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PREFACE 

 

 

 

New technologies in engineering, automatics and robotics are creating 

problems in which control plays a major role. Solutions to many of these 

problems require the use of digital signals. This manuscript attempts to 

provide the reader with an insight into digital control of time-invariant 

linear systems. 

My objective is to offer an accessible, self-contained research 

monograph which can also be used as a graduate text. The material 

presented, in this book, is of interest to a wide population of students, 

teachers, engineers, and researchers working in engineering, computing, 

electronic, robotics and automatics. It can also be used as a reference book 

by control engineers in industry and research students in automation and 

control.  

The first chapter covers fundamental concepts in the sampling and 

reconstruction of signals. The material presented in the second chapter can 

serve as an advanced text for courses on z-transform and inverse z-

transform. Indeed, the inspection method, the direct division method, the 

partial-fraction expansion method, the recurrence inversion method and 

the contour integration method are all detailed. The third chapter 

introduces the transfer function. In fact, the absence or presence of an 

input sampler is crucial in determining the transfer function of a system. 

For this reason, different examples of the position of the sampler are 

treated to improve its efficiency and its influence. The fourth chapter 

presents the stability condition of discrete-time systems in the closed loop. 

The global stability definition, the algebraic stability criterion and the 

stability in the frequency domain are discussed. The fifth chapter 

introduces the synthesis of a digital controller for linear time invariant 

system. The last section, in this book, shows the use of a digital PID 

controller in the practical speed control of a DC motor using an Arduino 

card, to encourage readers to explore new applied areas of digital control. 

In all these chapters simple examples are used to illustrate important 

concepts. 

I hope that the publication of this work will have a positive impact on 

students’ interest in the subject. I have been benefited from my students, 

through my teaching and other interactions with them; in particular, their 
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questions asking me to explain many of the topics covered in this book 

with simple examples.  

 

Ayachi ERRACHDI, University of Kairouan, Kairouan, 2021 
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CHAPTER ONE 

SAMPLING AND RECONSTRUCTION 

 

 

 

1.1. Introduction  

In this chapter we are going to focus on the sampling and reconstruction of 

an analog signal. Indeed, a continuous-time signal is an infinite and 

uncountable set of numbers. Between a start and end time, there are 

infinite possible values for the time t  and the instantaneous amplitude. 

When continuous-time signals are brought into a computer, they must be 

digitized. In a discrete-time signal, the number of elements in the set, as 

well as the possible values of each element, is finite, countable, 

representable by computer bits and can be stored on a digital storage 

medium. 

 

Digital systems attempt to overcome the analog system’s susceptibility to 

noise by sacrificing the infinite aspect of the time and the amplitude 

resolution to obtain perfect reproduction of the signal no matter how long 

it has been stored or how many times it has been duplicated. 

 

The discrete time and discrete amplitude nature of the digital signal 

provide a buffer to any noise that may enter the system through 

transmission or otherwise. Digital signals are usually stored and 

transmitted in the form of ones and zeros. If a digital receiver knows that 

only zeros or ones are being transmitted and when approximately to expect 

them, there is a certain acceptable level of noise that the receiver can 

handle. 

 

Beyond the advantages of noise robustness during reproduction and 

transmission, digital signals have many other advantages. These include 

the ability to use computer algorithms to filter the signal, data compression 

to save storage space and signal processing to extract information that may 

not be possible through manual human analysis. Thus, there can be a large 

benefit in converting many signals that are used in cardiology to digital 

form. 
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1.2. Digitization of continuous-time signal 

An analog signal is a continuous function with respect to the time and 

amplitude variables.  

 

To find a digital signal, three steps are needed: sampling, quantization and 

coding as represented by the following figure. 

 

 
 
 

Fig. 1.1 Three processes of digital processing 

 

where ( )x t  is an analog signal, ( )sx t  is a sampled signal, ( )qx k  is a 

quantized signal and ( )dx k is a digital signal. 

 

These blocks are defined as follows: 

 sampling (sampler block): using a sampler block, we find a 

sampled signal that is discrete in time and continuous in amplitude. 

 quantization (quantizer block): using a quantizer block, we find a 

quantized signal that is discrete in time and discrete in amplitude. 

 coding (encoder block): each sample quantized to a finite number 

of bits. 

1.2.1. The sampling of continuous-time signal 

The sampling process converts a continuous-time signal to a discrete-time 

signal with a defined time resolution. This is determined by what is known 

as the sampling rate, and it is usually expressed in Hertz (Hz) or samples 

per second. The sampling rate needed for a faithful reproduction of the 

signal depends on the fluctuation sharpness of the signal that is being 

sampled. 

 

1.2.1.1. Ideal sampler 
 

To sample an analog signal, means to register some values of this signal at 

given times. An ideal sampler is generally represented by an interrupter. 

The time closing is considered equal to zero. The ideal sampler is given by 

Figure 1.2:     

( )dx k  ( )x t ( )sx t  
( )qx k

Sampling Quantization Coding  
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Fig. 1.2. The ideal sampler of an analog signal 

  

We obtain a sampled signal ( )sx t
 
at equally spaced times st kT : 

( ) ( )          ,s sx t x kT k  

where sT  is called the sampling period and it is inversely related to the 

sampling rate sF , that is  

1
s

s

F
T

 

The sampled signal ( )sx t
 
is found by multiplying the continuous-time 

signal ( )x t
 
by a series of unit impulses, which are called the Dirac comb, 

given by  

( ) ( ) ( )sx t x t p t  

where ( )p t  is  

( ) ( )s
k

p t t kT  

and ( )t  is called the Dirac delta function and is defined by:  

1        0
( )

0         0
i f t

t
i f t  

The Dirac delta function ( )t
 

is a unit pulse in which the duration 

approaches zero but the area of the pulse is equal to one. This means as the 

width of the pulse  approaches to zero, the amplitude of the pulse 
1

 

must approach infinity to maintain a unity area. The Dirac delta function is 

presented by this figure:  

 

 

 

 

 

( )x t ( )sx t  analog 

signal 

sampled 

signal 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One 

 

4 

 

  

 

 
 

 
 
Fig. 1.3. The Dirac delta function  

 

The periodic train impulse ( )p t
 
is presented as follows 

 

 

 
 
 

 
 
 
 
 
Fig. 1.4. Periodic impulse train     

 

Sampling ( )x t  is equivalent to multiplying it by a train of impulses as 

given here:  
 

 

 

 

 

 

 

 

 

 

0 

( )t  

1

t  

0  2 sT  2 sT  sT  sT  
t  

( )p t  
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        The analog signal                                  The sampled signal 

 

 

 

 

      

 

 

 

 

   

 

 

  

Periodic impulse train   
 
Fig. 1.5. The sampling of an analog signal   

 

 

 

 

 

sT  

( )sx t( )x t

( )p t  ( )sx t( )x t

0 
sT  

t  

 

 
 

 

0  2 sT  2 sT  sT  sT  
t  

( )p t  
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The found sampled signal is given as: 

( ) ( ) ( )s s s
k

x t x kT t kT  

whereas the continuous-time signal ( )x t  is supposedly causal, that is to 

say  

( ) 0              0x t t  

Therefore, the sampled signal is given as: 

( ) (0) ( ) ( ) ( ) (2 ) ( 2 ) , ..., ( ) ( )s s s s s s sx t x t x T t T x T t T x kT t kT  

0
( ) ( ) ( )s s s

k
x t x kT t kT  

Some properties are described as follows: 

( ) 1    ,       st kT dt k R  

The Laplace transform of the Dirac function is 

( )     ,       skT s
sL t kT e k R

 and the Laplace transform of the sampled signal is 

0

0

0

0

( ) ( ) ( )

            ( ) ( )

           ( ) ( )

          ( ) s

s s s
k

s s
k

s s
k

kT s
s

k

L x t L x kT t kT

L x kT t kT

x kT L t kT

x kT e
 

 
1.2.1.2. Practical sampler 
 
In the practical case k R , the interrupter has an important closing 

time which leads to samples depending on the duration of the sampling 

. 
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0
( ) ( ) ( )s s s

k
x t x kT t kT  

where  is the duration of sampling caused by the interrupter.  

 
1.2.1.3. Commonly used functions 
 
a. Unit impulse 
 

Consider a continuous-time impulse ( )t , defined by: 

1        0
( )

0         0
i f t

t
i f t  

The sampled impulse is: 

0

1       0
( ) ( ) ( )

0      0s s s
k

i f k
t kT t kT

if k
 

and is given by the following figure: 

-10 -8 -6 -4 -2 0 2 4 6 8 10

Time index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

pl
itu

de

Unit impulse

s  (t)

 
Fig. 1.6. The unit impulse   
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b. Unit step 
 

Consider a continuous-time signal ( )u t , defined by: 

1        0
( )

0         0
i f t

u t
i f t  

The sampled unitary step is: 

0

1       0
( ) ( ) ( )

0      0s s s
k

i f k
u t u kT t kT

if k
 

and is represented by the following figure: 
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Fig. 1.7. The sampled unitary step    
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c. Unit ramp 
 

Consider a continuous-time signal ( )r t , defined by: 

t         0
( )

0         0
i f t

r t
i f t  

The sampled ramp is: 

0

k       0
( ) ( ) ( )

0      0s s s
k

i f k
r t r kT t kT

if k
 

and it is given by the following figure: 

 

0 1 2 3 4 5 6 7 8 9 10

Time index

0

1

2

3

4

5

6

7

8

9

10

A
m

pl
itu

de

Ramp

r
s  (t)

 
Fig. 1.8. The sampled ramp    

 

d. Sinusoidal signal 
 

Consider an analog signal ( )s t , defined by: 

( ) sin( )s t A wt  
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where A  is an amplitude, w is an angular frequency (radians/s) and is 

a phase (radians). The expression of the sampled sinusoidal signal is:  

0
( ) ( ) ( ) sin( )s s s s

k
s t s kT t kT A wkT

 
and it is given by the following figure:  
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s
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Fig. 1.9. The sampled sinusoidal signal    

 

1.2.1.4. Sampling period's choice 
 

A small amount of information is lost by sampling an analog signal at a 

very short time but all the information contained in the signal can be lost 

when the sampling times are too spaced from each other. 

 
Example: Consider the analog signal defined by the following function: 

( ) sin(2 )x t ft  
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This function is sampled at a frequency 2sF f , that is, at a sampling 

period 
2s
TT . 

0 0
( ) ( ) ( ) sin( ) ( ) 0s s s s

k k
x t x kT t kT k t kT

 
An analog signal ( )x t  having a low-pass type spectrum of width maxw  is 

fully described by the further completeness of its instantaneous values 

( )sx t  if they are elevated to a sampling pulse sw  such that max2.sw w .

 a. Theorem of spectrum concept 
 

The Fourier transform of a bandlimited sampled signal ( )sx t  is the 

frequency spectrum of the signal: 

( )
1         

         ( )

s s

s
ks

s s
k

X f F x t

X f kF
T

F X f kF

 

Proof: 

The impulse function is given by the following equation   

( ) ( )s
k

p t t kT  

The impulse function has a periodic distribution of period sT  from which 

it can be decomposed into a Fourier series: 

( ) ( ) s

jn t
T

s n
k n

p t t kT c e  

with  

2

2

1 ( )
s

s
s

jnT t
T

Tn
s

c p t e dt
T
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Using the property of the Dirac distribution: 

( )        
( ) ( )

0          n
b s s

sa

f kT if a kT b
f t t kT

if o
 

it can be easily shown that 
1

n
s

c
T

 

, from where, we deduce that:  

1( ) s

jn t
T

ns

p t e
T

 

Let us apply the Fourier transform to the expression of the sampled signal 

( )sx t . This would be transformed to: 

( ) ( ) ( )s sX f F x t F x t p t  

Using the property of the impulse function and the linearity of the Fourier 

transform, we obtain: 

1 1( ) ( ) ( )s s

jk jkt t
T T

s s
k ks s

X f F x t F x t e F x t e
T T

 

By the use of the spectral translation property of the Fourier transform, a 

shift in the spectral domain corresponds to a multiplication by a complex 

exponential in the time domain, according to the formula: 

( )sj F t
sF e x t X f F  

The Fourier transform of the sampled signal becomes 

 

1( )s s s
ks

X f F x t X f kF
T

 
 

We note that sX f  is periodic with period sT  and it is obtained by the 

sum of an infinity of complex functions, each of them being the Fourier 

transform X f
 

of the continuous-time signal x t , shifted by skF  

where sF  is the frequency of sampling and k Z . 

 

The following figures illustrate the frequency-domain representation of 

sampling in the time domain. The spectrum of the original signal is 
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presented in Fig. 1.10. Three cases are then to be considered according to 

the value taken by the sampling frequency compared to the highest 

frequency maxF  contained in the spectrum X f  of x t . The Fourier 

transform of the sampled signal with max2sF F  is shown in Fig. 1.11. 

The Fourier transform of the sampled signal with max2sF F  is shown in 

Fig. 1.12. The graphical representation using the Fourier transform of the 

sampled signal where max2sF F  is given by Fig. 1.13.  

 

 

  

 

 

 
 
Fig.1.10. The spectrum of the original signal   

  

Case 1: If max2sF F , the Fourier transform of the sampled signal is 

shown in Fig. 1.11.  

 

  

 

 

 
 

Fig. 1.11. The Fourier transform of the sampled signal with max2sF F  

where the Guard Band is: 

max

.
     2

High Low

s

G B F F

F F
 

In this case, called oversampling, when we sample at a rate which is 

greater than max2F , we say that we are oversampling as shown in Fig. 

0 

1 

maxF
f  

maxF  

( )sX f
Guard Band 

maxsF F  maxsF F  maxF  sF maxF sF  maxsF F  maxsF F

( )sX f

f  
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1.11. All the information contained in the continuous-time signal is found 

in each of the bands and, in particular, in the band ,s sF F . 

 

It is, therefore, possible, here, to recover from ( )sX f  the continuous 

signal ( )X f  isolating in the spectrum of ( )sX f  by using a practical Low-

Pass Filter (LPF) that removes the sidebands as given in Fig. 1.12. 
 

   

 

 

 

Fig. 1.12. The Fourier transform of the sampled signal with max2sF F  

 
Case 2: If max2sF F , the Fourier transform of the sampled signal is 

shown in Fig. 1.13.  
 

 

  

 

 

 

Fig. 1.13. The Fourier transform of the sampled signal with max2sF F  

 

In the situation . 0G B , it is possible to reconstruct the base pattern 

( )X f  corresponding to the spectrum of the continuous-time signal ( )x t  

using an ideal low-pass filter with maxcF F , where cF  
is the cutoff 

frequency of the low-pass filter as given in Fig. 1.14.  

 

f  

maxsF F  sF  maxsF F  

Practical LPF ( )sX f

maxF  sF maxF0 maxsF F maxsF F  

( )sX f

maxF  maxF  sF 0 maxsF F  sF  

f  

maxsF F  
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Fig. 1.14. The use of an ideal low-pass filter when max2sF F  

 

In this case, it is not recommended to use the practical low-pass filter 

because the phenomenon of the aliasing effect may be continued as given 

in the following figure: 

 

  

  

 

 

 

Fig. 1.15. The use of practical low-pass filter when max2sF F  

 
Case 3: If max2sF F , the Fourier transform of the sampled signal is 

shown in Fig. 1.16. 

 

  

 

 

 

Fig. 1.16. The Fourier transform of the sampled signal with max2sF F  

f  

Ideal LPF 

( )sX f

maxF  maxF  sF 0 maxsF F  sF  

aliasing effect 
( )sX f

maxF  maxF  sF 0 sF  

aliasing effect 
( )sX f

 

sF maxF 0 maxsF F  maxF  sF

maxsF F  

f  

f  
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In this situation, when we sample at a rate which is less than max2F , we 

say we are undersampling and aliasing will yield misleading results as 

shown in Fig. 1.16. Distortions occur in the spectrum ,s sF F , as a result 

of recombination of its various components. In this case, it is impossible to 

reconstruct the base pattern ( )X f corresponding to the spectrum of the 

continuous-time signal ( )x t even if the practical or ideal low-pass filters 

are used. 

Example: 

Let us consider a continuous-time signal ( )x t  with a maximal frequency 

max 159.15F Hz , given as:

( ) 2sin(1000 ) 3cos(1000 )x t t t
The continuous-time signal ( )x t is presented by the following figure:

-5 -4 -3 -2 -1 0 1 2 3 4 5

t in msec.

-4

-3

-2

-1

0

1

2

3

4

x(
t)

Continuous-time signal

Fig. 1.17. The evolution of ( )x t
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When max2sF F , 5000sF Hz , the discrete-time Fourier Transform 

( )X f is presented by Fig. 1.18.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Frequency in pi units

-40

-20

0

20

40

60

80

X
s
(f)

Discrete-time Fourier Transform

Fig. 1.18. The Fourier transform of the sampled signal with max2sF F

If max2 318.3098sF F Hz , the discrete-time Fourier Transform 

( )sX f is presented by Fig. 1.19.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Frequency in pi units

-20

0

20

40

60

80

100

120

140

X
s
(f)

Discrete-time Fourier Transform

Fig. 1.19. The Fourier transform of the sampled signal with max2sF F

When max2sF F , 1000sF Hz , the discrete-time Fourier Transform 

( )sX f is presented by the following figure: 
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Frequency in pi units

-20

-10

0

10

20

30

40

50

60

70

80
X

s
(f

)
Discrete-time Fourier Transform

Fig. 1.20. The Fourier transform of the sampled signal with max2sF F

b. Anti-aliasing filter

The analog signal, ( )x t , is sometimes contaminated by high frequency 

disturbances. Thus, the actual frequency of the signal is greater than the 

frequency maxF that is initially planned without these noises:

max2sF F
It is compulsory to filter all components of the analog signal whose 

frequencies are greater than that before the sampling operation maxF . 

A simple and effective solution is to insert an analog filter called an anti-

aliasing filter or a Low-Pass Filter (LPF) before sampling the signal. 

Fig. 1.21. The anti-aliasing filter before the sampler 

anti-aliasing filter ( )x t sampler ( )sx t
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The used filter must reflect sufficient attenuation at frequencies above 

2
sF

, but, the LPF cutoff frequency must be greater than the closed loop 

system bandwidth. 

 

The parameters of the low-pass filter are given in the following figure: 

 

 

 

 

 

 
 

Fig. 1.22. The low-pass filter parameters 
 

These parameters define the transition band characteristics of the filter 

aF : the desired analog input bandwith 

passF : the pass-band of the filter a passF F   

stopF : the beginning of the filter's stopband 
2
s

stop
FF  

D : the desired upper-frequency dynamic range (dB)  

M : the approximate order of the filter (the number of poles)

 

26 log
2
s

a

DM F
F

 

c. Nyquist sampling theorem 

 

A signal ( )x t
 
which is bandlimited to maxF  can be completely recovered 

from its samples if the samples are taken at a rate of  

max2.sF F
      

 

D

sF  
2
sFaF  
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where sT
 

is the sampling period, 
1

s
s

F
T

 

is the sampling rate and max2F
 

is called the minimum sampling rate or the Nyquist rate. 

1.2.2. The quantization of a sampled signal 

The second aspect of analog-to-digital conversion is quantization. This 

process converts a discrete in time and continuous in amplitude signal 

( )sx t
 

to a signal that is discrete in both time and amplitude ( )qx t . The 

quantization can be either uniform or nonuniform in type. In a uniform 

quantizer, the representation levels are uniformly spaced; otherwise, the 

quantizer is nonuniform. In uniform quantization, the quantization regions 

are chosen to have equal length whereas in nonuniform quantization, 

regions of variable lengths are used.  

 
1.2.2.1. Uniform quantization 
 

In this section, when the continuous in time signal ( )x t
 
is in a finite range 

( min( )x , max( )x ), the length of the quantization region, which is called 

the quantum, is  
max( ( )) min( ( ))x t x tQ

L
 

where 2NL  is the number of possible states and N  is a positive integer 

or the number of bits which make it possible to express digital signals 

from 0  to 2 1N
 in natural binary code.  

Among the methods of uniform quantization, we can find in the literature 

the rounding method and the truncation method. The rounding method of 

uniform quantization is given as 

( )y round z  

where the value of the quantization step between levels is 

( ) min min( ( ))x t x t
z

Q
 

Note that, in comparison with the noise present in the signal, the number 

of bits chosen should be enough so that the quantization error is small.  
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Example:
Let us consider the continuous-time signal

( ) sin( )x t A wt

with 1A , 
2

2w f
T

,  1T s and 1f Hz . The sampling 

period is 
1 1

3
s

s

T s
F

. 

The sampled signal of ( )x t is given as: 

0

2
( ) sin(2 ) ( ) sin(2 ) sin( )

3
s s s s

k

kx t kT t kT kT

We perform a uniform quantization with 
22L , 

32L and 
42L

levels to the continuous-time signal ( )x t and we plot the output of each 

one in the same figure with ( )x t . 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

x(
t)

Continuous-time signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

x
q

(t)

Quantized signal

Level=2 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

x
q

(t)

Quantized signal

Level=2 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

x
q

(t)

Quantized signal

Level=2 4

Fig. 1.23. Quantized versions of an analog signal
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According to Fig. 1.23, the more quantum levels we use, L=16, the better 

performance we get. However, among the problems with uniform 

quantization is that it is only optimal for uniformly a distributed signal, 

which is why some solutions are proposed that use non-uniform 

quantization and where the quantization interval is smaller and near zero. 

 
1.2.2.2. Non-uniform quantization 
 

The input of continuous in time signal amplitude distribution is far from 

being uniformly distributed. Therefore, it makes sense to design a 

quantizer with less quantization levels at larger amplitudes and more 

quantization levels at lower amplitudes. The resulting quantizer will be a 

nonuniform quantizer having variable spacing between the quantization 

levels.   
 

In nonuniform quantization, the sampled signal is first passed through a 

nonlinear element that reduces the dynamic range of the signal, then a 

uniform quantization on the output should be performed.  

Two types of compressors are used in nonuniform quantizers; the A-law 

-law. 

 

In the A-law quantizer, the input-output relationship is defined by 

( ) 1
.sgn( ),                  ( )

1 ln( )
( )

1 ln( ( ) ) 1
. ( ),       ( ) 1

1 ln( )

A x t
x x t

A A
y x

A x t
sgn x x t

A A

 

In practice, A=87.6. 

 

-law quantizer, the input-output relation is defined by 

log(1 ( )
( ) .sgn( )

x t
y x x  

where 255

 

and ( ) 1x t . 
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1.2.2.3. Signal-to-quantization-noise-ratio 
 

The signal-to-quantization-noise-ratio (SQNR) in dB is expressed as 

follows 
2 2

2 2

( )
10log 10log 20log

( )

x
dB

e q q

xE xSQNR
E x x x x

 

where 
2

e
 

is the variance of the quantization noise error and 2

x
 

is the 

variance of the continuous-time signal ( )x t . 

1.2.3. The coding of quantized signal 

After the quantization process comes the third aspect of analog-to-digital 

conversion which is coding. The coding process converts the quantized 

level of each sample into bits. The encoding scheme that is usually 

employed is natural binary coding, meaning that the highest level is 

mapped into a sequence of all ones and the lowest quantization level is 

mapped into a sequence of all zeros.  

 

A binary word is written: 1 2 1  ...  N Nb b b b , where 1b  is the most 

significant bit and Nb  
is the least significant bit. The corresponding 

decimal number is: 
1 2 1 0

1 2 12 2 ... 2 2N N
N ND b b b b  

 
Example: 
Let us consider the continuous in time signal 

( ) sin( )x t A wt  

with 1A , 
2

2w f
T

, 1T s , 1f Hz  and the sampling 

period 
1 1

3
s

s

T s
F

.  

The sampled signal of ( )x t
 
is given as:  

2
( ) sin( )

3
s

kx t  
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We perform an encoding of this continuous-time signal using differents 

levels (
22L , 

32L and 
42L ) as given by the following figure: 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

x
d

(t)

Level=2 2

1 2 3 4 5 6 7 8 9 10
0

0.5

1

x
d

(t)

Level=2 3

1 2 3 4 5 6 7 8 9 10
0

0.5

1

x
d

(t)

Level=2 4

Fig. 1.24. The encoding process of the quantized signal with different levels

Finally, the general process of the signal's digitization is given as:  

Fig. 1.25. Three processes of digital processing 

where ( )x t is an analog signal, ( )sx t is a sampled signal, ( )qx k is a 

quantified signal, ( )dx k is a digital signal and ( )nfx t is a non-filtered 

analog signal.

Filtering is used to comply with the sampling theorem. The filter placed 

before the sampling is an anti-aliasing filter. It removes frequencies that
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are higher than half of the sampling rate. The filter placed after the coding 

is a reconstruction filter. It may include a correction for the method of the 

hold. 

1.3. Reconstruction of analog signal 

In the previous section, we discussed the process of sampling, i.e., 

obtaining a discrete in time signal ( )sx t
 
from a continuous in time signal 

( )x t . But we now consider the reverse problem, namely how to construct 

a continuous-time signal given samples that are discrete in time. This 

operation is called reconstruction:  

 

 

 
 
Fig. 1.26. The process of reconstruction signal   

 

where ( )x t  is a continuous in time signal and ( )sx t
 
is a sampled signal. 

 

In literature, the reconstruction process is found by the data hold. This 

latter is a process of generating a continuous-time signal ( )h t  from a 

sampled signal ( )sx t . During the time interval ( 1)s skT t k T , the 

signal ( )h t  may be approximated by a polynomial that depends on  or 

in terms of: 
1

0 1 1( ) ... n n
s n nh kT a a a a  

with 0 sT  
and we note ( ) ( )s sh kT x kT , so

 
1

1 1( ) ( ) ... n n
s s n nh kT x kT a a a  

To generate ( )sh kT , the nth-order hold uses the past ( 1)n
 
discrete 

data (( ) )sx k n T , (( 1) )sx k n T , ..., ( )sx kT . 

1.3.1. Zero-Order-Hold 

The Zero-Order-Hold (ZOH) is found when 0n
 
in the above equation, 

so that:  
( ) ( )s sh kT x kT    0 sT  

and 0,1,2,...k
 

( )x t  
( )sx t  Reconstruction 
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In order to find the transfer function of the ZOH, let us consider ( )u t  as a 

unit step function input, as given in this case: 

0

( ) (0) ( ) ( ) ( ) ( ) ( 2 ) (2 ) ( 2 ) ( 3 ) ...

     ( ) ( ) ( 1 )

s s s s s s s

s s s
k

h t x u t u t T x T u t T u t T x T u t T u t T

x kT u t kT u t k T
 

and suppose that 

( )
skT

s
eL u t kT
s  

Thus 

1

0

0

0
0

( ) ( )

          = ( )

1        ( )

       ( ) ( )

ss

s
s

s

k TkT

s
k

T
kT

s
k

kT
s

k

L h t H s

e ex kT
s

e x kT e
s

H s x kT e

 

Then, the transfer function of ZOH is  

0

0

( )( )
( )

1        =

s

s

kT
s

k
sT

H sH s
x kT e

e
s

 

The Input-Output of the ZOH process is given by Fig. 1.27 as:   
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Fig. 1.27. The process of reconstruction signal by ZOH 

Example:
Using Simulink/MatLab, in the following example, a unit step signal is 

used. Two sampling periods are taken, ( 0.1sT s and 1sT s ), by 

applying the zero-order-hold. 

Zero-Order
Hold1

ScopeStep

Fig. 1.28. The Zero-Order-Hold by Simulink/MatLab

Fig. 1.29. The input and output from ZOH with 0.1sT s

( )sx t

( )x t( )sx t

2 sT

( )x t
ZOH

0 sT0 sT 4 sT3 sT2 sT 4 sT3 sT t

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Sampling and Reconstruction 29

Fig. 1.30. The input and output from ZOH with 1sT s

Example:
To show more of the influence of the ZOH, in the following example, a 

sinusoidal signal is treated using two sampling periods, 0.1sT s and 

1sT s , by applying the zero-order-hold.

Zero-Order
Hold1

Signal
Generator

Scope

Fig. 1.31. The Zero-Order-Hold by Simulink/MatLab
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Fig. 1.32. The input and output from ZOH with 0.1sT s   

 

 
Fig. 1.33. The input and output from ZOH with 1sT s     
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Using the zero-order-hold, in the case where 0.1sT s , the reconstruction 

is better than in the case where the sampling period 1sT s . 

1.3.2. First-Order Hold 

The First-Order-Hold (FOH) is found when 1n
 
in the above equation, 

so that: 

1( ) ( )s sh kT a x kT    0 sT  
and 0,1,2,...k

 

Now 

(( 1) ) (( 1) )s sh k T x k T     

so that 

1(( 1) ) ( )

               (( 1) )
s s s

s

h k T aT x kT

x k T  

or 

1
( ) (( 1) )s s

s

x kT x k Ta
T  

then 

( ) (( 1) )( ) ( )s s
s s

s

x kT x k Th kT x kT
T

 , 0 sT  and 

0,1,2,...k  
To find the transfer function of the FOH, let us consider ( )su t  as a unit 

step function input as given in the following equation:
 

0 0
( ) ( ) ( ) ( )s s s s

k k
u t u kT t kT t kT     

In this case: 

( ) (1 ) ( ) ( ) ( )s
s s

s s

t Tth t u t u t T u t T
T T

    

Thus, the transfer function is: 
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2 2

2

2

1 1 1 1( )

1 1       

1       1

s s

s s

s

sT sT

s s s

sT sT

s

sT s

s

H s e e
s s T s T sT

e e
s s T

sTe
s T

 

The Laplace transform of the unit step is: 

1( ) ( )
1 ss s sTX s L u t
e

 

so the transfer function becomes: 

1

2

1( ) ( )
1

1 1      

s

s

sT

sT
s

s

H s H s
e

sT e
T s

 

Thus, the transfer function of FOH is: 
2

1
( ) 1 1( ) 1

1

s

s

sT
s

s
sT

H s sT eH s
T s

e

 

The Input-Output of the FOH process is presented as given:   
  
 

 

 

 
 

Fig. 1.34. The process of reconstruction signal by FOH   
 

Example: 
Applying Simulink/MatLab, the response of the FOH when the input is a 

unit step is given by the following figure: 

t  
4 sT3 sT  

( )sx t ( )x t

0  sT 2 sT

( )x t  
( )sx t

sT  4 sT  3 sT  
0  2 sTsT

FOH 
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ScopeFirst-Order
Hold

Step

Fig. 1.35. The First-Order-Hold by Simulink/MatLab

Fig. 1.36. The input and output from FOH with 0.1sT s

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One34

Fig. 1.37. The input and output from FOH with 1sT s

Example:
In the following example, we take a sinusoidal signal and we use two 

sampling periods; the first 0.1sT s and the second 1sT s by 

applying the first-order-hold.

Signal
Generator

ScopeFirst-Order
Hold

Fig. 1.38. The First-Order-Hold by Simulink/MatLab
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Fig. 1.39. The input and output from FOH with 0.1sT s   

 

Fig. 1.40. The input and output from FOH with 1sT s   
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Using the first-order-hold, in the case 0.1sT s , the reconstruction is 

better than it was in the case where the sampling period 1sT s . 

 

We conclude that, the first-order-hold gives a better result than that the 

one obtained with the zero-order-hold.  

 

The zero-order-hold interpolation is one of the most widely used methods 

and it is easily implemented. Another conceptually simple method is the 

linear interpolation, which is also called the first-order-hold interpolation. 

With this method, the reconstruction is a continuous function that just 

connects the sample values with straight lines. Higher order interpolation 

schemes also exist that pass smoother functions through the samples. The 

higher the order is, the more samples are needed to be used to reconstruct 

a value at each time.  

1.3.3. Cubic-order-hold interpolation 

This approach, for a smoother reconstruction, uses spline interpolation, but 

it is not necessarily a more accurate estimate of the analog signal between 

samples. Hence this interpolation does not require an analog post-filter. By 

using a set of piecewise continuous third-order polynomials called cubic 

splines, the smoother reconstruction is obtained. 

 
Example: by applying the cubic-order-hold interpolation, the 

reconstruction of the analog signal from the discrete-time signal 

( ) sin(2 )x k kf
 

is given by the following figure using the spline 

MatLab function. 
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Fig. 1.41. The discrete-time signal and the analog by COH method  

1.4. Conclusions 

In this chapter, emphasis has been placed on digitizing an analog signal. 

Indeed, sampling, quantization and coding are well detailed. In the second 

part of this chapter the reconstruction of a signal is proved. Some 

application exercises are corrected to ensure the basic notions already 

defined. 

1.5. Applications 

Application 1    
 

1 - The signal 1( ) sin(2 )x t t , 0t , is sampled, where the sampling 

rate 3sF Hz . Find the sampled signal 1 ( )sx t  and draw it. 

2 - Perform the same operation with the signal 

2 ( ) sin(2 ) sin(6 )x t t t , 0t . Find the sampled signal 

2 ( )sx t  and draw it. 

3 - Compare these sampled signals, 1 ( )sx t
 
and 2 ( )sx t . 
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Answer 

1-  The signal 1 1( ) sin(2 ) sin( )x t t w t with 1 1

1

2
2w f

T
,  

1 1T s and 1 1f Hz . The sampling period is
1 1

3
s

s

T s
F

. The 

sampled signal of 1( )x t is 1 ( )sx t : 

1

0

2
( ) sin(2 ) ( ) sin(2 ) sin( )

3
s s s s

k

kx t kT t kT kT
    

0k
The analog signal 1( )x t and the sampled signal 1 ( )sx t are presented in 

the following figure:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1/3

2/3

4/3

5/3

signal x 1 (t)

sampled signal

x 1 (k)

Fig. 1.42. The analog signal 1( )x t and the sampled signal 1 ( )sx t
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2- The sampled signal of 2 ( )x t is 2 ( )sx t : 

2

0

0 0

( ) (sin(2 ) sin(6 )) ( )

       sin(2 ) ( ) sin(6 ) ( )

2 6 2
       sin(2 ) sin(6 ) sin( ) sin( ) sin( )

3 3 3

s s s s
k

s s s s
k k

s s

x t kT kT t kT

kT t kT kT t kT

k k kkT kT

The analog signal 2 ( )x t  and the sampled signal 2 ( )sx t are presented in 

the following figure:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1/3

2/3

4/3

5/3

signal x 2 (t)

sampled signal

x 2 (k)

Fig. 1.43. The analog signal 2 ( )x t and the sampled signal 2 ( )sx t

3 - From questions 1 and 2, we find:

2 1( ) ( )s sx t x t
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This example illustrates that two sampled sinusoids can produce the same 

discrete in time signal. When this occurs, we say that these signals are 

aliases of each other. 

 

The signal 2 1 2( ) sin(2 ) sin(6 ) sin( ) sin( )x t t t w t w t , with  

1 1

1

2
2 2w f

T
,  1 1T s  1 1f Hz ; 

         
2 2

2

2
2 6w f

T
 , 2

1

3
T s  and 2 3f Hz .  

We did not respect the conditions stated in the Nyquist theorem that are 

related to 2 ( )sx t . Indeed, 2 ( )x t  has two frequencies, 1 1f Hz  and 

2 3f Hz . The maximum frequency is clear max 2 3F f Hz  which is 

not strictly inferior to 
2

sF
. The sampling of sin(6 )t  gives a null signal; 

in this case, sampling at frequency 3sF Hz
 
masks this oscillation. A 

continuous in time signal ( )x t  with frequencies no higher than maxF  can 

be reconstructed exactly from its samples.  

 

2 ( )x t
 
illustrates that two sampled signals can produce the same discrete 

in time signal so these signals are aliases of each other. 

Application 2    
 

We consider the analog signal ( ) cos(100 ) 2sin(400 )x t t t
 

0t . 

 

1-  From what frequency can we sample this signal if we want to respect 

the sampling theorem? 

2-  We sample ( )x t  at the sampling rate 300sF Hz . 

2-a- What should we observe? 

2-b- Determine the sampled signal of ( )x t . 

2-c- Check the result of 2-a. 
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Answer  
 

We consider the analog signal ( ) cos(100 ) 2sin(400 )x t t t
 

0t . 

 

1- The analog signal is  

1 2

( ) cos(100 ) 2sin(400 )

     cos( ) 2sin( )

x t t t
w t w t  

with 1 1

1

2
2 100w f

T
 so 1

1

50
T s  and 1 50f Hz ; 

2 2

2

2
2 400w f

T
 so 2

1

200
T s

 

and 2 200f Hz . 

The maximum frequency is max 2 200F f Hz .  

 

To respect the conditions stated in the sampling theorem, it is necessary 

that max 22 2 400sF F f Hz . 

 

2- If we sample ( )x t  with the given sampling rate 300sF Hz , this 

means 
1 1

300
s

s

T s
F . 

2-a- We have 400sF Hz  so the sampling theorem conditions are 

not respected, and we will observe a phenomenon of aliasing which 

generates losses of information. 

2-b- The sampled signal of ( )x t
 
is ( )sx t :  

0

0 0

( ) (cos(100 ) 2 in(400 )) ( )

       cos(100 ) ( ) 2sin(400 ) ( )

4
       s(100 ) 2sin(400 ) cos( ) 2sin( )

3 3

2
      cos( ) 2sin( )

3 3

s s s s
k

s s s s
k k

s s

x t kT s kT t kT

kT t kT kT t kT

k kco kT kT

k k
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2-c- We have   

max

2 2 100 200
200 200 2

3 300
s

s

k k k kT t F
F

so the 

result of 2-a holds true. 

Application 3 

We sample the output of a first order linear system ( ) (1 )

t

y t e , 

0t , with a sampling period sT . 
 
and  are respectively the static 

gain and the constant of time. 

 

1-  Determine the time 
1t  from which ( )y t  is less than 10% of the steady 

state value. 

 2-  Find the sampled signal ( )sy t . Compare the steady state values of 

( )y t  and ( )sy t .  

3-  For the different values of 
2

sT , 

 

and 2 : 

a) Calculate the first 10 values of ( )sy t  according to .  

b) Deduce the rank n
 
from which all samples become less than 10% 

of the steady state value. Specify the corresponding time and 

compare to 1t .  

4-  Deduce the maximum value of the ratio 
sT

 which makes it possible to 

sample the analog signal ( )y t
 
without losing too much information 

on the transient regime. 

 
Answer  
 

1 - The value of the steady state of ( )y t  is 

( ) lim ( )
t

y y t
                

( ) lim (1 )

t

t
y e  
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The time from which ( )y t is less than 10% of the steady state is:

1

1
1 1( ) lim (1 ) (1 ) 0.9 ( ) 2.3

tt

t t
y t e e y t . 

2- The sampled signal is

0

( ) (1 ) ( ) (1 )
s skT kT

s s
k

y t e t kT e

The value of the steady state of ( )sy t is

lim ( ) lim (1 )
skT

sk k
y t e  so ( ) ( )sy y . 

3- For different values of 
2

sT , and 2 we have 

a- The first 10 values of ( )sy t according to are summarized in the 

following table:

Table 1.1. The first 10 values of ( )sy t according to 

b- The samples which are less than 10% of the steady state are obtained if 

( ) ( )sy nT y

If 
2

sT then the rank n is equal to 5 because 

(5 ) 0.92 0.9sy T , so the corresponding time is 

15 5 2.5
2

sT t
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 If sT  then the rank n
 

is equal to 3 because 

(3 ) 0.95 0.9sy T , so the corresponding time is 

13 3sT t  

 If 2sT  the rank n
 

is equal to 2 because 

(2 ) 0.98 0.9sy T , so the corresponding time 

is 12 4sT T t 12 4sT t  

4- From 2n , we have 2sT  which makes it possible to sample the 

analog signal ( )y t
 
every two time constants. We are losing a lot of 

information about the transitional regime, i.e., 2sT
.  

 

From 3n , we have sT  which makes it possible to sample the 

analog signal ( )y t
 

for each sT . We have more information on the 

transitional regime, that is 1sT
. 

 

The maximum value of the ratio 
sT

 is 1 while for a first order system we 

have 
4

sT .  

 
Application 4 
 

Use the ZOH method, the FOH method and the COH method, and find the 

original signal: 

( ) sin( )x t t . 

using the sampling rate 450sF Hz . 
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Answer  
 

In order to recover the original signal, we used the stairs function for the 

ZOH method, plot function for the FOH method and spline function for 

the COH method as given in the following figure.  

 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ZOH

COH

x(t)

FOH

 
Fig. 1.44. The original signal, the ZOH method, the FOH method and the COH 

method 
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CHAPTER TWO 

THE Z-TRANSFORM OF SYSTEMS 

 

 

 

2.1. Introduction 

The z-transform is the preferred tool for the analysis and synthesis of 

linear, stationary, sampled or discrete in time systems. It may be seen as a 

discrete analogue of the Laplace transform. This type of transform makes 

it possible to easily describe the discrete in time signals and the response 

of invariant linear systems subjected to various inputs. It is used to 

simplify discrete in time systems, e.g., digital signal processing, digital 

filter design, etc. 

2.2. The z-transform 

2.2.1 Relation between Laplace transform and z-transform 

The Laplace transform is given by the following equation:  

( ) ( ) st
s sL x t x t e dt

 

( ) ( )s
k

x k t kT  is used instead of ( )sx t . The previous equation 

becomes:  

                   

( ) ( ) sskT
s

k
L x t x k e            

The z-transform of a discrete in time signal ( )x k  is defined as follows 

                   

( ) ( ) k

k
X z x k z           or          ( ) ( )X z Z x k                      

where ssTz e  is a complex variable ( z C ). 
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The causal discrete in time signal is defined as  

( ) 0x k  for all 0k  
so the uni-lateral z-transformation or the z-transform of a discrete in time 

signal ( )x k  is defined as follows 

0

( ) ( ) k

k
X z x k z  

Example: 
 

The z-transform of the following discrete in time signal 

1
( ) ( )

3kx k u k  

 is given as  

3
( )

3 1

zX z
z

 

or, using MatLab's function, the z-transform it is given as  

 
 
 
 

2.2.2 The region of convergence 

The region of convergence (ROC) of ( )X z  is the set of all values of z  

for which ( )X z
 

attains a finite value. Mathematically speaking, the ROC 

is the set of values z C  for which the sequence ( ) kx k z  is, absolutely, 

summable, i.e.,  

0

: ( ) ( ) k

k
ROC z C X z x k z

 
In practice, it is not always necessary to specify the region of convergence 

of a certain z-transform, provided it is known that the series converges in 

some region. 

 

The ROC is always an annulus, i.e., 

2 1r z r
 

>> syms z k 

ztrans(1/3^k) 

ans = 3*z/(3*z-1) 
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where 2r  can be zero and 1r  can be .  

 

Of according to the causal signal, the ROC is the exterior of a circle of 

some radius 2r , then it is defined by the unit circle in a complex z-plane.  

 

 

 

 

 

 

 

 
Fig. 2.1. The ROC of the causal signal. 

 

The ROC is an important concept in many aspects: it allows the unique 

inversion of the z-transform and provides convenient characterizations of 

the causality and the stability properties of a signal or a system.  

2.3 The z-transform by residual method 

Let us consider a continuous in time signal given by the following 

equation  

( )
( )

( )

N sX s
D s

 

where ( )N s
 

and ( )D s
 

are respectively the numerator and the 

denominator such that deg ( ) deg ( )N s D s . 

 

If the continuous in time signal ( )X s  has single poles, then the z-

transform is 

1
1

( ) 1
( )

'( ) 1 s

i

n

sT
i s p

N sX z
D s e z

 

1 

ejwz  

w

Im  

Re
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where ip  are simples poles of ( )X s  and n  is the number of poles. 

 
Example: Let us consider a continuous-time signal ( )X s  given as 

follows 

1
( )

( 2)
H s

s s
 

We have two ( 2n ) simple poles of ( )X s  which are 1 0p  and 

2 2p . 

1 2

2

1
1

1 2

1 1

1 2

( ) 1
( )

'( ) 1

( ) ( )1 1
       

'( ) '( )1 1

s

i

s s

sT
i s p

p T p T

N sX z
D s e z

N p N p
D p D pe z e z

 

with:  

( ) 1N s , 

( ) ( 2)D s s s , 

'( ) 2 2D s s . 

so 
2

1
1

1 2 1

2

( ) 1
( )

'( ) 1

1 1 1
        

2 1 1

1
       

2 1

s

i

s

s

sT
i s p

T

T

N sX z
D s e z

z e z
z z

z z e

 

Finally, we find  
2

2

1 (1 )
( )

2 ( 1)( )

s

s

T

T

z eX z
z z e

 

If the continuous in time signal ( )X s  has multiple poles of order m  then 

the z-transform is 
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1

1 1
1

( )1
( )

( 1)! 1 s

i

mn
i

m sT
i s p

X sdX z
m ds e z

 

where ip  are simple poles of ( )X s ; n  is the number of poles; m  is the 

order of multiplicity; and  

( ) ( ) ( )m
i iX s s p X s

 Example: Let us consider a continuous in time signal ( )X s  given as 

follows 

2

1
( )X s

s
 

We have one simple pole ( 1n ) of ( )X s
 
which is 1 0p  and the 

order of multiplicity is two ( 2m ). 

1 1

2

2

( ) ( ) ( )

1
        

        1

mX s s p X s

s
s  

So we get:  
2 11

2 1 1
1

1

1 2

1

1 2

2

1 1
( )

(2 1)! 1

        
(1 )

        
(1 )

       
( 1)

s

i

i s

i s

sT
i s p

p T
s

p T

s

s

dX z
ds e z

T z e
e z

T z
z

T z
z
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2.4. Commonly used z-transform functions 

2.4.1. Unit impulse function 

Consider a discrete in time unit impulse function ( )k , defined by: 

1       0
( )

0      0
i f k

k
if k

 
The z-transform of the discrete-time unit impulse function ( )k , is  

1 2 3( ) 1 0 0 0 ... 1Z k z z z
 

2.4.2. Unit step function 

Consider a discrete in time unit step function
 

( )u k , defined by: 

1        k 0
( )

0         k 0
i f

u k
if  

The z-transform of the discrete in time unit step function
 

( )u k , is  

1 2
1

1( ) 1 ...
1

Z u k z z
z

 

   if 
1 1z  

2.4.3. Unit ramp function 

Consider a discrete in time unit ramp function
 

( )r k , defined by: 

sT k        k 0
( )

0         k 0
i f

r k
i f  

The z-transform of the discrete in time unit ramp function
 

( )r k , is  

1

21
( )

1
sT zZ r k
z

 

   if 
1 1z

 

where sT  
is a sampling period.  
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2.5. Properties of the z-transform 

We focus now on listing the different properties of the z-transform. We 

start with the first one.   

 

Linearity: if 1 1( ) ( )X z Z x k  and 2 2( ) ( )X z Z x k , then 

1 1 2 2 1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )

                                 ( ) ( )

Z a x k a x k a Z x k a Z x k
a X z a X z  

 

with ( 1a  and 2a R ). 

 

The proof of the linearity property is straightforward using obvious 

properties of the sum operation. By the z-transform definition: 

      

1 1 2 2 1 1 2 2

0

1 1 2 2

0

1 1 2 2

0 0

( ) ( ) ( ) ( )

                                  ( ) ( )

                                   = ( ) ( )

                           

k

k

k k

k

k k

k k

Z a x k a x k a x k a x k z

a x k z a x k z

a x k z a x k z

1 1 2 2

1 1 2 2

       ( ) ( )

                                  ( ) ( )

a Z x k a Z x k
a X z a X z

                         

 

Right shift theorem: let ( ) ( )X z Z x k , d N
 
and ( ) 0x k , for 

0k , then 

( ) ( ) ( )d dZ x k d z Z x k z X z
 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



The z-transform of Systems 55 

Proof: 

                   

0

0

( )

0

0

( ) ( )

                   = ( )

                  = ( )

                 = ( )

                 ( )

                 ( )

k

k

k d d

k

d k d

k

d m

m
d

d

Z x k d x k d z

x k d z

z x k d z

z x m z

z Z x k

z X z

                                         

 
Left shift theorem: let ( ) ( )X z Z x k

 
and d N , then  

  
1

0

( ) ( ) ( )
d

d i

i
Z x k d z X z x i z

 
Proof: 

                   0

( ) ( ) k

k
Z x k d x k d z       

let us consider l k d , then k l d . We find  

( )

( 1) ( 2) ( )

( ) ( )

                   = ( )

                  = ( )

               ( ) ( 1) ( 2) ... ( )

l d

l d

l d

l d

d l

l d

d d d d d n

Z x k d x l z

x l z z

z x l z

z x d z x d z x d z x d n z
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( 1) ( )

0 1 2 ( 1)

0 1 2 ( 1)

( ) ( 1) ... ( )

( ) (0) (1) (2) ... ( 1)

(0) (1) (2) ... ( 1)

d d d n

d d

d

x d z x d z x d n z
Z x k d z x z x z x z x d z

x z x z x z x d z  

0 1 2 ( 1)( ) ( ) (0) (1) (2) ... ( 1)d dZ x k d z X z x z x z x z x d z
 

1

0

( ) ( ) ( )
d

d i

i
Z x k d z X z x i z  

 
Multiplication by k :

 
let ( ) ( )X z Z x k , then  

  

( )
( )

d X z
Z kx k z

dz  
Proof:  

0

1 1

0

0

( ) ( )

               =- ( )

               = - ( )

               = ( )

k

k

k

k

k

k

Z kx k kx k z

x k k z

dz x k z
dz

dz X z
dz

 

 
Multiplication by ka :

 
let ( ) ( )X z Z x k

 
and a C , then  

  

( ) ;        0k zZ a x k X a
a
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Proof: 

                   

0

1

0

0

( ) ( )

                   = ( )

                  = ( )

                  ( )

k k k

k

k

k
k

k

Z a x k a x k z

x k a z

zx k
a

zX
a

                                              

In a similar way, we get: ( ) ( )kZ a x k X az . 

 

Initial value theorem: if ( )x k
 

is zero for 0k , i.e., ( )x k
 

is causal, 

then  

2 1

(0) lim ( )

(1) lim ( ) (0)

(2) lim ( ) (0) (1)

z

z

z

x X z

x z X z x

x z X z x x z
 

 

Proof:  

By the z-transform definition: 

1 2

0

( ) ( ) (0) (1) (2) ...k

k
X z x k z x x z x z  

Taking the limit for the modulus of 2 of z when tending it to infinity, we 

obtain the result specified by the initial value theorem. 
1 2(0) lim ( ) lim (0) (1) (2) ... (0) 0 0 ..

z z
x X z x x z x z x

 
By the way 

 1 2 3( ) (0) (1) (2) (3) ...X z x x z x z x z

 

and  

 1 2( ) (0) (1) (2) (3) ...z X z x x x z x z  
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then  
1 2lim ( ) (0) lim (1) (2) (3) ... (1) 0 0 ..

z z
z X z x x x z x z x  

Using the same way, we get that:   
2 1(2) lim ( ) (0) (1)

z
x z X z x x z  

 
Final value theorem:

 
if ( ) ( )Z x k X z , then  

1

( ) lim ( )

           = lim  ( 1) ( )

k

z

x x k

z X z
 

Proof: 

0 0 0

( 1)

1

0

( 1) ( ) ( 1) ( )

                                    ( ) ( )

                                    ( ) (0) ( )

k k k

k k k

m

m

m

m

x k x k z x k z x k z

x m z X z

z x m z x X z
 

So   

0

( 1) ( ) ( ) (0) ( )

                                    ( ) 1 (0)

k

k
x k x k z z X z x X z

X z z zx
 

When z  converges to 1, the equation gives: 

1 1
0

lim ( 1) ( ) lim ( ) 1 (0)k

z zk
x k x k z X z z x

 
or: 

1
( ) (0) lim ( ) 1 (0)

z
x x X z z x . 

Then: 

1
( ) lim ( ) 1

z
x X z z  

 
Convolution: let 1 ( )x k  and 2 ( )x k  be two sequences, we call ( )x k

 
a 

convolution product defined by: 
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1 2

0

1 2

0

1 2

       

       ( ) ( )

j

j

x k x j x k j

x k j x j

x k x k

 

 

The z-transform of the convolution product ( )x k  is a scalar product: 

1 2 1 2( ) ( ) ( ) ( )Z x k x k X z X z
 

 

Proof: 

0

1 2

0 0

1 2

0 0

1 2

0

1 2

( )

          = ( ) ( )

          = ( ) ( )

          = ( )

          = ( ) ( )

k

k

k

k j

k

j k

j

j

X z x k z

x j x k j z

x j x k j z

x j z X z

X z X z
 

with ( ) ( )X z Z x k , 1 1( ) ( )X z Z x k
 

and 

2 2( ) ( )X z Z x k .  

2.6. Examples of z-transform 

Example 1 

 

Find the z-transform and the radius of convergence for each discrete in 

time signal  
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1

1     0
( )

0     0

if k
x k

if k  

2

1     0
( )

0     0

if k
x k

if k  

3 2( ) ( )x k kx k  0k  

4 2( ) ( )kx k a x k ,  0k , * a C  

5 2( ) ( ) akx k ke x k  

6 2sin ( )x k bk x k ,  0k . 

 
Solution  
1- The z-transform of 1 ( )x k  is: 

1 1 1

0

( ) ( ) ( ) 1k

k
X z Z x k x k z

 

ROC C  (entire z-plane or 0z ). 

2- The z-transform of 2 ( )x k is: 

2 2 2

0

( ) ( ) ( )
1

k

k

zX z Z x k x k z
z  

The ROC is 1z . 

3- The z-transform of 3 ( )x k  is: 

3 3

2

2

2

( ) ( )

         ( )

( )
         

        
( 1)

X z Z x k

Z kx k
dX z

z
dz

z
z

 

The ROC is 1z . 
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4- The z-transform of 4 ( )x k  is: 

4 4

4

0

2

0

0

0

( ) ( )

         ( )

         ( )

         

         = ( )

k

k

k k

k

k k

k

k

k

X z Z x k

x k z

a x k z

a z

a
z

 

let 
av
z

, then

 

 

 

The ROC is z a . 

4

0

2 3

1

4

( )   ( )        

            1 ...

1 1
( )         n       1

1 1

           

k

k
n

n

X z v

v v v v
vX z if and v

v v
z

z a
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5- The z-transform of 5 ( )x k  is: 

5 2

3

3

2

2

( ) ( )

         ( )

         ( )

         

1

         

ak

ak

X z Z ke x k

Z e x k

zX
a
z
a

z
a

az
z a

 

The ROC is z a . 

6- The z-transform of 6 ( )x k  is:  

6 6

2 2

2

( ) ( )

         sin( )

1
         ( )

2

1
         ( ) ( )

2

1
         

2

sin( )
       

2 cos( ) 1

ibk ibk

k kib ib

ib ib

X z Z x k

Z bk

Z e e
i

Z e x k Z e x k
i

z z
i z e z e

z b
z z b

 

The ROC is 1z . 
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Example 2: Let us consider the following discrete-time signal.  

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 2.2. A discrete-time signal 

 

1-  Find the z-transform of the discrete in time signal ( )x k . 

2-  Find the z-transform of the discrete in time signal ( 1)x k  and 

( 2).x k
 

 

Solution  
 

1- The z-transform of the discrete in time signal is: 

0 1 2 1 2

0

( ) ( ) ( ) (0) ( ) (2 ) 1 3 2k
s s

k
X z Z x k x k z x z x T z x T z z z  

2- The z-transform of the discrete in time signal ( 1)x k  is: 

1 1
1

1

0

1 2 1 2 1

( ) ( 1) ( ( ) ( ) )

         (1 3 2 (0)) (1 3 2 1) 3 2

i

i
X z Z x k z X z x i z

z z z x z z z z
 

The z-transform of the discrete in time signal is ( 2)x k : 

2 1
2

2

0

2 1 2 0 1 2 1 2 1

( ) ( 2) ( ( ) ( ) )

         (1 3 2 (0) (1) ) (1 3 2 1 3 ) 2

i

i
X z Z x k z X z x i z

z z z x z x z z z z z
 

2 sT

3  

2

( )x k

1 

2 sT sT 0 sT  3 sT
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Example 3 

1 -  Let the discrete in time signal be defined by 
1( )

zX z
z a

 and 

apply the theorem of the initial value. 

2 -  Let the discrete in time signal be defined by 

2

0.5
( )

( 1)( 0.5)

zX z
z z

 and then apply the theorem of the final 

value. 

 
Solution  
 
1 - We apply the theorem of the initial value: 

1 1(0) lim ( ) lim 1
z z

zx X z
z a

 

2 - We apply the theorem of the final value: 

2 2
1 1

0.5
( ) lim  ( 1) ( ) lim  (z-1) 1

( 1)( 0.5)z z

zx z X z
z z

 

 
Example 4 
 

Let the discrete in time signal be defined by 
1 ( ) 1;3; 2x k

 
and 

2 ( ) 1.5; 1;0.5x k , then calculate the convolution product 

1 2( ) ( ) ( )x k x k x k . 

 
Solution  
 

Let the discrete in time signal be defined by 
1 ( ) 1;3; 2;0;0x k  and 

2 ( ) 1.5; 1;0.5;0;0x k , 

1 2

1 2 1 2

1 2 1 2 3 2 3 4

1 2 3 4

( ) ( ). ( )

        1 3 2 1.5 0.5

        1.5 0.5 4.5 3 1.5 3 2

        1.5 3.5 5.5 3.5

X z X z X z

z z z z

z z z z z z z z
z z z z
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hence the product of convolution is: 

1 2( ) ( ) ( )

       1.5;3.5; 5.5;3.5; 1

x k x k x k
 

2.7 The inverse z-transform 

The z-transform is a mapping from a sequence ( )x k  to a complex 

function ( )X z . This mapping is useful only if it is invertible, i.e., from a 

given ( )X z  it is possible to find, in a unique way, the sequence 

( )x k such that ( ) ( )Z x k X z .  

 

The sequence ( )x k  is referred to as the inverse z-transform of ( )X z , 

which is given as  
1( ) ( )x k Z X z             or        

1( ) ( )x k Z X z                                     

The inverse z-transform of ( )X z  can be computed several ways. 

2.7.1. The inverse z-transform by inspection method 

This method has basically become familiar with the z-transform pair 

tables.  
 
Example: The inverse z-transform of the following function

 
  

3
( )

3 1

zX z
z

 

is  

1 1
( ) ( )

3

k

x k Z X z
 

Using the MatLab function, the inverse z-transform is  

 

 

 

2.7.2. The inverse z-transform by direct division method 
 

>> syms z k 

iztrans(3*z/(3*z-1)) 

ans = (1/3)^n 
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This method is one of the simplest methods for finding the inverse z-

transform and can be used for almost every type of expression given in 

fractional form. It is also called the power series expansion method. 

 

If we calculate the result of the polynomial division according to the 

increasing terms of 
1z , we obtain 

0

1 2

0 1 2

1 2

( )
( )

( )

         ( )

          = ...

          =x(0) (1) (2) ...

k

k

N zX z
D z

C k z

C C z C z
x z x z

 

We identify the quotient with the equation 

0

1

2

(0)

(1)

(2)

x C
x C
x C

 

 

then by the uniqueness of the z-transform, the inverse z-transform is  

 ( ) kx k c  

i.e., the signal sample values in the time-domain are the corresponding 

coefficients of the power series expansion. 
 
Example: In the inverse z-transform of the following functions

 
  

1 2
( )

3 2

zX z
z z

 and 

2

2 2

4 2
( )

2 3 1

z zX z
z z

 

1 ( )X z  could be given as follows 

1 2

1 2 3

0

( )
3 2

       3 7 ...

       2 1k k

k

zX z
z z

z z z

z

. 
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So the inverse z-transform is  

1 ( ) 2 1kx k
 

2 ( )X z  could be 

2

2 2

1 2

2

0

4 2
( )

2 3 1

       2 4 5 ...

       6 2 k k

k

z zX z
z z

z z

z

 

so the inverse z-transform is  

2

1
( ) 6 4( )

2

kx k  

Example: Find the inverse z-transform of ( )X z
 
 

1

1
( )

1 2
X z

z
 

Using the properties of the geometric series we get:  

1

0

1 2 2 3 3 4 4

1
( )

1 2

        (2)

        1 2 2 2 2 ...

k k

k

X z
z

z

z z z z

 

Finally, the coefficients of the power series expansion are   

( ) 1, 2, 4,8,...x k  

This method does not give the general term of the sequence ( )x k . It 

calculates each term according to its rank in the expression. However, it is 

very practical and well suited to the analysis of the transient regimes of 

discrete or sampled systems. 
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2.7.3. The inverse z-transform by the  
partial-fraction expansion method 

The general idea of this method is to find for the function ( )X z
 

a 

development in simpler z-functions for which an inverse transform is 

known.  

 

The method relies on the linearity of the z-transform and on the 

representation of the function ( )X z
 
in a special form.  

 
Step 1: Decompose X(z) into proper form  
The rational z-transform ( )X z  is given by: 

1 1

0 1 0 1

1 1

1 1

... ...
( )

... 1 ...

M M M
M M

N N N
N N

b z b z b b b z b z
X z

z a z a a z a z
 

A rational function is called proper if 0Na  and M N . 

Step 2: Find simple elements of 
( )X z
z

  

This method consists on breaking down 
( )X z
z

 into simple elements as 

follows  

0 1 2

1 2

( )
... n

n

r r r rX z
z z z p z p z p

 

with i jp p , i j and 0ip , for all i , 

0 (0)r X  
and 

( )
lim

i
i iz p

X zr z p
z

. 

then 

0

1 2

1 2

( ) ... n

n

zr zr zr
X z r

z p z p z p
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Step 3: Inverse z-transform  
 

Using the following equation  

( )k
i

i

zZ p
z p

 

and 

( ) 1Z k  for 0k  

we get 

0

1

( ) ( ) ( )
n

k
i i

i
x k r k r p

 
Note that, since ( )X z  has real coefficients, complex poles appear in 

conjugate pairs, hence the corresponding residuals are also complex, and 

the sequence ( )x k  has real valued terms. 

 
Example: Let us consider the following z-transform function 

2

0.2
X(z)=

0.7 0.12

z
z z

 

( )X z
 
has 2 simple poles at 0.3z

 
and 0.4z . The system is stable.  

Now express 
( )X z
z  

as  

X(z) 0.2
=

z ( 0.3)( 0.4)z z
 

The partial fraction expansion of 
( )X z
z

 is  
 

X(z) 2 2
=-

z 0.3 0.4z z
 

The partial fraction expansion of ( )X z  is  
 

2 2
( )=-

0.3 0.4

z zX z
z z

 

The inverse transform of the expression is 
k k( )=2 (0.4) -(0.3) ( )x k u k  
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Or one can use MatLab functions, and the z-transform function is 

 

 

 

 

 

 

2.7.4. The inverse z-transform by recurrence inversion method 

Let X(z)  be a function given as follows 

1 21

0 1 2

1 1 2

0 1 2

...( )
( )

( ) ...

M
M

N
N

c c z c z c zN zX z
D z d d z d z d z

 

The inverse z-transform is: 
1

00

1
( ) ( )

k

s k s k i
i

x kT c x iT d
d

 

This method does not give the general term of the sequence x(k) . It 

allows each term to be calculated according to its rank. However, it is very 

practical and well suited to the analysis of the transient regimes of discrete 

or sampled systems. 

 
Example: Let us consider the following z-transform function 

1

2 1 2

0.2 0.2
X(z)=

0.7 0.12 1 0.7 0.12

z z
z z z z

 

1

0 1

1 2

0 1 2

( )
c c z

X z
d d z d z  

with 0c 0 ,

 

1c 0.2 , 0d 1, 1d 0.7  and 2d 0.12  from 

where the first four samples of ( )x k
 
are: 

>> [r,p,k]=residue([0.2 0],[1 -0.7 0.12]) 

r = 

    0.8000 

   -0.6000 

p = 

    0.4000 

    0.3000 

k = 

     [] 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



The z-transform of Systems 71

0

0

(0) 0
c

x
d

1

1 0

0 0

1 0.2
(1) (0) 0.2

1

c
x c x d

d d

2 2 1

0

1
(2) (0) ( ) ( 0.2) ( 0.7) 0.14sx c x d x T d

d

2.7.5. The inverse z-transform by contour integration method

The z-transform is given as follows.

1

0

( ) ( ) (0) (1) ... ( )k k

k
X z x k z x x z x k z

Its inverse z-transform is defined as
1

1

( ) ( )

1
       ( )

2

k

x k Z X z

z X z dz
j

where 
1 ( )kz X z dz is the contour integral and is any contour 

around the origin. 

Due to complex functions properties, the above integral can be rewritten as 

a sum of residues as shown below:
1( ) Residues of ( ) at the poles of ( )kx k z X z X z

Example: consider the following z-transform function

2

6
X(z)=

6 5 1

z
z z

Divide ( )X z by z to expand the expression in partial fractions. 

2

( ) 6
=

6 5 1

X z
z z z
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Substituting into the inversion integral gives   

11 6
( )

2 (2 1)(3 1)

1 6 6
       

1 12

2 3

k

k k

zx k z dz
j z z

z z dz
j z z

 

The first integral can be evaluated as:  

1

2

1
( )6

122 2 6( )
1 2

2

k

k

z

z z
j j

z  

The second integral can be evaluated as: 

1

3

1
( )6

132 2 6( )
1 3

3

k

k

z

z z
j j

z  

The total integral gives the inverse z-transform:  

1 1
( ) 6

2 3

k k

x k
 

 

This method is usually not straightforward since it involves the evaluation 

of a contour integral. In this course, we will not use the method of contour 

integrals to actually compute inverse z-transforms (such contour integrals 

are difficult to evaluate), therefore, we often use other techniques to obtain 

the inverse z-transform.  

2.8. Examples of inverse z-transform 

Find the first four samples of ( )x k  of the z-transform  

2

2
( )

1.3 0.4

zX z
z z
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2.8.1 The inverse z-transform by the inspection method 

The inverse z-transform of the following function
 
  

2

2
( )

1.3 0.4

zX z
z z

 

is  

1 20 4 1
( ) ( )

3 5 2

k k

x k Z X z  

The first four samples of ( )x k of the z-transform are:
 

(0) 0x , 

(1) 2x , (2) 2.6x , and (3) 2.58x .

  

Using the MatLab function, the inverse z-transform is  

 

 

 

 

 

2.8.2 The inverse z-transform by the direct division method 

The inverse z-transform of the following function
 
  

 

2

2
( )

1.3 0.4

zX z
z z

 

is  

 

2z  
 

 

 

 

So the first four samples of ( )x k  of the z-transform are: (0) 0x ,
 

(1) 2x , (2) 2.6x , and (3) 2.58x . 

2z 1.3z 0.4  

1 2 32z 2.6z 2.58z ...  

>> syms z k 

>> iztrans(2*z/(z^2-1.3*z+0.4)) 

ans =(20*(4/5)^k)/3 - (20*(1/2)^k)/3 
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We can use MatLab which gives the inverse z-transform of the function: 

 

 

 

 

 

 

 

 

2.8.3 The inverse z-transform by the  
partial-fraction expansion method 

To find the first four samples of ( )x k  using the partial-fraction expansion 

method, let us consider the following expression:    

2

2 2
( )

( 0.8)( 0.5)1.3 0.4

z zX z
z zz z  

We will break 
X(z)

z
 into simple elements: 

1 2A AX(z) 2

z (z 0.8)(z 0.5) (z 0.8) (z 0.5)
 

with: 

1 z 0,8

2 20
A

(z 0.5) 3
 

2 z 0,5

2 20
A

(z 0.8) 3

 

Then we get 

20 20

X(z) 3 3

z z 0.8 z 0.5  

Finally we obtain  

>> n=4  

>> a=[1 -1.3 0.4]; 

>> b=[0 2 0]; 

>> b=[b zeros(1,n-1)]; 

>> [x,r]=deconv(b,a); 

>> disp(x) 

      0    2.0000    2.6000    2.5800 
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20 z z
X(z)

3 z 0.8 z 0.5  
The inverse z-transform of ( )X z is: 

20
( ) 0.8 0.5

3

k kx k  

Hence, the first four samples of ( )x k  are: 

20
(0) 0 0

3
x , 

20
(1) (0.8 0.5) 2

3
x , 

2 220
(2) ((0.8) (0.5) ) 2.6

3
x   

and 

3 320
(3) ((0.8) (0.5) ) 2.58

3
x

 

2.8.4 The inverse z-transform by recurrence inversion method 

In order to find the first four samples of ( )x k  using the recurrence 

inversion method, let us consider the following expression:   
 
  

2

1

0 1

1 2

0 1 2

2
( )

0.4 1.3

         

zX z
z z

c c z
d d z d z

 

with 0c 0 ,

 

1c 2 , 0d 1 , 1d 1.3  and 2d 0.4 , from where 

the first four samples of ( )x k
 
are: 

0

0

(0) 0
c

x
d

 

1

1 0

0 0

1 2
(1) (0) 2

1

c
x c x d

d d
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2 2 1

0

1
(2) (0) ( ) 2 ( 1.3) 2.6sx c x d x T d

d

 

3 3 2 1

0

1
(3) (0) ( ) (2 ) 0 0 2 0.4 2.6 ( 1.3) 2.58s sx c x d x T d x T d

d
 

2.8.5 The inverse z-transform by contour integration method 

To find the first four samples of ( )x k  using the contour integration 

method, let us consider the following expression: 

2

2
( )

1.3 0.4

zX z
z z

 
divide ( )X z  by z

 
to expand in partial fractions.  

2

( ) 2
=

1.3 0.4

X z
z z z  

Substituting into the inversion integral gives   

11 2
( )

2 ( 0.8)( 0.5)

1 20
       

2 3 0.8 0.5

k

k k

zx k z dz
j z z

z z dz
j z z

 

The first integral can be evaluated as 

0.8

( 0.8)
2 2 (0.8)

0.8

k
k

z

z zj j
z  

The second integral can be calculated as: 

0.5

( 0.5)
2 2 (0.5)

0.5

k
k

z

z zj j
z  

The total integral gives the inverse z-transform:  

20
( ) 0.8 0.5

3

k kx k
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Table 2.1 summarizes the z-transforms of the most used functions in signal 

processing. sT  is the sampling period of the transformed signal in which 

st kT  has been set. 

 
Table 2.1. The z-transforms of the most used functions in signal 

processing 

( )   0x k k  ( )X z  

ROC 

( )k  1 0z  

( )u k  

1

z
z

 

1z  

( )ku k  

2( 1)

sT z
z

 

1z  

( )ka u k  

z
z a

 

z a  

( )ake u k  

saT

z
z e

 

az e  

( )akke u k  

2( 1)

sT az
z

 

az e  

2.9 Conclusions 

In this chapter, some definitions of the z-transform and the inverse z-

transform approach are detailed. Indeed, the inspection method, the direct 

division method, the partial-fraction expansion method, the recurrence 

inversion method and the contour integration method are demonstrated.  
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CHAPTER THREE 

THE DISCRETE-TIME TRANSFER FUNCTION 

 

 

 

3.1. Introduction 

In this chapter, we will discuss the transfer function of a linear time 

invariant (LTI) discrete-time system which can be used to represent the 

system in a simulator or in computer tools for analysis and design (such as 

SIMULINK and MatLab).  

3.2. Transfer function from impulse response 

3.2.1. Impulse function 

An impulse function is also known as a Dirac delta function. A system 

transforms an input signal, ( )u k , into an output signal, ( )y k . 

 

   

 

 

Fig. 3.1. The relation between input and output of system 

 

If an input signal ( ) ( )u k k , the response of the system is called an 

impulse response and ( ) ( )y k h k . 

 
   

 

Fig. 3.2. The impulse response  

 

If the input signal is a step function, then the response of the system is 

called a step response. 

( )y k  ( )u k

output signal (response) input signal 
system 

( ) ( )y k h k  
( )k

system 
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Fig. 3.3. The step response  

 

The impulse response is important and very useful. If we know the 

response of a system to an impulse function, then we can know the 

response of the same system to any kind of input (step signal, ramp signal, 

and random signal). 

3.2.2. Impulse response of system 

The response of a given linear time invariant system to the input ( )u k  is 

the output ( )y k . 

 

 

 

 

 

  

 

 
 
Fig. 3.4. The impulse response of a system  

 

Note: ( ) 0h k
 
means the impulse response; if the system is causal, then 

( ) 0h k
 
for 0k . 

 

The response of a given linear time invariant system to an input ( )u k  is 

the output ( )y k . 

y k h k u k h k k
 

We recall the third property of z-transforms above that converts 

convolutions to multiplications as given by the following expression. 

 

k  

sT  
 0

( )u k  
step response 

system 

sT  0  

( )y k 

2 sT  sT  sT

( ) ( )u k k 

( )h k  

k  

 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Discrete-time Transfer Function 81 

             

             .

             ( )

Z y k Z h k u k

Z h k k

Z h k Z k

H z

 

The transfer function of a linear time invariant system is simply the z-

transform of its impulse response: 
1 2( ) 0 0 2 ...H z Z h k h h z h z

  
Example: Given that the response of a linear time invariant system is as 

follows:   
( ) 10 ( 1) 5 ( 2) 3 ( ) 2 ( 1)y k y k y k u k u k

by rearranging the expression  

( ) 10 ( 1) 5 ( 2) 3 ( ) 2 ( 1)y k y k y k u k u k
Taking the z-transforms on both sides, we get  

( ) 10 ( 1) 5 ( 2) 3 ( ) 2 ( 1)Z y k y k y k Z u k u k
 

So we get   
1 2 1( ) 10 ( ) 5 ( ) 3 ( ) 2 ( )Y z z Y z z Y z U z z U z

and the transfer function ( )H z
 

is 

1

1 2

( )
( )

( )

3 2
         

1 10 5

Y zH z
U z

z
z z

 Finally, the transfer function is 
2

2

3 2
( )

10 5

z zH z
z z

 

3.2.3. Calculating frequency response from transfer function 

As for continuous-time systems, the frequency response of a discrete-time 

system can be calculated from the transfer function ( )H z .  
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Assuming that the input signal exciting the system is the sinusoid 
sin( ) sin( )k k su t U wt U wkT

 
where w  is the signal frequency in rad/s, it can be shown that the 

stationary response on the output of the system is 

( ) sin( )

        sin( )

       ( ) sin arg ( )s s

k s

s
A

jwT jwT
k

Y

y t Y wkT
UA wkT

U H e wt H e

 

where ( )sjwTH e  is the frequency response which is calculated with the 

following substitution: 

( ) ( )s
jwTs

jwT
z e

H e H z  

where sT  is the time-step.  

The amplitude gain function is 

( ) ( )sjwTA w H e  

The phase lag function is 

( ) arg ( )sjwTw H e  
( )A w  and ( )w  can be plotted in a Bode diagram. 

 
Example 1 
 

Let us consider a continuous-time linear time invariant system given by 

the following transfer function: 

1
( )

1
H s

s
 

Using the MatLab function and the sampling period 0.2sT s , we write 
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The discrete-time transfer function is 

0.2214
( )

1.221

bH z
z a z

 

Using the following MatLab function  

 

 

 

 

Fig. 3.5 shows the example of the Bode plot of the frequency response of 

the transfer function. 

>> num=[-1]; 

>> den=[-1 1]; 

>>Hs=tf(num,den) 

Hs = 

     1 

  ----- 

  s - 1 

 Continuous-time transfer function. 

>> Hz=c2d(Hs,0.2) 

Hz = 

 

   0.2214 

  --------- 

  z - 1.221 

  

Sample time: 0.2 seconds 

Discrete-time transfer function. 

>> bode(Hz),grid 
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Fig. 3.5. Bode plot of the transfer function  

The Nyquist frequency is the Nyquist frequency with the sampling time 

sT  = 0.2s.

2

     

     
0.2

     15.7 /

s
N

s

w
w

T

rad s
The plots are not drawn above the Nyquist frequency because of the 

symmetry of the frequency response. This will be explained in the 

upcoming section. 
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Example 2 
 

Calculating the frequency response algebraically from the z-transfer 

function  

( )
bH z

z a
 

the frequency response becomes 

sin
arctan

2 2 cos

( )

                 
cos sin

                 
cos sin

                  

cos sin

s

s

s

s

jwT
jwT

s s

s s

wT
j

wT a
s s

bH z e
e a

b
wT j wT a

b
wT a j wT

b

wT a wT e

 

sin
arctan

cos

2 2
( )

cos sin

s

ss

wT
j

wT ajwT

s s

bH z e e
wT a wT

 

 
The amplitude gain function is 

2 2
( ) ( )

cos sin

sjwT

s s

bA w H e
wT a wT

 

and the phase lag function is 

sin
( ) arg ( ) arctan       

cos
s sjwT

s

wT
w H e rad

wT a  
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3.3. Transfer function from the difference equation 

3.3.1 Difference equation models 

The differential equation is the basic model type of continuous in time 

dynamic systems. However, the difference equation is the basic model 

type of discrete in time dynamic systems.  

 

Here is an example of a linear first order difference equation with u
 
as an 

input variable and y  as an output variable: 

1 0 1( ) ( 1) ( ) ( 1)y k a y k b u k b u k
 where 1a , 0b

 
and 1b  are coefficients of the difference equation. This 

difference equation is normalized, since the coefficient of ( )y k  is 1 and 

may be written in an equivalent form as  

1 0 1( 1) ( ) ( 1) ( )y k a y k b u k b u k
 where there are no time delayed terms, only time advanced terms (or terms 

without any advance or delay).  

3.3.2 The z-transfer function 

The general form of a linear finite difference equation with a constant-

coefficient that describes a discrete linear time invariant system is given 

by the following equation: 

1 0 1( ) ( 1) ( ) ( ) ( 1) ( )N My k a y k a y k N b u k b u k b u k M
 It may be written in the compact form as: 

1 0

( ) ( ) ( )
N M

i j
i j

y k a y k i b u k j
 

with M  and N  being positive integers and 1 ,..., Na a ; 0 ,...., Mb b
 

constant coefficients.  

 

The discrete-time transfer function can be found by applying linearity and 

shift properties, taking the z-transform of both sides of the above: 

1 0

( ) ( ) ( )
N M

i j
i j

Z y k a Z y k i b Z u k j
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which leads to  

1 0

( ) ( ) ( )
N M

i j
i j

i j
Y z a z Y z b z U z

 
So  

1 0

( ) 1 ( )
N M

i j
i j

i j
Y z a z U z b z

 

Finally, if 0 1a , the transfer function ( )H z  is a rational function given 

by:  

0 0

1 0

( )
( )

( )
1

M M
k k

k k
k k

N N
k k

k k
k k

b z b z
Y zH z
U z a z a z

 

 
Example 
 
Consider a discrete-time system described by the following difference 

equation: 

( ) 12 ( 1) 3 ( 2) 10 ( ) 5 ( 1) 2 ( 2)y k y k y k u k u k u k
The transfer function ( )H z

 

can be found by applying linearity and shift 

properties taking the z-transform on both sides of the above: 
1 2 2

1 2 2

( ) 10 5 2 10 5 2
( )

( ) 1 12 3 12 3

Y z z z z zH z
U z z z z z

 

Hence, z-transfer functions can be written with both positive and negative 

exponents of z. 

3.3.3 Difference equation representation 

In this section, we express the difference equation by using the 
1q operator as given in the following equation:  

1 1

1 0 1

1

0 1

( ) 1 ( )

                                              ( )

N d M
N M

M
M

y k a q a q q b b q b q u k

b b q b q u k d  
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Now, using the two polynomials  
1 1

1( ) 1 N
NA q a q a q  

and 
1 1

0 1( ) M
MB q b b q b q  

the difference equation can be written as: 
1 1 1( ) ( ) ( ) ( ) ( ) ( )dA q y k q B q u k B q u k d  

3.3.4 From the z-transfer functions to the difference equation 

In the inverse operation, we can find the difference equation from a given 

z-transfer function. The difference equation is applied for instance in a 

filtering algorithm which is derived from a filtering transfer function or in 

a control function which is derived from a given controller transfer 

function.  

 

Let us consider the transfer function ( )H z
 
of a discrete-time system 

which is given by the following equation: 

0

1

( )
( )

( )
1

M
k

k
k

N
k

k
k

b z
Y zH z
U z a z

 

from where  

1 0

( ) 1 ( )
N M

k k
k k

k k
Y z a z U z b z  

Then 
1 1

1 0 1( ) ( ) ... ( ) ( ) ( ) ... ( )N M
N MY z a z Y z a z Y z b U z b z U z b z U z  

By applying the inverse z-transform, the difference equation is given by 

the following expression: 

1 0 1( ) ( 1) ( ) ( ) ( 1) ( )N My k a y k a y k N b u k b u k a u k M
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Example 
 
Consider a discrete-time system described by the transfer function  

1

1 2

( ) 1 2
( )

( ) 1

Y z zH z
U z z z  

then 
1 2 1( ) 1 ( ) 1 2Y z z z U z z  

which leads to the difference equation by applying the inverse z-transform 

( ) ( 1) ( 2) ( ) 2 ( 1)y k y k y k u k u k
 

3.4 Rational z-transforms 

The discrete-time z-transfer function ( )H z  is given by  

( )( )
( )

( ) ( )

kk

kk

z zN zH z
D z z p

 

where kp
 

and kz
 

are the poles and zeros of the z-transfer function. The 

z-transform of the unit sample response ( )h k , denoted by 

( ) ( )H z Z h k , is rational. 

3.4.1 Poles and zeros 

The zeros of a z-transfer function ( )H z  are the values of z  where 

( ) 0N z . However, the poles of a z-transfer function ( )H z  are the 

values of z  where ( ) 0D z  and they are defined as the system poles. 

Note that 

lim ( ) 0
kz z
H z

 
and lim ( )

kz p
H z  

If ( )H z  is a rational function, i.e., a fraction of two polynomials in z , 

then 
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1

0 1 0

1

0 1

0

...( )
( )

( ) ...

M
k

M k
M k

N N
kN

k
k

b z
b b z b zN zH z

D z a a z a z a z
 

We assume 0 0a
 
and 0 0b , so we can rewrite 

11

0 0 0

110

0 0

0 1 2

0 1 2

1

0

1

...

( )

...

( )( )...( )
        

( )( )...( )

( )

        

( )

M M M
M

N
N N N

N M M

N
M

k
N M k

N

k
k

b b
z z

b b bzH z
aaa z z z

a a
b z z z z z z

z
a z p z p z p

z z
H z

z p

 

With 
0

0

0

b
H

a
, ( )H z

 
has M finite zeros at 1 ,..., Mz z  and N  finite 

poles at 1 ,..., Np p . 

0

0

0

b
H

a  
is the scale factor which affects the amplitude of the system, 

whereas the poles and zeros affect its behavior. 

 

 
Example 
 
Let us consider the following system given by its transfer function 

1 2

( ) 3
( )

( ) 1 3 2

N zH z
D z z z
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2 2

2

1 1
( ) 3

2 0.5

1
       3

( 2)( 1)

H z
z z z

z
z z

 
We can use MatLab's function tf2zp which finds the zeros, poles, and 

gains of a rational function. 

 

 

 

 

 

 

 

 

 

3.4.2 Pole and zero location and time-domain behavior 

Once the poles and zeros have been found for a given z-transfer function 

( )H z , they can be plotted onto the z-plane. The z-plane is a complex 

plane with an imaginary and real axis referring to the complex variable z .  

 

The position on the complex plane is given by 
ire  and the angle from the 

positive, real axis around the plane is denoted by . When mapping poles 

and zeros onto the plane, poles are denoted by an " " and zeros by an 

" ".  

 

The below figure shows the z-plane. Some examples of plotting zeros and 

poles onto the plane can be found in the following section. 

 

 

  

 

 

 

>> num=[3]; 

>> den=[1 3 2]; 

>> [zeros,poles,gains]=tf2zp(num,den) 

zeros = 

   Empty matrix: 0-by-1 

poles = 

    -2 

    -1 

gains = 

1
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Fig. 3.6. The z-plane of the z-transfer function 

Example 

This section lists an example of finding the poles and zeros of a transfer 

function and then plotting them onto the z-plane.  
( 0.2)( 0.7)

( )
( 0.29)( 0.5)

z zH z
z z

 

 The zeros of a z-transfer function ( )H z  are: 0.2; 0.7 . 

 The poles of a z-transfer function ( )H z  are: 0.29; 0.5 . 

 

Computing the zeros and poles found from the transfer function by the 

Matlab z-plane function, the two zeros, mapped at -0.7 and 0.2, and the 

two poles, placed at 0.29 and -0.5, are plotted in the following figure. 

jwre

w

Im  

Re 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Discrete-time Transfer Function 93 

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Im

ag
in

ar
y 

P
ar

t

 
Fig. 3.7. The z-plane of the z-transfer function  

3.5. Transfer function of a continuous system  
follows a zero-order hold 

If the continuous in time transfer function H(s) follows a zero-order hold, 

see Fig. 3.8.  
 

 
 
 

Fig. 3.8. The system follows a zero-order hold 

 

where the transfer function of the zero-order hold is  

0

1
( )

ssTeB s
s  

y*(t) 
sT sT

y(t) u(t) u*(t) u(t) H(s) B0(s) 
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The continuous in time system output is  
*

0( ) ( ) ( ) ( )Y s H s B s U s  

and the sampled system output is  
* ** * *

0 0( ) ( ) ( ) ( ) ( ) ( ) ( )Y s H s B s U s H s B s U s

 

However   
*( ) ( )Y z Y s  

*( ) ( )U z U s
 So 

0( ) ( ) ( ) ( )Y z Z H s B s U z
 and the transfer function is   

0

( )
( ) ( ) ( )

( )

Y zH z Z H s B s
U z

 Replacing the zero-order hold by its transfer function, the whole 

expression becomes   

1

1

1
( ) ( )

( ) ( )
       

( ) ( )
      

( ) ( )
       

( )
       (1 )

s

s

s

sT

sT

sT

eH z Z H s
s

H s H sZ e
s s

H s H sZ Z e
s s

H s H sZ z Z
s s

H sz Z
s

 

In the case of a shifted system, the transfer function is   

1 ( )
( ) (1 ) sH sH z z Z e

s
 

where skT  and then the discrete transfer function of the shifted system 

is 
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1 ( )
( ) (1 )k H sH z z z Z

s
 

3.6. Transfer function of block diagrams 

It is often convenient to decompose a linear system into small sub-systems 

that are interconnected. Moreover, all discrete systems can be built from 

addition, multiplication, duplication and delay modules. Hence, it is 

practical to know how to compute a transfer function from a block 

diagram and vice versa. 

 

Most of these formulae follow directly from the definitions, whereas the 

loop-back construction is a bit trickier to analyse. As usual, let u  and y  

be the input and the output signals. Additionally, let v  be the feedback 

signal. Then their corresponding z-transforms must satisfy the following 

constraints. 

3.6.1. Rules for block diagram manipulation 

The most common rules for block diagram manipulation are shown. The 

rules are the same as for Laplace transfer functions. In the following figure 

the splitting sum-junction is presented. 

 
 
 
 
 

 
Fig. 3.9. Splitting sum junction 

 

In the following figure the moving sum-junction is presented.  
 

 

 

 

 

 

y(z) 

u1(z) 

u2(z) 

u3(z) 

+ y(z) 
u1(z) 

u2(z) u3(z) 

+ + 
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Fig. 3.10. Moving sum junction 

 

In the following figure the moving branch is presented.  
 
 

 

 
 
Fig. 3.11. Moving branch  

 

The following figure represents the moving branch across the sum-

junction.  

 

 

 

 

 

 
Fig. 3.12. Moving branch across the sum junction 

y(z) 

y(z) 

y(z) 

u2(z) 

u1(z) y(z) 

u1(z) 

u2(z) 

+ 

H1(z) 

H2(z) 

+ H1(z) 

2

1

( )

( )

H z
H z

y(z) u(z) H(z) 
u(z) 

H(z) 

1

( )H z  

u2(z) 
u2(z) 

u1(z) 

y(z) 

u1(z) 
+ H(z) + H(z) 
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3.6.2. Influence of the position's sampler 

The absence or presence of an input sampler is crucial in determining the 

transfer function of a system. Let us consider that a sampler is put in the 

input of the continuous system ( )H s  where ( )U s  and ( )Y s
 

are 

respectively the Laplace transforms of ( )u t  and ( )y t  - see Fig. 3.13.  

 

 

 

 
Fig. 3.13. The sampler is located before the system  
 

( )Y s  is computed as 

*( ) ( ) ( )Y s H s U s

 

* ( )Y s  is given as 

*
* * * *( ) ( ) ( ) ( ) ( )Y s H s U s H s U s

 

or  
*( ) ( )Y z Y s  

*( ) ( )U z U s
 so  

( ) ( ) ( )Y z H z U z
 

In the second figure, the sampler is placed in the output of the system - see 

Fig. 3.14. 

 

 

 

 
Fig. 3.14. The sampler is located after the system  

 

( )Y s  is computed as 

( ) ( ) ( )Y s H s U s

 

Ts 
u(t) u*(t) y(t) 

Y(s) U*(s) U(s) 

H(s) 

y*(t) 

Ts 

y(t) u(t) 

U(s) Y*(sY(s) 

H(s) 
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* ( )Y s  is given as 

** ( ) ( ) ( )Y s H s U s

 

So  
*

( ) ( ) ( ) ( ) ( )Y z H s U s Z H s U s  

From Figures 3.13 and 3.14, we can deduce that   

( ) ( ) ( ) ( ) ( ) ( )Y z H z U z Y z Z H s U s
 

3.6.3. Multiplied coefficient of discrete-time systems 

Let 
 
be a multiplied coefficient of discrete-time systems as shown in the 

following figure. 

 

 

 

 
 

Fig. 3.15. A coefficient is multiplied to the sampled system  

 

The transfer function is   

1

( )
( ) ( )

( )

Y zH z H z
U z

 

3.6.4. Addition of discrete-time systems 

Let us consider two discrete-time systems in parallel connection as shown 

by the following figure: 

 

 

 

 

 

 

 

 
Fig. 3.16. Addition of two discrete-time systems  

u*(t) 

Ts 

u*(t) 

Ts Ts 

y(t) u(t) y*(t) H1(s) 

u(z) 
y(z) 

H1(z) 

H2(z) 

+
y*(t) 

y1*(t) 

y2*(t) 

Ts 

y1(t) 

Ts 

y2(t) 

u(t) 

H2(s) 

H1(s) 

+

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Discrete-time Transfer Function 99 

The first output 1 ( )Y s  is   

*

1 1( ) ( ) ( )Y s H s U s
 

The sampled first output 
*

1 ( )Y s  is   

*
* * * *

1 1 1( ) ( ) ( ) ( ) ( )Y s H s U s H s U s
 

The z-transform 1 ( )Y z  is   

1 1( ) ( ) ( )Y z H z U z  

The second output 2 ( )Y s  is   

*

2 2( ) ( ) ( )Y s H s U s
 

The sampled second output 
*

2 ( )Y s  is   

*
* * * *

2 2 2( ) ( ) ( ) ( ) ( )Y s H s U s H s U s
 

The z-transform 2 ( )Y z  is   

2 2( ) ( ) ( )Y z H z U z  

Then   

1 2 1 2( ) ( ) ( ) ( ) ( ) ( )Y z Y z Y z H z H z U z
 

Finally, the z-transfer function is  

1 2

( )
( ) ( ) ( )

( )

Y zH z H z H z
U z

 

 
In general  
 

Let us consider n  discrete-time systems in parallel connection as shown 

by the following figures. 
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Fig. 3.17. Addition of n  discrete-time systems 

The transfer function is  

1 2 1

( )
( ) ( ) ( ) ... ( ) ( )

( )

n
n ii

Y zH z H z H z H z H z
U z

3.6.5. Cascaded separated continuous-time systems

Let us consider two continuous systems in series connection separated by 

a sampler of sampling period sT . 

Fig. 3.18. Two cascaded separated continuous-time systems

The output of the second block ( )Y s is  

*

2 1( ) ( ) ( )Y s H s Y s
The sampled output of the second block 

* ( )Y s is  

*
* * * *

2 1 2 1( ) ( ) ( ) ( ) ( )Y s H s Y s H s Y s

y1*(t)

y*(t) u(z) y(z)

H1(z)

Hn(z)

+

H2(z)

y2*(t)

yn*(t)
Ts

yn(t)

Ts

y2(t)
Ts

u*(t)

u(t)

y1(t)

+

H2(s)

H1(s)

Hn(s)

Ts
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The z-transform ( )Y z is   

                                                2 1( ) ( ) ( )Y z H z Y z
                               

(*)

or 
*

1 1( ) ( ) ( )Y s H s U s
or the sampled expression is 

*
* * * *

1 1 1( ) ( ) ( ) ( ) ( )Y s H s U s H s U s
so 

                                                         1 1( ) ( ) ( )Y z H z U z
                  

(**)

Using (**) in (*), thus

2 1( ) ( ) ( ) ( )Y z H z H z U z

Finally, the transfer function is given as 

1 2

( )
( ) ( ) ( )

( )

Y zH z H z H z
U z

In general: 

Let n continuous systems in series be separated by a sampler of sampling 

period sT .

Fig. 3.19. n cascaded separated continuous-time systems 

The transfer function is  

1 2

1

( )
( ) ( ) ( )... ( ) ( )

( )

n

n i
i

Y zH z H z H z H z H z
U z

3.6.6. Cascaded non separated continuous-time systems

Let us consider two continuous systems in series that are not separated by 

a sampler of sampling period sT . 
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Fig. 3.20. Two cascaded continuous-time systems not separated

The output of the second block ( )Y s is  

*

2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )Y s H s Y s Y s H s H s U s
The sampled output of the second block 

* ( )Y s is  

* ** * *

2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )Y s H s H s U s H s H s U s
and

2 1( ) ( ) ( ) ( )Y z Z H s H s U z
Finally, the transfer function is  

2 1

( )
( ) ( ) ( )

( )

Y zH z Z H s H s
U z

In general: 

Let us consider n continuous systems in series that are not separated by a 

sampler of sampling period sT .

Fig. 3.21. n cascaded non separated continuous-time systems 

The transfer function is  

1 2

1

( )
( ) ( ) ( )... ( ) ( )

( )

n

n i
i

Y zH z Z H s H s H s Z H s
U z

3.7. Transfer function of closed-loop discrete-time systems

Discrete-time systems are conveniently described by block diagrams and 

transfer functions can be determined from them.

u(t) y(t)

Ts

y*(t)y1(t)

Ts

u*(t)
H2(s)H1(s) u(z) y(z)

H1(s) H2(s)
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3.7.1. Case of two systems that are not separated by a sampler 

In this case of a closed-loop system the sampler is only used before the 

system defined by 1 ( )H s  - see Fig. 3.22.  

 

 

  

 

 

 
 
 

 
Fig. 3.22. Two systems that are not separated by a sampler  

 

The system output is   
*

1( ) ( ) ( )Y s H s E s
     

 

The sampled system output is   
*

* * * *

1 1( ) ( ) ( ) ( ) ( )Y s H s E s H s E s
 The z-transform of the system output is   

           1( ) ( ) ( )Y z H z E z
                             

(*) 

The second variable is given by the following expression   
*

2 1( ) ( ) ( ) ( ) ( )E s U s H s H s E s  

The sampled variable is 
* ** * * * *

2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E s U s H s H s E s U s H s H s E s  

The z-transform of the variable is   

2 1

2 1

( )
( ) ( ) ( ) ( ) ( )

1 ( ) ( )

U zE z U z Z H s H s E z
Z H s H s

    (**) 

Using (**) into (*), the z-transform of the output is   

1

2 1

( ) ( )
( )

1 ( ) ( )

H z U z
Y z

Z H s H s
 

y1(t) y*(t) 
Ts 

e*(t) e(t) 

H2(s) 

u(t) 
+ -

Ts 
y(t) H1(s) 
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Finally, the z-transfer function is   

1

2 1

( )( )
( )

( ) 1 ( ) ( )

H zY zH z
U z Z H s H s            

 

3.7.2. Case of two systems that are separated by a sampler 

In this case of a closed-loop system, two samplers are used and the system 

is defined by 1 ( )H s  - see Fig. 3.23.  

 

 

 

 

 

 
 

Fig. 3.23. Two systems that are separated by a sampler 

 

The system output is   

                                        
*

1( ) ( ) ( )Y s H s E s
                                      

(*) 

The sampled system output is   

                               

*
* * * *

1 1( ) ( ) ( ) ( ) ( )Y s H s E s H s E s
     

      

(**) 

The z-transform of the system output is   

1( ) ( ) ( )Y z H z E z
 

The second variable is given by the following expression    
* *

2 1( ) ( ) ( ) ( ) ( )E s U s H s H s E s
 The sampled variable is   

*
* * * * * * * * *

2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E s U s H s H s E s U s H s H s E s E s  

The z-transform of the variable is   

             

2 1

2 1

( )
( ) ( ) ( ) ( ) ( )

1 ( ) ( )

U zE z U z H z H z E z
H z H z

 (***) 

Ts 

e(t) y*(t) e*(t) 

H2(s) 

u(t) 
+ -

Ts 
y(t) H1(s) 
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Using (***) into (**) and (*), the z-transform of the system output is   

1

2 1

( ) ( )
( )

1 ( ) ( )

H z U z
Y z

H z H z
 

Finally, the z-transfer function is   

1

2 1

( )( )
( )

( ) 1 ( ) ( )

H zY zH z
U z H z H z

 

3.7.3. Case of two samplers and three systems 

In this case of a closed-loop system, two samplers are applied and three 

systems are used - see Fig. 3.24.  

  

 

 

 
 
 
 

Fig. 3.24. Three systems and two samplers 

 

The system output is   
*

2 1( ) ( ) ( )Y s H s Y s
         

 

The sampled system output is   
*

* * * *

2 1 2 1( ) ( ) ( ) ( ) ( )Y s H s Y s H s Y s
  

 

The z-transform of the system output is   

2 1( ) ( ) ( )Y z H z Y z
                         

(*) 

The first system output is   
*

1 1( ) ( ) ( )Y s H s E s
         

 

The sampled first system output is   
** * *

1 1 1( ) ( ) ( ) ( ) ( )Y s H s E s H s E s
  

 

The z-transform of the system output is   

1 1( ) ( ) ( )Y z H z E z
                               

(**) 

Ts 

y(t) 

Ts 

e(t) y*(t) 
e*(t) 

H3(s) 

u(t) 

+ -

Ts 

y1(t) H1(s) H2(s) 
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Using the equation (**) into (*) we find

2 1( ) ( ) ( ) ( )Y z H z H z E z
       Where ( )E s is given by the following expression  

* *

3 3 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E s U s H s Y s U s H s H s H s E s
the sampled ( )E s is  

and the z-transform function is  

*

3 2 1

3 2 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( )

U zE z U z H s H s H z E z E z
Z H s H s H z

(***)

Using (*) into (***), the z-transform is  

1 2

3 2 1

( ) ( ) ( )
( )

1 ( ) ( ) ( )

H z H z U z
Y z

Z H s H s H z
                                   

Finally, the z-transfer function is   

1 2

3 2 1

( ) ( )( )
( )

( ) 1 ( ) ( ) ( )

H z H zY zH z
U z Z H s H s H z

3.7.4. Case of a sampler and three systems

In this case of a closed-loop system a sampler is applied and three systems 

are used - see Fig. 3.25. 

Fig. 3.25. Three systems and a sampler 

The system output is  
*

2 1( ) ( ) ( )Y s H s Y s
        

TsTs

y1*(t) y(t)e(t)

H3(s)

u(t)
+-

y1(t)
H1(s) H2(s)
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The sampled system output is   
*

* * * *

2 1 2 1( ) ( ) ( ) ( ) ( )Y s H s Y s H s Y s
  

 

The z-transform of the system output is    

                         2 1( ) ( ) ( )Y z H z Y z
                                                      

(*) 

However,  

3( ) ( ) ( ) ( )E s U s H s Y s  

and 

1 1

1 1 3

* *

1 1 3 2 1 1

( ) ( ) ( )

       ( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( ) ( ) ( ) ( )

Y s H s E s
H s U s H s H s Y s
H s U s H s H s H s H s Y s

 

The sampled system output 
*

1 ( )Y s is   

*** *

1 1 1 2 3 1( ) ( ) ( ) ( ) ( ) ( ) ( )Y s H s E s H s H s H s Y s
          

(**) 

The z-transform of the system output is   

1 1 1 2 3 1( ) ( ) ( ) ( ) ( ) ( ) ( )Y z Z H s E s Z H s H s H s Y z
 

 

1

1

1 2 3

( ) ( )
( )

1 ( ) ( ) ( )

Z H s E s
Y z

Z H s H s H s
 

Finally, the z-transfer function is   

2 1

2 1

1 2 3

( ) ( ) ( )
( ) ( ) ( )

1 ( ) ( ) ( )

H z Z H s E s
Y z H z Y z

Z H s H s H s
     

3.7.5. Case of a sampler and two systems 

In this case of a closed-loop system, a sampler is applied and two systems 

are used - see Fig. 3.26.  
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Fig. 3.26. Two systems and a sampler 

 

We compute ( )E s
 
as    

*

2( ) ( ) ( ) ( )E s U s H s Y s  

yet we know that ( )Y s is given as  

*

1 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Y s H s E s H s U s H s H s Y s  

and the sampled system output is given as  
* ** *

1 1 2( ) ( ) ( ) ( ) ( ) ( )Y s H s E s H s H s Y s  

Then, the z-transform is  

1 1 2( ) ( ) ( ) ( ) ( ) ( )Y z Z H s E s Z H s H s Y z  

Thus 

1

1

1 2

( ) ( )
( )

1 ( ) ( )

Z H s E s
Y z

Z H s H s
 

3.8. State space description and z-transfer function 

3.8.1. Definition 

The state variable technique is used to convert transfer function system 

representations into some first order difference equations, which many 

advanced matrix theories and computational tools can be applied to. Thus, 

the control system design using the state variable technique can be done in 

a very systematic fashion and many well-developed commercial software 

tools, such as MatLab, can be readily and easily utilized. Solutions to the 

control problem can be found in a straightforward manner.  

 

There are two important equations associated with such a technique, the 

state equation and the output equation, which completely characterize the 

Ts 

y*(t) 

y(t) e(t) y*(t) 

H2(s) 

u(t) 
+ - H1(s) 

Ts 
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properties of a linear system. Any linear time-invariant system can be 

represented by a state space model with four constant matrices regardless 

of its dynamical order. For such reasons, most advanced control theories 

are always developed in the state space setting. 

3.8.2. State space representation of a 1st order discrete system 

Consider the transfer function, in the z-domain, of a 1st order discrete 

system: 

0

0

( )
( )

( )

bY zH z
U z z a

 

0 0( ) ( )z a Y z b U z
 

0 0( 1) ( ) ( )y k a y k b u k  

Define a so-called state variable as follows: 

( ) ( )x k y k
 

0 0 0 0( 1) ( 1) ( ) ( ) ( ) ( )x k y k a y k b u k a x k b u k
 

0 0( 1) ( ) ( )

( ) ( )

x k a x k b u k
y k x k

 
( 1) ( ) ( )

( ) ( )

x k Ax k Bu k
y k Cx k

 

3.8.3. State space representation of a 2nd order discrete system 

Consider the transfer function, in the z-domain, of a 2nd order discrete 

system: 

0

2

1 0

( )
( )

( )

bY zH z
U z z a z a

 
2

1 0 0( ) ( )z a z a Y z b U z
 

1 0 0( 1) ( 1) ( ) ( )y k a y k a y k b u k  

Define a so-called state variable as follows: 

1

2

( ) ( )

( ) ( 1)

x k y k
x k y k
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1 2

2 1 0 0

( 1) ( 1) ( )

( 1) ( 2) ( 1) ( ) ( )

x k y k x k
x k y k a y k a y k b u k

1 2

2 1 2 0 1 0

( 1) ( 1) ( )

( 1) ( ) ( ) ( )

x k y k x k
x k a x k a x k b u k

1 1

0 1 02 2

1

1
2

0( 1) ( )0 1
( )

( 1) ( )

( )
( ) ( ) 1 0

( )

x k x k
u ka a bx k x k

x k
y k x k

x k

( 1) ( ) ( )

( ) ( )

x k Ax k Bu k
y k Cx k

Another form of transfer function, in the z-domain, of a 2nd order discrete

system is:

1 0

2

1 0

( )
( )

( )

b z bY zH z
U z z a z a

2

1 0 1 0( ) ( )z a z a Y z b z b U z

1 0 1 0( 1) ( 1) ( ) ( 1) ( )y k a y k a y k b u k b u k
Define a so-called state variable

1

2 1

( ) ( )

( ) ( 1) ( )

x k y k
x k y k b u k

1 2 1

2 1 2 1 0 1 0

( 1) ( 1) ( ) ( )

( 1) ( ) ( ) ( ) ( )

x k y k x k b u k
x k a x k b u k a x k b u k

1 2 1

2 0 1 1 2 0 1 1

( 1) ( 1) ( ) ( )

( 1) ( ) ( ) ( )

x k y k x k b u k
x k a x k a x k b a b u k
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1 1 1

0 1 0 1 12 2

1

1
2

( 1) ( )0 1
( )

( 1) ( )

( )
( ) ( ) 1 0

( )

x k x k b
u ka a b a bx k x k

x k
y k x k

x k  

( 1) ( ) ( )

( ) ( )

x k Ax k Bu k
y k Cx k

 

3.8.4. State space representation of a nth order discrete system 

Consider the transfer function, in the z-domain, of a nth order discrete 

system: 
1

1 0

1

1 0

( )
( )

( )

m m
m m

n n
n

b z b z bY zH z
U z z a z a

 

Using the partial fraction technique, we can rewrite this general system as 

1,1 0,1 1, 0, 0

2 2

01,1 0,1 1, 0,

( )
( )

( )

k k

k k

b z b b z b bY zH z d
U z z az a z a z a z a

 

where  

1,1 0,1 1 1 1 1

2

1 1 11,1 0,1

( 1) ( ) ( )

( ) ( )

b z b x k A x k B u k
y k C x kz a z a  

1, 0,

2

1, 0,

( 1) ( ) ( )

( ) ( )

k k k k k k

k k kk k

b z b x k A x k B u k
y k C x kz a z a

 

0 0 0 00

0 0 00

( 1) ( ) ( )

( ) ( )

x k A x k B u kb
y k C x kz a

 

The state space representation of the complicated system is then given by 

( 1) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k
y k Cx k Du k
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with 

0 0 0

1 1 1

0 0

0 0
, , ,

0 0k k k

x A B
x A B

x A B D d

x A B

 

and 

0 1 kC C C C  

Fortunately, the predefined function tf2ss of MatLab can do this for us. 

 
Example 
 
Convert the discrete transfer function in the following equation into a state 

space representation. 

2

0.5 0.5 0.5 0.5
( )

0.5 0.9 1.4 0.45

z zH z
z z z z

 

Recall the formula we have derived: 

   

1 1 1

0 1 0 1 12 2

1

1
2

( 1) ( )0 1
( )

( 1) ( )

( )
( ) ( ) 1 0

( )

x k x k b
u ka a b a bx k x k

x k
y k x k

x k
 

( 1) ( ) ( )

( ) ( )

x k Ax k Bu k
y k Cx k

 

with  

0 1 0.5
, , 1 0 , 0

0.45 1.4 1.2
A B C D  

and 

0 1 kC C C C  

Given a state space description (previous equation) of a time-invariant 

system, it is possible to compute the transfer matrix ( )H z  as follows 
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1
( )H z C zI A B D  

We verify this by using the functions tf2ss and ss2tf in MatLab. 

3.9. Examples of transfer function applications 

Application 1 
 

Find the transfer function in the case of an open loop and closed loop 

given by the following figure. 

 

 

 

  

 

 

 
 

Fig. 3.27. A continuous system with zero-order-hold in the closed loop 

 

Where the zero-order hold function is 
0

1
( )

ssTeB s
s  

and the 

discrete-time system function is 
1

( )
1

H s
s

. 

 
Answer 
 

The transfer function of the open loop ( )OLH z is   

Ts 

y1(t) 
Ts 

e*(t) e(t) 
H(s) 

u(t) 
+ -

y*(t) 
B0(s) 
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1

1

1

1

1 1

1

1

( )
( ) 1

1
           1

( 1)

1 1
           1

1

1 1
           1

1 1

1
          

1

s

s

s

OL

T

T

T

H sH z z Z
s

z Z
s s

z Z
s s

z
z e z

z e

e z

     

 

The transfer function of the closed loop ( )CLH z is   

1

1

1

1

1

1 1

1

1

( )
( )

( )

( )
           

1 ( )

1

1           
1

1
1

1
           

1 1

1
          

1 1 2

s

s

s

s

s

s s

s

s

CL

OL

OL

T

T

T

T

T

T T

T

T

Y zH z
U z

H z
H z

z e

e z
z e

e z
z e

e z z e

z e

e z

 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Discrete-time Transfer Function 115 

Application 2 
 

Consider a continuous system with a transfer function ( )
1

KH s
s

 

followed by a zero-order-hold (ZOH) given by the following figure 

 

 

 

 

Fig. 3.28. A continuous system with a zero-order-hold in the open loop 

 

1 - Find the z-transfer function 

1

( )H z
z z

 of the continuous-time 

system 

1

( )H s
s p

followed by the ZOH. Give , , 1z  and 

1p
 

and compare the order of these transfer functions.  

2 -  Find the relation between the two poles of continuous-time 1p
 

and the 

discrete-time systems 1z .  

3 -  Check how one first order of a continuous system deals with many 

discrete-time systems. 

 
Answer  
 

1 - The transfer function of the continuous-time system is 

( )
1
KH s
s  

1

1

( ) 1

      =

K
H s

s

s p

 

with 
K

 
and 1

1p .  

y(k) u(k) u(t) y(t) Zero Order  

Hold  

Continuous 

Process H(s) 
Digital 

Converter  
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The z-transfer function is given by the following equation ( )H z : 

1 ( )
( ) (1 )

H sH z z Z
s

 

1( ) (1 )
(1 )

1 (1 )
        

( 1)( )

s

s

T

T

KH z z Z
s s

z Kz e
z

z z e
 

(1 )
( )

s

s

T

T

eH z K
z e  

1

( )H z
z z

 

with (1 )
sT

K e
 
and 1

sT

z e .  

Both systems have the same order 1n . 

2 - From the denominator of the continuous-time system, the pole is 

1

1p  and from the denominator of the discrete-time system, the pole 

is 1

1

s

s

T
p Tz e e .  

3 - If the sampling rate is 1s sT T , then   

1

1

(1 )
( )

s

s

T

T

K eH z
z e

 

If the sampling rate is 2s sT T , then   

2

2

(1 )
( )

s

s

T

T

K eH z
z e
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If the sampling rate is s snT T , in this case we get   

(1 )
( )

sn

sn

T

T

K eH z
z e

 

Referring to all these conditions, we can say that from a first order 

continuous in time system we can find many first order discrete-time 

systems.  

 
Application 3 
 
Convert the discrete transfer function in the following equation into a state 

space representation. 
2

2

0.5 0.5
( )

1.4 0.45

zH z
z z

 

Answer  
22

2 2 2

0.5 1.4 0.45 0.7 0.2750.5 0.5 0.7 0.275
( ) 0.5

1.4 0.45 1.4 0.45 1.4 0.45

z z zz zH z
z z z z z z  

 

Recall the formula we have derived: 

1 1 1

0 1 0 1 12 2

1

1
2

( 1) ( )0 1
( )

( 1) ( )

( )
( ) ( ) 1 0

( )

x k x k b
u ka a b a bx k x k

x k
y k x k

x k
    

( 1) ( ) ( )

( ) ( )

x k Ax k Bu k
y k Cx k

 

with  

0 1 0.5
, , 1 0 , 0.5

0.45 1.4 1.2
A B C D  

and 

0 1 kC C C C
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The verification process is done by the use of the predefined function tf2ss 
in MatLab: 

1
( )H z C zI A B D

 

3.10 Conclusions 

In this chapter we presented the transfer function of a linear time invariant 

system. Indeed, the absence or presence of an input sampler is crucial in 

determining the transfer function of a system. Different cases of the 

position of the sampler are treated to improve its efficiency and its 

influence. 
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CHAPTER FOUR 

STABILITY OF DISCRETE-TIME SYSTEM 

 

 

 

4.1. Introduction 

In this chapter, we focus on the stability condition of discrete-time systems 

in the closed loop, in the first section. In the second section, the global 

stability definition will be discussed. In the third section, the algebraic 

stability criterion is detailed. In addition, the stability in the frequency 

domain is discussed in detail in the fourth section. The root locus is shown 

in the fifth section. The last section is explaining the system performance. 

4.2. Stability definition 

The definition of the stability of a discrete-time system is the same as a 

continuous-time system in that it has the capacity to return to its original 

position after excitation. 

 

A discrete-time system is given by the transfer function; 

1

( ) ( )( )
( ) ( )

n

i
i

N z N zH z
D z z z

 

A discrete-time system is said to be stable if the denominator of the 

system,
 

( )D z , has no roots or poles outside the unit circle, i.e., a discrete-

time system is said to be stable if 1iz . 

Let i i is jw
 
, then 

i i si s i s i sjw Ts T T jw T
iz e e e e

 
so 

1i i si s i s i sjw Ts T T jw T
iz e e e e

 

1 0i sT
ie
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where iz , 1,..,i n , are poles of the denominator ( )D z  and n
 
is the 

poles's number. 

 
Marginally stable: a linear time-invariant discrete-time system is 

marginally stable if the poles are located in the closed unit circle with no 

repeated poles on the unit circle, i.e., if 1iz  (poles are situated out of 

the unit circle in the z-plane).  

 
Asymptotically stable: a linear time-invariant discrete-time system is 

asymptotically stable if its transfer function poles are in the open unit 

circle. An asymptotically stable system is always Bounded Input - 

Bounded Output stable. 

 
Unstable: a discrete-time system is said to be unstable if 1iz , i.e., the 

poles are situated on the unit circle in the z-plane. 

 

In the following figure, the different cases of stability conditions of a 

system are shown.  

 

 

 

 

 

 

 

 

 

  
Fig. 4.1. Stability condition in the z-plan   

Re(z) 

Marginally  

stable 
1 

1 0 

Im(z) 

Stable  

Unstable  
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4.2.1. Stability of the 1st order system 

Consider a discrete-time 1st order system, in an open loop, given by its 

difference equation   

0 0( ) ( 1) ( )y k a y k b u k
 By applying the z-transform on both sides, we get 

 1

0 01 ( ) ( )z a Y z b U z
 The transfer function is

 0 0

1

00

( )
( )

( ) 1

b zbY zG z
U z z az a

 

The unique pole of the transfer function in an open loop is 
0a . 

Consequently, the stability condition is 

0 1a  

In the case of a closed loop, it is as given by the following figure.  

 

 

 

 
 
Fig. 4.2. A standard unit feedback discrete-time system       

 

The transfer function in a closed loop is 

0

1

0 0 0

CL 1
0 0 00 0

1

0

b

1 z a b zbG(z)
H (z)

b1 G(z) z 1 b a1 z a b
1

1 z a
 

The unique pole of the transfer function in a closed loop is 
0

01

a
b

. 

Consequently, the stability condition is 

0

0

1
1

a
b

 

y r G(z)  + 

- 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Stability of Discrete-time System 123 

4.2.2. Stability of the 2nd order system 

Consider a discrete-time 2nd order system in an open loop given by its 

difference equation   

1 0 0( ) ( 1) ( 2) ( )y k a y k a y k b u k
 

Applying the z-transform on both sides gives:

 1 2

1 0 01 ( ) ( )a z a z Y z b U z
 

The transfer function is: 
2 2

0 0 0
1 2 2

1 0 1 0 1 2

( )( )
( ) 1 ( )( )

Y z b z b z bH z
U z a z a z z a z a z z z z  

with 1z
 

and 2z
 

being the poles of the transfer function. 

The two poles of the transfer function, in an open loop, are 1z
 

and 2z . 

Consequently, the stability condition is 

1 1z
 

and 2 1z  

The transfer function, in a closed loop case, is 
2

0

2 2 2

1 0 0 0

CL 2 2

1 20 0 1 0

2

1 0

b z

z a z a b z b zG(z)
H (z)

1 G(z) z zb z z 1 b a z a
1

z a z a
 

The two poles of the transfer function, in an open loop, are 
1

 

and 
2

. 

Consequently, the stability condition is 

1 1

 

and 
2 1 

As we see, when the order is high or the parameters are variable in time it 

becomes difficult to find the stability. That is why we study, in the next 

section, the algebraic stability criterion. 

4.3. Algebraic stability criterion 

Generally, the roots' computing is difficult due to the high level of the 

order or the time-varying parameters. Thus, we use an algebraic criterion, 

without solving the characteristic polynomial, which can be done if the 

roots are inside the unit circle. 
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4.3.1. The Jury stability criterion 

Let us consider the transfer function  

0 1 0

0 1

0

...( )
( )

( ) ...

m
i

m i
m i

n n
in

i
i

b z
b b z b zN zH z

D z a a z a z a z
 

with 1na

 

and m n . Consider the characteristic 

polynomial ( )D z given by  

1

1 1 0( ) ...N N
N ND z a z a z a z a  with ia R 1,...,i n  

With Jury’s test it is easy to check whether all the poles are inside the unit 

circle, i.e., whether the system is asymptotically stable. 

 

Table 4.1. The table of Jury's criterion  

Row 0z  

1z  

2z  

... n kz ... 3nz  

2nz  

1nz  

1 a0 a1 a2 ... an-k ... an-3 an-2 an-1 

2 an an-1 an-2 ... ak ... a3 a2 a1 

3 b0 b1 b2 ... bn-k ... bn-3 bn-2 bn-1 

4 bn-1 bn-2 bn-3 ... bk ... b2 b1 b0 

5 c0 c1 c2 ... cn-k ... cn-3 cn-2 0 

6 cn-2 cn-3 ... ... ck ... c1 c0 0 

   

  
 

 
 

0 
0 

2n-5 p0 p1 p2 p3 0 0 0 0 0 

2n-4 p3 p2 p1 p0 0 0 0 0 0 

2n-3 q0 q1 q2 0 0 0 0 0 0 

 

with: 

0 n j

j
n j

a a
b a a

 

0 1

1

n j

j
n j

b b
c

b b
 

0 2

2

n j

j
n j

c c
d c c
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0 3

0

3 0

p p
q

p p
 

0 2

1

3 1

p p
q

p p
 

0 1

2

3 2

p p
q

p p

 
The necessary and sufficient conditions for the ( )D z

 
to have no roots on 

or outside the unit circle are: 

(1) 0D
 

 

( 1) 0 if  is even

( 1) 0 if  is odd

D n

D n  

0

0 1

0 2

0 3

0 2

   ( 1)   const raints

n

n

n

n

a a

b b

c c n

d d

q q

 

Example: For a second order system, 2n , the Jury’s table contains 

only one row 

(1) 0D
 

( 1) 0D
 

0 2a a  

so 

(1) 0D
 2 1 0 0a a a

 

( 1) 0D
 2 1 0 0a a a

 

01 1a
 
if 2 1a
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4.3.2. The Routh-Hurwitz stability criterion 

This criterion is widely used in the analysis of the stability of the linear 

time invariant continuous in time system. This criterion allows us to check 

if the roots of a polynomial are negative. In the case of a discrete-time 

system, we take 
z 1

w
z 1

 so the new function is 
w 1

z
1 w

. 

If 1z :   

2 2 2 21 1z j z z
 2 2

2 2 2 2

1 ( 1).(1 ) 1 2

1 (1 ) (1 )

j j j jw
j

 

2 2

2 2

1
Re(w) 0

( 1)

 
If 0w a jb with a  so 

1 1

1 1

a jb wz
a jb w

 

w 1 a jb 1
z 1

1 w 1 a jb

 

2 2 2 2 2 2(1 a) b (1 a) b (1 a) (1 a)

 

2 2(1 a) (1 a) 0 2(2a) 0 4a 0  

Using the discrete-time transfer function ( )H z : 

N(z)
H(z)

D(z)  

with ( )D z  being the characteristic polynomial 

1

1 1 0( ) ...N N
N ND z a z a z a z a  with ia R 1,...,i n  

 

Where 
1
1
wz
w

, we find  
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1

0 1 1 1

1 1

0 1 1

(1 ) (1 )1 1( ) ...
1 1 (1 ) (1 )

(1 ) (1 )(1 ) (1 ) (1 ) (1 )                ...
(1 ) (1 ) (1 ) (1 )

n n

n nn n

n n n n

n nn n n n

w ww wD z a a a a
w w w w

w w w w w wa a a a
w w w w

 

1 1
0 1 1

1(1 ) ( ) (1 ) (1 )(1 ) ... (1 ) (1 ) (1 )
1

n n n n n
n n

ww D a w a w w a w w a w
w  

1
0 1 1

1(1 ) ( ) ...
1

n n n
n n

ww D w w w
w  

 

The necessary and sufficient condition for this criterion is that all roots of 

the first column have the same sign. 

 
Table 4.2. The table of Routh's criterion  

Row 1 n  2n  4n  … 0  

Row 2 1n  3n  5n   1  

Row 3 1  2  3  

… n  

Row 4 1  2  3  

… n  

…      

  

with  

1 2 3
1

1

n n n n

n  

1 4 5
2

1

n n n n

n  

1 3 1 2
1

1

n n

    
        ... 

 
Example: Study the stability of the closed loop of the system using the 

Routh criterion given by the following figure.  

 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Four 

 

128 

 
Fig. 4.3. Unit feedback discrete-time second order system  

 

The transfer function in the open loop is  

OL 0

K
H (z) Z B (s)

s(s 1)

0.37z 0.26
            K

(z 1)(z 0.37)

 

The transfer function in the closed loop is 

CL 2

2

0.37Kz 0.26K
H (z)

z 1.37z 0.37 0.37Kz 0.26K

K(0.37z 0.26)
           

z ( 1.37 0.37K)z 0.26K 0.37

N(z)
           

D(z)

 

with 
2D(z) z ( 1.37 0.37K)z 0.26K 0.37  

 

We apply the transform of w: 

21 w 1 w 1 w
D(z ) ( ) ( 1.37 0.37K)( ) 0.26K 0.37

1 w 1 w 1 w
 

2 2 21 w
(1 w) D(z ) (1 w) ( 1.37 0.37K)(1 w)(1 w) (0.26K 0.37)(1 w)

1 w
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2 2 2

2

2

2 1 0

D(w) (1 w) ( 1.37 0.37K)(1 w ) (0.26K 0.37)(1 w )

         (2.74 0.11K)w (1.26 0.52K)w 0.63K

         a w a w a  

with 

2

1

0

a 2.74 0.11K

a 1.26 0.52K

a 0.63K

 

K  is the static gain which is positive.  

1.26
1.26 0.52K 0 K 2.42

0.52

2.74
2.74 0.11K 0 K 24

0.11

 

The condition of stability of the closed loop of the system using the Routh 

criterion is:  

0<K<2.42 
The lack of an algebraic criterion demands the use of another method 

which is based on the domain frquency. 

4.4. Domain frequency stability 

4.4.1. Bode diagrams for continuous-time systems 

The Bode diagram is the frequency responses (both magnitude response 

and phase response with respect to the frequency). 

 

Consider a standard unit feedback continuous-time system: 

 

 

 

 

 

Fig. 4.4. A standard unit feedback continuous-time system 

 

 

r(t) + 

- 

( )t y(t) 
H(s)  
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The transfer function in the open loop (OL) is  

OL

OL

OL

N (s)
H (s)

D (s)
 

and the closed-loop (CL) transfer function CLH (s) is 

OL CL

CL

OL CL

H (s) N (s)
H (s)

1 H (s) D (s)
 

Interestingly, if the open-loop transfer function OLH (s)  is stable, then its 

frequency responses can be easily used to determine the stability of the 

closed-loop system CLH (s) . As such, it is often that we plot the Bode 

diagram for the open-loop system OLH (s) .  

Magnitude and phase responses are defined as: 
 

Magnitude response: 
OLH ( jw)

 
Phase response: OLarg H ( jw)  

 

 
Example: The Bode diagrams of the open-loop system of a given 

continuous in time system function 
2

1
( )

1
OLH s

s s
 are given by 

the use of a predefined MatLab function. 

 

The continuous-time transfer function: 

 

 

 

 

 

 

 

>> Hs=tf(1,[1 1 1]) 

Hs = 

        1 

  ----------- 

  s^2 + s + 1 

 Continuous-time transfer function. 
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The Bode presentation of continuous-time system 

-40

-30

-20

-10

0

10

M
a

g
n

it
u

d
e

 (
d

B
)

10 -2 10 -1 10 0 10 1
-180

-135

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency  (rad/s)
Fig. 4.5. Bode diagram of continuous-time system

The gain and phase margins in the Bode diagram of a continuous-time 

system are presented in the following figure. 

>> w=logspace(-2,1,1000)';

>> bode(Hs,w,'b'),grid%continuous
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Phase
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             Gain crossover
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Fig. 4.6. Gain and phase margins in the Bode diagram of a continuous-time system

4.4.2. Nyquist stability theory in continuous-time systems

The Nyquist plot draws the frequency response of the open-loop system on 

the same complex plane instead of separating the magnitude and phase 

responses into two different diagrams as in the Bode plot.

The Nyquist presentation of a continuous-time system:  

>> w=logspace(-2,1,1000)';

>> Nyquist (Hs,w,'b'),grid%continuous
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Fig. 4.7. Nyquist diagram of a continuous-time system 

 
Nyquist Stability Criterion:  
Let cn  be the number of clockwise encirclements of the point 1

 
in 

the Nyquist plot, and pn  be the number of unstable poles of the open-loop 

system OLH (s) . Then, the number of unstable poles of the closed-loop 

system CLH (s) , denoted by zn , is given by z p cn n n . If OLH (s)  

is stable, i.e., 0pn , then cn  has to be zero in order to guarantee the 

stability of the closed-loop system CLH (s) . 
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4.4.3. Gain and phase margins in the Nyquist  
plot in continuous-time systems 

Assuming that the open-loop system is stable, the gain margin (GM) and 

phase margin (PM) can be found from the Nyquist plot by zooming into 

the region in the neighborhood of the origin. 

 

 
Fig. 4.8. Gain and phase margins in the Nyquist plot of a continuous-time system 

The gain margin is the maximum additional gain that can be applied to the 

closed-loop system such that it remains stable. In the same way, the phase 

margin is the maximum phase that the closed-loop system can tolerate 

such that it remains stable. 

4.4.4. Bode diagrams for discrete-time systems 

For a continuous-time system ( )H s , the frequency response is ( )H jw , 

0,w . It can be graphically presented in the complex plane as the 

Nyquist curve or as amplitude/phase curves as a function of frequency 

(Bode diagram). 
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Correspondingly, the frequency response of a discrete-time system ( )H z  

is ( )sjwTH e , 0,swT . This can also be presented graphically as a 

discrete Nyquist or discrete Bode diagram. The difference is, that in the 

discrete case only the frequency interval ,swT is considered. 

The Bode diagram for discrete-time systems consists of both the 

magnitude and phase responses of a discrete-time system, which are 

defined as follows: 

 

Magnitude response: jwTsOL z e
H (z)

 
Phase response: jwTsOL sz e

arg H (z)    wT

 
 

Consider a standard unit feedback discrete-time system: 

 

 

 
 

Fig. 4.9. A standard unit feedback discrete-time system 

 
Example: Let us draw the Bode diagram for the open-loop system which 

is previously defined with the sampling period 1sT s . 

The discrete in time transfer function: 

 

 

 

 

 

The Bode presentation of discrete-time system  

 

 

>>Hz=c2d(Hs,1) 

Hz = 

     0.3403 z + 0.2417 

  ----------------------- 

  z^2 - 0.7859 z + 0.3679 

Sample time: 1 second 

Discrete-time transfer function. 

y 
r H(z)  + 

- 
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Fig. 4.10. Bode diagram of discrete-time system

The gain and phase margins in the Bode diagram of a discrete-time system 

are presented in the following figure. 

>> w=logspace(-2,1,1000)';

>> bode(Hz,w,'b'),grid
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Fig. 4.11. Gain and phase margins in the Bode diagram of a discerete-time system 

Note: Both magnitude and phase responses repeat after 2 /T.

4.4.5. Discrete Nyquist stability criterion

The transfer function in the open loop (OL) is 

OL

OL

OL

N (z)
H (z) G(z)

D (z)

The transfer function in the closed loop (CL) is

OL CL

CL

OL CL

H (z) N (z)
H (z)

1 H (z) D (z)

So, the characteristic equation is

( ) 1 ( ) 0CL OLD z H z
The stability can be determined by using the open loop ( )OLH z Nyquist 

diagram. ( )sjwT
OLH e (the open loop Nyquist curve) encircles the point 

1 cn times clockwise.

c z pn n n
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in which zn  is the number of zeros and pn  is the number of poles of the 

characteristic equation outside the unit circle. 

 

This fact can be applied in stability analysis. The characteristic equation 

has the form 

( ) 1 ( )

( )
          1

( )

( ) ( )
          

( )

( )
          

( )

CL OL

OL

OL

OL OL

OL

CE

CE

D z H z
N z
D z

D z N z
D z

N z
D z

 

The open loop poles are the same as the poles of the characteristic 

equation. The zeros of the characteristic equation determine stability so 

that if the characteristic equation has zeros outside the unit circle, the 

closed loop system is unstable. The stability criterion is thus obtained by 

setting 0zn  and by demanding that the Nyquist curve encircles the 

point 1  pn
 
times anti-clockwise. 

0z c pn n n  

The criterion becomes simple, if the open loop pulse transfer function has 

no poles outside the unit circle. Then the Nyquist curve should not encircle 

the point 1
 
at all.  
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Fig. 4.12. Nyquist diagram of discrete-time system 

Let us use the MatLab function to compare these two systems, the Bode 

presentation of continuous-time and the discrete-time system: 

 

 

 

 

>> w=logspace(-2,1,1000)'; 

>> bode(Hs,w,'k')%continuous 

     hold 

     bode(Hz,w,'b')%discrete 
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Fig. 4.13. The Bode presentation of continuous-time and discrete-time systems 

 

The Nyquist diagram of continuous-time and discrete-time systems is 

 

 

 

 

>> nyquist(Hs,w,'k') 

     hold 

    nyquist(Hz,w,'r') 
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Fig. 4.14. The Nyquist presentation of continuous-time and discrete-time systems 

 
Example: 
 
A process is controlled with a discrete proportional controller, which has 

the gain 1K . 

 

 

 

 
 
 

Fig. 4.15. A process is controlled with a discrete proportional controller     

 

 

 

 

u 
y r + 

- K  H(z)  
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where   

0.4
( )

( 0.5)( 0.2)
H z

z z
 

The discrete Nyquist diagram is constructed with MatLab: 
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Fig. 4.16. The Nyquist diagram of a process that is controlled with a discrete 

proportional controller     

 

One way to find the interception point in the real axis is to use the zoom-

command. By inspection, the point is approximately -0.4416. 

>> Hz=zpk([],[0.2 0.5],0.4,1); 

Sample time: 1 seconds;  

Discrete-time zero/pole/gain model. 

>> nyquist(Hz) 
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The magnitude can thus be multiplied with (1/0.4416) to reach the critical 

point 1 . The controlled system is stable when 
1

2.26
0.4416

K
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Fig. 4.17. Zoom of a Nyquist diagram of a process that is controlled with a discrete 

proportional controller     

 

Stability can also be determined by direct calculus from the pulse transfer 

function: 

0.4
( )

( 0.5)( 0.2)
H z

z z
 

Substitute z with cos sinsjwT jwe e w j w , (Euler formula), which 

gives the frequency response ( )sjwTH e , 1sT s .  
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2 2

2

0.4
( )

( 0.5)( 0.2)

0.4
        

(cos sin 0.5)(cos sin 0.2)

0.4
       

(cos sin 0.7 cos 0.1) (2sin cos 0.7sin )

0.4
      

(2cos 0.7cos 0.9) (2sin cos 0.7sin )

jw jwH z
e e

w j w w j w

w w w j w w w

w w j w w w

 

 

Setting the imaginary part to 0, the interception point with the real axis is 

obtained as: 

2sin cos 0.7sin 0 sin (0.7 2cos ) 0w w w w w

 

sin 0 0.7 2cos 0

7
sin 0 cos

20

7
0 cos

20

w w

w w

w w ar

 

The frequency 0 describes the starting point in the Nyquist curve and the 

frequency arcos(7/20) is the interception point with the real axis. 

Substitute it into the frequency response function 
7

cos( )
20

2

0.4
0.444

7 7
2( ) 0.7( ) 0.9

20 20

j ar
H e  

The interception point is -0.444. The gain of the controller K can be 

multiplied by the factor (1/0.444) in order that it crosses it at point –1.  

The controlled system is stable when 
9

2.25
4

K  

The symbolic frequency response is calculated with the MatLab symbolic 

toolbox 
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4.5. Roots locus method 

4.5.1. Position of poles and zeros of system  
in s-domain in open loop 

The poles of a system are represented by the symbol , these poles are the 

values that cancel the denominator of the transfer function. However, the 

zeros of a system are represented by o  which are the values that cancel 

the numerator of the transfer function. 

 

Example: let us consider a continuous-time of first order system given by 

the following transfer function.  

( )
1

KH s
s

 

According to this transfer function, this system has a unique pole 
1

. 

The further this pole is from the origin, the faster the system is: 

 

>> Hz='0.4/((z-0.5)*(z-0.2))' 

Hz = 

0.4/((z-0.5)*(z-0.2)) 

>> z='cos(w)+i*sin(w)' 

z = 

cos(w)+i*sin(w) 

>>h1 =subs(Hz,z) 

h1 = 

 0.4/((cos(w) + i*sin(w) - 0.5)*(cos(w) + i*sin(w) - 0.2)) 

>> h2=simplify(h1) 

h2 = 

 0.4/((cos(w) + i*sin(w) - 0.5)*(cos(w) + i*sin(w) - 0.2)) 
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Fig. 4.18. Roots locus of first order system 

 
Example: let us consider a continuous-time of second order system given 

by the following transfer function.  
2

2 2( )
2

n

n n

wH s
s w s w

 

The discriminant of the denominator is  
2 22 1nw  

If 1, there are two real poles. The time constant is related to the 

position of the closed pole to the origin (dominant pole). 

 

If 0 , there is a double pole in nw . 

 

If 1, there are two complex conjugate poles.  

 

 
Fig. 4.19. Roots locus of second order system 
 

where  
21

tan g  
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4.5.2. Position of poles and zeros of system  
in s-domain in closed loop 

We consider a system in closed-loop (CL) with unitary return such as the 

transfer function in open-loop (OL) is given by: 

( )
( )

( )

OL
OL

OL

N s
H s K

D s
 

where ( )OLN s  and ( )OLD s  are polynomials (respectively numerator 

and denominator of ( )OLH s ) and K  is the gain of the system. This 

system is equivalent to a transfer function ( )CLH s : 

( ) ( ) ( )
( )

1 ( ) ( ) ( ) ( )

OL OL CL
CL

OL OL OL CL

H s KN s N s
H s

H s D s KN s D s
 

The poles of this system in CL verify the following characteristic 

equation: 

( ) ( ) ( )CL OL OLD s D s KN s  

The position of the poles in CL depend on K . If this factor, K , is an 

adjustable variable of the system, the place of the Evans locus or one of 

poles is the geometric place of the roots of the characteristic equation 

plotted in the complex plane when K varies from 0 to .  

 

Knowing this place makes it possible to predict the behavior of the system 

in CL when K  varies because the position of the poles provides more 

information than the speed and the stability of the system. 

4.5.3 Property and construction rules in s-domain 

Number of branches: the number of poles in CL is equal to the number 

of poles in OL, and it is the order of the system. 

 

Symmetry about the real axis: whatever the value of K , the complex 

poles always go in conjugate pairs. 

 
Starting point: for 0K , the characteristic equation becomes 

( ) 0CLD s  and we find the poles in OL. 
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Arrival point: for K , the characteristic equation becomes 

( ) 0CLN s  and we find the zeros of the transfer function in OL, thus 

they are the end points of certain branches.  

 
Endless branches: the branches that do not go to an end point, but go on 

forever. Ifn is the number of poles and m is the number of zeros of the 

OL system, then the asymptotes are characterised by the odd multiples of 

n m
 as asymptotic directions and 

1 poles zeros
n m

 

as the abscissa of these asymptotes on the axis of real numbers. 

 
Position of the place belonging to the real axis: a point M of the axis of 

the real numbers belongs to the place if and only if the number of poles 

and real zeros located to the right of M is odd. 

 
Connection point: they are the points where the place leaves or joins the 

real axis. This corresponds to values of K such that the system in CL has 

double poles. 

 we are looking for solutions to the equation: 

1 1

1 1n m

i ji js s z z
 

where is  and iz  are respectively the poles and zeros of the transfer 

function in OL, n  is the number of poles (order) and m  the number of 

zeros of the system in OL. 

 we set 
( )

( )
( )

D xy x
N x

 and we look for the values of x  which 

cancel 
dy
dx

. 

 
Intersection with the imaginary axis: if the place intersects with the 

imaginary axis, it is because, for certain values of K , the transfer function 

in CL has pure imaginary poles. To find the value of y  and K , we set 

s jy  and then separate the real part and the imaginary part from the 

characteristic equation ( )CLD s . 
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Tangent at a starting or ending point: if this point is real, the tangent is 

horizontal except if it is about a point of separation, in which case, the 

tangent is vertical.  

 

The tangent at the start of a complex pole is given by: 

s i j  

The tangent at the end point of a complex zero is given by: 

 

e j i  
 

 
Fig. 4.20. Construction of a tangent at a start or end point 

4.5.4. Positions of poles and zeros of a system in  
a z-domain in a closed loop 

As given in the case of the continuous-time system, the stability of the 

control system depends on the distribution of poles in the closed loop in 

the z-plane. Thus, when we study the roots locus we should look for poles 

of the transfer function in the closed loop whether or not a variable gain 

term, K , varies from 0  to  in the graphic windows (z-plane). 

The discrete transfer function in the open loop, is  

( )
( )

( )

OL
OL

OL

N z
H z K

D z
 

In the canonical, form, it is given by:   
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1

1

( )

m

j
j
nOL

i
i

z z
H z K

z p
 

Where jz ,
 

1,...,j m , and ip  ,
 

1,...,i n , are respectively zeros 

and poles of the transfer function. 

 

In the closed loop the transfer function is  

( )
( )

1 ( )

( )

( )
           

( )
1

( )

OL
CL

OL

OL

OL

OL

OL

H z
H z

H z
N z

K
D z

N z
K

D z

 

( ) ( )
( )

( ) ( ) ( )

OL CL
CL

OL OL CL

KN z N z
H z

D z KN z D z
 

Using the canonical form of the transfer function in the open loop case, the 

stability condition depends on the characteristic equation  

( ) ( ) ( )CL OL OLD z D z KN z  

1 1

1 2 1 2

( )

        ... ...
        0

n m

CL i j
i j

n m

D z z p K z z

z p z p z p K z z z z z z  

Any point on the root locus must satisfy the magnitude condition:  

1 1

1 1

...
1

...
m

n

z z z z z z
K
z p z p z p

 

The angle conditions are: 

1 1arg ... arg arg ... argm nz z z z z p z p i  

with 3, 11,3,5i
 

 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Stability of Discrete-time System 151 

The angle condition is used to locate points on the root locus and the 

magnitude condition gives the value of K  at that point. From the 

characteristic equation, in the z-plane, if the variable gain term K  varies 

in 0,  then all representative points of the poles of the closed loop 

draw a curved E called the roots locus or EVANS locus. 

4.5.5. Property and construction rules in a z-domain 

 The number of loci is equal to the order n of the characteristic 

equation of the transfer function in the closed loop ( )CLH z .  

 The loci start (i.e. 0K ) at the n  poles of the transfer function 

( )OLH z
 
in the open loop.   

 The root loci end (i.e. K ) at the m zeros of the transfer 

function ( )OLH z , and if m n  then the remaining n m  loci 

tend to infinity. 

 Portions of the real axis are sections of a root locus if the number of 

poles and zeros lying on the axis to the right is odd. 

 Those terminating loci at infinity tend towards asymptotes at 

relative angles to the positive real axis given by: 

2 13 5
, , ,...,

n m
n m n m n m n m

 
 The intersection of the asymptotes on the real axis occurs at the 

'gravity centre' of the pole – the zero configuration of ( )OLH z : 

1   ( )   ( )OL OLz poles of H z zeros of H z
n m

 
 The intersection of the root - loci with the unit circle can be 

calculated by the use of Jury, Routh or some other geometrical 

analysis (but on some plots). 

 The breakaway points (points at which multiple roots of the 

characteristic polynomial occur) of the root locus are the solutions 

of 0
dK
dz

 (not all the solutions are necessarily breakaway 

points). 
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Example 1

If the first order transfer function is
1

( )
1

OLH z
z

, then the root locus 

is 

Fig. 4.21. Case of the root locus of the first order transfer function

In another case, if the transfer function is ( )
1

OL
zH z

z
, then the root 

locus is 

Fig. 4.22. Case of the root locus of the first order transfer function 

Example 2

If the second order transfer function ( )
1 2

OL
zH z

z z
, then the 

root locus is  

10

k 0K

Im(z)

Re(z)
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Fig. 4.23. Case of the root locus of the second order transfer function 

If the transfer function

1 1

( )OL
zH z

z p z p
, and 1 1p , then 

the root locus is

Fig. 4.24. Case of the root locus of the second order transfer function 

If the transfer function
1 2

1 1

( )OL

z z z z
H z

z p z p
, 1 1p , 1 1z , 

then the root locus is 
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Fig. 4.25. Case of the root locus of the second order transfer function  

 
Example 3 
 
The transfer function of a discrete-time system 

0.26 0.3
( )

1 0.25

zH z
z z

 

corresponding to a continuous time transfer 

function ( )H s
 

is 
1

( 2)s s
  with 1sT s .  

 
--1-- Manual method:  

In this case 1m , so we have one point to start, and 2n , so we have 

two points to finish - however 1n m  so we have no asymptotical 

direction. 

 

With 0.2K k  and k
 
as a variable gain term in the graphic windows, 

this is also a regulation parameter: 

 

If 0k , then iz p
 
and the n  poles of the open loop ( )OLH z

 
are the 

starting points of E . 

 

0

2z
1 

1p
 

1z

1p

K 0K  

Im(z) 

Re(z) 
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If k , then iz z and the m zeros of the open loop ( )OLH z are 

the finishing points of E . 

From this assumption, there are n starting points and m finishing points 

of E and n m asymptotic directions, m n . 

0.2 ( )
( )

1 ( )

0.26 0.3
0.2

1 0.25
           

0.26 0.3
1 0.2

1 0.25

OL
CL

OL

kH z
H z

H z
zk

z z
zk

z z
( )0.26*0.2 0.3*0.2

( )
1 0.25 0.26*0.2 0.3*0.2 ( )

CL
CL

CL

N zkz kH z
z z kz k D z

The characteristic equation is 

2

2

( ) 1 0.25 0.26 0.3 0.2

           0.26*0.2 1.25 0.25 0.3*0.2

           0.052 1.25 0.25 0.6

CLD z z z z k

z k z k

z k z k
Let us consider 

z x jy

2 2

24 38.46

11.539 + 3.4

k x

x y
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--2-- MatLab function method: 
 

To find the continuous-time transfer function, we use the MatLab 

function "tf" 

 

 

 

 

 

 

The discrete-time transfer function is found by using the MatLab 

function "c2d" 

 

 

 

 

 

 

The numerator and denominator of the discrete-time transfer function are 

given by:  

 

 

 

The discrete-time transfer function using the numerator and 

denominator: 

 

 

 

 

 

Codes for the Evans's shape:  

>> Hs=tf([1],[1 2 0]) 

Hs = 

      1 

  --------- 

  s^2 + 2 s 

Continuous-time transfer function. 

>> Hz=c2d(Hs,1) 

Hz = 

    0.2838 z + 0.1485 

  ---------------------- 

  z^2 - 1.135 z + 0.1353 

 Sample time: 1 second. 

Discrete-time transfer function. 

>> Nz=[0.2838 0.1485]; 

>> Dz=[1 -1.135 0.1353]; 

>> Hz=tf(Nz,Dz,-1) 

Hz = 

    0.2838 z + 0.1485 

  ---------------------- 

  z^2 - 1.135 z + 0.1353 

Sample time: unspecified 

Discrete-time transfer function.  
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The MatLab function that we use to draw the Evans's roots is 
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Fig. 4.26. Case of the root locus of the system by using the MatLab function 

"rlocus"   

 

>> zpkHz=zpk(Hz) 

zpkHz = 

   0.2838 (z+0.5233) 

  ----------------- 

  (z-1) (z-0.1353) 

 Sample time: unspecified 

Discrete-time zero/pole/gain model. 

>> rlocus(Hz),zgrid 
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System: Gz
Gain: 5.84

Pole: -0.262 + 0.965i

Damping: 0.000115
Overshoot (%): 100

Frequency (rad/s): 1.84

System: Gz
Gain: 3.94

Pole: 0.00736 + 0.848i

Damping: 0.105
Overshoot (%): 71.8

Frequency (rad/s): 1.57

System: Gz
Gain: 2.24

Pole: 0.249 + 0.637i

Damping: 0.303
Overshoot (%): 36.9

Frequency (rad/s): 1.26

System: Gz
Gain: 1.11

Pole: 0.41 + 0.363i

Damping: 0.639
Overshoot (%): 7.36

Frequency (rad/s): 0.943

Fig. 4.27. Case of the root locus of the system by using the MatLab function 

"rlocus"  

The performance of a closed loop is noticed by zooming the previous 

figure. Indeed, when the gain K=1 we verify that damping is equal to 0.6 

which corresponds to the overshoot of 4.7% with a frequency that is equal

to 0.9rad/s. In the same way, when K=2.24, the damping is 0.3, the 

overshoot is 37% and frequency is 1.26 rad/s.

The code used to get the selected point in the graphic window is

  

>> [k,poles]=rlocfind(Hz)

Select a point in the graphics window

selected_point =

   0.1388 + 0.7482i

k =

    3.0095

poles =

   0.1404 + 0.7500i

   0.1404 - 0.7500i
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This is the code used for the comparison study between continuous and 

discrete closed loop systems.  

 

 

 

 

 

 

 

 

 

To draw the unit step response of the continuous and discrete closed loop 

system, we use this function  

 

 

 

 

The result of the unit step response of the continuous-time and discrete-

time closed loop systems are shown in the following figure: 

>> clz=feedback(Hz,1) 

clz = 

     0.2838 z + 0.1485 

  ----------------------- 

  z^2 - 0.8512 z + 0.2838 

Sample time: unspecified 

Discrete-time transfer function. 

>> cls=feedback(Hs,1) 

cls = 

        1 

  ------------- 

  s^2 + 2 s + 1 

Continuous-time transfer function. 

>> step(clz,cls) 
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Fig. 4.28. The unit step response of the continuous-time and discrete-time closed 

loop systems   

4.6. Steady state error of discrete-time system 

4.6.1. Definition of steady state error 

In the closed loop system, as given in the following figure, the steady state 

error is defined as the difference between the system output, y , and the 

desired reference signal, r , in the limit as time goes to infinity.  

 

 

 
 
 
 
 

Fig. 4.29. A standard unit feedback discrete-time system 

 

r 
y 

H(z)  + 

- 
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r  is the desired performance or reference,  is the difference error and 

y  is the information about the system or the output.  

 

The expression of the steady state error is  

1
( ) lim ( ) lim( 1) ( )

t z
e t z z

 However,   

(z) R(z) Y(z)  

and  

Y(z) H(z). (z)  

So we have 

(z)(1 H(z)) R(z)       

 Thus (z) becomes  

R(z)
(z)

1 H(z)
 

and ( )e becomes  

1

( )
( ) lim ( ) lim( 1)

1 ( )t z

R ze t z
H z

 
yet we have   

1

N(z) N(z)
H(z)

D(z) (z 1) D (z)
 

so ( )e becomes  

z 1

z 1

1

1

1

z 1
1

R(z)
e( ) lim(z 1)

1 H(z)

R(z)
       lim(z 1)

N(z)
1

(z 1) D (z)

(z 1) D (z)R(z)
       lim

(z 1) D (z) N(z)
 

According to the transfer function of ( )R z , different cases of ( )e  are 

used. 
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4.6.2. The static position error constant 

If the reference signal, ( )r k , is a unit step, and ( )
1

zR z
z

, then by 

the final value theorem of z-transform, the static position error constant 

p  
is

 
1

p
z 1

1

(z 1) D (z) z
e( ) lim

(z 1) D (z) N(z)
 

According to the value of , the static position error constant, p , takes 

different values given in the table below. 

 

Table 4.3. Different values of the static position error 

 
p

0

 

p

1

1 H(1)

0
p 0

4.6.3. The static velocity error constant 

If the reference signal ( )r k  is a unit ramp, and 
2

( )
1

sT z
R z

z
, then, 

by the final value theorem of z-transform, the static velocity error 

constant, v , is 

1 s

v
z 1

1

(z 1) D (z)T z
e( ) lim

(z 1) D (z) N(z)  
According to the value of , the static velocity error constant v   

takes 

different values given in the table below.  
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Table 4.4. Different values of the static velocity error 

 
V

0
V

 
1

s 1

V

T D (1)

N(1)

1
 V 0

4.6.4. The static acceleration error constant 

If the reference signal ( )r k  is a parabolic input, and 

2

3

( 1)
( )

2( 1)

sT z z
R z

z
, then, by the final value theorem of z-transform, the 

static acceleration error constant a  
is 

2 2

1 s

a
z 1

1

(z 1) D (z) T z(z 1)
e( ) lim

2(z 1) D (z) N(z)
 

 If 2

 

then 

a  

 If 2

 

then 
2

s 1

a

T D (1)

N(1)
 

 If 2

 

then 

a 0  
 

According to the value of , the static acceleration error constant a  
takes different values given in the table below. 
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Table 4.5. Different values of the static acceleration error 

 R(t) 
 

u(t)  t u(t)  

2t
u(t)

2
 

3t
u(t)

3
 

0 1

1 H(1)
 

   

1 0 
s

1
T

1 H(1)
 

  

2 0 0 
2

s

1
T

1 H(1)
 

 

3 0 0 0 
3

s

1
T

1 H(1)
 

 
Example 

 

For a given continuous-time system function ( )
( 1)

KH s
s s

, using a 

sampling time 1sT , evaluate, for the discrete-time system, the static 

error constants and find the expected steady state errors for the standard 

step, ramp and parabolic inputs (
p

, v
 
and a ). 

Answer 
 
The transfer function of the open loop ( )OLH z

 
is   

1

1

1

( )
( ) 1

1
           

1

0.37 0.26
         

( 1)( 0.37)

s

s

OL

T

T

H sH z z Z
s

z e
K

e z
zK

z z
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Using Tables 4.3, 4.4 and 4.5 we get: 

1  
 

p 0
 

1

V

1

D (1) 0.63 1
T

N (1) 0.63.K K
 

a  

4.7. Applications 

Application 1 

Consider a 1st order continuous-time system 
1

( )
1

H s
s

 with a 

proportional controller K  as given as in the following figure.  

 

 
 
 
 
 

Fig. 4.30. The closed loop of the first order continuous system 

 

The aim of this exercise is to compare the system stability in the closed 

loop in the case of a continuous in time system and the case of a discrete in 

time system, with the sampling rate being sT  

1 -  Find the stability condition of the continuous-time system in the closed 

loop.  

2 -  Find the stability condition of the discrete-time system in the closed 

loop.  

3 -  Comment. 

4 -  Consider 10

 

and 1sT s , compute and draw the output response 

when the input is a unit step if 3K . Find the steady state position 

error p .  

5 -  We want that the steady state position error to be zero, what kind of 

controller could make this possible? 

+ 

- 

e u y 
K H(s) 
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Answer  
 

1- The continuous-time transfer function, in the open loop, is  

( ) 1
( )

( ) 1
OL

Y sH s K
E s s  

In the closed loop, it is given by:  

1
.

( )( ) 1( )
1( ) 1 ( )

1 .
1

CL
CL

CL

K N sY s KsH s
U s K s D sK

s

 

The characteristic equation is 

1
( ) 1 0CL

KD s K s s  

The unique condition of continuous-time system stability is  

1
0 1

K K  

2 - The discrete-time transfer function, in the open loop, is   

1( ) ( )
( ) (1 )OL

H s H sH z KZ z Z
s s

 

In the closed loop case, it is given by    

1

1

( )
(1 ) .

( )
( )

( )( )
1 (1 ) .

CL

H sz Z K
Y z sH z

H sU z z Z K
s

 

1 (1 )
.

( 1)( )
( )

1 (1 )
1 .

( 1)( )

s

s

s

s

T

T

CL T

T

z z e K
z

z z eH z
z z e K

z
z z e

 

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Stability of Discrete-time System 167 

( )(1 ).
( )

( )
(1 ).

s

s s

T

CL
CL T T

CL

N ze KH z
D z

z e e K

 

The characteristic equation is: 

( ) (1 ). (1 ).
s s s sT T T T

CLD z z e e K z e e K  

The system condition is  

1 1 (1 ). 1
s sT T

z e e K

 
1

1

1

s

s

T

T

eK
e

 

3 - According to the given stability condition, we have 

1
1

1

s

s

T

T

eK
e  

We remind that we are looking for the relation between the sampling 

period sT  and the stability condition, then 

(1 ) 1
sT

K K e

        

(1 ) 1
sT

K e K

 1

1

sT Ke
K

    

1
ln

1

sT K
K

    

1
ln

1
s

KT
K

 
According to the expression of sampling period 

1
ln

1
s

KT
K

, it is 

clear that the sampling period depends on the system parameters.  

 

4 - Consider 10

 

and 1sT s , and we compute the response step of 

the system if 3K :  

(1 ). ( )
( )

( )
(1 ).

s

s s

T

CL T T

e K Y zH z
U z

z e e K
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(1 ).
( ) ( )

(1 ).

s

s s

T

T T

e KY z U z
z e e K

 

0.2
( )

( 1)( 0.6)

zY z
z z

 

We find simple elements of: 

( )

1 0.6

Y z a b
z z z

 

With 

 

1 1

( ) 0.2
lim( 1) lim 0.5

0.6a a

Y za z
z z  

0.6 0.6

( ) 0.2
lim ( 0.6) lim 0.5

1b a

Y zb z
z z  

we get   

0.5 0.5
( ) ( ) 0.5(1 0.6 ) ( )

1 0.6

k kzY z y k u k
z z  

 

k  

0 1 2 3 4 5 7 9 10 

( )y k  

0 0.2 0.32 0.39 0.43 0.46 0.48 0.49 0.49 

 

Finally, the steady state position error is   

1
lim( 1) ( )

   lim ( ) ( )

  lim ( ) 0.5(1 0.6 ) ( )

   =1 0.5 50%

p z

k

k k

k

z E z

u k y k

u k u k
 

5 - To find a steady state position error as zero, we should use an integral 

controller. 
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Application 2 
 
Let us consider the following figure. 

 

 

 

 
Fig. 4.31. The closed loop of the discrete-time system 

 

The discrete transfer function is 
0.1

( )
( 1)( 0.4)

zH z
z z

 and R(z) is a 

proportional controller with gain K.  

1 -  Find the condition stability using the Routh criterion. 

2 -  Find the condition stability using the Jury criterion. 

3 -  Find the steady state position error. 

4 -  Find the steady state velocity error. How can we decrease this error 

without changing the controller. What kind of problems could occur?  

 

Answer  
 
1 - In the closed loop, the transfer function is    

.. ( )
( )

1 . ( )

( 0.1)
          

( 1)( 0.4) ( 0.1)

CL
K H zH z

K H z
K z

z z K z  

2

( )( 0.1)
( )

( )( 1.4) 0.4 0.1

CL
CL

CL

N zK zH z
D zz K z K

 
The characteristic equation is 

 
2( ) ( 1.4) 0.4 0.1CLD z z K z K

 By applying the Routh criterion, we get  
2( ) ( 1.4) 0.4 0.1CLD z z K z K

 
21 1 1

( ) ( ) ( 1.4)( ) 0.4 0.1
1 1 1

CL
w w wD z K K
w w w

 

y e u + 

- 
R(z) H(z) 
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2
2

2 2

1 1 (1 )(1 ) (1 )
( ) ( ) ( 1.4) (0.4 0.1 )
1 1 (1 ) (1 )

CL
w w w w wD K K
w w w w  

2 21
(1 ) ( ) (2.8 0.9 ) (1.2 0.2 ) 1.1

1
CL

ww D w K w K K
w

 

By the following table of the Routh criterion, we see 

  

w2 2.8-0.9K 1.1K 

w1 1.2-0.2K 0 

w0 1.1K 0 

 

We will now check the stability conditions: 

1.1 0              0

(2.8 0.9 ) 0  3.11            0 3.11

(1.2 0.2 ) 0  5.5

K K
K K K
K K

 

2 - In this case, we want to apply the Jury criterion using the characteristic 

equation 
2( ) ( 1.4) 0.4 0.1D z z K z K

 The system is stable if  

(1) 1 1.4 0.4 0.1 1.1 0             0D K K K K  
( 1) 1 1.4 0.4 0.1 2.2 0.9 0             2.44D K K K K  

0.4 0.1 1 1 0.4 0.1 1 14 60K K K  
3 - The closed loop transfer function is   

2

( 0.1) ( )
( )

( )( 1.4) 0.4 0.1
CL

K z Y zH z
U zz K z K

 

2

( ) ( ) ( )

( 0.1)
           

1( 1.4) 0.4 0.1

CLY z H z U z
K z z

zz K z K
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The steady state position error is  

1

1

1

( )
lim( 1)

1 . ( )

1  lim( 1)
( 1)( 0.4) 0.1

( 1)( 0.4) ( 1)( 0.4)

( 0.4)
  lim( 1) 0

( 1)( 0.4) ( 0.1)

p
z

z

z

U zz
K H z

z
zz

z z zK
z z z z

z zz
z z K z

 

4 - The steady state velocity error is  

1

2

1

1

( )
lim( 1)

1 . ( )

( 1)
    lim( 1)

( 1)( 0.4) 0.1

( 1)( 0.4) ( 1)( 0.4)

( 0.4)
  lim

( 1)( 0.4) ( 0.1)

0.54
  

v
z

z

z

U zz
K H z

z
zz

z z zK
z z z z
z z

z z K z

K

 

We notice that we can increase the gain of the proportional controller K  

to decrease the steady state velocity error. We can improve the steady state 

velocity error ( 0v ), but K  can be higher than 3.11 and the system 

becomes instable.  

4.8 Conclusions 

In this chapter we presented the stability condition of discrete-time 

systems. Indeed, the algebraic stability criterion and the graphical stability 

criterion are detailed. The advantage and the disadvantage of each 

criterion is shown. However, the last section of this chapter treated the 

system performance. 
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CHAPTER FIVE 

SYNTHESIS OF DIGITAL CONTROLLER FOR 

LINEAR TIME INVARIANT SYSTEM 

 

 

 

5.1. Introduction 

In this chapter, we mainly consider the control system, namely, the 

Proportional-Integral-Derivative (PID) controller. PID controllers are a 

versatile category of controllers that are commonly used in industry as 

control systems due to the ease of their implementation and low cost. One 

problem that continues to intrigue control designers is the matter of 

finding a good combination of the three parameters PK , IK  and DK  of 

these controllers so that system stability and optimum performance is 

achieved. Also, a certain amount of robustness to the process is expected 

from the PID controllers. 

5.2 Digital controllers 

5.2.1 Proportional action 

The control law ( )Pu t , in the continuous-time case, is  

( ) ( )P Pu t K t  

and the transfer function of the continuous proportional controller is:  

( )
( )

( )

P
P P

U s
C s K

s  

where ( )t  is the error signal as given in the feedback block diagram and 

PK  is the gain of the proportional controller. In the following figure, the 

continuous-time control system using a proportional controller is shown.  
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Fig. 5.1. The continuous-time control system using a proportional controller  

 

with ( )ry k  is a desired value or a signal reference, y(t)  is the system 

output and 
pu (t)  is the control law. 

 

In the discrete-time case, the control law is 

( ) ( ) ( ) ( )P P P ru k K k K y k y k  
The transfer function of the discrete proportional controller is:  

( )
( )

( )

P
P P

U z
C z K

z  

The proportional gain PK
 
determines how fast the controller will react to 

the error input , indeed, too low a value will make the controller react 

slowly but too high of a value may make the system unstable.  

 
Example: The following figure shows the response of the output to a unit 

step in the command signal for a system with a pure proportional 

controller. The system has the transfer function ( )H z . Three cases of the 

proportional controller parameters ( 1PK , 2 and 4) are taken to show 

their influence in the system output.   

 

The transfer function is given by the following expression. 

0.4512
( )

0.5488
H z

z  
The closed loop discrete-time system using a proportional controller is 

presented in the following figure.  

( )ry t  ( )t  
+ 

- 

( )y t  ( )Pu t  
System  PK  
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Fig. 5.2. The discrete-time control system using a proportional controller 

 

Using the Simulink/MatLab software, the influence made by the value of 

the proportional gain of the tracking system output to the desired value is 

shown by the following figures. 

   

 
a) The proportional gain 1PK  
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b) The proportional gain 2PK  
 

 
c) The proportional gain 4PK  

 
Fig. 5.3. Responses (Black) to step (Blue) changes in the command signal for a 

proportional controller.    
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According to these figures we remark that the system output never reaches 

the steady state error. The error decreases with increasing gain 

( 1PK , 2pK  and 4pK ), but the system also becomes more 

oscillatory. Notice, in the figure, that the initial value of the control signal 

equals the controller gain.  

 

The main usage of the proportional action controller is to decrease the 

steady state error of the system. If the proportional gain factor PK  

increases, then the steady state error of the system decreases. However, 

despite the reduction, the proportional action controller can never manage 

to eliminate the steady state error of the system. As we increase the 

proportional gain, it provides smaller amplitude and phase margin, faster 

dynamics satisfying wider frequency band and larger sensitivity to the 

noise.   
 

In addition, it can be easily concluded that applying a proportional action 

controller decreases the rise time and after a certain value of reduction on 

the steady state error, increasing PK  only leads to an overshoot of the 

system response. 

5.2.2 Integral action 

Integral action guarantees that the system output agrees with the reference 

in steady state. 

 

In the continuous case, the control law ( )Iu t  is   

0

0

( ) ( )

       ( )

t
P

I
I t

t

I
t

K
u t t dt

T

K t dt
 

and its derivative form is  

( )
( )I

I
du t

K t
dt
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with
P

I
I

K
K

T
 an integral gain and IT  an integral time. 

The transfer function of the continuous integral controller is:  

( )
( )

( )

I I
I

U s K
C s

s s  
In the following figure the control system using an integral controller is 

shown.   

   
 

 

 

 

 
Fig. 5.4. The continuous-time control system using an integral controller  

 

In the following table we show the equivalence between s and z : 

 
Table 5.1. Different method of z equivalence 

 Method s  to z equivalence 
 

Euler's forward method 
1

1

1

s

zs
T z

 

 
Euler's backward method 

11

s

zs
T

 

 
Tustin method 

1

1

2 1

1s

zs
T z

 

 

According to this table and using Euler's method, 
d
dt  

is similar to 

11

s

z
T

 and dt
 
is similar to 

11

sT
z

, thus the discrete control law is: 

( )ry t  ( )y t  ( )Iu t  ( )t  
System  + 

- 
IK

s  
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1 1( ) ( ) 1
( ) ( )I s I s

I s I s
s s

u kT z u kT z u kT K kT
T T

 

The expression of the control law ( )I su kT  is: 

1
( ) ( ) ( )

11

s s
I s I s I s

T zT
u kT K kT K kT

zz
 

and the transfer function of the integral controller is  

1

( )
( )

( ) 1 1

s sI
I I I

T z TU z
C z K K

z z z  
Then, using the expression of the transfer function, the control law is 

( ) ( 1) ( ) ( )I I I s ru k u k K T y k y k  

The integral gain IK
 

compensates for accumulated errors and thus 

determines overshoot. 

 
Example: The following figure shows the response of the output to a unit 

step in the command signal for a system with a pure integral action 

controller. The actual case is the previous transfer function of the system. 

The integral action controller parameters are 0.6sT s , 0.1IK , 

0.5IK  and 2IK  for the integral action controller. 

 
Fig. 5.5. The discrete-time control system using an integral action controller 

 

As given in the case of proportional action, the influence made by the 

value of the integral gain of the tracking system output to the desired value 

is shown by the following figures.   
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a) 0.1IK   

 

 

b) 0.5IK   

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Synthesis of Digital Controller for Linear Time Invariant System 183 

 

c) 2IK                                                                                                                               

 
Fig. 5.6. Responses (Black) to step (Blue) changes in the command signal for 

integral action controller.  

 

The steady state error is removed when integral gain IK  is increased. The 

response creeps slowly towards the reference for small values of IK . The 

approach is faster for larger integral gains but the system also becomes 

more oscillatory. 

5.2.3 Derivative action 

The derivative action can improve the stability of the closed-loop system. 

The derivative control is 

( ) ( )
( )D P D D

d t d tu t K T K
dt dt  

with D P DK K T  is a derivative gain, DT  is a derivative time and the 

coefficient of derivative and the transfer function of the continuous 

derivative action controller is:  

( ) ( )
( )

( )

D
D D

U s d tC s K
s dt  

In the following figure the control system using a derivative action 

controller is shown.  
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Fig. 5.7. The continuous-time control system using a derivative action controller 

 

Using Euler's method, the transfer function is  
1( ) 1 1

( )
( )

D D D
s s

U z z zC z K K
z T T z

 
the control law is 

( ) ( ) ( ) ( 1) ( 1)D D
D r r

s s

K K
u k y k y k y k y k

T T
 

The derivative gain DK
 
slows the overshoot but is very sensitive to noise 

and can cause the system to become unstable due to it.  

 

Derivative action is usually used to improve transient response of the 

closed loop system. Only derivative action is not used because it amplifies 

high frequency noise which is never desired. Derivative action decreases 

rise time and oscillations. However, it does not have any effect on steady 

state performance of the closed loop. 

5.2.4 Filtering the derivative action 

A drawback with derivative action is that an ideal derivative has very high 

gain for high frequency signals. This means that high frequency 

measurement noise will generate large variations of the control signal.  

 

The effect of measurement noise be reduced by replacing the term DsK  in 

the transfer function by 

D

DF D

D

U (s) s
C (s) K

T(s)
1 s

N

 

and the control law is: 

( )ry t  ( )y t  ( )Du t  ( )t  
System  + 

- 
DsK  
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DF D

D

s
U (s) K (s)

T
1 s

N

 

with 1 DT
s

N  
is the effect of the filtering. 

 In the following figure the control system using a derivative action 

controller with filter is shown. 

 

 

 

  

 

 

 
Fig. 5.8. The continuous-time control system using derivative action controller 

with filter 

 

In the discrete-time case the control law is 
1

1

1

( ) ( )
1

1

s
DF D

D

s

z
T

U z K z
T z
N T  

In the compact form, the control law is 
1

1

1

1

(1 )
( ) ( )

( 1)

(1 )
          ( )

1

DF D
s

D

D

N zU z K z
T

N z
T

zK Np z
pz

 

with 
1

1 s

D

p
T

N
T

 

( )ry t  ( )y t  ( )DFu t  ( )t  
System  + 

- 1

D
D

D

sT
K

T
s

N
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5.2.5 Proportional-Integral controller 

In this case, the transfer function in the continuous-time is 

PI P I

PI P I P P

I

U (s) K K1
C (s) C (s) C (s) K K

(s) T s s  
In the following figure the control system using a proportional integral 

controller.   

 

 

  

 

 

 

 

 

 
Fig. 5.9. The continuous-time control system using a proportional integral 

controller 

 

In the discrete-time case, the transfer function is 

sPI

PI P I 1

TU (z)
C (z) K K

(z) 1 z  

This controller improves performances of system control. 

 
Example: The following figure shows the response of the output to a unit 

step in the command signal for a system with pure proportional integral 

control using the previous example of transfer function of the system. The 

controller parameters are 
P IK 1;  K 0.1 , 

P IK 1;  K 0.5  

and 
P IK 1;  K 1  for the proportional-integral controller. 

( )ry t  ( )y t  ( )PIu t  ( )t  
System  + 

- 

PK  

IK
s  

 EBSCOhost - printed on 2/14/2023 3:04 PM via . All use subject to https://www.ebsco.com/terms-of-use



Synthesis of Digital Controller for Linear Time Invariant System 187 

 
Fig. 5.10. The discrete-time control system using a proportional integral action 

controller 

 

In this case, the influence made by the value of the proportional gain and 

the integral gain of the tracking system output to the desired value is 

shown by the following figures.   

 

 

a) 1PK  and 0.1IK  
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b) 1PK  and 0.5IK
 

 

 

c) 1PK  and 1IK  

 
Fig. 5.11. Responses (Black) to step (Blue) changes in the command signal for 

proportional integral controller.  

 

The proportional integral controller is mainly used to eliminate the steady 

state error resulting from the proportional action. However, in terms of the 

speed of the response and overall stability of the system, it has a negative 

impact.  
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This controller is mostly used in areas where speed of the system is not an 

issue. Since the proportional integral controller has no ability to predict the 

future errors of the system it cannot decrease the rise time and eliminate 

the oscillations. If applied, any amount of integral action guarantees set 

point overshoot. 

5.2.6 Proportional-Derivative controller 

In this case, the transfer function in the continuous-time is 

PD

PD P D P P D P D

U (s)
C (s) C (s) C (s) K sK T K (1 sT )

(s)  

with D P DK K T .  

In the following figure the control system uses a proportional derivative 

controller. 

 

 

 

 

 

 

 
 
Fig. 5.12. The continuous-time control system using a proportional-derivative 

controller  

 

In the discrete-time the transfer function is 
1

PD

PD P D

s

U (z) 1 z
C (z) K K

(z) T
 

This controller improves performances of system control. Indeed, the aim 

of using proportional derivative action controller is to increase the stability 

of the system by improving control since it has an ability to predict the 

future error of the system response. To avoid effects of the sudden change 

in the value of the error signal, the derivative is taken from the output 

response of the system variable instead of the error signal. Therefore, 

derivative action mode is designed to be proportional to the change of the 

output variable to prevent the sudden changes occurring in the control 

( )ry t  ( )y t  ( )PDu t  ( )t  
System  

+ 

- 

PK  

DsK  
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output resulting from sudden changes in the error signal. In addition, 

derivative action directly amplifies process noise therefore derivative 

action only control is not used. 

5.3 Proportional-Integral-Derivative controller 

The transfer function of the continuous PID controller is 

( ) 1
( ) ( ) ( ) ( ) 1

( )

PID
PID P D I P D

I

U s
C s C s C s C s K T s

s T s  

This equation shows the transfer function of the controller in continuous-

time. Although, for computational purposes and for practical 

implementation it is a general practice to put a derivative pseudo-pole of 

the form 1 DT
s

N
, as a denominator to the derivative term, to ensure 

that the frequency response rolls-off at high frequency. Thus, the transfer 

function takes the form shown in the next equation. 

( ) 1
( ) ( ) ( ) ( ) 1

( )
1

PID D
PID P DF I P

DI

U s T s
C s C s C s C s K

Ts T s s
N

 

The following figure shows the principle of the proportional integral 

filtering derivative controller.    
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Fig. 5.13. The continuous-time control system using a proportional-integral-

filtering-derivative controller 

 

The new control law is  

1
( ) 1 ( )

1

D
PID P

DI

sT
U s K s

TsT s
N

 

Using Euler's method, the control law becomes 
1

1 1

(1 )1
( ) ( )

1 1

P s P
PID P

I

K T K pN z
U z K z

T z pz
 

with 
1

1 s

D

p
NT
T

 
In order to let the expression of the control law clear let's make one 

denominator as given  

+ 

- 

( )ry t
( )y t  ( )PIDu t  

( )t  

System  

PK  

P

I

K
sT  

1

D
P

D

sT
K

T
s

N
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1 1 1 1

1 1

1 1 1 1

( ) ( )
1 1

s

I
PID P

T
z pz pz pN z

T
U z K z

z pz
 

and in the next form

 

1 2

1 1

1 1 1

( ) ( )
1 1

s s

I I
PID P

T T
Np z p N z p

T T
U z K z

z pz
 

Finally, the expression of the control law becomes 

 

1 2

0 1 2

1 1

( )
( ) ( ) ( )

( )1 1
PID

r r z r z R zU z z z
S zz pz

 

with  
1 2

0 1 2

1 1

( )

( ) 1 1

R z r r z r z

S z z pz
 

( ) ( ) ( )rz Y z R z
 and  

0

1

2

(1 )

1 (1 2 )

1

1

s
P

I

s
P

I

P

s

D

T
r K pN

T

T
r K p N

T
r pK

p
NT
T

 

By using ( )R z
 

and ( )S z
 

in the expression of the control law ( )PIDU z , 

then it becomes   
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( ) ( )
( ) ( ) ( )

( ) ( )
PID r

R z R zU z Y z Y z
S z S z  

In the following figure, the control system using a proportional integral 

filtering-derivative controller using 
1( )R z  and 

1( )S z .    

 

 

 

 

 

 
 
Fig. 5.14. The control system using a proportional-integral-derivative  
 

Given the characteristic of all gains , ,P I DK K K , it is desirable to 

have a controller that will make the system stable and still produce fast 

responses and has some robustness properties.

 

Example: The following figure shows the output signal to a unit step in 

the command signal for a system with proportional-integral-derivative 

control.  

 
Fig. 5.15. The discrete-time PID controller by Simulink/MatLab 

 

 

 

 

 

( )t  + 

- 

( )ry t  ( )y t  ( )PIDu t  
System  

1

1

( )S z  

1( )R z

1( )R z
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In the next figure, we are going to take three cases of PID gains. In fact, 

we are going to use 1PK ,
 

1DK  and 1IK  for the first case,  

0.2PK  and 0.5IK
 
for the second one however in the last the 

parameters are: 1PK ,
 

1DK  and 1IK . 

 

 

a) 1PK ,
 

1DK  and 1IK
 

 

 

b) 0.2PK  and 0.5IK  
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c) 1PK ,

 
1DK  and 1IK

                         
 
Fig. 5.16. Responses (Black) to step (Blue) changes in the command signal for 

proportional integral controller.  

 

From this example, proportional-integral-derivative controller has the 

optimum control dynamics including zero steady state error, fast response 

(short rise time), no oscillations and higher stability. The necessity of 

using a derivative gain component in addition to the proportional integral 

controller is to eliminate the overshoot and the oscillations occurring in the 

output response of the system.  

5.4 Tuning PID parameters method 

Tuning a control loop is arranging the control parameters to their optimum 

values in order to obtain desired control response. At this point, stability is 

the main necessity, but beyond that, different systems leads to different 

behaviors and requirements and these might not be compatible with each 

other. In principle, PID tuning seems completely easy, consisting of only 3 

parameters, however, in practice; it is a difficult task because the complex 

criteria at the PID limit should be satisfied. PID tuning is mostly a 

heuristic concept but existence of many objectives to be met such as short 

transient, high stability, rise time and settling time make this process 

harder.  

 

For these reasons many tuning methods are used. Besides the manual 

tuning method, different methods for tuning PID parameters have been 

developed. Some notable techniques are the Ziegler-Nichols method, 
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Cohen-Coon method, Astrom methods, loop-shapes, Astrom's method, 

PID tuning software methods (e.g. MATLAB), etc. 

5.4.1 PID tuning software method 

This method is based on the software technique. In this section we focus 

on the Simulink/MATLAB example.  

 

Example 
 
The results above show that PID controller for first order system requires 

tuning. Using the automatic tuning option of MatLab-Simulink one can get 

the following results: 

 

 
Fig. 5.17. The closed-loop of system using a PID controller by Simulink/Matlab  

 

By using different parameters given by the Table 5.2, the responses of the 

the system to step changes in the command signal for proportional is given 

in the Fig. 5.18. 
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Table 5.2. Controller parameters   

 
 

 
Fig. 5.18. Responses (Black) to step (Blue) changes in the command signal for 

proportional  
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5.4.2 Manual tuning method 

Manual tuning is achieved by arranging the parameters according to the 

system response. Until the desired system response is obtained, PK , IK  

and DK  are changed by observing system behavior by lowering and 

increasing these parameters. Although this method seems simple but it 

requires a lot of time and experiences. 

5.4.3 Pole placement method 

This method consists in synthesizing a corrector so that the poles of the 

closed-loop transfer function are in well-determined positions inside the 

unit circle. The positions of the poles reflect the performances. In order to 

apply the pole placement method, some steps are needed: 

 

1- Find the transfer function of the system to be controlled:  
1 2 1

1 1 2

1 2 1

1 2

( ) ( )
( ) (1 )

1 ( )

b z b zH s N zH z z Z
s a z a z D z

 

2- Find the transfer function in the closed loop   
11 1 1

1 1 1 1 1 1

( )( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

CL
CL

r CL

N zY z N z R zH z
Y z D z S z N z R z D z

 

with the characteristic equation is  
1 1 2

1 2( ) 1CLD z p z p z  

3- Compute controller parameters solving the characteristic equation:  
1 1 1 1 1 1 2

1 2( ) ( ) ( ) ( ) ( ) 1CLD z D z S z N z R z p z p z  

we find: 
1 1 2 1 1 1 2 1 2

1 2 1 2 0 1 2( ) (1 )(1 )(1 ) ( )( )CLD z a z a z z pz b z b z r r z r z  
or  

1 1 2

1 1 0 1 1 2 1 1 2 0

3 4 1 2

1 2 2 1 2 2 1 2 2 2 1 2

( ) 1 ( 1 ) ( )

                 ( ) ( ) 1

CLD z a p b r z p a p a a b r b r z

a p a p a b r b r z a p b r z p z p z  

By identification we have: 
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1 1 1 0

2 1 1 2 1 1 2 0

1 2 2 1 2 2 1

2 2 2

1

0

0

p a p b r
p p a p a a b r b r

a p a p a b r b r
a p b r

 

Finally, the controller parameters are: 

0 1 2

2

0 1 2

2

0 1 2

3

2

1

(1 )

1

1

P

P
I s

D s
P

sD

r p r p r
K

p
K p

T T
r r r

p r pr r
T T

K p
pTT

N p

 

 
Remarks on higher order systems: When the given system has a 

dynamic order higher than 1 and/or a general PID controller is used, the 

overall closed-loop transfer function from rY  to Y will have an order 

larger than 2, e.g., 

0 1

0 1

...
( )

...

m
m

n
n

b b z b z
H z

a a z a z

 with 1na

 

and m n , 2n .  

In this case, we should place the poles of the above transfer function by 

comparing it to the following desired transfer function 

1

( )
( )

( )...( )( )( )
desired

p p p

N zH z
z z z z z z

 
i.e., by placing all the rest poles close to the origin, which is the fastest 

location in digital control. Eventually, dynamics associated with the poles 

close to the origin will die out very fast and the overall system is 

dominated by the pair left. This is left for students to practice in tutorial 

questions. 
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5.4.4 Ziegler-Nichols method 

More than six decades ago, P-I controllers were more widely used than P-

I-D controllers. Despite the fact that P-I-D controller is faster and has no 

oscillation, it tends to be unstable in the condition of even small changes in 

the input set point or any disturbances to the process than P-I controllers.  

 

Ziegler-Nichols Method is one of the most effective methods that increase 

the usage of P-I-D controllers. However, this Cohen-Coon method has 

been discovered almost after a decade than the Ziegler-Nichols method 

and it can only be used for first order systems. 

 

Advantages:  
 It is an easy experiment; only need to change the P controller  

 Includes dynamics of whole process, which gives a more accurate 

picture of how the system is behaving  

 Ziegler-Nichols can be used for any order of the systems, especially 

for the higher ones, 

 
Disadvantages:  

 Experiment can be time consuming  

 It can venture into unstable regions while testing the P controller, 

which could cause the system to become out of control  

 For some cases it might result in aggressive gain and overshoot  

5.5 Practical application of digital PID  
controller for DC motor speed 

5.5.1 Introduction 

In this sub-section, we are focus on to apply a PID controller to obtain the 

same desired speed in terms of theoretical and practical cases using 

practical DC motor. Using a PID controller is to make the actual motor 

speed match the desired motor speed.  

 

We are proposed, using Arduino Uno, a PID algorithm that will calculate 

necessary power changes to get the actual speed. This will create a cycle 

where the motor’ speed is constantly being checked against the desired 

speed. The power level is always set based on what is needed to achieve 

the correct results.  
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By using PID controller, we can make the steady state error zero with 

integral control. We can also obtain fast response time by changing the 

PID parameters. PID is also very feasible when it is compared with other 

controllers. 

5.5.2 The design requirements of the system 

The design requirements of the systems may vary from one system to 

another. For our case, we want a fast response of the system to an error. 

The overshoot of the system should not be higher than 5% and the settling 

time should be smaller than 2 seconds.  

 

The main design requirements are as follows;  

 Settling time should be less than 2 seconds;  

 Overshoot of the system should be less than 5%;  

 Steady state error should be less than 1%  

5.5.3 Presentation of the DC Motor 

The parameters of the DC motor may change according to different torque 

and revolution per minute "rpm" values of the DC motor. In this 

application, the used revolution per minute 1000 rpm, the main component 

and their values are summarized in the next table.   

 

Table 5.3. Different component of DC motor   

Component Value 
Resistance 1R  

Rotor moment of inertia 2 20.01J kgm s  
Inductor 0.5L H  

Motor Viscous Friction Constant =0.1(N.m)/(rad/s)  
Electromotive Force Constant 10.01K NmAmp  

5.5.4 The schematic of the DC Motor 

The DC motor is modelling by a resistance R , an inductor L  and a rotor 

moment of inertia J  as given by the following figure.  
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Fig. 5.19. The schematic model of the DC Motor   

 

From this figure, the DC motor is modelling by the two mathematical 

equations given by the following expression. 

( ) ( )

( ) ( ) ( )

s Js b Q s KI s

Ls R I s V s KQ s
 

the transfer function of the DC motor is given by the following expression. 

2

( )

( )

Q s K
V s Js b Ls R K

 

5.5.5 Presentation of the used card 

In this application we have used: 

 an Arduino uno card (ATMEGA328 microcontroller, 8 bits at 16 

MHz, internal power supply 5 V, digital inputs/outputs 14 

including 6PWM, analog inputs 6 CAN 10bits, max current per 

inputs/outputs 40 mA, flash memory 32 KB, SRAM 2KB) 

 a DC motor 
 a magnet integrated into the engine plate 
 a HALL effect sensor 

 a transistor for controlling the motor  

 3 LED  

 

The input/output of the Arduino card are presented in the following table: 
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Table 5.4. Input/Output of the used card   

Designation Input/Output 

LED Green  Output D3 

LED Orange   Output D5 

LED Red  Output D6 

DC Output D9 (PWM) 

A Hall effect sensor  Input D2 

 

The schematic model of the DC motor is given by the following figure. 

 

 
Fig. 5.20. Presentation of the control card  

 
Speed measurement principle: The HALL effect sensor generates a 

pulse each time the magnet passes. The measurement of the time between 

two pulses makes it possible to calculate the speed of motor. 
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5.5.6 Principle of engine identification on the card side 

The pseudo-random binary sequence (SBPA) is a random binary signal, of 

zero mean value, similar to white noise, with an autocorrelation function 

(k) = 1. 

 

This sequence is obtained through the use of "N" shift registers looped 

with an "EXCLUSIVE OR". 

 

PRBS is widely used especially in the identification of systems. It is 

preferred at the step as an excitation signal. For our case, we used a SBPA 

of order 10, the loopback is located at the level of bits 7 and 10.    

 

In the lines of the proposed DC motor identification algorithm we will 

perform, first of all, a generation of excitation by SBPA, then, 

measurements of the system response (engine speed) and, finally, data 

transfer to MatLab: excitation and response. The following Arduino card-

side DC identification proposed algorithm is summarized in some steps. 

 

The following Arduino card-side DC identification proposed 
algorithm: 
 
 

 

 

 

 

 

 

 

 

 

 

# define DC_pin 9                                                                                        
# define HALL_pin 2                                                                                    
 # define LED_O 5                                                                                        
# define LED_G 3                                                                                         
# define LED_R 6            
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5.5.7 Response of the DC motor following  
the excitation by SBPA signal 

Following the excitation of the D motor by the SBPA signal and its 

response given by the Hall effect sensor transferred to Matlab, by the 

proposed algorithm in the previous paragraph, we can now identify the 

transfer function of our DC motor by tracing its response using the  

 

 

 

 

unsigned long time;  
unsigned long OldTimes=0; 
 unsigned long Duration=0;                                                                       
unsigned long CalculationTime; 
 unsigned long OldCalculationTime;                                                         
boolean rad[10]={0, 1, 1, 1, 1, 1, 1, 1, 1, 1}; 
 boolean sbpa_b[1024]; byte j; int k;                
 int NominalSpeed=255;  
int Ts=15000;  
int size=1024; 
 unsigned long Speed;  
 float SpeedConversion=62831853071.8; 
 int cmdPWM;                                                                                             
void setup() {pinMode(DC_pin, OUTPUT);  
pinMode(HALL_pin, INPUT);            
 pinMode(LED_G, OUTPUT);  
pinMode(LED_O, OUTPUT);    
pinMode(LED_R, OUTPUT);                           
attachInterrupt(digitalPinToInterrupt(HALL_pin), 
TimeCount, FALLING);  
 Serial.begin(250000); 
 analogWrite(DC_pin, 0);                                                                       
digitalWrite(LED_O, HIGH);  
delay(5000); digitalWrite(LED_O, LOW); 
 digitalWrite(LED_R, HIGH); 
 sbpa_b[0]=rad[0]; 
 cmdPWM=NominalSpeed*sbpa_b[0];                     
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By applying the previous proposed algorithm, we called the obtained 

values using the following Simulink figure. 

 

cmdPWM=NominalSpeed*sbpa_b[0];                                                   
analogWrite(DC_pin, cmdPWM);                                                          
 for (i=1; i<size; i++)                                                                             
{OldTimesCalcul=micros(); 
 sbpa_b[i]=1; 
 if (rad[6]==rad[9]){sbpa_b[i]=0;}      
 cmdPWM=NominalSpeed*sbpa_b[i];  
analogWrite(DC_pin, cmdPWM);                        
  if (Duration==0){Speed=0;} 
else {Speed=SpeedConversion/Duration; }                                            
 for (k=0; k<=24; k+=8) {Serial.write(Speed>>k);}                            
for (k=0; k<=24; k+=8) {Serial.write(sbpa_b[i]>>k);} 
 Shift_rad(); 
 rad[0]=sbpa_b[i]; 
 CalculationTime=micros()-OldCalculationTime; 
 delayMicroseconds(Ts-CalculationTime);}  
detachInterrupt(digitalPinToInterrupt(HALL_pin));  
analogWrite(DC_pin, 0);  
Serial.end(); 
 digitalWrite(LED_R, LOW); 
 digitalWrite(LED_G, HIGH);}                                                              
void loop () {}                                                                                          
void TimeCount(){ time=micros(); 
Duration=time-OldTimes; OldTimes=time;}                                    
  void Shift_rad() {rad[9]=rad[8]; rad[8]=rad[7]; rad[7]=rad[6]; 
 rad[6]=rad[5]; rad[5]=rad[4]; rad[4]=rad[3]; rad[3]=rad[2];  
rad[2]=rad[1]; rad[1]=rad[0]; } 
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COM29
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Fig. 5.21. The Simulink model of the DC motor   

This figure gives the DC motor speed and the excitation signal 'es' or 

SBPA signal. Then, these variables are shown in the next figures. 
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Fig. 5.22. The DC speed   
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Fig. 5.23. The SBPA signal   

5.5.8 Transfer function of DC motor 

Using MatLab/Simulink, we present the whole necessary steps in order to 

find the transfer function of the DC motor, in this section:  

 

1- The first step is to use "system identification" command in MatLab as 

given in the following figure 
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Fig. 5.24. The system identification command  

 

2- The second step is to use "import data" from DC motor which 

connected with Arduino using the window command in MatLab as given 

in the following figure  

 

 
Fig. 5.25. Import data from DC motor 
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3- The third step is to use the "data information" and choose the "time-

domain" and "sampling interval" as given in the following figure 

 

 

  
Fig. 5.26. Time-domain and sampling period  
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4- The fourth step is to estimate the transfer function model of the DC 

motor by using the corresponding window as given in the following figure 

 

 
Fig. 5.27. Transfer function estimation  

 
5- The fifth step is to fix the poles, the zeros and the sampling period of 

the transfer function as given in the following figure 

 

 
Fig. 5.28. Poles and zeros of the transfer function  
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6- The sixth step is to move DC_Motor_TF1 into the MatLab workspace 

environment as given in the following figure 

 

 
Fig. 5.29. Move data into workspace  

 
Finally, the following equation is the transfer function of the discrete-time 

DC motor: 

1

2 1

0.048
( )

0.4699 0.5301
H z

z z
 

5.5.9 The use of PID controller of the DC motor 

In this section it is focused on the parameter of the PID controller. Indeed, 

it is proposed an algorithm to compare the actual speed of the DC motor 

with the desired one. The error between theoretical and practical values is 

corrected with PID controller. The parameters of the PID controller are 

determined with MATLAB results. Using Simulink/MatLab, some steps 

are detailed to find the PID parameters.  

 

1- The first step is to use "PID Tuning" in MatLab as given in the 

following figure 
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Fig. 5.30. PID tuning 

 

2- The second step is to use "import" given by the window "Import Linear 

System" in MatLab as given in the following figure. 
 

 
Fig. 5.31. Import data of the DC Transfer function   

 

3- The third step is to plot the DC motor speed as given in the following 

figure. 
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Fig. 5.32. PID tuner  

 

4- The fourth step is to choose the controller type as P, D, I, PD, PI or PID 

controller. In addition, by using the "show parameters", it is possible to fix 

the speed of the response as "slower" or "faster" and the robust of the 

response as "more aggressive" or "more robust" as given by the next 

figure.  
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Fig. 5.33. Controller types 

 

5- The fifth step is to choose the used parameters of the controller ( PK  , 

IK  or DK ) from MatLab window and to transfer them to the proposed 

algorithm using the Arduino card as summarized in the next steps: 
 

 

 

 

 

 

 

# define DC_pin 9                                                                                   
# define HALL_pin 2                   
unsigned long time;  
unsigned long OldTime = 0;  
unsigned long Duration = 0; 
 unsigned long CalculationTime; 
 unsigned long OldCalculationTime; 
 float deriv_error=0; float integral_error=0; 
float kp=0.12173; float ki=--0.0; float kd = -0.0; 
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Table 5.5. Controller parameters  

 

int Ts = 15000; float st= 1500.0; int k; int i; int NbVal=1000; 
 float err_p; float err; float ctr_spd; int ctr; 
void setup() {Serial.begin (250000); 
pinMode(DC_pin, OUTPUT); 
 pinMode(HALL_pin, INPUT);                              
 attachInterrupt(digitalPinToInterrupt(HALL_pin),  
TimeCount, FALLING);}                       
 void loop(){for 
(i=1;i<=NbVal;i++){OldCalculationTime=micros();                         
 if (Duration == 0){spd_mes = 0; }  
else {spd_mes = float(60000000/Duration); }                   
 err =st- spd_mes;  
 integral_error = integral_error +err* Ts/1000000; 
 ctr_spd = kp*err+ki*integral_error;                                                   
if (ctr_spd >= 5.0) {ctr = 255; }  
else if (ctr_spd<= 0) {ctr= 0;}  
else {ctr= int(ctr_spd*51.0); } 
 analogWrite(DC_pin, ctr); 
 for (k = 0; k <= 8; k += 8) {int j = spd_mes >> k 
; Serial.write(j);}  
for (int k = 0; k <= 8; k += 8){int j=ctr>> k; Serial.write(j);}   
CalculationTime= micros()-OldCalculationTime;      
delayMicroseconds(Ts-CalculationTime);}  
analogWrite(DC_pin,0); }                                                                     
void TimeCount(){time = micros();  
Duration=time-OldTime; OldTime=time;} 
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The following figure presents how to use the Simulink block to plot the 

motor speed and the control law by applying the PID controller.  

COM29
250000
8,none,1

Serial Configuration

COM29
Data

Status

Serial Receive

speed_PID

To Workspace

control_PID

To Workspace1

Demux

Scope

Fig. 5.34. The Simulink block of the motor speed and the control law 

5.6 Identification of linear system

The system control needs an appropriate phase is the identification. The 

aim of system identification is to determine the complexity and the 

structure of the model. An appropriate method is used to estimate the 

unknown system model parameters after determining the structure and 

complexity of the model.
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Modelling is the first step in system identification from experimental data. 

The behavior of the model is determined by the structure of the system and 

by the properties of the equations describing the relations of the action 

members.  

 

The way the individual subsystems are interconnected and how they 

operate is described by the overall system and its behavior.  

 

The behavior of the system obtained using equations describing the 

physical model can be described in detail by a set of algebraic and 

differential equations. 

5.6.1 System identification background 

In system control and signal processing, the mathematical description of 

the relationship between inputs and outputs of the system represents a 

dynamic system model. Based on this context, it is possible to determine 

the system transfer function and thus to identify the system. Basic methods 

of identification may include methods such as transition and impulse 

characteristics. The excited input has the character of a single jump or a 

unit pulse, and the output signal states the model. The application of these 

techniques is simple, not very susceptible to noise. Another drawback of 

using these techniques to identify the system is the need to introduce a unit 

jump / input impulse, which is undesirable for some systems. For this 

reason, we are also addressing other systems identification approaches that 

are described in the following text.  

 

The least squares method and the gradient method can be used to estimate 

the parameters of any linear system.  

 

For simplicity and clarity, consider the transport delay 1d . The 

following equation states that 

( ) ( 1)Ty k k  

where  

1 0

T
n ma a b b and 

( 1) ( 1) ( ) ( 1) ( )
Tk y k y k n u k u k m .  
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 is the vector of the system parameters and ( 1)k  is called a 

regression vector as it is made up of previous system inputs and outputs 

that affect the current system output value.  

 

When determining the correct system parameter values, it is necessary to 

determine the initial estimate ˆ(0) . Then the parameter values are so 

adjusted that the difference between the estimated system output 

ˆˆ( ) ( 1) ( 1)Ty k k k and the actual output of the system 

( ) ( 1)Ty k k  is minimized in time. The task of adaptation is thus 

minimization of the error between the difference of the expected and the 

actual output. 

ˆˆ( ) ( ) ( ) ( 1) ( 1) ( 1)T Te k y k y k k k k   

 

 
Fig. 5.35. The adaptation scheme of model parameters  

5.6.2 System identification using the least squares method 

The Adjusted Moving Average AutoRegressive (ARMA ) method uses a 

very universal representation model, translating an input-output 

relationship of the process of the recurrence type taking into account a 

possible delay. The ARMA method is used when there are no 

disturbances.  
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The adjustment of the coefficients is done by measuring the input-output 

signals on the actual process for a wide range of input signals. 

 

The behavior model defined in the ARMA method is of the discrete type: 

this choice facilitates its use in the complex control algorithms which will 

be established on a digital machine; moreover, the simulation of the results 

(validation of the model) is direct by digital computation. The model 

parameters are adjusted by a recursive least squares method, which 

minimizes the size of the data involved in the calculations. This technique 

also makes it possible to model systems whose parameters change over 

time: the model follows these variations with an adjustable "filtering" 

effect. 

 

The ARMA model: The ARMA model corresponds to a discrete 
transfer function developed in the form of a recurrence which 
establishes a linear relation between the series of inputs { ( )u k } and 

that of the modeled outputs { ( )my k } of the form: 

1 0 1( ) ( 1) ... ( ) ( ) ( 1) ... ( )m m n m my k a y k a y k n b u k b u k b u k m
 

The input-output of the system are given by the following scheme: 

 

 
 

 
Fig. 5.36. The ARMA model   

 
Taking into account of a pure delay: If the system has a pure delay rT  

(in seconds) corresponding to r  sampling periods ( r  integer), this is 

taken into account in the model through a translation of all the input data: 

0 1 0 1( ) ( 1) ... ( ) ( ) ( 1) ... ( )m m n m ma y k a y k a y k n b u k r b u k r b u k r m
 

In the following, the writing of the relations will be done without pure 

delay which it is easy to take into account in the programs. 

 

Adjusting the parameters of the ARMA model: The identification of the 
coefficients of the ARMA model is based on the observation of the 
signals ( )u k  and ( )y k . It should be noted that the shape of the 
signal ( )u k  does not intervene directly in the identification phase, 

y(k) u(k) ARMA 
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unlike the methods which rely on a particular excitation of the system 
(impulse, step, SBPA ...). 

5.6.3 The non-recursive least squares method 

The most widely used method to determine parameters
 ia  and ib  of the 

model is to evaluate the root mean square error between the actual output 

of the process ( )y k  and that of the model ( )my k  and to adjust the 

parameters of the model to minimize this squared error. 

 

The output my  of the model at time k  knowing the sequence of the 

inputs can be written (assuming that 0 1a ): 

1 0 1( ) ( 1) ... ( ) ( ) ( 1) ... ( )m m n m my k a y k a y k n b u k b u k b u k m
             

 

Let ( )e k  be the difference between the real output ( )y k  of the process 

and the output ( )my k  of the model at time k : 

                       
( ) ( ) ( )me k y k y k

                                                      or 

                             
( ) ( ) ( )my k e k y k

                                                   then  

1 0 1( ) ( 1) ... ( ) ( ) ( 1) ... ( ) ( )n my k a y k a y k n b u k b u k b u k m e k
 with ( )e k  is called residual or prediction error. It is the difference 

between the real output and the predicted output at time k . We define the 

vector of the parameters: 
1

1 0... ... n m
n ma a b b R  

and the observation vector: 
1( 1) ... ( ) ( ) ... ( ) n my k y k n u k u k m R

 

So the output becomes 

( ) ( ) ( )Ty k k e k  

Let us suppose that we make N successive measurements on the process 

of the input-output.  
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We can write N p  times the given equation: 

( ) ( ) ( )Ty k k e k  

so, the set of relations is grouped together in matrix form, 1,...,k N : 

 

(1) (1) (1)

(2) (2) (2)

( ) ( ) ( )

T

T

T

y e
y e

y N N e N
  

then  

(1) (1) (1)

;          ;              ;

( ) ( ) ( )

T

N N N
T

y e
Y E

y N N e N       

 

 

Finally, all the relationships are grouped together in the form  

N N NY E  

The method for estimating the best values of the parameters is the least-

squares method, the main steps of which are recalled here: 

 

To estimate , put a quadratic criterion J  sum of the squares of the 

prediction errors:  

2

1

1
( )

1
       

1
       

N

i
i

T
N N

T
N N N N

J e
N

E E
N

Y Y
N

 

The minimum of J  is obtained by finding the value  which cancels out 

the partial derivatives with respect to each of the components of  is 

0
J

 and the optimum of  is given by: 

1ˆ T T
N N N NY  
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The obtained parameter vector makes it possible to define the coefficients 

of the ARMA model of the process which minimizes the error between the 

real outputs and that of the model in the sense of least squares. 

 
Example 1: Let consider the first order linear system:  

( ) 0.5 ( 1) 2 ( )y k y k u k  

The table below groups together the measurements taken from the inputs-

outputs: 

 

k  1 2 3 4 5 

( )u k  1 -1 0 -1 1 

( )y k  2.02 -3.05 1.51 -2.76 3.4 

 

Determine, using the 05 measurements, the vector of parameters estimated 

ˆ(5)
 
using the non-recursive least squares method, with 0 1000P I .  

We propose this code (MatLab), to solve this problem: 

 

 

 

 

 

 

 

 

Using this code (MatLab) the result is as follows 

0.4962ˆ(7)
2.0297

 

 
Example 2: Let consider the first order linear system:  

1 1( )y k a k b  

clear all; 
theta= [0 0]'; 
Y=[2.02 -3.05 1.51 -2.76 3.4]'; 
U=[1 -1 0 -1 1]'; 
N=length(Y); 
Ts=1; 
T=[0:Ts:(N-1)*Ts]; 
for i = 2:N 
H(i,:) = [-Y(i-1) U(i)]; 
end 
theta = inv(H'*H)*H'*Y 
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The table below groups together the measurements taken from the inputs-

outputs: 

 

k  1 2 3 4 5 6 7 

( )y k  3.05 5.01 6.98 9.02 10.99 13 15 

 

Determine, using the 07 measurements, the vector of parameters estimated 

ˆ(7)
 
using the non-recursive least squares method, with 0 1000P I .  

We propose this code (MatLab), to solve this problem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this code (MatLab) the result is as follows 

1.9943ˆ(7)
1.0300

 

 
Example 3: Let consider the second order linear system:  

1 2 1( ) ( 1) ( 2) ( 1)y k a y k a y k b u k  

 

The table below groups together the measurements taken from the inputs-

outputs: 

k  1 2 3 4 5 6 7 8 9 10 

( )u k  1 1 1 1 1 1 1 1 1 1 

( )y k  0 0.1 1.8 0.9 1.1 0.95 0.97 0.99 1.02 1.01 

clear all; 

theta= [0 0]'; 
Y=[3.05 5.01 6.98 9.02 10.99 13 15]'; 
U=[1 2 3 4 5 6 7]'; 
N=length(Y); 
Ts=1; 
T=[0:Ts:(N-1)*Ts]; 
for i = 1:N 
H(i,:) = [i 1]; 
end 
theta = inv(H'*H)*H'*Y 
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Determine, using the 10 measurements, the vector of parameters estimated 

ˆ(10)
 
using the non-recursive least squares method, with 0 1000P I .  

We propose this code (MatLab), to solve this problem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this code (MatLab) the result is as follows 

0.5336

ˆ(10) 0.2114

1.7947

 

5.6.4 The recursive least squares method 

In this case, the parameters are estimated from an input / output pair at 

each sampling step. So, the estimation can be done in real time when 

acquiring data or when reading a data file.  

 

The estimation of the vector  is given by the following equations: 

1 1

1

1

1

1

ˆ ˆ ˆ( 1) ( ) ( ) ( 1)

( ) ( )

1 ( ) ( )

( )

1 ( ) ( )

T
k k

T
k k

k k T
k

k
k T

k

k G y k k k

P k k P
P P

k P k
P k

G
k P k

                                             

 

clear all; 

clear all; 
theta= [0 0 0]'; 
Y=[0 0.1 1.8 0.9 1.1 0.95 0.97 0.99 1.02 1.01 ]'; 
U=ones(10,1); 
Ts=1; 
T=[0:Ts:(length(Y)-1)*Ts]; 
for i = 3:length(Y) 
H(i,:) = [-Y(i-1) -Y(i-2) U(i-1)]; 
end 
theta=inv(H'*H)*H'*Y 
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Example 1: Let consider the first order linear system:  

0

1

1

( )
( )

( ) 1

by zH z
u z a z

 

The table below groups together the measurements taken from the inputs-

outputs: 

 

k  1 2 3 4 5 6 7 8 

( )u k  1 -1 -1 1 1 -1 1 -1 

( )y k  2.01 -3.02 -0.502 2.251 0.9 -2.46 3.231 -3.601 

 

Determine, using the 08 measurements, the vector of parameters estimated 

ˆ(8)
 
using the recursive least squares method, with 0 1000P I .  

We propose this code (MatLab), to solve this problem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this code (MatLab) the result is as follows 

 

 

 

0.4955ˆ(8)
2.0067

 

 
 

clear all; 
theta= [0 0]'; 
Y=[2.01 -3.02 -0.502 2.251 0.9 -2.46 3.231 -3.601]'; 
U=[1 -1 -1 1 1 -1 1 -1]'; 
N=length(Y); 
Ts=1; 
T=[0:Ts:(N-1)*Ts]; 
Pn=1000*eye(size(theta,1)); 
for i = 3:length(Y) 
hn1=[-Y(i-1) U(i)]'; 
Kn1 = Pn*hn1/(1+hn1'*Pn*hn1); 
thetan1=theta + Kn1*(Y(i) - hn1'*theta); 
Pn1 = Pn - Kn1*hn1'*Pn; 
Pn=Pn1; 
theta=thetan1; 
end 
theta 
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Example 2: Let consider the second order linear system: 

1 2 1( ) ( 1) ( 2) ( 1)y k a y k a y k b u k  

The table below groups together the measurements taken from the inputs-

outputs: 

 

k  1 2 3 4 5 6 7 8 9 10 
( )u k  1 1 1 1 1 1 1 1 1 1 

( )y k  0 0.1 1.8 0.9 1.1 0.95 0.97 0.99 1.02 1.01 
 

Determine, using the 10 measurements, the vector of parameters estimated 

ˆ(10)
 
using the recursive least squares method, with 0 1000P I .  

We propose this code (MatLab), to solve this problem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this code (MatLab) the result is as follows 

0.5321

ˆ(10) 0.2107

1.7923

 

clear all; 
Y=[0 0.1 1.8 0.9 1.1 0.95 0.97 0.99 1.02 1.01]'; 
U=ones(10,1); 
Ts=1; 
T=[0:Ts:(length(Y)-1)*Ts]; 
theta= [0 0 0]'; 
Pn=1000*eye(size(theta,1)); 
  
for i = 3:length(Y) 
hn1=[-Y(i-1) -Y(i-2) U(i-1)]'; 
Kn1 = Pn*hn1/(1+hn1'*Pn*hn1); 
thetan1=theta + Kn1*(Y(i) - hn1'*theta); 
Pn1 = Pn - Kn1*hn1'*Pn; 
Pn=Pn1; 
theta=thetan1; 
end 
theta 
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Exercise: Let consider the first order system defined by its following 

difference equation: 

1 1( ) ( 1) ( 1) ( )y k a y k b u k e k
 

or ( )u k  and ( )y k  are respectively the input and the output of the system 

at the instant skT  ( sT
 
being the sampling period) and ( )e k

 
is a noise 

which represents the set of disturbances acting on the system.  

The table below groups together the values of ( )u k  and ( )y k  for 

1,...,8k  with, 
0
ˆ 0 , 0 100P I . 

 

k  1 2 3 4 5 6 7 8 
( )u k  -1 -1 1 0 1 -1 -1 1 

( )y k  0.1 -1.55 -0.9 1.85 -0.75 1.8 -2.21 -0.62 
 

1. Using the first 07 measurements, determine the vector of estimated 

parameters ˆ(7)  using the non-recursive least squares method.  

2. Repeat the same work using the 08 measurements to determine ˆ(8) .  

3. Using the recursive least squares method calculate ˆ(8)  from ˆ(7)  

and compare with the results obtained in 2. 

 
Solution 
 
1. The equation of the system is given by 

1 1

1

1

( ) ( 1) ( 1) ( )

       ( 1) ( 1) ( )

y k a y k b u k e k
a

y k u k e k
b

 

We define the vector of the parameters: 

1 1

Ta b  

and the observation vector: 

( ) ( 1) ( 1)
Tk y k u k  

The system equation becomes: 

( ) ( ) ( )Ty k k e k
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Using the non-recursive least squares method, the vector of estimated 

parameters ˆ(7)
 
is: 

1

7 7 7 7 7
ˆ T TY

 

 

with  

7

0.1

1.55

0.9

1.85

0.75

1.8

2.21

Y
;                               7

0 0(1)

0.1 1(2)

1.55 1(3)

0.9 1(4)

1.85 0(5)

0.75 1(6)

1.8 1(7)

T

T

T

T

T

T

T

;  

7

0 0.1 1.55 0.9 1.85 0.75 1.8

0 1 1 1 0 1 1

T
 

7 7

10.44 2

2 5

T

 

1

7 7

5 21

2 10.4448.2

T

 

7 7

7.14

8.31

TY  

Finally, the vector of estimated parameters ˆ(7)
 
is:  

7

5 2 7.141ˆ
2 10.44 8.3148.2

0.395
   

1.503

 

2- Using the non-recursive least squares method, the vector of estimated 

parameters ˆ(8)
 
is: 
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1

8 8 8 8 8
ˆ T TY  

with 

8

0.1

1.55

0.9

1.85

0.75

1.8

2.21

0.62

Y
;                       8

(1) 0 0

(2) 0.1 1

(3) 1.55 1

(4) 0.9 1

(5) 1.85 0

(6) 0.75 1

1.8 1(7)

2.21 1(8)

T

T

T

T

T

T

T

T

;  

8

0 0.1 1.55 0.9 1.85 0.75 1.8 2.21
 

0 1 1 1 0 1 1 -1

T
 

8 8

15.32 0.21

0.21 6

T

 

1

8 8

6 0.211

0.21 15.3291.93

T

 

8 8

5.77

8.93

TY  

Finally, the vector of estimated parameters ˆ(8)
 
is:  

8

6 0.21 5.771ˆ
0.21 15.32 8.9391.93

0.39
   

1.5

 

3- Using the recursive least squares method, the vector of estimated 

parameters ˆ(8)
 
is:  

8 7 8 7
ˆ ˆ ˆ(8) (8)TG y
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with 

     (8) 0.62y
         (8) 2.21 1T

 

7

0.395ˆ
1.503

 

7

8

7

(8)

1 (8) (8)T

P
G

P
        

1

7 7 7

5 21
   

2 10.4448.2

TP

  

7

5 2 2.211
(8)

2 10.44 148.2

0.27
          

0.308

P

 
7

0.27
(8) (8) 2.21 1

0.308

T P

 
8

0.27

1.904

0.308

1.904

0.141
    

0.161

G

 

Finally, the vector of estimated parameters ˆ(8)
 
is:  
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8

0.395 0.141 0.395ˆ 0.61 (2.21 1)
1.503 0.161 1.503

0.3964
   

1.5013
      

5.6.5 The recursive extended least squares method 

If the system is disturbed by a sequence of noise, the adopted model is the 

autoregressive with moving average and exogenous (ARMAX) model:  

 

 

 
 
 

 
Fig. 5.37. The ARMAX model    

 

The ARMAX model corresponds to a discrete transfer function developed 

in the form of a recurrence which establishes a linear relation between the 

series of inputs { ( )u k }, outputs { ( )my k } and disturbances { ( )e k } of 

the form: 

1 0 1

1

( ) ( 1) ... ( ) ( ) ( 1) ...

                           ( ) ( ) ( 1) ... ( )

n

m q

y k a y k a y k n b u k b u k
b u k m e k c e k c e k q

 

( )e k : disturbances.  

 

The effect of noise is evaluated by the Signal to Noise Ratio (SNR): 

_

_

Signal PowerSNR
Noise Power

  

Remark: when the SNR is large, the effect of noise on the signal is weak. 

The recursive extended least squares (RELS) method aims to identify the 

parameters the parameters of the ARMAX model which are ia , 

1, ,i n , jb , 0, ,j m  and kc , 1, ,k q . 

 

 

u(k) 
ARMA y(k) 

e(k) 
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The vector of parameters : 

1 0 1

T

n m qa a b b c c  

and the observation vector : 

( ) ( 1) ... ( ) ( ) ( ) ( 1) ( )
Tk y k y k n u k u k m e k e k q

 
 and ( )k  are the extended vectors to the noise components and the 

variables ( 1),..., ( )e k e k q are not measurable. 

 

The system equation becomes: 

( ) ( ) ( )Ty k k e k  

In the observation vector, the variables ( 1),..., ( )e k e k q
 

are 

replaced by the prediction errors ( 1),..., ( )k k q : 

( ) ( 1) ... ( ) ( ) ( ) ( 1) ( )
Tk y k y k n u k u k m k k q

 
The RELS algorithm is written as: 

1 1

1 1

1

1

1

1

1

ˆ ˆ ˆ( ) ( )

( ) ( )

1 ( ) ( )

( )

1 ( ) ( )

ˆ( ) ( ) ( )

T
k k k k

T
k k

k k T
k

k
k T

k

T
k

G y k k

P k k P
P P

k P k
P k

G
k P k

k y k k

                                                     

( )k : a priori prediction error. 

 
Example: Let consider the first order linear system: 

1 1 1( ) ( 1) ( ) ( 1) ( )y k a y k b u k c e k e k  

The table below groups together the values of ( )u k  and ( )y k  for 

1,..., 4k  with, 
0
ˆ 0 , 0 100P I . 
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k  1 2 3 4 
( )u k  -1 1 1 -1 

( )y k  -2.1 1.2 2.7 -0.6 
 

Determine the vector of estimated parameters ˆ(3)  using the recursive 

extended least squares method.  

 
Solution: we have the given vectors: 

1 1 1

Ta b c
 

( ) ( 1) ( ) ( 1)
Tk y k u k k

 

1
ˆ( ) ( ) ( )T
kk y k k  

Calculation of 1
ˆ :  

1 0 1 0
ˆ ˆ ˆ(1) (1)TG y

                                                         or 

(1) 2.1y
 

(1) (0) (1) (0)
Ty u

 

1
ˆ(0) (0) (0) (0) 0Ty y

 

(1) (0) (1) (0) 0 1 0
T Ty u

 

0

1

0

(1)

1 (1) (1)T

P
G

P
 

0

100 0 0 0

(1) 0 100 0 1

0 0 100 0

0

          100

0

P
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0

0

(1) (1) 0 1 0 100 100

0

T P

 

1

0

100 0

0 100

101 101

0

G  

1 0 1 0

0
0

100ˆ ˆ ˆ(1) (1) 0 2.1 0 2.07
101

0
0

TG y

 
Calculation of 2

ˆ :  

2 1 2 1
ˆ ˆ ˆ(2) (2)TG y

                                                        or 

(2) 1.2y
 

0
ˆ(1) (1) (1) (1) 2.1Ty y

 

(2) (1) (2) (1) 2.1 1 2.1
T Ty u

 

1

2

1

(2)

1 (2) (2)T

P
G

P

 

0 0

1 0

0

(1) (1)

1 (1) (1)

T

T

P P
P P

P
 

1

0
100 0 0 100 0 0

100
0 100 0 0 100 0 0 0.99 0

101
0 0 100 0 0 100

0

P  
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1

210

(2) 0.99

210

P

 
1

210

(2) (2) 2.1 1 2.1 0.99 882.99

210

T P

 

2

210

0.99
0.237

210
0.001

883.99
0.237

G

 
1

0

ˆ(2) (2) (2) 1.2 2.1 1 2.1 2.07 0.87

0

Ty  

2 1 2 1

0 0.237 0.206

ˆ ˆ ˆ(2) (2) 2.07 0.001 0.87 2.0697

0 0.237 0.206

TG y

 

Calculation of 3
ˆ :  

3 2 3 2
ˆ ˆ ˆ(3) (3)TG y

                                                        or 

(3) 2.7y
 

1

0

ˆ(2) (2) (2) 2.7 2.1 1 2.1 2.07 1.2 2.07 0.87

0

Ty
 

(3) (2) (3) (2) 1.2 2.7 0.87
T Ty u
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2

3

2

(3)

1 (3) (3)T

P
G

P

 

1 1

2 1

1

(2) (2)

1 (2) (2)

T

T

P P
P P

P
 

1

210

(2) 0.99

210

P

 

1

210

(2) (2) 2.1 1 2.1 0.99 882.99

210

T P

 

1 1

2 1

(2) (2)

883.99

TP P
P P

 

1 1

100 0 0 2.1 100 0 0

(2) (2) 0 0.99 0 1 2.1 1 2.1 0 0.99 0

0 0 100 2.1 0 0 100

44100 207.9 44100

                       207.9 0.9801 207.9

44100 207.9 44100

TP P

 

2

100 0 0 44100 207.9 44100 50.113 0.235 49.887
1

0 0.99 0 207.9 0.9801 207.9 0.235 0.989 0.235
883.99

0 0 100 44100 207.9 44100 49.887 0.235 50.113

P

 

2

50.113 0.235 49.887 1.2 103.77

(3) 0.235 0.989 0.235 2.7 1.066

49.887 0.235 50.113 0.87 103.227

P
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2

103.77

(3) (3) 1.2 2.7 0.87 1.066 215.39

103.227

T P

 

3

103.77

1.066
0.479

103.227
0.005

216.39
0.477

G

 
2

0.206

ˆ(3) (3) (3) 2.7 1.2 1 0.87 2.0697 0.56

0.206

Ty  

 

3 2 3 2

0.206 0.479 0.47

ˆ ˆ ˆ(3) (3) 2.0697 0.005 0.56 2.18

0.206 0.477 0.061

TG y  

5.7 Applications 

Application 1 - Proportional controller 
 

The discrete-time system is given by its transfer function:  

0.15
( )

0.85
H z

z
 

1.  Synthesis a proportional controller in which the pole of the closed loop 

transfer function is 0.75z . 

2.  Synthesis a controller in that the difference equation in the closed loop 

transfer function is  

( ) 0.5 ( 1) 0.3 ( 2) 0.2 ( 3)r ry k r k y k y k
 

with ( )ry k  is the reference signal and ( )y k
 

is the output answer. 
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Answer 
 

1. The transfer function of the discrete-time system in open loop is  

0.15
( )

0.85
OL PH z K

z
 

in closed loop the transfer function is 

0

0.15

( ) 0.15 0.150.85( )
0.151 ( ) 0.85 0.15

1
0.85

P
OL P P

CL
OL P

P

KH z K KzH z
H z z K z zK

z
 

with 
0

0.85-0.75
0.85 0.15 0.75 K = 0.6667

0.15
P Pz K  

2. In closed loop the transfer function is   

0.15 ( ) ( )
( )

0.85 0.15 ( ) ( )
CL

r

K z Y zH z
z K z Y z  

or the output answer is  

( ) 0.5 ( 1) 0.3 ( 2) 0.2 ( 3)r r ry k y k y k y k
 the z-transform of the output answer is  

1 2 3 1 2 3( ) 0.5 ( ) 0.3 ( ) 0.2 ( ) (0.5 0.3 0.2 ) ( )r r r rY z z Y z z Y z z Y z z z z Y z  

and the transfer function is  

1 2 3( )
0.5 0.3 0.2

( )r

Y z z z z
Y z  

by comparing the two transfer functions  

1 2 30.15 ( )
0.5 0.3 0.2

0.85 0.15 ( )

K z z z z
z K z

 
so, the expression of the controller is  

1 2 3

1 2 3

0.5 0.125 0.225  0.17
( )

0.15 0.075 0.3 0.03

z z zK z
z z z

 

 
Application 2 - Derivative controller 
 

The aim of this application is to compare the simple derivative output 

controller with a derivative output controller with filter. 
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We give 10D sT T , 8N , 1PK  and a unit step input with 

amplitude 0E .  

1 - Compute the output of the simple derivative controller. 

2 - Prove that the transfer function of a derivative controller is  

0

1
( ) P D

D
D

s

K T zU z
T z zT
N  

 

with 0z  is to be found. 

Compute the output of this simple controller. 

3 - What kind of problems can the pole 0z create? 
 
Answer 
 

Using a unit input step with 0E , 10D sT T , 8N and 1PK . 

1 - The transfer function is  
11

1

1 0

0

10 (1 )( ) (1 )
( ) 10(1 )

( )

1
( ) 10(1 ) ( ) 10 10

1

P sD P D
D

D s s

D D

K T zU z K T z
C z z

E z T T
E zzU z z E z E

z z  

0( ) 10 ( )      ;        ( ) 1    1,Du k E e k e k k  

2 - The transfer function is  
1

1

0

(1 ) ( 1)

( 1)
( )

( 1)(1 )
1 ( 1)1

( 1) 1 1
( )

( )

D D
s s D

D P P P
D DD

s
ss

D P D P D
D P

D D D D D
s s s

D
s

z zT T
T T z T z

C z K K K
T TzT z T z z
N T z NN T

T z K T K Tz zC z K
T T T T T z zz T T T
N N N N Nz

T
T

N
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with 0

D

D
s

T
Nz

T
T

N

 . 

0

0

0

0

( )
( )

( )

1
          

10 1
           

10

10 1
          

10
1

8

1
        4.4444

D
D

D

P D

D
s

s

s
s

U z
C z

E z
K T z

T z zT
N
T z

T z zT
N
z

z z

z
z z

 

0

0

0

2

0 2

0 0

1
( ) 4.4444 ( )

1
          4.4444

1

         4.4444
(1 )

D D
zU z E z

z z
E zz

z z z
z zE

z z z z
 

1

0 1 2

0 0

1
( ) 4.4444

1 (1 )
D

zU z E
z z z z  

1 2 1

0 0 0(1 (1 ) ) ( ) 4.4444 (1 )Dz z z z U z E z

 
0 0 0( ) (1 ) ( 1) ( 2) 4.4444 ( ( ) ( 1))D D Du k z u k z u k E e k e k
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0 0 0 0( ) (1 ) ( 1) ( 2) 4.4444 ( ) 4.4444 ( 1);    

                                             ( ) 1    1,

D D Du k z u k z u k E e k E e k
e k k

 

3 - According to the equation ( )Du k , the pole 0z  has an influence on the 

output controller. 

 
Application 3 - PI controller 
 

Consider a linear-time invariant system given by the following expression: 

1
( )

1
H s

s  

followed by a zero-order-hold with sampling period 0.6sT s .  

 

1- to synthesis a proportional integral control with: 

 an overshoot less than 10% 

 a settling time =7s 

 a reference 100ry  

 a damping ratio 0.7   

 a natural frequency 0.82nw .  

2- Simulate the discrete-time controller with the discretized plant to see 

whether the specifications are fulfilled in the discrete-time setting. 

3- Simulate the discrete controller with the continuous system followed by 

a zero-order hold.

  
Answer 
 

The transfer function of the discrete-time system is  

1 1( ) 1 0.4512
( ) 1 1

1 0.5488

H sH z z Z z Z
s s s z

 
the conventional version of PI controller is  

P I P

PI

K K z K
C (z)

z 1
 

the transfer function in the open loop is  
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0.4512
( )

1 0.5488

P I P
OL

K K z K
H z

z z

 
and the transfer function in the closed loop is  

P I P

CL

P I P

P I P

P I P

P I P

2

P I P

K K z K 0.4512

z 1 z 0.5488H (z)
K K z K 0.4512

1
z 1 z 0.5488

0.4512 K K z K
           

z 1 z 0.5488 0.4512 K K z K

0.4512 K K z K
           

z 0.4512 K K 1.5488 z 0.5488 0.4512K

 

The desired continuous closed-loop transfer function  
2

2 2 2

0.67
( )

2 1.15 0.67

n
desired

n n

w
H s

s w s w s s  

with a damping ratio 0.7  and a natural frequency 0.82nw .  

The desired discrete closed-loop transfer function is  

2

1 1 1 ( )
( )

( )

p p p p p p
desired

p p p pp p

z z z z z z
H z

z z z z z zz z z z
 

where 

2
21

1s n n
s ns s n

T w jw jT wsT T w
pz e e e e  so we find 

 

2

0.1716
( )

1.3306 0.5022
desiredH z

z z  

 

We determine the parameters of the proportional integral controller by 

comparing the denominator of the actual closed-loop transfer function 

 

0.5488 0.4512 0.5022

0.4512 1.5488 1.3306

P

P I

K
K K  

so  
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P

I

K 0.1033

K 0.4348  

so the parameters of the PI controller are: 

PI

0.5381z 0.1033
C (z)

z 1  
2- We simulate the discrete-time controller with the discretized plant to 

see whether the specifications are fulfilled in the discrete-time setting: 

 
Fig. 5.38. The Simulink block of the system with PI controller    

 

The curve of the output is given by the following figure 

 
Fig. 5.39. The curve of the output   
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We remark that the overshoot seems slightly larger than the design 

specification. But the settling time meets the specification. 

 3- We simulate the discrete proportional integral controller with the 

continuous system followed by a zero-order hold. 

 

 
Fig. 5.40. The Simulink block of the discrete-time system with PI controller    

 

The curve of the output is given by the following figure 

 

 
Fig. 5.41. The curve of the output 
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We remark that the overshoot and the settling time are above the same as 

those obtained with the discretized system. All design specifications are 

met with a sampling period Ts = 0.6 seconds.  

 

Application 4 - PID controller 
 

We want to apply a discrete-time controller PID to a second order 

continuous system with transfer function 
1

( )
( 1)

H s
s s

 

followed by a 

zero-order hold with sampling period 1sT s . 

1- Find the transfer function ( )H z  of the system as the following 

expression  
1 2

1 2

1 2

0 1 2

( )
b z b zH z

a a z a z
. 

2- Find the closed loop transfer function. 

3- Compute the parameters of the discrete-time PID controller using the 

following characteristic: 

- damping ration 0.5 . 

- natural frequency 2 0.1nw . 

 
Answer 
 

1 - The transfer function of the discrete-time system is 

1 1

2 2

( ) 1 0.368 0.264
( ) (1 ) (1 )

( 1) 1.268 0.368

H s zH z z Z z Z
s s s z z

 
1 21 2

1 2

1 2 1 2

0 1 2

0.368 0.264
( )  

1 1.268 0.368

b z b zz zH z
z z a a z a z

 
with 
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1

2

0

1

2

0.368

0.264

1

1.268

0.368

b
b
a
a
a

 

2 - In the closed-loop the performance specification of the system are:  

1,20.5;    0.628        0.314 0.544nw p j
 

s 1,2;    T 1         z 0.626 0.379spTz e s j
 The denominator of the system in the closed loop: 

1 1 1 1 2

1 2

1 2

( ) (1 )(1 ) 1 1.256 0.536

        1.256,       0.536

CLD z z z z z z z
p p

 

3 - Computing the parameters of discrete-time PID  
1 1 1 1 1( ) ( ) ( ) ( ) ( )CLD z D z S z N z R z  

1 1 2

1 1 0 1 1 2 1 1 2 0

3 4 1 2

1 2 2 1 2 2 1 2 2 2 1 2

( ) 1 ( 1 ) ( )

                 ( ) ( ) 1

CLD z a p b r z p a p a a b r b r z

a p a p a b r b r z a p b r z p z p z  
1 1 2

1 2( ) 1CLD z p z p z  

By identification we find  

1 1 1 0

2 1 1 2 1 1 2 0

1 2 2 1 2 2 1

2 2 2

1

0

0

p a p b r
p p a p a a b r b r

a p a p a b r b r
a p b r

 

0

1 0

2 1

2

1.256 1.368 1 0.368

0.536 1.368 1.368 0.368 0.368 0.264

0 1.368 0.368 0.368 0.368 0.264

0 0.368 0.264

p r
p p r r

p p r r
p r
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0

1

2

0.368 0 0 1 1.112

0.264 0.368 0 2.368 1.2

0 0.264 0.368 1.736 0.368

0 0 0.264 0.368 0

r
r
r
p

1

0

1

2

0.368 0 0 1 1.112 1.9249

0.264 0.368 0 2.368 1.2 2.0445

0 0.264 0.368 1.736 0.368 0.5626

0 0 0.264 0.368 0 0.4036

r
r
r
p

 

Finally, we find  

1

0 1 2

2

1

0 1 2

2

0 1 2

3

(2 )

(1 )

(1 )

(1 )

1

P

P
I s

D s
P

sD

r p r p r
K

s
K p

T T
r r r

p r pr r
T T

K p
pTT

N p

 

2

2

3

1.9249*0.4036 2.0445 (2 0.4036) *0.5626

(1 0.4036)

(1 0.4036)

1.9249 2.0445 0.5626

(0.4036)) *1.9249 0.4036* 2.0445 0.5626

(1 0.4036)

0.4036

1 0.4036

P

P
I s

D s
P

sD

K

K
T T

T T
K

TT
N
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-0.2921

-0.9255

-2.1063

 -0.2875 N=7.3263

P

I

D

D

K
T
T
T
N

 

5.7 Conclusions 

In this chapter, we aimed to explain how can we successfully use P, PI, PD 

and PID controllers in many applications. Indeed, we tried to focus on 

almost all aspects of PID control in discrete-time linear invariant system 

because PID controllers and their variations are commonly used in the 

industry. Control engineers usually prefer PI controllers to control first 

order system and, PID control is vastly used to control two or higher order 

systems. In almost all cases fast transient response and zero steady state 

error is desired for a closed loop system. Usually, these two specifications 

conflict with each other which makes the design harder. The reason why 

PID is preferred is that it provides both of these features at the same time.  
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