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PREFACE 
 
 
 
Vibrational spectroscopy, which includes infrared absorption (IR) and 

Raman scattering, is a powerful physical method for the study of chemical 
compounds – solid, liquid, and gaseous. In this, IR spectroscopy is to a 
greater extent an analytical method, and Raman spectroscopy is a research 
method. 

The book is addressed, first of all, to students and scientists whose 
interests lie in the field of research of chemical, mineralogical, biological 
systems. This requires from a specialist both professional knowledge in 
each of the named areas and a deep understanding of the processes occurring 
in the medium during the scattering or absorption of electromagnetic 
radiation. For this reason, in the book, in addition to general information 
from the field of solid-state physics, much attention is paid to the description 
of those physical phenomena that have long been worked out in detail and 
are considered as if they do not require additional explanations. These 
include the concepts of a harmonic oscillator, vibration symmetry, 
anharmonicity, etc. These phenomena, however, underlie vibrational 
spectroscopy, are implicitly present in every vibrational spectrum, and their 
clear understanding is necessary at any level of work with vibrational 
spectra. The presentation is conducted at an extremely simple level that 
provides an understanding of the essence of the phenomenon, sometimes at 
the expense of a rigorous theoretical description. A small exception is only 
the first two chapters, where the theory of light scattering and the theory of 
vibrations are presented. But here, too, a general outline of the theory is 
given and many details are omitted. This is done in part to prevent the reader 
from wanting to close the book on the second page. 

The text contains a large number of Raman spectra of compounds – 
organic and inorganic. All of them were obtained in the course of the 
author’s work. 

The author will be grateful for the comments and feedback sent to the 
address: kolesov@niic.nsc.ru 
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CHAPTER 1 

RAMAN SCATTERING:  
BASIC CONCEPTS AND BRIEF THEORETICAL 

DESCRIPTION 
 
 
 

1.1. Elastic and inelastic light scattering 

Vibrational spectroscopy is actually the only physical method 
representing information on the pair potential of interactions between 
atoms. This information is embedded in the vibrational frequencies of the 
system. The vibrational spectrum of a compound can be obtained by 
infrared absorption spectroscopy or Raman scattering1. These experiments 
are characterized by different selection rules and therefore perfectly 
complement each other. 

Let us briefly consider the processes yielding to the occurrence of 
both effects. Let there be a polar two-atomic molecule and an 
electromagnetic wave E = E0cos( Lt) with the variable frequency L. 

The electric field of the incident radiation interacts with the charged 
atoms of the molecule. When the radiation energy is small enough and is 
comparable to the energy of the fundamental mechanical vibrations of the 
molecule, a quantum of light is absorbed, and a quantum of vibration 
arises in the system (Fig. 1.1). More complex examples than diatomic 
molecules, such as systems of vibrating atoms, usually have a set of 
different fundamental vibrations, and in this case one can observe an 
infrared absorption spectrum consisting of several absorption bands. 

When the energy of the incident radiation is high and approaches the 
energy of the allowed optical dipole transition between different electronic 
states of a molecule or crystal, we observe an absorption spectrum in the 
UV and visible regions. 

 
 

1 Raman scattering was discovered almost simultaneously by C.V. Raman and K.S. 
Krishnan [1] in India and G.S. Landsberg and L.I. Mandelstam [2] in Russia in 
1928. 
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Fig. 1.1. The emergence of an absorption spectrum on vibrations (a) and electronic 
transitions (b) 

 
And what happens when the energy of the electromagnetic wave is 

greater than the energy of atomic vibrations and less than the energy of the 
dipole electronic transition? In this case, the electronic subsystem is able 
to respond to changes in the electric field, while the atomic one is not. 
Under the action of an external field, the electron cloud of the molecule is 
displaced, forming a dipole oscillating with the frequency of the incident 
radiation. This process can be described as absorption of the incident wave 
energy by an electron and its transition to a state that is often called virtual 
for convenience, i.e. not a stationary state of this system2. 

It follows from the Heisenberg uncertainty relation t   that the 
lifetime of an electron in a virtual state is very small, on the order of half 
of the oscillation period of the electric field of the incident wave, i.e. 10-15 
- 10-16 s, after which the electron is forced to leave it, emitting a quantum 
of light with the same energy as the energy of the incident wave, 
producing Rayleigh scattering (Fig. 1.2, a).  

However, even in that short time that the electron is in a virtual state, 
due to the electron-vibrational (electron-phonon in the crystal) interaction 
in the system, a quantum of mechanical vibrations can arise, after which 
the electron returns to its initial state with the emission of a quantum of 
light with an energy lower than the energy of an incident photon on the 
energy of the emitted vibration. This process is depicted in Fig. 1.2, b. In 
this case, in the spectrum of scattered light, we will observe the main (i.e., 
upshifted Rayleigh) line L and one more accompanying line with a lower 
frequency that differs from frequency L to the frequency of the emitted 
quantum of the mechanical vibration. 

 
2 As will be shown below, neither the classical nor the quantum mechanical 
description of the process of Raman scattering require the presence of a virtual 
state. However, its inclusion simplifies the diagram of the scattering process and 
makes it extremely clear. 
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Fig. 1.2. Diagram of the appearance of elastic Rayleigh (a) and inelastic Raman (b) 
scattering. The emitted mechanical vibration (phonon) is marked in green  

 
This is spontaneous Raman scattering, or, more precisely, Stokes 

Raman scattering. Why Stokes? The fact is that the scattering process can 
be characterized not only by the generation of a vibrational quantum, but 
also by the elimination of a vibrational quantum already existing in the 
system (Fig. 1.3). In this case, the spectrum contains a line with energy 
higher than the energy of an incident photon on the energy of the 
eliminated vibration. 

 
 

Fig. 1.3. Anti-Stokes Raman scattering 

 
 
 
 
 

 
The main difference between IR absorption and Raman scattering is 

that the incident radiation interacts with the vibrating atoms in the first 
case and with their electronic subsystem in the second. 

1.2. Elementary theory of Raman scattering  

To elucidate the reasons for the appearance of inelastic Raman 
scattering on vibrations, it is necessary to consider the question of the 
interaction of radiation with an atomic system. The electric field of an 
incident electromagnetic wave 

 

L 

1 

0 

L 

S = L-    
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E = E0 cos( Lt)   (1.1) 

yields to the appearance in the atomic system of an induced dipole 
moment 

P = E.     (1.2) 

If the polarizability3  is a time-independent constant,  = 0, we get 

P = 0E0cos( Lt).   (1.3) 

In other words, a dipole moment, vibrating harmonically with the same 
frequency L arises. Such a dipole moment (Hertzian dipole) emits 
radiation, and the radiation energy in all directions of space per unit of 
time is  = = | |    (1.4) 

The dipole radiation creates coherent scattered light with constant 
frequency and phase. Time averaging gives = | | = | | .    (1.5) 

This is the so-called Rayleigh scattering. If the scattering particles are 
ordered in the system, like atoms in a crystal, then the scattered light 
interferes in a single direction, coinciding with the direction of the incident 
beam in the crystal, and we observe the light passing through the crystal. 
Rayleigh scattering in all directions occurs precisely because of the 
violation of the ordered distribution of the scattering particles. For 
example, fluctuations in the density of a gas in the atmosphere are 
responsible for the sunlight scattering, and the blue color of the sky is 

 
3 The term "polarizability" is used for atoms and molecules. To describe the 
response in solids and liquids, it is preferred to use the concept of "polarization", 
which is the sum of the induced dipole moments from all the particles that make up 
the medium. In this case, the polarization is P = E, where  is the dielectric (or 
simply electrical) susceptibility. The latter value is related to the molecular 
polarizability  by a simple relationship:  = N  (N is the number of particles per 
unit volume). For this reason, one can find in the literature a description of the 
theory of the Raman effect using the dielectric susceptibility; however, neither the 
essence of the effect nor the basic relations change in this case. 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Raman scattering 
 

5 

explained by the fourth power of the frequency in the expression for the 
scattering energy. 

We must consider, however, what happens when the polarizability of 
the system (molecule, crystal) changes over time during the vibration. 
(The polarizability is a tensor quantity and is usually determined by the 
second-rank tensor. For more details, see Chapter 6.) Indeed, for a 
hypothetical square molecule (Fig. 1.4, a) the xx and yy components of 
the polarizability tensor along the x and y directions are respectively equal 
to each other. It is intuitively clear, however, that they become different 
when the molecule changes its shape during vibration (Fig. 1.4, b). 
 

 

 

 

 

Fig. 
1.4. 

Polarizability of a hypothetical square molecule during rest (a) and vibration (b) 

Vibrations of the system are not random, but are determined by a set of so-
called normal vibrations i with the corresponding normal coordinates i 
(definition of normal vibrations and coordinates will be given in Ch. 2). 
Expanding the components of the polarizability tensor in a Taylor series in 
normal coordinates, we obtain: 

= ( ) + + 12 … . ,,     (1.6) 

where k and l… are the normal coordinates of vibrational modes with k, 
l, etc. frequencies, and ,  = x, y, z. The subscript 0 in the derivative 

indicates that its value is determined at the equilibrium position. In the 
harmonic approximation, neglecting terms with a degree  higher than 1, 
one can write ( ) = ( ) + ( ) ,                  (1.7) 

yy 

xx 

a b 

xx 

yy 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 1 
 

6 

where =              (1.8) 

is the derivative of the polarizability with respect to the normal coordinate. 
Since relations (1.7) and (1.8) hold for all components of the polarizability 
tensor and the polarizability derivative, we rewrite (1.7) in a simpler form: = + .        (1.9) 

Assuming a simple harmonic motion of atoms during vibrations, the 
dependence of k on time can be expressed as  

k = k0 cos( kt + k)      (1.10) 

( k0 is the amplitude of the normal coordinate, and  is the phase of 
vibration). Now we can rewrite expression (1.2) for the dipole moment in 
the form: = = cos( ) + cos( + ) cos( ).   (1.11) 

Using the well-known trigonometric relation for products of cosines, we 
get: = cos( ) + 12 cos[( ) ± ] + 

+ cos[( + ) ± ].       (1.12) 

It can be seen that, in addition to the first term, which is responsible 
for coherent Rayleigh scattering, two additional terms appear in 
expression (1.12) that describe the incoherent (phase  is random for each 
vibration) Raman scattering with frequencies L  k (Stokes part) and L 
+ k (anti-Stokes part). As before, the Raman scattering intensity is = ( ) | |     (Stokes scattering) (1.13) 

and = ( + ) | |     (anti-Stokes scattering)  (1.14) 
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where A is constant. In both cases, the scattering intensity is proportional 
to the square of the amplitude of the electric field of the incident light, the 
square of the amplitude of the derivative of the polarizability of the 
system, and the fourth power of the frequency of the scattered radiation. 

In conclusion, it should be noted that the simplified scheme proposed 
here is not a scattering theory in the full sense, and the results obtained are 
devoid of many important details. The only important result obtained 
above is the appearance of two scattering components, Stokes and anti-
Stokes. However, the physics of the process of Raman scattering is much 
richer and it is necessary, therefore, to go to the next, higher level of the 
theoretical description of this phenomenon. 

1.3. Semi-classic and quantum-mechanical approaches4 

The dipole moment P induced in the system (atom, molecule, crystal) 
by the electric field =  (   the unit vector of polarization of the 
incident electromagnetic wave) is = .               (1.15) 

Let us rewrite expression (1.4) for the energy emitted by an 
oscillating electric dipole P per unit time in the form: = ( ) = ( ) ,          (1.16) 

where d  is the element spatial angle, 0 is the dielectric constant of the 
medium,  is the unit vector of polarization of the scattered radiation, and 

,  = x, y, z. 
The scattering process is usually characterized by the differential 

cross section d /d , which can be obtained by dividing (1.16) by the 
energy = , falling per unit area per unit time: = ( )       (1.17) 

In the last expression, the unknown quantity is the polarizability of the 
system. To find it, it is usually assumed that the scattering medium 
consists of a set of N electron oscillators per unit volume. Each oscillator 
can be represented as an electron of mass m and charge e, bonded to the 

 
4 It is stated in accordance with [3]. 
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nucleus, and this bonding is characterized by a force constant f. The 
equation of motion for such a harmonic oscillator is written in the usual 
way: + = 0,       (1.18) 

where = /  is the vibrational frequency of the oscillator (in quantum 
mechanics, r is interpreted as the frequency at which an atom absorbs a 
quantum of light, i.e., the frequency of an electronic transition). For an 
oscillator in an external field EL, we introduce the force F = eEL/m into 
expression (1.18): 

 + = .     (1.19) 

In addition, a real physical system is characterized by a finite lifetime 
(damping of the oscillator), which adds one more term to the equation of 
motion (1.19): + + = .           (1.20) 

The solution of the equation (1.20) for an electronic oscillator with a 
fundamental frequency r and a damping coefficient r, being in the 
electric field of an incident wave of frequency L, is as follows: 

= ( ) .          (1.21) 

Since P = E = ex, we get: = / .       (1.22) 

Substituting (1.22) into (1.17), we obtain an expression for the scattering 
cross section: = ,               (1.23) 

where re = e2/4 0mc2 is the classical radius of the electron. Far from 
resonance, i.e. for L << r, expression (1.23) can be rewritten as: 
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= .                    (1.24) 

Formula (1.24) describes elastic scattering of an isotropic medium. As 
before, in order to obtain inelastic scattering, it is necessary to consider 
how the polarizability of the system changes during vibration. Each 
vibrational mode j is characterized by the displacement of N atoms in the 
molecule dependent on time as ( i jt). The displacements of the k-
atom in the molecule (k = 1,2, ..., N) qk

(j) can be expressed in terms of the 
normal coordinates  as will be done in Chapter 2, Eq. (2.40), but only in 
complex form:  ( ) ± = + ,               (1.25) 

where ek is the unit vector of displacement of the k-atom. From here, 
decomposing polarizability in a series in the normal coordinate , we 
obtain a relation similar to (1.6): 
 ( , ) = ( ) + + + ++         (1.26) 

Substituting (1.26) into (1.17) and restricting ourselves to the linear terms 
of expansion (1.26), we obtain scattering without changing the frequency 

L (Rayleigh) and with frequency L  j (Stokes and anti-Stokes 
scattering). For the last two, the differential cross-section is written as: 
 = ( )     (Stokes scattering),    (1.27) = ( )    (anti-Stokes scattering).   (1.28) 
 
The factors *  and * , where the brackets denote averaging over the 
ground state of a molecule, are derived in quantum mechanics by replacing 
the displacements  and * with the corresponding operators  and  †, 
called the creation and annihilation operators. Omitting rather complicated 
quantum-mechanical calculations (see, for example, Ref. [4]), we present 
the final result of the calculation of the Stokes and anti-Stokes factors: 
 = ( + 1)     Stokes component,   (1.29) 
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=      anti-Stokes component,   (1.30) 

 
where n determines the statistical (Maxwell-Boltzmann) population of the 
vibrational state = / ) .      (1.31) 

Substituting the last expressions in (1.27) and (1.28), we obtain: 

= ( ) ( + 1)   (Stokes scattering),    (1.32) 

= ( )     (anti-Stokes scattering)  (1.33) 

The fact that the anti-Stokes scattering is proportional to the number of 
phonons with a given energy follows from the definition of the anti-Stokes 
process: in order for a scattering act to occur with absorption of a phonon, 
this phonon must be presented in the system. But the fact that the Stokes 
scattering’s intensity consists of two components, one of which is also 
proportional to the number of phonons in the system with exactly the same 
frequency as the scattered phonon, seems unexpected at first glance. 
Strange as it may seem, the well-known experiment with two identical 
pendulums fixed on one thread helps to understand this complex 
phenomenon. If an oscillation is excited in one of the pendulums, then due 
to the connection between them, this oscillation will be completely 
transferred to the second pendulum for some time, while the oscillations of 
the first will cease. Then the process starts in the opposite direction. Such 
transfer of energy from one oscillator to another and back becomes 
possible due to the identity of their fundamental vibrational frequencies. 
Now, returning to the process of light scattering by a vibration, it is easy to 
understand that the emitting of a phonon  during scattering becomes 
much more probable if the system already has a vibration with the same 
frequency, which, as it were, “shakes” the system and, due to the 
kinematic interaction between phonons, helps the occurring of another 
such vibration. In the process of scattering, there is no need to transfer 
energy from one oscillator to another, since in this case the energy is taken 
from the photon. The temperature-independent part of the Stokes 
scattering arises due to the existence of zero-point vibrations, which 
provide the necessary perturbations of the system. The proportionality of 
the number of excitations to the number of the same excitations already 
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presented in the system is characteristic of all particles with integer spin, 
i.e. bosons. From this point of view, Stokes Raman scattering is 
completely analogous to the well-known phenomenon of the spontaneous 
and stimulated emission of light. Indeed, if an atom passes into an excited 
electronic state, which is usually stationary, i.e. allowed, then the lifetime 
of this state is, nevertheless, finite, and the electron returns to the ground 
state with the emission of a quantum of light either under the action of 
zero-point oscillations of the electromagnetic field (spontaneous emission) 
or a quantum of an external field with the same energy (stimulated 
emission). 

From expressions (1.32) and (1.33) we find for the ratio of the 
intensities of anti-Stokes IA and Stokes IS scattering 

= .        (1.34) 

Eq. (1.34) makes it possible to estimate the real temperature in the 
scattering volume of the sample (far from resonance). And since this 
volume is very often represented simply by a local point on the surface of 
a crystal or powder, the proposed method for temperature measuring is 
actually the only one in this case. 

Returning to relations (1.27) and (1.28), it is necessary to note that 
their meaning is the same as that of relations (1.13) and (1.14). But, 
receiving both, we did not consider the dependence of the polarizability of 
the system (1.22) on the frequency of the incident radiation. In expression 
(1.22), the polarizability is represented by the scalar quantity. To preserve 
its tensor character, we need to multiply polarizability (1.22) by the unit 
tensor of the force of the electron oscillator fe as follows: = / + .     (1.35) 

Now the derivative of the polarizability with respect to the normal 
coordinate in (1.27) and (1.28) will consist of two contributions: 

= + .     (1.36) 

The first term on the right-hand side of (1.36) expresses the dependence of 
the frequency of the electronic oscillator (energy of electronic transition) 

r on the shift of atoms during vibration and is determined by the electron-
phonon interaction. The second term represents the dependence of the 
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oscillator strength (the intensity of the electronic transition) on the 
displacement of atoms. The analysis of both terms is not an easy task, and 
therefore we restrict ourselves here to only stating the fact that a resonance 
factor appears in the expression for the scattering cross section, which, 
after some simplifications, may look like .         (1.37) 

1.4. Quantum mechanical description 

In the quantum mechanical description, the induced electric dipole of the 
classical theory is replaced by the dipole moment (p)fi of the transition 
from the initial state i to the final state f. But, as can be seen in Fig. 1.2, in 
the process of Raman scattering, both states, initial and final, are the 
ground electronic state of the system (i.e., (p)fi = 0) with the only 
difference that the state f is vibrationally excited. At the same time, the 
frequency of the incident electromagnetic wave L is much higher than if 
= Eif / , where Eif is the difference between the energies of the initial and 
final states. Therefore, to calculate the dipole moment of electronic 
transition in quantum mechanics, an intermediate state r is used, which is a 
real (stationary) excited electronic state of the system. In this case, the 
energy Er of the excited state can be any, but it is usually assumed that L 
is less than r = Er/ . The term "less" means in this case that the laser 
excitation frequency L is spaced from the resonance frequency r by 
many frequencies of the system if. Under this condition, the absorption 
coefficient of the system (i.e., the probability of transition from the ground 
state to the excited electronic state) practically does not depend on the 
vibration of the system. At this the vibration itself can be considered as its 
static deformation, and the molecule can be characterized at each moment 
of time by the definite polarizability. The quantum mechanical scattering 
scheme and the designation of states are shown in Fig. 1.5.  
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Fig. 1.5. Designation of states used in 
quantum mechanical calculation 

 

 

 

Following this scheme, the dipole moment of the transition (p(1))fi from the 
initial state to the final state in the framework of approximation theory – 
when only the terms linear in the field E are taken into account in the 
intermediate expansions (as indicated by the superscript in the designation 
of the dipole moment) – should be proportional to both the matrix element 
of the transition from the initial state i to the intermediate state r and the 
matrix element of the transition from the state r to the final state f. G. 
Placek [5] showed that the -component of (p(1))fi can be written as  

( ) = 1 | | + | |+ + ( ),  

 + complex conjugated,   (1.38) 

where the summation is carried out over all formally possible intermediate 
states r (for simplicity, the entire sum can be replaced by just one state). In 
this expression  is the operator of the dipole moment (operator of 
electronic coordinate), and r is the half-width of the state r of the system, 

s = L  fi. 
The numerator of expression (1.38) contains the matrix elements of 

transitions between states and, thus, describes the probabilities of system 
excitation and interaction with a phonon. The denominator ri  ( L + i r) 
is the resonance factor presented above. 

Let us introduce a general expression for the -components of the 
polarizability ( )fi: = | | + | | .,     (1.39) 

Far from resonance ( L
 << ri), the term i r can be neglected, therefore 
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= | | + | | .,    (1.40) 

The first term in brackets is usually significantly larger than the second 
due to the resonant denominator, so the second term is often neglected for 
simplicity. Now it is necessary to substitute expression (1.40) for the 
polarizability into the series expansion (1.26) and, confining ourselves, as 
before, to the harmonic approximation, obtain the intensity of Raman 
scattering using relations (1.32) and (1.33). However, the transition from 
theoretical expressions to numerical values of intensities for molecules and 
crystals is still a difficult task. 

The analysis presented here differs from the simplified classical 
scheme (§ 1.2) by the appearance of a resonance factor, which very often 
makes the dependence of the scattering intensity on the wavelength of the 
exciting radiation much stronger than the fourth power of the frequency in 
expressions (1.13) and (1.14). When the energy of the laser line 
approaches the energy of the electronic transition, the scattering intensity 
can increase hundreds and thousands of times (see Chapter 8). In addition, 
the scattering intensity turned out to depend on the thermal population of 
the vibrational state, which primarily affects the ratio of the intensities of 
the Stokes and anti-Stokes scatterings. 
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2.1. Harmonic oscillator in classical mechanics 

The harmonic oscillator is an approximation that is used in physics to 
describe the free vibrations of various systems – mechanical, electrical, 
and electromagnetic. The approximation is that the restoring force acting 
on the system when it deviates from the equilibrium position is assumed to 
be linearly dependent on the magnitude of the deviation, i.e. F = f x, 
where f is the proportionality coefficient (rigidity of spring, force constant 
of chemical bond). And although the last condition is satisfied only for 
small deviations in mechanical systems and weak fields in electromagnetic 
oscillations, the theory of a harmonic oscillator is fundamental in 
vibrational processes. 

 

 

Fig. 2.1. Potential energy of a one-dimensional 
harmonic oscillator 

 

 

 

 

We will consider a one-dimensional harmonic oscillator, in which, by 
definition, the potential energy U(x) of one particle of mass m 
quadratically changes with the coordinate x (Fig. 2.1) according to the law 

  ( ) =  ,    (2.1) 

U
(x

)

x
max

x
max
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and the kinetic energy takes the form ( ) = = =  .  (2.2) 

Let us write the equation of motion of a harmonic oscillator: =  =  ,               +  =  +  = 0, (2.3) 

where = . Solution (2.3) is either of the following two: = sin( + ),        = cos + sin ,  (2.4)   

where the arbitrary constants xmax, , x1, and x2 are related as         

   = + ,        tg = .    (2.5) 

(Equalities (2.5) follow from the trigonometric equation sin ( +) = sin ·  cos + cos · sin . ) This solution describes harmonic 
oscillations with the frequency , amplitude xmax and initial phase . 
Angular frequency  refers to spectroscopic frequency  and period of 
vibrations T as  

= 2 = = .       (2.6) 

For definiteness, we choose one of two solutions for the harmonic 
oscillator (2.4), namely = sin( + ).       (2.7) = = cos( + ) = cos( + ).        (2.7a) 

From (2.1) and (2.2) we have ( ) = = sin ( + ),      (2.8) ( ) = = cos ( + ).      (2.9) 
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The total energy, equal to the sum of the potential and kinetic 
energies, remains constant during oscillation: = + = cos ( + ) + sin ( +) == .      (2.10) 

The potential energy U becomes equal to the total E at x = ± xmax, 
therefore, the kinetic energy should vanish at these points, which are 
turning points for the classical oscillator. For x = 0, i.e. in the equilibrium 
position, the potential energy vanishes, and the kinetic energy reaches its 
maximum value. The probability of detecting an oscillating particle in a 
state with a coordinate x is maximum at the turning points x = ± xmax, 
where the velocity of the atoms becomes equal to zero, and is minimum at 
the equilibrium position. The mean values of the coordinate and 
momentum are equal to zero because 

= 12 sin( + ) = 0 

      = cos( + ) = 0 .     (2.11) 

However, the mean values of the squares of the coordinate and 
momentum are nonzero: 

         = sin ( + ) =  

= cos ( + ) = .  (2.12) 

Hence, the standard deviations are: 

= ( ) = 2  

      = ( ) =          (2.13) 
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2.2. Quantum mechanical harmonic oscillator 

The solution to the problem of a quantum harmonic oscillator is 
directly related to the appearance of quantum mechanics. This 
phenomenon itself is much more complex than that of a classical 
oscillator. For this reason, we will first obtain a formal solution, as it is 
usually presented in textbooks on quantum mechanics, and then we will 
try to clarify the main features inherent in a quantum oscillator. 

For the quantum mechanical solution of the harmonic oscillator 
problem, it is necessary to find the eigenvalues and eigenfunctions of the 
energy operator . Introducing the generalized momentum = =    
(q  coordinate) and taking into account expressions (2.1) and (2.2) for the 
kinetic and potential energies of the oscillator, we write the Hamilton 
function = + = + . (2.14) 

Replacing the classical momentum p with the momentum operator 
 =  (i.e., replacing the momentum with a mathematical operation 
that, acting on the function, reveals the determination of the momentum of 
the system), we obtain for the energy operator of the harmonic oscillator = + = + . (2.15) 

The solution of an eigenvalue problem for the Schrödinger operator 
(stationary Schrödinger equation) ( ) = + ( ) = ( )   

 (2.16) 

determines the energy spectrum = +    (2.17) 

(where = , as in the classical oscillator, and n is the vibrational 

quantum number taking integer values n = 0, 1, 2, ...) and the 
eigenfunctions 
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( ) = ( ) = ( ) ; (2.18)

here Nn is the normalization factor, = ( ),  = q. The functions 
H( ) are Hermite polynomials of degree n (n = 0, 1, 2 ...), written as

H0( ) = 1    
H1( ) = 2

          H2( ) = 4 2 + 2       (2.19)
H3( ) = 8 3 12
H4( ) = 16 4 48 2 + 12. 

Wave functions (2.18) and their squares, which determine the 
probability distribution of coordinate values, are shown in Fig. 2.2. It can 
be seen that the functions 0 and 2 are even with respect to the change in 
the sign of the coordinate, and the functions 1 and 3 are odd. The 
distribution probability is maximal at the center (i.e., in the classical 
equilibrium position) for the function 0 and shifts towards the turning points 
for the remaining functions. Unlike the classical oscillator, the probability 
outside the classical movement is not zero, but falls off exponentially, and, in 
addition, it can have several maxima within the oscillator. 

Fig. 2.2. Wave functions of a harmonic oscillator. The divisions of the abscissa 
scale are in units of 

Potential and 
wave functions 
of a harmonic 

oscillator

The limits of the 
classic movement
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The probability of a transition between states n and n  under the 
action of an electromagnetic field in the main order is determined by the 
dipole approximation. In this case, the disturbance potential can be 
considered in the form  = d E, where d is the dipole moment equal to eq, 
and E is the amplitude of the electromagnetic field. Thus, in this case, the 
perturbation energy can be considered a linear function of q; accordingly, 
the transition probability will be determined by the square of the matrix 
element of the q coordinate between the states |n> and |n > | | = .   (2.20) 

Using the wave functions (2.18) and (2.19), we find that, for example, 
the probability of the 0 1 transition will be proportional to the integral of 
an even function q2 and therefore finite, and the probability of the 0 2 
transition is proportional to the integral of the odd function q3 and is equal 
to zero, since the integration is carried out in symmetric limits. These 
observations constitute a special case of the general selection rule, 
according to which only transitions between neighboring quantum states 
are allowed, i.e. with a change in the quantum number n by one 

n = 1.    (2.21) 

The proof of the selection rules (2.21) is based on the fact that 
radiative transitions with high accuracy can be considered as dipole, in 
which the angular momentum of the photon is equal to . Consequently, 
the angular momentum of the oscillation during the emission or absorption 
of a quantum of light can change only by one, which satisfies condition 
(2.21). 

The average values of the coordinate and momentum of stationary 
states of a harmonic quantum oscillator are determined by the integrals | | = 0  

              | | = 0        (2.22) 

and are equal to zero, since the integration is carried out within symmetric 
limits. 

In a quantum oscillator, the instantaneous values of the coordinate 
and momentum of a particle are not determined (these physical quantities 
are not observable); instead, the mean values of the squares of the 
coordinate and momentum are usually found. We can, however, express 
the amplitude of a quantum oscillator in terms of the observed parameters. 
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In classical mechanics, the vibrational energy is determined by expression 
(2.10), and in the quantum case, by expression (2.17). Equating both 
quantities, we obtain for the amplitude of the quantum oscillator: 

( ) = .    (2.23) 

In this notation, the quantity qmax(n) for a quantum oscillator is 
analogous to the turning points of the classical one. Based on the equality 
of the kinetic and potential energies of the oscillator, the maximum value 
of the momentum is expressed in terms of the coordinate as  

( ) = ( ) = + .  (2.24) 

The mean value of the squares of the coordinate and momentum of 
the quantum oscillator are determined by the expressions 

= | | = + 12 = ( )2           
= | | = + 12 = ( )2               (2.25) 

and the standard deviations: 

( ) = = ( )     

( ) = + = ( )      (2.26) 

We see that the root-mean-square deviations of the coordinate and 
momentum for the classical (2.13) and quantum (2.26) oscillators, 
expressed in terms of their amplitudes, coincide. 

The results obtained can be interpreted as follows. A quantum 
particle, according to de Broglie, is not only a particle, but also a wave, the 
length of which in the case of rectilinear motion is determined by its 
momentum p: =       (2.27) 
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Since when we consider the oscillation of a particle inside the limited 
space of the oscillator and outside the oscillator there is no solution, then 
the particle-wave must "fit into its size", i.e. fit on the segment (–xmax, 
xmax) in such a way that its amplitude decays when approaching the turning 
points. This condition can be satisfied by a wave consisting of half a 
period, one period, one and a half periods, etc., since only in this case does 
the wave amplitude drop to zero at both boundaries of the oscillator. 
However, if waves with a different number of half-periods are placed on 
the same section (–x1, x1), then their lengths will be different. The energies 
of these waves, determined by the ratio = =  ,    (2.28) 

will also be different. In other words, each possible energy state of a 
particle in a quantum oscillator corresponds to a single de Broglie wave 
with one or another length, determined by the size of the oscillator at a 
given energy and the number of half-periods in this section. Since the 
number of half-periods of the de Broglie wave inscribed in the oscillator 
can change only discretely during the transition from one vibrational state 
to another, then the particle energy also changes discretely. The resulting 
energy states are called stationary, and the corresponding de Broglie 
waves are called the wave functions of stationary states. They are shown 
in Fig. 2.2. This implies a very important difference between the classical 
and quantum oscillators: if in a classical oscillator the amplitude and total 
energy of oscillations can vary continuously (see 2.10), then in a quantum 
oscillator they can only vary discretely and in accordance with (2.17). 
Taking into account relations (2.23) - (2.26), one can see that the 
kinematic parameters of a particle in a quantum oscillator also change 
discretely. 

Relation (2.17) and the location of the wave functions of stationary 
states (Fig. 2.2) can be mistakenly interpreted as changes in the oscillation 
frequency in the series , 2 , 3 , etc. But the actual vibration frequency 

of a quantum oscillator is constant and equal to = . 

In quantum mechanics, the vibrational energy of a harmonic 
oscillator, defined by expression 2.17, is a system of successive 
equidistant levels =       (2.29) 
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where the frequency of the transition between the levels  =    (2.30) 

is exactly equal to the vibrational frequency of the classical harmonic 
oscillator, which is an important agreement between the results of both 
theories. However, the minimum energy of a quantum oscillator is not 
zero, as in a classical one, but = .    (2.31) 

These are the so-called zero-point quantum motions, which exist even 
at temperatures close to absolute zero (see also Chapter 9). The existence 
of zero-point motions at absolute zero is a consequence of the wave nature 
of the particle and can be confirmed by the Heisenberg uncertainty 
relation: ,      (2.32) 

in which, if we put p = 0 (no vibrations),  should become infinitely 
large (a particle at rest exists in all space!), which is unrealistic for our 
case. 

The amplitude of zero-point motions, as follows from (2.23), is equal 
to 

(0) = ,        (2.33) 

and the standard deviation 

(0) = .      (2.34) 

Expression (2.17) for the energy of a quantum oscillator can be 
rewritten using (2.23): = + = ( ).        (2.35) 

In (2.33), the quantum number n determines the amplitude of the 
oscillation. In this notation, the energies of the quantum and classical 
oscillators change with the oscillation amplitude in the same way (see 
(2.10) for the total energy of the classical oscillator). The only difference 
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is that in a classical oscillator the energy is a continuous function of the 
amplitude of vibrations, while in a quantum oscillator the increase in 
energy (and amplitude) occurs discretely, each time changing by the value 

. 
Stationary states are states with a certain energy and constant mean 

values of the coordinate and momentum. They have no analogue in 
classical mechanics. The solutions obtained above determine the energies 
of stationary states and the form of wave functions, but they do not contain 
vibrations in the classical sense, i.e. they do not contain the factor cos ( t). 
To create a semblance of a classical oscillator, it is necessary to solve the 
Schrödinger equation for wave functions that depend not only on 
coordinates, but also on time [1]. Omitting all mathematical calculations, 
we present only the final result. At t = 0, the harmonic oscillator can be 
described as the sum of all its stationary states, taken with some 
coefficients cn: | (0) = (0) |            (2.36) 

Then the time-dependent wave function (t) is written as 

| ( ) = (0) | (0) |         (2.37) 

The last expression contains the factors ± , which are sinusoidal 
functions of time and angular frequency . It suggests that the time-
dependent wave function of a harmonic oscillator is a wave packet formed 
from stationary states, i.e. from those waves that a particle represents in 
each of the stationary states. 

As already mentioned above, a quantum oscillator is characterized by 
only one frequency . However, the question arises: what is an overtone 
of the vibration? An overtone is a vibration with a doubled frequency, and 
in an ideal harmonic oscillator, overtones and combination tones are 
forbidden, i.e. absent. But they can be observed in an anharmonic (i.e. 
real) oscillator. As will be shown in Chapter 9, in an anharmonic 
oscillator, due to the excess of the repulsive forces over the restoring 
forces, any oscillations cause an increase in the distance between the 
atoms and, therefore, to a decrease in the vibrational frequency. This 
means that the phonon arising from the scattering lowers its own 
vibrational frequency. In other words, in a short time, on the order of the 
half-period of the vibration, the phonon frequency should decrease from 
the value 0 (the frequency of the “bare” phonon) to the value 0 + ph, 
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where ph is the negative anharmonic contribution from the phonon itself. 
The time dependence of the phonon frequency makes it possible to expand 
the function (t) in a Fourier series in harmonics, i.e. in a series whose 
terms are proportional to both sin ( t) and sin (2 t), sin (3 t), etc. It is 
this effect, i.e. a change in the vibration frequency in a short time interval 
in an anharmonic oscillator, that is responsible for the appearance of 
overtones and combination tones in the spectrum. 

In conclusion, it should be noted that in quantum mechanics the 
problem of a harmonic oscillator has an exact solution only in the case of 
oscillations of one particle in the parabolic potential well shown in Fig. 
2.1. The simplest object of vibrational spectroscopy is a diatomic 
molecule. However, the problem of determining stationary states for a 
diatomic molecule is already too complicated. The fact is that the 
vibrations of molecules consist of displacements of both the nuclei and the 
electronic component. It is impossible to take into account both types of 
displacements simultaneously in a general form even for a diatomic 
molecule. (Particular problems, taking into account the motion of both 
nuclei and electrons, are currently being solved with the use of modern 
programs and computers.) The latter circumstance, however, affects the 
shape of the potential curve of interaction between atoms in a molecule. 
The main results obtained above when solving the problem of a quantum 
harmonic oscillator, i.e. discreteness of the energy spectrum, vibration 
amplitudes, the presence of zero-point motions, etc., remain valid for 
molecular systems of any complexity. The question of the nature of the 
interatomic interaction potential will be considered in more detail in 
Chapter 9. 

2.3. Vibrations of polyatomic molecules.  
The secular equation 

The equation of motion for a system of particles, i.e. molecules, can 
be written in the form of Newton's equation: 

 + = 0, = 1,2,3 … . ,3 ,     (2.38) 

where the kinetic energy T depends only on the velocities, and the 
potential U depends on the coordinates. For a one-dimensional harmonic 
oscillator, this expression is transformed into the differential equation 
(2.3). 
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From the theory of small-amplitude vibrations it follows that the 
kinetic and potential energies can be represented as  

= 12 , ,           = 12 .,                   (2.39) 

Each of these expressions is a square matrix 3N 3N, in which the 
elements characterizing a separate vibrational coordinate (i.e., the reduced 
mass in the kinetic energy matrix and its force constant in the potential 
energy matrix) are located diagonally. The natural coordinates of the 
molecule, i.e. bond lengths, bond angles, and dihedral angles, are usually 
chosen as vibrational coordinates. The off-diagonal terms in the 
expression for the kinetic energy determine the effect of a change in the 
geometry of the molecule during vibration on the reduced mass of a given 
i-th coordinate, and in the expression for the potential energy, the effect of 
a change in the j-th vibrational coordinates on the force constant of the i-
coordinate. Separating the diagonal and off-diagonal terms in expressions 
(2.39), we obtain: = + ( ) ,     = + ( ) .  

 (2.40) 

If we neglect the off-diagonal interactions, we obtain a set of 
independent harmonic oscillators, where the coordinate changes according 
to the law = sin = sin 2   (2.41) 

with frequency = 2 = .   (2.42) 

If off-diagonal interactions cannot be neglected, which, as a rule, 
takes place, expressions (2.39) can be reduced to a diagonal form if the 
initial coordinates qi are rewritten as linear combinations: = .        (2.43) 

The new coordinates  are the so-called normal coordinates, in 
which T and U take the diagonal form: 
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= 12  ,          = 12  ,                       (2.44) 

where m  and f  are new constants depending on the previous and 
transformation coefficients C i. A wonderful property of normal 
coordinates is that, when using them, we again get a set of independent 
oscillators, but now each oscillator includes the vibrations of all the 
original vibrational coordinates of the molecule, united by off-diagonal 
interactions, and not the vibrations of individual bonds or angles, as it was 
in ( 2.41). The total energy of vibrations is again equal to the sum of the 
energies of harmonic oscillators with the frequencies of normal vibrations  

= .      (2.45) 

However, now the force constants f  and reduced masses m  are 
determined by both diagonal and off-diagonal interactions. 

The original qk coordinates can be expressed in terms of normal 
coordinates using the inverse transformation =  .     (2.46) 

Moreover, for one definite normal vibration j, the inverse 
transformation gives ( ) = = sin  .  (2.47) 

Using the concept of kinematic and potential interaction of 
coordinates, the equation of motion can be written as + = 0 ,    (2.48) 

where Wij are the coefficients of total interaction, including force constant 
of bonds, mass of atoms, as well as kinematic and potential interaction of 
bonds (i.e. off-diagonal elements) simultaneously. Expression (2.48) is a 
system of joint linear differential equations of second order. Solutions 
(2.48) are harmonic oscillations with as yet unknown frequency  and 
phase  

 = sin( + ).     (2.49) 
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From (2.49) it follows that each atom vibrates about an equilibrium 
position with the same frequency  and phase . That is, all atoms pass the 
positions of equilibrium and maximum deviation at the same time, but 
their displacements are characterized by different amplitudes. Vibration 
with such characteristics is called normal, and frequency is called the 
normal (or fundamental) vibrational frequency. The experimental 
vibrational spectrum (IR and/or Raman) of a compound is the spectrum of 
its normal vibrations. Moreover, each normal vibration (each experimental 
vibrational mode) includes the displacement of all atoms of the molecule, 
i.e. the vibration of all bonds and angles of a molecule; however, the 
relative participation of different pairs of atoms in any normal vibration is 
different. The determination of the degree of participation of individual 
vibrational coordinates in experimentally observed modes (i.e., assignment 
of lines in the spectrum) is the main subject of experimental vibrational 
spectroscopy. 

If expression (2.49) is substituted into (2.48), we obtain the system of 
equations = 0,     (2.50) 

for amplitude of vibrations, where ij is the Kronecker symbol. The 
condition for solving the system is the equality to zero of the determinant 
of the 3Nth order                     …        ,                      …       ,      …                    …              …           …        ,                  ,           ,

= 0          (2.51)   

In matrix form, relation (2.51) can be written as 

W  E  = 0,   (2.52) 

where W = T-1U, T is a matrix of kinematic coefficients, with U - matrix of 
force constants, E - unit matrix, and  - eigenvalue (square of the 
frequency of normal vibration of the molecule). This is the famous secular 
equation. The solution to the secular equation has 3N  6 roots (i), where 
3N is the number of degrees of freedom. All matrices in the secular 
equation are of the order of 3N, so solving it for large molecules is a 
difficult task. Dividing vibrational coordinates into groups of equivalent 
ones and constructing symmetry coordinates within each group (this 
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procedure will be discussed in detail in Chapter 4) allows us to reduce the 
matrix W to a block form, consisting of submatrices of an order not higher 
than three, and to find the frequency and eigen vector of vibrations to use 
as solutions for linear, quadratic or cubic equations. But even these 
equations are still too cumbersome and their solution is carried out with 
the help of appropriate computer programs. Typically, programs are 
designed in such a way that they require only input data from the user, and 
most of the calculations are performed without his/her participation. For 
this reason, there is no need to consider in detail the procedure for solving 
the secular equation and all the steps associated with it (making of 
symmetry coordinates, matrices T, U, etc.). 

The solution to the secular equation is the frequency of normal 
vibrations. It is assumed that the matrices of the kinematic coefficients and 
force constants are known, and the determination of the vibrational 
frequencies is the result of solving the direct spectral problem. In practice, 
however, the opposite case is realized, i.e. what is known from the 
experiment is just the vibrational frequencies, and the unknown is the set 
of force constants, diagonal and off-diagonal. Finding the force constants 
of bonds from a known set of frequencies of normal vibrations is the 
subject of an inverse spectral problem. Since the number of force 
constants in a molecule, as a rule, greatly exceeds the number of 
experimentally determined frequencies of the vibrational spectrum, the 
formal solution of the inverse spectral problem is always mathematically 
incorrect. However, modern programs for the quantum-chemical 
calculation of molecules use a different algorithm for calculating the force 
constants, and the vibrational spectrum calculated using such programs, as 
a rule, does not differ from the experimental one within the limits of 
insignificant and quite acceptable deviations. 

2.4. Rotational states of two atomic molecules 

Finally, we will very briefly consider one more important 
spectroscopic problem using diatomic molecules as an example. If the 
molecules are in the gas phase, then, along with vibrational ones, they also 
have rotational states. The rotation of molecules is characterized by the 
angular momentum p, the square of which in quantum mechanics is 
defined as = ( + 1),   (2.53) 
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where J is the rotational quantum number taking the value J = 0, 1, 2, 3, 
.... The rotational energy is 

= ,     (2.54) 
where =  is the moment of inertia about the axis of rotation, 
and r is the distance of the nuclei from the center of gravity of the 
molecule. From here = ( + 1) = ( + 1),   (2.55) 

where the rotational constant B is = = . -1      (2.56) 

When J takes consecutive values of 0, 1, 2, 3, ..., the rotational energy 
runs through the values of 2B, 6B, 12B, etc. 

For a nitrogen molecule N2 with a distance between the nuclei   1.1 
Å and an atomic mass of 14 amu we have 

 = 2 = 14 1.66 1.2 10 102 = 13.9 10  , 
 = .. = 2.0  . 

We see that the frequencies of rotation of molecules are very small 
(and the lower, the heavier the molecule), and at room temperature, 
rotational states with large quantum numbers are already populated. For 
this reason, the registration of rotational spectra for a large part of 
molecules is a difficult task. More often, the rotational structure is 
observed in the spectrum of combination tones, i.e. in the form of 
combinations of any stretching mode (for example, stretching vibration 
C C or C N, etc.) with the rotational states of the entire molecule. In this 
case, the corresponding vibrational mode in the spectrum is accompanied 
by wide wings of rotational states, Stokes (R-branches), and anti-Stokes 
(P-branches). 

The rotational spectra of polyatomic molecules are usually studied to 
obtain accurate values of the moments of inertia, centrifugal distortion 
constants, coefficients of Coriolis interaction, and anharmonicity constants 
for various vibrational modes. 
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Fig. 2.3. The spectrum of rotational states of molecular nitrogen in gas phase. 
 

Rotational spectra of molecules are recorded using specially designed 
high-resolution IR spectrometers. In routine spectroscopy used to obtain 
Raman spectra of crystalline inorganic or organic compounds, rotational 
spectra are generally not observed. However, with the development of 
spectral equipment, it has become possible to record spectra from very low 
frequencies, that is, from 4 cm-1. (For example, a Raman spectrometer 
LabRAM HR Evolution, Horiba with a set of notch and Bragg filters 
allows you to obtain spectra from 4 cm-1 with excitation at 633 nm and 
from 10 cm-1 with excitation at 488 nm.) Fig. 2.3 shows the spectrum of 
rotational states of N2 molecules in the gas phase, obtained with this 
spectrometer. 
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VIBRATIONS OF CRYSTALS 
 
 
 

3.1. Types of phonons in crystals 
 

Until now, speaking of the vibrational system, we have meant a 
molecular system. Next, we will consider the features of crystal vibrations. 

Any direction in the crystal can be represented as a chain of potential 
wells with common walls. For electrons, a well is an atom in a lattice site, 
for an excited vibration  a chemical bond between atoms. If all the wells 
are the same, which is always observed in the crystal due to translational 
symmetry, then, according to quantum mechanical concepts, the excitation 
that appears in one well after some time will be observed with equal 
probability in any of them. In other words, the excited vibration of any 
bond in a crystal cannot remain localized, as in a molecule, but must 
propagate in a lattice with a certain direction and momentum (more 
correctly, a quasi-momentum). A vibrational quantum in a crystal acquires 
the properties of a particle (quasi-particle) and is  
called a phonon. 

Fig. 3.1, a shows a one-dimensional chain at rest, the unit cell of 
which contains two atoms of different types, and in Fig. 3.1, b - the same 
chain, but with a vibration excited in it. The depicted vibration can be 
characterized by a frequency , a wavelength , and a wave vector k = 
2 /  (i.e., the number of wavelengths that fit in the segment 2 ). The 
phonon wave vector indicates the direction of phonon propagation (in a 
one-dimensional chain, a phonon can propagate, naturally, only along the 
chain, but for a three-dimensional crystal this can be in any direction). The 
displacements of atoms shown in Fig. 3.1, b occur along the direction of 
phonon propagation. This vibration is called longitudinal. Figs. 3.1, c and 
d depict transverse phonons (displacements of atoms that occur in the 
direction perpendicular to k), and one of the phonons (Fig. 3.1, c) is 
polarized along the x axis, and the other (Fig. 3.1, d) along y. The direction 
of the displacement determines the polarization of the phonon. The 
phonons shown in Figs. 3.1, b, c and d, have one common property: the 
center of gravity of each elementary cell does not shift during vibration, 
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i.e. the displacements of atoms in the cell occur in opposite directions and 
balance each other. These are the so-
called optical phonons. Their frequency is comparable to the frequency of 
vibrations of electromagnetic radiation in the infrared region. For this 

Fig. 3.1. Vibrations of a one-dimensional diatomic lattice. LO longitudinal 
optical, TO transverse optical, LA longitudinal acoustic, TA transverse 
acoustic phonons (phonon TA(y) with displacement of atoms along y-axis is not 
shown in the figure).

reason, if the atoms of the cell have charges of different signs (as, for 
example, in NaCl), then the optical vibration can be excited by the 
absorption of an IR photon by the lattice (hence the name of the phonon). 
Vibrations of the chain shown in Figs. 3.1, e and f refer to longitudinal and 
transverse acoustic phonons. In them, both atoms are displaced in the same 
direction and set the displacement of the entire cell. These phonons are 
responsible for the propagation of sound waves in the crystal.

3.2. Dispersion of phonons

It is possible to calculate the vibration frequencies of a one-
dimensional chain consisting of atoms of mass m1 and m2, the bonding 
between which is characterized by the force constant f (Fig. 3.2) [1].
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Fig. 3.2. One-dimensional chain of atoms with masses m1 and m2 (m1 > m2) and 
parameter a of unit cell. u and w are the displacements of atoms from the 
equilibrium position. 

An atom with mass m1, when displaced along the chain, will 
experience the action of interatomic forces on the right, proportional to the 
difference in coordinates (wn  un), and on the left, proportional to the 
difference (un  wn-1), i.e.  = ( ) ( ) = ( + 2 ).   

(3.1)

Therefore, the equation of motion for it will be written as= ( + 2 ).  (3.2)

Similarly, for an atom with mass m2 = ( + 2 ).     (3.3)

We are looking for a solution in the form of running waves with 
amplitudes u and w for different atoms:= , = . (3.4)

Substituting these expressions into (3.2, 3.3) and solving a system of 
two homogeneous linear equations, we obtain the following quadratic 
equation for 2: 2 ( + ) + 2 (1 cos ) = 0. (3.5)

The solution to the equation is a periodic function with respect to the 
value of k, varying within the limits determined by the values cos(ka) = +1 
(center of the Brillouin zone, see Appendix A) and cos(ka) = 1 (edge of 

a
wn+1un+1wnunwn-1un-1
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the Brillouin zone). In the case of small values of ka 0 (i.e., at the center 
of the Brillouin zone), we obtain two roots of equation (3.5):2 +   (optical branch), (3.6)=   (acoustical branch). (3.7)

At k = /a (i.e., at the boundary of the Brillouin zone) we have:= , = . (3.8)

The infinite phonon wavelength ( = , k = 0) means for an optical 
phonon that all unit cells of the chain (crystal) vibrate in phase, i.e. with 
the same displacement at the same time (Fig. 3.3, b). The frequency of 
such a vibration is finite and usually has a maximum for 

Fig. 3.3. Longitudinal optical phonons related to the center (b) and edge (c) of the 
Brillouin zone

any given type of phonon. For an acoustic phonon, the same simultaneous 
displacement in all unit cells means a displacement of the crystal as a 
whole - this is a vibration with zero frequency. The shortest wave in a 
crystal can be the one in which atoms in neighboring cells are displaced in 
antiphase and with a maximum amplitude, with = 2a, k = /a (Fig. 3.3, 
c). In an optical vibration with k = 0, both bonds (springs) between atoms 
belonging to the same cell and bonds between atoms of neighboring cells 
are involved, while in vibrations with k = /a, the force constants of bonds 
between atoms of neighboring cells do not take part in the oscillatory 
process (Fig. 3.3, b,c). This means that the vibration frequency of an 
optical phonon with k = /a is lower than that of the same phonon with k = 
0, and there is a dependence of the vibration frequency of phonons on their 
wave vector.

b = , k = 0

c = 2a, k = /a

a   no vibrations
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Fig. 3.4. Dispersion curves of phonons of a diatomic linear chain. 
 
Such dependences are called dispersion curves (branches) and are 

schematically shown in Fig. 3.4 for a diatomic linear chain. Despite the 
extreme simplification of the considered model of a one-dimensional 
crystal, the shape of the dispersion curves in many real cases is very close 
to that shown in Fig. 3.4. 

As a rule, only optical phonon modes related to the center of the 
Brillouin zone are available in Raman spectra and phonon combinations 
(i.e., their sum or difference)  at highly symmetric points (see Appendix 
A). Full dispersion branches in the direction of highly symmetric points 
could be obtained in a neutron scattering experiment. Fig. 3.5 shows the 
dispersion branches for two crystallographic directions in a diamond 
crystal (Oh group). 

 
 

 
Fig. 3.5. Dispersion curves of optical 
and acoustic phonons of a diamond 
crystal (point symmetry group Oh) in 
the direction [111] (left side) and 
[100] (right side). 
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In the one-dimensional chain considered above, one acoustic and one 
optical branch appear. In the three-dimensional case, if a unit cell contains 
two atoms (as, for example, in crystals of zinc blende ZnS, silicon, 
diamond), three acoustic (one longitudinal and two transverse) and three 
optical (also one longitudinal and two transverse) branches arise. If a unit 
crystal cell contains p atoms, then such a crystal has 3p phonon branches: 
3 acoustic and 3p - 3 optical. 

As already mentioned, a phonon in a crystal is represented in the 
form of a running wave, where the displacements of each atom are 
characterized by expression (3.4). Replace the wave vector k in this 
expression with = + , where g is any positive or negative integer, 
and the new displacement of the atom, for example, un, will be written as 

 = = = , (3.9) 
 

since g and n are integers and  = 1. This means that the new wave 
is completely identical to the old one and we can consider the dispersion 
branches of phonons at the values of the wave vector bounded by the 
region , i.e. the first Brillouin zone. A change in the wave 
vector to an arbitrary reciprocal lattice vector =  will mean the 
transfer of a state from one Brillouin zone to exactly the same state of 
another zone, as a change in any position in a unit cell of direct space by 
the lattice translation vector means its transfer to exactly the same position 
of the other cell. In addition, the change in the sign of the wave vector, i.e. 
the transition from +k to k, means only a change in the direction of 
phonon propagation in the lattice to the opposite and the dispersion branch 
in the region 0  turns out to be a mirror reflection of the branch 
in the region 0 . Thus, the interval 0  of the first Brillouin 
zone of phonon frequency values, as a function of the wave vector, as 
shown in Fig. 3.4, fully characterizes its dispersion in the crystal in a given 
direction.  

The slope of the dispersion curves towards the abscissa axis, shown 
in Fig. 3.4 and 3.5, vanishes (or is close to zero) for optical phonons at the 
center of the Brillouin zone and for both types of phonons at the edge of 
the Brillouin zone. Indeed, the solution to equation (3.4) for the vibrational 
frequency is a function of cos(ka). The slope of the (k) dependences to 
the wave vector axis should vanish at k = 0 and k = /a, since the 
derivatives of such functions are proportional to sin(ka). 
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3.3. Density of phonon states 

Atomic chains, considered as a one-dimensional analogue of a 
crystal, consist of a very large number of atoms. Nevertheless, the main 
difference between vibrations of an atomic chain and vibrations of a string 
is that the wave vectors of phonons must take discrete values and the 
number of possible phonon states is finite. The total number of states in 
each branch of the first Brillouin zone is equal to N, where N is the 
number of unit cells in the crystal. Since the frequency of phonon 
vibration and its wave vector are related by a complex nonlinear 
dependence, we can introduce the concept of the density of phonon states 

(k) as the number of possible vibrations with different k, falling into the 
interval  in the space of wave vectors ( ) = dk/d . It is convenient, 
however, to express ( ) not as dk/d , but as ( ) = (d /dk)-1. The point 
is that d /dk is already a well-known physical quantity, namely, the group 
velocity of the wave packet of phonons. For example, as can be seen from 
Figs. 3.4 and 3.5, for acoustic phonons the derivative d /dk in most of the 
Brillouin zone is practically constant; in this case, the group velocity of the 
wave packet is equal to the speed of sound in the crystal. However, at the 
boundary of the Brillouin zone, the derivative d /dk of the acoustic 
phonons (i.e., the slope of the dispersion curve) becomes zero, and 
phonons in this region become standing waves, as required by the periodic 
boundary conditions. Indeed, in an acoustic phonon with k = /a, the 
vibration phase of each pair of neighboring unit cells remains constant 
throughout the crystal, which turns the phonon into a standing wave. The 
slope of the dispersion branch of the optical phonons becomes zero at the 
center and at the boundary of the Brillouin zone (Figs. 3.4, 3.6). Since the 
slope (d /dk) vanishes at k = 0 and k = /a for optical vibrations and at k = 

/a for acoustic vibrations, the value (d /dk)-1   at these points, and the 
density of the phonon states are characterized by a sharp maximum. These 
features of the density of states function are called van Hoof singularities. 
The dispersion curves shown in Figs. 3.4 and 3.5 refer to the relatively 
simple cases of a linear chain (Fig. 3.4) and a monatomic diamond crystal 
(Fig. 3.5). But already in diamond one of the optical branches, a weak 
maximum in the [100] direction and a minimum in the [111] direction in 
the region 0 < k < /a (Fig. 3.5) is exhibited. In inorganic crystals of 
complex composition, the number of dispersion branches is much larger 
and they can have singular points (minima, maxima, and saddle points) not 
only at the boundaries of the Brillouin zone, but also in intermediate 
regions, and each time the singular point will be characterized by the van 
Hoof singularity of the density function phonon states.  
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The maxima of the density function of phonon states, especially at 
the center and at the boundary of the Brillouin zone, are of great 
importance for Raman scattering in crystals. We will return to them when 
discussing the selection rules.

3.4. Wave vector selection rules

The description of vibrations in crystals by phonons, i.e. excitations 
propagating through the crystal and characterized by a wave vector, forces 
us to take into account in the process of Raman scattering not only the law 
of conservation of energy, but also the law of conservation of the wave 
vector, which requires that the wave vector of the exciting radiation before 
scattering should be equal to the total wave vector of all particles after 
scattering (Fig. 3.6).

In other words, the wave vector of the scattered phonon kph is the 
vector difference of the wave vectors of the incident ki photons and the 
scattered ks photons and is equal in order of magnitude to both of them. 
From here it follows that the phonon wavelength should be several 
hundreds of nanometers (to excite the Raman spectrum, coherent radiation 
with a wavelength in the region of 400-700 nm is usually used), i.e. 
several hundred or even thousands of lattice periods. A phonon with such 
a wavelength is characterized by a wave vector close to zero (on the scale 
of phonon wave vectors) and, therefore, only phonons belonging to the 
center of the Brillouin zone take part in the scattering. The frequency and 
energy of acoustic phonons at the center of the Brillouin zone is equal to 
zero; therefore, only optical phonons are observed in the experiment. 
(Measurement of the spectrum of acoustic phonons is the subject of 
Mandelstam-Brillouin scattering spectroscopy).

Fig. 3.6. Illustration of the selection 
rule for wave vector

Thus, optical phonons in the center of the Brillouin zone of a crystal 
are characterized by the maximum density of states and activity in 
scattering according to the selection rules. This makes scattering by optical 
phonons with k = 0 much more efficient than scattering by all other 
phonons of the Brillouin zone.
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3.5. Interaction effects in polar crystals 

If a dipole moment arises in a longitudinal optical phonon at the 
displacement of atoms in a unit cell relative to each other, then at k = 0 this 
will lead to the appearance of a macroscopic electric field in the crystal 
due to the addition of dipole moments from all unit cells. 

For simplicity, consider the polar vibration of a chain (Fig. 3.7, a), 
consisting of two kinds of atoms with different charges. At rest, the dipole 
moment directed from atom A to atom B (neighbor to the right) along the 
+x axis is exactly equal to the dipole moment from A to B (neighbor to the 
left) directed along –x, and the total dipole moment of the entire chain is 
zero. In the case of longitudinal optical vibration with k = 0 (the 
displacement of atoms along the chain is the same for all unit cells that 
make it up), the distance between atoms A and B in the +x direction 
becomes different from the distance from A to B along the –x direction, 
the neighboring dipole moments turn out to be different in magnitude, and 
the total dipole moment of the chain is nonzero (Fig. 3.7, b). In such a 
vibration, a situation arises in which the sublattice of ions of one sign is 
displaced relative to the sublattice of ions of the other sign, as if an 
external electric field were applied to the crystal. When the vibration phase 
changes, i.e. when the atoms are displaced in the opposite direction, the 
arising macrofield also changes its direction (Fig. 3.7, c). Thus, at each 
moment of time, both types of ions turn out to be moving in the direction 
of the macrofield created by them, which yields to an increase in the 
vibration frequency of this longitudinal phonon. (In a transverse optical 
vibration, where the ions are displaced in a direction perpendicular to the 
direction of the linear chain, the values of the dipole moments in 
neighboring pairs of atoms remain equal in magnitude and a macroscopic 
field does not arise). In crystals of low symmetry, the frequencies of the 
longitudinal and transverse phonons are different in magnitude, and the 
discussed effect will most likely be unnoticed, since it is not known in 
advance what the frequency of the longitudinal phonon should be. In cubic 
crystals, the optical and acoustic vibrations must be threefold degenerated 
due to the physical equivalence of all three crystallographic directions. 
However, in those of them where there is no inversion center, and optical 
modes that are active in the IR and Raman scattering exist simultaneously 
(this is the condition for the polarity of the vibration), there is a 
longitudinal-transverse splitting of the threefold degenerated mode at the 
center of the Brillouin zone into LO and TO components. (It should be 
noted that the symmetry of the modes does not change in this case, i.e., it 
remains equal to F2). One of the most striking examples of the effect is the 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Vibrations of crystals 41 

100 200 300 400 500

GaAs

Wavenumber, cm-1

269, TO

291, LO

100 200 300 400 500

GaAs

Wavenumber, cm-1

269, TO

291, LO

longitudinal-transverse splitting of the optical mode in III V  
semiconductor compounds (GaAs, GaP, etc.). Fig. 3.8 shows the spectrum 
of GaAs, where a threefold degenerated optical vibration is split into 
transverse (TO, 269 cm-1) and longitudinal (LO, 291 cm-1) modes. 

 
 

Fig. 3.8. Raman spectrum of 
an undoped GaAs single 
crystal. The threefold 
degenerated optical vibration 
is split into transverse (TO, 
269 cm-1) and longitudinal 
(LO, 291 cm-1) modes. 

 
 
 
 
 

The numerical value of the frequencies of longitudinal and transverse 
optical phonons arising as a result of splitting obey the Liddane-Sachs-
Teller relation: 

 = ,     (3.10)  
 

where 0 and  are low and high frequency dielectric constants, 
respectively. 

Semiconductor crystals, where longitudinal-transverse splitting of 
optical modes exists, often have intrinsic or impurity conductivity, i.e. 
some concentration of free carriers. The macrofield arising in longitudinal 
optical modes interacts with free carriers, giving rise to a specific electron-
phonon interaction (only for LO phonons in noncentrosymmetric 
crystals!), called the Frohlich interaction. 

In addition, in doped semiconductors, plasma oscillations (plasmons) 
of free carriers, electrons or holes, can be observed, the frequency of 
which is determined by the expression 

 
  =    (3.11) 

 
where n is the concentration of carriers and m* is the effective mass. Fig. 
3.9 shows the spectrum of doped GaAs with n = 2 1018 cm-3, in which 
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scattering by plasmons is represented by a broad weak band in the region 
of 300 cm-1 (dashed line).

Fig. 3.9. Spectrum of 
doped n-GaAs (n = 
2 1018 cm-3). The 
dashed line is 
scattering by plasma 
oscillations of the 
electron gas.

The manifestation of polar vibrations in IR spectra is somewhat more 
complicated. The incident electromagnetic wave is always transverse, i.e. 
the electric field vector in it is perpendicular to the direction of wave 
propagation. Therefore, the incident wave does not interact with a 
longitudinal optical phonon propagating in the same direction, i.e. for ki = 
kph. Transverse optical phonons are another matter. In IR spectra, the 
wavelengths of the incident light and the excited 

Fig. 3.10. Polariton states 
in ionic (polar) crystals. 
Solid curves represent 
bound polariton states, P+

and P . Thin straight lines 
in the figure denote the 
dispersion dependence for 
photons (v = ck 0-1/2 at low 
frequencies, v = ck -1/2 at 
high frequencies) and 
transverse optical phonons 
( = TO) in a crystal in if 
they did not interact with 
each other [1].

phonon coincide, just as the direction of the electric field of the incident 
wave and the dipole moment in the transverse phonon coincide. That is, 
two waves, electromagnetic and mechanical, are precisely superimposed 
on each other. This leads not only to a strong interaction between a photon 
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and a phonon, but to the appearance of certain states in the crystal, which 
are no longer either a photon or a phonon. These states are called 
polaritons. The solutions of the equations for the photon-phonon system in 
the crystal are two dispersion branches P+ and P  (Fig. 3.10, solid curves), 
one of which asymptotically tends from zero at k = 0 to the phonon 
frequency TO. The other, from the LO phonon frequency at k = 0, also 
asymptotically tends to an inclined straight line characterizing the 
dispersion of a "bare", non-interacting photon in the crystal. (If the two 
waves, electromagnetic and elastic, did not interact with each other, then 
the dispersion of the first of them would be described by an inclined 
straight line = / , where   the speed of light,   high-
frequency dielectric constant, and k  the wave vector of the photon, and 
the dispersion of the second of them would be a straight line  = TO. 
Both of these straight lines are plotted in Fig. 3.9 by thin lines). Thus, for 
each value of the wave vector of a photon and phonon, there are two 
polaritons in the crystal - a low-frequency P  and a high-frequency P+. At 
small k, the low-frequency polariton is more like a photon, and the high-
frequency polariton is more like a phonon. For large k, it is vice versa. 
Acoustic and longitudinal optical phonons do not interact with incident 
radiation. 

What is observed in the IR spectra of crystals? First of all, there is no 
solution for the photon-phonon system in the frequency range between the 
values of TO and LO phonons (Fig. 3.10). In other words, the incident 
wave does not pass into the crystal, which will be recorded in the IR 
absorption spectrum as 100% absorption in this entire region. In this case, 
all electromagnetic radiation will be reflected from the crystal and give the 
so-called residual rays. A typical IR reflectance spectrum is shown in Fig. 
3.11. The width of the IR reflection band, or rather the shelf, where the 
reflection is maximum and approximately constant, corresponds to the 
region of large values of the imaginary wave vector (see Fig. 3.10, dashed 
line) near TO. 

The mathematical procedure for processing such spectra, called the 
Kramers - Kronig analysis, makes it possible to find, with a certain degree 
of accuracy, the values of the frequencies of transverse and longitudinal 
optical phonons. It is only necessary to remember that neither one nor the 
other is recorded directly in the IR reflection spectra, since the latter are a 
consequence of the existence of polaritons, but not purely elastic waves in 
polar crystals. However, as we remember, "pure" TO and LO modes are 
observed in the Raman spectra, which at one time served was a powerful 
impetus for the development of the Raman method as a tool for studying 
the physics and chemistry of solids. 
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Fig. 3.11. 
Reflectance 
spectrum of NaCl 
crystal at room 
temperature [1]. 

 
 
 
 
 
 

 
The rather complicated theoretically problem of the appearance of 

polariton states in the IR spectrum of polar crystals is actually a special 
case of the general quantum-mechanical problem of the interaction of two 
states of the same or different symmetry, considered in [2], where it was 
shown that only terms of different symmetry can intersect.  

 
 
 

Fig. 3.12. Real behavior of two intersecting 
modes of the same symmetry (solid curves). 

 
 
 
 
 
 

The states of the same symmetry do not intersect, leaving always a 
gap between themselves, as happens with photons and TO phonons in Fig. 
3.10. Vibrational modes of the same symmetry behave in a similar way in 
a series of compounds (for example, solid solutions), in which their 
frequencies shift at different rates and, according to the experimental 
conditions, should intersect. In this case, the true frequency trajectory 
looks like that shown in Fig. 3.12. 
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CHAPTER 4

SYMMETRY OF VIBRATIONS OF MOLECULES 
AND CRYSTALS

4.1. Symmetry of molecular vibrations, symmetry 
coordinates and equivalent coordinates

Symmetry of vibrations is a central concept in vibrational spectroscopy.
Internal vibrations of molecules and optical vibrations of crystals should 
occur in such a way that the center of gravity of the molecule (unit cell) 
does not shift. Consequently, the topology of the arrangement of atoms in 
a molecule, which determines its symmetry, imposes restrictions on the 
possible modes of vibrations, or, in other words, the displacement of 
atoms during vibrations must be closely related to the symmetry of the 
molecules. For example, consider the vibrations of the H2O molecule. The 
symmetry group of the molecule is C2v (Fig. 4.1). (See Appendix B).

Fig. 4.1. Symmetry 
elements of the H2O 
molecule

Let us choose natural internal coordinates, i.e. changes in bond 
lengths O H, q1,2, and angle H O H, q as vibrational coordinates (Fig. 
4.2). Moreover, the stretching of the bond and the increase in the angle 
will be considered as positive changes in coordinates, and the shortening 
as a negative change.

z

y x x

y

0

C2
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Fig. 4.2. Vibrational 
coordinates of the H2O 
molecule

If we apply symmetry operations to the vibrational coordinates 
shown in Fig. 4.2, then when the molecule rotates by 180 about the z axis 
or is reflected in the x plane, it is necessary to somehow describe the 
transition of the coordinate q1 to q2 and vice versa. For the H2O molecule, 
this is possible, for example, by using second-order matrices. However, 
for molecules with the number of atoms N, where N can amount to several 
tens, the number of vibrational coordinates is also large and it is necessary 
to use rotation matrices of the order of N N, which will make the task 
difficult to fulfill. Therefore, they usually act in a different way.

Fig. 4.3. Stretching vibrations 
of H2O in the phase (q1 + q2), 
in antiphase (q1 - q2) and 
bending vibrations (q ).

Since the O H bonds are equivalent, the amplitude of the q1 and q2
vibrational coordinates are also equivalent. It is easy to imagine three 
possible vibrations of a water molecule: 1) both bonds are lengthened 
simultaneously, i.e. both bond lengths change in phase, and the total 
oscillation is q1 + q2; 2) one bond is lengthened, and the other is shortened 
(vibration of bonds in antiphase), q1 q2; 3) changing the angle q (Fig. 
4.3). These last combinations, i.e. (q1 + q2), (q1 q2) and q , can also be 
viewed as a set of vibrational coordinates along with the original set of q1, 
q2 and q .

Consider the action of the symmetry operations of the C2v group on 
each vibration (Table 4.1). When the molecule is rotated by 180 about the 
z axis (operation C2), the oxygen atom remains in place, while the 
hydrogen atoms are swapped. But in this case, the behavior of the vectors 
of atomic displacement is of interest. In the (q1 + q2) vibration, the 
displacement vector of the oxygen atom is directed along the z axis and 
does not change upon rotation. The displacements of hydrogen atoms 

q1 + q2 q1 - q2 q

q2 qq1
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change places, but at the same time they pass into each other in such a way 
that the overall picture of displacements does not change. In other words, 
if, in the case of using separate coordinates q1 and q2, it is necessary to 
find a way to describe the procedure for the transition from q1 to q2 and 
back under the action of a symmetry element, then when using the 
combination (q1 + q2) this need disappears.

Table 4.1. The effect of symmetry operations of the C2v group on atomic 
displacements in different vibrations

The same thing happens with the vibration (q1 + q2) and when using 
the operations y, x the pattern of displacements remains unchanged.
Thus, all symmetry operations of the C2v group, including the identity E, 
do not change the vibration modes (q1 + q2), and the coordinate (q1 + q2) 
itself is called the coordinate of symmetry. They say that this vibration is 
totally symmetric and in the C2v group it is denoted as A1. A similar 
behavior is demonstrated by the bending vibration of H2O with a 
vibrational coordinate q (Table 4.1) - it does not change for all symmetry 
operations and, therefore, is also totally symmetric. However, the

A1 A1B1

Symmetry
Operations
of C2v group q1 + q2 q1 q2 q

E 

y

x

C2
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displacements of all atoms in vibration with the coordinate (q1  q2) change 
sign to the opposite under the action of C2 and reflection in the x plane, 
perpendicular to the plane of the molecule, and do not change sign under 
the action of the identity operation E and reflection in the y plane, which 
coincides with the plane molecules (see Table 4.1). Otherwise, 

(q1 – q2) 
y,E

 (q1 – q2) and (q1 – q2) 
xC ,

2  (q1 – q2). 

This vibration is nonsymmetrical and is designated in the C2v group as B1. 
The property of vibrations to react differently to symmetry operations is 
fixed in the concept of symmetry of vibrations. 

Thus, the symmetry of the vibration does not mean its normal 
coordinate, although it is directly related to the normal coordinate, but the 
transformation law (response) of atomic displacements during symmetry 
operations in a given point group.  

It is important to note the following.  
 

1.   The initial internal coordinates of a molecule form groups of 
equivalent vibrational coordinates if they are transformed into each 
other under the action of symmetry operations. Thus, the q1 and q2 
coordinates of the H2O molecule form one group of equivalent 
vibrational coordinates and the only coordinate q   another. In 
low-symmetry objects, even among the coordinates of the same 
type, for example, angle deformations, it is possible to distinguish 
separate groups consisting of one or more coordinates, which also 
never transform into each other under the action of all symmetry 
operations in a given point group. So, in the molecule shown in Fig. 
4.4, the coordinates (q1, q2), (q3), (q ) and (q 1, q 2) form different 
groups of equivalent vibrational coordinates. 

2.   In polyatomic molecules, when considering the action of symmetry 
operations, it is necessary to use not individual displacements of 
atoms, but their combinations that form the coordinates of 
symmetry. In our case, these are coordinates (q1 + q2), (q1 – q2) and 
q . The transition from natural internal coordinates to coordinates 
of symmetry is in fact fundamentally important, representing the 
possibility of analyzing vibrations based on the symmetry of 
molecules of any complexity. Coordinates of symmetry are 
constructed within each separate group of equivalent vibrational 
coordinates. 
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3. Under the action of the symmetry operations of the C2v group, all 
three symmetry coordinates introduced for the H2O molecule 
transform into themselves, with or without sign change, and do not 
transform into each other. As we will see below, this is an essential 
sign of nondegeneracy of vibrations.

Fig. 4.4. Vibrational coordinates of a molecule with C2v
symmetry. Out-of-plane vibrational coordinates are not 
shown.

Looking ahead, we note that this circumstance greatly facilitates 
finding the frequencies of the normal vibrations of a molecule or crystal, 
since it allows us to reduce the matrices of dynamic and potential 
interactions in the secular equation (Chapter 3) to a block form.

4.2. Transformation matrixes of vibrational coordinates

The simplest actions that we performed with the coordinates of the 
H2O molecule can be given a mathematical formulation, which is trivial, 
perhaps at this stage, but necessary in more complex cases. We will 
consider the sum (q1 + q2) as the vibrational coordinate Q(1). The 
invariability of the vibrational coordinate under the action of symmetry 
operations means that the transformation of this coordinate in all cases is 
reduced to its multiplication by the unit matrix of the first order:

Q (1) 
xyCE ,,, 2

(+1) Q(1) (4.1)

Matrices are usually characterized by their trace, or character, i.e. the 
sum of the diagonal elements. In our case, the characters of all 
transformation matrices of the coordinate Q(1) under the action of the 
symmetry operations of the group C2v are the same and equal +1. Let us 
denote the coordinate q as Q(2), and (q1 q2) as Q(3). Obviously, the 
characters of the transformation matrices Q(2) are the same as the 
characters of Q(1), and in the case of the coordinates Q(3) the characters 
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of the operations E and y are +1, and the characters of the operations C2 
and x are equal to ( 1). We can compile a table of the characters of the 
transformation matrices of the vibrational coordinates Q(1), Q(2), and 
Q(3) of the water molecule (Table 4.2). 

Table 4.2. Characters of transformation matrices for vibrational coordinates of H2O  
 
Coordinate E       y Symmetry type 
Q(1) 1 1 1 A1 
Q(2) 1 1 1 A1 
Q(3) 1 1 1 B1 

4.3. Degenerate and nondegenerate vibrations 

 Let us now turn to another example, namely, the vibration of a flat 
square molecule AB4 (Fig. 4.5). 

 

 

 

 

 

 

 

 

Fig. 4.5. Stretching vibrations of a square AB4 molecule 

 The symmetry group of the molecule is D4h. We will consider only 
stretching vibrations and neglect the displacement of the central atom so as 
not to complicate the picture. To describe the stretching of four bonds qi, 
create the following symmetry coordinates (the order of construction 
symmetry coordinates is described in Appendix B): 
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Q(1) = q1 + q2 + q3 + q4 
Q(2) = q1  q2 + q3  q4 
Q(3) = q1  q2  q3 + q4           (4.2) 
Q(4) = q1 + q2  q3  q4     

If we do not do this, then the description of the response of the molecule to 
the action of symmetry operations would turn out to be too complicated 
even for such a small system, namely, we would have to determine how 
each of the coordinates q1, q2, q3, q4 transforms into each other for all 
operations symmetry. Introducing symmetry coordinates greatly simplifies 
this task. Thus, the coordinate Q(1) goes over into itself and does not 
change sign for all symmetry operations of the group D4h. Its 
transformation is thus described in all cases by the identity matrix with a 
trace +1. This is a fully symmetric vibration and is designated as A1g in the 
D4h group. The Q(2) coordinate also goes into itself, but changes sign 
during the operations C4,  , S4, and d. This corresponds to vibration 
B1g. Coordinate Q(3) after rotation by 90° goes to coordinate Q(4), and 
Q(4)  to [ Q(3)]. This transformation will be written in matrix form as (3)(4)     0 11 0 (3)(4) .   (4.3) 

This means the transformation matrix is a second-order matrix with a trace 
equal to 0. In other words, if Q(1) and Q(2) are transformed independently 
of others, then the coordinates Q(3) and Q(4) are transformed together 
under all symmetry operations of the group D4h (Fig. 4.6). 

 

 

Fig. 4.6. Symmetry elements of the D4h 
group 

 

 

 

 Due to the equivalence of the molecular coordinates x and y, the 
displacements Q(3) and Q(4) are physically equivalent, and the frequencies 

I 

2C2  
2C2  

2 d 

2 v 

2C4, C2, 2S4 

D4h 
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of the corresponding vibrations are equal. The resulting vibration is called 
doubly degenerate, and the displacements Q(3), Q(4) are the components 
of one twofold degenerate vibration. Obviously, doubly degenerate 
vibrations appear only in systems where there are two equivalent 
molecular (crystallographic) directions, i.e. if there is an axis of rotation of 
the order of 3 or more. In cubic systems, where there are several C3 axes 
and three equivalent directions, threefold degenerate vibration appears. In 
this case, there will always be at least one triple of vibrational coordinates 
that transform together, and the matrix of their transformation will be a 
matrix of the third order. An example of the components of a threefold 
degenerate vibration is shown in Fig. 4.7 for a molecule with point 
symmetry Oh.

Fig. 4.7. Components of one threefold degenerate bending vibration of an 
octahedral molecule (point group Oh)

When the symmetry operation from the Oh group is applied to any of 
the depicted components of the triple degenerate vibration, the 
corresponding symmetry coordinate will go over to the neighboring one 
with or without a sign change. For example, when rotated by 120 about 
the axis, one component goes into the other without changing the sign and 
the transformation matrix is a matrix of the type

F2     
0 0 11 0 00 1 0 (4.4)

with a character equal to zero.
The degenerate vibration is observed in the spectrum as one line, and 

the real displacement of atoms in the degenerate vibration is the sum of the 
displacements in each component.

Thus, applying the concept of equivalent coordinates and constructing
symmetry coordinates from them, we were able to describe their response 
to the action of symmetry operations in a very simple way, namely, by 
transformation using matrices of the first, second or third order, which for 
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non-degenerate vibrations is reduced to multiplying the symmetry 
coordinate by ±1. 

4.4. Symmetry groups of molecules and crystals  

Each molecule or crystal has a set of symmetry elements that 
characterize it as a symmetric object. Symmetry elements (or symmetry 
operations) are the identity E, rotary axes of order n (turn of the first kind), 
mirror-rotary axes Sn (turn of the second kind), planes of symmetry, and 
center of symmetry (inversion). (For more details on the properties of 
symmetry of molecules, see Appendix B). 

All elements of symmetry are linked by rules of multiplication, i.e. 
the sequence of any two operations is equivalent to the third. For example, 
multiplication (sequential application) of operations C2 and  is equivalent 
to inversion, i.e. = = .   (4.5) 

An obvious consequence of the rules of multiplication is that the 
existence of some elements of symmetry in an object entails the presence 
of others. It also follows from this that from the entire sequence of 
symmetry elements applicable to a given figure, it is always possible to 
choose several generating elements, the successive application of which 
makes it possible to obtain all the remaining elements. 

A complete set of symmetry elements that characterize an object 
forms a group, the mathematical properties of which are described by the 
properties of algebraic groups. These include: 

 
1. The existence of the composition law, in which any two elements A 

and B from the set match the third element C of the same set, i.e. 
AB = C, where C is called product of A and B. 

2. Associativity, i.e. (AB)C = A(BC). 
3. The existence of an identity element E (a unit element, identity) 

defined as AE = EA = A. 
4. For each element A from the set, there is an inverse element A-1 

such that AA-1 = A-1A = E. Moreover, (AB)-1 = B-1A-1. 

 Depending on the number of elements forming the group, it can be 
finite or infinite. The number of operations in a finite group is called its 
order. If the elements of the group commute with each other, i.e. AB = BA, 
then the group is called Abelian group. The symmetry groups of crystals 
and molecules, where this rule is satisfied, are Abelian. Usually, all 
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symmetry operations of a molecule leave one point fixed, which would be 
the center of gravity of the molecule if atoms of the same mass are placed 
at its vertices. Therefore, the symmetry groups of molecules are often 
called point groups. In crystals, we are dealing with a factor group, where 
partial translations are added to the usual symmetry operations of point 
groups. 

4.5. Incredible representations 

As noted above, the set of symmetry operations that characterize a 
group has the properties of algebraic groups. It turns out that a set of 
transformation matrices of vibrational coordinates and their characters 
must also follow certain group rules. To describe these rules, the concept 
of irreducible representations is introduced, which belongs to the theory of 
representations of algebraic groups. It applies to all physical systems with 
symmetry properties, be they electronic, magnetic or vibrational states in 
molecules or crystals. 

We assign to each symmetry element R of the point group  a square 
regular matrix M(R), but in such a way that for any pair of elements  

AB = C 
the equality was fulfilled 
 

M(A)M(B) = M(C). 

 If we add properties such as associativity of multiplication to the 
above law of composition of matrices, i.e. 
[M(A)M(B)]M(C)=M(A)[M(B)M(C)], and the existence of inverse 
matrices, then the totality of matrices M(R)  is a representation of this 
point group. The order of the matrices M(R) is the representation 
dimension.   

Let there be a molecule consisting of N atoms. Each atom 
performs thermal vibrations, and its displacement from the equilibrium 
position can be specified by three components of the polar vector. We can 
create matrices M(R) of transformations of these components under the 
action of the operations of the point symmetry group of the molecule, but 
now these will be square matrices (3N  3N). The dimension of this 
representation is 3N, and the components of the atomic displacement 
vectors form its basis. Moving on to the internal coordinates of the 
molecule, i.e. bond lengths and angles, we can create another 
representation with dimension m (m is the total number of internal 
coordinates). Both of these representations are reducible. Their 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Symmetry of vibrations of molecules and crystals 55 

reducibility lies in the fact that both the Cartesian and the internal 
coordinates of the molecule can be divided into groups of equivalent ones 
and the symmetry coordinates can be constructed from them. This, as we 
have seen, leads to the transformation under the action of the symmetry 
operations of the given point group using the transformation matrices of 
the first, second, or third order. The representations formed by these last 
matrices are called irreducible. 

 
Fig. 4.8. Block view of the transformation matrix of the internal coordinates of a 
molecule, resulting from the transition to the symmetry coordinates 

When passing from internal coordinates to symmetry coordinates, the 
original matrices M(m)(R) of order m, generated on the basis of internal 
coordinates, are transformed to block form (Fig. 4.8), where M(1)(R), 
M(2)(R), and M(3)(R) are matrices of order 1, 2, or 3 (but not higher, in any 
case, for molecules and crystals belonging to one of 32 crystal classes). In 
this case, the set of matrices M(i)(R) for all symmetry operations R of this 
group constitutes one irreducible representation i of the group, which can 
occur in the general representation ni times. 

Irreducible representations of a group have the remarkable property 
that their characters do not depend on the method of obtaining and on what 
variables are their basis: be it the normal coordinates of a molecule, a 
crystal, or atomic wave functions forming molecular orbitals, etc. 

Let’s turn again to the example with a square molecule (see Fig. 4.5), 
whose symmetry group is D4h. We saw how the coordinates Q(1), Q(2), 
Q(3) and Q(4) (the last two together) are transformed under the action of 
the operation C4. Now consider the action of the rest of the symmetry 
elements of the D4h group on these coordinates (Table 4.3). 

l times 

k times 

  2 times M(1)(R) 

M(2)(R) 
        
             

M(1)(R) 
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The last line of Table 4.3 shows the characters of the matrices 
MQ(3),Q(4), but for the matrices MQ(1) and MQ(2) the characters coincide with 
the matrix elements themselves and therefore are not shown. 

Some of the symmetry elements (the first row of the table) are 
presented with integer indices indicating the number of elements in this 
class. For example, 2 4 represents C4 and , 2   represents  and , 
and so on. The characters corresponding to the symmetry operations of 
one class (for a given representation) are the same, so they are combined 
with an indication of the number of elements. The structure and symmetry 
elements of the finite groups of 32 crystal classes are presented in 
Appendix B. 

One can conclude from Table 4.3 that the sets of transformation 
matrices of Q1, Q2, etc. coordinates form various irreducible representations of 
the group D4h. 

In general, each point symmetry group has several different types of 
irreducible representations, differing from each other in how they react to 
symmetry operations in the given group. The types of irreducible 
representations that make up a point group, as well as the characters of the 
transformation matrices that make up the irreducible representations, are 
well known for each point group. Together they form the table of 
characters of the groups. Tables of characters of all point symmetry groups 
are given in Appendix D. 

The sets of matrices presented in Table 4.3, constitute two one-
dimensional and one two-dimensional irreducible representations of the 
group D4h. The basis for the representation MQ(1)(R)  is Q(1), MQ(2)(R) – 
Q(2), and for MQ(3),Q(4)(R)  the pair Q(3) and Q(4). If we compare the 
sequences of characters (R) of each of the matrices with the sequences 
given in the table of characters for representations of the group D4h (Table 
4.4), then we can make sure that the set (R) for the matrices MQ(1) 
coincides with the set of characters representation A1g, (R)  for matrices 
MQ(2) coincides with the string of characters representation B1g, and (R) 
for matrices MQ(3),Q(4) coincides with Eu. In other words, the representation 
constructed on the basis Q(1) refers to the A1g irreducible representation of 
the group D4h, the representation with the basis Q(2)  refers to B1g, etc.5 

 
5 As you can see from Table 4.4, the group D4h consists of 10 different irreducible 
representations. Other irreducible representations for a square AB4 molecule can 
be obtained using the remaining symmetry coordinates. 
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Thus, considering the actions of symmetry operations on the displacements 
of atoms in a molecule during vibration, we came to the conclusion that all 
internal vibrational coordinates (bond lengths and angles) can and should 
be divided into groups of equivalent coordinates, i.e. such coordinates that 
are transformed into each other under the action of symmetry operations. It 
is these coordinates, in the case of the correct alternation of their changes, 
that provide the main condition for any vibrational mode - the absence of a 
shift in the center of gravity of the molecule during vibration. Then, in 
each group of equivalent coordinates, we constructed the symmetry 
coordinates and found that the transformation of the latter under the action 
of symmetry operations is described especially simply by matrices of the 
first (for nondegenerate vibrations), second (for twofold degenerate), or 
third (for threefold degenerate vibrations) order. These matrices generate 
irreducible representations of the point symmetry group to which the 
molecule refers, and the characters of the transformation matrices are a 
characteristic of the group, not the composition of the molecule or the 
basis of the representation, and therefore are known in advance for each 
point group. 
 Thermal vibrations of atoms in a molecule or crystal (just those that 
are found as thermal ellipsoids of atoms in the description of the structure 
of the compound) are not chaotic, but represent the sum of separate normal 
vibrations, each of which obeys the symmetry conditions of the system 
and is based on symmetry coordinates. In this case, the transformation 
matrices of the normal coordinates of vibrations constitute irreducible 
representations of the corresponding point group of the molecule or the 
factor group of the crystal. This means that each vibrational mode in the 
spectrum corresponds to one irreducible representation of the system, and 
all together they form a vibrational spectrum corresponding to the 
complete vibrational representation  of the system. The displacements of 
atoms in the vibrational mode, in other words, the symmetry of the mode, 
are specified by the corresponding irreducible representation of the group. 
Irreducible representations are indicated by uppercase letters with 
subscript and superscript characters (A, B  - one-dimensional 
representations, E - two-dimensional, and F - three-dimensional). Letter 
symbols indicate symmetry or asymmetry with respect to certain 
symmetry operations in a given group, so they change slightly when going 
from one point group to another. 
 To classify the vibrational spectrum of a compound according to 
symmetry (or, as they say, a group-theoretical analysis of vibrations), 
means to find which irreducible representations i and in what number are 
found in the general representation . It turns out that for this it is not 
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necessary to compose the matrices of the complete representation M(R) 
each time, and then carry out their reduction, as was schematically done 
above. A detailed discussion of how the symmetry analysis of molecular 
or crystal vibrations is carried out is the subject of the next chapter. 
 Thus, the symmetry operations Rj of the point group  are related to 
each other in the same way as the elements of the algebraic group are 
related. On the other hand, symmetry operations transform the normal 
coordinates Qi of the molecule, and the transformation matrices M(i)(Rj) 
obey the rules of the same algebraic group. The set of matrices M(i) 
corresponding to all symmetry operations Rj of a given point group forms 
an irreducible representation i of this group. All irreducible representations 
of the group constitute a complete representation  of the group. The 
characters of the transformation matrices forming an irreducible representation 
do not depend on the basis of the representation or the chemical 
composition of the molecule. Each normal vibration is characterized by its 
own set of matrices Mi and its own irreducible representation (type of 
symmetry). Thus, in order to find out how many normal vibrations of each 
type of symmetry can appear in the total vibrational spectrum of a 
molecule or crystal, it is necessary to find out which and how many 
irreducible representations i of the point group  are contained in the 
complete representation  of this group.  

4.6. Symmetry of crystal vibrations  

The procedure for determining the symmetry of crystal vibrations is 
somewhat different from that considered for molecular vibrations in the 
previous chapter. The fact is that the vibrations of crystal are formed from 
the Cartesian displacements of each of the atoms that make up its lattice. 
But the symmetry of these displacements is determined not by the crystal 
group, but by the site symmetry group of the given element in the lattice. 

Let us consider the symmetry of ion vibrations in the crystal lattice 
and external vibrations of the molecules in the structure – translational and 
librational (restricted rotations). For molecules, these vibrations are 
observed in two cases: when the molecule is a fragment of the crystal 
lattice of an ion-molecular (molecular) crystal, or when the molecule is in 
the crystal cavity, i.e. is a "guest" in the "host" lattice. In the liquid phase, 
translations and librations are most often very wide structureless bands, 
while in gas there are only the rotational states of the molecules. 

The displacement of ions or molecular fragments in a crystal is 
specified by a polar vector. The x, y, and z components of the polar vector 
are transformed by symmetry operations in the same way as the corresponding 
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z

coordinate axes. Consequently, to find the type of symmetry of 
translational vibrations in a crystal, it is sufficient to consider the order of 
transformation of the coordinate axes under the action of symmetry 
operations of the point group of site symmetry. (See also Chap. 5). 
Molecular librations are described by an axial vector showing the direction 
of rotation according to the "screwdriver rule" (Fig. 4.9). Rotation of this 
rotating figure around any axis by an angle  will change the direction of 
the axial vector in the same way as the polar one, and the effect of 
symmetry operations of the first kind on both vectors is the same. 

 

 

Fig. 4.9. Image of librational vibration using an axial vector 

 

 

 Operations of the second kind (reflection, inversion) operate in 
different ways. Thus, reflection in the z plane does not change the 
direction and amplitude of the rotation shown in Fig. 4.9, and, therefore, 
does not change the axial vector itself (we must observe the behavior of 
the direction of rotation when reflected, not the arrows of the axial 
vector!). At the same time, the polar vector directed along z will reverse 
direction when reflected in the z plane. Since the inversion is I = z , 
the action of the inversion rotation on the polar and axial vectors will also 
be opposite in sign. Thus, the components of the axial vector are 
transformed similarly to the components of the polar vector in symmetry 
operations of the first kind, and with the opposite sign for symmetry 
operations of the second kind. 
 Now it is easy to find the type of symmetry of translational and 
librational modes in a given point group. To do this, it is necessary to find 
the transformation matrices of the components of the polar and axial 
vectors and the corresponding characters and compare the latter with the 
known table of characters of the given point group. As an example, we 
will consider the external vibrations of an H2O molecule (C2v group) 
enclosed in a crystal cavity (Fig. 4.10), or the external vibrations of a 
molecular ion occupying a position in the lattice with the C2v symmetry. 
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Fig. 4.10. Internal and external vibrations of H2O

The characters of the transformation matrices under the action of the 
symmetry operations of the C2v group on the displacements and rotations 
of the water molecule are given in Table 4.5. 

Each of the character sequences of the transformation matrices under 
the action of symmetry operations matches one of the character sequences 
of irreducible representations contained in the table of characters of the 
group C2v (Appendix D). The last column of Table 4.5 indicates the type 
of these representations. 

Table 4.5. The action of symmetry operations on external vibrations of H2O

E y x Symmetry
Tx 1 1 1 1 B1

Ty 1 1 1 1 B2

Tz 1 1 1 1 A1

Rx 1 1 1 1 B2

Ry 1 1 1 1 B1

Rz 1 1 1 1 A2

x

z

y

Tx, B1 Ty, B2 Tz, A1

1, A1 2, A1 3, B1

Rx, B2 Ry, B1 Rz, A2
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 Until now, speaking about the symmetry of vibrations, we meant 
vibrations of molecules (or structural fragments of a crystal cell) according 
to their site symmetry. The vibrations of the totality of atoms and 
molecular fragments that make up a unit cell obey the symmetry of the cell 
(crystal). There is no need to consider them separately, since crystal 
vibrations from the point of view of their symmetry obey the same rules as 
molecular vibrations. 

 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER 5 

ANALYSIS OF MOLECULAR AND CRYSTALLINE 
VIBRATIONS BY SYMMETRY 

 
 
 

5.1. Analysis of molecular vibrations 
 

As shown above, in order to calculate the number of vibrational 
modes and their symmetry in the total vibrational spectrum of a molecule 
or crystal, we must find which irreducible representations – and in what 
quantity – form a complete representation of a given point group. The set 
of irreducible representations i for any compound of the symmetry group 

 is uniquely determined by this group itself and is known for each group. 
Therefore, the vibrational representations of all chemical compounds 
described by the same symmetry group will of course consist of the same 
irreducible representations. The individuality of a compound, characterized 
by the number of atoms and their geometrical arrangement in a molecule 
or unit cell of a crystal, manifests itself only in the number ni of irreducible 
representations i, which appears in a complete representation. The 
general rule is that one-dimensional representations appear in all 
symmetry groups, two-dimensional in rhombohedral and higher groups, 
and three-dimensional only in cubic systems. 

In the general case, applicable for any physical systems possessing 
symmetry properties, the number ni of irreducible representations of each 
type (i.e., the number of vibrational modes of each type of symmetry) in 
the full representation is determined by the so-called magic formula (5.1)  

 = ( )( ) ( ),   (5.1) 
 

where g is the order of the group (the total number of symmetry 
elements, including identity), (i)(R) the characters of the matrices of 
irreducible representations of the point group (factor group) , and (R) 
the characters of the transformation matrices of the considered molecule or 
crystal. If the first two quantities, i.e. g and (i)(R), are characteristics of 
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the group, then (R) reflects the individuality of the molecule, its topology 
and composition.   

The characters of the irreducible representation (i)(R) are known for 
each group and are given in Appendix D. The characters of the 
transformation matrices (R) can be calculated using the expression  

 
(R) = UR ( 1 + 2 cos R),   (5.2) 

 
where UR is the number of atoms in a molecule (unit cell) that do not 

change their positions under the symmetry operation R, and R is the 
rotation angle under the symmetry operation. The expression in 
parentheses is  

 
  1 + 2 cos  for rotation through an angle , 

1 + 2 cos  for reflection and subsequent rotation. 
 

Expressions (5.1) and (5.2) admit a simple and easy-to-remember 
interpretation. Indeed, if any atom does not change its position under the 
action of the symmetry operation, then in the corresponding transformation 
matrix at the intersection of the row and column related to the position of 
the given atom (i.e., on the diagonal), there will be 1, and for the atom 
moving to another position there will be 0. Therefore, the character of the 
transformation matrices is simply equal to the number of atoms remaining 
in place during the symmetry operation (the number of ones on the 
diagonal). The factor ( 1 + 2 cos R) in (5.2) is the trace of the rotation 
matrix (see Appendix G) through an angle  with or without reflection. 

The calculation procedure is quite simple for molecules and consists 
of sequentially finding all the numerical parameters necessary for formula 
(5.1) to be applied. As an example, let us analyze the vibrations of the 
SiO4 tetrahedron. 
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Fig. 5.1. Symmetry elements of the Td

group 

Step 1. Determination of the symmetry group. This information is 
either known in advance, or can be easily found from the definition of a 
set of molecular symmetry elements (see Appendix B). For symmetry 
group SiO4 Td see Fig. 5.1.

Step 2. Drawing up a table to determine the characters (R) of 
transformation matrices SiO4 (Table 5.1):

Table 5.1. Determination of the characters (R) of the transformation matrices of 
the SiO4 tetrahedron

Td E 8C3 3C2 6S4 6 d

R, degrees 0 120 180 90 0
2 cos R 2 1 2   0 2

1 + 2 cos R 3   0 1 1 1
UR 5   2   1   1 3

(R) 15   0 1 1 3

The operation of identity E leaves all five atoms of the molecule in 
their positions (in place), UR = 5. Any of the eight C3 axes of the third 
order leaves only two atoms in their positions, and so on. The line (R) is 
the product of the two previous lines of the table.

Step 3. Table of characters of the Td group (Appendix D, Table 5.2). 
Two comments are appropriate for working with the table. First: The 
symbol T indicates the symmetry of the translational displacement of the 
entire SiO4 tetrahedron or translational vibration of atoms in crystal lattice, 
and the symbol R the symmetry of the rotational motion of the molecular 
fragment. Second: When counting the number of irreducible representations,
each character value must be multiplied by the number of corresponding 
symmetry elements.

d

C2, S4C3

b
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Table 5.2. Table of characters of the Td group 
 

Td E 8C3 3C2 6S4 6 d  

A1 1 1 1 1 1  
A2 1 1 1 1 1  
E 2 1 2 0 0  

F1 3 0 1 1 1 R(Rx, Ry, Rz) 
F2 3 0 1 1 1 T(Tx, Ty, Tz) 

 
Step 4. Counting the number of irreducible representations for the 

SiO4 tetrahedron: 
 
n(A1) =  ( 15 – 3 – 6 + 18) = 1  
n(A2) =  ( 15 – 3 + 6 – 18) = 0 
n(E) =  ( 30 – 6 ) = 1 
n(F1) =  ( 45 + 3 – 6 – 18) = 1 – R = 0 
n(F2) =  ( 45 + 3 + 6 + 18) = 3 – T = 2 

We excluded one libration and one translation from the threefold 
degenerate vibrational modes of the F1 and F2 types, respectively, since 
the latter do not refer to internal vibrations. The final complete vibrational 
representation is 

 
 = 1(A1) +1(E) +2(F2). 

 
A1, E, and F2 modes are active in Raman spectra and only F2 modes 

are active in IR (Appendix E). 
 

Fig. 5.2. Vibrational modes of the SiO4 tetrahedron 

1, A1  2, E  3, F2 4, F2 
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5.2. Analysis of crystal vibrations 

The analysis of crystal vibrations in terms of symmetry can be done on 
the basis of a general method similar to that described above. This is the so-
called Baghavantam–Venkatarayudu method, named after the Indian 
physicists who proposed it [1]. However, it turned out to be too complicated 
and inconvenient to use. Another approach, proposed by R. Halford and 
based on correlations between the positional symmetry of structural 
elements in the crystal lattice and the crystal symmetry [2], has proved to be 
much simpler and more efficient. These correlations always exist, since the 
positional symmetry group is a subgroup of the crystal factor group. 

To analyze the vibrations of a crystal, it is necessary to know the 
factor group of the crystal, the coordinates of the atoms in the unit cell, 
and the number of formula units. In almost all cases, the analysis requires 
reference to International Tables for Crystallography (hereinafter ITC). 

Chemical bonds in crystals can be divided into covalent, ionic, 
molecular and mixed ionic-covalent. For example, all silicates are the 
crystals with mixed ionic-covalent bonding and with isolated or 
interconnected SiO4 tetrahedra. Since the force constants of Si O bonds 
are usually much larger than the force constants of the cation–cation or 
cation–anion bonds, the vibrational modes of the corresponding structural 
elements are characterized by significantly different energies and can be 
considered as independent. For this reason, all vibrations can be divided 
into external (vibrations of monoatomic ions and molecular fragments as 
whole units) and internal (stretching and bending vibrations of a molecular 
fragment). Symmetry analysis is carried out separately for crystalline and 
intramolecular vibrations. 

The general procedure of the analysis is as follows: to determine the 
number and symmetry of external (crystal) vibrations. First of all, the site 
(positional) symmetry of each structural element is determined. Then, 
correlations are found between the irreducible representations of the site 
symmetry group and the factor group of the crystal. After that, in the 
group of positional symmetry, those irreducible representations are noted 
to which translations (ions and molecular units) and librations (molecular 
units) refer. The displacements of atoms in crystals during the vibration 
process are translational displacements along x, y, and z; therefore, only 
those modes that refer to translations in the positional symmetry group 
form crystal vibrations. Motions of molecular fragments are described as 
displacements and restricted rotations; therefore, in the group of site 
symmetry of molecules, it is necessary to note irreducible representations, 
which include translations and librations in this group. All this information 
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is contained in the table of the characters of the group (see Appendix D). 
To determine the number and symmetry of internal vibrational modes of 
molecular fragments, it is necessary to draw up a diagram (or table) of 
correlations between the irreducible representations of the symmetry group 
of a free molecule, the positional symmetry group, and the factor group of 
the crystal.

Example 1. First of all, let us consider the simplest case – namely, 
we will analyze the vibrations of isostructural crystals of silicon, diamond 
and germanium.

Fig. 5.3. Unit cell of silicon, 
diamond or germanium

Step 1. The symmetry group of the crystal is Fd3m = (227).
Step 2. A primitive crystal cell contains two silicon atoms. Each 

silicon atom is in the center of a tetrahedron formed by neighboring atoms 
(Fig. 5.3). For this reason, all the symmetry elements of the tetrahedral 
group pass through the silicon atom and the symmetry of the Si position in 
the lattice is Td. The same follows from the information contained in the 
ITC for the Fd3m = (227) group. 

Step 3. Correlations between the irreducible representations of the 
crystal group and the positional symmetry group can be obtained from the 
correlation listed in Table 5.3 (all the correlation tables are given in 
Appendix E).

Table 5.3. Correlation between irreducible representations of Td and Oh groups.

Oh Td

A1g A1
A2g A2

Eg E
F1g F1
F2g F2 T (Tx, Ty, Tz)
A1u A2
A2u A1
Eu E
F1u F2 T (Tx, Ty, Tz)
F2u F1
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From the table of correlations (Table 5.3) it follows that the 
displacements Tx, Ty, and Tz of the silicon atom in the lattice of the silicon 
crystal form one threefold degenerate representation of F2 in the positional 
symmetry group. This representation generates two threefold degenerate 
representations, i.e. F2g and F1u, in the crystal group. Hence the complete 
vibrational representation of the silicon crystal 

 
 = 1F2g + 1F1u. 

 
One of these representations, namely F1u, describes the Tx, Ty, and Tz 

translations of the crystal unit cell, i.e. acoustic modes in the center of the 
Brillouin zone with a zero-wave vector (or, in other words, the 
displacement of the crystal as a whole, which is not a vibration). This 
follows from the table of characters for the Oh group. Therefore, for 
optical vibrations of silicon, we obtain 

 = 1F2g + 1F1u (  1T) = F2g. 
 

It should be noted that the presence of optical vibrations in a 
monatomic crystal is a consequence of the fact that a primitive cell 
contains two silicon atoms. The Raman spectrum of crystalline silicon is 
shown in Fig. 5.4. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 5.4. Raman spectrum of crystalline silicon 
 
Example 2. Garnet crystal. The unit cell of a garnet (Fig. 5.5) is very 

complex, and the symmetry analysis of its vibrations involves almost all 
the difficulties that can be encountered in the analysis of different versions 
of simpler ion-molecular lattices. 
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Fig. 5.5. Elementary cell of a 
garnet. Yellow balls X2+

cations, blue octahedra of 
oxygen atoms contains Y3+

positions, red tetrahedra SiO4
groups.

Step 1. The general chemical formula of garnets is X Y (SiO4)3 (X 
= Mg, Fe2+, Mn2+, Ca; Y = Al, Cr3+,Fe3+). The factor-group of the crystal 
is 3 = (230), = 8. The unit cell includes two primitives.

Step 2. The symmetry of the position of structural elements is shown 
in Table. 5.4. This information is usually represented in the original article 
on the structure of the compound, but even if only the coordinates of the 
atoms are indicated, the symmetry of the position of each element can 
easily be found from the ITC tables. For example, X2+ cations are located 
in the center of oxygen dodecahedrons. The multiplicity of their positions 
is 24 (three atoms in each formula unit, a total of eight formula units in a 
unit cell). According to ITC, there are two different 24-fold Wyckoff 
positions in the garnet structure, i.e. position c with symmetry 222 (D2) 
and position d with symmetry 4 (S4). The X2+coordinates (0, 1/4, 1/8), 
however, only match the first one. Y3+ occupy octahedral positions 
(multiplicity 16, symmetry S6), Si atoms are located in tetrahedral 
positions (multiplicity 24, symmetry S4), and oxygen atoms occupy 
general positions. 

Table 5.4. Coordinates and positional symmetry of structural elements in the 
garnet lattice

Element of 
structure Coordinate Number of 

positions
Wyckoff 
notation

Positional 
symmetry

X2+ 0, 1/4, 1/8 24 c 222 = D2
Y3+ 0, 0, 0 16 a 3i = C3i S6
Si 3/8, 0, 1/4 24 d 4 = S4
O x, y, z 96 h 1 = C1
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Step 3. Determination of correlations. 
As already mentioned, the positional symmetry group is a subgroup 

of the crystal factor group. For this reason, there is always a correlation 
between the irreducible representations of both symmetry groups  
positional and crystal. The only difficulty is that sometimes there are 
several different paths leading to a possible correlation, and it is necessary 
to choose the only correct one. The last remark is especially important for 
garnet crystals due to their high symmetry and large number of symmetry 
operations, which make it difficult to choose the correct correlation.  

The X2+ position is the most problematic, since there is no direct 
correlation between the Oh group of the crystal and the D2 group of the 
positional symmetry of the cation, but only through the intermediate 
groups O, Td, Th, and D4h (Fig. 5.6). Correlations drawn through each of 
the intermediate groups are not equivalent. There is only one criterion for 
choosing the "correct" intermediate group from several possible ones: all 
three groups - initial, intermediate and final - must have common elements 
of symmetry. 

Fig. 5.6. "Tree" of correlations between different symmetry groups (from ITC) 
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X2+ = (0, ¼,

Position X2+ (0, 1/4, 1/8) lies at the intersection of three rotary axes of 
the 2nd order: two diagonal and one (Fig. 5.7). All three axes are 
symmetry elements of the X2+ positional symmetry group. But the groups 
Td and Th, considered as intermediate ones, do not have diagonal axes of 
the second order at all (for the symmetry elements of the group Td see 
Appendix B) and correlations through these groups will yield to erroneous 
results. The remaining groups, D4h and O, can both be used to find 
correlations, but the former is more convenient for this purpose.

This is one “bottleneck” in the choice of correlations. Another is that 
correlations between D4h and D2 can be carried out either through the 
common axes or (see correlation tables, Appendix E). It is clear, 
however, that only the diagonal axis of the group D4h is common with 
the diagonal axis of the second order, which characterizes the position of 
X2+ in the garnet lattice (Fig. 5.7). Hence, the table of correlations between 
all three groups (Table 5.5-1) is as follows.

Fig. 5.7. Position of symmetry elements in a 3 = group (fragment of a 
figure from ITC)
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Table 5.5-1. Correlations between groups Oh and D2 via intermediate group D4h 

 
Oh D4h 

 D2 ( 2  2C ) 

A1g A1g A 

A2g B1g B1 

Eg A1g + B1g A + B1 

F1g A2g + Eg B1 + B2 + B3 
F2g B2g + Eg A + B2 + B3 

A1u A1u A 

A2u B1u B1 

Eu A1u + B1u A + B1 

F1u A2u + Eu B1 + B2 + B3 
F2u B2u + Eu A + B2 + B3 

 
Now it is necessary to determine those irreducible representations in 

the D2 group that characterize the translational displacements of X2+  
cation. For this purpose, we turn to the tables of characters of the group D2 
(see Appendix D). It is easy to see that Tz translations have B1 symmetry, 
Ty - B2, and Tx - B3 symmetry. This means that only the B1, B2, and B3 
irreducible representations of the positional symmetry group X2+ generate 
vibrational modes in the crystal, and we can rewrite the previous correlation 
table (Table 5.5-1) as follows (Table 5.5-2). In the latter table, the 
irreducible representations of the D2 group generating the X2+ vibrations of 
the cation in the crystal are underlined. Each of the underlined irreducible 
representations of the site group gives one irreducible representation in the 
crystal group, i.e. each translational mode in D2 gives one vibration in Oh, 
and we can add another column to the last table showing the number of 
vibrational modes in the crystal lattice produced by the X2+ cation. 

 
Table 5.5-2 

 
Oh D4h D2 ( 2  2C )  

A1g A1g A  
A2g B1g B1 Tz 

Eg A1g + B1g A + B1 Tz 

F1g A2g + Eg B1 + B2 + B3 Tz, Ty, Tx 
F2g B2g + Eg A + B2 + B3 Ty, Tx 
A1u A1u A  
A2u B1u B1 Tz 

Eu A1u + B1u A + B1 Tz 
F1u A2u + Eu B1 + B2 + B3 Tz, Ty, Tx 
F2u B2u + Eu A + B2 + B3 Ty, Tx 
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From here we can write a representation of X2+ translational modes in 
the garnet lattice: 

 
(X2+) = 1A2g + 1Eg + 3F1g + 2F2g + 1A2u + 1Eu + 3F1u + 2F2u. 

 
Finding correlations between local groups Y3+ and SiO4, on the one 

hand, and the factor-group of the crystal, on the other, does not cause 
difficulties and can be carried out by the reader independently. After that, 
you can write the final table for external vibrations in the garnet (Table 
5.6). 

 
Table 5.6. Correlation table of symmetry types of groups Oh, D2, C3i and S4 

 

 
Two remarks on the Table 5.6: firstly, molecular formations such as 

SiO4 tetrahedrons contribute to the overall vibrational representation not 
only by translational displacements in the local symmetry group, but also 
by restricted rotations (Rx, Ry, Rz); secondly, the twofold degenerate 
representations of E in the positional groups C3i and S4 are complex 
conjugate pairs, and the components of these pairs should be regarded as 
distinct from each other. For this reason, they are referred to as E(1) and 
E(2) and should be considered as individual representations. 

We can now write a vibrational representation for external 
(crystalline) vibrations in garnet: 

 
external = A1g + 2A2g + 3Eg + 8F1g + 7F2g + 2A1u + 3A2u + 5Eu + 11F1u 

+ +10F2u. 
 
Step 4. Analysis of the internal (molecular) vibrations of the SiO4 

tetrahedron is also based on correlations between the symmetry of a 
hypothetical free molecule, positional symmetry, and crystal symmetry. In 

Oh 
          X2+ 
      (D2, 2  2

 ) 
               Y3+ 
              (C3i) 

                       SiO4 
                        (S4) N 

A1g A Ag A                        Rz 1 
A2g B1                  Tz Ag B                        Tz 2 
Eg A+B1             Tz Eg(1)+Eg(2) A+B                   Tz Rz 3 
F1g B1+B2+B3     Tx,Ty,Tz Ag+Eg(1)+Eg(2) A+E(1)+E(2)    Tx,Ty; Rx,Ry,Rz 8 
F2g A+B2+B3          Tx,Ty Ag+Eg(1)+Eg(2) B+E(1)+E(2)    Rx,Ry; Tx,Ty,Tz  7 
A1u A Au                         Tz B                         Tz 2 
A2u B1                 Tz Au                         Tz A                         Rz 3 
Eu A+B1            Tz Eu(1)+Eu(2)         Tx,Ty B+A                   Tz; Rz 5 
F1u B1+B2+B3    Tx,Ty,Tz Au+Eu(1)+Eu(2)   Tx,Ty,Tz B+E(1)+E(2)    Rx,Ry; Tx,Ty,Tz 11 
F2u A+B2+B3     Tx,Ty Au+Eu(1)+Eu(2)   Tx,Ty,Tz A+E(1)+E(2)    Tx,Ty; Rx,Ry,Rz 10 
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addition to the tabular one, you can use the geometric scheme of these 
correlations [3], which is often found in the literature (Fig. 5.8).  

 

Fig. 5.8. Correlation of intramolecular vibrations of the SiO4 tetrahedron. 
 
Correlated representations are connected by lines. This information is 

obtained from correlation tables (see Appendix E). Of all the possible 
representations for a free molecule, the scheme includes only those that are 
actually realized (see above the analysis of SiO4 vibrations). From the 
above scheme it is easy to determine which vibrations and in what 
quantity arise in a garnet crystal as a result of static (transition Td  S4) 
and dynamic (transition S4  Oh) splittings of four internal vibrations of 
the SiO4 tetrahedron. Thus, the A1g mode of the crystal arises from one 
stretching A1 and one bending E vibrations of the molecule. The A2g mode 
comes from one bending E, one stretching F2 and one bending F2 

Molecule in  
  a crystal 
(static splitting)  

     Free 
molecule 

  Crystal 
(dynamic 
splitting) 

Td S4 Oh 

A1g 

A2g 

F1

F2g 

Eg 

A1u 

A2u 

F1u 

F2u 

Eu 

1, stretch.  A1     

2, bend.  E 

3, stretch. F2 

4, bend.  F2 

A 

B 

E(1) 

E(2) 
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vibrations of a free molecule, etc. Thus, the representation of internal SiO4 
vibrations in a garnet crystal contains: 

 
internal = 2Alg + 3A2g + 5Eg + 6Flg + 7F2g + 3 1u + 2A2u + 5Eu + 7F1u 

+ +6F2u. 
 
The full vibrational representation is the sum of intramolecular and 

crystalline modes: 
 

 = 3A1g + 5A2g + 8Eg + 14F1g + 14F2g + 5A1u + 5A2u + 10Eu + 17F1u 
+ +16F2u. 

 
A total of 97 modes of various symmetry and 237 vibrations (each E-

mode counts as two vibrations in the total; each F-mode counts as three 
vibrations). This corresponds to the expected number of vibrations N = 3n 

 3 = 3  80  3 = 237, where n = 80 is the number of atoms in a primitive 
cell. 

The data obtained are usually presented in tabular form, which is 
more convenient when working with spectra (Table 5.7). 

 
Table 5.7. Analysis of vibrations of a garnet crystal X Y  (SiO4)3 by symmetry 

 
 X2+ Y3+ T(SiO4) R(SiO4)   (Si-O)bend    (Si-O)stretch 

E F2 A1 F2 

A1g, RS    1 1  1  
A2g 1  1  1 1  1 
Eg, RS 1  1 1 2 1 1 1 
F1g 3  2 3 1 2 1 2 
F2g, RS 2  3 2 1 3  3 
A1u  1 1  1 1  1 
A2u 1 1  1 1  1  
Eu 1 2 1 1 2 1 1 1 
F1u, IR 3 3 3 2 1 3  3 
F2u 2 3 2 3 1 2 1 2 

 
It should be remembered that three acoustic modes of the crystal form 

one F1u representation. It follows from the selection rules (see Appendix 
F) that A1g, Eg and F2g modes are active in Raman scattering, while F1u 
modes are active in IR. 

This completes the analysis of garnet vibrations by symmetry. 
Finally, while we analyzed the vibrations by symmetry of crystals 

with isolated SiO4 groups, the concept of isolated molecular fragments (in 
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the structural sense) is also valid for pairs and three-, four-, and six-
membered rings of SiO4 tetrahedra in silicate crystals. In other words, this 
approximation remains valid as long as the molecular fragments exist 
inside the unit cell. In crystals, where SiO4 groups yield endless chains, 
planes, or three-dimensional frameworks, the approximation of molecular 
fragments is inapplicable. In this case, it is necessary to consider the 
oxygen and silicon atoms of the SiO4 tetrahedra as individual and 
determine the symmetry and the number of vibrations for each of them in 
the same way as was done above for the X2+ cations in the garnet lattice. 
In this case, the displacements of atoms in infinite chains or planes will be 
determined by Cartesian coordinates, and not intramolecular, as in isolated 
molecular units.  

5.3. Number of vibrations 

The number of degrees of freedom of a molecule consisting of m 
atoms is 3m. However, the displacement of a molecule as a whole along 
the x, y, and z axes, as well as rotation around these axes, does not refer to 
vibrations. Therefore, the total number of vibrations of the molecule is N = 
3m  6. 

In linear molecules, where the rotation around the axis of infinite 
order does not apply to the rotation of the molecule (i.e., does not cause a 
change in the arrangement of atoms), the total number of vibrations is 3m 

 5. 
If a crystal cell contains n atoms, then the total number of vibrations 

is 3n  3 (unlike molecules, where rotation about an axis represents an 
independent degree of freedom, in a crystal the cell rotation is described 
by translational displacements of atoms). However, due to the fact that a 
crystal can be atomic (ionic), mixed ionic-molecular or purely molecular, 
and vibrations can be divided into internal and external, counting the 
number of vibrations for each type becomes somewhat complicated, 
although their total number remains unchanged. Let the primitive crystal 
cell contain p individual atoms (ions) and M - molecular groups, each of 
which consists of m atoms. The total number of atoms in a cell is n = p + 
mM. In this case, the separation of vibrations into external and internal is 
as follows: 
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Total number of vibrations            N = 3n   3 = 3(p + mM)  3; 
 
External vibrations: 
translations   3(p + M)  3; 
librations   3M; 

Internal vibrations   3M(m  2). 
 
As already noted, each twofold degenerate mode is represented in the 

total number by two vibrations and each threefold degenerate mode is 
represented by three. The calculation of the number of vibrations is 
performed per one primitive crystal cell. Information about how many 
primitive cells are contained in a single unit cell is included in the 
designation of the space group. The quantitative relationship between cells 
is given in Appendix A. 
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CHAPTER 6 

RAMAN TENSOR AND SELECTION RULES  
IN VIBRATIONAL SPECTRA 

 
 
 
As was established in Chapter 1, the intensity of the bands in the IR 

absorption spectra is determined by the dipole moments of the vibrational 
modes, and in the Raman spectra, by the change in polarizability during 
the vibration. Consequently, the selection rules by symmetry in both types 
of vibrational spectra will be determined by the reaction of the 
components of the dipole moment and the polarizability tensor to the 
action of the symmetry operations of the point group to which the given 
molecule or crystal refers. Therefore, in order to establish the selection 
rules, it is necessary, first of all, to consider precisely these quantities from 
the point of view of the properties of their symmetry. 

6.1. Polarizability tensor and Raman tensor 

The direction of the vector of the induced dipole moment P in a 
crystal or molecule generally does not coincide with the direction of the 
external electric field E (Fig. 6.1) and the P components are linear 
combinations of the external field components. Therefore, for the dipole 
moment Px  along the x-axis we can write 

 
Px = xxEx + xyEy + xzEz,   (6.1) 

 
where xx is the polarizability of the molecule along the x axis under the 
action of the field component Ex, xy is the polarizability along the x axis 
under the action of the field component Ey, etc. Similar expressions are 
valid for the Py and Pz components. 
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Ex Px= xEx 

Py= yEy 

y 

Ey 

x 

E 

P 

 

 
 
 
 

Fig. 6.1. Relationship between the external 
electric field E and the induced dipole moment 
P of a crystal or molecule 

 
 
 
 

Hence, the expression for the total dipole moment P can be written in 
matrix form: 

 

 =    (6.2) 

 
Thus, the polarizability is a tensor quantity, more precisely, a 

symmetric second-rank tensor, in which 
 

xy = yx, xz = zx, and yz = zy   (6.3) 
 
(six independent components in total). The derivative of the polarizability 
with respect to the normal coordinate, which determines the intensity in 
the RS, is also a symmetric tensor of the second rank and is called the 
Raman tensor or the RS tensor.  

6.2. Selection rules for first order processes 

The essence of the selection rules in IR and RS of the first order, i.e. 
with the transition of a molecule or crystal from the ground vibrational 
state to the first excited state, is very simple and does not differ from that 
in many other physical processes. The general rule is that for the 
interaction of two different systems (photons, phonons, magnons, electron 
wave functions, etc.), their symmetry must be the same. In quantum 
mechanics, the probability of the transition Mif from the initial state i to the 
final state f is determined by the matrix element 

 =      (6.4) 
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where  is the considered moment (dipole, magnetic, or quadrupole). The 
matrix element Mif  (intensity of transition) is a constant and should not 
depend on the symmetry operation. Therefore, if the integral (6.4) changes 
sign for some symmetry operation, then this means that Mif = Mif = 0 and 
the transition is forbidden. For first-order IR and RS processes (i.e., with 
the participation of only one vibration), the initial state is always totally 
symmetric. Therefore, in order for the integral (6.4) to be nonzero, it is 
necessary that the transition moment M and the wave function of the final 
state either do not change sign during symmetry operations, or change it 
simultaneously, so that their product remains constant in sign. In other 
words, the symmetry of the wave function of the final state and the 
moment of transition M should be the same. 

In the act of IR absorption, one photon disappears and one vibration 
arises. Consequently, the moment of transition in this case is determined 
by the polarization vector of the incident photon, and the symmetry of the 
wave function of the excited vibration should exactly correspond to the 
symmetry of the incident photon, i.e. its polarization vector. Therefore, 
having determined the symmetry of the polarization vectors x, y, and z in a 
given point group, we will know which types of symmetry of vibrations of 
a molecule or crystal from the entire set of vibrational modes are active in 
the IR spectrum.  

In the process of scattering, the moment of transition is determined by 
the component of the Raman tensor, which depends on the directions of 
the polarization vectors of the incident and scattered photons, and in order 
to determine the activity of one or another phonon in the spectrum, it is 
necessary to know the symmetry of the components of the Raman tensor. 
The latter are defined by two indexes; therefore it is transformed as the 
product of the corresponding coordinate axes. For example, xx is 
converted as x2, xy as xy, etc. 

As an example, consider the transformation of the components of the 
dipole moment  and the polarizability tensor  of the H2O molecule 
under the action of symmetry operations in the C2v group (point group of 
the molecule). 
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Table 6.1. Transformation of the components of the dipole moment and the Raman 
tensor under the symmetry operations of the group C2v 

 

  E  y x  

x x 1 1 1 1 B1 
y y 1 1 1 1 B2 
z z 1 1 1 1 A1 
xx x2 1 1 1 1 A1 

yy y2 1 1 1 1 A1 
zz z2 1 1 1 1 A1 
xy xy        1 1 1 1 A2 
xz xz 1 1 1 1 B1 
yz yz 1 1 1 1 B2 

 

The first column of Table 6.1 shows the transformed components, the 
second column  coordinate axes or their combinations, which change 
according to the same law, and the next four  the results of symmetry 
operations. So, for example, the x direction changes sign when rotated 
around the z axis by 180  and does not change when it is reflected in y 
plane. The character of the transformation matrix in the first case is 1, in 
the second +1. The last column shows the irreducible representations, 
according to which the components of the dipole moment and the Raman 
tensor are transformed. To verify this, it is necessary to refer to the tables 
of the characters of the irreducible representations (see Appendix D). 

It can be seen that x, y and z of the H2O molecule are transformed 
as irreducible representations of B1, B2 and A1, respectively (Table 6.1); 
therefore, vibrational modes of these types of symmetry will be active in 
IR absorption. The tensor components are transformed as A1, A2, B1 and B2 
(Table 6.1); therefore, all four possible vibration modes of the C2v group 
are Raman-active. 

As follows from Table 6.1, the total symmetric representation A1 
includes the diagonal components xx, yy and zz and does not include 
off-diagonal xy, xz and yz. It means that the Raman tensor for a given 
type of symmetry consists only of nonzero diagonal components, different 
in magnitude, since the directions x, y and z in the orthorhombic system 
are not equivalent to each other. Thus, the Raman tensor for A1 vibration 
in the C2v group is as follows: 

 

2
zC
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( ) = 0 00 00 0  

 
The component xy is transformed as an irreducible representation of 

A2, xz as B1, and yz as B2; therefore the Raman tensors of vibrations of 
type A2, B1 and B2 in the C2v group have the form 

 ( ) = ;      ( ) = ;     
   ( ) =  

 
Thus, the set  ,  ,  ,  of Raman tensors describes the selection 

rules in RS in the C2v group. 
Each symmetry group has its own set of symmetry elements. Of 

course, the transformation of the dipole moments and the components of 
the Raman tensor in each point group will be characterized by irreducible 
representations that are characteristic only for this point group. These 
irreducible representations constitute the selection rules in IR and RS. 

Above, we used intuitive rather than strict mathematical rules to 
define Raman tensors of various types of symmetry for the group C2v. The 
tensors that are active in Raman scattering vibrations for all 30 crystal 
classes established by Loudon [1] are presented in Appendix F, and 
Appendix G shows the basic techniques for working with Raman tensors 
to improve the efficiency of polarization measurements of crystals.  

What does knowledge of the Raman tensor give for a certain type of 
symmetry of vibrations? For nonoriented objects, i.e. powders or liquids, 
practically nothing. But if the spectrum of an oriented crystal is recorded, 
then the combination of the directions of polarization of the incident and 
scattered light relative to the crystallographic axes of the sample indicates 
which types of symmetry of vibration are active in this spectrum (see also 
Chapter 7). For example, if the direction of polarization vectors of both 
incident and scattered light coincides with the x (or y or z) axis of the 
crystal, then in this case the xx (yy, zz) components of the Raman tensor 
will be recorded in the Raman spectrum, which, as we now know, 
correspond to only totally symmetric modes. In other words, in this case, a 
spectrum of totally symmetric vibrations is recorded. To give this fact a 
mathematical form, we can write in the general case 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Raman tensor and selection rules in vibrational spectra 85 

I(RS) = A [ei es ]2  ( ,  = x,y,z),   (6.5) 
 
where A is a constant and i

 and es   are the unit vectors of polarization of 
the incident and scattered radiation along the ,  axes of the crystal 
(compare this expression with (1.32, 1.33)). 

Totally symmetric vibrations always exist in a molecule or crystal 
and are always active in Raman scattering. 

For molecules and crystals with an inversion center, there is an 
alternative prohibition rule: vibrations active in the RS are prohibited in 
the IR, and vice versa. At the same time, vibrations, which are even with 
respect to the inversion operation, are active in the RS, and they are odd in 
the IR. 

When scattering by molecules in liquid and gas occurs, the polarization 
factor [ei es ]2 in relation (6.5) must be averaged over all directions; 
therefore, in this case, the degree of depolarization is usually measured  = 
I /I , i.e. the ratio of the Raman intensities measured at crossed and 
parallel polarizations of the incident and scattered light. In crystals, where 
the crystallographic axes can be rigidly defined with respect to the 
laboratory coordinate system, polarization factor allows us to find 
individual components of the Raman tensor and thus determine the 
symmetry of vibrations in the spectra, which is perhaps the most attractive 
advantage of Raman spectroscopy of crystals.   

6.3. Selection rules for second order processes 

For a strictly harmonic oscillator, whose potential energy is a 
quadratic function of a coordinate, only transitions with a change in the 
vibrational quantum number by unity are possible. In other words, if the 
system is in the ground state, transitions from the ground state to the first 
excited state are observed in the IR and Raman spectra. However, due to 
anharmonicity6, transitions from the ground state to the second (third, etc.) 
excited state or transitions with a simultaneous change in the quantum 
number for two (or several) vibrations become possible. The lines in the 
spectra at the frequency 2 i are called overtones, and at the frequency ( i 

 j) are called composite tones. In this case, the composite tone ( i  j) 
is called summarized, and ( i  j) is called difference. The probability of 
second-order processes in Raman scattering is small; therefore, the lines of 

 
6 This refers to the anharmonicity of both types: mechanical, due to the deviation 
of potential energy from the quadratic law, and electro-optical, when the dipole 
moment and polarizability cease to be a linear function of vibrational coordinates. 
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overtones and composite tones are either very weak or not detected at all. 
The reason for their appearance in the spectrum will be discussed in detail 
in Chapter 9. 

In the processes of absorption and scattering of the second order, the 
moment of transition M in the integral (6.4) remains the same as in the 
processes of the first order. Therefore, the selection rule for second-order 
processes is the same as for first-order processes, namely: the symmetry of 
the excitation is determined by the symmetry of the moment M. (It is valid 
for any two-particle processes such as, for example, scattering with the 
simultaneous participation of a phonon and a magnon). The only 
difference is how the symmetry of the excitation is determined. In second-
order processes, the symmetry of the overtone or composite tone is 
determined by the direct product of the types of symmetry of each 
participating vibration. For example, the symmetry of summarized tone 
( i  j) is 

 
( i  j) = ( i)  ( j).   (6.6) 

 
The direct product ( i)  ( j) of the irreducible representations 

( i) and ( j) is very easy to find. The characters of the representation of 
the direct product ( i)  ( j) are equal to the product of the characters 

( i) and ( j). Hence, having determined the characters of the direct 
product, it is easy to find to which representation (or the sum of several 
representations) of the group they correspond. 

 
Example 1. Let us find the symmetry of the composite tone v3 + Rz of 

the H2O molecule (i.e., the asymmetric stretching vibration and the 
librational mode Rz). The symmetry of the v3 mode is B1 and the mode Rz  
A2 (see Fig. 4.10). Let us write down from the table of characters of the 
group C2v (see Appendix D) the characters of the representation B1 and A2 
(Table 6.2, second and third rows, respectively). 

 
Table 6.2. The product of characters of the representations A2 and B1 in the group 
C2v 

 

 E        y x 

B1 ( 3) 1 1 1 1 
A2 (Rz) 1 1 1 1 
B1  A2 1 1 1 1 
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The last row of Table 6.2 is the result of multiplying the two previous 
rows by each other. These are the characters of the direct product B1  A2. 
We turn again to the character table of the group C2v and find that the 
characters of the direct product coincide with the character string of the 
representation B2. 

Thus, the direct product of B1 and A2 is transformed according to the 
irreducible representation of B2: 

 
B1  A2 = B2. 

 
Example 2. Let us find the symmetry of the overtone of the F2g type 

vibration of group Oh (this group includes a garnet crystal). Let us turn to 
the table of characters of the irreducible representations of the group Oh 
(Table 6.3; See also Appendix D). 

 
Table 6.3. Characters of the irreducible representations of the Oh group and the 
direct product F2g F2g 

 
Oh E 8C3 3C2 6C4 6  I 8S6 3 h 6S4 6 d 

A1g 1 1 1 1 1 1 1 1 1 1 
A2g 1 1 1 1 1 1 1 1 1 1 
Eg 2 1 2 0 0 2 1 2 0 0 

F1g 3 0 1 1 1 3 0 1 1 1 
F2g 3 0 1 1 1 3 0 1 1 1 
A1u 1 1 1 1 1 1 1 1 1 1 
A2u 1 1 1 1 1 1 1 1 1 1 
Eu 2 1 2 0 0 2 1 2 0 0 

F1u 3 0 1 1 1 3 0 1 1 1 
F2u 3 0 1 1 1 3 0 1 1 1 

F2g F2g 9 0 1 1 1 9 0 1 1 1 
 
The last line of Table 6.3 shows the characters of the representation 

F2g  F2g. This representation is reducible, and its reduction consists of 
finding in those irreducible representations of the group Oh, the sum of the 
characters which will form the character row of the representation 
F2g  F2g. It can be seen that the resulting collection is formed by the sum 
of the characters of the irreducible representations A1g, Eg, F1g and F2g. 
Hence,  
 

F2g F2g = A1g + Eg + F1g + F2g. 
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Taking into account the fact that none of the components of the 
dipole moment or the Raman tensor in the Oh group transforms according 
to the F1g representation, and the three remaining representations are 
active only in Raman scattering, we find that a vibrational mode with a 
frequency 2vi(F2g) can be observed in the Raman spectra corresponding to 
A1g-, Eg- or F2g-types of symmetry. 

A following characteristic of the direct product should be noted: the 
direct product then contains a totally symmetric representation when its 
factors belong to the same type of symmetry. From this property of the 
direct product the selection rules in IR and RS for the first-order processes 
considered above are followed. The point is that the ground state in which 
the system is stated before the act of absorption or scattering is always 
totally symmetric. The act of absorption can be characterized as a process 
involving two "particles" - a photon and a phonon (the symmetry of a 
photon is characterized by a dipole moment). The scattering act is 
described by the participation of two photons, the symmetry of which is 
characterized by a component of the scattering tensor, and a phonon. In 
both cases, the direct product of the symmetry of the dipole moment and 
the phonon, and the components of the RS tensor and the phonon, must 
contain a totally symmetric representation. Therefore, both factors must 
have the same symmetry type. 

The selection rules for the wave vector in a crystal are less rigorous 
for second-order processes than for processes involving a single phonon. 
The point is that the condition of proximity to zero of the wave vector of 
the scattered phonon (Sec. 3.4 in Ch. 3) should now be satisfied for the 
sum of the wave vectors of two phonons; therefore, phonons from any 
point of the Brillouin zone can participate in scattering, as long as their 
wave vectors are multidirectional, and their vector sum is close to zero. 
The density of phonon states, however, is maximal at the center and at the 
edges of the Brillouin zone, making second-order scattering processes 
most probable precisely at these points. 
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CHAPTER 7

THE TECHNIQUE OF RAMAN SPECTROSCOPY

7.1. Block diagram of Raman spectrometer

The physical process yielding to the appearance of inelastic Raman 
scattering was considered in Ch. 1. Here we will discuss the experimental 
methods and features of Raman spectra obtaining. A typical Raman 
spectrometer includes an excitation source, an input device, a dispersing 
device, and a detector (Figure 7.1).

Fig. 7.1. Raman spectrometer block diagram

As a source of monochromatic radiation, gas lasers with generation in 
the visible region of the spectrum are usually used, i.e. Ar +, Kr +, He-Cd, 
and He-Ne lasers, since gas lasers differ from solid-state lasers in high 
stability of the radiation frequency, and the width of the laser lines of these 
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devices operating in a single-mode mode is very small (10-2  10-3 cm-1), 
much less than the width of vibrational lines in the spectrum (1  10 cm-1). 
The angular divergence of the beam is also negligible, which makes it 
technically simple to collimate and focus. Nevertheless, in recent years, 
solid-state lasers based on AYG crystal with a laser line at 1064 nm and 
with subsequent frequency doubling to 532 nm have been increasingly 
used. These devices are not demanding to operate and are inexpensive. 

The preliminary monochromator (or interference filter) is used to 
clean the generation line from accompanying emission lines, which are 
present in the spectrum of the laser radiation. The intensity of the emission 
lines is much lower than the intensity of the laser line, but much higher 
than the intensity of the bands in the Raman spectrum. 

Currently, as an input device, a microscope is usually used, which 
focuses laser radiation on the sample surface and simultaneously serves to 
collect scattered radiation. This geometric scheme of spectrum registration 
is called back-scattering. 

A film polaroid or a Glan prism installed in front of the entrance slit 
of the spectrometer is used to analyze the polarization of the scattered 
radiation. 

7.2. Types of spectral device for Raman spectroscopy 

One of the main features of Raman scattering is its weak intensity 
(i.e., the probability of the scattering process), which is on the order of 10-6 
- 10-12 of the intensity of the exciting radiation. Another important feature 
of the method (from an experimental point of view) is the spectral 
proximity of the scattered light to the excitation line. Indeed, in many 
cases, the Raman spectrum starts from 5 cm-1 (glasses, semiconductor 
superlattices, and molecular crystals), which in terms of wavelengths in 
the visible region means a breaking from the exciting line by about 1 Å. 
These characteristics determine very stringent requirements for spectral 
equipment.  

For registration of Raman spectra, classical scanning spectrometers, 
modern spectrographs (Raman microscopes) and Fourier spectrometers are 
used. 

A traditional scanning spectrometer, as a rule, consists of a double 
monochromator, in which the spectrum is swept over a narrow exit slit and 
detected by a photomultiplier (Fig. 7.2). The advantages of such a 
spectrometer include a low noise level (i.e. a high degree of suppression of 
background radiation due to double monochromatization), a very high 
spectral resolution (usually better than 0.1 cm-1), the ability to detect low 
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Second stage 

First stage 

Raman frequencies (starting from about 2-10 cm-1) and correct 
reproduction of the shape of the scattering line (in the case of a correct 
design solution). However, the rather long time required to register one 
spectrum (usually tens of minutes) makes this type of device not very 
convenient for use. 

 
 
 
 
 
 
 
 

Fig. 7.2. Optical design of double scanning 
monochromator  

 
 

 
The next type of spectral device for Raman spectroscopy is the two-

stage spectrometer-spectrograph, which has been widely used for the past 
40 years (Fig. 7.3). The first stage of the device is a double monochromator 

 
 
 
 
 
 
 
 
 
 

Fig. 7.3. Triple Raman 
spectrometer-spectrograph. 

 
 
 

 
with dispersion subtraction. In it, the light that has passed through the 
entrance slit of the device is decomposed into a spectrum, from which 
laser (Rayleigh) radiation is cut off with the help of the middle slit. The 
diffraction grating of the second monochromator is set so that its 
dispersion is "directed" in the opposite direction, and the spectrum created 
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in the first monochromator is folded back into a beam of white light in the 
second monochromator. The third monochromator, which is the second 
stage of the device, usually operates in the spectrograph mode, i.e. all the 
light, which is decomposed into a spectrum, falls on a two-coordinate 
detector, a CCD-matrix (abbreviation for “coupled charge device”). 

Modern CCD-matrices have a very high sensitivity, and the 
characteristics of each pixel of the matrix are close to the characteristics of 
a photomultiplier operating in photon counting mode. The ability to 
"accumulate" the spectrum, reading and adding to the previous result and 
each time improving the signal-to-noise ratio, makes the time of the entire 
spectrum collection very short  from a few seconds to several minutes. 
However, the spectral resolution of the device is limited, as usual, by the 
focal length of the second-stage spectrograph and, which is a new one, by 
the geometric pixel size. Moreover, since the charge accumulated by one 
pixel in the process of spectrum registration can partially “spread” to two 
neighboring ones, the real spectral resolution is limited by a width of 2–3 
pixels and is usually no better than 1–5 cm-1. For this reason, the shape of 
narrow spectral lines cannot be reproduced correctly. The low-frequency 
part of the spectrum can be recorded starting from 50 60 cm-1. 

In recent years, devices have appeared (they are usually called Raman 
microscopes) which differ from the previous ones by replacing the first 
stage with so-called notch-filters or edge-filters, which serve to cut off the 
laser line (Fig. 7.4). Due to the simplified optical design and significant 
progress in the manufacture of notch filters with high optical parameters, 
these devices have proven to be the most popular in applied Raman 
spectroscopy. Let's consider their characteristics in more detail.  

 
 
 
 
 
 
  
 
 
 

Fig. 7.4. Raman microscope with notch filter 
 
1. Transmission. The transmission of a spectrometer is inversely 

proportional to the number of optical elements in it, mainly mirrors and 
gratings. Each mirror results in a loss of about 10% of the light flow, and 
each grating results in a loss of 40-50% of the light. The spectrograph with 

Notch-filter 

Focal plane 
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a notch filter includes only one grating and two mirrors  much less than 
in other types of instruments (Figs. 7.2-7.3). For this reason, Raman 
microscopes are significantly superior in transmission to other spectrometers. 
This means that at the same power of exciting radiation, the intensity of 
the spectrum obtained with a Raman microscope will be much higher. 
However, the power of the incident radiation is usually the critical value: 
in the Raman experiment, the incident radiation is focused on the sample 
surface into a spot about 1 micron in diameter; therefore, the lower its 
power, the lower the local heating of the sample will be. For colored and 
readily decomposing chemical compounds, this circumstance is perhaps 
the most critical from the point of view of the possibility of obtaining their 
spectrum. Therefore, devices with high transmission, such as the LabRAM 
HR Raman microscope, Horiba, and Jobin Ivon, significantly expand the 
scope of Raman spectroscopy. In addition, the use of laser radiation 
sources of lower power gives a significant gain in their cost, which also 
plays an important role. 

2. Resolution. The resolution of an optical device is determined by 
its linear dispersion S = ( / ) F, where ( / ) is the angular 
dispersion, and F is the focal length. Angular dispersion depends on the 
dispersing element (diffraction grating) and is usually varied by using 
gratings from a standard set (600 2400 lines/mm) for all types of Raman 
spectrographs. The focal length of the instrument is constant and is 
determined by the distance from the grating to the exit slit of the spectrometer 
or the focal plane of the spectrograph. As already mentioned, in the case of 
two-coordinate detectors (CCD-matrices), the spectral resolution is also 
limited by the pixel size. Typically, spectrometers/spectrographs are 
designed in such a way that the entrance slit of the device is projected onto 
its focal plane with a certain magnification factor close to unity. Moreover, 
if the projection width of the entrance slit turns out to be less than the 
width of the detector pixel, the reading device still perceives this signal as 
from a whole pixel. In addition, the charge that appears on one pixel when 
it absorbs light quanta spreads to neighboring pixels. As a result, the real 
spectral resolution of the detector matrix (i.e., the minimum half-width of 
the recorded line) turns out to be equal to the wavelength interval 
corresponding to approximately two pixels (Fig. 7.5).  
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Fig. 7.5. When only one central pixel 
is illuminated, the half-width of the 
recorded line is perceived to be 
approximately two pixels due to the 
spreading of the charge (the amount 
of charge is proportional to the filled 
area) 
 

 
 
Thus, to obtain a high spectral resolution, it is necessary to give preference 
to spectrometers with a large focal length (instrument base) and detectors 
with a minimum physical pixel size (with a standard CCD matrix width of 
1 inch, the latter condition is equivalent to the requirement of the 
maximum number of pixels per line). An important parameter of a spectral 
device is the presence of replaceable diffraction gratings in it, which make 
it possible to switch (with a loss of spectral pass band) to recording a 
spectrum with a high resolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.6. Half-width of emission lines of Ne gas in an electric discharge (emission 
from a low-pressure Ne lamp) for various diffraction gratings and input objectives 
of different magnifications (LabRAM HR spectrometer, Horiba, Jobin Yvon, 
spectrometer magnification 0.9, and CCD matrix with 2048 pixels per row). 
 

The experimental determination of the resolution of the device is 
carried out by registering an optical spectrum consisting of narrow lines, 
the width of which can be neglected. For this purpose, as well as for 
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wavelength calibration of the spectrometer, the emission spectrum of a 
low-pressure neon lamp is best suited. To reliably determine the spectral 
resolution, the spectrum is collected at different widths of the entrance slit, 
and then the dependence of the half-width of the spectral lines on the 
parameters of the entrance slit is plotted (Fig. 7.6). Fig. 7.6 shows that the 
resolution of the device reaches its limiting value when the width of the 
entrance slit is about 30 microns.  

 
3. Confocality and image transmission to the entrance slit. These 

design features apply to all types of spectrometers and are useful to know 
to better control the spectrum acquisition process.  

The confocality of the spectrometer sets the spatial resolution of the 
spectrum over the depth of the sample, i.e. selects an area on the surface or 
in the depth of the sample from which the spectrum is collected. The 
essence of this technique is illustrated in Fig. 7.7. 

 
 
 
 
 
 
 
 

Fig. 7.7. Diagram of the confocal 
diaphragm 

 
 
 

 
By adjusting the aperture of the confocal diaphragm and the distance 

from the objective to the sample, you can select the area of interest for 
recording the spectrum. This is especially important when working with 
"samples in the medium", for example, with crystals in a high-pressure 
anvil cell or with inclusions in a mineral. 

Image transmission to the entrance slit is an important parameter 
from the point of view of obtaining a spectrum with the least loss in 
intensity. The experimenter is always interested in setting the entrance slit 
as narrow as possible to obtain a high spectral resolution, but in this case 
large losses of the light flux can occur if the width of the slit turns out to 
be much less than the diameter of the image of the exciting radiation spot 
transmitted to the slit. 

Confocal  
diaphragm 

Lens 
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First of all, it is necessary to find out what the optimal width of the 
entrance slit should be. This depends on the pixel size of the detector and 
the magnification factor of the spectrograph (i.e., with what magnification 
the entrance slit is projected in the focal plane of the instrument), since it 
is pointless to set the slit narrower than the width of one pixel (taking into 
account the magnification of the spectrometer). In addition, taking into 
account the effect of charge spreading, it can be assumed that the slit 
width, which is approximately equivalent to the width of two detector 
pixels, is close to optimal. For a LabRAM HR Raman spectrometer, the 
magnification is 0.9, and the pixel width for currently existing CCD 
standards can be 26 m (1024 pixels per line) or 13 m (2048 pixels per 
line). Figure 7.6 shows the dependence of the spectral resolution of the 
spectrometer on the width of the entrance slit for a CCD matrix with 2048 
pixels per row. It can be seen that, at a slit width of 20–30 μm, the 
resolution becomes practically limiting in full agreement with the above 
estimate. It is also worth recalling that with an excessively narrow 
entrance slit (10–20 radiation wavelengths), diffraction effects at the edges 
of the slit become significant and should be taken into account (i.e., the slit 
itself begins to work as a diffraction grating). 

Now it is easy to clarify the question of transferring the image to the 
entrance slit. If d0 is the diameter of the spot of focused laser radiation on 
the sample, m is the magnification factor of the lens of the microscope that 
collects the scattered radiation, and k is the magnification of the optical 
path of the spectrometer from the objective to the entrance slit, then the 
diameter d of the image on the slit is 

 
d = mkd0.    (7.1) 

 
The values of d0 and m are related to each other and the product m·d0 

remains approximately constant for lenses of different magnification. 
Therefore, the critical parameter is the gain k of the lens-slit path. For the 
LabRAM HR spectrometer k = 0.28. With a 100x “Olympus” type lens, d0 
is about 1 μm. Hence d = 28 m. Thus, the size of the image of the spot of 
light at the entrance slit is consistent with its optimal width.  

4. Contour of a spectral line. The contour of an ordinary line in the 
vibrational spectrum is Lorentzian [except for some special cases, such as 
the strong interaction of the vibration with the electron continuum (Fano 
interaction), or polariton effects in the IR spectrum, broad bands of 
hydrogen bond vibrations, etc.] and is given by the expression: 
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( ) = ( )  ,    (7.2) 

 
where  is the half-width (full width at half-height) and 0 is the position 
of the center of gravity of the line. The real contour of the line recorded by 
the instrument is the convolution of the instrumental function a( ) of the 
spectrometer and the Lorentz contour, i.e. integral 

 ( ) = ( ) ( )   (7.3) 
 

(the problem of the line contour in a real device is considered in detail in 
[1]). In modern devices, the distortion (aberration) of optical elements, i.e. 
diffraction gratings and mirrors, are small and can be neglected; therefore, 
the instrumental function of the device mainly includes the instrumental 
functions of the input and output slits. The instrumental function of the 
entrance slit consists of the diffraction of light at the edges of the slit and a 
component due to its finite width. The diffraction component adiff is 
proportional to D/ F, where D is the effective aperture of the device 
(almost equal to the size of the diffraction grating), F is the focal length of 
the device, and  is the wavelength of light. The D/F ratio is around 0.1. 
Hence the adiff  0.2 μm. Consequently, when the width of the entrance slit 
sin is greater than 15 20 , the diffraction effects at the edges of the slit 
can also be neglected, and the instrumental function of the entrance slit 
turns out to be due to its geometric shape, i.e. rectangular strip. The 
geometric image of the entrance slit is transferred to the focal plane of the 
device, where the detector is installed, with a certain coefficient kdev, 
which increases or decreases the size of the entrance slit. In other words, 
the flow of monochromatic light filling the entrance slit of the device will 
appear on the detector matrix as a rectangular strip with the width sinkdev. 
Unlike a scanning spectrometer with a variable width of an exit slit, in a 
Raman microscope the role of an exit slit is played by a pixel with its fixed 
physical size, and the instrumental function of such an “exit slit” is the one 
shown in Fig. 7.5. Without performing here the cumbersome calculations 
of integral (7.3) (which are still only a certain approximation of the 
instrumental function of a real device), we can say that if the width of the 
vibrational line is greater than the spectral resolution of the device (item 
two of this section), the line contour will be close to natural, that is 
Lorentzian. This condition is usually satisfied for vibrational spectra 
obtained at room temperature (and above), since in this case the lines are 
already significantly broadened and their half-width is a few inverse 
centimeters. At low temperatures, for example the temperature of liquid 
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helium, the half-width of the vibrational mode can reach values of 0.1 0.5 
cm-1, i.e. below the limit of spectral resolution of the currently widespread 
Raman microscopes. In this case, of course, the instrumental functions of 
the entrance slit and the detector become important, and the line contour 
will be best described by the Voight function, which is a convolution of 
the Lorentz and Gaussian distributions: 

 ( ) = ( ) ( ) ,   (7.4) 
where 
 ( ) = ( )

   (7.5) 
 
is the Gaussian distribution, in which the quantity  is related to the half-
width  by the ratio 
 = .    (7.6) 

 
In practice, however, the most commonly used is a slightly modified 

Voight function called a pseudo Voight function. 

7.3. Polarization measurements 

As already mentioned in Ch. 6, the possibility of polarization 
measurements of oriented crystals is perhaps the most attractive feature of 
Raman spectroscopy in relation to IR spectroscopy. Polarized spectra 
contain experimental information on the type of symmetry of vibrational 
modes, and for low-symmetry crystals  also on the crystallographic 
direction of individual bonds in the cell. The optical scheme for recording 
Raman spectra is shown in Fig. 7.8. 

 
 
 
 
 
 

Fig. 7.8. Optical scheme for 
recording the Raman spectrum. 
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In this case, it is assumed that the sample is oriented, i.e. the 
directions of its edges in the figure correspond to certain crystallographic 
axes. Laser radiation is usually polarized, and the direction of polarization 
can be changed using phase plates. The polarization of the scattered light 
is set by a polaroid (or Glan prism). In Figs. 7.1 and 7.8 these elements are 
designated as the "Analyzer". Since each type of symmetry of vibrational 
modes is characterized by its own (individual) Raman tensor, different 
combinations of the direction of polarization vectors of the incident and 
scattered light relative to the crystallographic axes of the oriented single-
crystal sample determine the type of symmetry of the recorded spectrum. 
For example, the Raman tensor of totally symmetric vibrations for all 
crystals with symmetry above monoclinic has only diagonal nonzero 
components; therefore, totally symmetric modes can be recorded only in 
the spectra of the - (or bb-, cc-) configuration, i.e. when the polarization 
vectors of the incident and scattered light are parallel to the a (or b, or c) 
axis of the crystal. The Raman tensors of all types of vibrations for the D2h 
group have the form 

 :     0 00 00 0                  .   

              Ag          B1g                    B2g                    B3g 
 

(7.7) 
 
To measure the spectrum of B1g modes, it is necessary to set the 

polarization of the incident light parallel to the a axis of the crystal, and 
the scattered one  b (or vice versa), i.e. measure the ab- (i.e. xy-) 
component of the scattering tensor, etc. This procedure is necessary for 
determining the symmetry of vibrational modes and is very useful in 
assigning bands in the experimental spectrum. 

7.4. "Leakage" of polarization  

When measuring the polarized spectrum, the bands, which are 
forbidden in a given configuration, are often observed as weak lines (for 
example, weak lines of totally symmetric modes are observed in cross 
polarizations, and vice versa). This is due to the polarization "leakage". 
The reason for its appearance is that the scattered light is collected not 
only for the "correct" Raman tensor, but also for the one that is rotated 
through an angle  (Fig. 7.9).   
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Fig. 7.9. The origin and 
quantity of polarization 
"leakage" 

 
 

 
When the coordinate system rotates, the elements of the Raman 

tensor change as cos2 (see Appendix G). The intensity of scattered light is 
proportional to the square of the element of Raman tensor. Thus, when the 
crystal (coordinate system) rotates, the Raman intensity changes as cos4, 
and to determine the polarization "leakage" L, it is necessary to calculate 
the integral 

 .   (7.8) 
 

For the numerical aperture A = sin  = 0.6 of the input lens,  = 37°, 
the polarization "leakage" L = 0.033 (3.3%). 

7.5. Fourier-raman spectroscopy 

The use of Fourier spectrometers for recording Raman spectra have 
become real in recent years, although the frequency of their use does not 
compete with the frequency of the use of dispersive devices. But if the 
principle of the operation of a dispersive spectrometer is usually not 
discussed, then the physical (and mathematical!) reason for the appearance 
of the spectrum in a Fourier spectrometer needs to be explained, and here 
we will briefly discuss this problem without going into the technical 
features of this type of device. 

The function of the spectral part of the Fourier spectrometer is 
performed by an interferometer, which can have a different design, but 
most often an interferometer made according to the Michelson scheme is 
used (Fig. 7.10). 
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Fig. 7.10. Diagram of a 
Michelson interferometer. 

 
 
 
 

 
The light from the source S is split by the beam splitting plate 2 into 

two identical flows in the direction of the mirrors 1 and 3. The light 
reflected from the mirrors gets the detector D at the end of the path. Let us 
imagine that the light emitted by the source is a monochromatic wave. In 
this case, due to the division of light into two streams, the detector will fix 
radiation, the intensity of which depends on the path difference  of the 
two monochromatic waves: from zero, when both waves reach the detector 
in antiphase, to the maximum value, if the path difference turns out to be 
zero. 

The path difference  can be adjusted if one of the mirrors, for 
example, mirror 3, is made movable. In this case, i.e. when the mirror 3 is 
displaced, the light intensity on the detector will change sinusoidally, i.e. 
the detector will record the signal shown in Fig. 7.11, a. 

 
 
 
 
 
 
 
 

Fig. 7.11. Interferograms of monochromatic 
radiation (a) and white light (b) 
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The sinusoid shown in Fig. 7.11,a can, like any other function, be 
expanded in a Fourier series, but the expansion will be represented by only 
one term, namely sin ( t), in which the only harmonic  is the frequency 
of our monochromatic wave. In other words, the resulting spectrum will 
consist of only one line at the frequency . Now let's complicate the 
experiment a little by imagining that the source emits light consisting of 
two monochromatic waves with frequencies 1 and 2. In this case, when 
mirror 3 is displaced, the detector will record the result of the interference 
of the two waves, i.e. a picture depicting the result of the addition 
(beating) of two waves 1 and 2. Now the Fourier series of the function I 
( ) will consist of two harmonics, 1 and 2. It is not difficult to extend 
this thought experiment to light consisting of any number of monochromatic 
waves. For example, if the source emits white light, i.e. the sum of an 
infinite number of monochromatic waves, then, theoretically, at the output 
(i.e., after expanding the signal in a Fourier series), we should also obtain 
a structureless curve consisting of many non-resolved lines. However, in 
this case, the real interferogram will turn out to be as shown in Fig. 7.11, 
b. After mathematical processing, this interferogram transforms into a 
single peak with a maximum in the center, since at zero path difference, 
the radiation for all wavelengths is added. Now that we know how the 
interferometer works, in order to obtain a Raman spectrum, it is necessary 
to replace the source S with a sample on which the exciting radiation is 
incident. To record the IR absorption spectrum, it is necessary to replace 
the source S with a source of white light in the IR region, and place the 
sample in the channel between the beam splitter and the detector. 

The most complex technical part of Fourier spectrometers, both 
Raman and IR, is a movable mirror, which, on the one hand, must have a 
sufficient displacement length (the greater this length, the less the 
influence of the edges of the spectrum and the higher its quality), while on 
the other hand this displacement must be controlled with high precision, 
on the order of fractions of the incident light wavelength. This problem is 
usually solved using an auxiliary interferometer, which, when the mirror 3 
is displaced, counts the number of interference maxima from the 
generation line of the additional built-in laser and thus controls the mirror 
displacement. 

The most important difference for Raman spectroscopy between a 
Fourier spectrometer and a dispersive spectrometer is that, in the former, 
for the excitation of the spectrum, as a rule, a solid-state laser with 
generation in the near-IR region at a wavelength of 1.06 m is used. This 
greatly reduces the likelihood of luminescence occurring during spectrum 
registration and significantly expands the list of compounds suitable for 
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spectrum acquisition. On the other hand, the farther the excitation line is 
from the energy of allowed electronic transitions in the crystal, the weaker 
the Raman spectrum. This disadvantage is usually compensated for by an 
increase in the power of the exciting line. In addition, work in the near-IR 
region is associated with the need to visualize the incident radiation beam, 
which, like the design features of the sample placement, makes it difficult 
to work with small crystals, polarization measurements, and low-
temperature measurements. Taking into account all these features, it 
should be said that the Fourier spectrometer in Raman spectroscopy is 
expedient to be used for recording the spectra of compounds with a high 
level of luminescence (biological objects, many natural minerals), as well 
as the spectra of easily decomposing highly colored compounds. 
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FREQUENCY, INTENSITY, POLARIZATION  
AND THE BANDWIDTH OF THE BANDS  

IN THE VIBRATIONAL SPECTRA 
 
 
 
Any spectral line, including a vibrational one, is characterized by four 

parameters: peak position, intensity, width (half-width) and polarization. 
Despite the fact that each of these parameters is very important, and 
together they completely characterize the spectral band, their detailed 
analysis still presents a complex spectral problem. 

8.1. Vibrational frequency 

The vibrational frequency is the main characteristic of the vibrational 
mode, since, taking into account the mass of vibrating atoms, it determines 
the force constant of the bonds, which is directly related to the type of 
bond and its order. Let us consider sequentially several different aspects 
that determine the behavior of vibrational frequencies. 

1. Characteristicity. When analyzing the vibrational spectra of 
various compounds, it was noticed that the vibration frequencies of some 
bonds or functional groups vary very little from compound to compound. 
Such frequencies were called characteristic or group frequencies. The 
characteristicity of vibrations is the property that makes vibrational 
spectroscopy the most important method for analyzing the composition of 
compounds. 

The reasons for the characteristicity of vibrations are understandable 
and underlie the fundamental concepts of both the nature of chemical 
bonds and the mechanism of vibrations. The vibrations of a molecular 
fragment or just any bond will be the more characteristic, the less 
influence the force constants of this fragment from neighboring atoms or 
ligands are exposed to. For example, in the series of carbon-carbon bonds, 
i.e. , C=C, , the vibration of the triple bond is really characteristic 
(2100-2300 cm-1), since the only additional (fourth) bond of each carbon 
atom with the nearest atom is not able to significantly change the force 
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constant of the triple  bonds, regardless of whether this atom is a 
donor of electron density, or its acceptor. Double C=C still refers to some 
extent to the characteristic, but the frequency of its stretching vibrations 
falls in most cases in the region of 1600-1800 cm-1, reaching 2100 cm-1 in 
some linear molecules. The vibration of a single  bond is not at all 
characteristic, and it falls in the region of 600-1500 cm-1, since in this case 
three additional bonds to each carbon atom can change the force constant 

 within wide limits, depending on the nature of the ligand atoms. In 
addition, the frequency of  vibrations falls into the region where their 
kinematic interaction with other vibrational modes is quite probable. 

The stretching vibrations of (SiO4)4-, (PO4)3-, and (SO4)2- anions in 
salts and crystals of minerals are characteristic, since they are largely 
"closed" from the environment and the covalent bond inside the anion is 
much stronger than the bond with the surrounding lattice cations.  

Examples of characteristic vibrations are given in Appendix H. 
However, in addition to inductive effects acting on the force constant, 

there is also a kinematic relationship between vibrations, i.e. interaction of 
vibrations that reduces their characteristicity (see item 4 for details). The 
interaction of modes is determined by their symmetry (only modes of the 
same symmetry can interact) and the distance between the modes on the 
frequency scale. It is commonly accepted that the kinematic interaction 
between two modes is inversely proportional to the square of the 
difference between their frequencies, 2. Therefore, the higher the 
frequency of the vibration, the more it is detuned from other vibrations, 
and the more likely the characteristicity of this vibration. In other words, 
vibrations of light atoms with large force constants of the bonds are most 
often characteristic. 

A quantitative measure of characteristicity is usually the share of 
participation of the considered bond in a given normal vibration. If this 
share is 50% or more, then the vibration can be considered characteristic. 
The degree of participation of a bond in normal vibration can be estimated 
using quantum chemical calculations, as well as an experiment in which 
the vibration frequencies of an ordinary compound and its isotopically 
substituted analog are compared.  

The concept of vibrational characteristicity is extremely useful in 
assigning vibrational modes in the spectrum. It plays a particularly 
important role in vibrational spectroscopy of organic compounds, where 
the set of elements that make up the compound is not as diverse as in 
inorganic chemistry. As an example, Appendix H shows the frequencies of 
characteristic vibrations in the most common inorganic and organic 
compounds. It can be seen that in organic compounds, the vibrations of the 
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basic bonds CC, CN, CO, CH, and NH are often characteristic in 
frequency (and, often, in intensity). 

Inorganic compounds with their heavy atoms and weak force 
constants, as a rule, do not possess sufficient characteristicity of vibrations, 
and the assignment of lines in the spectra of inorganic compounds often 
does not differ with the certainty that can be achieved when working with 
the spectra of organic compounds. However, the vibration frequencies of 
molecular fragments in the crystal, anionic and cationic, in most cases, 
rather weakly depend on the composition of the crystal matrix and are 
characteristic (Appendix I). 

2. Crystalline effects. In crystals, in addition to the usual factors 
controlling the vibrational frequencies (i.e., the force constants and atomic 
masses), frequency changes can be observed due to static (crystal) and 
dynamic (Davydov's) splitting. We have already considered both of these 
phenomena when discussing the symmetry of vibrations. The first is the 
result of a decrease in the symmetry of a fragment in the crystal lattice, 
and the second is the interaction of vibrational modes that are identical in 
frequency and symmetry (in principle!). The order of magnitude of both 
types of splitting is shown in Figs. 8.1 and 8.2, which show the vibration 
frequencies of SiO4 tetrahedra in the olivine structure. We see that crystal 
splitting can be an order of magnitude larger than dynamic. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.1. Raman spectrum of forsterite, Mg2SiO4, in the range of stretching 
vibrations of the SiO4 tetrahedron 
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Fig. 8.2. Static and dynamic splitting of stretching vibrations SiO4 tetrahedron in 
olivine crystals [1]. Fo - forsterite, Mg2SiO4, Fa - fayalite, Fe2SiO4, Mo - 
monticelite, Mn2SiO4 

 
3. Mode behavior. In solid solutions, the response of vibration 

frequencies to a change in composition can be different. It is customary to 
distinguish between one- and two-mode behaviors of vibration 
frequencies. In the first case, the vibration frequencies smoothly change 
their values in the interval, the boundaries of which are set by the 
vibrational spectra of the terminal terms of a series of solid solutions. In 
the second, the frequencies practically do not change with a change in the 
composition relative to those observed for the terminal members, but their 
intensities change. An example of a two-mode frequency behavior is the 
spectra of Si-Ge [2] or GaAs-InAS solid solutions. What does the 
frequency behavior depend on? The answer is quite simple: it depends on 
whether or not the frequency ranges in which the dispersion curves lie for 
the vibrations of atoms of each type in their sublattice overlap. If the 
frequency regions overlap, then one-mode behavior will be observed, if 
not, it will be two-mode behavior. 

In complex oxides, however, which are the majority of silicate 
minerals, the unit cell usually contains several types of atoms and 
molecular groups. Their translational vibrations are close in frequency, 
and strongly mix with each other, which leads to single-mode behavior in 
almost all cases. 
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4. Interaction of vibrations. As mentioned above, modes of the same 
symmetry interact with each other, and this interaction increases with the 
approach of vibration frequencies. The most famous case of frequency 
interaction in vibrational spectroscopy relates to the vibration spectrum of 
the carbon dioxide molecule, CO2. The molecule is linear, the 
wavenumber of its bending vibration 2 is 667 cm-1, and the wavenumber 
of the symmetric stretching mode 1 should have been 1340 cm-1, 
according to calculations, but instead of this, two modes, 1285 and 1388 
cm-1, are recorded in the spectrum, almost equally away from the expected 
value. It turned out that the wavenumber of the overtone of the bending 
mode, 2 2, almost exactly coincides with the assumed frequency 1, and 
that there is a strong interaction between them, the result of which is that, 
instead of two different modes, 1 and 2 2, two components of the same 
vibration are obtained, but one of the components has a larger contribution 
bending component, and the other - stretching. In this case, the 
wavenumbers of each of the components are equidistant from their 
assumed values in the absence of interaction. The physical reason for the 
interaction is that both modes, 2 and the overtone 2 2, are totally 
symmetric, and in each of them there is not only a change in the angle 
between the CO bonds, but also a slight change in the length of the C–O 
bond. It is the latter that makes the overtone interact with the symmetric 
stretching mode 1. This phenomenon was considered and theoretically 
substantiated for the first time by E. Fermi in 1931 and received the name 
the Fermi resonance. 

The theoretical description of the interaction is well known. Let there 
be two interacting harmonic oscillators 1 and 2 with an interaction 
constant 2, while the quantities 1 and 2 characterize the vibrations of 
“pure” (non-interacting) systems. The equations of motion for both 
oscillators when they interact will be written as 

 
          + + = 0    

   + + = 0.   (8.1) 
 

At interaction, the system will be characterized by a different 
frequency , therefore, we are looking for a solution in the form of 
harmonic vibrations 

 = sin( ),            = ( ),           (8.2) 
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where ,  – new vibration amplitudes. Substituting (8.2) into (8.1) we 
obtain: 
 

                        ( ) + = 0    
   + ( ) = 0.   (8.3) 
 
In order for the system of equations (8.3) to have a solution with 

respect to , it is necessary that the determinant composed of its 
coefficients is equal to zero: 

 = 0.        (8.4) 

 
From here 
 ± = [( + ) ± ( ) + 4 ].  (8.5) 
 
For  = + 

 = =  ,      (8.6) 
 
and for  =  
 = =    (8.7) 
 
where  = ( ) + 4 . 

 
The result contained in expression (8.5) shows that the stronger the 

interaction between the oscillators, the more the initial frequencies 1 and 
2 move away from each other during vibrations in phase ( +) and out-of-

phase ( ). 
The interaction of vibrational frequencies is a special case of the 

interaction of two close energy states: for example, electronic levels, 
which is widely known in quantum mechanics. 
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8.2. Bands intensity in the Raman spectra 

The intensity of Raman lines is rarely analyzed in experimental 
studies. This is due to the fact that the scattering intensity is determined by 
the derivative of the bond polarizability in the normal coordinate, i.e. the 
derived quantity, which is not directly measured, but can be calculated 
using modern quantum-chemical programs. However, the calculation of 
the vibrational spectrum of crystals (and the intensities of vibrational 
modes) is still not widespread. In addition, the numerical calculation 
reflects the properties of the model embedded in it, and its results depend 
on how close this model is to the properties of a real crystal. 

Meanwhile, the line intensity contains information not only of a 
general nature, i.e. about the dipole moments or the polarizability of the 
bonds that make up the crystal, but also about the symmetry of the wave 
functions of the states that form these bonds. The latter are especially 
important, since they allow a qualitative assessment of the degree of 
participation of various valence states of cations and anions in the 
formation of a chemical bond between them. 

It is not surprising that it is often difficult for an experimenter to 
understand why the intensity of some lines in the Raman spectrum is high, 
while others, on the contrary, are extremely low. There are, however, 
general patterns that have been identified empirically and may be useful in 
working with spectra. For example, if the vibrational mode of any 
structural fragment active in the Raman spectrum of a crystal is generated 
by a mode from the positional symmetry group of this fragment, which is 
also active in Raman scattering, then it will be intense in the spectrum, in 
contrast to the mode that was generated from the inactive vibration of the 
group positional symmetry. The lines of totally symmetric vibrations in 
Raman spectra usually have a smaller half-width and, therefore, a higher 
peak intensity compared to degenerate modes.  

However, these are separate observations. To understand the 
correlations spectrum  structure and spectrum  chemical bond, approaches 
are needed that make it possible to evaluate the behavior of intensities in 
vibrational spectra at the microscopic level. To illustrate this thesis, we 
present below an example of estimating the intensity of Raman lines of 
characteristic vibrations, based on an analysis of the symmetry of 
vibrations and the positional symmetry of the valence states of cations. 
Taking into account the fact that the change in the polarizability of bonds 
during vibration occurs mainly due to the higher occupied molecular 
orbitals, the symmetry of which should correlate with the symmetry of the 
valence states of atoms, it is natural to assume that the vibrational mode 
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will be intense in the spectrum if its symmetry coincides with the 
symmetry of the valence atomic states. The latter assumption is not a 
special case, but rather a general rule in spectroscopy for interacting 
systems, from which follows, for example, the order of interaction of 
vibrational modes with each other, selection rules, etc. 

Let us consider the proposed method for estimating the intensities in 
the Raman spectra using the example of zircon crystals [3], the polarized 
Raman spectra of which are shown in Fig. 8.3. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8.3. Polarized Raman spectra of a 
zircon crystal ZrSiO4. The notation a'b' 
means a 45° rotation of the crystal 
around the c axis 

 
 
 
 
 

The spectra are characterized by a number of features, but we are 
only interested in those of them that are related to the intensity of 
stretching vibrations of the SiO4 tetrahedron. According to the 
classification of zircon vibrations (Table 8.1), the Raman spectrum should 
contain one 1 (A1g) mode and two 3 (B1g and Eg) modes of internal 
stretching vibrations of SiO4. All three vibrations are found in the 
spectrum (Figure 8.3). The line of totally symmetric vibration A1g is 
observed at a frequency of 974 cm-1, but its intensity in the aa spectrum is 
much higher than in cc. The intensity of the B1g vibration at 1008 cm-1 is 
about 10 times higher that of the A1g line, and this is the most intense line 
in the Raman spectrum. Finally, the intensity of the Eg mode (923 cm-1) is 
so low that the corresponding band is hardly detected in the spectrum. This 
behavior of the intensity of the stretching vibration bands of the SiO4 
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tetrahedron is difficult to explain, proceeding only from the positional 
symmetry of the latter.  

 
Table 8.1. Symmetry analysis of Zircon ZrSiO4 vibrations ( 4 / =  , =4) 

 

 
Let us assume that the intensity of stretching vibrations of SiO4 

depends not only on the polarizabilities of the Si–O bonds, but also on the 
electronic states of the Zr atom. The valence electrons of zirconium are 
shared with the surrounding oxygen atoms; therefore, the internal 
vibrations of SiO4 groups also modulate the electron density of Zr4+ O 
bonds. To analyze these bonds, it is necessary to take into account the 
symmetry of not only the valence states of Zr, but also the orbitals of those 
eight oxygen atoms that surround zirconium. 

In order to simplify the analysis procedure, we will try to describe the 
Zr–O interaction by considering only the symmetry of the valence 
electrons of zirconium. The electronic state of Zr  4d25s2 and all four 
valence electrons take part in the bond. The site symmetry of Zr is lowered 
from Oh for a regular dodecahedron to D2d in the crystal lattice. The 
valence orbitals of zircon are transformed into the D2d point group of site 
symmetry and the D4h factor group of the crystal according to the 
irreducible representations indicated in Table 8.2.   

 
Table 8.2. Symmetry of the valence states of the Zr atom in the positional 
symmetry group and the factor group of the crystal 

 
State s dxy dxz dyz dx2 y2 dz2 
Site group D2d A1 B2 E E B1 A1 

Factor group D4h A1g B2g Eg Eg B1g A1g 

 

ZrSiO4 Zr T(SiO4) R(SiO4) SiO4 
(bend.) 

2 

SiO4 
(bend.) 

4 

SiO4 
(stretch.)  

1 

SiO4 
(stretch.) 

 3 
A1g    1  1  
A2g   1(c)     
B1g 1(c) 1(c)   1  1 
B2g    1    
Eg 1(ab) 1(a,) 1(a,b)  1  1 
A1u    1    
A2u 1(c)  1  1  
B1u   1(c)     
B2u    1  1  
Eu 1(a,b) 1(a,b)  1  1 
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In a perfect dodecahedron, the oxygen atoms surrounding the zircon 
are located at the vertices of a cube. In the ZrSiO4 crystal, there are two 
crystallographically independent sets of Zr O bonds (Fig. 8.4), one of 
which is formed by four short bonds, and the other  four long ones. The 
length of the short Zr O bonds is 2.13 Å, and the length of the long bonds 
is 2.27 Å. Short bonds produce an almost planar coordination of Zr atoms 
in the ab-plane of the crystal. Bonds from another set are located in the ac-
plane and are perpendicular to the first (Fig. 8.4). A consequence of this 
distortion of the dodecahedron is a more complete participation of the dx2—

y2 (B1g) and s (A1g) orbitals of the metal in the Zr – O interaction (Fig. 8.5). 
 

 
 
 

 
 
 
Fig. 8.4. The nearest environment of 
the Zr atom in the zircon ZrSiO4 lattice  
 
 

 
Since the d orbitals are more delocalized, their contribution to the 

change in polarizability and Raman intensity should also be more 
significant. This circumstance can precisely explain the high intensity of 
the 1008 cm-1 SiO4 mode of stretching vibrations in the B1g spectrum (see 
Fig. 8.5), which has the same symmetry as the dx2-y2 orbital of the metal. In 
addition, the described distortion of the dodecahedron also explains why 
the intensity of the totally symmetric A1g valence mode with a frequency 
of 974 cm-1 is much higher in the aa spectrum than in the cc spectrum. 
 

 

 
 

Fig. 8.5. Schematic representation of d-orbitals. 
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A complete interpretation of the vibrational spectrum of zircon is 
given in Ref. [3]. 

As already mentioned, the scattering intensity can increase manifold 
(i.e., hundreds and thousands of times) under conditions of resonance, i.e. 
when approaching the frequency of the excitation line to the energy of the 
allowed electronic transition in the compound. An example of a practically 
accurate resonance is the scattering of gaseous iodine, I2, when excited by 
the TEM001 mode of 514.5 nm line of Ar+ ion laser. The spectrum is 
shown in Fig. 8.6. The spectrum exhibits a very intense line of the 
scattering at  = 210 cm-1 and the overtones 2 , 3 , 4 , etc., which show 
practically the same intensity. For comparison, the figure shows also the 
spectrum of I2, but when excited by another line of an argon laser, 488 nm, 
under identical conditions of registration. As can be seen, in the second 
case, the scattering intensity turns out to be lower than the detection level. 

 
 
 
 
 

Fig. 8.6. Raman spectrum of 
gaseous I2 upon excitation with 
various argon laser lines. Both 
spectra were obtained under 
exactly the same registration 
conditions. 

 
 
 

The temperature dependence of the Raman line intensity is 
determined by the Boltzmann population [Ex. (1.31) in Chapter 1] of the 
corresponding vibrational states and is proportional to A·(n + 1) (A is a 
constant) for Stokes scattering and A·n for anti-Stokes scattering [see 
(1.32) and (1.33) in Chapter 1]. In the temperature range 0-300 K (most 
often used in temperature measurements), the population of vibrational 
states with a frequency above ~ 600 cm-1 is close to zero and the intensity 
of Stokes scattering on these vibrations is practically independent of 
temperature (if there are no chemical reasons for this). The intensity of the 
low-frequency modes changes significantly due to the Boltzmann factor. 
Fig. 8.7 shows an example of the change in the integrated intensity of the 
52 cm-1 mode in paracetamol crystals as a function of temperature. 
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Fig. 8.7. Integral intensity of the 52 
cm-1 mode in the paracetamol 
crystal as a function of temperature. 
The solid curve is the Boltzmann 
population of the state, plotted from 
expression (1.31). 

 
 

 
 

8.3. Polarization of bands in the Raman spectra 
 

Polarization, or, in other words, activity, is understood as the 
dependence of the band intensity in the spectrum on the directions of the 
polarization vectors of the incident and scattered light. Despite the fact that 
in all cases the band polarization is directly related to the scattering tensor, 
the goal and results of polarization measurements for low- and high-
symmetry compounds are different. If in a low-symmetry molecular 
crystal the polarization of some intense bands is determined by vibrations 
predominantly of one of the corresponding chemical bonds of the 
molecule, then in a highly symmetric crystal, it is determined by joint 
vibrations of a group of equivalent coordinates. The division of objects 
into low- and high-symmetry is not strict, and so, for definiteness, we will 
consider here crystals belonging to the tetragonal and higher symmetry 
systems to be highly symmetric, while molecular crystals in which 
molecules do not have symmetry elements at all, except for identity (for 
example, amino acids), and the crystal formed from them, can have 
second-order rotational axes and/or reflection planes. 

In highly symmetric crystals, the band polarization is determined by 
the symmetry of a given mode, which, in turn, is described by the 
corresponding Raman tensor. This property of vibrations makes it possible 
to experimentally determine the type of symmetry of each mode in the 
spectrum; it was discussed in detail in item 7.3 of the previous chapter. 
However, in low-symmetry crystals, for example, monoclinic crystals, all 
vibrations are non-degenerate, and characterized by two types of 
symmetry (i.e., A and B, see Appendix D), the eigenvector of which are 
insignificantly different from each other. Therefore, knowledge of the 
types of symmetry of bands in the spectrum of a monoclinic crystal is not 
important and does not allow one to significantly simplify and make 
reliable its interpretation. This is especially important for low-symmetry 
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molecular crystals, the spectra of which, as a rule, consist of many tens of 
bands. However, such systems exhibit another remarkable property of 
vibrations, which makes the measurement of polarized Raman spectra 
extremely useful. 

As an example, we present here measurements of the polarized 
spectra of garnet crystals (crystals with the highest possible symmetry) 
and L-serine crystals, which are low-symmetry.  

Highly symmetric crystals. As we saw in Chapter 5, the vibrational 
spectrum of garnet crystals consists of 237 vibrations, of which 97 
different vibrational modes are formed (twofold degenerate modes include 
two vibrations, threefold degenerate ones - three vibrations). The question 
may arise: is it realistic to assign bands in a spectrum consisting of 97 
vibrational modes? Let us try to briefly consider this problem [4].  

Analysis of vibrations by symmetry shows (Chapter 5) that the 
spectrum of vibrations active in IR consists of 17 intramolecular and 
crystalline modes of only one symmetry F1u,  

 
(IR) = 17F1u, 

 
while the spectrum of Raman-active vibrations includes 

 
(Raman) = 3A1g + 8Eg + 14F2g 

 
The fact that the IR spectrum consists only of vibrations of the same 

symmetry makes polarization measurements of these spectra unnecessary 
and extremely complicates the task of their interpretation. It is known that 
modes with the same symmetry can mix with each other. Therefore, it is 
rather difficult to assign the observed bands in the IR spectrum without 
invoking additional information, for example, a detailed quantum-
chemical calculation. 

The situation with the Raman spectra of garnets is completely 
different. The spectrum of totally symmetric vibrations contains only three 
modes – librational, bending and stretching vibrations of SiO4 tetrahedron 
– the frequencies of which should differ from each other to an extent 
sufficient for their confident assignment without invoking quantum 
chemical calculations. The information obtained on the frequencies of 
totally symmetric vibrations will greatly facilitate the assignment of 
vibrational modes of other types of symmetry.  

Thus, it is necessary to measure the polarized spectra of the garnet 
crystal and establish vibrations of A1g, Eg and F2g types in them. In 
Appendix G it will be shown that if the laboratory axes in which the 
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directions of the polarization vectors of the incident and scattered radiation 
are determined coincide with the crystallographic axes of crystal of Oh 
symmetry (i.e., with the C4 axes), then the Raman tensor can be written as
  + 4 + 4 + 4 . 

 
This tensor makes it possible to measure F2g vibrations and the A1g + 

4Eg combination, which may be insufficient for a reliable interpretation of 
vibrational modes in the spectrum. However, if we rotate the crystal 
around the z axis by 45  (in this case, the x and y laboratory axes turn out 
to be directed between the C4 axes of the crystal), then the Raman tensor 
will change the form: 

 + + 33 + + + 4 . 
 
In the last "rotated" tensor, in spite of the fact that the diagonal 

components became even more complicated, it became possible to 
measure only the Eg vibration in the xy-spectrum. Therefore, by comparing 
the polarized spectra of a crystal “normally” oriented and rotated by 45 ° 
about the z axis, we obtain the possibility of selective determination of 
vibrations of all types of symmetry in the Oh group. It is this situation that 
is depicted in Fig. 8.8, where the polarized spectra of an oriented cubic 
single crystal of garnet are given. The upper spectrum refers to the case 
when the crystallographic axes of the sample are parallel to the laboratory 
axes, and the polarizations of the incident and scattered light are parallel to 
the x (or y, or z) axis of the crystal. The second spectrum was obtained at 
cross polarizations of the incident and scattered light and for a sample 
rotated by 45 ° relative to the laboratory axes. The orientation of the 
sample relative to the light polarization vectors (i.e., laboratory axes) is 
shown in Fig. 8.8. 
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Fig. 8.8. Polarized Raman spectra of oriented pyrope single crystals. The crystal 
orientation and scattering geometry are shown on the right. The direction of light 
propagation is shown by long arrows, and the direction of polarization with respect 
to the crystal axes  is shown by short arrows. Incident radiation is indicated in 
blue, scattered radiation - in red. 

 
We see that the spectrum of totally symmetric A1g vibrations of garnet 

consists of three intense modes, which fully agrees with the results of the 
analysis of vibrations by symmetry. In this case, the high-frequency mode 
928 cm-1 should be assigned to stretching vibrations of SiO4, the 
intermediate one (563 cm-1) - to bending vibrations, and the low-frequency 
mode (364 cm-1) - to librations of SiO4 (see Table 5.7). 

Librational, bending, and stretching SiO4 vibrations of other types of 
symmetry should have frequencies close to the frequencies of analogous 
totally symmetric modes. Thus, we have determined the ranges of 
vibrational frequencies for rotational and internal vibrations of SiO4 in 
pyrope (and other garnets). 
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Fig. 8.9. Spectra of isotope-substituted pyrope crystals 

 
To find the frequency ranges of translational vibrations of X2+ and 

SiO4, let us turn to the spectra of isotopically substituted compounds, i.e. 
to the spectra of pyrope crystals, in one of which all natural magnesium 
ions are replaced by the isotope 24Mg, and in the other 26Mg (Fig. 8.9). It 
can be seen that the bands at 136 and 210 cm-1 show the largest frequency 
shift with isotope substitution. Both of these modes are related to mixed 
translational vibrations of Mg and SiO4. 

 
Low-symmetry crystals. In low-symmetry crystals in the absence of 

axes of symmetry of the third and higher orders, the molecules in 
neighboring cells are arranged in such a way that if any of the bonds of the 
molecule turns out to be directed along the crystallographic axis, then this 
direction is retained throughout the crystal. Since the component of the 
polarizability of the bond in the longitudinal direction is much higher than 
the values of the polarizability in the transverse directions, the vibration of 
this bond will be intense only in the spectrum in which the direction of the 
polarization vectors of the incident and scattered light coincides with the 
direction of the bond. In other words, the polarized spectra of low-
symmetry molecular crystals maintain a constant relationship between the 
intensity of any mode and the orientation of the corresponding chemical 
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bond in the crystal. As an example, consider the spectra of a serine crystal 
[5]. 

Serine, (NH3)+ CH(CH2OH) (COO)-, is one of the most important 
amino acids in proteins. The serine molecule is shown in Fig. 8.10, and a 
fragment of the crystal structure along the a direction in Fig. 8.11. 

 
 

Fig. 8.10. Serine molecule in the form of a 
zwitterion 

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 8.11. Fragment of the structure of L-serine along the 
a direction of the crystal 

 
 
 
 
The polarized Raman spectra of serine crystals at low (3 K) and room 

(295 K) temperatures are shown in Figs. 8.12, a and b. The 3468 cm-1 line 
(Fig. 8.12, a) refers to the stretching vibrations of the O-H intermolecular 
hydrogen O-H O bond. The direction of the O-H bond coincides with the 
direction of the crystallographic axis a (Fig. 8.11), so the line is intense in 
the aa spectrum and has almost zero intensity in the bb and cc spectra. If 
the crystal had not been oriented in advance, then the a direction in it 
could be reliably established from the maximum intensity of the 3468 cm-1 
line. At room temperature (Fig. 8.12, b), the line turns into a wide 
structureless band, which is often observed for vibrations of the hydrogen-
bonded fragment of the molecule. 
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Fig. 8.12. Polarized Raman spectra of serine crystals at 3 K (a) and 295 K (b). In 
the designation of the polarization of the spectrum, the first symbol refers to the 
direction of the polarization vector of the incident light, the second  to the 
scattered light. 

 
In addition to the 3468 cm-1 band, other lines are observed in the 

spectra, which are recorded in the polarized spectra in only one 
crystallographic direction. 

The 1324 cm-1 mode is intense in the bb spectrum at low temperatures 
and refers to the vibration of the C3 O3 bond. The 853 cm-1 mode is 
intense in the cc spectrum and refers to the vibration of the C2 C3 bond. It 
can also be noted that the polarization of the 1324 cm-1 line changes 
slightly at room temperature, while the polarization of the 853 cm-1 line 
remains unchanged. This means that the molecular fragment, including 

3 5 6 and O3 7 atoms, slightly rotates around the 2 3 bond with 
increasing sample temperature. 

Thus, if polarization measurements of the spectra of high-symmetry 
crystals make it possible to establish the type of symmetry of vibrational 
modes, then the same measurements of low-symmetry molecular crystals 
turn out to be extremely useful both for assigning lines in the spectrum and 
for studying the issues of the orientational mobility of molecules in the 
crystal lattice. 
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Angular dependence. If the direction of the chemical bond does not 
coincide with the direction of any crystallographic axis, as discussed 
above, then the intensity of the band of the corresponding vibration in the 
polarized spectra should be proportional to cos4 , where  is the angle of 
inclination of the bond to the chosen axis of the crystal (see Section 7.4 
“Polarization leakage” in Chapter 7). However, this situation is only 
hypothetical. In a real crystal, even of low symmetry, there are always 
second-order rotational axes and/or reflection planes, due to which the 
angle of inclination  of the bond to the crystal axis in one cell changes by 

 in the neighboring cell. In this case, to correctly determine the bond 
orientation, it is necessary to measure the angular dependence of the 
intensity, i.e. changes in the band intensity when the crystal is rotated in 
the selected crystallographic plane relative to the polarization of the 
incident and scattered light. Using the angular dependence of the intensity, 
one can establish, for example, the orientation of guest molecules in the 
cavities of the host crystal lattice or the orientation of single chemical 
bonds in a unit cell. In addition, in some cases, the angular dependence 
makes it possible to obtain information about the properties of vibrations 
that are not available in other ways. 

The mathematical description of the angular dependence of the 
scattering intensity is very simple. The scattering tensor of totally 
symmetric vibrations is 

 

               (8.8) 

 
where l, p and q are the derivatives of the polarizability of the molecule 
along the principal molecular axes x, y, and z, respectively. When turning 
molecule around, for example, the z-axis by an angle  of the zz 
component of the Raman tensor remains unchanged, while the other two 
change as  
 

xx  l cos2  + p sin2 ,      (8.9) 
 

  yy  p cos2  + l sin2 .   (8.10) 
 
The measured intensity in the spectrum is proportional to the squared 

component of the scattering tensor, and the intensity xx- scattering will be 
equal to 
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Ixx( ) = (l cos2  + p sin2 )2 = l2 cos4  + p2 sin4 .  (8.11) 
 
(The vectors l and p are orthogonal, so the cross term 2lq sin2 cos2  
vanishes.) In chemical bonds, two transverse components of polarizability 
(p and q in tensor 8.8) are much smaller than the longitudinal one, and 
they can be considered zero; therefore, the scattering intensity changes 
upon rotation like cos4 . If a single bond in a crystal, for example,  
bond, is inclined to the crystallographic axis by an angle ±  (the “±” sign 
arises under the conditions of the symmetry of the unit cell), then I( ) is 
determined by the sum  
 

I( ) = D [cos4 ( + ) + cos4 (  – )],  (8.12) 
 
where D is a constant and the angle  can be determined from the 
measurement angular dependence of the intensity. 

Measurement of the angular dependence of the intensity is especially 
important for O H bonds (hydrogen-bonded or not), since the position of 
the hydrogen atom in X-ray structural studies is established only 
approximately. Using the example of O H O vibrations of the hydrogen 
bond of H2O molecules in the cavities of the mineral bikitaite, 
Li2[Al2Si4O12]·2H2O, we will show what information can be extracted 
from the analysis of the angular dependence of the intensity [6]. 

 
 
 

Fig. 8.13. A chain of H2O 
molecules in a channel of a 
bikitaite crystal 

 
 
 

Water molecules in the channel cavity of bikitaite are hydrogen 
bonded into an endless chain, forming the so-called one-dimensional ice 
(Fig. 8.13). According to the structural data of various authors, the line 
connecting two oxygen atoms in the O-H O bond is inclined to the b axis 
at an angle of 38.4° or 34.5°. Fig. 8.14 shows the angular dependences of 
the intensity of the stretching band of O H vibrations at 3400 cm-1 and the 
bending mode at 1640 cm-1 in the crystal plane a*b, in which the 
hydrogen-bonded O H are located. The angular dependence of the 
intensity of bending vibrations is described by expression (8.12) with  = 
37° ± 2, which is in very good agreement with both structural data at 

b 
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OH O ~ 180 , while the angular dependence of the valence band 
indicates the value  = 0°. This disagreement can be understood by 
considering the properties of vibrations in an infinite H2O chain. During 
bending vibrations, the bond length in O-H O changes very weakly; 
therefore, the interaction between vibrations in neighboring bonds is 
negligible. This means that the vibrations are localized within one bond 
and the angular dependence of the intensity is determined by the direction 
in the crystal of individual O H bonds. O-H O stretching vibrations in 
bikitaite are not localized due to the hydrogen bond between individual 
bonds, i.e. are completely analogous to phonon vibrations in a crystal, and 
the direction of the derivative of the polarizability is determined by the 
direction of the 2O chain as a whole, rather than its individual bond. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.14. Angular dependence of the intensity of bending (1) and stretching (2) 
2  vibrations in bikitaite. 

 
Thus, measurements of the angular dependence of the intensity, in 

addition to its main purpose, i.e. revealing the direction of the bond in the 
crystal from the Raman spectra, can in some cases solve another problem, 
namely, the determination of the degree of localization of the intramolecular 
vibration in the crystal. 

Finally, there is another interesting example of the application of 
polarized spectra. We are talking about the analysis of polycrystalline 
films and the determination of the orientation of the molecules in them. 

If in crystals the type of vibrations and their intensity can be determined 
by the scattering tensor (see also Chapter 6), then in completely 
misoriented systems (gases, liquids) the distinctive features of individual 
modes related to their type of symmetry disappear due to the averaging of 
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the Raman tensor over all directions. In this case, vibrations can be 
divided into polarized and depolarized. 

Polycrystalline oriented films represent an intermediate case between 
single crystals and completely misoriented objects. In them, the microcrystals 
making up the film are oriented relative to the substrate (i.e., the base 
plane of each microcrystal is parallel to the substrate), but misoriented in 
the plane of the film with respect to each other. Consequently, the 
polarized spectra of such systems will simultaneously contain both the 
properties of oriented and misoriented objects, and to obtain information 
about the structure of microcrystals, it is necessary to use Raman tensors 
averaged around one of the directions. In Ref. [7], such a general approach 
for the analysis of polarized spectra of intra- and intermolecular vibrations 
of compounds was developed and applied to determine the orientation of 
copper phthalocyanine (CuPc) molecules in thin films. The measurement 
results made it possible to draw quite definite conclusions about the 
belonging of the compound to one or another polymorphic structure. 

8.4. Spectral bandwidth 

The fundamental reason for the broadening of the spectral line in 
molecules and perfect crystals as a result of the anharmonicity of the 
potential of interatomic and intermolecular interactions will be discussed 
in detail in Chapter 9. Here we only note the following: as mentioned 
above, the bandwidth is determined by the lifetime of the excited 
vibration; in crystals, the vibrational state is an excitation propagating in 
the crystal lattice, i.e. a phonon; and since the collision of a phonon with 
some lattice irregularity yields to a change in its energy or wave vector, 
the lifetime in this case is determined by the phonon free path. Phonon 
scattering can occur either on lattice defects or on distortions of the 
periodic lattice potential caused by other phonons. In the first case, the 
bandwidth will be determined by the concentration of lattice defects. 
Usually, noticeable broadening of vibrations is observed at high defect 
concentrations. The best-known examples are solid solutions and 
amorphous compounds. In the former, the concentration of phonon 
scattering centers depends on the composition and usually takes on a 
maximum value at a 1:1 composition of the components of the solid 
solution. In amorphous compounds (glasses), long-range order is absent and 
the phonon mean free path is limited by several lattice periods (often by the 
radius of the first coordination sphere). In this case, the width of vibrational 
modes can reach values of 100-200 cm-1. The phonon bandwidth caused by 
scattering by crystal lattice defects is independent of temperature. 
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CHAPTER 9 

AMPLITUDE AND ANHARMONICITY  
OF VIBRATIONS 

 
 
 
Physical quantities called the amplitude and anharmonicity of 

vibrations are closely related to each other. Indeed, the theory of vibrations 
adopted in vibrational spectroscopy is based on the harmonic approximation, 
in which the displacements of atoms during vibration are considered small 
enough to neglect the effects of anharmonicity. However, there are no 
purely harmonic processes, and the degree of anharmonicity just depends 
on the amplitude of the vibrations. For this reason, we will cover both of 
these concepts in one chapter. 

9.1. Amplitude of vibrations 

Let's rewrite the expression (2.23) from Chapter 2 for the amplitude 
of oscillations: 

 ( ) = ( )
 .   (9.1) 

 
Root mean square deviation 

 ( ) = ( ) = ( ) .    (9.2) 

 
If the reduced mass is taken in atomic mass units, and the vibration 

frequency is in inverse centimeters, then the standard deviation, expressed 
in angstroms, is: 
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( ) = 5.8  Å .   (9.3) 

 
Let us estimate the numerical value of the vibration amplitudes of 

diatomic molecules, from light H2 to heavy I2 (Table 9.1). 
 

Table 9.1. Vibration amplitudes of zero and first excited states of some molecules 
 

 , 
cm-1 

, 
amu 

d,  
Å 

q(0), 
Å 

q(0)/d, 
% 

q(1), 
Å 

q(1)/d, 
% 

H2 4160 0.5 0.74 0.09 12.1 0.156 21 
O2 1555 8 1.208 0.037 3.1 0.064 5.3 
Cl2 556 17.7 1.988 0.041 2.1 0.072 3.6 
I2 180 63 2.666 0.038 1.4 0.067 2.5 

 
The table shows that the order of magnitude of the vibration 

amplitudes is a few percent of the bond length, but for light hydrogen it is 
quite significant. It would seem that the vibrations of heavy atoms 
(oxygen, chlorine, and iodine) can be considered almost harmonious, but 
hydrogen atoms are not. However, this statement is not indisputable and 
needs verification. The bond length is defined as the distance between the 
centers of atoms, while the potential curve of interaction between atoms is 
determined through the interaction of their shells. All internal electron 
shells of heavy elements do not participate in the interaction, but at the 
same time they significantly increase the distance between the centers. For 
this reason, the vibrations of all atoms, heavy and light, can hardly be 
considered negligible, and anharmonic effects must be taken into account 
in all cases. It is indisputable, however, that the absolute value of the 
anharmonicity of vibrations of light atoms with their high relative change in 
bond lengths during vibrations should be higher. Experimental confirmation 
of this assumption will be presented in clause 9.3 of this chapter. 

9.2. Anharmonicity of vibrations 

As mentioned above, the harmonic potential, in which the potential 
energy is proportional to q2 (q is the vibrational coordinate), is only an 
approximation. Real interaction is always anharmonic. Despite the wide 
variety of interatomic and intermolecular interactions (covalent, ionic, van 
der Waals, etc.), the potential curves describing each of them have 
common features for all, namely: as atoms (molecules) approach each 
other, the repulsive forces grow faster, and when the bond is stretched, the 
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restoring forces change more slowly than in the quadratic potential. This 
feature of the interaction potential is the basis for the emergence of the 
most widespread and significant anharmonicity. 

Calculating the interaction potential is a difficult task in quantum 
mechanics. The complexity is determined by the fact that molecular 
vibrations consist of displacements of both the nuclei and the electronic 
component. It is not possible to take into account both types of 
displacements simultaneously in a general form. Therefore, proceed as 
follows. It is believed that the electronic system of a molecule is 
practically inertialess and has time to track the displacements of nuclei 
during vibration (adiabatic Born-Oppenheimer approximation). Then the 
interaction energy can be calculated for various fixed distances r between 
the nuclei and thus the shape of the interaction potential in the molecule is 
determined (Fig. 9.1). It is usually written as 

 ( ) = + ( ),   (9.4) 
 
where Z1, Z2 and e are the charges of the nuclei and the electron, 
respectively. The first term on the right-hand side describes the repulsion 
at short distances, and the second - the interaction close to van der Waals, 
when the bond is stretched. 

 
 
 
 
 

Fig. 9.1. Real potential of interatomic interaction 
 
 
 
 
 

We will consider the vibrations to be small and expand the interaction 
energy U(q) in a series in terms of the small parameter q = (r-r0): 

 ( ) = (0) + + +  + + +                                       (9.5) 

 

r

U
(r

)

r0

-U0
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The subscript "0" means differentiation at q = 0. The interaction 
energy is determined up to a constant, so we set U(0) = 0. In addition, 
since q = 0 refers to the equilibrium point, the first derivative is also equal 
to 0. Expression (9.5) can be rewritten as 

 
U(q) = aq2 + bq3 + q4,    (9.6) 

 
where a, b and c are constants, and a is always positive. The first term on 
the right-hand side refers to the harmonic law, while the other two 
naturally reveal a deviation of the potential from the harmonic one. 
Moreover, the presence of a cubic term makes the potential asymmetric, 
and a term in the fourth power  steeper or flatter, depending on the sign 
of c in (9.6) (Fig.9.2). In the real potential of interaction, the repulsive 
forces are greater than the restoring forces, so the third derivative must be 
negative. 

 
 
 
 
 
 
 
 
 
 

Fig. 9.2. The form of the interaction potential with allowance for the anharmonic 
terms of the third (a), fourth (b) and both (c) orders. The dashed line is a purely 
harmonic potential. 

 
The anharmonicity of the interaction potential manifests itself in 

vibrational spectroscopy by several very strong effects. Let's take a quick 
look at them.  

9.3. Dependence of vibrational frequencies on 
temperature. Anharmonic contributions7 

The strongest consequence of cubic anharmonicity is the thermal 
expansion of solids. Indeed, due to the predominance of repulsive forces 
over restoring forces, any movement of atoms (molecules) in the crystal 
lattice reveals an increase in the distance between them, a change in the 
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lattice parameters, and a change in the vibration frequencies of all modes 
(phonon renormalization). With an increase in the thermal population of 
vibrational states, the average atomic displacement <x> changes 
accordingto [2] at large T as 

 = ,   (9.7) 
 
with a and b constants from expression (9.6). It is proportional to 
temperature, which is the reason for the thermal expansion of the crystal 
lattice. 

In vibrational spectra, anharmonicity manifests itself, first of all, in 
the temperature dependence of the mode vibrational frequency. As a rule, 
the frequencies of crystal vibrations decrease with increasing temperature 
due to both cubic anharmonicity and fourth-degree anharmonicity. 

There are only three types of atomic vibrations that cause the effect of 
renormalization of the frequency of a given phonon. These are 1) zero 
point motions; 2) "thermal baths", i.e. equilibrium vibrations of the lattice; 
and 3) the phonon under consideration itself, where the vibrations of 
atoms of which increase the interatomic distances and suppress the 
frequency of "themselves". 

The renormalization value anh(T) = (T)  , where  is the 
frequency of the hypothetical “bare” (harmonic) phonon, is thus formed 
from three contributions: 

 
anh(T) = 0 + th(T) + ph .   (9.8) 

 
Here, 0, th(T), and ph stand for anharmonic contributions from zero 
point motions, equilibrium lattice vibrations, and the phonon itself, 
respectively. At T = 0 K, the "thermal bath" disappears and 
 

anh(0) = 0 + ph .    (9.9) 
 
Fig. 9.3 shows a typical dependence of the vibrational frequency of 

any mode on temperature. 
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Fig. 9.3. Typical temperature dependence of the 
phonon vibrational frequency (solid curve). The 
dashed line shows the extrapolation of the high-
temperature rectilinear section of the dependence to 
T = 0 K to obtain the value of the harmonic phonon 
frequency. 

 
 
 

 
At T = 0 K (conventionally) the frequency of the observed phonon is 

lower than the frequency of the "bare" phonon due to the anharmonic 
contributions (negative, by definition) of zero-point motions and of the 
phonon itself. As the temperature rises, various vibrations of the crystal 
are excited, and the mode frequency decreases due to the anharmonic 
contribution of the "thermal bath". Thus, the observed experimental 
dependence is the result of the action of the "thermal bath", and its 
anharmonic contribution can be determined exactly for any temperature as 

 
th(T) = ( )  (0).    (9.10) 

 
The problem, however, is as follows. The "thermal bath", one for the 

entire crystal, is directly responsible for such a macrocrystalline parameter 
as thermal expansion (and its coefficients). The vibrational spectrum of a 
polyatomic crystal usually contains several different vibrations (or even 
tens), and each mode is characterized by its own eigen vector and 
dependence (T). On the other hand, among all the vibrations of the 
crystal that make up the "thermal bath", there are always those in which 
the displacements of the atoms have a very weak effect on the eigen vector 
of the mode under consideration. In other words, the function (T) is 
controlled not by all vibrations of the "thermal bath", but only by those of 
them whose eigen vector causes modulation of the bond length, which is 
relevant for the mode. Determination of these specific for a given mode 
vibrations is the main purpose of this chapter.   

At present, the temperature dependence of the vibrational frequency 
is described by expression (9.11) proposed by Balkansky et al. [3]: 
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( ) = + 1 + / + 1 + / + / ,       (9.11) 

 
where /kT, C and D are constants. The authors of [3] consider the 
scattering process as the absorption of a photon I, emission of a photon 

S, and the appearance of an optical phonon , which then decays due to 
anharmonicity into two phonons, three phonons, etc. It is for this reason 
that the description (9.11) of the anharmonic change in frequency with 
temperature practically coincides with the description of the dependence 
of the half-width of the mode (T), proposed earlier by Clemens [4] (see 
expression (9.20) below). But if the simulation of (T) by the phonon 
decay process is quite justified (the width of the spectral line is determined 
by the lifetime of the excited state), then the transfer of this scheme to the 
dependence (T) raises questions. The decay rate of a phonon  into, for 
example, two other /2 is proportional to the population of the vibrations 

/2, and therefore the expression (9.11) can be considered to describe the 
anharmonic frequency shift if we assume that such a shift is determined 
only by the populations of phonons /2 and /3. However, phonons with a 
fixed frequency /2 and /3 can with a high probability fall on the 
dispersion branches of acoustic vibrations and correspond to acoustic 
phonons with a wave vector far from the highly symmetric points of the 
Brillouin zone. Such phonons are characterized by a low density of states, 
and their eigen vectors may have little or no relation to the eigen vectors of 
the phonon under consideration . In other words, the general and most 
important effect of anharmonicity on the state of the crystal, which is 
expressed in a change in the lattice parameters with temperature and, as a 
consequence, the force constants of all bonds, is, in fact, replaced in (9.11) 
by the population of only two phonons /2 (or three phonons /3), the 
characteristics of which are not established. Formally, expression (9.11) 
can be used to describe the experimental dependence (T) due to the 
presence of adjustable parameters in it, but it has very little relation to the 
real process of changing the vibration frequency in a solid.  

Usually, when calculating the anharmonic corrections to the energy 
levels of the oscillator, the cubic term and the fourth-order term from (9.6) 
are considered as perturbations to the harmonic potential (see, for 
example, [5]). It turns out that the correction to the energy caused by the 
cubic term is zero in the first order of the perturbation theory and is 
calculated in the second order. The term of the fourth degree has a nonzero 
value of the correction already in the first order of the perturbation theory. 
For this reason, both corrections turn out to be comparable (or almost 
comparable) in magnitude and the anharmonic shift of the energy of 
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vibrational states n, characterized by the vibrational quantum number n, 
is proportional to (n + n2) for both cubic and fourth-order anharmonicity:  

  
n

(cubic) = a3(30n2 + 30n + 11),  (9.12) 
 

n
(quartic) = a4(6n2 + 6n + 6).   (9.13) 

 
Hence, the energies of the states of the anharmonic oscillator are 

determined as follows: 
 

n = 0(n + 1/2) + G(n2 + n) + G0  (9.14) 
 
where a3, a4, G and G0 are constants. However, we are not interested in the 
energy levels of the anharmonic oscillator, but in its oscillation frequency, 
which we define in the same way as for the harmonic one: 
 

 = n+1   n = 0 + 2G(n + 1).  (9.15) 
 
Thus, we have obtained an obvious result, which is expressed in the 

fact that the shift of the vibration frequency with temperature depends, 
first of all, on the population of the state n of the phonon itself. At a finite 
temperature, several states with close values of n are usually partially 
excited, and it is necessary to use instead of n its average value <n ( ,T)>, 
determined by the Planck formula: 

 =  .    (9.16) 
 
Hence, in the first approximation, the dependence (T) can be 

represented as 
 

(T) = (0) + A<n>,    (9.17) 
 

where A is a constant that includes both the coefficients of various types of 
anharmonicity from expressions (9.12)  (9.14) and various numerical 
factors. 

As we will see below, expression (9.17) will in some cases be 
sufficient to describe the temperature dependence of the vibrational mode. 
However, in the general case, it is also necessary to take into account the 
crystalline modes i, the frequencies of which are lower than the frequency 
of the phonon  under consideration, though their thermal excitation can 
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also affect the (T) dependence. Thus, in (9.17) it is necessary to add one 
more term and the final expression for describing the dependence (T) 
should look like this: 

 
(T) = (0) + A<n> + Bi<ni>,   (9.18) 

 
where <ni> is the phonon population i ( i < ). 

We will consider the use of expression (9.18) to describe the 
dependence (T) and the justification for the choice of additional modes 

i using various examples relating to inorganic and molecular crystals. 
 

9.3.1. Inorganic crystals 
 
 
 

Fig. 9.4. Dependence of the vibration 
frequency  of crystalline silicon on 
temperature [3]. The dotted curve is drawn 
according to expression (9.17), the solid - 
according to expression (9.18), taking into 
account the thermal population of the 
additional mode 120 cm-1 

 
 
 
 

Fig. 9.4 shows the experimental values of the vibrational frequency of 
a silicon crystal (mode F2g in the center of the Brillouin zone) in a wide 
temperature range obtained in Ref. [3]. The description of the 
experimental temperature dependence by the excitation of just one phonon 

 = 524 cm-1 (dotted curve in Fig. 9.4) already gives a very good result at 
high temperatures . However, at low temperatures (from 0 K to ~ 500 K), 
a slight excess of the fitting curve over the experimental one is observed. 
Consequently, in this interval, it is necessary to take into account the 

 
 High temperatures, as follows from the theory of Balkansky et al. [3], should be 

characterized by the manifestation of fourth-order anharmonicity. However, it can 
be seen from (9.12) and (9.13) that the magnitude of the shift of the energy of 
vibrational states is proportional to (n + n2) for both cubic and fourth-order 
anharmonicity, and the determination of the individual contribution of each type is 
an almost impossible task. 
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excitation of vibrational modes i < , which correct the anharmonic shift 
of the vibration . The difference between the curve obtained by 
expression (9.17) and the experimental (T) is such that modes i with 
frequencies in the range of 100–150 cm-1 should be used as additional 
ones. This follows from the fact that the maximum deviation of the fitting 
curve from the experimental dependence is observed at a temperature * ~ 
200 (Fig. 9.4), which, taking into account the relation i ~ kT*, 
corresponds to thermal excitation of phonons with i ~140 cm-1. However, 
the choice of the numerical value of the phonon i and its characteristics 
can be made with greater certainty. Fig. 9.5 shows the well-known 
dispersion branches of various phonons in silicon.

Fig. 9.5. Dispersion of phonons in silicon

It becomes clear why exactly these frequencies are decisive for the 
low-temperature part of (T). Indeed, transverse acoustic phonons TA at 
high-symmetry points L (110 cm-1),  X and R (150 cm-1) of the Brillouin 
zone, on the one hand, have a high density of states, and, on the other 
hand, can effectively modulate the Si-Si bond length (see Chapter 3).

The characteristics of longitudinal acoustic LA phonons are already 
much worse from the point of view of their density of states, and the 
vibration frequencies at high-symmetry points are about 400 cm-1 (Fig. 
9.5). Thus, the choice of just TA phonons at points L, R, and X as 
additional modes influencing the change in frequency with temperature 
acquires a quite reasonable interpretation. At high temperatures, the 
dependence (T) is determined by the phonon population with 
allowance for only the average value <n>. The fitting curve in Fig. 9.4 
(solid) was drawn according to relation (9.18) at the values i = 120 cm-1

and (0) = 524 cm-1. The coefficients A and Bi are 19.0 and 0.7 cm-1, 
respectively. The ratio of A and Bi shows that the main contribution to the 
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value of the anharmonic frequency shift  is made by the temperature 
excitation of the backgrounds  themselves as vibrations that have a 
maximum effect on the length of the Si-Si bond. 

Let us consider another textbook example of the manifestation of 
anharmonicity in inorganic crystals - the temperature dependence of the 
frequency of the Raman-active mode in diamond. Structurally and 
chemically (from the point of view of the type of atom-atomic interaction), 
diamond is very close to silicon, but the frequency  in diamond is much 
higher, and the temperature range for measuring the frequency is much 
wider. Fig. 9.6 shows the results of measurements of the function (T) in 
diamond, obtained in [6,7]. 

In diamond, as in silicon, taking into account the excitation of only 
one phonon  = 1333 cm-1 (dotted curve in the figure) is insufficient to 
describe the low-temperature part of the experimental (T) and it is 
necessary to select additional modes i. In diamond crystals, there are 
several dispersion branches suitable for their use in expression (9.18). 
These are TA phonons at point L (540 cm-1) and X (780 cm-1), and LA 
phonons at L (1050 cm-1) (Fig. 3.6 in Chapter 3). However, taking into 
account only TA(L) phonons with a frequency of 540 cm-1 as i yields a 
completely satisfactory description of the experimental function (T). In 
Fig. 9.6 the solid curve is drawn according to expression (9.18) with the 
parameters:  = 1333 cm-1, i = 540 cm-1. The coefficients A and Bi are 
equal to 63 and 7 cm-1, respectively. As in the previous case, the excitation 
of the additional mode is involved in only a small fraction of the  (T) 
dependence. 

 
 
 
 
 
 

Fig. 9.6. Dependence of vibration frequency  
in diamond; asterisks  [6], dots - [7]. Solid 
lines are drawn according to the expression 
(9.17) (dotted curve) and (9.18) (solid curve) 

 
 
 
 

Thus, the temperature dependence of the vibration frequency of 
monoatomic inorganic crystals of silicon and diamond is quite adequately 
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described by a simple and physically justified process of temperature 
excitation of vibrational states that modulate the vibrational coordinate 
which is relevant for the phonon under consideration. These include, first 
of all, the phonon  under consideration itself, as well as one or several 
additional states i, which, as a rule, are related to acoustic phonons at one 
of the highly symmetric points of the Brillouin zone. The latter should be 
characterized by a high density of states and a vibrational coordinate close 
to the actual phonon coordinate . 

9.3.2. Molecular Crystals 

Molecular crystals differ from most inorganic crystals by the 
presence of several different types of bonds, i.e. weak intermolecular van 
der Waals, weak intermolecular hydrogen, and strong intramolecular 
covalent bonds. For this reason, intermolecular crystalline modes have 
practically no effect on intramolecular vibrations and vice versa. The 
frequencies of intramolecular vibrations are usually high, lying in the 
region of 500  3000 cm-1, and the melting point of most molecular 
crystals falls in the region of 300-400 K. This means that when measuring 
the vibrational spectrum in the temperature range 5 K  300 K, the 
equilibrium population of intramolecular excited vibrational states 
practically does not change and remains equal to zero. Therefore, the 
change in the vibration frequency of the intramolecular mode with 
temperature is very often caused not by its anharmonicity, but by chemical 
reasons associated with changes in the temperature of hydrogen bonds and 
the inductive propagation of this change to intramolecular bonds. For this 
reason, the sign of the change in the frequency of the intramolecular mode 
can be either negative or positive. 

Crystalline intermolecular modes have, as a rule, very low vibrational 
frequencies and fit well into the temperature range available for 
measurement. Often these modes exhibit very interesting behavior. As an 
example, consider the spectrum of the -S8 crystal. Crown-like S8 
molecules (Fig. 9.7) are formed by covalent S-S bonds, and the interaction 
between S8 molecules in the crystal is purely van der Waals, which 
determines the low frequency of intermolecular vibrations. 

 
Fig. 9.7. The structure of the S8 molecule 
in the -S8 crystal 
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Fig. 9.8 shows the spectrum of -S8 crystal modes at 5 K, and Fig. 
9.9  temperature dependence of one of the mixed crystalline modes 86 
cm-1, including translations and librations of S8 molecules. 

 
 
 
 
 
 
 

Fig. 9.8. Spectrum of crystalline 
vibrations of -S8 at 5 K 

 
 
 
 

The presented curve of the (T) dependence is interesting in that it is 
described by the equilibrium population of only one vibration, i.e. of the 
phonon  itself, without involving additional modes i, despite the fact 
that, in addition to the assumed acoustic modes, a sufficient number of 
low-lying optical vibrations is observed in the spectrum. The absence of 
the need to attract additional vibrational states is possibly due to the shape 
of the dispersion curves of acoustic vibrations and the low density of those 
states that effectively modulate the coordinates that are relevant for . 
And although the presented reason is purely hypothetical and needs to be 
substantiated, for the model of anharmonicity of the vibrational mode 
proposed by Balkansky et al. [3], the shape of the acoustic branch does not 
matter, and in any case, the interaction with two phonons /2 should have 
provided another, more rapid decay of the frequency of a given vibration 
with temperature. Therefore, the discovered experimental fact is important 
for us in that it confirms the validity of the assumption adopted for the 
description of the dependence (T) (i.e., expressions (9.17) and (9.18)), 
based on the concept of the population of vibrations and, first of all, the 
considered vibration. 

In Fig. 9.9, the dashed line shows the extrapolation of the slope of the 
(T) dependence to zero temperature. This extrapolation gives the value of 

the vibration frequency of the "bare" phonon , i.e., cleared of all three 
anharmonic contributions (see expression 9.8). The difference between the 
values of  and the frequency of the (0) mode in the spectrum at 0 K is 
equal to the sum ph + 0.  
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Fig. 9.9. Temperature dependence of the 
intermolecular vibration frequency in the -S8 
crystal. The solid curve is drawn according to 
expression (9.17) at  = 86 cm-1, A = 1.4 cm-1. 

 
 
 
 
 
 

Finally, let us consider the temperature dependence of the mode of 
translational vibrations of water molecules in the structure of ice Ih, 
ordinary H2O, and deuterated D2O. This case is important in that it makes 
it possible to determine the degree of anharmonicity of the O-H O 
hydrogen bond in the crystal. The spectra of both structures in the region 
of translational vibrations of water molecules at 5 K are shown in Fig. 
9.10, while Fig. 9.11 shows the dependence  (T) for ice D2O. 

 
 
 
 
Fig. 9.10. Spectrum of ice H2O (solid 
curve) and D2O (dotted curve) at 5 K in 
the region of translational crystalline 
vibrations 

 
 
 
 

To describe the dependence (T) in D2O, shown in Fig. 9.11, in 
addition to taking into account the population of the 225 cm-1 mode itself, 
it is necessary to use the population of the additional i mode, as has 
already been encountered in silicon and diamond crystals. In the D2O (and 
H2O) crystal, the mode i = 120 cm-1, which is related to acoustic 
vibrations of the ice lattice, serves as an additional mode. 
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Fig. 9.11. Dependence of the frequency of 
translational vibrations of D2O molecules in the 
structure of ice D2O (Ih). The solid curve is 
drawn according to expression (9.18) at  = 
224.8 cm-1, i = 120 cm-1, A = 20.0 cm-1, and 
Bi = 8 cm-1 

 
 
 
 
 

The anharmonicity coefficient A = 20 cm-1 for the hydrogen bond in 
ice crystals is much higher than this value for the van der Waals bond in 

-S8 crystals, where A = 1.4 cm-1. 
The procedure for estimating the values of the anharmonic 

contributions of zero-point motions 0 and the phonon itself ph in 
complex cases, when the temperature change in frequency is determined 
by the population of two or more different vibrations, is already less 
definite in comparison with the simple example shown in Fig. 9.9 for the 

-S8 crystal. However, it is not difficult to determine the frequency of the 
“bare” phonon and the sum of the anharmonic contributions 0 and ph. 
Fig. 9.12 shows the values of 0 + ph for vibrations of bonds of various 
types – van der Waals ( -S8), hydrogen OH O (ice, benzoic acid), and 
covalent [ -Sn, Ge, Si, C (diamond )]. 

 
 
 
Fig. 9.12. The sum 0 + ph of 
anharmonic contributions to 
vibrations of different types of bonds. 

 
 
 
 
 

The absolute value of anharmonicity increases markedly on going 
from -Sn8 to diamond. However, the value of the vibrational frequency 
of crystals in a given sequence also increases to the same extent. 

0 100 200 300
205

210

215

220

225

230

235
Ra

m
an

 In
ten

sit
y,

 A
rb

. U
ni

ts

Temperature, cm-1

D2O

0 400 800 1200
0

5

10

15

20

-S8
-Sn

Ge

Si

Diamond

H2O
D2O

0
ph

), 
cm

-1

Wavenumber, cm-1

Benzoic 
acid

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Amplitude and anharmonicity of vibrations 141 

Therefore, the relative anharmonic change in the vibrational frequency 
remains practically constant for all compounds. 

9.4. Anharmonic interaction of normal vibrations 

In Chapter 2, it was shown that any normal vibration of a molecule is 
constructed from the vibrations of all bonds at the same time, but some  
to a greater extent (possibly much more), others to a lesser extent. 
Consequently, due to cubic anharmonicity, the excitation of any 
vibrational mode will cause a change in the eigen vectors in the molecule, 
and this will inevitably affect both the frequency of this mode itself and 
the frequency of any other mode. In a crystal, the excitation of, for 
example, a longitudinal phonon, will provoke not only a change in the 
interatomic distances along the chain of atoms, but also in the transverse 
direction (stretching the crystal along one crystallographic direction leads, 
as a rule, to compression along the other, perpendicular direction, and vice 
versa). In other words, there is an anharmonic relationship between 
different vibrational modes in molecules and crystals. 

In addition, the anharmonic potential of the interatomic interaction 
shown in Fig. 9.1, can be represented as a sum of several harmonics, but 
with different coefficients of rigidity (force constants) = . Consequently, 
a vibrational state with a certain energy and a fraction of anharmonicity 
can theoretically be described by the sum of several different harmonic 
states. This phenomenon is the reason for the violation of the selection 
rules in the vibrational spectrum, and the appearance of overtones and 
combined tones in it.  

The anharmonic coupling between vibrations also determines a finite 
width of the spectral band (a harmonic oscillator would appear in the 
spectrum as an infinitely narrow line) and broadening of the mode with 
increasing temperature. Indeed, the band width E is determined by the 
lifetime of the excited state. In turn, the lifetime depends on how quickly 
the energy of the excited state dissipates in the medium as a result of the 
decay of a given vibration into other vibrations of lower energy or the 
emission of a quantum of light . The decay rate is precisely determined by 

 
 The value of the oscillator damping, determined by the radiation, is of the order 

of 10-3 s-1 (  ~ 103 s), which, according to expression (8.6), corresponds to the 
band half-widths of ~ 10-15 cm-1. In other words, the losses of vibrational energy to 
radiation are negligible and do not determine the actually observed half-widths of 
vibrational bands. 
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the anharmonic relationship between all modes participating in the decay 
process and the population of those vibrational states into which a given 
phonon decays. (Vibrations obey Bose-Einstein statistics, in which the 
probability of a boson occurring is proportional to the number of bosons in 
a system with the same energy). In this case, the first factor will set the 
band width at each fixed temperature, and the second - the dependence of 
the width on temperature. Clemens [4] and Balkansky [3] obtained a very 
simple and convenient expression for describing the temperature 
dependence of the linewidth under the assumption that the excited 
vibration  decays into two others 1 and 2 of lower energies so that 

 
 = 1 + 2  .   (9.19) 

 
In this case [3]: 
 ( ) = 1 + / + 1 + / + / , (9.20) 

 
where /kT, G, H – constants. Here, the first term on the right-hand 
side refers to the decay of a phonon into two others with the same energy 

/2 (cubic anharmonicity with the participation of three particles), and the 
second  to the decay into three phonons /3 (fourth-degree anharmonicity 
with the participation of four particles). However, it should be borne in 
mind that the proposed scheme for the decay of a phonon into two others 
is only an assumption that is quite obvious only for optical phonons in 
crystals, where there is always a pair of acoustic vibrations of the same or 
different frequencies that satisfy the requirements of (9.19). In molecules 
or molecular crystals, the process of dissipation of the energy of an excited 
intramolecular vibration has, possibly, a more complex structure, in which 
it is necessary to take into account the equilibrium population of all 
vibrational states. 

Along with mechanical anharmonicity, i.e. deviation of the potential 
energy from the quadratic law, there is also electro-optical anharmonicity. 
The latter is determined by the nonlinear dependence of the dipole 
moment and polarizability on vibrational coordinates. As a result of 
optical anharmonicity in expansion (1.6, Chapter 1), second-order terms of 
the type  and   turn out to be noticeable 

(nonzero). Both types of anharmonicity cause violation of the selection 
rules and the appearance of higher-order vibrational modes in the 
spectrum. 
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The intensity of vibrational modes in Raman spectra is usually 
weaker by several orders of magnitude than in IR absorption spectra. For 
this reason, overtones and combined tones are very often observed in IR 
spectra and much less often in Raman spectra. The appearance of second-
order bands in the Raman spectrum means a very strong anharmonicity of 
the corresponding vibrational modes. In crystals of complex oxides, to 
which most of the minerals belong, the so-called “rattling” modes have a 
strong anharmonicity. These modes arise when an atom (ion) occupies a 
too "free" position in the lattice. An example of such an ion is Mg2+ in a 
garnet (pyrope) lattice (Fig. 9.13). 

The magnesium ion occupies an octahedral position in the lattice and 
has, accordingly, six contacts with oxygen ions, four of which are normal, 
with the remaining two (in the trans-position) too long. For this reason, 
the vibration frequency of Mg2+ along "normal" bonds is about 300 cm-1, 
and along long ones - 133 cm-1. It is intuitively clear that the energy 
potential corresponding to "long" contacts should be significantly lower 
than the quadratic potential near equilibrium and approach the quadratic  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.13. Polarized spectra of pyrope crystals (Mg3Al2Si3O12) at 5 and 295 K. The 
triple degenerate mode of 133 cm-1 in the spectrum of F2g vibrations (a) refers to 
translational vibrations of the Mg2+ ion along the long Mg O bond in the crystal 
lattice, and the broad band at 285 cm-1 in the spectrum A1g + Eg (b) - to the 
overtone of this vibration [8] 

 
potential or even become steeper at maximum ion deviations (at turning 
points), i.e. demonstrate strong anharmonicity. Therefore, in the Raman 
spectrum of pyrope (Fig. 9.13), along with the 133 cm-1 line, there is a 
broad band at ~ 285 cm-1, which is related to the Mg2+ vibration with a 
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doubled frequency [10]. The overtone frequency turns out to be even 
slightly higher than the doubled frequency of the fundamental tone, since 
the state with the quantum number n = 2 falls on the region of the "steep" 
potential. Another example of strong anharmonicity is given in Chapter 
13. 
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CHAPTER 10 

NONLINEAR EFFECTS IN RAMAN SCATTERING 
 
 
 
The process of inelastic light scattering described in Chapter 1 is 

called spontaneous Raman scattering. In it, we assumed that the external 
electromagnetic field E is small and the induced polarization of the system 
P depends linearly on the external field P = (q)E, where the polarizability 

(q) does not depend on the field E, but depends on the vibrational 
coordinate [see expression (1.3) in Ch. 1]. But the polarizability of a 
system is determined by the reaction of its electron shell to an external 
field. Obviously, this reaction cannot remain constant for any value of the 
external field, just as the force constant of the bond does not remain 
constant at large deviations from equilibrium. For this reason, a series 
expansion can be used to describe the induced polarization with increasing 
incident radiation intensity:  

 = + + + .  (10.1) 
 
In systems with an inversion center, when the direction of the 

external field changes, the direction of the vector P should also change, 
due to which the coefficient  is identically equal to zero. The presence of 
nonlinear terms in expression (10.1) for the polarization of the system 
reveals a number of complex physical phenomena in Raman scattering, 
which we will consider briefly in order to only give an idea of the essence 
of the processes occurring. There is no need for a detailed description of 
nonlinear processes, since they are all complex experimentally, require 
non-standard (and expensive) techniques, and are not used in conventional 
applied spectroscopy. 

The numerical value of the polarizability coefficients very quickly 
decreases in the series , ,  (by about 1010 times in each subsequent 
term), therefore, the appearance of nonlinear effects usually begins at 
sufficiently high powers of the incident radiation, when the field E 
exceeds 109 V/m. 
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10.1. Stimulated Raman scattering (SR) 

For definiteness, we will consider the process of scattering in a gas 
medium consisting of tetrahedral molecules of the XY4 type. The induced 
polarization of a molecule reveals its interaction with an external 
electromagnetic field and the energy of this interaction W is determined by 
the expression: 

 
W = PE = (q)E2.    (10.2) 

 
Therefore, if / q  0 (and this is true in most cases when atoms are 
displaced in a molecule), a force arises in the field of the incident wave,  
 = = ,    (10.3) 
 
which acts on the vibration of the molecule. The scalar product PE in 
(10.2) is maximum for collinear vectors; therefore, the resulting force F is 
maximum for displacements of atoms in the molecule that do not change 
the direction of the vector P with respect to the direction of the field in the 
incident wave. In an unexcited state, the molecule performs zero-point 
motions. From the chaotic motions of atoms representing zero-point 
motions, those displacements at which the induced polarization P remains 
parallel to the direction of the external field begin to increase under the 
action of the force F. In the case of strong fields, this force becomes 
sufficient to initiate a normal vibration in a molecule. Of the four normal 
vibrations of the XY4 molecule, only the fully symmetric vibration 1 (see 
Appendix I) best satisfies the condition of the maximum force F. Thus, if 
the incident electromagnetic wave has sufficient intensity, vibrations 1 
initiated by the external field begin to appear in the system and an inverse 
population of these vibrations is created. But, by creating an inverse 
population, the incident wave loses energy and is transformed into a wave 
with energy L  , where L is the frequency of the incident wave, and 

 is the vibrational frequency of the molecule. This last wave is realized in 
the form of scattered radiation. However, in contrast to spontaneous 
scattering, in which each scattering center has an indefinite phase of 
vibration, as a result of which the scattering is incoherent and equally 
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probable in all directions , in this case the scattered radiation of one 
excited center stimulates the scattering of another excited center (see the 
remark on the nature of Stokes scattering in Chapter 1). Thus, the state of 
the photon scattered by the second center is set by the state of the photon 
scattered by the first center. This means that the radiation from any center 
of scattering is in phase with the already existing scattered light, which 
creates the necessary condition for the appearance of coherently scattered 
light. In other words, the degree of coherence in stimulated scattering of 
light is many times higher than the degree of coherence of spontaneously 
scattered light. The result of this process is the interference of radiation 
from all scattering centers and the appearance of a high-intensity scattered 
light beam in the direction of the incident wave, while the incident wave 
itself is attenuated. 

The amplitude of the vibrations arising under the action of the 
incident wave is proportional to E2 (10.3). Consequently, the induced 
polarization of the molecule (through which the dielectric susceptibility of 
the entire medium is also expressed, see Ch. 1) can be written on the basis 
of (10.1) as 

 
  P = P linear + Pnon-linear = E + E3,   (10.4) 

 
where  is the cubic nonlinear polarizability. The last expression is the 
rationale for classifying the SRS process as nonlinear effects. The SRS 
process itself begins when the intensity of the incident wave reaches a 
certain threshold value and then exponentially gains strength as it 
propagates through the medium [1, 2]. 

10.2. Hyper Raman scattering (HR) 

In expression (10.1), the second term is proportional to 
E2 = E0

2cos2( Lt) = E0
2[cos(2 Lt) +1]/2. For nonzero hyperpolarizability  

(in noncentrosymmetric crystals), expression (10.1) yields the appearance 
of two effects: second harmonic generation (due to the 2  argument) and 
hyper-Raman scattering. The second harmonic generation process does not 
contain the vibrational spectrum of the crystal, and we do not dwell on it. 
Let us consider the question of hyper-Raman scattering in more detail. 

 
 Scattering by a totally symmetric vibration occurs in a plane perpendicular to the 

direction of polarization of the incident light, and is represented in the form of a 
toroid (according to the law cos2 ). 
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If monochromatic radiation of sufficiently high intensity falls on the 
sample, then absorption of two photons in one act can take place; in this 
case, scattering with a frequency of 2 L  ik is observed (Fig. 10.1). This 
process is called hyper-Raman scattering. The probability of simultaneous 
absorption of two photons is small; therefore, the intensity of hyper-RS is 
also weak, but often amplifies due to resonance (i.e., when the energy 2 L 
approaches the allowed electronic transition). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.1. Scheme of the occurrence of hyper-Raman scattering  
 
The scattering intensity is proportional to the square of the incident 

radiation intensity and, therefore, this process is nonlinear. However, the 
greatest interest in HR is caused by the fact that this process is three-wave 
(two incident photons and one scattered one), as a result of which the HR 
tensor  is a tensor of the third rank, since it is determined by three indices 
– i, j, and k – related to direction of the polarization vectors of photons in 
Cartesian coordinates. If the spontaneous Raman tensor  contains 9 
components, of which 6 are independent, then the tensor  consists of 27 
components, of which 10 (maximum) are independent. In this case, some 
"silent" (i.e., unobservable in spontaneous Raman scattering) modes can 
be observed in HR. Finally, since the HR spectrum is observed in the 
region of doubled frequencies 2 L, i.e. far from the frequency of the 
excitation line L, then low-frequency vibrational modes located in 
spontaneous Raman scattering too close to the Rayleigh scattering line can 
be easily detected.   

 

0 

1 

 

 

 

 = 2 L -    

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Nonlinear effects in Raman scattering 149 

10.3. Coherent anti-stokes Raman scattering (CARS) 

In a medium where two coherent light beams 01 and 02 propagate, 
with 01> 02, four-wave mixing processes can be observed (in contrast to 
the three-wave mixing described in the previous paragraph). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10.2. CARS scheme 

 
For this, it is necessary that the last term in expression (10.1) 

containing  be nonzero. In this case, along with the generation of the third 
harmonic, two very interesting processes become possible: coherent anti-
Stokes scattering (CARS) and coherent Stokes (CSRS) Raman scattering. 
If the frequency 01 is kept constant, and 02 varies, then at 01  02 = 

Mol, where Mol is one of the vibration frequencies of a molecule or 
crystal observed in spontaneous Raman scattering, the intensity of the 
scattered light increases sharply.  

The CARS process is depicted in Fig. 10.2. At the first stage, photon 
01 excites an electron to a virtual state. Then the quantum of light 02 

stimulates the transition of the electron to the vibrational level Ek. At the 
third stage, the 01 quantum again excites the electron to a virtual state, 

01 

02 

Scattering medium  
01 - 02 = Mol 

02 - Mol (CSRS) 

01 + Mol (CARS) 

01 
01 02 S = 01 + Mol 

Mol 
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after which the electron returns to its initial state with the emission of a 
light quantum with energy s = 01 + Ek. Obviously, changing 02 so 
that the entire region of vibrational states is covered, one can obtain the 
CARS spectrum. It is also obvious that the vibrational states themselves 
do not take part in the process, i.e. do not appear or disappear at the end of 
the CARS act. This process is called parametric and requires phase 
synchronization. It is shown in Fig. 10.3, where 

 
 
 
 
 
Fig. 10.3. Geometry of CARS 
 
 
 
 

 
the wave vectors of the incident light k01 and k02 are fixed in direction; 
therefore, the direction of the wave vector of the scattered radiation ks is 
also fixed. For this reason, CARS generates a low-divergence, sharply 
directed, and scattered radiation beam. Selection rules for CARS are the 
same as for spontaneous RS, therefore all modes active in RS are also 
active in CARS. The scattered light intensity in CARS is proportional to 
the square of the number of scattering molecules and the square of the 
incident radiation power 01 and 02, i.e. the CARS process is substantially 
non-linear. 

10.4. Surface enhanced Raman scattering (SERS) 

When small metal particles, most often gold or silver, are enveloped 
in molecules, the intensity of Raman scattering can increase by a factor of 
1010 - 1014, so that it becomes possible to record the spectrum of a single 
molecule. The reasons for this gigantic effect are not completely clear (at 
least at the time of writing), but usually two versions are considered, 
electromagnetic and polarization. 

In the first of them, the incident electromagnetic wave E falls into 
resonance with the plasma oscillations of the electron gas of a metal 
particle, exciting dipole oscillations in it, which, by emitting, amplify the 
incident wave (surface plasmons are often considered). The magnitude of 
this effect is proportional to E2. The resulting amplified field causes 

k02 

ks 

k01 

k01 
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Raman scattering on the vibrations of the molecule on the particle surface, 
while the scattered radiation is also in frequency resonance with the 
plasma oscillations of the metal particle and is amplified by the same 
mechanism as for the incident wave. The magnitude of the latter effect is 
also proportional to E2. The total gain is proportional to E4. The higher the 
frequency of the vibrational mode, the farther the scattered radiation is 
detuned from the incident radiation, and the weaker the amplification 
effect, since both frequencies cannot simultaneously be in exact resonance 
with the plasma oscillations. The plasma frequency of Au and Ag particles 
lies in the blue region, but the molecules adsorbed on the surface shift it to 
the green-yellow region, "pulling" the frequency of the most commonly 
used Ar+ ion laser generation lines. If the metal particles are too small in 
size and consist, for example, of several atoms, then the electron gas is not 
formed in them and the SERS effect is not observed. If the particles are 
too large, then the effect also weakens, since in large particles the dipole 
radiation of the electron gas is small. In addition, SERS strongly depends 
on the shape of the metal particles and their relative position on the 
substrate surface. 

The SERS polarization mechanism considers the chemical bond of an 
adsorbed molecule with a metal surface, which is carried out mainly 
through the lone electron pair of the molecule. In this case, charge transfer 
between the molecule and the metal is assumed. The chemical theory is 
not able, however, to independently explain the gigantic SERS value and 
is usually considered in tandem with the electromagnetic one. 

10.5. Resonance Raman scattering (RR) 

If the energy of the incident radiation approaches the energy of the 
electronic transition (see Figs. 1.1-1.3), then the probability of electron 
excitation increases sharply, and the probability of phonon scattering also 
sharply increases [see expression (1.33) and subsequent in Ch. 1]. In this 
case, the so-called resonant Raman scattering, or "hot" luminescence, is 
observed. Resonant scattering is especially interesting because not all 
vibrational modes of the spectrum are involved in this process, but only 
those that are "relevant" for a given electronic transition (i.e., modes 
modulating the energy distance between allowed electronic states and, 
thus, modulating the intensity of electronic absorption). Resonant modes 
become more intense in the spectrum by hundreds and thousands of times. 
This helps to better understand both vibrational and electronic spectra. An 
interesting example of resonant scattering by “actual” modes is the spectra 
of (acetylacetonate)-dicarbonyl iridium (I), Ir(a a )(CO)2. Fig. 10.4 shows 
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the packing of Ir(a a )(CO)2 molecules in a crystal, and Fig. 10.5 - its 
spectra at the laser excitation lines, 633 nm and 488 nm.  

 
 
 
 
 
 
 
 

Fig. 10.4. Packing of Ir(a a )(CO)2 molecules in a 
crystal. Iridium ions are located along the a crystal 
axis.  

 
 
 

 
Ir(a a )(CO)2 crystals are strongly colored, and their absorption 

spectra are characterized by the presence of an absorption band in the 
visible region. The molecules in the lattice do not form hydrogen bonds. In 
addition, the iridium atoms are separated from each other at a rather large 
distance, 3.166 Å, and their relative position is characterized with a short 
contact, but not a chemical bond. The Raman spectra (Fig. 10.5) contain 
more in-depth information. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.5. Ir(a a )(CO)2  spectra excited by laser lines at 633 and 488 nm.  
 
When excited by the 633 nm line, which falls into the absorption 

band of the crystal, the 53 cm-1 mode turns out to be the most intense in 
the spectrum, while when excited by the 488 nm line, it is practically 
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absent. This mode belongs to Ir-Ir vibrations, and its appearance in the 
resonance spectrum indicates that the exciting laser line is in resonance 
with molecular orbitals occurring due to the interaction of neighboring 
iridium ions. In other words, a direct Ir-Ir chemical bond occurs in the 
crystal. The intensity of another mode, 475 cm-1, increases (but to a lesser 
extent) upon excitation of the spectrum in the red region. This mode is 
assigned to Ir-O vibrations. The displacement of iridium ions in the latter 
mode also modulates the energy distance between the Ir–Ir molecular 
orbitals. 

Resonance scattering is often used for spectroscopy of large 
biological molecules, in which the number of vibrational modes is very 
large and difficulties arise in their assignment (often the lines in the 
spectrum of large molecules overlap, causing broad structureless bands). If 
such a molecule contains fragments that have an electronic transition in 
the visible region, for example, a metal-ligand bond in hemoglobin, then 
by adjusting the laser radiation to the transition energy, one can sharply 
increase the vibration intensity of bonds directly adjacent to this fragment 
and, thus, highlight them in the general spectrum. In addition, since the 
intensity of the vibrational mode at resonance can increase up to 106 times, 
it is possible to obtain a resonance spectrum of a compound present in 
very small amounts. So, if spontaneous Raman scattering usually requires 
at least 10-2 Moles of a substance, then in resonance scattering this value 
can be reduced to 10-8 Moles. An example of the resonance scattering 
spectrum of I2 molecules is given in Chapter 8 in Fig. 8.8. 
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CHAPTER 11 

HYDROGEN BONDING 
 
 
 
An interaction between atomic and molecular systems can be divided 

into three main types: Coulomb, van der Waals, and chemical. Chemical 
interactions are usually divided into several types to make them more 
definite: covalent, ionic, donor-acceptor, hydrogen, etc. However, each of 
them is based on the well-known interaction of atomic or molecular 
orbitals. The different degree of overlap of the orbitals and the distribution 
of electron density on them (the occupancy of the orbitals) reveals the 
specified structuring of the chemical interaction. 

The Coulomb and van der Waals interactions are isotropic, and the 
chemical one is directional. This is their main difference. The consequence 
of directionality is the variety of structures that arise during chemical 
interaction. The hydrogen bond energy is about an order of magnitude 
higher than the van der Waals energy, but is the weakest among all types 
of chemical bonds. 

In recent years, the hydrogen bond has been much less discussed in 
the literature. Modern quantum-chemical programs are excellent at 
calculating molecules and crystal fragments, including those that involve a 
hydrogen bond. The result of the calculation is usually a description of the 
molecular orbitals and the vibrational spectrum of the compound. This is 
very important information. However, researchers are often interested in 
issues related to trends, functional dependencies, and the main factors 
influencing certain characteristics of compounds to make it possible to 
predict their properties from their composition and structure. This fully 
applies to the assessment of the characteristics of hydrogen bonds. In this 
chapter, an attempt is made to discuss issues related to the general 
principles of hydrogen bond formation. Knowledge of these principles 
makes our work conscious and allows for meaningful experimentation.  

The hydrogen bond, being, in fact, a conventional chemical bond, is 
significantly inferior to the latter in strength (energy), but even more 
significantly surpasses it in a variety of properties. The length of a 
hydrogen bond of the same type can vary over a broad area, and its 
spectroscopic parameters in vibrational spectra vary so much that the 
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reliable assignment of the bands in the spectrum to hydrogen bond 
vibrations is still a difficult problem. 

Over the past 50-70 years, numerous attempts have been made to 
describe hydrogen bonds, mainly in terms of their structural parameters 
and manifestations in vibrational (IR and Raman) spectra. A large number 
of monographs and reviews on hydrogen bonds in various systems have 
appeared [1-10]. However, the authors' desire to give an exhaustive 
description of the structural parameters and spectra of all compounds that 
form the full range of hydrogen bond properties led to excessive detail in 
the description of experimental data, complicating a clear presentation of 
the subject of the research. The complexity of the definition (or 
classification) of the hydrogen bond lies in the fact that it can involve 
various groups of atoms of the periodic table (oxygen, nitrogen, carbon, 
halogens, and metals), and in some cases, individual molecular orbitals. 
And in each case, the properties of the bond become deeply individual. In 
addition, the simplest (and most common) hydrogen bond consists of three 
atoms: donor, acceptor, and hydrogen. And if the structural position of the 
donor and acceptor is determined with acceptable accuracy, then the 
position of the hydrogen atom on the bond is often not established at all, 
but is set by the experimenter. However, it is the latter parameter that 
determines the spectral properties of the hydrogen bond. It is therefore 
clear that for many years, right up to recent years, hydrogen bonding 
constituted a difficult (almost incomprehensible) problem. 

The purpose of this chapter is not a detailed description of each of the 
huge number of hydrogen bond manifestations, but an exposition, close to 
phenomenological, of the conditions and features of the occurrence of 
hydrogen bonds in a wide range of their energies. 

It is assumed that the reader has a basic understanding of the 
hydrogen bond. Therefore, many of its non-fundamental details are not 
considered here: single- and multicenter bonds, bond angle, etc. Moreover, 
in order to focus the reader's attention on the main physical and chemical 
aspects of the hydrogen bond, and not on all possible manifestations of it, 
further in the text we will consider mainly the OH···O bond as the most 
widespread and studied. 

11.1. Definition, brief history, main stages of development 

According to the IUPAC, 2011 recommendation “The hydrogen bond 
is an attractive interaction between a hydrogen atom from a molecule or a 
molecular fragment X–H in which X is more electronegative than H, and 
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an atom or a group of atoms in the same or a different molecule, in which 
there is evidence of bond formation” [11].   

This strict definition is already fraught with the above-mentioned 
tendency to excessive detail and is perceived upon first reading with some 
difficulty. For this reason, readers are offered here another, possibly 
imperfect, but simpler and more compact definition: The hydrogen bond is 
a weak chemical bond between the X H group of one molecule and the 
electronegative Y atom of another (or the same).  

Usually a hydrogen bond is written as X H Y, where the dots 
represent the hydrogen bond itself. In this notation, X H is a terminal 
fragment of one molecule, and Y is a terminal fragment of another 
molecule. X is a hydrogen bond donor, and Y is an acceptor. The 
electronegativity of an element is not constant and depends on the specific 
chemical conditions (for more details, see section 2.2). 

The hydrogen bond was discovered at the beginning of the last 
century. It is not possible to establish the exact date of its discovery, since 
it is not clear from the publications of those years what exactly the authors 
had in mind when describing chemical reactions involving the polar group 
X H. For the first time, the concept of hydrogen bonding appeared in the 
work of Huggins [12] and almost simultaneously in Latimer and 
Rodebusch [13]. The term "hydrogen bond" was first used by L. Pauling in 
1930 [14]. But real interest in hydrogen bonding arose only a few more 
years later, when Bernal and Fowler [15] suggested that a high degree of 
short-range order in the structure of liquid water is provided by 
intermolecular bonds, which were then attributed to hydrogen bonds. This 
work, which assumes a tetrahedral environment for each water molecule 
due to interactions with neighboring molecules, presently known as the 
"Bernal-Fowler rule", served as a powerful impetus for the study of 
hydrogen bonds. However, in those years, practically the only experiment 
providing information on the state of the hydrogen bond in a compound 
was IR absorption spectroscopy. But in the IR (and then in Raman) 
spectra, the hydrogen bond is well recorded only for weak bonds and very 
unreliably - for moderate and strong ones. For this reason, until about the 
1990s, there was only a quantitative accumulation of information on the 
hydrogen bond, which allowed J. Pimentel and O. McKellan to declare in 
their famous monograph [2]: “Currently, the H-bond theory is the subject 
of considerable controversy, its qualitative predictive power is limited, and 
it can hardly make quantitative predictions. Apparently, it can be argued 
that the significance of the H-bond in the general theory of chemical 
bonding is not yet understood in all details."  
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The next stage in the study of the theory of hydrogen bonding was the 
work of Morokuma [16], the appearance of which in 1971 was due to the 
development of reliable computer methods for calculating molecular 
states. In the proposed approach, presently known as Morokuma 
decomposition, the chemical bond between atoms is broken down into 
separate components (electron repulsion, charge transfer, polarization, and 
dispersion forces), from which the total interaction is calculated as a 
function of the distance between atoms. Morokuma's work did not become 
the last word in the development of the theory of hydrogen bonding, but 
dispelled (and this is its value) numerous attempts to attribute some 
unusual properties to the hydrogen bond. Morokuma showed that the 
interactions that form a hydrogen bond make it virtually indistinguishable 
from any other chemical bond, with the only exception that all these 
interactions in a hydrogen bond are relatively weak. 

After the appearance of Morokuma's work, it was long believed that 
hydrogen bonding occured due to the lone pair of electrons of the 
acceptor, which spread to the filled X H orbital of the donor. However, 
first Benoit and Marx [17] in 2005, and then Wang et al. [18] in 2014, 
using a high-level quantum-chemical calculation (work [18] was also 
reinforced by the experiment data), showed that an important role in the 
formation of hydrogen bonds is played by the quantum uncertainty of the 
position of the proton. In fact, these last two works have finally established 
the nature of the hydrogen bond, after which various interpretations in its 
definition should disappear. It is the ideas in [17 and 18] about the role of 
quantum uncertainty in the coordinates of atoms participating in the 
formation of hydrogen bonds that underlie the interpretation of its nature 
and that are adopted here. 

11.2. General description 

In a conventional chemical bond, the distance between interacting 
atoms can vary within small limits, while the interaction potential changes 
monotonically and predictably. In a hydrogen bond, a change in the donor-
acceptor distance dX Y causes a dramatic change in the potential function 
of the proton on the bond. This is the basis of the complex manifestation 
of hydrogen bonds in vibrational spectra, which for many years made it 
difficult to understand its nature. 

Therefore, to solve the main issues related to hydrogen bonding, it is 
necessary to consider how the potential function of the proton on the bond, 
the strength of the hydrogen bond, the O H vibration frequency, and other 
characteristics change depending on dO O. 
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A huge amount of experimental material has been accumulated in the 
literature characterizing weak and moderate hydrogen bonds. There are 
much fewer works dealing with strong and extremely strong bonds, and 
the Raman spectral studies of compounds with such bonds presented in 
this work were performed for the first time. This is due to the fact that, as 
a rule, the fixing of strong hydrogen bonds in vibrational spectra requires 
measurements at low temperatures. Such measurements, while not 
presenting fundamental difficulties, require, however, expensive 
equipment and are time-consuming and therefore not widespread. But 
first, let's briefly consider the general properties of hydrogen bonds. 

11.2.1 Potential energy of a proton on a hydrogen bond 

In a weak O H···O hydrogen bond, the proton practically does not 
interact with the oxygen-acceptor, but is fully localized at the oxygen-
donor, forming a strong ordinary covalent bond with the latter. 

Therefore, the potential function of the proton along the hydrogen 
bond at large values of dO O > 2.7 Å can be represented as a curve with 
two minima, one deep near the donor, and the other shallow near the 
acceptor (Fig. 11.1). Both vibrational states, the zeroth and the first excited 
(denoted in Fig. 11.1 as "0" and "1"), are located in a deep minimum.  

 
 
 
 
 
 
 
 
 

Figure 11.1. Proton potential function for a weak 
hydrogen bond, dO O  2.7 Å 

 
 
 

 A decrease in the dO O distance enforces the interaction of a 
proton with an acceptor. In this case, the energy minimum for a proton 
near the acceptor deepens, and for the intermediate H-bond (dO O ~ 2.6 Å) 
the potential curve for a proton looks like in Fig. 11.2. 
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Figure 11.2. Proton potential function for a 
moderate hydrogen bond, dO O ~ 2.6 Å. 
 

 
 
 
 

The main difference between the moderate hydrogen bond and the 
weak (and, as we will see below, from the strong and extremely strong) is 
that now the proton potential is not harmonic, and the known solutions of 
the vibrational problem for the harmonic potential can’t be attributed to 
the case. In the potential of the moderate hydrogen bond, the excited 
vibrational state can be located above the barrier separating the minima 
near the donor and acceptor, i.e. in a wide potential well formed by both 
minima, and the zeroth vibrational state is in a narrow minimum near the 
donor atom. In this case, the ratio of the energy of the stationary states, the 
zeroth and the first excited, can differ appreciably from that of the 
traditional solution for a harmonic oscillator.   

With a further decrease in dO O and the transformation of the H-bond 
from moderate to strong, the interaction of the proton with the acceptor 
becomes so strong that it is compared with its interaction with the donor, 
while the energy minima for the proton near the donor and acceptor 
become identical, leaving a barrier with a height of U0 between them 
(“deep tunneling regime”, Fig. 11.3). This situation formally means that 
the electronegativity of the donor and the acceptor is equal, but in reality, 
most often, we are talking about the complete identity of the donor and 
acceptor molecules. The condition of identity is necessary for the 
formation of a strong hydrogen bond, but not sufficient. The second 
condition is the high electronegativity of the donor and acceptor.  

 
 
 
  

Figure 11.3. Proton potential function for a 
strong hydrogen bond (“deep tunneling 
regime”), dO O ~ 2.5 Å. 
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If U0 turns out to be less than the energy of zero-point vibrations of 
the proton in the bond (more on this below), then the zero vibrational state, 
as well as the excited state, gets a wide minimum, and double-well 
potential of the proton becomes single-well. 

 
 
 
 

Figure 11.4. Proton potential function for an 
extremely strong hydrogen bond (“ultrashort, 
centered HB”), dO O < 2.3 Å. 

 
 
 

Finally, as the donor and acceptor approach further, an extremely 
strong hydrogen bond is formed (“ultrashort, centered HB”, Fig. 11.4), in 
which there is practically no barrier between the minima, and the shape of 
the potential curve of the proton becomes close to harmonic. The latter 
case is a linear symmetric hydrogen bond O···H···O. However, the 
preparation of compounds with a linear symmetric bond is not an easy task 
from the point of view of chemistry. 

11.2.2. The bond energy as function of its length. Uncertainty of 
the proton coordinates, uncertainty of the O O distance 

Benoit and Marx [17] and then Wang et al. [18], using the procedure 
for calculating the Feynman path integrals for the O H···O system, 
determined the positions of the proton on the H-bond for the case of weak, 
moderate, strong, and extremely strong hydrogen bonds. The main result 
of these works is that the bonded proton is considered not as a 
mathematical point, but as the proton density distribution, which is the 
result of the quantum uncertainty of the proton coordinates  an 
indisputable fact, but not explicitly taken into account in earlier theoretical 
works (Fig. 11.5).  

Due to quantum uncertainty, the proton density distribution function, 
having a finite width comparable to the potential space for a proton at a 
bond, begins to spread with decreasing dO O from a minimum at a donor 
atom to a minimum at an acceptor atom. In other words, part of the proton 
density turns out to be near the acceptor oxygen and interacts with it 
according to the same scheme as with the donor oxygen (Fig. 11.6). 

0

1
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Figure 11.5 Calculation [17] of the distribution function of proton density (left) 
and potential energy of a proton (right) depending on the length of the O H O 
bond: a) weak bond, dO O = 2.85 Å, b) strong bond, dO O = 2.43 Å, c) strong bond, 
dO O = 2.29 Å, d) extremely strong bond, dO O = 2.17 Å.  = ROaH RObH. (See also 
Fig. 1 in [17]). The horizontal dotted line indicates the thermal energy level kT at 
25 K. (The figure is reproduced with permission from ref. [17], copyright (2005) 
European Chemical Societies Publishing).  

 
 
 

 
Figure 11.6. The assumed proton density distribution 
(dotted curve) at dO O < 2.6 Å. The region of the proton 
density spread into the adjacent well is shaded.  

  
 

It is this effect that causes, on the one hand, the strengthening of 
hydrogen bonds, and on the other, a decrease in the frequency of the O-H 
vibration (for more details on the mechanism of formation of the proton 
vibration frequency, see the next paragraph 11.2.3). The closer the donor 
and acceptor are to each other, the greater part of the proton density is in 
the potential well of the acceptor, the stronger the interaction of the proton 
with the acceptor and the tougher the hydrogen bond. At large values of 
dO O, the proton density distribution function does not reach the adjacent 
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minimum (case (a) in Fig. 11.5). However, a weak hydrogen bond occurs 
in this case as well. What's the matter here? The point is that the quantum 
uncertainty of the coordinate is a property of not only the proton, but also 
the donor and acceptor. The uncertainty of the coordinates of each of them 
is approximately half that of the proton, but in total, all three uncertainties 
make possible the formation of a hydrogen bond even at a large dO O in 
the range of 2.7 - 3.0 Å.  

  The fact that the quantum uncertainty of the coordinates of oxygen 
atoms is about half that of protons can be shown as follows. 

The root-mean-square deviations (standard deviation) of the 
coordinate q and the momentum p of the particle in a quantum harmonic 
oscillator are written as: 

 ( ) =     (11.1) ( ) = + ,   (11.2) 

 
where  is the frequency of the oscillator, n is the vibrational 

quantum number, and m is the mass of the particle. Hence, for zero-point 
vibrations of the particle (n = 0), we get: 

 (0) (0) = .    (11.3) 
 
In other words, the quantities q(0) and p(0) are equal to the 

quantum uncertainties of the coordinate x and the momentum p, which 
are related by the Geisenberg uncertainty relation: 

 
 x p = /2 .    (11.4) 

 
The value of the standard deviation of the coordinate can be rewritten 

as 
 (0) = =  /  .   (11.5) 

  
An oxygen atom is 16 times heavier than a hydrogen atom, hence the 

standard deviation q(0) and the quantum uncertainty of its coordinate x 
are two times less than that of a proton. 
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The particle momentum and the quantum uncertainty of the particle 
momentum in the oscillator are proportional to its energy = 2 . 
Hence, the uncertainty of the proton's coordinate is inversely proportional 
to its binding energy (see uncertainty relation) and thus depends on the 
rigidity of the hydrogen bond. The energies of the vibrational states of the 
proton, the zeroth and first excited, are maximal for the weak and 
extremely strong bonds (Figs. 11.1 and 11.4, respectively), and minimal 
for the moderate and strong bonds corresponding to the initial phase of the 
transition from the double-well potential to the single-well potential (Figs. 
11.2 and 11.3). From the uncertainty relation, it follows that the maximum 
uncertainty of the proton coordinate should fall on the case presented in 
Figs. 11.2 and 11.3, and the minimum - in Figs. 11.1 and 11.4. It is the 
pattern that manifests itself in the calculations of Benoit and Marx [17] 
(Fig. 11.5). 

Thus, the energy of the hydrogen bond depends on the degree of 
propagation of the proton density to the neighboring (acceptor) minimum 
and is determined by the donor-acceptor distance. But neither the depth of 
the minimum at the acceptor, nor dO O are independent parameters, but are 
derived from another quantity - the electronegativity of the acceptor, i.e., 
the ability of the acceptor to take on the electron density and, thus, interact 
with the hydrogen atom. The latter value is determined by the degree to 
which the atomic orbitals of the oxygen acceptor are filled when molecular 
orbitals are formed in the "acceptor" molecule. If the oxygen-acceptor 
orbitals are completely saturated (theoretically), then the oxygen loses the 
ability to interact with the hydrogen atom of another molecule and the 
hydrogen bond is not formed. And the strongest O H···O hydrogen bond 
occurs when the oxygen-acceptor bond with "its" molecule is close to an 
ordinary bond, and the oxygen needs an additional electron density to 
saturate its orbitals. In this case, the saturation of the oxygen-donor and 
oxygen-acceptor are the same and the resulting hydrogen bond becomes 
symmetrical. Thus, the entire spectrum of the strength (energy) of the O-
H O hydrogen bond is determined by the electronegativity of the oxygen 
acceptor, which determines the corresponding length of the dO O bond. 

11.2.3 The proton vibrational frequency as function  
of a length of the hydrogen bond 

With the formation of a hydrogen bond, even a weak one, the 
resulting additional minimum near the acceptor deforms the potential 
curve for the proton near the donor so that the minimum becomes 
asymmetric and wider. A formal consequence of the broadening of the 
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potential well is a decrease in the frequency of the proton vibration, since 
the latter value is proportional to the force constant k, determined by the 
slope of the potential well: k ~ d2U/dx2. However, the dependence of the 
proton vibrational frequency on the distance dO O is complex, and it is 
necessary to consider it in more detail.  

From the text of the previous paragraph, it follows that the 
penetration of the proton density into the neighboring potential well near 
the acceptor enforces the hydrogen bond H···O and weakens the O H 
bond, since both are carried out by the valence electron of the same 
hydrogen atom. For a long time, determining the dependence of the 
frequency O H on the distance dO O was a priority goal in the study of 
hydrogen bonding. There is no need for it now, since, as already 
mentioned above, the vibrational frequency O H of any hydrogen bond 
can be calculated with a high accuracy. As general remarks on the 
dependence of O H on dO O, the following can be given. The change in 

O-H with the strengthening of the hydrogen bond can be monotonic only 
as long as both vibrational states, the zeroth and the first excited, are 
placed in the same potential minimum near the donor, which is valid in the 
range of bond strength from weak to moderate. However, at dO O ~ 2.6 Å, 
the moment comes when the excited state is "pushed out" from a narrow 
minimum into the region of a wide potential well formed by the 
combination of two potential minima (Fig. 11.2). At this point, the energy 
of the excited state drops sharply due to an increase in the size of the 
oscillator and the corresponding lengthening of the de Broglie wavelength 
of the proton. 

In fact, the wave functions describing the vibrational states of the 
harmonic oscillator are found in the solution of the Schrodinger equation 
and for the zeroth and first excited states are written as  

   ( ) = ,              (11.6) ( ) =  ,   (11.7) 
 

where Nn is the normalizing factor, and q is the coordinate, = ( ). 
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Figure 11.7 Wave functions of the harmonic oscillator. Vertical dashed lines 
indicate the turning points of the classical oscillator. 

 
According to de Broglie, a quantum particle is also a wave, the length 

of which in the case of rectilinear movement of the particle is determined 
by its momentum p: = .      (11.8) 

 
The wave functions shown in Fig. 2.7 are de Broglie waves. The 

zeroth state is represented by a half-wave, and the first excited is 
represented by one full period of the wave length of  determined by the 
size of the oscillator (the wave must "fit" in the oscillator, and that is the 
substance of the boundary conditions). From here = = 2 ,       (11.9) 

= ,      (11.10) 
 
where E is the energy of the vibrational state. (It should be noted that 

a comparative estimation of the energy of the vibrational state by the de 
Broglie wavelength is possible only within a lone stationary state, for 
example, only for the zeroth state, or only for the first excited state). In 
addition, as already noted above, the shape of the potential curve of the 
oscillator, shown in Fig. 11.2, is far from harmonic, and this circumstance 
will radically change the solution both for the energy of the stationary 
states and for the ratio between the energies of the zeroth and first excited 
states. 

When the excited state is pushed out from a narrow minimum to a 
broad one (Fig. 11.2), the de Broglie wavelength of the excited proton 
increases by 1.5-2 times, and the energy of the excited state decreases by 
2-4 times compared to what it would be in the absence of a wavelength 
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jump (Fig. 11.8). At the same time, the zeroth state remains in a narrow 
minimum and the size of its potential space and energy remain virtually 
unchanged. (An indirect confirmation of this assumption can be found in 
the calculations of Wang et. al. [18]). 

 
 
 
 
 
 
 
 
 
 
 

Figure 11.8. Schematic representation of the ground and excited vibrational states 
for a weak (a) and moderate (b) bonds. 

 
In other words, of the two states, E(0) and E(1), only the second one 

is greatly reduced due to the unusual shape of the potential curve. As a 
result, the vibrational frequency O H = E(1)  E(0) also strongly 
decreases, and O H as a function of dO O should fall sharply in the region 
of dO O ~ 2.6 Å (Fig. 11.9). This is the most dramatic moment in the 
evolution of hydrogen bonding. 

 
 
 

Figure 11.9 Assumed dependence of O H 
vibrational frequency as a function of distance 
dO O for O-H O hydrogen bonding. 

 
 
 
 
 
 
 
 
 

The sharp decreasing of the O H is possible only by the fact that the 
potential shown in Fig. 11.2 is not harmonic, does not include the known 
solutions for the eigenvalues of energy in a quantum harmonic oscillator, 
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and the relationship between the energy of stationary states, according to 
which the energy of the zeroth state in a harmonic oscillator is /2, and 
the energy of the first excited state is 3 /2, is violated. However, the idea 
of the wave function in the form of a de Broglie wave "inscribed" in the 
size of the oscillator remains in this case as well.  

The next stage on the dependence of the vibrational frequency OH 
occurs at a distance of dO O ~ 2.5 Å (Fig. 11.3). At this distance, the 
barrier between the potential minima becomes less than the energy of 
zero-point motions, and now the zeroth state is pushed out into a wide 
minimum of united potential. The potential for a proton takes the 
traditional single-well form, the ratio of the energies of the zeroth and 
excited states also becomes close to the usual one, and the difference 
between them is set to . Starting from this point, the width of the 
potential well narrows as the dO O decreases, and the OH dependence 
should again display a monotonous change, but this time in the direction 
of higher frequencies (Fig. 11.9). 

It is possible to estimate what the distance dO O should be, so that the 
wavenumber of a proton vibration in a single-well potential again takes the 
value about 3600 cm-1, as in the case of a very weak hydrogen bond. The 
vibrational frequency of a proton of a weak O H···O bond is determined 
by the O-H force constant, while the vibration of a strong symmetric 
O···H···O is determined by two identical O···H force constants. 
Therefore, in order that O H in both types of potential be equal, each of 
the force constants O···H of the symmetric bond must be twice as small as 
one force constant O H of the weak bond. But if the force constant of 
O H turns out to be half, then the frequency will decrease to ~ 2500 cm-1. 
The last value corresponds to the length of the O H ~ 1.1 Å. Hence, the 
proton vibration in the single-well potential of the extremely strong 
O···H···O bond with a frequency of ~3600 cm-1 will take place at dO O ~ 
2.2 Å.  

To experimentally confirm the dependence of the proton vibration 
frequency on the dO O distance, presumably determined by the curve in 
Fig. 11.9, it is necessary to gradually reduce the dO O distance in the same 
compound. It is possible with the application of external pressure. Such an 
experiment was carried out when measuring the vibrational spectrum of 
ice under outer pressure [19, 20]. It was shown that at a pressure of about 
60 Gpa, the spectrum of ice changes radically: the mode of stretching 
vibrations of H2O at ~1500 cm-1 (according to [19]) or ~2700 cm-1 
(according to [20]) disappears, and instead a new mode about 800 cm-1 
appears. The latter rises to ~ 1500 cm-1 with a further increase in pressure. 
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In addition, the Raman intensity of the O H vibrations drops to zero, 
while the IR intensity, on the contrary, increases with a very strong 
broadening of the absorption band. It can be seen that the changes in the 
Raman spectra observed in [19, 20] at outer pressure are quite consistent 
with the scenario described above. (It should be noted, however, that the 
authors themselves interpreted this as a phase transition ice VII – ice X). 
Therefore, in view of the results [19, 20], the wavenumber ~800 cm-1 
should be taken as the lower limit of the proton vibration frequency on the 
O H O bond, and this minimum value should be attributed to a moderate 
hydrogen bond, and not to a strong or extremely strong one, as assumed 
earlier [21]! Thus, the arrangement of the vibrational states of a proton in 
the potential of an moderate hydrogen bond, when the zeroth state remains 
in a narrow minimum at donor oxygen, and the first excited state falls into 
a wide minimum (Fig. 11.2), causes the fundamental change in the Raman 
spectra: a sharp and significant decrease in the frequency of O H and a 
weakening in the scattering intensity to zero. 

The experiment with ice [19, 20] perfectly illustrates the behavior of 
the O H O hydrogen bond as a function of the dO O length, but the 
O H O bond itself in liquid and crystalline water is not a conventional 
O H O bond. The fact is that the oxygen atom of the same H2O molecule 
is both a donor and an acceptor of the hydrogen bond simultaneously, 
whereas in all other compounds, the oxygen-donor and oxygen-acceptor 
are physically different atoms. What does this change in the state of the 
O H O bond? First of all, the rate at which the bond strength changes 
with a change in the dO O distance. In an isolated H2O molecule, the 
electron shell of the oxygen atom is saturated due to two ordinary O H 
covalent bonds, and its electronegativity is close to zero. For this reason, 
the O H···O hydrogen bond formed in liquid and crystalline water is very 
weak with a proton vibrational frequency of around 3200-3400 cm-1. (Due 
to the weak hydrogen bond, the melting point of ice is very low and we 
have life on Earth as it is). When the dO O length is shortened, for 
example, under external pressure, and the hydrogen bond is strengthened, 
the hydrogen atoms begin to share their electron density with neighboring 
oxygen atoms, as a result of which their bond with “their” oxygen 
weakens, and the saturation of the electron shell of this oxygen from 
“their” protons decreases, provoking an increase in its electronegativity. 
Hence, the electronegativity of the oxygen atom is variable and increases 
with decreasing dO O. In other words, the donor and acceptor properties of 
the H2O molecule in liquid water or in a crystal increase strictly at the 
same rate with a decrease in dO O. This trend is not limited by anything 
and, it would seem, by increasing the external pressure, one can achieve an 
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extremely strong hydrogen bond in crystalline H2O with a proton 
frequency of 3000-3600 cm-1. However, this is not the case. The H2O 
molecule in both the liquid and the crystal is surrounded by four other 
molecules and forms two donor and two acceptor bonds. But four 
hydrogen bonds can only be equivalent to two ordinary covalent bonds of 
an oxygen atom, one ordinary bond of oxygen as a donor, and one bond of 
the same oxygen atom as an acceptor. In other words, the energy of an 
ordinary covalent bond is divided in liquid or crystalline water between 
two protons, limiting the maximum possible frequency of their vibrations 
at low dO O to a value of 2000-2500 cm-1. 

To estimate the height of the barrier U0, for which a transition from 
moderate to strong bonds can occur, it is necessary to establish an energy 
criterion for the transition. Comparison of U0 with the value of thermal 
energy kT, which is usually used when comparing energy states, is not 
applicable in this case, since, in the case of vibrations, it is valid only for 
temperatures at which vibrational states with a large quantum number n 
are excited (otherwise, "ultraviolet catastrophe"!). The frequency of the 
proton vibrations on the hydrogen bond is high, so the excitation of 
vibrations with a large quantum number is possible only at high 
temperatures and is not realized in compounds with hydrogen bonds. 
Therefore, the criterion for the transition from a double-well potential to a 
single-well potential is the ratio of the barrier height U0 and the energy of 
zero-point vibrations of the proton. The latter value at low temperatures 
turns out to be much higher than the energy kT. Fig. 2.3 shows a situation 
in which the energy of zero-point vibrations begins to exceed the value of 
the barrier U0. It is this case that signifies the initial phase of the transition 
of the double-well potential of the proton to the single-well potential, or, 
in other words, the transition from a moderate bond to a strong one. The 
use of kT as a transition criterion can yield a significant underestimation of 
the distance dO O at which this transition occurs. 

It should also be noted that the relationship between the strength of 
the hydrogen bond, the width of the potential minimum of the proton, the 
de Broglie wavelength, and the energy of the vibrational states can be used 
to estimate the vibrational frequencies of a proton on a hydrogen bond of 
any rigidity. In other words, the main effect of hydrogen bonding, i.e. the 
dependence of the proton vibrational frequency on the dO O distance, is a 
consequence of the change in the width of the potential minimum of the 
proton and the corresponding change in the de Broglie wavelength. 
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11.2.4 Half-width of the O H···O vibrational bands 

When the O H···O hydrogen bond changes from a weak to moderate 
one, the bandwidth of the O–H vibration increases very much, and its peak 
intensity often weakens so that the band becomes barely noticeable in the 
spectrum. Among several reasons for the band broadening considered in 
the literature, there is one that is reliably confirmed experimentally. 

The bandwidth of the vibrational band is inversely proportional to the 
lifetime of the excited vibrational state and for hydrogen O H···O the 
bond is determined by the interaction of the high-frequency O H vibration 
with other modes, including low-frequency crystalline modes. Crystal 
vibrations yielding a modulation of the O O distance are translational 
optical vibrations of hydrogen-bonded molecules relative to each other. 
The latter are the vibrations of the hydrogen bond itself. Their frequency 
for medium-sized molecules (for example, organic molecules with a mass 
of 50-100 at. units) lies in the region of ~100 cm-1, i.e. well below the O H

frequency. This means that the frequency of the O H stretching vibration 
can follow the change in the dO O distance, which results from the 
excitation of intermolecular vibrations. In other words, two modes, the 
high-frequency valence O H and the low-frequency phonon mode of 
lattice vibrations, interact with each other, and this interaction is 
proportional to the interaction parameter = / d, i.e. the slope of the 

O-H dependence on the dO O distance.
As an example, Fig. 11.10 shows the diagram of the hydrogen bonds 

of the H2O molecule and the OH-groups in the cavity of the hemimorphite 
mineral, Zn4Si2O7(OH)2·H2O, and Fig. 11.11a the spectra of stretching 
vibrations of H2O molecules and OH-groups in the cavities of 
hemimorphite at 4 K and 300 K, demonstrating the change in the width of 
the vibrational modes with temperature. In this case, the temperature 
controls the population of low-frequency crystalline modes. In fact, the 
frequencies of crystal phonons are usually in the range of 50-300 cm-1. 
The Boltzmann population of such phonons varies from 0 to 1 in the 
temperature range 4-300 K.

Figure 11.10 The system of hydrogen bonds of 
the H2O molecule (in the center) and the OH 
groups in the cavity of the hemimorphite 
mineral.

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Hydrogen bonding 171 

Figure 11.11 a - Spectra of the stretching vibrations of H2O molecules and OH 
groups in the hemimorphite cavity at 4 K and 300 K. The H2O molecule in the 
cavity forms a hydrogen bond with the OH groups of the crystal as a donor (lines ~ 
3400 cm-1 at 4 K) and as an acceptor (~ 3600 cm-1); b  Spectrum (4 K) of the 
combined modes of the stretching vibrations of H2O molecules in the cavity of 
hemimorphite with translational modes of H2O itself and of the lattice of the host 
crystal [22].  

 
The higher the population of phonon states, the greater the probability 

of interaction of high-frequency O H vibrations with crystal modes, the 
shorter the lifetime of the excited state and the larger the mode bandwidth. 
This explains both the strong increase in the bandwidth with temperature 
and this bandwidth itself. The fact that the active interaction of the O H 
stretching vibration with the lattice phonons actually takes place can be 
seen from Fig. 11.11b, where the region of the combined modes in the 
Raman spectrum of hemimorphite is shown in close-up, i.e. scattering by 
combinations of O H with lattice phonons (in this case, with translational 
vibrations of the H2O molecules themselves and the lattice of the host 
crystal). 

11.2.5 Intensity of O H···O vibrational bands  

It is well known that when the wavenumber of O H of the O H···O 
hydrogen bond becomes less than 2700 cm-1, the intensity of the band in 
the Raman spectra decreases to almost zero, and the band itself becomes 
extremely inexpressive, consisting of several maxima with intensity at the 
spectrum noise level (see, for example, [23]). Finally, in many compounds 
with the moderate bond, the O H band is not observed at all. 
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We have already discussed above that for the moderate hydrogen 
bond the situation can arise, as shown in Fig. 2.2, in which the excited 
vibrational state is pushed out into the wide united minimum and the 
zeroth state remains in the narrow minimum. In this case, the proton 
appears in different positions in the ground state and in the excited state: 
the unexcited proton is located in a narrow minimum next to the one of the 
oxygen atoms while the excited proton is located in the center of the bond. 
Therefore, the excitation of vibrations requires the proton to be displaced 
along the bond. However, in the Raman spectroscopy, the incident 
electromagnetic radiation interacts with the electron shell of the atoms 
rather than with their nuclei, since the frequency of the incident radiation 
(~2 104 cm-1) is an order of magnitude higher than the frequency of 
nuclear displacement (~2 103 cm-1). (In IR absorption spectroscopy, the 
frequency of the incident electromagnetic radiation must be equal to the 
frequency of the fundamental mechanical vibrations of the molecule to 
excite the vibrational quantum. In Raman spectroscopy, the frequency of 
incident radiation is high, much higher than the frequencies of mechanical 
vibrations of atoms; therefore, the field of an incident electromagnetic 
wave causes a displacement not of atoms, but only of their electron shells. 
This results in the appearance of Hertzian dipoles and Rayleigh, i.e. 
frequency upshifted, scattering. However, the reaction of the electron 
density to an external field depends on the polarizability of chemical 
bonds, which is modulated by mechanical vibrations. The latter are slow 
compared to the frequency of the incident radiation. It is the modulation of 
the polarizability of the system during the vibrations that causes the 
appearance of Raman scattering at the vibrational frequency of a molecule 
or crystal. Thus, the difference between IR absorption and Raman 
scattering is that the incident radiation interacts with vibrating atoms in the 
first case and with their electronic subsystem in the second). As a result, 
the processes accompanied by atomic displacements are not revealed in 
the Raman spectra but can be active in IR absorption spectra. In other 
words, the damping of the scattering intensity on O H vibrations for the 
moderate bonds is a result of the shape of the potential curve (Fig. 11.2), at 
which the proton, passing from the zeroth vibrational state to the first 
excited state, is forced to change its position on the bond. This 
circumstance greatly complicates the study of the properties of the 
moderate hydrogen bond and, possibly, served as a source of errors in the 
past, when some bands in Raman spectrum were assigned to O H 
vibrations of the moderate hydrogen bond without sufficient experimental 
justification. As we will see below (sections 11.3 and 11.4), the intensity 
of the scattering is restored as soon as the energy of both states, the zeroth 
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and the first excited, becomes higher the barrier between potential wells 
and the coordinate of the proton ceases to depend on its vibrational state 
again. 

11.2.6 How does single-well potential occur? 

The reasons and conditions for the formation of a single-well 
potential and their characteristics are quite simple, but we will briefly 
discuss them, since in section 11.3, the width of the potential well and the 
height of the barrier will become the most needed parameters when 
interpreting experimental results. 

There are three factors that determine the dO O distance, the barrier 
height U0, and, as a consequence, the hydrogen bond strength. 

 
1.   Identity of a donor and an acceptor, which in practice simply 

means the formation of a hydrogen bond by two identical 
molecules. If the molecules are different, then the interaction of 
the proton with the donor will always be stronger than with the 
acceptor, and the O H length is shorter than H O. It prevents 
the formation of the minimum dO O and strong hydrogen bond. 
When the molecules are completely identical, the concepts 
"donor" and "acceptor" lose their meaning. 

2.   Electronegativity of oxygen-donor and oxygen-acceptor. It was 
already mentioned above that electronegativity determines how 
strongly an oxygen atom interacts with a proton, i.e. how close a 
proton can come to an oxygen atom, both as a donor and an 
acceptor. 

3.   Thermal vibrations. Thermal vibrations increase the distance 
between atoms due to anharmonic processes. In a molecular 
crystal, the vibrational spectrum starts from 20-40 cm-1. 
Consequently, the excitation of equilibrium thermal vibrations 
starts from 40-60 K. In other words, the minimum possible 
hydrogen bond length can be established only at T  40-60 K. 

 
In the harmonic approximation, the particle energy is proportional to 

the square of the deviation of the particle coordinate from the equilibrium 
position, U(x) = kx2, where k is the force constant. If the minimums in the 
double-well potential are deep enough, then each of them can be 
considered as harmonic. Then, for a double-well symmetric potential, in 
which the middle of the length between the donor and the acceptor is 
chosen as the origin, and the distance from the origin to each of the 
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minima is denoted as , the potential function of the proton is written as 
follows 

 
U(x) = {[k(x+ )2] [k(x- )2]}1/2 = k(x+ )(x- ).        (11.11) 

 
Hence, at x = 0, the height of the barrier U0 (choosing a positive 

value) is 
U0 = k 2.   (11.12) 

 
The force constant depends on the electronegativity of the oxygen 

atoms and does not change for a given compound (the exception is the 
H2O molecule, see above). Distance  depends on the external pressure 
and the temperature of the crystal, which determines the population of 
thermal vibrations. In other words, with an increase in external pressure or 
a decrease in temperature, the barrier height U0 decreases; therefore, it is 
easy to obtain the situation shown in Fig. 11.3, at which both vibrational 
states are within the wide united minimum and the scattering becomes 
active. 

11.3 Experimental study of strong hydrogen bonds 

Chemical compounds with a strong and extremely strong O-H O 
hydrogen bond, in the spectra of which the transition to a single-well 
potential is confidently detected, are quite rare. In addition, the transition 
itself, as a rule, is stretched in temperature, and begins at T <150 K (the 
reasons for this will become clear from the subsequent text). In other 
words, a detection of the transition to a single-well potential requires 
Raman measurements in the temperature range 5 K - 300 K, which is not a 
widespread practice. In this work, Raman spectra of benzoic acid crystals, 
where the early stage of the transition to a single-well potential is 
observed, glycine phosphate crystals with the stable state of the single-
well potential (Fig. 11.3), and dimethylphormamid [(DMF)2H]2 with the 
extremely strong hydrogen bond (Fig. 11.4) were obtained. Consider the 
spectra of these compounds in the sequence presented.  

11.3.1 The features of the vibrational spectrum  
of benzoic acid 

Despite the fact that benzoic acid belongs to tautomeric compounds 
(more about them in Chapter 11.4), at low temperatures the benzoic acid 
dimers in the crystal are distorted due to crystalline effects so that one 
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O H O bond becomes shorter than the other (Fig. 11.12), and it is these 
short bonds that show in the spectra the signs of the transition to a single-
well potential.

Figure 11.12. Dimers of benzoic acid in a crystal at room and low temperatures.

Figure 11.13. Raman spectra of crystals 
of benzoic acid in the high-frequency 
region at different temperatures [24].

Fig. 11.13 shows the Raman spectra of crystals of benzoic acid in the 
high-frequency region of O H and C H stretching vibrations. At low 
temperatures (T 60 K), a series of narrow and weak in intensity lines 
appear in the spectra a phenomenon that is not observed in other H-
bonded compounds. In addition, also at temperatures below 60 K, a 
narrow line appears in the spectrum at 2910 cm-1, the intensity of which 
becomes very high (higher than the intensity of the C H stretchings) at a 
temperature of 10-15 K. With a further decrease in temperature from 10 to 
5 K, the intensity of both the series of weak lines and the 2910 cm-1 line 
begins to decay.

The distance in wavenumbers between weak narrow lines is not 
constant and does not form any regular series; therefore the entire series 
cannot be interpreted as resonant repetitions of a combination of O-H 
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vibrations and any mode (or group of modes). However, upon closer 
examination, it can be found that the lines in the emerging low-
temperature series are located at approximately the same intervals as the 
modes of crystalline and intramolecular vibrations in the range of 50-1700 
cm-1. 

 
 
 

 
Figure 11.14. A comparison of 
the high-wavenumber (2400–
4000 cm-1, top) and 
intramolecular (50–1700 cm-1, 
bottom) vibrations at T = 10 K 

 
 
 
 
 
 

Fig. 11.14 shows the spectra of intramolecular (bottom) and high-
frequency (top) vibrations at 10 K. One can see that weak narrow lines in 
the high-frequency spectrum (2400-4000 cm-1) are located and separated 
from each other in the same order as the modes of the intramolecular 
vibrations (50-1700 cm-1). In other words, the spectrum of weak modes in 
the high-frequency region is indeed a second-order spectrum, consisting of 
the combined tones of the hydrogen-bonded stretching vibration O H and 
intramolecular vibrations. The O H stretching itself is not recorded, but its 
frequency should fall within the range of 2600-2650 cm-1. 

Due to the distortion of the dimer, the lengths of two O H O 
hydrogen bonds become different when the crystal temperature decreases. 
In this case, the predicted O–H stretching mode at ~2600 cm-1 is evidently 
related to the shortest O-H O hydrogen bond, and 2910 cm-1  to the 
longer one. The emergence of the second-order spectrum means that those 
intramolecular vibrations that modulate dO O distance become capable to a 
very strong interaction with the  valence mode of the short hydrogen 
bond, much stronger than, for example, the well-known interaction of 
lattice phonons modulating the O O distance in a crystal with common 
(weak and moderate) O H O hydrogen bonds. Earlier (see Chapter 11.2, 
paragraph 11.2.3 and Fig. 11.9) it was noted that at the moment when the 
excited vibrational state is pushed out to the wide minimum of the unified 
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potential, the wavenumber of the proton vibration should sharply decrease 
due to an increase in the size of the oscillator. At this, even a negligible 
modulation of the O O distance can cause a significant change in the O H 
frequency. It is the phenomenon that causes the very strong interaction of 
the corresponding intramolecular modes with the O H stretching 
vibration, the interaction that provokes the emergence of a second-order 
spectrum. In benzoic acid crystals at low temperatures, the length of the 
short O H O bond does not yet reach critical values and the excited 
vibrational state is not yet pushed into the wide minimum, but those 
intramolecular vibrations, which modulate the length of the short O H O 
bond, produce the conditions for this length to fall into the zone of a rapid 
drop in the proton vibration frequency and, as a consequence, a strong 
interaction between intramolecular and O H vibrations of the short 
hydrogen bond. This phenomenon is able to produce soliton states in 
crystals (Davydov’s solitons). No change in the peak position of the 
second order bands and the mode at 2910 cm-1 was observed at different 
temperatures. This probably means that the arising new state of the short 
hydrogen bond is not stable, but exists only as a result of the vibrational 
interaction. 

Thus, the transition of the potential from double-well to single-well in 
benzoic acid crystals is not complete, and is characterised by its initial 
stage, which arises only when the intramolecular modes modulate the 
bond length. This is quite understandable, taking into account that the 
dO···O distance in benzoic acid dimers is rather long, ~ 2.6 Å, and for a 
complete transition to the single-well potential a bond length less than 2.5 
Å is required. 

As will be shown in the next section, the vibrational frequency of a 
proton in the steady-state single-well potential of a strong hydrogen bond 
is very low, ~ 930 cm-1, while the O H frequency in benzoic acid 
immediately before the transition to the single-well potential is much 
higher - around 2600 cm-1. This means that a discontinuity in the 
dependence of O H on the dO O distance should occur, as was suggested 
above (see Fig. 11.9). 

11.3.2 Strong hydrogen bonds. Glycine Phosphate 

Glycinium phosphite crystal, C2H8NO5P, contains in its structure two 
short O H O hydrogen bonds with lengths of 2.49 Å and 2.53 Å [25-28]. 
The oxygen atoms in each of these bonds are identical and the proton 
potential is described at room temperature as a symmetrical double-well 
potential. Fig. 11.15 shows the fragment of the crystal structure. 
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Figure 11.15. Fragment of the crystal structure 
of glycine phosphate

IR spectrum of glycinium phosphite at ambient temperature is shown 
in Fig. 11.16.  Figs. 11.17 a and Fig. 11.17 b show the Raman spectra of 
glycinium phosphite in the range 900-1000 cm-1 at various temperatures 
(a) and at differen polarization of incident and scattered light relative to 
the crystallographic axes (b). 

Figure 11.16. IR-spectrum of 
glycinium phosphite at room 
temperature. The arrow shows the 
expected position of the hydrogen 
bond absorption band. The Raman 
band in this region appears only at 
low temperatures (see Fig. 11.17, a).

  
   

A strong hydrogen bonding in glycinium phosphite arises between 
P O bonds of the PO3H2 anions (Fig. 11.15). These bonds have different 
lengths, 1.513 and 1.529 Å at room temperature, and their vibrations 
appear in the Raman spectrum (Fig. 11.17 a,b) as two lines, one of which, 
the low-frequency mode at 964 cm-1, is assigned to stretching vibration of 
O P O fragment with the maximum contribution from the long P O 
bond, and the other, high-frequency mode at 971 cm-1, is assigned to the 
O P O vibration with the predominant contribution from the short P O 
bond. (Here and below, the vibrational wavenumbers refer to a 
temperature of 5 K). An assignment of the Raman bands related to the 
stretching vibrations of the main chemical bonds in the crystal was made 
on the basis of a quantum chemical calculation presented in [29].
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Figure 11.17 a,b. Raman spectra of glycinium phosphite in the range of the 
hydrogen bond vibrations at different temperatures (a) and orientation of the 
polarization vector of the incident and scattered light relative to the 
crystallographic directions (b) 

 
With temperature decreasing, the relative integral intensity of the 964 

and 971 cm-1 modes decrease and two other modes at lower frequency, 
939 and 943 cm-1, arise (Fig. 11.17 a). In addition, a broad structureless 
band in the region of 930-980 cm-1, shown by the dashed line, also appears 
in the spectrum. The shape of the latter is completely unusual: the 
maximum intensity of the band falls on its low-frequency edge, i.e. at ~ 
930 cm-1, and the minimum is at high-frequency (i.e., approximately at 
980 cm-1).  

Fig. 11.17 b shows the polarized spectra of the crystal at 5 K, 
obtained for different crystallographic directions. It can be seen that a 
broad band appears only in the ab-plane of the crystal, in which both O-
H O hydrogen bonds lie. The relative integral intensity of the broad band 
as a function of temperature is shown in Fig. 11.18. 

 
 
 
 
 

Figure 11.18. Relative integral 
intensity of the 930-980 cm-1 band 
as a function of crystal temperature 
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Short O-H O bonds in the crystal form infinite chains along the a 
axis, however, the bonds themselves in the chains alternate in length and 
direction (Fig. 11.15). Since the oxygen atoms in each bond are pairwise 
completely identical to each other, the protons in each pair must be able to 
occupy positions with equal probability both at one oxygen atom and 
another. The identity of the oxygen atoms creates chemical conditions for 
the formation of a strong hydrogen bond; while the potential function of 
the protons at room temperature is symmetric double-well. At the same 
time, both oxygen atoms belonging to the same PO3H2 group cannot 
simultaneously act as acceptors, since this creates a deficiency in the 
valence of phosphorus atoms in this group. Thus, at a low temperature, a 
conflict situation should arise, in which the protons, on the one hand, 
should be ordered along the entire length of the O H O bond chain (i.e., 
over the entire crystal), and, on the other hand, should be distributed 
equiprobably near both oxygen atoms in each pair. This contradiction 
disappears when the protons on each of the O-H O bonds occupy the 
position in the midpoint of the bond. The last condition means the 
formation of a single-well potential. 

The theoretical calculation fulfilled in [17] and the consideration 
presented in the previous sections of this work show that the dO O distance 
around of 2.5 Å or less provides the formation of a single-well potential. 
The dO O distance of 2.43 Å was called in [17] a threshold for the 
transformation of the pronon potential to a single-well and the thermal 
energy kT at low temperatures served as the criterion. However, as already 
mentioned, the only correct criterion is the energy of zero-point motions 

/2, which, for a reasonable value of , is much higher than kT. 
Consequently, the threshold value of the dO O distance is also higher than 
that assumed in [17], and the dO O in glycinium phosphite fully ensures 
the formation of a single-well potential. 

The interpretation of the above experimental results is as follows. At 
room temperature, both hydrogen bonds are symmetric double-well due to 
the high value of the barrier height U0. However, due to phonon-assisted 
jumping, the protons on the hydrogen bond are statistically distributed 
between both positions on the bond. The conflict between the statistical 
distribution of the protons and the valence ability of phosphorus atoms 
reveals at T > 50 K a sharp increase in the half-widths of most bands in the 
spectrum, and their peak positions show significant dispersion.  

With temperature decreasing and freezing of the vibrations, the dO O 
distance and the height of the barrier decrease. The appearance of two 
additional (to the bands at 964 and 971 cm-1) O P O stretching modes at 
939 and 943 cm-1 (Fig. 11.17 a,b) at low temperature occurs due to the 
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strengthening of the hydrogen bonds, i.e. to the displacement of the 
protons towards the center of the bond. Simultaneously with the appearance 
of two last modes, a broad band at 930-980 cm-1 arises in the spectrum 
(dashed curve in Fig. 11.17 a).  

The band is recorded only in the ab-plane of the crystal and in 
addition demonstrates an unusual contour, which strongly differs from the 
Lorentzian or Gaussian contours (Fig. 11.17 a,b). Both of these arguments 
allow us to attribute the band to the vibrations of protons of the strong 
hydrogen bond. 

Fig. 11.19 shows a qualitative interpretation of an unusual contour of 
the proton band. 

It has already been mentioned above that the dO O distance is not 
fixed and is determined by the Gaussian distribution due to the quantum 
uncertainty of the oxygen atom coordinates (see Section 11.2.2). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.19 a,b. The occurrence of an unusual contour of the proton vibrational 
band: (a) - distribution of dO O distances, arising from the quantum uncertainty of 
the coordinate of oxygen atoms; (b) - energy of zeroth motions relative to the 
barrier U0 for short (lower curve), medium (middle curve) and long (upper curve) 
dO O distances. 

 
One can assume that the most probable dO O distance in glycinium 

phosphite corresponds at low temperatures to the potential curve where the 
ground vibrational state of the proton coincides with the top of the barrier 
(Fig. 11.19, b, green curve). Then the ground state for larger dO O appears 
lower than the potential barrier (Fig. 11.19, b, red curve) and falls within 
the region where the scattering on proton vibrations is forbidden. For 
shorter dO O (Fig. 11.19, b, blue curve), both the ground and the excited 
states appear within the same wide potential minimum, and the scattering 
becomes Raman-active again. This particular circumstance is responsible 
for the unusual shape of the scattering band in glycinium phosphite (Fig. 
11.19, a,b). The low-wavenumber edge of the broad band, where the 
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Raman intensity is maximal, should be assigned to the proton vibrations 
on the O-H O hydrogen bond with dO O, at which the zero-point energy 
achieves the top of the barrier and both the ground and the first excited 
states get the wide minimum. Thus, the glycinium phosphite crystal is a 
perfect example of how the evolution of the hydrogen bonding transfers to 
a new stage at which both the ground and the first excited vibrational 
states appear within the same wide minimum of the single-well potential. 

The proton vibrations in the single-well potential of a strong O-H O 
hydrogen bond were observed for the first time in Raman spectra (as far as 
we know). The structural parameters of the bonds [25-28] required for the 
transition from a symmetric double-well to a single-well potential are 
close to those predicted theoretically [17]. The energy of the zero-point 
motions /2 of a proton, which is estimated as ~ 1000 cm-1 from a 
vibration frequency of ~ 2000 cm-1 for moderate hydrogen bonds, 
significantly exceeds the theoretical value of the barrier between wells at 
short hydrogen bonds [17], which allows us to talk about the proton 
vibrations in a single-well potential. The unusual contour of the proton 
vibrational band can further serve as the most important criterion for the 
experimental confirmation of the potential conversion to a form in which 
the barrier between adjacent minima is preserved, but the energy of zero 
point motions of the proton exceeds its height. With a further decrease in 
the O O distance of the hydrogen bond, the potential barrier decreases, 
the bond becomes extremely strong and the potential well gets the 
traditional form of a harmonic potential (Fig. 2.4), in which the contour of 
the vibrational band also turns out to be an ordinary Gaussian. 

11.3.3. Extremely strong hydrogen bond in [(DMF)2H]2 

The [(DMF)2H]2[W6Cl14] is one of the rare compounds in chemistry 
in which a very short O H O hydrogen bond is realized. Fig. 11.20 
shows a fragment of the structure in which oxygen atoms of DMF (N,N-
Dimethylformamide) molecules can occupy two different positions with 
the creation of the O H O hydrogen bonds, the lengths of which are 2.36 
Å (0.7 O1/O2 occupancy) and 2.46 Å (0.3 O1/O2 occupancy) [30]. 
(Numerical values are given for a temperature of 140 K). 
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Figure 11.20. The structure of 
[(DMF)2H

The C O bond lengths are 1.272 Å (at O O = 2.37 Å) and 1.266 Å 
(at O O = 2.474 Å). Both of the latter quantities indicate that the C O 
bonds are close to ordinary bonds and, therefore, the shell of the oxygen 
atoms is not saturated, and their electronegativity is high. This data, 
together with the complete identity of oxygen atoms, creates favorable 
conditions for a generation of an extremely strong symmetric O H O 
hydrogen bond.

Since the dO O distances in (DMF)2H are significantly shorter than 
that in glycine phosphate, the proton potential in (DMF)2H should be the 
same as shown in Fig. 11.4, and the expected frequency of the proton 
vibrations is much higher as compared with glycine phosphate.

Fig. 11.21, a shows the Raman spectra of the compound in the region 
of proton vibrations on hydrogen bonds in the temperature range 5 K - 300 
K. As the temperature decreases, two broad bands, 1370 and 1450 cm-1, 
arise in the spectra. At these, the low-frequency band appears at T 110 K, 
and the high-frequency band at T 60 K. In addition, the intensity of the 
1422 cm-1 narrow band, which is weak at room temperature, begins to 
increase together with the intensity of both broad bands. The wavenumber
of the 1422 cm-1 mode is close to the vibrational frequency of the ordinary
C O bond (~ 1300 cm-1) and much lower than the wavenumber of the 
double C = O bond (~ 1800 cm-1). 

This is quite consistent with the structural data and with the 
assumption that the oxygen atoms involved in the emergence of the 
hydrogen bonds are electronegative. The intensity of the C O vibrational 
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mode is the result of a resonant response to the appearance of the 
hydrogen bonds in the Raman spectrum. 

 
Figure 11.21. (a) Raman spectra of [(DMF)2H]2[W6Cl14] in the region of proton 
vibrations at various temperatures. (b) IR-spectrum of [(DMF)2H]2[W6Cl14] at 
room temperature [30]. The arrow shows the expected position of the hydrogen 
bond absorption band. The correspondng Raman bands in this region arise only at 
low temperatures (a). 

 
The broad bands at 1370 and 1450 cm-1 correspond to proton 

vibrations on the strong hydrogen bond. Even though this bond is 
characterized by a double-well potential, the barrier U0 between the 
minima of the latter is low due to short dO···O distances (Fig. 11.3). The 
proton vibrational frequency for such potential is directly proportional to 
the rigidity of the hydrogen bonding. Therefore, the modes at 1370 cm-1 
and at 1450 cm-1 should be assigned to the vibrations of the longer and the 
shorter of these two hydrogen bonds, respectively. The temperature 
dependence of the intensity of these two modes is the most interesting 
manifestation of their features and requires a detailed discussion. 

First of all, both bands appear at low temperatures. Formally, this 
behavior is no different from that observed in the glycine phosphate 
crystal. However, as we saw above, the barrier U0 between the minima is 
proportional to the force constant of the hydrogen bond (the slope of the 
potential curve), and the square of half the distance between the minima 
(see expression (11.12)). In the (DMF)2H dimer, the steepness of the 
minima is so great that even with a small lengthening of the O O distance 
due to thermal vibrations of the crystal, the barrier height U0 changes 
sufficiently strongly to become higher than the energy of the zero point 
motions of the proton at room temperature, i.e. in a position in which 
Raman scattering by proton vibrations is forbidden. With a decrease in 
temperature and freezing of crystalline vibrations, the hydrogen bond 
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length becomes shorter, and the barrier becomes lower, and both 
vibrational states turn out to be in a wide minimum, becoming Raman-
active. In other words, strong hydrogen bonding remains strong at higher 
temperatures, but the steepness of the potential curve and thermal 
vibrations make the barrier height U0 too high at room temperature in 
relation to the energy of zero-point motions. 

For the same reason, the band at 1450 cm-1 is revealed in the 
spectrum at lower temperatures than the band at 1370 cm-1. This mode 
corresponds to the vibrations of the strongest of the two hydrogen bonds; 
therefore, it appears in the Raman spectrum only when all crystal 
vibrations, including most low- -1), are frozen so 
that the barrier is diminished until an acceptable value. 

The proposed interpretation is well illustrated by the sequence in 
which the bands of proton vibrations on the bonds of different rigidities 
appear with decreasing temperature (Fig. 3.10) and agrees with the 
assumption that the appearance or the disappearance of proton vibrational 
bands in the Raman spectra of moderate and strong bonds is controlled by 
the positions of the energies of the ground and the first excited vibrational 
states relative to the barrier between the minima. 

The transition of the ground proton state at a low temperature from 
the narrow minimum next to the donor to the wide minimum of the unified 
potential (as it takes place in glycinium phosphite and in (DMF)2H has 
another unexpected effect. It is well known that measuring the O···O 
distance by two different methods of X-ray diffraction and neutron 
diffraction reveals somewhat different values. This is caused by the fact 
that X-rays are scattered on electronic shells of the atoms while neutrons 
are scattered on atomic nuclei. 

 
 
 
 

Figure 11.22. X-ray measurement of dO O 
distance at localization of a proton near the 
donor (a) and in the midpoint of the donor-
acceptor bond (b). The true distance between 
the centers of oxygen atoms in the figure is the 
same. 

 
 

 
In the case of hydrogen bonding, the electron shell of the donor 

oxygen is partially shifted towards the proton due to chemical interaction 
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with the latter. For this reason, the position of the donor atom measured in 
X-ray diffraction is also shifted towards the proton and to the oxygen 
acceptor, while the obtained dO O distance is slightly underestimated, 
which plays no significant role in most cases. However, as mentioned 
above, in the case of strong and maximally strong hydrogen bonds, the 
proton is localized next to the donor at high temperatures and between the 
donor and the acceptor at low temperatures. Therefore, the position of the 
oxygen donor determined by X-ray diffraction will be shifted from its true 
state at high temperatures and will not be shifted at low temperatures (Fig. 
11.22). At the same time, the dO O value will be seemingly increasing as 
the temperature decreases, while its real value can be only decreasing, and 
it was really observed in glycinium phosphite and in (DMF)2H at low 
temperature. This effect can be the reason for misinterpretation of data 
obtained from structural studies using X-ray diffraction.

11.4. Tautomeric hydrogen bonds

11.4.1 What is the proton tautomerism?

Proton tautomerism occurs in the systems with intermolecular hydrogen 
bonding X H Y where the donor and the acceptor are indistinguishable and 
the proton can jump between them. The simplest compound containing a 
tautomeric bond (referred to hereafter as the -bond) is the formic acid 
dimer (Fig. 11.23). Left (L) and right (R) tautomers of this dimer are 
identical and constitute a six-membered -ring formed by two O-H···O 
hydrogen bonds and two carboxyl groups. 

Figure 11.23.  L and R tautomers in dimer of formic acid

When plotted along the direction of hydrogen -bonds, the proton 
potential function is a curve with two identical wells (Fig. 11.24 a). In the 
case of a symmetric double-well potential, the protons must have the 
opportunity of a coordinated transition between the wells, which occurs as 
a result of protons hopping over the potential barrier or tunneling through 

L R

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Hydrogen bonding 187 

the barrier. However, the symmetric double-well potential is realized only 
for isolated molecular formations in the gas phase. In solids, the coordinated 
motion of charge-carrying protons to the neighboring potential well affects 
the interaction between a given -ring and the -rings of the neighboring 
molecules where this transition is not yet completed. In other words, the 
energies of L- and R-tautomers in the crystal lattice differ by the value A 
(Fig. 11.24 b). Therefore, the tunneling must be accompanied by the 
absorption of the phonon A ( A = A), and the temperature dependence of 
the tunneling rate is determined by the average value of the vibrational 
quantum number of phonons A and is anti-Stokes in nature. 

  
 
 
 
 
 
 
 
 
 
 

Figure 11.24 a, b. Potential energy of the proton on the -bond of an isolated dimer 
(trimer, etc.) in the gas phase (a), the same energy of a real dimer in the crystal (b). 
E is the particle energy in the potential well, U0 is the barrier height, and (x1, x2) 
are the coordinates of potential energy minima. A is the difference between the 
energies of L- and R-tautomers in the crystal lattice.  

 
The structures of compounds allowing proton tautomerism are diverse 

and include crystals with infinite chains, dimers, trimers, and tetramers [31]. 
Moreover, both the same type atoms (O-H O, N-H N) and different type 
atoms (O-H N, N-H O) can be donors and acceptors in tautomeric 
hydrogen bonds (Fig. 11.25). Oxygen atoms in carboxylic acids, the -
bonds of which will be considered here, are not highly electronegative. For 
this reason, the corresponding hydrogen O-H O bonds are borderline 
between moderate and strong. And the nature of the symmetric double-
well potential in -bonds differs from that considered above for the usual 
(not tautomeric!) O-H O hydrogen bond. 

If a -bond is realized by atoms of different types, the potential curve 
of the proton on each bond is asymmetric, as in Fig. 11.24 b, but the total 
energy of both tautomers is described by a symmetric curve, as in Fig. 
11.24 a. 
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Proton transfer along -bonds has been broadly studied by the 
techniques of pulsed NMR spectroscopy and inelastic neutron scattering 
INS [32–42]. A theory of coordinated motion of hydrogen atoms along the 
hydrogen bonds of carboxylic acid dimers was developed by Skinner and 
Trommsdorff [36].

Figure 11.25. An example of compounds with -bond

The present work is an attempt to obtain the data on the behavior of 
protons on the O-H O -bond using simple and easily available Raman 
spectroscopy. For this purpose, Raman spectra of compounds with 
symmetric (the chains of terephthalic acid, C8H6O4, TPA, Fig. 11.26 a), 
quasi-symmetric (benzoic acid dimers, C6H5COOH, BZ, Fig. 11.26 b) and 
asymmetric (ibuprofen dimers, C13H18O2, IB, Fig. 11.26 c) -bonds were 
considered in a temperature range of 5 K - 300 K.

Pyrazoles

Carboxylic acids

Benzoic Acid, C6H5COOH

Terephthalic acid, C8H6O4
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Figure 11.26. (a) Chains of TPA molecules with symmetric -bonds, (b) BZ dimers 
with quasi-symmetric -bonds, and (c) IB dimers with asymmetric -bonds. A 
slight deviation from symmetry in the benzoic acid dimer arises due to the 
crystalline effect, in which one of the four oxygen atoms of the -bond has a 
shorter contact with the environment than the other three. The asymmetry of dimer 
IB is due to two different carbon substituents adjacent to the -carbon of the 
hydroxyl group. 

 
Behavior of protons on the -bond is quite complicated and is 

characterized by several independent processes. 
 
1. At large distances dO O (> 2.6 Å), a coordinated proton transfer 

along the -bond is mainly due to proton hopping over the 
potential barrier U0 with the participation of phonons 

U ~ U0 (phonon-assisted hopping). The barrier height U0 in 
various compounds with O-H O -bonds is as high as 500  
1000 cm-1 [37]; therefore, this process is more effective at high 
temperatures. Back and forth transitions between L- and R-
tautomers as a result of hopping do not change the length and the 
strength of hydrogen bonding, but they switch the positions of 
C O and C=O bonds in the carboxyl groups. Therefore, the 
main effect of proton hopping is manifested exactly in the 
behavior of vibration frequencies of these two bonds.  

2. At low temperatures, owing to the freezing of vibrations, the 
dO O distance becomes shortest, and the barrier height becomes 
smallest for a given compound. In compounds with a strong 
hydrogen bond (dO O < 2.6 Å), this makes probable the 
coordinated transfer of both protons along the -bond as a result 
of tunneling through the barrier. The tunneling, as well as proton 
hopping, does not change a force constant of -bond but 

a 

b 

c 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 11 
 

190 

switches the C O and C=O bonds between themselves. The 
latter effect is accompanied by the changes in the lengths of 
C O and C=O bonds with the tunneling rate, which is usually 
~109 s-1 [37], and the amplitude approximately an order of 
magnitude higher than that of equilibrium (thermal) vibrations of 
these bonds. Therefore, proton tunneling and proton hopping are 
associated with forced vibrations of C O and C=O bonds of the 
carboxyl group with the result that the frequencies of their 
normal vibrations are subject to the anharmonic shift [43]. Thus, 
the temperature dependence of the C O or C=O stretching 
vibrations is an indicator of both protons tunneling through the 
barrier and proton hopping over the barrier U0. The tunneling is 
significantly slowed down as a result of deuteration, since the 
probability of tunneling is proportional to exp ( B m), where m 
is the mass of the tunneling particle and B  constant. 

3. The proton distribution function in a potential well is delocalized 
because of the quantum uncertainty principle and spreads partly 
to a neighboring (empty) potential well (Fig. 11.27). This 
process has been already discussed in detail above. The smaller 
the dO O distance and the crystal temperature, the more efficient 
the spread of proton coordinate. When the hydrogen is replaced 
by deuterium, the quantum uncertainty of the deuteron on the 
bond decreases insignificantly, by a factor of 21/4 = 1.19 (see 
Chapter 11.2), as was confirmed by the calculations of Wang et 
al. [18]. 

 
 
 
 

Figure 11.27. The assumed distribution of the proton 
density (dashed curve) at dO O < 2.6 Å. The shaded area 
shows the region where the proton density penetrates into 
the neighboring well. 

 
 

It should be noted that, in contrast to hopping and tunneling, where a 
coordinated transition of protons to a neighboring well occurs in a random 
-cycle of the crystal lattice and regardless of the environment, the spread 

of the proton density to a neighboring potential minimum as a result of the 
quantum uncertainty of the proton coordinate occurs in all -cycles of the 
lattice simultaneously and to the same extent and therefore does not reveal 

0 
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a change in the energy state of protons due to their interaction with 
neighboring cycles. In other words, the scheme shown in Figure 11.24 b is 
not valid in the case of proton density delocalization. 

Thus, when analyzing the experimental data, we will proceed from 
the following assumptions. 

 
1.   Coordinated proton tunneling on the -bond occurs mainly at 

low temperatures, and proton hopping occurs mainly at high 
temperatures; 

2.   Tunneling changes the energy of their interaction with the 
environment and requires the participation of phonons A (Fig. 
11.24 b); 

3.   Spread of proton (deuteron) distribution function to the 
neighboring well increases the hydrogen -bond (Fig. 11.24 a);  

4.   Proton tunneling and proton hopping do not change the force 
constant of the -bond but modulate the length of C O and C=O 
bonds of the -ring; 

5.   Deuteration of the -bond virtually does not affect the degree of 
proton sharing and significantly slows down the tunneling. 

 
From this, the modes of translational vibrations of the -bond, , and 

the vibration of the C O and C=O bonds of the -ring are most important 
and informative for the analysis of hopping and tunneling. The 
experimental assignment of spectral bands to the translational vibrations 
was done for all compounds using temperature dependence of corresponding 
frequencies and quantum-chemical calculations. In the case of terephthalic 
acid and ibuprofen, the assignment was additionally confirmed by the 
deuteration on the -bond [43, 44]. The structural parameters of O-H O -
bonds and experimental and calculated frequencies O O are listed in 
Table 11.1.  

 
Table 11.1. The length of the hydrogen bond and the frequency of translational 
vibrations  in the studied compounds 
 

Composition dO O, Å , cm-1 
Calculation [43,44] Experiment, 5 K 

TPA(H)  2.62 [45] 114 106 
TPA(D)  113 105 
BZ 2.63 [46]  86 
IB(H) 2.66 [47] 108 104 
IB(D)   103 
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11.4.2 Quantum delocalization of protons  

Fig. 11.28 shows the temperature dependences of the peak position of 
the translational modes for three different compounds. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.28.   as function of temperature in (a) symmetric TPA(H) (filled 
circles) and TPA(D) (filled squares), (b) quasi-symmetric BZ, and (c) asymmetric 
IB tautomeric bonds. Solid curves are plotted from the anharmonic shifts of the 
phonon  determined by its thermal population [48]. The arrow marks the position 
of the breakpoint of (T). 

 
The temperature dependence (T) of the symmetric -bond in TPA 

(Fig. 11.28, ) has a characteristic breakpoint whose position on the 
temperature scale correlates with the beginning of the freezing of 
translational vibrations, i.e. the temperature where the average value of the 
quantum number n of the mode at 106 cm-1 becomes smaller than unity. 
The breakpoint in the temperature dependence (T) is also observed in 
the crystals with a symmetric N-H N -bond [23]. In the quasi-symmetric 
-bond in BZ (Fig. 11.28, b), there is also a breakpoint in the (T) 

dependence, but it corresponds to a lower temperature than the beginning 
of phonon freezing at 87 cm-1. Finally, a breakpoint in the (T) 
dependence in the asymmetric case of IB (Fig. 11.28, c) is negligible and 
is observed at T < 50 K. 

Based on (T) dependence of the symmetric -bond in TPA (Fig. 
11.28, ), one can propose that the transition of the vibrational state of the 
translational mode from the excited state (n = 1) to the zeroth state (n = 0) 
diminishes the x1 x2 distance between potential energy minima of -bonds 
until the proton wave function starts to spread to the neighboring well to 
increase the hydrogen bonding. As can be seen in Fig. 11.28, the slope 
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changing of the (T) in TPA(D) is registered at virtually the same 
temperature as in TPA(H). This experiment convincingly confirms the 
above assumption that the low-temperature change in the frequency of the 
translational vibration is due to the delocalization of the proton (deuteron) 
wave function into the neighboring well rather than its physical transfer, 
since in the latter case the probability of tunneling decreases significantly 
with increasing mass of the tunneling particle (for more details see [49]). 

Fig. 11.28 shows that the higher symmetry of -bond the higher 
temperature of the breakpoint. It means that the degree of proton sharing is 
maximal for the equal proton energy states in the neighbor potential wells, 
that is in the case presented in Fig. 11.24, a. In principle, the breakpoint of 

(T) should be observed in any X-H Y hydrogen bonds with sufficiently 
small X Y distance but, however, this distance itself also depends on 
symmetry of the given bond, i.e. to what extent the donor and acceptor are 
similar each other by their electronegativity.         

11.4.3 Proton hopping in ibuprofen 

IB is an example of the asymmetric -bond (Fig. 11.26 c). In this 
case, left- and right-tautomers are initially unequal in terms of energy 
states and are characterized by the energy difference E. For this reason, 
the (T) dependence shows very small proton sharing (Fig. 11.28 c) and 
the proton tunneling should be negligible. Since the proton tunneling and 
the proton hopping equally affects the structure and energy of compounds, 
the registration of hopping in the IB spectra is greatly facilitated in the 
absence of tunneling. 

 
 
 
 
 

Figure 11.29. Low-frequency spectra 
of ibuprofen crystals at different 
temperatures [43]. The arrow 
marks the position of a new high-
temperature mode at ~90 cm-1 
arising at   150 K. 
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At low temperatures, the translational vibration of the IB -bond is 
represented by a single mode at ~103 cm-1 corresponding to the L-
tautomer; an additional band appears above 150 K at 93 cm-1 (Fig. 11.29, 
shown by an arrow), which corresponds to translational vibrations of the 
R-tautomer.  

Fig. 11.30 a, b shows temperature dependence of the integral 
intensity of these two translational modes in the original and in deuterated 
ibuprofen. The temperature dependences of these two intensities (the 
modes at ~ 100 cm-1 and at ~ 90 cm-1) show a pronounced activation 
character, i.e. demonstrate two -bond states separated by the energy E. 
Solid lines in Fig. 11.30 are plotted according to the expressions which 
take into account the population of states for E values equal to 80 and 70 
MeV in original and deuterated crystals, respectively (Fig. 11.30) [43]. 

Figure 11.30 a,b. Temperature dependence of the integral intensity of ~100 cm-1 
mode (a) and ~90 cm-1 mode (b) in normal IB (H) and deuterated IB (D) crystals. 
The E value is 80 meV for IB (H) and 70 meV for IB (D). More details in [43]. 
 

    However, the true value of this experiment lies in the fact that it 
makes it possible to reliably establish the effect of the proton transfer on 
the spectral characteristics of the crystal. 

    Fig. 11.31 b shows the peak position of the stretching C=O 
vibration of the carboxyl group in the ibuprofen dimer as a function of 
temperature. When the temperature rises from 5 K, the frequency of the 
C=O stretchings of the L-tautomer (at low temperatures, only the L-
tautomer exists) has to, on the one hand, decrease as a result of ordinary 
anharmonic processes, and, on the other, increase, since, due to the same 
anharmonic processes, the involvement of the terminal C=O group in the 
hydrogen OH O = C bond weakens, which is always accompanied by an 
increase in frequency. Figure 11.31 b shows that the second process acts 
somewhat more efficiently and C=O slightly increases in the temperature 
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range 5 K 150 K. But at T 150 K, the frequency C=O suddenly begins to 
decrease exponentially, and the exponent of this process and the activation 
process of the R-tautomer is the same, i.e. ~80 MeV (Fig. 11.31 b). In 
other words, the change in C=O is strictly correlated with the appearance 
of the R-tautomer, both in terms of temperature and rate of change. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.31. (a) The spectrum of ibuprofen (COOH) at 5 K in the range of C=O 
vibrations. The asterisk marks the position of line of Ne lamp, which was 
registered at each temperature for correction of the spectra; (b) Temperature 
dependence of the position of the 1609 cm-1 band peak of the C=O stretching 
vibration. The solid curve is plotted under the condition that a change in the mode 
frequency is caused by an activation process with E=80 meV. 

 
The reason for the unusual behavior of the C=O mode is as follows. 

The transition from L- to R-tautomer and vice versa causes the C O and 
C=O bonds of the carboxyl group to change places. In this case, an 
ordinary C O bond, becoming a double, is significantly (by about 0.1 Å) 
shortened, and a double C=O bond is lengthened by the same amount. 
This process occurs with the frequency of proton hopping on the -bond, 
which in benzoic acid crystals is in the range 108-1011 s-1 in the 
temperature range 5 K - 300 K (see, for example, [39-42]). Thus, the bond 
lengths of the carboxyl group experience forced vibrations with frequency 
of hopping and a very large amplitude, several times higher than the 
amplitude of normal vibrations. (Strictly speaking, it is not vibrations, but 
changes of length with a great frequency). Forced vibrations of the 
carboxyl group give rise to the same anharmonic phenomena as normal 
vibrations, as a result of which the C=O bond lengthens, and the frequency 
of normal vibrations begins to decrease with the appearance of proton 
jumping, which is observed in Fig. 11.31 b. Thus, the dependence C=O (T) 
can be used as a very sensitive tool for characterizing proton hopping at 
high temperatures and proton tunneling at low temperatures in systems 
with -bond. To our knowledge, no forced vibrations of chemical bonds 
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with any frequencies have been observed before. Consequently, this 
phenomenon can be attributed to a new type of forced vibrations. 

The dependence shown in Fig. 4.9 b, also confirms the earlier 
conclusion that there is no tunneling at low temperatures (i.e., in the range 
5 K - 150 K) in IB.  

11.4.4 Proton tunneling 

The described experiment with the frequency of C=O vibrations has 
no particular importance for ibuprofen, since the process of proton 
hopping is clearly demonstrated by the dependence of the intensity of  
translational modes in the crystal (Fig. 11.30 a,b). However, it is a very 
sensitive tool to characterize both proton hopping and proton tunneling to 
the neighboring well in other compounds such as TPA chains with 
symmetric -bonds.  

As was mentioned above, the coordinated transfer of the protons to 
the neighboring potential minimum should be accompanied by the 
absorption of the phonon A ( A = A, Fig.11.24 b), and the function of 
the tunneling rate vs temperature dependence is determined by the average 
value of the vibrational quantum number of phonons A and has an anti-
Stokes character. 

Fig. 11.32 shows the C=O(T) dependences in TPA (H) and TPA (D). 
In this case, the anharmonic shift of the frequencies of C=O vibrations is 
proportional to the tunneling rate and is associated with the energy change 
by the value of A at low temperatures and proton jumps over the barrier U0 
at high temperatures. The solid curves show the dependence of the 1611 
cm-1 mode of the C=O stretchings at low temperatures and are drawn 
according to the expression (T) = (0) – C<n>, where  <n> is the 
average quantum number of phonon A, and C is a proportionality 
constant (see [48]). 

As can be estimated from Fig. 11.32, the value of A is approximately 
equal to 12 meV in TPA(H) and to 9 meV in TPA(D). The constant C is 
2.2 cm-1 in TPA(H) and 0.75 cm-1 in TPA(D). The latter fact suggests that 
the probability of proton tunneling is significantly higher than that of 
deuteron, which is in agreement with theoretical concepts. A slight linear 
increase of the C=O at T > 100 K in both compounds (dashed straight 
lines in Fig.11.32) is the result of weakening of the hydrogen -bond at 
elevated temperatures and gradual termination of tunneling. It testifies that 
the hopping rate is low in TPA(H) and even lower in TPA(D). Possibly, no 
jumps take place in the latter case at all. It should be noted that the above 
numerical parameters of the barrier A and the fact that no jumps with high 
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rates occur at elevated temperatures disagree with previous data [37], 
where A and the barrier U0 -1) and 
75 MeV (600 cm-1), respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.32. Temperature dependence of the C=O vibrational wavenumber of 
TPA(H) (circles) and TPA(D) (squares) carboxylic groups. Solid curves show 
temperature dependences of the thermal population of phonons A (see the text); 
the dependences above 100 K are imaged by dashed lines, which are drawn 
approximately. 

 
The Raman spectra of the compounds with tautomeric O-H O 

hydrogen bonding in the temperature range 5 K  300 K perfectly illustrate 
the behavior of protons on the -bonds. The spectra allow one to separate 
by temperature different mechanisms of proton density distribution, and 
the study of hopping and tunneling processes becomes possible with the 
help of a simple and available Raman spectroscopy technique. The results 
presented in this work largely coincide with those reported previously 
[32–42]. However, we believe that the description of proton behavior in -
bonds obtained here using Raman spectroscopy complements the 
knowledge obtained from the works based on nuclear magnetic resonance 
(NMA) and inelastic neutron scattering (INS) methods. Undoubtedly, the 
two latter methods provide highly reliable data, but they are able to fix 
only the final phase of the tunneling process associated with proton 
transfer between the wells. In addition, at very low temperatures, only the 
more stable tautomer is noticeably populated, the protons are arranged in 
an ordered way, and the the tunneling rate is low. In this case, the NMR T1 
relaxation time is too large to be registered. The INS signal also becomes 
very weak. Therefore, none of these techniques can be used appropriately 
to study the dynamics at very low temperatures [36]. 

Also, the change in the energy of the process (in this case, the 
vibration frequency), which can be fixed in the Raman experiment, is of 
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the order of tenths of an inverse centimeter (hundredths of millielectronvolts), 
which seems to be beyond the capabilities of NMA and INS. 

11.5. Brief characteristic of N H O and C H Y 
hydrogen bonds 

11.5.1 N H O hydrogen bond  

Despite the enormous importance of N H O hydrogen bonding in 
biological systems, their properties have not yet been fully established. 

 
 
 
 
 
 

Figure 11.33. N H stretching vibrations in the 
N H O hydrogen bond as a function of N O 
distance. 1  N H O in compounds of various 
types [50], 2  N H O bonds in conjugated 
systems [51], 3  N H O in amino acid 
crystals 

 
 
 
 

 
The dependence of the N H wavenumber on the N O distance, 

known until recently [50], turned out to be significantly weaker than the 
analogous dependence for the O–H O bond, and is shown in Fig. 11.33 
by straight line 1. This dependence is characterized by the slope  = 

/ dN O = 1400 cm-1/Å, i.e. even slightly less than for the weak O H O 
bond. The range of both dN O and N H variation is also relatively narrow. 

The above dependence is fulfilled for most chemical compounds of 
various types with N H O bond.  It is possible, however, to synthesize 
the compounds in which the N H O bond becomes very strong [51]. In a 
chain of conjugated bonds with an embedded N-H O hydrogen bond, for 
example, 
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ordinary C C and double C=C cease to exist as different bonds, and some 
intermediate one-and-a-half bond is established between the carbon atoms 
(this situation is also often realized for N H O embedded in the aromatic 
ring). This phenomenon in chemistry is called bond resonance. In this 
case, the hydrogen atom in N H O should also occupy some intermediate 
position between the N H O and N H O states, i.e. to be equidistant 
from both atoms, nitrogen and oxygen, which is a condition for the 
occuring of a strong bond. Fig. 11.33 curve 2 shows the found N H 
wavenumber vs N O distance in the hydrogen bond N H O for 
conjugated systems [51]. This dependence is already similar to that for the 
O H O bond. 

 Dependence 2 (Fig. 11.33) indeed shows a sharp decrease in the N H 
frequency at dN O < 2.6 Å, which is associated with an increase in 
hydrogen bonding. However, at 2.6 < dN O < 3.0 Å, the frequency of N H 
stretchings in chains of conjugated bonds is not lower but even higher than 
the N H obtained in [50], which does not fit into the concept of hydrogen 
bond strengthening proposed by the authors of [51]. Finally, in the crystals 
of amino acids, N H O hydrogen bonds reveal another, different from 1 
and 2, dependence of N H on the N O distance (dashed line 3, Fig. 
11.33). In the latter case, for dN O in the range of 2.8 - 3.0 Å, the N H is 
significantly lower than in the previous two cases. Thus, the N H O 
hydrogen bond in compounds of various types demonstrates a significantly 
different functional dependence of the N H vibrational frequency on the 
N O distance. This makes it completely different from that of O H O 
bonds.  

There are two reasons for the fundamental difference between 
O H O and N H O hydrogen bonds. One of them, the main one, is that 
the nitrogen atom, in contrast to the oxygen atom, can have different 
oxidation states in chemical compounds. Indeed, the vibrational frequency 
of hydrogen-bonded N H should substantially depend on the charge state 
of the nitrogen atom, and each of these states will have its own specific 
dependence of the N H on the N O distance. Another reason, less 
obvious, relates directly to the mechanism of the hydrogen bond formation. 
Donor oxygen atoms in O H O use predominantly p-atomic orbitals to 
make O H bonds, while donor nitrogen atoms in N H O use mainly 
hybridized spn-atomic orbitals to bond with a hydrogen atom. In the latter 
case, the degree of participation of the s- or p-components will depend on 
the charge of the acceptor atom (i.e., in both cases, the acceptor oxygen) 
[52]. This is the Bent's rule [53], according to which, in the X H···Y 
hydrogen bond, the hybridized orbitals of the X atom have predominantly 
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s-character in the case when they are directed to the electropositive 
substituent (i.e., Y), and predominantly p- character  in the case of an 
electronegative substituent. The character of the hybridized orbitals on the 
X H Y bond determines the ratio of the radii of the X and hydrogen 
atoms and, consequently, the length of the X H bond. Thus, with the s-
character of hybridized X orbitals, the X H bond length decreases, and the 

X H vibrational frequency increases. For p-character, the opposite is true. 
Thus, the N H frequency is not a good descriptor for the strength of 

the N H O hydrogen bond. This is the main difference between the 
N H O and O H O bonds. As mentioned above, the donor oxygen atom 
in O H O mainly uses only p-atomic orbitals for bonding with the 
hydrogen atom in any type of compound. For this reason, there may be 
just one dependence of O H on dO O in O H O hydrogen bonds, which 
manifests itself in a wide range of bond lengths and vibrational 
frequencies (Fig. 11.9). 

11.5.2. Weak C-H Y bonds. "Blue" shift 

Hydrogen C-H Y bonds are very weak, with an energy of interaction 
comparable to the energy of van der Waals bonds, but the spectroscopic 
manifestation of these bonds has been reliably established. In the 
literature, however, there is no information on the experimental 
dependence of the C H stretching vibrations on the C Y distance similar 
to those that exist for O H O and N H O bonds. The reason for this is 
not so much the smallness of the effect, but rather the unusual properties 
of the C-H Y hydrogen bond. The fact is that along with the usual shift of 
the C H to the low-frequency region during the occuring of the C H Y 
hydrogen bond (“red” shift), sometimes C H is shifted to the high-
frequency region (“blue” shift). This phenomenon remained unclear for a 
long time, and only in the last decade has a quantum-chemical model 
appeared which satisfactorily explains the nature of the "blue" shift. 

The reason for the unusual behavior of the C H Y bond was the 
carbon atom, which, unlike other donor atoms, actually uses the 
hybridized atomic sp3 orbitals in the formation of valence interactions with 
neighbors. In this case, the Bent rule, which was discussed in the previous 
section, comes into force. And, taking into account the weakness of the 
C H Y bond in general, the effect of the Bent rule can shift the C H 
frequency to both high-frequency and low-frequency regions.  
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11.6. Conclusion 

As shown above, an extremely strong hydrogen bond can occur under 
two conditions: 1) complete identity of the donor and acceptor atoms and 
2) high electronegativity of both the donor and acceptor. From this point 
of view, the hydrogen O H O bond seems to be almost ideal for the 
realization of a strong bond. Another common bond in chemistry, 
N H N, yields to O H O in the second condition  the electronegativity 
of nitrogen atoms. On the other hand, the strongest hydrogen bond that 
exists in nature is the symmetric F H F, the energy of which is explained 
precisely by the very high electronegativity of fluorine atoms. But the 
F H F bond is more of a curiosity in chemistry in terms of its prevalence 
than the subject of serious research. 

The electronegativity of oxygen-acceptor is the parameter that sets 
the rigidity of a hydrogen bond in a wide range, from weak to extremely 
strong. It is the low or zero electronegativity of oxygen atoms that can 
explain the fact that in many framework silicates or aluminosilicates, a 
water molecule included in the crystal cavity practically does not interact 
with the neighboring oxygen atoms. In framework crystals, oxygen atoms 
forming a cavity in the lattice are, as a rule, bridging between two silicon 
atoms. The valence orbitals of such oxygen atoms are saturated, and they 
do not show a tendency to interact with the hydrogen atoms of the H2O 
molecule included in the cavity. 

Finally, the O H O hydrogen bond very often acts as the base of 
another extremely interesting and important phenomenon in chemistry  
tautomerism. Tautomeric O H O hydrogen bonds allow us to investigate 
complex processes of proton dynamics on a hydrogen bond - tunneling 
and jumping, significantly expanding our knowledge of the behavior of 
quantum particles such as the proton. 
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CHAPTER 12 

VIBRATIONS OF THE H2O MOLECULE IN THE 
CAVITIES OF BERYL AND OTHER MINERALS 

 
 
 
This chapter will mainly consider the application of Raman 

spectroscopy to study the states of single molecules isolated in cavities of 
mineral crystals. 

Many minerals have small cavities in their structure, often forming 
channels in the crystal. In such cavities "foreign" atoms or small molecules 
such as H2O, CO2, N2, CH4, etc. can be included. Thus, these crystals are 
part of a wide and extremely interesting chemical class of inclusion 
compounds. Most interest in research inclusion compounds represents the 
guest-host interaction, the orientation of the guest molecule in the cavity, 
and the behavior of the included molecules under various external 
conditions, i.e. pressure and temperature. 

Beryl, Be2Al3Si6O18·xH2O, of space group P6/mcc, is a framework 
structure consisting of hexagonal six-membered tetrahedral rings (Fig. 
12.1), which are crosslinked in the (0001) plane by tetrahedra and 
octahedra to form a three-dimensional framework. The cavities are formed 
by oxygen atoms of the beryl lattice (open circles in Fig. 12.1). The six-
membered rings are stacked over one another to produce infinite channels 
running parallel to (0001). The rings form bottlenecks with a diameter of 
about 2.8 Å, in which large alkali cations, such as K, Na (dark circles in 
Fig. 12.1), can be incorporated. In cavities (diameter about 5.1 Å) between 
the bottlenecks, various molecules (H2O and CO2) and neutral atoms (Ar) 
can be incorporated.  

Over the past 70 years, numerous studies have been made to 
investigate the nature of molecular H2O in beryl. It was shown that two 
different types of H2O can be held in the channel cavities, namely Type I 
and Type II (Fig. 12.1). 

The spectral properties of both types of water molecules differ 
significantly, which makes it possible to study them separately. 
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Fig. 12.1. Positions of water Type I and II in 
beryl channel. White doted circles are oxygen 
atoms; black doted circles are alkali ions. The c 
axis of the crystal coincides with the axis of the 
channels and is the rotary axis C6. 

 
 
 

12.1. H2O, Type I 

The raman spectrum of beryl in the frequency range of 2  vibrations, 
type I (the absence of alkali cations in the crystal), is shown in Fig. 12.2. 
The spectrum contains only one band with a peak position at 3607 cm-1, 
and is related to the totally symmetric stretching mode 1 (see Fig. 4.10). 
Asymmetric stretching vibration 3 is not observed at room temperature. 
This fact alone indicates that the interaction of the H2O molecule with the 
environment is very weak. 

 
 
 
 
 

Fig. 12.2. Polarized Raman spectra of 
H2O molecules, type I in beryl cavities 
at room temperature. 
 

 
 

The orientation of the type I water molecule in the cavity can be 
easily determined based on the dependencies given in Figs. 12.3 and 12.4. 
Fig. 12.3 shows the angular dependences of the intensity 1 in the ab plane 
(perpendicular to the channel axis) and in the ac plane (including the 
channel axis). 

It follows from the figure that the molecule does not have a preferred 
orientation in the ab plane, but is oriented in a certain way in the ac plane. 
Since the polarizability of a bond is determined by its longitudinal 
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component and the angle between the O H bonds in 2  is greater than 
90 , the maximum intensity 1 in the direction of the C-axis of the crystal 
(Fig.12.3) indicates such a preferred orientation of the molecule in the 
cavity, at which its vector H···H is directed along the axis of the channels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.3. Angular dependence of the intensity of the stretching vibrations 1 at 
3607 cm-1 in the beryl cavity. In each of the figures, the zero value of the rotation 
angle means the direction of the polarization vector of the incident and scattered 
light parallel to the axis a (figure on the left) or c (figure on the right). An increase 
in the angle means rotation of the crystal by a given amount in the ab (left) and ac 
(right) planes with the direction of the polarization vectors unchanged. 

 
However, the IR absorption spectra provide unambiguous information 

about the H2O orientation in the beryl cavity (Fig. 12.4). In them, the line 
3700 cm-1, related to vibration 3 and indicating the direction of the dipole 
moment in the vibration, i.e. direction of the vector H···H of the molecule, 
is intense in the spectrum in which the polarization vector of the incident 
wave is parallel to the c axis of the crystal, and has zero intensity for 
polarization perpendicular to the axis channels. Thus, the H2O molecule, 
type I is oriented in the beryl cavity as shown in Fig. 12.1 in relation to the 
channel axis and has a free orientation in the plane perpendicular to the 
channel direction. 

As the crystal temperature decreases, the Raman spectra change 
significantly (Fig. 12.5) and exhibit several remarkable features. 
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Fig. 12.4. IR absorption spectra 
of 2  in beryl. The incident 
wave is polarized along (solid 
curve) and perpendicular (dotted 
curve) to the c axis of the crystal. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.5. Spectra of H2O in beryl at different temperatures. Each subsequent 
spectrum is shifted relative to the previous one by 5 cm-1 for better visualization. 

 
First of all, the intensity of the 3 mode (3704 cm-1 at 5 K), which is 

almost zero at room temperature, becomes noticeable at 5 K. This means 
that changes in the polarizabilities of the  bonds of the water molecule 
in the v3 vibration no longer cancel each other out, as this takes place in a 
completely free molecule. In other words, the molecule becomes asymmetric 
due to the interaction of one of its hydrogen atoms with the environment. 
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The most sensitive parameter of the interaction of a molecule with the 
environment is the frequency of the stretching vibration itself, 1 or 3. 

Fig. 12.6 shows how the intensity of the 3 mode and the frequency 
of the 1 mode change with temperature. Both dependencies reveal 
saturation at ~ 50 K. The change in the frequency 1 is so small (~ 2 cm-1) 
that it is, possibly, only a reaction of the cavity size to the temperature 
change, but does not indicate the formation of a hydrogen bond between 
the H2O molecule and the cavity. The intensity of the 3 mode at low 
temperatures, although nonzero, is also rather weak. Perhaps this is due to 
the displacement of H2O from the center of the cavity, which will cause to 
the appearance of an asymmetric crystal field on the molecule. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.6. Dependence of the vibrational frequency 1 (a) and the intensity ratio 
3/ 1 (b) on temperature 

 
Of greatest interest in the spectra is the behavior of a broad band with 

a maximum at 3712 cm-1 and manifested in the spectrum as a shoulder of 
the 3 mode. This band is shifted to a high-frequency region with 
increasing temperature and at the same time it appears in a low-frequency 
side mirroring of 3 mode. Obviously, these bands represent the 
summarized (Stokes) and difference (anti-Stokes with respect to low-
frequency vibration, which "perishes" during scattering) combined tones 
of the v3 mode and vibrations  with a very low frequency. Since the 
combined tones appear in the ac spectrum simultaneously with the 3 
mode of the B1 symmetry, the symmetry of the so far unknown mode  
must be A1 in order for their direct product to remain the B1 symmetry. 
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Fig. 12.7 shows the deconvolution of a low-temperature spectrum 
into components, from which it follows that the Stokes part the spectrum 
consists of a set of combined lines 3 + n, where 3 = 3703.7 cm-1 and 1 
= 6.3 cm-1. However, the position of the maxima of the decomposition 
components does not remain constant, as might be expected for a 
harmonic oscillator, but increases as the vibrational states with large n are 
populated, reaching ~ 50 cm-1 at room temperature (Fig. 12.5). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.7. Deconvolution of low-temperature Raman-spectrum into individual 
components. 

 
The observed "inverse anharmonicity" (i.e., an increase in the 

frequency of the vibrational transition with increasing temperature, and 
not its decrease, as it happens for ordinary vibrational modes) can take 
place only in two cases. In the first of them, the H2O molecule should be 
so free in the crystal cavity that the potential function of its interaction 
with the environment can be described by the state of a “particle in in the 
box”. In this case, the emerging discrete states are determined by the 
expression [1] =     (12.1) 
 
where m is the mass of the particle, a is the width of the potential well, i.e. 
the difference between the size of the cavity and the molecule, and the 
ground state corresponds to n = 1. From (12.1) it follows that the energy of 
the transition between neighboring vibrational states will increase as n2, 
that is, increase rapidly when the excited states are populated. 

In the second case, the observed combined tones should be attributed 
to the rotational states of H2O in the cavity, since the energy of the latter is 
determined by expression (2.56) from Chapter 2 and is proportional to J2 + 
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J, where J is the rotational quantum number. In other words, the energy of 
rotational transitions between neighboring excited states increases even 
faster than for translational modes of a particle in a box. It should be noted 
that the rotational states of the free H2O molecule in the gas phase are well 
known and noticeably exceed the values of the frequencies observed here. 
Therefore, in this case, we can only talk about hindered rotations of the 
molecule in the cavity. 

For the correct assignment of the combined modes observed in Figs. 
12.5 and 12.7, it is necessary to a) determine which of the assumed types 
of motion have A1 symmetry, and b) estimate the energy of states with an 
increasing quantum number for various types of motion. 

Determining the symmetry of states is not a simple task, since the 
result depends on how the cavity affects the movement of H2O molecules. 
If a molecule is completely free and does not interact with the environment, 
then the symmetry of its translational and rotational displacements is 
determined by the irreducible representations of the symmetry group of 
the molecule itself, i.e. C2v. This analysis has been done before, in Chapter 
4 (see Table 4.5 and Figure 4.10). It can be seen that, in this case, the Tz 
translations (i.e., displacements along the C2 axis of the molecule) belong 
to totally symmetric vibrations. However, if the crystal cavity restricts 
(slows down) the movement of molecules, then the symmetry of the 
displacements is determined by the symmetry group of the cavity C6h. As 
can be seen from the table of characters of the C6h group (Appendix D), 
rotations Rz of the H2O molecule are totally symmetric, where the 
subscript z refers to the crystal coordinate system and means rotation 
around the C6 axis of the cavity. For the final assignment of combined 
modes, let us calculate the energy of states for translational vibrations of a 
molecule in the box and for its hindered rotations (Table 12.1). 

It can be seen that the hindered rotations of the H2O molecule around 
the C6 axis in the crystal cavity correspond to the experiment to a greater 
extent than the H2O translations. However, the fact that the experimental 
increase in the transition energy with an increase in the quantum number is 
ahead of even the strongest theoretical dependence makes it appropriate to 
consider the nature of hindered rotations in more detail. 
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E2
E1 E2
E1

Table 12.1. Energies of transitions n  n+1 (cm-1) between neighboring states for 
different types of motion 

 
Changing the 

quantum number 
n or J 

Harmonic 
oscillator 

«A particle in 
the box» 

Hindered 
rotations 

This 
work 

0 1 -1 -1 -1 -1 
1 2  10.5 12.6 13.4 
2 3  14.7 18.9 21.4 
3 4  18.9 25.2 30 
4 5  23.1 31.5 42.3 

 
The hexagonal cross section of the cavity (i.e., the presence of the C6 

axis) makes the potential of interaction of the H2O molecule with the 
environment as shown in Fig. 12.8. Since the molecule rotates, its 
potential energy is higher than the height of the barriers, and in Fig. 12.8 it 
is shown with a dashed line. When a molecule is between barriers, its 
energy is equal to E1, and its momentum is = 2 . When above the 
barrier, the energy  E2, and the momentum  = 2 . Therefore, 
passing over the barriers, the molecule loses speed and its rotation slows 
down (see Ref. [2] for details). This is hindered rotation. For us, however, 
it is important that with increasing temperature the size of the cavity 
increases, and the height of the barriers decreases. This effect will cause an 
increase in the frequency of hindered rotation, which is observed in Fig. 
12.5.  

 
 
 
 
 
 

Fig. 12.8. Occurrence of hindered 
rotations of the H2O molecule in 
the beryl cavity. 

 
 
The decomposition 

shown in Fig. 12.7 contains not only Stokes, but also anti-Stokes 
components. The appearance of anti-Stokes modes at 5 K is undoubtedly 
due to the extremely low frequency of hindered rotation of the water 
molecule. It allows us, taking into account relation (1.27), to estimate the 
true temperature of the crystal at the place where the spectrum is 
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measured. The latter can differ from the crystal temperature indicated by a 
thermal sensor due to local heating of the sample by a focused laser beam. 
The temperature calculated from the ratio for the Stokes / Antistokes 
intensities (1.27) is 7 10 K instead of 5 K as indicated by the sensor. 
Thus, heating a transparent crystal by laser radiation (  = 488 nm, 
radiation power ~ 1 mW at the crystal surface, spot diameter ~ 1 m) is 2 - 
5 deg. 

Fig. 12.9 shows the polarized spectra of 2 , type I in beryl at 5 K.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.9. Polarized spectra of Type I H2O vibrations in beryl cavities at 5 K. 
 

They have wide and weak bands spaced about 200 cm-1 from 1 or 3, 
which must be attributed to combined modes of the 1 and 3 and external 
H2O vibrations, i.e. translations or librations. It is known that the 
frequency of translational displacements of H2O molecules in ice crystals, 
where all the molecules are united by a network of hydrogen bonds, is 230 
cm-1 (see Figure 9.10 in Chapter 9). Since there is no interaction of H2O 
with the walls in the beryl cavity, the frequency of the translational modes 
should be significantly lower than 200 cm-1, and the observed broad bands 
cannot be attributed to combinations with the participation of H2O 
translations. Consequently, the observed modes must be attributed to the 
summarized tones of stretching vibrations 1 or 3 and librational 
vibrations of H2O, which arise in those cavities of the crystal in which, for 
some reason, hindered rotations of molecules are not realized. Table 12.2 
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lists the conditions for the registration of combined tones in the Raman 
spectra of beryl crystals. 

As you can see from Table 12.2, two different vibrations with 
frequencies of 193 and 212 cm-1 take part in the combined modes. To 
determine their symmetry and make the correct assignment, it is necessary 
to establish the symmetry of the combined vibrations. But now, in contrast 
to the case described above, we must consider the symmetry of both types 
of vibrations in the C3v group of the H2O molecules themselves, since all 
vibrations are carried out in fixed positions of the molecule, for which the 
cavity symmetry has no effect. This is easy to do, taking into account the 
orientation of H2O, type I in the cavity, and the relationship between the 
axes of the crystal and the molecule (Table 12.2). 

 
Table 12.2. Wavenumber of components (cm-1) and symmetry of the combined 
modes of the second order Raman spectra of H2O molecules 

 
Wavenumber of  

combination mode 
Geometry of 

scattering 
Components 
wavenumber 

Symmetry of the 
molecular mode 

3895 (aa, cc) 3 (3702) + 193 A1 
3914 (ab) 3 (3702) + 212 A2 
3821 (ac) 1 (3606) + 215 A2 or B1 

 
Knowing the symmetry of the combined mode and one of its 

components ( 1 or 3), it is easy to find the symmetry of the second 
component according to the rules of the direct product for second-order 
spectra: 

aa, cc  A1 = B1 ( 3)  B1  B1 (Tx, Ry) 
ab  B2 = B1 ( 3)  A2  A2 (Rz)  
ac  (A2, B1) = A1( 1)  (A2, B1)  A2 (Rz), B1 (Tx, Ry) 
 
Hence it follows that one of the components of the recorded 

combined vibrations should be assigned to the librations Rz (212 cm-1), and 
the other  to Ry (193 cm-1). Here, the designations for the directions of the 
restricted rotation refer to the coordinate axes of an isolated molecule (see 
Fig. 4.1). The difference in the libration frequencies of the 2  molecule 
around the z and y molecular axes corresponds to the difference in its 
moments of inertia Iz and I . 
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12.2. H2O, Type II 

The question of the behavior of H2O molecules, type II in the beryl 
cavity at different temperatures was practically not considered in literature. 
Fig. 12.10 shows polarized spectra natural crystals of beryl containing 
H2O molecules of both types, I and II. The bands at 3599 and 3664 cm-1 
refer to the 1 and 3 modes of H2O molecules, type II, respectively. The 
fact that the antisymmetric 3 mode is intense in the ac spectrum and is not 
observed in ab, unambiguously indicates the orientation of the molecule in 
the cavity, as shown in Fig. 12.1: vibration 3 is intense in the plane, and 
parallel to the plane of the molecule. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12.10. Polarized Raman spectra of beryl crystals containing H2O molecules of 
both types, I and II. a  295 K, b  3 K 

 
In the spectra shown in Fig. 12.11, a rather strange feature is 

revealed: the bandwidth is 3599 cm-1 ( 1 H2O, type II) increases with 
decreasing temperature. Of course, this is not line broadening per se (with 
decreasing temperature, only vibrational modes can narrow). This means 
that some additional components within the 1 band appear at low 
temperatures. Indeed, the deconvolution of the spectra (Fig. 12.12) shows 
that the mode 1 consists of four components (3568, 3581, 3591, and 3599 
cm-1) at 3 K and only two (3568 and 3598 cm-1) at room temperature. 

The registration of two components of the 1 mode at 295 K is not 
surprising, since the vibration frequency depends on how much water 
molecules, one or two, are associated with an alkaline cation (see Fig. 
12.1). In other words, one of the components, 3588 cm-1, relates to a single 
water molecule, and the other, 3598 cm-1, relates to a pair. The nature of 
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the additional low-temperature states, however, is quite different. To 
interpret the observable spectrum, it is necessary to assume that the H2O 
molecule is free and rotates around the molecular axis C2 (which coincides 
in this the case with the C6 axis of the crystal channels, see Fig. 12.1). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 12.11. H2O spectra. a  at different temperatures, b  cc spectra at 300 K and 
3 K  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12.12. Deconvolution of 300 K- (a) and 3 K-spectra (b) into Gaussian 
components 

 
It is well known that the H2O molecule is characterized by two 

different states of the nuclear spin, ortho- (the spins of hydrogen atoms are 
parallel, total spin I = 1) and para- (spins antiparallel, I = 0) (Fig.12.13). 
The moment of rotation J around the molecular axis C2 can take odd 
values J = 1, 3, 5, ... for ortho-H2O and even J = 0, 2, 4, ... for para-
isomers. The statistical nuclear weight (2I + 1) makes the ratio of ortho-
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para isomers equal to 3:1 at room temperature, which is actually observed 
in the gas phase [3]. The para  ortho transition is forbidden, at least in 
the absence of collisions or chemical interactions. Free rotation of type II 
H2O molecules around the C2 molecular axis in beryl cavities must obey 
the selection rules for nuclear isomers.  

With a decrease in temperature, para- 2  pass into the zero 
rotational state (J = 0), and the ortho-isomers are forced to remain in one 
of the excited rotational states at any temperature. In this case, para-H2O 
molecules occupy a fixed state in the cavity, in which their interaction 
with the environment slightly changes, which causes a change (decrease) 
in the vibration frequency 1 of the molecule at rest. For this reason, the 
vibration frequencies of ortho- and para- 2O molecules should be 
different at  <30 K, i.e. the temperature corresponding to the difference 
in the energies of the lowest ortho- and para-rotational states of H2O [3]. 
Furthermore, the appearance of two additional components in the low-
temperature spectrum is a consequence of the spectral separation of ortho- 
and para-isomers of single and paired H2O molecules. Thus, type II H2O 
molecules in beryl cavities are isolated, fixed, strictly oriented, and freely 
rotate around the C2 molecular axis, and their total nuclear spin has a value 
of 0 or 1. 

 
 

 
 
 
Fig. 12.13. Ortho- and para-isomers of H2O 
molecules. 

 
 
 

12.3. H2O in cavity of other minerals 

Single (isolated) H2O molecules in crystal cavities turned out to be a 
very convenient object for studying the properties of the O H O 
hydrogen bond. The fact is that water molecules in crystals fill almost the 
entire range of possible states in terms of the number of hydrogen bonds: 
from 2  not associated with the environment to 2  with one, two, 
three, and four hydrogen bonds per molecule, which are the same or 
different in force constant. This makes it possible to differentiate the 
properties of hydrogen bonds and create a kind of “database” of the 
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properties of hydrogen bonds of H2O and the water molecule itself under 
various conditions. In addition, the 2  molecules in the cavities of 
crystals are ordered and oriented, which creates favorable conditions for 
the use of an effective apparatus of polarization Raman spectroscopy of 
oriented crystals to study their vibrational spectra. Finally, vibrational 
spectra of single molecules in crystals can be easily obtained in a wide 
range of temperatures (from 3 K to crystal dehydration temperatures, i.e., 
300-800 C) and external pressures. 

The main spectral characteristics of hydrogen-bonded O H stretching 
vibrations, i.e. their frequency, half-width, intensity and polarization, have 
been discussed in detail in Chapter 11. Here we will briefly discuss only 
those features that are inherent only in the hydrogen bonds of H2O 
molecules in the cavities of mineral crystals. 

 Symmetry group of the H2O molecule  C2v. In a free molecule in 
the gas phase, the O H bond length is 0.9572 Å, and the angle between 
bonds is 104.52 °. All three vibrational modes, i.e. symmetric stretching 1 
(A1), symmetric bending 2 (A1) and asymmetric stretching 3 (B1), are 
active in Raman and IR. The wavenumber of internal vibrations of free 
H2O molecules are well known both from experimental measurements and 
numerical calculations: 3656.65 ( 1), 1594.59 ( 2), and 3755.79 cm-1 ( 3). 

In the cavities of crystals, the wavenumbers of stretching vibration 
are shifted to the low-frequency region by a small amount, ~ 50 cm-1, 
already only due to the crystal environment. Perhaps this effect is due to 
the appearance of a small van der Waals interaction with the host crystal 
lattice. A further decrease in the frequency of H2O vibrations occurs due to 
hydrogen bonding (see Chapter 11). 

Very often, the two hydrogen bonds that the H2O molecule creates in 
the crystal cavity as a donor are different in terms of the force constant. In 
this case, the concept of a symmetric and asymmetric mode loses its 
meaning, and the vibrations of each of the two O H bonds become largely 
individual. 

The intensity of symmetric and asymmetric stretching vibrations also 
strongly depends on hydrogen bonds with the environment. In a strictly 
symmetric H2O molecule, the intensity of asymmetric mode 3 in Raman 
spectra is practically zero (Fig. 12.14). This is due to the fact that, in the 
asymmetric mode, changes in the polarizabilities of the O H bonds occur 
in opposite phases and compensate each other, while in the symmetric 
mode they add up. However, as the O-H bonds in the molecule become 
different, their vibrations become close in intensity. In addition, this 
intensity is practically independent of the rigidity of the hydrogen bond as 
long as the bonds themselves remain in the weak range.  

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 12 
 

216

 

 

Fig. 12.14. Unpolarized Raman spectrum of H2O in 
the gas phase in the region of stretching vibrations 

 

 

 
Fig. 12.15 shows the polarized Raman spectra of O H bond 

vibrations in the scolecite lattice, Ca8 [Al16Si24O80] 24H2O, where each 
cavity contains three water molecules of different degrees of hydrogen 
bonding with oxygen ions of the host crystal. It can be seen that all lines 
related to O-H vibrations have approximately the same intensity, i.e. there 
is no noticeable change in the intensity of the bands with a change in the 
strength of the H-bond. 

 
 
 
 
Fig. 12.15. Polarized Raman spectra of H2O in scolecite 
at 4 K [4] 

 
 
 
 
 
 
 
 

Fig. 12.16. Organization of hydrogen bonds of hydroxyl 
groups and H2O molecules in a lawsonite cell, 
CaAl2(Si2O7)(OH)2 H2O. 
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In lawsonite (Fig.12.16), there are O H bonds belonging to both a water 
molecule and hydroxyl groups, and the spread in vibration frequencies (H-
bond strength) is very large - from 2780 to 3620 cm-1 at 4 K (Fig.12.17). 
But here, too, a monotonic dependence of the intensity of the bands on the 
frequency is not observed, which follows from the polarized spectra of 
lawsonite (not shown here). Thus, the intensity of O H vibrations of the 
O H O hydrogen bond in Raman spectra is practically independent of the 
bond strength in the region of weak and moderate hydrogen bonds. But 
this does not apply to strong H-bonds (see Chapter 11). 

 
 
 
 
 
 

Fig. 12.17. Raman spectrum of lawsonite in the 
region of O – H stretching vibrations at 4 K. 
Weak bands on the high-frequency wing of the 
line at 2776 cm–1 refer to composite vibrations of 
hydrogen-bonded O – H and translational modes 
[5]. 
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CHAPTER 13 

SPECTROSCOPY OF MOLECULAR CRYSTALS 
 
 
 

13.1. General remarks 
 

Weak chemical interaction between molecules leads to the formation 
of molecular crystals. And although crystals of some simple substances 
(hydrogen, halogens, nitrogen, and oxygen), organometallic compounds, 
crystals of polymers and proteins are also referred to as molecular crystals, 
we will discuss here the most common molecular crystals formed by small 
organic molecules. 

Intermolecular interaction in molecular crystals is determined by the 
weak van der Waals interaction and about an order of magnitude stronger 
hydrogen bonding (but still weak in relation to other, traditional types of 
bonds). The relationship between the one and the other can be very 
different. For example, amino acids have developed hydrogen bonds and 
are capable of forming bulky networks of hydrogen bonds, and the van der 
Waals interaction can be neglected. Compounds with an acetamide group, 
for example, paracetamol, form hydrogen bonds in only one plane, and 
interplanar interactions are van der Waals interactions. In crystals of 
benzoic acid, two neighboring molecules are linked by a strong (relatively) 
hydrogen bond, forming dimers, and the interaction between the dimers is 
van der Waals. 

The most interesting feature of molecular crystals is the strong 
dependence of their structure on temperature and pressure. The organic 
molecules that make up the crystal, as a rule, are low-symmetry, the 
network of their bonds with neighboring molecules reflects the structure of 
the molecule, and the bonds themselves are weak and easily subject to 
stretching or compression under external influence. This causes the fact 
that with a change in temperature or external pressure, various 
intermolecular bonds in the crystal change to different degrees, as a result 
of which the molecules in the unit cell are forced to correct the relative 
orientation, tracking the change in all interactions with the environment. In 
other words, molecules in a cell are orientationally mobile. This mobility 
includes both small rotations of molecules in the cell as a whole, and 
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rotations of individual fragments of a molecule relative to each other, a 
change in the conformation of molecules, a change in the direction of 
hydrogen bonds (i.e., switching a bond from one acceptor to another), the 
emergence of multicenter hydrogen bonds, and others. Consequently, by 
changing the lattice parameters of a crystal, one can trace how the 
intermolecular interactions are organized in it. It is the mobility of 
molecules  orientational, conformational, in the switching of hydrogen 
bonds and the formation of new ones, and finally, in structural phase 
transitions – that is the subject of study of molecular crystals. 

Another compelling reason for the need to study the dynamics of 
molecular crystals is as follows. Recently, approaches to the study of 
biological objects have been persistently developed. These compounds are 
so complex that the use of traditional physical methods in their usual form 
often encounters serious difficulties. And if NMR-, EPR-, and Mössbauer 
spectroscopy deal with individual nuclei (atoms) in molecules and their 
use can be quite effective, then all 3n-6 normal vibrations will inevitably 
appear in the vibrational spectrum (excluding the case of resonance on 
vibrations of one selected fragment in molecule), which, of course, causes 
the overlap of vibrational modes and the registration of broad structureless 
bands in the spectrum. 

At the first stage, however, one can start by investigating small 
components, the “building blocks” from which complex biological objects 
are built. Some of these components are amino acids and compounds with 
an acetamide group, many of which are drugs. Studies of molecular 
crystals formed by these compounds are extremely useful both in 
themselves and in terms of their properties as a component of biological 
molecules. 

The effects observed in the vibrational spectra of molecular crystals, 
depending on the external influence, are so diverse that it is currently 
impossible to make a general description of them. Therefore, this chapter 
will discuss, on the one hand, the methodology and set of experimental 
techniques used in the study of molecular crystals, and on the other hand, 
we will try to show, using several specific examples, what a researcher 
may encounter when working with molecular crystals. 

The lattice parameters can be varied using temperature or pressure. 
Undoubtedly, the application of external pressure is the most direct and 
immediate way of changing the lattice parameters. However, since the 
experiment is carried out at room temperature, many lines in the spectrum 
are already significantly broadened, and in the low-frequency region of 
crystal vibrations they are broadened so much that they overlap with each 
other and form wide bands that do not allow the correct decomposition 
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procedure into components. This deprives the experimenter of the 
opportunity to trace the wavenumber of the most interesting vibrations, 
namely, translational intermolecular modes, which directly reflect changes 
in the hydrogen bond network. A change in temperature in the range 
4 K  300 K (at higher temperatures, many molecular crystals begin to 
break down) also makes it possible to vary the lattice parameters, but in a 
smaller range than in the experiment with pressure (the lattice parameters 
change in the temperature range 4 K  300 K to approximately the same 
degree as when the external pressure changes from 0 to 1  2 GPa). 
However, with decreasing temperature, the lines narrow significantly, 
which, firstly, often reveals new spectral features that are inaccessible at 
room temperature, and, secondly, it allows one to describe the behavior of 
the spectral parameters of vibrational modes (frequency, half-width, and 
integral intensity) by well-known analytical expressions that facilitate 
detection and interpretation of ongoing structural changes. In what 
follows, we will use temperature as a tool for influencing the crystal lattice 
parameters. 

13.2. Methodological features 

Powder or crystal? 
Polarization measurements of oriented crystals are needed when it is 

necessary to assign vibrational modes in the spectrum to the known 
directions of interatomic bonds in the crystal structure or to register 
individual spectral lines in a group of overlapping vibrational modes. In 
other cases, the spectra of powders are quite competitive with the spectra 
of crystals, but at the same time they require three times less time for 
registration. The difficulty in recording the spectra of both powders and 
crystals at different temperatures is establishing reliable thermal contact 
with the cryostat coolant line so that the recorded temperature of the 
coolant line corresponds to the sample temperature. This issue will be 
discussed below. 

 
Crystal orientation 
Of course, a reliable determination of the direction of the 

crystallographic axes is carried out on a single crystal X-ray diffractometer. 
However, this procedure is time consuming and not always justified. The 
point is that to record the temperature dependences of polarized spectra, it 
is necessary to have several samples (this is dictated by the measurement 
conditions, see below). Samples of crystals, as a rule, are small in size (up 
to tenths of a millimeter), and their mechanical strength is extremely low. 
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In other words, the prepared sample may break, be lost, or become 
unusable for measurements for some reason. Therefore, a reasonable 
alternative is to select several samples for measurement and orientate them 
using their Raman spectra. 

Monoclinic crystals usually have the form of either elongated 
polyhedrons (needles) or plates, i.e. have a selected direction coinciding 
with one of the crystallographic axes. Let's conditionally call this selected 
direction the z-axis. The other two axes, conventionally x and y, are 
located in the cross section perpendicular to z, and to find them, it is 
necessary to compare the spectra polarized along the directions 
perpendicular to the sample faces as shown in Fig. 13.1.  

 
 
 

Fig. 13.1. Registration of polarized spectra in the 
crystal plane perpendicular to the selected z-axis 
to determine the orientation of the sample 
 
 

 
 
For this, it is not necessary to obtain high-quality spectra in the entire 

range; it is sufficient to have, for example, the spectra of the low-
frequency region of crystal vibrations. If a pair of spectra polarized along 
mutually perpendicular directions (in the figure, for example, directions 11 
and 33) differ from each other in the position and intensities of the main 
lines, then these directions coincide with the crystallographic axes. The 
tabular values of the Raman tensor for a given symmetry group are 
determined for fixed directions of the crystallographic axes of this group. 
Therefore, the Raman tensor for any of the vibrational modes of the 
spectra under consideration takes the same value when rotated by + 45  
and - 45  around z (the components of the rotated tensors may have 
different signs, but the line intensity in the polarized spectrum is 
proportional to the square of the Raman tensor component). Consequently, 
the spectra of the other pair, polarized along the directions rotated by ~ 45  
relative to the first, (i.e., spectra 22 and 44), should be essentially the 
same. Thus, we get three selected directions coinciding with the crystal 
axes, and we can carry out polarization measurements. The binding of the 
selected directions to specific crystallographic axes of a previously known 
crystal structure can be done later, after obtaining complete spectra in 
different directions, in accordance with the intensities of characteristic 
vibrations in the polarized spectra. The modes of stretching vibrations 

44 

33 
22 

11
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N H O and O H O of hydrogen bonds are especially useful for this 
purpose, since they are polarized and their being in the spectrum usually 
does not cause difficulties. The proposed method for determining the 
direction of the crystal axes is not rigorous, but it turns out to be accurate 
enough for carrying out polarization measurements. 

 
Temperature measurements  
Modern optical helium cryostats for Raman measurements are 

installed in place of the object stage of the entrance microscope of the 
spectrometer. Temperature controls are completely computerized, and in 
reality, there is only one problem - the problem of achieving full thermal 
contact of the sample with the cryostat cold finger. The use of various 
special adhesives for this purpose is not an optimal solution, since there is 
always the possibility of strong luminescence from the adhesive. In 
addition, it is often necessary to install the sample on the cold finger in 
such a way that the contact area between the cold finger and the crystal is 
minimal, for example, when installing on a thin crystal face or the end 
plane of a needle-shaped specimen. 

An almost ideal solution is to place the sample in a heat-conducting 
medium, for example, metallic indium, which, on the one hand, is (subject 
to its high chemical purity) soft and ductile enough so that a fragile and 
small sample can be embedded in it, and on the other hand, provides a 
reliable thermal contact of the sample with the cold finger. For this 
purpose, cavities are made in the copper substrate, which is usually 
mechanically contacted to the cryostat cold finger, and filled with metallic 
indium. Then, in indium, pits are squeezed out in such a shape that the 
sample placed in them takes the desired orientation. The installed sample 
is pressed with indium on all sides by careful movements (the crystal is 
very fragile!) so that only its upper edge remains open for recording the 
spectrum.  

 
Polarization measurements 
When measuring the polarized spectra of molecular crystals, the 

following aspects should be taken into account. 1. Crystals with low 
symmetry are birefringent, i.e. capable to rotate the plane of polarization 
of the incident and scattered radiation. For this reason, it is always best to 
choose the direction of the polarization vector parallel to the crystallographic 
axis. In this case, the rotation of the plane of polarization is minimized. 2. 
Many crystals (for example, all crystals of amino acids except glycine) are 
chiral (this does not apply to racemates, i.e. crystals containing both 
enantiomers equally). Both effects, i.e. birefringence and chirality, can 
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either enhance or neutralize each other. 3. In Raman microscopes in the 
backscattering geometry, the effective depth of the sample, from which the 
scattered radiation is collected, is small and is regulated by the confocal 
aperture. Limiting the effective scattering depth dramatically reduces the 
effect of rotating the plane of polarization. Otherwise, it would be difficult 
to explain why the lines in the spectra presented below are often strictly 
polarized, i.e. demonstrate high intensity in one crystallographic direction 
and zero in the other two. 

 
Registration and processing of spectra 
When recording spectra for a long time, it is difficult to maintain 

constant conditions that provide the required spectral measurement 
accuracy. A slight change, for example, in room temperature, will shift the 
frequency calibration of the spectrometer by a few inverse centimeters. In 
addition, the intensity of the recorded spectra depends on the parameters of 
the input and output radiation paths, which the experimenter cannot fully 
control, as a result of which the measured spectra turn out to be different 
in line intensities for reasons not related to the state of the sample. 
Therefore, before starting to process the arrays of sample spectra obtained 
during temperature and polarization measurements, it is necessary to 
correct the spectra in wavenumber and intensity. 

Wavenumber correction is achieved either by repeatedly calibrating 
the spectrometer during measurements, which is extremely inconvenient 
and does not give a 100% result, or by recording an exciting laser line (or 
some other reference line) in each spectrum, which, after the registration 
of all spectra is completed, is set for each spectrum to zero value of the 
wavenumber in the graphical editor. The registration of the laser line, 
which was practically excluded in the old-style spectrometers, has become 
possible in modern spectrometers (for example, LabRAM HR, and Horiba) 
equipped with “notch” or “edge” filters. These filters suppress the exciting 
laser line to such an extent that its intensity in the spectrum becomes 
comparable to the intensity of the Raman lines. 

Vibrational spectra of molecular crystals are very complex and 
usually consist of several tens of lines in the range from ~ 20 to 3600 cm-1. 
In this case, only the modes of stretching vibrations of the hydrogen atom 
in the C H, N H, and O H bonds can be assigned with sufficient 
certainty. All other vibrations are mixed, and it is rather difficult to 
determine the degree of participation of various bonds or fragments of the 
molecule in them on the basis of experimental data; one can only give a 
tentative description. Quantum-chemical calculation of vibrational spectra 
of molecules using modern programs gives very good results, but it should 
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be borne in mind that the reliability of the calculation extends mainly to 
intramolecular vibrations. And if there is a need to have information about 
the spectrum of intramolecular vibrations, then such a calculation is 
uncontested. However, low-frequency crystal vibrations, as well as various 
deformations of molecules, and torsion modes, which are directly 
dependent on intermolecular interactions, are no longer so reliably 
determined by calculation. In addition, the calculation is carried out, as a 
rule, for one definite structural form of both a molecule and a crystal, and 
does not cover possible transformations with a change in temperature. For 
this reason, as a first step, one can try to find those features in the behavior 
of the spectral characteristics of vibrations, which, on the one hand, will 
help to make the assignment of the mode determined, and, on the other 
hand, establish the structural changes occurring in the crystal. These 
features are manifested primarily in the temperature dependence of the 
spectral parameters of the mode. The frequency of each vibration should, 
as a rule, decrease with increasing crystal temperature, which is a 
consequence of the anharmonicity of the interaction potential and the 
associated increase in the interatomic distance (see Chapter 9). If this does 
not happen, then, most likely, we are dealing with such a change in the 
orientation of the molecule in the cell, which causes an increase in the 
intermolecular hydrogen bond and subsequent inductive effects in the 
molecule. In addition, the rate of change in the position of the maximum 
with temperature is directly related to the degree of anharmonicity of the 
corresponding bond, intra- or intermolecular. Consequently, when 
evaluating the degree of anharmonicity of vibrational modes in the 
spectrum, one can detect those that fall outside the general trend and 
establish the cause of the deviation. In the case of normal behavior, the 
line half-width increases smoothly and exponentially with the crystal 
temperature, since the lifetime of the excited vibrational state decreases. 
Violation of this process is due to a change in the decay scheme of the 
excited state as a result of a change in the network of bonds between 
molecules. Finally, the intensity of low-frequency modes (<600 cm-1) 
increases due to an increase in temperature of the population of a given 
vibrational state, and the intensity of high-frequency modes should not 
change normally with temperature. However, it is precisely in the behavior 
of the intensity of vibrations that various anomalies are most often 
observed, the cause of which is not always possible to find out. 

Of course, the discussion of the spectra is based on concepts common 
to all molecular crystals, according to which the frequency range 20 200 
cm-1 includes crystalline (intermolecular), 150-600 cm-1  torsion, 600 1700 
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cm-1 – intramolecular, and 2500 3600 cm-1  stretching C H, N H, and 
O H vibrations. The latter are usually hydrogen bonded. 

In order to show the effectiveness of Raman spectroscopy using 
polarization and temperature measurements, we will give several examples 
of studies of the properties of molecular crystals, covering various classes 
of compounds. 

13.3. Spectra of crystals of amino acids 

Amino acids include organic compounds, the molecule of which 
simultaneously contains carboxyl and amine groups (Figure 13.2). Figure 
13.2, a shows the amino acid molecule as it exists in the gas phase. When 
a crystal is formed, the hydrogen atom of the carboxyl group is transferred 
to the amino group of the neighboring molecule due to the greater affinity 
of the nitrogen atom for hydrogen. In this case, a zwitter ion (double ion) 
is created, positively charged from the side of the formed NH3

 + group and 
negatively from the side of the COO  residue. (The question of the 
magnitude of the charge can be solved using a quantum chemical 
calculation). 

 
 

Fig. 13.2. Amino acid in normal 
form (a) and in the form of 
zwitterion in crystal (b)  

 
 
 

 
The simplest amino acid is glycine, NH2 CH2 COOH, where one 

hydrogen atom plays the role of the radical fragment R (Fig. 13.2).  
Glycine crystallizes in three polymorphs, ,  and . The structure of 

-glycine is shown in Fig. 13.3. 
We will not discuss the entire spectrum of glycine in this section. Let 

us consider only a small part of it, concerning the features of the behavior 
of the bifurcation hydrogen N H O bond in the -glycine crystal. 
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Fig. 13.3. a  Fragment of the -glycine structure. b   A diagram of three 
hydrogen bonds of the NH3 group with the acceptor oxygen atoms of neighboring 
molecules (the bond in the b crystallographic direction is bifurcational). The N O 
distance (Å) is placed next to the corresponding acceptor. 

 
The polarized spectra of low-frequency crystalline vibrations of -

glycine at 5 K are shown in Fig. 13.4. Fig. 13.5 shows the dependences of 
the peak position, the half-width, and the intensity of the 118 cm-1 mode, 
which is intense in the bb spectrum. All three spectral characteristics of the 
mode demonstrate an example of normal behavior with temperature, i.e. 
behavior characteristic of anharmonic vibrations (see Chapter 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.4. Polarized spectra of crystalline vibrations of -glycine at 5 K 
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Fig. 13.5. Dependence of the peak position (a), half-width (b) and the relative 
intensity (c) of the 118 cm-1 mode on temperature of -glycine. 

 
Fig. 13.6 shows the dependence of the peak position of the 73 cm-1 

mode in -glycine as an example of the anomalous behavior of the 
vibrational mode on temperature. 

 
 
 
 
 

13.6. Dependence of the peak position 
of the translational mode 73 cm-1 on 
the temperature in -glycine. 
 

 
 
 

The unusual increase in the vibration frequency with increasing 
temperature is most likely related to a change in the intermolecular 
hydrogen bond, since the frequency range ~ 100 cm-1 refers to crystalline 
(external) vibrations. The hydrogen bond in -glycine in the direction 
along the b axis of the crystal (i.e., in the direction of polarization of the 
incident and scattered light) is bifurcational (Fig.13.3, b), and an increase 
in the frequency of the mode vibration with increasing temperature can be 
caused either by an increase in the entire hydrogen bond (which is 
unlikely), or an increase in the mode of that component of the bifurcation 
coupling, which is characterized by a larger force constant. To find out the 
reason for the anomalous behavior of the mode, it is necessary to turn to 
what happens in the high-frequency region of the stretching N-H 
vibrations of a given N H O hydrogen bond. 

The frequency range 2500-3600 cm-1, the most stable and reliable 
from the point of view of assigning the observed lines, includes stretching 
vibrations of CH, CH2 and CH3 groups (2900-3100 cm-1), hydrogen-
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bonded N H ( 3500 cm-1) and O H ( 3600 cm-1). And if the vibrational 
frequencies of C H usually very weakly depend on temperature, then the 
dependence of the vibrational frequencies of N H and O H is much 
stronger due to the change in the lengths of hydrogen bonds with a change 
in the temperature of the crystal. The polarization of these modes is rigidly 
related to the direction of the corresponding hydrogen bonds in the crystal 
lattice. 

Fig. 13.7 shows the polarized spectra of -glycine in the range of 
C H and N H stretching vibrations. Modes at 2975 and 3009 cm-1 refer to 
symmetric (in phase) and antisymmetric (in antiphase) stretching 
vibrations of the CH2 group, respectively. Band 3127 cm-1 - to the 
vibration of one of the hydrogen-bonded N-H, 2899 cm-1 - to the other. 
The third intense and wide band, 2607 cm-1, also relates to N-H hydrogen-
bonded vibrations, but its position in the spectrum and some features are 
so atypical for a vibrational mode of this type that there are still no 
comments on this topic in the literature. The nature of N H O hydrogen 
bonds in amino acid crystals is discussed in detail in Chapter 11. 

 
 
 
 
 

Fig. 13. 7. Polarized spectra of -glycine 
in the range of C H and N H stretching 
vibrations. 

 
 
 
 

Let us consider in more detail the behavior of the 3127 cm-1 mode, 
since it is related to the bifurcation hydrogen bond along the 
crystallographic direction b of the crystal (Fig. 13.3, b). This mode is 
complex and consists of two components, 3127 and 3135 cm-1 (Fig. 13.8). 
The dependences of the position of the maximum and the integrated 
intensity on the temperature of each component are shown in Fig. 13.9. 
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Fig. 13. 8. Deconvolution of the N H 
stretching vibration mode in the 
N H O hydrogen bond along the b-axis 
of the -glycine crystal at 5 K. 

 
 
 
 
 
 
 

 
The vibrational frequencies of both components increase with 

increasing temperature, i.e. the hydrogen bond weakens. This 
unambiguously indicates that an increase in the frequency of the 
corresponding intermolecular translational mode 73 cm-1 (Fig. 13.6) is due 
to a change in the vibrational eigenvector. The intensity of the components 
changes in a mutually opposite direction. Consequently, the vibrations 
refer to two different states of the hydrogen bond: at a low temperature, 
the state with a stronger bond (mode 3127 cm-1) is mainly populated, and 
at a high temperature, that with a weaker bond (mode 3135 cm-1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.9. Dependence of the peak position and the integrated intensity of the 
components 3127 (a) and 3135 cm-1 (b) of the N H stretching mode in the 
N H O hydrogen bond along the crystallographic b axis of the -glycine crystal. 
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These simple observations allow us to draw conclusions about the 
nature of the hydrogen bifurcation bond. It is often believed that in a 
bifurcation bond, both acceptor atoms (i.e., oxygen atoms of neighboring 
molecules in this case) are simultaneously bonded to one proton of the N-
H group using their lone electron pairs. The experiment presented here 
shows that in fact a proton forms a bond either with one acceptor or with 
another, being able to jump from one potential well formed along the 
N H O(1) bond to another related to the N H O(2) bond. The integral 
intensities of both components are determined with low accuracy due to 
the proximity of their vibration frequencies and overlap in the entire 
temperature range; therefore, at this stage, it is not possible to determine 
the potential barrier between two potential wells, as well as the mechanism 
for changing the localization of the proton at low temperatures  over- or 
under-barrier (tunnel). It should only be noted that the double-well 
potential of the bifurcation bond should not be confused with the double-
well potential of each individual hydrogen bond, in which, according to 
theoretical concepts, one potential well (deep) is localized near the donor 
atom, while the other (shallower) is near the acceptor atom. 

The hydrogen bond along the b axis of the crystal is one of the 
weakest in -glycine, and fixing the mode of translational vibrations of 
this bond at 73 cm-1 sets the lower limit of the frequencies of translational 
intermolecular vibrations of hydrogen bonds in -glycine. (It will be 
shown below in next section that modes with frequencies of ~ 50 cm-1 are 
related to deformational intermolecular vibrations of hydrogen bonds, and 
this fixes the second reference point, which means that all modes with 
frequencies below 50 cm-1 are related to vibrations of van der Waals 
bonds). 

13.4. “Anomalous” changes in the intensities  
of low-frequency modes in L-alanine 

When discussing the low-frequency spectrum in -glycine crystals, it 
was assumed that vibrational modes with frequencies below 70 cm-1 can 
refer either to bending vibrations of hydrogen bonds or to bond vibrations 
determined by the van der Waals interaction. Here we will try to explain 
what they are and how they are manifested in the spectrum of deformation 
crystal vibrations of hydrogen bonds. For this purpose, we present a 
description of the temperature dependence of the lattice vibrations of L-
alanine crystals, demonstrating, on the one hand, the possibilities of 
polarization Raman spectroscopy, and, on the other hand, an attempt to 
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explain the phenomenon that has not had a definite interpretation in the 
literature for a long time [1]. 

In 1988, Migliori et al. [2] noticed an anomaly in the temperature 
dependence of the intensity of two low-frequency Raman modes, 42 and 
49 cm-1, in L-alanine crystals. The intensity of the 49 cm-1 mode in bb 
polarization increased too strongly with temperature, and the 42 cm-1 
mode too weakly compared to what was expected according to Maxwell-
Boltzmann statistics. However, the change in temperature in the total 
intensity of both modes was normal. The authors of [2] assumed the 
existence of dynamic localization of vibrational energy, which could 
create an excessive intensity of the 42 cm-1 mode below 150 K. Both 
modes exhibit a similar behavior when the external pressure changes. This 
problem has been discussed for a long time in the literature by various 
authors, and various solutions have been proposed, but a definite point of 
view has not been worked out. 

Fig. 13.10 shows a molecule of L-alanine in the zwitterionic form and 
a fragment of the structure of the crystal lattice of L-alanine. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 13.10. L-alanine molecule in zwitterionic form and a fragment of the crystal 
lattice structure of L-alanine. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 13.11. Polarized Raman spectra of L-alanine crystals at 5 K in the region of 
lattice vibrations. 
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Fig. 13.11 shows the polarized spectra of L-alanine in the region of 
lattice vibrations, and in Fig. 13.12 these spectra are shown at several 
different temperatures. The integrated intensities of modes 42 and 49 cm-1 
(43 and 51 cm-1 at 5 K, Fig. 13.11) for different polarizations and 
depending on temperature are shown in Fig. 13.13. To calibrate the spectra 
by intensity, the 856 cm-1 mode was used, which, on the one hand, does 
not relate to intermolecular vibrations, and, on the other hand, has an 
energy that is high enough to make the temperature dependence of the 
intensity negligible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.12. Polarized spectra of lattice vibrations of L-alanine at different 
temperatures (polarization is indicated in the figures). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.13. Integral intensity of modes 42 and 49 cm-1 in polarized spectra depending 
on temperature: a) - 42 cm-1; b) - 49 cm-1. The solid curve for each dependence is 
the Maxwell-Boltzmann statistics with different initial values at low temperatures. 
The polarizations are indicated in the figures. 
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intensities for each mode (i.e., the sum of intensities in aa, bb, and cc 
polarizations) is shown in Fig. 13.14a, and the total intensity of both 
modes is shown in Fig. 13.14b. It can be seen that only the latter obeys the 
Maxwell-Boltzmann statistics (solid curve in Fig.13.14b). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13.14. Intensity of low-frequency modes as a function of crystal temperature: 
a) - total intensity (aa + bb + cc) of modes 42 cm-1 (solid circles) and 49 cm-1 
(solid squares); b) is the sum of intensities of modes 42 and 49 cm-1. Solid curves - 
Maxwell-Boltzmann statistics with different initial values. 

 
Both modes show an anomalous temperature dependence of not only 

the intensity, but also the position of the maximum (Fig.13.15a). At 
temperatures above 150 K, the 42 cm-1 mode deviates from the expected 
dependence to low wavenumbers, and the 49 cm-1 mode, on the contrary, 
to high wavenumbers. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.15. Temperature dependence of the peak position of a) - modes 42 and 49 
cm-1 and b) - modes 107 cm-1.  
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To understand the anomalous behavior of low-frequency modes, it is 
necessary, first of all, to make their assignment. An exact description of 
the lattice vibrations of molecular crystals, obtained by quantum-chemical 
calculations, is still not available at present, but one can try to make a 
qualitative interpretation. The lowest vibration frequencies in molecular 
crystals are usually referred to as translational displacements of molecules 
as a whole. Taking into account the value of the force constant for a 
typical hydrogen N H O bond (~ 13 N/m) and the molecular weight of 
alanine (89 a.m.u), we can expect a value of ~ 100 cm-1 for the frequency 
of optical vibrations in L-alanine. The temperature dependence of the 
position of the maximum of the 107 cm-1 mode, which is intense in the cc 
spectrum, is shown in Fig. 13.15b. The presented dependence does not 
reveal the steady decrease in the vibration frequency expected due to the 
manifestation of anharmonic effects (see Chapter 9), but at the same time 
it agrees with the unusual behavior of the lattice parameter c, which 
demonstrates a slight decrease with increasing temperature, while the other 
two lattice parameters L- alanians, a and b, increase with temperature, 
which is normal. Thus, the assignment of the 107 cm-1 mode to the 
translational vibrations of L-alanine molecules in a chain oriented along 
the c axis of the crystal seems to be correct, which makes the assignment 
of the 42 and 49 cm-1 modes nontrivial, since the frequency of the latter is 
more than twice lower, and the force constant, therefore, must be four 
times less than the force constant of the translational modes. 

Due to numerous hydrogen bonds with the environment, molecules in 
L-alanine crystals form both a three-dimensional network of hydrogen 
bonds and two-dimensional cycles located in mutually perpendicular 
crystallographic planes (i.e., ab, bc and ac). The crystal structure projected 
onto the ab plane is shown in Fig. 13.10. Some vibrational modes in such 
cycles can correspond to molecular displacements that characterize 
changes in angles rather than lengths of hydrogen bonds (i.e., a kind of 
bending vibration of hydrogen bonds). For example, these modes include 
the "breathing" vibration of molecules in a cycle. The frequency of the 
latter should be much lower than that corresponding to the translational 
displacements of molecules along the chain, which are related to purely 
stretching intermolecular vibrations of hydrogen bonds. Consequently, the 
42 and 49 cm-1 modes can be attributed to such translational displacements 
of molecules, which result in "breathing" modes of molecular cycles. 
These latter correspond to bending vibrations of hydrogen bonds in the 
crystal lattice.  

The key to understanding the anomalous behavior of the 42 and 49 
cm-1 modes on temperature and pressure is the fact that the degree of 
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deviation of the spectral characteristics of both modes from the norm 
depends on the chosen crystallographic directions when recording 
polarized spectra (Figs. 13.12 and 13.13). This means that the orientation 
of the molecules in the crystal lattice relative to each other changes 
slightly with temperature/pressure. A change in the mutual orientation of 
molecules entails a change in the eigen vector of normal vibrations of the 
corresponding modes. The eigen vector of the vibration is directly related 
to its frequency. Above 150 K, the frequency of the 42 cm-1 mode decreases 
faster than expected for normal anharmonic behavior (see Chapter 9), 
while the frequency of the 49 cm-1 mode, on the contrary, is slower (Fig. 
13.15a). Consequently, with increasing temperature, the bending 
component of the complex vibration increases for the first mode (i.e., the 
force constant and frequency decrease), while the stretching component 
increases for the second mode (the force constant and frequency increase 
with respect to the theoretically expected). The behavior of the intensity of 
both modes can be understood if we take into account that the intensity of 
stretching vibrations (i.e., vibrations in which the length of hydrogen 
bonds is modulated) is much higher than the intensity of bending modes 
(i.e., without changing the lengths of hydrogen bonds). When the bending 
component of the 42 cm-1 mode increases with temperature, the intensity 
of this mode should decrease, which is observed in the experiment (Fig. 
13.14a). An increase in the stretching component of the 49 cm-1 mode 
should cause an increase in its intensity faster than that which follows 
from the Maxwell-Boltzmann statistics, which is also found in the 
experiment (Fig. 13.14a). 

Thus, the “anomalous” effects observed with a change in temperature 
and pressure for the intensity and position of the maximum of two low-
frequency modes in the polarized Raman spectra of L-alanine crystals can 
be interpreted within the framework of simple and clear processes and 
without invoking any assumptions about “phase transitions” or “dynamic 
localization of vibrational energy”. Constant stress in the structure, 
accompanied by a change in the orientation of molecules in a three-
dimensional network of hydrogen bonds, can explain the observed 
anomalies in Raman spectra corresponding to certain crystal orientations 
and light polarization, as a change in the relative contributions of 
"stretching" and "bending" components in two lattice modes. It is 
noteworthy that the total intensity of both modes, summed up for all 
polarizations, does not show any anomalies in the temperature dependence 
(Fig. 13.14b). Since a three-dimensional network of hydrogen bonds is 
often formed in molecular crystals, similar anomalies in the region of low-
frequency vibrations in polarized Raman spectra can be observed not only 
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in L-alanine, but also in other compounds. For example, modes with 
frequencies of about 50 cm-1 in -glycine show similar behavior. 

13.5. Delocalization of vibrations in crystals of compounds 
with the acetamide group 

Amides are compounds with the general formula R CO N<. 
Distinguish between unsubstituted (or primary) R CO NH2, monosubstituted 
(or secondary) R CO NH R  and disubstituted (or tertiary) R CO NR R  
amides. In this work, we will mainly discuss such secondary amides in 
which the methyl group CH3 is chosen as R, forming the acetamide group 
CH3 CO NH R . Many of these compounds are related to drugs. Crystals 
of compounds with an acetamide group are interesting on account of the 
presence in the structure of hydrogen bonded N H O chains (Fig. 13.16). 
These include acetanilide (C8H9NO), metacetin (C9H11NO2), phenacetin 
(C10H13NO2), paracetamol (C8H9NO2), etc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.16. Chains of N H O hydrogen bonds in the structure of acetanilide (a) 
and chains and cycles in rhombic paracetamol (b). 

 
In the spectra of crystals of molecules with an acetamide group, the 

most interesting is the manifestation of the acetamide groups themselves 
for two reasons. 1. By themselves, the vibrations of the acetamide group 
serve as an excellent diagnostic tool for characterizing the structure of the 
synthesized compound. 2. The vibrational frequencies of the acetamide 
group directly characterize the intermolecular hydrogen bond, since this 
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bond in crystals is carried out precisely through the acetamide groups (Fig. 
13.16). For this reason, the spectrum of vibrations of the acetamide group 
has been studied in detail in the literature and consists of the following 
modes, which have received a special designation. 

 
1. Vibration Amide I. This is the stretching vibration C=O. Its 

frequency, which is usually in the range of 1700-1750 cm-1, 
during the formation of chains of N-H O = C hydrogen bonds 
in crystals decreases to 1640-1660 cm-1. The stronger the 
hydrogen bond, the lower the frequency of the stretching C=O 
vibration. It confidently manifests itself in the Raman spectra. 

2.  Amide II-III. This mixed vibration consists of the C N 
stretching and N H (in-plane) bending. Presented by two 
components. The high-frequency mode ~1550 cm-1 contains 
predominantly bending N-H and is designated as Amide-II. The 
low-frequency component lies in the region of 1220-1350 cm-1, 
in which stretching vibrations C-N are mostly represented, and it 
is designated as Amide III. 

3. Another characteristic vibration of the acetamide group lies in 
the range of 740-800 cm-1, and refers to the bending vibration N-
H (out of plane). Some authors call this mode Amide-IV, others 
- Amide-V. 

 
There are several more modes with a frequency below 700 cm-1, 

related to the acetamide group, but they are less characteristic, and their 
assignment is more controversial. 

As already mentioned, compounds with an acetamide group are very 
important, since some of them are part of proteins (for example, 
acetanilide), and others relate to drugs (for example, methacetin, 
phenacetin, and paracetamol). For this reason, we will briefly consider the 
problem associated with the vibrational spectra of these compounds. This 
problem was very popular in the scientific literature for a decade and a 
half. 

In 1976, Davydov and Kislukha [3] suggested that in chains of 
hydrogen bonds, similar to those in crystals with an acetamide group, 
unusual vibrational states called solitons can arise. A few years later, the 
authors of [4-5] found that in the spectra of acetanilide crystals, a 
temperature-dependent mode, somewhat shifted in wavenumber relative to 
the Amide-I vibration, is observed. This mode was attributed to the 
occurring of a Davydov’s soliton (self-trapped state), which prompted the 
appearance of several dozen works, mainly theoretical, devoted to the 
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phenomenon of self-trapping in acetanilide crystals. However, in order to 
be convinced of the correctness (or erroneousness) of the assignment 
made, it is necessary to consider in more detail both the entire spectrum of 
acetanilide and the spectra of other compounds with an acetamide group. 

Fig. 13.17, a shows the temperature dependent spectra of acetanilide 
in the region of stretching vibrations of the hydrogen-bonded C=O group. 
At 5 K, the spectrum consists of three clearly distinguishable bands at 
1652, 1663, and 1668 cm-1. (In the literature, at low temperatures, only 
two lines are observed; as will be shown below, the reason for the 
persistence at low temperatures of the weak line at 1663 cm-1, originally 
attributable to the Amide-I mode, is associated with the imperfection of 
the crystal used in this work). 

At room temperature, one broad Amide-I mode at 1666 cm-1 and two 
very weak modes at 1654 and 1668 cm-1 dominate. Let's designate the 
latter as Amide I  and Amide I+. With a decrease in temperature, the 
intensity of Amide-I decreases to almost zero, while the intensities of 
Amide I  and Amide I+, on the contrary, increase (Fig. 13.17, c). In this 
case, the total intensity of all three modes remains unchanged. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13.17. (a) - spectra of acetanilide in the range of Amide-I vibrations at 
different temperatures; (b) temperature dependence of the peak position; and (c) 
integral intensity Amide-I (open circles), Amide-I  (solid circles) and Amide-I+ 
(solid squares). The asterisks show the sum of the intensities of all three modes. 

 
In the range of Amide-II (~1550 cm-1) and Amide-III (~1250 cm-1) 

vibrations, either weak changes with temperature are observed, or are not 
observed at all. 

Fig. 13.18 shows the change with temperature of the Amide-V mode 
(740 - 800 cm-1) in acetanilide. It is typical for all other compounds with 
an acetamide group. The mode 778 cm-1, weak at room temperature, 
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increases in frequency and intensity at cooling down, and this change is 
synchronized in temperature with what is observed for vibrations in the 
Amide-I region (Fig. 13.17). 

 
 
 
 
 
 

Fig. 13.18. Spectra of acetanilide in the range of 
Amide-V ( N H) vibrations. 

 
 
 
 
 
 
 

The most complex transformations of the spectrum with temperature 
occur in the region of stretching N H vibrations of hydrogen N H O=C 
bonds, which are realized in crystals of acetanilide, methacetin and 
phenacetin (Fig. 13.19, a). At room temperature, the spectrum of N H 
vibrations is represented by two broad bands at 3264 and 3296 cm-1 (Fig. 
13.19, a). With decreasing temperature, two more modes gradually appear, 
as a result of which, at T = 5 K, four main bands are recorded with the 
wavenumbers indicated in Fig. 13.19, a. In rhombic paracetamol, the 
stretching vibration of O H in the O H O=C hydrogen bond also 
consists of several broad bands, the frequencies and intensities of which 
change with temperature, but these bands overlap strongly, which makes it 
difficult to draw any definite conclusions. In monoclinic paracetamol, the 
O H O stretching mode is practically not recorded. In the spectrum of 
N H vibrations of the N H O bond of paracetamol, rhombic and 
monoclinic, only one mode 3330 cm-1 is recorded, which varies slightly 
with temperature (Fig. 13.19, b). 
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Fig. 13.19. Raman spectra of (a) acetanilide and (b) rhombic paracetamol in the 
region of hydrogen-bonded stretching vibrations of N H. 

 
The presented spectral characteristics of various crystals with an 

acetamide group make the version of the formation by Davydov’s solitons 
unlikely. Indeed, the formation of two satellites, Amide I  and Amide I+, 
in all compounds with the acetamide group practically excludes the 
occurrence of self-trapped states. An identical temperature dependence is 
exhibited by modes related not only to vibrations of the C=O group, but 
also to vibrations of other molecular fragments, i.e. stretching N H in 
N H O=C chains and bending (out of the plane) N H. In addition, in 
paracetamol, the Amide I mode changes with temperature in the same way 
as in other crystals with an acetamide group, but in paracetamol there are 
no N H O=C bonds, but there are N H O C and O H O=C bonds. 

On the other hand, during low-temperature studies of the structure of 
compounds known from the literature, no structural (conformational) 
phase transitions were observed, except for the usual negligible changes in 
intramolecular parameters, i.e. bond lengths and angles. The spectral data 
also show (Figs. 13.17-13.19) that the observed changes in the Raman 
spectra are not due to structural phase transitions that can be fixed in X-ray 
structural studies. The last remark does not apply to the positions of 
hydrogen atoms, which are not detected reliably in X-ray diffraction. 

The presence of two main bands in the low-temperature spectrum in 
the region of Amide-I vibrations can be interpreted as the existence of two 
states of the N H O=C (O H O=C) bond with different energies. 
Hypothetically, the occurrence of two different states can be caused by 
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several reasons. For example, when the methyl group CH3 is rotated 
around the C CH3 bond by 60 , i.e. from the staggered conformation of 
CH3 with respect to the O=C bond (as shown in Fig. 13.16) to the eclipsed 
one, it is possible to assume the formation at low temperature of a 
hydrogen bond from the C H aromatic ring to the oxygen of the carbonyl 
O=C group, which is additional to the already existing N-H O=C. 
Finally, we can assume that there are two different proton positions with 
different energies on the hydrogen bond. However, any such assumptions 
are met with very serious objections. One of them is that of the two states 
with different energies at low temperatures, only that which is characterized 
by the lowest energy should remain. This condition is inconsistent with 
experiments. And second: why does the transition from a state observed at 
room temperature to a low-temperature one occur smoothly, and not 
stepwise, as for most phase transitions? 

Finally, when starting to interpret the temperature dependences of the 
spectra of crystals with an acetamide group, it is necessary to exclude from 
the discussion various variants of changes in the molecular orbitals of 
compounds with temperature (i.e., with a decrease in the lattice parameters), 
which can affect the state of the hydrogen bond, since N H O=C and 
O H O=C behave the same way. 

These remarks, as well as the structure of the considered hydrogen 
bonds and the behavior of the wavenumbers of Amide-I, Amide-I , 
Amide-I+ (Fig. 13.17, b) and Amide-V (Fig. 13.18) on temperature, 
suggest the occurrence at low temperature of a specific dynamic 
(Davydov's) interaction of vibrations (Davydov splitting and Davydov's 
soliton are completely different phenomena). The specificity of the 
dynamic interaction in the crystals under consideration is as follows. 
Molecules in a crystal are linked into chains through hydrogen bonds 
(Figure 13.16). Formally, this means that O=C vibrations of neighboring 
molecules can be in phase or out-of-phase with respect to each other (we 
will use the term symmetric or asymmetric vibrations, although the 
symmetry of vibrations should be defined by the specific group symmetry 
of each crystal). For this reason, symmetric vibrations of the same 
fragment are always higher in frequency than asymmetric ones (see Fig. 
3.3 from Chapter 3 and an explanation to it). This effect is more 
noticeable, the stronger the bonding between the fragments (O=C in this 
case). The hydrogen bond, however, is weak, and at elevated temperatures 
under conditions of high thermal populations of various vibrations, 
information about the vibration of one O=C fragment does not reach the 
neighboring fragment. This causes the fact that the distinction between 
symmetric and asymmetric vibrations is erased, the phase of vibrations of 
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each O=C group becomes random, and the vibrations themselves can be 
characterized as "localized", i.e. relating to only one O=C group of any of 
the molecules. In this case, only one localized Amide-I mode is observed 
in the spectrum. As the temperature decreases, the chains are 
geometrically ordered, and the distance between the molecules decreases 
due to the freezing of vibrations, especially translational donor-acceptor 
vibrations (more on this at the end of the section). Under these conditions, 
the phase of vibration of any O=C group gradually begins to form, taking 
into account the phase of the neighboring group. In other words, the 
vibrations are delocalized and acquire the features of phonons, symmetric 
and asymmetric, which is the essence of dynamic splitting. The higher the 
delocalization, the lower the temperature of the crystal, but its main 
property is that at any temperatures the delocalized vibrations will be 
characterized by two modes different in wavenumber. In a perfect crystal 
at a low temperature, only two modes are realized, symmetric and 
asymmetric. In a crystal that admits a certain degree of disorder in the 
chains, localized states (third mode) can be retained at any temperature, 
which is probably observed in the samples used in this work. 

The difference between the splitting of vibrations in crystals with 
chains of hydrogen bonds from the well-known Davydov’s splitting is 
that, despite the large number of O=C bonds in the unit cell (for example, 
there are six of them in the acetanilide cell), only those O=C that are 
located along one chain experience dynamic interaction. In the unit cells of 
each of the crystals with an acetamide group, there are only two O=C 
bonds along one chain. In addition, temperature-dependent delocalization 
of vibrations is also a distinctive feature of crystals with chains of 
hydrogen bonds. The classical Davydov’s splitting is independent of 
temperature. 

If in crystals of acetanilide, methacetin, and phenacetin, neighboring 
N H O=C groups are in contact with each other through the intermediate 
C N unit, then in paracetamol crystals, neighboring O H O=C hydrogen 
bonds are separated by a C N H O fragment (Fig. 13.16 ). Despite this, 
splitting of the O=C vibration into two components is observed in 
paracetamol, but the splitting magnitude is less than in other crystals. This 
suggests that the length of the chain section separating two O=C fragments 
does not play a big role if this section is formed by normal chemical 
bonds. The weak link of the site is the hydrogen bond. The characteristics 
of the bonds and the magnitudes of the splitting of the O=C vibration are 
given in Table 13.1. It can be seen that all characteristics are in good 
qualitative agreement with each other.  
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Finally, it is necessary to mention one more effect inherent in the 
chains of hydrogen bonds. Vibration Amide-V ( N H) does not show 
splitting at all temperatures (Fig. 13.18). The O=C stretching vibration 
modulates the length of the hydrogen bond, thereby transmitting a signal 
along the entire chain, which yields the interaction of vibrations. In the 
Amide-V mode, the displacement of a proton from the plane practically 
does not change the length of the hydrogen bond, and this makes the 
interaction of Amide-V vibrations of neighboring molecules negligibly 
weak, and not observed experimentally. The difference in the interaction 
of stretching and bending vibrations in the chains of hydrogen bonds was 
experimentally shown using the example of chains of H2O molecules in 
the cavities of crystals of the mineral bikitaite, forming "one-dimensional 
ice" (see Figs. 8.15 and 8.16 in the chapter 8 and the corresponding text). 

If the situation with the O=C vibration is rather complicated, then the 
spectroscopic manifestation of vibrations in the region of stretching N H 
(Fig. 13.19, a) is even more complicated and requires additional 
commentary. 

First of all, the number of bands observed is unexpected, with two 
main bands at room temperature, and four at low temperatures. If each 
band is considered as a separate state of the hydrogen bond, then the 
corresponding set of bond lengths should be recorded in the structure of 
the compounds, which is not observed. For this reason, it is necessary to 
give a different interpretation, not related to the presence of different 
hydrogen bonds. 

In crystals, there is only one state of the hydrogen N H O=C bond 
with the frequency of localized N H vibration in the range of 3200-3300 
cm-1, but the overtone of the Amide I mode (~ 1660 cm-1) also falls into 
this frequency range. Since both N H and O=C are components of the 
same N H O=C bond, the N H and 2 O=C vibrations strongly interact 
with each other, producing a Fermi resonance pair, which is observed in 
the spectra at room temperature as two broad bands at 3264 and 3296 cm-1 
(Fig. 13.19, a). In this case, the interaction of vibrations means that the 
frequency-doubled O=C vibration causes modulation of the N H length 
due to hydrogen bonding and the proximity of N H and 2 O=C frequencies. 
This situation is completely analogous to that which takes place in the 
Raman spectra of the CO2 molecule in the region of totally symmetric 
stretching vibrations - the situation that resulted in the discovery of Fermi 
resonance. With decreasing temperature, the N H stretching vibration 
begins to delocalize (i.e., exhibit dynamic splitting) by exactly the same 
mechanism as the Amide-I mode (see above). In this case, each of the two 
emerging components of the dynamic splitting of the N H vibration also 
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experiences a Fermi resonance with either the Amide-I  or Amide-I+ 
mode, as a result of which two pairs of Fermi-resonance vibrations arise 
(Fig. 13.19, a). Small changes in the strength (and, accordingly, in the 
frequency) of the hydrogen N H O=C bond in a series of compounds 
with the acetamide group cause a parallel (i.e., similar in direction and 
magnitude) change in the vibration frequency of both N H and carbonyl 
group vibrations, as a result of which the described Fermi resonances are 
observed in all compounds, except for paracetamol. 

In rhombic paracetamol, the stretching vibration of O H in the 
O H O=C hydrogen bond also consists of several broad bands, the 
frequencies and intensities of which change with temperature, but these 
bands overlap strongly, which makes it difficult to draw any definite 
conclusions. The intensity of the O-H O stretching mode in monoclinic 
paracetamol is below the detection limit. 

All compounds with chains of N H O=C hydrogen bonds are 
characterized by close values of the N O distances, and, consequently, the 
bond strength. What happens if the H-bond is significantly stronger or 
weaker than that found in acetanilide, methacetin, or phenacetin? And 
although the answer is clear enough, the spectra of crystals of formanilide 
(C7H7NO) and benzanilide (C13H11NO), also containing chains of 
hydrogen N H O=C bonds, were obtained. Fragments of their structures 
are shown in Fig. 13.20. Strictly speaking, both compounds do not relate 
to crystals with an acetamide group, since in the formanilide the methyl 
group is replaced by hydrogen, and in benzanilide by the aromatic ring. 
The hydrogen N H O=C bond is strong in formanilide and very weak in 
benzanilide (Table 13.1). It turned out that both modes, Amide-I  and 
Amide-I+, are present in the spectrum of formanilide at all temperatures, 
and in the spectrum of benzanilide there is only one, Amide-I, and also at 
all temperatures. 

 
 
 
 

Fig. 13.20. Chains of N H O = 
C hydrogen bonds in the 
structure of formanilide (a) and 
benzanilide (b) 

 
 
 
 a b 
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Table 13.1. Lengths of hydrogen bonds, frequencies of bending Amide-V and 
stretching Amide-I  and Amide-I+ vibrations at 5 K, as well as the difference  
between the latter two 

 
Compound Type of  

H-bonding 
D A, 

Å 
Amide-
V, cm-1 

Amide-
I , cm-1 

Amide-
I+, cm-1 

,  
cm-1 

Formanilide N-H O=C 2.84 802 1647 1699 52 
Methacetin N-H O=C 2.91 802 1647 1674 27 
Acetanilide N-H O=C 2.94 778 1652 1668 16 
Phenacetin N-H O=C 2.95 768 1648 1664 16 
Benzanilide N-H O=C 3.15 701 1652 - 
Paracetamol 
monoclinic O-H O=C 2.65 751 1637 1648 11 

Paracetamol 
rhombic O-H O=C 2.72 738 1638 1650 12 

 
The presence of dynamic splitting in formanilide over the entire 

temperature range and its absence in benzanilide suggests that the rigidity 
of the hydrogen bond is indeed the determining condition for the 
appearance of delocalized modes in crystals with chains of hydrogen 
bonds. The data given in Table 13.1 allow us to understand why the 
Amide-I mode in crystals of compounds with an acetamide group is 
localized at room temperature and delocalized at low temperatures. 

Fig. 13.21a shows the dependence of the Amide-I splitting magnitude 
(i.e., the difference between Amide-I+ and Amide-I  at 5 K) on the donor-
acceptor distance dN O in the N H O=C bond. It can be seen that the 
splitting value becomes less than 3 cm-1, the value at which both modes 
become spectrally unresolved, at a distance dN O(max) ~ 2.98 Å. In 
acetanilide and phenacetin, the dN O distance is only 0.03-0.04 Å less than 
the limiting dN O (max). This means that an increase in the amplitude of 
translational lattice vibrations (for example, an N O pair) upon their 
excitation in the temperature range 5 K - 300 K (see Table 9.1 in Chapter 
9) is quite capable of lengthening  the N O bond in such a way, that the 
splitting of the Amide-I mode becomes unobservable. Thus, the 
phenomenon of delocalization itself, i.e. the presence of a localized mode 
at high temperatures and a delocalized one at low temperatures, takes 
place only for a rather narrow range of values of the donor-acceptor 
hydrogen bond distances, the range in which the crystals of compounds 
with an acetamide group fall. 
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Fig. 13.21. (a) Dependence of the Amide-I mode splitting at 5 K on the dN O 
distance, 1 - formanilide, 2 – methacetin, 3 - acetanilide, 4 - phenacetin; (b) Same 
as a function of temperature in acetanilide. 

 
Fig. 13.21b shows how the wavenumber difference  =  (Amide-

I+)   (Amide-I ) in acetanilide changes with temperature. The presented 
dependence is well described by the excitation of a phonon at ~ 85 cm-1 
with increasing temperature, and the phonon frequency is typical for 
translational intermolecular vibrations of the hydrogen bond, i.e. 
vibrations that have the greatest effect on the temperature change in the 
donor-acceptor distance. 

If the oscillators (i.e., C=O in this case), characterized by a force 
constant K and a frequency , are interconnected by weak springs of 
rigidity k, then /  ~ k/K, where  is the frequency difference between 
symmetric and asymmetric vibrations of oscillators. At  = 1660 cm-1 and 

 = 16 cm-1 (acetanilide, Table 13.1), k/K ~ 0.01. The latter relation is 
very realistic for the force constants O=C and N O. 

Finally, it is well known that the vibration frequency of Amide-I 
(and, consequently, the N H O=C hydrogen bond) rather strongly 
depends on the chemical nature of the substituent R in secondary amides. 
Since this work considers crystals of compounds with an acetamide group, 
where R = CH3 by definition, the role of the methyl group is precisely that 
it sets the characteristics of the hydrogen N H O=C (O H O=C) bonds 
in a very narrow range. As for its possible participation in the observed 
spectral features from the point of view of a change in the molecular 
conformation (i.e., rotation of the methyl group from a staggered to an 
eclipsed conformation) with decreasing crystal temperature, the spectra of 
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formanilide provide evidence that methyl groups are not involved in the 
splitting of the Amide-I mode.  

 
In conclusion, it is necessary to say the following. Molecular crystals, 

in which the main intermolecular interaction is a hydrogen bond, exhibit 
diverse and very interesting effects when the temperature of the crystal 
changes. All phenomena, often unusual, are based on the direction of the 
hydrogen bond and its lability, i.e. the ability to change the strength of 
interaction and direction. Raman spectroscopy is an extremely successful 
method for studying molecular crystals. But the effectiveness of the 
method is largely determined by the use of a whole complex of experimental 
techniques, including temperature and polarization measurements of oriented 
crystals, and deep processing of the results. It is the processing of the 
experimental results, i.e. finding the spectral parameters of all modes of 
the vibrational spectrum and at all temperatures that allows one to obtain 
experimental information that cannot be predicted in advance and, 
therefore, hope to be found in a quantum-chemical calculation of the 
vibrational spectrum. An example of this is studies of the anomalous 
behavior of crystal vibrations in alanine (Section 13.4) or the temperature 
dependence of the Amide-I mode in crystals of compounds with an 
acetamide group (Section 13.5). Both of these phenomena have been the 
subject of numerous studies in the past, but have not received a definite 
interpretation. 
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CHAPTER 14 

LIGHT SCATTERING BY GLASSES  
AND NANOPARTICLES 

 
 
 

14.1. Phonon spectrum in disturbed crystals –  
"folding" zones 

The dependence of the frequency of phonon vibration on the 
magnitude and direction of its wave vector in the crystal is described by 
the dispersion curve (see Fig. 3.4). In this case, the crystal is considered 
ideal, and the wave vector takes values from k = 0 (a phonon with an 
infinite wavelength) to k = /a (a phonon with the smallest possible 
wavelength in a crystal equal to 2a, where a is the lattice period). 

 
 
 
 
 
 
 
 
 
 

 
Fig. 14.1.  A longitudinal optical phonon with k = /a for a one-dimensional chain 
with a period a becomes a phonon with k = 0 in a chain with a period 2a. 

 
We can imagine, however, a situation where, as a result of structural 

disturbances, the period of the crystal lattice is doubled. This means that 
the size of the first Brillouin zone will be halved. What happens to the 
dispersion curves in this case? A phonon with k = /a in an undistorted 
lattice is a vibration of the same amplitude but opposite in sign (phase) in 
two neighboring unit cells (Fig. 14.1). In a doubled cell, this vibration 
becomes the same in amplitude and phase with the vibration in the 
neighboring modified cell. In other words, a phonon with k = /a in an 

2а  2а  
а  
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undistorted lattice becomes a phonon with k=0 in a doubled lattice (i.e., 
according to the phase relations between neighboring cells, it becomes the 
same as the vibration in Fig. 3.3, b, but at the same time each cell is twice 
as large as in Figure 3.3, b). As a result, all dispersion curves are 
transferred to the "shortened" Brillouin zone as shown in Fig. 14.2, i.e. 
will be mirrored in the plane k = /2a. We can say that in this case "the 
zone is folded" and instead of one optical phonon in the center of the zone 
we get three optical vibrations, one of which relates to the former acoustic 
one, but with nonzero energy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.2. Folding of dispersion branches as a result of doubling the unit cell of a 
crystal 

 
An increase in the number of vibrations is a direct consequence of an 

increase in the size of the unit cell and the number of atoms in it. In cubic 
crystals, for example, silicon, the vibrations are degenerate at the center of 
the Brillouin zone and are not degenerate at its edges. In this case, the 
folding of the zone will cause the appearance in its center of even more 
phonons. With further distortion of the crystal lattice and the folding of the 
zones, the size of the first Brillouin zone becomes very small, and the 
number of vibrations in the center of such a modified zone becomes very 
large. Moreover, in Raman scattering, practically all vibrations of the 
initial dispersion curves of an ideal crystal become allowed in the wave 
vector; in other words, all states of the dispersion curves, optical and 
acoustic, become active in Raman scattering of disturbed crystals. It is said 
that the entire Brillouin zone is “illuminated”, meaning the states of the 
dispersion curves of an ideal crystal. This phenomenon is dominant when 

/a /2a 
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phonons 

0 k 
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phonons 
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considering the first-order light scattering mechanism in all disturbed 
(non-crystalline) objects, i.e. glasses, solid solutions, and nanoparticles. 

14.2. Boson peak 

In glasses, along with the general broadening of Raman lines, one 
more very interesting and important phenomenon is observed, namely, the 
appearance of a broad structureless maximum in light scattering in the low 
frequency range 5–100 cm-1. At first, it was believed that the appearance 
of this maximum was simply related to the Bose-Einstein statistics of 
phonons in media, since the scattering intensity is proportional to (n+1), 
where n is the number of existing (excited) phonons in the medium, which 
are, naturally, only the most low-frequency phonons at ordinary temperatures. 
For this reason, the observed maximum in the low-frequency scattering of 
glasses was called the “boson peak”. However, taking into account the 
statistics of phonons and measuring the scattering of glasses at low 
temperatures did not yield the disappearance of the boson peak. 

There are currently several theoretical models to explain the nature of 
the boson peak in glasses. Most of them are still under development, and 
there is no definitive and well-established mechanism for the appearance 
of a boson maximum, which explains all its frequency and temperature 
features. However, most researchers lean towards the version that the 
cause of low-frequency scattering in glasses is the presence of microscopic 
inhomogeneities in them, such as where violation of the selection rules for 
the wave vector yields the "highlighting of the entire zone", as a result of 
which not only all states of the dispersion curves of optical vibrations, but 
also acoustic modes, become active in first-order Raman scattering. It is 
precisely the numerous “foldings” of the acoustic dispersion branch that 
cause the appearance of a boson peak in glasses. Thus, the presence of a 
boson maximum in the low-frequency Raman spectra of compounds and 
its intensity serve as a characteristic of the state of the compound under 
study and an indicator of its "non-crystallinity". 

14.3. Localization of phonons in nanoparticles 

Recently, much attention has been paid to the study of the properties 
of nanoparticles of various compounds. If we consider the formation of a 
crystal as an assembly of individual atoms, starting with the first, then it is 
intuitively clear that a formation limited, for example, to only two or three 
lattice periods of the future crystal, should be considered a molecule rather 
than a crystal. Indeed, a crystal, by definition, is characterized by the 
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presence of a band structure, which is formed by the interaction of a large 
number of atomic orbitals. The difference in the energy of neighboring 
levels in the crystalline zone should be much less than the value of the 
splitting of atomic states in the interaction of atoms - a condition that is 
not fulfilled for a small number of interacting atoms. On the other hand, as 
soon as a nanoparticle reaches a size sufficient to form a rigorous band 
structure with appropriate physical properties (electrical, optical, etc.), it 
goes over into the category of crystals. Therefore, nanoparticles are 
considered to be objects with sizes exceeding several lattice periods, i.e. 4-
6, but less than those at which the properties of bulk crystals are formed. 
The upper limit for, for example, silicon, is estimated at 15-20 lattice 
periods. Crystalline domains with a size corresponding to the Bohr exciton 
radius (~5 nm for Si) are often taken for nanoparticles (see Ref. [1]). 

It can also be assumed that, from the point of view of the vibrational 
spectrum, the nanoparticle will demonstrate the properties of a strongly 
damaged crystal due to lattice distortions near the surface, which, in the 
case of nanoparticles, has a large specific contribution. In addition, the 
phonon vibration excited in a nanoparticle is limited by the size of the 
particle, and therefore the damping at the boundary, which is usually 
neglected in extended crystals, should play an important role here. Finally, 
the last and main circumstance that distinguishes a nanoparticle from a 
crystal is that the nanoparticle size is much smaller than the phonon 
wavelength required to fulfill the wave vector selection rule (see Section 
3.4 in Chapter 3) in the scattering process. In other words, the scattering of 
light by nanoparticles should involve phonons not from the center of the 
Brillouin zone with k = 0, as in a bulk crystal, but states with larger values 
of the wave vector related to the interval 0  2 /a. 

Given these circumstances, i.e. violation of the selection rules by the 
wave vector, leading to "lightening of the entire zone", and damping at the 
boundary, a model was proposed to describe the first-order scattering 
processes in nanoparticles with strong spatial localization (confinement) of 
phonons, according to which for spherical crystallites with a diameter D 
and phonon damping according to the law exp(- r2/D2), the line shape 
scattering is determined by the integral [2]:  

 
   (14.1) 

 
where Г0 is the natural bandwidth of the bulk crystal, and (q) is the 
phonon dispersion. Integration over the entire dispersion curve (term 
[ (q) ]2) yields an increase in the natural (crystal) linewidth Г0 by the 
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energy width of the dispersion dependence and a low-frequency shift of 
the peak position of the scattering band, and the smaller the crystal size the 
greater the damping. 

14.4. Simulation of the scattering spectrum on silicon 
nanoparticles 

Obtaining structural information about the state of the films of 
amorphous crystalline silicon is an area of large interest, since this 
material is widely used as active elements in solar cells. 

Fig. 14.3(a) shows the scattering spectra of amorphous nocrystalline 
silicon films, in which the phase composition, i.e. the ratio of amorphous 
and crystalline phases, changes along the coordinate x of the film. 

Fig. 14.3(b) shows the spectra for three limiting compositions of the 
films, i.e. a purely amorphous phase (I), amorphous-nanocrystalline (II), 
and predominantly nanocrystalline (III). The amorphous state is 
characterized by a  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.3. Raman spectra of amorphous-crystalline silicon films. (a) - spectra 
obtained at different points of one film depending on the distance x from its edge; 
(b) - characteristic spectra of films. 

 
wide band with a maximum at ~ 475 cm-1, and the position of the 
maximum of the scattering band of nanoparticles varies from 514 to 518 
cm-1, i.e. always less than the phonon frequency in a bulk crystal (520 cm-

1). One more feature is observed in the spectra at 495 cm-1, the origin of 
which is not obvious. Each of the spectra shown in both figures contains 
all information about the phase composition of the sample, and the 
problem is to extract this information as complete as possible. Various 
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techniques are commonly used to assess the composition of a film. One 
can preset the composition of the sample in some simple way – for 
example, by having it consist of crystallites of the same size and an 
amorphous phase, crystallites of two different sizes, Gaussian size 
distribution of crystallites, etc. – and try to fit this composition to the 
experimental spectrum. Another simple and elegant way to assess the 
composition of a film is as follows [3]. The vibration frequency of the 
crystalline phase of silicon is 520 cm-1, and the maximum of the scattering 
band of the amorphous phase is falls at ~ 475 cm-1. Therefore, for a rough 
estimate of the degree of crystallinity of the sample, the ratio of the 
scattering intensities of the experimental spectrum at points at a frequency 
of 520 cm-1 (Ic) and 475 cm-1 (Ia) can be used. The Ic/Ia parameter turned 
out to be very convenient due to the extreme simplicity of its obtaining, 
although the relationship of this parameter with the real structure of the 
film remains rather vague. The greatest attractiveness of the Ic/Ia parameter 
lies in the fact that by using this procedure it is possible to process large 
arrays of spectral data with minimal time expenditures, which allows 
accumulating the results obtained and drawing conclusions about the 
average statistical properties of the samples under study. 

So, for example, measurements of the electrophysical and spectral 
characteristics of films of amorphous-crystalline silicon, synthesized 
during the development of the technology for obtaining photovoltaic cells 
(solar cells), have shown that the electrical conductivity of the film 
changes sharply with a strictly defined composition, i.e. Ic/Ia ratio. 
Amorphous-crystalline films can be characterized as consisting of an 
amorphous phase with a weak conductivity and nanocrystalline regions 
with a higher conductivity embedded in it. In this case, the total 
conductivity of the film is mainly determined by the conductivity of the 
amorphous phase. With an increase in the degree of crystallinity (Ic/Ia 
ratio) and, accordingly, the number of nanoparticles, the average distance 
between nanoparticles decreases and contacts between them are realized. 
When the amount of contacting particles reaches a certain level, a 
continuous chain with high conductivity is formed in the film. This 
phenomenon is based on percolation theory. 

The essence of percolation theory can be understood from the 
following simple example. Let there be a squared (or bulk) lattice 
constructed of metal wire. The conductivity of such a lattice, measured, for 
example, between contacts located at the corners (i.e., at the ends of its 
diagonal), is, of course, determined by the conductivity of the wire. Now 
we will randomly delete (cut) individual bonds between the lattice points. 
When the number of deleted bonds reaches a certain limit at which the 
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existing continuous path from one side of the lattice to the other is 
interrupted, the conductivity of the lattice drops abruptly to zero. This 
limit is called the percolation threshold. It turns out that the percolation 
threshold in bulk lattices (crystals) is approximately equal to 0.3 (i.e., 
about a third of all bonds between atoms in a crystal must be intact in 
order for a continuous path between opposite sides of the crystal to exist), 
and the percolation threshold for two-dimensional lattices (films) is about 
0.7. It is the latter value that is critical for the observed behavior of 
conductivity in amorphous-crystalline silicon films.  

Another approach for assessing the structure of the film, i.e. the 
degree of its crystallinity and the size distribution of nanocrystals was 
proposed in [4]. To quantitatively characterize the spectrum, we introduce 
the so-called trial function. For this purpose, we calculate from (14.1) the 
line contours for nanocrystals with a diameter of 6а0 (3.3 nm), 7а0, ..., 15а0 
(а0  lattice period) and give each of them the same integrated intensity 
equal to 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14.4. Calculated scattering contours for particles of different diameters and the 
spectrum of the amorphous phase. All spectra are normalized to unit integral 
intensity. 

 
The lower limit on the size corresponds to a particle with a diameter 

of ~ 3 nm, and the upper one - ~ 80 nm. As mentioned above, the 
assignment of particles with a size of less than 3 nm (6a0) to crystalline 
formations is controversial, and for nanocrystals with a diameter of more 
than 15a0, the calculated contours in frequency at the maximum and half-
width are close to each other and to the spectrum of a bulk crystal and can 
be replaced by the latter. The Raman band of crystalline silicon has a 
Lorentz profile with a frequency at 520 cm-1 and a half-width of 6 cm-1. 
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The calculated contours are shown in Fig. 14.4. The same figure 
shows the band corresponding to scattering by the amorphous phase. This 
band is represented not by the calculated Gaussian or Lorentzian contour, 
but by the envelope curve of the experimental spectrum of the pure 
amorphous phase (see Fig. 14.3, a, lower spectrum) in order to take into 
account the scattering by acoustic phonons and second-order scattering by 
combined tones present in the spectrum. The basis for equivalent valuation 
of both amorphous and nanocrystalline components is the fact that the 
integral intensities (scattering cross sections) of both components are close 
to each other: Ic/Ia = 0.95 according to [5]. (The integral intensity of the 
crystal scattering line is, nevertheless, about 7 times higher than that of the 
amorphous phase, but this is due to the difference not in the scattering 
cross section, but in the absorption coefficient and, accordingly, the depth 
of penetration of the exciting light into the sample.) Adding all the 
contours, we get a trial function (see Fig. 14.4). Now, the degree of 
participation of each nanoparticle participating in the formation of the 
experimental spectrum of the nanocrystalline film can be estimated using 
the “reduction” procedure, i.e. mathematical division of the experimental 
spectrum into a trial function. 

Reduction, according to the proposed scheme, of the spectra of films 
containing both amorphous and nanocrystalline components (spectrum II 
in Fig. 14.3, b) showed that the fraction of the amorphous phase in them is 
significant, about 90%, and the size distribution of nanoparticles is 
uniform, i.e. particles of different sizes are represented by approximately 
the same amount. However, when comparing the calculated and 
experimental spectra, it was found that the experimental spectrum in the 
region 490-500 cm-1 shows a feature that is not related to scattering by the 
amorphous or crystalline phase (Fig. 14.5). 

 
 
 
 
 
 
 

Fig. 14.5. Comparison of the reconstructed 
spectrum (dotted curve) with the experimental 
(solid curve) disregarding scattering at point L. 
The lower curve represents the difference 
between the experimental and calculated spectra 
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The difference between the two spectra, experimental and reconstructed, 
has the contour of a Gaussian band with a peak position at 496 cm-1 and a 
half-width of 23 cm-1 (Fig. 14.5, lower curve). A similar feature, but 
already in the form of a well-resolved spectral band, manifests itself in a 
sample with a high (~ 60%) content of the nanocrystalline phase (see Fig. 
14.3, b, spectrum III). The silicon crystal relates to the cubic system, and 
in the center of the Brillouin zone of silicon, one threefold degenerate 
vibration F2g is possible, including both transverse and longitudinal optical 
phonons (§ 5.2). As the phonon wave vector increases, i.e. when shifted 
along the dispersion curve to one of the symmetric points of the Brillouin 
zone, this vibration is split into TO and LO modes, which at point L (see 
Fig. 3.5) have values of 493 and ~ 400 cm-1, respectively. Thus, the 
frequency of the transverse phonon TO(L) practically coincides with the 
position of the feature observed in the spectra of the films (495 cm-1 for 
the line in spectrum III in Fig. 14.3, b). First-order scattering at critical 
points at the boundary of the Brillouin zone is forbidden; however, in 
nanocrystals, due to a decrease in the phonon correlation length, the 
selection rules for the wave vector are violated and such scattering 
becomes possible. The same effect is responsible for the detection of 
localized phonons with k ≠ 0, renormalized in frequency. 

The proposed method, interesting and deep in content, has, however, 
limited application. The fact is that, as can be seen from Fig. 14.4, the 
contours of individual bands related to nanoparticles of a certain size have 
a rather large half-width, comparable to the half-width of the entire 
spectrum of a nanocrystalline film. As a result, the selectivity of 
determining the particle size distribution is rather low. 

14.6. Electronic confinement in nanocrystals 

In addition to the localization of phonons in nanocrystals, there is 
another type of confinement - electronic, which can also be used to 
estimate the particle size distribution. The essence of the phenomenon of 
electronic confinement is even simpler than that of phonon. As the particle 
size decreases to the nanocrystalline scale, the band gap increases. This 
becomes clear if we recall how the band structure of a crystal is formed. 
Consequently, in this case, the energy of the interband transition of 
nanoparticles, controlled by the luminescence spectrum, should also 
increase, which is actually observed [6]. Having determined experimentally 
the dependence of the position of the luminescence maximum on the 
particle size, one can then use it to proceed to the analysis of the particle 
size distribution, using the mathematical apparatus developed for the 
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phonon confinement (see above). However, the use of luminescence as a 
method is always associated with certain difficulties. The point is that, in 
addition to interband transitions, the luminescence spectrum can also 
contain transitions with the participation of various impurity or defect 
states. In this case, the intensity of both changes often in an unpredictable 
manner, which complicates the use of photoluminescence for the analysis 
of nanocrystalline films. 
 
 
 
 
 
 
 
 
 
 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER 15 

FEATURES OF RAMAN SPECTRA OF CARBON 
DIFFERENT FORMS  

 
 
 
Carbon occupies a special place in inorganic chemistry due to the 

existence of many of its allotropic forms, including such important ones as 
diamond and graphite, as well as formations very popular recently, such as 
fullerenes, nanotubes, and graphene. In the literature, there are a large 
number of deep and detailed reviews devoted to the vibrational spectra of 
various forms of carbon, and the reader can always refer to them. This 
chapter will only briefly discuss the most important spectral features of 
carbon materials. This is necessary both for understanding vibrational 
spectra and for using spectral characteristics for material diagnostics. 

15.1. Spectra of graphite 

Fig. 15.1 shows a typical Raman spectrum of a carbon film.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.1. Typical spectrum of a carbon film and spectra of crystalline graphite and 
diamond. 

 
The spectrum consists of two broad bands D and G with wavenumbers 

at the maximum of ~1340 and ~1600 cm-1, respectively. Narrow lines 
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represent the spectra of two well-known forms of carbon - diamond (1332 
cm-1) and graphite (1582 cm-1). In diamond, carbon is in a tetrahedral 
environment, and its bonds with neighboring atoms are organized by sp3-
hybridized carbon orbitals. In graphite, carbon is embedded in a hexagonal 
structure organized by sp2 orbitals. In both cases, the observed bands refer 
to totally symmetric stretching vibrations of the C C bond. One could say 
that the spectrum of carbon in the film is very well described by these two 
forms. However, unexpectedly, the D band showed a rather complex 
spectral behavior. It turned out that both the intensity of the mode and its 
peak position depend on the energy of the exciting radiation, i.e. is of a 
resonant nature [1]. In the opinion of the authors of [1], the band should be 
attributed to scattering at one of the highly symmetric points at the 
boundary of the Brillouin zone, which has a double resonance character: 
resonance in energy associated with the distance between different 
dispersion branches at the boundary of the Brillouin zone, and resonance 
in the wave vector, since the observed transition is indirect and requires a 
change in the wave vector. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.2. Dispersion curves of phonons in graphite obtained in [2]. Legend of the 
branches: LO - longitudinal optical, iTO - transverse (in plane) optical, oTO - 
transverse (out of plane) optical, LA - longitudinal acoustic, iTA - transverse (in 
plane) acoustic, oTA - transverse (out of plane) acoustic phonons. The horizontal 
gray stripe in the dashed frame indicates the position of the phonon D on the 
ordinate. 

 
Fig. 15.2 shows the dispersion curves of phonons in graphite obtained 

in [2]. The gray horizontal stripe in the dashed frame denotes the position 
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of the phonon D on the wavenumber scale. It is clearly seen that the most 
probable candidates for the generation of the D band in the spectrum are 
longitudinal LO and transverse (in the plane) iTO optical phonons at point 
M at the edge of the Brillouin zone. It is possible that both vibrations take 
part in the D mode, but what is important for us is not an exact description 
of the phonon, but the fact that its wave vector in the spectrum is nonzero. 
This circumstance determines the conditions for the appearance of a band 
in the spectrum. 

Fig. 15.3 shows the expected scheme of electron excitation from the 
valence band of graphite to the conduction band in the case of the 
generation of a phonon with a nonzero wave vector +k. To complete the 
scattering process, the excited electron must return to the valence band, 
but the state in the latter, corresponding to the new wave vector of the 
electron, is already occupied. Therefore, the process depicted is absorption 
and not scattering. (In fact, this scheme is another illustration of the wave 
vector selection rule, see 3.5 in Chapter 3). 

 
Fig. 15.3. Illustrative scheme of electron excitation in the 
valence band of graphite with the participation of a phonon 
with k  0. The reverse transition from the conduction band to 
the valence band is forbidden due to the fact that the final 
state is occupied. The transition without changing the wave 
vector (along the blue arrow) and back yield either Rayleigh 
scattering or Raman scattering at the center of the Brillouin 
zone, i.e. at a frequency of ~1600 cm-1, which is of no interest 
in this case. 

 
For the act of scattering to take place, it is necessary to give the 

excited electron a reverse momentum k, which transfers it to its initial 
state along the wave vector (Fig. 15.4). An excited electron in the 
conduction band can reverse the direction of the wave vector in the case of 
elastic scattering by a lattice defect (intrinsic, impurity, and structural). In 
this case, the energy of an excited electron in the conduction band does not 
change, and the energy of the scattered quantum of light turns out to be 
less than the energy of the incident radiation only by the energy of the 
phonon D. Thus, first-order scattering, which characterizes the D band in 
the spectrum, can occur only in disordered graphite, and the width and the 
relative intensity of the band serves as a measure of the imperfection of the 
lattice. 

There is, however, another way of changing the wave vector of an 
excited electron to a value corresponding to its initial state. This requires 
the generation of one more phonon, equal in energy to the first, but with a 

+k 
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wave vector k. In other words, two phonons, +k and k, must participate 
in the scattering event. But this process is second-order scattering and 
yields the appearance of not the D band, but 2D overtone. The scattering 
pattern in this case turns out to be the same as shown in Fig. 15.4, only the 
mechanism of imparting the required wave vector to the excited electron 
will change. 

 
 
 
 
 

Fig. 15.4. Possible scheme for the appearance of the 2D 
band in the spectrum. 

 
 
 

Both mechanisms presented above are realized in all carbon materials 
(disordered graphite, carbon nanotubes, graphene), explaining the features 
of their vibrational spectra: the appearance of the D band and the 
unusually high intensity of the 2D overtone. Since the path along which 
the electron passes to complete the scattering act is the same in both cases 
(Fig. 15.4), we can expect competition between these processes: the more 
the graphite is disordered, the higher the intensity of the D mode and the 
lower the 2D mode, and vice versa. The best confirmation is the spectrum 
of relatively pure graphite shown in Fig. 15.5. The D band in the spectrum 
is not recorded at all, but its 2D overtone is very intense. 

 
 
 
 
 

Fig. 15.5. Raman spectrum 
of pure graphite. The 
designations of the spectral 
lines follow Ref. [3]. 
  

+k 

 k 

1000 1500 2000 2500 3000 3500

2GS

D+D''

2D

R
am

an
 In

te
ns

ity
, A

rb
. U

ni
ts

Wavenumber, cm-1

G

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 15 
 

262 

15.2. Сarbon nanotubes 

Raman spectroscopy has proven to be a surprisingly useful and 
informative method for diagnosing the state of carbon nanotubes, 
including parameters such as single or multi-layer tubes, their diameter, 
chirality, purity, and others. A typical spectrum of carbon fibers consisting 
of nanotubes is shown in Fig. 15.6. The D-mode is practically absent in it, 
recording the high perfection of nanotubes. At the same time, the spectrum 
clearly shows the 2631 cm-1 band of the D-mode overtone (doubled in 
vibration frequency), confirming the validity of the assumption made 
above, and, in addition, low-frequency bands are recorded in the region of 
100-500 cm-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.6. Raman spectrum of carbon nanotube fibers. 
 
Low-frequency bands refer to the so-called "breathing" modes (RBM, 

radial breathing mode), in which all carbon atoms are displaced 
simultaneously in the radial direction to or from the axis of the tube, 
causing the tube to "breathe". Since the interaction between the layers is 
weak, the radial displacement itself of carbon atoms practically does not 
reveal any noticeable change in the interatomic interaction, and this 
vibration should have a frequency close to zero. However, in this case, the 
length of the C C bond in the plane changes insignificantly. The latter is 
characterized by a large force constant. Considering the simple geometrical 
problem of the displacement of carbon atoms to the axis of the tube 
(Fig.15.7), one can easily find that in such a vibration the change in the 
distance between carbon atoms is proportional to 
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Fig. 15.7. Diagram of the change in the distance a 
(carbon-carbon) during the breathing vibration of a 
nanotube of radius R 

 
 

 
where R is the radius of the tube, and R is the amplitude of atomic 
vibrations in the breathing mode. Relation (15.1) shows that the change in 
the C C bond length in vibration is a/R times less than the amplitude of 
radial vibrations, and the smaller, the larger the radius (or diameter) of the 
tube. This circumstance determines the low frequency of radial vibrations 
and its dependence on the geometric parameters of the tube. Fig. 15.8 
shows the empirical dependence of the breathing mode frequency on the 
tube diameter for isolated single-walled tubes (solid curve) and tubes in a 
bundle (dashed curve). This relationship is extremely useful and allows 
you to easily determine the composition of the fiber by the diameters of 
the tubes that form it. For example, in the spectrum shown in Fig. 15.6, the 
main contribution is made by tubes with a diameter of 1.6 - 1.7 nm. 

 
 

Fig. 15.8. Dependence of the 
breathing mode frequency on 
the tube diameter for isolated 
single-walled tubes (solid 
curve) and tubes in a bundle 
(dashed curve) [4]. 

 
 
 
 

 
As for determining the relative number of tubes of each diameter in a 

given fiber, in this case the situation is somewhat more complicated. The 
fact is that tubes of different diameters react differently to the wavelength 
of the exciting laser radiation; therefore, some of the tubes in the fiber will 
exhibit increased scattering intensity in the breathing mode due to 
resonance. Thus, there is no linear relationship between the intensity of the 
breathing mode in the spectrum, which characterizes tubes of a certain 
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diameter, and their number in the fiber. This nonlinearity, however, will be 
experimentally significant only when the difference in the diameters of the 
tubes that make up the fiber is noticeable. In the case shown in Fig. 15.6, 
the spread in the diameters of nanotubes is small, which made it possible 
to make a conclusion about their predominant size. 

15.3. Graphene 

Among the various allotropic forms of carbon, graphene is currently 
attracting the most attention due to its many unusual physical properties. A 
typical spectrum of graphene is shown in Fig. 15.9.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.9. Graphene spectrum 
 
In theory, graphene should consist of one flat layer of carbon atoms 

on a suitable substrate, but sometimes, for various reasons, a film 
consisting of several layers of carbon is used in the study. Fig. 15.10 
shows a diagnostic dependence that establishes a relationship between the 
vibrational frequency of the G-mode in the spectrum of the film with the 
number of carbon layers in it. 

This dependence makes it possible to assess the state of the film 
under study. The reason for the appearance of this dependence is the weak 
van der Waals interaction between adjacent layers. However, it should be 
borne in mind that in the presence of deformations in the film, the G band 
splits into G + and G , the intensity ratios of which can be different; 
therefore, it is difficult to correctly determine the value of the G mode 
frequency in some cases. 
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Fig. 15.10. The relationship between 
the vibration frequency of the G-
mode and the number of carbon 
layers in the film [5]. 
 
 
 

 
 

One of the most interesting features of the graphene spectrum is that 
the intensity of the 2D overtone band can be very high (Figure 15.9). 
Sometimes this is the most intense band in the spectrum. The unusual 
intensity of the 2D overtone has long remained a mystery, and only recent 
work by Heller et al. [3] has introduced a sliding model to understand this 
strange feature. 

 
 
 
 
 
 
 
Fig. 15.11. Energy band diagram in graphene 
 
 

 
The energy bands of graphene are schematically shown in Fig. 15.11. 

The dependence of the electron energy on the wave vector is linear (at 
small values of the latter), which reveals the formation of the so-called 
Dirac angle. In this case, the valence band is completely filled, and the 
conduction band is empty (in the absence of external electric field). If an 
electron in the process of scattering is excited by a quantum of light into 
the conduction band without changing the wave vector (arrow up in Fig. 
15.12), then the wave vector of an electron in the conduction band and a 
hole in the valence band has the same value, and upon returning to the 
initial state, the wave vector of the electron also cannot change (all states 
with other wave vectors in the valence band are occupied) 
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Figure 15.12. Direct and reverse transitions of an electron 
without changing the wave vector 

 
 
 
 
 

 
Consequently, this process refers either to elastic scattering or to 

Raman scattering with generation (annihilation) of a phonon with k = 0. If, 
upon excitation of an electron, its wave vector changes due to participation 
in the scattering of a phonon with k  0, then the position of the excited 
electron on the dispersion line should be as shown by the solid up arrow in 
Fig. 15.13, a.  

 
 

 
 
 
Fig. 15.13. The process of inelastic 
scattering in graphene with the 
production of two phonons, +k and –k. 

 
 
 
 
 
 
 

Since there are no free states in the valence band except for the hole 
left after the excitation of the electron, the reverse transition should be 
accompanied by a change in its wave vector in the opposite direction, 
which requires the participation (creation) of another phonon with the 
wave vector -k, equal in frequency to the first and opposite in direction 
(Figure 15.13, b).  

 

+k 

k 

a b 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Features of Raman spectra of carbon different forms 267 

 
 
 
 
 
 
Fig. 15.14. Schematic representation of 
the graphene sliding model [3] 

 
 
 
 
 
 

 
This process prioritizes scattering at the doubled phonon frequency 

and is similar to that shown in Fig. 15.4. However, the difference in the 
structure of the zones of graphite and graphene presents additional 
opportunities for the latter. The dependence of the state energy on the 
wave vector in graphene is linear (“Dirac angle”). Consequently, if we 
choose another initial state in the valence band, which differs from the 
previously considered one (Fig. 15.14), then the entire cycle of Raman 
scattering will proceed according to the same energy scheme as in Fig. 
15.13, but in a frame shifted by a certain amount (In Fig. 15.14 both 
processes, initial and subsequent, are shown with dotted and solid frames, 
respectively). 

In other words, the sliding of the frame along the straight line 
describing the dependence of the energy on the wave vector in graphene 
ensures complete identity of both terms depicted. The number of such 
identical terms, i.e. frame shifts along the dispersion line, is not limited. 
These terms represent one and the same oscillator; therefore, the scattering 
processes from each of the frames interfere with each other, i.e. add up. 
For this reason, to obtain the scattering intensity, it is necessary to first add 
up the changes in polarisabilities in all terms that fall into the continuous 
sliding region and generate a pair of scattered phonons, and then square 
the entire sum. In the usual procedure for calculating the intensity of 
scattering on independent oscillators, the sum of the squares of the 
intensities of each oscillator is found. It is the sliding effect that underlies 
the observed enhancement of the 2D mode intensity in graphene. 
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CHAPTER 16 

SCATTERING BY SPIN WAVES IN CRYSTALS 
 
 
 
Crystal magnetism is a large and complex area of solid state physics, 

which is usually described in separate monographs. Obviously, discussing 
magnetism within a short chapter is an unrealistic task and, moreover, 
goes far beyond the scope of this book. For this reason, this chapter is only 
an attempt to show in an accessible form what spin waves are and how 
they manifest themselves in Raman spectra. But first, let us recall the main 
provisions that cause the appearance of magnetism in crystals and 
determine its character. 

The source of magnetism is an electron, which has both its own 
magnetic moment (spin) and the orbital angular momentum arising from 
the motion of the electron around the nucleus. 

The magnetic moment of an atom (ion) is the sum of the spins of all 
electrons taking into account their directions and angular momenta and is 
determined by the expression 

 
 = ħJ =  g BJ,    (16.1) 

 
where the total angular momentum ħJ is determined by the sum of the 
orbital ħL and spin ħS moments. The constant  is called the 
magnetochemical (or gyromagnetic) ratio, and the value g is called the g-
factor. 

The magnetic moment of the filled shell of the atom is completely 
compensated and equal to zero. Therefore, the magnetic moment of an 
atom is determined, as a rule, by unfilled d- and f-shells. 

The order of filling the shell (and, therefore, its magnetic moment) is 
determined by the Hund rules, the Pauli exclusion principle, and the 
Coulomb repulsion of electrons. According to Pauli's principle, two 
electrons can be in the same place only with opposite directions of spins. 
However, the localization of electrons in one place simultaneously 
increases both their potential energy due to the Coulomb repulsion, and 
kinetic energy due to the uncertainty relation x p ~ ħ. The trade-off 
between magnetic interaction of spins, Coulomb repulsion, potential and 
kinetic energy determines the order of the filling of the shell. For example, 
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in the 3d shell of the Mn2+ ion, five d electrons can have identically 
directed spins and occupy five different states of the orbital angular 
momentum (mL = 2, 1, 0, 1, 2), while their total orbital angular 
momentum will be zero, and the total spin = 5/2. 

In a solid, the order of filling the shell of an ion can change due to the 
crystal field (i.e., the field of the nearest environment of a given ion). For 
example, the high-spin state of the Mn2+ ion (S = 5/2) can become the low-
spin state (S = 1/2) in the crystal lattice. The question of the nature of the 
filling of the ion shell is solved experimentally for each compound. 

At high temperatures, the magnetic moments of the ions in the crystal 
are directed randomly. However, as the temperature drops below the 
critical points (see below), the spins can be ordered. The magnetic 
ordering in a crystal is based on the exchange interaction between 
magnetic ions. The exchange interaction is understood not so much as the 
interaction of spins of two magnets (such forces are too weak to play a 
significant role), but as the interaction arising due to the overlap of atomic 
orbitals (and charge distributions) of neighboring ions. Moreover, all 
quantum-mechanical phenomena (i.e. Pauli's prohibition, the uncertainty 
principle, electrostatic repulsion, the relationship between kinetic and 
potential energy) are also decisive. It is the latter that determines the order 
of the arrangement of the spins of the ions in the crystal lattice. 

The exchange interaction between magnetic ions can be direct (as in 
iron) or indirect through an intermediate nonmagnetic ion (as, for 
example, in MnS, where Mn2+ ions interact with each other due to the 
overlap of the initially atomic Mn orbitals on sulfur atoms during the 
formation of Mn-S bonds (Fig. 16.1)). In direct contact (iron), the orbitals 
of isolated atoms transform into narrow zones in the crystal, where a 
complex behavior of electrons, partially free and partially isolated on the 
atom, is established. 

 
 
 

Fig. 16.1. Schematic representation of 
indirect exchange interaction through an 
intermediate atom in a MnS crystal. The 
directions of the spins are here established 
by the Pauli principle. 

 
 
The exchange interaction energy U is usually written in the form 
 

 ,    (16.2) 

Mn2+ Mn2+ 
S2  
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where Si, Sj are the spins of ions i and j, and J is the exchange integral, the 
value of which is determined by the overlap of the orbitals. The sign of the 
exchange integral can be positive or negative, which, together with its 
value, determines the variety of magnetic phenomena in crystals. 

All types of magnetism are observed in crystals: para-, dia-, ferro-, 
antiferromagnetism (and some others). In a ferromagnet at temperatures 
below the critical Curie temperature, all spins are parallel and directed in 
the same way, while in an antiferromagnet at temperatures below the Néel 
temperature, all spins are also parallel, but oppositely directed (Fig. 16.2). 

 
 
 
 
 
 
 

Fig. 16.2. The arrangement of spins in the chains of a ferromagnet (a) and 
antiferromagnet (b) below the critical points. 

 
In a magnetic field produced by the magnetic moments of 

neighboring ions, each spin begins to precess (Fig. 16.3, a). It is these 
precessions, which are phase-matched along an ordered chain of spins, that 
form a spin wave, or magnon (Fig. 16.3, b). As can be seen from the 
figure, the spin wave is very similar to the mechanical vibration of the 
lattice, i.e. phonon. What is the "force constant" in a spin wave? As 
follows from relation (16.2), a change in the relative orientation of the 
spins causes a change in the interaction energy, which is the reason for the 
appearance of spin oscillations. Since the interaction of the spins is weak, 
the energy of the spin vibrations is also small: usually the frequencies of 
magnons are values of a few inverse centimeters. 

 
 
 
 
 
 
 
 
 

 
Fig. 16.3. Spin precession in the magnetic field of the crystal (a) and the 
emergences of a magnon in the chain of spins (b) [1]. 
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Like phonons in a crystal, spin waves have dispersion, i.e. the 
dependence of their energy on the wave vector. In simple ferro- and 
antiferromagnetic chains (Fig. 16.2), the dispersion curves are different 
and are determined by the expressions [1]: 

 
 = 4JS(1  cos ka)  (ferromagnet)    (16.3) 

and 
 = 4 J S sin ka  (antiferromagnet)     (16.4) 

 
Both curves are shown in Fig. 16.4. It can be noted that both 

dependences resemble dispersion curves for acoustic phonons, but differ 
from each other, especially in the region of small values of the wave 
vector. (In low-symmetry crystals, where the direction of the spins does 
not coincide with the direction of the crystallographic axis, the magnon 
energy at the center of the Brillouin zone can differ from zero). 

 
 
 
 
 
 
 
 
 
 

Fig. 16.4. Dispersion curves of magnons in ferro- (a) and antiferromagnets (b). The 
abscissa is the wave vector of the magnon in units of /a, where a is the constant of 
the magnetic lattice (Fig.16.2). 

 
Let us consider an example of registration of spin oscillations in the 

Raman spectra of the antiferromagnet MnS. 
 
 
 
 
 

Figure 16.5. Raman spectrum of a MnS 
crystal at room temperature. The narrow 
line marked with (*) refers to the 
emission line of the Ar+ laser. 
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MnS crystals have a cubic structure of the NaCl type. In such a 
structure, Raman-active modes are absent; therefore, the spectrum at room 
temperature consists of several broad structureless bands in the region of 
200-600 cm-1 of extremely low intensity (Fig. 16.5). These bands are 
likely to be related to both the first-order forbidden scattering, which 
appears due to the structural imperfection of the crystal, and to the second-
order scattering. However, as the crystal temperature decreases below 200 
K, first a weak wing appears in the spectrum in the low-frequency region, 
which then, at T <120 K, develops into an intense band consisting at T = 5 
K of four lines at 14, 19, 22, and 24 cm-1 (Fig. 16.6, 16.7). 

 
 
 
 
 
 

Fig. 16.6. Temperature dependence of 
the low-frequency Stokes and anti-
Stokes parts of the MnS spectrum. 

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 16.7. Decomposition of the 
Stokes spectrum at 5 K into 
Voight (PsVoigt1) components. 

 
 
 
Fig. 16.8 shows the temperature dependence of the peak position of 

the most intense 22 cm-1 mode (T = 5 K) in the range 5 K  90 K (at 
higher temperatures, the determination of the peak position becomes 
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almost impossible). This temperature dependence is well described by the 
thermal population of the phonon  = 150 cm-1 (solid curve in Fig. 16.8), 
i.e. expression 

 
(T) = (0) – С(ех  1)-1,    (16.5) 

 
where x = ħ /kT, and С is a constant. Note that the fitting phonon 
frequency  = 150 cm-1 differs significantly from the frequency of the 
mode itself  = 22 cm-1. In other words, the temperature dependence of 
low-frequency modes is determined not by their thermal population, but 
by the population of the lattice vibrations of heavy atoms, i.e. Mn. 

 
 

Fig. 16.8. Temperature dependence of 
the peak position of the 22 cm-1 mode. 
The solid curve describes the thermal 
population of the lattice phonon  = 150 
cm-1 (see text).  

 
 
 
 

Registration of both the Stokes and anti-Stokes parts of the spectrum 
(Fig. 16.6) makes it possible to estimate the true temperature of the crystal 
at the point of incidence of the exciting radiation.  

 
 
 
 
 

Fig. 16.9. The difference T between 
the real temperature of the crystal 
and the temperature of the coolant 
Tcool (see text). 

 
 
 

Fig. 16.9 shows the extent to which the real temperature of the crystal 
at the point of registration of the spectrum, calculated from the 
Stokes/Anti-Stokes ratio, differs from the temperature of the cryostat 
coolant Tcool. The latter is measured by a built-in sensor. Since the real 
temperature of the crystal upon the appearance of the first signs of the 
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appearance of the low-frequency spectrum is approximately 20 degrees 
higher than the temperature of the cryostat coolant line (Fig.16.9), the 
beginning of the creation of the low-frequency spectrum should be attributed 
to 140 K  150 K. These data are fully consistent with the measurements 
of the magnetization of MnS. according to which the crystal is an 
antiferromagnet with the Néel temperature TN  150 K [2]. 

The formation of the low-frequency scattering band (Fig. 16.6) at the 
temperature at which the magnetic ordering is recorded should be 
attributed to the appearance of spin waves (magnons) in the crystal. 
Experimental evidence of this is both the coincidence of the temperature 
of the first signs of the appearance of a low-frequency spectrum with the 
Néel temperature TN, and the dependence of the frequency of low-
frequency modes on the thermal population of phonons of the MnS lattice, 
resulting in increase in the Mn sublattice parameter (i.e., a decrease in the 
value of the exchange integral). 

If all spins in the chain (Fig. 16.2) precess with the same phase (i.e.  
= , k = 0), then the interaction between any pair of spins described by 
expression (16.2) does not change in time, and the frequency of magnetic 
oscillation is zero. In other words, all the spins turn out to be parallel at 
any moment of time and the restoring force between the spins, which 
determines the force constant of the oscillations, is absent. For this reason, 
the dispersion curves for both ferro- and antiferromagnets start from zero 
at the center of the magnetic Brillouin zone (Fig. 16.4). However, in the 
crystal lattice, a magnetic ion can be in a crystal field that causes the spin 
of the ion to deflect by a certain angle with respect to the crystallographic 
directions and planes. In this case, the spin during precession interacts not 
only with other spins in the lattice, but also with the force generated by the 
crystal field. Therefore, in a spin wave with  =  and k = 0, despite the 
fact that the interaction between different spins still does not change with 
time, the additional interaction of each individual spin with the crystal 
field creates a restoring force (spring) that provides a nonzero frequency 
this oscillation, and the dispersion branches turn out to be shifted upward 
in wavenumber near the center of the Brillouin zone. 

The Mn2+ ions form a sublattice in the MnS crystal, the symmetry of 
which in this case is also cubic, like the entire crystal (the symmetry group 
of the sublattice is always a subgroup of the crystal). At high temperatures 
(T > TN), the magnetic moments of Mn2+ ions are completely disordered 
and the symmetry of the spin sublattice is also cubic Oh. In such a 
structure, only one three-fold degenerate vibration F1u, which is forbidden 
in the Raman scattering, can arise. At T < TN, antiferromagnetic ordering 
occurs in the crystals, accompanied by a slight contraction of the lattice 
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along the [111] direction (the main diagonal of the cube). As a result, the 
direction of the magnetic moments of Mn2+, which is the same in one 
plane of the (111) type, is replaced by the opposite direction in the 
neighboring plane [3]. In this case, the direction of the spins itself also 
turns out to be not parallel to the edges of the cubic cell of the crystal, but 
elongated along the direction o  (Fig. 16.10).  

 
 
 
 
 
 

Fig. 16.10. Fragment of a face-centered 
cubic lattice of MnS. In the 
antiferromagnetic phase, the spins of the 
Mn2+ ions lie in the (111) planes of the 
crystal. The direction of the spin of each 
ion is indicated by an arrow. Sulfur 
atoms are not shown. 

 
 

In other words, the above-described situation arises in the MnS 
lattice, in which the crystal field around the magnetic ion makes the 
frequency of the magnon with k = 0 nonzero. With the ordering of the spin 
directions, the symmetry of the spin sublattice decreases to C 2/c (and the 
corresponding point group C2h), since when choosing the possible 
symmetry operations for the point group, it is also necessary to take into 
account the direction of the spin on each ion. In a low-symmetry spin 
lattice, four different types of spin oscillations are possible, Ag, Bg, Au, and 
Bu, of which only even Ag and Bg are active in Raman scattering. Of the 
four lines observed experimentally at low temperatures (Fig. 16.7), two 
intense modes at 19 and 22 cm-1 should be attributed to allowed ones, and 
the remaining two weak lines at 14 and 24 cm-1  to forbidden oscillations 
of the spin sublattice. The narrowest and most intense line at 22 cm-1 in the 
spectrum at 5 K is probably related to the Ag vibration. The calculation of 
the spectrum of magnetic oscillations in MnS crystals, presented in [4], 
gives the frequency  = 19.8 cm-1 at k = 0, which almost ideally 
corresponds to the frequencies observed in the experiment.  

Usually, when calculating the magnon spectrum, the exchange 
integral J in expression (16.2) is written as the sum J = J1 + J2, where J1 
and J2 characterize the exchange interactions between the given spin and 
the spins that make up the first and second coordination spheres, 
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respectively. In this case, the frequency of spin vibrations in the MnS 
lattice at k = 0 can be approximately described by the expression [5]: 

 
 ,   (16.6) 

 
where D1 and D2 are the parameters characterizing the spin anisotropy "in 
the plane" and "out of the plane" (Fig. 16.10). When calculating the 
frequency in [4], the values J1 = 2.433 cm-1 and J2 = 4.343 cm-1 were used. 
Substituting these values in (16.6), we find D1 = 0.484 cm-1 and D2 = 
0.361 cm-1. The value of anisotropy D (only one value) in MnS, calculated 
in [4], turned out to be 0.236 cm-1, which is very close to the values of D1 
and D2 found here. 

In conclusion, we note one very curious property of spin oscillations 
that follows from the temperature dependence of their frequency. As 
follows from Fig. 16.8, the frequency of magnons in the region of low 
temperatures (T < 40 K, kT ~ ħ ), at which their temperature generation 
(or freezing) occurs in the crystal, does not change within the experimental 
accuracy. This makes it possible to classify the spin oscillation as an 
almost ideal harmonic oscillator. 
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Appendix A: Unit and primitive cells of crystals 

A1. Direct space 
 

The smallest volume, the translation of which along the basis vectors 
a, b, and c, can recreate the spatial lattice of a crystal, is called a unit cell. 
There are several ways to construct unit cells. The simplest is to build a 
parallelepiped based on the basis vectors (Fig. A1). Its disadvantage is that 
the unit cell obtained in this way often does not show the symmetry 
elements inherent in the crystal. 

 
 
 
Fig. A1. The simplest way to construct a unit 

cell 
 
 
 
 

It was found theoretically, that there are only 14 different types of 
unit cells that can describe the whole variety of crystal structures (Bravais 
lattices, Fig. A2). 

Crystallographers usually choose a unit cell that reflects the crystal 
symmetry to one degree or another. Fig. 5.3 Chapter 5 shows the unit cell 
of a silicon crystal (diamond, germanium). However, this cell, which is 
generally accepted, is not the minimum volume required to build a crystal. 
The cell, the volume of which is really the smallest possible, is called a 
primitive cell. This latter may or may not coincide with the unit one. Fig. 
A3 shows a primitive silicon cell. Its volume is 4 times less than the 
volume of the corresponding unit cell. 

In vibrational spectroscopy, it is very important to consider the 
distinction between unit and primitive cells, since structural information is 
usually provided for a unit cell, and the calculation of the number of 
vibrations is always done for a primitive one. Information about how 
many primitive cells are contained in one unit is contained in the 
designation of the space group. So, for all groups, the designation of which 

a 

c b 
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begins with the symbol P (primitive), the unit cell coincides with the 
primitive one. In groups A, B or C (base-centered), one unit contains 2 
primitive cells, in groups F (face-centered) - 4, in groups I (body-centered) 
- 2, in groups R (rhombohedral) - 3 or 1 (depending on the 
crystallographic installation). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. A2. 14 Bravais lattices 
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Fig. A3. A primitive rhombohedral 
cell built on the basis of a face-
centered cubic lattice of silicon (C. 
Kittel, Introduction to solid state 
physics.)  

 
 
There is, however, another way to construct a unit cell. To do this, it 

is necessary to fix the origin at one of the lattice sites (atoms). After that, 
alternately connect this lattice point with a segment with each nearest 
neighboring lattice points, each time dividing the segment in half and 
drawing a plane perpendicular to the segment through the midpoint. The 
resulting set of planes produces a polyhedron with only one lattice site. 
This polyhedron is a unit cell and is called the Wigner-Seitz cell. Despite 
the fact that the Wigner-Seitz cell very fully reflects the crystal symmetry, 
it has not become widespread in crystallography due to, possibly, a 
relatively complex scheme of its construction. Fig. A4 shows the Wigner-
Seitz cell of a silicon crystal. 

 
 
 
 
 
Fig. A.4. Wigner-Seitz cell for a face-
centered cubic structure (silicon). 

 
 
 
 

 
 

  

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendices 280 

A2. Reciprocal space 
 

The vectors a, b, c, which make up the basis of the crystal lattice, can 
be associated with vectors ka = 2 /a, kb = 2 /b, kc = 2 /c, having the 
dimension of reciprocal length and making up the basis of the reciprocal 
lattice of the crystal in space wave vectors. Based on the basis vectors ka , 
kb  and kc, a simple unit cell in reciprocal space can be constructed 
according to the scheme shown in Fig. A1. However, such a cell, as 
already mentioned, does not reflect the symmetry properties of the crystal; 
therefore, a unit cell in reciprocal space is usually constructed according to 
the same principle as the Wigner-Seitz cell in direct space. A region in k-
space, built as a volume bounded by planes spaced at equal distances from 
the considered lattice point of the reciprocal lattice to the neighboring 
lattice point of this lattice, is called the first Brillouin zone. The first 
Brillouin zone (often called simply the Brillouin zone) is a unit cell in the 
space of wave vectors and is limited to the region   (in the 
one-dimensional case. For three-dimensional space, the inequality applies 
to all three directions). As we saw above, in direct space, the region 
constructed according to the same rules is the Wigner-Seitz cell. Since at k 
= 0 atoms do not shift from equilibrium positions in acoustic phonons, and 
their displacements in optical phonons do not change the symmetry of the 
crystal lattice (see Chapter 3), the point k = 0 is the only point in the 
Brillouin zone through which all the crystal symmetry elements pass.  

 
 
 
 
 
 
 
 

Fig. A5. Brillouin zone for a face-
centered cubic lattice (e.g. silicon, 
zinc blende ZnS). 

 
 
 

 
Consequently, its symmetry group coincides with the crystal 

symmetry group. This point is called the center of the Brillouin zone and is 
usually denoted by the symbol . At the boundary of the Brillouin zone 
(cell surface), there are several points through which some of the crystal 
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symmetry elements pass. These are the so-called highly symmetric points 
of the Brillouin zone, despite the fact that their symmetry is below the 
symmetry of the center of the zone (Fig. A5). For example, the point 
group of the ZnS crystal is Td, therefore, the symmetry of the  point of 
the Brillouin zone (Fig. A5) is also Td. However, only the third-order 
rotary axis and the reflection plane (vertical) pass through the point L. 
These two operations, together with the "identity" operation, form the 
point group C3v. Therefore, if the optical phonon of the ZnS crystal is 
threefold degenerate at the center of the Brillouin zone (i.e., the 
frequencies of the longitudinal and both transverse phonons are equal due 
to the physical equivalence of all three directions in the crystal), then at the 
point L the degeneracy is lifted and the dispersion branch is split into two - 
longitudinal (A1) and transverse (E) phonons. Dispersion curves for a 
given crystal are usually plotted in the direction of its highly symmetric 
points. 

As already noted, the Wigner-Seitz cells in the direct space and the 
Brillouin zones in the reciprocal space are constructed according to the 
same scheme. But at the same time, when passing from the direct space to 
the inverse one, the cell “turns out,” as it were: the Wigner - Seitz cell for 
a face-centered cubic lattice is similar to the Brillouin zone for a body-
centered cubic structure, and the cell for a body-centered lattice is like a 
zone for a face-centered structure. 
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Appendix B: Symmetry of molecules and crystals 

1. The symmetry of molecules (and crystals) is usually understood as 
the ability of a molecule as a geometric body to transform into itself under 
the action of symmetry operations. The value of this property and its 
practical utility lies in the fact that it obliges to formulate all physical laws 
in relation to symmetric objects in such a way that they are invariant to the 
application of symmetry elements.  

There are five basic symmetry operations:  
 
 identity (single operation);  
 own rotation of the order of n (rotation by an angle of 2π/n 

around the axis of rotation);  
 reflection in the plane;  
 inversion at the center of symmetry (reflection at a point);  
 improper rotation (rotation through an angle of 2π/n with 

subsequent reflection in a plane perpendicular to the axis of 
rotation). 

 
The first two operations refer to operations of the 1st kind, and the 

next three - to operations of the second kind. Operations of the first kind 
rotate a symmetrical object as a whole and are physically feasible. 
Operations of the second kind include reflection in a plane, the image of 
an object during reflection is imaginary, and the operations themselves are 
not physically feasible. 

The axes of rotation are designated by the symbol Cn. The order of 
the axis of rotation is determined by the number n - the higher n, the 
higher the order. If a molecule has several axes of rotation, the main axis is 
considered to be the axis of the highest order. In linear molecules, the axis 
of rotation passing through all atoms is the axis of infinite order C . In 
nonlinear molecules, the most common axes are 2-, 3-, 4-, and 6-orders. 
Very rarely - axes of the 5th order. In crystals, there are no 5th-order axes. 

If there is a twofold rotation axis C2, then applying this operation 
twice brings the object back to its original state and operation C2 is the 
only one. However, in the case of the C3 axis, the molecule returns to the 
initial state only when this operation is applied three times. Therefore, a 
distinction is made between the operations C3 and . In many cases, these 
operations are identical and will be combined, written as 2C3. However, in 
some groups, the characters of the rotation matrices corresponding to a 
given operation are complex numbers, and the character of C3 is different 
from the character . For this reason, in the table of characters, they are 
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recorded as independent elements of symmetry. The same applies to the 
axes of the fourth and sixth orders, proper and improper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. B.1. Symmetry elements of point groups 

 
Reflection planes are indicated by the symbol . Usually, a subscript 

h, v or d is added to it, denoting the horizontal, vertical and diagonal 
planes, respectively. The main axis of rotation is perpendicular to h and is 
aligned with v and d.  

The inversion operation is denoted by I, and the mirrored axes by Sn. 
Fig. B.1 shows the symmetry elements of the main point groups. 
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2. The successive application of two symmetry operations that 
characterize a certain symmetry group yields the appearance of a third 
operation from the same group. In other words, symmetry operations 
within a group must obey the rules of multiplication. Hence it follows that 
the number and mutual arrangement of the symmetry elements of the 
group cannot be any, since each operation is linked with other rules of 
multiplication. 

As an example, consider the symmetry operations of the group D2h 
(Fig. B.2). 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. B.2. Symmetry elements of the group D2h. 
 
Put in the upper left corner of the parallelogram, conventionally 

depicting a figure of symmetry D2h, a point (Fig. B.3). During the 
operation, the identity point will not change its position. The  
operation will move it to the lower right corner, the  operation to 
the upper right corner, and so on.  

 

Fig. B.3. Actions of symmetry operations of the D2h group on the position of a 
point in a parallelogram. 
 

 
 
 
 

E C2 C2
y C2

x I z y x 
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Table B.1. Multiplication table of symmetry elements of group D2h. 
 

D2h E    I z y x 
E E    I z y x 

  E y x z    
  y E I    z 
  x I E  y z  

I I z y x E    
z z I x y  E   
y y x I z   E  
x x y z I    E 

 
Now, applying symmetry operations to each figure again in the same 

sequence, we will know what the equivalent of applying two symmetry 
operations in succession is and compose a multiplication table, in the first 
line of which the first symmetry operation is given, and in the first column 
- the second operation (Table B.1). 

 
3. For point symmetry groups in spectroscopy, the Schoenflis 

designations are usually used, and in crystallography - international 
symbols (Table B.2). 
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Table B.2. Point symmetry group notation 
 

 
 
The simplest point group, triclinic, does not contain rotary axes. In 

monoclinic and orthorhombic systems, twofold rotational axes and 
reflection planes appear. The appearance of one threefold axis means a 
transition to trigonal systems, and the fourfold axis - to tetragonal systems. 
The presence of a sixthfold axis is characteristic of hexagonal systems, 
and the presence of four volumetric (diagonal) axes of the third order 
results in the formation of a cubic system, which is the most symmetric 
and widespread among molecules. 

System Schoenflies 
designations 

Short international 
symbol 

Full international  
symbol 

Triclinic C1 1 1 
 Ci (S2) 1  1  
Monoclinic C2 2 2 
 Cs (C1h) m m 
 C2h 2/m 2/m 
Orthorhombic D2 (V) 222 222 
 C2v mm2 mm2 
 D2h (Vh) mmm 2/m 2/m 2/m 
Tetragonal C4 4 4 
 S4 4  4  
 C4h 4/m 4/m 
 D4 422 422 
 C4v 4mm 4mm 
 D2d (Vd) 4 2m or 4 m2 4 2m or 4 m2 
 D4h 4/mmm 4/m 2/m 2/m 
Trigonal C3 3 3 
 C3i (S6) 3  3  
 D3 32 or 321 or 312 32 or 321 or 

312 
 C3v 3m or 3m1 or 31m 3m or 3m1 or 

31m 
 D3d 3 m or 3 m1 or 3 1m 3 2/m or 3

2/m1 or 3 12/m 
Hexagonal C6 6 6 
 С3h 6  6  
 C6h 6/m 6/m 
 D6 622 622 
 C6v 6mm 6mm 
 D3h 6 m2 or 6 2m 6 m2 or 6 2m 
 D6h 6/mmm 6/m 2/m 2/m 
Cubic T 23 23 
 Th m 3  2/m 3  
 O 432 432 
 Td 4 3m 4 3m 
 Oh m 3 m 4/m 3 2/m 
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4. Molecules that do not have a plane of symmetry cannot be 
combined with their mirror image, just as it is impossible to combine the 
images of the right and left hands. Such molecules are called chiral. Fig. 
B.4 shows the amino acid molecules glycine and alanine in their 
zwitterionic form (see Chapter 14). The glycine molecule has a plane of 
symmetry, but alanine (and all other amino acids) does not. The first is 
achiral, the second is chiral. The presence of chirality means that the 
molecular crystal formed by chiral molecules is optically active, i.e. 
rotates the plane of polarization of the transmitted light beam. 

 
Fig. B.4. 

Molecules of glycine (a) and alanine (b). The plane of the drawing is the mirror 
plane for glycine. Alanine has no reflection planes and this molecule is chiral. 

 
5. As mentioned in Chapter 4, symmetry operations produce a group 

in the algebraic sense. The order of a group is the number of all symmetry 
elements that form a given group. Each group has several elements of 
symmetry, from which all the rest can be obtained according to the rules 
of multiplication (i.e., sequential application). Such elements are called 
generating ones. Below is information about the orders of point groups 
and generating elements (Table B.3.). 

 
  

a b 
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Table B.3. Point group order and their generating elements 
 
Triclinic 

Group C1 Ci 

Group Order  1 2 
Producing elements  I 

 
 
Monoclinic 

Group C1h  Cs C2 C2h 

Group Order  2 2 4 
Producing 
elements h C2 C2, I 

 
Orthorhombic 

Group C2v D2 D2h 
Group Order  4 4 8 
Producing 
elements C2, v C2, C2

 C2, C2 , I 

 
Trigonal 

Group C3 C3i  S6 C3v D3 D3d 

Group Order  3 6 6 6 12 
Producing 
elements C3 C3, I C3, v C3, C2  C3, C2 , I 

 
Tetragonal 

Group C4 S4 C4h D4 C4v D2d D4h 

Group Order  4 4 8 8 8 8 16 
Producing 
elements C4 S4 C4 

C4, 
C2  C4, v 

C2, C2 , 
d 

C4, C2 , I 

 
Hexagonal 

Group C6   C3h C6h D6 C6v D3h D6h 

Group Order  6 6 12 12 12 12 24 
Producing elements C6 C3, h C6, I C6, C2

 C6, v C3, C2 , h C6, C2 , I 
 
Cubic 

Group T Th Td O   Oh 

Group Order  12 24 24 24 48 
Producing 
elements C2, C3 C2, C3, I S4, C3 C4, C3 C4, C3, I 
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6. When compiling the symmetry coordinates, it is necessary to know 
the transformation matrices for all symmetry elements of a given group. 
Matrices of one-dimensional representations coincide with their character 
and can, therefore, be taken from tables of characters (Appendix D). 
Matrices of two- and three-dimensional representations of point groups are 
given in Table. B.4.  

 
Table. B.4. Transformation matrices of two- and three-dimensional representations 
for generating symmetry elements 

 
C3 C3 

E  

 
С3i  S6              S6 

Eg  

Eu  

 
C3v C3 v 

D3 C3 C2 

E   
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D3d C3        C2         I 

Eg    

Eu      

 
C4 C4 

S4 S4 

E  

 
C4h        C4          h 

Eg   

Eu   

 
D4 C4         

C4v C4        v 

E   

 
 

D2d S4                d 

E    

 
 

D4h     C4            h 

      Eg    

Eu    
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C6 C6 

E1  

E2  

C3h C3        h 

E    

E    

 
 

C6h           C6        h 

E1g   

E1u   

E2g   

E2u   
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D6 C6  

C6v C6         v 

E1   

E2   

 
 

D3h C3      C2           h 

E     

E     
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D6h          C6              h 

E1g    

E1u    

E2g    

E2u    

 
 

T   

E   

F   
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Td 
  

O   

E   

F1   

F2   

 
 
 

Th 
                 I 

Eg    

Eu    

Fg    

Fu    

 
 
 
 
 
 
 
 
 
 
 
 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



An Introduction to Raman Spectroscopy 295 

Oh                  I 

Eg    

Eu    

F1g    

F1u    

F2g    

F2u    

 
 

7. To obtain a complete vibrational representation of a crystal, it is 
necessary to know the positional symmetry of each atom or molecular ion. 
Since the positional symmetry group is a subgroup of the crystal space 
group, the positional symmetry cannot be arbitrary. Possible positional 
symmetry groups are strictly defined for each space group. All this 
information is contained in the International Crystallographic Tables 
(ICT).  
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Appendix C: Constructing of symmetry coordinates 

Despite the fact that the calculation of the vibrational spectrum is 
currently carried out using well-developed computer programs, to 
understand the theory of vibrational spectra, it is necessary, however, to 
have an idea of the algorithm for constructing the symmetry coordinates. 
Symmetry coordinates are constructed only in a group of equivalent 
vibrational coordinates that transform into each other under the action of 
symmetry operations. The order of composing the symmetry coordinates 
is quite simple and is as follows. Let's enumerate the vibrational 
coordinates and choose one of them, for example, d1, as the producing one. 
Then we will find, in which coordinates d1 goes when sequentially 
applying symmetry operations. To now compose the symmetry coordinate 
for each irreducible representation, it is necessary to take into account the 
sign and numerical value with which d1 is transformed in this irreducible 
representation, i.e. multiply the result of the transformation d1 by an 
element of the corresponding transformation matrix. Thus, the expression 
for the symmetry coordinate S(i) for the i-th irreducible representation is:  

 
   (C.1) 

 
where d1(R) is the record of the coordinate into which the producing d1 is 
transformed under the action of the symmetry operation R, (i) (R) is the 
transformation matrix of the i-th representation, N is the normalizing 
factor (the square root of the sum of the squares of the coordinate 
amplitudes in the final expression). As an example, let us compose the 
symmetry coordinates for the stretching vibrations of AB bonds in the 
plane of a square AB4 molecule (Fig. 4.5).  

The designations of the vibrational coordinates and the symmetry 
elements of the D4h group are shown in Fig. C.1. (The figure gives a more 
detailed designation of the symmetry elements than was done in table of 
characters of the D4h group (Appendix D), since the result of the 
transformation d1 turns out to be different in the case of using symmetry 
elements relating to the same class, for example,  or , therefore these 
operations should be considered as independent).  

To make up the coordinates of symmetry, it is necessary to know the 
full form of the transformation matrices of all irreducible representations 
and for all elements of symmetry. Matrices of one-dimensional representations 
coincide with their characters and, therefore, can be borrowed from the 
table of characters of the D4h group. The transformation matrices of doubly 
degenerate representations are given above (Table B4 of the Appendix B), 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



An Introduction to Raman Spectroscopy 297 

but only for the producing symmetry elements of the group, and for all 
others they are obtained using multiplication operations (Table C.1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. C.1. Notation of vibrational coordinates of the AB4 molecule and symmetry 
elements of the D4h group 

Table C1. Transformation matrices of the representations Eg and Eu of the group 
D4h 

 

R Eg Eu R Eg Eu 

   =    

      

      

      

      

d2

d3 d4 

1d1 

 

h 

 

2 ,σx x
yC

2 ,σy y
yC  

C2, S4,S4
3 C4,C4

3
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 =        

      

 

The result of transformation of the producing coordinate d1 under the 
action of the symmetry operation R is shown in the second row of Table 
C.2 (rotations are made counterclockwise). This line is common for all 
irreducible representations, since it only shows which coordinate d1 goes 
to, regardless of a specific irreducible representation. The characteristic of 
the individual irreducible representation is laid down in the following 
lines, where the sign and the numerical coefficient are presented, by which 
the transformed coordinate in this irreducible representation is multiplied. 
For two-dimensional representations, each of the components of the 
transformation matrices shown in Table C.1 are sequentially used.  
 
Table C.2. Transformation of the producing coordinate d1 under symmetry 
operations 
 

                 
Rd1 d1 d2 d4 d3 d4 d2 d1 d3 d3 d2 d4 d1 d4 d2 d1 d3 
A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
A2g +1 +1 +1 +1 1 1 1 1 +1 +1 +1 +1 1 1 1 1 
B1g +1 1 1 +1 +1 +1 1 1 +1 1 1 +1 +1 +1 1 1 
B2g +1 1 1 +1 1 1 +1 +1 +1 1 1 +1 1 1 +1 +1 

 +1 0 0 1 +1 1 0 0 +1 0 0 1 1 +1 0 0 

 0 1 +1 0 0 0 +1 1 0 +1 1 0 0 0 1 +1 

 0 +1 1 0 0 0 +1 1 0 1 +1 0 0 0 1 +1 

 +1 0 0 1 1 +1 0 0 +1 0 0 1 +1 1 0 0 
A1u +1 +1 +1 +1 +1 +1 +1 +1 1 1 1 1 1 1 1 1 
A2u +1 +1 +1 +1 1 1 1 1 1 1 1 1 +1 +1 +1 +1 
B1u +1 1 1 +1 +1 +1 1 1 1 +1 +1 1 1 1 +1 +1 
B2u +1 1 1 +1 1 1 +1 +1 1 +1 +1 1 +1 +1 1 1 

 +1 0 0 1 +1 1 0 0 1 0 0 +1 +1 1 0 0 
 0 1 +1 0 0 0 +1 1 0 1 +1 0 0 0 +1 1 
 0 +1 1 0 0 0 +1 1 0 +1 1 0 0 0 +1 1 
 +1 0 0 1 1 +1 0 0 1 0 0 +1 1 +1 0 0 
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Finally, summarizing according to expression (C.1) the data presented in 
each row of table. C.2, find the symmetry coordinates:  
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Appendix D: Tables of characters 

D1. Characters of irreducible representations of 32 finite 
crystallographic groups 

The designations of the symmetry elements are given in Appendix B. 
The symbols most often used in vibrational spectroscopy are used to 
designate the representations. A and B are one-dimensional representations, 
symmetric (A), or asymmetric (B) relative to the main axis of rotation, E - 
two-dimensional, F - three-dimensional. The indices 1 and 2 of the 
representations denote symmetry or asymmetry with respect to the 
reflection v in the groups Cnv or the twofold rotation axis in the groups 
Dn. The subscripts g (gerade - even) or u (ungerade - odd) mean symmetry 
or asymmetry with respect to the center of inversion, and “dash” and “two 
dashes” - with respect to the plane of symmetry . All this information is 
contained in the tables themselves. For example, all g-type representations are 
positive for the inversion operation, and u-type representations are negative. 
The last column of each table shows which irreducible representations are 
translations (T) and rotations (R) in a given symmetry group. 

Tables of characters have properties, the simplest of which are listed 
below:  

 

1.  The table of characters is always "square", i.e. the number of 
irreducible representations (table rows) is equal to the number of 
symmetry classes (table columns);  

2.  The sum of the squares of the dimensions of irreducible 
representations is equal to the order of the group (that is, the 
total number of symmetry elements);  

3.  Each group has one totally symmetric representation, in which 
the characters are equal to +1 for all elements of symmetry;  

4.  For any irreducible representation (that is, a row in the table), 
except for a totally symmetric one, the sum of characters is zero 
(the sum is taken over all elements of the group, that is, the 
character is multiplied by the number of symmetry elements in 
the class).  

5.  The sum of the squares of the characters for all irreducible 
representations of any symmetry class (i.e., a table column) is 
equal to the order of the group divided by the number of 
symmetry elements in this class. 

 
These rules can be used both to build character tables and to validate 

them. 
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Triclinic 
 

 
 
 

Ci    E      I  
Ag 1 1 R 
Au 1 1 T 

 
Monoclinic 
 

C1h  Cs E    h  
A  1 1    Tx, Ty; Rz 

A  1   1    Tz; Rx, Ry 
 

C2     E     C2  
A     1      1 Tz;  Rz 

B     1    1 Tx, Ty;  Rx, Ry 

 
C2h E  I       h  
Ag 1 1 1        1   Rz 

Bg 1  1 1      1   Rx, Ry 

Au 1 1  1      1   Tz 

Bu 1  1  1        1   Tx, Ty 

 
Orthorhombic 
 

C2v E    y x  
A1 1     1   1 1 Tz 

A2 1     1 1    1 Rz 

B1 1   1   1    1 Tx; Ry 

B2 1   1 1 1 Ty; Rx 

 
D2 = V E 

    
A1 1 1    1   1  
B1 1 1  1 1 Tz; Rz 

B2 1    1    1 1 Ty; Ry 

B3 1    1  1   1 Tx; Rx 
 

C1 E  
A 1 T;  R 
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D2h = Vh E I z y x  
Ag 1 1 1 1 1 1 1 1  
B1g 1 1 1 1 1 1 1 1 Rz 
B2g 1 1 1 1 1 1 1 1 Ry 
B3g 1 1 1 1 1 1 1 1 Rx 
Au 1 1 1 1 1 1 1 1  
B1u 1 1 1 1 1 1 1 1 Tz 
B2u 1 1 1 1 1 1 1 1 Ty 
B3u 1 1 1 1 1 1 1 1 Tx 

 
 Trigonal (  = e2 i/3) 
 

     C3 E  
  

     A 1 1 1 Tz;  Rz 

E  
 E(1) 1      * (Tx, Ty);  (Rx, Ry)  E(2) 1       *     
 

C3i = S6 E    I    

   Ag 1 1 1 1 1 1 Rz 

  Eg 
Eg(1) 1  * 1  * (Rx, Ry) Eg(2) 1 *  1 *  

   Au 1 1 1 1 1 1 Tz 

   Eu
Eu(1) 1  * 1  * 

(Tx, Ty) Eu(2) 1 *  1 *  
 

C3v E 2  3 v  
A1 1 1 1 Tz 

A2 1 1 1 Rz 

E 2 1 0 (Tx, Ty);  (Rx, Ry) 
 

D3 E 2  3   
A1 1 1 1  
A2 1 1 1 Tz;  Rz 
E 2 1 0 (Tx, Ty);  (Rx, Ry) 
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D3d E 2  3  I 2  3 d  
A1g 1 1 1 1 1 1  
A2g 1 1 1 1 1 1 Rz 

Eg 2 1 0 2 1 0 (Rx, Ry) 
A1u 1 1 1 1 1 1  
A2u 1 1 1 1 1 1 Tz 

Eu 2 1 0 2 1 0 (Tx, Ty) 
 
Tetragonal 
 
C4 E   

  
A 1 1 1 1 Tz;  Rz 

B 1 1 1 1  

E  
E(1) 1 i 1 i (Tx, Ty);  (Rx, Ry) E(2) 1 i 1 i 

 
S4 E   

  
A 1 1 1 1 Rz 

B 1 1 1 1 Tz 

E  
E(1) 1 i 1 i 

(Tx, Ty);  (Rx, Ry) E(2) 1 i 1 i 
 

C4h E   
 I  

h     
Ag 1 1 1 1 1 1 1 1 Rz 

Bg 1 1 1 1 1 1 1 1  

Eg  
Eg(1) 1 i 1 i 1 i 1 i (Rx, 

Ry) Eg(2) 1 i 1 i 1 i 1 i 
Au 1 1 1 1 1 1 1 1 Tz 

Bu 1 1 1 1 1 1 1 1  

Eu  
Eu(1) 1 i 1 i 1 i 1 i (Tx, 

Ty) Eu(2) 1 i 1 i 1 i 1 i 
 

D4 E 2   2  2   
A1 1 1 1 1 1  
A2 1 1 1 1 1 Tz;  Rz 

B1 1 1 1 1 1  
B2 1 1 1 1 1  
E 2 0 2 0 0 (Tx, Ty);  (Rx, Ry) 
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C4v E 2   2 v 2 d  
A1 1 1 1 1 1 Tz 

A2 1 1 1 1 1 Rz 

B1 1 1 1 1 1  
B2 1 1 1 1 1  
E 2 0 2 0 0 (Tx, Ty);  (Rx, 

Ry) 
 

D2d = Vd = S4u E 2   2  2 d  
A1 1 1 1 1 1  
A2 1 1 1 1 1 Rz 

B1 1 1 1 1 1  
B2 1 1 1 1 1 Tz 
E 2 0 2 0 0 (Tx, Ty);  (Rx, Ry) 

 
D4h E 2   2  2  I 2  h 2 v 2 d  
A1g 1 1 1 1 1 1 1 1 1 1  
A2g 1 1 1 1 1 1 1 1 1 1 Rz 

B1g 1 1 1 1 1 1 1 1 1 1  
B2g 1 1 1 1 1 1 1 1 1 1  
Eg 2 0 2 0 0 2 0 2 0 0 (Rx, Ry) 

A1u 1 1 1 1 1 1 1 1 1 1  
A2u 1 1 1 1 1 1 1 1 1 1 Tz 

B1u 1 1 1 1 1 1 1 1 1 1  
B2u 1 1 1 1 1 1 1 1 1 1  
Eu 2 0 2 0 0 2 0 2 0 0 (Tx, Ty) 

 
Hexagonal (  = e2 i/3,  = e2 i/6) 
 

       C6 E    
   

A 1 1 1 1 1 1 Tz;  Rz 
B 1 1 1 1 1 1  

E1  
E1(1) 1  * 1  * Tx, Ty; 

Rx, Ry E1(2) 1 *  1 *  

E2  
E2(1) 1 *  1 *   
E2(2) 1  * 1  - *  
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      C3h E h  

               A  1 1 1 1 1 1 Rz

E   
E  (1) 1 * 1 * Tx, TyE  (2) 1 * 1 *
      A  1 1 1 1 1 1 Tz

E   
E (1) 1 * 1 *

Rx, RyE (2) 1 * 1 *
 

C6h E   I h  

Ag 1 1 1 1 1 1 1 1 1 1 1 1 Rz

Bg 1 1 1 1 1 1 1 1 1 1 1 1 

E1g
E1g(1) 1 * 1  * 1 * 1 * Rx,RyE1g(2) 1 * 1 * 1 * 1 *  

E2g
E2g(1) 1 * 1 * 1 * 1 *  
E2g(2) 1 * 1  * 1 * 1 * 
Au 1 1 1 1 1 1 1 1 1 1 1 1 Tz

Bu 1 1 1 1 1 1 1 1 1 1 1 1 

E1u
E1u(1) 1 1 1  * 1 * 1 * Tx,TyE1u(2) 1 * 1 1 * 1 * 1 *  

E2u
E2u(1) 1 * 1 * 1 * 1 *  
E2u(2) 1 * 1  * 1 * 1 * 
 
D6 E 2 2  3 3
A1 1 1 1 1 1 1
A2 1 1 1 1 1 1 Tz;  Rz

B1 1 1 1 1 1 1
B2 1 1 1 1 1 1
E1 2 1 1 2 0 0 Tx, Ty;  Rx, Ry

E2 2 1 1 2 0 0
 
C6v E 2 2   3 v 3 d

A1 1 1 1 1 1 1 Tz

A2 1 1 1 1 1 1 Rz

B1 1 1 1 1 1 1
B2 1 1 1 1 1 1
E1 2 1 1 2 0 0 Tx, Ty;  Rx, Ry

E2 2 1 1 2 0 0
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D3h E 2  3  h 2  3 v  
 1 1 1 1 1 1  
 1 1 1 1 1 1 Rz 

 E  2 1 0 2 1 0 Tx, Ty 
 1 1 1 1 1 1  
 1 1 1 1 1 1 Tz 

   E  2 1 0 2 1 0 Rx, Ry 
 

D6h E  2  2  3  3  I 2  2  h 3 d 3 v  
A1g 1 1 1 1 1 1 1 1 1 1 1 1  
A2g 1 1 1 1 1 1 1 1 1 1 1 1 Rz 

B1g 1 1 1 1 1 1 1 1 1 1 1 1  
B2g 1 1 1 1 1 1 1 1 1 1 1 1  
E1g 2 1 1 2 0 0 2 1 1 2 0 0 Rx, Ry 

E2g 2 1 1 2 0 0 2 1 1 2 0 0  
A1u 1 1 1 1 1 1 1 1 1 1 1 1  
A2u 1 1 1 1 1 1 1 1 1 1 1 1 Tz 

B1u 1 1 1 1 1 1 1 1 1 1 1 1  
B2u 1 1 1 1 1 1 1 1 1 1 1 1  
E1u 2 1 1 2 0 0 2 1 1 2 0 0 Tx, Ty 

B2u 2 1 1 2 0 0 2 1 1 2 0 0  
 
Cubic (  = e2 i/3) 
 
T E 4  4  3   
Ag 1 1 1 1  

E  
E(1) 1  * 1  
E(2) 1 *  1  
F 3 0 0 1 T, R 

 
Th E 4  4  3  I 4  4  3 h  
Ag 1 1 1 1 1 1 1 1  

Eg  
Eg(1) 1  * 1 1  * 1  
Eg(2) 1 *  1 1 *  1  

Fg 3 0 0 1 3 0 0 1 R 
Au 1 1 1 1 1 1 1 1  

Eu  
Eu(1) 1  * 1 1  * 1  
Eu(2) 1 *  1 1 *  1  

Fu 3 0 0 1 3 0 0 1 T 
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Td E 8  3  6  6 d  
A1 1 1 1 1 1  
A2 1 1 1 1 1  
E 2 1 2 0 0  

F1 3 0 1 1 1 R 
F2 3 0 1 1 1 T 
 
O E 8  3  6  6   
A1 1 1 1 1 1  
A2 1 1 1 1 1  
E 2 1 2 0 0  

F1 3 0 1 1 1 T,  R 
F2 3 0 1 1 1  
 

Oh E 8  3  6  6  I 8  3 h 6  6 d  
A1g 1 1 1 1 1 1 1 1 1 1  
A2g 1 1 1 1 1 1 1 1 1 1  
Eg 2 1 2 0 0 2 1 2 0 0  

F1g 3 0 1 1 1 3 0 1 1 1 R 
F2g 3 0 1 1 1 3 0 1 1 1  
A1u 1 1 1 1 1 1 1 1 1 1  
A2u 1 1 1 1 1 1 1 1 1 1  
Eu 2 1 2 0 0 2 1 2 0 0  

F1u 3 0 1 1 1 3 0 1 1 1 T 
F2u 3 0 1 1 1 3 0 1 1 1  
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D2. Characters of irreducible representations of finite 
molecular groups with the 5th order principal axis of rotation. 

(  = e2 i/5). 

C5 E      
A 1 1 1 1 1 Tz,  Rz 

E1  
E1(1) 1  2 2* * (Tx, Ty);  (Rx, Ry) E1(2) 1 * 2* 2  

E2  
E2(1) 1 2 *  2*  
E2(2) 1 2*  * 2  

 
C5h E     

h  
    

A  1 1 1 1 1 1 1 1 1 1 Rz 

E1  
E1 (1) 1  2 2* * 1  2 *2 * (Tx, Ty) E1 (2) 1 * 2* 2  1 * *2 2  

E2  
E2 (1) 1 2 *  2* 1 2 *  *2  
E2 (2) 1 2*  * 2 1 *2  * 2  

A  1 1 1 1 1 1 1 1 1 1 Tz 

E1  
E1 (1) 1  2 2* * 1  2 *2 * (Rx, Ry) E1 (2) 1 * 2* 2  1 * *2 2  

E2  
E2 (1) 1 2 *  2* 1 2 *  *2  
E2 (2) 1 2*  * 2 1 *2  * 2  

 
D5 E 2  2  5   
A1 1 1 1 1  
A2 1 1 1 1 Tz;  Rz 

E1 2 2 cos 72  2 cos 144  0 Tx, Ty;  Rx, Ry 
E2 2 2 cos 144  2 cos 72  0  

 
C5v E 2  2  5 v  
A1 1 1 1 1 Tz 

A2 1 1 1 1 Rz 
E1 2 2 cos 72  2 cos 144  0 Tx, Ty;  Rx, Ry 
E2 2 2 cos 144  2 cos 72  0  
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D5h E 2  2  5  h 2  2  5 v  
 1 1 1 1 1 1 1 1  
 1 1 1 1 1 1 1 1 Rz 

 2 2 cos 72  2 cos 144  0 2 2 cos 72  2 cos 144  0 Tx, Ty 
 2 2 cos 144  2 cos 72  0 2 2 cos 144  2 cos 72  0  
 1 1 1 1 1 1 1 1  
 1 1 1 1 1 1 1 1 Tz 

 2 2 cos 72  2 cos 144  0 2 2 cos 72  2 cos 144  0 Rx, Ry 
 2 2 cos 144  2 cos 72  0 2 2 cos 144  2 cos 72  0  

 
D5d E 2  2  5  I 2  2  5 d  
A1g 1 1 1 1 1 1 1 1  
A2g 1 1 1 1 1 1 1 1 Rz 

E1g 2 2 cos 72  2 cos 144  0 2 2 cos 72  2 cos 144  0 Rx, Ry 
E2g 2 2 cos 144  2 cos 72  0 2 2 cos 144  2 cos 72  0  
A1u 1 1 1 1 1 1 1 1  
A2u 1 1 1 1 1 1 1 1 Tz 

E1u 2 2 cos 72  2 cos 144  0 2 2 cos 72  2 cos 
144  

0 Tx, Ty 

E2u 2 2 cos 144  2 cos 72  0 2 2 cos 144  2 cos 72  0  

 
I E 12  12  20  15   

A 1 1 1 1 1  
F1 3 2 cos 144  2 cos 72  0 1 T; R 
F2 3 2 cos 72  2 cos 144  0 1  
G 4 1 1 1 0  
H 5 0 0 1 1  

 
Ih E 12  12  20  15 I 12  12  20  15 h  
Ag 1 1 1 1 1 1 1 1 1 1  
F1g 3 2cos 144  2cos 72  0 1 3 2cos 72  2cos 

144  
0 1 R 

F2g 3 2cos 72  2cos 144  0 1 3 2cos 144  2cos 72  0 1  
Gg 4 1 1 1 0 4 1 1 1 0  
Hg 5 0 0 1 1 5 0 0 1 1  
Au 1 1 1 1 1 1 1 1 1 1  
F1u 3 2cos 144  2cos 72  0 1 3 2cos 72  2cos 144  0 1 T 
F2u 3 2cos 72  2cos 144  0 1 3 2cos 144  2cos 72  0 1  
Gu 4 1 1 1 0 4 1 1 1 0  
Hu 5 0 0 1 1 5 0 0 1 1  
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D3. Characters of irreducible representations of the infinite 
groups Cv and Dv of linear molecules 

To designate representations, both spectroscopic symbols and electronic 
states symbols (in brackets) of linear molecules are used. In the presence 
of an axis of symmetry of infinite order, the number of states of type E is 
also infinite; however, only types A1 and E1 are realized in normal 
vibrations of molecules, while the other types are possible only for 
overtones of bending vibrations. 

 
C v E 2  

v  
A1 ( +) 1 1 1 Tz 

A2 ( -) 1 1 1 Rz 

E1 ( ) 2 2 cos  0 (Tx, Ty),  (Rx, Ry) 
E2 ( ) 2 2 cos 2  0  
E3 ( ) 2 2 cos 3  0  

     
 

D h E 2  
h v 2  I    

A1g  ( ) 1 1 1 1 1 1 1  
A1u   1 1 1 1 1 1 1 Tz 

A2g   1 1 1 1 1 1 1 Rz 

A2u   1 1 1 1 1 1 1  
E1g  ( g) 2 2 cos  2 0 0 2 cos  2 Rx, Ry 

E1u  ( u) 2 2 cos  2 0 0 2 cos  1 Tx, Ty 

E2g  ( g) 2 2 cos 2  2 0 0 2 cos 2  2  
E2u  ( u) 2 2 cos 2  2 0 0 2 cos 2  1  
E3g  ( g) 2 2 cos 3  2 0 0 2 cos 3  2  
E3u  ( u) 2 2 cos 3  2 0 0 2 cos 3  2  
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Appendix E: Correlation tables 

Since the positional symmetry group of an atom or molecular group 
in the crystal lattice is a subgroup of the factor group of the crystal, there 
are always correlations between the irreducible representations of both 
groups that establish which irreducible representations of the site group 
are generated by the irreducible representations of the crystal group. The 
difficulty, however, lies in the fact that some groups of the crystal allow 
several variants of correlations (see the "correlation tree" in Fig. 5.6). In 
the correlation tables, these variants are represented by different columns 
of irreducible representations relating to the same group of positional 
symmetry. The top row of the table indicates the symmetry elements that 
are common to both symmetry groups, positional and crystal. It is the 
correct choice of the common element of symmetry that guarantees 
finding the necessary correlations and subsequent analysis of oscillations 
by symmetry. 

 
Monoclinic 
 
C2h C2 Cs Ci 

Ag A A  Ag 
Bg B A  Ag 
Au A A  Au 
Bu B A  Au 
 
Rhombic 
 
 
C2v 

 
C2 

(zx) 
Cs 

(yz) 
Cs 

 

A1 A A  A  
A2 A A  A  
B1 B A  A  
B2 B A  A  
 
D2 C2(z) C2(y) C2(x) 
A A A A 
B1 A B B 
B2 B A B 
B3 B B A 
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  C2(z) C2(y) C2(x) C2(z) C2(y) C2(x) 
D2h D2 C2v C2v C2v C2h C2h C2h 

Ag A A1 A1 A1 Ag Ag Ag 
B1g B1 A2 B2 B1 Ag Bg Bg 
B2g B2 B1 A2 B2 Bg Ag Bg 
B3g B3 B2 B1 A2 Bg Bg Ag 
Au A A2 A2 A2 Au Au Au 
B1u B1 A1 B1 B2 Au Bu Bu 
B2u B2 B2 A1 B1 Bu Au Bu 
B3u B3 B1 B2 A1 Bu Bu Au 

 
 C2(z) C2(y) C2(x) (xy) (zx) (yz) 
D2h C2 C2 C2 Cs Cs Cs 

Ag A A A A  A  A  
B1g A B B A  A  A  
B2g B A B A  A  A  
B3g B B A A  A  A  
Au A A A A  A  A  
B1u A B B A  A  A  
B2u B A B A  A  A  
B3u B B A A  A  A  

 
Trigonal 
 

C3v           C3 Cs  
A1 A A   
A2 A A   
E E(1) + E(2) A  + A   

 
D3 C3 C2 

A1 A A 
A2 A B 
E E(1) + E(2) A + B 

 
S6 C3 Ci 

Ag A Ag 

Eg(1) E(1) Ag 
Eg(2) E(2) Ag 
Au A Au 

Eu(1) E(1) Au 
Eu(2) E(2) Au 
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D3d D3 C3v S6 C3 C2h C2 Cs Ci 

A1g A1 A1 Ag A Ag A A  Ag 
A2g A2 A2 Ag A Bg B A  Ag 
Eg E E Eg(1)+Eg(2) E(1)+E(2) Ag+Bg A + B A  +A  2Ag 
A1u A1 A2 Au A Au A A  Au 
A2u A2 A1 Au A Bu B A  Au 
Eu E E Eu(1)+Eu(2) E(1)+E(2) Au+Bu A + B A  +A  2Au 

 
Tetragonal 
 

C4 C2  
A A  
B A  
E(1) B  
E(2) B  

 
S4 C2 

A A 
B A 
E(1) B 
E(2) B 
  
C4h S4 C4 C2h C2 Cs Ci 

Ag A A Ag A A  Ag 
Bg B B Ag A A  Ag 
Eg(1) E(1) E(1) Bg B A  Ag 
Eg(2) E(2) E(2) Bg B A  Ag 
Au B A Au A A  Au 

Bu A B Au A A  Au 

Eu(1) E(1) E(1) Bu B A  Au 

Eu(2) E(2) E(2) Bu B A  Au 

 
     
D4 C4 C2 C2 C2 

A1 A A A A 
A2 A A B B 
B1  A A B 
B2 B A B A 
E E(1)+E(2) 2B A + B A + B 
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  v d  v d 

C4v C4 C2v C2v C2 Cs Cs 

A1 A A1 A1 A A  A  
A2 A A2 A2 A A  A  
B1 B A1 A2 A A  A  
B2 B A2 A1 A A  A  
E E(1)+E(2) B1 + B2 B1 + B2 2B A  +A  A  +A  

 
  C2  

C2(z) 
 C2    

D2d S4 D2 C2v C2 C2 Cs 

A1 A A A1 A A A  
A2 A B1 A2 A B A  
B1 B A A2 A A A  
B2 B B1 A1 A B A  
E E(1)+E(2) B2 + B3 B1 + B2 2B A + B A  +A  

 
        
D4h D2d D2d C4v D4 C4h S4 C4 

A1g A1 A1 A1 A1 Ag A A 
A2g A2 A2 A2 A2 Ag A A 
B1g B1 B2 B1 B1 Bg B B 
B2g B2 B1 B2 B2 Bg B B 
Eg E E E E Eg(1)+Eg(2) E(1)+E(2) E(1)+E(2) 
A1u B1 B1 A2 A1 Au B A 
A2u B2 B2 A1 A2 Au B A 
B1u A1 A2 B2 B1 Bu A B 
B2u A2 A1 B1 B2 Bu A B 
Eu E E E E Eu(1)+Eu(2) E(1)+E(2) E(1)+E(2) 
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         C2 , v C2 , d       
D4h D2h D2h D2 D2 C2v C2v C2v C2v 
A1g Ag Ag A A A1 A1 A1 A1 

A2g B1g B1g B1 B1 A2 A2 B1 B1 

B1g Ag B1g A B1 A1 A2 A1 B1 

B2g B1g Ag B1 A A2 A1 B1 A1 

Eg B2g+B3g B2g+B3g B2 + B3 B2 + B3 B1 + B2 B1 + B2 A2+B2 A2+B2 
A1u Au Au A A A2 A2 A2 A2 

A2u B1u B1u B1 B1 A1 A1 B2 B2 

B1u Au B1u A B1 A2 A1 A2 B2 

B2u B1u Au B1 A A1 A2 B2 A2 

Eu B2u+B3u B2u+B3u B2 + B3 B2 + B3 B1 + B2 B1 + B2 A1+B1 A1+B1 

 
 C2   C2    h v d  
D4h C2h C2h C2h C2 C2 C2 Cs Cs Cs Ci 

A1g Ag Ag Ag A A A A  A  A  Ag 
A2g Ag Bg Bg A B B A  A  A  Ag 
B1g Ag Ag Bg A A B A  A  A  Ag 
B2g Ag Bg Ag A B A A  A  A  Ag 
Eg 2Bg Ag+Bg Ag+Bg 2B A+B A+B 2A  A  +A  A  +A  2Ag 
A1u Au Au Au A A A A  A  A  Au 

A2u Au Bu Bu A B B A  A  A  Au 

B1u Au Au Bu A A B A  A  A  Au 

B2u Au Bu Au A B A A  A  A  Au 

Eu 2Bu Au+Bu Au+Bu 2B A+B A+B 2A  A  +A  A  +A  2Au 

 
Hexagonal 
 
C6 C3 C2 

A A A 
B A B 
E1(1) E(1) B 
E1(2) E(2) B 
E2(1) E(1) A 
E2(2) E(2) A 
 

C3h C3 Cs 

A  A A  
E  E(1) + E(2) 2A  
A  A A  
E  E(1) + E(2) 2A  
   

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendices 316 

C6h C3h C6 C3i C3 C2h C2 Cs Ci 

Ag A  A Ag A Ag A A  Ag 
Bg A  B Ag A Bg B A  Ag 
E1g(1) E  (1) E1(1) Eg(1) E(1) Bg B A  Ag 
E1g(2) E  (2) E1(2) Eg(2) E(2) Bg B A  Ag 
E2g(1) E  (1) E2(1) Eg(1) E(1) Ag A A  Ag 
E2g(2) E  (2) E2(2) Eg(2) E(2) Ag A A  Ag 
Au A  A Au A Au A A  Au 
Bu A  B Au A Bu B A  Au 
E1u(1) E  (1) E1(1) Eu(1) E(1) Bu B A  Au 
E1u(2) E  (2) E1(2) Eu(2) E(2) Bu B A  Au 
E2u(1) E  (1) E2(1) Eu(1) E(1) Au A A  Au 
E2u(2) E  (2) E2(2) Eu(2) E(2) Au A A  Au 

 
      C2     
D6 C6 D3 D3 C3 D2 C2 C2 C2 
A1 A A1 A1 A A A A A 
A2 A A2 A2 A B1 A B B 
B1 B A1 A2 A B2 B A B 
B2 B A2 A1 A B3 B B A 
E1 E1(1) + E1(2) E E E(1) + E(2) B2 + B3 2B A + B A + B 
E2 E2(1) + E2(2) E E E(1) + E(2) A + B1 2A A + B A + B 

 
  v d  v (zx)  v d 

C6v C6 C3v C3v C3 C2v C2 Cs Cs 

A1 A A1 A1 A A1 A A  A  
A2 A A2 A2 A A2 A A  A  
B1 B A1 A2 A B1 B A  A  
B2 B A2 A1 A B2 B A  A  
E1 E1(1)+E1(2) E E E(1)+E(2) B1 + B2 2B A  +A  A  +A  
E2 E2(1)+E2(2) E E E(1)+E(2) A1 + A2 2A A  +A  A  +A  
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     h v(zy)  h v 

D3h C3h D3 C3v C3 C2v C2 Cs Cs 

 A  A1 A1 A A1 A A  A  
 A  A2 A2 A B2 B A  A  

E  E  (1)+E  (2) E E E(1)+E(2) A1 + B2 A + B 2A  A  +A  
 A  A1 A2 A A2 A A  A  
 A  A2 A1 A B1 B A  A  

E  E  (1)+E  
(2) 

E E E(1)+E(2) A2 + B1 A + B 2A  A  +A  

 
        h  (xy) 
        v  (yz) 
D6h D6 D3h D3h C6v C6h D3d D3d D2h 

A1g A1   A1 Ag A1g A1g A1g 

A2g A2   A2 Ag A2g A2g B1g 

B1g B1   B2 Bg A2g A1g B2g 

B2g B2   B1 Bg A1g A2g B3g 

E1g E1 E  E  E1 E1g(1)+E1g(2) Eg Eg B2g+B3g 

E2g E2 E  E  E2 E2g(1)+E2g(2) Eg Eg Ag+B1g 

A1u A1   A2 Au A1u A1u Au 

A2u A2   A1 Au A2u A2u B1u 

B1u B1   B1 Bu A2u A1u B2u 

B2u B2   B2 Bu A1u A2u B3u 

E1u E1 E  E  E1 E1u(1)+E1u(2) Eu Eu B2u+B3u 

E2u E2 E  E  E2 E2u(1)+E2u(2) Eu Eu Au+B1u 
 

      v d  
D6h C6 C3h D3 D3 C3v C3v C3i` 

A1g A A  A1 A1 A1 A1 Ag 

A2g A A  A2 A2 A2 A2 Ag 

B1g B A  A1 A2 A2 A1 Ag 

B2g B A  A2 A1 A1 A2 Ag 

E1g E1(1)+E1(2) E (1)+E  (2) E E E E Eg(1)+Eg(2) 
E2g E2(1)+E2(2) E  (1)+E  (2) E E E E Eg(1)+Eg(2) 
A1u A  A1 A1 A2 A2 Au 

A2u A  A2 A2 A1 A1 Au 

B1u B  A1 A2 A1 A2 Au 

B2u B  A2 A1 A2 A1 Au 

E1u E1(1)+E1(2) E  (1)+E  (2) E E E E Eu(1)+Eu(2) 
E2u E2(1)+E2(2) E (1)+E  (2) E E E E Eu(1)+Eu(2) 
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   C2     C2      
D6h C3 D2 C2v C2v C2v C2h C2h C2h 

A1g A A A1 A1 A1 Ag Ag Ag 
A2g A B1 A2 B1 B1 Ag Bg Bg 
B1g A B2 B1 A2 B2 Bg Ag Bg 
B2g A B3 B2 B2 A2 Bg Bg Ag 
E1g E(1)+E(2) B2+B3 B1+B2 A2+B2 A2+B2 2Bg Ag+Bg Ag+Bg 
E2g E(1)+E(2) A + B1 A1+A2 A1+B1 A1+B1 2Ag Ag+Bg Ag+Bg 
A1u A A A2 A2 A2 Au Au Au 
A2u A B1 A1 B2 B2 Au Bu Bu 
B1u A B2 B2 A1 B1 Bu Au Bu 
B2u A B3 B1 B1 A1 Bu Bu Au 
E1u E(1)+E(2) B2+B3 B1+B2 A1+B1 A1+B1 2Bu Au+Bu Au+Bu 
E2u E(1)+E(2) A + B1 A1+A2 A2+B2 A2+B2 2Au Au+Bu Au+Bu 

 
 C2     h d v  

D6h C2 C2 C2 Cs Cs Cs Ci 

A1g A A A A  A  A  Ag 
A2g A B B A  A  A  Ag 
B1g B A B A  A  A  Ag 
B2g B B A A  A  A  Ag 
E1g 2B A + B A + B 2A  A  +A  A  +A  2Ag 
E2g 2A A + B A + B 2A  A  +A  A  +A  2Ag 
A1u A A A A  A  A  Au 
A2u A B B A  A  A  Au 
B1u B A B A  A  A  Au 
B2u B B A A  A  A  Au 
E1u 2B A + B A + B 2A  A  +A  A  +A  2Au 
E2u 2A A + B A + B 2A  A  +A  A  +A  2Au 

 
Cubic 
 

T C3 D2 C2 

A A A A 
E(1) E(1) A A 
E(2) E(2) A A 
F A + E(1) + E(2) B1 + B2 + B3 A + 2B 
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Th T C3i C3 D2h 

Ag A Ag A Ag 

Eg(1) E(1) Eg(1) E(1) Ag 
Eg(2) E(2) Eg(2) E(2) Ag 

Fg F Ag + Eg(1) + Eg(2) A + E(1) + E(2) B1g + B2g + B3g 

Au A Au A Au 
Eu(1) E(1) Eu(1) E(1) Au 
Eu(2) E(2) Eu(2) E(2) Au 

Fu F Au + Eu(1) + Eu(2) A + E(1) + E(2) B1u + B2u + B3u 

 
Th D2 C2v C2h C2 Cs C1 

Ag A A1 Ag A A  Ag 

Eg(1) A A1 Ag A A  Ag 
Eg(2) A A1 Ag A A  Ag 
Fg B1 + B2 + B3 A2 + B1 + B2 Ag + 2Bg A + 2B A  + 2A  3Ag 

Au A A2 Au A A  Au 
Eu(1) A A2 Au A A  Au 
Eu(2) A A2 Au A A  Au 
Fu B1 + B2 + B3 A1 + B1 + B2 Au + 2Bu A + 2B 2A  + A  3Au 

 
Td T C3v C3 D2d 

A1 A A1 A A1 

A2 A A2 A B1 

E E(1) + E(2) E E(1) + E(2) A1 + B1 

F1 F A2 + E A + E(1) + E(2) A2 + E 
F2 F A1 + E A + E(1) + E(2) B2 + E 

 
Td S4 D2 C2v C2 Cs 

A1 A A A1 A A  
A2 B A A2 A A  
E A + B 2A A1 + A2 2A A  + A  
F1 A + E(1) + E(2) B1 + B2 + B3 A2 + B1 + B2 A + 2B A  + 2A  
F2 B + E(1) + E(2) B1 + B2 + B3 A1 + B1 + B2 A + 2B 2A  + A  

 
O T D4 D3 C4 C3 

A1 A A1 A1 A A 
A2 A B1 A2 B A 
E E(1) + E(2) A1 + B1 E A + B E(1) + E(2) 
F1 F A2 + E A2 + E A + E(1) + E(2) A + E(1) + E(2) 
F2 F B2 + E A1 + E B + E(1) + E(2) A + E(1) + E(2) 
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 3C2 C2 , 2  C2   
O D2 D2 C2 C2 

A1 A A A A 
A2 A B1 A B 
E 2A A + B1 2A A + B 
F1 B1 + B2 + B3 B1 + B2 + B3 A + 2B A + 2B 
F2 B1 + B2 + B3 A + B2 + B3 A + 2B 2A + B 

 
Oh O Td Th D4h D3d 

A1g A1 A1 Ag A1g A1g 

A2g A2 A2 Ag B1g A2g 

Eg E E Eg(1)+Eg(2) A1g + B1g Eg 

F1g F1 F1 Fg A2g + Eg A2g + Eg 

F2g F2 F2 Fg B2g + Eg A1g + Eg 

A1u A1 A2 Au A1u A1u 

A2u A2 A1 Au B1u A2u 

Eu E E Eu(1)+Eu(2) A1u + B1u Eu 

F1u F1 F2 Fu A2u + Eu A2u + Eu 

F2u F2 F1 Fu B2u + Eu A1u + Eu 
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All components of the Raman tensors of A type vibrations, class C1, and 
Ag type, class Ci, are nonzero. In those classes where vibrations that are 
active in IR and RS are encountered, the directions of the polarization 
vector in the vibration are indicated next to the designation of the 
irreducible representation in RS, for example: F2,x. 
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Appendix G: Transformation of Raman tensor 

The Raman tensor is defined in a coordinate system rigidly related to 
the crystallographic or molecular axes in a given point group. Very often 
in practical spectroscopy, the problem arises of obtaining and interpreting 
the Raman spectrum of a crystal rotated with respect to the position in 
which the Raman tensor is known. In addition, in some groups in the same 
scattering geometry, two different types of vibration symmetry can be 
recorded simultaneously, so it is necessary to separate them. Both of these 
problems are solved in the same way: by finding the RS tensor in a rotated 
coordinate system (i.e., determining the Raman tensor for a rotated 
crystal). In order to find the form of Raman tensor in the new coordinate 
system, it is necessary to “rotate” the original tensor by the angle . 
However, we will start with a simpler procedure - the transformation of 
the coordinates of the polar vector w when it is rotated through an arbitrary 
angle  as shown in Fig. G.1 (or, which is the same, when the coordinate 
system is rotated by an angle  in the opposite direction).  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. G.1. Rotation of the vector w around the z-axis by an angle  
 
In this case, the new components x', y' will be written as 
 

х' = х cos   y sin , 
        y' = х sin  + y cos , 

z' = z, 
 

or, in matrix form, 
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.  (G.1) 

 
So, the matrix 
 

       (G.2) 

 
is the transformation matrix of the polar vector components when the 
coordinate system is rotated by an angle  around the z axis. It is easy to 
make sure that the transformation matrices when rotated around the x or y 
axes will be, respectively 
     and           (G.3)   

The inverse transformation matrix, i.e. from x', y', z  to x, y, z, there is 
a matrix R-1, the inverse of the matrix R. By the definition of the inverse, 
R-1R = E, where E is the identity matrix. The elements of these two 
matrices are related by the equality (R-1)  = R , which is easy to verify 
by changing  to ( ) in the matrix R, since the inverse transformation is a 
rotation by ( ). Thus, in the transition from the new coordinate system to 
the old transformation matrix is 

 

   (G.4) 

 
If two polar vectors, v and w, are linked by the relation v = Tw, where 

T is a tensor quantity, then upon rotation of the coordinate system we have 
v  = T w . 

 
Since v  = Rv,  w  = Rw, then 
 

Rv = T Rw, 
 

or, multiplying both sides of the equality on the left by R-1, 
 

v = R-1T Rw 
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and 
 

T = R-1T R. 
 

Having performed two more times the procedure of multiplying both 
parts of the last relation by R, R-1, we obtain the law of transformation of 
tensor quantities:  

 
T  = RTR-1,                         (G.5) 

 
where matrices R and R-1 are written above. Relationship (G.5) determines 
the transformation law for the Raman tensor. 

In the cubic symmetry group Оh, when the laboratory axes x, y, z are 
parallel to the C4 axes of the crystal, the Raman tensor of the totally 
symmetric vibration A1g has the form 

 

, 

 
components of the twofold degenerate vibration Eg 

 

           , 

 
and the components of the threefold degenerate vibration F2g 

 

   . 

 
The complete tensor describing the scattering intensity can be 

represented as follows: 
  

 
We see that totally symmetric and twofold degenerate vibrations are 

characterized only by the diagonal terms of the Raman tensor and 
therefore will be recorded (or not recorded) simultaneously in the Raman 
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spectrum (see Fig. 5.10). Now let's rotate the crystal 45  around its z-axis. 
In this case, the Raman tensor of the totally symmetric vibration will not 
change, and the tensors of twofold and threefold degenerate vibrations are 
transformed to the form: 

 
T (Eg,1) = RTR-1 = 
 

=  = 

 

 

 
T (Eg,2) = RTR-1  = 
 

= =  

 

 

 

       

 

 

And in this case, the total intensity tensor will be written as 
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It is the last "rotated" tensor that allows one to determine the 
symmetry of vibrations in a garnet crystal of cubic symmetry and to make 
the assignment of vibrational modes in the Raman spectrum (see Fig. 8.10, 
Chapter 8). 
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Appendix H: Frequency of characteristic vibrations 

Vibration frequency of diatomic molecules in the gas phase 
(except for Cl2) 

Molecule Wavenumber, cm-1 

H2 
4157 (ortho) 
4162 (para) 

HD 3630 
D2 2993 
HF 2907  
HCl 2886 
HBr 2558 
HI 2233 
Cl2 556 (liquid) 
Br2 319 
I2 213 
O2 1555 
CO 2140 
NO 1877 
N2 2330 

Vibrations of common triatomic molecules, linear and angular 

  1 
Symmetrical 
stretching 

   2 
bending 

     3 
Asymmetrical 
stretching 

CO2 lin. 1286, 1388* 667 2349 
SO2 ang. 1147 517 1351 
CS2 lin. 658 397 1533 
NO2 ang. 1325 752 1610 
NO2

 ang. 1327 806 1286 
SH2 ang. 2615 1183 2627 
SiH2 ang. 1995 999 1993 
* Fermi-components 2 2 and 1 
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Vibrations of tetrahedral five-atomic molecules* 

 1 2 3 4 References 
CH4  2915 1520 3072 1304 [1] 

CD4  2085 1075 2258 985 [1] 

CF4 
(Liq.) 

907 434 1257 630 [2,3] 

CCl4 
(Liq.) 

459 217 789 313 [4] 

CBr4 269 128 673 182 [5,6] 

CI4  180 89 560,570 122,130 [7,8] 

SiH4 2187 978 2183 910 [1] 

SiF4 
(77K) 

797 261 991 374 [9] 

SiCl4 
(Liq.) 

423 150 608,628,655 221 [10] 

SiBr4 
(Liq.) 

249 92 485 139 [6] 

SiI4 168 62 405 90 [7] 

GeH4 1989 820 2110 934 [1] 

GeF4 738 205 800 260 [11] 

GeCl4 
(Liq.) 

395 131 456 172 [6] 

GeBr4 
(Liq.) 

235 79 327 111 [6] 

GeI4 159 60 264 79 [7] 

SnF4 621 230 - - [12] 

SnCl4 
(Sol.) 

368 105 403 128 [6] 

SnBr4 
(Liq.) 

220 64 278 88 [6] 

SnI4 151 43 220 63 [7] 

PbCl4 
(Liq)  

327 93 349 110 [13] 

PbBr4 207 59 231 73 [14] 

PbI4 137 37 168 48 [15] 

NH4
+ 3033 1685 3134 1397 [16] 

SO4
2  981 451 1104 613 [16] 

* For the numbering of vibrational modes and the corresponding eigen vectors, see 
Appendix I. 
[1]  Kohlrausch K.W.E. Ramanspektren. Leipzig, 1943.  
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[2]  Fournier R.P., Savoie R., Bessette F., Cabana A. J. Chem. Phys. 1968. V. 49. 
P. 1159-1164. 

[3]  Daly F.P., Hopkins A.G., Brown C.W. Spectrochim. Acta. 1974. V. 30A. P. 
2159-2163. 

[4]  Chumaevskii N.A. Russian J. Inorg. Chem., 1989. V. 34. P. 1416-1420. 
[5]  Bahnick D.A., Bennett W.E., Person W.B. J. Phys. Chem. 1969. V. 73. P. 

2309-2316. 
[6]  Dernova V.S., Kovalev I.F., Kozlova N.V. Voronkov M.G. Doklady Academii 

Nayk. 1973. V. 211. P. 137-140. 
[7]  Clark R.J.H., Dines T.J. Inorg. Chem. 1980. V. 19. P. 1681-1686. 
[8]  Stammreich H., Tavares Y., Bassist D. Spectrochim. Acta. 1961. V. 17. P. 

661-664. 
[9]  Schettino V. Chem. Phys. Lett. 1973. V. 18. P. 535-539. 
[10] Griffiths J.E. Spectrochim. Acta. 1974. Vol. 30A, P. 169-180. 
[11]  Schulz A., Klapötke T.M. Spectrochim. Acta. 1995. V. 51A. P. 905-908. 
[12]  Beattie R., Cheetham N., Gilson R., Livingston K.M.S., Reynolds D.J.  J. 

Chem. Soc. A: Inorg. Phys. Theor. 1971. P. 1910-1913. 
[13]  Clark R.J.H., Hunter B.K.  J. Mol. Struct. 1971. V. 9. P. 354-356. 
[14]  Delwaulle M.L.  Compt. Rend. 1955. V. 240. P. 2132. 
[15]  Aleksandrovskaya A.M., Rigina I.V., Godnev I.N. Optica and Spektroskopiya, 

1959 V. 7. P. 844. 
[16]  Gerzberg G., Infrared and Raman Spectra of Polyatomic Molecules.  New 

York, 1945. 
 

  

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



An Introduction to Raman Spectroscopy 333 

Frequency of stretching and bending vibrations of free  
(non-interacting) C-H, CH2 and CH3 groups 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

C 

2800-2975 cm-

C

~3300 cm-1 3000-3100 cm-1 

C 

Symmetrical, 
2840  2860 cm-1 

C 

Asymmetrical 
2915  2935 cm-1 

C 

Scissoring,  
1450 cm-1

 

Roking, r  

720 cm-1 

C C 

Wagging, w 

1305 cm-
Twisting, t 

1300 cm-1 

C C 

Symmetrical Stretching 
        2860  2880 cm-1 

C 

Components of one twofold 
degenerate stretching 

vibration 2950  2970 cm-1 

CC 

C 

Components of one twofold 
degenerate bending vibration 

1450  1470 cm-1 

C 

Symmetrical 
bending (umbrella) 
1365  1385 cm-1 

C 
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The probable vibrations of the carboxylate ion, 
 

 

 
Frequency of stretching and bending vibrations of free  

(non-interacting) NH, NH2 and NH3 groups 

R2NH Stretching Bending in plane 
3350-3450 cm-1 ~1600 cm-1 

 

RNH2 s as  
3270-3420 cm-1 3350-3500 cm-1 1590-1650 cm-1 

 

RNH3 

Symmetrical 
stretching 

 

Twofold 
degenerated 
stretching 

Symmetrical 
bending 

 

Twofold 
degenerated 

bending 
3150 3250 cm-1 3250  3350 cm-1  1200  1300 cm-1 1450  1470 cm-1 

Frequency of stretching and bending vibrations of free (non-
interacting) SiH2 and SiH3 groups 

R2SiH2 

Symmetrical and 
asymmetrical 

stretching 
 

Scissoring 
 

Rocking 
r 
 

Wagging 
w 

Torsional 
t 

2110-2150 cm-1 930-950 cm-1 480-540 cm-1 800-870 cm-1 560-690 cm-1 
 

RSiH3 

Symmetrical and 
asymmetrical 

stretching 
 

Symmetrical 
bending 

(umbrella) 

Asymmetrical 
bending 

 (umbrella) 

Twofold 
Degenerated 

bending 

2140-2190 cm-1 910-930 cm-1 930-950 cm-1 680-720 cm-1 
 

Symmetrical  
stretching,  

1300-1420 cm-1 

C C C 

Asymmetrical  
stretching,  

1550-1610 cm-1 

Planar 
scissoring,  
650-770 cm-1 
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Frequency of characteristic vibrations of organic compounds* 
 

Wavenumber, 
cm-1 

Vibration Compound 

480-510 S-S stretch dialkyl disulfides 
615-630 ring deformation monosubstituted benzenes 
650-660 CCl stretch primery chloroalkanes 
620-715 CS stretch dialkyl disulfides 
585-740 CS stretch alkyl disulfides 
820-825 C3O skeletal stretch secondary alcohols 
720-830 ring vibration para-disubstituted benzenes 
749-835 skeletal stretch isopropyl group 
877 OO stretch hydrogen peroxide 
850-900 symmetric CNC stretch secondary amines 
837-905 CC skeletal stretch n-alkanes 
830-930 symmetric COC stretch aliphatic ethers 
990-1010 trigonal ring breathing meta-substituted benzenes 
990-1010 trigonal ring breathing mono-substituted benzenes 
1015-1030 in-plain CH deformation mono-substituted benzenes 
1020-1060 ring vibration ortho-disubstituted benzenes 
950-1150 CC stretches n-alkanes 
1188-1196 symmetric CO2 stretch alkyl sulfates 
1205 C6H5-C vibration alkyl benzenes 
1200-1230 ring vibration para-disubstituted benzenes 
1251-1270 in-plain CH deformation cis-dialkyl ethylenes 
1295-1305 CH2 in-phase twist n-alkanes 
1175-1310 CH2 twist and rock n-alkanes 
1290-1314 in-plain CH deformation trans-dialkyl ethylenes 
1330-1350 CH deformation isopropyl group 
1368-1385 CH2 symmetric deformation n-alkanes 
1370-1390 ring stretch naphthalenes 
1385-1415 ring stretch anthracenes 
1465-1466 CH2 deformation n-alkanes 
1446-1473 CH3, CH2 deformation n-alkanes 
1550-1630 ring stretches (doublet) benzene derivatives 
1590-1650 NH2 scissors primary amines 
1649-1654 symmetric C=O stretch carboxylic acids (cyclic dimmer) 
1700-1725 C=O stretch aliphatic ketones 
1720-1740 C=O stretch aliphatic aldehydes 
2100-2160 C C stretch alkyl acetylenes 
2232-2251 C N stretch aliphatic nitrides 
2231-2301 C C stretch dialkyl acetylenes 
2560-2590 SH stretch thiols  
2849-2861 symmetric CH2 stretch n-alkanes 
2883-2884 symmetric CH3 stretch n-alkanes 
2912-2929 anti-symmetric CH2 stretch n-alkanes 
2965-2969 anti-symmetric CH3 stretch n-alkanes 
3000-3100 aromatic CH-stretch benzene derivatives 
3330-3400 Bonded anti-symmetric NH2   stretch primary amines 
*Lin-Vien D., Colthup N.B., Fateley W.B., Graselli J.G. The Handbook of Infrared and 
Raman Characteristic Frequencies of Organic Molecules. Academic Press: Boston. 1991. 
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Characteristic vibrational frequencies of common bonds 

Bond Wavenumber, cm-1 Comment 
R-C C-R  
H-C C-R  

2190-2260 
2100-2140  

Very strong in Raman 

R-C N 
H-C N 
[C N]  

2210-2260 
2060-2090 
2080 

Strong in Raman 

C=C, C=N 1600-1700  
R>C=C=C<R  1060-1130 (sym) 

1900-2000 (asym) 
Weak in IR, strong in Raman 
Strong in IR, weak in Raman 

N=C=O 1400-1450 (in phase) 
2250-2300 (out of phase) 

Weak in IR, strong in Raman 
Strong in IR, weak in Raman 

N=C=S 925-1090 (in phase) 
2000-2300(out of phase) 

Weak in IR, strong in Raman 
Strong in IR, weak in Raman 

N=C=N  2100-2160 Strong in IR 
H N=S=O 1090 (in phase) 

1261 (out of phase) 
 

Ph N=S=O 1155 (in phase) 
1306 (out of phase.) 

 

Me N=C=S CN: 2050-2109 
CS: 718-837 

 

Me S C N CN: 2080-2130 
CS: 693-820 

 

=С=О 1715 This is the average. In compounds with 
electro-negative substituents, it rises to 
1928 cm-1 (F CO F), with the formation 
of an H-bond it decreases to ~ 1640 cm-1. 
Very useful for H-bond diagnostics. In 
conjugated systems, it also decreases to 
1670 cm-1. 
 

N=O 1580 This is the average. The frequency 
changes in the same way as in the case of 
= C = O  

-NO2 1350 (sym.) 
1550 (asym) 

 

O NO2 1250-1300 (sym) 
1610-1650 (asym) 

 

Si O Si 1000-1100 Asymmetrical mode, weak in Raman 
Si-OH 830-920 Si-O stretching 
Si-Cl 470-550  
Si-F 800-1000  
P=O 1250-1350 The same tendencies as for =C=O and 

N=O. 
S=O 1020-1060  
SO2  1140-1160 (in phase) 

1300-1350 (out of phase) 
 

C=S 1050-1400  
S S  400-500 Strong in Raman 

C F 1000-1400  
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C Cl 600-800 Strong in Raman 
C Br 500-600 Strong in Raman 
C I 480-600 Strong in Raman 
-Ме-О-Ме- 450-600 bridging oxygen in oxides 

Frequency of Х-Н vibrations* 

Bond** Wavenumber, cm-1 Comment 
Li-H 1360  
Be-H 1960  
B-H 2400  
F-H 3950- This is the maximum value. The frequency 

greatly decreases with the formation of a 
hydrogen bond (up to 1450 cm-1 for a strong 
symmetric hydrogen bond [F H F] ) 

Na-H 1133  
Mg-H 1433  
Al-H 1700-1900  
Si-H 2050-2280  
P-H 2350-2440 Strong in Raman 
S-H 2550-2600 Strong in Raman 
Cl-H 2886- This is the maximum value. The frequency 

greatly decreases with the formation of a 
hydrogen bond 

K-H 956  
Ca-H 1260  
Ga-H 1830  
(CH3)2GaH 1869  
Ge-H 2120  
(CH3)3GeH 2049  
CH3GeH3 2085  
As-H 2150  
(CH3)2AsH 2080  
Se-H 2300  
Br-H 2560  
Rb-H 908  
Sr-H 1172  
In-H 1425  
Sn-H 1580  
Sb-H 1890  
Te-H 2070  
I-H 2230  
(CH3)3PbH 1709  
*F.A. Miller, Spectra of X-H Systems. In: Course notes on the interpretation of 
infrared and Raman spectra. D.W Mayo, F.A. Miller, R.W. Hannah. New Jersey, 
Wiley-Interscience, 2003 
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination 
Compounds, John Wiley & Sons, New Jersey, 2009 
** About vibrations of C H, N H, O H bonds see Chapter 11. 
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C2 , d 

v C2  

Vibrations of the benzene molecule C6H6 (group D6h)  
(the Herzberg system was used for the numbering of modes) 

 
 = 2A1g (RS) + A2g + 2B1g + E1g (RS) + 

4E2g (RS) + A2u (IR) + 2B1u  + 2B2u + 3E1u (IR) 
+ 2E2u 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gerzberg G., Infrared and Raman Spectra of Polyatomic Molecules.  New York, 1945. 
Callegari A., Merker U., Engels P., Srivastava H.K., Lehmann K.K., Scoles G.  J. Chem. 
Phys. 2000. V. 113. P. 10583-10596. 

1, A1g 

3073.94 
2, A1g 

993.07 
3, A2g 

1350 
4, A2u 

673.97 

5, B1u 
3057

6, B1u 

1010
7, B2g 

990 
8, B2g 

707 

9, B2u 
1309.4 

12, E1u 

3064.310, B2u 

1149.7 
11, E1g 

847.1 

17, E2g 

1177.7
18, E2g 

608.13 
19, E2u 

967 
20, E2u 

398 

13, E1u 

1483.99 
14, E1u 

1038.27 
15, E2g 

3056.7 
16, E2g 

1600.9
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Vibrations of Me-chalcogen, Me-halogen, and S-S bonds in 
metal-cluster compounds (Me - Mo, W, Re)* 

 

*Fedin V. P., Kolesov B. A., Mironov Yu. V., Fedorov V. E., Polyhedron, 1989, V.8, P.2419-
2423. 
Fedin V.P., Sokolov M. N., Mironov Yu. V., Kolesov B.A., Tkachev S. V., Fedorov V. E., 
Inorg. Chim. Acta, 1990, V.167, p. 39-45. 
Fedin V.P., Mironov Yu. V., Sokolov M. N., Kolesov B.A., Fedorov V. E., Yufit D. S., 
Struchkov Yu. T., Inorg. Chim. Acta, 1990, V.174, P. 275-282. 
Fedin V.P., Sokolov M. N., Geras’ko O. A., Kolesov B.A., Fedorov V. E., Mironov A. V., Yufit 
D. S., Slovohotov Yu. L., Struchkov Yu. T., Inorg. Chim. Acta, 1990, v.175, p.217-229. 
Fedin V.P., Kolesov B.A., Mironov Yu. V., Geras’ko O. A., Fedorov V. E., Polyhedron, 1991, 
V.10, p. 997- 1005. 

M

S 

Ме=S, 510-530 cm-1 

M

O 

Me=O, 920-960 cm-1 

M

M
S 

M

Me3 –S, 450-460 cm-1 

M

S 

M
S

Ме Sbr, 360-450 cm-1 

M

S 

M
S

Ме (S2)br, 230-340 cm-1 

M

S 

M
S

(S S)br, 540-600 cm-1 

S 
M

S
(S S)term, 500-520  cm-1 

Cl 

Cl 
M Cl 

Me Cl, 300-340 cm-1 

Br

Br 
M Br 

Me Br, 180-250 cm-1 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendices 340 

Vibration frequencies of isotope substitutions of H2O molecules 
(gas), cm-1 * 

 v1 v2 v3 
H2

16O 3657.05 1594.75 3755.93 
H2

17O 3653.15 1591.32 3748.32 
H2

18O 3649.69 1588.26 3741.57 
HD16O 2723.68 1403.48 3707.47 
D2

16O 2669.40 1178.38 2787.92 
T2

16O 2233.9 995.37 2366.61 
* L. Halonen, T. Carrington Jr., J. Chem. Phys. 88 (1988) 4171–4185. 

Vibration frequency of monatomic semiconductor crystals, cm-1 

С, cubic diamond  1332  
С, hexagonal diamond (Lonsdaleite) 1324*  
Si  521 
Ge 301 

*Misra A,  Tyagi P.K., Yadav B.S.,  Rai, P. and  Misra D. S.  Appl. Phys. Lett. 89, 
071911 (2006). 
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Frequencies of optical phonons of diatom semiconductor 
crystals with a zinc blende-type structure  

 TO, cm-1 LO, cm-1 

SiCa 783-796 829  
ZnSb 274 349 
ZnSeb 206 252 
ZnTeb 179 206 
CdTeb 140 171 
BNc 1055 1285 
BPb 829 829 
AlPb 440 501 
AlSbb 319 340 
GaNd 562 748 
GaP 367 403 
GaAs 269 292 
GaSb  229 
InP 307 343 
InAs 215 234 
InSbe 185 197 

aKarch, K., P. Pavone, W. Windl, O. Schutt, D. Strauch. Phys. Rev. B 50, 23 
(1994), 17054-17063. Nakashima, S, K. Tahara. Phys. Rev. B 40, 9 (1989), 6339-
6344. Feldman, D.W., Parker, J.H., Choyke, W.J., Patrick, L. Phys. Rev. 173, 3 
(1968) 787. Olego, D, Cardona, M. Phys. Rev. B 25, 2 (1982), 1151-1160. 
bWilkinson, G.R. Raman spectra of ionic, covalent and metallic crystals. In: The 
Raman Effect, V.2, Marcel Dekker, Inc., New York, 1973  
cShimada, K., T. Sota, K. Suzuku. J. Appl. Phys. 84, 9 (1998), 4951 4958. 
dZi, J., X. Wan, G. Wei, K. Zhang, X. Xie, J. Phys. Condens. Matter 8 (1996), 6323-
6328. 
ePrice, D. L., J. M. Rowe, and R. M. Nickov, Phys. Rev. B3, 4 (1971) 1268-1279. 
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Frequencies of optical phonons of diatom semiconductor 
crystals with a wurtzite-type structure  

 
 A1 E1 E2 

LO TO LO TO 1 2 
BNa 1258 1006-1053 1281 1053-1085 476 989 
AlNb 663 514 821 614 303 426 
GaNc 710-735 533 741 558 145 560-579 
InNd 586 447 593 476 87 488 
BeOe,f 1085 678 1095 722 684 340 
ZnOf 574  583    
ZnSf 352 274 352 274 55  
CdSf 305 234 307 243 43 256 
a Shimada, K., T. Sota, K. Suzuku. J. Appl. Phys. 84, 9 (1998), 4951-4958. 
b Carlone, C, Lakin, K.M., Shanks, H.R., J. Appl. Phys. 55 (1984) 4010. 
c Akasaki, I., H. Amano, in Properties of Group III Nitrides, ed. Edgar J.H., EMIS 
Datareviews Series, N11, (1994), an INSPEC publication, 30-34. 
Siegle, H., G. Kaczmarczyk, L. Filippidis, L. Litvinchuk, A. Hoffmann, C. 
Thornsen, Phys. Rev. B 55, 11 (1997), 7000-7004. Zi, J., X. Wan, G. Wei, K. 
Zhang, X. Xie, J. Phys. Condens. Matter 8 (1996), 6323-6328. 
d Davydov, V.Yu., Emtsev V.V., Goncharuk A.N., Smirnov A.N., Petrikov V.D., 
Mamutin V.V., Vekshin V.A., Ivanov S.V., Smirnov M.B. and Inushima T., Appl. 
Phys. Lett 75 (1999), 3297-3299. 
e Loh E.  Phys. Rev. (1968), 166, 673. 
f Arguello C A, Rousseau D L and Porto S P S. Phys. Rev. (1968) 181, 1351. 

Vibrations of mineral crystals 

The entire spectrum of vibrations of silicates (50-1200 cm-1) can be 
conditionally divided into the following areas: 50-300 cm-1  mixed 
translations of cations and anions SiO4; 300-400 cm-1  librational 
vibrations of SiO4; 400-600 cm-1  bending vibrations of SiO4; 700-1200 
cm-1  stretching vibrations of SiO4. 

Characteristic vibrational frequencies of molecular fragments 
in mineral crystals, cm-1 (see also Appendix I) 

[CO3]2- 1080-1090 (calcite, CaCO3, smithsonite, ZnCO3) 
[SO4]2- 1000 (barite, BaSO4, celestine, SrSO4)  
[PO4]3- 965 (apatite, Ca5(Fe, Cl,OH)[PO4]3) 
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Appendix I: Vibrations of molecular ions in the structure 
of inorganic crystals 

The structure of most of inorganic crystals is based on a mixed ionic-
covalent bond, where the ionic component is produced from the 
interaction of cations and anions in the lattice, and the covalent one 
describes the bond within a molecular fragment that plays the role of one 
of the lattice ions (most often an anion). Molecular ions, as a rule, have a 
relatively simple geometry, and, moreover, weakly interact with neighboring 
cations in the lattice. For this reason, their vibration frequencies vary 
relatively little from compound to compound and are well known.  The 
difficulty, however, lies in the fact that the positional symmetry of a 
molecular ion in the crystal lattice, as a rule, is lower than the symmetry of 
a free ion, which causes a partial change in its vibrational spectrum due to 
the splitting of degenerate modes. For example, the symmetry group of the 
free carbonate ion CO3

2  D3h, while in the aragonite crystal CaCO3, it 
decreases to Cs, and in the crystal the observed spectrum of molecular ion 
vibrations is represented by a larger number of bands than in the spectrum 
of the free ion. In this case, however, the frequencies of its vibrations in 
the crystal remain in the same regions as the frequencies of the free ion 
and the knowledge of the latter greatly facilitates the task of interpreting 
the spectrum. To determine the vibration frequencies of an ion, one 
usually tries to obtain its vibrational spectrum either in the gas phase or in 
a frozen gas matrix. In some cases, the spectra of molecular ions in 
aqueous solutions are given. The latter case, despite its attractiveness, is 
fraught with the danger of obtaining distorted information, since water 
molecules, being strong donors of a hydrogen bond, can form it with the 
peripheral atoms of the ion, or coordinate the central atom. In both cases, 
the spectrum can differ markedly from the spectrum of an unperturbed 
molecular ion. Therefore, most often the spectrum of the ion in the 
crystalline phase is given, bearing in mind that it can vary somewhat from 
one composition of the crystal to another. In order to have initial 
information about possible vibrations of a molecular ion in a crystal, 
below are the eigen vectors of vibrations of free molecular ions of various 
geometries that are active in IR and Raman, which are common in 
inorganic chemistry.   Usually, the frequencies of vibrations of the same 
type of symmetry, for example, totally symmetric stretching ones, change 
monotonically in a chemical series, for example, in a series of halides of 
elements of the third group. However, the ratio between the vibration 
frequencies of different types of symmetry of molecular ions of the same 
geometry, especially for molecules with an inversion center, can change in 
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1, A1g( g
+) 2, E1u( u) 3, A1u( u

+) 

the series when the ratio of the masses of the central atom and ligands 
changes. In order to take this circumstance into account, in each case the 
frequencies of the observed vibrations are given for ions of the same type 
with different ratios of the masses of their constituent atoms. 

The information presented below also establishes a relation between 
the spectroscopic designation of the mode ( 1, 2, 3, etc.) and the eigen 
vector (type of symmetry) of the corresponding vibration. Of course, these 
designations can be arbitrary, but usually they try to adhere to the same 
order to facilitate understanding of the text of the articles. For simple 
cases, this order is well known and is used in most of the work. However, 
for molecules where there are two or more vibrations of the same type of 
symmetry, the order of designation of vibrations by different authors may 
be violated, which, of course, must be borne in mind. This turned out to be 
especially critical for the benzene molecule and its derivatives, where, 
thanks to the large number of vibrational modes and the numerous works 
devoted to this topic, two notation systems were established: the Herzberg 
and Wilson system. 

For degenerate vibrations of molecules, for which two or three main 
axes of symmetry are physically equivalent, the directions of 
displacements of atoms are given for only one component of the vibration. 
Other components correspond to offsets along the remaining axes of the 
coordinate system. The real vibration is a superposition of components 
(two for twofold degenerate mode, and three for threefold degenerate 
mode). Since the vibrational phases of each component are not 
determined, the total vibration in the general case is the displacement of an 
atom along the contour of an ellipse for twofold and an ellipsoid of 
rotation for threefold degenerate vibrations. 

 
1. Linear triatomic molecules XY2 of the Dh group 
 
 
 
 
 
 

 = A1g (RS) + A1u (IR) + E1u (IR) 
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1, A1   

+ 

+ 

+ 

2, 

3, E   4, E   

Anions of metal halides XY2 
 
Anion 1 2 3 References 
CuCl2  302 108 407 [1] 

CuBr2  194 81 326 [1] 

CuI2  148 65 279 [1] 

ZnF2
 596 150 754 [2] 

ZnCl2
 352 100-103 503 [3] 

ZnBr2
 223 71 404 [3] 

ZnI2
 163 68 337 [4] 

[1] Person I., Sandstrom M., Steel A.T., Zapetero M.J., Aakesson R.   Inorg. Chem. 
1991. V. 30. P. 4075. 
[2] Givan A., Loewenschuss A.   J. Chem. Phys. 1980. V. 72. P. 3809. 
[3] Givan A., Loewenschuss A.   J. Chem. Phys. 1978. V. 68. P. 2228. 
[4] Konings R.J., Fearon J.E.     Chem. Phys. Lett. 1993 V. 206. P. 57. 
 

2. Planar trigonal ions XY3 (CO3
2 , NO3 ) of the D3h group 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 = A1  (RS) + A2  (IR) + 2E  (IR, RS) 
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Vibrations of CO3
2 , NO3  anions in the structure of crystals 

 
Compound  1 (A1 ) 2 (A2 ) 3 (E ) 4 (E ) References 
Ca(CO3) 
calcite 
 

IR 
RS 

- 
1087 

879 
- 

1429-1492 
1432 

706 
714 

[1] 

Ca(CO3) 
aragonite 

IR 
RS 

1080 
1084 

866 
852 

1504,1492 
1460 

711,70
6 
704 
 

[1] 

Na(NO3) IR 
RS 

- 
1068 

831 
- 

1405 
1385 

692 
724 
 

[2] 

K(NO3) IR 
RS 

- 
1049 

828 
- 

1370 
1390 

695 
716 

[2] 

SO3 (gas)  1069 499 1392 530 [3] 

[1] Bhagavantam S., Venkatarayudu T.    Proc. Indian. Acad. Sci. 1939. V. 9A. P. 
224. 
[2] Nakagawa I., Walter J.L.    J. Chem. Phys. 1969. V. 51. P. 1389.  
[3] Brassington N.J., Edwards H.G.M., Farwell D.W., Long D.A., Mansour H.R.    
J. Raman Spectroscopy, 1978. V. 7. P. 154-157.  
 

The vibrations of the CO3
2  and NO3

2  anions are given in the table as 
they were presented by the authors in relation to the spectrum of a free 
molecule of the D3h group. In a crystal, both the symmetry of the modes 
and their number differ from what should be in a free molecule. The 
correspondence between the intramolecular vibrations of the free CO3

2  
ion and its vibrations in the aragonite crystal is shown in the figure below, 
and the vibration frequencies taking into account the crystal symmetry are 
shown in the table below. 
 

Molecule 
D3h 

Site 
symmetry 

Cs 

Crystal 
D2h 

  Ag 
1 A1   B1g 

 A  B2g 
1 A2   B3g 

 A  Au 
2E   B1u 

  B2u 
  B3u 
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1, A1g  2, B1g  

+ 

+ + 

+ 

3, A2u 4, B2g  

+ 

 + 

 

5, 6, Eu  7, Eu  

Correlations between intramolecular vibrations of a free CO3
2  ion and its 

vibrations in an aragonite crystal 

Vibrations of CO3
2  anions in aragonite taking into account  

the crystal symmetry [3] 

1 (A1 ) 2 (A2 ) 3 (E ) 4 (E ) 
Ag B3g Ag B2g Ag B1g or B2g Ag B1g B2g B3g 

1085  853 907 1462 1574 705 721 717 701 
[3] Frech R., Wang E.C., Bates J.B.    Spectrochim. Acta. 1980. V. 36A. P. 915-919. 
 
3. Flat square molecules XY4 of the D4h group 
 

Planar square ions of D4h symmetry are not widespread in inorganic 
chemistry. However, coordination compounds often contain structural 
fragments that are not formally related to square ions, but the vibrations of 
which are well described precisely by the vibrations of square molecules. 
For example, if such a fragment is part of a polymer chain. Therefore, 
there is a need to refer to the theoretical spectrum of square molecules, and 
we present it here. 

 
 =  
 
 
 
 
 
 
 
 
 
 
 
 
 

A1g
 (RS) + B1g

 (RS) + B2g
 (RS) + B1u + A2u (IR) + 2Eu (IR) 
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1, 2, E  3, F2 4, F2 

Vibrations of planar square anions XY4 transition metal halides 
 
Anion 1 2 3 4 6 7 References 
[AuCl4]  347 171 151 324 356 173 [1,2] 

[AuBr4]  212 102 - 196 252 ~110 [2-3] 

[AuI4]  148 75 - 110 192 113 [1] 

[PdCl4]2  303 164 150 275 321 161 [2,4] 

[PdBr4]2  188 103 114 172 243 104 [1,4] 

[PtCl4]2  330 171 147 312 313 165 [2,4] 

[PtBr4]2  208 106 105 194 227 112 [2,4] 

[PtI4]2  155 85 105 142 180 127 [1,4] 

[1] Ferraro, J. R.  “Low Frequency Vibrations of Inorganic and Coordination 
Compounds”, Plenum Press, New York, 1971. 
[2] Degen L.A., Rowlands A.J.    Spectrochim. Acta. 1991. V. 47A. P. 1263. 
[3] Bosworth Y.M., Clark R.J.H.    J. Chem. Soc., Dalton Trans. 1975. P. 381. 
[4] Goggin P.L., Mink J.    J. Chem. Soc., Dalton Trans. 1974. P. 1479. 
 
4. Tetrahedral ions XY4 (Td group) 
 
 
 
 

 
 

  
 

 
 = A1 (RS) + E (RS) + 2F2 (IR, RS) 
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Tetrahedral (Td) oxy-anions of transition elements  
(aqueous solutions) 

 
Anion 1 2 3 4 References 
RuO4 (liquid) 822 323 914 334 [1] 

OsO4 (gas) 965 333 960 322 [2,3] 

      

MnO4  839 360 914 430 [4] 

TcO4  912 325 912 336 [4] 

ReO4  971 331 920 332 [4] 

      

CrO4
2  846 349 890 368 [4] 

MoO4
2  897 317 837 - [4] 

WO4
2  931 325 838 - [4] 

FeO4
2  778 - 800 320 [5] 

RuO4
2  856 - 807 330 [5] 

      

VO4
3  826 336 804 - [4] 

[1] Griffith W.P.    J. Chem. Soc., Sect. A. 1968. P. 1663. 
[2] McDowell R.S., Goldblatt M.    Inorg. Chem. 1971. V. 10. P. 625. 
[3] Huston J.L., Claassen H. H.    J. Chem. Phys. 1970. V. 52. P. 5646. 
[4] Weinstock N., Schulze H., Muller A.    J. Chem. Phys. 1973. V. 59. P. 5063. 
 [5] Griffith W.P.    J. Chem. Soc., Sect. A. 1966. P. 1467. 
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Tetrahedral (Td) oxy-anions of transition elements in various 
crystal matrices 

 
Anion Matrice 1 2 3 4 References 
MnO4  K[MnO4] 845 353 906,914,919 395,400,403 [1] 

TcO4  K[TcO4] 910 385 885,917 327 [2] 

ReO4  K[ReO4] 969 339 898,926 352 [2] 

       

CrO4
2  Na2[CrO4] 851 351 900,933 391 [3] 

MoO4
2  Th[MoO4]2 955 467 783,795 340-355 [4] 

WO4
2  Th[WO4]2 990 440 820,915 342,350 [4] 

MnO4
2  K2[MnO4] 813 325 836,841 339 [5] 

FeO4
2  K2[FeO4] 830 336 786,796 307,312,318 [5] 

       

VO4
3  Na3[VO4] 741,771 333,346 835 333,346 [6] 

CrO4
3  Ba2[CrO4]2 828 276  319 [5] 

MnO4
3  K3[MnO4] 810 324 839 349 [5] 

ReO4
3  Li3[ReO4] 808 264 848,863 317,320,333 [5] 

FeO4
3  K3[FeO4] 776 265 818 335,347 [5] 

RuO4  K[RuO4] 830 339 840 312,317 [5] 

       

TiO4
4  Ba2[TiO4] 761 306,315 775 765,770,780 [5] 

ZrO4
4  Li4[ZrO4] 792 332,342 835,831 380,389 [5] 

HfO4
4  Li4[HfO4] 796 325,332 - 366,384 [5] 

VO4
4  Ba2[VO4] 818 319 762,776,788 361,368,379 [5] 

CrO4
4  Ba2[CrO4] 806 353,361 825,855,873 390,416,419 [5] 

MoO4
4  Ba2[MoO4] 792 328 - 352,398 [5] 

WO4
4  Ba2[WO4] 821 323 - 367,398 [5] 

FeO4
4  Ba2[FeO4] 762 257 846 320,324 [5] 

CoO4
4  Ba2[CoO4] 790 296,303 830,850 340 [5] 

[1] Engert C. and Kiefer W.   J. Raman Spectrosc. 1991. V. 22. P. 715-719. 
[2] Gassman P.l., McCloy J.S., Soderquista C.Z., Schweiger M.J.    J. Raman 
Spectrosc. 2014, V. 45. P. 139–147. 
[3] Doyen L., Frech R.   J. Chem. Phys. 1996. V. 104. P. 7847-7853.  
[4] Augsburger M. S. Pedregosa J. C.    J. Phys. Chem. Sotids. 1995. V. 56. P. 
1081-1084. 
[5] Gonzalez-Vilchez F., Griffith W.P.   J. Chem. Soc., Dalton Trans. 1972. P. 1416. 
[6] Kerp O., Möller A.    Z. Anorg. Allg. Chem. 2006. V. 632. P. 1187-1194.  
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Vibrations of tetrahedral (Td) cations of halide p-elements  
in the structure of inorganic crystals 

Cation 1 2 3 4 References 
BF4  774 355 1060 526,530 [1] 
BCl4

 406 189,194 690,722 278 [2] 
BBr4

 248 116 605,630,642 170 [2,3] 
BI4

 169 83 515,543 117 [2] 
AlF4  622 210 760 322 [4] 
AlCl4  348 119 498 182 [5,6] 
AlBr4  212 98 394 114 [6,7] 
AlI4  143,149 51 321-336 82 [6,8] 
GaCl4  343 120 370 153 [9] 
GaBr4  207 74 263 105 [6] 
GaI4  147 52 211 73 [6,10] 
InCl4  320 89 335 112-115 [11] 
InBr4  198 55-64 229-239 79 [3,12] 
InI4  139 42 185 58 [10] 
TlCl4

 303-312 60-90 281-297 78-90 [13] 
TlBr4  184 58 201 69 [14] 
TlI4

 130 - 146 60 [15] 
      
NF4

+ 846 445,448 1150,1180,1187 610,612 [1] 
NCl4

+ 635 430 283 233 [16] 
PF4

+ 906 275 1167 358 [17] 
PCl4

+ 455-460 180-195 655,665 252 [18] 
PBr4

+ 250-256 104 486-509 150 [3,6] 
PI4

+ 151-165 71-77 380-400 90-98 [6] 
AsF4

+ 745 213 829 272 [19] 
AsCl4

+ 420 151 503 186 [20] 
AsBr4

+ 247 85 353,356 116,120 [20] 
AsI4

+ 183 72 319 87 [21] 
SbCl4

+ 396 121 451 139 [22] 
SbBr4

+ 234 76 305 92 [22] 
[1] Christe K.O., Lind M.D., Thorup N., Russell D.R., Fawcett J., Bau R.   Inorg. 
Chem. 1988. V. 27. P. 2450-2454. 
[2] Clark R.J.H., Joss S., Taylor M. J.     Spectrochim. Acta. 1986. V. 42A. P. 927-
928. 
[3] Shamir J., Schneider S., van der Veken B.J.    J. Raman Spectroscopy. 1986. 
Vol. 17. P. 463-466.  
[4] Gilbert B., Mamantov G., Begun G.M.    Inorg. Nucl. Chem. Lett. 1974. V. 10. 
P. 1123. 
[5] Rytter E., Oye H.A.    J. Inorg. Nucl. Chem. 1973. V. 35. P. 4311. 
[6] Aubauer C., Kaupp M., Klapötke T.M., Nöth H., Piotrowski H., Schnick W., 
Senker J., Suter M.    J. Chem. Soc., Dalton Trans. 2001. P.1880. 
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Tetrahedral (Td) halide complexes of s- and d-elements 
 
Anion 1 2 3 4 References 
BeF4

2  547 255 800 385 [1] 
MgCl4

2  252 100 330 142 [2] 
MgBr4

2  150 60 290 90 [2] 
MgI4

2  107 42 259 60 [2] 
      
TiF4 (газ) 712 185 772 209 [3] 
TiCl4 (газ) 389 114 498 136 [4] 
TiBr4 (газ) 231 68 393 88 [4] 
TiI4  162 51 324 67 [5] 
ZrF4 (4 K) 668 166 672 173 [6] 
ZrCl4 (газ) 377 98 418 113 [4] 
ZrBr4 (газ) 222 60 315 72 [4] 
ZrI4 (газ) 158 43 254 55 [4] 
HfF4 (4 K) 680 175 655 167 [6] 
HfCl4 (газ) 382 101 390 112 [4] 
HfBr4 (газ) 235 63 273 71 [4] 
HfI4 (газ) 158 55 224 63 [4] 
      
VCl4 383 128 475 150 [7] 
      
CrF4 717  790 201 [8] 
CrCl4 373 116 486 126 [9] 
CrBr4 224 60 368 71 [9] 
      
MnCl4

2  256 - 278,301 120 [10,11] 
MnBr4

2  195 65 209,221 89 [10,11] 
MnI4

2  108 46 188,193 56 [10,11] 
      
FeCl4  330 106 385 133 [12] 
FeBr4  203 74 297 91 [13] 
FeI4  142 60 235,252 73 [14] 
FeCl42  266 82 286 119 [10] 
FeBr4

2  162 - 219 84 [10] 
      
CoCl4

2  287 92 320 126,143 [15] 
CoBr4

2  179 74 243,249 90,101 [15] 
CoI4

2  118 - 194,202 56 [16] 
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NiCl42  264 - 280,294 119 [16] 
NiBr4

2  - - 228 81 [16] 
NiI4

2  105 - 191 - [16] 
      
ZnCl4

2  276 80 277 126 [10] 
ZnBr4

2  171 - 204 91 [10] 
ZnI4

2  118 - 164 - [10] 
[1] Quist A.S., Bates J.B., Boyd G.E.    J. Phys. Chem. 1972. V. 76. P. 78 
[2] Maroni V.A.    J. Chem. Phys. 1971. V. 55. P. 4789 
[3] DeVore T.C., Gallaher T.N.    J. Chem. Phys. 1985. V. 82. P. 2512-2514. 
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540. 
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[14] Armbruster A., Rotter H.W., Thiele G.    Z.Anorg. Allg. 1996. V. 622. P. 795. 
[15] Schmidtke H.-H., Nover J.    Inog. Chim. Acta 1995. V. 240. P. 231. 
[16] Sabatini A., Sacconi L.    J. Am. Chem. Soc. 1964. V. 86. P. 17. 
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1, A1g 2, Eg 3, F1u 

4, F1u 6, F2u 5, F2g 

5. Octahedral ions 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 = A1g (RS) + Eg (RS) + F2g (RS) + 2F1u (IR) + F2u 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



An Introduction to Raman Spectroscopy 357 

Vibrations of octahedral (Oh) halide anions p-elements 
in the crystal structure 

 
Anion 1 

(A1g) 
2 

(Eg) 
3 (F1u) 4 (F1u) 5 (F2g) References 

AlF6
3  541 400 568 387 322 [1,2] 

GaF6
3  535 398 481 298 281 [2.3] 

InF6
3  497 395 447 226 229 [1,2] 

InCl6
3  277 193 250 157 (149) [4] 

TlF6
3  478 387 412 202 209 [1,2] 

TlCl6
3  280 362 294 222,246 155 [5] 

TlBr6
3  161 153 190,195 134,156 95 [5] 

       

SiF6
2  663 477 741 483 408 [10] 

GeF6
2  627 454 600 350 318 [6] 

GeCl62  309 211 310 213 198 [11] 

SnF6
2  573 460 555  249 [7] 

SnCl6
2  323 244 315,341 166,189 171 [8,26,29] 

SnBr6
2  182 135 203 111 101 [27,29] 

PbCl6
2  285 215 - - 137 [9] 

       

PF6  741 567 864 560 470 [12,28] 

PCl6  360 283 444 285 238 [11,13] 

AsF6  689 573 700 385 375 [10,14,28] 

AsCl6  337 289 333 220 202 [11] 

SbF6
 668 558 669 350 294 [10,15,28] 

SbCl6
 330 282 353 180 175 [16,21,26] 

SbCl6
3  327 274 - - 137 [17] 

SbBr6  192 169 224,239 119 78,103 [18] 

SbBr6
3  180 153 180 107 73 [19,20] 

SbI6  107 96 108 82 54 [19,20] 

BiF6  590 547 585 - 231,247 [15,22,23,28] 

BiCl6
3  259 215 172 130 115 [19,20] 

BiBr6
3  156 130 128 75 62 [19,20] 

BiI6
3  114 103 96 (59) 54 [19,20] 

       

SF6(Gas) 773.5 641.7 939 614 524 [24] 

SeF6 706.9 658.7 780 437 405 [24] 

TeF6(Gas) 697.1 670.3 752 325 314 [24] 
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TeCl62  287 247 230 158 131 [25] 

TeBr6
2  170 148 180 - 96 [25] 
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[3] Milicev S., Rahten A., Borrmann H.    J. Raman Spectrosc. 1997. V. 28. P. 315. 
[4] Barrowcliffe T., Beattie I.R., Day P., Livingston K.    J. Chem. Soc. A, 1967. P. 
1810. 
[5] Spiro T.G.    Inorg.  Chem. 1967. V. 6. P. 569. 
[6] Griffiths J.E., Irish D.E.    Inorg. Chem. 1964. V. 3. P. 1134-1137. 
[7] Christe K.O., Schack C.J., Wilson R.D.    Inorg. Chem. 1977. V. 16. P. 849-
854. 
[8] Morioka Y., Nakagawa I.    J. Raman Spectrosc. 1987. V. 18, P. 533-536.  
[9] Creighton J.A., Woodward L.A.    Trans. Faraday Soc. 1962. V. 58. P. 1077-
1079.  
[10] Naulin C., Bougon R.    J. Chem. Phys. 1976. V. 64. P. 4155. 
[11] Beattie I.R., Gilson T., Livingston K., Fawcett V., Ozin G.A.  J. Chem. Soc. A.  
1967. P. 712. 
[12] Grondin J., Lass`egues J-C., Cavagnat D., Buffeteau T., Johansson P., 
Holomb R.    J. Raman Spectrosc. 2011. V. 42. P. 733-743. 
[13] Muir A.S.    Poluhedron. 1991. V.10. P. 2217. 
[14] Smith G.L., Mercier H.P.A., Schrobilgen G.J.    Inorg. Chem. 2008. V. 47. P. 
4173-4184. 
[15] Popov A.I., Shcharabarin A.V., Sukhoverkov V.F., Chumaevsky N.A.    Z. 
Anorg. Allg. Chem. 1989. V. 576. P. 242. 
[16] Burgard M., MacCordick J.    Inorg. Nucl. Chem. Lett. 1970, V. 6. P. 599. 
[17] Bosworth Y.M., Clark R.J.H.    J. Chem. Soc., Dalton Trans. // 1974. P. 1749. 
[18] Clark R.J.H., Duarte M.L.    J. Chem. Soc., Dalton Trans. // 1977. P. 790. 
[19] Hooper M.A., James D.W.    Aust. J. Chem. 1973. V. 26. P. 1401. 
[20] Hooper M.A., James D.W.    J. Inorg. Nucl. Chem. 1973. V. 35. P. 2335. 
[21] Christian B.H., Collins M.J., Gillespie R.J., Sawyer J.F.    Inorg. Chem. 
1986.V. 25. P. 777-788.  
[22] Surles T., Quaterman L.A., Hyman H.H.    J. Inorg. Nucl. Chem. 1973. V. 35. 
P. 670. 
[23] Gillespie R.J., Martin D., Schrobilgen G.J.    J. Chem. Soc. Dalton Trans. 
1980. P. 1898-1903. 
[24] Claassen H.H., Goodman G.L., Holloway J.H., Selig H.    J. Chem. Phys. 
1970. V. 53. P. 341-348. 
[25] Baker L.-J., Rickard C.E.F., Taylor M.J.    Polyhedron. 1995. V. 14. P. 401-
405. 
[26] Adams D.M., Appleby R.    J. Inorg. Nucl. Chem. 1976. V. 38. P. 1601-1603. 
[27] Clark R.J.H., Maresca L., Puddephatt R.J.    Inorg. Chem. 1968. V. 7. P. 
1603-1606.  
[28] Bougon R., Buihuy T., Cadet A., Charpin P., Rousson R.    Inorg. Chem. 1974. 
V. 13. P. 690-695.                                                                                                                                                  

[29] Woodward L.A., Creighton J.A.    Spectrochim. Acta. 1961. V. 17. P. 594-
599. 
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Vibrations of octahedral (Oh) halide anions s- and d-elements  
in the structure of crystals 

 
Anion 1 (A1g) 2 (Eg) 3 (F1u) 4 (F1u) 5 (F2g) References 
ScF6

3  495 375 458 257 235 [1,2,3]  

YF6
3  470 380 419 200 210 [4] 

LaF6
3  443 334 362 130-170 171 [3] 

       

TiF6
2  630 455 550 315 290,298 [5] 

TiCl6
2  320 271 316 183 173 [6,7] 

TiBr6
2  192 - 244 119 115 [6] 

GfCl6
2- 326 257 275 145 156 [8] 

       

VF6  663 520 690 304 314 [9] 

VF6
3  504 652 361 335 292 [10] 

NbF6  704 540 610 244 271 [9] 

NbCl6  367-409 281-295 330-364 162-165 173-185 [11,12] 

NbBr6  219 179 239 112 109 [12] 

TaF6  707 540 610 244 271 [9] 

TaCl6  378-394 290-300 318-330 156-160 179-195 [11,12] 

TaBr6  230 179 213 106 114 [12] 

       

CrCl6
3  308 255 325 194 182 [13] 

MoF6 741.5 651.6 741.1 264 318 [14] 

MoCl6
2  329 - 308 168 154 [15] 

MoCl6
3  305 - 302 167 150 [15] 

WF6 771.0 677.2 711 258 320 [14] 

WCl6 437 331 373 160 182 [8] 

WCl6  382 - 312 157 168 [15] 

WCl6
2  341 - 293 150 - [15] 

       

TcF6 712.9 (639) 748 265 (297) [14] 

ReF6 753.7 (671) 715 257 (295) [14] 

ReCl6  382 301 322,353 164 186 [16] 

ReCl6
2  346 275 313 172 159 [8,17] 

ReBr6
2  213 174 217 118 104 [17,18] 

ReI6
2  147 118 164 - - [18] 

       

FeF6
3  511 368 447 268 252 [1,2] 

FeCl6
3  290 278 258 - 162 [19] 

RuF6
 (675) (624) 735 275 (283) [14] 

RuCl6
2  331 265 - - 166 [19-21] 

RuBr6
2  204 164 - - 110 [19-21] 

OsF6
 730.7 (668) 720 268 (276) [14] 

OsCl6
2  346 274 314 177 165 [8,17,21] 

OsCl6
3  313 - 290,297 185 - [21] 

OsBr6
2  210 173 217 122 107 [21,22,23] 

OsBr6
3  189 180 200 116 94 [21] 

OsI6
2  152 121 170 91 80 [21] 
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OsI6
3  144 113 140 111 - [21] 

       

RhF6 (634) (595) 724 283 (269) [14] 

RhCl6
2  322 260 330 184 177 [21] 

RhCl6
3  308 284 312 (159) 179 [24] 

RhBr6
3  190 173 244 (102) 113 [24] 

IrF6 701.7 645 719 276 267 [14,25] 

IrCl6
2  352 (225) 333 184 190 [8,23,26] 

IrBr6
2  209.6 175.1 - - 103.2 [23,26] 

IrI6
3  149 133 175 87 88 [27] 

       

PdF6
2  575 556 - 295 242 [28] 

PdCl6
2  317 292 - - 164 [29] 

PdBr6
2  198 176 253 130 100 [30] 

PtF6
 656.4 (601) 705 273 (242) [14] 

PtCl6
2  340 320 325 181 160 [8,29] 

PtBr6
2  207 190 - - 97 [29] 

PtI6
2  149 132 181 - 115 [31] 

       

AuF6
 602 577 653 - 223,242 [32,33] 

       

GdF6
3  473 380 373 140-190 185 [3] 

YbF6
3  491 (370) 406 191 196 [3] 

UF6
 667.1 532.5 624 186.2 202 [14] 

NpF6
 654 535 624 198.6 208 [14] 

PuF6
 (628) (523) 616 206.0 (211) [14] 

[1] Wieghardt K., Siebert H.    J. Mol. Structure. 1971. V. 7 P. 305-313. 
[2] Turrell S., Hafsi S., Conflant P., Barbier P., Drache M., Champarnaud-Mesjard 
J.-C.    J. Mol. Structure. 1988. V. 174. P. 449-454. 
[3] Von Becker R., Lentz A., Sadowny W.    Z. Anorg. Allg. Chem. 1976. V. 420. P. 
210-218. 
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V. 13. P. 690-695.                                                                                                                                                  

[10] Nagarajan R., Tyagi N., Lofland S., Ramanujachary K.V.    Polyhedron. 2011. 
V. 30. P. 1425–1429. 
[11] Poulsen F.W., Berg R.W.    J. Inorg. Nucl. Chem. 1978. V. 40. P. 471-476. 
[12] So S.P., Chau F.T.    J. Mol. Structure. 1972. V. 12. P. 113-119 
[13] Von Eysel H.H.    Z. Anorg. Allg. Chem. 1972. V. 390. P. 210-216.  
[14] Claassen H.H., Goodman G.L., Holloway J.H., Selig H.    J. Chem. Phys. 1970. 
V. 53. P. 341-348. 
[15] Creighton J.A., Sinclair T.J.    Spectrochim. Acta. 1979. V. 35A. P. 507-508.  
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Appendix J: Units of measurement and other reference 
data 

Formally, the vibration frequency  should be measured in Hertz, i.e. 
the number of oscillations for 1 second. However, the order of this value is 
1012  1014, which is a certain inconvenience for continuous recording. In 
the literature, especially the theoretical one, instead of , they often use the 
angular frequency , measured in “rad/s”. The two frequencies are related 
by a simple relationship  = 2 , and the order of magnitude of  is the 
same as . The appearance of the circular frequency  is due to the fact 
that when solving the harmonic oscillator equation, it is convenient to use 
the expression x(t) = A cos ( t + ) instead of x(t) = A cos (2 t + ). 

In vibrational spectroscopy, information about the frequency of 
mechanical vibrations is extracted from the characteristics of electromagnetic 
radiation absorbed in IR spectra and scattered in Raman spectra. Since 
electromagnetic radiation is usually characterized by a wavelength , then 
it is convenient to somehow associate the frequency of oscillations with 
this quantity. Therefore, in practical spectroscopy, the so-called 
spectroscopic frequency was introduced, equal to the number of waves of 
electromagnetic radiation that fit in a 1 cm segment. This last quantity is 
called the “wave number” and is measured in inverse centimeters, cm-1. 
The frequencies of all possible atomic and molecular vibrations, expressed 
in inverse centimeters, have a range of 10 - 4000 cm-1, with a higher 
frequency corresponding to a larger value in inverse centimeters. The 
wave number does not have its own symbol and, therefore, the familiar 
symbol  is most often used (incorrectly!). From the definition of the 
wave number it follows that the true vibration frequency (in Hertz) is 
related to the spectroscopic frequency  by a simple relationship: 

 
 (Hz) = с (cm-1) = 3 1010  (cm-1) 

 
In Raman spectroscopy, the wavelength of scattered radiation is also 

measured, but the physically significant quantity is not the absolute 
wavelength, but the difference in wavelengths of the incident and scattered 
light. It turned out to be convenient in this case, too, to characterize the 
radiation wavelengths by the wavenumber, i.e. the number of wavelengths 
that fit in a 1 cm interval. In this case, the difference in the wavenumbers 
of the incident and scattered radiation is also expressed in inverse 
centimeters, and the obtained values for the position of the vibrational 
modes correspond to those measured in IR absorption. 
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The vibrational frequency in Raman spectra published in modern 
journal articles is commonly referred to as "frequency", "Raman shift" or 
"wavenumber". As you can see from the previous text, the latter 
designation is the most accurate. This is what is used in this book. 

Formally, the wavenumber is not an energy unit. But due to the fact 
that the energy of the wave and its wavenumber are related by the 
proportionality coefficient hc, i.e. E = h  = hc· (cm-1), then there is 
always a one-to-one correspondence between the wave number and the 
energy of vibrations. Below are the numerical correspondences between 
the wavenumber and various commonly used energy quantities. 

 
1 meV  8.06546 cm-1 
1 eV  8065.46 cm-1 
1 kcal/mole  350 cm-1 
1 J  5.041 1022 cm-1 
1 erg  5.041 1015 cm-1 
1 cm-1  1.9837 10-16 erg 
1 THz  33 cm-1 
1 Hartree (the atomic unit of energy)  2.19·105 cm-1 
 
The physical quantities most frequently used in vibrational spectroscopy 

are given below. 

Table of physical quantities (CGS) 

Speed of light c 2.997925 1010 cm/s 
Proton charge e 4.80325 10-10  units CGS 
Plank constant  h 6.62620 10-27  erg s 
 ħ = h/2  1.05459 10-27  erg s 
Avogadro constant N 6.02217 1023  mole-1 

Atomic mass unit amu 1.66053 10-24 g 
Rest mass of electron m 9.10956 10-28 g 
Rest mass of proton Mp 1.67261 10-24 g 
Mp/m ratio Mp/m 1836.11 
Mass of hydrogen atom  1.6735x10-24 g 
Mass of helium atom  6.6464x10-24 g 
Classical electron radius r0 2.81794 10-13 cm 
Bohr radius aH 5.29177 10-9 cm 
Bohr magneton B 9.27410 10-21  erg/Gs 
Boltzmann constant kB 1.38062 10-16  erg /K 
Dielectric constant of vacuum 0 1 
Magnetic permeability of vacuum 0 1 
1  electron-volt eV 1.60219 10-12  erg 
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