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CHAPTER 1 

INTRODUCTION  
 
 
 
The heart is the essential representative of the cardiovascular system and it 
can be prone to many diseases. According to annual statistics from the 
World Health Organization (WHO), cardiovascular pathologies are the 
most common cause of death in the world. As a result, the diagnosis of 
cardiac pathologies appears and imposes itself as a vital task. Doctors have 
powerful tools at their disposal to observe the functioning of the heart 
muscle and thus make their diagnosis based on the continuous 
development of resources and techniques. Among the possible techniques: 
electrocardiography, scintigraphy and tomography. 

The most common test done is electrocardiography because it is quick to 
perform, inexpensive, and non-invasive. With the help of the 
electrocardiogram (ECG), important indicators can be determined. In 
general, the shapes and durations of the different peaks and waves are 
examined as signs of true heart abnormalities. 

Cardiac scintigraphy, one component of nuclear imaging, is an additional 
test used by nuclear physicians to assess heart function. Scintigraphy is a 
technique that carries useful information to affirm or deny chest pain by 
recognizing the state of perfusion of the myocardium. The technique is 
performed following a stress test to achieve maximum heart rate for a 
satisfactory time or to stop the test due to pain or exhaustion. 

In addition to taking a medical history of symptoms and risk factors, the 
doctor may perform certain tests to judge the quality of the carotid arteries 
using the technique called angiography. In the case of medical imaging, 
tomography is a technique that reconstructs the volume of an object in the 
human body from a series of sections obtained from the exterior of the 
object in question. The result is a reconstruction of the real properties of 
the interior of the object. In this examination, an iodinated contrast 
medium is used to increase the density of the blood in the arteries and thus 
enhance the vascular bed in the images. These images are obtained from 
different angles, which allow 3D reconstruction. 
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Several usual approaches to processing 1D and 2D medical data have been 
proposed. However, few works have been based on grammar. Grammar 
and language theory began in 1950. To this day, grammar involves 
analyzing programming languages, describing natural languages, and 
modeling logical circuits. However, grammatical rigor can be extended to 
cover other areas of application such as signaling and medical imaging. 
The main advantage of these methods concerns the representation that it 
can make available. Syntactic approaches can powerfully represent object 
structures and therefore make it easy to retrieve information. The input 
data appears to be a structured scene having a hierarchical order because 
grammars can clearly represent hierarchical structures using non-terminal 
and terminal nodes. In addition, syntactic approaches are able to describe a 
large set of complex objects using small sets of simple primitives and 
grammatical rules. Compared to statistical methods, the use of grammars 
offers more flexibility in applications. 

It is in this context that our thesis topic arises and finds its interest. We 
offer 1D and 2D medical data processing techniques based on grammatical 
formalism. The idea is inspired by language theory and word recognition. 
Grammatical formalization can represent semantic patterns and patterns 
found in the signal or in the image. Indeed, we used syntactic methods to 
interpret the ECG signals from the MIT-BIH standard base and measure 
the associated parameters (R peaks, RR distances, QRS durations and QTc 
corrected intervals). Also, we will show how the idea of grammar is 
applied to medical 2D images such as scintigraphic image and 
tomographic image. The proposed method makes it possible to detect the 
contours of the epicardium and endocardium. In addition, quantitative 
information can be deduced such as the area and radius of each organ as 
well as the thickness of the epicardial muscle. Indeed, this type of work 
will certainly help physicians during a medical examination and during a 
decision-making process. 

This report is mainly composed of four chapters. 

The first chapter briefly introduces the basics of cardiology and the 
functioning of the cardiovascular system. It helps to understand in 
particular the origin of the electrical signals recorded by the ECG signal. 
Then, the first chapter presents cardiac scintigraphy and explains different 
types of scintigraphic images held in states of exertion and rest. Also, a 
part will be devoted to present tomography and more precisely of the 
carotid arteries using tomography angiography. As the second part of the 
chapter, we briefly report basic notions of grammatical formalism and the 
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different types of grammar. It makes it possible in particular to focus on 
the first two types which are regular grammar and grammar out of context. 
We focus more precisely on the basics in terms of languages, automata, 
vocabularies, rules, lexical analysis and syntactic analysis. 

The second chapter details the state of the art of different ECG signal 
processing methods. It presents several techniques reported from the 
literature for the analysis and processing of ECG and the extraction of 
certain characteristic elements of the signal such as QRS complexes, P and 
T waves, R peaks, etc. 

The third chapter presents the method we have developed for the detection 
of QRS complexes and cardiac cycles and illustrates the results obtained 
on several types of real ECG signals from the MIT-BIH standard database 
and those obtained from our exploration partner service in Sahloul 
University Hospital in Tunisia. The algorithm quantifies various indicators 
of the ECG signal such as RR distance, QRS duration and the corrected 
QTc interval. In addition, we added two parameters: the standard deviation 
of the RR distances denoted  and the standard deviation of the QRS 
durations denoted  These standard deviation parameters reflect the 
regularity of RR distances and QRS durations. 

The fourth chapter details the state of the art of the different grammar-
based image segmentation methods. It presents several techniques cited in 
the literature that are based on grammatical formalism to do image 
processing in general. This fourth chapter presents the method we have 
developed for the segmentation of medical images. An application on 
scintigraphic images and tomographic images has been established. For a 
scintigraphic image, the algorithm can detect the contours of the 
epicardium and endocardium. In addition, quantitative information can be 
deduced such as the area and radius of each organ as well as the thickness 
of the heart muscle. For a tomographic image, a region of interest (ROI) 
segmentation technique is proposed. A large series of segmented regions 
of interest allowed us to do the 3D reconstruction of the objects. The 
image base comes from our second partner service, the Nuclear Medicine 
Service of the Sahloul University Hospital in Tunisia. The manuscript 
ends with a general conclusion. 

 

 

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER 2 

BASICS OF CARDIOLOGY AND GRAMMATICAL 
FORMALISM  

 
 
 

I. Introduction 

Through this chapter two aspects will be exposed: 

 An overview of the cardiovascular system is given, followed by a 
general description of physiological cardiac activity. This 
presentation is particularly limited to the various parameters 
describing the Electrocardiogram (ECG) signal, the scintigraphic 
images and the tomographic ones for a better understanding of the 
work presented in this thesis. The chapter ends with a general 
description of cardiac pathologies. Readers interested in more in-
depth approaches will be able to consult the numerous available 
medical books [Deb'97, Fis'02]. 

 A presentation of grammatical formalism basics will shed light on 
the theory that will be adopted later for the processing of medical 
data resulting from the techniques that have been described in this 
chapter. 

II. Cardiovascular system 

The cardiovascular system ensures the continuous circulation of blood in 
the organism. The circulatory system therefore supplies oxygen to cellular 
tissues and transports wastes to the kidneys and carbon dioxide to the 
lungs. The cardiovascular system is made up mainly of the heart and a 
network of continuous and closed conduits that allow the transport of 
blood to the arteries and veins. 

II.1 Heart  

The heart is a concave and muscular organ equivalent to a pump which 
allows the circulation of blood to the arteries and veins. The shape of the 
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heart is comparable to an inverted cone. The heart is placed in the 
mediastinum which represents the middle part of the rib cage bounded by 
the following organs: the two lungs, the breastbone and the spine. The 
heart is located to the left of the center of the thorax and is able to pump 
four to five liters of blood, at relaxation, per minute. The heart is 
subdivided into four chambers: two atria and two ventricles [Obr'68] 
(Figure 2.1), allowing blood to be pumped to the cells of the human body. 
The two atria and the two left and right ventricles constitute the left heart 
and the right heart respectively.  

 
Figure 2.1: General diagram of heart [Fis'02] 

II.2 Blood circulation  

The right atrium picks up oxygen-poor blood from the upper and lower 
vena cava and throws it to the right ventricle after a phase of contraction. 
This phase is called systole. The systole is followed by another phase of 
diastole, making it possible to propel, through the pulmonary arteries, the 
blood in the lungs. Carbon dioxide carried by the blood will be cleaned by 
the lungs out of the body. Then the blood will be recharged with oxygen 
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and returns to the heart through the left atrium. After that, it circulates in 
the left ventricle and then to all the organs in the network of arteries 
through the aorta (Figure 2.1) [Fis'02]. 

III. Cardiac electrophysiology 

The heart is an organ which automatically possesses all the tools for its 
functioning. This automatism is connected to the crucial tissue, and the 
heart contracts following a stimulus which originates from the posterior 
wall of the right atrium. This excitation passes through both atria and then 
passes to both ventricles. Consequently, the heart admits an intrinsic 
network of conductive cells which shape and retransmit electrical impulses 
vis-à-vis the cells that respond to impulses by phases of contractions. To 
better understand the origin of mechanical and electrical events in the 
heart, the electro-physiological properties of cardiac cells will be described 
first. 

III.1 Electro-physiological properties of cardiac cells  

The cells of the human heart are surrounded by a membrane which allows 
the passage of ions of different types, which produces differences in 
concentration on either side. Sodium is ten times less concentrated inside 
than outside the membrane, so the intracellular concentration of potassium 
is thirty times greater than outside. The concentration of calcium is much 
more concentrated on the outside than on the inside. Indeed, these 
differences in concentrations electrically generate potential differences 
between the outside and inside of the membrane [Deb'97, Fis'02]. 

Upon relaxation, the interior of the membrane is negatively charged with a 
-90mV potential difference, also called the resting potential. When the cell 
membrane is stimulated by chemical, mechanical or electrical excitation, 
momentary changes in the cell membrane will result in a cruel influx of 
sodium and calcium and an outflow of potassium. The potential level thus 
progresses from -90mV to +20mV, which is called the action potential. 
During the contraction of the cell membrane, exchanges of ions are 
transferred and thus induce an action potential, as described in Figure 2.2. 
The five resulting phases are represented as follows: 

Rapid depolarization, or phase 0: After an electrical stimulus beyond the 
activation threshold, a rapid flow of sodium ions enters the cell and 
suddenly changes the polarity of the cell. 
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Early repolarization, or phase 1: It is characterized by short and rapid
repolarization, due to the flow leaving the potassium ions and sodium
inactivation.

Plateau, or phase 2: It represents slow repolarization. The phase is due to
the slow entry of calcium ions into the membrane, which reduces the
influence of potassium and consequently slows down the repolarization
phase.

Repolarization, or phase 3: This phase corresponds to the final
repolarization, and it is characterized by the closure of ion channels hence
bringing the cell to a resting potential. Along this phase, potassium ions
are continuously exiting, while the potential of the cell membrane tends
towards a relaxation threshold.

Phase 4: This last phase describes the resting potential, in which the cell is
no longer excitable.

Figure 2.2: Five phases describing the action potential of cell membrane:
phase 0 of depolarization, phase 1 of onset of repolarization, phase 2
of slow repolarization, phase 3 of rapid repolarization, and phase 4 of
rest.

III.2 Electrical functioning of heart

The heart has an electrical system that keeps beating automatically. The
heart muscle contracts and is governed by an electrical impulse in the
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sinus node located in the superior vena cava, as shown in Figure 2.1, in the 
right atrium. The sinus node is formed by a set of automatically excitable 
cells which generate an electrical current of depolarization 60 to 100 times 
per minute. 

Electrical self-excitation is transmitted to both atria causing atrial systole 
and occurs at the Atrioventricular (AV) node. The latter is the only point 
of passage between the ventricles and the atria located in the 
interventricular septum. At this stage, the self-excitation induces a short 
pause and consequently induces the phase of ventricular systole. 

This pause is largely cruel to cause delayed stimulation relative to the atria 
and thus allows both ventricles to be fully filled during the atrial 
contraction phase. Consequently, the electrical system develops the 
conformity of the heart rhythms and so allows the coordination of the 
phases of the AV contractions. 

IV. Electrocardiography 

IV.1 History  

In 1842: Carlo Matteucci was an Italian physicist who discovered that an 
electric current would follow every heartbeat.  

In 1887: John Burden was an English physiologist who published the first 
ECG of a human being.  

In 1897: Clément Ader was an engineer in electronics who adapted the 
galvanometer, which was an amplification system for telegraphic 
communications under marine.    

In 1903: Einthoven managed to collect the electric currents by using an 
assembly called the Wheatstone bridge.  

In 1924: Einthoven won the Nobel Prize for his activities on 
electrocardiography.  

In 1932: Chest leads were used for medical diagnosis.  

In 1942: Unipolar leads were used for medical diagnosis. 
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IV.2 Presentation  

Electrocardiography is a slightly expensive technique, following a simple 
and non-invasive examination, controls the good functioning and progress 
of the cardiovascular pump. 

This method was created in 1887 for the first time following the work of 
Waller [Wal'87]. Then it was reinforced by the invention in 1901 of the 
string galvanometer [Ein'88] vis-à-vis the medical community. In 1924, 
Dr. Wilhem Einthoven was awarded the Nobel Prize in Medicine. Since 
then, electrocardiography has been transformed into a primordial, essential 
and indispensable technique in cardiology. 

The human body is observed as an electrical conductor. Therefore, the 
values of potentials generated at the levels of heart cells during mechanical 
activity can be recovered using metal electrodes arranged on the skin. The 
graphic recording obtained following the electrical activity of the human 
heart is always called “the ECG”.    

The electrodes used are positioned for recording the ECG signal and they 
are known by electrocardiographic leads. The standard ECG signal is 
obtained on 12 leads (six precordial and six peripheral leads). 

IV.3 System of electrocardiographic derivations  

An electrocardiographic bypass is defined by two points of hearing from 
which the electrical activity of the heart is measured and the difference in 
the electrical potential is calculated. Often, EKG machines can record 
many potential differences simultaneously depending on the number of 
electrodes distributed and their locations on the body. Each value of these 
measured potentials is suitable for a lead of the ECG. The electrodes are 
located to better explore the full range of cardiac electrical fields produced 
by the contraction of the heart muscle and myocardium. 

IV.4 Peripheral derivations  

The peripheral leads provide the study of the electrical activities of the 
human heart on the frontal plane. Peripheral leads are obtained using four 
electrodes placed on the left arm, the right arm and the left leg. In order to 
eliminate the parasites, a neutral electrode is placed on the right leg. This 
arrangement was determined in 1912 by Dr. Wilhem Einthoven under the 
name “bipolar peripheral derivations” and subsequently completed in 1942 
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by Dr. Goldberger under the name “unipolar peripheral derivations”
[Deb'97, Fis'02].    

IV.4.1 Bipolar peripheral leads             

Bipolar leads were decided by Einthoven in 1912, and they have also
remained in use up to now (Figure 2.3). In fact, the leads are based on
three electrodes distributed over the body. These electrodes are installed
on the left and right arms and on the left leg in order to establish the
Einthoven triangle. They are called bipolar derivations because we
calculate the potential difference between each two electrodes. Any side of
Einthoven's triangle symbolizes a lead by using two separate electrodes for
each lead. The set of three derivations is:

- DI with DI = VL - VR
- DII with DII = VF - VR
- DIII with DIII = VF - VL

where V L is the potential value on the left arm, VR is the potential value
on the right arm, and VF is the potential value on the left leg.

Figure 2.3: Einthoven triangle setup for recovery of bipolar leads.

IV.4.2 Unipolar peripheral leads             

The unipolar leads were determined by Wilson (Figure 2. 4). In this type
of lead, the values are measured between an exploratory electrode installed
at the crest of the Einthoven triangle and a second central terminal. The
latter is a neutral electrode whose potential value is equal to the average of
the potentials of the three peaks of the triangle. This determines the
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unipolar leads known by VL, VR and VF. Goldberg [Gol'42] changed the
installation of Wilson’s unipolar leads to extract three other unipolar leads
called the augmented unipolar derivations   aVL, aVR and aVF, as shown
in Figure 2.4. The word augmented indicates that the Goldberg leads
amplify the potential values of the old Wilson leads by a coefficient of 1.5.

Figure 2.4: Goldberg system for recording unipolar leads

IV.4.3 Precordial derivations             

To measure variations in potentials near the heart, Wilson proposed six
new derivations of the horizontal plane V1, V2, V3, V4, V5, and V6
located on the left side of the thorax. The variations are measured from a
positive pole in the form of an exploratory electrode located on the thorax
and a negative pole in the form of a reference electrode connected to the
central Wilson terminal. These leads are connected since the position of
the exploration electrode is close to the left and right ventricles [Fis'02].

IV.5 ECG signal

As we have quoted before, an EKG is obtained from a machine called an
EKG machine, which transforms the mechanical activity of the heart into a
form of an electrical signal. The electro-physiological signal is obtained
using metal electrodes located on the skin. The morphology of the ECG
signal is presented in the form of a series of electrical waves which repeat
with each cardiac cycle with particular shapes. In fact, the waveforms
explain different phenomena relating to the levels of the action potentials
of cardiac excitation and whose stages are illustrated in Figure 2.5 in
successive ways. Figure 2.5 depicts the morphology of the normal single
cardiac cycle ECG signal.
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Figure 2.5:  Morphology of normal ECG signal in single cardiac cycle

IV.5.1 Morphology of ECG signal             

In an ECG signal, we notice that the phenomenon of the contraction and
relaxation of the myocardium is exhibited in the form of a sequence of
negative and positive deflections superimposed on a baseline of a zero
potential which is suitable for the absence of cardiac events, as depicted in
Figure 2.5. The letters P, Q, R, S, T and U are successively assigned to the
waves of the ECG signal.

P wave: This is the first-order detectable wave. It appears when the
electrical impulse is distributed through the sinus node in order to
depolarize the atria. Muscle mass is partially light and results in a potential
value of less than 0.25 mv. In the atria, the propagation of the
depolarization wave is much lower than in the ventricles. Indeed, the place
of the atria around the sinus node is depolarized very quickly compared to
distant places. In addition, the repolarization front holds the same direction
as the depolarization front and the result vector is directed towards the
sinus node. Consequently, this phenomenon produces a repolarization
wave in reverse of the depolarization P wave. Then, the repolarization
phase of the atria explains the QRS complex. When this pulse is much
stronger than the first, the repolarization wave will be hidden.
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QRS complex: It is the set of negative and positive deflections which are 
suitable for the contractions of the two ventricles. For a normal case, the 
QRS complex has an amplitude between 5 and 20 mV and it lasts less than 
0.12 seconds. 

The QRS complex is often made up of three waves: 

 L ' Q-wave: the first negative deflection. 
 L ' R-wave: the first positive deflection. 
 L ' S-wave: the second negative defection following peak A. 

The shape of the QRS complex is variable depending on the positions of 
the electrodes as well as the leads used. 

T wave: It comes after the QRS complex following a return to the basic 
power line. This wave is suitable for ventricular repolarization. Practically, 
it has a slight amplitude and does not confirm any mechanical phenomenon. 

U wave: It is rarely observed. This wave is denoted U and can be observed 
after the T wave. It is a low amplitude wave and it is appreciable in some 
leads, especially in athletes. This wave is frequently associated with the 
phases of delayed ventricular repolarization. 

Accordingly, a study of a normal EKG is shown in Fig.2.5. The 
characteristics of an ECG signal relate to the morphology of the P and T 
waves and of the QRS complex, the durations, the amplitudes, and other 
temporal indicators which are the PR, RR and QT intervals as well as the 
ST and PR segments. 

IV.5.2 ECG intervals and segments  

In addition to the different waves mentioned above which are the basic 
elements that characterize the ECG, there are other segments and intervals 
which support very essential information on the speed of the conduction of 
the impulse in the different organs of the body heart [Lim'09]. 

The most used segments and intervals are: 

RR interval: This interval is very important and it corresponds to the time 
between two successive depolarizations of the ventricles. The RR interval 
is used to calculate the heart rate (1 / RR). 

PR segment: This segment represents the time between the end of 
depolarization of both atria and the start of depolarization of both 
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ventricles. This is the time period in which the depolarization wave is 
surrounded at the AV node. 

PR Interval: This PR interval represents the delay in the propagation of the 
depolarization wave from the sinus node to the ventricular cells. 

QT interval: The QT interval corresponds to the duration of the ventricular 
systole, which begins at the onset of the excitation of the ventricles and 
stops at the end of their relaxation. 

ST segment: This segment describes a phase during which all ventricular 
cells are depolarized; the segment has become isoelectric.  

A detailed description of these characteristics of the normal ECG signal, 
physiological interpretation and numerous methods [Bro'98] for the 
calculation of the electrical axis of the QRS complex are available. 

IV.5.3 Cardiac arrhythmias              

In a state of rest, the heart is between 60 and 100 heartbeats per minute, 
often called beating heart. Acceleration in the number of beats is called 
tachycardia. A slowdown in the number of beats is called bradycardia. An 
irregular change in the heart beat is called an irregular rhythm. All these 
forms are the basic forms of arrhythmia [Joh'15]. 

Arrhythmia occurs when an electrical excitement manifests itself 
elsewhere than in the sinus node. In other words, the electrical impulse is 
registered in the AV node or in the ventricles, or the electrical excitation 
no longer propagates in normal paths. 

Arrhythmia is sometimes accompanied by palpitations of beats. These 
palpitations cause you to feel the heartbeat and do not necessarily 
symbolize a heart rhythm disorder. This most often occurs when the pulse 
is beating faster or irregularly. On the other hand, a patient can have 
arrhythmia without necessarily feeling palpitations. There are different 
forms of arrhythmia. The main forms are as follows: 

a) Extrasystole              

It is very common arrhythmia. Extrasystole is an advanced heartbeat or 
excess that is perceived as an irregular or missing beat. A lot of people 
have this type of arrhythmia and do not even feel it. In most cases, this 
arrhythmia is not accompanied by other symptoms. This abnormality is 
mild and can even occur in a healthy heart. Sometimes extrasystole is 
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accompanied by little dizziness, but this case is not serious. The following
figure describes the atrial extrasystole where the second and sixth complex
occur in advance [Joh'15].

Figure 2. 6: Example of atrial extrasystoles

b) Atrial flutter             

In this type of arrhythmia, abnormal depolarization propagates into the
right atrium in a looping path and endlessly (Figure 2.7). The frequency of
rotation is in the order of 300 beats / min. Depolarization occurs 300 times
per minute at the entrance to the AV node and will cross the junction to
the two ventricles only once in two or once in three. Indeed, the frequency
of the ventricles will be a sub-multiple of 300 beats / min [Joh'15].

Figure 2. 7: Example of atrial flutter

Note that, in this type of abnormality, there is a major danger to the health
of the patient due to disorders in the blood flow to the atria and the
possibility of embolism occurring.

c) Atrial fibrillation             

It is an atrial arrhythmia also called atrial fibrillation. The depolarization is
divided into a set of fronts of different amplitudes and directions, ensuring
a completely disordered electrical activity at the level of the atria. Often,
this anomaly does not allow the atrial myocardium any phase of rest.
Atrial fibrillation results in the absence of atrial waves in favor of a
continuous irregular sinusoidal wave activity. The frequency of
depolarization within the atria is often very high. Numerous depolarization
fronts are consequently exposed at the AV node which acts as a filter by
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allowing only a few fronts to pass at random. Generally, the rate of the 
ventricles is entirely irregular, between 90 and 140 beats / min depending 
on the state of the excitability of the node [Joh'15]. 

 
Figure 2. 8: Example of atrial fibrillation 

However, the absence of atrial systoles results in a significant decrease in 
cardiac efficiency at two levels: first because the heart does not benefit 
from the atrial systole, which allows the ventricles to be filled with blood, 
and second because the average rate is often above 100 beats / min and can 
reach 200 beats / min. This arrhythmia is not serious, but the primary risk 
associated with this anomaly is flutter which is the possible transmission 
of emboli created in the atria. This major risk is probably low when atrial 
fibrillation is permanent, whereas it is immediately reinforced by episodes 
on a sinus background, especially during the change from one rhythm to 
another [Dal'07].  

d) Supra-ventricular tachycardia              

This atrial arrhythmia may have as its source a stimulation loop, an ectopic 
focus, or a pathway that closes the AV pathway, called the accessory 
pathway, with reentry by the AV node. 

An ectopic focus is a case in which a group of cells placed in the atria 
depolarize naturally and as quickly as the sinus, thus taking its position. 
The depolarization of the atria is not of a sinus origin, the diffusion of the 
nerve impulse is different from that originating from the sinus, and a P 
wave of an exceptional shape is observed. The specific frequency 
characterizing this type of focus is between 120 and 200 beats / min and 
the ventricles operate at the same rate in the absence of conduction 
problems [Dal'07]. 
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Figure 2. 9: Example of supra-ventricular tachycardia 

In the event that the number of beats can reach 250 beats / min, periodic 
discharge from an ectopic focus located in the AV node can still be the 
cause of tachycardia, known as junctional or nodal tachycardia. Unlike 
atrial tachycardia, a P wave that precedes QRS complexes is never found, 
because there is no atrial activity that precedes the beat [Dal'07]. 

This type of pathology has a main risk which is the lack of efficiency of 
the ventricles; either forced to contract frequently, or because the 
ventricles do not have enough time to fill with blood properly. Thus, the 
body's supply of oxygen can be corrupted.  

e) Ventricular fibrillation              

Arrhythmia is equivalent to atrial fibrillation, but it affects the ventricles. 
The latter are therefore discharged in a completely desynchronized 
manner, and there is still no cardiac systole. The ECG signal records a 
disordered, irregular, rapid and oscillatory ventricular activity [Dal'07]. 

 

Figure 2.10: Example of ventricular fibrillation 

Usually, ventricular fibrillation constitutes a serious arrhythmia, since it is 
a warning of sudden death. This is because the heart no longer functions at 
all its usual pumping activity and the blood no longer circulates, which 
causes the asphyxiation of all the tissues of the body. Without immediate 
defibrillation intervention, the depolarization of all myocardial cells are 
resynchronized and the cardiac movement restarts, hence ensuing death. A 
defibrillator allows people at risk of ventricular fibrillation to benefit from 
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its implantation. The defibrillator is located at the level of the thorax and it 
is accompanied by a probe capable of detecting the rhythmic abnormality 
and causing the device to give a strong electric shock [Dal'07]. 

f) Ventricular tachycardia                

This type of arrhythmia has as source one or more ventricular ectopic foci 
which may in turn depolarize. Heartbeats take the form of tightly 
connected ventricular extrasystoles. If it is not treated by using a 
defibrillator, this pathology is dangerous because of its possible 
transformation into ventricular fibrillation, which can lead to the death of 
the patient within minutes of its appearance [Dal'07]. 

 

Figure 2.11: Example of ventricular tachycardia 

V. Heart scintigraphy 

V.1 Presentation  

Scintigraphy is a non-invasive imaging technique. The images obtained 
from cardiac scintigraphy provide functional information. Scintigraphy is 
useful for studying myocardial perfusion. In this case, it is called cardiac 
or myocardial scintigraphy. This technique is still used at the level of the 
brain and the bone. Around the object in question, the acquisition heads 
are in rotation [Mar '00], and projections are successively acquired so 
dozens of images are obtained, each from a different angle. This way of 
acquisition ensures the distribution of the tracer in space and in 3D. Due to 
the tomographic reconstruction, a 3D representation of the left ventricle is 
made. Atherosclerosis is an anomaly characterized by a gradual obstruction 
of the arteries by a covering composed mainly of calcium and lipids, 
which generates a narrowing of one or certain coronary arteries. This is 
because the formation of thickening of the arterial wall and plaques causes 
stenosis. When this disorder affects the coronary arteries, then it irrigates 
less heart muscles, which become ischemic or necrotic. In this case, the 
technique of myocardial scintigraphy is useful to check the viability of the 
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myocardial tissue and to specify the ischemic territory. The patient is put 
on an activity and two groups of myocardial perfusion images are obtained 
by scintigraphy. A group is taken in the state of rest and another group in 
the condition of effort. The comparison between the art series of images 
allows having a distribution of zones in the myocardium in light of three 
degrees of intensity [Mar'00]: 

-  If the intensity value is normal in both images, then the area is 
normal. 

-  If the value of intensity is normal in the image rest and low in the 
image effort, then the area is reached by the ischemia effort. 

-  If a value of intensity is lower in both images, then it comes to a 
narrow stenosis of the coronary artery or there is a necrosis 
[Com'05]. 

Myocard scintigraphy is based on the muscle ability to accumulate 
different radioactive tracers. In fact, there are two types of cardiac tracers 
which are technetium products and thallium.  Figure 2.12 shows the 
general principle of the technique of scintigraphy:   

 
Figure 2.12: Principle of scintigraphy. 

Myocardial perfusion provides series of 2D images that provide functional 
information and assess the irrigation of the heart muscle. The patient 
receives the molecules and sends out the radiation once they are received 
by the organ to be explored. In practice, the gamma-camera machine 
detects the radiation emitted by the body. Finally, the resulting image is 
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reconstructed. The inner wall is called endocardium and the outer wall is
called epicardium.

In a single sequence, the E numbers are 2D images which vary according
to the value of the inter–cross-section used. The more reduced the value of
inter-cross-section the bigger the number of images (Figure 2.13) and the
better the 3D reconstruction.

Figure 2.13: 2D scintigraphic cross-sections.

V.2 Ejection fraction

On echocardiography, the Ejection Fraction (EF) of the left ventricle can
be calculated. The EF can also be measured by data provided by cardiac
MRI, scintigraphy or coronary angiography. It indicates the degree and
order of emptying of the ventricle. The EF is a useful indicator for
efficiently estimating the contraction capacity of the heart. The normal EF
is of the order of 60% in an individual. In the case of a contractility
abnormality, the EF decreases. In case of a major dysfunction, the EF
value may decrease by up to 20%. In case of heart failure, the EF level can
distinguish between diastolic and systolic heart failure.

The formula for calculating the EF is defined by the ratio between the
ejected volume (Vtd - Vts) and the telediastolic volume Vtd:
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    = 100               (2.1) 

Normally, the FE value is between 55 % and 75 %. The average value is 
of the order of 67%. If the value is more than 75%, then the efficiency of 
the cardiac system decreases. In this case, there will be an increase in the 
mechanical energy so that the myocardium is compressed to a systolic 
volume. The gain of the ejected volume is minimal, since the ventricular 
cavity becomes short tele-systole. The phase of diastole ensures a fair 
ventricular filling. 

VI. Tomography 

VI.1 Presentation  

Tomography is technical imaging using contrast dye to highlight the 
carotid arteries in the captured image. The dye used is introduced into the 
blood vessel. When it goes to the carotid arteries, computed tomography 
forms radiographic images of the brain or the neck under many angles of 
observation. 

3D tomography is based on techniques which make it possible to obtain 
the image of a volume at a given time by using a suitable acquisition 
system, with the possibility of. providing information on any volume in 
the shortest moment. Thus, the principle of computed tomography, also 
called computer-assisted voludensitometry, is used for the reconstruction 
of cross-sections and the reconstruction of the object volume in question. 

Generally, the X tomography system permits the real 3D acquisition using 
a source of X-rays that rotates around the object. The reconstruction of the 
3D image translates to each position, and the source acquires an X-ray 
radiography of the object which has a 2D projection (1.14). By rotating the 
detector-source system, it gathers a set of radiographs representing the 
entire set of projections under the different viewing angles, through which 
3D reconstruction must be performed (Figure 2.15). Extensions have been 
proposed for other imaging modalities such as the MRI and the ultrasound. 
In a certain extent of formalism concerning tomography, X can be retaken 
[Com'05]. 

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 2 22 

 
Figure 2.14: Principle of real 3D acquisition from conical sources of 
X-rays.  

 
Figure 2.15: Emission scanner of X-rays 

The Positron Emission Tomography (PET) technique is a method 
recognized in noninvasive functional nuclear medicine which ensures a 
clinic diagnostic of human cells by measuring the metabolic activity. It 
calculates the 3D distribution of a molecule pointed by a positron emitter. 
This method is experiencing a constant evolution as regards the used 
detector and the algorithms. A modern generation of PET scanners 
provides additional information that can rectify mitigation, delineate 
lesions and correct therapeutic procedures [Com'05]. 

PET acquisition can be done either in a 2D mode or in a 3D one. A PET 
camera is equipped with a system that has the appearance of a scanner but 
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works otherwise. In fact, the radioactive atom is decomposed by emitting a 
positron after a short course of one millimeter. This annihilation provides 
two gamma photons which emerge in the same direction but inversely, 
which makes the tomographic processing of the data easy. The photon 
sensors are located around the patient and detect the annihilation photons 
occurring at the same time, which makes it possible to know the line on 
which the photons are emitted. Then, a computer system reconstitutes, in 
the form of a 2D image or of a 3D object, the images resulting from the 
distribution of the tracer at the level of a part or of the whole body 
[Ber'08]. 

However, the problem of reconstructing 3D images from measurements 
corresponds to integrals of the volume on lines in space. This problem 
generalizes that of the reconstruction of 2D images from 1D projections. 
This leads us to recall the basic principles s of 2D tomography. The 
reconstruction problem was first dealt with in different ways, based on the 
general methodologies of the inverse problems of image restoration or the 
theory of the Radon transform. 

Generally, the Radon transform is associated with function f (x) of n 
variables, and its integrals over hyperplanes of Rn. If f (x) is a function of 
Rn, then its Radon transform can be determined as a function of a real 
variable r and a unit vector  as follows: ( , ) = ( + )     (2.2) 

For n = 2, the Radon transform r means taking the integral of function f (x) 
on the straight lines of the plane. 

For n = 3, the Radon transform integrates f (x) on the space planes. It can 
also be expressed by using the distribution of Dirac on Rn, denoted  as 
follows: ( , ) = ( ) ( )      (2.3) 

VI.2 2D computer-assisted tomography  

In computer-aided tomography, 2D acquisition photons allow obtaining a 
series of 1D projections, which we state a usual parametrization. Let f (x, 
y) be the continuous function, infinitely differentiable, and to be 
reconstructed on a bounded support. The projection of an angle  denoted 
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p  (u) is equal to the integrals of function f (x, y) along a straight parallel 
in the same direction, and limited by the angle  defined as follows: ( ) = ( , ) (  +  )   ²    (2.4) 

Figure 2.16 illustrates an example of a 2D section of an angiographic 
tomographic image of the carotid artery. The word carotid can refer to a 
carotid artery, but there is the primary carotid artery and the common 
carotid artery whose two branches form the internal carotid artery and the 
external carotid artery.         

The internal carotid artery is an artery derived from the common carotid 
artery and the vascularis is a part the greater the brain, the eye and the 
inner ear. One of the two side branches of the common carotid artery is the 
external carotid artery. The latter ensures the vascularization of a good part 
of the face and the upper part of the neck.           

 
Figure 2.16: Example of 2D cross section of hagiographical 
tomographic image of carotid artery. 

VI.3 Computer-assisted 3D tomography  

3D computer-assisted tomography consists in determining variate function 
f (x, y, z) from its bivariate projections. However, there are two types of 
projections: divergent and parallel.   

The following figure illustrates an example of a 3D image of a 3D 
computer-assisted angiographic tomographic image of the carotid artery. 
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Figure 2.17: Example of picture 3 D of carotid artery. 

In the previous sections, we have presented the main modalities of 
acquisition of cardiac signals and images used for the diagnosis of cardiac 
abnormalities. We were particularly interested in electrocardiography, 
scintigraphy and tomography. The study carried out in this first chapter on 
the anatomy of the heart as well as the electro-physiological properties of 
the cell membrane has made it possible to better understand the origin and 
nature of the ECG signal, scintigraphic images and tomographic images. 

In the next section, we will first present the basic notions of grammatical 
formalism. This will allow us to shed light on the theory that will be 
adopted later for the processing of medical data resulting from the 
techniques that have been described in this chapter. 

Grammar is a formalism allowing to describe a language and to recognize 
all the learned words [Her'05]. Thus, to start with grammar, several 
assumptions must be taken into account beforehand in terms of 
vocabulary, empty words, regular expressions and production rules. We 
seek to exploit this rigor in the field of 1D and 2D medical data processing 
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and more particularly in the field of segmentation. Significant data are 
assimilated to words recognized by automata which take a word as input 
and accept or reject them. We will show how this idea is applied to the 
ECG signal and the segmentation of real 2D medical images. This type of 
task is requested, enough at some point, in applications intended for 
doctors, explorers and pathologists.           

VII. Basics of grammatical formalism 

VII.1 Alphabet  

We call alphabet (also called vocabulary) a finite non-empty set of 
symbols. An alphabet is often denoted by , A or V, for example  = { a, 
b, c }. 

VII.2 Word  

We call a word any finite sequence of elements of an alphabet by 
concatenations. 

The concatenation of two given words u and v results in a new word uv 
constituted by the juxtaposition of the symbols of u and the symbols of v. 

Examples of words on  : a, ab, bac, ca,…  

 empty word  

VII.3 Language  

We call language on an alphabet  any subset of  *.     

Example:  

Let the alphabet be  = { a, b, c }.   

 Let L 1 be the set of words in  * having as many a as b. L 1 is the 
infinite language.          

VII.4 Regular language  

A regular language L over an alphabet  is defined recursively as follows:        
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 is a regular language over .   
If a is a letter of , {a} is a regular language over .       
If R is a regular language over , then R n and R * are regular 
languages over .         
If R 1 and R 2 are regular languages over , then  and R 1 R 2 
are regular languages.      
     

A language is represented by regular expressions. All finite languages are 
regular. 

VII.5 Regular expression  

Regular languages are very easily described by a regular expression. A 
Regular Expression (RE) is a sequence of characters which describes a set 
of possible character strings according to a precise syntax.         

 is an RE which describes language   
If a , then a is an RE which describes {a}.     
If r is an ER that describes the R language, then (r) * is an ER that 
describes R *.       
If r is an ER that describes the R language, then (r) + is an ER that 
describes R +.       
If r and s are ERs which respectively describe languages R and S, then 
(r)|(s) is an ER describing R  
If r and s are ERs which respectively describe languages R and S, then 
(r) (s) is an ER denoting RS. 

VIII. Lexical analysis 

Lexical analysis is the first step in compilation. It consists in specifying 
the recognized words of the language from an input program. The 
recognized entities are called lexemes, which are a series of characters 
separated by blanks such as identifiers, keywords, constants, etc. 

VIII.1 Automaton  

An automaton is a model which takes a word as input and accepts or 
rejects it. 
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Figure 2.18: Example of PLC 

There are two types of automaton: deterministic and non-deterministic.  

VIII.2 Deterministic finite automaton  

A language denoted by regular expressions is recognizable by a 
Deterministic Finite automaton (DFA). 

A DFA is a quintuplet (Q, ,  q0, F) where:  

 is an alphabet, 
Q is a finite set of states, 
 : Q ×  Q is the transition function,  

q0 is the initial state,  
F is a set of final states.  
  

The initial state is marked with an incoming arrow and the final states are 
marked with a double circle. 

 
Figure 2.19: Example of DFA 
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 = {a, b}. 
Q = {qa, qb, qc, qd, qe}. 
q0 = qa 
F = {qd, qe} 
 (qa, a) = qb  
 (qa, b) = qc  
 (qb, b) = qb  
 (qb, a) = qc                                                                                    
 (qc, b) = qd  
 (qc, a) = qe  
 (qd, a) = qd  
 (qd, b) = qa                                                                                    
 (qe, a) = qa                            

  
Language L (A) is accepted by an A DFA:  

A = (Q, ,  q0, F) is defined by L (A) = {m |  (q0, m)  Q}. 

Word m is said to be accepted if and only it belongs to L (A). 

Kleene's theorem: Any language recognized by a DFA is regular, and 
vice versa. 

In other words: 

Any language accepted by a DFA is regular. 

Any regular language is accepted by a DFA. 

VIII.3 Non-deterministic finite automaton  

A Non-deterministic Finite Automaton -(NFA) is a quintuplet (Q, ,  q0, 
F) where:  

 is an alphabet, 

Q is a finite set of states, 

q0 is the initial state, 

F is a set of final states, 

 is a function from Q ×  to the parts Q 
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 associates with any state q  Q, and symbol c   a subset (q, c) of Q. 

 
Figure 2.20: Example of NFA 

Here, we allow several transitions with the same symbol. The terminology 
“non-deterministic” is because the current state and the read symbol does 
not “determine” the next state. 

The set of transitions is:  

 (qc, a) = {qe, qb}  
 (qc, b) = {qd}  
 (qa, a) = {qb}                                                        
 (qa, b) = {qc}  
 (qb, b) = {qb}  
 (qb, a) = {qc}                                                        
 (qd, a) ={qd}  
 (qd, b) ={qa}  
 (qe, b) ={qa}                                                                      

In Figure 2.20, state qc and symbol a do not determine the next state (qb or 
qe), so it is indeed an NFA. 
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VIII.4 Lexical analyzer  

A lexical analyzer makes it possible to specify the recognized words of the 
language from an entered program. Table 2.1 defines the most used lexical 
analyzers, their languages and their operating systems.  

Table 2.1: Examples of lexical analyzers 

Lexical analyzer Language Operating system 

Lex C Unix 
Flex C Unix 
JLex Java Unix 
Ocamllex OCaml Unix 
 
Generally, the analyzers mentioned above have compatible versions also 
under Windows. Otherwise, installing a Unix simulator on Windows, such 
as Cygwin, may resolve this compatibility issue. 

Few errors are detectable at the lexical level alone and the errors occur 
when the analyzer is confronted with a series of symbols, which does not 
correspond to any of the lexical unit models. Thus, a syntactic analysis 
will be able to better detect errors. 

IX. Parsing 

The syntactic analysis structures the sequence of lexemes according to a 
grammar. The goal of parsing is to determine whether or not a word 
belongs to the language generated by a grammar. 

IX.1 Notion of grammar  

Regular languages are expressed using regular expressions, but most of the 
time languages are not regular and cannot be expressed as an RE. We 
therefore need a more powerful tool: grammars.  

A grammar is a quadruplet G = (T, N, S, P) formed by: 

- A set of terminal symbols T, 
- A set of non-terminal symbols N where T  N= , 
- An axiom often notes S, 
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- A set of production rules P of type A B.

IX.2 Types of grammars

There are four types of grammar. First, we have type 3-grammar, also
called regular grammar.

Figure 2.21: Types of grammars

We have the type 2-grammar, also called the context-free grammar. Then
we find the type 1-grammar, also called contextual. Finally, we have the
type 0-grammar which encompasses any type of grammar. The following
figure illustrates these different types in the form of united sets.

IX.2.1 Regular grammar (type 3)               

The production rules are of the form A wB or A Bw or A B

where A, B and w .
IX.2.2 Grammar out of context (type 2)             

The production rules are of the form A B

Type 3

Type 2

Type 1

Type 0
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where A  and B ( )*.  

 IX.2.3 Contextual grammar (type 1)              

The production rules are of the form A B  

where A ( ) + and B ( ) * et |A|  |B|.   

IX.2.4 Grammar type 0              

The production rules are of the form A B  

where A ( )+ and B ( )*. 

Type 0 grammars encompass Type 1 grammars which encompass Type 2 
grammars that encompass Type 3 grammars. 

IX.3 Bypass tree  

We call a derivation tree or syntactic tree any tree such that:  

The root is the axiom; 

The leaves are lexical units or  

The nodes are non-terminal symbols; 

The children of a node  are 0, …, n if and only if  0, …, n is 
a production. 

Let the grammar have S for axiom and for production rules P:  =  ||  

A derivation tree for the word accacbb is: 
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Figure 2.22: Example of derivation tree 

For a given word of the language generated by a grammar, the derivation 
tree is not necessarily unique. The existence of several derivative trees for 
the same program generally means that there are several possible 
interpretations for it. They say the grammar is ambiguous. 

IX.4 Battery operated automaton  

Pushdown automata are re-connoisseurs of context-free languages. 

A pushdown automaton is a quintuple  e0, E, T,    defined by:  

 a finite set of state E  
 an initial state e0  
 a finite set of final states T an alphabet  of symbols d 'input  
 an alphabet  of stack symbols a bottom stack symbol   
 a transition relation 

 
This automaton (figure 2.23) is a pushdown automaton recognizing the 
anbn language. It starts by reading a series of a by stacking them, then 
pops an a for each b read. 
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Figure 2.23: Battery-powered automaton for an bn 

A battery-powered automaton recognizing { an bn }:  

E = {q0, q1, q2} 
T = {q2} 
e0 = q0 

 = {a, b} 
 = {Z} 
 =  

 
The transitions are: 

 
 (q0, a, Z) = {(q1, aZ)} 
 (q1, a, a) = {(q1, aa)} 
 (q1, b, a) = {(q2, )} 
 (q2, b, a) = {(q2, )} 

IX.5 parser  

A parser takes a stream of tokens (tokens) and must say if this flow is 
syntactically correct, i.e. if it is a word of the language generated by the 
grammar it has or not. It must therefore try to construct the derivation tree 
of this flow. If it succeeds, then the word is syntactically correct, otherwise 
it is incorrect. Table 2.2 defines the most used parsers, their languages and 
their operating systems. 
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Table 2.2: Examples of parsers 

Parser Language Operating system 

Bison C Unix 
Ocamlyacc C Unix 
Yacc C Unix 
  
Some fundamental properties of the source language to be translated 
cannot be described using context-free grammar because they depend on 
the context. The role of semantic analysis is therefore to verify these 
constraints.   

X. Areas of application of grammar 

In this part, we will briefly cite different fields of application of grammar. 
The latter is a key step that facilitates data compression, interpretation of 
video scenes, pattern recognition, ECG signal classification and 2D image 
segmentation. 

X.1. Pattern recognition  

In [Moj'00], the author had a set of rules production governing the use of 
the criteria similarity to judge the similarity between objects in an image. 
The objective was to design an intelligent perception system based on 
retrieving patterns from a database. The system should retrieve the closest 
match in terms of similarity to a request image entered by the user.                   

In [Fla'10], the author used the grammar for the syntactic recognition of 
forms. The main idea is to represent a model as a structure of chains, trees 
or graphs. Then a set of structures is considered as a formal language 
which can be analyzed with an automaton. The process recognition of 
syntactic forms consists of three the following main phases:                

-  Image preprocessing (filtering, improvement…).          
-  Generation of structural presentations.       
-  Analysis of structural representations (syntactic analysis).            
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X.2. Interpretation of video scenes  

In [Chr'96], the author described a method which used grammars to direct 
a vision system for the interpretation of dynamic scenes. The system was 
implemented based on production rules for the interpretation of the 
scenario ‘put a cup on a saucer on a table then’. Once a feature (fi) is 
detected and given the current state (qi), a production rule (Pi) is invoked, 
which results in a new state (qj). The transition from state (qi) to state (qj) 
indicates a stage in the interpretation of the scene. Each transition in (Pi) 
therefore has an associated semantic description which describes the 
observed phenomena.                                     

This is an example of a scenario described by a grammar for putting a cup 
on a table:  

Coffee break Putting the coffee cup, Drinking, Cleaning 
Put the coffee cup put the saucer, put the cup 
 

 According to Petersohn et al. [Pet'09], because books had chapters, 
sections, paragraphs and sentences, videos too had an inherent hierarchical 
structure. The author focuses on recent research in the fields of scene 
extraction. The first step was the detection of shot transitions with separate 
detectors for difficult cuts. Then complex cuts were segmented into 
semantically significant units called sub-cuts. Finally, the results were 
used to extract the scenes. The author proposed to use the cinematic 
grammar according to the types of transition to improve the scene 
detection results. The suggested algorithms were robust to the distortions 
and artifacts found in the video.     

X.3. Data compression  

The grammar-based lossless coding theory was proposed in 1999 and 2000 
respectively by Kieffer [Kie'99, Kie'00]. The encoding first transforms the 
original sequence of data to an irreducible grammar which is then 
compressed using arithmetic encoding. It has been shown that grammar-
based encoding can specifically predict good performance on files that 
exhibit multimedia characteristics.   

Let X be a sequence to compress. The transformed irreducible grammar 
starts from the grammar G composed of the sole production of rule s0 

X, where s0 is the first variable of G, and repeatedly applies the 
reduction rules in a certain order to reduce G into an irreducible grammar 
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G'. Therefore, the function of reduction rules is to ensure that an 
irreducible grammar G exists. The code-based grammar then uses a zero-
order arithmetic code to compress the irreducible grammar G to achieve 
the high compression ratio.                                         

Let x be a sequence to compress. 

x = 100111000100011100011. 
s0  100111. 
  

Each time, add an element to the right then transform the grammar 
obtained into an irreducible grammar. 

s0  1001110. 
s0  s1011s1 
s1  10. 
  

In conclusion, the compressed sequence will be described by the following 
final grammar G:  

s0  s1s3s2s3s4 
s1  100 
s2  s10 
s3  s4s2 
s4  11. 
  

Once the final irreducible grammar G is obtained, it will be compressed 
using a zero-order arithmetic code of a dynamic alphabet. The decoder 
retrieves  sequence x from  grammar G, and then performs the parallel 
replacement of the overlay procedure as follows:                   

s0G  s1s3s2s3s4 
s1s3s2s3s4G  100s4s2s10s4s211 
100s4s2s10s4s211G  10011s10100011s1011 
10011s10100011s1011G  100111000100011100011. 

XI. Synthesis and discussion 

In the previous part, we have succinctly stated several fields of application 
of grammar. The latter was used for data compression, interpretation of 
video scenes and pattern recognition. 
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The use of the grammar for the processing of ECG signals and the 
extraction of elements of complex types QRS and P and T waves will be 
described in detail in the following chapter. Much will be devoted to the 
processing of the ECG signal based on grammar. 

Also, later in chapter 4, we will detail image segmentation techniques 
based on grammatical formalism. Several types of images will be studied 
such as medical images, facades, cars, buildings, etc. 

The following table summarizes some fields of application of grammatical 
formalism, the primitives and the results. 

Table 2.3: Summary of application domains based on syntactic 
methods 

Application areas Primitives Results 
Data compression The axiom is the 

sequence to be 
compressed; the 

terminal vocabulary = 
{0,1}; the non-terminal 

vocabulary = 
{subsequence ; 

transitions attempt to 
reduce the size of the 

sequence.    

Grammar-based lossless 
coding. 
The encoding transforms 
the original sequence of 
data to an irreducible 
grammar.   

Interpretation of 
video scenes 

The transition from one 
state to another indicates 
a step in the scene.     

An associated semantic 
description describes the 
observed phenomena.     
  

Pattern recognition Patterns from a 
database.   

Using the criteria 
similarity to judge the 
similarity between 
objects in an image.     

XII. Conclusion 

In this chapter, we have presented the main methods of acquiring cardiac 
signals and images used for the diagnosis of cardiac abnormalities. We 
were particularly interested in electrocardiography, scintigraphy and 
tomography. The study carried out in this first chapter on the anatomy of 
the heart as well as the electro-physiological properties of the cell 
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membrane have made it possible to better understand the origin and the 
nature of the ECG signal, scintigraphic images as well as tomographic 
images. 

Also in this chapter, we have presented the types of grammars and the 
basics of grammar in terms of languages, automata, vocabulary, rules, 
lexical analysis and semantic analysis. Then, a second part has been 
devoted to focus on the fields of application of grammatical formalism.  

We seek to exploit this rigor in the field of 1D and 2D medical data 
processing. We will show how this idea is applied to the ECG signal and 
the segmentation of real 2D medical images. The growing need in this area 
and the diversity of issues encountered by users justify our investigations.    

The following chapter is devoted to the presentation of the different 
approaches of the literature which apply to the ECG signal, which makes it 
possible to measure its various parameters. 
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CHAPTER 3 

STATE OF THE ART OF ECG SIGNAL 
PROCESSING METHODS 

 
 
 

I. Introduction 

In most pattern recognition applications and for the automatic 
identification of cardiac impulses, the characterization step is essential. 
This characterization step is necessary for the rest of the work because it 
makes it possible to extract useful information from the ECG signal. It 
also makes it easy to use, both by doctors and by algorithms for automatic 
processing of information. These correspond to the parameters used by 
cardiologists to define the cardiac cycle, particularly the cardiac rhythm, 
the intervals and amplitudes of the peaks and the waves constituting the 
ECG signal. For a cardiologist, the extraction of information is performed 
each time a patient's ECG signal is analyzed. In addition, the automation 
of ECG analysis is very important given the large amount of data. Indeed, 
this will ensure a significant saving of time as well as a good capacity to 
carry out numerous analyses. In this chapter, the characterization of the 
ECG signal is explained by the detection of the QRS complex and the P 
and T waves of each heartbeat. Thus, the extraction of the fundamental 
significant parameters will make it subsequently possible to clearly 
distinguish between pathological beats and normal beats. 

II. ECG signal preprocessing 

The different noises that affect an ECG electrocardiogram are observed as 
undesirable and can attack more or less the clinical information. In 
addition, the complications of the detection of QRS complexes are 
explained, mainly, in the high variation in the shape of the signal and the 
presence of these unnecessary noises and of various origins. It is therefore 
important to know what types of noise can potentially alter an ECG signal. 
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II.1 Types of noise in ECG signal 

During the recording phase of the ECG signal [Qin'03], undesirable events 
called artefacts may be created on the electrocardiographic tracing. The 
problem is usually stated during automatic signal analysis, where the 
presence of these artifacts can produce errors in the diagnosis. These 
artefacts are considered to be noises and they have been the focus of many 
studies in the literature [Che'06, Bor'05]. However, processing these noises 
to date remains difficult to perform automatically. Generally, the noises 
can be classified according to their origins into two large classes: noise of 
physical origin and noise of technical origin.  

II.2 Technical noise 

Noises of technical origin are noises which are generated by the equipment 
used during the acquisition and of which the most usual noises are: 

II.2.1 Noise from the 50Hz network        

The 50Hz noise, shown in Figure 3.1, comes from the power supply by the 
electrical distribution network. This noise affects the EKG signal with 
oscillations with an extreme harmonic of 50 Hz. Often, this type of noise 
is present in all acquisitions and it can be quite loud. However, the 50Hz 
noise is commonly eliminated with a selective filtering phase. 

II.2.2 Noise due to electrode-skin contact        

When the electrodes used for recording the ECG signal peel off or the gel 
used enters the electrode and the skin becomes dry, this can provide a 
noise which is presented by sudden changes in the signal amplitude (see 
Figure 3.1), besides low frequency baseline medications. In addition, poor 
conduction between the skin and the electrodes can have an undesirable 
effect on the EGC signal with a decrease in the amplitude and the 
appearance of peaks, which can be confused with the waves of the normal 
signal. This kind of noise is difficult to rule out because its energy is seen 
in the same frequency range of QRS complexes. 

II.2.3 Other noises        

Among the other technical noises that can alter an electrocardiogram, we 
can cite various artefacts due to: 

•  Movements / displacement of electric cables, 
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•  Saturation of measuring instruments, 
•  Poor wiring capacity, 
•  Wearing synthetic clothes, 
•  RF waves emitted by electrosurgical devices. 

II.3. Physical noise 

These types of noises of physical origin are produced by movements 
during breathing or by electrical activities of the body such as muscle 
contraction. 

II.3.1 Baseline fluctuations        

The baseline of an EKG is the horizontal line held as a reference for 
analyzing the amplitudes and shapes of different heart waves. Often the 
fluctuation of this baseline results in low frequency deviations of the 
signal amplitude. This fluctuation is mainly linked to the movements of 
the patient during their breathing. This is because respiratory activity at a 
steady rate is able to oscillate from the baseline in an ECG recording. This 
type of noise is illustrated in Figure 3.1. Often, these fluctuations are not 
very troublesome for the study of the ECG signal and they can be filtered 
since their energies are in the low frequencies. 

II.3.2 Noise due to EMG electromyogram signal        

Although EKGs are intended to be particularly sensitive to contractions of 
the myocardium, an ECG signal can also acquire contractions of other 
skeletal muscles. Consequently, the noise due to the EMG signal results in 
the contraction of muscle tissue which is followed by depolarization of the 
cells. Indeed, this phenomenon gives an electromyogram signal 
superimposed on the ECG signal in the form of high frequency oscillations. 

This type of noise is quite annoying, especially when the patient is moving 
or shaking. This can drown out P and T waves and sometimes avoid the 
detection of R peaks. Such a noise is shown in Figure 3.1. 
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Figure 3.1: Types of noise in ECG signal: (a) Noise from the 50Hz 
sector; (b) Fluctuations in baseline; (c) EMG signal; and (d) Artifacts 
due to patient movement. 
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II.3.3 Other noises        

The ECG signal can be too bothered by the diseases such as ischemia, 
hyperthyroidism and hypokalemia. In addition, the use of certain drugs can 
slow the heart rate, change the pace of the tracing, and identify AV 
conduction. This is because it can cause a decrease in the ST segment, an 
inversion of the T waves and a lowering of the QT interval. 

III. State of the art for ECG signal filtering 

The primary objective of the preprocessing step is to filter the signal from 
unwanted noise. For the ECG signal, the noises are well recognized, yet 
some of them have the specificity of overlapping with the same spectral 
signal band, which sometimes expresses the difficulty of filtering. In this 
part, we present some methods and techniques found in the literature as 
well as the pre-treatments cited to accomplish the characterization of 
cardiac impulses. 

In the literature, several techniques have been proposed for the elimination 
of artifacts which alter the ECG signal [Ino'98, Nik'00, Nik'01]. Most work 
has been based on adaptive filters or Infinite Impulse Response (IR) filters 
by specifying a passband which corresponds to the target information 
[Sor'06, Lag'92, Bal'09]. Chouhan et al. [Cho'07] developed a filter 
averager for filtering the ECG signal. Beforehand, the average of the entire 
signal is subtracted from the ECG signal. Then, a polynomial of order five 
is applied to have an estimate of the baseline which will be subsequently 
subtracted from the signal. Shusterman et al. [Shu'00] applied an algorithm 
based on multi-rate filters. The proposed algorithm minimizes the 
computation time with respect to a single filter and makes it possible to 
prevent signal phase shifts. 

The ECG is a non-stationary signal which has certain spectral components 
and it is often contaminated by noise correlated to the signal such as for 
example muscle artifacts. Consequently, multi-resolution analysis appears 
to be an adequate tool for preprocessing. For this reason, most recent work 
has tended to use filters based on the wavelet transform [Sor'06, Rod'07]. 

In the last decade, methods based on the wavelet transform have become 
very popular and more used to de-noise the ECG signal. Thus, wavelet-
based techniques exploit the fact that the noises are indicated by the set of 
low-amplitude wavelet coefficients while the useful energy of the signal is 
focused on the high-amplitude coefficients. In fact, the noise suppression 
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can be achieved by setting the low coefficients to zero following a 
thresholding operation and the reconstruction of the signal is established 
by applying the inverse wavelet transform. 

Donoho et al. [Don'95] proposed a de-noise algorithm based on the 
wavelet transform and carried out in three successive steps: 

(1) Applying the wavelet transform to the ECG signal, 
(2) The filtering of the coefficients according to a certain thresholding 

criterion, 
(3) The calculation of the inverse wavelet transform, through the 

coefficients obtained in the previous step. 

III.1 Electrical noise cancellation  

The current power is originally the most frequent interference in the art 
recording ECG for the reason that the spectral bandwidth of the ECG 
signal is between 0 and 250 Hz. The interference results in power line 
carrier cords and its influence can be minimized by displacing the noise 
sources. Generally, the power line has a typical frequency of 50 to 60Hz. 
Therefore, the interference is often excluded by exploiting a filter with an 
exact stop band centered on the frequency of the power line. Usually, the 
frequency is 0.05-100Hz. 

The powerline interference can be removed by exploiting a non-finite 
recursive IR. A notch filter for the line carrier can be applied by the 
guidelines given for ECG monitoring. Nevertheless, the noise powerline is 
not a pure sinusoid; yet it is deformed. In this case, the use of an adaptive 
filtering technique is more efficient. Furno et al. [Fur'83] and Sahakian et 
al. [Sah'83] developed a filter that would eliminate a 60 Hz sine wave 
from the ECG signal. An adaptive filtering technique can be applied to the 
termination of the power line and interference due to the EMG signal. In 
addition, [Ham'86] showed that adaptive filtering introduces less noise 
compared to a non-adaptive notch filter for ST segment measurement 
[Par'98, Par'01]. 

III.2 Reduction of the baseline  

When acquiring ECG signals, low frequency noises can be expressed by 
breathing, by coughing, with a large movement of the chest when an arm 
or a leg is mobilized. Also, sweating of the patient under the electrodes or 
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poor contact with the electrodes can modify the electrode impedance. 
Indeed, artifacts at low frequencies can be provoked.  

The fluctuation of the base line may occasionally be experimented by the 
variation of the temperature and the polarization in the art instrument’s 
measurement and amplification. Thus, digital high pass filters can be used 
for baseline removal and to filter the ECG signal. 

However, the termination of electrical noise can introduce distortions in 
the ST segment. The latter plays a fundamental role in the detection of 
heart disorders such as the abnormal coronary artery. Thus, the choice of 
an ideal cut-off frequency so that the filter can have a minimal distortion is 
problematic. Some sophisticated filtering approaches used digital filters 
based on the transformed short-time Fourier or on the wavelet transform 
[Zhe'95] for the determination of cutoff filters. One study comparing in 
detail the various techniques of the line cancellation of the basic ECG 
signal can be found in the literature. 

III.3 EMG noise reduction  

EMG noise is a motion artifact which translates into an overlap with the 
cardiac components in the same frequency domain. It is painful to remove 
this type of noise reliably and efficiently without altering the basic cardiac 
components in the ECG signal. Accordingly, a bandpass filtering is 
insufficient to cancel these artifacts. The normal adaptive filtering 
architectures designed for disappearance are the sounds of ECG signals, 
the types of noise, and the EMG or artifacts. 

Recently, a nonlinear Bayesian filter has been presented for one filtered 
noisy channel of ECG recordings [Pol'95]. The technique is based on a 
modified nonlinear dynamics model used for generating a realistic 
synthetic ECG signal. A modified variety of this model is suggested for 
several Bayesian filters such as the Kalman filter, the extended filter 
Kalman, the smoother extended, and the filter odor of Kalman. Indeed, 
superior results are found for the elimination of non-stationary artifact s 
muscles, over conventional methods, like the die-sound effects such as 
bandpass filtering, adaptive filtering and wavelet. 

IV. Detection of QRS complex 

The detection of QRS complexes is a key step to perform automatic 
analysis of ECG signals [Li'95, Li'00, Li'01, Inc'09, Min'99]. Usually, the 
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detection of QRS complexes can be accomplished by simple signal 
thresholding since, in terms of amplitudes, R peaks are generally larger 
than other waves. But occasionally the amplitude of the T wave is similar 
to that of the R peak. Indeed, this can cause errors in the end result and the 
detection rate. In addition, the R peak can sometimes have a variable 
morphology and a low amplitude from one cardiac cycle to another. 
Consequently, very good detection of QRS complexes is essential. This 
task therefore requires very adequate processing of the signal, taking into 
account the difficulties encountered. The evolution of the robustness of 
computer tools for digital processing has ensured the design and 
implementation of different versions of algorithms intended for the 
automatic detection of QRS complexes. As a result, the detection of QRS 
complexes has been the objective of much of the work and continues to be 
a very active research axis [Dib'09, Dib'11, Wen'09, Wil'87]. 

Moreover, the variation in the heart rate may alter the duration of the PQ 
interval and the ST segment, so that the duration of the QRS complex, the 
P wave and the T wave may also remain a normal heart. In a complex 
QRS, the R peak is the component famous of the cardiac cycle which can 
be clearly recognized with a high amplitude and a sharp edge. Thus, it is 
absolutely significant to limit the ECG signal of the QRS complex to 
monitor the heart rate. Detecting complex QRS designs is based on the 
majority of analysis algorithms, which are ECG signals, especially those 
intended for monitoring arrhythmia, delimiting waves and measuring 
intervals. It is expressed by the importance of complex QRS in cardiac 
monitoring. 

Several QRS complex search algorithms have been used extensively based 
on the proportionately high amount of QRS energy found in the 5-25Hz 
band [Khe'07]. Most algorithms are based on the network of neurons, the 
hidden Markov model, and the syntactic methods [Szu'92, Bar'98, Bor'96, 
Cao'90 Lin'01, Lin'03, Olm'97, Oso'01, Ros'98, Shu'12, Wei'10]. However, 
they are little used in applications with low computational costs. More 
details on technical detection of QRS complexes and comparison of their 
efficiencies and their computational complexities can be found in [Khe'07] 
in the presence of artifacts. Generally, the art QRS detection algorithms 
are based on one method of derived time, wavelets, filter banks and the 
mathematical morphology [Ben'09, Ben'10, Ben'12, Wie'99]. In the 
following sections, the methods of detection of QRS complexes, found in 
the literature, are discussed. These approaches are very efficient and 
effective and have a high accuracy rate that exceeds 99%. 
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Kohler et al. [Koh'02] established a detailed study which synthesized 
different techniques for the detection of QRS. The discussed methods were 
sorted by categories with a comparison of their performance. 

Christov et al. [Chr'04] made a comparison between time-frequency 
descriptors and morphological descriptors for the recognition of heartbeats 
in an ECG signal. Other newer approaches have been based on the wavelet 
transform and they have proved their efficiency for the search for QRS 
([Ruc'10, Din'02]). Thus, this area of research is still active and new 
techniques have been presented. 

IV.1 Time derivative  

The complex QRS exhibits high slopes. This feature inspires the use of 
time derivatives during detection. In the method derivatives, the ECG 
signal is first of all smoothed with n filters to cancel high-frequency noises 
outside the 5-25Hz band. Then, the smoothed signal is temporally 
differentiated to identify the high slopes and ignore the smooth waves and 
the base line. Globally, the results of these operations correspond to the 
spectral band of the QRS complex and cancel the low frequencies which 
correspond to the P and T waves. Then, the amplitude of the derivative 
signal is squared and allows raising much more derivatives of QRS 
complexes. 

After that, a search algorithm of local maxima above a suitable threshold 
is performed. The search algorithm can be further optimized by eliminating 
points that lie within the duration of ventricular activity. 

IV.2 Wavelet transform  

The art approaches based on wavelets are based on the principle of 
detecting the feature compared to wavelet coefficients. The latter are 
analyzed at several scales in [Mal'89, Gra'00, Pal'10, Sax'02, Shy'04, 
Tik'99] to locate the positions which correspond to two consecutive scales 
and the local maxima. This technique is based on the assumption that the 
energy of the QRS complex and the time scales are spread on the spectral 
bands and the noises do not have this property in the signal ECG. Thus, by 
using this multiscale approach, the rate of false detection can be reduced. 

The wavelet transform is a very powerful tool for a good detection of the 
R peak in a QRS complex of the ECG signal. Among the essential 
properties of the wavelet transform lies in the localization of the peak of a 
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wave [Kha'09, Duv'02, Har'96, Has'06, Lag'04, Lu'00, Sah'97a, Sah'97b, 
Sah'98].  

The characteristic of the continuous wavelet transform is given by the 
equation which verifies this property: 

, ( ) = ( )           (3.1) 

where : a        is a scale factor (expansion parameter), b          is a translation parameter. 
 

Morlet proposed to create function bases built on the following model 
[Mis'03]: 

, ( ) = 0  ( 0 0)         (3.2) 

where: 

a0> 1 and b0> 0 are fixed and j, k  Z 

This discretization assigns values on a logarithmic scale a with translation 
parameters b which are proportional to it: = 0   = 0 0             (3.3) 

A commonly used range of scales is the dyadic range, i.e. a0 = 2 and b0 = 
1. 

We thus obtain families made up of functions of the form: 

, ( ) = 2  (2 )        (3.4) 

The greatest energy of the QRS complex of the ECG signal (between 5 
and 15Hz) is at scale 24 of the Dyadic Wavelet Transform (DyWT). Based 
on this property, we design a location algorithm of the QRS complex and 
then detect the R-wave of the complex.  

The adopted method is based on the use of a technique applied to the 
detection and precise localization of the R wave of the QRS complex by 
dyadic decomposition using a Daubechies4 wavelet, which is characterized by 
its model that is close to the ECG signal, is described as follows:   
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i. Calculate the DyWT of the electrocardiogram signal by (3.4), and 
then we choose scale 24 of this transform: 

ii. For window i, find the positive maxima and the negative minima of 
the DyWT, to locate the different waves of the ECG signal. 
 

 
Figure 3.2: DyWT: (a) the cardiac cycle (red) and (b) the positive 
maximum and negative minimum of DyWT (blue). 

In the previous figure we can notice that the DyWT QRS, we are trying to 
locate, has the largest amplitude in comparison with other wave characteristics 
of the ECG signal. This prompts us to use thresholds large enough so that 
only the DyWT waves of the QRS complex are detected. 

These operations are performed as follows: 

i. Choose a positive threshold Sp(k) and a negative threshold Sn(k), 
the first to determine the positive maximum Mp(k) and the second 
for the negative minimum Mn(k) of the wavelet transform of the 
QRS:    

ii. Check if the DyWT, calculated by (3.4), exceeds the thresholds:    
           If C , > S (k) then M (k) = C ,  is a probable positive maximum,          If C , < S (k) then M (k) = C ,  is a probable positive minimum, 

 
Then Mp(k) and Mn(k) are the maximum of Mp(k) and the 
minimum of Mn(k), respectively, for the same maximum positive-
minimum negative torque. 
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iii. Remove redundant maxima and minima and isolated torques. The 
principle is to eliminate among two minima (or maxima) the 
minimum (or maximum) furthest from the maximum (or minimum) 
of the torque, so as to have at the end only the couples of the 
closest positive-negative minimums. and which are most likely to 
be the wavelet transform of the QRS complex.    

iv. Since the peak of each complex or the R wave is located between a 
positive-negative maximum at zero crossing, we limit the search 
for R in this interval. 

v. Find the R peaks of QRS complexes from different intervals 
limited by the max-min pairs while trying to have DyWT (i) = 0.    

IV.3 Mathematical morphology  

Mathematically, the length of a curve is determined by the sum of the 
Euclidean distances between the pairs of successive sampling points. In an 
ECG signal, l is the length of the curve as a function of the values of 
samples and the sampling time. In a uniform sampling in time we measure 
the increment of the value of the sample to calculate the length of the 
curve. Practically, the length of the waveform in an ECG signal is viewed 
in a window at a length that corresponds to the QRS complex. With a 
perfect alignment window with the start of the QRS complex, the local 
maximum is determined to delineate the QRS complex. In [Tao'1 0], an 
approach based on the length of the curve was used for the detection of the 
QRS complex. As a preprocessing step, the author used a low-pass filter 
with a frequency cutoff of 16Hz to cancel noises. 

In the literature, numerous studies have been tested and confirmed on the 
basis of MIT-BIH. The methods are very varied and each of them is based 
on an appropriate technique. A comparative study is summarized in Table 
3.1. 
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Table 3.1: Comparison of performance of QRS complex  
detection algorithms cited in the literature. 

Reference Method Specificity (%) 
[Pan'85] Derivative approach based on 

slope analysis 
99.30 

[Ham'86] Derivative approach based on 
an optimized decision rule 

process 

99.46 

[Szu'92] Approach based on adaptive 
filtering and a neural network 

99.50 

[Sai'12] Approach based on Euclidean 
distance and a  

K Nearest Neighbor (KNN) 
algorithm 

99.81 

[Cho'12] A multi wavelet packet 
decomposition 

99.14 

[Had'10] An empirical modal 
decomposition (EMD) 

99.92 

[Scream'04] Method based on the use of 
adaptive thresholding 

99.65 

[Gha'08] Mathematical model based on 
the continuous wavelet 

transform (TOC) 

99.91 

[Kyr'88] Approach based on recursive 
temporal prediction 

99.00 

[Meh'08]  
support vector machine-based 

approach 

99.75 

[Gri'98] Transformation based on time 
and energy 

99.26 

[Ben'12] Method based on discrete 
wavelet decomposition and 

energy calculation 

99.39 

  
In the next section, we will briefly cite popular methods for detecting QRS 
complexes found in the literature. We can cite the techniques based on: 

a)  Digital filters (Nagin et al. [Nag'01], Daskalov et al. [Das'99]).    
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b)  Linear and non-linear transformations: (Gritzali, [Gri'98], Pan and 
Tompkins, [Pan'85]), the Hilbert transform (Benitez et al. [Ben'01]), 
the first derivative (Arzeno et al. [Arz'06]).    

c)  Statistical analyses (Silipo et al. [Sil'98], Watrous et al. [Wat'95]).    
d)  Time-frequency analyses (Afonso et al. [Afo'99], Li et al. [Li'95], 

Senhadji et al. [Sen'95], Kadambe et al. [Kad'99], Kyrkos et al. al. 
[Kyr'88]).   

e)  Evolutionary methods (Poli et al. [Pol'95]).    
f)  Neural-fuzzy approaches (Engin et al. [Eng'04]).    
g) Hidden Markov models (Coast et al. [Coa'90]).    
h)  Mathematical morphology models (Trahanias et al. [Tra'93], Taouli 

et al. [Tao'10], Chu et al. [Chu'06]).   
 

In practice, it is impossible to find a single technique that is both efficient 
and complete with a complete preprocessing for the reduction of the 
different types of noises and for the detection of QRS complexes [Cey'07, 
Tig'03]. A compromise can be established between the robustness and the 
false detection. This is based on the choice of filter bandwidth and the size 
of the window used. 

V. P and T wave detection 

In an ECG signal, the sequence of appearance of waves is P-QRS-T. This 
sequence represents a single cardiac cycle. In the preliminary part, we 
study the detection methods of QRS complexes found in the literature. 
However, the detection of the P and T waves is also essential as the P 
wave indicates the atrial activity and the T wave symbolizes the 
repolarization of the ventricles. 

Nevertheless, the analysis of the P and T waves n is more obvious as they 
represent amplitudes and lower slopes. However, we can search for both P 
and T waves in appropriate time slots before and after the location of the 
QRS complex. 

In a cardiac cycle, the T wave has the greatest level of energy. The 
location of this wave depends on the peak R and the duration time 
measured between two successive R peaks, referred to simply as distance 
RR. Thus, if the RR distance is greater than 700ms, the T wave search 
window is based on the position of the peak R, in the range of 140 to 
500ms. 
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For the P wave, the search window is produced in the 240 to 400ms time 
interval preceding the R peak of the QRS complex. As soon as the search 
windows are determined before and after the localization of the QRS 
complex, an appropriate method is employed to improve the distinctive 
properties of the P and T waves and find its limits. 

The methods of the detection waves P and T are based on the wavelet 
transform (WT) [Bul'02, Ben'03]. The latter describes the signal in the 
time domain and allows a representation of the temporal characteristics 
with different resolutions of a signal. Comparable with QRS detection, the 
wavelet transform has already shown interesting results for the delineation 
and detection of waves P and T. 

Li et al. [Li‘95] presented a method for detecting the complex QRS based 
on the Discrete Wavelet Transform (DWT). Moreover, the author also 
applied in the same job the WT to delimit the P and T waves. Martinez et 
al. [Mar‘04] generalized this method of delimitation of the P and T waves 
to be applied to a wide range of morphologies. 

In [Cab’08], Cabasson et al. considered the problem of the delimitation of 
the P and T waves identical to a problem of time delay estimation. 

Other methods have been based on the DWT. Indeed, in the ECG signal, 
the local minima and maxima of the DWT define the local singular points. 
The sampling rate is graded the same and it is applied on all scales to 
preserve the temporal resolution and the time invariance. 

During the last two decades, several approaches have been proposed to 
detect P and T waves in an ECG signal [Li'95, Mar’04, Cha'04, Chi'06a, 
Chi'06b, Chi'08, Gho‘09, Kir'09, Lag'00, Ube'05, Ube'08, Ube'09]. 

Furthermore, the other delineation strategies of P and T waves are applied 
such that the uniform thresholding, the transformation length, the theory of 
the function approximation, the characterization of the TU complex, the 
pattern recognition [Ste'02], the support vector machines [Kam'09, 
Meh'08, Mel'08] and the syntax methods. These latter types of syntactic 
methods will be detailed in the next section. 

VI. Discussion of usual methods 

The analysis of ECG signals, by the temporal and frequency methods 
presents major drawbacks in the diagnosis of certain very complex cases. 
These limits of these methods can make the observation of certain 

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 3 56 

pathologies difficult and this is due to the non-stationary nature of these 
signals. To overcome the weaknesses of one-dimensional techniques, the 
use of the time-frequency technique, which takes into account both the 
time parameter and the frequency parameter, on non- stationary ECG 
signals is inevitable. 

In [Pan'85], the size of the integration window must be adapted to the 
average width of a QRS complex. If it is too large, the maximum is shifted 
in time with respect to the position of R (influence of the T wave); if, on 
the contrary, it is too small, we obtain several peaks for the same R wave. 
The size chosen by Pan & Tompkins empirically is 150ms, which 
corresponds to double the average width of a QRS complex. After signal 
integration, the available signal has an absolute maximum for each QRS 
complex; it also has other local maxima, generally of a lower amplitude; 
they correspond either to noises or to T waves. The algorithm presented by 
Pan & Tompkins presents a detection rate of QRS complexes of 99.3%. 
However, the weak point of the algorithm is the low detection rate at the 
level of some records such as 108 and 222 from the MIT-BIH database. In 
fact, for recording 108, the error rate is very high because the amplitude of 
the P waves is comparable to that of the QRS complexes. In record 222, 
the P-wave morphology is comparable to that of QRS complexes, which is 
a cause of error and will increase the rate of false positives. 

The algorithm presented by Dubois et al. [Dub'04] has a detection rate of 
98.90%.Detection errors appear for some particular pathologies such as 
ventricular tachycardia or the case of low amplitude extrasystoles. Indeed, 
for a ventricular tachycardia (record 207), the error rate is very high 
because the patient presents periods of ventricular tachycardia on several 
occasions. During these periods, the reference annotations are absent. On 
the other hand, the algorithm annotates the recording at the frequency of a 
tachycardia. Another weak point of the algorithm is the detection of low 
amplitude extrasystoles. These are assimilated to T waves because their 
amplitudes and speed of variations are of in the same order. 

The algorithm of Ying et al. [Yin'92] is tested on some signals from the 
MIT-BIH database. Detection errors appear for a few recordings such as 
record 108 where the amplitude of P waves is comparable to that of QRS 
complexes; a very high error rate is thus reported because the P waves are 
considered to be R waves. 

Different statistical methods of detecting QRS complexes of the ECG 
signal have been described and they are based on a temporal analysis of 
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the ECG signal. Their performance has been evaluated and their limits 
studied. These limitations are mainly related to the quality of the ECG 
signal. Indeed, a very noisy recording or even which presents other 
parameters, such as the ventricular extrasystoles of low amplitude, the P 
and T waves comparable to that of the R waves and the sharp decrease in 
the amplitude of the R wave, greatly affect the detection of QRS 
complexes and so decreases the robustness of each of the methods. 

Moreover, the usual methods which are based on a temporal analysis of 
the signal mainly suffer from two limitations: their sensitivity to noise and 
to the choice of the threshold. For methods based on wavelets, the art work 
depends on the mother function used. The art methods have been based on 
neural networks, where the network must be fully connected, and they 
suffer some slow learning time.  

However, the approach syntax does not have any very important features. 
Indeed, it advocates some points, as confirmed in the following section. 
These characteristics are: simplicity, brevity, clarity, comprehensibility 
and modification of the computer program which implements the syntactic 
approach. 

In order to improve the detection rate of QRS complexes and to diversify 
the techniques for processing the ECG signal, grammar-based methods are 
proposed, described and evaluated in the following section. 

VII. Syntax methods for processing ECG signal 

Trahanias et al. [Tra'90] presented an application of a syntactic method for 
the recognition of the ECG signal and the measurement of its parameters. 
The work consists of two parts: peak extraction and peak grammar 
analysis.  

VII.1 Extraction of peaks  

Each peak is characterized by three points: the two left and right end 
points plus an energy value. A peak can be either linear or parabolic. The 
peaks and endpoints are extracted by traversing the signal interval by 
interval.  

In [Tra'90], a method of recognizing erroneous peaks or false peaks in an 
ECG signal was presented. The erroneous peaks appeared under the shape 
of the adjacent peaks to satisfy a set of criteria. The direct methods 
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recognize all the peaks {P1, P2,…, Pi }, and then reject the false peaks 
based on a set of criteria. 

Each peak Pi is characterized by a time Pxi and an amplitude Pyi. 

The criteria are applied to each five consecutive peaks {Pi-3, Pi-2, Pi-1, Pi, 
Pi+1} as illustrated in Figure 3.3  

The peak evaluation criteria are based on the amplitudes and durations of 
the five peaks:  

Pyi-3 <= Pyi-1   AND Pyi-1 >= Pyi-2         (3.4)                                    

| Pyi-2 - Pyi-1 | <= threshold s1          (3.5)                            

tm <= threshold s2          (3.6)          

if tm <=  threshold s3 then ignore         (3.7)                            

tm  >= tg AND tm >= td         (3.8) 

 
Figure 3.3: Method application of on each group of five peaks and 
detection of false peaks. 

The peaks having amplitudes greater than a fixed threshold are not 
considered as false peaks. 

The peaks having durations greater than a fixed threshold are not 
considered as false peaks. 

The false peak detection algorithm applies to a group of five consecutive 
peaks:  
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 Start 

i 0 
P0 the first peak of the signal 
Step1: find the next peak  
If there are no following peaks then 
              End 
End if 
Step 2 : i i + 1  
If i <3 then 
              Go to step1 
End if 
Step3 : If the peer (P i-2, P i-1) is not noisy then  
       goto Step1 
       End if 
       P i-2 P i 

i    i-2 
If i <3 then 
       goto step1 
End if 
goto step3 

End 

A sequence of n peaks is considered a QRS complex if they have satisfied 
the following two conditions:  

1) The sum of energies of the n peaks is greater than threshold s1:     ei >= s1 

2) The angle between the two consecutive peaks (peak i and peak i + 1) is 
less than threshold s2:     

Angle (peak i, peak i + 1) <= s2 

The concept of angles makes it possible not to confuse the QRS complexes 
and the P and T waves. The recognition of the P and T waves is based on 
the measurement of the amplitude and the wave width compared to 
thresholds s3 and s4. 

One or two consecutive peaks are recognized as being a P or T wave, by 
fixing their width and their amplitude according to the syntactic rule 
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evaluated. They are discriminated from other peaks by comparing their 
energies. Noisy peaks in a region between two QRS complexes must have 
less energy than the energy of the P and T complexes in that region. The 
alternative of the syntactic rule which corresponds to a P or T wave 
specifies its morphology. It is noted that the P and T waves that occur 
before the first and after the last QRS complex found are not recognized. It 
helps to make the grammar easier. 

VII.2 Grammatical analysis of recognized peaks  

In [Tra'90], the author used alphabet  = {K +, K-, rest, wave} knowing 
that:  

K + would describe a positive peak, 
K- would describe a negative peak. 

 
Indeed, an ECG signal was assimilated to a series of symbols of  Each 
symbol was assigned corresponding values. Next, the author used a 
context-free grammar G = (VT, VN, S, P) to describe an ECG signal 
where VT represented the terminal vocabulary, VN represented the non-
terminal vocabulary, S was the axiom, and P represented the production 
rules. 

Grammar G = (VT, VN, S, P) 
VT = {K +, K-, rest, wave} 
VN = {ECG, Start, End, Cardiac_cycle, Cardiac_cycles, QRS, Peak, 
Segment, Rest, Non_QRS, Q, R, S, P, T, R ', S', R'', S'', SR, ST, TR, 
SP, PR, TP, A, B, C, D, E, F} 
S = {ECG} 

 
P represented the following rules where “.” is a concatenation operator: 

  
ECG Start . Cardiac cycles . End 
Start  | Segment . Start | Peak . Start  
Segment rest | wave 
Peak K + | K- 
End QRS . Rest 
Rest  | Segment . Rest | Peak . Rest 
Cardiac_cycles Cardiac_cycle . Cardiac cycles 
QRS [Q]? . R . S . R' . S' . R''. [S”]? | [Q]? . R . S . R' . [S']? | [Q]? 
R . [S]? | Q . S 
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Non_QRS SR | ST . T . TR | SP . P . PR | ST . T . A 
A B | C | D | E 
B  | P . B 
C TP . P . PR . P . PR 
D TP . P . PR 
E  | Peak . E | Segment . E 
ST F 
TP F 
PR F 
TR F 
SP F 
PP F 
SR Segment . F | Peak . F 
F  | Segment . F | Peak . F 
T K + . K- | K- . K + | K + | K- 
P K + . K- | K- . K + | K + | K- 
R K + 
R' K + 
R'' K + 
Q K- 
QS K- 
S K- 
S' K- 
S'' K- 

In [Tra'90], the classification of QRS complexes was performed by a KNN 
nearest neighborhood classification algorithm. The distance between a 
given QRS complex and a given class of QRS complexes was calculated 
as the average of the distances between the given QRS complex and each 
QRS complex in the given class of QRS complexes. Morphological 
(structural) and quantitative (statistical) characteristics were taken into 
account in the distance calculation. The normalized duration and the 
normalized amplitude were the statistical characteristics used. Morphological 
characteristics, in calculating the distance between two complexes, were 
taken into account by aligning the complexes so that they would match the 
best. 

Kokai et al. [Kok'97] used grammar rules to recognize QRS complexes 
and distinguish between QRS and non-QRS data. A QRS complex had to 
meet the following three conditions: 

The value of a peak had to be greater than threshold s1. 
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The angle between the right segment of peak i and the left segment of peak 
i + 1 had to be less than threshold s2. 

The angle of each peak was less than threshold s3. 

The author used grammar G = (VT, VN, S, P): 

 VT = {K +, K-, line, parabola}    
 
where K + described a positive peak and K- described a negative peak. 
 

 VN={Cardiac_cycles, Cardiac_cycle, Peak, Peaks, QRS, 
Non_QRS, Segment, Interwave_segment, SR, T_or_P, P, T}  

 S = ECG 
 P represented the following rules:  

 
Cardiac cycles  Cardiac cycle . Cardiac cycles 
Cardiac cycles   
Cardiac cycle  QRS . Non_QRS  
QRS Peak . Peaks  
Peaks  Peak . Peaks 
Peaks   
Peak  K+ | K- 
Non_QRS  SR | Interwave_segment . T . Interwave_segment | 
interwave_segment . P . interwave_segment | Interwave_segment . 
T . Interwave_segment . P . Interwave_segment 
SR  segment . Interwave_segment | Peak . Interwave_segment 
Interwave_segment   | Segment | Interwave_segment | Peak. 
Interwave_segment 
T  T_or_P 
P  T_or_P 
T _or_P  K+ | K- | K+ . K- | K- . K+ 
Segment  line | parabola 
  

Hanieh et al. [Han'15] proposed a method to detect atrial arrhythmias. The 
suggested method modeled arrhythmias using regular expressions. In fact, 
the ECG signal was transformed into a series of symbols, each symbol of 
which represented an element of the wave or peak type signal. 
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VII.3 Discussion  

Although the syntactic method appears to be suitable for the problem of 
recognizing ECG signals and measuring parameters, little progress has 
been made so far. In the reported attempts, only specific aspects of this 
problem have been addressed. A context-free grammar for the recognition 
of the peak in ECGs is described. Grammars have been proposed for the 
detection of QRS complexes. Grammars out of context have been used for 
the detection of some ventricular arrhythmias. An attempt at arrhythmia 
analysis using the finite state automaton model is described, and even 
filtering ECG waveforms by the syntactic method has also been investigated. 

The application of the syntactic approach to the recognition of ECG 
signals and to the measurement of parameters, which has been described in 
this document, has given results inferior to those reported by some 
implementations using the non-syntactic approach. However, the non-
syntactic approach is quite mature in this particular problem after 
considerable research work over many years. In the syntactic approach, 
there is a lot of room for improving the results by further refining the 
method. We have observed that the extractor primitive pattern does not 
always accurately define the limits of the peaks. This type of error spreads 
into the following steps and is responsible for many inaccurate results. 
Removing this deficiency will considerably improve the overall performance 
of the approach. 

Hanieh et al. [Han'15] applied their method on the MIT-BIH basis of 
arrhythmias. However, the algorithm showed an average sensitivity rate 
that did not exceed 96.3%. In [Kok'97], no information was given on the 
database used and the sensitivity rate achieved. In addition, the methods 
mentioned above were very sensitive to noises. Due to noise, several 
morphologies could be found and thus interfere with the grammatical 
description of the signal and generate erroneous peaks. Indeed, grammar 
could classify several signal types as an ECG signals. On the other hand, 
the grammatical formalism was only used at level 3 (Figure 3.4) to make 
the spatial interpretation of the elements of the signal. In other words, the 
authors did not exploit the formalism of the grammar during the peak 
extraction phase at level 2 (Figure 3.4). 

In addition, the syntactic methods cited above are sensitive to the choice of 
energy thresholds (amplitudes) and intra and inter peak thresholds. Indeed, 
our objective is to extend the level of use of the grammar and to utilize the 
grammar to make the extraction of forms (level 2) as well as their spatial 
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interpretation (level 3) while adding other standard deviation and duration 
criteria. We will use a type-3 grammar for the extraction of QRS 
complexes from an ECG signal and a type-2 grammar for the recognition 
of the ECG signal. 

The following chapter presents the work carried out in the application of 
the syntactic method to the whole problem of recognizing ECG shapes and 
measuring parameters. Solutions to the subproblems of selecting primitive 
patterns, extracting primitive patterns, linguistic representation and 
formulating a pattern grammar will be described. 

Spatial interpretation of elements 

Extraction of signal elements 

Filtering 

 
Figure 3.4: Three levels of signal processing. 

VIII. Conclusion 

In this chapter we have mentioned an overview of ECG signal preprocessing 
techniques as well as QRS complex detection approaches and P and T 
wave delineation methods. To improve the heartbeat detection rate, it is 
important to do a signal processing step. The characterization of ECG 
signals lies in the localization of QRS complexes and the recognition of P 
and T waves in each cardiac cycle. In fact, the parameters representative of 
these elements are necessary and make it possible to clearly distinguish 
between pathological beats and normal ones. 

The usual and statistical methods of processing the ECG signal have been 
based on a temporal analysis of the signal. Their limitations are mainly 
related to the quality of the ECG signal. Indeed, a noisy recording or one 
which presents P and T waves comparable to that of R waves, or a sharp 
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decrease in the amplitude of the R wave, has a huge influence on the 
detection rate and thus reduces the robustness of the methods. 

In order to improve the detection rate, we will present, in the next chapter, 
a method for detecting QRS complexes based on regular grammars as well 
as a second method for detecting whole cardiac cycles based on the same 
principle.  
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CHAPTER 4 

QRS COMPLEX EXTRACTION AND GRAMMAR 
BASED HEART CYCLE RECOGNITION 

 
 
 

I. Introduction 

A grammar is the formalism for describing languages and recognizing all 
the words learned. However, few grammar-based approaches for ECG 
signal processing [Tra’90, Kok'97]. Kokai et al. [Kok'97] have presented a 
learning machine capable of learning both the syntax and the semantic 
rules of an ECG grammar. The QRS complex is considered a negative 
peak followed by a positive peak followed later by a negative peak. 
Trahanias et al. [Tra’90] applied a syntactic recognition method to 
measure the associated parameters of an ECG signal. In addition, Gao et 
al. [Gao’00] asserted that, compared to statistical methods, the use of 
grammars would offer more flexibility in applications. 

The main advantage of these methods concerns the representation that it 
can make available. Syntactic approaches can powerfully represent object 
structures and thus make it easy to retrieve information. The input data 
appears to be a structured scene having a hierarchical order because 
grammars can clearly represent hierarchical structures using non-terminal 
and terminal nodes. Moreover, syntactic approaches are able to describe a 
large set of complex objects using small sets of simple primitives and 
grammatical rules [Ped’13]. 

In this context, our work is registered and we will describe an ECG signal 
as a sequence of waves and of peaks on the basis of a specific vocabulary 
and set of grammatical rules with constraints. First of all, the aim of our 
analyzers is to classify the input signal in the case of an ECG signal or not. 
Then, if it is retained as an ECG signal, our analyzers aim to determine the 
number of cardiac cycles and the various indicators such as the QRS 
complex duration, the RR distance, and the QT and PR intervals for each 
cycle. 
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Indeed, in the next section we will use the regular type-3 grammar for the 
recognition of QRS complexes in the first place and for the recognition of 
cardiac cycles in the second place.  

II. Recognition of QRS complexes by regular grammar 

In this part, we will show that the regular grammar and the deterministic 
automata are also useful for the extraction of QRS complexes and RR 
distances and the interpretation of ECG signals. The automata will be used 
to represent a normalized QRS complex as a sequence of positive and 
negative peaks based on the regular grammar. The method is applied to 
ECG signals from the MIT-BIH standard database. For an input ECG 
signal, several parameters are determined, such as QRS times, RR 
distances and amplitudes of recognized peaks. 

Figure 4.1 summarizes all the steps of the proposed method. The 
amplitude of the input signal is filtered, centralized and normalized. Then, 
the lexical analysis step recognizes the lexemes corresponding to the rest 
phases, to the positive peaks and to the negative peaks. Based on the 
length and standard deviation of the lexical units, the analyzer 
differentiates between the rest, the peak and the wave. Taking into account 
the sampling frequency and the time, the analyzer then calculates the RR 
distances and the QRS times and generates a medical report. 

II.1 Signal preprocessing  

In fact, an ECG signal S [n] is too noisy and contains many artifacts, hence 
the need for preprocessing phases to reduce noise and facilitate lexical 
analysis afterwards. The band pass filter reduces the influence of muscle 
noise, the 60Hz interference and the T wave interference and promotes the 
baseline. The desirable bandwidth to maximize the energy QRS is about 5-
15 Hz [Pan ’85].  

The mathematical equations below describe the different stages of the 
preprocessing phase: bandpass filtering, centralization and normalization 
of the signal amplitude. An example is shown later in Figure 4.2 where an 
ECG signal representing tachycardia is filtered by a band pass filter, 
normalized and centered. 
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Figure 4.1: Diagram of the proposed method for QRS complexes
extraction based on regular grammar.
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Step 1: Bandpass filtering: 

S[n] is the signal and H[n] is the bandpass filter where the cutoff 
frequency is 5-15 Hz.  

  1[ ] = [ ] [ ]                                                        (4. 1) 

  

Step 2: Centralization of the signal: 2[ ] = 1[ ] [ ]                                               (4. 2) 

  

Step 3: Standardization of the signal amplitude: 

 3[ ] =  [ ] ( [ ])( [ ] ( [ ]))                                        (4. 3) 

Figure 4.2 shows an example of an actual ECG signal before and after the 
filtering process. The input signal was from a patient who represents 
tachycardia. The preprocessing process eliminated the artifacts well and 
centralized the signal. 
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Figure 4.2: (a) Input ECG Signal representing tachycardia. (b) Centered 
signal and filtered by a bandpass filter. 
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II.2 Grammatical analysis of the signal  

Here, the amplitude of the signal is treated as a sequence of values 
belonging to the bounded interval [-1, 1]. Normalized amplitude is 
described as a sequence of near zero, negative, and positive values. In 
other words, the signal is assimilated to a language where a QRS complex 
represents a sequence of words. 

The amplitude of the output signal is processed as a sequence of values 
belonging to the bounded interval [-1, 1]. A normalized amplitude is 
described as a sequence of near zero, negative, and positive values. In 
other words, the signal is assimilated to a language where the QRS 
complex represents a sequence of words. 

Alphabet  = {0,1,2,3,4,5,6,7,8,9, -,.} contains all the symbols which can 
represent a normalized amplitude belonging to the bounded interval [-1, 
1]. Then, regular expressions allow the lexical analysis of the signal. In 
fact, deterministic automata and regular expressions represent the rest 
phase, the positive peak and the negative peak. The latter form the QRS 
complex with an addition of standard deviation constraints. 

Mathematically, a positive peak or a negative peak must have a very large 
standard deviation  compared to that of a wave and greater than a 
predefined threshold  for a very short duration  less than a predefined 
threshold  

Given the sampling frequency Fe, a peak (positive or negative), a wave or 
a rest phase, is formed by a series of n normalized amplitudes {a1, a2,…, 

an} having an average amplitude. The calculation of a gap type  and 
term  is as follows: 

 = ( )² (4.4)

=        (4.5) =        (4.6) 
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Figure 4.3: Standard deviations changes of peaks and waves 
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Figure 4.3 shows the values of the standard deviations of the numerous Q, 
R and S peaks and of the different P and T waves. The figure confirms that 
the two peaks R and S show very large standard deviations greater than 
0.2. Peak Q has standard deviations greater than 0.1, while both P and T 
waves have very low values of standard deviations below 0.05. 

According to Figure 4.3, we can designate  = 0.1. From this value, we 
can distinguish between peaks and waves. In fact, a QRS complex is 
thought of as a pair of adjacent peaks that meet criteria for standard 
deviations. 

 

Figure 4.4: Variation of peak and wave durations 

 
Figure 4.4 shows the values of the durations of the multiple Q, R and S 
peaks and of the various P and T waves. The figure confirms that the three 
Q, R and S peaks show very short durations of less than 0.1 sec. While the 
two P and T waves have very important values of durations which exceed 
0.1 sec. 

According to Figure 4.4, we can designate  1 = 0.1 sec. From this value, 
we can distinguish between peaks and waves. In fact, a QRS complex is 
thought of as a pair of adjacent peaks that meet criteria for standard 
deviations and durations. 
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In what follows, grammatically, the character “ ” is an empty word with 
zero length. The character ‘*’ means “zero or more times”, the character 
‘+’ means “one or more times”, and ‘?’ means “zero or once”.  

A deterministic finite automaton consists of a finite set of states (often 
denoted by Q), a finite set  of symbols (alphabet), a transition function 
which takes as argument a state and a symbol and returns a state (often 
denoted by  a starting state often denoted by q0 and a set of final states 
(often denoted by F). We have q0  Q and F  Q. 

Indeed, a deterministic finite automaton (DFA) is a quintuplet (Q,   q0, 
F) where:  

is an alphabet, 
Q is a finite set of states, 

 Q × Q is the transition function,  
q0: is the initial state,  
F: is a set of final states.  

 

Figure 4.5: Deterministic automaton representing normalized positive 
peak (R) 

Often, the initial state is marked with an incoming arrow, the states are 
symbolized by single circles, and the final states are marked with double 
circles. 

The initial state q0 = {0}. 
The finite set of states Q = {0, 1, 2, 3, 4}. 
The set of finite states F = {3, 4}. 
The finite set of symbols  = {0,1,2,3,4,5,6,7,8,9, -,.} 
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The functions of the transitions are: 
 (0,0) = 1  
 (1,.) = 2  
 (2,1-9) = 3  
 (3,0-9) = 3                                           
 (3, ) = 0  
 (0,1) = 4  
 (4, ) = 0                             

  
The deterministic automaton above (Figure 4.5) and the regular expression 
describe a normalized positive peak of type R: 

R = { 0.[1-9] [0-9]*|1}+    (4.7) 

 > 1      (4.8) 

R < 1      (4.9) 

 

 

Figure 4.6: Deterministic automaton representing normalized 
negative peak (Q or S) 

The following deterministic automaton (Figure 4.6) as well as the regular 
expression below describes a normalized negative peak: 

Q = {- 0.[1-9] [0-9]* | -1}+    (4.10) 

Q >       (4.11) 

 < 1      (4.12) 

S = { -0.[1-9] [0-9]*|-1.0 }+    (4.13) 
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 >       (4.14)  <  1      (4.15) 

The initial state q0 = {0}. 
The finite set of states Q = {0, 1, 2, 3, 4, 5}. 
The set of finite states F = {4,5}. 
The finite set of symbols  = {0,1,2,3,4,5,6,7,8,9, -,.} 
The transition functions are: 
 (0, -) = 1  
 (1.0) = 2  
 (2,.) = 3  
 (3.1-9) = 4                                           
 (4.0-9) = 4  
 (4, ) = 0  
 (1.1) = 5  
 (5, ) = 0                                           

  
In practice, the Q, R and S peaks are possibly separated by very short 
resting phases. The following regular expression describes a normalized 
rest phase:  =  {{  }?  0.0 [0 9] }  +    (4.16)  <         (4.17)     

                         

 
Figure 4.7: Deterministic automaton depicting standardized rest 
phase  
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The deterministic automaton above (Figure 4.7) discloses a standardized 
rest phase where: 

The initial state q0 = {0}. 
The finite set of states Q = {0, 1, 2, 3, 4, 5}. 
The final state F = {3}. 
The finite set of symbols  = {0,1,2,3,4,5,6,7,8,9, -,.} 
The transition functions are: 
 (0.0) = 1  
 (1,.) = 2  
 (2.0) = 3  
 (3.0-9) = 3                                           
 (3, ) = 0  
 (0, -) = 4  
 (4.0) = 5  
 (5,.) = 2                                           

  
The regular expression below and Figure 4.8 describe an entire standard 
QRS complex. Q is the first peak directed downwards, which is always 
visible on the ground. Peak R is the second; it has high amplitude and it is 
directed upwards. The S peak is the last; it is directed downwards. 

Grammatically, the complex QRS is assimilated to a succession of positive 
and negative peaks which are separated optionally by a very short resting 
phase. 

The regular expression and the deterministic PLC below (Figure 4.8 and 
Figure 4.9) assume that the peaks of Q and the resting phases may be 
absent. 

QRS = {Q}? {rest}? {R}} {rest}? {S}    (4. 1 8)                        

The initial state q0 = {0}. 
The finite set of states Q = {0, 1, 2, 3-27, 28}. 
The set of finite states F = {27, 28}. 
The finite set of symbols  = {0,1,2,3,4,5,6,7,8,9, -,.} 
The transition functions are: 
 (0,.) = 1  
 (1.0) = 2  
 (2,.) = 3  
 (3.1-9) = 4                                                  
 (4.0-9) = 4  
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 (4,  = 6  
 (1.1) = 5  
 (4,  = 0                                           
 (5,  = 6  
 (5,  = 0 

 

Figure 4.8: Deterministic automaton representing normalized QRS 
complex. 
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 (6,0) = 7  
 (7,.) = 8                                           
 (8,0) = 9  
 (6,.) = 10  
 (10,0) = 11  
 (11,.) = 8                                           
 (9,0-9) = 9  
 (9, ) = 6  
 (6, ) = 12  
 (0, ) = 12                                           
 (9, ) = 12  
 (12.0) = 13  
 (13,.) = 14  
 (14.1-9) = 15                                           
 (15, ) = 17  
 (15, ) = 12  
 (12,1) = 16  
 (16, ) = 12                                           
 (16, ) = 17  
 (17.0) = 18  
 (18,.) = 19  
 (19.0) = 20                                           
 (20.0-9) = 20  
 (17,.) = 21  
 (21.0) = 22  
 (22,.) = 19                                           
 (20, ) = 17  
 (17, ) = 23  
 (20, ) = 23  
 (23,.) = 24                                           
 (24,0) = 25  
 (25,.) = 26  
 (26,1-9) = 27  
 (27, ) = 23                                           
 (27.0-9) = 27  
 (24.1) = 28  
 (28, ) = 23                             

 
The QRS complex represents the ventricular depolarization curve. All 
these three peaks have durations between 0.06 and 0.1 seconds [Cha’09, 
Ayt'99, Moo'01, Ham'04, Kha'09, Sum'09, Che'06, and Su’05]. 
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To better represent describing the controller while a QRS complex in a 
simpler way, the following automaton (Figure 4.9) show an entire QRS 
complex where we have modified and minimized the finite set of symbols, 
the entire finished states and the set of finite states. 

The initial state q0 = {0}. 
The finite set of states Q = {0, 1, 2, 3, 4, 5}. 
The set of finite states F = {5}. 
The finite set of symbols  = {Q, R, S, Rest} 
The transition functions are: 
 (0, Q) = 1  
 (0, Rest) = 2  
 (0, R) = 3  
 (1, R) = 3                                                  
 (2, R) = 3  
 (3, Rest) = 4  
 (4, S) = 5  
 (3, S) = 5                                           

 

Figure 4.9: Deterministic automaton representing QRS complex. 

II.3 Results  

In this section, the method described above is applied on multiple real 
signals representing the ECG of different patients and derived from the 
standard database MIT-BIH arrhythmia. For all input signals, the Q, R, 
and S peaks, the RR distances, and the QRS complexes are detected. The 
RR distance is the time between two successive peaks of R. It is the most 
important indicator of the rate of ventricles. In addition, a comparison 
study with a large number of methods [Pan'85, Szu'92, Sai'12, Ben'10, 
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Ham'86, Cho'07, Chr'06, Gha'08, Had'10, Kyr'88, Meh'08, Gri'98, Tra'93] 
is applied in terms of detection of the QRS complex. 

Table 4.1 shows an application on multiple real ECG signals to extract the 
QRS complexes. True Positive (TP), False Positive (FP), False Negative 
(FN), Sensitivity (Se), Positive Predictivity (+P), Fault Detection Rate 
(FDR), and Rate false negative (FNR) are determined where: 

TP represents correctly identified QRSs, 

FP represents incorrectly identified QRSs, 

FN represents incorrectly rejected QRSs. Sensitivity % =  100    (4.19) Positive predictivity % =  100   (4.20) False detection rate % =  100   (4.21) False negative rate % =  100   (4.22) 

Table 4.1 shows an application of the proposed method on different types 
of ECG signals from the MIT-BIH arrhythmia database in order to extract 
the QRS complex. The sampling frequency is 360Hz, the gain is 200 and 
the base is 1024mV. 

For an input signal, several parameters are determined, such as the number 
of QRS, the RR distances, the QRS duration, the standard deviation of the 
RR distances, the standard deviation of the QRS durations, and the 
amplitudes of the peaks. 

Practically, the average rate of the sensitivity (Se) of the proposed method 
is 99.74% and the mean rate of the positive predictivity (+P) is 99.86%. 
The mean rate of false detection (FDR) is 0.14% and the average rate of 
false negative (FNR) is 0.26%. 
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In addition, the standard deviation of the distances RR denoted  and 
the standard deviation of the QRS durations denoted  are calculated. 

Please note that the standard deviation parameters are a sign of the 
relationship between the obtained values and the mean value where: 

 = ( )² (4.23)

=       (4.24) 

 = ( )² (4.25)

=      (4.26) 

Mathematically, a short standard deviation (less than 0.1) of RR distances 
means that all RR distances are regular. A high standard deviation (more 
than 0.1) means that the values of RR distances are irregular. 

Figure 4.10: Portion of standard ECG representing rate of irregular 
heartbeat 
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Figure 4.11: Change in RR distances, QRS duration and amplitudes 
of peaks; = 0.84 sec.,  =0.03 sec.,  

Consistently, a short-lived standard deviation (less than 0.1) of the QRS 
duration means that all QRS durations are regular. However, a high 
standard deviation (more than 0.1) means that the obtained values of QRS 
durations are irregular. 

Figure 4.10 and Figure 4.11 show an application on a portion of a signal 
ECG representing a rate of irregular heartbeat. The various indicators of 
the signal (RR distance, duration of the QRS; amplitudes of Q, R and S) 
are shown. 

Primarily, the average values of the RR distances and QRS times are 0.84 
seconds and 0.03 seconds, respectively. However, the RR distances are 
irregular. In fact, the standard deviation of the RR distances is  = 0.15. 
This plus or minus value proves that the RR distance is not stable. QRS 
complexes have normal durations of less than a 0.1 second. In addition, 
the QRS duration values are regular. Indeed, the standard deviation  
= 0.01. This low value demonstrates that the duration of the QRS is stable. 
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Figure 4.12: Portion of standard ECG representing steady beat 

 

Figure 4.13: Change in RR distances, QRS duration and amplitude of 
peaks;  = 0.46,  = 0.00,  = 0.02,  = 0.00 

Similarly, Figure 4.12 and Figure 4.13 illustrate an application on a 
portion of an ECG showing a tachycardia rate and a regular beat. Mainly, 
the mean values of the RR and the QRS are respectively 0.46 seconds and 
0.02 second. Indeed, the RR distances are regular. In fact, the standard 
deviation of the RR distances is  = 0.00. This low value indicates that 
the RR distance is stable. 

QRS complex durations have normal durations of less than a 0.1 second. 
In addition, the QRS durations are regular. Indeed, the standard deviation 
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of the QRS durations is  = 0.00. This low value indicates that the 
duration of the QRS is stable. 

 

Figure 4.14: Portion of record 221 representing irregular beat 

 

Figure 4.15: Change of RR distances, QRS durations and peak 
amplitudes; = 0.76 sec.,  =0.07 sec.,  

Figure 4.14 and Figure 4.15 depict an application to a portion of record 
221 showing an irregular beat rate. Different signals (RR distance, 
duration QRS amplitudes of Q, R and S) are shown. Primarily, the art 
value s of the average RR and QRS are 0.84 seconds and 0.03 seconds, 
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respectively. However, the RR distances are irregular. Indeed,  is 
0.15. This plus or minus value proves that the RR distance is not stable. 
The QRS complex durations have normal durations less than a 0.1 second. 
In addition, the QRS durations are regular. Indeed,  is equal to 0.01. 
This low value demonstrates that the duration of the QRS is stable. 

Likewise, Figure 4.16 and Figure 4.17 illustrate an application to a portion 
of record 234 showing tachycardia and a steady beat rate. Primarily, the art 
values of the average RR and QRS are 0.46 seconds and 0.02 second, 
respectively. In addition, the RR distances are regular and  is equal to 
0.00. This low value shows that the RR distance is stable. The QRS 
complex durations have normal durations less than a 0.1 second. In 
addition, the QRS durations are regular. Actually,  is 0.00. This low 
value indicates that the QRS duration is stable. 

 

Figure 4.16: Portion of record 234 representing regular beat 
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Figure 4.17: Variation of RR distances, QRS durations and peaks 
amplitudes;  = 0.66,  = 0.01,  = 0.06,  = 0.01 

Figure 4.18 and Figure 4.19 synthesize the variation in the 
 and  parameters, respectively, for several ECG signals from the 

base of MIT-BIH arrhythmia. 

Indeed, the non-pathological signals show values of  and  which 
are low and even almost zero. However, pathological signals show values 
of  and / or  significant. 
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Figure 4.18: Variation in  parameter for different ECG signals 
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Figure 4.19: variation in  parameter for different ECG signals 
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II.4 Noise sensitivity  

Table 4.2 displays the noise sensitivity, where the method is applied on 
different ECG recordings. Table 4.2 shows the variation in the sensitivity 
rate and the positive predictivity according to the Signal to Noise Ratio 
(SNR). 

For SNR values greater than 40dB, the method provides high sensitivity 
values exceeding 99%. For values of an SNR greater than 30dB, the 
method gives sensibility values that exceed 97%. For low SNR values that 
are less than 24 dB, the sensitivity value decreases by 90%. 

Figure 4.20 tracks the variation rate of the SNR of sensitivity according to 
different ECG recordings (100, 101, 102, 103 and 105) derived from the 
database standard MIT-BIH. For the SNR values low and less than 20dB, 
the method provides sensitivity levels that are below 50%. However, the 
sensitivity becomes increasingly important when the SNR values are 
above 30dB. For values of an SNR which are greater than 30dB, the 
method provides sensitivity rates exceeding 97%. If the SNR is greater 
than 40dB, the method provides high values of sensitivity which exceed 
99%. 
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Figure 4.20: Variation in sensitivity rate according to SNR.  
Application on 100, 101, 102, 103 and 105 records. 

II.5 R peak detection accuracy  

In this part, we determine the exact time of the first two R peaks present in 
recordings 100 to 110. Next, we compare the exact time of each R peak to 
the one detected automatically and calculate the RR distance. Thus, we 
can determine the precision value for each peak. According to the values 
presented in Table 4.3, the precision values are very low and vary between 
0.000 sec and 0.010 sec. Moderately, the precision value is 0.002 sec for 
the detection of the R peaks and 0.003 for the calculation of the RR 
distance. In addition, Figure 4.21 plots the variation in the precision value 
of the detection time of the R peaks from recordings 100, 101,…, and 110. 
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Figure 4.21: Variation in precision rate for detection of R peaks 

II.6 Performance comparison 

In order to place the QRS detection algorithm compared to other literature 
work, the quality of the detection performance is compared with several 
algorithms tested and validated on the MIT-BIH database. These 
algorithms are varied and each is based on an appropriate technique. 

Table 4.4 shows a comparative study with a large number of methods 
applied on the same MIT-BIH database in terms of sensitivity levels. 
Based on the results presented in Table 4.4, all algorithms for detecting 
QRS complexes have a good detection capability with a sensitivity rate 
that exceeds 99%. 

Similarly, the proposed method provides satisfactory and competitive 
results with sensitivity (99.74%) and can be considered a powerful tool for 
the detection of the QRS complex in the ECG signal. 
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II.7 Discussion 

In the literature, a few approaches have been based on grammatical 
formalism for the processing and control of ECG signals. However, 
researchers have not used the grammar formalism during the signal peak 
extraction phase. Peak recognition has been performed using other 
methods independent of the grammar. In our work, the proposed method 
confirms that the application domains of a regular grammar can be 
extended to be applied for the recognition of positive and negative peaks 
and the extraction of QRS complexes. A QRS complex is described for a 
deterministic finite automaton (DFA). In fact, different parameters are 
determined, such as the number of QRS complexes, the QRS duration, the 
RR distance, the standard deviations as well as the amplitudes of the 
peaks.  

The proposed approach asserts that the use of grammar, as compared to 
statistical methods, can effectively represent QRS structures and therefore 
facilitate data retrieval through their structures. The main advantage of the 
proposed method is that the representation is visible. The proposed 
syntactic approach can powerfully represent the pattern of structures and 
therefore make information retrieval easy. The input ECG signal appears 
to be a structured scene having a hierarchical order as the grammar clearly 
represents hierarchical structures using deterministic automata. 

In addition, the syntactic approach is able to describe a large set of ECG 
signals using the regular grammar. The learning of automata is exploited 
to recognize the phases of rest, the negative peaks and the positive peaks. 
The QRS complex is described for automation devices. Thus, many 
parameters are determined, such as the number of R peaks, the durations 
of the QRS complexes, the RR distances, and the values of the amplitudes 
of the peaks. 

In addition, we add parameters such as the standard deviation of the RR 
distances, noted  and the standard deviation of the QRS durations, 
noted  These standard deviation parameters are a sign of the 
relationship between the obtained values and the mean value. Mathematically, 
a low standard deviation (less than 0.1) of RR distances means that all RR 
distances are regular. On the other hand, a high standard deviation (more 
than 0.1) of the RR distances means that the values obtained for the RR 
distances are irregular. 
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Consistently, a short standard deviation of the QRS duration (less than 0.1) 
means that all QRS durations are regular. However, a high standard 
deviation (more than 0.1) means that the values obtained from the QRS 
times are irregular. 

The proposed method is applied on the MIT-BIH arrhythmia database; the 
average rate of the sensitivity (Se) is 99.74% and the average rate of the 
positive text predictivity (+P) is 99.86%. In addition, the average false 
detection rate (FDR) is 0.14% and the average false negative rate (FNR) is 
0.26%. 

In order to study the sensitivity to noise, the method is applied on several 
ECG recordings for different SNR values. We study the variation in 
sensitivity and positive predictivity as a function of SNR. If the SNR 
values are greater than 40 dB, the method gives high sensitivity values that 
exceed 99%. If the SNR values are less than 24dB, the sensitivity value 
will decrease by 90%. 

In addition, the results obtained are evaluated by a comparison with other 
algorithms in the literature. The comparison is made in terms of detection 
rate of QRS complexes by a sensitivity parameter. The proposed method 
provides satisfactory and competitive results with a sensitivity rate 
(99.74%) and thus can be considered as a powerful tool for ECG diagnosis 
of ECG signals. 

The method works on a UNIX platform and is capable of generating a 
medical report which describes the variations in the different signal 
parameters by each recognized QRS complex. Figure 4.22 shows a 
printout of the medical report that displays the different indicators for each 
QRS complex detected. 

At the end of the report, the program calculates the average RR distance 
and the average QRS duration. Then the program indicates the standard 
deviation of the RR distances and the standard deviation of the QRS times. 
Mathematically, if the value of the standard deviation is small it means 
that the measured values are regular and very close to the mean value. 
However, if the value of the standard deviation is very high it means that 
the measured values are irregular and are far from the mean value. 
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Figure 4.22: Screen printout of last part of generated medical report. 
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A type-3 grammar and deterministic automata have been shown to be 
useful for the recognition of peaks and QRS complexes. The latter are 
described using deterministic automata and regular expressions. For an 
input signal, all the indicators are deduced such as QRS durations, RR 
distances, and amplitudes of the Q, R and S peaks. This work is intended 
to aid in medical diagnosis and support for clinical decision. 

III. Recognition of cardiac cycles by regular grammar 

III.1 General view  

In this part, we will show that deterministic automata are also useful for 
the extraction of cardiac cycles. Automata will be used to represent a 
normalized cardiac cycle as a sequence of waves and negative and positive 
peaks based on the regular grammar. An ECG is likened to a pair of waves 
that meet certain adjacent criteria. This method recognizes QRS 
complexes as well as P and T waves. 

The proposed method is applied to very long ECG signals. For an input 
signal, several parameters are determined, such as QRS durations, RR 
distances, corrected QTc intervals, amplitudes of Q, R and S peaks, and 
amplitudes of P and T waves. Regular grammar with an addition of 
constraints and deterministic automata are shown to be functional for 
biomedical signal processing and ECG signal diagnosis. This work is 
intended to aid in medical diagnosis and computer aided diagnostic 
systems. It is in this context that this work is inscribed. Deterministic 
automata are exploited to recognize rest phases, waves and negative and 
positive peaks. Cardiac cycles and complex QRS are described by 
automatons. Indeed, many parameters are determined, for example the 
number of peaks R, the durations of QRS complexes, the distances RR, the 
interval QTc and the amplitudes of the peaks and the waves. 

Figure 4.23 summarizes all the steps of the method. The amplitude of the 
input signal is filtered, centralized and normalized. Then, the lexical 
analysis step recognizes lexical units including resting phases, waves, and 
positive and negative peaks. Then, depending on the length and the 
standard deviation of the lexemes, the analyzer differentiates between 
rests, peaks and waves in a step of refinement and recognition. 

The analyzer calculates the RR distance and QRS complex durations and 
generates a medical report, taking into account the sample rate, the time 
and the amplitude values. 
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Figure 4.23: Overview of proposed method for recognition of cardiac 
cycles based on regular grammar 

III.2 Preprocessing  

In this part, the ECG signals undergo the same preprocessing phases 
described previously in section II.1. Figure 4.24 shows an example of an 
actual ECG signal before and after the filtering process. The actual ECG 
signal is delivered from a patient who represents a normal sinus rhythm. 
Figure 4.24 confirms that the filtering phase has eliminated the high 
frequencies and has well centered the signal. 
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Figure 4.24: Centralized, normalized ECG signal representing normal 
sinus rhythm. The signal is filtered by a low pass filter and then by a 
high pass filter 

III.3 Signal morphologies  

The proposed method works on several possible signal morphologies. The 
technique provides, for normal signals, signals where the P wave or T 
wave is inverted and signals where the amplitude of the Q peak is much 
greater than the amplitude of the S peak. 
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Figure 4.25: Morphologies of possible signals: a normal signal, a 
signal where the P wave or T wave is inverted, a signal when the 
amplitude of the Q peak is much larger than the amplitude of the 
peak S, a signal where the P-wave is absent or doubled. 
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III.4 Grammatical analysis of signal  

Grammatically, the QRS complex is described in section II. The P wave is 
the first electrical phenomenon in a cardiac cycle. It is a wave that starts 
from the sinus node. This wave travels quickly through the atria, causing 
the atrial cells to contract. It represents the atrial depolarization curve. Its 
duration is between 0.08 and 0.1 seconds [Khe'07]. 

After each QRS complex, the T wave is observed on the ECG. Between 
this wave and the previous peak there is a brief rest called the ST segment. 
The study is very important for the identification of certain pathologies. It 
represents a ventricular repolarization curve. The duration of the T wave is 
between 0.20 and 0.25 seconds [Cha’09, Ayt'99, Moo'01, Ham'04, Kha'09, 
Sum'09, Che'06, and Su’05]. 

Based on the grammatical formalism presented in section II, the regular 
expression below and Figure 4.26 describe a normalized cardiac cycle. 
The deterministic automaton below predicts that the P wave and / or the 
rest phase may be absent. In addition, the P wave can be duplicated one or 
more times. 

In practice, the P wave and the T wave must have duration at a threshold 
 and a standard deviation value less than a threshold  The values of 

the thresholds are predefined in section II.2. 

P = {0.[1-9] [0-9]* | 1.0 }+    (4.27) 

P=       (4.28) 

P < 1      (4.29) 

P > 1      (4.30) 

T = {0.[1-9] [0-9]* | 1.0 }+    (4.31) 

T =       (4.32) 

T < 1      (4.33) 

T > 1      (4.34) 

rest 0      (4.35) 
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CardiacCycle1=({rest}?{P}{rest}?)*{QRS}{rest}?{T} (4.36) 

 

Figure 4.26: Deterministic automaton representing entire cardiac 
cycle 

The regular expression below and Figure 4.27 describe all normalized 
cardiac cycles where the P wave is reversed. 

Pinverted = {- 0.[1-9] [0-9]* | -1.0 }+   (4.37) 

Pinverted=      (4.38) 

| Pinverted| < 1      (4.39) 

Pinverted > 1      (4.40) 

CardiacCycle2=({rest}?{Pinverted}{rest}?)*{QRS}{rest}?{T} (4.41) 

 

Figure 4.27: Deterministic automaton representing an entire cardiac 
cycle wherein P wave is reversed 

The regular expression below and Figure 4.28 disclose a normalized 
cardiac cycle where the T wave is reversed.  
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Tinverted = {- 0.[1-9] [0-9]* | -1.0 }+   (4.42) 

Tinverted=      (4.43) 

| Tinverted| < 1      (4.44) 

Tinverted > 1      (4.45) 

CardiacCycle3=({rest}?{P}{rest}?)*{QRS}{rest}?{Tinverted}  

 (4.46) 

 

Figure 4.28: Deterministic automaton representing cardiac cycle   
with inverted T wave   

Other waveforms, several segments and intervals characterize the 
electrical trace of the heart [Cha'09, Ayt'99, Moo'01, Ham'04, Kha'09, 
Sum'09, Che'0 6, Su'05]: 

•  RR distance: This is the distance between two successive peaks of 
R. It is the main indicator of the rate of the ventricles. 

•  PR interval: It represents the depolarization of the atrium and the 
AV node. Its duration is 0.12 to 0.2 seconds. The length of the PR 
interval decreases as the heart rate increases. 

•  The PR segment: It is the temporal distance between the end of the 
P wave and the start of the QRS complex and it represents the 
transmission time of the depolarization wave through the AV node. 

•  ST segment: It represents the difference between the finish of the S 
wave and the beginning of the T wave. 

 
These last three intervals are variable, depending on the heart rate, and 
correspond to the resting phase of the cell. 
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•  QT Interval: It is an indication of the length of the entire ventricular 
depolarization and repolarization. The duration varies depending on 
the rate of 0.3 to 0.38 seconds of heart. 

•  QTc interval: Practically, the normal value QTc <0.440 seconds. It 
represents the sum of depolarization (QRS complex) and 
repolarization (T) described by Bazett's formula: 

 =  /      (4.47) 

The regular expression below and Figure 4.29 describe a normalized 
cardiac cycle where both P and T waves are inverted. 

CardiacCycle4 = ({rest}? {P inverted } { rest }?) * {QRS } { rest }?  
{ T inverted }                (4.48)        

 

Figure 4.29: Deterministic automaton representing an entire cardiac 
cycle with inverted P and T waves. 

Section 3 presents and discusses the results, and a comparison is made 
with the dyadic wavelet method [Nou’13] in terms of sensitivity and 
runtime. The choice of this method is justified because it is recent, known 
and reliable. 

III.5 Results and discussion  

In this section, the method described above is applied on multiple real 
ECG signals representative of different patients and they are issued in 
CHU Sahloul hospital, Tunisia. For all input signals, Q, R and S peaks, 
RR distances, QRS complexes, QTc intervals and P and T waves are 
detected. Furthermore, a comparison study with the wavelet method 
[Nou’13] is applied in terms of detection of R peaks. 

Table 4.5 shows an application of multiple real signals ECG to extract the 
cardiac cycles, the QRS complex and the R peaks of patient1 representing 
a normal sinus rhythm. 
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It should be noted that:  

 T P denotes the true positive and represents the correctly identified 
cycles; 

 FP designates false positive and represents cycles that are 
incorrectly identified; 

 FN denotes the false negative and represents incorrectly rejected 
cycles. 
  Sensitivity (%) =       (4.49) 

 In practice, the average sensitivity rate of the proposed method is 99.63% 
and the average sensitivity rate of the wavelet method [Nou’13] is 99.05%. 

In addition, the proposed method determines for each ECG signal the 
mean value of the QTc intervals and the absolute values of the P and T 
amplitudes. 

Moderately, the absolute values of the P and T waves are respectively 349 
and 737 mvolts. The QTc interval has a normal value of 0.334 seconds to 
less than 0.440 seconds. It represents the sum of depolarizations and 
repolarizations. 
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The table above shows an application of various actual signals to extract 
the ECG QRS complexes, the R peaks, the intervals QTc, and P and T of 
patient 2 showing a sinus tachycardia. The table indicates that for the R 
detection of the peaks, the average sensitivity rate of the proposed method 
is 99.21% and the average rate sensitivity of the method of the wavelet is 
99.09%. 

On average, the P wave has an absolute amplitude value of 210 mvolts and 
the T wave has an absolute amplitude value of 305 mvolts. Additionally, 
the QTc interval has a normal value of 0.370 seconds. 

Table 4.7 shows a comparison between the different methods. For each 
method, the type of the ECG signal is determined, and the used variety and 
the shapes of waves to be taken into consideration or not are defined. 
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The three following tables show several applications on very long ECG 
signals representative of different patients in order to extract the cardiac 
cycles, particularly the QRS complexes, and measure the mean values of 
RR distances and QRS duration. Each time, the standard deviation of the 
RR distances and the QRS durations is calculated. 

Please note that the machine used has the following characteristics: CPU 
(TM) i7-2600 CPU frequency = 3.40GHz, and RAM = 4GB. 
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Mathematically, a low standard deviation means that the values obtained 
are very close to the mean value, and vice versa. If the value of the 
standard deviation is small, the measured values are regular and very close 
to the mean value. 

However, if the value of the standard deviation is large, it means that the 
measured values are irregular. In addition, a comparison study with the 
wavelet method is applied in terms of execution time. 

Figure 4.30 shows an application on a portion of the ECG signal. The 
various signal indicators (remote RR; complex QRS; Q, R and S 
amplitudes) are displayed. Primarily, the QRS durations have normal 
periods of a 0.1 second. Additionally, most RR distance values are less 
than 1 second. RR distances, QRS lines and s-wave amplitudes are stable. 
Similarly, Figure 4.31 and Figure 4.32 illustrate an application on ECG25 
and ECG33, each having a time length. RR distances, complex QRS 
durations and Q, R and S amplitudes are displayed. 

 

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 4 120 

 

Figure 4.30: Application on portion of ECG signal and variation 
indifferent indicators (RR distances; QRS durations; Q, R and S 
amplitudes)  
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Figure 4.31: Application on ECG 17 and variation in different 
indicators (RR distances; QRS complex; Q, R and S amplitudes) 
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Figure 4.32: Application on ECG 36 and variation of different 
indicators (RR distances QRS complex; Q, R and S amplitudes) 
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Most of the RR distance values are less than 1 second. The durations of 
QRS complexity have normal durations of about a 0.1 second. A small 
number of spikes, half the huge amount of R peaks, are improperly 
disqualified. In fact, RR distances and QRS times are almost stable. 

Figure 4.33 and Figure 4.34 shows the variation amplitude of P and T and 
associated parameters (QT interval, PR interval and segment PR), where 
the two waves are directed upwards. Figure 4.33 confirms that amplitude 
T is much greater than amplitude P. In general, amplitudes P and T are 
stable. This type of cardiac cycles is described by an automaton in Figure 
4.26. 
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Figure 4.33: Amplitude variation in P and T waves with both waves 
directed upwards. 
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Figure 4.34: Variation in PR intervals, PR and QT interval segments. 
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Figure 4.35 and Figure 4.36 represent the amplitude variation the P and T 
waves and the associated metric (RR distance, complex QRS duration and 
amplitudes of the peaks Q, R and S), where a combination of rising and 
falling waves is detected. 

  

 Figure 4.35: Variation in wave amplitudes. A combination of waves 
directed upwardly and downwardly. 
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Figure 4.36: Variation in amplitudes, RR distances, QRS complexes 
and peaks Q, R and S. 
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Only the first two waves are directed upwards, then the rest of the P and T 
waves become inverted. Primarily, Figure 4.35 confirms that in absolute 
terms, the magnitude of T is much greater than the magnitude of P. In 
general, the amplitudes of P and T are stable. This type of cardiac cycle is 
described by an automaton of Figure 4.26 and Figure 4.29. 

The proposed method capable of generating a medical report that displays 
the value of each parameter associated with the ECG signal per cardiac 
cycle (Figure 4.37). At the end of the report, the program calculates the 
average RR distance, the average QRS duration, the average QTc interval, 
the average P wave amplitude and the average T wave amplitude. 

Then the program indicates the standard deviation of the RR distances and 
the standard deviation of the QRS times. Mathematically, if the value of 
the standard deviation is small, it means that the measured values are 
regular and are very close to the average value. However, if the value of 
the standard deviation is very important, this means that the measured 
values are irregular and are far from the average value. 
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Figure 4.37: Screen print of the generated report  
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IV. Recognition of cardiac cycles by out-of-context 
grammar 

In this first part, we show the grammar outside environment that can be 
expanded to apply to the recognition Electrocardiogram (ECG) signals. 
We will describe an ECG signal as a sequence ofwaves and peaks based 
on a specific vocabulary and a set of grammatical rules. The QRS times, 
the RR distances and the QT and PR intervals will be calculated. This type 
of work is intended to aid in the medical diagnosis of an ECG signal. 

Figure 4.38 summarizes the different stages of our grammatical method. 
First, the signal is normalized and then filtered by a series of low pass and 
high pass filters to reduce noise. Second, lexical analysis is used to specify 
recognized lexemes. In this case, a lexical unit corresponds to an element 
of the signal (wave, peak or rest). Third, parsing arranges tokens known as 
a grammar. The aim of this step is to determine whether a lexical unit 
belongs to the language generated by a grammar or not. If the lexeme 
sequence respects the language, the input signal is an ECG. Indeed, the 
QRS complex, the RR distance, and the PR and QT intervals are deduced. 
Finally, these indicators will clearly classify the normal or abnormal ECG 
signal. 

 

Figure 4.38: General view describing context free grammar for 
recognition of ECG signal 

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



QRS Complex Extraction and Grammar Based Heart Cycle Recognition 131 

IV.1 Signal preprocessing  

In this part, the art ECG signals undergo the same preprocessing steps 
described above in section II.1. 

IV.2 Grammatical analysis of ECG signal  

In this section, and after having normalized the ECG signal, we will 
process the values of the amplitudes that belong to the limited range [-1, 
1]. Indeed, we have come to describe the signal as a sequence of almost 
zero amplitude, positive or negative. 

We are based on a grammar G = (VT, VN, Ax, P) to describe the normal 
ECG signal, where VT is the terminal vocabulary of grammar, VN is the 
non-terminal vocabulary, Ax is the axiom and P is the set of production 
rules. 

 

Figure 4.39: Morphology of normal ECG signal 

The following grammar G can describe the ECG and automate the 
detection of deviations from the norm, where the character ‘*’ means 
“zero or more times”, the character ‘+’ means “one or more times”, the 
character ‘?’' means “zero or once”, the character ‘|’ means “or”, the 
symbol ‘ ’ means an empty word of zero length and the character “.” is an 
operator of concatenation.   

G = (VT, VN, Ax, P) 
VT = {P, Q, R, S, T, Rest} 
VN = {ECG, Col, Landing, Coda, End} 
Ax = {ECG} 
P is the set of rules of next production: 
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ECG Rest . P . Col | P . Col 
Col QR . Landing 
Landing S . Coda 
Coda Rest . T . End | T . End 
End ECG |      

IV.3 Results  

The proposed method has been applied to different parts of an actual ECG 
signal. The Flex and Bison tools [Lev’09] were also used to do lexical and 
syntactic analysis, respectively. Each proportion of the signal has a 
duration measured in seconds and represents several cardiac cycles. Each 
time, we apply our method to a single part in order to extract peaks and s-
waveforms from it, and then measure the parameters of the signal. 

Figures 4.40 and 4.41 show an application to a portion of 30 seconds. The 
different signal indicators such as the RR distance, the duration of the 
QRS complex, the PR interval and the segmented PR and QT intervals are 
calculated. 
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Figure 4.40: Variation in RR distance, QRS duration and amplitudes 
of Q, R and S peaks 
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Figure 4.41: Variation in P and T wave amplitudes, PR interval, PR 
and QT segments 
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Figure 4.42: Variation in P and T wave amplitudes, PR interval, PR 
and QT segment with inverted P and T waves.  
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Similarly, Figure 4.42 shows an application to a portion of 160 seconds 
where P and T waves are inverted. The amplitude variation in the P and T 
waves are drawn, and the PR interval and the segment PR and QT interval 
are also calculated. 

Table 4.11: Application on other portions of real ECG signal and 
detection of heart cycles. 

ECG signal Signal 
duration (sec) 

Actual number of 
cardiac cycles 

Number of cardiac 
cycles detected 

ECG 1 0.8 0 0 
ECG 2 1 1 1 
ECG 3 10 9 9 
ECG 4 20 19 19 
ECG 5 30 27 27 
ECG 6 40 37 37 
ECG 7 50 46 46 
ECG 8 60 54 54 
ECG 9 9 0 81 81 

ECG 10 120 108 108 
ECG 11 150 135 135 
ECG 12 180 163 163 
ECG 13 210 186 186 
ECG 14 240 192 192 
ECG 15 270 215 215 
ECG 16 290 240 240 

 
Table 4.11 shows an application of our method based on the grammar of 
several portions of actual ECG signals. Each time, the number of detected 
cardiac cycles is measured. Table 4.11 shows that, for all parties, no 
parameter is crossed. 
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From the results shown above, the QRS complex period is less than a 0.1 
seconds. In addition, the signal parameters are practically stable and the 
heart rate is 54 beats / min, so the input signal is a normal ECG. 

We have shown that the grammar formalism can be applied for the 
description and classification of ECG signals. We have described an ECG 
as a sequence of lexemes based on specific vocabularies and grammatical 
rules. Thus, the QRS complex, the RR distance and thePR and QT 
intervals have been measured. These indicators have allowed us to clearly 
classify the ECG signal as normal or abnormal. 

IV.4 Comparative study  

In this section, we will do a comparative study with the Holsinger method 
[Hol’71] for R peak detection and RR distance measurement. The 
Holsinger method works as follows: 

Calculate the threshold S which represents the maximum amplitude of the 
signal. 

Find the first point that exceeds the threshold S which indicates the peak 
R. 

( ( ) )*s Max S t a
    (4.50) 

 

Figure 4.43: Application of the method of Holsinger 
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Figure 4.44: Application of Fraden and Neuman method 

L represent both Figures 4.43 and 4.44, which show that the application of 
the technique of Holsinger [Hol'71] or Fraden and Neuman [Fra'80] has a 
portion 45 seconds of the actual ECG signal, where several R peaks (about 
15%) are not detected. On the other hand, the application of our approach 
based on the grammar with no R peak is deductible and the distances of 
RR are stable.  

The context-free grammar is proved to be useful in the recognition of 
standard ECG signals. The results of the experiments show that the 
application of our approach on several parts of an ECG signal real, where 
no parameter is crossed, allows us to calculate the duration of the QRS 
complex, the RR distances and the QT and PR intervals. In addition, a 
comparative study with the method of Holsinger and the method of Fraden 
and Neuman has been established in terms of peak detection and 
measurement R of RR distances. 

V. Conclusion 

In this chapter, a type-2 grammar, a type-3 grammar and deterministic 
automata have been found useful for the recognition of complex QRS and 
cardiac cycles and the interpretation of ECG signals. An ECG is thought 
of as a pair of adjacent waves and peaks that meet certain criteria for 
standard deviations and durations. 

The context-free grammar has been found to be useful for the recognition 
of normal ECG signals. The results of the experiments show that the 
application of our approach on several parts of a real ECG signal allows us 
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to calculate the durations of the QRS complexes, the RR distances and the 
QT and PR intervals. In addition, a comparative study with the method of 
Holsinger and the method of Fraden and Neuman has been established in 
terms of R peak detection and measurement of RR distances. 

However, the type-2 grammatical formalism has only been applied to 
normal ECGs. The context-free grammar is unable to describe any type of 
ECG signals. The varieties of ECG signals and the different types of wave 
morphologies make the use of out-of-context grammar insufficient. 

Indeed, the type-3 grammar and the deterministic automata have been 
shown to be useful for the recognition of peaks and QRS complexes and 
the different morphologies of cardiac cycles. The latter have been 
described using deterministic automata and regular expressions. For an 
input signal, all indicators have been deduced such as QRS times, RR 
distances, QTc interval as well as peak and wave amplitudes. In addition, 
we have added two parameters: the standard deviation of the RR distances, 
noted  and the standard deviation of the QRS durations, noted  
These standard deviation parameters reflect the regularity of RR distances 
and QRS durations. This work is intended to aid in medical diagnosis and 
to support clinical decision-making. 
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CHAPTER 5 

GRAMMAR-BASED MEDICAL IMAGE 
SEGMENTATION 

 
 
 

I. Introduction 

Segmentation is a fundamental step in many automatic image analysis 
systems. Its role is to delimit, in the studied image, the set of relevant 
zones for the interpretation or the modeling of the perceived scene. 
Therefore, this is a step key, and quality strongly influences the overall 
success of a machine vision or the computer vision. In this chapter, we 
will study the methods and techniques of processing images based on 
grammatical formalism. We mainly focus on the medical image. 

II. Grammar-based image processing 

Grammar and language theory (or formal language theory) began in 1950. 
Grammar consists of analyzing programming languages, describing 
natural languages, and modeling logical circuits and biological systems. 

II.1 General  

The following figure illustrates the number of publications (per year) for 
grammar-based image processing [Ped’13]. Until today, the number is 
becoming more and more important. 
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141 

 

Figure 5.1: Evolution of number of publications in field of image 
processing by grammar, for last two decades. 

The following figure illustrates the number of authors, by country, who 
have done grammar-based image processing [Ped’13]: image processing 
and medical image processing. 
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Figure 5.2: Number of authors interested in grammar for image 
processing. 

II.2 2D image segmentation  

Wu et al. (2009) presented a stochastic method for image segmentation. 
The proposed approach decomposed the image into visual elements and 
returned a hierarchical representation in the form of a graph. The problem 
of Bayesian inference is first formulated and a solution space is divided 
into a union of different sub-spaces of varying sizes. The objective is to 
optimize the a posteriori probability. Thereafter, a top-down approach is 
used to describe how objects and the region of models generate the 
intensity of the image. Finally, to perform the parameter estimates, the 
bottom-up propositions are carried out in order to guide the search in the 
parameter space. 

II.3 Reconstruction of facades  

Shape grammar has emerged as a powerful tool for describing a wide 
variety of architectural styles. Form grammar can be used to effectively 
describe complex but highly structured geometries, such as fractals, plants 
and buildings [Sti’72, Sti'78, Sti'80, Sti'82]. 
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Muller et al. [Mul’07] described a semi-automatic algorithm which makes 
it possible to generate a 3D model of good resolution from an image of a 
facade at low resolution. Its objective is the reconstruction and the 
subdivision of the facade elements: floor, window, door, etc.    

The objective of Teboul et al. [Teb’10] is to find the different regions of a 
facade to segment and associate each with a semantic label (wall, 
window…). The terminal vocabulary of basic forms is defined as follows:   

IM (Image), AT (Attic), FA (Facade), GF (GroundFloor), FL (F loor), TL 
(Tile), Sky, Wa (Wall), Wi (Window), Sh (Shop), Do (Door), Rf (Roof) 
Ba (Balcony) 

 

Figure 5.3: Front and associated derivation tree 

 However, with the same derivation tree (Figure 5. 3), a different set of 
parameters leads to different geometrical bodies. This is because by 
following the derivation process as it has been defined, we allow a large 
number of shapes to emerge while many of them are very unlikely to 
represent actual buildings. It turns out that a constraint can be applied in 
the calculation to deal with this problem, hence the phase of factorization 
of the grammar. 

By applying a factorization of the grammar, we end up with a fixed 
grammar tree covering a more restricted space of forms. Factored 
grammar better expresses realistic architecture, and always covers a large 
area of facades. 

It is possible to perform a first segmentation of the image, in which each 
pixel is associated with a class independently of any other pixel. The 
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following figure shows the probabilities obtained for each class on a single 
image. We build the obtained confusion matrix (Figure 5.4):  

 

Figure 5.4: Confusion matrix 

However, windows are poorly detected (30%). This is because the 
windows are not visually invariant; and even worse, they show the 
appearance of other objects in the scene by reflection or transparency.  

Guowei et al. [Guo’12] used grammar rules for segmentation and 3D 
reconstruction of digitized facades. This is based on the definition of a set 
of grammar rules and a dictionary of basic shapes. The results gave precise 
segmentation of the facade to reconstruct a polygonal model. However, 
derivation trees lead to geometric instances many of which are unlikely to 
represent an actual facade. Thus, finding a better segmentation rests on the 
choice of the rules which better generate a facade.             

III. Grammar for medical image processing 

Grammars were to develop theories of languages. However, there was not 
much time to realize that this theory was essential for studies of artificial 
languages, computing and information technology. The grammar study has 
been widely used in the analysis of languages, modeling of biological 
systems, computer vision, and the pattern recognition and processing of 
images, medical. 

This work is to present and discuss the results of an overview to identify 
the state of the art of medical images using grammars. In this context, we 
study documents that focus on extracting or learning the structure of 
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medical images. The grammar could present a flexible way to aid in the
recognition and classification of diseases.

Ogiela et al. [Ogi'08] proposed a grammar-based approach for the
recognition of radiograph bones and in particular bone fractures. The
proposed grammar makes it possible to model several types of fractures
(spiral, longitudinal, crack…) and the terminal vocabulary of the grammar
used constitutes intervals of angles of different degrees.

For example, the first node a represents the interval [-10, 10] degree,
while the second node b represents the interval [10, 70] degree (Figure
5.5). Indeed, the grammar recognizes the angles which separate the
elements of the bone and from the values of angles one identifies the type
of the fracture.

Figure 5.5: Terminal vocabulary (a, b, c, d, e, f, g, h) represents
feeling intervals of angles of fractures
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The grammar production rules and the lesion types are described in Table 
5.1:  

Table 5.1: Grammar outside context for recognition of fractures of 
type: cracks, spiral, longitudinal, and displaced fracture  

Lesion Production rules 

Fracture 
Crack 

FRACTURE  a CRACK a; 
CRACK  hb | hab 

Spiral 
Fracture 

FRACTURE  a SPIRAL a 
SPIRAL  MEMBERSHIP f | MEMBERSHIP gf | 
MEMBERSHIP fe | MEMBERSHIP fg | hf | gf | fg | f h | f 
MEMBERSHIP  bah | bh 

Longitudinal 
fracture 

FRACTURE  a LONGITUDINAL e 
LONGITUDINAL  TRANSVERSE TRANSVERSE | 
TRANSVERSE e TRANSVERSE | TRANSVERSE eh | 
he TRANSVERSE | Hey 
TRANSVERSE  hg | hf 

Displaced 
fracture 

FRACTURE  DISPLACED_M1 f | DISPLACED1 f | 
DISPLACED_M2 d | DISPLACED2 d 
DISPLACED_M1  ba | bg | bh 
DISPLACED_M2  hg | hf | Hey 
DISPLACED1  bahg | bah | bag | bagh 
DISPLACED2  hgfe | hge 

Delayed 
union 
fracture 

FRACTURE  a DELAYED_UNION a 
DELAYED_UNION  MEMBERSHIP MEMBERSHIP 
| MEMBERSHIP to MEMBERSHIP | MEMBERSHIP g 
MEMBERSHIP | MEMBERSHIP c MEMBERSHIP | 
MEMBERSHIP ga MEMBERSHIP 
| MEMBERSHIP gc MEMBERSHIP | MEMBERSHIP 
gac MEMBERSHIP 
| MEMBERSHIP ac MEMBERSHIP | MEMBERSHIP bc 
MEMBERSHIP 
MEMBERSHIP  bah | bh 

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



Grammar-Based Medical Image Segmentation 

 

147 

Transverse 
fracture 

FRACTURE  ahe | a TRANSVERSE e | agfe | a 
TRANSVERSE he 
TRANSVERSE  hg | hf 

Membership FRACTURE  a MEMBERSHIP e 
MEMBERSHIP  bah | bh 

  
For the recognition of fractures, the context-free grammar used is G =  
N,  T, P, S), where: 

-   N = {FRACTURE, FISSURE, TRANSVERSE, SPIRAL, 
ADHESION, DELAYED_UNION, DISPLACED_M1, 
DISPLACED_M2, DISPLACED1, DISPLACED2, 
LONGITUDINAL, A, B, C, D, E, F, G, H}. 

-   T = {a, b, c, d, e, f, g, h}. 
-  S = FRACTURE; the axiom.              
-  P is the set of production rules defined in Table 5.1. 
  

To identify the type of the fracture, the grammar recognizes the values of 
angles between the parts of the human bones. The proposed method 
achieves an accuracy level of over 90%. 

Ogiela et al. [Ogi'09] presented a method to obtain a bone description of 
the wrist in the form of a graph. Before their analysis, the images are 
subjected to a pre-processing step, the purpose of which is to indicate the 
contours of the bone. The pretreatment operations must be completed first, 
and this results in the separation of the different parts of wrist structures to 
extract the individual bones. Thereafter, the terminal symbols of the 
grammar are represented by the centers of gravity of each bone of the hand 
(Figure 5.6). The application of the proposed techniques achieves a 
recognition rate of approximately 93%. The grammar is aimed at the 
automatic construction and semantic and topological interpretation of the 
bones of the wrist. 
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Figure 5.6: Graphic description of wrist examined by X-ray and
definition of topological relations between bones

The grammar used is G = (N, P, S), where:

N = {ST, ULNA SCAPHOID, LUNATE, TRIQUETRUM,
PISIFORM, TRAPEZIUM, TRAPEZOID, CAPITATE, HAMATE,
M1, M2, M3, M4, M5},

= {r, u, s, l, t, p, tm, tz, c, h, m1, m2, m3, m4, m5},
is all labels used in the rules,

S = ST is the axiom,
P is the set of production rules presented in Table 5.2.

The proposed grammar achieves about a 93% recognition rate to analyze
and interpret lesions.
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Table 5.2: Grammar which can recognize many types of lesions: cyst, 
spiral, stenosis, dilatation, etc. 

Lesion Production rules 

Cyst LESION  CYST 
CYST  IP NI | GP NG | IP NG | GP NI | IS NI | GS 
NG | IS NG | GS NI | I NS NI | G NS NG | I NS NG | G 
NS NI 

Stenosis LESION  STENOSIS 
STENOSIS  NS S | NS G | NS PS | NS PI | NG S | NI 
NS I | NI S 

Dilation LESION  DILATION 
EXPANSION  SP NG | SG NS | S NS | G NS 

Ramifications LESION  BRANCH 
BRANCH  I NI | I NS | NI NN IP | I NS NI NN | G NI 
| GS NN | GP NN | GS NI NN | S NG | S NS NN | NG 
NG NI 
N  n | N n 
NN  nn | NN nn 
I  i | I i 
NI  ni | Neither nor 
G  g | G g 
NG  ng | NG ng 
S  s | S s 
NS  ns | NS ns 
P  p 

  
Trzupek et al. [Trz'09, Trz'11] presented an approach for the interpretation 
of medical images and the recognition of heart disease (stenosis) from 3D 
images of coronary arteries. After a phase of skeletonization of the image, 
a grammatical description in the form of a graph represents the spatial 
relations between the arteries. This operation determines the starting point 
and the ending point of each branch of the arteries. Then each point is 
labeled to identify the type of each branch based mainly on the coordinates 
of the points (Figure 5.7). All of these points constitute the nodes of the 
generated graph which represents a semantic model for the spatial 
reconstruction of the coronary arteries. The coordinates of the branches 
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represent the terminal vocabulary of the grammar used while the non-
terminal vocabulary represents the different possibilities of distribution of
the arteries and thus the different types of stenosis. The proposed method
shows a stenosis classification rate of 85%.

Figure 5.7: Spatial coordination of branches and coronary arteries.
The coordinates constitute the terminal vocabulary of the grammar
used.

The graph shows the spatial relationships between the arteries (Fig 5.8) 
where the elements are defined by introducing spatial relationships: 
horizontal defined by the set of labels {1, 2, ..., 24} and vertical defined by 
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Figure 5.8: Presentation of right coronary artery  

For the Right Coronary Artery (RCA) described in Figure 5.8, the 
grammar used is 

G = ( , , , P, Z), where: 
 = {ST, RCA, A, RP_PI_RM, RM, RP, PI, C_Right, 

C_Right_post_marg, C_Right_post_int}, 
 = {ST, RCA, A, RP_PI_RM, RM, RP, PI}, 
 = {19 , 18 , 20 , 6 , 14 , 10 , 12 , 2 , 8  }, 

Z is the starting axiom. 
  

For the left coronary artery (LCA), the grammar used is G = ( , , , P, 
Z), where: 

 = {ST, LCA, CX, L_LAD, C_Left, C_Left_ant}, 
 = {ST, LCA, CX, L_LAD, L, LAD}, 
 = {2 , 14 , 23 , 4 , 16 , 15 , 12 }, 

Z is the starting axiom. 
  

The grammar can recognize locations, amounts and types of stru<cture 
with an accuracy classification rate of approximately 85%.              
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IV. Synthesis and discussion 

The medical data are perceived as a structured scene having a hierarchy 
because the grammars can obviously describe hierarchical structures using 
their non-leaf nodes and terminal. Most applications use grammars out of 
context. However, depending on the purpose of the application, regular, 
largely well-organized grammars can be used for image segmentation. In 
addition, another advantage of using regular grammars is the accessibility 
of efficient methods for grammar rules, allowing supervised learning of 
the models used. 

Also, context-free grammars take a lot of time compared to regular 
grammars. This type of grammar represents more the structural patterns of 
computer vision applications. Thus, the context-free grammar can represent 
several lesions in medical images. 

Once the advantages of grammars are presented, it is important to set a 
comparison with non-grammatical methods. Gao et al. [GAO’00] asserted 
that, compared to statistical methods, the use of grammars would offer 
greater flexibility in applications. In addition, stochastic grammars provide 
the probability of a given model in each considered class, but other 
discriminated methods such as support vector machines or neural networks 
only give the result classification. 

Table 5.3 shows a combination of the analyzed state-of-the-art work, and 
the techniques and methods used for each of them. Each of the documents 
is analyzed individually. In fact, several types of grammars have been used 
and are often combined with a variety of other techniques. Although all 
the analyzed documents have used the grammar, different ways have been 
found to recognize objects, pattern recognition and image segmentation. 

Table 5.3 summarizes the work related to my thesis as well as the methods 
and techniques used. For each job, we identify the objective, the 
techniques and primitives used, the field of application and the results 
achieved:  
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Table 5.3: Synthesis syntactic methods for processing 2D images 

Objective Reference Primitive Results 
Shape 
recognition 
Brodatz images 
of buildings 

Wang et 
al. 
[Wan’05] 

Pixels and 
Image Regions 

Rating rate is 100% for 
textures and 97% for 
building classification. 

Object 
recognition of 
Building images 

Wang et 
al. 
[Wan'06] 
  
  

Pixels and 
Image Regions 

Rating rate is 97% 

Object 
recognition of 
facade images 

Tylecek et 
al. 
[Tyl'01] 

Small 
rectangles 

Presentation of 
generated images 

Object 
recognition i 
mages cars and 
houses 

Siskind et 
al. 
[Sis'07] 

Vector image 
features 

Rating rate is 97% 

Clothing images Chen et 
al. 
[Che'06] 

Segments and 
garment parts 

Presentation of 
generated images 

Object 
recognition of 
images of 
human faces 

Reddly et 
al. 
[Red'09] 

Block of pixels 
representing an 
element of the 
face (eyes, 
nose, etc.) 

Rating rate is 95 % 

Recognizing 
objects in a 
graphical user 
interface (GUI) 

Parag et 
al. [By'12] 

Characteristics 
of a GUI 
interface 

Rating rate is 90% for 
buttons, 100% for 
menus, 90% for radio 
buttons and 67% for 
checkboxes 

Handwritten 
Chinese 
Character 
Recognition 

Gao et al. 
[Gao'00] 

Traces and 
segments 

Recognition rate is 
77.4% for characters 
written in an article 

Classification of 
medical arteries 

Trzupek 
et al. 
[Trz'09, 
Trz'11] 

Segments and 
points 

Rating rate is 85% 
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Classification of 
medical images 
and recognition 
of fracture type 

Ogiela et 
al. 
[Ogi'08] 

Segments Rating rate is 90% 

Object 
recognition of 
images of 
human bones 
and organs 

Ogiela et 
al. 
[Ogi'09] 

Center of 
gravity of 
image and 
segments 

Rating rate is 93% 

Image 
segmentation 

Wu and 
al. 
[Wu'09] 

Pixels Presentation of 
generated images and 
execution time is 10 to 
20 minutes 

  
In general, the use of grammars allows, in a more flexible way, to describe 
and represent images, mainly when the input data have a well-established 
hierarchical pattern, since it is possible to realize a direct relation between 
the structure data and the grammatical rules. 

The methods and techniques examined provide an overview of the use of 
grammar in medical imaging. Most of the work has been published in the 
last decade. Moreover, it can be concluded that it is an extremely 
promising line of research, especially when studies have shown a recognition 
rate over 90%. 

In the following section, we segment a medical image using grammatical 
analysis. To validate our approach, we will apply it first on scintigraphic 
images and tomographic 2D images. 

Grammar can represent different lesions in medical images such as 
ultrasound, scintigraphic, coronary and bone x-ray images. The methods 
and techniques examined provide an overview. Most of the articles have 
been published in the last decade. Moreover, it can be concluded that it is 
an extremely promising line of research, especially when studies have 
shown a recognition rate over 90%. 

However, we have seen in a previous section the grammatical formalism 
used only during a high level (level 3) for pattern recognition (Figure 5.9). 
Indeed, in this chapter, we will use the grammar for the extraction of 
forms (level 2) as well as the spatial interpretation of the forms (level 3) in 
Figure 5.9. We will make segmentation of scintigraphic images and 
tomographic CTA based on the grammar. 
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High level 
Find links between the image and learning bases 

(Pattern recognition, ...) 

Average level 
Identify shapes and significant areas 

(Segmentation, …)  
Low level 

Eliminate unwanted data and favor important areas 
(Filtering) 

  
Figure 5.9: Three levels of image processing 

V. Segmentation of scintigraphic images 

For this type of scintigraphic image, we have chosen lexical and syntactic 
analyzers which rotate along a spiral path from the inside to the outside 
and extract the homogeneous regions according to a criterion of 
homogeneity set by the user. The contours of the endocardium and of the 
epicardium are thus detected and a quantification of the mass of the 
myocardial muscle is obtained. 

V.1 Scintigraphy technique  

Scintigraphy is a method of medical imaging that is part of nuclear 
medicine. The patient receives the molecules and sends out the radiation 
once they are received by the organ to be explored. In practice, the 
gamma-camera machine detects the radiation emitted by the body. Finally, 
the resulting image is reconstructed. The inner wall is called endocard and 
the outer wall is called epicardium. The two organs are separated by the 
epicardial muscle (Figure 5.10). 
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Figure 5.10: Scintigraphic image. 

In the following part, a detailed step-by-step description of the method will 
be established with illustrative figures. 

V.2 A detailed description of the method  

We use vocabulary intensities VT, which are histogram-based (Figure 
5.11) to segment and represent the major strengths in the image. 

 

Figure 5.11: Histogram of a scintigraphic image. 

Step 1: 

Read the image I to segment. 

Choose the first two intensities a1 and a2. 

Initialize the grammar G = (VT, VN, S, P) where: 

VT = {a1, a2} is the terminal vocabulary of intensities.                            
VN = {Image, Endocardium, Epicardium, Background, X, Y, Z, T} is 
the non-terminal vocabulary.                            
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S = {Image} is the axiom of grammar.                            
P is the following set of rules: 
Image  Endocardium . Epicardium . Background | Epicardium . 
Fund  
Endocardium X | X . Y . X 
X a1 . X 
X  
Y a2 . Y 
Epicardium Z | Z . T . Z  
Z a2 . Z 
Z  
T a1 . T 

 
The characters '+' and '|' mean "one or more times" and "or", respectively. 
The symbol '.' is an operator for concatenation.       

Step 2: 

Initialize the center of image O (x0, y0). 

Division of the image 8n sectors (n1) by applying the second way is 
described in  Figure 5.12.b.  = ( )      (5.1) 

where NxM is the image dimension in pixels and r is the radius of the 
sectors measured in pixels. 

This key step speeds up the algorithm execution time especially when the 
user increases the value of radius r (Figure 5.12.b and Figure 5.13) 

 

Figure 5.12: Different ways of dividing an image into blocks (a) or 
sectors (b). 
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Figure 5.13: image division into sectors; (a) r = 20 pixels; (b) r = 3 
pixels.   

Order sectors 8 + 1;   0  { ( , )  ( 0) + ( 0) > ;   ,  }   { ( , ) ù ( 0) + ( 0) ( + 1) ²;   ,  } 
       (5.2) 0      (5.3) 0      (5.4) 

      (5.5) 

Order sectors  8 + 2;   0  { ( , )  ( 0) + ( 0) > ;   ,  }   { ( , ) ù ( 0) + ( 0) ( + 1) ²;   ,  } 
       (5.6) 0      (5.7) 0      (5.8) >       (5.9) 

Order sectors    8 + 3;   0  { ( , )  ( 0) + ( 0) > ;   ,  }   { ( , ) ù ( 0) + ( 0) ( + 1) ²;   ,  } 
       (5.10) < 0        (5.11) 
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0      (5.12) >         (5.13) 

Order sectors    8 + 4;   0  { ( , )  ( 0) + ( 0) > ;   ,  }   { ( , ) ù ( 0) + ( 0) ( + 1) ²;   ,  } 
       (5.14) < 0      (5.15) 0      (5.16) 

      (5.17) 

Order sectors    8 + 5;  0  { ( , )  ( 0) + ( 0) > ;   ,  }   { ( , ) ù ( 0) + ( 0) ( + 1) ²;   ,  } 
       (5.18) < 0      (5.19) < 0      (5.20) 

      (5.21) 

Order sectors    8 + 6;   0  { ( , )  ( 0) + ( 0) > ;   ,  }   { ( , ) ù ( 0) + ( 0) ( + 1) ²;   ,  } 
       (5.22) < 0      (5.23) < 0      (5.24) >       (5.25) 

Order sectors    8 + 7;   0  { ( , )  ( 0) + ( 0) > ;   ,  }   { ( , ) ù ( 0) + ( 0) ( + 1) ²;   ,  } 
       (5.26) 

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 5 160 

0      (5.27) < 0      (5.28) 

        (5.29) 

Order sectors    8 + 8;   0  { ( , )  ( 0) + ( 0) > ;   ,  }   { ( , ) ù ( 0) + ( 0) ( + 1) ²;   ,  } 
       (5.30) 0      (5.31) < 0      (5.32) >       (5.33) 

Step 3: 

Calculate the dominant intensity of each pixel sector. 

Round off each intensity value to the nearest I value belonging to VT.  

Step 4: 

The lexical analyzer scans the image sector by sector in a spatial spiral 
path and an ascending and return the lexemes, which coincides with the 
regular expressions described in step 1. 

In other words, the lexical analyzer analyzes the intensities of the sectors 
which come from the following vector V:  

The analyzer indicates the endocardium and the epicardium by lexical 
UL1 and UL2 units, respectively. 

Step 5: 

The syntax analyzer determines the arrangement of the lexemes according 
to the grammar G described in step 1. 
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Figure 5.14: Scintigraphic issues of actual sequence images during a 
resting state. 

Step 6: 

A phase of extraction of quantitative information is added to estimate the 
surface of the endocardium, the diameter of the latter and the thickness of 
the epicardial muscle. 

V.3 Results  

Figure 5.14 shows a real sequence of scintigraphic pictures during the 
resting phase. Next, Figure 5.15 provides the segmented images based on 
the method described above. Each segmented image shows the inner 
contour representing the endocardium and the outer contour representing 
the epicardium. 

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



Grammar-Based Medical Image Segmentation 163

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 5164

Figure 5.15: Segmented scintigraphic images during a state of rest.
The inner contour represents the endocardium and the outer contour
represents the epicardium.
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Figure 5.16: Scintigraphic actual sequence images during a state of 
stress. 

Figure 5.16 represents a real sequence of scintigraphic pictures during a 
state of stress. Next, Figure 5.17 provides the segmented images based on 
the method described above. Each segmented image shows the inner 
contour representing the endocardium and the outer contour representing 
the epicardium. Figure 5.18 represents a sample of scintigraphic images 
segmented based on the algorithm of Snakes [Gun'02]. 
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Figure 5.17: Segmented scintigraphic images during a state of stress.
The inner contour represents the endocardium and the outer contour
represents the epicardium.

 EBSCOhost - printed on 2/10/2023 6:42 PM via . All use subject to https://www.ebsco.com/terms-of-use



Grammar-Based Medical Image Segmentation 169

Figure 5.18: Segmented scintigraphic images based on algorithm of
Snakes [Gun'02].

V.4 Endocardium area and muscle thickness estimation  

In this part, note that the endocardium and the epicardium are assimilated
to two superimposed circles with a common center O (xo, yo). The
analyzer represents the endocardium and the epicardium by UL1 and UL2,
respectively.

Indeed, the following mathematical equations allow us to estimate the
surface of this the endocardium, and the area is the endocardial and muscle
thickness epicardial: ( ²)  =  1 ² ²   (5.34) 

where r is the radius of the sector measured in pixels during the step of
dividing into sectors, and is the dimension of a pixel measured in mm. 

Practically = 0.264583333 .  =   /    (5.35)( )  =  2 ² ²  (5.36)
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   = (  +  )/   /      (5.37) 

Table 5.4 provides a numerical estimate of the surface of the endocardium 
in mm², the diameter of the endocardium and the muscle thickness 
epicardial in mm for both a patient during a load condition and during a 
state of rest, respectively. 

During a state of stress, the method described above provides an estimate 
of the surface area of the endocardium with an average precision value of 
around 0.66 mm². For an endocardial diameter, the accuracy of the 
average value is in the order of 0. 04 mm and the muscle thickness 
epicardial is estimated with a value of 0.77 mm. 
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During a state of rest, the method described above provides an estimate of 
the endocardium surface area with an average precision value of around 
1.6 7 mm². 

For an endocardial diameter, the accuracy of average value is in the order 
of 0.09 mm and the epicardial muscle thickness are estimated with a value 
of 0.49 mm. 

 

Figure 5.19: Variation in surface of endocardium (mm²) during rest 
state and state of stress. 

Figure 5.19 shows the variation in the surface of the endocardium (mm²) 
during a rest state and a state of stress. Figure 5.19 confirms that the 
volume of the endocardium is more important to the state effort to the idle 
state. This indicates that during a phase of relaxation, the heart rate is 
much less important compared to that of a phase of effort. 

V.5 3D Reconstruction of endocardium  

A set of real scintigraphic images are segmented and we allow the 3D 
reconstruction of the endocardium during a phase of effort. Figure 5.20 
represents the 3D reconstruction of the endocardium where images are 
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segmented respectively grammar (left) and manually (right) of a patient 
during a phase of effort. 

 
Figure 5.20: 3D reconstruction of endocardium where images are 
segmented respectively by grammar (left) and manually (right) during 
state of stress. 

 

Figure 5.21: 3D reconstruction of endocardium where images are 
segmented by grammar during a resting state. 

Figure 5.21 represents 3D endocardium reconstruction where images are 
segmented by the grammar of a patient during a resting state.  One could 
conclude that the volume of the endocardium is greater in the state of 
effort than in the state of rest.  

VI. Tomographic angiography (CTA) segmentation  

Grammars current consider each symbol, not terminal or terminal, two 
attachment points: one left and one right. This part generalizes and creates 
an extension of existing grammars for the recognition of objects, called e 
grammar in two dimensions, taking into consideration that the symbols 
can be read according to two attachment points. 
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VI.1 CTA image alphabet  

An image alphabet must be supported initially and must include all the 
elements that an image cannot contain. In this work, the proposed method 
is based on an alphabet of intensity noted A and generated by the 
histogram of the CTA image: 

A = {a1, a2, ..., an} 

The alphabet of the image represents the first important strengths. Here the 
user can manage the parameter n and select the number of elements that 
the alphabet A can contain. 

VI.2 Operating mode  

Step 1: Initialization of alphabet 

Read the CTA input image and select the region of interest (ROI) to 
segment. 

Generate the histogram of the ROI. 

Select the number n of the most important intensities. 

Initialize the terminal vocabulary A = {a1, a2, ..., an}. 

Step 2: Quantification phase 

The quantification step comprises rounding each pixel intensity value in 
the one closest belonging to A. 

Step 3: Division into blocks 

Divide the image into blocks having regular sizes, NxM pixels. 

Calculate the dominant intensity of each block of pixels. 

Therefore, an image corresponding to a matrix Q which contains elements 
belonging only to A. 
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Step 4: Lexical analysis 

Perform a lexical analysis by scanning the resulting matrix Q according to 
a type of browse (row by row, column by column, Hilbert curve, Lebesgue 
curve,…) and extract the lexemes described by regular expressions. 

Regular expressions rewrite every token of a language and model and its 
structure. Grammatically, each regular term ERi can be formulated as 
follows where the character "+" means "one or more times": 

ERi = { a i } + where i { 1, ..., n }. 

VI.2.1 Different ways of browsing the image              

It must be noted that in step 4, we could apply other course manners such 
as those of Hilbert, Moore, Sierpinsky or Lebesgue (Figure 5.22).  

Q = 
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Figure 5.22: Different ways of transforming 2D to 1D. (a) Hilbert, (b) 
Lebesgue, (c) Sierpinsky, (d) Moore 
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VI.2.2 Hilbert transform              

David Hilbert (1862-1943) was a German mathematician [Hil'91]. Its 
curve was studied in 1891. 

The Cartesian parameterization of the Hilbert curve is defined by 
induction according to the following algorithm:  

Algorithm 

The Hilbert transform is described by the following algorithm: 

1) Divide [0, 1] 2 into 4 equal squares.        

2) Number each square so that two successive square touch at one side, 
starting with the lower left square, and ending with the lower right square.      

 

Figure 5.23: order Hilbert Matrix 1 

3) Partition each of these squares into 4 equal squares.      

4) Number each square so that two micro square successive touch at one 
side, starting with the micro-square on the bottom left, and ending with 
micro-square at the bottom right, the first micro-square of a small square 
that must have one side in common with the last micro-square of the 
previous small square and the last micro-square that must touch the 
following small square on one side.      
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Figure 5.24: Hilbert matrix of order 2 

5) Repeat this process ad infinitum.      

 
Figure 5.25: Hilbert matrices of orders 3, 4 and 5 
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Table 5.6 shows a comparison between different ways of scanning and the 
course of the matrix resulting Q. For each image, one determines the 
number of objects detected. Therefore, browsing row by row or column by 
column results in over-segmented images. Indeed, the application of the 
transformation of Hilbert or of Lebesgue avoids a little the phenomenon of 
over- segmentation, but the images are always over-segmented. 

Indeed, we have thought of making a 2D course. In this case, each lexeme 
is a tuple (x, y, s, I) characterized by a pair (x, y) and two natural integers l 
and I. Couple (x, y) is space of coordinates of the first symbol, parameter l 
is the length of the recognized lexeme and I is the intensity. The current 
step is to specify the accepted lexical units from the input matrix. 

The recognized entities are called tokens: UL x, y, w, i. The lexical analyzer is 
invited to analyze the resulting matrix and extract unites ed lexical 
recognized UL x, y, w, i. 
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Step 5: Syntax analysis 

The current syntax analyzer does not allow a proper analysis of this type 
of grammar as recognized dimensional tokens, which are distributed in a 
2D space and depend on (x, y), whereas analyzers today are one-
dimensional. Therefore, the fundamental contribution is manifested in the 
development of a two-dimensional analyzer able to verify the arrangement 
of the regions R i distributed in 2D space, while respecting the rules and 
the criterion of homogeneity hc: 

The grammar used is G = (VT, VN, S, P) where: 

VT = { UL xj, yj, lj, Ij, j> = 1} 
VN = { R i, i> = 1} 
S = Image 
Image  
R i UL x1, y1, l1, I1 .UL x2, y2, l2, I2 … UL xj, yj, lj, Ij … UL xn, yn, ln, In               
where:  |xj xj 1| 1      (5.38) 
 yj 1 + lj 1  yj     (5.39) 
 yj + lj  yj 1     (5.40) 
 |Ij 1 Ij|   hc     (5.41) 

  

Figure 5.26: Application on synthetic images. Each time, one 
determines the number of detected objects. 
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Table 5.7: Application on synthetic images and determination of the 
objects detected for each way of 1D and 2D traversal. 
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Table 5.7 confirms that 2D scanners have enabled us to merge a maximum 
number of regions and better avoid the phenomenon of over-segmentation. 
The method has been applied to synthetic images, some of which are 
shown in Figure 5.26. 

VI.3 Results  

A set of real 80 tomographic angiographic images (CTA) are segmented. 
In addition, the experimental results allow the 3D reconstruction of the 
carotid artery. 

Figure 5.2 7 shows a sample of segmented ROI using the grammar in two 
dimensions. 

 
Figure 5.27: Sample of actual CTA images where regions of interest 
(ROI) have been segmented. 
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VI.4 3D reconstruction and Hausdroff distance 

V I.4.1 Hausdroff distance             

The Hausdorff Distance (HD) is a metric of comparison two forms. It is a 
topological tool that measures the distance of two subsets from an 
underlying metric space. 

Mathematically, for two finite sets of points s M = {m1, m2, ..., mp } 
representing a pattern in the data set and T = {t1, t2, ..., tq } representing 
an image of test, the Hausdorff distance is defined as: , = max ( ( , , ( , )   (5.42) 

where: ( , ) =    (5.43) 

For a certain number of points P in M, we denote the HD as:  ( , ) =      (5.44) 

Figure 4 2 8 shows a comparison between the 3D reconstruction of the 
carotid artery where the ROIs are segmented by the grammar (left) and the 
segmentation process to hand (to right). 

Practically, the Hausdroff distance shown in Figure 5.27 is 0.010430. 

VI.4.2 Quality Mapper               

With the colors of mapmaker quality (Quality Mapper), it is possible to 
see where there are large differences in the distance in a very simple 
manner. 

The distances have a color tending towards red, while the peaks which are 
very close are blue, intermediate values are defined by a color gamut 
(Figure 5.29). Major distances have a color that tends towards red; while 
the distances which are very close are colorful blue. 

The color quality levels are constructed from a transfer function and color 
vertices of the mesh. The minimum values of quality, average and 
maximum can be defined by the user to get a personalized quality range 
for cartographer. 
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Figure 5.28: 3D reconstruction of carotid artery with images 
segmented by grammar (left) and manually (right), respectively. 
Hausdroff distance = 0.010430. 
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Figure 5.29: Cartographer quality color (Quality Mapper). The major 
differences have a color that tends towards red, while differences that 
are very close are colored in blue. 

VII. Conclusions 

In this chapter, we have studied different methods of segmentation of 2D 
medical images based on grammatical formalism. The grammar has been 
widely used for pattern recognition in medical images. The context-free 
grammar and graphs AND-OR have been used by more than a few 
research groups. Most applications focus on object recognition and the 
image segmentation. The first advantage concerns the more concise 
representation that grammars can provide. In addition, the syntactic 
approach can powerfully represent pattern structures and thus facilitate the 
search for medical images by means of their structures.  

This chapter is a comprehensive overview of the art grammatical methods 
for the processing of medical images. This is a very current area of 
research, since most of the studies found have been published in the last 
decade. In addition, we can note that this line of research is very 
promising, since most of the articles studied have shown a recognition rate 
of over 90%.  

In a first part, we have presented an overview on the use of syntactic 
methods for pattern recognition in the medical image. For this, we have 
used a systematic process; the art methods and the techniques used have 
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been extracted from each study, the primitives used and the results 
obtained using grammars for learning the rules of grammar.  

In a second part, we have applied a new method of segmentation of 
scintigraphic and angiographic images. We could conclude that during the 
application of our technique, the contours are known and well defined. 

In a third part, we have applied a new method of segmentation of 2D CTA 
images based on grammar and using lexical and syntactic analyzers which 
are able to recognize lexemes distributed in 2D space and to verify their 
arrangement in the 2D space. 

The advantage of the grammatical method concerns more concise 
representation that the grammars can provide. The approach can powerfully 
represent the pattern structures and thus facilitate the search for medical 
images through their structures. The input medical image is perceived as a 
structured scene with a hierarchy because the grammars can obviously 
describe hierarchical structures using their non-leaf nodes and terminals. 
In addition, Gao et al. [Gao’00] asserted that, compared to statistical 
methods, the use of grammar offers more flexibility in applications. 
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CHAPTER 6 

CONCLUSION  
 
 
 
The analysis of 1D and 2D medical data is a very active subject and 
several approaches have been proposed. In the 1D case, the electrocardiogram 
signal ECG is a test widely used in the field of cardiology. This signal 
represents the electrical activity of the heart and is of great clinical added 
value for diagnosing one of the different types of arrhythmias. Generally, 
cardiac pathologies are indicated by disturbances in the electrical activities 
of the heart. 

In this thesis work, we approached the problem of automatic processing of 
medical signals and images through the grammatical formalism of type 3 
and type 2. This thesis includes two fundamental modules: a 1D module 
which applies to the signal ECG for the extraction of QRS complexes and 
recognition of cardiac cycles. A second 2D medical image segmentation 
module is applied to scintigraphic images and tomographic images. 

In the 1D module for extracting ECG characteristics, an algorithm for 
detecting QRS complexes from the ECG signal by an approach based on 
regular grammar has been developed. It makes it possible to extract 
representative parameters of each heartbeat. 

We have extended the database of ECG signals to apply the method on the 
standard MIT-BIH base as well as signals from the CHU Sahloul 
university hospital to have a balanced number between the types of 
signals, to include other types and varieties of signals and to increase the 
quality of learning. 

Also, in the cardiac cycles characterization module, we have improved the 
capacity of the algorithm for detecting QRS complexes and delimiting P 
and T waves for the measurement of different segments and intervals such 
as RR distance, interval QT, the corrected QTc interval, the PQ interval 
and the ST segment. Thus, these parameters allow a representative 
characterization, relevant and closer to the medical language of heart beats 
to improve the quality of the diagnosis. The characterization of ECG 
signals by relevant indicators forms an essential step to have a better 
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classification of normal and pathological cases. In addition, we have added 
two parameters:  and  These standard deviation parameters 
reflect the regularity of RR distances and QRS durations. 

The evaluation of the algorithms implemented allowed us to appreciate 
good detection rates of QRS complexes and P and T waves for normal and 
pathological cases affected by different types of noise. The results 
obtained showed that the proposed method can be considered as an 
effective tool for the detection of cardiac arrhythmias with a very tolerable 
precision of more than 99.74%. 

In the 2D module of segmentation of scintigraphic images, we have 
chosen lexical and syntactic analyzers which rotate along a spiral path 
from the interior to the exterior and extract the homogeneous regions 
according to a criterion of homogeneity set by the user. The contours of 
the endocardium and epicardium are thus detected and a quantification of 
the mass of the myocardial muscle is obtained. 

We have defined a scintigraphic image as a set of lexemes based on a 
vocabulary of intensities and a set of grammatical rules. The results 
obtained showed that the proposed method can be considered as an 
effective tool for the delineation of the endocardium and epicardium. In 
addition, some of the quantitative information allowed us to estimate the 
area of the endocardium, the thickness of the epicardial wall. 

For the Agiographic Tomographic Image Segmentation (CTA) module, 
the lexical analysis step consists of specifying the accepted lexical units 
from the input image. The recognized entities are called lexemes. In the 
2D case, each lexeme is a quadruplet. The lexical analyzer is invited to 
analyze the obtained matrix and extract the recognized lexical units. 
Therefore, the fundamental contribution is manifested in the development 
of a two-dimensional analyzer to verify the arrangement of lexemes 
distributed in 2D space which respect the rules and the criterion of 
homogeneity. Virtually a set of 80 real CTA images were segmented on 
the basis of grammar. The experimental results allow rendering the 3D 
reconstruction of the carotid artery. 

Compared to statistical methods, the use of grammars offers more 
flexibility in applications. Grammatical rigor has been extended to include 
other areas of application such as signaling and medical imaging. The 
main advantage of these methods concerns the representation that it can 
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make available. Syntactic approaches can powerfully represent object 
structures and therefore make it easy to retrieve information. 

Finally, grammatical formalism has proven its effectiveness in the 
processing and interpretation of 1D and 2D medical data. This type of 
work is intended for aid in medical diagnosis. 
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