a device (e. g., a switch) turned off, while the
symbol 1 would then correspond to the device being on. In physics, the Ising model
describes particle spins that have only two possible states, up and down. So we can
describe the successive states of a device or particle, at regular observation times, us-
ing a sequence of 0s and 1s. Words in the full 2-shift are also called binary sequences,
as they correspond to the binary expansions of the numbers between 0 and 1. Indeed,
a word ω ∈ {0, 1}∞ may be viewed as representing the real number

∞

∑
j=1

ωj(
1
2
)
j
.

For instance, the word 0∞ corresponds to the number 0, as in the full 10-shift. How-
ever, the word 1∞, which encoded the number 1/9 as a word in the full 10-shift, repre-
sents the number 1 in the full 2-shift; the number 1/9 is instead encoded by the word
(000111)∞ = 000111000111 . . . in the full 2-shift. As for the number 1/2, it is encoded
by the words 10∞ = 1000 . . . and 01∞ = 0111 . . .. Hence, this binary coding is not one-
to-one either.

The idea of approximating a real number by a rational number by cutting it after a
certain number of decimals generalizes to the concept of an initial block. Initial blocks
play an important role in symbolic dynamics.

Definition 3.1.2. If ω ∈ E∗ ∪ E∞ and n ∈ ℕ does not exceed the length of ω, we define
the initial block ω|n to be the initial n-word of ω, that is, the subword ω1ω2 . . .ωn.

In a similar vein, words which beginwith the same strings of letters are intuitively
close to one another and it is therefore useful to identify the initial subword that they
share. To describe this, we introduce the wedge of two words.

Definition 3.1.3. Given two words ω, τ ∈ E∗ ∪ E∞, we define their wedge ω ∧ τ ∈ {ϵ} ∪
E∗ ∪ E∞ to be their longest common initial block.

The wedge of two words is better understood via examples. If E = {1, 2, 3} and we
have two words ω = 12321 . . . and τ = 12331 . . ., then ω ∧ τ = 123. On the other hand,
if γ = 22331 . . . then ω ∧ γ = ϵ. Of course, if two (finite or infinite) words ω and τ are
equal, then ω ∧ τ = ω = τ.

So far, we have talked about the set E∞ and have given a natural sense to the
closeness of any two of its words in terms of their common initial block. We will now
endow E∞ with a natural topology. First, the finite alphabet E is endowed with the
discrete topology, that is, the topology in which every subset of E is both open and
closed. Then, observing that E∞ = ∏∞n=1 En, where En = E for each n ∈ ℕ, that is, E∞

is the product of countably many copies of E, we equip E∞ with Tychonoff’s product
topology generated by the discrete topology on each copy of E. More precisely, that
topology is determined by a countable base of open sets called (initial) cylinder sets.
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Definition 3.1.4. Given a finite word ω ∈ E∗, the (initial) cylinder set [ω] generated by
ω is the set of all infinite words with initial block ω, that is,

[ω] = {τ ∈ E∞ : τ||ω| = ω} = {τ ∈ E
∞ : τj = ωj, ∀1 ≤ j ≤ |ω|}.

We take this opportunity to introduce more general cylinder sets.

Definition 3.1.5. Given a finite wordω ∈ E∗ andm, n ∈ ℕ such that n−m+ 1 = |ω|, the
(m, n)-cylinder set [ω]nm generated by ω is the set of all infinite words whose subblock
from coordinatesm to n coincides with ω, that is,

[ω]nm = {τ ∈ E
∞ : τj = ωj−m+1 for all m ≤ j ≤ n}.

In particular, note that [ω]|ω|1 = [ω].

Definition 3.1.6. When equipped with Tychonoff’s product topology, that is, the
topology generated by the (initial) cylinder sets, the set E∞ is called the full E-shift
space or, more simply, full shift space.

We now describe themost fundamental topological properties of full shift spaces.
First, note that there are countably many (initial) cylinder sets since there are count-
ably many finite words in E∗. Since these sets form a base for the topology, the space
E∞ is second countable.

Furthermore, since the alphabet E is finite, when endowed with the discrete
topology it becomes a compact metrizable space (see Exercise 3.4.2). According to Ty-
chonoff’s theorem (see 17.8 in [77]), it then follows that E∞, as a product of countably
many copies of E, is also a compact metrizable space (see Exercise 3.4.2).

Moreover, the full shift space E∞ is perfect, that is, it contains no isolated point.
Indeed, notice that every point ω ∈ E∞ is such that

{ω} =
∞

⋂
n=1
[ω|n].

Alternatively, note that every point ω ∈ E∞ is the limit of the sequence of “periodic”
points ((ω|n)∞)∞n=1 = ((ω1 . . .ωn)

∞)∞n=1.
Finally, since the complement of a cylinder set is a unionof cylinder sets, the cylin-

der sets are bothopenand closed subsets of the full shift space. Therefore,E∞ is totally
disconnected (see Exercise 3.4.3). Summarizing these properties,wehave obtained the
following lemma.

Lemma 3.1.7. The full shift space E∞ is a totally disconnected, perfect, compact,metriz-
able space.

To put this lemma in context, we recall the following definition.

Definition 3.1.8. A Cantor space (also frequently called a Cantor set) is a totally dis-
connected, perfect, compact, second-countable, Hausdorff topological space.
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In light of this definition, we can restate Lemma 3.1.7 as follows.

Lemma 3.1.9. The full shift space E∞ is a Cantor space.

Cantor spaces can be characterized as follows:
(a) They are totally disconnected, perfect, compact, metrizable topological spaces.
(b) They are homeomorphic to the middle-third Cantor set.
(c) They are homeomorphic to E∞ for some finite set E having at least two elements.
(d) They are homeomorphic to E∞ for every finite set E having at least two elements.

We now introduce a family of metrics on E∞, each of which reflects the idea that two
words are close if they share a long initial block. The longer their common initial sub-
word, the closer two words are.

Definition 3.1.10. For each s ∈ (0, 1), let ds : E∞ × E∞ → [0, 1] be defined by

ds(ω, τ) = s
|ω∧τ|.

Remark 3.1.11. If ω, τ ∈ E∞ have no common initial block, then ω ∧ τ = ϵ. Thus,
|ω∧ τ| = 0 and ds(ω, τ) = 1. On the other hand, ifω = τ then |ω∧ τ| =∞ and we adopt
the convention that s∞ := 0.

Proposition 3.1.12. For every s ∈ (0, 1), the map ds : E∞ × E∞ → [0, 1] defined above is
an ultrametric, and thus a metric.

Proof. First, note that ds(ω,ω) = s∞ := 0. Moreover, ds(ω, τ) = 0 implies that
|ω ∧ τ| =∞, that is, ω = τ. Second, ds is symmetric, as

ds(ω, τ) = s
|ω∧τ| = s|τ∧ω| = ds(τ,ω).

It only remains to show that ds(ω, τ) ≤ max{ds(ω, ρ), ds(ρ, τ)} for all ω, ρ, τ ∈ E∞. Fix
ω, ρ, τ ∈ E∞. Observe that ω and ρ share the same initial block of length |ω ∧ ρ|, while
ρ and τ share the same initial block of length |ρ ∧ τ|. This implies that ω, ρ, and τ all
share the same initial block of length equal to min{|ω ∧ ρ|, |ρ ∧ τ|}. Since 0 < s < 1, we
then have that

ds(ω, τ) ≤ s
min{|ω∧ρ|,|ρ∧τ|} = max{s|ω∧ρ|, s|ρ∧τ|} = max{ds(ω, ρ), ds(ρ, τ)}.

This shows that ds is an ultrametric. In particular, it is ametric as the triangle inequal-
ity

ds(ω, τ) ≤ ds(ω, ρ) + ds(ρ, τ)

is obviously satisfied.
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We have now defined an uncountable family of metrics on E∞, one for each s ∈
(0, 1). These metrics induce Tychonoff’s topology on E∞ (see Exercise 3.4.4). This im-
plies that these metrics are topologically equivalent. In fact, they are Hölder equiva-
lent but not Lipschitz equivalent (see Exercises 3.4.5 and 3.4.6).

Let us now describe what it means for a sequence to converge to a limit in the full
shift space. Let s ∈ (0, 1). Let (ω(k))∞k=1 be a sequence in E

∞. Observe that

lim
k→∞

ds(ω
(k),ω) = lim

k→∞
s|ω
(k)∧ω| = 0⇔ lim

k→∞
ω
(k) ∧ ω =∞.

In other words, a sequence (ω(k))∞k=1 converges to the infinite word ω if and only if for
any L ∈ ℕ, the words in the sequence eventually all have ω|L as initial L-block.

Now that we have explored the space E∞, we would like to introduce some dy-
namics on it. To this end, we define the shift map, whose action consists in removing
the first letter of eachword and shifting all the remaining letters one space/coordinate
to the left.

Definition 3.1.13. The full left-shiftmap σ : E∞ → E∞ is defined by σ(ω) = σ((ωj)
∞
j=1) :=

(ωj+1)
∞
j=1, that is,

σ(ω1ω2ω3ω4 . . .) := ω2ω3ω4 . . .

We will also often refer to this map simply as the shift map.

The shift map is #E-to-one on E∞. In other words, each word has #E preimages
under the shift map. Indeed, given any letter e ∈ E and any infinite word ω ∈ E∞, the
concatenation eω = eω1ω2ω3 . . . of e with ω is a preimage of ω under the shift map
since σ(eω) = ω.

The shift map is obviously continuous, since twowords that are close share a long
initial block and thus their images under the shift map, which result from dropping
their first letters, will also share a long initial block. More precisely, for any ω, τ ∈ E∞

with ds(ω, τ) < 1, that is, with |ω ∧ τ| ≥ 1, we have that

ds(σ(ω), σ(τ)) = s
|σ(ω)∧σ(τ)| = s|ω∧τ|−1 = s−1s|ω∧τ| = s−1ds(ω, τ).

So the shift map is Lipschitz continuous with Lipschitz constant s−1. In particular, the
shift map defines a dynamical system on E∞. It is then natural to ask the following
question: Given two finite sets E and F, under which conditions are the shift maps
σE : E∞ → E∞ and σF : F∞ → F∞ topologically conjugate? Notice that the only fixed
points of σE are the “constant” words e∞, for each e ∈ E. Hence, the number of fixed
points of σE is equal to #E. Recall that the cardinality of the set of fixed points Fix(T)
is a topological invariant. So, if #E ̸= #F then σE is not topologically conjugate to σF .
In fact, as we will see in the following theorem, σE is topologically conjugate to σF
precisely when #E = #F.
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Theorem 3.1.14. σE : E∞ → E∞ and σF : F∞ → F∞ are topologically conjugate if and
only if #E = #F.

Proof. If σE and σF are topologically conjugate, then it is clear from the discussion
above that #E = #F. For the converse, assume that #E = #F. Therefore, theremust exist
some bijection H : E → F. Now define the mapping h : E∞ → F∞ by concatenation,
that is, by setting

h(ω1ω2ω3 . . .) := H(ω1)H(ω2)H(ω3) . . . .

Then h is a homeomorphism: that h is a bijection follows from H being a bijection,
while the continuity of both h and h−1 follows directly from the fact that h is an isome-
try, as |h(ω)∧h(τ)| = |ω∧τ|. It remains to show that the following diagram commutes:

E∞

h
??

σE ?? E∞

h
??

F∞ σF
?? F∞

Indeed,

h ∘ σE(ω1ω2ω3 . . .) = h(ω2ω3ω4 . . .)

= H(ω2)H(ω3)H(ω4) . . .

= σF(H(ω1)H(ω2)H(ω3) . . .)

= σF ∘ h(ω1ω2ω3 . . .).

3.2 Subshifts of finite type

Wenow turn our attention to subsystems of full shift spaces. By definition, the subsys-
tems of the full shift space E∞ are all shift-invariant, compact subsets of E∞. Recall
that a set F ⊆ E∞ is shift-invariant (i. e., σ-invariant) if σ(F) ⊆ F.

The notion of forbidden word arises naturally in the study of subsets and subsys-
tems of full shift spaces. Let ℱ ⊆ E∗ be a set of finite words, called forbidden words in
the sequel. We shall denote by E∞ℱ the set of all those infinite words in E∞ that do not
contain any forbidden word as a subword. In other words,

E∞ℱ := {ω ∈ E
∞ : ωmωm+1 . . .ωn ∉ ℱ , ∀m, n ∈ ℕ, m ≤ n}.

A subshift is a subset of a full shift that can be described by a set of forbidden words.

Definition 3.2.1. A subset F of the full shift E∞ is called a subshift if there is a set
ℱ ⊆ E∗ of forbidden words such that F = E∞ℱ . It is sometimes said that F = E∞ℱ is the
subshift generated by ℱ .
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Webriefly examine the relation between sets of forbiddenwords and the subshifts
they generate.

Lemma 3.2.2. Let ℱ ⊆ E∗ and 𝒢 ⊆ E∗.
(a) If ℱ ⊆ 𝒢, then E∞ℱ ⊇ E

∞
𝒢 .

(b) If ℱ ⊆ 𝒢 and every word in 𝒢 admits a subword which is in ℱ , then E∞ℱ = E
∞
𝒢 .

Proof.
(a) Suppose that ℱ ⊆ 𝒢. If τ ∉ 𝒢 then τ ∉ ℱ , and hence

E∞𝒢 = {ω ∈ E
∞ : ωmωm+1 . . .ωn ∉ 𝒢, ∀m, n ∈ ℕ, m ≤ n}

⊆ {ω ∈ E∞ : ωmωm+1 . . .ωn ∉ ℱ , ∀m, n ∈ ℕ, m ≤ n}
= E∞ℱ .

(b) Suppose that ℱ ⊆ 𝒢 and that every word in 𝒢 admits a subword which is in ℱ .
By (a), we already know that E∞𝒢 ⊆ E

∞
ℱ . Therefore, it only remains to establish

that E∞𝒢 ⊇ E
∞
ℱ . Let ω ∈ E∞ \ E∞𝒢 . Then there exist m, n ∈ ℕ, m ≤ n, such that

ωmωm+1 . . .ωn ∈ 𝒢. Since every word in 𝒢 contains a subword which is in ℱ , there
exist k, l ∈ ℕ such that m ≤ k ≤ l ≤ n and ωkωk+1 . . .ωl ∈ ℱ . Thus, ω ∈ E∞ \ E∞ℱ .
This means that E∞ \ E∞𝒢 ⊆ E

∞ \ E∞ℱ , and hence E∞𝒢 ⊇ E
∞
ℱ .

Taken together, the next two theorems demonstrate that the terms subsystem of a
full shift and subshift can be used interchangeably.

Theorem 3.2.3. Every subshift of E∞ is a subsystem of the full shift E∞.

Proof. Let F be a subshift ofE∞. Thismeans that there existsℱ ⊆ E∗ such that F = E∞ℱ .
From its definition, it is clear that E∞ℱ is shift invariant. Moreover, observe that

E∞ℱ =
∞

⋂
m=1
⋂
n≥m
{ω ∈ E∞ : ωm . . .ωn ∉ ℱ}

=
∞

⋂
m=1
⋂
n≥m
⋂

τ∈En−m+1∩ℱ{ω ∈ E
∞ : ωm . . .ωn ̸= τ}

=
∞

⋂
m=1
⋂
n≥m
⋂

τ∈En−m+1∩ℱ E∞ \ [τ]nm.

Since every cylinder set is open in E∞, the sets E∞ \ [τ]nm are compact. Therefore, E∞ℱ
is an intersection of compact sets and is thereby compact. In summary, F = E∞ℱ is a
compact shift-invariant subset of E∞. That is, it is a subsystem of the full shift E∞.

Theorem 3.2.4. Let F be a subsystem of the full shift space E∞. Let

ℱF := {τ ∈ E
∗ : [τ] ⊆ E∞ \ F}.
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Then

F = E∞ℱF
.

In other words, the subsystem F of the full shift space E∞ coincides with the subshift E∞ℱF

generated by the set of finite words ℱF .

Proof. By hypothesis, the set F ⊆ E∞ is σ-invariant and compact. In particular, F is
closed. Therefore, E∞ \ F is open.

Let ρ ∈ E∞ \ F. Since E∞ \ F is open, this is equivalent to the existence of n ∈ ℕ
such that [ρ|n] ⊆ E∞ \ F. In turn, this means that ρ|n ∈ ℱF and hence ρ ∉ E∞ℱF

.
Conversely, assume that ρ ∉ E∞ℱF

. There exist m, n ∈ ℕ, m ≤ n, such that
ρmρm+1ρn ∈ ℱF . In other terms, σm−1(ρ)1σm−1(ρ)2 . . . σm−1(ρ)n−m+1 ∈ ℱF . That is,
σm−1(ρ)|n−m+1 ∈ ℱF . This is equivalent to [σm−1(ρ)|n−m+1] ⊆ E∞ \ F. In particular,
σm−1(ρ) ∈ E∞ \ F. Since F is σ-invariant, this implies that ρ ∈ E∞ \ F.

We shall now study a special class of subshifts. They are called subshifts of finite
type.

Definition 3.2.5. A subshift F of the full shift E∞ is said to be of finite type if there is a
finite set ℱ ⊆ E∗ of forbidden words such that F = E∞ℱ .

In this case, it easily follows from Lemma 3.2.2(b) that the finite set ℱ can be cho-
sen so that ℱ ⊆ Eq for some q ∈ ℕ. The set ℱ then induces a function A : Eq → {0, 1}
whose value is 0 onℱ (i. e., for all forbiddenwords of length q) and 1 on Eq \ℱ (i. e., for
all other words of length q). We will revisit this general framework in the next section,
where we will prove that all cases can be reduced to the case q = 2. For this reason, we
will concentrate on this latter case in this section. Here, rather than using formally a
function A : E2 → {0, 1}, subshifts of finite type are best understood by means of an
incidence/transitionmatrix. An incidence/transitionmatrix is simply a squarematrix
consisting entirely of zeros and ones. To do this, we will work with the full shift on
the alphabet {1, 2, . . . , #E} rather than the full E-shift itself. The incidence/transition
matrix determines which letter/number(s) may follow a given letter/number.

Definition 3.2.6. Let A be an incidence matrix of size #E × #E. The set of all infinite
A-admissible words is the subshift of finite type

E∞A := {ω ∈ E
∞ : Aωnωn+1 = 1, ∀n ∈ ℕ}.

E∞A is a subshift of finite type since E∞A = E
∞
ℱ , where the set of forbidden words ℱ

is the finite set of two-letter words

ℱ = {ij ∈ E2 : Aij = 0}.

A (finite) word ω1ω2 . . .ωn is said to be A-admissible (or, if there can be no confu-
sion about the matrix A, more simply, admissible) if

Aωkωk+1 = 1, ∀1 ≤ k < n.
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The set of all A-admissible n-words will naturally be denoted by EnA, while the set of
all A-admissible finite words will naturally be denoted by E∗A. An A-admissible path
of length n from i ∈ E to j ∈ E is any A-admissible word ω of length n with ω1 = i and
ωn = j. Thus, the entry Aij of the matrix A indicates the number of admissible words
(or paths) of length 2 from i to j (which is necessarily either 0 or 1). By multiplying the
matrixAwith itself, we see that (A2)ij = ∑

#E
k=1 AikAkj specifies the number of admissible

words of length 3 from i to j, since AikAkj = 1 if and only if ikj is admissible. Similarly,
(An)ij is the number of admissible words of length n+ 1 from i to j, and (An)ij > 0 if and
only if there is at least one such path.

Note that if a row of A does not contain any 1, then no infinite word can contain
the letter corresponding to that row. This letter can then be thrown out of the alphabet
because it is inessential. Wewill henceforth assume that this does not happen, that is,
we will assume that all the letters are essential by imposing the condition that every
row of A contains at least one 1. This is a standing assumption throughout this book.

Notice that if all the entries of the incidence matrix A are 1s, then ℱ = 0 and
E∞A = E

∞. However, if A has at least one 0 entry then E∞A is a proper subshift of E∞.
In particular, if A is the identity matrix then E∞A = {e

∞ : e ∈ E}, that is, E∞A is the set
of all constant words, which are the fixed points of σ in E∞.

Alternatively, E∞A can be represented by a directed graph. Imagine that each ele-
ment e ofE is a vertex of a directed graph. Then thedirected graphhas an edgedirected
from vertex e to vertex f if and only if Aef = 1. The set of infinite A-admissible words
E∞A then corresponds to the set of all possible infinite walks along the directed graph.
This is sometimes called a vertex shift.

Example 3.2.7. Let E = {1, 2, 3} and let

A = [[
[

1 0 1
1 1 1
0 0 1

]]

]

.

What is E∞A ? We strongly advise the reader to draw the corresponding directed graph.
According to the incidence matrix, the letter 3 can only be followed by itself since
A33 = 1 while A31 = A32 = 0. This means that vertex 3 of the directed graph has only
one outgoing edge, and it is a self-loop. Thus, if ω ∈ E∞A starts with a 3, then ω = 3∞.
According to the incidencematrix again, the letter 1 can only be followedby itself or by
3 sinceA11 = A13 = 1 whereasA12 = 0. Thismeans that vertex 1 has two outgoing edges,
one being a self-loop while the other terminates at vertex 3. Thus, if ω starts with a 1,
then this can be followed by either a 3, in which case it is followed by infinitely many
3s, or by a 1, in which case we face the same choice again. Therefore, the admissible
words starting with a 1 are 1∞ and 1n3∞, n ∈ ℕ. Finally, if ω starts with a 2 then, as
A21 = A22 = A23 = 1, a 2 can be followed by any other letter. This means that vertex 2
has three outgoing edges, one terminating at each vertex. Hence the admissible words
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starting with a 2 are 2∞, 2m3∞, 2m1∞ and 2m1n3∞, wherem, n ∈ ℕ. In summary,

E∞A = {1
∞, 2∞, 3∞} ∪ {2m1∞ : m ∈ ℕ} ∪ {2m1n3∞ : m, n ∈ ℤ+}.

We now study the topological properties of E∞A . Since E∞A is a subshift, Theo-
rem 3.2.3 yields that this set is compact and σ-invariant. Nevertheless, we provide be-
low a direct proof of this important fact.

Theorem 3.2.8. E∞A is a compact σ-invariant set.

Proof. Let ω ∈ E∞A . Then Aωnωn+1 = 1 for every n ∈ ℕ. In particular, this implies that
Aσ(ω)nσ(ω)n+1 = Aωn+1ωn+2 = 1 for all n ∈ ℕ. Thus, σ(ω) ∈ E∞A and we therefore have that
E∞A is σ-invariant.

In order to show thatE∞A is compact, recall that a closed subset of a compact space
is compact. As E∞ is a compact space when endowed with the product topology, it is
sufficient to prove that E∞A is closed. Let (ω(k))∞k=1 be a sequence in E∞A and suppose
that limk→∞ ω(k) = ω. We must show that ω ∈ E∞A , or, in other words, we need to
show that Aωnωn+1 = 1 for all n ∈ ℕ. To that end, fix n ∈ ℕ. For each k ∈ ℕ, we have
Aω(k)n ω(k)n+1 = 1 since ω(k) ∈ E∞A . Moreover, limk→∞ |ω(k) ∧ ω| =∞ since ω(k) → ω. So, for

sufficiently large k, we have |ω(k) ∧ω| ≥ n + 1. In particular, ω(k)n = ωn and ω
(k)
n+1 = ωn+1

for all k large enough. Hence, we deduce that Aωnωn+1 = Aω(k)n ω(k)n+1 = 1 for all k large
enough. Since n was chosen arbitrarily, we conclude that ω ∈ E∞A .

We now provide an alternative proof of the compactness of E∞A . Observe that

E∞A = {ω ∈ E
∞ : Aωnωn+1 = 1,∀n ∈ ℕ}

=
∞

⋂
n=1
{ω ∈ E∞ : Aωnωn+1 = 1}

=
∞

⋂
n=1
[ ⋃
ω∈E2A

[ω]n+1n ].

Recall that all cylinders are closed subsets of the compact space E∞. Therefore, they
are all compact. Since the setE2A is finite, theunionof cylinders⋃ω∈E2A [ω]

n+1
n is compact

for all n ∈ ℕ. As an intersection of these latter sets, E∞A is compact.

The σ-invariance of E∞A ensures that the map σ : E∞A → E∞A is well-defined. This
restriction of the shiftmap is obviously continuous (in fact, Lipschitz continuous). The
compactness of E∞A makes the couple (E∞A , σ) a well-defined topological dynamical
system. It is a subsystem of the full shift (E∞, σ).

We shall now determine the condition under which σ : E∞A → E∞A is surjective.

Lemma 3.2.9. The (restriction of) the shift map σ : E∞A → E∞A is surjective if and only if
for every j ∈ E there exists i ∈ E such that Aij = 1, that is, if and only if every column of A
contains at least one 1.
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Proof. First, observe that if for every j ∈ E there exists some i ∈ E such that Aij = 1,
then σ : E∞A → E∞A is surjective. Indeed, given any ω ∈ E∞A , there exists e ∈ E such
that Aeω1

= 1. Then eω ∈ E∞A and σ(eω) = ω.
To establish the converse, suppose A has a column consisting solely of 0s, that is,

suppose there exists j ∈ E such that Aij = 0 for all i ∈ E. By our standing assumption,
every row of A contains at least one 1. So there must be a word of the form jω in E∞A .
However, jω ∉ σ(E∞A ) since there is no word of the form ijω in E∞A .

After determining when the map σ : E∞A → E∞A is surjective, it is natural to next
consider the condition under which the shift map is injective on a subshift of finite
type.

Lemma 3.2.10. The shift map σ : E∞A → E∞A is injective if and only if for every j ∈ E
there exists at most one i ∈ E such that Aij = 1, that is, if and only if A contains at most
one 1 in each of its columns.

The proof of this lemma is left to the reader as an exercise (see Exercise 3.4.11).

Corollary 3.2.11. The shift map σ : E∞A → E∞A is bijective if and only if every column of
A contains exactly one 1. Given our standing assumption that all letters are essential, we
thus have that σ : E∞A → E∞A is bijective if and only if every row and every column of A
contains exactly one 1.

A matrix which has precisely one 1 in each of its rows and each of its columns
is called a permutation matrix. Such a matrix has the property that An is the identity
matrix for some n ∈ ℕ. This means that σ : E∞A → E∞A is bijective if and only if E∞A
consists solely of finitely many periodic points.

In addition to being continuous, the shiftmap is an openmap. Recall that amap is
said to be open if it sends open sets onto open sets. Moreover, note that as the cylinder
sets form a base for the topology on E∞, their restriction to E∞A , which we also call
cylinders and which will be denoted by the same notation, constitute a base for the
topology onE∞A . From this point on, a cylinder [ω]nmwill be understood to be a cylinder
in E∞A . That is to say,

[ω]nm := {τ ∈ E
∞
A : τk = ωk−m+1, ∀m ≤ k ≤ n}.

Theorem 3.2.12. The shift map σ : E∞A → E∞A is an open map.

Proof. As the cylinder sets of length at least two form a base for the topology on E∞A ,
it suffices to prove that the image of an arbitrary cylinder of length at least two is a
cylinder. Say ω = ω1ω2 . . .ωn, where n ≥ 2. Then σ([ω]) = [ω2 . . .ωn]. Indeed, let
τ ∈ [ω]. Then τ = ω1ω2 . . .ωnτn+1τn+2 . . ., and thus σ(τ) = ω2 . . .ωnτn+1τn+2 . . .. Hence
σ([ω]) ⊆ [ω2 . . .ωn]. Conversely, let γ ∈ [ω2 . . .ωn]. Since Aω1ω2

= 1, we have that
ω1γ = ω1ω2 . . .ωnγn+1γn+2 . . . ∈ E∞A . In fact, observe that ω1γ = ωγn+1γn+2 . . . ∈ [ω].
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Moreover, σ(ω1γ) = γ. Hence, σ([ω]) ⊇ [ω2 . . .ωn]. We have thus established that

σ([ω1ω2 . . .ωn]) = [ω2 . . .ωn].

Hence, the image of a cylinder of length n ≥ 2 is the cylinder of length n − 1 obtained
by dropping the first symbol.

3.2.1 Topological transitivity

We now describe the condition on the matrix A under which the subshift of finite type
σ : E∞A → E∞A is topologically transitive. Recall that a dynamical system T : X → X is
defined to be transitive if it admits at least one point x with the property thatω(x) = X
(see Definition 1.5.6). We proved in Theorem 1.5.11 that this is equivalent to the system
T being topologically mixing, that is, the orbit under T of every nonempty open set
encounters every nonempty open set in X (cf. Definition 1.5.10).

Definition 3.2.13. An incidence matrix A is called irreducible if for each ordered pair
i, j ∈ E there exists p := p(i, j) ∈ ℕ such that (Ap)ij > 0.

Observe that an irreducible matrix cannot contain any row or column consisting
solely of 0s. In light of Lemma 3.2.9, the irreducibility of a matrix A compels the sur-
jectivity of the shift map σ : E∞A → E∞A . We shall now prove that irreducibility of A is
equivalent to the transitivity of σ.

Theorem 3.2.14. The shift map σ : E∞A → E∞A is transitive if and only if the matrix A is
irreducible.

Proof. First, suppose that σ is transitive. By Remark 1.5.7(c), it is surjective, and thus
topologically mixing according to Theorem 1.5.11. Fix i, j ∈ E. Then there exists p :=
p(i, j) ∈ ℕ such that σp([i]) ∩ [j] ̸= 0. So pick ω ∈ [i] so that σp(ω) ∈ [j]. This means
that ω1ω2 . . .ωp+1 is an admissible word of length p + 1 from i = ω1 to j = ωp+1. Thus
(Ap)ij > 0. Since i, j ∈ E were chosen arbitrarily, we conclude that A is irreducible.

To prove the converse, suppose that A is irreducible. As the cylinder sets form
a base for the topology, it is sufficient to restrict our attention to them. Let ω =
ω1ω2 . . .ωk ∈ E∗A and τ = τ1τ2 . . . τl ∈ E∗A. We need to show that there exists some
n ∈ ℕ such that σn([ω]) ∩ [τ] ̸= 0. Consider the pair of letters ωk and τ1. Since A is
irreducible, there exists some p := p(ωk , τ1) ∈ ℕ such that (Ap)ωkτ1 > 0. This means
that there exists a finite word γ of length p − 1 such that ωkγτ1 is an admissible word
of length p + 1 from ωk to τ1. Consequently, ωγτ ∈ E∗A. Concatenate to this word a
suffix τl+1 with the property that Aτlτl+1 = 1. This is possible thanks to our standing
assumption that every row of A contains a 1. Continue concatenating in this way
to build an infinite admissible word ω = ωγττl+1τl+2 . . . ∈ E∞A . Then ω ∈ [ω] and
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σk+p−1(ω) = ττl+1τl+2 . . . ∈ [τ]. Hence σk+p−1([ω]) ∩ [τ] ̸= 0. Since ω, τ ∈ E∗A were arbi-
trary, we deduce that σ is topologicallymixing. The surjectivity of σ is also guaranteed
by the irreducibility of A. Therefore, σ is transitive according to Theorem 1.5.11.

Note that the above theorem does not hold if our standing assumption that every
row of A contains at least one 1 is dropped (see Exercise 3.4.12). Also, as mentioned
before, it follows immediately fromboth the transitivity ofσ and from the irreducibility
of A that every column of A contains at least one 1, or equivalently, that σ is surjective
(see Lemma 3.2.9).

3.2.2 Topological exactness

We now describe the condition on the matrix A under which the subshift of finite type
σ : E∞A → E∞A is topologically exact. Recall that a dynamical system T : X → X is said
to be topologically exact if every nonempty open set in X is eventually blown up onto
the entire space X under iteration that is, for every nonempty open set U ⊆ X there is
N ∈ ℕ such that TN (U) = X (cf. Definition 1.5.16). Note that this condition can only be
fulfilled if the map T is surjective.

Definition 3.2.15. An incidence matrix A is called primitive if there exists some p ∈ ℕ
such that Ap has only positive entries, which is usually written as Ap > 0.

Note that every primitivematrix is irreducible, but that there exist irreducible ma-
trices which are not primitive (see Exercise 3.4.13).

Theorem 3.2.16. The shift map σ : E∞A → E∞A is topologically exact if and only if the
matrix A is primitive.

Proof. Suppose first that σ is topologically exact. Then for each e ∈ E there exists some
pe ∈ ℕ such that σpe ([e]) = E∞A , since [e] is an open set. Define p := max{pe : e ∈ E}
and note that p is finite. We claim that Ap > 0. To see this, fix an ordered pair i, j ∈ E.
Since σp([i]) = E∞A , we have σp([i]) ∩ [j] ̸= 0. So if ω ∈ [i] and σp(ω) ∈ [j], then
ω = iω2ω3 . . .ωpjωp+2ωp+3 . . .. In other words, iω2ω3 . . .ωpj is an admissible word of
length p + 1 from i to j, and hence (Ap)ij > 0. Since this is true for all i, j ∈ E, we
conclude that Ap > 0.

To prove the converse, suppose thatA is primitive, that is, suppose there exists p ∈
ℕ such that Ap > 0. Then for each ordered pair i, j ∈ E there is at least one admissible
word of length p + 1 from i to j. Since the cylinder sets {[ω]}ω∈E∗A form a base for the
topology on E∞A , it is sufficient to prove topological exactness for cylinder sets. So let
ω = ω1 . . .ωn ∈ E∗A and pick an arbitrary τ ∈ E

∞
A . There exists a finite word γ of length

p − 1 such that ωnγτ1 is an admissible word of length p + 1. Let ω = ωγτ ∈ E∞A . Then
ω ∈ [ω] and σn+p−1(ω) = τ. Therefore, as τ was arbitrarily chosen in E∞A , we deduce
that σn+p−1([ω]) = E∞A and σ is topologically exact.
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The reader may be wondering under which condition on A the shift σ : E∞A → E∞A
is minimal. The answer to this question can be found in Exercise 3.4.15.

3.2.3 Asymptotic behavior of periodic points

Wenowprove that for anymatrixA, themaximal growth rate of the number of periodic
points in E∞A coincides with the logarithm of the spectral radius of A. Recall that the
spectral radius ofA is defined to be the largest eigenvalue ofA (in absolute value). The
spectral radius r(A) can also be defined by

r(A) := lim
n→∞
A

n
1/n
, (3.1)

for any matrix norm ‖ ⋅ ‖ (for a proof of this fact, see Proposition 3.8 in Conway [15]). In
what follows, it is convenient to choose the norm to be the sum of the absolute value
of the entries of the matrix, that is, for a k × k matrix B, the norm is

‖B‖ :=
k
∑
i,j=1
|Bij|.

Before continuing with the growth rate of the number of periodic points, we first
give a lemma which will turn out to be useful over and over again. Although it is a
purely analytic result, we include its proof here for completeness. This result will be
crucial not only here but also in Chapters 7 and 11. Recall that a sequence (an)∞n=1 of
real numbers is said to be subadditive if

am+n ≤ am + an, ∀m, n ∈ ℕ.

Lemma 3.2.17. If (an)∞n=1 is a subadditive sequence of real numbers, then the sequence
(an/n)∞n=1 converges and

lim
n→∞

1
n
an = infn∈ℕ

1
n
an.

If, moreover, (an)∞n=1 is bounded from below, then infn∈ℕ
1
nan ≥ 0.

Proof. Fix m ∈ ℕ. By the division algorithm, every n ∈ ℕ can be uniquely written in
the form n = km + r, where 0 ≤ r < m. The subadditivity of the sequence implies that

an
n
=

akm+r
km + r
≤
akm + ar
km + r

≤
kam + ar

km
=
am
m
+

ar
km
.

Notice that for all n ∈ ℕ,

−∞ < min
0≤s<m

as ≤ ar ≤ max
0≤s<m

as <∞.
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Therefore, as n tends to infinity, k also tends to infinity and thereby ar/k approaches
zero by the sandwich theorem. Hence,

lim sup
n→∞

an
n
≤
am
m
.

Sincem ∈ ℕ was chosen arbitrarily, taking the infimum overm yields that

lim sup
n→∞

an
n
≤ inf

m∈ℕ

am
m
.

Thus,

lim sup
n→∞

an
n
≤ inf

m∈ℕ

am
m
≤ lim inf

n→∞
an
n
≤ lim sup

n→∞

an
n
.

Consequently,

lim
n→∞

an
n
= inf

m∈ℕ

am
m
.

This proves the first assertion. The second one is obvious.

Another purely analytic result that will be needed later is the following.

Lemma 3.2.18. Let (bn)∞n=1 be a sequence of positive real numbers. Then

lim sup
n→∞

1
n
log bn = inf{p ∈ ℝ :

∞

∑
n=1

bne
−pn <∞}.

Proof. First, assume that −∞ < lim supn→∞
1
n log bn. Let P ∈ ℝ be such that P <

lim supn→∞
1
n log bn. Then there exists a strictly increasing sequence (nm)

∞
m=1 of posi-

tive integers such that P ≤ 1
nm

log bnm for all m ∈ ℕ. That is, bnm ≥ e
Pnm for all m ∈ ℕ.

Consequently,

∞

∑
n=1

bne
−Pn ≥

∞

∑
m=1

bnme
−Pnm ≥

∞

∑
m=1

1 =∞.

This implies that P ≤ inf{p ∈ ℝ : ∑∞n=1 bne
−pn < ∞}. Since this is true for every P <

lim supn→∞
1
n log bn, we deduce that

lim sup
n→∞

1
n
log bn ≤ inf{p ∈ ℝ :

∞

∑
n=1

bne
−pn <∞}. (3.2)

Obviously, this latter inequality holds as well when −∞ = lim supn→∞
1
n log bn.

To prove the opposite inequality, suppose that lim supn→∞
1
n log bn < ∞. Let

P ∈ ℝ be such that lim supn→∞
1
n log bn < P. Let Q ∈ ℝ be such that

lim sup
n→∞

1
n
log bn < Q < P.
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Then there exists N ∈ ℕ such that 1
n log bn ≤ Q for all n ≥ N . That is, bn ≤ eQn for all

n ≥ N . It follows that

∞

∑
n=1

bne
−Pn =

N−1
∑
n=1

bne
−Pn +

∞

∑
n=N

bne
−Pn

≤
N−1
∑
n=1

bne
−Pn +

∞

∑
n=1

e(Q−P)n

=
N−1
∑
n=1

bne
−Pn +

∞

∑
n=1
(eQ−P)n

<∞

since the geometric series on the right has for ratio 0 < r := eQ−P < 1. This implies
that inf{p ∈ ℝ : ∑∞n=1 bne

−pn < ∞} ≤ P. Since this is true for every P ∈ ℝ such that
lim supn→∞

1
n log bn < P, we deduce that

inf{p ∈ ℝ :
∞

∑
n=1

bne
−pn <∞} ≤ lim sup

n→∞

1
n
log bn. (3.3)

Obviously, this latter inequality holds as well when lim supn→∞
1
n log bn =∞.

The result follows from (3.2) and (3.3).

Let us now come back to the question of the number of periodic points that sub-
shifts of finite type have. The following result holds for all subshifts of finite type. It
relates the number of periodic points to the number of finite words, which in turn is
related to the underlyingmatrix. Recall that a sequence (an)∞n=1 of real numbers is said
to be submultiplicative if

am+n ≤ aman, ∀m, n ∈ ℕ.

Note that a sequence (an)∞n=1 of positive real numbers is submultiplicative if and only
if the sequence (log an)∞n=1 is subadditive.

Lemma 3.2.19. Let A be an incidence matrix that generates a subshift of finite type
σ : E∞A → E∞A . The sequences (#EnA)

∞
n=1 and (‖A

n‖)∞n=1 are nondecreasing and submulti-
plicative. Moreover,

A
n−1 = #E

n
A ≥ #Pern(σ), ∀n ∈ ℕ.

Proof. Since the matrix A has a 1 in every row by our standing assumption, every ad-
missible word of length n can be extended to an admissible word of length n+1. There-
fore,

#EnA ≤ #E
n+1
A , ∀n ∈ ℕ,

that is, the sequence (#EnA)
∞
n=1 is nondecreasing.
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Regarding the submultiplicativity of that sequence, notice that each admissible
word of lengthm + n results from an admissible concatenation of an admissible word
of lengthm with an admissible word of length n. This implies that

#Em+nA ≤ #E
m
A ⋅ #E

n
A, ∀m, n ∈ ℕ.

(However, notice that the concatenation of an admissible word ω of length m with
an admissible word τ of length n is an admissible word of length m + n if and only if
ωm = τ1. Thus, the equality does not hold in general.)

The nondecreasing and submultiplicative behaviors of the sequence (#EnA)
∞
n=1 are

shared by the sequence (‖An‖)∞n=1. Indeed, we have earlier observed that (An)ij is the
number of admissible words of length n + 1 starting with the letter i and ending with
the letter j. Thus,∑#Ei,j=1(A

n)ij is the number of words in En+1A . This means that

A
n =

#E
∑
i,j=1
(An)ij = #E

n+1
A , ∀n ∈ ℕ.

It is then obvious that

A
n = #E

n+1
A ≤ #E

n+2
A =
A

n+1, ∀n ∈ ℕ,

that is, the sequence (‖An‖)∞n=1 is nondecreasing. Submultiplicativity of that sequence
follows from the fact that for allm, n ∈ ℕ,

A
m+n = #E

m+n+1
A ≤ #Em+n+2A ≤ #Em+1A ⋅ #E

n+1
A =
A

m ⋅
A

n.

Moreover, note that every periodic point of period n is the infinitely repeated con-
catenation of its initial block of length n. This means that

#Pern(σ) ≤ #E
n
A =
A

n−1, ∀n ∈ ℕ.

Remark 3.2.20. In general, the sequence (#Pern(σ))∞n=1 is neither nondecreasing nor
submultiplicative. See Exercise 3.4.20.

We can nowobtain some information on the growth rate of the number of periodic
points.

Theorem 3.2.21. Let A be an incidence matrix that generates a subshift of finite type
σ : E∞A → E∞A . Then

log r(A) = lim
n→∞

1
n
log #EnA = inf{p > 0 : ∑

ω∈E∗A e
−p|ω| <∞}

≥ lim sup
n→∞

1
n
log #Pern(σ) = inf{p > 0 :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞},

where r(A) is the spectral radius of A.
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Proof. It follows from Lemma 3.2.19 that both of the sequences (log #EnA)
∞
n=1 and

(log ‖An‖)∞n=1 are subadditive. By Lemma 3.2.17, we have that both limits
limn→∞

1
n log ‖A

n‖ and limn→∞
1
n log #E

n
A exist. Using Lemma 3.2.19, we deduce that

log r(A) = log lim
n→∞
A

n
1/n

= lim
n→∞

logA
n

1/n

= lim
n→∞

1
n
logA

n

= lim
n→∞

1
n
log #En+1A

= lim
n→∞

n + 1
n
⋅

1
n + 1

log #En+1A

= lim
n→∞

n + 1
n
⋅ lim
n→∞

1
n + 1

log #En+1A

= lim
n→∞

1
n
log #EnA

≥ lim sup
n→∞

1
n
log #Pern(σ).

From Lemma 3.2.18, it follows that

lim sup
n→∞

1
n
log #Pern(σ) = inf{p ∈ ℝ :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞}

and

lim
n→∞

1
n
log #EnA = inf{p ∈ ℝ :

∞

∑
n=1

#EnAe
−pn <∞}

= inf{p ∈ ℝ :
∞

∑
n=1
∑
ω∈EnA

e−p|ω| <∞}

= inf{p ∈ ℝ : ∑
ω∈E∗A e

−p|ω| <∞}.

Finally, note that the infima can be restricted to the positive real numbers p since the
set E∗A is infinite and the sets Pern(σ) are nonempty for infinitely many n.

The inequality in the statement of theprevious theorem turnsout tobeanequality.
We will demonstrate this in two steps. It is first simpler to prove it when the matrix A
is irreducible.

Theorem 3.2.22. Let A be an irreducible matrix. Then

log r(A) = lim
n→∞

1
n
log #EnA = inf{p > 0 : ∑

ω∈E∗A e
−p|ω| <∞}

= lim sup
n→∞

1
n
log #Pern(σ) = inf{p > 0 :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞}.
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Proof. Since A is irreducible, there exists p ≥ 2 such that for every 1 ≤ i, j ≤ #E there
is an admissible word of length at least 2 and at most p that begins with i and ends
with j. Therefore, for any admissible wordω of length n there is an admissible word ω̃
of length at least 2 and at most p beginning with ω̃1 = ωn and ending with ω̃|ω̃| = ω1.
Consequently, the word (ω1ω2 . . .ωnω̃2ω̃3 . . . ω̃|ω̃|−1)∞ is an admissible periodic point
of period n + |ω̃| − 2, with n ≤ n + |ω̃| − 2 ≤ n + p − 2. This shows that every ω ∈ EnA
generates at least one periodic point whose period is between n and n + p − 2, with
different words ω ∈ EnA producing different periodic points (ωω̃2ω̃3 . . . ω̃|ω̃|−1)∞. Thus,
if for every n ∈ ℕ we choosem(n) to be such that n ≤ m(n) ≤ n + p − 2 and

#Perm(n)(σ) = max
n≤m≤n+p−2

#Perm(σ),

we obtain that

A
n−1 = #E

n
A ≤ #Pern(σ) + #Pern+1(σ) + ⋅ ⋅ ⋅ + #Pern+p−2(σ)
≤ (p − 1)#Perm(n)(σ).

Using this estimate, we can make the following calculation:

log r(A) = lim
n→∞

1
n − 1

logA
n−1 ≤ lim sup

n→∞

1
n − 1

log[(p − 1) ⋅ #Perm(n)(σ)]

= lim sup
n→∞

1
n − 1
[log(p − 1) + log #Perm(n)(σ)]

= lim
n→∞

1
n − 1

log(p − 1) + lim sup
n→∞

1
n − 1

log #Perm(n)(σ)

= 0 + lim sup
n→∞
[
m(n)
n − 1
⋅

1
m(n)

log #Perm(n)(σ)]

= lim
n→∞

m(n)
n − 1
⋅ lim sup

n→∞

1
m(n)

log #Perm(n)(σ)

≤ 1 ⋅ lim sup
n→∞

1
n
log #Pern(σ)

= lim sup
n→∞

1
n
log #Pern(σ).

Combining this inequality with the opposite one proved in Theorem 3.2.21 completes
the proof.

In order to prove that the equality holds in full generality, we need to decompose
reducible systems intomaximal (in the sense of inclusion) irreducible subsystems. For
this, we separate the letters of E into equivalence classes bymeans of a relation called
communication.

Definition 3.2.23.
(a) A letter i ∈ E leads to a letter j ∈ E if there exists p = p(i, j) ∈ ℕ such that (Ap)ij = 1.
(b) A letter i is said to communicate with a letter j if i leads to j and j leads to i.
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(c) A letter which communicates with itself or any other letter is called communicat-
ing.

(d) Otherwise, the letter is said to be noncommunicating.

The relation of communication defines an equivalence relation on the set of com-
municating letters. The corresponding equivalence classes are called communication
classes.

Theorem 3.2.24. Let A be an incidence matrix that generates a subshift of finite type
σ : E∞A → E∞A . Then

log r(A) = lim
n→∞

1
n
log #EnA = inf{p > 0 : ∑

ω∈E∗A e
−p|ω| <∞}

= max
C

comm. class

lim
n→∞

1
n
log #CnA

= max
C

comm. class

lim sup
n→∞

1
n
log #Pern(σC)

= lim sup
n→∞

1
n
log #Pern(σ) = inf{p > 0 :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞}

= max
C

comm. class

log r(A|C).

Proof. Suppose that E admits k communication classes C1,C2, . . . ,Ck . Clearly, (Cl)∞A ⊆
E∞A for each 1 ≤ l ≤ k. Moreover, (Cl)∞A ∩ (Cm)

∞
A = 0 for all l ̸= m since Cl ∩ Cm = 0 for

all l ̸= m. Note further that the submatrix A|Cl : Cl × Cl → {0, 1} is irreducible for each
1 ≤ l ≤ k by the very definition of communication classes. Therefore, Theorem 3.2.22
asserts that

log r(A|Cl ) = limn→∞
1
n
log #(Cl)

n
A = inf{p > 0 : ∑

ω∈(Cl)∗A e
−p|ω| <∞}

= lim sup
n→∞

1
n
log #Pern(σCl ) (3.4)

for every 1 ≤ l ≤ k.
Let I = E\⋃kl=1 Cl. This set consists of all noncommunicating letters. Ifω ∈ E∗A, then

each noncommunicating letter can appear at most once in ω. Moreover, if ω contains
at least one letter from the class Cl then ω can be uniquely written as βlαlγl, where
αl ∈ (Cl)∗A and βl,γl ∈ (E \Cl)

∗
A, that is,αl comprises only letters from the class Cl while

none of the letters of βl and γl are from Cl. Note that βl and/or γl may be the empty
word,whileαl is the longest subword ofω that has letters fromCl only. For eachω ∈ E∗A
and 1 ≤ l ≤ k, let αl(ω) be the longest subword of ω in (Cl)∗A. Note that αl(ω) may be
the empty word for some l’s. Thenω can be uniquely written as a concatenation of the
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subwords αl(ω), 1 ≤ l ≤ k, and no more than k + 1 subwords of noncommunicating
letters, each of which consists of at most #I letters. Therefore, the map

α : E∗A → (C1)
∗
A × (C2)

∗
A × ⋅ ⋅ ⋅ × (Ck)

∗
A

ω → (α1(ω) , α2(ω) , . . . , αk(ω))

is such that each element of (C1)∗A × ⋅ ⋅ ⋅ × (Ck)
∗
A has at most (#I ⋅ #I! + 1)k+1 preimages.

Indeed, suppose that α(τ) = α(ω) for some τ,ω ∈ E∗A. Then αl(τ) = αl(ω) =: αl for
all 1 ≤ l ≤ k. If αl ̸= ϵ ̸= αm for some l ̸= m and if τ contained the subword αlβαm
whereas ω contained the subword αmγαl, then the word αlβαmγαl would be in E∗A.
This would imply that the classes Cl and Cm communicate, which would contradict
their very definition. This reveals that the αl, 1 ≤ l ≤ k, must appear in the same order
in both τ andω. That is, τ andω can only differ in the subwords of noncommunicating
letters they contain.Now, there are atmost k+1 subwords of noncommunicating letters
in any word. And each of these subwords contains at most #I letters. Let 1 ≤ L ≤ #I.
The number of words of length Lwith distinct letters drawn from I is at most #I ⋅ (#I −
1) ⋅ ⋅ ⋅ (#I − L + 1) ≤ #I!. Thus the number of nonempty words of length at most #I
with distinct letters drawn from I is at most #I ⋅ #I!. Add 1 for the empty word. This
is an upper estimate of the number of possibilities for each instance of a subword of
noncommunicating letters. Since there are at most k + 1 such instances, a crude upper
bound on the number of preimages for any point is B := (#I ⋅ #I! + 1)k+1.

For all p > 0, it then follows that

∑
ω∈E∗A e

−p|ω| ≤ ∑
ω∈E∗A e

−p∑kl=1 |αl(ω)|

= ∑
ω∈E∗A

k
∏
l=1

e−p|αl(ω)|

≤ B
k
∏
l=1
∑

ωl∈(Cl)∗A e
−p|ωl|. (3.5)

Let

P > max
1≤l≤k

lim
n→∞

1
n
log #(Cl)

n
A.

We infer from (3.4) that

∑
ωl∈(Cl)∗A e

−P|ωl| <∞, ∀1 ≤ l ≤ k

and thus by (3.5) we deduce that

∑
ω∈E∗A e

−P|ω| <∞.
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According to Theorem 3.2.21, this implies that

P > lim
n→∞

1
n
log #EnA.

Since this is true for every P > max1≤l≤k limn→∞
1
n log #(Cl)

n
A, we obtain that

lim
n→∞

1
n
log #EnA ≤ max

1≤l≤k
lim
n→∞

1
n
log #(Cl)

n
A.

The opposite inequality is obvious. Hence,

lim
n→∞

1
n
log #EnA = max

1≤l≤k
lim
n→∞

1
n
log #(Cl)

n
A. (3.6)

On the other hand, note that Per(σCl )∩Per(σCm ) = 0 for all l ̸= m sinceCl∩Cm = 0 for
all l ̸= m. Moreover, since a periodic point can comprise neither noncommunicating
letters nor letters from two distinct communicating classes, we have that

Per(σE) =
k
⋃
l=1

Per(σCl ).

Therefore,

max
1≤l≤k

#Pern(σCl ) ≤ #Pern(σE) =
k
∑
l=1

#Pern(σCl ) ≤ kmax
1≤l≤k

#Pern(σCl ).

It follows immediately that

lim sup
n→∞

1
n
logmax

1≤l≤k
#Pern(σCl ) ≤ lim sup

n→∞

1
n
log #Pern(σE)

≤ lim sup
n→∞

1
n
log[kmax

1≤l≤k
#Pern(σCl )].

Using Exercise 3.4.14, it follows that

max
1≤l≤k

lim sup
n→∞

1
n
log #Pern(σCl ) ≤ lim sup

n→∞

1
n
log #Pern(σE)

≤ lim
n→∞

log k
n
+max

1≤l≤k
lim sup
n→∞

1
n
log #Pern(σCl ).

Hence,

lim sup
n→∞

1
n
log #Pern(σE) = max

1≤l≤k
lim sup
n→∞

1
n
log #Pern(σCl ). (3.7)

Using Theorem 3.2.21 and relations (3.4), (3.6), and (3.7), the result follows.
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The use of the lim sup in Theorem 3.2.22 is indispensable. Indeed, there are tran-
sitive subshifts of finite type for which the limit does not exist (see Exercise 3.4.20).
However, the limit does exist for all topologically exact subshifts of finite type.

Theorem 3.2.25. Let A be a primitive matrix. Then

log r(A) = lim
n→∞

1
n
log #EnA = inf{p > 0 : ∑

ω∈E∗A e
−p|ω| <∞}

= lim
n→∞

1
n
log #Pern(σ) = inf{p > 0 :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞}.

Proof. In Lemma 3.2.19, we observed that #Pern(σ) ≤ #EnA = ‖A
n−1‖ for all n ∈ ℕ.

Now we use the primitivity of the matrix to establish a similar inequality in the other
direction. Since A is primitive, there exists P ∈ ℕ such that AP > 0. Consequently,
for every 1 ≤ i, j ≤ #E there is an admissible word of length P + 1 that begins with
i and ends with j. Therefore, for any ω ∈ EnA there is a word ω̃ ∈ EP+1A which begins
with ω̃1 = ωn and ends with ω̃P+1 = ω1. Then the word (ω1ω2 . . .ωnω̃2ω̃3 . . . ω̃P)

∞ is an
admissible periodic point of period n + P − 1. This shows that every ω ∈ EnA generates
at least one periodic point of period n + P − 1, with different words ω ∈ EnA producing
different periodic points (ωω̃2ω̃3 . . . ω̃P)

∞ ∈ Pern+P−1(σ). Hence, #EnA ≤ #Pern+P−1(σ).
Using this and Lemma 3.2.19, we get

#EnA ≤ #Pern+P−1(σ) ≤ #E
n+P−1
A ≤ #EnA ⋅ #E

P−1
A , ∀n ∈ ℕ.

Hence,

1
n
log #EnA ≤

1
n
log #Pern+P−1(σ) ≤

1
n
log #EnA +

1
n
log #EP−1A , ∀n ∈ ℕ.

It follows from the squeeze theorem that

lim
n→∞

1
n
log #Pern+P−1(σ) = lim

n→∞
1
n
log #EnA.

Therefore,

lim
n→∞

1
n
log #Pern(σ) = limn→∞

1
n + P − 1

log #Pern+P−1(σ)

= lim
n→∞
[

n
n + P − 1

⋅
1
n
log #Pern+P−1(σ)]

= lim
n→∞

n
n + P − 1

⋅ lim
n→∞

1
n
log #Pern+P−1(σ)

= lim
n→∞

1
n
log #EnA.

The rest follows from Theorem 3.2.22.
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3.3 General subshifts of finite type

Recall that a subshift of finite type is a subshift that can be described by a finite set
ℱ of forbidden words. In this case, the set ℱ can be chosen so that ℱ ⊆ Eq for some
q ∈ ℕ. The set of forbidden words then induces a function A from Eq to {0, 1}, where
the function A takes the value 0 on the set ℱ of forbidden words and takes the value 1
on the set Eq \ ℱ of all admissible words. For the sake of simplicity, we concentrated
on the case q = 2 in the previous section. We then pointed out that we would prove
that all cases can be reduced to that case. We now do so.

Fix an integer q ≥ 2 and a function A : Eq → {0, 1}. Let

E∞A := {ω ∈ E
∞ : A(ωn,ωn+1, . . . ,ωn+q−1) = 1,∀n ∈ ℕ}.

E∞A is a subshift of finite type since it consists of all those infinite words that do not
contain any word from the finite set of forbidden words

ℱ = {ω ∈ Eq : A(ω1,ω2, . . . ,ωq) = 0}.

Theorem 3.3.1. The shift map σ : E∞A → E∞A is topologically conjugate to a shift map
σ̃ : Ẽ∞Ã → Ẽ∞Ã , where #Ẽ = (#E)q and Ã is an incidence matrix on Ẽ.

Proof. Set Ẽ := Eq as an alphabet. In other words, a letter in the alphabet Ẽ is a word
of length q over the alphabet E. Define the incidence matrix Ã : Ẽ × Ẽ → {0, 1} by

Ãτρ = {
1 if A(τ) = 1 = A(ρ) and τ2τ3 . . . τq = ρ1ρ2 . . . ρq−1
0 otherwise

for every τ, ρ ∈ Ẽ. Let

Ẽ∞Ã := {ω̃ ∈ Ẽ
∞ : Ãω̃nω̃n+1 = 1, ∀n ∈ ℕ}

be the subshift of finite type generated by the matrix Ã. Define the map H : E∞A → Ẽ
by H(ω) = ω|q. That is, the map H associates to every A-admissible infinite word its
initial subword of length q. Let h : E∞A → Ẽ∞Ã be defined by the concatenation

h(ω) = H(ω)H(σ(ω))H(σ2(ω)) . . . .

In other words, for any ω ∈ E∞A , we have that

h(ω) = (ω1 . . .ωq)(ω2 . . .ωq+1)(ω3 . . .ωq+2) . . . ∈ Ẽ
∞
Ã .

We claim that h is a homeomorphism. Indeed, h is injective since if ω and τ are two
distinct elements of E∞A , then ωk ̸= τk for some k ∈ ℕ. It immediately follows that
σk−1(ω)1 = ωk ̸= τk = σk−1(τ)1, and hence, by definition, H(σk−1(ω)) ̸= H(σk−1(τ)).
Thus, h(ω)k ̸= h(τ)k and so h(ω) ̸= h(τ). To show that the map h is surjective, let
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τ̃ ∈ Ẽ∞Ã be arbitrary. Recall that τ̃k ∈ Ẽ = Eq for each k ∈ ℕ, that is, τ̃k is a word
of length q from the alphabet E. Also bear in mind that by the definition of Ẽ∞Ã , the
word consisting of the last q − 1 letters of τ̃k is equal to the initial (q − 1)-word of τ̃k+1.
Construct the infinite word τ by concatenating the first letters of each word τ̃k in turn,
that is,

τ = (τ̃1)1(τ̃2)1(τ̃3)1 . . . .

Then, for every n ∈ ℕ, we have that

A(τn, τn+1, . . . , τn+q−1) = A((τ̃n)1, (τ̃n+1)1, . . . , (τ̃n+q−1)1)
= A((τ̃n)1, (τ̃n)2, . . . , (τ̃n)q)
= A(τ̃n)
= 1.

Therefore, τ ∈ E∞A . Furthermore,

h(τ) = H(τ)H(σ(τ))H(σ2(τ)) . . .
= ((τ̃1)1(τ̃2)1 . . . (τ̃q)1)((τ̃2)1(τ̃3)1 . . . (τ̃q+1)1)((τ̃3)1(τ̃4)1 . . . (τ̃q+2)1) . . .
= ((τ̃1)1(τ̃1)2 . . . (τ̃1)q)((τ̃2)1(τ̃2)2 . . . (τ̃2)q)((τ̃3)1(τ̃3)2 . . . (τ̃3)q) . . .
= (τ̃1)(τ̃2)(τ̃3) . . .
= τ̃.

Since τ̃ is arbitrary, this demonstrates that h is surjective.
Moreover, h is continuous. To see this, let ω, τ ∈ E∞A . Denote the length of their

wedge by Q = |ω ∧ τ|. If Q ≥ q, then |h(ω) ∧ h(τ)| = Q − q + 1, for if ω and τ share
the same first Q letters, then h(ω) and h(τ) share the same first Q − q + 1 letters. The
fact that h is a homeomorphism follows from the fact that it is a continuous bijection
between two Hausdorff compact topological spaces. It only remains to show that the
following diagram commutes:

E∞A

h
??

σ ?? E∞A

h
??

Ẽ∞Ã σ̃
?? Ẽ∞Ã

Indeed, for every ω ∈ E∞A we have

h ∘ σ(ω) = H(σ(ω))H(σ(σ(ω)))H(σ2(σ(ω))) . . .
= H(σ(ω))H(σ2(ω))H(σ3(ω)) . . .
= σ̃(H(ω)H(σ(ω))H(σ2(ω)) . . .)
= σ̃ ∘ h(ω).

This completes the proof.
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3.4 Exercises

Exercise 3.4.1. Fix n ∈ ℕ. Show that the full n-shift can be used to encode all the num-
bers between 0 and 1. That is, show that to every number in [0, 1] can be associated an
infinite word in {0, . . . , n − 1}∞.

Exercise 3.4.2. Prove that the discrete topology on a set X, that is, the topology in
which every subset ofX is bothopenand closed, ismetrizable bymeansof thedistance
function d : X × X → {0, 1} defined by

d(x1, x2) = {
1 if x1 ̸= x2
0 if x1 = x2.

Then show that the product∏∞n=1 X is metrizable.

Exercise 3.4.3. Show that the family {[ω] : ω ∈ E∗} of all initial cylinders forms a
base of open sets for Tychonoff’s product topology on E∞. Deduce that all cylinders
{[ω]nm : ω ∈ E

∗,m, n ∈ ℕ} are both open and closed sets. Deduce further that the space
E∞ is totally disconnected.

Exercise 3.4.4. Prove that the metrics ds, s ∈ (0, 1), introduced in Definition 3.1.10
induce Tychonoff’s product topology on E∞.

Exercise 3.4.5. Prove that the metrics ds, for each s ∈ (0, 1), are Hölder equivalent.
That is, show that for any pair s, s′ ∈ (0, 1) there is an exponent α ≥ 0 and a constant
C ≥ 1 such that

C−1(ds′ (ω, τ))α ≤ ds(ω, τ) ≤ C(ds′ (ω, τ))α, ∀ω, τ ∈ E∞.
Exercise 3.4.6. Show that the metrics ds, s ∈ (0, 1), are not Lipschitz equivalent. That
is, prove that for any pair s, s′ ∈ (0, 1) there is no constant C ≥ 1 such that

C−1ds′ (ω, τ) ≤ ds(ω, τ) ≤ Cds′ (ω, τ), ∀ω, τ ∈ E∞.
Exercise 3.4.7. Prove directly that the space E∞ is separable. That is, find a countable
dense set in E∞.

Exercise 3.4.8. Prove directly that E∞ is compact.

Hint: Since E∞ is metrizable, it suffices to prove that E∞ is sequentially compact. That
is, it is sufficient to prove that every sequence in E∞ admits a convergent subsequence.

Exercise 3.4.9. Describe the subshift of finite type E∞A generated by the incidencema-
trix

A = [ 1 1
1 0
] .

This shift is called the golden mean shift. (We will explain why in Chapter 7.)
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Exercise 3.4.10. Find a closed shift-invariant subset F of {0, 1}∞ such that σ|F : F → F
is not open.

Exercise 3.4.11. Prove that the shift map σ : E∞A → E∞A is injective if and only if every
column of the incidence matrix A contains at most one 1.

Exercise 3.4.12. Show that the shift map σ : E∞A → E∞A may be transitive even if the
incidence matrix A contains a row of zeros. (Thus, Theorem 3.2.14 does not hold if one
does not assume that every row of A contains at least one 1.)

Exercise 3.4.13. Construct an irreducible matrix which is not primitive.

Exercise 3.4.14. Let (an)∞n=1 and (bn)
∞
n=1 be sequences of real numbers. Prove that

lim sup
n→∞

max{an, bn} = max{lim sup
n→∞

an, lim sup
n→∞

bn}.

Show a similar result for lim inf. Also, show that max can be replaced bymin and that
the corresponding statements hold. Finally, show that the statements do not neces-
sarily hold for lim.
Note: Though this exercise has been stated with two sequences only, these statements
hold for any finite number of sequences.

Exercise 3.4.15. In this exercise, you will prove that the shift σ : E∞A → E∞A is minimal
if and only if A is a permutation matrix with a unique class of communicating letters.
(a) Relying uponour standing assumption thatAhas a 1 in each of its rows, prove that

E∞A admits a periodic point. (In fact, it is possible to show that the set of eventually
periodic points is dense in E∞A .)

(b) Suppose that σ : E∞A → E∞A is minimal. Deduce from the minimality of σ that E∞A
coincides with the orbit of a periodic point.

(c) Deduce that σ is a bijection.
(d) Deduce that A is a permutation matrix.
(e) Show that A has a unique communicating class.

To prove the converse, suppose that A is a permutation matrix with a unique class of
communicating letters.
(f) Prove that E∞A coincides with the orbit of a periodic point.
(g) Deduce that σ : E∞A → E∞A is minimal.

Exercise 3.4.16. Let C and C′ be classes of communicating letters for amatrixA. Class
C is said to lead to class C′ if one of the letters in C leads to one of the letters in C′.
Prove that the set of periodic points of E∞A is dense if and only if A consists of classes
of communicating letters, none of which leads to another (in particular, A does not
have any noncommunicating letter).

In other words, the set of periodic points of E∞A is dense if and only if E∞A is a
disjoint union of irreducible subsystems.
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Exercise 3.4.17. Let C be the middle-third Cantor set. Show that the map f : [0, 1] →
[0, 1] defined by

f (x) = 3x (mod 1)

restricted to C is continuous. Show that f |C : C → C is topologically conjugate to the
full shift map on two symbols.

Exercise 3.4.18. Show that if the shift map σ : E∞A → E∞A is such that σ([e] ∩ E∞A ) =
E∞A ̸= 0 for every e ∈ E, then E

∞
A = E

∞.

Exercise 3.4.19. Show that the full shift map σ : {0, 1}∞ → {0, 1}∞ has uncountably
many points that are not transitive (i. e., with a nondense orbit).

Exercise 3.4.20. Construct a transitive subshift of finite type whose periodic points
have even periods.
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4 Distance expanding maps

In this chapter, we first define and give some examples of distance expanding maps,
which, as their name suggests, expanddistances between points. On a compactmetric
space, this behavior may only be observed locally. Accordingly, the definition of an
expanding map involves two constants: a constant describing the magnitude of the
expansion of the system under scrutiny, and a constant delimiting the neighborhoods
on which the expansion can be observed.

Distance expanding maps were introduced in [61]. A fairly complete account of
them can be found in [57]. Our approach stems from that work, but in many instances
is much more detailed. Moreover, the proof of the existence of Markov partitions in
Section 4.4 is substantially simplified.

In Section 4.2, we introduce the notion and study the properties of inverse
branches of a distance expanding map. This is a way of dealing with the nonin-
vertibility of these maps.

In Section 4.3, we describe two new concepts: pseudo-orbit and shadowing. The
latter makes precise the fact that, given a measuring device of some prescribed ac-
curacy, sequences of points which remain sufficiently close to one another cannot be
distinguished by the said device.

Sections 4.4 and 4.5 are crucial. In the former, we introduce the concept of Markov
partitions and their existence for open, distance expanding systems, while in the lat-
ter we show exactly how to use them to represent the dynamics of such systems by
means of the symbolic dynamics studied in Chapter 3. The final theorem of the chap-
ter describes the properties of the codingmap between the underlying compactmetric
space (the phase space) and some subshift of finite type (a symbolic space).

The concept of Markov partition was introduced to dynamical systems by Adler,
Konheim, and McAndrew in the paper [2] in 1965. It achieved its full significance in
Rufus Bowen’s book [11]. It is in this book that the existence of Markov partitions
was proved for AxiomAdiffeomorphisms and the corresponding symbolic representa-
tion/dynamics along with thermodynamic formalism were developed. Our approach,
via the book [57], traces back to Bowen’s work. Markov partitions, in their various
forms, play an enormous role in themodern (that is, after Bowen) theory of dynamical
systems.

4.1 Definition and examples

Definition 4.1.1. A continuous map T : X → X of a compact metric space (X, d) is
called distance expanding provided that there exist two constants λ > 1 and δ > 0
such that

d(x, y) < 2δ ⇒ d(T(x),T(y)) ≥ λd(x, y).

https://doi.org/10.1515/9783110702682-004
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The use of 2δ in the above definition, as opposed to simply δ, is only to make the
forthcoming expressions and calculations simpler.

Remark 4.1.2.
(a) If T : X → X is a distance expanding map, then for every forward T-invariant

closed set F ⊆ X the map T|F : F → F is also distance expanding.
(b) If d(x, y) < 2δ, then d(T(x),T(y)) ≥ λd(x, y). Therefore, if x ̸= y, we have that

T(x) ̸= T(y). Thus, if T(x) = T(y) and x ̸= y, then d(x, y) ≥ 2δ. In particular, this
demonstrates that any distance expanding map is locally injective.

Example 4.1.3 (Subshifts of finite type). The full shift map σ : E∞ → E∞ and all of its
subshifts of finite type σ : E∞A → E∞A are expanding whichever metric ds is used. More
precisely, σ is expanding with λ = s−1 and any 0 < δ ≤ 1/2. To see this, let ω, τ ∈ E∞A
with ds(ω, τ) < 1. This means that |ω ∧ τ| ≥ 1 and, therefore, |σ(ω) ∧ σ(τ)| = |ω ∧ τ| − 1.
So,

ds(σ(ω), σ(τ)) = s
|σ(ω)∧σ(τ)| = s|ω∧τ|−1 = s−1s|ω∧τ| = s−1ds(ω, τ).

4.1.1 Expanding repellers

A large class of distance expandingmaps are the expanding repellers,whichwedefine
and study in this subsection.

Definition 4.1.4. Let U be a nonempty open subset of ℝd and T : U → ℝd a C1 map
(that is, T is continuously differentiable on U). Let X be a nonempty compact subset
of U . The triple (X,U ,T) is called an expanding repeller provided that the following
conditions are satisfied:
(a) T(X) = X.
(b) There exists λ > 1 such that ‖T′(x)v‖ ≥ λ‖v‖ for all v ∈ ℝd and all x ∈ X.
(c) ⋂∞n=0 T

−n(U) = X.

The set X is sometimes called the limit set of the repeller.

Recall that T′(x) = DxT : ℝd → ℝd is, by definition, the unique bounded linear
operator such that

lim
y→x
‖T(y) − T(x) − DxT(y − x)‖

‖y − x‖
= 0,

where ‖v‖ = ∑di=1 v
2
i is the standard Euclidean norm on ℝd. To shorten notation, we

write T′(x)v instead of T′(x)(v) or (T′(x))(v). Alternatively, we write DxT(v). In what
follows, |T′(x)| denotes the operator norm of T′(x), that is,

T
′(x) = sup{

T
′(x)v : ‖v‖ ≤ 1},
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while ‖T′‖ denotes the supremum of those norms on U, that is,

T
′ = sup

x∈U

T
′(x).

Condition (c) states that the points whose orbits are confined to U forever are ex-
actly the points of X. Thus each point which is not in X eventually escapes from U un-
der iteration by T. Usually, the closer such a point is to X the longer the escape fromU
takes. Such points are said to be repelled from X. Wewill now show that every expand-
ing repeller, when restricted to the set X, is a distance expanding map. In fact, we will
show that an expanding repeller is distance expanding on an open κ-neighborhood
of X denoted by B(X, κ) := {y ∈ ℝd : d(y,X) < κ}. Note that the proof here uses many of
the ideas we will present more generally in the next section. In particular, we use the
following topological fact, which we state here without proof: For every open cover 𝒰
of a compact metric space X, there exists a positive number ϵ, called a Lebesgue num-
ber, such that every subset of X of diameter less than ϵ is contained entirely in some
element of the cover 𝒰 .

Theorem 4.1.5. If (X,U ,T) is an expanding repeller, then there exists κ > 0 such that the
map T|B(X,κ) : B(X, κ)→ ℝd is distance expanding. In particular, the system T|X : X → X
is distance expanding.

Proof. As this property depends solely on the first iterate of T, the proof relies solely
on condition (b) of the definition of a repeller and on the compactness of X.

Since T is differentiable on U, its derivative T′(x) exists at every point x ∈ U . Fur-
thermore, as T ∈ C1(U), its derivative T′ is continuous on U . Condition (b) guarantees
that for each x ∈ X there exists r′x > 0 such that

T
′(z)v ≥

1 + λ
2
‖v‖, ∀v ∈ ℝd, ∀z ∈ B(x, r′x).

In particular, this implies that T′(z) is one-to-one, and is therefore a linear isomor-
phism of ℝd, for every z ∈ ⋃x∈X B(x, r

′
x) ⊇ X. Therefore, the inverse function theorem

(Theorem A.2.1) asserts that for every x ∈ X there exists r′′x > 0 such that T : B(x, r
′′
x )→

T(B(x, r′′x )) is a diffeomorphism, and T : ⋃x∈X B(x, r
′′
x )→ ℝ

d is a local diffeomorphism.
For every x ∈ X, let rx = min{r′x , r

′′
x }. The family of open balls {B(x, rx) : x ∈ X} forms an

open cover of X and hence admits a Lebesgue number δ > 0. That is, for every x ∈ X
there is x̃ ∈ X such that B(x, δ/2) ⊆ B(x̃, rx̃). Setting r = δ/2, it follows that

T
′(z)v ≥

1 + λ
2
‖v‖, ∀v ∈ ℝd, ∀z ∈ B(X, r) := ⋃

x∈X
B(x, r) (4.1)

and T : B(x, r)→ T(B(x, r)) is a diffeomorphism for all x ∈ X. Denote the inverse of the
diffeomorphism T : B(x, r)→ T(B(x, r)) by

T−1x : T(B(x, r))→ B(x, r). (4.2)
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As the set T(B(x, r)) is open for all x ∈ X, let qx be the largest radius Q > 0 such that
B(T(x),Q) ⊆ T(B(x, r)). As X is compact, we have q := infx∈X qx > 0. (Take the fact that
q > 0 for granted for the moment; the proof of Lemma 4.2.2 below applies here.) Then

B(T(x), q) ⊆ T(B(x, r)), ∀x ∈ X. (4.3)

Furthermore, since it is the image of an open set under a diffeomorphism, the set
T−1x (B(T(x), q)) is open for all x ∈ X. Let px be the largest 0 < P ≤ r such that B(x,P) ⊆
T−1x (B(T(x), q)). As X is compact, we have p := infx∈X p(x) > 0. (Take the fact that p > 0
for granted for the moment; a variation of the proof of Lemma 4.2.2 below can also be
applied here.) Note that p ≤ r by definition. In addition,

B(x, p) ⊆ T−1x (B(T(x), q)), ∀x ∈ X. (4.4)

Let y1, y2 ∈ B(X, p/2) be such that ‖y1 − y2‖ < p/2. Then there exists x ∈ X such
that y1, y2 ∈ B(x, p). Therefore, T(y1),T(y2) ∈ B(T(x), q) according to (4.4). Let S =
[T(y1),T(y2)] be the line segment joining T(y1) and T(y2). Due to the convexity of balls
in ℝd, we know that S ⊆ B(T(x), q). Moreover, T−1x (T(y1)) = y1 and T−1x (T(y2)) = y2.
Therefore, the curve T−1x (S) joins the points y1 to y2, and thus

‖y1 − y2‖ ≤ ℓ(T
−1
x (S)) = ∫

S

(T
−1
x )
′(w)u dw, (4.5)

where ℓ(T−1x (S)) stands for the length of the curve T
−1
x (S) and u is the unit vector in the

direction from T(y1) to T(y2). Since T−1x (S) ⊆ T
−1
x (B(T(x), q)) ⊆ B(x, r), for any w ∈ S

inequality (4.1) can be applied with z = T−1x (w) and v = (T
−1
x )
′(w)u to yield

1 = ‖u‖ = T
′(T−1x (w))((T

−1
x )
′(w)u) ≥

1 + λ
2
(T
−1
x )
′(w)u.

Consequently,

(T
−1
x )
′(w)u ≤

2
1 + λ
, ∀w ∈ S,

and hence (4.5) gives

‖y1 − y2‖ ≤ ∫
S

2
1 + λ

dz = 2
1 + λ
ℓ(S) = 2

1 + λ
T(y1) − T(y2)

.

In other words,

d(T(y1),T(y2)) ≥
1 + λ
2

d(y1, y2), ∀y1, y2 ∈ B(X, p/2) with d(y1, y2) < p/2.

Letting κ = p/2 completes the proof.
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4.1.2 Hyperbolic Cantor sets

In this section, we introduce and study in detail one special class of expanding re-
pellers (and so of distance expanding maps), namely, hyperbolic Cantor sets. Their
construction is a prototype of conformal iterated function systems and conformal
graph directedMarkov systems, whose systematic account will be given in Chapter 19.

Recall that a similarity map S : ℝd → ℝd is a bijection that multiplies all distances
by the same positive real number r called similarity ratio, that is,

S(x) − S(y)
 = r‖x − y‖, ∀x, y ∈ ℝ

d.

When r = 1, a similarity is called an isometry. Two sets are called similar if one is the
image of the other under a similarity. A similarity S : ℝd → ℝd with ratio r takes the
form

S(x) = rA(x) + b,

where A : ℝd → ℝd is an d × d orthogonal matrix and b ∈ ℝd is a translation vector.
Similarities preserve shapes, including line segments, lines, planes, parallelism, and
perpendicularity. Similarities preserve angles but do not necessarily preserve orienta-
tion (in fact, S and A preserve orientation if and only if det(A) > 0).

Note also that S′(x) = rA for all x ∈ ℝd. Therefore, ‖S′(x)v‖ = r‖v‖ for all v ∈ ℝd.
Consequently, |S′(x)| = r for all x ∈ ℝd, and hence ‖S′‖ = r.

Let E be a finite set such that #E ≥ 2. Let φe : ℝ
d → ℝd, e ∈ E, be similarities for

which there exists a compact set X0 ⊆ ℝd with the following properties:
(i) 0 < ‖φ′e‖ < 1 for all e ∈ E.
(ii) φe(X0) ⊆ X0 for all e ∈ E.
(iii) φe(X0) ∩ φf (X0) = 0 for all e, f ∈ E with e ̸= f .

Construction of the limit set X.
We now define the limit set X by constructing a descending sequence of compact

sets (Xn)∞n=1, all of which are subsets of ⋃e∈E φe(X0). The set Xn is called the nth level
set of the construction. The limit set X will be the intersection of the level sets.

We will use symbolic dynamics notation. For every ω ∈ E∗, define

φω := φω1
∘ φω2
∘ ⋅ ⋅ ⋅ ∘ φω|ω| .

The maps φe, e ∈ E, are said to be the generators of the construction, and so we say
that the map φω is generated by the word ω. The nth level set Xn is the disjoint union
of the images of X0 under all maps generated by words of length n, namely

Xn := ⋃
ω∈En

φω(X0). (4.6)
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As a finite union of compact sets, each level set Xn is compact. Moreover, by condi-
tion (ii),

Xn+1 = ⋃
ω∈En+1 φω|n(φωn+1 (X0)) ⊆ ⋃

τ∈En
φτ(X0) = Xn (4.7)

for all n ∈ ℕ. As the intersection of a descending sequence of nonempty compact sets,
the limit set

X :=
∞

⋂
n=1

Xn (4.8)

is a nonempty compact set.
The limit set X is a topological Cantor set (the proof of this fact is postponed) with

the property that

⋃
e∈E

φe(X) = X.

Indeed, we first observe that the generators map the nth level set down to the (n+ 1)th
level set since

⋃
e∈E

φe(Xn) = ⋃
e∈E
⋃
ω∈En

φe(φω(X0))

= ⋃
e∈E
⋃
ω∈En

φeω(X0)

= ⋃
τ∈En+1 φτ(X0)

= Xn+1 (4.9)

for all n ∈ ℕ.
Moreover, x ∈ ⋂∞n=1[⋃e∈E φe(Xn)] if and only if for every n ∈ ℕ there exists en ∈ E

such that x ∈ φen (Xn). Sinceφe(Xn) ⊆ φe(X0) for all e ∈ E, the en’s are unique according
to condition (iii). By this very samecondition, since x ∈ φen (Xn)∩φen+1 (Xn+1) ⊆ φen (X0)∩
φen+1 (X0), it turns out that en = en+1 for all n ∈ ℕ. In summary, x ∈ ⋂∞n=1[⋃e∈E φe(Xn)]
if and only if there is a unique e ∈ E such that x ∈ φe(Xn) for all n ∈ ℕ. In other words,

⋃
e∈E
[
∞

⋂
n=1

φe(Xn)] =
∞

⋂
n=1
[⋃
e∈E

φe(Xn)]. (4.10)

It follows from (4.8), (4.9), (4.10), and the injectivity of the generators that

⋃
e∈E

φe(X) = ⋃
e∈E

φe(
∞

⋂
n=1

Xn) = ⋃
e∈E
[
∞

⋂
n=1

φe(Xn)]

=
∞

⋂
n=1
[⋃
e∈E

φe(Xn)] =
∞

⋂
n=1

Xn+1 = X.
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By induction, we have that

⋃
ω∈En

φω(X) = X, ∀n ∈ ℕ. (4.11)

Construction of a neighborhood U of X.

Since φe(X0) ∩ φf (X0) = 0 for all e ̸= f and since there are finitely many compact
sets φe(X0), e ∈ E, the continuity of the generators ensures the existence of an open
ε-neighborhood B(X0, ε) := {x ∈ ℝd : d(x,X0) < ε} of X0 such that

φe(B(X0, ε)) ∩ φf (B(X0, ε)) = 0, ∀e ̸= f .

Let

U = ⋃
e∈E

φe(B(X0, ε)). (4.12)

Construction of a map T : U → ℝd.

Finally, we define a map T : U → ℝd by

T|φe(B(X0 ,ε)) = φ
−1
e . (4.13)

This piecewise-similar map is well-defined since the sets φe(B(X0, ε)), e ∈ E, are mu-
tually disjoint.

Proof that the triple (X,U ,T) is an expanding repeller.

Condition (a) for a repeller is rather easy to check. First, note that T maps the nth
level set up to the (n − 1)th level set, that is,

T(Xn) = Xn−1, ∀n ∈ ℕ. (4.14)

Indeed, let n ∈ ℕ. Since φe(Xn−1) ⊆ φe(B(X0, ε)) and since T|φe(B(X0 ,ε)) = φ
−1
e for every

e ∈ E, we have

T(Xn) = ⋃
ω∈En

T(φω(X0))

= ⋃
τ∈En−1⋃e∈E T(φeτ(X0))

= ⋃
τ∈En−1⋃e∈E T ∘ φe(φτ(X0))

= ⋃
τ∈En−1 φτ(X0)

= Xn−1.

Then

T(X) = T(
∞

⋂
n=1

Xn) ⊆
∞

⋂
n=1

T(Xn) =
∞

⋂
n=1

Xn−1 = X.
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This establishes that T(X) ⊆ X. To prove the reverse inclusion, pick x ∈ X. Then x ∈ Xn
for every n ∈ ℕ. Fix an arbitrary e ∈ E. Then φe(x) ∈ Xn+1 for every n ∈ ℕ. Thus
φe(x) ∈ X. It follows that x = φ−1e (φe(x)) = T(φe(x)) ∈ T(X). Hence X ⊆ T(X). Since
both inclusions hold, we conclude that

T(X) = X. (4.15)

Condition (b) for a repeller is also straightforward to verify. Indeed, let x ∈ U .
There exists a unique ex ∈ E such that x ∈ φex (B(X0, ε)). Then, for all v ∈ ℝ

d,

T
′(x)v =

(T|φex (B(X0 ,ε))
)′(x)v =

(φ
−1
ex )
′(x)v =

φ
′
ex

−1‖v‖

≥ min
e∈E

1
‖φ′e‖
‖v‖ = 1

M
‖v‖, (4.16)

whereM := maxe∈E ‖φ′e‖ < 1 by condition (i).
Finally, we show that condition (c) for a repeller is fulfilled. First, we observe that

T−n(U) = ⋃
ω∈En+1 φω(B(X0, ε)), ∀n ∈ ℤ+. (4.17)

Indeed, by definition of U, the relationship holds when n = 0. For the inductive step,
let x ∈ U and n ∈ ℕ. Then

x ∈ T−n(U)⇐⇒ T(x) ∈ T−(n−1)(U)
⇐⇒ T(x) ∈ ⋃

ω∈En
φω(B(X0, ε))

⇐⇒ φ−1f (x) ∈ ⋃
ω∈En

φω(B(X0, ε)), if x ∈ φf (B(X0, ε))

⇐⇒ x ∈ ⋃
τ∈En+1 φτ(B(X0, ε)).

By induction, (4.17) holds.
Now, observe that the similarity map φe enjoys the property that

φe(B(X0, ε)) = B(φe(X0),
φ
′
e
ε) ⊆ B(φe(X0),Mε).

By an induction argument, we deduce that

φω(B(X0, ε)) = B(φω(X0),
φ
′
ω
ε) ⊆ B(φω(X0),M

|ω|ε), ∀ω ∈ E∗. (4.18)

Therefore,

⋃
ω∈En

φω(B(X0, ε)) ⊆ ⋃
ω∈En

B(φω(X0),M
nε)

= B( ⋃
ω∈En

φω(X0),M
nε)

= B(Xn,M
nε), ∀n ∈ ℕ. (4.19)
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It follows that (cf. Exercise 4.6.4)

X =
∞

⋂
n=1

Xn =
∞

⋂
n=1
⋃
ω∈En

φω(X0) ⊆
∞

⋂
n=1
⋃
ω∈En

φω(B(X0, ε)) ⊆
∞

⋂
n=1

B(Xn,M
nε) = X.

From this and (4.17), we conclude that

X =
∞

⋂
n=1
⋃
ω∈En

φω(B(X0, ε)) =
∞

⋂
n=0

T−n(U). (4.20)

This establishes condition (c), and completes the proof that the triple (X,U ,T) is an
expanding repeller.

Alternative construction of the limit set X and proof that X is a topological Cantor set.

The limit set X can also be constructed in a slightly different way. Let ω ∈ E∞.
Since (by condition (ii))

φω|n+1 (X0) = φω|n(φωn+1 (X0)) ⊆ φω|n (X0) (4.21)

and since

diam(φω|n (X0)) =
φ
′
ω|n
diam(X0) ≤ M

n diam(X0) (4.22)

for all n ∈ ℕ, the sets (φω|n (X0))
∞
n=1 form a descending sequence of nonempty com-

pact sets whose diameters tend to 0 (by condition (i)). Therefore, ⋂∞n=1 φω|n (X0) is a
singleton. Define the coding map π : E∞ → ℝd by

{π(ω)} :=
∞

⋂
n=1

φω|n (X0).

This map is injective. Indeed, if ω ̸= τ ∈ E∞, then there is a smallest n ∈ ℕ such that
ωn ̸= τn. It follows from the injectivity of the generators and condition (iii) that

{π(ω)} ∩ {π(τ)} ⊆ φω|n (X0) ∩ φτ|n (X0)

= [φω|n−1(φωn
(X0))] ∩ [φω|n−1(φτn (X0))]

= φω|n−1(φωn
(X0) ∩ φτn (X0))

= 0.

We claim that

X = π(E∞). (4.23)
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Indeed, letω ∈ E∞. Sinceφω|n (X0) ⊆ Xn for all n ∈ ℕ, we have {π(ω)} = ⋂
∞
n=1 φω|n (X0) ⊆

⋂∞n=1 Xn = X. Therefore, π(E
∞) ⊆ X. Now, let x ∈ X. Then x ∈ Xn for every n ∈ ℕ. This

means that there exists a unique ω(n) ∈ En such that x ∈ φω(n) (X0). The uniqueness of
the ω(n)’s implies that ω(n+1)|n = ω(n). Define ω ∈ E∞ to be such that ω|n = ω(n) for all
n ∈ ℕ. Then x ∈ φω(n) (X0) = φω|n (X0) for all n ∈ ℕ. Thus x = π(ω). Hence X ⊆ π(E

∞).
Since both inclusions hold, the claim has been shown.

Furthermore, the map π is continuous. This ensues from the fact that, for every
ρ ∈ E∗,

diam(π([ρ])) ≤ diam(φρ(X0)) ≤ M
|ρ| diam(X0). (4.24)

In summary, the map π : E∞ → X is a continuous bijection between two compact
metrizable spaces. Thus π : E∞ → X is a homeomorphism and X is a homeomorphic
image of E∞, that is, X is a topological Cantor set.

For later purposes, we further note that φω1
∘ π ∘ σ(ω) = π(ω) for all ω ∈ E∞. In

light of (4.13), this means that

π ∘ σ = T ∘ π, (4.25)

that is, the symbolic system (E∞, σ) is topologically conjugate to the dynamical system
(X,T) via the coding map π.

One final word: Condition (i) is the reason for calling X an hyperbolic Cantor set.
In differentiable dynamical systems, hyperbolicity takes the shape of a derivative that
stays away from 1.

Example 4.1.6. Let φe : ℝ → ℝ, e ∈ E := {0, 2}, be the two contracting similarities
defined by

φe(x) =
x + e
3
.

Let X0 = I := [0, 1] be the unit interval. The limit set X defined in Subsection 4.1.2
is called the middle-third Cantor set and is usually denoted by C. Let ε = 1/3. Then
B(X0, ε) = (−1/3, 4/3) and

U = φ0((−1/3, 4/3)) ∪ φ2((−1/3, 4/3)) = (−1/9, 4/9) ∪ (5/9, 10/9).

Moreover, T : U → ℝ is defined by T(x) = 3x − e if x ∈ φe(B(X0, ε)), that is,

T(x) = { 3x if x ∈ (−1/9, 4/9)
3x − 2 if x ∈ (5/9, 10/9).

In two dimensions, the most classic examples of hyperbolic Cantor sets are Sier-
piński triangles (also called Sierpiński gaskets) and Sierpiński carpets. The following
example is a natural generalization of the middle-third Cantor set.
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Example 4.1.7. Letφe : ℝ
2 → ℝ2, e ∈ E := {0, 1, 2}, be the three contracting similarities

defined by

φ0(x, y) = (
x
3
,
y
3
)

φ1(x, y) = (
x + 1
3
,
y +√3

3
)

φ2(x, y) = (
x + 2
3
,
y
3
).

LetX0 be the filled-in equilateral trianglewith vertices (0,0), (1/2,√3/2) and (1,0). The
limit set X defined in Subsection 4.1.2 is a totally disconnected Sierpinski triangle. Let
ε = 1/3. Then U = ⋃e∈E φe(B(X0, ε)) and the map T : U → ℝ2 is defined by

T(x, y) := φ−1e (x, y), ∀(x, y) ∈ φe(B(X0, ε)), ∀e ∈ E.

That is,

T(x, y) =
{{{
{{{
{

(3x, 3y) if (x, y) ∈ φ0(B(X0, ε))

(3x − 1, 3y −√3) if (x, y) ∈ φ1(B(X0, ε))

(3x − 2, 3y) if (x, y) ∈ φ2(B(X0, ε)).

Example 4.1.8. Let φe : ℝ
2 → ℝ2, e ∈ E := {0, 1, 2, 3}, be the following four contracting

similarities:

φ0(x, y) = (
x
4
,
y
4
), φ1(x, y) = (

x + 3
4
,
y
4
),

φ2(x, y) = (
x + 3
4
,
y + 3
4
), φ3(x, y) = (

x
4
,
y + 3
4
).

LetX0 = I2 be the unit square. The limit setX defined in Subsection 4.1.2 is a totally
disconnected Sierpinski carpet (see Figure 4.1). Let ε = 1/2. ThenU = ⋃e∈E φe(B(X0, ε))
and the map T : U → ℝ2 is defined by

T(x, y) := φ−1e (x, y), ∀(x, y) ∈ φe(B(X0, ε)), ∀e ∈ E.

That is,

T(x, y) =

{{{{{{
{{{{{{
{

(4x, 4y) if (x, y) ∈ φ0(B(X0, ε))

(4x − 3, 4y) if (x, y) ∈ φ1(B(X0, ε))

(4x − 3, 4y − 3) if (x, y) ∈ φ2(B(X0, ε))

(4x, 4y − 3) if (x, y) ∈ φ3(B(X0, ε)).
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Figure 4.1: The action of the four contracting similarities φ0, . . . ,φ3 on the closed unit square I2.

4.2 Inverse branches

In order for a map to have a properly defined inverse, it is necessary that the map be
injective. Nonetheless, we can get around the noninjectivity of a map by defining its
inverse branches as long as the map is locally injective. The following proposition is
the first step in the construction of the inverse branches of a distance expandingmap.

Proposition 4.2.1. Let T : X → X be a distance expanding map. For all x ∈ X, the
restriction T|B(x,δ) is injective.

Proof. For each x ∈ X, apply Remark 4.1.2(b) to B(x, δ).

We shall assume from this point on thatT : X → X is anopen, distance expanding
map of a compact metric space X. Note that the restriction T|F of T to a closed forward
T-invariant subset F of X need not be open (see Exercise 4.6.5). However, since T is
open, for every x ∈ X and r > 0 the set T(B(x, r)) is open and, therefore, contains a
nonempty open ball centered at T(x), say B(T(x), s(r)). Accordingly, we define

R(x, r) := sup{s > 0 : B(T(x), s) ⊆ T(B(x, r))} > 0.

In fact, R(x, r) is the radius of the largest ball centered at T(x) which is contained in
T(B(x, r)). In the following lemma, we investigate the greatest lower bound of the radii
R(x, r) for a fixed r > 0.

Lemma 4.2.2. For every r > 0, we have R(r) := inf{R(x, r) : x ∈ X} > 0.

Proof. We shall prove this lemma by contradiction. Suppose that there exists some
r > 0 for which R(r) = 0. This means that there exists a sequence (xn)∞n=1 in X such
that limn→∞ R(xn, r) = 0. Since X is compact, the sequence (xn)∞n=1 has a convergent
subsequence, say (xnk )

∞
k=1. Define x := limk→∞ xnk . Then there exists K ∈ ℕ such that

d(xnk , x) < r/2 for all k ≥ K. In particular, this implies that

B(x, r/2) ⊆ B(xnk , r), ∀k ≥ K. (4.26)
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Now, since T is an open map, there exists η > 0 such that

B(T(x), η) ⊆ T(B(x, r/2)). (4.27)

Moreover, T(x) = limk→∞ T(xnk ) since T is continuous. Thus there exists K′ ∈ ℕ such
that d(T(xnk ),T(x)) < η/2 for all k ≥ K

′. In particular, this implies that

B(T(xnk ), η/2) ⊆ B(T(x), η), ∀k ≥ K
′. (4.28)

From (4.26), (4.27), and (4.28), it follows that for all k ≥ max{K,K′},

B(T(xnk ), η/2) ⊆ B(T(x), η) ⊆ T(B(x, r/2)) ⊆ T(B(xnk , r)).

Therefore, R(xnk , r) ≥ η/2 for all k ≥ max{K,K′}, which contradicts our assumption
that limn→∞ R(xn, r) = 0. Thus inf{R(x, r) : x ∈ X} > 0.

Remark 4.2.3. Notice that we did not use the distance expanding property of T in the
proof, so this result holds for all open, continuous maps of a compact metric space.
The compactness of the space X ensures that for any fixed r, the radii R(x, r) have a
positive greatest lower bound R(r). Thus the image of any ball of radius r contains a
ball of radius R(r).

Lemma 4.2.2 shows that for each r > 0 the image of the ball of radius r centered
at the point x contains the ball of radius R(r) centered at T(x). For an open, distance
expanding map T, the quantity

ξ := min{δ,R(δ)} > 0, (4.29)

where δ is a constant delimiting the neighborhoods of expansion of the map, is of
particular interest. Indeed, given that, according to Proposition 4.2.1, the restricted
map T|B(x,δ) is injective for every x ∈ X, we can define its inverse

T|−1B(x,δ) : T(B(x, δ))→ B(x, δ).

By the definition of ξ given above, we have that

B(T(x), ξ ) ⊆ T(B(x, δ))

for every x ∈ X. This inclusion is illustrated in Figure 4.2. We denote the restriction of
the inverse of the map T|B(x,δ) to B(T(x), ξ ) by

T−1x := (T

−1
B(x,δ))
B(T(x),ξ ) : B(T(x), ξ )→ B(x, δ). (4.30)

Note that T−1x is injective but not necessarily surjective. The map T−1x is the local
inverse branch of T that maps T(x) to x. As T expands distances by a factor λ > 1,
one naturally expects the local inverse branches T−1x , x ∈ X, to contract distances by a
factor λ−1. This is indeed the case.
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Figure 4.2: Illustration of the ball B(T (x), ξ)mapped under the inverse branch T−1x inside the ball
B(x, δ).

Proposition 4.2.4. The local inverse branches T−1x , for each x ∈ X, are contractionswith
(contraction) ratio λ−1.

Proof. Fix x ∈ X. We aim to prove that if y, z ∈ B(T(x), ξ ), then

d(T−1x (y),T
−1
x (z)) ≤ λ

−1d(y, z),

where λ is a constant of expansion for T. Since T−1x (B(T(x), ξ )) ⊆ B(x, δ), both T−1x (y)
and T−1x (z) lie in B(x, δ), and hence

d(T−1x (y),T
−1
x (z)) < 2δ.

Therefore, the expanding property of T guarantees that

d(y, z) = d(T ∘ T−1x (y),T ∘ T
−1
x (z)) ≥ λd(T

−1
x (y),T

−1
x (z)).

Consequently,

d(T−1x (y),T
−1
x (z)) ≤ λ

−1d(y, z).

Now, let w ∈ B(T(x), ξ ). Proposition 4.2.4 implies that

d(T−1x (w), x) = d(T
−1
x (w),T

−1
x (T(x))) ≤ λ

−1d(w,T(x)) < λ−1ξ .

Thus

T−1x (B(T(x), ξ )) ⊆ B(x, λ
−1ξ ) ⊆ B(x, ξ ).

Thanks to this property, we can define the local inverse branches of the iterates of T.
Let x ∈ X and n ∈ ℕ. The local inverse branch of Tn that maps Tn(x) to x is defined to
be

T−nx := T
−1
x ∘ T
−1
T(x) ∘ ⋅ ⋅ ⋅ ∘ T

−1
Tn−1(x) : B(Tn(x), ξ )→ B(x, ξ ). (4.31)

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.2 Inverse branches | 111

This composition will henceforth be called the inverse branch of Tn determined by the
point x. See Figure 4.3.

Figure 4.3: The map T−1Tn−1(x) sends the ball B(T n(x), ξ) into the ball B(T n−1(x), ξ), which is in turn
mapped into the ball B(T n−2(x), ξ) by T−1Tn−2(x) and so on, until finally T−1x sends us back inside B(x, ξ).

Remark 4.2.5. Let x ∈ X and y, z ∈ B(Tn(x), ξ ). A successive application of Proposi-
tion 4.2.4 at the points Tn−1(x), Tn−2(x), . . . ,T(x) and x establishes that

d(T−nx (y),T
−n
x (z)) ≤ λ

−n d(y, z).

In particular,

T−nx (B(T
n(x), ξ ′)) ⊆ B(x, λ−nξ ′) ⊆ B(x, ξ ′), ∀0 < ξ ′ ≤ ξ , ∀n ∈ ℕ, (4.32)

and hence

B(Tn(x), ξ ′) ⊆ Tn(B(x, λ−nξ ′)) ⊆ Tn(B(x, ξ ′)), ∀0 < ξ ′ ≤ ξ , ∀n ∈ ℕ. (4.33)

The inverse branches of an open, distance expanding map are easiest to grasp
with the aid of an example. Below, we first calculate the inverse branches for the map
T(x) := 2x (mod 1), and secondly give the example of a subshift of finite type.

Example 4.2.6. Consider the map T : 𝕊1 → 𝕊1 defined by

T(x) := { 2x if x ∈ [0, 1/2]
2x − 1 if x ∈ [1/2, 1].

Note that T is the map Tm we have seen in Example 1.1.3(b), withm = 2. The subscript
2 has been dropped to simplify notation in what follows. We have that T is distance
expanding on neighborhoods of size δ = 1/4 with expanding constant λ = 2. More
precisely, if x, y ∈ 𝕊1 with d(x, y) < 1/2, then d(T(x),T(y)) = 2d(x, y). Here, the metric d
is the usual Euclideanmetric on the circle. So, for instance, d(1/8, 7/8) = 1/4, whereas
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d(T(1/8),T(7/8)) = d(1/4, 3/4) = 1/2. Also, T is easily seen to be an open map. We
can now consider the inverse branches of T. Let us start by investigating the inverse
branches determined by the points 1/4 and 3/4.We know, by Proposition 4.2.1 (and, in
this case, by inspection), that T is injective on any open subinterval of 𝕊1 with radius
at most 1/4. In particular, T is injective on the intervals (0, 1/2) and (1/2, 1). Notice that
T(1/4) = 1/2 = T(3/4). Moreover,

T(B( 14 ,
1
4)) = T((0,

1
2)) = (0, 1) = B(

1
2 ,

1
2) = B(T(

1
4),

1
2)

and

T(B( 34 ,
1
4)) = T((

1
2 , 1)) = (0, 1) = B(

1
2 ,

1
2) = B(T(

3
4),

1
2).

Therefore, R(1/4, 1/4) = R(3/4, 1/4) = 1/2. In fact, the image under T of any ball
B(x, 1/4) contains a ball of radius 1/2 about the point T(x). Thus, in this case, R(δ) =
R(1/4) = 1/2 and so ξ := min{δ,R(δ)} = 1/4. Hence, we obtain inverse branches
T−1x : B(T(x), 1/4) → B(x, 1/4). Note that every interval B(T(x), 1/4) has two inverse
branches defined upon it, one taking points back to an interval around the preimage
ofT(x) lying in (0, 1/2) and the other sending points to an interval around the preimage
of T(x) lying in (1/2, 1). For example, the two inverse branches defined on the interval
B(1/2, 1/4) = (1/4, 3/4) are

T−11
4
: ( 14 ,

3
4)→ (0,

1
2), defined by T−11

4
(y) := y

2

and

T−13
4
: ( 14 ,

3
4)→ (

1
2 , 1), defined by T−13

4
(y) := y+1

2 .

Let us now consider the inverse branches of the iterates ofT. For each point x ∈ 𝕊1,
we have the inverse branch of Tn determined by x:

T−nx : B(T
n(x), 14)→ B(x, 14).

Recall that this map is injective but not surjective. In particular, if x = 2−(n+1), the map
T−n2−(n+1) : B(1/2, 1/4) → B(2−(n+1), 1/4) turns out to be T−n2−(n+1) (y) = y/2n. For the map T,
every interval B(Tn(x), 1/4) has 2n inverse branches defined upon it.

Example 4.2.7 (Subshifts of finite type). It was shown in Example 4.1.3 that the shift
map σ : E∞A → E∞A is distance expanding, with λ = s−1 and δ = 1/2 when E∞A is
endowed with the metric ds. Also, by Theorem 3.2.12, we know that the shift map is an
open map. Now, let ω ∈ E∞A and observe that σ−1(ω) = {iω : Aiω1

= 1}. We want to find
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the inverse branches of σ. Since 2δ = 1, we first describe the open ball B(ω, 1) upon
which we know the shift map to be injective, due to Proposition 4.2.1:

B(ω, 1) = {τ ∈ E∞A : s
|ω∧τ| < 1} = {τ ∈ E∞A : |ω ∧ τ| ≥ 1} = [ω1].

In otherwords,B(ω, 1) is the initial cylinder set determined by the first letter ofω. Then
the inverse branch of σ determined by the word ω is the map

σ−1ω : B(σ(ω), 1)→ B(ω, 1)

with the property that σ−1ω (σ(ω)) = ω, that is,

σ−1ω : [ω2] → [ω1]
τ → ω1τ.

In fact, note that σ−1ω : [ω2] → [ω1ω2]. Similarly, the inverse branch of the nth iterate
of σ determined by the word ω is the map which adds to each word τ ∈ [ωn+1] a prefix
(or initial block) consisting of the first n letters of ω, that is,

σ−nω : [ωn+1] → [ω1ω2 . . .ωnωn+1]
τ → ω1ω2 . . .ωnτ.

The next lemma states that inverse branches determined by distinct points have
disjoint images.

Lemma 4.2.8. Let z ∈ X. Let n ∈ ℕ and x, y ∈ T−n(z) with x ̸= y. Then

T−nx (B(z, ξ )) ∩ T
−n
y (B(z, ξ )) = 0.

Proof. Let 1 ≤ k ≤ n be the smallest integer such that Tk(x) = Tk(y) and further let
w := Tk(x) = Tk(y). By Remark 4.2.5, we deduce that

T−nx (B(z, ξ )) = T
−k
x ∘ T

−(n−k)
Tk(x) (B(z, ξ ))

⊆ T−kx (B(T
k(x), ξ )) = T−kx (B(w, ξ )).

Likewise,

T−ny (B(z, ξ )) ⊆ T
−k
y (B(w, ξ )).

It is thus sufficient to show that the sets T−kx (B(w, ξ )) and T
−k
y (B(w, ξ )) are disjoint. To

shorten notation in what follows, set

wx := T
k−1(x) and wy := T

k−1(y).

Then

T−kx = T
−(k−1)
x ∘ T−1wx

and T−ky = T
−(k−1)
y ∘ T−1wy

. (4.34)

Moreover, by the definition of k and the hypothesis that x ̸= y, we have that T(wx) =
T(wy) = w and also that wx ̸= wy. Consequently, in light of Remark 4.1.2(b), it follows
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that d(wx ,wy) ≥ 2δ. Recalling that ξ ≤ δ, we deduce that

B(wx , ξ ) ∩ B(wy , ξ ) = 0.

According to Remark 4.2.5, we know that

T−1wx
(B(w, ξ )) ⊆ B(wx , ξ ) and T−1wy

(B(w, ξ )) ⊆ B(wy , ξ ).

Therefore,

T−1wx
(B(w, ξ )) ∩ T−1wy

(B(w, ξ )) = 0.

It then follows from (4.34) that

T−kx (B(w, ξ )) ∩ T
−k
y (B(w, ξ )) = T

−(k−1)
x (T−1wx

(B(w, ξ ))) ∩ T−(k−1)y (T−1wy
(B(w, ξ )))

⊆ T−(k−1)(T−1wx
(B(w, ξ ))) ∩ T−(k−1)(T−1wy

(B(w, ξ )))

= T−(k−1)(T−1wx
(B(w, ξ )) ∩ T−1wy

(B(w, ξ )))

= T−(k−1)(0) = 0.

Thus T−nx (B(z, ξ )) ∩ T
−n
y (B(z, ξ )) ⊆ T

−k
x (B(w, ξ )) ∩ T

−k
y (B(w, ξ )) = 0.

We now give a description of the preimage of any set of small diameter in terms of
the local inverse branches of T or of one of its iterates.

Lemma 4.2.9. For all z ∈ X, for all A ⊆ B(z, ξ ) and for all n ∈ ℕ, we have that

T−n(A) = ⋃
x∈T−n(z)T−nx (A).

Proof. Fix z ∈ X and A ⊆ B(z, ξ ). Since T−n(A) ⊇ ⋃x∈T−n(z) T−nx (A) for all n ∈ ℕ, we
only need to prove the opposite inclusion. We shall do this by induction. As the basis
of induction, we first do it for n = 1. So, let w ∈ T−1(A). We aim to show that w ∈
⋃x∈T−1(z) T−1x (A). Since T(w) ∈ A ⊆ B(z, ξ ), we have that z ∈ B(T(w), ξ ). Now define x :=
T−1w (z) ∈ T

−1(z). We shall show that w ∈ T−1x (A). Recall that T
−1
x : B(T(x), ξ ) → B(x, ξ ).

Since T(x) = T(T−1w (z)) = z, we then have that T
−1
x : B(z, ξ )→ B(x, ξ ). As T(w) ∈ B(z, ξ ),

the pointw′ := T−1x (T(w)) is well-defined. Moreover,w
′ ∈ T−1x (A), as T(w) ∈ A. Thus, to

see thatw ∈ T−1x (A), it only remains to show thatw′ = w.Weknow thatT(w′) = T(w)by
definition ofw′. So, according to Remark 4.1.2(b), it suffices to show that d(w′,w) < 2δ.
Using Proposition 4.2.4, observe that

d(w′, x) = d(T−1x (T(w)),T
−1
x (T(x))) ≤ λ

−1d(T(w),T(x)) = λ−1d(T(w), z) < λ−1ξ < δ

and

d(w, x) = d(T−1w (T(w)),T
−1
w (z)) ≤ λ

−1d(T(w), z) < λ−1ξ < δ.
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These last two inequalities combine to give

d(w′,w) ≤ d(w′, x) + d(x,w) < δ + δ = 2δ.

So w = w′ := T−1x (T(w)) ∈ T
−1
x (A). We have thus shown that

T−1(A) = ⋃
x∈T−1(z)T

−1
x (A).

For the sake of the inductive step, suppose that the assertion of our lemma holds for
all n = 1, . . . , k. Then

T−(k+1)(A) = T−k(T−1(A)) = T−k( ⋃
x∈T−1(z)T

−1
x (A))

= ⋃
x∈T−1(z)T

−k(T−1x (A))

= ⋃
x∈T−1(z) ⋃y∈T−k(x)T

−k
y (T
−1
x (A))

= ⋃
v∈T−(k+1)(z)T

−(k+1)
v (A).

This completes the proof.

We now describe conditions under which a transitive system is very strongly tran-
sitive (see Definitions 1.5.14–1.5.15).

Lemma 4.2.10. Every open, distance expanding and transitive dynamical system T :
X → X is very strongly transitive.

Proof. Given that T is open and X compact, it suffices to show that T is strongly tran-
sitive. Let U be an open subset of X. Let also ξ be as in (4.29). According to Theo-
rem 1.5.11, there exists a point x ∈ U and a number 0 < ξ ′ ≤ ξ such that B(x, ξ ′) ⊆ U
and𝒪+(x) = X. From (4.33), we deduce that

X = 𝒪+(x) =
∞

⋃
n=0

B(Tn(x), ξ ′) ⊆
∞

⋃
n=0

Tn(B(x, ξ ′)) ⊆
∞

⋃
n=0

Tn(U).

Since U is an arbitrary open set, we conclude that T is strongly transitive.

4.3 Shadowing

Imagine that you observe the dynamics of a system T : X → X by means of some
instrument which is only accurate up to a given α ≥ 0. In other words, assume that
your instrument can only locate the position of a point with a precision at best α.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



116 | 4 Distance expanding maps

Then, with your instrument, you will not be able to distinguish points that are within
a distance α from each other. In particular, this means that if a point x0 lands under
the map T within a distance α of a point x1, then you will not be able to distinguish x1
from the image of x0 under T. Similarly, if x1 lands under the map T within a distance
α of a point x2, then youwill not be able to distinguish x2 from the image of x1 under T,
and so on. To summarize, this sequence (xi) can be mistaken for the orbit of the point
x0, although, in reality, it is not the orbit of x0 and, in fact, it is not necessarily an orbit
at all. The following definition and terminology make this precise.

Definition 4.3.1. Let α ≥ 0. A sequence (xi)ni=0, where n can be finite or infinite, is said
to be an α-pseudo-orbit if

d(T(xi), xi+1) < α, ∀0 ≤ i < n.

In particular, notice that the orbit𝒪+(x) of a point x ∈ X can be written as𝒪+(x) =
{x0 = x, x1 = T(x), x2 = T2(x), . . .}, which precisely means that d(T(xi), xi+1) = 0 for all
i ∈ ℤ+. Thus, an orbit, when converted to the sequence of the iterates of a point, is a
0-pseudo-orbit. Inversely, a 0-pseudo-orbit is merely a sequence of successive iterates
of a point.

In the following definition, we come to the important concept of shadowing an
α-pseudo-orbit, as advertised in the title of this section.

Definition 4.3.2. A point x ∈ X is said to β-shadow a pseudo-orbit (xi)ni=0 if

d(T i(x), xi) < β, ∀0 ≤ i ≤ n.

That is, the orbit of x lies within a distance β of the pseudo-orbit (xi)ni=0.

Pseudo-orbits and shadowing (along with the forthcoming closing lemma), form
a long lived, important, and convenientway of studying dynamical systems exhibiting
some sort of hyperbolic or expanding behavior. At the very least, they can be traced
back to the breakthrough work of Anosov and Sinai (see [4, 5]). They found a mature,
elegant form in [11]. Our approach follows [57], which in turn is based upon [11].

We shall now prove that any infinite sequence in X can be δ-shadowed by at most
one point of the space if the dynamical system T : X → X under consideration is a
map expanding balls of radius δ.

Proposition 4.3.3. Let T : X → X be a distance expanding map with δ as a constant
delimiting the neighborhoods of expansion. Then every infinite sequence of points (xi)∞i=0
in X can be δ-shadowed by at most one point of X.

Proof. Suppose that y and z are two points which each δ-shadow the same sequence
(xi)∞i=0. For all i ≥ 0, we then have

d(T i(y), xi) < δ and d(T i(z), xi) < δ.
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Then, by the triangle inequality, for all i ≥ 0 we have that

d(T i(y),T i(z)) < 2δ.

By the expanding property of T, we deduce, for all i ≥ 0, that

d(T i+1(y),T i+1(z)) ≥ λ d(T i(y),T i(z)).

So, by induction, we conclude that

d(Tn(y),Tn(z)) ≥ λnd(y, z)

for all n ≥ 0. However, since the compact space X has finite diameter, this can only
happen when y = z.

More generally, we have the following result on the existence and uniqueness of
shadowing.

Proposition 4.3.4. Let T : X → X be an open, distance expanding map. Let 0 < β < ξ ,
where ξ is as defined in (4.29). Let α = min{ξ , (λ − 1)β/2} and let (xi)ni=0 be an α-pseudo-
orbit (where n can be finite or infinite). For each 0 ≤ i < n, let x′i = T

−1
xi (xi+1). Then:

(a) For all 0 ≤ i < n, we have that

T−1x′i (B(xi+1, β/2)) ⊆ B(xi, β/2)
and thus, by induction, the composite map

T−1x′0 ∘ ⋅ ⋅ ⋅ ∘ T−1x′i : B(xi+1, β/2)→ B(x0, β/2)

is well-defined. Henceforth, we denote this composition by T−1i .
(b) (T−1i (B(xi+1, β/2)))

n−1
i=0 is a descending sequence of nonempty compact sets.

(c) The intersection⋂n−1i=0 T
−1
i (B(xi+1, β/2)) is nonempty and all of its elements β-shadow

the α-pseudo-orbit (xi)ni=0.
(d) If n =∞, then⋂∞i=0 T

−1
i (B(xi+1, β/2)) consists of the unique point that β-shadows the

infinite α-pseudo-orbit (xi)∞i=0.

Proof. Toward part (a), let x ∈ B(xi+1, β/2). Since x′i = T
−1
xi (xi+1), we have T(x

′
i ) = xi+1

and hence x′i = T
−1
x′i (T(x′i )) = T−1x′i (xi+1). Using Proposition 4.2.4, it follows that

d(T−1x′i (x), xi) ≤ d(T−1x′i (x), x′i ) + d(x′i , xi)
= d(T−1x′i (x),T−1x′i (xi+1)) + d(T−1xi (xi+1),T−1xi (T(xi)))
≤ λ−1d(x, xi+1) + λ

−1d(xi+1,T(xi))
< λ−1(β/2 + α) ≤ λ−1(β/2 + (λ − 1)β/2) = β/2.

Hence T−1x′i (x) ∈ B(xi, β/2), and this proves the first assertion.
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To prove part (b), notice that T−1i = T
−1
i−1 ∘ T

−1
x′i for every 1 ≤ i < n. Using part (a), we

deduce that

T−1i (B(xi+1, β/2)) = T
−1
i−1 ∘ T

−1
x′i (B(xi+1, β/2)) ⊆ T−1i−1(B(xi, β/2)).

This proves the second assertion.
Toprovepart (c), recall that the intersectionof adescending sequenceof nonempty

compact sets is a nonempty compact set. From part (b), we readily obtain that
⋂n−1i=0 T

−1
i (B(xi+1, β/2)) ̸= 0. Moreover, for all 0 ≤ j < n, observe that

T j(
n−1
⋂
i=0

T−1i (B(xi+1, β/2))) ⊆ T
j(T−1j (B(xj+1, β/2))) ⊆ B(xj+1, β/2).

This implies that d(T j(x), xj+1) < β for all 0 ≤ j < n and x ∈ ⋂n−1i=0 T
−1
i (B(xi+1, β/2)).

This proves that every such x β-shadows the α-pseudo-orbit (xi)ni=0. If n = ∞, Propo-
sition 4.3.3 guarantees that only one such x exists since β < ξ ≤ δ, and part (d) fol-
lows.

We will deduce several important facts from the preceding proposition. Before
doing so, we need another definition.

Definition 4.3.5. A map T : X → X satisfies the shadowing property if for all β > 0
there exists an α > 0 such that every infinite α-pseudo-orbit is β-shadowed by a point
of the space X.

Corollary 4.3.6 (Existence and uniqueness of shadowing). Every open, distance ex-
panding map satisfies the shadowing property. Moreover, if β is small enough (namely,
if β < ξ ), then one can choose α so that every infinite α-pseudo-orbit is β-shadowed by
one and only one point of the space. In fact, α can be chosen as in Proposition 4.3.4.

In light of the above corollary, we will say that every open, distance expanding
map satisfies the unique-shadowing property.

Corollary 4.3.7 (Closing lemma). For every β > 0, there exists an α > 0 with the follow-
ing property: If x is a point such that d(Tn(x), x) < α for some n ∈ ℕ, then there exists
a periodic point of period n which β-shadows the orbit (T i(x))n−1i=0 . In fact, if β < ξ then α
can be chosen as in Proposition 4.3.4.

Proof. First, note that if the property holds for some β̃ > 0 and a corresponding α(β̃),
then it also holds for any β ≥ β̃ and α(β) = α(β̃). Thus we may assume without loss of
generality that 0 < β < ξ . Choose α as in Proposition 4.3.4. Now, consider the infinite
sequence

x,T(x),T2(x), . . . ,Tn−1(x), x,T(x),T2(x), . . . ,Tn−1(x), x, . . .
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This sequence can be expressed as (xi)∞i=0, where xkn+j = T j(x) for all k ∈ ℤ+ and
0 ≤ j < n. We claim that this sequence constitutes an α-pseudo-orbit. Indeed, when
0 ≤ j < n − 1, we have

d(T(xkn+j), xkn+j+1) = d(T(T
j(x)),T j+1(x)) = 0 < α,

while when j = n − 1, we have

d(T(xkn+j), xkn+j+1) = d(T(xkn+n−1), xkn+n) = d(T(xkn+n−1), x(k+1)n)
= d(T(Tn−1(x)), x) = d(Tn(x), x) < α.

Thus the sequence (x,T(x), . . . ,Tn−1(x), x,T(x), . . . ,Tn−1(x), x,T(x), . . .) is an α-pseudo-
orbit, and by Corollary 4.3.6 there exists a unique point y which β-shadows it. We also
notice that the point Tn(y) β-shadows this infinite sequence, since d(T j(Tn(y)), xj) =
d(Tn+j(y), xj) = d(Tn+j(y), xn+j) < β. As β-shadowing is unique, we conclude that
Tn(y) = y. Hence y is a periodic point of period nwhich β-shadows the orbit (T i(x))n−1i=0 .

From this result, we can infer that any open, distance expanding map has at least
one periodic point. Let Per(T) denote the set of periodic points of T. We shall prove
the following.

Corollary 4.3.8 (Closing lemma, existence of a periodic point). Every open, distance
expandingmap of a compactmetric space has a periodic point. More precisely, Per(T) ⊆
⋃x∈X ω(x) ⊆ Per(T), and as the middle set is nonempty, so is Per(T).

Proof. The left-hand side inclusion is immediate as x ∈ ω(x) for all x ∈ Per(T). In order
to prove the right-hand side one, choose any x ∈ X. Recall that the set ω(x), which
is nonempty since X is compact, is the set of accumulation points of the sequence
(Tn(x))∞n=0 of iterates of x. Let y ∈ ω(x). Fix momentarily an arbitrary β > 0 and let α :=
α(β) > 0 be as in the closing lemma. Then there exists a subsequence (Tnk (x))∞k=0 such
that d(Tnk (x), y) < α/2 for all k ∈ ℕ. Therefore, d(Tnk (x),Tnj (x)) < α for all j, k ∈ ℕ. Fix
k and let j := k + 1. Further, define z := Tnk (x). Then

d(Tnk+1−nk (z), z) = d(Tnk+1 (x),Tnk (x)) < α.
According to the closing lemma, there then exists a periodic pointw of period nk+1−nk
which β-shadows the orbit (T i(z))nk+1−nk−1i=0 = (T i(x))nk+1−1i=nk

. Then

d(w, y) ≤ d(w, z) + d(z, y) ≤ β + α/2.

Thismeans that there is a periodic point at a distance atmost β+α/2 from y. As β tends
to zero, we also have that α tends to zero. Hence, the point y belongs to the closure of
the set of periodic points.
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As an immediate consequence of this corollary, we obtain the following result.

Corollary 4.3.9 (Density of periodic points). The set of periodic points of an open, dis-
tance expanding map T : X → X of a compact metric space X is dense if and only if
⋃x∈X ω(x) = X.

From the definition of transitivity (cf. Definition 1.5.6), we also obtain the follow-
ing.

Corollary 4.3.10 (Density of periodic points for transitive maps). For every transitive,
open, distance expanding map of a compact metric space, the set of periodic points is
dense.

In the previous two results, we imposed some restriction on the dynamics of the
map. This time we impose some conditions on the space on which the system lives.

Corollary 4.3.11 (Density of periodic points on a connected space). For every open
distance expanding map of a connected compact metric space, the set of periodic
points is dense.

Proof. Fix an arbitrary x ∈ X. We aim to demonstrate that there are periodic points
arbitrarily close to x. Let 0 < β < ξ , where ξ was defined in (4.29), and letα := α(β) > 0
be as in the closing lemma and Proposition 4.3.4. Let {U1,U2, . . . ,Up} be a finite open
cover ofX of diameter less than β (that is, the diameter of eachUi is less than β). Choose
any n ∈ ℕ such that (p + 1)λ−nβ < α. Since X is connected, there exists a β-chain of
length at most p + 1 joining x to Tn(x). In other words, there exists a finite sequence

x =: y0, y1, . . . , yk−1, yk := T
n(x)

such that d(yj, yj+1) < β for each 0 ≤ j < k, where k ≤ p. The elements of the β-chain
are chosen to be such that yj, yj+1 ∈ Uij for all 0 ≤ j < k. By applying an appropriately
chosen inverse branch of Tn to this chain, we can construct a (λ−nβ)-chain of length
at most p + 1 ending at x. Indeed, let y(n)k = T

−n
x (T

n(x)) = x. By recursion on j from k − 1
to 0, we define y(n)j = T

−n
y(n)j+1 (yj). This results in the finite sequence

y(n)0 = T
−n
y(n)1 (y0), . . . , y(n)k−1 = T−ny(n)k (yk−1) = T−nx (yk−1), y(n)k = x.

Observe that for all 0 ≤ j < k we have

d(y(n)j , y
(n)
j+1) = d(T

−n
y(n)j+1 (yj),T−ny(n)j+1(Tn(y(n)j+1)))

≤ λ−nd(yj,T
n(y(n)j+1))

= λ−nd(yj, yj+1)
< λ−nβ.
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Thus we have defined a (λ−nβ)-chain of length at most p+ 1 ending at x. Consequently,
by the triangle inequality, we deduce that

d(y(n)0 , x) = d(y
(n)
0 , y
(n)
k ) ≤ (k + 1)λ

−nβ ≤ (p + 1)λ−nβ < α.

Note also that Tn(y(n)0 ) = y0 = x. It follows from these last two facts that the infinite
sequence

y(n)0 ,T(y
(n)
0 ), . . . ,T

n−1(y(n)0 ),T
n(y(n)0 ) = x, y

(n)
0 ,T(y

(n)
0 ), . . . ,T

n−1(y(n)0 ), x, . . .

is an infiniteα-pseudo-orbit. Then, according to Proposition 4.3.4(d), there is a unique
point z that β-shadows this pseudo-orbit. However, Tn(z) also β-shadows this pseudo-
orbit. Thus z is a periodic point of period n. This implies in particular that there exists
a periodic point which is β-close to x. As 0 < β < ξ was chosen arbitrarily, we deduce
that the point x is a periodic point or a point of accumulation of periodic points. As
x was chosen arbitrarily in X, we conclude that the periodic points of T are dense
in X.

Note that there exist open distance expanding maps defined upon disconnected
compact metric spaces whose set of periodic points is not dense (see Exercise 4.6.6).

4.4 Markov partitions

As was alluded to in Chapter 3, symbolic dynamical systems are often used to “repre-
sent” other dynamical systems. In the remainder of this chapter, we shall show that
an open, expanding map T : X → X of a compact metric space X can be represented
by a subshift of finite type σ : F → F, where F ⊆ E∞ for some finite set E.

In general, one cannot expect that T and σ be topologically conjugate. For in-
stance, T might act on a connected space X, whereas σ always acts on a totally dis-
connected subshift F ⊆ E∞. As continuous maps preserve connectedness, it is then
out of the question that σ : F → F be a factor of T : X → X, let alone that σ and T
be topologically conjugate. In general, the best we may hope for is that T be a factor
of σ and that most points of X, ideally points which form a dense Gδ-subset of X, be
represented by a unique symbolic point ω in F. Ideally, F would be a subshift of finite
type, that is, F would be of the form E∞A for some incidence/transition matrix A. This
turns out to be possible.

The construction of such representations can be roughly described as follows.
Cover the space X with some special finite collection ℛ = {R1,R2, . . . ,Rp} of subsets
of X. The collection ℛ will be called a Markov “partition”. We will shortly give some
justification for the conditions imposed on a Markov “partition”, but first we outline
how the “partition” can be used to generate symbolic representations of points in X.
The orbit of any point x ∈ X may be tracked by recording the members ofℛ in which
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each iterate of x lands. Wemay thereby associate to each point x at least one symbolic
point ω = (ωi)

∞
i=0 ∈ E

∞ := {1, 2, . . . , p}∞ such that

T i(x) ∈ Rωi
, ∀i ≥ 0.

Equivalently, this can be expressed by requiring that

x ∈
∞

⋂
i=0

T−i(Rωi
).

However, it is often possible to associatemore than one symbolic point to a given point
x in this way. For instance, this occurs whenever the orbit of x falls in the nonempty
intersection of two members of the Markov “partition” ℛ. We immediately obtain at
least two representatives for such an x. In order to achieve a one-to-one association on
as large a subset of X as possible (ideally on a dense Gδ-subset of X), we require that
the sets Rj intersect as little as possible. Namely, we require that they only intersect
within their boundaries, if they intersect at all. Recall from topology that the boundary
of a closed set is a nowhere dense set. This justifies condition (b) in the definition of a
Markov partition below.

On the other hand, in order that sets of the form ⋂∞i=0 T
−i(Rωi
) each generate at

most one point of X, we require that the sets Rj be “small,” in some sense. For open
expanding maps, this means that the diameters of the Rj should be small enough that
the inverse branches of T i be defined on them (i. e., they should be of diameter less
than ξ ), so that these inverse branches contract the Rj by a factor λ−i. Moreover, to
track the entire orbit of a point x, we usually track its first n iterates and then “take
the limit” as n tends to infinity to track the entire orbit. This means that, should the
finite intersection⋂ni=0 T

−i(Rωi
) be nonempty for each n ≥ 0, wewould like the infinite

intersection ⋂∞i=0 T
−i(Rωi
) to be nonempty. This can be guaranteed by requiring that

the Rj be closed or, equivalently, compact.
All of the above requirements can be fulfilled in any compact metric space X. In-

deed, it is not too difficult to construct a finite coverℛ = {R1,R2, . . . ,Rp} consisting of
closed sets of diameters as small as desired and which intersect only in their bound-
aries (see Exercise 4.6.10). Although the association x → ω is one-to-one on a dense
set in X and the closure F of the symbolic points hence generated is a subshift of
E∞ := {1, 2, . . . , p}∞, this subshift is generally not of finite type. To ensure that F be
of finite type, we impose condition (c) in the definition of a Markov partition. More-
over, condition (a) ensures that closed sets Rj with the property that Rj = 𝜕Rj are not
added to the partition, since such sets only provide information about the dynamics
of a negligible set of points of X.

Note that Markov partitions are generally not partitions of the space in the usual
sense of disjoint sets, as this would imply that the space is disconnected.
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Definition 4.4.1. A finite collection of closed sets ℛ = {R1,R2, . . . ,Rp}, which covers
the space X is called aMarkov partition for a dynamical system T : X → X if it satisfies
the following three conditions:
(a) Ri = Int(Ri) for all 1 ≤ i ≤ p.
(b) Int(Ri) ∩ Int(Rj) = 0 for all i ̸= j.
(c) If T(Int(Ri)) ∩ Int(Rj) ̸= 0, then T(Ri) ⊇ Rj.

In other words, condition (a) requires that each element of a Markov partition be
the closure of its interior, condition (b) states that the elements of a Markov partition
can only intersect on their boundaries, and condition (c) states that if the image of the
interior of an element Ri intersects the interior of an element Rj, then the image of Ri
completely covers Rj. Since T is an open map, note that condition (b) is equivalent to
(b′) Ri ∩ Int(Rj) = 0 for all i ̸= j.

For the same reason, condition (c) can be replaced by either of the following condi-
tions:
(c′) If T(Ri) ∩ Int(Rj) ̸= 0, then T(Ri) ⊇ Rj.
(c′′) If T(Int(Ri)) ∩ Rj ̸= 0, then T(Ri) ⊇ Rj.

Example 4.4.2. Let T be the shift map σ : E∞A → E∞A . Then the one-cylinders {[e]}e∈E
form a Markov partition for σ. Indeed, every one-cylinder is both open and closed,
and hence satisfies condition (a) of the definition of a Markov partition. Condition (b)
is clearly satisfied, since words which begin with different letters are distinct. Finally,
σ([f ])∩ [e] ̸= 0means that Afe = 1, that is, fe is an admissible word. Therefore, σ([f ]) ⊇
σ([fe]) = [e]. Thus condition (c) is satisfied.

Example 4.4.3. Once again, let T be the shift map σ : E∞A → E∞A . Fix any n ∈ ℕ. Then
the n-cylinders {[ω]}ω∈EnA form aMarkov partition for σ. The proof of this fact is similar
to the one given in Example 4.4.2.

Example 4.4.4. Fixm ∈ ℕ. Recall themap Tm(x) := mx (mod 1) from Example 1.1.3(b).
The collection of closed intervals

{Ri = [
i
m
,
i + 1
m
] : 0 ≤ i < m}

is a Markov partition for Tm. Indeed, one can immediately verify that the first two con-
ditions are satisfied. Concerning condition (c’), observe that Tm(Ri) = 𝕊1 for all i, and
thus condition (c’) is fulfilled. Indeed, Tm(Ri) ⊇ Rj for all 0 ≤ i, j < m.

Example 4.4.5. Fix m ∈ ℕ and consider again the map Tm(x) := mx (mod 1). Now, fix
k ∈ ℕ. The collection of closed intervals

{Ri = [
i
mk ,

i + 1
mk ] : 0 ≤ i < m

k}
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is another Markov partition for Tm. Exactly as in the previous example, the first two
conditions are clearly satisfied. Concerning condition (c’), observe that

Tm(Ri) = [
mi
mk ,

m(i + 1)
mk ] = [

mi
mk ,

mi +m
mk ] =

mi+m−1
⋃
j=mi
[

j
mk ,

j + 1
mk ]

for all i, and thus condition (c’) is fulfilled.

We nowpresent themain result of this section. Examples 4.4.3 and 4.4.5 show that
the shift map and them-times maps Tm, for allm ∈ ℕ, admit arbitrarily small Markov
partitions. This is the case for all open, distance expanding maps, as we show in the
next theorem. Part of the proof given here is due to David Simmons.

Theorem 4.4.6 (Existence of Markov partitions). Every open, distance expanding map
T : X → X of a compact metric space X admits Markov partitions of arbitrarily small
diameters.

Proof. Since T is an open, distance expanding map, it follows from Corollary 4.3.6
that T has the unique-shadowing property. Choose 0 < β < ξ /8. Then there exists
α > 0 such that every α-pseudo-orbit is β-shadowed by exactly one point of X. As T is
continuous on a compact metric space, it is uniformly continuous. Therefore, we can
choose 0 < γ < min(β,α/2) such that for all x1, x2 ∈ X with d(x1, x2) < γ, we know that

d(T(x1),T(x2)) < α/2.

Step 1. Establishment of a factor map φ between a subshift (Ω, σ) and (T ,X).

The collection {B(x,γ) : x ∈ X} is an open cover of the compact spaceX. Therefore,
there exists a finite set E ⊆ X such that

X = ⋃
a∈E

B(a,γ).

Define the space Ω by

Ω := {ω = (ωi)
∞
i=0 ∈ E

∞ : d(T(ωi),ωi+1) < α for all i ≥ 0}.

Observe that σ(Ω) ⊆ Ω.Hence, (Ω, σ) is a subshift of E∞ according to Theorem 3.2.4. By
definition, each element of the space Ω is an α-pseudo-orbit and, therefore, for each
ω ∈ Ω there exists a unique point whose orbit β-shadowsω. Let us call this pointφ(ω).
In this way, we define a map φ : Ω → X, and by uniqueness of shadowing we have
that

φ ∘ σ = T ∘ φ. (4.35)

In order for φ to be a factor map, we hope that φ is continuous and surjective. Let
us first show that φ is continuous. Let ω, τ ∈ Ω. As φ(ω) β-shadows ω, we have that
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d(T i(φ(ω)),ωi) < β for all i ≥ 0. Similarly, d(T i(φ(τ)), τi) < β for all i ≥ 0. Since ωi = τi
for all 0 ≤ i < |ω ∧ τ|, we can apply the triangle inequality to obtain that

d(T i(φ(ω)),T i(φ(τ))) < 2β < ξ ≤ δ, ∀0 ≤ i < |ω ∧ τ|,

where δ > 0 comes from the definition of T being expanding. So,

d(T i+1(φ(ω)),T i+1(φ(τ))) ≥ λ d(T i(φ(ω)),T i(φ(τ))), ∀0 ≤ i < |ω ∧ τ|.

It follows by a straightforward argument that

d(φ(ω),φ(τ)) ≤ λ−|ω∧τ| diam(X) = (s|ω∧τ|)−
log λ
log s diam(X)

= diam(X)(ds(ω, τ))
− log λlog s .

Thus φ is Hölder continuous with exponent − log λ/ log s and is therefore continuous.
In order to show that φ is surjective, let x ∈ X. Then, for all i ≥ 0, we have that

T i(x) ∈ B(ωi,γ) for someωi ∈ E. As d(T i(x),ωi) < γ, it follows from the choice of γ that
d(T i+1(x),T(ωi)) < α/2 for all i ≥ 0. We deduce that

d(T(ωi),ωi+1) ≤ d(T(ωi),T
i+1(x)) + d(T i+1(x),ωi+1) < α/2 + γ < α

for all i ≥ 0. Thus ω = ω0ω1ω2 . . . ∈ Ω and, by construction, x γ-shadows ω, that is,
φ(ω) = x. The proof of the surjectivity of φ is complete.

Step 2. A property of the images of one-cylinders.

For each a ∈ E, define the sets

Pa := φ([a]) = φ({ω ∈ Ω : ω0 = a}).

All sets Pa are closed in X since they are the images under the factor mapφ of the one-
cylinder sets [a], which are themselves closed in the compact space Ω. For each a ∈ E,
set

W(a) := {b ∈ E : d(T(a), b) < α}.

We claim that the following property is satisfied:

T(Pa) = ⋃
b∈W(a)

Pb. (4.36)

Indeed, if x ∈ Pa, then x = φ(ω) for some ω ∈ Ω with ω0 = a. By the defini-
tion of Ω, it follows that ω1 ∈ W(a). Thus, invoking (4.35), we obtain that T(x) =
T(φ(ω)) = φ(σ(ω)) ∈ φ([ω1]), and hence T(x) ∈ Pω1

⊆ ⋃b∈W(a) Pb. Consequently,
T(Pa) ⊆ ⋃b∈W(a) Pb. Conversely, let y ∈ Pb for some b ∈ W(a). Then y = φ(ω) for some
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ω ∈ Ω with ω0 = b. By the definition ofW(a), the concatenation aω belongs to the set
Ω and therefore, using (4.35) again, we get that

y = φ(ω) = φ(σ(aω)) = T(φ(aω)) ∈ T(Pa).

Consequently, ⋃b∈W(a) Pb ⊆ T(Pa). Relation (4.36) has been proved. This relation can
be expressed by means of an incidence/transition matrix A : E × E → {0, 1} by setting

Aab := {
1 if T(Pa) ⊇ Pb
0 if T(Pa) ̸⊇ Pb.

Then (4.36) means that

T(Pa) = ⋃
{b∈E :Aab=1}

Pb. (4.37)

It is also worth observing that Pa ⊆ B(a, β) for every a ∈ E. Thus, if Pa ∩ Pb ̸= 0
for some a, b ∈ E, then Pa ∪ Pb ⊆ B(a, 4β) ∩ B(b, 4β). Since 4β < ξ /2, the restriction
T : B(a, 4β)→ T(B(a, 4β)) is a homeomorphism. In particular, T is injective on Pa ∪Pb.

Step 3. Construction of the elements of a Markov partition.

For each nonempty subset S of E, define BS to be

BS := [⋂
a∈S

Pa] ∩ [ ⋂
b∈E\S
(X \ Pb)].

We claim that the family

ℛ := {RS := Int(BS) : S ∈ 𝒫+(E)}

forms a Markov partition, where 𝒫+(E) := {S ⊆ E : RS ̸= 0}.
First, we shall show that for each nonempty subset S ⊆ E, the set T(BS) is a union

of elements ofℛ. Toward this end, fix S ∈ 𝒫+(E), pick aS ∈ S and define

EaS := {e ∈ E : Pe ∩ PaS ̸= 0}.

Note that S ⊆ EaS . Indeed, S ∈ 𝒫+(E)means that RS ̸= 0. This implies that BS ̸= 0,
which in particular implies that⋂a∈S Pa ̸= 0. It ensues that Pa ∩PaS ̸= 0 for every a ∈ S.

Moreover, recall that T is injective on Pa ∪ Pb whenever Pa ∩ Pb ̸= 0. Then

T(BS) = T([⋂
a∈S

Pa] ∩ [ ⋂
b∈E\S
(X \ Pb)])

= T([PaS ∩⋂
a∈S

Pa] ∩ [PaS ∩ ⋂
b∈E\S
(X \ Pb)])
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= T(PaS ∩⋂
a∈S

Pa) ∩ T(PaS ∩ ⋂
b∈E\S
(X \ Pb))

= T(⋂
a∈S

PaS ∩ Pa) ∩ T( ⋂
b∈E\S

PaS ∩ (X \ Pb))

= T(⋂
a∈S

PaS ∩ Pa) ∩ T( ⋂
b∈E\S
(PaS \ Pb))

= [⋂
a∈S

T(PaS ∩ Pa)] ∩ [ ⋂
b∈EaS \S

T(PaS \ Pb)]

∩ [ ⋂
b∈E\EaS

T(PaS \ Pb)]

= [⋂
a∈S
(T(PaS ) ∩ T(Pa))] ∩ [ ⋂

b∈EaS \S
(T(PaS ) \ T(Pb))]

∩ [ ⋂
b∈E\EaS

T(PaS )]

= [⋂
a∈S

T(Pa)] ∩ [ ⋂
b∈EaS \S
(X \ T(Pb))]

= [⋂
a∈S
⋃

{c∈E :Aac=1}
Pc] ∩ [ ⋂

b∈EaS \S
⋂

{d∈E :Abd=1}
(X \ Pd)]

= [⋂
a∈S
⋃

{c∈E :Aac=1}
Pc] ∩ [⋂

b∈Ŝc
(X \ Pb)], (4.38)

where Ŝc := ⋃b∈EaS \S{d ∈ E : Abd = 1}.

Now, let x ∈ T(BS) be arbitrary. Define

S(x) := {b ∈ E \ Ŝc : x ∈ Pb}.

Observe that if e ∈ S(x), then x ∈ Pe. However, if e ∉ S(x) then e ∈ Ŝc or x ∈ X \ Pe. In
the former case, there exists a ∈ EaS \ S such that Aae = 1. This implies that T(Pa) ⊇ Pe.
We will now show that x ∈ X \ Pe also in this case. By way of contradiction, suppose
that x ∈ Pe. Then there exists y ∈ Pa such that T(y) = x. On the other hand, since
x ∈ T(BS), there exists z ∈ ⋂i∈S Pi ∩ ⋂j∈E\S(X \ Pj) such that T(z) = x. As aS ∈ S, we
know that z ∈ PaS . Thus we have y, z ∈ Pa ∪ PaS with T(y) = x = T(z). As a ∈ EaS , we
get Pa ∩ PaS ̸= 0, and hence T is injective on Pa ∪ PaS . We deduce that y = z. As a ∉ S,
we have z ∈ X \ Pa by definition of z. So y = z ∈ Pa ∩ (X \ Pa) = 0. This contradiction
shows that x ∈ X \ Pe. Thus, in either case, if e ∉ S(x), then x ∈ X \ Pe.
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In summary, if e ∈ S(x) then x ∈ Pe whereas if e ∉ S(x) then x ∈ X \ Pe. Conse-
quently,

x ∈ [ ⋂
i∈S(x)

Pi] ∩ [ ⋂
j∈E\S(x)
(X \ Pj)] = BS(x). (4.39)

Next, we claim that BS(x) ⊆ T(BS). Indeed, since x ∈ T(BS), it follows from (4.38)
that for every i ∈ S, there exists ji ∈ E such that Aiji = 1 and x ∈ Pji . Since x ∈ BS(x)
by (4.39), we deduce that ji ∈ S(x) and Pji ⊇ BS(x). Hence,

⋂
i∈S

Pji ⊇ BS(x). (4.40)

Since Ŝc ⊆ E \ S(x) (by definition of S(x)), we have that

BS(x) ⊆ ⋂
j∈E\S(x)
(X \ Pj) ⊆ ⋂

j∈Ŝc
(X \ Pj).

In conjunction with (4.40), we therefore obtain that

BS(x) ⊆ [⋂
i∈S

Pji] ∩ [⋂
j∈Ŝc
(X \ Pj)].

Thus, according to (4.38),

BS(x) ⊆ T(BS),

proving the claim made. It follows immediately that

T(BS) = ⋃
x∈T(BS)

BS(x).

Keep in mind that, though the set T(BS) generally contains infinitely many points x,
the sets S(x) are all subsets of the finite set E and, therefore, there are only finitely
many different subsets S(x). Let S̃ ⊆ 𝒫(E) be the finite set consisting of all different
subsets S(x), x ∈ T(BS). Then

T(BS) = ⋃
Q∈S̃

BQ. (4.41)

Since Int(C) ⊆ C = C for any closed set C, we have

Int(RS) ⊆ RS .

On the other hand, as Int(Y) ⊆ Int(Int(Y)) for any set Y , we have

RS = Int(BS) ⊆ Int(Int(BS)) = Int(RS).

So, condition (a) of Definition 4.4.1 is satisfied.
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To verify condition (b), assume that S1, S2 are two nonempty subsets of E such
that S1 ̸= S2. Without loss of generality, say there exists e ∈ S1 \ S2. Then BS1 ⊆ Pe and
BS2 ⊆ X \ Pe ⊆ X \ Int(Pe). Hence, RS1 ⊆ BS1 ⊆ Pe, and thus

Int(RS1 ) ⊆ Int(Pe).

Also,

RS2 ⊆ BS2 ⊆ X \ Int(Pe) = X \ Int(Pe).

Therefore,

Int(RS1 ) ∩ RS2 = 0, (4.42)

which is more than enough to prove condition (b).
Aiming now to prove that condition (c) holds, we will first show that T(RS) =

⋃Q∈S̃ RQ. Using (4.41), the fact that T is a homeomorphism on B(aS , ξ ) ⊇ PaS ⊇ BS
and the fact that S̃ is a finite set, we obtain that

T(RS) = T(Int(BS)) = T(Int(BS))

= Int(T(BS)) = Int(T(BS)) = Int(⋃
Q∈S̃

BQ)

= Int(⋃
Q∈S̃

BQ) (4.43)

⊇ ⋃
Q∈S̃

Int(BQ) = ⋃
Q∈S̃

Int(BQ)

= ⋃
Q∈S̃

RQ. (4.44)

On the other hand, if x ∈ Int(⋃Q∈S̃ BQ), then for every open set G containing x, we
have H := G ∩ Int(⋃Q∈S̃ BQ) ̸= 0. This means that H is a nonempty open subset of
⋃Q∈S̃ BQ. Therefore, by virtue of the Baire category theorem, there exists Q ∈ S̃ such
that H ∩ Int(BQ) ̸= 0. Thus G ∩ Int(BQ) ̸= 0. Taking now the sets G to be open balls
centered at x with radii converging to zero and recalling that the set S̃ is finite, we
conclude that there exists Qx ∈ S̃ such that x ∈ Int(BQx

) = RQx
. Hence we have shown

that

Int(⋃
Q∈S̃

BQ) ⊆ ⋃
Q∈S̃

RQ.

Along with (4.43) and (4.44), this yields

T(RS) = ⋃
Q∈S̃

RQ. (4.45)
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So, if T(RS) ∩ Int(RZ) ̸= 0, there exists Q ⊆ S̃ such that RQ ∩ Int(RZ) ̸= 0, which, by
invoking (4.42), yields that Q = Z. Employing (4.45), this gives that

T(RS) ⊇ RZ .

This establishes condition (c′).
It only remains to demonstrate that ℛ is a cover of X. Indeed, {BS : S ⊆ E} is

obviously a cover of X. Hence, {BS : S ⊆ E} is also a cover of X. Thus, by the same
argument as the one above based on the Baire category theorem, we get that

⋃
S⊆E

RS = ⋃
S⊆E

Int(BS) = ⋃
S⊆E

Int(BS) = X.

Therefore,ℛ covers X and we are done.

4.5 Symbolic representation generated by a Markov partition

Let T : X → X be an open, distance expanding map of a compact metric space X
with constants λ and δ. Letℛ = {R1, . . . ,Rp} be a Markov partition with diam(ℛ) < δ.
This partition induces the alphabet E := {1, . . . , p} and an incidence/transition matrix
A : E × E → {0, 1} defined by

Aij := {
1 if T(Int(Ri)) ∩ Int(Rj) ̸= 0
0 otherwise.

(4.46)

Let σ : E∞A → E∞A be the subshift of finite type induced by A.

Lemma 4.5.1. If ω ∈ E∞A , then⋂∞n=0 T
−n(Rωn
) is a singleton.

Proof. For every i ∈ E, the restriction T|Ri : Ri → T(Ri) is injective since diam(Ri) < δ
(cf. Proposition 4.2.1). So the inverse map T−1i : T(Ri) → Ri is well-defined and is a
contraction with ratio λ−1. Note also that if Aij = 1 then T(Int(Ri)) ∩ Int(Rj) ̸= 0, and as
ℛ is a Markov partition, Rj ⊆ T(Ri). Then T−1(Rj) ∩ Ri ̸= 0. Consequently, for any set
B ⊆ Rj, we have

T−1(B) ∩ Ri = T
−1
i (B). (4.47)

Now, let ω ∈ E∞A . We claim that

n+1
⋂
k=0

T−k(Rωk
) = T−1ω0

∘ T−1ω1
∘ ⋅ ⋅ ⋅ ∘ T−1ωn

(Rωn+1 ), ∀n ≥ 0.
Weshall prove this claimby induction. For the casen = 0,wehave thatRω0

∩T−1(Rω1
) =

T−1ω0
(Rω1
) using (4.47). Suppose now that the claim holds for n = 0, . . . ,m. Using (4.47)

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.5 Symbolic representation generated by a Markov partition | 131

again, we obtain

(m+1)+1
⋂
k=0

T−k(Rωk
) = Rω0

∩
m+2
⋂
k=1

T−k(Rωk
)

= Rω0
∩ T−1(

m+1
⋂
j=0

T−j(Rωj+1 ))
= Rω0
∩ T−1(

m+1
⋂
j=0

T−j(R(σ(ω))j ))

= Rω0
∩ T−1(T−1(σ(ω))0 ∘ ⋅ ⋅ ⋅ ∘ T

−1
(σ(ω))m (R(σ(ω))m+1 ))

= Rω0
∩ T−1(T−1ω1

∘ ⋅ ⋅ ⋅ ∘ T−1ωm+1 (Rωm+2 ))
= T−1ω0
(T−1ω1
∘ ⋅ ⋅ ⋅ ∘ T−1ωm+1 (Rωm+2 ))

= T−1ω0
∘ T−1ω1
∘ ⋅ ⋅ ⋅ ∘ T−1ωm+1 (Rω(m+1)+1 ).

So the claim is proved. The claim also shows that (⋂n+1k=0 T
−k(Rωk
))∞n=0 is a descending

sequence of nonempty compact sets. Using the fact that each T−1i is contracting with
ratio λ−1, we obtain

diam(
n+1
⋂
k=0

T−k(Rωk
)) ≤ λ−(n+1) diam(Rωn+1 ) ≤ λ−(n+1)δ.

Since limn→∞ λ−(n+1)δ = 0, the set⋂
∞
n=0 T
−n(Rωn
) is a singleton.

Thanks to this lemma, the coding map π : E∞A → X, where π(ω) is defined to be
the singleton point in the set

∞

⋂
n=0

T−n(Rωn
), (4.48)

is well-defined.
Amongst other properties, we want to show that the codingmap is Hölder contin-

uous. Recall that on a compact metric space, a map is Hölder continuous if and only if
it is locally Hölder continuous. That is, for a map f : (Y , dY )→ (Z, dZ)with Y compact,
it is sufficient to show that there exist constants δ > 0 and C ≥ 0 such that for every
x, y ∈ Y with dY (x, y) < δ, we have that dZ(f (x), f (y)) ≤ C(dY (x, y))α.

Theorem 4.5.2. The codingmap π : (E∞A , ds)→ (X, d) satisfies the following properties:
(a) The map π is Hölder continuous.
(b) The map π is surjective.
(c) The restriction of π to π−1(X \ ⋃∞n=0 T

−n(⋃pi=1 𝜕Ri)) is injective. So every point of the
forward T-invariant, dense Gδ-set X \ ⋃

∞
n=0 T
−n(⋃pi=1 𝜕Ri) has a unique preimage

under π.
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(d) The map π makes the following diagram commutative:

E∞A
π
??

σ ?? E∞A
π
??

X
T
?? X

That is, π ∘ σ = T ∘ π.

In particular, π is a factor map between the symbolic system/representation σ : E∞A →
E∞A and the original dynamical system T : X → X.

Note that X \ ⋃∞n=0 T
−n(⋃pi=1 𝜕Ri) is the set of all points in X whose orbit un-

der T never encounters the boundary of the elements of the Markov partition ℛ =
{R1,R2, . . . ,Rp}.

Proof. In order to shorten the notation, in the following proof we write:

Z := X \
∞

⋃
n=0

T−n(
p
⋃
i=1
𝜕Ri).

(a)Wewill prove that π is (locally) Lipschitz continuouswith respect to themetric dλ−1 .
Recall that dλ−1 (ω, τ) = λ−|ω∧τ|. Choose ω, τ ∈ E∞A to be such that |ω ∧ τ| ≥ 1. Therefore,

π(ω) ∈
|ω∧τ|−1
⋂
n=0

T−n(Rωn
) =
|ω∧τ|−1
⋂
n=0

T−n(Rτn ) ∋ π(τ).

Thus,

d(π(ω),π(τ)) ≤ diam(
|ω∧τ|−1
⋂
n=0

T−n(Rωn
))

≤ λ−(|ω∧τ|−1) diam(Rω|ω∧τ| )
≤ λ−|ω∧τ| ⋅ λ diam(X) = (λ diam(X))dλ−1 (ω, τ).

So π is Lipschitz continuous (i. e., Hölder continuous with exponent α = 1) when E∞A
is endowed with the metric dλ−1 . Since the metrics ds, s ∈ (0, 1), are Hölder equiva-
lent (see Exercise 3.4.5), we deduce that π is Hölder continuous with respect to any
metric ds.

(b) We now show that π is surjective. For this, it suffices to show that Z ⊆ π(E∞A )
and that Z = X. This is because the map π : E∞A → X is continuous, E∞A is compact
and so π(E∞A ) is compact and thereby closed. We shall first demonstrate that Z is a
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dense Gδ-set in X. Notice that

Z =
∞

⋂
n=0
[X \ T−n(

p
⋃
i=1
𝜕Ri)] =

∞

⋂
n=0

T−n(X \
p
⋃
i=1
𝜕Ri) =

∞

⋂
n=0

T−n(
p
⋂
i=1
(X \ 𝜕Ri)).

Now, the boundary of any closed set is a closed, nowhere dense set (for a closed set,
“nowhere dense” amounts to saying that the set has empty interior). Thus the com-
plement of any boundary is an open, dense subset of the space. This means that the
sets X \ 𝜕Ri, 1 ≤ i ≤ p, are all open, dense subsets of X. Consequently, their finite inter-
section⋂pi=1(X \ 𝜕Ri) is an open, dense subset of X. As the preimage of an open, dense
set under a continuousmap is open and dense, we deduce that T−n(⋂pi=1(X \𝜕Ri)) is an
open, dense subset of X for every n ≥ 0. Hence, Z is a countable intersection of open
sets, that is, Z is a Gδ-set. Moreover, as Z is a countable intersection of open, dense
subsets of X (a completemetric space), it follows from the Baire category theorem that
Z is dense in X.

Second, let us show that Z ⊆ π(E∞A ). Let x ∈ Z. We shall find an A-admissible
word ρ = (ρn)∞n=0 such that π(ρ) = x. For each n ≥ 0, the letter ρn is selected among
those letters of the alphabet E in such a way that x ∈ T−n(Int(Rρn )). Thus

x ∈
∞

⋂
n=0

T−n(Int(Rρn )).

We show that ρ ∈ E∞A , that is, that Aρnρn+1 = 1 for each n ≥ 0. Indeed,
Aρnρn+1 = 1⇐⇒ T(Int(Rρn )) ∩ Int(Rρn+1 ) ̸= 0

⇐⇒ Int(Rρn ) ∩ T
−1(Int(Rρn+1 )) ̸= 0.

As x ∈ ⋂∞n=0 T
−n(Int(Rρn )), we know that

x ∈ T−n(Int(Rρn )) ∩ T
−(n+1)(Int(Rρn+1 ))

= T−n(Int(Rρn ) ∩ T
−1(Int(Rρn+1 )))

for each n ≥ 0. Then

Tn(x) ∈ Int(Rρn ) ∩ T
−1(Int(Rρn+1 ))

for all n ≥ 0. In particular, this intersection is nonempty. So Aρnρn+1 = 1 for all n ≥ 0,
and x = π(ρ) for some ρ ∈ E∞A .

(c) In the course of the proof of (b), we demonstrated that Z is a dense Gδ-set.
The fact that Z is forward T-invariant is obvious since this set consists of all points
in X whose orbit under T never encounters the boundary of the elements of the
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Markov partition. Thus T(Z) ⊆ Z. We now show that π−1(x) is a singleton for ev-
ery x ∈ Z. Suppose that ω, τ ∈ π−1(Z) are such that π(ω) = π(τ). As {π(ω)} =
⋂∞n=0 T

−n(Rωn
), we have that π(ω) ∈ T−n(Rωn

) for every n ≥ 0. On the other hand,
since π(ω) ∈ Z, we have π(ω) ∉ T−n(𝜕Rωn

) for every n ≥ 0. It therefore follows that
π(ω) ∈ T−n(Int(Rωn

)) for every n ≥ 0. Similarly, π(τ) ∈ T−n(Int(Rτn )) for every n ≥ 0.
Since π(ω) = π(τ) =: x, we deduce that Tn(x) ∈ Int(Rωn

) ∩ Int(Rτn ) for every n ≥ 0.
Condition (b) imposed on the Markov partition forces ωn = τn for each n ≥ 0, that is,
ω = τ.

(d) Finally, we show that the diagram in statement (d) does indeed commute. Let
ω ∈ E∞A . Then

T({π(ω)}) = T(
∞

⋂
n=0

T−n(Rωn
)) ⊆

∞

⋂
n=0

T−(n−1)(Rωn
)

= T(Rω0
) ∩
∞

⋂
n=1

T−(n−1)(R(σ(ω))n−1 )
⊆
∞

⋂
m=0

T−m(R(σ(ω))m ) = {π(σ(ω))}.

Since both the left- and the right-hand sides are singletons, equality follows, and
T(π(ω)) = π(σ(ω)) for all ω ∈ E∞A . That is, T ∘ π = π ∘ σ.

Example 4.5.3. Consider again the map Tm : 𝕊1 → 𝕊1, which is given by Tm(x) :=
mx (mod 1).Wehave seen in Example 4.4.4 that the family of closed intervals {[ im ,

i+1
m ] :

0 ≤ i < m} forms a Markov partition for Tm. One can then show that the coding map
generated by this partition is given, for every ω := (ωk)

∞
k=0 ∈ {0, . . . ,m − 1}

∞, by

π(ω) =
∞

∑
k=0

ωk
mk+1 .

In particular, ifm = 2, we obtain the binary coding of each point x ∈ 𝕊1.

To end this chapter, we express basic properties of Markov partitions in symbolic
terms and show that σ inherits some dynamical properties from T.

Lemma 4.5.4. Let ℛ = {R1,R2, . . . ,Rp} be a Markov partition for an open, distance ex-
panding dynamical system T : X → X. Let E = {1, 2, . . . , p}, A as in (4.46) and σ : E∞A →
E∞A be the symbolic representation of T induced byℛ. Let also n ∈ ℕ.
(a) For every i ∈ E, it holds that Tn(Ri) = ⋃j∈E :An

ij ̸=0
Rj.

(b) ℛ is a Markov partition for Tn.
(c) If T is topologically transitive, then so is σ.
(d) If T is topologically exact, then so is σ.
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(e) Let 𝜕ℛ := ⋃e∈E 𝜕Re. If T is a local homeomorphism on a neighborhood of each ele-
ment ofℛ, then the set 𝜕ℛ is forward T-invariant while the set π−1(X \ 𝜕ℛ) is back-
ward σ-invariant.

Proof.
(a) Fix i ∈ E. First, assume that n = 1. Recall that

Rℓ = Int(Rℓ), ∀ℓ ∈ E. (4.49)

Since T is continuous and X a compact metric space, it follows that

T(Rℓ) = T(Int(Rℓ)) = T(Int(Rℓ)), ∀ℓ ∈ E. (4.50)

If Aij ̸= 0, that is, if T(Int(Ri)) ∩ Int(Rj) ̸= 0, then T(Ri) ⊇ Rj since ℛ is a Markov
partition. Therefore, T(Ri) ⊇ ⋃j∈E:Aij ̸=0 Rj. If it turned out that T(Ri) ̸= ⋃j∈E:Aij ̸=0 Rj
then we would have T(Ri) ∩ [X \ ⋃j∈E:Aij ̸=0 Rj] ̸= 0. By (4.50) and the openness of
X \⋃j∈E:Aij ̸=0 Rj, this would imply that T(Int(Ri)) ∩ [X \⋃j∈E:Aij ̸=0 Rj] ̸= 0. Since X \
⋃j∈E:Aij ̸=0 Rj ⊆ ⋃k∈E:Aik=0 Rk, we would deduce that T(Int(Ri)) ∩ [⋃k∈E:Aik=0 Rk] ̸= 0.
By (4.49) and theopenness ofT(Int(Ri)), itwould ensue thatT(Int(Ri))∩Int(Rk̃) ̸= 0
for some k̃ such that Aik̃ = 0. But T(Int(Ri)) ∩ Int(Rk̃) ̸= 0means that Aik̃ = 1. This
contradiction imposes that

T(Ri) = ⋃
j∈E :Aij ̸=0

Rj.

This is the basic step in this proof by induction. For the inductive step, suppose
that the statement holds for some n ∈ ℕ, that is, Tn(Ri) = ⋃j∈E :An

ij ̸=0
Rj. Then

Tn+1(Ri) = T(T
n(Ri)) = T( ⋃

j∈E :An
ij ̸=0

Rj)

= ⋃
j∈E :An

ij ̸=0
T(Rj) = ⋃

j∈E :An
ij ̸=0
⋃

k∈E :Ajk ̸=0
Rk (4.51)

= ⋃
k∈E :An+1

ik ̸=0
Rk . (4.52)

(b) If Tn(Int(Ri)) ∩ Int(Rj) ̸= 0, then by (a) there is k ∈ E such that Anik ̸= 0 and Rk ∩
Int(Rj) ̸= 0. Since ℛ is a Markov partition, we infer that Rk = Rj, and thus k = j.
Therefore, Anij ̸= 0 and, by (a) again, we conclude that T

n(Ri) ⊇ Rj. Consequently,
ℛ is a Markov partition for Tn.

(c) Let i, j ∈ E. If T is topologically transitive, then there exists n ∈ ℕ such that
Tn(Int(Ri)) ∩ Int(Rj) ̸= 0. By (a) and (b), it follows that Anij ̸= 0. Since i, j ∈ E
are arbitrary, this means that the matrix A is irreducible, that is, the shift map σ
is transitive according to Theorem 3.2.14.
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(d) If T is topologically exact, then for every open subsetU of X there existsN(U) ∈ ℕ
such that TN(U)(U) = X. In particular, for every i ∈ E there is N(i) ∈ ℕ such that
TN(i)(Int(Ri)) = X. Let N = max{N(i) : i ∈ E}. Then TN (Int(Ri)) = X for all i ∈ E. So
TN (Int(Ri)) ∩ Int(Rj) ̸= 0 for all i, j ∈ E. By (a) and (b), it follows that ANij ̸= 0 for all
i, j ∈ E. This precisely means that AN > 0, and thus the matrix A is primitive, that
is, the shift map σ is topologically exact according to Theorem 3.2.16.

(e) For any i ∈ E, given that T is by hypothesis a local homeomorphism on a neigh-
borhood of Ri, it follows from (a) that

T(𝜕Ri) = 𝜕T(Ri) = 𝜕( ⋃
j∈E :Aij ̸=0

Rj) ⊆ ⋃
j∈E :Aij ̸=0

𝜕Rj.

Consequently,

T(𝜕ℛ) =⋃
i∈E

T(𝜕Ri) ⊆⋃
j∈E
𝜕Rj = 𝜕ℛ.

That is, the set 𝜕ℛ is forward T-invariant. According to Theorem 4.5.2, the coding
map π is a factor map between σ : E∞A → E∞A and T : X → X. By Remark 1.4.4, the
setπ−1(𝜕ℛ) is forwardσ-invariant. Thus its complementE∞A \π

−1(𝜕ℛ) = π−1(X\𝜕ℛ)
is backward σ-invariant.

4.6 Exercises

Exercise 4.6.1. Let S,T : X → X be two distance expandingmaps on a compact metric
space (X, d). Show that S ∘ T : X → X is a distance expanding map. Deduce from this
that every iterate Tn, n ∈ ℕ, of T is distance expanding.

Exercise 4.6.2. Suppose that T : X → X is a continuous map on a compact metric
space (X, d) whose nth iterate Tn is distance expanding with constant of expansion λ
and constant delimiting the neighborhoods of expansion δ. Prove that T is distance
expanding with the same constants λ and δ when X is endowed with the metric d′

defined by

d′(x, y) =
n−1
∑
k=0

1
λk

d(Tk(x),Tk(y)).

Show also that the metrics d and d′ are topologically equivalent. (Exercises 4.6.1
and 4.6.2 thus prove that T is distance expanding if and only if all its iterates are dis-
tance expanding. However, theymay be expanding distanceswith respect to different,
though topologically equivalent, metrics.)

Exercise 4.6.3. Inspiring yourself from the proof of Lemma 4.2.2, show that p > 0 in
the proof of Theorem 4.1.5.
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Exercise 4.6.4. Let (Xn)∞n=0 beadescending sequenceof compact sets in ametric space
(X, d). Let (δn)∞n=0 be a sequence of positive numbers that converges to 0. Show that

∞

⋂
n=0

Xn =
∞

⋂
n=0

B(Xn, δn).

Exercise 4.6.5. Find an open map T : X → X that admits a subsystem T|F : F → F
which is not open, where F is a closed forward T-invariant subset of X.

Exercise 4.6.6. Find an open, distance expanding dynamical system T : X → X de-
fined upon a disconnected, compact metric space X which does not have a dense set
of periodic points.

Exercise 4.6.7. Prove that the set of conditions (a), (b), and (c’) defines a Markov par-
tition.

Exercise 4.6.8. Let T be the shift map σ : E∞A → E∞A . Fix any n ∈ ℕ. Prove that the
n-cylinders {[ω]}ω∈EnA form a Markov partition for σ.

Exercise 4.6.9. Show that the preimage of an open, dense set under a continuousmap
is open and dense.

Exercise 4.6.10. Let X be a compact metric space and let δ > 0. Construct a finite
cover of X consisting of closed sets of diameters less than δ which intersect only in
their boundaries.

Exercise 4.6.11. Let X be an infinite compact metric space and T : X → X be a transi-
tive, open, distance expanding map. Show that T is not minimal.

Exercise 4.6.12. Let (X, d) be a compact metric space. Define a metric ρ on X × {0, 1}
by setting

ρ((x1, x2), (y1, y2)) := d(x1, y1) + |x2 − y2|.

Show that if T : X → X is a distance expanding map, then the map T̂ : X × {0, 1} →
X × {0, 1} given by the formula

T̂(x1, x2) := (T(x1), x2 +2 1)

is also distance expanding, where +2 : {0, 1}→ {0, 1} denotes addition modulo 2.

Exercise 4.6.13. For every n ∈ ℕ, show that a distance expanding map can have only
finitely many periodic points of period n.

Exercise 4.6.14. Let T : X → X be an open distance expanding map. Show that the
function x → #(T−1(x)) is locally constant.
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Exercise 4.6.15. Suppose that S,T : X → X are two arbitrary dynamical systems. De-
fine the distance between S and T by the formula

d∞(S,T) := sup{d(S(x),T(x)) : x ∈ X}.

Now suppose that S and T are both open distance expanding maps with the same
parameters δ, λ and ξ . Show that if d∞(S,T) < min{ξ , ξ (λ − 1)}, then S and T are topo-
logically conjugate (cf. the discussion on structural stability at the end of Section 1.2).
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5 (Positively) expansive maps

There are various concepts of expansion of a map which have aroused the interest
of a great many mathematicians. We have already encountered distance expanding
maps; in the present chapter we will introduce positively expansive maps. The study
of this class ofmaps goes back to the 1960s. Suchmaps are abundant. In particular, all
distance expanding maps are expansive, and so, more particularly, all subshifts over
a finite alphabet are expansive.

Amidst the large variety of dynamical behaviorswhich canbe thought of as expan-
sion in some sense, expansiveness has turned out to be a ratherweak but nevertheless
useful mathematical notion. It is a topological concept, in the sense that it is a topo-
logical conjugacy invariant. Expansive maps are important for many reasons. One of
them is that the entropy function is upper semi-continuous within this class. In par-
ticular, all expansive maps admit a measure of maximal entropy and, more generally,
have equilibrium states under all continuous potentials.

In Section 5.1, we introduce the concept of expansiveness. In Section 5.2, we de-
fine the notion of uniform expansiveness and prove that expansiveness and uniform
expansiveness are one and the same notion on compact metrizable spaces. In Sec-
tion 5.3, we demonstrate that every expansive system is in fact expandingwith respect
to somemetric compatible with the topology on the underlying space. This important
fact is due to Coven and Reddy [17] (cf. [18]). It signifies thatmany of the results proved
in Chapter 4, such as the existence of Markov partitions and of a nice symbolic repre-
sentation, the density of periodic points, the closing lemma, and shadowing, hold for
all positively expansive maps. Finally, in Section 5.4 we provide a class of examples
of expansive maps that are not expanding. They generate what are called parabolic
Cantor sets.

5.1 Expansiveness

The notion of expansiveness was introduced by Utz [73] in 1950 for homeomorphisms.
He used the term unstable homeomorphisms to describe these maps. Gottschalk and
Hedlund [25] later suggested the term expansive homeomorphisms, which has been
used ever since. Five years after Utz,Williams [78] investigated positive expansiveness
of maps. Among other early contributors are Bryant [14], Keynes and Robertson [37],
Sears [63], and Coven and Reddy [17].

Definition 5.1.1. A topological dynamical system T : (X, d)→ (X, d) is said to be (pos-
itively) expansive provided that there exists a constant δ > 0 such that for every x ̸= y
there is n = n(x, y) ≥ 0 with

d(Tn(x),Tn(y)) > δ.

https://doi.org/10.1515/9783110702682-005
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The constant δ is called an expansive constant for T, and T is then said to be δ-expan-
sive. Equivalently, T is δ-expansive if

sup
n≥0

d(Tn(x),Tn(y)) ≤ δ ⇒ x = y.

In other words, δ-expansivenessmeans that two forward T-orbits that remain for-
ever within a distance δ from each other originate from the same point, and are there-
fore only one orbit.

We now note some important and interesting properties of expansiveness.

Remark 5.1.2.
(a) If T is δ-expansive, then T is δ′-expansive for any 0 < δ′ < δ.
(b) The expansiveness of T is independent of topologically equivalent metrics, al-

though particular expansive constants generally depend on the metric chosen.
See Exercise 5.5.1.

(c) In light of (b), the concept of expansiveness can be defined solely in topological
terms, meaning without a reference to a metric. See Exercise 5.5.2.

(d) Unlike the expanding property examined in Chapter 4, expansiveness is a topo-
logical conjugacy invariant. See Exercise 5.5.3.

The expansiveness of a system can also be expressed in terms of the following
“dynamical” metrics. These metrics are sometimes called Bowen’s metrics, since
Bowen [10] used them extensively in defining topological entropy for noncompact
dynamical systems.

Definition 5.1.3. Let T : (X, d) → (X, d) be a dynamical system. For every n ∈ ℕ, let
dn : X × X → [0,∞) be the metric

dn(x, y) := max{d(T j(x),T j(y)) : 0 ≤ j < n}.

Although the notation does not make explicit the dependence on T, it is crucial
to remember that the metrics dn arise from the dynamics of the system T. It is in this
sense that they are dynamical metrics. The corresponding balls will be denoted by

Bn(x, ε) := {y ∈ X : dn(x, y) < ε}.

Observe that d1 = d and that for each x, y ∈ X we have dn(x, y) ≥ dm(x, y)whenever
n ≥ m. Moreover, it is worth noticing that the metrics dn, n ∈ ℕ, are topologically
equivalent. Indeed, given a sequence (xk)∞k=1 in X, the continuity of T ensures that

lim
k→∞

d(xk , y) = 0⇐⇒ lim
k→∞

d(T j(xk),T
j(y)) = 0, ∀0 ≤ j < n, ∀n ∈ ℕ

⇐⇒ lim
k→∞

dn(xk , y) = 0, ∀n ∈ ℕ.
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Furthermore, it is easy to see that a dynamical system T : (X, d) → (X, d) is
δ-expansive if and only if

sup
n∈ℕ

dn(x, y) ≤ δ ⇒ x = y.

Example 5.1.4. Every subshift of finite type σ : E∞A → E∞A is expansive, with any δ ∈
(0, 1) as an expansive constant. Indeed, note that if ω = ω1ω2ω3 . . . and τ = τ1τ2τ3 . . .
are any two distinct elements of E∞A , then there exists n ∈ ℕ such thatωn ̸= τn. Hence,

ds(σ
n−1(ω), σn−1(τ)) = s−|ωnωn+1 ...∧τnτn+1 ...| = s0 = 1 > δ.

This example is an instance of the fact that any distance expanding dynamical
system is expansive.

Proposition 5.1.5. Every distance expanding dynamical system is expansive.

Proof. Let T : X → X be a distance expanding dynamical system on a compact metric
space (X, d), and let δ and λ be constants determining neighborhoods of expansion
and magnitude of that expansion, respectively, per Definition 4.1.1. We will show that
any 0 < δ′ < 2δ is an expansive constant for T. Let x, y ∈ X be such that

sup
n≥0

d(Tn(x),Tn(y)) ≤ δ′. (5.1)

Then

d(Tn(x),Tn(y)) ≥ λ d(Tn−1(x),Tn−1(y)), ∀n ∈ ℕ.

By induction, it follows that

d(Tn(x),Tn(y)) ≥ λnd(x, y), ∀n ≥ 0.

Therefore,

0 ≤ d(x, y) ≤ lim sup
n→∞

λ−ndiam(X) = 0.

Hence d(x, y) = 0, that is, x = y. So T is δ′-expansive for all 0 < δ′ < 2δ.

5.2 Uniform expansiveness
In this section, we introduce a certain type of uniformity for expansiveness. In 1962,
Bryant [14] remarked on the uniformity in the expansiveness of compact dynamical
systems. This uniform expansiveness was formalized and studied by Sears [63] eleven
years later.

Definition 5.2.1. A topological dynamical system T : (X, d) → (X, d) is said to be
(positively) uniformly expansive if there exists δ > 0 with the property that for every
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0 < ζ < δ there is N = N(ζ ) ∈ ℕ such that

d(x, y) > ζ ⇒ dN (x, y) > δ.

The constant δ is called a uniformly expansive constant for T, and T is then said to be
uniformly δ-expansive.

It is easy to check that every uniformly δ-expansive system is δ-expansive (this is
left to the reader). It turns out that the converse is also true for systems that are defined
on a compact metric space.

Proposition 5.2.2. A topological dynamical system T : (X, d)→ (X, d) is δ-expansive if
and only if it is uniformly δ-expansive.

Proof. As mentioned above, it is straightforward to check that every uniformly δ-ex-
pansive system is δ-expansive. To prove the converse, suppose byway of contradiction
that T : (X, d)→ (X, d) is a δ-expansive system that is not uniformly δ-expansive. Then
there exist 0 < δ′ < δ and sequences (xn)∞n=0 and (yn)

∞
n=0 in X such that d(xn, yn) > δ′

but dn(xn, yn) ≤ δ for all n ≥ 0. Since X is compact, we may assume (by passing to
subsequences if necessary) that the sequences (xn)∞n=0 and (yn)

∞
n=0 converge to, say, x

and y, respectively. On one hand, this implies that

d(x, y) = lim
n→∞

d(xn, yn) ≥ δ
′ > 0,

and hence x ̸= y. On the other hand, if we fix momentarily N ∈ ℕ, for all n ≥ N, we
have that

dN (xn, yn) ≤ dn(xn, yn) ≤ δ.

Therefore,

dN (x, y) = lim
n→∞

dN (xn, yn) ≤ δ.

Since dN (x, y) ≤ δ for every N ∈ ℕ, the δ-expansiveness of the system implies that
x = y. This is, of course, in contradiction with our previous deduction that x ̸= y.
Thus, T is uniformly δ-expansive.

Remark 5.2.3. Note that expansiveness and uniform expansiveness are distinct con-
cepts in the realm of noncompact dynamical systems (see [63]).

Finally, we record the following observation, which is interesting on its own but
will also be used in Section 9.6 on Brin–Katok’s local entropy formula.

Observation 5.2.4. Let T : X → X be an expansive topological dynamical system and
let d be a metric compatible with the topology on X. If δ > 0 is an expansive constant
for T corresponding to this metric, then for every x ∈ X, every ζ ∈ (0, δ] and every
integer n > N(ζ ), note that

Bn(x, δ) ⊆ Bn−N(ζ /2)(x, ζ ).
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Proof. Let y ∈ X \ Bn−N(ζ /2)(x, ζ ). Then there exists a least integer 0 ≤ k < n − N(ζ /2)
such that Tk(y) ∉ B(Tk(x), ζ ). Thismeans that d(Tk(y),Tk(x)) ≥ ζ > ζ /2. It follows from
Definition 5.2.1 that dN(ζ /2)(Tk(y),Tk(x)) > δ. Thus dk+N(ζ /2)(y, x) > δ. Hence,

y ∉ Bk+N(ζ /2)(x, δ) ⊇ Bn−N(ζ /2)+N(ζ /2)(x, δ) = Bn(x, δ).

So y ∈ X \ Bn(x, δ). That is, X \ Bn−N(ζ /2)(x, ζ ) ⊆ X \ Bn(x, δ).

5.3 Expansive maps are expanding with respect to an equivalent
metric

The aim in this section is to provide a partial converse to Proposition 5.1.5, where it
was shown that every distance expanding map is expansive.

Theorem 5.3.1. If a topological dynamical system T : X → X is expansive, then there
exists a metric, compatible with the topology of X, with respect to which T is distance
expanding.

The original proof that an expansive map defined upon a compact metric space
is expanding with respect to a topologically equivalent metric is due to Coven and
Reddy [17]. The proof we now present differs slightly by using uniform expansiveness.
Like that of Coven and Reddy, the proof relies on a topological lemma, which we state
here without proof (cf. [23]).

Frink’s Metrization Lemma. Let X be a metrizable space and let (Un)
∞
n=0 be a sequence

of open neighborhoods of the diagonal△ := {(x, x) : x ∈ X} of X ×X having the following
three properties:
(a) U0 = X × X.
(b) ⋂∞n=0 Un = △.
(c) Un ∘ Un ∘ Un ⊆ Un−1 for every n ∈ ℕ, where

R ∘ S := {(x, y) ∈ X × X : ∃z ∈ X with (x, z) ∈ R and (z, y) ∈ S}.

Then there exists a metric ρ, compatible with the topology of X, such that

Un ⊆ {(x, y) ∈ X × X : ρ(x, y) < 2
−n} ⊆ Un−1

for every n ∈ ℕ.

Proof of Theorem 5.3.1. Weshall construct a family of sets that satisfies the hypotheses
of Frink’s lemma, and then show that some iterate of T is expanding with respect to
Frink’s metric.

Since T is expansive, Proposition 5.2.2 implies that it is uniformly expansive. Let
3θ > 0 be a uniformly expansive constant for T with respect to a metric d compatible
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with the topology of X. For all n ≥ 0 and all ε > 0, let

Vn(ε) := {(x, y) ∈ X × X : dn(x, y) < ε}.

Each set Vn(ε) is an open neighborhood of the diagonal △ in X × X. The set Vn(ε) is
the collection of all couples of points whose forward orbits stay within a distance ε
from each other up to and including time n − 1. Let M ≥ 0 be such that dM(x, y) > 3θ
whenever d(x, y) > θ/2 (cf. Definition 5.2.1). Then no couple (x, y) such that d(x, y) ≥ θ
belongs to VM(3θ). Hence,

VM(3θ) ⊆ {(x, y) ∈ X × X : d(x, y) < θ} = V0(θ). (5.2)

Now, let U0 = X × X and define

Un := VMn(θ) = {(x, y) ∈ X × X : dMn(x, y) < θ}

for each n ∈ ℕ. We shall show that the sets (Un)
∞
n=0 satisfy the three conditions of

Frink’s lemma. The first condition is satisfied by definition of U0. Regarding the sec-
ond condition, it is clear that △ ⊆ ⋂∞n=0 Un because △ ⊆ Un for each n ≥ 0. For the
opposite inclusion, let (x, y) ∈ ⋂∞n=0 Un. Then (x, y) ∈ Un := VMn(θ) for all n ∈ ℕ.
Hence, dMn(x, y) < θ for all n ∈ ℕ, or, in other words, d(T j(x),T j(y)) < θ for all j ≥ 0.
As θ is an expansive constant for T, we deduce that x = y. So⋂∞n=0 Un ⊆ △. Since both
inclusions hold, we conclude that

∞
⋂
n=0

Un = △.

It only remains to show that the third condition is satisfied, namely that

Un ∘ Un ∘ Un ⊆ Un−1, ∀n ∈ ℕ.

For this, fix n ∈ ℕ and let (x, y) ∈ Un ∘ Un ∘ Un. Then there exist points u, v ∈ X such
that (x, u), (u, v), (v, y) ∈ Un. Therefore, by the triangle inequality, dMn(x, y) < 3θ. This
means that

dM(T
j(x),T j(y)) < 3θ

for all 0 ≤ j ≤ M(n − 1). Thus, (T j(x),T j(y)) ∈ VM(3θ) ⊆ V0(θ) for all 0 ≤ j ≤ M(n − 1),
by (5.2). Hence, (x, y) ∈ VM(n−1)(θ) = Un−1, and we have proved that Un ∘ Un ∘ Un ⊆ Un−1
for anyn ∈ ℕ. To summarize, the family (Un)

∞
n=0 satisfies all threehypotheses of Frink’s

lemma.
Therefore, we can now apply Frink’s lemma to obtain a metric ρ, compatible with

the topology of X, such that

Un ⊆ {(x, y) ∈ X × X : ρ(x, y) < 2
−n} ⊆ Un−1

for all n ∈ ℕ.
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Wenow show that T3M : X → X is distance expandingwith respect to themetric ρ.
To this end, choose x ̸= y such that ρ(x, y) < 2−4. Then there exists a unique n ≥ 0
such that (x, y) ∈ Un\Un+1, because (Un)

∞
n=0 is a descending sequence of sets such that

⋂∞n=0 Un = △ and because U0 = X × X. By Frink’s lemma, since ρ(x, y) < 2−4, we have
that (x, y) ∈ U3. So n ≥ 3.

On one hand, since (x, y) belongs to Un, we have that

ρ(x, y) < 2−n.

On the other hand, given that (x, y) ∈ Un\Un+1 := VMn(θ)\VM(n+1)(θ), there exists
Mn ≤ j < M(n + 1) such that d(T j(x),T j(y)) ≥ θ. Write j in the form j = i + 3M. Then we
have that 0 ≤ M(n − 3) ≤ i < M(n − 2) and

d(T i(T3M(x)),T i(T3M(y))) ≥ θ.

From this, we obtain that

(T3M(x),T3M(y)) ∉ VM(n−2) = Un−2 ⊇ {(x, y) ∈ X × X : ρ(x, y) < 2
−(n−1)}.

Then it follows that whenever ρ(x, y) < 2−4,

ρ(T3M(x),T3M(y)) ≥ 2−(n−1) = 2 ⋅ 2−n ≥ 2ρ(x, y).

Hence, T3M is expanding with respect to Frink’s metric. It follows from Exercise 4.6.2
that themapT is expandingwith respect to ametric topologically equivalent to Frink’s
metric, which is in turn topologically equivalent to the original metric d.

We nowdraw some important conclusions from the fact that an expansive dynam-
ical system is expandingwith respect to a topologically equivalentmetric. Namely, we
can infer the existence of Markov partitions and of a symbolic representation.

Corollary 5.3.2. Every open, expansive dynamical system T : X → X admits Markov
partitions of arbitrarily small diameters.

Proof. This follows immediately from Theorems 5.3.1 and 4.4.6.

Corollary 5.3.3. Every open, expansive dynamical system T : X → X admits a symbolic
representation. More precisely, every open, expansive system is a factor of a subshift of
finite type σ : E∞A → E∞A with a coding map π : E∞A → X such that every point in a
forward T-invariant dense Gδ-subset of X admits a unique symbolic representation.

Proof. This follows from Theorems 5.3.1 and 4.5.2.

Yet another repercussion of the fact that an expansive dynamical system is ex-
panding with respect to a topologically equivalent metric is the following.

Corollary 5.3.4. Every open, expansive, and transitive dynamical system T : X → X is
very strongly transitive.

Proof. This is a direct consequence of Theorems 5.3.1 and 4.2.10.
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5.4 Parabolic Cantor sets

In this section, we describe a family of C1 maps defined on topological Cantor sub-
spaces of ℝ, that are expansive but not distance expanding with respect to the stan-
dard Euclidean metric on ℝ. Of course, bearing in mind what we have just proved in
the previous section, for each of these maps there exists a metric, compatible with the
Euclidean topology on ℝ, with respect to which the map is distance expanding.

Let I := [0, 1]. Let E be a finite set, say E = {0, 1, . . . , k − 1}, and let φe : I → I, e ∈ E,
be C1 maps with the following properties:
(I1) φ′0(0) = 1.
(I2) 0 < φ′0(x) < 1 for all x ∈ I \ {0}.
(I3) 0 < |φ′e(x)| < 1 for all x ∈ I and e ∈ E \ {0}.
(II) φ0(0) = 0.
(III) φe(I) ∩ φf (I) = 0 for all e ̸= f .

This setting is reminiscent of hyperbolic Cantor sets in Subsection 4.1.2, with X0 = I.
Indeed, conditions (I1)–(I3) concern the derivative of the generators and are the coun-
terparts for parabolic Cantor sets of condition (i) for hyperbolic Cantor sets. In partic-
ular, they imply that the generators are invertible functions on I, so each generator
is either strictly increasing or strictly decreasing. Condition (III) is identical to condi-
tion (iii). Condition (ii) is automatically fulfilled.

Conditions (I1) and (II) are the reason for calling the limit set X a parabolic Cantor
set, as opposed to an hyperbolic one. These conditions ensure that the derivative of
one of the generators is equal to 1 at a fixed point.

Under these conditions, the limit set X is constructed through the same proce-
dure as for hyperbolic Cantor sets (see (4.8) and (4.6)). The neighborhood U can be
constructed in precisely the same way as for hyperbolic Cantor sets (see (4.12)), pro-
vided that we first extend and replace the generators with C1 diffeomorphisms ofℝ as
follows:

φ0(x) =
{{{{
{{{{
{

−φ0(1) + φ′0(1) ⋅ (x + 1) if x ≤ −1
−φ0(−x) if x ∈ −I
φ0(x) if x ∈ I
φ0(1) + φ′0(1) ⋅ (x − 1) if x ≥ 1,

whereas, for all e ∈ E \ {0},

φe(x) =
{{
{{
{

φe(0) + φ′e(0) ⋅ x if x ≤ 0
φe(x) if x ∈ I
φe(1) + φ′e(1) ⋅ (x − 1) if x ≥ 1.

The map T : U → ℝ is then defined in exactly the same manner as for hyperbolic
Cantor sets (see (4.13)).
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All definitions, relations, and proofs for hyperbolic Cantor sets which do not
involve the constant M hold for parabolic Cantor sets. Observe that (φ−1e )

′(φe(x)) =
1/φ′e(x) for all x ∈ I and e ∈ E. Condition (I1) implies that T′(0) = 1. The triple (X,U ,T)
is not an expanding repeller for parabolic Cantor sets since it does not satisfy con-
dition (b) of the definition of a repeller (cf. Definition 4.1.4 and (4.16)). Condition (II)
implies that the point 0 lies in the limit set X and prevents any iterate of T of being an
expanding repeller. However, conditions (a) and (c) of a repeller are satisfied.

Now, define

λ := min
e∈E\{0}

min
x∈φe(I)
T
′(x) =

1
M
> 1, where M := max

e∈E\{0}
max
x∈I
φ
′
e(x)
.

Theorem 5.4.1. The map T : X → X is expansive.

Proof. Consider x ∈ φ0(I) \ {0}. By the mean value theorem, there exists y ∈ Int(φ0(I))
such that

T(x)
x
=
T(x) − T(0)

x − 0
= T′(y) > 1. (5.3)

Therefore, T(x) > x for all x ∈ φ0(I) \ {0} and the map T|φ0(I) : φ0(I) → I has no fixed
point other than 0. Let δ > 0 be the length of the smallest gap between all φe(I)’s. We
claim that any 0 < δ < δ is an expansive constant for T : X → X. So suppose that there
exist points z,w ∈ X such that

T
n(z) − Tn(w) ≤ δ, ∀n ≥ 0.

Let△ be the closed interval joining z andw. Then for every n ≥ 0, there exists a unique
e ∈ E such that Tn(△) ⊆ φe(I). It follows from the fact that T′(x) > 1 for all x ∈ U \ {0}
and from the definition of λ that for all n ≥ 0,

T
n+1(△) >

T
n(△) whenever Tn(△) ⊆ φ0(I) (5.4)

and

T
n+1(△) ≥ λ

T
n(△) whenever Tn(△) ⊆ φe(I) for some e ∈ E \ {0}. (5.5)

Since λ > 1 and |Tn(△)| ≤ 1 for all n ≥ 0, relation (5.5) can only hold for finitely many
n. That is, there exists N ≥ 0 such that for all n ≥ 0,

Tn+N (△) = Tn(TN (△)) ⊆ φ0(I).

Fix x ∈ TN (△). If x ̸= 0, then Tn(x) ∈ φ0(I) \ {0} for all n ≥ 0. It follows from (5.3) that
the sequence of iterates (Tn(x))∞n=0 is (strictly) increasing. Thus, it has a limit point
which, according to Lemma 1.1.4, is a fixed point for T. This contradicts the fact that
T|φ0(I) : φ0(I) → I has no fixed point but 0. Therefore, TN (△) = {0}. Hence, △ = {0}
and z = w(= 0).
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Since T is expansive on the limit set X, according to Theorem 5.3.1 there exists a
metric, compatible with the topology of X, with respect to which T is distance expand-
ing on the limit set X. However, that metric is not the usual Euclidean metric.

Proposition 5.4.2. The map T : X → X is not expanding with respect to the Euclidean
metric.

Proof. Let ε > 0. Since T is a C1 map and T′(0) = 1, there exists η > 0 such that
T′(x) < 1+ ε for all x ∈ [0, η). Fix y ∈ X ∩ (0, η). It follows from the mean value theorem
that for some z ∈ (0, y),

|T(y) − T(0)|
|y − 0|

= T′(z) < 1 + ε.

Therefore, T is not expanding with respect to the metric d(x, y) = |x − y|.

5.5 Exercises

Exercise 5.5.1. Prove that the expansiveness ofT : X → X is independent of themetric
on X (though expansive constants generally depend on the metric chosen). That is,
show that, given two metrics d and d′, which generate the topology of the compact
metrizable space X, the map T is expansive when X is equipped with the metric d if
and only if T is expansive when X is endowed with the metric d′.

Exercise 5.5.2. A dynamical system T : X → X on a topological space X is said to be
expansive if there exists a base ℬ for the topology such that for every x ̸= y there is
n = n(x, y) ≥ 0 with

{Tn(x),Tn(y)} ̸⊆ U , ∀U ∈ ℬ.

Note that if X is second-countable, then expansiveness is equivalent to the existence
of a countable base with the above property. Show that this definition is equivalent to
Definition 5.1.1 when X is a compact metrizable space.

Exercise 5.5.3. Prove that expansiveness is a topological conjugacy invariant.

Exercise 5.5.4. Prove that the metrics dn, n ∈ ℕ, given in Definition 5.1.3 induce the
same topology.

Exercise 5.5.5. Let T : (X, d) → (X, d) be a dynamical system. For every n ≥ 0, let
d∞ : X × X → [0,∞) be the function

d∞(x, y) := sup
0≤j<∞

d(T j(x),T j(y)) = sup
n∈ℕ

dn(x, y).

Show that d∞ defines a metric on X. Prove that if T is expansive on X then d∞ gen-
erates the discrete topology on X. In particular, if X has infinite cardinality and T is
expansive, then d∞ is not topologically equivalent to any dn, n ∈ ℕ.
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Exercise 5.5.6. Let T : X → X be a topological dynamical system. Prove that the fol-
lowing conditions are equivalent:
(a) T is expansive.
(b) Tn is expansive for some n ∈ ℕ.
(c) Tn is expansive for all n ∈ ℕ.

Exercise 5.5.7. Show that the Cartesian product of finitelymany expansive dynamical
systems is an expansive system.

Exercise 5.5.8. Find two expansive maps on the same compact metric space whose
composition is not expansive.

Exercise 5.5.9. Recall that the unit circle 𝕊1 is homeomorphic to the closed interval
[0, 1]when0 and 1 are identified. Define themap T : 𝕊1 → 𝕊1 by the following formula:

T(x) = { x + 2x2 if 0 ≤ x ≤ 1/2
2x − 1 if 1/2 ≤ x ≤ 1.

Show that T is not distance expanding with respect to the linear Euclidean metric
on 𝕊1, but that T is an expansive map. Recall that the linear Euclidean metric on 𝕊1 is
given by

d(x, y) = min{|x − y|, |1 + x − y|, |1 + y − x|}.

Exercise 5.5.10. Suppose that for all n ∈ ℕ, themap Tn : Xn → Xn is a continuousmap
of a compact metric space Xn. Let X be the one-point (Alexandroff) compactification
of the disjoint union of all spaces Xn, n ∈ ℕ. Denote the added point by ω. Define the
map T : X → X by the formula

T(x) = { Tn(x) if x ∈ Xn
ω if x = ω.

Show that T is never expansive.
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6 Shub expanding endomorphisms
In Section 6.2 of this chapter, we give a systematic account of Shub expanding endo-
morphisms. These maps are far-reaching generalizations of the expanding endomor-
phisms of the circle which we first introduce in Section 6.1. They constitute a large
subclass of distance expanding maps. Their origins lie in the seminal papers of Ep-
stein and Shub [22], Shub [66], and Krzyżewski and Szlenk [42]. Our exposition stems
from the chapter on expanding endomorphisms in Szlenk’s book [71].

Basic knowledge of algebraic geometry/topology is assumed. The first chapter of
the book by Hatcher [28] is an engaging source for the reader unfamiliar with notions
such as lift, deck transformation, homotopy, and the fundamental group of a topo-
logical space, notions which will be used throughout this chapter, especially in our
digression into algebraic topology in Section 6.3.

Finally, in Section 6.4 we establish that Shub’s expanding endomorphisms are
structurally stable, form an open set in an appropriate topology of smooth maps, are
topologically exact (and hence transitive), have at least one fixed point as well as a
dense set of periodic points, and their universal covering space is diffeomorphic toℝn.

6.1 Shub expanding endomorphisms of the circle

In this section, we study a special class of maps of the unit circle, the Shub expanding
endomorphisms of 𝕊1.

Let γ : 𝕊1 → (0,∞) be a C1 function on 𝕊1 (recall that this means that the first
derivative of γ exists and is continuous). The function γ induces the Riemannianmet-
ric ργ = γ|dx| on 𝕊1. If △ is an arc of 𝕊1 and φ : △ → 𝕊1 is a C1 curve on 𝕊1, then the
length ℓγ(φ) of φ is defined to be

ℓγ(φ) := ∫
△

|φ′(x)|γ(x) dx. (6.1)

The Riemannian metric ργ induces a distance (which, in somewhat of an abuse of
notation, we will also denote by ργ) on 𝕊1 as follows. Let a, b ∈ 𝕊1, and let△1 and△2
be the two arcs of 𝕊1 joining a and b. Let Id△i : △i → △i, i = 1, 2, be the identity curves
on these respective arcs. We define

ργ(a, b) := min
i=1,2
ℓγ(Id△i ) = min

i=1,2
∫
△i

γ(x) dx.

If v ∈ Tx𝕊1, that is, if v is a vector inℝ2 tangent to 𝕊1 at the point x ∈ 𝕊1, then the norm
of v relative to the metric ργ is given by

‖v‖γ := γ(x)‖v‖,

https://doi.org/10.1515/9783110702682-006
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where ‖ ⋅ ‖ is the standard Euclidean norm in ℝ2. We can thus rewrite (6.1) as

ℓγ(φ) := ∫
△

‖φ′(x)‖γ dx.

If T : 𝕊1 → 𝕊1 is a differentiable map, then for every x ∈ 𝕊1 the derivative map T′(x)
sends Tx𝕊1 into TT(x)𝕊1 and

‖T′(x)(v)‖ = ‖T′(x)‖ ⋅ ‖v‖, ∀v ∈ Tx𝕊
1.

Hence,

‖T′(x)(v)‖γ = γ(T(x))‖T
′(x)(v)‖ = γ(T(x))‖T′(x)‖ ⋅ ‖v‖

=
γ(T(x))
γ(x)
‖T′(x)‖ ⋅ ‖v‖γ.

We naturally set

‖T′(x)‖γ :=
‖T′(x)(v)‖γ
‖v‖γ

=
γ(T(x))
γ(x)
‖T′(x)‖ (6.2)

and call this quantity the norm of T′(x) with respect to the metric ργ. We call a C1 en-
domorphism T : 𝕊1 → 𝕊1 Shub expanding with respect to the metric ργ if there exists
some λ > 1 such that

‖T′(x)(v)‖γ ≥ λ‖v‖γ, ∀v ∈ Tx𝕊
1, ∀x ∈ 𝕊1.

Equivalently, T : 𝕊1 → 𝕊1 is Shub expanding if

‖T′(x)‖γ ≥ λ, ∀x ∈ 𝕊
1. (6.3)

Example 6.1.1. For every integer |k| ≥ 2, the map Ek : 𝕊1 → 𝕊1 defined by Ek(x) :=
kx (mod 1) is Shub expanding with respect to the standard Riemannian metric (that
is, when γ ≡ 1). Indeed, ‖E′k(x)‖ = |k| ≥ 2 for every x ∈ 𝕊

1.

We now show that each Shub expandingmap of the circle is, up to a C1 conjugacy,
Shub expanding with respect to the standard Euclidean metric on 𝕊1. Indeed, in light
of (6.2), wemaymultiplyγ by a constant factor without changing ‖T′(x)‖γ and in such
a way that

∫

𝕊1

γ(x) dx = 1.

We say that such a Riemannian metric is normalized. Then the map H : 𝕊1 → 𝕊1 given
by the formula

H(x) =
x

∫
0

γ(t) dt
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defines a C1 diffeomorphism of 𝕊1 such that

H′(x) = γ(x), ∀x ∈ 𝕊1. (6.4)

We define the C1 endomorphism

T := H ∘ T ∘ H−1 : 𝕊1 → 𝕊1. (6.5)

We then obtain the following important result.

Theorem 6.1.2. Each Shub expanding map T : 𝕊1 → 𝕊1 of the unit circle is C1 conjugate
to the map T : 𝕊1 → 𝕊1, which is Shub expanding with respect to the standard Euclidean
metric on 𝕊1.

Proof. Suppose that T : 𝕊1 → 𝕊1 is a Shub expanding map. As argued above, we may
assume without loss of generality that the corresponding function γ : 𝕊1 → (0,∞) is
normalized. Let T : 𝕊1 → 𝕊1 be given by (6.5). Using the chain rule, (6.4) and (6.3), we
obtain that

‖T ′(x)‖ = H′(T(H−1(x))) ⋅ T
′(H−1(x)) ⋅ (H

−1)
′
(x)

= γ(T(H−1(x)))T
′(H−1(x))(H

′(H−1(x)))−1

= γ(T(H−1(x)))T
′(H−1(x))(γ(H

−1(x)))−1

= T
′(H−1(x))γ ≥ λ > 1.

Thus, T is Shub expanding with respect to the standard Euclidean metric on 𝕊1.

Our goal now is to prove a structure theorem for Shub expandingmaps of the unit
circle and to demonstrate the structural stability of the maps Ek, |k| ≥ 2, from Exam-
ple 6.1.1 (see Section 1.2 for more on structural stability). Before stating that theorem,
let us add one more piece of notation. Given k ∈ ℤ, let ℰk(𝕊1) be the space of all Shub
expanding endomorphisms of 𝕊1 with degree equal to k. For a review of the notions of
lift and degree of a circle map, see Section 2.1.

Theorem 6.1.3. Every Shub expanding map T ∈ ℰk(𝕊1), where |k| ≥ 2, is topologically
conjugate to the map Ek : 𝕊1 → 𝕊1. In addition, the map Ek : 𝕊1 → 𝕊1 is strongly
structurally stable when the space ℰk(𝕊1) is endowed with the topology of uniform con-
vergence.

Proof. In light of Theorem 6.1.2, we may assume without loss of generality that T is
Shub expanding with respect to the standard Euclidean metric.

The following classical argument is essentially the proof of Theorem 2.4.6 in [33].
We give the proof for any positive k and mention afterwards the modifications neces-
sary for a negative k. Consider the arcs

△mn = π([
m
kn
,
m + 1
kn
])
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for all n ∈ ℤ+ and 0 ≤ m < kn, where ℝ ∋ x → π(x) = x(mod 1) ∈ 𝕊1. For each n ∈ ℤ+,
the family

ξn = {△
0
n , . . . ,△

kn−1
n }

is the “partition” of 𝕊1 into the kn arcs whose endpoints are consecutive rational num-
bers with denominator kn. These arcs are such that

Ek(△
m
n ) = △

m′
n−1, (6.6)

wherem′ is the unique integer between 0 and kn−1 − 1 such thatm′ = m (mod kn−1).
We now construct a nested sequence of “partitions”

ζn = {π(Γ
0
n), . . . ,π(Γ

kn−1
n )}

of 𝕊1 into arcs which will be in a natural, order-preserving correspondence with the
standard sequence ξn. Let p be a fixed point for a lift T̃ of T as in Lemma 2.1.14. If T
is close to Ek, pick p close to 0. Since T̃(p) = p and T is of degree k, we know that
T̃(p + 1) = p + k. Moreover, since T is locally injective, its lift T̃ is a strictly monotone
continuous function. Then there are unique real numbers

p = a01 < a
1
1 < a

2
1 < ⋅ ⋅ ⋅ < a

k−1
1 < a

k
1 = p + 1

such that T̃(am1 ) = p + m for each 0 ≤ m ≤ k. Let Γm1 = [a
m
1 , a

m+1
1 ] for every 0 ≤ m < k.

Then

T(π(Γm1 )) = π ∘ T̃([a
m
1 , a

m+1
1 ]) = π([p +m, p +m + 1]) = 𝕊

1,

and T is injective on the arc π(Γm1 ) up to identification of the endpoints of Γm1 . If T is
close to Ek, then clearly each number am1 is close tom/k.

Furthermore, since T̃(am1 ) = p+m and T̃(am+11 ) = p+m+ 1, and since T̃ is a strictly
monotone continuous function, there are unique real numbers

am1 = a
km
2 < a

km+1
2 < ⋅ ⋅ ⋅ < a

km+k−1
2 < ak(m+1)2 = am+11

such that T̃(akm+i2 ) = a
i
1 (mod 1) for 0 ≤ i ≤ k. Again, akm+i2 is close to (km + i)/k2 if T is

close to Ek . Let Γm2 = [a
m
2 , a

m+1
2 ] for 0 ≤ m < k

2, so that T(π(Γm2 )) = π ∘ T̃([a
m
2 , a

m+1
2 ]) =

π([am
′

1 , a
m′+1
1 ]) = π(Γ

m′
1 ), wherem

′ is the unique integer between 0 and k − 1 such that
m′ = m (mod k).

We continue inductively and for eachn ∈ ℕwedefinepointsakm+in for 0 ≤ m < kn−1

and 0 ≤ i ≤ k such that

amn−1 = a
km
n < a

km+1
n < ⋅ ⋅ ⋅ < a

km+k−1
n < ak(m+1)n = am+1n−1
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and

T̃(akm+in ) = a
m′
n−1 (mod 1), (6.7)

where 0 ≤ m′ < kn−1 and m′ = km + i (mod kn−1). Let Γmn = [a
m
n , a

m+1
n ] for 0 ≤ m < k

n.
Then T(π(Γmn )) = π(Γ

m′
n−1), where 0 ≤ m

′ < kn−1 and m = m′ (mod kn−1). By induction,
Tn(π(Γmn )) = 𝕊

1 and Tn is injective on π(Γmn ) up to identification of the endpoints of Γ
m
n .

So far, we have only used the facts that T is locally injective (and thus its lift T̃ is
strictly monotone) and that T has degree k. If T is Shub expanding, that is, if ‖T′(x)‖ ≥
λ > 1 for all x ∈ 𝕊1, then the length of each arc π(Γmn ) does not exceed λ

−n, so the set
of points {π(amn )}n∈ℕ,0≤m<kn is dense in 𝕊

1 while {amn }n∈ℕ,0≤m<kn is dense in the interval
[p, p+ 1]. This is the only place in the proof where the fact that T is an expanding map
is used. (In fact, the use of differentiability could be easily avoided.)

Furthermore, for any N ∈ ℕ and ε > 0 one can find δ > 0 such that if T is δ-close
to Ek in the uniform topology, then

a
m
n −

m
kn
 <

ε
3
, ∀1 ≤ n ≤ N , ∀0 ≤ m < kn. (6.8)

We define a correspondence h between the set {amn }n∈ℕ,0≤m<kn and all k-ary rationals,
that is, the rational numbers whose denominators are powers of k, by setting

h(amn ) =
m
kn
.

This correspondence is monotone and since the set {amn }n∈ℕ,0≤m<kn is dense in the in-
terval [p, p+1], it can be uniquely extended to a homeomorphism h : [p, p+1]→ [0, 1].
Since h(Γmn ) = △

m
n for all n ∈ ℕ and 0 ≤ m < kn, relations (6.6) and (6.7) imply that T

is topologically conjugate to Ek via h, that is,

Ek ∘ h = h ∘ T . (6.9)

Assuming under the conditions of (6.8) that N and ε are chosen such that 1/kN < ε/3,
one sees in addition that |amn − h(a

m
n )| < ε for n ∈ ℕ and 0 ≤ m < kn, and hence

|h(x) − x| < ε for all x, that is, h ∈ Bρ∞ (Id𝕊1 , ε). Recall also that if T is close enough to
Ek in the topology of uniform convergence, then the degree of T is k, by Lemma 2.1.12.
Thus, Ek is strongly structurally stable in the space ℰk(𝕊1).

The case of a negative k differs primarily in notation. The order of the real numbers
akm+in between amn−1 and a

m+1
n−1 will be increasing for even n’s and decreasing for odd n’s,

the same as the corresponding structure imposed by themap Ek on the k-ary rationals.

Let C1(𝕊1,𝕊1) denote the space of all C1 endomorphisms of 𝕊1 endowedwith the C1

topology.
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Corollary 6.1.4. Every Shub expanding map of the unit circle is structurally stable in
C1(𝕊1,𝕊1) and every map Ek : 𝕊1 → 𝕊1, |k| ≥ 2, is strongly structurally stable in this class.

Proof. This is an immediate consequenceof Theorem6.1.3 onceoneobserves that each
element of ℰk(𝕊1) has a neighborhood U in C1(𝕊1,𝕊1) such that U ⊆ ℰk(𝕊1). For more
information, see Theorem 6.2.5.

6.2 Definition, characterization, and properties of general Shub
expanding endomorphisms

Unless stated otherwise, we shall let M be a compact connected smooth (i. e., C∞)
manifold, and ρ a Riemannian metric onM.

If γ : I → M is a smooth curve defined on an interval I ⊆ ℝ, then the length of γ
with respect to the Riemannian metric ρ is defined to be

ℓρ(γ) := ∫
I

‖Dtγ(et)‖ dt = ∫
I

‖Dtγ‖ dt,

where et is the unit tangent vector to I at the point t. Given x, y ∈ M, let Γ(x, y) be the
collection of all smooth curves onM whose endpoints are x and y. The distance ρ(x, y)
between x and y is defined as

ρ(x, y) := inf{ℓρ(γ) | γ ∈ Γ(x, y)},

where, as above, we shall use the same symbol ρ to denote the original Riemannian
metric and the distance it induces onM. A curve γ joining x to ywhose length is equal
to ρ(x, y) is called a geodesic from x to y. Although we will not rely on this fact, a
geodesic joining x and y always exists. In fact, it is unique if the points x and y are
sufficiently close.

Let us begin by defining the class of transformations ofM that we will study.

Definition 6.2.1. A C1 endomorphism T : M → M is Shub expanding if there exists
k ∈ ℕ such that

‖DxT
k(v)‖Tk(x) ≥ 2‖v‖x , ∀x ∈ M, ∀v ∈ TxM.

We immediately present a characterization of these maps. We invite the reader to
envision the implications it will have on the dynamics of these maps.

Proposition 6.2.2. If T : M → M is a C1 endomorphism, then the following statements
are equivalent:
(a) The map T : M → M is Shub expanding.
(b) There exist constants μ > 1 and C > 0 such that for all n ∈ ℕ,

‖DxT
n(v)‖Tn(x) ≥ Cμ

n‖v‖x , ∀x ∈ M, ∀v ∈ TxM.
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(c) There exist λ > 1 and a Riemannian metric ρ′ on M such that

‖DxT(v)‖T(x),ρ′ ≥ λ‖v‖x,ρ′ , ∀x ∈ M, ∀v ∈ TxM. (6.10)

Proof. Let us first prove that (c)⇒(a). Since M is compact, the Riemannian norms ρ
and ρ′ are equivalent in the sense that there exists a constant L ≥ 1 such that

L−1‖v‖x,ρ ≤ ‖v‖x,ρ′ ≤ L‖v‖x,ρ, ∀x ∈ M, ∀v ∈ TxM.

Using the chain rule repeatedly, for every k ∈ ℕ we obtain that

‖DxT
k(v)‖Tk(x),ρ ≥ L

−1‖DxT
k(v)‖Tk(x),ρ′

= L−1‖DTk−1(x)T(DxT
k−1(v))‖T(Tk−1(x)),ρ′

≥ L−1λ‖DxT
k−1(v)‖Tk−1(x),ρ′

≥ . . . ≥ L−1λk‖v‖x,ρ′ ≥ λ
kL−2‖v‖x,ρ.

It suffices to take k ∈ ℕ so large that λk ≥ 2L2.
We now prove that (a)⇒(b). To begin, it follows from the definition of a Shub ex-

panding endomorphism that Ker(DxTk) = {0} for every x ∈ M. Hence, Ker(DxTn) = {0}
for all x ∈ M and all n ∈ ℕ (first, use the chain rule in the formDxTk = DT(x)Tk−1∘DxT to
establish the statement forn = 1 and thendeduce it for anyn). Since the tangent spaces
TxM and TTn(x)M are of finite dimension equal to dim(M), all the maps DxTn : TxM →
TTn(x)M are linear isomorphisms and thereby invertible. In particular, ‖(DxT)−1‖ < ∞
for each x ∈ M. Moreover, observe that the determinant function x → det(DxT) is con-
tinuous onM since T ∈ C1(M,M), and does not vanish anywhere onM sinceDxT is in-
vertible for every x ∈ M. As the entries of the inverse matrix A−1 of an invertible matrix
A are polynomial functions of the entries of A divided by det(A), the entries of the ma-
trix (DxT)−1 depend continuously on x ∈ M. Consequently, the function x → ‖(DxT)−1‖
is continuous onM, and thus ‖(DT)−1‖∞ := maxx∈M ‖(DxT)−1‖ <∞ sinceM is compact.
Let

α := max{1, ‖(DT)−1‖∞} <∞.

Fix an arbitrary n ∈ ℕ. Write n = qk + r, where q and r are integers such that q ≥ 0 and
0 ≤ r < k. For every x ∈ M and every v ∈ TxM, we have

‖v‖x =
(DxT

n)
−1
(DxT

n(v))x ≤
(DxT

n)
−1 ⋅
DxT

n(v)Tn(x)

= (DTqk(x)T
r ∘ DxT

qk)
−1 ⋅
DxT

n(v)Tn(x)

≤ (DTqk(x)T
r)
−1 ⋅
(DxT

qk)
−1 ⋅
DxT

n(v)Tn(x)

≤
r−1
∏
i=0

(DTqk+i(x)T)
−1 ⋅

q−1
∏
j=0

(DT jk(x)T
k)
−1 ⋅
DxT

n(v)Tn(x)
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≤ αr2−qDxT
n(v)Tn(x)

≤ 2αk−12−(q+1)DxT
n(v)Tn(x).

Given that k(q + 1) ≥ n, it follows from the above estimate that

DxT
n(v)Tn(x) ≥

1
2
α1−k(21/k)n‖v‖x .

Thus, part (b) is proved with C = α1−k/2 > 0 and μ = 21/k > 1.
Since the implication (b)⇒(a) is obvious, to complete the proof it suffices to show

that (a)⇒(c). Define on M a new metric ρ′ with scalar product on the tangent spaces
given by

⟨v,w⟩′x :=
k−1
∑
j=0
⟨DxT

j(v),DxT
j(w)⟩T j(x).

Then

‖v‖2x,ρ′ = ⟨v, v⟩
′
x =

k−1
∑
j=0

DxT
j(v)

2
T j(x),ρ (6.11)

whereas

DxT(v)

2
T(x),ρ′ =

k
∑
j=1

DxT
j(v)

2
T j(x),ρ. (6.12)

For all j = 0, 1, . . . , k, we have that

DxT
j(v)T j(x),ρ ≤ ‖DT‖

j
∞,ρ‖v‖x,ρ ≤ max{1, ‖DT‖k∞,ρ}‖v‖x,ρ.

Write β := max{1, ‖DT‖k∞,ρ}. By (a), it then follows that

DxT
k(v)

2
Tk(x),ρ ≥ 4‖v‖

2
x,ρ = 2‖v‖

2
x,ρ +

2
k

k−1
∑
j=0
‖v‖2x,ρ

≥ 2‖v‖2x,ρ +
2
k

k−1
∑
j=0

β−2DxT
j(v)

2
T j(x),ρ.

From this, (6.11) and (6.12), we deduce that

DxT(v)

2
T(x),ρ′ =

k−1
∑
j=1

DxT
j(v)

2
T j(x),ρ +

DxT
k(v)

2
Tk(x),ρ

≥ 2‖v‖2x,ρ + (1 + 2β
−2k−1)

k−1
∑
j=1

DxT
j(v)

2
T j(x),ρ
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≥ (1 +min{1, 2β−2k−1})
k−1
∑
j=0

DxT
j(v)

2
T j(x),ρ

= (1 +min{1, 2β−2k−1})‖v‖2x,ρ′ .

Taking λ = (1 + min{1, 2β−2k−1})1/2 > 1 completes the proof that (a)⇒(c) and thereby
completes the proof of the proposition.

A Riemannianmetric satisfying condition (6.10) is said to be e-adapted to T while
a corresponding number λ is called an expanding factor for this metric.

Corollary 6.2.3. Being a Shub expanding endomorphism of a compact connected
smooth Riemannian manifold M is independent of the Riemannian metric that M is
endowed with. More precisely, a map T : M → M which is a Shub expanding endomor-
phismwith respect to someRiemannianmetric onM is a Shub expanding endomorphism
with respect to all Riemannian metrics on M.

As observed in the proof of Proposition 6.2.2 (or as may be readily deduced from
part (c) of that proposition), all the maps DxT : TxM → TT(x)M, x ∈ M, are linear
isomorphisms. Therefore, by virtue of the inverse function theorem, the map T is a
local diffeomorphism at every point of M. Since M is compact, T is a covering map.
We have thus obtained the following important fact.

Theorem 6.2.4. Every Shub expanding endomorphism is a covering map.

We now turn our attention to topological properties of sets of Shub expanding
endomorphisms. For every r ≥ 1, we denote by ℰ r(M) the set of all Cr Shub expand-
ing endomorphisms of the manifoldM. This set has the remarkable property of being
open.

Theorem 6.2.5. For each r ≥ 1, the set ℰ r(M) is an open subset of the space Cr(M,M)
endowed with the C1 topology.

Proof. Let

ℐr(M) := {T ∈ Cr(M,M) | DxT is invertible,∀x ∈ M}
= {T ∈ Cr(M,M) | det(DxT) ̸= 0,∀x ∈ M}.

Since the determinant function x → det(DxT) is continuous onM for any T ∈ Cr(M,M)
and sinceM is compact, we deduce that

ℐr(M) = {T ∈ Cr(M,M) : min
x∈M
|det(DxT)| ̸= 0}.

Moreover, since the determinant function (x,T) → det(DxT) is continuous on M ×
Cr(M,M), the function T → minx∈M |det(DxT)| is continuous on Cr(M,M). This guar-
antees that ℐr(M) is an open subset of Cr(M,M). Notice also that the continuous func-
tion (x,T) → det(DxT) does not vanish onM × ℐr(M). Since the entries of the inverse
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matrix A−1 of an invertible matrix A are polynomials of the entries of A divided by
det(A), the entries of the matrix (DxT)−1 depend continuously on (x,T) ∈ M × ℐr(M).
Consequently, the function (x,T) → ‖(DxT)−1‖ is continuous onM × ℐr(M). Thus, the
function T → maxx∈M ‖(DxT)−1‖ is continuous on ℐr(M). As observed in (the proof of)
Proposition 6.2.2, ℰ r(M) ⊆ ℐr(M). Fix S ∈ ℰ r(M). Let ρ be a metric e-adapted to S and
λ an expanding factor for this metric. Formula (6.10) implies that ‖(DxS)−1‖ ≤ λ−1 for
all x ∈ M. The continuity of the function T → maxx∈M ‖(DxT)−1‖ on ℐr(M) ensures the
existence of a neighborhood U of S in ℐr(M) such that

max
x∈M
‖(DxT)

−1‖ ≤
λ−1 + 1

2

for all T ∈ U . But

‖v‖x = ‖(DxT)
−1(DxT(v))‖x ≤ ‖(DxT)

−1‖ ⋅ ‖DxT(v)‖T(x)

for every x ∈ M. Therefore,

‖DxT(v)‖T(x) ≥ ‖(DxT)
−1‖−1‖v‖x ≥

2
λ−1 + 1
‖v‖x

for every x ∈ M. Since 2/(λ−1 + 1) > 1, we conclude that each T ∈ U is Shub expanding.

One fundamental fact about continuous maps on a compact connected smooth
manifold is that they are homotopic if they are sufficiently close.

Theorem 6.2.6. IfM is a compact connected smoothmanifold, then any two continuous
maps sufficiently close in C(M,M) are homotopic.

Proof. Let ρ be a Riemannianmetric onM and let exp : TM → M be the corresponding
exponential map. Let expx := exp |TxM for each x ∈ M. SinceM is compact, there exists
a radius δ > 0 such that for every x ∈ M, the inverse map exp−1x : Bρ(x, δ) → TxM is
well-defined and so diffeomorphic. Take any two elements f , g ∈ C(M,M) such that
ρ∞(f , g) < δ. Define a map F : M × [0, 1]→ M as follows:

F(x, t) := expf (x)(t exp
−1
f (x)(g(x))).

As a composition of continuous maps, the map F is continuous. Also, F(x,0) =
expf (x)(0) = f (x) and F(x, 1) = expf (x)(exp−1f (x)(g(x))) = g(x). Thus, F is a homotopy
from f to g.

According to Theorems 6.2.5 and 6.2.6, in order to establish the structural stability
of Shub expanding endomorphisms, it suffices to prove that any two homotopic Shub
expanding endomorphisms are topologically conjugate. This feat will be achieved at
the very end of this chapter. Theorem 6.2.6 also partly explains the involvement of
algebraic topology, which we will now briefly investigate.
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6.3 A digression into algebraic topology

In this section, we develop some algebraically topological results that will be relied
upon in the rest of the chapter.

6.3.1 Deck transformations

LetM be a compact connected smooth manifold with Riemannian metric ρ. Let M̃ be
the universal covering space ofM and π : M̃ → M be the canonical projection from M̃
toM. Every continuous map G : M̃ → M̃ such that the diagram

M̃

π
??

M̃

G
??

π
?? M

commutes, that is, such that

π ∘ G = π,

is called a deck transformation of the manifoldM. We adopt the convention of denot-
ing deck transformations with an overline. By the unique lifting property (cf. Propo-
sition 1.34 in [28]), a deck transformation is uniquely determined by its value at any
point of M̃.

Moreover, givenany twopoints x̃, ỹ ∈ M̃ such thatπ(x̃) = π(ỹ), by theunique lifting
property there exist unique deck transformations Gx̃,ỹ : M̃ → M̃ and Gỹ,x̃ : M̃ → M̃
such that

Gx̃,ỹ(x̃) = ỹ and Gỹ,x̃(ỹ) = x̃.

Consequently, Gỹ,x̃ ∘Gx̃,ỹ is a deck transformation such that Gỹ,x̃ ∘Gx̃,ỹ(x̃) = x̃. It follows
from the unique lifting property that Gỹ,x̃ ∘ Gx̃,ỹ = IdM̃ , and, by the same token, Gx̃,ỹ ∘
Gỹ,x̃ = IdM̃ . Therefore, Gx̃,ỹ is a diffeomorphism of M̃.

Furthermore, since π : M̃ → M is a local diffeomorphism, it induces a Riemannian
metric ρ̃ on M̃ defined as follows:

⟨w, v⟩x̃,ρ̃ := ⟨Dx̃π(w),Dx̃π(v)⟩π(x̃),ρ, ∀x̃ ∈ M̃, ∀w, v ∈ Tx̃M̃.

With this Riemannian metric on M̃, the projection map π : M̃ → M is an infinitesi-
mal and local isometry and all deck transformations ofM are infinitesimal and global
isometries with respect to the metric ρ̃.
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Proposition 6.3.1. If M is a compact connected smoothmanifold with Riemannianmet-
ric ρ, then the set DM of all deck transformations of M is a group of diffeomorphisms
(with composition as group action) acting transitively on each fiber of π. Each element
of DM is uniquely determined by its value at any point of M̃, is an infinitesimal and global
ρ̃-isometry, where ρ̃ is the metric induced by π and ρ.

Proof. Theonlypart that remains tobeproved is the transitivity. For this, letG,H ∈ DM .
Then

π ∘ (G ∘ H) = (π ∘ G) ∘ H = π ∘ H = π.

That is, the group DM acts transitively on each fiber of π.

Later on, we will also need the following result.

Proposition 6.3.2. If X is a connected Hausdorff topological space and f , g : X → M̃
are two continuous maps such that π ∘ f = π ∘ g, then there exists a unique deck trans-
formation G ∈ DM such that G ∘ f = g.

Proof. Fix x0 ∈ M and let G be the unique element of DM such that G ∘ f (x0) = g(x0).
Let

E = {x ∈ X | G ∘ f (x) = g(x)}.

Obviously, E is nonempty. It is also closed since its complement is open in X. We shall
prove that E is also open. Indeed, let x ∈ E. Since the projection π : M̃ → M is a
local homeomorphism, there exists an open neighborhood Ṽ of g(x) in M̃ such that
the map π|Ṽ is one-to-one. As the maps G ∘ f and g are continuous, there is an open
neighborhood U of x in X such that

G ∘ f (U) ⊆ Ṽ and g(U) ⊆ Ṽ .

Let y ∈ U . Then G ∘ f (y) and g(y) belong to Ṽ . Moreover, π(G ∘ f (y)) = π(f (y)) = π(g(y)).
Thus G ∘ f (y) = g(y) by the injectivity of π|Ṽ . This shows that y ∈ E and hence U ⊆ E,
thereby proving that the nonempty, closed set E is also open. Since X is connected,
we therefore conclude that E = X. The uniqueness of G follows immediately from
Proposition 6.3.1 sinceGmust be the unique deck transformation satisfyingG(f (x0)) =
g(x0).

We now point out a fascinating characterization of the convergence of sequences
of deck transformations at any point of the universal covering space.

Lemma 6.3.3. Every sequence (Gn)
∞
n=1 in DM that converges at one point of M̃ is eventu-

ally constant.
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Proof. Suppose that there exists x̃ ∈ M̃ such that (Gn(x̃))∞n=1 is a convergent sequence
in M̃. Let x := π(x̃) ∈ M. There is r > 0 such that the balls (Bρ̃(ỹ, r))ỹ∈π−1(x) are mutually
disjoint. Since Gn ∈ DM for all n ∈ ℕ, we have π(Gn(x̃)) = π(x̃) = x, that is, Gn(x̃) ∈
π−1(x) for all n ∈ ℕ. Thus, if k ∈ ℕ is so large that ρ̃(Gi(x̃),Gj(x̃)) < r for all i, j ≥ k, then
Gi(x̃) = Gj(x̃). Since deck transformations are uniquely determined by their value at
any point according to Proposition 6.3.1, we conclude that Gi = Gj for all i, j ≥ k.

As an immediate consequence of this lemma, we obtain the following powerful
result.

Corollary 6.3.4. A sequence (Gn)
∞
n=1 in DM converges uniformly on compact subsets of

M̃ if and only if it is eventually constant.

Proof. If a sequence (Gn)
∞
n=1 in DM converges uniformly on compact subsets of M̃,

then it converges pointwise on M̃. Therefore, it is eventually constant according to
Lemma 6.3.3. Obviously, any eventually constant sequence converges uniformly on
compact subsets.

Theoretically, establishing uniform convergence on compact subsets may prove
to be difficult. Fortunately, there exists a simpler, pointwise criterion for sequences of
deck transformations.

Lemma 6.3.5. If (Gn)
∞
n=1 is a sequence in DM and if (z̃n)∞n=1 is a sequence of points in M̃

converging to some point z̃ ∈ M̃ such that w̃ := limn→∞ Gn(z̃n) exists, then the sequence
(Gn)
∞
n=1 converges uniformly on compact subsets of M̃ to an element G ∈ DM , which is

uniquely determined by the requirement that G(z̃) = w̃. In fact, the sequence (Gn)
∞
n=1 is

eventually constant. More precisely, its terms eventually coincide with the unique ele-
ment G ∈ DM such that G(z̃) = w̃.

Proof. Let

ξ = max{sup{ρ̃(z̃n, z̃) : n ∈ ℕ}, sup{ρ̃(Gn(z̃n), w̃) : n ∈ ℕ}} <∞.

Fix r > 0 and take x̃ ∈ Bρ̃(z̃, r). Then for every n ∈ ℕ, we have that

ρ̃(Gn(x̃), w̃) ≤ ρ̃(Gn(x̃),Gn(z̃)) + ρ̃(Gn(z̃),Gn(z̃n)) + ρ̃(Gn(z̃n), w̃)
= ρ̃(x̃, z̃) + ρ̃(z̃, z̃n) + ρ̃(Gn(z̃n), w̃) ≤ r + ξ + ξ = 2ξ + r.

This means that for all n ∈ ℕ,

Gn(Bρ̃(z̃, r)) ⊆ Bρ̃(w̃, 2ξ + r). (6.13)

Now let (nk)∞k=1 be a strictly increasing sequence of positive integers. Fix j ∈ ℕ
and suppose that we have extracted from (nk)∞k=1 a subsequence (n(j)k )

∞
k=1 such that

the sequence (Gn(j)k
)∞k=1 converges uniformly on Bρ̃(z̃, j) to some continuous map
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G(j) : Bρ̃(z̃, j) → Bρ̃(w̃, 2ξ + j). The inductive step, which also provides the basis of
the induction, is as follows. Since both balls Bρ̃(z̃, j + 1) and Bρ̃(w̃, 2ξ + j + 1) are com-
pact and since the sequence of ρ̃-isometries (Gn)

∞
n=1 forms an equicontinuous family

of maps, Arzelà–Ascoli’s theorem permits us to extract from (n(j)k )
∞
k=1 a subsequence

(n(j+1)k )
∞
k=1 such that the sequence (Gn(j+1)k

)∞k=1 converges uniformly on Bρ̃(z̃, j+ 1) to some

continuous map G(j+1) : Bρ̃(z̃, j + 1)→ Bρ̃(w̃, 2ξ + j + 1).

Obviously, G(j+1)|Bρ̃(z̃,j) = G
(j) and gluing all the maps (G(j))∞j=1 together results in a

map G : M̃ → M̃ defined as G(x̃) = G(j)(x̃) if x̃ ∈ Bρ̃(z̃, j). The sequence (Gn(j)j
)∞j=1 is a

subsequence of (Gn)
∞
n=1 that converges uniformly to G on every compact ball Bρ̃(z̃, i),

i ∈ ℕ. This means that (Gn(j)j
)∞j=1 converges to G uniformly on compact subsets of M̃. So

G is a continuous map from M̃ to M̃ and

π ∘ G(x̃) = π( lim
j→∞

Gn(j)j
(x̃)) = lim

j→∞
(π ∘ Gn(j)j

(x̃)) = lim
j→∞

π(x̃) = π(x̃).

Hence G ∈ DM and

G(z̃) = lim
j→∞

Gn(j)j
(z̃) = lim

j→∞
Gn(j)j
(z̃n(j)j ) = lim

n→∞
Gn(z̃n) = w̃.

The uniqueness ofG follows from Proposition 6.3.1. The rest of the proposition follows
from Corollary 6.3.4.

6.3.2 Lifts

We now study the concept of the lift of a map. We keep with the convention adopted
in Chapter 2 of denoting a lift of a given map with a tilde above the map.

Proposition 6.3.6. Let N and M be two compact connected smooth manifolds. For any
continuous map S : N → M there exists a continuous map S̃ : Ñ → M̃ such that the
following diagram commutes:

Ñ S̃ ??

πN
??

M̃

πM
??

N
S
?? M

That is,

S ∘ πN = πM ∘ S̃.

All such maps S̃ are called lifts of S.
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Proof. Denote by π1(X) be the fundamental group of a path-connected space X and
let (πX)∗ : π1(X̃) → π1(X) be the homomorphism induced by the canonical projection
πX : X̃ → X, where X̃ is the universal covering space of X.

Consider the diagram

M̃

πM
??

Ñ πN
?? N

S
?? M

Notice that (S ∘ πN )∗(π1(Ñ)) = {0}M = (πM)∗({0}M) = (πM)∗(π1(M̃)). From the lifting
criterion (cf. Proposition 1.33 in [28]), there thus exists a continuous map S̃ : Ñ → M̃
such that the following diagram commutes:

M̃

πM
??

Ñ

S̃

??

πN
?? N

S
?? M

One particularly interesting case is the lifting of covering maps.

Proposition 6.3.7. If S : N → M is a covering map, then all of its lifts S̃ : Ñ → M̃ are
homeomorphisms.

Proof. Recall from the proof of Proposition 6.3.6 that

(S ∘ πN )∗(π1(Ñ)) = (πM)∗(π1(M̃)).

From the lifting criterion (cf. Proposition 1.33 in [28]), there then exists a continuous
map Ŝ : M̃ → Ñ such that the following diagram commutes:

Ñ

πN
??
N

S
??

M̃

Ŝ

??

πM
?? M

Using Proposition 6.3.6, let S̃ : Ñ → M̃ be a lift of S : N → M. Then

πM ∘ (S̃ ∘ Ŝ) = (πM ∘ S̃) ∘ Ŝ = (S ∘ πN ) ∘ Ŝ = πM .

Hence, in view of Proposition 6.3.1, the map S̃ ∘ Ŝ is a homeomorphism. On the other
hand, (S ∘ πN ) ∘ (Ŝ ∘ S̃) = (S ∘ πN ∘ Ŝ) ∘ S̃ = πM ∘ S̃ = S ∘ πN . Since S ∘ πN : Ñ → M is a
covering map, an argument similar to the one yielding Proposition 6.3.1 certifies that
Ŝ ∘ S̃ is a homeomorphism. As S̃ ∘ Ŝ and Ŝ ∘ S̃ are homeomorphisms, so are Ŝ and S̃.
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Note that deck transformations ofM are simply lifts of the identity covering map
IdM : M → M.

We now provide a characterization of lifts.

Proposition 6.3.8. Let N and M be two compact connected smooth manifolds. A con-
tinuous map S̃ : Ñ → M̃ is a lift of some continuous map from N to M if and only if
there exists a (necessarily unique) map h : DN → DM such that the following diagram
commutes for all F ∈ DN :

Ñ F
→ Ñ

S̃
↑↑↑↑↓

↑↑↑↑↓S̃

M̃ →
h(F)

M̃

In other words,

S̃ ∘ F = h(F) ∘ S̃, ∀F ∈ DN .

Moreover, h : DN → DM is a group homomorphism. This induced homomorphism of the
groups of deck transformations will also be denoted by S̃∗.

Proof. First, suppose that S : N → M is a continuousmapwhich has for lift S̃ : Ñ → M̃.
For any F ∈ DN , we then have that

πM ∘ (S̃ ∘ F) = (πM ∘ S̃) ∘ F = (S ∘ πN ) ∘ F = S ∘ (πN ∘ F) = S ∘ πN = πM ∘ S̃.

It follows fromProposition6.3.2 that there exists auniqueh(F) ∈ DM such thath(F)∘S̃ =
S̃ ∘ F.

For the converse implication, suppose that S̃ : Ñ → M̃ is a continuous map and
that there is a map h : DN → DM such that S̃ ∘ F = h(F) ∘ S̃ for all F ∈ DN . Define the
map S : N → M by setting

S(x) := πM ∘ S̃(x̃),

where x̃ is any element of π−1N (x). To be well-defined, we must show that S(x) is inde-
pendent of the element x̃ chosen in π−1N (x). For this, let z̃ ∈ π

−1
N (x). Since πN (x̃) = πN (z̃),

there is a unique F ∈ DN such that z̃ = F(x̃). Then

πM ∘ S̃(z̃) = πM ∘ S̃ ∘ F(x̃) = πM ∘ h(F) ∘ S̃(x̃) = πM ∘ S̃(x̃).

Themap S : N → M is thuswell-defined. It is continuous sinceπM ∘S̃ is continuous and
the projection πN : Ñ → N is a coveringmap. Furthermore, S ∘πN (x̃) = S(x) = πM ∘ S̃(x̃).
So S̃ is a lift of S.

Regarding the last assertion, for any F1, F2 ∈ DN we have that F1 ∘ F2 ∈ DN . As
h : DN → DM is the unique map such that h(F) ∘ S̃ = S̃ ∘ F for all F ∈ DN , it ensues that

(h(F1 ∘ F2)) ∘ S̃ = S̃ ∘ F1 ∘ F2 = h(F1) ∘ S̃ ∘ F2 = h(F1) ∘ h(F2) ∘ S̃ = (h(F1) ∘ h(F2)) ∘ S̃.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.3 A digression into algebraic topology | 167

The uniqueness of h implies that h(F1 ∘ F2) = h(F1) ∘ h(F2). So h is a homomorphism
between the groups DN and DM .

Given a certain lift, we next show that the set of all lifts that share the same in-
duced homomorphism as the given lift naturally forms a complete metric space.

LetN andM be two compact connected smoothmanifolds and let α̃ : Ñ → M̃ be a
lift of some continuousmap fromN toM. LetVα̃ denote the set of all continuousmaps
S̃ : Ñ → M̃ that are lifts of some continuous map from N toM and such that S̃∗ = α̃∗.
Let ρ̃∞ : Vα̃ × Vα̃ → [0,∞] be the function defined by

ρ̃∞(S̃1, S̃2) := sup{ρ̃M(S̃1(x̃), S̃2(x̃)) | x̃ ∈ Ñ}.

Lemma 6.3.9. The function ρ̃∞ constitutes a metric on the set Vα̃ and the metric space
(Vα̃, ρ̃∞) is complete.

Proof. The symmetry of ρ̃∞ and the triangle inequality being obvious, we shall only
demonstrate the finiteness of ρ̃∞ to establish that ρ̃∞ is a metric on Vα̃.

Let R > diamρN (N). We first show that

πN(Bρ̃N (z̃,R)) = N , ∀ z̃ ∈ Ñ . (6.14)

To that end, fix z̃ ∈ Ñ and x ∈ N . Let γ be a smooth curve in N joining πN (z̃) and x
whose ρN -length is smaller than R. Let γ̃ be a lift of γ to Ñ whose initial point is z̃. Let
w̃ denote the other endpoint of the curve γ. Since πN : Ñ → N is a local (and thus
infinitesimal) isometry, we deduce that

ρ̃N (z̃, w̃) ≤ ℓρ̃N (γ̃) = ℓρN (γ) < R.

Since x = πN (w̃), it follows that x ∈ πN (Bρ̃N (z̃,R)), and thus (6.14) holds.
Now, let S̃1, S̃2 ∈ Vα̃. Since Bρ̃N (z̃,R) is a compact subset of Ñ, we have

A := sup{ρ̃M(S̃1(x̃), S̃2(x̃)) | x̃ ∈ Bρ̃N (z̃,R)} <∞.

Take an arbitrary point w̃ ∈ Ñ . In light of (6.14), there exists a point x̃ ∈ Bρ̃N (z̃,R)
such that πN (x̃) = πN (w̃). Hence, there exists a deck transformation F ∈ DN such that
F(x̃) = w̃. Consequently,

ρ̃M(S̃1(w̃), S̃2(w̃)) = ρ̃M(S̃1 ∘ F(x̃), S̃2 ∘ F(x̃))
= ρ̃M(S̃

∗
1 (F) ∘ S̃1(x̃), S̃

∗
2 (F) ∘ S̃2(x̃))

= ρ̃M(α̃
∗(F) ∘ S̃1(x̃), α̃

∗(F) ∘ S̃2(x̃))
= ρ̃M(S̃1(x̃), S̃2(x̃)) ≤ A.

Thus, ρ̃∞(S̃1, S̃2) ≤ A <∞ and thereby ρ̃∞(Vα̃ × Vα̃) ⊆ [0,∞). So ρ̃∞ is a metric.
Let us now show that ρ̃∞ is complete. Let (S̃n)∞n=1 be a Cauchy sequence in Vα̃.

Then this sequence is also a Cauchy sequence with respect to the topology of uniform
convergence on compact subsets of Ñ . Let Ŝ : Ñ → M̃ be the limit of that sequence. Let
F ∈ DN . Since S̃n ∘F = α̃∗(F)∘ S̃n for all n ∈ ℕ, we infer that Ŝ ∘F = α̃∗(F)∘ Ŝ. By Proposi-
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tion 6.3.8, we deduce that Ŝ ∈ Vα̃. Let z̃ ∈ Ñ and R > diamρN (N). As established above,

ρ̃∞(S̃n, Ŝ) ≤ sup{ρ̃M(S̃n(x̃), Ŝ(x̃)) | x̃ ∈ Bρ̃N (z̃,R)}

for all n ∈ ℕ, whence the uniform convergence of the sequence (S̃n)∞n=1 to Ŝ on the
compact ball Bρ̃N (z̃,R) implies that it also converges to Ŝ with respect to the metric ρ̃∞
on Vα̃.

6.4 Dynamical properties
In the last section of this chapter, we will discover the dynamical properties of Shub
expanding endomorphisms.

6.4.1 Expanding property

Shub expanding endomorphisms are distance expanding in the following sense.

Theorem 6.4.1. Every Shub expanding endomorphism T : M → M is distance expand-
ing with respect to the distance ρ induced on M by any Riemannian metric ρ e-adapted
to T.

Proof. According to Theorem 6.2.4, every Shub expanding endomorphism T is a cov-
ering map, and thus a local homeomorphism. Thanks to the compactness ofM, there
then exists some δT > 0 such that the map T|Bρ(x,2δT ) : Bρ(x, 2δT ) → M is injective for
all x ∈ M. Fix two points x1, x2 ∈ M such that ρ(x1, x2) < 2δT and pick any smooth
curve γ : I → M joining T(x1) and T(x2), that is, γ(a) = T(x1) and γ(b) = T(x2), where
I = [a, b] ⊆ ℝ. Since T : M → M is a covering map, there exists a smooth curve
γ̂ : I → M such that γ̂(a) = x1 and T ∘ γ̂ = γ. In particular, T(γ̂(b)) = T(x2). So if
γ̂(b) ∉ Bρ(x1, 2δT ), then

ρ(γ̂(a), γ̂(b)) = ρ(x1, γ̂(b)) ≥ 2δT > ρ(x1, x2).

On the other hand, if γ̂(b) ∈ Bρ(x1, 2δT ), then γ̂(b) = x2 since the map T|Bρ(x1 ,2δT ) is
injective, whence ρ(γ̂(a), γ̂(b)) = ρ(x1, x2). In either case,

ℓρ(γ̂) ≥ ρ(γ̂(a), γ̂(b)) ≥ ρ(x1, x2).

Therefore,

ℓρ(γ) = ∫
I

Dtγ(et)
 dt = ∫

I

Dt(T ∘ γ̂)(et)
 dt

= ∫
I

Dγ̂(t)T(Dtγ̂(et))
 dt

≥ λ∫
I

Dtγ̂(et)
 dt = λℓρ(γ̂) ≥ λρ(x1, x2).
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So, taking the infimum over all curves γ ∈ Γ(T(x1),T(x2)), we conclude that ρ(T(x1),
T(x2)) ≥ λρ(x1, x2) for all x1, x2 ∈ M such that ρ(x1, x2) < 2δT .

The previous theorem shows that Shub expanding endomorphisms provide a
large class of distance expanding maps.

6.4.2 Topological exactness and density of periodic points

The next theorem reveals several additional dynamical properties of Shub expanding
maps.

Theorem 6.4.2. Let M be a compact connected smooth manifold. If T : M → M is a
Shub expanding endomorphism, then:
(a) T has a fixed point.
(b) The universal covering manifold M̃ is diffeomorphic to ℝk , where k = dim(M).
(c) T is topologically exact.
(d) The set of periodic points of T is dense in M.

Proof. Let ρbe aRiemannianmetric onM e-adapted toT, and ρ̃ theRiemannianmetric
inducedbyπ and ρon M̃. Recall thatwith thesemetrics, theprojectionmapπ : M̃ → M
is an infinitesimal and local isometry and all maps in DM are infinitesimal and global
isometries with respect to the metric ρ̃. Let T̃ : M̃ → M̃ be a lift of T to M̃. Such a
lift exists according to Proposition 6.3.6. By Theorem 6.2.4 and Proposition 6.3.7, the
map T̃ is a diffeomorphism. With a calculation analogous to that in the proof of Theo-
rem 6.4.1, we can prove the following claim.

Claim. The diffeomorphism T̃−1 : M̃ → M̃ is a global contraction with respect to the
metric ρ̃. More precisely,

ρ̃(T̃−1(x̃), T̃−1(ỹ)) ≤ λ−1ρ̃(x̃, ỹ), ∀x̃, ỹ ∈ M̃. (6.15)

(a) By the Banach contraction principle, the map T̃−1 : M̃ → M̃ has a unique
fixed point w̃ ∈ M̃. That is, T̃−1(w̃) = w̃, or, equivalently, T̃(w̃) = w̃. Then T(π(w̃)) =
π(T̃(w̃)) = π(w̃), that is, π(w̃) is a fixed point of T : M → M.

(b) Let w̃ ∈ M̃ be the fixed point of the maps T̃ , T̃−1 : M̃ → M̃. Since M̃ is a smooth
manifold, there exist r > 0 and a smooth diffeomorphism φ : V → Bρ̃(w̃, r) from an
open neighborhood V of the origin in ℝk onto Bρ̃(w̃, r) and such that φ(0) = w̃ and
φ′(0) : ℝk → Tw̃M̃ is an isometry. Since

T̃−1(Bρ̃(w̃, r)) ⊆ Bρ̃(w̃, λ
−1r) ⊆ Bρ̃(w̃, r),

the conjugate of T̃−1 via φ is a well-defined diffeomorphism, namely

G := φ−1 ∘ T̃−1 ∘ φ : V → V .
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Hence, for all k ≥ 0,

Gk = φ−1 ∘ T̃−k ∘ φ : V → V . (6.16)

Notice that

G(0) = φ−1 ∘ T̃−1 ∘ φ(0) = φ−1(T̃−1(w̃)) = φ−1(w̃) = 0

and

‖G′(0)‖ = (φ
−1)
′
(w̃) ∘ (T̃−1)′(w̃) ∘ φ′(0) =

(T̃
−1)
′
(w̃) ≤ λ

−1 < 1.

Therefore, there exists R > 0 so small that B(0,R) ⊆ V ,

G(B(0,R)) ⊆ B(0, λ
−1 + 1
2

R) ⊆ B(0,R), (6.17)

and

‖G′(x)‖ ≤ λ
−1 + 1
2
, ∀x ∈ B(0,R). (6.18)

In view of Exercise 6.5.5, there then exists a diffeomorphism Ĝ : ℝk → ℝk such that

Ĝ|B(0,R) = G and Ĝ
′(x) ≤

λ−1 + 1
2
, ∀x ∈ ℝk . (6.19)

Let us now define a map H : M̃ → ℝk in the following way. For each x̃ ∈ M̃, choose
n = n(x̃) ≥ 0 such that T̃−n(x̃) ∈ φ(B(0,R)) and declare

H(x̃) = Ĝ−n ∘ φ−1 ∘ T̃−n(x̃). (6.20)

We shall first show thatH(x̃) is well-defined by establishing that its definition is inde-
pendent of the choice of n. Then we will proceed on showing thatH : M̃ → ℝk is a dif-
feomorphism. So assume that, in addition to T̃−n(x̃), the iterate T̃−j(x̃) is in φ(B(0,R)).
We may assume without loss of generality that 0 ≤ j ≤ n. Write T̃−j(x̃) = φ(x′), where
x′ ∈ B(0,R) ⊆ V . Using (6.16) with k = n − j, (6.17) and (6.19), we get

Ĝ−n ∘ φ−1 ∘ T̃−n(x̃) = Ĝ−n ∘ φ−1 ∘ T̃−(n−j) ∘ T̃−j(x̃)
= Ĝ−n ∘ φ−1 ∘ T̃−(n−j) ∘ φ(x′)
= Ĝ−n ∘ Gn−j(x′) = Ĝ−j(x′) = Ĝ−j ∘ φ−1 ∘ T̃−j(x̃).

Thus, the map H : M̃ → ℝk is well-defined. Since the same n used to define H at x̃
works for any point ỹ ∈ Bρ̃(x̃, ε) if ε > 0 is sufficiently small, it follows from (6.20)
that the mapH is smooth as a composition of smooth maps. As a composition of local
diffeomorphisms, it is further a local diffeomorphism. It only remains to show that H
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is globally bijective. To prove injectivity, assume that H(x̃) = H(ỹ). Since T̃−1 : M̃ → M̃
is a global contraction fixing w̃ = φ(0), there exists n ≥ 0 so large that both T̃−n(x̃) and
T̃−n(ỹ) lie in φ(B(0,R)). Then

Ĝ−n ∘ φ−1 ∘ T̃−n(x̃) = Ĝ−n ∘ φ−1 ∘ T̃−n(ỹ).

Applying to this equality Ĝn, φ and T̃n successively, we conclude that x̃ = ỹ, thereby
establishing the injectivity of H. To prove its surjectivity, take an arbitrary y ∈ ℝk .
Since Ĝ : ℝk → ℝk is a global contraction according to (6.19) and has 0 for fixed point,
there exists n ≥ 0 so large that Ĝn(y) ∈ B(0,R). Then φ(Ĝn(y)) ∈ φ(B(0,R)). It follows
that

H(T̃n(φ(Ĝn(y)))) = Ĝ−n ∘ φ−1 ∘ T̃−n(T̃n ∘ φ ∘ Ĝn(y)) = y.

Thus,H is surjective. BecauseH : M̃ → ℝk is a diffeomorphism, k = dim(M̃) = dim(M).
(c) Let R > diamρ(M) and recall that (6.14) then holds with N = M. Let U be a

nonempty, open subset ofM. Fix an arbitrary x ∈ U and any x̃ ∈ π−1(x). Since π−1(U)
is an open subset of M̃ containing x̃, there exists some r > 0 such thatBρ̃(x̃, r) ⊆ π−1(U).
Choose n ≥ 0 so large that λnr ≥ R. By (6.15), we observe that

T̃n(Bρ̃(x̃, r)) ⊇ Bρ̃(T̃
n(x̃), λnr) ⊇ Bρ̃(T̃

n(x̃),R).

It follows from (6.14) that

Tn(U) ⊇ Tn(π(Bρ̃(x̃, r))) = π(T̃
n(Bρ̃(x̃, r))) ⊇ π(Bρ̃(T̃

n(x̃),R)) = M.

Thus, T is topologically exact.
(d) As in part (c), letR > diamρ(M) and recall that (6.14) then holds. Let alsoU be a

nonempty, open subset ofM. Fix an arbitrary x ∈ U and x̃ ∈ π−1(x). Since π−1(U) is an
open subset of M̃ containing x̃, there exists some 0 < r ≤ R such that Bρ̃(x̃, r) ⊆ π−1(U).
Choose n ≥ 0 so large that λnr ≥ 2R. By (6.14), there exists ỹ ∈ Bρ̃(T̃n(x̃),R) such
that π(ỹ) = x = π(x̃) and hence there is G ∈ DM such that G(x̃) = ỹ ∈ Bρ̃(T̃n(x̃),R).
Using (6.15), it follows that

T̃n(Bρ̃(x̃, r)) ⊇ Bρ̃(T̃
n(x̃), λnr) ⊇ Bρ̃(T̃

n(x̃), 2R) ⊇ Bρ̃(G(x̃),R).

Since G : M̃ → M̃ is a ρ̃-isometry, we deduce that

T̃n(Bρ̃(x̃, r)) ⊇ G(Bρ̃(x̃,R)) ⊇ G(Bρ̃(x̃, r)).

Consequently,

T̃−n ∘ G(Bρ̃(x̃, r)) ⊆ Bρ̃(x̃, r).
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As T̃−n is a contraction and G is an isometry, the map T̃−n ∘ G : Bρ̃(x̃, r) → Bρ̃(x̃, r) is a
contraction and the Banach contraction principle asserts that T̃−n ∘G has a fixed point
w̃ ∈ Bρ̃(x̃, r). Therefore, T̃n(w̃) = G(w̃), and hence

Tn(π(w̃)) = π(T̃n(w̃)) = π(G(w̃)) = π(w̃).

Furthermore,

π(w̃) ∈ π(Bρ̃(x̃, r)) ⊆ U .

Thus, Tn has a fixed point inU . SinceU is an arbitrary open set inM, we conclude that
the set of periodic points of T is dense inM.

6.4.3 Topological conjugacy and structural stability

In order to establish a topological conjugacy between any two Shub expanding en-
domorphisms that are homotopic, we shall first show that the existence of a semi-
conjugacy between the induced homomorphisms of lifts of two Shub expandingmaps
implies the existence of a semiconjugacy between the lifts themselves.

Lemma 6.4.3. Let N and M be compact connected smooth manifolds. Let S : N → N
and T : M → M be Shub expanding endomorphisms. Finally, let α : N → M be a
continuous map. If there exist lifts S̃ : Ñ → Ñ of S, T̃ : M̃ → M̃ of T, and α̃ : Ñ → M̃ of α,
such that

T̃∗ ∘ α̃∗ = α̃∗ ∘ S̃∗, (6.21)

then there exists a unique map H̃ ∈ Vα̃ such that

T̃ ∘ H̃ = H̃ ∘ S̃,

where Vα̃ is the set of all continuous maps Ã : Ñ → M̃ that are lifts of some continuous
map from N to M and such that Ã∗ = α̃∗.

Proof. For every Ã ∈ Vα̃, define

θ(Ã) := T̃−1 ∘ Ã ∘ S̃.

Claim 1. The transformation θ(Ã) is a lift of some continuous map from N to M.

Proof of Claim 1. According to Proposition 6.3.8, for every G ∈ DM we have T̃∗(G) ∘ T̃ =
T̃ ∘G. Since T̃ is a homeomorphism by Proposition 6.3.7 and Theorem 6.2.4, we obtain
that G = T̃−1 ∘ T̃∗(G) ∘ T̃. So, if G1,G2 ∈ DM and T̃∗(G1) = T̃∗(G2), then G1 = G2. This
means that the homomorphism T̃∗ : DM → DM is injective. Since α̃∗ ∘ S̃∗ = T̃∗ ∘ α̃∗,
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the range of the map α̃∗ ∘ S̃∗ is contained in the range of T̃∗ and, therefore, the map
β := (T̃∗)−1 ∘ α̃∗ ∘ S̃∗ : DN → DM is well-defined. We will show that

θ(Ã) ∘ G = β(G) ∘ θ(Ã), ∀Ã ∈ Vα̃, ∀G ∈ DN .

Indeed, for all Ã ∈ Vα̃, all G1 ∈ DN and all G2 ∈ DM , we have

(Ã ∘ S̃) ∘ G1 = (Ã
∗ ∘ S̃∗)(G1) ∘ Ã ∘ S̃ and T̃−1 ∘ T̃∗(G2) ∘ T̃ = G2.

Recalling that Ã∗ = α̃∗ by hypothesis, it follows that for all G ∈ DN ,

θ(Ã) ∘ G = T̃−1 ∘ Ã ∘ S̃ ∘ G = T̃−1 ∘ (Ã∗ ∘ S̃∗)(G) ∘ Ã ∘ S̃

= T̃−1 ∘ T̃∗ ∘ (T̃∗)−1 ∘ Ã∗ ∘ S̃∗(G) ∘ Ã ∘ S̃

= T̃−1 ∘ T̃∗(((T̃∗)−1 ∘ Ã∗ ∘ S̃∗)(G)) ∘ T̃ ∘ T̃−1 ∘ Ã ∘ S̃

= ((T̃∗)−1 ∘ Ã∗ ∘ S̃∗)(G) ∘ T̃−1 ∘ Ã ∘ S̃
= β(G) ∘ θ(Ã).

As β(G) ∈ DM , by virtue of Proposition 6.3.8, the above equality implies that θ(Ã) is a
lift of some continuous map from N toM. Thus, the proof of Claim 1 is complete.

Claim 2. θ(Vα̃) ⊆ Vα̃.

Proof of Claim 2. We aim to show that if Ã ∈ Vα̃, then (θ(Ã))∗(G) = α̃∗(G) for all G ∈
DN . Recall fromProposition 6.3.8 that themap ∗ : DN → DM is a homomorphism. From
this fact and from (6.21), we obtain that

(θ(Ã))∗(G) = (T̃−1 ∘ Ã ∘ S̃)∗(G)
= (T̃−1)∗ ∘ Ã∗ ∘ S̃∗(G) = (T̃−1)∗ ∘ α̃∗ ∘ S̃∗(G)
= (T̃−1)∗ ∘ T̃∗ ∘ α̃∗(G) = (T̃−1 ∘ T̃)∗ ∘ α̃∗(G) = α̃∗(G).

This establishes Claim 2.

Claim 3. The map θ : Vα̃ → Vα̃ is a contraction with respect to the metric ρ̃∞ on Vα̃.

Proof of Claim 3. Let Ã, B̃ ∈ Vα̃. Using (6.15), we get

ρ̃∞(θ(Ã), θ(B̃)) = ρ̃∞(T̃
−1 ∘ Ã ∘ S̃, T̃−1 ∘ B̃ ∘ S̃)

= sup{ρ̃M(T̃
−1 ∘ Ã ∘ S̃(x̃), T̃−1 ∘ B̃ ∘ S̃(x̃)) : x̃ ∈ Ñ}

≤ λ−1 sup{ρ̃M(Ã ∘ S̃(x̃), B̃ ∘ S̃(x̃)) : x̃ ∈ Ñ}
= λ−1 sup{ρ̃M(Ã(ỹ), B̃(ỹ)) : ỹ ∈ Ñ}
= λ−1ρ̃∞(Ã, B̃).

This substantiates Claim 3.
In light of Claim 3 and Lemma 6.3.9, Banach’s contraction principle affirms that

the map θ : Vα̃ → Vα̃ has a unique fixed point H̃ ∈ Vα̃. The equality θ(H̃) = H̃ is
equivalent to the equality T̃ ∘ H̃ = H̃ ∘ S̃.
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We now demonstrate that homotopic Shub expanding endomorphisms exhibit
conjugate dynamics. This generalizes Theorem 6.1.3.

Theorem 6.4.4. Let M be a compact connected smooth manifold. If T , S : M → M are
two homotopic Shub expanding endomorphisms, then T and S are topologically conju-
gate.

Proof. Let (Ft)0≤t≤1 be a homotopy from T to S in M. Thus, F0 = T while F1 = S. Let
(F̃t)0≤t≤1 be a lift of (Ft)0≤t≤1 to M̃. In particular, F̃0 is a lift of T and F̃1 is a lift of S. In
light of Proposition 6.3.8, we have for every t ∈ [0, 1] that

F̃t ∘ G = F̃
∗
t (G) ∘ F̃t , ∀G ∈ DM . (6.22)

Claim. The function [0, 1] ∋ t → F̃∗t (G) ∈ DM is constant for every G ∈ DM .

Proof of the claim. Fix G ∈ DM . Let s ∈ [0, 1]. Choose any sequence (sn)∞n=1 in [0, 1]
converging to s. Fix x̃ ∈ M̃. Let z̃ := F̃s(x̃) and z̃n := F̃sn (x̃) for all n ∈ ℕ. Then

lim
n→∞

z̃n = lim
n→∞

F̃sn (x̃) = F̃s(x̃) = z̃

and, by (6.22),

lim
n→∞
(F̃∗sn (G))(z̃n) = lim

n→∞
F̃∗sn (G) ∘ F̃sn (x̃) = lim

n→∞
F̃sn ∘ G(x̃) = F̃s(G(x̃)).

Therefore, Lemma6.3.5 asserts that the sequence (F̃∗sn (G))
∞
n=1 eventually coincideswith

the unique deck transformation Γ ∈ DM determined by the condition Γ(z̃) = F̃s(G(x̃)).
But z̃ = F̃s(x̃), so

Γ(F̃s(x̃)) = F̃s(G(x̃)) = F̃
∗
s (G)(F̃s(x̃)).

Hence, Γ = F̃∗s (G). In summary, the sequence (F̃∗sn (G))
∞
n=1 is eventually equal to F̃

∗
s (G).

Since this is true for any convergent sequence (sn)∞n=1 in [0, 1], we conclude that the
function [0, 1] ∋ t → F̃∗t (G) ∈ DM is constant. This confirms the claim.

Setting F̃0 = T̃ and F̃1 = S̃ and letting (F̃t)0≤t≤1 be a lift of (Ft)0≤t≤1 to M̃, it follows
from the claim that

T̃∗ = S̃∗.

So we may apply Lemma 6.4.3 withM = N, with α = IdM and with α̃ = IdM̃ , to obtain
a unique element Ã ∈ VIdM̃ such that

T̃ ∘ Ã = Ã ∘ S̃. (6.23)

By the symmetry between T̃ and S̃, there is also an element B̃ ∈ VIdM̃ such that

S̃ ∘ B̃ = B̃ ∘ T̃ .
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Hence,

S̃ ∘ (B̃ ∘ Ã) = (S̃ ∘ B̃) ∘ Ã = (B̃ ∘ T̃) ∘ Ã = B̃ ∘ (T̃ ∘ Ã) = B̃ ∘ (Ã ∘ S̃) = (B̃ ∘ Ã) ∘ S̃.

Moreover,

S̃ ∘ IdM̃ = IdM̃ ∘ S̃.

Therefore, the uniqueness part of Lemma 6.4.3, applied with M = N, T = S, α = IdM
and α̃ = IdM̃ , yields B̃ ∘ Ã = IdM̃ . Likewise, symmetrically, Ã ∘ B̃ = IdM̃ . Let x ∈ M
and choose an arbitrary x̃ ∈ π−1(x). Given that Ã and B̃, as elements of VIdM̃ , are lifts of
some continuous maps A : M → M and B : M → M, respectively, we then have that

A ∘ B(x) = A ∘ B ∘ π(x̃) = A ∘ π ∘ B̃(x̃) = π ∘ Ã ∘ B̃(x̃) = π(x̃) = x.

So, A ∘ B = IdM and, likewise, B ∘ A = IdM . Thus, A and B are homeomorphisms.
Furthermore, due to (6.23), we have that

T ∘ A(x) = T ∘ A ∘ π(x̃) = T ∘ π ∘ Ã(x̃) = π ∘ T̃ ∘ Ã(x̃) = π ∘ Ã ∘ S̃(x̃)
= A ∘ π ∘ S̃(x̃) = A ∘ S ∘ π(x̃) = A ∘ S(x).

This means that T ∘ A = A ∘ S for some homeomorphism A : M → M, that is, T and S
are topologically conjugate.

The crowning statement of this chapter pertains to the structural stability of Shub
expanding endomorphisms. Recall that structural stability was defined in Section 1.2.

Theorem 6.4.5. Every Shub expanding endomorphism of a compact connected smooth
manifold M is structurally stable in ℰ1(M), the space of all C1 endomorphisms of M.

Proof. This is an immediate consequence of Theorems 6.2.5, 6.2.6, and 6.4.4.

In Chapter 13, we will develop the theory of Gibbs states for open distance ex-
panding systems. In conjunction with the theory of Shub expanding endomorphisms
described here, we will derive in Section 13.7 the following theorem, which was first
proved for C2 maps by Krzyżewski and Szlenk [42]. It is also in this paper that the ap-
propriate transfer (also called Ruelle or Perron–Frobenius) operator was for the first
time explicitly used in dynamical systems. Our proof will be different, based on the
theory of Gibbs states developed in Chapter 13; nevertheless, there will be significant
similarities with that of Krzyżewski and Szlenk.

Each Riemannian metric ρ on a compact connected smooth manifold M induces
a unique volume (Lebesgue) measure λρ on M and the volume measures induced by
various Riemannian metrics are mutually equivalent. Call this class of measures the
Lebesgue measure class onM.
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Theorem 6.4.6. If T : M → M is a C1+ε Shub expanding endomorphism on a compact
connected smooth manifold M, then there exists a unique T-invariant Borel probability
measure μ on M which is absolutely continuous with respect to the Lebesgue measure
class onM. In fact, μ is equivalent to the Lebesguemeasure class onM, and μ is ergodic.

6.5 Exercises

Exercise 6.5.1. Let T : 𝕊1 → 𝕊1 be a Shub expanding map. Prove that |deg(T)| ≥ 2.

Exercise 6.5.2. Let M be a compact connected smooth manifold and f , g : M → M
be Shub expanding endomorphisms with respect to some Riemannian metric ρ onM.
Show that f ∘ g is also a Shub expanding endomorphism with respect to ρ.

Exercise 6.5.3. Suppose that f1, f2 : M → M are Shub expanding endomorphismswith
respect to Riemannian metrics ρ1 and ρ2, respectively. Is there always a Riemannian
metric ρ such that f1 ∘ f2 is expanding with respect to ρ? You may assume thatM = 𝕊1.

Exercise 6.5.4. Prove that the Cartesian product of finitely many Shub expanding en-
domorphisms is a Shub expanding endomorphism if the productmanifold is endowed
with the standard L1 product metric

⟨v,w⟩x :=
n
∑
k=1
⟨vk ,wk⟩xk .

Exercise 6.5.5. Suppose that V is an open neighborhood of the origin in a Euclidean
space ℝk and that G : V → V is a diffeomorphism. Let R > 0 be such that B(0,R) ⊆ V .
Show that the map Ĝ : ℝk → ℝk, where

Ĝ(x) = {
G(x) if x ∈ B(0,R)

G( Rx‖x‖ ) + [G
′( Rx‖x‖ )](x −

Rx
‖x‖ ) if x ∉ B(0,R)

is a diffeomorphic extension of G|B(0,R).
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7 Topological entropy
In this chapter, we study the notion of topological entropy, one of the most useful and
widely-applicable topological invariant thus far discovered. It was introduced to dy-
namical systems by Adler, Konheim, and McAndrew [2] in 1965. Their definition was
motivated by Kolmogorov and Sinai’s definition of metric/measure-theoretic entropy
introduced in [67] less than a decade earlier. In this book, we do not follow the his-
torical order of discovery of these notions. It is more suitable to present topological
entropy first.

Metric and topological entropies not only have related origins and similar names.
There are truly significant mathematical relations between them, particularly the one
given by the variational principle, which is treated at length in Chapter 12.

The topological entropy of a dynamical system T : X → X, which we introduce
in Section 7.2 and shall be denoted by htop(T), is a nonnegative extended real number
that measures the complexity of the system. Somewhat more precisely, htop(T) is the
exponential growth rate of the number of orbits separated under T. The topological
entropy of a dynamical system is defined in three stages. First, we define the entropy
of a cover of the underlying space. Second, we define the entropy of the system with
respect to any given cover. Third, the entropy of the system is defined to be the supre-
mum, over all covers, of the entropy of the system with respect to each of those.

Recall from Chapter 1 that a mathematical property is said to be a topological in-
variant for the category of topological dynamical systems if it is shared by any pair
of topologically conjugate systems. For topological entropy, being an invariant means
that if T : X → X and S : Y → Y are two topologically conjugate dynamical sys-
tems, then htop(T) = htop(S). However, the converse is generally not true. That is, if
T : X → X and S : Y → Y are two dynamical systems with equal topological entropy,
then T and S may not be topologically conjugate. You are asked to provide such an
example in Exercise 7.6.15. Therefore, topological entropy is not a complete invariant.

In Section 7.3, we treat at length Bowen’s characterization of topological entropy
in terms of separated and spanning sets.

In Chapter 11, we will introduce and deal with topological pressure, which is a
substantial generalization of topological entropy. Our approach to topological pres-
sure will stem from and extend that for topological entropy. In this sense, the present
chapter can be viewed as a preparation to Chapter 11.

7.1 Covers of a set
Definition 7.1.1. Let X be a nonempty set. A family 𝒰 of subsets of X is said to form a
cover of X if

X ⊆ ⋃
U∈𝒰

U .

Furthermore, 𝒱 is said to be a subcover of 𝒰 if 𝒱 is itself a cover and 𝒱 ⊆ 𝒰 .

https://doi.org/10.1515/9783110702682-007

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



178 | 7 Topological entropy

We will always denote covers by calligraphic letters, 𝒰 ,𝒱 ,𝒲, and so on.
Let us begin by introducing a useful way of obtaining a new cover from two exist-

ing covers.

Definition 7.1.2. If 𝒰 and 𝒱 are covers of X, then their join, denoted 𝒰 ∨𝒱, is the cover

𝒰 ∨ 𝒱 := {U ∩ V : U ∈ 𝒰 ,V ∈ 𝒱}.

Remark 7.1.3. The join operation is commutative (i. e., 𝒰 ∨ 𝒱 = 𝒱 ∨𝒰) and associative
(in other words, (𝒰 ∨ 𝒱) ∨ 𝒲 = 𝒰 ∨ (𝒱 ∨ 𝒲)). Thanks to this associativity, the join
operation extends naturally to any finite collection {𝒰j}n−1j=0 of covers of X:

n−1
⋁
j=0

𝒰j := 𝒰0 ∨ ⋅ ⋅ ⋅ ∨ 𝒰n−1 = {
n−1
⋂
j=0

Uj : Uj ∈ 𝒰j,∀0 ≤ j ≤ n − 1}.

It is also useful to be able to compare covers. For this purpose, we introduce the
following relation on the collection of all covers of a set.

Definition 7.1.4. Let 𝒰 and 𝒱 be covers of a set X. We say that 𝒱 is finer than, or a
refinement of, 𝒰 , and denote this by 𝒰 ≺ 𝒱, if every element of 𝒱 is a subset of an
element of 𝒰 . That is, for every set V ∈ 𝒱 there exists a set U ∈ 𝒰 such that V ⊆ U . It is
also sometimes said that 𝒱 is inscribed in 𝒰 , or that 𝒰 is coarser than 𝒱.

Lemma 7.1.5. Let 𝒰 , 𝒱,𝒲 , and 𝒳 be covers of a set X. Then:
(a) The refinement relation ≺ is reflexive (i. e., 𝒰 ≺ 𝒰) and transitive (i. e., if 𝒰 ≺ 𝒱 and

𝒱 ≺𝒲, then 𝒰 ≺𝒲).
(b) 𝒰 ≺ 𝒰 ∨ 𝒱 .
(c) If 𝒱 is a subcover of 𝒰 , then 𝒰 ≺ 𝒱 .
(d) 𝒰 is a subcover of 𝒰 ∨ 𝒰 . Hence, from (c) and (b), we deduce that

𝒰 ≺ 𝒰 ∨ 𝒰 ≺ 𝒰 .

Nevertheless, 𝒰 is not equal to 𝒰 ∨ 𝒰 in general.
(e) If 𝒰 ≺ 𝒱 or 𝒰 ≺𝒲, then 𝒰 ≺ 𝒱 ∨𝒲 .
(f) If 𝒰 ≺𝒲 and 𝒱 ≺𝒲, then 𝒰 ∨ 𝒱 ≺𝒲 .
(g) If 𝒰 ≺𝒲 and 𝒱 ≺ 𝒳 , then 𝒰 ∨ 𝒱 ≺𝒲 ∨ 𝒳 .

Proof. All of these properties can be proved directly and are left to the reader. As a
hint, observe that property (e) is a consequence of (b) and the transitivity part of (a),
while property (g) follows upon combining (e) and (f).

Remark 7.1.6. Although it is reflexive and transitive, the relation ≺ is not antisymmet-
ric (i. e., 𝒰 ≺ 𝒱 ≺ 𝒰 does not necessarily imply 𝒰 = 𝒱; see Lemma 7.1.5(d)). Therefore,
≺ does not generate a partial order on the collection of all covers of a set X.
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If X is a metric space, then it makes sense to talk about the diameter of a cover in
terms of the diameter of its elements. This is the purpose of the next definition.

Definition 7.1.7. If (X, d) is a metric space, then the diameter of a cover 𝒰 of X is de-
fined by

diam(𝒰) := sup{diam(U) : U ∈ 𝒰},

where

diam(U) := sup{d(x, y) : x, y ∈ U}.

It is also often of interest to know that all sets of some specified diameter are each
contained in at least one element of a given cover. This ismade precise in the following
definition.

Definition 7.1.8. A number δ > 0 is said to be a Lebesgue number for a cover 𝒰 of a
metric space (X, d) if every set of diameter at most δ is contained in an element of 𝒰 .

It is clear that if δ0 is a Lebesgue number for a cover 𝒰 , then so is any δ with 0 <
δ < δ0. One can easily prove by contradiction that every open cover of a compact
metric space admits such a number. By an open cover, we simply mean a cover whose
elements are all open subsets of the space.

7.1.1 Dynamical covers

In this subsection, we add a dynamical aspect to the above discussion. Let X be a
nonempty set and let T : X → X be a map. We will define covers that are induced by
the dynamics of the map T. First, let us define the preimage of a cover under a map.

Definition 7.1.9. Let X and Y be nonempty sets. Let h : X → Y be a map and 𝒱 be a
cover of Y . The preimage of 𝒱 under the map h is the cover of X consisting of all the
preimages of the elements of 𝒱 under h, that is,

h−1(𝒱) := {h−1(V) : V ∈ 𝒱}.

We now show that, as far as set operations go, the operator h−1 behaves well with
respect to cover operations.

Lemma 7.1.10. Let h : X → Y be a map, and 𝒰 and 𝒱 be covers of Y. The following
assertions hold:
(a) The map h−1 preserves the refinement relation, that is,

𝒰 ≺ 𝒱 ⇒ h−1(𝒰) ≺ h−1(𝒱).

Moreover, if 𝒱 is a subcover of 𝒰 then h−1(𝒱) is a subcover of h−1(𝒰).
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(b) The map h−1 respects the join operation, that is,

h−1(𝒰 ∨ 𝒱) = h−1(𝒰) ∨ h−1(𝒱).

Note that if Y = X, then by induction h−n enjoys these properties for any n ∈ ℕ.

Proof. These assertions are straightforward toprove andare thus left to the reader.

We now introduce covers that follow the orbits of a given map by indicating to
which elements of a given cover the successive iterates of the map belong.

Definition 7.1.11. Let T : X → X be a map and 𝒰 be a cover of X. For every n ∈ ℕ and
0 ≤ m < n, define the dynamical cover

𝒰n
m :=

n−1
⋁
j=m

T−j(𝒰) = T−m(𝒰) ∨ T−(m+1)(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)(𝒰).

To lighten notation, we will write 𝒰n in lieu of 𝒰n
0 .

A typical element of 𝒰n is of the formU0 ∩T−1(U1)∩T−2(U2)∩ . . .∩T−(n−1)(Un−1) for
some U0,U1,U2, . . . ,Un−1 ∈ 𝒰 . This element is the set of all points of X whose iterates
under T fall successively into the elements U0,U1,U2, and so on, up to Un−1.

Lemma 7.1.12. Let 𝒰 and 𝒱 be covers of a set X. Let T : X → X be a map. For every
k,m, n ∈ ℕ, the following statements hold:
(a) If 𝒰 ≺ 𝒱, then 𝒰n ≺ 𝒱n.
(b) (𝒰 ∨ 𝒱)n = 𝒰n ∨ 𝒱n.
(c) 𝒰n ≺ 𝒰n+1.
(d) (𝒰k)n ≺ 𝒰n+k−1 ≺ (𝒰k)n.
(e) 𝒰n

m = T
−k(𝒰n−k

m−k) for all k ≤ m < n. In particular, 𝒰
n
m = T

−m(𝒰n−m).

Proof. Property (a) follows directly from Lemmas 7.1.10(a) and 7.1.5(g). Property (b) is a
consequence of Lemma 7.1.10(b) and the associativity of the join operation. As 𝒰n+1 =
𝒰n ∨ T−n(𝒰), property (c) follows from an application of Lemma 7.1.5(b). Property (d)
is a little more intricate to prove. Using Lemma 7.1.10(b) and Remark 7.1.3, we obtain
that

(𝒰k)n = 𝒰k ∨ T−1(𝒰k) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)(𝒰k)

= (𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰)) ∨ T−1(𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰)) ∨ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ∨ T−(n−1)(𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰))

= 𝒰 ∨ (T−1(𝒰) ∨ T−1(𝒰)) ∨ (T−2(𝒰) ∨ T−2(𝒰) ∨ T−2(𝒰)) ∨ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ∨ (T−(n+k−3)(𝒰) ∨ T−(n+k−3)(𝒰)) ∨ T−(n+k−2)(𝒰).
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Now, according to Lemma 7.1.5(d), T−j(𝒰) ≺ T−j(𝒰) ∨ T−j(𝒰) ≺ T−j(𝒰) for all j ∈ ℕ. We
deduce from a repeated application of Lemma 7.1.5(g) that

T−j(𝒰) ≺
m
⋁
l=1

T−j(𝒰) ≺ T−j(𝒰), ∀m ∈ ℕ.

Another round of repeated applications of Lemma 7.1.5(g) allows us to conclude that

(𝒰k)n ≺ 𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(n+k−3)(𝒰) ∨ T−(n+k−2)(𝒰) ≺ (𝒰k)n.

That is,

(𝒰k)n ≺ 𝒰n+k−1 ≺ (𝒰k)n.

Finally, property (e) follows from Lemma 7.1.10(b) with h = Tk since

𝒰n
m =

n−1
⋁
j=m

T−j(𝒰) = T−k(
n−k−1
⋁

j=m−k
T−j(𝒰)) = T−k(𝒰n−k

m−k).

7.2 Definition of topological entropy via open covers

The definition of topological entropy via open covers only requires the underlying
space to be a topological space. It need not be a metrizable space. The topological
entropy of a dynamical system T : X → X is defined in three stages, which, for clarity
of exposition, we split into the following three subsections.

7.2.1 First stage: entropy of an open cover

At this stage, the dynamics of the system T are not in consideration. We simply look
at the difficulty of covering the underlying compact space X with open covers.

Definition 7.2.1. Let 𝒰 be an open cover of X. Define

Z1(𝒰) := min{#𝒱 : 𝒱 is a subcover of 𝒰}.

That is, Z1(𝒰) denotes the minimum number of elements of 𝒰 necessary to cover X.
A subcover of 𝒰 whose cardinality equals this minimum number is called a minimal
subcover of 𝒰 .

Every open cover admits at least one minimal subcover and any such subcover is
finite since X is compact. Thus 1 ≤ Z1(𝒰) <∞ for all open covers 𝒰 of X.

We now observe that the function Z1(⋅) acts as desired with respect to the refine-
ment relation. In other words, the finer the cover, the larger the minimum number of
elements required to cover the space, that is, the more difficult it is to cover the space.
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Lemma 7.2.2. If 𝒰 ≺ 𝒱, then Z1(𝒰) ≤ Z1(𝒱). In particular, this holds if 𝒱 is a subcover
of 𝒰 .

Proof. Let 𝒰 ≺ 𝒱. For every V ∈ 𝒱 , there exists a set i(V) ∈ 𝒰 such that V ⊆ i(V). This
defines a function i : 𝒱 → 𝒰 . Let𝒲 be a minimal subcover of 𝒱. Then i(𝒲) := {i(W) :
W ∈𝒲} ⊆ 𝒰 is a cover of X since

X ⊆ ⋃
W∈𝒲

W ⊆ ⋃
W∈𝒲

i(W).

Thus i(𝒲) is a subcover of 𝒰 , and hence

Z1(𝒰) ≤ #i(𝒲) ≤ #𝒲 = Z1(𝒱).

Another fundamental property of the function Z1(⋅) is that it is submultiplicative
with respect to the join operation. Recall that a sequence (an)∞n=1 of real numbers is
said to be submultiplicative if

am+n ≤ aman, ∀m, n ∈ ℕ.

Lemma 7.2.3. Let 𝒰 and 𝒱 be open covers of X. Then

Z1(𝒰 ∨ 𝒱) ≤ Z1(𝒰) ⋅ Z1(𝒱).

Proof. Let 𝒰 be aminimal subcover of 𝒰 and 𝒱 be aminimal subcover of 𝒱. Then 𝒰 ∨𝒱
is a subcover of 𝒰 ∨ 𝒱. Therefore,

Z1(𝒰 ∨ 𝒱) ≤ #(𝒰 ∨ 𝒱) ≤ #𝒰 ⋅ #𝒱 = Z1(𝒰) ⋅ Z1(𝒱).

We can now define the entropy of a cover.

Definition 7.2.4. Let 𝒰 be an open cover of X. The entropy of 𝒰 is defined to be

H(𝒰) := log Z1(𝒰).

So, the entropy of an open cover is simply the logarithm of the minimum number
of elements of that cover needed to cover the space. The presence of the logarithm
function shall be explained shortly. If the entropy of a given cover is to accurately
reflect the complexity of that cover, that is, the number of elements necessary for cov-
ering the space, then the finer the cover, the larger its entropy should be. In other
words, entropy of covers should be increasing with respect to the refinement relation.
This, along with other basic properties of the entropy of covers, is shown to hold in
the following lemma.

Lemma 7.2.5. Let 𝒰 and 𝒱 be open covers of X. Entropy of covers satisfies the following
properties:
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(a) 0 ≤ H(𝒰) <∞.
(b) H(𝒰) = 0 if and only if X ∈ 𝒰 .
(c) If 𝒰 ≺ 𝒱, then H(𝒰) ≤ H(𝒱).
(d) H(𝒰 ∨ 𝒱) ≤ H(𝒰) + H(𝒱).

Proof. The first two properties come directly from entropy’s definition. The third fol-
lows from Lemma 7.2.2 and the fact that the logarithm is an increasing function. The
fourth and final property follows from Lemma 7.2.3.

7.2.2 Second stage: entropy of a system relative to an open cover

In this second stage, wewill take into account the dynamics of the topological dynam-
ical system T : X → X. Since T is continuous, every open cover 𝒰 of X generates the
sequence of dynamical covers (𝒰n)∞n=1, all of which are also open.

Definition 7.2.6. Let 𝒰 be an open cover of X. For every n ∈ ℕ, define Zn(𝒰) to be

Zn(𝒰) := Z1(𝒰
n) = min{#𝒱 : 𝒱 is a subcover of 𝒰n}.

Thus Zn(𝒰) is the minimum number of elements of 𝒰n needed to cover X. This
number describes the complexity of the dynamics of T with respect to 𝒰 from time 0
until time n − 1. Observe also that

Zn(𝒰) = exp(H(𝒰
n)).

For a given open cover, the sequence (Zn(⋅))∞n=1 has an interesting property.

Lemma 7.2.7. For any open cover 𝒰 of X, the sequence (Zn(𝒰))∞n=1 is nondecreasing.

Proof. Since 𝒰n ≺ 𝒰n+1 for all n ∈ ℕ according to Lemma 7.1.12(c), the sequence
(Zn(𝒰))∞n=1 = (Z1(𝒰

n))∞n=1 is nondecreasing by Lemma 7.2.2.

As the next lemma shows, like the function Z1(⋅), the functions Zn(⋅) respect the
refinement relation.

Lemma 7.2.8. If 𝒰 ≺ 𝒱, then Zn(𝒰) ≤ Zn(𝒱), and thus H(𝒰n) ≤ H(𝒱n) for every n ∈ ℕ.
In particular, these inequalities hold if 𝒱 is a subcover of 𝒰 .

Proof. If 𝒰 ≺ 𝒱, then Lemma 7.1.12(a) states that 𝒰n ≺ 𝒱n for every n ∈ ℕ. It follows
from Lemma 7.2.2 that

Zn(𝒰) = Z1(𝒰
n) ≤ Z1(𝒱

n) = Zn(𝒱).

Since the logarithm is an increasing function, it ensues that

H(𝒰n) = log Zn(𝒰) ≤ log Zn(𝒱) = H(𝒱
n).
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Similar to the function Z1(⋅), the functions Zn(⋅) are submultiplicative with respect
to the join operation.

Lemma 7.2.9. Let 𝒰 and 𝒱 be open covers of X and let n ∈ ℕ. Then

Zn(𝒰 ∨ 𝒱) ≤ Zn(𝒰)Zn(𝒱),

and thus

H((𝒰 ∨ 𝒱)n) ≤ H(𝒰n) + H(𝒱n).

Proof. Using Lemmas 7.1.12(b) and 7.2.3, we obtain that

Zn(𝒰 ∨ 𝒱) = Z1((𝒰 ∨ 𝒱)
n) = Z1(𝒰

n ∨ 𝒱n)

≤ Z1(𝒰
n)Z1(𝒱

n) = Zn(𝒰)Zn(𝒱).

Taking the logarithm of both sides gives H((𝒰 ∨ 𝒱)n) ≤ H(𝒰n) + H(𝒱n).

We now refocus our attention on the sequence (Zn(𝒰))∞n=1 for a given open cover 𝒰
of X. We have already established in Lemma 7.2.7 that this sequence is nondecreasing.
Lemma 7.2.3 suggests that this sequence might be submultiplicative and might even
growexponentiallywith n. This explains the use of the logarithm function. Byworking
in a logarithmic scale,we study the exponential growth rate of thenumbers (Zn(𝒰))∞n=1.
Thiswill further ensure that the entropy of the systemwith respect to any specific open
cover is finite.

Lemma 7.2.10. For any open cover 𝒰 of X, the sequence (Zn(𝒰))∞n=1 is submultiplicative.

Proof. Letm, n ∈ ℕ. Choose a minimal subcover𝒜 of 𝒰m and aminimal subcover ℬ of
𝒰n. Using Lemma 7.1.10, we obtain that the open cover𝒜 ∨ T−m(ℬ) satisfies

𝒜 ∨ T−m(ℬ) ⊆ 𝒰m ∨ T−m(𝒰n)

= (𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(m−1)(𝒰)) ∨ T−m(𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)(𝒰))
= 𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(m−1)(𝒰) ∨ T−m(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(m+n−1)(𝒰)
= 𝒰m+n.

That is,𝒜 ∨ T−m(ℬ) is a subcover of 𝒰m+n. Consequently,

Zm+n(𝒰) ≤ #(𝒜 ∨ T
−m(ℬ)) ≤ #𝒜 ⋅ #(T−m(ℬ)) ≤ #𝒜 ⋅ #ℬ = Zm(𝒰)Zn(𝒰).

This establishes the submultiplicativity of the sequence (Zn(𝒰))∞n=1.

We immediately deduce the following.

Corollary 7.2.11. For any open cover 𝒰 of X, the sequence (H(𝒰n))∞n=1 is subadditive.
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Proof. Since Zm+n(𝒰) ≤ Zm(𝒰)Zn(𝒰) for allm, n ∈ ℕ according to Lemma 7.2.10, taking
the logarithm of both sides yields that

H(𝒰m+n) = log Zm+n(𝒰) ≤ log Zm(𝒰) + log Zn(𝒰) = H(𝒰
m) + H(𝒰n).

We are now ready to take the second step in the definition of the topological en-
tropy of a system.

Definition 7.2.12. Let T : X → X be a dynamical system and let 𝒰 be an open cover of
X. The topological entropy of T with respect to 𝒰 is defined as

htop(T ,𝒰) := lim
n→∞

1
n
H(𝒰n) = inf

n∈ℕ

1
n
H(𝒰n).

The existence of the limit and its equality with the infimum follow directly from
combining Corollary 7.2.11 and Lemma 3.2.17. Furthermore, note that

htop(T ,𝒰) = lim
n→∞

1
n
log Zn(𝒰) = infn∈ℕ

1
n
log Zn(𝒰).

Remark 7.2.13. Since 1 ≤ Zn(𝒰) <∞ for all n ∈ ℕ, we readily see that

0 ≤ htop(T ,𝒰) ≤ H(𝒰) <∞.

Similar to the functions Zn(⋅), the topological entropy with respect to covers re-
spects the refinement relation. It is also subadditive with respect to the join operation,
as the following proposition shows.

Proposition 7.2.14. Let 𝒰 and 𝒱 be open covers of X.
(a) If 𝒰 ≺ 𝒱, then htop(T ,𝒰) ≤ htop(T ,𝒱). In particular, if 𝒱 is a subcover of 𝒰 then

htop(T ,𝒰) ≤ htop(T ,𝒱).
(b) htop(T ,𝒰 ∨ 𝒱) ≤ htop(T ,𝒰) + htop(T ,𝒱).

Proof. (a) ByLemma7.2.8,wehaveZn(𝒰) ≤ Zn(𝒱) for everyn ∈ ℕ. Taking the logarithm
of both sides, dividing by n and passing to the limit as n tends to infinity, we deduce
that htop(T ,𝒰) ≤ htop(T ,𝒱) whenever 𝒰 ≺ 𝒱.

(b) By Lemma 7.2.9, we have Zn(𝒰 ∨ 𝒱) ≤ Zn(𝒰)Zn(𝒱) for every n ∈ ℕ. Taking the
logarithm of both sides, dividing by n and passing to the limit as n tends to infinity,
we conclude that htop(T ,𝒰 ∨ 𝒱) ≤ htop(T ,𝒰) + htop(T ,𝒱).

An interesting property of the entropy of a system with respect to a given cover is
that it remains the same for all dynamical covers generated by that cover.

Lemma 7.2.15. htop(T ,𝒰k) = htop(T ,𝒰) for each k ∈ ℕ.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



186 | 7 Topological entropy

Proof. The case k = 1 is trivial. So suppose that k ≥ 2. Letn ∈ ℕ. Lemma7.1.12(d) asserts
that (𝒰k)n ≺ 𝒰n+k−1 ≺ (𝒰k)n. From Lemma 7.2.2, we infer that Z1((𝒰k)n) = Z1(𝒰n+k−1),
and thus

Zn(𝒰
k) = Z1((𝒰

k)n) = Z1(𝒰
n+k−1) = Zn+k−1(𝒰).

Therefore,

htop(T ,𝒰
k) = lim

n→∞
1
n
log Zn(𝒰

k) = lim
n→∞

n + k − 1
n(n + k − 1)

log Zn+k−1(𝒰)

= lim
n→∞

n + k − 1
n
⋅ lim
n→∞

1
n + k − 1

log Zn+k−1(𝒰) = htop(T ,𝒰).

7.2.3 Third and final stage: entropy of a system

At this point, we are in a position to give the definition of the topological entropy of
a dynamical system T : X → X. The topological entropy of T is defined to be the
supremum over all open covers, of the entropy of the system with respect to each of
these covers.

Definition 7.2.16. The topological entropy of T is defined to be

htop(T) := sup{htop(T ,𝒰) : 𝒰 is an open cover of X}.

Remark 7.2.17.
(a) In view of Remark 7.2.13, we have that 0 ≤ htop(T) ≤∞.
(b) The topological entropy of the identity map Id(x) = x is zero. Indeed, for any open

cover 𝒰 of X we have that 𝒰n = 𝒰 , and hence Zn(𝒰) = Z1(𝒰), for every n ∈ ℕ. Thus
htop(Id,𝒰) = 0 for all open covers 𝒰 of X, and thereby htop(Id) = 0.

(c) Despite the fact that htop(T ,𝒰) < ∞ for every open cover 𝒰 of X, there exist dy-
namical systems T that have infinite topological entropy.

(d) As every open cover of a compact space admits a finite subcover, it follows from
Proposition 7.2.14(a) that the supremum in the definition of topological entropy
can be restricted to finite open covers.

Our next aim is to address themost important and natural question: Is topological
entropy a topological conjugacy invariant? Before answering this question, the reader
might like to recall from Chapter 1 that if T : X → X and S : Y → Y are two dynamical
systems for which there exists a continuous surjection h : X → Y such that h∘T = S ∘h,
then S is said to be a factor of T. In such a situation, it is intuitively clear that htop(S) ≤
htop(T) since every orbit of T is projected onto an orbit of S. Thus T may have “more”
orbits (in some sense) than S and is therefore at least as complex as S.
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Proposition 7.2.18. If T : X → X and S : Y → Y are two dynamical systems such that S
is a factor of T, then

htop(S) ≤ htop(T).

In particular, if S and T are topologically conjugate, then htop(S) = htop(T).

Proof. Let h : X → Y be a factor map, so that h ∘ T = S ∘ h. Since h is a continuous
surjection, every open cover 𝒱 of Y can be lifted to the open cover h−1(𝒱) of X. We shall
prove that htop(T , h−1(𝒱)) = htop(S,𝒱) for every open cover 𝒱 of Y . From this, we shall
conclude that

htop(T) = sup{htop(T ,𝒰) : 𝒰 open cover of X}
≥ sup{htop(T , h

−1(𝒱)) : 𝒱 open cover of Y}
= sup{htop(S,𝒱) : 𝒱 open cover of Y}
= htop(S).

In particular, if S and T are topologically conjugate, then S is a factor of T and T is a
factor of S. So htop(T) ≥ htop(S) and htop(S) ≥ htop(T), that is, htop(S) = htop(T).

It remains to prove that htop(T , h−1(𝒱)) = htop(S,𝒱) for each open cover 𝒱 of Y . Fix
n ∈ ℕmomentarily. The respective actions of the maps S and T on 𝒱 and h−1(𝒱) until
time n − 1 will be denoted by 𝒱n

S and (h
−1(𝒱))nT . Then

(h−1(𝒱))nT = h
−1(𝒱) ∨ T−1(h−1(𝒱)) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)(h−1(𝒱))

= h−1(𝒱) ∨ (h ∘ T)−1(𝒱) ∨ ⋅ ⋅ ⋅ ∨ (h ∘ Tn−1)−1(𝒱)

= h−1(𝒱) ∨ (S ∘ h)−1(𝒱) ∨ ⋅ ⋅ ⋅ ∨ (Sn−1 ∘ h)−1(𝒱)
= h−1(𝒱) ∨ h−1(S−1(𝒱)) ∨ ⋅ ⋅ ⋅ ∨ h−1(S−(n−1)(𝒱))
= h−1(𝒱 ∨ S−1(𝒱) ∨ ⋅ ⋅ ⋅ ∨ S−(n−1)(𝒱))
= h−1(𝒱n

S ).

Therefore,

Zn(T , h
−1(𝒱)) = Z1((h

−1(𝒱))nT) = Z1(h
−1(𝒱n

S )) ≤ Z1(𝒱
n
S ) = Zn(S,𝒱).

Since h is surjective, (h−1(𝒱))nT = h
−1(𝒱n

S ) implies that h((h−1(𝒱))nT ) = 𝒱
n
S . Thus,

Zn(S,𝒱) = Z1(𝒱
n
S ) = Z1(h((h

−1(𝒱))nT)) ≤ Z1((h
−1(𝒱))nT) = Zn(T , h

−1(𝒱)).

Combining the previous two inequalities, we obtain that

Zn(T , h
−1(𝒱)) = Zn(S,𝒱).

Since nwas chosen arbitrarily, by successively taking the logarithm of both sides,
dividing by n and passing to the limit as n tends to infinity, we conclude that

htop(T , h
−1(𝒱)) = htop(S,𝒱).
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We have now shown that topological entropy is indeed a topological conjugacy
invariant. Let us now study its behavior with respect to the iterates of the system.

Theorem 7.2.19. For every k ∈ ℕ, we have htop(Tk) = k htop(T).

Proof. Fix k ∈ ℕ. Let 𝒰 be an open cover of X. The action of themap Tk on 𝒰 until time
n − 1 will be denoted by 𝒰n

Tk . For every n ∈ ℕ, we have that

𝒰n
Tk = 𝒰 ∨ T−k(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)k(𝒰)

≺ 𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−k(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)k(𝒰)
= 𝒰 (n−1)k+1.

By Lemma 7.2.2, it ensues that

Zn(T
k ,𝒰) = Z1(𝒰

n
Tk ) ≤ Z1(𝒰

(n−1)k+1) = Z(n−1)k+1(T ,𝒰).

Consequently,

htop(T
k ,𝒰) = lim

n→∞
1
n
log Zn(T

k ,𝒰)

≤ lim
n→∞
(n − 1)k + 1

n
1

(n − 1)k + 1
log Z(n−1)k+1(T ,𝒰)

= lim
n→∞
(n − 1)k + 1

n
⋅ lim
n→∞

1
(n − 1)k + 1

log Z(n−1)k+1(T ,𝒰)

= k ⋅ htop(T ,𝒰).

The inequality arises from the fact that there were gaps in the iterates of T in the cover
𝒰n
Tk that are not present in 𝒰 (n−1)k+1. We can fill in those gaps by considering 𝒰k rather

than 𝒰 . Indeed,

(𝒰k)nTk = 𝒰k ∨ T−k(𝒰k) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)k(𝒰k)

= (𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰))
∨ T−k(𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰))
∨ ⋅ ⋅ ⋅

∨ T−(n−1)k(𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰))
= 𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰)
∨ T−k(𝒰) ∨ T−(k+1)(𝒰) ∨ T−(k+2)(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(2k−1)(𝒰)
∨ ⋅ ⋅ ⋅

∨ T−(n−1)k(𝒰) ∨ T−((n−1)k+1)(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(nk−1)(𝒰)
= 𝒰nk .

Therefore,

Zn(T
k ,𝒰k) = Z1((𝒰

k)nTk ) = Z1(𝒰
nk) = Znk(T ,𝒰).
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Consequently,

htop(T
k ,𝒰k) = lim

n→∞
1
n
log Zn(T

k ,𝒰k) = k ⋅ lim
n→∞

1
nk

log Znk(T ,𝒰) = k ⋅ htop(T ,𝒰).

Using Lemma 7.2.15, we conclude that

htop(T
k) = sup{htop(T

k ,𝒰) : 𝒰 open cover of X}

= sup{htop(T
k ,𝒰k) : 𝒰 open cover of X}

= k sup{htop(T ,𝒰) : 𝒰 open cover of X} = k htop(T).

Taking a supremum over the collection of all (finite) open covers can be inconve-
nient, to say the least. Indeed, this collection is usually uncountable. We would thus
like to identify situations in which the topological entropy of a system is determined
by the topological entropy of the system with respect to a countable family of covers,
that is, with respect to a sequence of covers. If topological entropy really provides a
good description of the complexity of the dynamics of the system, then it is natural
to request that this sequence of covers eventually become finer and finer, and that
it encompass the structure of the underlying space at increasingly small scales. In a
metrizable space, this suggests looking at the diameter of the covers.

The forthcoming lemma is the first result that requires the underlying space to be
metrizable. In this lemma, note that 𝒰n is a general cover. In particular, it is typically
not equal to the dynamical cover 𝒰n. So, take care not to confuse the two.

Lemma 7.2.20. The following quantities are all equal:
(a) htop(T).
(b) sup{htop(T ,𝒰) : 𝒰 open cover with diam(𝒰) ≤ δ} for any δ > 0.
(c) limε→0 htop(T ,𝒰ε) for any open covers (𝒰ε)ε∈(0,∞) such that limε→0 diam(𝒰ε) = 0.
(d) limn→∞ htop(T ,𝒰n) for any open covers (𝒰n)∞n=1 such that limn→∞ diam(𝒰n) = 0.

Proof. Clearly, (a)≥(b). It is also easy to see that (b)≥(c) for any δ > 0 and any family
(𝒰ε)ε∈(0,∞) as described, and that (b)≥(d) for any sequence (𝒰n)∞n=1 as specified. It thus
suffices to prove that (c)≥(a) and (d)≥(a). Actually, wewill prove that (d)=(a) and leave
to the reader the task of adapting that proof to establish that (c)=(a).

Let 𝒱 be any open cover of X, and let δ(𝒱) be a Lebesgue number for 𝒱. As
limn→∞ diam(𝒰n) = 0, there exists N ∈ ℕ such that diam(𝒰n) < δ(𝒱) for each n ≥ N .
Fix n ≥ N momentarily. As diam(𝒰n) < δ(𝒱), every member of 𝒰n is contained in a
member of 𝒱. Thus 𝒱 ≺ 𝒰n. By Proposition 7.2.14(a), we obtain that

htop(T ,𝒱) ≤ htop(T ,𝒰n).
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Since this is true for all n ≥ N, we deduce that

htop(T ,𝒱) ≤ infn≥N
htop(T ,𝒰n) ≤ lim inf

n→∞
htop(T ,𝒰n).

As the open cover 𝒱 was chosen arbitrarily, we conclude that

htop(T) = sup
𝒱

htop(T ,𝒱) ≤ lim inf
n→∞

htop(T ,𝒰n)

≤ lim sup
n→∞

htop(T ,𝒰n)

≤ sup
𝒰

htop(T ,𝒰) = htop(T),

which implies that htop(T) = limn→∞ htop(T ,𝒰n).

Part (d) of Lemma 7.2.20 characterized the topological entropy of a system as the
limit of the topological entropy of the system relative to a sequence of covers. An even
better result would be the characterization of the topological entropy as the topologi-
cal entropy with respect to a single cover. This quest suggests introducing the follow-
ing notion.

Definition 7.2.21. An open cover 𝒰 of a metric space (X, d) is said to be a generator for
a topological dynamical system T : X → X if

lim
n→∞

diam(𝒰n) = 0.

Lemma 7.2.22. If a system T : X → X has a generator 𝒰 , then

htop(T) = htop(T ,𝒰).

Proof. It follows from Lemma 7.2.20 (with 𝒰n = 𝒰
n) and Lemma 7.2.15 that

htop(T) = lim
n→∞

htop(T ,𝒰
n) = lim

n→∞
htop(T ,𝒰) = htop(T ,𝒰).

It is natural to wonder about the class(es) of systems that admit a generator.

Lemma 7.2.23. A topological dynamical system T : X → X admits a generator if and
only if it is expansive. In fact, if T is δ-expansive when the compact metric space X is
equipped with a metric d, then every open cover 𝒰 of X such that diam(𝒰) ≤ δ is a
generator for T.

Proof. Suppose that an open cover 𝒱 is a generator for T. Let δ be a Lebesgue number
for 𝒱. If d(Tn(x),Tn(y)) ≤ δ for all n ≥ 0, then for every n there exists Vn ∈ 𝒱 such that
Tn(x),Tn(y) ∈ Vn. Therefore x, y ∈ ⋂

∞
n=0 T
−n(Vn). This implies that x, y lie in a common

member of 𝒱N for all N ∈ ℕ. Since limN→∞ diam(𝒱N ) = 0, we conclude that x = y. So
δ is an expansive constant for T.
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The converse implication can be seen as an immediate consequence of uniform
expansiveness. See Proposition 5.2.2. Nevertheless, we provide a direct proof. Let 𝒰 =
{Ue : e ∈ E} be a finite open cover of X with diam(𝒰) ≤ δ. This means that E is a finite
index set (an alphabet), and E∞ is compact when endowed with any of the metrics
ds(ω, τ) = s|ω∧τ| (cf. Definition 3.1.10 and Lemma 3.1.7). Let ε > 0. We must show that
there exists N ∈ ℕ such that diam(𝒰n) < ε for all n ≥ N . First, we claim that for every
ω ∈ E∞, the set

∞
⋂
j=0

T−j(Uωj
)

comprises at most one point. To show this, let x, y ∈ ⋂∞j=0 T
−j(Uωj
). Then T j(x),T j(y) ∈

Uωj
for all j ≥ 0. So, for all j ≥ 0,

d(T j(x),T j(y)) ≤ diam(Uωj
) = diam(Uωj

) ≤ diam(𝒰) ≤ δ.

By the δ-expansiveness of T, we deduce that x = y and the claim is proved. It follows
from this fact that

lim
n→∞

diam(
n−1
⋂
j=0

T−j(Uωj
)) = 0, ∀ω ∈ E∞.

Otherwise, a compactness argument shows that the set ⋂∞j=0 T
−j(Uωj
) would contain

at least two points (see Exercise 7.6.6), which would contradict the claim established
above.

Thus, for every ω ∈ E∞ there exists a smallest N(ω) ∈ ℕ such that

diam(
N(ω)−1
⋂
j=0

T−j(Uωj
)) < ε.

This defines a function N : E∞ → ℕ. We claim that this function is locally con-
stant and thereby continuous. Indeed, let ω ∈ E∞ and pick any τ ∈ [ω|N(ω)] =
[ω0ω1ω2 . . .ωN(ω)−1]. Then τj = ωj for all 0 ≤ j < N(ω). Therefore, for all 1 ≤ n ≤ N(ω),
we have that

n−1
⋂
j=0

T−j(Uτj ) =
n−1
⋂
j=0

T−j(Uωj
).

This implies that for all 1 ≤ n < N(ω),

diam(
n−1
⋂
j=0

T−j(Uτj )) = diam(
n−1
⋂
j=0

T−j(Uωj
)) ≥ ε,

whereas

diam(
N(ω)−1
⋂
j=0

T−j(Uτj )) = diam(
N(ω)−1
⋂
j=0

T−j(Uωj
)) < ε.
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Thus N(τ) = N(ω) for every τ ∈ [ω|N(ω)]. This proves that N is a locally constant
function.

Since N is continuous and E∞ is compact, the image N(E∞) is a compact subset
of ℕ and is hence bounded. Set Nmax := max{N(ω) : ω ∈ E∞} < ∞. Then for every
n ≥ Nmax and for every ω ∈ E∞, we have

diam(
n−1
⋂
j=0

T−j(Uωj
)) ≤ diam(

Nmax−1
⋂
j=0

T−j(Uωj
)) ≤ diam(

N(ω)−1
⋂
j=0

T−j(Uωj
)) < ε.

So diam(𝒰n) < ε for all n ≥ Nmax. As ε > 0 was chosen arbitrarily, we conclude that 𝒰
is a generator for T.

In light of the previous two results, the topological entropy of an expansive system
can be characterized as the topological entropy of that systemwith respect to a single
cover.

Theorem 7.2.24. If T : X → X is a δ-expansive dynamical system on a compact metric
space (X, d), then

htop(T) = htop(T ,𝒰)

for any open cover 𝒰 of X with diam(𝒰) ≤ δ.

Proof. This is an immediate consequence of Lemmas 7.2.22 and 7.2.23.

Remark 7.2.25. Notice that Theorem 7.2.24 immediately implies that the topological
entropy of an expansive dynamical system on a compact metric space is finite.

Example 7.2.26. Let E be a finite alphabet and A be an incidence/transition matrix.
Let σ : E∞A → E∞A be the corresponding subshift of finite type. We will show that

htop(σ) = log r(A),

where r(A) is the spectral radius of A. Recall from Example 5.1.4 that the shift map σ
is expansive and has for an expansive constant any 0 < δ < 1 when E∞A is endowed
with any metric ds(ω, τ) = s|ω∧τ|, where 0 < s < 1. Choose 𝒰 := {[e] : e ∈ E} as
a (finite) open cover of E∞A . So 𝒰 is the open partition of E∞A into initial 1-cylinders.
Since diam(𝒰) = s < 1, in light of Theorem 7.2.24 we know that htop(σ) = htop(σ,𝒰). In
order to compute htop(σ,𝒰), notice that for each n ∈ ℕ we have

𝒰n = σ−(n−1)(𝒰) = {[ω] : ω ∈ EnA}.

That is to say, 𝒰n is the open partition of E∞A into initial cylinders of length n. Since
the only subcover that a partition admits is itself, we obtain that

Zn(𝒰) = #E
n
A.
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Consequently,

htop(σ) = htop(σ,𝒰) = lim
n→∞

1
n
log Zn(𝒰) = lim

n→∞
1
n
log #EnA = log r(A).

The last equality follows from Theorem 3.2.24.

Example 7.2.27. IfE is a finite alphabet, then the topological entropyof the fullE-shift
is equal to log #E. This is a special case of the previous example with A as the matrix
that consists only of 1’s. Alternatively, notice that #(En) = (#E)n.

We shall now compute the topological entropy of a particular subshift of finite
type, the well-known golden mean shift, which was introduced in Exercise 3.4.9. Per-
haps not surprisingly, given its name, it will turn out that the topological entropy of
the golden mean shift is equal to the logarithm of the golden mean.

Example 7.2.28. Let σ : E∞A → E∞A be the golden mean shift, that is, the subshift of
finite type induced by the incidence matrix

A = [ 1 1
1 0
] .

By Example 7.2.26, the computation of the topological entropy of a subshift of finite
type boils down to counting the number of initial n-cylinders for all but finitely many
n’s, ormore simply to computing the largest eigenvalue (in absolute value) of the tran-
sition matrix A.

The reader can calculate that the golden mean γ := (1 +√5)/2 and its conjugate
γ∗ := (1 −√5)/2 are the eigenvalues of the matrix A. Therefore,

htop(σ) = log r(A) = logmax{|γ|, γ
∗} = logγ.

Alternatively, one can prove by induction that #(EnA) = fn+2, where fn is the nth Fi-
bonacci number (see Exercise 7.6.7). Then one can verify by induction that

fn =
1
√5
[γn − (γ∗)n] =

γn

√5
[1 − (γ∗/γ)n].

It follows immediately that

htop(σ) = limn→∞
1
n
log #(EnA) = lim

n→∞
1
n
log fn+2

= lim
n→∞

1
n
log(γ

n+2

√5
[1 − (γ∗/γ)n+2])

= lim
n→∞

1
n
((n + 2) logγ − log√5 + log[1 − (γ∗/γ)n+2])

= logγ.
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7.3 Bowen’s definition of topological entropy

In this section,wepresent an alternative definition of topological entropy due to Rufus
Bowen. In contrast with the definition via open covers, this definition is only valid in a
metric spaceX. Although Bowen’s definition doesmake sense in a noncompactmetric
space, we will as usual assume that X is compact throughout.

Let T : X → X be a dynamical system on a compact metric space (X, d). Recall
from Definition 5.1.3 the dynamical metrics (also called Bowen’s metrics), dn, for each
n ∈ ℕ:

dn(x, y) = max{d(T j(x),T j(y)) : 0 ≤ j < n}.

The open ball centered at x of radius r induced by the metric dn is denoted by Bn(x, r)
and is called the dynamical (n, r)-ball at x. As d1 = d, we shall denote B1(x, r) simply
by B(x, r). Finally, observe that

Bn(x, r) = {y ∈ X : dn(x, y) < r} =
n−1
⋂
j=0

T−j(B(T j(x), r)).

In other words, the ball Bn(x, r) consists of those points whose iterates stay within a
distance r from the corresponding iterates of x until time n− 1 at least. In the language
of Chapter 4, the ball Bn(x, r) is the set of all those points whose orbits are r-shadowed
by the orbit of x until time n − 1 at least.

Definition 7.3.1. A subset E of X is said to be (n, ε)-separated if E is ε-separated with
respect to the metric dn, which is to say that dn(x, y) ≥ ε for all x, y ∈ E with x ̸= y.

Remark 7.3.2.
(a) If E is an (m, ε)-separated set andm < n, then E is also (n, ε)-separated.
(b) If E is an (n, ε′)-separated set and ε < ε′, then E is also (n, ε)-separated.
(c) Given that the underlying space X is compact, any (n, ε)-separated set is finite.

Indeed, letE be an (n, ε)-separated set, and consider the family of balls {Bn(x, ε/2) :
x ∈ E}. If the intersection of Bn(x, ε/2) and Bn(y, ε/2) is nonempty for some x, y ∈ E,
then there exists z ∈ Bn(x, ε/2) ∩ Bn(y, ε/2) and it follows that

dn(x, y) ≤ dn(x, z) + dn(z, y) < ε/2 + ε/2 = ε.

As E is an (n, ε)-separated set, this inequality implies that x = y. This means that
the balls {Bn(x, ε/2) : x ∈ E} are mutually disjoint. Hence, as X is compact, there
can only be finitely many points in E.

The largest separated sets will be especially useful in describing the complexity
of the dynamics that the system exhibits.
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Definition 7.3.3. A subset E of X is called a maximal (n, ε)-separated set if for any
(n, ε)-separated set E′ with E ⊆ E′, we have E = E′. In other words, no strict super-
set of E is (n, ε)-separated.

The counterpart of the notion of separated set is the concept of spanning set.

Definition 7.3.4. A subset F of X is said to be an (n, ε)-spanning set if

⋃
x∈F

Bn(x, ε) = X.

That is, the orbit of every point in the space is ε-shadowed by the orbit of a point of F
until time n − 1 at least.

The smallest spanning sets play a special role in describing the complexity of the
dynamics that the system possesses. They constitute the counterpart of the maximal
separated sets.

Definition 7.3.5. A subset F of X is called a minimal (n, ε)-spanning set if for any
(n, ε)-spanning set F′ with F ⊇ F′, we have F = F′. In other words, no strict subset of
F is (n, ε)-spanning.

Remark 7.3.6.
(a) If F is an (n, ε)-spanning set andm < n, then F is also (m, ε)-spanning.
(b) If F is an (n, ε)-spanning set and ε < ε′, then F is also (n, ε′)-spanning.
(c) Any minimal (n, ε)-spanning set is finite since the open cover {Bn(x, ε) : x ∈ X} of

the compact metric space X admits a finite subcover.

The next lemma describes two useful relations between separated and spanning
sets.

Lemma 7.3.7. The following statements hold:
(a) Every maximal (n, ε)-separated set is a minimal (n, ε)-spanning set.
(b) Every (n, 2ε)-separated set is embedded into any (n, ε)-spanning set.

Proof. (a) Let E be a maximal (n, ε)-separated set. First, suppose that E is not
(n, ε)-spanning. Then there exists a point y ∈ X\⋃x∈E Bn(x, ε). Observe then that
the set E ∪ {y} is (n, ε)-separated, which contradicts the maximality of E. Therefore,
E is (n, ε)-spanning. Suppose now that E is not a minimal (n, ε)-spanning set. Then
there exists an (n, ε)-spanning set E′ ⊊ E. Let y ∈ E\E′. Since ⋃y′∈E′ Bn(y′, ε) = X,
there is y′ ∈ E′ ⊆ E such that dn(y′, y) < ε. This implies that E is not (n, ε)-separated, a
contradiction. Consequently, if E is amaximal (n, ε)-separated set, then E is aminimal
(n, ε)-spanning set.

(b) Let E be an (n, 2ε)-separated set and F an (n, ε)-spanning set. For each x ∈ E,
choose i(x) ∈ F such that x ∈ Bn(i(x), ε). We claim that the map i : E → F is injective.
To show this, let x, y ∈ E be such that i(x) = i(y) =: z. Then x, y ∈ Bn(z, ε). Therefore
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dn(x, y) < 2ε. Since E is a (n, 2ε)-separated set, we deduce that x = y, that is, the map i
is injective and so E is embedded into F.

The next theorem is themain result of this section. It gives us anotherway of defin-
ing the topological entropy of a system.

Theorem 7.3.8. For all ε > 0 and n ∈ ℕ, let En(ε) be a maximal (n, ε)-separated set in
X and Fn(ε) be a minimal (n, ε)-spanning set in X. Then

htop(T) = limε→0 lim sup
n→∞

1
n
log #En(ε) = limε→0 lim inf

n→∞
1
n
log #En(ε)

≤ lim inf
ε→0

lim inf
n→∞

1
n
log #Fn(ε).

Proof. Fix ε > 0 and n ∈ ℕ and let En(ε) be a maximal (n, ε)-separated set in X. Let 𝒰
be an open cover of X consisting of balls of radius ε/2. Let 𝒰 be a minimal subcover
of 𝒰n, so that Zn(𝒰) = #𝒰 . For each x ∈ En(ε), let U(x) be an element of the cover 𝒰
which contains x and define the function i : En(ε) → 𝒰 by setting i(x) = U(x). We
claim that this function is an injection. Indeed, suppose that x, y ∈ En(ε) are such that
U(x) = U(y). Then, by the definition of 𝒰n, we have that

x, y ∈
n−1
⋂
j=0

T−j(Uj),

where Uj = B(zj, ε/2) for some zj ∈ X. This means that both T j(x) and T j(y) be-
long to B(xj, ε/2) for each 0 ≤ j < n. So, dn(x, y) < ε, and thus x = y since En(ε) is
(n, ε)-separated. This establishes that i : En(ε) → 𝒰 is injective. Therefore, Zn(𝒰) =
#𝒰 ≥ #En(ε). Since 𝒰 does not depend on n and the inequality Zn(𝒰) ≥ #En(ε) holds
for all n ∈ ℕ, we deduce that

htop(T) ≥ htop(T ,𝒰) = lim
n→∞

1
n
log Zn(𝒰) ≥ lim sup

n→∞

1
n
log #En(ε).

Consequently,

htop(T) ≥ lim sup
ε→0

lim sup
n→∞

1
n
log #En(ε). (7.1)

On the other hand, if 𝒱 is an arbitrary open cover of X, if δ(𝒱) is a Lebesgue number
for 𝒱, if 0 < ε < δ(𝒱)/2 and if n ∈ ℕ, then for all 0 ≤ k < n and all x ∈ En(ε), we have
that

Tk(Bn(x, ε)) ⊆ B(T
k(x), ε) ⇒ diam(Tk(Bn(x, ε))) ≤ 2ε < δ(𝒱).

Hence, for all 0 ≤ k < n, the set Tk(Bn(x, ε)) is contained in at least one element of the
cover 𝒱. Denote one of these elements by Vk(x). It follows that Bn(x, ε) ⊆ T−k(Vk(x))
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for each 0 ≤ k < n. In other words, we have that Bn(x, ε) ⊆ ⋂
n−1
k=0 T
−k(Vk(x)). But this

intersection is an element of 𝒱n. Let us denote it by V(x).
Since En(ε) is a maximal (n, ε)-separated set, Lemma 7.3.7(a) asserts that it is also

(n, ε)-spanning. Thus the family {Bn(x, ε)}x∈En(ε) is an open cover of X. Each one of
these balls is contained in the corresponding element V(x) of 𝒱n. Hence, the family
{V(x)}x∈En(ε) is also an open cover of X, and thus a subcover of 𝒱

n. Consequently,

Zn(𝒱) ≤ #{V(x)}x∈En(ε) ≤ #En(ε).

Since this is true for all n ∈ ℕ, we deduce that

htop(T ,𝒱) = lim
n→∞

1
n
log Zn(𝒱) ≤ lim inf

n→∞
1
n
log #En(ε).

As this inequality holds for all 0 < ε < δ(𝒱)/2, we obtain that

htop(T ,𝒱) ≤ lim inf
ε→0

lim inf
n→∞

1
n
log #En(ε).

Because 𝒱 was chosen to be an arbitrary open cover of X, we conclude that

htop(T) ≤ lim inf
ε→0

lim inf
n→∞

1
n
log #En(ε). (7.2)

The inequalities (7.1) and (7.2) combined are sufficient to establish the result for the
separated sets.

Now, since every (n, 2ε)-separated set is embedded into any (n, ε)-spanning set
according to Lemma 7.3.7(b), we have that

#En(2ε) ≤ #Fn(ε). (7.3)

The inequalities (7.2) and (7.3) suffice to deduce the result for the spanning sets.

In Theorem 7.3.8, the topological entropy of the system is expressed in terms of
a specific family of maximal separated (resp., minimal spanning) sets. However, to
derive theoretical results, it is sometimes simpler to use the following quantities.

Definition 7.3.9. For all n ∈ ℕ and ε > 0, let

rn(ε) = sup{#En(ε) : En(ε)maximal (n, ε)-separated set}

and

sn(ε) = inf{#Fn(ε) : Fn(ε)minimal (n, ε)-spanning set}.

Thereafter, let

r(ε) = lim inf
n→∞

1
n
log rn(ε) while r(ε) = lim sup

n→∞

1
n
log rn(ε)

and

s(ε) = lim inf
n→∞

1
n
log sn(ε) whereas s(ε) = lim sup

n→∞

1
n
log sn(ε).
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The following are simple but key observations about these quantities.

Remark 7.3.10. For allm < n ∈ ℕ and 0 < ε < ε′, the following relations hold.
(a) rm(ε) ≤ rn(ε) and sm(ε) ≤ sn(ε) by Remarks 7.3.2 and 7.3.6.
(b) rn(ε) ≥ rn(ε′) and sn(ε) ≥ sn(ε′) by Remarks 7.3.2 and 7.3.6.
(c) 0 < sn(ε) ≤ rn(ε) ≤ sn(ε/2) <∞ by Lemma 7.3.7.
(d) r(ε) ≤ r(ε) and s(ε) ≤ s(ε).
(e) r(ε) ≥ r(ε′) and r(ε) ≥ r(ε′) by (b).
(f) s(ε) ≥ s(ε′) and s(ε) ≥ s(ε′) by (b).
(g) 0 ≤ s(ε) ≤ r(ε) ≤ s(ε/2) ≤∞ by (c).
(h) 0 ≤ s(ε) ≤ r(ε) ≤ s(ε/2) ≤∞ by (c).

We will now prove two properties that relate rn’s, sn’s, and Zn’s.

Lemma 7.3.11. The following relations hold:
(a) If 𝒰 is an open cover of X with Lebesgue number 2δ, then

Zn(𝒰) ≤ sn(δ) ≤ rn(δ), ∀n ∈ ℕ.

(b) If ε > 0 and 𝒱 is an open cover of X with diam(𝒱) ≤ ε, then

sn(ε) ≤ rn(ε) ≤ Zn(𝒱), ∀n ∈ ℕ.

Proof. Let n ∈ ℕ. We already know that sn(δ) ≤ rn(δ).
(a) Let𝒰 beanopen coverwithLebesguenumber 2δ and letF bean (n, δ)-spanning

set. Then the dynamic balls {Bn(x, δ) : x ∈ F} form a cover of X. For every 0 ≤ i < n the
ball B(T i(x), δ), which has diameter at most 2δ, is contained in an element of 𝒰 . There-
fore, Bn(x, δ) = ⋂

n−1
i=0 T
−i(B(T i(x), δ)) is contained in an element of 𝒰n = ⋁n−1i=0 T

−i(𝒰).
That is, 𝒰n ≺ {Bn(x, δ) : x ∈ F}. Thus Zn(𝒰) = Z1(𝒰n) ≤ #F. Since F is an arbitrary
(n, δ)-spanning set, it ensues that Zn(𝒰) ≤ sn(δ).

(b) Let 𝒱 be an open cover with diam(𝒱) ≤ ε and let E be an (n, ε)-separated set.
Then no element of the cover 𝒱n contains more than one element of E. Hence, #E ≤
Zn(𝒱). Since E is an arbitrary (n, ε)-separated set, it follows that rn(ε) ≤ Zn(𝒱).

Together, Lemmas 7.3.11 and 7.2.20 have the following immediate corollary. Unlike
Theorem 7.3.8, this result is symmetric with respect to separated and spanning sets. It
is the advantage of using spanning sets of minimal cardinality, rather than spanning
sets that are minimal in terms of inclusion.

Corollary 7.3.12. The following equalities hold:

htop(T) = limε→0 r(ε) = limε→0 r(ε) = limε→0 s(ε) = limε→0 s(ε).

Corollary 7.3.12 is useful to derive theoretical results. Nevertheless, in practice,
Theorem 7.3.8 is simpler to use, as only one family (in essence, a double sequence)
of sets is needed. Sometimes a single sequence is enough.
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Theorem 7.3.13. If a topological dynamical system T : X → X admits a generator with
Lebesgue number 2δ, then the following statements hold for all 0 < ε ≤ δ:
(a) If (En(ε))∞n=1 is a sequence of maximal (n, ε)-separated sets in X, then

htop(T) = lim
n→∞

1
n
log #En(ε).

(b) If (Fn(ε))∞n=1 is a sequence of minimal (n, ε)-spanning sets in X, then

htop(T) ≤ lim inf
n→∞

1
n
log #Fn(ε).

(c) htop(T) = limn→∞
1
n log rn(ε).

(d) htop(T) = limn→∞
1
n log sn(ε).

Proof. Wewill prove (a) and leave it to the reader to show the other parts using similar
arguments.

Let 𝒰 be a generator for T with Lebesgue number 2δ. Set 0 < ε ≤ δ. Observe
that 2ε is also a Lebesgue number for 𝒰 . Choose any sequence (En(ε))∞n=1 of maximal
(n, ε)-separated sets. Since maximal (n, ε)-separated sets are (n, ε)-spanning sets, it
follows from Lemma 7.3.11(a) that Zn(𝒰) ≤ sn(ε) ≤ #En(ε). Therefore,

htop(T ,𝒰) = lim
n→∞

1
n
log Zn(𝒰) ≤ lim inf

n→∞
1
n
log #En(ε). (7.4)

On the other hand, since 𝒰 is a generator, there exists k ∈ ℕ such that
diam(𝒰k) ≤ ε. It ensues from Lemma 7.3.11(b) that #En(ε) ≤ rn(ε) ≤ Zn(𝒰k). Conse-
quently,

lim sup
n→∞

1
n
log #En(ε) ≤ lim

n→∞
1
n
log Zn(𝒰

k) = htop(T ,𝒰
k) = htop(T ,𝒰), (7.5)

where the last equality follows from Lemma 7.2.15. Combining (7.4) and (7.5) gives

htop(T ,𝒰) = lim
n→∞

1
n
log #En(ε).

As 𝒰 is a generator, htop(T) = htop(T ,𝒰) by Lemma 7.2.22.

For expansive systems, the Lebesgue number can be expressed in terms of the
expansive constant.

Theorem 7.3.14. If T : X → X is a δ0-expansive dynamical system on a compact metric
space (X, d), then Theorem 7.3.13 applies with any 0 < δ < δ0/4.

Proof. According to Theorem 7.2.23, any open cover 𝒰 of X with diam(𝒰) ≤ δ0 is a
generator for T. In particular, a cover composed of open balls works. Let x1, . . . , xn ∈ X
be such that X = ⋃ni=1 B(xi, δ0/2 − 2δ). Then the cover {B(xi, δ0/2) : 1 ≤ i ≤ n} has
diameter at most δ0 and admits 2δ as Lebesgue number.
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7.4 Topological degree

In this section, which in the context of this book is a preparation for the subsequent
section where we will give a very useful lower bound for the topological entropy of a
C1 endomorphism, we introduce the concept of topological degree formaps of smooth
compact orientable manifolds. Although this is in fact a topological concept well-
defined for continuous maps of topological manifolds, we concentrate on differen-
tiable maps. This is somewhat easier and perfectly fits the needs of the proof of the
entropy bound mentioned above. For more information on these notions, please see
Hirsch [30].

Definition 7.4.1. Let M and N be smooth compact orientable d-dimensional mani-
folds. Let f : M → N be a C1 map. A point x ∈ M is called a regular point for f if
Dxf is invertible. A point y ∈ N is called a regular value of f if f −1(y) consists of regular
points. Otherwise, y is called a singular value of f .

It is obvious that the set of regular values is open. It is also easy to see that the
preimage of any regular value is of finite cardinality.

Lemma 7.4.2. If y ∈ N is a regular value of a C1 map f : M → N, then #f −1(y) <∞.

Proof. Suppose that #f −1(y) =∞. Then there exists a sequence (xn)∞n=1 inM such that
limn→∞ xn = x for some x ∈ M and f (xn) = y for all n ∈ ℕ. The continuity of f imposes
that f (x) = y, and thus f is not injective on any neighborhood of x. By the implicit
function theorem, it follows that Dxf is not invertible, that is, x is not a regular point.
So y is a singular value.

Definition 7.4.3. Suppose that y ∈ N is a regular value of aC1map f : M → N . For each
x ∈ f −1(y), let ϵx = ±1 depending on whether Dxf preserves or reverses orientation.
Then the degree of f at y is defined by

degy(f ) = ∑
x∈f −1(y) ϵx .

The preimage of any regular value being of finite cardinality, this sum is a well-
defined integer. The degree of f at y measures how many times f covers N near y,
counted with appropriate positive and negative multiplicities. In fact, the degree is
independent of the choice of the regular value inN . In order to show that, there exists
an alternative definition based on integration.

Definition 7.4.4. A positive normalized volume element on N is a continuous d-form
ω that is positive on positively oriented frames and such that ∫M ω = 1. The pullback
f ∗ω of ω under a C1 map f : M → N is the d-form onM given by

(f ∗ω)(v1, . . . , vd) = ω(Df (v1), . . . ,Df (vd)).
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Definition 7.4.5. If ω is a positive normalized volume element on N, then the degree
of a C1 map f : M → N with respect to ω is defined by

degω(f ) = ∫
M

f ∗ω.

We now show that the two aforementioned definitions of degree are independent
of y and ω, respectively.

Lemma 7.4.6. Let y ∈ N be a regular value of a C1 map f : M → N and ω a positive
normalized volume element on N. Then degy(f ) = degω(f ).

Proof. As y is a regular value, there are disjoint open neighborhoods U1, . . . ,Uk ⊆ M
of the points x1, . . . , xk of f −1(y) such that⋃

k
i=1 Ui is the preimage of a neighborhood V

of y and f |Ui
is a diffeomorphism for all i. If ν is an n-form supported in V such that

∫V ν = ∫N ν = 1, then ω = ν + dα for some (n − 1)-form α, so ∫M f ∗ω = ∫M(f
∗ν + f ∗dα) =

∫M f ∗ν = ∑ki=1 ∫(f |Ui
)∗ν = ∑ki=1 ∫Ui

f ∗ν. By the transformation rule, each of the latter
integrals is ±1 according to whether f |Ui

, or equivalently Dxi f , preserves or reverses
orientation. Consequently, degω(f ) = ∫M f ∗ω = degy(f ).

So we can now make the following definition.

Definition 7.4.7. The degree of a C1 map f : M → N is defined by deg(f ) := degy(f ) for
any regular value y ∈ N .

7.5 Misiurewicz–Przytycki theorem

In this section, we shall provide a very effective lower bound for the topological en-
tropy of C1 endomorphisms. Its attractiveness lies in it being expressed in relatively
simple terms. Themuch stronger theorem of Yomdin [79], commonly referred to as the
entropy conjecture and which gives the lower bound on topological entropy in terms
of the logarithmof the spectral radius of themap induced on the full homology ring, is
incomparably harder to prove and, often, harder to apply. The proof below is a slight
modification of the one given in [33].

Theorem 7.5.1 (Misiurewicz–Przytycki theorem). If M is a smooth compact orientable
manifold and T : M → M a C1 endomorphism, then htop(T) ≥ log |deg(T)|.

Proof. Fix a volume element ω on M and α ∈ (0, 1). Let L := supx∈M ‖DxT‖, and ϵ be
such that 2ϵ1−αLα = 1. Set B := {x ∈ M : ‖DxT‖ ≥ ϵ}. Pick a cover of B by open sets on
which T is injective and let δ be a Lebesgue number for the cover. Thus, if x, y ∈ B and
d(x, y) ≤ δ then T(x) ̸= T(y).

For every n ∈ ℕ, let

A := {x ∈ M : #(B ∩ {x,T(x), . . . ,Tn−1(x)}) ≤ [αn]},
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where [⋅] denotes the integer part function. Observe that limn→∞
[αn]
n = α. If x ∈ A and

n is so large that ϵ1−
[αn]
n L
[αn]
n ≤ 2ϵ1−αLα, then

DxT
n =

n−1
∏
j=0

DT j(x)T
 < ϵ

n−[αn]L[αn] = (ϵ1−
[αn]
n L
[αn]
n )n ≤ (2ϵ1−αLα)n = 1.

Hence, the volume of Tn(A) is less than that of M. But Sard’s theorem asserts that
the set of singular values has Lebesgue measure zero (for more information, see [30]).
Therefore, there exists a regular value x of Tn that lies inM \ Tn(A).

We will now extract an (n, δ)-separated set from T−n(x). Since x is regular for T, it
has at leastN := |deg(T)| preimages. If at leastN of them are in B (a “good transition”)
then take Q1 to consist of N such preimages. Otherwise (a “bad transition”), take Q1
to be a single preimage outside B. Either way, Q1 ⊆ T−1(x) consists of regular values
of T since x is a regular value of Tn. Thus we can apply the same procedure to every
y ∈ Q1 and by collecting all of the points chosen that way obtain Q2 ⊆ T−2(x), and
so on. The set Qn ⊆ T−n(x) we hence obtain is (n, δ)-separated. Indeed, suppose that
y1, y2 ∈ Qn andd(Tk(y1),Tk(y2)) < δ for all k ∈ {0, . . . , n−1}. ThenTn−1(y1),Tn−1(y2) ∈ Q1.
If Tn−1(y1) ̸= Tn−1(y2), then by construction of Q1 we know that Tn−1(y1),Tn−1(y2) ∈ B.
Moreover, T(Tn−1(y1)) = x = T(Tn−1(y2)) and d(Tn−1(y1),Tn−1(y2)) < δ. By definition of
δ, we deduce that Tn−1(y1) = Tn−1(y2). This contradicts the assumption that Tn−1(y1) ̸=
Tn−1(y2). So Tn−1(y1) = Tn−1(y2). Likewise Tn−2(y1) = Tn−2(y2), and so forth, so y1 = y2
and Qn is (n, δ)-separated.

Now Qn ⊆ T−n(x) ⊆ T−n(M \ Tn(A)) ⊆ M \ A, that is, Qn ∩ A = 0. Thus, for any
y ∈ Qn there are by definition of Amore than αn numbers k ∈ {0, . . . , n − 1} for which
Tk(y) ∈ B. So in passing from x to any y ∈ Qn there are at least m := [αn] + 1 “good
transitions,” and hence #Qn ≥ Nm ≥ Nαn. Therefore, the maximal cardinality of an
(n, δ)-separated set is at least Nαn, and thus htop(T) ≥ α logN by Theorem 7.3.8. Since
this holds for all α ∈ (0, 1), it ensues that htop(T) ≥ logN = log |deg(T)|.

The two properties of smoothness that make the preceding proof work are bound-
edness of the derivative together with the fact that a smoothmap is a local homeomor-
phism near any point where the derivative is nonzero.

There are certain classes of systems where the inequality given in Theorem 7.5.1
becomes an equality. Expanding maps of a compact manifold (e. g., the unit circle)
form one such class. So do rational functions of the Riemann sphere

T(z) = P(z)
Q(z)
,

where P andQ are relatively prime polynomials. Since thesemaps are orientation pre-
serving, their degree is equal to the number of preimages of a regular point w ∈ ℂ̂,
that is, the number of solutions to the equation T(z) = w. The degree of T is therefore
equal to the maximum of the algebraic degrees of P and Q.
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7.6 Exercises

Exercise 7.6.1. Prove Remark 7.1.3.

Exercise 7.6.2. Prove Lemma 7.1.5.

Exercise 7.6.3. Prove Lemma 7.1.10.

Exercise 7.6.4. Fill in the details of the proof of Lemma 7.1.12.

Exercise 7.6.5. Using Lemmas 7.3.11 and 7.2.20, prove Corollary 7.3.12. Then prove The-
orem 7.3.13(b,c,d).

Exercise 7.6.6. Let X be a metric space. Let (Xn)∞n=1 be a descending sequence of
nonempty compact subsets of X. Prove that⋂∞n=1 Xn is a singleton if and only if

lim
n→∞

diam(Xn) = 0.

Furthermore, show that this result does not generally hold if the sequence is not de-
scending.

Exercise 7.6.7. Let E = {0, 1}. Let σ : E∞A → E∞A be the golden mean shift, that is, the
subshift of finite type induced by the incidence matrix

A = [ 1 1
1 0
] .

In this exercise, you will prove by induction that #(EnA) = fn+2 for all n ∈ ℕ, where fn is
the nth Fibonacci number.
(a) Show that En+1A = (E

n
A × {0})⋃(E

n,0
A × {1}) for all n ∈ ℕ, where E

n,0
A is the set of all

words in EnA whose last letter is 0.
(b) Prove that En,0A = E

n−1
A × {0} for all n ∈ ℕ.

(c) Deduce that #(En+1A ) = #(E
n
A) + #(E

n−1
A ) for all n ∈ ℕ.

(d) Conclude that #(EnA) = fn+2 for all n ∈ ℕ.

Exercise 7.6.8. Prove that the topological entropy of any isometry of a compactmetric
space is equal to zero.

Exercise 7.6.9. Show that htop(T−1) = htop(T) for any homeomorphism T : X → X of a
compact metrizable space X.

Exercise 7.6.10. Prove that the topological entropy of anyhomeomorphismof the unit
circle is equal to zero.

Exercise 7.6.11. Let X be a countable compact metrizable space and T : X → X a
dynamical system. Show that htop(T) = 0.

Exercise 7.6.12. Prove that the topological entropy of every transitive, open, expan-
sive dynamical system is positive.
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Exercise 7.6.13. Let T : X → X be a topological dynamical system and F be a closed
forward T-invariant subset of X. Show that the entropy of the subsystem T|F : F → F
satisfies htop(T|F) ≤ htop(T).

Exercise 7.6.14. Let T : X → X be a topological dynamical system and F1, . . . , Fn be
finitely many closed forward T-invariant subsets of X covering X. Prove that htop(T) =
max{htop(T|Fi ) : 1 ≤ i ≤ n}.

Exercise 7.6.15. Find two dynamical systems which have the same topological en-
tropy but are not topologically conjugate.

Exercise 7.6.16. The formula htop(Tn) = nhtop(T) may suggest that htop(T ∘ S) =
htop(T) + htop(S). Show that this is not true in general even if S and T commute.

Exercise 7.6.17. Let d ∈ ℕ. Prove that the topological entropy of the map of the unit
circle z → zd is equal to log d.

Exercise 7.6.18. For every dynamical system T : X → X, let

deg(T) := min
x∈X

#T−1(x).

Show that if T is a local homeomorphism, then htop(T) ≥ log deg(T).
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8 Ergodic theory

In this chapter, wemove away from the study of purely topological dynamical systems
to consider instead dynamical systems that come equipped with a measure. That is,
instead of self-maps acting on compact metrizable spaces, we now ask that the self-
maps act upon measure spaces.

The etymology of the word ergodic is found in the amalgamation of the two Greek
words ergon (meaning “work”) and odos (meaning “path”). This term was coined by
the great physicist Ludwig Boltzmann while carrying out research in statistical me-
chanics. The goal of ergodic theory is to study the temporal and spatial long-term be-
havior of ameasure-preserving dynamical system. Given such a system and ameasur-
able subset of the space it acts on, it is natural to ask with which frequency the orbits
of “typical” points visit that subset. One way to think about ergodic systems is that
they are systems such that the visiting frequency of orbits is equal to the measure of
the subset visited. In other words, “time averages” are equal to “space averages” for
these systems. This will all be made precise shortly.

The chapter is organized as follows. Section 8.1 introduces the basic object of
study in ergodic theory, namely, invariant measures. In brief, a measure is said to
be invariant under a measurable self-map if the measure of the set of points that are
mapped to a measurable subset is equal to the measure of that subset. Section 8.2
presents the notion of ergodicity and comprises a demonstration of Birkhoff’s ergodic
theorem, proved by G. D. Birkhoff [9] in 1931. This theorem is themost fundamental re-
sult in ergodic theory. It is extremely useful in numerous applications. Birkhoff’s origi-
nal proofwas very involvedand complex.Over time some simplificationswere brought
by several authors. The simple proof we provide here originates from the short and el-
egant one due to Katok and Hasselblatt [33]. The class of ergodic measures for a given
transformation is then studied inmore detail. The penultimate Section 8.3 contains an
introduction to various measure-theoretic mixing properties that a system may have
(which ought to be compared to the topological mixing introduced in Chapter 1). It
shows that ergodicity is a very weak form of mixing. In the final Section 8.4, Rokhlin’s
construction of an invertible system from any given dynamical system is described
and the mixing properties of this natural extension are investigated.

The reader who is not familiar with, or desires a refresher on, measure theory is
encouraged to consultAppendixA.Wewill repeatedly refer to it in this and subsequent
chapters.

8.1 Measure-preserving transformations

Throughout, (X,𝒜) and (Y ,ℬ)will denote measurable spaces, and the transformation
T : (X,𝒜)→ (Y ,ℬ) will be measurable.

https://doi.org/10.1515/9783110702682-008
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If the domain of T is endowed with a measure, then the measurable transforma-
tion T induces a measure on its codomain.

Definition 8.1.1. Let T : (X,𝒜) → (Y ,ℬ) be a measurable transformation and let μ be
a measure on (X,𝒜). The set function μ ∘ T−1 : ℬ → [0,∞], defined by

(μ ∘ T−1)(B) := μ(T−1(B)), ∀B ∈ ℬ,

is a measure on (Y ,ℬ) called the push-down or push-forward of the measure μ under
the transformation T.

The integration of a measurable function f : (Y ,ℬ) → ℝ with respect to the mea-
sure μ ∘ T−1 can be carried out by integrating the composition of f and T with respect
to the measure μ.

Lemma 8.1.2. If T : (X,𝒜, μ)→ (Y ,ℬ) is a measurable transformation, then

∫
Y

f d(μ ∘ T−1) = ∫
X

f ∘ T dμ

for all measurable functions f : (Y ,ℬ)→ ℝ such that the integral ∫X f ∘ T dμ is defined.

Proof. It is easy to see that the equality holds for characteristic functions and, by
linearity of the integral, for nonnegative measurable simple functions. The result
then follows for any nonnegative measurable function by approaching it pointwise
via an increasing sequence of nonnegative measurable simple functions (see The-
orem A.1.17 in Appendix A) and calling upon the monotone convergence theorem
(Theorem A.1.35). Finally, any measurable function can be expressed as the differ-
ence between its positive and negative parts, which are both nonnegative measurable
functions.

Measure-preserving transformations are transformationsbetweenmeasure spaces
for which the push down of the measure on the domain coincides with the measure
on the codomain.

Definition 8.1.3. Let (X,𝒜, μ) and (Y ,ℬ, ν) be measure spaces. A measurable transfor-
mation T : (X,𝒜, μ)→ (Y ,ℬ, ν) is said to bemeasure-preserving if μ ∘ T−1 = ν.

Proving measure preservation for all the elements of a σ-algebra is generally an
onerous task. As for equality of measures, when the measures under consideration
are finite, it suffices to prove measure preservation on a π-system that generates the
σ-algebra on the codomain.

Lemma 8.1.4. Let T : (X,𝒜, μ) → (Y ,ℬ, ν) be a measurable transformation between
probability spaces (X,𝒜, μ) and (Y ,ℬ, ν). If ℬ = σ(𝒫) is a σ-algebra generated by a
π-system 𝒫 on Y, then

T is measure-preserving ⇐⇒ μ ∘ T−1(P) = ν(P), ∀P ∈ 𝒫 .
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Proof. This follows immediately from Lemma A.1.26.

Let us now consider self-transformations, that is, transformations whose co-
domain coincides with their domain.

Definition 8.1.5. A measure-preserving self-transformation T : (X,𝒜, μ) → (X,𝒜, μ),
that is, a measurable self-transformation such that μ ∘ T−1 = μ, is called a measure-
preserving dynamical system. Alternatively, μ is said to be T-invariant or invariant with
respect to T.

Note that if a measurable transformation T : (X,𝒜, μ) → (Y ,ℬ, ν) is invertible
and its inverse T−1 is measurable, then μ(T−1(B)) = ν(B) for every B ∈ ℬ if and only
if μ(A) = ν(T(A)) for every A ∈ 𝒜. In particular, if T : (X,𝒜, μ) → (X,𝒜, μ), then μ is
T-invariant if and only if μ is T−1-invariant. This justifies the following definitions.

Definition 8.1.6. A measure-preserving transformation T : (X,𝒜, μ) → (Y ,ℬ, ν),
which is invertible and whose inverse is measurable, is called a measure-preserving
isomorphism.

Definition 8.1.7. A measure-preserving dynamical system T : (X,𝒜, μ) → (X,𝒜, μ),
which is invertible and whose inverse is measurable, is called a measure-preserving
automorphism.

8.1.1 Examples of invariant measures

In this section, we give several examples of invariant measures for various transfor-
mations.

Example 8.1.8. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation with a fixed
point x0, that is, T(x0) = x0. Let δx0 be the Dirac point mass supported at x0 (cf. Exam-
ple A.1.21). Then δx0 is T-invariant, that is, δx0 (T

−1(A)) = δx0 (A) for each A ∈ 𝒜, since
x0 ∈ T−1(A) if and only if x0 ∈ A. This example easily generalizes to invariantmeasures
supported on periodic orbits.

Example 8.1.9. Let 𝕊1 = [0, 2π] (mod 2π). Let α ∈ ℝ and define the map Tα : 𝕊1 → 𝕊1

by

Tα(x) = x + 2πα (mod 2π).

Thus Tα is the rotation of the unit circle by the angle 2πα. The topological dynamics
of Tα are radically different depending on whether the number α is rational or irra-
tional (see Theorem 1.5.12). So will be the ergodicity of Tα with respect to the Lebesgue
measure λ. However, it is fairly easy to foresee that Tα preserves λ, irrespective of the
nature of α. Indeed, T−1α (x) = x − 2πα (mod 2π) and so |detDT−1α (x)| = 1 for all x ∈ 𝕊

1.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



208 | 8 Ergodic theory

Therefore,

λ(T−1α (B)) = ∫
B

detDT
−1
α (x)
 dλ(x) = ∫

B

dλ(x) = λ(B)

for all B ∈ ℬ(𝕊1), that is, Tα preserves λ. Since Tα is invertible and its inverse is mea-
surable, Tα is a Lebesgue measure-preserving automorphism.

Example 8.1.10. Fix n ∈ ℕ and consider the map Tn : 𝕊1 → 𝕊1 defined by Tn(x) :=
nx (mod 1), where 𝕊1 is equipped with the Borel σ-algebra ℬ(𝕊1) and the Lebesgue
measure λ. We claim that λ is T-invariant. Let I be a proper subinterval of 𝕊1. Then
T−1n (I) consists of nmutually disjoint intervals (arcs) of length 1

nλ(I). Consequently,

λ(T−1n (I)) = n ⋅
1
n
λ(I) = λ(I).

Since the family of all proper subintervals of 𝕊1 forms a π-system which gener-
ates ℬ(𝕊1) and since Tn preserves the Lebesgue measure of all proper subintervals,
Lemma 8.1.4 asserts that Tn preserves λ.

Example 8.1.11.
(a) Recall the tent map T : [0, 1]→ [0, 1] from Example 1.1.3:

T(x) := { 2x if x ∈ [0, 1/2]
2 − 2x if x ∈ [1/2, 1].

The family of all intervals {[a, b), (a, b) : 0 < a < b < 1} forms a π-system that
generates the Borel σ-algebra ℬ([0, 1]). Since the preimage of any such interval
consists of 2 disjoint subintervals (one on each side of the tent) of half the length of
the original interval, one readily sees fromLemma8.1.4 that the Lebesguemeasure
on [0, 1] is invariant under the tent map.

(b) In fact, the previous example generalizes to a much larger family of maps. Let
T : [0, 1] → [0, 1] be a piecewise linear map of the unit interval that admits a
“partition” 𝒫 = {pj}

q
j=0, where 1 ≤ q < ∞ and 0 = p0 < p1 < ⋅ ⋅ ⋅ < pq−1 < pq = 1,

with the following properties:
(1) [0, 1] = I1 ∪ ⋅ ⋅ ⋅ ∪ Iq, where Ij = [pj−1, pj]’s are the successive intervals of mono-

tonicity of T.
(2) T(Ij) = [0, 1] for all 1 ≤ j ≤ q.
(3) T is linear on Ij for all 1 ≤ j ≤ q.
Such a map T will be called a full Markov map. We claim such a T preserves the
Lebesgue measure λ. Indeed, it is easy to see that the absolute value of the slope
of the restriction of T to the interval Ij is 1/(pj −pj−1). Therefore, the absolute value
of the slope of the corresponding inverse branch of T is pj − pj−1. Let I ⊆ (0, 1) be
any interval. Then T−1(I) = ⋃qj=1 T|

−1
Ij (I), where T|

−1
Ij (I) is a subinterval of Int(Ij) of
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length (pj − pj−1) ⋅ λ(I). Since Int(Ij)∩ Int(Ik) = 0 for all 1 ≤ j < k ≤ q, it ensues from
that set disjointness (see Lemma A.1.19(g) if necessary) that

λ(T−1(I)) =
q
∑
j=1

λ(T|−1Ij (I)) =
q
∑
j=1
(pj − pj−1) ⋅ λ(I) = (pq − p0)λ(I) = λ(I).

Moreover, 0 ≤ λ(T−1({0})) ≤ λ({pj : 0 ≤ j ≤ q}) = 0. So λ(T−1({0})) = 0 = λ({0}).
Similarly, λ(T−1({1})) = 0 = λ({1}). It follows that λ(T−1(J)) = λ(J) for every interval
J ⊆ [0, 1]. Since the family of all intervals in [0, 1] forms a π-system that generates
ℬ([0, 1]), Lemma 8.1.4 asserts that the Lebesgue measure is invariant under any
full Markov map.

Example 8.1.12. Let T : (X,𝒜) → (X,𝒜) and S : (Y ,ℬ) → (Y ,ℬ) be measurable
transformations for which there exists a measurable transformation h : (X,𝒜) →
(Y ,ℬ) such that h ∘ T = S ∘ h. We will show that every T-invariant measure generates
an S-invariant push down under h. Let μ be a T-invariant measure on (X,𝒜). Recall
that the push down of μ under h is the measure μ ∘ h−1 on (Y ,ℬ). It follows from the
T-invariance of μ that

(μ ∘ h−1) ∘ S−1 = μ ∘ (S ∘ h)−1 = μ ∘ (h ∘ T)−1 = (μ ∘ T−1) ∘ h−1 = μ ∘ h−1.

That is, the push down μ ∘ h−1 is S-invariant.

Example 8.1.13. Let (X,𝒜, μ) and (Y ,ℬ, ν) be two probability spaces, and let T : X → X
and S : Y → Y be two measure-preserving dynamical systems. The direct product of
T and S is the map T × S : X × Y → X × Y defined by

(T × S)(x, y) = (T(x), S(y)).

The direct product σ-algebra σ(𝒜×ℬ) on X ×Y is the σ-algebra generated by the semi-
algebra of measurable rectangles

𝒜 × ℬ := {A × B : A ∈ 𝒜, B ∈ ℬ}.

The direct product measure μ × ν on (X × Y , σ(𝒜 × ℬ)) is uniquely determined by its
values on the generating semialgebra, values which are naturally given by

(μ × ν)(A × B) := μ(A)ν(B).

The existence and uniqueness of this product measure can be established using
Theorem A.1.27, Lemma A.1.29, and Theorem A.1.28. For more information, see Hal-
mos [27] (pp. 157–158) or Taylor [72] (Chapter III, Section 4). We claim that the product
map T × S : (X × Y , σ(𝒜 × ℬ), μ × ν) → (X × Y , σ(𝒜 × ℬ), μ × ν) is measure-preserving.
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Thanks to Lemma 8.1.4, it suffices to show that (μ× ν) ∘ (T × S)−1(A×B) = (μ× ν)(A×B)
for all A × B ∈ 𝒜 × ℬ. And indeed,

(μ × ν) ∘ (T × S)−1(A × B) = (μ × ν)(T−1(A) × S−1(B))
= μ(T−1(A))ν(S−1(B))
= μ(A)ν(B)
= (μ × ν)(A × B).

The final example pertains to the shift map introduced in Chapter 3 on symbolic
dynamics. In fact, we look at this map in a more general context.

Example 8.1.14. Let (E,ℱ ,P) be a probability space. Consider the one-sided product
set Eℕ = E∞ := ∏∞k=1 E. The product σ-algebra ℱ∞ on E∞ is the σ-algebra generated
by the semialgebra 𝒮 of all (finite) cylinders (also called rectangles), that is, sets of the
form

n
∏
k=1

Ek ×
∞

∏
l=n+1

E = {ω = (ωj)
∞
j=1 ∈ E

∞ : ωk ∈ Ek , ∀1 ≤ k ≤ n},

where n ∈ ℕ and Ek ∈ ℱ for all 1 ≤ k ≤ n. The product measure μP onℱ∞ is the unique
probability measure which confers to a cylinder the value

μP(
n
∏
k=1

Ek ×
∞

∏
l=n+1

E) =
n
∏
k=1

P(Ek). (8.1)

The existence and uniqueness of this measure can be established using
Theorem A.1.27, Lemma A.1.29, and Theorem A.1.28. For more information, see Hal-
mos [27] (pp. 157–158) or Taylor [72] (Chapter III, Section 4).

As in Chapter 3, let σ : E∞ → E∞ be the left shift map, which is defined by
σ((ωn)

∞
n=1) := (ωn+1)

∞
n=1. The product measure μP is σ-invariant. Indeed, since the

cylinder sets form a semialgebra which generates the product σ-algebra, in light of
Lemma 8.1.4 it is sufficient to show that μP(σ−1(S)) = μP(S) for all cylinder sets S ∈ 𝒮.
And we have

μP ∘ σ
−1(

n
∏
k=1

Ek ×
∞

∏
l=n+1

E) = μP(E ×
n
∏
k=1

Ek ×
∞

∏
l=n+2

E)

= P(E)
n
∏
k=1

P(Ek)

=
n
∏
k=1

P(Ek)

= μP(
n
∏
k=1

Ek ×
∞

∏
l=n+1

E).

This completes the proof that the product measure is shift-invariant.
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The measure-preserving dynamical system (σ : E∞ → E∞, μP) is commonly re-
ferred to as a one-sided Bernoulli shift with set of states E. Of particular importance is
the case when E is a finite set having at least two elements. Also, the case of a count-
ably infinite set of states E will be of special importance in this book. This will be
particularly transparent in Chapters 13 and 16 onward in the second volume, where
we will consider Gibbs states of Hölder continuous potentials for which Bernoulli
measures are very special cases.

More examples of invariant measures can be found in Exercises 8.5.22 and 8.5.25–
8.5.33.

8.1.2 Poincaré’s recurrence theorem

We now present one of the fundamental results of finite ergodic theory, namely,
Poincaré’s recurrence theorem. This theorem states that, in a finite measure space,
almost all points of a given set return infinitely often to that set under iteration. It is
worth pointing out that Poincaré’s recurrence theorem is striking (and, as we will see,
unusual), in that its hypotheses are so completely general.

But, first, we show that the points from a measurable set that never return to that
set under iteration are negligible. That is, they form a subset of measure zero.

Lemma 8.1.15. If T : X → X is a measure-preserving dynamical system on a probability
space (X,𝒜, μ), then for every set A ∈ 𝒜 we have

μ({x ∈ A : Tn(x) ∉ A, ∀n ∈ ℕ}) = 0.

Proof. Let A ∈ 𝒜 and

N = N(T ,A) := {x ∈ A : Tn(x) ∉ A, ∀n ∈ ℕ}.

To show that μ(N) = 0, let x ∈ N . Then Tn(x) ∉ A for every n ∈ ℕ. Therefore, Tn(x) ∉ N
for all n ∈ ℕ. Thus N ∩ T−n(N) = 0 for all n ∈ ℕ. Now, fix k ∈ ℕ and let 1 ≤ j < k. Then

T−j(N) ∩ T−k(N) = T−j(N ∩ T−(k−j)(N)) = T−j(0) = 0.

So the preimages {T−n(N)}∞n=0 ofN under the iterates of T form a pairwise disjoint fam-
ily of sets. It follows that

1 = μ(X) ≥ μ(
∞

⋃
n=0

T−n(N)) =
∞

∑
n=0

μ(T−n(N)) =
∞

∑
n=0

μ(N),

where the last equality follows from the T-invariance of μ. Hence, μ(N) = 0.

Knowing this, we can now demonstrate that, in a finite measure space, almost all
points of a given set return infinitely often to that set under iteration.
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Theorem 8.1.16 (Poincaré’s recurrence theorem). If T : X → X is ameasure-preserving
dynamical system on a probability space (X,𝒜, μ), then

μ({x ∈ A : Tn(x) ∈ A for infinitely many n ∈ ℕ}) = μ(A)

for every set A ∈ 𝒜.

Proof. Let

N(T ,A) := {x ∈ A : Tn(x) ∉ A, ∀n ∈ ℕ}.

For each k ∈ ℕ, let

Nk := {x ∈ A : T
n(x) ∉ A, ∀n ≥ k}

⊆ {x ∈ A : Tkj(x) ∉ A, ∀j ∈ ℕ} = N(Tk ,A).

Replacing T by Tk in Lemma8.1.15, we obtain that μ(N(Tk ,A)) = 0 and thereby μ(Nk) =
0 for all k ∈ ℕ. It follows that

μ(
∞

⋃
k=1

Nk) = 0.

Observe also that

{x ∈ A : Tn(x) ∈ A for infinitely many n ∈ ℕ} = A\
∞

⋃
k=1

Nk .

Consequently,

μ({x ∈ A : Tn(x) ∈ A for infinitely many n}) = μ(A) − μ(
∞

⋃
k=1

Nk) = μ(A).

Note that this result does not generally hold in infinite measure spaces. Indeed,
the simplest counterexample is a translation of the real line. For instance, take the
transformation of the real line T(x) = x + 1, which certainly preserves the Lebesgue
measure, and let A = (0, 1). No point of A ever comes back to A under iteration, al-
though the Lebesgue measure of A is evidently not equal to zero.

8.1.3 Existence of invariant measures

In general, a measurable transformation T : (X,𝒜) → (X,𝒜) may not admit any in-
variant measure (see Exercise 8.5.29). There are also measurable transformations that
admit infinite invariant measures but not finite ones (see Exercise 8.5.30). However, if
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X is a compactmetrizable space and𝒜 is the Borel σ-algebraℬ(X), then every continu-
ous transformation does have an invariant Borel probability measure. In other words,
every topological dynamical system admits an invariant Borel probability measure.
Before proving this, we will study the properties of the set of invariant probability
measures.

Definition 8.1.17. Let (X,𝒜)be ameasurable space. The set of all probabilitymeasures
on (X,𝒜) is denoted by M(X,𝒜). Given a measurable transformation T : (X,𝒜) →
(X,𝒜), the subset of all T-invariant probability measures on (X,𝒜) is denoted by
M(T ,𝒜).

In particular, if 𝒜 is the Borel σ-algebra on a topological space X, then the set of
all Borel probability measures on X is simply denoted byM(X) instead ofM(X,ℬ(X)),
while its subset of T-invariant measures is denoted by M(T) rather than M(T ,ℬ(X)).
For more information aboutM(X), please see Subsection A.1.8.

For topological dynamical systems, there exists a characterization of invariant
Borel probability measures in terms of the way they integrate continuous functions.

Theorem 8.1.18. Let T : X → X be a topological dynamical system. Then

μ ∈ M(T) ⇐⇒ ∫
X

f ∘ T dμ = ∫
X

f dμ, ∀f ∈ C(X).

Proof. This follows immediately from Lemma 8.1.2 and Corollary A.1.54.

Wewill now show that the setM(T) is a compact and convex subset ofM(X)when-
ever T is a topological dynamical system.

In fact, the convexity holds for all measurable transformations.

Lemma 8.1.19. For anymeasurable transformation T : (X,𝒜)→ (X,𝒜), the set M(T ,𝒜)
is a convex subset of M(X,𝒜).

Proof. Let μ, ν ∈ M(T ,𝒜). Let m be a convex combination of μ and ν, that is, let α ∈
[0, 1] and letm = αμ + (1 −α)ν. By the obvious convexity ofM(X,𝒜), we already know
thatm ∈ M(X,𝒜). Let A ∈ 𝒜. Observe that

m(T−1(A)) = αμ(T−1(A)) + (1 − α)ν(T−1(A)) = αμ(A) + (1 − α)ν(A) = m(A).

Thus,m is T-invariant, and hencem ∈ M(T ,𝒜).

Theorem 8.1.20. Let T : X → X be a topological dynamical system. The set M(T) is a
compact convex subset of the compact convex space M(X) in the weak∗ topology.

Proof. The convexity ofM(T)has been established in Lemma8.1.19. Thus, we can con-
centrate on demonstrating the compactness of M(T). According to Theorem A.1.58,
the setM(X) is compact in the weak∗ topology of C(X)∗. Hence, it suffices to show that
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M(T) is closed inM(X). As described in SubsectionA.1.8, the spaceM(X) admits amet-
ric compatible with the weak∗ topology. Therefore, a set is closed in that space if and
only if it is sequentially closed. Let (μn)∞n=1 be a sequence inM(T)which converges to a
measure μ inM(X). We aim to show that μ ∈ M(T). To that end, let f ∈ C(X). According
to Theorem 8.1.18, it suffices to show that ∫X f ∘ T dμ = ∫X f dμ. Since (μn)

∞
n=1 converges

to μ in the weak∗ topology and μn ∈ M(T) for all n, we deduce that

∫
X

f ∘ T dμ = lim
n→∞
∫
X

f ∘ T dμn = lim
n→∞
∫
X

f dμn = ∫
X

f dμ.

Thus μ ∈ M(T) andM(T) is closed inM(X). As a closed subset of the compact setM(X),
the setM(T) is compact as well.

We now briefly examine the map μ → μ ∘T−1, which will be helpful in proving the
existence of invariant measures.

Lemma 8.1.21. Let T : X → X be a topological dynamical system. The map S : M(X)→
M(X), where S(μ) = μ ∘ T−1, is continuous and affine.

Proof. The proof of affinity is left to the reader. We concentrate on the continuity of S.
Let (μn)∞n=1 be a sequence inM(X)which weak

∗ converges to μ. Then, for any f ∈ C(X),

lim
n→∞
∫
X

f d(S(μn)) = limn→∞
∫
X

f d(μn ∘ T
−1)

= lim
n→∞
∫
X

f ∘ T dμn

= ∫
X

f ∘ T dμ = ∫
X

f d(μ ∘ T−1)

= ∫
X

f d(S(μ)).

Since f was chosen arbitrarily in C(X), the sequence (S(μn))∞n=1 weak
∗ converges to

S(μ). Thus S is continuous.

We come now to the main result of this section, namely, showing that every topo-
logical dynamical systemadmits at least one invariant Borel probabilitymeasure. This
theorem is not very difficult to prove, but it is obviously important. For this reason, we
provide twodifferent proofs. Thefirst involves functional analysis,whereas the second
is rather more constructive.

Theorem 8.1.22 (Krylov–Bogolyubov theorem). Let T : X → X be a topological dy-
namical system. Then M(T) ̸= 0.

Proof. By the Riesz representation theorem (Theorem A.1.53), the set M(X) can be
identified with a subset of the Banach space C(X)∗. According to Theorem A.1.58, the
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setM(X) is compact and convex in the weak∗ topology of C(X)∗. By Lemma 8.1.21, we
also know that the map S(μ) := μ ∘ T−1 is a continuous affine self-map ofM(X). Thus,
by Schauder–Tychonoff’s fixed-point theorem (cf. Theorem V.10.5 in Dunford and
Schwartz [20]) the map S has a fixed point. In other words, there exists μ ∈ M(X) such
that μ ∘ T−1 = μ. Note: Alternatively, since S is affine, one may use Markov-Kakutani’s
fixed-point theorem. It is more elementary and proved in Theorem V.10.6 of [20].

Alternative proof. Let μ0 ∈ M(X) (for example, a Dirac pointmass supported at a point
of X). Construct the sequence of Borel probability measures (μn)∞n=1, where

μn =
1
n

n−1
∑
j=0

μ0 ∘ T
−j.

Since M(X) is compact in the weak∗ topology, the sequence (μn)∞n=1 has at least one
weak∗ limit point. Denote such a point by μ∞. We claim that μ∞ ∈ M(T). To show
this, let (μnk )

∞
k=1 be a subsequence of the sequence (μn)

∞
n=1 which weak∗ converges to

μ∞. The weak
∗ convergence of the subsequence means that

∫
X

f dμ∞ = lim
k→∞
∫
X

f dμnk , ∀f ∈ C(X).

Moreover,


∫
X

f ∘ T dμnk − ∫
X

f dμnk

=


1
nk

nk−1
∑
j=0
∫
X

f ∘ T d(μ0 ∘ T
−j) −

1
nk

nk−1
∑
j=0
∫
X

f d(μ0 ∘ T
−j)


=
1
nk



nk−1
∑
j=0
(∫
X

f ∘ T j+1 dμ0 − ∫
X

f ∘ T j dμ0)


=
1
nk


∫
X

f ∘ Tnk dμ0 − ∫
X

f dμ0


≤
2
nk
‖f ‖∞.

Therefore,


∫
X

f ∘ T dμ∞ − ∫
X

f dμ∞

=

lim
k→∞
∫
X

f ∘ T dμnk − limk→∞
∫
X

f dμnk


= lim
k→∞


∫
X

f ∘ T dμnk − ∫
X

f dμnk


≤ 2‖f ‖∞ lim
k→∞

1
nk
= 0.
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Hence,

∫
X

f d(μ∞ ∘ T
−1) = ∫

X

f ∘ T dμ∞ = ∫
X

f dμ∞, ∀f ∈ C(X).

By Corollary A.1.54, we conclude that μ∞ ∘ T−1 = μ∞.

The Krylov–Bogolyubov theorem can be restated as follows: Every topological dy-
namical system induces at least one measure-preserving dynamical system.

8.2 Ergodic transformations

One of the aims of the present section is to state and demonstrate the first published
ergodic theorem, originally proved at the outset of the 1930s by George David Birkhoff.
Of course, before setting out to prove an ergodic theorem, we must first define and
investigate the notion of ergodicity.

Definition 8.2.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. Then T is
said to be ergodic with respect to a measure μ on (X,𝒜) if all completely T-invariant
setsA ∈ 𝒜, that is, such that T−1(A) = A, have the property that μ(A) = 0 or μ(X\A) = 0.
Alternatively, μ is said to be T-ergodic or ergodic with respect to T.

A system is ergodic if and only if it does not admit any nontrivial subsystem. See
alternative definitions in Exercise 8.5.36.

The following is a simple but important observation.

Lemma 8.2.2. If a measure μ is ergodic with respect to a measurable transformation
T : (X,𝒜) → (X,𝒜) and if a measure ν on (X,𝒜) is absolutely continuous with respect
to μ, then ν is also ergodic. That is,

μ ergodic & ν ≺≺ μ ⇒ ν ergodic.

Proof. The proof is left to the reader as an exercise.

While complete invariance of a set is an appropriate concept for topological dy-
namical systems, we will see that a more suitable notion for measure-preserving dy-
namical systems is that of almost invariance of a set.

Definition 8.2.3. Let T : (X,𝒜)→ (X,𝒜) be a measurable transformation and let μ be
ameasure on (X,𝒜). A setA ∈ 𝒜 is said to be μ-almost T-invariant if μ(T−1(A)△A) = 0.

Of course, any completely T-invariant set is μ-almost T-invariant.
Our next goal is to show that a measure μ is ergodic if and only if all μ-almost

T-invariant sets are trivial in a measure-theoretic sense, that is, have measure zero
or full measure. The proof of this characterization of ergodic measures boils down to
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constructing a completely T-invariant set from an almost T-invariant one. This raises
the more general question: Given an arbitrary set S, how can we construct from that
set a completely T-invariant one?

If a set R is forward T-invariant, that is, if T−1(R) ⊇ R, then a related completely
T-invariant set is the union of all the preimages of R, that is, the set⋃∞k=0 T

−k(R) of all
points whose orbits eventually hit R. This reduces our question to the following one:
Given a set S, how canwe construct from it a forward T-invariant setR? One possibility
is the intersection of all the preimages of S, that is, the setR = ⋂∞n=0 T

−n(S) of all points
whose orbits are trapped within S. Hence, the set

∞

⋃
k=0

T−k(
∞

⋂
n=0

T−n(S)) =
∞

⋃
k=0

∞

⋂
n=0

T−(k+n)(S) =
∞

⋃
k=0

∞

⋂
n=k

T−n(S)

is completely T-invariant. This is the set of all points whose iterates eventually fall
into S and remain trapped there forever.

Similarly, if a set R is backward T-invariant, that is, if T−1(R) ⊆ R, then an obvious
candidate for a completely T-invariant set is the intersection of all the preimages of
R, namely ⋂∞k=0 T

−k(R). This reduces our original question to the following: Given a
set S, how can we construct from it a backward T-invariant set R? The union of all the
preimages of S, namely R = ⋃∞n=0 T

−n(S), is such a set. Hence, the set

∞

⋂
k=0

T−k(
∞

⋃
n=0

T−n(S)) =
∞

⋂
k=0

∞

⋃
n=0

T−(k+n)(S) =
∞

⋂
k=0

∞

⋃
n=k

T−n(S)

is completely T-invariant. This is the set of all points whose orbits visit S infinitely
many times.

Proposition 8.2.4. Let T : (X,𝒜, μ) → (X,𝒜, μ) be a measure-preserving dynamical
system. Then T is ergodic with respect to μ if and only if all μ-almost T-invariant sets
A ∈ 𝒜 satisfy μ(A) = 0 or μ(X\A) = 0.

Proof. Suppose that all μ-almost T-invariant setsA ∈ 𝒜 satisfy μ(A) = 0 or μ(X\A) = 0.
Let A′ ∈ 𝒜 be any completely T-invariant set. Since every completely T-invariant set
is μ-almost T-invariant, it ensues that μ(A′) = 0 or μ(X\A) = 0. Thus T is ergodic.

We shall now prove the converse implication. Though μ is T-invariant, it is suffi-
cient that μ ∘T−1 ≺≺ μ in the following proof (μ is then said to be quasi-T-invariant; see
Definition 10.1.1). Suppose that T is ergodic and let A ∈ 𝒜 be a μ-almost T-invariant
set, that is,A is such that μ(T−1(A)△A) = 0.Wemust show that μ(A) = 0 or μ(X\A) = 0.

Claim 1. μ(T−n(A)△ A) = 0 for all n ≥ 0.

Proof of Claim 1. Since μ(T−1(A)△A) = 0, since μ is T-invariant and since f −1(C△D) =
f −1(C)△ f −1(D) for any map f and any sets C and D, we have for all k ∈ ℕ that

μ(T−(k+1)(A)△ T−k(A)) = μ(T−k(T−1(A)△ A)) = μ(T−1(A)△ A) = 0.
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As C △ D ⊆ (C △ E) ∪ (E △ D) for any sets C, D and E, it follows for all n ∈ ℕ that

μ(T−n(A)△ A) ≤ μ(
n−1
⋃
k=0
[T−(k+1)(A)△ T−k(A)])

≤
n−1
∑
k=0

μ(T−(k+1)(A)△ T−k(A)) = 0.

Claim 2. The set

B :=
∞

⋃
k=0

∞

⋂
n=k

T−n(A)

is completely T-invariant, and thus μ(B) = 0 or μ(X\B) = 0.

Proof of Claim 2. Indeed,

T−1(B) =
∞

⋃
k=0

∞

⋂
n=k

T−(n+1)(A) =
∞

⋃
k=0

∞

⋂
n=k+1

T−n(A) =
∞

⋃
k=1

∞

⋂
n=k

T−n(A) = B.

Since T is ergodic, we deduce that μ(B) = 0 or μ(X\B) = 0.

Claim 3. μ(B△ A) = 0 = μ((X\B)△ (X\A)).

Proof of Claim 3. To prove this, we will use Claim 1 and two properties of the symmet-
ric difference operation: (⋃i∈I Ci)△ D ⊆ ⋃i∈I (Ci △ D) and (⋂i∈I Ci)△ D ⊆ ⋃i∈I (Ci △ D).
Indeed,

μ(B△ A) = μ([
∞

⋃
k=0

∞

⋂
n=k

T−n(A)]△ A)

≤ μ(
∞

⋃
k=0
[(
∞

⋂
n=k

T−n(A))△ A])

≤ μ(
∞

⋃
k=0

∞

⋃
n=k
(T−n(A)△ A))

= μ(
∞

⋃
n=0
(T−n(A)△ A))

≤
∞

∑
n=0

μ(T−n(A)△ A)

= 0.

Since (X\B)△ (X\A) = B△ A, Claim 3 is proved.

Claim 4. μ(A) = μ(B) and μ(X\A) = μ(X\B).
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Proof of Claim 4. Since B△A = (B\A)∪(A\B), it immediately follows fromClaim 3 that
μ(B\A) = 0 = μ(A\B). Therefore,

μ(B) = μ((B\A) ∪ (B ∩ A)) = μ(B\A) + μ(B ∩ A) = μ(B ∩ A) ≤ μ(A).

Likewise, μ(A) ≤ μ(B). Thus μ(A) = μ(B). Similarly, μ(X\A) = μ(X\B).

To conclude theproof of theproposition, Claims 2 and4assert thatμ(A) = μ(B) = 0
or μ(X\A) = μ(X\B) = 0. Finally, note that we could equally well have chosen the set
B = ⋂∞k=0⋃

∞
n=k T
−n(A) in Claim 2.

It is not difficult to check that the family {A ∈ 𝒜 | T−1(A) = A} of all completely
T-invariant sets forms a sub-σ-algebra of𝒜. So does the family {A | μ(T−1(A)△A) = 0}
of all μ-almost T-invariant sets, a fact which we shall prove shortly. Of course, the
former is a smaller σ-algebra. However, it is not sufficiently flexible for our measure-
theoretic purposes, as it is only defined set-theoretically. For this reason, we shall usu-
ally work with the latter.

Definition 8.2.5. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and let μ be
a measure on (X,𝒜). The collection of all μ-almost T-invariant sets shall be denoted
by

ℐμ := {A ∈ 𝒜
 μ(T
−1(A)△ A) = 0}.

Proposition 8.2.6. The familyℐμ is a sub-σ-algebraof𝒜. Furthermore, if μ is T-invariant
then T−1(ℐμ) ⊆ ℐμ.

Proof. It is clear that 0 ∈ ℐμ.
We now show that ℐμ is closed under the operation of complementation. Let A ∈

ℐμ. Then

T−1(X\A)△ (X\A) = (X\T−1(A))△ (X\A)
= ((X\T−1(A))\(X\A)) ∪ ((X\A)\(X\T−1(A)))
= (A\T−1(A)) ∪ (T−1(A)\A)
= T−1(A)△ A.

Thus μ(T−1(X\A)△ (X\A)) = μ(T−1(A)△ A) = 0, and hence X\A ∈ ℐμ.
It only remains to show that ℐμ is closed under countable unions, that is, wemust

show that if (An)∞n=1 is a sequence in ℐμ, then⋃
∞
n=1 An ∈ ℐμ. For this, observe that

[T−1(
∞

⋃
n=1

An)]△ [
∞

⋃
n=1

An] = [
∞

⋃
n=1

T−1(An)]△ [
∞

⋃
n=1

An]

= [
∞

⋃
n=1

T−1(An) \
∞

⋃
n=1

An]⋃[
∞

⋃
n=1

An \
∞

⋃
n=1

T−1(An)]
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⊆ [
∞

⋃
n=1
(T−1(An)\An)]⋃[

∞

⋃
n=1
(An\T

−1(An))]

=
∞

⋃
n=1
(T−1(An)△ An).

Consequently,

μ([T−1(
∞

⋃
n=1

An)]△ [
∞

⋃
n=1

An]) ≤
∞

∑
n=1

μ(T−1(An)△ An) =
∞

∑
n=1

0 = 0.

So⋃∞n=1 An ∈ ℐμ and ℐμ is a σ-algebra.
If μ is T-invariant (in fact, it suffices that μ be quasi-T-invariant, i. e. μ ∘ T−1 ≺≺ μ)

and if A ∈ ℐμ, then

μ(T−1(T−1(A))△ T−1(A)) = μ(T−1(T−1(A)△ A)) = μ(T−1(A)△ A) = 0.

That is, T−1(A) ∈ ℐμ. Thus T−1(ℐμ) ⊆ ℐμ.

We have already discussed invariant sets, measure-theoretically invariant sets
and invariant measures. We now introduce invariant and measure-theoretically in-
variant functions.

Definition 8.2.7. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation, let μ be a
measure on (X,𝒜) and let φ : (X,𝒜)→ ℝ be a measurable function.
(a) The function φ is said to be T-invariant if φ ∘ T = φ.
(b) The function φ is called μ-a. e. T-invariant if φ ∘ T = φ μ-almost everywhere. In

other words, φ is μ-a. e. T-invariant if the measurable set

Dφ := {x ∈ X | φ(T(x)) ̸= φ(x)}

is a null set.

Lemma 8.2.8. Let T : (X,𝒜, μ)→ (X,𝒜, μ) be a measure-preserving dynamical system.
Ameasurable function φ : X → ℝ is μ-a. e. T-invariant if and only if φ is constant on the
forward orbit of μ-a. e. x ∈ X.

Proof. If φ is constant on the forward orbit of μ-a. e. x ∈ X, then φ(T(x)) = φ(x) for
μ-a. e. x ∈ X, that is, φ is μ-a. e. T-invariant.

To prove the converse, suppose that φ is μ-a. e. T-invariant. For every n ∈ ℕ, we
have

{y ∈ X : φ(Tn(y)) ̸= φ(Tn−1(y))} = T−(n−1)({x ∈ X : φ(T(x)) ̸= φ(x)}).

Since μ is T-invariant (in fact, it suffices that μ be quasi-T-invariant) and since φ is
μ-a. e. T-invariant, this implies that for every n ∈ ℕ,

μ({y ∈ X : φ(Tn(y)) ̸= φ(Tn−1(y))}) = 0.
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Therefore,

μ({x ∈ X : φ not constant over𝒪+(x)}) = μ(
∞

⋃
n=1
{x ∈ X : φ(Tn(x)) ̸= φ(Tn−1(x))})

≤
∞

∑
n=1

μ({x ∈ X : φ(Tn(x)) ̸= φ(Tn−1(x))})

= 0.

So φ is constant on the forward orbit of μ-a. e. x ∈ X.

The following lemma shows that measure-theoretically invariant functions are
characterized by the fact that they are measurable with respect to the σ-algebra of
measure-theoretically invariant sets.

Lemma 8.2.9. Let T : (X,𝒜, μ)→ (X,𝒜, μ) be a measure-preserving dynamical system.
A function φ : X → ℝ is μ-a. e. T-invariant if and only if φ is measurable with respect to
the σ-algebra ℐμ.

Proof. First, suppose that φ is μ-a. e. T-invariant. Let B ⊆ ℝ be a Borel set. In order for
φ to be ℐμ-measurable, we need to show that φ−1(B) ∈ ℐμ. To begin, notice that if

x ∈ T−1(φ−1(B))△ (φ−1(B)) = (φ ∘ T)−1(B)△ (φ−1(B)),

then only one of the real numbers φ(T(x)) or φ(x) belongs to the set B. Thus φ(T(x)) ̸=
φ(x) and x ∈ Dφ. This means that

T−1(φ−1(B))△ (φ−1(B)) ⊆ Dφ.

Consequently, μ(T−1(φ−1(B))△ (φ−1(B))) ≤ μ(Dφ) = 0. So φ−1(B) ∈ ℐμ.
To prove the converse implication, suppose by way of contradiction that φ is

ℐμ-measurable but that μ(Dφ) > 0. We can always write

Dφ = ⋃
a∈ℚ
({x ∈ X : φ(x) < a < φ(T(x))} ∪ {x ∈ X : φ(x) > a > φ(T(x))}).

This is a countable union of 𝒜-measurable sets with positive total measure. Hence,
without loss of generality, there exists some a ∈ ℚ such that the set

Ba := {x ∈ X | φ(x) < a < φ(T(x))}

is of positive measure (if not, replace φ by −φ). Observe that

Ba = φ
−1((−∞, a)) ∩ (φ ∘ T)−1((a,∞)).

Note that φ−1((−∞, a)) ∈ ℐμ since φ is ℐμ-measurable by assumption. Moreover, (φ ∘
T)−1((a,∞)) = T−1(φ−1((a,∞))) ∈ ℐμ since φ is ℐμ-measurable and T−1(ℐμ) ⊆ ℐμ per
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Proposition 8.2.6. Thus Ba ∈ ℐμ. Now, notice that

T−1(Ba) = {x ∈ X : T(x) ∈ Ba} ⊆ {x ∈ X : φ(T(x)) < a} ⊆ X\Ba.

So T−1(Ba) ∩ Ba = 0 and, as Ba ∈ ℐμ, we deduce that

0 = μ(T−1(Ba)△ Ba) = μ(T
−1(Ba) ∪ Ba) ≥ μ(Ba).

Consequently, μ(Ba) = 0 and we have reached a contradiction. Therefore, μ(Dφ) = 0
and hence φ is μ-a. e. T-invariant.

In other terms, Lemma 8.2.9 asserts that φ is μ-a. e. T-invariant if and only if
E(φ|ℐμ) = φ, where E(φ|ℐμ) is the conditional expectation of φ with respect to μ.

This conditional expectation function is an intrinsic part of themost important re-
sult in ergodic theory: Birkhoff’s ergodic theorem. For more information on this func-
tion, see Subsection A.1.9.

8.2.1 Birkhoff’s ergodic theorem

We are almost ready to state the main result of this chapter. Before doing so, we must
introduce one more notation and terminology.

Definition 8.2.10. Let T : X → X be amap and letφ : X → ℝ be a real-valued function.
Let n ∈ ℕ. The nth Birkhoff sum of φ at a point x ∈ X is defined to be

Snφ(x) =
n−1
∑
j=0

φ(T j(x)).

In other words, Snφ(x) is the sum of the values of the function φ at the first n points in
the orbit of x. Sometimes this is referred to as the nth ergodic sum. As we will see in a
moment, it is also convenient to define S0φ(x) = 0.

It is easy to see that the following recurrence formula holds:

Snφ(x) = Skφ(x) + Sn−kφ(T
k(x)), ∀x ∈ X,∀k, n ∈ ℕ with k ≤ n. (8.2)

We now come to the most important result in ergodic theory. This theorem was
originally provedbyGeorgeDavidBirkhoff in 1931. There exists nowavariety of proofs.
The simple one given here originates from Katok and Hasselblatt [33].

Theorem 8.2.11 (Birkhoff’s ergodic theorem). Let T : X → X be a measure-preserving
dynamical system on a probability space (X,𝒜, μ). If φ ∈ L1(X,𝒜, μ), then

lim
n→∞


1
n
Snφ − E(φ|ℐμ)

1
= 0 and lim

n→∞
1
n
Snφ(x) = E(φ|ℐμ)(x) for μ-a. e. x ∈ X.

Proof. For the μ-a. e. pointwise convergence, it suffices to prove that

lim sup
n→∞

1
n
Snφ(x) ≤ E(φ|ℐμ)(x) for μ-a. e. x ∈ X. (8.3)
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Indeed, replacing φ by −φ in (8.3), it follows that for μ-a. e. x ∈ X,

lim inf
n→∞

1
n
Snφ(x) = − lim sup

n→∞

1
n
Sn(−φ)(x) ≥ −E(−φ|ℐμ)(x) = E(φ|ℐμ)(x). (8.4)

If (8.3) and consequently (8.4) hold, we can conclude for μ-a. e. x ∈ X that

E(φ|ℐμ)(x) ≤ lim inf
n→∞

1
n
Snφ(x) ≤ lim sup

n→∞

1
n
Snφ(x) ≤ E(φ|ℐμ)(x),

and this would complete the proof. In order to prove (8.3), it is sufficient to show that
for every ε > 0 we have

lim sup
n→∞

1
n
Snφ(x) ≤ E(φ|ℐμ)(x) + ε for μ-a. e. x ∈ X. (8.5)

Indeed, if for each ε > 0 relation (8.5) holds everywhere except on a set Xε of
measure zero, then relation (8.3) holds everywhere except on the set ⋃∞k=1 X1/k and
μ(⋃∞k=1 X1/k) = 0. So fix ε > 0.We claim that proving (8.5) is equivalent to showing that

lim sup
n→∞

1
n
Snφε(x) ≤ 0 for μ-a. e. x ∈ X, (8.6)

where

φε := φ − E(φ|ℐμ) − ε.

Indeed, sinceE(φ|ℐμ) isℐμ-measurable bydefinition, Lemma8.2.9 implies thatE(φ|ℐμ)
is μ-a. e. T-invariant, that is, E(φ|ℐμ)∘T(x) = E(φ|ℐμ)(x) for μ-a. e. x ∈ X. It then follows
that for μ-a. e. x ∈ X,

1
n
Snφε(x) =

1
n
Snφ(x) −

1
n
SnE(φ|ℐμ)(x) −

1
n
Snε(x)

=
1
n
Snφ(x) −

1
n

n−1
∑
j=0

E(φ|ℐμ) ∘ T
j(x) − 1

n

n−1
∑
j=0

ε ∘ T j(x)

=
1
n
Snφ(x) − E(φ|ℐμ)(x) − ε.

Thus

lim sup
n→∞

1
n
Snφ(x) = E(φ|ℐμ)(x) + ε + lim sup

n→∞

1
n
Snφε(x)

for μ-a. e. x ∈ X. However, in order to prove (8.6), it suffices to show that

μ(Aε) = 0, (8.7)

where

Aε := {x ∈ X | sup
n∈ℕ

Snφε(x) =∞},
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since for any x ∉ Aε we have that supn∈ℕ Snφε(x) < ∞ and it follows that
lim supn→∞

1
nSnφε(x) ≤ 0. Now we make a critical observation:

E(φε|ℐμ) = E(φ|ℐμ) − E(E(φ|ℐμ)|ℐμ) − E(ε|ℐμ) = E(φ|ℐμ) − E(φ|ℐμ) − ε = −ε < 0.

Rather than restricting our attention to φε, we will prove that (8.7) holds for all f ∈
L1(X,𝒜, μ) such that E(f |ℐμ) < 0, with φε being one such f . The T-invariance of μ im-
plies that f ∘ Tk ∈ L1(X,𝒜, μ) for all k ∈ ℕ. It immediately follows that Skf ∈ L1(X,𝒜, μ)
for all k ∈ ℕ. For each n ∈ ℕ and each x ∈ X define

Mnf (x) = max
1≤k≤n

Skf (x).

It is easy to deduce that Mnf ∈ L1(X,𝒜, μ) for all n ∈ ℕ. It is also obvious that the
sequence (Mnf (x))∞n=1 is nondecreasing for all x ∈ X. Moreover, the recurrence for-
mula (8.2) between successive ergodic sums (Snφ(x) = φ(x)+Sn−1φ(T(x))) suggests the
existence of a recurrence formula for their successive maxima. Indeed, for all x ∈ X,

Mn+1f (x) = max
1≤k≤n+1

Skf (x)

= max
1≤k≤n+1
[f (x) + Sk−1f (T(x))]

= f (x) + max
0≤l≤n

Slf (T(x))

= f (x) +max{0,max
1≤l≤n

Slf (T(x))}

= f (x) +max{0,Mnf (T(x))}.

Therefore, for all x ∈ X,

Mn+1f (x) −Mnf (T(x)) = f (x) +max{−Mnf (T(x)),0}. (8.8)

Since the sequence (Mnf (T(x)))∞n=1 is nondecreasing for all x ∈ X, the sequence
(max{−Mnf (T(x)),0})∞n=1 is nonincreasing for all x ∈ X. By (8.8), the sequence
(Mn+1f (x)−Mnf (T(x)))∞n=1 is therefore nonincreasing for all x ∈ X. In order to prove (8.7)
for the function f , we will investigate the limit of this latter sequence on the set

A = {x ∈ X : sup
n∈ℕ

Snf (x) =∞} = {x ∈ X : limn→∞
Mnf (x) =∞}.

Using the recurrence formula (8.2), it is easy to see that T−1(A) = A. In particular, this
implies that A ∈ ℐμ. Also, if x ∈ A then T(x) ∈ A, and thus limn→∞Mnf (T(x)) = ∞.
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According to (8.8), it ensues that

lim
n→∞
(Mn+1f (x) −Mnf (T(x))) = f (x), ∀x ∈ A. (8.9)

Knowing the pointwise limit of this sequence on A, we further show that this non-
increasing sequence is uniformly bounded by an integrable function. For all n ∈ ℕ
and x ∈ X, we have

f (x) ≤ Mn+1f (x) −Mnf (T(x)) ≤ M2f (x) −M1f (T(x)) = f (x) +max{−f (T(x)),0}.

For all n ∈ ℕ and x ∈ X, it follows that

Mn+1f (x) −Mnf (T(x))
 ≤
f (x)
 +
f (T(x))

.

Since |f | + |f ∘ T| ∈ L1(X,𝒜, μ), Lebesgue’s dominated convergence theorem (The-
orem A.1.38) applies. We deduce from the facts that the sequence (Mnf )∞n=1 is non-
decreasing, that μ is T-invariant and that (8.9) holds on A, that

0 ≤ ∫
A

(Mn+1f −Mnf ) dμ

= ∫
A

Mn+1f dμ − ∫
A

Mnf dμ

= ∫
A

Mn+1f dμ − ∫
A

Mnf d(μ ∘ T
−1)

= ∫
A

Mn+1f dμ − ∫
A

Mnf ∘ T dμ

= ∫
A

(Mn+1f (x) −Mnf (T(x))) dμ(x)→ ∫
A

f (x) dμ(x).

Hence, ∫A f dμ ≥ 0. Recall that A ∈ ℐμ and E(f |ℐμ) < 0. If it were the case that μ(A) > 0,
it would follow from the definition of E(f |ℐμ) that

0 ≤ ∫
A

f dμ = ∫
A

E(f |ℐμ) dμ < 0,

which would result in a contradiction. Thus μ(A) = 0. Setting f = φε, we conclude
that μ(Aε) = 0, hence establishing (8.7) and the μ-a. e. pointwise convergence of the
sequence ( 1nSnφ)

∞
n=1 to E(φ|ℐμ).

Now, if φ is bounded then


1
n
Snφ
∞
≤ ‖φ‖∞, ∀n ∈ ℕ,
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and thus Lebesgue’s dominated convergence theorem (Theorem A.1.38) asserts that
the sequence ( 1nSnφ)

∞
n=1 converges in L

1(μ) to E(φ|ℐμ).
In general, since the set of bounded measurable functions is dense in L1(μ), for

every ε > 0 there exists a bounded measurable function φε : X → ℝ such that

‖φ − φε‖1 <
ε
3
.

By the already proven part, there then exists Nε ∈ ℕ such that

1
n
Snφε − E(φε|ℐμ)

1
<
ε
3
, ∀n ≥ Nε.

For all n ≥ Nε, we then deduce that

1
n
Snφ − E(φ|ℐμ)

1
≤

1
n
Sn(φ − φε)

1
+

1
n
Snφε − E(φε|ℐμ)

1
+ E(φε|ℐμ) − E(φ|ℐμ)

1

≤
1
n

n−1
∑
j=0

(φ − φε) ∘ T
j1 +

ε
3
+ E(|φε − φ|

 ℐμ)
1

=
1
n

n−1
∑
j=0
‖φ − φε‖1 +

ε
3
+ ‖φε − φ‖1 <

ε
3
+
ε
3
+
ε
3
= ε.

So limn→∞

1
nSnφ − E(φ|ℐμ)]

1 = 0.

Let p ≥ 1. The set Lp(X,𝒜, μ) is the set of𝒜-measurable functions φ : X → ℝ such
that φp ∈ L1(X,𝒜, μ). It is well known that Lp(X,𝒜, μ) ⊆ L1(X,𝒜, μ). Theorem 8.2.11,
along with the last part of its proof where one would use this time the density of
bounded measurable functions in Lp, yield the following slight generalization.

Theorem 8.2.12 (Birkhoff’s ergodic theorem in Lp). Let T : X → X be a measure-
preserving dynamical system on a probability space (X,𝒜, μ). If φ ∈ Lp(X,𝒜, μ), then

lim
n→∞


1
n
Snφ − E(φ|ℐμ)

p
= 0 and lim

n→∞
1
n
Snφ(x) = E(φ|ℐμ)(x) for μ-a. e. x ∈ X.

Remark 8.2.13. If p = 2, then the Lp part of Theorem 8.2.12 is commonly referred to as
von Neumann’s ergodic theorem, proved for the first time in [52].

If a measure-preserving dynamical system on a probability space is ergodic, then
Birkhoff’s ergodic theorem implies the following.

Corollary 8.2.14 (Ergodic case of Birkhoff’s ergodic theorem). Let T : X → X be a
measure-preserving dynamical system on a probability space (X,𝒜, μ). If T is ergodic
with respect to μ and φ ∈ L1(X,𝒜, μ), then E(φ|ℐμ) = ∫X φdμ and

lim
n→∞


1
n
Snφ − ∫

X

φdμ
1
= 0 and lim

n→∞
1
n
Snφ(x) = ∫

X

φdμ for μ-a. e. x ∈ X.
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Proof. According to Example A.1.61, the collection of sets

𝒩 := {A ∈ 𝒜 : μ(A) = 0 or μ(A) = 1}

is a σ-algebra and E(φ|𝒩 ) = ∫X φdμ. As T is ergodic with respect to μ, we have that
ℐμ ⊆ 𝒩 . By Proposition A.1.60(f,e), it ensues that

E(φ|ℐμ) = E(E(φ|𝒩 )
 ℐμ) = E(∫

X

φdμ

ℐμ) = ∫

X

φdμ.

The result follows from Birkhoff’s ergodic theorem.

When T is ergodic with respect to an invariant probability measure μ, Birkhoff’s
ergodic theorem asserts that the average ofφ along the forward orbit of μ-almost every
x ∈ X is asymptotically equal to the average of φ over the entire space. In other words,
for any “typical” point the “time average” of a μ-integrable function is equal to its
“space average.”

Inparticular, ifφ is the characteristic functionof ameasurable set, Corollary 8.2.14
guarantees the following.

Corollary 8.2.15. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). If T is ergodic with respect to μ, then for every A ∈ 𝒜,

lim
n→∞

1
n
#{0 ≤ j < n : T j(x) ∈ A} = μ(A) for μ-a. e. x ∈ X.

In other terms, the average time the forward orbit of a “typical point” spends in a
measurable set is asymptotically equal to the measure of that set. This provides more
information than Poincaré’s recurrence theorem (Theorem 8.1.16).

Birkhoff’s ergodic theorem is a terrifically useful tool. It has had many applica-
tions in different areas ofmathematics. In particular, it is very useful in number theory.
In Exercises 8.5.42–8.5.43, you will use it to prove in a simple way various statements
about real numbers whose original, nonergodic proofs were quite involved.

One intuitive understanding of ergodicity is that an ergodic system is one inwhich
for every pair of measurable sets A and B, the sets T−n(A) become independent of B
on average.

Lemma 8.2.16. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ). Then T is ergodic with respect to μ if and only if

lim
n→∞

1
n

n−1
∑
j=0

μ(T−j(A) ∩ B) = μ(A)μ(B), ∀A,B ∈ 𝒜. (8.10)

Equivalently,

lim
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)] = 0, ∀A,B ∈ 𝒜.
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Proof. First, suppose that T is ergodic and let A,B ∈ 𝒜. For every n ∈ ℕ, we have

1
n

n−1
∑
j=0

μ(T−j(A) ∩ B) = 1
n

n−1
∑
j=0
∫
B

1T−j(A) dμ

=
1
n

n−1
∑
j=0
∫
B

1A ∘ T
j dμ

= ∫
B

1
n

n−1
∑
j=0

1A ∘ T
j dμ

= ∫
B

1
n
#{0 ≤ j < n : T j(x) ∈ A} dμ(x).

Passing to the limit and using Lebesgue’s dominated convergence theorem (Theo-
rem A.1.38) and Corollary 8.2.15, we get

lim
n→∞

1
n

n−1
∑
j=0

μ(T−j(A) ∩ B) = ∫
B

lim
n→∞

1
n
#{0 ≤ j < n : T j(x) ∈ A} dμ(x) = μ(A)μ(B).

For the converse implication, suppose that relation (8.10) holds true for all A,B ∈
𝒜. Let E ∈ 𝒜 be a completely T-invariant set. Setting A = B = E in (8.10), we obtain
μ(E) = (μ(E))2. So μ(E) ∈ {0, 1} and T is ergodic with respect to μ.

To determine whether a measure-preserving dynamical system is ergodic, it suf-
fices to check ergodicity on a semialgebra that generates the σ-algebra.

Lemma 8.2.17. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). If ℬ = σ(𝒮) for some semialgebra 𝒮, then T is ergodic if and only if
relation (8.10) holds for all A,B ∈ 𝒮.

Proof. If T is ergodic, then relation (8.10) holds for all A,B ∈ ℬ ⊇ 𝒮.
For the converse implication, suppose that relation (8.10) holds for all A,B ∈ 𝒮.

Since each member of the algebra 𝒜(𝒮) generated by 𝒮 can be written as a finite dis-
joint union of elements of 𝒮, a straightforward calculation shows that relation (8.10)
also holds for all elements of𝒜(𝒮).

So, let ε > 0 and A,B ∈ ℬ = σ(𝒮) = σ(𝒜(𝒮)). By virtue of Lemma A.1.32, there are
A0,B0 ∈ 𝒜(𝒮) such that μ(A△ A0) < ε and μ(B△ B0) < ε. By Exercise 8.5.11, it follows
that

μ(A) − μ(A0)
 < ε and μ(B) − μ(B0)

 < ε. (8.11)

Using Exercise 8.5.10, notice also that for every j ≥ 0,

(T−j(A) ∩ B)△ (T−j(A0) ∩ B0) ⊆ (T
−j(A)△ T−j(A0)) ∪ (B△ B0)

= T−j(A△ A0) ∪ (B△ B0).
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Therefore,

μ((T−j(A) ∩ B)△ (T−j(A0) ∩ B0)) ≤ μ(A△ A0) + μ(B△ B0) < 2ε, ∀j ≥ 0.

By Exercise 8.5.11 again, we deduce that
μ(T
−j(A) ∩ B) − μ(T−j(A0) ∩ B0)

 < 2ε, ∀j ≥ 0. (8.12)

Using (8.12) and (8.11), we obtain for all j ≥ 0 that

μ(T−j(A) ∩ B) − μ(A)μ(B) ≤ [μ(T−j(A) ∩ B) − μ(T−j(A0) ∩ B0)]
+ [μ(T−j(A0) ∩ B0) − μ(A0)μ(B0)]
+ [μ(A0)μ(B0) − μ(A)μ(B0)]
+ [μ(A)μ(B0) − μ(A)μ(B)]
≤ μ(T

−j(A) ∩ B) − μ(T−j(A0) ∩ B0)


+ [μ(T−j(A0) ∩ B0) − μ(A0)μ(B0)]
+ μ(A0) − μ(A)

μ(B0)
+ μ(A)μ(B0) − μ(B)


< 4ε + [μ(T−j(A0) ∩ B0) − μ(A0)μ(B0)]

and it follows that

lim sup
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)]

≤ 4ε + lim
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A0) ∩ B0) − μ(A0)μ(B0)] = 4ε,

(8.13)

where the above limit is 0 as a consequence of (8.10) holding for A0,B0 ∈ 𝒜(S).
Similarly, for all j ≥ 0,

μ(A)μ(B) − μ(T−j(A) ∩ B) < 4ε + [μ(A0)μ(B0) − μ(T
−j(A0) ∩ B0)]

and it ensues that

lim sup
n→∞

1
n

n−1
∑
j=0
[μ(A)μ(B) − μ(T−j(A) ∩ B)] ≤ 4ε.

Therefore,

lim inf
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)] ≥ −4ε. (8.14)

By (8.13) and (8.14), the limsup is atmost 4εwhile the liminf is at least −4ε. Since ε > 0
was chosen arbitrarily, we deduce that the limit exists and is 0. Thus, relation (8.10)
holds for all elements of ℬ, and T is ergodic by Lemma 8.2.16.
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We end this section with a characterization of ergodicity in terms of invariant and
measure-theoretically invariant functions.

Theorem 8.2.18. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). The following statements are equivalent:
(a) T is ergodic with respect to μ.
(b) If φ is a T-invariant L1(X,𝒜, μ)-function, then φ is μ-a. e. constant.
(c) If φ is a μ-a. e. T-invariant L1(X,𝒜, μ)-function, then φ is μ-a. e. constant.
(d) If φ is a T-invariant measurable function, then φ is μ-a. e. constant.
(e) If φ is a μ-a. e. T-invariant measurable function, then φ is μ-a. e. constant.

Proof. We shall first prove the chain of implications (a)⇒(c)⇒(b)⇒(a) and then show
that (e)⇒(d)⇒(a)⇒(e).

To begin, suppose that T is ergodic and let φ be a μ-a. e. T-invariant L1(X,𝒜, μ)-
function. As φ is μ-a. e. T-invariant and μ is T-invariant, it follows from Lemma 8.2.8
that φ is constant over the forward orbit of μ-a. e. x ∈ X. This implies that Snφ(x) =
nφ(x) for all n ∈ ℕ for μ-a. e. x ∈ X. Using this and the ergodic case of Birkhoff’s
ergodic theorem (Corollary 8.2.14), it follows that

φ(x) = lim
n→∞

1
n
Snφ(x) = ∫

X

φdμ for μ-a. e. x ∈ X.

So φ is constant μ-almost everywhere. This proves that (a)⇒(c).
Since every T-invariant function is μ-a. e. T-invariant, it is clear that (c)⇒(b).
We now want to show that (b)⇒(a). Suppose that every T-invariant L1(X,𝒜, μ)-

function is constant μ-a. e. and assume by way of contradiction that T is not ergodic
with respect to μ. Then there exists a set A ∈ 𝒜 such that T−1(A) = Awith μ(A) > 0 and
μ(X\A) > 0. Since T−1(A) = A, we have that 1A ∘ T = 1A. However, 1A is not constant
μ-a. e. since μ(A) > 0 and μ(X\A) > 0. Thus, 1A is a T-invariant L1(X,𝒜, μ)-function
which is not constant μ-almost everywhere. This contradiction shows that T must be
ergodic.

This completes the proof of the first chain (a)⇒(c)⇒(b)⇒(a).
Accordingly, let us turn our attention to the second chain. It is clear that (e)⇒(d).

The above proof that (b)⇒(a) carries over directly to show that (d)⇒(a) by simply
replacing “L1(X,𝒜, μ)” by “measurable.” All that is left is to establish that (a)⇒(e).
So, suppose that T is ergodic and let φ be a μ-a. e. T-invariant measurable function.
Then μ({x ∈ X | φ(T(x)) ̸= φ(x)}) = 0. Assume by way of contradiction that φ is not
μ-a. e. constant. Then there exists r ∈ ℝ such that μ(Sr) > 0 and μ(X\Sr) > 0, where
Sr := {x | φ(x) < r}. The set Sr is μ-a. e. T-invariant since

T−1(Sr)△ Sr = (T
−1(Sr)\Sr) ∪ (Sr\T

−1(Sr))
= {x : φ(T(x)) < r ≤ φ(x)} ∪ {x : φ(x) < r ≤ φ(T(x))}
⊆ {x : φ(T(x)) ̸= φ(x)}
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and hence

μ(T−1(Sr)△ Sr) ≤ μ({x ∈ X : φ(T(x)) ̸= φ(x)}) = 0.

Thus μ(T−1(Sr) △ Sr) = 0. Since μ is ergodic, we deduce that either μ(Sr) = 0 or
μ(X\Sr) = 0. This contradiction implies that φmust be μ-a. e. constant.

Remark 8.2.19. It is possible to prove that the property “L1(X,𝒜, μ)” can be replaced
by “Lp(X,𝒜, μ)” for any 1 ≤ p <∞.

8.2.2 Existence of ergodic measures

We will shortly embark on a study of the set of all ergodic measures for a given mea-
surable transformation.

Definition 8.2.20. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. The set of
all T-invariant probability measures that are ergodic with respect to T is denoted by
E(T ,𝒜). If𝒜 is the Borel σ-algebra on a topological space X, in line with the notation
for the T-invariant Borel probability measures, we simply write E(T) := E(T ,ℬ(X)).

We saw in Lemma 8.1.19 that the set of invariant probability measuresM(T ,𝒜) is
convex.We shall soonprove that the ergodicmeasuresE(T ,𝒜) form the extremepoints
ofM(T ,𝒜). First, we show that any two ergodic measures are either equal or mutually
singular (for more information on mutual singularity, see Subsection A.1.7).

Theorem 8.2.21. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. If μ1, μ2 ∈
E(T ,𝒜) and μ1 ̸= μ2, then μ1⊥μ2.

Proof. Sinceμ1 ̸= μ2, there exists some setA ∈ 𝒜withμ1(A) ̸= μ2(A). By Corollary 8.2.15
of Birkhoff’s ergodic theorem, for each i = 1, 2 there exists a set Xi of full μi-measure
such that

lim
n→∞

1
n
#{0 ≤ j < n : T j(x) ∈ A} = μi(A), ∀x ∈ Xi.

Consequently, μ1(A) = μ2(A) on X1∩X2. As we know that μ1(A) ̸= μ2(A), we deduce that
X1 ∩ X2 = 0. Thus μ1(X1) = 1, μ2(X2) = 1 and X1 ∩ X2 = 0. Therefore, μ1⊥μ2.

We use the above theorem to give a characterization of ergodic measures as those
invariant probability measures with respect to which no other invariant probability
measure is absolutely continuous.

Theorem 8.2.22. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and let μ ∈
M(T ,𝒜). Then μ ∈ E(T ,𝒜) if and only if there is no ν ∈ M(T ,𝒜) such that ν ≺≺ μ and
ν ̸= μ.
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Proof. First, suppose that μ ∈ E(T ,𝒜). Let ν ∈ M(T ,𝒜) be such that ν ≺≺ μ. We claim
that ν ∈ E(T ,𝒜), too. Indeed, suppose by way of contradiction that there exists A ∈ 𝒜
such that T−1(A) = A with ν(A) > 0 and ν(X\A) > 0. Since ν ≺≺ μ, it follows that
μ(A) > 0 and μ(X\A) > 0. This contradicts the ergodicity of μ. So ν ∈ E(T ,𝒜). Now, if
ν ̸= μ then Theorem8.2.21 affirms that ν⊥μ. This contradicts the hypothesis that ν ≺≺ μ.
Hence, ν = μ.

For the converse implication, suppose that μ is not ergodic (but still T-invariant
by hypothesis). Then there exists some A ∈ 𝒜 such that T−1(A) = A with μ(A) > 0
and μ(X\A) > 0. Let μA be the conditional measure of μ on A, as expressed in Defini-
tion A.1.70. Then one immediately verifies that μA is a T-invariant probability measure
such that μA ̸= μ and μA ≺≺ μ.

Recall that in a vector space the extreme points of a convex set are those points
which cannot be represented as a nontrivial convex combination of two distinct points
of the set. In concrete terms, let V be a vector space and C be a convex subset of V . A
vector v ∈ C is an extremepoint ofC if the only combination of distinct vectors v1, v2 ∈ C
such that v = αv1 + (1 − α)v2 for some α ∈ [0, 1] is a combination with α = 0 or α = 1.

Theorem 8.2.23. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. The ergodic
measures E(T ,𝒜) are the extreme points of the set of invariant probability measures
M(T ,𝒜).

Proof. Suppose that μ ∈ E(T ,𝒜) is not an extreme point of M(T ,𝒜). Then there exist
measures μ1 ̸= μ2 in M(T ,𝒜) and 0 < α < 1 such that μ = αμ1 + (1 − α)μ2. It follows
immediately thatμ1 ≺≺ μ andμ2 ≺≺ μ. ByTheorem8.2.22,wededuce from the ergodicity
of μ that μ1 = μ = μ2. This contradicts the fact that μ1 ̸= μ2. Thus μ is an extreme point
ofM(T ,𝒜).

To prove the converse implication, let μ ∈ M(T ,𝒜)\E(T ,𝒜). We want to show that
μ is not an extreme point of M(T ,𝒜). Since μ is not ergodic, there exists a set A ∈ 𝒜
such that T−1(A) = A with μ(A) > 0 and μ(X\A) > 0. Observe that μ can be written as
the following nontrivial convex combination of the T-invariant conditional measures
μA and μX\A: for every B ∈ 𝒜,

μ(B) = μ(A ∩ B) + μ((X\A) ∩ B) = μ(A) μA(B) + μ(X\A) μX\A(B)
= μ(A) μA(B) + (1 − μ(A)) μX\A(B).

Hence, μ is a nontrivial convex combination of two distinct T-invariant probability
measures and thus μ is not an extreme point ofM(T ,𝒜).

We now invoke Krein–Milman’s theorem to deduce that every topological dynam-
ical system admits an ergodic and invariant measure. Recall that the convex hull of a
subset S of a vector space V is the set of all convex combinations of vectors of S.

Theorem 8.2.24 (Krein–Milman’s theorem). If K is a compact subset of a locally con-
vex topological vector space V and E is the set of its extremal points, then co(E) ⊇ K,
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where co(E) is the closed convex hull of E. Consequently, co(E) = co(K). In particular, if
K is convex then co(E) = K.

Proof. See Theorem V.8.4 in Dunford and Schwartz [20].

Corollary 8.2.25. Let T : X → X be a topological dynamical system. Then

co(E(T)) = M(T) ̸= 0.

In particular, E(T) ̸= 0.

Proof. In Theorems 8.1.20 and 8.1.22, we saw that whenever T : X → X is a topo-
logical dynamical system, the set M(T) is a nonempty compact convex subset of the
(compact) convex space M(X). Moreover, Theorem 8.2.23 established that E(T) is the
set of extreme points of M(T). The result then follows from the application of Krein–
Milman’s theorem with K = M(T), V = M(X) and E = E(T).

This corollary can be restated as follows: Every topological dynamical system in-
duces at least one ergodic measure-preserving dynamical system.

The compactness and convexity of M(T) as a subset of the convex space M(X)
(equippedwith theweak∗ topology) further allows us to use Choquet’s representation
theorem to express each element ofM(T) in terms of the elements of its set of extreme
points E(T). In fact, this decomposition holds in a more general case.

Theorem 8.2.26 (Ergodic decomposition). Let T : (X,ℬ, μ) → (X,ℬ, μ) be a measure-
preserving transformation of a Borel probability space (X,ℬ, μ). Then there is a Borel
probability space (Y ,ℬ(Y), ν) and a measurable map Y ∋ y → μy ∈ M(X) such that
(a) μy is an ergodic T-invariant Borel probabilitymeasure onX for ν-almost every y ∈ Y;

and
(b) μ = ∫Y μy dν(y).

Moreover, one may require that the map y → μy be injective, or alternatively set

(Y ,ℬ(Y), ν) = (X,ℬ, μ) and μx = μ
ℐμ
x ,

where ℐμ is the σ-algebra of μ-almost T-invariant sets (see Definition 8.2.5) and μℐx is a
Borel probability measure on X for which

E(φ|ℐμ)(x) = ∫
X

φ(z) dμℐμ
x (z) for μ-a. e. x ∈ X

for all φ ∈ L1(X,ℬ, μ).

Proof. The interested reader is invited to consult Theorem 6.2 in [21].
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So, for any topological dynamical system, every invariantmeasure canbeuniquely
written as a generalized convex combination of ergodic invariant measures.

We end our theoretical discussion of ergodic measures with the following result.
We already know from Theorem 1.5.11 that the set of transitive points for any transitive
map is a dense set, which can be thought of as “topologically full.” The forthcom-
ing result asserts that a dynamical systemwhich admits an ergodic invariant measure
supported on the entire space is transitive, and its set of transitive points is “full” not
only topologically but also measure-theoretically.

Theorem 8.2.27. Let T : X → X be a topological dynamical system. If μ ∈ E(T) and
supp(μ) = X, then μ-almost every x ∈ X is a transitive point for T. In particular, T is
transitive.

Proof. Let {Uk}
∞
k=1 be a base for the topology of X. For each k ∈ ℕ, let Xk be the set of

points whose orbits visit Uk infinitely often; in other words,

Xk =
∞

⋂
m=1

∞

⋃
n=m

T−n(Uk).

Weobserved in the discussion preceding Proposition 8.2.4 that the setXk is completely
T-invariant. Since μ is ergodic, we deduce that μ(Xk) = 0 or μ(X\Xk) = 0. However,

μ(Xk) = μ(
∞

⋂
m=1

∞

⋃
n=m

T−n(Uk)) = lim
m→∞

μ(
∞

⋃
n=m

T−n(Uk))

≥ lim
m→∞

μ(T−m(Uk)) = lim
m→∞

μ(Uk) = μ(Uk) > 0,

where the last strict inequality is due to the fact that the support of the measure
μ is X. Therefore, μ(X\Xk) = 0. Since this is true for all k ∈ ℕ, we conclude that
μ(X\⋂∞k=1 Xk) = 0. But all points in the set⋂

∞
k=1 Xk have an orbit that visits each basic

open set Uk infinitely often. Thus all points of ⋂∞k=1 Xk are transitive. Hence, μ-a. e.
x ∈ X is a transitive point for T.

8.2.3 Examples of ergodic measures

We begin this section with a simple example.

Example 8.2.28. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation with a fixed
point x0. Let δx0 be the Dirac point mass supported at x0. We saw in Example 8.1.8 that
δx0 is T-invariant. The measure δx0 is also trivially ergodic since any measurable set is
of measure 0 or 1.

We now revisit the rotations of the unit circle. For a comparative perspective of the
topological dynamics of these maps, see Theorem 1.5.12.
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Proposition 8.2.29. Let Tα : 𝕊1 → 𝕊1 be the map defined by Tα(x) := x + α (mod 1).
Then Tα is ergodic with respect to the Lebesgue measure if and only if α ∈ ℝ\ℚ.

Proof. We demonstrated in Example 8.1.9 that the Lebesgue measure λ on 𝕊1 is
Tα-invariant for any α ∈ ℝ. First, assume that α ∉ ℚ. We want to show that λ is
ergodic with respect to Tα. For this, we will show that if f ∘ Tα = f and f ∈ L2(λ), then
f is λ-a. e. constant. It will then result from Theorem 8.2.18 and Remark 8.2.19 that λ is
ergodic. Consider the Fourier series representation of f , which is given by

f (x) = ∑
k∈ℤ

ake
2πikx .

Then

f ∘ Tα(x) = ∑
k∈ℤ

ake
2πik(x+α) = ∑

k∈ℤ
ake

2πikαe2πikx .

Since we assumed that f ∘Tα = f , we deduce from the uniqueness of the Fourier series
representation that ake2πikα = ak for all k ∈ ℤ. Hence, for each k we have ak = 0 or
e2πikα = 1. The latter equality holds if and only if kα ∈ ℤ. As α ∉ ℚ, this occurs only
when k = 0. Thus f (x) = a0 for λ-a. e. x ∈ 𝕊1, that is, f is λ-a. e. constant. This implies
that λ is ergodic.

Now, suppose that α = p/q ∈ ℚ. We may assume without loss of generality that
q > p ≥ 0. In what follows, all sets must be interpreted modulo 1. Let

A :=
q−1
⋃
n=0
[
n
q
,(n + 1

2
)
1
q
].

Then

T−1α (A) =
q−1
⋃
n=0
[
n − p
q
,(n − p + 1

2
)
1
q
]

=
p−1
⋃
n=0
[
n − p
q
,(n − p + 1

2
)
1
q
] ∪

q−1
⋃
n=p
[
n − p
q
,(n − p + 1

2
)
1
q
]

=
p−1
⋃
n=0
[
n + q − p

q
,(n + q − p + 1

2
)
1
q
] ∪

q−(p+1)
⋃
k=0
[
k
q
,(k + 1

2
)
1
q
]

=
q−1
⋃

k=q−p
[
k
q
,(k + 1

2
)
1
q
] ∪

q−(p+1)
⋃
k=0
[
k
q
,(k + 1

2
)
1
q
]

=
q−1
⋃
k=0
[
k
q
,(k + 1

2
)
1
q
] = A.

Also, one immediately verifies that λ(A) = q ⋅ (1/2)(1/q) = 1/2. In summary, T−1α (A) = A
and λ(A) ∉ {0, 1}. Thus, λ is not ergodic with respect to Tα when α ∈ ℚ.
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We now return to the doubling map and its generalizations.

Example 8.2.30. Fix n > 1. Recall once more the map Tn : 𝕊1 → 𝕊1 defined by Tn(x) =
nx (mod 1).We claim that Tn is ergodicwith respect to the Lebesguemeasure λ. We saw
in Example 8.1.10 that Tn preserves λ. It is possible to demonstrate the ergodicity of Tn
with respect to λ in a similar way that we did for Tα in Proposition 8.2.29. However,
in this example we will provide a different proof. Let A ∈ ℬ(𝕊1) be a set such that
T−1n (A) = A and λ(A) > 0. To establish ergodicity, we need to show that λ(A) = 1.

Recall that Lebesgue’s density theorem (see Corollary 2.14 in Mattila [46]) states
that for any Lebesguemeasurable setA ⊆ ℝn, the density ofA is 0 or 1 at λ-almost every
point ofℝn. Moreover, the density of A is 1 at λ-almost every point of A. The density of
A at x ∈ ℝn is defined as

lim
r→0

λ(A ∩ B(x, r))
λ(B(x, r))

.

Given that λ(A) > 0, take x to be a Lebesgue density point of A, that is, a point where
the density of A is 1, that is,

lim
r→0

λ(A ∩ B(x, r))
2r

= 1. (8.15)

Set

rk := 1/(2n
k).

Then Tkn is injective on each arc of length less than 2rk . So T
k
n |B(x,rk) is injective for each

x ∈ 𝕊1. On the other hand,

Tkn (B(x, rk)) = 𝕊
1\{Tkn (x + rk)}.

Thus

λ(Tkn (B(x, rk))) = 1.

Therefore,

λ(A) = λ(Tkn (A)) ≥
λ(Tkn (A ∩ B(x, rk)))
λ(Tkn (B(x, rk)))

=
nkλ(A ∩ B(x, rk))
nkλ(B(x, rk))

=
λ(A ∩ B(x, rk))

2rk
→
k→∞

1

by (8.15). Consequently, λ(A) = 1. This proves the ergodicity of λ.

Example 8.2.31. Recall the full Markov maps from Example 8.1.11. We claim that any
such T is ergodic with respect to the Lebesgue measure λ. As we did in the previous
example, we would like to use Lebesgue’s density theorem to prove this. However,
in contradistinction with the preceding example, for all r > 0 and all k ∈ ℕ, the
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restriction of Tk to the ball B(pj, r) is not one-to-one when pj is a point of continuity for
a full Markovmap T; for example, the point 1/2 for the tentmap. Despite that potential
lack of injectivity, let us try to use Lebesgue’s density theorem.

For each n ∈ ℕ, let 𝒫n := {I
(n)
j | 1 ≤ j ≤ q

n} be the “partition” of [0, 1] into the
successive intervals of monotonicity of Tn. In particular, I(1)j = Ij for all 1 ≤ j ≤ q. For
each 1 ≤ j < qn, let p(n)j be the unique point in I(n)j ∩ I

(n)
j+1 . For all x ∈ [0, 1]\{p

(n)
j : 1 ≤ j <

qn}, let I(n)(x) be the unique element of 𝒫n containing x. We will need two claims.

Claim 1. For every n ∈ ℕ, the map Tn : [0, 1] → [0, 1] is a full Markov map under the
“partition” 𝒫n, and 𝒫n+1 is finer than 𝒫n.

Claim 2. If A ∈ ℬ([0, 1]), then

lim
n→∞

λ(A ∩ I(n)(x))
λ(I(n)(x))

= 1 for λ-a. e. x ∈ A.

Proof of ergodicity of T. For the time being, suppose that both claims hold. Let A be a
Borel subset of [0, 1] such that T−1(A) = A and λ(A) > 0. By the surjectivity of T, we
know that T(A) = A. Fix any x ∈ A satisfying Claim 2. For each n ∈ ℕ, let mn be the
slope of Tn|I(n)(x). Using both claims, we obtain that

λ(A) = λ(Tn(A)) ≥
λ(Tn(A ∩ I(n)(x)))
λ(Tn(I(n)(x)))

=
mn λ(A ∩ I(n)(x))
mn λ(I(n)(x))

=
λ(A ∩ I(n)(x))
λ(I(n)(x))

→
n→∞

1.

Consequently, λ(A) = 1. This proves the ergodicity of λ.

Proof of Claim 1. Weproceedby induction. Suppose thatTn is a fullMarkovmapunder
the “partition” 𝒫n. It is obvious that Tn+1 is piecewise linear. Fix I(n)j ∈ 𝒫n. For all
1 ≤ i ≤ q, consider

I(n+1)j,i := T|
−1
Ii (I
(n)
j ).

Define

𝒫n+1 := {I
(n+1)
j,i | 1 ≤ j ≤ q

n, 1 ≤ i ≤ q}.

Then

qn

⋃
j=1

q
⋃
i=1

I(n+1)j,i =
qn

⋃
j=1

q
⋃
i=1

T|−1Ii (I
(n)
j ) =

q
⋃
i=1

qn

⋃
j=1

T|−1Ii (I
(n)
j )

=
q
⋃
i=1

T|−1Ii (
qn

⋃
j=1

I(n)j ) =
q
⋃
i=1

T|−1Ii ([0, 1])

=
q
⋃
i=1

Ii = [0, 1].
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Thus 𝒫n+1 is a cover of [0, 1]. Obviously, the interiors of the intervals in 𝒫n+1 are mu-
tually disjoint and 𝒫n+1 is finer than 𝒫n. For all 1 ≤ j ≤ qn and all 1 ≤ i ≤ q we further
have

Tn+1(I(n+1)j,i ) = T
n(T(I(n+1)j,i )) = T

n(T(T|−1Ii (I
(n)
j ))) = T

n(I(n)j ) = [0, 1].

So𝒫n+1 = 𝒫n+1 and Tn+1 is a full Markovmap under the “partition”𝒫n+1, which is finer
than 𝒫n. This completes the inductive step. Since the claim clearly holds when n = 1,
Claim 1 has been established for all n ∈ ℕ.

Proof of Claim 2. Let𝒜n := σ(𝒫n) be the σ-algebra generated by𝒫n. By Claim 1,𝒫n+1 is
finer than 𝒫n for all n ∈ ℕ and thus the sequence of σ-algebras (𝒜n)

∞
n=1 is ascending.

Now, let

m := min{slope(T|Ii )
 : 1 ≤ i ≤ q} = {

(T|Int(Ii))
′ : 1 ≤ i ≤ q} > 1.

Then

diam(𝒫n) := sup{diam(I
(n)
j ) : 1 ≤ j ≤ q

n} ≤ m−n →
n→∞

0.

Therefore, 𝒜∞ := σ(⋃∞n=1𝒜n) contains all the subintervals of [0, 1]. Hence, 𝒜∞ =
ℬ([0, 1]). Let A ∈ ℬ([0, 1]). According to Theorem A.1.67,

lim
n→∞

E(1A|𝒜n)(x) = E(1A|ℬ([0, 1]))(x) = 1A(x) for λ-a. e. x ∈ [0, 1]. (8.16)

Now, recall that 𝒫n := {I
(n)
j : 1 ≤ j ≤ q

n} is the “partition” of [0, 1] into the successive
intervals of monotonicity of Tn. Moreover, p(n)j is the unique point in I(n)j ∩ I

(n)
j+1 for every

1 ≤ j < qn. Define

𝒫′n := {I
(n)
1 \{p

(n)
1 }} ∪ {Int(I

(n)
j ) : 1 < j < q

n} ∪ {I(n)qn \{p
(n)
qn−1}} ∪ {{p

(n)
j } : 1 ≤ j < q

n}.

Though 𝒫n is not a partition per se, the family 𝒫′n is a finite partition of [0, 1]. More-
over, it is easy to see that 𝒜n := σ(𝒫n) = σ(𝒫′n). By Example A.1.62, the conditional
expectation function E(1A|𝒜n) is constant on each element of the partition 𝒫′n. For all
x except the points p(n)j , by definition of the conditional expectation function wemust
also have

∫
I(n)(x)

E(1A|𝒜n) dλ = ∫
I(n)(x)

1A dλ = λ(A ∩ I
(n)(x)).

Therefore,

E(1A|𝒜n)(y) =
λ(A ∩ I(n)(x))
λ(I(n)(x))

, ∀y ∈ Int(I(n)(x)).
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Since I(n)(y) = I(n)(x) for all y ∈ Int(I(n)(x)), it ensues that

E(1A|𝒜n)(z) =
λ(A ∩ I(n)(z))
λ(I(n)(z))

for λ-a. e. z ∈ [0, 1].

It follows from (8.16) that

lim
n→∞

λ(A ∩ I(n)(x))
λ(I(n)(x))

= 1 for λ-a. e. x ∈ A.

Claim 2 is proved and this completes this example.

The next example concerns the shift map.

Example 8.2.32. Recall the one-sided Bernoulli shift from Example 8.1.14 where,
given a probability space (E,ℱ ,P), the product space (E∞,ℱ∞, μP) is a probability
space and the product measure μP is invariant under the left shift map σ. We now
demonstrate that μP is also ergodic with respect to σ. To prove this, we use Lem-
mas 8.2.16–8.2.17. Let A,B be cylinder sets of length M and N, respectively. Since
cylinderA depends on the firstM coordinates, cylinder σ−j(A) depends on coordinates
j + 1 to j +M. Consequently, cylinders σ−j(A) and B depend on different coordinates as
soon as j ≥ N . Since μP is a product measure and is σ-invariant, we deduce that

μP(σ
−j(A) ∩ B) = μP(σ

−j(A))μP(B) = μP(A)μP(B), ∀j ≥ N .

It follows immediately that

lim
n→∞

1
n

n−1
∑
j=0

μP(σ
−j(A) ∩ B) = μP(A)μP(B).

The ergodicity of σ ensues from Lemmas 8.2.16 and 8.2.17. In Example 8.3.13, we shall
see that the shift map enjoys an even stronger property than ergodicity.

Our final example pertains to ordinary normal numbers.

Example 8.2.33. Let n ≥ 2. On one hand, consider the probability space (E,ℱ ,P), with
set E = {0, 1, . . . , n − 1}, σ-algebra ℱ = 𝒫(E) and probability measure P = (1/n)∑n−1k=0 δk .
According to Example 8.2.32, the product space (E∞,ℱ∞, μP) is a probability space
and the measure μP is ergodic with respect to the shift map σ.

On the other hand, consider the map Tn : 𝕊1 → 𝕊1 defined by Tn(x) = nx (mod 1).
In Example 8.2.30, we learned that Tn is ergodic with respect to the Lebesgue mea-
sure λ. This map is also distance expanding, and thus admits a Markov partition. In
Examples 4.4.4 and 4.4.5, explicit partitions were given. In Example 4.5.3, the coding
map generated by the partitionℛ = {Ri = [

i
n ,

i+1
n ] : 0 ≤ i < n} was identified as

π : E∞ → 𝕊1

ω = (ωk)
∞
k=1 → π(ω) =

∞

∑
k=1

ωk
nk
.
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Properties of πwere given in Theorem4.5.2. Among others, π is continuous, surjective,
and its restriction to the set Z := π−1(𝕊1\⋃∞k=0 T

−k
n (⋃

n−1
i=0 𝜕Ri)) is injective. The set Z

consists of all ω ∈ E∞ whose coordinates are not eventually constant and equal to 0
or n − 1, i. e.

E∞\Z = ⋃
τ∈E∗
{τ0∞, τ(n − 1)∞}.

The coding map π is two-to-one on E∞\Z, which is a countable set and thus has
μP-measure zero. So μP(Z) = 1.

The coding map π : (E∞,ℱ∞, μP) → (𝕊1,ℬ(𝕊1), λ) is measure-preserving. Indeed,
it is easy to show that the family

𝒫 := {[
i
nk
,
i + 1
nk
] : 0 ≤ i < nk , k ∈ ℕ}⋃{ i

nk
: 0 ≤ i < nk , k ∈ ℕ}

is a π-system that generatesℬ(𝕊1) and μP ∘π−1(P) = λ(P) for allP ∈ 𝒫. Hence the coding
map is measure-preserving according to Lemma 8.1.4.

Let φ : E∞ → E ⊆ ℝ be the function φ(ω) = ω1. Clearly, φ ∈ L1(E∞,ℱ∞, μP).
Furthermore, φ ∘ σj(ω) = ωj+1 for all j ≥ 0. Since μP is ergodic with respect to the shift
map σ, the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14) asserts that
there isM ∈ ℱ∞ such that μP(M) = 1 and

lim
k→∞

1
k

k
∑
j=1

ωj = limk→∞

1
k
Skφ(ω) = ∫

E∞
φ(ω) dμP(ω)

=
n−1
∑
i=0
∫
[i]

i dμP =
n−1
∑
i=0

i μP([i]) =
n−1
∑
i=0

i ⋅ 1
n

=
n − 1
2
, ∀ω ∈ M.

As π is continuous, it is Borel measurable and thus π(M) is Lebesgue measurable.
Since π is measure-preserving, we have that λ(π(M)) = μP ∘ π−1(π(M)) ≥ μP(M) = 1.
We infer that the digits of the n-adic expansion of λ-almost every number between 0
and 1 average (n − 1)/2 asymptotically.

Now, fix any 0 ≤ i < n. Since μP is ergodic with respect to σ, Corollary 8.2.15 of
Birkhoff’s ergodic theorem affirms that for μP-a. e. ω ∈ E∞,

lim
k→∞

1
k
#{1 ≤ j ≤ k : ωj = i} = lim

k→∞

1
k
#{0 ≤ j < k : σj(ω) ∈ [i]} = μP([i]) =

1
n
.

Since the coding map is measure-preserving, we deduce that λ-almost every number
between 0 and 1 has a n-adic expansion whose digits are equal to i with a frequency
of 1/n. This frequency is independent of the digit i, as one naturally expects.
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8.2.4 Uniquely ergodic transformations

As mentioned in Subsection 8.1.3, there are measurable transformations that do not
admit any invariant measure. However, in Theorem 8.1.22 we showed that every topo-
logical dynamical system carries invariant probability measures. Among those sys-
tems, some have only one such measure. Per Corollary 8.2.25, this happens precisely
when there is a unique ergodic invariantmeasure. Thesemapsdeserve a special name.

Definition 8.2.34. A measurable transformation T : (X,𝒜) → (X,𝒜) is said to be
uniquely ergodic if E(T ,𝒜) is a singleton.

Lemma 8.2.35. A topological dynamical system T : X → X is uniquely ergodic if and
only if M(T) is a singleton.

Proof. According to Corollary 8.2.25,M(T) is the closed convex hull of E(T). Therefore,
M(T) is a singleton precisely when E(T) is.

Recall that by Riesz’ representation theorem (Theorem A.1.53), whenever X is a
compact metrizable space, every μ ∈ M(X) is uniquely determined by a normalized
positive continuous linear functional ℓμ ∈ C(X)∗, namely

ℓμ(f ) = ∫
X

f dμ, ∀f ∈ C(X).

If T : X → X is a topological dynamical system, then by Theorem 8.1.18 each μ ∈ M(T)
corresponds to a T-invariant functional in the sense that

ℓμ(f ∘ T) = ℓμ(f ), ∀f ∈ C(X).

Wewill show that if T is uniquely ergodic, then all T-invariant continuous linear func-
tionals are scalarmultiples of ℓμ0 , where μ0 is the unique ergodic T-invariantmeasure.

First, we introduce the variation of a functional.

Definition 8.2.36. Let ℓ ∈ C(X)∗. The variation of ℓ is the functional var(ℓ) : C(X)→ ℝ
defined as follows: For any function f ∈ C(X), f ≥ 0, set

var(ℓ)(f ) := sup
g∈C(X)
0≤g≤f

ℓ(g),

and for any other f ∈ C(X) let

var(ℓ)(f ) := var(ℓ)(f+) − var(ℓ)(f−).

Lemma 8.2.37. Let ℓ ∈ C(X)∗. Set Δℓ := var(ℓ) − ℓ. Then var(ℓ),Δℓ ∈ C(X)∗ and both
are positive. In addition, if ℓ is T-invariant then so are var(ℓ) and Δℓ.
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Proof. Let f ∈ C(X), f ≥ 0. The positivity of var(ℓ) is obvious since var(ℓ)(f ) ≥ ℓ(0) = 0.
It is also easy to see that var(ℓ)(cf ) = c ⋅ var(ℓ)(f ) for all c ≥ 0. Now, let f1, f2 ∈ C(X),
f1, f2 ≥ 0. On one hand, if g1, g2 ∈ C(X) satisfy 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2, then
0 ≤ g1 + g2 ≤ f1 + f2, and hence

ℓ(g1) + ℓ(g2) = ℓ(g1 + g2) ≤ var(ℓ)(f1 + f2).

Taking the supremum over all such g1, g2, we get

var(ℓ)(f1) + var(ℓ)(f2) ≤ var(ℓ)(f1 + f2). (8.17)

On the other hand, let g ∈ C(X) be such that 0 ≤ g ≤ f1 + f2. Define g1 = min{f1, g} and
g2 = g − g1. Then g1, g2 ∈ C(X) and satisfy 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2. It follows that

ℓ(g) = ℓ(g1 + g2) = ℓ(g1) + ℓ(g2) ≤ var(ℓ)(f1) + var(ℓ)(f2).

Taking the supremum over all such g, we get

var(ℓ)(f1 + f2) ≤ var(ℓ)(f1) + var(ℓ)(f2). (8.18)

By (8.17) and (8.18),

var(ℓ)(f1 + f2) = var(ℓ)(f1) + var(ℓ)(f2).

This proves the linearity for nonnegative functions. The linearity for other functions
follows directly from the definition of var(ℓ) for such functions.

Now, suppose that ℓ is T-invariant. Given f ∈ C(X), f ≥ 0, first notice that

var(ℓ)(f ∘ T) = sup
g∈C(X)
0≤g≤f ∘T

ℓ(g) ≥ sup
h∈C(X)
0≤h≤f

ℓ(h ∘ T) = sup
h∈C(X)
0≤h≤f

ℓ(h) = var(ℓ)(f ). (8.19)

We shall prove that this inequality implies the desired equality. To do this, let us pass
from functionals to measures. Let ν be the Borel measure corresponding to var(ℓ). We
shall show that (8.19) implies that ν ∘ T−1(B) ≥ ν(B) for all Borel sets B. Since ν is
a regular measure (by Theorem A.1.24), it suffices to prove the inequality for closed
sets. Let F be a closed set in X. By Urysohn’s lemma (see 15.6 in Willard [77]), there
is a descending sequence of open sets (Un)

∞
n=1 whose intersection is F and to which

corresponds a sequence (fn)∞n=1 of continuous functions on X such that 0 ≤ fn ≤ 1,
fn = 0 on X\Un and fn = 1 on F. Then, for all n ∈ ℕ,

∫
X

fn d(ν ∘ T
−1) = ∫

X

fn ∘ T dν = var(ℓ)(fn ∘ T) ≥ var(ℓ)(fn) = ∫
X

fn dν.

Since limn→∞ fn = 1F and ‖fn‖∞ ≤ 1 for all n ∈ ℕ, Lebesgue’s dominated convergence
theorem (Theorem A.1.38) implies that

ν ∘ T−1(F) = ∫
X

1F d(ν ∘ T
−1) = lim

n→∞
∫
X

fn d(ν ∘ T
−1) ≥ lim

n→∞
∫
X

fn dν = ∫
X

1F dν = ν(F).
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As the closed set F was arbitrarily chosen and the Borel measure ν is regular, the mea-
sure of any Borel set B is equal to the supremum of the measures of all closed sets
contained in B. It immediately follows that

ν ∘ T−1(B) ≥ ν(B), ∀B ∈ ℬ(X). (8.20)

Replacing B by X\B in (8.20), we obtain that

ν ∘ T−1(X\B) ≥ ν(X\B), ∀B ∈ ℬ(X). (8.21)

Since ν(B) + ν(X\B) = ν(X) = ν ∘ T−1(B) + ν ∘ T−1(X\B), inequality (8.21) implies that

ν ∘ T−1(B) ≤ ν(B), ∀B ∈ ℬ(X). (8.22)

From (8.20) and (8.22), we deduce that ν ∘ T−1(B) = ν(B) for all B ∈ ℬ(X), that is, ν is
T-invariant. It follows that var(ℓ) is T-invariant since

var(ℓ)(f ∘ T) = ∫
X

f ∘ T dν = ∫
X

f d(ν ∘ T−1) = ∫
X

f dν = var(ℓ)(f ).

For any f ∈ C(X), it ensues that

var(ℓ)(f ∘ T) = var(ℓ)(f+ ∘ T) − var(ℓ)(f− ∘ T) = var(ℓ)(f+) − var(ℓ)(f−) = var(ℓ)(f ).

The proof of the statements on Δℓ are left to the reader.

We use the variation functional to demonstrate that uniquely ergodic systems ad-
mit only T-invariant functionals that aremultiples of the ergodic T-invariantmeasure.

Lemma 8.2.38. Let T : X → X be a uniquely ergodic topological dynamical system.
Let μ0 be the unique ergodic T-invariant measure and ℓμ0 its corresponding T-invariant
normalized positive continuous linear functional. Then any (not necessarily positive or
normalized) T-invariant ℓ ∈ C(X)∗ is of the form

ℓ = c ⋅ ℓμ0 ,

where c ∈ ℝ.

Proof. Assume that ℓ ∈ C(X)∗ is T-invariant. Lemma 8.2.37 then says that var(ℓ) and
Δℓ are T-invariant positive continuous linear functionals on C(X). Since T is uniquely
ergodic, Lemma 8.2.35 implies that there must exist C, C̃ ≥ 0 such that var(ℓ) = C ℓμ0
and Δℓ = C̃ ℓμ0 . It then follows that ℓ = var(ℓ) − Δℓ = (C − C̃)ℓμ0 .

We aim to show that a stronger variant of Birkhoff’s ergodic theorem (Theo-
rem 8.2.11) holds for uniquely ergodic dynamical systems. More precisely, the Birkhoff
averages converge uniformly and thereby everywhere. The proof relies upon a deep
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result in functional analysis called the Hahn–Banach theorem. The statement and
proof of this theorem can be found as Theorem II.3.10 in Dunford and Schwartz [20].

In light of the existence of an invariant Borel probability measure for every topo-
logical dynamical system, we will first introduce a set of functions which will play an
important role on multiple occasions in the sequel.

Definition 8.2.39. Let T : X → X be a topological dynamical system. A function f ∈
C(X) is said to be cohomologous to zero in the additive group C(X) if

f = g ∘ T − g

for some g ∈ C(X). The set of such functions will be denoted by C0(T).

These functions have the property that their integral with respect to any invari-
ant measure is equal to zero. Moreover, when the system is uniquely ergodic, every
function whose integral is equal to zero can be approximated by functions that are
cohomologous to zero, as the following lemma shows.

Lemma 8.2.40. Let T : X → X be a topological dynamical system and μ ∈ M(T). Let

C0(μ) := {f ∈ C(X)
 ∫
X

f dμ = 0}.

Then C0(T) and C0(μ) are vector subspaces of C(X). Moreover, C0(μ) is closed in C(X)
and C0(T) ⊆ C0(μ). In addition, if T is uniquely ergodic then C0(T) = C0(μ).

Proof. It is easy to see that C0(T) and C0(μ) are vector subspaces of C(X), and that
C0(μ) is closed in C(X) (recall that this latter is endowed with the topology of uniform
convergence). Let f ∈ C0(T). Then f = g ∘ T − g for some g ∈ C(X). The T-invariance of
μ yields

∫
X

f dμ = ∫
X

g ∘ T dμ − ∫
X

g dμ = ∫
X

g d(μ ∘ T−1) − ∫
X

g dμ = 0.

So C0(T) ⊆ C0(μ), and hence C0(T) ⊆ C0(μ) = C0(μ).
Assume now that T is uniquely ergodic. Suppose by way of contradiction that

there exists f0 ∈ C0(μ)\C0(T). According to the Hahn–Banach theorem, there is ℓ ∈
C(X)∗ such that ℓ(f ) = 0 for all f ∈ C0(T) whereas ℓ(f0) = 1. By Lemma 8.2.38, there
exists c ∈ ℝ such that ℓ = c ⋅ ℓμ. But this is impossible since ℓμ(f0) = 0 while ℓ(f0) = 1.
This contradiction implies that C0(T) = C0(μ) when T is uniquely ergodic.

We can now state a stronger version of the ergodic case of Birkhoff’s ergodic the-
orem (Corollary 8.2.14) for uniquely ergodic dynamical systems.

Theorem 8.2.41. Let T : X → X be a topological dynamical system and μ ∈ M(T). The
following statements are equivalent:
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(a) T is uniquely ergodic.
(b) For every f ∈ C(X), the Birkhoff averages 1

nSnf (x) converge to ∫X f dμ for all x ∈ X.
(c) For every f ∈ C(X), the Birkhoff averages 1

nSnf converge uniformly to ∫X f dμ.

Proof. The structure of the proof will be the following sequence of implications:
(a)⇒(c)⇒(b)⇒(a).
[(a)⇒(c)] Suppose that T is uniquely ergodic. For any f ∈ C0(T) and any x ∈ X we have


1
n
Snf (x)

=

1
n
Sng(T(x)) −

1
n
Sng(x)

=
1
n
g(T

n(x)) − g(x) ≤
2
n
‖g‖∞.

Thus

lim
n→∞


1
n
Snf − 0
∞
= 0, ∀f ∈ C0(T). (8.23)

In Lemma 8.2.40, we observed that C0(T) ⊆ C0(μ). Therefore, the sequence (
1
nSnf )
∞
n=1

converges uniformly on X to ∫X f dμ for every f ∈ C0(T).
Now, suppose that f ∈ C0(μ). Since T is uniquely ergodic, Lemma 8.2.40 asserts

that C0(T) = C0(μ). Let ε > 0 and choose fε ∈ C0(T) such that ‖f − fε‖∞ ≤ ε. Then

1
n
Snf − ∫

X

f dμ
∞
≤

1
n
Snf −

1
n
Snfε
∞
+

1
n
Snfε − ∫

X

fε dμ
∞
+

∫
X

fε dμ − ∫
X

f dμ
∞

≤
1
n

n−1
∑
k=0

f ∘ T
k − fε ∘ T

k∞ +

1
n
Snfε − ∫

X

fε dμ
∞
+ 0

≤ ‖f − fε‖∞ +

1
n
Snfε − ∫

X

fε dμ
∞

≤ ε +

1
n
Snfε − ∫

X

fε dμ
∞
.

As fε ∈ C0(T), relation (8.23) guarantees that limn→∞

1
nSnfε − ∫X fε dμ

∞ = 0 and we
deduce that

lim sup
n→∞


1
n
Snf − ∫

X

f dμ
∞
≤ ε.

Since ε > 0 is arbitrary, the implication (a)⇒(c) is proved for any function f ∈ C0(μ)
and, therefore, for any f ∈ C(X) by replacing f by f − ∫X f dμ.
[(c)⇒(b)] This is obvious.
[(b)⇒(a)] Let ν ∈ M(T) and f ∈ C(X). Since limn→∞

1
nSnf (x) = ∫X f dμ for all x ∈ X

and ‖ 1nSnf ‖∞ ≤ ‖f ‖∞ < ∞ for all n ∈ ℕ, Lebesgue’s dominated convergence theorem
(Theorem A.1.38) asserts that

lim
n→∞
∫
X

1
n
Snf (x) dν(x) = ∫

X

(∫
X

f dμ) dν(x) = ∫
X

f dμ.
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On the other hand, the T-invariance of νmeans that ν = ν ∘ T−k for all k ∈ ℕ. Thus for
all n ∈ ℕ we have that ν = 1

n ∑
n−1
k=0 ν ∘ T

−k, and hence

∫
X

1
n
Snf (x) dν(x) = ∫

X

1
n

n−1
∑
k=0

f ∘ Tk dν = 1
n

n−1
∑
k=0
∫
X

f d(ν ∘ T−k) = ∫
X

f dν.

From the last two formulas, it follows that ∫X f dν = ∫X f dμ for all f ∈ C(X). By Corol-
lary A.1.54, we conclude that ν = μ. So μ is the unique T-invariant measure.

The previous theorem has the following consequence in topological dynamics.
Compare this with Theorem 8.2.27.

Corollary 8.2.42. Let T : X → X be a uniquely ergodic topological dynamical system. If
supp(μ) = X for the unique μ ∈ M(T) = E(T), then T is minimal.

Proof. Let U be a nonempty open set in X. Then μ(U) > 0 because supp(μ) = X. By
Theorem A.1.24, μ is regular. Hence, μ(U) = sup{μ(F) : F ⊆ U , F closed} > 0 and thus
there is a closed set F0 ⊆ U such that μ(F0) > 0. The sets F0 andX\U are disjoint closed
sets and Urysohn’s lemma (see 15.6 in Willard [77]) states that there is a nonnegative
function f ∈ C(X) with the properties that f = 1 on F0 and f = 0 on X\U . Notice that
∫X f dμ ≥ μ(F0) > 0. Consequently, for any x ∈ X, Theorem 8.2.41 asserts that

lim
n→∞

1
n
Snf (x) = ∫

X

f dμ > 0.

Hence, there exists n ∈ ℕ such that f (Tn(x)) > 0 and so Tn(x) ∈ U . But since U was
chosen arbitrarily, we conclude that the orbit of x visits every open set in X; in other
words, the orbit of x is dense in X. Since x was chosen arbitrarily, every orbit is dense,
and thus the system T is minimal according to Theorem 1.5.4.

We now revisit the rotations (sometimes called translations) of the torus. Recall
that these rotations are a case of rotations of topological groups (see Subsection 1.6.1).
According to Haar’s theorem, there is, up to a positive multiplicative constant, a
unique measure μ on the Borel subsets of a topological group G satisfying the follow-
ing properties:
(a) μ is left-translation-invariant: μ(gS) = μ(S) for every g ∈ G and all Borel sets S ⊆ G.
(b) μ is finite on every compact set: μ(K) <∞ for all compact K ⊆ G.
(c) μ is outer regular on Borel sets S ⊆ G: μ(S) = inf{μ(U) : S ⊆ U , U open}.
(d) μ is inner regular on open sets U ⊆ G: μ(U) = sup{μ(K) : K ⊆ U , K compact}.

Such a measure is called a left Haar measure. As a consequence of the above proper-
ties, it also turns out that μ(U) > 0 for every nonempty open subset U ⊆ G. In particu-
lar, if G is compact then 0 < μ(G) <∞. Thus, we can uniquely specify a left Haar mea-
sure on G by adding the normalization condition μ(G) = 1. This is obviously the case
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for the n-dimensional torus, where μ will be denoted by λn. This is the n-dimensional
Lebesgue measure on the torus.

Proposition 8.2.43. Let Lγ : 𝕋n → 𝕋n be a translation of the torus, where γ =
(γ1,γ2, . . . ,γn) ∈ 𝕋

n. The following statements are equivalent:
(a) The numbers 1,γ1,γ2, . . . ,γn are linearly independent overℚ.
(b) Lγ is minimal.
(c) Lγ is transitive.
(d) Lγ is ergodic with respect to λn.
(e) Lγ is uniquely ergodic.

Proof. Theorem 1.6.3 already asserted the equivalencies (a)⇔(b)⇔(c). It is also obvi-
ous that (e)⇒(d). Implication (d)⇒(c) follows fromTheorem8.2.27. It remains to prove
that (a)⇒(e). To that end, assume that 1,γ1, . . . ,γn are linearly independent over ℚ.
We will first show that if f ∘ Lγ = f for some f ∈ L2(λn), then f is λn-a. e. constant. It
will then follow from Theorem 8.2.18 and Remark 8.2.19 that λn is ergodic with respect
to Lγ. Consider the Fourier series representation of f :

f (x) = ∑
k∈ℤn

ake
2πi⟨k,x⟩, where ⟨k, x⟩ =

n
∑
j=1

kjxj.

Then

f ∘ Lγ(x) = ∑
k∈ℤn

ake
2πi⟨k,x+γ⟩ = ∑

k∈ℤn
ake

2πi⟨k,γ⟩e2πi⟨k,x⟩.

The above equalities are understood to hold in L2(λn) and hold only for λn-a. e. x ∈ 𝕋n.
As f ∘ Lγ = f , we deduce from the uniqueness of the Fourier series representation that

ake
2πi⟨k,γ⟩ = ak , ∀k ∈ ℤ

n.

Hence, for each k ∈ ℤn we have ak = 0 or e2πi⟨k,γ⟩ = 1. The latter condition holds if and
only if ⟨k,γ⟩ ∈ ℤ. As 1,γ1, . . . ,γn are linearly independent overℚ, this happens if and
only if k1 = k2 = ⋅ ⋅ ⋅ = kn = 0. Thus f (x) = a(0,...,0) for λn-a. e. x ∈ 𝕋n. That is, f is λn-a. e.
constant. This implies that λn is ergodic. It only remains to show that λn is the unique
ergodic Lγ-invariant measure. Let φ ∈ C(𝕋n). By the ergodic case of Birkhoff’s ergodic
theorem (Corollary 8.2.14), for λn-a. e. x ∈ 𝕋n we have

lim
k→∞

1
k
Skφ(x) = ∫

𝕋n

φdλn. (8.24)

Let x0 ∈ 𝕋n and ε > 0. Since φ is uniformly continuous on the compact metric
space 𝕋n, there exists δ > 0 such that

x
′ − x < δ ⇒

φ(x
′) − φ(x) < ε.
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Furthermore, as supp(λn) = 𝕋n, there exists x1 ∈ 𝕋n such that (8.24) holds for x1 and
‖x0 − x1‖ < δ. Bearing in mind that Lγ is an isometry, for all k ∈ ℕ it follows that

1
k
Skφ(x0) − ∫

𝕋n

φdλn

≤

1
k
Skφ(x0) −

1
k
Skφ(x1)

+

1
k
Skφ(x1) − ∫

𝕋n

φdλn


≤
1
k

k−1
∑
j=0

φ(L
j
γ(x0)) − φ(L

j
γ(x1))
 +

1
k
Skφ(x1) − ∫

𝕋n

φdλn


<
1
k

k−1
∑
j=0

ε +

1
k
Skφ(x1) − ∫

𝕋n

φdλn


= ε +

1
k
Skφ(x1) − ∫

𝕋n

φdλn

.

Letting k →∞, we deduce that limk→∞
1
k Skφ(x0) − ∫𝕋n φdλn

 ≤ ε. As ε > 0 was arbi-
trary, we conclude that limk→∞

1
k Skφ(x0) = ∫𝕋n φdλn. But x0 was chosen arbitrarily in

𝕋n and so Lγ is uniquely ergodic by Theorem 8.2.41.

Remark 8.2.44.
(a) This proof in fact shows that any isometry T on a compactmetrizable space X that

admits an invariant probability measure which is ergodic and of full topological
support, is uniquely ergodic.

(b) Being an isometry canbeweakenedby requiring only that the iterates {Tn}∞n=1 form
an equicontinuous family.

8.3 Mixing transformations
In the penultimate section of this chapter, we introduce various notions of mixing for
measure-preserving dynamical systems. These should be contrasted with topological
mixing, which was introduced in Section 1.5. Thesemeasure-theoretical mixing forms
are stronger than ergodicity in the sense that they all imply ergodicity, and are impor-
tant from a statistical viewpoint (for instance, for decay of correlations and similar
questions).

8.3.1 Weakmixing

Definition 8.3.1. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,ℬ, μ). The system T is said to be weakly mixing if

lim
n→∞

1
n

n−1
∑
j=0

μ(T
−j(A) ∩ B) − μ(A)μ(B) = 0, ∀A,B ∈ ℬ. (8.25)

Like for ergodicity, to find out if a system isweaklymixing it suffices to checkweak
mixing on a semialgebra that generates the σ-algebra.
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Lemma 8.3.2. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). If ℬ = σ(𝒮) for some semialgebra 𝒮, then T is weakly mixing if and
only if relation (8.25) holds for all A,B ∈ 𝒮.

Proof. The proof is nearly identical to that of Lemma 8.2.17. Simply replace the square
brackets by absolute values.

Weak mixing is a stronger property than ergodicity. This is not surprising if you
compare the definition of weakmixingwith the characterization of ergodicity given in
Lemma 8.2.16. Nevertheless, we will give a more direct proof of that fact.

Lemma 8.3.3. Let T : X → X be ameasure-preserving dynamical system on a probabil-
ity space (X,ℬ, μ). If T is weakly mixing, then T is ergodic.

Proof. Suppose by way of contradiction that T is weakly mixing but not ergodic. Thus
there exists a completely T-invariant set E ∈ ℬ with μ(E) > 0 and μ(X\E) > 0. Then
T−j(E) ∩ (X\E) = E ∩ (X\E) = 0 for all j ∈ ℕ. Setting A = E and B = X\E in (8.25), we
deduce that μ(E)μ(X\E) = 0. So μ(E) = 0 or μ(X\E) = 0. This contradiction shows that
T is ergodic.

The converse of this lemma is not true; that is to say, there exist dynamical systems
that are ergodic but not weakly mixing. We now provide such an example.

Example 8.3.4. Let α ∈ ℝ\ℚ and consider again the map Tα : 𝕊1 → 𝕊1 defined by
Tα(x) := ⟨x + α⟩, where ⟨r⟩ denotes the fractional part of r. This is the rotation of the
unit circle 𝕊1 by the angle 2πα. We saw in Proposition 8.2.29 that this map is ergodic
with respect to the Lebesgue measure λ on 𝕊1. We shall now show that it is not weakly
mixing.

By Corollary 8.2.15, for any interval I ⊆ 𝕊1 and λ-almost every x ∈ 𝕊1,

lim
M→∞

1
M
#{0 ≤ n < M : Tnα(x) ∈ I} = λ(I).

In other words, for λ-almost every x ∈ 𝕊1, the sequence (⟨x + nα⟩)∞n=1 is uniformly dis-
tributed in 𝕊1. It follows, upon rotating by −x, that the sequence (⟨nα⟩)∞n=1 is uniformly
distributed in 𝕊1. Let A = B = (0, 1/2) and let (ni)∞i=1 be the subsequence ofℕ such that
⟨niα⟩ ∈ (0, 1/10). Then T−niα (A) ⊇ [0, 4/10] and hence

λ(T−niα (A) ∩ B) − λ(A)λ(B) ≥ λ((0, 4/10]) − (λ((0, 1/2)))
2 =

4
10
−
1
4
=

3
20
.

Consequently,

lim inf
N→∞

1
nN

nN
∑
k=0

λ(T
−k
α (A) ∩ B) − λ(A)λ(B)

 ≥ lim inf
N→∞

1
nN

N
∑
i=1

λ(T
−ni
α (A) ∩ B) − λ(A)λ(B)



≥ lim inf
N→∞

1
nN
⋅ N ⋅ 3

20
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≥
3
20

lim inf
M→∞

1
M
#{0 ≤ n < M : ⟨nα⟩ ∈ (0, 1/10)}

=
3
20
⋅
1
10
> 0.

Therefore, Tα cannot be weakly mixing.

The following lemmaprovides a characterization ofweaklymixingdynamical sys-
tems.

Lemma 8.3.5. Let T : X → X be a measure-preserving dynamical system on a probabil-
ity space (X,ℬ, μ). The following statements are equivalent:
(a) T is weakly mixing.
(b) For all f , g ∈ L2(μ),

lim
n→∞

1
n

n−1
∑
j=0


∫
X

(f ∘ T j) ⋅ g dμ − ∫
X

f dμ∫
X

g dμ

= 0.

Proof. That (b) implies (a) follows upon choosing the functions f = 1A and g = 1B. For
the converse, a straightforward argument involving approximation by simple func-
tions is enough to complete the proof. We leave the details as an exercise.

The following result will be used to give alternative formulations of weak mixing.
A subset J of ℤ+ is said to have density zero if

lim
n→∞

#(J ∩ {0, 1, . . . , n − 1})
n

= 0.

Theorem 8.3.6. If (an)∞n=0 is a bounded sequence in ℝ, then the following statements
are equivalent:
(a) limn→∞

1
n ∑

n−1
i=0 |ai| = 0.

(b) There exists a set J ⊆ ℤ+ of density zero such that limJ ̸∋n→∞ an = 0.
(c) limn→∞

1
n ∑

n−1
i=0 a

2
i = 0.

Proof. We shall first prove that (a)⇔(b) and then (b)⇔(c).
[(a)⇒(b)] Suppose that limn→∞

1
n ∑

n−1
i=0 |ai| = 0. To lighten notation, let cJ(n) = #(J ∩

{0, 1, . . . , n − 1}). For each k ∈ ℕ, define

Jk := {i ≥ 0 : |ai| ≥
1
k
}.

Then (Jk)∞k=1 is an ascending sequence of sets. We claim that each Jk has density zero.
Indeed, for each k ∈ ℕ,

1
n

n−1
∑
i=0
|ai| ≥

1
n

n−1
∑
i=0
i∈Jk

|ai| ≥
1
n
1
k
cJk (n).
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Thus limn→∞
1
n
1
k cJk (n) = 0. This implies that limn→∞

1
n cJk (n) = 0, that is, each Jk has

density zero. Therefore, there exists a strictly increasing sequence (ℓk)∞k=1 in ℕ such
that for every k ∈ ℕ,

1
n
cJk (n) <

1
k
, ∀n ≥ ℓk .

Set

J :=
∞

⋃
k=1

Jk ∩ [ℓk , ℓk+1).

We claim that J has density zero. Indeed, since the sets (Jk)∞k=1 form an ascending se-
quence, for every ℓk ≤ n < ℓk+1 we have

J ∩ [0, n) ⊆ Jk ∩ [0, n)

and so

1
n
cJ(n) ≤

1
n
cJk (n) <

1
k
.

Letting n → ∞ imposes k → ∞ and hence limn→∞
1
ncJ(n) = 0. So J has density zero,

as claimed.
Moreover, if n ≥ ℓk and n ∉ J, then n ∉ Jk and thus |an| < 1/k. Therefore,

lim
J ̸∋n→∞
|an| = 0.

[(b)⇒(a)] For the opposite implication, suppose that limJ ̸∋n→∞ |an| = 0 for some set
J ⊆ ℤ+ of density zero. Since (an)∞n=0 is bounded, let B ≥ 0 be such that |an| ≤ B for all
n ≥ 0. Fix ε > 0. There exists N(ε) ∈ ℕ such that |an| < ε whenever n ≥ N(ε) and n ∉ J,
and such that cJ(n)/n < ε for all n ≥ N(ε). Then, for all n ≥ N(ε), we have that

1
n

n−1
∑
i=0
|ai| =

1
n
[ ∑
i∈J∩{0,1,...,n−1}

|ai| + ∑
i∈{0,1,...,n−1}\J

|ai|] <
1
n
[cJ(n)B + nε] < (B + 1)ε.

Thus

lim
n→∞

1
n

n−1
∑
i=0
|ai| = 0.

[(b)⇔(c)] Using the fact that (b)⇔(a), it suffices to note that limJ ̸∋n→∞ ai = 0 if and
only if limJ ̸∋n→∞ a2i = 0.

This theorem allows us to reformulate weak mixing in the following alternative
ways.
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Corollary 8.3.7. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). The following statements are equivalent:
(a) T is weakly mixing.
(b) For every A,B ∈ ℬ, there is a set J(A,B) ⊆ ℤ+ of density zero such that

lim
J(A,B) ̸∋n→∞

μ(T−n(A) ∩ B) = μ(A)μ(B).

(c) For every A,B ∈ ℬ,

lim
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)]2 = 0.

Proof. Apply Theorem 8.3.6 with an = μ(T−n(A) ∩ B) − μ(A)μ(B).

Corollary 8.3.7 offers an intuitive view of weakly mixing systems: a system is
weakly mixing if for every measurable set A, the events T−n(A), n ∈ ℕ, become
asymptotically independent of any other measurable set B, as long as we overlook a
few instances of time. The avoided times naturally depend on both A and B as well as
T and μ.

Let us finish with the relation between a weakly mixing system and the product
of that system with itself.

Theorem 8.3.8. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). The following statements are equivalent:
(a) T is weakly mixing.
(b) T × T is ergodic.
(c) T × T is weakly mixing.

Proof. Let us first show that (a)⇒(c). To that end, let A,B,C,D ∈ ℬ and, using Corol-
lary 8.3.7, let J1 and J2 be sets of density zero such that

lim
J1 ̸∋n→∞

μ(T−n(A ∩ B)) = μ(A)μ(B) and lim
J2 ̸∋n→∞

μ(T−n(C ∩ D)) = μ(C)μ(D).

Then

lim
J1∪J2 ̸∋n→∞

(μ × μ)((T × T)−n(A × C) ∩ (B × D))

= lim
J1∪J2 ̸∋n→∞

(μ × μ)((T−n(A) × T−n(C)) ∩ (B × D))

= lim
J1∪J2 ̸∋n→∞

(μ × μ)((T−n(A) ∩ B) × (T−n(C) ∩ D))

= lim
J1∪J2 ̸∋n→∞

μ(T−n(A) ∩ B) ⋅ μ(T−n(C) ∩ D)

= μ(A)μ(B) ⋅ μ(C)μ(D) = μ(A)μ(C) ⋅ μ(B)μ(D)
= (μ × μ)(A × C) ⋅ (μ × μ)(B × D).
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Thanks to Theorem 8.3.6, we deduce that

lim
n→∞

n−1
∑
j=0

(μ × μ)((T × T)
−j(A × C) ∩ (B × D))

−(μ × μ)(A × C) ⋅ (μ × μ)(B × D) = 0.

Since the collection of measurable rectangles {E × F : E, F ∈ ℬ} forms a semialgebra
that generates ℬ × ℬ, Lemma 8.3.2 allows us to conclude that T × T is weakly mixing.

That (c)⇒(b) is an immediate consequence of Lemma 8.3.3.
It only remains to show that (b)⇒(a). To that end, let A,B ∈ ℬ. We aim to show

that limn→∞
1
n ∑

n−1
j=0 [μ(T

−j(A) ∩ B) − μ(A)μ(B)]2 = 0. Applying Lemma 8.2.16 to T × T
and the rectangles A × X and B × X, we get

1
n

n−1
∑
j=0

μ(T−j(A) ∩ B) = 1
n

n−1
∑
j=0
(μ × μ)((T × T)−j(A × X) ∩ (B × X))

→
n→∞
(μ × μ)(A × X) ⋅ (μ × μ)(B × X) = μ(A)μ(B).

Applying the same lemma to the rectangles A × A and B × B, we obtain

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B)]2 = 1

n

n−1
∑
j=0
(μ × μ)((T × T)−j(A × A) ∩ (B × B))

→
n→∞
(μ × μ)(A × A) ⋅ (μ × μ)(B × B) = μ(A)2μ(B)2.

Thus

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)]2

=
1
n

n−1
∑
j=0
([μ(T−j(A) ∩ B)]2 − 2μ(T−j(A) ∩ B)μ(A)μ(B) + μ(A)2μ(B)2)

→
n→∞

μ(A)2μ(B)2 − 2μ(A)2μ(B)2 + μ(A)2μ(B)2 = 0.

Therefore, T is weakly mixing according to Corollary 8.3.7.

8.3.2 Mixing

We now investigate a stronger mixing form.

Definition 8.3.9. Let T : X → X be ameasure-preserving dynamical system on a prob-
ability space (X,ℬ, μ). The system T is said to bemixing if

lim
n→∞

μ(T−n(A) ∩ B) = μ(A)μ(B), ∀A,B ∈ ℬ. (8.26)
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Like for ergodicity and weak mixing, to ascertain whether a system is mixing it
suffices to check that it is mixing on a semialgebra that generates the σ-algebra.

Lemma 8.3.10. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). If ℬ = σ(𝒮) for some semialgebra 𝒮, then T is mixing if and only if
relation (8.26) holds for all A,B ∈ 𝒮.

Proof. The proof, which goes along similar lines to that of Lemma 8.2.17, is left as an
exercise.

Lemma 8.3.11. If T : X → X is a mixing transformation on a probability space (X,ℬ, μ),
then T is weakly mixing (and therefore ergodic).

Proof. This is immediate from the definitions of weak mixing and mixing.

Just as was the case for weakly mixing systems, we have the following character-
ization of mixing systems.

Lemma 8.3.12. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). The following statements are equivalent:
(a) T is mixing.
(b) For all f , g ∈ L2(μ),

lim
n→∞
∫
X

(f ∘ Tn) ⋅ g dμ = ∫
X

f dμ∫
X

g dμ.

Proof. The proof is almost identical to that of Lemma 8.3.5 and is left to the reader.

Example 8.3.13. In Example 8.2.32, we proved that the shift map σ is ergodic with
respect to the product measure μP. In particular, we showed that for every pair A,B of
cylinder sets, μP(σ−n(A) ∩ B) = μP(A)μP(B) as long as n is large enough. It is thus clear
that σ is mixing, according to Lemma 8.3.10.

Remark 8.3.14. There are several examples of dynamical systems which are weakly
mixingbut notmixing. For instance, Katok [32] showed that all interval exchange trans-
formations are not mixing, whereas Avila and Forni [6] later proved that almost all
of these transformations are weakly mixing. Interval exchange transformations are a
very nice class of examples whichwere first introduced by Ja. G. Sinai in a series of lec-
tures in Russian at Erivan State University in 1973 and were introduced in a published
paper in English by Keane in [34]. Thesemaps are simple to define, exhibit interesting
ergodic properties, and turn up in many seemingly surprising areas of mathematics.
The basic idea is the following: Partition a bounded interval I ⊆ ℝ into finitely many
subintervals and define a bijective map from I to I that is a translation on each subin-
terval. The idea is best grasped with the aid of an illustration. See Figure 8.1.
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Figure 8.1: An example of an interval exchange transformation.

These maps are discontinuous at finitely many points. We will not delve into their dy-
namical properties. In addition to the papers mentioned above, the interested reader
might consult [24, 45, 53, 74] and the references therein.

8.3.3 K-mixing

Before defining K-mixing, the reader who needs a quick refresher about the condi-
tional expectation function with respect to the σ-algebra generated by a countable
measurable partition is invited to consult Example A.1.62. As partitions are covers, the
concepts, operations, and properties outlined in Section 7.1 will all be relevant here. It
is worth noticing that all the operations introduced in that section result in countable
measurable partitions. For instance, the join of two countablemeasurable partitions is
a countable measurable partition; likewise, the preimage of a countable measurable
partition is a countable measurable partition. Furthermore, note that for partitions,
the relation ≺ is antisymmetric, that is, α ≺ β ≺ α ⇐⇒ α = β (cf. Remark 7.1.6).

Definition 8.3.15. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and let α
be a countable measurable partition of X. For every n ∈ ℕ, define

α∞n := ⋃
m>n

αm
n .

Given a probability measure μ on (X,𝒜), denote by σc(α∞n ) the completed σ-algebra
generated by α∞n . (For more information about the completion of a σ-algebra, see Ex-
ercises 8.5.7–8.5.8.) The tail σ-algebra of α with respect to T is defined as

TailT (α) :=
∞

⋂
n=0

σc(α
∞
n ).

Definition 8.3.16. A measurable transformation T : (X,𝒜, μ) → (X,𝒜, μ) is said to be
K-mixing if

lim
n→∞

sup
A∈σc(α∞n )

μ(A ∩ B) − μ(A)μ(B)
 = 0

for every set B ∈ 𝒜 and every finite measurable partition α of X.
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The letter K is in honor of Kolmogorov,whofirst introduced this concept. K-mixing
systems are simply referred to as K-systems. K-mixing is the strongest of all mixing
properties discussed in this chapter.

Theorem 8.3.17. Each K-system is mixing, and hence weakly mixing and ergodic.

Proof. Suppose thatT : (X,𝒜, μ)→ (X,𝒜, μ) is a K-mixing transformation. FixA,B ∈ 𝒜
and consider themeasurable partitionα = {A,X\A}. ThenT−n(A) ∈ α∞n for every n ∈ ℕ
and, therefore, by the K-mixing property,

lim
n→∞
μ(T
−n(A) ∩ B) − μ(A)μ(B) ≤ lim

n→∞
sup
F∈α∞n

μ(F ∩ B) − μ(F)μ(B)
 = 0.

Hence, T is mixing.

We now give a characterization of K-systems which, as well as being interesting
in its own right, will be used later to show that Rokhlin’s natural extension of every
metrically exact system is K-mixing.

Theorem 8.3.18. Let T : (X,𝒜, μ) → (X,𝒜, μ) be a measurable transformation and
𝒩 the σ-algebra of all sets of null or full μ-measure. Then T is K-mixing if and only if
TailT (α) ⊆ 𝒩 for every finite measurable partition α of X.

Proof. Let B ∈ 𝒜 and α a finite measurable partition of X. Suppose that TailT (α) ⊆ 𝒩 .
Combining Example A.1.61 with Proposition A.1.60(f,e) reveals that

E(1B|TailT (α)) = E(E(1B|𝒩 ) | TailT (α)) = E(μ(B) | TailT (α)) = μ(B).

Fix n ≥ 0. For every A ∈ σc(α∞n ), we have

μ(A ∩ B) − μ(A)μ(B)
 =

∫
A

1B dμ − ∫
A

μ(B) dμ


=

∫
A

[E(1B|σc(α
∞
n )) − μ(B)] dμ



≤ ∫
X

E(1B|σc(α
∞
n )) − μ(B)

 dμ.

So

sup
A∈σc(α∞n )

μ(A ∩ B) − μ(A)μ(B)
 ≤ ∫

X

E(1B|σc(α
∞
n )) − μ(B)

 dμ. (8.27)

As (σc(α∞n ))
∞
n=0 is a descending sequence of σ-algebras whose intersection is TailT (α),

Theorem A.1.68 affirms that the sequence (E(1B|σc(α∞n )))
∞
n=0 converges in L1(μ) and
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pointwise μ-a. e. to E(1B|TailT (α)), which equals μ(B). It follows from (8.27) and
Lebesgue’s dominated convergence theorem (Theorem A.1.38) that

lim
n→∞

sup
A∈σc(α∞n )

μ(A ∩ B) − μ(A)μ(B)
 ≤ limn→∞

∫
X

E(1B|σc(α
∞
n )) − μ(B)

 dμ

= ∫
X

 limn→∞
E(1B|σc(α

∞
n )) − μ(B)

 dμ

= 0.

Since B and α are arbitrary, T is K-mixing and one implication is proved.
In order to prove the converse, fix C ∈ TailT (α). Then C ∈ σc(α∞n ) for every n ≥ 0

and employing the definition of K-mixing with B = C, we obtain that

μ(C) − μ(C)
2 =
μ(C ∩ C) − μ(C)μ(C)

 ≤ sup
A∈σc(α∞n )

μ(A ∩ C) − μ(A)μ(C)
 →n→∞ 0.

Hence, μ(C) = μ(C)2 and it follows that either μ(C) = 0 or μ(C) = 1. So TailT (α) ⊆ 𝒩 .

We will use this theorem in a moment. First, we recall the notion of Lebesgue
space.

Definition 8.3.19. A Borel probability space (X,ℬ(X), μ) is said to be a Lebesgue space
if X is a Polish space (i. e., X is completely metrizable and separable) and if μ is a com-
plete measure.

Proposition 8.3.20. Let T : X → X be a measure-preserving automorphism on a
Lebesgue space (X,ℬ(X), μ). Assume that there exists a σ-algebra ℬ ⊆ ℬ(X) with the
following properties:
(a) T−1(ℬ) ⊆ ℬ.
(b) σc(⋃

∞
n=0 T

n(ℬ)) = ℬ(X).
(c) ⋂∞n=0 T

−n(ℬ) ⊆ 𝒩 , where𝒩 is the σ-algebra of all sets of null or full μ-measure.

Then T is K-mixing.

Before proving this proposition, we need the following fairly nontrivial lemma,
which can be found as Lemma 1 in Section 8 of Cornfeld, Fomin, and Sinai [16].

Lemma 8.3.21. Let T : X → X be a measure-preserving automorphism of a Lebesgue
space (X,ℬ(X), μ). If𝒜andℬ are sub-σ-algebras ofℬ(X) such that𝒜 ⊆ σc(⋃

∞
n=−∞ T

n(ℬ)),
then TailT (𝒜) ⊆ TailT (ℬ), where

TailT (𝒞) :=
∞

⋂
n=0

σc(
∞

⋃
k=n

T−k(𝒞))

for any sub-σ-algebra 𝒞 of ℬ(X).
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Proof of Proposition 8.3.20. Wewill useTheorem8.3.18 to establish theK-mixingprop-
erty of T. Let α be a finite Borel partition of X. Then α generates a finite sub-σ-algebra
𝒜 ofℬ(X). By hypotheses (b) and (a), we have𝒜 ⊆ σc(⋃

∞
n=0 T

n(ℬ)) = σc(⋃
∞
n=−∞ T

n(ℬ)).
Using Lemma 8.3.21 and hypotheses (a) and (c), we obtain that

TailT (𝒜) ⊆ TailT (ℬ) =
∞

⋂
n=0

σc(
∞

⋃
k=n

T−k(ℬ)) =
∞

⋂
n=0

σc(T
−n(ℬ)) ⊆ 𝒩 .

The result follows from Theorem 8.3.18.

Wewill see later that all two-sidedBernoulli shifts areK-mixing (cf. Example 8.1.14
and Exercise 8.5.22). This will be shown in Subsection 13.9.5, where we will treat the
muchmore general case of Gibbsmeasures for Hölder continuous potentials. The first
step in this direction is provided in the following section. In the meantime, see Exer-
cise 8.5.23 for a direct proof based on Proposition 8.3.20.

8.4 Rokhlin’s natural extension

Let T : X → X be a surjective measure-preserving dynamical system on a Lebesgue
space (X,ℱ , μ) (see Definition 8.3.19). Consider the set of sequences

X̃ := {(xn)
∞
n=0 ∈ X

∞ : T(xn+1) = xn, ∀n ≥ 0} ⊆ X
∞.

For every k ≥ 0, let πk : X̃ → X denote the projection onto the kth coordinate of X̃, that
is,

πk((xn)
∞
n=0) := xk .

Observe that T ∘ πk+1 = πk for all k ≥ 0. Equip the set X̃ with the smallest σ-algebra ℱ̃
that makes every projection πk : X̃ → X continuous.

Note that in this construction the surjectivity of T is not really an essential as-
sumption. Indeed, since X is a Lebesgue space, the sets Tn(X), n ≥ 0, are measurable.
Because μ is T-invariant, it turns out that μ(Tn(X)) = 1 for all n ≥ 0. As the sets Tn(X),
n ≥ 0, form a descending sequence, it follows that μ(⋂∞n=0 T

n(X)) = 1. Finally, the map
T : ⋂∞n=0 T

n(X)→ ⋂∞n=0 T
n(X) is clearly surjective.

Definition 8.4.1. Rokhlin’s natural extension of T is the measurable transformation T̃ :
X̃ → X̃ defined by

T̃((xn)
∞
n=0) := (T(x0), x0, x1, x2, . . .).

Theorem 8.4.2. Rokhlin’s natural extension has the following properties:
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(a) The transformation T̃ : X̃ → X̃ is invertible and its inverse T̃−1 : X̃ → X̃ is (the
restriction of) the left shift map

T̃−1((xn)
∞
n=0) := (xn+1)

∞
n=0.

(b) For each n ≥ 0, the following diagram commutes:

X̃ T̃
→ X̃

πn
↑↑↑↑↓

↑↑↑↑↓
πn

X →
T

X

(c) There exists a unique probability measure μ̃ on the space (X̃, ℱ̃) such that

μ̃ ∘ π−1n = μ, ∀n ≥ 0.

(d) The probability measure μ̃ is T̃-invariant.

Proof. Proof of properties (a) and (b) is left as an exercise. Property (c) follows
directly from the Daniel–Kolmogorov consistency theorem (see Theorem 3.6.4 in
Parthasarathy [55]). Regarding property (d), let A ∈ ℱ . For every n ≥ 0, it follows
from (b) and (c) that

μ̃ ∘ T̃−1(π−1n (A)) = μ̃ ∘ (πn ∘ T̃)
−1(A) = μ̃ ∘ (T ∘ πn)

−1(A)
= μ̃ ∘ π−1n ∘ T

−1(A) = μ ∘ T−1(A)
= μ(A) = μ̃(π−1n (A)).

The family {π−1n (A) : A ∈ ℱ , n ≥ 0} forms a π-system that generates ℱ̃ . It ensues from
Lemma A.1.26 that μ̃ ∘ T̃−1 = μ̃.

This theorem sometimes allows us to replace the μ-measure-preserving dynami-
cal system T, which is not necessarily invertible, with the μ̃-measure-preserving auto-
morphism T̃ : X̃ → X̃. This turns out to be of great advantage in some proofs, since
dealing with invertible transformations is frequently easier than dealing with nonin-
vertible ones. Natural extensions share many properties with their original maps. An
example of this is given in the following theorem.

Theorem 8.4.3. The natural extension measure μ̃ on X̃ from Theorem 8.4.2 is ergodic
with respect to T̃ if and only if the measure μ is ergodic with respect to T.

Proof. Suppose first that μ is not ergodic with respect to T : X → X. Then there exists
a set A ∈ ℱ such that T−1(A) = A and 0 < μ(A) < 1. It follows from Theorem 8.4.2(c)
that μ̃(π−10 (A)) = μ(A) ∈ (0, 1). Furthermore, it ensues from Theorem 8.4.2(b) that

T̃−1(π−10 (A)) = (π0 ∘ T̃)
−1(A) = (T ∘ π0)

−1(A) = π−10 (T
−1(A)) = π−10 (A).

Therefore, μ̃ is not ergodic with respect to T̃.
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Now assume that T : X → X is ergodic with respect to μ. We want to show that T̃ :
X̃ → X̃ is then ergodic with respect to μ̃. Let F ∈ L1(X̃, ℱ̃ , μ̃) be a T̃-invariant function.
According to Theorem 8.2.18, it suffices to demonstrate that F is μ̃-a. e. constant.

As T is ergodic, the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14)
yields that (to lighten notation, we use μ(g) := ∫X g dμ)

lim
k→∞


1
k

k−1
∑
j=0

g ∘ T j − μ(g)
L1(μ)
= 0

for every function g ∈ L1(X,ℱ , μ). Invoking Theorem 8.4.2, this implies that

lim
k→∞


1
k

k−1
∑
j=0

G ∘ T̃ j − μ̃(G)
L1(μ̃)
= 0 (8.28)

for every G ∈ L1(X̃, ℱ̃ , μ̃) of the form g ∘ πn, where g ∈ L1(X,ℱ , μ) and n ≥ 0.
Fix n ≥ 0 momentarily. The function E(F|ℱ̃n) depends only on the nth coordinate

of a point in X̃ and can thus be expressed as fn ∘ πn for some fn ∈ L1(X,ℱ , μ). Setting
g = fn and G = fn ∘ πn = E(F|ℱ̃n), it follows that μ̃(G) = μ̃(F) and from (8.28) that

lim
k→∞


1
k

k−1
∑
j=0

E(F|ℱ̃n) ∘ T̃
j − μ̃(F)
L1(μ̃)
= 0. (8.29)

Now, for every n ≥ 0, let ℱ̃n := π−1n (ℱ). Since T ∘ πn+1 = πn, it turns out that

ℱ̃n+1 = π
−1
n+1(ℱ) ⊇ π

−1
n+1(T
−1(ℱ)) = (T ∘ πn+1)

−1(ℱ) = π−1n (ℱ) = ℱ̃n.

Thus (ℱ̃n)
∞
n=0 is an ascending sequence of sub-σ-algebras of ℱ̃ . By definition, ℱ̃ is the

σ-algebra generated by that sequence and we know that F = E(F|ℱ̃). The martingale
convergence theorem (Theorem A.1.67) then affirms that

lim
n→∞
F − E(F|ℱ̃n)

L1(μ̃) = 0. (8.30)

But for every j ≥ 0 and every n ∈ ℕ, it ensues from the T̃-invariance of μ̃ that

F ∘ T̃
j − E(F|ℱ̃n) ∘ T̃

jL1(μ̃) =
F − E(F|ℱ̃n)

L1(μ̃). (8.31)

Fix ε > 0. By virtue of (8.30)–(8.31), there exists N ∈ ℕ such that

F ∘ T̃
j − E(F|ℱ̃n) ∘ T̃

jL1(μ̃) ≤ ε

for every j ≥ 0 and every n ≥ N . Therefore, by the triangle inequality,


1
k

k−1
∑
j=0

F ∘ T̃ j − 1
k

k−1
∑
j=0

E(F|ℱ̃n) ∘ T̃
j
L1(μ̃)
≤ ε
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for every k ∈ ℕ and every n ≥ N . Given that F is T̃-invariant, this reduces to


F − 1

k

k−1
∑
j=0

E(F|ℱ̃n) ∘ T̃
j
L1(μ̃)
≤ ε

for every k ∈ ℕ and every n ≥ N .
Fixing n ≥ N and letting k → ∞, we deduce from this and (8.29) that ‖F −

μ̃(F)‖L1(μ̃) ≤ ε. Therefore F = μ̃(F) in L1(μ̃). Consequently, F = μ̃(F) μ̃-almost every-
where. That is, F is μ̃-a. e. constant.

We now introduce the concept of metric exactness.

Definition 8.4.4. A measure-preserving dynamical system T : X → X on a Lebesgue
space (X,ℱ , μ) is said to be metrically exact if for each A ∈ ℱ such that μ(A) > 0 we
have

lim
n→∞

μ(Tn(A)) = 1.

Note that each set Tn(A) is measurable since T is a measurable transformation of a
Lebesgue space.

Metric exactness of a system can be characterized in terms of the tail σ-algebra of
the system.

Proposition 8.4.5. Let T : X → X be a measure-preserving dynamical system on a
Lebesgue space (X,ℱ , μ). Then T is metrically exact if and only if the tail σ-algebra
TailT (ℱ) = ⋂

∞
n=0 T
−n(ℱ) is contained in the σ-algebra 𝒩 of all sets of null or full

μ-measure.

Proof. Suppose that T is metrically exact and let F ∈ TailT (ℱ). By definition of the tail
σ-algebra, there exists a sequence of sets (Fn)∞n=0 in ℱ such that F = T−n(Fn) for each
n ≥ 0. Suppose that μ(F) > 0. Then

1 = lim
n→∞

μ(Tn(F)) = lim
n→∞

μ(Tn(T−n(Fn))) = lim
n→∞

μ(Fn) = lim
n→∞

μ ∘ T−n(Fn) = μ(F).

Thus TailT (ℱ) consists only of sets of measure zero and one. This proves one implica-
tion.

Nowsuppose that TailT (ℱ) ⊆ 𝒩 . FixF ∈ ℱ withμ(F) > 0. For every k ≥ 0, consider
the measurable sets

Fk :=
∞

⋃
n=k

T−n(Tn(F)) ⊇ F and F∞ :=
∞

⋂
k=0

Fk ⊇ F.

We claim that F∞ ∈ TailT (ℱ). Indeed, by definition, the sequence of sets (Fk)∞k=0 is
descending and, therefore,

μ(F∞) = lim
k→∞

μ(Fk) and F∞ =
∞

⋂
k=j

Fk , ∀j ≥ 0.
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If k ≥ j ≥ 0, then

Fk =
∞

⋃
n=k

T−n(Tn(F)) =
∞

⋃
i=0

T−k(T−i(Tk+i(F))) = T−j(T−(k−j)(
∞

⋃
i=0

T−i(Tk+i(F)))).

To shorten notation, let Aj,k := T−(k−j)(⋃
∞
i=0 T
−i(Tk+i(F))). Then

F∞ =
∞

⋂
k=j

T−j(Aj,k) = T
−j(
∞

⋂
k=j

Aj,k).

Hence, for every j ≥ 0, it follows that F∞ ∈ T−j(ℱ), or, equivalently, F∞ ∈ TailT (ℱ).
Since F∞ ⊇ F and μ(F) > 0, our hypothesis that TailT (ℱ) ⊆ 𝒩 implies μ(F∞) = 1. So

μ(F0) = 1. (8.32)

However, as T−1(T(A)) ⊇ A for every subset A of X, we observe that

T−(n+1)(Tn+1(F)) = T−n(T−1(T(Tn(F)))) ⊇ T−n(Tn(F)),

that is, the sequence of sets (T−n(Tn(F)))∞n=0 is ascending to their union F0. Using
this, (8.32) and the T-invariance of μ, we deduce that

1 = μ(F0) = lim
n→∞

μ(T−n(Tn(F))) = lim
n→∞

μ(Tn(F)).

As F ∈ ℱ was chosen arbitrarily, the transformation T is metrically exact.

We can now demonstrate that Rokhlin’s natural extension of anymetrically exact
system is K-mixing.

Theorem 8.4.6. Let T : X → X be a measure-preserving dynamical system on a
Lebesgue space (X,ℱ , μ). If T is metrically exact, then Rokhlin’s natural extension
T̃ : X̃ → X̃ is K-mixing.

Proof. Let

ℬ := π−10 (ℱ) ⊆ ℱ̃ .

We shall verify that all the hypotheses of Proposition 8.3.20 hold. First,

T̃−1(ℬ) = T̃−1(π−10 (ℱ)) = (π0 ∘ T̃)
−1(ℱ) = (T ∘ π0)

−1(ℱ) = π−10 (T
−1(ℱ)) ⊆ π−10 (ℱ) = ℬ.

So condition (a) of Proposition 8.3.20 is satisfied. In order to show that condition (b)
holds, note that T̃n(ℬ) = T̃n ∘ π−10 (ℱ) = π−1n (ℱ) for all n ≥ 0. Recall also that ℱ̃ is
the smallest σ-algebra containing all of the σ-algebras π−1n (ℱ). Thus condition (b) is
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satisfied. Finally, with𝒩 (resp.,𝒩 ) denoting the sub-σ-algebra consisting of the null
and full μ-measure sets (resp., μ̃-measure sets), we obtain that

∞

⋂
n=0

T̃−n(ℬ) =
∞

⋂
n=0

T̃−n(π−10 (ℱ)) =
∞

⋂
n=0
(π0 ∘ T̃

n)−1(ℱ)

=
∞

⋂
n=0
(Tn ∘ π0)

−1(ℱ) =
∞

⋂
n=0

π−10 ∘ T
−n(ℱ)

= π−10 (
∞

⋂
n=0

T−n(ℱ)) = π−10 (TailT (ℱ)) ⊆ π
−1
0 (𝒩 ) ⊆ 𝒩 ,

where the first set inclusion comes from Proposition 8.4.5 and the second from Theo-
rem 8.4.2(c). So condition (c) holds. Apply Proposition 8.3.20 to conclude.

Finally, we provide an explicit description of the Rokhlin’s natural extensions of a
very important class of noninvertiblemeasure-preserving dynamical systems, namely
the one-sided Bernoulli shifts with finite sets of states, which were introduced in Ex-
ample 8.1.14.

Let E be a finite set. Define the map h : Ẽℕ → Eℤ by

(h(ω))n = {
(ω0)n if n ≥ 0
(ω−n)0 if n < 0

A straightforward inspection shows that h is bijective and that the following diagram
commutes:

Ẽℕ σ̃
→ Ẽℕ

h
↑↑↑↑↓

↑↑↑↑↓h

Eℤ →
σ

Eℤ

In addition, if Ẽℕ and Eℤ are endowed with their respective product (Tychonov)
topologies, then the map h is a homeomorphism, and thus is a measurable isomor-
phism if Ẽℕ and Eℤ are equipped with the corresponding Borel σ-algebras.

Furthermore, if E has at least two elements and P : E → [0, 1] is a probability vec-
tor, let μ+P be the corresponding one-sided Bernoulli measure on Eℕ introduced in Ex-
ample 8.1.14 and denoted there just by μP. Likewise, let μP be the two-sided Bernoulli
measure on Eℤ introduced in Exercise 8.5.22.

For every k ≤ 0 and n ≥ 0, the cylinder [ωkωk+1 . . .ω−1ω0ω1 . . .ωn] ⊆ Eℤ satisfies

h−1([ωk . . .ωn]) = [ω0 . . .ωn] × [ω−1] × [ω−2] × ⋅ ⋅ ⋅ × [ωk] ×
∞

∏
j=−k+1

E.
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Consequently,

μ̃+P(h
−1([ωk . . .ωn])) =

n
∏
i=k

Pi = μP([ωk . . .ωn]).

Since all such cylinders form a π-system generating the Borel σ-algebra on Eℤ, we
conclude that

μ̃+P ∘ h
−1 = μP .

We have therefore proved the following.

Theorem 8.4.7. If E is a finite set having at least two elements and P : E → [0, 1] is a
probability vector, then the Rokhlin’s natural extension of the one-sided Bernoulli shift
(σ : Eℕ → Eℕ, μP) is metrically (i. e. measure-theoretically) isomorphic to the two-sided
Bernoulli shift (σ : Eℤ → Eℤ, μP).

8.5 Exercises

Note: Exercises 8.5.1–8.5.19 pertain to measure theory. They use the terminology and
notation introduced in Appendix A. The reader who would rather just concentrate on
ergodic theory may skip those exercises.

Exercise 8.5.1. Let X be a set and 𝒞 be a finite collection of subsets of X.
(a) Show that the algebra𝒜(𝒞) generated by 𝒞 is finite.

Hint: First, identify the elements of𝒜(𝒞)when 𝒞 consists of two disjoint sets. Gen-
eralize your argument to the case in which 𝒞 consists of a finite number of disjoint
sets. Then reduce the general case of a finite collection 𝒞 to the case of an equiva-
lent finite collection of disjoint sets.

(b) Deduce that σ(𝒞) = 𝒜(𝒞).

Exercise 8.5.2. Let X be a set and Y ⊆ X. What is𝒜({Y})? And σ({Y})?

Exercise 8.5.3. Let X be an infinite set. Show that

{Y ⊆ X : either Y or X \ Y is finite}

is an algebra but not a σ-algebra on X.

Exercise 8.5.4. Let X be an uncountable set. Show that

{Y ⊆ X : either Y or X \ Y is countable}

is a σ-algebra on X. It is often called the countable-cocountable σ-algebra.
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Exercise 8.5.5. Let X be a set and Y ⊆ X. If ℬ is a σ-algebra on X, prove that

ℬ|Y = {B ∩ Y : B ∈ ℬ}

is a σ-algebra on Y .

Exercise 8.5.6. Let (X,𝒜, μ) be a measure space. Show that

{A ∈ 𝒜 : μ(A) = 0 or μ(X\A) = 0}

is a sub-σ-algebra of𝒜.

Exercise 8.5.7. Let (X,ℬ, μ) be a measure space and

𝒩 := {N ∈ ℬ | μ(N) = 0}

be the collection of all sets of measure zero, sometimes called null sets. Define

𝒩 := {N ⊆ X | ∃N ∈ 𝒩 such that N ⊆ N} = ⋃
N∈𝒩

𝒫(N).

The completion of (X,ℬ, μ) is the measure space (X,ℬ, μ), where

ℬ := {B ∪ N |B ∈ ℬ, N ∈ 𝒩 }

and

μ(B) = μ(B) whenever B = B ∪ N for some B ∈ ℬ and N ∈ 𝒩 .

(a) Prove that the space (X,ℬ, μ) is well-defined (namely, that ℬ is a σ-algebra on X
and that μ is well-defined).

(b) Show that (X,ℬ, μ) is an extension of the space (X,ℬ, μ) (i. e., ℬ ⊇ ℬ and μ = μ on
ℬ).

(c) Observe that the space (X,ℬ, μ) is complete.

Exercise 8.5.8. Let (X,ℬ, μ) be a measure space and let

ℬ∗ := {E ⊆ X | ∃A,B ∈ ℬ such that A ⊆ E ⊆ B and μ(B\A) = 0}

be the collection of all subsets of X that are squeezed by somemeasurable sets whose
difference is of measure zero. Define

μ∗(E) = μ(A) whenever ∃A,B ∈ ℬ such that A ⊆ E ⊆ B and μ(B\A) = 0.

Prove that (X,ℬ∗, μ∗) is the completion of (X,ℬ, μ) (cf. Exercise 8.5.7).
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Exercise 8.5.9. Show that Lemma A.1.26 does not hold for infinite measures in gen-
eral.
Hint: Consider the family of all Borel subsets of ℝ which do not have 0 for element.

Exercise 8.5.10. In this exercise, we look at the set-theoretic properties of the symmet-
ric difference operation. Let X be a set. Let A,B,C ⊆ X. Let T : X → X be a map. Prove
the following statements:
(a) A△ B = B△ A.
(b) If A ∩ B = 0 then A△ B = A ∪ B.
(c) (X\A)△ (X\B) = A△ B.
(d) T−1(A△ B) = T−1(A)△ T−1(B).
(e) A△ C ⊆ (A△ B) ∪ (B△ C).

This statement generalizes to any finite number of intermediaries, that is, An △
A0 ⊆ ⋃

n−1
k=0(Ak+1 △ Ak).

(f) A△ (B ∪ C) ⊆ (A△ B) ∪ (A△ C).
More generally, (⋃i∈I Ai)△ (⋃i∈I Bi) ⊆ ⋃i∈I (Ai △ Bi) for any index set I.

(g) A△ (B ∩ C) ⊆ (A△ B) ∪ (A△ C).
More generally, (⋂i∈I Ai)△ (⋂i∈I Bi) ⊆ ⋃i∈I (Ai △ Bi) for any index set I.

Exercise 8.5.11. Let (X,𝒜, μ) be a probability space and A,B ∈ 𝒜. Prove the following
statements:
(a) |μ(A) − μ(B)| ≤ μ(A△ B).
(b) If μ(A△ B) = 0 then μ(A) = μ(B).

Exercise 8.5.12. Let (X,𝒜, μ) be a probability space andA,B ∈ 𝒜. Prove that μ(A∩B) ≥
μ(A) + μ(B) − 1.

Exercise 8.5.13. Let (X,𝒜, μ) be a measure space. Show that if (fn)∞n=1 is a sequence of
nonnegative measurable functions, then

∫
X

∞

∑
n=1

fn dμ =
∞

∑
n=1
∫
X

fn dμ.

Exercise 8.5.14. The purpose of this exercise is to establish that a sequence of L1 func-
tions that converges pointwise need not converge in L1. Construct a sequence of func-
tions fn : [0, 1]→ [0,∞), n ∈ ℕ, with the following properties:
(a) Each function is continuous.
(b) The sequence converges pointwise to the constant function 0.
(c) ∫[0,1] fn dλ = 1 for all n ∈ ℕ, where λ is the Lebesgue measure on [0, 1].

Deduce that the sequence does not converge in L1([0, 1],ℬ([0, 1]), λ).

Exercise 8.5.15. Find a sequence (fn)∞n=1 of L
1(X,𝒜, μ) functions with the following

properties:
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(a) The sequence converges pointwise to a function f .
(b) limn→∞ ∫X fn dμ = ∫X f dμ.
(c) limn→∞ ∫X |fn| dμ ̸= ∫X |f | dμ.

Exercise 8.5.16. Show that on finite measure spaces Theorem A.1.41 is a generaliza-
tion of Lebesgue’s dominated convergence theorem (Theorem A.1.38).

Exercise 8.5.17. Construct a sequence of integrable functions that converges in L1 to
an integrable function but that does not converge pointwise almost everywhere.
Hint: Use indicator functions of carefully selected subintervals of [0, 1].

Exercise 8.5.18. Let (X,𝒜, μ) be a probability space, and letℬ be a sub-σ-algebra of𝒜.
Let ℬ be the completion of ℬ in𝒜, that is,

ℬ := {A ∈ 𝒜 | ∃B ∈ ℬ such that μ(A△ B) = 0}.

Show that ℬ is a sub-σ-algebra of𝒜 for which the following two properties hold:
(a) ℬ ⊇ ℬ.
(b) E(φ|ℬ) = E(φ|ℬ).

Exercise 8.5.19. Let (X,𝒜, μ) be a probability space, and letℬ and 𝒞 be sub-σ-algebras
of𝒜. Say that ℬ ≈ 𝒞 if ℬ ⊆ 𝒞 and 𝒞 ⊆ ℬ (cf. Exercise 8.5.18). Show that E(φ|ℬ) = E(φ|𝒞)
if ℬ ≈ 𝒞.

Exercise 8.5.20. Let ℬ(ℝ) denote the Borel σ-algebra of ℝ. The collection

ℬ := {B ∈ ℬ(ℝ) | B = −B}

of all Borel sets that are symmetric with respect to the origin forms a sub-σ-algebra of
ℬ(ℝ). Let λ denote the Lebesgue measure on ℝ and let φ ∈ L1(ℝ,ℬ(ℝ), λ). Prove that

E(φ|ℬ)(x) = 1
2
[φ(x) + φ(−x)], ∀x ∈ ℝ.

Hint: First show that E(φ|ℬ)must be an even function. Then use the fact that the trans-
formation T : ℝ→ ℝ defined by T(x) = −x is λ-invariant.

Exercise 8.5.21. Let T : (X,𝒜) → (Y ,ℬ) be a measurable transformation and μ be a
measure on (X,𝒜). Show that the set function μ ∘ T−1 is a measure on (Y ,ℬ).

Exercise 8.5.22. This exercise pertains to a two-sided version of Example 8.1.14. Let
(E,ℱ ,P) be a probability space. The product set Eℤ := ∏∞k=−∞ E is commonly equipped
with the product σ-algebra ℱℤ generated by the semialgebra of all (finite) cylinders
(also called rectangles), namely, givenm, n ∈ ℤ, withm ≤ n, and Em,Em+1, . . . ,En ∈ ℱ ,
the set

m−1
∏

k=−∞
E × Em × Em+1 × ⋅ ⋅ ⋅ × En ×

∞

∏
k=n+1

E = {τ ∈ Eℤ : τk ∈ Ek , ∀m ≤ k ≤ n}
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is called a cylinder. The product measure μP on ℱℤ is the unique probability measure
which confers to a cylinder the value

μP(
m−1
∏

k=−∞
E × Em × Em+1 × ⋅ ⋅ ⋅ × En ×

∞

∏
k=n+1

E) :=
n
∏
k=m

P(Ek). (8.33)

The existence and uniqueness of this measure can be established using Theo-
rem A.1.27, Lemma A.1.29 and Theorem A.1.28 successively. For more information, see
Halmos [27] (pp. 157–158) or Taylor [72] (Chapter III, Section 4).

It is easy to show that the left shift map σ : Eℤ → Eℤ, which is defined by
σ((τn)∞n=−∞) := (τn+1)

∞
n=−∞, preserves the productmeasureμP. Themeasure-preserving

dynamical system (σ : Eℤ → Eℤ, μP) is commonly referred to as a two-sided Bernoulli
shift with set of states E. In this book, primarily focused on noninvertible dynamical
systems, one-sided Bernoulli shifts will be of primer importance. However, in abstract
ergodic theory, two-sided Bernoulli shifts seem to have played a more prominent role
and they are encountered several times in this book, particularly in Sections 8.3.3, 8.4,
and 13.9.5.

From this point on, we assume that the original probability space is of the form
(E,ℱ ,P), where E is countable and ℱ is the σ-algebra 𝒫(E) of all subsets of E.

Let Eℤ− = ∏−1k=−∞ E and Eℤ+ = ∏∞k=0 E, so E
ℤ = Eℤ− × Eℤ+ . Accordingly, for any

τ ∈ Eℤ, write τ− := ⋅ ⋅ ⋅ τ−2τ−1 ∈ Eℤ− and τ+ := τ0τ1τ2 . . . ∈ Eℤ+ .
(a) Show that the family C = {Eℤ− × {ω}}ω∈Eℤ+ , that is, the family of sets consisting of

double-sided sequences having a common positive part, constitutes an uncount-
able measurable partition of Eℤ.

Let 𝒞 := σ(C) be the sub-σ-algebra of ℱℤ generated by the partition C. We aim to cal-
culate E(φ|𝒞) for any function φ ∈ L1(Eℤ,ℱℤ, μP).

For each n ≥ 0, consider the family of all n-cylinders

Cn := {E
ℤ− × {e0} × ⋅ ⋅ ⋅ × {en−1} ×

∞

∏
k=n

E : ek ∈ E, ∀0 ≤ k ≤ n − 1}.

(b) Prove that (Cn)∞n=0 is an ascending sequence of countable measurable partitions
of Eℤ.

(c) For every n ≥ 0, let 𝒞n := σ(Cn). Demonstrate that (𝒞n)∞n=0 is an ascending sequence
of sub-σ-algebras of ℱℤ.

(d) Let 𝒞∞ := σ(⋃
∞
n=0 Cn). Show that 𝒞 = 𝒞∞.

(e) Deduce that E(φ|𝒞) = limn→∞ E(φ|𝒞n).

For any given τ ∈ Eℤ andm, n ∈ ℤ such thatm ≤ n, let

[τ]nm =
m−1
∏

k=−∞
E × {τm} × {τm+1} × ⋅ ⋅ ⋅ × {τn} ×

∞

∏
k=n+1

E.
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(f) Establish that E(φ|𝒞)(τ) = limn→∞ E(φ|[τ]n−10 ) for every τ ∈ E
ℤ.

(g) Prove that the sequence of cylinder sets ([τ]n−10 )
∞
n=1 is descending and that

⋂∞n=1[τ]
n−1
0 = E

ℤ− × {τ+}.
(h) Deduce that limn→∞ μP([τ]n−10 ) = μP(E

ℤ− × {τ+}).
(i) Deduce further that limn→∞ ∫[τ]n−10

φdμP = ∫Eℤ−×{τ+} φdμP.
(j) Conclude that E(φ|𝒞)(τ) = E(φ|Eℤ− × {τ+}) for all τ ∈ Eℤ.

That is, you have showed that E(φ|𝒞) is constant, and is equal to the mean value of φ,
on each set of the form Eℤ− × {ω}, where ω ∈ Eℤ+ .

Exercise 8.5.23. LetE be afinite set having at least two elements, letP : E → [0, 1]be a
probability vector, and let (σ : Eℤ → Eℤ, μP) be the corresponding two-sided Bernoulli
shift described in Exercise 8.5.22. Provide a direct proof, based on Proposition 8.3.20,
that the automorphism (σ : Eℤ → Eℤ, μP) is K-mixing.

Hint: Consider the projection π+ : Eℤ → Eℕ defined by the formula π+(ω) = ω|∞0 .

Exercise 8.5.24. Let ℬ+ be the standard Borel σ-algebra on E∞ = Eℕ. Show that the
σ-algebra ℬ := π−1+ (ℬ+) on E

ℤ satisfies all the hypotheses of Proposition 8.3.20.

Exercise 8.5.25. The map G : [0, 1]→ [0, 1] defined by

G(x) := { 0 if x = 0
⟨ 1x ⟩ if x > 0,

where ⟨r⟩ denotes the fractional part of r, is called the Gauss map.
(a) Show that this map is not invariant under the Lebesgue measure λ on [0, 1].
(b) Prove that the Borel probability measure

μG(B) :=
1

log 2
∫
B

1
1 + x

dx

is G-invariant. The measure μG is known as the Gauss measure.

Exercise 8.5.26. Recall the Fareymap F : [0, 1]→ [0, 1] fromExample 1.2.3. Show that
the Borel probability measure

μF(B) := ∫
B

1
x
dx

is F-invariant, while the Lebesgue measure λ is not.

Exercise 8.5.27. Show that the Dirac point-mass δ0 is the only T-invariant Borel prob-
ability measure for the doubling map on the entire real line, that is, for T : ℝ → ℝ
defined by T(x) = 2x.
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Exercise 8.5.28. Find all T-invariant Borel probabilitymeasures for the squaringmap
on the entire real line, that is, for T : ℝ→ ℝ defined by T(x) = x2.

Exercise 8.5.29. Prove that the continuous transformation T : ℝ → ℝ defined by
T(x) = x2 + 1 does not admit any (finite or infinite) T-invariant Borel measure.

Exercise 8.5.30. Letb ̸= 0. Prove that the translationT : ℝ→ ℝdefinedbyT(x) = x+b
admits a σ-finite T-invariant Borel measure but not a finite one.

Exercise 8.5.31. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. Suppose
that B ∈ 𝒜 is forward T-invariant, that is, T(B) ⊆ B. Let 𝒜|B := {A ∩ B : A ∈ 𝒜} be the
projection of𝒜 onto B. Suppose that μ is a probability measure on (B,𝒜|B). Define the
set function μ̂ : 𝒜→ [0, 1] by the formula

μ̂(A) := μ(A ∩ B).

Show that μ̂ is a probability measure on (X,𝒜). Furthermore, prove that if μ is
T|B-invariant then μ̂ is T-invariant.

Exercise 8.5.32. Find a nontrivial measure-preserving dynamical system T : X →
X on a probability space (X,ℬ, μ) for which there exist at least three completely
T-invariant measurable sets of positive μ-measure.

Exercise 8.5.33. Identify a nontrivial measure-preserving dynamical system T : X →
X on a probability space (X,ℬ, μ) for which there exist uncountably many measurable
sets of positive measure and the symmetric difference of any two of these sets has
positive measure.

Exercise 8.5.34. Show that the inverse of a measure-preserving isomorphism is a
measure-preserving isomorphism.

Exercise 8.5.35. Let T : X → X be a map and let φ : X → ℝ be a real-valued function.
Let x ∈ X. If k, n ∈ ℕ are such that k < n, prove that

Snφ(x) = Skφ(x) + Sn−kφ(T
k(x)).

Exercise 8.5.36. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). Prove the following statements:
(a) If Y ⊆ X is forward T-invariant, then μ(Y) = μ(⋃∞n=0 T

−n(Y)).
(b) If Z ⊆ X is backward T-invariant, then μ(Z) = μ(⋂∞n=0 T

−n(Z)).
(c) If T is ergodic with respect to μ and W ⊆ X is forward or backward T-invariant,

then μ(W) ∈ {0, 1}.

N. B.: Part (c) means that the concept of ergodicity might alternatively be defined in
terms of forward invariant sets or in terms of backward invariant sets.
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Exercise 8.5.37. Find a topological dynamical system that admits a measure which is
ergodic but not invariant.

Exercise 8.5.38. Fix n > 1. Consider the map Tn : 𝕊1 → 𝕊1 defined by Tn(x) = nx
(mod 1). Using the uniqueness of the Fourier series representation of functions in L2(λ)
(like in the proof of Proposition 8.2.29), show that Tn is ergodic with respect to the
Lebesgue measure λ.

Exercise 8.5.39. Recalling Exercise 8.5.25, show that the Gaussmeasure is ergodic for
the Gauss map.

Exercise 8.5.40. Suppose that X is a countable set,𝒫(X) is the σ-algebra of all subsets
of X and μ is a probabilitymeasure on (X,𝒫(X)). Show that if T : X → X is ergodic with
respect to μ then there exists a periodic point y of T such that μ({Tn(y) : n ≥ 0}) = 1.

Exercise 8.5.41. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). Let also f ∈ L1(μ). Show that

lim
n→∞

1
n
f (Tn(x)) = 0 for μ-a. e. x ∈ X.

Exercise 8.5.42. Let n ≥ 2. Every number x ∈ [0, 1] has a n-adic expansion, that is,

x =
∞

∑
i=1

ωi
ni

for some ω = (ωi)
∞
i=1 ∈ {0, 1, . . . , n − 1}

∞. Let p, q ∈ {0, 1, . . . , n − 1}. Show that

lim
k→∞

1
k
#{1 ≤ j ≤ k : ωj = p and ωj+3 = q} =

1
n2

for λ-a. e. x ∈ [0, 1].

Exercise 8.5.43. Let n = 2. Using the same notation as in Exercise 8.5.42, show that

lim
k→∞

1
k

k−1
∑
j=0
(ω2

j + ω
2
j+1) = 1 for λ-a. e. x ∈ [0, 1].

Exercise 8.5.44. Let ℓ ∈ C(X)∗. Set Δℓ := var(ℓ) − ℓ, where var(ℓ) comes from Def-
inition 8.2.36. Prove that Δℓ ∈ C(X)∗ and is positive. In addition, show that if ℓ is
T-invariant then so is Δℓ.

Exercise 8.5.45. Prove Theorem 8.4.2(a,b,c).

Exercise 8.5.46. Referringback to theproof of Theorem8.4.3, show that ℱ̃n = T̃−1(ℱ̃n+1)
for all n ≥ 0.

Exercise 8.5.47. Let T : X → X be a measure-preserving dynamical system on a
probability space (X,ℬ, μ). A measurable function g : X → ℝ is said to be μ-a. e. T-
subinvariant if g(T(x)) ≤ g(x) for μ-a. e. x ∈ X. Show that if T is ergodic and g ∈ L1(μ)
is μ-a. e. T-subinvariant, then g is μ-a. e. constant (cf. Theorem 8.2.18).
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Exercise 8.5.48. In this exercise, we introduce and discuss Markov chains, which are
in a sense a generalization of theBernoulli shifts studied in Examples 8.1.14 and8.2.32.
Let E be a countable alphabet with at least two letters. Let A : E × E → (0, 1) be a
stochastic matrix, that is, a matrix such that

∑
j∈E

Aij = 1, ∀i ∈ E.

(a) Prove (youmay use the classical Perron–Frobenius theorem for positivematrices)
that there exists a unique probability vector P : E → [0, 1] such that PA = P, that
is,

∑
i∈E

PiAij = Pj, ∀j ∈ E.

(b) Further show that Pj ∈ (0, 1) for all j ∈ E.

For every ω ∈ E∗, say ω ∈ En, set

μA([ω]) = Pω1

n−1
∏
k=1

Aωkωk+1
.

In a similar way to Examples 8.1.14 and 8.2.32:
(c) Prove that μA uniquely extends to a Borel probability measure on Eℕ. (In the se-

quel, we keep the same symbol μA for this measure.)
(d) Show that the measure μA is shift-invariant and ergodic.

The dynamical system (σ : Eℕ → Eℕ, μA) is called the one-sidedMarkov chain gener-
ated by the stochastic matrix A.

Assuming that the alphabet E is finite:
(e) Prove that the one-cylinder partition {[e]}e∈E is a weak Bernoulli generator for the

measure-preserving dynamical system (σ : Eℕ → Eℕ, μA). Conclude that this sys-
tem is weak Bernoulli and that its Rokhlin’s natural extension is isomorphic to a
two-sided Bernoulli shift.

(f) Wanting an explicit representation of the Rokhlin’s natural extension of the sys-
tem (σ : Eℕ → Eℕ, μA), prove that, as in the case of Bernoulli shifts, this extension
is isomorphic to the naturally defined two-sided Markov chain (σ : Eℤ → Eℤ, μA)
generated by the stochastic matrix A and the unique probability vector P.

Note that when E is a countable set, every Bernoulli shift generated by a probability
vector P : E → (0, 1) is the Markov chain generated by the stochastic matrix A whose
columns are all equal to that vector P. In this sense,Markov chains are generalizations
of Bernoulli shifts. We established this for countable alphabets E. But in fact, even
more generally, when E is an arbitrary set as in Examples 8.1.14 and 8.2.32, one can
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define appropriate Markov chains that generalize the Bernoulli shifts considered in
those examples.

Finally, as for Bernoulli shifts, Markov chains will be shown to be Gibbs and
equilibrium states for appropriately chosen Hölder continuous potentials in Exer-
cises 13.11.11–13.11.12 and 17.9.13–17.9.14.
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9 Measure-theoretic entropy

In Chapter 7,we studied the topological entropyof a topological dynamical system.We
now study its measure-theoretic counterpart. Measure-theoretic entropy is also some-
times known asmetric entropy or Kolmogorov–Sinaimetric entropy. It was introduced
by A. Kolmogorov and Ya. Sinai in the late 1950s; see [67]. Since then, its account has
been presented in virtually every textbook on ergodic theory. Its introduction to dy-
namical systems was motivated by Ludwig Boltzmann’s concept of entropy in statisti-
cal mechanics and Claude Shannon’s work on information theory; see [64, 65].

As for topological entropy, there are three stages in the definition of metric en-
tropy. Recall that topological entropy is defined by covering the underlying topologi-
cal space with basic sets in that space, that is, open sets; metric entropy, on the other
hand, is defined by partitioning the underlying measurable space with basic sets in
that space, namely, measurable sets. Indeed, whereas one cannot generally partition
a topological space into open sets (this is only possible in a disconnected space), it is
generally possible to partition a measurable space into measurable sets. Accordingly,
we first study measurable partitions in Section 9.2. Then we examine the concepts
of information and conditional information in Section 9.3. In Section 9.4, we finally
define metric entropy. And in Section 9.5, we formulate and prove the full version of
Shannon–McMillan–Breiman’s characterization of metric entropy. This characteriza-
tion depicts what metric entropy really is. Finally, in Section 9.6 we shed further light
on the nature of entropy by proving the Brin–Katok local entropy formula. Like the
Shannon–McMillan–Breiman theorem, the Brin–Katok local entropy formula is very
useful in applications.

9.1 An excursion into the origins of entropy

This exposition is inspired by [80].
The concept of metric entropy arose from the creation of information theory by

Shannon [64, 65]. That notion was adapted from Boltzmann’s advances on entropy in
statistical mechanics.

Contemplate the conduct of a random experiment (for instance, the rolling of a
die) with a finite number of possible outcomes (A1,A2, . . . ,An) with respective proba-
bilities (p1, p2, . . . , pn). Naturally, wewould like to ascribe to this experiment a quantity
(a number) that indicates the level of uncertainty associated with the outcome of the
experiment. For example, if a six-face unfair die has the outcomes (1, 2, 3, 4, 5, 6) with
associated probabilities (95%, 1%, 1%, 1%, 1%, 1%), then the level of uncertainty of
the outcome ismuch smaller than the level of uncertainty in the throwing of a fair die,
that is, a die with an equal probability of 1/6 of falling on any of its 6 faces. We aim at

https://doi.org/10.1515/9783110702682-009
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finding a real-valued function

H(p1, p2, . . . , pn)

that describes the level of uncertainty. Obviously, this nonnegative function is defined
on the n-tuples (p1, p2, . . . , pn) such that 0 ≤ pi ≤ 1 for all 1 ≤ i ≤ n and ∑

n
i=1 pi = 1. We

now provide a rationale for the type of function that naturally emerges in this context.
Intuitively, the level of uncertainty of the outcome reaches...

– a minimum of 0 when one of the outcomes is absolutely certain, that is, has a
probability of 100% = 1 of occurring; this means that H(p1, p2, . . . , pn) = 0 when
pi = 1 for some i (and thus pj = 0 for all j ̸= i).

– a maximumwhen the n outcomes have equal probability 1/n of taking place, that
is, maxH(p1, p2, . . . , pn) = H(1/n, 1/n, . . . , 1/n).

Speaking of the equiprobable case, it is interesting and even crucial to look at the
behavior of the function

f (n) = H(1/n, 1/n, . . . , 1/n).

As the number n of outcomes grows, the level of uncertainty grows: it is easier to pre-
dict the outcome of casting a six-side fair die than a twenty-side fair die. So we posit
that:

(A1) The function f must be strictly increasing.

Consider now two independent experiments, a first one with n1 equiprobable out-
comes and a second one with n2 equiprobable outcomes. Running both experiments
simultaneously results in a “product” experiment which consists of n1n2 equiproba-
ble outcomes. Knowledge of the outcome of the first experiment does not affect the
uncertainty surrounding the outcome of the second one, and vice versa. Accordingly,
it is natural to expect that once the uncertainty of the outcome of the first experiment,
f (n1), is subtracted from the uncertainty on the entire experiment, f (n1n2), the remain-
ing uncertainty coincides with that of the conduct of the second experiment, f (n2),
that is,

f (n1n2) − f (n1) = f (n2).

Equivalently, we posit that

(A2) f (n1n2) = f (n1) + f (n2), ∀n1, n2 ∈ ℕ.

Let us return now to a general experiment with n outcomes. Partition these outcomes
into two subsets A and B, with respective total probabilities pA = p1 + . . . + pk and
pB = pk+1 + . . . + pn. For instance, in the experiment of throwing a six-face die, we
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might be interested not in the face number the die falls on but rather in whether it set-
tles on an even face or an odd face. Naturally, wewould like to relate the uncertainty of
the original experiment with that of the “simplified” experiment where the outcome is
perceived as A or B. If the outcome of the simplified experiment is A, then the remain-
ing uncertainty about the outcome of the original experiment is H(p1/pA, . . . , pk/pA).
Similarly, if the outcome of the simplified experiment is B, then the remaining un-
certainty about the outcome of the original experiment is H(pk+1/pB, . . . , pn/pB). Since
the two outcomes in the simplified experiment occur with probabilities pA and pB re-
spectively, we posit that the level of uncertainty about the original experiment can be
expressed as

(A3) H(p1, . . . , pn) = H(pA, pB) + pAH(
p1
pA
, . . . , pkpA ) + pBH(

pk+1
pB
, . . . , pnpB ).

Finally, it is reasonable to assume that the function H is continuous, that is, a small
change in the probabilities of the outcomes of an experiment, results in a small change
in the level of uncertainty besetting the experiment. Because of axiom (A3), it suffices
to make this assumption in the case of a binary outcome experiment:

(A4) The function p → H(p, 1 − p) is continuous on (0, 1).

Theorem 9.1.1. The only functions satisfying axioms (A1)–(A4) are the functions of the
form

H(p1, . . . , pn) = −C
n
∑
i=1

pi log pi

for some constant C > 0.

Proof. See Exercise 9.7.1.

This will be the form of the entropy function. Mathematically, the various events
that can be witnessed in an experiment constitute a measurable partition of the mea-
surable space of all outcomes of the experiment. This explains why we study measur-
able partitions in the next section.

9.2 Partitions of a measurable space

Definition 9.2.1. Let (X,𝒜) be a measurable space. A countable measurable partition
of X is a family α = {Ak}∞k=1 such that:
(a) Ak ∈ 𝒜 for all k ∈ ℕ;
(b) Ai ∩ Aj = 0 for all i ̸= j; and
(c) ⋃∞k=1 Ak = X.

The individual setsAk, k ∈ ℕ,makingup thepartitionα are calledatomsofα. For each
x ∈ X the unique atom of the partition α which contains the point x will be denoted
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by α(x). Finally, we shall denote the set of all countable measurable partitions on the
space (X,𝒜) by Part(X,𝒜).

In the sequel, it will always be implicitly understood that partitions are countable
(finite or infinite) and measurable.

In Definition 7.1.4, we introduced a refinement relation for covers of a space. As
partitions of a space constitute a special class of covers of that space, it is natural to
examine the restriction of the refinement relation to partitions. In contrast with the
relation for covers, the restriction turns out to be a relation of partial order on the set
of all partitions.

Definition 9.2.2. Let (X,𝒜) be a measurable space and α, β ∈ Part(X,𝒜). We say that
partition β is finer than partition α, or that α is coarser than β, which will be denoted
by α ≤ β, if for every atom B ∈ β there exists some atom A ∈ α such that B ⊆ A. In
other words, each atom of α is a union of atoms of β.

Equivalently, β is a refinement of α if β(x) ⊆ α(x) for all x ∈ X. See also Exer-
cises 9.7.2–9.7.5.

We now introduce for partitions the analogue of the join of two covers.

Definition 9.2.3. Given α, β ∈ Part(X,𝒜), the partition

α ∨ β := {A ∩ B | A ∈ α,B ∈ β}

is called the join of α and β.

The basic properties of the join are given in the following lemma. Their proofs are
left to the reader as an exercise.

Lemma 9.2.4. Since partitions are covers, the relation ≤ and the operation ∨ enjoy all
the properties of≺ and∨ described in Remark 7.1.3 and Lemma 7.1.5. Moreover, ifα, β,γ ∈
Part(X,𝒜), then:
(a) ≤ is a relation of partial order on Part(X,𝒜), that is, it is...

– reflexive (α ≤ α);
– transitive (α ≤ β and β ≤ γ ⇒ α ≤ γ); and
– antisymmetric (α ≤ β ≤ α⇐⇒ α = β).

(b) α ≤ β ⇐⇒ α ∨ β = β.
(c) α ∨ α = α.
(d) α ∨ {X} = α.

9.3 Information and conditional information functions

Let (X,𝒜, μ)be a probability space. The setXmaybe construed as the set of all possible
states (or outcomes) of an experiment, while the σ-algebra𝒜 is the set of all possible
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events, and μ(A) is the probability that event A ∈ 𝒜 take place. Imagine that this ex-
periment is conducted using an instrument which, due to some limitation, can only
providemeasurements accurateup to the atomsof apartitionα = {Ak}∞k=1 ∈ Part(X,𝒜).
In other words, this instrument can only tell us which atom of α the outcome of the
experiment falls into. Any observationmade through this instrument will therefore be
of the form Ak for a unique k. If the experiment were conducted today, the probability
that its outcome belongs to Ak, that is, the probability that the experiment results in
observing event Ak with our instrument, would be μ(Ak).

We would like to introduce a function that describes the information that our in-
strument would give us about the outcome of the experiment. So, let x ∈ X. Intuitively,
the smaller the atom of the partition to which x belongs, the more information our in-
strument provides us about x. In particular, if x lies in an atom of full measure, then
our instrument gives us essentially no information about x. Moreover, because our
instrument cannot distinguish points which belong to a common atom of the parti-
tion, the sought-after information function must be constant on every atom. In light
of Theorem 9.1.1, the following definition is natural (think about the relation between
information and uncertainty on the outcome of an experiment).

Definition 9.3.1. Let (X,𝒜, μ) be a probability space and α ∈ Part(X,𝒜). The nonega-
tive function Iμ(α) : X → [0,∞] defined by

Iμ(α)(x) := − log μ(α(x))

is called the information function of the partition α. By convention, log 0 = −∞.

As the function t → − log t is strictly decreasing, for any x ∈ X the smaller μ(α(x))
is, the larger Iμ(α)(x) is, that is, the smaller the measure of the atom α(x) is, the more
information the partition α gives us about x. In particular, the finer the partition, the
more information it gives us about every point in the space.

In the next lemma,we collect some of the basic properties of the information func-
tion. Their proofs are straightforward and are left to the reader.

Lemma 9.3.2. Let (X,𝒜, μ) be a probability space and α, β ∈ Part(X,𝒜). Then:
(a) If α ≤ β, then Iμ(α) ≤ Iμ(β).
(b) Iμ(α)(x) = 0 if and only if μ(α(x)) = 1.
(c) Iμ(α)(x) =∞ if and only if μ(α(x)) = 0.
(d) Ifα(x) = α(y), then Iμ(α)(x) = Iμ(α)(y), that is, Iμ(α) is constant over each atomofα.

More advanced properties of the information function will be presented below.
Meanwhile, we introduce a function which describes the information gathered from a
partition α given that a partition β has already been applied.

Definition 9.3.3. Let (X,𝒜, μ) be a probability space and α, β ∈ Part(X,𝒜). The condi-
tional information function of partition α given partition β is the nonnegative function
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Iμ(α|β) : X → [0,∞] defined by

Iμ(α|β)(x) := − log μβ(x)(α(x)),

where μB is the conditional measure from Definition A.1.70 in Appendix A. Observe
that

Iμ(α|β)(x) := − log
μ(α(x) ∩ β(x))

μ(β(x))
= − log

μ((α ∨ β)(x))
μ(β(x))

= Iμ(α ∨ β)(x) − Iμ(β)(x).

By convention, 0
0 = 0 and∞ −∞ =∞.

For any partition α, notice that Iμ(α|{X}) = Iμ(α), that is, the information function
coincideswith the conditional information functionwith respect to the trivial partition
{X}. Note further that Iμ(α|β) is constant over each atom of α ∨ β.

Our next aim is to give some advanced properties of the conditional information
function. Notice that some of these properties hold pointwise, while others hold atom-
wise only, that is, after integrating over atoms. In particular, the reader should com-
pare statements (e–h) in the next theorem. First, though, we make one further defini-
tion, which is related to our excursion in Section 9.1.

Definition 9.3.4. Let the function k : [0, 1]→ [0, 1] be defined by

k(t) = −t log t,

where it is understood that 0 ⋅ (−∞) = 0.

The function k is continuous, strictly increasing on the interval [0, e−1], strictly
decreasing on the interval [e−1, 1], and concave. See Figure 9.1. Recall that a function
k : I → ℝ, where I ⊆ ℝ is an interval, is concave on I if

k(tx + (1 − t)y) ≥ tk(x) + (1 − t)k(y), ∀t ∈ [0, 1], ∀x, y ∈ I ,

that is, the line segment joining any two points on the curve lies under the curve.

Theorem 9.3.5. Let (X,𝒜, μ) be a probability space andα, β,γ ∈ Part(X,𝒜). The follow-
ing statements hold:
(a) Iμ(α ∨ β|γ) = Iμ(α|γ) + Iμ(β|α ∨ γ).
(b) Iμ(α ∨ β) = Iμ(α) + Iμ(β|α).
(c) If α ≤ β, then Iμ(α|γ) ≤ Iμ(β|γ).
(d) If α ≤ β, then Iμ(α) ≤ Iμ(β).
(e) If β ≤ γ, then for all A ∈ α and all B ∈ β,

∫
A∩B

Iμ(α|β) dμ ≥ ∫
A∩B

Iμ(α|γ) dμ.

Note: In general, β ≤ γ ̸⇒ Iμ(α|β) ≥ Iμ(α|γ).
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Figure 9.1: The function underlying entropy: k(t) = −t log t.

(f) For all C ∈ γ,

∫
C

Iμ(α ∨ β|γ) dμ ≤ ∫
C

Iμ(α|γ) dμ + ∫
C

Iμ(β|γ) dμ.

Note: In general, Iμ(α ∨ β|γ) ̸≤ Iμ(α|γ) + Iμ(β|γ).
(g)

∫
X

Iμ(α ∨ β) dμ ≤ ∫
X

Iμ(α) dμ + ∫
X

Iμ(β) dμ.

(h) For all A ∈ α and all B ∈ β,

∫
A∩B

Iμ(α|γ) dμ ≤ ∫
A∩B

Iμ(α|β) dμ + ∫
A∩B

Iμ(β|γ) dμ.

Note: In general, Iμ(α|γ) ̸≤ Iμ(α|β) + Iμ(β|γ).
(i) Iμ(α) ≤ Iμ(α|β) + Iμ(β).

Proof. (a) Let x ∈ X. Then

Iμ(α ∨ β|γ)(x) = − log
μ((α ∨ β ∨ γ)(x))

μ(γ(x))

= − log
μ(β(x) ∩ (α ∨ γ)(x))

μ(γ(x))

= − log(
μ(β(x) ∩ (α ∨ γ)(x))

μ((α ∨ γ)(x))
⋅
μ((α ∨ γ)(x))

μ(γ(x))
)

= − log
μ(β(x) ∩ (α ∨ γ)(x))

μ((α ∨ γ)(x))
− log

μ((α ∨ γ)(x))
μ(γ(x))

= Iμ(β|α ∨ γ)(x) + Iμ(α|γ)(x).
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(b) Setting γ = {X} in (a) results in

Iμ(α ∨ β)(x) = Iμ(α ∨ β|{X})(x) = Iμ(β|α ∨ {X})(x) + Iμ(α|{X})(x) = Iμ(β|α)(x) + Iμ(α)(x).

(c) Notice that if α ≤ β, then α ∨ β = β. It then follows from (a) that

Iμ(β|γ) = Iμ(α ∨ β|γ) = Iμ(α|γ) + Iμ(β|α ∨ γ) ≥ Iμ(α|γ).

(d) Setting γ = {X} in (c) leads to (d).
(e) Suppose that β ≤ γ. Let A ∈ α and B ∈ β. The downward concavity of the function
k from Definition 9.3.4 means that

k(
∞
∑
n=1

anbn) ≥
∞
∑
n=1

ank(bn)

whenever an, bn ∈ [0, 1] for all n ∈ ℕ and∑
∞
n=1 an = 1. Therefore,

k(∑
C∈γ

μB(C)
μ(A ∩ C)
μ(C)
) ≥ ∑

C∈γ
μB(C)k(

μ(A ∩ C)
μ(C)
). (9.1)

Since β ≤ γ, each atom of β is a union of atoms of γ. So, either C ∩ B = C or C ∩ B = 0.
Thus, either μB(C) =

μ(C)
μ(B) or μB(C) = 0, and the left-hand side of (9.1) simplifies to

k(∑
C∈γ

μB(C)
μ(A ∩ C)
μ(C)
) = k(∑

C⊆B

μ(A ∩ C)
μ(B)
) = k(μ(A ∩ B)

μ(B)
) = −

μ(A ∩ B)
μ(B)

log μ(A ∩ B)
μ(B)
.

The right-hand side of (9.1) reduces to

∑
C∈γ

μB(C)k(
μ(A ∩ C)
μ(C)
) = ∑

C⊆B

μ(C)
μ(B)

k(μ(A ∩ C)
μ(C)
) = ∑

C⊆B
−
μ(A ∩ C)
μ(B)

log μ(A ∩ C)
μ(C)
.

Hence inequality (9.1) becomes

−
μ(A ∩ B)
μ(B)

log μ(A ∩ B)
μ(B)
≥ ∑

C⊆B
−
μ(A ∩ C)
μ(B)

log μ(A ∩ C)
μ(C)
.

Multiplying both sides by μ(B) yields

−μ(A ∩ B) log μ(A ∩ B)
μ(B)
≥ ∑

C⊆B
−μ(A ∩ C) log μ(A ∩ C)

μ(C)
.

Then

∫
A∩B

Iμ(α|β) dμ = −μ(A ∩ B) log
μ(A ∩ B)
μ(B)

≥ ∑
C⊆B
−μ(A ∩ C) log μ(A ∩ C)

μ(C)
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= ∑
C⊆B
∫

A∩C

Iμ(α|γ) dμ

= ∫
A∩B

Iμ(α|γ) dμ.

(f) Since γ ≤ α ∨ γ, this statement follows directly from combining (a) and (e).
(g) Setting γ = {X} in (f) gives (g).
(h) Using part (c) and then part (a), we obtain

Iμ(α|γ) ≤ Iμ(α ∨ β|γ) = Iμ(β|γ) + Iμ(α|β ∨ γ).

Since β ≤ β ∨ γ, part (e) ensures that for all A ∈ α and all B ∈ β,

∫
A∩B

Iμ(α|β) dμ ≥ ∫
A∩B

Iμ(α|β ∨ γ) dμ.

Therefore, for all A ∈ α and B ∈ β, we have that

∫
A∩B

Iμ(α|γ) dμ ≤ ∫
A∩B

Iμ(β|γ) dμ + ∫
A∩B

Iμ(α|β) dμ.

(i) Using parts (d) and (b) in succession, we deduce that

Iμ(α) ≤ Iμ(α ∨ β) = Iμ(α|β) + Iμ(β).

9.4 Definition of measure-theoretic entropy

The entropy of a measure-preserving dynamical system T : (X,𝒜, μ) → (X,𝒜, μ) is
defined in three stages, which, for clarity of exposition, we split into the following
three subsections.

9.4.1 First stage: entropy and conditional entropy for partitions

At this stage, the behavior of the system T is not in consideration. We solely look at
the absolute and relative information provided by partitions.

The information function associated with a partition gives us the amount of in-
formation that can be gathered from the partition about each and every outcome of
the experiment. It is useful to encompass the information given by a partition within
a single number rather than a function. A natural way to achieve this is to calculate
the average information given by the partition. This means integrating the informa-
tion function over the entire space. The resulting integral is called the entropy of the
partition.
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Definition 9.4.1. Let (X,𝒜, μ) be a probability space and α ∈ Part(X,𝒜). The entropy
of α with respect to the measure μ is defined to be the nonnegative extended number

Hμ(α) := ∫
X

Iμ(α) dμ = ∑
A∈α
−μ(A) log μ(A),

where it is still understood that 0 ⋅ (−∞) = 0, since null sets do not contribute to the
integral.

The entropy of a partition is equal to zero if and only if the partition has an atom
of full measure (which implies that all other atoms are of null measure). In particular,
Hμ({X}) = 0. Moreover, the entropy of a partition is small if the partition contains one
atomwith nearly full measure (so all other atoms have small measure). If the partition
α is finite, it is possible, using calculus, to show that

0 ≤ Hμ(α) ≤ log #α (9.2)

and that

Hμ(α) = log #α ⇐⇒ μ(A) = 1
#α
, ∀A ∈ α.

In other words, on average we gain the most information from carrying out an exper-
iment when the potential events are equiprobable of occurring.

Definition 9.4.2. Let (X,𝒜, μ) be a probability space and α, β ∈ Part(X,𝒜). The condi-
tional entropy of α given β is defined to be

Hμ(α|β) := ∫
X

Iμ(α|β) dμ = ∑
A∈α
∑
B∈β
−μ(A ∩ B) log μ(A ∩ B)

μ(B)
.

Note that Hμ(α) = Hμ(α|{X}). Recalling the measure μB from Definition A.1.70 and
defining a partition α|B of B by α|B := {A ∩ B : A ∈ α}, it follows that

Hμ(α|β) = ∑
B∈β
∑
A∈α
−
μ(A ∩ B)
μ(B)

log μ(A ∩ B)
μ(B)
⋅ μ(B)

= ∑
B∈β
∑
A∈α
−μB(A) log μB(A) ⋅ μ(B)

= ∑
B∈β

HμB (α|B) ⋅ μ(B).

Hence, the conditional entropy of α given β is the weighted average of the entropies
of the partitions of each atom B ∈ β into the sets {A ∩ B : A ∈ α}.

Of course, the properties of entropy (resp. conditional entropy) are inherited from
the properties of the information function (resp., the conditional information func-
tion) via integration, as the following theorem shows.
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Theorem 9.4.3. Let (X,𝒜, μ) be a probability space andα, β,γ ∈ Part(X,𝒜). The follow-
ing statements hold:
(a) Hμ(α ∨ β|γ) = Hμ(α|γ) + Hμ(β|α ∨ γ).
(b) Hμ(α ∨ β) = Hμ(α) + Hμ(β|α).
(c) If α ≤ β, then Hμ(α|γ) ≤ Hμ(β|γ).
(d) If α ≤ β, then Hμ(α) ≤ Hμ(β).
(e) If β ≤ γ, then Hμ(α|β) ≥ Hμ(α|γ).
(f) Hμ(α ∨ β|γ) ≤ Hμ(α|γ) + Hμ(β|γ).
(g) Hμ(α ∨ β) ≤ Hμ(α) + Hμ(β).
(h) Hμ(α|γ) ≤ Hμ(α|β) + Hμ(β|γ).
(i) Hμ(α) ≤ Hμ(α|β) + Hμ(β).

Proof. All the statements follow from their counterparts in Theorem9.3.5 after integra-
tion or summation over atoms. For instance, let us prove (e). If β ≤ γ, then it follows
from Theorem 9.3.5(e) that

Hμ(α|β) = ∫
X

Iμ(α|β) dμ = ∑
A∈α
∑
B∈β
∫

A∩B

Iμ(α|β) dμ ≥ ∑
A∈α
∑
B∈β
∫

A∩B

Iμ(α|γ) dμ = Hμ(α|γ).

9.4.2 Second stage: entropy of a system relative to a partition

In this second stage, we take into account the behavior of a measure-preserving dy-
namical system relative to a given partition. Let T : X → X be a measure-preserving
dynamical system on a probability space (X,𝒜, μ) and α ∈ Part(X,𝒜). Observe that
T−1α := {T−1(A) : A ∈ α} ∈ Part(X,𝒜), too.

Recall that the set X represents the set of all possible outcomes (or states) of an
experiment, while the σ-algebra 𝒜 consists of the set of all possible events, and μ(A)
is the probability that event A happen. Recall also that a partition α = {Ak} can be
thought of as the set of all observations that can be made with a given instrument.
The action of T on (X,𝒜, μ) may be conceived as the passage of one unit of time (for
instance, a day). Today would naturally be taken as reference point for time 0. Sup-
pose that we conduct the experiment with our instrument tomorrow. The resulting
observation would be one of the atoms of α, say Ak1 , on day 1. Due to the passage of
time (in otherwords, one iteration of T), in order tomake observationAk1 at time 1, our
measure-preserving system would have to be, today, in one of the states of T−1(Ak1 ).
The probability of making observation Ak1 on day 1 is thus μ(T−1(Ak1 )). Assume now
that we conduct the same experiment for n consecutive days, starting today. What
is the probability that we make the sequence of observations Ak0 ,Ak1 , . . . ,Akn−1 on
those successive days? We would make those observations precisely if our system
is, today, in one of the states of ⋂n−1m=0 T

−m(Akm ). Therefore, the probability that our
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observations are respectively Ak0 ,Ak1 , . . . ,Akn−1 on n successive days starting today is
μ(⋂n−1m=0 T

−m(Akm )). It is thus natural to consider for all 0 ≤ m < n the partitions

αn
m :=

n−1
⋁
i=m

T−iα = T−mα ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)α.

Ifm ≥ n, we defineαn
m to be the trivial partition {X}. To shorten notation, we shall write

αn in lieu of αn
0 and T

−iα rather than T−i(α). In the following lemma, we list some of
the basic properties of the operator T−1 on partitions.

Lemma 9.4.4. Let T : X → X be a measurable transformation of a measurable space
(X,𝒜), and let α, β ∈ Part(X,𝒜). The following statements hold:
(a) T−1(α ∨ β) = (T−1α) ∨ (T−1β).
(b) T−1(αn

m) = (T
−1α)nm for all m, n ≥ 0.

(c) (α ∨ β)nm = α
n
m ∨ β

n
m for all m, n ≥ 0.

(d) (αl
k)
n
m = α

l+n−1
k+m .

(e) T−1 preserves the partial order ≤, that is, if α ≤ β then T−1α ≤ T−1β.
(f) More generally, if α ≤ β then αn

m ≤ β
n
m for all m, n ≥ 0.

(g) (T−1α)(x) = T−1(α(T(x))) for all x ∈ X.

Proof. The proof of assertions (a) and (e) are left to the reader.

(b) Using (a) repeatedly, we have that

T−1(αn
m) = T

−1(
n−1
⋁
i=m

T−iα) =
n−1
⋁
i=m

T−1(T−iα) =
n−1
⋁
i=m

T−i(T−1α) = (T−1α)nm.

(c) Again by using (a) repeatedly, we obtain that

(α ∨ β)nm =
n−1
⋁
i=m

T−i(α ∨ β) =
n−1
⋁
i=m
(T−iα ∨ T−iβ) = (

n−1
⋁
i=m

T−iα) ∨ (
n−1
⋁
i=m

T−iβ) = αn
m ∨ β

n
m.

(d) Using (a), it follows that

(αl
k)

n
m =

n−1
⋁
j=m

T−j(αl
k) =

n−1
⋁
j=m

T−j(
l−1
⋁
i=k

T−iα) =
n−1
⋁
j=m

l−1
⋁
i=k

T−(i+j)α =
l+n−2
⋁

s=k+m
T−sα = αl+n−1

k+m .

(f) Suppose that α ≤ β. Using (e) repeatedly and Lemma 7.1.5(g), we obtain that

αn
m =

n−1
⋁
i=m

T−iα ≤
n−1
⋁
i=m

T−iβ = βnm.

(g) Let x ∈ X. Choose A ∈ α such that x ∈ T−1(A). Then T(x) ∈ A, that is, A = α(T(x)).
Hence, (T−1α)(x) = T−1(A) = T−1(α(T(x))).
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We now describe the behavior of the operator T−1 with respect to the information
function for any measure-preserving dynamical system T.

Lemma 9.4.5. Let T : X → X be ameasure-preserving dynamical system on a probabil-
ity space (X,𝒜, μ), and let α, β ∈ Part(X,𝒜). Then

Iμ(T
−1α|T−1β) = Iμ(α|β) ∘ T .

In particular,

Iμ(T
−1α) = Iμ(α) ∘ T .

Proof. Let x ∈ X. By Lemma 9.4.4(a) and (g) and the assumption that μ is T-invariant,
we have that

Iμ(T
−1α|T−1β)(x) = − log

μ((T−1α ∨ T−1β)(x))
μ((T−1β)(x))

= − log
μ((T−1(α ∨ β))(x))

μ((T−1β)(x))

= − log
μ(T−1((α ∨ β)(T(x))))

μ(T−1(β(T(x))))

= − log
μ((α ∨ β)(T(x)))

μ(β(T(x)))
= Iμ(α|β)(T(x)) = Iμ(α|β) ∘ T(x).

Set β = {X} to get the particular, unconditional case.

A more intricate property of the information function is the following.

Lemma 9.4.6. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ), and let α ∈ Part(X,𝒜). For all n ∈ ℕ,

Iμ(α
n) =

n
∑
j=1

Iμ(α|α
j
1) ∘ T

n−j.

Proof. Wewill prove this lemma by induction. For n = 1, sinceα1
1 is by definition equal

to the trivial partition {X}, we have

Iμ(α
1) = Iμ(α) = Iμ(α|{X}) = Iμ(α|α

1
1) = Iμ(α|α

1
1) ∘ T

1−1.

Now suppose that the lemma holds for some n ∈ ℕ. Then, in light of Theorem 9.3.5(b)
and Lemma 9.4.5, we obtain that

Iμ(α
n+1) = Iμ(α ∨ α

n+1
1 ) = Iμ(α

n+1
1 ) + Iμ(α|α

n+1
1 )

= Iμ(T
−1(αn)) + Iμ(α|α

n+1
1 ) = Iμ(α

n) ∘ T + Iμ(α|α
n+1
1 )
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=
n
∑
j=1

Iμ(α|α
j
1) ∘ T

n−j ∘ T + Iμ(α|α
n+1
1 )

=
n
∑
j=1

Iμ(α|α
j
1) ∘ T

n+1−j + Iμ(α|α
n+1
1 ) ∘ T

n+1−(n+1)

=
n+1
∑
j=1

Iμ(α|α
j
1) ∘ T

n+1−j.

We now turn our attention to the effect that a measure-preserving dynamical
system has on entropy. In particular, observe that because the system is measure-
preserving, conducting the experiment today or tomorrow (or at any time in the
future) gives us the same amount of average information about the outcome. This is
the meaning of the second of the following properties of entropy.

Lemma 9.4.7. Let T : X → X be ameasure-preserving dynamical system on a probabil-
ity space (X,𝒜, μ), and let α, β ∈ Part(X,𝒜). The following statements hold:
(a) Hμ(T−1α|T−1β) = Hμ(α|β).
(b) Hμ(T−1α) = Hμ(α).
(c) Hμ(α

n|βn) ≤ nHμ(α|β) for all n ∈ ℕ.

Proof. (a) Using Lemma 9.4.5 and the T-invariance of μ, we have that

Hμ(T
−1α|T−1β) = ∫

X

Iμ(T
−1α|T−1β) dμ = ∫

X

Iμ(α|β) ∘ T dμ = ∫
X

Iμ(α|β) dμ = Hμ(α|β).

(b) Set β = {X} in (a) to obtain (b).
(c) We first prove that Hμ(α

n|βn) ≤ ∑n−1j=0 Hμ(T−jα|T−jβ). This statement clearly holds
when n = 1. Suppose that it holds for some n ∈ ℕ. Using Theorem 9.4.3(a) and (e), we
have that

Hμ(α
n+1|βn+1) = Hμ(α

n ∨ T−nα|βn ∨ T−nβ)
= Hμ(α

n|βn ∨ T−nβ) + Hμ(T
−nα|αn ∨ βn ∨ T−nβ)

≤ Hμ(α
n|βn) + Hμ(T

−nα|T−nβ)

≤
n−1
∑
j=0

Hμ(T
−jα|T−jβ) + Hμ(T

−nα|T−nβ)

=
n
∑
j=0

Hμ(T
−jα|T−jβ).

By induction, the above statement holds for all n ∈ ℕ. By (a), we obtain that

Hμ(α
n|βn) ≤

n−1
∑
j=0

Hμ(T
−jα|T−jβ) =

n−1
∑
j=0

Hμ(α|β) = nHμ(α|β).
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The average information gained by conducting an experiment on n consecutive
days using the partition α is given by the entropy Hμ(α

n) since αn has for atoms the
sets⋂n−1m=0 T

−m(Akm ), whereAkm ∈ α for allm. Not surprisingly, the average information
gained by conducting the experiment on n consecutive days using the partition α is
equal to the sum of the average conditional information gained by performing α on
day j + 1 given that the outcome of performing α over the previous j days is known,
summing from the first day to the last day. This is formalized in the next lemma.

Lemma 9.4.8. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ), and let α ∈ Part(X,𝒜). Then for all n ∈ ℕ,

Hμ(α
n) =

n
∑
j=1

Hμ(α|α
j
1).

Proof. We deduce from Lemma 9.4.6 and the T-invariance of μ that

Hμ(α
n) = ∫

X

Iμ(α
n) dμ =

n
∑
j=1
∫
X

Iμ(α|α
j
1) ∘ T

n−j dμ =
n
∑
j=1
∫
X

Iμ(α|α
j
1) dμ =

n
∑
j=1

Hμ(α|α
j
1).

Below is an alternative expression for the entropy Hμ(α
n).

Lemma 9.4.9. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ), and let α ∈ Part(X,𝒜). Then for all n ∈ ℕ,

Hμ(α
n) =

n−1
∑
j=0

Hμ(T
−jα|αj).

Proof. We prove this result by induction. The statement is trivial when n = 1. Suppose
that it holds for n − 1. Using Theorem 9.4.3(b), we get

Hμ(α
n) = Hμ(α

n−1 ∨ T−(n−1)α) = Hμ(α
n−1) + Hμ(T

−(n−1)α|αn−1)

=
n−2
∑
j=0

Hμ(T
−jα|αj) + Hμ(T

−(n−1)α|αn−1) =
n−1
∑
j=0

Hμ(T
−jα|αj).

So the statement holds for all n ∈ ℕ.

Returning to Lemma 9.4.8, since α
j+1
1 ≥ α

j
1 observe that Hμ(α|α

j+1
1 ) ≤ Hμ(α|α

j
1)

by Theorem 9.4.3(e). So the sequence (Hμ(α|α
j
1))
∞
j=1 decreases to some limit which we

shall denote by hμ(T ,α). Consequently, the corresponding sequence of Cesàro aver-
ages ( 1n ∑

n
j=1 Hμ(α|α

j
1))
∞
n=1 = (

1
nHμ(α

n))∞n=1 decreases to the same limit. Thus the follow-
ing definition makes sense. This is the second step in the definition of the measure-
theoretic entropy of a system.
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Definition 9.4.10. Let T : X → X be a measure-preserving dynamical system on a
probability space (X,𝒜, μ), and let α ∈ Part(X,𝒜). The entropy of T with respect to α,
denoted hμ(T ,α), is defined by

hμ(T ,α) := limn→∞
Hμ(α|α

n
1 ) = lim

n→∞
1
n
Hμ(α

n)

= inf
n→∞

Hμ(α|α
n
1 ) = inf

n→∞
1
n
Hμ(α

n).

The following theorem lists some of the basic properties of hμ(T , ⋅).

Theorem 9.4.11. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ), and let α, β ∈ Part(X,𝒜). The following statements hold:
(a) hμ(T ,α) ≤ Hμ(α).
(b) hμ(T ,α) ≤ Hμ(T−1α|α).
(c) hμ(T ,α ∨ β) ≤ hμ(T ,α) + hμ(T , β).
(d) If α ≤ β, then hμ(T ,α) ≤ hμ(T , β).
(e) hμ(T ,α) ≤ hμ(T , β) + Hμ(α|β).
(f) hμ(T ,T−1α) = hμ(T ,α).
(g) hμ(T ,αk) = hμ(T ,α) for all k ∈ ℕ.
(h) hμ(Tk ,αk) = k ⋅ hμ(T ,α) for all k ∈ ℕ.
(i) If T is invertible, then hμ(T ,α) = hμ(T ,⋁

k
i=−k T

iα) for all k ∈ ℕ.
(j) If (βn)∞n=1 is a sequence in Part(X,𝒜) such that limn→∞ Hμ(α|βn) = 0, then

hμ(T ,α) ≤ lim inf
n→∞

hμ(T , βn).

(k) If limn→∞ Hμ(α|βn) = 0, then hμ(T ,α) ≤ hμ(T , β).

Proof. (a) This follows from the fact that hμ(T ,α) = infn∈ℕ
1
nHμ(α

n).
(b) Using Lemmas 9.4.9 and 9.4.7(a) and Theorem 9.4.3(e), we have

hμ(T ,α) = limn→∞
1
n

n−1
∑
j=0

Hμ(T
−jα|αj)

≤ lim
n→∞

1
n

n−1
∑
j=0

Hμ(T
−jα
T
−(j−1)α)

= lim
n→∞

1
n

n−1
∑
j=0

Hμ(T
−(j−1)(T−1α)T

−(j−1)α)

= lim
n→∞

1
n

n−1
∑
j=0

Hμ(T
−1α|α) = Hμ(T

−1α|α).

(c) Using Lemma 9.4.4(c) and Theorem 9.4.3(g), we get

hμ(T ,α ∨ β) = lim
n→∞

1
n
Hμ((α ∨ β)

n)

= lim
n→∞

1
n
Hμ(α

n ∨ βn)
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≤ lim
n→∞

1
n
[Hμ(α

n) + Hμ(β
n)]

= lim
n→∞

1
n
Hμ(α

n) + lim
n→∞

1
n
Hμ(β

n)

= hμ(T ,α) + hμ(T , β).

(d) If α ≤ β, then αn ≤ βn and hence Hμ(α
n) ≤ Hμ(βn) for all n ∈ ℕ. Therefore,

hμ(T ,α) = lim
n→∞

1
n
Hμ(α

n) ≤ lim
n→∞

1
n
Hμ(β

n) = hμ(T , β).

(e) Calling upon Theorem 9.4.3(i) and Lemma 9.4.7(c), we obtain that

hμ(T ,α) = limn→∞
1
n
Hμ(α

n)

≤ lim inf
n→∞

1
n
[Hμ(α

n|βn) + Hμ(β
n)]

= lim inf
n→∞

1
n
Hμ(α

n|βn) + lim
n→∞

1
n
Hμ(β

n)

≤ Hμ(α|β) + hμ(T , β).

(f) By Lemma 9.4.4(b), we know that (T−1α)n = T−1(αn) for all n ∈ ℕ. Then, using
Lemma 9.4.7(b), we deduce that

hμ(T ,T
−1α) = lim

n→∞
1
n
Hμ((T

−1α)n) = lim
n→∞

1
n
Hμ(T
−1(αn)) = lim

n→∞
1
n
Hμ(α

n) = hμ(T ,α).

(g) By Lemma 9.4.4(d), we know that (αk)n = αn+k−1 and hence

hμ(T ,α
k) = lim

n→∞
1
n
Hμ((α

k)n) = lim
n→∞

1
n
Hμ(α

n+k−1)

= lim
n→∞

n + k − 1
n
⋅

1
n + k − 1

Hμ(α
n+k−1)

= lim
n→∞

n + k − 1
n
⋅ lim
n→∞

1
n + k − 1

Hμ(α
n+k−1)

= lim
m→∞

1
m
Hμ(α

m) = hμ(T ,α).

(h) Let k ∈ ℕ. Then

hμ(T
k ,αk) = lim

n→∞
1
n
Hμ(

n−1
⋁
j=0

T−kj(αk))

= lim
n→∞

1
n
Hμ(

n−1
⋁
j=0

T−kj(
k−1
⋁
i=0

T−iα))

= lim
n→∞

1
n
Hμ(

kn−1
⋁
l=0

T−lα)

= k lim
n→∞

1
kn

Hμ(α
kn) = k hμ(T ,α).
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(i) The proof is similar to that of part (f) and is thus left to the reader.
(j) Let (βn)∞n=1 be a sequence of partitions such that limn→∞ Hμ(α|βn) = 0. By part (e),

hμ(T ,α) ≤ hμ(T , βn) + Hμ(α|βn), ∀n ∈ ℕ.

Consequently,

hμ(T ,α) ≤ lim inf
n→∞
[hμ(T , βn) + Hμ(α|βn)]

= lim inf
n→∞

hμ(T , βn) + limn→∞
Hμ(α|βn) = lim inf

n→∞
hμ(T , βn).

(k) Suppose that limn→∞ Hμ(α|βn) = 0. By parts (j) and (g), we have

hμ(T ,α) ≤ lim inf
n→∞

hμ(T , β
n) = hμ(T , β).

9.4.3 Third and final stage: entropy of a system

The measure-theoretic entropy of a system is defined in a similar way to topological
entropy. The third and last step in the definition consists in passing to a supremum.

Definition 9.4.12. Let T : X → X be a measure-preserving dynamical system on a
probability space (X,𝒜, μ). The measure-theoretic entropy of T, denoted hμ(T), is de-
fined by

hμ(T) := sup{hμ(T ,α) : α ∈ PartFin(X,𝒜)},

where

PartFin(X,𝒜) := {α ∈ Part(X,𝒜) : #α <∞}.

The following theorem is a useful tool for calculating the measure-theoretic en-
tropy of a system. The first part is analogous to Theorem 7.2.19.

Theorem 9.4.13. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). The following statements hold:
(a) hμ(Tk) = k ⋅ hμ(T) for all k ∈ ℕ.
(b) If T is invertible, then hμ(T−1) = hμ(T).

Proof. (a) Let k ∈ ℕ. Using Theorem 9.4.11(h), we get

k hμ(T) = sup{k hμ(T ,α) : α ∈ PartFin(X,𝒜)}

= sup{hμ(T
k ,αk) : α ∈ PartFin(X,𝒜)}

≤ sup{hμ(T
k , β) : β ∈ PartFin(X,𝒜)} = hμ(T

k).
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On the other hand, since α ≤ αk for all k ∈ ℕ, Theorem 9.4.11(d) and (h) give

hμ(T
k ,α) ≤ hμ(T

k ,αk) = k hμ(T ,α).

Passing to the supremum over all finite partitions α of X on both sides, we obtain the
desired inequality, namely, hμ(Tk) ≤ k hμ(T).

(b) To distinguish the action of T from the action of T−1 on a partition, we shall
use the respective notation αn

T and αn
T−1 . Using Lemmas 9.4.7(b) and 9.4.4(b) in turn,

we deduce that

Hμ(α
n
T−1) = Hμ(

n−1
⋁
i=0
(T−1)−iα) = Hμ(

n−1
⋁
i=0

T iα)

= Hμ(T
−(n−1)(

n−1
⋁
i=0

T iα))

= Hμ(
n−1
⋁
i=0

T−(n−1−i)α)

= Hμ(
n−1
⋁
j=0

T−jα) = Hμ(α
n
T).

It follows that hμ(T−1,α) = hμ(T ,α) for every partition α, and thus, passing to the
supremum on both sides, we conclude that hμ(T−1) = hμ(T).

In Theorem 7.2.24, we observed that the topological entropy of an expansive dy-
namical system can be determined by simply calculating the entropy of that system
with respect to any cover of sufficiently small diameter. We intend to prove the corre-
sponding result for measure-theoretic entropy by the end of this section.We begin the
journey to that destinationwith a purelymeasure-theoretical lemma. It says that given
a finite Borel partition α of a compact metric space X and given any Borel partition β
of X of sufficiently small diameter, we can group the atoms of β together in such a way
that we nearly reconstruct the partition α. Notice that βmay be countably infinite.

To simplify notation, we shall write Part(X) := Part(X,ℬ(X)).

Lemma 9.4.14. Let X be a compact metric space and μ ∈ M(X). Let alsoα = {A1,A2, . . . ,
An} ∈ PartFin(X). Then for all ε > 0 there exists δ > 0 so that for every β ∈ Part(X) with
diam(β) < δ there is β′ = {B′1,B

′
2, . . . ,B

′
n} ∈ PartFin(X) such that

β′ ≤ β and μ(B′i △ Ai) < ε, ∀1 ≤ i ≤ n.

Proof. Fix ε > 0. Since μ is regular, for each 1 ≤ i ≤ n there exists a compact set Ki ⊆ Ai
such that

μ(Ai\Ki) <
ε
n
.
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As usual, let d denote the metric on X and set

θ = min{d(Ki,Kj) : i ̸= j}.

Then θ > 0, as the sets Ki are compact and mutually disjoint. Let δ = θ/2 and let β be
a partition with diam(β) < δ. For each 1 ≤ i ≤ n, let

B′i = ⋃
B∈β :B∩Ki ̸=0

B.

Then each B′i is a Borel set such that B
′
i ⊇ Ki. Furthermore, due to the choice of δ,

B′i ∩ B
′
j = 0, ∀i ̸= j.

However, the family of pairwise disjoint Borel sets {B′i }
n
i=1 may not cover X completely.

Indeed, there may be some sets C ∈ β such that C ∩⋃ni=1 Ki = 0. Take all those sets and
put them into B′1. Then β

′ = {B′i }
n
i=1 is a Borel partition of X such that β′ ≤ β. Moreover,

since B′j ⊇ Kj for all 1 ≤ j ≤ n, we get

μ(B′i △ Ai) = μ(B
′
i\Ai) + μ(Ai\B

′
i )

= μ((X\ ∪j ̸=i B
′
j )\Ai) + μ(Ai\B

′
i )

≤ μ((X\ ∪j ̸=i Kj)\Ai) + μ(Ai\Ki)
= μ((∪nk=1Ak\ ∪j ̸=i Kj)\Ai) + μ(Ai\Ki)
= μ(∪k ̸=iAk\ ∪j ̸=i Kj) + μ(Ai\Ki)
≤ μ(∪j ̸=iAj\Kj) + μ(Ai\Ki)

=
n
∑
j=1

μ(Aj\Kj) < n ⋅
ε
n
= ε.

From the above result, we will show that the conditional entropy of a partition α

given a partition β can bemade as small as desired provided that β has a small enough
diameter. Indeed, from Theorem 9.4.3(e), given partitions α, β and β′ as in the above
lemma, we have that Hμ(α|β) ≤ Hμ(α|β′), where the partition β′ is designed to resem-
ble the partition α. In order to estimate the conditional entropy Hμ(α|β′), we must
estimate the contribution of all atoms of the partition α∨ β′. There are essentially two
kinds of atoms to be taken into account, namely, atoms of the form Ai ∩ B′i and atoms
of the form Ai ∩ B′j with i ̸= j. Intuitively, because Ai is more or less equal to B′i (after
all, μ(Ai△B′i ) is small), the information provided byAi assuming thatmeasurement β′

resulted in B′i is small. On the other hand, since Ai is nearly disjoint from B′j when i ̸= j
(given that Ai is close to B′i and B

′
i ∩ B
′
j = 0), the information obtained from getting Ai

given that observation B′j occurred is also small. This is what we now prove rigorously.
The proof will make use of the function k from Definition 9.3.4.
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Lemma 9.4.15. Let X be a compact metric space and μ ∈ M(X). Let also α ∈ PartFin(X).
For every ε > 0, there exists δ > 0 such that

β ∈ Part(X), diam(β) < δ ⇒ Hμ(α|β) < ε.

Proof. Letα = {A1,A2, . . . ,An} be a finite Borel partition of X. As atoms ofmeasure zero
do not affect conditional entropy, we may assume that μ(Ai) > 0 for all 1 ≤ i ≤ n. Fix
ε > 0 and let 0 < ε < e−1 be so small that

max{k(ε), k(1 − ε)} < ε
2n
.

Then there exists ε̂ > 0 such that

0 < ε̂
μ(Ai) − ε̂

< ε and μ(Ai) − ε̂
μ(Ai) + ε̂

> 1 − ε (9.3)

for all 1 ≤ i ≤ n. In particular, the left relation in (9.3) imposes that μ(Ai) > ε̂ for
all i. Let δ > 0 be the number ascribed to ε̂ in Lemma 9.4.14. Let β be a partition with
diam(β) < δ, and let β′ = {B′1,B

′
2, . . . ,B

′
n} ≤ β be such that μ(Ai△B

′
i ) ≤ ε̂ for all 1 ≤ i ≤ n,

also as prescribed in Lemma 9.4.14. Since μ(Ai) > ε̂ for all i, this implies that μ(B′i ) > 0
for all i. Moreover,

μ(Ai) − μ(B
′
i )
 ≤ μ(Ai △ B

′
i ) ≤ ε̂. (9.4)

Therefore,

0 < μ(Ai) − ε̂ ≤ μ(Ai) − μ(Ai △ B
′
i ) ≤ μ(B

′
i ) ≤ μ(Ai) + μ(Ai △ B

′
i ) ≤ μ(Ai) + ε̂. (9.5)

Hence,

μ(Ai ∩ B
′
i ) = μ(Ai) − μ(Ai\B

′
i ) ≥ μ(Ai) − μ(Ai △ B

′
i ) ≥ μ(Ai) − ε̂ > 0.

Using this, (9.5) and (9.3), we get

μ(Ai ∩ B′i )
μ(B′i )

≥
μ(Ai) − ε̂
μ(Ai) + ε̂

> 1 − ε.

By choice of ε, the function k is decreasing on the interval [1−ε, 1] ⊆ [1−e−1, 1] ⊆ [e−1, 1],
and thus

k(
μ(Ai ∩ B′i )
μ(B′i )

) ≤ k(1 − ε) < ε
2n

(9.6)

for all i.
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Now, suppose that i ̸= j. Sinceα = {Ak}nk=1 is a partition ofX, we know thatAi∩B′j ⊆
B′j\Aj ⊆ Aj △ B

′
j . Using this, (9.5), (9.4) and (9.3), we infer that

μ(Ai ∩ B′j )
μ(B′j )

≤
μ(Aj △ B′j )

μ(Aj) − μ(Aj △ B′j )
≤

ε̂
μ(Aj) − ε̂

< ε.

By choice of ε, the function k is increasing on the interval [0, ε] ⊆ [0, e−1], and hence

k(
μ(Ai ∩ B′j )
μ(B′j )

) ≤ k(ε) < ε
2n

(9.7)

for all i ̸= j. Then, by Theorem 9.4.3(e) and (9.6)–(9.7), we have

Hμ(α|β) ≤ Hμ(α|β
′) = ∑

A∈α
∑
B′∈β′
−μ(A ∩ B′) log μ(A ∩ B

′)
μ(B′)

=
n
∑
i,j=1

μ(B′j )k(
μ(Ai ∩ B′j )
μ(B′j )

)

=
n
∑
i=1

μ(B′i )k(
μ(Ai ∩ B′i )
μ(B′i )

) +
n
∑
i,j=1
i ̸=j

μ(B′j )k(
μ(Ai ∩ B′j )
μ(B′j )

)

<
n
∑
i=1

μ(B′i )
ε
2n
+

n
∑
i=1

n
∑
j=1

μ(B′j )
ε
2n
=

ε
2n
+

n
∑
i=1

ε
2n
=

ε
2n
+ n ⋅ ε

2n

≤ ε.

From the above lemma,we can infer that any sequence of partitionswhose diame-
ters tend to 0 provide asymptotically asmuch information as any given finite partition
can.

Corollary 9.4.16. Let X be a compact metric space and μ ∈ M(X). Let also (αn)
∞
n=1 be a

sequence in Part(X) such that limn→∞ diam(αn) = 0. Then

lim
n→∞

Hμ(α|αn) = 0

for every α ∈ PartFin(X).

Proof. Let α be a finite Borel partition of X. By Lemma 9.4.15, for every ε > 0 there
exists a δ > 0 such that if diam(β) < δ then Hμ(α|β) < ε. Since diam(αn) → 0, it
follows that Hμ(α|αn)→ 0 as n→∞.

The above corollary about conditional entropy of partitions allows us to deduce
the following result on the measure-theoretic entropy of a system. This is the counter-
part of Lemma 7.2.20.
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Theorem 9.4.17. Let X be a compact metric space and μ ∈ M(X). Let also T : X → X
be a measure-preserving dynamical system on (X,ℬ(X), μ) and (αn)

∞
n=1 be a sequence in

PartFin(X) such that limn→∞ diam(αn) = 0. Then

hμ(T) = lim
n→∞

hμ(T ,αn).

Proof. Let α be a finite partition of X consisting of Borel sets. By Corollary 9.4.16, we
know that limn→∞ Hμ(α|αn) = 0. By Theorem 9.4.11(j), it follows that

hμ(T ,α) ≤ lim inf
n→∞

hμ(T ,αn) ≤ lim sup
n→∞

hμ(T ,αn) ≤ hμ(T).

Since this is true for any finite Borel partition α, we deduce from a passage to the
supremum that

hμ(T) ≤ lim inf
n→∞

hμ(T ,αn) ≤ lim sup
n→∞

hμ(T ,αn) ≤ hμ(T).

Hence, hμ(T) = limn→∞ hμ(T ,αn).

We can easily deduce a counterpart to Lemma 7.2.22.

Corollary 9.4.18. Let X be a compact metric space and μ ∈ M(X). Let also T : X → X
be a measure-preserving dynamical system on (X,ℬ(X), μ) and α ∈ PartFin(X) be such
that limn→∞ diam(αn) = 0. Then

hμ(T) = hμ(T ,α).

Proof. By Theorems 9.4.17 and 9.4.11(g), we have that

hμ(T) = lim
n→∞

hμ(T ,α
n) = lim

n→∞
hμ(T ,α) = hμ(T ,α).

Partitions α such that limn→∞ diam(αn) = 0 allow us (when they exist) to find the
entropy of a transformation by simply computing the entropy of the transformation
with respect to one such partition. As in Definition 7.2.21, we give them a special name.

Definition 9.4.19. Let X be a compact metric space and μ ∈ M(X). Let also T : X → X
be a measure-preserving dynamical system on (X,ℬ(X), μ). Any α ∈ PartFin(X) such
that limn→∞ diam(αn) = 0 is called a generator for T.

We have already seen in Lemma 7.2.23 that expansive dynamical systems admit
generators.

Theorem 9.4.20. Let T : X → X be an expansive dynamical system preserving a Borel
probability measure μ. If α ∈ PartFin(X) satisfies diam(α) < δ(T), where δ(T) is an
expansive constant for T, then α is a generator for T and hμ(T) = hμ(T ,α).
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Proof. Let α = {Ak}mk=1 be a finite Borel partition with diam(α) < δ(T). Define δ =
(δ(T) − diam(α))/2. The finite open cover α̃ = {B(Ak , δ)}mk=1 has diameter diam(α̃) ≤
δ(T). Lemma 7.2.23 asserts that limn→∞ diam(α̃n) = 0. As diam(αn) ≤ diam(α̃n) for all
n ∈ ℕ, it ensues that limn→∞ diam(αn) = 0 and the result thus follows from Corol-
lary 9.4.18.

Let us now give some examples, all but the first one of which are applications of
Theorem 9.4.17, Corollary 9.4.18 and/or Theorem 9.4.20.

Example 9.4.21. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). If there exists a finite measurable set Y ⊆ X of full measure,
then hμ(T) = 0. Indeed, for any β ∈ Part(X,𝒜) we have

Hμ(β) = −∑
B∈β

μ(B) log μ(B) = −∑
B∈β

μ(B ∩ Y) log μ(B ∩ Y).

This means that the entropy of a partition of X is equal to the entropy of the projection
of that partition onto Y . In other words, the entropy of a partition of X coincides with
the entropy of a partition of Y . Since Y is finite, there are only finitelymany such parti-
tions. Therefore, Hμ(β) can only take finitelymany values. Consequently, the entropies
Hμ(βn), n ∈ ℕ, can also only take finitely many values. Thus

hμ(T , β) = lim
n→∞

1
n
Hμ(β

n) = 0.

Since β was arbitrary, we conclude that

hμ(T) = sup{hμ(T , β) : β ∈ PartFin(X,𝒜)} = 0.

Example 9.4.22. The entropy of any homeomorphism T : 𝕊1 → 𝕊1 of the unit circle 𝕊1

is equal to 0 with respect to any T-invariant Borel probability measure.
Indeed, let μ be any T-invariant Borel probability measure. Let α and β be finite

partitions of 𝕊1 into intervals. Thenα∨β is a partition of 𝕊1 into at most (#α+#β) inter-
vals since #(α ∨ β) is equal to the number of endpoints of the intervals in α ∨ β, which
is bounded above by the sum of the number of endpoints of the intervals in α and the
number of endpoints of the intervals in β. Moreover, since T is a homeomorphism, we
know that T−kα is a partition of 𝕊1 into #α intervals for every k ∈ ℕ. Therefore, αn is a
partition of 𝕊1 into at most #(αn) ≤ n ⋅ #α intervals. Consequently,

0 ≤ Hμ(α
n) ≤ log #(αn) ≤ log n + log #α.

We deduce that

0 ≤ hμ(T ,α) = lim
n→∞

1
n
Hμ(α

n) ≤ lim
n→∞

1
n
(log n + log #α) = 0.
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Now, for everym ∈ ℕ, let αm be a partition of 𝕊1 intom intervals of equal length. Then
limm→∞ diam(αm) = 0 and, by the above result, hμ(T ,αm) = 0 for allm ∈ ℕ. It follows
from Theorem 9.4.17 that

hμ(T) = lim
m→∞

hμ(T ,αm) = 0.

Example 9.4.23. Let E be a finite set and A : E ×E → {0, 1} be an incidence matrix. We
proved in Example 4.1.3 that the shift map σ : E∞A → E∞A is expanding, and hence is
expansive.Moreprecisely, any0 < δ < 1 is an expansive constantwhenE∞A is endowed
with the metric ds(ω, τ) = s|ω∧τ|, for any 0 < s < 1. Let

α = {[e] : e ∈ E}

be the partition of E∞A into its initial 1-cylinders. Then

diam(α) = s < 1.

If μ is any σ-invariant Borel probability measure, then

hμ(σ) = hμ(σ,α)

according to Theorem 9.4.20.
In particular, let us consider the full E-shift. Let μ be the product measure deter-

mined by its value on the cylinder sets; in other words,

μ([ω1ω2 . . .ωn]) =
n
∏
k=1

P(ωk),

where P is a probability measure on the σ-algebra of all subsets of E and P(e) :=
P({e}). It was shown in Example 8.1.14 that μ is σ-invariant (and σ-ergodic per Exam-
ple 8.2.32). Furthermore, it is possible to show by induction that

Hμ(α
n) = −n∑

e∈E
P(e) logP(e).

Thus

hμ(σ) = hμ(σ,α) = lim
n→∞

1
n
Hμ(α

n) = −∑
e∈E

P(e) logP(e).

Example 9.4.24. Let Tn : 𝕊1 → 𝕊1 be the n-fold map defined by Tn(x) = nx (mod 1),
where 𝕊1 is equipped with the σ-algebra of Borel sets and with the Lebesgue measure
λ. We have already seen in Example 8.1.10 that Tn preserves λ (we also showed in Ex-
ample 8.2.30 that Tn is ergodic with respect to λ). Consider the partition

α = {[
j
n
,
j + 1
n
) : 0 ≤ j < n}.
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The map Tn is expanding, and thus expansive, with any 0 < δ < 1/n as expansive
constant. As diam(α) = 1/n, Theorem 9.4.20 does not apply toα directly. Nevertheless,
observe that

αk = {[
j
nk
,
j + 1
nk
) : 0 ≤ j < nk}

for all k ∈ ℕ. Thus diam(αk) = 1/nk < 1/n for all k ≥ 2. Using Theorems 9.4.20
and 9.4.11(g), we deduce that

hλ(Tn) = hλ(Tn,α
k) = hλ(Tn,α).

Moreover,

Hλ(α
k) = ∑

I∈αk

−λ(I) log λ(I)

=
nk−1
∑
j=0
−λ([ j

nk
,
j + 1
nk
)) log λ([ j

nk
,
j + 1
nk
))

=
nk−1
∑
j=0
−
1
nk

log 1
nk
= − log 1

nk
= k log n.

Consequently,

hλ(Tn) = hλ(Tn,α) = lim
k→∞

1
k
Hλ(α

k) = log n.

9.5 Shannon–McMillan–Breiman theorem

The Shannon–McMillan–Breiman theorem is a central result in information theory
and can be thought of as a sort of ergodic theorem for measure-theoretic entropy. In-
deed, the proof relies heavily on Birkhoff’s ergodic theorem (Theorem 8.2.11). It also
uses the following result.

Lemma 9.5.1. Let T : X → X be a measure-preserving dynamical system on a probabil-
ity space (X,𝒜, μ). Let α ∈ Part(X,𝒜). Let also

fn := Iμ(α|α
n
1 ) and f ∗ := sup

n∈ℕ
fn.

Then, for all r ∈ ℝ and all A ∈ α, we have

μ({x ∈ A : f ∗(x) > r}) ≤ min{μ(A), e−r}.

Proof. Let A ∈ α and fix n ∈ ℕ. To shorten notation, let

f An = − logE(1A|σ(α
n
1 )),
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where σ(αn
1 ) is the sub-σ-algebra generated by the countable partition αn

1 . Fix x ∈ A.
Then, using Example A.1.62 in Appendix A, we get

f An (x) = − logE(1A|σ(α
n
1 ))(x) = − log[

1
μ(αn

1 (x))
∫

αn
1 (x)

1A dμ]

= − log
μ(A ∩ αn

1 (x))
μ(αn

1 (x))
= − log

μ(α(x) ∩ αn
1 (x))

μ(αn
1 (x))

= Iμ(α|α
n
1 )(x)

= fn(x)

for all x ∈ A. Hence,

fn = ∑
A∈α

1A ⋅ f
A
n .

Now, for n ∈ ℕ and r ∈ ℝ consider the set

BA,rn = {x ∈ X : max
1≤i<n

f Ai (x) ≤ r while f An (x) > r}.

The family {BA,rn }
∞
n=1 consists of mutually disjoint sets. Also, recall that αn

1 ≤ α
n+1
1 , and

thus σ(αn
1 ) ⊆ σ(α

n+1
1 ) for each n ∈ ℕ. By definition, each f

A
n is measurable with respect

to σ(αn
1 ). Consequently, B

A,r
n ∈ σ(α

n
1 ). Then

μ(A ∩ BA,rn ) = ∫

BA,rn

1A dμ = ∫
BA,rn

E(1A|σ(α
n
1 )) dμ

= ∫

BA,rn

exp(−f An ) dμ ≤ ∫
BA,rn

e−r dμ = e−rμ(BA,rn ).

But

{x ∈ A : f ∗(x) > r} = {x ∈ A : ∃ n ∈ ℕ such that fn(x) > r}

= {x ∈ A : ∃ n ∈ ℕ such that f An (x) > r} = A ∩
∞
⋃
n=1

BA,rn .

Using the disjointness of the BA,rn ’s, it ensues that

μ({x ∈ A : f ∗(x) > r}) =
∞
∑
n=1

μ(A ∩ BA,rn ) ≤
∞
∑
n=1

e−rμ(BA,rn ) = e
−rμ(
∞
⋃
n=1

BA,rn ) ≤ e
−r .

Corollary 9.5.2. In addition to the hypotheses of Lemma 9.5.1, assume thatHμ(α) <∞.
Then f ∗ ∈ L1(X,𝒜, μ) and ‖f ∗‖1 ≤ Hμ(α) + 1.

Proof. Since f ∗ ≥ 0, we have ∫X |f
∗| dμ = ∫X f

∗ dμ. Using Lemmas 9.5.1 and A.1.37, we
obtain

‖f ∗‖1 = ∫
X

f ∗ dμ = ∑
A∈α
∫
A

f ∗ dμ

= ∑
A∈α

∞

∫
0

μ({x ∈ A : f ∗(x) > r}) dr
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≤ ∑
A∈α

∞

∫
0

min{μ(A), e−r} dr

= ∑
A∈α
(
− log μ(A)

∫
0

μ(A) dr +
∞

∫
− log μ(A)

e−r dr)

= ∑
A∈α
(−μ(A) log μ(A) + [−e−r]∞− log μ(A))

= ∑
A∈α
−μ(A) log μ(A) + ∑

A∈α
μ(A)

= Hμ(α) + 1 <∞.

Corollary 9.5.3. Under the same hypotheses as Corollary 9.5.2, the sequence (fn)∞n=1 con-
verges μ-a. e. and in L1(X,𝒜, μ).

Proof. Recall that αn
1 ≤ αn+1

1 , and thus σ(αn
1 ) ⊆ σ(αn+1

1 ) for each n ∈ ℕ. For any
x ∈ A ∈ α, we have fn(x) = f An (x) = − logE(1A|σ(α

n
1 ))(x) and Doob’s martingale

convergence theorem for conditional expectations (Theorem A.1.67) guarantees that
limn→∞ E(1A|σ(αn

1 )) exists μ-almost everywhere. Hence, the sequence of nonnegative
functions (fn)∞n=1 converges μ-a. e. to some limit function g ≥ 0. Since |fn| = fn ≤ f ∗

for all n, we have |g| = g ≤ f ∗, and thus |fn − g| ≤ 2f ∗ μ-almost everywhere. Ap-
plying Lebesgue’s dominated convergence theorem (Theorem A.1.38) to the sequence
(|fn − g|)∞n=1, we obtain

lim
n→∞
‖fn − g‖1 = lim

n→∞
∫
X

|fn − g| dμ = ∫
X

lim
n→∞
|fn − g| dμ = 0.

In other words, fn → g in L1(X,𝒜, μ).

We are finally in a position to prove the main result of this section and chapter.

Theorem 9.5.4 (Shannon–McMillan–Breiman theorem). Let T : X → X be a measure-
preserving dynamical system on a probability space (X,𝒜, μ) and let α ∈ Part(X,𝒜) be
such that Hμ(α) <∞. Then the following limits exist:

f := lim
n→∞

Iμ(α|α
n
1 ) and lim

n→∞
1
n

n−1
∑
j=0

f ∘ T j = E(f |ℐμ) μ-a. e.,

where ℐμ is the sub-σ-algebra of all μ-almost T-invariant sets (see Definition 8.2.5).
Moreover, the following statements hold:

(a) limn→∞
1
n Iμ(α

n) = E(f |ℐμ) μ-a. e. and in L1(μ).

(b) hμ(T ,α) = limn→∞
1
nHμ(α

n) = ∫X E(f |ℐμ) dμ = ∫X f dμ.
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Proof. According to Corollary 9.5.3, the first sequence of functions (fn)∞n=1 =
(Iμ(α|αn

1 ))
∞
n=1 converges μ-a. e. to an integrable function f . The second limit exists

by virtue of Birkhoff’s ergodic theorem (Theorem 8.2.11). Note also that all functions
(fn)∞n=1 are nonnegative, and thus so are f and E(f |ℐμ). To prove the remaining two
statements, let us first assume that (a) holds and derive (b) from it. Then we will
prove (a).

Let us assume that (a) holds. Using Scheffé’s lemma (Lemma A.1.39) and the fact
that (Iμ(αn))∞n=1 and E(f |ℐμ) are nonnegative, we obtain that

hμ(T ,α) = lim
n→∞

1
n
Hμ(α

n) = lim
n→∞

1
n
∫
X

Iμ(α
n) dμ = ∫

X

E(f |ℐμ) dμ = ∫
X

f dμ.

This establishes (b).
In order to prove (a), first notice that by Lemma 9.4.6 we have

Iμ(α
n) =

n
∑
k=1

Iμ(α|α
k
1 ) ∘ T

n−k =
n−1
∑
j=0

Iμ(α|α
n−j
1 ) ∘ T

j =
n−1
∑
j=0

fn−j ∘ T
j.

Then, by the triangle inequality,


1
n
Iμ(α

n) − E(f |ℐμ)

=


1
n

n−1
∑
j=0
(fn−j ∘ T

j − f ∘ T j) + 1
n

n−1
∑
j=0

f ∘ T j − E(f |ℐμ)


≤


1
n

n−1
∑
j=0
(fn−j − f ) ∘ T

j

+

1
n
Snf − E(f |ℐμ)



≤
1
n

n−1
∑
j=0

fn−j − f
 ∘ T

j +

1
n
Snf − E(f |ℐμ)


. (9.8)

Birkhoff’s ergodic theorem (Theorem 8.2.11) asserts that the second term on the right-
hand side tends to 0 in L1(μ). Let us now investigate the first term on that right-hand
side. Set gn = |fn − f |. Since (fn)∞n=1 converges to f in L

1(μ) according to Corollary 9.5.3,
the sequence (gn)∞n=1 converges to 0 in L1(μ). So do its Cesàro averages ( 1n ∑

n
i=1 gi)
∞
n=1.

Then

lim
n→∞



1
n

n−1
∑
j=0

gn−j ∘ T
j
1
= lim

n→∞
∫
X



1
n

n−1
∑
j=0

gn−j ∘ T
j

dμ

= lim
n→∞

1
n

n−1
∑
j=0
∫
X

gn−j ∘ T
j dμ

= lim
n→∞

1
n

n−1
∑
j=0
∫
X

gn−j dμ
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= lim
n→∞
∫
X

1
n

n
∑
i=1

gi dμ

= 0.

That is, the functions 1
n ∑

n−1
j=0 gn−j ∘ T

j converge to 0 in L1(μ). Thus the first term on the
right-hand side of (9.8), like the second term, converges to 0 in L1(μ). This implies that
the sequence ( 1n Iμ(α

n))∞n=1 converges to E(f |ℐμ) in L
1(μ).

It only remains to show convergence μ-a. e. of that same sequence. To this end, for
each N ∈ ℕ let GN = supn≥N gn. The sequence of functions (GN )

∞
N=1 is decreasing and

bounded below by 0, so it converges to some function. As fn → f μ-a. e., we know that
gn = |fn − f | → 0 μ-almost everywhere. It follows that GN ↘ 0 μ-almost everywhere.
Also, the functions GN are uniformly bounded above by an integrable function since

0 ≤ GN ≤ G1 = sup
n∈ℕ

gn ≤ sup
n∈ℕ
(|fn| + |f |) ≤ f

∗ + f ∈ L1(μ),

where f ∗, f ∈ L1(μ) according to Corollaries 9.5.2–9.5.3. So GN ∈ L1(μ) for allN ∈ ℕ and
Lebesgue’s dominated convergence theorem affirms that

lim
N→∞
∫
X

E(GN |ℐμ) dμ = lim
N→∞
∫
X

GN dμ = ∫
X

lim
N→∞

GN dμ = 0.

Moreover, according to Proposition A.1.60, since (GN )
∞
N=1 is decreasing and bounded

below by 0, so is the sequence of conditional expectations (E(GN |ℐμ))
∞
N=1 μ-almost ev-

erywhere. Summarizing, we have established that E(GN |ℐμ) ↘ μ-a. e., E(GN |ℐμ) ≥ 0
μ-a. e. and ∫X E(GN |ℐμ) dμ ↘ 0 as N → ∞. It ensues that E(GN |ℐμ) ↘ 0 μ-a. e. as
N →∞.

Fix temporarily N ∈ ℕ. Then for any n > N, we have

1
n

n−1
∑
j=0

gn−j ∘ T
j =

1
n

n−N
∑
j=0

gn−j ∘ T
j +

1
n

n−1
∑

j=n−N+1
gn−j ∘ T

j

≤
n − N
n
⋅

1
n − N

n−N
∑
j=0

GN ∘ T
j +

1
n

n−1
∑

j=n−N+1
G1 ∘ T

j.

Let FN = ∑
N−2
j=0 G1 ∘ T j. Using Birkhoff’s ergodic theorem (Theorem 8.2.11), we deduce

that

0 ≤ lim sup
n→∞

1
n

n−1
∑
j=0

gn−j ∘ T
j ≤ lim

n→∞
1

n − N

n−N
∑
j=0

GN ∘ T
j + lim sup

n→∞

1
n
FN ∘ T

n−N+1

= E(GN |ℐμ) + lim sup
n→∞

1
n
FN ∘ T

n−N+1 μ-a. e.

= E(GN |ℐμ) μ-a. e..
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Since N was chosen arbitrarily and we have showed earlier that E(GN |ℐμ) → 0 μ-a. e.
as N →∞, we conclude that

lim
n→∞

1
n

n−1
∑
j=0

gn−j ∘ T
j = 0 μ-a. e..

This establishes the μ-a. e. convergence of the first term on the right-hand side of (9.8).
The μ-a. e. convergence of the second term on that right-hand side follows from
Birkhoff’s ergodic theorem (Theorem 8.2.11). Therefore, the sequence ( 1n Iμ(α

n))∞n=1
converges to E(f |ℐμ) μ-almost everywhere.

Corollary 9.5.5 (Ergodic case of Shannon–McMillan–Breiman theorem). Let T : X →
X be an ergodic measure-preserving dynamical system on a probability space (X,𝒜, μ)
and let α ∈ Part(X,𝒜) be such that Hμ(α) <∞. Then

hμ(T ,α) = lim
n→∞

1
n
Iμ(α

n)(x) for μ-a. e. x ∈ X.

Proof. This follows immediately from Shannon–McMillan–Breiman theorem (Theo-
rem 9.5.4) and the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14).

When hμ(T ,α) > 0, this corollary reveals that μ(αn(x)) tends to 0with exponential
rate e−hμ(T ,α) for μ-a. e. x ∈ X (see Exercise 9.7.11).

The right-hand side in the above equality can be viewed as a local entropy at x.
The corollary then states that at almost every x the local entropy exists and is equal to
the entropy of the transformation relative to the partition. Another approach to local
entropy is discussed next.

9.6 Brin–Katok local entropy formula

We now derive the celebrated Brin–Katok local entropy formula.
In preparation for this, we show that given any Borel probability measure μ there

exist finite Borel partitions of arbitrarily small diameters whose atoms have negligible
boundaries with respect to μ.

Lemma 9.6.1. Let (X, d) be a compactmetric space and μ ∈ M(X). For every ε > 0, there
exists a finite Borel partition α of X such that diam(α) < ε and μ(𝜕A) = 0 for all A ∈ α.

Proof. Let ε > 0 and let {x1, . . . , xn} be an (ε/4)-spanning set of X. For each 1 ≤ i ≤ n,
the sets {x ∈ X : d(x, xi) = r}, where ε/4 < r < ε/2, are mutually disjoint, and thus only
countably many of them may have positive μ-measure. Hence, there exists ε/4 < t <
ε/2 such that

μ({x ∈ X : d(x, xi) = t}) = 0, ∀1 ≤ i ≤ n. (9.9)
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Define the sets Ai, 1 ≤ i ≤ n, inductively by

Ai := {x ∈ X : d(x, xi) ≤ t}\(∪
i−1
j=1Aj).

Since t < ε/2, the familyα := {A1, . . . ,An} is a Borel partition ofX with diameter smaller
than ε. Noting that 𝜕(A\B) ⊆ 𝜕A ∪ 𝜕B and 𝜕(A ∪ B) ⊆ 𝜕A ∪ 𝜕B, it follows from (9.9) that
μ(𝜕Ai) = 0 for all 1 ≤ i ≤ n.

We now recall the concept, frequently used in coding theory, of Hamming metric.
Let E be a nonempty finite set and n ∈ ℕ. The Hamming metric ρ(H)E,n on En is defined
by

ρ(H)E,n (ω, τ) =
1
n

n
∑
k=1
(1 − δωkτk ),

where δab is the Kronecker delta symbol, that is,

δab = {
1 if a = b
0 if a ̸= b.

Equivalently,

ρ(H)E,n (ω, τ) =
1
n
#{1 ≤ k ≤ n : ωk ̸= τk}. (9.10)

It is well known and a straightforward exercise to check that ρ(H)E,n is a metric on En.
Given ω ∈ En and r ≥ 0, we naturally denote by B(H)E,n (ω, r) the open ball, in the Ham-
ming metric ρ(H)E,n , centered at ω and of radius r. Formally,

B(H)E,n (ω, r) = {τ ∈ E
n : ρ(H)E,n (ω, τ) < r}.

Standard combinatorial considerations show that the number of elements in the ball
B(H)E,n (ω, r) depends only on #E, n, and r, and is equal to

#B(H)E,n (ω, r) =
[r n]
∑
k=0
(#E − 1)k ( n

k
) .

As Katok writes in [31], using this and Stirling’s formula, it is easy to verify that for
every r ∈ (0, #E−1#E ) we have

lim
n→∞

1
n
log #B(H)E,n (ω, r) = r log(#E − 1) − r log r − (1 − r) log(1 − r) =: g(r). (9.11)

Observe that

lim
r→0

g(r) = 0, (9.12)

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.6 Brin–Katok local entropy formula | 307

and thus for every r ∈ (0, #E−1#E ) there is N(r) ∈ ℕ such that

#B(H)E,n (ω, r) ≤ e
g(r)n, ∀n ≥ N(r). (9.13)

Returning to dynamics, let (X, d) be a metric space, let T : X → X be a Borel
measurable self-transformation and let μ be a Borel probabilitymeasure onX. Let also
α be a Borel partition of X.

As the symbol αn might be interpreted in two different ways in the proof of the
forthcoming Theorem 9.6.2, we introduce further notation. As before, the nth refined
partition of α with respect to the map T will be denoted by αn := ⋁n−1i=0 T

−iα. The
n-folded Cartesian product α × α . . . × α will be denoted by α̂n.

In the proof of Theorem 9.6.2, we will work with the Hamming metrics ρ(H)E,n on the
sets α̂n, n ∈ ℕ. We introduce two mappings.

First, we define the map

αn ∋ A → Â ∈ α̂n

as follows. Given that α is a partition, every A ∈ αn is uniquely represented as

A =
n−1
⋂
i=0

T−i(Ai),

where Ai ∈ α for all 0 ≤ i < n. We naturally set

Â := (A0,A1, . . . ,An−1) ∈ α̂
n

and we note that the map αn ∋ A → Â ∈ α̂n is one-to-one.
Second, we define the map

α̂n ∋ A = (A1,A2, . . . ,An) → qA ∈ αn ∪ {0}

by the formula

qA :=
n−1
⋂
i=0

T−i(Ai+1)

and we note that the map α̂n ∋ A → qA ∈ αn ∪ {0} is one-to-one on ∨−1(αn) = {A ∈ α̂n :
qA ̸= 0} and by restricting the first mapping to that set and the second mapping to the
image of that set, the two restricted mappings are inverse of one another.

Introducing more notation, we denote

Ĝ := {ĝ | g ∈ G} and qH := {qh | h ∈ H}

for all G ⊆ αn and H ⊆ α̂n. We abbreviate

qB(H)α,n(A, r) :=
B(H)α,n(A, r) and α̂n(x) :=?αn(x)
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for every A ∈ α̂n, r > 0 and x ∈ X. Finally, we denote

∪β := ⋃
B∈β

B

for every β ⊆ αn.
We now present and prove the ergodic version of Brin and Katok’s formula

from [12]. The general (i. e. nonergodic) case is considerably more complicated and
rarely needed in applications. However, unlike [12], we do not assume that the map
T : X → X is continuous but merely that it is Borel measurable. The proof we provide
is motivated by Pesin’s relevant considerations in [56].

Theorem 9.6.2 (Brin–Katok local entropy formula). Let (X, d) be a compact metric
space and let T : X → X be a Borel measurable map. If μ is an ergodic T-invariant
Borel probability measure on X, then for μ-almost every x ∈ X we have

hμ(T) = limδ→0
lim inf
n→∞
− log μ(Bn(x, δ))

n
= lim

δ→0
lim sup
n→∞

− log μ(Bn(x, δ))
n

,

where Bn(x, δ) is the dynamical (n, δ)-ball at x (see Section 7.3).

Proof. It suffices to prove that for μ-almost every x ∈ X,

hμ(T) ≤ limδ→0
lim inf
n→∞
− log μ(Bn(x, δ))

n
≤ lim

δ→0
lim sup
n→∞

− log μ(Bn(x, δ))
n

≤ hμ(T). (9.14)

Themiddle inequality being obvious, we start with the right inequality, as it is simpler
to establish.

Temporarily fix δ > 0. Since X is a compact metric space, there is a finite Borel
partition αδ of X such that diam(αδ) < δ. Then αn

δ(x) ⊆ Bn(x, δ) for all x ∈ X and all
n ∈ ℕ. By the ergodic case of Shannon–McMillan–Breiman theorem (Corollary 9.5.5),
we know that there exists a Borel set X1(αδ) such that

μ(X1(αδ)) = 1 (9.15)

and

lim
n→∞

− log μ(αn
δ(x))

n
= hμ(T ,αδ), ∀x ∈ X1(αδ).

As αn(x) ⊆ Bn(x, δ), we deduce that

lim sup
n→∞

− log μ(Bn(x, δ))
n

≤ hμ(T ,αδ) ≤ hμ(T), ∀x ∈ X1(αδ). (9.16)

It follows from this and (9.15) that the set

X1 :=
∞
⋂
k=1

X1(α1/k)
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satisfies

μ(X1) = 1 (9.17)

and

lim sup
n→∞

− log μ(Bn(x, 1/k))
n

≤ hμ(T), ∀x ∈ X1, ∀k ∈ ℕ. (9.18)

Observing that the left-hand sides of (9.16) and (9.18) are a decreasing function of δ
and an increasing function of k, respectively, we conclude that

lim
δ→0

lim sup
n→∞

− log μ(Bn(x, δ))
n

= lim
k→∞

lim sup
n→∞

− log μ(Bn(x, 1/k))
n

≤ hμ(T), ∀x ∈ X1.

This is the right inequality in (9.14).
To achieve the left inequality in (9.14), temporarily fix ε ∈ (0, #α−1#α )with α a finite

Borel partition of X such that

μ(𝜕α) = 0, (9.19)

where 𝜕α denotes the boundary of the partition α. For any η > 0, set

Uη(α) := {x ∈ X : B(x, η) ̸⊆ α(x)}.

Since ⋂η>0 Uη(α) = 𝜕α and Uη1 (α) ⊆ Uη2 (α) whenever η1 ≤ η2, it follows from (9.19)
that

lim
η→0

μ(Uη(α)) = 0.

Consequently, there exists ηε > 0 such that μ(Uη(α)) < ε for every 0 < η ≤ ηε. By the
ergodic case of Birkhoff’s ergodic theorem for an indicator function (Corollary 8.2.15)
and by Egorov’s theorem (Theorem A.1.44), for every η ∈ (0, ηε] there exist a Borel set
X(ε, η) ⊆ X and an integerM(ε, η) ∈ ℕ such that

μ(X(ε, η)) ≥ 1 − ε (9.20)

and
1
n
#{0 ≤ i < n : T i(x) ∈ Uη(α)} < ε, ∀x ∈ X(ε, η), ∀n ≥ M(ε, η).

Now, observe that if y ∈ Bn(x, η) then for each 0 ≤ i < n,

either α(T i(x)) = α(T i(y)) or T i(x) ∈ Uη(α).

So, if x ∈ X(ε, η) and y ∈ Bn(x, η) for some n ≥ M(ε, η), then

ρ(H)α,n(α̂
n(x), α̂n(y)) < ε.
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(See (9.10) for the definition of ρ(H)α,n.) Equivalently,

Bn(x, η) ⊆ qB(H)α,n(α̂
n(x), ε), ∀x ∈ X(ε, η), ∀n ≥ M(ε, η). (9.21)

We thus need an upper estimate on μ(qB(H)α,n(α̂
n(x), ε)). For every n ∈ ℕ define

Zn := {A ∈ α
n : μ(A) ≥ exp((−hμ(T ,α) + 3g(ε))n)},

with g(⋅) from (9.11). As sets in Zn are mutually disjoint and μ(X) = 1, we deduce that

#Zn ≤ exp((hμ(T ,α) − 3g(ε))n). (9.22)

To get an appropriate upper estimate, there are “good” and “bad” atoms in αn. Let

Bad(αn, ε) := {A ∈ αn : B(H)α,n(Â, ε) ∩ Ẑn ̸= 0} ⊆ qB(H)α,n(Ẑn, ε). (9.23)

Using (9.13), if n ≥ N(ε) and A ∈ αn \ Bad(αn, ε) then we obtain

μ(qB(H)α,n(Â, ε)) ≤ #B
(H)
α,n(Â, ε) exp((−hμ(T ,α) + 3g(ε))n)

≤ exp((−hμ(T ,α) + 4g(ε))n). (9.24)

Along with (9.21), this implies that

μ(Bn(x, η)) ≤ exp((−hμ(T ,α) + 4g(ε))n) (9.25)

if x ∈ X(ε, η) \ ∪Bad(αn, ε) for some n ≥ max{N(ε),M(ε, η)}. Hence,

lim
δ→0

lim inf
n→∞
− log μ(Bn(x, δ))

n
≥ lim inf

n→∞
− log μ(Bn(x, η))

n
≥ hμ(T ,α) − 4g(ε) (9.26)

for all x ∈ ⋃∞i=1⋂
∞
j=i(X(ε, η) \ ∪Bad(α

j, ε)) = X(ε, η) ∩⋃∞i=1⋂
∞
j=i(X \ ∪Bad(α

j, ε)).
We need to show that this latter set is big measurewise, i. e. that its measure is

ε-close to 1. For this, it suffices to show that one of its subsets is big. This subset has
the similar form X(ε, η) ∩⋃∞i=1⋂

∞
j=i(∪βj(ε) \ ∪Bad(α

j, ε)). We define βj(ε) now and then
estimate themeasure of the said subset in several steps. This is themost arduous task.

By the ergodic case of the Shannon–McMillan–Breiman theorem (Corollary 9.5.5)
and Egorov’s theorem (Theorem A.1.44), there exists a Borel set Y(ε) ⊆ X and an inte-
ger N1(ε) ≥ N(ε) such that

μ(Y(ε)) > 1 − ε (9.27)

and
− log μ(αn(x))

n
≥ hμ(T ,α) − g(ε), ∀x ∈ Y(ε), ∀n ≥ N1(ε).
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Equivalently,

μ(αn(x)) ≤ exp(−(hμ(T ,α) − g(ε))n), ∀x ∈ Y(ε), ∀n ≥ N1(ε).

Let

βn(ε) := {α
n(x) : x ∈ Y(ε)}.

Fix temporarily n ≥ N1(ε). Then

μ(A) ≤ exp(−(hμ(T ,α) − g(ε))n), ∀A ∈ βn(ε). (9.28)

Let

Dn(ε) := {A ∈ βn(ε) : Â ∈ B
(H)
α,n(Ẑn, ε)} = βn(ε) ∩ qB(H)α,n(Ẑn, ε).

Using (9.28) as well as (9.13) and (9.22), we get

μ(∪Dn(ε)) ≤ exp(−(hμ(T ,α) − g(ε))n)#(βn(ε) ∩ qB(H)α,n(Ẑn, ε))

≤ exp(−(hμ(T ,α) − g(ε))n)#B
(H)
α,n(Ẑn, ε)

≤ exp(−(hμ(T ,α) − g(ε))n)#Zn exp(g(ε)n)
≤ exp(−g(ε)n). (9.29)

Using (9.23), we obtain that

∪βn(ε) \ ∪Bad(α
n, ε) = ∪βn(ε) \ (∪βn(ε) ∩ ∪Bad(α

n, ε))
⊇ ∪βn(ε) \ (∪βn(ε) ∩ ∪qB

(H)
α,n(Ẑn, ε))

= ∪βn(ε) \ ∪(βn(ε) ∩ qB(H)α,n(Ẑn, ε))
= ∪βn(ε) \ ∪Dn(ε).

Therefore, for every k ≥ N1(ε) we obtain that

∞
⋂
n=k
(∪βn(ε) \ ∪Bad(α

n, ε)) ⊇
∞
⋂
n=k
(∪βn(ε) \ ∪Dn(ε)) ⊇

∞
⋂
n=k
∪βn(ε) \

∞
⋃
n=k
∪Dn(ε)

⊇
∞
⋂
n=k

Y(ε) \
∞
⋃
n=k
∪Dn(ε) = Y(ε) \

∞
⋃
n=k
∪Dn(ε).

From this, (9.27) and (9.29), we deduce that

μ(
∞
⋂
n=k
(∪βn(ε) \ ∪Bad(α

n, ε))) ≥ μ(Y(ε)) − μ(
∞
⋃
n=k
∪Dn(ε))

≥ μ(Y(ε)) −
∞
∑
n=k

μ(∪Dn(ε))
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≥ 1 − ε −
∞
∑
n=k

e−g(ε)n

= 1 − ε − e−g(ε)k

1 − e−g(ε)
. (9.30)

Consequently,

μ(
∞
⋃
k=1

∞
⋂
n=k
(∪βn(ε) \ ∪Bad(α

n, ε))) = lim
k→∞

μ(
∞
⋂
n=k
(∪βn(ε) \ ∪Bad(α

n, ε))) ≥ 1 − ε. (9.31)

It follows from (9.31) and (9.20) that

μ(X(ε, η) ∩ (
∞
⋃
i=1

∞
⋂
j=i
(∪βj(ε) \ ∪Bad(α

j, ε)))) ≥ 1 − 2ε.

Thus

μ(
∞
⋃
q=k
(X(1/q, η1/q) ∩ (

∞
⋃
i=1

∞
⋂
j=i
(∪βj(1/q) \ ∪Bad(α

j, 1/q))))) = 1, ∀k ∈ ℕ.

If

X̂2(α) :=
∞
⋂
k=1

∞
⋃
q=k
(X(1/q, η1/q) ∩ (

∞
⋃
i=1

∞
⋂
j=i
(∪βj(1/q) \ ∪Bad(α

j, 1/q)))),

then

μ(X̂2(α)) = 1 (9.32)

and, by virtue of (9.26) and (9.12), we deduce that

lim
δ→0

lim inf
n→∞
− log μ(Bn(x, δ))

n
≥ hμ(T ,α), ∀x ∈ X̂2(α). (9.33)

As the metric space X is compact, it follows from Lemma 9.6.1 and Theorem 9.4.17
that there exists a sequence (αk)

∞
k=1 of finite Borel partitions of X such that μ(𝜕αk) = 0

for every k ∈ ℕ and

lim
k→∞

hμ(T ,αk) = hμ(T).

Setting

X̂2 :=
∞
⋂
k=1

X̂2(αk),
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we have by (9.32) that

μ(X̂2) = 1 (9.34)

and by (9.33) that

lim
δ→0

lim inf
n→∞
− log μ(Bn(x, δ))

n
≥ hμ(T), ∀x ∈ X̂2.

This is the left inequality in (9.14).
As μ(X1 ∩ X̂2) = 1 by (9.17) and (9.34), and as all three inequalities in (9.14) are valid

on X1 ∩ X̂2, the result ensues.

Remark 9.6.3. As amatter of fact, only total boundedness of themetric d is needed for
Theorem 9.6.2 to hold. More precisely, in Lemma 9.6.1 total boundedness is sufficient,
and compactness has not been used anywhere in the proof of Theorem 9.6.2.

In the case of an expansive system T, we have the following stronger and simpler
version of Theorem 9.6.2.

Theorem 9.6.4 (Brin–Katok local entropy formula for expansive maps). Let T :X→X
be an expansive topological dynamical system and let d be a metric compatible with
the topology on X. If δ > 0 is an expansive constant for T corresponding to this metric,
then for every ζ ∈ (0, δ], every ergodic T-invariant Borel probability measure μ on X and
μ-almost every x ∈ X, we have

hμ(T) = lim
n→∞
− log μ(Bn(x, ζ ))

n
.

Proof. For every x ∈ X, denote

hμ(T , ζ , x) := lim sup
n→∞

− log μ(Bn(x, ζ ))
n

and hμ(T , ζ , x) := lim inf
n→∞
− log μ(Bn(x, ζ ))

n
.

Since Bn(x, ζ ) ⊆ Bn(x, δ) for every n ∈ ℕ, it is clear that

hμ(T , δ, x) ≤ hμ(T , ζ , x). (9.35)

On the other hand, using Observation 5.2.4 we obtain that

hμ(T , δ, x) = lim inf
n→∞
− log μ(Bn(x, δ))

n

≥ lim inf
n→∞

− log μ(Bn−N(ζ /2)(x, ζ ))
n

= lim inf
n→∞

n − N(ζ /2)
n
⋅
− log μ(Bn−N(ζ /2)(x, ζ ))

n − N(ζ /2)
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= lim inf
n→∞

− log μ(Bn−N(ζ /2)(x, ζ ))
n − N(ζ /2)

= hμ(T , ζ , x). (9.36)

Since, by Theorem 9.6.2,

lim
ζ→0

hμ(T , ζ , x) = hμ(T) = limζ→0
hμ(T , ζ , x) for μ-a. e. x ∈ X,

we infer from (9.36) and (9.35) that hμ(T , δ, x) ≥ hμ(T) and hμ(T , δ, x) ≤ hμ(T) for
μ-almost every x ∈ X. As it is always true that hμ(T , δ, x) ≤ hμ(T , δ, x), we deduce that
hμ(T , δ, x) = hμ(T) = hμ(T , δ, x) and the result holds when ζ = δ. Since any ζ ∈ (0, δ] is
also an expansive constant for T, the theorem is validated.

9.7 Exercises

Exercise 9.7.1. The objective of this exercise is to prove Theorem 9.1.1. Using axioms
(A1)–(A4), proceed as follows.
(a) Given n ∈ ℕ, prove by induction that f (nk) = k f (n) for all k ≥ 0. (Think about the

meaning of this relationship.)
(b) Given n ≥ 2, for every r ∈ ℕ there exists a unique k ≥ 0 such that nk ≤ 2r < nk+1.

Show that

k f (n) ≤ r f (2) < (k + 1) f (n).

(c) Prove that (b) holds with f replaced by log.
(d) Given n ≥ 2, deduce that


f (2)
f (n)
−
log 2
log n


<
1
r
, ∀r ∈ ℕ.

(e) Conclude that f (n) = (f (2)/ log 2) log n for all n ∈ ℕ.
(f) Let C = f (2)/ log 2. Observe that in order to establish that

H(p, 1 − p) = −Cp log p − C(1 − p) log(1 − p), (9.37)

it suffices to prove that this relation holds for all rational p ∈ (0, 1).
(g) Accordingly, let p = r/s ∈ ℚ ∩ (0, 1). By partitioning some experiment appropri-

ately, show that

f (s) = H( r
s
,
s − r
s
) +

r
s
f (r) + s − r

s
f (s − r).

(h) Deduce (9.37) and observe that the function H extends continuously to [0, 1].
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(i) Hence, the formula in Theorem 9.1.1 holds when n = 2. Prove by induction that it
holds for any n ∈ ℕ.

Exercise 9.7.2. Let (X,𝒜)beameasurable space. Show that≤ is a partial order relation
on the set Part(X,𝒜).

Exercise 9.7.3. Let (X,𝒜) be a measurable space and α, β ∈ Part(X,𝒜). Prove that α ≤
β if and only if β(x) ⊆ α(x) for all x ∈ X.

Exercise 9.7.4. Show that α ≤ β if and only if A = ⋃{B ∈ β : B ∩ A ̸= 0} for all A ∈ α.

Exercise 9.7.5. Prove that α ≤ β if and only if A = ⋃{B ∈ β : B ⊆ A} for all A ∈ α.

Exercise 9.7.6. Find a probability space (X,𝒜, μ) and α, β,γ ∈ Part(X,𝒜) such that
β ≤ γ but Iμ(α|β)(x) ̸≥ Iμ(α|γ)(x) for some x ∈ X.

Exercise 9.7.7. Find a probability space (X,𝒜, μ) andα, β ∈ Part(X,𝒜) such that Iμ(α∨
β)(x) ̸≤ Iμ(α)(x) + Iμ(β)(x) for some x ∈ X.

Exercise 9.7.8. Find a probability space (X,𝒜, μ) and α, β,γ ∈ Part(X,𝒜) such that
Iμ(α|γ)(x) ̸≤ Iμ(α|β)(x) + Iμ(β|γ)(x) for some x ∈ X.

Exercise 9.7.9. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ). Given α ∈ Part(X,𝒜), show that the sequence (Hμ(α

n))∞n=1 is sub-
additive. Then deduce from Lemma 3.2.17 that the limit limn→∞

1
nHμ(α

n) = hμ(T ,α)
exists and is nonnegative.

Exercise 9.7.10. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. Show that
the mapping μ → hμ(T) is affine on the setM(T ,𝒜) of all T-invariant probability mea-
sures on (X,𝒜). In other words, show that if T : X → X is a dynamical system preserv-
ing two probability measures μ and ν on the measurable space (X,𝒜), then

hsμ+(1−s)ν(T) = shμ(T) + (1 − s)hν(T)

for all 0 ≤ s ≤ 1.

Exercise 9.7.11. LetT : X → X be an ergodicmeasure-preservingdynamical systemon
a probability space (X,𝒜, μ), and letα ∈ Part(X,𝒜) be such that Hμ(α) <∞. According
to Corollary 9.5.5,

hμ(T ,α) = lim
n→∞

1
n
Iμ(α

n)(x) for μ-a. e. x ∈ X.

Let 0 < ε < 1 and for each n ∈ ℕ let Nn(ε) be the minimum number of atoms of αn

needed to construct a set of measure at least 1 − ε. Show that

hμ(T ,α) = lim
n→∞

1
n
logNn(ε).
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Exercise 9.7.12. Prove that for the full E-shift equipped with the product measure μ
as in Example 9.4.23, and the partition α := {[e] : e ∈ E},

Hμ(α
n) = −n∑

e∈E
P(e) logP(e), ∀n ∈ ℕ.

Exercise 9.7.13. Let T : [0, 1]→ [0, 1] be the tent map (see Example 1.1.3). Show that T
preserves the Lebesguemeasure on [0, 1] and that its entropywith respect to Lebesgue
measure is equal to log 2.

Exercise 9.7.14. Let (X,𝒜) be a measurable space and (αn)
∞
n=1 be a sequence of

increasingly finer countable measurable partitions of (X,𝒜) which generates the
σ-algebra𝒜, that is, such that

αn ≤ αn+1, ∀n ∈ ℕ and σ(
∞
⋃
n=1

𝒜n) = 𝒜.

Suppose that μ and ν are probabilitymeasures on (X,𝒜) such that μ ≺≺ ν. Let ρ = dμ/dν
be the Radon–Nikodym derivative of μ with respect to ν (cf. Theorem A.1.50). Using
Example A.1.62 and the martingale convergence theorem for conditional expectations
(Theorem A.1.67), show that

ρ(x) = lim
n→∞

μ(αn(x))
ν(αn(x))

for ν-a. e. x ∈ X.

Exercise 9.7.15. Let (X,𝒜) and (Y ,ℬ) be measurable spaces and T : X → X and S :
Y → Y be measurable transformations. A measurable transformation π : X → Y is
called a factor map between T and S if π ∘ T = S ∘ π.

If (X,𝒜, μ) is a measure space, then recall that π induces the push down measure
μ ∘ π−1 on the measurable space (Y ,ℬ).

Let α, β ∈ Part(Y ,ℬ). Prove the following statements:
(a) π−1(α ∨ β) = (π−1α) ∨ (π−1β).
(b) π−1(αn

m) = (π
−1α)nm for allm, n ≥ 0.

(c) π−1 preserves the partial order ≤, that is, if α ≤ β then π−1α ≤ π−1β.
(d) (π−1α)(x) = π−1(α(π(x))) for all x ∈ X.
(e) Iμ(π−1α|π−1β) = Iμ∘π−1 (α|β) ∘ π.
(f) Iμ(π−1α) = Iμ∘π−1 (α) ∘ π.
(g) Hμ(π−1α|π−1β) = Hμ∘π−1 (α|β).
(h) Hμ(π−1α) = Hμ∘π−1 (α).
(i) hμ(T ,π−1α) = hμ∘π−1 (S,α).
(j) hμ(T) ≥ hμ∘π−1 (S).
(k) If π is bimeasurable (i. e., measurable, bijective and its inverse is measurable),

then hμ(T) = hμ∘π−1 (S).
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10 Infinite invariant measures
In this chapter, we deal with measurable transformations preserving measures that
are no longer assumed to be finite. The outlook is then substantially different than in
the case of finite measures. As far as we know, only J. Aaronson’s book [1] is entirely
dedicated to infinite ergodic theory.

In Section 10.1, we introduce and investigate in detail the notions of quasi-
invariant measures, ergodicity, and conservativity. We also prove Halmos’ recur-
rence theorem, which is a generalization of Poincaré’s recurrence theorem for quasi-
invariant measures that are not necessarily finite.

In Section 10.2, we discuss first return times, first return maps, and induced sys-
tems.We further establish relations between invariantmeasures for the original trans-
formation and the induced transformation.

In Section 10.3, we study implications of Birkhoff’s ergodic theorem for finite
and infinite measure spaces. Among others, we demonstrate Hopf’s ergodic theorem,
which applies to measure-preserving transformations of σ-finite spaces.

Finally, in Section 10.4, we seek a condition under which, given a quasi-invariant
probability measure, one can construct a σ-finite invariant measure which is abso-
lutely continuous with respect to the original measure. To this end, we introduce a
class of transformations, called Martens maps, that have this feature and even more.
In fact, these maps have the property that any quasi-invariant probability measure
admits an equivalent σ-finite invariant one.

Applications of these concepts and results can be found in Chapters 13–14 of the
second volume and Chapters 29–32 of the third volume.

10.1 Quasi-invariant measures, ergodicity and conservativity

By definition, quasi-invariant measures preserve sets of measure zero.

Definition 10.1.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. A measure
μ on (X,𝒜) is called quasi-T-invariant if μ ∘ T−1 ≺≺ μ.

Obviously, invariant measures are quasi-invariant but the converse statement
does not hold in general.

The concept of ergodicity defined in Chapter 8 for transformations of probability
spaces readily generalizes to transformations of arbitrary measure spaces.

Definition 10.1.2. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. Then T is ergodic with respect to μ if

T−1(A) = A ⇒ μ(A) = 0 or μ(X\A) = 0.

Alternatively, μ is said to be ergodic with respect to T.

https://doi.org/10.1515/9783110702682-010
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The next result states that, like a T-invariant measure, a quasi-T-invariant mea-
sure μ is ergodic if and only if every μ-a. e. T-invariant set is trivial in a measure-
theoretic sense, that is, has measure zero or its complement is of measure zero. This
is a generalization of Proposition 8.2.4.

Proposition 10.1.3. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. Then T is ergodic with respect to μ if and only if

μ(T−1(A)△ A) = 0 ⇒ μ(A) = 0 or μ(X\A) = 0.

Proof. The proof goes along similar lines to that of Proposition 8.2.4 and is left to the
reader.

In Section 1.4, we studied the concept of wandering points. We revisit this dynam-
ical behavior from a measure-theoretic standpoint.

Definition 10.1.4. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. A setW ∈
𝒜 is a wandering set for T if its preimages (T−n(W))∞n=0 are mutually disjoint.

One way of constructing wandering sets is now described.

Lemma 10.1.5. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. For every A ∈
𝒜, the set WA := A\⋃

∞
n=1 T
−n(A) is a wandering set for T.

To lighten notation, define

A− :=
∞

⋃
n=1

T−n(A) and thus WA := A\A
−.

Proof. Suppose for a contradiction thatWA is not wandering for T, that is, T−k(WA) ∩
T−l(WA) ̸= 0 for some 0 ≤ k < l. This means that T−k(WA ∩ T−(l−k)(WA)) ̸= 0, and thus
WA ∩ T−(l−k)(WA) ̸= 0. Set j = l − k ∈ ℕ. Fix x ∈ WA ∩ T−j(WA). On one hand, x ∈ WA
implies that x ∉ A−. So x ∉ T−j(A). On the other hand,WA ⊆ A and x ∈ T−j(WA) imply
that x ∈ T−j(A). This is a contradiction andWA must therefore be a wandering set.

Next, we introduce the notion of conservativity.

Definition 10.1.6. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. Then T is conservative with respect to μ if μ(W) = 0 for
every wandering setW for T.

Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. For every B ∈ 𝒜, define
the set B∞ ∈ 𝒜 to be

B∞ := {x ∈ X : T
n(x) ∈ B for infinitely many n ∈ ℕ} =

∞

⋂
k=1

∞

⋃
n=k

T−n(B).
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Clearly, T−1(B∞) = B∞ and so T−1(X\B∞) = X\B∞. Notice also that ifW is a wandering
set for T, thenW ∩⋃∞n=1 T

−n(W) = 0. In particular,W ∩W∞ = 0.
Poincaré’s recurrence theorem (Theorem 8.1.16) asserts that if μ is T-invariant

and finite, then μ(B\B∞) = 0. We shall now prove its generalization in two respects:
namely, by assuming only (1) that μ is quasi-T-invariant and (2) that μmay be infinite.

Theorem 10.1.7 (Halmos’ recurrence theorem). Let T : (X,𝒜) → (X,𝒜) be a measur-
able transformation and μ a quasi-T-invariant measure. For every A ∈ 𝒜, the following
equivalence holds: μ(B\B∞) = 0 for all measurable sets B ⊆ A if and only if μ(W) = 0
for all wandering sets W ⊆ A.

Proof. Fix A ∈ 𝒜. If μ(A) = 0, then μ(B\B∞) = 0 for all measurable sets B ⊆ A and
μ(W) = 0 for all wandering sets W ⊆ A. Thus the equivalence is trivially satisfied
when μ(A) = 0, and we may assume in the sequel that μ(A) > 0.
[⇒]We will prove the contrapositive statement. Suppose that μ(W) > 0 for some

wandering set W ⊆ A. Then W ∩ W∞ = 0. Therefore, μ(W\W∞) > 0. Thus W is a
measurable set B ⊆ A such that μ(B\B∞) > 0.
[⇐] Let us now prove the converse implication. Assume that μ(W) = 0 for all

wandering setsW ⊆ A. Fix a measurable set B ⊆ A and for all n ≥ 0 let

Bn := B ∩ T
−n(B)\

∞

⋃
ℓ=n+1

T−ℓ(B),

that is, Bn is the set of points in B that return to B at time n but never again thereafter.
So

B\B∞ = ⋃
n≥0

Bn.

Suppose for a contradiction that μ(B\B∞) > 0. That is, suppose there is n ≥ 0 such that
μ(Bn) > 0. Lemma 10.1.5 asserts that WBn is a wandering set for T. Since Bn ⊆ A, the
hypothesis implies that μ(WBn ) = 0. This means that μ(Bn\B−n ) = 0. Since μ(Bn) > 0,
there thus exists x ∈ Bn ∩ B−n = Bn ∩⋃

∞
k=1 T
−k(Bn). So x ∈ Bn. There is also k ∈ ℕ such

that x ∈ T−k(Bn). As T−k(Bn) ⊆ T−(n+k)(B), it turns out that x ∈ T−ℓ(B), where ℓ = n + k.
So x ∉ Bn. This is a contradiction. Consequently, μ(B\B∞) = 0 for any measurable set
B ⊆ A.

Taking A = X in Theorem 10.1.7, we get the following special case.

Corollary 10.1.8. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. Then T is conservative if and only if μ(B\B∞) = 0 for all
B ∈ 𝒜.

In particular, Poincaré’s recurrence theorem (Theorem 8.1.16) confirms that every
measure-preserving transformation of a finite measure space is conservative.
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Corollary 10.1.9. Let T : (X,𝒜)→ (X,𝒜) be a measurable transformation and μ a finite
T-invariant measure. Then T is conservative.

Conservativity also has the following consequence.

Corollary 10.1.10. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. If T is conservative, then

∞

∑
n=0

μ(T−n(A)) =∞

for all sets A ∈ 𝒜 such that μ(A) > 0.

Proof. Let A ∈ 𝒜. If ∑∞n=0 μ(T
−n(A)) < ∞, then μ(A∞) = 0 by Borel–Cantelli Lemma

(Lemma A.1.20). Moreover, μ(A\A∞) = 0 according to Corollary 10.1.8. Therefore, we
conclude that μ(A) = μ(A ∩ A∞) + μ(A\A∞) = 0.

We now prove a characterization of ergodicity + conservativity.

Theorem 10.1.11. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariantmeasure. ThenT is conservative andergodic if andonly if μ(X\A∞) = 0
for every A ∈ 𝒜 such that μ(A) > 0.

Proof. Assume first that T : X → X is conservative and ergodic. Fix A ∈ 𝒜 with
μ(A) > 0. We have earlier observed that T−1(A∞) = A∞. Then, due to the ergodicity
of μ, either μ(A∞) = 0 or μ(X\A∞) = 0. In the former case, μ(A) = μ(A\A∞) and Corol-
lary 10.1.8 implies that μ(A) = 0. As μ(A) > 0 by assumption, this means that this case
never happens. Only the latter case μ(X\A∞) = 0 occurs, and this proves the implica-
tion⇒.

We now prove the converse implication.
Let us first showconservativity. LetA ∈ 𝒜. Ifμ(A) = 0 then obviouslyμ(A\A∞) = 0.

If μ(A) > 0, then by assumption μ(X\A∞) = 0 and again μ(A\A∞) = 0. Corollary 10.1.8
then confirms the conservativity of T.

Now we establish ergodicity. Let A ∈ 𝒜 be such that T−1(A) = A. Then A∞ = A. We
must show that either μ(A) = 0 or μ(X\A) = 0. Suppose that μ(A) > 0. By assumption,
we then have μ(X\A∞) = 0. Since A∞ = A, this means that μ(X\A) = 0.

Forfinite invariantmeasures, Theorem10.1.11, in conjunctionwithCorollary 10.1.9,
provides yet another characterization of ergodicity.

Corollary 10.1.12. Let T : (X,𝒜)→ (X,𝒜)be ameasurable transformation andμa finite
T-invariant measure. Then T is ergodic if and only if μ(X\A∞) = 0 for every A ∈ 𝒜 such
that μ(A) > 0.

Sets that are visited by almost every point in the spacewill also play a crucial role.
Accordingly, we make the following definition.
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Definition 10.1.13. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. A set A ∈ 𝒜 is said to be absorbing with respect to μ if
0 < μ(A) <∞ and μ(X\⋃∞k=0 T

−k(A)) = 0.

Notice that any invariant measure which admits an absorbing set is σ-finite.
Obviously, a set A ∈ 𝒜 such that 0 < μ(A) < ∞ and μ(X\A∞) = 0, is absorbing

with respect to μ. Therefore, we have the following corollary to Theorem 10.1.11.

Corollary 10.1.14. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. If T is conservative and ergodic, then every A ∈ 𝒜 such that
0 < μ(A) <∞ is absorbing.

To end this section, we briefly return to transformations of probability spaces and
introduce a concept of weak metric exactness. Recall that the notion of metric exact-
ness was described in Definition 8.4.4.

Definition 10.1.15. Let (X,ℱ , μ)be a Lebesgue probability space andT : X → X a trans-
formation for which μ is a quasi-T-invariant measure. Then T is said to beweakly met-
rically exact if for each A ∈ ℱ such that μ(A) > 0 we have

lim sup
n→∞

μ(Tn(A)) = 1.

Note that each set Tn(A) is measurable since T is a measurable transformation of
a Lebesgue space.

Theorem 10.1.16. Everyweaklymetrically exact transformationT : (X,ℱ , μ)→ (X,ℱ , μ)
is conservative and ergodic.

Proof. We first prove ergodicity. Let A ∈ 𝒜 be such that T−1(A) = A. Then Tn(A) ⊆ A for
all n ∈ ℕ. Since μ is a probability measure, we must show that μ(A) ∈ {0, 1}. Suppose
that μ(A) > 0. The weak metric exactness of T implies that

1 = lim sup
n→∞

μ(Tn(A)) ≤ μ(A) ≤ 1.

So μ(A) = 1 and T is ergodic.
To prove the conservativity of T, suppose for a contradiction that there exists

a wandering set W such that μ(W) > 0. Then W ∩ ⋃∞n=1 T
−n(W) = 0. Therefore

⋃∞n=1 T
n(W) ⊆ X\W , and the weak metric exactness of T yields that

1 = lim sup
n→∞

μ(Tn(W)) ≤ μ(X\W) = 1 − μ(W).

So μ(W) = 0. This is a contradiction. Consequently, T is conservative.

10.2 Invariant measures and inducing

Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a T-invariant measure.
Fix A ∈ 𝒜 such that 0 < μ(A) < ∞ and μ(A\A∞) = 0. Then μ(A ∩ A∞) = μ(A). Let
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A′∞ = A ∩ A∞. The function τA′∞ : A′∞ → ℕ given by the formula

τA′∞ (x) = min{n ∈ ℕ : Tn(x) ∈ A′∞} (10.1)

is well-defined andmeasurable when A′∞ is endowed with the σ-algebra𝒜|A′∞ := {B ⊆
A′∞ : B ∈ 𝒜} and ℕ is equipped with the σ-algebra 𝒫(ℕ) of all subsets of ℕ. Conse-
quently, the map TA′∞ : A′∞ → A′∞ defined by

TA′∞ (x) = TτA′∞ (x)(x) (10.2)

is well-defined and measurable. The number τA′∞ (x) ∈ ℕ is called the first return time
of x to the set A′∞ and, accordingly, the map TA′∞ is called the first return map or the
induced map. Given that A′∞ ⊆ A and μ(A′∞) = μ(A), without loss of generality we will
assume that A′∞ = A from the outset, hence alleging notation to τA and TA.

Finally, in a similar way to Definition A.1.70, let μA be the conditional probability
measure on (A,𝒜|A) defined by

μA(B) =
μ(B)
μ(A)
, ∀B ∈ 𝒜|A.

This measure has the following properties.

Theorem 10.2.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and A ∈ 𝒜
such that 0 < μ(A) <∞.

If μ is T-invariant and μ(A\A∞) = 0, then μA is TA-invariant and TA is conservative.
Conversely, if ν is a TA-invariant probability measure on (A,𝒜|A), then there exists

a T-invariant measure μ̃ on (X,𝒜) such that μ̃A = ν on (A,𝒜|A). In fact, μ̃ may be con-
structed as follows: for any B ∈ 𝒜, let

μ̃(B) =
∞

∑
n=0

ν(A ∩ T−n(B) \
n
⋃
k=1

T−k(A)) =
∞

∑
n=0

ν({x ∈ A ∩ T−n(B) : τA(x) > n}). (10.3)

In particular, the set A is absorbing with respect to μ̃ and μ̃ is σ-finite. The measure μ̃ is
said to be induced by ν.

Proof. First, suppose that μ is T-invariant and that 0 < μ(A) < ∞ and μ(A\A∞) = 0.
Let B ∈ 𝒜|A. Then

μ(T−1A (B)) =
∞

∑
n=1

μ(T−1A (B) ∩ τ
−1
A (n))

=
∞

∑
n=1

μ(A ∩ T−n(B) ∩ τ−1A (n))

=
∞

∑
n=1

μ(A ∩ T−n(B)\
n−1
⋃
k=1

T−k(A))

=
∞

∑
n=1

μ(A ∩ T−1(Bn−1)), (10.4)
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where

B0 := B and Bn := T
−n(B)\

n−1
⋃
k=0

T−k(A), ∀n ∈ ℕ.

Observe that μ(Bn) ≤ μ(T−n(B)) = μ(B) ≤ μ(A) < ∞ for every n ≥ 0. Since T−1(Bn−1) =
(A ∩ T−1(Bn−1)) ∪ Bn and (A ∩ T−1(Bn−1)) ∩ Bn = 0 for all n ∈ ℕ, we obtain that

μ(A ∩ T−1(Bn−1)) = μ(T
−1(Bn−1)) − μ(Bn) = μ(Bn−1) − μ(Bn)

for all n ∈ ℕ. Therefore, by (10.4),

μ(T−1A (B)) = lim
n→∞
(μ(B) − μ(Bn)) ≤ μ(B). (10.5)

This relation also holds for A\B, that is,

μ(T−1A (A\B)) ≤ μ(A\B).

Since A = T−1A (A) = T
−1
A (B) ∪ T

−1
A (A\B) and T

−1
A (B) ∩ T

−1
A (A\B) = 0, it follows that

μ(T−1A (B)) = μ(A) − μ(T
−1
A (A\B)) ≥ μ(A) − μ(A\B) = μ(B). (10.6)

It ensues from (10.5) and (10.6) that μ(T−1A (B)) = μ(B). Thus μA ∘ T
−1
A = μA. So μA is

TA-invariant. The conservativity of TA with respect to μA is a direct consequence of
Corollary 10.1.9.

To prove the converse implication, assume that ν is a probability measure on
(A,𝒜|A) such that ν ∘ T−1A = ν. We shall first show that the measure μ̃ given by (10.3) is
T-invariant. Indeed, let B ∈ 𝒜. Then

μ̃(T−1(B)) =
∞

∑
n=0

ν({x ∈ A ∩ T−n(T−1(B)) : τA(x) > n})

=
∞

∑
n=0

ν({x ∈ A ∩ T−(n+1)(B) : τA(x) > n + 1})

+
∞

∑
n=0

ν({x ∈ A ∩ T−(n+1)(B) : τA(x) = n + 1})

= μ̃(B) − ν(A ∩ B) +
∞

∑
n=1

ν({x ∈ A ∩ T−n(B) : τA(x) = n})

= μ̃(B) − ν(A ∩ B) +
∞

∑
n=1

ν({x ∈ A ∩ T−n(A ∩ B) : τA(x) = n})

= μ̃(B) − ν(A ∩ B) +
∞

∑
n=1

ν(T−1A (A ∩ B) ∩ τ
−1
A (n))

= μ̃(B) − ν(A ∩ B) + ν(T−1A (A ∩ B))
= μ̃(B).

Thus μ̃ is T-invariant when ν is TA-invariant.
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Moreover, if B ⊆ A then (10.3) reduces to μ̃(B) = ν(A ∩ B) = ν(B). In particular,
μ̃(A) = ν(A) = 1, and hence μ̃A(B) =

μ̃(B)
μ̃(A) = μ̃(B) = ν(B). That is, μ̃ = μ̃A = ν on (A,𝒜|A).

Furthermore, (10.3) gives

μ̃(X\
∞

⋃
k=1

T−k(A)) =
∞

∑
n=0

ν({x ∈ A\
∞

⋃
k=1

T−(n+k)(A) : τA(x) > n}) =
∞

∑
n=0

ν(0) = 0.

Thus A is absorbing with respect to μ̃. In addition, this shows that μ̃ is σ-finite when
μ̃(T−k(A)) < ∞ for all k ∈ ℕ. Since μ̃ is T-invariant, this condition is equivalent to
μ̃(A) <∞. And we saw above that μ̃(A) = 1. Thus μ̃ is σ-finite.

Remark 10.2.2. It follows from (10.5) and (10.6) that limn→∞ μ(Bn) = 0. In particular,
taking B = A, we get that

lim
n→∞

μ(T−n(A)\
n−1
⋃
k=0

T−k(A)) = 0.

Theorem 10.2.1 raises some interesting questions. Among others, in the second
part of the theorem, is the inducedmeasure μ̃ unique? In Exercise 10.5.1, youwill learn
that this is generally not the case. However, we now prove that uniqueness prevails
when the backward orbit of the set A covers the space almost everywhere.

Proposition 10.2.3. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. If μ is a
T-invariant measure that admits an absorbing set A, then μ = μ̃ if ν is replaced by μ in
formula (10.3).
(Formally, μ = μ(A) ⋅ μ̃, where μ̃ is given by (10.3) with ν = μA.)

Proof. Let B ∈ 𝒜 be such that μ(B) <∞. For every j ≥ 0, let

Bj := T
−j(B)\

j
⋃
k=0

T−k(A).

Observe that μ(Bj) ≤ μ(T−j(B)) = μ(B) < ∞ for every j ≥ 0. As μ is T-invariant and
T−1(Bj−1) ⊇ Bj for all j ∈ ℕ, we get for every n ∈ ℕ that

μ(B\A) − μ(Bn) =
n
∑
j=1
[μ(Bj−1) − μ(Bj)] =

n
∑
j=1
[μ(T−1(Bj−1)) − μ(Bj)]

=
n
∑
j=1

μ(T−1(Bj−1)\Bj)

=
n
∑
j=1

μ((T−j(B)\
j
⋃
k=1

T−k(A))\( T−j(B)\
j
⋃
k=0

T−k(A)))

=
n
∑
j=1

μ(A ∩ T−j(B)\
j
⋃
k=1

T−k(A)).

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.2 Invariant measures and inducing | 325

Then

μ(B) − μ(Bn) = μ(B ∩ A) + μ(B\A) − μ(Bn) =
n
∑
j=0

μ(A ∩ T−j(B)\
j
⋃
k=1

T−k(A)).

Replacing ν by μ in formula (10.3), we deduce that

μ̃(B) =
∞

∑
j=0

μ(A ∩ T−j(B)\
j
⋃
k=1

T−k(A)) = μ(B) − lim
n→∞

μ(Bn).

Therefore, in order to complete the proof, we need to show that

lim
n→∞

μ(Bn) = 0.

Fix ε > 0. Since A is absorbing, we have that μ(X\⋃∞k=0 T
−k(A)) = 0. Equivalently,

μ(X\
∞

⋃
k=0

A(k)) = 0, (10.7)

where

A(k) := T−k(A)\
k−1
⋃
j=0

T−j(A).

The usefulness of the A(k)s lies in their mutual disjointness. Indeed, relation (10.7)
implies that μ(B\⋃∞k=0 A

(k)) = 0. Then

μ(B) = μ(B ∩
∞

⋃
k=0

A(k)) = μ(
∞

⋃
k=0
(B ∩ A(k))) =

∞

∑
k=0

μ(B ∩ A(k)). (10.8)

Since μ(B) <∞, there exists ℓε ∈ ℕ so large that
∞

∑
ℓ=ℓε+1

μ(B ∩ A(ℓ)) < ε
2
. (10.9)

Relation (10.7) also ensures that μ(Bn\⋃
∞
k=0 A
(k)) = 0 for every n ≥ 0. So, like for B,

μ(Bn) =
∞

∑
k=0

μ(Bn ∩ A
(k)).

But

Bn ∩ A
(k) = [T−n(B)\

n
⋃
i=0

T−i(A)] ∩ [T−k(A)\
k−1
⋃
j=0

T−j(A)]

= [T−n(B) ∩ T−k(A)]\
max{n,k−1}
⋃
i=0

T−i(A)
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= {
0 if k ≤ n
T−n(B ∩ T−(k−n)(A))\⋃k−1i=0 T

−i(A) if k > n

= {
0 if k ≤ n
[T−n(B ∩ T−(k−n)(A))\⋃k−1i=n T

−i(A)]\⋃n−1i=0 T
−i(A) if k > n

= {
0 if k ≤ n
T−n(B ∩ A(k−n))\⋃n−1i=0 T

−i(A) if k > n.

Consequently,

μ(Bn) = ∑
k>n

μ(Bn ∩ A
(k)) =

∞

∑
k=n+1

μ(T−n(B ∩ A(k−n))\
n−1
⋃
i=0

T−i(A)) =
∞

∑
ℓ=1

μ(B(ℓ)n ),

where

B(ℓ)n := T
−n(B ∩ A(ℓ))\

n−1
⋃
i=0

T−i(A) ⊆ T−(n+ℓ)(A)\
n+ℓ−1
⋃
i=0

T−i(A) = A(n+ℓ).

Remark 10.2.2 asserts that limN→∞ μ(A(N)) = 0. Then

lim
n→∞

μ(B(ℓ)n ) = 0, ∀ℓ ∈ ℕ. (10.10)

As μ(B(ℓ)n ) ≤ μ(T
−n(B ∩ A(ℓ))) = μ(B ∩ A(ℓ)) for each ℓ, n ∈ ℕ, it follows from (10.9) that

∞

∑
ℓ=ℓε+1

μ(B(ℓ)n ) <
ε
2
, ∀n ∈ ℕ.

By (10.10), there exists nε ∈ ℕ so large that for all 1 ≤ ℓ ≤ ℓε and all n ≥ nε,

μ(B(ℓ)n ) ≤
ε
2ℓε
.

So, for all n ≥ nε, we have

μ(Bn) =
∞

∑
ℓ=1

μ(B(ℓ)n ) =
ℓε
∑
ℓ=1

μ(B(ℓ)n ) +
∞

∑
ℓ=ℓε+1

μ(B(ℓ)n ) ≤
ℓε
∑
ℓ=1

ε
2ℓε
+
ε
2
= ε.

Thus limn→∞ μ(Bn) = 0 and the proof is complete for sets B of finite measure.
Now, let B ∈ 𝒜 be any set. Since μ(A(k)) ≤ μ(T−k(A)) = μ(A) < ∞ for all k ≥ 0,

the sets (B ∩ A(k))∞k=0 are of finite measure. Then the first part of this proof shows that
μ(B∩A(k)) = μ̃(B∩A(k)). By (10.8) and themutual disjointness of theA(k)s, we conclude
that

μ(B) =
∞

∑
k=0

μ(B ∩ A(k)) =
∞

∑
k=0

μ̃(B ∩ A(k)) = μ̃(B ∩
∞

⋃
k=0

A(k)) = μ̃(B).

The last equality follows from the fact that μ̃(X\⋃∞k=0 A
(k)) = 0 according to Theo-

rem 10.2.1. So μ = μ̃.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.2 Invariant measures and inducing | 327

Corollary 10.2.4. Let T : (X,𝒜, μ) → (X,𝒜, μ) be an ergodic conservative measure-
preserving transformation and any A ∈ 𝒜with 0 < μ(A) <∞. Then μ = μ̃ if ν is replaced
by μ in formula (10.3).

Proof. According to Corollary 10.1.14, any A ∈ 𝒜 with 0 < μ(A) <∞ is absorbing with
respect to μ and Proposition 10.2.3 applies to any such A.

Let φ : X → ℝ be a measurable function and n ∈ ℕ. Recall from Definition 8.2.10
that the nth Birkhoff sum of φ at a point x ∈ X is

Snφ(x) =
n−1
∑
j=0

φ(T j(x)).

Let A ∈ 𝒜. Define the function φA : A→ ℝ by the formula

φA(x) = SτA(x)φ(x). (10.11)

In the next proposition, we describe properties that φA inherits from φ.

Proposition 10.2.5. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. Let also
φ : X → ℝ be ameasurable function. If μ is a T-invariant measure and A is an absorbing
set with respect to μ, then:
(a) If φ ∈ L1(μ), then φA ∈ L1(μA).
(b) If φ ≥ 0 or φ ∈ L1(μ), then

∫
A

φA dμA =
1

μ(A)
∫
X

φdμ.

If, in addition, T is conservative and ergodic, then the above two statements apply to all
sets A ∈ 𝒜 such that 0 < μ(A) <∞.

Proof. Suppose first that φ = 1B for some B ∈ 𝒜 such that 0 < μ(B) < ∞. In view of
Proposition 10.2.3, we have

∫
X

1B dμ = μ(B) =
∞

∑
k=0

μ({x ∈ A ∩ T−k(B) : τA(x) > k})

=
∞

∑
n=1

n−1
∑
j=0

μ({x ∈ A ∩ T−j(B) : τA(x) = n})

=
∞

∑
n=1

n−1
∑
j=0
∫

τ−1A (n)
1T−j(B) dμ

=
∞

∑
n=1

n−1
∑
j=0
∫

τ−1A (n)
1B ∘ T

j dμ
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=
∞

∑
n=1
∫

τ−1A (n)
Sn1B dμ

=
∞

∑
n=1
∫

τ−1A (n)
φA dμ

= ∫
A

φA dμ = μ(A)∫
A

φA dμA,

and we are done with this case. If φ : X → ℝ is a simple measurable function, that is,
φ = ∑ni=1 aiφ

(i), where all ai ∈ ℝ, 1 ≤ i ≤ n, and all φ(i), 1 ≤ i ≤ n, are characteristic
functions of some measurable sets with positive and finite measures, then

∫
X

φdμ =
n
∑
i=1

ai ∫
X

φ(i) dμ

= μ(A)
n
∑
i=1

ai ∫
A

φ(i)A dμA

= μ(A)∫
A

n
∑
i=1

aiφ
(i)
A dμA

= μ(A)∫
A

(
n
∑
i=1

aiφ
(i))

A
dμA

= μ(A)∫
A

φA dμA,

and we are done in this case as well. The next case is to consider an arbitrary non-
negative measurable function φ : X → [0,∞). Then φ is the pointwise limit of an
increasing sequence of nonnegative simple measurable functions (φ(n))∞n=1. It is easy
to see that φA is the pointwise limit of the increasing sequence of nonnegative mea-
surable functions (φ(n)A )

∞
n=1. Applying twice the monotone convergence theorem (The-

orem A.1.35), we then get that

∫
X

φdμ = lim
n→∞
∫
X

φ(n) dμ = lim
n→∞

μ(A)∫
A

φ(n)A dμA = μ(A)∫
A

lim
n→∞

φ(n)A dμA = μ(A)∫
A

φA dμA.

We are also done in this case. Since |φA| ≤ |φ|A, this in particular shows that if φ ∈
L1(μ), then φA ∈ L1(μA). Moreover, writing φ = φ+ − φ−, where φ+ = max{φ,0} and
φ− = max{−φ,0}, both functions φ+ and φ− are in L1(μ) when φ is and

∫
X

φdμ = ∫
X

(φ+ − φ−) dμ = μ(A)∫
A

(φ+A − φ
−
A) dμA = μ(A)∫

A

φA dμA.
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Observe that ifφ ≡ 1, thenφA ≡ τA. As an immediate consequence of the previous
proposition, we obtain that the average of the first return time to a set is inversely
proportional to the relative measure of that set in the space.

Lemma 10.2.6 (Kac’s lemma). Let T : (X,𝒜)→ (X,𝒜) be ameasurable transformation.
If μ is a T-invariant measure and A is an absorbing set with respect to μ, then

∫
A

τA dμA =
μ(X)
μ(A)
.

In particular:
(a) The measure μ is finite (μ(X) <∞) if and only if

∫
A

τA dμA <∞.

(b) If μ is a probability measure, then

∫
A

τA dμA =
1

μ(A)
.

If, in addition, T is conservative and ergodic, then the above statements apply to every
set A ∈ 𝒜 such that 0 < μ(A) <∞.

We now study the transmission of ergodicity between T and TA.

Proposition 10.2.7. Let T : (X,𝒜, μ) → (X,𝒜, μ) be a measure-preserving transforma-
tion and A ∈ 𝒜 with 0 < μ(A) <∞.

If T : X → X is ergodic and conservative with respect to μ, then TA : A → A is
ergodic with respect to μA.

Conversely, if A is absorbing with respect to μ and TA : A→ A is ergodic with respect
to μA, then T : X → X is ergodic with respect to μ.

Proof. First, suppose that T : X → X is ergodic and conservative. Let C ⊆ A be com-
pletely TA-invariant and assume that μA(C) > 0. This latter assumption implies that
μ(C) > 0. By Theorem 10.1.11, we know that μ(X\C∞) = 0. But since T−1A (C) = C, we
also have that T−1A (A\C) = A\C. Therefore, A\C ⊆ X\C∞, and hence μ(A\C) = 0. So
μA(A\C) = 0 and TA is ergodic.

In order to prove the converse, suppose that TA : A → A is ergodic with respect
to μA and let B ∈ 𝒜 be such that T−1(B) = B and μ(B) > 0. Suppose also that A is
absorbing with respect to μ. Then μ(X\⋃∞n=0 T

−n(A)) = 0 and there exists k ≥ 0 such
that μ(B ∩ T−k(A)) > 0. Therefore,

μ(B ∩ A) = μ(T−k(B ∩ A)) = μ(T−k(B) ∩ T−k(A)) = μ(B ∩ T−k(A)) > 0.
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Recall that (B∩A)∞ = ⋂
∞
k=1⋃
∞
n=k T
−n(B∩A) andwrite (B∩A)TA∞ := ⋂

∞
k=1⋃
∞
n=k T
−n
A (B∩A).

Since μA is a probability measure and TA : A → A is ergodic, Corollary 10.1.12 states
that μA(A\(B ∩ A)TA∞) = 0 and this implies that

1 = μA((B ∩ A)
TA
∞) ≤ μA(

∞

⋃
n=0

T−nA (B ∩ A)) ≤ μA(A ∩
∞

⋃
n=0

T−n(B ∩ A)) ≤ 1.

This means that μ(A\⋃∞n=0 T
−n(B ∩ A)) = 0. Using the T-invariance of μ, it follows

that μ(⋃∞k=0 T
−k(A)\⋃∞n=0 T

−n(B∩A)) = 0. By hypothesis, μ(X\⋃∞k=0 T
−k(A)) = 0. Then

μ(X\⋃∞n=0 T
−n(B ∩ A)) = 0. Consequently,

μ(X\B) = μ(X\
∞

⋃
n=0

T−n(B)) ≤ μ(X\
∞

⋃
n=0

T−n(B ∩ A)) = 0.

Hence, μ(X\B) = 0, and thus T is ergodic.

10.3 Ergodic theorems

Birkhoff’s ergodic theorem (Theorem 8.2.11 and Corollaries 8.2.14–8.2.15) concerns
measure-preserving dynamical systems acting on probability spaces. Its ramifications
are manifold. We studied some of them in the last two chapters. In this section, we
use it with the inducing procedure described in the previous section to prove Hopf’s
ergodic theorem, which holds for measure-preserving transformations of σ-finite
measure spaces.

But first, as a straightforward consequence of Birkhoff’s ergodic theorem,we have
the following two useful facts.

Proposition 10.3.1. Let T : X → X be an ergodic measure-preserving transformation of
a probability space (X,𝒜, μ). Fix A ∈ 𝒜 such that μ(A) > 0. For every x ∈ X, let (kn(x))∞n=1
be the sequence of successive times at which the iterates of x visit the set A. Then

lim
n→∞

kn+1(x)
kn(x)
= 1 for μ-a. e. x ∈ X.

Proof. Note that Skn(x)1A(x) = n. It follows from the ergodic case of Birkhoff’s ergodic
theorem (Corollary 8.2.14) that for μ-a. e. x ∈ X,

lim
n→∞

kn+1(x)
kn(x)
= lim

n→∞
(

n
kn(x)
⋅
kn+1(x)
n + 1
)

= lim
n→∞

1
kn(x)

Skn(x)1A(x) ⋅
1

limn→∞
1

kn+1(x)Skn+1(x)1A(x)
= μ(A) ⋅ 1

μ(A)
= 1.
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Proposition 10.3.2. Let T : X → X be an ergodic measure-preserving transformation of
a probability space (X,𝒜, μ). If f ∈ L1(μ), then

lim
n→∞

1
n
f (Tn(x)) = 0 for μ-a. e. x ∈ X.

Proof. It follows from the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14)
that for μ-a. e. x ∈ X,

lim
n→∞

1
n
f (Tn(x)) = lim

n→∞
1

n + 1
f (Tn(x)) = lim

n→∞
1

n + 1
(Sn+1f (x) − Snf (x))

= lim
n→∞

1
n + 1

Sn+1f (x) − limn→∞
1

n + 1
Snf (x)

= lim
n→∞

1
n + 1

Sn+1f (x) − limn→∞
1
n
Snf (x) = 0.

The following result is an application of Birkhoff’s ergodic theorem to the ergodic
theory of transformations preserving σ-finite measures.

Theorem 10.3.3 (Hopf’s ergodic theorem). Let T : X → X be an ergodic and conser-
vative measure-preserving transformation of a σ-finite measure space (X,𝒜, μ). If f , g ∈
L1(μ) and ∫X g dμ ̸= 0, then

lim
n→∞

Snf (x)
Sng(x)
=
∫X f dμ
∫X g dμ

for μ-a. e. x ∈ X.

Proof. (Note: We strongly recommend that the reader work on Exercise 10.5.2 before
examining this proof.) Since μ is σ-finite, there are mutually disjoint sets {Xj}∞j=1 such
that 0 < μ(Xj) <∞ for all j ∈ ℕ and⋃∞j=1 Xj = X.

Fix j ∈ ℕ. Since T is measure-preserving and conservative, Corollary 10.1.8 affirms
that μ(Xj\(Xj)∞) = 0. Thus the first return time to Xj and the first return map to Xj
are well-defined by (10.1) and (10.2), respectively. Let τj := τXj and Tj := TXj . Let also
φ : X → ℝ and set φj := φXj per (10.11). Given x ∈ Xj, let S

j
nφj(x) := ∑

n−1
i=0 φj(T ij (x)). For

every k ∈ ℕ, let jk(x) be the largest integer n ≥ 0 such that∑
n−1
i=0 τj(T

i
j (x)) ≤ k. Then

Skφ(x) = S
j
jk(x)

φj(x) + SΔk(x)φ(T
jk(x)
j (x)),

where Δk(x) := k −∑jk(x)−1i=0 τj(T ij (x)) ≥ 0. Consequently,

1
jk(x)

Skφ(x) =
1

jk(x)
Sjjk(x)φj(x) +

1
jk(x)

SΔk(x)φ(T
jk(x)
j (x)). (10.12)

But


1
jk(x)

SΔk(x)φ(T
jk(x)
j (x))

≤

1
jk(x)

SΔk(x)|φ|(T
jk(x)
j (x)) ≤

1
jk(x)
|φ|j(T

jk(x)
j (x)). (10.13)
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Let μj := μXj . Since T is measure-preserving, ergodic and conservative, Theorem 10.2.1
and Proposition 10.2.7 assert that Tj is measure-preserving, conservative and ergodic
with respect to μj. Moreover, Proposition 10.2.5 states that if φ ∈ L1(μ), then |φ|j ∈
L1(μj). It follows from Proposition 10.3.2 (with T = Tj, μ = μj, and f = |φ|j) that the
right-hand side of (10.13) approaches 0 for μ-a. e. x ∈ Xj, and so does the left-hand
side:

lim
k→∞


1

jk(x)
SΔk(x)φ(T

jk(x)
j (x))

= 0 for μ-a. e. x ∈ Xj.

It ensues from this, (10.12), the ergodic case of Birkhoff’s ergodic theorem (Corol-
lary 8.2.14) (with T = Tj, μ = μj and φ = fj, gj) and Proposition 10.2.5 that for μ-a. e.
x ∈ Xj,

Skf (x)
Skg(x)
=

1
jk(x)

Skf (x)
1

jk(x)
Skg(x)
=

1
jk(x)

Sjjk(x)fj(x) +
1

jk(x)
SΔk(x)f (T

jk(x)
j (x))

1
jk(x)

Sjjk(x)gj(x) +
1

jk(x)
SΔk(x)g(T

jk(x)
j (x))

→
k→∞

∫Xj fj dμj
∫Xj gj dμj

=
∫X f dμ
∫X g dμ
.

Since⋃∞j=1 Xj = X, the conclusion holds for μ-a. e. x ∈ X.

The following result rules out any hope for an ergodic theorem closer to Birkhoff’s
ergodic theorem in the case of infinite measures.

Corollary 10.3.4. Let T : X → X be an ergodic and conservative measure-preserving
transformation of a σ-finite and infinite measure space (X,𝒜, μ). If f ∈ L1(μ), then

lim
n→∞

1
n
Snf (x) = 0 for μ-a. e. x ∈ X.

Proof. Since μ is σ-finite and μ(X) =∞, there exists a sequence (Ak)∞k=1 of measurable
sets such that

0 < μ(Ak) <∞, ∀k ∈ ℕ and lim
k→∞

μ(Ak) =∞. (10.14)

As |f | ∈ L1(μ), we deduce from Hopf’s ergodic theorem (Theorem 10.3.3) that for every
k ∈ ℕ,

lim sup
n→∞

1
n
Sn|f | ≤ lim sup

n→∞

Sn|f |
Sn1Ak

=
∫X |f | dμ
∫X 1Ak

dμ
=
‖f ‖1
μ(Ak)

μ-a. e.

So, by (10.14), lim supn→∞
1
nSn|f | = 0 μ-a. e. Since |

1
nSnf | ≤

1
nSn|f |, we are done.

As amatter of fact, as the next two results show,Hopf’s ergodic theoremprecludes
the existence of evenweaker forms of Birkhoff’s ergodic theorem in the case of infinite
invariantmeasures. Indeed, for all f ∈ L1(μ) Corollary 10.3.4 of Hopf’s ergodic theorem
implies that

lim
n→∞

1
an

Snf (x) = 0 for μ-a. e. x ∈ X
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if there exists C > 0 such that an ≥ Cn for all n. We will now show that there are no
constants an > 0 such that

lim
n→∞

1
an

Snf (x) = ∫
X

f dμ for μ-a. e. x ∈ X, ∀f ∈ L1(μ).

We will accomplish this in two steps. The first step will require the following proposi-
tion.

Proposition 10.3.5. Let T : X → X be an ergodic and conservative measure-preserving
transformation of a probability space (X,𝒜, μ). Let a : [0,∞) → [0,∞) be continuous,
strictly increasing, and satisfying a(x)

x ↘ 0 as x ↗∞. If ∫X a(|f |) dμ <∞, then

lim
n→∞

a(|Snf (x)|)
n
= 0 for μ-a. e. x ∈ X.

Proof. An outline of a proof can be found in Exercise 10.5.3.

In the first step, a sequence (a(n))∞n=1 will be imposed properties that mimic those
of the function a in Proposition 10.3.5.Wewill show that the outcome takes the form of
a dichotomy: lim infn→∞

1
a(n)Snf (x) is either 0 or∞, for μ-a. e. x ∈ X for all f ∈ L1+(μ) :=

{f ∈ L1(μ) : f ≥ 0 and ∫X f dμ > 0}.

Theorem 10.3.6. Let T : X → X be an ergodic and conservative measure-preserving
transformation of a σ-finite and infinite measure space (X,𝒜, μ). Let (a(n))∞n=1 be a se-
quence such that

a(n) ↗∞ and a(n)
n
↘ 0 as n ↗∞.

(a) If there exists A ∈ 𝒜 such that 0 < μ(A) <∞ and ∫A a(τA(x)) dμ(x) <∞, then

lim
n→∞

1
a(n)

Snf (x) =∞ for μ-a. e. x ∈ X, ∀f ∈ L1+(μ).

(b) Otherwise,

lim inf
n→∞

1
a(n)

Snf (x) = 0 for μ-a. e. x ∈ X, ∀f ∈ L1+(μ).

Proof. (a) Suppose that A ∈ 𝒜 satisfies 0 < μ(A) < ∞ and ∫A a(τA(x)) dμ(x) < ∞.
Clearly, the set

I := {x ∈ X : lim
n→∞

Sn1A(x)
a(n)
=∞}

is T-invariant. As T is ergodic, either μ(I) = 0 or μ(X\I) = 0. We will show that I
contains μ-a. e. x ∈ A. This will allow us to conclude that μ(I) ≥ μ(A) > 0, and hence
μ(X\I) = 0.
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Since T is measure-preserving and conservative, Corollary 10.1.8 affirms that
μ(A\A∞) = 0. Thus the nth return time to A and the nth return map to A are well-
defined for all n ∈ ℕ. See Exercise 10.5.2. Since T is measure-preserving, ergodic,
and conservative, Theorem 10.2.1 and Proposition 10.2.7 assert that TA is measure-
preserving, conservative and ergodic with respect to μA. As ∫A a(τA(x)) dμA(x) <∞, it
follows from Proposition 10.3.5 (with T = TA, μ = μA, and f = τA) that

lim
n→∞

a(τnA(x))
n
= lim

n→∞
a(STAn τA(x))

n
= 0 for μ-a. e. x ∈ A. (10.15)

Since T is measure-preserving, ergodic and conservative, Theorem 10.1.11 states that
μ(X\A∞) = 0. For every x ∈ A∞ and n ∈ ℕ, let kn(x) be the largest integer k ≥ 0 such
that τkA(x) ≤ n. Since SτnA1A ≡ n, we then have

Sn1A(x)
a(n)
≥

Sτkn(x)A
1A(x)

a(τkn(x)+1A (x))
=

kn(x)
a(τkn(x)+1A (x))

=
kn(x) + 1

a(τkn(x)+1A (x))
kn(x)

kn(x) + 1
. (10.16)

Using (10.15), we deduce from (10.16) that the set I contains μ-a. e. x ∈ A. As pointed
out at the beginning of the proof, this implies that μ(X\I) = 0. Let f ∈ L1+(μ). It ensues
from Hopf’s ergodic theorem (Theorem 10.3.3) that

lim
n→∞

Snf (x)
a(n)
= lim

n→∞
Snf (x)
Sn1A(x)

lim
n→∞

Sn1A(x)
a(n)
=
∫X f dμ
μ(A)

lim
n→∞

Sn1A(x)
a(n)
=∞

for μ-a. e. x ∈ I, that is, for μ-a. e. x ∈ X since μ(X\I) = 0.
(b) Assume that there does not exist a set B ∈ 𝒜 such that 0 < μ(B) < ∞ and

∫B a(τB(x)) dμ(x) < ∞. Suppose for a contradiction that the conclusion of (b) is not
satisfied. That is, suppose that there exist a set A ∈ 𝒜 with 0 < μ(A) < ∞ and a
function f ∈ L1+(μ) such that

F(x) := lim inf
n→∞

1
a(n)

Snf (x) > 0 for μ-a. e. x ∈ A. (10.17)

ByHopf’s ergodic theorem, this actually holds for every f ∈ L1+(μ), with the same setA.
Moreover, since a(n)

n ↘ as n ↗∞ and f ≥ 0, we have

Snf
a(n)
∘ T ≤ 1

n
⋅

n
a(n)

Sn+1f ≤
1
n
⋅

n + 1
a(n + 1)

Sn+1f = (1 +
1
n
)

Sn+1f
a(n + 1)

.

Using this inequality and Corollary 10.3.4, the function F satisfies

F ∘ T = sup
n∈ℕ

inf
k≥n

Skf ∘ T
a(k)
≤ sup

n∈ℕ
inf
k≥n
(1 + 1

k
)

Sk+1f
a(k + 1)

= sup
n∈ℕ

inf
k≥n

Sk+1f
a(k + 1)

= F
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μ-a. e. on X. That is, F is μ-a. e. T-subinvariant, and hence F is constant μ-a. e. on X by
the ergodicity of T (Exercise 8.5.47 generalizes to any measure space). By (10.17), we
conclude that for every f ∈ L1+(μ) there is a constant c = c(f ) > 0 such that

lim inf
n→∞

1
a(n)

Snf (x) = c for μ-a. e. x ∈ A.

In particular, this applies to the function 1A on the set A, that is,

lim inf
n→∞

1
a(n)

Sn1A(x) = c > 0 for μ-a. e. x ∈ A.

According to Egorov’s theorem (Theorem A.1.44), there is B ∈ 𝒜 such that B ⊆ A,
μ(B) > 0, and over which the sequence (infk≥n

Sk1A
a(k) )
∞
k=1 converges uniformly to c. Con-

sequently, there is K ∈ ℕ such that

Sk1A(x) ≥
c
2
a(k), ∀x ∈ B, ∀k ≥ K.

Since S11A(x) = 1 for all x ∈ B and f ≥ 0, we know that Sk1A(x) ≥ 1 for all k ∈ ℕ and
all x ∈ B. Then there is 0 < c̃ ≤ c/2 such that

Sk1A(x) ≥ c̃ a(k), ∀x ∈ B, ∀k ∈ ℕ.

In particular,

SτB(x)1A(x) ≥ c̃ a(τB(x)), ∀x ∈ B.

It ensues from the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14) (with
T = TB, μ = μB, and φ = (1A)B) and Proposition 10.2.5 that for μ-a. e. x ∈ B,

1
n

n−1
∑
k=0

a(τB(T
k
B(x))) ≤

1
nc̃

n−1
∑
k=0

SτB(Tk
B(x))

1A(T
k
B(x))

=
1
c̃ n

SτnB(x)1A(x) =
1
c̃
⋅
1
n
STBn (1A)B(x)

→
n→∞

1
c̃
∫
B

(1A)B dμB =
1
c̃

1
μ(B)
∫
X

1A dμ =
1
c̃
μ(A)
μ(B)
.

Since μB is TB-invariant, it follows that

∫
B

a(τB) dμ =
1
n

n−1
∑
k=0
∫
B

a(τB) ∘ T
k
B dμ

for every n ∈ ℕ. Passing to the limit n→∞, we conclude that ∫B a(τB) dμ ≤
μ(A)
c̃ μ(B) <∞,

hence contradicting the hypothesis in (b).
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In the second step, no restriction other than strict positivity will be put on
the sequence (an)∞n=1. We will construct a related sequence (a(n))∞n=1 that satisfies
the first step. We will again show that there are only two possibilities: either
lim infn→∞

1
an
Snf (x) = 0 or lim supn→∞

1
an
Snf (x) =∞, for μ-a. e. x ∈ X for all f ∈ L1+(μ).

Theorem 10.3.7. Let T : X → X be an ergodic and conservative measure-preserving
transformation of a σ-finite and infinite measure space (X,𝒜, μ). Let (an)∞n=1 be a se-
quence such that an > 0 for all n ∈ ℕ. Then

(a) either lim inf
n→∞

Snf (x)
an
= 0 for μ-a. e. x ∈ X, ∀f ∈ L1+(μ);

(b) or there is nk ↗∞ such that lim
k→∞

Snk f (x)
ank
=∞ for μ-a. e. x ∈ X, ∀f ∈ L1+(μ).

Proof. If (an)∞n=1 is bounded, then (b) holds. Indeed, let f ∈ L1+(μ). Since ∫X f dμ > 0,
there exist ε > 0 and B ∈ 𝒜 such that μ(B) > 0 and f ≥ ε on B. As T is conservative and
ergodic, Theorem 10.1.11 affirms that μ(X\B∞) = 0. Therefore, for μ-a. e. x ∈ X there
exists a sequence (nk(x))∞k=1 such that nk(x) ↗∞ and Tnk(x)(x) ∈ B. Hence, Snk(x)f (x) ≥
kε. In fact, Snf (x) ≥ kε for any n ≥ nk(x) since f ∈ L1+(μ). Therefore, limn→∞ Snf (x) =∞.
As (an)∞n=1 is bounded, it follows that limn→∞

Snf (x)
an
=∞ for μ-a. e. x ∈ X. So (b) holds

with (nk)∞k=1 = (n)
∞
n=1 when (an)

∞
n=1 is bounded.

We can thereby restrict our attention to the case lim supn→∞ an = ∞. Suppose
that (a) does not hold. That is, there exist a set A ∈ 𝒜 with μ(A) > 0 and a function
f ∈ L1+(μ) such that

F(x) := lim inf
n→∞

Snf (x)
an
> 0 for μ-a. e. x ∈ A. (10.18)

By Hopf’s ergodic theorem (Theorem 10.3.3), this actually holds for every f ∈ L1+(μ),
with the same set A. Then for μ-a. e. x ∈ A,

0 ≤ lim sup
n→∞

an
n
≤ lim sup

n→∞

an
Snf (x)

lim sup
n→∞

Snf (x)
n
= [lim inf

n→∞
Snf (x)
an
]
−1

lim
n→∞

Snf (x)
n
= 0

by (10.18) and Corollary 10.3.4. Thus an = o(n) as n→∞. For every n ∈ ℕ, set

an = max
1≤k≤n

ak .

Clearly, an ≤ an for all n ∈ ℕ and an ↗∞ as n ↗∞. Moreover, for each n ∈ ℕ there is
1 ≤ k(n) ≤ n such that an = ak(n). Note that k(n)→∞ as n→∞. Then

lim inf
n→∞

Snf
an
≥ lim inf

n→∞
Snf
an
= lim inf

n→∞
Snf
ak(n)
≥ lim inf

n→∞

Sk(n)f
ak(n)
≥ lim inf

n→∞
Snf
an
,

where the last inequality follows from the fact that the lim inf of a subsequence of a
sequence is greater than or equal to the lim inf of the full sequence. By this and (10.18),

lim inf
n→∞

Snf
an
= lim inf

n→∞
Snf
an
> 0 μ-a. e. on A, ∀f ∈ L1+(μ). (10.19)
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Next, set bn =
an
n , and let 1 = n0 < n1 < ⋅ ⋅ ⋅ be defined by

{nk}k∈ℕ = {j ≥ 2 : bi > bj, ∀1 ≤ i ≤ j − 1}.

For every k ≥ 0,

bnk > bnk+1 and nkbnk ≤ nk+1bnk+1 ,
whence

0 < nk
nk+1
≤
bnk+1
bnk
< 1.

Thus there exists αk ∈ (0, 1] such that

(
nk
nk+1
)
αk

=
bnk+1
bnk
.

Define

b(x) =
bnkn

αk
k

xαk
, x ∈ [nk , nk+1], k ∈ ℕ, and a(x) = xb(x).

Evidently,

a(nk) = ank , ∀k ∈ ℕ.

By definition of the nk ’s, we have that for k ∈ ℕ, n ∈ [nk , nk+1),

bnk ≤ bn and hence b(n) ≤ bn,

whereby

a(n) ≤ an, ∀n ∈ ℕ.

Hence, following (10.19),

lim inf
n→∞

Snf
a(n)
> 0 μ-a. e. on A, ∀f ∈ L1+(μ).

It is evident that

a(n) ↗∞ and a(n)
n
↘ 0 as n ↗∞.

So by Theorem 10.3.6,

lim
n→∞

Snf
a(n)
=∞ μ-a. e. on X, ∀f ∈ L1+(μ).

Then (b) follows since ank ≤ ank = a(nk).
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10.4 Absolutely continuous σ-finite invariant measures

In this section, we establish a very useful, relatively easy to verify, sufficient con-
dition for a quasi-invariant probability measure to admit an absolutely continuous
σ-finite invariant measure. This condition actually provides a σ-finite invariant mea-
sure equivalent to the original quasi-invariant probability measure. It goes back to
the work of Marco Martens [44] and has been used many times, notably in [40]. It
obtained its nearly final form in [70]. In contrast to Martens, where σ-compact metric
spaces form the setting, the sufficient condition in [70] is stated for abstract measure
spaces, and the proof uses the concept of Banach limit rather than weak convergence.
In this section, we somewhat strengthen the assertions in [70].

We first identify the possible relations between σ-finite invariant measures with
respect to which a system is ergodic and conservative. The following result is an ana-
logue of Theorem 8.2.21.

Theorem 10.4.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. If μ1 and μ2
are σ-finite T-invariant measures and if T is ergodic and conservative with respect to
both measures, then either μ1 and μ2 are mutually singular or else they coincide up to a
positive multiplicative constant.

Proof. We may assume that neither μ1 ≡ 0 nor μ2 ≡ 0. Since both measures are
σ-finite, there is a sequence (Yn)∞n=1 of mutually disjoint measurable sets such that
max{μ1(Yn), μ2(Yn)} <∞ for all n ∈ ℕ and X = ⋃∞n=1 Yn.

First, suppose that μ1(Yn) > 0 for some n ∈ ℕ and that μ1 and μ2 coincide on Yn
up to a positive multiplicative constant. Without loss of generality, assume that n = 1
and that μ1|Y1 = μ2|Y1 . It immediately follows from Corollary 10.2.4 that μ1 = μ2, and
we are done in this case.

Now, assume that μ1 and μ2 do not coincide on X up to any positive multiplicative
constant. For each n ∈ ℕ, select a set Zn in the following way:
(1) If μ1(Yn)⋅μ2(Yn) > 0, it ensues from the previous case that μ1|Yn and μ2|Yn cannot be

equal up to any positive multiplicative constant. Hence, μ1|Yn ̸= μ2|Yn . Combining
Proposition 10.2.7 andTheorem8.2.21,wededuce that themeasuresμ1|Yn andμ2|Yn
are mutually singular, that is, there is a measurable set Zn ⊆ Yn such that μ1(Zn) =
0 and μ2(Yn\Zn) = 0.

(2) If μ1(Yn) = 0, set Zn = Yn.
(3) Otherwise, set Zn = 0. (In this case, μ2(Yn) = 0.)

Observe that Zn ⊆ Yn for all n ∈ ℕ. Therefore, the sets (Zn)∞n=1 are mutually disjoint.
Moreover, setting Z := ⋃∞n=1 Zn ∈ 𝒜, it turns out that

μ1(Z) =
∞

∑
n=1

μ1(Zn) = 0
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while

μ2(X\Z) =
∞

∑
n=1

μ2(Yn\Z) =
∞

∑
n=1

μ2(Yn\Zn) = 0.

So the measures μ1 and μ2 are mutually singular.

The preceding theorem allows us to derive the uniqueness of a σ-finite invariant
measure which is absolutely continuous with respect to a given quasi-invariant mea-
sure, assuming that the transformation is ergodic and conservative with respect to the
quasi-invariant measure.

Theorem 10.4.2. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and m a
σ-finite quasi-T-invariant measure. If T is ergodic and conservative with respect to m
then, up to a positive multiplicative constant, there exists at most one nonzero σ-finite
T-invariant measure μ which is absolutely continuous with respect to m.

Proof. Suppose that μ1 and μ2 are nonzero σ-finite T-invariant measures absolutely
continuous with respect to m. Since m is ergodic and conservative, so are the mea-
sures μ1 and μ2. It follows from Theorem 10.4.1 that if μ1 and μ2 do not coincide up to a
positive multiplicative constant, then they are mutually singular. But this means that
there exists a measurable set Y ⊆ X such that μ1(Y) = 0 and μ2(X\Y) = 0. So

0 ≤ μ1(
∞

⋃
n=0

T−n(Y)) ≤
∞

∑
n=0

μ1(T
−n(Y)) =

∞

∑
n=0

μ1(Y) = 0. (10.20)

On the other hand, μ2(Y) > 0. Since μ2 ≺≺ m, this implies that m(Y) > 0. Thus
m(X\⋃∞n=0 T

−n(Y)) = 0 by virtue of Theorem 10.1.11. Since μ1 ≺≺ m, this forces
μ1(X\⋃

∞
n=0 T
−n(Y)) = 0. Along with (10.20), this gives that μ1(X) = 0. This contra-

dicts the assumption that μ1(X) ̸= 0.

We now introduce the concept of Martens map.

Definition 10.4.3. Let T : (X,𝒜)→ (X,𝒜) be a measurable transformation. Let alsom
be a quasi-T-invariant probability measure. The transformation T is called aMartens
map if it admits a countable family {Xn}∞n=0 of subsets of X with the following proper-
ties:
(a) Xn ∈ 𝒜, ∀n ≥ 0.
(b) m(X\⋃∞n=0 Xn) = 0.
(c) For allm, n ≥ 0, there exists j ≥ 0 such thatm(Xm ∩ T−j(Xn)) > 0.
(d) For all j ≥ 0, there exists Kj ≥ 1 such that for all A,B ∈ 𝒜 with A ∪ B ⊆ Xj and for

all n ≥ 0,

m(T−n(A))m(B) ≤ Kjm(A)m(T
−n(B)).

(e) ∑∞n=0m(T
−n(X0)) =∞.
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(f) T(⋃∞j=l Yj) ∈ 𝒜 for all l ≥ 0, where Yj := Xj\⋃i<j Xi.
(g) lim

l→∞
m(T(⋃∞j=l Yj)) = 0.

The family {Xn}∞n=0 is called aMartens cover.

Remark 10.4.4.
(1) Without loss of generality, condition (b) can be replaced by⋃∞n=0 Xn = X.
(2) Condition (c) imposes thatm(Xn) > 0 for all n ≥ 0.
(3) In light of Corollary 10.1.10, if T is conservative with respect to μ then condition (e)

is fulfilled.
(4) In conditions (f-g), note that⋃∞j=l Yj = ⋃

∞
j=0 Xj\⋃i<l Xi ⊆ X\⋃i<l Xi.

(5) If the map T : X → X is finite-to-one, then condition (g) is satisfied. For then,
⋂∞l=1 T(⋃

∞
j=l Yj) = 0.

Let l∞ denote the Banach space of all bounded real-valued sequences x = (xn)∞n=1
with norm ‖x‖∞ := supn∈ℕ |xn|. Recall that a Banach limit is a shift-invariant positive
continuous linear functional lB : l∞ → ℝ which extends the usual limits. More pre-
cisely, for all sequences x = (xn)∞n=1, y = (yn)

∞
n=1 ∈ l

∞ and α, β ∈ ℝ, the following
properties hold:
(a) lB(αx + βy) = α lB(x) + β lB(y) (linearity).
(b) ‖lB‖ := sup{|lB(x)| : ‖x‖∞ ≤ 1} <∞ (continuity/boundedness).
(c) If x ≥ 0, that is, if xn ≥ 0 for all n ∈ ℕ, then lB(x) ≥ 0 (positivity).
(d) lB(σ(x)) = lB(x), where σ : l∞ → l∞ is the (left) shift map defined by (σ(x))n = xn+1

for all n ∈ ℕ (shift-invariance).
(e) If x is a convergent sequence, then lB(x) = lim

n→∞
xn.

It follows from properties (a), (c) and (e) that a Banach limit also satisfies:
(f) lim inf

n→∞
xn ≤ lB(x) ≤ lim sup

n→∞
xn.

(g) If x ≤ y, that is, if xn ≤ yn for all n ∈ ℕ, then lB(x) ≤ lB(y).

As already announced, the main result of this section is the following.

Theorem 10.4.5. Let (X,𝒜,m) be a probability space and T : X → X a Martens map
with Martens cover {Xj}∞j=0 and for which m is quasi-T-invariant. Then there exists a
σ-finite T-invariant measure μ equivalent to m on X. In addition, 0 < μ(Xj) <∞, ∀j ≥ 0.

A measure μ with the above properties can be constructed as follows. Let lB : l∞ →
ℝ be a Banach limit and let Yj := Xj\⋃i<j Xi for every j ≥ 0. For each A ∈ 𝒜, set

mn(A) :=
∑nk=0m(T

−k(A))
∑nk=0m(T−k(X0))

. (10.21)

If A ∈ 𝒜 and A ⊆ Yj for some j ≥ 0, then (mn(A))∞n=1 ∈ l
∞ and set

μ(A) := lB((mn(A))
∞
n=1). (10.22)
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For a general A ∈ 𝒜, set

μ(A) :=
∞

∑
j=0

μ(A ∩ Yj).

If (mn(A))∞n=1 ∈ l
∞ for some A ∈ 𝒜, then

μ(A) = lB((mn(A))
∞
n=1) − liml→∞

lB((mn(A ∩
∞

⋃
j=l

Yj))
∞

n=0
). (10.23)

In particular, if A ∈ 𝒜 is contained in a finite union of sets Xj, j ≥ 0, then

μ(A) = lB((mn(A))
∞
n=1).

Finally, if T is ergodic and conservativewith respect tom, then μ is unique up to a positive
multiplicative constant and T is ergodic and conservative with respect to μ.

In order to prove Theorem 10.4.5, we need several lemmas.

Lemma 10.4.6. Let (Z,ℱ) be a measurable space such that:
(a) Z = ⋃∞j=0 Zj for some mutually disjoint sets Zj ∈ ℱ; and
(b) νj is a finite measure on Zj for each j ≥ 0.

Then the set function ν : ℱ → [0,∞] defined by

ν(F) :=
∞

∑
j=0

νj(F ∩ Zj)

is a σ-finite measure on Z.

Proof. Clearly, ν(0) = 0. Let F ∈ ℱ and {Fn}∞n=1 a partition of F into sets in ℱ . Then

ν(F) =
∞

∑
j=0

νj(F∩Zj) =
∞

∑
j=0

νj(
∞

⋃
n=1
(Fn∩Zj)) =

∞

∑
j=0

∞

∑
n=1

νj(Fn∩Zj) =
∞

∑
n=1

∞

∑
j=0

νj(Fn∩Zj) =
∞

∑
n=1

ν(Fn),

where the order of summation could be changed since all terms involved are non-
negative. Thus ν is a measure. Moreover, by definition, Z = ⋃∞j=0 Zj and ν(Zj) = νj(Zj) <
∞ for all j ≥ 0. Therefore, ν is σ-finite.

From this point on, all lemmas rely on the same main hypotheses as Theo-
rem 10.4.5.

Lemma 10.4.7. For all n, j ≥ 0 and all A,B ∈ 𝒜 with A ∪ B ⊆ Xj, we have

mn(A)m(B) ≤ Kjm(A)mn(B).
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Proof. This follows directly from the definition of mn and condition (d) of Defini-
tion 10.4.3.

Lemma 10.4.8. For every j ≥ 0, we have (mn(Xj))∞n=1 ∈ l
∞ and μ(Yj) ≤ μ(Xj) <∞.

Proof. Fix j ≥ 0. In virtue of condition (c) of Definition 10.4.3, there exists q ≥ 0 such
that m(Xj ∩ T−q(X0)) > 0. By Lemma 10.4.7 and the definition of mn, for all n ≥ 0 we
have that

mn(Yj) ≤ mn(Xj) ≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
mn(Xj ∩ T

−q(X0))

≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
mn(T
−q(X0))

≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
∑n+qk=0m(T

−k(X0))
∑nk=0m(T−k(X0))

= Kj
m(Xj)

m(Xj ∩ T−q(X0))
[1 +
∑n+qk=n+1m(T

−k(X0))
∑nk=0m(T−k(X0))

]

≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
[1 + q

m(X0)
]. (10.24)

Consequently, (mn(Xj))∞n=1 ∈ l
∞ and properties (g) and (e) of a Banach limit yield that

μ(Yj) ≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
[1 + q

m(X0)
] <∞.

Since Xj = ⋃
j
i=0 Yi and the Yi’s are mutually disjoint, we deduce that

μ(Yj) ≤
j
∑
i=0

μ(Xj ∩ Yi) =
∞

∑
i=0

μ(Xj ∩ Yi) =: μ(Xj) ≤
j
∑
i=0

μ(Yi) <∞.

For every j ≥ 0, set μj := μ|Yj .

Lemma 10.4.9. For every j ≥ 0 such that μ(Yj) > 0 and for every measurable set A ⊆ Yj,
we have

K−1j
μ(Yj)
m(Yj)

m(A) ≤ μj(A) ≤ Kj
μ(Yj)
m(Yj)

m(A).

Proof. This follows from the definition of μ, and by setting B = Yj in Lemma 10.4.7 and
using properties (a) and (g) of a Banach limit.

Lemma 10.4.10. For each j ≥ 0, μj is a finite measure on Yj.
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Proof. Let j ≥ 0. If μj(Yj) = 0, then the result is trivial. So assume that μj(Yj) > 0. Let
A ⊆ Yj be a measurable set and (Ak)∞k=1 a countable measurable partition of A. Using
termwise operations on sequences, for every l ∈ ℕ we have

(
∞

∑
k=1

mn(Ak))
∞

n=1
−

l
∑
k=1
(mn(Ak))

∞
n=1 = (

∞

∑
k=1

mn(Ak))
∞

n=1
− (

l
∑
k=1

mn(Ak))
∞

n=1

= (
∞

∑
k=l+1

mn(Ak))
∞

n=1
.

It therefore follows from Lemma 10.4.7 (with A = Ak and B = Yj) that


(
∞

∑
k=1

mn(Ak))
∞

n=1
−

l
∑
k=1
(mn(Ak))

∞
n=1

∞
=

(
∞

∑
k=l+1

mn(Ak))
∞

n=1

∞

≤


Kj
m(Yj)
(mn(Yj)

∞

∑
k=l+1

m(Ak))
∞

n=1

∞

=
Kj

m(Yj)


(mn(Yj)

∞

∑
k=l+1

m(Ak))
∞

n=1

∞
.

Since (mn(Yj))∞n=1 ∈ l
∞ by Lemma 10.4.8 and since liml→∞∑

∞
k=l+1m(Ak) = 0, we con-

clude that

lim
l→∞


(
∞

∑
k=1

mn(Ak))
∞

n=1
−

l
∑
k=1
(mn(Ak))

∞
n=1

∞
= 0.

This means that

(
∞

∑
k=1

mn(Ak))
∞

n=1
=
∞

∑
k=1
(mn(Ak))

∞
n=1 in l∞.

Hence, using the continuity of the Banach limit lB : l∞ → ℝ, we get

μ(A) = lB((mn(A))
∞
n=1) = lB((mn(

∞

⋃
k=1

Ak))
∞

n=1
) = lB((

∞

∑
k=1

mn(Ak))
∞

n=1
)

=
∞

∑
k=1

lB((mn(Ak))
∞
n=1) =

∞

∑
k=1

μ(Ak).

So μj is countably additive. Also, μj(0) = 0. Thus μj is ameasure. By Lemma 10.4.8, this
measure μj is finite.

Combining Lemmas 10.4.6, 10.4.8, 10.4.9, and 10.4.10, and condition (b) of Defini-
tion 10.4.3, we obtain the following.
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Lemma 10.4.11. The set function μ is a σ-finite measure on X equivalent to m. Moreover,
μ(Yj) ≤ μ(Xj) <∞ and μ(Xj) > 0 for all j ≥ 0.

Lemma 10.4.12. Formula (10.23) holds.

Proof. Fix A ∈ 𝒜 such that (mn(A))∞n=1 ∈ l
∞. For every l ∈ ℕ, we then have

lB((mn(A))
∞
n=1) = lB(

l
∑
j=0
(mn(A ∩ Yj))

∞
n=1) + lB((mn(

∞

⋃
j=l+1

A ∩ Yj))
∞

n=1
)

=
l
∑
j=0

lB((mn(A ∩ Yj))
∞
n=1) + lB((mn(A ∩

∞

⋃
j=l+1

Yj))
∞

n=1
).

Letting l →∞, we deduce that

lB((mn(A))
∞
n=1) =

∞

∑
j=0

lB((mn(A ∩ Yj))
∞
n=1) + liml→∞

lB((mn(A ∩
∞

⋃
j=l+1

Yj))
∞

n=1
)

=
∞

∑
j=0

μ(A ∩ Yj) + liml→∞
lB((mn(A ∩

∞

⋃
j=l

Yj))
∞

n=1
)

= μ(A) + lim
l→∞

lB((mn(A ∩
∞

⋃
j=l

Yj))
∞

n=1
).

This establishes formula (10.23). In particular, if A ⊆ ⋃kj=0 Xj for some k ∈ ℕ, then
A ∩ ⋃∞j=l Yj ⊆ (⋃

k
j=0 Xj) ∩ (X\⋃i<l Xi) = 0 for all l > k. In that case, the equation above

reduces to

lB((mn(A))
∞
n=1) = μ(A).

Lemma 10.4.13. The σ-finite measure μ is T-invariant.

Proof. Let i ≥ 0 be such that m(Yi) > 0. Fix a measurable set A ⊂ Yi. By definition,
μ(A) = lB((mn(A))∞n=1). Furthermore, for all n ≥ 0 notice that

mn(T
−1(A)) −mn(A)

 =
m(T
−(n+1)(A)) −m(A)
∑nk=0m(T−k(X0))

≤
1

∑nk=0m(T−k(X0))
.

Thus (mn(T−1(A)))
∞
n=1 ∈ l

∞ because (mn(A))∞n=1 ∈ l
∞. Moreover, by condition (e) of

Definition 10.4.3, it follows from the above and properties (a), (e), and (g) of a Banach
limit that lB((mn(T−1(A)))∞n=1) = lB((mn(A))∞n=1) = μ(A).

Keep A a measurable subset of Yi. Fix l ∈ ℕ. We then have

mn(T
−1(A) ∩

∞

⋃
j=l

Yj) =
∑nk=0m(T

−k(T−1(A) ∩⋃∞j=l Yj))
∑nk=0m(T−k(X0))

≤
∑nk=0m(T

−(k+1)(A ∩ T(⋃∞j=l Yj)))
∑nk=0m(T−k(X0))
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≤ mn+1(A ∩ T(
∞

⋃
j=l

Yj)) ⋅
∑n+1k=0m(T

−k(X0))
∑nk=0m(T−k(X0))

≤ Ki
mn+1(Yi)
m(Yi)

⋅m(A ∩ T(
∞

⋃
j=l

Yj)) ⋅
∑n+1k=0m(T

−k(X0))
∑nk=0m(T−k(X0))

,

where the last inequality sign holds by Lemma 10.4.7 since A ⊆ Yi. When n →∞, the
last quotient on the right-hand side approaches 1. Therefore,

0 ≤ lB((mn(T
−1(A) ∩

∞

⋃
j=l

Yj))
∞

n=1
) ≤ Ki

μ(Yi)
m(Yi)

m(T(
∞

⋃
j=l

Yj)).

Hence, by virtue of condition (g) of Definition 10.4.3,

0 ≤ lim
l→∞

lB((mn(T
−1(A) ∩

∞

⋃
j=l

Yj))
∞

n=1
) ≤ Ki

μ(Yi)
m(Yi)

lim
l→∞

m(T(
∞

⋃
j=l

Yj)) = 0.

So

lim
l→∞

lB((mn(T
−1(A) ∩

∞

⋃
j=l

Yj))
∞

n=1
) = 0.

It thus follows from Lemma 10.4.12 that

μ(T−1(A)) = lB((mn(T
−1(A)))∞n=1) = lB((mn(A))

∞
n=1) = μ(A).

For an arbitrary A ∈ 𝒜, write A = ⋃∞j=0(A ∩ Yj) and observe that

μ(T−1(A)) = μ(
∞

⋃
j=0

T−1(A ∩ Yj)) =
∞

∑
j=0

μ(T−1(A ∩ Yj)) =
∞

∑
j=0

μ(A ∩ Yj) = μ(A).

Proof of Theorem 10.4.5. Combining Lemmas 10.4.8, 10.4.11, 10.4.12, and 10.4.13, with
Theorems 10.4.2 and 10.1.11, we obtain Theorem 10.4.5.

Remark 10.4.14. In the course of the proof of Theorem 10.4.5, we have shown that

0 < inf{mn(A) : n ∈ ℕ} ≤ sup{mn(A) : n ∈ ℕ} <∞

for all j ≥ 0 and all measurable sets A ⊆ Xj such thatm(A) > 0.

10.5 Exercises

Exercise 10.5.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation for which
there is a completely T-invariant set A ∈ 𝒜\{0,X}. Assume also that there exist a
T|A-invariant probability measure ν on (A,𝒜|A) and a T|X\A-invariant probability mea-
sure κ on (X\A,𝒜|X\A). Set μ(B) = ν(B ∩ A) + κ(B\A) for all B ∈ 𝒜.
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(a) Prove that μ is a T-invariant measure on (X,𝒜).
(b) Show that 0 < μ(A) <∞ and μ(A\A∞) = 0.
(c) Deduce that μA = ν and is TA-invariant.
(d) Show that μ(X\⋃∞k=0 T

−k(A)) ̸= 0.
(e) Let μ̃ be the measure induced by ν = μA.
(1) Prove that μ(A) = 1 = μ̃(A).
(2) Prove that μ(X\A) = 1 whereas μ̃(X\A) = 0.
(3) Conclude that there is no c ∈ ℝ such that μ̃ = cμ. In particular, μ̃ ̸= μ.

Exercise 10.5.2. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
T-invariant measure. Fix A ∈ 𝒜 such that 0 < μ(A) < ∞ and μ(A\A∞) = 0. So, from
this point on, A will be identified with A ∩ A∞.

The first return time function τA : A → ℕ was defined in (10.1) while the first
return map TA : A→ A was introduced in (10.2).

Similarly, for every n ∈ ℕ the nth return time function τnA : A→ ℕ is defined by

τnA(x) := min{k ∈ ℕ : #{1 ≤ j ≤ k : T j(x) ∈ A} = n }.

The nth return map TnA : A→ A is subsequently defined as

TnA(x) = T
τnA(x)(x).

Finally, let φ : X → ℝ be a measurable function. The function φA : A → ℝ was
defined in (10.11). The nth Birkhoff sum of φA under TA at a point x ∈ A is denoted by
STAn φA : A→ ℝ and is naturally given by

STAn φA(x) =
n−1
∑
i=0

φA(T
i
A(x)).

(a) Show that TnA = TA ∘ TA . . . ∘ TA, with n copies of TA in the composition. In other
words, show that the nth returnmap TnA is the usual n-time composition of the first
return map TA.

(b) Prove that τnA(x) = ∑
n−1
i=0 τA(T

i
A(x)) = S

TA
n τA(x). In other terms, the nth return time

is the sum of the first return times of the first n iterates of x that fall into A.
(c) Deduce that τn+1A (x) − τ

n
A(x) = τA(T

n
A(x)).

(d) Show that SτnA(x)φ(x) = ∑
n−1
k=0 SτA(Tk

A(x))
φ(TkA(x)) = S

TA
n φA(x).

(e) Given x ∈ A and k ∈ ℕ, let n(x) be the largest integer n ≥ 0 such that τnA(x) ≤ k.
In other words, n(x) is the number of times that the iterates of x visit A by time k,
and τn(x)A (x) is the last time at which an iterate of x falls into A prior to or at time k.
Demonstrate that

Skφ(x) = S
TA
n(x)φA(x) + SΔk(x)φ(T

n(x)
A (x)),

where Δk(x) := k − τn(x)A (x) ≥ 0.
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(f) Show that |φA| ≤ |φ|A.
(g) Prove that SΔk(x)φ(T

n(x)
A (x)) ≤ |φ|A(T

n(x)
A (x)).

Exercise 10.5.3. In this exercise, you will give a proof of Proposition 10.3.5. You will
first establish the proposition under the additional assumption that a(0) = 0.
(a) Prove that a(x + y) ≤ a(x) + a(y) for all x, y ∈ [0,∞).
(b) Show that

lim
M→∞

a(|f |1{|f |≥M}(x)) = 0 for μ-a. e. x ∈ X.

(c) Deduce that

lim
M→∞
∫
X

a(|f |1{|f |≥M}) dμ = 0.

(d) Fix ε > 0. From (c), identify two nonnegative functions g, h ∈ L1(μ) such that

|f | = g + h, sup
x∈X

g(x) <∞, and ∫
X

a(h) dμ < ε.

(e) Using (a) and (d), show that

lim sup
n→∞

a(|Snf (x)|)
n
≤ ∫

X

a(h) dμ.

(f) Conclude that

lim
n→∞

a(|Snf (x)|)
n
= 0 for μ-a. e. x ∈ X.

You will now establish the proposition without the assumption that a(0) = 0. Choose
m > 0 such that a(m) = αm for some 0 < α < 1, and define

ã(x) = { αx if 0 ≤ x ≤ m
a(x) if x ≥ m.

(g) Show that ã is continuous, strictly increasing, ã ≡ a on [m,∞), ã(x)x ↘ 0 as x ↗∞,
and ã(0) = 0.

(h) Deduce that

lim
n→∞

ã(|Snf (x)|)
n
= 0 for μ-a. e. x ∈ X.

(i) Conclude that

lim
n→∞

a(|Snf (x)|)
n
= 0 for μ-a. e. x ∈ X.
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Exercise 10.5.4. LetX = ℝ, λ be the Lebesguemeasure onℝ, andT : ℝ→ ℝbeBoole’s
transformation defined by T(x) = x − 1

x .
(a) Prove that λ is T-invariant.
(b) Show that T is conservative.

Exercise 10.5.5. For each i = 1, 2, let Ti : (Xi,𝒜i, μi) → (Xi,𝒜i, μi) be a measurable
transformation of a probability space (Xi,𝒜i, μi) such that μi is quasi-Ti-invariant.
The Cartesian product transformation T = T1 × T2 is defined on the product space
(X,𝒜, μ) := (X1 ×X2,𝒜1 ×𝒜2,m1 ×m2) by T(x1, x2) = (T1(x1),T2(x2)) (cf. Example 8.1.13).
Prove that if T1 is measure-preserving and T2 is conservative, then T1 × T2 is conserva-
tive.

Exercise 10.5.6. Generalize Exercise 8.5.47 to every measure space.

Exercise 10.5.7. Let S : (XS ,𝒜S , μS) → (XS ,𝒜S , μS) be a measurable transformation of
a σ-finite measure space (XS ,𝒜S , μS). Let φ : XS → ℕ be a measurable function. The
Kakutani tower over T with height function φ is the transformation T of the σ-finite
measure space (XT ,𝒜T , μT ) defined as follows:

XT = {(x, n) : x ∈ XS and n ≤ φ(x)},

𝒜T = σ({A × {n} : n ∈ ℕ and A = AS ∩ φ
−1([n,∞)) for some AS ∈ 𝒜S}),

μT (A × {n}) = μS(A),

and

T(x, n) = { (S(x),φ(S(x))) if n = 1,
(x, n − 1) if n ≥ 2.

Prove the following statements:
(a) If μS is quasi-S-invariant, then μT is quasi-T-invariant.
(b) If S is conservative, then so is T.
(c) TXS×{1}(x, 1) ≡ (S(x), 1) and φXS×{1}(x, 1) ≡ φ(x).
(d) If μS is S-invariant, then μT is T-invariant.
(e) If S is ergodic, then so is T.
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11 Topological pressure
In the forthcoming three chapters (the third one being part of the second volume), we
introduce and extensively deal with the fundamental concepts and results of thermo-
dynamic formalism, including topological pressure, the so-called variational princi-
ple, equilibrium states, and Gibbs states.

Thermodynamic formalism originated from the works of David Ruelle in the late
1960s. Ruelle’smotivation came from statisticalmechanics, particularly glass lattices.
The foundations, classical concepts, and theorems of thermodynamic formalismwere
developed throughout the 1970s in the earlyworks of Ruelle [59, 60], RufusBowen [10],
Peter Walters [75], and Yakov Sinai [68]. More recent and modern expositions can be
found in [57, 61, 76], among others. Also worthy of mention is Michal Misiurewicz’s
paper [49], where an elegant, short, and simple proof of the variational principle was
provided. This is the proof we shall reproduce in Chapter 12.

In Chapter 11, we define and investigate the properties of topological pressure.
Like topological entropy, this is a topological concept and a topological conjugacy in-
variant. We further give Bowen’s characterization of pressure in terms of separated
and spanning sets, which however requires a metric.

In Chapter 12, we relate topological pressure with Kolmogorov–Sinai metric en-
tropy by proving the variational principle, the very cornerstone of thermodynamic for-
malism. This principle naturally leads to the concepts of equilibrium states and mea-
sures of maximal entropy. We deal with those at length in that chapter, particularly
through the problem of existence of equilibrium states. Among others, we will show
that under a continuouspotential every expansive systemadmits an equilibriumstate.

Whereas in Chapters 11 and 12 we consider general topological dynamical sys-
tems, in Chapter 13 wewill restrict our attention to transitive open distance expanding
maps.Wewill introduce therein the concept of Gibbsmeasures for suchmaps.Wewill
also prove their existence and uniqueness for Hölder continuous potentials. We will
further demonstrate that they coincide with equilibrium states for these potentials,
concomitantly establishing the uniqueness of equilibrium states.

Gibbs states are measures with particularly fine and transparent stochastic prop-
erties, such as the central limit theorem, the law of the iterated logarithm, and expo-
nential decay of correlations. They are used to describe long-term unstable behaviors
of typical orbits of a given dynamical system having Gibbs states. Apart from such
direct application to dynamical systems, thermodynamic formalism was used to pro-
vided a full account of SRB (Sinai–Ruelle–Bowen) measures for Axiom A diffeomor-
phisms and flows, and many other dynamical systems. Via Bowen’s formula, thermo-
dynamic formalism is also an indispensable tool for studying the fractal geometry of
nonlinear smooth dynamical systems, particularly conformal and holomorphic ones.
This is at the heart of Chapter 16 and a guiding theme in all subsequent chapters.

The main tool for dealing with Gibbs states is the transfer, also frequently called
Perron–Frobenius, operator. We prove many of its functional analytic properties;

https://doi.org/10.1515/9783110702682-011
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among them its almost periodicity if acting on the Banach space of continuous func-
tions and its quasi–compactness if acting on the Banach space of Hölder continuous
functions. In addition to quasi-compactness, we show that this operator has only
one (and real) eigenvalue of maximal modulus and this eigenvalue is simple. The
corresponding eigenfunction turns out to be the Radon–Nikodym derivative of the
invariant Gibbs state with respect to the eigenmeasure of the dual transfer operator.

11.1 Definition of topological pressure via open covers

Recall that a topological dynamical system T : X → X is a self-transformation T of a
compact metrizable space X. Let φ : X → ℝ be a real-valued continuous function. In
the context of topological pressure (for historical, physical reasons), such a function
is usually referred to as a potential.

The topological pressure of a potential is defined in two stages. Thismay seem sur-
prising since topological entropy was defined in three stages in Chapter 7. However,
the main reason for defining topological entropy in three stages was so as to later mir-
ror it in the definition ofmeasure-theoretic entropy in Chapter 9. Indeed, the first stage
might just as well have been omitted and we would then have proceeded immediately
to the second stage by defining Zn(𝒰) directly and deriving its properties without re-
lying upon the fact that Zn(𝒰) = Z1(𝒰n). The first stage for topological entropy proves
to be useless when defining topological pressure since, as we will shortly discover,
Zn(φ,𝒰) ̸= Z1(φ,𝒰n) in general.

11.1.1 First stage: pressure of a potential relative to an open cover

Let us first recall the notion of Birkhoff (or ergodic) sum (cf. Definition 8.2.10). The nth
Birkhoff sum of a potential φ at a point x ∈ X is given by

Snφ(x) :=
n−1
∑
j=0

φ(T j(x)).

This is the sum of the values of the potential φ at the first n iterates of x under T.

Definition 11.1.1. For every Y ⊆ X and n ∈ ℕ, define

Snφ(Y) := sup
y∈Y

Snφ(y) and Snφ(Y) := infy∈Y
Snφ(y).

Now, let 𝒰 be an open cover of X. The minimum number Zn(𝒰) of elements of 𝒰n

required to cover X (cf. Definition 7.2.6) generalises to the real numbers Zn(φ,𝒰) and
zn(φ,𝒰) as follows.
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Definition 11.1.2. Let T : X → X be a topological dynamical system and let φ : X →
ℝ be a potential. Let 𝒰 be an open cover of X. For each n ∈ ℕ, define the nth level
functions (sometimes called partition functions) of 𝒰 with respect to the potential φ
by

Zn(φ,𝒰) := inf{ ∑
V∈𝒱

eSnφ(V) : 𝒱 is a subcover of 𝒰n}

and

zn(φ,𝒰) := inf{ ∑
V∈𝒱

eSnφ(V) : 𝒱 is a subcover of 𝒰n}.

Remark 11.1.3.
(a) It is sufficient to take the infimum over all finite subcovers since the exponential

function takes only positive values and every subcover has itself a finite subcover.
However, this infimummay not be achieved if 𝒰 is infinite.

(b) In general, Zn(φ,𝒰) ̸= Z1(φ,𝒰n) and zn(φ,𝒰) ̸= z1(φ,𝒰n).
(c) If φ ≡ 0, then Zn(0,𝒰) = zn(0,𝒰) = Zn(𝒰) for all n ∈ ℕ and any open cover 𝒰 of X.
(d) If φ ≡ c for some c ∈ ℝ, then Zn(c,𝒰) = zn(c,𝒰) = encZn(𝒰) for all n ∈ ℕ and every

open cover 𝒰 of X.
(e) For all open covers 𝒰 of X and all n ∈ ℕ, we have

en infφZn(𝒰) ≤ Zn(φ,𝒰) ≤ e
n supφZn(𝒰)

and

en infφZn(𝒰) ≤ zn(φ,𝒰) ≤ e
n supφZn(𝒰).

Wehave seen in Chapter 7 that the functions Zn(⋅), n ∈ ℕ, behavewell with respect
to all cover operations. In particular, it was observed in Lemma 7.2.8 that they respect
the refinement relation, that is, if 𝒰 ≺ 𝒱 then Zn(𝒰) ≤ Zn(𝒱) for every n ∈ ℕ. This
is not necessarily true for the partition functions Zn(φ, ⋅), n ∈ ℕ. The corresponding
inequality is more intricate. It involves the concept of oscillation.

Definition 11.1.4. The oscillation of φ with respect to an open cover 𝒰 is defined to be

osc(φ,𝒰) := sup
U∈𝒰

sup
x,y∈U

φ(y) − φ(x)
.

Note that osc(φ, ⋅) ≤ 2‖φ‖∞. Also, osc(c, ⋅) = 0 for all c ∈ ℝ.

Lemma 11.1.5. For every n ∈ ℕ and every open cover 𝒰 of X,

osc(Snφ,𝒰
n) ≤ n osc(φ,𝒰).

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



352 | 11 Topological pressure

Proof. Let V := U0 ∩ ⋅ ⋅ ⋅ ∩ T−(n−1)(Un−1) ∈ 𝒰
n and x, y ∈ V . For each 0 ≤ j < n, we have

that T j(x),T j(y) ∈ Uj ∈ 𝒰 . Hence, for all 0 ≤ j < n,

φ(T
j(x)) − φ(T j(y)) ≤ osc(φ,𝒰).

Therefore,

Snφ(x) − Snφ(y)
 ≤

n−1
∑
j=0

φ(T
j(x)) − φ(T j(y)) ≤ n osc(φ,𝒰).

Since this is true for all x, y ∈ V and all V ∈ 𝒰n, the result follows.

We now look at the relationship between the Zn’s and the zn’s.

Lemma 11.1.6. For all n ∈ ℕ and all open covers U of X, the following inequalities hold:

zn(φ,𝒰) ≤ Zn(φ,𝒰) ≤ e
n osc(φ,𝒰)zn(φ,𝒰).

Proof. The left inequality is obvious. To ascertain the right one, let 𝒲 be a subcover
of 𝒰n. Then

∑
W∈𝒲

eSnφ(W) ≤ exp( sup
W∈𝒲
[ Snφ(W) − Snφ(W) ]) ∑

W∈𝒲
eSnφ(W)

≤ eosc(Snφ,𝒰
n) ∑

W∈𝒲
eSnφ(W) ≤ en osc(φ,𝒰) ∑

W∈𝒲
eSnφ(W).

Taking the infimum over all subcovers of 𝒰n on both sides results in the right inequal-
ity.

In the next few results, we will see that the Zn’s and the zn’s have distinct proper-
ties.

Lemma 11.1.7. If 𝒰 ≺ 𝒱, then for all n ∈ ℕ we have that

Zn(φ,𝒰)e
−n osc(φ,𝒰) ≤ Zn(φ,𝒱) while zn(φ,𝒰) ≤ zn(φ,𝒱).

Proof. Fix n ∈ ℕ. Let i : 𝒱 → 𝒰 be a map such that V ⊆ i(V) for all V ∈ 𝒱. The map i
induces amap in : 𝒱n → 𝒰n in the followingway. For everyW := V0∩⋅ ⋅ ⋅∩T−(n−1)(Vn−1) ∈
𝒱n, define

in(W) := i(V0) ∩ ⋅ ⋅ ⋅ ∩ T
−(n−1)(i(Vn−1)).

Observe thatW ⊆ in(W) ∈ 𝒰n for allW ∈ 𝒱n. Moreover, if x ∈ W and y ∈ in(W), then
for each 0 ≤ j < n we have that T j(x) ∈ Vj ⊆ i(Vj) ∋ T j(y). So T j(x),T j(y) ∈ i(Vj) for all
0 ≤ j < n. Hence, x, y ∈ in(W) ∈ 𝒰n, and thus

Snφ(x) ≥ Snφ(y) − osc(Snφ,𝒰
n).
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Taking the supremum over all x ∈ W on the left-hand side and over all y ∈ in(W) on
the right-hand side yields

Snφ(W) ≥ Snφ(in(W)) − osc(Snφ,𝒰
n).

Now, let𝒲 be a subcover of 𝒱n. Then in(𝒲) := {in(W) : W ∈ 𝒲} is a subcover of 𝒰n.
Therefore,

∑
W∈𝒲

eSnφ(W) ≥ e−osc(Snφ,𝒰
n) ∑

W∈𝒲
eSnφ(in(W))

≥ e−osc(Snφ,𝒰
n) ∑

Y∈in(𝒲)
eSnφ(Y)

≥ e−osc(Snφ,𝒰
n)Zn(φ,𝒰).

Taking the infimum over all subcovers 𝒲 of 𝒱n on the left-hand side and using
Lemma 11.1.5, we conclude that

Zn(φ,𝒱) ≥ e
−osc(Snφ,𝒰n)Zn(φ,𝒰) ≥ e

−n osc(φ,𝒰)Zn(φ,𝒰).

The proof of the inequality for the zn’s is left to the reader.

In Lemma 7.2.9, we saw that the functions Zn(⋅) are submultiplicative with respect
to the join operation; in other words, Zn(𝒰 ∨ 𝒱) ≤ Zn(𝒰)Zn(𝒱) for all n ∈ ℕ. The corre-
sponding property for the functions Zn(φ, ⋅) and zn(φ, ⋅) is the following.

Lemma 11.1.8. Let 𝒰 and 𝒱 be open covers of X and let n ∈ ℕ. Then

Zn(φ,𝒰 ∨ 𝒱) ≤ min{Zn(φ,𝒰) ⋅ Zn(𝒱), Zn(𝒰) ⋅ Zn(φ,𝒱)}

and

zn(φ,𝒰 ∨ 𝒱) ≤ min{en osc(φ,𝒰)zn(φ,𝒰) ⋅ Zn(𝒱), Zn(𝒰) ⋅ e
n osc(φ,𝒱)zn(φ,𝒱)}.

Proof. The proof is left to the reader as an exercise.

We have also seen in Lemma 7.2.10 that the sequence (Zn(𝒰))∞n=1 is submultiplica-
tive. This property is retained by the Zn(φ,𝒰)’s but generally not by the zn(φ,𝒰)’s (see
Exercise 11.5.2).

Lemma 11.1.9. Given an open cover 𝒰 of X, the sequence (Zn(φ,𝒰))∞n=1 is submultiplica-
tive.

Proof. Fix m, n ∈ ℕ, let 𝒱 be a subcover of 𝒰m and 𝒲 a subcover of 𝒰n. Note that
𝒱 ∨ T−m(𝒲) is a subcover of 𝒰m+n since it is a cover and

𝒱 ∨ T−m(𝒲) ⊆ 𝒰m ∨ T−m(𝒰n) = 𝒰m+n.
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Take arbitrary V ∈ 𝒱 andW ∈ 𝒲. Then for every x ∈ V ∩ T−m(W), we have x ∈ V and
Tm(x) ∈ W , and hence

Sm+nφ(x) = Smφ(x) + Snφ(T
m(x)) ≤ Smφ(V) + Snφ(W).

Taking the supremum over all x ∈ V ∩ T−m(W), we deduce that

Sm+nφ(V ∩ T
−m(W)) ≤ Smφ(V) + Snφ(W).

Therefore,

Zm+n(φ,𝒰) ≤ ∑
E∈𝒱∨T−m(𝒲)

eSm+nφ(E)

≤ ∑
V∈𝒱
∑

W∈𝒲
eSm+nφ(V∩T

−m(W))

≤ ∑
V∈𝒱
∑

W∈𝒲
eSmφ(V)eSnφ(W)

= ∑
V∈𝒱

eSmφ(V) ∑
W∈𝒲

eSnφ(W).

Taking the infimum of the right-hand side over all subcovers 𝒱 of 𝒰m and over all
subcovers𝒲 of 𝒰n gives

Zm+n(φ,𝒰) ≤ Zm(φ,𝒰)Zn(φ,𝒰).

We immediately deduce the following fact.

Corollary 11.1.10. The sequence (log Zn(φ,𝒰))∞n=1 is subadditive for every open cover 𝒰
of X.

Thanks to this fact, we can define the topological pressure of a potential with re-
spect to an open cover. This constitutes the first step in the definition of the topological
pressure of a potential.

Definition 11.1.11. The topological pressure of a potentialφ : X → ℝwith respect to an
open cover 𝒰 of X, denoted by P(T ,φ,𝒰), is defined to be

P(T ,φ,𝒰) := lim
n→∞

1
n
log Zn(φ,𝒰) = infn∈ℕ

1
n
log Zn(φ,𝒰).

The existence of the limit and its equality with the infimum follow from Lem-
ma 3.2.17 and Corollary 11.1.10, just as in the corresponding Definition 7.2.12 for topo-
logical entropy.

It is also possible to define similar quantities using the zn(φ,𝒰)’s rather than the
Zn(φ,𝒰)’s.
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Definition 11.1.12. Given a potential φ : X → ℝ and an open cover 𝒰 of X, let

p(T ,φ,𝒰) := lim inf
n→∞

1
n
log zn(φ,𝒰) and p(T ,φ,𝒰) := lim sup

n→∞

1
n
log zn(φ,𝒰).

Remark 11.1.13. Let 𝒰 be an open cover of X.
(a) P(T ,0,𝒰) = p(T ,0,𝒰) = p(T ,0,𝒰) = htop(T ,𝒰) by Remark 11.1.3(c).
(b) By Remark 11.1.3(e),

−∞ < htop(T ,𝒰) + infφ ≤ P(T ,φ,𝒰) ≤ htop(T ,𝒰) + supφ <∞.

These inequalities also hold with P(T ,φ,𝒰) replaced by p(T ,φ,𝒰) and p(T ,φ,𝒰),
respectively.

(c) Using Lemma 11.1.6,

p(T ,φ,𝒰) ≤ p(T ,φ,𝒰) ≤ P(T ,φ,𝒰) ≤ p(T ,φ,𝒰) + osc(φ,𝒰).

We have seen in Proposition 7.2.14 that the topological entropy relative to covers
respects the refinement relation and is subadditive with respect to the join operation.
The topological pressure satisfies the following similar properties.

Proposition 11.1.14. Let 𝒰 and 𝒱 be open covers of X.
(a) If 𝒰 ≺ 𝒱, then P(T ,φ,𝒰) − osc(φ,𝒰) ≤ P(T ,φ,𝒱) while

p(T ,φ,𝒰) ≤ p(T ,φ,𝒱) and p(T ,φ,𝒰) ≤ p(T ,φ,𝒱).

(b) P(T ,φ,𝒰 ∨ 𝒱) ≤ min{P(T ,φ,𝒰) + htop(T ,𝒱),P(T ,φ,𝒱) + htop(T ,𝒰)} whereas

p(T ,φ,𝒰 ∨ 𝒱) ≤ min{p(T ,φ,𝒰) + osc(φ,𝒰) + htop(T ,𝒱),
p(T ,φ,𝒱) + osc(φ,𝒱) + htop(T ,𝒰)}

and a similar inequality with p replaced by p.

Proof. Part (a) is an immediate consequence of Lemma 11.1.7 while (b) follows directly
from Lemma 11.1.8.

We have proved in Lemma 7.2.15 that the entropy of a system relative to covers
remains the same for all dynamical covers generated by a given cover. The topological
pressure of a potential has a similar property.

Lemma 11.1.15. If 𝒰 is an open cover of X, then

p(T ,φ,𝒰n) = p(T ,φ,𝒰) and p(T ,φ,𝒰n) = p(T ,φ,𝒰)

whereas P(T ,φ,𝒰n) ≤ P(T ,φ,𝒰) for all n ∈ ℕ. In addition, if 𝒰 is an open partition of X,
then P(T ,φ,𝒰n) = P(T ,φ,𝒰) for all n ∈ ℕ.
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Proof. Fix n ∈ ℕ. For all k ∈ ℕ and all x ∈ X, we already know that

Sk+n−1φ(x) = Skφ(x) + Sn−1φ(T
k(x)).

Therefore,

Skφ(x) − ‖Sn−1φ‖∞ ≤ Sk+n−1φ(x) ≤ Skφ(x) + ‖Sn−1φ‖∞.

Hence, for any subset Y of X,

Skφ(Y) − ‖Sn−1φ‖∞ ≤ Sk+n−1φ(Y) ≤ Skφ(Y) + ‖Sn−1φ‖∞ (11.1)

and

Skφ(Y) − ‖Sn−1φ‖∞ ≤ Sk+n−1φ(Y) ≤ Skφ(Y) + ‖Sn−1φ‖∞. (11.2)

We claim that

e−‖Sn−1φ‖∞Zk(φ,𝒰
n) ≤ Zk+n−1(φ,𝒰) (11.3)

and

e−‖Sn−1φ‖∞zk(φ,𝒰
n) ≤ zk+n−1(φ,𝒰) ≤ e

‖Sn−1φ‖∞zk(φ,𝒰
n). (11.4)

Let us first prove (11.3). Recall that (𝒰n)k ≺ 𝒰k+n−1 ≺ (𝒰n)k for all k ∈ ℕ (cf. Lem-
ma 7.1.12(d)). However, this is insufficient to declare that a subcover of 𝒰k+n−1 is also
a subcover of (𝒰n)k, or vice versa. We need to remember that 𝒰 ∨ 𝒰 ⊇ 𝒰 , and thus
(𝒰n)k ⊇ 𝒰k+n−1, that is, 𝒰k+n−1 is a subcover of (𝒰n)k . Let 𝒱 be a subcover of 𝒰k+n−1.
Then 𝒱 is a subcover of (𝒰n)k . Using the left inequality in (11.1) with Y replaced by
each V ∈ 𝒱 successively, we obtain

e−‖Sn−1φ‖∞Zk(φ,𝒰
n) ≤ e−‖Sn−1φ‖∞ ∑

V∈𝒱
eSkφ(V) ≤ ∑

V∈𝒱
eSk+n−1φ(V).

Taking the infimumover all subcovers𝒱 of𝒰k+n−1 yields (11.3). Similarly, using the left
inequality in (11.2), we get that

e−‖Sn−1φ‖∞zk(φ,𝒰
n) ≤ e−‖Sn−1φ‖∞ ∑

V∈𝒱
eSkφ(V) ≤ ∑

V∈𝒱
eSk+n−1φ(V).

Taking the infimum over all subcovers 𝒱 of 𝒰k+n−1 yields the left inequality in (11.4).
Regarding the right inequality, since 𝒰k+n−1 ≺ (𝒰n)k, there exists a map i : (𝒰n)k →
𝒰k+n−1 such thatW ⊆ i(W) for allW ∈ (𝒰n)k . Let𝒲 be a subcover of (𝒰n)k . Then i(𝒲)
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is a subcover of 𝒰k+n−1 and, using the right inequality in (11.2), we deduce that

∑
W∈𝒲

eSkφ(W) ≥ ∑
W∈𝒲

eSkφ(i(W)) ≥ ∑
Z∈i(𝒲)

eSkφ(Z)

≥ ∑
Z∈i(𝒲)

eSk+n−1φ(Z)−‖Sn−1φ‖∞

≥ e−‖Sn−1φ‖∞zk+n−1(φ,𝒰).

Taking the infimum over all subcovers of (𝒰n)k on the left-hand side gives the right
inequality in (11.4). So (11.3) and (11.4) always hold.

Moreover, if 𝒰 is a partition then 𝒰 ∨ 𝒰 = 𝒰 , and thus (𝒰n)k = 𝒰k+n−1 for all k ∈ ℕ.
Let𝒲 be a subcover of (𝒰n)k . Using the right inequality in (11.1), we conclude that

∑
W∈𝒲

eSkφ(W) ≥ ∑
W∈𝒲

eSk+n−1φ(W)−‖Sn−1φ‖∞ ≥ e−‖Sn−1φ‖∞Zk+n−1(φ,𝒰).

Taking the infimum over all subcovers of (𝒰n)k on the left-hand side gives

Zk(φ,𝒰
n) ≥ e−‖Sn−1φ‖∞Zk+n−1(φ,𝒰). (11.5)

Finally, for the passage from the zn’s to p, it follows from (11.4) that

k
k + n − 1

⋅
1
k
log zk(φ,𝒰

n) −
‖Sn−1φ‖∞
k + n − 1

≤
1

k + n − 1
log zk+n−1(φ,𝒰)

and

1
k + n − 1

log zk+n−1(φ,𝒰) ≤
k

k + n − 1
⋅
1
k
log zk(φ,𝒰

n) +
‖Sn−1φ‖∞
k + n − 1

.

Taking the lim sup as k →∞ in these two relations yields

p(T ,φ,𝒰n) ≤ p(T ,φ,𝒰) ≤ p(T ,φ,𝒰n).

Taking the lim inf instead, results in a corresponding conclusion for p. Similarly, one
deduces from (11.3) that P(T ,φ,𝒰n) ≤ P(T ,φ,𝒰) and, when 𝒰 is a partition, it ensues
from (11.5) that P(T ,φ,𝒰n) ≥ P(T ,φ,𝒰).

11.1.2 Second stage: the pressure of a potential

Recall that the topological entropy of a system is defined to be the supremum over
all open covers of the entropy of the system with respect to an open cover (cf. Defini-
tion 7.2.16). However, due to Proposition 11.1.14(a), taking the supremum of the pres-
sure relative to all covers does not always lead to a quantity that has natural proper-
ties. Instead, we take the supremum of the difference between the pressure relative to
a coverminus the oscillation of the potential with respect to that cover. This definition
is purely topological.
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Definition 11.1.16. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. The topological pressure of the potential φ, denoted P(T ,φ), is defined by

P(T ,φ) := sup{P(T ,φ,𝒰) − osc(φ,𝒰) : 𝒰 is an open cover of X}.

In light of Proposition 11.1.14(a), we may define the counterparts p(T ,φ) and
p(T ,φ) of P(T ,φ) by simply taking the supremum over all covers.

Definition 11.1.17. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. Define

p(T ,φ) := sup{p(T ,φ,𝒰) : 𝒰 is an open cover of X},

and

p(T ,φ) := sup{p(T ,φ,𝒰) : 𝒰 is an open cover of X}.

Clearly, p(T ,φ) ≤ p(T ,φ). In fact, p(T ,φ) and p(T ,φ) are just other expressions of
the topological pressure.

Theorem 11.1.18. For any topological dynamical system T : X → X and potential φ :
X → ℝ, it turns out that p(T ,φ) = p(T ,φ) = P(T ,φ).

Proof. Froma rearrangement of the right inequality inRemark 11.1.13(c), it follows that
P(T ,φ) ≤ p(T ,φ) ≤ p(T ,φ).

To prove that p(T ,φ) ≤ P(T ,φ), let (𝒰n)∞n=1 be a sequence of open covers such that
limn→∞ p(T ,φ,𝒰n) = p(T ,φ). Each open cover 𝒰n has a Lebesgue number δn > 0.
The compactness of X guarantees that there are finitely many open balls of radius
min{δn, 1/(2n)} that cover X. These balls thereby constitute a refinement of 𝒰n of di-
ameter at most 1/n. Thanks to Proposition 11.1.14(a), this means that we may assume
without loss of generality that the sequence (𝒰n)∞n=1 is such that limn→∞ diam(𝒰n) = 0.
Since φ is uniformly continuous, it ensues that limn→∞ osc(φ,𝒰n) = 0. Consequently,
using the left inequality in Remark 11.1.13(c), we conclude that

P(T ,φ) ≥ sup
n∈ℕ
[P(T ,φ,𝒰n) − osc(φ,𝒰n)]

≥ sup
n∈ℕ
[p(T ,φ,𝒰n) − osc(φ,𝒰n)]

≥ lim
n∈ℕ
[p(T ,φ,𝒰n) − osc(φ,𝒰n)] = p(T ,φ).

Remark 11.1.19.
(a) P(T ,0) = htop(T). Thus topological pressure generalizes topological entropy. This

is a consequence of Remark 11.1.13(a) and the fact that osc(0,𝒰) = 0 for all 𝒰 .
(b) By Remark 11.1.13(b),

htop(T) + infφ − osc(φ,X) ≤ P(T ,φ) ≤ htop(T) + supφ.

(c) P(T ,φ) =∞ if and only if htop(T) =∞, according to part (b).
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We saw in Proposition 7.2.18 that topological entropy cannot be greater for a factor
of a given map than for the original map. We expect the same for its generalization,
topological pressure, with a small twist, namely that the potentials to which the dy-
namical systems are subject must correspond.

Proposition 11.1.20. Suppose that S : Y → Y is a factor of T : X → X via the factor map
h : X → Y. Then for every potential φ : Y → ℝ, we have that P(S,φ) ≤ P(T ,φ ∘ h).

Proof. Let𝒱 be an open cover ofY . Recall (cf. proof of Proposition 7.2.18) that h−1(𝒱n
S ) =

(h−1(𝒱))nT for all n ∈ ℕ. Without loss of generality, we may restrict our attention to
nondegenerate subcovers, that is, subcovers whose members are all different from
one another. Letting C be the collection of all nondegenerate subcovers of 𝒱n

S , themap
𝒞 → h−1(𝒞), 𝒞 ∈ C, defines a bijection between the nondegenerate subcovers of 𝒱n

S and
the nondegenerate subcovers of h−1(𝒱n

S ) = (h
−1(𝒱))nT , since h is a surjection. We leave

it to the reader to show that

STn (φ ∘ h)(h
−1(Z)) = SSnφ(Z), ∀Z ⊆ Y .

It then follows that (again this is left to the reader)

Zn(T ,φ ∘ h, h
−1(𝒱)) = Zn(S,φ,𝒱).

Therefore,

P(T ,φ ∘ h, h−1(𝒱)) = P(S,φ,𝒱).

Observe further that osc(φ ∘ h, h−1(𝒱)) = osc(φ,𝒱). Then

P(T ,φ ∘ h) ≥ P(T ,φ ∘ h, h−1(𝒱)) − osc(φ ∘ h, h−1(𝒱))
= P(S,φ,𝒱) − osc(φ,𝒱).

Taking the supremum over all open covers 𝒱 of Y yields P(T ,φ ∘ h) ≥ P(S,φ).

An immediate but important consequence of this lemma is the following.

Corollary 11.1.21. If T : X → X and S : Y → Y are topologically conjugate dynamical
systems via a conjugacy h : X → Y, thenP(S,φ) = P(T ,φ∘h) for all potentials φ : Y → ℝ.

We now study the behavior of topological pressure with respect to the iterates of
the system. This is a generalization of Theorem 7.2.19.

Theorem 11.1.22. For every n ∈ ℕ, we have that P(Tn, Snφ) = nP(T ,φ).

Proof. Fix n ∈ ℕ. Let 𝒰 be an open cover of X. The action of themap Tn on 𝒰 until time
j − 1 will be denoted by 𝒰 j

Tn . Recall (cf. proof of Theorem 7.2.19) that 𝒰mn = (𝒰n)mTn for
allm ∈ ℕ. Furthermore, for all x ∈ X,

Smnφ(x) =
mn−1
∑
k=0

φ ∘ Tk(x) =
m−1
∑
j=0
(Snφ) ∘ T

jn(x) =
m−1
∑
j=0
(Snφ) ∘ (T

n)
j
(x) = ST

n

m (Snφ)(x),
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where ST
n

m ψ(x) = ∑m−1j=0 ψ((Tn)j(x)). Hence, Smnφ(Y) = S
Tn

m (Snφ)(Y) for all subsets Y
of X, and in particular for all Y ∈ 𝒰mn = (𝒰n)mTn . Thus,

zmn(T ,φ,𝒰) = zm(T
n, Snφ,𝒰

n), ∀m ∈ ℕ.

Using this and Lemma 11.1.14(a), we get

p(T ,φ,𝒰) = lim sup
m→∞

1
m
log zm(T ,φ,𝒰) ≥ lim sup

m→∞

1
mn

log zmn(T ,φ,𝒰)

=
1
n
lim sup
m→∞

1
m
log zm(T

n, Snφ,𝒰
n)

=
1
n
p(Tn, Snφ,𝒰

n) ≥
1
n
p(Tn, Snφ,𝒰).

Taking the supremum over all open covers 𝒰 of X yields

p(T ,φ) ≥ 1
n
p(Tn, Snφ).

Similarly,

p(T ,φ) ≤ 1
n
p(Tn, Snφ).

The result ensues from the previous two relations and Theorem 11.1.18.

As a generalization of topological entropy, in a metrizable space topological pres-
sure is determined by any sequence of covers whose diameters tend to zero. The next
result is an extension of Lemma 7.2.20.

Lemma 11.1.23. The following quantities are all equal:
(a) P(T ,φ).
(b) p(T ,φ).
(c) limε→0[sup{P(T ,φ,𝒰) : 𝒰 open cover with diam(𝒰) ≤ ε}].
(d) sup{p(T ,φ,𝒰) : 𝒰 open cover with diam(𝒰) ≤ δ} for any δ > 0.
(e) limε→0 P(T ,φ,𝒰ε) for any open covers (𝒰ε)ε∈(0,∞) such that limε→0 diam(𝒰ε) = 0.
(f) limε→0 p(T ,φ,𝒰ε) for any open covers (𝒰ε)ε∈(0,∞) such that limε→0 diam(𝒰ε) = 0.
(g) limn→∞ P(T ,φ,𝒰n) for any open covers (𝒰n)∞n=1 such that limn→∞ diam(𝒰n) = 0.
(h) limn→∞ p(T ,φ,𝒰n) for any open covers (𝒰n)∞n=1 such that limn→∞ diam(𝒰n) = 0.

Note that p can be replaced by p in the statements above.

Proof. We already know that (a)=(b) by Lemma 11.1.18. It is clear that (b)≥(d). It is also
obvious that (d)≥(f) and (c)≥(e) for any family (𝒰ε)ε∈(0,∞) as described, and that (d)≥(h)
and (c)≥(g) for any sequence (𝒰n)∞n=1 as specified. It thus suffices to prove that (f)≥(b),
that (h)≥(b), that (e)≥(a), that (g)≥(a), and that (b)≥(c).

Wewill prove that (g)≥(a). The proofs of the other inequalities are similar. Let 𝒱 be
any open cover of X. Since limn→∞ diam(𝒰n) = 0, there exists N ∈ ℕ such that 𝒱 ≺ 𝒰n
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for all n ≥ N (cf. proof of Lemma 7.2.20). By Proposition 11.1.14(a), we obtain that for
all sufficiently large n,

P(T ,φ,𝒰n) ≥ PT ,φ,𝒱) − osc(φ,𝒱).

We immediately deduce that

lim inf
n→∞

P(T ,φ,𝒰n) ≥ P(T ,φ,𝒱) − osc(φ,𝒱).

As the open cover 𝒱 was chosen arbitrarily, passing to the supremum over all open
covers allows us to conclude that

lim inf
n→∞

P(T ,φ,𝒰n) ≥ P(T ,φ).

But limn→∞ osc(φ,𝒰n) = 0 since limn→∞ diam(𝒰n) = 0 andφ is uniformly continuous.
Therefore,

P(T ,φ) = sup
𝒱
[P(T ,φ,𝒱) − osc(φ,𝒱)]

≥ lim sup
n→∞
[P(T ,φ,𝒰n) − osc(φ,𝒰n)]

= lim sup
n→∞

P(T ,φ,𝒰n) − limn→∞
osc(φ,𝒰n)

= lim sup
n→∞

P(T ,φ,𝒰n) ≥ lim inf
n→∞

P(T ,φ,𝒰n) ≥ P(T ,φ).

Hence, P(T ,φ) = limn→∞ P(T ,φ,𝒰n).

We can now obtain a slightly stronger estimate than Remark 11.1.19(b) for the dif-
ference between topological entropy and topological pressure when the underlying
space is metrizable.

Corollary 11.1.24. htop(T) + infφ ≤ P(T ,φ) ≤ htop(T) + supφ.

Proof. Theupper boundwas alreadymentioned inRemark 11.1.19(b). In order toderive
the lower bound, we return to Remark 11.1.13(b). Let (𝒰n)∞n=1 be a sequence of open
covers of X such that limn→∞ diam(𝒰n) = 0. According to Remark 11.1.13(b), for each
n ∈ ℕ we have

htop(T ,𝒰n) + infφ ≤ P(T ,φ,𝒰n).

Passing to the limit n→∞ and using Lemmas 7.2.20 and 11.1.23, we conclude that

htop(T) + infφ ≤ P(T ,φ).

The preceding lemma characterized the topological pressure of a potential as the
limit of the topological pressure of the potential relative to a sequence of covers. An
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even better result would be the characterization of the topological pressure of a poten-
tial as the topological pressure of that potential with respect to a single cover. Asmight
by now be expected, such a characterization exists when the system has a generator.
This is a generalization of Lemma 7.2.22 (see also Definition 7.2.21).

Lemma 11.1.25. If a system T : X → X has a generator 𝒰 , then

P(T ,φ) = p(T ,φ,𝒰) = p(T ,φ,𝒰).

Moreover, if the generator 𝒰 is a partition, then

P(T ,φ) = P(T ,φ,𝒰).

Proof. It follows from Lemmas 11.1.23 and 11.1.15 that

P(T ,φ) = lim
n→∞

p(T ,φ,𝒰n) = lim
n→∞

p(T ,φ,𝒰) = p(T ,φ,𝒰).

A similar argument leads to the statements for p and for a generating partition.

We then have the following generalization of Theorem 7.2.24.

Theorem 11.1.26. If T : X → X is a δ-expansive dynamical system on a compact metric
space (X, d), then

P(T ,φ) = p(T ,φ,𝒰) = p(T ,φ,𝒰)

for any open cover 𝒰 of X with diam(𝒰) ≤ δ. Moreover,

P(T ,φ) = P(T ,φ,𝒰)

for any open partition 𝒰 of X with diam(𝒰) ≤ δ.

Proof. This is an immediate consequence of Lemmas 11.1.25 and 7.2.23.

11.2 Bowen’s definition of topological pressure

Wehave seen in Theorem 7.3.8 and Corollary 7.3.12 that topological entropy can also be
defined using separated or spanning sets. This definition may be generalized to yield
a definition of topological pressure, which coincides with the one from the previous
section. To lighten notation, for any n ∈ ℕ and Y ⊆ X, let

Σn(Y) = ∑
x∈Y

eSnφ(x).
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Theorem 11.2.1. For all n ∈ ℕ and all ε > 0, let En(ε) be a maximal (n, ε)-separated set
and Fn(ε) be a minimal (n, ε)-spanning set. Then

P(T ,φ) = lim
ε→0

lim sup
n→∞

1
n
log Σn(En(ε)) = limε→0 lim inf

n→∞
1
n
log Σn(En(ε))

≤ lim inf
ε→0

lim inf
n→∞

1
n
log Σn(Fn(ε)).

Proof. Fix ε > 0. Let 𝒰ε be an open cover of X consisting of balls of radius ε/2. Fix
n ∈ ℕ. Let 𝒰 be a subcover of 𝒰n

ε such that Zn(φ,𝒰ε) ≥ e−1∑U∈𝒰 exp(Snφ(U)). For
each x ∈ En(ε), let U(x) be an element of the cover 𝒰 which contains x and define the
function i : En(ε) → 𝒰 by setting i(x) = U(x). We have already shown in the proof of
Theorem 7.3.8 that this function is an injection. Therefore,

Zn(φ,𝒰ε) ≥ e
−1 ∑

U∈𝒰
eSnφ(U) ≥ e−1 ∑

x∈En(ε)
eSnφ(U(x)) ≥ e−1 ∑

x∈En(ε)
eSnφ(x).

Since this is true for all n ∈ ℕ, we deduce that

P(T ,φ,𝒰ε) = lim
n→∞

1
n
log Zn(φ,𝒰ε) ≥ lim sup

n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x).

Letting ε → 0 and using Lemma 11.1.23 yields that

P(T ,φ) ≥ lim sup
ε→0

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x). (11.6)

On the other hand, if𝒱 is an arbitrary open cover ofX, if δ(𝒱) is a Lebesguenumber
for 𝒱, if 0 < ε < δ(𝒱)/2 and if n ∈ ℕ, then for all 0 ≤ k < n and all x ∈ En(ε) we have

Tk(Bn(x, ε)) ⊆ B(T
k(x), ε) ⇒ diam(Tk(Bn(x, ε))) ≤ 2ε < δ(𝒱).

Hence, for all 0 ≤ k < n, the set Tk(Bn(x, ε)) is contained in at least one element of
𝒱. Denote one such element by Vk(x). Then Bn(x, ε) ⊆ ⋂

n−1
k=0 T
−k(Vk(x)). But this latter

intersection is simply an element of 𝒱n. Let us denote it by V(x).
Since En(ε) is a maximal (n, ε)-separated set, by Lemma 7.3.7 it is also (n, ε)-span-

ning, so the family {Bn(x, ε)}x∈En(ε) is an open cover of X. Each of these balls is con-
tained in the corresponding set V(x). Hence, the family {V(x)}x∈En(ε) is also an open
cover of X. Therefore, it is a subcover of 𝒱n. Consequently,

Zn(φ,𝒱) ≤ ∑
x∈En(ε)

eSnφ(V(x)) ≤ en osc(φ,𝒱) ∑
x∈En(ε)

eSnφ(x),

where the last inequality is due to Lemma 11.1.5. It follows that

P(T ,φ,𝒱) ≤ osc(φ,𝒱) + lim inf
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x).
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Since 𝒱 is independent of ε > 0, we deduce that

P(T ,φ,𝒱) − osc(φ,𝒱) ≤ lim inf
ε→0

lim inf
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x).

Then, as 𝒱 was chosen to be an arbitrary open cover of X, we conclude that

P(T ,φ) ≤ lim inf
ε→0

lim inf
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x). (11.7)

Inequalities (11.6)–(11.7) establish the result for the separated sets. We can deduce the
result for the spanning sets as in the proof of Theorem 7.3.8.

In Theorem 11.2.1, the topological pressure of the system is expressed in terms
of a specific family of maximal separated (resp. minimal spanning) sets. However, to
derive theoretical results, it is sometimes simpler to use the following quantities.

Definition 11.2.2. For all n ∈ ℕ and ε > 0, let

Pn(T ,φ, ε) = sup{Σn(En(ε)) : En(ε)maximal (n, ε)-separated set}
Qn(T ,φ, ε) = inf{Σn(Fn(ε)) : Fn(ε)minimal (n, ε)-spanning set}.

Thereafter, let

P(T ,φ, ε) = lim inf
n→∞

1
n
logPn(T ,φ, ε), P(T ,φ, ε) = lim sup

n→∞

1
n
logPn(T ,φ, ε)

Q(T ,φ, ε) = lim inf
n→∞

1
n
logQn(T ,φ, ε), Q(T ,φ, ε) = lim sup

n→∞

1
n
logQn(T ,φ, ε).

The following are key observations constitute a generalization of Remark 7.3.10.

Remark 11.2.3. Letm ≤ n ∈ ℕ and 0 < ε < ε′. The following relations hold:
(a) Pm(T ,φ, ε) ≤ Pn(T ,φ, ε)e(n−m)‖φ‖∞ by Remark 7.3.2(a).
(b) e−n‖φ‖∞ ≤ Pn(T ,φ, ε) ≤ rn(ε)en‖φ‖∞ and Pn(T ,0, ε) = rn(ε).
(c) Qm(T ,φ, ε) ≤ Qn(T ,φ, ε)e(n−m)‖φ‖∞ by Remark 7.3.6(a).
(d) e−n‖φ‖∞ ≤ Qn(T ,φ, ε) ≤ sn(ε)en‖φ‖∞ and Qn(T ,0, ε) = sn(ε).
(e) Pn(T ,φ, ε) ≥ Pn(T ,φ, ε′) andQn(T ,φ, ε) ≥ Qn(T ,φ, ε′) byRemarks 7.3.2 and 7.3.6(b).
(f) 0 < Qn(T ,φ, ε) ≤ Pn(T ,φ, ε) <∞ by Lemma 7.3.7.
(g) P(T ,φ, ε) ≤ P(T ,φ, ε) and Q(T ,φ, ε) ≤ Q(T ,φ, ε).
(h) −‖φ‖∞ ≤ P(T ,φ, ε) ≤ r(ε) + ‖φ‖∞ and −‖φ‖∞ ≤ P(T ,φ, ε) ≤ r(ε) + ‖φ‖∞ by (b).
(i) −‖φ‖∞ ≤ Q(T ,φ, ε) ≤ s(ε) + ‖φ‖∞ and −‖φ‖∞ ≤ Q(T ,φ, ε) ≤ s(ε) + ‖φ‖∞ by (d).
(j) P(T ,φ, ε) ≥ P(T ,φ, ε′) and P(T ,φ, ε) ≥ P(T ,φ, ε′) by (e).
(k) Q(T ,φ, ε) ≥ Q(T ,φ, ε′) and Q(T ,φ, ε) ≥ Q(T ,φ, ε′) by (e).
(l) −‖φ‖∞ ≤ Q(T ,φ, ε) ≤ P(T ,φ, ε) ≤ ∞ and −‖φ‖∞ ≤ Q(T ,φ, ε) ≤ P(T ,φ, ε) ≤ ∞

by (f).
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We now describe a relationship between the Pn’s, the Qn’s and the cover-related
quantities Zn’s and zn’s. This is the counterpart of Lemma 7.3.11.

Lemma 11.2.4. The following relations hold:
(a) If 𝒰 is an open cover of X with Lebesgue number 2δ, then

zn(T ,φ,𝒰) ≤ Qn(T ,φ, δ) ≤ Pn(T ,φ, δ).

(b) If ε > 0 and 𝒱 is an open cover of X with diam(𝒱) ≤ ε, then

Qn(T ,φ, ε) ≤ Pn(T ,φ, ε) ≤ Zn(T ,φ,𝒱).

Proof. We already know that Qn(T ,φ, δ) ≤ Pn(T ,φ, δ).
(a) Let𝒰 beanopen coverwithLebesguenumber 2δ and letF bean (n, δ)-spanning

set. Then the dynamic balls {Bn(x, δ) : x ∈ F} form a cover of X. For every 0 ≤ i < n, the
ball B(T i(x), δ), which has diameter at most 2δ, is contained in an element of 𝒰 . There-
fore Bn(x, δ) = ⋂

n−1
i=0 T
−i(B(T i(x), δ)) is contained in an element of 𝒰n = ⋁n−1i=0 T

−i(𝒰).
That is, 𝒰n ≺ {Bn(x, δ) : x ∈ F}. Then there exists a map i : {Bn(x, δ) : x ∈ F}→ 𝒰n such
that Bn(x, δ) ⊆ i(Bn(x, δ)) for every x ∈ F. Let𝒲 be a subcover of {Bn(x, δ) : x ∈ F}. Then
i(𝒲) is a subcover of 𝒰n and thus

Σn(F) = ∑
x∈F

eSnφ(x) ≥ ∑
x∈F

eSnφ(Bn(x,δ)) ≥ ∑
W∈𝒲

eSnφ(W) ≥ ∑
W∈𝒲

eSnφ(i(W))

≥ ∑
Z∈i(𝒲)

eSnφ(Z) ≥ zn(T ,φ,𝒰).

Since F is an arbitrary (n, δ)-spanning set, it ensues that Qn(T ,φ, δ) ≥ zn(T ,φ,𝒰).
(b) Let 𝒱 be an open cover with diam(𝒱) ≤ ε and let E be an (n, ε)-separated set.

Let𝒲 be a subcover of 𝒱n. Let i : E →𝒲 be such that x ∈ i(x) for all x ∈ E. This map is
injective as no element of the cover 𝒱n can contain more than one element of E. Then

Σn(E) = ∑
x∈E

eSnφ(x) ≤ ∑
x∈E

eSnφ(i(x)) = ∑
W∈i(E)

eSnφ(W) ≤ ∑
W∈𝒲

eSnφ(W).

As 𝒲 is an arbitrary subcover of 𝒱n, it follows that Σn(E) ≤ Zn(T ,φ,𝒱). Since E is an
arbitrary (n, ε)-separated set, we deduce that Pn(T ,φ, ε) ≤ Zn(T ,φ,𝒱).

These inequalities have the following immediate consequences.

Corollary 11.2.5. The following relations hold:
(a) If 𝒰 is an open cover of X with Lebesgue number 2δ, then

p(T ,φ,𝒰) ≤ Q(T ,φ, δ) ≤ P(T ,φ, δ).

(b) If ε > 0 and 𝒱 is an open cover of X with diam(𝒱) ≤ ε, then

Q(T ,φ, ε) ≤ P(T ,φ, ε) ≤ P(T ,φ,𝒱).

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



366 | 11 Topological pressure

We can then surmise new expressions for the topological pressure (cf. Corol-
lary 7.3.12).

Corollary 11.2.6. The following equalities hold:

P(T ,φ) = lim
ε→0

P(T ,φ, ε) = lim
ε→0

P(T ,φ, ε) = lim
ε→0

Q(T ,φ, ε) = lim
ε→0

Q(T ,φ, ε).

Proof. Let (𝒰ε)ε∈(0,∞) be a family of open covers such that limε→∞ diam(𝒰ε) = 0.
Let δε be a Lebesgue number for 𝒰ε. Then limε→∞ δε = 0, as δε ≤ diam(𝒰ε). Using
Lemma 11.1.23 and Corollary 11.2.5(a), we deduce that

P(T ,φ) = lim
ε→∞

p(T ,φ,𝒰ε) ≤ limε→0Q(T ,φ, ε) ≤ limε→0P(T ,φ, ε). (11.8)

On the other hand, using Lemma 11.1.23 and Corollary 11.2.5(b), we obtain

lim
ε→0

Q(T ,φ, ε) ≤ lim
ε→0

P(T ,φ, ε) ≤ lim
ε→0

sup
diam(𝒱)≤ε

P(T ,φ,𝒱) = P(T ,φ). (11.9)

Combining (11.8) and (11.9) allows us to conclude.

Corollary 11.2.6 is useful to derive theoretical results. Nevertheless, in practice,
Theorem 11.2.1 is simpler to use, as only one family of sets is needed. Sometimes a
single sequence of sets is enough (cf. Theorem 7.3.13).

Theorem 11.2.7. If a topological dynamical system T : X → X admits a generator with
Lebesgue number 2δ, then the following statements hold for all 0 < ε ≤ δ:
(a) If (En(ε))∞n=1 is a sequence of maximal (n, ε)-separated sets in X, then

P(T ,φ) = lim
n→∞

1
n
log Σn(En(ε)).

(b) If (Fn(ε))∞n=1 is a sequence of minimal (n, ε)-spanning sets in X, then

P(T ,φ) ≤ lim inf
n→∞

1
n
log Σn(Fn(ε)).

(c) P(T ,φ) = limn→∞
1
n logPn(T ,φ, ε).

(d) P(T ,φ) = limn→∞
1
n logQn(T ,φ, ε).

Proof. Wewill prove (a) and leave it to the reader to show the other parts using similar
arguments.

Let 𝒰 be a generator with Lebesgue number 2δ. Then P(T ,φ) = p(T ,φ,𝒰) by
Lemma 11.1.25. Set 0 < ε ≤ δ. Observe that 2ε is also a Lebesgue number for 𝒰 .
Choose any sequence (En(ε))∞n=1 of maximal (n, ε)-separated sets. Since maximal
(n, ε)-separated sets are (n, ε)-spanning sets, it follows from Lemma 11.2.4(a) that
zn(T ,φ,𝒰) ≤ Qn(T ,φ, ε) ≤ Σn(En(ε)). Therefore,

P(T ,φ) = p(T ,φ,𝒰) = lim inf
n→∞

1
n
log zn(T ,φ,𝒰) ≤ lim inf

n→∞
1
n
log Σn(En(ε)). (11.10)
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On the other hand, since 𝒰 is a generator, there existsK ∈ ℕ such that diam(𝒰k) ≤
ε for all k ≥ K. It ensues fromLemma11.2.4(b) that Σn(En(ε)) ≤ Pn(T ,φ, ε) ≤ Zn(T ,φ,𝒰k)
for all k ≥ K. Consequently,

lim sup
n→∞

1
n
log Σn(En(ε)) ≤ lim

n→∞
1
n
log Zn(T ,φ,𝒰

k) = P(T ,φ,𝒰k)

for all k ≥ K. It follows from Lemma 11.1.23(g) that

lim sup
n→∞

1
n
log Σn(En(ε)) ≤ lim

k→∞
P(T ,φ,𝒰k) = P(T ,φ). (11.11)

Combining (11.10) and (11.11) gives (a).

Recall that for expansive systems, the Lebesguenumber can be expressed in terms
of the expansive constant.

Theorem 11.2.8. If T : X → X is a δ0-expansive dynamical system on a compact metric
space (X, d), then Theorem 11.2.7 applies with any 0 < δ < δ0/4.

Proof. See the proof of Theorem 7.3.14.

11.3 Basic properties of topological pressure
In this section,we give some of themost basic properties of topological pressure. First,
we show that the addition or subtraction of a constant to the potential increases or
decreases the pressure of the potential by that same constant.

Proposition 11.3.1. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. For any constant c ∈ ℝ, we have P(T ,φ + c) = P(T ,φ) + c.

Proof. For each n ∈ ℕ and ε > 0, let En(ε) be a maximal (n, ε)-separated set. By Theo-
rem 11.2.1,

P(T ,φ + c) = lim
ε→0

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSn(φ+c)(x)

= lim
ε→0

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x)enc

= lim
ε→0

lim sup
n→∞

1
n
[log( ∑

x∈En(ε)
eSnφ(x)) + nc]

= P(T ,φ) + c.

Next, we show that the pressure, as a function of the potential, is increasing.

Proposition 11.3.2. Let T : X → X be a topological dynamical system and φ,ψ : X → ℝ
be potentials. If φ ≤ ψ, then P(T ,φ) ≤ P(T ,ψ). In particular,

htop(T) + infφ ≤ P(T ,φ) ≤ htop(T) + supφ.
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Proof. That P(T ,φ) ≤ P(T ,ψ)wheneverφ ≤ ψ is obvious from Theorem 11.2.1. The sec-
ond statementwas proved in Corollary 11.1.24 but also follows from the first statement,
Proposition 11.3.1, and the fact that 0+ infφ ≤ φ ≤ 0+ supφ and P(T ,0) = htop(T).

In general, it is not the case that P(T , c φ) = cP(T ,φ). For example, suppose that
P(T ,0) ̸= 0. Then the equation P(T , c 0) = c P(T ,0) only holds when c = 1.

11.4 Examples

Example 11.4.1. Let E be a finite alphabet and let σ : E∞ → E∞ be the full E-shift map.
Let φ̃ : E → ℝ be a function. Then the function φ : E∞ → ℝ defined by φ(ω) := φ̃(ω1)
is a continuous function on E∞ which depends only upon the first coordinate ω1 of
the word ω ∈ E∞. We will show that

P(σ,φ) = log∑
e∈E

exp(φ̃(e)).

According to Example 5.1.4, the shift map σ is δ-expansive for any 0 < δ < 1 when E∞

is endowed with the metric ds(ω, τ) = s|ω∧τ|, where 0 < s < 1. Choose 𝒰 = {[e] : e ∈ E}
as (finite) open cover of E∞. So𝒰 is the partition of E∞ into its initial 1-cylinders. Since
diam(𝒰) = s < 1, Theorem 11.1.26 states that P(σ,φ) = P(σ,φ,𝒰).

In order to compute P(σ,φ,𝒰), observe that 𝒰n = {[ω] : ω ∈ En} is the partition of
E∞ into its initial n-cylinders. Then

P(σ,φ) = P(σ,φ,𝒰) = lim
n→∞

1
n
log Zn(φ,𝒰) = lim

n→∞
1
n
log ∑

U∈𝒰n
eSnφ(U)

= lim
n→∞

1
n
log ∑

ω∈En
eSnφ([ω])

= lim
n→∞

1
n
log ∑

ω1 ...ωn∈En
exp(φ̃(ω1) + ⋅ ⋅ ⋅ + φ̃(ωn))

= lim
n→∞

1
n
log( ∑

ω1∈E
exp(φ̃(ω1)) ⋅ ⋅ ⋅ ∑

ωn∈E
exp(φ̃(ωn)))

= lim
n→∞

1
n
log(∑

e∈E
exp(φ̃(e)))

n

= log∑
e∈E

exp(φ̃(e)).

Example 11.4.2. Let E be a finite alphabet and let σ : E∞ → E∞ be the full E-shift
map. Let φ̃ : E2 → ℝ be a function. Then the function φ : E∞ → ℝ defined by
φ(ω) = φ̃(ω1,ω2) is a continuous function on E∞ which depends only upon the first
two coordinates of the word ω ∈ E∞.
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As in the previous example, P(σ,φ) = P(σ,φ,𝒰), where 𝒰 = {[e] : e ∈ E} is the
(finite) open partition of E∞ into its initial 1-cylinders and

P(σ,φ) = P(σ,φ,𝒰) = lim
n→∞

1
n
log ∑

ω∈En
eSnφ([ω]).

But in this case

∑
ω∈En

eSnφ([ω]) = ∑
ω∈En

exp( φ̃(ω1,ω2) + φ̃(ω2,ω3) + ⋅ ⋅ ⋅
+ φ̃(ωn−1,ωn) +maxe∈E φ̃(ωn, e)

)

= ∑
ω1∈E
∑
ω2∈E

eφ̃(ω1 ,ω2) ∑
ω3∈E

eφ̃(ω2 ,ω3) ⋅ ⋅ ⋅ ∑
ωn∈E

eφ̃(ωn−1 ,ωn) ⋅max
e∈E

exp(φ̃(ωn, e)).

Since

m := min
e, f∈E

exp(φ̃(f , e)) ≤ max
e∈E

exp(φ̃(ωn, e)) ≤ max
e, f∈E

exp(φ̃(f , e)) =: M

for all n ∈ ℕ and all ωn ∈ E, we have that

∑
ω∈En

eSnφ([ω]) ≍ ∑
ω1∈E
∑
ω2∈E

eφ̃(ω1 ,ω2) ∑
ω3∈E

eφ̃(ω2 ,ω3) ⋅ ⋅ ⋅ ∑
ωn∈E

eφ̃(ωn−1 ,ωn)

for all n, with uniform constant of comparability C = max{m−1,M}.
Let A : E2 → ℝ+ be the positive matrix whose entries are Aef = exp(φ̃(e, f )). Equip

this matrix with the norm ‖A‖ = ∑e∈E ∑f∈E Aef . It is easy to prove by induction that

A
n−1 = ∑

ω1∈E
∑
ω2∈E

eφ̃(ω1 ,ω2) ∑
ω3∈E

eφ̃(ω2 ,ω3) ⋅ ⋅ ⋅ ∑
ωn∈E

eφ̃(ωn−1 ,ωn)

for all n ≥ 2, and hence

∑
ω∈En

eSnφ([ω]) ≍ A
n−1.

Therefore,

P(T ,φ) = lim
n→∞

1
n
log ∑

ω∈En
eSnφ([ω])

= lim
n→∞

1
n
logA

n−1 = log lim
n→∞
A

n
1/n
= log r(A),

where r(A) is the spectral radius of A, that is, the largest eigenvalue of A (in absolute
value).
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11.5 Exercises

Exercise 11.5.1. Let T : X → X be a dynamical system and 𝒰 be an open cover
of X. Show that Zn(φ,𝒰) ̸= Z1(φ,𝒰n) in general. That is, find a potential φ such that
Zn(φ,𝒰) ̸= Z1(φ,𝒰n) for some n ∈ ℕ.

Note: It is possible to find a potential for which the above nonequality holds for any
n > 1.

Exercise 11.5.2. Using a symbolic dynamical system, give an example of a sequence
(zn(𝒰))∞n=1 which is not submultiplicative.

Exercise 11.5.3. Prove Lemma 11.1.8.

Exercise 11.5.4. Show that for every t ≥ 0 there exists a dynamical system T : X → X
whose topological entropy is equal to t.

Exercise 11.5.5. Consider the full shift σ : {0, 1}∞ → {0, 1}∞. Let φ : {0, 1}∞ → ℝ be
given by the formula

φ(ω1ω2 . . .) := {
− log 4 if ω1 = 0
log 3 − log 4 if ω1 = 1.

Show that P(σ,φ) = 0.

Exercise 11.5.6. Let T : X → X be a dynamical system. Show that the following are
equivalent:
(a) htop(T) is finite.
(b) There exists a continuous function φ : X → ℝ such that P(T ,φ) is finite.
(c) P(T ,φ) is finite for every continuous function φ : X → ℝ.

Exercise 11.5.7. Let T : X → X be a dynamical system such that htop(T) < ∞. Prove
that the topological pressure function P(T , ∙) : C(X)→ ℝ is Lipschitz continuous with
Lipschitz constant 1, and convex.

Exercise 11.5.8. Generalize Examples 11.4.1 and 11.4.2 to the case where k ∈ ℕ and φ
depends on k coordinates.

Exercise 11.5.9. Show that the pressure function is not linear; more precisely, in gen-
eral P(T , tφ) ̸= tP(T ,φ).

Exercise 11.5.10. Show that if infφ ≤ 0, then the pressure function ℝ ∋ t → P(T , tφ)
is convex, that is,

P(T , (st1 + (1 − s)t2)φ) ≤ sP(T , t1φ) + (1 − s)P(T , t2φ), ∀s ∈ [0, 1], ∀t1, t2 ∈ ℝ.

Conclude that the function ℝ ∋ t → P(T , tφ) is differentiable at all but at most count-
ably many t’s.
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12 The variational principle and equilibrium states

In Section 12.1, we state and prove a fundamental result of thermodynamic formalism
known as the variational principle. This deep result establishes a crucial relationship
between topological dynamics and ergodic theory, by way of a formula linking topo-
logical pressure andmeasure-theoretic entropy. The variational principle in its classi-
cal form and full generality was proved in [75] and [10]. The proof we present follows
that of Michal Misiurewicz [49], which is particularly elegant, short, and simple.

In Section 12.2, we introduce the concept of equilibrium states, give sufficient con-
ditions for their existence, such as the upper semicontinuity of the metric entropy
function (which prevails under any expansive system).We single out a special class of
equilibrium states, those corresponding to a potential identically equal to zero, and
following tradition, call them measures of maximal entropy. We do not deal in this
chapter with the issue of the uniqueness of equilibrium states. Nevertheless, we pro-
vide an example of a topological dynamical systemwith positive and finite topological
entropy which does not have any measure of maximal entropy.

12.1 The variational principle

For any topological dynamical system T : X → X, subject to a potential φ : X → ℝ
and equipped with a T-invariant measure μ, the quantity hμ(T) + ∫φdμ is called the
free energy of the system T with respect to μ under the potential φ. The variational
principle states that the topological pressure of a system is the supremum of the free
energy generated by that system.

Recall thatM(T) is the set of all T-invariant Borel probability measures on X and
that by definition any potential φ is continuous.

Theorem 12.1.1 (Variational principle). Let T : X → X be a topological dynamical sys-
tem and φ : X → ℝ a potential. Then

P(T ,φ) = sup{hμ(T) + ∫
X

φdμ : μ ∈ M(T)}.

Remark 12.1.2. In fact, as we shall see in Corollary 12.1.10, the supremum can be re-
stricted to the subset E(T) of ergodic measures inM(T).

The proof of the variational principle will be given in two parts. In Part I, we will
show that P(T ,φ) ≥ hμ(T) + ∫φdμ for every measure μ ∈ M(T). Part II consists in the
proof of the inequality sup{hμ(T) + ∫φdμ : μ ∈ M(T)} ≥ P(T ,φ).

The first part is relatively easier to prove than the second one. In the proof of Part I,
we will need Jensen’s inequality. Recall that a function k : I → ℝ, where I ⊆ ℝ is an

https://doi.org/10.1515/9783110702682-012
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interval, is convex on I if

ψ(tx + (1 − t)y) ≤ tψ(x) + (1 − t)ψ(y), ∀t ∈ [0, 1], ∀x, y ∈ I .

Theorem 12.1.3 (Jensen’s inequality). Let (X,𝒜, μ) be a probability space. Let −∞ ≤
a < b ≤∞ and ψ : (a, b)→ ℝ be a convex function. If f ∈ L1(μ) and f (X) ⊆ (a, b), then

ψ(∫
X

f dμ) ≤ ∫
X

ψ ∘ f dμ.

Proof. See, for instance, [58].

We shall also need the following lemma, which states that any finite Borel par-
tition α of X can be, from a measure-theoretic entropy viewpoint, approximated as
closely as desired by a finite Borel partition β whose elements are compact and are,
with one exception, contained in those of α.

Lemma 12.1.4. Let μ ∈ M(X), let α := {A1, . . . ,An} be a finite Borel partition of X, and
let ε > 0. Then there exist compact sets Bi ⊆ Ai, 1 ≤ i ≤ n, such that the partition
β := {B1, . . . ,Bn,X\(B1 ∪ ⋅ ⋅ ⋅ ∪ Bn)} satisfies

Hμ(α|β) ≤ ε.

Proof. Let the measure μ and the partition α be as stated and let ε > 0. Recall from
Definition 9.3.4 the nonnegative continuous function k : [0, 1]→ [0, 1] defined by

k(t) = −t log t,

where it is understood that 0 ⋅ (−∞) = 0. The continuity of k at 0 implies that there
exists δ > 0 such that k(t) < ε/n when 0 ≤ t < δ. Since μ is regular and X is compact,
for each 1 ≤ i ≤ n there exists a compact set Bi ⊆ Ai such that μ(Ai\Bi) < δ. Then
k(μ(Ai\Bi)) < ε/n for all 1 ≤ i ≤ n. Observe further that X\⋃nj=1 Bj = ⋃

n
j=1 Aj\Bj. By

Definition 9.4.2 of conditional entropy, it follows that

Hμ(α|β) =
n
∑
j=1

n
∑
i=1
−μ(Ai ∩ Bj) log

μ(Ai ∩ Bj)
μ(Bj)

+
n
∑
i=1
−μ(Ai ∩ (X\ ∪

n
j=1 Bj)) log

μ(Ai ∩ (X\ ∪nj=1 Bj))
μ(X\ ∪nj=1 Bj)

=
n
∑
j=1
−μ(Bj) log

μ(Bj)
μ(Bj)
+

n
∑
i=1
−μ(Ai ∩ (∪

n
j=1Aj\Bj)) log

μ(Ai ∩ (∪nj=1Aj\Bj))
μ(∪nj=1Aj\Bj)

= 0 +
n
∑
i=1
−μ(Ai\Bi) log

μ(Ai\Bi)
μ(∪nj=1Aj\Bj)
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=
n
∑
i=1
−μ(Ai\Bi)[log μ(Ai\Bi) − log μ(∪

n
j=1Aj\Bj)]

=
n
∑
i=1

k(μ(Ai\Bi)) +
n
∑
i=1

μ(Ai\Bi) log μ(∪
n
j=1Aj\Bj)

≤
n
∑
i=1

k(μ(Ai\Bi)) ≤ n ⋅
ε
n
= ε.

We are now in a position to begin the proof of the first part of the variational prin-
ciple.

Proof of Part I. Recall that our aim is to establish the inequality

P(T ,φ) ≥ hμ(T) + ∫
X

φdμ, ∀μ ∈ M(T). (12.1)

We claim that it is sufficient to prove that there exists a constant C ∈ ℝ, independent
of T, φ and μ, such that

P(T ,φ) ≥ hμ(T) + ∫
X

φdμ + C. (12.2)

Indeed, suppose that such a constant exists. In particular, this means that this con-
stant works not only for the system (X,T) under the potential φ and a measure μ ∈
M(T) but also for any higher-iterate system (X,Tn) under the potential Snφ = ∑

n−1
k=0 φ ∘

Tk and the same measure μ, since any T-invariant measure is Tn-invariant. Fix tem-
porarily n ∈ ℕ. Using successively Theorem 11.1.22, inequality (12.2) with the quadru-
ple (X,Tn, Snφ, μ) instead of (X,T ,φ, μ), and Theorems 9.4.13 and 8.1.18, we then obtain
that

nP(T ,φ) = P(Tn, Snφ) ≥ hμ(T
n) + ∫

X

Snφdμ + C = nhμ(T) + n∫
X

φdμ + C.

Dividing by n and letting n tend to infinity yields inequality (12.1).
Of course, to obtain (12.2) it suffices to show that

P(T ,φ) ≥ hμ(T ,α) + ∫
X

φdμ + C (12.3)

for all finite Borel partitionsα ofX (see Definition 9.4.12). So letα be any such partition
and let ε > 0. To obtain (12.3), it is enough to prove that

P(T ,φ) ≥ hμ(T ,α) + ∫
X

φdμ + C − 2ε. (12.4)
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By Theorem 11.2.1, it suffices to demonstrate that

lim sup
n→∞

1
n
log ∑

y∈En(δ)
eSnφ(y) ≥ hμ(T ,α) + ∫

X

φdμ + C − 2ε (12.5)

for all sufficiently small δ > 0 and some family {En(δ) : n ∈ ℕ, δ > 0} of (n, δ)-separated
sets. In light of Definition 9.4.10 and of Theorem 8.1.18, it is sufficient to prove that

1
n
log ∑

y∈En(δ)
eSnφ(y) ≥ 1

n
Hμ(α

n) +
1
n
∫
X

Snφdμ + C − 2ε (12.6)

for all sufficiently small δ > 0, all large enough n ∈ ℕ and all (n, δ)-separated sets
En(δ).

To this end, let β be the finite Borel partition given by Lemma 12.1.4. Then
Hμ(α|β) ≤ ε. Momentarily fix n ∈ ℕ. By Theorem 9.4.3(i) and Lemma 9.4.7(c), we
know that

Hμ(α
n) ≤ Hμ(β

n) + Hμ(α
nβ

n) ≤ Hμ(β
n) + nHμ(α|β) ≤ Hμ(β

n) + nε. (12.7)

From (12.6) and (12.7), it thus suffices to establish that

log ∑
y∈En(δ)

eSnφ(y) ≥ Hμ(β
n) + ∫

X

Snφdμ + (C − ε)n (12.8)

for all sufficiently small δ > 0, all large enough n ∈ ℕ and all (n, δ)-separated sets
En(δ). To prove this inequality, wewill estimate the termHμ(βn)+∫ Snφdμ from above.
Since the logarithm function is concave (so its negative is convex), Jensen’s inequality
(Theorem 12.1.3) implies that

Hμ(β
n) + ∫

X

Snφdμ ≤ ∑
B∈βn

μ(B)[− log μ(B) + Snφ(B)]

= ∑
B∈βn

μ(B) log exp(Snφ(B))
μ(B)

= ∫
X

log exp(Snφ(β
n(x)))

μ(βn(x))
dμ(x)

≤ log∫
X

exp(Snφ(βn(x)))
μ(βn(x))

dμ(x)

= log ∑
B∈βn

eSnφ(B). (12.9)

Since each set Bi ∈ β is compact, it follows that d(Bi,Bj) > 0 for all i ̸= j. As φ is
uniformly continuous, let 0 < δ < 1

2 min{d(Bi,Bj) : i ̸= j} be such that

d(x, y) < δ ⇒ |φ(x) − φ(y)| < ε. (12.10)
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Now, consider an arbitrary maximal (n, δ)-separated set En(δ) and fix temporarily
B ∈ β. According toLemma7.3.7, eachmaximal (n, δ)-separated set is an (n, δ)-spanning
set. So for every x ∈ B, there exists y ∈ En(δ) such that x ∈ Bn(y, δ) and, therefore,
|Snφ(x) − Snφ(y)| < nε by (12.10). As the set En(δ) is finite, there is yB ∈ En(δ) such that

Snφ(B) ≤ Snφ(yB) + nε and B ∩ Bn(yB, δ) ̸= 0. (12.11)

Moreover, since d(Bi,Bj) > 2δ for each i ̸= j, any ball B(z, δ), z ∈ X, intersects at most
one Bi and perhaps X\⋃j Bj. Hence,

#{B ∈ β : B ∩ B(z, δ) ̸= 0} ≤ 2 (12.12)

for all z ∈ X. Thus,

#{B ∈ βn : B ∩ Bn(z, δ) ̸= 0} ≤ 2
n (12.13)

for all z ∈ X. So the function f : βn → En(δ) defined by f (B) = yB is at most 2n-to-one.
Consequently, by (12.11) we obtain that

2n ∑
y∈En(δ)

eSnφ(y) ≥ ∑
B∈βn

eSnφ(yB) ≥ ∑
B∈βn

eSnφ(B) ⋅ e−nε.

Multiplying both sides by 2−n, then taking the logarithm of both sides and apply-
ing (12.9) yields

log ∑
y∈En(δ)

eSnφ(y) ≥ log ∑
B∈βn

eSnφ(B) − nε − n log 2

≥ Hμ(β
n) + ∫

X

Snφdμ + n(− log 2 − ε).

This inequality, which is nothing other than the sought inequality (12.8) with C =
− log 2, holds for all 0 < δ < 1

2 min{d(Bi,Bj) : i ̸= j}, all n ∈ ℕ and all maximal
(n, δ)-separated sets En(δ). This concludes the proof of Part I.

Remark 12.1.5. Observe that the constant C = − log 2 originates from relation (12.12),
and thus depends solely on the existence of the Borel partition β, which is ensured
by Lemma 12.1.4.

Let us move on to the proof of Part II of the variational principle. In addition to
Lemma 9.6.1, we shall need the following three lemmas.

The first of those states that given any finite Borel partition α whose atoms have
boundaries with zero μ-measure, the entropy of α, as a function of the underlying
Borel probability measure, is continuous at μ.
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Lemma 12.1.6. Let μ ∈ M(X). If α is a finite Borel partition of X such that μ(𝜕A) = 0 for
all A ∈ α, then the function

H∙(α) : M(X) → [0,∞]
ν → Hν(α)

is continuous at μ.

Proof. This follows directly from the fact that according to the Portmanteau theorem
(TheoremA.1.56), a sequence of Borel probabilitymeasures (μn)∞n=1 converges weakly

∗

to a measure μ if and only if limn→∞ μn(A) = μ(A) for every Borel set Awith μ(𝜕A) = 0.
Recall that Hν(α) = −∑A∈α ν(A) log ν(A).

In the second lemma, we show that the entropy of α, as a function of the under-
lying Borel probability measure, is concave.

Lemma 12.1.7. For any finite Borel partition α of X, the function H∙(α) is concave.

Proof. Let α be a finite Borel partition of X, and μ and ν Borel probability measures
on X. Let also t ∈ (0, 1). Since the function k(x) = −x log x is concave, for each A ∈ α
we have

k(tμ(A) + (1 − t)ν(A)) ≥ t k(μ(A)) + (1 − t)k(ν(A)).

Therefore,

Htμ+(1−t)ν(α) = ∑
A∈α

k(tμ(A) + (1 − t)ν(A))

≥ t ∑
A∈α

k(μ(A)) + (1 − t) ∑
A∈α

k(ν(A))

= tHμ(α) + (1 − t)Hν(α).

Finally, the third lemma is a generalization of the Krylov–Bogolyubov theorem
(Theorem 8.1.22).

Lemma 12.1.8. Let T : X → X be a dynamical system. If (μn)∞n=1 is a sequence of mea-
sures in M(X), then every weak∗ limit point of the sequence (mn)

∞
n=1, where

mn :=
1
n

n−1
∑
i=0

μn ∘ T
−i,

is a T-invariant measure.

Proof. By the compactness of M(X), the sequence (mn)
∞
n=1 has accumulation points.

Let (mnj )
∞
j=1 be a subsequencewhich convergesweakly

∗ to, say,m ∈ M(X). Let f ∈ C(X).
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Using Lemma 8.1.2, we obtain that

∫
X

f ∘ T dm − ∫
X

f dm

= lim

j→∞


∫
X

f ∘ T dmnj − ∫
X

f dmnj



= lim
j→∞



1
nj
∫
X

nj−1

∑
i=0
(f ∘ T i+1 − f ∘ T i) dμnj



= lim
j→∞

1
nj


∫
X

(f ∘ Tnj − f ) dμnj


≤ lim
j→∞

2‖f ‖∞
nj
= 0.

Thus, by Theorem 8.1.18 the measurem is T-invariant.

We are now ready to prove Part II of the variational principle.

Proof of Part II. We aim to show that

sup{hμ(T) + ∫
X

φdμ : μ ∈ M(T)} ≥ P(T ,φ).

Fix ε > 0. Let (En(ε))∞n=1 be a sequence of maximal (n, ε)-separated sets in X. For every
n ∈ ℕ, define the measures μn andmn by

μn :=
∑x∈En(ε) e

Snφ(x)δx
∑x∈En(ε) e

Snφ(x)
and mn :=

1
n

n−1
∑
k=0

μn ∘ T
−k ,

where δx denotes the Diracmeasure concentrated at the point x. Let (ni)∞i=1 be a strictly
increasing sequence in ℕ such that (mni )

∞
i=1 converges weakly

∗ to, say, m, and such
that

lim
i→∞

1
ni
log ∑

x∈Eni (ε)
eSnφ(x) = lim sup

n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x). (12.14)

For ease of exposition, define

sn := ∑
x∈En(ε)

eSnφ(x) and μ(x) := μ({x}).

FromLemma 12.1.8, the limitmeasurem belongs toM(T). Also, in view of Lemma9.6.1,
there exists a finite Borel partitionα such that diam(α) < ε andm(𝜕A) = 0 for allA ∈ α.
Since #(A ∩ En(ε)) ≤ 1 for all A ∈ αn, we obtain that

Hμn(α
n) + ∫

X

Snφdμn = ∑
x∈En(ε)

μn(x)[− log μn(x) + Snφ(x)]

= ∑
x∈En(ε)

eSnφ(x)

sn
[− log e

Snφ(x)

sn
+ Snφ(x)]
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=
1
sn
∑

x∈En(ε)
eSnφ(x)[−Snφ(x) + log sn + Snφ(x)]

= log sn = log ∑
x∈En(ε)

eSnφ(x). (12.15)

Now, fixM ∈ ℕ and let n ≥ 2M. For j = 0, 1, . . . ,M − 1, define s(j) := ⌊ n−jM ⌋ − 1, where ⌊r⌋
denotes the integer part of r. Note that

s(j)
⋁
k=0

T−(kM+j)(αM) =
(s(j)+1)M+j−1
⋁
ℓ=j

T−ℓ(α)

and

(s(j) + 1)M + j − 1 = ⌊n − j
M
⌋M + j − 1 ≤ n − j + j − 1 = n − 1.

Observe also that

(n − 1) − ((s(j) + 1)M + j) = n − 1 − (⌊n − j
M
⌋M + j)

≤ n − 1 − (n − j
M
− 1)M − j = M − 1.

Setting Rj := {0, 1, . . . , j − 1} ∪ {(s(j) + 1)M + j, . . . , n − 1}, we have #Rj ≤ 2M and

αn =
s(j)
⋁
k=0

T−(kM+j)(αM) ∨ ⋁
i∈Rj

T−i(α).

Hence, using Theorem 9.4.3(g) and (9.2), we get that

Hμn(α
n) ≤

s(j)
∑
k=0

Hμn(T
−(kM+j)(αM)) + Hμn(⋁

i∈Rj

T−i(α))

≤
s(j)
∑
k=0

Hμn∘T−(kM+j)(α
M) + log #(⋁

i∈Rj

T−i(α))

≤
s(j)
∑
k=0

Hμn∘T−(kM+j)(α
M) + log(#α)#Rj

≤
s(j)
∑
k=0

Hμn∘T−(kM+j)(α
M) + 2M log #α.

Summing over all j = 0, 1, . . . ,M − 1 and using Lemma 12.1.7, we obtain

MHμn(α
n) ≤

M−1
∑
j=0

s(j)
∑
k=0

Hμn∘T−(kM+j)(α
M) + 2M2 log #α

≤
n−1
∑
l=0

Hμn∘T−l(α
M) + 2M2 log #α
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≤ nH 1
n ∑

n−1
l=0 μn∘T−l
(αM) + 2M2 log #α

= nHmn
(αM) + 2M2 log #α.

AddingM ∫X Snφdμn to both sides and applying (12.15) yields

M log ∑
x∈En(ε)

eSnφ(x) ≤ nHmn
(αM) +M ∫

X

Snφdμn + 2M
2 log #α.

As 1
n ∫X Snφdμn = ∫X φdmn by Lemma8.1.2, dividing both sides of the above inequality

byMn gives us that

1
n
log ∑

x∈En(ε)
eSnφ(x) ≤ 1

M
Hmn
(αM) + ∫

X

φdmn +
2M
n

log #α.

Since 𝜕T−1(A) ⊆ T−1(𝜕A) for every set A ⊆ X and 𝜕(A∩B) ⊂ 𝜕A∪ 𝜕B for all sets A,B ∈ X,
them-measure of the boundary of each atom of the partition αM is, as for α, equal to
zero. Therefore, upon letting n tend to infinity along the subsequence (ni)∞i=1, we know
that (mni )

∞
i=1 converges weakly

∗ tom and that (12.14) holds, so we infer from the above
inequality and from Lemma 12.1.6 that

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x) ≤ 1

M
Hm(α

M) + ∫
X

φdm.

LettingM →∞, we obtain by Definition 9.4.10 that

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x) ≤ hm(T ,α) + ∫

X

φdm ≤ sup{hμ(T) + ∫
X

φdμ : μ ∈ M(T)}.

As ε > 0 is arbitrary, Theorem 11.2.1 yields the desired inequality. This completes the
proof of Part II.

12.1.1 Consequences of the variational principle

Let us now state some immediate consequences of the variational principle. A first
consequence concerns the topological entropy of the system. The topological entropy
of a system is the supremum of all measure-theoretic entropies of the system.

Corollary 12.1.9. htop(T) = sup{hμ(T) : μ ∈ M(T)}.

Proof. This follows directly upon letting φ ≡ 0.

Furthermore, thepressure of the system is determinedby the supremumof the free
energy of the systemwith respect to its ergodic measures. Recall that E(T) denotes the
subset of ergodic measures inM(T).
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Corollary 12.1.10. For every μ ∈ M(T), there exists ν ∈ E(T) such that hν(T) + ∫X φdν ≥
hμ(T) + ∫X φdμ. Consequently,

P(T ,φ) = sup{hν(T) + ∫
X

φdν : ν ∈ E(T)}.

Proof. Let μ ∈ M(T). According to Theorem 8.2.26, the measure μ has a decompo-
sition into ergodic measures. More precisely, there exists a Borel probability space
(Y ,ℬ(Y), τ) and ameasurablemapY ∋ y → μy ∈ M(X) such that μy ∈ E(T) for τ-almost
every y ∈ Y and μ = ∫Y μy dτ(y). Then

∫
X

φdμ = ∫
Y

(∫
X

φdμy) dτ(y).

Moreover, using a generalization of Exercise 9.7.10, we have that

hμ(T) = h∫Y μy dτ(y)(T) = ∫
Y

hμy (T) dτ(y).

It follows that

hμ(T) + ∫
X

φdμ = ∫
Y

[hμy (T) + ∫
X

φdμy] dτ(y).

It is awell-known fact frommeasure theory (a simple consequenceof LemmaA.1.34(a))
that there is Z ∈ ℬ(Y) such that τ(Z) > 0 and hμz (T) + ∫X φdμz ≥ hμ(T) + ∫X φdμ for
every z ∈ Z. Given that τ(E(T)) = 1, it follows that τ(Z ∩ E(T)) > 0. So there exists
ν ∈ E(T) such that hν(T) + ∫X φdν ≥ hμ(T) + ∫X φdμ.

We now show that the pressure function is Lipschitz continuous.

Corollary 12.1.11. If T : X → X is a dynamical system such that htop(T) < ∞, then the
pressure function P(T , ∙) : C(X)→ ℝ is Lipschitz continuous with Lipschitz constant 1.

Proof. Let ψ,φ ∈ C(X). Let also ε > 0. By the variational principle, there exists μ ∈
M(T) such that

P(T ,ψ) ≤ hμ(T) + ∫
X

ψdμ + ε.

Then, using the variational principle once again, we get

P(T ,ψ) ≤ hμ(T) + ∫
X

φdμ + ∫
X

(ψ − φ) dμ + ε ≤ P(T ,φ) + ‖ψ − φ‖∞ + ε.

Since this is true for all ε > 0, we conclude that

P(T ,ψ) − P(T ,φ) ≤ ‖ψ − φ‖∞.
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Finally, we show that the pressure of any subsystem is at most the pressure of the
entire system.

Corollary 12.1.12. If T : X → X is a topological dynamical system, φ : X → ℝ a poten-
tial and Y a closed T-invariant subset of X, then P(T|Y ,φ|Y ) ≤ P(T ,φ).

Proof. Each T|Y -invariant measure μ on Y generates the T-invariant measure μ(B) =
μ(B ∩ Y) on X and μ is such that h(T , μ) = h(T|Y , μ) and ∫X φdμ = ∫Y φdμ.

12.2 Equilibrium states

In light of the variational principle, the measures that maximize the free energy of
the system, that is, the measures which respect to which the free energy of the system
coincides with its pressure, are given a special name.

Definition 12.2.1. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. A measure μ ∈ M(T) is called an equilibrium state for φ provided that

P(T ,φ) = hμ(T) + ∫
X

φdμ.

Notice that if a given potential φ has an equilibrium state, then φ has an ergodic
equilibriumstate according toCorollary 12.1.10.Whenφ ≡ 0, the equilibriumstates are
also calledmeasures of maximal entropy, that is, measures for which hμ(T) = htop(T).
In particular, if htop(T) = 0, then every invariant measure is a measure of maximal
entropy for T. Recall that this is the case for homeomorphisms of the unit circle (see
Exercise 7.6.10), among other examples.

A simple consequence of the variational principle is the following.

Theorem 12.2.2. If T : X → X is a topological dynamical system and φ : X → ℝ is a
Hölder continuous potential such that P(T ,φ) > supφ, then

hμ(T) > 0

for every equilibrium state μ of φ.

Proof. Since μ is an equilibrium state for φ, we have that

P(T ,φ) = hμ(T) + ∫
X

φdμ ≤ hμ(T) + supφ.

Rearranging the terms,

hμ(T) ≥ P(T ,φ) − supφ > 0.
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It is natural to wonder whether equilibrium states exist for all topological dynam-
ical systems. As the following example demonstrates, the answer is negative.

Example 12.2.3. We construct a system with positive, finite topological entropy but
without any measure of maximal entropy. Let (Tn : Xn → Xn)∞n=1 be a sequence of
topological dynamical systems with the property that

htop(Tn) < htop(Tn+1), ∀n ∈ ℕ and sup
n∈ℕ

htop(Tn) <∞.

Let⨆∞n=1 Xn denote the disjoint union of the spaces Xn, and let X = {ω}∪⨆
∞
n=1 Xn be the

one-point compactification of⨆∞n=1 Xn. Define the map T : X → X by

T(x) := { Tn(x) if x ∈ Xn
ω if x = ω.

Then T is continuous. Suppose that μ is an ergodic measure of maximal entropy
for T. Then μ({ω}) ∈ {0, 1} since T−1({ω}) = {ω}. But if μ({ω}) = 1, then we would
have μ(⨆∞n=1 Xn) = 0. Hence, on one hand, we would have hμ(T) = 0, while, on the
other hand, hμ(T) = htop(T) ≥ supn∈ℕ htop(Tn) > 0. This contradiction imposes that
μ({ω}) = 0. Similarly, μ(Xn) ∈ {0, 1} for all n ∈ ℕ since T−1(Xn) = Xn. Therefore, there
exists a unique N ∈ ℕ such that μ(XN ) = 1. It follows that

htop(T) = hμ(T) = hμ(TN ) ≤ htop(TN ) < sup
n∈ℕ

htop(Tn) ≤ htop(T).

This contradiction implies that there is no measure of maximal entropy for the sys-
tem T.

Given that equilibrium states do not always exist, we would like to find condi-
tions under which they do exist. But since the function μ → ∫X φdμ is continuous in
the weak∗ topology on the compact space M(T), the function μ → hμ(T) cannot be
continuous in general. Otherwise, the sum of these last two functions would be con-
tinuous andwould hence attain amaximumon the compact spaceM(T), that is, equi-
librium states would always exist. Nevertheless, the function μ → hμ(T) is sometimes
upper semicontinuous and this is sufficient to ensure the existence of an equilibrium
state. Let us first recall the notion of upper (and lower) semicontinuity.

Definition 12.2.4. Let X be a topological space. A function f : X → [−∞,∞] is upper
semicontinuous if for all x ∈ X,

lim sup
y→x

f (y) ≤ f (x).

Equivalently, f is upper semicontinuous if the set {x ∈ X : f (x) < r} is open in X
for all r ∈ ℝ. A function f : X → [−∞,∞] is lower semicontinuous if −f is upper
semicontinuous.
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Evidently, a function f : X → [−∞,∞] is continuous if and only if it is both
upper and lower semicontinuous. Like continuous functions, upper semicontinuous
functions attain their upper bound (while lower semicontinuous functions reach their
lower bound) on every compact set.

One class of dynamical systems for which the function μ → hμ(T) is upper semi-
continuous are the expansive maps T.

Theorem 12.2.5. If T : X → X is expansive, then the function

h∙(T) : M(T) → [0,∞]
μ → hμ(T)

is upper semicontinuous. Hence, each potential φ : X → ℝ has an equilibrium state.

Proof. Fix δ > 0 an expansive constant for T and let μ ∈ M(T). According to
Lemma 9.6.1, there exists a finite Borel partition α of X such that diam(α) < δ and
μ(𝜕A) = 0 for each A ∈ α. Let ε > 0. As hμ(T) ≥ hμ(T ,α) = infn∈ℕ

1
nHμ(α

n) by
Definitions 9.4.12 and 9.4.10, there existsm ∈ ℕ such that

1
m
Hμ(α

m) ≤ hμ(T) +
ε
2
.

Let (μn)∞n=1 be a sequence of measures in M(T) converging weakly∗ to μ. Since
diam(α) < δ, it follows from Theorem 9.4.20 that

hμn (T) = hμn (T ,α)

for all n ∈ ℕ. Moreover, by Lemma 12.1.6 (with α replaced by αm), we have

lim
n→∞

Hμn(α
m) = Hμ(α

m).

Therefore, there exists N ∈ ℕ such that

1
m
Hμn(α

m) − Hμ(α
m) ≤

ε
2

for all n ≥ N . Hence, for all n ≥ N, we deduce that

hμn (T) = hμn (T ,α) ≤
1
m
Hμn(α

m) ≤
1
m
Hμ(α

m) +
ε
2
≤ hμ(T) + ε.

Consequently, lim supn→∞ hμn (T) ≤ hμ(T) for any sequence (μn)
∞
n=1 inM(T) converging

weakly∗ to μ. Thus lim supν→μ hν(T) ≤ hμ(T), or, in other words, μ → hμ(T) is upper
semicontinuous.

Since the function μ → ∫X φdμ is continuous in the weak∗ topology on the com-
pact spaceM(T), it follows that the function μ → hμ(T)+∫X φdμ is upper semicontinu-
ous. Since upper semicontinuous functions attain their upper bound on any compact
set, we conclude from the variational principle that each potential φ admits an equi-
librium state.
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Recall the class of piecewisemonotone continuousmaps of the interval. These are
not necessarily expansivemaps (e. g., the tentmap is not expansive). Nonetheless, the
function μ → hμ(T) is upper semicontinuous for any such map.

Theorem 12.2.6. If T : X → X is a piecewise monotone continuous map of the interval,
then the function μ → hμ(T) is upper semicontinuous. Hence, each potential φ : X → ℝ
has an equilibrium state.

Proof. The avid reader is referred to [50].

12.3 Examples of equilibrium states

Example 12.3.1. By Corollary 12.1.10, any uniquely ergodic system has a unique equi-
librium state for every continuous potential. This unique equilibrium state is obvi-
ously the unique ergodic invariant measure of the system.

For instance, recall that (cf. Proposition8.2.43) a translation of the torusLγ : 𝕋n →
𝕋n, where γ = (γ1,γ2, . . . ,γn) ∈ 𝕋

n, is uniquely ergodic if and only if the numbers
1,γ1,γ2, . . . ,γn are linearly independent overℚ. Such a translation has a unique equi-
librium state.

Let us now look at a symbolic example.

Example 12.3.2. We revisit Example 11.4.1, where E is a finite alphabet and σ : E∞ →
E∞ is the one-sided full E-shift map. Recall that any function φ̃ : E → ℝ generates
a continuous potential φ : E∞ → ℝ defined by φ(ω) := φ̃(ω1) on E∞. This potential
depends only on the first coordinate ω1 of the word ω ∈ E∞.

Let ℱ be the σ-algebra 𝒫(E) of all subsets of E and let P be a probability mea-
sure/vector on E, that is, ∑e∈E P({e}) = 1. Recall from Examples 8.1.14 and 8.2.32 that
the one-sided Bernoulli shift (σ : E∞ → E∞, μP) is an ergodic measure-preserving
system.

Let S = ∑e∈E exp(φ̃(e)). Note that 0 < S < ∞. We will show that μP is an equilib-
rium state for σ : E∞ → E∞ when

P({e}) = 1
S
exp(φ̃(e)), ∀e ∈ E. (12.16)

First, let us consider hμP (σ). Let α := {[e]}e∈E be the partition of E∞ into its ini-
tial 1-cylinders. It is easy to see that αn = {[ω]}ω∈En , that is, αn is the partition of E∞

into its initial n-cylinders. Recall that α is a generator for σ (see Definition 9.4.19 and
Example 9.4.23). By Theorem 9.4.20 and Definition 9.4.10, we know that

hμP (σ) = hμP (σ,α) = infn∈ℕ

1
n
HμP (α

n).
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By induction on n, it is not difficult to establish that HμP (α
n) = nHμP (α). Therefore,

hμP (σ) = HμP (α)

= −∑
e∈E

μP([e]) log μP([e]) = −∑
e∈E

P({e}) logP({e})

= −∑
e∈E

1
S
exp(φ̃(e)) log[ 1

S
exp(φ̃(e))]

= −
1
S
∑
e∈E

exp(φ̃(e))[φ̃(e) − log S]

= −
1
S
∑
e∈E

φ̃(e) exp(φ̃(e)) + log S.

Moreover,

∫
E∞

φdμP = ∑
e∈E
∫
[e]

φ(ω) dμP(ω) = ∑
e∈E
∫
[e]

φ̃(ω1) dμP(ω)

= ∑
e∈E

φ̃(e)μP([e]) = ∑
e∈E

φ̃(e)P({e})

=
1
S
∑
e∈E

φ̃(e) exp(φ̃(e)).

It ensues that

hμP (σ) + ∫
E∞

φdμP = log S = P(σ,φ)

where the last equalitywas derived in Example 11.4.1. Hence,μP is an equilibrium state
for the potential φ when P satisfies (12.16).

Further examples will be given in Subsection 13.7.3 and in Chapters 17 and 27
onward.

12.4 Exercises
Exercise 12.4.1. Generalize Example 12.2.3 to show that if in addition φ : X → ℝ is a
potential such that

P(Tn,φ|Xn ) < P(Tn+1,φ|Xn+1 )

for all n ∈ ℕ, then φ has no equilibrium state.

Exercise 12.4.2. In the context of Exercise 11.5.8, give an explicit description of the
equilibrium states of φ when k = 1 and k = 2.

Exercise 12.4.3. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. For any n ∈ ℕ, prove that if μ is an equilibrium state for the couple (T ,φ),
then μ is an equilibrium state for the couple (Tn, Snφ), too.
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Exercise 12.4.4. Let T : X → X be a topological dynamical system and φ : X → ℝ
a continuous potential. Show that the set of all equilibrium states for φ is a convex
subset of M(T). Deduce that if φ has a unique ergodic equilibrium state, then it has
unique equilibrium state. Conclude also that if φ has two different equilibrium states,
then it has uncountably many (in fact, a continuum of) equilibrium states.

Exercise 12.4.5. Let T : X → X be a topological dynamical system. Two continuous
functions φ,ψ : X → ℝ are said to be cohomologous modulo a constant (or, equiva-
lently, φ −ψ is cohomologous to a constant) in the additive group C(X) if there exist a
continuous function u : X → ℝ and a constant c ∈ ℝ such that

φ − ψ = u ∘ T − u + c.

Show that such potentials φ and ψ share the same equilibrium states.

Exercise 12.4.6. Going beyond Example 12.2.3, give an example of a transitive topo-
logical dynamical system which does not have any measure of maximal entropy.

Exercise 12.4.7. Using Example 12.2.3, give an example of a topological dynamical
system which admits infinitely many equilibrium states under a certain potential.

Exercise 12.4.8. Give an example of a transitive topological dynamical system which
has infinitely many measures of maximal entropy.

Exercise 12.4.9. If T : X → X is a dynamical system such that htop(T) < ∞, then
deduce from the variational principle that the pressure function P(T , ∙) : C(X) → ℝ is
convex.
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Appendix A – A selection of classical results

This appendix lists classical definitions and results that will be used in this volume.
Several of these results are stated without proofs. We sometimes complemented them
with classical examples.

A.1 Measure theory

Let us begin by gathering together some of the standard results from measure theory
that will be needed in this book. Measure theory is one of the main tools in ergodic
theory, so it is important to be familiar with it. Proofs and further explanations of the
results can be found in many books on measure theory, for instance, Billingsley [7, 8]
and Rudin [58].

A.1.1 Collections of sets and measurable spaces

Given a set X, we shall denote the set of all subsets of X by 𝒫(X). Let us recall the
definitions of some important collections of subsets of a set. Themost basic collection
is called a π-system.

Definition A.1.1. Let X be a set. A nonempty family 𝒫 ⊆ 𝒫(X) is a π-system on X if
P1 ∩ P2 ∈ 𝒫 for all P1,P2 ∈ 𝒫.

In other words, a π-system is a collection that is closed under finite intersections.
For example, the family of open intervals {(a,∞) : a ∈ ℝ} constitutes a π-system onℝ.
So does the family of closed intervals {[a,∞) : a ∈ ℝ}. Other examples are the families
{(−∞, b) : b ∈ ℝ} and {(−∞, b] : b ∈ ℝ}.

A “slightly” more complex collection is a semialgebra.

Definition A.1.2. Let X be a set. A family 𝒮 ⊆ 𝒫(X) is called a semialgebra on X if it
satisfies the following three conditions:
(a) 0 ∈ 𝒮.
(b) 𝒮 is a π-system.
(c) If S ∈ 𝒮, then X \ S can be written as a finite union of mutually disjoint sets in 𝒮.

That is,X\S = ⋃ni=1 Si for some n ∈ ℕ and S1, S2, . . . , Sn ∈ 𝒮 with Si∩Sj = 0whenever
i ̸= j.

Every semialgebra is a π-system but the converse is not true in general. For in-
stance, none of the π-systems described above is a semialgebra. However, the collec-
tion of all intervals forms a semialgebra on ℝ.

An even more intricate collection is an algebra.

https://doi.org/10.1515/9783110702682-013
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Definition A.1.3. Let X be a set. A family 𝒜 ⊆ 𝒫(X) is said to be an algebra on X if it
satisfies the following three conditions:
(a) 0 ∈ 𝒜.
(b) 𝒜 is a π-system.
(c) If A ∈ 𝒜, then X \ A ∈ 𝒜.

Every algebra is a semialgebra, although the converse is not true in general. For
instance, the semialgebra outlined earlier is not an algebra. Nevertheless, as we will
observe in the next lemma, the collection of all subsets of ℝ that can be expressed as
a finite union of intervals is an algebra on ℝ.

The fact that an algebra is stable under finite intersections and complementation
implies that an algebra is stable under finitely many set operations (e. g., unions, in-
tersections, differences, symmetric differences, complementation, and combinations
thereof).

Note that {0,X} and 𝒫(X) are trivial algebras on X. Since the intersection of any
family of algebras is an algebra, the algebra 𝒜(𝒞) generated by any collection 𝒞 of
subsets ofX is well-defined as the smallest, in the sense of set inclusion, of all algebras
on X that contain 𝒞. If the collection 𝒞 is a semialgebra, then it is easy to describe the
algebra it generates.

Lemma A.1.4. Let 𝒮 be a semialgebra on X. The algebra 𝒜(𝒮) generated by 𝒮 consists
of those subsets A of X, which can be written as a finite union of mutually disjoint sets in
𝒮, that is, all sets A ⊆ X such that A = ⋃ni=1 Si for some S1, S2, . . . , Sn ∈ 𝒮 with Si ∩ Sj = 0
whenever i ̸= j.

Proof. Let

𝒜 := {A ⊆ X | ∃S1, . . . , Sn ∈ 𝒮 , Si ∩ Sj = 0,∀i ̸= j such that A =
n
⋃
i=1

Si}.

It is easy to see that 𝒜 is an algebra containing 𝒮. Therefore, 𝒜 ⊇ 𝒜(𝒮). On the other
hand, since any algebra is closed under finite unions, any algebra containing 𝒮 must
contain𝒜. Thus𝒜(𝒮) ⊇ 𝒜. Hence,𝒜 = 𝒜(𝒮).

In measure theory, the most important type of collection of subsets of a given set
is a σ-algebra.

Definition A.1.5. Let X be a set. A family ℬ ⊆ 𝒫(X) is called a σ-algebra on X if it satis-
fies the following three conditions:
(a) 0 ∈ ℬ.
(b) ⋂∞n=1 Bn ∈ ℬ for every sequence (Bn)∞n=1 of sets in ℬ.
(c) If B ∈ ℬ then X \ B ∈ ℬ.

Note that condition (b) can be replaced by:
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(b′) ⋃∞n=1 Bn ∈ ℬ for every sequence (Bn)∞n=1 of sets in ℬ.

A σ-algebra onX is thus a family of subsets ofX which is closed under countablymany
set operations. Clearly, any σ-algebra is an algebra, though the converse is not true in
general.

Note that {0,X} and 𝒫(X) are trivial σ-algebras on X. They are respectively called
the indiscrete and discrete σ-algebras. As the intersection of any family of σ-algebras
is itself a σ-algebra, the σ-algebra σ(𝒞) generated by any collection 𝒞 of subsets of X is
well-defined as the smallest σ-algebra that contains 𝒞. In particular, if the collection
𝒞 is finite then the algebra 𝒜(𝒞) it generates is also finite, and thus σ(𝒞) = 𝒜(𝒞) (see
Exercise 8.5.1).

A setX equippedwith a σ-algebraℬ is called ameasurable space and the elements
of ℬ are accordingly calledmeasurable sets.

Example A.1.6. Let X be a topological space and let 𝒯 be the topology of X, that is,
the collection of all open subsets of X. Then σ(𝒯 ) is a σ-algebra on X called the Borel
σ-algebra of X. Henceforth, we will denote this latter by ℬ(X). In particular, ℬ(X) con-
tains all open sets and closed sets, as well as all countable unions of closed sets and
all countable intersections of open sets, that is, all Fσ- and Gδ-sets, respectively. Note
that 𝒯 is a π-system but not a semialgebra in general.

In the Euclidean space ℝ, the Borel σ-algebra ℬ(ℝ) is generated by the even sim-
pler π-system of open intervals {(a,∞) : a ∈ ℝ}. Similarly, it is generated by the semi-
algebra comprising all intervals.

Sometimes the functions considered take values in the extended real numbers
ℝ := [−∞,∞]. A base for the order topology ofℝ is the π-system of all open intervals,
namely {[−∞, b) : b ∈ ℝ} ∪ {(a, b) : a, b ∈ ℝ} ∪ {(a,∞] : a ∈ ℝ} ∪ {[−∞,∞]}. The Borel
σ-algebra ℬ(ℝ) is generated by the even simpler π-system of open intervals {(a,∞] :
a ∈ ℝ}. Note that

ℬ(ℝ) = {B, {−∞} ∪ B,B ∪ {∞}, {−∞} ∪ B ∪ {∞} | B ∈ ℬ(ℝ)}.

More examples of algebras and σ-algebras are presented in Exercises 8.5.2–8.5.4.
Wenow introduce λ-systems, also calledDynkin systems. These collections of sets

are closed under complementation and countable disjoint unions.

Definition A.1.7. LetX be a set. A familyℒ ⊆ 𝒫(X) is called a λ-system onX if it satisfies
the following three conditions:
(a) X ∈ ℒ.
(b) ⋃∞n=1 Ln ∈ ℒ for every sequence (Ln)∞n=1 of sets in ℒ such that Ln ∩ Lm = 0 for all

m ̸= n.
(c) If L ∈ ℒ, then X \ L ∈ ℒ.

Note that condition (c) can be replaced by:
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(c′) If K, L ∈ ℒ and K ⊆ L, then L \ K ∈ ℒ.

Every σ-algebra is a λ-system but the converse is not true in general. Nevertheless, it
is not difficult to see how these two concepts are related.

Lemma A.1.8. A collection of sets forms a σ-algebra if and only if it is both a λ-system
and a π-system.

Proof. Wehave already observed that every σ-algebra is a λ-system and a π-system. So
suppose thatℬ is both a λ-system and a π-system on a set X. Sinceℬ is a π-system that
enjoys properties (a) and (c) of a λ-system, it is clear that ℬ is an algebra. Therefore, it
just remains to prove that ℬ satisfies condition (b’) of Definition A.1.5. Let (Bn)∞n=1 be a
sequence of sets in ℬ. For every n ∈ ℕ, let B′n = ⋃

n
k=1 Bk . As ℬ is an algebra, B′n ∈ ℬ for

all n ∈ ℕ. The sequence (B′n)
∞
n=1 is ascending and is such that⋃

∞
n=1 Bn = ⋃

∞
n=1 B
′
n. Thus

it suffices to prove condition (b’) for ascending sequences inℬ. Moreover, observe that
⋃∞n=1 B

′
n = B
′
1∪⋃
∞
n=1(B
′
n+1\B
′
n). By condition (c’) of a λ-system,weknow thatB′n+1\B

′
n ∈ ℬ

for each n ∈ ℕ. Furthermore, the sets B′1 and B
′
n+1 \ B

′
n, n ∈ ℕ, are mutually disjoint.

By condition (b) of a λ-system, it follows that

∞

⋃
n=1

Bn =
∞

⋃
n=1

B′n = B
′
1 ∪
∞

⋃
n=1
(B′n+1 \ B

′
n) ∈ ℬ.

Hence, ℬ is an algebra satisfying condition (b’) of Definition A.1.5. So ℬ is a σ-algebra.

The importance and usefulness of λ-systems mostly lie in the following theorem.

Theorem A.1.9 (Dynkin’s π-λ theorem). If𝒫 is a π-system andℒ is a λ-system such that
𝒫 ⊆ ℒ, then σ(𝒫) ⊆ ℒ.

Proof. See Theorem 3.2 in Billingsley [7].

Furthermore, as the intersection of any family of λ-systems is a λ-system, the
λ-systemℒ(𝒞) generated by any collection 𝒞 ⊆ 𝒫(X) is well-defined as the intersection
of all λ-systems that comprise 𝒞. When 𝒞 is a π-system, the λ-system and the σ-algebra
that are generated by 𝒞 are one and the same.

Corollary A.1.10. If 𝒫 is a π-system, then σ(𝒫) = ℒ(𝒫).

Proof. This immediately follows from Lemma A.1.8 and Theorem A.1.9.

Finally, let us recall yet another type of collection of sets named, for obvious rea-
sons, a monotone class.

Definition A.1.11. Let X be a set. A familyℳ ⊆ 𝒫(X) is called amonotone class on X if
it is stable under countable monotone unions and countable monotone intersections.
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In other words,

if (Mn)
∞
n=1 ⊆ℳ is such thatM1 ⊆ M2 ⊆ M3 ⊆ ⋅ ⋅ ⋅ , then

∞

⋃
n=1

Mn ∈ℳ

and

if (Mn)
∞
n=1 ⊆ℳ is such thatM1 ⊇ M2 ⊇ M3 ⊇ ⋅ ⋅ ⋅ , then

∞

⋂
n=1

Mn ∈ℳ.

Every σ-algebra is a monotone class but the converse is not true in general. Nev-
ertheless, a monotone class which is an algebra is a σ-algebra. There is an analogue
of Dynkin’s theorem for monotone classes.

Theorem A.1.12 (Halmos’ monotone class theorem). If 𝒜 is an algebra and ℳ is a
monotone class such that𝒜 ⊆ℳ, then σ(𝒜) ⊆ℳ.

Proof. See Theorem 3.4 in Billingsley [7].

Because the intersection of any family of monotone classes is a monotone class,
the monotone classℳ(𝒞) generated by any collection 𝒞 ⊆ 𝒫(X) is well-defined as the
intersection of all monotone classes that comprise 𝒞. When 𝒞 is a semialgebra, the
σ-algebra and the monotone class generated by 𝒞 coincide.

Theorem A.1.13. If 𝒮 is a semialgebra, then σ(𝒮) = σ(𝒜(𝒮)) =ℳ(𝒜(𝒮)) =ℳ(𝒮).

Proof. The equalities σ(𝒮) = σ(𝒜(𝒮)) and ℳ(𝒜(𝒮)) = ℳ(𝒮) are obvious. Since a
σ-algebra is a monotone class and σ(𝒜(𝒮)) ⊇ 𝒜(𝒮), it is evident that σ(𝒜(𝒮)) ⊇
ℳ(𝒜(𝒮)). The opposite inclusion is the object of Halmos’ monotone class theo-
rem.

A.1.2 Measurable transformations

We now look at maps betweenmeasurable spaces. Recall that a measurable space is a
set X equipped with a σ-algebra𝒜. The elements of𝒜 are the measurable sets in that
space.

Definition A.1.14. Let (X,𝒜) and (Y ,ℬ) be measurable spaces. A transformation T :
X → Y is said to bemeasurable provided that T−1(B) ∈ 𝒜 for every B ∈ ℬ.

We have earlier mentioned that σ-algebras are the most important collections of
sets in measure theory. However, it is generally impossible to describe, in a simple
form, the sets in a σ-algebra. Luckily, σ-algebras that are generated by smaller and
simpler structures like π-systems, semialgebras, or algebras, are much easier to cope
with. In this situation, proving that some interesting property is satisfied for the sets in
these smaller and simpler structures is often sufficient to guarantee that that property
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holds for all sets in the σ-algebra. This is the case for the measurability of transforma-
tions.

Theorem A.1.15. Let T : (X,𝒜)→ (Y ,ℬ) be a transformation. If ℬ = σ(𝒞) is a σ-algebra
generated by a collection 𝒞 ⊆ 𝒫(Y), then T is measurable if and only if T−1(C) ∈ 𝒜 for
all C ∈ 𝒞.

Proof. It is clear that if T is measurable, then T−1(C) ∈ 𝒜 for all C ∈ 𝒞 since 𝒞 ⊆ σ(𝒞) =
ℬ. Conversely, suppose that T−1(C) ∈ 𝒜 for all C ∈ 𝒞. Consider the collection of sets
ℬ′ = {B ⊆ Y : T−1(B) ∈ 𝒜}. By assumption, ℬ′ ⊇ 𝒞. It is also easy to see that ℬ′ is a
σ-algebra. Thus ℬ′ ⊇ σ(𝒞) = ℬ, and hence T is measurable.

If the range Y of a transformation is a Borel subset of ℝ, then unless otherwise
stated Y will be assumed to be endowed with its Borel σ-algebra, which is just the
projection of ℬ(ℝ) onto Y (see Exercise 8.5.5). In this context, we will use the term
function instead of transformation.

Example A.1.16. Let (X,𝒜) be a measurable space.
(a) Let A ⊆ X. The indicator function 1A : X → {0, 1} (also called characteristic func-

tion) defined by

1A(x) := {
1 if x ∈ A
0 if x ∉ A

is measurable if and only if A is measurable, that is, A ∈ 𝒜.
(b) A function s : X → ℝ which takes only finitely many values is called a simple

function. Such a function can be expressed in the form

s =
n
∑
i=1

αi1Ai
,

where Ai = {x ∈ X : s(x) = αi} and the αi’s are the values of the function s. Such a
function is measurable if and only if each set Ai is measurable.

The following theoremshows theutility of simple functions. It states that anynon-
negative measurable function is the pointwise limit of a nondecreasing sequence of
nonnegative measurable simple functions.

Theorem A.1.17. Let (X,𝒜) be a measurable space and f : X → [0,∞] be a measurable
function. Then there exists a sequence (sn)∞n=1 of measurable simple functions on X such
that
(a) 0 ≤ s1 ≤ s2 ≤ ⋅ ⋅ ⋅ ≤ f .
(b) limn→∞ sn(x) = f (x), ∀x ∈ X.

Proof. See Theorem 1.17 in Rudin [58].
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A.1.3 Measure spaces

The concept of measure is obviously central to measure theory.

Definition A.1.18. Let (X,𝒜) be a measurable space. A set function μ : 𝒜 → [0,∞] is
said to be ameasure on X provided that
(a) μ(0) = 0.
(b) μ is countably additive, that is, for each sequence (An)∞n=1 of pairwise disjoint sets

belonging to𝒜, the function μ is such that

μ(
∞

⋃
n=1

An) =
∞

∑
n=1

μ(An).

The triple (X,𝒜, μ) is called ameasure space.
If μ(X) <∞, then μ is said to be a finite measure. If μ(X) = 1, then μ is a probability

measure. Finally, μ is said to be σ-finite if there exists a sequence (An)∞n=1 of sets in 𝒜
such that μ(An) <∞ for all n ∈ ℕ and⋃∞n=1 An = X.

Here are a few basic properties of measures.

Lemma A.1.19. Let (X,𝒜, μ) be a measure space and A,B ∈ 𝒜.
(a) If A ⊆ B, then μ(A) ≤ μ(B).
(b) If A ⊆ B and μ(B \ A) <∞, then μ(A) = μ(B) − μ(B \ A).
(c) μ(A ∪ B) ≤ μ(A) + μ(B).
(d) If (An)∞n=1 is an ascending sequence in𝒜 (i. e., An ⊆ An+1, ∀n ∈ ℕ), then

μ(
∞

⋃
n=1

An) = lim
n→∞

μ(An) = sup
n∈ℕ

μ(An).

(e) If (Bn)∞n=1 is a descending sequence in𝒜 (i. e., An ⊇ An+1,∀n ∈ ℕ) and if μ(B1) <∞,
then

μ(
∞

⋂
n=1

Bn) = lim
n→∞

μ(Bn) = infn∈ℕ
μ(Bn).

(f) If (Cn)∞n=1 is any sequence in𝒜, then

μ(
∞

⋃
n=1

Cn) ≤
∞

∑
n=1

μ(Cn).

(g) If (Dn)
∞
n=1 is a sequence in𝒜 such that μ(Dm ∩ Dn) = 0 for all m ̸= n, then

μ(
∞

⋃
n=1

Dn) =
∞

∑
n=1

μ(Dn).
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Proof. The proof is left to the reader as an exercise.

A more intricate property of measures deserves a special name.

Lemma A.1.20 (Borel–Cantelli lemma). Let (X,𝒜, μ) be a measure space and (An)∞n=1 a
sequence in𝒜. If ∑∞n=1 μ(An) <∞, then μ(⋂

∞
k=1⋃
∞
n=k An) = 0.

Proof. The proof is left to the reader as an exercise.

We now provide two simple examples of measures. The first of these may seem
insignificant at first glance but turns out to be very useful in practice.

Example A.1.21. Let X be a nonempty set and 𝒫(X) be the discrete σ-algebra on X.
(a) Choose a point x ∈ X. Define the set function δx : 𝒫(X)→ {0, 1} by setting

δx(A) := {
1 if x ∈ A
0 if x ∉ A.

One readily verifies that δx is a probability measure. It is referred to as the Dirac
point mass or Dirac measure concentrated at the point x.

(b) For any A ⊆ X define m(A) to be the number of elements in the set A if A is finite
and set m(A) = ∞ if the set A is infinite. Then m : 𝒫(X) → [0,∞] is called the
counting measure on X.

There is a notion of completeness for measure spaces.

Definition A.1.22. Ameasure space (X,𝒜, μ) is said to be complete if every subset of a
set of measure zero is measurable. That is, if A ⊆ X and there is B ∈ 𝒜 such that A ⊆ B
and μ(B) = 0, then A ∈ 𝒜.

Note that any measure space can be extended to a complete one (see Exer-
cises 8.5.7–8.5.8).

In ExampleA.1.6, we introduced the concept of Borel σ-algebra.Wenow introduce
Borel measures and describe different forms of regularity for these measures.

Definition A.1.23. Let X be a topological space and ℬ(X) be the Borel σ-algebra on X.
(a) A Borel measure μ on X is a measure defined on the Borel σ-algebra ℬ(X) of X. The

resultingmeasure space (X,ℬ(X), μ) is called a Borelmeasure space. In particular,
if μ is a probability measure then (X,ℬ(X), μ) is called a Borel probability space.

(b) A Borel measure μ is said to be inner regular if

μ(B) = sup{μ(K) : K ⊆ B, K compact}, ∀B ∈ ℬ(X).

(c) A Borel measure μ is said to be outer regular if

μ(B) = inf{μ(G) : B ⊆ G, G open}, ∀B ∈ ℬ(X).

(d) A Borel measure is called regular if it is both inner and outer regular.
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Theorem A.1.24. Every Borel probability measure on a separable, completely metriz-
able space is regular.

Proof. See Theorem 17.11 in Kechris [35].

Example A.1.25. There exists a complete, regular measure λ defined on a σ-algebra ℒ
on ℝk with the following properties:
(a) λ(R) = Vol(R) for every k-rectangle R ⊆ ℝk, where Vol denotes the usual k-dimen-

sional volume in ℝk .
(b) ℒ is the completion of the Borel σ-algebra ℬ(ℝk); more precisely, E ∈ ℒ if and only

if there exist an Fσ-set F and a Gδ-set G such that F ⊆ E ⊆ G and λ(G \ F) = 0.
(c) λ is translation invariant, that is, λ(E + x) = λ(E) for all E ∈ ℒ and all x ∈ ℝk .

Moreover, up to a multiplicative constant, λ is the only translation-invariant Borel
measure on ℝk that gives finite measure to all compact sets.

The measure λ is called the Lebesgue measure on ℝk and, accordingly, the sets in
ℒ are said to be Lebesgue measurable. Unlike in Example A.1.21, not all subsets of ℝk

are Lebesgue measurable. Indeed, Vitali (see 5.7, The Vitali Monsters on p. 120 of [29])
showed that it is impossible to construct a measure having properties (a)–(c) on the
set of all subsets of ℝk .

The following lemma is onemore eloquentmanifestation of the relevance of struc-
tures simpler than σ-algebras.

Lemma A.1.26. Let X be a set and 𝒫 be a π-system on X. Let μ and ν be probability
measures on (X, σ(𝒫)). Then

μ = ν ⇐⇒ μ(P) = ν(P), ∀P ∈ 𝒫 .

Proof. The implication⇒ is trivial. For the opposite one⇐, suppose that μ(P) = ν(P)
for all P ∈ 𝒫. Consider the collection of sets𝒜 := {A ⊆ X : μ(A) = ν(A)}. By assumption,
𝒫 ⊆ 𝒜. It is also easy to see that 𝒜 is a λ-system. Per Corollary A.1.10, it follows that
σ(𝒫) = ℒ(𝒫) ⊆ 𝒜.

In summary, two probability measures that agree on a π-system are equal on the
σ-algebra generated by that π-system. However, this result does not generally hold for
infinite measures (see Exercise 8.5.9).

A.1.4 Extension of set functions to measures

Themain shortcoming of the preceding lemma lies in the assumption that the set func-
tions μ and ν are measures defined on a σ-algebra. In particular, this means that they
are countably additive on that entire σ-algebra. However, we frequently define a set
function μ : 𝒞 → [0,∞] on a collection 𝒞 of subsets of a set X on which the values

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



396 | Appendix A – A selection of classical results

of μ are naturally determined but it may be unclear whether μ may be extended to
a measure on σ(𝒞). The forthcoming results are extremely useful in that regard. The
first one concerns the extension of a finitely/countably additive set function from a
semialgebra to an algebra.

Theorem A.1.27. Let 𝒮 be a semialgebra on a set X and let μ : 𝒮 → [0,∞] be a finitely
additive set function, that is, a function such that

μ(
n
⋃
i=1

Si) =
n
∑
i=1

μ(Si)

for every finite family (Si)ni=1 ofmutually disjoint sets in𝒮 such that⋃ni=1 Si ∈ 𝒮. Then there
exists a unique finitely additive set function μ : 𝒜(𝒮) → [0,∞] which is an extension of
μ to 𝒜(𝒮), the algebra generated by 𝒮. Moreover, the extension μ is countably additive
whenever the original set function μ is.

Proof. This directly follows from Lemma A.1.4. For more detail, see Theorems 3.4
and 3.5 in Kingman and Taylor [38].

The second result concerns the extension of a countably additive set function from
an algebra to a σ-algebra.

Theorem A.1.28 (Carathéodory’s extension theorem). Let 𝒜 be an algebra on a set X
and let μ : 𝒜→ [0, 1] be a countably additive set function, that is, a function such that

μ(
∞

⋃
i=1

Ai) =
∞

∑
i=1

μ(Ai)

for every sequence (Ai)∞i=1 of mutually disjoint sets in 𝒜 such that ⋃∞i=1 Ai ∈ 𝒜. Suppose
also that μ(X) = 1. Then there exists a unique probability measure μ : σ(𝒜) → [0, 1],
which is an extension of μ : 𝒜→ [0, 1].

Proof. See Theorem 3.1 in Billingsley [7] or Theorem 4.2 in Kingman and Taylor [38].

Carathéodory’s extension theorem thus reduces the problem to demonstrating
that a set function is countably additive on an algebra. This can be hard to prove, so
we sometimes rely upon the following result.

Lemma A.1.29. Let𝒜 be an algebra on a set X and μ : 𝒜→ [0,∞) be a finitely additive
function. Then μ is countably additive if and only if

lim
i→∞

μ(Ai) = 0 (A.1)

for every descending sequence (Ai)∞i=1 of sets in𝒜 such that⋂∞i=1 Ai = 0.
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Furthermore, if (A.1) holds, then μ has a unique extension to a σ-additive function
(a measure) from σ(𝒜), the σ-algebra generated by𝒜, to [0,∞).

Proof. Recall thatmeasures enjoy property (d) of LemmaA.1.19. However, the set func-
tion μ considered here is not a measure since it is defined on an algebra rather than
on a σ-algebra. Nevertheless, we will show that μ satisfies property (d) on the algebra
𝒜 because of hypothesis (A.1). Let (Ai)∞i=1 be an ascending sequence of sets in 𝒜 such
that A := ⋃∞i=1 Ai ∈ 𝒜. Since 𝒜 is an algebra, we know that A \ Ai ∈ 𝒜 for all i ∈ ℕ.
Therefore, the sequence (A \ Ai)∞i=1 is a descending sequence of sets in𝒜 such that

∞

⋂
i=1
(A \ Ai) = A \ (

∞

⋃
i=1

Ai) = 0.

By hypothesis (A.1), we infer that

lim
i→∞

μ(A \ Ai) = 0.

Moreover, since A = (A \ Ai) ∪ Ai and μ is finitely additive on 𝒜 and finite, we deduce
that

μ(A \ Ai) = μ(A) − μ(Ai), ∀i ∈ ℕ.

Hence,

lim
i→∞
(μ(A) − μ(Ai)) = 0.

Thus

μ(
∞

⋃
i=1

Ai) = limi→∞
μ(Ai). (A.2)

Now, let (Bi)∞i=1 be any sequence of mutually disjoint sets in 𝒜 such that ⋃∞i=1 Bi ∈ 𝒜.
For every i ∈ ℕ, let B′i = ⋃

i
j=1 Bj. As𝒜 is an algebra, B′i ∈ 𝒜 for all i ∈ ℕ. The sequence

(B′i )
∞
i=1 is ascending and is such that⋃

∞
i=1 B
′
i = ⋃
∞
i=1 Bi ∈ 𝒜. By (A.2), we know that

μ(
∞

⋃
i=1

Bi) = μ(
∞

⋃
i=1

B′i) = limi→∞
μ(B′i ).

Using this, the fact that the Bi’s are mutually disjoint and that μ is finitely additive, we
conclude that

μ(
∞

⋃
i=1

Bi) = limi→∞
μ(B′i ) = limi→∞

μ(
i
⋃
j=1

Bj) = limi→∞

i
∑
j=1

μ(Bj) =
∞

∑
i=1

μ(Bi).

That is, μ is countably additive on𝒜.
The second part of the statement directly follows from the first one and Theo-

rem A.1.28.
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As an immediate consequence of Lemma A.1.29 we get the following.

Lemma A.1.30. Let𝒜be analgebra on a set X, let ν : σ(𝒜)→ [0,∞)be a finitemeasure,
and let μ : 𝒜→ [0,∞) be a finitely additive functionwhich is absolutely continuouswith
respect to ν, meaning that μ(A) = 0 whenever A ∈ 𝒜 and ν(A) = 0. Then μ is countably
additive and has a unique extension to a σ-additive function (a measure) from σ(𝒜) to
[0,∞).

Finally, as a straightforward consequence of LemmaA.1.29 we have the following.

Lemma A.1.31. Let 𝒜 be a σ-algebra on a set X, let ν : 𝒜 → [0,∞) be a finite measure
and let μ : 𝒜→ [0,∞) be a finitely additive functionwhich is absolutely continuouswith
respect to ν on some algebra generating 𝒜, meaning that μ(A) = 0 whenever A belongs
to this algebra and ν(A) = 0. Then μ is a measure.

Another feature of an algebra is that any element of a σ-algebra generated by an
algebra can be approximated as closely as desired by an element of the algebra. Before
stating the precise result, recall that the symmetric difference of two sets A and B is
denoted by A △ B and is the set of all points that belong to exactly one of those two
sets. That is,

A△ B := (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

Properties of the symmetric difference are examined in Exercises 8.5.10–8.5.11.

Lemma A.1.32. Let 𝒜 be an algebra on a set X and μ be a probability measure on
(X, σ(𝒜)). Then for every ε > 0 and B ∈ σ(𝒜) there exists some A ∈ 𝒜 such that
μ(A△ B) < ε.

Proof. See Theorem 4.4 in Kingman and Taylor [38].

A.1.5 Integration

Let us now briefly recollect some facts about integration. First, the definition of the
integral of a measurable function with respect to a measure.

Definition A.1.33. Let (X,𝒜, μ) be a measure space and let A ∈ 𝒜.
(a) If s : X → [0,∞) is a measurable simple function of the form,

s =
n
∑
i=1

αi1Ai
,

then the integral of the function s over the set A with respect to the measure μ is
defined as

∫
A

s dμ :=
n
∑
i=1

αiμ(Ai ∩ A).
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We use the convention that 0 ⋅ ∞ = 0 in case it happens that αi = 0 and
μ(Ai ∩ A) =∞ for some 1 ≤ i ≤ n.

(b) If f : X → [0,∞] is a measurable function, then the integral of the function f over
the set A with respect to the measure μ is defined as

∫
A

f dμ := sup∫
A

s dμ,

where the supremum is taken over all measurable simple functions 0 ≤ s ≤ f .
Note that if f is simple, then definitions (a) and (b) coincide.

(c) If f : X → ℝ is a measurable function, then the integral of the function f over the
set A with respect to the measure μ is defined as

∫
A

f dμ := ∫
A

f+ dμ − ∫
A

f− dμ,

as long as min{∫A f+ dμ,∫A f− dμ} < ∞, where f+ and f− respectively denote the
positive and negative parts of f . That is, f+(x) := max{f (x),0} whereas f−(x) :=
max{−f (x),0}.

(d) A measurable function f : X → ℝ is said to be integrable if ∫X |f | dμ < ∞. We
denote this by f ∈ L1(X,𝒜, μ). If there can be no confusion, we simply write f ∈
L1(μ).

(e) A property is said to hold μ-almost everywhere (sometimes abbreviated μ-a. e.) if
the property holds on the entire space except possibly on a set of μ-measure zero.

The following properties follow from this definition.

Lemma A.1.34. Let (X,𝒜, μ) be a measure space. Let f , g ∈ L1(X,𝒜, μ), A,B ∈ 𝒜, and
a, b ∈ ℝ.
(a) If f ≤ g μ-a. e., then ∫A f dμ ≤ ∫A g dμ. Also, if f < g μ-a. e., then ∫A f dμ < ∫A g dμ.
(b) If A ⊆ B and 0 ≤ f μ-a. e., then 0 ≤ ∫A f dμ ≤ ∫B f dμ.
(c)


∫
A

f dμ

≤ ∫

A

|f | dμ.

(d) Linearity:

∫
A

(af + bg) dμ = a∫
A

f dμ + b∫
A

g dμ.

(e) If (An)∞n=1 is a sequence of mutually disjoint measurable sets, then

∫

⋃∞n=1 An

f dμ =
∞

∑
n=1
∫
An

f dμ.
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(f) f = g μ-a. e.⇐⇒ ∫A f dμ = ∫A g dμ, ∀A ∈ 𝒜.
(g) The relation f = g μ-a. e. is an equivalence relation on the set L1(X,𝒜, μ). The equiv-

alence classes generated by this relation form a Banach space also denoted by
L1(X,𝒜, μ) (or L1(μ), for short) with norm

‖f ‖1 := ∫
X

|f | dμ <∞.

A sequence (fn)∞n=1 in L
1(μ) is said to converge to f in L1(μ) if limn→∞ ‖fn − f ‖1 = 0.

A.1.6 Convergence theorems

Inmeasure theory, there are fundamental theorems that are especially helpful for find-
ing the integral of functions that are the pointwise limits of sequences of functions.

The first of these results applies to monotone sequences of functions. A sequence
of functions (fn)∞n=1 is monotone if it is increasing pointwise (fn+1(x) ≥ fn(x) for all x ∈ X
and all n ∈ ℕ) or decreasing pointwise (fn+1(x) ≤ fn(x) for all x ∈ X and all n ∈ ℕ).
We state the theorem for increasing sequences, but its counterpart for decreasing se-
quences can be easily deduced from it.

Theorem A.1.35 (Monotone convergence theorem). Let (X,𝒜, μ)beameasure space. If
(fn)∞n=1 is an increasing sequence of nonnegative measurable functions, then the integral
of their pointwise limit is equal to the limit of their integrals, that is,

∫
X

lim
n→∞

fn dμ = lim
n→∞
∫
X

fn dμ.

Proof. See Theorem 1.26 in Rudin [58].

Note that this theorem holds for almost everywhere increasing sequences of al-
most everywherenonnegativemeasurable functionswith analmost everywherepoint-
wise limit.

For general sequences of nonnegative functions,wehave the following immediate
consequence.

Lemma A.1.36 (Fatou’s lemma). Let (X,𝒜, μ) be a measure space. For any sequence
(fn)∞n=1 of nonnegative measurable functions,

∫
X

lim inf
n→∞

fn dμ ≤ lim inf
n→∞
∫
X

fn dμ.

Proof. For every x ∈ X and n ∈ ℕ, define gn(x) = inf{fi(x) : 1 ≤ i ≤ n} and apply
the monotone convergence theorem to the sequence (gn)∞n=1. For more detail, see The-
orem 1.28 in Rudin [58].
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The following lemma is another application of the monotone convergence theo-
rem. It offers another way of integrating a nonnegative function.

Lemma A.1.37. Let (X,𝒜, μ) be a measure space. Let f be a nonnegative measurable
function and A ∈ 𝒜. Then

∫
A

f dμ =
∞

∫
0

μ({x ∈ A : f (x) > r}) dr.

Proof. Suppose that f = 1B for some B ∈ 𝒜. Then

∞

∫
0

μ({x ∈ A : f (x) > r}) dr =
1

∫
0

μ({x ∈ A : 1B(x) > r}) dr

=
1

∫
0

μ(A ∩ B) dr

= μ(A ∩ B)

= ∫
X

1A∩B dμ = ∫
X

1A ⋅ 1B dμ = ∫
A

f dμ.

So the equality holds for characteristic functions. We leave it to the reader to show
that the equality prevails for all nonnegative measurable simple functions. If f is a
general nonnegative measurable function, then by Theorem A.1.17 there exists an
increasing sequence (sn)∞n=1 of nonnegative measurable simple functions such that
limn→∞ sn(x) = f (x) for every x ∈ X. For every r ≥ 0, let

f̃ (r) = μ({x ∈ A : f (x) > r}).

This function is obviously nonnegative and decreasing. Hence, by Theorem A.1.15 it
is Borel measurable since f̃ −1((t,∞]) is an interval for all t ∈ [0,∞] and the sets
{(t,∞]}t∈[0,∞] generate the Borel σ-algebra of [0,∞]. Fix momentarily r ≥ 0. Since
sn ↗ f , the sets ({x ∈ A : sn(x) > r})∞n=1 form an ascending sequence such that

∞

⋃
n=1
{x ∈ A : sn(x) > r} = {x ∈ A : f (x) > r}.

Then by Lemma A.1.19(d),

f̃ (r) = μ(
∞

⋃
n=1
{x ∈ A : sn(x) > r}) = lim

n→∞
μ({x ∈ A : sn(x) > r}) = lim

n→∞
s̃n(r).

Observe that (s̃n)∞n=1 is an increasing sequence of nonnegative decreasing functions.
So (s̃n)∞n=1 is a sequence of nonnegative Borel measurable functions, which increases
pointwise to f̃ . It follows from the monotone convergence theorem (Theorem A.1.35)
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that
∞

∫
0

μ({x ∈ A : f (x) > r}) dr =
∞

∫
0

f̃ (r) dr =
∞

∫
0

lim
n→∞

s̃n(r) dr

= lim
n→∞

∞

∫
0

s̃n(r) dr

= lim
n→∞

∞

∫
0

μ({x ∈ A : sn(x) > r}) dr

= lim
n→∞
∫
A

sn dμ = ∫
A

lim
n→∞

sn dμ

= ∫
A

f dμ.

Pointwise convergence of a sequence of integrable functions does not guarantee
convergence in L1 (see Exercise 8.5.14). However, under one relatively weak additional
assumption, this becomes true. The second fundamental theorem of convergence ap-
plies to sequences of functions which have an almost everywhere pointwise limit and
are dominated (i. e., uniformly bounded) almost everywhere by an integrable func-
tion.

Theorem A.1.38 (Lebesgue’s dominated convergence theorem). If a sequence of mea-
surable functions (fn)∞n=1 on a measure space (X,𝒜, μ) converges pointwise μ-a. e. to a
function f and if there exists g ∈ L1(μ) such that |fn(x)| ≤ g(x) for all n ∈ ℕ and μ-a. e.
x ∈ X, then f ∈ L1(μ) and

lim
n→∞
‖fn − f ‖1 = 0 and lim

n→∞
∫
X

fn dμ = ∫
X

f dμ.

Proof. Apply Fatou’s lemma to 2g− |fn− f | ≥ 0. See Theorem 1.34 in Rudin [58] formore
detail.

Note that

lim
n→∞
‖fn − f ‖1 = 0 ⇒ lim

n→∞
‖fn‖1 = ‖f ‖1

since ‖fn‖1 − ‖f ‖1
 ≤ ‖fn − f ‖1 and

lim
n→∞
‖fn − f ‖1 = 0 ⇒ lim

n→∞
∫
X

fn dμ = ∫
X

f dμ

by applying LemmaA.1.34(c) to fn−f . The opposite implications donot hold in general.
Nevertheless, the following lemma states that any sequence of integrable functions
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(fn)∞n=1 that converges pointwise almost everywhere to an integrable function f will
also converge to that function in L1 if and only if their L1 norms converge to the L1

norm of f .

Lemma A.1.39 (Scheffé’s lemma). Let (X,𝒜, μ) be a measure space. If a sequence
(fn)∞n=1 of functions in L

1(μ) converges pointwise μ-a. e. to a function f ∈ L1(μ), then

lim
n→∞
‖fn − f ‖1 = 0 ⇐⇒ lim

n→∞
‖fn‖1 = ‖f ‖1.

In particular, if fn ≥ 0 μ-a. e. for all n ∈ ℕ, then f ≥ 0 μ-a. e. and

lim
n→∞
‖fn − f ‖1 = 0 ⇐⇒ lim

n→∞
∫
X

fn dμ = ∫
X

f dμ.

Proof. The direct implication⇒ is trivial. For the converse implication, assume that
limn→∞ ‖fn‖1 = ‖f ‖1. Suppose first that fn ≥ 0 for all n ∈ ℕ. Then f ≥ 0 and hence
our assumption reduces to limn→∞ ∫X fn dμ = ∫X f dμ. Let ℓn = min{f , fn} and un =
max{f , fn}. Then both (ℓn)∞n=1 and (un)

∞
n=1 converge pointwise μ-a. e. to f . Also, |ℓn| =

ℓn ≤ f for all n, so Lebesgue’s dominated convergence theorem asserts that

lim
n→∞
∫
X

ℓn dμ = ∫
X

f dμ.

Observing that un = f + fn − ℓn, we also get that

lim
n→∞
∫
X

un dμ = ∫
X

f dμ + lim
n→∞
∫
X

fn dμ − limn→∞
∫
X

ℓn dμ = ∫
X

f dμ.

Thus

lim
n→∞
‖fn − f ‖1 = lim

n→∞
∫
X

|fn − f | dμ = lim
n→∞
(∫
X

un dμ − ∫
X

ℓn dμ) = 0.

So the implication⇐holds for nonnegative functions. As g = g+−g− and ((fn)+)∞n=1 and
((fn)−)∞n=1 are sequences of functions in L

1(μ) converging pointwise μ-a. e. to f+ ∈ L1(μ)
and f− ∈ L1(μ), respectively, it is easy to see that the general case follows from the case
for nonnegative functions.

If g is a L1 function on a general measure space (X,𝒜, μ), then the sequence of
nonnegative measurable functions (gM)∞M=1, where gM = |g| ⋅ 1{|g|≥M}, decreases to 0
pointwise and is dominated by |g|. Therefore, themonotone convergence theorem (or,
alternatively, Lebesgue’s dominated convergence theorem) affirms that

lim
M→∞
∫
{|g|≥M}

|g| dμ = 0.

This suggests introducing the following concept.
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Definition A.1.40. Let (X,𝒜, μ) be a measure space. A sequence of measurable func-
tions (fn)∞n=1 is uniformly integrable if

lim
M→∞

sup
n∈ℕ
∫
{|fn|≥M}

|fn| dμ = 0.

On finite measure spaces, there exists a generalization of Lebesgue’s dominated
convergence theorem (Theorem A.1.38).

Theorem A.1.41. Let (X,𝒜, μ) be a finite measure space and (fn)∞n=1 a sequence of mea-
surable functions that converges pointwise μ-a. e. to a function f .
(a) If (fn)∞n=1 is uniformly integrable, then fn ∈ L

1(μ) for all n ∈ ℕ and f ∈ L1(μ). More-
over,

lim
n→∞
‖fn − f ‖1 = 0 and lim

n→∞
∫
X

fn dμ = ∫
X

f dμ.

(b) If f , fn ∈ L1(μ) and fn ≥ 0 μ-a. e. for all n ∈ ℕ, then limn→∞ ∫X fn dμ = ∫X f dμ implies
that (fn)∞n=1 is uniformly integrable.

Proof. See Theorem 16.14 in Billingsley [7].

Corollary A.1.42. Let (X,𝒜, μ) be a finite measure space and (fn)∞n=1 a sequence of inte-
grable functions that converges pointwise μ-a. e. to an integrable function f . Then the
following conditions are equivalent:
(a) The sequence (fn)∞n=1 is uniformly integrable.
(b) limn→∞ ‖fn − f ‖1 = 0.
(c) limn→∞ ‖fn‖1 = ‖f ‖1.

Proof. Part (a) of Theorem A.1.41 yields (a)⇒(b). That (b)⇒(c) follows from ‖fn‖1 −
‖f ‖1
 ≤ ‖fn − f ‖1. Finally, replacing fn by |fn − f | and f by 0 in part (b) of Theorem A.1.41

gives (c)⇒(a).

Obviously, any sequence of measurable functions that converges uniformly on an
entire space does converge pointwise. It is well known that the converse is not true in
general, and it is thus natural to ask whether, in some way, a pointwise convergent
sequence converges “almost” uniformly.

Definition A.1.43. Let (X,𝒜, μ) be a measure space. A sequence (fn)∞n=1 of measurable
functions on X is said to converge μ-almost uniformly to a function f if for every ε > 0
there exists Y ∈ 𝒜 such that μ(Y) < ε and (fn)∞n=1 converges uniformly to f on X \ Y .

It is clear that almost uniform convergence implies almost everywhere pointwise
convergence. The converse is not true in general but these two types of convergence
are one and the same on any finite measure space.
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Theorem A.1.44 (Egorov’s theorem). Let (X,𝒜, μ)beafinitemeasure space.A sequence
(fn)∞n=1 of measurable functions on X converges pointwise μ-almost everywhere to a limit
function f if and only if that sequence converges μ-almost uniformly to f .

Proof. See Chapter 3, Exercise 16 in Rudin [58].

The reader ought to convince themself that this result does not generally hold on
infinite spaces.

Convergence in measure is another interesting type of convergence.

Definition A.1.45. Let (X,𝒜, μ) be a measure space. A sequence (fn)∞n=1 of measurable
functions converges in measure to a measurable function f provided that for each
ε > 0,

lim
n→∞

μ({x ∈ X : fn(x) − f (x)
 > ε}) = 0.

Lemma A.1.46. Let (X,𝒜, μ) be a measure space. If a sequence (fn)∞n=1 of measurable
functions converges in L1(μ) to a measurable function f , then (fn)∞n=1 converges in mea-
sure to f .

Proof. Let ε > 0. Then

μ({x ∈ X : fn(x) − f (x)
 > ε}) ≤ ∫

{x∈X : |fn(x)−f (x)|>ε}

|fn − f |
ε

dμ ≤ 1
ε
‖fn − f ‖1.

Taking the limit of both sides as n→∞ completes the proof.

When the measure is finite, there is a close relationship between pointwise con-
vergence and convergence in measure.

Theorem A.1.47. Let (X,𝒜, μ) be a finite measure space and (fn)∞n=1 a sequence of mea-
surable functions.
(a) If (fn)∞n=1 converges pointwise μ-a. e. to a function f , then (fn)

∞
n=1 converges in mea-

sure to f .
(b) If (fn)∞n=1 converges in measure to a function f , then there exists a subsequence
(fnk )
∞
k=1 which converges pointwise μ-a. e. to f .

(c) (fn)∞n=1 converges in measure to a function f if and only if each subsequence (fnk )
∞
k=1

admits a further subsequence (fnkl )
∞
l=1 that converges pointwise μ-a. e. to f .

Proof. See Theorem 20.5 in Billingsley [7].

The previous two results reveal that, on a finite measure space, a sequence of
integrable functions that converges in L1 to an integrable function admits a subse-
quencewhich converges pointwise almost everywhere to that function. In general, the
sequence itself might not converge pointwise almost everywhere (see Exercise 8.5.17).
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In some sense, the following result is a form of convergence theorem. It asserts
that Borelmeasurable functions can be approximated by continuous functions on “ar-
bitrarily large” portions of their domain.

Theorem A.1.48. Let (X,ℬ(X), μ) be a finite Borel measure space and let f : X → ℝ be
a Borel measurable function. Given any ε > 0, for every B ∈ ℬ(X) there is a closed set E
with μ(B\E) < ε such that f |E is continuous. If B is locally compact, then the set E can be
chosen to be compact and then there is a continuous function fε : X → ℝ with compact
support that coincides with f on E and such that supx∈X |fε(x)| ≤ supx∈X |f (x)|.

A.1.7 Mutual singularity, absolute continuity and equivalence of measures

We now leave aside convergence of sequences of functions and recall the definitions
of mutually singular, absolutely continuous, and equivalent measures.

Definition A.1.49. Let (X,𝒜) be a measurable space, and μ and ν be two measures on
(X,𝒜).
(a) The measures μ and ν are said to be mutually singular, denoted by μ⊥ν, if there

exist disjoint sets Xμ,Xν ∈ 𝒜 such that μ(X \ Xμ) = 0 = ν(X \ Xν).
(b) Themeasure μ is said to be absolutely continuous with respect to ν, denoted μ ≺≺ ν,

if ν(A) = 0 ⇒ μ(A) = 0.
(c) The measures μ and ν are said to be equivalent if μ ≺≺ ν and ν ≺≺ μ.

The Radon–Nikodym theorem provides a characterization of absolute continuity.
Though it is valid for σ-finite measures, the following version for finite measures is
sufficient for our purposes.

Theorem A.1.50 (Radon–Nikodym theorem). Let (X,𝒜) be a measurable space and let
μ and ν be two finite measures on (X,𝒜). Then the following statements are equivalent:
(a) μ ≺≺ ν.
(b) For every ε > 0 there exists δ > 0 such that ν(A) < δ ⇒ μ(A) < ε.
(c) There exists a ν-a. e. unique function f ∈ L1(ν) such that f ≥ 0 and

μ(A) = ∫
A

f dν, ∀A ∈ 𝒜.

Proof. See relation (32.4) and Theorem 32.2 in Billingsley [7].

Remark A.1.51. The function f is often denoted by dμ
dν and called the Radon–Nikodym

derivative of μ with respect to ν.

Per LemmaA.1.34(f), two integrable functions are equal almost everywhere if and
only if their integrals are equal over everymeasurable set. When themeasure is finite,
we can restrict our attention to any generating π-system.
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Corollary A.1.52. Let (X,𝒜, ν) be a finite measure space and suppose that𝒜 = σ(𝒫) for
some π-system 𝒫 . Let f , g ∈ L1(ν). Then

f = g ν-a. e. ⇐⇒ ∫
P

f dν = ∫
P

g dν, ∀P ∈ 𝒫 .

Proof. The direct implication ⇒ is obvious. So let us assume that ∫P f dν = ∫P g dν
for all P ∈ 𝒫. The measures μf (A) := ∫A f dν and μg(A) := ∫A g dν are equal on the
π-system 𝒫. According to Lemma A.1.26, this implies that μf = μg . It follows from the
uniqueness part of the Radon–Nikodym theorem that f = g ν-almost everywhere.

A.1.8 The space C(X ), its dual C(X )∗ and the subspaceM(X )

Another important result is Riesz representation theorem. Before stating it, we first
establish some notation. Let X be a compact metrizable space. Let C(X) be the set of
all continuous real-valued functions on X. This set becomes a normed vector space
when endowed with the supremum norm

‖f ‖∞ := sup{
f (x)
 : x ∈ X}. (A.3)

This norm defines a metric on C(X) in the usual way:

d∞(f , g) := ‖f − g‖∞ = sup{
f (x) − g(x)

 : x ∈ X}.

The topology inducedby themetricd∞ onC(X) is called the topology of uniformconver-
gence on X. Indeed, limn→∞ d∞(fn, f ) = 0 if and only if the sequence (fn)∞n=1 converges
to f uniformly on X. It is not hard to see that C(X) is a separable Banach space (i. e., a
separable and complete normed vector space).

Let C(X)∗ denote the dual space of C(X), that is,

C(X)∗ := {F : C(X)→ ℝ | F is continuous and linear}.

Recall that a real-valued function F defined on C(X) is called a functional on C(X). It
is well known that a linear functional F is continuous if and only if it is bounded, that
is, if and only if its operator norm ‖F‖ is finite, where

‖F‖ := sup{F(f )
 : f ∈ C(X) and ‖f ‖∞ ≤ 1}. (A.4)

So C(X)∗ can also be described as the normed vector space of all bounded linear func-
tionals on C(X). The operator norm defines a metric on C(X)∗ in the usual manner:

d(F,G) := ‖F − G‖.
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The topology induced by the metric d on C(X)∗ is called the operator norm topology,
or strong topology, on C(X)∗.

It is not difficult to see that C(X)∗ is a separable Banach space. Furthermore, a
linear functional F is said to be normalized if F(1) = 1 and is called positive if F(f ) ≥ 0
whenever f ≥ 0.

Finally, we denote the set of all Borel probability measures on X byM(X). This set
is clearly convex and can be characterized as follows.

Theorem A.1.53 (Riesz representation theorem). Let X be a compactmetrizable space,
and let F be a normalized and positive linear functional on C(X). Then there exists a
unique μ ∈ M(X) such that

F(f ) = ∫
X

f dμ, ∀f ∈ C(X). (A.5)

Conversely, any μ ∈ M(X) defines a normalized positive linear functional on C(X) via
formula (A.5). This linear functional is bounded.

Proof. The converse statement is straightforward to check. For the other direction, see
Theorem 2.14 in Rudin [58].

It immediately follows from Riesz representation theorem that every Borel prob-
ability measure on a compact metrizable space is uniquely determined by the way it
integrates continuous functions on that space.

Corollary A.1.54. If μ and ν are twoBorel probabilitymeasures on a compactmetrizable
space X, then

μ = ν ⇐⇒ ∫
X

f dμ = ∫
X

f dν, ∀f ∈ C(X).

Let us now discuss the weak∗ topology on the setM(X). Recall that if Z is a set and
(Zα)α∈A is a family of topological spaces, then the weak topology induced on Z by a
collection of maps {ψα : Z → Zα | α ∈ A} is the smallest topology on Z that makes
each ψα continuous. Evidently, the sets ψ−1α (Uα), for Uα open in Zα, constitute a sub-
base for theweak topology. Theweak∗ topology onM(X) is theweak topology induced
by C(X) on its dual space C(X)∗, where measures inM(X) and normalized positive lin-
ear functionals in C(X)∗ are identified via the Riesz representation theorem. Note that
M(X) is metrizable, although C(X)∗ with the weak∗ topology usually is not. Indeed,
both C(X) and its subspace C(X, [0, 1]) of continuous functions on X taking values in
[0, 1], are separable since X is a compact metrizable space. Then for any dense subset
{fn}∞n=1 of C(X, [0, 1]), a metric onM(X) is

d(μ, ν) =
∞

∑
n=1

1
2n

∫
X

fn dμ − ∫
X

fn dν

.
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In this book, we will denote the convergence of a sequence of measures (μn)∞n=1 to a
measure μ in the weak∗ topology ofM(X) by μn

∗
→ μ.

Remark A.1.55. Note that this notion is often presented as “weak convergence” of
measures. This can be slightly confusing at first sight, but it helps to bear in mind
that, as we have seen above, the weak∗ topology is just one instance of a weak topol-
ogy.

The following theorem gives several equivalent characterizations of weak∗ con-
vergence of Borel probability measures.

Theorem A.1.56 (Portmanteau theorem). Let (μn)∞n=1 and μ be Borel probability mea-
sures on a compact metrizable space X. The following statements are equivalent:
(a) μn

∗
→ μ.

(b) For all continuous functions f : X → ℝ,

lim
n→∞
∫
X

f dμn = ∫
X

f dμ.

(c) For all closed sets F ⊆ X,

lim sup
n→∞

μn(F) ≤ μ(F).

(d) For all open sets G ⊆ X,

lim inf
n→∞

μn(G) ≤ μ(G).

(e) For all sets A ∈ ℬ(X) such that μ(𝜕A) = 0,

lim
n→∞

μn(A) = μ(A).

Proof. See Theorem 2.1 in Billingsley [8].

For us, the most important result concerning weak∗ convergence of measures is
that the setM(X) of all Borel probability measures on a compact metrizable space X is
a compact and convex set in the weak∗ topology.

In order to establish this, we need to remember Banach–Alaoglu’s theorem. In this
theorem, note that the boundedness and closedness are with respect to the operator
norm on the dual space while the compactness is with respect to the weak∗ topology
on the dual space.

Theorem A.1.57 (Banach–Alaoglu’s theorem). The closed unit ball in the dual space B∗

of a Banach space B is compact in theweak∗ topology on B∗. Furthermore, every closed,
bounded subset of B∗ is compact in the weak∗ topology on B∗.

Proof. See Theorem V.4.2 and Corollary V.4.3 in Dunford and Schwartz [20].
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Theorem A.1.58. Let X be a compact metrizable space. The set M(X) is compact and
convex in the weak∗ topology of C(X)∗.

Proof. The set M(X) is closed with respect to the operator norm topology on C(X)∗.
Indeed, suppose that (μn)∞n=1 is a sequence inM(X) which converges to a F ∈ C(X)

∗ in
the operator norm topologyofC(X)∗. In otherwords, suppose that limn→∞ ‖μn−F‖ = 0.
By definition of the operator norm (see (A.4)) and thanks to the linearity of F, this
implies that

F(f ) = lim
n→∞
∫
X

f dμn, ∀f ∈ C(X).

In particular, F is normalized (since F(1) = 1) and positive (as F(f ) ≥ 0 for all f ≥ 0). By
Riesz representation theorem (Theorem A.1.53), there is μ ∈ M(X) that represents F.
So F ∈ M(X), and thusM(X) is closed in the operator norm topology on C(X)∗.

The setM(X) is also bounded in that topology. Indeed, if μ ∈ M(X) then

‖μ‖ ≤ sup{∫
X

|f | dμ : f ∈ C(X), ‖f ‖∞ ≤ 1} = 1.

Since X is a compact metrizable space, the space C(X) is a Banach space, as earlier
mentioned. We can then infer from Banach–Alaoglu’s theorem that the set M(X) is
compact in the weak∗ topology.

The convexity of M(X) is obvious. Indeed, if μ, ν ∈ M(X) so is any convex combi-
nationm = αμ + (1 − α)ν, where α ∈ [0, 1].

A.1.9 Expected values and conditional expectation functions

Themean or expected value of a function over a set is a straightforward generalisation
of the mean value of a real-valued function defined on an interval of the real line.

Definition A.1.59. Let (X,𝒜, μ) be a probability space and let φ ∈ L1(μ). The mean or
expected value E(φ|A) of the function φ over the set A ∈ 𝒜 is defined to be

E(φ|A) := {
1

μ(A) ∫A φdμ if μ(A) > 0

0 if μ(A) = 0.

Given that μ is a probabilitymeasure, the expected value ofφ over the entire space
is simply given by

E(φ) := E(φ|X) = ∫
X

φdμ =: μ(φ).
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Our next goal is to give the definition of the conditional expectation of a func-
tion with respect to a σ-algebra. Let (X,𝒜, μ) be a probability space and ℬ be a
sub-σ-algebra of 𝒜. Let also φ ∈ L1(X,𝒜, μ). Notice that φ : X → ℝ is not necessarily
measurable if X is endowed with the sub-σ-algebra ℬ instead of the σ-algebra 𝒜. In
short, we say that φ is 𝒜-measurable but not necessarily ℬ-measurable. We aim to
find a function E(φ|ℬ) ∈ L1(X,ℬ, μ) such that

∫
B

E(φ|ℬ) dμ = ∫
B

φdμ, ∀B ∈ ℬ. (A.6)

This condition means that the function E(φ|ℬ) has the same expected value as φ on
every measurable set belonging to the sub-σ-algebra ℬ. Accordingly, E(φ|ℬ) is called
the conditional expectation of φ with respect to ℬ.

We now demonstrate the existence and μ-a. e. uniqueness of the conditional ex-
pectation. Let us begin with the existence of that function. Suppose first that the func-
tion φ is nonnegative. If φ = 0 μ-a. e., then simply set E(φ|ℬ) = 0. If φ ̸= 0 μ-a. e. then
the set function ν(A) := ∫A φdμ defines a finite measure on (X,𝒜) which is absolutely
continuous with respect to μ. The restriction of ν to ℬ also determines a finite measure
on (X,ℬ)which is absolutely continuous with respect to the restriction of μ to ℬ. So by
the Radon–Nikodym theorem (Theorem A.1.50), there exists a μ-a. e. unique nonneg-
ative function φ̂ ∈ L1(X,ℬ, μ) such that ν(B) = ∫B φ̂ dμ for every B ∈ ℬ. Then

∫
B

φ̂ dμ = ν(B) = ∫
B

φdμ, ∀B ∈ ℬ.

The point here is that although it may look as if we have not really achieved anything,
we have actually gained that φ̂ is ℬ-measurable, whereas φmay not be. Therefore, φ̂
is the sought-after conditional expectation E(φ|ℬ) of φ with respect to ℬ.

If φ takes both negative and positive values, write φ = φ+ − φ−, where φ+(x) :=
max{φ(x),0} is the positive part of φ and φ−(x) := max{−φ(x),0} is the negative part
of φ. Then define the conditional expectation linearly, that is, set

E(φ|ℬ) := E(φ+|ℬ) − E(φ−|ℬ).

This proves the existence of the conditional expectation function. Its μ-a. e. unique-
ness follows from its defining property (A.6) and Lemma A.1.34(f).

The conditional expectation exhibits several natural properties.Wemention a few
of them in the next proposition.

Proposition A.1.60. Let (X,𝒜, μ) be a probability space, let ℬ and 𝒞 denote sub-σ-alge-
bras of𝒜 and let φ ∈ L1(X,𝒜, μ).
(a) If φ ≥ 0 μ-a. e., then E(φ|ℬ) ≥ 0 μ-a. e.
(b) If φ1 ≥ φ2 μ-a. e., then E(φ1|ℬ) ≥ E(φ2|ℬ) μ-a. e.
(c) E(φ|ℬ)

 ≤ E(|φ|
ℬ).
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(d) The functional E(⋅|ℬ) is linear, i. e. for any c1, c2 ∈ ℝ and φ1,φ2 ∈ L1(X,𝒜, μ),

E(c1φ1 + c2φ2
ℬ) = c1E(φ1|ℬ) + c2E(φ2|ℬ).

(e) If φ is already ℬ-measurable, then E(φ|ℬ) = φ. In particular, we have that
E(E(φ|ℬ)ℬ) = E(φ|ℬ). Also, if φ = c ∈ ℝ is a constant function, then E(φ|ℬ) =
φ = c.

(f) If 𝒞 ⊆ ℬ, then E(φ|𝒞) = E(E(φ|ℬ)  𝒞).

Proof. This is left as an exercise to the reader.

We will now determine the conditional expectation of an arbitrary integrable
function φ with respect to various sub-σ-algebras of particular interest.

Example A.1.61. Let (X,𝒜, μ) be a probability space. The family 𝒩 of all measurable
sets that are either of null or of full measure constitutes a sub-σ-algebra of𝒜. Let φ ∈
L1(X,𝒜, μ). Then the function E(φ|𝒩 ) has to belong to L1(X,𝒩 , μ) and must satisfy
condition (A.6). In particular,E(φ|𝒩 )must be𝒩 -measurable. Thismeans that for each
Borel subset R of ℝ, the function E(φ|𝒩 )must be such that E(φ|𝒩 )−1(R) ∈ 𝒩 . Among
others, for every t ∈ ℝwemust have E(φ|𝒩 )−1({t}) ∈ 𝒩 ; in other words, for each t ∈ ℝ
the set E(φ|𝒩 )−1({t}) must be of measure zero or of measure one. Also bear in mind
that

X = E(φ|𝒩 )−1(ℝ) = ⋃
t∈ℝ

E(φ|𝒩 )−1({t}).

Since the above union consists of mutually disjoint sets of measure zero and one, it
follows that only one of these sets can be of measure one. In other words, there exists
a unique t ∈ ℝ such that E(φ|𝒩 )−1({t}) = A for some A ∈ 𝒜 with μ(A) = 1. Because the
function E(φ|𝒩 ) is unique up to a set of measure zero, we may assume without loss
of generality that A = X. Hence, E(φ|𝒩 ) is a constant function. More specifically, its
value is

E(φ|𝒩 ) = ∫
X

E(φ|𝒩 ) dμ = ∫
X

φdμ.

Example A.1.62. Let (X,𝒜) be a measurable space and let α = {An}∞n=1 be a countable
measurable partition of X. That is, eachAn ∈ 𝒜,Ai∩Aj = 0 for all i ̸= j andX = ⋃

∞
n=1 An.

The sub-σ-algebra of𝒜 generated by α is the family of all sets which can be written as
a union of elements of α, that is,

σ(α) = {A ⊆ X : A =⋃
j∈J

Aj for some J ⊆ ℕ}.

When α is finite, so is σ(α). When α is countably infinite, σ(α) is uncountable. Let μ
be a probability measure on (X,𝒜). Let φ ∈ L1(X,𝒜, μ) and set ℬ = σ(α). Then the
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conditional expectation E(φ|ℬ) : X → ℝ has to be a L1(X,ℬ, μ) function that satisfies
condition (A.6). In particular, E(φ|ℬ) must be ℬ-measurable. Thus, for any t ∈ ℝ we
must have E(φ|ℬ)−1({t}) ∈ ℬ, that is, the set E(φ|ℬ)−1({t})must be a union of elements
of α. This means that the conditional expectation function E(φ|ℬ) is constant on each
element of α. Let An ∈ α. If μ(An) = 0 then E(φ|ℬ)|An

= 0. Otherwise,

E(φ|ℬ)|An
=

1
μ(An)
∫
An

E(φ|ℬ) dμ = 1
μ(An)
∫
An

φdμ = E(φ|An).

In summary, the conditional expectation E(φ|ℬ) of a function φ with respect to a
sub-σ-algebra generated by a countable measurable partition is constant on each el-
ement of that partition. More precisely, on any given element of the partition, E(φ|ℬ)
is equal to the mean value of φ on that element.

The next result is a special case of a theorem originally due to Doob and called the
martingale convergence theorem. But, first, let us define the martingale itself.

Definition A.1.63. Let (X,𝒜, μ) be a probability space. Let (𝒜n)
∞
n=1 be a sequence of

sub-σ-algebras of 𝒜. Let also (φn : X → ℝ)∞n=1 be a sequence of 𝒜-measurable func-
tions. The sequence ((φn,𝒜n))

∞
n=1 is called amartingale if the following conditions are

satisfied:
(a) (𝒜n)

∞
n=1 is an ascending sequence, that is,𝒜n ⊆ 𝒜n+1 for all n ∈ ℕ.

(b) φn is𝒜n-measurable for all n ∈ ℕ.
(c) φn ∈ L1(μ) for all n ∈ ℕ.
(d) E(φn+1|𝒜n) = φn μ-a. e. for all n ∈ ℕ.

Theorem A.1.64 (Martingale convergence theorem). Let (X,𝒜, μ) be a probability
space. If ((φn,𝒜n))

∞
n=1 is a martingale such that

sup
n∈ℕ
‖φn‖1 <∞,

then there exists φ̂ ∈ L1(X,𝒜, μ) such that

lim
n→∞

φn(x) = φ̂(x) for μ-a. e. x ∈ X and ‖φ̂‖1 ≤ sup
n∈ℕ
‖φn‖1.

Proof. See Theorem 35.5 in Billingsley [7].

One natural martingale is formed by the conditional expectations of a function
with respect to an ascending sequence of sub-σ-algebras.

Example A.1.65. Let (X,𝒜, μ)beaprobability space and let (𝒜n)
∞
n=1 beanascending se-

quence of sub-σ-algebras of𝒜. For anyφ ∈ L1(X,𝒜, μ), the sequence {(E(φ|𝒜n),𝒜n)}
∞
n=1

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



414 | Appendix A – A selection of classical results

is a martingale. Indeed, set φn = E(φ|𝒜n) for all n ∈ ℕ. Condition (a) in Defini-
tion A.1.63 is automatically fulfilled. Conditions (b) and (c) follow from the very defi-
nition of the conditional expectation function. Regarding condition (d), a straightfor-
ward application of Proposition A.1.60(f) gives

E(φn+1|𝒜n) = E(E(φ|𝒜n+1) | 𝒜n) = E(φ|𝒜n) = φn μ-a. e., ∀n ∈ ℕ.

So {(E(φ|𝒜n),𝒜n)}
∞
n=1 is a martingale. Using Proposition A.1.60(c), note that

sup
n∈ℕ
‖φn‖1 = sup

n∈ℕ
∫
X

E(φ|𝒜n)
 dμ ≤ sup

n∈ℕ
∫
X

E(|φ| | 𝒜n) dμ = ∫
X

|φ| dμ = ‖φ‖1 <∞.

According to Theorem A.1.64, there thus exists φ̂ ∈ L1(X,𝒜, μ) such that

lim
n→∞

E(φ|𝒜n)(x) = φ̂(x) for μ-a. e. x ∈ X and ‖φ̂‖1 ≤ ‖φ‖1.

What is φ̂? This is the question we will answer in Theorem A.1.67.

Beforehand, we establish the uniform integrability of this martingale (see Defini-
tion A.1.40).

Lemma A.1.66. Let (X,𝒜, μ) be a probability space and let (𝒜n)
∞
n=1 be a sequence of

sub-σ-algebras of 𝒜. For any φ ∈ L1(X,𝒜, μ), the sequence (E(φ|𝒜n))
∞
n=1 is uniformly

integrable.

Proof. Without loss of generality, we may assume that φ ≥ 0. Let ε > 0. Since ν(A) =
∫A φdμ is absolutely continuouswith respect to μ, it follows from the Radon–Nikodym
theorem (Theorem A.1.50) that there exists δ > 0 such that

A ∈ 𝒜, μ(A) < δ ⇒ ∫
A

φdμ < ε. (A.7)

SetM > ∫X φdμ/δ. For each n ∈ ℕ, let

Xn(M) = {x ∈ X : E(φ|𝒜n)(x) ≥ M}.

Observe that Xn(M) ∈ 𝒜n since E(φ|𝒜n) is𝒜n-measurable. Therefore,

μ(Xn(M)) ≤
1
M
∫

Xn(M)

E(φ|𝒜n) dμ =
1
M
∫

Xn(M)

φdμ ≤ 1
M
∫
X

φdμ < δ

for all n ∈ ℕ. Consequently, by (A.7),

∫
Xn(M)

E(φ|𝒜n) dμ = ∫
Xn(M)

φdμ < ε
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for all n ∈ ℕ. Thus

sup
n∈ℕ

∫
{E(φ|𝒜n)≥M}

E(φ|𝒜n) dμ ≤ ε.

Since this holds for all large enoughM’s and since ε > 0 is arbitrary, we have

lim
M→∞

sup
n∈ℕ

∫
{E(φ|𝒜n)≥M}

E(φ|𝒜n) dμ = 0,

that is, the sequence (E(φ|𝒜n))
∞
n=1 is uniformly integrable.

Theorem A.1.67 (Martingale convergence theorem for conditional expectations). Let
(X,𝒜, μ) be a probability space and φ ∈ L1(X,𝒜, μ). Let (𝒜n)

∞
n=1 be an ascending se-

quence of sub-σ-algebras of𝒜 and

𝒜∞ := σ(
∞

⋃
n=1

𝒜n).

Then

lim
n→∞
E(φ|𝒜n) − E(φ|𝒜∞)

1 = 0 and lim
n→∞

E(φ|𝒜n) = E(φ|𝒜∞) μ-a. e. on X.

Proof. Let φn = E(φ|𝒜n). In Example A.1.65 and Lemma A.1.66, we have seen that
((φn,𝒜n))

∞
n=1 is a uniformly integrable martingale such that

lim
n→∞

φn = φ̂ μ-a. e. on X

for some φ̂ ∈ L1(X,𝒜, μ). For all n ∈ ℕ the function φn is 𝒜∞-measurable since it is
𝒜n-measurable and 𝒜n ⊆ 𝒜∞. Thus φ̂ is 𝒜∞-measurable, too. Moreover, it follows
from Theorem A.1.41 that

lim
n→∞
‖φn − φ̂‖1 = 0 and lim

n→∞
∫
A

φn dμ = ∫
A

φ̂ dμ, ∀A ∈ 𝒜.

Therefore, it just remains to show that φ̂ = E(φ|𝒜∞).
Let k ∈ ℕ and A ∈ 𝒜k . If n ≥ k, then A ∈ 𝒜n ⊆ 𝒜∞, and thus

∫
A

φn dμ = ∫
A

E(φ|𝒜n) dμ = ∫
A

φdμ = ∫
A

E(φ|𝒜∞) dμ.

Letting n→∞ yields

∫
A

φ̂ dμ = ∫
A

E(φ|𝒜∞) dμ, ∀A ∈ 𝒜k .
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Since k is arbitrary,

∫
B

φ̂ dμ = ∫
B

E(φ|𝒜∞) dμ, ∀B ∈
∞

⋃
k=1

𝒜k .

Since ⋃∞k=1𝒜k is a π-system generating 𝒜∞ and since both φ̂ and E(φ|𝒜∞) are
𝒜∞-measurable, Corollary A.1.52 affirms that φ̂ = E(φ|𝒜∞) μ-a. e.

There is also a counterpart of this theorem fordescending sequencesofσ-algebras.

Theorem A.1.68 (Reversed martingale convergence theorem for conditional expecta-
tions). Let (X,𝒜, μ)be aprobability space andφ ∈ L1(X,𝒜, μ). If (𝒜n)

∞
n=1 is a descending

sequence of sub-σ-algebras of𝒜, then

lim
n→∞


E(φ|𝒜n) − E(φ



∞

⋂
n=1

𝒜n)
1
= 0 and lim

n→∞
E(φ|𝒜n) = E(φ



∞

⋂
n=1

𝒜n) μ-a. e.

Proof. See Theorem 35.9 in Billingsley [7].

Theorems A.1.67/A.1.68 are especially useful for the calculation of the conditional
expectation of a function with respect to a sub-σ-algebra generated by an uncount-
able measurable partition which can be approached by an ascending/descending se-
quence of sub-σ-algebras generated by countable measurable partitions. See Exer-
cise 8.5.22.

They can also be used to approximate a measurable set by one from a generating
sequence of sub-σ-algebras.

Corollary A.1.69. Let (X,𝒜, μ) be a probability space. Let (𝒜n)
∞
n=1 be an ascending se-

quence of sub-σ-algebras of 𝒜 and set 𝒜∞ = σ(⋃
∞
n=1𝒜n). Let B ∈ 𝒜∞. For every ε > 0,

there exists A ∈ ⋃∞n=1𝒜n such that μ(A△ B) < ε.

Proof. Let B ∈ 𝒜∞. It ensues from Theorem A.1.67 that

lim
n→∞

E(1B|𝒜n) = E(1B|𝒜∞) = 1B μ-a. e. on X.

By Theorem A.1.47, we deduce that

lim
n→∞

μ({x ∈ X : E(1B|𝒜n)(x) − 1B(x)
 ≥

1
8
}) = 0.

For every n ∈ ℕ, let

Bn := {x ∈ X :
E(1B|𝒜n)(x) − 1B(x)

 ≥
1
8
}.

Then there exists N = N(ε) ∈ ℕ such that

μ(Bn) ≤ ε/2, ∀ n ≥ N .
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For every n ∈ ℕ, let

An := {x ∈ X :
E(1B|𝒜n)(x) − 1

 ≤
1
4
} ∈ 𝒜n.

On one hand,

x ∈ B \ An ⇒
E(1B|𝒜n)(x) − 1B(x)

 >
1
4
⇒ x ∈ Bn.

This means that

B \ An ⊆ Bn.

On the other hand,

x ∈ An \ B ⇒
E(1B|𝒜n)(x) − 1B(x)

 =
E(1B|𝒜n)(x)

 ≥
3
4
⇒ x ∈ Bn.

This means that

An \ B ⊆ Bn.

Therefore,

μ(An △ B) = μ(An \ B) + μ(B \ An) ≤ 2μ(Bn) ≤ ε, ∀n ≥ N .

Since An ∈ 𝒜n, we have found some A ∈ ⋃∞n=1𝒜n with μ(A△ B) < ε.

We will now give a proof of Lemma A.1.32 in the case where the algebra is count-
able.

Proof. Let 𝒜 = {An}∞n=1 be a countable algebra on a set X and let μ be a probability
measure on (X, σ(𝒜)). Set 𝒜′n = {Ak}

n
k=1. Since 𝒜′n is a finite set, the algebra 𝒜(𝒜′n)

it generates is also finite, and thus σ(𝒜′n) = 𝒜(𝒜
′
n). Moreover, since 𝒜 is an algebra,

σ(𝒜′n) = 𝒜(𝒜
′
n) ⊆ 𝒜. It follows that

σ(𝒜) = σ(
∞

⋃
n=1

σ(𝒜′n)).

LetB ∈ σ(𝒜) and ε > 0. Since (σ(𝒜′n))
∞
n=1 is an ascending sequence of sub-σ-algebras of

σ(𝒜) such that σ(𝒜) = σ(⋃∞n=1 σ(𝒜
′
n)), it ensues from Corollary A.1.69 that there exists

A ∈ ⋃∞n=1 σ(𝒜
′
n) with μ(A△ B) < ε. Since ⋃

∞
n=1 σ(𝒜

′
n) ⊆ 𝒜, we have found some A ∈ 𝒜

such that μ(A△ B) < ε.

Finally, we introduce the concept of conditional measure and relate it to the con-
cept of expected value.
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Definition A.1.70. Let (X,𝒜, μ) be a probability space and let B ∈ 𝒜 be such that
μ(B) > 0. The set function μB : 𝒜→ [0, 1] defined by setting

μB(A) :=
μ(A ∩ B)
μ(B)
, ∀A ∈ 𝒜

is a probability measure on (X,𝒜) called the conditional measure of μ on B.

Note that for every φ ∈ L1(X,𝒜, μ),

∫
X

φdμB = ∫
B

φdμB + ∫
X\B

φdμB =
1

μ(B)
∫
B

φdμ + 0 = E(φ|B).

A.2 Analysis

Theorem A.2.1 (Inverse function theorem). Let𝒳 and𝒴 be Banach spaces and x0 ∈ 𝒳 .
If F is a C1 (i. e., continuously differentiable) function on some neighborhood of x0 such
that F′(x0) is invertible, then there exists an open neighborhood U of x0 such that F(U)
is open in 𝒴 and F bijectively maps U to F(U). Furthermore, the inverse function of F|U ,
mapping F(U) to (U), is continuously differentiable.
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Preface

Dynamical systems and ergodic theory is a rapidly evolving field of mathematics with
a large variety of subfields, which use advanced methods from virtually all areas of
mathematics. These subfields comprise but are by no means limited to: abstract er-
godic theory, topological dynamical systems, symbolic dynamical systems, smooth
dynamical systems, holomorphic/complex dynamical systems, conformal dynam-
ical systems, one-dimensional dynamical systems, hyperbolic dynamical systems,
expanding dynamical systems, thermodynamic formalism, geodesic flows, Hamilto-
nian systems, KAM theory, billiards, algebraic dynamical systems, iterated function
systems, group actions, and random dynamical systems.

All of these branches of dynamical systems are mutually intertwined in many in-
volved ways. Each of these branches nonetheless also has its own unique methods
and techniques, in particular embracingmethods which arise from the fields of math-
ematics the branch is closely related to. For example, complex dynamics borrows ad-
vanced methods from complex analysis, both of one and several variables; geodesic
flowsutilizemethods fromdifferential geometry; and abstract ergodic theory and ther-
modynamic formalism rely heavily on measure theory and functional analysis.

Indeed, it is truly fascinating how large the field of dynamical systems is and how
many branches of mathematics it overlaps with. In this book, we focus on some se-
lected subfields of dynamical systems, primarily noninvertible ones.

In the first volume, we give introductory accounts of topological dynamical sys-
temsacting on compactmetrizable spaces, of finite-state symbolic dynamical systems,
andof abstract ergodic theory ofmeasure-theoretic dynamical systemsacting onprob-
ability measure spaces, the latter including the metric entropy theory of Kolmogorov
and Sinai. More advanced topics include infinite ergodic theory, general thermody-
namic formalism, and topological entropy and pressure. This volume also includes a
treatment of several classes of dynamical systems, which are interesting on their own
andwill be studied at greater length in the second volume:we provide a fairly detailed
account of distance expanding maps and discuss Shub expanding endomorphisms,
expansive maps, and homeomorphisms and diffeomorphisms of the circle.

The second volume is somewhat more advanced and specialized. It opens with
a systematic account of thermodynamic formalism of Hölder continuous potentials
for open transitive distance expanding systems. One chapter comprises no dynamics
but rather is a concise account of fractal geometry, treated from the point of view of
dynamical systems. Both of these accounts are later used to study conformal expand-
ing repellers. Another topic exposed at length is that of thermodynamic formalism
of countable-state subshifts of finite type. Relying on this latter, the theory of confor-
mal graph directed Markov systems, with their special subclass of conformal iterated
function systems, is described. Here, in a similar way to the treatment of conformal ex-
panding repellers, the main focus is on Bowen’s formula for the Hausdorff dimension
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of the limit set and multifractal analysis. A rather short examination of Lasota–Yorke
maps of an interval is also included in this second volume.

The third volume is entirely devoted to the study of the dynamics, ergodic theory,
thermodynamic formalism, and fractal geometry of rational functions of the Riemann
sphere. We present a fairly complete account of classical as well as more advanced
topological theory of Fatou and Julia sets. Nevertheless, primary emphasis is placed
onmeasurable dynamics generated by rational functions and fractal geometry of their
Julia sets. These include the thermodynamic formalism of Hölder continuous poten-
tials with pressure gaps, the theory of Sullivan’s conformal measures, invariant mea-
sures and their dimensions, entropy, and Lyapunov exponents.We further examine in
detail the classes of expanding, subexpanding, and parabolic rational functions. We
also provide, with proofs, several of the fundamental tools from complex analysis that
are used in complex dynamics. These comprise Montel’s Theorem, Koebe’s Distortion
Theorems and Riemann–Hurwitz formulas, with their ramifications.

In virtually each chapter of this book, we describe a large number of concrete se-
lected examples illustrating the theory and serving as examples in other chapters.
Also, each chapter of the book is supplied with a number of exercises. These vary in
difficulty, from very easy ones asking to verify fairly straightforward logical steps to
more advanced ones enhancing largely the theory developed in the chapter.

This book originated from the graduate lecturesMariusz Urbański delivered at the
University of North Texas in the years 2005–2010 and that Sara Munday took notes of.
With the involvement of Mario Roy, the book evolved and grew over many years. The
last 2 years (2020 and 2021) of its writingweremost dramatic and challenging because
of the COVID-19 pandemic. Our book borrowswidely frommany sources including the
books [41, 47, 57]. We nevertheless tried to keep it as self-contained as possible, avoid-
ing to refer the reader too often to specific results from special papers or books. Toward
this end, an appendix comprising classical results, mostly frommeasure theory, func-
tional analysis and complex analysis, is included. The book covers quite amany topics
treated with various degrees of completeness, none of which are fully exhausted be-
cause of their sheer largeness and their continuous dynamical growth.
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Introduction to Volume 1

In the first volume of this book, we give introductory accounts of topological dynami-
cal systems acting on compactmetrizable spaces, of finite-alphabet symbolic systems,
and of ergodic theory of measure-theoretic dynamical systems acting on probability
spaces, the latter including the metric entropy theory of Kolmogorov and Sinai. More
advanced topics include infinite ergodic theory, general thermodynamic formalism,
and topological entropyandpressure. This volumealso includes a treatment of several
classes of dynamical systems,which are interesting on their ownandwill be studied at
greater length in the second volume: we provide a fairly detailed account of distance
expanding maps and discuss Shub expanding endomorphisms, positively expansive
maps, and homeomorphisms and diffeomorphisms of the circle.

We now describe the content of each chapter of this first volume in more detail,
including their mutual dependence and interrelations.

Chapter 1 – Dynamical systems
In the first few sections of Chapter 1, we introduce the basic concepts in the theory
of topological dynamical systems: orbits, periodic points, preperiodic points, ω-limit
sets, factors, and subsystems. In particular, we introduce the concept of topological
conjugacy and identify the number of periodic points of any given period as a simple
(topological conjugacy) invariant. We further examine the following invariants: mini-
mality, transitivity, topological mixing, strong transitivity, and topological exactness.
Finally, we provide the first two classes of examples, namely rotations on compact
topological groups and some continuous maps on compact intervals.

Chapter 2 – Homeomorphisms of the circle
In Chapter 2, we temporarily step away from the general theory of dynamical systems
to considermore specific examples.We investigate homeomorphisms of the unit circle
and examine the notions of lift and rotation number for homeomorphisms. Then we
study inmore detail the subclass of diffeomorphisms of the unit circle. Themain result
of this chapter is Denjoy’s theorem, which states that if a C2 diffeomorphism has an
irrational rotation number, then this diffeomorphism is a minimal system which is
topologically conjugate to an irrational rotation.

Chapter 3 – Symbolic dynamics
In Chapter 3, we discuss symbolic dynamical systems. We treat them as objects in
their own right, but later (in Chapter 4, among others) we apply the ideas developed
here to more general systems. We restrict ourselves to the case of finitely many letters,
as symbolic systems born out of finite alphabets give rise to systems acting on com-
pact metrizable spaces. Nevertheless, note that in Chapter 17 of the second volume,
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we will consider countable-alphabet symbolic dynamics. In Section 3.1, we introduce
full shifts. In Section 3.2, we study subshifts of finite type and in particular the charac-
terizations of topological transitivity and exactness in terms of the underlying matrix
associated with such systems. Finally, in Section 3.3 we examine general subshifts of
finite type.

Chapter 4 – Distance expanding maps
In Chapter 4, we define and give some examples of distance expanding maps. In Sec-
tion 4.2,we study the properties of their local inverse branches. This is awayof dealing
with the noninvertibility of these maps. In Section 4.3, we examine the all important
concepts of pseudo-orbit and shadowing. In Section 4.4, we introduce the powerful
concept of Markov partitions and establish their existence for open, distance expand-
ing systems. We then show in Section 4.5 how to use Markov partitions to represent
symbolically the dynamics of open, distance expanding systems. This is a beautiful
application of the symbolic dynamics studied in Chapter 3. The final theorem of the
chapter describes the properties of the coding map between the underlying compact
metric space (the phase space) and some subshift of finite type (a symbolic space).

Chapter 5 – Expansive maps
In Chapter 5, we introduce the concept of expansiveness. Amidst the large variety of
dynamical behaviors, which can be thought of as expansionary in some sense, ex-
pansiveness has turned out to be a rather weak but useful notion. Indeed, all distance
expanding maps are expansive and so, more particularly, all subshifts over a finite
alphabet are expansive. But expansiveness is not so far from expandingness, as we
demonstrate in this chapter that every expansive system is in fact expanding with re-
spect to somemetric compatiblewith the topology. Thismeans thatmanyof the results
proved in Chapter 4, such as the existence of Markov partitions and of a nice symbolic
representation, the density of periodic points, the closing lemma, and the shadow-
ing property, hold for all positively expansive maps. Nevertheless, expansiveness is
weaker than expandingness, and we provide at the end of the chapter a class of ex-
pansivemaps that arenot distance expanding. Expansivemapsare important for other
reasons as well. One of them is that expansiveness is a topological conjugacy invari-
ant. More crucially, the measure-theoretic entropy function is upper semicontinuous
within that class of maps. In particular, all expansive maps admit a measure of max-
imal entropy and, more generally, equilibrium states under all continuous potentials
(see Chapter 12).

Chapter 6 – Shub expanding endomorphisms
In Section 6.2, we give a systematic account of Shub’s expanding endomorphisms.
These maps constitute a large, beautiful subclass of distance expanding maps and
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are far-reaching generalizations of the expanding endomorphisms of the circle, which
will be first introduced in Section 6.1. After a digression into albegraic topology, we
establish in Section 6.4 that Shub expanding endomorphisms are structurally stable,
form an open set in an appropriate topology of smooth maps, are topologically exact,
have at least one fixed point as well as a dense set of periodic points, and their univer-
sal covering space is diffeomorphic to ℝn.

Chapter 7 – Topological entropy
In Chapter 7, we study the central notion of topological entropy, one of themost useful
and widely-applicable topological invariant thus far discovered. It was introduced to
dynamical systems by Adler, Konheim, and McAndrew in 1965. Their definition was
motivated by Kolmogorov and Sinai’s definition of metric/measure-theoretic entropy
introduced less than a decade earlier. The topological entropy of a dynamical sys-
tem, which we introduce in Section 7.2, is a nonnegative extended real number that
measures the complexity of the system. Topological entropy is a topological conju-
gacy invariant but by nomeans a complete invariant. In Section 7.3, we treat at length
Bowen’s characterization of topological entropy in terms of separated and spanning
sets. In Chapter 11, we will introduce and deal with topological pressure, which is a
substantial generalization of topological entropy. Our approach to topological pres-
sure will stem from and extend that for topological entropy. In this sense, this chapter
can be viewed as a preparation to Chapter 11.

Chapter 8 – Ergodic theory
In Chapter 8, we move away from the study of purely topological dynamical systems
to consider instead dynamical systems that come equipped with a measure. That is,
instead of self-maps acting on compact metrizable spaces, we now ask that the self-
maps act upon measure spaces. We introduce in Section 8.1 the basic object of study
in ergodic theory, namely, invariant measures. We also prove Poincaré’s recurrence
theorem. Section 8.2 presents the notion of ergodicity and comprises a demonstration
of Birkhoff’s ergodic theorem. This theorem is one of the most fundamental results in
ergodic theory. It is extremely useful in numerous applications. The class of ergodic
measures for a given transformation is then studied in more detail. The penultimate
Section 8.3 contains an introduction to various measure-theoretic mixing properties
that a system may satisfy, and shows that ergodicity is a very weak form of mixing.
In the final Section 8.4, Rokhlin’s natural extension of any given dynamical system is
described and the mixing properties of this extension are investigated.

Chapter 9 –Measure-theoretic entropy
In Chapter 9, we study the measure-theoretic entropy of a (probability) measure-
preserving dynamical system, also known as metric entropy or Kolmogorov–Sinai
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metric entropy. It was introduced by A. Kolmogorov and Ya. Sinai in the late 1950s.
Since then, its account has been presented in virtually every textbook on ergodic
theory. Its introduction to dynamical systems was motivated by Ludwig Boltzmann’s
concept of entropy in statistical mechanics and Claude Shannon’s work on informa-
tion theory. We first study measurable partitions in Section 9.2. Then we examine the
concepts of information and conditional information in Section 9.3. In Section 9.4, we
finally define the metric entropy of a measure-preserving dynamical system. And in
Section 9.5, we formulate and prove the full version of Shannon–McMillan–Breiman’s
characterization of metric entropy. Finally, in Section 9.6 we shed further light on
the nature of entropy, by proving the Brin–Katok local entropy formula. Like the
Shannon–McMillan–Breiman theorem, the Brin–Katok local entropy formula is very
useful in applications.

Chapter 10 – Infinite invariant measures
In Chapter 10, we deal with measurable transformations preserving measures that
are no longer assumed to be finite. The outlook is then substantially different than
in the case of finite measures. In Section 10.1, we investigate in detail the notions of
quasi-invariantmeasures, ergodicity, and conservativity.Wealso proveHalmos’ recur-
rence theorem, which is a generalization of Poincaré’s recurrence theorem for quasi-
invariant measures that are not necessarily finite. In Section 10.2, we discuss first re-
turn times, first return maps, and induced systems. We further establish relations be-
tween invariantmeasures for the original transformation and the induced one. In Sec-
tion 10.3, we study implications of Birkhoff’s ergodic theorem for finite and infinite
measure spaces. Among others, we demonstrate Hopf’s ergodic theorem, which ap-
plies tomeasure-preserving transformations ofσ-finite spaces. Finally, in Section 10.4,
we seek a condition under which, given a quasi-invariant probability measure, one
can construct a σ-finite invariantmeasurewhich is absolutely continuouswith respect
to the original measure. To this end, we introduce a class of transformations, called
Martensmaps, that have this feature and evenmore. In fact, thesemapshave the prop-
erty that any quasi-invariant probability measure admits an equivalent σ-finite invari-
ant one. Applications of these concepts and results can be found in Chapters 13–14 of
the second volume and Chapters 29–32 of the third volume.

Chapter 11 – Topological pressure
Chapter 12 – The variational principle and equilibrium states
In the last two chapters of this first volume, we introduce and extensively deal with
the fundamental concepts and results of thermodynamic formalism, including topo-
logical pressure, the variational principle, and equilibrium states. This topic has a
continuation throughout the whole second volume, first and perhaps most notably,
in the first chapter of that volume, which is devoted to the thermodynamic formalism
of distance expanding maps and Hölder continuous potentials. It will be enriched by
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the seminal concepts of Gibbs states and transfer (Perron–Frobenius, Ruelle, Araki)
operators.

Thermodynamic formalism originated in the late 1960s with the works of David
Ruelle. The motivation for Ruelle came from statistical mechanics, particularly glass
lattices. The foundations, classical concepts and theorems of thermodynamic formal-
ism were developed throughout the 1970s by Ruelle, Rufus Bowen, Peter Walters, and
Yakov Sinai.

In Chapter 11, we define and investigate the properties of topological pressure.
Like topological entropy, this is a topological concept and a topological conjugacy in-
variant. We further give Bowen’s characterization of pressure in terms of separated
and spanning sets.

In Chapter 12, we relate topological pressure with metric entropy by proving the
variational principle, the very cornerstone of thermodynamic formalism. This prin-
ciple naturally leads to the concepts of equilibrium states and measures of maximal
entropy. Among others, we show that under a continuous potential every expansive
dynamical system admits an equilibrium state.
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1 Dynamical systems

In the first few sections of this chapter, we introduce the basic concepts in the theory
of topological dynamical systems: orbits, periodic points, preperiodic points, ω-limit
sets, factors, and subsystems. In particular, we introduce in Section 1.2 the concept of
topological conjugacy and identify the number of periodic points of any given period
as a simple (topological conjugacy) invariant. In Section 1.5, we examine the following
invariants: minimality, transitivity, topological mixing, strong transitivity, and topo-
logical exactness. Finally, in Section 1.6 we provide the first two classes of examples,
namely rotations on compact topological groups and some continuous maps of com-
pact intervals.

1.1 Basic definitions

Throughout this book, a (discrete) topological dynamical system is a continuous map
T : X → X of a nonempty compact metrizable space X. When emphasis on a metric is
desirable, we write (X, d). The study of a dynamical system consists of determining its
long-term behaviors, also referred to as asymptotic behaviors. That is, if we denote by
Tn the nth iterate of T, which is defined to be

Tn := T ∘ ⋅ ⋅ ⋅ ∘ T⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n times
,

in order to study a dynamical systemT, we investigate the sequence of iterates (Tn)∞n=0.
The long-term behavior of a point x ∈ X can be determined by looking at this sequence
of iterates evaluated at the point x.

Definition 1.1.1. Let x ∈ X. The forward orbit of x under T is the set

𝒪+(x) := {T
n(x) : n ≥ 0}.

Moreover, the backward orbit of x is the set

𝒪−(x) := {T
−n(x) : n ≥ 0} = {Tn(x) : n ≤ 0},

while the full orbit of x is the set

𝒪(x) := {Tn(x) : n ∈ ℤ} = 𝒪−(x) ∪𝒪+(x).

The simplest (forward) orbits that may be observed in a dynamical system are
those that consist of only finitely many points. Among these are the orbits that are
cyclic.

https://doi.org/10.1515/9783110702682-001
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Definition 1.1.2. A point x ∈ X is said to be periodic for a system T if

Tn(x) = x

for some n ∈ ℕ. Then n is called a period of x. The smallest period of a periodic point
x is called the prime period of x. The set of all periodic points of period n for T shall be
denoted by Pern(T). In particular, if

T(x) = x

then x is called a fixed point for T. The set of all fixed points will be denoted by Fix(T).
Hence, Fix(T) = Per1(T). Finally, we let Per(T) = ⋃

∞
n=1 Pern(T) denote the set of all

periodic points for T.

Example 1.1.3.
(a) Define the map T : [0, 1]→ [0, 1] by setting

T(x) := { 2x if x ∈ [0, 1/2)
2 − 2x if x ∈ [1/2, 1].

This map is known in the literature as the tent map. Its graph, which makes clear
the reasoning behind the name, is shown in Figure 1.1. The tent map has for fixed
points Fix(T) = {0, 2/3} and has 2n periodic points of period n for each n ∈ ℕ.
These are given by

Pern(T) = {0,
k

2n − 1
,

k
2n + 1
,

2n

2n + 1
: k ∈ {2, 4, 6, . . . , 2n − 2}}.

These periodic points are the points of intersection of the graph of Tn with the
diagonal line y = x.

Figure 1.1: The tent map T : [0, 1]→ [0, 1].

(b) Let 𝕊1 denote the unit circle, where 𝕊1 := ℝ/ℤ, or, equivalently, 𝕊1 := [0, 1] (mod 1).
Fix m ∈ ℕ and define the map Tm : 𝕊1 → 𝕊1 by setting Tm(x) := mx (mod 1). One
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example of such a map is shown in Figure 1.2. The map Tm is simply a piecewise
linear map that sends each interval [i/m, (i + 1)/m], for 0 ≤ i ≤ m − 1, onto 𝕊1. It
can be expressed by the formula

Tm(x) = mx − i, ∀x ∈ [
i
m
,
i + 1
m
], ∀0 ≤ i ≤ m − 1.

Figure 1.2: The map Tm : [0, 1]→ [0, 1], wherem = 5.

Themap Tm hasm− 1 fixed points. They are the points of intersection of the graph
of Tm with the diagonal line y = x. More precisely,

Fix(Tm) = {
i

m − 1
: 0 ≤ i < m − 1}.

Similarly, it can be shown that the nth iterate Tnm has mn − 1 fixed points (see Ex-
ercise 1.7.1). We will return to this example later in the book, specifically in Chap-
ters 4 and 9.

We now observe a general fact about convergent sequences of iterates of a point.

Lemma 1.1.4. Let T : X → X be a dynamical system. Suppose that there exists x ∈ X
such that

lim
n→∞

Tn(x) = y.

Then y is a fixed point for T.

Proof. Using the continuity of T, we obtain that

T(y) = T( lim
n→∞

Tn(x)) = lim
n→∞

Tn+1(x) = y.

Note that this fact applies only when the entire sequence of iterates converges. It
does not generally hold for convergent subsequences.
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Definition 1.1.5. A point x ∈ X is said to be preperiodic for a system T if one of its
(forward) iterates is a periodic point. That is, if there exists k ∈ ℕ such that Tk(x)
is a periodic point. In other words, this means that there exists n ∈ ℕ such that
Tk+n(x) = Tk(x).

The forward orbit 𝒪+(x) is finite if and only if x is periodic or preperiodic. Equiv-
alently, the sequence of forward iterates (Tn(x))∞n=0 consist of mutually distinct points
if and only if x is neither periodic nor preperiodic. Indeed,𝒪+(x) is infinite if and only
if the sequence (Tn(x))∞n=0 consist of mutually distinct points.

1.2 Topological conjugacy and structural stability
Suppose thatwehave two topological dynamical systems,T : X → X and S : Y → Y . In
this section, we describe a particular condition underwhich these two systems should
be considered dynamically equivalent, that is, as dynamically “the same” in some
sense. More precisely, we will establish when the orbits of two systems behave in the
same way. Establishing an equivalence relation between dynamical systems can be
extremely helpful, since it gives us the opportunity to apply our knowledge of systems
we understand well to systems we have less information about.

Definition 1.2.1. Two dynamical systems T : X → X and S : Y → Y are said to be
topologically conjugate if there exists a homeomorphism h : X → Y , called a conjugacy
map, such that

h ∘ T = S ∘ h.

In other words, T and S are topologically conjugate if there exists a homeomorphism
h such that the following diagram commutes:

X T
→ X

h
↑↑↑↑↓

↑↑↑↑↓h

Y →
S

Y

Remark 1.2.2.
(a) Topological conjugacy defines an equivalence relation on the space of all dynam-

ical systems (see Exercise 1.7.6).
(b) If two dynamical systems T and S are topologically conjugate via a conjugacy

map h, then all of their corresponding iterates are topologically conjugate by
means of h. That is,

h ∘ Tn = Sn ∘ h, ∀n ∈ ℕ.

Therefore, there exists a one-to-one correspondence between the orbits of T and
those of S. This is why two topologically conjugate systems are considered dynam-
ically equivalent.
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Example 1.2.3. Recall the definition of the tent map from Example 1.1.3. We shall now
give an example of another system that is topologically conjugate to the tent map.
Define the map F : [0, 1]→ [0, 1] by setting

F(x) := {
x
1−x if x ∈ [0, 12 ]
1−x
x if x ∈ [ 12 , 1].

The map F is called the Farey map and its graph is shown in Figure 1.3.

Figure 1.3: The Farey map F : [0, 1]→ [0, 1].

The Farey map may be familiar to any reader who has studied the continued fraction
expansion of real numbers, as it is related to the Gauss map, also known as the con-
tinued fractionmap. Let us just briefly recall that a continued fraction is an expression
of the form

1
a1 +

1
a2+

1
a3+⋅⋅⋅

,

where ai ∈ ℕ for all i ∈ ℕ. We write [a1, a2, . . .] for the above expression. It turns out
that every continued fraction represents an irrational number in [0, 1] and, conversely,
every irrational number in [0, 1] can be written as a continued fraction. This relation
is a bijection.

For x ∈ (1/2, 1] \ ℚ, the continued fraction representation of x is given by
[1, a2(x), a3(x), . . .], where ai(x) ∈ ℕ for all i ≥ 2. In this case, we deduce that

F(x) = 1
x
− 1 = 1 + [a2(x), a3(x), . . .] − 1 = [a2(x), a3(x), . . .].

For x ∈ [0, 1/2]\ℚ, the first entry of the continued fraction representation of x is strictly
greater than 1 and so it follows that

F(x) = x
1 − x
=

1
1
x − 1
= [a1(x) − 1, a2(x), a3(x), . . .].
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It is known that Minkowski’s question-mark function is a conjugacy map between
the tent map T and the Farey map F. Minkowski’s question-mark function is the map
Q : [0, 1]→ [0, 1] defined by

Q(x) := −2
∞

∑
k=1
(−1)k2−∑

k
i=1 ai(x),

whenever x ∈ [0, 1]\ℚ, where ai(x) is the ith entry of the continued fraction expansion
of x. The map Q is an increasing bijection and is continuous on [0, 1] \ℚ. Recall that
a map f : (Y , dY ) → (Z, dZ) between two metric spaces is said to be Hölder continuous
with exponent α if there exists a constant C ≥ 0 such that

dZ(f (x), f (y)) ≤ C(dY (x, y))
α, ∀x, y ∈ Y .

It was shown by Salem in [62] that the map Q is Hölder continuous with exponent
log 2/(2 logγ), whereγ := (1+√5)/2 is the goldenmean. Furthermore, since [0, 1]\ℚ is
dense in [0, 1], themapQ can be uniquely extended to an increasing homeomorphism
of [0, 1] (this follows from a topological result whose proof is left to Exercise 1.7.5).

Historically, this map was designed by the German mathematician, Hermann
Minkowski (1864–1909), to map the rational numbers in [0, 1] to the set of dyadic
rational numbers ⋃∞n=1{i/2

n : i = 0, 1, . . . , 2n} and the quadratic surds onto the non-
dyadic rationals in an order preserving way. The graph ofQ is shown in Figure 1.4. For
further information on Minkowski’s question-mark function, the reader is referred
to [48] and [36].

Figure 1.4:Minkowski’s question-mark function Q : [0, 1]→ [0, 1].
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Let us now demonstrate that Q really does conjugate the tent and Farey systems. For
this, suppose first that x ∈ [0, 1/2] \ℚ. Then Q(x) ∈ [0, 1/2] and

T(Q(x)) = 2(−2
∞

∑
k=1
(−1)k2−∑

k
i=1 ai(x))

= −2(
∞

∑
k=1
(−1)k2−(a1(x)−1)−∑

k
i=2 ai(x))

= Q([a1(x) − 1, a2(x), a3(x), . . .]) = Q(F(x)).

Now, suppose that x ∈ (1/2, 1] \ ℚ, that is, x = [1, a2(x), a3(x), . . .]. Then Q(x) ∈ (1/2, 1]
and

T(Q(x)) = 2 − 2(2 ⋅ 2−1 − 2
∞

∑
k=2
(−1)k2−1−∑

k
i=2 ai(x))

= −2(
∞

∑
k=2
(−1)k−12−∑

k
i=2 ai(x))

= Q([a2(x), a3(x), . . .]) = Q(F(x)).

Thus, T(Q(x)) = Q(F(x)) for all x ∈ [0, 1] \ℚ. Since this latter set is dense in [0, 1], the
continuity of T, F, and Q guarantees that T(Q(x)) = Q(F(x)) for all x ∈ [0, 1].

Directly from the notion of topological conjugacy, we can derive the following no-
tion of an invariant for a dynamical system.

Definition 1.2.4. A (topological conjugacy) invariant is a property of dynamical sys-
tems that is preserved under a topological conjugacy map.

Remark 1.2.5.
(a) By definition, topologically conjugate dynamical systems share the same set of

topological conjugacy invariants. Thus, if a property is a topological conjugacy
invariant and if a given dynamical system has this property while another one
does not, then we can immediately deduce that these two dynamical systems are
not topologically conjugate.

(b) Among the collection of invariants, there are those which are called complete in-
variants. An invariant is complete if two systems that share this invariant are au-
tomatically topologically conjugate. Note that this is not true of all invariants, as
wewill very shortly see. In fact, there are no known complete invariants that exist
for arbitrary dynamical systems. Later in this chapter, we shall give examples of
topological conjugacy invariants that are complete for a subfamily of dynamical
systems.

(c) If T : X → X is topologically conjugate to S : Y → Y via a conjugacymap h : X → Y
and if x ∈ Pern(T), then by Remark 1.2.2(b) we deduce that

Sn(h(x)) = h(Tn(x)) = h(x),
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that is, h(x) ∈ Pern(S). Thus, h induces a one-to-one correspondence between pe-
riodic points. This correspondence preserves the prime period of a periodic point.
Therefore, the number of periodic points of any given period is a topological con-
jugacy invariant. However, the number of periodic points of any given period is
not a complete invariant. Below we give an example of two dynamical systems
that have the same number of fixed points despite not being topologically conju-
gate. Another example will be given in Chapter 3.

(d) The cardinality of X is also an invariant, but again it is not a complete invariant,
as we show in the examples below.

Example 1.2.6.
(a) Recall the maps Tm : 𝕊1 → 𝕊1 defined in Example 1.1.3. It turns out that the dy-

namical systems (𝕊1,Tn) and (𝕊1,Tm) are not topologically conjugate whenever
n ̸= m. Indeed, by Remark 1.2.5(c), we know that if they were topologically con-
jugate they would have the same number of fixed points. However, Tn has n fixed
points, whereas Tm hasm.

(b) Let f : [0, 1]→ [0, 1] be defined by

f (x) = √x

and let g : [0, 1]→ [0, 1] be defined by

g(x) = 3x(1 − x).

Then Fix(f ) = {0, 1} and Fix(g) = {0, 2/3}. However, these two systems are not
topologically conjugate. This can be seen by supposing h : [0, 1] → [0, 1] to be a
conjugacy map between f and g. Then we would have to have either h(0) = 0 and
h(1) = 2/3, or h(0) = 2/3 and h(1) = 0. In either case, it is impossible to construct a
homeomorphismof the unit interval into itself satisfying these properties, as such
a homeomorphism has to be either strictly increasing or strictly decreasing.

Let us nowdefine the related concept of structural stability. Let (X, d) be a compact
metric space and let C(X,X) be the space of all continuous maps from X to X. Define
the metric d∞ on C(X,X) by setting

d∞(T , S) := sup
x∈X

d(T(x), S(x)).

The topology on C(X,X) induced by the metric d∞ is called the topology of uniform
convergence on X. This terminology is appropriate since limn→∞ d∞(Tn,T) = 0 if and
only if the sequence (Tn)∞n=1 converges to T ∈ C(X,X) uniformly. It is not hard to see
(and we leave it as an exercise for the reader) that the metric space (C(X,X), d∞) is
complete and separable.
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Let 𝒞 be an arbitrary subset of C(X,X). Let τ be a topology on 𝒞 which is finer than
or coincides with the topology of uniform convergence inherited from C(X,X). We say
that an element T of 𝒞 is structurally stable relative to 𝒞 if there exists a neighborhood
U of T in the topology τ on 𝒞 such that for every S ∈ U there is a homeomorphism
h = h(S) ∈ C(X,X) for which

h ∘ T = S ∘ h.

In other words, T is structurally stable relative to 𝒞 if it is topologically conjugate to
all systems S in one of its neighborhoods U in the topology τ on 𝒞. The system T is
strongly structurally stable (relative to 𝒞) if for every ε > 0 there exists a neighborhood
Uε of T in the topology τ on 𝒞 such that for every S ∈ Uε there is a homeomorphism
h ∈ Bd∞ (IdX , ε) for which T ∘ h = h ∘ S. Here, the notation Bd∞ (g, ε) denotes the ε-ball
around the map g:

Bd∞ (g, ε) = {f ∈ C(X,X) : d∞(f , g) < ε}.

Later we will provide classes of structurally stable dynamical systems, most notably
Shub’s expanding endomorphisms (see Chapter 6).

1.3 Factors

Aweaker relationship than that of topological conjugacy between two dynamical sys-
tems is that of a factor.

Definition 1.3.1. Let T : X → X and S : Y → Y be two dynamical systems. If there
exists a continuous surjection h : X → Y such that h ∘T = S ∘h, then S is called a factor
of T. The map h is hereafter called a factor map.

In general, the existence of a factor map between two systems is not sufficient to
make them topologically conjugate. Nonetheless, if S is a factor of T, then every orbit
of T is projected to an orbit of S. As every factor map is by definition surjective, this
means that all of the orbits of S have an analogue in T. However, as a factormap needs
not be injective, more than one orbit of T may be projected to the same orbit of S. In
other words, some orbits of S may have more than one analogue in T. Therefore, the
dynamical systemT canusually be thought of asmore “complicated” than the factor S.
In particular, periodic points of period n for T are projected to periodic points for S
whose periods are factors of n.

Example 1.3.2. Let T : X → X be a dynamical system and let S : Y → Y be given by
Y := {y} and S equal to the identity map. Then the map h : X → Y defined by h(x) := y
for all x ∈ X is a factor map. This is, of course, a trivial example. In Chapter 3, we will
encounter a class of nontrivial examples.
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1.4 Subsystems

Our next aim is to introduce the concept of a subsystem of a dynamical system. In
order to do this, we first define the notion of invariance for sets.

Definition 1.4.1. Let T : X → X be a dynamical system. A subset F of X is said to be
(a) forward T-invariant if T−1(F) ⊇ F.
(b) backward T-invariant if T−1(F) ⊆ F.
(c) completely T-invariant if T−1(F) = F.

If the identity of the map T is clear, then we will sometimes omit it. We also often
refer to forward invariant sets simply as “invariant.” Note that the condition of being
forward invariant is equivalent to T(F) ⊆ F.

Remark 1.4.2.
(a) A set is completely invariant if and only if it is both forward and backward invari-

ant.
(b) The closure of an invariant set is invariant.
(c) A set F is invariant if and only if it is equal to the union of the forward orbits of all

of its points, that is, F = ⋃x∈F 𝒪+(x).
(d) A closed set F is invariant if and only if it is equal to the union of the closure of the

forward orbit of all of its points, that is, F = ⋃x∈F 𝒪+(x). By (c), this means that

⋃
x∈F

𝒪+(x) = F = ⋃
x∈F

𝒪+(x).

We are now in a position to define the concept of subsystem.

Definition 1.4.3. Let T : X → X be a dynamical system. If F ⊆ X is a closed T-invariant
set, then the dynamical system induced by the restriction of T to F, that is, T|F : F → F
is called a subsystem of T : X → X.

Note that as X is a compact metrizable space and, therefore, a compact Hausdorff
space, the word “closed” can be replaced by “compact” in the above definition.

Remark 1.4.4. If a dynamical system S : Y → Y is a factor of a dynamical system T :
X → X via a factormap h : X → Y and ifZ ⊆ Y is forward (resp., backward/completely)
S-invariant, then h−1(Z) is forward (resp., backward/completely) T-invariant. Indeed,
if Z ⊆ Y is forward S-invariant, that is, S−1(Z) ⊇ Z, then

T−1(h−1(Z)) = (h ∘ T)−1(Z) = (S ∘ h)−1(Z) = h−1(S−1(Z)) ⊇ h−1(Z),

that is, h−1(Z) is forward T-invariant.
In particular, if S|Z is a subsystem of S : Y → Y then T|h−1(Z) is a subsystem of

T : X → X. This uses the fact that a compact subset of a Hausdorff space is closed,
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that the preimage of a closed set under a continuous map is closed, and that a closed
subset of a compact space is compact.

If the two systems are topologically conjugate, then any conjugacy map h induces
a one-to-one correspondence between the T-invariant sets and the S-invariant sets. In
particular, h induces a one-to-one correspondence between the subsystems of T and
those of S.

Observe that every orbit is T-invariant, since for every x ∈ X we have

T(𝒪+(x)) = {T(T
n(x)) : n ≥ 0} = {Tn+1(x) : n ≥ 0} ⊆ 𝒪+(x).

By Remark 1.4.2(b), we deduce that the closure of every orbit is T-invariant and, there-
fore, the restriction of a system to the closure of any of its orbits constitutes a subsys-
tem of that system.

Above and beyond the orbits of a system, the limit points, sometimes called accu-
mulation points, of these orbits are also of interest.

Definition 1.4.5. Let x ∈ X. The set of limit points of the sequence of forward iterates
(Tn(x))∞n=0 of x is called the ω-limit set of x. It is denoted by ω(x).

In other words, y ∈ ω(x) if and only if there exists a strictly increasing sequence
(nj)∞j=1 of nonnegative integers such that limj→∞ Tnj (x) = y.

Remark 1.4.6.
(a) In general, the ω-limit set of a point x is not the set of limit points of the forward

orbit𝒪+(x) of x. See Exercises 1.7.12, 1.7.13, and 1.7.14.
(b) By the very definition of an ω-limit set, it is easy to see that ω(x) ⊆ 𝒪+(x). In fact,

𝒪+(x) ∪ ω(x) = 𝒪+(x). See Exercises 1.7.13 and 1.7.15.

Proposition 1.4.7. Every ω-limit set is nonempty, closed, and T-invariant. Furthermore,
for every x ∈ X we have that T(ω(x)) = ω(x).

Proof. Let x ∈ X. Since X is compact, the set ω(x) is nonempty. Moreover, the set ω(x)
is closed as the limit points of any sequence form a closed set (we leave the proof of
this fact to Exercise 1.7.16). It only remains to show that T(ω(x)) = ω(x). Let y ∈ ω(x).
Then there exists a strictly increasing sequence (nj)∞j=1 of nonnegative integers such
that limj→∞ Tnj (x) = y. The continuity of T then ensures that

T(y) = T( lim
j→∞

Tnj (x)) = lim
j→∞

T(Tnj (x)) = lim
j→∞

Tnj+1(x).

This shows that T(y) ∈ ω(x) and, in turn, proves that T(ω(x)) ⊆ ω(x). To establish
the reverse inclusion, again fix y ∈ ω(x). Then there exists a strictly increasing se-
quence (nj)∞j=1 of positive integers such that limj→∞ Tnj (x) = y. Consider the sequence
(Tnj−1(x))∞j=1. Since X is compact, this sequence admits a convergent subsequence
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(Tnjk−1(x))∞k=1, where (njk )
∞
k=1 is some subsequence of (nj)∞j=1. Let z := limk→∞ T

njk−1(x).
Then z ∈ ω(x) and

T(z) = T( lim
k→∞

Tnjk−1(x)) = lim
k→∞

Tnjk (x) = lim
j→∞

Tnj (x) = y.

Consequently, y ∈ T(ω(x)). This proves that ω(x) ⊆ T(ω(x)).

The above proposition shows in particular that the restriction of a dynamical sys-
tem to any of its ω-limit sets is a subsystem of that system.

If T is a homeomorphism, then we can define the counterpart of an ω-limit set by
looking at the backward iterates of a point. For x ∈ X, we define the α-limit set of x as
the set of accumulation points of the sequence of backward iterates (T−n(x))∞n=0 of x. It
is denoted byα(x). In this case,wehave that y ∈ α(x) if and only if there exists a strictly
increasing sequence (nj)∞j=1 of nonnegative integers such that limj→∞ T−nj (x) = y. By
the definition of the α-limit set, we have that α(x) is contained in the closure of the
backward orbit𝒪−(x). The α-limit sets satisfy the same properties under T−1 as those
of the ω-limit sets under T.

Definition 1.4.8. Let T : X → X be a topological dynamical system. A point x is said to
bewandering forT if there exists an openneighborhoodU of x such that the preimages
of U are mutually disjoint, that is,

T−m(U) ∩ T−n(U) = 0, ∀m ̸= n ≥ 0.

Accordingly, a point x is called nonwandering for T if each of its open neighborhoods
U revisits itself under iteration by T, that is, for each neighborhood U of x there is
n ∈ ℕ such that T−n(U) ∩ U ̸= 0. The nonwandering set for T, which consists of all
nonwandering points, is denoted by Ω(T).

Theorem 1.4.9. The nonwandering set Ω(T) of a system T : X → X enjoys the following
properties:
(a) Ω(T) is closed.
(b) 0 ̸= ⋃x∈X ω(x) ⊆ Ω(T).
(c) Per(T) ⊆ Ω(T).
(d) Ω(T) is forward T-invariant.
(e) If T is a homeomorphism, then Ω(T) = Ω(T−1) and is completely T-invariant.

Proof.
(a) The nonwandering set Ω(T) is closed since its complement, the set of wandering

points X \ Ω(T), is open. Indeed, if a point x is wandering, then there exists an
open neighborhood U of x such that the preimages of U are mutually disjoint.
Therefore, all points of U are wandering as well. So X \ Ω(T) is open.
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(b) Let x ∈ X and y ∈ ω(x). Then there is a strictly increasing sequence (nk)∞k=1 of
nonnegative integers such that limk→∞ Tnk (x) = y. Thus, given any open neigh-
borhood U of y, there are numbers nk < nl such that Tnk (x) ∈ U and Tnl (x) ∈ U .
Then, letting n = nl − nk and z = Tnk (x), we have z ∈ U and Tn(z) ∈ U, that is,
T−n(U) ∩ U ̸= 0. As this is true for every open neighborhood U of y, we deduce
that y ∈ Ω(T). Hence,⋃x∈X ω(x) ⊆ Ω(T). In particular, Ω(T) ̸= 0 since ω(x) ̸= 0 for
every x.

(c) Since ω(x) = 𝒪+(x) ∋ x for every periodic point x, all the periodic points of T
belong toΩ(T). More simply, every periodic point is nonwandering as it eventually
returns to itself under iteration.

(d) Let x ∈ Ω(T) and U an open neighborhood of T(x). Then T−1(U) is an open neigh-
borhood of x. As x ∈ Ω(T), there exists n ∈ ℕ such that T−n(T−1(U)) ∩ T−1(U) ̸= 0.
That is, T−1(T−n(U) ∩ U) ̸= 0, which implies that T−n(U) ∩ U ̸= 0. Since this is true
for every open neighborhood U of T(x), we conclude that T(x) ∈ Ω(T), and hence
T(Ω(T)) ⊆ Ω(T).

(e) Suppose T is a homeomorphism. It is easy to show that Ω(T−1) = Ω(T). By (d),
we then have T(Ω(T)) ⊆ Ω(T) and T−1(Ω(T)) ⊆ Ω(T). This implies T−1(Ω(T)) =
Ω(T).

Parts (a) and (d) tell us that the restriction of a system to its nonwandering set forms
a subsystem of that system. Part (b) reveals that this subsystem comprises all ω-limit
subsystems.

Finally, we introduce the notion of invariance for a function.

Definition 1.4.10. Acontinuous function g : X → ℝ is said to beT-invariant if g∘T = g.

Remark 1.4.11. A function g is T-invariant if and only if g ∘ Tn = g for every n ∈ ℕ. In
other words, g is T-invariant if and only if g is constant along each orbit of T, and thus
if and only if g is constant on the closure of each orbit of the system T.

1.5 Mixing and irreducibility

In this section, we investigate various forms of topological mixing and irreducibility
that can be observed in some dynamical systems. For a dynamical system, topolog-
ical mixing can intuitively be conceived as witnessing some parts of the underlying
space becoming mixed under iteration with other parts of the space. Irreducibility of
a dynamical system means that the system does not admit any “nontrivial” subsys-
tem, which takes a different meaning depending on the stronger or weaker form of
irreducibility. In any case, the absence of nontrivial subsystems forces irreducible sys-
tems to exhibit some form of mixing.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use
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1.5.1 Minimality

We will now define one way in which a dynamical system T : X → X can be said to be
irreducible. Asmentionedabove, by irreducibilitywemean thatT admits nonontrivial
subsystem, for some sense of nontriviality. One natural form of irreducibility would be
that the only subsystems of T are the empty system and T itself. Another way of saying
this is that the only closed T-invariant subsets of X are the empty set and the whole of
X. The concept we need for this is minimality.

Definition 1.5.1. Let T : X → X be a dynamical system. A set F ⊆ X is said to be a
minimal set for T if the following three conditions are satisfied:
(a) The set F is nonempty and closed.
(b) The set F is T-invariant.
(c) If G ⊆ F is nonempty, closed and T-invariant, then G = F.

A minimal set F induces theminimal subsystem T|F : F → F. We now address the
question of the existence of minimal sets.

Theorem 1.5.2. Every dynamical system admits a minimal set (that induces a minimal
subsystem).

Proof. Letℱ be the family of all nonempty, closed, T-invariant subsets of X. This fam-
ily is nonempty, as it at least contains X. It is also partially ordered under the relation
of backward set inclusion ⊇. We shall use the Kuratowski–Zorn lemma (often referred
to simply as Zorn’s lemma) to establish the existence of aminimal set. Accordingly, let
{Fλ}λ∈Λ be a chain inℱ , that is, a totally ordered subset ofℱ , and let F = ⋂λ∈Λ Fλ. Then
F is nonempty and closed (cf. Exercise 1.7.17). Moreover,

T(F) = T(⋂
λ∈Λ

Fλ) ⊆ ⋂
λ∈Λ

T(Fλ) ⊆ ⋂
λ∈Λ

Fλ = F.

Thus, F is T-invariant and constitutes the maximal element of the chain {Fλ}λ∈Λ.
Hence, every chain in ℱ has a maximal element, and by Zorn’s lemma, we infer that
the family ℱ has a maximal element under the relation of backward set inclusion ⊇,
that is, the family ℱ has a minimal element under the relation of set inclusion ⊆. This
element is a minimal set for T.

We can now define the concept of minimality for dynamical systems.

Definition 1.5.3. A dynamical system T : X → X is said to beminimal if X is a minimal
set for T (and thus is the only minimal set for T).

Minimality is a strong form of irreducibility since minimal systems admit no
nonempty subsystems other than themselves.
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Let us now give a characterization of minimal sets. In particular, the next result
shows that the strong form of irreducibility that we call minimality is also a strong
form of mixing, since minimal systems are characterized by having only dense orbits.

Theorem 1.5.4. Let F be a nonempty closed T-invariant subset of X. Then the following
three statements are equivalent:
(a) F is minimal.
(b) ω(x) = F for every x ∈ F.
(c) 𝒪+(x) = F for every x ∈ F.

Proof. We shall prove this theorem by establishing the sequence of implications
(a)⇒(b)⇒(c)⇒(a).

To begin, suppose that F is a minimal set for T, and let x ∈ F. Then, since F is
T-invariant and closed, we obtain thatω(x) ⊆ 𝒪+(x) ⊆ F. Moreover, in light of Proposi-
tion 1.4.7,ω(x) is nonempty, closed and T-invariant. So, by the definition of aminimal
set, we must have that ω(x) = F. This proves that (a) implies (b).

Toward the proof of the second implication, recall that as F is T-invariant and
closed, we have that ω(x) ⊆ 𝒪+(x) ⊆ F. Thus, if ω(x) = F then 𝒪+(x) = F. This proves
that (b) implies (c).

Finally, assume that 𝒪+(x) = F for every x ∈ F. Let E ⊆ F be a nonempty closed
T-invariant set. It suffices to show that E = F. To that end, let x ∈ E. As E is T-invariant
and closed, we have𝒪+(x) ⊆ E. Moreover, x ∈ E ⊆ F implies that𝒪+(x) = F. Therefore,
F = 𝒪+(x) ⊆ E ⊆ F, and hence E = F. Thus, F is minimal. This proves the remaining
implication, namely, that (c) implies (a).

Remark 1.5.5.
(a) Theorem 1.5.4(c) characterizes aminimal set F by the requirement that the orbit of

each point of F stays in F and is dense in F. Another way to think of this is that ir-
reducibility in the sense that a system admits no nonempty subsystem other than
itself, is equivalent to mixing in the sense that every orbit is dense. In particu-
lar, a consequence of this property is that a minimal system must be surjective. It
also implies that an infinite minimal system does not admit any periodic point, as
𝒪+(x) = 𝒪+(x) for any periodic point x.

(b) Minimality is a topological conjugacy invariant. However, it is not a complete in-
variant (see Exercise 1.7.19).

1.5.2 Transitivity and topological mixing

In this section, we introduce a weaker form of mixing called transitivity. We have
shown in the previous section that minimal systems have only dense orbits; transitive
systems are only required to exhibit one dense orbit. Nonetheless, as we shall soon
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see, the existence of one dense orbit forces the existence of a dense Gδ-set of points
with dense orbits.

Definition 1.5.6. Let T : X → X be a dynamical system.
(a) A point x ∈ X is said to be transitive for T if ω(x) = X.
(b) The system T is called transitive if it admits at least one transitive point.
(c) A point x ∈ X is said to be weakly transitive for T if𝒪+(x) = X.
(d) The system T is said to be weakly transitive if it admits at least one weakly transi-

tive point.

Remark 1.5.7.
(a) In light of Theorem 1.5.4(b), every minimal system is transitive. There are, of

course, transitive systems which are not minimal. For instance, we shall see in
Chapter 3 that full shifts are transitive, but not minimal since they admit periodic
points.

(b) Transitivity is a topological conjugacy invariant. However, it is not a complete
invariant. Indeed, as minimality is not a complete invariant and transitivity is
weaker than minimality, transitivity cannot be a complete invariant.

(c) A transitive system is surjective since, given any transitive point x, we have that
T(X) = T(ω(x)) = ω(x) = X.

(d) As 𝒪+(x) = 𝒪+(x) ∪ ω(x), every transitive system is weakly transitive. Note that
there are weakly transitive systems which are not transitive, as Example 1.5.8 be-
low demonstrates.

(e) If T : X → X is weakly transitive, then every continuous T-invariant function is
constant. To see this, let g : X → ℝ be a T-invariant continuous function. Also let
x ∈ X be such that the forward orbit of x is dense in X. Then by Remark 1.4.11, we
have that g|𝒪+(x) = g(x). This means that the continuous function g is constant on
a dense set of points, so it must be constant everywhere.

Example 1.5.8. Let X = {0} ∪ {1/n : n ∈ ℕ} ⊆ ℝ, and let T : X → X be defined by
T(0) = 0 and T(1/n) = 1/(n + 1). Then T is continuous. Moreover, as it is not surjective
(its range does not include 1), T cannot be transitive. Alternatively, we might argue
that ω(x) = {0} for every x ∈ X. However, observe that 𝒪+(1) = {1, 1/2, 1/3, . . .} = {1/n :
n ∈ ℕ}. So,𝒪+(1) = X and, therefore, T is weakly transitive.

In fact, it turns out that surjectivity is the only difference between weakly transi-
tive and transitive systems, as we now show.

Theorem 1.5.9. A dynamical system is transitive if and only if it is weakly transitive and
surjective.

Proof. We have already observed in Remark 1.5.7 that transitive systems are weakly
transitive and surjective. Suppose now that a system T : X → X is weakly transitive
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and surjective. Let x ∈ X be such that 𝒪+(x) = X. Since X = 𝒪+(x) = 𝒪+(x) ∪ ω(x), we
deduce that X \𝒪+(x) ⊆ ω(x).

On one hand, if T−1(x) ∩ 𝒪+(x) = 0 then by the surjectivity of T we have that
0 ̸= T−1(x) ⊆ X \𝒪+(x) ⊆ ω(x). As ω(x) is T-invariant, we obtain that {x} = T(T−1(x)) ⊆
T(ω(x)) = ω(x). Using the T-invariance of ω(x) once again, we deduce that 𝒪+(x) ⊆
ω(x). Therefore X = 𝒪+(x) ⊆ ω(x) ⊆ X, that is, ω(x) = X.

On the other hand, if T−1(x) ∩ 𝒪+(x) ̸= 0, then x is a periodic point, and hence
ω(x) = 𝒪+(x). It follows that X = 𝒪+(x) = 𝒪+(x) ∪ ω(x) = 𝒪+(x) = ω(x). (That is, every
point in X is a periodic point in the orbit of x and X is finite.)

In either case, we have demonstrated that x is a transitive point.

Let us now introduce the concept of topological mixing. We shall very shortly see
the connection between this notion and transitivity.

Definition 1.5.10. A dynamical system T : X → X is said to be topologically mixing if
any of the following equivalent statements hold:
(a) For all nonempty open subsets U and V of X, there exists n ∈ ℕ such that Tn(U)∩

V ̸= 0.
(b) For all nonempty open subsets U and V of X, there exists n ∈ ℕ such that U ∩

T−n(V) ̸= 0.
(c) For all nonempty open subsets U and V of X and for all N ∈ ℕ, there exists n ≥ N

such that Tn(U) ∩ V ̸= 0.
(d) For all nonempty open subsets U and V of X and for all N ∈ ℕ, there exists n ≥ N

such that U ∩ T−n(V) ̸= 0.
(e) For all nonempty open subsets U and V of X, there exist infinitely many n ∈ ℕ

such that Tn(U) ∩ V ̸= 0.
(f) For all nonempty open subsets U and V of X, there exist infinitely many n ∈ ℕ

such that U ∩ T−n(V) ̸= 0.
(g) ⋃n∈ℕ Tn(U) = X for every nonempty open subset U of X.
(h) ⋃n∈ℕ T−n(U) = X for every nonempty open subset U of X.

We leave it to the reader to provide a proof that (a) and (b) are equivalent, (c) and
(d) are equivalent and (e) and (f) are equivalent. It is also straightforward to show the
chain of equivalences (b)⇔(d)⇔(f) by using the fact thatW := T−(N−1)(V) is an open
set. Statement (g) is just a rewriting of (a) while (h) is a reformulation of (b).

Furthermore, note that each of these statements implies that T is surjective. In-
deed, since T(X) ⊆ X, we have by induction that Tn+1(X) ⊆ Tn(X) for all n ∈ ℕ.
So the sequence of compact sets (Tn(X))∞n=0 is descending. By (g), T(X) = T(X) =
⋃n∈ℕ Tn(X) = X.

The next theorem gives the promised connection between transitivity and topo-
logical mixing, in addition to another characterization of transitive systems in terms
of nowhere-dense sets. For more information on nowhere-dense sets, the reader is
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referred to [77] and [54]. The most relevant fact for us is that a closed set is nowhere-
dense if and only if it has empty interior.

Theorem 1.5.11. If T : X → X is a surjective dynamical system, then the following state-
ments are equivalent:
(a) T is transitive.
(b) Whenever F is a closed T-invariant subset of X, either F = X or F is nowhere-dense.

In other words, T admits no subsystem with nonempty interior other than itself.
(c) T is topologically mixing.
(d) {x ∈ X : 𝒪+(x) = X} is a dense Gδ-subset of X.
(e) {x ∈ X : 𝒪+(x) = X} contains a dense Gδ-subset of X.

Proof. We shall prove this theorem by establishing the implications (a)⇒(b)⇒(c)⇒
(d)⇒(e)⇒(a).

To prove the first implication, let x be a transitive point and F a nonempty closed
T-invariant set. Since x is transitive, we have that ω(x) = X. Suppose that F has
nonempty interior. Then there is a nonempty open set U ⊆ F. Therefore, there exists
p ≥ 0 with Tp(x) ∈ U ⊆ F. As F is T-invariant, all higher iterates of x lie in F as well.
Since F is closed, this implies that ω(x) ⊆ F. Therefore X = ω(x) ⊆ F ⊆ X, that is,
F = X. Thus, either F has empty interior or F = X. That is, either F is nowhere-dense
or F = X. This proves that (a) implies (b).

For the second implication, suppose that (b) holds and that U and V are non-
empty open subsets of X. By the surjectivity of T, the union⋃∞n=1 T

−n(V) is a nonempty
open subset of X. Therefore, the closed set F := X \⋃∞n=1 T

−n(V) ̸= X satisfies

T−1(F) = X \ T−1(
∞

⋃
n=1

T−n(V))

= X \
∞

⋃
n=2

T−n(V) ⊇ X \
∞

⋃
n=1

T−n(V) = F.

This means that T(F) ⊆ F, that is, the set F is T-invariant. Thus, either F = X or F is
nowhere-dense. As F ̸= X, the set F is nowhere-dense and its complement⋃∞n=1 T

−n(V)
is dense in X. Consequently, there exists some n ∈ ℕ such that U ∩ T−n(V) ̸= 0. So T is
topologically mixing. This establishes that (b) implies (c).

Now, suppose that T is topologically mixing and let {Un : n ∈ ℕ} be a countable
base for the topology of X. Such a base exists since X is a compact metrizable space.
Then

{x ∈ X : 𝒪+(x) = X} =
∞

⋂
n=1

∞

⋃
m=0

T−m(Un).

Since T is topologically mixing, for each n ∈ ℕ the open set ⋃∞m=0 T
−m(Un) intersects

every nonempty open set, that is, this set is dense in X. By the Baire category theorem,
it follows that⋂∞n=1⋃

∞
m=0 T
−m(Un) is a dense Gδ-set. This proves that (c) implies (d).
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The implication (d)⇒(e) is obvious.
Finally, suppose that {x ∈ X : 𝒪+(x) = X} contains a denseGδ-set. This implies im-

mediately that T is weakly transitive. As T is surjective, we deduce from Theorem 1.5.9
that T is in fact transitive. This demonstrates that (e) implies (a).

In particular, Theorem 1.5.11 shows that transitivity corresponds to a weaker form
of irreducibility than minimality. Indeed, as opposed to minimal systems which ad-
mit only the empty set and the whole of X as subsystems, nonminimal transitive sys-
tems admit nontrivial subsystems. Each of these subsystems is nevertheless nowhere-
dense.

Rotations of the unit circle
We shall now discuss rotations of the unit circle 𝕊1. The unit circle may be defined
in many different homeomorphic ways. It may be embedded in the complex plane by
defining 𝕊1 := {z ∈ ℂ : |z| = 1}. It may also be defined to be the set of all angles
θ ∈ [0, 2π] (mod 2π). Alternatively, as we have already seen in Example 1.1.3(b), it may
be defined to be the quotient space 𝕊1 := ℝ/ℤ or as 𝕊1 := [0, 1] (mod 1). We will use the
form most appropriate to each specific situation.

Let 𝕊1 = [0, 2π] (mod 2π). Let α ∈ ℝ and define the map Tα : 𝕊1 → 𝕊1 by

Tα(x) = x + 2πα (mod 2π).

Thus, Tα is the rotation of the unit circle by the angle 2πα. The dynamics of Tα are
radically different depending on whether the number α is rational or irrational. We
prove the following classical result.

Theorem 1.5.12. Let Tα : 𝕊1 → 𝕊1 be defined as above. The following are equivalent:
(a) α ∈ ℝ\ℚ.
(b) Tα is minimal.
(c) Tα is transitive.

Moreover, when α ∈ ℚ every point in 𝕊1 is a periodic point with the same prime period.

Proof. We shall prove that (b)⇒(c)⇒(a)⇒(b). Remark 1.5.7 already pointed out that
(b)⇒(c).

[(c)⇒(a)] If α ∈ ℚ, say α = p/q for some p, q ∈ ℤwith p and q relatively prime and
q > 0, then Tnα(x) = x + 2πpn/q (mod 2π) for all x ∈ 𝕊1. In particular, Tqα(x) = x + 2πp
(mod 2π) = x (mod 2π) for all x ∈ 𝕊1. Hence, Tqα is the identity map, that is, every
point in 𝕊1 is a periodic point of (prime) period q. In particular, Tα is not transitive.
Therefore, if Tα is transitive then α ∉ ℚ.

[(a)⇒(b)] Suppose now that α ∉ ℚ and that Tα is not minimal. Let F be a min-
imal set for Tα. Such a set exists by Theorem 1.5.2 and F = ω(x) for each x ∈ F by
Theorem 1.5.4. From this and Proposition 1.4.7, we deduce that Tα(F) = F. Since Tα
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is a bijection (in fact, a homeomorphism), we obtain that T−1α (F) = F = Tα(F). Con-
sequently, T−1α (𝕊

1 \ F) = 𝕊1 \ F = Tα(𝕊1 \ F). As by definition F ̸= 𝕊1 and F is closed,
the set 𝕊1 \ F is nonempty and open. So it can be written as a countable union of open
intervals

𝕊1 \ F =
∞

⋃
k=1
(ak , bk),

where the (ak , bk)’s are the connected components of 𝕊1 \ F. For each k, we have that
Tα((ak , bk)) ⊆ 𝕊1 \ F. Since (ak , bk) is connected and Tα is continuous, the image
Tα((ak , bk)) is also connected. This implies that none of the endpoints aj, bj lies in
Tα((ak , bk)). Therefore, there exists a unique ℓ = ℓ(k) ∈ ℕ such that Tα((ak , bk)) ⊆
(aℓ, bℓ). Since Tα(ak) and Tα(bk) are in F, the continuity of Tα implies that Tα((ak ,
bk)) = (aℓ, bℓ). By inductiononn, there exist uniqueakn andbkn such thatT

n
α((ak , bk)) =

(akn , bkn ). We claim that the family

{Tnα((ak , bk)) : n ≥ 0} = {(akn , bkn ) : n ≥ 0}

consists of mutually disjoint open arcs. If not, there would exist some 0 ≤ p < q such
that

Tpα((ak , bk)) ∩ T
q
α((ak , bk)) = (akp , bkp ) ∩ (akq , bkq ) ̸= 0.

As {(aj, bj) : j ∈ ℕ} is a pairwise disjoint family of open arcs, we deduce that

Tpα((ak , bk)) = T
q
α((ak , bk)).

Consequently,

(ak , bk) = T
−p
α ∘ T

q
α((ak , bk)) = T

q−p
α ((ak , bk)).

Writing r := q − p ∈ ℕ, this means that

Trα((ak , bk)) = (ak , bk).

Thus, either Trα(ak) = ak or T
r
α(ak) = bk . In either case, we would have that T

2r
α (ak) =

ak and so ak would be a periodic point of period 2r for Tα. That is, T2rα (ak) = ak + 4πrα
(mod 2π) = ak (mod 2π). This means that 4πrα = 0 (mod 2π) or, in other words, α
would be a rational number, which would contradict our original assumption.

Hence, we have shown that {Tnα((ak , bk))}
∞
n=0 forms a family of mutually disjoint

arcs. Moreover, Leb(Tnα((ak , bk))) = Leb((ak , bk)) > 0 for all n ≥ 0, where Leb denotes
the Lebesgue measure on 𝕊1. So the circle, which has finite Lebesgue measure, appar-
ently contains an infinite family of disjoint arcs of equal positive Lebesgue measure.
This is obviously impossible. This contradiction leads us to conclude that Tα is mini-
mal whenever α ∉ ℚ.
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Remark 1.5.13. An immediate consequence of the above theorem is that the orbit
𝒪+(x) of every x ∈ 𝕊1 is dense in 𝕊1 when α is irrational. This is sometimes called
Jacobi’s theorem.

Finally, among the many other forms of transitivity, let us mention two. First,
strongly transitive systems are those for which all points have a dense backward orbit.

Definition 1.5.14. A dynamical system T : X → X is strongly transitive if any of the
following equivalent statements holds:
(a) ⋃n∈ℕ T−n(x) = X for every x ∈ X.
(b) ⋃n∈ℕ T

n(U) = X for every nonempty open subset U of X.

The proof of the equivalency is left to the reader. It is obvious that a strongly tran-
sitive system is topologically mixing, and thus transitive when the underlying space
X is metrizable. But the converse does not hold in general. In Lemma 4.2.10, we will
find conditions under which a transitive system is strongly transitive.

Definition 1.5.15. A dynamical system T : X → X is very strongly transitive if for every
nonempty open subset U of X, there is N = N(U) ∈ ℕ such that⋃Nn=1 T

n(U) = X.

It is clear that a very strongly transitive system is strongly transitive, as the termi-
nology suggests. The converse is not true in general but, given the compactness of X,
every open strongly transitive system is very strongly transitive.

1.5.3 Topological exactness

Definition 1.5.16. A dynamical system T : X → X is called topologically exact if for
each nonempty open set U ⊆ X, there exists some n ∈ ℕ such that Tn(U) = X.

Note that topologically exact systems are very strongly transitive. However, they
may not be minimal. Full shifts, which we shall study in Chapter 3, are topologically
exact systems, which are notminimal. On the other hand, there are very strongly tran-
sitive systems, which are not topologically exact (see Exercise 1.7.25).

Remark 1.5.17. Topological exactness is a topological conjugacy invariant. However,
it is not a complete invariant.We shall see in Chapter 3 examples of topologically exact
systems that are not topologically conjugate. Among others, two full shifts are topo-
logically conjugate if and only if they are built upon alphabets with the same number
of letters (see Theorem 3.1.14).

1.6 Examples
1.6.1 Rotations of compact topological groups

For our first example, we consider topological groups. For a detailed introduction to
these objects, the reader is referred to [69] and, for a dynamical viewpoint, to [21].
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A topological group is simply a group G together with a topology on G that satisfies
the following two properties:
(a) The product map π : G × G → G defined by setting

π(g, h) := gh

is continuous when G × G is endowed with the product topology.
(b) The inverse map i : G → G defined by setting

i(g) := g−1

is continuous.

Given a ∈ G, we define the map La : G → G by

La(g) := ag.

So La acts on the group G by left multiplication by a. Themap La is often referred to as
the left rotation of G by a. The map La is continuous since La(g) = π(a, g). Moreover,
observe that Lna = Lan for every n ∈ ℤ. In particular, L

−1
a = La−1 . The rotation La is thus

a homeomorphism of G. In a similar way, we define the right rotation of G by a to be
the continuous map Ra : G → G, where

Ra(g) := ga.

For rotations of topological groups, transitivity and minimality are one and the
same property, as the following theorem shows.

Theorem 1.6.1. Let La : G → G be the left rotation of a topological group G by a ∈ G.
Then La isminimal if and only if La is transitive. Similarly, the right rotation Ra isminimal
if and only if it is transitive.

Proof. If La is minimal, then La is transitive by Remark 1.5.7(a). For the converse, let x
be a transitive point and let y ∈ G be arbitrary. According to Theorem 1.5.4, it suffices
to show that ω(y) = G. Let z ∈ ω(x). Then there exists a strictly increasing sequence
(nk)∞k=1 of nonnegative integers such that limk→∞ L

nk
a (x) = z. Observe that

lim
k→∞

Lnka (y) = limk→∞
Lnka (xx

−1y) = lim
k→∞

ankxx−1y = lim
k→∞
(ankx)(x−1y)

= lim
k→∞
(Lnka (x))(x

−1y) = lim
k→∞

Rx−1y(L
nk
a (x))

= Rx−1y( limk→∞
Lnka (x)) = Rx−1y(z).

So Rx−1y(z) ∈ ω(y). Since z ∈ ω(x)was chosen arbitrarily, we deduce that Rx−1y(ω(x)) ⊆
ω(y). As ω(x) = G, we conclude that

G = Rx−1y(G) = Rx−1y(ω(x)) ⊆ ω(y) ⊆ G.
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Hence, ω(y) = G for any arbitrary y ∈ G and so G, and thus La, is minimal. The proof
that Rα is minimal proceeds analogously and is thus left to the reader.

We now give a characterization of all minimal rotations of a topological group.

Proposition 1.6.2. The rotation La : G → G is minimal if and only if

G = 𝒪+(e) = {an : n ≥ 0},

where e denotes the identity element of G.

Proof. First, observe that 𝒪+(e) = {an : n ≥ 0} since Lna(e) = a
ne = an for each n ≥ 0.

Now suppose that La is minimal. By Theorem 1.5.4, we have that 𝒪+(g) = G for every
g ∈ G. In particular,𝒪+(e) = G.

For the converse, suppose that G = 𝒪+(e). According to Theorem 1.6.1, it is suffi-
cient to prove that La is transitive. By Theorem 1.5.9, since La is surjective it is sufficient
to show that La is weakly transitive. This is certainly the case since𝒪+(e) = G.

This characterization shows that minimal rotations can only occur in abelian
groups. Indeed, if La is minimal and x, y ∈ G, then there exist strictly increasing
sequences (nj)∞j=1 and (mk)

∞
k=1 of nonnegative integers such that x = limj→∞ anj and

y = limk→∞ amk . Using the left and right continuity of the product map, we obtain

xy = ( lim
j→∞

anj)y = lim
j→∞
(anjy) = lim

j→∞
(anj lim

k→∞
amk)

= lim
j→∞
( lim
k→∞
(anjamk )) = lim

j→∞
( lim
k→∞
(amkanj))

= lim
j→∞
(( lim

k→∞
amk)anj) = lim

j→∞
(yanj)

= y lim
j→∞

anj = yx.

Rotations of the n-dimensional torus𝕋n = 𝕊1 × ⋅ ⋅ ⋅ × 𝕊1

Weshall nowstudy rotations (also sometimes called translations) of then-dimensional
torus

𝕋n = ℝn/ℤn = 𝕊1 × ⋅ ⋅ ⋅ × 𝕊1,

that is, the n-times direct product of 𝕊1 := [0, 1] (mod 1). Let γ = (γ1,γ2, . . . ,γn) ∈ 𝕋n

and let Lγ : 𝕋n → 𝕋n be the rotation of 𝕋n by γ, which is defined to be

Lγ(x1, x2, . . . , xn) := (x1 + γ1, x2 + γ2, . . . , xn + γn) (mod 1).

The proof of the following theorem uses Fourier coefficients and the Hilbert space
L2(λn) of complex-valued functions whose squaredmodulus is integrable with respect
to the Lebesgue measure λn on the n-dimensional torus. A good reference for those
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unfamiliar with Fourier coefficients or the Hilbert space L2(λn) is Rudin [58]. Those
unfamiliar with measure theory may wish to consult Appendix A first.

Recall that the numbers 1,γ1,γ2, . . . ,γn are said to be linearly independent over the
field of rational numbersℚ if the equation

α0 + α1γ1 + α2γ2 + ⋅ ⋅ ⋅ + αnγn = 0,

where the αj are rational numbers, has for unique solution α0 = α1 = α2 = ⋅ ⋅ ⋅ = αn =
0. Equivalently, the numbers 1,γ1,γ2, . . . ,γn are linearly independent overℚ if

k1γ1 + k2γ2 + ⋅ ⋅ ⋅ + knγn ∈ ℤ,

where each kj ∈ ℤ, only when k1 = k2 = ⋅ ⋅ ⋅ = kn = 0.
We now prove the following classical result, which is a significant generalization

of Theorem 1.5.12 with a consequently more intricate proof.

Theorem 1.6.3. Let Lγ : 𝕋n → 𝕋n bea translation of the torus. The following statements
are equivalent:
(a) The numbers 1,γ1,γ2, . . . ,γn are linearly independent overℚ.
(b) Lγ is minimal.
(c) Lγ is transitive.

Proof. According to Theorem 1.6.1, a rotation of a topological group is minimal if and
only if it is transitive. Therefore, (b)⇔(c). We shall now prove that (a)⇔(c).

Suppose first that Lγ is transitive. Assume by way of contradiction that
∑nj=1 kjγj ∈ ℤ, where each kj ∈ ℤ and at least one of these numbers, say ki, differs
from zero. Let φ : 𝕋n → ℝ be the function defined by

φ(x) = φ(x1, x2, . . . , xn) = sin(2π
n
∑
j=1

kjxj).

Since x is in reality the equivalence class [x] = {x + ℓ : ℓ ∈ ℤn}, we must check that
φ is well-defined, that is, is constant on the entire equivalence class. This straight-
forward calculation is left to the reader as an exercise (see Exercise 1.7.30). As φ is a
composition of continuous maps, it is continuous. Moreover, since φ(0,0, . . . ,0) = 0
but φ(0, . . . ,0, 1/(4ki),0, . . . ,0) = sin(2πki

1
4ki
) = sin( π2 ) = 1, the function φ is not con-

stant. But given that

φ(Lγ(x)) = φ(x1 + γ1, x2 + γ2, . . . , xn + γn) = sin(2π
n
∑
j=1

kj(xj + γj)),

and as we have assumed that∑nj=1 kjγj ∈ ℤ, we deduce that

φ(Lγ(x)) = sin(2π
n
∑
j=1

kjxj + 2π
n
∑
j=1

kjγj) = sin(2π
n
∑
j=1

kjxj) = φ(x).
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Hence, φ is Lγ-invariant. To summarize, φ is a nonconstant function, which is invari-
ant under a transitive system. According to Remark 1.5.7(d+e) this is impossible, and
thus all kj must equal 0. Hence, 1,γ1,γ2, . . . ,γn are linearly independent overℚ.

For the converse implication, suppose that 1,γ1,γ2, . . . ,γn are linearly indepen-
dent overℚ and, again for a contradiction, suppose that Lγ is not transitive. By Theo-
rem 1.5.11, we have that Lγ is not topologically mixing. So there exist nonempty open
sets U and V contained in 𝕋n such that

∞

⋃
n=1

Lnγ(U) ∩ V = 0.

This means thatW := ⋃∞n=1 L
n
γ(U) ⊆ X \ V . ThenW ⊆ X \ V since X \ V is a closed set.

Moreover,

Lγ(W) = Lγ(
∞

⋃
n=1

Lnγ(U)) =
∞

⋃
n=1

Ln+1γ (U) ⊆ W ,

and we thus obtain that Lγ(W) ⊆ W . Also, the continuity of Lγ ensures that Lγ(W) ⊆
Lγ(W). Therefore Lγ(W) ⊆ W . We aim to show that this is in fact an equality. To that
end, let λn denote the Lebesgue measure on𝕋n, and note that λn is translation invari-
ant, which means that

λn(E + v) = λn(E), ∀E ⊆ 𝕋
n, ∀v ∈ 𝕋n.

So

λn(Lγ(W)) = λn(W). (1.1)

If it turned out that Lγ(W) ⊊ W , then there would exist x ∈ W \ Lγ(W) and ε > 0 such
that 0 ̸= B(x, ε) ∩W ⊆ W \ Lγ(W). But B(x, ε) ∩W is a nonempty open set, and hence
has positive Lebesguemeasure. Thus, wewould have λn(W \Lγ(W)) > 0, whichwould
contradict (1.1). Hence, Lγ(W) = W and, since Lγ is invertible, L−1γ (W) = W .

Now, denote by 1A the characteristic function of a subset A of 𝕋n, that is,

1A := {
1 if x ∈ A
0 if x ∉ A.

For any map T and any set A, we have that

1A ∘ T = 1T−1(A).

Since the setW is completely Lγ-invariant, we deduce that

1W ∘ Lγ = 1L−1γ (W) = 1W .

That is, the function 1W is Lγ-invariant.
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For every k ∈ ℝn, let ψk : 𝕋
n → ℂ be defined by

ψk(x) = e
2πi⟨k,x⟩ = cos(2π⟨k, x⟩) + i sin(2π⟨k, x⟩),

where ⟨k, x⟩ = ∑nj=1 kjxj is the scalar product of the vectors k and x. Then the family
{ψk}k∈ℤn is an orthonormal basis for the Hilbert space L2(λn). Since 1W ∈ L

2(λn), we
can write

1W (x) = ∑
k∈ℤn

akψk(x) = ∑
k∈ℤn

ake
2πi⟨k,x⟩ for λn-a. e. x ∈ 𝕋

n, (1.2)

where

ak := ∫ 1W (y)ψk(y) dλn(y)

are the Fourier coefficients of 1W . Then, for λn-a. e. x ∈ 𝕋
n, we have

1W (x) = 1W (Lγ(x)) = ∑
k∈ℤn

ake
2πi⟨k,x+γ⟩

= ∑
k∈ℤn

ake
2πi⟨k,γ⟩ψk(x). (1.3)

Since {ψk}k∈ℤn is an orthonormal basis, we deduce from (1.2) and (1.3) that

ak = ake
2πi⟨k,γ⟩

for every k ∈ ℤn. For each such k, this implies that

either ak = 0 or e
2πi⟨k,γ⟩ = 1.

In the latter case,

⟨k,γ⟩ =
n
∑
j=1

kjγj ∈ ℤ.

Since the γi were assumed to be linearly independent over ℚ, this implies that k =
(0,0, . . . ,0). So, for all k ̸= (0,0, . . . ,0), we must be in the former case, that is, we must
have that ak = 0. Hence,

1W (x) = a(0,...,0) = λn(W) for λn-a. e. x ∈ 𝕋
n.

As W is a nonempty open set, it follows that λn(W) > 0, and thus λn(W) > 0. So
1W (x) > 0 for λn-a. e. x ∈ 𝕋n. However, recall that W ∩ V = 0, and thus 1W (V) = 0.
As V is a nonempty open set, λn(V) > 0 and, therefore, 1W (x) = 0 on a set of positive
measure. We have reached a contradiction. This means that Lγ is transitive.
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1.6.2 Maps of the interval

Although there is no known topological conjugacy invariant which is a complete in-
variant for the family of all dynamical systems, some conjugacy invariants turn out to
be complete invariants for subfamilies of systems. By a complete invariant for a sub-
family, wemean that if two systems from the subfamily share this invariant, then they
are automatically topologically conjugate.

For instance, we have seen that the number of periodic points of any given period
is a topological conjugacy invariant, though not a complete invariant. However, the
number of periodic points of a given period sometimes turns out to be a complete
invariant ifwe restrict our attention to an appropriate subfamily of dynamical systems.

In this section, we show that the number of fixed points is a complete invariant for
the family of all self-homeomorphisms of compact intervals which fix the endpoints
of their domain and whose sets of fixed points are finite. These self-homeomorphisms
can be characterized as the strictly increasing continuous self-maps of compact inter-
vals that fix the endpoints of their domain and have only finitely many fixed points.

The proof of the complete invariance of the number of fixed points will be given
in several stages.

Theorem 1.6.4. Any two strictly increasing continuous maps of the unit interval that
fix the endpoints of the interval and that have no other fixed points are topologically
conjugate.

Proof. Let I := [0, 1], and let T1,T2 : I → I be two strictly increasing continuous maps
such that Fix(T1) = Fix(T2) = {0, 1}. By the intermediate value theorem, each Ti is a
surjection. As Ti is a strictly increasing map, it is also injective. Thus, Ti is a bijection
andT−1i exists. Furthermore,T−1i is a strictly increasing continuous bijection. It follows
immediately that Tni is a strictly increasing homeomorphism of I for all n ∈ ℤ.

Let x ∈ (0, 1). Since T1(x) ̸= x, either T1(x) < x or T1(x) > x. Similarly, either
T2(x) < x or T2(x) > x. Let us consider the case in which T1(x) > x and T2(x) > x. The
proofs of the other three cases are similar and are left to the reader. Then T1(y) > y for
every y ∈ (0, 1); otherwise, the continuous map T1 would have a fixed point between 0
and 1 by the intermediate value theorem (because of the change of sign in the values
of the continuous map T1 − IdI ). Similarly, T2(y) > y for each y ∈ (0, 1). As Tni is strictly
increasing for all n ∈ ℤ, it follows easily that for allm < n and all y ∈ (0, 1), we have

Tmi (y) < T
n
i (y)

for each i = 1, 2.
Now, fix 0 < a < 1. Note once again that Ti(a) > a and let△i = [a,Ti(a)]. We now

state and prove three claims that will allow us to complete the proof of the theorem.

Claim 1. For all m, n ∈ ℤ such that m < n, we have

Tmi (Int(△i)) ∩ T
n
i (Int(△i)) = 0.
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Proof. Let j ∈ ℤ. Since T ji is strictly increasing and continuous, we have that

T ji (Int(△i)) = (T
j
i (a),T

j+1
i (a)).

Asm + 1 ≤ n, it follows that Tm+1i (a) ≤ T
n
i (a) and, therefore,

Tmi (Int(△i)) ∩ T
n
i (Int(△i)) = (T

m
i (a),T

m+1
i (a)) ∩ (T

n
i (a),T

n+1
i (a)) = 0.

Claim 2. For all x ∈ (0, 1), we have that

lim
n→∞

T−ni (x) = 0 and lim
n→∞

Tni (x) = 1.

Proof. Let x ∈ (0, 1). We shall establish the second limit; the first limit can be as-
certained analogously. First, note that the limit must exist because the sequence
(Tni (x))

∞
n=0 is (strictly) increasing and bounded above by 1. So, let y = limn→∞ Tni (x).

According to Lemma 1.1.4, y is a fixed point of Ti. Moreover, y is clearly not equal to 0.
Hence, y = 1.

Claim 3.
∞

⋃
n=−∞

Tni (△i) = (0, 1).

Proof. It is clear that ⋃∞n=−∞ T
n
i (△i) ⊆ (0, 1). To prove the opposite inclusion, let x ∈

(0, 1). If x ∈ △i, we are done. So, let x ∉ △i. Then either x < a or x > Ti(a). In the
former case, there exists by Claim 2 a largest n ≥ 0 such that Tni (x) < a. Therefore,
Tn+1i (x) ≥ a. Moreover, since Ti is strictly increasing, T

n
i (x) < a implies Tn+1i (x) < Ti(a).

Hence, Tn+1i (x) ∈ △i, that is, x ∈ T
−(n+1)
i (△i). In the latter case, by Claim 2 there exists

a largest n ≥ 0 such that T−ni (x) > Ti(a). Then T−(n+1)i (x) ≤ Ti(a). Moreover, since
T−1i is strictly increasing, T−(n+1)i (x) > T−1i (Ti(a)) = a. Hence, T

−(n+1)
i (x) ∈ △i, that is,

x ∈ T(n+1)i (△i). In all cases, x ∈ ⋃
∞
n=−∞ T

n
i (△i).

In order tomake the idea behind the sequence of intervals (Tni (△i))n∈ℤ clearer, see
Figure 1.5.

Wewill nowdefine a conjugacymap h between T1 and T2. First of all, suppose that
H : △1 → △2 is any homeomorphism satisfying

H(a) = a and H(T1(a)) = T2(a).

Let x ∈ (0, 1). By Claim 3, there exists n(x) ∈ ℤ such that x ∈ T−n(x)1 (△1). We shall
shortly observe that n(x) is uniquely defined for all x ∉ {Tn1 (a) : n ∈ ℤ}. When x ∈
{Tn1 (a) : n ∈ ℤ}, then n(x) takes the value of any one of two consecutive integers; so
it is not uniquely defined and this will require prudence when defining h. Define the
conjugacy map h by setting

h(x) =
{{
{{
{

T−n(x)2 ∘ H ∘ T
n(x)
1 (x) if x ∈ (0, 1)

0 if x = 0
1 if x = 1.
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Figure 1.5: The map T is an orientation-preserving homeomorphism of the unit interval that fixes
only the endpoints. The vertical dotted lines indicate the intervals (T n(△))n∈ℤ, where△ := [a, T (a)].

We first check that this map is well-defined. Suppose that Tk1 (x),T
ℓ
1 (x) ∈ △1 for some

k < ℓ. Claim 1 above implies that Tk1 (x),T
ℓ
1 (x) ∈ 𝜕△1 and k + 1 = ℓ. It follows that

Tk1 (x) = a and T
ℓ
1 (x) = T

k+1
1 (x) = T1(a). Therefore,

T−ℓ2 ∘ H ∘ T
ℓ
1 (x) = T

−(k+1)
2 (H(T1(a)))

= T−(k+1)2 (T2(a))

= T−k2 (a)

= T−k2 (H(a))

= T−k2 (H(T
k
1 (x)))

= T−k2 ∘ H ∘ T
k
1 (x).

Thus, the map h is well-defined.
We must also show that T2 ∘ h = h ∘ T1. Toward this end, first observe that we have

Tn(x)−11 (T1(x)) = T
n(x)
1 (x) ∈ △1, so we can choose n(T1(x)) to be n(x) − 1, and then we

obtain that

h ∘ T1(x) = T
−n(T1(x))
2 ∘ H ∘ Tn(T1(x))1 (T1(x))

= T−(n(x)−1)2 ∘ H ∘ Tn(x)−11 (T1(x))
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= T2 ∘ T
−n(x)
2 ∘ H ∘ T

n(x)
1 (T

−1
1 (T1(x)))

= T2 ∘ h(x).

To complete the proof, it remains to show that h is a bijection and that it is con-
tinuous (recall that a continuous bijection between compact metrizable spaces is a
homeomorphism). That h is continuous follows from the fact that

h|T−n1 (△1) = T
−n
2 ∘ H ∘ T

n
1 |T−n1 (△1)

for every n ∈ ℤ. Indeed, as Tn1 , H, and T−n2 are continuous, the restriction of h to
each T−n1 (△1) is continuous. Using left and right continuity at the endpoints of the
intervals T−n1 (△1), we conclude from Claim 3 that h is continuous on (0, 1). The con-
tinuity of h at 0 follows from the fact that limx→0 n(x) = ∞, that h(x) ∈ T

−n(x)
2 (△2) =

[T−n(x)2 (a),T
−(n(x)−1)
2 (a)], and, by Claim 2, that limn→∞ T−n2 (a) = 0. A similar argument

establishes the continuity of h at 1.
For the injectivity of h, we shall show that h is strictly increasing. If 0 < x < y < 1,

thenn(x) andn(y) canbe chosen so thatn(x) ≥ n(y). Ifn(x) = n(y) =: n, thenh(x) < h(y)
since the restriction of h to T−n1 (△1) is strictly increasing (because T

n
1 , H and T−n2 are

all strictly increasing). If n(x) > n(y), then T−n(x)2 (△2) lies to the left of T
−n(y)
2 (△2) and,

as h(x) ∈ T−n(x)2 (△2) while h(y) ∈ T
−n(y)
2 (△2), we deduce that h(x) < h(y).

Finally, since h is continuous, h(0) = 0 and h(1) = 1, the map h is surjective by the
intermediate value theorem.

Corollary 1.6.5. Any two strictly increasing continuousmaps of compact intervalswhich
have the same finite number of fixed points, including both endpoints of their respective
domains, are topologically conjugate.

Proof. Wefirst prove that if f : I → I is a strictly increasing continuousmapwhich only
fixes the points 0 and 1 and if g : [a, b]→ [a, b] is a strictly increasing continuousmap
which only fixes a and b, then f and g are topologically conjugate. Let k : [a, b]→ I be
defined by k(x) = x−a

b−a . Then k is a strictly increasing homeomorphism. Consequently,
k ∘ g ∘ k−1 is a strictly increasing continuous map of I which only fixes 0 and 1, just like
f . By Theorem 1.6.4, there is a conjugacy map h : I → I between f and k ∘ g ∘ k−1 (i. e., h
is a homeomorphism such that h ∘ f = k ∘ g ∘ k−1 ∘ h). It follows that k−1 ∘ h : I → [a, b]
is a conjugacy map between f and g.

Recall that topological conjugacy is an equivalence relation. It follows from the
argument above and the transitivity of topological conjugacy that any two strictly in-
creasing continuous maps of compact intervals which only fix the endpoints of their
respective domains, are topologically conjugate.

Now, let T : I → I and S : [a, b] → [a, b] be strictly increasing continuous maps
with the same finite number of fixed points, which include the endpoints of their re-
spective domains. Denote the sets of fixed points of T and S by {0, xT1 , . . . , xTk−1 , 1} and
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{a, xS1 , . . . , xSk−1 , b}, respectively. Thesefixedpoints induce twofinite sequences ofmaps

T0 : [0, xT1 ] → [0, xT1 ] S0 : [a, xS1 ] → [a, xS1 ]
T1 : [xT1 , xT2 ] → [xT1 , xT2 ] S1 : [xS1 , xS2 ] → [xS1 , xS2 ]

...
...

Tk−1 : [xTk−1 , 1] → [xTk−1 , 1] Sk−1 : [xSk−1 , b] → [xSk−1 , b]

maps which are the restrictions of T and S, and hence are strictly increasing continu-
ousmaps of compact intervals which only fix the endpoints of their domains. For each
0 ≤ i < k, let hi be a conjugacy map between Ti and Si (such a map exists according to
thediscussion in the previous paragraph). Then seth : I → [a, b] to be themapdefined
by h(x) = hi(x)when x ∈ [xTi , xTi+1 ]. This map h is clearly a bijection and is continuous
(the continuity of h at the points {xT1 , . . . , xTk−1 } can be established bymeans of left and
right continuity). Finally, h ∘ T = S ∘ h since hi ∘ Ti = Si ∘ hi for all 0 ≤ i < k.

Finally, it follows from this and the transitivity of topological conjugacy that any
two strictly increasing continuous maps of compact intervals with the same finite
number of fixed points, among whose are the endpoints of their respective domains,
are topologically conjugate.

However, note that any two strictly increasing continuous maps of compact inter-
vals which have the same finite number of fixed points, one of which fixes the end-
points of its domain while the other does not, are not topologically conjugate (see
Exercise 1.7.34). In particular, this establishes that the number of fixed points is not
a complete invariant for the subfamily of all strictly increasing continuous maps of
compact intervals which have the same given finite number of fixed points.

1.7 Exercises
Exercise 1.7.1. In this exercise, we revisit Example 1.1.3(b). Recall that, given m ∈ ℕ,
we defined themap Tm : 𝕊1 → 𝕊1 by setting Tm(x) := mx (mod 1). Themap Tm is simply
a piecewise linear map that sends each interval [i/m, (i + 1)/m], for 0 ≤ i < m, onto 𝕊1.
It can be expressed by the formula

Tm(x) = mx − i for all i
m
≤ x ≤ i + 1

m
.

Prove that for every n ∈ ℕ the iterates of T can be expressed as

Tnm(x) = m
nx −

n
∑
k=1

mn−k in−k+1

if

1
mn

n
∑
k=1

mn−k in−k+1 ≤ x ≤
1
mn(

n
∑
k=1

mn−k in−k+1 + 1),

where 0 ≤ i1, i2, . . . , in < m. Deduce that Tm hasmn periodic points of period n.
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Exercise 1.7.2. Show that a point x ∈ X is preperiodic for a system T : X → X if and
only if its forward orbit𝒪+(x) is finite.

Exercise 1.7.3. Let Per(T) be the set of periodic points for a system T : X → X. Prove
that

PrePer(T) = ⋃
x∈Per(T)

𝒪−(x),

where PrePer(T) denotes the set of all preperiodic points for the system T.

Exercise 1.7.4. Identify all the preperiodic points for the dynamical systems intro-
duced in Example 1.1.3.

Exercise 1.7.5. Prove that if both X and Y are dense subsets of ℝ and g : X → Y is
an increasing bijection, then g extends uniquely to an increasing homeomorphism
g̃ : ℝ→ ℝ.

Exercise 1.7.6. Prove that topological conjugacy defines an equivalence relation on
the space of dynamical systems.

Exercise 1.7.7. Show that if two dynamical systems T : X → X and S : Y → Y are
topologically conjugate via a conjugacy map h : X → Y , then their corresponding
iterates are topologically conjugate by means of the same conjugacy map h.

Exercise 1.7.8. Prove that for every n ∈ ℕ there exists a one-to-one correspondence
between the periodic points of period n of two topologically conjugate dynamical sys-
tems. Show that this implies for every n ∈ ℕ the existence of a one-to-one correspon-
dence between the periodic points of prime period n.

Exercise 1.7.9. Prove that if two dynamical systems T : X → X and S : Y → Y are
topologically conjugate via a conjugacy map h : X → Y , then h induces a one-to-one
correspondence between preperiodic points. Deduce that the number of preperiodic
points is a topological conjugacy invariant. By means of an example, show also that
the number of preperiodic points is not a complete invariant.

Exercise 1.7.10. Suppose that a dynamical system S : Y → Y is a factor of a system
T : X → X. Show that every orbit of T is projected onto an orbit of S. Show also that
for all n ∈ ℕ every periodic point of period n for T is mapped to a periodic point for S
whose period is a factor of n.

Exercise 1.7.11. Prove that the closure of every invariant set is invariant.

Exercise 1.7.12. Show that if x ∈ X is a periodic point for a system T : X → X, then
ω(x) = 𝒪+(x) = 𝒪+(x). Observe also that the set of limit points of 𝒪+(x) is empty.
Deduce that ω(x) does not coincide with the set of limit points of𝒪+(x).
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Exercise 1.7.13. Prove that if x ∈ X is a preperiodic point for a system T : X → X, then
ω(x) ̸= 𝒪+(x) = 𝒪+(x). Soω(x) ̸= 𝒪+(x). Moreover, as in Exercise 1.7.12, prove thatω(x)
does not coincide with the set of limit points of the forward orbit𝒪+(x).

Exercise 1.7.14. Let T : X → X be a dynamical system. Prove that ω(x) is the set of
limit points of𝒪+(x) if and only if x is not a periodic or preperiodic point.

Exercise 1.7.15. Let T : X → X be a dynamical system. Show that𝒪+(x)∪ω(x) = 𝒪+(x)
for any x ∈ X.

Exercise 1.7.16. Show that the set of limit points of any set is closed.

Hint: Prove that any accumulation point of accumulation points of a set S is an accumu-
lation point of S.

Exercise 1.7.17. Prove that any intersection of a descending sequence of nonempty
compact sets in a Hausdorff topological space is a nonempty compact set.

Exercise 1.7.18. Show that every minimal system is surjective.

Exercise 1.7.19. Prove that minimality is not a complete invariant.

Hint: Construct two finite minimal dynamical systems with different cardinalities.

Exercise 1.7.20. Prove thatminimality is not a complete invariant for infinite systems.

Exercise 1.7.21. Let +2 : {0, 1} → {0, 1} denote addition modulo 2 and endow the set
{0, 1} with the discrete topology. Prove that the dynamical system T : 𝕊1 × {0, 1} →
𝕊1 × {0, 1} given by the formula

T(x, y) := (x +√2 (mod 1), y +2 1)

is minimal.

Exercise 1.7.22. Prove or disprove (by providing a counterexample) that if T : X → X
is minimal then T2 : X → X is also minimal.

Exercise 1.7.23. Prove that the statements in Definition 1.5.10 are equivalent.

Exercise 1.7.24. Prove that topological transitivity, strong transitivity, very strong
transitivity, and topological exactness are topological conjugacy invariants.

Exercise 1.7.25. Construct a very strongly transitive, open system which is not topo-
logically exact. (Recall that amap is said to be open if the image of any open set under
that map is open.)

Exercise 1.7.26. Build a strongly transitive system which is not very strongly transi-
tive.

Exercise 1.7.27. Find a transitive system which is not strongly transitive.
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Exercise 1.7.28. Let T : X → X be a dynamical system. Suppose that for every
nonempty open subset U of X there exists n ≥ 0 such that Tn(U) is a dense sub-
set of X. Prove that T is topologically exact.

Exercise 1.7.29. A continuous map T : X → X is said to be locally eventually onto
provided that for every nonempty open subset U of X there exists n ≥ 0 such that

n
⋃
j=0

T j(U) = X.

Each topologically exact map is locally eventually onto. Provide an example of a lo-
cally eventually onto map that is not topologically exact.

Exercise 1.7.30. Let (k1, k2, . . . , kn) ∈ ℤn. Let φ : 𝕋n → ℝ be the function defined by

φ(x) = φ(x1, x2, . . . , xn) = sin(2π
n
∑
j=1

kjxj).

Show that φ is well-defined.

Exercise 1.7.31. Let T : X → X be a dynamical system. Prove that a subset Y of X is
T-invariant if and only if 1Y is T-invariant, where 1Y denotes the characteristic func-
tion of the set Y , that is,

1Y (x) := {
1 if x ∈ Y
0 if x ∉ Y .

Exercise 1.7.32. Establish graphically that Claims 1, 2, and 3 in the proof of Theo-
rem 1.6.4 hold.

Exercise 1.7.33. Prove Theorem 1.6.4 when T1(x) > x for all x ∈ (0, 1) and T2(x) < x for
all x ∈ (0, 1).

Hint: Prove that Claim 1 still holds. Prove that Claim 2 holds for T1. However, show
that limn→∞ Tn2 (x) = 0 and limn→∞ T−n2 (x) = 1. Then prove that Claim 3 holds. Finally,
show that

h(x) =
{{
{{
{

T−n(x)2 ∘ H ∘ T
n(x)
1 (x) if x ∈ (0, 1)

1 if x = 0
0 if x = 1.

is a conjugacy map between T1 and T2.

Exercise 1.7.34. Prove that any two strictly increasing continuous maps of compact
intervals which have the same finite number of fixed points, one of which fixes the
endpoints of its domain while the other does not, are not topologically conjugate.
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Hint: Let T : [a, b] → [a, b] and S : [c, d] → [c, d] be strictly increasing continuous
maps with T fixing both a and b. Suppose that h : [a, b] → [c, d] is a conjugacy map
between T and S. Using the Intermediate Value Theorem (IVT), show that h(a) is an
extreme (in other words, the leftmost or rightmost) fixed point of S, while h(b) is the
other extreme fixed point. Using the IVT once more, show that h([a, b]) = [h(a), h(b)].
Deduce that S fixes both c and d.
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2 Homeomorphisms of the circle
In this chapter, we temporarily step away from the general theory of dynamical sys-
tems to consider more specific examples. In the preparatory Section 2.1, we first study
lifts of maps of the unit circle. Using lifts, we investigate homeomorphisms of the unit
circle in Section 2.2. Thesehomeomorphisms constitute theprimary class of systemsof
interest in this chapter. After showing that rotations are homeomorphisms, we intro-
duce Poincaré’s notion of rotation number for homeomorphisms of the circle. Roughly
speaking, this number is the average rotation that a homeomorphism induces on the
points of the circle over the long term. In Section 2.3, we examine in more detail dif-
feomorphisms of the circle. Themain result of this chapter is Denjoy’s theorem (Theo-
rem 2.3.4), which states that if a C2 diffeomorphism has an irrational rotation number,
then the diffeomorphism constitutes a minimal system which is topologically conju-
gate to an irrational rotation. Strictly speaking, it suffices that the modulus of the dif-
feomorphism’s derivative be a function of bounded variation. Denjoy’s theorem is a
generalization of Theorem 1.5.12.

The concept of rotation number generalizes to all continuous degree-one self-
maps of the circle. It is then called rotation interval. A systematic account of the theory
of suchmaps and, in particular, an extended treatment of the rotation interval, can be
found in [3].

2.1 Lifts of circle maps
In this section, we discuss general properties that are shared by all circle maps, be
they one-to-one or not. As already mentioned in Section 1.5, the unit circle 𝕊1 can be
defined in many homeomorphic ways. Here, we will regard 𝕊1 as the quotient space
ℝ/ℤ, that is, as the space of all equivalence classes

[x] = {x + n : n ∈ ℤ},

where x ∈ ℝ, with metric

ρ([x], [y]) = inf{(x + n) − (y +m)
 : n,m ∈ ℤ} = inf{|x − y + k| : k ∈ ℤ}

= min{|x − y − 1|, |x − y|, |x − y + 1|}.

To study the dynamics of amapon the circle, it is helpful to lift thatmap from𝕊1 ≅ ℝ/ℤ
to ℝ. This can be done via the continuous surjection

π : ℝ → 𝕊1

x → π(x) = [x].

Definition 2.1.1. Let T : 𝕊1 → 𝕊1 be a continuous map of the circle. A continuous map
T̃ : ℝ → ℝ is called a lift of T to ℝ if π ∘ T̃ = T ∘ π, that is, if the following diagram

https://doi.org/10.1515/9783110702682-002
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commutes:

ℝ

π
??

T̃ ?? ℝ

π
??

𝕊1
T
?? 𝕊1

In other words, T : 𝕊1 → 𝕊1 is a factor of T̃ : ℝ→ ℝ via the factor map π.

Note that π is countably infinite to one, and hence cannot be a conjugacy map. In
fact, π : ℝ → 𝕊1 is a covering map, that is, every [x] ∈ 𝕊1 has an open neighborhood
U[x], which is evenly covered by π. Being evenly covered by πmeans that the preimage
π−1(U[x]) is a union of disjoint open subsets of ℝ, called sheets of π−1(U[x]), each of
which is mapped homeomorphically by π onto U[x]. Observe further that π is a local
isometrywhen𝕊1 ≅ ℝ/ℤ is equippedwith themetric ρ.More precisely, it is an isometry
on any interval of length at most 1/2.

Lemma 2.1.2. Every continuous map T : 𝕊1 → 𝕊1 admits a lift T̃ : ℝ→ ℝ.

Proof. Fix s0 ∈ ℝ and t0 ∈ π−1(T(π(s0))). Define T̃(s0) := t0. Then π(T̃(s0)) = π(t0) =
T(π(s0)). In other words, T̃(s0) is a lift of s0. This is the starting point of our lift. By
considering successive neighborhoods, we will gradually lift the points of 𝕊1 toℝ. For
each t ∈ ℝ, let Uπ(t) ⊆ 𝕊1 be the largest open neighborhood centered on π(t) which is
evenly covered by π, that is,

Uπ(t) = {π(r) : t − 1/2 < r < t + 1/2}.
Wedefine the sought-after lift by successive steps, as follows. LetV0 be the unique

sheet of π−1(Uπ(T̃(s0))), which contains T̃(s0), that is, let
V0 := {r ∈ ℝ : T̃(s0) − 1/2 < r < T̃(s0) + 1/2}.

Since T(π(s0)) = π(T̃(s0)) ∈ Uπ(T̃(s0)), since T is continuous and since Uπ(T̃(s0)) is open,
there exists s′1 > s0 such that T(π(s)) ∈ Uπ(T̃(s0)) for all s0 ≤ s < s′1. Denote by s1 the
supremum of all such s′1. For each s0 ≤ s < s1, define T̃(s) to be the unique point of V0
such that π(T̃(s)) = T(π(s)).

If s1 =∞, then the lift is defined for all s ≥ s0. If s1 <∞, define

T̃(s1) := lims↗s1 T̃(s).
Then

T̃(s1) ∈ {T̃(s0) ± 1/2}
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and

π(T̃(s1)) = T(π(s1)).

Just like we did from s0, the map T̃ can then be extended beyond s1 as follows.
Let V1 be the unique sheet of π−1(Uπ(T̃(s1))) which contains T̃(s1). Since T(π(s1)) =
π(T̃(s1)) ∈ Uπ(T̃(s1)), sinceT is continuous and sinceUπ(T̃(s1)) is open, there exists s′2 > s1
such that T(π(s)) ∈ Uπ(T̃(s1)) for all s1 ≤ s < s′2. Denote by s2 the supremum of all such
s′2. For each s1 ≤ s < s2, let T̃(s) be the unique point of V1 such that π(T̃(s)) = T(π(s)).
If s2 <∞, define

T̃(s2) := lims↗s2 T̃(s).
Then

T̃(s2) ∈ {T̃(s1) ± 1/2} ⊆ {T̃(s0) ± k/2 : k = 0, 1, 2}

and

π(T̃(s2)) = T(π(s2)).

Continuing in this way, either the procedure ends with some sn = ∞ or it does
not, in which case a strictly increasing sequence (sn)∞n=1 is constructed recursively. We
claim that limn→∞ sn = ∞. Otherwise, let s∗ = limn→∞ sn < ∞. The continuity of T
and π then ensures that T(π(s∗)) = limn→∞ T(π(sn)) = limn→∞ π(T̃(sn)). Note also
that π(T̃(sn)) coincides with π(T̃(s0)) or π(T̃(s0) + 1/2) since T̃(sn) ∈ {T̃(s0) ± k/2 :
k ∈ ℤ}. Therefore, T(π(s∗)) coincides with π(T̃(s0)) or π(T̃(s0) + 1/2), and thus the se-
quenceπ(T̃(sn)), n ≥ 0, is eventually constant. But this is impossible sinceπ(T̃(sn+1)) ∉
Uπ(T̃(sn)) for all n ≥ 0 by definition. This contradiction means that the lift can be ex-
tended indefinitely to the right of s0, and a similar argument shows that it can be in-
definitely extended to the left as well.

Reading the proof of the above lemma, the readermay have acquired the intuition
that, given a starting point, the lift of a map is unique. Moreover, given that starting
points can only differ by an integer, so should entire lifts. This intuition proves to be
correct.

Lemma 2.1.3. Let T̃ : ℝ→ ℝ be a lift of a continuous map T : 𝕊1 → 𝕊1. Then T̂ : ℝ→ ℝ
is a lift of T if and only if T̂ = T̃ + k for some k ∈ ℤ. In particular, given s ∈ ℝ and
t ∈ π−1(T(π(s))), there is a unique lift T̂ so that T̂(s) = t.

Proof. Suppose first that T̂ = T̃ +k for some k ∈ ℤ. It follows that T̂ is continuous since
T̃ is continuous. Moreover, for every x ∈ ℝ we have

π ∘ T̂(x) = π(T̃(x) + k) = π(T̃(x)) = T ∘ π(x).

Thus, T̂ is a lift of T. This proves one implication.
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For the converse implication, suppose that T̂, like T̃, is a lift of T. For every x ∈ ℝ,
we then have

π ∘ T̂(x) = T ∘ π(x) = π ∘ T̃(x).

Therefore, T̂(x) − T̃(x) ∈ ℤ for every x ∈ ℝ. Define the function k : ℝ → ℤ by k(x) =
T̂(x) − T̃(x). Since both T̃ and T̂ are continuous on ℝ, so is the function k. Then k(ℝ),
as the image of a connected set under a continuous function, is a connected set. But
since ℤ is totally disconnected, the set k(ℝ) must be a singleton. In other words, the
function k must be constant. Hence, T̂ = T̃ + k for some constant k ∈ ℤ.

Thus, once a lift is found, all the other lifts can be obtained by translating verti-
cally the graph of the original lift by all the integers. In the following lemma, we shall
describe an important property that all lifts have in common.

Lemma 2.1.4. If T : 𝕊1 → 𝕊1 is continuous, then the number T̃(x + 1)− T̃(x) is an integer
independent of the point x ∈ ℝ and of the choice of lift T̃.

Proof. For every x ∈ ℝ,

π(T̃(x + 1)) = T(π(x + 1)) = T(π(x)) = π(T̃(x)).

Thus T̃(x + 1) − T̃(x) is an integer. Since ℝ ∋ x → T̃(x + 1) − T̃(x) ∈ ℤ is a continuous
function, it follows, as in the proof of Lemma 2.1.3, that it is constant. This implies the
independence from the point x ∈ ℝ.

If T̂ : ℝ → ℝ is another lift of T, then T̂ = T̃ + k for some k ∈ ℤ according to
Lemma 2.1.3. Therefore,

(T̂(x + 1) − T̂(x)) − (T̃(x + 1) − T̃(x))
= (T̂(x + 1) − T̃(x + 1)) − (T̂(x) − T̃(x))
= k − k = 0.

This establishes the independence from the choice of lift.

It then makes sense to introduce the following notion.

Definition 2.1.5. If T : 𝕊1 → 𝕊1 is continuous, then the integer number T̃(x + 1) − T̃(x),
which is independent of the point x ∈ ℝ and of the choice of lift T̃, is called the degree
of the map T and is denoted by deg(T).

We can now reformulate Lemma 2.1.4 as follows.

Lemma 2.1.6. If T̃ : ℝ→ ℝ is a lift of the continuous map T : 𝕊1 → 𝕊1, then

T̃(x + 1) = T̃(x) + deg(T), ∀x ∈ ℝ.

By way of an induction argument, this result yields the following corollary.
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Corollary 2.1.7. If T̃ : ℝ→ ℝ is a lift of the continuous map T : 𝕊1 → 𝕊1, then

T̃(x + k) = T̃(x) + k deg(T), ∀x ∈ ℝ, ∀k ∈ ℤ.

Proof. Let d = deg(T). By Lemma 2.1.6, the statement holds for all x ∈ ℝ when k = 1.
Suppose that the statement holds for all x ∈ ℝ for some k ∈ ℕ. Then

T̃(x + k + 1) = T̃((x + k) + 1) = T̃(x + k) + d = (T̃(x) + kd) + d = T̃(x) + (k + 1)d

for all x ∈ ℝ. Thus, the statement holds for k + 1 whenever it holds for k ∈ ℕ. By
induction, the statement holds for all x ∈ ℝ and all k ∈ ℕ. When k ≤ 0, we have that
−k ≥ 0 and, since the statement holds for −k, we obtain

T̃(x + k) = T̃(x + k) + (−k)d + kd = T̃(x + k + (−k)) + kd = T̃(x) + kd

for all x ∈ ℝ.

The degree has the following property relative to the composition of maps.

Lemma 2.1.8. If S,T : 𝕊1 → 𝕊1 are continuous maps of the unit circle, then

deg(S ∘ T) = deg(S) ⋅ deg(T).

Proof. Let S̃, T̃ be lifts of S and T, respectively. Then S̃ ∘ T̃ is a lift of S ∘ T since

π ∘ (S̃ ∘ T̃) = (π ∘ S̃) ∘ T̃ = (S ∘ π) ∘ T̃ = S ∘ (π ∘ T̃) = S ∘ (T ∘ π) = (S ∘ T) ∘ π.

Let x ∈ ℝ. Using Corollary 2.1.7 once for T and once for S, we obtain that

deg(S ∘ T) = S̃ ∘ T̃(x + 1) − S̃ ∘ T̃(x)
= S̃(T̃(x + 1)) − S̃(T̃(x))
= S̃(T̃(x) + deg(T)) − S̃(T̃(x))
= S̃(T̃(x)) + deg(T) ⋅ deg(S) − S̃(T̃(x))
= deg(S) ⋅ deg(T).

This has the following consequence for iterates of maps.

Corollary 2.1.9. If T : 𝕊1 → 𝕊1 is a continuous map of the unit circle, then

deg(Tn) = (deg(T))n, ∀n ∈ ℕ.

As a direct repercussion of Corollaries 2.1.7 and 2.1.9, we have the following fact.

Corollary 2.1.10. If T : 𝕊1 → 𝕊1 is continuous and T̃ is a lift of T, then

T̃n(x + k) = T̃n(x) + k(deg(T))n

for all x ∈ ℝ, all k ∈ ℤ and all n ∈ ℕ.
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We can further describe the difference between the values of iterates of various
lifts.

Corollary 2.1.11. Let T : 𝕊1 → 𝕊1 be a continuous map and T̃ : ℝ→ ℝ be a lift of T. If T̂
is another lift of T so that T̂ = T̃ + k for some k ∈ ℤ, then

T̂n = T̃n + k
n−1
∑
j=0(deg(T))j

for all n ∈ ℕ.

Proof. By hypothesis, the statement holds when n = 1. Suppose now that it holds for
some n ∈ ℕ. Let x ∈ ℝ. Then

T̂n+1(x) = T̂n(T̂(x))
= T̃n(T̂(x)) + k

n−1
∑
j=0(deg(T))j

= T̃n(T̃(x) + k) + k
n−1
∑
j=0(deg(T))j

= T̃n(T̃(x)) + k(deg(T))n + k
n−1
∑
j=0(deg(T))j

= T̃n+1(x) + k n
∑
j=0(deg(T))j.

The result follows by induction.

We now observe that the degree, as a map, is locally constant.

Lemma 2.1.12. If C(𝕊1,𝕊1) is endowed with the topology of uniform convergence, then
the degree map C(𝕊1,𝕊1) ∋ T → deg(T) ∈ ℤ is locally constant and hence continuous.

Proof. We shall regard 𝕊1 as (ℝ/ℤ, ρ), with the metric ρ as defined at the beginning of
this section. Let T , S ∈ C(𝕊1,𝕊1) be such that ρ∞(T , S) < 1/4, where we recall that

ρ∞(T , S) = sup{ρ(T(x), S(x)) : x ∈ 𝕊1}.
Let T̃ : ℝ→ ℝ be a lift of T. Since ρ∞(T , S) < 1/4, the restriction of π to the real interval
[T̃(0) − ρ∞(T , S), T̃(0) + ρ∞(T , S)] is an isometry. Thus, the connected set π([T̃(0) −
ρ∞(T , S), T̃(0) + ρ∞(T , S)]), which is “centered” on π(T̃(0)) = T(π(0)) ∈ 𝕊1, contains
the point S(π(0)), since ρ(T(π(0)), S(π(0))) ≤ ρ∞(T , S). Therefore, there exists some

t ∈ [T̃(0) − ρ∞(T , S), T̃(0) + ρ∞(T , S)]
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such that π(t) = S(π(0)). There then exists a unique lift S̃ : ℝ → ℝ of S such that
S̃(0) = t. In particular,

T̃(0) − S̃(0)
 ≤ ρ∞(T , S).

We shall prove that

T̃(x) − S̃(x)
 ≤ ρ∞(T , S), ∀x ∈ ℝ. (2.1)

Indeed, suppose by way of contradiction that there exists y ∈ ℝ such that |T̃(y) −
S̃(y)| > ρ∞(T , S). Since the function x → |T̃(x) − S̃(x)| is continuous and |T̃(0) − S̃(0)| ≤
ρ∞(T , S) < 1/4, there must exist w ∈ ℝ such that

ρ∞(T , S) < T̃(w) − S̃(w) < 1/4.
But since the restriction of π to (T̃(w)−1/4, T̃(w)+1/4) is an isometry and S̃(w) belongs
to that real interval, it follows that

ρ∞(T , S) ≥ ρ(T(π(w)), S(π(w))) = ρ(π(T̃(w)),π(S̃(w))) = T̃(w) − S̃(w) > ρ∞(T , S),
which is impossible. This proves (2.1). Using that formula, we deduce that

deg(T) − deg(S)
 =
(T̃(x + 1) − T̃(x)) − (S̃(x + 1) − S̃(x))


= (T̃(x + 1) − S̃(x + 1)) − (T̃(x) − S̃(x))


≤ T̃(x + 1) − S̃(x + 1)

 +
T̃(x) − S̃(x)


≤ 2ρ∞(T , S) < 1.

As deg(S) and deg(T) are integers, we conclude that deg(S) = deg(T).

Remark 2.1.13. Another way of stating (2.1) is to say that if T , S ∈ C(𝕊1,𝕊1) are circle
maps such that ρ∞(T , S) < 1/4, then T and S have lifts T̃ and S̃ such that ρ̃∞(T̃ , S̃) ≤
ρ∞(T , S), where

ρ̃∞(T̃ , S̃) := sup{T̃(x) − S̃(x) : x ∈ [0, 1]} = sup{T̃(x) − S̃(x) : x ∈ ℝ}.
The following lemma gives us more information about lifts and their fixed points.

Lemma 2.1.14. Every continuous map T : 𝕊1 → 𝕊1 with deg(T) ̸= 1 has a lift T̃ : ℝ → ℝ
with a fixed point in [−1/2, 1/2]. Moreover,

dist(0, Fix(T̃))→ 0 whenever T → Ek uniformly,

where Ek([x]) := [kx] and where k = deg(T).
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Proof. Let k = deg(T) and T̂ : ℝ→ ℝ be a lift of T. Define a map D : ℝ→ ℝ by setting

D(x) := T̂(x) − x.

By definition of k, we have that T̂(1/2) = T̂(−1/2 + 1) = T̂(−1/2) + k, and hence

D(1/2) = T̂(1/2) − 1/2 = T̂(−1/2) + k − 1/2 = D(−1/2) + k − 1.

Since k ̸= 1, the interval D([−1/2, 1/2]) has length at least 1, and thus contains an in-
teger, say m. In other words, there exists x0 ∈ [−1/2, 1/2] such that D(x0) = m, that is,
such that T̂(x0) − m = x0. Letting T̃ = T̂ − m, which is also a lift of T by Lemma 2.1.3,
we obtain that T̃(x0) = x0 and the first assertion in our lemma is proved.

For the second part, fix δ > 0. One immediately verifies that Ẽk(x) = kx is a lift of
Ek to ℝ and

Ẽk(−δ) − (−δ) = −kδ + δ = −(k − 1)δ whereas Ẽk(δ) − δ = (k − 1)δ.

Since k ̸= 1, the numbers Ẽk(−δ) − (−δ) and Ẽk(δ) − δ have opposite signs. Therefore,
in view of Remark 2.1.13, if T is sufficiently close to Ek, then there exists a lift T̃ of T
such that T̃(−δ)− (−δ) and T̃(δ)− δ have the same signs as Ẽk(−δ)− (−δ) and Ẽk(δ)− δ,
respectively. Consequently, there exists s ∈ (−δ, δ) so that T̃(s) − s = 0.

Remark 2.1.15. Lemma 2.1.14 does not generally hold for circle maps of degree 1. In-
deed, it clearly does not hold for any irrational rotation.

2.2 Orientation-preserving homeomorphisms of the circle

Every homeomorphism of the unit circle is either orientation preserving or orien-
tation reversing, which means that either the homeomorphism preserves the or-
der of points on the circle or it reverses their order. In this section, we shall study
orientation-preserving homeomorphisms. The differences that occur when consider-
ing orientation-reversing homeomorphisms are covered in the exercises at the end of
the chapter.

By convention, arcs will be traversed in the counterclockwise direction along the
unit circle. That is, the closed arc [a, b] is the arc that consists of all points that are
met whenmoving in the counterclockwise direction from point a to point b, including
these two points. The open arc (a, b) simply excludes the endpoints from the closed
arc [a, b]. Hence, [π(0),π(1/2)] is the upper-half circle while [π(1/2),π(0)] corresponds
to the lower-half circle. The left half circle is represented by [π(1/4),π(3/4)] whereas
the right-half circle is the arc [π(3/4),π(1/4)].

Definition 2.2.1. A homeomorphism f : 𝕊1 → 𝕊1 is said to be orientation-preserving if
f (c) ∈ (f (a), f (b)) whenever c ∈ (a, b).
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We will show that this is equivalent to the fact that any lift f̃ of f is an increasing
homeomorphism of ℝ. Recall that lifts exist by Lemma 2.1.2, and are unique up to
addition by an integer according to Lemma 2.1.3.

Lemma 2.2.2. Let f : 𝕊1 → 𝕊1 be a homeomorphism of the unit circle. Let f̃ : ℝ→ ℝ be
a lift of f . Then f̃ is a homeomorphism of ℝ.

Proof. Let f̃ : ℝ → ℝ be a lift of f . By definition, f̃ is surjective and continuous. It
remains to show that it is injective. Suppose that this is not the case, that is, there exist
x, y ∈ ℝ such that f̃ (x) = f̃ (y).We claim that there then exist x̃, ỹ ∈ ℝ such that |x̃−ỹ| < 1
and f̃ (x̃) = f̃ (ỹ). Indeed, if |x − y| < 1 then simply let x̃ = x and ỹ = y. Otherwise, that
is, if |x − y| ≥ 1 then there exists a unique k ∈ ℕ such that k ≤ |x − y| < k + 1. Without
loss of generality, we may assume that x > y. Then y + k ≤ x < y + k + 1. Moreover,

f̃ (y + k) = f̃ (y) + kdeg(f ) = f̃ (x) + kdeg(f )

while

f̃ (y + k + 1) = f̃ (y) + (k + 1)deg(f ) = f̃ (x) + kdeg(f ) + deg(f ).

If deg(f ) ̸= 0, applying the intermediate value theorem on the intervals [y + k, x]
and [x, y + k + 1] gives that there exist x1 ∈ (y + k, x) and x2 ∈ (x, y + k + 1) such that

f̃ (x1) = f̃ (x2) = f̃ (x) + kdeg(f )/2.

In this case, let x̃ = x1 and ỹ = x2.
If deg(f ) = 0, then

f̃ (y + k) = f̃ (y + k + 1) = f̃ (x).

If there exists y + k < z < y + k + 1 such that f̃ (z) ̸= f̃ (x), then applying the intermediate
value theorem on the intervals [y + k, z] and [z, y + k + 1] yields points z1 ∈ (y + k, z)
and z2 ∈ (z, y + k + 1) such that

f̃ (z1) = f̃ (z2) = (f̃ (x) + f̃ (z))/2.

In this case, let x̃ = z1 and ỹ = z2. Otherwise, f̃ is equal to f̃ (x) on the entire interval
[y + k, y + k + 1] and we let x̃ = x and ỹ ∈ (y + k, y + k + 1) \ {x}.

In all cases, |x̃ − ỹ| < 1 and f̃ (x̃) = f̃ (ỹ). It then follows that

f ∘ π(x̃) = π ∘ f̃ (x̃) = π ∘ f̃ (ỹ) = f ∘ π(ỹ).

Since f is injective, this means that π(x̃) = π(ỹ). But π(x̃) ̸= π(ỹ) since |x̃ − ỹ| < 1. This
contradiction shows that f̃ is injective. In summary, f̃ is a continuous bijection of ℝ.
Then f̃ is either strictly increasing or strictly decreasing. In particular, it is a homeo-
morphism and deg(f ) ̸= 0.
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Corollary 2.2.3. Let f : 𝕊1 → 𝕊1 be a homeomorphism of the unit circle. Let f̃ : ℝ → ℝ
be a lift of f . If f is orientation preserving, then f̃ is an increasing homeomorphism ofℝ.

Proof. By Lemma 2.2.2, we know that f̃ is a homeomorphismofℝ. Therefore, f̃ is either
strictly increasing or strictly decreasing. Suppose for a contradiction that f̃ is strictly
decreasing. Changing lift if necessary, we may assume that f̃ (0) ∈ (0, 1]. Since f̃ is
continuous and strictly decreasing, there exists 0 < δ < 1 such that 0 < f̃ (δ) < f̃ (0).
Consider the arc (a, b) := (π(0),π(δ)) = π((0, δ)) ⊆ 𝕊1. Then

(f (a), f (b)) = (f (π(0)), f (π(δ))) = (π(f̃ (0)),π(f̃ (δ))).

Let c ∈ (a, b). Then there exists 0 < c̃ < δ such that π(c̃) = c. Therefore, 0 < f̃ (δ) <
f̃ (c̃) < f̃ (0) ≤ 1, and hence

f (c) = f (π(c̃)) = π(f̃ (c̃)) ∈ π((f̃ (δ), f̃ (0))) = (π(f̃ (δ)),π(f̃ (0))).

Consequently, f (c) ∉ (f (a), f (b)). This contradicts the hypothesis that f is orientation
preserving. We thus conclude that f̃ must be strictly increasing.

Let us now show that the degree of every orientation-preserving homeomorphism
of the circle is equal to 1, where we recall that the degree of a continuous map T :
𝕊1 → 𝕊1 is defined to be the integer T̃(x + 1)− T̃(x), which is independent of the choice
of the point x ∈ ℝ and of the choice of lift T̃ : ℝ→ ℝ according to Lemma 2.1.4.

Lemma 2.2.4. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism. Then
deg(f ) = 1.

Proof. Let f̃ : ℝ→ ℝ be a lift of f . Since f̃ is strictly increasing and f̃ (1) = f̃ (0)+deg(f ),
it is clear that deg(f ) ≥ 1. Suppose that deg(f ) ≥ 2. Then, as f̃ is continuous and f̃ (1) =
f̃ (0) + deg(f ), the intermediate value theorem guarantees the existence of some real
number 0 < y < 1 such that f̃ (y) = f̃ (0) + 1. But then

f ∘ π(y) = π ∘ f̃ (y) = π(f̃ (0) + 1) = π ∘ f̃ (0) = f ∘ π(0).

Since f is injective (after all, it is a homeomorphism), this means that π(y) = π(0).
However, π(y) ̸= π(0) since 0 < y < 1. This contradiction shows that the assumption
deg(f ) ≥ 2 cannot hold. Thus deg(f ) = 1.

We leave it to the reader to prove that any homeomorphism F of ℝ with the prop-
erty that F(x + 1) = F(x) + 1 for all x ∈ ℝ generates an orientation-preserving homeo-
morphism f of S1 (see Exercise 2.4.3).

Observe that the inverse f −1 : 𝕊1 → 𝕊1 of an orientation-preserving homeomor-
phism f : 𝕊1 → 𝕊1 is also an orientation-preserving homeomorphism. Therefore,
deg(f −1) = deg(f ) = 1. Moreover, note that if f̃ : ℝ → ℝ is a lift of f : 𝕊1 → 𝕊1,
then f̃ −1 : ℝ → ℝ is a lift of f −1 : 𝕊1 → 𝕊1. We deduce the following for orientation-
preserving homeomorphisms.
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Corollary 2.2.5. Let f̃ : ℝ → ℝ be a lift of an orientation-preserving homeomorphism
f : 𝕊1 → 𝕊1. For all x ∈ ℝ, all k ∈ ℤ and all n ∈ ℤ, we have that

f̃ n(x + k) = f̃ n(x) + k.

Proof. The result is trivial when n = 0. In light of Lemma 2.2.4, the result follows di-
rectly from Corollary 2.1.10 for all n ∈ ℕ. Using f −1 instead of f in Lemma 2.2.4 and
Corollary 2.1.10, the result follows for n ≤ −1.

By induction one can also show the following (cf. Exercise 2.4.1).

Corollary 2.2.6. Let f̃ : ℝ → ℝ be a lift of an orientation-preserving homeomorphism
f : 𝕊1 → 𝕊1. Given any k ∈ ℕ, we have that

|x − y| ≤ k ⇒ f̃
n(x) − f̃ n(y) ≤ k, ∀n ∈ ℤ.

Moreover, if the left inequality is strict (< instead of ≤), then so is the right one.

Corollary 2.2.7. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism and
f̃ : ℝ→ ℝ be a lift of f . If g̃ is another lift of f so that g̃ = f̃ + k for some k ∈ ℤ, then

g̃n = f̃ n + nk

for all n ∈ ℤ.

Proof. Apply Corollary 2.1.11 with f and f −1 in lieu of T. Recall that deg(f ) =
deg(f −1) = 1 since both f and f −1 are orientation-preserving homeomorphisms.

Lemma 2.2.4 implies immediately that f̃ − Idℝ is a periodic function with period 1,
where Idℝ : ℝ→ ℝ is the identity map (cf. Exercise 2.4.2).

Corollary 2.2.8. Let f̃ be a lift of f . Then f̃ − Idℝ is a periodic function with period 1.
More generally, an increasing homeomorphism g̃ : ℝ → ℝ is a lift of an orientation-
preserving homeomorphism of the circle if and only if g̃ − Idℝ is a periodic function with
period 1.

Let us now give the simplest example of an orientation-preserving homeomor-
phism of the unit circle: a rotation.

Example 2.2.9. Let α ∈ ℝ. If f ([x]) := [x + α] is the rotation of the unit circle by the
angle α, then f̃ (x) = x + α is a lift of f and for all x ∈ ℝ we have that

lim
n→∞ f̃ n(x)

n
= lim

n→∞ x + nα
n
= α.
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2.2.1 Rotation numbers

In this section, we introduce a number that allows us to think of the dynamics of a
given homeomorphism of the unit circle mimicking, in some sense, the dynamics of
a rotation of the circle. Accordingly, this number will be called the rotation number of
the said homeomorphism.

The first result generalizes to orientation-preserving homeomorphisms the obser-
vation about the ratio f̃ n(x)/nmade for rotations of the circle in Example 2.2.9.

Proposition 2.2.10. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism of
the unit circle and f̃ : ℝ→ ℝ a lift of f . Then the following statements hold:
(a) The number

ρ(f̃ ) := lim
n→∞ f̃ n(x)

n

exists for all x ∈ ℝ and is independent of x.
(b) If g̃ = f̃ + k for some k ∈ ℤ, then ρ(g̃) = ρ(f̃ ) + k. That is, the choice of lift only

changes ρ by an integer.
(c) For every m ∈ ℕ, we have ρ(f̃m) = m ⋅ ρ(f̃ ).
(d) The number ρ(f̃ ) is an integer if and only if f has a fixed point.
(e) The number ρ(f̃ ) is rational if and only if f has a periodic point.
(f) Let x ∈ ℝ. If q ≥ 1 and r are integers such that f̃ q(x) ≤ x + r, then q ρ(f̃ ) ≤ r.
(g) Let x ∈ ℝ. If q ≥ 1 and r are integers such that f̃ q(x) ≥ x + r, then q ρ(f̃ ) ≥ r.

Proof. (a) We prove this proposition in two steps. We first assume the existence of ρ(f̃ )
and prove its independence of the point x chosen.We then prove the existence of ρ(f̃ ).

Step 1: If ρ(f̃ ) exists for some x ∈ ℝ, then it exists for all y ∈ ℝ and is the same for all y.

Suppose that ρ(f̃ ) exists for some x ∈ ℝ. Choose any y ∈ ℝ. Then there exists
k ∈ ℕ such that |y − x| ≤ k. By Corollary 2.2.6, we have that for every n ∈ ℕ,

f̃
n(x) − f̃ n(y) ≤ k.

Therefore, for all n ∈ ℕ we obtain that

f̃ n(x)
n
−
k
n
≤
f̃ n(y)
n
≤
f̃ n(x)
n
+
k
n
.

Passing to the limit as n tends to infinity, we conclude that

lim
n→∞ f̃ n(x)

n
≤ lim inf

n→∞ f̃ n(y)
n
≤ lim sup

n→∞ f̃ n(y)
n
≤ lim

n→∞ f̃ n(x)
n
.
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Consequently,

lim
n→∞ f̃ n(y)

n
= lim

n→∞ f̃ n(x)
n
.

Since y ∈ ℝ is arbitrary, the proof of Step 1 is complete.

Step 2. The rotation number ρ(f̃ ) always exists.

According to Step 1, if the limit ρ(f̃ ) exists for any particular x, it exists for all x.
So, without loss of generality, set x = 0. Fix momentarily m ∈ ℕ. Then there exists a
unique k ∈ ℤ such that

k ≤ f̃m(0) < k + 1.

Using Corollary 2.2.5 and the fact that f̃m is strictly increasing, we deduce by induction
that for any n ∈ ℕ,

nk ≤ f̃ nm(0) < n(k + 1).

It follows that

k
m
≤
f̃m(0)
m
<
k + 1
m

and k
m
≤
f̃ nm(0)
nm
<
k + 1
m
.

Consequently,



f̃m(0)
m
−
f̃ nm(0)
nm


<
k + 1
m
−
k
m
=

1
m
.

Interchanging the roles ofm and n yields the inequality



f̃ n(0)
n
−
f̃ nm(0)
nm


<
1
n
.

By the triangle inequality, we get that



f̃ n(0)
n
−
f̃m(0)
m


<
1
n
+

1
m
.

This shows that the sequence (f̃ n(0)/n)∞n=1 is a Cauchy sequence in ℝ and is therefore
convergent. Hence, ρ(f̃ ) exists.

(b) Suppose that g̃ = f̃ + k. By Corollary 2.2.7, we know that g̃n = f̃ n + nk for all
n ∈ ℕ. It follows that

ρ(g̃) = lim
n→∞ g̃n(x)

n
= lim

n→∞ f̃ n(x)
n
+ k = ρ(f̃ ) + k.
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(c) Given that f̃m is a lift of fm for every m ∈ ℤ, the number ρ(f̃m) is well-defined
for allm due to statement (a). Using any x ∈ ℝ, we obtain that

ρ(f̃m) = lim
n→∞ f̃mn(x)

n
= lim

n→∞ f̃mn(x)
mn
⋅m = ρ(f̃ ) ⋅m.

(d) Assume first that f has a fixed point. This means that there exists z ∈ 𝕊1 such
that f (z) = z. Let x ∈ ℝ be such that π(x) = z. Then

π(x) = z = f (z) = f (π(x)) = π(f̃ (x)).

Therefore, f̃ (x) − x = k for some k ∈ ℤ. Invoking Corollary 2.2.5 once again, we know
that f̃ n(x) = x + nk for each n ∈ ℕ. Therefore,

ρ(f̃ ) = lim
n→∞ f̃ n(x)

n
= lim

n→∞ x + nk
n
= k ∈ ℤ.

This proves one implication. To derive the converse, assume that ρ(f̃ ) ∈ ℤ. We aim to
show that f has a fixed point. Replacing f̃ by f̃ − ρ(f̃ ), which, by Lemma 2.1.3, is also
a lift of f , we may assume that ρ(f̃ ) = 0. Assume by way of contradiction that f̃ has
no fixed point. By the intermediate value theorem, this means that either f̃ (x) > x for
all x ∈ ℝ or f̃ (x) < x for all x ∈ ℝ. Suppose that f̃ (x) > x for all x ∈ ℝ (a similar argu-
ment holds in the other case). This implies in particular that f̃ (0) > 0, and thus the
sequence (f̃ n(0))∞n=1 is increasing.We further claim that f̃ n(0) < 1 for all n ∈ ℕ. Indeed,
if this were not the case, then we would have f̃ N (0) ≥ 1 for some N ∈ ℕ. We would
deduce by induction that f̃ nN (0) ≥ n for all n ∈ ℕ. Hence, we would conclude that

ρ(f̃ ) = lim
n→∞ f̃ nN (0)

nN
≥

1
N
> 0.

But this would contradict the fact that ρ(f̃ ) = 0. Thus, 0 < f̃ n(0) < 1 for all n ∈ ℕ.
Summarizing, (f̃ n(0))∞n=1 is a boundedmonotonic sequence and as such is convergent.
Let L := limn→∞ f̃ n(0). Because of the continuity of f̃ , Lemma 1.1.4 implies that L is a
fixed point of f̃ . This contradicts our assumption that f̃ has no fixed point. Thus, f̃ has
a fixed point and f , as a factor of f̃ , has a fixed point too.

(e) Let f̃ be a lift of f . Note that f has a periodic point if and only if there exists
m ∈ ℕ for which fm has a fixed point. By statements (c) and (d), this is equivalent to
stating that f has a periodic point if and only if ρ(f̃ ) is rational.

(f) Suppose that q ≥ 1 and r are integers such that f̃ q(x) ≤ x + r. Using Corol-
lary 2.2.5 and the fact that f̃ q is increasing, we deduce by induction that f̃ nq(x) ≤ x+nr
for each n ∈ ℕ. Then

ρ(f̃ ) = lim
n→∞ f̃ qn(x)

qn
≤ lim

n→∞ x + nr
qn
=
r
q
.

(g) The proof proceeds analogously to (f) and is left as an exercise for the reader
(see Exercise 2.4.4).
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Proposition 2.2.10, in conjunction with Example 2.2.9, suggests the following def-
inition and terminology.

Definition 2.2.11. The rotation number ρ(f ) of an orientation-preserving homeomor-
phism f : 𝕊1 → 𝕊1 of the unit circle is defined to be ρ(f̃ ) (mod 1), where f̃ : ℝ → ℝ is
any lift of f .

As mentioned at the very beginning of the chapter, the rotation number should
be thought of as the average rotation that the homeomorphism induces on the points
of 𝕊1 over the long term. Statements (a) and (b) of Proposition 2.2.10 ensure that the
rotation number exists and is well-defined. Statements (c), (d), and (e) translate into
the assertions below. Note, though, that statements (f) and (g) have no counterparts
for ρ(f ).

Proposition 2.2.12. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism of
the unit circle. Then the following statements hold:
(c′) For every m ∈ ℕ, we have that ρ(fm) = m ⋅ ρ(f ) (mod 1).
(d′) The rotation number ρ(f ) is equal to zero if and only if f has a fixed point.
(e′) The rotation number ρ(f ) is rational if and only if f has a periodic point.

Given that every orientation-preserving homeomorphism of the circle has an as-
sociated rotation number, it is natural to ask whether the rotation number is a topo-
logical conjugacy invariant. This is, in fact, very nearly the case, as we now show.

Theorem 2.2.13. Let f : 𝕊1 → 𝕊1 and g : 𝕊1 → 𝕊1 be topologically conjugate orientation-
preserving homeomorphisms of the unit circle. If the conjugacy map preserves orienta-
tion, then ρ(f ) = ρ(g). If the conjugacy map reverses orientation, then ρ(f ) + ρ(g) = 0
(mod 1).

Proof. Let f , g : 𝕊1 → 𝕊1 be topologically conjugate orientation-preserving homeomor-
phisms. Let h : 𝕊1 → 𝕊1 be a conjugacy map between them, so that h ∘ f = g ∘ h, and
let h̃ be a lift of h. Then h̃(x + n) = h̃(x) + n for all x ∈ ℝ and n ∈ ℤ if h is orientation
preserving. If h is orientation reversing, then h̃(x+n) = h̃(x)−n for all x ∈ ℝ and n ∈ ℤ.
The proof of this last statement is deferred to Exercise 2.4.5(c). Denoting the integer
and fractional parts of x by ⌊x⌋ and ⟨x⟩, respectively, and observing that h̃(⟨x⟩) lies
between h̃(0) and h̃(1), it follows that for all x ∈ ℝ,

lim
x→∞ h̃(x)

x
= lim

x→∞ h̃(⌊x⌋ + ⟨x⟩)
⌊x⌋ + ⟨x⟩

= lim
x→∞ h̃(⟨x⟩) ± ⌊x⌋

⌊x⌋
⋅
⌊x⌋
⌊x⌋ + ⟨x⟩

= lim
x→∞ h̃(⟨x⟩) ± ⌊x⌋

⌊x⌋
⋅ lim
x→∞ ⌊x⌋⌊x⌋ + ⟨x⟩

= ±1,
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depending on whether h̃ is orientation preserving (+1) or orientation reversing (−1).
The same relation holds for h̃−1 since it is a lift of h−1. If ρ(f ) = ρ(g) = 0, then we
are done. So, suppose that at least one of ρ(f ) and ρ(g) is positive. Without loss of
generality, suppose that ρ(g) > 0. Let g̃ be the lift of g such that ρ(g̃) = ρ(g). Then the
map f̃ := h̃−1 ∘ g̃ ∘ h̃ is a lift of f . Indeed, f̃ is an increasing homeomorphism ofℝ since g̃
is an increasing homeomorphism, while h̃ is either an increasing homeomorphism or
a decreasing homeomorphism, depending on the nature of h. Moreover, for any x ∈ ℝ
notice that

π ∘ f̃ (x) = π ∘ h̃−1 ∘ g̃ ∘ h̃(x) = h−1 ∘ π ∘ g̃ ∘ h̃(x)
= h−1 ∘ g ∘ π ∘ h̃(x) = h−1 ∘ g ∘ h ∘ π(x)
= f ∘ π(x).

Furthermore,

ρ(f̃ )
ρ(g̃)
= lim

n→∞ f̃ n(x)/n
g̃n(h̃(x))/n

= lim
n→∞ f̃ n(x)

g̃n(h̃(x))

= lim
n→∞ h̃−1(g̃n ∘ h̃(x))

g̃n ∘ h̃(x)
= ±1.

Therefore, ρ(f̃ ) = ±ρ(g̃) = ±ρ(g).
When h, and thus h−1, h̃ and h̃−1, is orientation preserving,wehave that ρ(f̃ ) = ρ(g)

and, hence, ρ(f ) = ρ(f̃ ) (mod 1) = ρ(g).
On the other hand, when h, and thus h−1, h̃ and h̃−1, is orientation reversing, we

have that ρ(f ) = ρ(f̃ ) (mod 1) = −ρ(g) (mod 1). It hence follows that ρ(f ) + ρ(g) = 0
(mod 1).

The following lemma provides a partial converse to Theorem 2.2.13. It states that
the rotation number is essentially a complete invariant for rotations of the circle.

Lemma 2.2.14. Two rotations of the circle are topologically conjugate if and only if their
rotation numbers are equal or sum to zero, modulo 1.

Proof. By Theorem 2.2.13, two topologically conjugate rotations of the unit circle have
rotation numbers that are equal or whose sum is 0 (mod 1). For the converse impli-
cation, suppose that f ([x]) = [x + α] and g([x]) = [x + β] for some 0 < α, β < 1. If
α = β, then f is trivially topologically conjugate to g. Ifα+β = 0 (mod 1), then themap
h([x]) = [−x] is a suitable conjugacy map. Indeed,

h ∘ f ([x]) = h([x + α]) = [−x − α]
= [−x + β] = g([−x]) = g ∘ h([x]).
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2.3 Minimality for homeomorphisms and diffeomorphisms of the
circle

Ourfirst goal in this section is to give a classificationofminimal orientation-preserving
homeomorphisms of the circle. We will need the following lemma.

Lemma 2.3.1. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism and let
f̃ : ℝ→ ℝ be a lift of f . Let A and B be the sets

A := {f̃ n(0) +m : n,m ∈ ℤ} ⊆ ℝ
B := {nρ(f̃ ) +m : n,m ∈ ℤ} ⊆ ℝ.

If ρ(f ) is irrational, then the map H : A→ B defined by

H(f̃ n(0) +m) = nρ(f̃ ) +m

is well-defined, bijective and increasing.

Proof. The map H is the composition HB ∘ HA of the two maps

HA : A→ ℤ
2, where HA(f̃

n(0) +m) = (n,m)

and

HB : ℤ
2 → B, where HB(n,m) = nρ(f̃ ) +m.

Thus, in order to show thatH is awell-defined bijection, it suffices to show thatHA and
HB arewell-definedbijections. It is clear that themapHB iswell-definedand surjective.
To show that it is injective, suppose that HB(n1,m1) = HB(n2,m2), that is, n1ρ(f̃ ) +m1 =
n2ρ(f̃ ) +m2. If it were the case that n1 ̸= n2, then we would have

ρ(f̃ ) = (m2 −m1)/(n1 − n2) ∈ ℚ,

whichwould contradict the hypothesis that ρ(f ) is an irrational number. Thus, n1 = n2,
which implies immediately that m1 = m2. Hence, HB is injective. Let us now consider
HA. To prove that HA is well-defined, assume that f̃ n1 (0) +m1 = f̃ n2 (0) +m2. If n1 ̸= n2,
then

f n1(π(0)) = π(f̃ n1 (0)) = π(f̃ n2 (0) +m2 −m1) = π(f̃
n2 (0)) = f n2(π(0)).

Applying f −n2 to both sides yields f n1−n2 (π(0)) = π(0), that is, π(0) is a periodic point of
f . But, according to Proposition 2.2.12, the rotation number of f would then be a ratio-
nal number. Once again, this would contradict the hypothesis that ρ(f ) is irrational.
So n1 = n2, which implies immediately that m1 = m2. Thus, HA is well-defined. It is
easy to see that HA is bijective.
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To show that the map H is increasing, suppose that f̃ n(0) +m < f̃ k(0) + l. If k = n
then m < l and obviously nρ(f̃ ) + m < kρ(f̃ ) + l. If k < n then applying f̃ −k to each
side of f̃ n(0) + m < f̃ k(0) + l and using Corollary 2.2.5 along with the fact that f̃ −k
is increasing, we deduce that f̃ n−k(0) < l − m. From part (f) of Proposition 2.2.10, it
follows that (n−k)ρ(f̃ ) ≤ l−m. Since ρ(f̃ ) is irrational, this last inequalitymust be strict:
(n−k)ρ(f̃ ) < l−m. In other words, nρ(f̃ )+m < kρ(f̃ )+ l. Similarly, if k > n then applying
f̃ −n to each side of f̃ n(0)+m < f̃ k(0)+ l yieldsm− l < f̃ k−n(0). FromProposition 2.2.10(g)
and the fact that ρ(f̃ ) is irrational, we conclude thatm− l < (k −n)ρ(f̃ ). In other words,
nρ(f̃ )+m < kρ(f̃ )+ l. In each case, we have shown that nρ(f̃ )+m < kρ(f̃ )+ l, and hence
H is a well-defined, increasing bijection.

Our next result is the main one of this section. It states that every minimal
orientation-preserving homeomorphism of the circle is topologically conjugate to
a minimal rotation.

Theorem 2.3.2. If f : 𝕊1 → 𝕊1 is a minimal orientation-preserving homeomorphism of
the circle, then f is topologically conjugate to the rotation Rρ(f ) : 𝕊1 → 𝕊1 of the unit
circle by the angle corresponding to the rotation number of f .

Proof. If f is minimal, then by Remark 1.5.5 it admits no periodic points. In view of
Proposition 2.2.12, this implies that ρ(f ) is an irrational number. By Lemma 2.3.1, the
map H introduced in that lemma is then a well-defined increasing bijection from A
to B.

We aim to extend H to a homeomorphism of ℝ using Lemma 2.3.1 and the fact
that an increasing bijection between dense subsets of ℝ can be uniquely extended to
an increasing homeomorphismofℝ (see Exercise 1.7.5). Toward that end,we shall now
prove that A is dense in ℝ. To begin, choose an arbitrary x ∈ ℝ. Since f is minimal,
we know that π(x) belongs to ω(π(0)) = 𝕊1 by Theorem 1.5.4. Therefore, there exists a
strictly increasing sequence (nk)∞k=1 of nonnegative integers such that

π(x) = lim
k→∞ f nk (π(0)) = lim

k→∞π(f̃ nk (0)).
Since π(y) = π(z)means that y − z ∈ ℤ, we have that

lim
k→∞dist(f̃ nk (0) − x,ℤ) = 0.

Thus, for each ε > 0 there exists k ∈ ℕ and l ∈ ℤ such that

f̃
nk (0) − x − l < ε.

Therefore, x ∈ A. As x was chosen arbitrarily in ℝ, we conclude that A = ℝ.
Furthermore,B is also dense because, in light of Theorem 1.5.12, the rotationRρ(f ) :

𝕊1 → 𝕊1 is minimal when ρ(f ) is an irrational number. Indeed, observe that the set B
consists of the orbit of 0 under Rρ(f ) translated everywhere by adding each integer.
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Since the rotation Rρ(f ) is minimal, the orbit of 0 under Rρ(f ) is dense in 𝕊1 or, equiva-
lently, in [0, 1]. As it comprises all integer translations of this orbit, the set B is dense
in ℝ.

BecauseA and B are dense inℝ, we infer thatH extends uniquely to an increasing
homeomorphism H : ℝ→ ℝ.

Now, let x = f̃ n(0) +m ∈ A. Note that

H(x + 1) = H(f̃ n(0) +m + 1) = nρ(f̃ ) +m + 1 = H(f̃ n(0) +m) + 1 = H(x) + 1.

Thus, H(x + 1) = H(x) + 1 for all x ∈ A. By continuity, the extension H must satisfy
H(x + 1) = H(x) + 1 for all x ∈ ℝ. Then h(π(x)) := π ∘H(x) is a well-defined orientation-
preserving homeomorphism of the circle. Moreover, for every x = f̃ n(0) + m ∈ A we
have that

H ∘ f̃ (x) = H ∘ f̃ (f̃ n(0) +m) = H(f̃ n+1(0) +m)
= (n + 1)ρ(f̃ ) +m = (nρ(f̃ ) +m) + ρ(f̃ )
= H(f̃ n(0) +m) + ρ(f̃ ) = Tρ(f̃ ) ∘ H(f̃ n(0) +m)
= Tρ(f̃ ) ∘ H(x),

where the map Tρ(f̃ ) : ℝ→ ℝ is the translation by ρ(f̃ ) onℝ. This shows thatH ∘ f̃ (x) =
Tρ(f̃ ) ∘H(x) for all x ∈ A. By continuity,H ∘ f̃ (x) = Tρ(f̃ ) ∘H(x) for all x ∈ ℝ. Observe also
that the real translation Tρ(f̃ ) is a lift of the circle rotation Rρ(f ). It then follows that

h ∘ f (π(x)) = h ∘ π ∘ f̃ (x) = π ∘ H ∘ f̃ (x)
= π ∘ Tρ(f̃ ) ∘ H(x) = Rρ(f ) ∘ π ∘ H(x)
= Rρ(f ) ∘ h(π(x)).

So h is a conjugacy map between f and Rρ(f ).
2.3.1 Denjoy’s theorem

The next result is the first for which we need the map f to be a diffeomorphism, rather
than merely a homeomorphism. Recall that a diffeomorphism f is a homeomorphism
with the property that both f ′ and (f −1)′ exist. We will also need the following defini-
tion.

Definition 2.3.3. The (total) variation var(φ) of a function φ : 𝕊1 → ℝ is defined to be

var(φ) := sup{
n−1
∑
i=0φ(xi) − φ(xi+1) : x0, x1, . . . , xn = x0 partition 𝕊1, n ∈ ℕ},

where the supremum is taken over all finite partitions of the circle. If var(φ) is finite,
then φ is said to be of bounded variation.
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The main result of this section is named after the French mathematician, Arnaud
Denjoy (1884–1974). Denjoy made outstanding contributions to many areas of mathe-
matics, in particular to the theory of functions of a real variable.

Theorem 2.3.4 (Denjoy’s theorem). Suppose that f : 𝕊1 → 𝕊1 is an orientation-
preserving C1 diffeomorphism with derivative f ′ of bounded variation. If ρ(f ) is irra-
tional, then f : 𝕊1 → 𝕊1 is minimal.

Before beginning the proof of Denjoy’s theorem, we first establish three lemmas,
which will be useful in the proof. In the remainder of this section, we adopt the usual
convention that arcs of the unit circle shall be traversed in the counterclockwise direc-
tion. For instance, (x, y) is the open arc of the circle generatedwhenmoving from x to y
along the circle in the counterclockwise direction. Note also that since f is orientation
preserving, it holds that f ((x, y)) = (f (x), f (y)).

Lemma 2.3.5. Assume that x0 ∈ 𝕊1 is such that for some n ∈ ℕ,

(x0, f
n(x0)) ∩ {f

j(x0) : |j| ≤ n} = 0. (2.2)

Then, for all 0 ≤ k ≤ n,

(f k−n(x0), f k(x0)) ∩ {f j(x0) : |j| ≤ n} = 0.
Proof. Assume that x0 is as stated above and, by way of contradiction, suppose that
there exist 0 ≤ k ≤ n and |j| ≤ n such that

f j(x0) ∈ (f
k−n(x0), f k(x0)). (2.3)

Fix the largest k with this property. Of course, j ̸= k. We shall examine two potential
cases.

Case 1: j ≤ 0.

If it turned out that j ≤ 0, then (2.3) and the fact that f preserves orientationwould
result in

f j+1(x0) ∈ f ((f k−n(x0), f k(x0))) = (f k+1−n(x0), f k+1(x0)).
Since −n ≤ j + 1 ≤ n, it follows that (2.3) would also be satisfied with k + 1 in place
of k. Given that k ≤ n was chosen to be the maximal number satisfying this property,
the only way that this could be true is if k + 1 > n, that is, if k = n. Hence, (2.3) would
reduce to f j(x0) ∈ (x0, f n(x0)), whichwould contradict our original hypothesis (2.2). So
this case never takes place.

Case 2: j > 0. This case is divided into two subcases, which are illustrated in Figure 2.1.
Note that for any given x ∈ 𝕊1, we have

f r(x) ≠ f s(x), ∀r, s ∈ ℤ, r ̸= s. (2.4)
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Figure 2.1: On the left, Subcase 2.1: (f j−n(x0), f j(x0)) ⊆ (f k−n(x0), f k(x0)). On the right, Subcase 2.2:
f k−n(x0) ∈ (f j−n(x0), f j(x0)).
Otherwise, f r−s(x) = x and f would have a periodic point, that is, ρ(f ) would be ratio-
nal according to Proposition 2.2.12. This would contradict our hypothesis that ρ(f ) is
irrational.

Subcase 2.1: f j−n(x0) ∈ (f k−n(x0), f j(x0)).
This means that (f j−n(x0), f j(x0)) ⊆ (f k−n(x0), f j(x0)). In light of assumption (2.3),

which we recall states that f j(x0) ∈ (f k−n(x0), f k(x0)), we actually have that
(f j−n(x0), f j(x0)) ⊆ (f k−n(x0), f k(x0)).

Then the continuity and orientation-preserving properties of f yield that

f j−k([f k−n(x0), f k(x0)]) = [f j−n(x0), f j(x0)] ⊆ [f k−n(x0), f k(x0)].
So f j−k maps a closed arc to a closed arc within itself. The intermediate value theo-
rem then asserts that f j−k has a fixed point (recall that j ̸= k). Hence, f has a periodic
point. According to Proposition 2.2.12, this means that ρ(f ) is a rational number. This
contradicts our hypothesis that ρ(f ) is irrational, and thus this subcase cannot occur.

Subcase 2.2: f j−n(x0) ∉ (f k−n(x0), f j(x0)).
In other words, f j−n(x0) ∈ [f j(x0), f k−n(x0)]. Since f r(x0) ̸= f s(x0) for all r ̸= s, this

actually means that f j−n(x0) ∈ (f j(x0), f k−n(x0)). Equivalently, this means that

f k−n(x0) ∈ (f j−n(x0), f j(x0)).
Then, as −n ≤ k − n ≤ n, we have a relation akin to (2.3) but with k − n in place of j and
j in place of k. But since k is maximal with this property, we deduce that j ≤ k. In fact,
as f k(x0) ∉ (f k−n(x0), f k(x0)), we know that j < k. Then, by (2.3), we obtain that

f n+j−k(x0) = f n−k(f j(x0)) ∈ f n−k((f k−n(x0), f k(x0))) = (x0, f n(x0)).
Since −n ≤ n + j − k ≤ n, this contradicts our original hypothesis (2.2). This shows that
this subcase does not happen either.
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To summarize, neither Case 1 nor Case 2 can occur. So, whatever 0 ≤ k ≤ nmight
be, there is no −n ≤ j ≤ n satisfying (2.3). This contradiction completes the proof.

A rather straightforward consequence of Lemma 2.3.5 is the following.

Lemma 2.3.6. If x0 ∈ 𝕊1 is such that

(x0, f
n(x0)) ∩ {f

j(x0) : |j| ≤ n} = 0

for some n ∈ ℕ, then the arcs {(f k−n(x0), f k(x0)) : 0 ≤ k ≤ n} are mutually disjoint.
Proof. If two such arcs intersected, then an endpoint of one of those arcswould belong
to the other arc, which would contradict the previous lemma.

Finally, we derive an estimate on the derivatives of the iterates of f .

Lemma 2.3.7. There is a universal constant v > 0 with the property that for all x0 ∈ 𝕊1

and n ∈ ℕ such that

(x0, f
n(x0)) ∩ {f

j(x0) : |j| ≤ n} = 0,

we have

(f n)′(x0)(f −n)′(x0) ≥ e−v .
Proof. Let x0 ∈ 𝕊1 and n ∈ ℕ be as stated above. Since f preserves orientation, both
(f n)′(x) and (f −n)′(x) are strictly positive for all x ∈ 𝕊1 and all n ≥ 0. Let

a := inf{f ′(x) | x ∈ 𝕊1}.
As f is a C1 function, its derivative f ′ is continuous, and hence its infimum on the
compact set 𝕊1 is achieved. So a > 0.

By a simple application of the chain rule, we obtain that

log(f n)′(x0) = log(n−1∏
k=0 f ′(f k(x0))) = n−1

∑
k=0 log f ′(f k(x0))

and

log(f −n)′(x0) = log((f n)′(f −n(x0)))−1
= − log(f n)′(f −n(x0))
= − log(

n−1
∏
k=0 f ′(f k(f −n(x0))))

= −
n−1
∑
k=0 log f ′(f k−n(x0)).
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These two equalities yield the estimate

log((f n)′(x0)(f −n)′(x0)) = log(f n)′(x0) + log(f −n)′(x0)
=

n−1
∑
k=0(log f ′(f k(x0)) − log f ′(f k−n(x0)))
≥ −

n−1
∑
k=0log f ′(f k(x0)) − log f ′(f k−n(x0)).

But, by the mean value theorem,

log f
′(f k(x0)) − log f ′(f k−n(x0)) = 1

ck

f
′(f k(x0)) − f ′(f k−n(x0)),

where ck is between f ′(f k(x0)) and f ′(f k−n(x0)). In particular, we have that ck ≥ a.
Moreover, according to Lemma 2.3.6, the family of arcs {(f k−n(x0), f k(x0)) : 0 ≤
k ≤ n} are mutually disjoint. Consequently, the points {f j(x0) : |j| ≤ n} can be arranged
in such a way that they form an ordered partition of 𝕊1 in which f k(x0) immediately
follows f k−n(x0) for each 0 ≤ k ≤ n. Hence,

n−1
∑
k=0f ′(f k(x0)) − f ′(f k−n(x0)) ≤ var(f ′).

Therefore,

n−1
∑
k=0log f ′(f k(x0)) − log f ′(f k−n(x0)) = n−1∑k=0 1

ck

f
′(f k(x0)) − f ′(f k−n(x0))

≤
1
a

n−1
∑
k=0f ′(f k(x0)) − f ′(f k−n(x0))

≤
1
a
var(f ′) =: v <∞.

Then we obtain that

log((f n)′(x0)(f −n)′(x0)) ≥ − n−1∑
k=0log f ′(f k(x0)) − log f ′(f k−n(x0)) ≥ −v.

Hence, (f n)′(x0)(f −n)′(x0) ≥ e−v. Note that v depends only on f .
We are now in a position to prove Denjoy’s theorem.

Proof of Denjoy’s theorem. Suppose, by way of contradiction, that themap f : 𝕊1 → 𝕊1

is notminimal. According to Theorem 1.5.2, every dynamical systemhas aminimal set.
Call this set △ ⊆ 𝕊1. Since we are assuming that f is not minimal, it follows that △ is
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a proper subset of 𝕊1. Recall that△ is a closed f -invariant set. Since f is a homeomor-
phism, not only is f (△) ⊆ △ but, in fact, f (△) = △ = f −1(△). That is,△ is a completely
invariant set. Therefore,

f (𝕊1 \△) = 𝕊1 \△ = f −1(𝕊1 \△).
Because 𝕊1 \△ is an open subset of the circle, we can write 𝕊1 \△ = ⋃∞j=0 Ij, where the
Ij’s form a countable union of maximal disjoint open arcs. This implies in particular
that 𝜕Ij ⊆ △ for each j ≥ 0. We then have∞

∑
j=0 |Ij| = Leb(𝕊1 \△) ≤ 1,

where Leb denotes the Lebesgue measure. Hence, limj→∞ |Ij| = 0.
We now establish two claims about the Ij’s.

Claim 1. For every n ∈ ℤ, there is a unique jn ≥ 0 such that f n(I0) ∩ Ijn ̸= 0. In fact,
f n(I0) = Ijn .

By definition, the Ij’s are the connected components of 𝕊1 \△. Let n be an integer.
Since 𝕊1 \ △ is completely f -invariant and f is a homeomorphism, the set f n(I0) is a
connected component of 𝕊1 \ △. Denote by Ijn this unique component. This proves
Claim 1.

Claim 2. If m ̸= k, then Ijm ∩ Ijk = 0. Moreover, lim|n|→∞ |Ijn | = 0.
Suppose for a contradiction that Ijm ∩ Ijk ̸= 0 for some k < m. Since these arcs are

connected components of 𝕊1 \△, we have that Ijm = Ijk . Then

fm−k(Ijk ) = fm−k(f k(I0)) = fm(I0) = Ijm = Ijk .
Therefore, fm−k(Ijk ) = Ijk . In other words, fm−k maps a closed arc within itself. Thus,
fm−k has a fixed point, and hence f has a periodic point. According to Proposi-
tion 2.2.12, this means that ρ(f ) is a rational number, which contradicts our original
assumption that ρ(f ) is irrational. Consequently, the family (Ijn )

∞
n=0 consists of mutu-

ally disjoint arcs, that is, all the jn’s differ and so there are infinitely many arcs Ijn . It
therefore follows that

lim|n|→∞ |Ijn | = 0.
This completes the proof of Claim 2.

Now, for each n ≥ 0 consider the sets

𝒥 n+ := {x ∈ I0 : (f n)′(x) ≥ e−v/2} and 𝒥 n− := {x ∈ I0 : (f −n)′(x) ≥ e−v/2},
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where v > 0 is the universal constant arising from Lemma 2.3.7. We aim to show that
there exists a strictly increasing sequence (nq)∞q=0 of nonnegative integers such that

I0 = 𝒥
nq+ ∪ 𝒥 nq− , ∀q ≥ 0.

According to Lemma 2.3.7, it suffices to show that

(x0, f
nq (x0)) ∩ {f

j(x0) : |j| ≤ nq} = 0, ∀x0 ∈ I0, ∀q ≥ 0.

To prove this, write I0 := (a, b). We first construct a strictly increasing sequence
of nonnegative integers (pq)∞q=0 and a sequence of integers (mpq )

∞
q=0, where |mpq | ≤ pq

and limq→∞ |mpq | =∞, so that

(b, fmpq (b)) ∩ {f j(b) : |j| ≤ pq} = 0, ∀q ≥ 0. (2.5)

Since b ∈ △ and △ is minimal, we know that ω(b) = △ by Theorem 1.5.4. There-
fore, there is a strictly increasing sequence (pq)∞q=0 of nonnegative integers such that
limq→∞ f pq (b) = b.

Note that

f j(b) ̸= f k(b), ∀j ̸= k. (2.6)

Otherwise, f j−k(b) = b for some j > k and f would have a periodic point, that is, ρ(f )
would be rational according to Proposition 2.2.12. This would contradict the fact that
ρ(f ) is irrational. In particular, this means that f pq (b) ̸= b for every q. By passing
to a subsequence if necessary, we may thus assume that the points of the sequence
(f pq (b))∞q=0 successively edge closer to b.

For every q, denote by fmpq (b) the point among the iterates

f −pq (b), f −pq+1(b), . . . , f −1(b), f (b), . . . , f pq−1(b), f pq (b)
(excluding b) which is closest to the point b. Clearly, fmpq (b)→ b since f pq (b)→ b and
the points of the sequence (fmpq (b))∞q=0 successively edge closer to b since the f pq (b)’s
do. Thus, the sequence (mpq )

∞
q=0 accumulates to∞ or −∞, and hence admits a subse-

quence converging to∞ or −∞. By replacing f with f −1 if necessary, we may assume
without loss of generality that the subsequence in question is positive and converges
to∞. Let us denote that subsequence by the same notation (mpq )

∞
q=0. Then, by con-

struction of the fmpq (b)’s, relation (2.5) holds. In other words,

{f j(b) : |j| ≤ pq} ⊆ [f
mpq (b), b], ∀q ≥ 0. (2.7)

In fact, by (2.6), we have

{f j(b) : |j| ≤ pq} ⊆ (f
mpq (b), b), ∀q ≥ 0. (2.8)
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Moreover,

f j(b) ∈ (b, a], ∀j ̸= 0. (2.9)

Otherwise, f j(b) ∈ (a, b) would imply that f j((a, b)) ∩ (a, b) ̸= 0, which would force j to
be equal to zero by Claims 1 and 2.

In particular, this implies that fmpq (b) ∈ (b, a]. Hence,

(fmpq (b), b) = (fmpq (b), a] ∪ (a, b), ∀q ≥ 0. (2.10)

We deduce from (2.8), (2.9) and (2.10) that

{f j(b) : |j| ≤ pq} ⊆ (f
mpq (b), b) ∩ (b, a] = (fmpq (b), a], ∀q ≥ 0. (2.11)

Finally, by dropping the first few terms of the subsequence (mpq )
∞
q=0 if necessary, we

can also guarantee that all fmpq (b)’s are closer to b than the point a is.
Now, let x0 ∈ (a, b). First, note that f j(x0) ∉ (a, b) for all j ̸= 0; otherwise, wewould

have that f j((a, b)) ∩ (a, b) ̸= 0, and Claims 1 and 2 would force j to be equal to zero. In
particular, this implies that

(x0, b) ∩ {f
j(x0) : |j| ≤ mpq} ⊆ (x0, b) ∩ {f

j(x0) : j ∈ ℤ} = 0. (2.12)

Observe also that f j(x0) ̸= b for all j since x0 ∈ 𝕊1 \ △, the set 𝕊1 \ △ is completely
f -invariant and b ∈ △. In particular, we obtain

{b} ∩ {f j(x0) : |j| ≤ mpq} ⊆ {b} ∩ {f
j(x0) : j ∈ ℤ} = 0. (2.13)

Finally, we show that fmpq (x0) is the point which is closest to b among the points
f −pq (x0), f −pq+1(x0), . . . , f −1(x0), x0, f (x0), . . . , f pq−1(x0), f pq (x0), except possibly x0 itself.
Let q ≥ 0. Suppose that there exists j with −pq ≤ j ≤ pq, j ̸= mpq , such that f j(x0) is
closer to b than fmpq (x0). We already know that f j(x0) ̸= b and f j(x0) ̸= a by the com-
plete f -invariance of 𝕊1 \ △. On one hand, if f j(x0) ∈ (a, b) then f j((a, b)) ∩ (a, b) ̸= 0.
Claims 1 and 2 impose that j equal zero. Then f j(x0) = x0. On the other hand, it might
turn out that f j(x0) ∈ (b, a). In this case, observe that

fmpq (x0) ∈ f
mpq ((a, b)) = fmpq (I0) = Ijmpq = (f

mpq (a), fmpq (b))

= (b, a) ∩ (fmpq (a), fmpq (b))
⊆ (b, fmpq (b)).

Since fmpq (b) is closer to b than the point a is and since f j(x0) is assumed to be closer
to b than fmpq (x0), we would then have f j(x0) ∈ (b, f

mpq (x0)). As f j(b) ∈ (f
mpq (b), a]

according to (2.11), we would then deduce that [fmpq (x0), f
mpq (b)] ⊆ [f j(x0), f j(b)]. As f

is orientation preserving, this would imply that

fmpq−j([x0, b]) = f −j([fmpq (x0), f
mpq (b)]) ⊆ f −j([f j(x0), f j(b)]) = [x0, b].
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Then f would have a periodic point, which is not the case. To summarize, fmpq (x0) is
indeed the point among f −pq (x0), . . . , f pq (x0), which is closest to the point b, except
possibly x0 itself. As noted previously, f

mpq (x0) ∈ (b, a) for every q. This implies that

(b, fmpq (x0)) ∩ {f
j(x0) : |j| ≤ mpq} = 0. (2.14)

From (2.12), (2.13), and (2.14), we conclude that

(x0, f
mpq (x0)) ∩ {f

j(x0) : |j| ≤ mpq} = 0.

Note that the sequence (mpq )
∞
q=0 is independent of x0 ∈ (a, b) = I0. Settingnq := mpq , an

application of Lemma 2.3.7 with n = nq allows us to deduce that (f nq )′(x0) (f −nq )′(x0) ≥
e−v for all q ≥ 0 and all x0 ∈ I0. This implies that I0 = 𝒥 nq+ ∪ 𝒥 nq− , and hence that
max{λ(𝒥 nq+ ), λ(𝒥 nq− )} ≥ |I0|/2 for all q ≥ 0, where λ = Leb denotes the Lebesgue mea-
sure on 𝕊1. If λ(𝒥 nq+ ) ≥ |I0|/2, then

|Ijnq | =
f
nq (I0)
 = ∫

I0

(f nq)′(x) dx
≥ ∫

𝒥 nq+
(f nq)′(x) dλ(x) ≥ ∫

𝒥 nq+
e−v/2 dλ(x)

= e−v/2λ(𝒥 nq+ ) ≥ e−v/22
|I0|.

A similar argument yields the same conclusion if λ(𝒥 nq− ) ≥ |I0|/2. Thus, |Ijnq | ≥
e−v/2|I0|/2 for each q. This contradicts the fact that limn→∞ |Ijn | = 0. Therefore, the
minimal set△must be 𝕊1, which means that f : 𝕊1 → 𝕊1 is minimal.

As an immediate consequence of Denjoy’s theorem,we obtain the following corol-
lary.

Corollary 2.3.8. Suppose that f : 𝕊1 → 𝕊1 is an orientation-preserving C1 diffeomor-
phism with derivative f ′ of bounded variation. If ρ(f ) is irrational, then f is topologically
conjugate to the rotation around the circle by the angle ρ(f ).

Proof. This follows directly from Theorems 2.3.2 and 2.3.4.

Remark 2.3.9. Notice that if φ : 𝕊1 → ℝ is Lipschitz continuous, then φ is of bounded
variation. Indeed, for any finite partition x0, x1, . . . , xn = x0 of the unit circle we have

n−1
∑
i=0φ(xi+1) − φ(xi) ≤ n−1∑i=0 L|xi+1 − xi| = L,

where L is any Lipschitz constant for φ.
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AseveryC1 functionon𝕊1 is Lipschitz continuous, everyC2 function f has aderiva-
tive f ′ which is C1, and hence of bounded variation. Thus the previous corollary yields
the following further result.

Corollary 2.3.10. Suppose that f : 𝕊1 → 𝕊1 is an orientation-preserving C2 diffeomor-
phism. If ρ(f ) is irrational, then f is topologically conjugate to the rotation around the
circle by the angle ρ(f ).

2.3.2 Denjoy’s counterexample

In light of Corollary 2.3.8, it is natural to askwhether all orientation-preservinghomeo-
morphisms with irrational rotation numbers are topologically conjugate to a rotation
around the circle by an irrational angle. This is not the case. In fact, there are even
orientation-preserving C1 diffeomorphisms with irrational rotation numbers which
are not topologically conjugate to an irrational rotation.

We will now construct an orientation-preserving homeomorphismwith irrational
rotation number which is not topologically conjugate to an irrational rotation of the
circle. This construction is also due to Denjoy. The idea is the following. We know that
minimality is a topological invariant. Given that an irrational rotation of the circle is
minimal, it suffices to construct an orientation-preserving homeomorphismwith irra-
tional rotation number which is not minimal. By Theorem 1.5.4, this reduces to devis-
ing an orientation-preserving homeomorphismwith irrational rotation numberwhich
admits a nondense orbit. We will build such a map by performing a “surgery” on an
irrational rotation of the circle. Let Rρ : 𝕊1 → 𝕊1 be an irrational rotation of the cir-
cle. Choose arbitrarily θ ∈ 𝕊1. Cut the unit circle at the point θ, open it up and insert
into the gap an arc I0. Similarly, cut the circle at the point Rρ(θ), open it up and in-
sert into the gap an arc I1. Perform a similar procedure at every point of the orbit of θ.
That is, for every n ∈ ℤ cut the circle at the point Rnρ(θ), open it up and insert into the
gap an arc In. Make sure to choose the arcs {In} small enough that ∑∞n=−∞ |In| < ∞.
These surgeries result in a larger “circle” (more precisely, a simple closed curve). It
only remains to extend the original irrational rotation to the larger curve by defining
the extension on the union of the In’s. Since the extension is required to preserve ori-
entation, choose any orientation-preserving homeomorphism hn mapping In to In+1.
The extension is then an orientation-preserving homeomorphism of the larger circle.
Note that the extension does not admit any periodic point, since the original map did
not and the points in the inserted arcs visit all those arcs in succession without ever
coming back to the same arc. Proposition 2.2.12 therefore allows us to infer that the ex-
tension must have an irrational rotation number. Moreover, the fact that the interior
points of the inserted arcs never come back to their original arc under iteration shows
that all these points have nondense orbits.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.4 Exercises | 65

In fact, the above argument can be modified in such a way that the extension
is a C1 diffeomorphism whose derivative is not of bounded variation (see pp. 111–112
of [19]).

2.4 Exercises

Exercise 2.4.1. In this exercise, you shall prove Corollary 2.2.6. We suggest that you
proceed as follows. Let f̃ be a lift of f .
(a) Using Corollary 2.2.5 and the fact that f̃ is increasing, show that if |x − y| ≤ k for

some k ∈ ℤ+, then |f̃ (x) − f̃ (y)| ≤ k.
(b) Deduce that if |x − y| ≤ k for some k ∈ ℤ+, then |f̃ n(x) − f̃ n(y)| ≤ k for any n ∈ ℤ.
(c) Prove that we can replace ≤ by < above.

Exercise 2.4.2. Prove Corollary 2.2.8.

Exercise 2.4.3. Prove that any homeomorphism F : ℝ → ℝ with the property that
F(x + 1) = F(x) + 1 for all x ∈ ℝ generates an orientation-preserving homeomorphism
f : S1 → 𝕊1.

Exercise 2.4.4. Taking inspiration from theproof of statement (f) inProposition 2.2.10,
prove statement (g) of the same proposition.

Exercise 2.4.5. This exercise is concerned with orientation-reversing homeomor-
phisms of the circle. You will be asked to prove several properties of lifts of such
maps. In the end, you will discover that the concept of “rotation” number is useless
for orientation-reversing homeomorphisms.

Let f̃ be a lift of an orientation-reversing homeomorphism f . Prove the following
statements:
(a) Show that any lift f̃ is a decreasing homeomorphism of ℝ (cf. Lemma 2.2.3).
(b) Prove that deg(f ) = −1 (cf. Lemma 2.2.4).
(c) Show that f̃ n(x + k) = f̃ n(x) + (−1)nk for all x ∈ ℝ, all k ∈ ℤ, and all n ∈ ℤ

(cf. Corollaries 2.1.10 and 2.2.5).
(d) Prove that if |x − y| < k for some k ∈ ℤ+, then |f̃ n(x) − f̃ n(y)| < k for any n ∈ ℕ.

(This shows that Corollary 2.2.6 still holds.)
(e) If g̃ is another lift of f so that g̃ = f̃ + k for some k ∈ ℤ, then g̃n = f̃ n + k sin2(nπ/2)

for all n ∈ ℤ (cf. Corollary 2.2.7).
(f) Show that f̃ +Idℝ is a periodic functionwith period 1. More generally, a decreasing

homeomorphism g̃ : ℝ → ℝ is a lift of an orientation-reversing homeomorphism
of the circle if and only if g̃ + Idℝ is a periodic function with period 1 (cf. Corol-
lary 2.2.8).

(g) Show that the reflection of the unit circle in the x-axis is an orientation-reversing
homeomorphism of 𝕊1. Then find its lifts.
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(h) Prove that the number ρ(f̃ ) := limn→∞ f̃ n(x)
n exists for all x ∈ ℝ and is independent

of x (cf. Proposition 2.2.10).
(i) Show that ρ(f̃ ) = 0. This demonstrates that the concept of “rotation” number is

useless for orientation-reversing homeomorphisms.

Exercise 2.4.6. Let f : 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism of the
circle. Let ε > 0. Show that there exists δ > 0 such that if g : 𝕊1 → 𝕊1 is an orientation-
preserving homeomorphism which is C0-δ close to f , then

ρ(g) − ρ(f )
 < ε.

Hint: Reread the proof of statement (a) in Proposition 2.2.10.

Exercise 2.4.7. Suppose that f , g : 𝕊1 → 𝕊1 are two orientation-preserving homeomor-
phisms of the circle. Show that if f and g commute, then ρ(g ∘ f ) = ρ(g) + ρ(f ).

Exercise 2.4.8. Suppose that f : 𝕊1 → 𝕊1 is an orientation-preserving homeomor-
phism of the circle such that ρ(f ) ∈ ℝ \ℚ. Show that {ρ(f n) : n ∈ ℕ} is dense in 𝕊1.
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3 Symbolic dynamics

Symbolic dynamics is an extremely powerful tool for the analysis of general dynami-
cal systems. The very rough idea is to break up a space into finitely or countably many
parts, assign a symbol to each part and track the orbits of points by assigning se-
quences of symbols to them, representing the orbits visiting successive parts of the
space. In the process, we glean information about the system by analyzing these sym-
bolic orbits.

In this chapter, we exclusively deal with topological aspects of symbolic dynam-
ics. Symbolic dynamics is however equally important, perhaps even more important,
in the context of measure-preserving dynamical systems and ergodic theory, particu-
larly thermodynamic formalism. We will see why in Chapters 4, 8 (especially Subsec-
tions 8.1.1 and 8.2.3) as well as in Chapters 13 and 17 onward in the second volume.

The first successful use of topological aspects of symbolic dynamics can be cred-
ited to Hadamard [26], who applied them to geodesic flows. However, it took another
40 years before the topic received its first systematic account and its name, in the foun-
dational paper by Morse and Hedlund [51]. This paper is the first to treat symbolic dy-
namical systems as objects of study in and of themselves.

Since then, symbolic dynamics has found ever wider applications within dynam-
ical systems as a whole, while still remaining an active area of research. For a deeper
introduction to combinatorial and topological aspects of symbolic dynamics over fi-
nite alphabets, we refer the reader to Lind and Marcus [43]. There is also a nice chap-
ter on symbolic dynamics over finite alphabets in the fairly recent book by Brin and
Stuck [13]. For a treatment of topological symbolic dynamics over countable alpha-
bets, we refer the reader to Kitchens [39].

In this chapter, we discuss symbolic dynamical systems as objects in their own
right, but later on (in Chapter 4, among others mentioned above), we will apply the
ideas developed here to more general systems. We restrict ourselves to finitely many
letters, as symbolic systems over finite alphabets act on compact metrizable spaces.
However, in Chapter 17, we will turn our attention to countable-alphabet symbolic dy-
namics.

In Section 3.1, we discuss full shifts. In Section 3.2, we talk about subshifts of finite
type and in particular the characterizations of topological transitivity and exactness
for such systems. Finally, in Section 3.3 we examine general subshifts of finite type.

3.1 Full shifts

Let us begin by introducing the simplest class of symbolic dynamical systems, namely
the full shifts.

https://doi.org/10.1515/9783110702682-003
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Definition 3.1.1. Let E be a set such that 2 ≤ #E <∞, where #E denotes the cardinality
of E. This set will henceforth be referred to as an alphabet. The elements of E will be
called letters or symbols.
(a) For each n ∈ ℕ, we shall denote by En the set of all words (also called blocks)

comprising n letters from the alphabet E. For convenience, we also denote the
empty word, that is, the word having no letters, by ϵ.
For instance, if E = {0, 1} then E1 = E = {0, 1}, E2 = {00,01, 10, 11} and

E3 = {000, 100,010,001, 110, 101,011, 111}.

(b) We will denote by E∗ := ⋃∞n=1 E
n the set of all finite nonempty words over the

alphabet E.
(c) The set E∞ := Eℕ of all one-sided infinite words over the alphabet E, that is, the

set of all sequences or functions from ℕ to E, is called the one-sided full E-shift,
or, if no confusion about the underlying alphabet may arise, simply the full shift.
In other words,

E∞ := {ω = (ωj)
∞
j=1 : ωj ∈ E, ∀j ∈ ℕ}.

When E = {0, 1, . . . , n − 1} for some n ∈ ℕ, the full E-shift is usually referred to as
the full n-shift.

(d) The length of a wordω ∈ E∗∪E∞ is defined in the natural way to be the number of
letters that it consists of and is denoted by |ω|. That is, |ω| is the unique n ∈ ℕ∪{∞}
such that ω ∈ En. By convention, |ϵ| = 0.
A word of length n is sometimes called an n-word or n-block. In our notation, the
set of all n-words is simply En.

Note that for each n ∈ ℕ the set En is finite, and hence the set E∗ of finite words
is countable. We can enumerate all the finite words by starting with the 1-words, fol-
lowed by the 2-words, the 3-words, and so on. As #E ≥ 2, a classical Cantor diagonal-
ization argument establishes that the full E-shift is uncountable. More precisely, the
full E-shift has the cardinality c of the continuum, that is, it is equinumerous toℝ and
[0, 1].

One of the most common examples of a full shift is the full 10-shift, which can
serve to encode the decimal expansions of the real numbers between 0 and 1. For in-
stance, the word 0∞ = 0000 . . . corresponds to the number 0, while the word 1∞ =
1111 . . . represents the number 0.1111 . . . = 1/9. Furthermore, observe that the words
50∞ = 5000 . . . and 49∞ = 4999 . . . both encode 1/2 since 0.5000 . . . = 0.4999 . . . = 1/2.
More generally, a word ω ∈ {0, 1, . . . , 9}∞ encodes the number

∞

∑
j=1

ωj(
1
10
)
j
.

As noted above, this coding is not one-to-one.
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Another common example of a full shift is the full 2-shift. In computer science,
the symbol 0might correspond to having a device (e. g., a switch) turned off, while the
symbol 1 would then correspond to the device being on. In physics, the Ising model
describes particle spins that have only two possible states, up and down. So we can
describe the successive states of a device or particle, at regular observation times, us-
ing a sequence of 0s and 1s. Words in the full 2-shift are also called binary sequences,
as they correspond to the binary expansions of the numbers between 0 and 1. Indeed,
a word ω ∈ {0, 1}∞ may be viewed as representing the real number

∞

∑
j=1

ωj(
1
2
)
j
.

For instance, the word 0∞ corresponds to the number 0, as in the full 10-shift. How-
ever, the word 1∞, which encoded the number 1/9 as a word in the full 10-shift, repre-
sents the number 1 in the full 2-shift; the number 1/9 is instead encoded by the word
(000111)∞ = 000111000111 . . . in the full 2-shift. As for the number 1/2, it is encoded
by the words 10∞ = 1000 . . . and 01∞ = 0111 . . .. Hence, this binary coding is not one-
to-one either.

The idea of approximating a real number by a rational number by cutting it after a
certain number of decimals generalizes to the concept of an initial block. Initial blocks
play an important role in symbolic dynamics.

Definition 3.1.2. If ω ∈ E∗ ∪ E∞ and n ∈ ℕ does not exceed the length of ω, we define
the initial block ω|n to be the initial n-word of ω, that is, the subword ω1ω2 . . .ωn.

In a similar vein, words which beginwith the same strings of letters are intuitively
close to one another and it is therefore useful to identify the initial subword that they
share. To describe this, we introduce the wedge of two words.

Definition 3.1.3. Given two words ω, τ ∈ E∗ ∪ E∞, we define their wedge ω ∧ τ ∈ {ϵ} ∪
E∗ ∪ E∞ to be their longest common initial block.

The wedge of two words is better understood via examples. If E = {1, 2, 3} and we
have two words ω = 12321 . . . and τ = 12331 . . ., then ω ∧ τ = 123. On the other hand,
if γ = 22331 . . . then ω ∧ γ = ϵ. Of course, if two (finite or infinite) words ω and τ are
equal, then ω ∧ τ = ω = τ.

So far, we have talked about the set E∞ and have given a natural sense to the
closeness of any two of its words in terms of their common initial block. We will now
endow E∞ with a natural topology. First, the finite alphabet E is endowed with the
discrete topology, that is, the topology in which every subset of E is both open and
closed. Then, observing that E∞ = ∏∞n=1 En, where En = E for each n ∈ ℕ, that is, E∞

is the product of countably many copies of E, we equip E∞ with Tychonoff’s product
topology generated by the discrete topology on each copy of E. More precisely, that
topology is determined by a countable base of open sets called (initial) cylinder sets.
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Definition 3.1.4. Given a finite word ω ∈ E∗, the (initial) cylinder set [ω] generated by
ω is the set of all infinite words with initial block ω, that is,

[ω] = {τ ∈ E∞ : τ||ω| = ω} = {τ ∈ E
∞ : τj = ωj, ∀1 ≤ j ≤ |ω|}.

We take this opportunity to introduce more general cylinder sets.

Definition 3.1.5. Given a finite wordω ∈ E∗ andm, n ∈ ℕ such that n−m+ 1 = |ω|, the
(m, n)-cylinder set [ω]nm generated by ω is the set of all infinite words whose subblock
from coordinatesm to n coincides with ω, that is,

[ω]nm = {τ ∈ E
∞ : τj = ωj−m+1 for all m ≤ j ≤ n}.

In particular, note that [ω]|ω|1 = [ω].

Definition 3.1.6. When equipped with Tychonoff’s product topology, that is, the
topology generated by the (initial) cylinder sets, the set E∞ is called the full E-shift
space or, more simply, full shift space.

We now describe themost fundamental topological properties of full shift spaces.
First, note that there are countably many (initial) cylinder sets since there are count-
ably many finite words in E∗. Since these sets form a base for the topology, the space
E∞ is second countable.

Furthermore, since the alphabet E is finite, when endowed with the discrete
topology it becomes a compact metrizable space (see Exercise 3.4.2). According to Ty-
chonoff’s theorem (see 17.8 in [77]), it then follows that E∞, as a product of countably
many copies of E, is also a compact metrizable space (see Exercise 3.4.2).

Moreover, the full shift space E∞ is perfect, that is, it contains no isolated point.
Indeed, notice that every point ω ∈ E∞ is such that

{ω} =
∞

⋂
n=1
[ω|n].

Alternatively, note that every point ω ∈ E∞ is the limit of the sequence of “periodic”
points ((ω|n)∞)∞n=1 = ((ω1 . . .ωn)

∞)∞n=1.
Finally, since the complement of a cylinder set is a unionof cylinder sets, the cylin-

der sets are bothopenand closed subsets of the full shift space. Therefore,E∞ is totally
disconnected (see Exercise 3.4.3). Summarizing these properties,wehave obtained the
following lemma.

Lemma 3.1.7. The full shift space E∞ is a totally disconnected, perfect, compact,metriz-
able space.

To put this lemma in context, we recall the following definition.

Definition 3.1.8. A Cantor space (also frequently called a Cantor set) is a totally dis-
connected, perfect, compact, second-countable, Hausdorff topological space.
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In light of this definition, we can restate Lemma 3.1.7 as follows.

Lemma 3.1.9. The full shift space E∞ is a Cantor space.

Cantor spaces can be characterized as follows:
(a) They are totally disconnected, perfect, compact, metrizable topological spaces.
(b) They are homeomorphic to the middle-third Cantor set.
(c) They are homeomorphic to E∞ for some finite set E having at least two elements.
(d) They are homeomorphic to E∞ for every finite set E having at least two elements.

We now introduce a family of metrics on E∞, each of which reflects the idea that two
words are close if they share a long initial block. The longer their common initial sub-
word, the closer two words are.

Definition 3.1.10. For each s ∈ (0, 1), let ds : E∞ × E∞ → [0, 1] be defined by

ds(ω, τ) = s
|ω∧τ|.

Remark 3.1.11. If ω, τ ∈ E∞ have no common initial block, then ω ∧ τ = ϵ. Thus,
|ω∧ τ| = 0 and ds(ω, τ) = 1. On the other hand, ifω = τ then |ω∧ τ| =∞ and we adopt
the convention that s∞ := 0.

Proposition 3.1.12. For every s ∈ (0, 1), the map ds : E∞ × E∞ → [0, 1] defined above is
an ultrametric, and thus a metric.

Proof. First, note that ds(ω,ω) = s∞ := 0. Moreover, ds(ω, τ) = 0 implies that
|ω ∧ τ| =∞, that is, ω = τ. Second, ds is symmetric, as

ds(ω, τ) = s
|ω∧τ| = s|τ∧ω| = ds(τ,ω).

It only remains to show that ds(ω, τ) ≤ max{ds(ω, ρ), ds(ρ, τ)} for all ω, ρ, τ ∈ E∞. Fix
ω, ρ, τ ∈ E∞. Observe that ω and ρ share the same initial block of length |ω ∧ ρ|, while
ρ and τ share the same initial block of length |ρ ∧ τ|. This implies that ω, ρ, and τ all
share the same initial block of length equal to min{|ω ∧ ρ|, |ρ ∧ τ|}. Since 0 < s < 1, we
then have that

ds(ω, τ) ≤ s
min{|ω∧ρ|,|ρ∧τ|} = max{s|ω∧ρ|, s|ρ∧τ|} = max{ds(ω, ρ), ds(ρ, τ)}.

This shows that ds is an ultrametric. In particular, it is ametric as the triangle inequal-
ity

ds(ω, τ) ≤ ds(ω, ρ) + ds(ρ, τ)

is obviously satisfied.
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We have now defined an uncountable family of metrics on E∞, one for each s ∈
(0, 1). These metrics induce Tychonoff’s topology on E∞ (see Exercise 3.4.4). This im-
plies that these metrics are topologically equivalent. In fact, they are Hölder equiva-
lent but not Lipschitz equivalent (see Exercises 3.4.5 and 3.4.6).

Let us now describe what it means for a sequence to converge to a limit in the full
shift space. Let s ∈ (0, 1). Let (ω(k))∞k=1 be a sequence in E

∞. Observe that

lim
k→∞

ds(ω
(k),ω) = lim

k→∞
s|ω
(k)∧ω| = 0⇔ lim

k→∞
ω
(k) ∧ ω =∞.

In other words, a sequence (ω(k))∞k=1 converges to the infinite word ω if and only if for
any L ∈ ℕ, the words in the sequence eventually all have ω|L as initial L-block.

Now that we have explored the space E∞, we would like to introduce some dy-
namics on it. To this end, we define the shift map, whose action consists in removing
the first letter of eachword and shifting all the remaining letters one space/coordinate
to the left.

Definition 3.1.13. The full left-shiftmap σ : E∞ → E∞ is defined by σ(ω) = σ((ωj)
∞
j=1) :=

(ωj+1)
∞
j=1, that is,

σ(ω1ω2ω3ω4 . . .) := ω2ω3ω4 . . .

We will also often refer to this map simply as the shift map.

The shift map is #E-to-one on E∞. In other words, each word has #E preimages
under the shift map. Indeed, given any letter e ∈ E and any infinite word ω ∈ E∞, the
concatenation eω = eω1ω2ω3 . . . of e with ω is a preimage of ω under the shift map
since σ(eω) = ω.

The shift map is obviously continuous, since twowords that are close share a long
initial block and thus their images under the shift map, which result from dropping
their first letters, will also share a long initial block. More precisely, for any ω, τ ∈ E∞

with ds(ω, τ) < 1, that is, with |ω ∧ τ| ≥ 1, we have that

ds(σ(ω), σ(τ)) = s
|σ(ω)∧σ(τ)| = s|ω∧τ|−1 = s−1s|ω∧τ| = s−1ds(ω, τ).

So the shift map is Lipschitz continuous with Lipschitz constant s−1. In particular, the
shift map defines a dynamical system on E∞. It is then natural to ask the following
question: Given two finite sets E and F, under which conditions are the shift maps
σE : E∞ → E∞ and σF : F∞ → F∞ topologically conjugate? Notice that the only fixed
points of σE are the “constant” words e∞, for each e ∈ E. Hence, the number of fixed
points of σE is equal to #E. Recall that the cardinality of the set of fixed points Fix(T)
is a topological invariant. So, if #E ̸= #F then σE is not topologically conjugate to σF .
In fact, as we will see in the following theorem, σE is topologically conjugate to σF
precisely when #E = #F.
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Theorem 3.1.14. σE : E∞ → E∞ and σF : F∞ → F∞ are topologically conjugate if and
only if #E = #F.

Proof. If σE and σF are topologically conjugate, then it is clear from the discussion
above that #E = #F. For the converse, assume that #E = #F. Therefore, theremust exist
some bijection H : E → F. Now define the mapping h : E∞ → F∞ by concatenation,
that is, by setting

h(ω1ω2ω3 . . .) := H(ω1)H(ω2)H(ω3) . . . .

Then h is a homeomorphism: that h is a bijection follows from H being a bijection,
while the continuity of both h and h−1 follows directly from the fact that h is an isome-
try, as |h(ω)∧h(τ)| = |ω∧τ|. It remains to show that the following diagram commutes:

E∞

h
??

σE ?? E∞

h
??

F∞ σF
?? F∞

Indeed,

h ∘ σE(ω1ω2ω3 . . .) = h(ω2ω3ω4 . . .)

= H(ω2)H(ω3)H(ω4) . . .

= σF(H(ω1)H(ω2)H(ω3) . . .)

= σF ∘ h(ω1ω2ω3 . . .).

3.2 Subshifts of finite type

Wenow turn our attention to subsystems of full shift spaces. By definition, the subsys-
tems of the full shift space E∞ are all shift-invariant, compact subsets of E∞. Recall
that a set F ⊆ E∞ is shift-invariant (i. e., σ-invariant) if σ(F) ⊆ F.

The notion of forbidden word arises naturally in the study of subsets and subsys-
tems of full shift spaces. Let ℱ ⊆ E∗ be a set of finite words, called forbidden words in
the sequel. We shall denote by E∞ℱ the set of all those infinite words in E∞ that do not
contain any forbidden word as a subword. In other words,

E∞ℱ := {ω ∈ E
∞ : ωmωm+1 . . .ωn ∉ ℱ , ∀m, n ∈ ℕ, m ≤ n}.

A subshift is a subset of a full shift that can be described by a set of forbidden words.

Definition 3.2.1. A subset F of the full shift E∞ is called a subshift if there is a set
ℱ ⊆ E∗ of forbidden words such that F = E∞ℱ . It is sometimes said that F = E∞ℱ is the
subshift generated by ℱ .
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Webriefly examine the relation between sets of forbiddenwords and the subshifts
they generate.

Lemma 3.2.2. Let ℱ ⊆ E∗ and 𝒢 ⊆ E∗.
(a) If ℱ ⊆ 𝒢, then E∞ℱ ⊇ E

∞
𝒢 .

(b) If ℱ ⊆ 𝒢 and every word in 𝒢 admits a subword which is in ℱ , then E∞ℱ = E
∞
𝒢 .

Proof.
(a) Suppose that ℱ ⊆ 𝒢. If τ ∉ 𝒢 then τ ∉ ℱ , and hence

E∞𝒢 = {ω ∈ E
∞ : ωmωm+1 . . .ωn ∉ 𝒢, ∀m, n ∈ ℕ, m ≤ n}

⊆ {ω ∈ E∞ : ωmωm+1 . . .ωn ∉ ℱ , ∀m, n ∈ ℕ, m ≤ n}
= E∞ℱ .

(b) Suppose that ℱ ⊆ 𝒢 and that every word in 𝒢 admits a subword which is in ℱ .
By (a), we already know that E∞𝒢 ⊆ E

∞
ℱ . Therefore, it only remains to establish

that E∞𝒢 ⊇ E
∞
ℱ . Let ω ∈ E∞ \ E∞𝒢 . Then there exist m, n ∈ ℕ, m ≤ n, such that

ωmωm+1 . . .ωn ∈ 𝒢. Since every word in 𝒢 contains a subword which is in ℱ , there
exist k, l ∈ ℕ such that m ≤ k ≤ l ≤ n and ωkωk+1 . . .ωl ∈ ℱ . Thus, ω ∈ E∞ \ E∞ℱ .
This means that E∞ \ E∞𝒢 ⊆ E

∞ \ E∞ℱ , and hence E∞𝒢 ⊇ E
∞
ℱ .

Taken together, the next two theorems demonstrate that the terms subsystem of a
full shift and subshift can be used interchangeably.

Theorem 3.2.3. Every subshift of E∞ is a subsystem of the full shift E∞.

Proof. Let F be a subshift ofE∞. Thismeans that there existsℱ ⊆ E∗ such that F = E∞ℱ .
From its definition, it is clear that E∞ℱ is shift invariant. Moreover, observe that

E∞ℱ =
∞

⋂
m=1
⋂
n≥m
{ω ∈ E∞ : ωm . . .ωn ∉ ℱ}

=
∞

⋂
m=1
⋂
n≥m
⋂

τ∈En−m+1∩ℱ{ω ∈ E
∞ : ωm . . .ωn ̸= τ}

=
∞

⋂
m=1
⋂
n≥m
⋂

τ∈En−m+1∩ℱ E∞ \ [τ]nm.

Since every cylinder set is open in E∞, the sets E∞ \ [τ]nm are compact. Therefore, E∞ℱ
is an intersection of compact sets and is thereby compact. In summary, F = E∞ℱ is a
compact shift-invariant subset of E∞. That is, it is a subsystem of the full shift E∞.

Theorem 3.2.4. Let F be a subsystem of the full shift space E∞. Let

ℱF := {τ ∈ E
∗ : [τ] ⊆ E∞ \ F}.
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Then

F = E∞ℱF
.

In other words, the subsystem F of the full shift space E∞ coincides with the subshift E∞ℱF

generated by the set of finite words ℱF .

Proof. By hypothesis, the set F ⊆ E∞ is σ-invariant and compact. In particular, F is
closed. Therefore, E∞ \ F is open.

Let ρ ∈ E∞ \ F. Since E∞ \ F is open, this is equivalent to the existence of n ∈ ℕ
such that [ρ|n] ⊆ E∞ \ F. In turn, this means that ρ|n ∈ ℱF and hence ρ ∉ E∞ℱF

.
Conversely, assume that ρ ∉ E∞ℱF

. There exist m, n ∈ ℕ, m ≤ n, such that
ρmρm+1ρn ∈ ℱF . In other terms, σm−1(ρ)1σm−1(ρ)2 . . . σm−1(ρ)n−m+1 ∈ ℱF . That is,
σm−1(ρ)|n−m+1 ∈ ℱF . This is equivalent to [σm−1(ρ)|n−m+1] ⊆ E∞ \ F. In particular,
σm−1(ρ) ∈ E∞ \ F. Since F is σ-invariant, this implies that ρ ∈ E∞ \ F.

We shall now study a special class of subshifts. They are called subshifts of finite
type.

Definition 3.2.5. A subshift F of the full shift E∞ is said to be of finite type if there is a
finite set ℱ ⊆ E∗ of forbidden words such that F = E∞ℱ .

In this case, it easily follows from Lemma 3.2.2(b) that the finite set ℱ can be cho-
sen so that ℱ ⊆ Eq for some q ∈ ℕ. The set ℱ then induces a function A : Eq → {0, 1}
whose value is 0 onℱ (i. e., for all forbiddenwords of length q) and 1 on Eq \ℱ (i. e., for
all other words of length q). We will revisit this general framework in the next section,
where we will prove that all cases can be reduced to the case q = 2. For this reason, we
will concentrate on this latter case in this section. Here, rather than using formally a
function A : E2 → {0, 1}, subshifts of finite type are best understood by means of an
incidence/transitionmatrix. An incidence/transitionmatrix is simply a squarematrix
consisting entirely of zeros and ones. To do this, we will work with the full shift on
the alphabet {1, 2, . . . , #E} rather than the full E-shift itself. The incidence/transition
matrix determines which letter/number(s) may follow a given letter/number.

Definition 3.2.6. Let A be an incidence matrix of size #E × #E. The set of all infinite
A-admissible words is the subshift of finite type

E∞A := {ω ∈ E
∞ : Aωnωn+1 = 1, ∀n ∈ ℕ}.

E∞A is a subshift of finite type since E∞A = E
∞
ℱ , where the set of forbidden words ℱ

is the finite set of two-letter words

ℱ = {ij ∈ E2 : Aij = 0}.

A (finite) word ω1ω2 . . .ωn is said to be A-admissible (or, if there can be no confu-
sion about the matrix A, more simply, admissible) if

Aωkωk+1 = 1, ∀1 ≤ k < n.
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The set of all A-admissible n-words will naturally be denoted by EnA, while the set of
all A-admissible finite words will naturally be denoted by E∗A. An A-admissible path
of length n from i ∈ E to j ∈ E is any A-admissible word ω of length n with ω1 = i and
ωn = j. Thus, the entry Aij of the matrix A indicates the number of admissible words
(or paths) of length 2 from i to j (which is necessarily either 0 or 1). By multiplying the
matrixAwith itself, we see that (A2)ij = ∑

#E
k=1 AikAkj specifies the number of admissible

words of length 3 from i to j, since AikAkj = 1 if and only if ikj is admissible. Similarly,
(An)ij is the number of admissible words of length n+ 1 from i to j, and (An)ij > 0 if and
only if there is at least one such path.

Note that if a row of A does not contain any 1, then no infinite word can contain
the letter corresponding to that row. This letter can then be thrown out of the alphabet
because it is inessential. Wewill henceforth assume that this does not happen, that is,
we will assume that all the letters are essential by imposing the condition that every
row of A contains at least one 1. This is a standing assumption throughout this book.

Notice that if all the entries of the incidence matrix A are 1s, then ℱ = 0 and
E∞A = E

∞. However, if A has at least one 0 entry then E∞A is a proper subshift of E∞.
In particular, if A is the identity matrix then E∞A = {e

∞ : e ∈ E}, that is, E∞A is the set
of all constant words, which are the fixed points of σ in E∞.

Alternatively, E∞A can be represented by a directed graph. Imagine that each ele-
ment e ofE is a vertex of a directed graph. Then thedirected graphhas an edgedirected
from vertex e to vertex f if and only if Aef = 1. The set of infinite A-admissible words
E∞A then corresponds to the set of all possible infinite walks along the directed graph.
This is sometimes called a vertex shift.

Example 3.2.7. Let E = {1, 2, 3} and let

A = [[
[

1 0 1
1 1 1
0 0 1

]]

]

.

What is E∞A ? We strongly advise the reader to draw the corresponding directed graph.
According to the incidence matrix, the letter 3 can only be followed by itself since
A33 = 1 while A31 = A32 = 0. This means that vertex 3 of the directed graph has only
one outgoing edge, and it is a self-loop. Thus, if ω ∈ E∞A starts with a 3, then ω = 3∞.
According to the incidencematrix again, the letter 1 can only be followedby itself or by
3 sinceA11 = A13 = 1 whereasA12 = 0. Thismeans that vertex 1 has two outgoing edges,
one being a self-loop while the other terminates at vertex 3. Thus, if ω starts with a 1,
then this can be followed by either a 3, in which case it is followed by infinitely many
3s, or by a 1, in which case we face the same choice again. Therefore, the admissible
words starting with a 1 are 1∞ and 1n3∞, n ∈ ℕ. Finally, if ω starts with a 2 then, as
A21 = A22 = A23 = 1, a 2 can be followed by any other letter. This means that vertex 2
has three outgoing edges, one terminating at each vertex. Hence the admissible words
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starting with a 2 are 2∞, 2m3∞, 2m1∞ and 2m1n3∞, wherem, n ∈ ℕ. In summary,

E∞A = {1
∞, 2∞, 3∞} ∪ {2m1∞ : m ∈ ℕ} ∪ {2m1n3∞ : m, n ∈ ℤ+}.

We now study the topological properties of E∞A . Since E∞A is a subshift, Theo-
rem 3.2.3 yields that this set is compact and σ-invariant. Nevertheless, we provide be-
low a direct proof of this important fact.

Theorem 3.2.8. E∞A is a compact σ-invariant set.

Proof. Let ω ∈ E∞A . Then Aωnωn+1 = 1 for every n ∈ ℕ. In particular, this implies that
Aσ(ω)nσ(ω)n+1 = Aωn+1ωn+2 = 1 for all n ∈ ℕ. Thus, σ(ω) ∈ E∞A and we therefore have that
E∞A is σ-invariant.

In order to show thatE∞A is compact, recall that a closed subset of a compact space
is compact. As E∞ is a compact space when endowed with the product topology, it is
sufficient to prove that E∞A is closed. Let (ω(k))∞k=1 be a sequence in E∞A and suppose
that limk→∞ ω(k) = ω. We must show that ω ∈ E∞A , or, in other words, we need to
show that Aωnωn+1 = 1 for all n ∈ ℕ. To that end, fix n ∈ ℕ. For each k ∈ ℕ, we have
Aω(k)n ω(k)n+1 = 1 since ω(k) ∈ E∞A . Moreover, limk→∞ |ω(k) ∧ ω| =∞ since ω(k) → ω. So, for

sufficiently large k, we have |ω(k) ∧ω| ≥ n + 1. In particular, ω(k)n = ωn and ω
(k)
n+1 = ωn+1

for all k large enough. Hence, we deduce that Aωnωn+1 = Aω(k)n ω(k)n+1 = 1 for all k large
enough. Since n was chosen arbitrarily, we conclude that ω ∈ E∞A .

We now provide an alternative proof of the compactness of E∞A . Observe that

E∞A = {ω ∈ E
∞ : Aωnωn+1 = 1,∀n ∈ ℕ}

=
∞

⋂
n=1
{ω ∈ E∞ : Aωnωn+1 = 1}

=
∞

⋂
n=1
[ ⋃
ω∈E2A

[ω]n+1n ].

Recall that all cylinders are closed subsets of the compact space E∞. Therefore, they
are all compact. Since the setE2A is finite, theunionof cylinders⋃ω∈E2A [ω]

n+1
n is compact

for all n ∈ ℕ. As an intersection of these latter sets, E∞A is compact.

The σ-invariance of E∞A ensures that the map σ : E∞A → E∞A is well-defined. This
restriction of the shiftmap is obviously continuous (in fact, Lipschitz continuous). The
compactness of E∞A makes the couple (E∞A , σ) a well-defined topological dynamical
system. It is a subsystem of the full shift (E∞, σ).

We shall now determine the condition under which σ : E∞A → E∞A is surjective.

Lemma 3.2.9. The (restriction of) the shift map σ : E∞A → E∞A is surjective if and only if
for every j ∈ E there exists i ∈ E such that Aij = 1, that is, if and only if every column of A
contains at least one 1.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



78 | 3 Symbolic dynamics

Proof. First, observe that if for every j ∈ E there exists some i ∈ E such that Aij = 1,
then σ : E∞A → E∞A is surjective. Indeed, given any ω ∈ E∞A , there exists e ∈ E such
that Aeω1

= 1. Then eω ∈ E∞A and σ(eω) = ω.
To establish the converse, suppose A has a column consisting solely of 0s, that is,

suppose there exists j ∈ E such that Aij = 0 for all i ∈ E. By our standing assumption,
every row of A contains at least one 1. So there must be a word of the form jω in E∞A .
However, jω ∉ σ(E∞A ) since there is no word of the form ijω in E∞A .

After determining when the map σ : E∞A → E∞A is surjective, it is natural to next
consider the condition under which the shift map is injective on a subshift of finite
type.

Lemma 3.2.10. The shift map σ : E∞A → E∞A is injective if and only if for every j ∈ E
there exists at most one i ∈ E such that Aij = 1, that is, if and only if A contains at most
one 1 in each of its columns.

The proof of this lemma is left to the reader as an exercise (see Exercise 3.4.11).

Corollary 3.2.11. The shift map σ : E∞A → E∞A is bijective if and only if every column of
A contains exactly one 1. Given our standing assumption that all letters are essential, we
thus have that σ : E∞A → E∞A is bijective if and only if every row and every column of A
contains exactly one 1.

A matrix which has precisely one 1 in each of its rows and each of its columns
is called a permutation matrix. Such a matrix has the property that An is the identity
matrix for some n ∈ ℕ. This means that σ : E∞A → E∞A is bijective if and only if E∞A
consists solely of finitely many periodic points.

In addition to being continuous, the shiftmap is an openmap. Recall that amap is
said to be open if it sends open sets onto open sets. Moreover, note that as the cylinder
sets form a base for the topology on E∞, their restriction to E∞A , which we also call
cylinders and which will be denoted by the same notation, constitute a base for the
topology onE∞A . From this point on, a cylinder [ω]nmwill be understood to be a cylinder
in E∞A . That is to say,

[ω]nm := {τ ∈ E
∞
A : τk = ωk−m+1, ∀m ≤ k ≤ n}.

Theorem 3.2.12. The shift map σ : E∞A → E∞A is an open map.

Proof. As the cylinder sets of length at least two form a base for the topology on E∞A ,
it suffices to prove that the image of an arbitrary cylinder of length at least two is a
cylinder. Say ω = ω1ω2 . . .ωn, where n ≥ 2. Then σ([ω]) = [ω2 . . .ωn]. Indeed, let
τ ∈ [ω]. Then τ = ω1ω2 . . .ωnτn+1τn+2 . . ., and thus σ(τ) = ω2 . . .ωnτn+1τn+2 . . .. Hence
σ([ω]) ⊆ [ω2 . . .ωn]. Conversely, let γ ∈ [ω2 . . .ωn]. Since Aω1ω2

= 1, we have that
ω1γ = ω1ω2 . . .ωnγn+1γn+2 . . . ∈ E∞A . In fact, observe that ω1γ = ωγn+1γn+2 . . . ∈ [ω].
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Moreover, σ(ω1γ) = γ. Hence, σ([ω]) ⊇ [ω2 . . .ωn]. We have thus established that

σ([ω1ω2 . . .ωn]) = [ω2 . . .ωn].

Hence, the image of a cylinder of length n ≥ 2 is the cylinder of length n − 1 obtained
by dropping the first symbol.

3.2.1 Topological transitivity

We now describe the condition on the matrix A under which the subshift of finite type
σ : E∞A → E∞A is topologically transitive. Recall that a dynamical system T : X → X is
defined to be transitive if it admits at least one point x with the property thatω(x) = X
(see Definition 1.5.6). We proved in Theorem 1.5.11 that this is equivalent to the system
T being topologically mixing, that is, the orbit under T of every nonempty open set
encounters every nonempty open set in X (cf. Definition 1.5.10).

Definition 3.2.13. An incidence matrix A is called irreducible if for each ordered pair
i, j ∈ E there exists p := p(i, j) ∈ ℕ such that (Ap)ij > 0.

Observe that an irreducible matrix cannot contain any row or column consisting
solely of 0s. In light of Lemma 3.2.9, the irreducibility of a matrix A compels the sur-
jectivity of the shift map σ : E∞A → E∞A . We shall now prove that irreducibility of A is
equivalent to the transitivity of σ.

Theorem 3.2.14. The shift map σ : E∞A → E∞A is transitive if and only if the matrix A is
irreducible.

Proof. First, suppose that σ is transitive. By Remark 1.5.7(c), it is surjective, and thus
topologically mixing according to Theorem 1.5.11. Fix i, j ∈ E. Then there exists p :=
p(i, j) ∈ ℕ such that σp([i]) ∩ [j] ̸= 0. So pick ω ∈ [i] so that σp(ω) ∈ [j]. This means
that ω1ω2 . . .ωp+1 is an admissible word of length p + 1 from i = ω1 to j = ωp+1. Thus
(Ap)ij > 0. Since i, j ∈ E were chosen arbitrarily, we conclude that A is irreducible.

To prove the converse, suppose that A is irreducible. As the cylinder sets form
a base for the topology, it is sufficient to restrict our attention to them. Let ω =
ω1ω2 . . .ωk ∈ E∗A and τ = τ1τ2 . . . τl ∈ E∗A. We need to show that there exists some
n ∈ ℕ such that σn([ω]) ∩ [τ] ̸= 0. Consider the pair of letters ωk and τ1. Since A is
irreducible, there exists some p := p(ωk , τ1) ∈ ℕ such that (Ap)ωkτ1 > 0. This means
that there exists a finite word γ of length p − 1 such that ωkγτ1 is an admissible word
of length p + 1 from ωk to τ1. Consequently, ωγτ ∈ E∗A. Concatenate to this word a
suffix τl+1 with the property that Aτlτl+1 = 1. This is possible thanks to our standing
assumption that every row of A contains a 1. Continue concatenating in this way
to build an infinite admissible word ω = ωγττl+1τl+2 . . . ∈ E∞A . Then ω ∈ [ω] and
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σk+p−1(ω) = ττl+1τl+2 . . . ∈ [τ]. Hence σk+p−1([ω]) ∩ [τ] ̸= 0. Since ω, τ ∈ E∗A were arbi-
trary, we deduce that σ is topologicallymixing. The surjectivity of σ is also guaranteed
by the irreducibility of A. Therefore, σ is transitive according to Theorem 1.5.11.

Note that the above theorem does not hold if our standing assumption that every
row of A contains at least one 1 is dropped (see Exercise 3.4.12). Also, as mentioned
before, it follows immediately fromboth the transitivity ofσ and from the irreducibility
of A that every column of A contains at least one 1, or equivalently, that σ is surjective
(see Lemma 3.2.9).

3.2.2 Topological exactness

We now describe the condition on the matrix A under which the subshift of finite type
σ : E∞A → E∞A is topologically exact. Recall that a dynamical system T : X → X is said
to be topologically exact if every nonempty open set in X is eventually blown up onto
the entire space X under iteration that is, for every nonempty open set U ⊆ X there is
N ∈ ℕ such that TN (U) = X (cf. Definition 1.5.16). Note that this condition can only be
fulfilled if the map T is surjective.

Definition 3.2.15. An incidence matrix A is called primitive if there exists some p ∈ ℕ
such that Ap has only positive entries, which is usually written as Ap > 0.

Note that every primitivematrix is irreducible, but that there exist irreducible ma-
trices which are not primitive (see Exercise 3.4.13).

Theorem 3.2.16. The shift map σ : E∞A → E∞A is topologically exact if and only if the
matrix A is primitive.

Proof. Suppose first that σ is topologically exact. Then for each e ∈ E there exists some
pe ∈ ℕ such that σpe ([e]) = E∞A , since [e] is an open set. Define p := max{pe : e ∈ E}
and note that p is finite. We claim that Ap > 0. To see this, fix an ordered pair i, j ∈ E.
Since σp([i]) = E∞A , we have σp([i]) ∩ [j] ̸= 0. So if ω ∈ [i] and σp(ω) ∈ [j], then
ω = iω2ω3 . . .ωpjωp+2ωp+3 . . .. In other words, iω2ω3 . . .ωpj is an admissible word of
length p + 1 from i to j, and hence (Ap)ij > 0. Since this is true for all i, j ∈ E, we
conclude that Ap > 0.

To prove the converse, suppose thatA is primitive, that is, suppose there exists p ∈
ℕ such that Ap > 0. Then for each ordered pair i, j ∈ E there is at least one admissible
word of length p + 1 from i to j. Since the cylinder sets {[ω]}ω∈E∗A form a base for the
topology on E∞A , it is sufficient to prove topological exactness for cylinder sets. So let
ω = ω1 . . .ωn ∈ E∗A and pick an arbitrary τ ∈ E

∞
A . There exists a finite word γ of length

p − 1 such that ωnγτ1 is an admissible word of length p + 1. Let ω = ωγτ ∈ E∞A . Then
ω ∈ [ω] and σn+p−1(ω) = τ. Therefore, as τ was arbitrarily chosen in E∞A , we deduce
that σn+p−1([ω]) = E∞A and σ is topologically exact.
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The reader may be wondering under which condition on A the shift σ : E∞A → E∞A
is minimal. The answer to this question can be found in Exercise 3.4.15.

3.2.3 Asymptotic behavior of periodic points

Wenowprove that for anymatrixA, themaximal growth rate of the number of periodic
points in E∞A coincides with the logarithm of the spectral radius of A. Recall that the
spectral radius ofA is defined to be the largest eigenvalue ofA (in absolute value). The
spectral radius r(A) can also be defined by

r(A) := lim
n→∞
A

n
1/n
, (3.1)

for any matrix norm ‖ ⋅ ‖ (for a proof of this fact, see Proposition 3.8 in Conway [15]). In
what follows, it is convenient to choose the norm to be the sum of the absolute value
of the entries of the matrix, that is, for a k × k matrix B, the norm is

‖B‖ :=
k
∑
i,j=1
|Bij|.

Before continuing with the growth rate of the number of periodic points, we first
give a lemma which will turn out to be useful over and over again. Although it is a
purely analytic result, we include its proof here for completeness. This result will be
crucial not only here but also in Chapters 7 and 11. Recall that a sequence (an)∞n=1 of
real numbers is said to be subadditive if

am+n ≤ am + an, ∀m, n ∈ ℕ.

Lemma 3.2.17. If (an)∞n=1 is a subadditive sequence of real numbers, then the sequence
(an/n)∞n=1 converges and

lim
n→∞

1
n
an = infn∈ℕ

1
n
an.

If, moreover, (an)∞n=1 is bounded from below, then infn∈ℕ
1
nan ≥ 0.

Proof. Fix m ∈ ℕ. By the division algorithm, every n ∈ ℕ can be uniquely written in
the form n = km + r, where 0 ≤ r < m. The subadditivity of the sequence implies that

an
n
=

akm+r
km + r
≤
akm + ar
km + r

≤
kam + ar

km
=
am
m
+

ar
km
.

Notice that for all n ∈ ℕ,

−∞ < min
0≤s<m

as ≤ ar ≤ max
0≤s<m

as <∞.
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Therefore, as n tends to infinity, k also tends to infinity and thereby ar/k approaches
zero by the sandwich theorem. Hence,

lim sup
n→∞

an
n
≤
am
m
.

Sincem ∈ ℕ was chosen arbitrarily, taking the infimum overm yields that

lim sup
n→∞

an
n
≤ inf

m∈ℕ

am
m
.

Thus,

lim sup
n→∞

an
n
≤ inf

m∈ℕ

am
m
≤ lim inf

n→∞
an
n
≤ lim sup

n→∞

an
n
.

Consequently,

lim
n→∞

an
n
= inf

m∈ℕ

am
m
.

This proves the first assertion. The second one is obvious.

Another purely analytic result that will be needed later is the following.

Lemma 3.2.18. Let (bn)∞n=1 be a sequence of positive real numbers. Then

lim sup
n→∞

1
n
log bn = inf{p ∈ ℝ :

∞

∑
n=1

bne
−pn <∞}.

Proof. First, assume that −∞ < lim supn→∞
1
n log bn. Let P ∈ ℝ be such that P <

lim supn→∞
1
n log bn. Then there exists a strictly increasing sequence (nm)

∞
m=1 of posi-

tive integers such that P ≤ 1
nm

log bnm for all m ∈ ℕ. That is, bnm ≥ e
Pnm for all m ∈ ℕ.

Consequently,

∞

∑
n=1

bne
−Pn ≥

∞

∑
m=1

bnme
−Pnm ≥

∞

∑
m=1

1 =∞.

This implies that P ≤ inf{p ∈ ℝ : ∑∞n=1 bne
−pn < ∞}. Since this is true for every P <

lim supn→∞
1
n log bn, we deduce that

lim sup
n→∞

1
n
log bn ≤ inf{p ∈ ℝ :

∞

∑
n=1

bne
−pn <∞}. (3.2)

Obviously, this latter inequality holds as well when −∞ = lim supn→∞
1
n log bn.

To prove the opposite inequality, suppose that lim supn→∞
1
n log bn < ∞. Let

P ∈ ℝ be such that lim supn→∞
1
n log bn < P. Let Q ∈ ℝ be such that

lim sup
n→∞

1
n
log bn < Q < P.
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Then there exists N ∈ ℕ such that 1
n log bn ≤ Q for all n ≥ N . That is, bn ≤ eQn for all

n ≥ N . It follows that

∞

∑
n=1

bne
−Pn =

N−1
∑
n=1

bne
−Pn +

∞

∑
n=N

bne
−Pn

≤
N−1
∑
n=1

bne
−Pn +

∞

∑
n=1

e(Q−P)n

=
N−1
∑
n=1

bne
−Pn +

∞

∑
n=1
(eQ−P)n

<∞

since the geometric series on the right has for ratio 0 < r := eQ−P < 1. This implies
that inf{p ∈ ℝ : ∑∞n=1 bne

−pn < ∞} ≤ P. Since this is true for every P ∈ ℝ such that
lim supn→∞

1
n log bn < P, we deduce that

inf{p ∈ ℝ :
∞

∑
n=1

bne
−pn <∞} ≤ lim sup

n→∞

1
n
log bn. (3.3)

Obviously, this latter inequality holds as well when lim supn→∞
1
n log bn =∞.

The result follows from (3.2) and (3.3).

Let us now come back to the question of the number of periodic points that sub-
shifts of finite type have. The following result holds for all subshifts of finite type. It
relates the number of periodic points to the number of finite words, which in turn is
related to the underlyingmatrix. Recall that a sequence (an)∞n=1 of real numbers is said
to be submultiplicative if

am+n ≤ aman, ∀m, n ∈ ℕ.

Note that a sequence (an)∞n=1 of positive real numbers is submultiplicative if and only
if the sequence (log an)∞n=1 is subadditive.

Lemma 3.2.19. Let A be an incidence matrix that generates a subshift of finite type
σ : E∞A → E∞A . The sequences (#EnA)

∞
n=1 and (‖A

n‖)∞n=1 are nondecreasing and submulti-
plicative. Moreover,

A
n−1 = #E

n
A ≥ #Pern(σ), ∀n ∈ ℕ.

Proof. Since the matrix A has a 1 in every row by our standing assumption, every ad-
missible word of length n can be extended to an admissible word of length n+1. There-
fore,

#EnA ≤ #E
n+1
A , ∀n ∈ ℕ,

that is, the sequence (#EnA)
∞
n=1 is nondecreasing.
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Regarding the submultiplicativity of that sequence, notice that each admissible
word of lengthm + n results from an admissible concatenation of an admissible word
of lengthm with an admissible word of length n. This implies that

#Em+nA ≤ #E
m
A ⋅ #E

n
A, ∀m, n ∈ ℕ.

(However, notice that the concatenation of an admissible word ω of length m with
an admissible word τ of length n is an admissible word of length m + n if and only if
ωm = τ1. Thus, the equality does not hold in general.)

The nondecreasing and submultiplicative behaviors of the sequence (#EnA)
∞
n=1 are

shared by the sequence (‖An‖)∞n=1. Indeed, we have earlier observed that (An)ij is the
number of admissible words of length n + 1 starting with the letter i and ending with
the letter j. Thus,∑#Ei,j=1(A

n)ij is the number of words in En+1A . This means that

A
n =

#E
∑
i,j=1
(An)ij = #E

n+1
A , ∀n ∈ ℕ.

It is then obvious that

A
n = #E

n+1
A ≤ #E

n+2
A =
A

n+1, ∀n ∈ ℕ,

that is, the sequence (‖An‖)∞n=1 is nondecreasing. Submultiplicativity of that sequence
follows from the fact that for allm, n ∈ ℕ,

A
m+n = #E

m+n+1
A ≤ #Em+n+2A ≤ #Em+1A ⋅ #E

n+1
A =
A

m ⋅
A

n.

Moreover, note that every periodic point of period n is the infinitely repeated con-
catenation of its initial block of length n. This means that

#Pern(σ) ≤ #E
n
A =
A

n−1, ∀n ∈ ℕ.

Remark 3.2.20. In general, the sequence (#Pern(σ))∞n=1 is neither nondecreasing nor
submultiplicative. See Exercise 3.4.20.

We can nowobtain some information on the growth rate of the number of periodic
points.

Theorem 3.2.21. Let A be an incidence matrix that generates a subshift of finite type
σ : E∞A → E∞A . Then

log r(A) = lim
n→∞

1
n
log #EnA = inf{p > 0 : ∑

ω∈E∗A e
−p|ω| <∞}

≥ lim sup
n→∞

1
n
log #Pern(σ) = inf{p > 0 :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞},

where r(A) is the spectral radius of A.
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Proof. It follows from Lemma 3.2.19 that both of the sequences (log #EnA)
∞
n=1 and

(log ‖An‖)∞n=1 are subadditive. By Lemma 3.2.17, we have that both limits
limn→∞

1
n log ‖A

n‖ and limn→∞
1
n log #E

n
A exist. Using Lemma 3.2.19, we deduce that

log r(A) = log lim
n→∞
A

n
1/n

= lim
n→∞

logA
n

1/n

= lim
n→∞

1
n
logA

n

= lim
n→∞

1
n
log #En+1A

= lim
n→∞

n + 1
n
⋅

1
n + 1

log #En+1A

= lim
n→∞

n + 1
n
⋅ lim
n→∞

1
n + 1

log #En+1A

= lim
n→∞

1
n
log #EnA

≥ lim sup
n→∞

1
n
log #Pern(σ).

From Lemma 3.2.18, it follows that

lim sup
n→∞

1
n
log #Pern(σ) = inf{p ∈ ℝ :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞}

and

lim
n→∞

1
n
log #EnA = inf{p ∈ ℝ :

∞

∑
n=1

#EnAe
−pn <∞}

= inf{p ∈ ℝ :
∞

∑
n=1
∑
ω∈EnA

e−p|ω| <∞}

= inf{p ∈ ℝ : ∑
ω∈E∗A e

−p|ω| <∞}.

Finally, note that the infima can be restricted to the positive real numbers p since the
set E∗A is infinite and the sets Pern(σ) are nonempty for infinitely many n.

The inequality in the statement of theprevious theorem turnsout tobeanequality.
We will demonstrate this in two steps. It is first simpler to prove it when the matrix A
is irreducible.

Theorem 3.2.22. Let A be an irreducible matrix. Then

log r(A) = lim
n→∞

1
n
log #EnA = inf{p > 0 : ∑

ω∈E∗A e
−p|ω| <∞}

= lim sup
n→∞

1
n
log #Pern(σ) = inf{p > 0 :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞}.
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Proof. Since A is irreducible, there exists p ≥ 2 such that for every 1 ≤ i, j ≤ #E there
is an admissible word of length at least 2 and at most p that begins with i and ends
with j. Therefore, for any admissible wordω of length n there is an admissible word ω̃
of length at least 2 and at most p beginning with ω̃1 = ωn and ending with ω̃|ω̃| = ω1.
Consequently, the word (ω1ω2 . . .ωnω̃2ω̃3 . . . ω̃|ω̃|−1)∞ is an admissible periodic point
of period n + |ω̃| − 2, with n ≤ n + |ω̃| − 2 ≤ n + p − 2. This shows that every ω ∈ EnA
generates at least one periodic point whose period is between n and n + p − 2, with
different words ω ∈ EnA producing different periodic points (ωω̃2ω̃3 . . . ω̃|ω̃|−1)∞. Thus,
if for every n ∈ ℕ we choosem(n) to be such that n ≤ m(n) ≤ n + p − 2 and

#Perm(n)(σ) = max
n≤m≤n+p−2

#Perm(σ),

we obtain that

A
n−1 = #E

n
A ≤ #Pern(σ) + #Pern+1(σ) + ⋅ ⋅ ⋅ + #Pern+p−2(σ)
≤ (p − 1)#Perm(n)(σ).

Using this estimate, we can make the following calculation:

log r(A) = lim
n→∞

1
n − 1

logA
n−1 ≤ lim sup

n→∞

1
n − 1

log[(p − 1) ⋅ #Perm(n)(σ)]

= lim sup
n→∞

1
n − 1
[log(p − 1) + log #Perm(n)(σ)]

= lim
n→∞

1
n − 1

log(p − 1) + lim sup
n→∞

1
n − 1

log #Perm(n)(σ)

= 0 + lim sup
n→∞
[
m(n)
n − 1
⋅

1
m(n)

log #Perm(n)(σ)]

= lim
n→∞

m(n)
n − 1
⋅ lim sup

n→∞

1
m(n)

log #Perm(n)(σ)

≤ 1 ⋅ lim sup
n→∞

1
n
log #Pern(σ)

= lim sup
n→∞

1
n
log #Pern(σ).

Combining this inequality with the opposite one proved in Theorem 3.2.21 completes
the proof.

In order to prove that the equality holds in full generality, we need to decompose
reducible systems intomaximal (in the sense of inclusion) irreducible subsystems. For
this, we separate the letters of E into equivalence classes bymeans of a relation called
communication.

Definition 3.2.23.
(a) A letter i ∈ E leads to a letter j ∈ E if there exists p = p(i, j) ∈ ℕ such that (Ap)ij = 1.
(b) A letter i is said to communicate with a letter j if i leads to j and j leads to i.
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(c) A letter which communicates with itself or any other letter is called communicat-
ing.

(d) Otherwise, the letter is said to be noncommunicating.

The relation of communication defines an equivalence relation on the set of com-
municating letters. The corresponding equivalence classes are called communication
classes.

Theorem 3.2.24. Let A be an incidence matrix that generates a subshift of finite type
σ : E∞A → E∞A . Then

log r(A) = lim
n→∞

1
n
log #EnA = inf{p > 0 : ∑

ω∈E∗A e
−p|ω| <∞}

= max
C

comm. class

lim
n→∞

1
n
log #CnA

= max
C

comm. class

lim sup
n→∞

1
n
log #Pern(σC)

= lim sup
n→∞

1
n
log #Pern(σ) = inf{p > 0 :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞}

= max
C

comm. class

log r(A|C).

Proof. Suppose that E admits k communication classes C1,C2, . . . ,Ck . Clearly, (Cl)∞A ⊆
E∞A for each 1 ≤ l ≤ k. Moreover, (Cl)∞A ∩ (Cm)

∞
A = 0 for all l ̸= m since Cl ∩ Cm = 0 for

all l ̸= m. Note further that the submatrix A|Cl : Cl × Cl → {0, 1} is irreducible for each
1 ≤ l ≤ k by the very definition of communication classes. Therefore, Theorem 3.2.22
asserts that

log r(A|Cl ) = limn→∞
1
n
log #(Cl)

n
A = inf{p > 0 : ∑

ω∈(Cl)∗A e
−p|ω| <∞}

= lim sup
n→∞

1
n
log #Pern(σCl ) (3.4)

for every 1 ≤ l ≤ k.
Let I = E\⋃kl=1 Cl. This set consists of all noncommunicating letters. Ifω ∈ E∗A, then

each noncommunicating letter can appear at most once in ω. Moreover, if ω contains
at least one letter from the class Cl then ω can be uniquely written as βlαlγl, where
αl ∈ (Cl)∗A and βl,γl ∈ (E \Cl)

∗
A, that is,αl comprises only letters from the class Cl while

none of the letters of βl and γl are from Cl. Note that βl and/or γl may be the empty
word,whileαl is the longest subword ofω that has letters fromCl only. For eachω ∈ E∗A
and 1 ≤ l ≤ k, let αl(ω) be the longest subword of ω in (Cl)∗A. Note that αl(ω) may be
the empty word for some l’s. Thenω can be uniquely written as a concatenation of the
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subwords αl(ω), 1 ≤ l ≤ k, and no more than k + 1 subwords of noncommunicating
letters, each of which consists of at most #I letters. Therefore, the map

α : E∗A → (C1)
∗
A × (C2)

∗
A × ⋅ ⋅ ⋅ × (Ck)

∗
A

ω → (α1(ω) , α2(ω) , . . . , αk(ω))

is such that each element of (C1)∗A × ⋅ ⋅ ⋅ × (Ck)
∗
A has at most (#I ⋅ #I! + 1)k+1 preimages.

Indeed, suppose that α(τ) = α(ω) for some τ,ω ∈ E∗A. Then αl(τ) = αl(ω) =: αl for
all 1 ≤ l ≤ k. If αl ̸= ϵ ̸= αm for some l ̸= m and if τ contained the subword αlβαm
whereas ω contained the subword αmγαl, then the word αlβαmγαl would be in E∗A.
This would imply that the classes Cl and Cm communicate, which would contradict
their very definition. This reveals that the αl, 1 ≤ l ≤ k, must appear in the same order
in both τ andω. That is, τ andω can only differ in the subwords of noncommunicating
letters they contain.Now, there are atmost k+1 subwords of noncommunicating letters
in any word. And each of these subwords contains at most #I letters. Let 1 ≤ L ≤ #I.
The number of words of length Lwith distinct letters drawn from I is at most #I ⋅ (#I −
1) ⋅ ⋅ ⋅ (#I − L + 1) ≤ #I!. Thus the number of nonempty words of length at most #I
with distinct letters drawn from I is at most #I ⋅ #I!. Add 1 for the empty word. This
is an upper estimate of the number of possibilities for each instance of a subword of
noncommunicating letters. Since there are at most k + 1 such instances, a crude upper
bound on the number of preimages for any point is B := (#I ⋅ #I! + 1)k+1.

For all p > 0, it then follows that

∑
ω∈E∗A e

−p|ω| ≤ ∑
ω∈E∗A e

−p∑kl=1 |αl(ω)|

= ∑
ω∈E∗A

k
∏
l=1

e−p|αl(ω)|

≤ B
k
∏
l=1
∑

ωl∈(Cl)∗A e
−p|ωl|. (3.5)

Let

P > max
1≤l≤k

lim
n→∞

1
n
log #(Cl)

n
A.

We infer from (3.4) that

∑
ωl∈(Cl)∗A e

−P|ωl| <∞, ∀1 ≤ l ≤ k

and thus by (3.5) we deduce that

∑
ω∈E∗A e

−P|ω| <∞.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.2 Subshifts of finite type | 89

According to Theorem 3.2.21, this implies that

P > lim
n→∞

1
n
log #EnA.

Since this is true for every P > max1≤l≤k limn→∞
1
n log #(Cl)

n
A, we obtain that

lim
n→∞

1
n
log #EnA ≤ max

1≤l≤k
lim
n→∞

1
n
log #(Cl)

n
A.

The opposite inequality is obvious. Hence,

lim
n→∞

1
n
log #EnA = max

1≤l≤k
lim
n→∞

1
n
log #(Cl)

n
A. (3.6)

On the other hand, note that Per(σCl )∩Per(σCm ) = 0 for all l ̸= m sinceCl∩Cm = 0 for
all l ̸= m. Moreover, since a periodic point can comprise neither noncommunicating
letters nor letters from two distinct communicating classes, we have that

Per(σE) =
k
⋃
l=1

Per(σCl ).

Therefore,

max
1≤l≤k

#Pern(σCl ) ≤ #Pern(σE) =
k
∑
l=1

#Pern(σCl ) ≤ kmax
1≤l≤k

#Pern(σCl ).

It follows immediately that

lim sup
n→∞

1
n
logmax

1≤l≤k
#Pern(σCl ) ≤ lim sup

n→∞

1
n
log #Pern(σE)

≤ lim sup
n→∞

1
n
log[kmax

1≤l≤k
#Pern(σCl )].

Using Exercise 3.4.14, it follows that

max
1≤l≤k

lim sup
n→∞

1
n
log #Pern(σCl ) ≤ lim sup

n→∞

1
n
log #Pern(σE)

≤ lim
n→∞

log k
n
+max

1≤l≤k
lim sup
n→∞

1
n
log #Pern(σCl ).

Hence,

lim sup
n→∞

1
n
log #Pern(σE) = max

1≤l≤k
lim sup
n→∞

1
n
log #Pern(σCl ). (3.7)

Using Theorem 3.2.21 and relations (3.4), (3.6), and (3.7), the result follows.
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The use of the lim sup in Theorem 3.2.22 is indispensable. Indeed, there are tran-
sitive subshifts of finite type for which the limit does not exist (see Exercise 3.4.20).
However, the limit does exist for all topologically exact subshifts of finite type.

Theorem 3.2.25. Let A be a primitive matrix. Then

log r(A) = lim
n→∞

1
n
log #EnA = inf{p > 0 : ∑

ω∈E∗A e
−p|ω| <∞}

= lim
n→∞

1
n
log #Pern(σ) = inf{p > 0 :

∞

∑
n=1

#Pern(σ) ⋅ e
−pn <∞}.

Proof. In Lemma 3.2.19, we observed that #Pern(σ) ≤ #EnA = ‖A
n−1‖ for all n ∈ ℕ.

Now we use the primitivity of the matrix to establish a similar inequality in the other
direction. Since A is primitive, there exists P ∈ ℕ such that AP > 0. Consequently,
for every 1 ≤ i, j ≤ #E there is an admissible word of length P + 1 that begins with
i and ends with j. Therefore, for any ω ∈ EnA there is a word ω̃ ∈ EP+1A which begins
with ω̃1 = ωn and ends with ω̃P+1 = ω1. Then the word (ω1ω2 . . .ωnω̃2ω̃3 . . . ω̃P)

∞ is an
admissible periodic point of period n + P − 1. This shows that every ω ∈ EnA generates
at least one periodic point of period n + P − 1, with different words ω ∈ EnA producing
different periodic points (ωω̃2ω̃3 . . . ω̃P)

∞ ∈ Pern+P−1(σ). Hence, #EnA ≤ #Pern+P−1(σ).
Using this and Lemma 3.2.19, we get

#EnA ≤ #Pern+P−1(σ) ≤ #E
n+P−1
A ≤ #EnA ⋅ #E

P−1
A , ∀n ∈ ℕ.

Hence,

1
n
log #EnA ≤

1
n
log #Pern+P−1(σ) ≤

1
n
log #EnA +

1
n
log #EP−1A , ∀n ∈ ℕ.

It follows from the squeeze theorem that

lim
n→∞

1
n
log #Pern+P−1(σ) = lim

n→∞
1
n
log #EnA.

Therefore,

lim
n→∞

1
n
log #Pern(σ) = limn→∞

1
n + P − 1

log #Pern+P−1(σ)

= lim
n→∞
[

n
n + P − 1

⋅
1
n
log #Pern+P−1(σ)]

= lim
n→∞

n
n + P − 1

⋅ lim
n→∞

1
n
log #Pern+P−1(σ)

= lim
n→∞

1
n
log #EnA.

The rest follows from Theorem 3.2.22.
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3.3 General subshifts of finite type

Recall that a subshift of finite type is a subshift that can be described by a finite set
ℱ of forbidden words. In this case, the set ℱ can be chosen so that ℱ ⊆ Eq for some
q ∈ ℕ. The set of forbidden words then induces a function A from Eq to {0, 1}, where
the function A takes the value 0 on the set ℱ of forbidden words and takes the value 1
on the set Eq \ ℱ of all admissible words. For the sake of simplicity, we concentrated
on the case q = 2 in the previous section. We then pointed out that we would prove
that all cases can be reduced to that case. We now do so.

Fix an integer q ≥ 2 and a function A : Eq → {0, 1}. Let

E∞A := {ω ∈ E
∞ : A(ωn,ωn+1, . . . ,ωn+q−1) = 1,∀n ∈ ℕ}.

E∞A is a subshift of finite type since it consists of all those infinite words that do not
contain any word from the finite set of forbidden words

ℱ = {ω ∈ Eq : A(ω1,ω2, . . . ,ωq) = 0}.

Theorem 3.3.1. The shift map σ : E∞A → E∞A is topologically conjugate to a shift map
σ̃ : Ẽ∞Ã → Ẽ∞Ã , where #Ẽ = (#E)q and Ã is an incidence matrix on Ẽ.

Proof. Set Ẽ := Eq as an alphabet. In other words, a letter in the alphabet Ẽ is a word
of length q over the alphabet E. Define the incidence matrix Ã : Ẽ × Ẽ → {0, 1} by

Ãτρ = {
1 if A(τ) = 1 = A(ρ) and τ2τ3 . . . τq = ρ1ρ2 . . . ρq−1
0 otherwise

for every τ, ρ ∈ Ẽ. Let

Ẽ∞Ã := {ω̃ ∈ Ẽ
∞ : Ãω̃nω̃n+1 = 1, ∀n ∈ ℕ}

be the subshift of finite type generated by the matrix Ã. Define the map H : E∞A → Ẽ
by H(ω) = ω|q. That is, the map H associates to every A-admissible infinite word its
initial subword of length q. Let h : E∞A → Ẽ∞Ã be defined by the concatenation

h(ω) = H(ω)H(σ(ω))H(σ2(ω)) . . . .

In other words, for any ω ∈ E∞A , we have that

h(ω) = (ω1 . . .ωq)(ω2 . . .ωq+1)(ω3 . . .ωq+2) . . . ∈ Ẽ
∞
Ã .

We claim that h is a homeomorphism. Indeed, h is injective since if ω and τ are two
distinct elements of E∞A , then ωk ̸= τk for some k ∈ ℕ. It immediately follows that
σk−1(ω)1 = ωk ̸= τk = σk−1(τ)1, and hence, by definition, H(σk−1(ω)) ̸= H(σk−1(τ)).
Thus, h(ω)k ̸= h(τ)k and so h(ω) ̸= h(τ). To show that the map h is surjective, let

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



92 | 3 Symbolic dynamics

τ̃ ∈ Ẽ∞Ã be arbitrary. Recall that τ̃k ∈ Ẽ = Eq for each k ∈ ℕ, that is, τ̃k is a word
of length q from the alphabet E. Also bear in mind that by the definition of Ẽ∞Ã , the
word consisting of the last q − 1 letters of τ̃k is equal to the initial (q − 1)-word of τ̃k+1.
Construct the infinite word τ by concatenating the first letters of each word τ̃k in turn,
that is,

τ = (τ̃1)1(τ̃2)1(τ̃3)1 . . . .

Then, for every n ∈ ℕ, we have that

A(τn, τn+1, . . . , τn+q−1) = A((τ̃n)1, (τ̃n+1)1, . . . , (τ̃n+q−1)1)
= A((τ̃n)1, (τ̃n)2, . . . , (τ̃n)q)
= A(τ̃n)
= 1.

Therefore, τ ∈ E∞A . Furthermore,

h(τ) = H(τ)H(σ(τ))H(σ2(τ)) . . .
= ((τ̃1)1(τ̃2)1 . . . (τ̃q)1)((τ̃2)1(τ̃3)1 . . . (τ̃q+1)1)((τ̃3)1(τ̃4)1 . . . (τ̃q+2)1) . . .
= ((τ̃1)1(τ̃1)2 . . . (τ̃1)q)((τ̃2)1(τ̃2)2 . . . (τ̃2)q)((τ̃3)1(τ̃3)2 . . . (τ̃3)q) . . .
= (τ̃1)(τ̃2)(τ̃3) . . .
= τ̃.

Since τ̃ is arbitrary, this demonstrates that h is surjective.
Moreover, h is continuous. To see this, let ω, τ ∈ E∞A . Denote the length of their

wedge by Q = |ω ∧ τ|. If Q ≥ q, then |h(ω) ∧ h(τ)| = Q − q + 1, for if ω and τ share
the same first Q letters, then h(ω) and h(τ) share the same first Q − q + 1 letters. The
fact that h is a homeomorphism follows from the fact that it is a continuous bijection
between two Hausdorff compact topological spaces. It only remains to show that the
following diagram commutes:

E∞A

h
??

σ ?? E∞A

h
??

Ẽ∞Ã σ̃
?? Ẽ∞Ã

Indeed, for every ω ∈ E∞A we have

h ∘ σ(ω) = H(σ(ω))H(σ(σ(ω)))H(σ2(σ(ω))) . . .
= H(σ(ω))H(σ2(ω))H(σ3(ω)) . . .
= σ̃(H(ω)H(σ(ω))H(σ2(ω)) . . .)
= σ̃ ∘ h(ω).

This completes the proof.
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3.4 Exercises

Exercise 3.4.1. Fix n ∈ ℕ. Show that the full n-shift can be used to encode all the num-
bers between 0 and 1. That is, show that to every number in [0, 1] can be associated an
infinite word in {0, . . . , n − 1}∞.

Exercise 3.4.2. Prove that the discrete topology on a set X, that is, the topology in
which every subset ofX is bothopenand closed, ismetrizable bymeansof thedistance
function d : X × X → {0, 1} defined by

d(x1, x2) = {
1 if x1 ̸= x2
0 if x1 = x2.

Then show that the product∏∞n=1 X is metrizable.

Exercise 3.4.3. Show that the family {[ω] : ω ∈ E∗} of all initial cylinders forms a
base of open sets for Tychonoff’s product topology on E∞. Deduce that all cylinders
{[ω]nm : ω ∈ E

∗,m, n ∈ ℕ} are both open and closed sets. Deduce further that the space
E∞ is totally disconnected.

Exercise 3.4.4. Prove that the metrics ds, s ∈ (0, 1), introduced in Definition 3.1.10
induce Tychonoff’s product topology on E∞.

Exercise 3.4.5. Prove that the metrics ds, for each s ∈ (0, 1), are Hölder equivalent.
That is, show that for any pair s, s′ ∈ (0, 1) there is an exponent α ≥ 0 and a constant
C ≥ 1 such that

C−1(ds′ (ω, τ))α ≤ ds(ω, τ) ≤ C(ds′ (ω, τ))α, ∀ω, τ ∈ E∞.
Exercise 3.4.6. Show that the metrics ds, s ∈ (0, 1), are not Lipschitz equivalent. That
is, prove that for any pair s, s′ ∈ (0, 1) there is no constant C ≥ 1 such that

C−1ds′ (ω, τ) ≤ ds(ω, τ) ≤ Cds′ (ω, τ), ∀ω, τ ∈ E∞.
Exercise 3.4.7. Prove directly that the space E∞ is separable. That is, find a countable
dense set in E∞.

Exercise 3.4.8. Prove directly that E∞ is compact.

Hint: Since E∞ is metrizable, it suffices to prove that E∞ is sequentially compact. That
is, it is sufficient to prove that every sequence in E∞ admits a convergent subsequence.

Exercise 3.4.9. Describe the subshift of finite type E∞A generated by the incidencema-
trix

A = [ 1 1
1 0
] .

This shift is called the golden mean shift. (We will explain why in Chapter 7.)
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Exercise 3.4.10. Find a closed shift-invariant subset F of {0, 1}∞ such that σ|F : F → F
is not open.

Exercise 3.4.11. Prove that the shift map σ : E∞A → E∞A is injective if and only if every
column of the incidence matrix A contains at most one 1.

Exercise 3.4.12. Show that the shift map σ : E∞A → E∞A may be transitive even if the
incidence matrix A contains a row of zeros. (Thus, Theorem 3.2.14 does not hold if one
does not assume that every row of A contains at least one 1.)

Exercise 3.4.13. Construct an irreducible matrix which is not primitive.

Exercise 3.4.14. Let (an)∞n=1 and (bn)
∞
n=1 be sequences of real numbers. Prove that

lim sup
n→∞

max{an, bn} = max{lim sup
n→∞

an, lim sup
n→∞

bn}.

Show a similar result for lim inf. Also, show that max can be replaced bymin and that
the corresponding statements hold. Finally, show that the statements do not neces-
sarily hold for lim.
Note: Though this exercise has been stated with two sequences only, these statements
hold for any finite number of sequences.

Exercise 3.4.15. In this exercise, you will prove that the shift σ : E∞A → E∞A is minimal
if and only if A is a permutation matrix with a unique class of communicating letters.
(a) Relying uponour standing assumption thatAhas a 1 in each of its rows, prove that

E∞A admits a periodic point. (In fact, it is possible to show that the set of eventually
periodic points is dense in E∞A .)

(b) Suppose that σ : E∞A → E∞A is minimal. Deduce from the minimality of σ that E∞A
coincides with the orbit of a periodic point.

(c) Deduce that σ is a bijection.
(d) Deduce that A is a permutation matrix.
(e) Show that A has a unique communicating class.

To prove the converse, suppose that A is a permutation matrix with a unique class of
communicating letters.
(f) Prove that E∞A coincides with the orbit of a periodic point.
(g) Deduce that σ : E∞A → E∞A is minimal.

Exercise 3.4.16. Let C and C′ be classes of communicating letters for amatrixA. Class
C is said to lead to class C′ if one of the letters in C leads to one of the letters in C′.
Prove that the set of periodic points of E∞A is dense if and only if A consists of classes
of communicating letters, none of which leads to another (in particular, A does not
have any noncommunicating letter).

In other words, the set of periodic points of E∞A is dense if and only if E∞A is a
disjoint union of irreducible subsystems.
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Exercise 3.4.17. Let C be the middle-third Cantor set. Show that the map f : [0, 1] →
[0, 1] defined by

f (x) = 3x (mod 1)

restricted to C is continuous. Show that f |C : C → C is topologically conjugate to the
full shift map on two symbols.

Exercise 3.4.18. Show that if the shift map σ : E∞A → E∞A is such that σ([e] ∩ E∞A ) =
E∞A ̸= 0 for every e ∈ E, then E

∞
A = E

∞.

Exercise 3.4.19. Show that the full shift map σ : {0, 1}∞ → {0, 1}∞ has uncountably
many points that are not transitive (i. e., with a nondense orbit).

Exercise 3.4.20. Construct a transitive subshift of finite type whose periodic points
have even periods.
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4 Distance expanding maps

In this chapter, we first define and give some examples of distance expanding maps,
which, as their name suggests, expanddistances between points. On a compactmetric
space, this behavior may only be observed locally. Accordingly, the definition of an
expanding map involves two constants: a constant describing the magnitude of the
expansion of the system under scrutiny, and a constant delimiting the neighborhoods
on which the expansion can be observed.

Distance expanding maps were introduced in [61]. A fairly complete account of
them can be found in [57]. Our approach stems from that work, but in many instances
is much more detailed. Moreover, the proof of the existence of Markov partitions in
Section 4.4 is substantially simplified.

In Section 4.2, we introduce the notion and study the properties of inverse
branches of a distance expanding map. This is a way of dealing with the nonin-
vertibility of these maps.

In Section 4.3, we describe two new concepts: pseudo-orbit and shadowing. The
latter makes precise the fact that, given a measuring device of some prescribed ac-
curacy, sequences of points which remain sufficiently close to one another cannot be
distinguished by the said device.

Sections 4.4 and 4.5 are crucial. In the former, we introduce the concept of Markov
partitions and their existence for open, distance expanding systems, while in the lat-
ter we show exactly how to use them to represent the dynamics of such systems by
means of the symbolic dynamics studied in Chapter 3. The final theorem of the chap-
ter describes the properties of the codingmap between the underlying compactmetric
space (the phase space) and some subshift of finite type (a symbolic space).

The concept of Markov partition was introduced to dynamical systems by Adler,
Konheim, and McAndrew in the paper [2] in 1965. It achieved its full significance in
Rufus Bowen’s book [11]. It is in this book that the existence of Markov partitions
was proved for AxiomAdiffeomorphisms and the corresponding symbolic representa-
tion/dynamics along with thermodynamic formalism were developed. Our approach,
via the book [57], traces back to Bowen’s work. Markov partitions, in their various
forms, play an enormous role in themodern (that is, after Bowen) theory of dynamical
systems.

4.1 Definition and examples

Definition 4.1.1. A continuous map T : X → X of a compact metric space (X, d) is
called distance expanding provided that there exist two constants λ > 1 and δ > 0
such that

d(x, y) < 2δ ⇒ d(T(x),T(y)) ≥ λd(x, y).

https://doi.org/10.1515/9783110702682-004
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The use of 2δ in the above definition, as opposed to simply δ, is only to make the
forthcoming expressions and calculations simpler.

Remark 4.1.2.
(a) If T : X → X is a distance expanding map, then for every forward T-invariant

closed set F ⊆ X the map T|F : F → F is also distance expanding.
(b) If d(x, y) < 2δ, then d(T(x),T(y)) ≥ λd(x, y). Therefore, if x ̸= y, we have that

T(x) ̸= T(y). Thus, if T(x) = T(y) and x ̸= y, then d(x, y) ≥ 2δ. In particular, this
demonstrates that any distance expanding map is locally injective.

Example 4.1.3 (Subshifts of finite type). The full shift map σ : E∞ → E∞ and all of its
subshifts of finite type σ : E∞A → E∞A are expanding whichever metric ds is used. More
precisely, σ is expanding with λ = s−1 and any 0 < δ ≤ 1/2. To see this, let ω, τ ∈ E∞A
with ds(ω, τ) < 1. This means that |ω ∧ τ| ≥ 1 and, therefore, |σ(ω) ∧ σ(τ)| = |ω ∧ τ| − 1.
So,

ds(σ(ω), σ(τ)) = s
|σ(ω)∧σ(τ)| = s|ω∧τ|−1 = s−1s|ω∧τ| = s−1ds(ω, τ).

4.1.1 Expanding repellers

A large class of distance expandingmaps are the expanding repellers,whichwedefine
and study in this subsection.

Definition 4.1.4. Let U be a nonempty open subset of ℝd and T : U → ℝd a C1 map
(that is, T is continuously differentiable on U). Let X be a nonempty compact subset
of U . The triple (X,U ,T) is called an expanding repeller provided that the following
conditions are satisfied:
(a) T(X) = X.
(b) There exists λ > 1 such that ‖T′(x)v‖ ≥ λ‖v‖ for all v ∈ ℝd and all x ∈ X.
(c) ⋂∞n=0 T

−n(U) = X.

The set X is sometimes called the limit set of the repeller.

Recall that T′(x) = DxT : ℝd → ℝd is, by definition, the unique bounded linear
operator such that

lim
y→x
‖T(y) − T(x) − DxT(y − x)‖

‖y − x‖
= 0,

where ‖v‖ = ∑di=1 v
2
i is the standard Euclidean norm on ℝd. To shorten notation, we

write T′(x)v instead of T′(x)(v) or (T′(x))(v). Alternatively, we write DxT(v). In what
follows, |T′(x)| denotes the operator norm of T′(x), that is,

T
′(x) = sup{

T
′(x)v : ‖v‖ ≤ 1},
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while ‖T′‖ denotes the supremum of those norms on U, that is,

T
′ = sup

x∈U

T
′(x).

Condition (c) states that the points whose orbits are confined to U forever are ex-
actly the points of X. Thus each point which is not in X eventually escapes from U un-
der iteration by T. Usually, the closer such a point is to X the longer the escape fromU
takes. Such points are said to be repelled from X. Wewill now show that every expand-
ing repeller, when restricted to the set X, is a distance expanding map. In fact, we will
show that an expanding repeller is distance expanding on an open κ-neighborhood
of X denoted by B(X, κ) := {y ∈ ℝd : d(y,X) < κ}. Note that the proof here uses many of
the ideas we will present more generally in the next section. In particular, we use the
following topological fact, which we state here without proof: For every open cover 𝒰
of a compact metric space X, there exists a positive number ϵ, called a Lebesgue num-
ber, such that every subset of X of diameter less than ϵ is contained entirely in some
element of the cover 𝒰 .

Theorem 4.1.5. If (X,U ,T) is an expanding repeller, then there exists κ > 0 such that the
map T|B(X,κ) : B(X, κ)→ ℝd is distance expanding. In particular, the system T|X : X → X
is distance expanding.

Proof. As this property depends solely on the first iterate of T, the proof relies solely
on condition (b) of the definition of a repeller and on the compactness of X.

Since T is differentiable on U, its derivative T′(x) exists at every point x ∈ U . Fur-
thermore, as T ∈ C1(U), its derivative T′ is continuous on U . Condition (b) guarantees
that for each x ∈ X there exists r′x > 0 such that

T
′(z)v ≥

1 + λ
2
‖v‖, ∀v ∈ ℝd, ∀z ∈ B(x, r′x).

In particular, this implies that T′(z) is one-to-one, and is therefore a linear isomor-
phism of ℝd, for every z ∈ ⋃x∈X B(x, r

′
x) ⊇ X. Therefore, the inverse function theorem

(Theorem A.2.1) asserts that for every x ∈ X there exists r′′x > 0 such that T : B(x, r
′′
x )→

T(B(x, r′′x )) is a diffeomorphism, and T : ⋃x∈X B(x, r
′′
x )→ ℝ

d is a local diffeomorphism.
For every x ∈ X, let rx = min{r′x , r

′′
x }. The family of open balls {B(x, rx) : x ∈ X} forms an

open cover of X and hence admits a Lebesgue number δ > 0. That is, for every x ∈ X
there is x̃ ∈ X such that B(x, δ/2) ⊆ B(x̃, rx̃). Setting r = δ/2, it follows that

T
′(z)v ≥

1 + λ
2
‖v‖, ∀v ∈ ℝd, ∀z ∈ B(X, r) := ⋃

x∈X
B(x, r) (4.1)

and T : B(x, r)→ T(B(x, r)) is a diffeomorphism for all x ∈ X. Denote the inverse of the
diffeomorphism T : B(x, r)→ T(B(x, r)) by

T−1x : T(B(x, r))→ B(x, r). (4.2)
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As the set T(B(x, r)) is open for all x ∈ X, let qx be the largest radius Q > 0 such that
B(T(x),Q) ⊆ T(B(x, r)). As X is compact, we have q := infx∈X qx > 0. (Take the fact that
q > 0 for granted for the moment; the proof of Lemma 4.2.2 below applies here.) Then

B(T(x), q) ⊆ T(B(x, r)), ∀x ∈ X. (4.3)

Furthermore, since it is the image of an open set under a diffeomorphism, the set
T−1x (B(T(x), q)) is open for all x ∈ X. Let px be the largest 0 < P ≤ r such that B(x,P) ⊆
T−1x (B(T(x), q)). As X is compact, we have p := infx∈X p(x) > 0. (Take the fact that p > 0
for granted for the moment; a variation of the proof of Lemma 4.2.2 below can also be
applied here.) Note that p ≤ r by definition. In addition,

B(x, p) ⊆ T−1x (B(T(x), q)), ∀x ∈ X. (4.4)

Let y1, y2 ∈ B(X, p/2) be such that ‖y1 − y2‖ < p/2. Then there exists x ∈ X such
that y1, y2 ∈ B(x, p). Therefore, T(y1),T(y2) ∈ B(T(x), q) according to (4.4). Let S =
[T(y1),T(y2)] be the line segment joining T(y1) and T(y2). Due to the convexity of balls
in ℝd, we know that S ⊆ B(T(x), q). Moreover, T−1x (T(y1)) = y1 and T−1x (T(y2)) = y2.
Therefore, the curve T−1x (S) joins the points y1 to y2, and thus

‖y1 − y2‖ ≤ ℓ(T
−1
x (S)) = ∫

S

(T
−1
x )
′(w)u dw, (4.5)

where ℓ(T−1x (S)) stands for the length of the curve T
−1
x (S) and u is the unit vector in the

direction from T(y1) to T(y2). Since T−1x (S) ⊆ T
−1
x (B(T(x), q)) ⊆ B(x, r), for any w ∈ S

inequality (4.1) can be applied with z = T−1x (w) and v = (T
−1
x )
′(w)u to yield

1 = ‖u‖ = T
′(T−1x (w))((T

−1
x )
′(w)u) ≥

1 + λ
2
(T
−1
x )
′(w)u.

Consequently,

(T
−1
x )
′(w)u ≤

2
1 + λ
, ∀w ∈ S,

and hence (4.5) gives

‖y1 − y2‖ ≤ ∫
S

2
1 + λ

dz = 2
1 + λ
ℓ(S) = 2

1 + λ
T(y1) − T(y2)

.

In other words,

d(T(y1),T(y2)) ≥
1 + λ
2

d(y1, y2), ∀y1, y2 ∈ B(X, p/2) with d(y1, y2) < p/2.

Letting κ = p/2 completes the proof.
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4.1.2 Hyperbolic Cantor sets

In this section, we introduce and study in detail one special class of expanding re-
pellers (and so of distance expanding maps), namely, hyperbolic Cantor sets. Their
construction is a prototype of conformal iterated function systems and conformal
graph directedMarkov systems, whose systematic account will be given in Chapter 19.

Recall that a similarity map S : ℝd → ℝd is a bijection that multiplies all distances
by the same positive real number r called similarity ratio, that is,

S(x) − S(y)
 = r‖x − y‖, ∀x, y ∈ ℝ

d.

When r = 1, a similarity is called an isometry. Two sets are called similar if one is the
image of the other under a similarity. A similarity S : ℝd → ℝd with ratio r takes the
form

S(x) = rA(x) + b,

where A : ℝd → ℝd is an d × d orthogonal matrix and b ∈ ℝd is a translation vector.
Similarities preserve shapes, including line segments, lines, planes, parallelism, and
perpendicularity. Similarities preserve angles but do not necessarily preserve orienta-
tion (in fact, S and A preserve orientation if and only if det(A) > 0).

Note also that S′(x) = rA for all x ∈ ℝd. Therefore, ‖S′(x)v‖ = r‖v‖ for all v ∈ ℝd.
Consequently, |S′(x)| = r for all x ∈ ℝd, and hence ‖S′‖ = r.

Let E be a finite set such that #E ≥ 2. Let φe : ℝ
d → ℝd, e ∈ E, be similarities for

which there exists a compact set X0 ⊆ ℝd with the following properties:
(i) 0 < ‖φ′e‖ < 1 for all e ∈ E.
(ii) φe(X0) ⊆ X0 for all e ∈ E.
(iii) φe(X0) ∩ φf (X0) = 0 for all e, f ∈ E with e ̸= f .

Construction of the limit set X.
We now define the limit set X by constructing a descending sequence of compact

sets (Xn)∞n=1, all of which are subsets of ⋃e∈E φe(X0). The set Xn is called the nth level
set of the construction. The limit set X will be the intersection of the level sets.

We will use symbolic dynamics notation. For every ω ∈ E∗, define

φω := φω1
∘ φω2
∘ ⋅ ⋅ ⋅ ∘ φω|ω| .

The maps φe, e ∈ E, are said to be the generators of the construction, and so we say
that the map φω is generated by the word ω. The nth level set Xn is the disjoint union
of the images of X0 under all maps generated by words of length n, namely

Xn := ⋃
ω∈En

φω(X0). (4.6)
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As a finite union of compact sets, each level set Xn is compact. Moreover, by condi-
tion (ii),

Xn+1 = ⋃
ω∈En+1 φω|n(φωn+1 (X0)) ⊆ ⋃

τ∈En
φτ(X0) = Xn (4.7)

for all n ∈ ℕ. As the intersection of a descending sequence of nonempty compact sets,
the limit set

X :=
∞

⋂
n=1

Xn (4.8)

is a nonempty compact set.
The limit set X is a topological Cantor set (the proof of this fact is postponed) with

the property that

⋃
e∈E

φe(X) = X.

Indeed, we first observe that the generators map the nth level set down to the (n+ 1)th
level set since

⋃
e∈E

φe(Xn) = ⋃
e∈E
⋃
ω∈En

φe(φω(X0))

= ⋃
e∈E
⋃
ω∈En

φeω(X0)

= ⋃
τ∈En+1 φτ(X0)

= Xn+1 (4.9)

for all n ∈ ℕ.
Moreover, x ∈ ⋂∞n=1[⋃e∈E φe(Xn)] if and only if for every n ∈ ℕ there exists en ∈ E

such that x ∈ φen (Xn). Sinceφe(Xn) ⊆ φe(X0) for all e ∈ E, the en’s are unique according
to condition (iii). By this very samecondition, since x ∈ φen (Xn)∩φen+1 (Xn+1) ⊆ φen (X0)∩
φen+1 (X0), it turns out that en = en+1 for all n ∈ ℕ. In summary, x ∈ ⋂∞n=1[⋃e∈E φe(Xn)]
if and only if there is a unique e ∈ E such that x ∈ φe(Xn) for all n ∈ ℕ. In other words,

⋃
e∈E
[
∞

⋂
n=1

φe(Xn)] =
∞

⋂
n=1
[⋃
e∈E

φe(Xn)]. (4.10)

It follows from (4.8), (4.9), (4.10), and the injectivity of the generators that

⋃
e∈E

φe(X) = ⋃
e∈E

φe(
∞

⋂
n=1

Xn) = ⋃
e∈E
[
∞

⋂
n=1

φe(Xn)]

=
∞

⋂
n=1
[⋃
e∈E

φe(Xn)] =
∞

⋂
n=1

Xn+1 = X.
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By induction, we have that

⋃
ω∈En

φω(X) = X, ∀n ∈ ℕ. (4.11)

Construction of a neighborhood U of X.

Since φe(X0) ∩ φf (X0) = 0 for all e ̸= f and since there are finitely many compact
sets φe(X0), e ∈ E, the continuity of the generators ensures the existence of an open
ε-neighborhood B(X0, ε) := {x ∈ ℝd : d(x,X0) < ε} of X0 such that

φe(B(X0, ε)) ∩ φf (B(X0, ε)) = 0, ∀e ̸= f .

Let

U = ⋃
e∈E

φe(B(X0, ε)). (4.12)

Construction of a map T : U → ℝd.

Finally, we define a map T : U → ℝd by

T|φe(B(X0 ,ε)) = φ
−1
e . (4.13)

This piecewise-similar map is well-defined since the sets φe(B(X0, ε)), e ∈ E, are mu-
tually disjoint.

Proof that the triple (X,U ,T) is an expanding repeller.

Condition (a) for a repeller is rather easy to check. First, note that T maps the nth
level set up to the (n − 1)th level set, that is,

T(Xn) = Xn−1, ∀n ∈ ℕ. (4.14)

Indeed, let n ∈ ℕ. Since φe(Xn−1) ⊆ φe(B(X0, ε)) and since T|φe(B(X0 ,ε)) = φ
−1
e for every

e ∈ E, we have

T(Xn) = ⋃
ω∈En

T(φω(X0))

= ⋃
τ∈En−1⋃e∈E T(φeτ(X0))

= ⋃
τ∈En−1⋃e∈E T ∘ φe(φτ(X0))

= ⋃
τ∈En−1 φτ(X0)

= Xn−1.

Then

T(X) = T(
∞

⋂
n=1

Xn) ⊆
∞

⋂
n=1

T(Xn) =
∞

⋂
n=1

Xn−1 = X.
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This establishes that T(X) ⊆ X. To prove the reverse inclusion, pick x ∈ X. Then x ∈ Xn
for every n ∈ ℕ. Fix an arbitrary e ∈ E. Then φe(x) ∈ Xn+1 for every n ∈ ℕ. Thus
φe(x) ∈ X. It follows that x = φ−1e (φe(x)) = T(φe(x)) ∈ T(X). Hence X ⊆ T(X). Since
both inclusions hold, we conclude that

T(X) = X. (4.15)

Condition (b) for a repeller is also straightforward to verify. Indeed, let x ∈ U .
There exists a unique ex ∈ E such that x ∈ φex (B(X0, ε)). Then, for all v ∈ ℝ

d,

T
′(x)v =

(T|φex (B(X0 ,ε))
)′(x)v =

(φ
−1
ex )
′(x)v =

φ
′
ex

−1‖v‖

≥ min
e∈E

1
‖φ′e‖
‖v‖ = 1

M
‖v‖, (4.16)

whereM := maxe∈E ‖φ′e‖ < 1 by condition (i).
Finally, we show that condition (c) for a repeller is fulfilled. First, we observe that

T−n(U) = ⋃
ω∈En+1 φω(B(X0, ε)), ∀n ∈ ℤ+. (4.17)

Indeed, by definition of U, the relationship holds when n = 0. For the inductive step,
let x ∈ U and n ∈ ℕ. Then

x ∈ T−n(U)⇐⇒ T(x) ∈ T−(n−1)(U)
⇐⇒ T(x) ∈ ⋃

ω∈En
φω(B(X0, ε))

⇐⇒ φ−1f (x) ∈ ⋃
ω∈En

φω(B(X0, ε)), if x ∈ φf (B(X0, ε))

⇐⇒ x ∈ ⋃
τ∈En+1 φτ(B(X0, ε)).

By induction, (4.17) holds.
Now, observe that the similarity map φe enjoys the property that

φe(B(X0, ε)) = B(φe(X0),
φ
′
e
ε) ⊆ B(φe(X0),Mε).

By an induction argument, we deduce that

φω(B(X0, ε)) = B(φω(X0),
φ
′
ω
ε) ⊆ B(φω(X0),M

|ω|ε), ∀ω ∈ E∗. (4.18)

Therefore,

⋃
ω∈En

φω(B(X0, ε)) ⊆ ⋃
ω∈En

B(φω(X0),M
nε)

= B( ⋃
ω∈En

φω(X0),M
nε)

= B(Xn,M
nε), ∀n ∈ ℕ. (4.19)
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It follows that (cf. Exercise 4.6.4)

X =
∞

⋂
n=1

Xn =
∞

⋂
n=1
⋃
ω∈En

φω(X0) ⊆
∞

⋂
n=1
⋃
ω∈En

φω(B(X0, ε)) ⊆
∞

⋂
n=1

B(Xn,M
nε) = X.

From this and (4.17), we conclude that

X =
∞

⋂
n=1
⋃
ω∈En

φω(B(X0, ε)) =
∞

⋂
n=0

T−n(U). (4.20)

This establishes condition (c), and completes the proof that the triple (X,U ,T) is an
expanding repeller.

Alternative construction of the limit set X and proof that X is a topological Cantor set.

The limit set X can also be constructed in a slightly different way. Let ω ∈ E∞.
Since (by condition (ii))

φω|n+1 (X0) = φω|n(φωn+1 (X0)) ⊆ φω|n (X0) (4.21)

and since

diam(φω|n (X0)) =
φ
′
ω|n
diam(X0) ≤ M

n diam(X0) (4.22)

for all n ∈ ℕ, the sets (φω|n (X0))
∞
n=1 form a descending sequence of nonempty com-

pact sets whose diameters tend to 0 (by condition (i)). Therefore, ⋂∞n=1 φω|n (X0) is a
singleton. Define the coding map π : E∞ → ℝd by

{π(ω)} :=
∞

⋂
n=1

φω|n (X0).

This map is injective. Indeed, if ω ̸= τ ∈ E∞, then there is a smallest n ∈ ℕ such that
ωn ̸= τn. It follows from the injectivity of the generators and condition (iii) that

{π(ω)} ∩ {π(τ)} ⊆ φω|n (X0) ∩ φτ|n (X0)

= [φω|n−1(φωn
(X0))] ∩ [φω|n−1(φτn (X0))]

= φω|n−1(φωn
(X0) ∩ φτn (X0))

= 0.

We claim that

X = π(E∞). (4.23)
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Indeed, letω ∈ E∞. Sinceφω|n (X0) ⊆ Xn for all n ∈ ℕ, we have {π(ω)} = ⋂
∞
n=1 φω|n (X0) ⊆

⋂∞n=1 Xn = X. Therefore, π(E
∞) ⊆ X. Now, let x ∈ X. Then x ∈ Xn for every n ∈ ℕ. This

means that there exists a unique ω(n) ∈ En such that x ∈ φω(n) (X0). The uniqueness of
the ω(n)’s implies that ω(n+1)|n = ω(n). Define ω ∈ E∞ to be such that ω|n = ω(n) for all
n ∈ ℕ. Then x ∈ φω(n) (X0) = φω|n (X0) for all n ∈ ℕ. Thus x = π(ω). Hence X ⊆ π(E

∞).
Since both inclusions hold, the claim has been shown.

Furthermore, the map π is continuous. This ensues from the fact that, for every
ρ ∈ E∗,

diam(π([ρ])) ≤ diam(φρ(X0)) ≤ M
|ρ| diam(X0). (4.24)

In summary, the map π : E∞ → X is a continuous bijection between two compact
metrizable spaces. Thus π : E∞ → X is a homeomorphism and X is a homeomorphic
image of E∞, that is, X is a topological Cantor set.

For later purposes, we further note that φω1
∘ π ∘ σ(ω) = π(ω) for all ω ∈ E∞. In

light of (4.13), this means that

π ∘ σ = T ∘ π, (4.25)

that is, the symbolic system (E∞, σ) is topologically conjugate to the dynamical system
(X,T) via the coding map π.

One final word: Condition (i) is the reason for calling X an hyperbolic Cantor set.
In differentiable dynamical systems, hyperbolicity takes the shape of a derivative that
stays away from 1.

Example 4.1.6. Let φe : ℝ → ℝ, e ∈ E := {0, 2}, be the two contracting similarities
defined by

φe(x) =
x + e
3
.

Let X0 = I := [0, 1] be the unit interval. The limit set X defined in Subsection 4.1.2
is called the middle-third Cantor set and is usually denoted by C. Let ε = 1/3. Then
B(X0, ε) = (−1/3, 4/3) and

U = φ0((−1/3, 4/3)) ∪ φ2((−1/3, 4/3)) = (−1/9, 4/9) ∪ (5/9, 10/9).

Moreover, T : U → ℝ is defined by T(x) = 3x − e if x ∈ φe(B(X0, ε)), that is,

T(x) = { 3x if x ∈ (−1/9, 4/9)
3x − 2 if x ∈ (5/9, 10/9).

In two dimensions, the most classic examples of hyperbolic Cantor sets are Sier-
piński triangles (also called Sierpiński gaskets) and Sierpiński carpets. The following
example is a natural generalization of the middle-third Cantor set.
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Example 4.1.7. Letφe : ℝ
2 → ℝ2, e ∈ E := {0, 1, 2}, be the three contracting similarities

defined by

φ0(x, y) = (
x
3
,
y
3
)

φ1(x, y) = (
x + 1
3
,
y +√3

3
)

φ2(x, y) = (
x + 2
3
,
y
3
).

LetX0 be the filled-in equilateral trianglewith vertices (0,0), (1/2,√3/2) and (1,0). The
limit set X defined in Subsection 4.1.2 is a totally disconnected Sierpinski triangle. Let
ε = 1/3. Then U = ⋃e∈E φe(B(X0, ε)) and the map T : U → ℝ2 is defined by

T(x, y) := φ−1e (x, y), ∀(x, y) ∈ φe(B(X0, ε)), ∀e ∈ E.

That is,

T(x, y) =
{{{
{{{
{

(3x, 3y) if (x, y) ∈ φ0(B(X0, ε))

(3x − 1, 3y −√3) if (x, y) ∈ φ1(B(X0, ε))

(3x − 2, 3y) if (x, y) ∈ φ2(B(X0, ε)).

Example 4.1.8. Let φe : ℝ
2 → ℝ2, e ∈ E := {0, 1, 2, 3}, be the following four contracting

similarities:

φ0(x, y) = (
x
4
,
y
4
), φ1(x, y) = (

x + 3
4
,
y
4
),

φ2(x, y) = (
x + 3
4
,
y + 3
4
), φ3(x, y) = (

x
4
,
y + 3
4
).

LetX0 = I2 be the unit square. The limit setX defined in Subsection 4.1.2 is a totally
disconnected Sierpinski carpet (see Figure 4.1). Let ε = 1/2. ThenU = ⋃e∈E φe(B(X0, ε))
and the map T : U → ℝ2 is defined by

T(x, y) := φ−1e (x, y), ∀(x, y) ∈ φe(B(X0, ε)), ∀e ∈ E.

That is,

T(x, y) =

{{{{{{
{{{{{{
{

(4x, 4y) if (x, y) ∈ φ0(B(X0, ε))

(4x − 3, 4y) if (x, y) ∈ φ1(B(X0, ε))

(4x − 3, 4y − 3) if (x, y) ∈ φ2(B(X0, ε))

(4x, 4y − 3) if (x, y) ∈ φ3(B(X0, ε)).
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Figure 4.1: The action of the four contracting similarities φ0, . . . ,φ3 on the closed unit square I2.

4.2 Inverse branches

In order for a map to have a properly defined inverse, it is necessary that the map be
injective. Nonetheless, we can get around the noninjectivity of a map by defining its
inverse branches as long as the map is locally injective. The following proposition is
the first step in the construction of the inverse branches of a distance expandingmap.

Proposition 4.2.1. Let T : X → X be a distance expanding map. For all x ∈ X, the
restriction T|B(x,δ) is injective.

Proof. For each x ∈ X, apply Remark 4.1.2(b) to B(x, δ).

We shall assume from this point on thatT : X → X is anopen, distance expanding
map of a compact metric space X. Note that the restriction T|F of T to a closed forward
T-invariant subset F of X need not be open (see Exercise 4.6.5). However, since T is
open, for every x ∈ X and r > 0 the set T(B(x, r)) is open and, therefore, contains a
nonempty open ball centered at T(x), say B(T(x), s(r)). Accordingly, we define

R(x, r) := sup{s > 0 : B(T(x), s) ⊆ T(B(x, r))} > 0.

In fact, R(x, r) is the radius of the largest ball centered at T(x) which is contained in
T(B(x, r)). In the following lemma, we investigate the greatest lower bound of the radii
R(x, r) for a fixed r > 0.

Lemma 4.2.2. For every r > 0, we have R(r) := inf{R(x, r) : x ∈ X} > 0.

Proof. We shall prove this lemma by contradiction. Suppose that there exists some
r > 0 for which R(r) = 0. This means that there exists a sequence (xn)∞n=1 in X such
that limn→∞ R(xn, r) = 0. Since X is compact, the sequence (xn)∞n=1 has a convergent
subsequence, say (xnk )

∞
k=1. Define x := limk→∞ xnk . Then there exists K ∈ ℕ such that

d(xnk , x) < r/2 for all k ≥ K. In particular, this implies that

B(x, r/2) ⊆ B(xnk , r), ∀k ≥ K. (4.26)

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.2 Inverse branches | 109

Now, since T is an open map, there exists η > 0 such that

B(T(x), η) ⊆ T(B(x, r/2)). (4.27)

Moreover, T(x) = limk→∞ T(xnk ) since T is continuous. Thus there exists K′ ∈ ℕ such
that d(T(xnk ),T(x)) < η/2 for all k ≥ K

′. In particular, this implies that

B(T(xnk ), η/2) ⊆ B(T(x), η), ∀k ≥ K
′. (4.28)

From (4.26), (4.27), and (4.28), it follows that for all k ≥ max{K,K′},

B(T(xnk ), η/2) ⊆ B(T(x), η) ⊆ T(B(x, r/2)) ⊆ T(B(xnk , r)).

Therefore, R(xnk , r) ≥ η/2 for all k ≥ max{K,K′}, which contradicts our assumption
that limn→∞ R(xn, r) = 0. Thus inf{R(x, r) : x ∈ X} > 0.

Remark 4.2.3. Notice that we did not use the distance expanding property of T in the
proof, so this result holds for all open, continuous maps of a compact metric space.
The compactness of the space X ensures that for any fixed r, the radii R(x, r) have a
positive greatest lower bound R(r). Thus the image of any ball of radius r contains a
ball of radius R(r).

Lemma 4.2.2 shows that for each r > 0 the image of the ball of radius r centered
at the point x contains the ball of radius R(r) centered at T(x). For an open, distance
expanding map T, the quantity

ξ := min{δ,R(δ)} > 0, (4.29)

where δ is a constant delimiting the neighborhoods of expansion of the map, is of
particular interest. Indeed, given that, according to Proposition 4.2.1, the restricted
map T|B(x,δ) is injective for every x ∈ X, we can define its inverse

T|−1B(x,δ) : T(B(x, δ))→ B(x, δ).

By the definition of ξ given above, we have that

B(T(x), ξ ) ⊆ T(B(x, δ))

for every x ∈ X. This inclusion is illustrated in Figure 4.2. We denote the restriction of
the inverse of the map T|B(x,δ) to B(T(x), ξ ) by

T−1x := (T

−1
B(x,δ))
B(T(x),ξ ) : B(T(x), ξ )→ B(x, δ). (4.30)

Note that T−1x is injective but not necessarily surjective. The map T−1x is the local
inverse branch of T that maps T(x) to x. As T expands distances by a factor λ > 1,
one naturally expects the local inverse branches T−1x , x ∈ X, to contract distances by a
factor λ−1. This is indeed the case.
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Figure 4.2: Illustration of the ball B(T (x), ξ)mapped under the inverse branch T−1x inside the ball
B(x, δ).

Proposition 4.2.4. The local inverse branches T−1x , for each x ∈ X, are contractionswith
(contraction) ratio λ−1.

Proof. Fix x ∈ X. We aim to prove that if y, z ∈ B(T(x), ξ ), then

d(T−1x (y),T
−1
x (z)) ≤ λ

−1d(y, z),

where λ is a constant of expansion for T. Since T−1x (B(T(x), ξ )) ⊆ B(x, δ), both T−1x (y)
and T−1x (z) lie in B(x, δ), and hence

d(T−1x (y),T
−1
x (z)) < 2δ.

Therefore, the expanding property of T guarantees that

d(y, z) = d(T ∘ T−1x (y),T ∘ T
−1
x (z)) ≥ λd(T

−1
x (y),T

−1
x (z)).

Consequently,

d(T−1x (y),T
−1
x (z)) ≤ λ

−1d(y, z).

Now, let w ∈ B(T(x), ξ ). Proposition 4.2.4 implies that

d(T−1x (w), x) = d(T
−1
x (w),T

−1
x (T(x))) ≤ λ

−1d(w,T(x)) < λ−1ξ .

Thus

T−1x (B(T(x), ξ )) ⊆ B(x, λ
−1ξ ) ⊆ B(x, ξ ).

Thanks to this property, we can define the local inverse branches of the iterates of T.
Let x ∈ X and n ∈ ℕ. The local inverse branch of Tn that maps Tn(x) to x is defined to
be

T−nx := T
−1
x ∘ T
−1
T(x) ∘ ⋅ ⋅ ⋅ ∘ T

−1
Tn−1(x) : B(Tn(x), ξ )→ B(x, ξ ). (4.31)

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.2 Inverse branches | 111

This composition will henceforth be called the inverse branch of Tn determined by the
point x. See Figure 4.3.

Figure 4.3: The map T−1Tn−1(x) sends the ball B(T n(x), ξ) into the ball B(T n−1(x), ξ), which is in turn
mapped into the ball B(T n−2(x), ξ) by T−1Tn−2(x) and so on, until finally T−1x sends us back inside B(x, ξ).

Remark 4.2.5. Let x ∈ X and y, z ∈ B(Tn(x), ξ ). A successive application of Proposi-
tion 4.2.4 at the points Tn−1(x), Tn−2(x), . . . ,T(x) and x establishes that

d(T−nx (y),T
−n
x (z)) ≤ λ

−n d(y, z).

In particular,

T−nx (B(T
n(x), ξ ′)) ⊆ B(x, λ−nξ ′) ⊆ B(x, ξ ′), ∀0 < ξ ′ ≤ ξ , ∀n ∈ ℕ, (4.32)

and hence

B(Tn(x), ξ ′) ⊆ Tn(B(x, λ−nξ ′)) ⊆ Tn(B(x, ξ ′)), ∀0 < ξ ′ ≤ ξ , ∀n ∈ ℕ. (4.33)

The inverse branches of an open, distance expanding map are easiest to grasp
with the aid of an example. Below, we first calculate the inverse branches for the map
T(x) := 2x (mod 1), and secondly give the example of a subshift of finite type.

Example 4.2.6. Consider the map T : 𝕊1 → 𝕊1 defined by

T(x) := { 2x if x ∈ [0, 1/2]
2x − 1 if x ∈ [1/2, 1].

Note that T is the map Tm we have seen in Example 1.1.3(b), withm = 2. The subscript
2 has been dropped to simplify notation in what follows. We have that T is distance
expanding on neighborhoods of size δ = 1/4 with expanding constant λ = 2. More
precisely, if x, y ∈ 𝕊1 with d(x, y) < 1/2, then d(T(x),T(y)) = 2d(x, y). Here, the metric d
is the usual Euclideanmetric on the circle. So, for instance, d(1/8, 7/8) = 1/4, whereas
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d(T(1/8),T(7/8)) = d(1/4, 3/4) = 1/2. Also, T is easily seen to be an open map. We
can now consider the inverse branches of T. Let us start by investigating the inverse
branches determined by the points 1/4 and 3/4.We know, by Proposition 4.2.1 (and, in
this case, by inspection), that T is injective on any open subinterval of 𝕊1 with radius
at most 1/4. In particular, T is injective on the intervals (0, 1/2) and (1/2, 1). Notice that
T(1/4) = 1/2 = T(3/4). Moreover,

T(B( 14 ,
1
4)) = T((0,

1
2)) = (0, 1) = B(

1
2 ,

1
2) = B(T(

1
4),

1
2)

and

T(B( 34 ,
1
4)) = T((

1
2 , 1)) = (0, 1) = B(

1
2 ,

1
2) = B(T(

3
4),

1
2).

Therefore, R(1/4, 1/4) = R(3/4, 1/4) = 1/2. In fact, the image under T of any ball
B(x, 1/4) contains a ball of radius 1/2 about the point T(x). Thus, in this case, R(δ) =
R(1/4) = 1/2 and so ξ := min{δ,R(δ)} = 1/4. Hence, we obtain inverse branches
T−1x : B(T(x), 1/4) → B(x, 1/4). Note that every interval B(T(x), 1/4) has two inverse
branches defined upon it, one taking points back to an interval around the preimage
ofT(x) lying in (0, 1/2) and the other sending points to an interval around the preimage
of T(x) lying in (1/2, 1). For example, the two inverse branches defined on the interval
B(1/2, 1/4) = (1/4, 3/4) are

T−11
4
: ( 14 ,

3
4)→ (0,

1
2), defined by T−11

4
(y) := y

2

and

T−13
4
: ( 14 ,

3
4)→ (

1
2 , 1), defined by T−13

4
(y) := y+1

2 .

Let us now consider the inverse branches of the iterates ofT. For each point x ∈ 𝕊1,
we have the inverse branch of Tn determined by x:

T−nx : B(T
n(x), 14)→ B(x, 14).

Recall that this map is injective but not surjective. In particular, if x = 2−(n+1), the map
T−n2−(n+1) : B(1/2, 1/4) → B(2−(n+1), 1/4) turns out to be T−n2−(n+1) (y) = y/2n. For the map T,
every interval B(Tn(x), 1/4) has 2n inverse branches defined upon it.

Example 4.2.7 (Subshifts of finite type). It was shown in Example 4.1.3 that the shift
map σ : E∞A → E∞A is distance expanding, with λ = s−1 and δ = 1/2 when E∞A is
endowed with the metric ds. Also, by Theorem 3.2.12, we know that the shift map is an
open map. Now, let ω ∈ E∞A and observe that σ−1(ω) = {iω : Aiω1

= 1}. We want to find
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the inverse branches of σ. Since 2δ = 1, we first describe the open ball B(ω, 1) upon
which we know the shift map to be injective, due to Proposition 4.2.1:

B(ω, 1) = {τ ∈ E∞A : s
|ω∧τ| < 1} = {τ ∈ E∞A : |ω ∧ τ| ≥ 1} = [ω1].

In otherwords,B(ω, 1) is the initial cylinder set determined by the first letter ofω. Then
the inverse branch of σ determined by the word ω is the map

σ−1ω : B(σ(ω), 1)→ B(ω, 1)

with the property that σ−1ω (σ(ω)) = ω, that is,

σ−1ω : [ω2] → [ω1]
τ → ω1τ.

In fact, note that σ−1ω : [ω2] → [ω1ω2]. Similarly, the inverse branch of the nth iterate
of σ determined by the word ω is the map which adds to each word τ ∈ [ωn+1] a prefix
(or initial block) consisting of the first n letters of ω, that is,

σ−nω : [ωn+1] → [ω1ω2 . . .ωnωn+1]
τ → ω1ω2 . . .ωnτ.

The next lemma states that inverse branches determined by distinct points have
disjoint images.

Lemma 4.2.8. Let z ∈ X. Let n ∈ ℕ and x, y ∈ T−n(z) with x ̸= y. Then

T−nx (B(z, ξ )) ∩ T
−n
y (B(z, ξ )) = 0.

Proof. Let 1 ≤ k ≤ n be the smallest integer such that Tk(x) = Tk(y) and further let
w := Tk(x) = Tk(y). By Remark 4.2.5, we deduce that

T−nx (B(z, ξ )) = T
−k
x ∘ T

−(n−k)
Tk(x) (B(z, ξ ))

⊆ T−kx (B(T
k(x), ξ )) = T−kx (B(w, ξ )).

Likewise,

T−ny (B(z, ξ )) ⊆ T
−k
y (B(w, ξ )).

It is thus sufficient to show that the sets T−kx (B(w, ξ )) and T
−k
y (B(w, ξ )) are disjoint. To

shorten notation in what follows, set

wx := T
k−1(x) and wy := T

k−1(y).

Then

T−kx = T
−(k−1)
x ∘ T−1wx

and T−ky = T
−(k−1)
y ∘ T−1wy

. (4.34)

Moreover, by the definition of k and the hypothesis that x ̸= y, we have that T(wx) =
T(wy) = w and also that wx ̸= wy. Consequently, in light of Remark 4.1.2(b), it follows

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



114 | 4 Distance expanding maps

that d(wx ,wy) ≥ 2δ. Recalling that ξ ≤ δ, we deduce that

B(wx , ξ ) ∩ B(wy , ξ ) = 0.

According to Remark 4.2.5, we know that

T−1wx
(B(w, ξ )) ⊆ B(wx , ξ ) and T−1wy

(B(w, ξ )) ⊆ B(wy , ξ ).

Therefore,

T−1wx
(B(w, ξ )) ∩ T−1wy

(B(w, ξ )) = 0.

It then follows from (4.34) that

T−kx (B(w, ξ )) ∩ T
−k
y (B(w, ξ )) = T

−(k−1)
x (T−1wx

(B(w, ξ ))) ∩ T−(k−1)y (T−1wy
(B(w, ξ )))

⊆ T−(k−1)(T−1wx
(B(w, ξ ))) ∩ T−(k−1)(T−1wy

(B(w, ξ )))

= T−(k−1)(T−1wx
(B(w, ξ )) ∩ T−1wy

(B(w, ξ )))

= T−(k−1)(0) = 0.

Thus T−nx (B(z, ξ )) ∩ T
−n
y (B(z, ξ )) ⊆ T

−k
x (B(w, ξ )) ∩ T

−k
y (B(w, ξ )) = 0.

We now give a description of the preimage of any set of small diameter in terms of
the local inverse branches of T or of one of its iterates.

Lemma 4.2.9. For all z ∈ X, for all A ⊆ B(z, ξ ) and for all n ∈ ℕ, we have that

T−n(A) = ⋃
x∈T−n(z)T−nx (A).

Proof. Fix z ∈ X and A ⊆ B(z, ξ ). Since T−n(A) ⊇ ⋃x∈T−n(z) T−nx (A) for all n ∈ ℕ, we
only need to prove the opposite inclusion. We shall do this by induction. As the basis
of induction, we first do it for n = 1. So, let w ∈ T−1(A). We aim to show that w ∈
⋃x∈T−1(z) T−1x (A). Since T(w) ∈ A ⊆ B(z, ξ ), we have that z ∈ B(T(w), ξ ). Now define x :=
T−1w (z) ∈ T

−1(z). We shall show that w ∈ T−1x (A). Recall that T
−1
x : B(T(x), ξ ) → B(x, ξ ).

Since T(x) = T(T−1w (z)) = z, we then have that T
−1
x : B(z, ξ )→ B(x, ξ ). As T(w) ∈ B(z, ξ ),

the pointw′ := T−1x (T(w)) is well-defined. Moreover,w
′ ∈ T−1x (A), as T(w) ∈ A. Thus, to

see thatw ∈ T−1x (A), it only remains to show thatw′ = w.Weknow thatT(w′) = T(w)by
definition ofw′. So, according to Remark 4.1.2(b), it suffices to show that d(w′,w) < 2δ.
Using Proposition 4.2.4, observe that

d(w′, x) = d(T−1x (T(w)),T
−1
x (T(x))) ≤ λ

−1d(T(w),T(x)) = λ−1d(T(w), z) < λ−1ξ < δ

and

d(w, x) = d(T−1w (T(w)),T
−1
w (z)) ≤ λ

−1d(T(w), z) < λ−1ξ < δ.
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These last two inequalities combine to give

d(w′,w) ≤ d(w′, x) + d(x,w) < δ + δ = 2δ.

So w = w′ := T−1x (T(w)) ∈ T
−1
x (A). We have thus shown that

T−1(A) = ⋃
x∈T−1(z)T

−1
x (A).

For the sake of the inductive step, suppose that the assertion of our lemma holds for
all n = 1, . . . , k. Then

T−(k+1)(A) = T−k(T−1(A)) = T−k( ⋃
x∈T−1(z)T

−1
x (A))

= ⋃
x∈T−1(z)T

−k(T−1x (A))

= ⋃
x∈T−1(z) ⋃y∈T−k(x)T

−k
y (T
−1
x (A))

= ⋃
v∈T−(k+1)(z)T

−(k+1)
v (A).

This completes the proof.

We now describe conditions under which a transitive system is very strongly tran-
sitive (see Definitions 1.5.14–1.5.15).

Lemma 4.2.10. Every open, distance expanding and transitive dynamical system T :
X → X is very strongly transitive.

Proof. Given that T is open and X compact, it suffices to show that T is strongly tran-
sitive. Let U be an open subset of X. Let also ξ be as in (4.29). According to Theo-
rem 1.5.11, there exists a point x ∈ U and a number 0 < ξ ′ ≤ ξ such that B(x, ξ ′) ⊆ U
and𝒪+(x) = X. From (4.33), we deduce that

X = 𝒪+(x) =
∞

⋃
n=0

B(Tn(x), ξ ′) ⊆
∞

⋃
n=0

Tn(B(x, ξ ′)) ⊆
∞

⋃
n=0

Tn(U).

Since U is an arbitrary open set, we conclude that T is strongly transitive.

4.3 Shadowing

Imagine that you observe the dynamics of a system T : X → X by means of some
instrument which is only accurate up to a given α ≥ 0. In other words, assume that
your instrument can only locate the position of a point with a precision at best α.
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Then, with your instrument, you will not be able to distinguish points that are within
a distance α from each other. In particular, this means that if a point x0 lands under
the map T within a distance α of a point x1, then you will not be able to distinguish x1
from the image of x0 under T. Similarly, if x1 lands under the map T within a distance
α of a point x2, then youwill not be able to distinguish x2 from the image of x1 under T,
and so on. To summarize, this sequence (xi) can be mistaken for the orbit of the point
x0, although, in reality, it is not the orbit of x0 and, in fact, it is not necessarily an orbit
at all. The following definition and terminology make this precise.

Definition 4.3.1. Let α ≥ 0. A sequence (xi)ni=0, where n can be finite or infinite, is said
to be an α-pseudo-orbit if

d(T(xi), xi+1) < α, ∀0 ≤ i < n.

In particular, notice that the orbit𝒪+(x) of a point x ∈ X can be written as𝒪+(x) =
{x0 = x, x1 = T(x), x2 = T2(x), . . .}, which precisely means that d(T(xi), xi+1) = 0 for all
i ∈ ℤ+. Thus, an orbit, when converted to the sequence of the iterates of a point, is a
0-pseudo-orbit. Inversely, a 0-pseudo-orbit is merely a sequence of successive iterates
of a point.

In the following definition, we come to the important concept of shadowing an
α-pseudo-orbit, as advertised in the title of this section.

Definition 4.3.2. A point x ∈ X is said to β-shadow a pseudo-orbit (xi)ni=0 if

d(T i(x), xi) < β, ∀0 ≤ i ≤ n.

That is, the orbit of x lies within a distance β of the pseudo-orbit (xi)ni=0.

Pseudo-orbits and shadowing (along with the forthcoming closing lemma), form
a long lived, important, and convenientway of studying dynamical systems exhibiting
some sort of hyperbolic or expanding behavior. At the very least, they can be traced
back to the breakthrough work of Anosov and Sinai (see [4, 5]). They found a mature,
elegant form in [11]. Our approach follows [57], which in turn is based upon [11].

We shall now prove that any infinite sequence in X can be δ-shadowed by at most
one point of the space if the dynamical system T : X → X under consideration is a
map expanding balls of radius δ.

Proposition 4.3.3. Let T : X → X be a distance expanding map with δ as a constant
delimiting the neighborhoods of expansion. Then every infinite sequence of points (xi)∞i=0
in X can be δ-shadowed by at most one point of X.

Proof. Suppose that y and z are two points which each δ-shadow the same sequence
(xi)∞i=0. For all i ≥ 0, we then have

d(T i(y), xi) < δ and d(T i(z), xi) < δ.
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Then, by the triangle inequality, for all i ≥ 0 we have that

d(T i(y),T i(z)) < 2δ.

By the expanding property of T, we deduce, for all i ≥ 0, that

d(T i+1(y),T i+1(z)) ≥ λ d(T i(y),T i(z)).

So, by induction, we conclude that

d(Tn(y),Tn(z)) ≥ λnd(y, z)

for all n ≥ 0. However, since the compact space X has finite diameter, this can only
happen when y = z.

More generally, we have the following result on the existence and uniqueness of
shadowing.

Proposition 4.3.4. Let T : X → X be an open, distance expanding map. Let 0 < β < ξ ,
where ξ is as defined in (4.29). Let α = min{ξ , (λ − 1)β/2} and let (xi)ni=0 be an α-pseudo-
orbit (where n can be finite or infinite). For each 0 ≤ i < n, let x′i = T

−1
xi (xi+1). Then:

(a) For all 0 ≤ i < n, we have that

T−1x′i (B(xi+1, β/2)) ⊆ B(xi, β/2)
and thus, by induction, the composite map

T−1x′0 ∘ ⋅ ⋅ ⋅ ∘ T−1x′i : B(xi+1, β/2)→ B(x0, β/2)

is well-defined. Henceforth, we denote this composition by T−1i .
(b) (T−1i (B(xi+1, β/2)))

n−1
i=0 is a descending sequence of nonempty compact sets.

(c) The intersection⋂n−1i=0 T
−1
i (B(xi+1, β/2)) is nonempty and all of its elements β-shadow

the α-pseudo-orbit (xi)ni=0.
(d) If n =∞, then⋂∞i=0 T

−1
i (B(xi+1, β/2)) consists of the unique point that β-shadows the

infinite α-pseudo-orbit (xi)∞i=0.

Proof. Toward part (a), let x ∈ B(xi+1, β/2). Since x′i = T
−1
xi (xi+1), we have T(x

′
i ) = xi+1

and hence x′i = T
−1
x′i (T(x′i )) = T−1x′i (xi+1). Using Proposition 4.2.4, it follows that

d(T−1x′i (x), xi) ≤ d(T−1x′i (x), x′i ) + d(x′i , xi)
= d(T−1x′i (x),T−1x′i (xi+1)) + d(T−1xi (xi+1),T−1xi (T(xi)))
≤ λ−1d(x, xi+1) + λ

−1d(xi+1,T(xi))
< λ−1(β/2 + α) ≤ λ−1(β/2 + (λ − 1)β/2) = β/2.

Hence T−1x′i (x) ∈ B(xi, β/2), and this proves the first assertion.
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To prove part (b), notice that T−1i = T
−1
i−1 ∘ T

−1
x′i for every 1 ≤ i < n. Using part (a), we

deduce that

T−1i (B(xi+1, β/2)) = T
−1
i−1 ∘ T

−1
x′i (B(xi+1, β/2)) ⊆ T−1i−1(B(xi, β/2)).

This proves the second assertion.
Toprovepart (c), recall that the intersectionof adescending sequenceof nonempty

compact sets is a nonempty compact set. From part (b), we readily obtain that
⋂n−1i=0 T

−1
i (B(xi+1, β/2)) ̸= 0. Moreover, for all 0 ≤ j < n, observe that

T j(
n−1
⋂
i=0

T−1i (B(xi+1, β/2))) ⊆ T
j(T−1j (B(xj+1, β/2))) ⊆ B(xj+1, β/2).

This implies that d(T j(x), xj+1) < β for all 0 ≤ j < n and x ∈ ⋂n−1i=0 T
−1
i (B(xi+1, β/2)).

This proves that every such x β-shadows the α-pseudo-orbit (xi)ni=0. If n = ∞, Propo-
sition 4.3.3 guarantees that only one such x exists since β < ξ ≤ δ, and part (d) fol-
lows.

We will deduce several important facts from the preceding proposition. Before
doing so, we need another definition.

Definition 4.3.5. A map T : X → X satisfies the shadowing property if for all β > 0
there exists an α > 0 such that every infinite α-pseudo-orbit is β-shadowed by a point
of the space X.

Corollary 4.3.6 (Existence and uniqueness of shadowing). Every open, distance ex-
panding map satisfies the shadowing property. Moreover, if β is small enough (namely,
if β < ξ ), then one can choose α so that every infinite α-pseudo-orbit is β-shadowed by
one and only one point of the space. In fact, α can be chosen as in Proposition 4.3.4.

In light of the above corollary, we will say that every open, distance expanding
map satisfies the unique-shadowing property.

Corollary 4.3.7 (Closing lemma). For every β > 0, there exists an α > 0 with the follow-
ing property: If x is a point such that d(Tn(x), x) < α for some n ∈ ℕ, then there exists
a periodic point of period n which β-shadows the orbit (T i(x))n−1i=0 . In fact, if β < ξ then α
can be chosen as in Proposition 4.3.4.

Proof. First, note that if the property holds for some β̃ > 0 and a corresponding α(β̃),
then it also holds for any β ≥ β̃ and α(β) = α(β̃). Thus we may assume without loss of
generality that 0 < β < ξ . Choose α as in Proposition 4.3.4. Now, consider the infinite
sequence

x,T(x),T2(x), . . . ,Tn−1(x), x,T(x),T2(x), . . . ,Tn−1(x), x, . . .
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This sequence can be expressed as (xi)∞i=0, where xkn+j = T j(x) for all k ∈ ℤ+ and
0 ≤ j < n. We claim that this sequence constitutes an α-pseudo-orbit. Indeed, when
0 ≤ j < n − 1, we have

d(T(xkn+j), xkn+j+1) = d(T(T
j(x)),T j+1(x)) = 0 < α,

while when j = n − 1, we have

d(T(xkn+j), xkn+j+1) = d(T(xkn+n−1), xkn+n) = d(T(xkn+n−1), x(k+1)n)
= d(T(Tn−1(x)), x) = d(Tn(x), x) < α.

Thus the sequence (x,T(x), . . . ,Tn−1(x), x,T(x), . . . ,Tn−1(x), x,T(x), . . .) is an α-pseudo-
orbit, and by Corollary 4.3.6 there exists a unique point y which β-shadows it. We also
notice that the point Tn(y) β-shadows this infinite sequence, since d(T j(Tn(y)), xj) =
d(Tn+j(y), xj) = d(Tn+j(y), xn+j) < β. As β-shadowing is unique, we conclude that
Tn(y) = y. Hence y is a periodic point of period nwhich β-shadows the orbit (T i(x))n−1i=0 .

From this result, we can infer that any open, distance expanding map has at least
one periodic point. Let Per(T) denote the set of periodic points of T. We shall prove
the following.

Corollary 4.3.8 (Closing lemma, existence of a periodic point). Every open, distance
expandingmap of a compactmetric space has a periodic point. More precisely, Per(T) ⊆
⋃x∈X ω(x) ⊆ Per(T), and as the middle set is nonempty, so is Per(T).

Proof. The left-hand side inclusion is immediate as x ∈ ω(x) for all x ∈ Per(T). In order
to prove the right-hand side one, choose any x ∈ X. Recall that the set ω(x), which
is nonempty since X is compact, is the set of accumulation points of the sequence
(Tn(x))∞n=0 of iterates of x. Let y ∈ ω(x). Fix momentarily an arbitrary β > 0 and let α :=
α(β) > 0 be as in the closing lemma. Then there exists a subsequence (Tnk (x))∞k=0 such
that d(Tnk (x), y) < α/2 for all k ∈ ℕ. Therefore, d(Tnk (x),Tnj (x)) < α for all j, k ∈ ℕ. Fix
k and let j := k + 1. Further, define z := Tnk (x). Then

d(Tnk+1−nk (z), z) = d(Tnk+1 (x),Tnk (x)) < α.
According to the closing lemma, there then exists a periodic pointw of period nk+1−nk
which β-shadows the orbit (T i(z))nk+1−nk−1i=0 = (T i(x))nk+1−1i=nk

. Then

d(w, y) ≤ d(w, z) + d(z, y) ≤ β + α/2.

Thismeans that there is a periodic point at a distance atmost β+α/2 from y. As β tends
to zero, we also have that α tends to zero. Hence, the point y belongs to the closure of
the set of periodic points.
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As an immediate consequence of this corollary, we obtain the following result.

Corollary 4.3.9 (Density of periodic points). The set of periodic points of an open, dis-
tance expanding map T : X → X of a compact metric space X is dense if and only if
⋃x∈X ω(x) = X.

From the definition of transitivity (cf. Definition 1.5.6), we also obtain the follow-
ing.

Corollary 4.3.10 (Density of periodic points for transitive maps). For every transitive,
open, distance expanding map of a compact metric space, the set of periodic points is
dense.

In the previous two results, we imposed some restriction on the dynamics of the
map. This time we impose some conditions on the space on which the system lives.

Corollary 4.3.11 (Density of periodic points on a connected space). For every open
distance expanding map of a connected compact metric space, the set of periodic
points is dense.

Proof. Fix an arbitrary x ∈ X. We aim to demonstrate that there are periodic points
arbitrarily close to x. Let 0 < β < ξ , where ξ was defined in (4.29), and letα := α(β) > 0
be as in the closing lemma and Proposition 4.3.4. Let {U1,U2, . . . ,Up} be a finite open
cover ofX of diameter less than β (that is, the diameter of eachUi is less than β). Choose
any n ∈ ℕ such that (p + 1)λ−nβ < α. Since X is connected, there exists a β-chain of
length at most p + 1 joining x to Tn(x). In other words, there exists a finite sequence

x =: y0, y1, . . . , yk−1, yk := T
n(x)

such that d(yj, yj+1) < β for each 0 ≤ j < k, where k ≤ p. The elements of the β-chain
are chosen to be such that yj, yj+1 ∈ Uij for all 0 ≤ j < k. By applying an appropriately
chosen inverse branch of Tn to this chain, we can construct a (λ−nβ)-chain of length
at most p + 1 ending at x. Indeed, let y(n)k = T

−n
x (T

n(x)) = x. By recursion on j from k − 1
to 0, we define y(n)j = T

−n
y(n)j+1 (yj). This results in the finite sequence

y(n)0 = T
−n
y(n)1 (y0), . . . , y(n)k−1 = T−ny(n)k (yk−1) = T−nx (yk−1), y(n)k = x.

Observe that for all 0 ≤ j < k we have

d(y(n)j , y
(n)
j+1) = d(T

−n
y(n)j+1 (yj),T−ny(n)j+1(Tn(y(n)j+1)))

≤ λ−nd(yj,T
n(y(n)j+1))

= λ−nd(yj, yj+1)
< λ−nβ.
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Thus we have defined a (λ−nβ)-chain of length at most p+ 1 ending at x. Consequently,
by the triangle inequality, we deduce that

d(y(n)0 , x) = d(y
(n)
0 , y
(n)
k ) ≤ (k + 1)λ

−nβ ≤ (p + 1)λ−nβ < α.

Note also that Tn(y(n)0 ) = y0 = x. It follows from these last two facts that the infinite
sequence

y(n)0 ,T(y
(n)
0 ), . . . ,T

n−1(y(n)0 ),T
n(y(n)0 ) = x, y

(n)
0 ,T(y

(n)
0 ), . . . ,T

n−1(y(n)0 ), x, . . .

is an infiniteα-pseudo-orbit. Then, according to Proposition 4.3.4(d), there is a unique
point z that β-shadows this pseudo-orbit. However, Tn(z) also β-shadows this pseudo-
orbit. Thus z is a periodic point of period n. This implies in particular that there exists
a periodic point which is β-close to x. As 0 < β < ξ was chosen arbitrarily, we deduce
that the point x is a periodic point or a point of accumulation of periodic points. As
x was chosen arbitrarily in X, we conclude that the periodic points of T are dense
in X.

Note that there exist open distance expanding maps defined upon disconnected
compact metric spaces whose set of periodic points is not dense (see Exercise 4.6.6).

4.4 Markov partitions

As was alluded to in Chapter 3, symbolic dynamical systems are often used to “repre-
sent” other dynamical systems. In the remainder of this chapter, we shall show that
an open, expanding map T : X → X of a compact metric space X can be represented
by a subshift of finite type σ : F → F, where F ⊆ E∞ for some finite set E.

In general, one cannot expect that T and σ be topologically conjugate. For in-
stance, T might act on a connected space X, whereas σ always acts on a totally dis-
connected subshift F ⊆ E∞. As continuous maps preserve connectedness, it is then
out of the question that σ : F → F be a factor of T : X → X, let alone that σ and T
be topologically conjugate. In general, the best we may hope for is that T be a factor
of σ and that most points of X, ideally points which form a dense Gδ-subset of X, be
represented by a unique symbolic point ω in F. Ideally, F would be a subshift of finite
type, that is, F would be of the form E∞A for some incidence/transition matrix A. This
turns out to be possible.

The construction of such representations can be roughly described as follows.
Cover the space X with some special finite collection ℛ = {R1,R2, . . . ,Rp} of subsets
of X. The collection ℛ will be called a Markov “partition”. We will shortly give some
justification for the conditions imposed on a Markov “partition”, but first we outline
how the “partition” can be used to generate symbolic representations of points in X.
The orbit of any point x ∈ X may be tracked by recording the members ofℛ in which
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each iterate of x lands. Wemay thereby associate to each point x at least one symbolic
point ω = (ωi)

∞
i=0 ∈ E

∞ := {1, 2, . . . , p}∞ such that

T i(x) ∈ Rωi
, ∀i ≥ 0.

Equivalently, this can be expressed by requiring that

x ∈
∞

⋂
i=0

T−i(Rωi
).

However, it is often possible to associatemore than one symbolic point to a given point
x in this way. For instance, this occurs whenever the orbit of x falls in the nonempty
intersection of two members of the Markov “partition” ℛ. We immediately obtain at
least two representatives for such an x. In order to achieve a one-to-one association on
as large a subset of X as possible (ideally on a dense Gδ-subset of X), we require that
the sets Rj intersect as little as possible. Namely, we require that they only intersect
within their boundaries, if they intersect at all. Recall from topology that the boundary
of a closed set is a nowhere dense set. This justifies condition (b) in the definition of a
Markov partition below.

On the other hand, in order that sets of the form ⋂∞i=0 T
−i(Rωi
) each generate at

most one point of X, we require that the sets Rj be “small,” in some sense. For open
expanding maps, this means that the diameters of the Rj should be small enough that
the inverse branches of T i be defined on them (i. e., they should be of diameter less
than ξ ), so that these inverse branches contract the Rj by a factor λ−i. Moreover, to
track the entire orbit of a point x, we usually track its first n iterates and then “take
the limit” as n tends to infinity to track the entire orbit. This means that, should the
finite intersection⋂ni=0 T

−i(Rωi
) be nonempty for each n ≥ 0, wewould like the infinite

intersection ⋂∞i=0 T
−i(Rωi
) to be nonempty. This can be guaranteed by requiring that

the Rj be closed or, equivalently, compact.
All of the above requirements can be fulfilled in any compact metric space X. In-

deed, it is not too difficult to construct a finite coverℛ = {R1,R2, . . . ,Rp} consisting of
closed sets of diameters as small as desired and which intersect only in their bound-
aries (see Exercise 4.6.10). Although the association x → ω is one-to-one on a dense
set in X and the closure F of the symbolic points hence generated is a subshift of
E∞ := {1, 2, . . . , p}∞, this subshift is generally not of finite type. To ensure that F be
of finite type, we impose condition (c) in the definition of a Markov partition. More-
over, condition (a) ensures that closed sets Rj with the property that Rj = 𝜕Rj are not
added to the partition, since such sets only provide information about the dynamics
of a negligible set of points of X.

Note that Markov partitions are generally not partitions of the space in the usual
sense of disjoint sets, as this would imply that the space is disconnected.
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Definition 4.4.1. A finite collection of closed sets ℛ = {R1,R2, . . . ,Rp}, which covers
the space X is called aMarkov partition for a dynamical system T : X → X if it satisfies
the following three conditions:
(a) Ri = Int(Ri) for all 1 ≤ i ≤ p.
(b) Int(Ri) ∩ Int(Rj) = 0 for all i ̸= j.
(c) If T(Int(Ri)) ∩ Int(Rj) ̸= 0, then T(Ri) ⊇ Rj.

In other words, condition (a) requires that each element of a Markov partition be
the closure of its interior, condition (b) states that the elements of a Markov partition
can only intersect on their boundaries, and condition (c) states that if the image of the
interior of an element Ri intersects the interior of an element Rj, then the image of Ri
completely covers Rj. Since T is an open map, note that condition (b) is equivalent to
(b′) Ri ∩ Int(Rj) = 0 for all i ̸= j.

For the same reason, condition (c) can be replaced by either of the following condi-
tions:
(c′) If T(Ri) ∩ Int(Rj) ̸= 0, then T(Ri) ⊇ Rj.
(c′′) If T(Int(Ri)) ∩ Rj ̸= 0, then T(Ri) ⊇ Rj.

Example 4.4.2. Let T be the shift map σ : E∞A → E∞A . Then the one-cylinders {[e]}e∈E
form a Markov partition for σ. Indeed, every one-cylinder is both open and closed,
and hence satisfies condition (a) of the definition of a Markov partition. Condition (b)
is clearly satisfied, since words which begin with different letters are distinct. Finally,
σ([f ])∩ [e] ̸= 0means that Afe = 1, that is, fe is an admissible word. Therefore, σ([f ]) ⊇
σ([fe]) = [e]. Thus condition (c) is satisfied.

Example 4.4.3. Once again, let T be the shift map σ : E∞A → E∞A . Fix any n ∈ ℕ. Then
the n-cylinders {[ω]}ω∈EnA form aMarkov partition for σ. The proof of this fact is similar
to the one given in Example 4.4.2.

Example 4.4.4. Fixm ∈ ℕ. Recall themap Tm(x) := mx (mod 1) from Example 1.1.3(b).
The collection of closed intervals

{Ri = [
i
m
,
i + 1
m
] : 0 ≤ i < m}

is a Markov partition for Tm. Indeed, one can immediately verify that the first two con-
ditions are satisfied. Concerning condition (c’), observe that Tm(Ri) = 𝕊1 for all i, and
thus condition (c’) is fulfilled. Indeed, Tm(Ri) ⊇ Rj for all 0 ≤ i, j < m.

Example 4.4.5. Fix m ∈ ℕ and consider again the map Tm(x) := mx (mod 1). Now, fix
k ∈ ℕ. The collection of closed intervals

{Ri = [
i
mk ,

i + 1
mk ] : 0 ≤ i < m

k}
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is another Markov partition for Tm. Exactly as in the previous example, the first two
conditions are clearly satisfied. Concerning condition (c’), observe that

Tm(Ri) = [
mi
mk ,

m(i + 1)
mk ] = [

mi
mk ,

mi +m
mk ] =

mi+m−1
⋃
j=mi
[

j
mk ,

j + 1
mk ]

for all i, and thus condition (c’) is fulfilled.

We nowpresent themain result of this section. Examples 4.4.3 and 4.4.5 show that
the shift map and them-times maps Tm, for allm ∈ ℕ, admit arbitrarily small Markov
partitions. This is the case for all open, distance expanding maps, as we show in the
next theorem. Part of the proof given here is due to David Simmons.

Theorem 4.4.6 (Existence of Markov partitions). Every open, distance expanding map
T : X → X of a compact metric space X admits Markov partitions of arbitrarily small
diameters.

Proof. Since T is an open, distance expanding map, it follows from Corollary 4.3.6
that T has the unique-shadowing property. Choose 0 < β < ξ /8. Then there exists
α > 0 such that every α-pseudo-orbit is β-shadowed by exactly one point of X. As T is
continuous on a compact metric space, it is uniformly continuous. Therefore, we can
choose 0 < γ < min(β,α/2) such that for all x1, x2 ∈ X with d(x1, x2) < γ, we know that

d(T(x1),T(x2)) < α/2.

Step 1. Establishment of a factor map φ between a subshift (Ω, σ) and (T ,X).

The collection {B(x,γ) : x ∈ X} is an open cover of the compact spaceX. Therefore,
there exists a finite set E ⊆ X such that

X = ⋃
a∈E

B(a,γ).

Define the space Ω by

Ω := {ω = (ωi)
∞
i=0 ∈ E

∞ : d(T(ωi),ωi+1) < α for all i ≥ 0}.

Observe that σ(Ω) ⊆ Ω.Hence, (Ω, σ) is a subshift of E∞ according to Theorem 3.2.4. By
definition, each element of the space Ω is an α-pseudo-orbit and, therefore, for each
ω ∈ Ω there exists a unique point whose orbit β-shadowsω. Let us call this pointφ(ω).
In this way, we define a map φ : Ω → X, and by uniqueness of shadowing we have
that

φ ∘ σ = T ∘ φ. (4.35)

In order for φ to be a factor map, we hope that φ is continuous and surjective. Let
us first show that φ is continuous. Let ω, τ ∈ Ω. As φ(ω) β-shadows ω, we have that
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d(T i(φ(ω)),ωi) < β for all i ≥ 0. Similarly, d(T i(φ(τ)), τi) < β for all i ≥ 0. Since ωi = τi
for all 0 ≤ i < |ω ∧ τ|, we can apply the triangle inequality to obtain that

d(T i(φ(ω)),T i(φ(τ))) < 2β < ξ ≤ δ, ∀0 ≤ i < |ω ∧ τ|,

where δ > 0 comes from the definition of T being expanding. So,

d(T i+1(φ(ω)),T i+1(φ(τ))) ≥ λ d(T i(φ(ω)),T i(φ(τ))), ∀0 ≤ i < |ω ∧ τ|.

It follows by a straightforward argument that

d(φ(ω),φ(τ)) ≤ λ−|ω∧τ| diam(X) = (s|ω∧τ|)−
log λ
log s diam(X)

= diam(X)(ds(ω, τ))
− log λlog s .

Thus φ is Hölder continuous with exponent − log λ/ log s and is therefore continuous.
In order to show that φ is surjective, let x ∈ X. Then, for all i ≥ 0, we have that

T i(x) ∈ B(ωi,γ) for someωi ∈ E. As d(T i(x),ωi) < γ, it follows from the choice of γ that
d(T i+1(x),T(ωi)) < α/2 for all i ≥ 0. We deduce that

d(T(ωi),ωi+1) ≤ d(T(ωi),T
i+1(x)) + d(T i+1(x),ωi+1) < α/2 + γ < α

for all i ≥ 0. Thus ω = ω0ω1ω2 . . . ∈ Ω and, by construction, x γ-shadows ω, that is,
φ(ω) = x. The proof of the surjectivity of φ is complete.

Step 2. A property of the images of one-cylinders.

For each a ∈ E, define the sets

Pa := φ([a]) = φ({ω ∈ Ω : ω0 = a}).

All sets Pa are closed in X since they are the images under the factor mapφ of the one-
cylinder sets [a], which are themselves closed in the compact space Ω. For each a ∈ E,
set

W(a) := {b ∈ E : d(T(a), b) < α}.

We claim that the following property is satisfied:

T(Pa) = ⋃
b∈W(a)

Pb. (4.36)

Indeed, if x ∈ Pa, then x = φ(ω) for some ω ∈ Ω with ω0 = a. By the defini-
tion of Ω, it follows that ω1 ∈ W(a). Thus, invoking (4.35), we obtain that T(x) =
T(φ(ω)) = φ(σ(ω)) ∈ φ([ω1]), and hence T(x) ∈ Pω1

⊆ ⋃b∈W(a) Pb. Consequently,
T(Pa) ⊆ ⋃b∈W(a) Pb. Conversely, let y ∈ Pb for some b ∈ W(a). Then y = φ(ω) for some
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ω ∈ Ω with ω0 = b. By the definition ofW(a), the concatenation aω belongs to the set
Ω and therefore, using (4.35) again, we get that

y = φ(ω) = φ(σ(aω)) = T(φ(aω)) ∈ T(Pa).

Consequently, ⋃b∈W(a) Pb ⊆ T(Pa). Relation (4.36) has been proved. This relation can
be expressed by means of an incidence/transition matrix A : E × E → {0, 1} by setting

Aab := {
1 if T(Pa) ⊇ Pb
0 if T(Pa) ̸⊇ Pb.

Then (4.36) means that

T(Pa) = ⋃
{b∈E :Aab=1}

Pb. (4.37)

It is also worth observing that Pa ⊆ B(a, β) for every a ∈ E. Thus, if Pa ∩ Pb ̸= 0
for some a, b ∈ E, then Pa ∪ Pb ⊆ B(a, 4β) ∩ B(b, 4β). Since 4β < ξ /2, the restriction
T : B(a, 4β)→ T(B(a, 4β)) is a homeomorphism. In particular, T is injective on Pa ∪Pb.

Step 3. Construction of the elements of a Markov partition.

For each nonempty subset S of E, define BS to be

BS := [⋂
a∈S

Pa] ∩ [ ⋂
b∈E\S
(X \ Pb)].

We claim that the family

ℛ := {RS := Int(BS) : S ∈ 𝒫+(E)}

forms a Markov partition, where 𝒫+(E) := {S ⊆ E : RS ̸= 0}.
First, we shall show that for each nonempty subset S ⊆ E, the set T(BS) is a union

of elements ofℛ. Toward this end, fix S ∈ 𝒫+(E), pick aS ∈ S and define

EaS := {e ∈ E : Pe ∩ PaS ̸= 0}.

Note that S ⊆ EaS . Indeed, S ∈ 𝒫+(E)means that RS ̸= 0. This implies that BS ̸= 0,
which in particular implies that⋂a∈S Pa ̸= 0. It ensues that Pa ∩PaS ̸= 0 for every a ∈ S.

Moreover, recall that T is injective on Pa ∪ Pb whenever Pa ∩ Pb ̸= 0. Then

T(BS) = T([⋂
a∈S

Pa] ∩ [ ⋂
b∈E\S
(X \ Pb)])

= T([PaS ∩⋂
a∈S

Pa] ∩ [PaS ∩ ⋂
b∈E\S
(X \ Pb)])
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= T(PaS ∩⋂
a∈S

Pa) ∩ T(PaS ∩ ⋂
b∈E\S
(X \ Pb))

= T(⋂
a∈S

PaS ∩ Pa) ∩ T( ⋂
b∈E\S

PaS ∩ (X \ Pb))

= T(⋂
a∈S

PaS ∩ Pa) ∩ T( ⋂
b∈E\S
(PaS \ Pb))

= [⋂
a∈S

T(PaS ∩ Pa)] ∩ [ ⋂
b∈EaS \S

T(PaS \ Pb)]

∩ [ ⋂
b∈E\EaS

T(PaS \ Pb)]

= [⋂
a∈S
(T(PaS ) ∩ T(Pa))] ∩ [ ⋂

b∈EaS \S
(T(PaS ) \ T(Pb))]

∩ [ ⋂
b∈E\EaS

T(PaS )]

= [⋂
a∈S

T(Pa)] ∩ [ ⋂
b∈EaS \S
(X \ T(Pb))]

= [⋂
a∈S
⋃

{c∈E :Aac=1}
Pc] ∩ [ ⋂

b∈EaS \S
⋂

{d∈E :Abd=1}
(X \ Pd)]

= [⋂
a∈S
⋃

{c∈E :Aac=1}
Pc] ∩ [⋂

b∈Ŝc
(X \ Pb)], (4.38)

where Ŝc := ⋃b∈EaS \S{d ∈ E : Abd = 1}.

Now, let x ∈ T(BS) be arbitrary. Define

S(x) := {b ∈ E \ Ŝc : x ∈ Pb}.

Observe that if e ∈ S(x), then x ∈ Pe. However, if e ∉ S(x) then e ∈ Ŝc or x ∈ X \ Pe. In
the former case, there exists a ∈ EaS \ S such that Aae = 1. This implies that T(Pa) ⊇ Pe.
We will now show that x ∈ X \ Pe also in this case. By way of contradiction, suppose
that x ∈ Pe. Then there exists y ∈ Pa such that T(y) = x. On the other hand, since
x ∈ T(BS), there exists z ∈ ⋂i∈S Pi ∩ ⋂j∈E\S(X \ Pj) such that T(z) = x. As aS ∈ S, we
know that z ∈ PaS . Thus we have y, z ∈ Pa ∪ PaS with T(y) = x = T(z). As a ∈ EaS , we
get Pa ∩ PaS ̸= 0, and hence T is injective on Pa ∪ PaS . We deduce that y = z. As a ∉ S,
we have z ∈ X \ Pa by definition of z. So y = z ∈ Pa ∩ (X \ Pa) = 0. This contradiction
shows that x ∈ X \ Pe. Thus, in either case, if e ∉ S(x), then x ∈ X \ Pe.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



128 | 4 Distance expanding maps

In summary, if e ∈ S(x) then x ∈ Pe whereas if e ∉ S(x) then x ∈ X \ Pe. Conse-
quently,

x ∈ [ ⋂
i∈S(x)

Pi] ∩ [ ⋂
j∈E\S(x)
(X \ Pj)] = BS(x). (4.39)

Next, we claim that BS(x) ⊆ T(BS). Indeed, since x ∈ T(BS), it follows from (4.38)
that for every i ∈ S, there exists ji ∈ E such that Aiji = 1 and x ∈ Pji . Since x ∈ BS(x)
by (4.39), we deduce that ji ∈ S(x) and Pji ⊇ BS(x). Hence,

⋂
i∈S

Pji ⊇ BS(x). (4.40)

Since Ŝc ⊆ E \ S(x) (by definition of S(x)), we have that

BS(x) ⊆ ⋂
j∈E\S(x)
(X \ Pj) ⊆ ⋂

j∈Ŝc
(X \ Pj).

In conjunction with (4.40), we therefore obtain that

BS(x) ⊆ [⋂
i∈S

Pji] ∩ [⋂
j∈Ŝc
(X \ Pj)].

Thus, according to (4.38),

BS(x) ⊆ T(BS),

proving the claim made. It follows immediately that

T(BS) = ⋃
x∈T(BS)

BS(x).

Keep in mind that, though the set T(BS) generally contains infinitely many points x,
the sets S(x) are all subsets of the finite set E and, therefore, there are only finitely
many different subsets S(x). Let S̃ ⊆ 𝒫(E) be the finite set consisting of all different
subsets S(x), x ∈ T(BS). Then

T(BS) = ⋃
Q∈S̃

BQ. (4.41)

Since Int(C) ⊆ C = C for any closed set C, we have

Int(RS) ⊆ RS .

On the other hand, as Int(Y) ⊆ Int(Int(Y)) for any set Y , we have

RS = Int(BS) ⊆ Int(Int(BS)) = Int(RS).

So, condition (a) of Definition 4.4.1 is satisfied.
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To verify condition (b), assume that S1, S2 are two nonempty subsets of E such
that S1 ̸= S2. Without loss of generality, say there exists e ∈ S1 \ S2. Then BS1 ⊆ Pe and
BS2 ⊆ X \ Pe ⊆ X \ Int(Pe). Hence, RS1 ⊆ BS1 ⊆ Pe, and thus

Int(RS1 ) ⊆ Int(Pe).

Also,

RS2 ⊆ BS2 ⊆ X \ Int(Pe) = X \ Int(Pe).

Therefore,

Int(RS1 ) ∩ RS2 = 0, (4.42)

which is more than enough to prove condition (b).
Aiming now to prove that condition (c) holds, we will first show that T(RS) =

⋃Q∈S̃ RQ. Using (4.41), the fact that T is a homeomorphism on B(aS , ξ ) ⊇ PaS ⊇ BS
and the fact that S̃ is a finite set, we obtain that

T(RS) = T(Int(BS)) = T(Int(BS))

= Int(T(BS)) = Int(T(BS)) = Int(⋃
Q∈S̃

BQ)

= Int(⋃
Q∈S̃

BQ) (4.43)

⊇ ⋃
Q∈S̃

Int(BQ) = ⋃
Q∈S̃

Int(BQ)

= ⋃
Q∈S̃

RQ. (4.44)

On the other hand, if x ∈ Int(⋃Q∈S̃ BQ), then for every open set G containing x, we
have H := G ∩ Int(⋃Q∈S̃ BQ) ̸= 0. This means that H is a nonempty open subset of
⋃Q∈S̃ BQ. Therefore, by virtue of the Baire category theorem, there exists Q ∈ S̃ such
that H ∩ Int(BQ) ̸= 0. Thus G ∩ Int(BQ) ̸= 0. Taking now the sets G to be open balls
centered at x with radii converging to zero and recalling that the set S̃ is finite, we
conclude that there exists Qx ∈ S̃ such that x ∈ Int(BQx

) = RQx
. Hence we have shown

that

Int(⋃
Q∈S̃

BQ) ⊆ ⋃
Q∈S̃

RQ.

Along with (4.43) and (4.44), this yields

T(RS) = ⋃
Q∈S̃

RQ. (4.45)
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So, if T(RS) ∩ Int(RZ) ̸= 0, there exists Q ⊆ S̃ such that RQ ∩ Int(RZ) ̸= 0, which, by
invoking (4.42), yields that Q = Z. Employing (4.45), this gives that

T(RS) ⊇ RZ .

This establishes condition (c′).
It only remains to demonstrate that ℛ is a cover of X. Indeed, {BS : S ⊆ E} is

obviously a cover of X. Hence, {BS : S ⊆ E} is also a cover of X. Thus, by the same
argument as the one above based on the Baire category theorem, we get that

⋃
S⊆E

RS = ⋃
S⊆E

Int(BS) = ⋃
S⊆E

Int(BS) = X.

Therefore,ℛ covers X and we are done.

4.5 Symbolic representation generated by a Markov partition

Let T : X → X be an open, distance expanding map of a compact metric space X
with constants λ and δ. Letℛ = {R1, . . . ,Rp} be a Markov partition with diam(ℛ) < δ.
This partition induces the alphabet E := {1, . . . , p} and an incidence/transition matrix
A : E × E → {0, 1} defined by

Aij := {
1 if T(Int(Ri)) ∩ Int(Rj) ̸= 0
0 otherwise.

(4.46)

Let σ : E∞A → E∞A be the subshift of finite type induced by A.

Lemma 4.5.1. If ω ∈ E∞A , then⋂∞n=0 T
−n(Rωn
) is a singleton.

Proof. For every i ∈ E, the restriction T|Ri : Ri → T(Ri) is injective since diam(Ri) < δ
(cf. Proposition 4.2.1). So the inverse map T−1i : T(Ri) → Ri is well-defined and is a
contraction with ratio λ−1. Note also that if Aij = 1 then T(Int(Ri)) ∩ Int(Rj) ̸= 0, and as
ℛ is a Markov partition, Rj ⊆ T(Ri). Then T−1(Rj) ∩ Ri ̸= 0. Consequently, for any set
B ⊆ Rj, we have

T−1(B) ∩ Ri = T
−1
i (B). (4.47)

Now, let ω ∈ E∞A . We claim that

n+1
⋂
k=0

T−k(Rωk
) = T−1ω0

∘ T−1ω1
∘ ⋅ ⋅ ⋅ ∘ T−1ωn

(Rωn+1 ), ∀n ≥ 0.
Weshall prove this claimby induction. For the casen = 0,wehave thatRω0

∩T−1(Rω1
) =

T−1ω0
(Rω1
) using (4.47). Suppose now that the claim holds for n = 0, . . . ,m. Using (4.47)
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again, we obtain

(m+1)+1
⋂
k=0

T−k(Rωk
) = Rω0

∩
m+2
⋂
k=1

T−k(Rωk
)

= Rω0
∩ T−1(

m+1
⋂
j=0

T−j(Rωj+1 ))
= Rω0
∩ T−1(

m+1
⋂
j=0

T−j(R(σ(ω))j ))

= Rω0
∩ T−1(T−1(σ(ω))0 ∘ ⋅ ⋅ ⋅ ∘ T

−1
(σ(ω))m (R(σ(ω))m+1 ))

= Rω0
∩ T−1(T−1ω1

∘ ⋅ ⋅ ⋅ ∘ T−1ωm+1 (Rωm+2 ))
= T−1ω0
(T−1ω1
∘ ⋅ ⋅ ⋅ ∘ T−1ωm+1 (Rωm+2 ))

= T−1ω0
∘ T−1ω1
∘ ⋅ ⋅ ⋅ ∘ T−1ωm+1 (Rω(m+1)+1 ).

So the claim is proved. The claim also shows that (⋂n+1k=0 T
−k(Rωk
))∞n=0 is a descending

sequence of nonempty compact sets. Using the fact that each T−1i is contracting with
ratio λ−1, we obtain

diam(
n+1
⋂
k=0

T−k(Rωk
)) ≤ λ−(n+1) diam(Rωn+1 ) ≤ λ−(n+1)δ.

Since limn→∞ λ−(n+1)δ = 0, the set⋂
∞
n=0 T
−n(Rωn
) is a singleton.

Thanks to this lemma, the coding map π : E∞A → X, where π(ω) is defined to be
the singleton point in the set

∞

⋂
n=0

T−n(Rωn
), (4.48)

is well-defined.
Amongst other properties, we want to show that the codingmap is Hölder contin-

uous. Recall that on a compact metric space, a map is Hölder continuous if and only if
it is locally Hölder continuous. That is, for a map f : (Y , dY )→ (Z, dZ)with Y compact,
it is sufficient to show that there exist constants δ > 0 and C ≥ 0 such that for every
x, y ∈ Y with dY (x, y) < δ, we have that dZ(f (x), f (y)) ≤ C(dY (x, y))α.

Theorem 4.5.2. The codingmap π : (E∞A , ds)→ (X, d) satisfies the following properties:
(a) The map π is Hölder continuous.
(b) The map π is surjective.
(c) The restriction of π to π−1(X \ ⋃∞n=0 T

−n(⋃pi=1 𝜕Ri)) is injective. So every point of the
forward T-invariant, dense Gδ-set X \ ⋃

∞
n=0 T
−n(⋃pi=1 𝜕Ri) has a unique preimage

under π.
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(d) The map π makes the following diagram commutative:

E∞A
π
??

σ ?? E∞A
π
??

X
T
?? X

That is, π ∘ σ = T ∘ π.

In particular, π is a factor map between the symbolic system/representation σ : E∞A →
E∞A and the original dynamical system T : X → X.

Note that X \ ⋃∞n=0 T
−n(⋃pi=1 𝜕Ri) is the set of all points in X whose orbit un-

der T never encounters the boundary of the elements of the Markov partition ℛ =
{R1,R2, . . . ,Rp}.

Proof. In order to shorten the notation, in the following proof we write:

Z := X \
∞

⋃
n=0

T−n(
p
⋃
i=1
𝜕Ri).

(a)Wewill prove that π is (locally) Lipschitz continuouswith respect to themetric dλ−1 .
Recall that dλ−1 (ω, τ) = λ−|ω∧τ|. Choose ω, τ ∈ E∞A to be such that |ω ∧ τ| ≥ 1. Therefore,

π(ω) ∈
|ω∧τ|−1
⋂
n=0

T−n(Rωn
) =
|ω∧τ|−1
⋂
n=0

T−n(Rτn ) ∋ π(τ).

Thus,

d(π(ω),π(τ)) ≤ diam(
|ω∧τ|−1
⋂
n=0

T−n(Rωn
))

≤ λ−(|ω∧τ|−1) diam(Rω|ω∧τ| )
≤ λ−|ω∧τ| ⋅ λ diam(X) = (λ diam(X))dλ−1 (ω, τ).

So π is Lipschitz continuous (i. e., Hölder continuous with exponent α = 1) when E∞A
is endowed with the metric dλ−1 . Since the metrics ds, s ∈ (0, 1), are Hölder equiva-
lent (see Exercise 3.4.5), we deduce that π is Hölder continuous with respect to any
metric ds.

(b) We now show that π is surjective. For this, it suffices to show that Z ⊆ π(E∞A )
and that Z = X. This is because the map π : E∞A → X is continuous, E∞A is compact
and so π(E∞A ) is compact and thereby closed. We shall first demonstrate that Z is a
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dense Gδ-set in X. Notice that

Z =
∞

⋂
n=0
[X \ T−n(

p
⋃
i=1
𝜕Ri)] =

∞

⋂
n=0

T−n(X \
p
⋃
i=1
𝜕Ri) =

∞

⋂
n=0

T−n(
p
⋂
i=1
(X \ 𝜕Ri)).

Now, the boundary of any closed set is a closed, nowhere dense set (for a closed set,
“nowhere dense” amounts to saying that the set has empty interior). Thus the com-
plement of any boundary is an open, dense subset of the space. This means that the
sets X \ 𝜕Ri, 1 ≤ i ≤ p, are all open, dense subsets of X. Consequently, their finite inter-
section⋂pi=1(X \ 𝜕Ri) is an open, dense subset of X. As the preimage of an open, dense
set under a continuousmap is open and dense, we deduce that T−n(⋂pi=1(X \𝜕Ri)) is an
open, dense subset of X for every n ≥ 0. Hence, Z is a countable intersection of open
sets, that is, Z is a Gδ-set. Moreover, as Z is a countable intersection of open, dense
subsets of X (a completemetric space), it follows from the Baire category theorem that
Z is dense in X.

Second, let us show that Z ⊆ π(E∞A ). Let x ∈ Z. We shall find an A-admissible
word ρ = (ρn)∞n=0 such that π(ρ) = x. For each n ≥ 0, the letter ρn is selected among
those letters of the alphabet E in such a way that x ∈ T−n(Int(Rρn )). Thus

x ∈
∞

⋂
n=0

T−n(Int(Rρn )).

We show that ρ ∈ E∞A , that is, that Aρnρn+1 = 1 for each n ≥ 0. Indeed,
Aρnρn+1 = 1⇐⇒ T(Int(Rρn )) ∩ Int(Rρn+1 ) ̸= 0

⇐⇒ Int(Rρn ) ∩ T
−1(Int(Rρn+1 )) ̸= 0.

As x ∈ ⋂∞n=0 T
−n(Int(Rρn )), we know that

x ∈ T−n(Int(Rρn )) ∩ T
−(n+1)(Int(Rρn+1 ))

= T−n(Int(Rρn ) ∩ T
−1(Int(Rρn+1 )))

for each n ≥ 0. Then

Tn(x) ∈ Int(Rρn ) ∩ T
−1(Int(Rρn+1 ))

for all n ≥ 0. In particular, this intersection is nonempty. So Aρnρn+1 = 1 for all n ≥ 0,
and x = π(ρ) for some ρ ∈ E∞A .

(c) In the course of the proof of (b), we demonstrated that Z is a dense Gδ-set.
The fact that Z is forward T-invariant is obvious since this set consists of all points
in X whose orbit under T never encounters the boundary of the elements of the
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Markov partition. Thus T(Z) ⊆ Z. We now show that π−1(x) is a singleton for ev-
ery x ∈ Z. Suppose that ω, τ ∈ π−1(Z) are such that π(ω) = π(τ). As {π(ω)} =
⋂∞n=0 T

−n(Rωn
), we have that π(ω) ∈ T−n(Rωn

) for every n ≥ 0. On the other hand,
since π(ω) ∈ Z, we have π(ω) ∉ T−n(𝜕Rωn

) for every n ≥ 0. It therefore follows that
π(ω) ∈ T−n(Int(Rωn

)) for every n ≥ 0. Similarly, π(τ) ∈ T−n(Int(Rτn )) for every n ≥ 0.
Since π(ω) = π(τ) =: x, we deduce that Tn(x) ∈ Int(Rωn

) ∩ Int(Rτn ) for every n ≥ 0.
Condition (b) imposed on the Markov partition forces ωn = τn for each n ≥ 0, that is,
ω = τ.

(d) Finally, we show that the diagram in statement (d) does indeed commute. Let
ω ∈ E∞A . Then

T({π(ω)}) = T(
∞

⋂
n=0

T−n(Rωn
)) ⊆

∞

⋂
n=0

T−(n−1)(Rωn
)

= T(Rω0
) ∩
∞

⋂
n=1

T−(n−1)(R(σ(ω))n−1 )
⊆
∞

⋂
m=0

T−m(R(σ(ω))m ) = {π(σ(ω))}.

Since both the left- and the right-hand sides are singletons, equality follows, and
T(π(ω)) = π(σ(ω)) for all ω ∈ E∞A . That is, T ∘ π = π ∘ σ.

Example 4.5.3. Consider again the map Tm : 𝕊1 → 𝕊1, which is given by Tm(x) :=
mx (mod 1).Wehave seen in Example 4.4.4 that the family of closed intervals {[ im ,

i+1
m ] :

0 ≤ i < m} forms a Markov partition for Tm. One can then show that the coding map
generated by this partition is given, for every ω := (ωk)

∞
k=0 ∈ {0, . . . ,m − 1}

∞, by

π(ω) =
∞

∑
k=0

ωk
mk+1 .

In particular, ifm = 2, we obtain the binary coding of each point x ∈ 𝕊1.

To end this chapter, we express basic properties of Markov partitions in symbolic
terms and show that σ inherits some dynamical properties from T.

Lemma 4.5.4. Let ℛ = {R1,R2, . . . ,Rp} be a Markov partition for an open, distance ex-
panding dynamical system T : X → X. Let E = {1, 2, . . . , p}, A as in (4.46) and σ : E∞A →
E∞A be the symbolic representation of T induced byℛ. Let also n ∈ ℕ.
(a) For every i ∈ E, it holds that Tn(Ri) = ⋃j∈E :An

ij ̸=0
Rj.

(b) ℛ is a Markov partition for Tn.
(c) If T is topologically transitive, then so is σ.
(d) If T is topologically exact, then so is σ.
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(e) Let 𝜕ℛ := ⋃e∈E 𝜕Re. If T is a local homeomorphism on a neighborhood of each ele-
ment ofℛ, then the set 𝜕ℛ is forward T-invariant while the set π−1(X \ 𝜕ℛ) is back-
ward σ-invariant.

Proof.
(a) Fix i ∈ E. First, assume that n = 1. Recall that

Rℓ = Int(Rℓ), ∀ℓ ∈ E. (4.49)

Since T is continuous and X a compact metric space, it follows that

T(Rℓ) = T(Int(Rℓ)) = T(Int(Rℓ)), ∀ℓ ∈ E. (4.50)

If Aij ̸= 0, that is, if T(Int(Ri)) ∩ Int(Rj) ̸= 0, then T(Ri) ⊇ Rj since ℛ is a Markov
partition. Therefore, T(Ri) ⊇ ⋃j∈E:Aij ̸=0 Rj. If it turned out that T(Ri) ̸= ⋃j∈E:Aij ̸=0 Rj
then we would have T(Ri) ∩ [X \ ⋃j∈E:Aij ̸=0 Rj] ̸= 0. By (4.50) and the openness of
X \⋃j∈E:Aij ̸=0 Rj, this would imply that T(Int(Ri)) ∩ [X \⋃j∈E:Aij ̸=0 Rj] ̸= 0. Since X \
⋃j∈E:Aij ̸=0 Rj ⊆ ⋃k∈E:Aik=0 Rk, we would deduce that T(Int(Ri)) ∩ [⋃k∈E:Aik=0 Rk] ̸= 0.
By (4.49) and theopenness ofT(Int(Ri)), itwould ensue thatT(Int(Ri))∩Int(Rk̃) ̸= 0
for some k̃ such that Aik̃ = 0. But T(Int(Ri)) ∩ Int(Rk̃) ̸= 0means that Aik̃ = 1. This
contradiction imposes that

T(Ri) = ⋃
j∈E :Aij ̸=0

Rj.

This is the basic step in this proof by induction. For the inductive step, suppose
that the statement holds for some n ∈ ℕ, that is, Tn(Ri) = ⋃j∈E :An

ij ̸=0
Rj. Then

Tn+1(Ri) = T(T
n(Ri)) = T( ⋃

j∈E :An
ij ̸=0

Rj)

= ⋃
j∈E :An

ij ̸=0
T(Rj) = ⋃

j∈E :An
ij ̸=0
⋃

k∈E :Ajk ̸=0
Rk (4.51)

= ⋃
k∈E :An+1

ik ̸=0
Rk . (4.52)

(b) If Tn(Int(Ri)) ∩ Int(Rj) ̸= 0, then by (a) there is k ∈ E such that Anik ̸= 0 and Rk ∩
Int(Rj) ̸= 0. Since ℛ is a Markov partition, we infer that Rk = Rj, and thus k = j.
Therefore, Anij ̸= 0 and, by (a) again, we conclude that T

n(Ri) ⊇ Rj. Consequently,
ℛ is a Markov partition for Tn.

(c) Let i, j ∈ E. If T is topologically transitive, then there exists n ∈ ℕ such that
Tn(Int(Ri)) ∩ Int(Rj) ̸= 0. By (a) and (b), it follows that Anij ̸= 0. Since i, j ∈ E
are arbitrary, this means that the matrix A is irreducible, that is, the shift map σ
is transitive according to Theorem 3.2.14.
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(d) If T is topologically exact, then for every open subsetU of X there existsN(U) ∈ ℕ
such that TN(U)(U) = X. In particular, for every i ∈ E there is N(i) ∈ ℕ such that
TN(i)(Int(Ri)) = X. Let N = max{N(i) : i ∈ E}. Then TN (Int(Ri)) = X for all i ∈ E. So
TN (Int(Ri)) ∩ Int(Rj) ̸= 0 for all i, j ∈ E. By (a) and (b), it follows that ANij ̸= 0 for all
i, j ∈ E. This precisely means that AN > 0, and thus the matrix A is primitive, that
is, the shift map σ is topologically exact according to Theorem 3.2.16.

(e) For any i ∈ E, given that T is by hypothesis a local homeomorphism on a neigh-
borhood of Ri, it follows from (a) that

T(𝜕Ri) = 𝜕T(Ri) = 𝜕( ⋃
j∈E :Aij ̸=0

Rj) ⊆ ⋃
j∈E :Aij ̸=0

𝜕Rj.

Consequently,

T(𝜕ℛ) =⋃
i∈E

T(𝜕Ri) ⊆⋃
j∈E
𝜕Rj = 𝜕ℛ.

That is, the set 𝜕ℛ is forward T-invariant. According to Theorem 4.5.2, the coding
map π is a factor map between σ : E∞A → E∞A and T : X → X. By Remark 1.4.4, the
setπ−1(𝜕ℛ) is forwardσ-invariant. Thus its complementE∞A \π

−1(𝜕ℛ) = π−1(X\𝜕ℛ)
is backward σ-invariant.

4.6 Exercises

Exercise 4.6.1. Let S,T : X → X be two distance expandingmaps on a compact metric
space (X, d). Show that S ∘ T : X → X is a distance expanding map. Deduce from this
that every iterate Tn, n ∈ ℕ, of T is distance expanding.

Exercise 4.6.2. Suppose that T : X → X is a continuous map on a compact metric
space (X, d) whose nth iterate Tn is distance expanding with constant of expansion λ
and constant delimiting the neighborhoods of expansion δ. Prove that T is distance
expanding with the same constants λ and δ when X is endowed with the metric d′

defined by

d′(x, y) =
n−1
∑
k=0

1
λk

d(Tk(x),Tk(y)).

Show also that the metrics d and d′ are topologically equivalent. (Exercises 4.6.1
and 4.6.2 thus prove that T is distance expanding if and only if all its iterates are dis-
tance expanding. However, theymay be expanding distanceswith respect to different,
though topologically equivalent, metrics.)

Exercise 4.6.3. Inspiring yourself from the proof of Lemma 4.2.2, show that p > 0 in
the proof of Theorem 4.1.5.
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Exercise 4.6.4. Let (Xn)∞n=0 beadescending sequenceof compact sets in ametric space
(X, d). Let (δn)∞n=0 be a sequence of positive numbers that converges to 0. Show that

∞

⋂
n=0

Xn =
∞

⋂
n=0

B(Xn, δn).

Exercise 4.6.5. Find an open map T : X → X that admits a subsystem T|F : F → F
which is not open, where F is a closed forward T-invariant subset of X.

Exercise 4.6.6. Find an open, distance expanding dynamical system T : X → X de-
fined upon a disconnected, compact metric space X which does not have a dense set
of periodic points.

Exercise 4.6.7. Prove that the set of conditions (a), (b), and (c’) defines a Markov par-
tition.

Exercise 4.6.8. Let T be the shift map σ : E∞A → E∞A . Fix any n ∈ ℕ. Prove that the
n-cylinders {[ω]}ω∈EnA form a Markov partition for σ.

Exercise 4.6.9. Show that the preimage of an open, dense set under a continuousmap
is open and dense.

Exercise 4.6.10. Let X be a compact metric space and let δ > 0. Construct a finite
cover of X consisting of closed sets of diameters less than δ which intersect only in
their boundaries.

Exercise 4.6.11. Let X be an infinite compact metric space and T : X → X be a transi-
tive, open, distance expanding map. Show that T is not minimal.

Exercise 4.6.12. Let (X, d) be a compact metric space. Define a metric ρ on X × {0, 1}
by setting

ρ((x1, x2), (y1, y2)) := d(x1, y1) + |x2 − y2|.

Show that if T : X → X is a distance expanding map, then the map T̂ : X × {0, 1} →
X × {0, 1} given by the formula

T̂(x1, x2) := (T(x1), x2 +2 1)

is also distance expanding, where +2 : {0, 1}→ {0, 1} denotes addition modulo 2.

Exercise 4.6.13. For every n ∈ ℕ, show that a distance expanding map can have only
finitely many periodic points of period n.

Exercise 4.6.14. Let T : X → X be an open distance expanding map. Show that the
function x → #(T−1(x)) is locally constant.
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Exercise 4.6.15. Suppose that S,T : X → X are two arbitrary dynamical systems. De-
fine the distance between S and T by the formula

d∞(S,T) := sup{d(S(x),T(x)) : x ∈ X}.

Now suppose that S and T are both open distance expanding maps with the same
parameters δ, λ and ξ . Show that if d∞(S,T) < min{ξ , ξ (λ − 1)}, then S and T are topo-
logically conjugate (cf. the discussion on structural stability at the end of Section 1.2).
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5 (Positively) expansive maps

There are various concepts of expansion of a map which have aroused the interest
of a great many mathematicians. We have already encountered distance expanding
maps; in the present chapter we will introduce positively expansive maps. The study
of this class ofmaps goes back to the 1960s. Suchmaps are abundant. In particular, all
distance expanding maps are expansive, and so, more particularly, all subshifts over
a finite alphabet are expansive.

Amidst the large variety of dynamical behaviorswhich canbe thought of as expan-
sion in some sense, expansiveness has turned out to be a ratherweak but nevertheless
useful mathematical notion. It is a topological concept, in the sense that it is a topo-
logical conjugacy invariant. Expansive maps are important for many reasons. One of
them is that the entropy function is upper semi-continuous within this class. In par-
ticular, all expansive maps admit a measure of maximal entropy and, more generally,
have equilibrium states under all continuous potentials.

In Section 5.1, we introduce the concept of expansiveness. In Section 5.2, we de-
fine the notion of uniform expansiveness and prove that expansiveness and uniform
expansiveness are one and the same notion on compact metrizable spaces. In Sec-
tion 5.3, we demonstrate that every expansive system is in fact expandingwith respect
to somemetric compatible with the topology on the underlying space. This important
fact is due to Coven and Reddy [17] (cf. [18]). It signifies thatmany of the results proved
in Chapter 4, such as the existence of Markov partitions and of a nice symbolic repre-
sentation, the density of periodic points, the closing lemma, and shadowing, hold for
all positively expansive maps. Finally, in Section 5.4 we provide a class of examples
of expansive maps that are not expanding. They generate what are called parabolic
Cantor sets.

5.1 Expansiveness

The notion of expansiveness was introduced by Utz [73] in 1950 for homeomorphisms.
He used the term unstable homeomorphisms to describe these maps. Gottschalk and
Hedlund [25] later suggested the term expansive homeomorphisms, which has been
used ever since. Five years after Utz,Williams [78] investigated positive expansiveness
of maps. Among other early contributors are Bryant [14], Keynes and Robertson [37],
Sears [63], and Coven and Reddy [17].

Definition 5.1.1. A topological dynamical system T : (X, d)→ (X, d) is said to be (pos-
itively) expansive provided that there exists a constant δ > 0 such that for every x ̸= y
there is n = n(x, y) ≥ 0 with

d(Tn(x),Tn(y)) > δ.

https://doi.org/10.1515/9783110702682-005

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



140 | 5 (Positively) expansive maps

The constant δ is called an expansive constant for T, and T is then said to be δ-expan-
sive. Equivalently, T is δ-expansive if

sup
n≥0

d(Tn(x),Tn(y)) ≤ δ ⇒ x = y.

In other words, δ-expansivenessmeans that two forward T-orbits that remain for-
ever within a distance δ from each other originate from the same point, and are there-
fore only one orbit.

We now note some important and interesting properties of expansiveness.

Remark 5.1.2.
(a) If T is δ-expansive, then T is δ′-expansive for any 0 < δ′ < δ.
(b) The expansiveness of T is independent of topologically equivalent metrics, al-

though particular expansive constants generally depend on the metric chosen.
See Exercise 5.5.1.

(c) In light of (b), the concept of expansiveness can be defined solely in topological
terms, meaning without a reference to a metric. See Exercise 5.5.2.

(d) Unlike the expanding property examined in Chapter 4, expansiveness is a topo-
logical conjugacy invariant. See Exercise 5.5.3.

The expansiveness of a system can also be expressed in terms of the following
“dynamical” metrics. These metrics are sometimes called Bowen’s metrics, since
Bowen [10] used them extensively in defining topological entropy for noncompact
dynamical systems.

Definition 5.1.3. Let T : (X, d) → (X, d) be a dynamical system. For every n ∈ ℕ, let
dn : X × X → [0,∞) be the metric

dn(x, y) := max{d(T j(x),T j(y)) : 0 ≤ j < n}.

Although the notation does not make explicit the dependence on T, it is crucial
to remember that the metrics dn arise from the dynamics of the system T. It is in this
sense that they are dynamical metrics. The corresponding balls will be denoted by

Bn(x, ε) := {y ∈ X : dn(x, y) < ε}.

Observe that d1 = d and that for each x, y ∈ X we have dn(x, y) ≥ dm(x, y)whenever
n ≥ m. Moreover, it is worth noticing that the metrics dn, n ∈ ℕ, are topologically
equivalent. Indeed, given a sequence (xk)∞k=1 in X, the continuity of T ensures that

lim
k→∞

d(xk , y) = 0⇐⇒ lim
k→∞

d(T j(xk),T
j(y)) = 0, ∀0 ≤ j < n, ∀n ∈ ℕ

⇐⇒ lim
k→∞

dn(xk , y) = 0, ∀n ∈ ℕ.
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Furthermore, it is easy to see that a dynamical system T : (X, d) → (X, d) is
δ-expansive if and only if

sup
n∈ℕ

dn(x, y) ≤ δ ⇒ x = y.

Example 5.1.4. Every subshift of finite type σ : E∞A → E∞A is expansive, with any δ ∈
(0, 1) as an expansive constant. Indeed, note that if ω = ω1ω2ω3 . . . and τ = τ1τ2τ3 . . .
are any two distinct elements of E∞A , then there exists n ∈ ℕ such thatωn ̸= τn. Hence,

ds(σ
n−1(ω), σn−1(τ)) = s−|ωnωn+1 ...∧τnτn+1 ...| = s0 = 1 > δ.

This example is an instance of the fact that any distance expanding dynamical
system is expansive.

Proposition 5.1.5. Every distance expanding dynamical system is expansive.

Proof. Let T : X → X be a distance expanding dynamical system on a compact metric
space (X, d), and let δ and λ be constants determining neighborhoods of expansion
and magnitude of that expansion, respectively, per Definition 4.1.1. We will show that
any 0 < δ′ < 2δ is an expansive constant for T. Let x, y ∈ X be such that

sup
n≥0

d(Tn(x),Tn(y)) ≤ δ′. (5.1)

Then

d(Tn(x),Tn(y)) ≥ λ d(Tn−1(x),Tn−1(y)), ∀n ∈ ℕ.

By induction, it follows that

d(Tn(x),Tn(y)) ≥ λnd(x, y), ∀n ≥ 0.

Therefore,

0 ≤ d(x, y) ≤ lim sup
n→∞

λ−ndiam(X) = 0.

Hence d(x, y) = 0, that is, x = y. So T is δ′-expansive for all 0 < δ′ < 2δ.

5.2 Uniform expansiveness
In this section, we introduce a certain type of uniformity for expansiveness. In 1962,
Bryant [14] remarked on the uniformity in the expansiveness of compact dynamical
systems. This uniform expansiveness was formalized and studied by Sears [63] eleven
years later.

Definition 5.2.1. A topological dynamical system T : (X, d) → (X, d) is said to be
(positively) uniformly expansive if there exists δ > 0 with the property that for every
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0 < ζ < δ there is N = N(ζ ) ∈ ℕ such that

d(x, y) > ζ ⇒ dN (x, y) > δ.

The constant δ is called a uniformly expansive constant for T, and T is then said to be
uniformly δ-expansive.

It is easy to check that every uniformly δ-expansive system is δ-expansive (this is
left to the reader). It turns out that the converse is also true for systems that are defined
on a compact metric space.

Proposition 5.2.2. A topological dynamical system T : (X, d)→ (X, d) is δ-expansive if
and only if it is uniformly δ-expansive.

Proof. As mentioned above, it is straightforward to check that every uniformly δ-ex-
pansive system is δ-expansive. To prove the converse, suppose byway of contradiction
that T : (X, d)→ (X, d) is a δ-expansive system that is not uniformly δ-expansive. Then
there exist 0 < δ′ < δ and sequences (xn)∞n=0 and (yn)

∞
n=0 in X such that d(xn, yn) > δ′

but dn(xn, yn) ≤ δ for all n ≥ 0. Since X is compact, we may assume (by passing to
subsequences if necessary) that the sequences (xn)∞n=0 and (yn)

∞
n=0 converge to, say, x

and y, respectively. On one hand, this implies that

d(x, y) = lim
n→∞

d(xn, yn) ≥ δ
′ > 0,

and hence x ̸= y. On the other hand, if we fix momentarily N ∈ ℕ, for all n ≥ N, we
have that

dN (xn, yn) ≤ dn(xn, yn) ≤ δ.

Therefore,

dN (x, y) = lim
n→∞

dN (xn, yn) ≤ δ.

Since dN (x, y) ≤ δ for every N ∈ ℕ, the δ-expansiveness of the system implies that
x = y. This is, of course, in contradiction with our previous deduction that x ̸= y.
Thus, T is uniformly δ-expansive.

Remark 5.2.3. Note that expansiveness and uniform expansiveness are distinct con-
cepts in the realm of noncompact dynamical systems (see [63]).

Finally, we record the following observation, which is interesting on its own but
will also be used in Section 9.6 on Brin–Katok’s local entropy formula.

Observation 5.2.4. Let T : X → X be an expansive topological dynamical system and
let d be a metric compatible with the topology on X. If δ > 0 is an expansive constant
for T corresponding to this metric, then for every x ∈ X, every ζ ∈ (0, δ] and every
integer n > N(ζ ), note that

Bn(x, δ) ⊆ Bn−N(ζ /2)(x, ζ ).
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Proof. Let y ∈ X \ Bn−N(ζ /2)(x, ζ ). Then there exists a least integer 0 ≤ k < n − N(ζ /2)
such that Tk(y) ∉ B(Tk(x), ζ ). Thismeans that d(Tk(y),Tk(x)) ≥ ζ > ζ /2. It follows from
Definition 5.2.1 that dN(ζ /2)(Tk(y),Tk(x)) > δ. Thus dk+N(ζ /2)(y, x) > δ. Hence,

y ∉ Bk+N(ζ /2)(x, δ) ⊇ Bn−N(ζ /2)+N(ζ /2)(x, δ) = Bn(x, δ).

So y ∈ X \ Bn(x, δ). That is, X \ Bn−N(ζ /2)(x, ζ ) ⊆ X \ Bn(x, δ).

5.3 Expansive maps are expanding with respect to an equivalent
metric

The aim in this section is to provide a partial converse to Proposition 5.1.5, where it
was shown that every distance expanding map is expansive.

Theorem 5.3.1. If a topological dynamical system T : X → X is expansive, then there
exists a metric, compatible with the topology of X, with respect to which T is distance
expanding.

The original proof that an expansive map defined upon a compact metric space
is expanding with respect to a topologically equivalent metric is due to Coven and
Reddy [17]. The proof we now present differs slightly by using uniform expansiveness.
Like that of Coven and Reddy, the proof relies on a topological lemma, which we state
here without proof (cf. [23]).

Frink’s Metrization Lemma. Let X be a metrizable space and let (Un)
∞
n=0 be a sequence

of open neighborhoods of the diagonal△ := {(x, x) : x ∈ X} of X ×X having the following
three properties:
(a) U0 = X × X.
(b) ⋂∞n=0 Un = △.
(c) Un ∘ Un ∘ Un ⊆ Un−1 for every n ∈ ℕ, where

R ∘ S := {(x, y) ∈ X × X : ∃z ∈ X with (x, z) ∈ R and (z, y) ∈ S}.

Then there exists a metric ρ, compatible with the topology of X, such that

Un ⊆ {(x, y) ∈ X × X : ρ(x, y) < 2
−n} ⊆ Un−1

for every n ∈ ℕ.

Proof of Theorem 5.3.1. Weshall construct a family of sets that satisfies the hypotheses
of Frink’s lemma, and then show that some iterate of T is expanding with respect to
Frink’s metric.

Since T is expansive, Proposition 5.2.2 implies that it is uniformly expansive. Let
3θ > 0 be a uniformly expansive constant for T with respect to a metric d compatible
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with the topology of X. For all n ≥ 0 and all ε > 0, let

Vn(ε) := {(x, y) ∈ X × X : dn(x, y) < ε}.

Each set Vn(ε) is an open neighborhood of the diagonal △ in X × X. The set Vn(ε) is
the collection of all couples of points whose forward orbits stay within a distance ε
from each other up to and including time n − 1. Let M ≥ 0 be such that dM(x, y) > 3θ
whenever d(x, y) > θ/2 (cf. Definition 5.2.1). Then no couple (x, y) such that d(x, y) ≥ θ
belongs to VM(3θ). Hence,

VM(3θ) ⊆ {(x, y) ∈ X × X : d(x, y) < θ} = V0(θ). (5.2)

Now, let U0 = X × X and define

Un := VMn(θ) = {(x, y) ∈ X × X : dMn(x, y) < θ}

for each n ∈ ℕ. We shall show that the sets (Un)
∞
n=0 satisfy the three conditions of

Frink’s lemma. The first condition is satisfied by definition of U0. Regarding the sec-
ond condition, it is clear that △ ⊆ ⋂∞n=0 Un because △ ⊆ Un for each n ≥ 0. For the
opposite inclusion, let (x, y) ∈ ⋂∞n=0 Un. Then (x, y) ∈ Un := VMn(θ) for all n ∈ ℕ.
Hence, dMn(x, y) < θ for all n ∈ ℕ, or, in other words, d(T j(x),T j(y)) < θ for all j ≥ 0.
As θ is an expansive constant for T, we deduce that x = y. So⋂∞n=0 Un ⊆ △. Since both
inclusions hold, we conclude that

∞
⋂
n=0

Un = △.

It only remains to show that the third condition is satisfied, namely that

Un ∘ Un ∘ Un ⊆ Un−1, ∀n ∈ ℕ.

For this, fix n ∈ ℕ and let (x, y) ∈ Un ∘ Un ∘ Un. Then there exist points u, v ∈ X such
that (x, u), (u, v), (v, y) ∈ Un. Therefore, by the triangle inequality, dMn(x, y) < 3θ. This
means that

dM(T
j(x),T j(y)) < 3θ

for all 0 ≤ j ≤ M(n − 1). Thus, (T j(x),T j(y)) ∈ VM(3θ) ⊆ V0(θ) for all 0 ≤ j ≤ M(n − 1),
by (5.2). Hence, (x, y) ∈ VM(n−1)(θ) = Un−1, and we have proved that Un ∘ Un ∘ Un ⊆ Un−1
for anyn ∈ ℕ. To summarize, the family (Un)

∞
n=0 satisfies all threehypotheses of Frink’s

lemma.
Therefore, we can now apply Frink’s lemma to obtain a metric ρ, compatible with

the topology of X, such that

Un ⊆ {(x, y) ∈ X × X : ρ(x, y) < 2
−n} ⊆ Un−1

for all n ∈ ℕ.
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Wenow show that T3M : X → X is distance expandingwith respect to themetric ρ.
To this end, choose x ̸= y such that ρ(x, y) < 2−4. Then there exists a unique n ≥ 0
such that (x, y) ∈ Un\Un+1, because (Un)

∞
n=0 is a descending sequence of sets such that

⋂∞n=0 Un = △ and because U0 = X × X. By Frink’s lemma, since ρ(x, y) < 2−4, we have
that (x, y) ∈ U3. So n ≥ 3.

On one hand, since (x, y) belongs to Un, we have that

ρ(x, y) < 2−n.

On the other hand, given that (x, y) ∈ Un\Un+1 := VMn(θ)\VM(n+1)(θ), there exists
Mn ≤ j < M(n + 1) such that d(T j(x),T j(y)) ≥ θ. Write j in the form j = i + 3M. Then we
have that 0 ≤ M(n − 3) ≤ i < M(n − 2) and

d(T i(T3M(x)),T i(T3M(y))) ≥ θ.

From this, we obtain that

(T3M(x),T3M(y)) ∉ VM(n−2) = Un−2 ⊇ {(x, y) ∈ X × X : ρ(x, y) < 2
−(n−1)}.

Then it follows that whenever ρ(x, y) < 2−4,

ρ(T3M(x),T3M(y)) ≥ 2−(n−1) = 2 ⋅ 2−n ≥ 2ρ(x, y).

Hence, T3M is expanding with respect to Frink’s metric. It follows from Exercise 4.6.2
that themapT is expandingwith respect to ametric topologically equivalent to Frink’s
metric, which is in turn topologically equivalent to the original metric d.

We nowdraw some important conclusions from the fact that an expansive dynam-
ical system is expandingwith respect to a topologically equivalentmetric. Namely, we
can infer the existence of Markov partitions and of a symbolic representation.

Corollary 5.3.2. Every open, expansive dynamical system T : X → X admits Markov
partitions of arbitrarily small diameters.

Proof. This follows immediately from Theorems 5.3.1 and 4.4.6.

Corollary 5.3.3. Every open, expansive dynamical system T : X → X admits a symbolic
representation. More precisely, every open, expansive system is a factor of a subshift of
finite type σ : E∞A → E∞A with a coding map π : E∞A → X such that every point in a
forward T-invariant dense Gδ-subset of X admits a unique symbolic representation.

Proof. This follows from Theorems 5.3.1 and 4.5.2.

Yet another repercussion of the fact that an expansive dynamical system is ex-
panding with respect to a topologically equivalent metric is the following.

Corollary 5.3.4. Every open, expansive, and transitive dynamical system T : X → X is
very strongly transitive.

Proof. This is a direct consequence of Theorems 5.3.1 and 4.2.10.
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5.4 Parabolic Cantor sets

In this section, we describe a family of C1 maps defined on topological Cantor sub-
spaces of ℝ, that are expansive but not distance expanding with respect to the stan-
dard Euclidean metric on ℝ. Of course, bearing in mind what we have just proved in
the previous section, for each of these maps there exists a metric, compatible with the
Euclidean topology on ℝ, with respect to which the map is distance expanding.

Let I := [0, 1]. Let E be a finite set, say E = {0, 1, . . . , k − 1}, and let φe : I → I, e ∈ E,
be C1 maps with the following properties:
(I1) φ′0(0) = 1.
(I2) 0 < φ′0(x) < 1 for all x ∈ I \ {0}.
(I3) 0 < |φ′e(x)| < 1 for all x ∈ I and e ∈ E \ {0}.
(II) φ0(0) = 0.
(III) φe(I) ∩ φf (I) = 0 for all e ̸= f .

This setting is reminiscent of hyperbolic Cantor sets in Subsection 4.1.2, with X0 = I.
Indeed, conditions (I1)–(I3) concern the derivative of the generators and are the coun-
terparts for parabolic Cantor sets of condition (i) for hyperbolic Cantor sets. In partic-
ular, they imply that the generators are invertible functions on I, so each generator
is either strictly increasing or strictly decreasing. Condition (III) is identical to condi-
tion (iii). Condition (ii) is automatically fulfilled.

Conditions (I1) and (II) are the reason for calling the limit set X a parabolic Cantor
set, as opposed to an hyperbolic one. These conditions ensure that the derivative of
one of the generators is equal to 1 at a fixed point.

Under these conditions, the limit set X is constructed through the same proce-
dure as for hyperbolic Cantor sets (see (4.8) and (4.6)). The neighborhood U can be
constructed in precisely the same way as for hyperbolic Cantor sets (see (4.12)), pro-
vided that we first extend and replace the generators with C1 diffeomorphisms ofℝ as
follows:

φ0(x) =
{{{{
{{{{
{

−φ0(1) + φ′0(1) ⋅ (x + 1) if x ≤ −1
−φ0(−x) if x ∈ −I
φ0(x) if x ∈ I
φ0(1) + φ′0(1) ⋅ (x − 1) if x ≥ 1,

whereas, for all e ∈ E \ {0},

φe(x) =
{{
{{
{

φe(0) + φ′e(0) ⋅ x if x ≤ 0
φe(x) if x ∈ I
φe(1) + φ′e(1) ⋅ (x − 1) if x ≥ 1.

The map T : U → ℝ is then defined in exactly the same manner as for hyperbolic
Cantor sets (see (4.13)).
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All definitions, relations, and proofs for hyperbolic Cantor sets which do not
involve the constant M hold for parabolic Cantor sets. Observe that (φ−1e )

′(φe(x)) =
1/φ′e(x) for all x ∈ I and e ∈ E. Condition (I1) implies that T′(0) = 1. The triple (X,U ,T)
is not an expanding repeller for parabolic Cantor sets since it does not satisfy con-
dition (b) of the definition of a repeller (cf. Definition 4.1.4 and (4.16)). Condition (II)
implies that the point 0 lies in the limit set X and prevents any iterate of T of being an
expanding repeller. However, conditions (a) and (c) of a repeller are satisfied.

Now, define

λ := min
e∈E\{0}

min
x∈φe(I)
T
′(x) =

1
M
> 1, where M := max

e∈E\{0}
max
x∈I
φ
′
e(x)
.

Theorem 5.4.1. The map T : X → X is expansive.

Proof. Consider x ∈ φ0(I) \ {0}. By the mean value theorem, there exists y ∈ Int(φ0(I))
such that

T(x)
x
=
T(x) − T(0)

x − 0
= T′(y) > 1. (5.3)

Therefore, T(x) > x for all x ∈ φ0(I) \ {0} and the map T|φ0(I) : φ0(I) → I has no fixed
point other than 0. Let δ > 0 be the length of the smallest gap between all φe(I)’s. We
claim that any 0 < δ < δ is an expansive constant for T : X → X. So suppose that there
exist points z,w ∈ X such that

T
n(z) − Tn(w) ≤ δ, ∀n ≥ 0.

Let△ be the closed interval joining z andw. Then for every n ≥ 0, there exists a unique
e ∈ E such that Tn(△) ⊆ φe(I). It follows from the fact that T′(x) > 1 for all x ∈ U \ {0}
and from the definition of λ that for all n ≥ 0,

T
n+1(△) >

T
n(△) whenever Tn(△) ⊆ φ0(I) (5.4)

and

T
n+1(△) ≥ λ

T
n(△) whenever Tn(△) ⊆ φe(I) for some e ∈ E \ {0}. (5.5)

Since λ > 1 and |Tn(△)| ≤ 1 for all n ≥ 0, relation (5.5) can only hold for finitely many
n. That is, there exists N ≥ 0 such that for all n ≥ 0,

Tn+N (△) = Tn(TN (△)) ⊆ φ0(I).

Fix x ∈ TN (△). If x ̸= 0, then Tn(x) ∈ φ0(I) \ {0} for all n ≥ 0. It follows from (5.3) that
the sequence of iterates (Tn(x))∞n=0 is (strictly) increasing. Thus, it has a limit point
which, according to Lemma 1.1.4, is a fixed point for T. This contradicts the fact that
T|φ0(I) : φ0(I) → I has no fixed point but 0. Therefore, TN (△) = {0}. Hence, △ = {0}
and z = w(= 0).
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Since T is expansive on the limit set X, according to Theorem 5.3.1 there exists a
metric, compatible with the topology of X, with respect to which T is distance expand-
ing on the limit set X. However, that metric is not the usual Euclidean metric.

Proposition 5.4.2. The map T : X → X is not expanding with respect to the Euclidean
metric.

Proof. Let ε > 0. Since T is a C1 map and T′(0) = 1, there exists η > 0 such that
T′(x) < 1+ ε for all x ∈ [0, η). Fix y ∈ X ∩ (0, η). It follows from the mean value theorem
that for some z ∈ (0, y),

|T(y) − T(0)|
|y − 0|

= T′(z) < 1 + ε.

Therefore, T is not expanding with respect to the metric d(x, y) = |x − y|.

5.5 Exercises

Exercise 5.5.1. Prove that the expansiveness ofT : X → X is independent of themetric
on X (though expansive constants generally depend on the metric chosen). That is,
show that, given two metrics d and d′, which generate the topology of the compact
metrizable space X, the map T is expansive when X is equipped with the metric d if
and only if T is expansive when X is endowed with the metric d′.

Exercise 5.5.2. A dynamical system T : X → X on a topological space X is said to be
expansive if there exists a base ℬ for the topology such that for every x ̸= y there is
n = n(x, y) ≥ 0 with

{Tn(x),Tn(y)} ̸⊆ U , ∀U ∈ ℬ.

Note that if X is second-countable, then expansiveness is equivalent to the existence
of a countable base with the above property. Show that this definition is equivalent to
Definition 5.1.1 when X is a compact metrizable space.

Exercise 5.5.3. Prove that expansiveness is a topological conjugacy invariant.

Exercise 5.5.4. Prove that the metrics dn, n ∈ ℕ, given in Definition 5.1.3 induce the
same topology.

Exercise 5.5.5. Let T : (X, d) → (X, d) be a dynamical system. For every n ≥ 0, let
d∞ : X × X → [0,∞) be the function

d∞(x, y) := sup
0≤j<∞

d(T j(x),T j(y)) = sup
n∈ℕ

dn(x, y).

Show that d∞ defines a metric on X. Prove that if T is expansive on X then d∞ gen-
erates the discrete topology on X. In particular, if X has infinite cardinality and T is
expansive, then d∞ is not topologically equivalent to any dn, n ∈ ℕ.
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Exercise 5.5.6. Let T : X → X be a topological dynamical system. Prove that the fol-
lowing conditions are equivalent:
(a) T is expansive.
(b) Tn is expansive for some n ∈ ℕ.
(c) Tn is expansive for all n ∈ ℕ.

Exercise 5.5.7. Show that the Cartesian product of finitelymany expansive dynamical
systems is an expansive system.

Exercise 5.5.8. Find two expansive maps on the same compact metric space whose
composition is not expansive.

Exercise 5.5.9. Recall that the unit circle 𝕊1 is homeomorphic to the closed interval
[0, 1]when0 and 1 are identified. Define themap T : 𝕊1 → 𝕊1 by the following formula:

T(x) = { x + 2x2 if 0 ≤ x ≤ 1/2
2x − 1 if 1/2 ≤ x ≤ 1.

Show that T is not distance expanding with respect to the linear Euclidean metric
on 𝕊1, but that T is an expansive map. Recall that the linear Euclidean metric on 𝕊1 is
given by

d(x, y) = min{|x − y|, |1 + x − y|, |1 + y − x|}.

Exercise 5.5.10. Suppose that for all n ∈ ℕ, themap Tn : Xn → Xn is a continuousmap
of a compact metric space Xn. Let X be the one-point (Alexandroff) compactification
of the disjoint union of all spaces Xn, n ∈ ℕ. Denote the added point by ω. Define the
map T : X → X by the formula

T(x) = { Tn(x) if x ∈ Xn
ω if x = ω.

Show that T is never expansive.
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6 Shub expanding endomorphisms
In Section 6.2 of this chapter, we give a systematic account of Shub expanding endo-
morphisms. These maps are far-reaching generalizations of the expanding endomor-
phisms of the circle which we first introduce in Section 6.1. They constitute a large
subclass of distance expanding maps. Their origins lie in the seminal papers of Ep-
stein and Shub [22], Shub [66], and Krzyżewski and Szlenk [42]. Our exposition stems
from the chapter on expanding endomorphisms in Szlenk’s book [71].

Basic knowledge of algebraic geometry/topology is assumed. The first chapter of
the book by Hatcher [28] is an engaging source for the reader unfamiliar with notions
such as lift, deck transformation, homotopy, and the fundamental group of a topo-
logical space, notions which will be used throughout this chapter, especially in our
digression into algebraic topology in Section 6.3.

Finally, in Section 6.4 we establish that Shub’s expanding endomorphisms are
structurally stable, form an open set in an appropriate topology of smooth maps, are
topologically exact (and hence transitive), have at least one fixed point as well as a
dense set of periodic points, and their universal covering space is diffeomorphic toℝn.

6.1 Shub expanding endomorphisms of the circle

In this section, we study a special class of maps of the unit circle, the Shub expanding
endomorphisms of 𝕊1.

Let γ : 𝕊1 → (0,∞) be a C1 function on 𝕊1 (recall that this means that the first
derivative of γ exists and is continuous). The function γ induces the Riemannianmet-
ric ργ = γ|dx| on 𝕊1. If △ is an arc of 𝕊1 and φ : △ → 𝕊1 is a C1 curve on 𝕊1, then the
length ℓγ(φ) of φ is defined to be

ℓγ(φ) := ∫
△

|φ′(x)|γ(x) dx. (6.1)

The Riemannian metric ργ induces a distance (which, in somewhat of an abuse of
notation, we will also denote by ργ) on 𝕊1 as follows. Let a, b ∈ 𝕊1, and let△1 and△2
be the two arcs of 𝕊1 joining a and b. Let Id△i : △i → △i, i = 1, 2, be the identity curves
on these respective arcs. We define

ργ(a, b) := min
i=1,2
ℓγ(Id△i ) = min

i=1,2
∫
△i

γ(x) dx.

If v ∈ Tx𝕊1, that is, if v is a vector inℝ2 tangent to 𝕊1 at the point x ∈ 𝕊1, then the norm
of v relative to the metric ργ is given by

‖v‖γ := γ(x)‖v‖,

https://doi.org/10.1515/9783110702682-006
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where ‖ ⋅ ‖ is the standard Euclidean norm in ℝ2. We can thus rewrite (6.1) as

ℓγ(φ) := ∫
△

‖φ′(x)‖γ dx.

If T : 𝕊1 → 𝕊1 is a differentiable map, then for every x ∈ 𝕊1 the derivative map T′(x)
sends Tx𝕊1 into TT(x)𝕊1 and

‖T′(x)(v)‖ = ‖T′(x)‖ ⋅ ‖v‖, ∀v ∈ Tx𝕊
1.

Hence,

‖T′(x)(v)‖γ = γ(T(x))‖T
′(x)(v)‖ = γ(T(x))‖T′(x)‖ ⋅ ‖v‖

=
γ(T(x))
γ(x)
‖T′(x)‖ ⋅ ‖v‖γ.

We naturally set

‖T′(x)‖γ :=
‖T′(x)(v)‖γ
‖v‖γ

=
γ(T(x))
γ(x)
‖T′(x)‖ (6.2)

and call this quantity the norm of T′(x) with respect to the metric ργ. We call a C1 en-
domorphism T : 𝕊1 → 𝕊1 Shub expanding with respect to the metric ργ if there exists
some λ > 1 such that

‖T′(x)(v)‖γ ≥ λ‖v‖γ, ∀v ∈ Tx𝕊
1, ∀x ∈ 𝕊1.

Equivalently, T : 𝕊1 → 𝕊1 is Shub expanding if

‖T′(x)‖γ ≥ λ, ∀x ∈ 𝕊
1. (6.3)

Example 6.1.1. For every integer |k| ≥ 2, the map Ek : 𝕊1 → 𝕊1 defined by Ek(x) :=
kx (mod 1) is Shub expanding with respect to the standard Riemannian metric (that
is, when γ ≡ 1). Indeed, ‖E′k(x)‖ = |k| ≥ 2 for every x ∈ 𝕊

1.

We now show that each Shub expandingmap of the circle is, up to a C1 conjugacy,
Shub expanding with respect to the standard Euclidean metric on 𝕊1. Indeed, in light
of (6.2), wemaymultiplyγ by a constant factor without changing ‖T′(x)‖γ and in such
a way that

∫

𝕊1

γ(x) dx = 1.

We say that such a Riemannian metric is normalized. Then the map H : 𝕊1 → 𝕊1 given
by the formula

H(x) =
x

∫
0

γ(t) dt
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defines a C1 diffeomorphism of 𝕊1 such that

H′(x) = γ(x), ∀x ∈ 𝕊1. (6.4)

We define the C1 endomorphism

T := H ∘ T ∘ H−1 : 𝕊1 → 𝕊1. (6.5)

We then obtain the following important result.

Theorem 6.1.2. Each Shub expanding map T : 𝕊1 → 𝕊1 of the unit circle is C1 conjugate
to the map T : 𝕊1 → 𝕊1, which is Shub expanding with respect to the standard Euclidean
metric on 𝕊1.

Proof. Suppose that T : 𝕊1 → 𝕊1 is a Shub expanding map. As argued above, we may
assume without loss of generality that the corresponding function γ : 𝕊1 → (0,∞) is
normalized. Let T : 𝕊1 → 𝕊1 be given by (6.5). Using the chain rule, (6.4) and (6.3), we
obtain that

‖T ′(x)‖ = H′(T(H−1(x))) ⋅ T
′(H−1(x)) ⋅ (H

−1)
′
(x)

= γ(T(H−1(x)))T
′(H−1(x))(H

′(H−1(x)))−1

= γ(T(H−1(x)))T
′(H−1(x))(γ(H

−1(x)))−1

= T
′(H−1(x))γ ≥ λ > 1.

Thus, T is Shub expanding with respect to the standard Euclidean metric on 𝕊1.

Our goal now is to prove a structure theorem for Shub expandingmaps of the unit
circle and to demonstrate the structural stability of the maps Ek, |k| ≥ 2, from Exam-
ple 6.1.1 (see Section 1.2 for more on structural stability). Before stating that theorem,
let us add one more piece of notation. Given k ∈ ℤ, let ℰk(𝕊1) be the space of all Shub
expanding endomorphisms of 𝕊1 with degree equal to k. For a review of the notions of
lift and degree of a circle map, see Section 2.1.

Theorem 6.1.3. Every Shub expanding map T ∈ ℰk(𝕊1), where |k| ≥ 2, is topologically
conjugate to the map Ek : 𝕊1 → 𝕊1. In addition, the map Ek : 𝕊1 → 𝕊1 is strongly
structurally stable when the space ℰk(𝕊1) is endowed with the topology of uniform con-
vergence.

Proof. In light of Theorem 6.1.2, we may assume without loss of generality that T is
Shub expanding with respect to the standard Euclidean metric.

The following classical argument is essentially the proof of Theorem 2.4.6 in [33].
We give the proof for any positive k and mention afterwards the modifications neces-
sary for a negative k. Consider the arcs

△mn = π([
m
kn
,
m + 1
kn
])
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for all n ∈ ℤ+ and 0 ≤ m < kn, where ℝ ∋ x → π(x) = x(mod 1) ∈ 𝕊1. For each n ∈ ℤ+,
the family

ξn = {△
0
n , . . . ,△

kn−1
n }

is the “partition” of 𝕊1 into the kn arcs whose endpoints are consecutive rational num-
bers with denominator kn. These arcs are such that

Ek(△
m
n ) = △

m′
n−1, (6.6)

wherem′ is the unique integer between 0 and kn−1 − 1 such thatm′ = m (mod kn−1).
We now construct a nested sequence of “partitions”

ζn = {π(Γ
0
n), . . . ,π(Γ

kn−1
n )}

of 𝕊1 into arcs which will be in a natural, order-preserving correspondence with the
standard sequence ξn. Let p be a fixed point for a lift T̃ of T as in Lemma 2.1.14. If T
is close to Ek, pick p close to 0. Since T̃(p) = p and T is of degree k, we know that
T̃(p + 1) = p + k. Moreover, since T is locally injective, its lift T̃ is a strictly monotone
continuous function. Then there are unique real numbers

p = a01 < a
1
1 < a

2
1 < ⋅ ⋅ ⋅ < a

k−1
1 < a

k
1 = p + 1

such that T̃(am1 ) = p + m for each 0 ≤ m ≤ k. Let Γm1 = [a
m
1 , a

m+1
1 ] for every 0 ≤ m < k.

Then

T(π(Γm1 )) = π ∘ T̃([a
m
1 , a

m+1
1 ]) = π([p +m, p +m + 1]) = 𝕊

1,

and T is injective on the arc π(Γm1 ) up to identification of the endpoints of Γm1 . If T is
close to Ek, then clearly each number am1 is close tom/k.

Furthermore, since T̃(am1 ) = p+m and T̃(am+11 ) = p+m+ 1, and since T̃ is a strictly
monotone continuous function, there are unique real numbers

am1 = a
km
2 < a

km+1
2 < ⋅ ⋅ ⋅ < a

km+k−1
2 < ak(m+1)2 = am+11

such that T̃(akm+i2 ) = a
i
1 (mod 1) for 0 ≤ i ≤ k. Again, akm+i2 is close to (km + i)/k2 if T is

close to Ek . Let Γm2 = [a
m
2 , a

m+1
2 ] for 0 ≤ m < k

2, so that T(π(Γm2 )) = π ∘ T̃([a
m
2 , a

m+1
2 ]) =

π([am
′

1 , a
m′+1
1 ]) = π(Γ

m′
1 ), wherem

′ is the unique integer between 0 and k − 1 such that
m′ = m (mod k).

We continue inductively and for eachn ∈ ℕwedefinepointsakm+in for 0 ≤ m < kn−1

and 0 ≤ i ≤ k such that

amn−1 = a
km
n < a

km+1
n < ⋅ ⋅ ⋅ < a

km+k−1
n < ak(m+1)n = am+1n−1
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and

T̃(akm+in ) = a
m′
n−1 (mod 1), (6.7)

where 0 ≤ m′ < kn−1 and m′ = km + i (mod kn−1). Let Γmn = [a
m
n , a

m+1
n ] for 0 ≤ m < k

n.
Then T(π(Γmn )) = π(Γ

m′
n−1), where 0 ≤ m

′ < kn−1 and m = m′ (mod kn−1). By induction,
Tn(π(Γmn )) = 𝕊

1 and Tn is injective on π(Γmn ) up to identification of the endpoints of Γ
m
n .

So far, we have only used the facts that T is locally injective (and thus its lift T̃ is
strictly monotone) and that T has degree k. If T is Shub expanding, that is, if ‖T′(x)‖ ≥
λ > 1 for all x ∈ 𝕊1, then the length of each arc π(Γmn ) does not exceed λ

−n, so the set
of points {π(amn )}n∈ℕ,0≤m<kn is dense in 𝕊

1 while {amn }n∈ℕ,0≤m<kn is dense in the interval
[p, p+ 1]. This is the only place in the proof where the fact that T is an expanding map
is used. (In fact, the use of differentiability could be easily avoided.)

Furthermore, for any N ∈ ℕ and ε > 0 one can find δ > 0 such that if T is δ-close
to Ek in the uniform topology, then

a
m
n −

m
kn
 <

ε
3
, ∀1 ≤ n ≤ N , ∀0 ≤ m < kn. (6.8)

We define a correspondence h between the set {amn }n∈ℕ,0≤m<kn and all k-ary rationals,
that is, the rational numbers whose denominators are powers of k, by setting

h(amn ) =
m
kn
.

This correspondence is monotone and since the set {amn }n∈ℕ,0≤m<kn is dense in the in-
terval [p, p+1], it can be uniquely extended to a homeomorphism h : [p, p+1]→ [0, 1].
Since h(Γmn ) = △

m
n for all n ∈ ℕ and 0 ≤ m < kn, relations (6.6) and (6.7) imply that T

is topologically conjugate to Ek via h, that is,

Ek ∘ h = h ∘ T . (6.9)

Assuming under the conditions of (6.8) that N and ε are chosen such that 1/kN < ε/3,
one sees in addition that |amn − h(a

m
n )| < ε for n ∈ ℕ and 0 ≤ m < kn, and hence

|h(x) − x| < ε for all x, that is, h ∈ Bρ∞ (Id𝕊1 , ε). Recall also that if T is close enough to
Ek in the topology of uniform convergence, then the degree of T is k, by Lemma 2.1.12.
Thus, Ek is strongly structurally stable in the space ℰk(𝕊1).

The case of a negative k differs primarily in notation. The order of the real numbers
akm+in between amn−1 and a

m+1
n−1 will be increasing for even n’s and decreasing for odd n’s,

the same as the corresponding structure imposed by themap Ek on the k-ary rationals.

Let C1(𝕊1,𝕊1) denote the space of all C1 endomorphisms of 𝕊1 endowedwith the C1

topology.
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Corollary 6.1.4. Every Shub expanding map of the unit circle is structurally stable in
C1(𝕊1,𝕊1) and every map Ek : 𝕊1 → 𝕊1, |k| ≥ 2, is strongly structurally stable in this class.

Proof. This is an immediate consequenceof Theorem6.1.3 onceoneobserves that each
element of ℰk(𝕊1) has a neighborhood U in C1(𝕊1,𝕊1) such that U ⊆ ℰk(𝕊1). For more
information, see Theorem 6.2.5.

6.2 Definition, characterization, and properties of general Shub
expanding endomorphisms

Unless stated otherwise, we shall let M be a compact connected smooth (i. e., C∞)
manifold, and ρ a Riemannian metric onM.

If γ : I → M is a smooth curve defined on an interval I ⊆ ℝ, then the length of γ
with respect to the Riemannian metric ρ is defined to be

ℓρ(γ) := ∫
I

‖Dtγ(et)‖ dt = ∫
I

‖Dtγ‖ dt,

where et is the unit tangent vector to I at the point t. Given x, y ∈ M, let Γ(x, y) be the
collection of all smooth curves onM whose endpoints are x and y. The distance ρ(x, y)
between x and y is defined as

ρ(x, y) := inf{ℓρ(γ) | γ ∈ Γ(x, y)},

where, as above, we shall use the same symbol ρ to denote the original Riemannian
metric and the distance it induces onM. A curve γ joining x to ywhose length is equal
to ρ(x, y) is called a geodesic from x to y. Although we will not rely on this fact, a
geodesic joining x and y always exists. In fact, it is unique if the points x and y are
sufficiently close.

Let us begin by defining the class of transformations ofM that we will study.

Definition 6.2.1. A C1 endomorphism T : M → M is Shub expanding if there exists
k ∈ ℕ such that

‖DxT
k(v)‖Tk(x) ≥ 2‖v‖x , ∀x ∈ M, ∀v ∈ TxM.

We immediately present a characterization of these maps. We invite the reader to
envision the implications it will have on the dynamics of these maps.

Proposition 6.2.2. If T : M → M is a C1 endomorphism, then the following statements
are equivalent:
(a) The map T : M → M is Shub expanding.
(b) There exist constants μ > 1 and C > 0 such that for all n ∈ ℕ,

‖DxT
n(v)‖Tn(x) ≥ Cμ

n‖v‖x , ∀x ∈ M, ∀v ∈ TxM.
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(c) There exist λ > 1 and a Riemannian metric ρ′ on M such that

‖DxT(v)‖T(x),ρ′ ≥ λ‖v‖x,ρ′ , ∀x ∈ M, ∀v ∈ TxM. (6.10)

Proof. Let us first prove that (c)⇒(a). Since M is compact, the Riemannian norms ρ
and ρ′ are equivalent in the sense that there exists a constant L ≥ 1 such that

L−1‖v‖x,ρ ≤ ‖v‖x,ρ′ ≤ L‖v‖x,ρ, ∀x ∈ M, ∀v ∈ TxM.

Using the chain rule repeatedly, for every k ∈ ℕ we obtain that

‖DxT
k(v)‖Tk(x),ρ ≥ L

−1‖DxT
k(v)‖Tk(x),ρ′

= L−1‖DTk−1(x)T(DxT
k−1(v))‖T(Tk−1(x)),ρ′

≥ L−1λ‖DxT
k−1(v)‖Tk−1(x),ρ′

≥ . . . ≥ L−1λk‖v‖x,ρ′ ≥ λ
kL−2‖v‖x,ρ.

It suffices to take k ∈ ℕ so large that λk ≥ 2L2.
We now prove that (a)⇒(b). To begin, it follows from the definition of a Shub ex-

panding endomorphism that Ker(DxTk) = {0} for every x ∈ M. Hence, Ker(DxTn) = {0}
for all x ∈ M and all n ∈ ℕ (first, use the chain rule in the formDxTk = DT(x)Tk−1∘DxT to
establish the statement forn = 1 and thendeduce it for anyn). Since the tangent spaces
TxM and TTn(x)M are of finite dimension equal to dim(M), all the maps DxTn : TxM →
TTn(x)M are linear isomorphisms and thereby invertible. In particular, ‖(DxT)−1‖ < ∞
for each x ∈ M. Moreover, observe that the determinant function x → det(DxT) is con-
tinuous onM since T ∈ C1(M,M), and does not vanish anywhere onM sinceDxT is in-
vertible for every x ∈ M. As the entries of the inverse matrix A−1 of an invertible matrix
A are polynomial functions of the entries of A divided by det(A), the entries of the ma-
trix (DxT)−1 depend continuously on x ∈ M. Consequently, the function x → ‖(DxT)−1‖
is continuous onM, and thus ‖(DT)−1‖∞ := maxx∈M ‖(DxT)−1‖ <∞ sinceM is compact.
Let

α := max{1, ‖(DT)−1‖∞} <∞.

Fix an arbitrary n ∈ ℕ. Write n = qk + r, where q and r are integers such that q ≥ 0 and
0 ≤ r < k. For every x ∈ M and every v ∈ TxM, we have

‖v‖x =
(DxT

n)
−1
(DxT

n(v))x ≤
(DxT

n)
−1 ⋅
DxT

n(v)Tn(x)

= (DTqk(x)T
r ∘ DxT

qk)
−1 ⋅
DxT

n(v)Tn(x)

≤ (DTqk(x)T
r)
−1 ⋅
(DxT

qk)
−1 ⋅
DxT

n(v)Tn(x)

≤
r−1
∏
i=0

(DTqk+i(x)T)
−1 ⋅

q−1
∏
j=0

(DT jk(x)T
k)
−1 ⋅
DxT

n(v)Tn(x)
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≤ αr2−qDxT
n(v)Tn(x)

≤ 2αk−12−(q+1)DxT
n(v)Tn(x).

Given that k(q + 1) ≥ n, it follows from the above estimate that

DxT
n(v)Tn(x) ≥

1
2
α1−k(21/k)n‖v‖x .

Thus, part (b) is proved with C = α1−k/2 > 0 and μ = 21/k > 1.
Since the implication (b)⇒(a) is obvious, to complete the proof it suffices to show

that (a)⇒(c). Define on M a new metric ρ′ with scalar product on the tangent spaces
given by

⟨v,w⟩′x :=
k−1
∑
j=0
⟨DxT

j(v),DxT
j(w)⟩T j(x).

Then

‖v‖2x,ρ′ = ⟨v, v⟩
′
x =

k−1
∑
j=0

DxT
j(v)

2
T j(x),ρ (6.11)

whereas

DxT(v)

2
T(x),ρ′ =

k
∑
j=1

DxT
j(v)

2
T j(x),ρ. (6.12)

For all j = 0, 1, . . . , k, we have that

DxT
j(v)T j(x),ρ ≤ ‖DT‖

j
∞,ρ‖v‖x,ρ ≤ max{1, ‖DT‖k∞,ρ}‖v‖x,ρ.

Write β := max{1, ‖DT‖k∞,ρ}. By (a), it then follows that

DxT
k(v)

2
Tk(x),ρ ≥ 4‖v‖

2
x,ρ = 2‖v‖

2
x,ρ +

2
k

k−1
∑
j=0
‖v‖2x,ρ

≥ 2‖v‖2x,ρ +
2
k

k−1
∑
j=0

β−2DxT
j(v)

2
T j(x),ρ.

From this, (6.11) and (6.12), we deduce that

DxT(v)

2
T(x),ρ′ =

k−1
∑
j=1

DxT
j(v)

2
T j(x),ρ +

DxT
k(v)

2
Tk(x),ρ

≥ 2‖v‖2x,ρ + (1 + 2β
−2k−1)

k−1
∑
j=1

DxT
j(v)

2
T j(x),ρ
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≥ (1 +min{1, 2β−2k−1})
k−1
∑
j=0

DxT
j(v)

2
T j(x),ρ

= (1 +min{1, 2β−2k−1})‖v‖2x,ρ′ .

Taking λ = (1 + min{1, 2β−2k−1})1/2 > 1 completes the proof that (a)⇒(c) and thereby
completes the proof of the proposition.

A Riemannianmetric satisfying condition (6.10) is said to be e-adapted to T while
a corresponding number λ is called an expanding factor for this metric.

Corollary 6.2.3. Being a Shub expanding endomorphism of a compact connected
smooth Riemannian manifold M is independent of the Riemannian metric that M is
endowed with. More precisely, a map T : M → M which is a Shub expanding endomor-
phismwith respect to someRiemannianmetric onM is a Shub expanding endomorphism
with respect to all Riemannian metrics on M.

As observed in the proof of Proposition 6.2.2 (or as may be readily deduced from
part (c) of that proposition), all the maps DxT : TxM → TT(x)M, x ∈ M, are linear
isomorphisms. Therefore, by virtue of the inverse function theorem, the map T is a
local diffeomorphism at every point of M. Since M is compact, T is a covering map.
We have thus obtained the following important fact.

Theorem 6.2.4. Every Shub expanding endomorphism is a covering map.

We now turn our attention to topological properties of sets of Shub expanding
endomorphisms. For every r ≥ 1, we denote by ℰ r(M) the set of all Cr Shub expand-
ing endomorphisms of the manifoldM. This set has the remarkable property of being
open.

Theorem 6.2.5. For each r ≥ 1, the set ℰ r(M) is an open subset of the space Cr(M,M)
endowed with the C1 topology.

Proof. Let

ℐr(M) := {T ∈ Cr(M,M) | DxT is invertible,∀x ∈ M}
= {T ∈ Cr(M,M) | det(DxT) ̸= 0,∀x ∈ M}.

Since the determinant function x → det(DxT) is continuous onM for any T ∈ Cr(M,M)
and sinceM is compact, we deduce that

ℐr(M) = {T ∈ Cr(M,M) : min
x∈M
|det(DxT)| ̸= 0}.

Moreover, since the determinant function (x,T) → det(DxT) is continuous on M ×
Cr(M,M), the function T → minx∈M |det(DxT)| is continuous on Cr(M,M). This guar-
antees that ℐr(M) is an open subset of Cr(M,M). Notice also that the continuous func-
tion (x,T) → det(DxT) does not vanish onM × ℐr(M). Since the entries of the inverse
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matrix A−1 of an invertible matrix A are polynomials of the entries of A divided by
det(A), the entries of the matrix (DxT)−1 depend continuously on (x,T) ∈ M × ℐr(M).
Consequently, the function (x,T) → ‖(DxT)−1‖ is continuous onM × ℐr(M). Thus, the
function T → maxx∈M ‖(DxT)−1‖ is continuous on ℐr(M). As observed in (the proof of)
Proposition 6.2.2, ℰ r(M) ⊆ ℐr(M). Fix S ∈ ℰ r(M). Let ρ be a metric e-adapted to S and
λ an expanding factor for this metric. Formula (6.10) implies that ‖(DxS)−1‖ ≤ λ−1 for
all x ∈ M. The continuity of the function T → maxx∈M ‖(DxT)−1‖ on ℐr(M) ensures the
existence of a neighborhood U of S in ℐr(M) such that

max
x∈M
‖(DxT)

−1‖ ≤
λ−1 + 1

2

for all T ∈ U . But

‖v‖x = ‖(DxT)
−1(DxT(v))‖x ≤ ‖(DxT)

−1‖ ⋅ ‖DxT(v)‖T(x)

for every x ∈ M. Therefore,

‖DxT(v)‖T(x) ≥ ‖(DxT)
−1‖−1‖v‖x ≥

2
λ−1 + 1
‖v‖x

for every x ∈ M. Since 2/(λ−1 + 1) > 1, we conclude that each T ∈ U is Shub expanding.

One fundamental fact about continuous maps on a compact connected smooth
manifold is that they are homotopic if they are sufficiently close.

Theorem 6.2.6. IfM is a compact connected smoothmanifold, then any two continuous
maps sufficiently close in C(M,M) are homotopic.

Proof. Let ρ be a Riemannianmetric onM and let exp : TM → M be the corresponding
exponential map. Let expx := exp |TxM for each x ∈ M. SinceM is compact, there exists
a radius δ > 0 such that for every x ∈ M, the inverse map exp−1x : Bρ(x, δ) → TxM is
well-defined and so diffeomorphic. Take any two elements f , g ∈ C(M,M) such that
ρ∞(f , g) < δ. Define a map F : M × [0, 1]→ M as follows:

F(x, t) := expf (x)(t exp
−1
f (x)(g(x))).

As a composition of continuous maps, the map F is continuous. Also, F(x,0) =
expf (x)(0) = f (x) and F(x, 1) = expf (x)(exp−1f (x)(g(x))) = g(x). Thus, F is a homotopy
from f to g.

According to Theorems 6.2.5 and 6.2.6, in order to establish the structural stability
of Shub expanding endomorphisms, it suffices to prove that any two homotopic Shub
expanding endomorphisms are topologically conjugate. This feat will be achieved at
the very end of this chapter. Theorem 6.2.6 also partly explains the involvement of
algebraic topology, which we will now briefly investigate.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.3 A digression into algebraic topology | 161

6.3 A digression into algebraic topology

In this section, we develop some algebraically topological results that will be relied
upon in the rest of the chapter.

6.3.1 Deck transformations

LetM be a compact connected smooth manifold with Riemannian metric ρ. Let M̃ be
the universal covering space ofM and π : M̃ → M be the canonical projection from M̃
toM. Every continuous map G : M̃ → M̃ such that the diagram

M̃

π
??

M̃

G
??

π
?? M

commutes, that is, such that

π ∘ G = π,

is called a deck transformation of the manifoldM. We adopt the convention of denot-
ing deck transformations with an overline. By the unique lifting property (cf. Propo-
sition 1.34 in [28]), a deck transformation is uniquely determined by its value at any
point of M̃.

Moreover, givenany twopoints x̃, ỹ ∈ M̃ such thatπ(x̃) = π(ỹ), by theunique lifting
property there exist unique deck transformations Gx̃,ỹ : M̃ → M̃ and Gỹ,x̃ : M̃ → M̃
such that

Gx̃,ỹ(x̃) = ỹ and Gỹ,x̃(ỹ) = x̃.

Consequently, Gỹ,x̃ ∘Gx̃,ỹ is a deck transformation such that Gỹ,x̃ ∘Gx̃,ỹ(x̃) = x̃. It follows
from the unique lifting property that Gỹ,x̃ ∘ Gx̃,ỹ = IdM̃ , and, by the same token, Gx̃,ỹ ∘
Gỹ,x̃ = IdM̃ . Therefore, Gx̃,ỹ is a diffeomorphism of M̃.

Furthermore, since π : M̃ → M is a local diffeomorphism, it induces a Riemannian
metric ρ̃ on M̃ defined as follows:

⟨w, v⟩x̃,ρ̃ := ⟨Dx̃π(w),Dx̃π(v)⟩π(x̃),ρ, ∀x̃ ∈ M̃, ∀w, v ∈ Tx̃M̃.

With this Riemannian metric on M̃, the projection map π : M̃ → M is an infinitesi-
mal and local isometry and all deck transformations ofM are infinitesimal and global
isometries with respect to the metric ρ̃.
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Proposition 6.3.1. If M is a compact connected smoothmanifold with Riemannianmet-
ric ρ, then the set DM of all deck transformations of M is a group of diffeomorphisms
(with composition as group action) acting transitively on each fiber of π. Each element
of DM is uniquely determined by its value at any point of M̃, is an infinitesimal and global
ρ̃-isometry, where ρ̃ is the metric induced by π and ρ.

Proof. Theonlypart that remains tobeproved is the transitivity. For this, letG,H ∈ DM .
Then

π ∘ (G ∘ H) = (π ∘ G) ∘ H = π ∘ H = π.

That is, the group DM acts transitively on each fiber of π.

Later on, we will also need the following result.

Proposition 6.3.2. If X is a connected Hausdorff topological space and f , g : X → M̃
are two continuous maps such that π ∘ f = π ∘ g, then there exists a unique deck trans-
formation G ∈ DM such that G ∘ f = g.

Proof. Fix x0 ∈ M and let G be the unique element of DM such that G ∘ f (x0) = g(x0).
Let

E = {x ∈ X | G ∘ f (x) = g(x)}.

Obviously, E is nonempty. It is also closed since its complement is open in X. We shall
prove that E is also open. Indeed, let x ∈ E. Since the projection π : M̃ → M is a
local homeomorphism, there exists an open neighborhood Ṽ of g(x) in M̃ such that
the map π|Ṽ is one-to-one. As the maps G ∘ f and g are continuous, there is an open
neighborhood U of x in X such that

G ∘ f (U) ⊆ Ṽ and g(U) ⊆ Ṽ .

Let y ∈ U . Then G ∘ f (y) and g(y) belong to Ṽ . Moreover, π(G ∘ f (y)) = π(f (y)) = π(g(y)).
Thus G ∘ f (y) = g(y) by the injectivity of π|Ṽ . This shows that y ∈ E and hence U ⊆ E,
thereby proving that the nonempty, closed set E is also open. Since X is connected,
we therefore conclude that E = X. The uniqueness of G follows immediately from
Proposition 6.3.1 sinceGmust be the unique deck transformation satisfyingG(f (x0)) =
g(x0).

We now point out a fascinating characterization of the convergence of sequences
of deck transformations at any point of the universal covering space.

Lemma 6.3.3. Every sequence (Gn)
∞
n=1 in DM that converges at one point of M̃ is eventu-

ally constant.
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Proof. Suppose that there exists x̃ ∈ M̃ such that (Gn(x̃))∞n=1 is a convergent sequence
in M̃. Let x := π(x̃) ∈ M. There is r > 0 such that the balls (Bρ̃(ỹ, r))ỹ∈π−1(x) are mutually
disjoint. Since Gn ∈ DM for all n ∈ ℕ, we have π(Gn(x̃)) = π(x̃) = x, that is, Gn(x̃) ∈
π−1(x) for all n ∈ ℕ. Thus, if k ∈ ℕ is so large that ρ̃(Gi(x̃),Gj(x̃)) < r for all i, j ≥ k, then
Gi(x̃) = Gj(x̃). Since deck transformations are uniquely determined by their value at
any point according to Proposition 6.3.1, we conclude that Gi = Gj for all i, j ≥ k.

As an immediate consequence of this lemma, we obtain the following powerful
result.

Corollary 6.3.4. A sequence (Gn)
∞
n=1 in DM converges uniformly on compact subsets of

M̃ if and only if it is eventually constant.

Proof. If a sequence (Gn)
∞
n=1 in DM converges uniformly on compact subsets of M̃,

then it converges pointwise on M̃. Therefore, it is eventually constant according to
Lemma 6.3.3. Obviously, any eventually constant sequence converges uniformly on
compact subsets.

Theoretically, establishing uniform convergence on compact subsets may prove
to be difficult. Fortunately, there exists a simpler, pointwise criterion for sequences of
deck transformations.

Lemma 6.3.5. If (Gn)
∞
n=1 is a sequence in DM and if (z̃n)∞n=1 is a sequence of points in M̃

converging to some point z̃ ∈ M̃ such that w̃ := limn→∞ Gn(z̃n) exists, then the sequence
(Gn)
∞
n=1 converges uniformly on compact subsets of M̃ to an element G ∈ DM , which is

uniquely determined by the requirement that G(z̃) = w̃. In fact, the sequence (Gn)
∞
n=1 is

eventually constant. More precisely, its terms eventually coincide with the unique ele-
ment G ∈ DM such that G(z̃) = w̃.

Proof. Let

ξ = max{sup{ρ̃(z̃n, z̃) : n ∈ ℕ}, sup{ρ̃(Gn(z̃n), w̃) : n ∈ ℕ}} <∞.

Fix r > 0 and take x̃ ∈ Bρ̃(z̃, r). Then for every n ∈ ℕ, we have that

ρ̃(Gn(x̃), w̃) ≤ ρ̃(Gn(x̃),Gn(z̃)) + ρ̃(Gn(z̃),Gn(z̃n)) + ρ̃(Gn(z̃n), w̃)
= ρ̃(x̃, z̃) + ρ̃(z̃, z̃n) + ρ̃(Gn(z̃n), w̃) ≤ r + ξ + ξ = 2ξ + r.

This means that for all n ∈ ℕ,

Gn(Bρ̃(z̃, r)) ⊆ Bρ̃(w̃, 2ξ + r). (6.13)

Now let (nk)∞k=1 be a strictly increasing sequence of positive integers. Fix j ∈ ℕ
and suppose that we have extracted from (nk)∞k=1 a subsequence (n(j)k )

∞
k=1 such that

the sequence (Gn(j)k
)∞k=1 converges uniformly on Bρ̃(z̃, j) to some continuous map
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G(j) : Bρ̃(z̃, j) → Bρ̃(w̃, 2ξ + j). The inductive step, which also provides the basis of
the induction, is as follows. Since both balls Bρ̃(z̃, j + 1) and Bρ̃(w̃, 2ξ + j + 1) are com-
pact and since the sequence of ρ̃-isometries (Gn)

∞
n=1 forms an equicontinuous family

of maps, Arzelà–Ascoli’s theorem permits us to extract from (n(j)k )
∞
k=1 a subsequence

(n(j+1)k )
∞
k=1 such that the sequence (Gn(j+1)k

)∞k=1 converges uniformly on Bρ̃(z̃, j+ 1) to some

continuous map G(j+1) : Bρ̃(z̃, j + 1)→ Bρ̃(w̃, 2ξ + j + 1).

Obviously, G(j+1)|Bρ̃(z̃,j) = G
(j) and gluing all the maps (G(j))∞j=1 together results in a

map G : M̃ → M̃ defined as G(x̃) = G(j)(x̃) if x̃ ∈ Bρ̃(z̃, j). The sequence (Gn(j)j
)∞j=1 is a

subsequence of (Gn)
∞
n=1 that converges uniformly to G on every compact ball Bρ̃(z̃, i),

i ∈ ℕ. This means that (Gn(j)j
)∞j=1 converges to G uniformly on compact subsets of M̃. So

G is a continuous map from M̃ to M̃ and

π ∘ G(x̃) = π( lim
j→∞

Gn(j)j
(x̃)) = lim

j→∞
(π ∘ Gn(j)j

(x̃)) = lim
j→∞

π(x̃) = π(x̃).

Hence G ∈ DM and

G(z̃) = lim
j→∞

Gn(j)j
(z̃) = lim

j→∞
Gn(j)j
(z̃n(j)j ) = lim

n→∞
Gn(z̃n) = w̃.

The uniqueness ofG follows from Proposition 6.3.1. The rest of the proposition follows
from Corollary 6.3.4.

6.3.2 Lifts

We now study the concept of the lift of a map. We keep with the convention adopted
in Chapter 2 of denoting a lift of a given map with a tilde above the map.

Proposition 6.3.6. Let N and M be two compact connected smooth manifolds. For any
continuous map S : N → M there exists a continuous map S̃ : Ñ → M̃ such that the
following diagram commutes:

Ñ S̃ ??

πN
??

M̃

πM
??

N
S
?? M

That is,

S ∘ πN = πM ∘ S̃.

All such maps S̃ are called lifts of S.
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Proof. Denote by π1(X) be the fundamental group of a path-connected space X and
let (πX)∗ : π1(X̃) → π1(X) be the homomorphism induced by the canonical projection
πX : X̃ → X, where X̃ is the universal covering space of X.

Consider the diagram

M̃

πM
??

Ñ πN
?? N

S
?? M

Notice that (S ∘ πN )∗(π1(Ñ)) = {0}M = (πM)∗({0}M) = (πM)∗(π1(M̃)). From the lifting
criterion (cf. Proposition 1.33 in [28]), there thus exists a continuous map S̃ : Ñ → M̃
such that the following diagram commutes:

M̃

πM
??

Ñ

S̃

??

πN
?? N

S
?? M

One particularly interesting case is the lifting of covering maps.

Proposition 6.3.7. If S : N → M is a covering map, then all of its lifts S̃ : Ñ → M̃ are
homeomorphisms.

Proof. Recall from the proof of Proposition 6.3.6 that

(S ∘ πN )∗(π1(Ñ)) = (πM)∗(π1(M̃)).

From the lifting criterion (cf. Proposition 1.33 in [28]), there then exists a continuous
map Ŝ : M̃ → Ñ such that the following diagram commutes:

Ñ

πN
??
N

S
??

M̃

Ŝ

??

πM
?? M

Using Proposition 6.3.6, let S̃ : Ñ → M̃ be a lift of S : N → M. Then

πM ∘ (S̃ ∘ Ŝ) = (πM ∘ S̃) ∘ Ŝ = (S ∘ πN ) ∘ Ŝ = πM .

Hence, in view of Proposition 6.3.1, the map S̃ ∘ Ŝ is a homeomorphism. On the other
hand, (S ∘ πN ) ∘ (Ŝ ∘ S̃) = (S ∘ πN ∘ Ŝ) ∘ S̃ = πM ∘ S̃ = S ∘ πN . Since S ∘ πN : Ñ → M is a
covering map, an argument similar to the one yielding Proposition 6.3.1 certifies that
Ŝ ∘ S̃ is a homeomorphism. As S̃ ∘ Ŝ and Ŝ ∘ S̃ are homeomorphisms, so are Ŝ and S̃.
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Note that deck transformations ofM are simply lifts of the identity covering map
IdM : M → M.

We now provide a characterization of lifts.

Proposition 6.3.8. Let N and M be two compact connected smooth manifolds. A con-
tinuous map S̃ : Ñ → M̃ is a lift of some continuous map from N to M if and only if
there exists a (necessarily unique) map h : DN → DM such that the following diagram
commutes for all F ∈ DN :

Ñ F
→ Ñ

S̃
↑↑↑↑↓

↑↑↑↑↓S̃

M̃ →
h(F)

M̃

In other words,

S̃ ∘ F = h(F) ∘ S̃, ∀F ∈ DN .

Moreover, h : DN → DM is a group homomorphism. This induced homomorphism of the
groups of deck transformations will also be denoted by S̃∗.

Proof. First, suppose that S : N → M is a continuousmapwhich has for lift S̃ : Ñ → M̃.
For any F ∈ DN , we then have that

πM ∘ (S̃ ∘ F) = (πM ∘ S̃) ∘ F = (S ∘ πN ) ∘ F = S ∘ (πN ∘ F) = S ∘ πN = πM ∘ S̃.

It follows fromProposition6.3.2 that there exists auniqueh(F) ∈ DM such thath(F)∘S̃ =
S̃ ∘ F.

For the converse implication, suppose that S̃ : Ñ → M̃ is a continuous map and
that there is a map h : DN → DM such that S̃ ∘ F = h(F) ∘ S̃ for all F ∈ DN . Define the
map S : N → M by setting

S(x) := πM ∘ S̃(x̃),

where x̃ is any element of π−1N (x). To be well-defined, we must show that S(x) is inde-
pendent of the element x̃ chosen in π−1N (x). For this, let z̃ ∈ π

−1
N (x). Since πN (x̃) = πN (z̃),

there is a unique F ∈ DN such that z̃ = F(x̃). Then

πM ∘ S̃(z̃) = πM ∘ S̃ ∘ F(x̃) = πM ∘ h(F) ∘ S̃(x̃) = πM ∘ S̃(x̃).

Themap S : N → M is thuswell-defined. It is continuous sinceπM ∘S̃ is continuous and
the projection πN : Ñ → N is a coveringmap. Furthermore, S ∘πN (x̃) = S(x) = πM ∘ S̃(x̃).
So S̃ is a lift of S.

Regarding the last assertion, for any F1, F2 ∈ DN we have that F1 ∘ F2 ∈ DN . As
h : DN → DM is the unique map such that h(F) ∘ S̃ = S̃ ∘ F for all F ∈ DN , it ensues that

(h(F1 ∘ F2)) ∘ S̃ = S̃ ∘ F1 ∘ F2 = h(F1) ∘ S̃ ∘ F2 = h(F1) ∘ h(F2) ∘ S̃ = (h(F1) ∘ h(F2)) ∘ S̃.
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The uniqueness of h implies that h(F1 ∘ F2) = h(F1) ∘ h(F2). So h is a homomorphism
between the groups DN and DM .

Given a certain lift, we next show that the set of all lifts that share the same in-
duced homomorphism as the given lift naturally forms a complete metric space.

LetN andM be two compact connected smoothmanifolds and let α̃ : Ñ → M̃ be a
lift of some continuousmap fromN toM. LetVα̃ denote the set of all continuousmaps
S̃ : Ñ → M̃ that are lifts of some continuous map from N toM and such that S̃∗ = α̃∗.
Let ρ̃∞ : Vα̃ × Vα̃ → [0,∞] be the function defined by

ρ̃∞(S̃1, S̃2) := sup{ρ̃M(S̃1(x̃), S̃2(x̃)) | x̃ ∈ Ñ}.

Lemma 6.3.9. The function ρ̃∞ constitutes a metric on the set Vα̃ and the metric space
(Vα̃, ρ̃∞) is complete.

Proof. The symmetry of ρ̃∞ and the triangle inequality being obvious, we shall only
demonstrate the finiteness of ρ̃∞ to establish that ρ̃∞ is a metric on Vα̃.

Let R > diamρN (N). We first show that

πN(Bρ̃N (z̃,R)) = N , ∀ z̃ ∈ Ñ . (6.14)

To that end, fix z̃ ∈ Ñ and x ∈ N . Let γ be a smooth curve in N joining πN (z̃) and x
whose ρN -length is smaller than R. Let γ̃ be a lift of γ to Ñ whose initial point is z̃. Let
w̃ denote the other endpoint of the curve γ. Since πN : Ñ → N is a local (and thus
infinitesimal) isometry, we deduce that

ρ̃N (z̃, w̃) ≤ ℓρ̃N (γ̃) = ℓρN (γ) < R.

Since x = πN (w̃), it follows that x ∈ πN (Bρ̃N (z̃,R)), and thus (6.14) holds.
Now, let S̃1, S̃2 ∈ Vα̃. Since Bρ̃N (z̃,R) is a compact subset of Ñ, we have

A := sup{ρ̃M(S̃1(x̃), S̃2(x̃)) | x̃ ∈ Bρ̃N (z̃,R)} <∞.

Take an arbitrary point w̃ ∈ Ñ . In light of (6.14), there exists a point x̃ ∈ Bρ̃N (z̃,R)
such that πN (x̃) = πN (w̃). Hence, there exists a deck transformation F ∈ DN such that
F(x̃) = w̃. Consequently,

ρ̃M(S̃1(w̃), S̃2(w̃)) = ρ̃M(S̃1 ∘ F(x̃), S̃2 ∘ F(x̃))
= ρ̃M(S̃

∗
1 (F) ∘ S̃1(x̃), S̃

∗
2 (F) ∘ S̃2(x̃))

= ρ̃M(α̃
∗(F) ∘ S̃1(x̃), α̃

∗(F) ∘ S̃2(x̃))
= ρ̃M(S̃1(x̃), S̃2(x̃)) ≤ A.

Thus, ρ̃∞(S̃1, S̃2) ≤ A <∞ and thereby ρ̃∞(Vα̃ × Vα̃) ⊆ [0,∞). So ρ̃∞ is a metric.
Let us now show that ρ̃∞ is complete. Let (S̃n)∞n=1 be a Cauchy sequence in Vα̃.

Then this sequence is also a Cauchy sequence with respect to the topology of uniform
convergence on compact subsets of Ñ . Let Ŝ : Ñ → M̃ be the limit of that sequence. Let
F ∈ DN . Since S̃n ∘F = α̃∗(F)∘ S̃n for all n ∈ ℕ, we infer that Ŝ ∘F = α̃∗(F)∘ Ŝ. By Proposi-
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tion 6.3.8, we deduce that Ŝ ∈ Vα̃. Let z̃ ∈ Ñ and R > diamρN (N). As established above,

ρ̃∞(S̃n, Ŝ) ≤ sup{ρ̃M(S̃n(x̃), Ŝ(x̃)) | x̃ ∈ Bρ̃N (z̃,R)}

for all n ∈ ℕ, whence the uniform convergence of the sequence (S̃n)∞n=1 to Ŝ on the
compact ball Bρ̃N (z̃,R) implies that it also converges to Ŝ with respect to the metric ρ̃∞
on Vα̃.

6.4 Dynamical properties
In the last section of this chapter, we will discover the dynamical properties of Shub
expanding endomorphisms.

6.4.1 Expanding property

Shub expanding endomorphisms are distance expanding in the following sense.

Theorem 6.4.1. Every Shub expanding endomorphism T : M → M is distance expand-
ing with respect to the distance ρ induced on M by any Riemannian metric ρ e-adapted
to T.

Proof. According to Theorem 6.2.4, every Shub expanding endomorphism T is a cov-
ering map, and thus a local homeomorphism. Thanks to the compactness ofM, there
then exists some δT > 0 such that the map T|Bρ(x,2δT ) : Bρ(x, 2δT ) → M is injective for
all x ∈ M. Fix two points x1, x2 ∈ M such that ρ(x1, x2) < 2δT and pick any smooth
curve γ : I → M joining T(x1) and T(x2), that is, γ(a) = T(x1) and γ(b) = T(x2), where
I = [a, b] ⊆ ℝ. Since T : M → M is a covering map, there exists a smooth curve
γ̂ : I → M such that γ̂(a) = x1 and T ∘ γ̂ = γ. In particular, T(γ̂(b)) = T(x2). So if
γ̂(b) ∉ Bρ(x1, 2δT ), then

ρ(γ̂(a), γ̂(b)) = ρ(x1, γ̂(b)) ≥ 2δT > ρ(x1, x2).

On the other hand, if γ̂(b) ∈ Bρ(x1, 2δT ), then γ̂(b) = x2 since the map T|Bρ(x1 ,2δT ) is
injective, whence ρ(γ̂(a), γ̂(b)) = ρ(x1, x2). In either case,

ℓρ(γ̂) ≥ ρ(γ̂(a), γ̂(b)) ≥ ρ(x1, x2).

Therefore,

ℓρ(γ) = ∫
I

Dtγ(et)
 dt = ∫

I

Dt(T ∘ γ̂)(et)
 dt

= ∫
I

Dγ̂(t)T(Dtγ̂(et))
 dt

≥ λ∫
I

Dtγ̂(et)
 dt = λℓρ(γ̂) ≥ λρ(x1, x2).
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So, taking the infimum over all curves γ ∈ Γ(T(x1),T(x2)), we conclude that ρ(T(x1),
T(x2)) ≥ λρ(x1, x2) for all x1, x2 ∈ M such that ρ(x1, x2) < 2δT .

The previous theorem shows that Shub expanding endomorphisms provide a
large class of distance expanding maps.

6.4.2 Topological exactness and density of periodic points

The next theorem reveals several additional dynamical properties of Shub expanding
maps.

Theorem 6.4.2. Let M be a compact connected smooth manifold. If T : M → M is a
Shub expanding endomorphism, then:
(a) T has a fixed point.
(b) The universal covering manifold M̃ is diffeomorphic to ℝk , where k = dim(M).
(c) T is topologically exact.
(d) The set of periodic points of T is dense in M.

Proof. Let ρbe aRiemannianmetric onM e-adapted toT, and ρ̃ theRiemannianmetric
inducedbyπ and ρon M̃. Recall thatwith thesemetrics, theprojectionmapπ : M̃ → M
is an infinitesimal and local isometry and all maps in DM are infinitesimal and global
isometries with respect to the metric ρ̃. Let T̃ : M̃ → M̃ be a lift of T to M̃. Such a
lift exists according to Proposition 6.3.6. By Theorem 6.2.4 and Proposition 6.3.7, the
map T̃ is a diffeomorphism. With a calculation analogous to that in the proof of Theo-
rem 6.4.1, we can prove the following claim.

Claim. The diffeomorphism T̃−1 : M̃ → M̃ is a global contraction with respect to the
metric ρ̃. More precisely,

ρ̃(T̃−1(x̃), T̃−1(ỹ)) ≤ λ−1ρ̃(x̃, ỹ), ∀x̃, ỹ ∈ M̃. (6.15)

(a) By the Banach contraction principle, the map T̃−1 : M̃ → M̃ has a unique
fixed point w̃ ∈ M̃. That is, T̃−1(w̃) = w̃, or, equivalently, T̃(w̃) = w̃. Then T(π(w̃)) =
π(T̃(w̃)) = π(w̃), that is, π(w̃) is a fixed point of T : M → M.

(b) Let w̃ ∈ M̃ be the fixed point of the maps T̃ , T̃−1 : M̃ → M̃. Since M̃ is a smooth
manifold, there exist r > 0 and a smooth diffeomorphism φ : V → Bρ̃(w̃, r) from an
open neighborhood V of the origin in ℝk onto Bρ̃(w̃, r) and such that φ(0) = w̃ and
φ′(0) : ℝk → Tw̃M̃ is an isometry. Since

T̃−1(Bρ̃(w̃, r)) ⊆ Bρ̃(w̃, λ
−1r) ⊆ Bρ̃(w̃, r),

the conjugate of T̃−1 via φ is a well-defined diffeomorphism, namely

G := φ−1 ∘ T̃−1 ∘ φ : V → V .
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Hence, for all k ≥ 0,

Gk = φ−1 ∘ T̃−k ∘ φ : V → V . (6.16)

Notice that

G(0) = φ−1 ∘ T̃−1 ∘ φ(0) = φ−1(T̃−1(w̃)) = φ−1(w̃) = 0

and

‖G′(0)‖ = (φ
−1)
′
(w̃) ∘ (T̃−1)′(w̃) ∘ φ′(0) =

(T̃
−1)
′
(w̃) ≤ λ

−1 < 1.

Therefore, there exists R > 0 so small that B(0,R) ⊆ V ,

G(B(0,R)) ⊆ B(0, λ
−1 + 1
2

R) ⊆ B(0,R), (6.17)

and

‖G′(x)‖ ≤ λ
−1 + 1
2
, ∀x ∈ B(0,R). (6.18)

In view of Exercise 6.5.5, there then exists a diffeomorphism Ĝ : ℝk → ℝk such that

Ĝ|B(0,R) = G and Ĝ
′(x) ≤

λ−1 + 1
2
, ∀x ∈ ℝk . (6.19)

Let us now define a map H : M̃ → ℝk in the following way. For each x̃ ∈ M̃, choose
n = n(x̃) ≥ 0 such that T̃−n(x̃) ∈ φ(B(0,R)) and declare

H(x̃) = Ĝ−n ∘ φ−1 ∘ T̃−n(x̃). (6.20)

We shall first show thatH(x̃) is well-defined by establishing that its definition is inde-
pendent of the choice of n. Then we will proceed on showing thatH : M̃ → ℝk is a dif-
feomorphism. So assume that, in addition to T̃−n(x̃), the iterate T̃−j(x̃) is in φ(B(0,R)).
We may assume without loss of generality that 0 ≤ j ≤ n. Write T̃−j(x̃) = φ(x′), where
x′ ∈ B(0,R) ⊆ V . Using (6.16) with k = n − j, (6.17) and (6.19), we get

Ĝ−n ∘ φ−1 ∘ T̃−n(x̃) = Ĝ−n ∘ φ−1 ∘ T̃−(n−j) ∘ T̃−j(x̃)
= Ĝ−n ∘ φ−1 ∘ T̃−(n−j) ∘ φ(x′)
= Ĝ−n ∘ Gn−j(x′) = Ĝ−j(x′) = Ĝ−j ∘ φ−1 ∘ T̃−j(x̃).

Thus, the map H : M̃ → ℝk is well-defined. Since the same n used to define H at x̃
works for any point ỹ ∈ Bρ̃(x̃, ε) if ε > 0 is sufficiently small, it follows from (6.20)
that the mapH is smooth as a composition of smooth maps. As a composition of local
diffeomorphisms, it is further a local diffeomorphism. It only remains to show that H
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is globally bijective. To prove injectivity, assume that H(x̃) = H(ỹ). Since T̃−1 : M̃ → M̃
is a global contraction fixing w̃ = φ(0), there exists n ≥ 0 so large that both T̃−n(x̃) and
T̃−n(ỹ) lie in φ(B(0,R)). Then

Ĝ−n ∘ φ−1 ∘ T̃−n(x̃) = Ĝ−n ∘ φ−1 ∘ T̃−n(ỹ).

Applying to this equality Ĝn, φ and T̃n successively, we conclude that x̃ = ỹ, thereby
establishing the injectivity of H. To prove its surjectivity, take an arbitrary y ∈ ℝk .
Since Ĝ : ℝk → ℝk is a global contraction according to (6.19) and has 0 for fixed point,
there exists n ≥ 0 so large that Ĝn(y) ∈ B(0,R). Then φ(Ĝn(y)) ∈ φ(B(0,R)). It follows
that

H(T̃n(φ(Ĝn(y)))) = Ĝ−n ∘ φ−1 ∘ T̃−n(T̃n ∘ φ ∘ Ĝn(y)) = y.

Thus,H is surjective. BecauseH : M̃ → ℝk is a diffeomorphism, k = dim(M̃) = dim(M).
(c) Let R > diamρ(M) and recall that (6.14) then holds with N = M. Let U be a

nonempty, open subset ofM. Fix an arbitrary x ∈ U and any x̃ ∈ π−1(x). Since π−1(U)
is an open subset of M̃ containing x̃, there exists some r > 0 such thatBρ̃(x̃, r) ⊆ π−1(U).
Choose n ≥ 0 so large that λnr ≥ R. By (6.15), we observe that

T̃n(Bρ̃(x̃, r)) ⊇ Bρ̃(T̃
n(x̃), λnr) ⊇ Bρ̃(T̃

n(x̃),R).

It follows from (6.14) that

Tn(U) ⊇ Tn(π(Bρ̃(x̃, r))) = π(T̃
n(Bρ̃(x̃, r))) ⊇ π(Bρ̃(T̃

n(x̃),R)) = M.

Thus, T is topologically exact.
(d) As in part (c), letR > diamρ(M) and recall that (6.14) then holds. Let alsoU be a

nonempty, open subset ofM. Fix an arbitrary x ∈ U and x̃ ∈ π−1(x). Since π−1(U) is an
open subset of M̃ containing x̃, there exists some 0 < r ≤ R such that Bρ̃(x̃, r) ⊆ π−1(U).
Choose n ≥ 0 so large that λnr ≥ 2R. By (6.14), there exists ỹ ∈ Bρ̃(T̃n(x̃),R) such
that π(ỹ) = x = π(x̃) and hence there is G ∈ DM such that G(x̃) = ỹ ∈ Bρ̃(T̃n(x̃),R).
Using (6.15), it follows that

T̃n(Bρ̃(x̃, r)) ⊇ Bρ̃(T̃
n(x̃), λnr) ⊇ Bρ̃(T̃

n(x̃), 2R) ⊇ Bρ̃(G(x̃),R).

Since G : M̃ → M̃ is a ρ̃-isometry, we deduce that

T̃n(Bρ̃(x̃, r)) ⊇ G(Bρ̃(x̃,R)) ⊇ G(Bρ̃(x̃, r)).

Consequently,

T̃−n ∘ G(Bρ̃(x̃, r)) ⊆ Bρ̃(x̃, r).
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As T̃−n is a contraction and G is an isometry, the map T̃−n ∘ G : Bρ̃(x̃, r) → Bρ̃(x̃, r) is a
contraction and the Banach contraction principle asserts that T̃−n ∘G has a fixed point
w̃ ∈ Bρ̃(x̃, r). Therefore, T̃n(w̃) = G(w̃), and hence

Tn(π(w̃)) = π(T̃n(w̃)) = π(G(w̃)) = π(w̃).

Furthermore,

π(w̃) ∈ π(Bρ̃(x̃, r)) ⊆ U .

Thus, Tn has a fixed point inU . SinceU is an arbitrary open set inM, we conclude that
the set of periodic points of T is dense inM.

6.4.3 Topological conjugacy and structural stability

In order to establish a topological conjugacy between any two Shub expanding en-
domorphisms that are homotopic, we shall first show that the existence of a semi-
conjugacy between the induced homomorphisms of lifts of two Shub expandingmaps
implies the existence of a semiconjugacy between the lifts themselves.

Lemma 6.4.3. Let N and M be compact connected smooth manifolds. Let S : N → N
and T : M → M be Shub expanding endomorphisms. Finally, let α : N → M be a
continuous map. If there exist lifts S̃ : Ñ → Ñ of S, T̃ : M̃ → M̃ of T, and α̃ : Ñ → M̃ of α,
such that

T̃∗ ∘ α̃∗ = α̃∗ ∘ S̃∗, (6.21)

then there exists a unique map H̃ ∈ Vα̃ such that

T̃ ∘ H̃ = H̃ ∘ S̃,

where Vα̃ is the set of all continuous maps Ã : Ñ → M̃ that are lifts of some continuous
map from N to M and such that Ã∗ = α̃∗.

Proof. For every Ã ∈ Vα̃, define

θ(Ã) := T̃−1 ∘ Ã ∘ S̃.

Claim 1. The transformation θ(Ã) is a lift of some continuous map from N to M.

Proof of Claim 1. According to Proposition 6.3.8, for every G ∈ DM we have T̃∗(G) ∘ T̃ =
T̃ ∘G. Since T̃ is a homeomorphism by Proposition 6.3.7 and Theorem 6.2.4, we obtain
that G = T̃−1 ∘ T̃∗(G) ∘ T̃. So, if G1,G2 ∈ DM and T̃∗(G1) = T̃∗(G2), then G1 = G2. This
means that the homomorphism T̃∗ : DM → DM is injective. Since α̃∗ ∘ S̃∗ = T̃∗ ∘ α̃∗,
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the range of the map α̃∗ ∘ S̃∗ is contained in the range of T̃∗ and, therefore, the map
β := (T̃∗)−1 ∘ α̃∗ ∘ S̃∗ : DN → DM is well-defined. We will show that

θ(Ã) ∘ G = β(G) ∘ θ(Ã), ∀Ã ∈ Vα̃, ∀G ∈ DN .

Indeed, for all Ã ∈ Vα̃, all G1 ∈ DN and all G2 ∈ DM , we have

(Ã ∘ S̃) ∘ G1 = (Ã
∗ ∘ S̃∗)(G1) ∘ Ã ∘ S̃ and T̃−1 ∘ T̃∗(G2) ∘ T̃ = G2.

Recalling that Ã∗ = α̃∗ by hypothesis, it follows that for all G ∈ DN ,

θ(Ã) ∘ G = T̃−1 ∘ Ã ∘ S̃ ∘ G = T̃−1 ∘ (Ã∗ ∘ S̃∗)(G) ∘ Ã ∘ S̃

= T̃−1 ∘ T̃∗ ∘ (T̃∗)−1 ∘ Ã∗ ∘ S̃∗(G) ∘ Ã ∘ S̃

= T̃−1 ∘ T̃∗(((T̃∗)−1 ∘ Ã∗ ∘ S̃∗)(G)) ∘ T̃ ∘ T̃−1 ∘ Ã ∘ S̃

= ((T̃∗)−1 ∘ Ã∗ ∘ S̃∗)(G) ∘ T̃−1 ∘ Ã ∘ S̃
= β(G) ∘ θ(Ã).

As β(G) ∈ DM , by virtue of Proposition 6.3.8, the above equality implies that θ(Ã) is a
lift of some continuous map from N toM. Thus, the proof of Claim 1 is complete.

Claim 2. θ(Vα̃) ⊆ Vα̃.

Proof of Claim 2. We aim to show that if Ã ∈ Vα̃, then (θ(Ã))∗(G) = α̃∗(G) for all G ∈
DN . Recall fromProposition 6.3.8 that themap ∗ : DN → DM is a homomorphism. From
this fact and from (6.21), we obtain that

(θ(Ã))∗(G) = (T̃−1 ∘ Ã ∘ S̃)∗(G)
= (T̃−1)∗ ∘ Ã∗ ∘ S̃∗(G) = (T̃−1)∗ ∘ α̃∗ ∘ S̃∗(G)
= (T̃−1)∗ ∘ T̃∗ ∘ α̃∗(G) = (T̃−1 ∘ T̃)∗ ∘ α̃∗(G) = α̃∗(G).

This establishes Claim 2.

Claim 3. The map θ : Vα̃ → Vα̃ is a contraction with respect to the metric ρ̃∞ on Vα̃.

Proof of Claim 3. Let Ã, B̃ ∈ Vα̃. Using (6.15), we get

ρ̃∞(θ(Ã), θ(B̃)) = ρ̃∞(T̃
−1 ∘ Ã ∘ S̃, T̃−1 ∘ B̃ ∘ S̃)

= sup{ρ̃M(T̃
−1 ∘ Ã ∘ S̃(x̃), T̃−1 ∘ B̃ ∘ S̃(x̃)) : x̃ ∈ Ñ}

≤ λ−1 sup{ρ̃M(Ã ∘ S̃(x̃), B̃ ∘ S̃(x̃)) : x̃ ∈ Ñ}
= λ−1 sup{ρ̃M(Ã(ỹ), B̃(ỹ)) : ỹ ∈ Ñ}
= λ−1ρ̃∞(Ã, B̃).

This substantiates Claim 3.
In light of Claim 3 and Lemma 6.3.9, Banach’s contraction principle affirms that

the map θ : Vα̃ → Vα̃ has a unique fixed point H̃ ∈ Vα̃. The equality θ(H̃) = H̃ is
equivalent to the equality T̃ ∘ H̃ = H̃ ∘ S̃.
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We now demonstrate that homotopic Shub expanding endomorphisms exhibit
conjugate dynamics. This generalizes Theorem 6.1.3.

Theorem 6.4.4. Let M be a compact connected smooth manifold. If T , S : M → M are
two homotopic Shub expanding endomorphisms, then T and S are topologically conju-
gate.

Proof. Let (Ft)0≤t≤1 be a homotopy from T to S in M. Thus, F0 = T while F1 = S. Let
(F̃t)0≤t≤1 be a lift of (Ft)0≤t≤1 to M̃. In particular, F̃0 is a lift of T and F̃1 is a lift of S. In
light of Proposition 6.3.8, we have for every t ∈ [0, 1] that

F̃t ∘ G = F̃
∗
t (G) ∘ F̃t , ∀G ∈ DM . (6.22)

Claim. The function [0, 1] ∋ t → F̃∗t (G) ∈ DM is constant for every G ∈ DM .

Proof of the claim. Fix G ∈ DM . Let s ∈ [0, 1]. Choose any sequence (sn)∞n=1 in [0, 1]
converging to s. Fix x̃ ∈ M̃. Let z̃ := F̃s(x̃) and z̃n := F̃sn (x̃) for all n ∈ ℕ. Then

lim
n→∞

z̃n = lim
n→∞

F̃sn (x̃) = F̃s(x̃) = z̃

and, by (6.22),

lim
n→∞
(F̃∗sn (G))(z̃n) = lim

n→∞
F̃∗sn (G) ∘ F̃sn (x̃) = lim

n→∞
F̃sn ∘ G(x̃) = F̃s(G(x̃)).

Therefore, Lemma6.3.5 asserts that the sequence (F̃∗sn (G))
∞
n=1 eventually coincideswith

the unique deck transformation Γ ∈ DM determined by the condition Γ(z̃) = F̃s(G(x̃)).
But z̃ = F̃s(x̃), so

Γ(F̃s(x̃)) = F̃s(G(x̃)) = F̃
∗
s (G)(F̃s(x̃)).

Hence, Γ = F̃∗s (G). In summary, the sequence (F̃∗sn (G))
∞
n=1 is eventually equal to F̃

∗
s (G).

Since this is true for any convergent sequence (sn)∞n=1 in [0, 1], we conclude that the
function [0, 1] ∋ t → F̃∗t (G) ∈ DM is constant. This confirms the claim.

Setting F̃0 = T̃ and F̃1 = S̃ and letting (F̃t)0≤t≤1 be a lift of (Ft)0≤t≤1 to M̃, it follows
from the claim that

T̃∗ = S̃∗.

So we may apply Lemma 6.4.3 withM = N, with α = IdM and with α̃ = IdM̃ , to obtain
a unique element Ã ∈ VIdM̃ such that

T̃ ∘ Ã = Ã ∘ S̃. (6.23)

By the symmetry between T̃ and S̃, there is also an element B̃ ∈ VIdM̃ such that

S̃ ∘ B̃ = B̃ ∘ T̃ .
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Hence,

S̃ ∘ (B̃ ∘ Ã) = (S̃ ∘ B̃) ∘ Ã = (B̃ ∘ T̃) ∘ Ã = B̃ ∘ (T̃ ∘ Ã) = B̃ ∘ (Ã ∘ S̃) = (B̃ ∘ Ã) ∘ S̃.

Moreover,

S̃ ∘ IdM̃ = IdM̃ ∘ S̃.

Therefore, the uniqueness part of Lemma 6.4.3, applied with M = N, T = S, α = IdM
and α̃ = IdM̃ , yields B̃ ∘ Ã = IdM̃ . Likewise, symmetrically, Ã ∘ B̃ = IdM̃ . Let x ∈ M
and choose an arbitrary x̃ ∈ π−1(x). Given that Ã and B̃, as elements of VIdM̃ , are lifts of
some continuous maps A : M → M and B : M → M, respectively, we then have that

A ∘ B(x) = A ∘ B ∘ π(x̃) = A ∘ π ∘ B̃(x̃) = π ∘ Ã ∘ B̃(x̃) = π(x̃) = x.

So, A ∘ B = IdM and, likewise, B ∘ A = IdM . Thus, A and B are homeomorphisms.
Furthermore, due to (6.23), we have that

T ∘ A(x) = T ∘ A ∘ π(x̃) = T ∘ π ∘ Ã(x̃) = π ∘ T̃ ∘ Ã(x̃) = π ∘ Ã ∘ S̃(x̃)
= A ∘ π ∘ S̃(x̃) = A ∘ S ∘ π(x̃) = A ∘ S(x).

This means that T ∘ A = A ∘ S for some homeomorphism A : M → M, that is, T and S
are topologically conjugate.

The crowning statement of this chapter pertains to the structural stability of Shub
expanding endomorphisms. Recall that structural stability was defined in Section 1.2.

Theorem 6.4.5. Every Shub expanding endomorphism of a compact connected smooth
manifold M is structurally stable in ℰ1(M), the space of all C1 endomorphisms of M.

Proof. This is an immediate consequence of Theorems 6.2.5, 6.2.6, and 6.4.4.

In Chapter 13, we will develop the theory of Gibbs states for open distance ex-
panding systems. In conjunction with the theory of Shub expanding endomorphisms
described here, we will derive in Section 13.7 the following theorem, which was first
proved for C2 maps by Krzyżewski and Szlenk [42]. It is also in this paper that the ap-
propriate transfer (also called Ruelle or Perron–Frobenius) operator was for the first
time explicitly used in dynamical systems. Our proof will be different, based on the
theory of Gibbs states developed in Chapter 13; nevertheless, there will be significant
similarities with that of Krzyżewski and Szlenk.

Each Riemannian metric ρ on a compact connected smooth manifold M induces
a unique volume (Lebesgue) measure λρ on M and the volume measures induced by
various Riemannian metrics are mutually equivalent. Call this class of measures the
Lebesgue measure class onM.
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Theorem 6.4.6. If T : M → M is a C1+ε Shub expanding endomorphism on a compact
connected smooth manifold M, then there exists a unique T-invariant Borel probability
measure μ on M which is absolutely continuous with respect to the Lebesgue measure
class onM. In fact, μ is equivalent to the Lebesguemeasure class onM, and μ is ergodic.

6.5 Exercises

Exercise 6.5.1. Let T : 𝕊1 → 𝕊1 be a Shub expanding map. Prove that |deg(T)| ≥ 2.

Exercise 6.5.2. Let M be a compact connected smooth manifold and f , g : M → M
be Shub expanding endomorphisms with respect to some Riemannian metric ρ onM.
Show that f ∘ g is also a Shub expanding endomorphism with respect to ρ.

Exercise 6.5.3. Suppose that f1, f2 : M → M are Shub expanding endomorphismswith
respect to Riemannian metrics ρ1 and ρ2, respectively. Is there always a Riemannian
metric ρ such that f1 ∘ f2 is expanding with respect to ρ? You may assume thatM = 𝕊1.

Exercise 6.5.4. Prove that the Cartesian product of finitely many Shub expanding en-
domorphisms is a Shub expanding endomorphism if the productmanifold is endowed
with the standard L1 product metric

⟨v,w⟩x :=
n
∑
k=1
⟨vk ,wk⟩xk .

Exercise 6.5.5. Suppose that V is an open neighborhood of the origin in a Euclidean
space ℝk and that G : V → V is a diffeomorphism. Let R > 0 be such that B(0,R) ⊆ V .
Show that the map Ĝ : ℝk → ℝk, where

Ĝ(x) = {
G(x) if x ∈ B(0,R)

G( Rx‖x‖ ) + [G
′( Rx‖x‖ )](x −

Rx
‖x‖ ) if x ∉ B(0,R)

is a diffeomorphic extension of G|B(0,R).
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7 Topological entropy
In this chapter, we study the notion of topological entropy, one of the most useful and
widely-applicable topological invariant thus far discovered. It was introduced to dy-
namical systems by Adler, Konheim, and McAndrew [2] in 1965. Their definition was
motivated by Kolmogorov and Sinai’s definition of metric/measure-theoretic entropy
introduced in [67] less than a decade earlier. In this book, we do not follow the his-
torical order of discovery of these notions. It is more suitable to present topological
entropy first.

Metric and topological entropies not only have related origins and similar names.
There are truly significant mathematical relations between them, particularly the one
given by the variational principle, which is treated at length in Chapter 12.

The topological entropy of a dynamical system T : X → X, which we introduce
in Section 7.2 and shall be denoted by htop(T), is a nonnegative extended real number
that measures the complexity of the system. Somewhat more precisely, htop(T) is the
exponential growth rate of the number of orbits separated under T. The topological
entropy of a dynamical system is defined in three stages. First, we define the entropy
of a cover of the underlying space. Second, we define the entropy of the system with
respect to any given cover. Third, the entropy of the system is defined to be the supre-
mum, over all covers, of the entropy of the system with respect to each of those.

Recall from Chapter 1 that a mathematical property is said to be a topological in-
variant for the category of topological dynamical systems if it is shared by any pair
of topologically conjugate systems. For topological entropy, being an invariant means
that if T : X → X and S : Y → Y are two topologically conjugate dynamical sys-
tems, then htop(T) = htop(S). However, the converse is generally not true. That is, if
T : X → X and S : Y → Y are two dynamical systems with equal topological entropy,
then T and S may not be topologically conjugate. You are asked to provide such an
example in Exercise 7.6.15. Therefore, topological entropy is not a complete invariant.

In Section 7.3, we treat at length Bowen’s characterization of topological entropy
in terms of separated and spanning sets.

In Chapter 11, we will introduce and deal with topological pressure, which is a
substantial generalization of topological entropy. Our approach to topological pres-
sure will stem from and extend that for topological entropy. In this sense, the present
chapter can be viewed as a preparation to Chapter 11.

7.1 Covers of a set
Definition 7.1.1. Let X be a nonempty set. A family 𝒰 of subsets of X is said to form a
cover of X if

X ⊆ ⋃
U∈𝒰

U .

Furthermore, 𝒱 is said to be a subcover of 𝒰 if 𝒱 is itself a cover and 𝒱 ⊆ 𝒰 .

https://doi.org/10.1515/9783110702682-007
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We will always denote covers by calligraphic letters, 𝒰 ,𝒱 ,𝒲, and so on.
Let us begin by introducing a useful way of obtaining a new cover from two exist-

ing covers.

Definition 7.1.2. If 𝒰 and 𝒱 are covers of X, then their join, denoted 𝒰 ∨𝒱, is the cover

𝒰 ∨ 𝒱 := {U ∩ V : U ∈ 𝒰 ,V ∈ 𝒱}.

Remark 7.1.3. The join operation is commutative (i. e., 𝒰 ∨ 𝒱 = 𝒱 ∨𝒰) and associative
(in other words, (𝒰 ∨ 𝒱) ∨ 𝒲 = 𝒰 ∨ (𝒱 ∨ 𝒲)). Thanks to this associativity, the join
operation extends naturally to any finite collection {𝒰j}n−1j=0 of covers of X:

n−1
⋁
j=0

𝒰j := 𝒰0 ∨ ⋅ ⋅ ⋅ ∨ 𝒰n−1 = {
n−1
⋂
j=0

Uj : Uj ∈ 𝒰j,∀0 ≤ j ≤ n − 1}.

It is also useful to be able to compare covers. For this purpose, we introduce the
following relation on the collection of all covers of a set.

Definition 7.1.4. Let 𝒰 and 𝒱 be covers of a set X. We say that 𝒱 is finer than, or a
refinement of, 𝒰 , and denote this by 𝒰 ≺ 𝒱, if every element of 𝒱 is a subset of an
element of 𝒰 . That is, for every set V ∈ 𝒱 there exists a set U ∈ 𝒰 such that V ⊆ U . It is
also sometimes said that 𝒱 is inscribed in 𝒰 , or that 𝒰 is coarser than 𝒱.

Lemma 7.1.5. Let 𝒰 , 𝒱,𝒲 , and 𝒳 be covers of a set X. Then:
(a) The refinement relation ≺ is reflexive (i. e., 𝒰 ≺ 𝒰) and transitive (i. e., if 𝒰 ≺ 𝒱 and

𝒱 ≺𝒲, then 𝒰 ≺𝒲).
(b) 𝒰 ≺ 𝒰 ∨ 𝒱 .
(c) If 𝒱 is a subcover of 𝒰 , then 𝒰 ≺ 𝒱 .
(d) 𝒰 is a subcover of 𝒰 ∨ 𝒰 . Hence, from (c) and (b), we deduce that

𝒰 ≺ 𝒰 ∨ 𝒰 ≺ 𝒰 .

Nevertheless, 𝒰 is not equal to 𝒰 ∨ 𝒰 in general.
(e) If 𝒰 ≺ 𝒱 or 𝒰 ≺𝒲, then 𝒰 ≺ 𝒱 ∨𝒲 .
(f) If 𝒰 ≺𝒲 and 𝒱 ≺𝒲, then 𝒰 ∨ 𝒱 ≺𝒲 .
(g) If 𝒰 ≺𝒲 and 𝒱 ≺ 𝒳 , then 𝒰 ∨ 𝒱 ≺𝒲 ∨ 𝒳 .

Proof. All of these properties can be proved directly and are left to the reader. As a
hint, observe that property (e) is a consequence of (b) and the transitivity part of (a),
while property (g) follows upon combining (e) and (f).

Remark 7.1.6. Although it is reflexive and transitive, the relation ≺ is not antisymmet-
ric (i. e., 𝒰 ≺ 𝒱 ≺ 𝒰 does not necessarily imply 𝒰 = 𝒱; see Lemma 7.1.5(d)). Therefore,
≺ does not generate a partial order on the collection of all covers of a set X.
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If X is a metric space, then it makes sense to talk about the diameter of a cover in
terms of the diameter of its elements. This is the purpose of the next definition.

Definition 7.1.7. If (X, d) is a metric space, then the diameter of a cover 𝒰 of X is de-
fined by

diam(𝒰) := sup{diam(U) : U ∈ 𝒰},

where

diam(U) := sup{d(x, y) : x, y ∈ U}.

It is also often of interest to know that all sets of some specified diameter are each
contained in at least one element of a given cover. This ismade precise in the following
definition.

Definition 7.1.8. A number δ > 0 is said to be a Lebesgue number for a cover 𝒰 of a
metric space (X, d) if every set of diameter at most δ is contained in an element of 𝒰 .

It is clear that if δ0 is a Lebesgue number for a cover 𝒰 , then so is any δ with 0 <
δ < δ0. One can easily prove by contradiction that every open cover of a compact
metric space admits such a number. By an open cover, we simply mean a cover whose
elements are all open subsets of the space.

7.1.1 Dynamical covers

In this subsection, we add a dynamical aspect to the above discussion. Let X be a
nonempty set and let T : X → X be a map. We will define covers that are induced by
the dynamics of the map T. First, let us define the preimage of a cover under a map.

Definition 7.1.9. Let X and Y be nonempty sets. Let h : X → Y be a map and 𝒱 be a
cover of Y . The preimage of 𝒱 under the map h is the cover of X consisting of all the
preimages of the elements of 𝒱 under h, that is,

h−1(𝒱) := {h−1(V) : V ∈ 𝒱}.

We now show that, as far as set operations go, the operator h−1 behaves well with
respect to cover operations.

Lemma 7.1.10. Let h : X → Y be a map, and 𝒰 and 𝒱 be covers of Y. The following
assertions hold:
(a) The map h−1 preserves the refinement relation, that is,

𝒰 ≺ 𝒱 ⇒ h−1(𝒰) ≺ h−1(𝒱).

Moreover, if 𝒱 is a subcover of 𝒰 then h−1(𝒱) is a subcover of h−1(𝒰).
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(b) The map h−1 respects the join operation, that is,

h−1(𝒰 ∨ 𝒱) = h−1(𝒰) ∨ h−1(𝒱).

Note that if Y = X, then by induction h−n enjoys these properties for any n ∈ ℕ.

Proof. These assertions are straightforward toprove andare thus left to the reader.

We now introduce covers that follow the orbits of a given map by indicating to
which elements of a given cover the successive iterates of the map belong.

Definition 7.1.11. Let T : X → X be a map and 𝒰 be a cover of X. For every n ∈ ℕ and
0 ≤ m < n, define the dynamical cover

𝒰n
m :=

n−1
⋁
j=m

T−j(𝒰) = T−m(𝒰) ∨ T−(m+1)(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)(𝒰).

To lighten notation, we will write 𝒰n in lieu of 𝒰n
0 .

A typical element of 𝒰n is of the formU0 ∩T−1(U1)∩T−2(U2)∩ . . .∩T−(n−1)(Un−1) for
some U0,U1,U2, . . . ,Un−1 ∈ 𝒰 . This element is the set of all points of X whose iterates
under T fall successively into the elements U0,U1,U2, and so on, up to Un−1.

Lemma 7.1.12. Let 𝒰 and 𝒱 be covers of a set X. Let T : X → X be a map. For every
k,m, n ∈ ℕ, the following statements hold:
(a) If 𝒰 ≺ 𝒱, then 𝒰n ≺ 𝒱n.
(b) (𝒰 ∨ 𝒱)n = 𝒰n ∨ 𝒱n.
(c) 𝒰n ≺ 𝒰n+1.
(d) (𝒰k)n ≺ 𝒰n+k−1 ≺ (𝒰k)n.
(e) 𝒰n

m = T
−k(𝒰n−k

m−k) for all k ≤ m < n. In particular, 𝒰
n
m = T

−m(𝒰n−m).

Proof. Property (a) follows directly from Lemmas 7.1.10(a) and 7.1.5(g). Property (b) is a
consequence of Lemma 7.1.10(b) and the associativity of the join operation. As 𝒰n+1 =
𝒰n ∨ T−n(𝒰), property (c) follows from an application of Lemma 7.1.5(b). Property (d)
is a little more intricate to prove. Using Lemma 7.1.10(b) and Remark 7.1.3, we obtain
that

(𝒰k)n = 𝒰k ∨ T−1(𝒰k) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)(𝒰k)

= (𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰)) ∨ T−1(𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰)) ∨ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ∨ T−(n−1)(𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰))

= 𝒰 ∨ (T−1(𝒰) ∨ T−1(𝒰)) ∨ (T−2(𝒰) ∨ T−2(𝒰) ∨ T−2(𝒰)) ∨ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ∨ (T−(n+k−3)(𝒰) ∨ T−(n+k−3)(𝒰)) ∨ T−(n+k−2)(𝒰).
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Now, according to Lemma 7.1.5(d), T−j(𝒰) ≺ T−j(𝒰) ∨ T−j(𝒰) ≺ T−j(𝒰) for all j ∈ ℕ. We
deduce from a repeated application of Lemma 7.1.5(g) that

T−j(𝒰) ≺
m
⋁
l=1

T−j(𝒰) ≺ T−j(𝒰), ∀m ∈ ℕ.

Another round of repeated applications of Lemma 7.1.5(g) allows us to conclude that

(𝒰k)n ≺ 𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(n+k−3)(𝒰) ∨ T−(n+k−2)(𝒰) ≺ (𝒰k)n.

That is,

(𝒰k)n ≺ 𝒰n+k−1 ≺ (𝒰k)n.

Finally, property (e) follows from Lemma 7.1.10(b) with h = Tk since

𝒰n
m =

n−1
⋁
j=m

T−j(𝒰) = T−k(
n−k−1
⋁

j=m−k
T−j(𝒰)) = T−k(𝒰n−k

m−k).

7.2 Definition of topological entropy via open covers

The definition of topological entropy via open covers only requires the underlying
space to be a topological space. It need not be a metrizable space. The topological
entropy of a dynamical system T : X → X is defined in three stages, which, for clarity
of exposition, we split into the following three subsections.

7.2.1 First stage: entropy of an open cover

At this stage, the dynamics of the system T are not in consideration. We simply look
at the difficulty of covering the underlying compact space X with open covers.

Definition 7.2.1. Let 𝒰 be an open cover of X. Define

Z1(𝒰) := min{#𝒱 : 𝒱 is a subcover of 𝒰}.

That is, Z1(𝒰) denotes the minimum number of elements of 𝒰 necessary to cover X.
A subcover of 𝒰 whose cardinality equals this minimum number is called a minimal
subcover of 𝒰 .

Every open cover admits at least one minimal subcover and any such subcover is
finite since X is compact. Thus 1 ≤ Z1(𝒰) <∞ for all open covers 𝒰 of X.

We now observe that the function Z1(⋅) acts as desired with respect to the refine-
ment relation. In other words, the finer the cover, the larger the minimum number of
elements required to cover the space, that is, the more difficult it is to cover the space.
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Lemma 7.2.2. If 𝒰 ≺ 𝒱, then Z1(𝒰) ≤ Z1(𝒱). In particular, this holds if 𝒱 is a subcover
of 𝒰 .

Proof. Let 𝒰 ≺ 𝒱. For every V ∈ 𝒱 , there exists a set i(V) ∈ 𝒰 such that V ⊆ i(V). This
defines a function i : 𝒱 → 𝒰 . Let𝒲 be a minimal subcover of 𝒱. Then i(𝒲) := {i(W) :
W ∈𝒲} ⊆ 𝒰 is a cover of X since

X ⊆ ⋃
W∈𝒲

W ⊆ ⋃
W∈𝒲

i(W).

Thus i(𝒲) is a subcover of 𝒰 , and hence

Z1(𝒰) ≤ #i(𝒲) ≤ #𝒲 = Z1(𝒱).

Another fundamental property of the function Z1(⋅) is that it is submultiplicative
with respect to the join operation. Recall that a sequence (an)∞n=1 of real numbers is
said to be submultiplicative if

am+n ≤ aman, ∀m, n ∈ ℕ.

Lemma 7.2.3. Let 𝒰 and 𝒱 be open covers of X. Then

Z1(𝒰 ∨ 𝒱) ≤ Z1(𝒰) ⋅ Z1(𝒱).

Proof. Let 𝒰 be aminimal subcover of 𝒰 and 𝒱 be aminimal subcover of 𝒱. Then 𝒰 ∨𝒱
is a subcover of 𝒰 ∨ 𝒱. Therefore,

Z1(𝒰 ∨ 𝒱) ≤ #(𝒰 ∨ 𝒱) ≤ #𝒰 ⋅ #𝒱 = Z1(𝒰) ⋅ Z1(𝒱).

We can now define the entropy of a cover.

Definition 7.2.4. Let 𝒰 be an open cover of X. The entropy of 𝒰 is defined to be

H(𝒰) := log Z1(𝒰).

So, the entropy of an open cover is simply the logarithm of the minimum number
of elements of that cover needed to cover the space. The presence of the logarithm
function shall be explained shortly. If the entropy of a given cover is to accurately
reflect the complexity of that cover, that is, the number of elements necessary for cov-
ering the space, then the finer the cover, the larger its entropy should be. In other
words, entropy of covers should be increasing with respect to the refinement relation.
This, along with other basic properties of the entropy of covers, is shown to hold in
the following lemma.

Lemma 7.2.5. Let 𝒰 and 𝒱 be open covers of X. Entropy of covers satisfies the following
properties:
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(a) 0 ≤ H(𝒰) <∞.
(b) H(𝒰) = 0 if and only if X ∈ 𝒰 .
(c) If 𝒰 ≺ 𝒱, then H(𝒰) ≤ H(𝒱).
(d) H(𝒰 ∨ 𝒱) ≤ H(𝒰) + H(𝒱).

Proof. The first two properties come directly from entropy’s definition. The third fol-
lows from Lemma 7.2.2 and the fact that the logarithm is an increasing function. The
fourth and final property follows from Lemma 7.2.3.

7.2.2 Second stage: entropy of a system relative to an open cover

In this second stage, wewill take into account the dynamics of the topological dynam-
ical system T : X → X. Since T is continuous, every open cover 𝒰 of X generates the
sequence of dynamical covers (𝒰n)∞n=1, all of which are also open.

Definition 7.2.6. Let 𝒰 be an open cover of X. For every n ∈ ℕ, define Zn(𝒰) to be

Zn(𝒰) := Z1(𝒰
n) = min{#𝒱 : 𝒱 is a subcover of 𝒰n}.

Thus Zn(𝒰) is the minimum number of elements of 𝒰n needed to cover X. This
number describes the complexity of the dynamics of T with respect to 𝒰 from time 0
until time n − 1. Observe also that

Zn(𝒰) = exp(H(𝒰
n)).

For a given open cover, the sequence (Zn(⋅))∞n=1 has an interesting property.

Lemma 7.2.7. For any open cover 𝒰 of X, the sequence (Zn(𝒰))∞n=1 is nondecreasing.

Proof. Since 𝒰n ≺ 𝒰n+1 for all n ∈ ℕ according to Lemma 7.1.12(c), the sequence
(Zn(𝒰))∞n=1 = (Z1(𝒰

n))∞n=1 is nondecreasing by Lemma 7.2.2.

As the next lemma shows, like the function Z1(⋅), the functions Zn(⋅) respect the
refinement relation.

Lemma 7.2.8. If 𝒰 ≺ 𝒱, then Zn(𝒰) ≤ Zn(𝒱), and thus H(𝒰n) ≤ H(𝒱n) for every n ∈ ℕ.
In particular, these inequalities hold if 𝒱 is a subcover of 𝒰 .

Proof. If 𝒰 ≺ 𝒱, then Lemma 7.1.12(a) states that 𝒰n ≺ 𝒱n for every n ∈ ℕ. It follows
from Lemma 7.2.2 that

Zn(𝒰) = Z1(𝒰
n) ≤ Z1(𝒱

n) = Zn(𝒱).

Since the logarithm is an increasing function, it ensues that

H(𝒰n) = log Zn(𝒰) ≤ log Zn(𝒱) = H(𝒱
n).
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Similar to the function Z1(⋅), the functions Zn(⋅) are submultiplicative with respect
to the join operation.

Lemma 7.2.9. Let 𝒰 and 𝒱 be open covers of X and let n ∈ ℕ. Then

Zn(𝒰 ∨ 𝒱) ≤ Zn(𝒰)Zn(𝒱),

and thus

H((𝒰 ∨ 𝒱)n) ≤ H(𝒰n) + H(𝒱n).

Proof. Using Lemmas 7.1.12(b) and 7.2.3, we obtain that

Zn(𝒰 ∨ 𝒱) = Z1((𝒰 ∨ 𝒱)
n) = Z1(𝒰

n ∨ 𝒱n)

≤ Z1(𝒰
n)Z1(𝒱

n) = Zn(𝒰)Zn(𝒱).

Taking the logarithm of both sides gives H((𝒰 ∨ 𝒱)n) ≤ H(𝒰n) + H(𝒱n).

We now refocus our attention on the sequence (Zn(𝒰))∞n=1 for a given open cover 𝒰
of X. We have already established in Lemma 7.2.7 that this sequence is nondecreasing.
Lemma 7.2.3 suggests that this sequence might be submultiplicative and might even
growexponentiallywith n. This explains the use of the logarithm function. Byworking
in a logarithmic scale,we study the exponential growth rate of thenumbers (Zn(𝒰))∞n=1.
Thiswill further ensure that the entropy of the systemwith respect to any specific open
cover is finite.

Lemma 7.2.10. For any open cover 𝒰 of X, the sequence (Zn(𝒰))∞n=1 is submultiplicative.

Proof. Letm, n ∈ ℕ. Choose a minimal subcover𝒜 of 𝒰m and aminimal subcover ℬ of
𝒰n. Using Lemma 7.1.10, we obtain that the open cover𝒜 ∨ T−m(ℬ) satisfies

𝒜 ∨ T−m(ℬ) ⊆ 𝒰m ∨ T−m(𝒰n)

= (𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(m−1)(𝒰)) ∨ T−m(𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)(𝒰))
= 𝒰 ∨ ⋅ ⋅ ⋅ ∨ T−(m−1)(𝒰) ∨ T−m(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(m+n−1)(𝒰)
= 𝒰m+n.

That is,𝒜 ∨ T−m(ℬ) is a subcover of 𝒰m+n. Consequently,

Zm+n(𝒰) ≤ #(𝒜 ∨ T
−m(ℬ)) ≤ #𝒜 ⋅ #(T−m(ℬ)) ≤ #𝒜 ⋅ #ℬ = Zm(𝒰)Zn(𝒰).

This establishes the submultiplicativity of the sequence (Zn(𝒰))∞n=1.

We immediately deduce the following.

Corollary 7.2.11. For any open cover 𝒰 of X, the sequence (H(𝒰n))∞n=1 is subadditive.
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Proof. Since Zm+n(𝒰) ≤ Zm(𝒰)Zn(𝒰) for allm, n ∈ ℕ according to Lemma 7.2.10, taking
the logarithm of both sides yields that

H(𝒰m+n) = log Zm+n(𝒰) ≤ log Zm(𝒰) + log Zn(𝒰) = H(𝒰
m) + H(𝒰n).

We are now ready to take the second step in the definition of the topological en-
tropy of a system.

Definition 7.2.12. Let T : X → X be a dynamical system and let 𝒰 be an open cover of
X. The topological entropy of T with respect to 𝒰 is defined as

htop(T ,𝒰) := lim
n→∞

1
n
H(𝒰n) = inf

n∈ℕ

1
n
H(𝒰n).

The existence of the limit and its equality with the infimum follow directly from
combining Corollary 7.2.11 and Lemma 3.2.17. Furthermore, note that

htop(T ,𝒰) = lim
n→∞

1
n
log Zn(𝒰) = infn∈ℕ

1
n
log Zn(𝒰).

Remark 7.2.13. Since 1 ≤ Zn(𝒰) <∞ for all n ∈ ℕ, we readily see that

0 ≤ htop(T ,𝒰) ≤ H(𝒰) <∞.

Similar to the functions Zn(⋅), the topological entropy with respect to covers re-
spects the refinement relation. It is also subadditive with respect to the join operation,
as the following proposition shows.

Proposition 7.2.14. Let 𝒰 and 𝒱 be open covers of X.
(a) If 𝒰 ≺ 𝒱, then htop(T ,𝒰) ≤ htop(T ,𝒱). In particular, if 𝒱 is a subcover of 𝒰 then

htop(T ,𝒰) ≤ htop(T ,𝒱).
(b) htop(T ,𝒰 ∨ 𝒱) ≤ htop(T ,𝒰) + htop(T ,𝒱).

Proof. (a) ByLemma7.2.8,wehaveZn(𝒰) ≤ Zn(𝒱) for everyn ∈ ℕ. Taking the logarithm
of both sides, dividing by n and passing to the limit as n tends to infinity, we deduce
that htop(T ,𝒰) ≤ htop(T ,𝒱) whenever 𝒰 ≺ 𝒱.

(b) By Lemma 7.2.9, we have Zn(𝒰 ∨ 𝒱) ≤ Zn(𝒰)Zn(𝒱) for every n ∈ ℕ. Taking the
logarithm of both sides, dividing by n and passing to the limit as n tends to infinity,
we conclude that htop(T ,𝒰 ∨ 𝒱) ≤ htop(T ,𝒰) + htop(T ,𝒱).

An interesting property of the entropy of a system with respect to a given cover is
that it remains the same for all dynamical covers generated by that cover.

Lemma 7.2.15. htop(T ,𝒰k) = htop(T ,𝒰) for each k ∈ ℕ.
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Proof. The case k = 1 is trivial. So suppose that k ≥ 2. Letn ∈ ℕ. Lemma7.1.12(d) asserts
that (𝒰k)n ≺ 𝒰n+k−1 ≺ (𝒰k)n. From Lemma 7.2.2, we infer that Z1((𝒰k)n) = Z1(𝒰n+k−1),
and thus

Zn(𝒰
k) = Z1((𝒰

k)n) = Z1(𝒰
n+k−1) = Zn+k−1(𝒰).

Therefore,

htop(T ,𝒰
k) = lim

n→∞
1
n
log Zn(𝒰

k) = lim
n→∞

n + k − 1
n(n + k − 1)

log Zn+k−1(𝒰)

= lim
n→∞

n + k − 1
n
⋅ lim
n→∞

1
n + k − 1

log Zn+k−1(𝒰) = htop(T ,𝒰).

7.2.3 Third and final stage: entropy of a system

At this point, we are in a position to give the definition of the topological entropy of
a dynamical system T : X → X. The topological entropy of T is defined to be the
supremum over all open covers, of the entropy of the system with respect to each of
these covers.

Definition 7.2.16. The topological entropy of T is defined to be

htop(T) := sup{htop(T ,𝒰) : 𝒰 is an open cover of X}.

Remark 7.2.17.
(a) In view of Remark 7.2.13, we have that 0 ≤ htop(T) ≤∞.
(b) The topological entropy of the identity map Id(x) = x is zero. Indeed, for any open

cover 𝒰 of X we have that 𝒰n = 𝒰 , and hence Zn(𝒰) = Z1(𝒰), for every n ∈ ℕ. Thus
htop(Id,𝒰) = 0 for all open covers 𝒰 of X, and thereby htop(Id) = 0.

(c) Despite the fact that htop(T ,𝒰) < ∞ for every open cover 𝒰 of X, there exist dy-
namical systems T that have infinite topological entropy.

(d) As every open cover of a compact space admits a finite subcover, it follows from
Proposition 7.2.14(a) that the supremum in the definition of topological entropy
can be restricted to finite open covers.

Our next aim is to address themost important and natural question: Is topological
entropy a topological conjugacy invariant? Before answering this question, the reader
might like to recall from Chapter 1 that if T : X → X and S : Y → Y are two dynamical
systems for which there exists a continuous surjection h : X → Y such that h∘T = S ∘h,
then S is said to be a factor of T. In such a situation, it is intuitively clear that htop(S) ≤
htop(T) since every orbit of T is projected onto an orbit of S. Thus T may have “more”
orbits (in some sense) than S and is therefore at least as complex as S.
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Proposition 7.2.18. If T : X → X and S : Y → Y are two dynamical systems such that S
is a factor of T, then

htop(S) ≤ htop(T).

In particular, if S and T are topologically conjugate, then htop(S) = htop(T).

Proof. Let h : X → Y be a factor map, so that h ∘ T = S ∘ h. Since h is a continuous
surjection, every open cover 𝒱 of Y can be lifted to the open cover h−1(𝒱) of X. We shall
prove that htop(T , h−1(𝒱)) = htop(S,𝒱) for every open cover 𝒱 of Y . From this, we shall
conclude that

htop(T) = sup{htop(T ,𝒰) : 𝒰 open cover of X}
≥ sup{htop(T , h

−1(𝒱)) : 𝒱 open cover of Y}
= sup{htop(S,𝒱) : 𝒱 open cover of Y}
= htop(S).

In particular, if S and T are topologically conjugate, then S is a factor of T and T is a
factor of S. So htop(T) ≥ htop(S) and htop(S) ≥ htop(T), that is, htop(S) = htop(T).

It remains to prove that htop(T , h−1(𝒱)) = htop(S,𝒱) for each open cover 𝒱 of Y . Fix
n ∈ ℕmomentarily. The respective actions of the maps S and T on 𝒱 and h−1(𝒱) until
time n − 1 will be denoted by 𝒱n

S and (h
−1(𝒱))nT . Then

(h−1(𝒱))nT = h
−1(𝒱) ∨ T−1(h−1(𝒱)) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)(h−1(𝒱))

= h−1(𝒱) ∨ (h ∘ T)−1(𝒱) ∨ ⋅ ⋅ ⋅ ∨ (h ∘ Tn−1)−1(𝒱)

= h−1(𝒱) ∨ (S ∘ h)−1(𝒱) ∨ ⋅ ⋅ ⋅ ∨ (Sn−1 ∘ h)−1(𝒱)
= h−1(𝒱) ∨ h−1(S−1(𝒱)) ∨ ⋅ ⋅ ⋅ ∨ h−1(S−(n−1)(𝒱))
= h−1(𝒱 ∨ S−1(𝒱) ∨ ⋅ ⋅ ⋅ ∨ S−(n−1)(𝒱))
= h−1(𝒱n

S ).

Therefore,

Zn(T , h
−1(𝒱)) = Z1((h

−1(𝒱))nT) = Z1(h
−1(𝒱n

S )) ≤ Z1(𝒱
n
S ) = Zn(S,𝒱).

Since h is surjective, (h−1(𝒱))nT = h
−1(𝒱n

S ) implies that h((h−1(𝒱))nT ) = 𝒱
n
S . Thus,

Zn(S,𝒱) = Z1(𝒱
n
S ) = Z1(h((h

−1(𝒱))nT)) ≤ Z1((h
−1(𝒱))nT) = Zn(T , h

−1(𝒱)).

Combining the previous two inequalities, we obtain that

Zn(T , h
−1(𝒱)) = Zn(S,𝒱).

Since nwas chosen arbitrarily, by successively taking the logarithm of both sides,
dividing by n and passing to the limit as n tends to infinity, we conclude that

htop(T , h
−1(𝒱)) = htop(S,𝒱).
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We have now shown that topological entropy is indeed a topological conjugacy
invariant. Let us now study its behavior with respect to the iterates of the system.

Theorem 7.2.19. For every k ∈ ℕ, we have htop(Tk) = k htop(T).

Proof. Fix k ∈ ℕ. Let 𝒰 be an open cover of X. The action of themap Tk on 𝒰 until time
n − 1 will be denoted by 𝒰n

Tk . For every n ∈ ℕ, we have that

𝒰n
Tk = 𝒰 ∨ T−k(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)k(𝒰)

≺ 𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−k(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)k(𝒰)
= 𝒰 (n−1)k+1.

By Lemma 7.2.2, it ensues that

Zn(T
k ,𝒰) = Z1(𝒰

n
Tk ) ≤ Z1(𝒰

(n−1)k+1) = Z(n−1)k+1(T ,𝒰).

Consequently,

htop(T
k ,𝒰) = lim

n→∞
1
n
log Zn(T

k ,𝒰)

≤ lim
n→∞
(n − 1)k + 1

n
1

(n − 1)k + 1
log Z(n−1)k+1(T ,𝒰)

= lim
n→∞
(n − 1)k + 1

n
⋅ lim
n→∞

1
(n − 1)k + 1

log Z(n−1)k+1(T ,𝒰)

= k ⋅ htop(T ,𝒰).

The inequality arises from the fact that there were gaps in the iterates of T in the cover
𝒰n
Tk that are not present in 𝒰 (n−1)k+1. We can fill in those gaps by considering 𝒰k rather

than 𝒰 . Indeed,

(𝒰k)nTk = 𝒰k ∨ T−k(𝒰k) ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)k(𝒰k)

= (𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰))
∨ T−k(𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰))
∨ ⋅ ⋅ ⋅

∨ T−(n−1)k(𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰))
= 𝒰 ∨ T−1(𝒰) ∨ T−2(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(k−1)(𝒰)
∨ T−k(𝒰) ∨ T−(k+1)(𝒰) ∨ T−(k+2)(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(2k−1)(𝒰)
∨ ⋅ ⋅ ⋅

∨ T−(n−1)k(𝒰) ∨ T−((n−1)k+1)(𝒰) ∨ ⋅ ⋅ ⋅ ∨ T−(nk−1)(𝒰)
= 𝒰nk .

Therefore,

Zn(T
k ,𝒰k) = Z1((𝒰

k)nTk ) = Z1(𝒰
nk) = Znk(T ,𝒰).
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Consequently,

htop(T
k ,𝒰k) = lim

n→∞
1
n
log Zn(T

k ,𝒰k) = k ⋅ lim
n→∞

1
nk

log Znk(T ,𝒰) = k ⋅ htop(T ,𝒰).

Using Lemma 7.2.15, we conclude that

htop(T
k) = sup{htop(T

k ,𝒰) : 𝒰 open cover of X}

= sup{htop(T
k ,𝒰k) : 𝒰 open cover of X}

= k sup{htop(T ,𝒰) : 𝒰 open cover of X} = k htop(T).

Taking a supremum over the collection of all (finite) open covers can be inconve-
nient, to say the least. Indeed, this collection is usually uncountable. We would thus
like to identify situations in which the topological entropy of a system is determined
by the topological entropy of the system with respect to a countable family of covers,
that is, with respect to a sequence of covers. If topological entropy really provides a
good description of the complexity of the dynamics of the system, then it is natural
to request that this sequence of covers eventually become finer and finer, and that
it encompass the structure of the underlying space at increasingly small scales. In a
metrizable space, this suggests looking at the diameter of the covers.

The forthcoming lemma is the first result that requires the underlying space to be
metrizable. In this lemma, note that 𝒰n is a general cover. In particular, it is typically
not equal to the dynamical cover 𝒰n. So, take care not to confuse the two.

Lemma 7.2.20. The following quantities are all equal:
(a) htop(T).
(b) sup{htop(T ,𝒰) : 𝒰 open cover with diam(𝒰) ≤ δ} for any δ > 0.
(c) limε→0 htop(T ,𝒰ε) for any open covers (𝒰ε)ε∈(0,∞) such that limε→0 diam(𝒰ε) = 0.
(d) limn→∞ htop(T ,𝒰n) for any open covers (𝒰n)∞n=1 such that limn→∞ diam(𝒰n) = 0.

Proof. Clearly, (a)≥(b). It is also easy to see that (b)≥(c) for any δ > 0 and any family
(𝒰ε)ε∈(0,∞) as described, and that (b)≥(d) for any sequence (𝒰n)∞n=1 as specified. It thus
suffices to prove that (c)≥(a) and (d)≥(a). Actually, wewill prove that (d)=(a) and leave
to the reader the task of adapting that proof to establish that (c)=(a).

Let 𝒱 be any open cover of X, and let δ(𝒱) be a Lebesgue number for 𝒱. As
limn→∞ diam(𝒰n) = 0, there exists N ∈ ℕ such that diam(𝒰n) < δ(𝒱) for each n ≥ N .
Fix n ≥ N momentarily. As diam(𝒰n) < δ(𝒱), every member of 𝒰n is contained in a
member of 𝒱. Thus 𝒱 ≺ 𝒰n. By Proposition 7.2.14(a), we obtain that

htop(T ,𝒱) ≤ htop(T ,𝒰n).
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Since this is true for all n ≥ N, we deduce that

htop(T ,𝒱) ≤ infn≥N
htop(T ,𝒰n) ≤ lim inf

n→∞
htop(T ,𝒰n).

As the open cover 𝒱 was chosen arbitrarily, we conclude that

htop(T) = sup
𝒱

htop(T ,𝒱) ≤ lim inf
n→∞

htop(T ,𝒰n)

≤ lim sup
n→∞

htop(T ,𝒰n)

≤ sup
𝒰

htop(T ,𝒰) = htop(T),

which implies that htop(T) = limn→∞ htop(T ,𝒰n).

Part (d) of Lemma 7.2.20 characterized the topological entropy of a system as the
limit of the topological entropy of the system relative to a sequence of covers. An even
better result would be the characterization of the topological entropy as the topologi-
cal entropy with respect to a single cover. This quest suggests introducing the follow-
ing notion.

Definition 7.2.21. An open cover 𝒰 of a metric space (X, d) is said to be a generator for
a topological dynamical system T : X → X if

lim
n→∞

diam(𝒰n) = 0.

Lemma 7.2.22. If a system T : X → X has a generator 𝒰 , then

htop(T) = htop(T ,𝒰).

Proof. It follows from Lemma 7.2.20 (with 𝒰n = 𝒰
n) and Lemma 7.2.15 that

htop(T) = lim
n→∞

htop(T ,𝒰
n) = lim

n→∞
htop(T ,𝒰) = htop(T ,𝒰).

It is natural to wonder about the class(es) of systems that admit a generator.

Lemma 7.2.23. A topological dynamical system T : X → X admits a generator if and
only if it is expansive. In fact, if T is δ-expansive when the compact metric space X is
equipped with a metric d, then every open cover 𝒰 of X such that diam(𝒰) ≤ δ is a
generator for T.

Proof. Suppose that an open cover 𝒱 is a generator for T. Let δ be a Lebesgue number
for 𝒱. If d(Tn(x),Tn(y)) ≤ δ for all n ≥ 0, then for every n there exists Vn ∈ 𝒱 such that
Tn(x),Tn(y) ∈ Vn. Therefore x, y ∈ ⋂

∞
n=0 T
−n(Vn). This implies that x, y lie in a common

member of 𝒱N for all N ∈ ℕ. Since limN→∞ diam(𝒱N ) = 0, we conclude that x = y. So
δ is an expansive constant for T.
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The converse implication can be seen as an immediate consequence of uniform
expansiveness. See Proposition 5.2.2. Nevertheless, we provide a direct proof. Let 𝒰 =
{Ue : e ∈ E} be a finite open cover of X with diam(𝒰) ≤ δ. This means that E is a finite
index set (an alphabet), and E∞ is compact when endowed with any of the metrics
ds(ω, τ) = s|ω∧τ| (cf. Definition 3.1.10 and Lemma 3.1.7). Let ε > 0. We must show that
there exists N ∈ ℕ such that diam(𝒰n) < ε for all n ≥ N . First, we claim that for every
ω ∈ E∞, the set

∞
⋂
j=0

T−j(Uωj
)

comprises at most one point. To show this, let x, y ∈ ⋂∞j=0 T
−j(Uωj
). Then T j(x),T j(y) ∈

Uωj
for all j ≥ 0. So, for all j ≥ 0,

d(T j(x),T j(y)) ≤ diam(Uωj
) = diam(Uωj

) ≤ diam(𝒰) ≤ δ.

By the δ-expansiveness of T, we deduce that x = y and the claim is proved. It follows
from this fact that

lim
n→∞

diam(
n−1
⋂
j=0

T−j(Uωj
)) = 0, ∀ω ∈ E∞.

Otherwise, a compactness argument shows that the set ⋂∞j=0 T
−j(Uωj
) would contain

at least two points (see Exercise 7.6.6), which would contradict the claim established
above.

Thus, for every ω ∈ E∞ there exists a smallest N(ω) ∈ ℕ such that

diam(
N(ω)−1
⋂
j=0

T−j(Uωj
)) < ε.

This defines a function N : E∞ → ℕ. We claim that this function is locally con-
stant and thereby continuous. Indeed, let ω ∈ E∞ and pick any τ ∈ [ω|N(ω)] =
[ω0ω1ω2 . . .ωN(ω)−1]. Then τj = ωj for all 0 ≤ j < N(ω). Therefore, for all 1 ≤ n ≤ N(ω),
we have that

n−1
⋂
j=0

T−j(Uτj ) =
n−1
⋂
j=0

T−j(Uωj
).

This implies that for all 1 ≤ n < N(ω),

diam(
n−1
⋂
j=0

T−j(Uτj )) = diam(
n−1
⋂
j=0

T−j(Uωj
)) ≥ ε,

whereas

diam(
N(ω)−1
⋂
j=0

T−j(Uτj )) = diam(
N(ω)−1
⋂
j=0

T−j(Uωj
)) < ε.
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Thus N(τ) = N(ω) for every τ ∈ [ω|N(ω)]. This proves that N is a locally constant
function.

Since N is continuous and E∞ is compact, the image N(E∞) is a compact subset
of ℕ and is hence bounded. Set Nmax := max{N(ω) : ω ∈ E∞} < ∞. Then for every
n ≥ Nmax and for every ω ∈ E∞, we have

diam(
n−1
⋂
j=0

T−j(Uωj
)) ≤ diam(

Nmax−1
⋂
j=0

T−j(Uωj
)) ≤ diam(

N(ω)−1
⋂
j=0

T−j(Uωj
)) < ε.

So diam(𝒰n) < ε for all n ≥ Nmax. As ε > 0 was chosen arbitrarily, we conclude that 𝒰
is a generator for T.

In light of the previous two results, the topological entropy of an expansive system
can be characterized as the topological entropy of that systemwith respect to a single
cover.

Theorem 7.2.24. If T : X → X is a δ-expansive dynamical system on a compact metric
space (X, d), then

htop(T) = htop(T ,𝒰)

for any open cover 𝒰 of X with diam(𝒰) ≤ δ.

Proof. This is an immediate consequence of Lemmas 7.2.22 and 7.2.23.

Remark 7.2.25. Notice that Theorem 7.2.24 immediately implies that the topological
entropy of an expansive dynamical system on a compact metric space is finite.

Example 7.2.26. Let E be a finite alphabet and A be an incidence/transition matrix.
Let σ : E∞A → E∞A be the corresponding subshift of finite type. We will show that

htop(σ) = log r(A),

where r(A) is the spectral radius of A. Recall from Example 5.1.4 that the shift map σ
is expansive and has for an expansive constant any 0 < δ < 1 when E∞A is endowed
with any metric ds(ω, τ) = s|ω∧τ|, where 0 < s < 1. Choose 𝒰 := {[e] : e ∈ E} as
a (finite) open cover of E∞A . So 𝒰 is the open partition of E∞A into initial 1-cylinders.
Since diam(𝒰) = s < 1, in light of Theorem 7.2.24 we know that htop(σ) = htop(σ,𝒰). In
order to compute htop(σ,𝒰), notice that for each n ∈ ℕ we have

𝒰n = σ−(n−1)(𝒰) = {[ω] : ω ∈ EnA}.

That is to say, 𝒰n is the open partition of E∞A into initial cylinders of length n. Since
the only subcover that a partition admits is itself, we obtain that

Zn(𝒰) = #E
n
A.
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Consequently,

htop(σ) = htop(σ,𝒰) = lim
n→∞

1
n
log Zn(𝒰) = lim

n→∞
1
n
log #EnA = log r(A).

The last equality follows from Theorem 3.2.24.

Example 7.2.27. IfE is a finite alphabet, then the topological entropyof the fullE-shift
is equal to log #E. This is a special case of the previous example with A as the matrix
that consists only of 1’s. Alternatively, notice that #(En) = (#E)n.

We shall now compute the topological entropy of a particular subshift of finite
type, the well-known golden mean shift, which was introduced in Exercise 3.4.9. Per-
haps not surprisingly, given its name, it will turn out that the topological entropy of
the golden mean shift is equal to the logarithm of the golden mean.

Example 7.2.28. Let σ : E∞A → E∞A be the golden mean shift, that is, the subshift of
finite type induced by the incidence matrix

A = [ 1 1
1 0
] .

By Example 7.2.26, the computation of the topological entropy of a subshift of finite
type boils down to counting the number of initial n-cylinders for all but finitely many
n’s, ormore simply to computing the largest eigenvalue (in absolute value) of the tran-
sition matrix A.

The reader can calculate that the golden mean γ := (1 +√5)/2 and its conjugate
γ∗ := (1 −√5)/2 are the eigenvalues of the matrix A. Therefore,

htop(σ) = log r(A) = logmax{|γ|, γ
∗} = logγ.

Alternatively, one can prove by induction that #(EnA) = fn+2, where fn is the nth Fi-
bonacci number (see Exercise 7.6.7). Then one can verify by induction that

fn =
1
√5
[γn − (γ∗)n] =

γn

√5
[1 − (γ∗/γ)n].

It follows immediately that

htop(σ) = limn→∞
1
n
log #(EnA) = lim

n→∞
1
n
log fn+2

= lim
n→∞

1
n
log(γ

n+2

√5
[1 − (γ∗/γ)n+2])

= lim
n→∞

1
n
((n + 2) logγ − log√5 + log[1 − (γ∗/γ)n+2])

= logγ.
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7.3 Bowen’s definition of topological entropy

In this section,wepresent an alternative definition of topological entropy due to Rufus
Bowen. In contrast with the definition via open covers, this definition is only valid in a
metric spaceX. Although Bowen’s definition doesmake sense in a noncompactmetric
space, we will as usual assume that X is compact throughout.

Let T : X → X be a dynamical system on a compact metric space (X, d). Recall
from Definition 5.1.3 the dynamical metrics (also called Bowen’s metrics), dn, for each
n ∈ ℕ:

dn(x, y) = max{d(T j(x),T j(y)) : 0 ≤ j < n}.

The open ball centered at x of radius r induced by the metric dn is denoted by Bn(x, r)
and is called the dynamical (n, r)-ball at x. As d1 = d, we shall denote B1(x, r) simply
by B(x, r). Finally, observe that

Bn(x, r) = {y ∈ X : dn(x, y) < r} =
n−1
⋂
j=0

T−j(B(T j(x), r)).

In other words, the ball Bn(x, r) consists of those points whose iterates stay within a
distance r from the corresponding iterates of x until time n− 1 at least. In the language
of Chapter 4, the ball Bn(x, r) is the set of all those points whose orbits are r-shadowed
by the orbit of x until time n − 1 at least.

Definition 7.3.1. A subset E of X is said to be (n, ε)-separated if E is ε-separated with
respect to the metric dn, which is to say that dn(x, y) ≥ ε for all x, y ∈ E with x ̸= y.

Remark 7.3.2.
(a) If E is an (m, ε)-separated set andm < n, then E is also (n, ε)-separated.
(b) If E is an (n, ε′)-separated set and ε < ε′, then E is also (n, ε)-separated.
(c) Given that the underlying space X is compact, any (n, ε)-separated set is finite.

Indeed, letE be an (n, ε)-separated set, and consider the family of balls {Bn(x, ε/2) :
x ∈ E}. If the intersection of Bn(x, ε/2) and Bn(y, ε/2) is nonempty for some x, y ∈ E,
then there exists z ∈ Bn(x, ε/2) ∩ Bn(y, ε/2) and it follows that

dn(x, y) ≤ dn(x, z) + dn(z, y) < ε/2 + ε/2 = ε.

As E is an (n, ε)-separated set, this inequality implies that x = y. This means that
the balls {Bn(x, ε/2) : x ∈ E} are mutually disjoint. Hence, as X is compact, there
can only be finitely many points in E.

The largest separated sets will be especially useful in describing the complexity
of the dynamics that the system exhibits.
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Definition 7.3.3. A subset E of X is called a maximal (n, ε)-separated set if for any
(n, ε)-separated set E′ with E ⊆ E′, we have E = E′. In other words, no strict super-
set of E is (n, ε)-separated.

The counterpart of the notion of separated set is the concept of spanning set.

Definition 7.3.4. A subset F of X is said to be an (n, ε)-spanning set if

⋃
x∈F

Bn(x, ε) = X.

That is, the orbit of every point in the space is ε-shadowed by the orbit of a point of F
until time n − 1 at least.

The smallest spanning sets play a special role in describing the complexity of the
dynamics that the system possesses. They constitute the counterpart of the maximal
separated sets.

Definition 7.3.5. A subset F of X is called a minimal (n, ε)-spanning set if for any
(n, ε)-spanning set F′ with F ⊇ F′, we have F = F′. In other words, no strict subset of
F is (n, ε)-spanning.

Remark 7.3.6.
(a) If F is an (n, ε)-spanning set andm < n, then F is also (m, ε)-spanning.
(b) If F is an (n, ε)-spanning set and ε < ε′, then F is also (n, ε′)-spanning.
(c) Any minimal (n, ε)-spanning set is finite since the open cover {Bn(x, ε) : x ∈ X} of

the compact metric space X admits a finite subcover.

The next lemma describes two useful relations between separated and spanning
sets.

Lemma 7.3.7. The following statements hold:
(a) Every maximal (n, ε)-separated set is a minimal (n, ε)-spanning set.
(b) Every (n, 2ε)-separated set is embedded into any (n, ε)-spanning set.

Proof. (a) Let E be a maximal (n, ε)-separated set. First, suppose that E is not
(n, ε)-spanning. Then there exists a point y ∈ X\⋃x∈E Bn(x, ε). Observe then that
the set E ∪ {y} is (n, ε)-separated, which contradicts the maximality of E. Therefore,
E is (n, ε)-spanning. Suppose now that E is not a minimal (n, ε)-spanning set. Then
there exists an (n, ε)-spanning set E′ ⊊ E. Let y ∈ E\E′. Since ⋃y′∈E′ Bn(y′, ε) = X,
there is y′ ∈ E′ ⊆ E such that dn(y′, y) < ε. This implies that E is not (n, ε)-separated, a
contradiction. Consequently, if E is amaximal (n, ε)-separated set, then E is aminimal
(n, ε)-spanning set.

(b) Let E be an (n, 2ε)-separated set and F an (n, ε)-spanning set. For each x ∈ E,
choose i(x) ∈ F such that x ∈ Bn(i(x), ε). We claim that the map i : E → F is injective.
To show this, let x, y ∈ E be such that i(x) = i(y) =: z. Then x, y ∈ Bn(z, ε). Therefore
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dn(x, y) < 2ε. Since E is a (n, 2ε)-separated set, we deduce that x = y, that is, the map i
is injective and so E is embedded into F.

The next theorem is themain result of this section. It gives us anotherway of defin-
ing the topological entropy of a system.

Theorem 7.3.8. For all ε > 0 and n ∈ ℕ, let En(ε) be a maximal (n, ε)-separated set in
X and Fn(ε) be a minimal (n, ε)-spanning set in X. Then

htop(T) = limε→0 lim sup
n→∞

1
n
log #En(ε) = limε→0 lim inf

n→∞
1
n
log #En(ε)

≤ lim inf
ε→0

lim inf
n→∞

1
n
log #Fn(ε).

Proof. Fix ε > 0 and n ∈ ℕ and let En(ε) be a maximal (n, ε)-separated set in X. Let 𝒰
be an open cover of X consisting of balls of radius ε/2. Let 𝒰 be a minimal subcover
of 𝒰n, so that Zn(𝒰) = #𝒰 . For each x ∈ En(ε), let U(x) be an element of the cover 𝒰
which contains x and define the function i : En(ε) → 𝒰 by setting i(x) = U(x). We
claim that this function is an injection. Indeed, suppose that x, y ∈ En(ε) are such that
U(x) = U(y). Then, by the definition of 𝒰n, we have that

x, y ∈
n−1
⋂
j=0

T−j(Uj),

where Uj = B(zj, ε/2) for some zj ∈ X. This means that both T j(x) and T j(y) be-
long to B(xj, ε/2) for each 0 ≤ j < n. So, dn(x, y) < ε, and thus x = y since En(ε) is
(n, ε)-separated. This establishes that i : En(ε) → 𝒰 is injective. Therefore, Zn(𝒰) =
#𝒰 ≥ #En(ε). Since 𝒰 does not depend on n and the inequality Zn(𝒰) ≥ #En(ε) holds
for all n ∈ ℕ, we deduce that

htop(T) ≥ htop(T ,𝒰) = lim
n→∞

1
n
log Zn(𝒰) ≥ lim sup

n→∞

1
n
log #En(ε).

Consequently,

htop(T) ≥ lim sup
ε→0

lim sup
n→∞

1
n
log #En(ε). (7.1)

On the other hand, if 𝒱 is an arbitrary open cover of X, if δ(𝒱) is a Lebesgue number
for 𝒱, if 0 < ε < δ(𝒱)/2 and if n ∈ ℕ, then for all 0 ≤ k < n and all x ∈ En(ε), we have
that

Tk(Bn(x, ε)) ⊆ B(T
k(x), ε) ⇒ diam(Tk(Bn(x, ε))) ≤ 2ε < δ(𝒱).

Hence, for all 0 ≤ k < n, the set Tk(Bn(x, ε)) is contained in at least one element of the
cover 𝒱. Denote one of these elements by Vk(x). It follows that Bn(x, ε) ⊆ T−k(Vk(x))
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for each 0 ≤ k < n. In other words, we have that Bn(x, ε) ⊆ ⋂
n−1
k=0 T
−k(Vk(x)). But this

intersection is an element of 𝒱n. Let us denote it by V(x).
Since En(ε) is a maximal (n, ε)-separated set, Lemma 7.3.7(a) asserts that it is also

(n, ε)-spanning. Thus the family {Bn(x, ε)}x∈En(ε) is an open cover of X. Each one of
these balls is contained in the corresponding element V(x) of 𝒱n. Hence, the family
{V(x)}x∈En(ε) is also an open cover of X, and thus a subcover of 𝒱

n. Consequently,

Zn(𝒱) ≤ #{V(x)}x∈En(ε) ≤ #En(ε).

Since this is true for all n ∈ ℕ, we deduce that

htop(T ,𝒱) = lim
n→∞

1
n
log Zn(𝒱) ≤ lim inf

n→∞
1
n
log #En(ε).

As this inequality holds for all 0 < ε < δ(𝒱)/2, we obtain that

htop(T ,𝒱) ≤ lim inf
ε→0

lim inf
n→∞

1
n
log #En(ε).

Because 𝒱 was chosen to be an arbitrary open cover of X, we conclude that

htop(T) ≤ lim inf
ε→0

lim inf
n→∞

1
n
log #En(ε). (7.2)

The inequalities (7.1) and (7.2) combined are sufficient to establish the result for the
separated sets.

Now, since every (n, 2ε)-separated set is embedded into any (n, ε)-spanning set
according to Lemma 7.3.7(b), we have that

#En(2ε) ≤ #Fn(ε). (7.3)

The inequalities (7.2) and (7.3) suffice to deduce the result for the spanning sets.

In Theorem 7.3.8, the topological entropy of the system is expressed in terms of
a specific family of maximal separated (resp., minimal spanning) sets. However, to
derive theoretical results, it is sometimes simpler to use the following quantities.

Definition 7.3.9. For all n ∈ ℕ and ε > 0, let

rn(ε) = sup{#En(ε) : En(ε)maximal (n, ε)-separated set}

and

sn(ε) = inf{#Fn(ε) : Fn(ε)minimal (n, ε)-spanning set}.

Thereafter, let

r(ε) = lim inf
n→∞

1
n
log rn(ε) while r(ε) = lim sup

n→∞

1
n
log rn(ε)

and

s(ε) = lim inf
n→∞

1
n
log sn(ε) whereas s(ε) = lim sup

n→∞

1
n
log sn(ε).
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The following are simple but key observations about these quantities.

Remark 7.3.10. For allm < n ∈ ℕ and 0 < ε < ε′, the following relations hold.
(a) rm(ε) ≤ rn(ε) and sm(ε) ≤ sn(ε) by Remarks 7.3.2 and 7.3.6.
(b) rn(ε) ≥ rn(ε′) and sn(ε) ≥ sn(ε′) by Remarks 7.3.2 and 7.3.6.
(c) 0 < sn(ε) ≤ rn(ε) ≤ sn(ε/2) <∞ by Lemma 7.3.7.
(d) r(ε) ≤ r(ε) and s(ε) ≤ s(ε).
(e) r(ε) ≥ r(ε′) and r(ε) ≥ r(ε′) by (b).
(f) s(ε) ≥ s(ε′) and s(ε) ≥ s(ε′) by (b).
(g) 0 ≤ s(ε) ≤ r(ε) ≤ s(ε/2) ≤∞ by (c).
(h) 0 ≤ s(ε) ≤ r(ε) ≤ s(ε/2) ≤∞ by (c).

We will now prove two properties that relate rn’s, sn’s, and Zn’s.

Lemma 7.3.11. The following relations hold:
(a) If 𝒰 is an open cover of X with Lebesgue number 2δ, then

Zn(𝒰) ≤ sn(δ) ≤ rn(δ), ∀n ∈ ℕ.

(b) If ε > 0 and 𝒱 is an open cover of X with diam(𝒱) ≤ ε, then

sn(ε) ≤ rn(ε) ≤ Zn(𝒱), ∀n ∈ ℕ.

Proof. Let n ∈ ℕ. We already know that sn(δ) ≤ rn(δ).
(a) Let𝒰 beanopen coverwithLebesguenumber 2δ and letF bean (n, δ)-spanning

set. Then the dynamic balls {Bn(x, δ) : x ∈ F} form a cover of X. For every 0 ≤ i < n the
ball B(T i(x), δ), which has diameter at most 2δ, is contained in an element of 𝒰 . There-
fore, Bn(x, δ) = ⋂

n−1
i=0 T
−i(B(T i(x), δ)) is contained in an element of 𝒰n = ⋁n−1i=0 T

−i(𝒰).
That is, 𝒰n ≺ {Bn(x, δ) : x ∈ F}. Thus Zn(𝒰) = Z1(𝒰n) ≤ #F. Since F is an arbitrary
(n, δ)-spanning set, it ensues that Zn(𝒰) ≤ sn(δ).

(b) Let 𝒱 be an open cover with diam(𝒱) ≤ ε and let E be an (n, ε)-separated set.
Then no element of the cover 𝒱n contains more than one element of E. Hence, #E ≤
Zn(𝒱). Since E is an arbitrary (n, ε)-separated set, it follows that rn(ε) ≤ Zn(𝒱).

Together, Lemmas 7.3.11 and 7.2.20 have the following immediate corollary. Unlike
Theorem 7.3.8, this result is symmetric with respect to separated and spanning sets. It
is the advantage of using spanning sets of minimal cardinality, rather than spanning
sets that are minimal in terms of inclusion.

Corollary 7.3.12. The following equalities hold:

htop(T) = limε→0 r(ε) = limε→0 r(ε) = limε→0 s(ε) = limε→0 s(ε).

Corollary 7.3.12 is useful to derive theoretical results. Nevertheless, in practice,
Theorem 7.3.8 is simpler to use, as only one family (in essence, a double sequence)
of sets is needed. Sometimes a single sequence is enough.
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Theorem 7.3.13. If a topological dynamical system T : X → X admits a generator with
Lebesgue number 2δ, then the following statements hold for all 0 < ε ≤ δ:
(a) If (En(ε))∞n=1 is a sequence of maximal (n, ε)-separated sets in X, then

htop(T) = lim
n→∞

1
n
log #En(ε).

(b) If (Fn(ε))∞n=1 is a sequence of minimal (n, ε)-spanning sets in X, then

htop(T) ≤ lim inf
n→∞

1
n
log #Fn(ε).

(c) htop(T) = limn→∞
1
n log rn(ε).

(d) htop(T) = limn→∞
1
n log sn(ε).

Proof. Wewill prove (a) and leave it to the reader to show the other parts using similar
arguments.

Let 𝒰 be a generator for T with Lebesgue number 2δ. Set 0 < ε ≤ δ. Observe
that 2ε is also a Lebesgue number for 𝒰 . Choose any sequence (En(ε))∞n=1 of maximal
(n, ε)-separated sets. Since maximal (n, ε)-separated sets are (n, ε)-spanning sets, it
follows from Lemma 7.3.11(a) that Zn(𝒰) ≤ sn(ε) ≤ #En(ε). Therefore,

htop(T ,𝒰) = lim
n→∞

1
n
log Zn(𝒰) ≤ lim inf

n→∞
1
n
log #En(ε). (7.4)

On the other hand, since 𝒰 is a generator, there exists k ∈ ℕ such that
diam(𝒰k) ≤ ε. It ensues from Lemma 7.3.11(b) that #En(ε) ≤ rn(ε) ≤ Zn(𝒰k). Conse-
quently,

lim sup
n→∞

1
n
log #En(ε) ≤ lim

n→∞
1
n
log Zn(𝒰

k) = htop(T ,𝒰
k) = htop(T ,𝒰), (7.5)

where the last equality follows from Lemma 7.2.15. Combining (7.4) and (7.5) gives

htop(T ,𝒰) = lim
n→∞

1
n
log #En(ε).

As 𝒰 is a generator, htop(T) = htop(T ,𝒰) by Lemma 7.2.22.

For expansive systems, the Lebesgue number can be expressed in terms of the
expansive constant.

Theorem 7.3.14. If T : X → X is a δ0-expansive dynamical system on a compact metric
space (X, d), then Theorem 7.3.13 applies with any 0 < δ < δ0/4.

Proof. According to Theorem 7.2.23, any open cover 𝒰 of X with diam(𝒰) ≤ δ0 is a
generator for T. In particular, a cover composed of open balls works. Let x1, . . . , xn ∈ X
be such that X = ⋃ni=1 B(xi, δ0/2 − 2δ). Then the cover {B(xi, δ0/2) : 1 ≤ i ≤ n} has
diameter at most δ0 and admits 2δ as Lebesgue number.
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7.4 Topological degree

In this section, which in the context of this book is a preparation for the subsequent
section where we will give a very useful lower bound for the topological entropy of a
C1 endomorphism, we introduce the concept of topological degree formaps of smooth
compact orientable manifolds. Although this is in fact a topological concept well-
defined for continuous maps of topological manifolds, we concentrate on differen-
tiable maps. This is somewhat easier and perfectly fits the needs of the proof of the
entropy bound mentioned above. For more information on these notions, please see
Hirsch [30].

Definition 7.4.1. Let M and N be smooth compact orientable d-dimensional mani-
folds. Let f : M → N be a C1 map. A point x ∈ M is called a regular point for f if
Dxf is invertible. A point y ∈ N is called a regular value of f if f −1(y) consists of regular
points. Otherwise, y is called a singular value of f .

It is obvious that the set of regular values is open. It is also easy to see that the
preimage of any regular value is of finite cardinality.

Lemma 7.4.2. If y ∈ N is a regular value of a C1 map f : M → N, then #f −1(y) <∞.

Proof. Suppose that #f −1(y) =∞. Then there exists a sequence (xn)∞n=1 inM such that
limn→∞ xn = x for some x ∈ M and f (xn) = y for all n ∈ ℕ. The continuity of f imposes
that f (x) = y, and thus f is not injective on any neighborhood of x. By the implicit
function theorem, it follows that Dxf is not invertible, that is, x is not a regular point.
So y is a singular value.

Definition 7.4.3. Suppose that y ∈ N is a regular value of aC1map f : M → N . For each
x ∈ f −1(y), let ϵx = ±1 depending on whether Dxf preserves or reverses orientation.
Then the degree of f at y is defined by

degy(f ) = ∑
x∈f −1(y) ϵx .

The preimage of any regular value being of finite cardinality, this sum is a well-
defined integer. The degree of f at y measures how many times f covers N near y,
counted with appropriate positive and negative multiplicities. In fact, the degree is
independent of the choice of the regular value inN . In order to show that, there exists
an alternative definition based on integration.

Definition 7.4.4. A positive normalized volume element on N is a continuous d-form
ω that is positive on positively oriented frames and such that ∫M ω = 1. The pullback
f ∗ω of ω under a C1 map f : M → N is the d-form onM given by

(f ∗ω)(v1, . . . , vd) = ω(Df (v1), . . . ,Df (vd)).
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Definition 7.4.5. If ω is a positive normalized volume element on N, then the degree
of a C1 map f : M → N with respect to ω is defined by

degω(f ) = ∫
M

f ∗ω.

We now show that the two aforementioned definitions of degree are independent
of y and ω, respectively.

Lemma 7.4.6. Let y ∈ N be a regular value of a C1 map f : M → N and ω a positive
normalized volume element on N. Then degy(f ) = degω(f ).

Proof. As y is a regular value, there are disjoint open neighborhoods U1, . . . ,Uk ⊆ M
of the points x1, . . . , xk of f −1(y) such that⋃

k
i=1 Ui is the preimage of a neighborhood V

of y and f |Ui
is a diffeomorphism for all i. If ν is an n-form supported in V such that

∫V ν = ∫N ν = 1, then ω = ν + dα for some (n − 1)-form α, so ∫M f ∗ω = ∫M(f
∗ν + f ∗dα) =

∫M f ∗ν = ∑ki=1 ∫(f |Ui
)∗ν = ∑ki=1 ∫Ui

f ∗ν. By the transformation rule, each of the latter
integrals is ±1 according to whether f |Ui

, or equivalently Dxi f , preserves or reverses
orientation. Consequently, degω(f ) = ∫M f ∗ω = degy(f ).

So we can now make the following definition.

Definition 7.4.7. The degree of a C1 map f : M → N is defined by deg(f ) := degy(f ) for
any regular value y ∈ N .

7.5 Misiurewicz–Przytycki theorem

In this section, we shall provide a very effective lower bound for the topological en-
tropy of C1 endomorphisms. Its attractiveness lies in it being expressed in relatively
simple terms. Themuch stronger theorem of Yomdin [79], commonly referred to as the
entropy conjecture and which gives the lower bound on topological entropy in terms
of the logarithmof the spectral radius of themap induced on the full homology ring, is
incomparably harder to prove and, often, harder to apply. The proof below is a slight
modification of the one given in [33].

Theorem 7.5.1 (Misiurewicz–Przytycki theorem). If M is a smooth compact orientable
manifold and T : M → M a C1 endomorphism, then htop(T) ≥ log |deg(T)|.

Proof. Fix a volume element ω on M and α ∈ (0, 1). Let L := supx∈M ‖DxT‖, and ϵ be
such that 2ϵ1−αLα = 1. Set B := {x ∈ M : ‖DxT‖ ≥ ϵ}. Pick a cover of B by open sets on
which T is injective and let δ be a Lebesgue number for the cover. Thus, if x, y ∈ B and
d(x, y) ≤ δ then T(x) ̸= T(y).

For every n ∈ ℕ, let

A := {x ∈ M : #(B ∩ {x,T(x), . . . ,Tn−1(x)}) ≤ [αn]},
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where [⋅] denotes the integer part function. Observe that limn→∞
[αn]
n = α. If x ∈ A and

n is so large that ϵ1−
[αn]
n L
[αn]
n ≤ 2ϵ1−αLα, then

DxT
n =

n−1
∏
j=0

DT j(x)T
 < ϵ

n−[αn]L[αn] = (ϵ1−
[αn]
n L
[αn]
n )n ≤ (2ϵ1−αLα)n = 1.

Hence, the volume of Tn(A) is less than that of M. But Sard’s theorem asserts that
the set of singular values has Lebesgue measure zero (for more information, see [30]).
Therefore, there exists a regular value x of Tn that lies inM \ Tn(A).

We will now extract an (n, δ)-separated set from T−n(x). Since x is regular for T, it
has at leastN := |deg(T)| preimages. If at leastN of them are in B (a “good transition”)
then take Q1 to consist of N such preimages. Otherwise (a “bad transition”), take Q1
to be a single preimage outside B. Either way, Q1 ⊆ T−1(x) consists of regular values
of T since x is a regular value of Tn. Thus we can apply the same procedure to every
y ∈ Q1 and by collecting all of the points chosen that way obtain Q2 ⊆ T−2(x), and
so on. The set Qn ⊆ T−n(x) we hence obtain is (n, δ)-separated. Indeed, suppose that
y1, y2 ∈ Qn andd(Tk(y1),Tk(y2)) < δ for all k ∈ {0, . . . , n−1}. ThenTn−1(y1),Tn−1(y2) ∈ Q1.
If Tn−1(y1) ̸= Tn−1(y2), then by construction of Q1 we know that Tn−1(y1),Tn−1(y2) ∈ B.
Moreover, T(Tn−1(y1)) = x = T(Tn−1(y2)) and d(Tn−1(y1),Tn−1(y2)) < δ. By definition of
δ, we deduce that Tn−1(y1) = Tn−1(y2). This contradicts the assumption that Tn−1(y1) ̸=
Tn−1(y2). So Tn−1(y1) = Tn−1(y2). Likewise Tn−2(y1) = Tn−2(y2), and so forth, so y1 = y2
and Qn is (n, δ)-separated.

Now Qn ⊆ T−n(x) ⊆ T−n(M \ Tn(A)) ⊆ M \ A, that is, Qn ∩ A = 0. Thus, for any
y ∈ Qn there are by definition of Amore than αn numbers k ∈ {0, . . . , n − 1} for which
Tk(y) ∈ B. So in passing from x to any y ∈ Qn there are at least m := [αn] + 1 “good
transitions,” and hence #Qn ≥ Nm ≥ Nαn. Therefore, the maximal cardinality of an
(n, δ)-separated set is at least Nαn, and thus htop(T) ≥ α logN by Theorem 7.3.8. Since
this holds for all α ∈ (0, 1), it ensues that htop(T) ≥ logN = log |deg(T)|.

The two properties of smoothness that make the preceding proof work are bound-
edness of the derivative together with the fact that a smoothmap is a local homeomor-
phism near any point where the derivative is nonzero.

There are certain classes of systems where the inequality given in Theorem 7.5.1
becomes an equality. Expanding maps of a compact manifold (e. g., the unit circle)
form one such class. So do rational functions of the Riemann sphere

T(z) = P(z)
Q(z)
,

where P andQ are relatively prime polynomials. Since thesemaps are orientation pre-
serving, their degree is equal to the number of preimages of a regular point w ∈ ℂ̂,
that is, the number of solutions to the equation T(z) = w. The degree of T is therefore
equal to the maximum of the algebraic degrees of P and Q.
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7.6 Exercises

Exercise 7.6.1. Prove Remark 7.1.3.

Exercise 7.6.2. Prove Lemma 7.1.5.

Exercise 7.6.3. Prove Lemma 7.1.10.

Exercise 7.6.4. Fill in the details of the proof of Lemma 7.1.12.

Exercise 7.6.5. Using Lemmas 7.3.11 and 7.2.20, prove Corollary 7.3.12. Then prove The-
orem 7.3.13(b,c,d).

Exercise 7.6.6. Let X be a metric space. Let (Xn)∞n=1 be a descending sequence of
nonempty compact subsets of X. Prove that⋂∞n=1 Xn is a singleton if and only if

lim
n→∞

diam(Xn) = 0.

Furthermore, show that this result does not generally hold if the sequence is not de-
scending.

Exercise 7.6.7. Let E = {0, 1}. Let σ : E∞A → E∞A be the golden mean shift, that is, the
subshift of finite type induced by the incidence matrix

A = [ 1 1
1 0
] .

In this exercise, you will prove by induction that #(EnA) = fn+2 for all n ∈ ℕ, where fn is
the nth Fibonacci number.
(a) Show that En+1A = (E

n
A × {0})⋃(E

n,0
A × {1}) for all n ∈ ℕ, where E

n,0
A is the set of all

words in EnA whose last letter is 0.
(b) Prove that En,0A = E

n−1
A × {0} for all n ∈ ℕ.

(c) Deduce that #(En+1A ) = #(E
n
A) + #(E

n−1
A ) for all n ∈ ℕ.

(d) Conclude that #(EnA) = fn+2 for all n ∈ ℕ.

Exercise 7.6.8. Prove that the topological entropy of any isometry of a compactmetric
space is equal to zero.

Exercise 7.6.9. Show that htop(T−1) = htop(T) for any homeomorphism T : X → X of a
compact metrizable space X.

Exercise 7.6.10. Prove that the topological entropy of anyhomeomorphismof the unit
circle is equal to zero.

Exercise 7.6.11. Let X be a countable compact metrizable space and T : X → X a
dynamical system. Show that htop(T) = 0.

Exercise 7.6.12. Prove that the topological entropy of every transitive, open, expan-
sive dynamical system is positive.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



204 | 7 Topological entropy

Exercise 7.6.13. Let T : X → X be a topological dynamical system and F be a closed
forward T-invariant subset of X. Show that the entropy of the subsystem T|F : F → F
satisfies htop(T|F) ≤ htop(T).

Exercise 7.6.14. Let T : X → X be a topological dynamical system and F1, . . . , Fn be
finitely many closed forward T-invariant subsets of X covering X. Prove that htop(T) =
max{htop(T|Fi ) : 1 ≤ i ≤ n}.

Exercise 7.6.15. Find two dynamical systems which have the same topological en-
tropy but are not topologically conjugate.

Exercise 7.6.16. The formula htop(Tn) = nhtop(T) may suggest that htop(T ∘ S) =
htop(T) + htop(S). Show that this is not true in general even if S and T commute.

Exercise 7.6.17. Let d ∈ ℕ. Prove that the topological entropy of the map of the unit
circle z → zd is equal to log d.

Exercise 7.6.18. For every dynamical system T : X → X, let

deg(T) := min
x∈X

#T−1(x).

Show that if T is a local homeomorphism, then htop(T) ≥ log deg(T).
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8 Ergodic theory

In this chapter, wemove away from the study of purely topological dynamical systems
to consider instead dynamical systems that come equipped with a measure. That is,
instead of self-maps acting on compact metrizable spaces, we now ask that the self-
maps act upon measure spaces.

The etymology of the word ergodic is found in the amalgamation of the two Greek
words ergon (meaning “work”) and odos (meaning “path”). This term was coined by
the great physicist Ludwig Boltzmann while carrying out research in statistical me-
chanics. The goal of ergodic theory is to study the temporal and spatial long-term be-
havior of ameasure-preserving dynamical system. Given such a system and ameasur-
able subset of the space it acts on, it is natural to ask with which frequency the orbits
of “typical” points visit that subset. One way to think about ergodic systems is that
they are systems such that the visiting frequency of orbits is equal to the measure of
the subset visited. In other words, “time averages” are equal to “space averages” for
these systems. This will all be made precise shortly.

The chapter is organized as follows. Section 8.1 introduces the basic object of
study in ergodic theory, namely, invariant measures. In brief, a measure is said to
be invariant under a measurable self-map if the measure of the set of points that are
mapped to a measurable subset is equal to the measure of that subset. Section 8.2
presents the notion of ergodicity and comprises a demonstration of Birkhoff’s ergodic
theorem, proved by G. D. Birkhoff [9] in 1931. This theorem is themost fundamental re-
sult in ergodic theory. It is extremely useful in numerous applications. Birkhoff’s origi-
nal proofwas very involvedand complex.Over time some simplificationswere brought
by several authors. The simple proof we provide here originates from the short and el-
egant one due to Katok and Hasselblatt [33]. The class of ergodic measures for a given
transformation is then studied inmore detail. The penultimate Section 8.3 contains an
introduction to various measure-theoretic mixing properties that a system may have
(which ought to be compared to the topological mixing introduced in Chapter 1). It
shows that ergodicity is a very weak form of mixing. In the final Section 8.4, Rokhlin’s
construction of an invertible system from any given dynamical system is described
and the mixing properties of this natural extension are investigated.

The reader who is not familiar with, or desires a refresher on, measure theory is
encouraged to consultAppendixA.Wewill repeatedly refer to it in this and subsequent
chapters.

8.1 Measure-preserving transformations

Throughout, (X,𝒜) and (Y ,ℬ)will denote measurable spaces, and the transformation
T : (X,𝒜)→ (Y ,ℬ) will be measurable.

https://doi.org/10.1515/9783110702682-008

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



206 | 8 Ergodic theory

If the domain of T is endowed with a measure, then the measurable transforma-
tion T induces a measure on its codomain.

Definition 8.1.1. Let T : (X,𝒜) → (Y ,ℬ) be a measurable transformation and let μ be
a measure on (X,𝒜). The set function μ ∘ T−1 : ℬ → [0,∞], defined by

(μ ∘ T−1)(B) := μ(T−1(B)), ∀B ∈ ℬ,

is a measure on (Y ,ℬ) called the push-down or push-forward of the measure μ under
the transformation T.

The integration of a measurable function f : (Y ,ℬ) → ℝ with respect to the mea-
sure μ ∘ T−1 can be carried out by integrating the composition of f and T with respect
to the measure μ.

Lemma 8.1.2. If T : (X,𝒜, μ)→ (Y ,ℬ) is a measurable transformation, then

∫
Y

f d(μ ∘ T−1) = ∫
X

f ∘ T dμ

for all measurable functions f : (Y ,ℬ)→ ℝ such that the integral ∫X f ∘ T dμ is defined.

Proof. It is easy to see that the equality holds for characteristic functions and, by
linearity of the integral, for nonnegative measurable simple functions. The result
then follows for any nonnegative measurable function by approaching it pointwise
via an increasing sequence of nonnegative measurable simple functions (see The-
orem A.1.17 in Appendix A) and calling upon the monotone convergence theorem
(Theorem A.1.35). Finally, any measurable function can be expressed as the differ-
ence between its positive and negative parts, which are both nonnegative measurable
functions.

Measure-preserving transformations are transformationsbetweenmeasure spaces
for which the push down of the measure on the domain coincides with the measure
on the codomain.

Definition 8.1.3. Let (X,𝒜, μ) and (Y ,ℬ, ν) be measure spaces. A measurable transfor-
mation T : (X,𝒜, μ)→ (Y ,ℬ, ν) is said to bemeasure-preserving if μ ∘ T−1 = ν.

Proving measure preservation for all the elements of a σ-algebra is generally an
onerous task. As for equality of measures, when the measures under consideration
are finite, it suffices to prove measure preservation on a π-system that generates the
σ-algebra on the codomain.

Lemma 8.1.4. Let T : (X,𝒜, μ) → (Y ,ℬ, ν) be a measurable transformation between
probability spaces (X,𝒜, μ) and (Y ,ℬ, ν). If ℬ = σ(𝒫) is a σ-algebra generated by a
π-system 𝒫 on Y, then

T is measure-preserving ⇐⇒ μ ∘ T−1(P) = ν(P), ∀P ∈ 𝒫 .
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Proof. This follows immediately from Lemma A.1.26.

Let us now consider self-transformations, that is, transformations whose co-
domain coincides with their domain.

Definition 8.1.5. A measure-preserving self-transformation T : (X,𝒜, μ) → (X,𝒜, μ),
that is, a measurable self-transformation such that μ ∘ T−1 = μ, is called a measure-
preserving dynamical system. Alternatively, μ is said to be T-invariant or invariant with
respect to T.

Note that if a measurable transformation T : (X,𝒜, μ) → (Y ,ℬ, ν) is invertible
and its inverse T−1 is measurable, then μ(T−1(B)) = ν(B) for every B ∈ ℬ if and only
if μ(A) = ν(T(A)) for every A ∈ 𝒜. In particular, if T : (X,𝒜, μ) → (X,𝒜, μ), then μ is
T-invariant if and only if μ is T−1-invariant. This justifies the following definitions.

Definition 8.1.6. A measure-preserving transformation T : (X,𝒜, μ) → (Y ,ℬ, ν),
which is invertible and whose inverse is measurable, is called a measure-preserving
isomorphism.

Definition 8.1.7. A measure-preserving dynamical system T : (X,𝒜, μ) → (X,𝒜, μ),
which is invertible and whose inverse is measurable, is called a measure-preserving
automorphism.

8.1.1 Examples of invariant measures

In this section, we give several examples of invariant measures for various transfor-
mations.

Example 8.1.8. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation with a fixed
point x0, that is, T(x0) = x0. Let δx0 be the Dirac point mass supported at x0 (cf. Exam-
ple A.1.21). Then δx0 is T-invariant, that is, δx0 (T

−1(A)) = δx0 (A) for each A ∈ 𝒜, since
x0 ∈ T−1(A) if and only if x0 ∈ A. This example easily generalizes to invariantmeasures
supported on periodic orbits.

Example 8.1.9. Let 𝕊1 = [0, 2π] (mod 2π). Let α ∈ ℝ and define the map Tα : 𝕊1 → 𝕊1

by

Tα(x) = x + 2πα (mod 2π).

Thus Tα is the rotation of the unit circle by the angle 2πα. The topological dynamics
of Tα are radically different depending on whether the number α is rational or irra-
tional (see Theorem 1.5.12). So will be the ergodicity of Tα with respect to the Lebesgue
measure λ. However, it is fairly easy to foresee that Tα preserves λ, irrespective of the
nature of α. Indeed, T−1α (x) = x − 2πα (mod 2π) and so |detDT−1α (x)| = 1 for all x ∈ 𝕊

1.
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Therefore,

λ(T−1α (B)) = ∫
B

detDT
−1
α (x)
 dλ(x) = ∫

B

dλ(x) = λ(B)

for all B ∈ ℬ(𝕊1), that is, Tα preserves λ. Since Tα is invertible and its inverse is mea-
surable, Tα is a Lebesgue measure-preserving automorphism.

Example 8.1.10. Fix n ∈ ℕ and consider the map Tn : 𝕊1 → 𝕊1 defined by Tn(x) :=
nx (mod 1), where 𝕊1 is equipped with the Borel σ-algebra ℬ(𝕊1) and the Lebesgue
measure λ. We claim that λ is T-invariant. Let I be a proper subinterval of 𝕊1. Then
T−1n (I) consists of nmutually disjoint intervals (arcs) of length 1

nλ(I). Consequently,

λ(T−1n (I)) = n ⋅
1
n
λ(I) = λ(I).

Since the family of all proper subintervals of 𝕊1 forms a π-system which gener-
ates ℬ(𝕊1) and since Tn preserves the Lebesgue measure of all proper subintervals,
Lemma 8.1.4 asserts that Tn preserves λ.

Example 8.1.11.
(a) Recall the tent map T : [0, 1]→ [0, 1] from Example 1.1.3:

T(x) := { 2x if x ∈ [0, 1/2]
2 − 2x if x ∈ [1/2, 1].

The family of all intervals {[a, b), (a, b) : 0 < a < b < 1} forms a π-system that
generates the Borel σ-algebra ℬ([0, 1]). Since the preimage of any such interval
consists of 2 disjoint subintervals (one on each side of the tent) of half the length of
the original interval, one readily sees fromLemma8.1.4 that the Lebesguemeasure
on [0, 1] is invariant under the tent map.

(b) In fact, the previous example generalizes to a much larger family of maps. Let
T : [0, 1] → [0, 1] be a piecewise linear map of the unit interval that admits a
“partition” 𝒫 = {pj}

q
j=0, where 1 ≤ q < ∞ and 0 = p0 < p1 < ⋅ ⋅ ⋅ < pq−1 < pq = 1,

with the following properties:
(1) [0, 1] = I1 ∪ ⋅ ⋅ ⋅ ∪ Iq, where Ij = [pj−1, pj]’s are the successive intervals of mono-

tonicity of T.
(2) T(Ij) = [0, 1] for all 1 ≤ j ≤ q.
(3) T is linear on Ij for all 1 ≤ j ≤ q.
Such a map T will be called a full Markov map. We claim such a T preserves the
Lebesgue measure λ. Indeed, it is easy to see that the absolute value of the slope
of the restriction of T to the interval Ij is 1/(pj −pj−1). Therefore, the absolute value
of the slope of the corresponding inverse branch of T is pj − pj−1. Let I ⊆ (0, 1) be
any interval. Then T−1(I) = ⋃qj=1 T|

−1
Ij (I), where T|

−1
Ij (I) is a subinterval of Int(Ij) of
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length (pj − pj−1) ⋅ λ(I). Since Int(Ij)∩ Int(Ik) = 0 for all 1 ≤ j < k ≤ q, it ensues from
that set disjointness (see Lemma A.1.19(g) if necessary) that

λ(T−1(I)) =
q
∑
j=1

λ(T|−1Ij (I)) =
q
∑
j=1
(pj − pj−1) ⋅ λ(I) = (pq − p0)λ(I) = λ(I).

Moreover, 0 ≤ λ(T−1({0})) ≤ λ({pj : 0 ≤ j ≤ q}) = 0. So λ(T−1({0})) = 0 = λ({0}).
Similarly, λ(T−1({1})) = 0 = λ({1}). It follows that λ(T−1(J)) = λ(J) for every interval
J ⊆ [0, 1]. Since the family of all intervals in [0, 1] forms a π-system that generates
ℬ([0, 1]), Lemma 8.1.4 asserts that the Lebesgue measure is invariant under any
full Markov map.

Example 8.1.12. Let T : (X,𝒜) → (X,𝒜) and S : (Y ,ℬ) → (Y ,ℬ) be measurable
transformations for which there exists a measurable transformation h : (X,𝒜) →
(Y ,ℬ) such that h ∘ T = S ∘ h. We will show that every T-invariant measure generates
an S-invariant push down under h. Let μ be a T-invariant measure on (X,𝒜). Recall
that the push down of μ under h is the measure μ ∘ h−1 on (Y ,ℬ). It follows from the
T-invariance of μ that

(μ ∘ h−1) ∘ S−1 = μ ∘ (S ∘ h)−1 = μ ∘ (h ∘ T)−1 = (μ ∘ T−1) ∘ h−1 = μ ∘ h−1.

That is, the push down μ ∘ h−1 is S-invariant.

Example 8.1.13. Let (X,𝒜, μ) and (Y ,ℬ, ν) be two probability spaces, and let T : X → X
and S : Y → Y be two measure-preserving dynamical systems. The direct product of
T and S is the map T × S : X × Y → X × Y defined by

(T × S)(x, y) = (T(x), S(y)).

The direct product σ-algebra σ(𝒜×ℬ) on X ×Y is the σ-algebra generated by the semi-
algebra of measurable rectangles

𝒜 × ℬ := {A × B : A ∈ 𝒜, B ∈ ℬ}.

The direct product measure μ × ν on (X × Y , σ(𝒜 × ℬ)) is uniquely determined by its
values on the generating semialgebra, values which are naturally given by

(μ × ν)(A × B) := μ(A)ν(B).

The existence and uniqueness of this product measure can be established using
Theorem A.1.27, Lemma A.1.29, and Theorem A.1.28. For more information, see Hal-
mos [27] (pp. 157–158) or Taylor [72] (Chapter III, Section 4). We claim that the product
map T × S : (X × Y , σ(𝒜 × ℬ), μ × ν) → (X × Y , σ(𝒜 × ℬ), μ × ν) is measure-preserving.
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Thanks to Lemma 8.1.4, it suffices to show that (μ× ν) ∘ (T × S)−1(A×B) = (μ× ν)(A×B)
for all A × B ∈ 𝒜 × ℬ. And indeed,

(μ × ν) ∘ (T × S)−1(A × B) = (μ × ν)(T−1(A) × S−1(B))
= μ(T−1(A))ν(S−1(B))
= μ(A)ν(B)
= (μ × ν)(A × B).

The final example pertains to the shift map introduced in Chapter 3 on symbolic
dynamics. In fact, we look at this map in a more general context.

Example 8.1.14. Let (E,ℱ ,P) be a probability space. Consider the one-sided product
set Eℕ = E∞ := ∏∞k=1 E. The product σ-algebra ℱ∞ on E∞ is the σ-algebra generated
by the semialgebra 𝒮 of all (finite) cylinders (also called rectangles), that is, sets of the
form

n
∏
k=1

Ek ×
∞

∏
l=n+1

E = {ω = (ωj)
∞
j=1 ∈ E

∞ : ωk ∈ Ek , ∀1 ≤ k ≤ n},

where n ∈ ℕ and Ek ∈ ℱ for all 1 ≤ k ≤ n. The product measure μP onℱ∞ is the unique
probability measure which confers to a cylinder the value

μP(
n
∏
k=1

Ek ×
∞

∏
l=n+1

E) =
n
∏
k=1

P(Ek). (8.1)

The existence and uniqueness of this measure can be established using
Theorem A.1.27, Lemma A.1.29, and Theorem A.1.28. For more information, see Hal-
mos [27] (pp. 157–158) or Taylor [72] (Chapter III, Section 4).

As in Chapter 3, let σ : E∞ → E∞ be the left shift map, which is defined by
σ((ωn)

∞
n=1) := (ωn+1)

∞
n=1. The product measure μP is σ-invariant. Indeed, since the

cylinder sets form a semialgebra which generates the product σ-algebra, in light of
Lemma 8.1.4 it is sufficient to show that μP(σ−1(S)) = μP(S) for all cylinder sets S ∈ 𝒮.
And we have

μP ∘ σ
−1(

n
∏
k=1

Ek ×
∞

∏
l=n+1

E) = μP(E ×
n
∏
k=1

Ek ×
∞

∏
l=n+2

E)

= P(E)
n
∏
k=1

P(Ek)

=
n
∏
k=1

P(Ek)

= μP(
n
∏
k=1

Ek ×
∞

∏
l=n+1

E).

This completes the proof that the product measure is shift-invariant.
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The measure-preserving dynamical system (σ : E∞ → E∞, μP) is commonly re-
ferred to as a one-sided Bernoulli shift with set of states E. Of particular importance is
the case when E is a finite set having at least two elements. Also, the case of a count-
ably infinite set of states E will be of special importance in this book. This will be
particularly transparent in Chapters 13 and 16 onward in the second volume, where
we will consider Gibbs states of Hölder continuous potentials for which Bernoulli
measures are very special cases.

More examples of invariant measures can be found in Exercises 8.5.22 and 8.5.25–
8.5.33.

8.1.2 Poincaré’s recurrence theorem

We now present one of the fundamental results of finite ergodic theory, namely,
Poincaré’s recurrence theorem. This theorem states that, in a finite measure space,
almost all points of a given set return infinitely often to that set under iteration. It is
worth pointing out that Poincaré’s recurrence theorem is striking (and, as we will see,
unusual), in that its hypotheses are so completely general.

But, first, we show that the points from a measurable set that never return to that
set under iteration are negligible. That is, they form a subset of measure zero.

Lemma 8.1.15. If T : X → X is a measure-preserving dynamical system on a probability
space (X,𝒜, μ), then for every set A ∈ 𝒜 we have

μ({x ∈ A : Tn(x) ∉ A, ∀n ∈ ℕ}) = 0.

Proof. Let A ∈ 𝒜 and

N = N(T ,A) := {x ∈ A : Tn(x) ∉ A, ∀n ∈ ℕ}.

To show that μ(N) = 0, let x ∈ N . Then Tn(x) ∉ A for every n ∈ ℕ. Therefore, Tn(x) ∉ N
for all n ∈ ℕ. Thus N ∩ T−n(N) = 0 for all n ∈ ℕ. Now, fix k ∈ ℕ and let 1 ≤ j < k. Then

T−j(N) ∩ T−k(N) = T−j(N ∩ T−(k−j)(N)) = T−j(0) = 0.

So the preimages {T−n(N)}∞n=0 ofN under the iterates of T form a pairwise disjoint fam-
ily of sets. It follows that

1 = μ(X) ≥ μ(
∞

⋃
n=0

T−n(N)) =
∞

∑
n=0

μ(T−n(N)) =
∞

∑
n=0

μ(N),

where the last equality follows from the T-invariance of μ. Hence, μ(N) = 0.

Knowing this, we can now demonstrate that, in a finite measure space, almost all
points of a given set return infinitely often to that set under iteration.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



212 | 8 Ergodic theory

Theorem 8.1.16 (Poincaré’s recurrence theorem). If T : X → X is ameasure-preserving
dynamical system on a probability space (X,𝒜, μ), then

μ({x ∈ A : Tn(x) ∈ A for infinitely many n ∈ ℕ}) = μ(A)

for every set A ∈ 𝒜.

Proof. Let

N(T ,A) := {x ∈ A : Tn(x) ∉ A, ∀n ∈ ℕ}.

For each k ∈ ℕ, let

Nk := {x ∈ A : T
n(x) ∉ A, ∀n ≥ k}

⊆ {x ∈ A : Tkj(x) ∉ A, ∀j ∈ ℕ} = N(Tk ,A).

Replacing T by Tk in Lemma8.1.15, we obtain that μ(N(Tk ,A)) = 0 and thereby μ(Nk) =
0 for all k ∈ ℕ. It follows that

μ(
∞

⋃
k=1

Nk) = 0.

Observe also that

{x ∈ A : Tn(x) ∈ A for infinitely many n ∈ ℕ} = A\
∞

⋃
k=1

Nk .

Consequently,

μ({x ∈ A : Tn(x) ∈ A for infinitely many n}) = μ(A) − μ(
∞

⋃
k=1

Nk) = μ(A).

Note that this result does not generally hold in infinite measure spaces. Indeed,
the simplest counterexample is a translation of the real line. For instance, take the
transformation of the real line T(x) = x + 1, which certainly preserves the Lebesgue
measure, and let A = (0, 1). No point of A ever comes back to A under iteration, al-
though the Lebesgue measure of A is evidently not equal to zero.

8.1.3 Existence of invariant measures

In general, a measurable transformation T : (X,𝒜) → (X,𝒜) may not admit any in-
variant measure (see Exercise 8.5.29). There are also measurable transformations that
admit infinite invariant measures but not finite ones (see Exercise 8.5.30). However, if
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X is a compactmetrizable space and𝒜 is the Borel σ-algebraℬ(X), then every continu-
ous transformation does have an invariant Borel probability measure. In other words,
every topological dynamical system admits an invariant Borel probability measure.
Before proving this, we will study the properties of the set of invariant probability
measures.

Definition 8.1.17. Let (X,𝒜)be ameasurable space. The set of all probabilitymeasures
on (X,𝒜) is denoted by M(X,𝒜). Given a measurable transformation T : (X,𝒜) →
(X,𝒜), the subset of all T-invariant probability measures on (X,𝒜) is denoted by
M(T ,𝒜).

In particular, if 𝒜 is the Borel σ-algebra on a topological space X, then the set of
all Borel probability measures on X is simply denoted byM(X) instead ofM(X,ℬ(X)),
while its subset of T-invariant measures is denoted by M(T) rather than M(T ,ℬ(X)).
For more information aboutM(X), please see Subsection A.1.8.

For topological dynamical systems, there exists a characterization of invariant
Borel probability measures in terms of the way they integrate continuous functions.

Theorem 8.1.18. Let T : X → X be a topological dynamical system. Then

μ ∈ M(T) ⇐⇒ ∫
X

f ∘ T dμ = ∫
X

f dμ, ∀f ∈ C(X).

Proof. This follows immediately from Lemma 8.1.2 and Corollary A.1.54.

Wewill now show that the setM(T) is a compact and convex subset ofM(X)when-
ever T is a topological dynamical system.

In fact, the convexity holds for all measurable transformations.

Lemma 8.1.19. For anymeasurable transformation T : (X,𝒜)→ (X,𝒜), the set M(T ,𝒜)
is a convex subset of M(X,𝒜).

Proof. Let μ, ν ∈ M(T ,𝒜). Let m be a convex combination of μ and ν, that is, let α ∈
[0, 1] and letm = αμ + (1 −α)ν. By the obvious convexity ofM(X,𝒜), we already know
thatm ∈ M(X,𝒜). Let A ∈ 𝒜. Observe that

m(T−1(A)) = αμ(T−1(A)) + (1 − α)ν(T−1(A)) = αμ(A) + (1 − α)ν(A) = m(A).

Thus,m is T-invariant, and hencem ∈ M(T ,𝒜).

Theorem 8.1.20. Let T : X → X be a topological dynamical system. The set M(T) is a
compact convex subset of the compact convex space M(X) in the weak∗ topology.

Proof. The convexity ofM(T)has been established in Lemma8.1.19. Thus, we can con-
centrate on demonstrating the compactness of M(T). According to Theorem A.1.58,
the setM(X) is compact in the weak∗ topology of C(X)∗. Hence, it suffices to show that
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M(T) is closed inM(X). As described in SubsectionA.1.8, the spaceM(X) admits amet-
ric compatible with the weak∗ topology. Therefore, a set is closed in that space if and
only if it is sequentially closed. Let (μn)∞n=1 be a sequence inM(T)which converges to a
measure μ inM(X). We aim to show that μ ∈ M(T). To that end, let f ∈ C(X). According
to Theorem 8.1.18, it suffices to show that ∫X f ∘ T dμ = ∫X f dμ. Since (μn)

∞
n=1 converges

to μ in the weak∗ topology and μn ∈ M(T) for all n, we deduce that

∫
X

f ∘ T dμ = lim
n→∞
∫
X

f ∘ T dμn = lim
n→∞
∫
X

f dμn = ∫
X

f dμ.

Thus μ ∈ M(T) andM(T) is closed inM(X). As a closed subset of the compact setM(X),
the setM(T) is compact as well.

We now briefly examine the map μ → μ ∘T−1, which will be helpful in proving the
existence of invariant measures.

Lemma 8.1.21. Let T : X → X be a topological dynamical system. The map S : M(X)→
M(X), where S(μ) = μ ∘ T−1, is continuous and affine.

Proof. The proof of affinity is left to the reader. We concentrate on the continuity of S.
Let (μn)∞n=1 be a sequence inM(X)which weak

∗ converges to μ. Then, for any f ∈ C(X),

lim
n→∞
∫
X

f d(S(μn)) = limn→∞
∫
X

f d(μn ∘ T
−1)

= lim
n→∞
∫
X

f ∘ T dμn

= ∫
X

f ∘ T dμ = ∫
X

f d(μ ∘ T−1)

= ∫
X

f d(S(μ)).

Since f was chosen arbitrarily in C(X), the sequence (S(μn))∞n=1 weak
∗ converges to

S(μ). Thus S is continuous.

We come now to the main result of this section, namely, showing that every topo-
logical dynamical systemadmits at least one invariant Borel probabilitymeasure. This
theorem is not very difficult to prove, but it is obviously important. For this reason, we
provide twodifferent proofs. Thefirst involves functional analysis,whereas the second
is rather more constructive.

Theorem 8.1.22 (Krylov–Bogolyubov theorem). Let T : X → X be a topological dy-
namical system. Then M(T) ̸= 0.

Proof. By the Riesz representation theorem (Theorem A.1.53), the set M(X) can be
identified with a subset of the Banach space C(X)∗. According to Theorem A.1.58, the
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setM(X) is compact and convex in the weak∗ topology of C(X)∗. By Lemma 8.1.21, we
also know that the map S(μ) := μ ∘ T−1 is a continuous affine self-map ofM(X). Thus,
by Schauder–Tychonoff’s fixed-point theorem (cf. Theorem V.10.5 in Dunford and
Schwartz [20]) the map S has a fixed point. In other words, there exists μ ∈ M(X) such
that μ ∘ T−1 = μ. Note: Alternatively, since S is affine, one may use Markov-Kakutani’s
fixed-point theorem. It is more elementary and proved in Theorem V.10.6 of [20].

Alternative proof. Let μ0 ∈ M(X) (for example, a Dirac pointmass supported at a point
of X). Construct the sequence of Borel probability measures (μn)∞n=1, where

μn =
1
n

n−1
∑
j=0

μ0 ∘ T
−j.

Since M(X) is compact in the weak∗ topology, the sequence (μn)∞n=1 has at least one
weak∗ limit point. Denote such a point by μ∞. We claim that μ∞ ∈ M(T). To show
this, let (μnk )

∞
k=1 be a subsequence of the sequence (μn)

∞
n=1 which weak∗ converges to

μ∞. The weak
∗ convergence of the subsequence means that

∫
X

f dμ∞ = lim
k→∞
∫
X

f dμnk , ∀f ∈ C(X).

Moreover,


∫
X

f ∘ T dμnk − ∫
X

f dμnk

=


1
nk

nk−1
∑
j=0
∫
X

f ∘ T d(μ0 ∘ T
−j) −

1
nk

nk−1
∑
j=0
∫
X

f d(μ0 ∘ T
−j)


=
1
nk



nk−1
∑
j=0
(∫
X

f ∘ T j+1 dμ0 − ∫
X

f ∘ T j dμ0)


=
1
nk


∫
X

f ∘ Tnk dμ0 − ∫
X

f dμ0


≤
2
nk
‖f ‖∞.

Therefore,


∫
X

f ∘ T dμ∞ − ∫
X

f dμ∞

=

lim
k→∞
∫
X

f ∘ T dμnk − limk→∞
∫
X

f dμnk


= lim
k→∞


∫
X

f ∘ T dμnk − ∫
X

f dμnk


≤ 2‖f ‖∞ lim
k→∞

1
nk
= 0.
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Hence,

∫
X

f d(μ∞ ∘ T
−1) = ∫

X

f ∘ T dμ∞ = ∫
X

f dμ∞, ∀f ∈ C(X).

By Corollary A.1.54, we conclude that μ∞ ∘ T−1 = μ∞.

The Krylov–Bogolyubov theorem can be restated as follows: Every topological dy-
namical system induces at least one measure-preserving dynamical system.

8.2 Ergodic transformations

One of the aims of the present section is to state and demonstrate the first published
ergodic theorem, originally proved at the outset of the 1930s by George David Birkhoff.
Of course, before setting out to prove an ergodic theorem, we must first define and
investigate the notion of ergodicity.

Definition 8.2.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. Then T is
said to be ergodic with respect to a measure μ on (X,𝒜) if all completely T-invariant
setsA ∈ 𝒜, that is, such that T−1(A) = A, have the property that μ(A) = 0 or μ(X\A) = 0.
Alternatively, μ is said to be T-ergodic or ergodic with respect to T.

A system is ergodic if and only if it does not admit any nontrivial subsystem. See
alternative definitions in Exercise 8.5.36.

The following is a simple but important observation.

Lemma 8.2.2. If a measure μ is ergodic with respect to a measurable transformation
T : (X,𝒜) → (X,𝒜) and if a measure ν on (X,𝒜) is absolutely continuous with respect
to μ, then ν is also ergodic. That is,

μ ergodic & ν ≺≺ μ ⇒ ν ergodic.

Proof. The proof is left to the reader as an exercise.

While complete invariance of a set is an appropriate concept for topological dy-
namical systems, we will see that a more suitable notion for measure-preserving dy-
namical systems is that of almost invariance of a set.

Definition 8.2.3. Let T : (X,𝒜)→ (X,𝒜) be a measurable transformation and let μ be
ameasure on (X,𝒜). A setA ∈ 𝒜 is said to be μ-almost T-invariant if μ(T−1(A)△A) = 0.

Of course, any completely T-invariant set is μ-almost T-invariant.
Our next goal is to show that a measure μ is ergodic if and only if all μ-almost

T-invariant sets are trivial in a measure-theoretic sense, that is, have measure zero
or full measure. The proof of this characterization of ergodic measures boils down to
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constructing a completely T-invariant set from an almost T-invariant one. This raises
the more general question: Given an arbitrary set S, how can we construct from that
set a completely T-invariant one?

If a set R is forward T-invariant, that is, if T−1(R) ⊇ R, then a related completely
T-invariant set is the union of all the preimages of R, that is, the set⋃∞k=0 T

−k(R) of all
points whose orbits eventually hit R. This reduces our question to the following one:
Given a set S, how canwe construct from it a forward T-invariant setR? One possibility
is the intersection of all the preimages of S, that is, the setR = ⋂∞n=0 T

−n(S) of all points
whose orbits are trapped within S. Hence, the set

∞

⋃
k=0

T−k(
∞

⋂
n=0

T−n(S)) =
∞

⋃
k=0

∞

⋂
n=0

T−(k+n)(S) =
∞

⋃
k=0

∞

⋂
n=k

T−n(S)

is completely T-invariant. This is the set of all points whose iterates eventually fall
into S and remain trapped there forever.

Similarly, if a set R is backward T-invariant, that is, if T−1(R) ⊆ R, then an obvious
candidate for a completely T-invariant set is the intersection of all the preimages of
R, namely ⋂∞k=0 T

−k(R). This reduces our original question to the following: Given a
set S, how can we construct from it a backward T-invariant set R? The union of all the
preimages of S, namely R = ⋃∞n=0 T

−n(S), is such a set. Hence, the set

∞

⋂
k=0

T−k(
∞

⋃
n=0

T−n(S)) =
∞

⋂
k=0

∞

⋃
n=0

T−(k+n)(S) =
∞

⋂
k=0

∞

⋃
n=k

T−n(S)

is completely T-invariant. This is the set of all points whose orbits visit S infinitely
many times.

Proposition 8.2.4. Let T : (X,𝒜, μ) → (X,𝒜, μ) be a measure-preserving dynamical
system. Then T is ergodic with respect to μ if and only if all μ-almost T-invariant sets
A ∈ 𝒜 satisfy μ(A) = 0 or μ(X\A) = 0.

Proof. Suppose that all μ-almost T-invariant setsA ∈ 𝒜 satisfy μ(A) = 0 or μ(X\A) = 0.
Let A′ ∈ 𝒜 be any completely T-invariant set. Since every completely T-invariant set
is μ-almost T-invariant, it ensues that μ(A′) = 0 or μ(X\A) = 0. Thus T is ergodic.

We shall now prove the converse implication. Though μ is T-invariant, it is suffi-
cient that μ ∘T−1 ≺≺ μ in the following proof (μ is then said to be quasi-T-invariant; see
Definition 10.1.1). Suppose that T is ergodic and let A ∈ 𝒜 be a μ-almost T-invariant
set, that is,A is such that μ(T−1(A)△A) = 0.Wemust show that μ(A) = 0 or μ(X\A) = 0.

Claim 1. μ(T−n(A)△ A) = 0 for all n ≥ 0.

Proof of Claim 1. Since μ(T−1(A)△A) = 0, since μ is T-invariant and since f −1(C△D) =
f −1(C)△ f −1(D) for any map f and any sets C and D, we have for all k ∈ ℕ that

μ(T−(k+1)(A)△ T−k(A)) = μ(T−k(T−1(A)△ A)) = μ(T−1(A)△ A) = 0.
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As C △ D ⊆ (C △ E) ∪ (E △ D) for any sets C, D and E, it follows for all n ∈ ℕ that

μ(T−n(A)△ A) ≤ μ(
n−1
⋃
k=0
[T−(k+1)(A)△ T−k(A)])

≤
n−1
∑
k=0

μ(T−(k+1)(A)△ T−k(A)) = 0.

Claim 2. The set

B :=
∞

⋃
k=0

∞

⋂
n=k

T−n(A)

is completely T-invariant, and thus μ(B) = 0 or μ(X\B) = 0.

Proof of Claim 2. Indeed,

T−1(B) =
∞

⋃
k=0

∞

⋂
n=k

T−(n+1)(A) =
∞

⋃
k=0

∞

⋂
n=k+1

T−n(A) =
∞

⋃
k=1

∞

⋂
n=k

T−n(A) = B.

Since T is ergodic, we deduce that μ(B) = 0 or μ(X\B) = 0.

Claim 3. μ(B△ A) = 0 = μ((X\B)△ (X\A)).

Proof of Claim 3. To prove this, we will use Claim 1 and two properties of the symmet-
ric difference operation: (⋃i∈I Ci)△ D ⊆ ⋃i∈I (Ci △ D) and (⋂i∈I Ci)△ D ⊆ ⋃i∈I (Ci △ D).
Indeed,

μ(B△ A) = μ([
∞

⋃
k=0

∞

⋂
n=k

T−n(A)]△ A)

≤ μ(
∞

⋃
k=0
[(
∞

⋂
n=k

T−n(A))△ A])

≤ μ(
∞

⋃
k=0

∞

⋃
n=k
(T−n(A)△ A))

= μ(
∞

⋃
n=0
(T−n(A)△ A))

≤
∞

∑
n=0

μ(T−n(A)△ A)

= 0.

Since (X\B)△ (X\A) = B△ A, Claim 3 is proved.

Claim 4. μ(A) = μ(B) and μ(X\A) = μ(X\B).
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Proof of Claim 4. Since B△A = (B\A)∪(A\B), it immediately follows fromClaim 3 that
μ(B\A) = 0 = μ(A\B). Therefore,

μ(B) = μ((B\A) ∪ (B ∩ A)) = μ(B\A) + μ(B ∩ A) = μ(B ∩ A) ≤ μ(A).

Likewise, μ(A) ≤ μ(B). Thus μ(A) = μ(B). Similarly, μ(X\A) = μ(X\B).

To conclude theproof of theproposition, Claims 2 and4assert thatμ(A) = μ(B) = 0
or μ(X\A) = μ(X\B) = 0. Finally, note that we could equally well have chosen the set
B = ⋂∞k=0⋃

∞
n=k T
−n(A) in Claim 2.

It is not difficult to check that the family {A ∈ 𝒜 | T−1(A) = A} of all completely
T-invariant sets forms a sub-σ-algebra of𝒜. So does the family {A | μ(T−1(A)△A) = 0}
of all μ-almost T-invariant sets, a fact which we shall prove shortly. Of course, the
former is a smaller σ-algebra. However, it is not sufficiently flexible for our measure-
theoretic purposes, as it is only defined set-theoretically. For this reason, we shall usu-
ally work with the latter.

Definition 8.2.5. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and let μ be
a measure on (X,𝒜). The collection of all μ-almost T-invariant sets shall be denoted
by

ℐμ := {A ∈ 𝒜
 μ(T
−1(A)△ A) = 0}.

Proposition 8.2.6. The familyℐμ is a sub-σ-algebraof𝒜. Furthermore, if μ is T-invariant
then T−1(ℐμ) ⊆ ℐμ.

Proof. It is clear that 0 ∈ ℐμ.
We now show that ℐμ is closed under the operation of complementation. Let A ∈

ℐμ. Then

T−1(X\A)△ (X\A) = (X\T−1(A))△ (X\A)
= ((X\T−1(A))\(X\A)) ∪ ((X\A)\(X\T−1(A)))
= (A\T−1(A)) ∪ (T−1(A)\A)
= T−1(A)△ A.

Thus μ(T−1(X\A)△ (X\A)) = μ(T−1(A)△ A) = 0, and hence X\A ∈ ℐμ.
It only remains to show that ℐμ is closed under countable unions, that is, wemust

show that if (An)∞n=1 is a sequence in ℐμ, then⋃
∞
n=1 An ∈ ℐμ. For this, observe that

[T−1(
∞

⋃
n=1

An)]△ [
∞

⋃
n=1

An] = [
∞

⋃
n=1

T−1(An)]△ [
∞

⋃
n=1

An]

= [
∞

⋃
n=1

T−1(An) \
∞

⋃
n=1

An]⋃[
∞

⋃
n=1

An \
∞

⋃
n=1

T−1(An)]
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⊆ [
∞

⋃
n=1
(T−1(An)\An)]⋃[

∞

⋃
n=1
(An\T

−1(An))]

=
∞

⋃
n=1
(T−1(An)△ An).

Consequently,

μ([T−1(
∞

⋃
n=1

An)]△ [
∞

⋃
n=1

An]) ≤
∞

∑
n=1

μ(T−1(An)△ An) =
∞

∑
n=1

0 = 0.

So⋃∞n=1 An ∈ ℐμ and ℐμ is a σ-algebra.
If μ is T-invariant (in fact, it suffices that μ be quasi-T-invariant, i. e. μ ∘ T−1 ≺≺ μ)

and if A ∈ ℐμ, then

μ(T−1(T−1(A))△ T−1(A)) = μ(T−1(T−1(A)△ A)) = μ(T−1(A)△ A) = 0.

That is, T−1(A) ∈ ℐμ. Thus T−1(ℐμ) ⊆ ℐμ.

We have already discussed invariant sets, measure-theoretically invariant sets
and invariant measures. We now introduce invariant and measure-theoretically in-
variant functions.

Definition 8.2.7. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation, let μ be a
measure on (X,𝒜) and let φ : (X,𝒜)→ ℝ be a measurable function.
(a) The function φ is said to be T-invariant if φ ∘ T = φ.
(b) The function φ is called μ-a. e. T-invariant if φ ∘ T = φ μ-almost everywhere. In

other words, φ is μ-a. e. T-invariant if the measurable set

Dφ := {x ∈ X | φ(T(x)) ̸= φ(x)}

is a null set.

Lemma 8.2.8. Let T : (X,𝒜, μ)→ (X,𝒜, μ) be a measure-preserving dynamical system.
Ameasurable function φ : X → ℝ is μ-a. e. T-invariant if and only if φ is constant on the
forward orbit of μ-a. e. x ∈ X.

Proof. If φ is constant on the forward orbit of μ-a. e. x ∈ X, then φ(T(x)) = φ(x) for
μ-a. e. x ∈ X, that is, φ is μ-a. e. T-invariant.

To prove the converse, suppose that φ is μ-a. e. T-invariant. For every n ∈ ℕ, we
have

{y ∈ X : φ(Tn(y)) ̸= φ(Tn−1(y))} = T−(n−1)({x ∈ X : φ(T(x)) ̸= φ(x)}).

Since μ is T-invariant (in fact, it suffices that μ be quasi-T-invariant) and since φ is
μ-a. e. T-invariant, this implies that for every n ∈ ℕ,

μ({y ∈ X : φ(Tn(y)) ̸= φ(Tn−1(y))}) = 0.
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Therefore,

μ({x ∈ X : φ not constant over𝒪+(x)}) = μ(
∞

⋃
n=1
{x ∈ X : φ(Tn(x)) ̸= φ(Tn−1(x))})

≤
∞

∑
n=1

μ({x ∈ X : φ(Tn(x)) ̸= φ(Tn−1(x))})

= 0.

So φ is constant on the forward orbit of μ-a. e. x ∈ X.

The following lemma shows that measure-theoretically invariant functions are
characterized by the fact that they are measurable with respect to the σ-algebra of
measure-theoretically invariant sets.

Lemma 8.2.9. Let T : (X,𝒜, μ)→ (X,𝒜, μ) be a measure-preserving dynamical system.
A function φ : X → ℝ is μ-a. e. T-invariant if and only if φ is measurable with respect to
the σ-algebra ℐμ.

Proof. First, suppose that φ is μ-a. e. T-invariant. Let B ⊆ ℝ be a Borel set. In order for
φ to be ℐμ-measurable, we need to show that φ−1(B) ∈ ℐμ. To begin, notice that if

x ∈ T−1(φ−1(B))△ (φ−1(B)) = (φ ∘ T)−1(B)△ (φ−1(B)),

then only one of the real numbers φ(T(x)) or φ(x) belongs to the set B. Thus φ(T(x)) ̸=
φ(x) and x ∈ Dφ. This means that

T−1(φ−1(B))△ (φ−1(B)) ⊆ Dφ.

Consequently, μ(T−1(φ−1(B))△ (φ−1(B))) ≤ μ(Dφ) = 0. So φ−1(B) ∈ ℐμ.
To prove the converse implication, suppose by way of contradiction that φ is

ℐμ-measurable but that μ(Dφ) > 0. We can always write

Dφ = ⋃
a∈ℚ
({x ∈ X : φ(x) < a < φ(T(x))} ∪ {x ∈ X : φ(x) > a > φ(T(x))}).

This is a countable union of 𝒜-measurable sets with positive total measure. Hence,
without loss of generality, there exists some a ∈ ℚ such that the set

Ba := {x ∈ X | φ(x) < a < φ(T(x))}

is of positive measure (if not, replace φ by −φ). Observe that

Ba = φ
−1((−∞, a)) ∩ (φ ∘ T)−1((a,∞)).

Note that φ−1((−∞, a)) ∈ ℐμ since φ is ℐμ-measurable by assumption. Moreover, (φ ∘
T)−1((a,∞)) = T−1(φ−1((a,∞))) ∈ ℐμ since φ is ℐμ-measurable and T−1(ℐμ) ⊆ ℐμ per
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Proposition 8.2.6. Thus Ba ∈ ℐμ. Now, notice that

T−1(Ba) = {x ∈ X : T(x) ∈ Ba} ⊆ {x ∈ X : φ(T(x)) < a} ⊆ X\Ba.

So T−1(Ba) ∩ Ba = 0 and, as Ba ∈ ℐμ, we deduce that

0 = μ(T−1(Ba)△ Ba) = μ(T
−1(Ba) ∪ Ba) ≥ μ(Ba).

Consequently, μ(Ba) = 0 and we have reached a contradiction. Therefore, μ(Dφ) = 0
and hence φ is μ-a. e. T-invariant.

In other terms, Lemma 8.2.9 asserts that φ is μ-a. e. T-invariant if and only if
E(φ|ℐμ) = φ, where E(φ|ℐμ) is the conditional expectation of φ with respect to μ.

This conditional expectation function is an intrinsic part of themost important re-
sult in ergodic theory: Birkhoff’s ergodic theorem. For more information on this func-
tion, see Subsection A.1.9.

8.2.1 Birkhoff’s ergodic theorem

We are almost ready to state the main result of this chapter. Before doing so, we must
introduce one more notation and terminology.

Definition 8.2.10. Let T : X → X be amap and letφ : X → ℝ be a real-valued function.
Let n ∈ ℕ. The nth Birkhoff sum of φ at a point x ∈ X is defined to be

Snφ(x) =
n−1
∑
j=0

φ(T j(x)).

In other words, Snφ(x) is the sum of the values of the function φ at the first n points in
the orbit of x. Sometimes this is referred to as the nth ergodic sum. As we will see in a
moment, it is also convenient to define S0φ(x) = 0.

It is easy to see that the following recurrence formula holds:

Snφ(x) = Skφ(x) + Sn−kφ(T
k(x)), ∀x ∈ X,∀k, n ∈ ℕ with k ≤ n. (8.2)

We now come to the most important result in ergodic theory. This theorem was
originally provedbyGeorgeDavidBirkhoff in 1931. There exists nowavariety of proofs.
The simple one given here originates from Katok and Hasselblatt [33].

Theorem 8.2.11 (Birkhoff’s ergodic theorem). Let T : X → X be a measure-preserving
dynamical system on a probability space (X,𝒜, μ). If φ ∈ L1(X,𝒜, μ), then

lim
n→∞


1
n
Snφ − E(φ|ℐμ)

1
= 0 and lim

n→∞
1
n
Snφ(x) = E(φ|ℐμ)(x) for μ-a. e. x ∈ X.

Proof. For the μ-a. e. pointwise convergence, it suffices to prove that

lim sup
n→∞

1
n
Snφ(x) ≤ E(φ|ℐμ)(x) for μ-a. e. x ∈ X. (8.3)
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Indeed, replacing φ by −φ in (8.3), it follows that for μ-a. e. x ∈ X,

lim inf
n→∞

1
n
Snφ(x) = − lim sup

n→∞

1
n
Sn(−φ)(x) ≥ −E(−φ|ℐμ)(x) = E(φ|ℐμ)(x). (8.4)

If (8.3) and consequently (8.4) hold, we can conclude for μ-a. e. x ∈ X that

E(φ|ℐμ)(x) ≤ lim inf
n→∞

1
n
Snφ(x) ≤ lim sup

n→∞

1
n
Snφ(x) ≤ E(φ|ℐμ)(x),

and this would complete the proof. In order to prove (8.3), it is sufficient to show that
for every ε > 0 we have

lim sup
n→∞

1
n
Snφ(x) ≤ E(φ|ℐμ)(x) + ε for μ-a. e. x ∈ X. (8.5)

Indeed, if for each ε > 0 relation (8.5) holds everywhere except on a set Xε of
measure zero, then relation (8.3) holds everywhere except on the set ⋃∞k=1 X1/k and
μ(⋃∞k=1 X1/k) = 0. So fix ε > 0.We claim that proving (8.5) is equivalent to showing that

lim sup
n→∞

1
n
Snφε(x) ≤ 0 for μ-a. e. x ∈ X, (8.6)

where

φε := φ − E(φ|ℐμ) − ε.

Indeed, sinceE(φ|ℐμ) isℐμ-measurable bydefinition, Lemma8.2.9 implies thatE(φ|ℐμ)
is μ-a. e. T-invariant, that is, E(φ|ℐμ)∘T(x) = E(φ|ℐμ)(x) for μ-a. e. x ∈ X. It then follows
that for μ-a. e. x ∈ X,

1
n
Snφε(x) =

1
n
Snφ(x) −

1
n
SnE(φ|ℐμ)(x) −

1
n
Snε(x)

=
1
n
Snφ(x) −

1
n

n−1
∑
j=0

E(φ|ℐμ) ∘ T
j(x) − 1

n

n−1
∑
j=0

ε ∘ T j(x)

=
1
n
Snφ(x) − E(φ|ℐμ)(x) − ε.

Thus

lim sup
n→∞

1
n
Snφ(x) = E(φ|ℐμ)(x) + ε + lim sup

n→∞

1
n
Snφε(x)

for μ-a. e. x ∈ X. However, in order to prove (8.6), it suffices to show that

μ(Aε) = 0, (8.7)

where

Aε := {x ∈ X | sup
n∈ℕ

Snφε(x) =∞},
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since for any x ∉ Aε we have that supn∈ℕ Snφε(x) < ∞ and it follows that
lim supn→∞

1
nSnφε(x) ≤ 0. Now we make a critical observation:

E(φε|ℐμ) = E(φ|ℐμ) − E(E(φ|ℐμ)|ℐμ) − E(ε|ℐμ) = E(φ|ℐμ) − E(φ|ℐμ) − ε = −ε < 0.

Rather than restricting our attention to φε, we will prove that (8.7) holds for all f ∈
L1(X,𝒜, μ) such that E(f |ℐμ) < 0, with φε being one such f . The T-invariance of μ im-
plies that f ∘ Tk ∈ L1(X,𝒜, μ) for all k ∈ ℕ. It immediately follows that Skf ∈ L1(X,𝒜, μ)
for all k ∈ ℕ. For each n ∈ ℕ and each x ∈ X define

Mnf (x) = max
1≤k≤n

Skf (x).

It is easy to deduce that Mnf ∈ L1(X,𝒜, μ) for all n ∈ ℕ. It is also obvious that the
sequence (Mnf (x))∞n=1 is nondecreasing for all x ∈ X. Moreover, the recurrence for-
mula (8.2) between successive ergodic sums (Snφ(x) = φ(x)+Sn−1φ(T(x))) suggests the
existence of a recurrence formula for their successive maxima. Indeed, for all x ∈ X,

Mn+1f (x) = max
1≤k≤n+1

Skf (x)

= max
1≤k≤n+1
[f (x) + Sk−1f (T(x))]

= f (x) + max
0≤l≤n

Slf (T(x))

= f (x) +max{0,max
1≤l≤n

Slf (T(x))}

= f (x) +max{0,Mnf (T(x))}.

Therefore, for all x ∈ X,

Mn+1f (x) −Mnf (T(x)) = f (x) +max{−Mnf (T(x)),0}. (8.8)

Since the sequence (Mnf (T(x)))∞n=1 is nondecreasing for all x ∈ X, the sequence
(max{−Mnf (T(x)),0})∞n=1 is nonincreasing for all x ∈ X. By (8.8), the sequence
(Mn+1f (x)−Mnf (T(x)))∞n=1 is therefore nonincreasing for all x ∈ X. In order to prove (8.7)
for the function f , we will investigate the limit of this latter sequence on the set

A = {x ∈ X : sup
n∈ℕ

Snf (x) =∞} = {x ∈ X : limn→∞
Mnf (x) =∞}.

Using the recurrence formula (8.2), it is easy to see that T−1(A) = A. In particular, this
implies that A ∈ ℐμ. Also, if x ∈ A then T(x) ∈ A, and thus limn→∞Mnf (T(x)) = ∞.
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According to (8.8), it ensues that

lim
n→∞
(Mn+1f (x) −Mnf (T(x))) = f (x), ∀x ∈ A. (8.9)

Knowing the pointwise limit of this sequence on A, we further show that this non-
increasing sequence is uniformly bounded by an integrable function. For all n ∈ ℕ
and x ∈ X, we have

f (x) ≤ Mn+1f (x) −Mnf (T(x)) ≤ M2f (x) −M1f (T(x)) = f (x) +max{−f (T(x)),0}.

For all n ∈ ℕ and x ∈ X, it follows that

Mn+1f (x) −Mnf (T(x))
 ≤
f (x)
 +
f (T(x))

.

Since |f | + |f ∘ T| ∈ L1(X,𝒜, μ), Lebesgue’s dominated convergence theorem (The-
orem A.1.38) applies. We deduce from the facts that the sequence (Mnf )∞n=1 is non-
decreasing, that μ is T-invariant and that (8.9) holds on A, that

0 ≤ ∫
A

(Mn+1f −Mnf ) dμ

= ∫
A

Mn+1f dμ − ∫
A

Mnf dμ

= ∫
A

Mn+1f dμ − ∫
A

Mnf d(μ ∘ T
−1)

= ∫
A

Mn+1f dμ − ∫
A

Mnf ∘ T dμ

= ∫
A

(Mn+1f (x) −Mnf (T(x))) dμ(x)→ ∫
A

f (x) dμ(x).

Hence, ∫A f dμ ≥ 0. Recall that A ∈ ℐμ and E(f |ℐμ) < 0. If it were the case that μ(A) > 0,
it would follow from the definition of E(f |ℐμ) that

0 ≤ ∫
A

f dμ = ∫
A

E(f |ℐμ) dμ < 0,

which would result in a contradiction. Thus μ(A) = 0. Setting f = φε, we conclude
that μ(Aε) = 0, hence establishing (8.7) and the μ-a. e. pointwise convergence of the
sequence ( 1nSnφ)

∞
n=1 to E(φ|ℐμ).

Now, if φ is bounded then


1
n
Snφ
∞
≤ ‖φ‖∞, ∀n ∈ ℕ,
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and thus Lebesgue’s dominated convergence theorem (Theorem A.1.38) asserts that
the sequence ( 1nSnφ)

∞
n=1 converges in L

1(μ) to E(φ|ℐμ).
In general, since the set of bounded measurable functions is dense in L1(μ), for

every ε > 0 there exists a bounded measurable function φε : X → ℝ such that

‖φ − φε‖1 <
ε
3
.

By the already proven part, there then exists Nε ∈ ℕ such that

1
n
Snφε − E(φε|ℐμ)

1
<
ε
3
, ∀n ≥ Nε.

For all n ≥ Nε, we then deduce that

1
n
Snφ − E(φ|ℐμ)

1
≤

1
n
Sn(φ − φε)

1
+

1
n
Snφε − E(φε|ℐμ)

1
+ E(φε|ℐμ) − E(φ|ℐμ)

1

≤
1
n

n−1
∑
j=0

(φ − φε) ∘ T
j1 +

ε
3
+ E(|φε − φ|

 ℐμ)
1

=
1
n

n−1
∑
j=0
‖φ − φε‖1 +

ε
3
+ ‖φε − φ‖1 <

ε
3
+
ε
3
+
ε
3
= ε.

So limn→∞

1
nSnφ − E(φ|ℐμ)]

1 = 0.

Let p ≥ 1. The set Lp(X,𝒜, μ) is the set of𝒜-measurable functions φ : X → ℝ such
that φp ∈ L1(X,𝒜, μ). It is well known that Lp(X,𝒜, μ) ⊆ L1(X,𝒜, μ). Theorem 8.2.11,
along with the last part of its proof where one would use this time the density of
bounded measurable functions in Lp, yield the following slight generalization.

Theorem 8.2.12 (Birkhoff’s ergodic theorem in Lp). Let T : X → X be a measure-
preserving dynamical system on a probability space (X,𝒜, μ). If φ ∈ Lp(X,𝒜, μ), then

lim
n→∞


1
n
Snφ − E(φ|ℐμ)

p
= 0 and lim

n→∞
1
n
Snφ(x) = E(φ|ℐμ)(x) for μ-a. e. x ∈ X.

Remark 8.2.13. If p = 2, then the Lp part of Theorem 8.2.12 is commonly referred to as
von Neumann’s ergodic theorem, proved for the first time in [52].

If a measure-preserving dynamical system on a probability space is ergodic, then
Birkhoff’s ergodic theorem implies the following.

Corollary 8.2.14 (Ergodic case of Birkhoff’s ergodic theorem). Let T : X → X be a
measure-preserving dynamical system on a probability space (X,𝒜, μ). If T is ergodic
with respect to μ and φ ∈ L1(X,𝒜, μ), then E(φ|ℐμ) = ∫X φdμ and

lim
n→∞


1
n
Snφ − ∫

X

φdμ
1
= 0 and lim

n→∞
1
n
Snφ(x) = ∫

X

φdμ for μ-a. e. x ∈ X.
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Proof. According to Example A.1.61, the collection of sets

𝒩 := {A ∈ 𝒜 : μ(A) = 0 or μ(A) = 1}

is a σ-algebra and E(φ|𝒩 ) = ∫X φdμ. As T is ergodic with respect to μ, we have that
ℐμ ⊆ 𝒩 . By Proposition A.1.60(f,e), it ensues that

E(φ|ℐμ) = E(E(φ|𝒩 )
 ℐμ) = E(∫

X

φdμ

ℐμ) = ∫

X

φdμ.

The result follows from Birkhoff’s ergodic theorem.

When T is ergodic with respect to an invariant probability measure μ, Birkhoff’s
ergodic theorem asserts that the average ofφ along the forward orbit of μ-almost every
x ∈ X is asymptotically equal to the average of φ over the entire space. In other words,
for any “typical” point the “time average” of a μ-integrable function is equal to its
“space average.”

Inparticular, ifφ is the characteristic functionof ameasurable set, Corollary 8.2.14
guarantees the following.

Corollary 8.2.15. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). If T is ergodic with respect to μ, then for every A ∈ 𝒜,

lim
n→∞

1
n
#{0 ≤ j < n : T j(x) ∈ A} = μ(A) for μ-a. e. x ∈ X.

In other terms, the average time the forward orbit of a “typical point” spends in a
measurable set is asymptotically equal to the measure of that set. This provides more
information than Poincaré’s recurrence theorem (Theorem 8.1.16).

Birkhoff’s ergodic theorem is a terrifically useful tool. It has had many applica-
tions in different areas ofmathematics. In particular, it is very useful in number theory.
In Exercises 8.5.42–8.5.43, you will use it to prove in a simple way various statements
about real numbers whose original, nonergodic proofs were quite involved.

One intuitive understanding of ergodicity is that an ergodic system is one inwhich
for every pair of measurable sets A and B, the sets T−n(A) become independent of B
on average.

Lemma 8.2.16. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ). Then T is ergodic with respect to μ if and only if

lim
n→∞

1
n

n−1
∑
j=0

μ(T−j(A) ∩ B) = μ(A)μ(B), ∀A,B ∈ 𝒜. (8.10)

Equivalently,

lim
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)] = 0, ∀A,B ∈ 𝒜.
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Proof. First, suppose that T is ergodic and let A,B ∈ 𝒜. For every n ∈ ℕ, we have

1
n

n−1
∑
j=0

μ(T−j(A) ∩ B) = 1
n

n−1
∑
j=0
∫
B

1T−j(A) dμ

=
1
n

n−1
∑
j=0
∫
B

1A ∘ T
j dμ

= ∫
B

1
n

n−1
∑
j=0

1A ∘ T
j dμ

= ∫
B

1
n
#{0 ≤ j < n : T j(x) ∈ A} dμ(x).

Passing to the limit and using Lebesgue’s dominated convergence theorem (Theo-
rem A.1.38) and Corollary 8.2.15, we get

lim
n→∞

1
n

n−1
∑
j=0

μ(T−j(A) ∩ B) = ∫
B

lim
n→∞

1
n
#{0 ≤ j < n : T j(x) ∈ A} dμ(x) = μ(A)μ(B).

For the converse implication, suppose that relation (8.10) holds true for all A,B ∈
𝒜. Let E ∈ 𝒜 be a completely T-invariant set. Setting A = B = E in (8.10), we obtain
μ(E) = (μ(E))2. So μ(E) ∈ {0, 1} and T is ergodic with respect to μ.

To determine whether a measure-preserving dynamical system is ergodic, it suf-
fices to check ergodicity on a semialgebra that generates the σ-algebra.

Lemma 8.2.17. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). If ℬ = σ(𝒮) for some semialgebra 𝒮, then T is ergodic if and only if
relation (8.10) holds for all A,B ∈ 𝒮.

Proof. If T is ergodic, then relation (8.10) holds for all A,B ∈ ℬ ⊇ 𝒮.
For the converse implication, suppose that relation (8.10) holds for all A,B ∈ 𝒮.

Since each member of the algebra 𝒜(𝒮) generated by 𝒮 can be written as a finite dis-
joint union of elements of 𝒮, a straightforward calculation shows that relation (8.10)
also holds for all elements of𝒜(𝒮).

So, let ε > 0 and A,B ∈ ℬ = σ(𝒮) = σ(𝒜(𝒮)). By virtue of Lemma A.1.32, there are
A0,B0 ∈ 𝒜(𝒮) such that μ(A△ A0) < ε and μ(B△ B0) < ε. By Exercise 8.5.11, it follows
that

μ(A) − μ(A0)
 < ε and μ(B) − μ(B0)

 < ε. (8.11)

Using Exercise 8.5.10, notice also that for every j ≥ 0,

(T−j(A) ∩ B)△ (T−j(A0) ∩ B0) ⊆ (T
−j(A)△ T−j(A0)) ∪ (B△ B0)

= T−j(A△ A0) ∪ (B△ B0).
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Therefore,

μ((T−j(A) ∩ B)△ (T−j(A0) ∩ B0)) ≤ μ(A△ A0) + μ(B△ B0) < 2ε, ∀j ≥ 0.

By Exercise 8.5.11 again, we deduce that
μ(T
−j(A) ∩ B) − μ(T−j(A0) ∩ B0)

 < 2ε, ∀j ≥ 0. (8.12)

Using (8.12) and (8.11), we obtain for all j ≥ 0 that

μ(T−j(A) ∩ B) − μ(A)μ(B) ≤ [μ(T−j(A) ∩ B) − μ(T−j(A0) ∩ B0)]
+ [μ(T−j(A0) ∩ B0) − μ(A0)μ(B0)]
+ [μ(A0)μ(B0) − μ(A)μ(B0)]
+ [μ(A)μ(B0) − μ(A)μ(B)]
≤ μ(T

−j(A) ∩ B) − μ(T−j(A0) ∩ B0)


+ [μ(T−j(A0) ∩ B0) − μ(A0)μ(B0)]
+ μ(A0) − μ(A)

μ(B0)
+ μ(A)μ(B0) − μ(B)


< 4ε + [μ(T−j(A0) ∩ B0) − μ(A0)μ(B0)]

and it follows that

lim sup
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)]

≤ 4ε + lim
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A0) ∩ B0) − μ(A0)μ(B0)] = 4ε,

(8.13)

where the above limit is 0 as a consequence of (8.10) holding for A0,B0 ∈ 𝒜(S).
Similarly, for all j ≥ 0,

μ(A)μ(B) − μ(T−j(A) ∩ B) < 4ε + [μ(A0)μ(B0) − μ(T
−j(A0) ∩ B0)]

and it ensues that

lim sup
n→∞

1
n

n−1
∑
j=0
[μ(A)μ(B) − μ(T−j(A) ∩ B)] ≤ 4ε.

Therefore,

lim inf
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)] ≥ −4ε. (8.14)

By (8.13) and (8.14), the limsup is atmost 4εwhile the liminf is at least −4ε. Since ε > 0
was chosen arbitrarily, we deduce that the limit exists and is 0. Thus, relation (8.10)
holds for all elements of ℬ, and T is ergodic by Lemma 8.2.16.
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We end this section with a characterization of ergodicity in terms of invariant and
measure-theoretically invariant functions.

Theorem 8.2.18. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). The following statements are equivalent:
(a) T is ergodic with respect to μ.
(b) If φ is a T-invariant L1(X,𝒜, μ)-function, then φ is μ-a. e. constant.
(c) If φ is a μ-a. e. T-invariant L1(X,𝒜, μ)-function, then φ is μ-a. e. constant.
(d) If φ is a T-invariant measurable function, then φ is μ-a. e. constant.
(e) If φ is a μ-a. e. T-invariant measurable function, then φ is μ-a. e. constant.

Proof. We shall first prove the chain of implications (a)⇒(c)⇒(b)⇒(a) and then show
that (e)⇒(d)⇒(a)⇒(e).

To begin, suppose that T is ergodic and let φ be a μ-a. e. T-invariant L1(X,𝒜, μ)-
function. As φ is μ-a. e. T-invariant and μ is T-invariant, it follows from Lemma 8.2.8
that φ is constant over the forward orbit of μ-a. e. x ∈ X. This implies that Snφ(x) =
nφ(x) for all n ∈ ℕ for μ-a. e. x ∈ X. Using this and the ergodic case of Birkhoff’s
ergodic theorem (Corollary 8.2.14), it follows that

φ(x) = lim
n→∞

1
n
Snφ(x) = ∫

X

φdμ for μ-a. e. x ∈ X.

So φ is constant μ-almost everywhere. This proves that (a)⇒(c).
Since every T-invariant function is μ-a. e. T-invariant, it is clear that (c)⇒(b).
We now want to show that (b)⇒(a). Suppose that every T-invariant L1(X,𝒜, μ)-

function is constant μ-a. e. and assume by way of contradiction that T is not ergodic
with respect to μ. Then there exists a set A ∈ 𝒜 such that T−1(A) = Awith μ(A) > 0 and
μ(X\A) > 0. Since T−1(A) = A, we have that 1A ∘ T = 1A. However, 1A is not constant
μ-a. e. since μ(A) > 0 and μ(X\A) > 0. Thus, 1A is a T-invariant L1(X,𝒜, μ)-function
which is not constant μ-almost everywhere. This contradiction shows that T must be
ergodic.

This completes the proof of the first chain (a)⇒(c)⇒(b)⇒(a).
Accordingly, let us turn our attention to the second chain. It is clear that (e)⇒(d).

The above proof that (b)⇒(a) carries over directly to show that (d)⇒(a) by simply
replacing “L1(X,𝒜, μ)” by “measurable.” All that is left is to establish that (a)⇒(e).
So, suppose that T is ergodic and let φ be a μ-a. e. T-invariant measurable function.
Then μ({x ∈ X | φ(T(x)) ̸= φ(x)}) = 0. Assume by way of contradiction that φ is not
μ-a. e. constant. Then there exists r ∈ ℝ such that μ(Sr) > 0 and μ(X\Sr) > 0, where
Sr := {x | φ(x) < r}. The set Sr is μ-a. e. T-invariant since

T−1(Sr)△ Sr = (T
−1(Sr)\Sr) ∪ (Sr\T

−1(Sr))
= {x : φ(T(x)) < r ≤ φ(x)} ∪ {x : φ(x) < r ≤ φ(T(x))}
⊆ {x : φ(T(x)) ̸= φ(x)}
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and hence

μ(T−1(Sr)△ Sr) ≤ μ({x ∈ X : φ(T(x)) ̸= φ(x)}) = 0.

Thus μ(T−1(Sr) △ Sr) = 0. Since μ is ergodic, we deduce that either μ(Sr) = 0 or
μ(X\Sr) = 0. This contradiction implies that φmust be μ-a. e. constant.

Remark 8.2.19. It is possible to prove that the property “L1(X,𝒜, μ)” can be replaced
by “Lp(X,𝒜, μ)” for any 1 ≤ p <∞.

8.2.2 Existence of ergodic measures

We will shortly embark on a study of the set of all ergodic measures for a given mea-
surable transformation.

Definition 8.2.20. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. The set of
all T-invariant probability measures that are ergodic with respect to T is denoted by
E(T ,𝒜). If𝒜 is the Borel σ-algebra on a topological space X, in line with the notation
for the T-invariant Borel probability measures, we simply write E(T) := E(T ,ℬ(X)).

We saw in Lemma 8.1.19 that the set of invariant probability measuresM(T ,𝒜) is
convex.We shall soonprove that the ergodicmeasuresE(T ,𝒜) form the extremepoints
ofM(T ,𝒜). First, we show that any two ergodic measures are either equal or mutually
singular (for more information on mutual singularity, see Subsection A.1.7).

Theorem 8.2.21. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. If μ1, μ2 ∈
E(T ,𝒜) and μ1 ̸= μ2, then μ1⊥μ2.

Proof. Sinceμ1 ̸= μ2, there exists some setA ∈ 𝒜withμ1(A) ̸= μ2(A). By Corollary 8.2.15
of Birkhoff’s ergodic theorem, for each i = 1, 2 there exists a set Xi of full μi-measure
such that

lim
n→∞

1
n
#{0 ≤ j < n : T j(x) ∈ A} = μi(A), ∀x ∈ Xi.

Consequently, μ1(A) = μ2(A) on X1∩X2. As we know that μ1(A) ̸= μ2(A), we deduce that
X1 ∩ X2 = 0. Thus μ1(X1) = 1, μ2(X2) = 1 and X1 ∩ X2 = 0. Therefore, μ1⊥μ2.

We use the above theorem to give a characterization of ergodic measures as those
invariant probability measures with respect to which no other invariant probability
measure is absolutely continuous.

Theorem 8.2.22. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and let μ ∈
M(T ,𝒜). Then μ ∈ E(T ,𝒜) if and only if there is no ν ∈ M(T ,𝒜) such that ν ≺≺ μ and
ν ̸= μ.
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Proof. First, suppose that μ ∈ E(T ,𝒜). Let ν ∈ M(T ,𝒜) be such that ν ≺≺ μ. We claim
that ν ∈ E(T ,𝒜), too. Indeed, suppose by way of contradiction that there exists A ∈ 𝒜
such that T−1(A) = A with ν(A) > 0 and ν(X\A) > 0. Since ν ≺≺ μ, it follows that
μ(A) > 0 and μ(X\A) > 0. This contradicts the ergodicity of μ. So ν ∈ E(T ,𝒜). Now, if
ν ̸= μ then Theorem8.2.21 affirms that ν⊥μ. This contradicts the hypothesis that ν ≺≺ μ.
Hence, ν = μ.

For the converse implication, suppose that μ is not ergodic (but still T-invariant
by hypothesis). Then there exists some A ∈ 𝒜 such that T−1(A) = A with μ(A) > 0
and μ(X\A) > 0. Let μA be the conditional measure of μ on A, as expressed in Defini-
tion A.1.70. Then one immediately verifies that μA is a T-invariant probability measure
such that μA ̸= μ and μA ≺≺ μ.

Recall that in a vector space the extreme points of a convex set are those points
which cannot be represented as a nontrivial convex combination of two distinct points
of the set. In concrete terms, let V be a vector space and C be a convex subset of V . A
vector v ∈ C is an extremepoint ofC if the only combination of distinct vectors v1, v2 ∈ C
such that v = αv1 + (1 − α)v2 for some α ∈ [0, 1] is a combination with α = 0 or α = 1.

Theorem 8.2.23. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. The ergodic
measures E(T ,𝒜) are the extreme points of the set of invariant probability measures
M(T ,𝒜).

Proof. Suppose that μ ∈ E(T ,𝒜) is not an extreme point of M(T ,𝒜). Then there exist
measures μ1 ̸= μ2 in M(T ,𝒜) and 0 < α < 1 such that μ = αμ1 + (1 − α)μ2. It follows
immediately thatμ1 ≺≺ μ andμ2 ≺≺ μ. ByTheorem8.2.22,wededuce from the ergodicity
of μ that μ1 = μ = μ2. This contradicts the fact that μ1 ̸= μ2. Thus μ is an extreme point
ofM(T ,𝒜).

To prove the converse implication, let μ ∈ M(T ,𝒜)\E(T ,𝒜). We want to show that
μ is not an extreme point of M(T ,𝒜). Since μ is not ergodic, there exists a set A ∈ 𝒜
such that T−1(A) = A with μ(A) > 0 and μ(X\A) > 0. Observe that μ can be written as
the following nontrivial convex combination of the T-invariant conditional measures
μA and μX\A: for every B ∈ 𝒜,

μ(B) = μ(A ∩ B) + μ((X\A) ∩ B) = μ(A) μA(B) + μ(X\A) μX\A(B)
= μ(A) μA(B) + (1 − μ(A)) μX\A(B).

Hence, μ is a nontrivial convex combination of two distinct T-invariant probability
measures and thus μ is not an extreme point ofM(T ,𝒜).

We now invoke Krein–Milman’s theorem to deduce that every topological dynam-
ical system admits an ergodic and invariant measure. Recall that the convex hull of a
subset S of a vector space V is the set of all convex combinations of vectors of S.

Theorem 8.2.24 (Krein–Milman’s theorem). If K is a compact subset of a locally con-
vex topological vector space V and E is the set of its extremal points, then co(E) ⊇ K,
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where co(E) is the closed convex hull of E. Consequently, co(E) = co(K). In particular, if
K is convex then co(E) = K.

Proof. See Theorem V.8.4 in Dunford and Schwartz [20].

Corollary 8.2.25. Let T : X → X be a topological dynamical system. Then

co(E(T)) = M(T) ̸= 0.

In particular, E(T) ̸= 0.

Proof. In Theorems 8.1.20 and 8.1.22, we saw that whenever T : X → X is a topo-
logical dynamical system, the set M(T) is a nonempty compact convex subset of the
(compact) convex space M(X). Moreover, Theorem 8.2.23 established that E(T) is the
set of extreme points of M(T). The result then follows from the application of Krein–
Milman’s theorem with K = M(T), V = M(X) and E = E(T).

This corollary can be restated as follows: Every topological dynamical system in-
duces at least one ergodic measure-preserving dynamical system.

The compactness and convexity of M(T) as a subset of the convex space M(X)
(equippedwith theweak∗ topology) further allows us to use Choquet’s representation
theorem to express each element ofM(T) in terms of the elements of its set of extreme
points E(T). In fact, this decomposition holds in a more general case.

Theorem 8.2.26 (Ergodic decomposition). Let T : (X,ℬ, μ) → (X,ℬ, μ) be a measure-
preserving transformation of a Borel probability space (X,ℬ, μ). Then there is a Borel
probability space (Y ,ℬ(Y), ν) and a measurable map Y ∋ y → μy ∈ M(X) such that
(a) μy is an ergodic T-invariant Borel probabilitymeasure onX for ν-almost every y ∈ Y;

and
(b) μ = ∫Y μy dν(y).

Moreover, one may require that the map y → μy be injective, or alternatively set

(Y ,ℬ(Y), ν) = (X,ℬ, μ) and μx = μ
ℐμ
x ,

where ℐμ is the σ-algebra of μ-almost T-invariant sets (see Definition 8.2.5) and μℐx is a
Borel probability measure on X for which

E(φ|ℐμ)(x) = ∫
X

φ(z) dμℐμ
x (z) for μ-a. e. x ∈ X

for all φ ∈ L1(X,ℬ, μ).

Proof. The interested reader is invited to consult Theorem 6.2 in [21].
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So, for any topological dynamical system, every invariantmeasure canbeuniquely
written as a generalized convex combination of ergodic invariant measures.

We end our theoretical discussion of ergodic measures with the following result.
We already know from Theorem 1.5.11 that the set of transitive points for any transitive
map is a dense set, which can be thought of as “topologically full.” The forthcom-
ing result asserts that a dynamical systemwhich admits an ergodic invariant measure
supported on the entire space is transitive, and its set of transitive points is “full” not
only topologically but also measure-theoretically.

Theorem 8.2.27. Let T : X → X be a topological dynamical system. If μ ∈ E(T) and
supp(μ) = X, then μ-almost every x ∈ X is a transitive point for T. In particular, T is
transitive.

Proof. Let {Uk}
∞
k=1 be a base for the topology of X. For each k ∈ ℕ, let Xk be the set of

points whose orbits visit Uk infinitely often; in other words,

Xk =
∞

⋂
m=1

∞

⋃
n=m

T−n(Uk).

Weobserved in the discussion preceding Proposition 8.2.4 that the setXk is completely
T-invariant. Since μ is ergodic, we deduce that μ(Xk) = 0 or μ(X\Xk) = 0. However,

μ(Xk) = μ(
∞

⋂
m=1

∞

⋃
n=m

T−n(Uk)) = lim
m→∞

μ(
∞

⋃
n=m

T−n(Uk))

≥ lim
m→∞

μ(T−m(Uk)) = lim
m→∞

μ(Uk) = μ(Uk) > 0,

where the last strict inequality is due to the fact that the support of the measure
μ is X. Therefore, μ(X\Xk) = 0. Since this is true for all k ∈ ℕ, we conclude that
μ(X\⋂∞k=1 Xk) = 0. But all points in the set⋂

∞
k=1 Xk have an orbit that visits each basic

open set Uk infinitely often. Thus all points of ⋂∞k=1 Xk are transitive. Hence, μ-a. e.
x ∈ X is a transitive point for T.

8.2.3 Examples of ergodic measures

We begin this section with a simple example.

Example 8.2.28. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation with a fixed
point x0. Let δx0 be the Dirac point mass supported at x0. We saw in Example 8.1.8 that
δx0 is T-invariant. The measure δx0 is also trivially ergodic since any measurable set is
of measure 0 or 1.

We now revisit the rotations of the unit circle. For a comparative perspective of the
topological dynamics of these maps, see Theorem 1.5.12.
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Proposition 8.2.29. Let Tα : 𝕊1 → 𝕊1 be the map defined by Tα(x) := x + α (mod 1).
Then Tα is ergodic with respect to the Lebesgue measure if and only if α ∈ ℝ\ℚ.

Proof. We demonstrated in Example 8.1.9 that the Lebesgue measure λ on 𝕊1 is
Tα-invariant for any α ∈ ℝ. First, assume that α ∉ ℚ. We want to show that λ is
ergodic with respect to Tα. For this, we will show that if f ∘ Tα = f and f ∈ L2(λ), then
f is λ-a. e. constant. It will then result from Theorem 8.2.18 and Remark 8.2.19 that λ is
ergodic. Consider the Fourier series representation of f , which is given by

f (x) = ∑
k∈ℤ

ake
2πikx .

Then

f ∘ Tα(x) = ∑
k∈ℤ

ake
2πik(x+α) = ∑

k∈ℤ
ake

2πikαe2πikx .

Since we assumed that f ∘Tα = f , we deduce from the uniqueness of the Fourier series
representation that ake2πikα = ak for all k ∈ ℤ. Hence, for each k we have ak = 0 or
e2πikα = 1. The latter equality holds if and only if kα ∈ ℤ. As α ∉ ℚ, this occurs only
when k = 0. Thus f (x) = a0 for λ-a. e. x ∈ 𝕊1, that is, f is λ-a. e. constant. This implies
that λ is ergodic.

Now, suppose that α = p/q ∈ ℚ. We may assume without loss of generality that
q > p ≥ 0. In what follows, all sets must be interpreted modulo 1. Let

A :=
q−1
⋃
n=0
[
n
q
,(n + 1

2
)
1
q
].

Then

T−1α (A) =
q−1
⋃
n=0
[
n − p
q
,(n − p + 1

2
)
1
q
]

=
p−1
⋃
n=0
[
n − p
q
,(n − p + 1

2
)
1
q
] ∪

q−1
⋃
n=p
[
n − p
q
,(n − p + 1

2
)
1
q
]

=
p−1
⋃
n=0
[
n + q − p

q
,(n + q − p + 1

2
)
1
q
] ∪

q−(p+1)
⋃
k=0
[
k
q
,(k + 1

2
)
1
q
]

=
q−1
⋃

k=q−p
[
k
q
,(k + 1

2
)
1
q
] ∪

q−(p+1)
⋃
k=0
[
k
q
,(k + 1

2
)
1
q
]

=
q−1
⋃
k=0
[
k
q
,(k + 1

2
)
1
q
] = A.

Also, one immediately verifies that λ(A) = q ⋅ (1/2)(1/q) = 1/2. In summary, T−1α (A) = A
and λ(A) ∉ {0, 1}. Thus, λ is not ergodic with respect to Tα when α ∈ ℚ.
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We now return to the doubling map and its generalizations.

Example 8.2.30. Fix n > 1. Recall once more the map Tn : 𝕊1 → 𝕊1 defined by Tn(x) =
nx (mod 1).We claim that Tn is ergodicwith respect to the Lebesguemeasure λ. We saw
in Example 8.1.10 that Tn preserves λ. It is possible to demonstrate the ergodicity of Tn
with respect to λ in a similar way that we did for Tα in Proposition 8.2.29. However,
in this example we will provide a different proof. Let A ∈ ℬ(𝕊1) be a set such that
T−1n (A) = A and λ(A) > 0. To establish ergodicity, we need to show that λ(A) = 1.

Recall that Lebesgue’s density theorem (see Corollary 2.14 in Mattila [46]) states
that for any Lebesguemeasurable setA ⊆ ℝn, the density ofA is 0 or 1 at λ-almost every
point ofℝn. Moreover, the density of A is 1 at λ-almost every point of A. The density of
A at x ∈ ℝn is defined as

lim
r→0

λ(A ∩ B(x, r))
λ(B(x, r))

.

Given that λ(A) > 0, take x to be a Lebesgue density point of A, that is, a point where
the density of A is 1, that is,

lim
r→0

λ(A ∩ B(x, r))
2r

= 1. (8.15)

Set

rk := 1/(2n
k).

Then Tkn is injective on each arc of length less than 2rk . So T
k
n |B(x,rk) is injective for each

x ∈ 𝕊1. On the other hand,

Tkn (B(x, rk)) = 𝕊
1\{Tkn (x + rk)}.

Thus

λ(Tkn (B(x, rk))) = 1.

Therefore,

λ(A) = λ(Tkn (A)) ≥
λ(Tkn (A ∩ B(x, rk)))
λ(Tkn (B(x, rk)))

=
nkλ(A ∩ B(x, rk))
nkλ(B(x, rk))

=
λ(A ∩ B(x, rk))

2rk
→
k→∞

1

by (8.15). Consequently, λ(A) = 1. This proves the ergodicity of λ.

Example 8.2.31. Recall the full Markov maps from Example 8.1.11. We claim that any
such T is ergodic with respect to the Lebesgue measure λ. As we did in the previous
example, we would like to use Lebesgue’s density theorem to prove this. However,
in contradistinction with the preceding example, for all r > 0 and all k ∈ ℕ, the

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.2 Ergodic transformations | 237

restriction of Tk to the ball B(pj, r) is not one-to-one when pj is a point of continuity for
a full Markovmap T; for example, the point 1/2 for the tentmap. Despite that potential
lack of injectivity, let us try to use Lebesgue’s density theorem.

For each n ∈ ℕ, let 𝒫n := {I
(n)
j | 1 ≤ j ≤ q

n} be the “partition” of [0, 1] into the
successive intervals of monotonicity of Tn. In particular, I(1)j = Ij for all 1 ≤ j ≤ q. For
each 1 ≤ j < qn, let p(n)j be the unique point in I(n)j ∩ I

(n)
j+1 . For all x ∈ [0, 1]\{p

(n)
j : 1 ≤ j <

qn}, let I(n)(x) be the unique element of 𝒫n containing x. We will need two claims.

Claim 1. For every n ∈ ℕ, the map Tn : [0, 1] → [0, 1] is a full Markov map under the
“partition” 𝒫n, and 𝒫n+1 is finer than 𝒫n.

Claim 2. If A ∈ ℬ([0, 1]), then

lim
n→∞

λ(A ∩ I(n)(x))
λ(I(n)(x))

= 1 for λ-a. e. x ∈ A.

Proof of ergodicity of T. For the time being, suppose that both claims hold. Let A be a
Borel subset of [0, 1] such that T−1(A) = A and λ(A) > 0. By the surjectivity of T, we
know that T(A) = A. Fix any x ∈ A satisfying Claim 2. For each n ∈ ℕ, let mn be the
slope of Tn|I(n)(x). Using both claims, we obtain that

λ(A) = λ(Tn(A)) ≥
λ(Tn(A ∩ I(n)(x)))
λ(Tn(I(n)(x)))

=
mn λ(A ∩ I(n)(x))
mn λ(I(n)(x))

=
λ(A ∩ I(n)(x))
λ(I(n)(x))

→
n→∞

1.

Consequently, λ(A) = 1. This proves the ergodicity of λ.

Proof of Claim 1. Weproceedby induction. Suppose thatTn is a fullMarkovmapunder
the “partition” 𝒫n. It is obvious that Tn+1 is piecewise linear. Fix I(n)j ∈ 𝒫n. For all
1 ≤ i ≤ q, consider

I(n+1)j,i := T|
−1
Ii (I
(n)
j ).

Define

𝒫n+1 := {I
(n+1)
j,i | 1 ≤ j ≤ q

n, 1 ≤ i ≤ q}.

Then

qn

⋃
j=1

q
⋃
i=1

I(n+1)j,i =
qn

⋃
j=1

q
⋃
i=1

T|−1Ii (I
(n)
j ) =

q
⋃
i=1

qn

⋃
j=1

T|−1Ii (I
(n)
j )

=
q
⋃
i=1

T|−1Ii (
qn

⋃
j=1

I(n)j ) =
q
⋃
i=1

T|−1Ii ([0, 1])

=
q
⋃
i=1

Ii = [0, 1].
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Thus 𝒫n+1 is a cover of [0, 1]. Obviously, the interiors of the intervals in 𝒫n+1 are mu-
tually disjoint and 𝒫n+1 is finer than 𝒫n. For all 1 ≤ j ≤ qn and all 1 ≤ i ≤ q we further
have

Tn+1(I(n+1)j,i ) = T
n(T(I(n+1)j,i )) = T

n(T(T|−1Ii (I
(n)
j ))) = T

n(I(n)j ) = [0, 1].

So𝒫n+1 = 𝒫n+1 and Tn+1 is a full Markovmap under the “partition”𝒫n+1, which is finer
than 𝒫n. This completes the inductive step. Since the claim clearly holds when n = 1,
Claim 1 has been established for all n ∈ ℕ.

Proof of Claim 2. Let𝒜n := σ(𝒫n) be the σ-algebra generated by𝒫n. By Claim 1,𝒫n+1 is
finer than 𝒫n for all n ∈ ℕ and thus the sequence of σ-algebras (𝒜n)

∞
n=1 is ascending.

Now, let

m := min{slope(T|Ii )
 : 1 ≤ i ≤ q} = {

(T|Int(Ii))
′ : 1 ≤ i ≤ q} > 1.

Then

diam(𝒫n) := sup{diam(I
(n)
j ) : 1 ≤ j ≤ q

n} ≤ m−n →
n→∞

0.

Therefore, 𝒜∞ := σ(⋃∞n=1𝒜n) contains all the subintervals of [0, 1]. Hence, 𝒜∞ =
ℬ([0, 1]). Let A ∈ ℬ([0, 1]). According to Theorem A.1.67,

lim
n→∞

E(1A|𝒜n)(x) = E(1A|ℬ([0, 1]))(x) = 1A(x) for λ-a. e. x ∈ [0, 1]. (8.16)

Now, recall that 𝒫n := {I
(n)
j : 1 ≤ j ≤ q

n} is the “partition” of [0, 1] into the successive
intervals of monotonicity of Tn. Moreover, p(n)j is the unique point in I(n)j ∩ I

(n)
j+1 for every

1 ≤ j < qn. Define

𝒫′n := {I
(n)
1 \{p

(n)
1 }} ∪ {Int(I

(n)
j ) : 1 < j < q

n} ∪ {I(n)qn \{p
(n)
qn−1}} ∪ {{p

(n)
j } : 1 ≤ j < q

n}.

Though 𝒫n is not a partition per se, the family 𝒫′n is a finite partition of [0, 1]. More-
over, it is easy to see that 𝒜n := σ(𝒫n) = σ(𝒫′n). By Example A.1.62, the conditional
expectation function E(1A|𝒜n) is constant on each element of the partition 𝒫′n. For all
x except the points p(n)j , by definition of the conditional expectation function wemust
also have

∫
I(n)(x)

E(1A|𝒜n) dλ = ∫
I(n)(x)

1A dλ = λ(A ∩ I
(n)(x)).

Therefore,

E(1A|𝒜n)(y) =
λ(A ∩ I(n)(x))
λ(I(n)(x))

, ∀y ∈ Int(I(n)(x)).
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Since I(n)(y) = I(n)(x) for all y ∈ Int(I(n)(x)), it ensues that

E(1A|𝒜n)(z) =
λ(A ∩ I(n)(z))
λ(I(n)(z))

for λ-a. e. z ∈ [0, 1].

It follows from (8.16) that

lim
n→∞

λ(A ∩ I(n)(x))
λ(I(n)(x))

= 1 for λ-a. e. x ∈ A.

Claim 2 is proved and this completes this example.

The next example concerns the shift map.

Example 8.2.32. Recall the one-sided Bernoulli shift from Example 8.1.14 where,
given a probability space (E,ℱ ,P), the product space (E∞,ℱ∞, μP) is a probability
space and the product measure μP is invariant under the left shift map σ. We now
demonstrate that μP is also ergodic with respect to σ. To prove this, we use Lem-
mas 8.2.16–8.2.17. Let A,B be cylinder sets of length M and N, respectively. Since
cylinderA depends on the firstM coordinates, cylinder σ−j(A) depends on coordinates
j + 1 to j +M. Consequently, cylinders σ−j(A) and B depend on different coordinates as
soon as j ≥ N . Since μP is a product measure and is σ-invariant, we deduce that

μP(σ
−j(A) ∩ B) = μP(σ

−j(A))μP(B) = μP(A)μP(B), ∀j ≥ N .

It follows immediately that

lim
n→∞

1
n

n−1
∑
j=0

μP(σ
−j(A) ∩ B) = μP(A)μP(B).

The ergodicity of σ ensues from Lemmas 8.2.16 and 8.2.17. In Example 8.3.13, we shall
see that the shift map enjoys an even stronger property than ergodicity.

Our final example pertains to ordinary normal numbers.

Example 8.2.33. Let n ≥ 2. On one hand, consider the probability space (E,ℱ ,P), with
set E = {0, 1, . . . , n − 1}, σ-algebra ℱ = 𝒫(E) and probability measure P = (1/n)∑n−1k=0 δk .
According to Example 8.2.32, the product space (E∞,ℱ∞, μP) is a probability space
and the measure μP is ergodic with respect to the shift map σ.

On the other hand, consider the map Tn : 𝕊1 → 𝕊1 defined by Tn(x) = nx (mod 1).
In Example 8.2.30, we learned that Tn is ergodic with respect to the Lebesgue mea-
sure λ. This map is also distance expanding, and thus admits a Markov partition. In
Examples 4.4.4 and 4.4.5, explicit partitions were given. In Example 4.5.3, the coding
map generated by the partitionℛ = {Ri = [

i
n ,

i+1
n ] : 0 ≤ i < n} was identified as

π : E∞ → 𝕊1

ω = (ωk)
∞
k=1 → π(ω) =

∞

∑
k=1

ωk
nk
.
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Properties of πwere given in Theorem4.5.2. Among others, π is continuous, surjective,
and its restriction to the set Z := π−1(𝕊1\⋃∞k=0 T

−k
n (⋃

n−1
i=0 𝜕Ri)) is injective. The set Z

consists of all ω ∈ E∞ whose coordinates are not eventually constant and equal to 0
or n − 1, i. e.

E∞\Z = ⋃
τ∈E∗
{τ0∞, τ(n − 1)∞}.

The coding map π is two-to-one on E∞\Z, which is a countable set and thus has
μP-measure zero. So μP(Z) = 1.

The coding map π : (E∞,ℱ∞, μP) → (𝕊1,ℬ(𝕊1), λ) is measure-preserving. Indeed,
it is easy to show that the family

𝒫 := {[
i
nk
,
i + 1
nk
] : 0 ≤ i < nk , k ∈ ℕ}⋃{ i

nk
: 0 ≤ i < nk , k ∈ ℕ}

is a π-system that generatesℬ(𝕊1) and μP ∘π−1(P) = λ(P) for allP ∈ 𝒫. Hence the coding
map is measure-preserving according to Lemma 8.1.4.

Let φ : E∞ → E ⊆ ℝ be the function φ(ω) = ω1. Clearly, φ ∈ L1(E∞,ℱ∞, μP).
Furthermore, φ ∘ σj(ω) = ωj+1 for all j ≥ 0. Since μP is ergodic with respect to the shift
map σ, the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14) asserts that
there isM ∈ ℱ∞ such that μP(M) = 1 and

lim
k→∞

1
k

k
∑
j=1

ωj = limk→∞

1
k
Skφ(ω) = ∫

E∞
φ(ω) dμP(ω)

=
n−1
∑
i=0
∫
[i]

i dμP =
n−1
∑
i=0

i μP([i]) =
n−1
∑
i=0

i ⋅ 1
n

=
n − 1
2
, ∀ω ∈ M.

As π is continuous, it is Borel measurable and thus π(M) is Lebesgue measurable.
Since π is measure-preserving, we have that λ(π(M)) = μP ∘ π−1(π(M)) ≥ μP(M) = 1.
We infer that the digits of the n-adic expansion of λ-almost every number between 0
and 1 average (n − 1)/2 asymptotically.

Now, fix any 0 ≤ i < n. Since μP is ergodic with respect to σ, Corollary 8.2.15 of
Birkhoff’s ergodic theorem affirms that for μP-a. e. ω ∈ E∞,

lim
k→∞

1
k
#{1 ≤ j ≤ k : ωj = i} = lim

k→∞

1
k
#{0 ≤ j < k : σj(ω) ∈ [i]} = μP([i]) =

1
n
.

Since the coding map is measure-preserving, we deduce that λ-almost every number
between 0 and 1 has a n-adic expansion whose digits are equal to i with a frequency
of 1/n. This frequency is independent of the digit i, as one naturally expects.
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8.2.4 Uniquely ergodic transformations

As mentioned in Subsection 8.1.3, there are measurable transformations that do not
admit any invariant measure. However, in Theorem 8.1.22 we showed that every topo-
logical dynamical system carries invariant probability measures. Among those sys-
tems, some have only one such measure. Per Corollary 8.2.25, this happens precisely
when there is a unique ergodic invariantmeasure. Thesemapsdeserve a special name.

Definition 8.2.34. A measurable transformation T : (X,𝒜) → (X,𝒜) is said to be
uniquely ergodic if E(T ,𝒜) is a singleton.

Lemma 8.2.35. A topological dynamical system T : X → X is uniquely ergodic if and
only if M(T) is a singleton.

Proof. According to Corollary 8.2.25,M(T) is the closed convex hull of E(T). Therefore,
M(T) is a singleton precisely when E(T) is.

Recall that by Riesz’ representation theorem (Theorem A.1.53), whenever X is a
compact metrizable space, every μ ∈ M(X) is uniquely determined by a normalized
positive continuous linear functional ℓμ ∈ C(X)∗, namely

ℓμ(f ) = ∫
X

f dμ, ∀f ∈ C(X).

If T : X → X is a topological dynamical system, then by Theorem 8.1.18 each μ ∈ M(T)
corresponds to a T-invariant functional in the sense that

ℓμ(f ∘ T) = ℓμ(f ), ∀f ∈ C(X).

Wewill show that if T is uniquely ergodic, then all T-invariant continuous linear func-
tionals are scalarmultiples of ℓμ0 , where μ0 is the unique ergodic T-invariantmeasure.

First, we introduce the variation of a functional.

Definition 8.2.36. Let ℓ ∈ C(X)∗. The variation of ℓ is the functional var(ℓ) : C(X)→ ℝ
defined as follows: For any function f ∈ C(X), f ≥ 0, set

var(ℓ)(f ) := sup
g∈C(X)
0≤g≤f

ℓ(g),

and for any other f ∈ C(X) let

var(ℓ)(f ) := var(ℓ)(f+) − var(ℓ)(f−).

Lemma 8.2.37. Let ℓ ∈ C(X)∗. Set Δℓ := var(ℓ) − ℓ. Then var(ℓ),Δℓ ∈ C(X)∗ and both
are positive. In addition, if ℓ is T-invariant then so are var(ℓ) and Δℓ.
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Proof. Let f ∈ C(X), f ≥ 0. The positivity of var(ℓ) is obvious since var(ℓ)(f ) ≥ ℓ(0) = 0.
It is also easy to see that var(ℓ)(cf ) = c ⋅ var(ℓ)(f ) for all c ≥ 0. Now, let f1, f2 ∈ C(X),
f1, f2 ≥ 0. On one hand, if g1, g2 ∈ C(X) satisfy 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2, then
0 ≤ g1 + g2 ≤ f1 + f2, and hence

ℓ(g1) + ℓ(g2) = ℓ(g1 + g2) ≤ var(ℓ)(f1 + f2).

Taking the supremum over all such g1, g2, we get

var(ℓ)(f1) + var(ℓ)(f2) ≤ var(ℓ)(f1 + f2). (8.17)

On the other hand, let g ∈ C(X) be such that 0 ≤ g ≤ f1 + f2. Define g1 = min{f1, g} and
g2 = g − g1. Then g1, g2 ∈ C(X) and satisfy 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2. It follows that

ℓ(g) = ℓ(g1 + g2) = ℓ(g1) + ℓ(g2) ≤ var(ℓ)(f1) + var(ℓ)(f2).

Taking the supremum over all such g, we get

var(ℓ)(f1 + f2) ≤ var(ℓ)(f1) + var(ℓ)(f2). (8.18)

By (8.17) and (8.18),

var(ℓ)(f1 + f2) = var(ℓ)(f1) + var(ℓ)(f2).

This proves the linearity for nonnegative functions. The linearity for other functions
follows directly from the definition of var(ℓ) for such functions.

Now, suppose that ℓ is T-invariant. Given f ∈ C(X), f ≥ 0, first notice that

var(ℓ)(f ∘ T) = sup
g∈C(X)
0≤g≤f ∘T

ℓ(g) ≥ sup
h∈C(X)
0≤h≤f

ℓ(h ∘ T) = sup
h∈C(X)
0≤h≤f

ℓ(h) = var(ℓ)(f ). (8.19)

We shall prove that this inequality implies the desired equality. To do this, let us pass
from functionals to measures. Let ν be the Borel measure corresponding to var(ℓ). We
shall show that (8.19) implies that ν ∘ T−1(B) ≥ ν(B) for all Borel sets B. Since ν is
a regular measure (by Theorem A.1.24), it suffices to prove the inequality for closed
sets. Let F be a closed set in X. By Urysohn’s lemma (see 15.6 in Willard [77]), there
is a descending sequence of open sets (Un)

∞
n=1 whose intersection is F and to which

corresponds a sequence (fn)∞n=1 of continuous functions on X such that 0 ≤ fn ≤ 1,
fn = 0 on X\Un and fn = 1 on F. Then, for all n ∈ ℕ,

∫
X

fn d(ν ∘ T
−1) = ∫

X

fn ∘ T dν = var(ℓ)(fn ∘ T) ≥ var(ℓ)(fn) = ∫
X

fn dν.

Since limn→∞ fn = 1F and ‖fn‖∞ ≤ 1 for all n ∈ ℕ, Lebesgue’s dominated convergence
theorem (Theorem A.1.38) implies that

ν ∘ T−1(F) = ∫
X

1F d(ν ∘ T
−1) = lim

n→∞
∫
X

fn d(ν ∘ T
−1) ≥ lim

n→∞
∫
X

fn dν = ∫
X

1F dν = ν(F).
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As the closed set F was arbitrarily chosen and the Borel measure ν is regular, the mea-
sure of any Borel set B is equal to the supremum of the measures of all closed sets
contained in B. It immediately follows that

ν ∘ T−1(B) ≥ ν(B), ∀B ∈ ℬ(X). (8.20)

Replacing B by X\B in (8.20), we obtain that

ν ∘ T−1(X\B) ≥ ν(X\B), ∀B ∈ ℬ(X). (8.21)

Since ν(B) + ν(X\B) = ν(X) = ν ∘ T−1(B) + ν ∘ T−1(X\B), inequality (8.21) implies that

ν ∘ T−1(B) ≤ ν(B), ∀B ∈ ℬ(X). (8.22)

From (8.20) and (8.22), we deduce that ν ∘ T−1(B) = ν(B) for all B ∈ ℬ(X), that is, ν is
T-invariant. It follows that var(ℓ) is T-invariant since

var(ℓ)(f ∘ T) = ∫
X

f ∘ T dν = ∫
X

f d(ν ∘ T−1) = ∫
X

f dν = var(ℓ)(f ).

For any f ∈ C(X), it ensues that

var(ℓ)(f ∘ T) = var(ℓ)(f+ ∘ T) − var(ℓ)(f− ∘ T) = var(ℓ)(f+) − var(ℓ)(f−) = var(ℓ)(f ).

The proof of the statements on Δℓ are left to the reader.

We use the variation functional to demonstrate that uniquely ergodic systems ad-
mit only T-invariant functionals that aremultiples of the ergodic T-invariantmeasure.

Lemma 8.2.38. Let T : X → X be a uniquely ergodic topological dynamical system.
Let μ0 be the unique ergodic T-invariant measure and ℓμ0 its corresponding T-invariant
normalized positive continuous linear functional. Then any (not necessarily positive or
normalized) T-invariant ℓ ∈ C(X)∗ is of the form

ℓ = c ⋅ ℓμ0 ,

where c ∈ ℝ.

Proof. Assume that ℓ ∈ C(X)∗ is T-invariant. Lemma 8.2.37 then says that var(ℓ) and
Δℓ are T-invariant positive continuous linear functionals on C(X). Since T is uniquely
ergodic, Lemma 8.2.35 implies that there must exist C, C̃ ≥ 0 such that var(ℓ) = C ℓμ0
and Δℓ = C̃ ℓμ0 . It then follows that ℓ = var(ℓ) − Δℓ = (C − C̃)ℓμ0 .

We aim to show that a stronger variant of Birkhoff’s ergodic theorem (Theo-
rem 8.2.11) holds for uniquely ergodic dynamical systems. More precisely, the Birkhoff
averages converge uniformly and thereby everywhere. The proof relies upon a deep
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result in functional analysis called the Hahn–Banach theorem. The statement and
proof of this theorem can be found as Theorem II.3.10 in Dunford and Schwartz [20].

In light of the existence of an invariant Borel probability measure for every topo-
logical dynamical system, we will first introduce a set of functions which will play an
important role on multiple occasions in the sequel.

Definition 8.2.39. Let T : X → X be a topological dynamical system. A function f ∈
C(X) is said to be cohomologous to zero in the additive group C(X) if

f = g ∘ T − g

for some g ∈ C(X). The set of such functions will be denoted by C0(T).

These functions have the property that their integral with respect to any invari-
ant measure is equal to zero. Moreover, when the system is uniquely ergodic, every
function whose integral is equal to zero can be approximated by functions that are
cohomologous to zero, as the following lemma shows.

Lemma 8.2.40. Let T : X → X be a topological dynamical system and μ ∈ M(T). Let

C0(μ) := {f ∈ C(X)
 ∫
X

f dμ = 0}.

Then C0(T) and C0(μ) are vector subspaces of C(X). Moreover, C0(μ) is closed in C(X)
and C0(T) ⊆ C0(μ). In addition, if T is uniquely ergodic then C0(T) = C0(μ).

Proof. It is easy to see that C0(T) and C0(μ) are vector subspaces of C(X), and that
C0(μ) is closed in C(X) (recall that this latter is endowed with the topology of uniform
convergence). Let f ∈ C0(T). Then f = g ∘ T − g for some g ∈ C(X). The T-invariance of
μ yields

∫
X

f dμ = ∫
X

g ∘ T dμ − ∫
X

g dμ = ∫
X

g d(μ ∘ T−1) − ∫
X

g dμ = 0.

So C0(T) ⊆ C0(μ), and hence C0(T) ⊆ C0(μ) = C0(μ).
Assume now that T is uniquely ergodic. Suppose by way of contradiction that

there exists f0 ∈ C0(μ)\C0(T). According to the Hahn–Banach theorem, there is ℓ ∈
C(X)∗ such that ℓ(f ) = 0 for all f ∈ C0(T) whereas ℓ(f0) = 1. By Lemma 8.2.38, there
exists c ∈ ℝ such that ℓ = c ⋅ ℓμ. But this is impossible since ℓμ(f0) = 0 while ℓ(f0) = 1.
This contradiction implies that C0(T) = C0(μ) when T is uniquely ergodic.

We can now state a stronger version of the ergodic case of Birkhoff’s ergodic the-
orem (Corollary 8.2.14) for uniquely ergodic dynamical systems.

Theorem 8.2.41. Let T : X → X be a topological dynamical system and μ ∈ M(T). The
following statements are equivalent:
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(a) T is uniquely ergodic.
(b) For every f ∈ C(X), the Birkhoff averages 1

nSnf (x) converge to ∫X f dμ for all x ∈ X.
(c) For every f ∈ C(X), the Birkhoff averages 1

nSnf converge uniformly to ∫X f dμ.

Proof. The structure of the proof will be the following sequence of implications:
(a)⇒(c)⇒(b)⇒(a).
[(a)⇒(c)] Suppose that T is uniquely ergodic. For any f ∈ C0(T) and any x ∈ X we have


1
n
Snf (x)

=

1
n
Sng(T(x)) −

1
n
Sng(x)

=
1
n
g(T

n(x)) − g(x) ≤
2
n
‖g‖∞.

Thus

lim
n→∞


1
n
Snf − 0
∞
= 0, ∀f ∈ C0(T). (8.23)

In Lemma 8.2.40, we observed that C0(T) ⊆ C0(μ). Therefore, the sequence (
1
nSnf )
∞
n=1

converges uniformly on X to ∫X f dμ for every f ∈ C0(T).
Now, suppose that f ∈ C0(μ). Since T is uniquely ergodic, Lemma 8.2.40 asserts

that C0(T) = C0(μ). Let ε > 0 and choose fε ∈ C0(T) such that ‖f − fε‖∞ ≤ ε. Then

1
n
Snf − ∫

X

f dμ
∞
≤

1
n
Snf −

1
n
Snfε
∞
+

1
n
Snfε − ∫

X

fε dμ
∞
+

∫
X

fε dμ − ∫
X

f dμ
∞

≤
1
n

n−1
∑
k=0

f ∘ T
k − fε ∘ T

k∞ +

1
n
Snfε − ∫

X

fε dμ
∞
+ 0

≤ ‖f − fε‖∞ +

1
n
Snfε − ∫

X

fε dμ
∞

≤ ε +

1
n
Snfε − ∫

X

fε dμ
∞
.

As fε ∈ C0(T), relation (8.23) guarantees that limn→∞

1
nSnfε − ∫X fε dμ

∞ = 0 and we
deduce that

lim sup
n→∞


1
n
Snf − ∫

X

f dμ
∞
≤ ε.

Since ε > 0 is arbitrary, the implication (a)⇒(c) is proved for any function f ∈ C0(μ)
and, therefore, for any f ∈ C(X) by replacing f by f − ∫X f dμ.
[(c)⇒(b)] This is obvious.
[(b)⇒(a)] Let ν ∈ M(T) and f ∈ C(X). Since limn→∞

1
nSnf (x) = ∫X f dμ for all x ∈ X

and ‖ 1nSnf ‖∞ ≤ ‖f ‖∞ < ∞ for all n ∈ ℕ, Lebesgue’s dominated convergence theorem
(Theorem A.1.38) asserts that

lim
n→∞
∫
X

1
n
Snf (x) dν(x) = ∫

X

(∫
X

f dμ) dν(x) = ∫
X

f dμ.
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On the other hand, the T-invariance of νmeans that ν = ν ∘ T−k for all k ∈ ℕ. Thus for
all n ∈ ℕ we have that ν = 1

n ∑
n−1
k=0 ν ∘ T

−k, and hence

∫
X

1
n
Snf (x) dν(x) = ∫

X

1
n

n−1
∑
k=0

f ∘ Tk dν = 1
n

n−1
∑
k=0
∫
X

f d(ν ∘ T−k) = ∫
X

f dν.

From the last two formulas, it follows that ∫X f dν = ∫X f dμ for all f ∈ C(X). By Corol-
lary A.1.54, we conclude that ν = μ. So μ is the unique T-invariant measure.

The previous theorem has the following consequence in topological dynamics.
Compare this with Theorem 8.2.27.

Corollary 8.2.42. Let T : X → X be a uniquely ergodic topological dynamical system. If
supp(μ) = X for the unique μ ∈ M(T) = E(T), then T is minimal.

Proof. Let U be a nonempty open set in X. Then μ(U) > 0 because supp(μ) = X. By
Theorem A.1.24, μ is regular. Hence, μ(U) = sup{μ(F) : F ⊆ U , F closed} > 0 and thus
there is a closed set F0 ⊆ U such that μ(F0) > 0. The sets F0 andX\U are disjoint closed
sets and Urysohn’s lemma (see 15.6 in Willard [77]) states that there is a nonnegative
function f ∈ C(X) with the properties that f = 1 on F0 and f = 0 on X\U . Notice that
∫X f dμ ≥ μ(F0) > 0. Consequently, for any x ∈ X, Theorem 8.2.41 asserts that

lim
n→∞

1
n
Snf (x) = ∫

X

f dμ > 0.

Hence, there exists n ∈ ℕ such that f (Tn(x)) > 0 and so Tn(x) ∈ U . But since U was
chosen arbitrarily, we conclude that the orbit of x visits every open set in X; in other
words, the orbit of x is dense in X. Since x was chosen arbitrarily, every orbit is dense,
and thus the system T is minimal according to Theorem 1.5.4.

We now revisit the rotations (sometimes called translations) of the torus. Recall
that these rotations are a case of rotations of topological groups (see Subsection 1.6.1).
According to Haar’s theorem, there is, up to a positive multiplicative constant, a
unique measure μ on the Borel subsets of a topological group G satisfying the follow-
ing properties:
(a) μ is left-translation-invariant: μ(gS) = μ(S) for every g ∈ G and all Borel sets S ⊆ G.
(b) μ is finite on every compact set: μ(K) <∞ for all compact K ⊆ G.
(c) μ is outer regular on Borel sets S ⊆ G: μ(S) = inf{μ(U) : S ⊆ U , U open}.
(d) μ is inner regular on open sets U ⊆ G: μ(U) = sup{μ(K) : K ⊆ U , K compact}.

Such a measure is called a left Haar measure. As a consequence of the above proper-
ties, it also turns out that μ(U) > 0 for every nonempty open subset U ⊆ G. In particu-
lar, if G is compact then 0 < μ(G) <∞. Thus, we can uniquely specify a left Haar mea-
sure on G by adding the normalization condition μ(G) = 1. This is obviously the case

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.2 Ergodic transformations | 247

for the n-dimensional torus, where μ will be denoted by λn. This is the n-dimensional
Lebesgue measure on the torus.

Proposition 8.2.43. Let Lγ : 𝕋n → 𝕋n be a translation of the torus, where γ =
(γ1,γ2, . . . ,γn) ∈ 𝕋

n. The following statements are equivalent:
(a) The numbers 1,γ1,γ2, . . . ,γn are linearly independent overℚ.
(b) Lγ is minimal.
(c) Lγ is transitive.
(d) Lγ is ergodic with respect to λn.
(e) Lγ is uniquely ergodic.

Proof. Theorem 1.6.3 already asserted the equivalencies (a)⇔(b)⇔(c). It is also obvi-
ous that (e)⇒(d). Implication (d)⇒(c) follows fromTheorem8.2.27. It remains to prove
that (a)⇒(e). To that end, assume that 1,γ1, . . . ,γn are linearly independent over ℚ.
We will first show that if f ∘ Lγ = f for some f ∈ L2(λn), then f is λn-a. e. constant. It
will then follow from Theorem 8.2.18 and Remark 8.2.19 that λn is ergodic with respect
to Lγ. Consider the Fourier series representation of f :

f (x) = ∑
k∈ℤn

ake
2πi⟨k,x⟩, where ⟨k, x⟩ =

n
∑
j=1

kjxj.

Then

f ∘ Lγ(x) = ∑
k∈ℤn

ake
2πi⟨k,x+γ⟩ = ∑

k∈ℤn
ake

2πi⟨k,γ⟩e2πi⟨k,x⟩.

The above equalities are understood to hold in L2(λn) and hold only for λn-a. e. x ∈ 𝕋n.
As f ∘ Lγ = f , we deduce from the uniqueness of the Fourier series representation that

ake
2πi⟨k,γ⟩ = ak , ∀k ∈ ℤ

n.

Hence, for each k ∈ ℤn we have ak = 0 or e2πi⟨k,γ⟩ = 1. The latter condition holds if and
only if ⟨k,γ⟩ ∈ ℤ. As 1,γ1, . . . ,γn are linearly independent overℚ, this happens if and
only if k1 = k2 = ⋅ ⋅ ⋅ = kn = 0. Thus f (x) = a(0,...,0) for λn-a. e. x ∈ 𝕋n. That is, f is λn-a. e.
constant. This implies that λn is ergodic. It only remains to show that λn is the unique
ergodic Lγ-invariant measure. Let φ ∈ C(𝕋n). By the ergodic case of Birkhoff’s ergodic
theorem (Corollary 8.2.14), for λn-a. e. x ∈ 𝕋n we have

lim
k→∞

1
k
Skφ(x) = ∫

𝕋n

φdλn. (8.24)

Let x0 ∈ 𝕋n and ε > 0. Since φ is uniformly continuous on the compact metric
space 𝕋n, there exists δ > 0 such that

x
′ − x < δ ⇒

φ(x
′) − φ(x) < ε.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



248 | 8 Ergodic theory

Furthermore, as supp(λn) = 𝕋n, there exists x1 ∈ 𝕋n such that (8.24) holds for x1 and
‖x0 − x1‖ < δ. Bearing in mind that Lγ is an isometry, for all k ∈ ℕ it follows that

1
k
Skφ(x0) − ∫

𝕋n

φdλn

≤

1
k
Skφ(x0) −

1
k
Skφ(x1)

+

1
k
Skφ(x1) − ∫

𝕋n

φdλn


≤
1
k

k−1
∑
j=0

φ(L
j
γ(x0)) − φ(L

j
γ(x1))
 +

1
k
Skφ(x1) − ∫

𝕋n

φdλn


<
1
k

k−1
∑
j=0

ε +

1
k
Skφ(x1) − ∫

𝕋n

φdλn


= ε +

1
k
Skφ(x1) − ∫

𝕋n

φdλn

.

Letting k →∞, we deduce that limk→∞
1
k Skφ(x0) − ∫𝕋n φdλn

 ≤ ε. As ε > 0 was arbi-
trary, we conclude that limk→∞

1
k Skφ(x0) = ∫𝕋n φdλn. But x0 was chosen arbitrarily in

𝕋n and so Lγ is uniquely ergodic by Theorem 8.2.41.

Remark 8.2.44.
(a) This proof in fact shows that any isometry T on a compactmetrizable space X that

admits an invariant probability measure which is ergodic and of full topological
support, is uniquely ergodic.

(b) Being an isometry canbeweakenedby requiring only that the iterates {Tn}∞n=1 form
an equicontinuous family.

8.3 Mixing transformations
In the penultimate section of this chapter, we introduce various notions of mixing for
measure-preserving dynamical systems. These should be contrasted with topological
mixing, which was introduced in Section 1.5. Thesemeasure-theoretical mixing forms
are stronger than ergodicity in the sense that they all imply ergodicity, and are impor-
tant from a statistical viewpoint (for instance, for decay of correlations and similar
questions).

8.3.1 Weakmixing

Definition 8.3.1. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,ℬ, μ). The system T is said to be weakly mixing if

lim
n→∞

1
n

n−1
∑
j=0

μ(T
−j(A) ∩ B) − μ(A)μ(B) = 0, ∀A,B ∈ ℬ. (8.25)

Like for ergodicity, to find out if a system isweaklymixing it suffices to checkweak
mixing on a semialgebra that generates the σ-algebra.
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Lemma 8.3.2. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). If ℬ = σ(𝒮) for some semialgebra 𝒮, then T is weakly mixing if and
only if relation (8.25) holds for all A,B ∈ 𝒮.

Proof. The proof is nearly identical to that of Lemma 8.2.17. Simply replace the square
brackets by absolute values.

Weak mixing is a stronger property than ergodicity. This is not surprising if you
compare the definition of weakmixingwith the characterization of ergodicity given in
Lemma 8.2.16. Nevertheless, we will give a more direct proof of that fact.

Lemma 8.3.3. Let T : X → X be ameasure-preserving dynamical system on a probabil-
ity space (X,ℬ, μ). If T is weakly mixing, then T is ergodic.

Proof. Suppose by way of contradiction that T is weakly mixing but not ergodic. Thus
there exists a completely T-invariant set E ∈ ℬ with μ(E) > 0 and μ(X\E) > 0. Then
T−j(E) ∩ (X\E) = E ∩ (X\E) = 0 for all j ∈ ℕ. Setting A = E and B = X\E in (8.25), we
deduce that μ(E)μ(X\E) = 0. So μ(E) = 0 or μ(X\E) = 0. This contradiction shows that
T is ergodic.

The converse of this lemma is not true; that is to say, there exist dynamical systems
that are ergodic but not weakly mixing. We now provide such an example.

Example 8.3.4. Let α ∈ ℝ\ℚ and consider again the map Tα : 𝕊1 → 𝕊1 defined by
Tα(x) := ⟨x + α⟩, where ⟨r⟩ denotes the fractional part of r. This is the rotation of the
unit circle 𝕊1 by the angle 2πα. We saw in Proposition 8.2.29 that this map is ergodic
with respect to the Lebesgue measure λ on 𝕊1. We shall now show that it is not weakly
mixing.

By Corollary 8.2.15, for any interval I ⊆ 𝕊1 and λ-almost every x ∈ 𝕊1,

lim
M→∞

1
M
#{0 ≤ n < M : Tnα(x) ∈ I} = λ(I).

In other words, for λ-almost every x ∈ 𝕊1, the sequence (⟨x + nα⟩)∞n=1 is uniformly dis-
tributed in 𝕊1. It follows, upon rotating by −x, that the sequence (⟨nα⟩)∞n=1 is uniformly
distributed in 𝕊1. Let A = B = (0, 1/2) and let (ni)∞i=1 be the subsequence ofℕ such that
⟨niα⟩ ∈ (0, 1/10). Then T−niα (A) ⊇ [0, 4/10] and hence

λ(T−niα (A) ∩ B) − λ(A)λ(B) ≥ λ((0, 4/10]) − (λ((0, 1/2)))
2 =

4
10
−
1
4
=

3
20
.

Consequently,

lim inf
N→∞

1
nN

nN
∑
k=0

λ(T
−k
α (A) ∩ B) − λ(A)λ(B)

 ≥ lim inf
N→∞

1
nN

N
∑
i=1

λ(T
−ni
α (A) ∩ B) − λ(A)λ(B)



≥ lim inf
N→∞

1
nN
⋅ N ⋅ 3

20
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≥
3
20

lim inf
M→∞

1
M
#{0 ≤ n < M : ⟨nα⟩ ∈ (0, 1/10)}

=
3
20
⋅
1
10
> 0.

Therefore, Tα cannot be weakly mixing.

The following lemmaprovides a characterization ofweaklymixingdynamical sys-
tems.

Lemma 8.3.5. Let T : X → X be a measure-preserving dynamical system on a probabil-
ity space (X,ℬ, μ). The following statements are equivalent:
(a) T is weakly mixing.
(b) For all f , g ∈ L2(μ),

lim
n→∞

1
n

n−1
∑
j=0


∫
X

(f ∘ T j) ⋅ g dμ − ∫
X

f dμ∫
X

g dμ

= 0.

Proof. That (b) implies (a) follows upon choosing the functions f = 1A and g = 1B. For
the converse, a straightforward argument involving approximation by simple func-
tions is enough to complete the proof. We leave the details as an exercise.

The following result will be used to give alternative formulations of weak mixing.
A subset J of ℤ+ is said to have density zero if

lim
n→∞

#(J ∩ {0, 1, . . . , n − 1})
n

= 0.

Theorem 8.3.6. If (an)∞n=0 is a bounded sequence in ℝ, then the following statements
are equivalent:
(a) limn→∞

1
n ∑

n−1
i=0 |ai| = 0.

(b) There exists a set J ⊆ ℤ+ of density zero such that limJ ̸∋n→∞ an = 0.
(c) limn→∞

1
n ∑

n−1
i=0 a

2
i = 0.

Proof. We shall first prove that (a)⇔(b) and then (b)⇔(c).
[(a)⇒(b)] Suppose that limn→∞

1
n ∑

n−1
i=0 |ai| = 0. To lighten notation, let cJ(n) = #(J ∩

{0, 1, . . . , n − 1}). For each k ∈ ℕ, define

Jk := {i ≥ 0 : |ai| ≥
1
k
}.

Then (Jk)∞k=1 is an ascending sequence of sets. We claim that each Jk has density zero.
Indeed, for each k ∈ ℕ,

1
n

n−1
∑
i=0
|ai| ≥

1
n

n−1
∑
i=0
i∈Jk

|ai| ≥
1
n
1
k
cJk (n).
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Thus limn→∞
1
n
1
k cJk (n) = 0. This implies that limn→∞

1
n cJk (n) = 0, that is, each Jk has

density zero. Therefore, there exists a strictly increasing sequence (ℓk)∞k=1 in ℕ such
that for every k ∈ ℕ,

1
n
cJk (n) <

1
k
, ∀n ≥ ℓk .

Set

J :=
∞

⋃
k=1

Jk ∩ [ℓk , ℓk+1).

We claim that J has density zero. Indeed, since the sets (Jk)∞k=1 form an ascending se-
quence, for every ℓk ≤ n < ℓk+1 we have

J ∩ [0, n) ⊆ Jk ∩ [0, n)

and so

1
n
cJ(n) ≤

1
n
cJk (n) <

1
k
.

Letting n → ∞ imposes k → ∞ and hence limn→∞
1
ncJ(n) = 0. So J has density zero,

as claimed.
Moreover, if n ≥ ℓk and n ∉ J, then n ∉ Jk and thus |an| < 1/k. Therefore,

lim
J ̸∋n→∞
|an| = 0.

[(b)⇒(a)] For the opposite implication, suppose that limJ ̸∋n→∞ |an| = 0 for some set
J ⊆ ℤ+ of density zero. Since (an)∞n=0 is bounded, let B ≥ 0 be such that |an| ≤ B for all
n ≥ 0. Fix ε > 0. There exists N(ε) ∈ ℕ such that |an| < ε whenever n ≥ N(ε) and n ∉ J,
and such that cJ(n)/n < ε for all n ≥ N(ε). Then, for all n ≥ N(ε), we have that

1
n

n−1
∑
i=0
|ai| =

1
n
[ ∑
i∈J∩{0,1,...,n−1}

|ai| + ∑
i∈{0,1,...,n−1}\J

|ai|] <
1
n
[cJ(n)B + nε] < (B + 1)ε.

Thus

lim
n→∞

1
n

n−1
∑
i=0
|ai| = 0.

[(b)⇔(c)] Using the fact that (b)⇔(a), it suffices to note that limJ ̸∋n→∞ ai = 0 if and
only if limJ ̸∋n→∞ a2i = 0.

This theorem allows us to reformulate weak mixing in the following alternative
ways.
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Corollary 8.3.7. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). The following statements are equivalent:
(a) T is weakly mixing.
(b) For every A,B ∈ ℬ, there is a set J(A,B) ⊆ ℤ+ of density zero such that

lim
J(A,B) ̸∋n→∞

μ(T−n(A) ∩ B) = μ(A)μ(B).

(c) For every A,B ∈ ℬ,

lim
n→∞

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)]2 = 0.

Proof. Apply Theorem 8.3.6 with an = μ(T−n(A) ∩ B) − μ(A)μ(B).

Corollary 8.3.7 offers an intuitive view of weakly mixing systems: a system is
weakly mixing if for every measurable set A, the events T−n(A), n ∈ ℕ, become
asymptotically independent of any other measurable set B, as long as we overlook a
few instances of time. The avoided times naturally depend on both A and B as well as
T and μ.

Let us finish with the relation between a weakly mixing system and the product
of that system with itself.

Theorem 8.3.8. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). The following statements are equivalent:
(a) T is weakly mixing.
(b) T × T is ergodic.
(c) T × T is weakly mixing.

Proof. Let us first show that (a)⇒(c). To that end, let A,B,C,D ∈ ℬ and, using Corol-
lary 8.3.7, let J1 and J2 be sets of density zero such that

lim
J1 ̸∋n→∞

μ(T−n(A ∩ B)) = μ(A)μ(B) and lim
J2 ̸∋n→∞

μ(T−n(C ∩ D)) = μ(C)μ(D).

Then

lim
J1∪J2 ̸∋n→∞

(μ × μ)((T × T)−n(A × C) ∩ (B × D))

= lim
J1∪J2 ̸∋n→∞

(μ × μ)((T−n(A) × T−n(C)) ∩ (B × D))

= lim
J1∪J2 ̸∋n→∞

(μ × μ)((T−n(A) ∩ B) × (T−n(C) ∩ D))

= lim
J1∪J2 ̸∋n→∞

μ(T−n(A) ∩ B) ⋅ μ(T−n(C) ∩ D)

= μ(A)μ(B) ⋅ μ(C)μ(D) = μ(A)μ(C) ⋅ μ(B)μ(D)
= (μ × μ)(A × C) ⋅ (μ × μ)(B × D).
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Thanks to Theorem 8.3.6, we deduce that

lim
n→∞

n−1
∑
j=0

(μ × μ)((T × T)
−j(A × C) ∩ (B × D))

−(μ × μ)(A × C) ⋅ (μ × μ)(B × D) = 0.

Since the collection of measurable rectangles {E × F : E, F ∈ ℬ} forms a semialgebra
that generates ℬ × ℬ, Lemma 8.3.2 allows us to conclude that T × T is weakly mixing.

That (c)⇒(b) is an immediate consequence of Lemma 8.3.3.
It only remains to show that (b)⇒(a). To that end, let A,B ∈ ℬ. We aim to show

that limn→∞
1
n ∑

n−1
j=0 [μ(T

−j(A) ∩ B) − μ(A)μ(B)]2 = 0. Applying Lemma 8.2.16 to T × T
and the rectangles A × X and B × X, we get

1
n

n−1
∑
j=0

μ(T−j(A) ∩ B) = 1
n

n−1
∑
j=0
(μ × μ)((T × T)−j(A × X) ∩ (B × X))

→
n→∞
(μ × μ)(A × X) ⋅ (μ × μ)(B × X) = μ(A)μ(B).

Applying the same lemma to the rectangles A × A and B × B, we obtain

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B)]2 = 1

n

n−1
∑
j=0
(μ × μ)((T × T)−j(A × A) ∩ (B × B))

→
n→∞
(μ × μ)(A × A) ⋅ (μ × μ)(B × B) = μ(A)2μ(B)2.

Thus

1
n

n−1
∑
j=0
[μ(T−j(A) ∩ B) − μ(A)μ(B)]2

=
1
n

n−1
∑
j=0
([μ(T−j(A) ∩ B)]2 − 2μ(T−j(A) ∩ B)μ(A)μ(B) + μ(A)2μ(B)2)

→
n→∞

μ(A)2μ(B)2 − 2μ(A)2μ(B)2 + μ(A)2μ(B)2 = 0.

Therefore, T is weakly mixing according to Corollary 8.3.7.

8.3.2 Mixing

We now investigate a stronger mixing form.

Definition 8.3.9. Let T : X → X be ameasure-preserving dynamical system on a prob-
ability space (X,ℬ, μ). The system T is said to bemixing if

lim
n→∞

μ(T−n(A) ∩ B) = μ(A)μ(B), ∀A,B ∈ ℬ. (8.26)
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Like for ergodicity and weak mixing, to ascertain whether a system is mixing it
suffices to check that it is mixing on a semialgebra that generates the σ-algebra.

Lemma 8.3.10. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). If ℬ = σ(𝒮) for some semialgebra 𝒮, then T is mixing if and only if
relation (8.26) holds for all A,B ∈ 𝒮.

Proof. The proof, which goes along similar lines to that of Lemma 8.2.17, is left as an
exercise.

Lemma 8.3.11. If T : X → X is a mixing transformation on a probability space (X,ℬ, μ),
then T is weakly mixing (and therefore ergodic).

Proof. This is immediate from the definitions of weak mixing and mixing.

Just as was the case for weakly mixing systems, we have the following character-
ization of mixing systems.

Lemma 8.3.12. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,ℬ, μ). The following statements are equivalent:
(a) T is mixing.
(b) For all f , g ∈ L2(μ),

lim
n→∞
∫
X

(f ∘ Tn) ⋅ g dμ = ∫
X

f dμ∫
X

g dμ.

Proof. The proof is almost identical to that of Lemma 8.3.5 and is left to the reader.

Example 8.3.13. In Example 8.2.32, we proved that the shift map σ is ergodic with
respect to the product measure μP. In particular, we showed that for every pair A,B of
cylinder sets, μP(σ−n(A) ∩ B) = μP(A)μP(B) as long as n is large enough. It is thus clear
that σ is mixing, according to Lemma 8.3.10.

Remark 8.3.14. There are several examples of dynamical systems which are weakly
mixingbut notmixing. For instance, Katok [32] showed that all interval exchange trans-
formations are not mixing, whereas Avila and Forni [6] later proved that almost all
of these transformations are weakly mixing. Interval exchange transformations are a
very nice class of examples whichwere first introduced by Ja. G. Sinai in a series of lec-
tures in Russian at Erivan State University in 1973 and were introduced in a published
paper in English by Keane in [34]. Thesemaps are simple to define, exhibit interesting
ergodic properties, and turn up in many seemingly surprising areas of mathematics.
The basic idea is the following: Partition a bounded interval I ⊆ ℝ into finitely many
subintervals and define a bijective map from I to I that is a translation on each subin-
terval. The idea is best grasped with the aid of an illustration. See Figure 8.1.
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Figure 8.1: An example of an interval exchange transformation.

These maps are discontinuous at finitely many points. We will not delve into their dy-
namical properties. In addition to the papers mentioned above, the interested reader
might consult [24, 45, 53, 74] and the references therein.

8.3.3 K-mixing

Before defining K-mixing, the reader who needs a quick refresher about the condi-
tional expectation function with respect to the σ-algebra generated by a countable
measurable partition is invited to consult Example A.1.62. As partitions are covers, the
concepts, operations, and properties outlined in Section 7.1 will all be relevant here. It
is worth noticing that all the operations introduced in that section result in countable
measurable partitions. For instance, the join of two countablemeasurable partitions is
a countable measurable partition; likewise, the preimage of a countable measurable
partition is a countable measurable partition. Furthermore, note that for partitions,
the relation ≺ is antisymmetric, that is, α ≺ β ≺ α ⇐⇒ α = β (cf. Remark 7.1.6).

Definition 8.3.15. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and let α
be a countable measurable partition of X. For every n ∈ ℕ, define

α∞n := ⋃
m>n

αm
n .

Given a probability measure μ on (X,𝒜), denote by σc(α∞n ) the completed σ-algebra
generated by α∞n . (For more information about the completion of a σ-algebra, see Ex-
ercises 8.5.7–8.5.8.) The tail σ-algebra of α with respect to T is defined as

TailT (α) :=
∞

⋂
n=0

σc(α
∞
n ).

Definition 8.3.16. A measurable transformation T : (X,𝒜, μ) → (X,𝒜, μ) is said to be
K-mixing if

lim
n→∞

sup
A∈σc(α∞n )

μ(A ∩ B) − μ(A)μ(B)
 = 0

for every set B ∈ 𝒜 and every finite measurable partition α of X.
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The letter K is in honor of Kolmogorov,whofirst introduced this concept. K-mixing
systems are simply referred to as K-systems. K-mixing is the strongest of all mixing
properties discussed in this chapter.

Theorem 8.3.17. Each K-system is mixing, and hence weakly mixing and ergodic.

Proof. Suppose thatT : (X,𝒜, μ)→ (X,𝒜, μ) is a K-mixing transformation. FixA,B ∈ 𝒜
and consider themeasurable partitionα = {A,X\A}. ThenT−n(A) ∈ α∞n for every n ∈ ℕ
and, therefore, by the K-mixing property,

lim
n→∞
μ(T
−n(A) ∩ B) − μ(A)μ(B) ≤ lim

n→∞
sup
F∈α∞n

μ(F ∩ B) − μ(F)μ(B)
 = 0.

Hence, T is mixing.

We now give a characterization of K-systems which, as well as being interesting
in its own right, will be used later to show that Rokhlin’s natural extension of every
metrically exact system is K-mixing.

Theorem 8.3.18. Let T : (X,𝒜, μ) → (X,𝒜, μ) be a measurable transformation and
𝒩 the σ-algebra of all sets of null or full μ-measure. Then T is K-mixing if and only if
TailT (α) ⊆ 𝒩 for every finite measurable partition α of X.

Proof. Let B ∈ 𝒜 and α a finite measurable partition of X. Suppose that TailT (α) ⊆ 𝒩 .
Combining Example A.1.61 with Proposition A.1.60(f,e) reveals that

E(1B|TailT (α)) = E(E(1B|𝒩 ) | TailT (α)) = E(μ(B) | TailT (α)) = μ(B).

Fix n ≥ 0. For every A ∈ σc(α∞n ), we have

μ(A ∩ B) − μ(A)μ(B)
 =

∫
A

1B dμ − ∫
A

μ(B) dμ


=

∫
A

[E(1B|σc(α
∞
n )) − μ(B)] dμ



≤ ∫
X

E(1B|σc(α
∞
n )) − μ(B)

 dμ.

So

sup
A∈σc(α∞n )

μ(A ∩ B) − μ(A)μ(B)
 ≤ ∫

X

E(1B|σc(α
∞
n )) − μ(B)

 dμ. (8.27)

As (σc(α∞n ))
∞
n=0 is a descending sequence of σ-algebras whose intersection is TailT (α),

Theorem A.1.68 affirms that the sequence (E(1B|σc(α∞n )))
∞
n=0 converges in L1(μ) and
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pointwise μ-a. e. to E(1B|TailT (α)), which equals μ(B). It follows from (8.27) and
Lebesgue’s dominated convergence theorem (Theorem A.1.38) that

lim
n→∞

sup
A∈σc(α∞n )

μ(A ∩ B) − μ(A)μ(B)
 ≤ limn→∞

∫
X

E(1B|σc(α
∞
n )) − μ(B)

 dμ

= ∫
X

 limn→∞
E(1B|σc(α

∞
n )) − μ(B)

 dμ

= 0.

Since B and α are arbitrary, T is K-mixing and one implication is proved.
In order to prove the converse, fix C ∈ TailT (α). Then C ∈ σc(α∞n ) for every n ≥ 0

and employing the definition of K-mixing with B = C, we obtain that

μ(C) − μ(C)
2 =
μ(C ∩ C) − μ(C)μ(C)

 ≤ sup
A∈σc(α∞n )

μ(A ∩ C) − μ(A)μ(C)
 →n→∞ 0.

Hence, μ(C) = μ(C)2 and it follows that either μ(C) = 0 or μ(C) = 1. So TailT (α) ⊆ 𝒩 .

We will use this theorem in a moment. First, we recall the notion of Lebesgue
space.

Definition 8.3.19. A Borel probability space (X,ℬ(X), μ) is said to be a Lebesgue space
if X is a Polish space (i. e., X is completely metrizable and separable) and if μ is a com-
plete measure.

Proposition 8.3.20. Let T : X → X be a measure-preserving automorphism on a
Lebesgue space (X,ℬ(X), μ). Assume that there exists a σ-algebra ℬ ⊆ ℬ(X) with the
following properties:
(a) T−1(ℬ) ⊆ ℬ.
(b) σc(⋃

∞
n=0 T

n(ℬ)) = ℬ(X).
(c) ⋂∞n=0 T

−n(ℬ) ⊆ 𝒩 , where𝒩 is the σ-algebra of all sets of null or full μ-measure.

Then T is K-mixing.

Before proving this proposition, we need the following fairly nontrivial lemma,
which can be found as Lemma 1 in Section 8 of Cornfeld, Fomin, and Sinai [16].

Lemma 8.3.21. Let T : X → X be a measure-preserving automorphism of a Lebesgue
space (X,ℬ(X), μ). If𝒜andℬ are sub-σ-algebras ofℬ(X) such that𝒜 ⊆ σc(⋃

∞
n=−∞ T

n(ℬ)),
then TailT (𝒜) ⊆ TailT (ℬ), where

TailT (𝒞) :=
∞

⋂
n=0

σc(
∞

⋃
k=n

T−k(𝒞))

for any sub-σ-algebra 𝒞 of ℬ(X).
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Proof of Proposition 8.3.20. Wewill useTheorem8.3.18 to establish theK-mixingprop-
erty of T. Let α be a finite Borel partition of X. Then α generates a finite sub-σ-algebra
𝒜 ofℬ(X). By hypotheses (b) and (a), we have𝒜 ⊆ σc(⋃

∞
n=0 T

n(ℬ)) = σc(⋃
∞
n=−∞ T

n(ℬ)).
Using Lemma 8.3.21 and hypotheses (a) and (c), we obtain that

TailT (𝒜) ⊆ TailT (ℬ) =
∞

⋂
n=0

σc(
∞

⋃
k=n

T−k(ℬ)) =
∞

⋂
n=0

σc(T
−n(ℬ)) ⊆ 𝒩 .

The result follows from Theorem 8.3.18.

Wewill see later that all two-sidedBernoulli shifts areK-mixing (cf. Example 8.1.14
and Exercise 8.5.22). This will be shown in Subsection 13.9.5, where we will treat the
muchmore general case of Gibbsmeasures for Hölder continuous potentials. The first
step in this direction is provided in the following section. In the meantime, see Exer-
cise 8.5.23 for a direct proof based on Proposition 8.3.20.

8.4 Rokhlin’s natural extension

Let T : X → X be a surjective measure-preserving dynamical system on a Lebesgue
space (X,ℱ , μ) (see Definition 8.3.19). Consider the set of sequences

X̃ := {(xn)
∞
n=0 ∈ X

∞ : T(xn+1) = xn, ∀n ≥ 0} ⊆ X
∞.

For every k ≥ 0, let πk : X̃ → X denote the projection onto the kth coordinate of X̃, that
is,

πk((xn)
∞
n=0) := xk .

Observe that T ∘ πk+1 = πk for all k ≥ 0. Equip the set X̃ with the smallest σ-algebra ℱ̃
that makes every projection πk : X̃ → X continuous.

Note that in this construction the surjectivity of T is not really an essential as-
sumption. Indeed, since X is a Lebesgue space, the sets Tn(X), n ≥ 0, are measurable.
Because μ is T-invariant, it turns out that μ(Tn(X)) = 1 for all n ≥ 0. As the sets Tn(X),
n ≥ 0, form a descending sequence, it follows that μ(⋂∞n=0 T

n(X)) = 1. Finally, the map
T : ⋂∞n=0 T

n(X)→ ⋂∞n=0 T
n(X) is clearly surjective.

Definition 8.4.1. Rokhlin’s natural extension of T is the measurable transformation T̃ :
X̃ → X̃ defined by

T̃((xn)
∞
n=0) := (T(x0), x0, x1, x2, . . .).

Theorem 8.4.2. Rokhlin’s natural extension has the following properties:
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(a) The transformation T̃ : X̃ → X̃ is invertible and its inverse T̃−1 : X̃ → X̃ is (the
restriction of) the left shift map

T̃−1((xn)
∞
n=0) := (xn+1)

∞
n=0.

(b) For each n ≥ 0, the following diagram commutes:

X̃ T̃
→ X̃

πn
↑↑↑↑↓

↑↑↑↑↓
πn

X →
T

X

(c) There exists a unique probability measure μ̃ on the space (X̃, ℱ̃) such that

μ̃ ∘ π−1n = μ, ∀n ≥ 0.

(d) The probability measure μ̃ is T̃-invariant.

Proof. Proof of properties (a) and (b) is left as an exercise. Property (c) follows
directly from the Daniel–Kolmogorov consistency theorem (see Theorem 3.6.4 in
Parthasarathy [55]). Regarding property (d), let A ∈ ℱ . For every n ≥ 0, it follows
from (b) and (c) that

μ̃ ∘ T̃−1(π−1n (A)) = μ̃ ∘ (πn ∘ T̃)
−1(A) = μ̃ ∘ (T ∘ πn)

−1(A)
= μ̃ ∘ π−1n ∘ T

−1(A) = μ ∘ T−1(A)
= μ(A) = μ̃(π−1n (A)).

The family {π−1n (A) : A ∈ ℱ , n ≥ 0} forms a π-system that generates ℱ̃ . It ensues from
Lemma A.1.26 that μ̃ ∘ T̃−1 = μ̃.

This theorem sometimes allows us to replace the μ-measure-preserving dynami-
cal system T, which is not necessarily invertible, with the μ̃-measure-preserving auto-
morphism T̃ : X̃ → X̃. This turns out to be of great advantage in some proofs, since
dealing with invertible transformations is frequently easier than dealing with nonin-
vertible ones. Natural extensions share many properties with their original maps. An
example of this is given in the following theorem.

Theorem 8.4.3. The natural extension measure μ̃ on X̃ from Theorem 8.4.2 is ergodic
with respect to T̃ if and only if the measure μ is ergodic with respect to T.

Proof. Suppose first that μ is not ergodic with respect to T : X → X. Then there exists
a set A ∈ ℱ such that T−1(A) = A and 0 < μ(A) < 1. It follows from Theorem 8.4.2(c)
that μ̃(π−10 (A)) = μ(A) ∈ (0, 1). Furthermore, it ensues from Theorem 8.4.2(b) that

T̃−1(π−10 (A)) = (π0 ∘ T̃)
−1(A) = (T ∘ π0)

−1(A) = π−10 (T
−1(A)) = π−10 (A).

Therefore, μ̃ is not ergodic with respect to T̃.
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Now assume that T : X → X is ergodic with respect to μ. We want to show that T̃ :
X̃ → X̃ is then ergodic with respect to μ̃. Let F ∈ L1(X̃, ℱ̃ , μ̃) be a T̃-invariant function.
According to Theorem 8.2.18, it suffices to demonstrate that F is μ̃-a. e. constant.

As T is ergodic, the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14)
yields that (to lighten notation, we use μ(g) := ∫X g dμ)

lim
k→∞


1
k

k−1
∑
j=0

g ∘ T j − μ(g)
L1(μ)
= 0

for every function g ∈ L1(X,ℱ , μ). Invoking Theorem 8.4.2, this implies that

lim
k→∞


1
k

k−1
∑
j=0

G ∘ T̃ j − μ̃(G)
L1(μ̃)
= 0 (8.28)

for every G ∈ L1(X̃, ℱ̃ , μ̃) of the form g ∘ πn, where g ∈ L1(X,ℱ , μ) and n ≥ 0.
Fix n ≥ 0 momentarily. The function E(F|ℱ̃n) depends only on the nth coordinate

of a point in X̃ and can thus be expressed as fn ∘ πn for some fn ∈ L1(X,ℱ , μ). Setting
g = fn and G = fn ∘ πn = E(F|ℱ̃n), it follows that μ̃(G) = μ̃(F) and from (8.28) that

lim
k→∞


1
k

k−1
∑
j=0

E(F|ℱ̃n) ∘ T̃
j − μ̃(F)
L1(μ̃)
= 0. (8.29)

Now, for every n ≥ 0, let ℱ̃n := π−1n (ℱ). Since T ∘ πn+1 = πn, it turns out that

ℱ̃n+1 = π
−1
n+1(ℱ) ⊇ π

−1
n+1(T
−1(ℱ)) = (T ∘ πn+1)

−1(ℱ) = π−1n (ℱ) = ℱ̃n.

Thus (ℱ̃n)
∞
n=0 is an ascending sequence of sub-σ-algebras of ℱ̃ . By definition, ℱ̃ is the

σ-algebra generated by that sequence and we know that F = E(F|ℱ̃). The martingale
convergence theorem (Theorem A.1.67) then affirms that

lim
n→∞
F − E(F|ℱ̃n)

L1(μ̃) = 0. (8.30)

But for every j ≥ 0 and every n ∈ ℕ, it ensues from the T̃-invariance of μ̃ that

F ∘ T̃
j − E(F|ℱ̃n) ∘ T̃

jL1(μ̃) =
F − E(F|ℱ̃n)

L1(μ̃). (8.31)

Fix ε > 0. By virtue of (8.30)–(8.31), there exists N ∈ ℕ such that

F ∘ T̃
j − E(F|ℱ̃n) ∘ T̃

jL1(μ̃) ≤ ε

for every j ≥ 0 and every n ≥ N . Therefore, by the triangle inequality,


1
k

k−1
∑
j=0

F ∘ T̃ j − 1
k

k−1
∑
j=0

E(F|ℱ̃n) ∘ T̃
j
L1(μ̃)
≤ ε
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for every k ∈ ℕ and every n ≥ N . Given that F is T̃-invariant, this reduces to


F − 1

k

k−1
∑
j=0

E(F|ℱ̃n) ∘ T̃
j
L1(μ̃)
≤ ε

for every k ∈ ℕ and every n ≥ N .
Fixing n ≥ N and letting k → ∞, we deduce from this and (8.29) that ‖F −

μ̃(F)‖L1(μ̃) ≤ ε. Therefore F = μ̃(F) in L1(μ̃). Consequently, F = μ̃(F) μ̃-almost every-
where. That is, F is μ̃-a. e. constant.

We now introduce the concept of metric exactness.

Definition 8.4.4. A measure-preserving dynamical system T : X → X on a Lebesgue
space (X,ℱ , μ) is said to be metrically exact if for each A ∈ ℱ such that μ(A) > 0 we
have

lim
n→∞

μ(Tn(A)) = 1.

Note that each set Tn(A) is measurable since T is a measurable transformation of a
Lebesgue space.

Metric exactness of a system can be characterized in terms of the tail σ-algebra of
the system.

Proposition 8.4.5. Let T : X → X be a measure-preserving dynamical system on a
Lebesgue space (X,ℱ , μ). Then T is metrically exact if and only if the tail σ-algebra
TailT (ℱ) = ⋂

∞
n=0 T
−n(ℱ) is contained in the σ-algebra 𝒩 of all sets of null or full

μ-measure.

Proof. Suppose that T is metrically exact and let F ∈ TailT (ℱ). By definition of the tail
σ-algebra, there exists a sequence of sets (Fn)∞n=0 in ℱ such that F = T−n(Fn) for each
n ≥ 0. Suppose that μ(F) > 0. Then

1 = lim
n→∞

μ(Tn(F)) = lim
n→∞

μ(Tn(T−n(Fn))) = lim
n→∞

μ(Fn) = lim
n→∞

μ ∘ T−n(Fn) = μ(F).

Thus TailT (ℱ) consists only of sets of measure zero and one. This proves one implica-
tion.

Nowsuppose that TailT (ℱ) ⊆ 𝒩 . FixF ∈ ℱ withμ(F) > 0. For every k ≥ 0, consider
the measurable sets

Fk :=
∞

⋃
n=k

T−n(Tn(F)) ⊇ F and F∞ :=
∞

⋂
k=0

Fk ⊇ F.

We claim that F∞ ∈ TailT (ℱ). Indeed, by definition, the sequence of sets (Fk)∞k=0 is
descending and, therefore,

μ(F∞) = lim
k→∞

μ(Fk) and F∞ =
∞

⋂
k=j

Fk , ∀j ≥ 0.
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If k ≥ j ≥ 0, then

Fk =
∞

⋃
n=k

T−n(Tn(F)) =
∞

⋃
i=0

T−k(T−i(Tk+i(F))) = T−j(T−(k−j)(
∞

⋃
i=0

T−i(Tk+i(F)))).

To shorten notation, let Aj,k := T−(k−j)(⋃
∞
i=0 T
−i(Tk+i(F))). Then

F∞ =
∞

⋂
k=j

T−j(Aj,k) = T
−j(
∞

⋂
k=j

Aj,k).

Hence, for every j ≥ 0, it follows that F∞ ∈ T−j(ℱ), or, equivalently, F∞ ∈ TailT (ℱ).
Since F∞ ⊇ F and μ(F) > 0, our hypothesis that TailT (ℱ) ⊆ 𝒩 implies μ(F∞) = 1. So

μ(F0) = 1. (8.32)

However, as T−1(T(A)) ⊇ A for every subset A of X, we observe that

T−(n+1)(Tn+1(F)) = T−n(T−1(T(Tn(F)))) ⊇ T−n(Tn(F)),

that is, the sequence of sets (T−n(Tn(F)))∞n=0 is ascending to their union F0. Using
this, (8.32) and the T-invariance of μ, we deduce that

1 = μ(F0) = lim
n→∞

μ(T−n(Tn(F))) = lim
n→∞

μ(Tn(F)).

As F ∈ ℱ was chosen arbitrarily, the transformation T is metrically exact.

We can now demonstrate that Rokhlin’s natural extension of anymetrically exact
system is K-mixing.

Theorem 8.4.6. Let T : X → X be a measure-preserving dynamical system on a
Lebesgue space (X,ℱ , μ). If T is metrically exact, then Rokhlin’s natural extension
T̃ : X̃ → X̃ is K-mixing.

Proof. Let

ℬ := π−10 (ℱ) ⊆ ℱ̃ .

We shall verify that all the hypotheses of Proposition 8.3.20 hold. First,

T̃−1(ℬ) = T̃−1(π−10 (ℱ)) = (π0 ∘ T̃)
−1(ℱ) = (T ∘ π0)

−1(ℱ) = π−10 (T
−1(ℱ)) ⊆ π−10 (ℱ) = ℬ.

So condition (a) of Proposition 8.3.20 is satisfied. In order to show that condition (b)
holds, note that T̃n(ℬ) = T̃n ∘ π−10 (ℱ) = π−1n (ℱ) for all n ≥ 0. Recall also that ℱ̃ is
the smallest σ-algebra containing all of the σ-algebras π−1n (ℱ). Thus condition (b) is
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satisfied. Finally, with𝒩 (resp.,𝒩 ) denoting the sub-σ-algebra consisting of the null
and full μ-measure sets (resp., μ̃-measure sets), we obtain that

∞

⋂
n=0

T̃−n(ℬ) =
∞

⋂
n=0

T̃−n(π−10 (ℱ)) =
∞

⋂
n=0
(π0 ∘ T̃

n)−1(ℱ)

=
∞

⋂
n=0
(Tn ∘ π0)

−1(ℱ) =
∞

⋂
n=0

π−10 ∘ T
−n(ℱ)

= π−10 (
∞

⋂
n=0

T−n(ℱ)) = π−10 (TailT (ℱ)) ⊆ π
−1
0 (𝒩 ) ⊆ 𝒩 ,

where the first set inclusion comes from Proposition 8.4.5 and the second from Theo-
rem 8.4.2(c). So condition (c) holds. Apply Proposition 8.3.20 to conclude.

Finally, we provide an explicit description of the Rokhlin’s natural extensions of a
very important class of noninvertiblemeasure-preserving dynamical systems, namely
the one-sided Bernoulli shifts with finite sets of states, which were introduced in Ex-
ample 8.1.14.

Let E be a finite set. Define the map h : Ẽℕ → Eℤ by

(h(ω))n = {
(ω0)n if n ≥ 0
(ω−n)0 if n < 0

A straightforward inspection shows that h is bijective and that the following diagram
commutes:

Ẽℕ σ̃
→ Ẽℕ

h
↑↑↑↑↓

↑↑↑↑↓h

Eℤ →
σ

Eℤ

In addition, if Ẽℕ and Eℤ are endowed with their respective product (Tychonov)
topologies, then the map h is a homeomorphism, and thus is a measurable isomor-
phism if Ẽℕ and Eℤ are equipped with the corresponding Borel σ-algebras.

Furthermore, if E has at least two elements and P : E → [0, 1] is a probability vec-
tor, let μ+P be the corresponding one-sided Bernoulli measure on Eℕ introduced in Ex-
ample 8.1.14 and denoted there just by μP. Likewise, let μP be the two-sided Bernoulli
measure on Eℤ introduced in Exercise 8.5.22.

For every k ≤ 0 and n ≥ 0, the cylinder [ωkωk+1 . . .ω−1ω0ω1 . . .ωn] ⊆ Eℤ satisfies

h−1([ωk . . .ωn]) = [ω0 . . .ωn] × [ω−1] × [ω−2] × ⋅ ⋅ ⋅ × [ωk] ×
∞

∏
j=−k+1

E.
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Consequently,

μ̃+P(h
−1([ωk . . .ωn])) =

n
∏
i=k

Pi = μP([ωk . . .ωn]).

Since all such cylinders form a π-system generating the Borel σ-algebra on Eℤ, we
conclude that

μ̃+P ∘ h
−1 = μP .

We have therefore proved the following.

Theorem 8.4.7. If E is a finite set having at least two elements and P : E → [0, 1] is a
probability vector, then the Rokhlin’s natural extension of the one-sided Bernoulli shift
(σ : Eℕ → Eℕ, μP) is metrically (i. e. measure-theoretically) isomorphic to the two-sided
Bernoulli shift (σ : Eℤ → Eℤ, μP).

8.5 Exercises

Note: Exercises 8.5.1–8.5.19 pertain to measure theory. They use the terminology and
notation introduced in Appendix A. The reader who would rather just concentrate on
ergodic theory may skip those exercises.

Exercise 8.5.1. Let X be a set and 𝒞 be a finite collection of subsets of X.
(a) Show that the algebra𝒜(𝒞) generated by 𝒞 is finite.

Hint: First, identify the elements of𝒜(𝒞)when 𝒞 consists of two disjoint sets. Gen-
eralize your argument to the case in which 𝒞 consists of a finite number of disjoint
sets. Then reduce the general case of a finite collection 𝒞 to the case of an equiva-
lent finite collection of disjoint sets.

(b) Deduce that σ(𝒞) = 𝒜(𝒞).

Exercise 8.5.2. Let X be a set and Y ⊆ X. What is𝒜({Y})? And σ({Y})?

Exercise 8.5.3. Let X be an infinite set. Show that

{Y ⊆ X : either Y or X \ Y is finite}

is an algebra but not a σ-algebra on X.

Exercise 8.5.4. Let X be an uncountable set. Show that

{Y ⊆ X : either Y or X \ Y is countable}

is a σ-algebra on X. It is often called the countable-cocountable σ-algebra.
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Exercise 8.5.5. Let X be a set and Y ⊆ X. If ℬ is a σ-algebra on X, prove that

ℬ|Y = {B ∩ Y : B ∈ ℬ}

is a σ-algebra on Y .

Exercise 8.5.6. Let (X,𝒜, μ) be a measure space. Show that

{A ∈ 𝒜 : μ(A) = 0 or μ(X\A) = 0}

is a sub-σ-algebra of𝒜.

Exercise 8.5.7. Let (X,ℬ, μ) be a measure space and

𝒩 := {N ∈ ℬ | μ(N) = 0}

be the collection of all sets of measure zero, sometimes called null sets. Define

𝒩 := {N ⊆ X | ∃N ∈ 𝒩 such that N ⊆ N} = ⋃
N∈𝒩

𝒫(N).

The completion of (X,ℬ, μ) is the measure space (X,ℬ, μ), where

ℬ := {B ∪ N |B ∈ ℬ, N ∈ 𝒩 }

and

μ(B) = μ(B) whenever B = B ∪ N for some B ∈ ℬ and N ∈ 𝒩 .

(a) Prove that the space (X,ℬ, μ) is well-defined (namely, that ℬ is a σ-algebra on X
and that μ is well-defined).

(b) Show that (X,ℬ, μ) is an extension of the space (X,ℬ, μ) (i. e., ℬ ⊇ ℬ and μ = μ on
ℬ).

(c) Observe that the space (X,ℬ, μ) is complete.

Exercise 8.5.8. Let (X,ℬ, μ) be a measure space and let

ℬ∗ := {E ⊆ X | ∃A,B ∈ ℬ such that A ⊆ E ⊆ B and μ(B\A) = 0}

be the collection of all subsets of X that are squeezed by somemeasurable sets whose
difference is of measure zero. Define

μ∗(E) = μ(A) whenever ∃A,B ∈ ℬ such that A ⊆ E ⊆ B and μ(B\A) = 0.

Prove that (X,ℬ∗, μ∗) is the completion of (X,ℬ, μ) (cf. Exercise 8.5.7).
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Exercise 8.5.9. Show that Lemma A.1.26 does not hold for infinite measures in gen-
eral.
Hint: Consider the family of all Borel subsets of ℝ which do not have 0 for element.

Exercise 8.5.10. In this exercise, we look at the set-theoretic properties of the symmet-
ric difference operation. Let X be a set. Let A,B,C ⊆ X. Let T : X → X be a map. Prove
the following statements:
(a) A△ B = B△ A.
(b) If A ∩ B = 0 then A△ B = A ∪ B.
(c) (X\A)△ (X\B) = A△ B.
(d) T−1(A△ B) = T−1(A)△ T−1(B).
(e) A△ C ⊆ (A△ B) ∪ (B△ C).

This statement generalizes to any finite number of intermediaries, that is, An △
A0 ⊆ ⋃

n−1
k=0(Ak+1 △ Ak).

(f) A△ (B ∪ C) ⊆ (A△ B) ∪ (A△ C).
More generally, (⋃i∈I Ai)△ (⋃i∈I Bi) ⊆ ⋃i∈I (Ai △ Bi) for any index set I.

(g) A△ (B ∩ C) ⊆ (A△ B) ∪ (A△ C).
More generally, (⋂i∈I Ai)△ (⋂i∈I Bi) ⊆ ⋃i∈I (Ai △ Bi) for any index set I.

Exercise 8.5.11. Let (X,𝒜, μ) be a probability space and A,B ∈ 𝒜. Prove the following
statements:
(a) |μ(A) − μ(B)| ≤ μ(A△ B).
(b) If μ(A△ B) = 0 then μ(A) = μ(B).

Exercise 8.5.12. Let (X,𝒜, μ) be a probability space andA,B ∈ 𝒜. Prove that μ(A∩B) ≥
μ(A) + μ(B) − 1.

Exercise 8.5.13. Let (X,𝒜, μ) be a measure space. Show that if (fn)∞n=1 is a sequence of
nonnegative measurable functions, then

∫
X

∞

∑
n=1

fn dμ =
∞

∑
n=1
∫
X

fn dμ.

Exercise 8.5.14. The purpose of this exercise is to establish that a sequence of L1 func-
tions that converges pointwise need not converge in L1. Construct a sequence of func-
tions fn : [0, 1]→ [0,∞), n ∈ ℕ, with the following properties:
(a) Each function is continuous.
(b) The sequence converges pointwise to the constant function 0.
(c) ∫[0,1] fn dλ = 1 for all n ∈ ℕ, where λ is the Lebesgue measure on [0, 1].

Deduce that the sequence does not converge in L1([0, 1],ℬ([0, 1]), λ).

Exercise 8.5.15. Find a sequence (fn)∞n=1 of L
1(X,𝒜, μ) functions with the following

properties:
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(a) The sequence converges pointwise to a function f .
(b) limn→∞ ∫X fn dμ = ∫X f dμ.
(c) limn→∞ ∫X |fn| dμ ̸= ∫X |f | dμ.

Exercise 8.5.16. Show that on finite measure spaces Theorem A.1.41 is a generaliza-
tion of Lebesgue’s dominated convergence theorem (Theorem A.1.38).

Exercise 8.5.17. Construct a sequence of integrable functions that converges in L1 to
an integrable function but that does not converge pointwise almost everywhere.
Hint: Use indicator functions of carefully selected subintervals of [0, 1].

Exercise 8.5.18. Let (X,𝒜, μ) be a probability space, and letℬ be a sub-σ-algebra of𝒜.
Let ℬ be the completion of ℬ in𝒜, that is,

ℬ := {A ∈ 𝒜 | ∃B ∈ ℬ such that μ(A△ B) = 0}.

Show that ℬ is a sub-σ-algebra of𝒜 for which the following two properties hold:
(a) ℬ ⊇ ℬ.
(b) E(φ|ℬ) = E(φ|ℬ).

Exercise 8.5.19. Let (X,𝒜, μ) be a probability space, and letℬ and 𝒞 be sub-σ-algebras
of𝒜. Say that ℬ ≈ 𝒞 if ℬ ⊆ 𝒞 and 𝒞 ⊆ ℬ (cf. Exercise 8.5.18). Show that E(φ|ℬ) = E(φ|𝒞)
if ℬ ≈ 𝒞.

Exercise 8.5.20. Let ℬ(ℝ) denote the Borel σ-algebra of ℝ. The collection

ℬ := {B ∈ ℬ(ℝ) | B = −B}

of all Borel sets that are symmetric with respect to the origin forms a sub-σ-algebra of
ℬ(ℝ). Let λ denote the Lebesgue measure on ℝ and let φ ∈ L1(ℝ,ℬ(ℝ), λ). Prove that

E(φ|ℬ)(x) = 1
2
[φ(x) + φ(−x)], ∀x ∈ ℝ.

Hint: First show that E(φ|ℬ)must be an even function. Then use the fact that the trans-
formation T : ℝ→ ℝ defined by T(x) = −x is λ-invariant.

Exercise 8.5.21. Let T : (X,𝒜) → (Y ,ℬ) be a measurable transformation and μ be a
measure on (X,𝒜). Show that the set function μ ∘ T−1 is a measure on (Y ,ℬ).

Exercise 8.5.22. This exercise pertains to a two-sided version of Example 8.1.14. Let
(E,ℱ ,P) be a probability space. The product set Eℤ := ∏∞k=−∞ E is commonly equipped
with the product σ-algebra ℱℤ generated by the semialgebra of all (finite) cylinders
(also called rectangles), namely, givenm, n ∈ ℤ, withm ≤ n, and Em,Em+1, . . . ,En ∈ ℱ ,
the set

m−1
∏

k=−∞
E × Em × Em+1 × ⋅ ⋅ ⋅ × En ×

∞

∏
k=n+1

E = {τ ∈ Eℤ : τk ∈ Ek , ∀m ≤ k ≤ n}
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is called a cylinder. The product measure μP on ℱℤ is the unique probability measure
which confers to a cylinder the value

μP(
m−1
∏

k=−∞
E × Em × Em+1 × ⋅ ⋅ ⋅ × En ×

∞

∏
k=n+1

E) :=
n
∏
k=m

P(Ek). (8.33)

The existence and uniqueness of this measure can be established using Theo-
rem A.1.27, Lemma A.1.29 and Theorem A.1.28 successively. For more information, see
Halmos [27] (pp. 157–158) or Taylor [72] (Chapter III, Section 4).

It is easy to show that the left shift map σ : Eℤ → Eℤ, which is defined by
σ((τn)∞n=−∞) := (τn+1)

∞
n=−∞, preserves the productmeasureμP. Themeasure-preserving

dynamical system (σ : Eℤ → Eℤ, μP) is commonly referred to as a two-sided Bernoulli
shift with set of states E. In this book, primarily focused on noninvertible dynamical
systems, one-sided Bernoulli shifts will be of primer importance. However, in abstract
ergodic theory, two-sided Bernoulli shifts seem to have played a more prominent role
and they are encountered several times in this book, particularly in Sections 8.3.3, 8.4,
and 13.9.5.

From this point on, we assume that the original probability space is of the form
(E,ℱ ,P), where E is countable and ℱ is the σ-algebra 𝒫(E) of all subsets of E.

Let Eℤ− = ∏−1k=−∞ E and Eℤ+ = ∏∞k=0 E, so E
ℤ = Eℤ− × Eℤ+ . Accordingly, for any

τ ∈ Eℤ, write τ− := ⋅ ⋅ ⋅ τ−2τ−1 ∈ Eℤ− and τ+ := τ0τ1τ2 . . . ∈ Eℤ+ .
(a) Show that the family C = {Eℤ− × {ω}}ω∈Eℤ+ , that is, the family of sets consisting of

double-sided sequences having a common positive part, constitutes an uncount-
able measurable partition of Eℤ.

Let 𝒞 := σ(C) be the sub-σ-algebra of ℱℤ generated by the partition C. We aim to cal-
culate E(φ|𝒞) for any function φ ∈ L1(Eℤ,ℱℤ, μP).

For each n ≥ 0, consider the family of all n-cylinders

Cn := {E
ℤ− × {e0} × ⋅ ⋅ ⋅ × {en−1} ×

∞

∏
k=n

E : ek ∈ E, ∀0 ≤ k ≤ n − 1}.

(b) Prove that (Cn)∞n=0 is an ascending sequence of countable measurable partitions
of Eℤ.

(c) For every n ≥ 0, let 𝒞n := σ(Cn). Demonstrate that (𝒞n)∞n=0 is an ascending sequence
of sub-σ-algebras of ℱℤ.

(d) Let 𝒞∞ := σ(⋃
∞
n=0 Cn). Show that 𝒞 = 𝒞∞.

(e) Deduce that E(φ|𝒞) = limn→∞ E(φ|𝒞n).

For any given τ ∈ Eℤ andm, n ∈ ℤ such thatm ≤ n, let

[τ]nm =
m−1
∏

k=−∞
E × {τm} × {τm+1} × ⋅ ⋅ ⋅ × {τn} ×

∞

∏
k=n+1

E.
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(f) Establish that E(φ|𝒞)(τ) = limn→∞ E(φ|[τ]n−10 ) for every τ ∈ E
ℤ.

(g) Prove that the sequence of cylinder sets ([τ]n−10 )
∞
n=1 is descending and that

⋂∞n=1[τ]
n−1
0 = E

ℤ− × {τ+}.
(h) Deduce that limn→∞ μP([τ]n−10 ) = μP(E

ℤ− × {τ+}).
(i) Deduce further that limn→∞ ∫[τ]n−10

φdμP = ∫Eℤ−×{τ+} φdμP.
(j) Conclude that E(φ|𝒞)(τ) = E(φ|Eℤ− × {τ+}) for all τ ∈ Eℤ.

That is, you have showed that E(φ|𝒞) is constant, and is equal to the mean value of φ,
on each set of the form Eℤ− × {ω}, where ω ∈ Eℤ+ .

Exercise 8.5.23. LetE be afinite set having at least two elements, letP : E → [0, 1]be a
probability vector, and let (σ : Eℤ → Eℤ, μP) be the corresponding two-sided Bernoulli
shift described in Exercise 8.5.22. Provide a direct proof, based on Proposition 8.3.20,
that the automorphism (σ : Eℤ → Eℤ, μP) is K-mixing.

Hint: Consider the projection π+ : Eℤ → Eℕ defined by the formula π+(ω) = ω|∞0 .

Exercise 8.5.24. Let ℬ+ be the standard Borel σ-algebra on E∞ = Eℕ. Show that the
σ-algebra ℬ := π−1+ (ℬ+) on E

ℤ satisfies all the hypotheses of Proposition 8.3.20.

Exercise 8.5.25. The map G : [0, 1]→ [0, 1] defined by

G(x) := { 0 if x = 0
⟨ 1x ⟩ if x > 0,

where ⟨r⟩ denotes the fractional part of r, is called the Gauss map.
(a) Show that this map is not invariant under the Lebesgue measure λ on [0, 1].
(b) Prove that the Borel probability measure

μG(B) :=
1

log 2
∫
B

1
1 + x

dx

is G-invariant. The measure μG is known as the Gauss measure.

Exercise 8.5.26. Recall the Fareymap F : [0, 1]→ [0, 1] fromExample 1.2.3. Show that
the Borel probability measure

μF(B) := ∫
B

1
x
dx

is F-invariant, while the Lebesgue measure λ is not.

Exercise 8.5.27. Show that the Dirac point-mass δ0 is the only T-invariant Borel prob-
ability measure for the doubling map on the entire real line, that is, for T : ℝ → ℝ
defined by T(x) = 2x.
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Exercise 8.5.28. Find all T-invariant Borel probabilitymeasures for the squaringmap
on the entire real line, that is, for T : ℝ→ ℝ defined by T(x) = x2.

Exercise 8.5.29. Prove that the continuous transformation T : ℝ → ℝ defined by
T(x) = x2 + 1 does not admit any (finite or infinite) T-invariant Borel measure.

Exercise 8.5.30. Letb ̸= 0. Prove that the translationT : ℝ→ ℝdefinedbyT(x) = x+b
admits a σ-finite T-invariant Borel measure but not a finite one.

Exercise 8.5.31. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. Suppose
that B ∈ 𝒜 is forward T-invariant, that is, T(B) ⊆ B. Let 𝒜|B := {A ∩ B : A ∈ 𝒜} be the
projection of𝒜 onto B. Suppose that μ is a probability measure on (B,𝒜|B). Define the
set function μ̂ : 𝒜→ [0, 1] by the formula

μ̂(A) := μ(A ∩ B).

Show that μ̂ is a probability measure on (X,𝒜). Furthermore, prove that if μ is
T|B-invariant then μ̂ is T-invariant.

Exercise 8.5.32. Find a nontrivial measure-preserving dynamical system T : X →
X on a probability space (X,ℬ, μ) for which there exist at least three completely
T-invariant measurable sets of positive μ-measure.

Exercise 8.5.33. Identify a nontrivial measure-preserving dynamical system T : X →
X on a probability space (X,ℬ, μ) for which there exist uncountably many measurable
sets of positive measure and the symmetric difference of any two of these sets has
positive measure.

Exercise 8.5.34. Show that the inverse of a measure-preserving isomorphism is a
measure-preserving isomorphism.

Exercise 8.5.35. Let T : X → X be a map and let φ : X → ℝ be a real-valued function.
Let x ∈ X. If k, n ∈ ℕ are such that k < n, prove that

Snφ(x) = Skφ(x) + Sn−kφ(T
k(x)).

Exercise 8.5.36. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). Prove the following statements:
(a) If Y ⊆ X is forward T-invariant, then μ(Y) = μ(⋃∞n=0 T

−n(Y)).
(b) If Z ⊆ X is backward T-invariant, then μ(Z) = μ(⋂∞n=0 T

−n(Z)).
(c) If T is ergodic with respect to μ and W ⊆ X is forward or backward T-invariant,

then μ(W) ∈ {0, 1}.

N. B.: Part (c) means that the concept of ergodicity might alternatively be defined in
terms of forward invariant sets or in terms of backward invariant sets.
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Exercise 8.5.37. Find a topological dynamical system that admits a measure which is
ergodic but not invariant.

Exercise 8.5.38. Fix n > 1. Consider the map Tn : 𝕊1 → 𝕊1 defined by Tn(x) = nx
(mod 1). Using the uniqueness of the Fourier series representation of functions in L2(λ)
(like in the proof of Proposition 8.2.29), show that Tn is ergodic with respect to the
Lebesgue measure λ.

Exercise 8.5.39. Recalling Exercise 8.5.25, show that the Gaussmeasure is ergodic for
the Gauss map.

Exercise 8.5.40. Suppose that X is a countable set,𝒫(X) is the σ-algebra of all subsets
of X and μ is a probabilitymeasure on (X,𝒫(X)). Show that if T : X → X is ergodic with
respect to μ then there exists a periodic point y of T such that μ({Tn(y) : n ≥ 0}) = 1.

Exercise 8.5.41. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). Let also f ∈ L1(μ). Show that

lim
n→∞

1
n
f (Tn(x)) = 0 for μ-a. e. x ∈ X.

Exercise 8.5.42. Let n ≥ 2. Every number x ∈ [0, 1] has a n-adic expansion, that is,

x =
∞

∑
i=1

ωi
ni

for some ω = (ωi)
∞
i=1 ∈ {0, 1, . . . , n − 1}

∞. Let p, q ∈ {0, 1, . . . , n − 1}. Show that

lim
k→∞

1
k
#{1 ≤ j ≤ k : ωj = p and ωj+3 = q} =

1
n2

for λ-a. e. x ∈ [0, 1].

Exercise 8.5.43. Let n = 2. Using the same notation as in Exercise 8.5.42, show that

lim
k→∞

1
k

k−1
∑
j=0
(ω2

j + ω
2
j+1) = 1 for λ-a. e. x ∈ [0, 1].

Exercise 8.5.44. Let ℓ ∈ C(X)∗. Set Δℓ := var(ℓ) − ℓ, where var(ℓ) comes from Def-
inition 8.2.36. Prove that Δℓ ∈ C(X)∗ and is positive. In addition, show that if ℓ is
T-invariant then so is Δℓ.

Exercise 8.5.45. Prove Theorem 8.4.2(a,b,c).

Exercise 8.5.46. Referringback to theproof of Theorem8.4.3, show that ℱ̃n = T̃−1(ℱ̃n+1)
for all n ≥ 0.

Exercise 8.5.47. Let T : X → X be a measure-preserving dynamical system on a
probability space (X,ℬ, μ). A measurable function g : X → ℝ is said to be μ-a. e. T-
subinvariant if g(T(x)) ≤ g(x) for μ-a. e. x ∈ X. Show that if T is ergodic and g ∈ L1(μ)
is μ-a. e. T-subinvariant, then g is μ-a. e. constant (cf. Theorem 8.2.18).
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Exercise 8.5.48. In this exercise, we introduce and discuss Markov chains, which are
in a sense a generalization of theBernoulli shifts studied in Examples 8.1.14 and8.2.32.
Let E be a countable alphabet with at least two letters. Let A : E × E → (0, 1) be a
stochastic matrix, that is, a matrix such that

∑
j∈E

Aij = 1, ∀i ∈ E.

(a) Prove (youmay use the classical Perron–Frobenius theorem for positivematrices)
that there exists a unique probability vector P : E → [0, 1] such that PA = P, that
is,

∑
i∈E

PiAij = Pj, ∀j ∈ E.

(b) Further show that Pj ∈ (0, 1) for all j ∈ E.

For every ω ∈ E∗, say ω ∈ En, set

μA([ω]) = Pω1

n−1
∏
k=1

Aωkωk+1
.

In a similar way to Examples 8.1.14 and 8.2.32:
(c) Prove that μA uniquely extends to a Borel probability measure on Eℕ. (In the se-

quel, we keep the same symbol μA for this measure.)
(d) Show that the measure μA is shift-invariant and ergodic.

The dynamical system (σ : Eℕ → Eℕ, μA) is called the one-sidedMarkov chain gener-
ated by the stochastic matrix A.

Assuming that the alphabet E is finite:
(e) Prove that the one-cylinder partition {[e]}e∈E is a weak Bernoulli generator for the

measure-preserving dynamical system (σ : Eℕ → Eℕ, μA). Conclude that this sys-
tem is weak Bernoulli and that its Rokhlin’s natural extension is isomorphic to a
two-sided Bernoulli shift.

(f) Wanting an explicit representation of the Rokhlin’s natural extension of the sys-
tem (σ : Eℕ → Eℕ, μA), prove that, as in the case of Bernoulli shifts, this extension
is isomorphic to the naturally defined two-sided Markov chain (σ : Eℤ → Eℤ, μA)
generated by the stochastic matrix A and the unique probability vector P.

Note that when E is a countable set, every Bernoulli shift generated by a probability
vector P : E → (0, 1) is the Markov chain generated by the stochastic matrix A whose
columns are all equal to that vector P. In this sense,Markov chains are generalizations
of Bernoulli shifts. We established this for countable alphabets E. But in fact, even
more generally, when E is an arbitrary set as in Examples 8.1.14 and 8.2.32, one can
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define appropriate Markov chains that generalize the Bernoulli shifts considered in
those examples.

Finally, as for Bernoulli shifts, Markov chains will be shown to be Gibbs and
equilibrium states for appropriately chosen Hölder continuous potentials in Exer-
cises 13.11.11–13.11.12 and 17.9.13–17.9.14.
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9 Measure-theoretic entropy

In Chapter 7,we studied the topological entropyof a topological dynamical system.We
now study its measure-theoretic counterpart. Measure-theoretic entropy is also some-
times known asmetric entropy or Kolmogorov–Sinaimetric entropy. It was introduced
by A. Kolmogorov and Ya. Sinai in the late 1950s; see [67]. Since then, its account has
been presented in virtually every textbook on ergodic theory. Its introduction to dy-
namical systems was motivated by Ludwig Boltzmann’s concept of entropy in statisti-
cal mechanics and Claude Shannon’s work on information theory; see [64, 65].

As for topological entropy, there are three stages in the definition of metric en-
tropy. Recall that topological entropy is defined by covering the underlying topologi-
cal space with basic sets in that space, that is, open sets; metric entropy, on the other
hand, is defined by partitioning the underlying measurable space with basic sets in
that space, namely, measurable sets. Indeed, whereas one cannot generally partition
a topological space into open sets (this is only possible in a disconnected space), it is
generally possible to partition a measurable space into measurable sets. Accordingly,
we first study measurable partitions in Section 9.2. Then we examine the concepts
of information and conditional information in Section 9.3. In Section 9.4, we finally
define metric entropy. And in Section 9.5, we formulate and prove the full version of
Shannon–McMillan–Breiman’s characterization of metric entropy. This characteriza-
tion depicts what metric entropy really is. Finally, in Section 9.6 we shed further light
on the nature of entropy by proving the Brin–Katok local entropy formula. Like the
Shannon–McMillan–Breiman theorem, the Brin–Katok local entropy formula is very
useful in applications.

9.1 An excursion into the origins of entropy

This exposition is inspired by [80].
The concept of metric entropy arose from the creation of information theory by

Shannon [64, 65]. That notion was adapted from Boltzmann’s advances on entropy in
statistical mechanics.

Contemplate the conduct of a random experiment (for instance, the rolling of a
die) with a finite number of possible outcomes (A1,A2, . . . ,An) with respective proba-
bilities (p1, p2, . . . , pn). Naturally, wewould like to ascribe to this experiment a quantity
(a number) that indicates the level of uncertainty associated with the outcome of the
experiment. For example, if a six-face unfair die has the outcomes (1, 2, 3, 4, 5, 6) with
associated probabilities (95%, 1%, 1%, 1%, 1%, 1%), then the level of uncertainty of
the outcome ismuch smaller than the level of uncertainty in the throwing of a fair die,
that is, a die with an equal probability of 1/6 of falling on any of its 6 faces. We aim at

https://doi.org/10.1515/9783110702682-009
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finding a real-valued function

H(p1, p2, . . . , pn)

that describes the level of uncertainty. Obviously, this nonnegative function is defined
on the n-tuples (p1, p2, . . . , pn) such that 0 ≤ pi ≤ 1 for all 1 ≤ i ≤ n and ∑

n
i=1 pi = 1. We

now provide a rationale for the type of function that naturally emerges in this context.
Intuitively, the level of uncertainty of the outcome reaches...

– a minimum of 0 when one of the outcomes is absolutely certain, that is, has a
probability of 100% = 1 of occurring; this means that H(p1, p2, . . . , pn) = 0 when
pi = 1 for some i (and thus pj = 0 for all j ̸= i).

– a maximumwhen the n outcomes have equal probability 1/n of taking place, that
is, maxH(p1, p2, . . . , pn) = H(1/n, 1/n, . . . , 1/n).

Speaking of the equiprobable case, it is interesting and even crucial to look at the
behavior of the function

f (n) = H(1/n, 1/n, . . . , 1/n).

As the number n of outcomes grows, the level of uncertainty grows: it is easier to pre-
dict the outcome of casting a six-side fair die than a twenty-side fair die. So we posit
that:

(A1) The function f must be strictly increasing.

Consider now two independent experiments, a first one with n1 equiprobable out-
comes and a second one with n2 equiprobable outcomes. Running both experiments
simultaneously results in a “product” experiment which consists of n1n2 equiproba-
ble outcomes. Knowledge of the outcome of the first experiment does not affect the
uncertainty surrounding the outcome of the second one, and vice versa. Accordingly,
it is natural to expect that once the uncertainty of the outcome of the first experiment,
f (n1), is subtracted from the uncertainty on the entire experiment, f (n1n2), the remain-
ing uncertainty coincides with that of the conduct of the second experiment, f (n2),
that is,

f (n1n2) − f (n1) = f (n2).

Equivalently, we posit that

(A2) f (n1n2) = f (n1) + f (n2), ∀n1, n2 ∈ ℕ.

Let us return now to a general experiment with n outcomes. Partition these outcomes
into two subsets A and B, with respective total probabilities pA = p1 + . . . + pk and
pB = pk+1 + . . . + pn. For instance, in the experiment of throwing a six-face die, we
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might be interested not in the face number the die falls on but rather in whether it set-
tles on an even face or an odd face. Naturally, wewould like to relate the uncertainty of
the original experiment with that of the “simplified” experiment where the outcome is
perceived as A or B. If the outcome of the simplified experiment is A, then the remain-
ing uncertainty about the outcome of the original experiment is H(p1/pA, . . . , pk/pA).
Similarly, if the outcome of the simplified experiment is B, then the remaining un-
certainty about the outcome of the original experiment is H(pk+1/pB, . . . , pn/pB). Since
the two outcomes in the simplified experiment occur with probabilities pA and pB re-
spectively, we posit that the level of uncertainty about the original experiment can be
expressed as

(A3) H(p1, . . . , pn) = H(pA, pB) + pAH(
p1
pA
, . . . , pkpA ) + pBH(

pk+1
pB
, . . . , pnpB ).

Finally, it is reasonable to assume that the function H is continuous, that is, a small
change in the probabilities of the outcomes of an experiment, results in a small change
in the level of uncertainty besetting the experiment. Because of axiom (A3), it suffices
to make this assumption in the case of a binary outcome experiment:

(A4) The function p → H(p, 1 − p) is continuous on (0, 1).

Theorem 9.1.1. The only functions satisfying axioms (A1)–(A4) are the functions of the
form

H(p1, . . . , pn) = −C
n
∑
i=1

pi log pi

for some constant C > 0.

Proof. See Exercise 9.7.1.

This will be the form of the entropy function. Mathematically, the various events
that can be witnessed in an experiment constitute a measurable partition of the mea-
surable space of all outcomes of the experiment. This explains why we study measur-
able partitions in the next section.

9.2 Partitions of a measurable space

Definition 9.2.1. Let (X,𝒜) be a measurable space. A countable measurable partition
of X is a family α = {Ak}∞k=1 such that:
(a) Ak ∈ 𝒜 for all k ∈ ℕ;
(b) Ai ∩ Aj = 0 for all i ̸= j; and
(c) ⋃∞k=1 Ak = X.

The individual setsAk, k ∈ ℕ,makingup thepartitionα are calledatomsofα. For each
x ∈ X the unique atom of the partition α which contains the point x will be denoted
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by α(x). Finally, we shall denote the set of all countable measurable partitions on the
space (X,𝒜) by Part(X,𝒜).

In the sequel, it will always be implicitly understood that partitions are countable
(finite or infinite) and measurable.

In Definition 7.1.4, we introduced a refinement relation for covers of a space. As
partitions of a space constitute a special class of covers of that space, it is natural to
examine the restriction of the refinement relation to partitions. In contrast with the
relation for covers, the restriction turns out to be a relation of partial order on the set
of all partitions.

Definition 9.2.2. Let (X,𝒜) be a measurable space and α, β ∈ Part(X,𝒜). We say that
partition β is finer than partition α, or that α is coarser than β, which will be denoted
by α ≤ β, if for every atom B ∈ β there exists some atom A ∈ α such that B ⊆ A. In
other words, each atom of α is a union of atoms of β.

Equivalently, β is a refinement of α if β(x) ⊆ α(x) for all x ∈ X. See also Exer-
cises 9.7.2–9.7.5.

We now introduce for partitions the analogue of the join of two covers.

Definition 9.2.3. Given α, β ∈ Part(X,𝒜), the partition

α ∨ β := {A ∩ B | A ∈ α,B ∈ β}

is called the join of α and β.

The basic properties of the join are given in the following lemma. Their proofs are
left to the reader as an exercise.

Lemma 9.2.4. Since partitions are covers, the relation ≤ and the operation ∨ enjoy all
the properties of≺ and∨ described in Remark 7.1.3 and Lemma 7.1.5. Moreover, ifα, β,γ ∈
Part(X,𝒜), then:
(a) ≤ is a relation of partial order on Part(X,𝒜), that is, it is...

– reflexive (α ≤ α);
– transitive (α ≤ β and β ≤ γ ⇒ α ≤ γ); and
– antisymmetric (α ≤ β ≤ α⇐⇒ α = β).

(b) α ≤ β ⇐⇒ α ∨ β = β.
(c) α ∨ α = α.
(d) α ∨ {X} = α.

9.3 Information and conditional information functions

Let (X,𝒜, μ)be a probability space. The setXmaybe construed as the set of all possible
states (or outcomes) of an experiment, while the σ-algebra𝒜 is the set of all possible
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events, and μ(A) is the probability that event A ∈ 𝒜 take place. Imagine that this ex-
periment is conducted using an instrument which, due to some limitation, can only
providemeasurements accurateup to the atomsof apartitionα = {Ak}∞k=1 ∈ Part(X,𝒜).
In other words, this instrument can only tell us which atom of α the outcome of the
experiment falls into. Any observationmade through this instrument will therefore be
of the form Ak for a unique k. If the experiment were conducted today, the probability
that its outcome belongs to Ak, that is, the probability that the experiment results in
observing event Ak with our instrument, would be μ(Ak).

We would like to introduce a function that describes the information that our in-
strument would give us about the outcome of the experiment. So, let x ∈ X. Intuitively,
the smaller the atom of the partition to which x belongs, the more information our in-
strument provides us about x. In particular, if x lies in an atom of full measure, then
our instrument gives us essentially no information about x. Moreover, because our
instrument cannot distinguish points which belong to a common atom of the parti-
tion, the sought-after information function must be constant on every atom. In light
of Theorem 9.1.1, the following definition is natural (think about the relation between
information and uncertainty on the outcome of an experiment).

Definition 9.3.1. Let (X,𝒜, μ) be a probability space and α ∈ Part(X,𝒜). The nonega-
tive function Iμ(α) : X → [0,∞] defined by

Iμ(α)(x) := − log μ(α(x))

is called the information function of the partition α. By convention, log 0 = −∞.

As the function t → − log t is strictly decreasing, for any x ∈ X the smaller μ(α(x))
is, the larger Iμ(α)(x) is, that is, the smaller the measure of the atom α(x) is, the more
information the partition α gives us about x. In particular, the finer the partition, the
more information it gives us about every point in the space.

In the next lemma,we collect some of the basic properties of the information func-
tion. Their proofs are straightforward and are left to the reader.

Lemma 9.3.2. Let (X,𝒜, μ) be a probability space and α, β ∈ Part(X,𝒜). Then:
(a) If α ≤ β, then Iμ(α) ≤ Iμ(β).
(b) Iμ(α)(x) = 0 if and only if μ(α(x)) = 1.
(c) Iμ(α)(x) =∞ if and only if μ(α(x)) = 0.
(d) Ifα(x) = α(y), then Iμ(α)(x) = Iμ(α)(y), that is, Iμ(α) is constant over each atomofα.

More advanced properties of the information function will be presented below.
Meanwhile, we introduce a function which describes the information gathered from a
partition α given that a partition β has already been applied.

Definition 9.3.3. Let (X,𝒜, μ) be a probability space and α, β ∈ Part(X,𝒜). The condi-
tional information function of partition α given partition β is the nonnegative function
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Iμ(α|β) : X → [0,∞] defined by

Iμ(α|β)(x) := − log μβ(x)(α(x)),

where μB is the conditional measure from Definition A.1.70 in Appendix A. Observe
that

Iμ(α|β)(x) := − log
μ(α(x) ∩ β(x))

μ(β(x))
= − log

μ((α ∨ β)(x))
μ(β(x))

= Iμ(α ∨ β)(x) − Iμ(β)(x).

By convention, 0
0 = 0 and∞ −∞ =∞.

For any partition α, notice that Iμ(α|{X}) = Iμ(α), that is, the information function
coincideswith the conditional information functionwith respect to the trivial partition
{X}. Note further that Iμ(α|β) is constant over each atom of α ∨ β.

Our next aim is to give some advanced properties of the conditional information
function. Notice that some of these properties hold pointwise, while others hold atom-
wise only, that is, after integrating over atoms. In particular, the reader should com-
pare statements (e–h) in the next theorem. First, though, we make one further defini-
tion, which is related to our excursion in Section 9.1.

Definition 9.3.4. Let the function k : [0, 1]→ [0, 1] be defined by

k(t) = −t log t,

where it is understood that 0 ⋅ (−∞) = 0.

The function k is continuous, strictly increasing on the interval [0, e−1], strictly
decreasing on the interval [e−1, 1], and concave. See Figure 9.1. Recall that a function
k : I → ℝ, where I ⊆ ℝ is an interval, is concave on I if

k(tx + (1 − t)y) ≥ tk(x) + (1 − t)k(y), ∀t ∈ [0, 1], ∀x, y ∈ I ,

that is, the line segment joining any two points on the curve lies under the curve.

Theorem 9.3.5. Let (X,𝒜, μ) be a probability space andα, β,γ ∈ Part(X,𝒜). The follow-
ing statements hold:
(a) Iμ(α ∨ β|γ) = Iμ(α|γ) + Iμ(β|α ∨ γ).
(b) Iμ(α ∨ β) = Iμ(α) + Iμ(β|α).
(c) If α ≤ β, then Iμ(α|γ) ≤ Iμ(β|γ).
(d) If α ≤ β, then Iμ(α) ≤ Iμ(β).
(e) If β ≤ γ, then for all A ∈ α and all B ∈ β,

∫
A∩B

Iμ(α|β) dμ ≥ ∫
A∩B

Iμ(α|γ) dμ.

Note: In general, β ≤ γ ̸⇒ Iμ(α|β) ≥ Iμ(α|γ).
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Figure 9.1: The function underlying entropy: k(t) = −t log t.

(f) For all C ∈ γ,

∫
C

Iμ(α ∨ β|γ) dμ ≤ ∫
C

Iμ(α|γ) dμ + ∫
C

Iμ(β|γ) dμ.

Note: In general, Iμ(α ∨ β|γ) ̸≤ Iμ(α|γ) + Iμ(β|γ).
(g)

∫
X

Iμ(α ∨ β) dμ ≤ ∫
X

Iμ(α) dμ + ∫
X

Iμ(β) dμ.

(h) For all A ∈ α and all B ∈ β,

∫
A∩B

Iμ(α|γ) dμ ≤ ∫
A∩B

Iμ(α|β) dμ + ∫
A∩B

Iμ(β|γ) dμ.

Note: In general, Iμ(α|γ) ̸≤ Iμ(α|β) + Iμ(β|γ).
(i) Iμ(α) ≤ Iμ(α|β) + Iμ(β).

Proof. (a) Let x ∈ X. Then

Iμ(α ∨ β|γ)(x) = − log
μ((α ∨ β ∨ γ)(x))

μ(γ(x))

= − log
μ(β(x) ∩ (α ∨ γ)(x))

μ(γ(x))

= − log(
μ(β(x) ∩ (α ∨ γ)(x))

μ((α ∨ γ)(x))
⋅
μ((α ∨ γ)(x))

μ(γ(x))
)

= − log
μ(β(x) ∩ (α ∨ γ)(x))

μ((α ∨ γ)(x))
− log

μ((α ∨ γ)(x))
μ(γ(x))

= Iμ(β|α ∨ γ)(x) + Iμ(α|γ)(x).
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(b) Setting γ = {X} in (a) results in

Iμ(α ∨ β)(x) = Iμ(α ∨ β|{X})(x) = Iμ(β|α ∨ {X})(x) + Iμ(α|{X})(x) = Iμ(β|α)(x) + Iμ(α)(x).

(c) Notice that if α ≤ β, then α ∨ β = β. It then follows from (a) that

Iμ(β|γ) = Iμ(α ∨ β|γ) = Iμ(α|γ) + Iμ(β|α ∨ γ) ≥ Iμ(α|γ).

(d) Setting γ = {X} in (c) leads to (d).
(e) Suppose that β ≤ γ. Let A ∈ α and B ∈ β. The downward concavity of the function
k from Definition 9.3.4 means that

k(
∞
∑
n=1

anbn) ≥
∞
∑
n=1

ank(bn)

whenever an, bn ∈ [0, 1] for all n ∈ ℕ and∑
∞
n=1 an = 1. Therefore,

k(∑
C∈γ

μB(C)
μ(A ∩ C)
μ(C)
) ≥ ∑

C∈γ
μB(C)k(

μ(A ∩ C)
μ(C)
). (9.1)

Since β ≤ γ, each atom of β is a union of atoms of γ. So, either C ∩ B = C or C ∩ B = 0.
Thus, either μB(C) =

μ(C)
μ(B) or μB(C) = 0, and the left-hand side of (9.1) simplifies to

k(∑
C∈γ

μB(C)
μ(A ∩ C)
μ(C)
) = k(∑

C⊆B

μ(A ∩ C)
μ(B)
) = k(μ(A ∩ B)

μ(B)
) = −

μ(A ∩ B)
μ(B)

log μ(A ∩ B)
μ(B)
.

The right-hand side of (9.1) reduces to

∑
C∈γ

μB(C)k(
μ(A ∩ C)
μ(C)
) = ∑

C⊆B

μ(C)
μ(B)

k(μ(A ∩ C)
μ(C)
) = ∑

C⊆B
−
μ(A ∩ C)
μ(B)

log μ(A ∩ C)
μ(C)
.

Hence inequality (9.1) becomes

−
μ(A ∩ B)
μ(B)

log μ(A ∩ B)
μ(B)
≥ ∑

C⊆B
−
μ(A ∩ C)
μ(B)

log μ(A ∩ C)
μ(C)
.

Multiplying both sides by μ(B) yields

−μ(A ∩ B) log μ(A ∩ B)
μ(B)
≥ ∑

C⊆B
−μ(A ∩ C) log μ(A ∩ C)

μ(C)
.

Then

∫
A∩B

Iμ(α|β) dμ = −μ(A ∩ B) log
μ(A ∩ B)
μ(B)

≥ ∑
C⊆B
−μ(A ∩ C) log μ(A ∩ C)

μ(C)
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= ∑
C⊆B
∫

A∩C

Iμ(α|γ) dμ

= ∫
A∩B

Iμ(α|γ) dμ.

(f) Since γ ≤ α ∨ γ, this statement follows directly from combining (a) and (e).
(g) Setting γ = {X} in (f) gives (g).
(h) Using part (c) and then part (a), we obtain

Iμ(α|γ) ≤ Iμ(α ∨ β|γ) = Iμ(β|γ) + Iμ(α|β ∨ γ).

Since β ≤ β ∨ γ, part (e) ensures that for all A ∈ α and all B ∈ β,

∫
A∩B

Iμ(α|β) dμ ≥ ∫
A∩B

Iμ(α|β ∨ γ) dμ.

Therefore, for all A ∈ α and B ∈ β, we have that

∫
A∩B

Iμ(α|γ) dμ ≤ ∫
A∩B

Iμ(β|γ) dμ + ∫
A∩B

Iμ(α|β) dμ.

(i) Using parts (d) and (b) in succession, we deduce that

Iμ(α) ≤ Iμ(α ∨ β) = Iμ(α|β) + Iμ(β).

9.4 Definition of measure-theoretic entropy

The entropy of a measure-preserving dynamical system T : (X,𝒜, μ) → (X,𝒜, μ) is
defined in three stages, which, for clarity of exposition, we split into the following
three subsections.

9.4.1 First stage: entropy and conditional entropy for partitions

At this stage, the behavior of the system T is not in consideration. We solely look at
the absolute and relative information provided by partitions.

The information function associated with a partition gives us the amount of in-
formation that can be gathered from the partition about each and every outcome of
the experiment. It is useful to encompass the information given by a partition within
a single number rather than a function. A natural way to achieve this is to calculate
the average information given by the partition. This means integrating the informa-
tion function over the entire space. The resulting integral is called the entropy of the
partition.
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Definition 9.4.1. Let (X,𝒜, μ) be a probability space and α ∈ Part(X,𝒜). The entropy
of α with respect to the measure μ is defined to be the nonnegative extended number

Hμ(α) := ∫
X

Iμ(α) dμ = ∑
A∈α
−μ(A) log μ(A),

where it is still understood that 0 ⋅ (−∞) = 0, since null sets do not contribute to the
integral.

The entropy of a partition is equal to zero if and only if the partition has an atom
of full measure (which implies that all other atoms are of null measure). In particular,
Hμ({X}) = 0. Moreover, the entropy of a partition is small if the partition contains one
atomwith nearly full measure (so all other atoms have small measure). If the partition
α is finite, it is possible, using calculus, to show that

0 ≤ Hμ(α) ≤ log #α (9.2)

and that

Hμ(α) = log #α ⇐⇒ μ(A) = 1
#α
, ∀A ∈ α.

In other words, on average we gain the most information from carrying out an exper-
iment when the potential events are equiprobable of occurring.

Definition 9.4.2. Let (X,𝒜, μ) be a probability space and α, β ∈ Part(X,𝒜). The condi-
tional entropy of α given β is defined to be

Hμ(α|β) := ∫
X

Iμ(α|β) dμ = ∑
A∈α
∑
B∈β
−μ(A ∩ B) log μ(A ∩ B)

μ(B)
.

Note that Hμ(α) = Hμ(α|{X}). Recalling the measure μB from Definition A.1.70 and
defining a partition α|B of B by α|B := {A ∩ B : A ∈ α}, it follows that

Hμ(α|β) = ∑
B∈β
∑
A∈α
−
μ(A ∩ B)
μ(B)

log μ(A ∩ B)
μ(B)
⋅ μ(B)

= ∑
B∈β
∑
A∈α
−μB(A) log μB(A) ⋅ μ(B)

= ∑
B∈β

HμB (α|B) ⋅ μ(B).

Hence, the conditional entropy of α given β is the weighted average of the entropies
of the partitions of each atom B ∈ β into the sets {A ∩ B : A ∈ α}.

Of course, the properties of entropy (resp. conditional entropy) are inherited from
the properties of the information function (resp., the conditional information func-
tion) via integration, as the following theorem shows.
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Theorem 9.4.3. Let (X,𝒜, μ) be a probability space andα, β,γ ∈ Part(X,𝒜). The follow-
ing statements hold:
(a) Hμ(α ∨ β|γ) = Hμ(α|γ) + Hμ(β|α ∨ γ).
(b) Hμ(α ∨ β) = Hμ(α) + Hμ(β|α).
(c) If α ≤ β, then Hμ(α|γ) ≤ Hμ(β|γ).
(d) If α ≤ β, then Hμ(α) ≤ Hμ(β).
(e) If β ≤ γ, then Hμ(α|β) ≥ Hμ(α|γ).
(f) Hμ(α ∨ β|γ) ≤ Hμ(α|γ) + Hμ(β|γ).
(g) Hμ(α ∨ β) ≤ Hμ(α) + Hμ(β).
(h) Hμ(α|γ) ≤ Hμ(α|β) + Hμ(β|γ).
(i) Hμ(α) ≤ Hμ(α|β) + Hμ(β).

Proof. All the statements follow from their counterparts in Theorem9.3.5 after integra-
tion or summation over atoms. For instance, let us prove (e). If β ≤ γ, then it follows
from Theorem 9.3.5(e) that

Hμ(α|β) = ∫
X

Iμ(α|β) dμ = ∑
A∈α
∑
B∈β
∫

A∩B

Iμ(α|β) dμ ≥ ∑
A∈α
∑
B∈β
∫

A∩B

Iμ(α|γ) dμ = Hμ(α|γ).

9.4.2 Second stage: entropy of a system relative to a partition

In this second stage, we take into account the behavior of a measure-preserving dy-
namical system relative to a given partition. Let T : X → X be a measure-preserving
dynamical system on a probability space (X,𝒜, μ) and α ∈ Part(X,𝒜). Observe that
T−1α := {T−1(A) : A ∈ α} ∈ Part(X,𝒜), too.

Recall that the set X represents the set of all possible outcomes (or states) of an
experiment, while the σ-algebra 𝒜 consists of the set of all possible events, and μ(A)
is the probability that event A happen. Recall also that a partition α = {Ak} can be
thought of as the set of all observations that can be made with a given instrument.
The action of T on (X,𝒜, μ) may be conceived as the passage of one unit of time (for
instance, a day). Today would naturally be taken as reference point for time 0. Sup-
pose that we conduct the experiment with our instrument tomorrow. The resulting
observation would be one of the atoms of α, say Ak1 , on day 1. Due to the passage of
time (in otherwords, one iteration of T), in order tomake observationAk1 at time 1, our
measure-preserving system would have to be, today, in one of the states of T−1(Ak1 ).
The probability of making observation Ak1 on day 1 is thus μ(T−1(Ak1 )). Assume now
that we conduct the same experiment for n consecutive days, starting today. What
is the probability that we make the sequence of observations Ak0 ,Ak1 , . . . ,Akn−1 on
those successive days? We would make those observations precisely if our system
is, today, in one of the states of ⋂n−1m=0 T

−m(Akm ). Therefore, the probability that our
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observations are respectively Ak0 ,Ak1 , . . . ,Akn−1 on n successive days starting today is
μ(⋂n−1m=0 T

−m(Akm )). It is thus natural to consider for all 0 ≤ m < n the partitions

αn
m :=

n−1
⋁
i=m

T−iα = T−mα ∨ ⋅ ⋅ ⋅ ∨ T−(n−1)α.

Ifm ≥ n, we defineαn
m to be the trivial partition {X}. To shorten notation, we shall write

αn in lieu of αn
0 and T

−iα rather than T−i(α). In the following lemma, we list some of
the basic properties of the operator T−1 on partitions.

Lemma 9.4.4. Let T : X → X be a measurable transformation of a measurable space
(X,𝒜), and let α, β ∈ Part(X,𝒜). The following statements hold:
(a) T−1(α ∨ β) = (T−1α) ∨ (T−1β).
(b) T−1(αn

m) = (T
−1α)nm for all m, n ≥ 0.

(c) (α ∨ β)nm = α
n
m ∨ β

n
m for all m, n ≥ 0.

(d) (αl
k)
n
m = α

l+n−1
k+m .

(e) T−1 preserves the partial order ≤, that is, if α ≤ β then T−1α ≤ T−1β.
(f) More generally, if α ≤ β then αn

m ≤ β
n
m for all m, n ≥ 0.

(g) (T−1α)(x) = T−1(α(T(x))) for all x ∈ X.

Proof. The proof of assertions (a) and (e) are left to the reader.

(b) Using (a) repeatedly, we have that

T−1(αn
m) = T

−1(
n−1
⋁
i=m

T−iα) =
n−1
⋁
i=m

T−1(T−iα) =
n−1
⋁
i=m

T−i(T−1α) = (T−1α)nm.

(c) Again by using (a) repeatedly, we obtain that

(α ∨ β)nm =
n−1
⋁
i=m

T−i(α ∨ β) =
n−1
⋁
i=m
(T−iα ∨ T−iβ) = (

n−1
⋁
i=m

T−iα) ∨ (
n−1
⋁
i=m

T−iβ) = αn
m ∨ β

n
m.

(d) Using (a), it follows that

(αl
k)

n
m =

n−1
⋁
j=m

T−j(αl
k) =

n−1
⋁
j=m

T−j(
l−1
⋁
i=k

T−iα) =
n−1
⋁
j=m

l−1
⋁
i=k

T−(i+j)α =
l+n−2
⋁

s=k+m
T−sα = αl+n−1

k+m .

(f) Suppose that α ≤ β. Using (e) repeatedly and Lemma 7.1.5(g), we obtain that

αn
m =

n−1
⋁
i=m

T−iα ≤
n−1
⋁
i=m

T−iβ = βnm.

(g) Let x ∈ X. Choose A ∈ α such that x ∈ T−1(A). Then T(x) ∈ A, that is, A = α(T(x)).
Hence, (T−1α)(x) = T−1(A) = T−1(α(T(x))).
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We now describe the behavior of the operator T−1 with respect to the information
function for any measure-preserving dynamical system T.

Lemma 9.4.5. Let T : X → X be ameasure-preserving dynamical system on a probabil-
ity space (X,𝒜, μ), and let α, β ∈ Part(X,𝒜). Then

Iμ(T
−1α|T−1β) = Iμ(α|β) ∘ T .

In particular,

Iμ(T
−1α) = Iμ(α) ∘ T .

Proof. Let x ∈ X. By Lemma 9.4.4(a) and (g) and the assumption that μ is T-invariant,
we have that

Iμ(T
−1α|T−1β)(x) = − log

μ((T−1α ∨ T−1β)(x))
μ((T−1β)(x))

= − log
μ((T−1(α ∨ β))(x))

μ((T−1β)(x))

= − log
μ(T−1((α ∨ β)(T(x))))

μ(T−1(β(T(x))))

= − log
μ((α ∨ β)(T(x)))

μ(β(T(x)))
= Iμ(α|β)(T(x)) = Iμ(α|β) ∘ T(x).

Set β = {X} to get the particular, unconditional case.

A more intricate property of the information function is the following.

Lemma 9.4.6. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ), and let α ∈ Part(X,𝒜). For all n ∈ ℕ,

Iμ(α
n) =

n
∑
j=1

Iμ(α|α
j
1) ∘ T

n−j.

Proof. Wewill prove this lemma by induction. For n = 1, sinceα1
1 is by definition equal

to the trivial partition {X}, we have

Iμ(α
1) = Iμ(α) = Iμ(α|{X}) = Iμ(α|α

1
1) = Iμ(α|α

1
1) ∘ T

1−1.

Now suppose that the lemma holds for some n ∈ ℕ. Then, in light of Theorem 9.3.5(b)
and Lemma 9.4.5, we obtain that

Iμ(α
n+1) = Iμ(α ∨ α

n+1
1 ) = Iμ(α

n+1
1 ) + Iμ(α|α

n+1
1 )

= Iμ(T
−1(αn)) + Iμ(α|α

n+1
1 ) = Iμ(α

n) ∘ T + Iμ(α|α
n+1
1 )
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=
n
∑
j=1

Iμ(α|α
j
1) ∘ T

n−j ∘ T + Iμ(α|α
n+1
1 )

=
n
∑
j=1

Iμ(α|α
j
1) ∘ T

n+1−j + Iμ(α|α
n+1
1 ) ∘ T

n+1−(n+1)

=
n+1
∑
j=1

Iμ(α|α
j
1) ∘ T

n+1−j.

We now turn our attention to the effect that a measure-preserving dynamical
system has on entropy. In particular, observe that because the system is measure-
preserving, conducting the experiment today or tomorrow (or at any time in the
future) gives us the same amount of average information about the outcome. This is
the meaning of the second of the following properties of entropy.

Lemma 9.4.7. Let T : X → X be ameasure-preserving dynamical system on a probabil-
ity space (X,𝒜, μ), and let α, β ∈ Part(X,𝒜). The following statements hold:
(a) Hμ(T−1α|T−1β) = Hμ(α|β).
(b) Hμ(T−1α) = Hμ(α).
(c) Hμ(α

n|βn) ≤ nHμ(α|β) for all n ∈ ℕ.

Proof. (a) Using Lemma 9.4.5 and the T-invariance of μ, we have that

Hμ(T
−1α|T−1β) = ∫

X

Iμ(T
−1α|T−1β) dμ = ∫

X

Iμ(α|β) ∘ T dμ = ∫
X

Iμ(α|β) dμ = Hμ(α|β).

(b) Set β = {X} in (a) to obtain (b).
(c) We first prove that Hμ(α

n|βn) ≤ ∑n−1j=0 Hμ(T−jα|T−jβ). This statement clearly holds
when n = 1. Suppose that it holds for some n ∈ ℕ. Using Theorem 9.4.3(a) and (e), we
have that

Hμ(α
n+1|βn+1) = Hμ(α

n ∨ T−nα|βn ∨ T−nβ)
= Hμ(α

n|βn ∨ T−nβ) + Hμ(T
−nα|αn ∨ βn ∨ T−nβ)

≤ Hμ(α
n|βn) + Hμ(T

−nα|T−nβ)

≤
n−1
∑
j=0

Hμ(T
−jα|T−jβ) + Hμ(T

−nα|T−nβ)

=
n
∑
j=0

Hμ(T
−jα|T−jβ).

By induction, the above statement holds for all n ∈ ℕ. By (a), we obtain that

Hμ(α
n|βn) ≤

n−1
∑
j=0

Hμ(T
−jα|T−jβ) =

n−1
∑
j=0

Hμ(α|β) = nHμ(α|β).
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The average information gained by conducting an experiment on n consecutive
days using the partition α is given by the entropy Hμ(α

n) since αn has for atoms the
sets⋂n−1m=0 T

−m(Akm ), whereAkm ∈ α for allm. Not surprisingly, the average information
gained by conducting the experiment on n consecutive days using the partition α is
equal to the sum of the average conditional information gained by performing α on
day j + 1 given that the outcome of performing α over the previous j days is known,
summing from the first day to the last day. This is formalized in the next lemma.

Lemma 9.4.8. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ), and let α ∈ Part(X,𝒜). Then for all n ∈ ℕ,

Hμ(α
n) =

n
∑
j=1

Hμ(α|α
j
1).

Proof. We deduce from Lemma 9.4.6 and the T-invariance of μ that

Hμ(α
n) = ∫

X

Iμ(α
n) dμ =

n
∑
j=1
∫
X

Iμ(α|α
j
1) ∘ T

n−j dμ =
n
∑
j=1
∫
X

Iμ(α|α
j
1) dμ =

n
∑
j=1

Hμ(α|α
j
1).

Below is an alternative expression for the entropy Hμ(α
n).

Lemma 9.4.9. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ), and let α ∈ Part(X,𝒜). Then for all n ∈ ℕ,

Hμ(α
n) =

n−1
∑
j=0

Hμ(T
−jα|αj).

Proof. We prove this result by induction. The statement is trivial when n = 1. Suppose
that it holds for n − 1. Using Theorem 9.4.3(b), we get

Hμ(α
n) = Hμ(α

n−1 ∨ T−(n−1)α) = Hμ(α
n−1) + Hμ(T

−(n−1)α|αn−1)

=
n−2
∑
j=0

Hμ(T
−jα|αj) + Hμ(T

−(n−1)α|αn−1) =
n−1
∑
j=0

Hμ(T
−jα|αj).

So the statement holds for all n ∈ ℕ.

Returning to Lemma 9.4.8, since α
j+1
1 ≥ α

j
1 observe that Hμ(α|α

j+1
1 ) ≤ Hμ(α|α

j
1)

by Theorem 9.4.3(e). So the sequence (Hμ(α|α
j
1))
∞
j=1 decreases to some limit which we

shall denote by hμ(T ,α). Consequently, the corresponding sequence of Cesàro aver-
ages ( 1n ∑

n
j=1 Hμ(α|α

j
1))
∞
n=1 = (

1
nHμ(α

n))∞n=1 decreases to the same limit. Thus the follow-
ing definition makes sense. This is the second step in the definition of the measure-
theoretic entropy of a system.
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Definition 9.4.10. Let T : X → X be a measure-preserving dynamical system on a
probability space (X,𝒜, μ), and let α ∈ Part(X,𝒜). The entropy of T with respect to α,
denoted hμ(T ,α), is defined by

hμ(T ,α) := limn→∞
Hμ(α|α

n
1 ) = lim

n→∞
1
n
Hμ(α

n)

= inf
n→∞

Hμ(α|α
n
1 ) = inf

n→∞
1
n
Hμ(α

n).

The following theorem lists some of the basic properties of hμ(T , ⋅).

Theorem 9.4.11. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ), and let α, β ∈ Part(X,𝒜). The following statements hold:
(a) hμ(T ,α) ≤ Hμ(α).
(b) hμ(T ,α) ≤ Hμ(T−1α|α).
(c) hμ(T ,α ∨ β) ≤ hμ(T ,α) + hμ(T , β).
(d) If α ≤ β, then hμ(T ,α) ≤ hμ(T , β).
(e) hμ(T ,α) ≤ hμ(T , β) + Hμ(α|β).
(f) hμ(T ,T−1α) = hμ(T ,α).
(g) hμ(T ,αk) = hμ(T ,α) for all k ∈ ℕ.
(h) hμ(Tk ,αk) = k ⋅ hμ(T ,α) for all k ∈ ℕ.
(i) If T is invertible, then hμ(T ,α) = hμ(T ,⋁

k
i=−k T

iα) for all k ∈ ℕ.
(j) If (βn)∞n=1 is a sequence in Part(X,𝒜) such that limn→∞ Hμ(α|βn) = 0, then

hμ(T ,α) ≤ lim inf
n→∞

hμ(T , βn).

(k) If limn→∞ Hμ(α|βn) = 0, then hμ(T ,α) ≤ hμ(T , β).

Proof. (a) This follows from the fact that hμ(T ,α) = infn∈ℕ
1
nHμ(α

n).
(b) Using Lemmas 9.4.9 and 9.4.7(a) and Theorem 9.4.3(e), we have

hμ(T ,α) = limn→∞
1
n

n−1
∑
j=0

Hμ(T
−jα|αj)

≤ lim
n→∞

1
n

n−1
∑
j=0

Hμ(T
−jα
T
−(j−1)α)

= lim
n→∞

1
n

n−1
∑
j=0

Hμ(T
−(j−1)(T−1α)T

−(j−1)α)

= lim
n→∞

1
n

n−1
∑
j=0

Hμ(T
−1α|α) = Hμ(T

−1α|α).

(c) Using Lemma 9.4.4(c) and Theorem 9.4.3(g), we get

hμ(T ,α ∨ β) = lim
n→∞

1
n
Hμ((α ∨ β)

n)

= lim
n→∞

1
n
Hμ(α

n ∨ βn)
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≤ lim
n→∞

1
n
[Hμ(α

n) + Hμ(β
n)]

= lim
n→∞

1
n
Hμ(α

n) + lim
n→∞

1
n
Hμ(β

n)

= hμ(T ,α) + hμ(T , β).

(d) If α ≤ β, then αn ≤ βn and hence Hμ(α
n) ≤ Hμ(βn) for all n ∈ ℕ. Therefore,

hμ(T ,α) = lim
n→∞

1
n
Hμ(α

n) ≤ lim
n→∞

1
n
Hμ(β

n) = hμ(T , β).

(e) Calling upon Theorem 9.4.3(i) and Lemma 9.4.7(c), we obtain that

hμ(T ,α) = limn→∞
1
n
Hμ(α

n)

≤ lim inf
n→∞

1
n
[Hμ(α

n|βn) + Hμ(β
n)]

= lim inf
n→∞

1
n
Hμ(α

n|βn) + lim
n→∞

1
n
Hμ(β

n)

≤ Hμ(α|β) + hμ(T , β).

(f) By Lemma 9.4.4(b), we know that (T−1α)n = T−1(αn) for all n ∈ ℕ. Then, using
Lemma 9.4.7(b), we deduce that

hμ(T ,T
−1α) = lim

n→∞
1
n
Hμ((T

−1α)n) = lim
n→∞

1
n
Hμ(T
−1(αn)) = lim

n→∞
1
n
Hμ(α

n) = hμ(T ,α).

(g) By Lemma 9.4.4(d), we know that (αk)n = αn+k−1 and hence

hμ(T ,α
k) = lim

n→∞
1
n
Hμ((α

k)n) = lim
n→∞

1
n
Hμ(α

n+k−1)

= lim
n→∞

n + k − 1
n
⋅

1
n + k − 1

Hμ(α
n+k−1)

= lim
n→∞

n + k − 1
n
⋅ lim
n→∞

1
n + k − 1

Hμ(α
n+k−1)

= lim
m→∞

1
m
Hμ(α

m) = hμ(T ,α).

(h) Let k ∈ ℕ. Then

hμ(T
k ,αk) = lim

n→∞
1
n
Hμ(

n−1
⋁
j=0

T−kj(αk))

= lim
n→∞

1
n
Hμ(

n−1
⋁
j=0

T−kj(
k−1
⋁
i=0

T−iα))

= lim
n→∞

1
n
Hμ(

kn−1
⋁
l=0

T−lα)

= k lim
n→∞

1
kn

Hμ(α
kn) = k hμ(T ,α).
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(i) The proof is similar to that of part (f) and is thus left to the reader.
(j) Let (βn)∞n=1 be a sequence of partitions such that limn→∞ Hμ(α|βn) = 0. By part (e),

hμ(T ,α) ≤ hμ(T , βn) + Hμ(α|βn), ∀n ∈ ℕ.

Consequently,

hμ(T ,α) ≤ lim inf
n→∞
[hμ(T , βn) + Hμ(α|βn)]

= lim inf
n→∞

hμ(T , βn) + limn→∞
Hμ(α|βn) = lim inf

n→∞
hμ(T , βn).

(k) Suppose that limn→∞ Hμ(α|βn) = 0. By parts (j) and (g), we have

hμ(T ,α) ≤ lim inf
n→∞

hμ(T , β
n) = hμ(T , β).

9.4.3 Third and final stage: entropy of a system

The measure-theoretic entropy of a system is defined in a similar way to topological
entropy. The third and last step in the definition consists in passing to a supremum.

Definition 9.4.12. Let T : X → X be a measure-preserving dynamical system on a
probability space (X,𝒜, μ). The measure-theoretic entropy of T, denoted hμ(T), is de-
fined by

hμ(T) := sup{hμ(T ,α) : α ∈ PartFin(X,𝒜)},

where

PartFin(X,𝒜) := {α ∈ Part(X,𝒜) : #α <∞}.

The following theorem is a useful tool for calculating the measure-theoretic en-
tropy of a system. The first part is analogous to Theorem 7.2.19.

Theorem 9.4.13. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). The following statements hold:
(a) hμ(Tk) = k ⋅ hμ(T) for all k ∈ ℕ.
(b) If T is invertible, then hμ(T−1) = hμ(T).

Proof. (a) Let k ∈ ℕ. Using Theorem 9.4.11(h), we get

k hμ(T) = sup{k hμ(T ,α) : α ∈ PartFin(X,𝒜)}

= sup{hμ(T
k ,αk) : α ∈ PartFin(X,𝒜)}

≤ sup{hμ(T
k , β) : β ∈ PartFin(X,𝒜)} = hμ(T

k).
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On the other hand, since α ≤ αk for all k ∈ ℕ, Theorem 9.4.11(d) and (h) give

hμ(T
k ,α) ≤ hμ(T

k ,αk) = k hμ(T ,α).

Passing to the supremum over all finite partitions α of X on both sides, we obtain the
desired inequality, namely, hμ(Tk) ≤ k hμ(T).

(b) To distinguish the action of T from the action of T−1 on a partition, we shall
use the respective notation αn

T and αn
T−1 . Using Lemmas 9.4.7(b) and 9.4.4(b) in turn,

we deduce that

Hμ(α
n
T−1) = Hμ(

n−1
⋁
i=0
(T−1)−iα) = Hμ(

n−1
⋁
i=0

T iα)

= Hμ(T
−(n−1)(

n−1
⋁
i=0

T iα))

= Hμ(
n−1
⋁
i=0

T−(n−1−i)α)

= Hμ(
n−1
⋁
j=0

T−jα) = Hμ(α
n
T).

It follows that hμ(T−1,α) = hμ(T ,α) for every partition α, and thus, passing to the
supremum on both sides, we conclude that hμ(T−1) = hμ(T).

In Theorem 7.2.24, we observed that the topological entropy of an expansive dy-
namical system can be determined by simply calculating the entropy of that system
with respect to any cover of sufficiently small diameter. We intend to prove the corre-
sponding result for measure-theoretic entropy by the end of this section.We begin the
journey to that destinationwith a purelymeasure-theoretical lemma. It says that given
a finite Borel partition α of a compact metric space X and given any Borel partition β
of X of sufficiently small diameter, we can group the atoms of β together in such a way
that we nearly reconstruct the partition α. Notice that βmay be countably infinite.

To simplify notation, we shall write Part(X) := Part(X,ℬ(X)).

Lemma 9.4.14. Let X be a compact metric space and μ ∈ M(X). Let alsoα = {A1,A2, . . . ,
An} ∈ PartFin(X). Then for all ε > 0 there exists δ > 0 so that for every β ∈ Part(X) with
diam(β) < δ there is β′ = {B′1,B

′
2, . . . ,B

′
n} ∈ PartFin(X) such that

β′ ≤ β and μ(B′i △ Ai) < ε, ∀1 ≤ i ≤ n.

Proof. Fix ε > 0. Since μ is regular, for each 1 ≤ i ≤ n there exists a compact set Ki ⊆ Ai
such that

μ(Ai\Ki) <
ε
n
.
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As usual, let d denote the metric on X and set

θ = min{d(Ki,Kj) : i ̸= j}.

Then θ > 0, as the sets Ki are compact and mutually disjoint. Let δ = θ/2 and let β be
a partition with diam(β) < δ. For each 1 ≤ i ≤ n, let

B′i = ⋃
B∈β :B∩Ki ̸=0

B.

Then each B′i is a Borel set such that B
′
i ⊇ Ki. Furthermore, due to the choice of δ,

B′i ∩ B
′
j = 0, ∀i ̸= j.

However, the family of pairwise disjoint Borel sets {B′i }
n
i=1 may not cover X completely.

Indeed, there may be some sets C ∈ β such that C ∩⋃ni=1 Ki = 0. Take all those sets and
put them into B′1. Then β

′ = {B′i }
n
i=1 is a Borel partition of X such that β′ ≤ β. Moreover,

since B′j ⊇ Kj for all 1 ≤ j ≤ n, we get

μ(B′i △ Ai) = μ(B
′
i\Ai) + μ(Ai\B

′
i )

= μ((X\ ∪j ̸=i B
′
j )\Ai) + μ(Ai\B

′
i )

≤ μ((X\ ∪j ̸=i Kj)\Ai) + μ(Ai\Ki)
= μ((∪nk=1Ak\ ∪j ̸=i Kj)\Ai) + μ(Ai\Ki)
= μ(∪k ̸=iAk\ ∪j ̸=i Kj) + μ(Ai\Ki)
≤ μ(∪j ̸=iAj\Kj) + μ(Ai\Ki)

=
n
∑
j=1

μ(Aj\Kj) < n ⋅
ε
n
= ε.

From the above result, we will show that the conditional entropy of a partition α

given a partition β can bemade as small as desired provided that β has a small enough
diameter. Indeed, from Theorem 9.4.3(e), given partitions α, β and β′ as in the above
lemma, we have that Hμ(α|β) ≤ Hμ(α|β′), where the partition β′ is designed to resem-
ble the partition α. In order to estimate the conditional entropy Hμ(α|β′), we must
estimate the contribution of all atoms of the partition α∨ β′. There are essentially two
kinds of atoms to be taken into account, namely, atoms of the form Ai ∩ B′i and atoms
of the form Ai ∩ B′j with i ̸= j. Intuitively, because Ai is more or less equal to B′i (after
all, μ(Ai△B′i ) is small), the information provided byAi assuming thatmeasurement β′

resulted in B′i is small. On the other hand, since Ai is nearly disjoint from B′j when i ̸= j
(given that Ai is close to B′i and B

′
i ∩ B
′
j = 0), the information obtained from getting Ai

given that observation B′j occurred is also small. This is what we now prove rigorously.
The proof will make use of the function k from Definition 9.3.4.
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Lemma 9.4.15. Let X be a compact metric space and μ ∈ M(X). Let also α ∈ PartFin(X).
For every ε > 0, there exists δ > 0 such that

β ∈ Part(X), diam(β) < δ ⇒ Hμ(α|β) < ε.

Proof. Letα = {A1,A2, . . . ,An} be a finite Borel partition of X. As atoms ofmeasure zero
do not affect conditional entropy, we may assume that μ(Ai) > 0 for all 1 ≤ i ≤ n. Fix
ε > 0 and let 0 < ε < e−1 be so small that

max{k(ε), k(1 − ε)} < ε
2n
.

Then there exists ε̂ > 0 such that

0 < ε̂
μ(Ai) − ε̂

< ε and μ(Ai) − ε̂
μ(Ai) + ε̂

> 1 − ε (9.3)

for all 1 ≤ i ≤ n. In particular, the left relation in (9.3) imposes that μ(Ai) > ε̂ for
all i. Let δ > 0 be the number ascribed to ε̂ in Lemma 9.4.14. Let β be a partition with
diam(β) < δ, and let β′ = {B′1,B

′
2, . . . ,B

′
n} ≤ β be such that μ(Ai△B

′
i ) ≤ ε̂ for all 1 ≤ i ≤ n,

also as prescribed in Lemma 9.4.14. Since μ(Ai) > ε̂ for all i, this implies that μ(B′i ) > 0
for all i. Moreover,

μ(Ai) − μ(B
′
i )
 ≤ μ(Ai △ B

′
i ) ≤ ε̂. (9.4)

Therefore,

0 < μ(Ai) − ε̂ ≤ μ(Ai) − μ(Ai △ B
′
i ) ≤ μ(B

′
i ) ≤ μ(Ai) + μ(Ai △ B

′
i ) ≤ μ(Ai) + ε̂. (9.5)

Hence,

μ(Ai ∩ B
′
i ) = μ(Ai) − μ(Ai\B

′
i ) ≥ μ(Ai) − μ(Ai △ B

′
i ) ≥ μ(Ai) − ε̂ > 0.

Using this, (9.5) and (9.3), we get

μ(Ai ∩ B′i )
μ(B′i )

≥
μ(Ai) − ε̂
μ(Ai) + ε̂

> 1 − ε.

By choice of ε, the function k is decreasing on the interval [1−ε, 1] ⊆ [1−e−1, 1] ⊆ [e−1, 1],
and thus

k(
μ(Ai ∩ B′i )
μ(B′i )

) ≤ k(1 − ε) < ε
2n

(9.6)

for all i.
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Now, suppose that i ̸= j. Sinceα = {Ak}nk=1 is a partition ofX, we know thatAi∩B′j ⊆
B′j\Aj ⊆ Aj △ B

′
j . Using this, (9.5), (9.4) and (9.3), we infer that

μ(Ai ∩ B′j )
μ(B′j )

≤
μ(Aj △ B′j )

μ(Aj) − μ(Aj △ B′j )
≤

ε̂
μ(Aj) − ε̂

< ε.

By choice of ε, the function k is increasing on the interval [0, ε] ⊆ [0, e−1], and hence

k(
μ(Ai ∩ B′j )
μ(B′j )

) ≤ k(ε) < ε
2n

(9.7)

for all i ̸= j. Then, by Theorem 9.4.3(e) and (9.6)–(9.7), we have

Hμ(α|β) ≤ Hμ(α|β
′) = ∑

A∈α
∑
B′∈β′
−μ(A ∩ B′) log μ(A ∩ B

′)
μ(B′)

=
n
∑
i,j=1

μ(B′j )k(
μ(Ai ∩ B′j )
μ(B′j )

)

=
n
∑
i=1

μ(B′i )k(
μ(Ai ∩ B′i )
μ(B′i )

) +
n
∑
i,j=1
i ̸=j

μ(B′j )k(
μ(Ai ∩ B′j )
μ(B′j )

)

<
n
∑
i=1

μ(B′i )
ε
2n
+

n
∑
i=1

n
∑
j=1

μ(B′j )
ε
2n
=

ε
2n
+

n
∑
i=1

ε
2n
=

ε
2n
+ n ⋅ ε

2n

≤ ε.

From the above lemma,we can infer that any sequence of partitionswhose diame-
ters tend to 0 provide asymptotically asmuch information as any given finite partition
can.

Corollary 9.4.16. Let X be a compact metric space and μ ∈ M(X). Let also (αn)
∞
n=1 be a

sequence in Part(X) such that limn→∞ diam(αn) = 0. Then

lim
n→∞

Hμ(α|αn) = 0

for every α ∈ PartFin(X).

Proof. Let α be a finite Borel partition of X. By Lemma 9.4.15, for every ε > 0 there
exists a δ > 0 such that if diam(β) < δ then Hμ(α|β) < ε. Since diam(αn) → 0, it
follows that Hμ(α|αn)→ 0 as n→∞.

The above corollary about conditional entropy of partitions allows us to deduce
the following result on the measure-theoretic entropy of a system. This is the counter-
part of Lemma 7.2.20.
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Theorem 9.4.17. Let X be a compact metric space and μ ∈ M(X). Let also T : X → X
be a measure-preserving dynamical system on (X,ℬ(X), μ) and (αn)

∞
n=1 be a sequence in

PartFin(X) such that limn→∞ diam(αn) = 0. Then

hμ(T) = lim
n→∞

hμ(T ,αn).

Proof. Let α be a finite partition of X consisting of Borel sets. By Corollary 9.4.16, we
know that limn→∞ Hμ(α|αn) = 0. By Theorem 9.4.11(j), it follows that

hμ(T ,α) ≤ lim inf
n→∞

hμ(T ,αn) ≤ lim sup
n→∞

hμ(T ,αn) ≤ hμ(T).

Since this is true for any finite Borel partition α, we deduce from a passage to the
supremum that

hμ(T) ≤ lim inf
n→∞

hμ(T ,αn) ≤ lim sup
n→∞

hμ(T ,αn) ≤ hμ(T).

Hence, hμ(T) = limn→∞ hμ(T ,αn).

We can easily deduce a counterpart to Lemma 7.2.22.

Corollary 9.4.18. Let X be a compact metric space and μ ∈ M(X). Let also T : X → X
be a measure-preserving dynamical system on (X,ℬ(X), μ) and α ∈ PartFin(X) be such
that limn→∞ diam(αn) = 0. Then

hμ(T) = hμ(T ,α).

Proof. By Theorems 9.4.17 and 9.4.11(g), we have that

hμ(T) = lim
n→∞

hμ(T ,α
n) = lim

n→∞
hμ(T ,α) = hμ(T ,α).

Partitions α such that limn→∞ diam(αn) = 0 allow us (when they exist) to find the
entropy of a transformation by simply computing the entropy of the transformation
with respect to one such partition. As in Definition 7.2.21, we give them a special name.

Definition 9.4.19. Let X be a compact metric space and μ ∈ M(X). Let also T : X → X
be a measure-preserving dynamical system on (X,ℬ(X), μ). Any α ∈ PartFin(X) such
that limn→∞ diam(αn) = 0 is called a generator for T.

We have already seen in Lemma 7.2.23 that expansive dynamical systems admit
generators.

Theorem 9.4.20. Let T : X → X be an expansive dynamical system preserving a Borel
probability measure μ. If α ∈ PartFin(X) satisfies diam(α) < δ(T), where δ(T) is an
expansive constant for T, then α is a generator for T and hμ(T) = hμ(T ,α).
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Proof. Let α = {Ak}mk=1 be a finite Borel partition with diam(α) < δ(T). Define δ =
(δ(T) − diam(α))/2. The finite open cover α̃ = {B(Ak , δ)}mk=1 has diameter diam(α̃) ≤
δ(T). Lemma 7.2.23 asserts that limn→∞ diam(α̃n) = 0. As diam(αn) ≤ diam(α̃n) for all
n ∈ ℕ, it ensues that limn→∞ diam(αn) = 0 and the result thus follows from Corol-
lary 9.4.18.

Let us now give some examples, all but the first one of which are applications of
Theorem 9.4.17, Corollary 9.4.18 and/or Theorem 9.4.20.

Example 9.4.21. Let T : X → X be a measure-preserving dynamical system on a prob-
ability space (X,𝒜, μ). If there exists a finite measurable set Y ⊆ X of full measure,
then hμ(T) = 0. Indeed, for any β ∈ Part(X,𝒜) we have

Hμ(β) = −∑
B∈β

μ(B) log μ(B) = −∑
B∈β

μ(B ∩ Y) log μ(B ∩ Y).

This means that the entropy of a partition of X is equal to the entropy of the projection
of that partition onto Y . In other words, the entropy of a partition of X coincides with
the entropy of a partition of Y . Since Y is finite, there are only finitelymany such parti-
tions. Therefore, Hμ(β) can only take finitelymany values. Consequently, the entropies
Hμ(βn), n ∈ ℕ, can also only take finitely many values. Thus

hμ(T , β) = lim
n→∞

1
n
Hμ(β

n) = 0.

Since β was arbitrary, we conclude that

hμ(T) = sup{hμ(T , β) : β ∈ PartFin(X,𝒜)} = 0.

Example 9.4.22. The entropy of any homeomorphism T : 𝕊1 → 𝕊1 of the unit circle 𝕊1

is equal to 0 with respect to any T-invariant Borel probability measure.
Indeed, let μ be any T-invariant Borel probability measure. Let α and β be finite

partitions of 𝕊1 into intervals. Thenα∨β is a partition of 𝕊1 into at most (#α+#β) inter-
vals since #(α ∨ β) is equal to the number of endpoints of the intervals in α ∨ β, which
is bounded above by the sum of the number of endpoints of the intervals in α and the
number of endpoints of the intervals in β. Moreover, since T is a homeomorphism, we
know that T−kα is a partition of 𝕊1 into #α intervals for every k ∈ ℕ. Therefore, αn is a
partition of 𝕊1 into at most #(αn) ≤ n ⋅ #α intervals. Consequently,

0 ≤ Hμ(α
n) ≤ log #(αn) ≤ log n + log #α.

We deduce that

0 ≤ hμ(T ,α) = lim
n→∞

1
n
Hμ(α

n) ≤ lim
n→∞

1
n
(log n + log #α) = 0.
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Now, for everym ∈ ℕ, let αm be a partition of 𝕊1 intom intervals of equal length. Then
limm→∞ diam(αm) = 0 and, by the above result, hμ(T ,αm) = 0 for allm ∈ ℕ. It follows
from Theorem 9.4.17 that

hμ(T) = lim
m→∞

hμ(T ,αm) = 0.

Example 9.4.23. Let E be a finite set and A : E ×E → {0, 1} be an incidence matrix. We
proved in Example 4.1.3 that the shift map σ : E∞A → E∞A is expanding, and hence is
expansive.Moreprecisely, any0 < δ < 1 is an expansive constantwhenE∞A is endowed
with the metric ds(ω, τ) = s|ω∧τ|, for any 0 < s < 1. Let

α = {[e] : e ∈ E}

be the partition of E∞A into its initial 1-cylinders. Then

diam(α) = s < 1.

If μ is any σ-invariant Borel probability measure, then

hμ(σ) = hμ(σ,α)

according to Theorem 9.4.20.
In particular, let us consider the full E-shift. Let μ be the product measure deter-

mined by its value on the cylinder sets; in other words,

μ([ω1ω2 . . .ωn]) =
n
∏
k=1

P(ωk),

where P is a probability measure on the σ-algebra of all subsets of E and P(e) :=
P({e}). It was shown in Example 8.1.14 that μ is σ-invariant (and σ-ergodic per Exam-
ple 8.2.32). Furthermore, it is possible to show by induction that

Hμ(α
n) = −n∑

e∈E
P(e) logP(e).

Thus

hμ(σ) = hμ(σ,α) = lim
n→∞

1
n
Hμ(α

n) = −∑
e∈E

P(e) logP(e).

Example 9.4.24. Let Tn : 𝕊1 → 𝕊1 be the n-fold map defined by Tn(x) = nx (mod 1),
where 𝕊1 is equipped with the σ-algebra of Borel sets and with the Lebesgue measure
λ. We have already seen in Example 8.1.10 that Tn preserves λ (we also showed in Ex-
ample 8.2.30 that Tn is ergodic with respect to λ). Consider the partition

α = {[
j
n
,
j + 1
n
) : 0 ≤ j < n}.
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The map Tn is expanding, and thus expansive, with any 0 < δ < 1/n as expansive
constant. As diam(α) = 1/n, Theorem 9.4.20 does not apply toα directly. Nevertheless,
observe that

αk = {[
j
nk
,
j + 1
nk
) : 0 ≤ j < nk}

for all k ∈ ℕ. Thus diam(αk) = 1/nk < 1/n for all k ≥ 2. Using Theorems 9.4.20
and 9.4.11(g), we deduce that

hλ(Tn) = hλ(Tn,α
k) = hλ(Tn,α).

Moreover,

Hλ(α
k) = ∑

I∈αk

−λ(I) log λ(I)

=
nk−1
∑
j=0
−λ([ j

nk
,
j + 1
nk
)) log λ([ j

nk
,
j + 1
nk
))

=
nk−1
∑
j=0
−
1
nk

log 1
nk
= − log 1

nk
= k log n.

Consequently,

hλ(Tn) = hλ(Tn,α) = lim
k→∞

1
k
Hλ(α

k) = log n.

9.5 Shannon–McMillan–Breiman theorem

The Shannon–McMillan–Breiman theorem is a central result in information theory
and can be thought of as a sort of ergodic theorem for measure-theoretic entropy. In-
deed, the proof relies heavily on Birkhoff’s ergodic theorem (Theorem 8.2.11). It also
uses the following result.

Lemma 9.5.1. Let T : X → X be a measure-preserving dynamical system on a probabil-
ity space (X,𝒜, μ). Let α ∈ Part(X,𝒜). Let also

fn := Iμ(α|α
n
1 ) and f ∗ := sup

n∈ℕ
fn.

Then, for all r ∈ ℝ and all A ∈ α, we have

μ({x ∈ A : f ∗(x) > r}) ≤ min{μ(A), e−r}.

Proof. Let A ∈ α and fix n ∈ ℕ. To shorten notation, let

f An = − logE(1A|σ(α
n
1 )),
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where σ(αn
1 ) is the sub-σ-algebra generated by the countable partition αn

1 . Fix x ∈ A.
Then, using Example A.1.62 in Appendix A, we get

f An (x) = − logE(1A|σ(α
n
1 ))(x) = − log[

1
μ(αn

1 (x))
∫

αn
1 (x)

1A dμ]

= − log
μ(A ∩ αn

1 (x))
μ(αn

1 (x))
= − log

μ(α(x) ∩ αn
1 (x))

μ(αn
1 (x))

= Iμ(α|α
n
1 )(x)

= fn(x)

for all x ∈ A. Hence,

fn = ∑
A∈α

1A ⋅ f
A
n .

Now, for n ∈ ℕ and r ∈ ℝ consider the set

BA,rn = {x ∈ X : max
1≤i<n

f Ai (x) ≤ r while f An (x) > r}.

The family {BA,rn }
∞
n=1 consists of mutually disjoint sets. Also, recall that αn

1 ≤ α
n+1
1 , and

thus σ(αn
1 ) ⊆ σ(α

n+1
1 ) for each n ∈ ℕ. By definition, each f

A
n is measurable with respect

to σ(αn
1 ). Consequently, B

A,r
n ∈ σ(α

n
1 ). Then

μ(A ∩ BA,rn ) = ∫

BA,rn

1A dμ = ∫
BA,rn

E(1A|σ(α
n
1 )) dμ

= ∫

BA,rn

exp(−f An ) dμ ≤ ∫
BA,rn

e−r dμ = e−rμ(BA,rn ).

But

{x ∈ A : f ∗(x) > r} = {x ∈ A : ∃ n ∈ ℕ such that fn(x) > r}

= {x ∈ A : ∃ n ∈ ℕ such that f An (x) > r} = A ∩
∞
⋃
n=1

BA,rn .

Using the disjointness of the BA,rn ’s, it ensues that

μ({x ∈ A : f ∗(x) > r}) =
∞
∑
n=1

μ(A ∩ BA,rn ) ≤
∞
∑
n=1

e−rμ(BA,rn ) = e
−rμ(
∞
⋃
n=1

BA,rn ) ≤ e
−r .

Corollary 9.5.2. In addition to the hypotheses of Lemma 9.5.1, assume thatHμ(α) <∞.
Then f ∗ ∈ L1(X,𝒜, μ) and ‖f ∗‖1 ≤ Hμ(α) + 1.

Proof. Since f ∗ ≥ 0, we have ∫X |f
∗| dμ = ∫X f

∗ dμ. Using Lemmas 9.5.1 and A.1.37, we
obtain

‖f ∗‖1 = ∫
X

f ∗ dμ = ∑
A∈α
∫
A

f ∗ dμ

= ∑
A∈α

∞

∫
0

μ({x ∈ A : f ∗(x) > r}) dr
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≤ ∑
A∈α

∞

∫
0

min{μ(A), e−r} dr

= ∑
A∈α
(
− log μ(A)

∫
0

μ(A) dr +
∞

∫
− log μ(A)

e−r dr)

= ∑
A∈α
(−μ(A) log μ(A) + [−e−r]∞− log μ(A))

= ∑
A∈α
−μ(A) log μ(A) + ∑

A∈α
μ(A)

= Hμ(α) + 1 <∞.

Corollary 9.5.3. Under the same hypotheses as Corollary 9.5.2, the sequence (fn)∞n=1 con-
verges μ-a. e. and in L1(X,𝒜, μ).

Proof. Recall that αn
1 ≤ αn+1

1 , and thus σ(αn
1 ) ⊆ σ(αn+1

1 ) for each n ∈ ℕ. For any
x ∈ A ∈ α, we have fn(x) = f An (x) = − logE(1A|σ(α

n
1 ))(x) and Doob’s martingale

convergence theorem for conditional expectations (Theorem A.1.67) guarantees that
limn→∞ E(1A|σ(αn

1 )) exists μ-almost everywhere. Hence, the sequence of nonnegative
functions (fn)∞n=1 converges μ-a. e. to some limit function g ≥ 0. Since |fn| = fn ≤ f ∗

for all n, we have |g| = g ≤ f ∗, and thus |fn − g| ≤ 2f ∗ μ-almost everywhere. Ap-
plying Lebesgue’s dominated convergence theorem (Theorem A.1.38) to the sequence
(|fn − g|)∞n=1, we obtain

lim
n→∞
‖fn − g‖1 = lim

n→∞
∫
X

|fn − g| dμ = ∫
X

lim
n→∞
|fn − g| dμ = 0.

In other words, fn → g in L1(X,𝒜, μ).

We are finally in a position to prove the main result of this section and chapter.

Theorem 9.5.4 (Shannon–McMillan–Breiman theorem). Let T : X → X be a measure-
preserving dynamical system on a probability space (X,𝒜, μ) and let α ∈ Part(X,𝒜) be
such that Hμ(α) <∞. Then the following limits exist:

f := lim
n→∞

Iμ(α|α
n
1 ) and lim

n→∞
1
n

n−1
∑
j=0

f ∘ T j = E(f |ℐμ) μ-a. e.,

where ℐμ is the sub-σ-algebra of all μ-almost T-invariant sets (see Definition 8.2.5).
Moreover, the following statements hold:

(a) limn→∞
1
n Iμ(α

n) = E(f |ℐμ) μ-a. e. and in L1(μ).

(b) hμ(T ,α) = limn→∞
1
nHμ(α

n) = ∫X E(f |ℐμ) dμ = ∫X f dμ.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.5 Shannon–McMillan–Breiman theorem | 303

Proof. According to Corollary 9.5.3, the first sequence of functions (fn)∞n=1 =
(Iμ(α|αn

1 ))
∞
n=1 converges μ-a. e. to an integrable function f . The second limit exists

by virtue of Birkhoff’s ergodic theorem (Theorem 8.2.11). Note also that all functions
(fn)∞n=1 are nonnegative, and thus so are f and E(f |ℐμ). To prove the remaining two
statements, let us first assume that (a) holds and derive (b) from it. Then we will
prove (a).

Let us assume that (a) holds. Using Scheffé’s lemma (Lemma A.1.39) and the fact
that (Iμ(αn))∞n=1 and E(f |ℐμ) are nonnegative, we obtain that

hμ(T ,α) = lim
n→∞

1
n
Hμ(α

n) = lim
n→∞

1
n
∫
X

Iμ(α
n) dμ = ∫

X

E(f |ℐμ) dμ = ∫
X

f dμ.

This establishes (b).
In order to prove (a), first notice that by Lemma 9.4.6 we have

Iμ(α
n) =

n
∑
k=1

Iμ(α|α
k
1 ) ∘ T

n−k =
n−1
∑
j=0

Iμ(α|α
n−j
1 ) ∘ T

j =
n−1
∑
j=0

fn−j ∘ T
j.

Then, by the triangle inequality,


1
n
Iμ(α

n) − E(f |ℐμ)

=


1
n

n−1
∑
j=0
(fn−j ∘ T

j − f ∘ T j) + 1
n

n−1
∑
j=0

f ∘ T j − E(f |ℐμ)


≤


1
n

n−1
∑
j=0
(fn−j − f ) ∘ T

j

+

1
n
Snf − E(f |ℐμ)



≤
1
n

n−1
∑
j=0

fn−j − f
 ∘ T

j +

1
n
Snf − E(f |ℐμ)


. (9.8)

Birkhoff’s ergodic theorem (Theorem 8.2.11) asserts that the second term on the right-
hand side tends to 0 in L1(μ). Let us now investigate the first term on that right-hand
side. Set gn = |fn − f |. Since (fn)∞n=1 converges to f in L

1(μ) according to Corollary 9.5.3,
the sequence (gn)∞n=1 converges to 0 in L1(μ). So do its Cesàro averages ( 1n ∑

n
i=1 gi)
∞
n=1.

Then

lim
n→∞



1
n

n−1
∑
j=0

gn−j ∘ T
j
1
= lim

n→∞
∫
X



1
n

n−1
∑
j=0

gn−j ∘ T
j

dμ

= lim
n→∞

1
n

n−1
∑
j=0
∫
X

gn−j ∘ T
j dμ

= lim
n→∞

1
n

n−1
∑
j=0
∫
X

gn−j dμ
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= lim
n→∞
∫
X

1
n

n
∑
i=1

gi dμ

= 0.

That is, the functions 1
n ∑

n−1
j=0 gn−j ∘ T

j converge to 0 in L1(μ). Thus the first term on the
right-hand side of (9.8), like the second term, converges to 0 in L1(μ). This implies that
the sequence ( 1n Iμ(α

n))∞n=1 converges to E(f |ℐμ) in L
1(μ).

It only remains to show convergence μ-a. e. of that same sequence. To this end, for
each N ∈ ℕ let GN = supn≥N gn. The sequence of functions (GN )

∞
N=1 is decreasing and

bounded below by 0, so it converges to some function. As fn → f μ-a. e., we know that
gn = |fn − f | → 0 μ-almost everywhere. It follows that GN ↘ 0 μ-almost everywhere.
Also, the functions GN are uniformly bounded above by an integrable function since

0 ≤ GN ≤ G1 = sup
n∈ℕ

gn ≤ sup
n∈ℕ
(|fn| + |f |) ≤ f

∗ + f ∈ L1(μ),

where f ∗, f ∈ L1(μ) according to Corollaries 9.5.2–9.5.3. So GN ∈ L1(μ) for allN ∈ ℕ and
Lebesgue’s dominated convergence theorem affirms that

lim
N→∞
∫
X

E(GN |ℐμ) dμ = lim
N→∞
∫
X

GN dμ = ∫
X

lim
N→∞

GN dμ = 0.

Moreover, according to Proposition A.1.60, since (GN )
∞
N=1 is decreasing and bounded

below by 0, so is the sequence of conditional expectations (E(GN |ℐμ))
∞
N=1 μ-almost ev-

erywhere. Summarizing, we have established that E(GN |ℐμ) ↘ μ-a. e., E(GN |ℐμ) ≥ 0
μ-a. e. and ∫X E(GN |ℐμ) dμ ↘ 0 as N → ∞. It ensues that E(GN |ℐμ) ↘ 0 μ-a. e. as
N →∞.

Fix temporarily N ∈ ℕ. Then for any n > N, we have

1
n

n−1
∑
j=0

gn−j ∘ T
j =

1
n

n−N
∑
j=0

gn−j ∘ T
j +

1
n

n−1
∑

j=n−N+1
gn−j ∘ T

j

≤
n − N
n
⋅

1
n − N

n−N
∑
j=0

GN ∘ T
j +

1
n

n−1
∑

j=n−N+1
G1 ∘ T

j.

Let FN = ∑
N−2
j=0 G1 ∘ T j. Using Birkhoff’s ergodic theorem (Theorem 8.2.11), we deduce

that

0 ≤ lim sup
n→∞

1
n

n−1
∑
j=0

gn−j ∘ T
j ≤ lim

n→∞
1

n − N

n−N
∑
j=0

GN ∘ T
j + lim sup

n→∞

1
n
FN ∘ T

n−N+1

= E(GN |ℐμ) + lim sup
n→∞

1
n
FN ∘ T

n−N+1 μ-a. e.

= E(GN |ℐμ) μ-a. e..
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Since N was chosen arbitrarily and we have showed earlier that E(GN |ℐμ) → 0 μ-a. e.
as N →∞, we conclude that

lim
n→∞

1
n

n−1
∑
j=0

gn−j ∘ T
j = 0 μ-a. e..

This establishes the μ-a. e. convergence of the first term on the right-hand side of (9.8).
The μ-a. e. convergence of the second term on that right-hand side follows from
Birkhoff’s ergodic theorem (Theorem 8.2.11). Therefore, the sequence ( 1n Iμ(α

n))∞n=1
converges to E(f |ℐμ) μ-almost everywhere.

Corollary 9.5.5 (Ergodic case of Shannon–McMillan–Breiman theorem). Let T : X →
X be an ergodic measure-preserving dynamical system on a probability space (X,𝒜, μ)
and let α ∈ Part(X,𝒜) be such that Hμ(α) <∞. Then

hμ(T ,α) = lim
n→∞

1
n
Iμ(α

n)(x) for μ-a. e. x ∈ X.

Proof. This follows immediately from Shannon–McMillan–Breiman theorem (Theo-
rem 9.5.4) and the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14).

When hμ(T ,α) > 0, this corollary reveals that μ(αn(x)) tends to 0with exponential
rate e−hμ(T ,α) for μ-a. e. x ∈ X (see Exercise 9.7.11).

The right-hand side in the above equality can be viewed as a local entropy at x.
The corollary then states that at almost every x the local entropy exists and is equal to
the entropy of the transformation relative to the partition. Another approach to local
entropy is discussed next.

9.6 Brin–Katok local entropy formula

We now derive the celebrated Brin–Katok local entropy formula.
In preparation for this, we show that given any Borel probability measure μ there

exist finite Borel partitions of arbitrarily small diameters whose atoms have negligible
boundaries with respect to μ.

Lemma 9.6.1. Let (X, d) be a compactmetric space and μ ∈ M(X). For every ε > 0, there
exists a finite Borel partition α of X such that diam(α) < ε and μ(𝜕A) = 0 for all A ∈ α.

Proof. Let ε > 0 and let {x1, . . . , xn} be an (ε/4)-spanning set of X. For each 1 ≤ i ≤ n,
the sets {x ∈ X : d(x, xi) = r}, where ε/4 < r < ε/2, are mutually disjoint, and thus only
countably many of them may have positive μ-measure. Hence, there exists ε/4 < t <
ε/2 such that

μ({x ∈ X : d(x, xi) = t}) = 0, ∀1 ≤ i ≤ n. (9.9)
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Define the sets Ai, 1 ≤ i ≤ n, inductively by

Ai := {x ∈ X : d(x, xi) ≤ t}\(∪
i−1
j=1Aj).

Since t < ε/2, the familyα := {A1, . . . ,An} is a Borel partition ofX with diameter smaller
than ε. Noting that 𝜕(A\B) ⊆ 𝜕A ∪ 𝜕B and 𝜕(A ∪ B) ⊆ 𝜕A ∪ 𝜕B, it follows from (9.9) that
μ(𝜕Ai) = 0 for all 1 ≤ i ≤ n.

We now recall the concept, frequently used in coding theory, of Hamming metric.
Let E be a nonempty finite set and n ∈ ℕ. The Hamming metric ρ(H)E,n on En is defined
by

ρ(H)E,n (ω, τ) =
1
n

n
∑
k=1
(1 − δωkτk ),

where δab is the Kronecker delta symbol, that is,

δab = {
1 if a = b
0 if a ̸= b.

Equivalently,

ρ(H)E,n (ω, τ) =
1
n
#{1 ≤ k ≤ n : ωk ̸= τk}. (9.10)

It is well known and a straightforward exercise to check that ρ(H)E,n is a metric on En.
Given ω ∈ En and r ≥ 0, we naturally denote by B(H)E,n (ω, r) the open ball, in the Ham-
ming metric ρ(H)E,n , centered at ω and of radius r. Formally,

B(H)E,n (ω, r) = {τ ∈ E
n : ρ(H)E,n (ω, τ) < r}.

Standard combinatorial considerations show that the number of elements in the ball
B(H)E,n (ω, r) depends only on #E, n, and r, and is equal to

#B(H)E,n (ω, r) =
[r n]
∑
k=0
(#E − 1)k ( n

k
) .

As Katok writes in [31], using this and Stirling’s formula, it is easy to verify that for
every r ∈ (0, #E−1#E ) we have

lim
n→∞

1
n
log #B(H)E,n (ω, r) = r log(#E − 1) − r log r − (1 − r) log(1 − r) =: g(r). (9.11)

Observe that

lim
r→0

g(r) = 0, (9.12)
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and thus for every r ∈ (0, #E−1#E ) there is N(r) ∈ ℕ such that

#B(H)E,n (ω, r) ≤ e
g(r)n, ∀n ≥ N(r). (9.13)

Returning to dynamics, let (X, d) be a metric space, let T : X → X be a Borel
measurable self-transformation and let μ be a Borel probabilitymeasure onX. Let also
α be a Borel partition of X.

As the symbol αn might be interpreted in two different ways in the proof of the
forthcoming Theorem 9.6.2, we introduce further notation. As before, the nth refined
partition of α with respect to the map T will be denoted by αn := ⋁n−1i=0 T

−iα. The
n-folded Cartesian product α × α . . . × α will be denoted by α̂n.

In the proof of Theorem 9.6.2, we will work with the Hamming metrics ρ(H)E,n on the
sets α̂n, n ∈ ℕ. We introduce two mappings.

First, we define the map

αn ∋ A → Â ∈ α̂n

as follows. Given that α is a partition, every A ∈ αn is uniquely represented as

A =
n−1
⋂
i=0

T−i(Ai),

where Ai ∈ α for all 0 ≤ i < n. We naturally set

Â := (A0,A1, . . . ,An−1) ∈ α̂
n

and we note that the map αn ∋ A → Â ∈ α̂n is one-to-one.
Second, we define the map

α̂n ∋ A = (A1,A2, . . . ,An) → qA ∈ αn ∪ {0}

by the formula

qA :=
n−1
⋂
i=0

T−i(Ai+1)

and we note that the map α̂n ∋ A → qA ∈ αn ∪ {0} is one-to-one on ∨−1(αn) = {A ∈ α̂n :
qA ̸= 0} and by restricting the first mapping to that set and the second mapping to the
image of that set, the two restricted mappings are inverse of one another.

Introducing more notation, we denote

Ĝ := {ĝ | g ∈ G} and qH := {qh | h ∈ H}

for all G ⊆ αn and H ⊆ α̂n. We abbreviate

qB(H)α,n(A, r) :=
B(H)α,n(A, r) and α̂n(x) :=?αn(x)
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for every A ∈ α̂n, r > 0 and x ∈ X. Finally, we denote

∪β := ⋃
B∈β

B

for every β ⊆ αn.
We now present and prove the ergodic version of Brin and Katok’s formula

from [12]. The general (i. e. nonergodic) case is considerably more complicated and
rarely needed in applications. However, unlike [12], we do not assume that the map
T : X → X is continuous but merely that it is Borel measurable. The proof we provide
is motivated by Pesin’s relevant considerations in [56].

Theorem 9.6.2 (Brin–Katok local entropy formula). Let (X, d) be a compact metric
space and let T : X → X be a Borel measurable map. If μ is an ergodic T-invariant
Borel probability measure on X, then for μ-almost every x ∈ X we have

hμ(T) = limδ→0
lim inf
n→∞
− log μ(Bn(x, δ))

n
= lim

δ→0
lim sup
n→∞

− log μ(Bn(x, δ))
n

,

where Bn(x, δ) is the dynamical (n, δ)-ball at x (see Section 7.3).

Proof. It suffices to prove that for μ-almost every x ∈ X,

hμ(T) ≤ limδ→0
lim inf
n→∞
− log μ(Bn(x, δ))

n
≤ lim

δ→0
lim sup
n→∞

− log μ(Bn(x, δ))
n

≤ hμ(T). (9.14)

Themiddle inequality being obvious, we start with the right inequality, as it is simpler
to establish.

Temporarily fix δ > 0. Since X is a compact metric space, there is a finite Borel
partition αδ of X such that diam(αδ) < δ. Then αn

δ(x) ⊆ Bn(x, δ) for all x ∈ X and all
n ∈ ℕ. By the ergodic case of Shannon–McMillan–Breiman theorem (Corollary 9.5.5),
we know that there exists a Borel set X1(αδ) such that

μ(X1(αδ)) = 1 (9.15)

and

lim
n→∞

− log μ(αn
δ(x))

n
= hμ(T ,αδ), ∀x ∈ X1(αδ).

As αn(x) ⊆ Bn(x, δ), we deduce that

lim sup
n→∞

− log μ(Bn(x, δ))
n

≤ hμ(T ,αδ) ≤ hμ(T), ∀x ∈ X1(αδ). (9.16)

It follows from this and (9.15) that the set

X1 :=
∞
⋂
k=1

X1(α1/k)
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satisfies

μ(X1) = 1 (9.17)

and

lim sup
n→∞

− log μ(Bn(x, 1/k))
n

≤ hμ(T), ∀x ∈ X1, ∀k ∈ ℕ. (9.18)

Observing that the left-hand sides of (9.16) and (9.18) are a decreasing function of δ
and an increasing function of k, respectively, we conclude that

lim
δ→0

lim sup
n→∞

− log μ(Bn(x, δ))
n

= lim
k→∞

lim sup
n→∞

− log μ(Bn(x, 1/k))
n

≤ hμ(T), ∀x ∈ X1.

This is the right inequality in (9.14).
To achieve the left inequality in (9.14), temporarily fix ε ∈ (0, #α−1#α )with α a finite

Borel partition of X such that

μ(𝜕α) = 0, (9.19)

where 𝜕α denotes the boundary of the partition α. For any η > 0, set

Uη(α) := {x ∈ X : B(x, η) ̸⊆ α(x)}.

Since ⋂η>0 Uη(α) = 𝜕α and Uη1 (α) ⊆ Uη2 (α) whenever η1 ≤ η2, it follows from (9.19)
that

lim
η→0

μ(Uη(α)) = 0.

Consequently, there exists ηε > 0 such that μ(Uη(α)) < ε for every 0 < η ≤ ηε. By the
ergodic case of Birkhoff’s ergodic theorem for an indicator function (Corollary 8.2.15)
and by Egorov’s theorem (Theorem A.1.44), for every η ∈ (0, ηε] there exist a Borel set
X(ε, η) ⊆ X and an integerM(ε, η) ∈ ℕ such that

μ(X(ε, η)) ≥ 1 − ε (9.20)

and
1
n
#{0 ≤ i < n : T i(x) ∈ Uη(α)} < ε, ∀x ∈ X(ε, η), ∀n ≥ M(ε, η).

Now, observe that if y ∈ Bn(x, η) then for each 0 ≤ i < n,

either α(T i(x)) = α(T i(y)) or T i(x) ∈ Uη(α).

So, if x ∈ X(ε, η) and y ∈ Bn(x, η) for some n ≥ M(ε, η), then

ρ(H)α,n(α̂
n(x), α̂n(y)) < ε.
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(See (9.10) for the definition of ρ(H)α,n.) Equivalently,

Bn(x, η) ⊆ qB(H)α,n(α̂
n(x), ε), ∀x ∈ X(ε, η), ∀n ≥ M(ε, η). (9.21)

We thus need an upper estimate on μ(qB(H)α,n(α̂
n(x), ε)). For every n ∈ ℕ define

Zn := {A ∈ α
n : μ(A) ≥ exp((−hμ(T ,α) + 3g(ε))n)},

with g(⋅) from (9.11). As sets in Zn are mutually disjoint and μ(X) = 1, we deduce that

#Zn ≤ exp((hμ(T ,α) − 3g(ε))n). (9.22)

To get an appropriate upper estimate, there are “good” and “bad” atoms in αn. Let

Bad(αn, ε) := {A ∈ αn : B(H)α,n(Â, ε) ∩ Ẑn ̸= 0} ⊆ qB(H)α,n(Ẑn, ε). (9.23)

Using (9.13), if n ≥ N(ε) and A ∈ αn \ Bad(αn, ε) then we obtain

μ(qB(H)α,n(Â, ε)) ≤ #B
(H)
α,n(Â, ε) exp((−hμ(T ,α) + 3g(ε))n)

≤ exp((−hμ(T ,α) + 4g(ε))n). (9.24)

Along with (9.21), this implies that

μ(Bn(x, η)) ≤ exp((−hμ(T ,α) + 4g(ε))n) (9.25)

if x ∈ X(ε, η) \ ∪Bad(αn, ε) for some n ≥ max{N(ε),M(ε, η)}. Hence,

lim
δ→0

lim inf
n→∞
− log μ(Bn(x, δ))

n
≥ lim inf

n→∞
− log μ(Bn(x, η))

n
≥ hμ(T ,α) − 4g(ε) (9.26)

for all x ∈ ⋃∞i=1⋂
∞
j=i(X(ε, η) \ ∪Bad(α

j, ε)) = X(ε, η) ∩⋃∞i=1⋂
∞
j=i(X \ ∪Bad(α

j, ε)).
We need to show that this latter set is big measurewise, i. e. that its measure is

ε-close to 1. For this, it suffices to show that one of its subsets is big. This subset has
the similar form X(ε, η) ∩⋃∞i=1⋂

∞
j=i(∪βj(ε) \ ∪Bad(α

j, ε)). We define βj(ε) now and then
estimate themeasure of the said subset in several steps. This is themost arduous task.

By the ergodic case of the Shannon–McMillan–Breiman theorem (Corollary 9.5.5)
and Egorov’s theorem (Theorem A.1.44), there exists a Borel set Y(ε) ⊆ X and an inte-
ger N1(ε) ≥ N(ε) such that

μ(Y(ε)) > 1 − ε (9.27)

and
− log μ(αn(x))

n
≥ hμ(T ,α) − g(ε), ∀x ∈ Y(ε), ∀n ≥ N1(ε).
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Equivalently,

μ(αn(x)) ≤ exp(−(hμ(T ,α) − g(ε))n), ∀x ∈ Y(ε), ∀n ≥ N1(ε).

Let

βn(ε) := {α
n(x) : x ∈ Y(ε)}.

Fix temporarily n ≥ N1(ε). Then

μ(A) ≤ exp(−(hμ(T ,α) − g(ε))n), ∀A ∈ βn(ε). (9.28)

Let

Dn(ε) := {A ∈ βn(ε) : Â ∈ B
(H)
α,n(Ẑn, ε)} = βn(ε) ∩ qB(H)α,n(Ẑn, ε).

Using (9.28) as well as (9.13) and (9.22), we get

μ(∪Dn(ε)) ≤ exp(−(hμ(T ,α) − g(ε))n)#(βn(ε) ∩ qB(H)α,n(Ẑn, ε))

≤ exp(−(hμ(T ,α) − g(ε))n)#B
(H)
α,n(Ẑn, ε)

≤ exp(−(hμ(T ,α) − g(ε))n)#Zn exp(g(ε)n)
≤ exp(−g(ε)n). (9.29)

Using (9.23), we obtain that

∪βn(ε) \ ∪Bad(α
n, ε) = ∪βn(ε) \ (∪βn(ε) ∩ ∪Bad(α

n, ε))
⊇ ∪βn(ε) \ (∪βn(ε) ∩ ∪qB

(H)
α,n(Ẑn, ε))

= ∪βn(ε) \ ∪(βn(ε) ∩ qB(H)α,n(Ẑn, ε))
= ∪βn(ε) \ ∪Dn(ε).

Therefore, for every k ≥ N1(ε) we obtain that

∞
⋂
n=k
(∪βn(ε) \ ∪Bad(α

n, ε)) ⊇
∞
⋂
n=k
(∪βn(ε) \ ∪Dn(ε)) ⊇

∞
⋂
n=k
∪βn(ε) \

∞
⋃
n=k
∪Dn(ε)

⊇
∞
⋂
n=k

Y(ε) \
∞
⋃
n=k
∪Dn(ε) = Y(ε) \

∞
⋃
n=k
∪Dn(ε).

From this, (9.27) and (9.29), we deduce that

μ(
∞
⋂
n=k
(∪βn(ε) \ ∪Bad(α

n, ε))) ≥ μ(Y(ε)) − μ(
∞
⋃
n=k
∪Dn(ε))

≥ μ(Y(ε)) −
∞
∑
n=k

μ(∪Dn(ε))
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≥ 1 − ε −
∞
∑
n=k

e−g(ε)n

= 1 − ε − e−g(ε)k

1 − e−g(ε)
. (9.30)

Consequently,

μ(
∞
⋃
k=1

∞
⋂
n=k
(∪βn(ε) \ ∪Bad(α

n, ε))) = lim
k→∞

μ(
∞
⋂
n=k
(∪βn(ε) \ ∪Bad(α

n, ε))) ≥ 1 − ε. (9.31)

It follows from (9.31) and (9.20) that

μ(X(ε, η) ∩ (
∞
⋃
i=1

∞
⋂
j=i
(∪βj(ε) \ ∪Bad(α

j, ε)))) ≥ 1 − 2ε.

Thus

μ(
∞
⋃
q=k
(X(1/q, η1/q) ∩ (

∞
⋃
i=1

∞
⋂
j=i
(∪βj(1/q) \ ∪Bad(α

j, 1/q))))) = 1, ∀k ∈ ℕ.

If

X̂2(α) :=
∞
⋂
k=1

∞
⋃
q=k
(X(1/q, η1/q) ∩ (

∞
⋃
i=1

∞
⋂
j=i
(∪βj(1/q) \ ∪Bad(α

j, 1/q)))),

then

μ(X̂2(α)) = 1 (9.32)

and, by virtue of (9.26) and (9.12), we deduce that

lim
δ→0

lim inf
n→∞
− log μ(Bn(x, δ))

n
≥ hμ(T ,α), ∀x ∈ X̂2(α). (9.33)

As the metric space X is compact, it follows from Lemma 9.6.1 and Theorem 9.4.17
that there exists a sequence (αk)

∞
k=1 of finite Borel partitions of X such that μ(𝜕αk) = 0

for every k ∈ ℕ and

lim
k→∞

hμ(T ,αk) = hμ(T).

Setting

X̂2 :=
∞
⋂
k=1

X̂2(αk),
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we have by (9.32) that

μ(X̂2) = 1 (9.34)

and by (9.33) that

lim
δ→0

lim inf
n→∞
− log μ(Bn(x, δ))

n
≥ hμ(T), ∀x ∈ X̂2.

This is the left inequality in (9.14).
As μ(X1 ∩ X̂2) = 1 by (9.17) and (9.34), and as all three inequalities in (9.14) are valid

on X1 ∩ X̂2, the result ensues.

Remark 9.6.3. As amatter of fact, only total boundedness of themetric d is needed for
Theorem 9.6.2 to hold. More precisely, in Lemma 9.6.1 total boundedness is sufficient,
and compactness has not been used anywhere in the proof of Theorem 9.6.2.

In the case of an expansive system T, we have the following stronger and simpler
version of Theorem 9.6.2.

Theorem 9.6.4 (Brin–Katok local entropy formula for expansive maps). Let T :X→X
be an expansive topological dynamical system and let d be a metric compatible with
the topology on X. If δ > 0 is an expansive constant for T corresponding to this metric,
then for every ζ ∈ (0, δ], every ergodic T-invariant Borel probability measure μ on X and
μ-almost every x ∈ X, we have

hμ(T) = lim
n→∞
− log μ(Bn(x, ζ ))

n
.

Proof. For every x ∈ X, denote

hμ(T , ζ , x) := lim sup
n→∞

− log μ(Bn(x, ζ ))
n

and hμ(T , ζ , x) := lim inf
n→∞
− log μ(Bn(x, ζ ))

n
.

Since Bn(x, ζ ) ⊆ Bn(x, δ) for every n ∈ ℕ, it is clear that

hμ(T , δ, x) ≤ hμ(T , ζ , x). (9.35)

On the other hand, using Observation 5.2.4 we obtain that

hμ(T , δ, x) = lim inf
n→∞
− log μ(Bn(x, δ))

n

≥ lim inf
n→∞

− log μ(Bn−N(ζ /2)(x, ζ ))
n

= lim inf
n→∞

n − N(ζ /2)
n
⋅
− log μ(Bn−N(ζ /2)(x, ζ ))

n − N(ζ /2)
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= lim inf
n→∞

− log μ(Bn−N(ζ /2)(x, ζ ))
n − N(ζ /2)

= hμ(T , ζ , x). (9.36)

Since, by Theorem 9.6.2,

lim
ζ→0

hμ(T , ζ , x) = hμ(T) = limζ→0
hμ(T , ζ , x) for μ-a. e. x ∈ X,

we infer from (9.36) and (9.35) that hμ(T , δ, x) ≥ hμ(T) and hμ(T , δ, x) ≤ hμ(T) for
μ-almost every x ∈ X. As it is always true that hμ(T , δ, x) ≤ hμ(T , δ, x), we deduce that
hμ(T , δ, x) = hμ(T) = hμ(T , δ, x) and the result holds when ζ = δ. Since any ζ ∈ (0, δ] is
also an expansive constant for T, the theorem is validated.

9.7 Exercises

Exercise 9.7.1. The objective of this exercise is to prove Theorem 9.1.1. Using axioms
(A1)–(A4), proceed as follows.
(a) Given n ∈ ℕ, prove by induction that f (nk) = k f (n) for all k ≥ 0. (Think about the

meaning of this relationship.)
(b) Given n ≥ 2, for every r ∈ ℕ there exists a unique k ≥ 0 such that nk ≤ 2r < nk+1.

Show that

k f (n) ≤ r f (2) < (k + 1) f (n).

(c) Prove that (b) holds with f replaced by log.
(d) Given n ≥ 2, deduce that


f (2)
f (n)
−
log 2
log n


<
1
r
, ∀r ∈ ℕ.

(e) Conclude that f (n) = (f (2)/ log 2) log n for all n ∈ ℕ.
(f) Let C = f (2)/ log 2. Observe that in order to establish that

H(p, 1 − p) = −Cp log p − C(1 − p) log(1 − p), (9.37)

it suffices to prove that this relation holds for all rational p ∈ (0, 1).
(g) Accordingly, let p = r/s ∈ ℚ ∩ (0, 1). By partitioning some experiment appropri-

ately, show that

f (s) = H( r
s
,
s − r
s
) +

r
s
f (r) + s − r

s
f (s − r).

(h) Deduce (9.37) and observe that the function H extends continuously to [0, 1].
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(i) Hence, the formula in Theorem 9.1.1 holds when n = 2. Prove by induction that it
holds for any n ∈ ℕ.

Exercise 9.7.2. Let (X,𝒜)beameasurable space. Show that≤ is a partial order relation
on the set Part(X,𝒜).

Exercise 9.7.3. Let (X,𝒜) be a measurable space and α, β ∈ Part(X,𝒜). Prove that α ≤
β if and only if β(x) ⊆ α(x) for all x ∈ X.

Exercise 9.7.4. Show that α ≤ β if and only if A = ⋃{B ∈ β : B ∩ A ̸= 0} for all A ∈ α.

Exercise 9.7.5. Prove that α ≤ β if and only if A = ⋃{B ∈ β : B ⊆ A} for all A ∈ α.

Exercise 9.7.6. Find a probability space (X,𝒜, μ) and α, β,γ ∈ Part(X,𝒜) such that
β ≤ γ but Iμ(α|β)(x) ̸≥ Iμ(α|γ)(x) for some x ∈ X.

Exercise 9.7.7. Find a probability space (X,𝒜, μ) andα, β ∈ Part(X,𝒜) such that Iμ(α∨
β)(x) ̸≤ Iμ(α)(x) + Iμ(β)(x) for some x ∈ X.

Exercise 9.7.8. Find a probability space (X,𝒜, μ) and α, β,γ ∈ Part(X,𝒜) such that
Iμ(α|γ)(x) ̸≤ Iμ(α|β)(x) + Iμ(β|γ)(x) for some x ∈ X.

Exercise 9.7.9. Let T : X → X be a measure-preserving dynamical system on a proba-
bility space (X,𝒜, μ). Given α ∈ Part(X,𝒜), show that the sequence (Hμ(α

n))∞n=1 is sub-
additive. Then deduce from Lemma 3.2.17 that the limit limn→∞

1
nHμ(α

n) = hμ(T ,α)
exists and is nonnegative.

Exercise 9.7.10. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. Show that
the mapping μ → hμ(T) is affine on the setM(T ,𝒜) of all T-invariant probability mea-
sures on (X,𝒜). In other words, show that if T : X → X is a dynamical system preserv-
ing two probability measures μ and ν on the measurable space (X,𝒜), then

hsμ+(1−s)ν(T) = shμ(T) + (1 − s)hν(T)

for all 0 ≤ s ≤ 1.

Exercise 9.7.11. LetT : X → X be an ergodicmeasure-preservingdynamical systemon
a probability space (X,𝒜, μ), and letα ∈ Part(X,𝒜) be such that Hμ(α) <∞. According
to Corollary 9.5.5,

hμ(T ,α) = lim
n→∞

1
n
Iμ(α

n)(x) for μ-a. e. x ∈ X.

Let 0 < ε < 1 and for each n ∈ ℕ let Nn(ε) be the minimum number of atoms of αn

needed to construct a set of measure at least 1 − ε. Show that

hμ(T ,α) = lim
n→∞

1
n
logNn(ε).
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Exercise 9.7.12. Prove that for the full E-shift equipped with the product measure μ
as in Example 9.4.23, and the partition α := {[e] : e ∈ E},

Hμ(α
n) = −n∑

e∈E
P(e) logP(e), ∀n ∈ ℕ.

Exercise 9.7.13. Let T : [0, 1]→ [0, 1] be the tent map (see Example 1.1.3). Show that T
preserves the Lebesguemeasure on [0, 1] and that its entropywith respect to Lebesgue
measure is equal to log 2.

Exercise 9.7.14. Let (X,𝒜) be a measurable space and (αn)
∞
n=1 be a sequence of

increasingly finer countable measurable partitions of (X,𝒜) which generates the
σ-algebra𝒜, that is, such that

αn ≤ αn+1, ∀n ∈ ℕ and σ(
∞
⋃
n=1

𝒜n) = 𝒜.

Suppose that μ and ν are probabilitymeasures on (X,𝒜) such that μ ≺≺ ν. Let ρ = dμ/dν
be the Radon–Nikodym derivative of μ with respect to ν (cf. Theorem A.1.50). Using
Example A.1.62 and the martingale convergence theorem for conditional expectations
(Theorem A.1.67), show that

ρ(x) = lim
n→∞

μ(αn(x))
ν(αn(x))

for ν-a. e. x ∈ X.

Exercise 9.7.15. Let (X,𝒜) and (Y ,ℬ) be measurable spaces and T : X → X and S :
Y → Y be measurable transformations. A measurable transformation π : X → Y is
called a factor map between T and S if π ∘ T = S ∘ π.

If (X,𝒜, μ) is a measure space, then recall that π induces the push down measure
μ ∘ π−1 on the measurable space (Y ,ℬ).

Let α, β ∈ Part(Y ,ℬ). Prove the following statements:
(a) π−1(α ∨ β) = (π−1α) ∨ (π−1β).
(b) π−1(αn

m) = (π
−1α)nm for allm, n ≥ 0.

(c) π−1 preserves the partial order ≤, that is, if α ≤ β then π−1α ≤ π−1β.
(d) (π−1α)(x) = π−1(α(π(x))) for all x ∈ X.
(e) Iμ(π−1α|π−1β) = Iμ∘π−1 (α|β) ∘ π.
(f) Iμ(π−1α) = Iμ∘π−1 (α) ∘ π.
(g) Hμ(π−1α|π−1β) = Hμ∘π−1 (α|β).
(h) Hμ(π−1α) = Hμ∘π−1 (α).
(i) hμ(T ,π−1α) = hμ∘π−1 (S,α).
(j) hμ(T) ≥ hμ∘π−1 (S).
(k) If π is bimeasurable (i. e., measurable, bijective and its inverse is measurable),

then hμ(T) = hμ∘π−1 (S).
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10 Infinite invariant measures
In this chapter, we deal with measurable transformations preserving measures that
are no longer assumed to be finite. The outlook is then substantially different than in
the case of finite measures. As far as we know, only J. Aaronson’s book [1] is entirely
dedicated to infinite ergodic theory.

In Section 10.1, we introduce and investigate in detail the notions of quasi-
invariant measures, ergodicity, and conservativity. We also prove Halmos’ recur-
rence theorem, which is a generalization of Poincaré’s recurrence theorem for quasi-
invariant measures that are not necessarily finite.

In Section 10.2, we discuss first return times, first return maps, and induced sys-
tems.We further establish relations between invariantmeasures for the original trans-
formation and the induced transformation.

In Section 10.3, we study implications of Birkhoff’s ergodic theorem for finite
and infinite measure spaces. Among others, we demonstrate Hopf’s ergodic theorem,
which applies to measure-preserving transformations of σ-finite spaces.

Finally, in Section 10.4, we seek a condition under which, given a quasi-invariant
probability measure, one can construct a σ-finite invariant measure which is abso-
lutely continuous with respect to the original measure. To this end, we introduce a
class of transformations, called Martens maps, that have this feature and even more.
In fact, these maps have the property that any quasi-invariant probability measure
admits an equivalent σ-finite invariant one.

Applications of these concepts and results can be found in Chapters 13–14 of the
second volume and Chapters 29–32 of the third volume.

10.1 Quasi-invariant measures, ergodicity and conservativity

By definition, quasi-invariant measures preserve sets of measure zero.

Definition 10.1.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. A measure
μ on (X,𝒜) is called quasi-T-invariant if μ ∘ T−1 ≺≺ μ.

Obviously, invariant measures are quasi-invariant but the converse statement
does not hold in general.

The concept of ergodicity defined in Chapter 8 for transformations of probability
spaces readily generalizes to transformations of arbitrary measure spaces.

Definition 10.1.2. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. Then T is ergodic with respect to μ if

T−1(A) = A ⇒ μ(A) = 0 or μ(X\A) = 0.

Alternatively, μ is said to be ergodic with respect to T.

https://doi.org/10.1515/9783110702682-010
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The next result states that, like a T-invariant measure, a quasi-T-invariant mea-
sure μ is ergodic if and only if every μ-a. e. T-invariant set is trivial in a measure-
theoretic sense, that is, has measure zero or its complement is of measure zero. This
is a generalization of Proposition 8.2.4.

Proposition 10.1.3. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. Then T is ergodic with respect to μ if and only if

μ(T−1(A)△ A) = 0 ⇒ μ(A) = 0 or μ(X\A) = 0.

Proof. The proof goes along similar lines to that of Proposition 8.2.4 and is left to the
reader.

In Section 1.4, we studied the concept of wandering points. We revisit this dynam-
ical behavior from a measure-theoretic standpoint.

Definition 10.1.4. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. A setW ∈
𝒜 is a wandering set for T if its preimages (T−n(W))∞n=0 are mutually disjoint.

One way of constructing wandering sets is now described.

Lemma 10.1.5. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. For every A ∈
𝒜, the set WA := A\⋃

∞
n=1 T
−n(A) is a wandering set for T.

To lighten notation, define

A− :=
∞

⋃
n=1

T−n(A) and thus WA := A\A
−.

Proof. Suppose for a contradiction thatWA is not wandering for T, that is, T−k(WA) ∩
T−l(WA) ̸= 0 for some 0 ≤ k < l. This means that T−k(WA ∩ T−(l−k)(WA)) ̸= 0, and thus
WA ∩ T−(l−k)(WA) ̸= 0. Set j = l − k ∈ ℕ. Fix x ∈ WA ∩ T−j(WA). On one hand, x ∈ WA
implies that x ∉ A−. So x ∉ T−j(A). On the other hand,WA ⊆ A and x ∈ T−j(WA) imply
that x ∈ T−j(A). This is a contradiction andWA must therefore be a wandering set.

Next, we introduce the notion of conservativity.

Definition 10.1.6. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. Then T is conservative with respect to μ if μ(W) = 0 for
every wandering setW for T.

Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. For every B ∈ 𝒜, define
the set B∞ ∈ 𝒜 to be

B∞ := {x ∈ X : T
n(x) ∈ B for infinitely many n ∈ ℕ} =

∞

⋂
k=1

∞

⋃
n=k

T−n(B).
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Clearly, T−1(B∞) = B∞ and so T−1(X\B∞) = X\B∞. Notice also that ifW is a wandering
set for T, thenW ∩⋃∞n=1 T

−n(W) = 0. In particular,W ∩W∞ = 0.
Poincaré’s recurrence theorem (Theorem 8.1.16) asserts that if μ is T-invariant

and finite, then μ(B\B∞) = 0. We shall now prove its generalization in two respects:
namely, by assuming only (1) that μ is quasi-T-invariant and (2) that μmay be infinite.

Theorem 10.1.7 (Halmos’ recurrence theorem). Let T : (X,𝒜) → (X,𝒜) be a measur-
able transformation and μ a quasi-T-invariant measure. For every A ∈ 𝒜, the following
equivalence holds: μ(B\B∞) = 0 for all measurable sets B ⊆ A if and only if μ(W) = 0
for all wandering sets W ⊆ A.

Proof. Fix A ∈ 𝒜. If μ(A) = 0, then μ(B\B∞) = 0 for all measurable sets B ⊆ A and
μ(W) = 0 for all wandering sets W ⊆ A. Thus the equivalence is trivially satisfied
when μ(A) = 0, and we may assume in the sequel that μ(A) > 0.
[⇒]We will prove the contrapositive statement. Suppose that μ(W) > 0 for some

wandering set W ⊆ A. Then W ∩ W∞ = 0. Therefore, μ(W\W∞) > 0. Thus W is a
measurable set B ⊆ A such that μ(B\B∞) > 0.
[⇐] Let us now prove the converse implication. Assume that μ(W) = 0 for all

wandering setsW ⊆ A. Fix a measurable set B ⊆ A and for all n ≥ 0 let

Bn := B ∩ T
−n(B)\

∞

⋃
ℓ=n+1

T−ℓ(B),

that is, Bn is the set of points in B that return to B at time n but never again thereafter.
So

B\B∞ = ⋃
n≥0

Bn.

Suppose for a contradiction that μ(B\B∞) > 0. That is, suppose there is n ≥ 0 such that
μ(Bn) > 0. Lemma 10.1.5 asserts that WBn is a wandering set for T. Since Bn ⊆ A, the
hypothesis implies that μ(WBn ) = 0. This means that μ(Bn\B−n ) = 0. Since μ(Bn) > 0,
there thus exists x ∈ Bn ∩ B−n = Bn ∩⋃

∞
k=1 T
−k(Bn). So x ∈ Bn. There is also k ∈ ℕ such

that x ∈ T−k(Bn). As T−k(Bn) ⊆ T−(n+k)(B), it turns out that x ∈ T−ℓ(B), where ℓ = n + k.
So x ∉ Bn. This is a contradiction. Consequently, μ(B\B∞) = 0 for any measurable set
B ⊆ A.

Taking A = X in Theorem 10.1.7, we get the following special case.

Corollary 10.1.8. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. Then T is conservative if and only if μ(B\B∞) = 0 for all
B ∈ 𝒜.

In particular, Poincaré’s recurrence theorem (Theorem 8.1.16) confirms that every
measure-preserving transformation of a finite measure space is conservative.
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Corollary 10.1.9. Let T : (X,𝒜)→ (X,𝒜) be a measurable transformation and μ a finite
T-invariant measure. Then T is conservative.

Conservativity also has the following consequence.

Corollary 10.1.10. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. If T is conservative, then

∞

∑
n=0

μ(T−n(A)) =∞

for all sets A ∈ 𝒜 such that μ(A) > 0.

Proof. Let A ∈ 𝒜. If ∑∞n=0 μ(T
−n(A)) < ∞, then μ(A∞) = 0 by Borel–Cantelli Lemma

(Lemma A.1.20). Moreover, μ(A\A∞) = 0 according to Corollary 10.1.8. Therefore, we
conclude that μ(A) = μ(A ∩ A∞) + μ(A\A∞) = 0.

We now prove a characterization of ergodicity + conservativity.

Theorem 10.1.11. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariantmeasure. ThenT is conservative andergodic if andonly if μ(X\A∞) = 0
for every A ∈ 𝒜 such that μ(A) > 0.

Proof. Assume first that T : X → X is conservative and ergodic. Fix A ∈ 𝒜 with
μ(A) > 0. We have earlier observed that T−1(A∞) = A∞. Then, due to the ergodicity
of μ, either μ(A∞) = 0 or μ(X\A∞) = 0. In the former case, μ(A) = μ(A\A∞) and Corol-
lary 10.1.8 implies that μ(A) = 0. As μ(A) > 0 by assumption, this means that this case
never happens. Only the latter case μ(X\A∞) = 0 occurs, and this proves the implica-
tion⇒.

We now prove the converse implication.
Let us first showconservativity. LetA ∈ 𝒜. Ifμ(A) = 0 then obviouslyμ(A\A∞) = 0.

If μ(A) > 0, then by assumption μ(X\A∞) = 0 and again μ(A\A∞) = 0. Corollary 10.1.8
then confirms the conservativity of T.

Now we establish ergodicity. Let A ∈ 𝒜 be such that T−1(A) = A. Then A∞ = A. We
must show that either μ(A) = 0 or μ(X\A) = 0. Suppose that μ(A) > 0. By assumption,
we then have μ(X\A∞) = 0. Since A∞ = A, this means that μ(X\A) = 0.

Forfinite invariantmeasures, Theorem10.1.11, in conjunctionwithCorollary 10.1.9,
provides yet another characterization of ergodicity.

Corollary 10.1.12. Let T : (X,𝒜)→ (X,𝒜)be ameasurable transformation andμa finite
T-invariant measure. Then T is ergodic if and only if μ(X\A∞) = 0 for every A ∈ 𝒜 such
that μ(A) > 0.

Sets that are visited by almost every point in the spacewill also play a crucial role.
Accordingly, we make the following definition.
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Definition 10.1.13. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. A set A ∈ 𝒜 is said to be absorbing with respect to μ if
0 < μ(A) <∞ and μ(X\⋃∞k=0 T

−k(A)) = 0.

Notice that any invariant measure which admits an absorbing set is σ-finite.
Obviously, a set A ∈ 𝒜 such that 0 < μ(A) < ∞ and μ(X\A∞) = 0, is absorbing

with respect to μ. Therefore, we have the following corollary to Theorem 10.1.11.

Corollary 10.1.14. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
quasi-T-invariant measure. If T is conservative and ergodic, then every A ∈ 𝒜 such that
0 < μ(A) <∞ is absorbing.

To end this section, we briefly return to transformations of probability spaces and
introduce a concept of weak metric exactness. Recall that the notion of metric exact-
ness was described in Definition 8.4.4.

Definition 10.1.15. Let (X,ℱ , μ)be a Lebesgue probability space andT : X → X a trans-
formation for which μ is a quasi-T-invariant measure. Then T is said to beweakly met-
rically exact if for each A ∈ ℱ such that μ(A) > 0 we have

lim sup
n→∞

μ(Tn(A)) = 1.

Note that each set Tn(A) is measurable since T is a measurable transformation of
a Lebesgue space.

Theorem 10.1.16. Everyweaklymetrically exact transformationT : (X,ℱ , μ)→ (X,ℱ , μ)
is conservative and ergodic.

Proof. We first prove ergodicity. Let A ∈ 𝒜 be such that T−1(A) = A. Then Tn(A) ⊆ A for
all n ∈ ℕ. Since μ is a probability measure, we must show that μ(A) ∈ {0, 1}. Suppose
that μ(A) > 0. The weak metric exactness of T implies that

1 = lim sup
n→∞

μ(Tn(A)) ≤ μ(A) ≤ 1.

So μ(A) = 1 and T is ergodic.
To prove the conservativity of T, suppose for a contradiction that there exists

a wandering set W such that μ(W) > 0. Then W ∩ ⋃∞n=1 T
−n(W) = 0. Therefore

⋃∞n=1 T
n(W) ⊆ X\W , and the weak metric exactness of T yields that

1 = lim sup
n→∞

μ(Tn(W)) ≤ μ(X\W) = 1 − μ(W).

So μ(W) = 0. This is a contradiction. Consequently, T is conservative.

10.2 Invariant measures and inducing

Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a T-invariant measure.
Fix A ∈ 𝒜 such that 0 < μ(A) < ∞ and μ(A\A∞) = 0. Then μ(A ∩ A∞) = μ(A). Let

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



322 | 10 Infinite invariant measures

A′∞ = A ∩ A∞. The function τA′∞ : A′∞ → ℕ given by the formula

τA′∞ (x) = min{n ∈ ℕ : Tn(x) ∈ A′∞} (10.1)

is well-defined andmeasurable when A′∞ is endowed with the σ-algebra𝒜|A′∞ := {B ⊆
A′∞ : B ∈ 𝒜} and ℕ is equipped with the σ-algebra 𝒫(ℕ) of all subsets of ℕ. Conse-
quently, the map TA′∞ : A′∞ → A′∞ defined by

TA′∞ (x) = TτA′∞ (x)(x) (10.2)

is well-defined and measurable. The number τA′∞ (x) ∈ ℕ is called the first return time
of x to the set A′∞ and, accordingly, the map TA′∞ is called the first return map or the
induced map. Given that A′∞ ⊆ A and μ(A′∞) = μ(A), without loss of generality we will
assume that A′∞ = A from the outset, hence alleging notation to τA and TA.

Finally, in a similar way to Definition A.1.70, let μA be the conditional probability
measure on (A,𝒜|A) defined by

μA(B) =
μ(B)
μ(A)
, ∀B ∈ 𝒜|A.

This measure has the following properties.

Theorem 10.2.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and A ∈ 𝒜
such that 0 < μ(A) <∞.

If μ is T-invariant and μ(A\A∞) = 0, then μA is TA-invariant and TA is conservative.
Conversely, if ν is a TA-invariant probability measure on (A,𝒜|A), then there exists

a T-invariant measure μ̃ on (X,𝒜) such that μ̃A = ν on (A,𝒜|A). In fact, μ̃ may be con-
structed as follows: for any B ∈ 𝒜, let

μ̃(B) =
∞

∑
n=0

ν(A ∩ T−n(B) \
n
⋃
k=1

T−k(A)) =
∞

∑
n=0

ν({x ∈ A ∩ T−n(B) : τA(x) > n}). (10.3)

In particular, the set A is absorbing with respect to μ̃ and μ̃ is σ-finite. The measure μ̃ is
said to be induced by ν.

Proof. First, suppose that μ is T-invariant and that 0 < μ(A) < ∞ and μ(A\A∞) = 0.
Let B ∈ 𝒜|A. Then

μ(T−1A (B)) =
∞

∑
n=1

μ(T−1A (B) ∩ τ
−1
A (n))

=
∞

∑
n=1

μ(A ∩ T−n(B) ∩ τ−1A (n))

=
∞

∑
n=1

μ(A ∩ T−n(B)\
n−1
⋃
k=1

T−k(A))

=
∞

∑
n=1

μ(A ∩ T−1(Bn−1)), (10.4)
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where

B0 := B and Bn := T
−n(B)\

n−1
⋃
k=0

T−k(A), ∀n ∈ ℕ.

Observe that μ(Bn) ≤ μ(T−n(B)) = μ(B) ≤ μ(A) < ∞ for every n ≥ 0. Since T−1(Bn−1) =
(A ∩ T−1(Bn−1)) ∪ Bn and (A ∩ T−1(Bn−1)) ∩ Bn = 0 for all n ∈ ℕ, we obtain that

μ(A ∩ T−1(Bn−1)) = μ(T
−1(Bn−1)) − μ(Bn) = μ(Bn−1) − μ(Bn)

for all n ∈ ℕ. Therefore, by (10.4),

μ(T−1A (B)) = lim
n→∞
(μ(B) − μ(Bn)) ≤ μ(B). (10.5)

This relation also holds for A\B, that is,

μ(T−1A (A\B)) ≤ μ(A\B).

Since A = T−1A (A) = T
−1
A (B) ∪ T

−1
A (A\B) and T

−1
A (B) ∩ T

−1
A (A\B) = 0, it follows that

μ(T−1A (B)) = μ(A) − μ(T
−1
A (A\B)) ≥ μ(A) − μ(A\B) = μ(B). (10.6)

It ensues from (10.5) and (10.6) that μ(T−1A (B)) = μ(B). Thus μA ∘ T
−1
A = μA. So μA is

TA-invariant. The conservativity of TA with respect to μA is a direct consequence of
Corollary 10.1.9.

To prove the converse implication, assume that ν is a probability measure on
(A,𝒜|A) such that ν ∘ T−1A = ν. We shall first show that the measure μ̃ given by (10.3) is
T-invariant. Indeed, let B ∈ 𝒜. Then

μ̃(T−1(B)) =
∞

∑
n=0

ν({x ∈ A ∩ T−n(T−1(B)) : τA(x) > n})

=
∞

∑
n=0

ν({x ∈ A ∩ T−(n+1)(B) : τA(x) > n + 1})

+
∞

∑
n=0

ν({x ∈ A ∩ T−(n+1)(B) : τA(x) = n + 1})

= μ̃(B) − ν(A ∩ B) +
∞

∑
n=1

ν({x ∈ A ∩ T−n(B) : τA(x) = n})

= μ̃(B) − ν(A ∩ B) +
∞

∑
n=1

ν({x ∈ A ∩ T−n(A ∩ B) : τA(x) = n})

= μ̃(B) − ν(A ∩ B) +
∞

∑
n=1

ν(T−1A (A ∩ B) ∩ τ
−1
A (n))

= μ̃(B) − ν(A ∩ B) + ν(T−1A (A ∩ B))
= μ̃(B).

Thus μ̃ is T-invariant when ν is TA-invariant.
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Moreover, if B ⊆ A then (10.3) reduces to μ̃(B) = ν(A ∩ B) = ν(B). In particular,
μ̃(A) = ν(A) = 1, and hence μ̃A(B) =

μ̃(B)
μ̃(A) = μ̃(B) = ν(B). That is, μ̃ = μ̃A = ν on (A,𝒜|A).

Furthermore, (10.3) gives

μ̃(X\
∞

⋃
k=1

T−k(A)) =
∞

∑
n=0

ν({x ∈ A\
∞

⋃
k=1

T−(n+k)(A) : τA(x) > n}) =
∞

∑
n=0

ν(0) = 0.

Thus A is absorbing with respect to μ̃. In addition, this shows that μ̃ is σ-finite when
μ̃(T−k(A)) < ∞ for all k ∈ ℕ. Since μ̃ is T-invariant, this condition is equivalent to
μ̃(A) <∞. And we saw above that μ̃(A) = 1. Thus μ̃ is σ-finite.

Remark 10.2.2. It follows from (10.5) and (10.6) that limn→∞ μ(Bn) = 0. In particular,
taking B = A, we get that

lim
n→∞

μ(T−n(A)\
n−1
⋃
k=0

T−k(A)) = 0.

Theorem 10.2.1 raises some interesting questions. Among others, in the second
part of the theorem, is the inducedmeasure μ̃ unique? In Exercise 10.5.1, youwill learn
that this is generally not the case. However, we now prove that uniqueness prevails
when the backward orbit of the set A covers the space almost everywhere.

Proposition 10.2.3. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. If μ is a
T-invariant measure that admits an absorbing set A, then μ = μ̃ if ν is replaced by μ in
formula (10.3).
(Formally, μ = μ(A) ⋅ μ̃, where μ̃ is given by (10.3) with ν = μA.)

Proof. Let B ∈ 𝒜 be such that μ(B) <∞. For every j ≥ 0, let

Bj := T
−j(B)\

j
⋃
k=0

T−k(A).

Observe that μ(Bj) ≤ μ(T−j(B)) = μ(B) < ∞ for every j ≥ 0. As μ is T-invariant and
T−1(Bj−1) ⊇ Bj for all j ∈ ℕ, we get for every n ∈ ℕ that

μ(B\A) − μ(Bn) =
n
∑
j=1
[μ(Bj−1) − μ(Bj)] =

n
∑
j=1
[μ(T−1(Bj−1)) − μ(Bj)]

=
n
∑
j=1

μ(T−1(Bj−1)\Bj)

=
n
∑
j=1

μ((T−j(B)\
j
⋃
k=1

T−k(A))\( T−j(B)\
j
⋃
k=0

T−k(A)))

=
n
∑
j=1

μ(A ∩ T−j(B)\
j
⋃
k=1

T−k(A)).
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Then

μ(B) − μ(Bn) = μ(B ∩ A) + μ(B\A) − μ(Bn) =
n
∑
j=0

μ(A ∩ T−j(B)\
j
⋃
k=1

T−k(A)).

Replacing ν by μ in formula (10.3), we deduce that

μ̃(B) =
∞

∑
j=0

μ(A ∩ T−j(B)\
j
⋃
k=1

T−k(A)) = μ(B) − lim
n→∞

μ(Bn).

Therefore, in order to complete the proof, we need to show that

lim
n→∞

μ(Bn) = 0.

Fix ε > 0. Since A is absorbing, we have that μ(X\⋃∞k=0 T
−k(A)) = 0. Equivalently,

μ(X\
∞

⋃
k=0

A(k)) = 0, (10.7)

where

A(k) := T−k(A)\
k−1
⋃
j=0

T−j(A).

The usefulness of the A(k)s lies in their mutual disjointness. Indeed, relation (10.7)
implies that μ(B\⋃∞k=0 A

(k)) = 0. Then

μ(B) = μ(B ∩
∞

⋃
k=0

A(k)) = μ(
∞

⋃
k=0
(B ∩ A(k))) =

∞

∑
k=0

μ(B ∩ A(k)). (10.8)

Since μ(B) <∞, there exists ℓε ∈ ℕ so large that
∞

∑
ℓ=ℓε+1

μ(B ∩ A(ℓ)) < ε
2
. (10.9)

Relation (10.7) also ensures that μ(Bn\⋃
∞
k=0 A
(k)) = 0 for every n ≥ 0. So, like for B,

μ(Bn) =
∞

∑
k=0

μ(Bn ∩ A
(k)).

But

Bn ∩ A
(k) = [T−n(B)\

n
⋃
i=0

T−i(A)] ∩ [T−k(A)\
k−1
⋃
j=0

T−j(A)]

= [T−n(B) ∩ T−k(A)]\
max{n,k−1}
⋃
i=0

T−i(A)
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= {
0 if k ≤ n
T−n(B ∩ T−(k−n)(A))\⋃k−1i=0 T

−i(A) if k > n

= {
0 if k ≤ n
[T−n(B ∩ T−(k−n)(A))\⋃k−1i=n T

−i(A)]\⋃n−1i=0 T
−i(A) if k > n

= {
0 if k ≤ n
T−n(B ∩ A(k−n))\⋃n−1i=0 T

−i(A) if k > n.

Consequently,

μ(Bn) = ∑
k>n

μ(Bn ∩ A
(k)) =

∞

∑
k=n+1

μ(T−n(B ∩ A(k−n))\
n−1
⋃
i=0

T−i(A)) =
∞

∑
ℓ=1

μ(B(ℓ)n ),

where

B(ℓ)n := T
−n(B ∩ A(ℓ))\

n−1
⋃
i=0

T−i(A) ⊆ T−(n+ℓ)(A)\
n+ℓ−1
⋃
i=0

T−i(A) = A(n+ℓ).

Remark 10.2.2 asserts that limN→∞ μ(A(N)) = 0. Then

lim
n→∞

μ(B(ℓ)n ) = 0, ∀ℓ ∈ ℕ. (10.10)

As μ(B(ℓ)n ) ≤ μ(T
−n(B ∩ A(ℓ))) = μ(B ∩ A(ℓ)) for each ℓ, n ∈ ℕ, it follows from (10.9) that

∞

∑
ℓ=ℓε+1

μ(B(ℓ)n ) <
ε
2
, ∀n ∈ ℕ.

By (10.10), there exists nε ∈ ℕ so large that for all 1 ≤ ℓ ≤ ℓε and all n ≥ nε,

μ(B(ℓ)n ) ≤
ε
2ℓε
.

So, for all n ≥ nε, we have

μ(Bn) =
∞

∑
ℓ=1

μ(B(ℓ)n ) =
ℓε
∑
ℓ=1

μ(B(ℓ)n ) +
∞

∑
ℓ=ℓε+1

μ(B(ℓ)n ) ≤
ℓε
∑
ℓ=1

ε
2ℓε
+
ε
2
= ε.

Thus limn→∞ μ(Bn) = 0 and the proof is complete for sets B of finite measure.
Now, let B ∈ 𝒜 be any set. Since μ(A(k)) ≤ μ(T−k(A)) = μ(A) < ∞ for all k ≥ 0,

the sets (B ∩ A(k))∞k=0 are of finite measure. Then the first part of this proof shows that
μ(B∩A(k)) = μ̃(B∩A(k)). By (10.8) and themutual disjointness of theA(k)s, we conclude
that

μ(B) =
∞

∑
k=0

μ(B ∩ A(k)) =
∞

∑
k=0

μ̃(B ∩ A(k)) = μ̃(B ∩
∞

⋃
k=0

A(k)) = μ̃(B).

The last equality follows from the fact that μ̃(X\⋃∞k=0 A
(k)) = 0 according to Theo-

rem 10.2.1. So μ = μ̃.
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Corollary 10.2.4. Let T : (X,𝒜, μ) → (X,𝒜, μ) be an ergodic conservative measure-
preserving transformation and any A ∈ 𝒜with 0 < μ(A) <∞. Then μ = μ̃ if ν is replaced
by μ in formula (10.3).

Proof. According to Corollary 10.1.14, any A ∈ 𝒜 with 0 < μ(A) <∞ is absorbing with
respect to μ and Proposition 10.2.3 applies to any such A.

Let φ : X → ℝ be a measurable function and n ∈ ℕ. Recall from Definition 8.2.10
that the nth Birkhoff sum of φ at a point x ∈ X is

Snφ(x) =
n−1
∑
j=0

φ(T j(x)).

Let A ∈ 𝒜. Define the function φA : A→ ℝ by the formula

φA(x) = SτA(x)φ(x). (10.11)

In the next proposition, we describe properties that φA inherits from φ.

Proposition 10.2.5. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. Let also
φ : X → ℝ be ameasurable function. If μ is a T-invariant measure and A is an absorbing
set with respect to μ, then:
(a) If φ ∈ L1(μ), then φA ∈ L1(μA).
(b) If φ ≥ 0 or φ ∈ L1(μ), then

∫
A

φA dμA =
1

μ(A)
∫
X

φdμ.

If, in addition, T is conservative and ergodic, then the above two statements apply to all
sets A ∈ 𝒜 such that 0 < μ(A) <∞.

Proof. Suppose first that φ = 1B for some B ∈ 𝒜 such that 0 < μ(B) < ∞. In view of
Proposition 10.2.3, we have

∫
X

1B dμ = μ(B) =
∞

∑
k=0

μ({x ∈ A ∩ T−k(B) : τA(x) > k})

=
∞

∑
n=1

n−1
∑
j=0

μ({x ∈ A ∩ T−j(B) : τA(x) = n})

=
∞

∑
n=1

n−1
∑
j=0
∫

τ−1A (n)
1T−j(B) dμ

=
∞

∑
n=1

n−1
∑
j=0
∫

τ−1A (n)
1B ∘ T

j dμ
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=
∞

∑
n=1
∫

τ−1A (n)
Sn1B dμ

=
∞

∑
n=1
∫

τ−1A (n)
φA dμ

= ∫
A

φA dμ = μ(A)∫
A

φA dμA,

and we are done with this case. If φ : X → ℝ is a simple measurable function, that is,
φ = ∑ni=1 aiφ

(i), where all ai ∈ ℝ, 1 ≤ i ≤ n, and all φ(i), 1 ≤ i ≤ n, are characteristic
functions of some measurable sets with positive and finite measures, then

∫
X

φdμ =
n
∑
i=1

ai ∫
X

φ(i) dμ

= μ(A)
n
∑
i=1

ai ∫
A

φ(i)A dμA

= μ(A)∫
A

n
∑
i=1

aiφ
(i)
A dμA

= μ(A)∫
A

(
n
∑
i=1

aiφ
(i))

A
dμA

= μ(A)∫
A

φA dμA,

and we are done in this case as well. The next case is to consider an arbitrary non-
negative measurable function φ : X → [0,∞). Then φ is the pointwise limit of an
increasing sequence of nonnegative simple measurable functions (φ(n))∞n=1. It is easy
to see that φA is the pointwise limit of the increasing sequence of nonnegative mea-
surable functions (φ(n)A )

∞
n=1. Applying twice the monotone convergence theorem (The-

orem A.1.35), we then get that

∫
X

φdμ = lim
n→∞
∫
X

φ(n) dμ = lim
n→∞

μ(A)∫
A

φ(n)A dμA = μ(A)∫
A

lim
n→∞

φ(n)A dμA = μ(A)∫
A

φA dμA.

We are also done in this case. Since |φA| ≤ |φ|A, this in particular shows that if φ ∈
L1(μ), then φA ∈ L1(μA). Moreover, writing φ = φ+ − φ−, where φ+ = max{φ,0} and
φ− = max{−φ,0}, both functions φ+ and φ− are in L1(μ) when φ is and

∫
X

φdμ = ∫
X

(φ+ − φ−) dμ = μ(A)∫
A

(φ+A − φ
−
A) dμA = μ(A)∫

A

φA dμA.
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Observe that ifφ ≡ 1, thenφA ≡ τA. As an immediate consequence of the previous
proposition, we obtain that the average of the first return time to a set is inversely
proportional to the relative measure of that set in the space.

Lemma 10.2.6 (Kac’s lemma). Let T : (X,𝒜)→ (X,𝒜) be ameasurable transformation.
If μ is a T-invariant measure and A is an absorbing set with respect to μ, then

∫
A

τA dμA =
μ(X)
μ(A)
.

In particular:
(a) The measure μ is finite (μ(X) <∞) if and only if

∫
A

τA dμA <∞.

(b) If μ is a probability measure, then

∫
A

τA dμA =
1

μ(A)
.

If, in addition, T is conservative and ergodic, then the above statements apply to every
set A ∈ 𝒜 such that 0 < μ(A) <∞.

We now study the transmission of ergodicity between T and TA.

Proposition 10.2.7. Let T : (X,𝒜, μ) → (X,𝒜, μ) be a measure-preserving transforma-
tion and A ∈ 𝒜 with 0 < μ(A) <∞.

If T : X → X is ergodic and conservative with respect to μ, then TA : A → A is
ergodic with respect to μA.

Conversely, if A is absorbing with respect to μ and TA : A→ A is ergodic with respect
to μA, then T : X → X is ergodic with respect to μ.

Proof. First, suppose that T : X → X is ergodic and conservative. Let C ⊆ A be com-
pletely TA-invariant and assume that μA(C) > 0. This latter assumption implies that
μ(C) > 0. By Theorem 10.1.11, we know that μ(X\C∞) = 0. But since T−1A (C) = C, we
also have that T−1A (A\C) = A\C. Therefore, A\C ⊆ X\C∞, and hence μ(A\C) = 0. So
μA(A\C) = 0 and TA is ergodic.

In order to prove the converse, suppose that TA : A → A is ergodic with respect
to μA and let B ∈ 𝒜 be such that T−1(B) = B and μ(B) > 0. Suppose also that A is
absorbing with respect to μ. Then μ(X\⋃∞n=0 T

−n(A)) = 0 and there exists k ≥ 0 such
that μ(B ∩ T−k(A)) > 0. Therefore,

μ(B ∩ A) = μ(T−k(B ∩ A)) = μ(T−k(B) ∩ T−k(A)) = μ(B ∩ T−k(A)) > 0.
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Recall that (B∩A)∞ = ⋂
∞
k=1⋃
∞
n=k T
−n(B∩A) andwrite (B∩A)TA∞ := ⋂

∞
k=1⋃
∞
n=k T
−n
A (B∩A).

Since μA is a probability measure and TA : A → A is ergodic, Corollary 10.1.12 states
that μA(A\(B ∩ A)TA∞) = 0 and this implies that

1 = μA((B ∩ A)
TA
∞) ≤ μA(

∞

⋃
n=0

T−nA (B ∩ A)) ≤ μA(A ∩
∞

⋃
n=0

T−n(B ∩ A)) ≤ 1.

This means that μ(A\⋃∞n=0 T
−n(B ∩ A)) = 0. Using the T-invariance of μ, it follows

that μ(⋃∞k=0 T
−k(A)\⋃∞n=0 T

−n(B∩A)) = 0. By hypothesis, μ(X\⋃∞k=0 T
−k(A)) = 0. Then

μ(X\⋃∞n=0 T
−n(B ∩ A)) = 0. Consequently,

μ(X\B) = μ(X\
∞

⋃
n=0

T−n(B)) ≤ μ(X\
∞

⋃
n=0

T−n(B ∩ A)) = 0.

Hence, μ(X\B) = 0, and thus T is ergodic.

10.3 Ergodic theorems

Birkhoff’s ergodic theorem (Theorem 8.2.11 and Corollaries 8.2.14–8.2.15) concerns
measure-preserving dynamical systems acting on probability spaces. Its ramifications
are manifold. We studied some of them in the last two chapters. In this section, we
use it with the inducing procedure described in the previous section to prove Hopf’s
ergodic theorem, which holds for measure-preserving transformations of σ-finite
measure spaces.

But first, as a straightforward consequence of Birkhoff’s ergodic theorem,we have
the following two useful facts.

Proposition 10.3.1. Let T : X → X be an ergodic measure-preserving transformation of
a probability space (X,𝒜, μ). Fix A ∈ 𝒜 such that μ(A) > 0. For every x ∈ X, let (kn(x))∞n=1
be the sequence of successive times at which the iterates of x visit the set A. Then

lim
n→∞

kn+1(x)
kn(x)
= 1 for μ-a. e. x ∈ X.

Proof. Note that Skn(x)1A(x) = n. It follows from the ergodic case of Birkhoff’s ergodic
theorem (Corollary 8.2.14) that for μ-a. e. x ∈ X,

lim
n→∞

kn+1(x)
kn(x)
= lim

n→∞
(

n
kn(x)
⋅
kn+1(x)
n + 1
)

= lim
n→∞

1
kn(x)

Skn(x)1A(x) ⋅
1

limn→∞
1

kn+1(x)Skn+1(x)1A(x)
= μ(A) ⋅ 1

μ(A)
= 1.
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Proposition 10.3.2. Let T : X → X be an ergodic measure-preserving transformation of
a probability space (X,𝒜, μ). If f ∈ L1(μ), then

lim
n→∞

1
n
f (Tn(x)) = 0 for μ-a. e. x ∈ X.

Proof. It follows from the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14)
that for μ-a. e. x ∈ X,

lim
n→∞

1
n
f (Tn(x)) = lim

n→∞
1

n + 1
f (Tn(x)) = lim

n→∞
1

n + 1
(Sn+1f (x) − Snf (x))

= lim
n→∞

1
n + 1

Sn+1f (x) − limn→∞
1

n + 1
Snf (x)

= lim
n→∞

1
n + 1

Sn+1f (x) − limn→∞
1
n
Snf (x) = 0.

The following result is an application of Birkhoff’s ergodic theorem to the ergodic
theory of transformations preserving σ-finite measures.

Theorem 10.3.3 (Hopf’s ergodic theorem). Let T : X → X be an ergodic and conser-
vative measure-preserving transformation of a σ-finite measure space (X,𝒜, μ). If f , g ∈
L1(μ) and ∫X g dμ ̸= 0, then

lim
n→∞

Snf (x)
Sng(x)
=
∫X f dμ
∫X g dμ

for μ-a. e. x ∈ X.

Proof. (Note: We strongly recommend that the reader work on Exercise 10.5.2 before
examining this proof.) Since μ is σ-finite, there are mutually disjoint sets {Xj}∞j=1 such
that 0 < μ(Xj) <∞ for all j ∈ ℕ and⋃∞j=1 Xj = X.

Fix j ∈ ℕ. Since T is measure-preserving and conservative, Corollary 10.1.8 affirms
that μ(Xj\(Xj)∞) = 0. Thus the first return time to Xj and the first return map to Xj
are well-defined by (10.1) and (10.2), respectively. Let τj := τXj and Tj := TXj . Let also
φ : X → ℝ and set φj := φXj per (10.11). Given x ∈ Xj, let S

j
nφj(x) := ∑

n−1
i=0 φj(T ij (x)). For

every k ∈ ℕ, let jk(x) be the largest integer n ≥ 0 such that∑
n−1
i=0 τj(T

i
j (x)) ≤ k. Then

Skφ(x) = S
j
jk(x)

φj(x) + SΔk(x)φ(T
jk(x)
j (x)),

where Δk(x) := k −∑jk(x)−1i=0 τj(T ij (x)) ≥ 0. Consequently,

1
jk(x)

Skφ(x) =
1

jk(x)
Sjjk(x)φj(x) +

1
jk(x)

SΔk(x)φ(T
jk(x)
j (x)). (10.12)

But


1
jk(x)

SΔk(x)φ(T
jk(x)
j (x))

≤

1
jk(x)

SΔk(x)|φ|(T
jk(x)
j (x)) ≤

1
jk(x)
|φ|j(T

jk(x)
j (x)). (10.13)
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Let μj := μXj . Since T is measure-preserving, ergodic and conservative, Theorem 10.2.1
and Proposition 10.2.7 assert that Tj is measure-preserving, conservative and ergodic
with respect to μj. Moreover, Proposition 10.2.5 states that if φ ∈ L1(μ), then |φ|j ∈
L1(μj). It follows from Proposition 10.3.2 (with T = Tj, μ = μj, and f = |φ|j) that the
right-hand side of (10.13) approaches 0 for μ-a. e. x ∈ Xj, and so does the left-hand
side:

lim
k→∞


1

jk(x)
SΔk(x)φ(T

jk(x)
j (x))

= 0 for μ-a. e. x ∈ Xj.

It ensues from this, (10.12), the ergodic case of Birkhoff’s ergodic theorem (Corol-
lary 8.2.14) (with T = Tj, μ = μj and φ = fj, gj) and Proposition 10.2.5 that for μ-a. e.
x ∈ Xj,

Skf (x)
Skg(x)
=

1
jk(x)

Skf (x)
1

jk(x)
Skg(x)
=

1
jk(x)

Sjjk(x)fj(x) +
1

jk(x)
SΔk(x)f (T

jk(x)
j (x))

1
jk(x)

Sjjk(x)gj(x) +
1

jk(x)
SΔk(x)g(T

jk(x)
j (x))

→
k→∞

∫Xj fj dμj
∫Xj gj dμj

=
∫X f dμ
∫X g dμ
.

Since⋃∞j=1 Xj = X, the conclusion holds for μ-a. e. x ∈ X.

The following result rules out any hope for an ergodic theorem closer to Birkhoff’s
ergodic theorem in the case of infinite measures.

Corollary 10.3.4. Let T : X → X be an ergodic and conservative measure-preserving
transformation of a σ-finite and infinite measure space (X,𝒜, μ). If f ∈ L1(μ), then

lim
n→∞

1
n
Snf (x) = 0 for μ-a. e. x ∈ X.

Proof. Since μ is σ-finite and μ(X) =∞, there exists a sequence (Ak)∞k=1 of measurable
sets such that

0 < μ(Ak) <∞, ∀k ∈ ℕ and lim
k→∞

μ(Ak) =∞. (10.14)

As |f | ∈ L1(μ), we deduce from Hopf’s ergodic theorem (Theorem 10.3.3) that for every
k ∈ ℕ,

lim sup
n→∞

1
n
Sn|f | ≤ lim sup

n→∞

Sn|f |
Sn1Ak

=
∫X |f | dμ
∫X 1Ak

dμ
=
‖f ‖1
μ(Ak)

μ-a. e.

So, by (10.14), lim supn→∞
1
nSn|f | = 0 μ-a. e. Since |

1
nSnf | ≤

1
nSn|f |, we are done.

As amatter of fact, as the next two results show,Hopf’s ergodic theoremprecludes
the existence of evenweaker forms of Birkhoff’s ergodic theorem in the case of infinite
invariantmeasures. Indeed, for all f ∈ L1(μ) Corollary 10.3.4 of Hopf’s ergodic theorem
implies that

lim
n→∞

1
an

Snf (x) = 0 for μ-a. e. x ∈ X
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if there exists C > 0 such that an ≥ Cn for all n. We will now show that there are no
constants an > 0 such that

lim
n→∞

1
an

Snf (x) = ∫
X

f dμ for μ-a. e. x ∈ X, ∀f ∈ L1(μ).

We will accomplish this in two steps. The first step will require the following proposi-
tion.

Proposition 10.3.5. Let T : X → X be an ergodic and conservative measure-preserving
transformation of a probability space (X,𝒜, μ). Let a : [0,∞) → [0,∞) be continuous,
strictly increasing, and satisfying a(x)

x ↘ 0 as x ↗∞. If ∫X a(|f |) dμ <∞, then

lim
n→∞

a(|Snf (x)|)
n
= 0 for μ-a. e. x ∈ X.

Proof. An outline of a proof can be found in Exercise 10.5.3.

In the first step, a sequence (a(n))∞n=1 will be imposed properties that mimic those
of the function a in Proposition 10.3.5.Wewill show that the outcome takes the form of
a dichotomy: lim infn→∞

1
a(n)Snf (x) is either 0 or∞, for μ-a. e. x ∈ X for all f ∈ L1+(μ) :=

{f ∈ L1(μ) : f ≥ 0 and ∫X f dμ > 0}.

Theorem 10.3.6. Let T : X → X be an ergodic and conservative measure-preserving
transformation of a σ-finite and infinite measure space (X,𝒜, μ). Let (a(n))∞n=1 be a se-
quence such that

a(n) ↗∞ and a(n)
n
↘ 0 as n ↗∞.

(a) If there exists A ∈ 𝒜 such that 0 < μ(A) <∞ and ∫A a(τA(x)) dμ(x) <∞, then

lim
n→∞

1
a(n)

Snf (x) =∞ for μ-a. e. x ∈ X, ∀f ∈ L1+(μ).

(b) Otherwise,

lim inf
n→∞

1
a(n)

Snf (x) = 0 for μ-a. e. x ∈ X, ∀f ∈ L1+(μ).

Proof. (a) Suppose that A ∈ 𝒜 satisfies 0 < μ(A) < ∞ and ∫A a(τA(x)) dμ(x) < ∞.
Clearly, the set

I := {x ∈ X : lim
n→∞

Sn1A(x)
a(n)
=∞}

is T-invariant. As T is ergodic, either μ(I) = 0 or μ(X\I) = 0. We will show that I
contains μ-a. e. x ∈ A. This will allow us to conclude that μ(I) ≥ μ(A) > 0, and hence
μ(X\I) = 0.
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Since T is measure-preserving and conservative, Corollary 10.1.8 affirms that
μ(A\A∞) = 0. Thus the nth return time to A and the nth return map to A are well-
defined for all n ∈ ℕ. See Exercise 10.5.2. Since T is measure-preserving, ergodic,
and conservative, Theorem 10.2.1 and Proposition 10.2.7 assert that TA is measure-
preserving, conservative and ergodic with respect to μA. As ∫A a(τA(x)) dμA(x) <∞, it
follows from Proposition 10.3.5 (with T = TA, μ = μA, and f = τA) that

lim
n→∞

a(τnA(x))
n
= lim

n→∞
a(STAn τA(x))

n
= 0 for μ-a. e. x ∈ A. (10.15)

Since T is measure-preserving, ergodic and conservative, Theorem 10.1.11 states that
μ(X\A∞) = 0. For every x ∈ A∞ and n ∈ ℕ, let kn(x) be the largest integer k ≥ 0 such
that τkA(x) ≤ n. Since SτnA1A ≡ n, we then have

Sn1A(x)
a(n)
≥

Sτkn(x)A
1A(x)

a(τkn(x)+1A (x))
=

kn(x)
a(τkn(x)+1A (x))

=
kn(x) + 1

a(τkn(x)+1A (x))
kn(x)

kn(x) + 1
. (10.16)

Using (10.15), we deduce from (10.16) that the set I contains μ-a. e. x ∈ A. As pointed
out at the beginning of the proof, this implies that μ(X\I) = 0. Let f ∈ L1+(μ). It ensues
from Hopf’s ergodic theorem (Theorem 10.3.3) that

lim
n→∞

Snf (x)
a(n)
= lim

n→∞
Snf (x)
Sn1A(x)

lim
n→∞

Sn1A(x)
a(n)
=
∫X f dμ
μ(A)

lim
n→∞

Sn1A(x)
a(n)
=∞

for μ-a. e. x ∈ I, that is, for μ-a. e. x ∈ X since μ(X\I) = 0.
(b) Assume that there does not exist a set B ∈ 𝒜 such that 0 < μ(B) < ∞ and

∫B a(τB(x)) dμ(x) < ∞. Suppose for a contradiction that the conclusion of (b) is not
satisfied. That is, suppose that there exist a set A ∈ 𝒜 with 0 < μ(A) < ∞ and a
function f ∈ L1+(μ) such that

F(x) := lim inf
n→∞

1
a(n)

Snf (x) > 0 for μ-a. e. x ∈ A. (10.17)

ByHopf’s ergodic theorem, this actually holds for every f ∈ L1+(μ), with the same setA.
Moreover, since a(n)

n ↘ as n ↗∞ and f ≥ 0, we have

Snf
a(n)
∘ T ≤ 1

n
⋅

n
a(n)

Sn+1f ≤
1
n
⋅

n + 1
a(n + 1)

Sn+1f = (1 +
1
n
)

Sn+1f
a(n + 1)

.

Using this inequality and Corollary 10.3.4, the function F satisfies

F ∘ T = sup
n∈ℕ

inf
k≥n

Skf ∘ T
a(k)
≤ sup

n∈ℕ
inf
k≥n
(1 + 1

k
)

Sk+1f
a(k + 1)

= sup
n∈ℕ

inf
k≥n

Sk+1f
a(k + 1)

= F
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μ-a. e. on X. That is, F is μ-a. e. T-subinvariant, and hence F is constant μ-a. e. on X by
the ergodicity of T (Exercise 8.5.47 generalizes to any measure space). By (10.17), we
conclude that for every f ∈ L1+(μ) there is a constant c = c(f ) > 0 such that

lim inf
n→∞

1
a(n)

Snf (x) = c for μ-a. e. x ∈ A.

In particular, this applies to the function 1A on the set A, that is,

lim inf
n→∞

1
a(n)

Sn1A(x) = c > 0 for μ-a. e. x ∈ A.

According to Egorov’s theorem (Theorem A.1.44), there is B ∈ 𝒜 such that B ⊆ A,
μ(B) > 0, and over which the sequence (infk≥n

Sk1A
a(k) )
∞
k=1 converges uniformly to c. Con-

sequently, there is K ∈ ℕ such that

Sk1A(x) ≥
c
2
a(k), ∀x ∈ B, ∀k ≥ K.

Since S11A(x) = 1 for all x ∈ B and f ≥ 0, we know that Sk1A(x) ≥ 1 for all k ∈ ℕ and
all x ∈ B. Then there is 0 < c̃ ≤ c/2 such that

Sk1A(x) ≥ c̃ a(k), ∀x ∈ B, ∀k ∈ ℕ.

In particular,

SτB(x)1A(x) ≥ c̃ a(τB(x)), ∀x ∈ B.

It ensues from the ergodic case of Birkhoff’s ergodic theorem (Corollary 8.2.14) (with
T = TB, μ = μB, and φ = (1A)B) and Proposition 10.2.5 that for μ-a. e. x ∈ B,

1
n

n−1
∑
k=0

a(τB(T
k
B(x))) ≤

1
nc̃

n−1
∑
k=0

SτB(Tk
B(x))

1A(T
k
B(x))

=
1
c̃ n

SτnB(x)1A(x) =
1
c̃
⋅
1
n
STBn (1A)B(x)

→
n→∞

1
c̃
∫
B

(1A)B dμB =
1
c̃

1
μ(B)
∫
X

1A dμ =
1
c̃
μ(A)
μ(B)
.

Since μB is TB-invariant, it follows that

∫
B

a(τB) dμ =
1
n

n−1
∑
k=0
∫
B

a(τB) ∘ T
k
B dμ

for every n ∈ ℕ. Passing to the limit n→∞, we conclude that ∫B a(τB) dμ ≤
μ(A)
c̃ μ(B) <∞,

hence contradicting the hypothesis in (b).
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In the second step, no restriction other than strict positivity will be put on
the sequence (an)∞n=1. We will construct a related sequence (a(n))∞n=1 that satisfies
the first step. We will again show that there are only two possibilities: either
lim infn→∞

1
an
Snf (x) = 0 or lim supn→∞

1
an
Snf (x) =∞, for μ-a. e. x ∈ X for all f ∈ L1+(μ).

Theorem 10.3.7. Let T : X → X be an ergodic and conservative measure-preserving
transformation of a σ-finite and infinite measure space (X,𝒜, μ). Let (an)∞n=1 be a se-
quence such that an > 0 for all n ∈ ℕ. Then

(a) either lim inf
n→∞

Snf (x)
an
= 0 for μ-a. e. x ∈ X, ∀f ∈ L1+(μ);

(b) or there is nk ↗∞ such that lim
k→∞

Snk f (x)
ank
=∞ for μ-a. e. x ∈ X, ∀f ∈ L1+(μ).

Proof. If (an)∞n=1 is bounded, then (b) holds. Indeed, let f ∈ L1+(μ). Since ∫X f dμ > 0,
there exist ε > 0 and B ∈ 𝒜 such that μ(B) > 0 and f ≥ ε on B. As T is conservative and
ergodic, Theorem 10.1.11 affirms that μ(X\B∞) = 0. Therefore, for μ-a. e. x ∈ X there
exists a sequence (nk(x))∞k=1 such that nk(x) ↗∞ and Tnk(x)(x) ∈ B. Hence, Snk(x)f (x) ≥
kε. In fact, Snf (x) ≥ kε for any n ≥ nk(x) since f ∈ L1+(μ). Therefore, limn→∞ Snf (x) =∞.
As (an)∞n=1 is bounded, it follows that limn→∞

Snf (x)
an
=∞ for μ-a. e. x ∈ X. So (b) holds

with (nk)∞k=1 = (n)
∞
n=1 when (an)

∞
n=1 is bounded.

We can thereby restrict our attention to the case lim supn→∞ an = ∞. Suppose
that (a) does not hold. That is, there exist a set A ∈ 𝒜 with μ(A) > 0 and a function
f ∈ L1+(μ) such that

F(x) := lim inf
n→∞

Snf (x)
an
> 0 for μ-a. e. x ∈ A. (10.18)

By Hopf’s ergodic theorem (Theorem 10.3.3), this actually holds for every f ∈ L1+(μ),
with the same set A. Then for μ-a. e. x ∈ A,

0 ≤ lim sup
n→∞

an
n
≤ lim sup

n→∞

an
Snf (x)

lim sup
n→∞

Snf (x)
n
= [lim inf

n→∞
Snf (x)
an
]
−1

lim
n→∞

Snf (x)
n
= 0

by (10.18) and Corollary 10.3.4. Thus an = o(n) as n→∞. For every n ∈ ℕ, set

an = max
1≤k≤n

ak .

Clearly, an ≤ an for all n ∈ ℕ and an ↗∞ as n ↗∞. Moreover, for each n ∈ ℕ there is
1 ≤ k(n) ≤ n such that an = ak(n). Note that k(n)→∞ as n→∞. Then

lim inf
n→∞

Snf
an
≥ lim inf

n→∞
Snf
an
= lim inf

n→∞
Snf
ak(n)
≥ lim inf

n→∞

Sk(n)f
ak(n)
≥ lim inf

n→∞
Snf
an
,

where the last inequality follows from the fact that the lim inf of a subsequence of a
sequence is greater than or equal to the lim inf of the full sequence. By this and (10.18),

lim inf
n→∞

Snf
an
= lim inf

n→∞
Snf
an
> 0 μ-a. e. on A, ∀f ∈ L1+(μ). (10.19)
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Next, set bn =
an
n , and let 1 = n0 < n1 < ⋅ ⋅ ⋅ be defined by

{nk}k∈ℕ = {j ≥ 2 : bi > bj, ∀1 ≤ i ≤ j − 1}.

For every k ≥ 0,

bnk > bnk+1 and nkbnk ≤ nk+1bnk+1 ,
whence

0 < nk
nk+1
≤
bnk+1
bnk
< 1.

Thus there exists αk ∈ (0, 1] such that

(
nk
nk+1
)
αk

=
bnk+1
bnk
.

Define

b(x) =
bnkn

αk
k

xαk
, x ∈ [nk , nk+1], k ∈ ℕ, and a(x) = xb(x).

Evidently,

a(nk) = ank , ∀k ∈ ℕ.

By definition of the nk ’s, we have that for k ∈ ℕ, n ∈ [nk , nk+1),

bnk ≤ bn and hence b(n) ≤ bn,

whereby

a(n) ≤ an, ∀n ∈ ℕ.

Hence, following (10.19),

lim inf
n→∞

Snf
a(n)
> 0 μ-a. e. on A, ∀f ∈ L1+(μ).

It is evident that

a(n) ↗∞ and a(n)
n
↘ 0 as n ↗∞.

So by Theorem 10.3.6,

lim
n→∞

Snf
a(n)
=∞ μ-a. e. on X, ∀f ∈ L1+(μ).

Then (b) follows since ank ≤ ank = a(nk).
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10.4 Absolutely continuous σ-finite invariant measures

In this section, we establish a very useful, relatively easy to verify, sufficient con-
dition for a quasi-invariant probability measure to admit an absolutely continuous
σ-finite invariant measure. This condition actually provides a σ-finite invariant mea-
sure equivalent to the original quasi-invariant probability measure. It goes back to
the work of Marco Martens [44] and has been used many times, notably in [40]. It
obtained its nearly final form in [70]. In contrast to Martens, where σ-compact metric
spaces form the setting, the sufficient condition in [70] is stated for abstract measure
spaces, and the proof uses the concept of Banach limit rather than weak convergence.
In this section, we somewhat strengthen the assertions in [70].

We first identify the possible relations between σ-finite invariant measures with
respect to which a system is ergodic and conservative. The following result is an ana-
logue of Theorem 8.2.21.

Theorem 10.4.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation. If μ1 and μ2
are σ-finite T-invariant measures and if T is ergodic and conservative with respect to
both measures, then either μ1 and μ2 are mutually singular or else they coincide up to a
positive multiplicative constant.

Proof. We may assume that neither μ1 ≡ 0 nor μ2 ≡ 0. Since both measures are
σ-finite, there is a sequence (Yn)∞n=1 of mutually disjoint measurable sets such that
max{μ1(Yn), μ2(Yn)} <∞ for all n ∈ ℕ and X = ⋃∞n=1 Yn.

First, suppose that μ1(Yn) > 0 for some n ∈ ℕ and that μ1 and μ2 coincide on Yn
up to a positive multiplicative constant. Without loss of generality, assume that n = 1
and that μ1|Y1 = μ2|Y1 . It immediately follows from Corollary 10.2.4 that μ1 = μ2, and
we are done in this case.

Now, assume that μ1 and μ2 do not coincide on X up to any positive multiplicative
constant. For each n ∈ ℕ, select a set Zn in the following way:
(1) If μ1(Yn)⋅μ2(Yn) > 0, it ensues from the previous case that μ1|Yn and μ2|Yn cannot be

equal up to any positive multiplicative constant. Hence, μ1|Yn ̸= μ2|Yn . Combining
Proposition 10.2.7 andTheorem8.2.21,wededuce that themeasuresμ1|Yn andμ2|Yn
are mutually singular, that is, there is a measurable set Zn ⊆ Yn such that μ1(Zn) =
0 and μ2(Yn\Zn) = 0.

(2) If μ1(Yn) = 0, set Zn = Yn.
(3) Otherwise, set Zn = 0. (In this case, μ2(Yn) = 0.)

Observe that Zn ⊆ Yn for all n ∈ ℕ. Therefore, the sets (Zn)∞n=1 are mutually disjoint.
Moreover, setting Z := ⋃∞n=1 Zn ∈ 𝒜, it turns out that

μ1(Z) =
∞

∑
n=1

μ1(Zn) = 0
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while

μ2(X\Z) =
∞

∑
n=1

μ2(Yn\Z) =
∞

∑
n=1

μ2(Yn\Zn) = 0.

So the measures μ1 and μ2 are mutually singular.

The preceding theorem allows us to derive the uniqueness of a σ-finite invariant
measure which is absolutely continuous with respect to a given quasi-invariant mea-
sure, assuming that the transformation is ergodic and conservative with respect to the
quasi-invariant measure.

Theorem 10.4.2. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and m a
σ-finite quasi-T-invariant measure. If T is ergodic and conservative with respect to m
then, up to a positive multiplicative constant, there exists at most one nonzero σ-finite
T-invariant measure μ which is absolutely continuous with respect to m.

Proof. Suppose that μ1 and μ2 are nonzero σ-finite T-invariant measures absolutely
continuous with respect to m. Since m is ergodic and conservative, so are the mea-
sures μ1 and μ2. It follows from Theorem 10.4.1 that if μ1 and μ2 do not coincide up to a
positive multiplicative constant, then they are mutually singular. But this means that
there exists a measurable set Y ⊆ X such that μ1(Y) = 0 and μ2(X\Y) = 0. So

0 ≤ μ1(
∞

⋃
n=0

T−n(Y)) ≤
∞

∑
n=0

μ1(T
−n(Y)) =

∞

∑
n=0

μ1(Y) = 0. (10.20)

On the other hand, μ2(Y) > 0. Since μ2 ≺≺ m, this implies that m(Y) > 0. Thus
m(X\⋃∞n=0 T

−n(Y)) = 0 by virtue of Theorem 10.1.11. Since μ1 ≺≺ m, this forces
μ1(X\⋃

∞
n=0 T
−n(Y)) = 0. Along with (10.20), this gives that μ1(X) = 0. This contra-

dicts the assumption that μ1(X) ̸= 0.

We now introduce the concept of Martens map.

Definition 10.4.3. Let T : (X,𝒜)→ (X,𝒜) be a measurable transformation. Let alsom
be a quasi-T-invariant probability measure. The transformation T is called aMartens
map if it admits a countable family {Xn}∞n=0 of subsets of X with the following proper-
ties:
(a) Xn ∈ 𝒜, ∀n ≥ 0.
(b) m(X\⋃∞n=0 Xn) = 0.
(c) For allm, n ≥ 0, there exists j ≥ 0 such thatm(Xm ∩ T−j(Xn)) > 0.
(d) For all j ≥ 0, there exists Kj ≥ 1 such that for all A,B ∈ 𝒜 with A ∪ B ⊆ Xj and for

all n ≥ 0,

m(T−n(A))m(B) ≤ Kjm(A)m(T
−n(B)).

(e) ∑∞n=0m(T
−n(X0)) =∞.
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(f) T(⋃∞j=l Yj) ∈ 𝒜 for all l ≥ 0, where Yj := Xj\⋃i<j Xi.
(g) lim

l→∞
m(T(⋃∞j=l Yj)) = 0.

The family {Xn}∞n=0 is called aMartens cover.

Remark 10.4.4.
(1) Without loss of generality, condition (b) can be replaced by⋃∞n=0 Xn = X.
(2) Condition (c) imposes thatm(Xn) > 0 for all n ≥ 0.
(3) In light of Corollary 10.1.10, if T is conservative with respect to μ then condition (e)

is fulfilled.
(4) In conditions (f-g), note that⋃∞j=l Yj = ⋃

∞
j=0 Xj\⋃i<l Xi ⊆ X\⋃i<l Xi.

(5) If the map T : X → X is finite-to-one, then condition (g) is satisfied. For then,
⋂∞l=1 T(⋃

∞
j=l Yj) = 0.

Let l∞ denote the Banach space of all bounded real-valued sequences x = (xn)∞n=1
with norm ‖x‖∞ := supn∈ℕ |xn|. Recall that a Banach limit is a shift-invariant positive
continuous linear functional lB : l∞ → ℝ which extends the usual limits. More pre-
cisely, for all sequences x = (xn)∞n=1, y = (yn)

∞
n=1 ∈ l

∞ and α, β ∈ ℝ, the following
properties hold:
(a) lB(αx + βy) = α lB(x) + β lB(y) (linearity).
(b) ‖lB‖ := sup{|lB(x)| : ‖x‖∞ ≤ 1} <∞ (continuity/boundedness).
(c) If x ≥ 0, that is, if xn ≥ 0 for all n ∈ ℕ, then lB(x) ≥ 0 (positivity).
(d) lB(σ(x)) = lB(x), where σ : l∞ → l∞ is the (left) shift map defined by (σ(x))n = xn+1

for all n ∈ ℕ (shift-invariance).
(e) If x is a convergent sequence, then lB(x) = lim

n→∞
xn.

It follows from properties (a), (c) and (e) that a Banach limit also satisfies:
(f) lim inf

n→∞
xn ≤ lB(x) ≤ lim sup

n→∞
xn.

(g) If x ≤ y, that is, if xn ≤ yn for all n ∈ ℕ, then lB(x) ≤ lB(y).

As already announced, the main result of this section is the following.

Theorem 10.4.5. Let (X,𝒜,m) be a probability space and T : X → X a Martens map
with Martens cover {Xj}∞j=0 and for which m is quasi-T-invariant. Then there exists a
σ-finite T-invariant measure μ equivalent to m on X. In addition, 0 < μ(Xj) <∞, ∀j ≥ 0.

A measure μ with the above properties can be constructed as follows. Let lB : l∞ →
ℝ be a Banach limit and let Yj := Xj\⋃i<j Xi for every j ≥ 0. For each A ∈ 𝒜, set

mn(A) :=
∑nk=0m(T

−k(A))
∑nk=0m(T−k(X0))

. (10.21)

If A ∈ 𝒜 and A ⊆ Yj for some j ≥ 0, then (mn(A))∞n=1 ∈ l
∞ and set

μ(A) := lB((mn(A))
∞
n=1). (10.22)
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For a general A ∈ 𝒜, set

μ(A) :=
∞

∑
j=0

μ(A ∩ Yj).

If (mn(A))∞n=1 ∈ l
∞ for some A ∈ 𝒜, then

μ(A) = lB((mn(A))
∞
n=1) − liml→∞

lB((mn(A ∩
∞

⋃
j=l

Yj))
∞

n=0
). (10.23)

In particular, if A ∈ 𝒜 is contained in a finite union of sets Xj, j ≥ 0, then

μ(A) = lB((mn(A))
∞
n=1).

Finally, if T is ergodic and conservativewith respect tom, then μ is unique up to a positive
multiplicative constant and T is ergodic and conservative with respect to μ.

In order to prove Theorem 10.4.5, we need several lemmas.

Lemma 10.4.6. Let (Z,ℱ) be a measurable space such that:
(a) Z = ⋃∞j=0 Zj for some mutually disjoint sets Zj ∈ ℱ; and
(b) νj is a finite measure on Zj for each j ≥ 0.

Then the set function ν : ℱ → [0,∞] defined by

ν(F) :=
∞

∑
j=0

νj(F ∩ Zj)

is a σ-finite measure on Z.

Proof. Clearly, ν(0) = 0. Let F ∈ ℱ and {Fn}∞n=1 a partition of F into sets in ℱ . Then

ν(F) =
∞

∑
j=0

νj(F∩Zj) =
∞

∑
j=0

νj(
∞

⋃
n=1
(Fn∩Zj)) =

∞

∑
j=0

∞

∑
n=1

νj(Fn∩Zj) =
∞

∑
n=1

∞

∑
j=0

νj(Fn∩Zj) =
∞

∑
n=1

ν(Fn),

where the order of summation could be changed since all terms involved are non-
negative. Thus ν is a measure. Moreover, by definition, Z = ⋃∞j=0 Zj and ν(Zj) = νj(Zj) <
∞ for all j ≥ 0. Therefore, ν is σ-finite.

From this point on, all lemmas rely on the same main hypotheses as Theo-
rem 10.4.5.

Lemma 10.4.7. For all n, j ≥ 0 and all A,B ∈ 𝒜 with A ∪ B ⊆ Xj, we have

mn(A)m(B) ≤ Kjm(A)mn(B).
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Proof. This follows directly from the definition of mn and condition (d) of Defini-
tion 10.4.3.

Lemma 10.4.8. For every j ≥ 0, we have (mn(Xj))∞n=1 ∈ l
∞ and μ(Yj) ≤ μ(Xj) <∞.

Proof. Fix j ≥ 0. In virtue of condition (c) of Definition 10.4.3, there exists q ≥ 0 such
that m(Xj ∩ T−q(X0)) > 0. By Lemma 10.4.7 and the definition of mn, for all n ≥ 0 we
have that

mn(Yj) ≤ mn(Xj) ≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
mn(Xj ∩ T

−q(X0))

≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
mn(T
−q(X0))

≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
∑n+qk=0m(T

−k(X0))
∑nk=0m(T−k(X0))

= Kj
m(Xj)

m(Xj ∩ T−q(X0))
[1 +
∑n+qk=n+1m(T

−k(X0))
∑nk=0m(T−k(X0))

]

≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
[1 + q

m(X0)
]. (10.24)

Consequently, (mn(Xj))∞n=1 ∈ l
∞ and properties (g) and (e) of a Banach limit yield that

μ(Yj) ≤ Kj
m(Xj)

m(Xj ∩ T−q(X0))
[1 + q

m(X0)
] <∞.

Since Xj = ⋃
j
i=0 Yi and the Yi’s are mutually disjoint, we deduce that

μ(Yj) ≤
j
∑
i=0

μ(Xj ∩ Yi) =
∞

∑
i=0

μ(Xj ∩ Yi) =: μ(Xj) ≤
j
∑
i=0

μ(Yi) <∞.

For every j ≥ 0, set μj := μ|Yj .

Lemma 10.4.9. For every j ≥ 0 such that μ(Yj) > 0 and for every measurable set A ⊆ Yj,
we have

K−1j
μ(Yj)
m(Yj)

m(A) ≤ μj(A) ≤ Kj
μ(Yj)
m(Yj)

m(A).

Proof. This follows from the definition of μ, and by setting B = Yj in Lemma 10.4.7 and
using properties (a) and (g) of a Banach limit.

Lemma 10.4.10. For each j ≥ 0, μj is a finite measure on Yj.
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Proof. Let j ≥ 0. If μj(Yj) = 0, then the result is trivial. So assume that μj(Yj) > 0. Let
A ⊆ Yj be a measurable set and (Ak)∞k=1 a countable measurable partition of A. Using
termwise operations on sequences, for every l ∈ ℕ we have

(
∞

∑
k=1

mn(Ak))
∞

n=1
−

l
∑
k=1
(mn(Ak))

∞
n=1 = (

∞

∑
k=1

mn(Ak))
∞

n=1
− (

l
∑
k=1

mn(Ak))
∞

n=1

= (
∞

∑
k=l+1

mn(Ak))
∞

n=1
.

It therefore follows from Lemma 10.4.7 (with A = Ak and B = Yj) that


(
∞

∑
k=1

mn(Ak))
∞

n=1
−

l
∑
k=1
(mn(Ak))

∞
n=1

∞
=

(
∞

∑
k=l+1

mn(Ak))
∞

n=1

∞

≤


Kj
m(Yj)
(mn(Yj)

∞

∑
k=l+1

m(Ak))
∞

n=1

∞

=
Kj

m(Yj)


(mn(Yj)

∞

∑
k=l+1

m(Ak))
∞

n=1

∞
.

Since (mn(Yj))∞n=1 ∈ l
∞ by Lemma 10.4.8 and since liml→∞∑

∞
k=l+1m(Ak) = 0, we con-

clude that

lim
l→∞


(
∞

∑
k=1

mn(Ak))
∞

n=1
−

l
∑
k=1
(mn(Ak))

∞
n=1

∞
= 0.

This means that

(
∞

∑
k=1

mn(Ak))
∞

n=1
=
∞

∑
k=1
(mn(Ak))

∞
n=1 in l∞.

Hence, using the continuity of the Banach limit lB : l∞ → ℝ, we get

μ(A) = lB((mn(A))
∞
n=1) = lB((mn(

∞

⋃
k=1

Ak))
∞

n=1
) = lB((

∞

∑
k=1

mn(Ak))
∞

n=1
)

=
∞

∑
k=1

lB((mn(Ak))
∞
n=1) =

∞

∑
k=1

μ(Ak).

So μj is countably additive. Also, μj(0) = 0. Thus μj is ameasure. By Lemma 10.4.8, this
measure μj is finite.

Combining Lemmas 10.4.6, 10.4.8, 10.4.9, and 10.4.10, and condition (b) of Defini-
tion 10.4.3, we obtain the following.
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Lemma 10.4.11. The set function μ is a σ-finite measure on X equivalent to m. Moreover,
μ(Yj) ≤ μ(Xj) <∞ and μ(Xj) > 0 for all j ≥ 0.

Lemma 10.4.12. Formula (10.23) holds.

Proof. Fix A ∈ 𝒜 such that (mn(A))∞n=1 ∈ l
∞. For every l ∈ ℕ, we then have

lB((mn(A))
∞
n=1) = lB(

l
∑
j=0
(mn(A ∩ Yj))

∞
n=1) + lB((mn(

∞

⋃
j=l+1

A ∩ Yj))
∞

n=1
)

=
l
∑
j=0

lB((mn(A ∩ Yj))
∞
n=1) + lB((mn(A ∩

∞

⋃
j=l+1

Yj))
∞

n=1
).

Letting l →∞, we deduce that

lB((mn(A))
∞
n=1) =

∞

∑
j=0

lB((mn(A ∩ Yj))
∞
n=1) + liml→∞

lB((mn(A ∩
∞

⋃
j=l+1

Yj))
∞

n=1
)

=
∞

∑
j=0

μ(A ∩ Yj) + liml→∞
lB((mn(A ∩

∞

⋃
j=l

Yj))
∞

n=1
)

= μ(A) + lim
l→∞

lB((mn(A ∩
∞

⋃
j=l

Yj))
∞

n=1
).

This establishes formula (10.23). In particular, if A ⊆ ⋃kj=0 Xj for some k ∈ ℕ, then
A ∩ ⋃∞j=l Yj ⊆ (⋃

k
j=0 Xj) ∩ (X\⋃i<l Xi) = 0 for all l > k. In that case, the equation above

reduces to

lB((mn(A))
∞
n=1) = μ(A).

Lemma 10.4.13. The σ-finite measure μ is T-invariant.

Proof. Let i ≥ 0 be such that m(Yi) > 0. Fix a measurable set A ⊂ Yi. By definition,
μ(A) = lB((mn(A))∞n=1). Furthermore, for all n ≥ 0 notice that

mn(T
−1(A)) −mn(A)

 =
m(T
−(n+1)(A)) −m(A)
∑nk=0m(T−k(X0))

≤
1

∑nk=0m(T−k(X0))
.

Thus (mn(T−1(A)))
∞
n=1 ∈ l

∞ because (mn(A))∞n=1 ∈ l
∞. Moreover, by condition (e) of

Definition 10.4.3, it follows from the above and properties (a), (e), and (g) of a Banach
limit that lB((mn(T−1(A)))∞n=1) = lB((mn(A))∞n=1) = μ(A).

Keep A a measurable subset of Yi. Fix l ∈ ℕ. We then have

mn(T
−1(A) ∩

∞

⋃
j=l

Yj) =
∑nk=0m(T

−k(T−1(A) ∩⋃∞j=l Yj))
∑nk=0m(T−k(X0))

≤
∑nk=0m(T

−(k+1)(A ∩ T(⋃∞j=l Yj)))
∑nk=0m(T−k(X0))
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≤ mn+1(A ∩ T(
∞

⋃
j=l

Yj)) ⋅
∑n+1k=0m(T

−k(X0))
∑nk=0m(T−k(X0))

≤ Ki
mn+1(Yi)
m(Yi)

⋅m(A ∩ T(
∞

⋃
j=l

Yj)) ⋅
∑n+1k=0m(T

−k(X0))
∑nk=0m(T−k(X0))

,

where the last inequality sign holds by Lemma 10.4.7 since A ⊆ Yi. When n →∞, the
last quotient on the right-hand side approaches 1. Therefore,

0 ≤ lB((mn(T
−1(A) ∩

∞

⋃
j=l

Yj))
∞

n=1
) ≤ Ki

μ(Yi)
m(Yi)

m(T(
∞

⋃
j=l

Yj)).

Hence, by virtue of condition (g) of Definition 10.4.3,

0 ≤ lim
l→∞

lB((mn(T
−1(A) ∩

∞

⋃
j=l

Yj))
∞

n=1
) ≤ Ki

μ(Yi)
m(Yi)

lim
l→∞

m(T(
∞

⋃
j=l

Yj)) = 0.

So

lim
l→∞

lB((mn(T
−1(A) ∩

∞

⋃
j=l

Yj))
∞

n=1
) = 0.

It thus follows from Lemma 10.4.12 that

μ(T−1(A)) = lB((mn(T
−1(A)))∞n=1) = lB((mn(A))

∞
n=1) = μ(A).

For an arbitrary A ∈ 𝒜, write A = ⋃∞j=0(A ∩ Yj) and observe that

μ(T−1(A)) = μ(
∞

⋃
j=0

T−1(A ∩ Yj)) =
∞

∑
j=0

μ(T−1(A ∩ Yj)) =
∞

∑
j=0

μ(A ∩ Yj) = μ(A).

Proof of Theorem 10.4.5. Combining Lemmas 10.4.8, 10.4.11, 10.4.12, and 10.4.13, with
Theorems 10.4.2 and 10.1.11, we obtain Theorem 10.4.5.

Remark 10.4.14. In the course of the proof of Theorem 10.4.5, we have shown that

0 < inf{mn(A) : n ∈ ℕ} ≤ sup{mn(A) : n ∈ ℕ} <∞

for all j ≥ 0 and all measurable sets A ⊆ Xj such thatm(A) > 0.

10.5 Exercises

Exercise 10.5.1. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation for which
there is a completely T-invariant set A ∈ 𝒜\{0,X}. Assume also that there exist a
T|A-invariant probability measure ν on (A,𝒜|A) and a T|X\A-invariant probability mea-
sure κ on (X\A,𝒜|X\A). Set μ(B) = ν(B ∩ A) + κ(B\A) for all B ∈ 𝒜.
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(a) Prove that μ is a T-invariant measure on (X,𝒜).
(b) Show that 0 < μ(A) <∞ and μ(A\A∞) = 0.
(c) Deduce that μA = ν and is TA-invariant.
(d) Show that μ(X\⋃∞k=0 T

−k(A)) ̸= 0.
(e) Let μ̃ be the measure induced by ν = μA.
(1) Prove that μ(A) = 1 = μ̃(A).
(2) Prove that μ(X\A) = 1 whereas μ̃(X\A) = 0.
(3) Conclude that there is no c ∈ ℝ such that μ̃ = cμ. In particular, μ̃ ̸= μ.

Exercise 10.5.2. Let T : (X,𝒜) → (X,𝒜) be a measurable transformation and μ a
T-invariant measure. Fix A ∈ 𝒜 such that 0 < μ(A) < ∞ and μ(A\A∞) = 0. So, from
this point on, A will be identified with A ∩ A∞.

The first return time function τA : A → ℕ was defined in (10.1) while the first
return map TA : A→ A was introduced in (10.2).

Similarly, for every n ∈ ℕ the nth return time function τnA : A→ ℕ is defined by

τnA(x) := min{k ∈ ℕ : #{1 ≤ j ≤ k : T j(x) ∈ A} = n }.

The nth return map TnA : A→ A is subsequently defined as

TnA(x) = T
τnA(x)(x).

Finally, let φ : X → ℝ be a measurable function. The function φA : A → ℝ was
defined in (10.11). The nth Birkhoff sum of φA under TA at a point x ∈ A is denoted by
STAn φA : A→ ℝ and is naturally given by

STAn φA(x) =
n−1
∑
i=0

φA(T
i
A(x)).

(a) Show that TnA = TA ∘ TA . . . ∘ TA, with n copies of TA in the composition. In other
words, show that the nth returnmap TnA is the usual n-time composition of the first
return map TA.

(b) Prove that τnA(x) = ∑
n−1
i=0 τA(T

i
A(x)) = S

TA
n τA(x). In other terms, the nth return time

is the sum of the first return times of the first n iterates of x that fall into A.
(c) Deduce that τn+1A (x) − τ

n
A(x) = τA(T

n
A(x)).

(d) Show that SτnA(x)φ(x) = ∑
n−1
k=0 SτA(Tk

A(x))
φ(TkA(x)) = S

TA
n φA(x).

(e) Given x ∈ A and k ∈ ℕ, let n(x) be the largest integer n ≥ 0 such that τnA(x) ≤ k.
In other words, n(x) is the number of times that the iterates of x visit A by time k,
and τn(x)A (x) is the last time at which an iterate of x falls into A prior to or at time k.
Demonstrate that

Skφ(x) = S
TA
n(x)φA(x) + SΔk(x)φ(T

n(x)
A (x)),

where Δk(x) := k − τn(x)A (x) ≥ 0.
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(f) Show that |φA| ≤ |φ|A.
(g) Prove that SΔk(x)φ(T

n(x)
A (x)) ≤ |φ|A(T

n(x)
A (x)).

Exercise 10.5.3. In this exercise, you will give a proof of Proposition 10.3.5. You will
first establish the proposition under the additional assumption that a(0) = 0.
(a) Prove that a(x + y) ≤ a(x) + a(y) for all x, y ∈ [0,∞).
(b) Show that

lim
M→∞

a(|f |1{|f |≥M}(x)) = 0 for μ-a. e. x ∈ X.

(c) Deduce that

lim
M→∞
∫
X

a(|f |1{|f |≥M}) dμ = 0.

(d) Fix ε > 0. From (c), identify two nonnegative functions g, h ∈ L1(μ) such that

|f | = g + h, sup
x∈X

g(x) <∞, and ∫
X

a(h) dμ < ε.

(e) Using (a) and (d), show that

lim sup
n→∞

a(|Snf (x)|)
n
≤ ∫

X

a(h) dμ.

(f) Conclude that

lim
n→∞

a(|Snf (x)|)
n
= 0 for μ-a. e. x ∈ X.

You will now establish the proposition without the assumption that a(0) = 0. Choose
m > 0 such that a(m) = αm for some 0 < α < 1, and define

ã(x) = { αx if 0 ≤ x ≤ m
a(x) if x ≥ m.

(g) Show that ã is continuous, strictly increasing, ã ≡ a on [m,∞), ã(x)x ↘ 0 as x ↗∞,
and ã(0) = 0.

(h) Deduce that

lim
n→∞

ã(|Snf (x)|)
n
= 0 for μ-a. e. x ∈ X.

(i) Conclude that

lim
n→∞

a(|Snf (x)|)
n
= 0 for μ-a. e. x ∈ X.
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Exercise 10.5.4. LetX = ℝ, λ be the Lebesguemeasure onℝ, andT : ℝ→ ℝbeBoole’s
transformation defined by T(x) = x − 1

x .
(a) Prove that λ is T-invariant.
(b) Show that T is conservative.

Exercise 10.5.5. For each i = 1, 2, let Ti : (Xi,𝒜i, μi) → (Xi,𝒜i, μi) be a measurable
transformation of a probability space (Xi,𝒜i, μi) such that μi is quasi-Ti-invariant.
The Cartesian product transformation T = T1 × T2 is defined on the product space
(X,𝒜, μ) := (X1 ×X2,𝒜1 ×𝒜2,m1 ×m2) by T(x1, x2) = (T1(x1),T2(x2)) (cf. Example 8.1.13).
Prove that if T1 is measure-preserving and T2 is conservative, then T1 × T2 is conserva-
tive.

Exercise 10.5.6. Generalize Exercise 8.5.47 to every measure space.

Exercise 10.5.7. Let S : (XS ,𝒜S , μS) → (XS ,𝒜S , μS) be a measurable transformation of
a σ-finite measure space (XS ,𝒜S , μS). Let φ : XS → ℕ be a measurable function. The
Kakutani tower over T with height function φ is the transformation T of the σ-finite
measure space (XT ,𝒜T , μT ) defined as follows:

XT = {(x, n) : x ∈ XS and n ≤ φ(x)},

𝒜T = σ({A × {n} : n ∈ ℕ and A = AS ∩ φ
−1([n,∞)) for some AS ∈ 𝒜S}),

μT (A × {n}) = μS(A),

and

T(x, n) = { (S(x),φ(S(x))) if n = 1,
(x, n − 1) if n ≥ 2.

Prove the following statements:
(a) If μS is quasi-S-invariant, then μT is quasi-T-invariant.
(b) If S is conservative, then so is T.
(c) TXS×{1}(x, 1) ≡ (S(x), 1) and φXS×{1}(x, 1) ≡ φ(x).
(d) If μS is S-invariant, then μT is T-invariant.
(e) If S is ergodic, then so is T.
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11 Topological pressure
In the forthcoming three chapters (the third one being part of the second volume), we
introduce and extensively deal with the fundamental concepts and results of thermo-
dynamic formalism, including topological pressure, the so-called variational princi-
ple, equilibrium states, and Gibbs states.

Thermodynamic formalism originated from the works of David Ruelle in the late
1960s. Ruelle’smotivation came from statisticalmechanics, particularly glass lattices.
The foundations, classical concepts, and theorems of thermodynamic formalismwere
developed throughout the 1970s in the earlyworks of Ruelle [59, 60], RufusBowen [10],
Peter Walters [75], and Yakov Sinai [68]. More recent and modern expositions can be
found in [57, 61, 76], among others. Also worthy of mention is Michal Misiurewicz’s
paper [49], where an elegant, short, and simple proof of the variational principle was
provided. This is the proof we shall reproduce in Chapter 12.

In Chapter 11, we define and investigate the properties of topological pressure.
Like topological entropy, this is a topological concept and a topological conjugacy in-
variant. We further give Bowen’s characterization of pressure in terms of separated
and spanning sets, which however requires a metric.

In Chapter 12, we relate topological pressure with Kolmogorov–Sinai metric en-
tropy by proving the variational principle, the very cornerstone of thermodynamic for-
malism. This principle naturally leads to the concepts of equilibrium states and mea-
sures of maximal entropy. We deal with those at length in that chapter, particularly
through the problem of existence of equilibrium states. Among others, we will show
that under a continuouspotential every expansive systemadmits an equilibriumstate.

Whereas in Chapters 11 and 12 we consider general topological dynamical sys-
tems, in Chapter 13 wewill restrict our attention to transitive open distance expanding
maps.Wewill introduce therein the concept of Gibbsmeasures for suchmaps.Wewill
also prove their existence and uniqueness for Hölder continuous potentials. We will
further demonstrate that they coincide with equilibrium states for these potentials,
concomitantly establishing the uniqueness of equilibrium states.

Gibbs states are measures with particularly fine and transparent stochastic prop-
erties, such as the central limit theorem, the law of the iterated logarithm, and expo-
nential decay of correlations. They are used to describe long-term unstable behaviors
of typical orbits of a given dynamical system having Gibbs states. Apart from such
direct application to dynamical systems, thermodynamic formalism was used to pro-
vided a full account of SRB (Sinai–Ruelle–Bowen) measures for Axiom A diffeomor-
phisms and flows, and many other dynamical systems. Via Bowen’s formula, thermo-
dynamic formalism is also an indispensable tool for studying the fractal geometry of
nonlinear smooth dynamical systems, particularly conformal and holomorphic ones.
This is at the heart of Chapter 16 and a guiding theme in all subsequent chapters.

The main tool for dealing with Gibbs states is the transfer, also frequently called
Perron–Frobenius, operator. We prove many of its functional analytic properties;

https://doi.org/10.1515/9783110702682-011
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among them its almost periodicity if acting on the Banach space of continuous func-
tions and its quasi–compactness if acting on the Banach space of Hölder continuous
functions. In addition to quasi-compactness, we show that this operator has only
one (and real) eigenvalue of maximal modulus and this eigenvalue is simple. The
corresponding eigenfunction turns out to be the Radon–Nikodym derivative of the
invariant Gibbs state with respect to the eigenmeasure of the dual transfer operator.

11.1 Definition of topological pressure via open covers

Recall that a topological dynamical system T : X → X is a self-transformation T of a
compact metrizable space X. Let φ : X → ℝ be a real-valued continuous function. In
the context of topological pressure (for historical, physical reasons), such a function
is usually referred to as a potential.

The topological pressure of a potential is defined in two stages. Thismay seem sur-
prising since topological entropy was defined in three stages in Chapter 7. However,
the main reason for defining topological entropy in three stages was so as to later mir-
ror it in the definition ofmeasure-theoretic entropy in Chapter 9. Indeed, the first stage
might just as well have been omitted and we would then have proceeded immediately
to the second stage by defining Zn(𝒰) directly and deriving its properties without re-
lying upon the fact that Zn(𝒰) = Z1(𝒰n). The first stage for topological entropy proves
to be useless when defining topological pressure since, as we will shortly discover,
Zn(φ,𝒰) ̸= Z1(φ,𝒰n) in general.

11.1.1 First stage: pressure of a potential relative to an open cover

Let us first recall the notion of Birkhoff (or ergodic) sum (cf. Definition 8.2.10). The nth
Birkhoff sum of a potential φ at a point x ∈ X is given by

Snφ(x) :=
n−1
∑
j=0

φ(T j(x)).

This is the sum of the values of the potential φ at the first n iterates of x under T.

Definition 11.1.1. For every Y ⊆ X and n ∈ ℕ, define

Snφ(Y) := sup
y∈Y

Snφ(y) and Snφ(Y) := infy∈Y
Snφ(y).

Now, let 𝒰 be an open cover of X. The minimum number Zn(𝒰) of elements of 𝒰n

required to cover X (cf. Definition 7.2.6) generalises to the real numbers Zn(φ,𝒰) and
zn(φ,𝒰) as follows.
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Definition 11.1.2. Let T : X → X be a topological dynamical system and let φ : X →
ℝ be a potential. Let 𝒰 be an open cover of X. For each n ∈ ℕ, define the nth level
functions (sometimes called partition functions) of 𝒰 with respect to the potential φ
by

Zn(φ,𝒰) := inf{ ∑
V∈𝒱

eSnφ(V) : 𝒱 is a subcover of 𝒰n}

and

zn(φ,𝒰) := inf{ ∑
V∈𝒱

eSnφ(V) : 𝒱 is a subcover of 𝒰n}.

Remark 11.1.3.
(a) It is sufficient to take the infimum over all finite subcovers since the exponential

function takes only positive values and every subcover has itself a finite subcover.
However, this infimummay not be achieved if 𝒰 is infinite.

(b) In general, Zn(φ,𝒰) ̸= Z1(φ,𝒰n) and zn(φ,𝒰) ̸= z1(φ,𝒰n).
(c) If φ ≡ 0, then Zn(0,𝒰) = zn(0,𝒰) = Zn(𝒰) for all n ∈ ℕ and any open cover 𝒰 of X.
(d) If φ ≡ c for some c ∈ ℝ, then Zn(c,𝒰) = zn(c,𝒰) = encZn(𝒰) for all n ∈ ℕ and every

open cover 𝒰 of X.
(e) For all open covers 𝒰 of X and all n ∈ ℕ, we have

en infφZn(𝒰) ≤ Zn(φ,𝒰) ≤ e
n supφZn(𝒰)

and

en infφZn(𝒰) ≤ zn(φ,𝒰) ≤ e
n supφZn(𝒰).

Wehave seen in Chapter 7 that the functions Zn(⋅), n ∈ ℕ, behavewell with respect
to all cover operations. In particular, it was observed in Lemma 7.2.8 that they respect
the refinement relation, that is, if 𝒰 ≺ 𝒱 then Zn(𝒰) ≤ Zn(𝒱) for every n ∈ ℕ. This
is not necessarily true for the partition functions Zn(φ, ⋅), n ∈ ℕ. The corresponding
inequality is more intricate. It involves the concept of oscillation.

Definition 11.1.4. The oscillation of φ with respect to an open cover 𝒰 is defined to be

osc(φ,𝒰) := sup
U∈𝒰

sup
x,y∈U

φ(y) − φ(x)
.

Note that osc(φ, ⋅) ≤ 2‖φ‖∞. Also, osc(c, ⋅) = 0 for all c ∈ ℝ.

Lemma 11.1.5. For every n ∈ ℕ and every open cover 𝒰 of X,

osc(Snφ,𝒰
n) ≤ n osc(φ,𝒰).
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Proof. Let V := U0 ∩ ⋅ ⋅ ⋅ ∩ T−(n−1)(Un−1) ∈ 𝒰
n and x, y ∈ V . For each 0 ≤ j < n, we have

that T j(x),T j(y) ∈ Uj ∈ 𝒰 . Hence, for all 0 ≤ j < n,

φ(T
j(x)) − φ(T j(y)) ≤ osc(φ,𝒰).

Therefore,

Snφ(x) − Snφ(y)
 ≤

n−1
∑
j=0

φ(T
j(x)) − φ(T j(y)) ≤ n osc(φ,𝒰).

Since this is true for all x, y ∈ V and all V ∈ 𝒰n, the result follows.

We now look at the relationship between the Zn’s and the zn’s.

Lemma 11.1.6. For all n ∈ ℕ and all open covers U of X, the following inequalities hold:

zn(φ,𝒰) ≤ Zn(φ,𝒰) ≤ e
n osc(φ,𝒰)zn(φ,𝒰).

Proof. The left inequality is obvious. To ascertain the right one, let 𝒲 be a subcover
of 𝒰n. Then

∑
W∈𝒲

eSnφ(W) ≤ exp( sup
W∈𝒲
[ Snφ(W) − Snφ(W) ]) ∑

W∈𝒲
eSnφ(W)

≤ eosc(Snφ,𝒰
n) ∑

W∈𝒲
eSnφ(W) ≤ en osc(φ,𝒰) ∑

W∈𝒲
eSnφ(W).

Taking the infimum over all subcovers of 𝒰n on both sides results in the right inequal-
ity.

In the next few results, we will see that the Zn’s and the zn’s have distinct proper-
ties.

Lemma 11.1.7. If 𝒰 ≺ 𝒱, then for all n ∈ ℕ we have that

Zn(φ,𝒰)e
−n osc(φ,𝒰) ≤ Zn(φ,𝒱) while zn(φ,𝒰) ≤ zn(φ,𝒱).

Proof. Fix n ∈ ℕ. Let i : 𝒱 → 𝒰 be a map such that V ⊆ i(V) for all V ∈ 𝒱. The map i
induces amap in : 𝒱n → 𝒰n in the followingway. For everyW := V0∩⋅ ⋅ ⋅∩T−(n−1)(Vn−1) ∈
𝒱n, define

in(W) := i(V0) ∩ ⋅ ⋅ ⋅ ∩ T
−(n−1)(i(Vn−1)).

Observe thatW ⊆ in(W) ∈ 𝒰n for allW ∈ 𝒱n. Moreover, if x ∈ W and y ∈ in(W), then
for each 0 ≤ j < n we have that T j(x) ∈ Vj ⊆ i(Vj) ∋ T j(y). So T j(x),T j(y) ∈ i(Vj) for all
0 ≤ j < n. Hence, x, y ∈ in(W) ∈ 𝒰n, and thus

Snφ(x) ≥ Snφ(y) − osc(Snφ,𝒰
n).
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Taking the supremum over all x ∈ W on the left-hand side and over all y ∈ in(W) on
the right-hand side yields

Snφ(W) ≥ Snφ(in(W)) − osc(Snφ,𝒰
n).

Now, let𝒲 be a subcover of 𝒱n. Then in(𝒲) := {in(W) : W ∈ 𝒲} is a subcover of 𝒰n.
Therefore,

∑
W∈𝒲

eSnφ(W) ≥ e−osc(Snφ,𝒰
n) ∑

W∈𝒲
eSnφ(in(W))

≥ e−osc(Snφ,𝒰
n) ∑

Y∈in(𝒲)
eSnφ(Y)

≥ e−osc(Snφ,𝒰
n)Zn(φ,𝒰).

Taking the infimum over all subcovers 𝒲 of 𝒱n on the left-hand side and using
Lemma 11.1.5, we conclude that

Zn(φ,𝒱) ≥ e
−osc(Snφ,𝒰n)Zn(φ,𝒰) ≥ e

−n osc(φ,𝒰)Zn(φ,𝒰).

The proof of the inequality for the zn’s is left to the reader.

In Lemma 7.2.9, we saw that the functions Zn(⋅) are submultiplicative with respect
to the join operation; in other words, Zn(𝒰 ∨ 𝒱) ≤ Zn(𝒰)Zn(𝒱) for all n ∈ ℕ. The corre-
sponding property for the functions Zn(φ, ⋅) and zn(φ, ⋅) is the following.

Lemma 11.1.8. Let 𝒰 and 𝒱 be open covers of X and let n ∈ ℕ. Then

Zn(φ,𝒰 ∨ 𝒱) ≤ min{Zn(φ,𝒰) ⋅ Zn(𝒱), Zn(𝒰) ⋅ Zn(φ,𝒱)}

and

zn(φ,𝒰 ∨ 𝒱) ≤ min{en osc(φ,𝒰)zn(φ,𝒰) ⋅ Zn(𝒱), Zn(𝒰) ⋅ e
n osc(φ,𝒱)zn(φ,𝒱)}.

Proof. The proof is left to the reader as an exercise.

We have also seen in Lemma 7.2.10 that the sequence (Zn(𝒰))∞n=1 is submultiplica-
tive. This property is retained by the Zn(φ,𝒰)’s but generally not by the zn(φ,𝒰)’s (see
Exercise 11.5.2).

Lemma 11.1.9. Given an open cover 𝒰 of X, the sequence (Zn(φ,𝒰))∞n=1 is submultiplica-
tive.

Proof. Fix m, n ∈ ℕ, let 𝒱 be a subcover of 𝒰m and 𝒲 a subcover of 𝒰n. Note that
𝒱 ∨ T−m(𝒲) is a subcover of 𝒰m+n since it is a cover and

𝒱 ∨ T−m(𝒲) ⊆ 𝒰m ∨ T−m(𝒰n) = 𝒰m+n.
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Take arbitrary V ∈ 𝒱 andW ∈ 𝒲. Then for every x ∈ V ∩ T−m(W), we have x ∈ V and
Tm(x) ∈ W , and hence

Sm+nφ(x) = Smφ(x) + Snφ(T
m(x)) ≤ Smφ(V) + Snφ(W).

Taking the supremum over all x ∈ V ∩ T−m(W), we deduce that

Sm+nφ(V ∩ T
−m(W)) ≤ Smφ(V) + Snφ(W).

Therefore,

Zm+n(φ,𝒰) ≤ ∑
E∈𝒱∨T−m(𝒲)

eSm+nφ(E)

≤ ∑
V∈𝒱
∑

W∈𝒲
eSm+nφ(V∩T

−m(W))

≤ ∑
V∈𝒱
∑

W∈𝒲
eSmφ(V)eSnφ(W)

= ∑
V∈𝒱

eSmφ(V) ∑
W∈𝒲

eSnφ(W).

Taking the infimum of the right-hand side over all subcovers 𝒱 of 𝒰m and over all
subcovers𝒲 of 𝒰n gives

Zm+n(φ,𝒰) ≤ Zm(φ,𝒰)Zn(φ,𝒰).

We immediately deduce the following fact.

Corollary 11.1.10. The sequence (log Zn(φ,𝒰))∞n=1 is subadditive for every open cover 𝒰
of X.

Thanks to this fact, we can define the topological pressure of a potential with re-
spect to an open cover. This constitutes the first step in the definition of the topological
pressure of a potential.

Definition 11.1.11. The topological pressure of a potentialφ : X → ℝwith respect to an
open cover 𝒰 of X, denoted by P(T ,φ,𝒰), is defined to be

P(T ,φ,𝒰) := lim
n→∞

1
n
log Zn(φ,𝒰) = infn∈ℕ

1
n
log Zn(φ,𝒰).

The existence of the limit and its equality with the infimum follow from Lem-
ma 3.2.17 and Corollary 11.1.10, just as in the corresponding Definition 7.2.12 for topo-
logical entropy.

It is also possible to define similar quantities using the zn(φ,𝒰)’s rather than the
Zn(φ,𝒰)’s.
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Definition 11.1.12. Given a potential φ : X → ℝ and an open cover 𝒰 of X, let

p(T ,φ,𝒰) := lim inf
n→∞

1
n
log zn(φ,𝒰) and p(T ,φ,𝒰) := lim sup

n→∞

1
n
log zn(φ,𝒰).

Remark 11.1.13. Let 𝒰 be an open cover of X.
(a) P(T ,0,𝒰) = p(T ,0,𝒰) = p(T ,0,𝒰) = htop(T ,𝒰) by Remark 11.1.3(c).
(b) By Remark 11.1.3(e),

−∞ < htop(T ,𝒰) + infφ ≤ P(T ,φ,𝒰) ≤ htop(T ,𝒰) + supφ <∞.

These inequalities also hold with P(T ,φ,𝒰) replaced by p(T ,φ,𝒰) and p(T ,φ,𝒰),
respectively.

(c) Using Lemma 11.1.6,

p(T ,φ,𝒰) ≤ p(T ,φ,𝒰) ≤ P(T ,φ,𝒰) ≤ p(T ,φ,𝒰) + osc(φ,𝒰).

We have seen in Proposition 7.2.14 that the topological entropy relative to covers
respects the refinement relation and is subadditive with respect to the join operation.
The topological pressure satisfies the following similar properties.

Proposition 11.1.14. Let 𝒰 and 𝒱 be open covers of X.
(a) If 𝒰 ≺ 𝒱, then P(T ,φ,𝒰) − osc(φ,𝒰) ≤ P(T ,φ,𝒱) while

p(T ,φ,𝒰) ≤ p(T ,φ,𝒱) and p(T ,φ,𝒰) ≤ p(T ,φ,𝒱).

(b) P(T ,φ,𝒰 ∨ 𝒱) ≤ min{P(T ,φ,𝒰) + htop(T ,𝒱),P(T ,φ,𝒱) + htop(T ,𝒰)} whereas

p(T ,φ,𝒰 ∨ 𝒱) ≤ min{p(T ,φ,𝒰) + osc(φ,𝒰) + htop(T ,𝒱),
p(T ,φ,𝒱) + osc(φ,𝒱) + htop(T ,𝒰)}

and a similar inequality with p replaced by p.

Proof. Part (a) is an immediate consequence of Lemma 11.1.7 while (b) follows directly
from Lemma 11.1.8.

We have proved in Lemma 7.2.15 that the entropy of a system relative to covers
remains the same for all dynamical covers generated by a given cover. The topological
pressure of a potential has a similar property.

Lemma 11.1.15. If 𝒰 is an open cover of X, then

p(T ,φ,𝒰n) = p(T ,φ,𝒰) and p(T ,φ,𝒰n) = p(T ,φ,𝒰)

whereas P(T ,φ,𝒰n) ≤ P(T ,φ,𝒰) for all n ∈ ℕ. In addition, if 𝒰 is an open partition of X,
then P(T ,φ,𝒰n) = P(T ,φ,𝒰) for all n ∈ ℕ.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



356 | 11 Topological pressure

Proof. Fix n ∈ ℕ. For all k ∈ ℕ and all x ∈ X, we already know that

Sk+n−1φ(x) = Skφ(x) + Sn−1φ(T
k(x)).

Therefore,

Skφ(x) − ‖Sn−1φ‖∞ ≤ Sk+n−1φ(x) ≤ Skφ(x) + ‖Sn−1φ‖∞.

Hence, for any subset Y of X,

Skφ(Y) − ‖Sn−1φ‖∞ ≤ Sk+n−1φ(Y) ≤ Skφ(Y) + ‖Sn−1φ‖∞ (11.1)

and

Skφ(Y) − ‖Sn−1φ‖∞ ≤ Sk+n−1φ(Y) ≤ Skφ(Y) + ‖Sn−1φ‖∞. (11.2)

We claim that

e−‖Sn−1φ‖∞Zk(φ,𝒰
n) ≤ Zk+n−1(φ,𝒰) (11.3)

and

e−‖Sn−1φ‖∞zk(φ,𝒰
n) ≤ zk+n−1(φ,𝒰) ≤ e

‖Sn−1φ‖∞zk(φ,𝒰
n). (11.4)

Let us first prove (11.3). Recall that (𝒰n)k ≺ 𝒰k+n−1 ≺ (𝒰n)k for all k ∈ ℕ (cf. Lem-
ma 7.1.12(d)). However, this is insufficient to declare that a subcover of 𝒰k+n−1 is also
a subcover of (𝒰n)k, or vice versa. We need to remember that 𝒰 ∨ 𝒰 ⊇ 𝒰 , and thus
(𝒰n)k ⊇ 𝒰k+n−1, that is, 𝒰k+n−1 is a subcover of (𝒰n)k . Let 𝒱 be a subcover of 𝒰k+n−1.
Then 𝒱 is a subcover of (𝒰n)k . Using the left inequality in (11.1) with Y replaced by
each V ∈ 𝒱 successively, we obtain

e−‖Sn−1φ‖∞Zk(φ,𝒰
n) ≤ e−‖Sn−1φ‖∞ ∑

V∈𝒱
eSkφ(V) ≤ ∑

V∈𝒱
eSk+n−1φ(V).

Taking the infimumover all subcovers𝒱 of𝒰k+n−1 yields (11.3). Similarly, using the left
inequality in (11.2), we get that

e−‖Sn−1φ‖∞zk(φ,𝒰
n) ≤ e−‖Sn−1φ‖∞ ∑

V∈𝒱
eSkφ(V) ≤ ∑

V∈𝒱
eSk+n−1φ(V).

Taking the infimum over all subcovers 𝒱 of 𝒰k+n−1 yields the left inequality in (11.4).
Regarding the right inequality, since 𝒰k+n−1 ≺ (𝒰n)k, there exists a map i : (𝒰n)k →
𝒰k+n−1 such thatW ⊆ i(W) for allW ∈ (𝒰n)k . Let𝒲 be a subcover of (𝒰n)k . Then i(𝒲)
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is a subcover of 𝒰k+n−1 and, using the right inequality in (11.2), we deduce that

∑
W∈𝒲

eSkφ(W) ≥ ∑
W∈𝒲

eSkφ(i(W)) ≥ ∑
Z∈i(𝒲)

eSkφ(Z)

≥ ∑
Z∈i(𝒲)

eSk+n−1φ(Z)−‖Sn−1φ‖∞

≥ e−‖Sn−1φ‖∞zk+n−1(φ,𝒰).

Taking the infimum over all subcovers of (𝒰n)k on the left-hand side gives the right
inequality in (11.4). So (11.3) and (11.4) always hold.

Moreover, if 𝒰 is a partition then 𝒰 ∨ 𝒰 = 𝒰 , and thus (𝒰n)k = 𝒰k+n−1 for all k ∈ ℕ.
Let𝒲 be a subcover of (𝒰n)k . Using the right inequality in (11.1), we conclude that

∑
W∈𝒲

eSkφ(W) ≥ ∑
W∈𝒲

eSk+n−1φ(W)−‖Sn−1φ‖∞ ≥ e−‖Sn−1φ‖∞Zk+n−1(φ,𝒰).

Taking the infimum over all subcovers of (𝒰n)k on the left-hand side gives

Zk(φ,𝒰
n) ≥ e−‖Sn−1φ‖∞Zk+n−1(φ,𝒰). (11.5)

Finally, for the passage from the zn’s to p, it follows from (11.4) that

k
k + n − 1

⋅
1
k
log zk(φ,𝒰

n) −
‖Sn−1φ‖∞
k + n − 1

≤
1

k + n − 1
log zk+n−1(φ,𝒰)

and

1
k + n − 1

log zk+n−1(φ,𝒰) ≤
k

k + n − 1
⋅
1
k
log zk(φ,𝒰

n) +
‖Sn−1φ‖∞
k + n − 1

.

Taking the lim sup as k →∞ in these two relations yields

p(T ,φ,𝒰n) ≤ p(T ,φ,𝒰) ≤ p(T ,φ,𝒰n).

Taking the lim inf instead, results in a corresponding conclusion for p. Similarly, one
deduces from (11.3) that P(T ,φ,𝒰n) ≤ P(T ,φ,𝒰) and, when 𝒰 is a partition, it ensues
from (11.5) that P(T ,φ,𝒰n) ≥ P(T ,φ,𝒰).

11.1.2 Second stage: the pressure of a potential

Recall that the topological entropy of a system is defined to be the supremum over
all open covers of the entropy of the system with respect to an open cover (cf. Defini-
tion 7.2.16). However, due to Proposition 11.1.14(a), taking the supremum of the pres-
sure relative to all covers does not always lead to a quantity that has natural proper-
ties. Instead, we take the supremum of the difference between the pressure relative to
a coverminus the oscillation of the potential with respect to that cover. This definition
is purely topological.
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Definition 11.1.16. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. The topological pressure of the potential φ, denoted P(T ,φ), is defined by

P(T ,φ) := sup{P(T ,φ,𝒰) − osc(φ,𝒰) : 𝒰 is an open cover of X}.

In light of Proposition 11.1.14(a), we may define the counterparts p(T ,φ) and
p(T ,φ) of P(T ,φ) by simply taking the supremum over all covers.

Definition 11.1.17. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. Define

p(T ,φ) := sup{p(T ,φ,𝒰) : 𝒰 is an open cover of X},

and

p(T ,φ) := sup{p(T ,φ,𝒰) : 𝒰 is an open cover of X}.

Clearly, p(T ,φ) ≤ p(T ,φ). In fact, p(T ,φ) and p(T ,φ) are just other expressions of
the topological pressure.

Theorem 11.1.18. For any topological dynamical system T : X → X and potential φ :
X → ℝ, it turns out that p(T ,φ) = p(T ,φ) = P(T ,φ).

Proof. Froma rearrangement of the right inequality inRemark 11.1.13(c), it follows that
P(T ,φ) ≤ p(T ,φ) ≤ p(T ,φ).

To prove that p(T ,φ) ≤ P(T ,φ), let (𝒰n)∞n=1 be a sequence of open covers such that
limn→∞ p(T ,φ,𝒰n) = p(T ,φ). Each open cover 𝒰n has a Lebesgue number δn > 0.
The compactness of X guarantees that there are finitely many open balls of radius
min{δn, 1/(2n)} that cover X. These balls thereby constitute a refinement of 𝒰n of di-
ameter at most 1/n. Thanks to Proposition 11.1.14(a), this means that we may assume
without loss of generality that the sequence (𝒰n)∞n=1 is such that limn→∞ diam(𝒰n) = 0.
Since φ is uniformly continuous, it ensues that limn→∞ osc(φ,𝒰n) = 0. Consequently,
using the left inequality in Remark 11.1.13(c), we conclude that

P(T ,φ) ≥ sup
n∈ℕ
[P(T ,φ,𝒰n) − osc(φ,𝒰n)]

≥ sup
n∈ℕ
[p(T ,φ,𝒰n) − osc(φ,𝒰n)]

≥ lim
n∈ℕ
[p(T ,φ,𝒰n) − osc(φ,𝒰n)] = p(T ,φ).

Remark 11.1.19.
(a) P(T ,0) = htop(T). Thus topological pressure generalizes topological entropy. This

is a consequence of Remark 11.1.13(a) and the fact that osc(0,𝒰) = 0 for all 𝒰 .
(b) By Remark 11.1.13(b),

htop(T) + infφ − osc(φ,X) ≤ P(T ,φ) ≤ htop(T) + supφ.

(c) P(T ,φ) =∞ if and only if htop(T) =∞, according to part (b).
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We saw in Proposition 7.2.18 that topological entropy cannot be greater for a factor
of a given map than for the original map. We expect the same for its generalization,
topological pressure, with a small twist, namely that the potentials to which the dy-
namical systems are subject must correspond.

Proposition 11.1.20. Suppose that S : Y → Y is a factor of T : X → X via the factor map
h : X → Y. Then for every potential φ : Y → ℝ, we have that P(S,φ) ≤ P(T ,φ ∘ h).

Proof. Let𝒱 be an open cover ofY . Recall (cf. proof of Proposition 7.2.18) that h−1(𝒱n
S ) =

(h−1(𝒱))nT for all n ∈ ℕ. Without loss of generality, we may restrict our attention to
nondegenerate subcovers, that is, subcovers whose members are all different from
one another. Letting C be the collection of all nondegenerate subcovers of 𝒱n

S , themap
𝒞 → h−1(𝒞), 𝒞 ∈ C, defines a bijection between the nondegenerate subcovers of 𝒱n

S and
the nondegenerate subcovers of h−1(𝒱n

S ) = (h
−1(𝒱))nT , since h is a surjection. We leave

it to the reader to show that

STn (φ ∘ h)(h
−1(Z)) = SSnφ(Z), ∀Z ⊆ Y .

It then follows that (again this is left to the reader)

Zn(T ,φ ∘ h, h
−1(𝒱)) = Zn(S,φ,𝒱).

Therefore,

P(T ,φ ∘ h, h−1(𝒱)) = P(S,φ,𝒱).

Observe further that osc(φ ∘ h, h−1(𝒱)) = osc(φ,𝒱). Then

P(T ,φ ∘ h) ≥ P(T ,φ ∘ h, h−1(𝒱)) − osc(φ ∘ h, h−1(𝒱))
= P(S,φ,𝒱) − osc(φ,𝒱).

Taking the supremum over all open covers 𝒱 of Y yields P(T ,φ ∘ h) ≥ P(S,φ).

An immediate but important consequence of this lemma is the following.

Corollary 11.1.21. If T : X → X and S : Y → Y are topologically conjugate dynamical
systems via a conjugacy h : X → Y, thenP(S,φ) = P(T ,φ∘h) for all potentials φ : Y → ℝ.

We now study the behavior of topological pressure with respect to the iterates of
the system. This is a generalization of Theorem 7.2.19.

Theorem 11.1.22. For every n ∈ ℕ, we have that P(Tn, Snφ) = nP(T ,φ).

Proof. Fix n ∈ ℕ. Let 𝒰 be an open cover of X. The action of themap Tn on 𝒰 until time
j − 1 will be denoted by 𝒰 j

Tn . Recall (cf. proof of Theorem 7.2.19) that 𝒰mn = (𝒰n)mTn for
allm ∈ ℕ. Furthermore, for all x ∈ X,

Smnφ(x) =
mn−1
∑
k=0

φ ∘ Tk(x) =
m−1
∑
j=0
(Snφ) ∘ T

jn(x) =
m−1
∑
j=0
(Snφ) ∘ (T

n)
j
(x) = ST

n

m (Snφ)(x),
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where ST
n

m ψ(x) = ∑m−1j=0 ψ((Tn)j(x)). Hence, Smnφ(Y) = S
Tn

m (Snφ)(Y) for all subsets Y
of X, and in particular for all Y ∈ 𝒰mn = (𝒰n)mTn . Thus,

zmn(T ,φ,𝒰) = zm(T
n, Snφ,𝒰

n), ∀m ∈ ℕ.

Using this and Lemma 11.1.14(a), we get

p(T ,φ,𝒰) = lim sup
m→∞

1
m
log zm(T ,φ,𝒰) ≥ lim sup

m→∞

1
mn

log zmn(T ,φ,𝒰)

=
1
n
lim sup
m→∞

1
m
log zm(T

n, Snφ,𝒰
n)

=
1
n
p(Tn, Snφ,𝒰

n) ≥
1
n
p(Tn, Snφ,𝒰).

Taking the supremum over all open covers 𝒰 of X yields

p(T ,φ) ≥ 1
n
p(Tn, Snφ).

Similarly,

p(T ,φ) ≤ 1
n
p(Tn, Snφ).

The result ensues from the previous two relations and Theorem 11.1.18.

As a generalization of topological entropy, in a metrizable space topological pres-
sure is determined by any sequence of covers whose diameters tend to zero. The next
result is an extension of Lemma 7.2.20.

Lemma 11.1.23. The following quantities are all equal:
(a) P(T ,φ).
(b) p(T ,φ).
(c) limε→0[sup{P(T ,φ,𝒰) : 𝒰 open cover with diam(𝒰) ≤ ε}].
(d) sup{p(T ,φ,𝒰) : 𝒰 open cover with diam(𝒰) ≤ δ} for any δ > 0.
(e) limε→0 P(T ,φ,𝒰ε) for any open covers (𝒰ε)ε∈(0,∞) such that limε→0 diam(𝒰ε) = 0.
(f) limε→0 p(T ,φ,𝒰ε) for any open covers (𝒰ε)ε∈(0,∞) such that limε→0 diam(𝒰ε) = 0.
(g) limn→∞ P(T ,φ,𝒰n) for any open covers (𝒰n)∞n=1 such that limn→∞ diam(𝒰n) = 0.
(h) limn→∞ p(T ,φ,𝒰n) for any open covers (𝒰n)∞n=1 such that limn→∞ diam(𝒰n) = 0.

Note that p can be replaced by p in the statements above.

Proof. We already know that (a)=(b) by Lemma 11.1.18. It is clear that (b)≥(d). It is also
obvious that (d)≥(f) and (c)≥(e) for any family (𝒰ε)ε∈(0,∞) as described, and that (d)≥(h)
and (c)≥(g) for any sequence (𝒰n)∞n=1 as specified. It thus suffices to prove that (f)≥(b),
that (h)≥(b), that (e)≥(a), that (g)≥(a), and that (b)≥(c).

Wewill prove that (g)≥(a). The proofs of the other inequalities are similar. Let 𝒱 be
any open cover of X. Since limn→∞ diam(𝒰n) = 0, there exists N ∈ ℕ such that 𝒱 ≺ 𝒰n
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for all n ≥ N (cf. proof of Lemma 7.2.20). By Proposition 11.1.14(a), we obtain that for
all sufficiently large n,

P(T ,φ,𝒰n) ≥ PT ,φ,𝒱) − osc(φ,𝒱).

We immediately deduce that

lim inf
n→∞

P(T ,φ,𝒰n) ≥ P(T ,φ,𝒱) − osc(φ,𝒱).

As the open cover 𝒱 was chosen arbitrarily, passing to the supremum over all open
covers allows us to conclude that

lim inf
n→∞

P(T ,φ,𝒰n) ≥ P(T ,φ).

But limn→∞ osc(φ,𝒰n) = 0 since limn→∞ diam(𝒰n) = 0 andφ is uniformly continuous.
Therefore,

P(T ,φ) = sup
𝒱
[P(T ,φ,𝒱) − osc(φ,𝒱)]

≥ lim sup
n→∞
[P(T ,φ,𝒰n) − osc(φ,𝒰n)]

= lim sup
n→∞

P(T ,φ,𝒰n) − limn→∞
osc(φ,𝒰n)

= lim sup
n→∞

P(T ,φ,𝒰n) ≥ lim inf
n→∞

P(T ,φ,𝒰n) ≥ P(T ,φ).

Hence, P(T ,φ) = limn→∞ P(T ,φ,𝒰n).

We can now obtain a slightly stronger estimate than Remark 11.1.19(b) for the dif-
ference between topological entropy and topological pressure when the underlying
space is metrizable.

Corollary 11.1.24. htop(T) + infφ ≤ P(T ,φ) ≤ htop(T) + supφ.

Proof. Theupper boundwas alreadymentioned inRemark 11.1.19(b). In order toderive
the lower bound, we return to Remark 11.1.13(b). Let (𝒰n)∞n=1 be a sequence of open
covers of X such that limn→∞ diam(𝒰n) = 0. According to Remark 11.1.13(b), for each
n ∈ ℕ we have

htop(T ,𝒰n) + infφ ≤ P(T ,φ,𝒰n).

Passing to the limit n→∞ and using Lemmas 7.2.20 and 11.1.23, we conclude that

htop(T) + infφ ≤ P(T ,φ).

The preceding lemma characterized the topological pressure of a potential as the
limit of the topological pressure of the potential relative to a sequence of covers. An
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even better result would be the characterization of the topological pressure of a poten-
tial as the topological pressure of that potential with respect to a single cover. Asmight
by now be expected, such a characterization exists when the system has a generator.
This is a generalization of Lemma 7.2.22 (see also Definition 7.2.21).

Lemma 11.1.25. If a system T : X → X has a generator 𝒰 , then

P(T ,φ) = p(T ,φ,𝒰) = p(T ,φ,𝒰).

Moreover, if the generator 𝒰 is a partition, then

P(T ,φ) = P(T ,φ,𝒰).

Proof. It follows from Lemmas 11.1.23 and 11.1.15 that

P(T ,φ) = lim
n→∞

p(T ,φ,𝒰n) = lim
n→∞

p(T ,φ,𝒰) = p(T ,φ,𝒰).

A similar argument leads to the statements for p and for a generating partition.

We then have the following generalization of Theorem 7.2.24.

Theorem 11.1.26. If T : X → X is a δ-expansive dynamical system on a compact metric
space (X, d), then

P(T ,φ) = p(T ,φ,𝒰) = p(T ,φ,𝒰)

for any open cover 𝒰 of X with diam(𝒰) ≤ δ. Moreover,

P(T ,φ) = P(T ,φ,𝒰)

for any open partition 𝒰 of X with diam(𝒰) ≤ δ.

Proof. This is an immediate consequence of Lemmas 11.1.25 and 7.2.23.

11.2 Bowen’s definition of topological pressure

Wehave seen in Theorem 7.3.8 and Corollary 7.3.12 that topological entropy can also be
defined using separated or spanning sets. This definition may be generalized to yield
a definition of topological pressure, which coincides with the one from the previous
section. To lighten notation, for any n ∈ ℕ and Y ⊆ X, let

Σn(Y) = ∑
x∈Y

eSnφ(x).
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Theorem 11.2.1. For all n ∈ ℕ and all ε > 0, let En(ε) be a maximal (n, ε)-separated set
and Fn(ε) be a minimal (n, ε)-spanning set. Then

P(T ,φ) = lim
ε→0

lim sup
n→∞

1
n
log Σn(En(ε)) = limε→0 lim inf

n→∞
1
n
log Σn(En(ε))

≤ lim inf
ε→0

lim inf
n→∞

1
n
log Σn(Fn(ε)).

Proof. Fix ε > 0. Let 𝒰ε be an open cover of X consisting of balls of radius ε/2. Fix
n ∈ ℕ. Let 𝒰 be a subcover of 𝒰n

ε such that Zn(φ,𝒰ε) ≥ e−1∑U∈𝒰 exp(Snφ(U)). For
each x ∈ En(ε), let U(x) be an element of the cover 𝒰 which contains x and define the
function i : En(ε) → 𝒰 by setting i(x) = U(x). We have already shown in the proof of
Theorem 7.3.8 that this function is an injection. Therefore,

Zn(φ,𝒰ε) ≥ e
−1 ∑

U∈𝒰
eSnφ(U) ≥ e−1 ∑

x∈En(ε)
eSnφ(U(x)) ≥ e−1 ∑

x∈En(ε)
eSnφ(x).

Since this is true for all n ∈ ℕ, we deduce that

P(T ,φ,𝒰ε) = lim
n→∞

1
n
log Zn(φ,𝒰ε) ≥ lim sup

n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x).

Letting ε → 0 and using Lemma 11.1.23 yields that

P(T ,φ) ≥ lim sup
ε→0

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x). (11.6)

On the other hand, if𝒱 is an arbitrary open cover ofX, if δ(𝒱) is a Lebesguenumber
for 𝒱, if 0 < ε < δ(𝒱)/2 and if n ∈ ℕ, then for all 0 ≤ k < n and all x ∈ En(ε) we have

Tk(Bn(x, ε)) ⊆ B(T
k(x), ε) ⇒ diam(Tk(Bn(x, ε))) ≤ 2ε < δ(𝒱).

Hence, for all 0 ≤ k < n, the set Tk(Bn(x, ε)) is contained in at least one element of
𝒱. Denote one such element by Vk(x). Then Bn(x, ε) ⊆ ⋂

n−1
k=0 T
−k(Vk(x)). But this latter

intersection is simply an element of 𝒱n. Let us denote it by V(x).
Since En(ε) is a maximal (n, ε)-separated set, by Lemma 7.3.7 it is also (n, ε)-span-

ning, so the family {Bn(x, ε)}x∈En(ε) is an open cover of X. Each of these balls is con-
tained in the corresponding set V(x). Hence, the family {V(x)}x∈En(ε) is also an open
cover of X. Therefore, it is a subcover of 𝒱n. Consequently,

Zn(φ,𝒱) ≤ ∑
x∈En(ε)

eSnφ(V(x)) ≤ en osc(φ,𝒱) ∑
x∈En(ε)

eSnφ(x),

where the last inequality is due to Lemma 11.1.5. It follows that

P(T ,φ,𝒱) ≤ osc(φ,𝒱) + lim inf
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x).
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Since 𝒱 is independent of ε > 0, we deduce that

P(T ,φ,𝒱) − osc(φ,𝒱) ≤ lim inf
ε→0

lim inf
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x).

Then, as 𝒱 was chosen to be an arbitrary open cover of X, we conclude that

P(T ,φ) ≤ lim inf
ε→0

lim inf
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x). (11.7)

Inequalities (11.6)–(11.7) establish the result for the separated sets. We can deduce the
result for the spanning sets as in the proof of Theorem 7.3.8.

In Theorem 11.2.1, the topological pressure of the system is expressed in terms
of a specific family of maximal separated (resp. minimal spanning) sets. However, to
derive theoretical results, it is sometimes simpler to use the following quantities.

Definition 11.2.2. For all n ∈ ℕ and ε > 0, let

Pn(T ,φ, ε) = sup{Σn(En(ε)) : En(ε)maximal (n, ε)-separated set}
Qn(T ,φ, ε) = inf{Σn(Fn(ε)) : Fn(ε)minimal (n, ε)-spanning set}.

Thereafter, let

P(T ,φ, ε) = lim inf
n→∞

1
n
logPn(T ,φ, ε), P(T ,φ, ε) = lim sup

n→∞

1
n
logPn(T ,φ, ε)

Q(T ,φ, ε) = lim inf
n→∞

1
n
logQn(T ,φ, ε), Q(T ,φ, ε) = lim sup

n→∞

1
n
logQn(T ,φ, ε).

The following are key observations constitute a generalization of Remark 7.3.10.

Remark 11.2.3. Letm ≤ n ∈ ℕ and 0 < ε < ε′. The following relations hold:
(a) Pm(T ,φ, ε) ≤ Pn(T ,φ, ε)e(n−m)‖φ‖∞ by Remark 7.3.2(a).
(b) e−n‖φ‖∞ ≤ Pn(T ,φ, ε) ≤ rn(ε)en‖φ‖∞ and Pn(T ,0, ε) = rn(ε).
(c) Qm(T ,φ, ε) ≤ Qn(T ,φ, ε)e(n−m)‖φ‖∞ by Remark 7.3.6(a).
(d) e−n‖φ‖∞ ≤ Qn(T ,φ, ε) ≤ sn(ε)en‖φ‖∞ and Qn(T ,0, ε) = sn(ε).
(e) Pn(T ,φ, ε) ≥ Pn(T ,φ, ε′) andQn(T ,φ, ε) ≥ Qn(T ,φ, ε′) byRemarks 7.3.2 and 7.3.6(b).
(f) 0 < Qn(T ,φ, ε) ≤ Pn(T ,φ, ε) <∞ by Lemma 7.3.7.
(g) P(T ,φ, ε) ≤ P(T ,φ, ε) and Q(T ,φ, ε) ≤ Q(T ,φ, ε).
(h) −‖φ‖∞ ≤ P(T ,φ, ε) ≤ r(ε) + ‖φ‖∞ and −‖φ‖∞ ≤ P(T ,φ, ε) ≤ r(ε) + ‖φ‖∞ by (b).
(i) −‖φ‖∞ ≤ Q(T ,φ, ε) ≤ s(ε) + ‖φ‖∞ and −‖φ‖∞ ≤ Q(T ,φ, ε) ≤ s(ε) + ‖φ‖∞ by (d).
(j) P(T ,φ, ε) ≥ P(T ,φ, ε′) and P(T ,φ, ε) ≥ P(T ,φ, ε′) by (e).
(k) Q(T ,φ, ε) ≥ Q(T ,φ, ε′) and Q(T ,φ, ε) ≥ Q(T ,φ, ε′) by (e).
(l) −‖φ‖∞ ≤ Q(T ,φ, ε) ≤ P(T ,φ, ε) ≤ ∞ and −‖φ‖∞ ≤ Q(T ,φ, ε) ≤ P(T ,φ, ε) ≤ ∞

by (f).
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We now describe a relationship between the Pn’s, the Qn’s and the cover-related
quantities Zn’s and zn’s. This is the counterpart of Lemma 7.3.11.

Lemma 11.2.4. The following relations hold:
(a) If 𝒰 is an open cover of X with Lebesgue number 2δ, then

zn(T ,φ,𝒰) ≤ Qn(T ,φ, δ) ≤ Pn(T ,φ, δ).

(b) If ε > 0 and 𝒱 is an open cover of X with diam(𝒱) ≤ ε, then

Qn(T ,φ, ε) ≤ Pn(T ,φ, ε) ≤ Zn(T ,φ,𝒱).

Proof. We already know that Qn(T ,φ, δ) ≤ Pn(T ,φ, δ).
(a) Let𝒰 beanopen coverwithLebesguenumber 2δ and letF bean (n, δ)-spanning

set. Then the dynamic balls {Bn(x, δ) : x ∈ F} form a cover of X. For every 0 ≤ i < n, the
ball B(T i(x), δ), which has diameter at most 2δ, is contained in an element of 𝒰 . There-
fore Bn(x, δ) = ⋂

n−1
i=0 T
−i(B(T i(x), δ)) is contained in an element of 𝒰n = ⋁n−1i=0 T

−i(𝒰).
That is, 𝒰n ≺ {Bn(x, δ) : x ∈ F}. Then there exists a map i : {Bn(x, δ) : x ∈ F}→ 𝒰n such
that Bn(x, δ) ⊆ i(Bn(x, δ)) for every x ∈ F. Let𝒲 be a subcover of {Bn(x, δ) : x ∈ F}. Then
i(𝒲) is a subcover of 𝒰n and thus

Σn(F) = ∑
x∈F

eSnφ(x) ≥ ∑
x∈F

eSnφ(Bn(x,δ)) ≥ ∑
W∈𝒲

eSnφ(W) ≥ ∑
W∈𝒲

eSnφ(i(W))

≥ ∑
Z∈i(𝒲)

eSnφ(Z) ≥ zn(T ,φ,𝒰).

Since F is an arbitrary (n, δ)-spanning set, it ensues that Qn(T ,φ, δ) ≥ zn(T ,φ,𝒰).
(b) Let 𝒱 be an open cover with diam(𝒱) ≤ ε and let E be an (n, ε)-separated set.

Let𝒲 be a subcover of 𝒱n. Let i : E →𝒲 be such that x ∈ i(x) for all x ∈ E. This map is
injective as no element of the cover 𝒱n can contain more than one element of E. Then

Σn(E) = ∑
x∈E

eSnφ(x) ≤ ∑
x∈E

eSnφ(i(x)) = ∑
W∈i(E)

eSnφ(W) ≤ ∑
W∈𝒲

eSnφ(W).

As 𝒲 is an arbitrary subcover of 𝒱n, it follows that Σn(E) ≤ Zn(T ,φ,𝒱). Since E is an
arbitrary (n, ε)-separated set, we deduce that Pn(T ,φ, ε) ≤ Zn(T ,φ,𝒱).

These inequalities have the following immediate consequences.

Corollary 11.2.5. The following relations hold:
(a) If 𝒰 is an open cover of X with Lebesgue number 2δ, then

p(T ,φ,𝒰) ≤ Q(T ,φ, δ) ≤ P(T ,φ, δ).

(b) If ε > 0 and 𝒱 is an open cover of X with diam(𝒱) ≤ ε, then

Q(T ,φ, ε) ≤ P(T ,φ, ε) ≤ P(T ,φ,𝒱).
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We can then surmise new expressions for the topological pressure (cf. Corol-
lary 7.3.12).

Corollary 11.2.6. The following equalities hold:

P(T ,φ) = lim
ε→0

P(T ,φ, ε) = lim
ε→0

P(T ,φ, ε) = lim
ε→0

Q(T ,φ, ε) = lim
ε→0

Q(T ,φ, ε).

Proof. Let (𝒰ε)ε∈(0,∞) be a family of open covers such that limε→∞ diam(𝒰ε) = 0.
Let δε be a Lebesgue number for 𝒰ε. Then limε→∞ δε = 0, as δε ≤ diam(𝒰ε). Using
Lemma 11.1.23 and Corollary 11.2.5(a), we deduce that

P(T ,φ) = lim
ε→∞

p(T ,φ,𝒰ε) ≤ limε→0Q(T ,φ, ε) ≤ limε→0P(T ,φ, ε). (11.8)

On the other hand, using Lemma 11.1.23 and Corollary 11.2.5(b), we obtain

lim
ε→0

Q(T ,φ, ε) ≤ lim
ε→0

P(T ,φ, ε) ≤ lim
ε→0

sup
diam(𝒱)≤ε

P(T ,φ,𝒱) = P(T ,φ). (11.9)

Combining (11.8) and (11.9) allows us to conclude.

Corollary 11.2.6 is useful to derive theoretical results. Nevertheless, in practice,
Theorem 11.2.1 is simpler to use, as only one family of sets is needed. Sometimes a
single sequence of sets is enough (cf. Theorem 7.3.13).

Theorem 11.2.7. If a topological dynamical system T : X → X admits a generator with
Lebesgue number 2δ, then the following statements hold for all 0 < ε ≤ δ:
(a) If (En(ε))∞n=1 is a sequence of maximal (n, ε)-separated sets in X, then

P(T ,φ) = lim
n→∞

1
n
log Σn(En(ε)).

(b) If (Fn(ε))∞n=1 is a sequence of minimal (n, ε)-spanning sets in X, then

P(T ,φ) ≤ lim inf
n→∞

1
n
log Σn(Fn(ε)).

(c) P(T ,φ) = limn→∞
1
n logPn(T ,φ, ε).

(d) P(T ,φ) = limn→∞
1
n logQn(T ,φ, ε).

Proof. Wewill prove (a) and leave it to the reader to show the other parts using similar
arguments.

Let 𝒰 be a generator with Lebesgue number 2δ. Then P(T ,φ) = p(T ,φ,𝒰) by
Lemma 11.1.25. Set 0 < ε ≤ δ. Observe that 2ε is also a Lebesgue number for 𝒰 .
Choose any sequence (En(ε))∞n=1 of maximal (n, ε)-separated sets. Since maximal
(n, ε)-separated sets are (n, ε)-spanning sets, it follows from Lemma 11.2.4(a) that
zn(T ,φ,𝒰) ≤ Qn(T ,φ, ε) ≤ Σn(En(ε)). Therefore,

P(T ,φ) = p(T ,φ,𝒰) = lim inf
n→∞

1
n
log zn(T ,φ,𝒰) ≤ lim inf

n→∞
1
n
log Σn(En(ε)). (11.10)

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.3 Basic properties of topological pressure | 367

On the other hand, since 𝒰 is a generator, there existsK ∈ ℕ such that diam(𝒰k) ≤
ε for all k ≥ K. It ensues fromLemma11.2.4(b) that Σn(En(ε)) ≤ Pn(T ,φ, ε) ≤ Zn(T ,φ,𝒰k)
for all k ≥ K. Consequently,

lim sup
n→∞

1
n
log Σn(En(ε)) ≤ lim

n→∞
1
n
log Zn(T ,φ,𝒰

k) = P(T ,φ,𝒰k)

for all k ≥ K. It follows from Lemma 11.1.23(g) that

lim sup
n→∞

1
n
log Σn(En(ε)) ≤ lim

k→∞
P(T ,φ,𝒰k) = P(T ,φ). (11.11)

Combining (11.10) and (11.11) gives (a).

Recall that for expansive systems, the Lebesguenumber can be expressed in terms
of the expansive constant.

Theorem 11.2.8. If T : X → X is a δ0-expansive dynamical system on a compact metric
space (X, d), then Theorem 11.2.7 applies with any 0 < δ < δ0/4.

Proof. See the proof of Theorem 7.3.14.

11.3 Basic properties of topological pressure
In this section,we give some of themost basic properties of topological pressure. First,
we show that the addition or subtraction of a constant to the potential increases or
decreases the pressure of the potential by that same constant.

Proposition 11.3.1. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. For any constant c ∈ ℝ, we have P(T ,φ + c) = P(T ,φ) + c.

Proof. For each n ∈ ℕ and ε > 0, let En(ε) be a maximal (n, ε)-separated set. By Theo-
rem 11.2.1,

P(T ,φ + c) = lim
ε→0

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSn(φ+c)(x)

= lim
ε→0

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x)enc

= lim
ε→0

lim sup
n→∞

1
n
[log( ∑

x∈En(ε)
eSnφ(x)) + nc]

= P(T ,φ) + c.

Next, we show that the pressure, as a function of the potential, is increasing.

Proposition 11.3.2. Let T : X → X be a topological dynamical system and φ,ψ : X → ℝ
be potentials. If φ ≤ ψ, then P(T ,φ) ≤ P(T ,ψ). In particular,

htop(T) + infφ ≤ P(T ,φ) ≤ htop(T) + supφ.
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Proof. That P(T ,φ) ≤ P(T ,ψ)wheneverφ ≤ ψ is obvious from Theorem 11.2.1. The sec-
ond statementwas proved in Corollary 11.1.24 but also follows from the first statement,
Proposition 11.3.1, and the fact that 0+ infφ ≤ φ ≤ 0+ supφ and P(T ,0) = htop(T).

In general, it is not the case that P(T , c φ) = cP(T ,φ). For example, suppose that
P(T ,0) ̸= 0. Then the equation P(T , c 0) = c P(T ,0) only holds when c = 1.

11.4 Examples

Example 11.4.1. Let E be a finite alphabet and let σ : E∞ → E∞ be the full E-shift map.
Let φ̃ : E → ℝ be a function. Then the function φ : E∞ → ℝ defined by φ(ω) := φ̃(ω1)
is a continuous function on E∞ which depends only upon the first coordinate ω1 of
the word ω ∈ E∞. We will show that

P(σ,φ) = log∑
e∈E

exp(φ̃(e)).

According to Example 5.1.4, the shift map σ is δ-expansive for any 0 < δ < 1 when E∞

is endowed with the metric ds(ω, τ) = s|ω∧τ|, where 0 < s < 1. Choose 𝒰 = {[e] : e ∈ E}
as (finite) open cover of E∞. So𝒰 is the partition of E∞ into its initial 1-cylinders. Since
diam(𝒰) = s < 1, Theorem 11.1.26 states that P(σ,φ) = P(σ,φ,𝒰).

In order to compute P(σ,φ,𝒰), observe that 𝒰n = {[ω] : ω ∈ En} is the partition of
E∞ into its initial n-cylinders. Then

P(σ,φ) = P(σ,φ,𝒰) = lim
n→∞

1
n
log Zn(φ,𝒰) = lim

n→∞
1
n
log ∑

U∈𝒰n
eSnφ(U)

= lim
n→∞

1
n
log ∑

ω∈En
eSnφ([ω])

= lim
n→∞

1
n
log ∑

ω1 ...ωn∈En
exp(φ̃(ω1) + ⋅ ⋅ ⋅ + φ̃(ωn))

= lim
n→∞

1
n
log( ∑

ω1∈E
exp(φ̃(ω1)) ⋅ ⋅ ⋅ ∑

ωn∈E
exp(φ̃(ωn)))

= lim
n→∞

1
n
log(∑

e∈E
exp(φ̃(e)))

n

= log∑
e∈E

exp(φ̃(e)).

Example 11.4.2. Let E be a finite alphabet and let σ : E∞ → E∞ be the full E-shift
map. Let φ̃ : E2 → ℝ be a function. Then the function φ : E∞ → ℝ defined by
φ(ω) = φ̃(ω1,ω2) is a continuous function on E∞ which depends only upon the first
two coordinates of the word ω ∈ E∞.
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As in the previous example, P(σ,φ) = P(σ,φ,𝒰), where 𝒰 = {[e] : e ∈ E} is the
(finite) open partition of E∞ into its initial 1-cylinders and

P(σ,φ) = P(σ,φ,𝒰) = lim
n→∞

1
n
log ∑

ω∈En
eSnφ([ω]).

But in this case

∑
ω∈En

eSnφ([ω]) = ∑
ω∈En

exp( φ̃(ω1,ω2) + φ̃(ω2,ω3) + ⋅ ⋅ ⋅
+ φ̃(ωn−1,ωn) +maxe∈E φ̃(ωn, e)

)

= ∑
ω1∈E
∑
ω2∈E

eφ̃(ω1 ,ω2) ∑
ω3∈E

eφ̃(ω2 ,ω3) ⋅ ⋅ ⋅ ∑
ωn∈E

eφ̃(ωn−1 ,ωn) ⋅max
e∈E

exp(φ̃(ωn, e)).

Since

m := min
e, f∈E

exp(φ̃(f , e)) ≤ max
e∈E

exp(φ̃(ωn, e)) ≤ max
e, f∈E

exp(φ̃(f , e)) =: M

for all n ∈ ℕ and all ωn ∈ E, we have that

∑
ω∈En

eSnφ([ω]) ≍ ∑
ω1∈E
∑
ω2∈E

eφ̃(ω1 ,ω2) ∑
ω3∈E

eφ̃(ω2 ,ω3) ⋅ ⋅ ⋅ ∑
ωn∈E

eφ̃(ωn−1 ,ωn)

for all n, with uniform constant of comparability C = max{m−1,M}.
Let A : E2 → ℝ+ be the positive matrix whose entries are Aef = exp(φ̃(e, f )). Equip

this matrix with the norm ‖A‖ = ∑e∈E ∑f∈E Aef . It is easy to prove by induction that

A
n−1 = ∑

ω1∈E
∑
ω2∈E

eφ̃(ω1 ,ω2) ∑
ω3∈E

eφ̃(ω2 ,ω3) ⋅ ⋅ ⋅ ∑
ωn∈E

eφ̃(ωn−1 ,ωn)

for all n ≥ 2, and hence

∑
ω∈En

eSnφ([ω]) ≍ A
n−1.

Therefore,

P(T ,φ) = lim
n→∞

1
n
log ∑

ω∈En
eSnφ([ω])

= lim
n→∞

1
n
logA

n−1 = log lim
n→∞
A

n
1/n
= log r(A),

where r(A) is the spectral radius of A, that is, the largest eigenvalue of A (in absolute
value).
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11.5 Exercises

Exercise 11.5.1. Let T : X → X be a dynamical system and 𝒰 be an open cover
of X. Show that Zn(φ,𝒰) ̸= Z1(φ,𝒰n) in general. That is, find a potential φ such that
Zn(φ,𝒰) ̸= Z1(φ,𝒰n) for some n ∈ ℕ.

Note: It is possible to find a potential for which the above nonequality holds for any
n > 1.

Exercise 11.5.2. Using a symbolic dynamical system, give an example of a sequence
(zn(𝒰))∞n=1 which is not submultiplicative.

Exercise 11.5.3. Prove Lemma 11.1.8.

Exercise 11.5.4. Show that for every t ≥ 0 there exists a dynamical system T : X → X
whose topological entropy is equal to t.

Exercise 11.5.5. Consider the full shift σ : {0, 1}∞ → {0, 1}∞. Let φ : {0, 1}∞ → ℝ be
given by the formula

φ(ω1ω2 . . .) := {
− log 4 if ω1 = 0
log 3 − log 4 if ω1 = 1.

Show that P(σ,φ) = 0.

Exercise 11.5.6. Let T : X → X be a dynamical system. Show that the following are
equivalent:
(a) htop(T) is finite.
(b) There exists a continuous function φ : X → ℝ such that P(T ,φ) is finite.
(c) P(T ,φ) is finite for every continuous function φ : X → ℝ.

Exercise 11.5.7. Let T : X → X be a dynamical system such that htop(T) < ∞. Prove
that the topological pressure function P(T , ∙) : C(X)→ ℝ is Lipschitz continuous with
Lipschitz constant 1, and convex.

Exercise 11.5.8. Generalize Examples 11.4.1 and 11.4.2 to the case where k ∈ ℕ and φ
depends on k coordinates.

Exercise 11.5.9. Show that the pressure function is not linear; more precisely, in gen-
eral P(T , tφ) ̸= tP(T ,φ).

Exercise 11.5.10. Show that if infφ ≤ 0, then the pressure function ℝ ∋ t → P(T , tφ)
is convex, that is,

P(T , (st1 + (1 − s)t2)φ) ≤ sP(T , t1φ) + (1 − s)P(T , t2φ), ∀s ∈ [0, 1], ∀t1, t2 ∈ ℝ.

Conclude that the function ℝ ∋ t → P(T , tφ) is differentiable at all but at most count-
ably many t’s.
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12 The variational principle and equilibrium states

In Section 12.1, we state and prove a fundamental result of thermodynamic formalism
known as the variational principle. This deep result establishes a crucial relationship
between topological dynamics and ergodic theory, by way of a formula linking topo-
logical pressure andmeasure-theoretic entropy. The variational principle in its classi-
cal form and full generality was proved in [75] and [10]. The proof we present follows
that of Michal Misiurewicz [49], which is particularly elegant, short, and simple.

In Section 12.2, we introduce the concept of equilibrium states, give sufficient con-
ditions for their existence, such as the upper semicontinuity of the metric entropy
function (which prevails under any expansive system).We single out a special class of
equilibrium states, those corresponding to a potential identically equal to zero, and
following tradition, call them measures of maximal entropy. We do not deal in this
chapter with the issue of the uniqueness of equilibrium states. Nevertheless, we pro-
vide an example of a topological dynamical systemwith positive and finite topological
entropy which does not have any measure of maximal entropy.

12.1 The variational principle

For any topological dynamical system T : X → X, subject to a potential φ : X → ℝ
and equipped with a T-invariant measure μ, the quantity hμ(T) + ∫φdμ is called the
free energy of the system T with respect to μ under the potential φ. The variational
principle states that the topological pressure of a system is the supremum of the free
energy generated by that system.

Recall thatM(T) is the set of all T-invariant Borel probability measures on X and
that by definition any potential φ is continuous.

Theorem 12.1.1 (Variational principle). Let T : X → X be a topological dynamical sys-
tem and φ : X → ℝ a potential. Then

P(T ,φ) = sup{hμ(T) + ∫
X

φdμ : μ ∈ M(T)}.

Remark 12.1.2. In fact, as we shall see in Corollary 12.1.10, the supremum can be re-
stricted to the subset E(T) of ergodic measures inM(T).

The proof of the variational principle will be given in two parts. In Part I, we will
show that P(T ,φ) ≥ hμ(T) + ∫φdμ for every measure μ ∈ M(T). Part II consists in the
proof of the inequality sup{hμ(T) + ∫φdμ : μ ∈ M(T)} ≥ P(T ,φ).

The first part is relatively easier to prove than the second one. In the proof of Part I,
we will need Jensen’s inequality. Recall that a function k : I → ℝ, where I ⊆ ℝ is an

https://doi.org/10.1515/9783110702682-012
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interval, is convex on I if

ψ(tx + (1 − t)y) ≤ tψ(x) + (1 − t)ψ(y), ∀t ∈ [0, 1], ∀x, y ∈ I .

Theorem 12.1.3 (Jensen’s inequality). Let (X,𝒜, μ) be a probability space. Let −∞ ≤
a < b ≤∞ and ψ : (a, b)→ ℝ be a convex function. If f ∈ L1(μ) and f (X) ⊆ (a, b), then

ψ(∫
X

f dμ) ≤ ∫
X

ψ ∘ f dμ.

Proof. See, for instance, [58].

We shall also need the following lemma, which states that any finite Borel par-
tition α of X can be, from a measure-theoretic entropy viewpoint, approximated as
closely as desired by a finite Borel partition β whose elements are compact and are,
with one exception, contained in those of α.

Lemma 12.1.4. Let μ ∈ M(X), let α := {A1, . . . ,An} be a finite Borel partition of X, and
let ε > 0. Then there exist compact sets Bi ⊆ Ai, 1 ≤ i ≤ n, such that the partition
β := {B1, . . . ,Bn,X\(B1 ∪ ⋅ ⋅ ⋅ ∪ Bn)} satisfies

Hμ(α|β) ≤ ε.

Proof. Let the measure μ and the partition α be as stated and let ε > 0. Recall from
Definition 9.3.4 the nonnegative continuous function k : [0, 1]→ [0, 1] defined by

k(t) = −t log t,

where it is understood that 0 ⋅ (−∞) = 0. The continuity of k at 0 implies that there
exists δ > 0 such that k(t) < ε/n when 0 ≤ t < δ. Since μ is regular and X is compact,
for each 1 ≤ i ≤ n there exists a compact set Bi ⊆ Ai such that μ(Ai\Bi) < δ. Then
k(μ(Ai\Bi)) < ε/n for all 1 ≤ i ≤ n. Observe further that X\⋃nj=1 Bj = ⋃

n
j=1 Aj\Bj. By

Definition 9.4.2 of conditional entropy, it follows that

Hμ(α|β) =
n
∑
j=1

n
∑
i=1
−μ(Ai ∩ Bj) log

μ(Ai ∩ Bj)
μ(Bj)

+
n
∑
i=1
−μ(Ai ∩ (X\ ∪

n
j=1 Bj)) log

μ(Ai ∩ (X\ ∪nj=1 Bj))
μ(X\ ∪nj=1 Bj)

=
n
∑
j=1
−μ(Bj) log

μ(Bj)
μ(Bj)
+

n
∑
i=1
−μ(Ai ∩ (∪

n
j=1Aj\Bj)) log

μ(Ai ∩ (∪nj=1Aj\Bj))
μ(∪nj=1Aj\Bj)

= 0 +
n
∑
i=1
−μ(Ai\Bi) log

μ(Ai\Bi)
μ(∪nj=1Aj\Bj)
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=
n
∑
i=1
−μ(Ai\Bi)[log μ(Ai\Bi) − log μ(∪

n
j=1Aj\Bj)]

=
n
∑
i=1

k(μ(Ai\Bi)) +
n
∑
i=1

μ(Ai\Bi) log μ(∪
n
j=1Aj\Bj)

≤
n
∑
i=1

k(μ(Ai\Bi)) ≤ n ⋅
ε
n
= ε.

We are now in a position to begin the proof of the first part of the variational prin-
ciple.

Proof of Part I. Recall that our aim is to establish the inequality

P(T ,φ) ≥ hμ(T) + ∫
X

φdμ, ∀μ ∈ M(T). (12.1)

We claim that it is sufficient to prove that there exists a constant C ∈ ℝ, independent
of T, φ and μ, such that

P(T ,φ) ≥ hμ(T) + ∫
X

φdμ + C. (12.2)

Indeed, suppose that such a constant exists. In particular, this means that this con-
stant works not only for the system (X,T) under the potential φ and a measure μ ∈
M(T) but also for any higher-iterate system (X,Tn) under the potential Snφ = ∑

n−1
k=0 φ ∘

Tk and the same measure μ, since any T-invariant measure is Tn-invariant. Fix tem-
porarily n ∈ ℕ. Using successively Theorem 11.1.22, inequality (12.2) with the quadru-
ple (X,Tn, Snφ, μ) instead of (X,T ,φ, μ), and Theorems 9.4.13 and 8.1.18, we then obtain
that

nP(T ,φ) = P(Tn, Snφ) ≥ hμ(T
n) + ∫

X

Snφdμ + C = nhμ(T) + n∫
X

φdμ + C.

Dividing by n and letting n tend to infinity yields inequality (12.1).
Of course, to obtain (12.2) it suffices to show that

P(T ,φ) ≥ hμ(T ,α) + ∫
X

φdμ + C (12.3)

for all finite Borel partitionsα ofX (see Definition 9.4.12). So letα be any such partition
and let ε > 0. To obtain (12.3), it is enough to prove that

P(T ,φ) ≥ hμ(T ,α) + ∫
X

φdμ + C − 2ε. (12.4)
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By Theorem 11.2.1, it suffices to demonstrate that

lim sup
n→∞

1
n
log ∑

y∈En(δ)
eSnφ(y) ≥ hμ(T ,α) + ∫

X

φdμ + C − 2ε (12.5)

for all sufficiently small δ > 0 and some family {En(δ) : n ∈ ℕ, δ > 0} of (n, δ)-separated
sets. In light of Definition 9.4.10 and of Theorem 8.1.18, it is sufficient to prove that

1
n
log ∑

y∈En(δ)
eSnφ(y) ≥ 1

n
Hμ(α

n) +
1
n
∫
X

Snφdμ + C − 2ε (12.6)

for all sufficiently small δ > 0, all large enough n ∈ ℕ and all (n, δ)-separated sets
En(δ).

To this end, let β be the finite Borel partition given by Lemma 12.1.4. Then
Hμ(α|β) ≤ ε. Momentarily fix n ∈ ℕ. By Theorem 9.4.3(i) and Lemma 9.4.7(c), we
know that

Hμ(α
n) ≤ Hμ(β

n) + Hμ(α
nβ

n) ≤ Hμ(β
n) + nHμ(α|β) ≤ Hμ(β

n) + nε. (12.7)

From (12.6) and (12.7), it thus suffices to establish that

log ∑
y∈En(δ)

eSnφ(y) ≥ Hμ(β
n) + ∫

X

Snφdμ + (C − ε)n (12.8)

for all sufficiently small δ > 0, all large enough n ∈ ℕ and all (n, δ)-separated sets
En(δ). To prove this inequality, wewill estimate the termHμ(βn)+∫ Snφdμ from above.
Since the logarithm function is concave (so its negative is convex), Jensen’s inequality
(Theorem 12.1.3) implies that

Hμ(β
n) + ∫

X

Snφdμ ≤ ∑
B∈βn

μ(B)[− log μ(B) + Snφ(B)]

= ∑
B∈βn

μ(B) log exp(Snφ(B))
μ(B)

= ∫
X

log exp(Snφ(β
n(x)))

μ(βn(x))
dμ(x)

≤ log∫
X

exp(Snφ(βn(x)))
μ(βn(x))

dμ(x)

= log ∑
B∈βn

eSnφ(B). (12.9)

Since each set Bi ∈ β is compact, it follows that d(Bi,Bj) > 0 for all i ̸= j. As φ is
uniformly continuous, let 0 < δ < 1

2 min{d(Bi,Bj) : i ̸= j} be such that

d(x, y) < δ ⇒ |φ(x) − φ(y)| < ε. (12.10)
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Now, consider an arbitrary maximal (n, δ)-separated set En(δ) and fix temporarily
B ∈ β. According toLemma7.3.7, eachmaximal (n, δ)-separated set is an (n, δ)-spanning
set. So for every x ∈ B, there exists y ∈ En(δ) such that x ∈ Bn(y, δ) and, therefore,
|Snφ(x) − Snφ(y)| < nε by (12.10). As the set En(δ) is finite, there is yB ∈ En(δ) such that

Snφ(B) ≤ Snφ(yB) + nε and B ∩ Bn(yB, δ) ̸= 0. (12.11)

Moreover, since d(Bi,Bj) > 2δ for each i ̸= j, any ball B(z, δ), z ∈ X, intersects at most
one Bi and perhaps X\⋃j Bj. Hence,

#{B ∈ β : B ∩ B(z, δ) ̸= 0} ≤ 2 (12.12)

for all z ∈ X. Thus,

#{B ∈ βn : B ∩ Bn(z, δ) ̸= 0} ≤ 2
n (12.13)

for all z ∈ X. So the function f : βn → En(δ) defined by f (B) = yB is at most 2n-to-one.
Consequently, by (12.11) we obtain that

2n ∑
y∈En(δ)

eSnφ(y) ≥ ∑
B∈βn

eSnφ(yB) ≥ ∑
B∈βn

eSnφ(B) ⋅ e−nε.

Multiplying both sides by 2−n, then taking the logarithm of both sides and apply-
ing (12.9) yields

log ∑
y∈En(δ)

eSnφ(y) ≥ log ∑
B∈βn

eSnφ(B) − nε − n log 2

≥ Hμ(β
n) + ∫

X

Snφdμ + n(− log 2 − ε).

This inequality, which is nothing other than the sought inequality (12.8) with C =
− log 2, holds for all 0 < δ < 1

2 min{d(Bi,Bj) : i ̸= j}, all n ∈ ℕ and all maximal
(n, δ)-separated sets En(δ). This concludes the proof of Part I.

Remark 12.1.5. Observe that the constant C = − log 2 originates from relation (12.12),
and thus depends solely on the existence of the Borel partition β, which is ensured
by Lemma 12.1.4.

Let us move on to the proof of Part II of the variational principle. In addition to
Lemma 9.6.1, we shall need the following three lemmas.

The first of those states that given any finite Borel partition α whose atoms have
boundaries with zero μ-measure, the entropy of α, as a function of the underlying
Borel probability measure, is continuous at μ.
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Lemma 12.1.6. Let μ ∈ M(X). If α is a finite Borel partition of X such that μ(𝜕A) = 0 for
all A ∈ α, then the function

H∙(α) : M(X) → [0,∞]
ν → Hν(α)

is continuous at μ.

Proof. This follows directly from the fact that according to the Portmanteau theorem
(TheoremA.1.56), a sequence of Borel probabilitymeasures (μn)∞n=1 converges weakly

∗

to a measure μ if and only if limn→∞ μn(A) = μ(A) for every Borel set Awith μ(𝜕A) = 0.
Recall that Hν(α) = −∑A∈α ν(A) log ν(A).

In the second lemma, we show that the entropy of α, as a function of the under-
lying Borel probability measure, is concave.

Lemma 12.1.7. For any finite Borel partition α of X, the function H∙(α) is concave.

Proof. Let α be a finite Borel partition of X, and μ and ν Borel probability measures
on X. Let also t ∈ (0, 1). Since the function k(x) = −x log x is concave, for each A ∈ α
we have

k(tμ(A) + (1 − t)ν(A)) ≥ t k(μ(A)) + (1 − t)k(ν(A)).

Therefore,

Htμ+(1−t)ν(α) = ∑
A∈α

k(tμ(A) + (1 − t)ν(A))

≥ t ∑
A∈α

k(μ(A)) + (1 − t) ∑
A∈α

k(ν(A))

= tHμ(α) + (1 − t)Hν(α).

Finally, the third lemma is a generalization of the Krylov–Bogolyubov theorem
(Theorem 8.1.22).

Lemma 12.1.8. Let T : X → X be a dynamical system. If (μn)∞n=1 is a sequence of mea-
sures in M(X), then every weak∗ limit point of the sequence (mn)

∞
n=1, where

mn :=
1
n

n−1
∑
i=0

μn ∘ T
−i,

is a T-invariant measure.

Proof. By the compactness of M(X), the sequence (mn)
∞
n=1 has accumulation points.

Let (mnj )
∞
j=1 be a subsequencewhich convergesweakly

∗ to, say,m ∈ M(X). Let f ∈ C(X).
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Using Lemma 8.1.2, we obtain that

∫
X

f ∘ T dm − ∫
X

f dm

= lim

j→∞


∫
X

f ∘ T dmnj − ∫
X

f dmnj



= lim
j→∞



1
nj
∫
X

nj−1

∑
i=0
(f ∘ T i+1 − f ∘ T i) dμnj



= lim
j→∞

1
nj


∫
X

(f ∘ Tnj − f ) dμnj


≤ lim
j→∞

2‖f ‖∞
nj
= 0.

Thus, by Theorem 8.1.18 the measurem is T-invariant.

We are now ready to prove Part II of the variational principle.

Proof of Part II. We aim to show that

sup{hμ(T) + ∫
X

φdμ : μ ∈ M(T)} ≥ P(T ,φ).

Fix ε > 0. Let (En(ε))∞n=1 be a sequence of maximal (n, ε)-separated sets in X. For every
n ∈ ℕ, define the measures μn andmn by

μn :=
∑x∈En(ε) e

Snφ(x)δx
∑x∈En(ε) e

Snφ(x)
and mn :=

1
n

n−1
∑
k=0

μn ∘ T
−k ,

where δx denotes the Diracmeasure concentrated at the point x. Let (ni)∞i=1 be a strictly
increasing sequence in ℕ such that (mni )

∞
i=1 converges weakly

∗ to, say, m, and such
that

lim
i→∞

1
ni
log ∑

x∈Eni (ε)
eSnφ(x) = lim sup

n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x). (12.14)

For ease of exposition, define

sn := ∑
x∈En(ε)

eSnφ(x) and μ(x) := μ({x}).

FromLemma 12.1.8, the limitmeasurem belongs toM(T). Also, in view of Lemma9.6.1,
there exists a finite Borel partitionα such that diam(α) < ε andm(𝜕A) = 0 for allA ∈ α.
Since #(A ∩ En(ε)) ≤ 1 for all A ∈ αn, we obtain that

Hμn(α
n) + ∫

X

Snφdμn = ∑
x∈En(ε)

μn(x)[− log μn(x) + Snφ(x)]

= ∑
x∈En(ε)

eSnφ(x)

sn
[− log e

Snφ(x)

sn
+ Snφ(x)]
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=
1
sn
∑

x∈En(ε)
eSnφ(x)[−Snφ(x) + log sn + Snφ(x)]

= log sn = log ∑
x∈En(ε)

eSnφ(x). (12.15)

Now, fixM ∈ ℕ and let n ≥ 2M. For j = 0, 1, . . . ,M − 1, define s(j) := ⌊ n−jM ⌋ − 1, where ⌊r⌋
denotes the integer part of r. Note that

s(j)
⋁
k=0

T−(kM+j)(αM) =
(s(j)+1)M+j−1
⋁
ℓ=j

T−ℓ(α)

and

(s(j) + 1)M + j − 1 = ⌊n − j
M
⌋M + j − 1 ≤ n − j + j − 1 = n − 1.

Observe also that

(n − 1) − ((s(j) + 1)M + j) = n − 1 − (⌊n − j
M
⌋M + j)

≤ n − 1 − (n − j
M
− 1)M − j = M − 1.

Setting Rj := {0, 1, . . . , j − 1} ∪ {(s(j) + 1)M + j, . . . , n − 1}, we have #Rj ≤ 2M and

αn =
s(j)
⋁
k=0

T−(kM+j)(αM) ∨ ⋁
i∈Rj

T−i(α).

Hence, using Theorem 9.4.3(g) and (9.2), we get that

Hμn(α
n) ≤

s(j)
∑
k=0

Hμn(T
−(kM+j)(αM)) + Hμn(⋁

i∈Rj

T−i(α))

≤
s(j)
∑
k=0

Hμn∘T−(kM+j)(α
M) + log #(⋁

i∈Rj

T−i(α))

≤
s(j)
∑
k=0

Hμn∘T−(kM+j)(α
M) + log(#α)#Rj

≤
s(j)
∑
k=0

Hμn∘T−(kM+j)(α
M) + 2M log #α.

Summing over all j = 0, 1, . . . ,M − 1 and using Lemma 12.1.7, we obtain

MHμn(α
n) ≤

M−1
∑
j=0

s(j)
∑
k=0

Hμn∘T−(kM+j)(α
M) + 2M2 log #α

≤
n−1
∑
l=0

Hμn∘T−l(α
M) + 2M2 log #α
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≤ nH 1
n ∑

n−1
l=0 μn∘T−l
(αM) + 2M2 log #α

= nHmn
(αM) + 2M2 log #α.

AddingM ∫X Snφdμn to both sides and applying (12.15) yields

M log ∑
x∈En(ε)

eSnφ(x) ≤ nHmn
(αM) +M ∫

X

Snφdμn + 2M
2 log #α.

As 1
n ∫X Snφdμn = ∫X φdmn by Lemma8.1.2, dividing both sides of the above inequality

byMn gives us that

1
n
log ∑

x∈En(ε)
eSnφ(x) ≤ 1

M
Hmn
(αM) + ∫

X

φdmn +
2M
n

log #α.

Since 𝜕T−1(A) ⊆ T−1(𝜕A) for every set A ⊆ X and 𝜕(A∩B) ⊂ 𝜕A∪ 𝜕B for all sets A,B ∈ X,
them-measure of the boundary of each atom of the partition αM is, as for α, equal to
zero. Therefore, upon letting n tend to infinity along the subsequence (ni)∞i=1, we know
that (mni )

∞
i=1 converges weakly

∗ tom and that (12.14) holds, so we infer from the above
inequality and from Lemma 12.1.6 that

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x) ≤ 1

M
Hm(α

M) + ∫
X

φdm.

LettingM →∞, we obtain by Definition 9.4.10 that

lim sup
n→∞

1
n
log ∑

x∈En(ε)
eSnφ(x) ≤ hm(T ,α) + ∫

X

φdm ≤ sup{hμ(T) + ∫
X

φdμ : μ ∈ M(T)}.

As ε > 0 is arbitrary, Theorem 11.2.1 yields the desired inequality. This completes the
proof of Part II.

12.1.1 Consequences of the variational principle

Let us now state some immediate consequences of the variational principle. A first
consequence concerns the topological entropy of the system. The topological entropy
of a system is the supremum of all measure-theoretic entropies of the system.

Corollary 12.1.9. htop(T) = sup{hμ(T) : μ ∈ M(T)}.

Proof. This follows directly upon letting φ ≡ 0.

Furthermore, thepressure of the system is determinedby the supremumof the free
energy of the systemwith respect to its ergodic measures. Recall that E(T) denotes the
subset of ergodic measures inM(T).
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Corollary 12.1.10. For every μ ∈ M(T), there exists ν ∈ E(T) such that hν(T) + ∫X φdν ≥
hμ(T) + ∫X φdμ. Consequently,

P(T ,φ) = sup{hν(T) + ∫
X

φdν : ν ∈ E(T)}.

Proof. Let μ ∈ M(T). According to Theorem 8.2.26, the measure μ has a decompo-
sition into ergodic measures. More precisely, there exists a Borel probability space
(Y ,ℬ(Y), τ) and ameasurablemapY ∋ y → μy ∈ M(X) such that μy ∈ E(T) for τ-almost
every y ∈ Y and μ = ∫Y μy dτ(y). Then

∫
X

φdμ = ∫
Y

(∫
X

φdμy) dτ(y).

Moreover, using a generalization of Exercise 9.7.10, we have that

hμ(T) = h∫Y μy dτ(y)(T) = ∫
Y

hμy (T) dτ(y).

It follows that

hμ(T) + ∫
X

φdμ = ∫
Y

[hμy (T) + ∫
X

φdμy] dτ(y).

It is awell-known fact frommeasure theory (a simple consequenceof LemmaA.1.34(a))
that there is Z ∈ ℬ(Y) such that τ(Z) > 0 and hμz (T) + ∫X φdμz ≥ hμ(T) + ∫X φdμ for
every z ∈ Z. Given that τ(E(T)) = 1, it follows that τ(Z ∩ E(T)) > 0. So there exists
ν ∈ E(T) such that hν(T) + ∫X φdν ≥ hμ(T) + ∫X φdμ.

We now show that the pressure function is Lipschitz continuous.

Corollary 12.1.11. If T : X → X is a dynamical system such that htop(T) < ∞, then the
pressure function P(T , ∙) : C(X)→ ℝ is Lipschitz continuous with Lipschitz constant 1.

Proof. Let ψ,φ ∈ C(X). Let also ε > 0. By the variational principle, there exists μ ∈
M(T) such that

P(T ,ψ) ≤ hμ(T) + ∫
X

ψdμ + ε.

Then, using the variational principle once again, we get

P(T ,ψ) ≤ hμ(T) + ∫
X

φdμ + ∫
X

(ψ − φ) dμ + ε ≤ P(T ,φ) + ‖ψ − φ‖∞ + ε.

Since this is true for all ε > 0, we conclude that

P(T ,ψ) − P(T ,φ) ≤ ‖ψ − φ‖∞.
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Finally, we show that the pressure of any subsystem is at most the pressure of the
entire system.

Corollary 12.1.12. If T : X → X is a topological dynamical system, φ : X → ℝ a poten-
tial and Y a closed T-invariant subset of X, then P(T|Y ,φ|Y ) ≤ P(T ,φ).

Proof. Each T|Y -invariant measure μ on Y generates the T-invariant measure μ(B) =
μ(B ∩ Y) on X and μ is such that h(T , μ) = h(T|Y , μ) and ∫X φdμ = ∫Y φdμ.

12.2 Equilibrium states

In light of the variational principle, the measures that maximize the free energy of
the system, that is, the measures which respect to which the free energy of the system
coincides with its pressure, are given a special name.

Definition 12.2.1. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. A measure μ ∈ M(T) is called an equilibrium state for φ provided that

P(T ,φ) = hμ(T) + ∫
X

φdμ.

Notice that if a given potential φ has an equilibrium state, then φ has an ergodic
equilibriumstate according toCorollary 12.1.10.Whenφ ≡ 0, the equilibriumstates are
also calledmeasures of maximal entropy, that is, measures for which hμ(T) = htop(T).
In particular, if htop(T) = 0, then every invariant measure is a measure of maximal
entropy for T. Recall that this is the case for homeomorphisms of the unit circle (see
Exercise 7.6.10), among other examples.

A simple consequence of the variational principle is the following.

Theorem 12.2.2. If T : X → X is a topological dynamical system and φ : X → ℝ is a
Hölder continuous potential such that P(T ,φ) > supφ, then

hμ(T) > 0

for every equilibrium state μ of φ.

Proof. Since μ is an equilibrium state for φ, we have that

P(T ,φ) = hμ(T) + ∫
X

φdμ ≤ hμ(T) + supφ.

Rearranging the terms,

hμ(T) ≥ P(T ,φ) − supφ > 0.
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It is natural to wonder whether equilibrium states exist for all topological dynam-
ical systems. As the following example demonstrates, the answer is negative.

Example 12.2.3. We construct a system with positive, finite topological entropy but
without any measure of maximal entropy. Let (Tn : Xn → Xn)∞n=1 be a sequence of
topological dynamical systems with the property that

htop(Tn) < htop(Tn+1), ∀n ∈ ℕ and sup
n∈ℕ

htop(Tn) <∞.

Let⨆∞n=1 Xn denote the disjoint union of the spaces Xn, and let X = {ω}∪⨆
∞
n=1 Xn be the

one-point compactification of⨆∞n=1 Xn. Define the map T : X → X by

T(x) := { Tn(x) if x ∈ Xn
ω if x = ω.

Then T is continuous. Suppose that μ is an ergodic measure of maximal entropy
for T. Then μ({ω}) ∈ {0, 1} since T−1({ω}) = {ω}. But if μ({ω}) = 1, then we would
have μ(⨆∞n=1 Xn) = 0. Hence, on one hand, we would have hμ(T) = 0, while, on the
other hand, hμ(T) = htop(T) ≥ supn∈ℕ htop(Tn) > 0. This contradiction imposes that
μ({ω}) = 0. Similarly, μ(Xn) ∈ {0, 1} for all n ∈ ℕ since T−1(Xn) = Xn. Therefore, there
exists a unique N ∈ ℕ such that μ(XN ) = 1. It follows that

htop(T) = hμ(T) = hμ(TN ) ≤ htop(TN ) < sup
n∈ℕ

htop(Tn) ≤ htop(T).

This contradiction implies that there is no measure of maximal entropy for the sys-
tem T.

Given that equilibrium states do not always exist, we would like to find condi-
tions under which they do exist. But since the function μ → ∫X φdμ is continuous in
the weak∗ topology on the compact space M(T), the function μ → hμ(T) cannot be
continuous in general. Otherwise, the sum of these last two functions would be con-
tinuous andwould hence attain amaximumon the compact spaceM(T), that is, equi-
librium states would always exist. Nevertheless, the function μ → hμ(T) is sometimes
upper semicontinuous and this is sufficient to ensure the existence of an equilibrium
state. Let us first recall the notion of upper (and lower) semicontinuity.

Definition 12.2.4. Let X be a topological space. A function f : X → [−∞,∞] is upper
semicontinuous if for all x ∈ X,

lim sup
y→x

f (y) ≤ f (x).

Equivalently, f is upper semicontinuous if the set {x ∈ X : f (x) < r} is open in X
for all r ∈ ℝ. A function f : X → [−∞,∞] is lower semicontinuous if −f is upper
semicontinuous.
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Evidently, a function f : X → [−∞,∞] is continuous if and only if it is both
upper and lower semicontinuous. Like continuous functions, upper semicontinuous
functions attain their upper bound (while lower semicontinuous functions reach their
lower bound) on every compact set.

One class of dynamical systems for which the function μ → hμ(T) is upper semi-
continuous are the expansive maps T.

Theorem 12.2.5. If T : X → X is expansive, then the function

h∙(T) : M(T) → [0,∞]
μ → hμ(T)

is upper semicontinuous. Hence, each potential φ : X → ℝ has an equilibrium state.

Proof. Fix δ > 0 an expansive constant for T and let μ ∈ M(T). According to
Lemma 9.6.1, there exists a finite Borel partition α of X such that diam(α) < δ and
μ(𝜕A) = 0 for each A ∈ α. Let ε > 0. As hμ(T) ≥ hμ(T ,α) = infn∈ℕ

1
nHμ(α

n) by
Definitions 9.4.12 and 9.4.10, there existsm ∈ ℕ such that

1
m
Hμ(α

m) ≤ hμ(T) +
ε
2
.

Let (μn)∞n=1 be a sequence of measures in M(T) converging weakly∗ to μ. Since
diam(α) < δ, it follows from Theorem 9.4.20 that

hμn (T) = hμn (T ,α)

for all n ∈ ℕ. Moreover, by Lemma 12.1.6 (with α replaced by αm), we have

lim
n→∞

Hμn(α
m) = Hμ(α

m).

Therefore, there exists N ∈ ℕ such that

1
m
Hμn(α

m) − Hμ(α
m) ≤

ε
2

for all n ≥ N . Hence, for all n ≥ N, we deduce that

hμn (T) = hμn (T ,α) ≤
1
m
Hμn(α

m) ≤
1
m
Hμ(α

m) +
ε
2
≤ hμ(T) + ε.

Consequently, lim supn→∞ hμn (T) ≤ hμ(T) for any sequence (μn)
∞
n=1 inM(T) converging

weakly∗ to μ. Thus lim supν→μ hν(T) ≤ hμ(T), or, in other words, μ → hμ(T) is upper
semicontinuous.

Since the function μ → ∫X φdμ is continuous in the weak∗ topology on the com-
pact spaceM(T), it follows that the function μ → hμ(T)+∫X φdμ is upper semicontinu-
ous. Since upper semicontinuous functions attain their upper bound on any compact
set, we conclude from the variational principle that each potential φ admits an equi-
librium state.
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Recall the class of piecewisemonotone continuousmaps of the interval. These are
not necessarily expansivemaps (e. g., the tentmap is not expansive). Nonetheless, the
function μ → hμ(T) is upper semicontinuous for any such map.

Theorem 12.2.6. If T : X → X is a piecewise monotone continuous map of the interval,
then the function μ → hμ(T) is upper semicontinuous. Hence, each potential φ : X → ℝ
has an equilibrium state.

Proof. The avid reader is referred to [50].

12.3 Examples of equilibrium states

Example 12.3.1. By Corollary 12.1.10, any uniquely ergodic system has a unique equi-
librium state for every continuous potential. This unique equilibrium state is obvi-
ously the unique ergodic invariant measure of the system.

For instance, recall that (cf. Proposition8.2.43) a translation of the torusLγ : 𝕋n →
𝕋n, where γ = (γ1,γ2, . . . ,γn) ∈ 𝕋

n, is uniquely ergodic if and only if the numbers
1,γ1,γ2, . . . ,γn are linearly independent overℚ. Such a translation has a unique equi-
librium state.

Let us now look at a symbolic example.

Example 12.3.2. We revisit Example 11.4.1, where E is a finite alphabet and σ : E∞ →
E∞ is the one-sided full E-shift map. Recall that any function φ̃ : E → ℝ generates
a continuous potential φ : E∞ → ℝ defined by φ(ω) := φ̃(ω1) on E∞. This potential
depends only on the first coordinate ω1 of the word ω ∈ E∞.

Let ℱ be the σ-algebra 𝒫(E) of all subsets of E and let P be a probability mea-
sure/vector on E, that is, ∑e∈E P({e}) = 1. Recall from Examples 8.1.14 and 8.2.32 that
the one-sided Bernoulli shift (σ : E∞ → E∞, μP) is an ergodic measure-preserving
system.

Let S = ∑e∈E exp(φ̃(e)). Note that 0 < S < ∞. We will show that μP is an equilib-
rium state for σ : E∞ → E∞ when

P({e}) = 1
S
exp(φ̃(e)), ∀e ∈ E. (12.16)

First, let us consider hμP (σ). Let α := {[e]}e∈E be the partition of E∞ into its ini-
tial 1-cylinders. It is easy to see that αn = {[ω]}ω∈En , that is, αn is the partition of E∞

into its initial n-cylinders. Recall that α is a generator for σ (see Definition 9.4.19 and
Example 9.4.23). By Theorem 9.4.20 and Definition 9.4.10, we know that

hμP (σ) = hμP (σ,α) = infn∈ℕ

1
n
HμP (α

n).
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By induction on n, it is not difficult to establish that HμP (α
n) = nHμP (α). Therefore,

hμP (σ) = HμP (α)

= −∑
e∈E

μP([e]) log μP([e]) = −∑
e∈E

P({e}) logP({e})

= −∑
e∈E

1
S
exp(φ̃(e)) log[ 1

S
exp(φ̃(e))]

= −
1
S
∑
e∈E

exp(φ̃(e))[φ̃(e) − log S]

= −
1
S
∑
e∈E

φ̃(e) exp(φ̃(e)) + log S.

Moreover,

∫
E∞

φdμP = ∑
e∈E
∫
[e]

φ(ω) dμP(ω) = ∑
e∈E
∫
[e]

φ̃(ω1) dμP(ω)

= ∑
e∈E

φ̃(e)μP([e]) = ∑
e∈E

φ̃(e)P({e})

=
1
S
∑
e∈E

φ̃(e) exp(φ̃(e)).

It ensues that

hμP (σ) + ∫
E∞

φdμP = log S = P(σ,φ)

where the last equalitywas derived in Example 11.4.1. Hence,μP is an equilibrium state
for the potential φ when P satisfies (12.16).

Further examples will be given in Subsection 13.7.3 and in Chapters 17 and 27
onward.

12.4 Exercises
Exercise 12.4.1. Generalize Example 12.2.3 to show that if in addition φ : X → ℝ is a
potential such that

P(Tn,φ|Xn ) < P(Tn+1,φ|Xn+1 )

for all n ∈ ℕ, then φ has no equilibrium state.

Exercise 12.4.2. In the context of Exercise 11.5.8, give an explicit description of the
equilibrium states of φ when k = 1 and k = 2.

Exercise 12.4.3. Let T : X → X be a topological dynamical system and φ : X → ℝ a
potential. For any n ∈ ℕ, prove that if μ is an equilibrium state for the couple (T ,φ),
then μ is an equilibrium state for the couple (Tn, Snφ), too.
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Exercise 12.4.4. Let T : X → X be a topological dynamical system and φ : X → ℝ
a continuous potential. Show that the set of all equilibrium states for φ is a convex
subset of M(T). Deduce that if φ has a unique ergodic equilibrium state, then it has
unique equilibrium state. Conclude also that if φ has two different equilibrium states,
then it has uncountably many (in fact, a continuum of) equilibrium states.

Exercise 12.4.5. Let T : X → X be a topological dynamical system. Two continuous
functions φ,ψ : X → ℝ are said to be cohomologous modulo a constant (or, equiva-
lently, φ −ψ is cohomologous to a constant) in the additive group C(X) if there exist a
continuous function u : X → ℝ and a constant c ∈ ℝ such that

φ − ψ = u ∘ T − u + c.

Show that such potentials φ and ψ share the same equilibrium states.

Exercise 12.4.6. Going beyond Example 12.2.3, give an example of a transitive topo-
logical dynamical system which does not have any measure of maximal entropy.

Exercise 12.4.7. Using Example 12.2.3, give an example of a topological dynamical
system which admits infinitely many equilibrium states under a certain potential.

Exercise 12.4.8. Give an example of a transitive topological dynamical system which
has infinitely many measures of maximal entropy.

Exercise 12.4.9. If T : X → X is a dynamical system such that htop(T) < ∞, then
deduce from the variational principle that the pressure function P(T , ∙) : C(X) → ℝ is
convex.
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Appendix A – A selection of classical results

This appendix lists classical definitions and results that will be used in this volume.
Several of these results are stated without proofs. We sometimes complemented them
with classical examples.

A.1 Measure theory

Let us begin by gathering together some of the standard results from measure theory
that will be needed in this book. Measure theory is one of the main tools in ergodic
theory, so it is important to be familiar with it. Proofs and further explanations of the
results can be found in many books on measure theory, for instance, Billingsley [7, 8]
and Rudin [58].

A.1.1 Collections of sets and measurable spaces

Given a set X, we shall denote the set of all subsets of X by 𝒫(X). Let us recall the
definitions of some important collections of subsets of a set. Themost basic collection
is called a π-system.

Definition A.1.1. Let X be a set. A nonempty family 𝒫 ⊆ 𝒫(X) is a π-system on X if
P1 ∩ P2 ∈ 𝒫 for all P1,P2 ∈ 𝒫.

In other words, a π-system is a collection that is closed under finite intersections.
For example, the family of open intervals {(a,∞) : a ∈ ℝ} constitutes a π-system onℝ.
So does the family of closed intervals {[a,∞) : a ∈ ℝ}. Other examples are the families
{(−∞, b) : b ∈ ℝ} and {(−∞, b] : b ∈ ℝ}.

A “slightly” more complex collection is a semialgebra.

Definition A.1.2. Let X be a set. A family 𝒮 ⊆ 𝒫(X) is called a semialgebra on X if it
satisfies the following three conditions:
(a) 0 ∈ 𝒮.
(b) 𝒮 is a π-system.
(c) If S ∈ 𝒮, then X \ S can be written as a finite union of mutually disjoint sets in 𝒮.

That is,X\S = ⋃ni=1 Si for some n ∈ ℕ and S1, S2, . . . , Sn ∈ 𝒮 with Si∩Sj = 0whenever
i ̸= j.

Every semialgebra is a π-system but the converse is not true in general. For in-
stance, none of the π-systems described above is a semialgebra. However, the collec-
tion of all intervals forms a semialgebra on ℝ.

An even more intricate collection is an algebra.

https://doi.org/10.1515/9783110702682-013
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Definition A.1.3. Let X be a set. A family 𝒜 ⊆ 𝒫(X) is said to be an algebra on X if it
satisfies the following three conditions:
(a) 0 ∈ 𝒜.
(b) 𝒜 is a π-system.
(c) If A ∈ 𝒜, then X \ A ∈ 𝒜.

Every algebra is a semialgebra, although the converse is not true in general. For
instance, the semialgebra outlined earlier is not an algebra. Nevertheless, as we will
observe in the next lemma, the collection of all subsets of ℝ that can be expressed as
a finite union of intervals is an algebra on ℝ.

The fact that an algebra is stable under finite intersections and complementation
implies that an algebra is stable under finitely many set operations (e. g., unions, in-
tersections, differences, symmetric differences, complementation, and combinations
thereof).

Note that {0,X} and 𝒫(X) are trivial algebras on X. Since the intersection of any
family of algebras is an algebra, the algebra 𝒜(𝒞) generated by any collection 𝒞 of
subsets ofX is well-defined as the smallest, in the sense of set inclusion, of all algebras
on X that contain 𝒞. If the collection 𝒞 is a semialgebra, then it is easy to describe the
algebra it generates.

Lemma A.1.4. Let 𝒮 be a semialgebra on X. The algebra 𝒜(𝒮) generated by 𝒮 consists
of those subsets A of X, which can be written as a finite union of mutually disjoint sets in
𝒮, that is, all sets A ⊆ X such that A = ⋃ni=1 Si for some S1, S2, . . . , Sn ∈ 𝒮 with Si ∩ Sj = 0
whenever i ̸= j.

Proof. Let

𝒜 := {A ⊆ X | ∃S1, . . . , Sn ∈ 𝒮 , Si ∩ Sj = 0,∀i ̸= j such that A =
n
⋃
i=1

Si}.

It is easy to see that 𝒜 is an algebra containing 𝒮. Therefore, 𝒜 ⊇ 𝒜(𝒮). On the other
hand, since any algebra is closed under finite unions, any algebra containing 𝒮 must
contain𝒜. Thus𝒜(𝒮) ⊇ 𝒜. Hence,𝒜 = 𝒜(𝒮).

In measure theory, the most important type of collection of subsets of a given set
is a σ-algebra.

Definition A.1.5. Let X be a set. A family ℬ ⊆ 𝒫(X) is called a σ-algebra on X if it satis-
fies the following three conditions:
(a) 0 ∈ ℬ.
(b) ⋂∞n=1 Bn ∈ ℬ for every sequence (Bn)∞n=1 of sets in ℬ.
(c) If B ∈ ℬ then X \ B ∈ ℬ.

Note that condition (b) can be replaced by:
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(b′) ⋃∞n=1 Bn ∈ ℬ for every sequence (Bn)∞n=1 of sets in ℬ.

A σ-algebra onX is thus a family of subsets ofX which is closed under countablymany
set operations. Clearly, any σ-algebra is an algebra, though the converse is not true in
general.

Note that {0,X} and 𝒫(X) are trivial σ-algebras on X. They are respectively called
the indiscrete and discrete σ-algebras. As the intersection of any family of σ-algebras
is itself a σ-algebra, the σ-algebra σ(𝒞) generated by any collection 𝒞 of subsets of X is
well-defined as the smallest σ-algebra that contains 𝒞. In particular, if the collection
𝒞 is finite then the algebra 𝒜(𝒞) it generates is also finite, and thus σ(𝒞) = 𝒜(𝒞) (see
Exercise 8.5.1).

A setX equippedwith a σ-algebraℬ is called ameasurable space and the elements
of ℬ are accordingly calledmeasurable sets.

Example A.1.6. Let X be a topological space and let 𝒯 be the topology of X, that is,
the collection of all open subsets of X. Then σ(𝒯 ) is a σ-algebra on X called the Borel
σ-algebra of X. Henceforth, we will denote this latter by ℬ(X). In particular, ℬ(X) con-
tains all open sets and closed sets, as well as all countable unions of closed sets and
all countable intersections of open sets, that is, all Fσ- and Gδ-sets, respectively. Note
that 𝒯 is a π-system but not a semialgebra in general.

In the Euclidean space ℝ, the Borel σ-algebra ℬ(ℝ) is generated by the even sim-
pler π-system of open intervals {(a,∞) : a ∈ ℝ}. Similarly, it is generated by the semi-
algebra comprising all intervals.

Sometimes the functions considered take values in the extended real numbers
ℝ := [−∞,∞]. A base for the order topology ofℝ is the π-system of all open intervals,
namely {[−∞, b) : b ∈ ℝ} ∪ {(a, b) : a, b ∈ ℝ} ∪ {(a,∞] : a ∈ ℝ} ∪ {[−∞,∞]}. The Borel
σ-algebra ℬ(ℝ) is generated by the even simpler π-system of open intervals {(a,∞] :
a ∈ ℝ}. Note that

ℬ(ℝ) = {B, {−∞} ∪ B,B ∪ {∞}, {−∞} ∪ B ∪ {∞} | B ∈ ℬ(ℝ)}.

More examples of algebras and σ-algebras are presented in Exercises 8.5.2–8.5.4.
Wenow introduce λ-systems, also calledDynkin systems. These collections of sets

are closed under complementation and countable disjoint unions.

Definition A.1.7. LetX be a set. A familyℒ ⊆ 𝒫(X) is called a λ-system onX if it satisfies
the following three conditions:
(a) X ∈ ℒ.
(b) ⋃∞n=1 Ln ∈ ℒ for every sequence (Ln)∞n=1 of sets in ℒ such that Ln ∩ Lm = 0 for all

m ̸= n.
(c) If L ∈ ℒ, then X \ L ∈ ℒ.

Note that condition (c) can be replaced by:
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(c′) If K, L ∈ ℒ and K ⊆ L, then L \ K ∈ ℒ.

Every σ-algebra is a λ-system but the converse is not true in general. Nevertheless, it
is not difficult to see how these two concepts are related.

Lemma A.1.8. A collection of sets forms a σ-algebra if and only if it is both a λ-system
and a π-system.

Proof. Wehave already observed that every σ-algebra is a λ-system and a π-system. So
suppose thatℬ is both a λ-system and a π-system on a set X. Sinceℬ is a π-system that
enjoys properties (a) and (c) of a λ-system, it is clear that ℬ is an algebra. Therefore, it
just remains to prove that ℬ satisfies condition (b’) of Definition A.1.5. Let (Bn)∞n=1 be a
sequence of sets in ℬ. For every n ∈ ℕ, let B′n = ⋃

n
k=1 Bk . As ℬ is an algebra, B′n ∈ ℬ for

all n ∈ ℕ. The sequence (B′n)
∞
n=1 is ascending and is such that⋃

∞
n=1 Bn = ⋃

∞
n=1 B
′
n. Thus

it suffices to prove condition (b’) for ascending sequences inℬ. Moreover, observe that
⋃∞n=1 B

′
n = B
′
1∪⋃
∞
n=1(B
′
n+1\B
′
n). By condition (c’) of a λ-system,weknow thatB′n+1\B

′
n ∈ ℬ

for each n ∈ ℕ. Furthermore, the sets B′1 and B
′
n+1 \ B

′
n, n ∈ ℕ, are mutually disjoint.

By condition (b) of a λ-system, it follows that

∞

⋃
n=1

Bn =
∞

⋃
n=1

B′n = B
′
1 ∪
∞

⋃
n=1
(B′n+1 \ B

′
n) ∈ ℬ.

Hence, ℬ is an algebra satisfying condition (b’) of Definition A.1.5. So ℬ is a σ-algebra.

The importance and usefulness of λ-systems mostly lie in the following theorem.

Theorem A.1.9 (Dynkin’s π-λ theorem). If𝒫 is a π-system andℒ is a λ-system such that
𝒫 ⊆ ℒ, then σ(𝒫) ⊆ ℒ.

Proof. See Theorem 3.2 in Billingsley [7].

Furthermore, as the intersection of any family of λ-systems is a λ-system, the
λ-systemℒ(𝒞) generated by any collection 𝒞 ⊆ 𝒫(X) is well-defined as the intersection
of all λ-systems that comprise 𝒞. When 𝒞 is a π-system, the λ-system and the σ-algebra
that are generated by 𝒞 are one and the same.

Corollary A.1.10. If 𝒫 is a π-system, then σ(𝒫) = ℒ(𝒫).

Proof. This immediately follows from Lemma A.1.8 and Theorem A.1.9.

Finally, let us recall yet another type of collection of sets named, for obvious rea-
sons, a monotone class.

Definition A.1.11. Let X be a set. A familyℳ ⊆ 𝒫(X) is called amonotone class on X if
it is stable under countable monotone unions and countable monotone intersections.
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In other words,

if (Mn)
∞
n=1 ⊆ℳ is such thatM1 ⊆ M2 ⊆ M3 ⊆ ⋅ ⋅ ⋅ , then

∞

⋃
n=1

Mn ∈ℳ

and

if (Mn)
∞
n=1 ⊆ℳ is such thatM1 ⊇ M2 ⊇ M3 ⊇ ⋅ ⋅ ⋅ , then

∞

⋂
n=1

Mn ∈ℳ.

Every σ-algebra is a monotone class but the converse is not true in general. Nev-
ertheless, a monotone class which is an algebra is a σ-algebra. There is an analogue
of Dynkin’s theorem for monotone classes.

Theorem A.1.12 (Halmos’ monotone class theorem). If 𝒜 is an algebra and ℳ is a
monotone class such that𝒜 ⊆ℳ, then σ(𝒜) ⊆ℳ.

Proof. See Theorem 3.4 in Billingsley [7].

Because the intersection of any family of monotone classes is a monotone class,
the monotone classℳ(𝒞) generated by any collection 𝒞 ⊆ 𝒫(X) is well-defined as the
intersection of all monotone classes that comprise 𝒞. When 𝒞 is a semialgebra, the
σ-algebra and the monotone class generated by 𝒞 coincide.

Theorem A.1.13. If 𝒮 is a semialgebra, then σ(𝒮) = σ(𝒜(𝒮)) =ℳ(𝒜(𝒮)) =ℳ(𝒮).

Proof. The equalities σ(𝒮) = σ(𝒜(𝒮)) and ℳ(𝒜(𝒮)) = ℳ(𝒮) are obvious. Since a
σ-algebra is a monotone class and σ(𝒜(𝒮)) ⊇ 𝒜(𝒮), it is evident that σ(𝒜(𝒮)) ⊇
ℳ(𝒜(𝒮)). The opposite inclusion is the object of Halmos’ monotone class theo-
rem.

A.1.2 Measurable transformations

We now look at maps betweenmeasurable spaces. Recall that a measurable space is a
set X equipped with a σ-algebra𝒜. The elements of𝒜 are the measurable sets in that
space.

Definition A.1.14. Let (X,𝒜) and (Y ,ℬ) be measurable spaces. A transformation T :
X → Y is said to bemeasurable provided that T−1(B) ∈ 𝒜 for every B ∈ ℬ.

We have earlier mentioned that σ-algebras are the most important collections of
sets in measure theory. However, it is generally impossible to describe, in a simple
form, the sets in a σ-algebra. Luckily, σ-algebras that are generated by smaller and
simpler structures like π-systems, semialgebras, or algebras, are much easier to cope
with. In this situation, proving that some interesting property is satisfied for the sets in
these smaller and simpler structures is often sufficient to guarantee that that property
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holds for all sets in the σ-algebra. This is the case for the measurability of transforma-
tions.

Theorem A.1.15. Let T : (X,𝒜)→ (Y ,ℬ) be a transformation. If ℬ = σ(𝒞) is a σ-algebra
generated by a collection 𝒞 ⊆ 𝒫(Y), then T is measurable if and only if T−1(C) ∈ 𝒜 for
all C ∈ 𝒞.

Proof. It is clear that if T is measurable, then T−1(C) ∈ 𝒜 for all C ∈ 𝒞 since 𝒞 ⊆ σ(𝒞) =
ℬ. Conversely, suppose that T−1(C) ∈ 𝒜 for all C ∈ 𝒞. Consider the collection of sets
ℬ′ = {B ⊆ Y : T−1(B) ∈ 𝒜}. By assumption, ℬ′ ⊇ 𝒞. It is also easy to see that ℬ′ is a
σ-algebra. Thus ℬ′ ⊇ σ(𝒞) = ℬ, and hence T is measurable.

If the range Y of a transformation is a Borel subset of ℝ, then unless otherwise
stated Y will be assumed to be endowed with its Borel σ-algebra, which is just the
projection of ℬ(ℝ) onto Y (see Exercise 8.5.5). In this context, we will use the term
function instead of transformation.

Example A.1.16. Let (X,𝒜) be a measurable space.
(a) Let A ⊆ X. The indicator function 1A : X → {0, 1} (also called characteristic func-

tion) defined by

1A(x) := {
1 if x ∈ A
0 if x ∉ A

is measurable if and only if A is measurable, that is, A ∈ 𝒜.
(b) A function s : X → ℝ which takes only finitely many values is called a simple

function. Such a function can be expressed in the form

s =
n
∑
i=1

αi1Ai
,

where Ai = {x ∈ X : s(x) = αi} and the αi’s are the values of the function s. Such a
function is measurable if and only if each set Ai is measurable.

The following theoremshows theutility of simple functions. It states that anynon-
negative measurable function is the pointwise limit of a nondecreasing sequence of
nonnegative measurable simple functions.

Theorem A.1.17. Let (X,𝒜) be a measurable space and f : X → [0,∞] be a measurable
function. Then there exists a sequence (sn)∞n=1 of measurable simple functions on X such
that
(a) 0 ≤ s1 ≤ s2 ≤ ⋅ ⋅ ⋅ ≤ f .
(b) limn→∞ sn(x) = f (x), ∀x ∈ X.

Proof. See Theorem 1.17 in Rudin [58].
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A.1.3 Measure spaces

The concept of measure is obviously central to measure theory.

Definition A.1.18. Let (X,𝒜) be a measurable space. A set function μ : 𝒜 → [0,∞] is
said to be ameasure on X provided that
(a) μ(0) = 0.
(b) μ is countably additive, that is, for each sequence (An)∞n=1 of pairwise disjoint sets

belonging to𝒜, the function μ is such that

μ(
∞

⋃
n=1

An) =
∞

∑
n=1

μ(An).

The triple (X,𝒜, μ) is called ameasure space.
If μ(X) <∞, then μ is said to be a finite measure. If μ(X) = 1, then μ is a probability

measure. Finally, μ is said to be σ-finite if there exists a sequence (An)∞n=1 of sets in 𝒜
such that μ(An) <∞ for all n ∈ ℕ and⋃∞n=1 An = X.

Here are a few basic properties of measures.

Lemma A.1.19. Let (X,𝒜, μ) be a measure space and A,B ∈ 𝒜.
(a) If A ⊆ B, then μ(A) ≤ μ(B).
(b) If A ⊆ B and μ(B \ A) <∞, then μ(A) = μ(B) − μ(B \ A).
(c) μ(A ∪ B) ≤ μ(A) + μ(B).
(d) If (An)∞n=1 is an ascending sequence in𝒜 (i. e., An ⊆ An+1, ∀n ∈ ℕ), then

μ(
∞

⋃
n=1

An) = lim
n→∞

μ(An) = sup
n∈ℕ

μ(An).

(e) If (Bn)∞n=1 is a descending sequence in𝒜 (i. e., An ⊇ An+1,∀n ∈ ℕ) and if μ(B1) <∞,
then

μ(
∞

⋂
n=1

Bn) = lim
n→∞

μ(Bn) = infn∈ℕ
μ(Bn).

(f) If (Cn)∞n=1 is any sequence in𝒜, then

μ(
∞

⋃
n=1

Cn) ≤
∞

∑
n=1

μ(Cn).

(g) If (Dn)
∞
n=1 is a sequence in𝒜 such that μ(Dm ∩ Dn) = 0 for all m ̸= n, then

μ(
∞

⋃
n=1

Dn) =
∞

∑
n=1

μ(Dn).
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Proof. The proof is left to the reader as an exercise.

A more intricate property of measures deserves a special name.

Lemma A.1.20 (Borel–Cantelli lemma). Let (X,𝒜, μ) be a measure space and (An)∞n=1 a
sequence in𝒜. If ∑∞n=1 μ(An) <∞, then μ(⋂

∞
k=1⋃
∞
n=k An) = 0.

Proof. The proof is left to the reader as an exercise.

We now provide two simple examples of measures. The first of these may seem
insignificant at first glance but turns out to be very useful in practice.

Example A.1.21. Let X be a nonempty set and 𝒫(X) be the discrete σ-algebra on X.
(a) Choose a point x ∈ X. Define the set function δx : 𝒫(X)→ {0, 1} by setting

δx(A) := {
1 if x ∈ A
0 if x ∉ A.

One readily verifies that δx is a probability measure. It is referred to as the Dirac
point mass or Dirac measure concentrated at the point x.

(b) For any A ⊆ X define m(A) to be the number of elements in the set A if A is finite
and set m(A) = ∞ if the set A is infinite. Then m : 𝒫(X) → [0,∞] is called the
counting measure on X.

There is a notion of completeness for measure spaces.

Definition A.1.22. Ameasure space (X,𝒜, μ) is said to be complete if every subset of a
set of measure zero is measurable. That is, if A ⊆ X and there is B ∈ 𝒜 such that A ⊆ B
and μ(B) = 0, then A ∈ 𝒜.

Note that any measure space can be extended to a complete one (see Exer-
cises 8.5.7–8.5.8).

In ExampleA.1.6, we introduced the concept of Borel σ-algebra.Wenow introduce
Borel measures and describe different forms of regularity for these measures.

Definition A.1.23. Let X be a topological space and ℬ(X) be the Borel σ-algebra on X.
(a) A Borel measure μ on X is a measure defined on the Borel σ-algebra ℬ(X) of X. The

resultingmeasure space (X,ℬ(X), μ) is called a Borelmeasure space. In particular,
if μ is a probability measure then (X,ℬ(X), μ) is called a Borel probability space.

(b) A Borel measure μ is said to be inner regular if

μ(B) = sup{μ(K) : K ⊆ B, K compact}, ∀B ∈ ℬ(X).

(c) A Borel measure μ is said to be outer regular if

μ(B) = inf{μ(G) : B ⊆ G, G open}, ∀B ∈ ℬ(X).

(d) A Borel measure is called regular if it is both inner and outer regular.
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Theorem A.1.24. Every Borel probability measure on a separable, completely metriz-
able space is regular.

Proof. See Theorem 17.11 in Kechris [35].

Example A.1.25. There exists a complete, regular measure λ defined on a σ-algebra ℒ
on ℝk with the following properties:
(a) λ(R) = Vol(R) for every k-rectangle R ⊆ ℝk, where Vol denotes the usual k-dimen-

sional volume in ℝk .
(b) ℒ is the completion of the Borel σ-algebra ℬ(ℝk); more precisely, E ∈ ℒ if and only

if there exist an Fσ-set F and a Gδ-set G such that F ⊆ E ⊆ G and λ(G \ F) = 0.
(c) λ is translation invariant, that is, λ(E + x) = λ(E) for all E ∈ ℒ and all x ∈ ℝk .

Moreover, up to a multiplicative constant, λ is the only translation-invariant Borel
measure on ℝk that gives finite measure to all compact sets.

The measure λ is called the Lebesgue measure on ℝk and, accordingly, the sets in
ℒ are said to be Lebesgue measurable. Unlike in Example A.1.21, not all subsets of ℝk

are Lebesgue measurable. Indeed, Vitali (see 5.7, The Vitali Monsters on p. 120 of [29])
showed that it is impossible to construct a measure having properties (a)–(c) on the
set of all subsets of ℝk .

The following lemma is onemore eloquentmanifestation of the relevance of struc-
tures simpler than σ-algebras.

Lemma A.1.26. Let X be a set and 𝒫 be a π-system on X. Let μ and ν be probability
measures on (X, σ(𝒫)). Then

μ = ν ⇐⇒ μ(P) = ν(P), ∀P ∈ 𝒫 .

Proof. The implication⇒ is trivial. For the opposite one⇐, suppose that μ(P) = ν(P)
for all P ∈ 𝒫. Consider the collection of sets𝒜 := {A ⊆ X : μ(A) = ν(A)}. By assumption,
𝒫 ⊆ 𝒜. It is also easy to see that 𝒜 is a λ-system. Per Corollary A.1.10, it follows that
σ(𝒫) = ℒ(𝒫) ⊆ 𝒜.

In summary, two probability measures that agree on a π-system are equal on the
σ-algebra generated by that π-system. However, this result does not generally hold for
infinite measures (see Exercise 8.5.9).

A.1.4 Extension of set functions to measures

Themain shortcoming of the preceding lemma lies in the assumption that the set func-
tions μ and ν are measures defined on a σ-algebra. In particular, this means that they
are countably additive on that entire σ-algebra. However, we frequently define a set
function μ : 𝒞 → [0,∞] on a collection 𝒞 of subsets of a set X on which the values
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of μ are naturally determined but it may be unclear whether μ may be extended to
a measure on σ(𝒞). The forthcoming results are extremely useful in that regard. The
first one concerns the extension of a finitely/countably additive set function from a
semialgebra to an algebra.

Theorem A.1.27. Let 𝒮 be a semialgebra on a set X and let μ : 𝒮 → [0,∞] be a finitely
additive set function, that is, a function such that

μ(
n
⋃
i=1

Si) =
n
∑
i=1

μ(Si)

for every finite family (Si)ni=1 ofmutually disjoint sets in𝒮 such that⋃ni=1 Si ∈ 𝒮. Then there
exists a unique finitely additive set function μ : 𝒜(𝒮) → [0,∞] which is an extension of
μ to 𝒜(𝒮), the algebra generated by 𝒮. Moreover, the extension μ is countably additive
whenever the original set function μ is.

Proof. This directly follows from Lemma A.1.4. For more detail, see Theorems 3.4
and 3.5 in Kingman and Taylor [38].

The second result concerns the extension of a countably additive set function from
an algebra to a σ-algebra.

Theorem A.1.28 (Carathéodory’s extension theorem). Let 𝒜 be an algebra on a set X
and let μ : 𝒜→ [0, 1] be a countably additive set function, that is, a function such that

μ(
∞

⋃
i=1

Ai) =
∞

∑
i=1

μ(Ai)

for every sequence (Ai)∞i=1 of mutually disjoint sets in 𝒜 such that ⋃∞i=1 Ai ∈ 𝒜. Suppose
also that μ(X) = 1. Then there exists a unique probability measure μ : σ(𝒜) → [0, 1],
which is an extension of μ : 𝒜→ [0, 1].

Proof. See Theorem 3.1 in Billingsley [7] or Theorem 4.2 in Kingman and Taylor [38].

Carathéodory’s extension theorem thus reduces the problem to demonstrating
that a set function is countably additive on an algebra. This can be hard to prove, so
we sometimes rely upon the following result.

Lemma A.1.29. Let𝒜 be an algebra on a set X and μ : 𝒜→ [0,∞) be a finitely additive
function. Then μ is countably additive if and only if

lim
i→∞

μ(Ai) = 0 (A.1)

for every descending sequence (Ai)∞i=1 of sets in𝒜 such that⋂∞i=1 Ai = 0.
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Furthermore, if (A.1) holds, then μ has a unique extension to a σ-additive function
(a measure) from σ(𝒜), the σ-algebra generated by𝒜, to [0,∞).

Proof. Recall thatmeasures enjoy property (d) of LemmaA.1.19. However, the set func-
tion μ considered here is not a measure since it is defined on an algebra rather than
on a σ-algebra. Nevertheless, we will show that μ satisfies property (d) on the algebra
𝒜 because of hypothesis (A.1). Let (Ai)∞i=1 be an ascending sequence of sets in 𝒜 such
that A := ⋃∞i=1 Ai ∈ 𝒜. Since 𝒜 is an algebra, we know that A \ Ai ∈ 𝒜 for all i ∈ ℕ.
Therefore, the sequence (A \ Ai)∞i=1 is a descending sequence of sets in𝒜 such that

∞

⋂
i=1
(A \ Ai) = A \ (

∞

⋃
i=1

Ai) = 0.

By hypothesis (A.1), we infer that

lim
i→∞

μ(A \ Ai) = 0.

Moreover, since A = (A \ Ai) ∪ Ai and μ is finitely additive on 𝒜 and finite, we deduce
that

μ(A \ Ai) = μ(A) − μ(Ai), ∀i ∈ ℕ.

Hence,

lim
i→∞
(μ(A) − μ(Ai)) = 0.

Thus

μ(
∞

⋃
i=1

Ai) = limi→∞
μ(Ai). (A.2)

Now, let (Bi)∞i=1 be any sequence of mutually disjoint sets in 𝒜 such that ⋃∞i=1 Bi ∈ 𝒜.
For every i ∈ ℕ, let B′i = ⋃

i
j=1 Bj. As𝒜 is an algebra, B′i ∈ 𝒜 for all i ∈ ℕ. The sequence

(B′i )
∞
i=1 is ascending and is such that⋃

∞
i=1 B
′
i = ⋃
∞
i=1 Bi ∈ 𝒜. By (A.2), we know that

μ(
∞

⋃
i=1

Bi) = μ(
∞

⋃
i=1

B′i) = limi→∞
μ(B′i ).

Using this, the fact that the Bi’s are mutually disjoint and that μ is finitely additive, we
conclude that

μ(
∞

⋃
i=1

Bi) = limi→∞
μ(B′i ) = limi→∞

μ(
i
⋃
j=1

Bj) = limi→∞

i
∑
j=1

μ(Bj) =
∞

∑
i=1

μ(Bi).

That is, μ is countably additive on𝒜.
The second part of the statement directly follows from the first one and Theo-

rem A.1.28.
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As an immediate consequence of Lemma A.1.29 we get the following.

Lemma A.1.30. Let𝒜be analgebra on a set X, let ν : σ(𝒜)→ [0,∞)be a finitemeasure,
and let μ : 𝒜→ [0,∞) be a finitely additive functionwhich is absolutely continuouswith
respect to ν, meaning that μ(A) = 0 whenever A ∈ 𝒜 and ν(A) = 0. Then μ is countably
additive and has a unique extension to a σ-additive function (a measure) from σ(𝒜) to
[0,∞).

Finally, as a straightforward consequence of LemmaA.1.29 we have the following.

Lemma A.1.31. Let 𝒜 be a σ-algebra on a set X, let ν : 𝒜 → [0,∞) be a finite measure
and let μ : 𝒜→ [0,∞) be a finitely additive functionwhich is absolutely continuouswith
respect to ν on some algebra generating 𝒜, meaning that μ(A) = 0 whenever A belongs
to this algebra and ν(A) = 0. Then μ is a measure.

Another feature of an algebra is that any element of a σ-algebra generated by an
algebra can be approximated as closely as desired by an element of the algebra. Before
stating the precise result, recall that the symmetric difference of two sets A and B is
denoted by A △ B and is the set of all points that belong to exactly one of those two
sets. That is,

A△ B := (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

Properties of the symmetric difference are examined in Exercises 8.5.10–8.5.11.

Lemma A.1.32. Let 𝒜 be an algebra on a set X and μ be a probability measure on
(X, σ(𝒜)). Then for every ε > 0 and B ∈ σ(𝒜) there exists some A ∈ 𝒜 such that
μ(A△ B) < ε.

Proof. See Theorem 4.4 in Kingman and Taylor [38].

A.1.5 Integration

Let us now briefly recollect some facts about integration. First, the definition of the
integral of a measurable function with respect to a measure.

Definition A.1.33. Let (X,𝒜, μ) be a measure space and let A ∈ 𝒜.
(a) If s : X → [0,∞) is a measurable simple function of the form,

s =
n
∑
i=1

αi1Ai
,

then the integral of the function s over the set A with respect to the measure μ is
defined as

∫
A

s dμ :=
n
∑
i=1

αiμ(Ai ∩ A).
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We use the convention that 0 ⋅ ∞ = 0 in case it happens that αi = 0 and
μ(Ai ∩ A) =∞ for some 1 ≤ i ≤ n.

(b) If f : X → [0,∞] is a measurable function, then the integral of the function f over
the set A with respect to the measure μ is defined as

∫
A

f dμ := sup∫
A

s dμ,

where the supremum is taken over all measurable simple functions 0 ≤ s ≤ f .
Note that if f is simple, then definitions (a) and (b) coincide.

(c) If f : X → ℝ is a measurable function, then the integral of the function f over the
set A with respect to the measure μ is defined as

∫
A

f dμ := ∫
A

f+ dμ − ∫
A

f− dμ,

as long as min{∫A f+ dμ,∫A f− dμ} < ∞, where f+ and f− respectively denote the
positive and negative parts of f . That is, f+(x) := max{f (x),0} whereas f−(x) :=
max{−f (x),0}.

(d) A measurable function f : X → ℝ is said to be integrable if ∫X |f | dμ < ∞. We
denote this by f ∈ L1(X,𝒜, μ). If there can be no confusion, we simply write f ∈
L1(μ).

(e) A property is said to hold μ-almost everywhere (sometimes abbreviated μ-a. e.) if
the property holds on the entire space except possibly on a set of μ-measure zero.

The following properties follow from this definition.

Lemma A.1.34. Let (X,𝒜, μ) be a measure space. Let f , g ∈ L1(X,𝒜, μ), A,B ∈ 𝒜, and
a, b ∈ ℝ.
(a) If f ≤ g μ-a. e., then ∫A f dμ ≤ ∫A g dμ. Also, if f < g μ-a. e., then ∫A f dμ < ∫A g dμ.
(b) If A ⊆ B and 0 ≤ f μ-a. e., then 0 ≤ ∫A f dμ ≤ ∫B f dμ.
(c)


∫
A

f dμ

≤ ∫

A

|f | dμ.

(d) Linearity:

∫
A

(af + bg) dμ = a∫
A

f dμ + b∫
A

g dμ.

(e) If (An)∞n=1 is a sequence of mutually disjoint measurable sets, then

∫

⋃∞n=1 An

f dμ =
∞

∑
n=1
∫
An

f dμ.
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(f) f = g μ-a. e.⇐⇒ ∫A f dμ = ∫A g dμ, ∀A ∈ 𝒜.
(g) The relation f = g μ-a. e. is an equivalence relation on the set L1(X,𝒜, μ). The equiv-

alence classes generated by this relation form a Banach space also denoted by
L1(X,𝒜, μ) (or L1(μ), for short) with norm

‖f ‖1 := ∫
X

|f | dμ <∞.

A sequence (fn)∞n=1 in L
1(μ) is said to converge to f in L1(μ) if limn→∞ ‖fn − f ‖1 = 0.

A.1.6 Convergence theorems

Inmeasure theory, there are fundamental theorems that are especially helpful for find-
ing the integral of functions that are the pointwise limits of sequences of functions.

The first of these results applies to monotone sequences of functions. A sequence
of functions (fn)∞n=1 is monotone if it is increasing pointwise (fn+1(x) ≥ fn(x) for all x ∈ X
and all n ∈ ℕ) or decreasing pointwise (fn+1(x) ≤ fn(x) for all x ∈ X and all n ∈ ℕ).
We state the theorem for increasing sequences, but its counterpart for decreasing se-
quences can be easily deduced from it.

Theorem A.1.35 (Monotone convergence theorem). Let (X,𝒜, μ)beameasure space. If
(fn)∞n=1 is an increasing sequence of nonnegative measurable functions, then the integral
of their pointwise limit is equal to the limit of their integrals, that is,

∫
X

lim
n→∞

fn dμ = lim
n→∞
∫
X

fn dμ.

Proof. See Theorem 1.26 in Rudin [58].

Note that this theorem holds for almost everywhere increasing sequences of al-
most everywherenonnegativemeasurable functionswith analmost everywherepoint-
wise limit.

For general sequences of nonnegative functions,wehave the following immediate
consequence.

Lemma A.1.36 (Fatou’s lemma). Let (X,𝒜, μ) be a measure space. For any sequence
(fn)∞n=1 of nonnegative measurable functions,

∫
X

lim inf
n→∞

fn dμ ≤ lim inf
n→∞
∫
X

fn dμ.

Proof. For every x ∈ X and n ∈ ℕ, define gn(x) = inf{fi(x) : 1 ≤ i ≤ n} and apply
the monotone convergence theorem to the sequence (gn)∞n=1. For more detail, see The-
orem 1.28 in Rudin [58].
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The following lemma is another application of the monotone convergence theo-
rem. It offers another way of integrating a nonnegative function.

Lemma A.1.37. Let (X,𝒜, μ) be a measure space. Let f be a nonnegative measurable
function and A ∈ 𝒜. Then

∫
A

f dμ =
∞

∫
0

μ({x ∈ A : f (x) > r}) dr.

Proof. Suppose that f = 1B for some B ∈ 𝒜. Then

∞

∫
0

μ({x ∈ A : f (x) > r}) dr =
1

∫
0

μ({x ∈ A : 1B(x) > r}) dr

=
1

∫
0

μ(A ∩ B) dr

= μ(A ∩ B)

= ∫
X

1A∩B dμ = ∫
X

1A ⋅ 1B dμ = ∫
A

f dμ.

So the equality holds for characteristic functions. We leave it to the reader to show
that the equality prevails for all nonnegative measurable simple functions. If f is a
general nonnegative measurable function, then by Theorem A.1.17 there exists an
increasing sequence (sn)∞n=1 of nonnegative measurable simple functions such that
limn→∞ sn(x) = f (x) for every x ∈ X. For every r ≥ 0, let

f̃ (r) = μ({x ∈ A : f (x) > r}).

This function is obviously nonnegative and decreasing. Hence, by Theorem A.1.15 it
is Borel measurable since f̃ −1((t,∞]) is an interval for all t ∈ [0,∞] and the sets
{(t,∞]}t∈[0,∞] generate the Borel σ-algebra of [0,∞]. Fix momentarily r ≥ 0. Since
sn ↗ f , the sets ({x ∈ A : sn(x) > r})∞n=1 form an ascending sequence such that

∞

⋃
n=1
{x ∈ A : sn(x) > r} = {x ∈ A : f (x) > r}.

Then by Lemma A.1.19(d),

f̃ (r) = μ(
∞

⋃
n=1
{x ∈ A : sn(x) > r}) = lim

n→∞
μ({x ∈ A : sn(x) > r}) = lim

n→∞
s̃n(r).

Observe that (s̃n)∞n=1 is an increasing sequence of nonnegative decreasing functions.
So (s̃n)∞n=1 is a sequence of nonnegative Borel measurable functions, which increases
pointwise to f̃ . It follows from the monotone convergence theorem (Theorem A.1.35)
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that
∞

∫
0

μ({x ∈ A : f (x) > r}) dr =
∞

∫
0

f̃ (r) dr =
∞

∫
0

lim
n→∞

s̃n(r) dr

= lim
n→∞

∞

∫
0

s̃n(r) dr

= lim
n→∞

∞

∫
0

μ({x ∈ A : sn(x) > r}) dr

= lim
n→∞
∫
A

sn dμ = ∫
A

lim
n→∞

sn dμ

= ∫
A

f dμ.

Pointwise convergence of a sequence of integrable functions does not guarantee
convergence in L1 (see Exercise 8.5.14). However, under one relatively weak additional
assumption, this becomes true. The second fundamental theorem of convergence ap-
plies to sequences of functions which have an almost everywhere pointwise limit and
are dominated (i. e., uniformly bounded) almost everywhere by an integrable func-
tion.

Theorem A.1.38 (Lebesgue’s dominated convergence theorem). If a sequence of mea-
surable functions (fn)∞n=1 on a measure space (X,𝒜, μ) converges pointwise μ-a. e. to a
function f and if there exists g ∈ L1(μ) such that |fn(x)| ≤ g(x) for all n ∈ ℕ and μ-a. e.
x ∈ X, then f ∈ L1(μ) and

lim
n→∞
‖fn − f ‖1 = 0 and lim

n→∞
∫
X

fn dμ = ∫
X

f dμ.

Proof. Apply Fatou’s lemma to 2g− |fn− f | ≥ 0. See Theorem 1.34 in Rudin [58] formore
detail.

Note that

lim
n→∞
‖fn − f ‖1 = 0 ⇒ lim

n→∞
‖fn‖1 = ‖f ‖1

since ‖fn‖1 − ‖f ‖1
 ≤ ‖fn − f ‖1 and

lim
n→∞
‖fn − f ‖1 = 0 ⇒ lim

n→∞
∫
X

fn dμ = ∫
X

f dμ

by applying LemmaA.1.34(c) to fn−f . The opposite implications donot hold in general.
Nevertheless, the following lemma states that any sequence of integrable functions
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(fn)∞n=1 that converges pointwise almost everywhere to an integrable function f will
also converge to that function in L1 if and only if their L1 norms converge to the L1

norm of f .

Lemma A.1.39 (Scheffé’s lemma). Let (X,𝒜, μ) be a measure space. If a sequence
(fn)∞n=1 of functions in L

1(μ) converges pointwise μ-a. e. to a function f ∈ L1(μ), then

lim
n→∞
‖fn − f ‖1 = 0 ⇐⇒ lim

n→∞
‖fn‖1 = ‖f ‖1.

In particular, if fn ≥ 0 μ-a. e. for all n ∈ ℕ, then f ≥ 0 μ-a. e. and

lim
n→∞
‖fn − f ‖1 = 0 ⇐⇒ lim

n→∞
∫
X

fn dμ = ∫
X

f dμ.

Proof. The direct implication⇒ is trivial. For the converse implication, assume that
limn→∞ ‖fn‖1 = ‖f ‖1. Suppose first that fn ≥ 0 for all n ∈ ℕ. Then f ≥ 0 and hence
our assumption reduces to limn→∞ ∫X fn dμ = ∫X f dμ. Let ℓn = min{f , fn} and un =
max{f , fn}. Then both (ℓn)∞n=1 and (un)

∞
n=1 converge pointwise μ-a. e. to f . Also, |ℓn| =

ℓn ≤ f for all n, so Lebesgue’s dominated convergence theorem asserts that

lim
n→∞
∫
X

ℓn dμ = ∫
X

f dμ.

Observing that un = f + fn − ℓn, we also get that

lim
n→∞
∫
X

un dμ = ∫
X

f dμ + lim
n→∞
∫
X

fn dμ − limn→∞
∫
X

ℓn dμ = ∫
X

f dμ.

Thus

lim
n→∞
‖fn − f ‖1 = lim

n→∞
∫
X

|fn − f | dμ = lim
n→∞
(∫
X

un dμ − ∫
X

ℓn dμ) = 0.

So the implication⇐holds for nonnegative functions. As g = g+−g− and ((fn)+)∞n=1 and
((fn)−)∞n=1 are sequences of functions in L

1(μ) converging pointwise μ-a. e. to f+ ∈ L1(μ)
and f− ∈ L1(μ), respectively, it is easy to see that the general case follows from the case
for nonnegative functions.

If g is a L1 function on a general measure space (X,𝒜, μ), then the sequence of
nonnegative measurable functions (gM)∞M=1, where gM = |g| ⋅ 1{|g|≥M}, decreases to 0
pointwise and is dominated by |g|. Therefore, themonotone convergence theorem (or,
alternatively, Lebesgue’s dominated convergence theorem) affirms that

lim
M→∞
∫
{|g|≥M}

|g| dμ = 0.

This suggests introducing the following concept.
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Definition A.1.40. Let (X,𝒜, μ) be a measure space. A sequence of measurable func-
tions (fn)∞n=1 is uniformly integrable if

lim
M→∞

sup
n∈ℕ
∫
{|fn|≥M}

|fn| dμ = 0.

On finite measure spaces, there exists a generalization of Lebesgue’s dominated
convergence theorem (Theorem A.1.38).

Theorem A.1.41. Let (X,𝒜, μ) be a finite measure space and (fn)∞n=1 a sequence of mea-
surable functions that converges pointwise μ-a. e. to a function f .
(a) If (fn)∞n=1 is uniformly integrable, then fn ∈ L

1(μ) for all n ∈ ℕ and f ∈ L1(μ). More-
over,

lim
n→∞
‖fn − f ‖1 = 0 and lim

n→∞
∫
X

fn dμ = ∫
X

f dμ.

(b) If f , fn ∈ L1(μ) and fn ≥ 0 μ-a. e. for all n ∈ ℕ, then limn→∞ ∫X fn dμ = ∫X f dμ implies
that (fn)∞n=1 is uniformly integrable.

Proof. See Theorem 16.14 in Billingsley [7].

Corollary A.1.42. Let (X,𝒜, μ) be a finite measure space and (fn)∞n=1 a sequence of inte-
grable functions that converges pointwise μ-a. e. to an integrable function f . Then the
following conditions are equivalent:
(a) The sequence (fn)∞n=1 is uniformly integrable.
(b) limn→∞ ‖fn − f ‖1 = 0.
(c) limn→∞ ‖fn‖1 = ‖f ‖1.

Proof. Part (a) of Theorem A.1.41 yields (a)⇒(b). That (b)⇒(c) follows from ‖fn‖1 −
‖f ‖1
 ≤ ‖fn − f ‖1. Finally, replacing fn by |fn − f | and f by 0 in part (b) of Theorem A.1.41

gives (c)⇒(a).

Obviously, any sequence of measurable functions that converges uniformly on an
entire space does converge pointwise. It is well known that the converse is not true in
general, and it is thus natural to ask whether, in some way, a pointwise convergent
sequence converges “almost” uniformly.

Definition A.1.43. Let (X,𝒜, μ) be a measure space. A sequence (fn)∞n=1 of measurable
functions on X is said to converge μ-almost uniformly to a function f if for every ε > 0
there exists Y ∈ 𝒜 such that μ(Y) < ε and (fn)∞n=1 converges uniformly to f on X \ Y .

It is clear that almost uniform convergence implies almost everywhere pointwise
convergence. The converse is not true in general but these two types of convergence
are one and the same on any finite measure space.
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Theorem A.1.44 (Egorov’s theorem). Let (X,𝒜, μ)beafinitemeasure space.A sequence
(fn)∞n=1 of measurable functions on X converges pointwise μ-almost everywhere to a limit
function f if and only if that sequence converges μ-almost uniformly to f .

Proof. See Chapter 3, Exercise 16 in Rudin [58].

The reader ought to convince themself that this result does not generally hold on
infinite spaces.

Convergence in measure is another interesting type of convergence.

Definition A.1.45. Let (X,𝒜, μ) be a measure space. A sequence (fn)∞n=1 of measurable
functions converges in measure to a measurable function f provided that for each
ε > 0,

lim
n→∞

μ({x ∈ X : fn(x) − f (x)
 > ε}) = 0.

Lemma A.1.46. Let (X,𝒜, μ) be a measure space. If a sequence (fn)∞n=1 of measurable
functions converges in L1(μ) to a measurable function f , then (fn)∞n=1 converges in mea-
sure to f .

Proof. Let ε > 0. Then

μ({x ∈ X : fn(x) − f (x)
 > ε}) ≤ ∫

{x∈X : |fn(x)−f (x)|>ε}

|fn − f |
ε

dμ ≤ 1
ε
‖fn − f ‖1.

Taking the limit of both sides as n→∞ completes the proof.

When the measure is finite, there is a close relationship between pointwise con-
vergence and convergence in measure.

Theorem A.1.47. Let (X,𝒜, μ) be a finite measure space and (fn)∞n=1 a sequence of mea-
surable functions.
(a) If (fn)∞n=1 converges pointwise μ-a. e. to a function f , then (fn)

∞
n=1 converges in mea-

sure to f .
(b) If (fn)∞n=1 converges in measure to a function f , then there exists a subsequence
(fnk )
∞
k=1 which converges pointwise μ-a. e. to f .

(c) (fn)∞n=1 converges in measure to a function f if and only if each subsequence (fnk )
∞
k=1

admits a further subsequence (fnkl )
∞
l=1 that converges pointwise μ-a. e. to f .

Proof. See Theorem 20.5 in Billingsley [7].

The previous two results reveal that, on a finite measure space, a sequence of
integrable functions that converges in L1 to an integrable function admits a subse-
quencewhich converges pointwise almost everywhere to that function. In general, the
sequence itself might not converge pointwise almost everywhere (see Exercise 8.5.17).
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In some sense, the following result is a form of convergence theorem. It asserts
that Borelmeasurable functions can be approximated by continuous functions on “ar-
bitrarily large” portions of their domain.

Theorem A.1.48. Let (X,ℬ(X), μ) be a finite Borel measure space and let f : X → ℝ be
a Borel measurable function. Given any ε > 0, for every B ∈ ℬ(X) there is a closed set E
with μ(B\E) < ε such that f |E is continuous. If B is locally compact, then the set E can be
chosen to be compact and then there is a continuous function fε : X → ℝ with compact
support that coincides with f on E and such that supx∈X |fε(x)| ≤ supx∈X |f (x)|.

A.1.7 Mutual singularity, absolute continuity and equivalence of measures

We now leave aside convergence of sequences of functions and recall the definitions
of mutually singular, absolutely continuous, and equivalent measures.

Definition A.1.49. Let (X,𝒜) be a measurable space, and μ and ν be two measures on
(X,𝒜).
(a) The measures μ and ν are said to be mutually singular, denoted by μ⊥ν, if there

exist disjoint sets Xμ,Xν ∈ 𝒜 such that μ(X \ Xμ) = 0 = ν(X \ Xν).
(b) Themeasure μ is said to be absolutely continuous with respect to ν, denoted μ ≺≺ ν,

if ν(A) = 0 ⇒ μ(A) = 0.
(c) The measures μ and ν are said to be equivalent if μ ≺≺ ν and ν ≺≺ μ.

The Radon–Nikodym theorem provides a characterization of absolute continuity.
Though it is valid for σ-finite measures, the following version for finite measures is
sufficient for our purposes.

Theorem A.1.50 (Radon–Nikodym theorem). Let (X,𝒜) be a measurable space and let
μ and ν be two finite measures on (X,𝒜). Then the following statements are equivalent:
(a) μ ≺≺ ν.
(b) For every ε > 0 there exists δ > 0 such that ν(A) < δ ⇒ μ(A) < ε.
(c) There exists a ν-a. e. unique function f ∈ L1(ν) such that f ≥ 0 and

μ(A) = ∫
A

f dν, ∀A ∈ 𝒜.

Proof. See relation (32.4) and Theorem 32.2 in Billingsley [7].

Remark A.1.51. The function f is often denoted by dμ
dν and called the Radon–Nikodym

derivative of μ with respect to ν.

Per LemmaA.1.34(f), two integrable functions are equal almost everywhere if and
only if their integrals are equal over everymeasurable set. When themeasure is finite,
we can restrict our attention to any generating π-system.
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Corollary A.1.52. Let (X,𝒜, ν) be a finite measure space and suppose that𝒜 = σ(𝒫) for
some π-system 𝒫 . Let f , g ∈ L1(ν). Then

f = g ν-a. e. ⇐⇒ ∫
P

f dν = ∫
P

g dν, ∀P ∈ 𝒫 .

Proof. The direct implication ⇒ is obvious. So let us assume that ∫P f dν = ∫P g dν
for all P ∈ 𝒫. The measures μf (A) := ∫A f dν and μg(A) := ∫A g dν are equal on the
π-system 𝒫. According to Lemma A.1.26, this implies that μf = μg . It follows from the
uniqueness part of the Radon–Nikodym theorem that f = g ν-almost everywhere.

A.1.8 The space C(X ), its dual C(X )∗ and the subspaceM(X )

Another important result is Riesz representation theorem. Before stating it, we first
establish some notation. Let X be a compact metrizable space. Let C(X) be the set of
all continuous real-valued functions on X. This set becomes a normed vector space
when endowed with the supremum norm

‖f ‖∞ := sup{
f (x)
 : x ∈ X}. (A.3)

This norm defines a metric on C(X) in the usual way:

d∞(f , g) := ‖f − g‖∞ = sup{
f (x) − g(x)

 : x ∈ X}.

The topology inducedby themetricd∞ onC(X) is called the topology of uniformconver-
gence on X. Indeed, limn→∞ d∞(fn, f ) = 0 if and only if the sequence (fn)∞n=1 converges
to f uniformly on X. It is not hard to see that C(X) is a separable Banach space (i. e., a
separable and complete normed vector space).

Let C(X)∗ denote the dual space of C(X), that is,

C(X)∗ := {F : C(X)→ ℝ | F is continuous and linear}.

Recall that a real-valued function F defined on C(X) is called a functional on C(X). It
is well known that a linear functional F is continuous if and only if it is bounded, that
is, if and only if its operator norm ‖F‖ is finite, where

‖F‖ := sup{F(f )
 : f ∈ C(X) and ‖f ‖∞ ≤ 1}. (A.4)

So C(X)∗ can also be described as the normed vector space of all bounded linear func-
tionals on C(X). The operator norm defines a metric on C(X)∗ in the usual manner:

d(F,G) := ‖F − G‖.

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



408 | Appendix A – A selection of classical results

The topology induced by the metric d on C(X)∗ is called the operator norm topology,
or strong topology, on C(X)∗.

It is not difficult to see that C(X)∗ is a separable Banach space. Furthermore, a
linear functional F is said to be normalized if F(1) = 1 and is called positive if F(f ) ≥ 0
whenever f ≥ 0.

Finally, we denote the set of all Borel probability measures on X byM(X). This set
is clearly convex and can be characterized as follows.

Theorem A.1.53 (Riesz representation theorem). Let X be a compactmetrizable space,
and let F be a normalized and positive linear functional on C(X). Then there exists a
unique μ ∈ M(X) such that

F(f ) = ∫
X

f dμ, ∀f ∈ C(X). (A.5)

Conversely, any μ ∈ M(X) defines a normalized positive linear functional on C(X) via
formula (A.5). This linear functional is bounded.

Proof. The converse statement is straightforward to check. For the other direction, see
Theorem 2.14 in Rudin [58].

It immediately follows from Riesz representation theorem that every Borel prob-
ability measure on a compact metrizable space is uniquely determined by the way it
integrates continuous functions on that space.

Corollary A.1.54. If μ and ν are twoBorel probabilitymeasures on a compactmetrizable
space X, then

μ = ν ⇐⇒ ∫
X

f dμ = ∫
X

f dν, ∀f ∈ C(X).

Let us now discuss the weak∗ topology on the setM(X). Recall that if Z is a set and
(Zα)α∈A is a family of topological spaces, then the weak topology induced on Z by a
collection of maps {ψα : Z → Zα | α ∈ A} is the smallest topology on Z that makes
each ψα continuous. Evidently, the sets ψ−1α (Uα), for Uα open in Zα, constitute a sub-
base for theweak topology. Theweak∗ topology onM(X) is theweak topology induced
by C(X) on its dual space C(X)∗, where measures inM(X) and normalized positive lin-
ear functionals in C(X)∗ are identified via the Riesz representation theorem. Note that
M(X) is metrizable, although C(X)∗ with the weak∗ topology usually is not. Indeed,
both C(X) and its subspace C(X, [0, 1]) of continuous functions on X taking values in
[0, 1], are separable since X is a compact metrizable space. Then for any dense subset
{fn}∞n=1 of C(X, [0, 1]), a metric onM(X) is

d(μ, ν) =
∞

∑
n=1

1
2n

∫
X

fn dμ − ∫
X

fn dν

.
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In this book, we will denote the convergence of a sequence of measures (μn)∞n=1 to a
measure μ in the weak∗ topology ofM(X) by μn

∗
→ μ.

Remark A.1.55. Note that this notion is often presented as “weak convergence” of
measures. This can be slightly confusing at first sight, but it helps to bear in mind
that, as we have seen above, the weak∗ topology is just one instance of a weak topol-
ogy.

The following theorem gives several equivalent characterizations of weak∗ con-
vergence of Borel probability measures.

Theorem A.1.56 (Portmanteau theorem). Let (μn)∞n=1 and μ be Borel probability mea-
sures on a compact metrizable space X. The following statements are equivalent:
(a) μn

∗
→ μ.

(b) For all continuous functions f : X → ℝ,

lim
n→∞
∫
X

f dμn = ∫
X

f dμ.

(c) For all closed sets F ⊆ X,

lim sup
n→∞

μn(F) ≤ μ(F).

(d) For all open sets G ⊆ X,

lim inf
n→∞

μn(G) ≤ μ(G).

(e) For all sets A ∈ ℬ(X) such that μ(𝜕A) = 0,

lim
n→∞

μn(A) = μ(A).

Proof. See Theorem 2.1 in Billingsley [8].

For us, the most important result concerning weak∗ convergence of measures is
that the setM(X) of all Borel probability measures on a compact metrizable space X is
a compact and convex set in the weak∗ topology.

In order to establish this, we need to remember Banach–Alaoglu’s theorem. In this
theorem, note that the boundedness and closedness are with respect to the operator
norm on the dual space while the compactness is with respect to the weak∗ topology
on the dual space.

Theorem A.1.57 (Banach–Alaoglu’s theorem). The closed unit ball in the dual space B∗

of a Banach space B is compact in theweak∗ topology on B∗. Furthermore, every closed,
bounded subset of B∗ is compact in the weak∗ topology on B∗.

Proof. See Theorem V.4.2 and Corollary V.4.3 in Dunford and Schwartz [20].

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



410 | Appendix A – A selection of classical results

Theorem A.1.58. Let X be a compact metrizable space. The set M(X) is compact and
convex in the weak∗ topology of C(X)∗.

Proof. The set M(X) is closed with respect to the operator norm topology on C(X)∗.
Indeed, suppose that (μn)∞n=1 is a sequence inM(X) which converges to a F ∈ C(X)

∗ in
the operator norm topologyofC(X)∗. In otherwords, suppose that limn→∞ ‖μn−F‖ = 0.
By definition of the operator norm (see (A.4)) and thanks to the linearity of F, this
implies that

F(f ) = lim
n→∞
∫
X

f dμn, ∀f ∈ C(X).

In particular, F is normalized (since F(1) = 1) and positive (as F(f ) ≥ 0 for all f ≥ 0). By
Riesz representation theorem (Theorem A.1.53), there is μ ∈ M(X) that represents F.
So F ∈ M(X), and thusM(X) is closed in the operator norm topology on C(X)∗.

The setM(X) is also bounded in that topology. Indeed, if μ ∈ M(X) then

‖μ‖ ≤ sup{∫
X

|f | dμ : f ∈ C(X), ‖f ‖∞ ≤ 1} = 1.

Since X is a compact metrizable space, the space C(X) is a Banach space, as earlier
mentioned. We can then infer from Banach–Alaoglu’s theorem that the set M(X) is
compact in the weak∗ topology.

The convexity of M(X) is obvious. Indeed, if μ, ν ∈ M(X) so is any convex combi-
nationm = αμ + (1 − α)ν, where α ∈ [0, 1].

A.1.9 Expected values and conditional expectation functions

Themean or expected value of a function over a set is a straightforward generalisation
of the mean value of a real-valued function defined on an interval of the real line.

Definition A.1.59. Let (X,𝒜, μ) be a probability space and let φ ∈ L1(μ). The mean or
expected value E(φ|A) of the function φ over the set A ∈ 𝒜 is defined to be

E(φ|A) := {
1

μ(A) ∫A φdμ if μ(A) > 0

0 if μ(A) = 0.

Given that μ is a probabilitymeasure, the expected value ofφ over the entire space
is simply given by

E(φ) := E(φ|X) = ∫
X

φdμ =: μ(φ).
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Our next goal is to give the definition of the conditional expectation of a func-
tion with respect to a σ-algebra. Let (X,𝒜, μ) be a probability space and ℬ be a
sub-σ-algebra of 𝒜. Let also φ ∈ L1(X,𝒜, μ). Notice that φ : X → ℝ is not necessarily
measurable if X is endowed with the sub-σ-algebra ℬ instead of the σ-algebra 𝒜. In
short, we say that φ is 𝒜-measurable but not necessarily ℬ-measurable. We aim to
find a function E(φ|ℬ) ∈ L1(X,ℬ, μ) such that

∫
B

E(φ|ℬ) dμ = ∫
B

φdμ, ∀B ∈ ℬ. (A.6)

This condition means that the function E(φ|ℬ) has the same expected value as φ on
every measurable set belonging to the sub-σ-algebra ℬ. Accordingly, E(φ|ℬ) is called
the conditional expectation of φ with respect to ℬ.

We now demonstrate the existence and μ-a. e. uniqueness of the conditional ex-
pectation. Let us begin with the existence of that function. Suppose first that the func-
tion φ is nonnegative. If φ = 0 μ-a. e., then simply set E(φ|ℬ) = 0. If φ ̸= 0 μ-a. e. then
the set function ν(A) := ∫A φdμ defines a finite measure on (X,𝒜) which is absolutely
continuous with respect to μ. The restriction of ν to ℬ also determines a finite measure
on (X,ℬ)which is absolutely continuous with respect to the restriction of μ to ℬ. So by
the Radon–Nikodym theorem (Theorem A.1.50), there exists a μ-a. e. unique nonneg-
ative function φ̂ ∈ L1(X,ℬ, μ) such that ν(B) = ∫B φ̂ dμ for every B ∈ ℬ. Then

∫
B

φ̂ dμ = ν(B) = ∫
B

φdμ, ∀B ∈ ℬ.

The point here is that although it may look as if we have not really achieved anything,
we have actually gained that φ̂ is ℬ-measurable, whereas φmay not be. Therefore, φ̂
is the sought-after conditional expectation E(φ|ℬ) of φ with respect to ℬ.

If φ takes both negative and positive values, write φ = φ+ − φ−, where φ+(x) :=
max{φ(x),0} is the positive part of φ and φ−(x) := max{−φ(x),0} is the negative part
of φ. Then define the conditional expectation linearly, that is, set

E(φ|ℬ) := E(φ+|ℬ) − E(φ−|ℬ).

This proves the existence of the conditional expectation function. Its μ-a. e. unique-
ness follows from its defining property (A.6) and Lemma A.1.34(f).

The conditional expectation exhibits several natural properties.Wemention a few
of them in the next proposition.

Proposition A.1.60. Let (X,𝒜, μ) be a probability space, let ℬ and 𝒞 denote sub-σ-alge-
bras of𝒜 and let φ ∈ L1(X,𝒜, μ).
(a) If φ ≥ 0 μ-a. e., then E(φ|ℬ) ≥ 0 μ-a. e.
(b) If φ1 ≥ φ2 μ-a. e., then E(φ1|ℬ) ≥ E(φ2|ℬ) μ-a. e.
(c) E(φ|ℬ)

 ≤ E(|φ|
ℬ).

 EBSCOhost - printed on 2/10/2023 3:30 PM via . All use subject to https://www.ebsco.com/terms-of-use



412 | Appendix A – A selection of classical results

(d) The functional E(⋅|ℬ) is linear, i. e. for any c1, c2 ∈ ℝ and φ1,φ2 ∈ L1(X,𝒜, μ),

E(c1φ1 + c2φ2
ℬ) = c1E(φ1|ℬ) + c2E(φ2|ℬ).

(e) If φ is already ℬ-measurable, then E(φ|ℬ) = φ. In particular, we have that
E(E(φ|ℬ)ℬ) = E(φ|ℬ). Also, if φ = c ∈ ℝ is a constant function, then E(φ|ℬ) =
φ = c.

(f) If 𝒞 ⊆ ℬ, then E(φ|𝒞) = E(E(φ|ℬ)  𝒞).

Proof. This is left as an exercise to the reader.

We will now determine the conditional expectation of an arbitrary integrable
function φ with respect to various sub-σ-algebras of particular interest.

Example A.1.61. Let (X,𝒜, μ) be a probability space. The family 𝒩 of all measurable
sets that are either of null or of full measure constitutes a sub-σ-algebra of𝒜. Let φ ∈
L1(X,𝒜, μ). Then the function E(φ|𝒩 ) has to belong to L1(X,𝒩 , μ) and must satisfy
condition (A.6). In particular,E(φ|𝒩 )must be𝒩 -measurable. Thismeans that for each
Borel subset R of ℝ, the function E(φ|𝒩 )must be such that E(φ|𝒩 )−1(R) ∈ 𝒩 . Among
others, for every t ∈ ℝwemust have E(φ|𝒩 )−1({t}) ∈ 𝒩 ; in other words, for each t ∈ ℝ
the set E(φ|𝒩 )−1({t}) must be of measure zero or of measure one. Also bear in mind
that

X = E(φ|𝒩 )−1(ℝ) = ⋃
t∈ℝ

E(φ|𝒩 )−1({t}).

Since the above union consists of mutually disjoint sets of measure zero and one, it
follows that only one of these sets can be of measure one. In other words, there exists
a unique t ∈ ℝ such that E(φ|𝒩 )−1({t}) = A for some A ∈ 𝒜 with μ(A) = 1. Because the
function E(φ|𝒩 ) is unique up to a set of measure zero, we may assume without loss
of generality that A = X. Hence, E(φ|𝒩 ) is a constant function. More specifically, its
value is

E(φ|𝒩 ) = ∫
X

E(φ|𝒩 ) dμ = ∫
X

φdμ.

Example A.1.62. Let (X,𝒜) be a measurable space and let α = {An}∞n=1 be a countable
measurable partition of X. That is, eachAn ∈ 𝒜,Ai∩Aj = 0 for all i ̸= j andX = ⋃

∞
n=1 An.

The sub-σ-algebra of𝒜 generated by α is the family of all sets which can be written as
a union of elements of α, that is,

σ(α) = {A ⊆ X : A =⋃
j∈J

Aj for some J ⊆ ℕ}.

When α is finite, so is σ(α). When α is countably infinite, σ(α) is uncountable. Let μ
be a probability measure on (X,𝒜). Let φ ∈ L1(X,𝒜, μ) and set ℬ = σ(α). Then the
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conditional expectation E(φ|ℬ) : X → ℝ has to be a L1(X,ℬ, μ) function that satisfies
condition (A.6). In particular, E(φ|ℬ) must be ℬ-measurable. Thus, for any t ∈ ℝ we
must have E(φ|ℬ)−1({t}) ∈ ℬ, that is, the set E(φ|ℬ)−1({t})must be a union of elements
of α. This means that the conditional expectation function E(φ|ℬ) is constant on each
element of α. Let An ∈ α. If μ(An) = 0 then E(φ|ℬ)|An

= 0. Otherwise,

E(φ|ℬ)|An
=

1
μ(An)
∫
An

E(φ|ℬ) dμ = 1
μ(An)
∫
An

φdμ = E(φ|An).

In summary, the conditional expectation E(φ|ℬ) of a function φ with respect to a
sub-σ-algebra generated by a countable measurable partition is constant on each el-
ement of that partition. More precisely, on any given element of the partition, E(φ|ℬ)
is equal to the mean value of φ on that element.

The next result is a special case of a theorem originally due to Doob and called the
martingale convergence theorem. But, first, let us define the martingale itself.

Definition A.1.63. Let (X,𝒜, μ) be a probability space. Let (𝒜n)
∞
n=1 be a sequence of

sub-σ-algebras of 𝒜. Let also (φn : X → ℝ)∞n=1 be a sequence of 𝒜-measurable func-
tions. The sequence ((φn,𝒜n))

∞
n=1 is called amartingale if the following conditions are

satisfied:
(a) (𝒜n)

∞
n=1 is an ascending sequence, that is,𝒜n ⊆ 𝒜n+1 for all n ∈ ℕ.

(b) φn is𝒜n-measurable for all n ∈ ℕ.
(c) φn ∈ L1(μ) for all n ∈ ℕ.
(d) E(φn+1|𝒜n) = φn μ-a. e. for all n ∈ ℕ.

Theorem A.1.64 (Martingale convergence theorem). Let (X,𝒜, μ) be a probability
space. If ((φn,𝒜n))

∞
n=1 is a martingale such that

sup
n∈ℕ
‖φn‖1 <∞,

then there exists φ̂ ∈ L1(X,𝒜, μ) such that

lim
n→∞

φn(x) = φ̂(x) for μ-a. e. x ∈ X and ‖φ̂‖1 ≤ sup
n∈ℕ
‖φn‖1.

Proof. See Theorem 35.5 in Billingsley [7].

One natural martingale is formed by the conditional expectations of a function
with respect to an ascending sequence of sub-σ-algebras.

Example A.1.65. Let (X,𝒜, μ)beaprobability space and let (𝒜n)
∞
n=1 beanascending se-

quence of sub-σ-algebras of𝒜. For anyφ ∈ L1(X,𝒜, μ), the sequence {(E(φ|𝒜n),𝒜n)}
∞
n=1
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is a martingale. Indeed, set φn = E(φ|𝒜n) for all n ∈ ℕ. Condition (a) in Defini-
tion A.1.63 is automatically fulfilled. Conditions (b) and (c) follow from the very defi-
nition of the conditional expectation function. Regarding condition (d), a straightfor-
ward application of Proposition A.1.60(f) gives

E(φn+1|𝒜n) = E(E(φ|𝒜n+1) | 𝒜n) = E(φ|𝒜n) = φn μ-a. e., ∀n ∈ ℕ.

So {(E(φ|𝒜n),𝒜n)}
∞
n=1 is a martingale. Using Proposition A.1.60(c), note that

sup
n∈ℕ
‖φn‖1 = sup

n∈ℕ
∫
X

E(φ|𝒜n)
 dμ ≤ sup

n∈ℕ
∫
X

E(|φ| | 𝒜n) dμ = ∫
X

|φ| dμ = ‖φ‖1 <∞.

According to Theorem A.1.64, there thus exists φ̂ ∈ L1(X,𝒜, μ) such that

lim
n→∞

E(φ|𝒜n)(x) = φ̂(x) for μ-a. e. x ∈ X and ‖φ̂‖1 ≤ ‖φ‖1.

What is φ̂? This is the question we will answer in Theorem A.1.67.

Beforehand, we establish the uniform integrability of this martingale (see Defini-
tion A.1.40).

Lemma A.1.66. Let (X,𝒜, μ) be a probability space and let (𝒜n)
∞
n=1 be a sequence of

sub-σ-algebras of 𝒜. For any φ ∈ L1(X,𝒜, μ), the sequence (E(φ|𝒜n))
∞
n=1 is uniformly

integrable.

Proof. Without loss of generality, we may assume that φ ≥ 0. Let ε > 0. Since ν(A) =
∫A φdμ is absolutely continuouswith respect to μ, it follows from the Radon–Nikodym
theorem (Theorem A.1.50) that there exists δ > 0 such that

A ∈ 𝒜, μ(A) < δ ⇒ ∫
A

φdμ < ε. (A.7)

SetM > ∫X φdμ/δ. For each n ∈ ℕ, let

Xn(M) = {x ∈ X : E(φ|𝒜n)(x) ≥ M}.

Observe that Xn(M) ∈ 𝒜n since E(φ|𝒜n) is𝒜n-measurable. Therefore,

μ(Xn(M)) ≤
1
M
∫

Xn(M)

E(φ|𝒜n) dμ =
1
M
∫

Xn(M)

φdμ ≤ 1
M
∫
X

φdμ < δ

for all n ∈ ℕ. Consequently, by (A.7),

∫
Xn(M)

E(φ|𝒜n) dμ = ∫
Xn(M)

φdμ < ε
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for all n ∈ ℕ. Thus

sup
n∈ℕ

∫
{E(φ|𝒜n)≥M}

E(φ|𝒜n) dμ ≤ ε.

Since this holds for all large enoughM’s and since ε > 0 is arbitrary, we have

lim
M→∞

sup
n∈ℕ

∫
{E(φ|𝒜n)≥M}

E(φ|𝒜n) dμ = 0,

that is, the sequence (E(φ|𝒜n))
∞
n=1 is uniformly integrable.

Theorem A.1.67 (Martingale convergence theorem for conditional expectations). Let
(X,𝒜, μ) be a probability space and φ ∈ L1(X,𝒜, μ). Let (𝒜n)

∞
n=1 be an ascending se-

quence of sub-σ-algebras of𝒜 and

𝒜∞ := σ(
∞

⋃
n=1

𝒜n).

Then

lim
n→∞
E(φ|𝒜n) − E(φ|𝒜∞)

1 = 0 and lim
n→∞

E(φ|𝒜n) = E(φ|𝒜∞) μ-a. e. on X.

Proof. Let φn = E(φ|𝒜n). In Example A.1.65 and Lemma A.1.66, we have seen that
((φn,𝒜n))

∞
n=1 is a uniformly integrable martingale such that

lim
n→∞

φn = φ̂ μ-a. e. on X

for some φ̂ ∈ L1(X,𝒜, μ). For all n ∈ ℕ the function φn is 𝒜∞-measurable since it is
𝒜n-measurable and 𝒜n ⊆ 𝒜∞. Thus φ̂ is 𝒜∞-measurable, too. Moreover, it follows
from Theorem A.1.41 that

lim
n→∞
‖φn − φ̂‖1 = 0 and lim

n→∞
∫
A

φn dμ = ∫
A

φ̂ dμ, ∀A ∈ 𝒜.

Therefore, it just remains to show that φ̂ = E(φ|𝒜∞).
Let k ∈ ℕ and A ∈ 𝒜k . If n ≥ k, then A ∈ 𝒜n ⊆ 𝒜∞, and thus

∫
A

φn dμ = ∫
A

E(φ|𝒜n) dμ = ∫
A

φdμ = ∫
A

E(φ|𝒜∞) dμ.

Letting n→∞ yields

∫
A

φ̂ dμ = ∫
A

E(φ|𝒜∞) dμ, ∀A ∈ 𝒜k .
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Since k is arbitrary,

∫
B

φ̂ dμ = ∫
B

E(φ|𝒜∞) dμ, ∀B ∈
∞

⋃
k=1

𝒜k .

Since ⋃∞k=1𝒜k is a π-system generating 𝒜∞ and since both φ̂ and E(φ|𝒜∞) are
𝒜∞-measurable, Corollary A.1.52 affirms that φ̂ = E(φ|𝒜∞) μ-a. e.

There is also a counterpart of this theorem fordescending sequencesofσ-algebras.

Theorem A.1.68 (Reversed martingale convergence theorem for conditional expecta-
tions). Let (X,𝒜, μ)be aprobability space andφ ∈ L1(X,𝒜, μ). If (𝒜n)

∞
n=1 is a descending

sequence of sub-σ-algebras of𝒜, then

lim
n→∞


E(φ|𝒜n) − E(φ



∞

⋂
n=1

𝒜n)
1
= 0 and lim

n→∞
E(φ|𝒜n) = E(φ



∞

⋂
n=1

𝒜n) μ-a. e.

Proof. See Theorem 35.9 in Billingsley [7].

Theorems A.1.67/A.1.68 are especially useful for the calculation of the conditional
expectation of a function with respect to a sub-σ-algebra generated by an uncount-
able measurable partition which can be approached by an ascending/descending se-
quence of sub-σ-algebras generated by countable measurable partitions. See Exer-
cise 8.5.22.

They can also be used to approximate a measurable set by one from a generating
sequence of sub-σ-algebras.

Corollary A.1.69. Let (X,𝒜, μ) be a probability space. Let (𝒜n)
∞
n=1 be an ascending se-

quence of sub-σ-algebras of 𝒜 and set 𝒜∞ = σ(⋃
∞
n=1𝒜n). Let B ∈ 𝒜∞. For every ε > 0,

there exists A ∈ ⋃∞n=1𝒜n such that μ(A△ B) < ε.

Proof. Let B ∈ 𝒜∞. It ensues from Theorem A.1.67 that

lim
n→∞

E(1B|𝒜n) = E(1B|𝒜∞) = 1B μ-a. e. on X.

By Theorem A.1.47, we deduce that

lim
n→∞

μ({x ∈ X : E(1B|𝒜n)(x) − 1B(x)
 ≥

1
8
}) = 0.

For every n ∈ ℕ, let

Bn := {x ∈ X :
E(1B|𝒜n)(x) − 1B(x)

 ≥
1
8
}.

Then there exists N = N(ε) ∈ ℕ such that

μ(Bn) ≤ ε/2, ∀ n ≥ N .
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For every n ∈ ℕ, let

An := {x ∈ X :
E(1B|𝒜n)(x) − 1

 ≤
1
4
} ∈ 𝒜n.

On one hand,

x ∈ B \ An ⇒
E(1B|𝒜n)(x) − 1B(x)

 >
1
4
⇒ x ∈ Bn.

This means that

B \ An ⊆ Bn.

On the other hand,

x ∈ An \ B ⇒
E(1B|𝒜n)(x) − 1B(x)

 =
E(1B|𝒜n)(x)

 ≥
3
4
⇒ x ∈ Bn.

This means that

An \ B ⊆ Bn.

Therefore,

μ(An △ B) = μ(An \ B) + μ(B \ An) ≤ 2μ(Bn) ≤ ε, ∀n ≥ N .

Since An ∈ 𝒜n, we have found some A ∈ ⋃∞n=1𝒜n with μ(A△ B) < ε.

We will now give a proof of Lemma A.1.32 in the case where the algebra is count-
able.

Proof. Let 𝒜 = {An}∞n=1 be a countable algebra on a set X and let μ be a probability
measure on (X, σ(𝒜)). Set 𝒜′n = {Ak}

n
k=1. Since 𝒜′n is a finite set, the algebra 𝒜(𝒜′n)

it generates is also finite, and thus σ(𝒜′n) = 𝒜(𝒜
′
n). Moreover, since 𝒜 is an algebra,

σ(𝒜′n) = 𝒜(𝒜
′
n) ⊆ 𝒜. It follows that

σ(𝒜) = σ(
∞

⋃
n=1

σ(𝒜′n)).

LetB ∈ σ(𝒜) and ε > 0. Since (σ(𝒜′n))
∞
n=1 is an ascending sequence of sub-σ-algebras of

σ(𝒜) such that σ(𝒜) = σ(⋃∞n=1 σ(𝒜
′
n)), it ensues from Corollary A.1.69 that there exists

A ∈ ⋃∞n=1 σ(𝒜
′
n) with μ(A△ B) < ε. Since ⋃

∞
n=1 σ(𝒜

′
n) ⊆ 𝒜, we have found some A ∈ 𝒜

such that μ(A△ B) < ε.

Finally, we introduce the concept of conditional measure and relate it to the con-
cept of expected value.
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Definition A.1.70. Let (X,𝒜, μ) be a probability space and let B ∈ 𝒜 be such that
μ(B) > 0. The set function μB : 𝒜→ [0, 1] defined by setting

μB(A) :=
μ(A ∩ B)
μ(B)
, ∀A ∈ 𝒜

is a probability measure on (X,𝒜) called the conditional measure of μ on B.

Note that for every φ ∈ L1(X,𝒜, μ),

∫
X

φdμB = ∫
B

φdμB + ∫
X\B

φdμB =
1

μ(B)
∫
B

φdμ + 0 = E(φ|B).

A.2 Analysis

Theorem A.2.1 (Inverse function theorem). Let𝒳 and𝒴 be Banach spaces and x0 ∈ 𝒳 .
If F is a C1 (i. e., continuously differentiable) function on some neighborhood of x0 such
that F′(x0) is invertible, then there exists an open neighborhood U of x0 such that F(U)
is open in 𝒴 and F bijectively maps U to F(U). Furthermore, the inverse function of F|U ,
mapping F(U) to (U), is continuously differentiable.
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