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Preface
Multilevel optimization formulations can be applied for the solution of a broad range
of decision making problems across different fields, including economics, sciences
and engineering. Multilevel optimization problems are a class of optimization prob-
lems that involves a set of nested optimization problems over a single feasible region.
The control over the decision variables is divided among different optimization lev-
els, but all decision variables can affect the objective function and constraints of all
optimization levels.

Multilevel optimization problems are very challenging to solve even when con-
sidering just two linear decision levels. For classes of problems where the lower level
problems also involve discrete variables, the difficulty is further increased, typically
requiring global optimization methods for its solution. Theoretic and algorithmic de-
velopments on the solution of mixed-integer multilevel optimization problems, along
with many applications in the areas of economics and process systems engineering,
have been constantly emerging during the last 20 years. Our group has published over
20manuscripts on the subject ofmulti-level optimization solution algorithms through
multiparametric programming. We have also developed a MATLAB® based toolbox,
B-POP®, for the solution of various classes of multilevel optimization problems.

This book aims to enable fundamental understanding in the area of mixed-
integer multilevel optimization. More specifically, this book focuses on the solution
of (i) bilevel mixed-integer linear programming problems, (ii) bilevel mixed-integer
quadratic programming problems, (iii) trilevel mixed-integer linear and quadratic
programming problems, (iv) bilevel multifollower mixed-integer linear and quadratic
programming problems and (v) multilevel nonlinear programming problems. We
hope that by the end of this book, the reader will be able to not only understand
how to formulate multilevel optimization problems, but also be able to solve, both
by hand and through computational tools continuous and mixed-integer multilevel
optimization problems.

The book beginswith amotivation onwhy to formulate decisionmaking problems
asmultilevel optimization problems, with different application examples for different
classes of multilevel optimization problems. Then a background on multi-level opti-
mization follows, summarizing the key contributions and key approaches of solution
methods in the field. The first chapter finishes with an overview of multiparametric
programing, summarizing over key concepts that will be used in the following chap-
ters of the book.

The second chapter focuses on bilevel mixed-integer optimization. An algorithm
based on multiparametric programming is first introduced to solve bilevel mixed-
integer linear optimization problems and then expanded for the solution of bilevel
mixed-integer quadratic optimization problems and bilevel problems with right-hand
side uncertainty. All three algorithms are explained step-by-step through multiple
numerical examples.

https://doi.org/10.1515/9783110760316-201
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VI | Preface

The third chapter generalizes and expands the algorithms presented in the sec-
ond chapter, to address first the solution of tri-level linear and quadratic optimization
problems, and then more general mutlilevel optimization problems, including non-
linear and multifollower problems. Similar to the second chapter, all algorithms pre-
sented in this chapter are explained step-by-step through numerical examples.

The fourth chapter includes a variety of application case studies, from indus-
trial engineering, chemical engineering and operational research, including classical
bilevel problems such as the integration of production and distribution planning, and
other novel applications such as a hierarchical economic model predictive controller
and a class of robust optimization. The formulation and solution of these problems is
presented in detail.

Finally, the last chapter consider es the implementation of the algorithms dis-
cussed in Chapters 2 and 3 in a MATLAB® based toolbox, B-POP®, along with com-
putational studies to highlight the capabilities of the algorithms.

This book is the outcome of research work carried out at the Center for Process
Systems Engineering of Imperial College London and the Texas A&M Energy Institute
of Texas A&M University. We would like to take the opportunity to thank former and
current PhD students, and post-doctorate/research associates from our research team
that have been involved in the presented work, particularly Dr. Nikolaos A. Diange-
lakis and Dr. Richard Oberdieck.

We would also like to gratefully acknowledge the financial support kindly pro-
vided by our many sponsors: EPSRC, NSF, EU/ERC, DOE/CESMII, DOE/RAPID and
Shell. Finally, we would like to thank De Gruyter for their enthusiastic support for this
book.

Styliani Avraamidou
Efstratios N. Pistikopoulos
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1 Introduction
In this chapter, a motivation on why to formulate decision making problems as multi-
level optimization problems is presented. Different application examples for different
classes ofmultilevel optimizationproblems are discussed. Then abackgroundonmul-
tilevel optimization follows, summarizing the key contributions and key approaches
for the solution ofmultilevel optimization problems. This first chapter finisheswith an
overviewofmultiparametric programming, summarizing the key concepts thatwill be
used in the following chapters of the book.

1.1 Motivation

In the real world, many decision making processes involve different decision makers
that lie in a hierarchy. Decisions are made at different levels of the hierarchy and can
affect the outcome of all decision makers. For such cases, we incline to focus on just
one level of the decision making and take the other levels into consideration as as-
sumptions [1]. Taking into consideration all decision levels as optimization problems
is referred to asmultilevel optimization. This field has gained a lot of attention through
the years and become a well-known and significant research field [2–4].

Multilevel optimization and decision making can be applied in many and diverse
disciplines such as bioengineering, chemical and civil engineering, mechanics, man-
agement, network design, transportation and economics while new applications are
constantly being proposed. The rest of this chapter will introduce somemotivating ap-
plications for specific classes of multilevel mixed-integer optimization problems that
will be tackled in the later chapters of this book.

1.1.1 Bilevel programming

Optimization problems involving two decision makers at two different decision levels
are referred to as bilevel programming problems. Bilevel programming has attracted
the most attention among other classes of multilevel programming problems due to
its simplicity (compared to other multilevel problems) and great applicability. It has
been applied tomany and diverse problems that require hierarchical decisionmaking
such as transportation network planning [1, 5, 6], urban planning [7], economic plan-
ning [8–10], management [11], design under uncertainty [12–14], design and control
integration [15–18], supply chain planning [19–21] and parameter estimation [22].

In this book, we will focus on solution methods for mixed-integer bilevel prob-
lems, and its application on the integration of production and distribution planning
(Section 4.1).

https://doi.org/10.1515/9783110760316-001
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2 | 1 Introduction

Application A: Production and distribution planning
Supply chains are systemswithmultiple decision levels corresponding to different ac-
tivities, spanning from the procurement of rawmaterials to the distribution of the final
products to the costumers. Even though these decisions are interlinked and can affect
each other, in most cases they are considered individually [20, 23]. The significance
of the integration of production and distribution decisions inside supply chains, in
order to account for the interactions between them, has been recognized by differ-
ent researchers [20, 24, 25]. Proposed integrated approaches include assuming (i) that
one company controls the integrated process by owning both the processing plants
and distribution centers [26–28], or (ii) that the processing plants and distribution
centers are owned by different companies, each trying to optimize their own objective
[19, 21, 29–31], as presented in figure 1.1.

Figure 1.1: Schematic representation of the production-distribution planning problem with different
companies controlling the distribution and production of products.

Considering the second case, the production-distribution planning (PD) problem can
be expressed as a hierarchical decision making problem, involving two different deci-
sion makers corresponding to each company. Assuming one company owns the pro-
duction plants and another the distribution centers, the resulting problem is a two-
level hierarchical decision making problem. The first level is responsible for optimiz-
ing the distribution centers overall costs and is influenced by the second level that is
responsible for optimizing the production plants overall costs.

When considering the PD problem, decisions taken at both decision levels can
involve both continuous (e. g., production rates, distribution rates) or discrete (e. g.,
choice of production plant, choice of distribution center, active routes) variables.
Therefore, the integrated PD problem results into a mixed-integer bilevel program-
ming problem.

An indicative list of publications focusing on the problem of distribution and pro-
duction planning integration is presented in Table 1.1.

1.1.2 Bilevel programming under uncertainty

For applications that involve constantly changing and unpredictable conditions, it is
of high importance to consider the effect of uncertainties in programming problems.
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Table 1.1: Indicative list of publications on distribution and production planning integration.

Reference Contribution

Erenguc et al. [24] Integrated production/distribution planning in supply chains
Gupta and Maranas [26] Two-stage modeling for production-distribution systems
Jung et al. [28] Supply chain management under demand uncertainty
Jaber and Osman [32] Two-level (supplier-retailer) supply chain coordination
Sousa et al. [27] Supply Chain Design and multilevel planning
Kuo and Han [30] Production-Distribution bilevel model and solution method
Calvete et al. [19] Production-Distribution bilevel model and solution method

When considering bilevel programming formulations, uncertainties can be both in-
teger or continuous, and can arise in both optimization levels. In this book, we will
discuss two different applications of this class of problems: (i) supply chain planning:
unstable business environment, with constantly changingmarket conditions and cus-
tomer needs and expectations [26, 28, 33], and (ii) hierarchical model predictive con-
trol: constantly changing system states and unpredicted system disturbances [34].

Application B: Supply chain planning under uncertainty
Sources of uncertainty in supply chain planning may include variations in process-
ing rates, canceled or rushed orders, equipment failure, rawmaterial, final product or
utility price fluctuations and demand variations [35].

Considering the PD problem introduced earlier in this section (Application A),
a key source of uncertainty is the product demand. Failure to consider this in PD plan-
ning could lead to either unsatisfied customer demands and loss of market share, or
excessively high inventory holding costs [36]. Since the PD is a bilevel mixed-integer
problem, taking into consideration demand uncertainty would result into a bilevel
mixed-integer problem with right-hand side uncertainty.

Application C: Hierarchical model predictive control
Hierarchical control structures consist of a hierarchy of control levels, where every
level is controlling a subset of the overall control variables, by manipulating a subset
of the overall manipulated variables [37–39]. In the case of hierarchical model pre-
dictive control (MPC) structures, each control level involves one or more optimization
problem, with the resulting formulation typically corresponding to a multilevel pro-
gramming problem with a single second level problem (referred to as follower) (Fig-
ure 1.2(a)) or multiple second level problems (Figure 1.2(b)).

When attempting to solve hierarchical control problems using bilevel program-
ming, onewouldneed to solve abilevel problemat each control time step. Sincebilevel
problems are very challenging to solve (see Section 1.2.1), the computational time re-
quired to solve such problems could be very big, therefore, it would only be possible
to apply such a controller in applications with very slow dynamics.
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4 | 1 Introduction

Figure 1.2: Hierarchical Process Control Systems: (a) two-level control system with a single first and
second control levels, (b) two-level control system with a single first and two lower control levels.

A way to overcome this challenge would be to use explicit bilevel controllers and,
therefore, solve the bilevel problem under uncertainty once and offline. More details
on this application area can be found in Section 4.2.

1.1.3 Trilevel programming

Optimization problems involving three decision makers at three different decision
levels are referred to as trilevel programming problems. This class of problems has
attracted considerable attention across a broad range of communities, including eco-
nomics, operation research, engineering and management. It can be applied to many
and diverse problems that require three-level hierarchical decision making such as
safety and defense [40–42], supply chain management [43], energy management
[44] and robust optimization [45–47]. In this book, we will explore the application
of trilevel optimization for the solution of a class of Adjustable Robust Optimization
(ARO) problems (Section 4.3).

Application D: Adjustable robust optimization
One of the dominant approaches to address decision making under uncertainty is ro-
bust optimization. Adjustable Robust Optimization (ARO) problems are an extended
class of classical robust optimization problems that include two types of variables,
“here-and-now” variables that are to be decided before the realization of the uncer-
tainty, and “wait-and-see” variables that are to be decided after the realization of the
uncertainty. In Section 4.3, we formulate this problem as a tri-level optimization prob-
lemwhere the first optimization level is controlling the “here-and-now” variables, the
second optimization level is maximizing over the uncertainty and the third optimiza-
tion level is controlling the adjustable “wait-and-see” variables, as illustrated in Fig-
ure 1.3.
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Figure 1.3: Schematic representation of ARO as a trilevel problem with the first optimization level
minimizing the objective by manipulating the “here and now” decisions, the second optimization
level maximizing the objective by manipulating choosing the worst uncertainty for the chosen “here
and now” variables, and in turn, the third optimization level minimizing the objective by manipulat-
ing the “wait and see” decision variables.

1.1.4 Bilevel multifollower programming

Optimization problems involving two optimization levels with the second level con-
taining multiple optimization problems (followers) are referred to as bilevel multifol-
lower programming problems. Bilevel multifollower programming (MF-B) can be ap-
plied to many and diverse problems such as transportation network planning [1, 5, 6],
urbanplanningand land-useplanning [7], economicplanning [8–10], designand con-
trol integration [15–18, 48], and supply chain planning [19–21, 48]. In this book, we
will focus on two applications, (i) a planning and scheduling integration problem, and
(ii) a design and operation integration problem.

Application E: Planning and scheduling integration
Traditionally, processplanningand scheduling strategies arederived sequentially and
separately. Scheduling decisions are derived after process planning decisions are al-
ready taken. This can lead to suboptimal strategies, therefore, researchers have tried
to integrate these decision levels and solve this problem holistically [36, 49, 50].

Planning and scheduling optimization problems with seasonal demand variabil-
ity can be often expressed holistically within a hierarchical structure, where optimal
decisions at an upper level (planning) provide constraints for the detailed decision
making (scheduling) at a lower level, typically posed as bilevel multi-follower opti-
mization problems [14, 51–53] (Figure 1.4). Since discrete decisions are involved most
likely at both levels, the resulting formulations typically correspond to bilevel multi-
follower mixed integer linear programming (MF-B-MILP) problems. An inticative list
of research papers on the integration of planning and scheduling is presented in Ta-
ble 1.2.
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Figure 1.4: Schematic representation of the planning and scheduling integration problem as a
bilevel multifollower problem, with the production planning problem as the first-level optimiza-
tion problem, and many scheduling problems inside the time period of the planning problem as the
second-level followers.

Table 1.2: Indicative list of publications that describe the planning and scheduling integration prob-
lem as a hierarchical multifollower optimization problem.

Reference Contribution

Gershwin [54] Hierarchical scheduling and planning in manufacturing systems
Petkov and Maranas [36] Multiperiod planning and scheduling under demand uncertainty
Bose and Pekny [55] Model predictive framework for planning and scheduling
Pinto et al. [56] Planning and scheduling models for refinery operations
Lee et al. [57] Planning and scheduling with outsourcing in supply chain
Moon et al. [50] Integrated process planning and scheduling
Kim et al. [49] Integration of process planning and job shop scheduling
Li and Ierapetritou [53] Production planning and scheduling integration

Application F: Design and operation integration
Toderive optimal designs for economical and efficient plants, integration of the design
and operation decision making processes might be needed. Design decisions, such
as plant and unit capacity, choice of raw materials, products and processing steps,
need to be decided while taking into account the operating decisions that can include
scheduling decisions and production targets.

In this book, wewill focus on the integration of design and scheduling, where op-
timal decisions at an upper level (design) provide constraints for the detailed decision
making (scheduling) at a lower level, as illustared in figure 1.5. The integrated prob-
lem is posed as bilevel multifollower optimization problem. Themathematical formu-
lation and more details regarding this application area can be found in Section 4.5.

1.2 A background on multilevel optimization
1.2.1 Bilevel continuous optimization

Optimization problems involving two decision makers at two different decision lev-
els are referred to as bilevel programming problems: the first decision maker (upper
level; leader) is solving an optimization problem, which includes in its constraint
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1.2 A background on multilevel optimization | 7

Figure 1.5: Schematic representation of the design and operation integration problem as a bilevel
multifollower problem, with the design problem as the first-level optimization problem, and many
operation optimization problems inside the time period of the design problem as the second-level
followers.

set another optimization problem solved by the second decision maker (lower level;
follower).

Bilevel optimization was first introduced in the field of game theory by Heinrich
Freiherr von Stackelberg with the famous strategic game he described in his book [58]
known as the Stackelberg game that consists of two players, a leader and a follower,
who compete with each other. The leader makes the first move, and then the follower
reacts to the leader’s action with his own move. The move of the follower can affect
the outcome of both players, therefore, if the leader wants to optimize its objective,
then it needs to anticipate the effects of the optimal move of the follower. Hence, one
can express this setting as an optimization problem, corresponding to the leader’s
problem that contains a nested optimization problem corresponding to the follower’s
optimization problem.

Even though this problem was discussed by Stackelberg in 1934, it was not math-
ematically formulated until 1973 when the original formulation for bilevel program-
ming appeared in a research paper by Bracken and McGill [59]. The general formula-
tion of the bilevel programming problem is shown in formulation (1.1).

min
x1

F1(x1, x2)

s. t. G1(x1, x2) ≤ 0
H1(x1, x2) = 0
x2 ∈ argminx2

{F2(x1, x2) : G2(x1, x2) ≤ 0,H2(x1, x2) = 0}

x1 ∈ ℝn, x2 ∈ ℝm

(1.1)

Since the early 1980s, many algorithms have been proposed for the solution of con-
tinuous bilevel problems with many approaches exploiting the Karush–Kuhn–Tucker
(KKT) optimality condition of the lower level problem, to transform the bilevel prob-
lem into a single level problem. A small indicative list of algorithms for the solution
of continuous bilevel problems is presented in Table 1.3, while a small numerical ex-
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Table 1.3: Indicative list of solution algorithms for different classes of continuous bilevel optimiza-
tion problems.

Problem class Type of algorithm Reference

LP|LP Extreme point Vertex enumeration Candler and Townsley [60], Bard
[61], Tuy et al. [62]

Kth-best algorithm Bialas and Karwan [63], Shi et al.
[64]

Branch and Bound Reformulation Bard and Falk [65], Fortuny-Amat and
McCarl [66]

Complementary Pivot SLCP algorithm Judice and Faustino [67, 68]
Global Optimisation Visweswaran et al. [69]

LP|QP Branch and Bound Enumeration Bard and Moore [70]
Complementary Pivot SLCP algorithm Judice and Faustino [71]

QP|QP Extreme point Descent approach Vicente et al. [72]
Branch and Bound Bard [73], Al-Khayyal et al. [74],

Visweswaran et al. [75], Edmunds
and Bard [69]

NLP|NLP Penalty Function Aiyoshi and Shimizu [76]
Grid search Bard [61, 77]
Simulated annealing Sahin and Ciric [78]
Trust region Marcotte et al. [79], Colson et al. [80]
Genetic Algorithm Yin [81]
Particle Swarm
Optimization

Gao et al. [8]

KKT or Fritz-John Dempe and Zemkoho [82, 83],
Tsoukalas et al. [84], Dempe and
Franke [85], Hansen et al. [86],
Mitsos et al. [87]

Branch-and-bound Branch-and-Sandwich Kleniati and Adjiman [88, 89]

ample of a linear continuous bilevel optimization problem solved using the KKT opti-
mality approach is presented in the next section.

1.2.1.1 Numerical example
Consider the following continuous bilevel linear optimization problem:

min
x

10x + 3y
s. t. min

y
−x − y

s. t. −x + 3y − 6 ≤ 0 (C1)
−x − 3y − 6 ≤ 0 (C2)
x + 10y − 10 ≤ 0 (C3)
x + y − 4 ≤ 0 (C4)
x − 4y − 8 ≤ 0 (C5)

(1.2)
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where x is the upper level continuous variable, y is the lower level continuous variable
and C1 to C5 are the names of each constraint.

Figure 1.6 is a visualization of the feasible space of the bilevel optimization prob-
lem (1.2). As it can be seen in Figure 1.6, and since all constrains are linear, the feasible
space of the original optimization problem is a convex polyhedron.

Figure 1.6: Feasible region of bilevel optimization problem (1.2).

The first step in solving this bilevel problem is to derive the KKT optimality conditions
of the lower level problem.

Stationarity condition

−1 +
[[[[[[

[

u1
u2
u3
u4
u5

]]]]]]

]

T

[[[[[[

[

3
−3
10
1
−4

]]]]]]

]

= 0 (1.3)

Primal feasibility

−x + 3y − 6 ≤ 0
−x − 3y − 6 ≤ 0
x + 10y − 10 ≤ 0
x + y − 4 ≤ 0
x − 4y − 8 ≤ 0

(1.4)
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Dual feasibility

ui ≥ 0, i = 1, 2, 3, 4 (1.5)

Complementary slackness

u1(−x + 3y − 6) = 0
u2(x − 3y − 6) = 0
u3(x + 10y − 10) = 0
u4(x + y − 4) = 0
u5(x − 4y − 8) = 0

(1.6)

Then the KKT conditions derived are substituted into the upper level problem,
resulting in formulation (1.7) presented below:

min
x,y,ui

10x + 3y

s. t. −1 + 3u1 − 3u2 + 10u3 + u4 − 4u5 = 0
−x + 3y − 6 ≤ 0
−x − 3y − 6 ≤ 0
x + 10y − 10 ≤ 0
x + y − 4 ≤ 0
x − 4y − 8 ≤ 0
ui ≥ 0, i = 1, 2, 3, 4
u1(−x + 3y − 6) = 0
u2(x − 3y − 6) = 0
u3(x + 10y − 10) = 0
u4(x + y − 4) = 0
u5(x − 4y − 8) = 0

(1.7)

The reformulated single level problem (1.7) has nonlinear constraints, from the
complementary slackness condition in equations (1.6), and a nonconvex feasible
space, illustrated in Figure 1.7.

Therefore, global optimization approaches are needed to solve the reformulated
single-level optimization problem to global optimality.

In this simple case, the optimal solution lies at x∗ = −6 and y∗ = 0, with the upper
level objective being equal to −60 and the lower level objective being equal to 6.

1.2.2 Bilevel mixed-integer optimization

Bilevel decision making problems, such as the case of production and distribution
planning introduced in Section 1.1.1, can involve decisions in both discrete and con-
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Figure 1.7: Feasible region of the reformulated, now single-level, optimization problem (1.7).

tinuous variables. Problems belonging in this class are referred to as mixed-integer
bilevel optimization problems (B-MIP), and have the general form of

min
x1 ,y1

F1(x1, x2, y1, y2)

s. t. G1(x1, x2, y1, y2) ≤ 0

H1(x1, x2, y1, y2) = 0

x2, y2 ∈ argminx2 ,y2
{F2(x1, x2, y1, y2) : G2(x1, x2, y1, y2) ≤ 0,H2(x1, x2, y1, y2) = 0}

x1 ∈ ℝm, x2 ∈ ℝn, y1 ∈ ℤp, y2 ∈ ℤq

(1.8)

where x1 is a vector of the upper level problem continuous variables, y1 is a vector of
the upper level integer variables, x2 is a vector of the lower level problem continuous
variables and y2 is a vector of the lower level integer variables.

The general formulation of the mixed-integer bilevel programming problem (1.8),
can be divided into a number of different classes of problems, based on where the in-
teger variables appear in the problem. Table 1.4 classifies these problems into four cat-
egories that can be expanded to cover the linear, quadratic and nonlinear subclass of
each type, as identified by Gumus and Floudas [90] and Avraamidou and Pistikopou-
los [91].
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Table 1.4: Class Types of mixed-integer bilevel programming problems.

Problem type Upper level variables Lower level variables

Type 1-B Continuous and/or integer Continuous
Type 2-B Integer Integer
Type 3-B Continuous Integer
Type 4-B Continuous and/or integer Continuous and integer

1.2.2.1 Main challenges in solving bilevel mixed-integer optimization problems
Bilevel optimization problems are very challenging to solve even in the linear case, as
shown in the continuous linear example presented in Section 1.2.1.1 of this chapter.
The simplest form of bilevel optimization problems have been shown to be NP-hard
by Hansen et al. [86] and Deng [92], and to strengthen these results Vicente et al. [72]
proved that even checking for strict or local optimality is NP-hard.

For classes of problems where the lower level problem also involves discrete vari-
ables (i. e., Types 2-B to 4-B as defined in Table 1.4), the complications are further in-
creased, typically requiring global optimization methods for its solution and often re-
sulting to approximate solutions. The major difficulty for this class of problems arises
from the fact that conventional solution methods for continuous bilevel problems are
no longer applicable when integer variables exist at the lower level. As discussed in
Section 1.2.1, one of the most widely used solution approaches for continuous bilevel
problemswith convex objective functions and constraints, is the transformation of the
problem to a single level problem using the Karush–Kuhn–Tucker (KKT) optimality
conditions. Since this method requires gradient information for the lower level prob-
lem (see thenumerical example in Section 1.2.1.1), it is not directly applicable to bilevel
problems with integer variables on the lower level, even though in some cases there
is merit in using them, as shown by Gumus and Floudas [90], Saharidis and Ierapetri-
tou [93] andMitsos [94]. Also, the branch and bound rules used to solvemixed-integer
problems cannot be directly or effectively applied to mixed-integer bilevel problems
[70].

In the literature, methods developed for the solution of mixed-integer bilevel
problems have mainly addressed the linear Type 1-B and 2-B problems. Table 1.51

summarizes some of the most important solutions methods for bilevel mixed-integer
linear problems of class Types 1-B and 2-B in the open literature, while Table 1.6 sum-
marizes the solution approaches for classes of Type 3-B and 4-B. Table 1.72 summarizes
approaches for the solution of bilevel mixed-integer nonlinear problems.

1 The Notes column in the Tables 1.5, 1.6 and 1.7 represents important features, limitations or advan-
tages of the works as written in each individual manuscript.
2 See footnote 1.
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Table 1.5: Indicative list of previous work on bilevel mixed-integer linear optimization of Type 1-B and
2-B (see definition in Table 1.4).

Type Algorithm Reference Notes

Type 1-B Branch and Bound Wen and Yang [97] Heuristic approach, only integer
optimization variables are allowed
in the upper level

Tabu search Wen and Huang [98] Only integer optimization variables
in the upper level. Approximate
solution

Multiparametric
Programming

Faisca et al. [99] Exact

Benders decomposition Caramia and Mari
[100]

ϵ-optimal

Fontaine and Minner
[101]

Type 2-B Penalty Function Vicente et al. [102] Also provided theory for Type 1
Branch and Bound Bard and Moore [103] Implicit Enumeration. Assume all

binary and no constraints in the
upper level

Chvatal-Gomory cuts
(Cutting plane)

Dempe [104] Generates a lower bound to the
problem

Branch and Cut
(Cutting plane)

DeNegre and Ralphs
[105]

Based on Bard and Moore [103]. All
binary

Genetic Algorithm Nishizaki and Sakawa
[106]

Approximate solutions

Evolutionary Algorithm Handoko et al. [107] Global optimality is not guaranteed

1.2.3 Trilevel optimization

Optimization problems involving three decisionmakers at three different decision lev-
els are referred to as trilevel optimization problems. The first decision maker (upper
level; leader) is solving an optimization problem, which includes in its constraint set
another optimization problem solved by a second decision maker (second-level fol-
lower), and in turn the optimization problem of the second decision maker includes
a third optimization problem in its constraint set solved by a third decision maker
(third-level follower).

Trilevel decision making problems can involve both discrete and continuous de-
cision variables. Problems in this class are referred to as trilevel mixed-integer opti-
mization problems (T-MIP), and have the general form of (1.9).
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Table 1.6: Indicative list of previous work on bilevel mixed-integer linear optimization of Type 3-B
and 4-B (see definition in Table 1.4).

Type Algorithm Reference Notes

Type 3-B Branch and Cut Dempe and Kue [108] Lower level variables cannot affect
the upper level constraints. Also for
Type 2 problems

Polynomial
Approximation

Dempe [109],
Dempe et al. [110]

Cutting plane, approximate

Parametric integer
programming

Koppe et al. [111] Cannot guarantee optimality. Theory
for Type 2 also provided

Type 4-B Branch and Bound Moore and Bard [112] Implicit Enum. Cannot guarantee
optimality

Penalty Function Dempe et al. [113] Approximate local solutions
Benders
decomposition

Saharidis and
Ierapetritou [93]

ϵ-optimal. Leader controls all binary
variables

Branch and Bound Xu andWang [114],
Xu [115]

Only integer optimization variables in
the upper level

Caramia and Mari
[100]

Lagrangean
relaxation

Rahmani and
MirHassani [116]

Lower level variables cannot appear
in the constraints of the upper level

Projection-based
Reformulation

Yue and You [117] ϵ-optimal
Zeng and An [118]

Row-and-column
generation

Poirion et al. [119] ϵ-optimal

Branch-and-Cut Fischetti et al.
[120–122]

Exact. Leader variables that influence
the follower decisions are all integer

min
x1 ,y1

F1(x, y)

s. t. G1(x, y) ≤ 0

H1(x, y) = 0

min
x2 ,y2

F2(x, y)

s. t. G2(x, y) ≤ 0

H2(x, y) = 0

min
x3 ,y3

F3(x, y)

s. t. G3(x, y) ≤ 0

H3(x, y) = 0

x = [xT1 xT2 xT3 ]
T
, y = [yT1 yT2 yT3 ]

T

x ∈ ℝn, y ∈ ℤm

(1.9)
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Table 1.7: Indicative list of previous work on bilevel mixed-integer nonlinear optimization.

Problem Type Algorithm Reference Notes

Type 1-B Branch and Bound Edmunds and Bard
[123]

Lower level is convex quadratic

Gumus and Floudas
[95]

Approximate

Type 2-B Parametric Analysis Jan and Chern [124] Only for separable and monotone
constraints and objective

Fuzzy Programming Emam [125] Pareto optimal solution

Type 4-B Simulated Annealing Sahin and Ciric [78] Near global solutions
Branch and Bound Gumus and Floudas

[90]
Cannot solve the general Type 4
B-MINLP problem as the lower level
must be linear in continuous
variables

Genetic Algorithms Hecheng and Yuping
[126]

Lower level functions are separable
or convex

Li and Wang [127]
Arroyo and Fernandez
[128]

Near optimal solutions

Multiparametric
Programming

Dominguez and
Pistikopoulos [129]

Reformulation via convex hull
Approximate

Branch and Sandwich Kleniati and Adjiman
[130]

Functions are twice differentiable
when the integrality condition is
relaxed. ϵ-optimal

Bounding Mitsos [94] ϵ-optimal
Value-Function-Based Lozano and Smith

[131]
Requires all upper-level variables
to be integer

Gray-box Optimization Beykal et al. [132] Requires all upper-level variables
to be continuous. No optimality
guarantee

where x is a vector of the continuous problem variables and y is a vector of the discrete
problem variables. The variable’s subscripts indicate the number of the optimization
level the decision variables belong to, with 1 corresponding to the first decision level
(leader), 2 to the second decision level (first follower) and 3 to the third decision level
(second follower).

The general formulation of the T-MIP problem (1.9), corresponds to a number of
different subclasses of problems. Similar to the classification for mixed-integer bilevel
optimization problems in Section 1.2.2, Table 1.8 classifies the subclasses of trilevel
mixed integer optimization problems into three categories depending on the type of
variables in each optimization level.
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Table 1.8: Class Types of mixed-integer trilevel programming problems.

Type Level 1 variables Level 2 and 3 variables

Type 1-T Integer (and continuous) Continuous
Type 2-T Continuous and/or integer Integer
Type 3-T Continuous and/or integer Continuous and integer

1.2.3.1 Main challenges in solving trilevel mixed-integer optimization problems
Multilevel programming problems are very challenging to solve even for the case of
two linear continuous decision levels (see discussion in Section 1.2.2.1). The compu-
tational complexity of multilevel problems with more than two decision levels was
discussed by Blair [133] who noted that the difficulty of solvingmulti-level linear prob-
lems increases significantly when the number of levels increases to more than two.

Solution approachesdeveloped for bilevel programmingarenot necessarily appli-
cable to trilevel optimization problems. Conventional bilevel solution strategies, such
as the substitutionof the lower level problemwith its Karush–Kuhn–Tucker optimality
conditions, typically transform the bilevel problem into a single-level nonlinear (and
nonconvex) optimization problem [134] (Section 1.2.1.1). In the case of linear trilevel
problems such approaches can be used [135], but for other classes of trilevel problems
such approaches will fail to reduce the problem to a tractable single-level problem.

For classes of problemswhere the lower level problems involve discrete variables,
the difficulty further increases, typically requiring global optimization methods and
often resulting in approximate solutions [93, 112–114].

Solution approaches presented in the literature for trilevel problems have ad-
dressed a very restricted class of problems, mainly linear continuous problems, with
only a few attempts to solve problemswith integer variables. Table 1.9 summarizes key
solution methods for linear problems with three or more decision levels that appear
in the open literature. Solution methods for problem class Type 1-T were not found in
the literature and, therefore, this class was excluded from Table 1.9. Table 1.10 sum-
marizes key solution methods for continuous nonlinear problems with three or more
decision levels that appear in the open literature.

1.2.4 Multifollower optimization

Optimization problems involving a leader with multiple followers are referred to as
bilevel multifollower programming problems: the first decision maker (upper level;
leader) is solving an optimization problem, which includes in its constraint set other
optimization problems solved by second-level decisionmakers (lower level problems;
followers). In recent years, leader-follower games have attracted a growing interest
not just in game theory, but also across a broad range of research communities.
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Table 1.9: Indicative list of previous work on multilevel linear optimization problems with three or
more optimization levels.

Type Algorithm Reference Note

Continuous “Kth-Best” algorithm Wen and Bialas [136] For trilevel problems, exact and
global

Cutting plane Bard [77] For trilevel problems, exact and
global

Fuzzy programming Lai [137] For multilevel problems,
sub-optimal solutionsPramanik and Roy

[138]
Sakawa et al. [139]
Shih et al. [140]

Penalty function White [141] For trilevel problems,exact and
global

Type 2-T Tabu search Sakawa and Matsui
[142]

For multilevel problems
Suboptimal solutions
Only integer variables allowed

Genetic algorithms Sakawa et al. [143] For multilevel problems
Suboptimal solutions
Only integer variables allowed

Type 3-T Decomposition
algorithm

Yao et al. [42] For trilevel problems of
min-max-min structure, exact
and global

Table 1.10: Indicative list of previous work on continuous nonlinearmultilevel optimization problems
with three or more optimization levels.

Class Algorithm Reference Note

Continuous
Quatratic

Multiparametric
programming

Faisca et al. [144] Exact and global

Continuous
Nonlinear

Particle swarm
optimization

Han et al. [145] Suboptimal solutions

Evolutionary algorithm Woldemariam and Kassa [146] Suboptimal solutions
Multiparametric
programming (B&B)

Kassa and Kassa [147] Approximate global
optimum

Bilevelmultifollower decisionmaking problems, such as the problem of planning and
scheduling integration introduced in Section 1.1.4, can involve decisions in both dis-
crete and continuous variables. Problems belonging in this class are referred to as
mixed-integer bilevel multifollower optimization problems (BMF-MIP), and have the
general form of (1.10).
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min
x1 ,y1

F1(x, y)

s. t. G1(x, y) ≤ 0

min
x2,a ,y2,a

F2,a(x, y)

s. t. G2,a ≤ 0

min
x2,b ,y2,b

F2,b(x, y)

s. t. G2,b ≤ 0
...

min
x2,n ,y2,n

F2,n(x, y)

s. t. G2,n ≤ 0

x = [xT1 xT2,a xT2,b . . . xT2,n]
T
, x ∈ ℝn

y = [yT1 yT2,a yT2,b . . . yT2,n]
T
, y ∈ ℤm

(1.10)

where x1 is a vector of the upper level continuous problem variables, y1 is a vector of
the upper level integer variables, x2,a to x2,n are vectors of the lower levels continuous
problem variables and y2,a to y2,n are vectors of the lower levels integer variables. Note
that decision makers 2, a to 2, n all belong to the same optimization level.

Most research on bilevel optimization mainly addressed the case of a single-
follower. The problem of a single leader with multiple followers has not received a
lot of attention from the research community with some attempts to solve the linear
continuous case [135, 148–151], the nonlinear continuous case [152, 153] and very lim-
ited heuristic approaches for the solution of nonlinear mixed-integer multifollower
problems [154] that do not guarantee optimality.

1.3 Introduction to multiparametric optimization

Multiparametric optimization is a type of mathematical optimization, where the opti-
mization problem is solved as a function of one or multiple parameters.

In general, multiparametric programming considers the following type of opti-
mization problem:

z(θ) = minimize
x∈ℝn

f (x,θ) + ̃f (θ)

subject to g(x,θ) ≤ 0

θ ∈ Θ ⊂ ℝq,

(1.11)

where the parameter space Θ is assumed to be compact.
Note that the function ̃f (θ) acts as a scaling function, as it can be added to any

multiparametric problem formulation without altering the solution x(θ). Thus, it is
omitted from the subsequent formulations for simplicity.

 EBSCOhost - printed on 2/14/2023 6:52 AM via . All use subject to https://www.ebsco.com/terms-of-use



1.3 Introduction to multiparametric optimization | 19

Multiparametric programming is founded on the assumptions and principles of
the basic sensitivity theorem as presented in Fiacco (1983). Based on that, the active
set in the neighborhood of a nominal parameter vector, θ∗, with a corresponding op-
timal solution x∗ and Lagrange multipliers λ∗ of an optimization program, remains
unchanged. Consequently, parametric areas (critical regions) with the same active set
are created, each characterized with a distinct set of Karush–Kuhn–Tucker (KKT) con-
ditions. Since the optimality conditions remain the same, the resulting systemof equa-
tions derived from the KKT conditions can be analytically solved, and hence the opti-
mal solution with respect to the varying parameters for the whole parameter space is
explicitly constructed.

In the following subsections, we will go over and summarize the developments
for certain classes of multiparametric programming problems that will be used for
the solution of multilevel optimization problems in the following chapters. More
specifically, we will visit the formulation and solution methods of multiparamet-
ric linear, quadratic, mixed-integer linear and mixed-integer quadratic optimization
problems.

1.3.1 Multiparametric linear programming (mp-LP)

In general, a multiparametric linear programming (mp-LP) problem is defined as

z(θ) = minimize
xℝn

cT x

subject to Ax ≤ b + Fθ

θ ∈ Θ = {θ ∈ ℝq | CRA θ ≤ CRb},

(1.12)

The solution of problem (1.12) is given by the partitioning of the feasible parameter
spaceΘf ⊆ Θ into polytopic regions, called critical regions, each ofwhich is associated
with the optimal solution x(θ) and objective function z(θ), both of which are affine
functions of θ (illustrated in Figure 1.8).

Problem (1.12) can be considered the easiest multiparametric programming prob-
lem to solve, and it was the first multiparametric programming problem for which a
rigorous algorithm appeared in the open literature [155].

1.3.1.1 Degeneracy
The issue of degeneracy in mp-LP problems has intrigued several researchers. The
two types of degeneracy typically considered are primal and dual degeneracy (see
Figure 1.9) [162]. While primal degeneracy can be handled in a straightforward
way by identifying the correct subset of active constraints, which generate a full-
dimension parametric solution, the presence of dual degeneracy is more intricate,
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Figure 1.8: A schematic representation of the polytopic regions (Critical Regions, CR) created when
parametrically solving an optimization problem with two uncertain parameters (θ1 and θ2).

Figure 1.9: A schematic representation of (a) primal and (b) dual degeneracy. In primal degeneracy,
the number of active constraints (i. e., inequality constraints where equality holds) is nonunique,
while in dual degeneracy the (primal) solution x is nonunique.

as the nonuniqueness of the solution could lead to overlapping critical regions and
noncontinuous solutions. The three approaches presented in the literature can be
summarized as follows:
Reformulation as mp-QP [163]:When dual degeneracy is identified by the presence

of a nonunique primal solution, an equivalent strictly convex mp-QP problem
can be formulated.

Graph/Cluster evaluation [155, 164]: In Gal andNedoma [155], it was shown that the
solution to a mp-LP problem is given by a connected graph, where the nodes
are the different active sets and the connections are given by the application of
a single step of the dual simplex algorithm. Similarly, Olaru and Dumur [164]
considers the dual of the mp-LP problem as a parametrized vertex problem,
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and identifies clusters of connected vertices equivalent to the connections in
Gal and Nedoma [155]. When dual degeneracy occurs, multiple disconnected
graphs/clusters can occur, only one of which represents the continuous so-
lution of the mp-LP problem across the entire feasible parameter space [164].
Thus, the problem of dual degeneracy is reduced to a graph selection prob-
lem.

Lexicographic perturbation [165]: A lexicographicperturbation is basedon the con-
cept that a “sufficiently small” perturbation of a degenerate problem will ren-
der it nondegenerate [166]. However, this perturbation is not applied but only
its effect onto the solution is studied, thus avoiding numerical instabilities.

Handling degeneracy in multiparametric problems can be very useful in obtaining
both pessimistic and optimistic solutions of multilevel optimization problems. More
details regarding this will be discussed in Chapter 2 and Section 2.1.

1.3.1.2 Critical region definition
In linear programming (LP), the term “basic solution” is a result of the use of the sim-
plex algorithm and identifies the solution as a vertex of the feasible space, which is
uniquely defined by the indices of the constraints, which form the vertex. However,
with the emergence of interior-point methods, as well as in the face of degeneracy, it
cannot be guaranteed that the solution obtained from a LP solver is a basic solution
leading to a full-dimensional critical region. As the classical definition of the critical
region is directly tied to the active set (i. e., the indices of the constraints which form
the vertex), several researchers have considered alternative definitions of critical re-
gions.

Themain theme is thereby to identify an appropriate invariancy set over the para-
metric space. The three sets typically considered are [167]:
Optimal basis invariancy [168]: This invariancy refers to the classical definition of

the critical region as a set of active constraints, which form a basic solution.
The main issue with this approach occurs in the case of degeneracy (see Sec-
tion 1.3.1.1), which might lead to lower-dimensional or overlapping regions.

Support set invariancy [169–171]: Given the LP problem formulation

minimize
xℝn

cTx

subject to Ax = b
x ≥ 0,

(1.13)

the support set is defined as σ(x) = {i | xi > 0}. The concept of support set in-
variancy describes the region of the parameter space for which the same sup-
port set remains optimal. It can be shown that this eliminates the issue of de-
generacy, as the support set is independent of the active constraints.
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Optimal partition invariancy [170, 172–174]: The optimal partition is given by the
cone,which is spanned from the solution found in the directions of the inactive
constraints.

1.3.2 Multiparametric quadratic programming (mp-QP)

In general, amultiparametric quadratic programming (mp-QP) problem is defined as

z(θ) = minimize
xℝn

(Qx + Hθ + c)T x

subject to Ax ≤ b + Fθ

θ ∈ Θ = {θ ∈ ℝq | CRA θ ≤ CRb},

(1.14)

where thematrices have appropriate dimensions andQ is symmetric positive definite.
The solution to problem (1.14) is given by the partitioning of the feasible parameter
space Θf ⊆ Θ into polytopic regions, called critical regions, each of which is associ-
ated with the optimal solution x(θ) and objective function z(θ), which are affine and
quadratic functions of θ, respectively. Unlike themp-LP algorithm in Gal and Nedoma
[155], which was purely based on simplex-based arguments, the solution of mp-QP
problems required the introduction of a new body of theory, namely the basic sensi-
tivity theorem [175].3 It thereby states that under somemild conditions4 the change of
the optimal solution to a convex optimization can be calculated based on the problem
structure and the optimal solution itself. Although the theorem itself appeared in 1976,
it was not until the year 2000, when it was shown that for the case of mp-QP problems
the optimal solution x(θ) is an affine function of θ over a given critical region, which
is a polytope. Thus, it is conceptually equivalent to mp-LP problems, except for the
quadratic nature of the optimal objective function z(θ) over the critical region.

Therefore, most algorithms which are applicable to mp-QP problems are inher-
ently also applicable to mp-LP problems.

1.3.2.1 Solution procedures
Based on the results from the basic sensitivity theorem, a string of papers in 2000
[176–178], as well as the famous paper by Bemporad et al. from 2002 [179], described
a geometrical approach for the solution of mp-QP problems, which relies on the ex-
ploration of the parameter space bymoving from one critical region to another. As the

3 Note that it is also possible to solvemp-QPproblemsby solving theKarush–Kuhn–Tucker conditions
parametrically given a candidate active set.
4 The conditions are: (a) second-order sufficient condition (SOSC), (b) strict complementary slackness
(SCS) and (c) linear independence constraint qualification (LICQ). Note that (a) and (b) are inherently
fulfilled by strictly convex mp-QP problems.
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initial algorithm was shown to generate a large number of artificial cuts [159], new al-
gorithms based on the geometrical principle were described, based on variable step-
size [180], inference of the active set of adjacent critical regions [159, 181] and com-
bination of the inference of the active set with the original algorithm [160, 161]. How-
ever, in Spjøtvold et al. [161], Spjotvold et al. [160] a fundamental limitation of themost
efficient geometrical algorithms was uncovered, namely the facet-to-facet property.
It states that the geometrical algorithms [159, 180] are only guaranteed to yield the
correct solution if the linear independent constraint qualification (LICQ) is fulfilled
on the facet of each critical region.5 As this condition does not hold unconditionally
for mp-QP problems, geometrical algorithms which do not produce artificial cuts are
generally not guaranteed to yield the complete solution.

Shortly after the appearance of the first papers for the solution ofmp-QPproblems
in 2000, several papers considered a different strategy to the geometrical considera-
tions [182–185]. In particular, it was realized that the solution of a mp-QP problem is
uniquely defined by its corresponding active set. Thus, it was suggested to exhaus-
tively enumerate all possible combinations of active sets, an approach that Mayne
and Raković termed “reverse transformation” [183]. However, for any but the small-
est problems this approach is computationally intractable. This limitation was tack-
led in 2011, when Gupta et al. showed that if a candidate active set k is infeasible,
so is its power set [186]. This led to the development of a branch-and-bound algo-
rithm for the active set combinations, which is not based on the facet-to-facet prop-
erty and is thus guaranteed to yield the complete solution. Since then, several publi-
cations have appeared utilizing symmetry arguments to increase the fathoming effi-
ciency or applying the concept to multiparametric linear complementarity problems
[187–190].

Despite the fact that both the geometrical and the combinatorial approach solve
the same problem, they explore unrelated aspects of the problem structure. Thus, in
an effort to establish a connection between these two approaches, recently the authors
generalized the connected-graph approach from Gal and Nedoma [155] to the mp-QP
case, as it was shown that the solution to a strictly convex mp-QP problem is given
by a connected graph [191]. The nodes are thereby the optimal active sets over the
parameter space, and the connections are given by the inference of the adjacent active
set [159, 161] or a single step of the dual simplex algorithm [155].

In parallel to these developments, the possibility to reformulate both mp-LP and
mp-QP problems into multiparametric linear complementarity problems (mp-LCP)
[192] was considered, for which geometrical and combinatorial approaches have been
presented [190, 193].

5 The theorem also requires the solution not to be dual degenerate, which is always satisfied for mp-
QP problems with a positive definite Q.
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Several papers have conceptualized other solution strategies based, e. g., graphi-
cal derivatives [194] or (parametrized) vertex approaches [195, 196].

1.3.3 Multiparametric mixed-integer linear programming

In general, a multiparametric mixed-integer linear programming (mp-MILP) problem
is defined as

z(θ) = minimize
x,y

cTω

subject to Ax + Ey ≤ b + Fθ

x ∈ ℝn, y ∈ {0, 1}p, ω = [xT yT ]
T

θ ∈ Θ = {θ ∈ ℝq | CRA θ ≤ CRb},

(1.15)

where the matrices have appropriate dimensions.6 The solution to problem (1.15) is
given by the partitioning of the feasible parameter space Θf ⊆ Θ, which might be
nonconvex, into polytopic regions, called critical regions, each of which is associated
with the optimal solution x(θ) and objective function z(θ), which are affine functions
of θ. These properties are a direct result of the fact that the solution of a mp-MILP
problem can be viewed as the combination of the solution of several mp-LP problems.

Thus, in order to solve mp-MILP problems, it is sufficient to exhaustively enu-
merate all possible combinations of binary variables, solve the resulting mp-LP prob-
lems and combine the solutions by comparing them to each other [200–202]. How-
ever, it is clear that such an approach is computationally intractable for larger num-
bers of binary variables. Thus, several researchers have investigated techniques to re-
duce the number of combinations of binary variables considered. The two research
directions that have been pursued are thereby a branch-and-bound strategy and a
decomposition-based algorithm:
Brand-and-bound strategy: The key idea of this approach is to extend the well-

known concepts of branch-and-bound used for the solution of regular MILP
problems to the multiparametric case [203, 204].7 At the root node the binary
variables y are relaxed from y ∈ {0, 1}p to ȳ ∈ [0, 1]p, i. e., into constrained con-
tinuous variables. The resulting mp-LP problem is solved using the approaches
in Section 1.3.1, and the child nodes are created where one of the variables in ȳ is

6 Some authors have also denoted a mp-P featuring the objective function (Hθ + c)Tω as a mp-MILP
[197, 198]. However, since such an objective functionmay lead to quadratically constrained critical re-
gions [199], they are fundamentallymore complex than problem (1.15), and in fact conceptually equiv-
alent to mp-MIQP problems, which are discussed in the next section.
7 Interestingly, this was the first mp-MILP algorithm presented in the literature in 1997, even before
the use of exhaustive enumeration was considered in the year 2000.
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fixed to 0 and 1, and the mp-LP problem is solved again. If the solution of a node
is shown to be neither feasible nor optimal over the entire parameter space, the
node and all its child nodes are discarded.

Decomposition-based strategy: Instead of solving the mp-MILP problem directly in
amultiparametric fashion, the decomposition based algorithm relies on the iden-
tification of a candidate combination of binary variables via the solution of aMILP
problem [205, 206]. This candidate is then fixed and the resulting mp-LP problem
is solved, and compared with the current best upper bound. At the next iteration,
in each critical region a new MILP problem is solved, which searches for a candi-
date combination of binary variables that yields a better solution in at least one
point over the critical region considered. If such a point cannot be found, then the
considered critical region is optimal for the original mp-MILP problem.

1.3.3.1 Multiparametric integer linear programming
In the case where n = 0 in problem (1.15), i. e., without any continuous variables in the
problem formulation, problem (1.15) yields a multiparametric integer linear program-
ming (mp-ILP) problem. As it is a subclass of mp-MILP problems, the same algorithms
can be used to solve mp-ILP algorithms. However, in a series of papers, Crema [207–
212] developed a generalized approach for the solution mp-ILP algorithms, which uti-
lizes some specific characteristics inherent to mp-ILP problems.

In essence, the lack of continuous variables implies that the objective function
stays constant once a candidate combination of binary variables has been found.
Thus, there is no need to perform a comparison procedure, and the only way another
combination of binary variables might be optimal is when the initial combination be-
comes infeasible. Thus, it is sufficient to explore the parameter space in a geometric
fashion in order to identify feasible combinations of binary variables, which are out-
side the current feasible space of the solution. However, as Θf is possibly nonconvex,
the consideration of the entire parameter space needs to be guaranteed, which can be
achieved by formulating a single large-scale MILP problem.

1.3.4 Multiparametric mixed-integer quadratic programming

In general, amultiparametricmixed-integer quadratic programming (mp-MIQP) prob-
lem is defined as

z(θ) = minimize
x,y

(Qω + Hθ + c)Tω

subject to Ax + Ey ≤ b + Fθ

x ∈ ℝn, y ∈ {0, 1}p, ω = [xT yT ]
T

θ ∈ Θ = {θ ∈ ℝq | CRA θ ≤ CRb},

(1.16)
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where thematrices have appropriate dimensions andQ is symmetric positive definite.
The solution to problem (1.16) is given by the partitioning of the feasible parameter
space Θf ⊆ Θ, which might be nonconvex, into quadratically constrained regions,
called critical regions, each of which is associated with the optimal solution x(θ) and
objective function z(θ), which are affine and quadratic functions of θ, respectively. The
key difference to mp-MILP algorithms is thereby the fact that the critical regions are
not polytopic, but quadratically constrained. This is a direct result of the fact the so-
lution of mp-MIQP problems can be viewed as the combination of solution of several
mp-QPproblems. This combination requires the comparison of the different solutions,
which is driven by the quadratic objective function. Thus, the resulting transitions
between solutions is potentially quadratic, resulting in quadratically constrained re-
gions.

1.3.4.1 The envelope of solutions
The polytopic nature of the critical regions has many computational advantages, as
the software tools for tackling such systems are very efficient. Thus, in order to pre-
serve this polytopicnature, thenotionof envelopes of solutionswas introduced,where
more than one solution is associated with a critical region, thus avoiding the com-
parison procedure and the generation of quadratically constrained critical regions. In
the first paper, which presented a solution procedure for mp-MIQP problems in 2002
[213], the authors did not perform any comparison and simply kept all candidate so-
lutions resulting from the application of the decomposition-based approach (see Sec-
tion 1.3.3). This remained the state-of-the-art procedure, until Axehill et al. [214, 215]
presented an approach,which coupled the branch-and-bound approachwith the idea
of comparing the solutions over the entire critical region. While this does require the
solution of potentially nonconvex QP problems, it significantly reduced the number of
solutions stored within each region [199]. Independently, Oberdieck et al. [198] tack-
led the same problem by usingMcCormick relaxations to linearize the quadratic parts
of the objective functions for the comparison procedure. While this approach signif-
icantly increases the number of partitions as a result of the linearization, it also re-
duced the number of solutions storedwithin each regionOberdieck and Pistikopoulos
[199]. Despite these developments, all of these approaches still generate an envelope
of solutions. Only in 2015 the first exact algorithm for the solution of mp-MIQP prob-
lems appeared [199], which enabled the handling of quadratically constrained critical
regions by applyingMcCormick relaxations to the critical regions instead of the objec-
tive functions to be compared.

Another way to eliminate the presence of envelopes of solutions is the lifting of
the solution into a higher-dimensional space, which transforms the solution to a mp-
MIQP problem into the form of a mp-QP problem by treating the quadratic terms as
extra dimensions [216].
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1.3.4.2 Further reading on multiparametric programming
Table 1.11 contains publications of algorithms that can solve the classes of multi-
parametric problems discussed in this section.

Table 1.11:Multiparametric programming algorithms for the solution of mpLPs, mpMPs, mpMILPs
and mpMIQPs.

mpLP mpMILP mpQP mpMIQP

Gal and Nedoma [155] X
Gal [217] X
Yuf and Zeleny [218] X
Schechter [219] X
Acevedo and Pistikopoulos [203] X X
Pertsinidis et al. [220] X X
Pistikopoulos et al. [178] X X
Dua and Pistikopoulos [205] X X
Bemporad et al. [179] X X
Dua et al. [213] X X X X
Bemporad et al. [157] X
Baotic [221] X X
Tøndel et al. [181] X X
Filippi [222] X
Jia and Ierapetritou [206] X X
Spjøtvold et al. [161] X X
Jones et al. [166] X
Li and Ierapetritou [223] X X
Jones et al. [165] X
Faísca et al. [224] X X
Mitsos and Barton [225] X X
Patrinos and Sarimveis [194] X X
Li and Ierapetritou [226] X X X X
Gupta et al. [186] X X
Feller and Johansen [188] X X
Wittmann-Hohlbein and Pistikopoulos [227] X X
Oberdieck et al. [228] X X
Wittmann-Hohlbein and Pistikopoulos [229] X X
Axehill et al. [215] X X X X
Bemporad [230] X X
Herceg et al. [190] X X X X
Oberdieck and Pistikopoulos [231] X X X X
Oberdieck et al. [191] X X
Charitopoulos et al. [232] X X
Ahmadi-Moshkenani et al. [233] X X
Akbari and Barton [234] X
Burnak et al. [235] X X X
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For further reading on multiparametric programming, the reader can also refer to the
following books:
1. Pistikopoulos, E. N.; Diangelakis, N. A.; Oberdieck, R. Multi-parametric Optimiza-

tion and Control; John Wiley & Sons, 2020.
2. Pistikopoulos, E. N., Georgiadis, M. C., Dua, V., Eds. Multi-Parametric Program-

ming; Process Systems Engineering 1; Wiley-VCH: Weinheim, 2011.
3. Pistikopoulos, E. N., Georgiadis, M. C., Dua, V., Eds. Multi-Parametric Model-

Based Control; Process Systems Engineering 2; Wiley-VCH: Weinheim, 2011.

1.3.5 Solution of continuous bilevel problems through multiparametric
programming

Themain idea behind the development ofmultiparametric algorithms for the solution
of bilevel programing problems came out through the following observation:

In a bilevel optimization setting, the lower level optimization problem is parametric in terms of the
upper level variables.

This observation gave rise to several methodologies and algorithms for the solution of
bilevel problems with the key idea to solve the lower level problem parametrically in
termsof theupper level variables [236]. A list of different classes ofmultilevel problems
solved using multiparametric programming is presented in Table 1.12.

Table 1.12: Classes of problems solved using multiparametric programming and corresponding con-
tributions.

Problem class Reference

LP|LP Faisca et al. [99]
Pistikopoulos et al. [237, 238]

LP|QP Faisca et al. [99]
Pistikopoulos et al. [237, 238]

QP|LP Pistikopoulos et al. [237]
QP|QP Faisca et al. [99]

Pistikopoulos et al. [237, 238]
LP|LP with uncertainty Ryu et al. [14]
QP|QP with uncertainty Faisca et al. [99]

Pistikopoulos et al. [238]
LP|LP|LP Faisca et al. [144]
QP|QP|QP Faisca et al. [144, 239]

Pistikopoulos et al. [238]
QP|QP,QP Faisca et al. [144, 239]

Pistikopoulos et al. [238]
LP|LP,LP,LP Faisca et al. [144]
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The main steps of the algorithms for the solution of all the classes mentioned in Ta-
ble 1.12 are:
1. Recast the lower level problem as a multiparametric optimization problem, con-

sidering the upper level variables as parameters.
2. Solve the resulting multiparametric problem using a suitable solution algorithm

(either mpLP or mpQP) to get k critical regions.
3. Substitute each of the k solutions into the leader’s problem to formulate k single

level optimization problems.
4. Solve the k single level optimization problems and compare the optimal points to

select the best one.

1.3.5.1 Further reading on continuous multilevel optimization problems through
multiparametric programming

For numerical examples and further reading on the solution approaches for contin-
uous multilevel optimization problems through multiparametric programming, the
reader can refer to the papers in Table 1.12, and to Chapter 6, “Bilevel and Multilevel
Programming” of the book, Pistikopoulos, E. N., Georgiadis, M. C., Dua, V., Eds. Multi-
Parametric Programming; Process Systems Engineering 1; Wiley-VCH: Weinheim,
2011.

1.4 Organization of the book

The remainder of this book is organized in two parts. The first part includes Chap-
ters 2 and 3, while the second part includes Chapters 4 and 5. Part I focuses on the
introduction of algorithms for the solution of different classes of multilevel mixed-
integer optimization problems, while Part II focuses on application case studies and
the computational implementation of the introduced algorithms.

Therefore, the next chapter (Chapter 2) focuses on bilevel mixed-integer opti-
mization. An algorithm based on multiparametric programming is first introduced to
solve bilevel mixed-integer linear optimization problems and then expanded for the
solution of bilevel mixed-integer quadratic optimization problems and bilevel prob-
lemswith right-hand side uncertainty. All three algorithms are explained step-by-step
through multiple numerical examples.
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2 Bilevel mixed-integer optimization

In this chapter, we present global optimization algorithms for the exact and global
solution of two classes of bilevel programming problems, namely (i) bilevel mixed-
integer linear programming problems (B-MILP) and (ii) bilevel mixed-integer convex
quadratic programming problems (B-MIQP), belonging to problem class Type 4 (i. e.,
containing both integer and continuous variables at both optimization levels), while
also applicable to problem classes of Types 1–3 (see Table 1.4 for the definition of
bilevel mixed-integer problem classes).

2.1 Mixed-integer linear bilevel optimization

Expanding on the earlier work of Faisca et al. [99, 239], which address continuous
bilevel programming problems, the approach that wewill focus on here is based upon
multiparametric programming theory (see Section 1.3), the Multiparametric Mixed-
integer Linear Programming (mp-MILP) algorithm of Oberdieck et al. [198], and the
theory for binary parameters inmultiparametric programmingproblemsbyOberdieck
et al. [240]. The solution method will be first introduced through the general form of
the B-MILP problem (2.1), and then illustrated through 3 numerical examples in Sec-
tion 2.1.1.

min
x1 ,y1

F1(x, y) = c1T x + d1
T y

s. t. A1x + B1y ≤ b1
x2, y2 ∈ argminx2 ,y2

{F2(x, y) = c2T x + d2
T y : A2x + B2y ≤ b2}

x = [x1T x2T ]
T
, y = [y1T y2T ]

T

x ∈ ℝn, y ∈ ℤm

(2.1)

where c1, d1, A1, B1, b1 are constant coefficient matrices in the upper level (leader)
problem, and c2, d2, A2, B2, b2 are constant coefficient matrices in the lower level (fol-
lower) problem. It is assumed that upper level optimization variables that appear in
the lower level problem, and lower level integer variables are bounded.

As a first step, we establish bounds for all integer and continuous variables, by
solving problems (2.2) to (2.5) for upper level variables xα1 and y

β
1 , for all α ∈ {1, . . . , n1}

and β ∈ {1, . . . , n2}, and problems (2.6) to (2.9) for lower level variables xγ1 and yδ2 , for
all γ ∈ {1, . . . , n3} and δ ∈ {1, . . . , n4}, in order to obtain bounds on both x, xL ≤ x ≤ xU ,
and y, yL ≤ y ≤ yU :

xα1
L = min xα1

s. t. A1x + B1y ≤ b1
A2x + B2y ≤ b2

(2.2)

https://doi.org/10.1515/9783110760316-002
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xα1
U = min −xα1

s. t. A1x + B1y ≤ b1
A2x + B2y ≤ b2

(2.3)

yβ1
L
= min yβ1
s. t. A1x + B1y ≤ b1

A2x + B2y ≤ b2

(2.4)

yβ1
U
= min −yβ1
s. t. A1x + B1y ≤ b1

A2x + B2y ≤ b2

(2.5)

xα2
L = min xα2

s. t. A1x + B1y ≤ b1
A2x + B2y ≤ b2

(2.6)

xα2
U = min −xα2

s. t. A1x + B1y ≤ b1
A2x + B2y ≤ b2

(2.7)

yβ2
L
= min yβ2
s. t. A1x + B1y ≤ b1

A2x + B2y ≤ b2

(2.8)

yβ2
U
= min −yβ2
s. t. A1x + B1y ≤ b1

A2x + B2y ≤ b2

(2.9)

Then the B-MILP is transformed into a binary B-MILP by expressing integer vari-
ables, y11 . . . y

n2
1 and y12 . . . y

n4
2 , in terms of binary 0-1 variables, ́yβ1,1, . . . ,

́yβ1,n5 ∈ {0, 1} for

all β and ́yδ2,1, . . . ,
́yδ2,n6 ∈ {0, 1} for all δ, by following the formulas presented in Floudas

[241], in Section 6.2.1, Remark 1. The acute accentwill be omitted in the following steps
for simplicity.

As a next step, the lower level problem of the binary B-MILP, is transformed into a
mp-MILP problem (2.10), in which the optimization variables of the upper level prob-
lem, x1 and y2 that appear in the lower level problem, are considered as parameters
for the lower level:

min
x2 ,y2

d2
Ty + c2Tx

s. t. B2y ≤ b2 − A2x
xL ≤ x ≤ xU

(2.10)
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The multiparametric problem (2.10) is solved using the multiparametric solution
algorithm presented in Chapter 1, Section 1.3, through the POP® toolbox [242] to pro-
vide the complete profile of optimal solutions of the lower level problem as explicit
functions of the variables of the higher level problemwith corresponding expressions
(2.11). POP® toolbox features a state-of-the-art multiparametric programming solver
for continuous andmixed-integer linear and quadratic problems. The toolbox is freely
available for download at parametric.tamu.eduwebsite. More information on POP can
be found in Appendix B.

x2, y2 =

{{{{{{{
{{{{{{{
{

ξ1 = p1 + q1x1 + r1y1, ψ1 if H1[xT1 y
T
1 ]

T ≤ h1
ξ2 = p2 + q2x1 + r2y1, ψ2 if H2[xT1 y

T
1 ]

T ≤ h2
...

...
ξk = pk + qkx1 + rky1, ψk if Hk[xT1 y

T
1 ]

T ≤ hk

(2.11)

where ξi are vectors of the lower level (follower) continuous variables and ψi are vec-
tors of the lower level integer variables, Hk[xT1 yT1 ]

T ≤ hk is referred to as the critical
region, CRk, and k denotes the number of computed critical regions.

The computed solutions (2.11) are then substituted into the upper level problem,
which can be solved as a set of single-level deterministic mixed-integer programming
problems, (2.12). More specifically, the functions ξ expressing the lower level variables
(x2) in terms of the upper level variables (x1 and y1), are substituted in the place of
lower level variables (x2 and y2) in the upper level problem, eliminating in this way
the lower level variables form the upper level problem. Moreover, the critical region
definitions are added to the corresponding single level problems as an additional set
of constraints:

z1 = min
x1 ,y1

c1T[x1T ξ1(x1, y1)
T]

T
+ d1

T[y1T ψ1
T]

T

s. t. A1[x1T ξ1(x1, y1)
T]

T
+ B1[y1T ψ1

T]
T
≤ b1

H1[xT1 yT1 ]
T
≤ h1

z2 = min
x1 ,y1

c1T[x1T ξ2(x1, y1)
T]

T
+ d1

T[y1T ψ2
T]

T

s. t. A1[x1T ξ2(x1, y1)
T]

T
+ B1[y1T ψ2

T]
T
≤ b1

H2[xT1 yT1 ]
T
≤ h2

...

zk = min
x1 ,y1

c1T[x1T ξk(x1, y1)
T]

T
+ d1

T[y1T ψk
T]

T

s. t. A1[x1T ξk(x1, y1)
T]

T
+ B1[y1T ψk

T]
T
≤ b1

Hk[xT1 yT1 ]
T
≤ hk

(2.12)
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The single-level, deterministic programming problems (2.12) are independent of
each other, making it possible to use parallel programming to solve them simultane-
ously.

The solutions of the above single levelMILPproblems correspond todifferent local
optimal solutions of the original B-MILP. The final step of the algorithm is to compare
all the local solutions to obtain theminimum z that would correspond to the exact and
global optimum, z∗, of the original bilevel problem.

The proposed algorithm is summarized in Table 2.1.

Table 2.1:Multiparametric based algorithm for the solution of B-MILP problems.

Step 1 Establish integer and continuous variable bounds
Step 2 Transform the B-MILP into a binary B-MILP
Step 3 Recast the lower level as a mp-MILP, in which the optimization variables of the upper

level problem are considered as parameters
Step 4 Solve the resulting mp-MILP problems to obtain the optimal solution of the lower level

problem as explicit functions of the upper level variables
Step 5 Substitute each multiparametric solution into the upper level problem to formulate k

single level MILP problems
Step 6 Solve all k single level problems and compare their solutions to select the exact and

global optimum

Remark (Pessimistic and optimistic solutions). The choice of a pessimistic versus an
optimistic solution emerges when the optimal solution of the lower level problem is
not unique for the set of optimal upper level variables.

If this degeneracy results because of the lower level binary variables, the solution
method described above is able to capture all degenerate solutions and, therefore,
supply the decision maker with both the pessimistic and optimistic solutions, and all
other solutions.

For the cases where a degeneracy results because of the lower level continuous
variables, the multiparametric solution via POP® toolbox is not able to supply the
decisionmaker with the full range of degenerate solution. Even though there are tech-
niques to handle degeneracy inmultiparametric problems [155, 163, 164, 166] (see also
Section 1.3.1.1), those are not yet implemented in the approach described above.

Therefore, it is assumed that there is a unique optimal solution for the continuous
lower level variables corresponding to the upper level optimal solution.

2.1.1 Numerical examples

Three B-MILP numerical examples will be solved to illustrate the use of the proposed
algorithm.
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2.1.1.1 Example 1: LP-ILP
Consider the following Type 31 example taken from Dempe [109]:

min
y
−x1 − 2x2 + 3y1 + 3.2y2

s. t. −y1 − y2 ≤ 2
y1 + y2 ≤ 2
−2 ≤ y1,2 ≤ 2

min
x
− x1y1 − x2y2

s. t. − x1 + 3x2 ≤ 3
x1 − x2 ≤ 1
− x1 − x2 ≤ −2

y ∈ ℝn, x ∈ ℤ+m

(2.13)

Step 1: Bounds are established for the unbounded integer variables x1 and x2 by
solving problems (2.14) to (2.17), resulting to 1 ≤ x1 ≤ 3 and 1 ≤ x2 ≤ 2:

xL1 = min
x1 ,x2

x1

s. t. −x1 + 3x2 ≤ 3
x1 − x2 ≤ 1
−x1 − x2 ≤ −2

(2.14)

−xU1 = min
x1 ,x2
−x1

s. t. −x1 + 3x2 ≤ 3
x1 − x2 ≤ 1
−x1 − x2 ≤ −2

(2.15)

xL2 = min
x1 ,x2

x2

s. t. −x1 + 3x2 ≤ 3
x1 − x2 ≤ 1
−x1 − x2 ≤ −2

(2.16)

−xU2 = min
x1 ,x2
−x2

s. t. −x1 + 3x2 ≤ 3
x1 − x2 ≤ 1
−x1 − x2 ≤ −2

(2.17)

1 See Table 1.4 for the definition of bilevel mixed-integer problem class types.
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Step 2: The problem is transformed into a 0-1 binary B-MILP. Following [241], the
integer variables x1 and x2 can be expressed through binary variables as x1 = 1 + x1a +
2x1b and x2 = 1 + x2a. Therefore, formulation (2.13) can be reformulated as (2.18):

min
y
−x1a − 2x1b − 2x2a + 3y1 + 3.2y2 − 3

s. t. −y1 − y2 ≤ 2
y1 + y2 ≤ 2
−2 ≤ y1,2 ≤ 2
(x1a, x1b, x2a) ∈ arg{ min

x1a ,x1b ,x2a
(x1a + 2x1b + 1)y1 + (x2a + 1)y2

s. t. − x1a − 2x1b + 3x2a ≤ 1
x1a + 2x1b − x2a ≤ 1
−x1a − 2x1b − x2a ≤ 0}

y ∈ ℝ2, x1a, x1b, x2a ∈ {0, 1}3

(2.18)

Step 3: Then the lower level problem is reformulated as amultiparametric integer
linear programming problem (2.19), in which the optimization variables of the upper
level problem y1 and y2 are considered as parameters:

min
x1a ,x1b ,x2a

[[

[

[[

[

1 0
2 0
0 1

]]

]

y]]
]

T

[[

[

x1a
x1b
x2a

]]

]

+ [1 1] y

s. t. [[
[

−1 −2 3
1 2 −1
−1 −2 −1

]]

]

[[

[

x1a
x1b
x2a

]]

]

≤ [[

[

1
1
0

]]

]
−2 ≤ y1,2 ≤ 2
x1a, x1b, x2a ∈ {0, 1}3

(2.19)

Step 4: The multiparametric optimization problem (2.19) is then solved using the
appropriate algorithm through POP® toolbox [242] and yields the optimal parametric
solution given in Table 2.2. In this example, the parametric solution consists of only
one critical region.

Table 2.2: Lower level problem solution of Example 1.

Critical Region Definition Objective function Variable value

CR1 −2 ≤ y1,2 ≤ 2 y1 + y2 x1a = 0, x1ab = 0, x2a = 0
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Step 5: The solution obtained is then substituted into the upper level problem to
formulate one new single-level deterministic linear programming (LP) problem
(2.20).

min
y
−3 + 3y1 + 3.2y2

s. t. −y1 − y2 ≤ 2
y1 + y2 ≤ 2
−2 ≤ y1,2 ≤ 2
y ∈ ℝ2

(2.20)

Step 6: Problem (2.20) is solved using CPLEX linear programming solver, and re-
sults to the solution presented in Table 2.3. Since only one solution is derived no com-
parison procedure in this step is needed and the solution listed in Table 2.3 is the exact
and global optimal solution of Example 1 (2.13).

Table 2.3: Solution of the single level problem formulated in Example 1.

Objective function Continues variables Discrete variables

−9.4 y1 = 0, y2 = −2 x1 = 1, x2 = 1

2.1.1.2 Example 2: ILP-ILP
Consider the following Type 22 class example taken from [112]:

min
x
−3 + 3y1 + 3.2y2

s. t. y ∈ arg{min
y

y

s. t. x + 2y ≤ 10
x + 2y ≤ 10
2x − y ≤ 15
−2x − 10y ≤ −15}

x, y ∈ ℤ+2

(2.21)

Steps 1 and 2: Bounds are established for all the variables, resulting to 1 ≤ x ≤ 8
and 1 ≤ y ≤ 4. The problem is then transformed into a 0-1 binary B-ILP problem (2.22),
by expressing the integer variables x and y through the binary variables x1, x2, x3, y1

2 See Table 1.4 for the definition of bilevel mixed-integer problem class types.
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and y2 as x = 1 + x1 + 2x2 + 4x3 and y = 1 + y1 + 2y2 [241]:

min
x1 ,x2 ,x3

−x1 − 2x2 − 4x3 − 10y1 − 20y2 − 11

s. t. (y1, y2) ∈ arg{min
y1 ,y2

y1 + 2y2 + 1

s. t. − 25x1 − 50x2 − 100x3 + 20y1 + 40y2 ≤ 35
x1 + 2x2 + 4x3 + 2y1 + 4y2 ≤ 7
2x1 + 4x2 + 8x3 − y1 − 2y2 ≤ 14
−2x1 − 4x2 − 8x3 − 10y1 + 20y2 ≤ −3}

x1, x2, x3 ∈ {1,0}3, y1, y2 ∈ {0, 1}2

(2.22)

Step3:The lower level problem is then reformulated as amp-MILP (2.23), inwhich
the optimization variables of the upper level problem, x1, x2 and x3, are considered as
parameters:

min
y1 ,y2

y1 + 2y2 + 1

s. t. 25x1 − 50x2 − 100x3 + 20y1 + 40y2 ≤ 35
x1 + 2x2 + 4x3 + 2y1 + 4y2 ≤ 7
2x1 + 4x2 + 8x3 − y1 − 2y2 ≤ 14
−2x1 − 4x2 − 8x3 − 10y1 + 20y2 ≤ −3
x1, x2, x3 ∈ {1,0}3, y1, y2 ∈ {0, 1}2

(2.23)

Step 4: The above problem is then solved using the theory presented in Oberdieck
et al. [240] for binary parameters in multiparametric problems, and yields to the opti-
mal parametric solution presented in Table 2.4.

Table 2.4: Lower level problem solution of Example 2.

Critical region Definition Objective function Variables

CR1 x2 = 0, x3 = 0 2 y1 = 1, y2 = 0
CR2 −x2 − x3 ≤ −1 1 y1 = 0, y2 = 0

Steps 5 and 6: The solution obtained is then substituted into the upper level problem
to formulate two new single-level ILP problems corresponding to each critical region.
Solving these single level problems using CPLEX results to the solution presented in
Table 2.5.

After the comparison procedure, the global optimum is found to be −22 with x = 2
and y = 2.
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Table 2.5: Solution of the single level problem formulated in Example 2.

CR Objective function Transformed variables Original variables

CR1 −22 x1 = 1, x2 = 0, x3 = 0 x = 2, y = 2
CR2 −18 x1 = 1, x2 = 1, x3 = 1 x = 8, y = 1

2.1.1.3 Example 3: MILP-MILP
Consider the following Type 43 class example:

min
x1,2 ,y3

4x1 − x2 + x3 + 5y1 − 6y3

s. t. (x3, y1,2) ∈ arg{min
x3 ,y1,2
− x1 + x2 − 2x3 − y1 + 5y2 + y3

s. t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5
−8x1 − 4.9x2 − 3.2x3 ≤ 5
3.3x1 + 4.1x2 + 0.02x3 + 4y1 + 4.5y2 + 0.5y3 ≤ 1
−10 ≤ x1,2 ≤ 10}

x1, x2, x3 ∈ ℝ3, y1, y2, y3 ∈ {0, 1}3

(2.24)

Steps 1 and 2: This example is already bounded and in terms of binary 0 − 1 vari-
ables, therefore, we can directly proceed to Step 3.

Step 3: Considering only the lower level problem, and treating x1, x2 and y3 (upper
level variables) as parameters, the lower level problem is transformed to a mp-MILP
(2.25).

min
x3 ,y1,2
−x1 − y1 + 5y2 + x2 − 2x3 + y3

s. t. 6.4x1 ≤ 11.5 − 7.2x2 − 2.5x3
−8x1 ≤ 5 + 4.9x2 + 3.2x3
3.3x1 + 4y1 + 4.5y2 ≤ 1 − 4.1x2 − 0.02x3 − 0.5y3
−10 ≤ x1,2 ≤ 10

(2.25)

Step 4: Problem (2.25) is then solved using the POP toolbox and the theory pre-
sented in Oberdieck et al. [240], and yields the optimal parametric solution shown in
Table 2.6.

Step 5: Each solution was then substituted into the upper level problem, result-
ing into 8 single level linear programming problems corresponding to each critical

3 See Table 1.4 for the definition of bilevel mixed-integer problem class types.
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Table 2.6: Example 3: Parametric solution of the lower level problem.

CR Definition Variables

1 −0.624x1 − 0.780x2 ≤ −0.175 x3 = −165x1 − 205x2 + 50
0.624x1 + 0.781x2 ≤ 0.198 y1 = 0
x1 ≤ 10, y3 = 0 y2 = 0

2 0.624x1 + 0.781x2 ≤ −0.570 x3 = −2.56x1 − 2.88x2 + 4.6
−0.624x1 − 0.780x2 ≤ 0.594 y1 = 0
x1 ≤ 10, y3 = 0 y2 = 0

3 −0.626x1 − 0.780x2 ≤ 0.596 x3 = −165x1 − 205x2 + 50
0.624x1 + 0.781x2 ≤ −0.570 y1 = 1
−0.626x1 − 0.780x2 ≤ 0.594 y2 = 0
x1 ≤ 10, y3 = 0

4 0.626x1 + 0.780x2 ≤ −0.596 x3 = −2.56x1 − 2.88x2 + 4.6
0.044x1 + 0.999x2 ≤ 4.565 y1 = 1
−10 ≤ x1 ≤ 10 y2 = 0
−x2 ≤ 10, y3 = 0

5 0.044x1 + 0.999x2 ≤ 4.565 x3 = −2.56x1 − 2.88x2 + 4.6
0.626x1 + 0.780x2 ≤ 0.175 y1 = 0
−0.624x1 − 0.781x2 ≤ 0.570 y2 = 0
−10 ≤ x1 ≤ 10
−x2 ≤ 10, y3 = 0

6 0.626x1 + 0.795x2 ≤ −0.0787 x3 = −165x1 − 205x2 + 25
−0.624x1 − 0.781x2 ≤ 0.102 y1 = 0
x1 ≤ 10, y3 = 1 y2 = 0

7 0.626x1 + 0.779x2 ≤ −0.693 x3 = −2.56x1 − 2.88x2 + 4.6
0.044x1 + 0.999x2 ≤ 4.565 y1 = 1
−10 ≤ x1 ≤ 10 y2 = 0
−x2 ≤ 10, y3 = 1

8 0.626x1 + 0.779x2 ≤ 0.0787 x3 = −2.56x1 − 2.88x2 + 4.6
0.044x1 + 0.999x2 ≤ 4.565 y1 = 0
−0.6241x1 − 0.7814x2 ≤ 0.666 y2 = 0
−10 ≤ x1 ≤ 10
−x2 ≤ 10, y3 = 1

 EBSCOhost - printed on 2/14/2023 6:52 AM via . All use subject to https://www.ebsco.com/terms-of-use



40 | 2 Bilevel mixed-integer optimization

region (2.26):

z1 = min
x1,2
−161x1 − 206x2 + 50

s. t. −0.624x1 − 0.780x2 ≤ −0.175
0.624x1 + 0.781x2 ≤ 0.198
x1 ≤ 10
...

z8 = min
x1,2

1.44x1 − 3.88x2 − 1.4

s. t. 0.626x1 + 0.779x2 ≤ 0.0787
0.044x1 + 0.999x2 ≤ 4.565
−0.6241x1 − 0.7814x2 ≤ 0.666
−10 ≤ x1 ≤ 10
−x2 ≤ 10

(2.26)

Remark 2.1. Mixed integer linear or quadratic bilevel problems with all of the binary
variables appearing in the lower level problemwill result into pure continuous single-
level programming problems at Step 5 of the algorithm.

Step 6: All 8 linear programming problems (2.26) were solved using the CPLEX
solver and their solution is reported in Table 2.7.

Table 2.7: Solution of the single level problems generated in Example 3.

Critical region Objective x1 x2 x3 y1 y2 y3

CR1 −38.115 −10 8.243 10.128 0 0 0
CR2 −37.969 −10 7.26 9.291 0 0 0
CR3 173.636 −8.835 6.329 210.306 1 0 0
CR4 −24.457 −7.032 4.879 8.549 1 0 0
CR5 −24.438 −7.020 4.879 8.520 0 0 0
CR6 61.086 −2.736 2.055 80.083 0 0 1
CR7 −25.708 −7.187 4.886 8.928 1 0 1
CR8 −30.704 −7.185 4.886 8.921 0 0 1

After the comparison procedure, the solution with the minimum objective value was
chosen as the global solution of the bilevel programming problem (2.25), lying in crit-
ical region 1, with x1 = −10, x2 = 8.243, x3 = 10.128 and y1,2,3 = 0.

2.2 Mixed-integer quadratic bilevel optimization
The algorithm presented before is extended for bilevel mixed-integer quadratic
programming problems of the following general form (2.27), belonging to problem
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Type 4.4

min
x1 ,y1
(Q1

Tω + c1)
T
ω + cc1

s. t. A1x + B1y ≤ b1
(x2, y2) ∈ arg{minx2 ,y2

(Q2
Tω + c2)

T
ω + cc2

s. t. A2x + B2y ≤ b2}
x ∈ ℝn, y ∈ ℤp

x = [xT1 xT2 ]
T
, y = [yT1 yT2 ]

T
, ω = [xT yT ]

T

(2.27)

whereQ1, c1, cc1, A1, B1, b1 are constant coefficient matrices in the upper level (leader)
problem, and Q2 ≻ 0, c2, cc2, A2, B2, b2 are constant coefficient matrices in the lower
level (follower) problem. It is assumed that upper level optimization variables that
appear in the lower level problem, and lower level integer variables are bounded, or
their bounds can be derived through the problem constraints.

The main idea and methodology for solving this type of problems follows the
methodology proposed in the previous subsection. The algorithm that will be dis-
cussed in this section is based on the mp-MIQP algorithm by Oberdieck and Pis-
tikopoulos [199], summarized in Appendix B. The proposed methodology will be first
introduced through the general form of the B-MIQP problem (2.27), and then illus-
trated through two numerical examples.

The first three steps of the B-MIQP algorithm are similar to the first three steps of
the B-MILP algorithm. In Step 1, integer and continuous variable bounds are estab-
lished and in Step 2 integer variables are transformed into binary variables similar
to Steps 1 and 2 of the B-MILP algorithm. In Step 3, the lower level problem of the
reformulated B-MIQP is transformed into a mp-MIQP problem (2.28), in which the op-
timization variables of the upper level problem that appear in the lower level problem,
x1 and y1, are considered as parameters for the lower level problem:

min
x2 ,y2
(Q2

Tω + c2)
Tω + cc2

s. t. A2x + B2y ≤ b2
x1L ≤ x1 ≤ x1U

(2.28)

The solution of the mp-MIQP problem (2.28), using mp-MIQP algorithms through
the POP toolbox, will result to the complete profile of optimal solutions of the lower
level problem as explicit functions of the variables of the upper level problem with
corresponding critical regions. Because of the mixed-integer terms an exact compar-
ison procedure (minmax, affine, exact) for overlapping critical regions is performed
[242]. The quadratic objective function of the lower level problem can therefore make

4 See Table 1.4 for the definition of bilevel mixed-integer problem class types.
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the final critical regions nonconvex. This is caused during the exact comparison pro-
cedure, by the creation of nonlinear inequalities for the definition of the final critical
regions (2.29) [199].

[x2, y2] =

{{{{{{{
{{{{{{{
{

ξ1 = p1 + q1x1 + x1T r1x1, ψ1 if H1x1 ≤ h1, g1(x1) ≤ g1
ξ2 = p2 + q2x1 + x1T r2x1, ψ2 if H2x1 ≤ H2, g2(x1) ≤ g2
...

...
ξk = pk + qkx1 + x1T rkx1, ψk if Hkx1 ≤ hk , gk(x1) ≤ gk

(2.29)

Therefore, in Step 5 we substitute the multiparametric solution into the upper
level MIQP problem to formulate single level MIQP or MINLP problems. In Step 6, the
single level problems are solved using appropriate mixed-integer linear, quadratic or
nonlinear global optimization solvers, and their solutions are compared to select the
global optimum solution.

The proposed algorithm in summarized in Table 2.8.

Table 2.8:Multiparametric based algorithm for the solution of B-MIQP problems.

Step 1 Establish integer and continues variable bounds
Step 2 Transform the B-MIQP into a binary B-MIQP problem
Step 3 Recast the lower level as a mp-MIQP, in which the optimization variables of the upper

level problem are considered as parameters
Step 4 Solve the resulting mp-MIQP problem to obtain the optimal solution of the lower level

as explicit functions of the upper level variables
Step 5 Substitute each multiparametric solution into the upper level problem to formulate k

single level MIQP problems
Step 6 Solve all k single level problems using mixed integer quadratic or global algorithms

and compare their solutions to select the exact and global optimum

Remark 2.2. This algorithmachieves exact and global optimal solutionswhenQ1 ≻ 0.
For problem cases where this property does not hold, this algorithm is able to achieve
approximate global optimum solutions.

2.2.1 Numerical examples

Two B-MIQP numerical examples will be solved to illustrate the use of the proposed
algorithm.
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2.2.1.1 Example 4: QP-IQP
Consider the following Type 45 class example taken from [123]:

min
x
(x − 2)2 + (y − 2)2

s. t. min
y

y2

s. t. −2x − 2y ≤ −5
x − y ≤ 1
3x + 2y ≤ 8

x ∈ ℝ, y ∈ {0, 1, 2}

(2.30)

Step 1: Bounds are established for the unbounded continuous variable x (y is al-
ready bounded), resulting to 1

2 ≤ x ≤
8
3 .

Step 2: The problem is reformulated into a 0-1 binary B-MIQP (2.31) by expressing
the integer variable y as a linear function of newbinary variables y1 and y2, y = y1+2y2:

min
x
(x − 2)2 + (y1 + 2y2 − 2)2

s. t. min
y1 ,y2

(y1 + 2y2)2

s. t. −2x − 2y1 − 4y2 ≤ −5
x − y1 − 2y2 ≤ 1
3x + 2y1 + 4y2 ≤ 8

x ∈ ℝ, y1, y2 ∈ {0, 1}2

(2.31)

Step3:The lower level problem is then reformulatedas amp-MIQPproblem (2.32),
by considering the upper level optimization variable, x, as a parameter.

min
y1 ,y2
(y1 + 2y2)2

s. t. −2y1 − 4y2 ≤ 2x − 5
−y1 − 2y2 ≤ −x + 1
2y1 + 4y2 ≤ −3x + 8
1
2
≤ x ≤ 8

3

(2.32)

Step 4: The resultingmp-MIQP problem (2.32) is solved using POP toolbox, result-
ing to the optimal solution presented in Table 2.9.

Step 5: The two solutions were then substituted into the upper level problem, re-
sulting into two single level quadratic programming problems, (2.33) and (2.34), (see

5 See Table 1.4 for the definition of bilevel mixed-integer problem class types.
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Table 2.9: Lower level problem solution of Example 4.

Critical region Definition Objective function Variables

CR1 1.5 ≤ x ≤ 2 1 y1 = 1, y2 = 0
CR2 0.5 ≤ x ≤ 4/3 4 y1 = 0, y2 = 1

Remark 2.1) corresponding to each critical region:

z1 = min
x
(x − 2)2 + 1

s. t. 1.5 ≤ x ≤ 2
(2.33)

z2 = min
x
(x − 2)2

s. t. 0.5 ≤ x ≤ 4/3
(2.34)

Step 6: The resulting problems are convex quadratic programming problems
therefore CPLEX solver was used for their solution (Table 2.10). After comparison the
global solution of the problem was found to be at x = 4/3 and y = 2 with the objective
value of 4/9.

Table 2.10: Solution of the single level problem formulated in Example 4.

Critical region Objective function Variables

CR1 5 x = 2, y = 1
CR2 4/9 x = 4/3, y = 2

2.2.1.2 Example 5: MIQP-MIQP
Consider the following Type 46 class example problem:

min
x1 ,x2 ,y3

4x21 − x
2
2 + 2x2 + x3 + 5y1 + 6y3

s. t. −y1 − y2 − y3 ≤ −1
min
x3 ,y1 ,y2

4x23 + y
2
1 + 5y2 + x2y1 − x2y2 − 5x3 − 15y1 − 16y2

s. t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5
− 8x1 − 4.9x2 − 3.2x3 ≤ 5
3.3x1 + 4.1x2 + 0.02x3 + 4y1 + 4.5y2 + 0.5y3 ≤ 1
− 10 ≤ x1 ≤ 10
− 10 ≤ x2 ≤ 10

x1, x2, x3 ∈ ℝ3, y1, y2, y3 ∈ {0, 1}3

(2.35)

6 See Table 1.4 for the definition of bilevel mixed-integer problem class types.
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Steps 1 and 2: The problem is already bounded and in the form of a binary 0 − 1
B-MIQP problem, therefore, we can directly proceed to Step 3.

Step 3: The lower level problem is reformulated as amp-MIQP problemby consid-
ering the upper level optimization variables that appear in the lower level (x1, x2, y3)
as parameters.

Step 4: The existence of bilinear terms introduces another step for the solution of
this problem, as a z-transformation to eliminate those terms is required. This trans-
formation can be done through POP toolbox, and the resulting mp-MIQP problem is
solved again using POP toolbox and the theory presented in Oberdieck et al. [240],
resulting to the optimal parametric solution presented in Table 2.11 and Figure 2.1.

Figure 2.1: Example 5: Graphical representation of the parametric solution of the mp-MIQP problem
with 12 critical regions.

Step 5: All 12 critical regions that form the parametric solution were then substituted
into the upper level problem, formulating 12 single level MIQP problems correspond-
ing to each critical region.

Step 6: The resulting problems where then solved using CPLEX solver and their
solution is presented in Table 2.12. After the comparison procedure, the global opti-
mum was found to be in critical region 11 with an upper level objective function of
−1.742.
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Table 2.11: Example 5: A part of the multiparametric solution of the lower level problem.

CR Definition Variables

1 0.624x1 + 0.781x2 ≤ 0.198 x3 = −165x1 − 205x2 + 50
−0.627x1 − 0.779x2 ≤ −0.185 y1 = 0
x1 ≤ 10 y2 = 0

2 0.044x1 + 0.999x2 ≤ 4.565 x3 = −2.5x1 − 1.531x2 − 1.563
0.624x1 + 0.781x2 ≤ 0.198 y1 = 0
0.853x1 + 522x2 ≤ −0.959 y2 = 0
−0.6241x1 − 0.7814x2 ≤ 0.57
−x1 ≤ 10
−x2 ≤ 10

3 0.624x1 + 0.781x2 ≤ −0.57 x3 = 1.25
−0.627x1 − 0.779x2 ≤ −0.575 y1 = 0
x1 ≤ 10 y2 = 0

4 −0.853x1 − 0.5223x2 ≤ 0.959 x3 = 1.25
0.627x1 + 0.779x2 ≤ 0.185 y1 = 0
−0.624x1 − 0.781x2 ≤ 0.57 y2 = 0
x1 ≤ 10
−x2 ≤ 10

5 0.624x1 + 0.7814x2 ≤ −0.57 x3 = −2.5x1 − 1.531x2 − 1.563
0.044x1 + 0.999x2 ≤ 4.564 y1 = 1
0.853x1 + 0.522x2 ≤ −0.959 y2 = 0
−0.624x1 − 0.781x2 ≤ 0.666
−x1 ≤ 10
−x2 ≤ 10

n . . . . . .

11 0.624x1 + 0.7814x2 ≤ −1.434 x3 = 1.25
−0.627x1 − 0.779x2 ≤ 1.430 y1 = 0
x1 ≤ 10 y2 = 1

12 0.627x1 + 0.779x2 ≤ −0.670 x3 = 1.25
−0.853x1 − 0.522x2 ≤ 0.959 y1 = 0
−0.624x1 − 0.781x2 ≤ 1.434 y2 = 1
x1 ≤ 10
−x2 ≤ 10

2.3 Mixed-integer bilevel optimization with right-hand side
uncertainty

Thepresence of uncertainty in bilevel problemshas been addressedbefore for the con-
tinuous linear case in Ryu et al. [14] and the continuous quadratic case in Faisca et al.
[99], while extensions that cover both mixed integer linear and quadratic cases have
been addressed in Avraamidou and Pistikopoulos [91]. In this section of the book, we
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Table 2.12: Example 5: Single level solutions.

CR Variables Obj. level 1

1 x1 = 1.283, x2 = −0.771, y3 = 1, x3 = −3.589, y1 = 0, y2 = 0 3.913
2 x1 = −1.328, x2 = 0.331, y3 = 1, x3 = 1.25, y1 = 0, y2 = 0 10.951
3 x1 = 0.565, x2 = −1.193, y3 = 1, x3 = 1.25, y1 = 0, y2 = 0 6.790
4 x1 = 0.563, x2 = −1.179, y3 = 1, x3 = 1.25, y1 = 0, y2 = 0 6.810
5 x1 = −1.180, x2 = 0.090, y3 = 0, x3 = 1.25, y1 = 1, y2 = 0 7.825
6 x1 = 0.544, x2 = −1.298, y3 = 0, x3 = 1.25, y1 = 1, y2 = 0 4.372
7 x1 = 0.542, x2 = −1.285, y3 = 0, x3 = 1.25, y1 = 1, y2 = 0 4.386
8 x1 = 0.530, x2 = −2.702, y3 = 0, x3 = 1.25, y1 = 1, y2 = 1 2.952
9 x1 = −0.002, x2 = −1.834, y3 = 0, x3 = 1.25, y1 = 0, y2 = 1 −1.577

10 x1 = 0.530, x2 = −2.702, y3 = 0, x3 = 1.25, y1 = 1, y2 = 1 2.952
11 x1 = 0.375, x2 = −2.137, y3 = 0, x3 = 1.25, y1 = 0, y2 = 1 −1.742
12 x1 = 0.373, x2 = −2.133, y3 = 0, x3 = 1.25, y1 = 0, y2 = 1 −1.740

will discuss the later case, while also considering the uncertainty to be unstructured
but bounded, and can appear in one or both optimization levels.

We will address the following bilevel programming problem with right-hand side
uncertainty θ:

min
x1 ,y1
(Q1

Tω + Ht1θ + c1)
T
ω + (Qt1θ + ct1)Tθ + cc1

s. t. A1x + B1y ≤ b1 + F1θ

min
x2 ,y2
(Q2

Tω + Ht2θ + c2)
T
ω + (Qt2θ + ct2)Tθ + cc2

s. t. A2x + B2y ≤ b2 + F2θ

x = [xT1 xT2 ]
T
, x ∈ ℝn

y = [yT1 yT2 ]
T
, y ∈ ℤp

ω = [xT yT ]
T

θ ∈ Θ := {θ ∈ ℝq | Mθ ≤ d}

(2.36)

For the solution of this problem, we follow the following steps:
Step 1:Similar to theB-MILPandB-MIQPalgorithms, integer and continuous vari-

able bounds are established for the variables that appear in the lower level problem.
Step 2: Integer variables are transformed into binary 0-1 variables.
Step 3: The lower level problem is transformed into a mp-MIQP or mp-MILP, con-

sidering as parameters both the upper level variables that appear in the lower lever
(x1, y1), and the uncertainty θ.

Step 4: The resulting multiparametric problems are solved using the POP® tool-
box.
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Step 5: Each critical region is substituted into the upper level problem to result
into k single level multiparametric problems, considering the uncertainty θ as param-
eters.

Step 6: The resulting kmultiparametric problems are solved using the POP® tool-
box.

Step 7: All k parametric solutions are combined. For overlapping critical regions,
the exact comparison procedure implemented in the POP® toolbox and presented in
[199] is used to result to the final exact and global parametric solution of the original
bilevel problem.

2.3.1 Numerical example

2.3.1.1 Example 6: mp-MIQP-MILP
Consider the following Type 47 class example with right-hand side uncertainty θ:

min
x1 ,y3

4x12 + x3y3 + 5y1 − 6y3 − θ2 + 2θ

s. t. y1 + y2 + y3 ≤ 1
min
x2 ,y1,2
− x1 − 2x2 − y1 + 5y2 + θ

s. t. 6.4x1 + 2.5x2 ≤ 11.5 − 7.2θ
− 8x1 − 3.2x2 ≤ 5 + 4.9θ
3.3x1 + 0.02x2 + 4y1 + 4.5y2 ≤ 1 − 4.1θ
− 10 ≤ x1 ≤ 10
− 10 ≤ θ ≤ 10

x1, x2 ∈ ℝ2, y1, y2, y3 ∈ {0, 1}2

(2.37)

Steps 1 and 2: The problem is already bounded and in a binary form.
Step 3: The lower level problem is transformed into amp-MILP problem. Both the

upper level variables that appear in the lower level (x1) and uncertainty (θ) are being
treated as parameters for the lower level problem.

Step 4: The problem is then solved using POP toolbox, and yields to the optimal
parametric solution presented in Table 2.13.

Step 5: The solutions obtained for every critical region are then substituted into
the upper level problem to formulate five new single level mp-MIQP problems. More
specifically, the functions of the optimization variables of the lower level, x2, y1 and y2,
in terms of the upper level optimization variables, x1 and θ, are substituted in the up-
per level problem. The definition of each critical region is added to each new single
level problem as a new set of constraints.

7 See Table 1.4 for the definition of bilevel mixed-integer problem class types.
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Table 2.13: Example 6: Multiparametric solution of the lower level problem.

CR Definition Variables

1 −0.624x1 − 0.780θ ≤ −0.175 x2 = −165x1 − 205θ + 50
0.624x1 + 0.781θ ≤ 0.198 y1 = 0
x1 ≤ 10 y2 = 0

2 0.624x1 + 0.781θ ≤ −0.570 x2 = −2.56x1 − 2.88θ + 4.6
−0.624x1 − 0.780θ ≤ 0.594 y1 = 0
x1 ≤ 10 y2 = 0

3 −0.626x1 − 0.780θ ≤ 0.596 x2 = −165x1 − 205θ + 50
0.624x1 + 0.781θ ≤ −0.570 y1 = 1
−0.626x1 − 0.780θ ≤ 0.594 y2 = 0
x1 ≤ 10

4 0.626x1 + 0.780θ ≤ −0.596 x2 = −2.56x1 − 2.88θ + 4.6
0.044x1 + 0.999θ ≤ 4.565 y1 = 1
−10 ≤ x1 ≤ 10 y2 = 0
−θ ≤ 10

5 0.044x1 + 0.999θ ≤ 4.565 x2 = −2.56x1 − 2.88θ + 4.6
0.626x1 + 0.780θ ≤ 0.175 y1 = 0
−0.624x1 − 0.781θ ≤ 0.570 y2 = 0
−10 ≤ x1 ≤ 10
−θ ≤ 10

Step 6: The five resulting single level problems are in the form of mp-MIQP problems,
with the uncertainty θ being a parameter of the single level problems. Therefore, the
POP toolbox was used for their solution. Each critical region formed in Step 4 is now
divided into smaller regions as another parametric programming problem is solved
within the original regions. A summary of the resulting parametric solutions of all five
problems is presented in Table 2.14 and Figure 2.2.

Table 2.14: Example 6: A part of the solutions of the single level mp-MIQPs.

CR Definition Objective

1.1 −4.824 ≤ θ ≤ 7.733 2.136θ2 − 408.010θ − 8.154
1.2 7.733 ≤ θ ≤ 7.812 −θ2 − 203θ − 1406

… … …

5.1 0.290 ≤ θ ≤ 1.241 −θ2 − 0.880θ − 2.219
5.2 −4.824 ≤ θ ≤ 0.290 2.096θ2 − 2.674θ − 1.959
5.3 −4.882 ≤ θ ≤ −4.824 0.001θ2 + 0.0092θ + 0.0002
5.4 1.2407 ≤ θ ≤ 8.7160 2.136θ2 − 8.661θ − 2.607
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Figure 2.2: Example 6: Graphical representation of the multiparametric solution of the single level
mp-MIQP problems.

Step 7: As a last step, the solutions generated from each critical region are compared
and the parametric solutions resulting to theminimumobjective through the paramet-
ric space are chosen as the final solution of the mixed integer bi-level programming
problem with uncertainty. Table 2.15 summarizes the final solution of this problem.

Table 2.15: Example 6: Final solution.

CR Definition Objective

4.1 −5.014 ≤ θ ≤ −4.882 0.011θ2 + 0.009θ + 0.0002
3.1 −4.882 ≤ θ ≤ −4.840 2.136θ2 − 2.575θ + 6.669
5.3 −4.840 ≤ θ ≤ −4.824 0.011θ2 + 0.009θ + 0.0002
5.2 −4.824 ≤ θ ≤ −0.015 2.096θ2 − 2.674θ − 1.959
1.1 −0.015 ≤ θ ≤ 7.733 2.136θ2 − 408.010θ − 8.154
1.2 7.733 ≤ θ ≤ 7.812 −θ2 − 203θ − 1406
3.4 7.812 ≤ θ ≤ 8.799 2.096θ2 − 310.374θ + 4.065
3.3 8.799 ≤ θ ≤ 8.802 −θ2 − 203θ − 701
4.2 8.802 ≤ θ ≤ 10 −θ2 − 0.880θ − 1.095

2.3.2 Conclusion

This chapter discussed algorithms for the exact global solution of mixed-integer lin-
ear and quadratic bilevel problems with integer and continuous variables in both op-
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timization levels. The extension to bilevel problems with right-hand side uncertainty
was also discussed. The algorithms presented utilize multiparametric programming
to solve the lower level problem as a function of the upper level variables.

The next chapter will discuss the extension of the presented approaches to ad-
dressmore challengingmultilevel optimization problems that includemore optimiza-
tion levels, nonlinear terms or multiple optimization problems in a single level.
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3 Multilevel optimization
This chapter will discuss the extension of the algorithms presented in Chapter 2, to
addressmore challengingmultilevel optimization problems that include (i)more opti-
mization levels, (ii) nonlinear terms, or (iii) multiple optimization problems in a single
optimization level.

The first part of this chapter focuses on the solution of mixed-integer linear tri-
level optimization problems, while the second part expands the presented approach
to address mixed-integer quadratic trilevel optimization problems. The third part ex-
tents even more to address certain classes of nonlinear mixed-integer multilevel opti-
mization problems, while the last part considers the case of multiple followers (multi-
follower optimization). All algorithms presented in the chapter are explained in detail
through step-by-step numerical examples.

3.1 Mixed-integer linear trilevel optimization

Whenconsidering a trilevel problem, the feasible set of the third-level problem is para-
metric in terms of the second- and first-level decision variables, and the second-level
problem is parametric in terms of the first-level variables.

Faisca et al. [144] presented an algorithm based onmultiparametric programming
that can address continuous multilevel programming problems. The approach that
we will focus on here is based upon the bilevel mixed-integer linear and quadratic
algorithms presented in Chapter 2 [243].

The solutionmethodology will be first introduced through the general form of the
trilevelmixed-integer linear programming (T-MILP) problem (3.1), and then illustrated
through 2 numerical examples (Section 3.1.1).

min
x1 ,y1

z(x, y) = c1T x + d1
T y

s. t. A1x + B1y ≤ b1
min
x2 ,y2

u(x, y) = c2T x + d2
T y

s. t. A2x + B2y ≤ b2
min
x3 ,y3

v(x, y) = c3T x + d3
T y

s. t. A3x + B3y ≤ b3

x = [xT1 xT2 xT3 ]
T
, y = [yT1 yT2 yT3 ]

T

x ∈ ℝn, y ∈ ℤp

(3.1)

https://doi.org/10.1515/9783110760316-003
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where ci ∈ ℝn, di ∈ ℝp, Ai ∈ ℝmi×n, Bi ∈ ℝmi×p, bi ∈ ℝmi , x1 and x2 are compact
(closed and bounded), x is a vector of the continuous problem variables and y is a vec-
tor of the discrete problem variables. The subscript numbers (1, 2 and 3) indicate the
optimization level the constant coefficient matrices and the decision variables belong
to.

The first step of themethodology is to establish bounds for all the integer and con-
tinuous variables, and transform the T-MILP problem into a binary T-MILP problem
by expressing integer variables in terms of binary 0-1 variables, following the method
presented in Floudas [241] Section 6.2.1, Remark 1.

As a second step, the third-level problem of the binary T-MILP, is transformed
into a multiparametric mixed-integer linear programming (mp-MILP) problem (3.2),
by considering the optimization variables of the first- and second-level problems,
x1, y1, x2, and y2, as parameters.

min
x3 ,y3

v(x, y) = c3Tx + d3
Ty

s. t. A3x + B3y ≤ b3
xL ≤ x ≤ xU

(3.2)

The solution of (3.2) using multiparametric programming theory for mp-MILP
problems [198] and the theory for binary parameters in multiparametric program-
ming problems [240] embedded in POP® toolbox [242], provides the complete profile
of optimal solutions of the third-level problem as explicit functions of the decision
variables of the first- and second-level problems (3.3):

x3 =

{{{{{{{{
{{{{{{{{
{

ξ1 = p1 + q1[xT1 y
T
1 x

T
2 y

T
2 ]

T if H1[xT1 y
T
1 x

T
2 y

T
2 ]

T ≤ h1, y3 = r1
ξ2 = p2 + q2[xT1 y

T
1 x

T
2 y

T
2 ]

T if H2[xT1 y
T
1 x

T
2 y

T
2 ]

T ≤ h2, y3 = r2
...

...

ξk = pk + qk[xT1 y
T
1 x

T
2 y

T
2 ]

T if Hk[xT1 y
T
1 x

T
2 y

T
2 ]

T ≤ hk , y3 = rk

(3.3)

where ξi is the affine function of the third level continuous variables in terms of
the first- and second-level decision variables, Hi[xT1 yT1 xT2 yT2 ]

T ≤ hi, y3 = ri is re-
ferred to as critical region i, CRi and k denotes the number of computed critical
regions.

The next step is to recast the second-level problem into k mp-MILP problems
(3.4), by considering the optimization variables of the first-level problem, x1, y1, as
parameters, substituting in the corresponding functions ξi of x3 and y3 and adding
the corresponding critical region definitions as a new set of constraints for each prob-
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lem:

u1 = min
x2 ,y2

c2Tx + d2
Ty

s. t. A2x + B2y ≤ b2
H1[xT1 yT1 xT2 yT2 ]

T ≤ h1
x3 = ξ1, y3 = r1

u2 = min
x2 ,y2

c2Tx + d2
Ty

s. t. A2x + B2y ≤ b2
H2[xT1 yT1 xT2 yT2 ]

T
≤ h2

x3 = ξ2, y3 = r2
...

uk = min
x2 ,y2

c2Tx + d2
Ty

s. t. A2x + B2y ≤ b2
Hk[xT1 yT1 xT2 yT2 ]

T
≤ hk

x3 = ξk , y3 = rk

(3.4)

The above multiparametric problems (3.4) are independent of each other, there-
fore, it is possible to use parallel programming to solve them simultaneously. This
problems are again solved using POP® toolbox, providing the complete profile of
optimal solutions of the second-level problem constraint by the optimality of the
third-level problem, as explicit functions of the decision variables of the first-level
problem (3.5).

x2 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

ψ1,1 = m1,1 + n1,1[xT1 y
T
1 ]

T if G1,1[xT1 y
T
1 ]

T ≤ g1,1, y2 = s1,1
ψ1,2 = m1,2 + n1,2[xT1 y

T
1 ]

T if G1,2[xT1 y
T
1 ]

T ≤ g1,2, y2 = s1,2
...

...
ψ1,l1 = m1,l1 + n1,l1 [x

T
1 y

T
1 ]

T if G1,l1 [x
T
1 y

T
1 ]

T ≤ g1,l1 , y2 = s1,l1
ψ2,1 = m2,1 + n2,1[xT1 y

T
1 ]

T if G2,1[xT1 y
T
1 ]

T ≤ g2,1, y2 = s2,1
ψ2,2 = m2,2 + n2,2[xT1 y

T
1 ]

T if G2,2[xT1 y
T
1 ]

T ≤ g2,2, y2 = s2,2
...

...
ψ2,l2 = m2,l2 + n2,l2 [x

T
1 y

T
1 ]

T if G2,l2 [x
T
1 y

T
1 ]

T ≤ g2,l2 , y2 = s2,l2
...

...
ψk,1 = mk,1 + nk,1[xT1 y

T
1 ]

T if Gk,1[xT1 y
T
1 ]

T ≤ gk,1, y2 = sk,1
ψk,2 = mk,2 + nk,2[xT1 y

T
1 ]

T if Gk,2[xT1 y
T
1 ]

T ≤ gk,2, y2 = sk,2
...

...
ψk,lk = mk,lk + nk,lk [x

T
1 y

T
1 ]

T if Gk,lk [x
T
1 y

T
1 ]

T ≤ gk,lk , y2 = sk,lk

(3.5)
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where Gi,j[xT1 y
T
1 ]

T ≤ gi,j, y2 = si,j is referred to as the critical region j that resulted from
the critical region i of the multiparametric solution of the third-level problem (CRi,j),
ψi,j is the explicit affine function of the second-level continuous variables in terms
of the first-level decision variables, in CRi,j, and li denotes the number of computed
second-level critical regions from third-level critical region i.

The next step of the algorithm is to transform the first-level problem into single-
level deterministic mixed-integer programming problems (3.6) corresponding to each
CRi,j. This can be done by substituting into the first-level problem the affine functions
expressing third-level decision variables in terms of second- and first-level decision
variables, ξi, and the affine functions expressing second-level decision variables in
terms of first-level decision variables, ψi,j, eliminating in this way all second- and
third-level variables form the first-level problem. Moreover, the critical region defi-
nitions are added to the corresponding single-level problems as an additional set of
constraints:

z1,1 = min
x1 ,y1

c1Tx + d1
Ty

s. t. A1x + B1y ≤ b1
G1,1[xT1 yT1 ]

T
≤ g1,1

x2 = ψ1,1, y2 = s1,1
x3 = ξ1, y3 = r1

z1,2 = min
x1 ,y1

c1Tx + d1
Ty

s. t. A1x + B1y ≤ b1
G1,2[xT1 yT1 ]

T
≤ g1,2

x2 = ψ1,2, y2 = s1,2
x3 = ξ1, y3 = r1
...

zk,lk = min
x1 ,y1

c1Tx + d1
Ty

s. t. A1x + B1y ≤ b1
Gk,lk [x

T
1 yT1 ]

T
≤ gk,lk

x2 = ψk,lk , y2 = sk,lk
x3 = ξk , y3 = rk

(3.6)

The single-level deterministic programming problems (3.6) are, similar to prob-
lems (3.4), independent of each other, making it possible to use parallel programming
to solve them simultaneously.

The single-level MILP problems (3.6) are solved using CPLEX® and their solutions
correspond to different local optimal solutions of the original trilevel problem.
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The final step of the algorithm is a comparison procedure to select the global op-
timum solution of the trilevel problem. This procedure is performed by solving the
mixed-integer linear programming problem (3.7).

z∗ = min
α,γ

α

s. t. α = ∑
i,j
γi,jzi,j [C1]

∑
i,j
γi,j = 1 [C2]

γi,jui,j ≤ γi,jup,q ∀i, j, p ̸= i, q [C3]

γi,j ∈ {0, 1}

(3.7)

where z∗ is the exact global optimum of the original trilevel MILP programming prob-
lem, γi,j are binary variables corresponding to each CRi,j, zi,j are the objective function
values of the first-level problem obtained when solving problems (3.6), and ui are the
objective function values of the second-level problem obtained when solving prob-
lems (3.4). Constraint [C2] makes sure that only one γi,j is equal to 1 and the rest are
equal to zero (i. e., only one solution is selected), while constraint [C3]makes sure that
the selected solution results to an optimal solution in the second level. When γi,j = 1,
then the optimal solution lies in CRi,j and CRi.

The discussed algorithm is summarized in 8 simple steps in Table 3.1.

Table 3.1:Multiparametric based algorithm for the solution of T-MILP problems.

Step 1 Establish integer and continuous variable bounds, and transform the T-MILP into a
binary T-MILP

Step 2 Recast the third level problem as a mp-MILP, in which the optimization variables of the
second- and first-level problems are considered as parameters

Step 3 Solve the resulting mp-MILP problem to obtain the optimal solution of the lower level
problem as explicit functions of the second- and first- level decision variables

Step 4 Substitute each multiparametric solution into the second-level problem to formulate k
mp-MILP problems, considering the first-level decision variables as parameters

Step 5 Solve the resulting k mp-MILP problems to obtain the optimal solution of the
second-level problem as explicit functions of the first-level decision variables

Step 6 Substitute each multiparametric solution into the first-level problem to formulate
single-level MILP problems

Step 7 Solve all single-level problems using CPLEX®MILP solver
Step 8 Solve the comparison optimization problem (2.6) to select the exact and global

optimum solution
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3.1.1 Numerical examples

Two numerical examples are presented to illustrate the proposed algorithm. All com-
putations were carried out on a 2-core machine with an Intel Core i7 at 3.1 GHz and 16
GB of RAM, MATLAB R2016a, and IBM ILOG CPLEX Optimization Studio 12.6.3.

3.1.1.1 Example 7: Trilevel continuous linear programming problem
Consider the following trilevel continuous linear programming problem (3.8) from
Anandalingam [244] (also illustrated and used in other publications including [137,
145, 245]):

min
x1

z = −7x1 − 3x2 + 4x3
s. t. min

x2
u = −x2

s. t. min
x3

v = −x3
s. t. x1 + x2 + x3 ≤ 3

x1 + x2 − x3 ≤ 1
x1 + x2 + x3 ≥ 1
− x1 + x2 + x3 ≤ 1
x3 ≤ 0.5
x1, x2, x3 ≥ 0

x1, x2, x3 ∈ ℝ3

(3.8)

Step 1: Continuous variable bounds are established, resulting to the inequalities
in (3.9):

0 ≤ x1 ≤ 1.5
0 ≤ x2 ≤ 1
0 ≤ x3 ≤ 0.5

(3.9)

Step 2: The third-level problem is reformulated as a mp-LP (3.10), in which the
decision variable of the first-level problem, x1, and the decision variable of the second-
level problem, x2, are considered as parameters:

min
x3

v = −x3
s. t. x3 ≤ 3 − x1 − x2
−x3 ≤ 1 − x1 − x2
−x3 ≤ −1 + x1 + x2
x3 ≤ 1 + x1 − x2
0 ≤ x1 ≤ 1.5
0 ≤ x2 ≤ 1
0 ≤ x3 ≤ 0.5

(3.10)
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Step 3: Problem (3.10) is solved using POP® toolbox [242] and yields the optimal
parametric solution given in Table 3.2 and illustrated in Figures 3.1 and 3.2.

Table 3.2: Example 1: Multiparametric solution of the third level mp-LP problem.

Critical region Definition 3rd level objective 3rd level variables

CR1 x1 ≥ 0 v = −x1 + x2 − 1 x3 = x1 − x2 + 1
x2 ≤ 1
x1 − x2 ≤ −0.5

CR2 x2 ≥ 0 v = −0.5 x3 = 0.5
x1 + x2 ≤ 1.5
−x1 − x2 ≤ −0.5
−x1 + x2 ≤ 0.5

Figure 3.1: Example 7: Graphical representation of the critical regions forming the multiparametric
solution of the third level mp-LP problem.

 EBSCOhost - printed on 2/14/2023 6:52 AM via . All use subject to https://www.ebsco.com/terms-of-use



3.1 Mixed-integer linear trilevel optimization | 59

Figure 3.2: Example 7: Graphical representation of the objective function of level 1 as a function of
the parameters x1 and x2.

Step 4: The solution in Table 3.2 is then substituted into the second-level problem to
formulate two new mp-LP problems ((3.11) and (3.12)) corresponding to each critical
region, by considering thedecision variable of thefirst level, x1, as aparameter, adding
the critical region definition as a new set of constraints and substituting x3 with its
corresponding affine function in terms of x1 and x2:

min
x2

u1 = −x2
s. t. 0 ≤ x1

x2 ≤ 1
−x2 ≤ −0.5 − x1

(3.11)

min
x2

u2 = −x2
s. t. 0 ≤ x2

x1 + x2 ≤ 1.5
−x1 − x2 ≤ −0.5
−x1 + x2 ≤ 0.5

(3.12)

Step 5: The twomp-LP problems (3.11) and (3.12) are then solved using POP® tool-
box [242] and resulted to the parametric solution given in Table 3.3 and illustrated in
Figure 3.3.
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Table 3.3: Example 7: Multiparametric solution of the second-level problem.

Critical region Definition 2nd level objective 2nd level variables

CR1,1 x1 ≥ 0 u1,1 = −1 x2 = 1
x1 ≤ 0.5

CR2,1 x1 ≥ 0 u2,1 = −x1 − 0.5 x2 = x1 + 0.5
x2 ≤ 0.5

CR2,2 x1 ≥ 0.5 u2,2 = x1 − 1.5 x2 = −x1 + 1.5
x1 ≤ 1.5

Figure 3.3: Example 7: Graphical representation of the parametric solution of the two second- level
mp-LP problems, and the deterministic solution of the three first-level LP problems.

Step 6: The parametric solutions obtained (Table 3.3) are then used to formulate three
single-level deterministic linear programming problems ((3.13), (3.14) and (3.15)), each
corresponding to one critical region. The critical region definition is added to the first-
level problem as a new set of constraints and the variables x2 and x3 are substituted
by their derived affine expressions, resulting into three linear programming problems
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that involve only x1:

min
x1

z1,1 = −7x1 − 3(1) + 4(x1)2

s. t. 0 ≤ x1 ≤ 0.5
(3.13)

min
x1

z2,1 = −7x1 − 3(x1 + 0.5) + 4(0.5)

s. t. 0 ≤ x1 ≤ 0.5
(3.14)

min
x1

z2,2 = −7x1 − 3(−x1 + 1.5) + 4(0.5)

s. t. 0.5 ≤ x1 ≤ 1.5
(3.15)

Step 7: Problems (3.13) to (3.15) are solved using CPLEX® linear programming
solver, and the resulting solutions are presented in Table 3.4 and illustrated in Fig-
ure 3.3.

Table 3.4: Example 7: First-level problem solutions.

Critical region Objectives Decision variables

CR1,1 z1,1 = −4.5, u1,1 = −1, v = −0.5 x1 = 0.5, x2 = 1, x3 = 0.5
CR2,1 z2,1 = −4.5, u2,1 = −1, v = −0.5 x1 = 0.5, x2 = 1, x3 = 0.5
CR2,2 z2,2 = −8.5, u2,2 = 0, v = −0.5 x1 = 1.5, x2 = 0, x3 = 0.5

Step 8: Using the information from Tables 3.2, 3.3 and 3.4, the comparison optimiza-
tion problem (3.7) is solved to select the exact and global optimumof the problem, that
was found to be lying in CR2,2. The optimal decision variables are x1 = 1.5, x2 = 0 and
x3 = 0.5, with the first level objective z2,2 = −8.5, the second-level objective u2,2 = 0,
and the third-level objective v = −0.5.

The computational performance of the algorithm for this example is presented in
Table 3.5.

Table 3.5: Example 7 computational performance.

Problem Problem type Number of problems CPU time (s)

Third level mp-LP 1 0.061992
Second level mp-LP 2 0.094649
First level LP 3 0.029097
Comparison MILP 1 0.017443
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3.1.1.2 Example 8: Trilevel mixed-integer linear programming problem
Consider the following T-MILP problem (3.16) of class Type 3, (i. e., both integer and
continuous variables appear in all optimization levels):

min
x1 ,y1

z = −7x1 + y1 − 2x2

s. t. min
x2 ,y2

u = −x1 − 3y1 − x2 − 3y2 + x3 + 5y3 + 2y4

s. t. min
x3 ,y3 ,y4

v = 2x1 + y1 + 2x2 + y2 − 4x3 + 2y3 + 10y4

s. t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5
− 8x1 − 4.9x2 − 3.2x3 ≤ 5
3.3x1 + 4.1x2 + 0.02x3 + 0.2y1 + 0.8y2 + 4y3 + 4.5y4 ≤ 1
y1 + y2 + y3 + y4 ≥ 1
− 10 ≤ x1, x2 ≤ 10
x1, x2, x3 ∈ ℝ3, y1, y2, y3, y4 ∈ {0, 1}4

(3.16)

Step 1:Both binary and continuous variables are bounded, therefore, we can con-
tinue to Step 2.

Step 2: The third-level problem is reformulated as a mp-MILP problem (3.17), in
which both continuous and binary decision variables of the first-level problem, x1, y1,
and the second-level problem, x2, y2, are considered as parameters:

min
x3 ,y3 ,y4

v = 2x1 + y1 + 2x2 + y2 − 4x3 + 2y3 + 10y4

s. t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5
−8x1 − 4.9x2 − 3.2x3 ≤ 5
3.3x1 + 4.1x2 + 0.02x3 + 0.2y1 + 0.8y2 + 4y3 + 4.5y4 ≤ 1
y1 + y2 + y3 + y4 ≥ 1
−10 ≤ x1, x2 ≤ 10
x1, x2, x3 ∈ ℝ3, y1, y2, y3, y4 ∈ {0, 1}4

(3.17)

Step 3: Problem (3.17) is solved using POP® toolbox [242] and yield the optimal
multiparametric solution presented in Table 3.6.

Step 4: The multiparametric solution in Table 3.6 is substituted into the second-
level problem, to formulate 6 new mp-MILP problems, each corresponding to a crit-
ical region of the third-level solution. The decision variables of the first- level prob-
lem, both continuous and binary (x1, y1), are considered as parameters, the critical
region definitions are added as a new set of constraints and the explicit function of
the third-level variables (x3, y3, y4) in terms of the second- and first- level variables are
substituted in the resulting mp-MILP problem. The reformulated second-level prob-
lem corresponding to critical region CR1 is presented as (3.18). Similar mp-MILPs are
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Table 3.6: Example 8: multiparametric solution of the third-level problem.

CR Definition 3rd level obj. 3rd level var.

CR1 −y1 − y2 ≤ −1
0.0444x1 + 0.999x2 ≤ 4.5645
0.6187x1 + 0.0381y1 + 0.7698x2
+ 0.1523y2 ≤ −0.5888
−10 ≤ x1 ≤ 10
−x2 ≤ 10
y1, y2 ∈ {0,1}

v =12.24x1 + y1
+ 13.52x2 + y2 − 18.4

x3 = −2.56x1 − 2.88x2
+ 4.6

y3 = 0
y4 = 0

CR2 y1 + y2 ≤ 1
0.0444x1 + 0.999x2 ≤ 4.5645
0.6187x1 + 0.0381y1 + 0.7698x2
+ 0.1523y2 ≤ −0.5888
−10 ≤ x1 ≤ 10
−x2 ≤ 10
y1, y2 ∈ {0,1}

v =12.24x1 + y1
+ 13.52x2 + y2 − 16.4

x3 = −2.56x1 − 2.88x2
+ 4.6

y3 = 1
y4 = 0

CR3 −y1 − y2 ≤ −1
0.6164x1 + 0.0377y1 + 0.7718x2
+ 0.1517y2 ≤ −0.5630
−0.6187x1 − 0.0381y1 − 0.7698x2
− 0.1523y2 ≤ 0.5888

x1 ≤ 10
y1, y2 ∈ {0,1}

v =12.24x1 + y1
+ 13.52x2 + y2 − 18.4

x3 = −2.56x1 − 2.88x2
+ 4.6

y3 = 0
y4 = 0

CR4 y1 + y2 ≤ 1
0.6164x1 + 0.0377y1 + 0.7718x2
+ 0.1517y2 ≤ −0.5630
−0.6187x1 − 0.0381y1 − 0.7698x2
− 0.1523y2 ≤ 0.5888

x1 ≤ 10
y1, y2 ∈ {0,1}

v =662x1 + 41y1 + 822x2
+ 161y2 + 602

x3 = −165x1 − 10y1
− 205x2 − 40y2
− 150

y3 = 1
y4 = 0

CR5 −y1 − y2 ≤ −1
−0.6164x1 − 0.0377y1 − 0.7718x2
− 0.1517y2 ≤ 0.5630

0.6187x1 + 0.0381y1 + 0.7698x2
+ 0.1523y2 ≤ 0.1729

0.0444x1 + 0.999x2 ≤ 4.5645
x1 ≤ 10
y1, y2 ∈ {0,1}

v =12.24x1 + y1 + 13.52x2
+ y2 − 18.4

x3 = −2.56x1 − 2.88x2
+ 4.6

y3 = 0
y4 = 0

CR6 −y1 − y2 ≤ −1
0.6164x1 + 0.0377y1 + 0.7718x2
+ 0.1517y2 ≤ 0.1956
−0.6187x1 − 0.0381y1 − 0.7698x2
− 0.1523y2 ≤ −0.1729

x1 ≤ 10
y1, y2 ∈ {0,1}

v =662x1 + 41y1 + 822x2
+ 161y2 − 200

x3 = −165x1 − 10y1
− 205x2 − 40y2
+ 50

y3 = 0
y4 = 0
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formulated for the rest of the critical regions of the third-level problem:

min
x2 ,y2

u1 = −x1 − 3y1 − x2 − 3y2 + (−2.56x1 − 2.88x2 + 4.6) + 5(0) + 2(0)

s. t. −y1 − y2 ≤ −1
0.0444x1 + 0.999x2 ≤ 4.5645
0.6187x1 + 0.0381y1 + 0.7698x2 + 0.1523y2 ≤ −0.5888
−10 ≤ x1 ≤ 10
−x2 ≤ 10
y1, y2 ∈ {0, 1}2

(3.18)

Step 5: The sixmp-MILP problems created in Step 4 are independent of each other
and can be solved simultaneously. They are again solved using the POP® toolbox
[242], resulting into nine critical regions. Their multiparametric solution is presented
in Table 3.7.

Step 6: The parametric solutions of the second-level problem obtained (Table 3.7)
are then used to formulate nine single-level deterministic MILP problems, as reformu-
lations of the original trilevel problem. The critical region definitions are added as a
new set of constraints to the first-level problem. Also, the second- and first-level vari-
ables, x2, y2, x3, y3, y4, are substituted by their derived affine functions in terms of the
first-level variables, resulting into deterministic MILP problems containing only first-
level variables, x1, y1. The resulting deterministic problems are independent of each
other and canbe solved simultaneously. The single-level problems resulting fromCR1,1
(3.19) and CR6,1 (3.20) are presented below:

min
x1 ,y1

z1,1 = −7x1 + y1 − 2(−0.0445x1 − 4.5690)

s. t. 0.9979x1 + 0.065y1 ≤ −7.2710
−x1 ≤ 10
y1 ∈ {0, 1}

(3.19)

min
x1 ,y1

z6,1 = −7x1 + y1 − 2(−0.7986x1 − 0.0491y1 + 0.0568)

s. t. −0.9979x1 − 0.065y1 ≤ 5.9704
x1 ≤ 10
y1 ∈ {0, 1}

(3.20)

Step 7: The nine deterministic problems are solved using CPLEX® mixed-integer
linear programming solver. The resulting solutions are presented in Table 3.8.

Step 8: Using the information from Tables 3.6, 3.7 and 3.8, the comparison opti-
mization problem (3.7) is solved to select the exact and global optimum of the trilevel
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Table 3.7: Example 8: Multiparametric solution of the second-level problem.

CR Definition 2nd level objective 2nd level var.

CR1,1 0.9979x1
+ 0.065y1 ≤ −7.2710
−x1 ≤ 10
y1 ∈ {0,1}

u1,1 =−3.3874x1
− 3y1 − 16.1279

x2 = −0.0445x1
− 4.5690

y2 = 1

CR1,2 −0.9979x1
− 0.065y1 ≤ 7.2710

x1 ≤ 10
y1 ∈ {0,1}

u1,2 =−0.4417x1
− 2.8080y1 − 5.3356

x2 = −0.8037x1
− 0.0495y1 − 0.9628

y2 = 1

CR2,1 0.9979x1
+ 0.065y1 ≤ −7.0109
−x1 ≤ 10
y1 ∈ {0,1}

u2,1 =−3.3874x1
− 3y1 − 8.1279

x2 = −0.0445x1
− 4.5690

y2 = 0

CR2,2 −0.9979x1
− 0.065y1 ≤ 7.0109

x1 ≤ 10
y1 ∈ {0,1}

u2,2 =0.5399x1
− 3.3780y1 − 12.5959

x2 = −0.8037x1
− 0.0495y1 − 0.7649

y2 = 0

CR3,1 −0.9979x1
− 0.065y1 ≤ 7.2710

x1 ≤ 10
y1 ∈ {0,1}

u3,1 =0.4612x1
− 2.8093y1 + 5.1934

x2 = −0.7986x1
− 0.0491y1 − 0.9261

y2 = 1

CR4,1 −0.9979x1
− 0.065y1 ≤ 7.0109

x1 ≤ 10
y1 ∈ {0,1}

u4,1 =−1.4784x1
− 2.8756y1 + 5.2841

x2 = −0.7986x1
− 0.0491y1 − 0.7295

y2 = 0

CR5,1 0.9979x1
−0.065y1 ≤ −5.9704
−0.9979x1
− 0.065y1 ≤ 7.2710

y1 ∈ {0,1}

u5,1 =−3.3874x1
− 3y1 − 16.1279

x2 = −0.0445x1
4.5690y2 = 1

CR5,2 −0.9979x1
− 0.065y1 ≤ 5.9704

x1 ≤ 10
y1 ∈ {0,1}

u5,2 =−0.4417x1
− 2.8080y1 + 1.4963

x2 = −0.8037x1
− 0.0495y1 + 0.0267

y2 = 1

CR6,1 −0.9979x1
− 0.065y1 ≤ 5.9704

x1 ≤ 10
y1 ∈ {0,1}

u6,1 =−1.4784x1
− 2.8756y1 − 4.7063

x2 = −0.7986x1
− 0.0491y1 + 0.0568

y2 = 1

problem. The global optimum lies in CR6,1 and the optimal decision variables are x1 =
10, y1 = 0, x2 = −7.9297, y2 = 1, x3 = −14.4202, y3 = 0 and y4 = 0.
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Table 3.8: Example 8: First-level problem solutions.

CR Objectives Decision variables

CR1,1 z1,1 = 41.2188, u1,1 = 8.5542, x1 = −7.2864, y1 = 0, x2 = 4.8932
v = −40.4303 y2 = 1, x3 = 9.1609, y3 = 0, y4 = 0

CR1,2 z1,2 = −52.0008, u1,2 = 0.9185, x1 = 10, y1 = 0, x2 = −8.9996
v = −16.6746 y2 = 1, x3 = 4.9189, y3 = 0, y4 = 0

CR2,1 z2,1 = 39.4173, u2,1 = 15.6712, x1 = −7.0258, y1 = 0, x2 = 4.8816
v = −36.3964 y2 = 0, x3 = 8.5270, y3 = 1, y4 = 0

CR2,2 z2,2 = −52.3966, u2,2 = 8.1506, x1 = 10, y1 = 0, x2 = −8.8017
v = −12.9990 y2 = 0, x3 = 4.3489, y3 = 1, y4 = 0

CR3,1 z3,1 = −52.1747, u3,1 = 0.5809 x1 = 10, y1 = 0, x2 = −8.9126
v = −15.4985 y2 = 1, x3 = 4.6683, y3 = 0, y4 = 0

CR4,1 z4,1 = −52.5680, u4,1 = −9.5001 x1 = 10, y1 = 0, x2 = −8.7160
v = 57.4323 y2 = 0, x3 = −13.2161, y3 = 1, y4 = 0

CR5,1 z5,1 = 32.2112, u5,1 = 4.1392 x1 = −5.9831, y1 = 0, x2 = 4.8352
v = −25.2609 y2 = 1, x3 = −14.4202, y3 = 0, y4 = 0

CR5,2 z5,2 = −53.9798, u5,2 = −2.9208 x1 = 10, y1 = 0, x2 = −8.0101
v = −3.2965 y2 = 1, x3 = 2.0691, y3 = 0, y4 = 0

CR6,1 z6,1 = −54.1407, u6,1 = −19.4906 x1 = 10, y1 = 0, x2 = −7.9297
v = 62.8215 y2 = 1, x3 = −14.4202, y3 = 0, y4 = 0

The computational performance of the algorithm for this example is presented in Ta-
ble 3.9.

Table 3.9: Example 2 computational performance.

Problem Problem type Number of problems CPU time (s)

Third Level mp-MILP 1 1.159315
Second Level mp-MILP 6 0.912661
First Level MILP 9 0.152264
Comparison ILP 1 0.070477

3.2 Mixed-integer quadratic trilevel optimization

The algorithm presented in the previous section can be extended to cover problems
where the objective functions of each decision level can have quadratic terms. The
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general form of the class of problems we tackle here is presented below:

min
x1 ,y1

xT1 Q1x1 + cT1 ω + cc1
s. t. A1x + E1y ≤ b1

min
x2 ,y2
[xT1 xT2 ]Q2[xT1 xT2 ]

T + cT2ω + cc2
s. t. A2x + E2y ≤ b2

min
x3 ,y3

ωTQ3ω + cT3ω + cc3

s. t. A3x + E3y ≤ b3
x ∈ ℝn, y ∈ {0, 1}m

x = [xT1 xT2 xT3 ]
T
, y = [yT1 yT2 yT3 ]

T
, ω = [xT1 yT1 xT2 yT2 xT3 yT3 ]

T

(3.21)

where ω is a vector of all decision variables of all decision levels, xi are continuous
and yi binary decision variables of optimization level i, Qi ≻ 0, ci and cci are constant
coefficient matrices in the objective function of optimization level i, Ai,Ei are constant
coefficient matrices multiplying decision variables of level i in the constraint set, and
b is a constant value vector.

This algorithm follows the same methodology as the T-MILP algorithm presented
in the previous section. It is based on a recently developed multiparametric mixed-
integer quadratic programming algorithm [199]. The algorithm is summarized in 8
steps in Table 3.10, and then illustrated through a numerical example.

Table 3.10:Multiparametric based algorithm for the solution of T-MILP problems.

Step 1 Establish integer and continuous variable bounds, and transform the T-MIQP into a
binary T-MIQP

Step 2 Recast the third-level problem as a mp-MIQP, in which the optimization variables of
the second- and first-level problems are considered as parameters

Step 3 Solve the resulting mp-MIQP problem to obtain the optimal solution of the lower level
problem as explicit functions of the second- and first-level decision variables

Step 4 Substitute each multiparametric solution into the second-level problem to formulate k
mp-MIQP problems, considering the first-level decision variables as parameters

Step 5 Solve the resulting k mp-MIQP problems to obtain the optimal solution of the
second-level problem as explicit functions of the first-level decision variables

Step 6 Substitute each multiparametric solution into the first-level problem to formulate
single-level MIQP problems

Step 7 Solve all single-level problems using CPLEX®MIQP solver
Step 8 Solve the comparison optimization problem (3.22) to select the exact and global

optimum solution

Remark 3.1. Clusters of solutions (overlapping critical regions)might appear for some
critical regions due to the existence of binary variables. The exact solution would re-
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quire extra computational time for a comparison procedure. For the case of mp-MIQP
problems, this could also result into nonconvex regions that would be difficult to han-
dle in the following steps. A comparison procedure at the end of this algorithm is com-
putationally much more efficient.

The comparison optimization problem for T-MIQP problems is presented below:

z∗ = min
α,γ

α

s. t. α = ∑
i,j
γi,jzi,j [c1]

∑
i,j
γi,j = 1 [c2]

γi,jui,j ≤ γi,jup,q ∀i, j, p ̸= i, q [c3]
γi,jvi ≤ γi,jvr ∀i, j, r ̸= i [c4]
γi,j ∈ {0, 1}

(3.22)

where z∗ is the exact global optimum of the original trilevel MIQP programming prob-
lem, γi,j are binary variables corresponding to each CRi,j, zi,j are the objective function
values obtained when solving problems in Step 7, ui are the objective function values
obtained when solving problems in Step 5, and vi are the objective function values ob-
tained when solving problems in Step 3. Constraint [c2]makes sure that only one γi,j is
equal to 1 and the rest are equal to zero (i. e., only one solution is selected), constraint
[c3]makes sure that the selected solution results to an optimal solution in the second
level, and constraint [c4] makes sure that the selected solution results to an optimal
solution in the third level. When γi,j = 1, then the optimal solution lies in CRi,j and CRi.

3.2.1 Numerical example

3.2.1.1 Example 9: Trilevel mixed-integer quadratic programming problem
Consider the following trilevel T-MIQP problem (3.23) of Type 3:

min
x1 ,y1

z = 5x12 + 6x22 + 3y1 + 3y2 − 3x3

s. t. min
x2 ,y2

u = 4x12 + 6y1 − 2x2 + 10y2 − x3 + 5y3

s. t. min
x3 ,y3 ,y4

v = 4x32 + y32 + 5y42 + x2y3 + x2y4 − 10x3 − 15y3 − 16y4

s. t. 6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5
− 8x1 − 4.9x2 − 3.2x3 ≤ 5
3.3x1 + 4.1x2 + 0.02x3 + 0.2y1 + 0.8y2 + 4y3 + 4.5y4 ≤ 1
y1 + y2 + y3 + y4 ≥ 1
− 10 ≤ x1, x2 ≤ 10

x1, x2, x3 ∈ ℝ3, y1, y2, y3, y4 ∈ {0, 1}4

(3.23)
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The multiparametric solution of the mp-MIQP third-level problem consists of 14
critical regions, with a subset of them presented in Table 3.11.

Table 3.11: Example 9: A subset of the multiparametric solution of the third-level problem.

CR Definition 3rd Level Obj. 3rd Level Var.

CR1 0.6236x1 + 0.7759x2
+ 0.0960y2 ≤ 0.1743
−0.6644x1 − 0.7474x2 ≤ −0.2206
−y1 − y2 ≤ −1
x1 ≤ 10 y1, y2 ∈ {0,1}

v1 =13.1072x12

+ 16.5888x22

+ 29.4912x1x2
− 8.7040x1
− 9.7920x2
− 26.6800

x3 = −2.56x1
− 2.88x2 + 4.6

y3 = 0
y4 = 0

CR6 0.62119x1 + 0.7778x2
+ 0.0956y2 ≤ −0.5674
−0.6242x1 − 0.7755x2
+ −0.0946y2 ≤ 0.5816

y1 + y2 ≤ 1
x1 ≤ 10
y1, y2 ∈ {0,1}

v6 =54450x12

+ 84050x22

+ 1250y22

+ 16.5888x22

+ 135300x1x2
+ 16500x1y2
+ 20500x2y2
+ 101475x1
+ 126076x2
+ 15375y2 + 15375

x3 = −165x1
− 205x2 − 25y2
− 150

y3 = 1
y4 = 0

The multiparametric solution of the 14 mp-MIQP second-level problems consists of 22
critical regions. A subset of them is presented in Table 3.12.

Table 3.12: Example 9: A subset of the multiparametric solution of second-level problems.

CR Definition 2nd level objective 2nd level var.

CR1,1 2.2792 ≤ x1 ≤ 10 u1,1 = 4x12 + 1.7778x1 + 6y1 + 3.6597 x2 = −0.8889x1 + 0.2951
y1 ∈ {0,1} y2 = 1

CR6,1 −3.2852 ≤ x1 ≤ 10 u6,1 = 4x12 + 1.6098x1 + 6y1 + 2.75 x2 = −0.8049x1 − 0.75
y1 ∈ {0,1} y2 = 0

The 22 single-levelMIQP problems formulated are solved using CPLEX®mixed-integer
quadratic programming solver. A subset of the resulting local solutions are presented
in Table 3.13.

The exact global optimum is found to be lying in CR6,1 with optimal decisions x1 =
−0.4076, y1 = 0, x2 = −0.4220y2 = 0, x3 = 3.7500, y3 = 1 and y4 = 0.

The computational performance of the algorithm for example 9 is presented in
Table 3.14.
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Table 3.13: Example 9: A subset of the first-level problem solutions.

CR Objectives Decision variables

CR1,1 z1,1 = 35.6995, u1,1 = 30.4913, x1 = 2.2792, y1 = 0, x2 = −1.7308
v = 0 y2 = 1, x3 = 3.7500, y3 = 0, y4 = 0

CR6,1 z6,1 = −9.3512, u6,1 = 2.7583, x1 = −0.4076, y1 = 0, x2 = −0.4220
v = −43.0470 y2 = 0, x3 = 3.7500, y3 = 1, y4 = 0

Table 3.14: Example 9 computational performance.

Problem CPU time (s)

Third-level mp-MIQP 4.427805
Second-level mp-MIQPs (14) 1.743407
First-level MIQPs (22) 0.129060
Comparison 0.012595

3.3 Extensions to more general multilevel optimization problems

3.3.1 Multilevel mixed-integer nonlinear optimization

The algorithms presented in Chapter 2 and Chapter 3, Section 3.1 can be extended to
cover problems with more than three optimization levels. Furthermore, the objective
function of the first-level problem can be a general mixed-integer nonlinear function
of all the decision variables of the multilevel problem.

The general formulation of the class of problems considered in this section is pre-
sented below:

min
x1 ,y1

ZL1 = F1(ω)

s. t. A1x + E1y ≤ b1
min
x2 ,y2

ZL2 = [xT1 x
T
2 ]Q2[xT1 x

T
2 ]

T + cT2ω + cc2
s. t. A2x + E2y ≤ b2

. . .
min
xn ,yn

ZLn = ωTQnω + cTnω + ccn
s. t. Anx + Eny ≤ bn

x = [x1T x2T . . . xnT ]
T
, y = [y1T y2T . . . ynT ]

T

ω = [x1T y1T x2T y2T . . . xnT ynT ]
T

x ∈ ℝm, y ∈ {0, 1}p

(3.24)

where ω is a vector of all decision variables of all optimization levels, xi are contin-
uous and yi binary decision variables of optimization level i, x is a vector of all con-
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tinuous variables of all optimization levels, y is a vector of all binary variables of all
optimization levels, F1 is a nonlinear, nonconvex function of all decision variables,
Qi ≻ 0, ci and cci are constant coefficient matrices in the objective function of opti-
mization level i, Ai are constant coefficient matrices multiplying continuous decision
variables, x, in level i, Ei are constant coefficient matrices multiplying binary decision
variables, y, in level i in the constraint set and bi are constant value vectors in the
constraint set of level i.

This algorithm follows the same methodology as the T-MILP and T-MIQP algo-
rithms presented in the previous section of this chapter. When the objective function
of the first-level problem is nonlinear, CPLEX® is no longer used. Instead, solvers ca-
pable of providing the global optimum of mixed-integer nonlinear problems, such as
ANTIGONE® [246] and BARON® [247], are used.

The comparison optimization problem for M-MINLP problems is presented be-
low:

z∗ = min
α,Γ

α

s. t. α = ∑
i1 ,i2 ,...,in

Γi1 ,i2 ,...inZL1,i1 ,i2 ,...in [c1]

∑
i1 ,i2 ,...in

Γi1 ,i2 ,...in = 1 [c2]

Γi1 ,i2 ,...inZLm,i1 ,i2 ,...in ≤ Γi1 ,i2 ,...inZLm,j1 ,j2 ,...jn ∀i, j,m ≤ 2 [c3]

Γi1 ,i2 ,...in ∈ {0, 1} ∀i

(3.25)

where z∗ is the exact global optimum of the original multilevel mixed-integer nonlin-
ear programming problem, Γi1 ,i2 ,...in are binary variables corresponding to each critical
region i created at every optimization level 1 to n, and ZLk,i1 ,i2 ,...in are the k level objec-
tive function values at the optimal decision of corresponding to ZL1,i1 ,i2 ,...in . Constraint
[c2] makes sure that only one Γi1 ,i2 ,...in is equal to 1 and the rest are equal to zero (i. e.,
only one solution is selected); constraint [c3] makes sure that the selected solution
results to an optimal solution in the rest of the decision levels. When Γi1 ,i2 ,...in , then the
optimal solution lies in CRi1 ,i2 ,...in .

The proposed algorithm is summarized in Table 3.15, and then illustrated through
a numerical example.

3.3.1.1 Example 10: Multilevel mixed-integer nonlinear programming problem
Consider the following four-level mixed-integer nonlinear programming problem
(3.26) of Type 3. The first-level problem is a MINLP problem, the second- and the
fourth-level problems are MILP problems, and finally the third-level problem is a
MIQP problem. The M-MINLP problem has four continuous and seven binary vari-
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Table 3.15:Multiparametric based algorithm for the solution of multilevel mixed-integer opti-
mization problems.

Step 1 Establish integer and continuous variable bounds, and transform the M-MIQP into a
binary M-MIQP. Set the number of optimization levels to n and k = n − 1

Step 2 Recast the last level problem as a mp-MIQP, in which the optimization variables of
all problems above the last level problem are considered as parameters

Step 3 Solve the resulting mp-MIQP problem to obtain the optimal solution of the
lower-level problem as explicit functions of all other decision variables

Step 4 Substitute each multiparametric solution into the kth level problem to formulate
mp-MIQP problems, considering the optimization variables of all problems above
level k as parameters

Step 5 Solve the resulting mp-MIQP problems to obtain the optimal solution of the kth level
problem as explicit functions of the upper levels decision variables

Step 6 Set k = k − 1 and go to Step 4. Continue to Step 7 when k = 1
Step 7 Substitute each multiparametric solution into the first-level problem to formulate

single-level MINLP problems
Step 8 Solve all single-level problems using CPLEX®MILP or MIQP solvers, ANTIGONE®or

BARON®solvers
Step 9 Solve the comparison optimization problem (3.25) to select the global optimum

solution

ables:

min
x1 ,y1

ZL1 = 4x13 − 4x14 + x12x3 + x2x4 − 7x1 − 7y1,3 − 2x2 − y1,2

s. t. min
x2 ,y2

ZL2 = 5x2 + 6x3 + 2x4 + 3y2 + 3y3

s. t. min
x3 ,y3

ZL3 = 4x22 + 4y3 − 2x3 − x4 + 5y4,1

s. t. min
x4 ,y4

ZL4 = 2x2 + y2 + 2x3 + y3 − 4x4 + 2y4,1

s. t. x1 + 6.4x2 + 7.2x3 + 2.5x4 ≤ 11.5
0.1x1 + 3.3x2 + 4.1x3 + 0.02x4 + 3y1,1 ≤ 1
0.2y2 + 0.8y3 + 4y4,1 + 4.5y4,2 − 4y1,1 ≤ 2
y2 + y3 + y4,1 + y4,2 ≥ 1
y1,1 + y1,2 + y1,3 ≤ 2
− 10 ≤ x1, x2, x3, x4 ≤ 10

x1, x2, x3, x4 ∈ ℝ4, y1,1, y1,2, y1,3, y2, y3, y4,1, y4,2 ∈ {0, 1}7

(3.26)

The multiparametric solution of the fourth-level mp-MILP problem consists of 8
critical regions, with a subset of them presented in Table 3.16.
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Table 3.16: Example 10: A subset of the multiparametric solution of the fourth-level problem.

CR Definition 4th level obj. 4th level var.

CR1 −y2 − y3 ≤ −1
y1,1 + y1,2 + y1,3 ≤ 2
−0.0013x1 + 0.5007y1,1
+ 0.5423x2 + 0.6747x3 ≤ 0.1516
−0.0245x1 + 0.9791y1,1
− 0.0490y2 − 0.1958y3 ≤ 0.4896
−x1 ≤ 10
−10 ≤ x2 ≤ 10
−x3 ≤ 10
y1,1, y1,2, y1,3, y2, y3 ∈ {0,1}

ZL4,1 =1.6x1
+ 12.24x2
+ y2 + 13.52x3
+ y3 − 18.4

x4 = −0.4x1
− 2.56x2
− 2.88x3 + 4.6

y4,1 = 0
y4,2 = 0

CR8 y2 + y3 ≤ 1
y1,1 + y1,2 + y1,3 ≤ 2
0.0013x1 − 0.5007y1,1
− 0.5423x2 − 0.6747x3 ≤ −0.1516

0.0245x1 − 0.9791y1,1
+ 0.0490y2 + 0.1958y3 ≤ −0.4896
−0.0245x1 + 0.9791y1,1
− 0.0490y2 + 0.1958y3 ≤ 0.6119
−10 ≤ x1 ≤ 10
−10 ≤ x2 ≤ 10
x3 ≤ 10
y1,1, y1,2, y1,3, y2, y3 ∈ {0,1}

ZL4,8 =600y1,1
+ 662x2
+ y2 + 822x3
+ y3 − 198

x4 = −150y1,1
− 165x2
− 205x3 + 50

y4,1 = 1
y4,2 = 0

The multiparametric solution of the eight third-level mp-MIQP problems consists of 8
critical regions, with a subset of them presented in Table 3.17.

The multiparametric solution of the eight second-level mp-MILP problems con-
sists of 17 critical regions, with a subset of them presented in Table 3.18.

The 17 single-level problems corresponding to the first level were solved using
ANTIGONE®solver throughGAMS®. The solution for a subset of the problems is given
in Table 3.19.

After the comparison procedure, the global optimum solution lies in CR1,1,1 at the
point presented in Table 3.19.

3.3.2 Mixed-integer multifollower optimization

Optimization problems involving a leader withmultiple followers are referred to as bi-
level multifollower programming problems. Procedures for the solution of mixed-in-
teger multifollower optimization problems include very limited heuristic approaches,
such as Sinha et al. [154] that do not guarantee global optimality.
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Table 3.17: Example 10: A subset of the multiparametric solutions of the third-level problem.

CR Definition 4th level obj. 4th level var.

CR1,1 y1,1 + y1,2 + y1,3 ≤ 2
−0.0250x1 + 0.9984y1,1
− 0.0499y2 ≤ 0.6989
−10 ≤ x1 ≤ 10
−10 ≤ x2 ≤ 10
y1,1, y1,2, y1,3, y2 ∈ {0,1}

ZL3,1,1 =0.4x1
+ 2.56x2 − 11.4

x3 = −10
y3 = 1

CR8,1 y1,1 + y1,2 + y1,3 ≤ 2
−0.0250x1 + 0.9984y1,1
− 0.0499y2 ≤ 0.6240

0.0250x1 − 0.9984y1,1
+ 0.0499y2 ≤ −0.4992
−10 ≤ x1 ≤ 10
−10 ≤ x2 ≤ 10
y1,1, y1,2, y1,3, y2 ∈ {0,1}

ZL3,8,1 =0.417x1
− 0.6531y1,1
+ 1.8528x2 + 0.5977

x3 = 0.0020x1
− 0.7421y1,1
− 0.8037x2 + 0.2246

y3 = 0

Table 3.18: Example 10: A subset of the multiparametric solutions of the second-level problem.

CR Definition 4th level obj. 4th level var.

CR1,1,1 y1,1 + y1,2 + y1,3 ≤ 2
−0.0250x1 + 0.9984y1,1 ≤ 0.6989
−10 ≤ x1 ≤ 10
y1,1, y1,2, y1,3, y2 ∈ {0,1}

ZL2,1,1,1 =−0.8x1 + 28.6 x2 = 10
y2 = 0

CR1,1,2 y1,1 + y1,2 + y1,3 ≤ 2
−0.0250x1 + 0.9984y1,1 ≤ 0.7498
0.0250x1 − 0.9984y1,1 ≤ −0.6998
−10 ≤ x1 ≤ 10
y1,1 = 0
y1,2, y1,3, y2 ∈ {0,1}

ZL2,1,1,2 =−0.8x1 + 31.6 x2 = 10
y2 = 1

Table 3.19: Example 10: A subset of the first-level problem solutions.

CR Objectives Decision variables

CR1,1,1 ZL1,1,1,1 = −2052.270 x1 = −4.030, y1,1 = 0, y1,2 = 1, y1,3 = 1
ZL2,1,1,1 = 31.824 x2 = 10, y2 = 0
ZL3,1,1,1 = 414.588 x3 = −10, y3 = 1
ZL4,1,1,1 = −36.648 x4 = 9.412, y4,1 = 0, y4,2 = 0

CR1,1,2 ZL1,1,1,2 = 45633 x1 = 10, y1,1 = 1, y1,2 = 0, y1,3 = 1
ZL2,1,1,2 = 23.6 x2 = 10, y2 = 1
ZL3,1,1,2 = 420.2 x3 = −10, y3 = 1
ZL4,1,1,2 = −13.2 x4 = 3.8, y4,1 = 0, y4,2 = 0
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The proposed global solution algorithm will be introduced through the general form
of the bilevel multifollower mixed-integer linear programming (BMF-MILP) problem
(3.27), and then illustrated through a case study on a planning and scheduling inte-
gration example in Section 4.4 and a design and scheduling integration example in
Section 4.5 of this book.

min
x1 ,y1

Q1x + H1y + cc1

s. t. A1x + E1y ≤ b1
min

x2,a ,y2,a
Q2,ax + H2,ay + cc2,a

s. t. A2,ax + E2,ay ≤ b2,a
min

x2,b ,y2,b
Q2,bx + H2,by + cc2,b

s. t. A2,bx + E2,by ≤ b2,b
...

min
x2,n ,y2,n

Q2,nx + H2,ny + cc2,n

s. t. A2,nx + E2,ny ≤ b2,n

x = [xT1 xT2,a xT2,b . . . xT2,n]
T
, x ∈ ℝm

y = [yT1 yT2,a yT2,b . . . yT2,n]
T
, y ∈ {0, 1}p

(3.27)

It is assumed that upper level optimization variables that appear in the lower level
problems, and lower level integer variables are bounded.

As a first step, the lower level problems are transformed into multiparametric
mixed-integer problems (3.28). For each transformed lower level problem, the opti-
mization variables of the leader problem along with any decision variables of the rest
of the lower level problems that appear in the transformed problem are considered as
parameters:

min
x2,a ,y2,a

Q2,ax + H2,ay + cc2,a
s. t. A2,ax + E2,ay ≤ b2,a

xL ≤ x ≤ xU

min
x2,b ,y2,b

Q2,bx + H2,by + cc2,b
s. t. A2,bx + E2,by ≤ b2,b

xL ≤ x ≤ xU
...

min
x2,n ,y2,n

Q2,nx + H2,ny + cc2,n
s. t. A2,nx + E2,ny ≤ b2,n

xL ≤ x ≤ xU

(3.28)

The solution of the multiparamertric problems (3.28), using mp-MILP or mp-MIQP al-
gorithms through POP® toolbox [242], provides the complete profile of optimal solu-
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tions of the lower level problems as explicit affine functions of the variables of the
upper level problem and other lower level problems within corresponding critical re-
gions (3.29). The problems (3.28) are interdependent of each other, therefore, parallel
programming can be used to solve them simultaneously:

[x2,ny2,n] =

{{{{{{
{{{{{{
{

ξ 12,n = p
1
2,n + q

1
2,nx,ψ

1
2,n if H1

2,nx ≤ h
1
2,n

ξ 22,n = p
2
2,n + q

2
2,nx,ψ

2
2,n if H2

2,nx ≤ h
2
2,n

...
...

ξ k2,n = p
k
2,n + q

k
2,nx,ψ

k
2,n if Hk

2,nx ≤ h
k
2,n

(3.29)

where ξ i2,n is the lower level 2, n objective, H
i
2,nx ≤ h

i
2,n is referred to as critical region,

CRi, and k denotes the number of computed critical regions.
As a next step, the solutions derived in the previous step are used to formulate a

set of reformulations of the original bilevelmultifollower problem. Each reformulation
is formed by using a different combination of critical regions from the solutions of the
follower’s problems (3.29) to achieve a Nash equilibrium. Considering only the upper
level problem, the follower’s decision variables are substituted by the affine functions
derived. The critical region definitions are added to the upper level problem as a new
set of constraints alongwith constraints forNash equilibrium, forming single-level de-
terministic problems for every different combination of critical regions. In the case of
quadratic objective functions, the single-level deterministic problems created in this
step can contain nonlinear constraints as critical region definitions can be nonlinear.
This makes the single-level problems more challenging to be solved.

Single-level problemswith the formulationof (3.30) andall possible combinations
of i, j, . . . k are created:

min
x1 ,y1

Q1x + H1y + cc1

s. t. A1x + E1y ≤ b1
H i
2,ax ≤ h

i
2,a

x2,a = pi2,a + q
i
2,ax

y2,a = ψi
2,a

H j
2,bx ≤ h

j
2,b

x2,b = p
j
2,b + q

j
2,bx

y2,b = ψ
j
2,b

...
Hk
2,nx ≤ h

k
2,n

x2,n = pk2,n + q
n
2,nx

y2,n = ψk
2,n

(3.30)
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All single-level MI(N)LP problems formed are solved using appropriate solvers,
such as CPLEX®or ANTIGONE®solvers. Because those problems are independent of
each other, it is possible to use parallel programming to solve them simultaneously.

The solutions of the above single-level MI(N)LP problems correspond to different
local optimal solutions of the original BMF-MILP. The final step of the algorithm is to
compare all the local solutions to obtain the minimum z that would correspond to the
exact and global optimum, z∗, of the original bilevel multifollower problem.

The proposed algorithm is also summarized in Table 3.20.

Table 3.20:Multiparametric based algorithm for the solution of BMF-MILP problems.

Step 1 Establish integer and continuous variable bounds
Step 2 Recast the lower level problems as mp-MILPs, in which the optimization variables of

the upper level problem along with the optimization variables of other lower level
problems are considered as parameters

Step 3 Solve the resulting mp-MILP problems to obtain the optimal solution of the lower level
problems as explicit functions of the upper level variables and other lower level
variables

Step 4 Substitute each multiparametric solution into the upper level problem and add Nash
equilibrium constraints to formulate k single-level MILP problems

Step 5 Solve all k single-level problems and compare their solutions to select the exact and
global optimum

3.3.3 Conclusion

This chapter discussed algorithms for the exact global solution ofmore general classes
of mixed-integer multilevel optimization problems with integer and continuous vari-
ables in all optimization levels. The algorithmspresentedutilizemulti-parametric pro-
gramming to solve the lower level optimization problems as a function of all of the
upper levels problem variables.

The next chapter will introduce different application case studies, including clas-
sical bilevel problems such as the integration of production and distribution plan-
ning, and other novel applications such as a hierarchical economic model predictive
controller and a class of robust optimization. The formulation and solution of these
problems will be presented in detail.
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4 Application areas
In order to highlight the applicability of the algorithms presented in the two previous
chapters of this book, this chapter introduces six different application areas for all the
different classes of problems explored.

For all case studies, the problem formulation and solution approach is explained
in detail.

4.1 B-MILP and mp-B-MILP: distribution and production planning

We are considering a case where the Production-Distribution planning (PD) problem
can be expressed as a hierarchical decision problem, involving two different decision
makers corresponding to each company that owns the Production plants and Distri-
bution centers. Assuming one company owns the Production plants and another the
Distribution centers, the resulting problem is a two level hierarchical decision prob-
lem. The first level is responsible for optimizing the Distribution centers overall costs
and is influenced by the second level that is responsible for optimizing the Production
plants overall costs.

When considering the PD problem, decisions taken at both decision levels can
involve both continuous (e. g., Production rates, Distribution rates) or discrete (e. g.,
choice of Production plant, choice of Distribution center, active routes) variables.
Therefore, the integrated PD problem results into a bilevel mixed-integer program-
ming problem.

4.1.1 Uncertainty in supply chain systems

In the existing unstable business environment, with constantly changingmarket con-
ditions and customer needs and expectations, it is of high importance to consider the
effect of uncertainties in the integrated PD problem. Sources of uncertainty in supply
chain planningmay include variations in processing rates, canceled or rushed orders,
equipment failure, rawmaterial, final product or utility price fluctuations anddemand
variations [35].

In this study, we will consider one of the key sources of uncertainty in the PD sys-
tem, the product demand. Failure to consider this in PD planning could lead to either
unsatisfied customer demand and loss of market share, or excessively high inventory
holding costs [36]. To address this, a number of publications have been devoted in
studying supply chain planning under demand uncertainty [26, 28, 33, 248, 249].

https://doi.org/10.1515/9783110760316-004
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4.1.2 Bilevel programming model for a supply chain planning problem

We will consider a supply chain system operated by two different companies (Fig-
ure 4.1), one owning two Production plants, P1 and P2 that produce one product that
is distributed by the other company owning two Distribution centers, D1 and D2, to
three different costumers, C1, C2 and C3, located at various locations.

Figure 4.1: Schematic representation of the Production–Distribution planning problem case study
with all the possible routes connecting Production plants with Distribution centers and customers.
P1 and P2 are the two Production plants, D1 and D2 are the two Distribution centers and C1, C2 and
C3 are the three customers.

The Distribution company decides the allocation of costumers to each Distribution
center, the existence or not of the routes connecting the centers to the costumers and,
therefore, the required inventory level in each center. Its objective is to minimize the
cost of distributing and acquiring the items from the processing plants.

The Production company, after receiving the required inventory level for each Dis-
tribution center, decides which processing plant will take the orders, by minimizing
Production costs. The Production constraints ensure that the allocation of orders to
the plants satisfies capacity and Production target.

Therefore, we can consider the Distribution decision level to be the upper level
(leader), deciding on the required inventory level of each Distribution center, while
not knowingwhichplantswill be supplying the centers to achieve that inventory level,
but knowing that the Production decision level (lower level, follower) will take that
decision by minimizing its own cost.

Two cases will be considered. In Case I, the demands of all three customers will
be considered to be known and constant, whereas in Case II this demand will be con-
sidered as a bounded uncertainty.

4.1.2.1 Case I: Constant demand (B-MILP)
A simple Production–Distribution bilevel mixed-integer model for problem Case I is
formulated below (4.1), using the notation given in Table 4.1.
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Table 4.1: Notation.

Sets and index
P, p Set of plants, plant index
D, d Set of Distribution centers, centers index
C, c Set of customers, customers index
Constants
Ap Maximum capacity of plant p
c1dc Cost of route connecting center d to costumer c
c2pd Cost of getting products from plant p to center d
c3pd Cost of manufacturing a product at plant p for center d
c4pd Cost of route connecting plant p to center d
bc Customer c demand
Decision variables
sdc Amount of product send from center d to customer c
ydc Existence of route connecting center d to customer c
xpd Amount of product manufactured in plant p for center d
zpd Existence of route connecting plant p to center d

Expressions (a) to (d) correspond to the leader (upper level) Distribution problem and
(e) to (i) to the followers (lower level) Production problem. Expressions (a) and (e)
are the leader’s and follower’s objective functions, respectively, and reflect the cost
minimization of each company.

Constraint (b) ensures that the Distribution centers supply enough product to
meet the demand of each costumer. Constraint (c) is a big-M constraint formulation
expression, limiting the value of the amount of product send from each Distribution
center to the costumers to less than 35 when the route connecting the two is active,
but forcing it to zero, along with constraint (d), when the route is not active.

min
ydc ,sdc

∑
d∈D
∑
c∈C

c1dcydc + ∑
p∈P
∑
d∈D

c2pdxpd (a)

s. t. ∑
d∈D

sdc ≥ bc, ∀c ∈ C (b)

sdc ≤ 35ydc, ∀c ∈ C, ∀d ∈ D (c)
sdc ≥ 0, ∀c ∈ C, ∀d ∈ D (d)
min
xpd ,zpd

∑
p∈P
∑
d∈d

c3pdxpd + c
4
pdzpd (e)

s. t. ∑
d∈D

xpd ≤ Ap ∀p ∈ P (f)

∑
p∈P

xpd ≥ ∑
c∈C

sdc ∀d ∈ D (g)

xpd ≤ 100zpd ∀d ∈ D, ∀p ∈ P (h)
xpd ≥ 0 ∀d ∈ D, ∀p ∈ P (i)

sdc ∈ ℝ, ydc ∈ {0, 1}, xpd ∈ ℝ, zpd ∈ {0, 1}

(4.1)
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Constraint (f) limits the Production of each plant to their maximum capacity, and
constraint (i) ensures that the Production is positive. Constraint (g) ensures that the
plants will produce enough to satisfy the demand of the Distribution centers. Con-
straint (h) is similar to (c), a typical big-M formulation expression, limiting the value
of product produced for each Distribution center to less than 100 when the route con-
necting theDistribution centers to the plants is active, but forcing it to zero, alongwith
constraint (i), when the route is not active.

The constants used in example Case I are presented in Table 4.2.

Table 4.2: Constants for PD Case study.

Ap p = 1 p = 2
135 100

c1dc c = 1 c = 2 c = 3
d = 1 75 60 50
d = 2 80 30 65

c2pd d = 1 d = 2
p = 1 21 30
p = 2 26 25

c3pd d = 1 d = 2
p = 1 20 25
p = 2 20 25

c4pd d = 1 d = 2
p = 1 100 80
p = 2 110 70

bc c = 1 c = 2 c = 3
55 65 15

4.1.2.2 Case 2: Demand uncertainty (mp-B-MILP)
This case considers demand to be unknown but bounded. In order to express this,
equation (4.2) is added to the model presented before. bc is removed from the set of
constants, and is now treated as a parameter of the optimization problem:

0 ≤ bc ≤ 70, ∀c ∈ C (4.2)

4.1.3 Solving the supply chain planning problem

4.1.3.1 Case I: Constant demand (B-MILP)
The first and second steps in the algorithm are responsible for converting a mixed in-
teger programming problem to a boundedmixed-integer binary (i. e., 0 or 1) program-
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ming problem. The PD problem is already in this form therefore we can start directly
from Step 3.

The Production problem (lower level) of the B-MILP is transformed to a multi-
parametric mixed-integer linear programming (mp-MILP) problem (4.3), in which the
optimization variables of the Distribution (upper level) problem, sdc and ydc, are con-
sidered as parameters for the lower Production level:

min
xpd ,zpd

[[[[

[

20
25
20
25

]]]]

]

xpd +
[[[[

[

100
80
110
70

]]]]

]

zpd

s. t. x11 + x12 ≤ 135
x21 + x22 ≤ 100
−x11 + −x21 ≤ −s11 − s12 − s13
−x12 + −x22 ≤ −s21 − s22 − s23
x11 − 100z11 ≤ 0
x12 − 100z12 ≤ 0
x21 − 100z21 ≤ 0
x22 − 100z22 ≤ 0
−xpd ≤ 0
0 ≤ sdc ≤ 35

(4.3)

Moving to Step 4, the solution of (4.3) using POP®toolbox [198], results to the
complete profile of optimal solutions of the lower Production level problem as explicit
functions of the variables of the higher Distribution level problem, with correspond-
ing boundary conditions for different regions in the parametric space (critical regions,
CR). The solution is given in Table 4.3 and illustrated through a 2-D plot (s12 vs. s11) of
the parametric space in Figure 4.2, by fixing four of the parameters, s13, s21, s22, s23, at
33.

In Step 5, the computed solutions (Table 4.3) are then substituted into the up-
per Distribution level problem to formulate six new single-level deterministic mixed-
integer linear programming problems, (4.4). More specifically, the expressions for the
optimization variables of the lower Production level, xpd and zpd, are substituted in
the upper Distribution level in terms of the Distribution optimization variables, spd
and ypd, and the definition of critical regions is added in the upper level as a new set
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Table 4.3: Case I: Multiparametric solution of the lower Production level problem.

CR Definition Variables

1 ∑d∈D 0.5774sdc ≤ 57.735 ∀d ∈ D x11 = ∑c∈C s1c, x12 = 0, x21 = 0,
∑c∈C ∑d∈D −0.4082sdc ≤ −55.1135 x22 = ∑c∈C s2c, z11 = 1, z12 = 0, z21 = 0, z22 = 1

2 ∑d∈D 0.5774s1c ≤ 57.735 x11 = 0, x12 = ∑c∈C s2c,
∑d∈D −0.5774s2c ≤ −57.735 x21 = ∑c∈C s1c,
∑c∈C ∑d∈D −0.4082sdc ≤ −55.1135 x22 = 0, z11 = 0, z12 = 1, z21 = 1, z22 = 0

3 ∑d∈D −0.5774s1c ≤ −57.735 x11 = ∑c∈C s1c, x12 = 0,
∑d∈D 0.5774s2c ≤ 57.735 x21 = 0, x22 = ∑c∈C s2c,
∑c∈C ∑d∈D −0.4082sdc ≤ −55.1135 z11 = 1, z12 = 0, z21 = 0, z22 = 1

4 ∑d∈D −0.5774sdc ≤ −57.735 ∀d ∈ D x11 = ∑c∈C s1c, x12 = ∑c∈C s2c − 100, x21 = 0,
x22 = 100, z11 = 1, z12 = 0, z21 = 0, z22 = 1

5 ∑d∈D 0.5774s2c ≤ 57.735 x11 = ∑c∈C s1c, x12 = 0, x21 = 0,
∑c∈C ∑d∈D 0.4082sdc ≤ 55.1135 x22 = ∑c∈C s2c, z11 = 1, z12 = 0, z21 = 0, z22 = 1

6 ∑d∈D −0.5774s2c ≤ −57.735 x11 = ∑c∈C s1c, x12 = ∑c∈C s2c,
∑c∈C ∑d∈D 0.4082sdc ≤ 55.1135 x21 = 0, x22 = 0, z11 = 1, z12 = 0, z21 = 0, z22 = 1

Figure 4.2: 2-D plot of the parametric space given in Table 4.3, at s13 = 33, s21 = 33, s22 = 33 and
s23 = 33.

 EBSCOhost - printed on 2/14/2023 6:52 AM via . All use subject to https://www.ebsco.com/terms-of-use



84 | 4 Application areas

of constraints:

z1 = min
ydc ,sdc

75y11 + 60y12 + 50y13 + 80y21 + 30y22 + 65y23
+ 21(s11 + s12 + s13) + 25(s21 + s22 + s23)

s. t. ∑
d∈D

sdc ≥ bc, ∀c ∈ C

sdc ≤ 35ydc, ∀c ∈ C, ∀d ∈ D
∑
d∈D

0.5774sdc ≤ 57.735 ∀d ∈ D

∑
d∈D
−0.5774s2c ≤ −57.735

∑
c∈C
∑
d∈D
−0.4082sdc ≤ −55.1135

...
z6 = min

ydc ,sdc
75y11 + 60y12 + 50y13 + 80y21 + 30y22 + 65y23
+ 21(s11 + s12 + s13) + 30(s21 + s22 + s23)

s. t. ∑
d∈D

sdc ≥ bc, ∀c ∈ C

sdc ≤ 35ydc, ∀c ∈ C, ∀d ∈ D
∑
d∈D
−0.5774s2c ≤ −57.735

∑
c∈C
∑
d∈D

0.4082sdc ≤ 55.1135

(4.4)

For Step 6, the resulting single-level MILP problems are solved using CPLEX solver in
GAMS high-level modeling system for mathematical programming and optimization.
The solution of the single-level problems is presented Table 4.4.

Table 4.4: Case I: Single-level solutions.

CR Variables Objective

1 s11 = 35, s12 = 35, s13 = 15, s21 = 20, s22 = 30,
s23 = 0, x11 = 85, x12 = 0, x21 = 0, x22 = 50

3395

2 s11 = 20, s12 = 30, s13 = 0, s21 = 35, s22 = 35,
s23 = 30, x11 = 0, x12 = 100, x21 = 50, x22 = 0

4610

3 s11 = 35, s12 = 35, s13 = 15, s21 = 20, s22 = 30,
s23 = 0, x11 = 85, x12 = 0, x21 = 0, x22 = 50

3645

4 s11 = 30, s12 = 35, s13 = 35, s21 = 30, s22 = 35,
s23 = 35, x11 = 100, x12 = 0, x21 = 0, x22 = 100

4960

5 s11 = 35, s12 = 35, s13 = 15, s21 = 20, s22 = 30,
s23 = 0, x11 = 85, x12 = 0, x21 = 0, x22 = 50

3330

6 infeasible infeasible
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As a final step the solutions of all the single-level problems are compared. The solution
with the minimum objective value (i. e., CR 5) corresponds to the global minimum of
the original bilevel programming problem.

4.1.3.2 Case II: Demand uncertainty (mp-B-MILP)
The algorithm used in this paper can be also extended to bilevel problems with uncer-
tainty in one or both optimization levels, making it ideal and, to our knowledge, the
only algorithm that can provide the multiparametric solution of PD bilevel problems.

Costumer demand, bc, only appears in the upper Distribution decision level,
therefore Steps 1 to 4 for Case II will be the same with Case I.

Continuing to Step 5, the lower level solutions, corresponding to each critical re-
gion, are substituted into the higher level problem. The six resulting single-level prob-
lems in this case, are in the formofmp-MILP problems,with the uncertainty bc treated
as a parameter for each problem. Therefore, instead of GAMS, POP®toolbox was used
for the solution of the single-level mp-MILP problems. Each critical region formed in
Step 4 (Table 4.3, Figure 4.2) is now divided into smaller critical regions as another
parametric programming problem is solved within them (Table 4.5). Figure 4.3 illus-
trates the new critical regions created from follower’s CR5.

Table 4.5: Case II: New regions created from the single-level solutions.

Follower’s CR Number of new CRs

CR1 infeasible
CR2 18
CR3 10
CR4 1
CR5 6
CR6 infeasible

The solution of the multiparametric bilevel problem is defined by a linear function
of the parameters bc, capturing the effect of demand on the integrated PD decision
problem (solution for follower’s CR5 is presented in Table 4.6).

4.1.3.3 Case study conclusion
In this work, we were able to formulate and solve a Production–Distribution planning
problem as a bilevel mixed integer linear programming problem. We considered two
different cases: (i) constant, known costumer demand, and (ii) uncertain costumer
demand. Through the use of the proposed algorithm, we were able to capture the de-
pendence of the integrated Production--Distribution planning decisions on the ever
changing, and usually unpredictable, customer’s demand.
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Figure 4.3: 3-D plot of the parametric space created by Follower’s CR5.

Table 4.6: Solution for follower’s CR5.

CR Production obj. Distribution obj.

CR5.1 25(b1 + b2 + b3) − 335 25(b1 + b2 + b3) + 540
CR5.2 20(b1 + b2 + b3) + 170 21(b1 + b2 + b3) + 485
CR5.3 20(b1 + b3) + 25b2 − 5 25b2 + 21(b1 + b3) + 475
CR5.4 20b1 + 25(b2 + b3) − 180 21b1 + 25(b2 + b3) + 500
CR5.5 20b3 + 25(b1 + b2) − 180 21b3 + 25(b1 + b2) + 515
CR5.6 20b2 + 25(b1 + b3) − 180 21b2 + 25(b1 + b3) + 550

4.2 mp-B-QP: Hierarchical model predictive control
As introduced in Chapter 1, hierarchical control structures consist of a hierarchy of
control levels, where every level is controlling a subset of the overall control variables,
by manipulating a subset of the overall manipulated variables [37–39].

Most attempts to solve hierarchical control problems involve some type of decom-
position of the system, and coordination of the decomposed control layers, usually
through continuous exchange of data between the optimizers within the same con-
trol levels and between different control levels. This can therefore result in subop-
timal controllers [38]. Sparse attempts to solve hierarchical control problems using
bilevel programming include a consideration of an unconstrained model-based gen-
eralized predictive controller in Katebi and Johnson [250], andmore recently in Faisca
et al. [239], when the idea of using a multiparametric bilevel programming algorithm
to solve hierarchical or decentralized MPC structures for the development of explicit
MPC controllers was proposed.
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In this section, we use the algorithms presented in Chapter 2 for the solution of
hierarchical control problems. The proposed methodology will be illustrated through
a two-level hierarchical control of a continuous stirred tank reactor (CSTR) system,
with an economic objective function at the higher control level, and a set-point track-
ing controller at the lower control level [251].

4.2.1 CSTR process system

Consider a nonisothermal CSTR, where a first-order exothermic reaction takes place
and converts the reactant A to the desired product B (Figure 4.4(a)). The reactant is fed
to the reactor through a feedstock stream at concentration CA0, flowrate F, and tem-
perature T0. The CSTR is assumed to have a constant liquid hold-up. A jacket provides
energy to or from the reactor at a heat exchange rate of U.

Figure 4.4: (a) Schematic representation of the CSTR process system considered, (b) Two-level con-
trol structure of the CSTR system.

For product quality and safety reasons, the temperature of the CSTR is to be kept at
around 300K, with a minimum bound of 285 K, i. e., 5% set-point violation. The inlet
concentration (CA0) and temperature (T0) are varying between 9 to 10mol/L, and 200
to 350K, respectively, and are considered as measured disturbances. The inlet mass
flowrate (m) and the coolant temperature (Tc) can be manipulated by the control sys-
tem, and are therefore considered as manipulated variables.

4.2.2 Controller implementation – PAROC® framework and B-POP

In order to implement the control system for the CSTR described previously, PAROC
framework [237] was followed and adapted for hierarchical MPC (Figure 4.5). More de-
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Figure 4.5: PAROC® framework [237] adapted for Hierarchical MPC.

tails on PAROC framework can be found in Appendix C. As a first step, a high fidelity
model (4.5) and (4.6) was developed by applying first principles and standard model-
ing assumptions (constant density and heat capacity, Arrhenius rate, etc.):

dCA
dt
=

m
ρV
(CA0 − CA) − k0CAe

−E/RT (4.5)

VρCp
dT
dt
= mCp(T0 − T) + VΔHrCAk0e

−E/RT + U(Tc − T) (4.6)

The abovemodel (4.5)–(4.6) was reduced in complexity via the use of the System Iden-
tification Toolbox of MATLAB, to a discrete-time, linear state-space model, which can
be further used for the development of receding horizon policies.

Three different control strategies were implemented on the system for compari-
son purposes. The first one is a bilevel Economic Model Predictive Controller (E-MPC)
with set point tracking. This controller has two levels of objectives. The first level is an
economic objective and the second level is a classical MPC objective for the tracking
of the outlet temperature set-point.

Upper level objective (economic)

min
Tc

OperatingCost + SeparationCost − ProfitCB (4.7)

Lower level objective (tracking)

min
m

OH−1
∑
k=1
(QRk(Tk − T

R
k )

2) (4.8)

The second controller is an explicit MPC (mp-MPC) controller with the same objective
as the second level of the bilevel controller (4.8), i. e., tracking of the temperature
set-point.
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Finally, the third controller is an economic explicit MPC (mp-eMPC) controller
with the same objective as the first level of the bilevel controller (4.7), i. e., economic.

All controllers have the same set of constraints and are designed following stan-
dard multiparametric MPC techniques [252], in MATLAB®, using the algorithms pre-
sented in this section and POP® toolbox. More information on the design and imple-
mentation of multiparametric MPC as part of PAROC framework is presented in Ap-
pendix C. The bilevel controller was solved using the algorithm of Faisca et al. [99],
whereas the classical and economic controllers were solved using the mp-QP algo-
rithm implemented in POP® toolbox. The parameters for all controller problems con-
sist of the initial values of the states, the measured disturbances, the previous control
action and the output set-point. The control horizon and the prediction horizon for all
controllers were set as 1 and 2, respectively, and the discretization time step was set at
1 second.

The size of the resulting programming problems is summarized in Table 4.7. It
can be observed that the bilevel controller results into more critical regions than the
single-level mp-MPC controllers.

Table 4.7: Size of the resulting multiparametric control problems.

Bilevel (B-eMPC) Classical
(mp-MPC)

Economic
(mp-MPC)Level 2 Final

Variables 1 1 2 2
Parameters 8 7 7 7
Critical regions 6 29 6 7

The last step of the PAROC Framework is the closed-loop in-silico validation, i. e., the
testing of the controllers against the original high fidelity model to verify the per-
formance and robustness of the controllers and tune them appropriately if needed.
The inputs and results of the closed loop validation are presented in Figures 4.6, 4.7
and 4.8, and Table 4.8.

The closed loop validation results show that both the B-eMPC controller and the
mp-MPC controller manage to follow the temperature set-point with small violations.
More specifically, themp-MPCmanages tomore accurately follow the temperature set-
point, with less sum and average set-point violations than the B-eMPC controller, as
this is its only objective. Both are able to effectively reject the disturbances in order
to maintain the temperature near the predefined set-point. It is also observed that the
B-eMPC controller manages to keep the temperature around 305K with a more eco-
nomical way giving approximately 8 times greater profit than the classical mp-MPC
(Table 4.8). The mp-eMPC controller has a slightly better accumulative profit (2.46%)
than the B-eMPC but cannot keep the temperature at the set-point, with 1.7 times
higher average set-point violation than the B-eMPC.
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Figure 4.6:Manipulated variables vs. time for all three types of controllers: (a) Inlet mass flowrate,
(b) Coolant temperature.

Figure 4.7: Process Disturbances vs. Time: (a) Inlet concentration, (b) Inlet temperature.
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Figure 4.8: Process output vs. Time for all three types of controllers: (a) Accumulative Cost, (b) Reac-
tor temperature.

Table 4.8: Closed loop validation results.

Classical
(mp-MPC)

Economic
(mp-eMPC)

Bi-level
(B-eMPC)

Accumulative profit ($) 151.78 1194.54 1165.89
∑100k=1 |Tk − T

R
k | (K) 499.40 1283.28 740.19

Average |Tk − T Rk | (K) 4.94 12.71 7.33

The resultinghierarchical controller is able to effectively reject disturbances andmain-
tain the system at the given set-points in a more economical way than a mp-MPC con-
troller. It was shown that the B-eMPC controller performed more economically than
the mp-MPC without significant set-point violations as the mp-eMPC.

4.3 T-MILP: Adjustable robust optimization

Mixed-integer trilevel programming can be applied tomany and diverse problems that
require hierarchical decisionmaking such as safety anddefense [40–42], supply chain
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management [43], energymanagement [44] and robust optimization [45–47]. Here, we
will focus on applying trilevel programming for a special case of robust optimization.

Decisions taken in many disciplines have effects that can extend well into the fu-
ture, therefore, the outcome of such decisions are subject to uncertainties, such as
variation in customer demands and changes in laws or technological advances. One
of the dominant approaches to address decision making under uncertainty is robust
optimization.

In robust optimization, uncertainty is described by a distribution-free uncertainty
set, typically a bounded convex set [253–260], and recourse decisions are not allowed,
i. e., the decision maker makes all the decisions before the realization of the uncer-
tainty, which can be overly conservative.

A strong connection between robust optimization and semiinfinite programming
exists, as when an inequality constraint function of a robust optimization problem
depends on uncertain parameter vectors then, if considering a pessimistic scenario,
the way to deal with this constraint is to use its worst case reformulation which is of
semiinfinite type. When the uncertainty set also depends on the decision variable, we
arrive at a generalized semiinfinite constraint [261–263].

Ben-Tal et al. [264] extended classical robust optimization to include adjustable
decisions, with this class of problems being referred to as Adjustable Robust Opti-
mization (ARO) problems. A general form of a linear ARO problem is presented below
(4.9):

min
x

cT x +max
u∈U

min
y∈Ω(x,u)

bT y

s. t. Ax ≥ d, x ∈ Sx
Ω(x, u) = {y ∈ Sy : Wy ≥ h − Tx −Mu}

(4.9)

where u is the uncertainty set, x are “here-and-now” decisions, i. e., are to be made
before the realization of the uncertainty, and y are “wait-and-see” decisions, i. e., are
to be made after the realization of the uncertainty.

The uncertainty considered in ARO problems of the form (4.9) is unstructured but
bounded as in robust optimization problems. One can easily observe the connection
of ARO with two-stage stochastic optimization, were the uncertainty can be modeled
as a random vector with a known probability distribution.

ARO problems are very challenging to be solved, with even the simplest linear
continuous case being computationally intractable, as discussed in Zhen et al. [265].

A key approach for the approximate solution of ARO problems is to restrict the
“wait-and-see” adjustable decisions to be affine functions of the uncertainty [264].
This approach is widely known as affine decision rule approximation and results into
computationally tractable problems as the approximated problem can be solved as a
static robust optimization problem.
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Although ARO has received a lot of attention in the open literature, most of the
contributions consider linear continuous problems. A limited number of researchers
have tried to tackle the problem of mixed-integer linear ARO problems [266–268],
and to our knowledge there are no contributions for the mixed-integer nonlinear ARO
problem.

Our key idea for the exact solution of ARO problems came from the observation
that the second stageminimization (miny∈Ω(x,u) bTy) is multiparametric in terms of the
first stage variables (x) and uncertainty (u). Therefore, the idea is to solve the lower
level problem multiparametrically considering u and x as parameters, similar to the
way we solve trilevel problems.

This step would allow as to arrive to a set of (exact) affine decision rules valid for
the whole feasible space of u and “here-and-now” decisions x.

4.3.1 ARO as a trilevel optimization problem

In reality, the “here-and-now” decisions chosen might not always be operational for
all realizations of the uncertainty, for example, a processing plantmight bemore prof-
itable if it is designed for a maximum capacity (“here-and-now” variable) that is less
than the demand of some costumers (uncertainty). The formulation of the classical
ARO problem does not take this into consideration, therefore, sometimes resulting to
an overly conservative solution.

If the uncertainty is defined as a function of “here-and-now” variables (x), instead
of being free this would result into problem (4.10), a trilevel optimization problem
that can take into consideration “here-and-now” decisions that constrain the feasible
space of the uncertainty:

min
x

cT x + max
u∈U(x)

min
y∈Ω(x,u)

bT y

s. t. Ax ≥ d, x ∈ Sx
Ω(x, u) = {y ∈ Sy : Wy ≥ h − Tx −Mu}

(4.10)

Problem (4.10) can be directly solved using B-POP toolbox. This means that we
can solve different classes of mixed-integer constrained ARO (MI-C-ARO) problems.

To illustrate the use and benefits of using B-POP to solve the MI-C-ARO problems,
three numerical examples are solved using three different computationalmethods: (a)
affine decision rule approximation, (b) column-and-constraint generation algorithm
and (c) B-POP.

Column-and-constraint generation algorithm
The basic idea behind this algorithm is to reduce the ARO problem to a single-level
optimization problem by enumerating significant extreme points of the polyhedral
set U on-the-fly in a decomposition framework [47, 269].
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4.3.2 Numerical examples

Example 1: Linear ARO problem
Consider the following problem taken from Ning and You [47]:

min
x1 ,x2

3x1 + 5x2 + max
u∈Ubox

min
y1 ,y2

6y1 + 10y2

s. t. x1 + x2 ≤ 100
x1 + y1 ≥ u1
x2 + y2 ≥ u2
xi, yi ≥ 0, i = 1, 2
Ubox = {u1, u2 | 5.5 ≤ u1 ≤ 52.1, 9.5 ≤ u2 ≤ 54.8}

(4.11)

The first step is to recast the lowest optimization level into amultiparametric problem,
by considering x and u variables as parameters:

min
y1 ,y2

6y1 + 10y2

s. t. x1 + x2 ≤ 100
x1 + y1 ≥ u1
x2 + y2 ≥ u2
xi, yi ≥ 0, i = 1, 2
Ubox = {u1, u2 | 5.5 ≤ u1 ≤ 52.1, 9.5 ≤ u2 ≤ 54.8}

(4.12)

Problem (4.12) is then solved using POP® toolbox, to get the optimal parametric solu-
tionof y as a set of affine functions of the rest of the optimizationvariables (x1, x2, u1, u2)
in different critical regions (Table 4.9).

Table 4.9: Parametric solution of problem (4.12).

CR Definition Variables

1 x1 − u1 ≤ 0 y1 = −x1 + u1
x2 − u2 ≤ 0 y2 = −x2 + u2
x1 + x2 ≤ 100

2 −x1 + u1 ≤ 0 y1 = 0
x2 − u2 ≤ 0 y2 = −x2 + u2
x1 + x2 ≤ 100

3 x1 − u1 ≤ 0 y1 = −x1 + u1
−x2 + u2 ≤ 0 y2 = 0
x1 + x2 ≤ 100

4 −x1 + u1 ≤ 0 y1 = 0
−x2 + u2 ≤ 0 y2 = 0
x1 + x2 ≤ 100
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As a next step, four multiparametric problems are formulated, each corresponding to
one critical region, by adding the critical region definitions to the set of constraints
of the next level problem, substituting in the affine functions for y1, y2, and consid-
ering the higher level variables (x1, x2) as parameters. The four problems created are
presented below (4.13)–(4.16).

min
u
−6u1 − 10u2 + 6x1 + 10x2

s. t. x1 − u1 ≤ 0
x2 − u2 ≤ 0
x2 + y2 ≥ u2
x1 + x2 ≤ 100
5.5 ≤ u1 ≤ 52.1
9.5 ≤ u2 ≤ 54.8

(4.13)

min
u
−10u2 + 10x2

s. t. −x1 + u1 ≤ 0
x2 − u2 ≤ 0
x2 + y2 ≥ u2
x1 + x2 ≤ 100
5.5 ≤ u1 ≤ 52.1
9.5 ≤ u2 ≤ 54.8

(4.14)

min
u
−6u1 + 6x1

s. t. x1 − u1 ≤ 0
−x2 + u2 ≤ 0
x2 + y2 ≥ u2
x1 + x2 ≤ 100
5.5 ≤ u1 ≤ 52.1
9.5 ≤ u2 ≤ 54.8

(4.15)

min
u

0
s. t. −x1 + u1 ≤ 0
−x2 + u2 ≤ 0
x2 + y2 ≥ u2
x1 + x2 ≤ 100
5.5 ≤ u1 ≤ 52.1
9.5 ≤ u2 ≤ 54.8

(4.16)

The resulting fourmultiparametric problems are then solved using POP® toolbox. The
solution of all of the problems is presented in Table 4.10.

The next step of the algorithm is to substitute the optimal solutions in Table 4.10
into the higher level problem and solve the resulting single-level problems to get four
different solution strategies.
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Table 4.10: Parametric solution of the middle level problem.

CR Definition Variables Objective

1.1 0 ≤ x1 ≤ 52.1 u1 = 52.1 6x1 + 10x2 − 860.6
0 ≤ x2 ≤ 54.8 u2 = 54.8
x1 + x2 ≤ 100

2.1 5.5 ≤ x1 u1 = 5.5 10x2 − 548
0 ≤ x2 u2 = 54.8
x1 + x2 ≤ 100

3.1 0 ≤ x1 u1 = 52.1 6x1 − 312.6
9.5 ≤ x2 u2 = 9.5
x1 + x2 ≤ 100

4 x1 + x2 ≤ 100 0

The final step is to compare those strategies and choose the optimal one to be the exact
and global solution of the original trilevel programming problem.

The global solution of the original trilevel problem is x1 = 45.2, x2 = 54.8 and the
objective is 451. Note that this solution is the same as the one presented in Ning and
You [47].

The optimal affine decision rules, developed through the trilevelmulti-parametric
programming method are

y1 = −x1 + u1
y2 = −x2 + u2

(4.17)

For this ARO problem, using the affine decision rules method results in the same solu-
tion as the multiparametric method. The affine decision rules developed through the
affine decision rule method are different form the multiparametric method, and are
presented below (4.18):

y1 = −0.81438 + 0.14807x1
y2 = 0

(4.18)

Example 2: Mixed integer linear ARO problem
Consider ARO problem (4.19) that contains both continuous and integer “here-and-
now” optimization variables.

Following three different methods, (i) the affine decision rule method, (ii) the
column-and-constraint generationmethodand (iii) the trilevelmethodpresentedhere
(B-POP) the solutions in Table 4.11 were found.

In this instance, both the column-and-constraint generation algorithmandB-POP
return the exact optimal solutionwhereas the solutiongeneratedby the affinedecision
rules is suboptimal.
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Table 4.11: ARO Example 2 Solutions.

Affine decision
rules

Column-and-
constraint

B-POP

Objective 0 6,600 6,600

First-stage
decisions

v1 = 0, v2 = 0,
x1 = 0, x2 = 0

v1 = 1, v2 = 0,
x1 = 24,000, x2 = 0

v1 = 1, v2 = 0, x1 = 24,000,
x2 = 0
y11 = −18,000δ1 + 20,000

Second-stage
decision rules

y11 = 0, y12 = 0,
y13 = 0, y21 = 0,
y22 = 0, y23 = 0

y12 = −x2 − 18,000δ2 + 20,000
y13 = x1 + x2 + 18,000δ1
+ 18,000δ2 − 40,000

y21 = 0, y22 = x2, y23 = 0

B-POPhas the capability to also generate the second-stage decision rules for the entire
feasible space of the uncertainty and first-stage variables, giving the decision maker
more inside into the dynamics of the problem.

max
x,v
−0.6x1 − 0.6x2 − 100,000v1 − 100,00v2 + min

ζ∈U(x,v)
max

y∈Ω(x,v,ζ )
5.9y11

+ 5.6y12 + 4.9y13 + 5.6y21 + 5.9y22 + 4.9y23
s. t. y11 + y21 ≤ ζ1

y12 + y22 ≤ ζ2
y13 + y23 ≤ ζ3
y11 + y12 + y13 ≤ x1
y21 + y22 + y23 ≤ x2
x1 ≤ 130,000v1
x2 ≤ 130,000v2
x1, x2 ≥ 0
v1, v2 ∈ {0, 1}
y11, y12, y13, y21, y22, y23 ≥ 0

ζ =

{{{{{{{{{
{{{{{{{{{
{

ζ1 = 20,000 − 18,000δ1
ζ2 = 20,000 − 18,000δ2
ζ3 = 20,000 − 18,000δ3
0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1, 0 ≤ δ3 ≤ 1
δ1 + δ2 + δ3 ≤ 2

(4.19)

Example 3: Mixed integer linear ARO problem
Consider ARO problem (4.20) that contains both continuous and integer “here-and-
now” optimization variables.
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Table 4.12: ARO Example 3 Solutions.

Affine decision rules Column-and-constraint B-POP

Objective 33,680 33,680 30,536
First stage
decisions

x1 = 1, x2 = 0,
x3 = 1, z1 = 458,
z2 = 0, z3 = 314

x1 = 1, x2 = 0, x3 = 1,
z1 = 458, z2 = 0,
z3 = 314

x1 = 1, x2 = 0,
x3 = 1, z1 = 220,
z2 = 0, z3 = 480

Second stage
decision rules

y11 = 166 + 40g1 + 40g2,
y12 = 0,
y13 = 220 + 40g3,
y21 = 0, y22 = 0, y23 = 0
y31 = 40 − 40g2,
y32 = 274 + 40g2, y33 = 0

y11 = 0, y12 = 0, y13 = z1
y21 = 0, y22 = z2, y23 = 0
y31 = 40g1 + 206
y32 = −z2 + 40g2 + 274
y33 = −z1 + 40g3 + 220

Following the same three different methods, the solutions in Table 4.12 were found.
In this instance, first-stage decision variables can constrain the feasible region of

the uncertainty, therefore, enumeration of the extreme points of uncertainty may not
result in the optimal solution. For this reason, the column-and-constraint generation
algorithm along with the affine decision rules gave a suboptimal solution to the origi-
nal ARO problem.

min
x,z

400x1 + 414x2 + 326x3 + 18z1 + 25z2 + 20z3 + max
d∈D(x,z)

min
y

22y11
+ 33y12 + 24y13 + 33y21 + 23y22 + 30y23 + 20y31 + 25y32 + 27y33

s. t. z1 ≤ 800x1
z2 ≤ 800x2
z3 ≤ 800x3
y11 + y12 + y13 ≤ z1
y21 + y22 + y23 ≤ z2
y31 + y32 + y33 ≤ z3
y11 + y21 + y31 ≤ d1
y12 + y22 + y32 ≤ d2
y13 + y23 + y33 ≤ d3
x1, x2, x3 ∈ {0, 1}
z1, z2, z3 ≥ 0
y11, y12, y13, y21, y22, y23, y31, y32, y33 ≥ 0

d =

{{{{{{{{
{{{{{{{{
{

d1 = 206 + 40g1
d2 = 274 + 40g2
d3 = 220 + 40g3
0 ≤ g1 ≤ 1, 0 ≤ g2 ≤ 1, 0 ≤ g3 ≤ 1
g1 + g2 + g3 ≤ 1.8

(4.20)
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4.3.2.1 ARO as a trilevel problem – key overall remarks
Using multiparametric programming to solve the inner problem for “wait-and-see”
variables, we were able to show that affine rules are mere approximations, and can be
suboptimal for general classes of problems, as different affine decision rules are opti-
mal in different spaces of “here-and-now” and uncertainty variables feasible space.

Moreover, we developed theory for generating exact generalized affine rules for
linear/quadratic problems involving both continuous and integer variables in all op-
timization levels – via the multiparametric programming solution of the lower level
optimization problem. Through this, we are able to capture the full set of affine deci-
sions as a function of “here-and-now” decisions and uncertainty.

An important observation is that even if the first-stage objective is changed, the
affinedecision rulesweare able to generate are still valid. Also, the decisionmaker has
access to a plethora of strategies to choose from, opposed to other solution methods
that will only generate one strategy.

4.4 Planning and scheduling integration (MF-B-MILP)

In this section, we are considering the simple case study of the planning and schedul-
ing integration of a production processing plant.

4.4.1 Problem description

The problem under investigation considers a production processing plant that pro-
duces three different products, A, B and C, through two processing stages. The pro-
cessing time of product B, for both of the production stages, is proportional to the
production target of B, PB. The processing times of products A and C are constant and
are presented in Table 4.13.

Table 4.13: Processing time, Tjk .

Product Stage 1 (hr) Stage 2 (hr)

A 3 5
B kPB 2k(PB + 0.5)
C 6 3

We are considering that one planning period consists of two scheduling periods (Fig-
ure 4.9), and at the end of each scheduling period the production facility must supply
its customers the demand asked (Table 4.14).
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Figure 4.9: Representation of the Production planning and scheduling integration case study prob-
lem.

Table 4.14: Costumer demand for each product.

Product Period 1 (kg) Period 2 (kg)

A 4 8
B 5 7
C 6 5

4.4.2 Production planning problem

The aim of the production planning decision level is to determine the production tar-
get of each product for every scheduling period, so as to minimize the inventory level
after each scheduling period comes to an end andmake sure that the demand of each
product is fulfilled. The formulation of the production problem is presented below
(4.21). The notation used is defined in Table 4.15:

min
P,I

kA(I1A + I
2
A) + kB(I

1
B + I

2
B) + kC(I

1
C + I

2
C) + k

1
4c

1
2C + k

2
4c

2
2C

s. t. P1A = D
1
A − I

0
A + I

1
A

P1B = D
1
B − I

0
B + I

1
B

P1C = D
1
C − I

0
C + I

1
C

P2A = D
2
A − I

1
A + I

2
A

P2B = D
2
B − I

1
B + I

2
B

P2C = D
2
C − I

1
C + I

2
C

(4.21)

4.4.3 Scheduling problems

The objective of each scheduling problem is to minimize the makespan by assigning
time slots to each product. The formulation of the scheduling problems is a modifica-
tion of the formulation developed by Ryu et al. [33] and presented below. The notation

 EBSCOhost - printed on 2/14/2023 6:52 AM via . All use subject to https://www.ebsco.com/terms-of-use



4.4 Planning and scheduling integration (MF-B-MILP) | 101

Table 4.15: Notation.

k Products (A, B, C)
i Time slot (1, 2, 3)
j Production stage (1, 2)
n Scheduling period (1, 2)
Pnk Production target for product k in scheduling period n
Tj,k Processing time of product k in stage j
Dnk Demand of product k in scheduling period n
Ink Inventory level of product k after scheduling period n
cni,j Completion time of product k in stage j and period n
yi,k Binary 0-1 variable for product k being assigned in time slot i
CR Critical region

used is defined in Table 4.15.

min
y,c

c2C

s. t.
3
∑
i=1

yi,k = 1 ∀k

3
∑
k=1

yi,k = 1 ∀i

ci,j ≥ ci,j−1 +
3
∑
k=1

wi,k,j j > 1, ∀i

ci,j ≥ ci−1,j +
3
∑
k=1

wi,k,j i > 1, ∀j

wi,k,j ≥ θk,j − θUk,j(1 − yi,k) ∀i, j, k

wi,k,j ≤ θk,j − θLk,j(1 − yi,k) ∀i, j, k

yi,kθLk,j ≤ wi,k,j ≤ yi,kθUk,j ∀i, j, k

θLk,j ≤ θk,j ≤ θ
U
k,j ∀i, j, k

(4.22)

where i is the time slot (1, 2, 3), j is the production stage (1, 2), and k is the product
(A,B,C).

The first constraint ensures that each product is assigned one time slot, whereas
the second constrained ensures that just one product is assigned in each time slot.
The third and fourth constraint define the completion times of products at different
stages.

Nonlinearities arise from the term wi,k,j = yi,kTj,k, as Tj,B is a function of PB. The
last four constraints are used to eliminate this nonlinearities resulting into a mixed-

 EBSCOhost - printed on 2/14/2023 6:52 AM via . All use subject to https://www.ebsco.com/terms-of-use



102 | 4 Application areas

integer linear programming problem (more information on the reformulation can be
found in Ryu et al. [33]).

4.4.4 Solution method

To solve the problemdefined above, the algorithmpresented in this chapter for bilevel
multifollower optimization problems is followed.

Step 1: The two follower problems are reformulated as mp-MILP problems, in
which the optimization variables of the upper level problem P1,P2 and I1, I2 are con-
sidered as parameters. Note that the decision variables of each of the follower prob-
lems do not appear in the other follower problem and, therefore, are not considered
as parameters.

Step 2: The mp-LP problems are then solved using a mp-LP algorithm through
POP toolbox [242] and yield the optimal parametric solutions given in Tables 4.16
and 4.17 and presented in Figure 4.10. In this example, each parametric solution
consists of only two critical regions. Since the scheduling problems are structurally
identical, one could just solve one of the problems and then derive the solution for
the rest.

Table 4.16:Multiparametric solution of the first follower – Scheduling period 1.

CR Definition Objective-Makespan

1.1 4 ≤ P1B ≤ 5.5 P1B + 12
1.2 5.5 ≤ P1B ≤ 7 2P1B + 6.5

Table 4.17:Multiparametric solution of the second follower – Scheduling period 2.

CR Definition Objective-Makespan

2.1 4 ≤ P2B ≤ 5.5 P2B + 12
2.2 5.5 ≤ P2B ≤ 7 2P2B + 6.5

Step 3: The solutions obtained are then substituted into the upper level problem to
formulate four new single-level deterministic linear programming (LP) problems that
correspond to reformulations of the original bilevel multifollower problem. The four
problems are created by taking different combinations of the followers critical regions
(Table 4.18).
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Figure 4.10:Multiparametric solution of the followers problem.

Table 4.18: Combinations of CRs used for the single-level reformulations.

Combination Critical regions

1 1.1 and 2.1
2 1.1 and 2.2
3 1.2 and 2.1
4 1.2 and 2.2

Table 4.19: Single-level solutions.

Combination Makespan 1 Makespan 2 Planning obj.

1 infeasible
2 17.5 19.5 377
3 19.5 17.5 381
4 117.5 19.5 377

Step 4: The single-level problems created in Step 3 are then solved using CPLEX linear
programming solver, and result to the solutions presented in Table 4.19.

After the comparison procedure the global optimum is found to be 377 and lies at
the point were critical region 1.1 meets critical region 1.2, resulting to both combina-
tions 2 and 4 giving the same solution. The global optimal solution is also presented
in Figure 4.11.
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Figure 4.11: Global optimal solution of the original bilevel multifollower planning and scheduling
integration problem.

4.5 Integration of design and scheduling (MF-B-MILP)
The integration of design and scheduling decisions can play a big role in designing
economically profitable plants and improving their operational performance [270].

Design decisions involve the decisions that must be taken before the plant is op-
erational and are the less likely to change while a possible change usually requires
not only a considerable investment but also the permanent cease of operation. Such
decisions include the location and capacity of the production plant, the choice of raw
materials and products, and the number and capacity of different units in the plant. At
the operating level, scheduling decisions optimize the plant performance and involve
the detailed timing of operations and sequencing for a fixed process design [271].

In this work, we are focusing on the integration of process design decisions and
operation decisions of processing plants. The design and scheduling problem can be
expressed as a hierarchical decision problem, where design related decisions occur
at the upper level and operational scheduling decisions at the lower level [272, 273].
We formulate this bilevel mixed-integer optimization problem and solve it through a
multiparametric bilevel solution algorithm to arrive to the exact global optimumof the
integrated problem.

4.5.1 Bilevel formulation for the integration of process design and scheduling

Bilevel formulations have been used extensively in operations research for several
years. In this section, we will present a bilevel formulation for the integration of pro-
cess design and scheduling, where design-related decisions occur at the upper level,
and scheduling-related decisions at the lower level optimization problem. The nota-
tion used throughout the formulation can be found in Table 4.20.

4.5.1.1 Upper level problem – design
A design problem generally aims at designing a profitable plant by making long term
decisions. Those decisions include the location or capacity of the plant, the type of
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Table 4.20: Notation.

Sets and indices
i Time slot (1, . . . ,N)
k Product (1, . . . ,N)
j Stage (1, . . . ,M)

Upper level variables
nj Integer variable for the number of units in stage j
Pk Production target of product k
Ca Plant Capacity

Lower level variables
ci,j Completion time of ith product in stage j
yi,k Binary variable to denote if product k is processed at the ith time slot (sequence)
wi,k Auxiliary variable (wi,k = yi,kPk )

Constant parameters
Aj,k Processing time factor of product k in stage j
dk Demand of product k
C InvUj Unit investment cost for stage j
CRevk Selling price of product k
COperk Operating cost of product k
PLk Lower bound on the production target of product k
PUk Upper bound on the production target of product k

products it is producing, the pathways to produce these products and the type and
number of units needed. Equation (4.23) presents a simplified objective function ex-
ample of a plant design optimization problem:

min
nj ,Pk ,Ca
−

N
∑
k=1

CRevk Pk +
N
∑
k=1

COperk Pk +
M
∑
j=1

CInvUj njCa (4.23)

where the first term corresponds to the revenue gained from selling the products, the
second term to corresponds to the operating costs and the final term to the investment
costs required to purchase process units. Note that the objective function here is not
linear as the last term (investment costs) is bilinear. The design decisions for this ex-
ample include the choice of the number of units in each processing stage, and the
production target of each product.

4.5.1.2 Lower level problem – scheduling
The scheduling problem optimizes the plant performance by determining the detailed
timing of operations and sequencing so as to meet a performance criterion, for ex-
ample minimizing the makespan. The scheduling model generally involves two types
of constraints, sequencing constraints that typically denote which products are pro-
duced in the different time instances, and assignment constraints that determine the
completion times of the products at different stages. The formulation of the schedul-
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ing problem (4.24) presented here is a modification of the formulation developed in
[33], (also discussed in Section 4.4.3 of this book):

min
ci,j ,yi,j

cN ,M

s. t.
N
∑
i=1

yi,k = 1 ∀k

N
∑
k=1

yi,k = 1 ∀i

ci,1 ≥
N
∑
k=1

yi,kAj,kPk ∀i

ci,j ≥ ci,j−1 +
N
∑
k=1

yi,kAj,kPk j > 1, ∀i

ci,j ≥ ci−nj ,j +
N
∑
k=1

yi,kAj,kPk i > nj, ∀j

(4.24)

In this formulation, we are assuming that the processing time of each product at
each stage is a linear function of the production target, Pk .

The objective function of problem (4.24) is to minimize cN ,M , that is, the comple-
tion time of the last product in the last stage and corresponds to the makespan. The
first equality constraint ensures that each product is assigned at one position in the
production sequence. The second equality constraint ensures that eachposition in the
sequence is assigned to one product. The third constraint is an inequality constraint
and indicates that the completion time of the first stage for all products is greater than
the processing time needed. The fourth and fifth constraints indicate that a product in
a stage can only be processed if the product and the corresponding unit are available
at the same time.

The last three bilinear constraints are linearized by introducing an auxiliary vari-
able, wi,k = yi,kPk, and are updated with the following constraint set (4.25):

ci,1 ≥
N
∑
k=1

A1,kwi,k ∀i

ci,j ≥ ci,j−1 +
N
∑
k=1

Aj,kwi,k j > 1, ∀i

ci,j ≥ ci−nj ,j +
N
∑
k=1

Aj,kwi,k i > nj, ∀j

Pk − PUk (1 − yi,k) ≤ wi,k ≤ Pk − PLk (1 − yi,k) ∀i, j, k
yi,kPLk ≤ wi,k ≤ yi,kPUk ∀i, k
PLk ≤ Pk ≤ P

U
k ∀k

(4.25)
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The third constraint in the set is only active for i > nj. Since nj is considered an
optimization variable, a reformulation is needed. Big-M constraints are formulated
to activate and deactivate this constraint for different values of i and nj. The integer
variable nj is transformed into a set of binary variables, mjα , using the procedure de-
scribed in Floudas [241] (Section 6.2.1, Remark 1) to allow for the formation of Big-M
constraints. One can observe that the design optimization variables, nj and Pk, appear
in the constraints of the scheduling problem. This indicates that solving the two prob-
lems separately can result in a suboptimal or even infeasible solution. Therefore, a
bilevel formulation and a global solution algorithm for bi-level problems will be able
to supply the decision makers with the optimal solution of the design and scheduling
problem. The final problem formulation corresponds to a bilevel mixed-integer linear
programming problem.

4.5.2 Illustrative case study

Based on the proposed formulation and algorithm, a small case study is solved for il-
lustration purposes. The case study considers the design and scheduling integration
of processes that consists of two stages (a reaction stage and a separation stage, Fig-
ure 4.12) for the production of three products (A, B and C). At the design phase, the
number of units for each stage is decided along with the capacity or production target
of the processing plant. At the operating stage, scheduling decisions are made that
include the sequence of the production of the three products and the start and finish
times of eachproduction stage for eachproduct. The constants used for this case study
are presented in Table 4.21, Table 4.22 and Table 4.23.

The maximum number of units for both of the production stages is set to three
(Figure 4.12) as the number of products being produced is three. Furthermore, bounds
are set for the maximum andminimum production capacity of the three products and
this are set to 20 and 10 tons, respectively.

Figure 4.12: A schematic representation of the process configuration of the illustrative example.
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Table 4.21: Processing time data.

Product, k Processing time factor, Aj,k (h/Ton)
Stage 1 (j = 1) Stage 2 (j = 2)

A 0.10 0.30
B 0.07 0.20
C 0.10 0.25

Table 4.22: Operating cost, demand and selling price data.

Product, k Operating Cost, COperk ($/Ton) Demand, dk (Ton) Price, CRevk ($/Ton)

A 30 20 600
B 33 19 720
C 27 17 880

Table 4.23: Unit investment cost data.

Stage, j Cost, C InvUj ($/Ton)

Reactor, j = 1 300
Separator, j = 2 600

4.5.2.1 Solution method
Following the algorithm presented Table 2.1 and Section 2.1, the first and second steps
are skipped as the problem is already a binary B-MILP. For the third step, the lower
level scheduling problem, (4.25) is solved as amultiparametric problemwhere the de-
sign decisions, number of units (nj), production target of each product (Pk) and pro-
duction capacity (Ca), are considered as parameters. The solution of the multipara-
metric problem resulted into the complete profile of optimal solutions of the lower
scheduling level problem as explicit functions of the variables of the higher design
level problem, with corresponding boundary conditions for different regions in the
parametric space (critical regions, CR). The solution consists of 25 critical regions and
a fraction of them is given in Table 4.24 and illustrated through a 3-D plot (PA vs. PB vs.
PC) of the parametric space in Figure 4.13, by fixing the number of units (nj) to n1 = 1
and n2 = 3 (one reactor and 3 separators).

In Step 5, the computed solutions (Table 4.24) are then substituted into the upper
design level problem to formulate new single-level deterministic mixed-integer bilin-
ear programming problems. More specifically, the expressions for the optimization
variables of the lower scheduling level, c(i, j) and y(i, j), are substituted in the upper
design level in terms of the design optimization variables, nj andPk, and the definition
of critical regions is added in the upper level as a new set of constraints.
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Table 4.24: Partial solution of the lower level scheduling problem.

CR Definition of the CR Lower level variables

C1 0.359PA + 0.252PB − 0.899PC ≤ 0 c1,1 = 0.07PA
−0.926PA + 0.216PB − 0.309PC ≤ 0 c1,2 = 0.27PB
−0.408PA + 0.816PB − 0.408P≤0 c2,1 = 0.1PA + 0.07PB
10 ≤ PA ≤ 20 c2,2 = 0.4PA + 0.07PB
PB ≥ 10 c3,1 = 0.1PA + 0.07PB + 0.1PC
10 ≤ PC ≤ 20 c3,2 = 0.1PA + 0.07PB + 0.35PC
n1 = 1, n2 = 3 y1,A = 0, y1,B = 1

y1,C = 0, y2,A = 1
y2,B = 0, y2,C = 0
y3,A = 0, y3,B = 0
y3,C = 1

C2 0.359PA + 0.252PB − 0.899PC ≤ 0 c1,1 = 0.07PA
−0.926PA + 0.216PB − 0.309PC ≤ 0 c1,2 = 0.27PB
−0.408PA + 0.816PB − 0.408P≤0 c2,1 = 0.1PA + 0.07PB
10 ≤ PA ≤ 20 c2,2 = 0.4PA + 0.07PB
PB ≥ 10 c3,1 = 0.1PA + 0.07PB + 0.1PC
10 ≤ PC ≤ 20 c3,2 = 0.27PB + 0.25PC
n1 = 1, n2 = 3 y1,A = 0, y1,B = 1

y1,C = 0, y2,A = 1
y2,B = 0, y2,C = 0
y3,A = 0, y3,B = 0
y3,C = 1

Figure 4.13: 3-D plot of the parametric space for fixed number of units.
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For Step 6, the resulting single-level MIP problems are solved using CPLEX algorithm.
The solution of a fraction of the single-level problems created is presented Table 4.25.

Table 4.25: Single-level solutions of a fraction of the CRs created in Step 4.

CR Upper level
objective function

Lower level
objective function

Production
sequence

Fraction of the
variables

A1 −21248 15.080 B-A-C n1 = 1,
n2 = 1,
PA = 19,
PB = 19,
PC = 17

A2 −21284 15.080 B-C-A n1 = 1,
n2 = 1,
PA = 19,
PB = 19,
PC = 17

B1 −10370 8.840 B-A-C n1 = 1,
n2 = 2,
PA = 17,
PB = 17,
PC = 17

B2 −10370 9.350 C-A-B n1 = 1,
n2 = 2,
PA = 17,
PB = 17,
PC = 17

…

C1 −170 9.350 C-A-B n1 = 1,
n2 = 3,
PA = 17,
PB = 17,
PC = 17

C1 −170 8.840 B-A-C n1 = 1,
n2 = 3,
PA = 17,
PB = 17,
PC = 17

…

As a final step, the solutions of all the single-level problems are compared. The solu-
tion with the minimum objective function value corresponds to the global minimum
of the original bilevel programming problem. For this case, the optimum lies in CR
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A1 and CR A2 that result to the same upper and lower objective functions but have
different sequence for the production of the three products. The upper level objective
is $ −21284 and the lower level objective is 15.08 hr. The optimal design variables are
PA = 19, PB = 19, PC = 17, Ca = 19, n1 = 1, n2 = 1. The optimal sequence of production
is either B-A-C or B-C-A. It is worth noting here that optimistic, pessimistic and degen-
erate solutions can be found using the proposedmethodology, supplying the decision
maker with all optimal solutions.

In this case study, we were able to formulate and solve a design and scheduling
integration problem as a bilevel mixed integer programming problem. Through the
algorithm described in Chapter 2 we were able to get the global solution of the bilevel
problem that considered both design and operational decisions.

4.5.3 Conclusion

This chapter introduced different application case studies where multilevel optimiza-
tion formulations can or should be utilized. Along with the formulation of the prob-
lems, this chapter also presented the solution procedure for each case study.

The next chapter introduces the B-POP toolbox that was used to solve most of the
application case studies covered in this chapter.
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5 Computational implementation – B-POP toolbox
Considering that mixed-integer bilevel programming problems are very challenging
to solve, publicly available bilevel toolboxes are very limited.

Motivated by the lack of an available toolbox for the solution of bilevel mixed-
integer programming problems, this chapter presents B-POP®, a MATLAB® based
toolbox for the global solution of different classes of bilevel programming problems
using multiparametric programming algorithms [274]. The toolbox is an extension to
POP® (Parametric OPtimization) toolbox [242], and features (i) bilevel programming
solvers for linear and quadratic programming problems and theirmixed-integer coun-
terparts, (ii) a versatile problem generator capable of creating random bilevel prob-
lems of arbitrary size and (iii) a library of bilevel programming test problems.

The toolbox is based on multiparametric theory [274, 240] and our developed al-
gorithms presented in Chapter 3 [99, 243] and software tools [242].

5.1 Bilevel programming solvers

In B-POP, we have implemented the algorithm of Faisca et al. [99] for B-LP and B-QP
problems and the algorithm of Avraamidou et al. [243] for B-MILP and B-MIQP prob-
lems. Both algorithms have been combined in a single wrapper:

Solution = BPOP(problem)

where problem is the structured array containing the B-LP/B-QP/B-MILP or B-MIQP
problem.

Theuser has the option to choosewhichLPandQP solver to use (MATLAB [in-built
functions linprog and quadprog], NAG and CPLEX), which mp-LP/mp-QP POP solver
to use (Geometrical [180], Combinatorial [186], Graph [191] or MPT [193]) and the inte-
ger handling technique for B-MIP. This features can be set through the OptionSet
function, which also contains all the adjustable settings of POP (see Oberdieck
et al. [242] or POP User Manual available at parametric.tamu.edu/POP for more de-
tails).

5.2 Bilevel problem generator

The aim of this feature is to generate random, feasible bilevel problems of the form
(5.1):

https://doi.org/10.1515/9783110760316-005
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min
x1 ,y1 (Q1

Tω + c1)
Tω + cc1

s. t. A1x + E1y ≤ b1
min
x2 ,y2 (Q2

Tω + c2)
Tω + cc2

s. t. A2x + E2y ≤ b2
x = [xT1 xT2 ]

T , x ∈ ℝn

y = [yT1 yT2 ]
T , y ∈ {0, 1}p

ω = [xT yT]T

(5.1)

where Q1,Q2 ∈ ℝ
n×n ≻ 0, c1, c2 ∈ ℝn, A1 ∈ ℝm1×n, A2 ∈ ℝm2×n, b1 ∈ ℝm1 , b2 ∈ ℝm2 and x1

is compact (closed and bounded).
The algorithm of the generator can be decomposed in three steps:

Step 1 – Level 1 objective function: In order to define the first level objective func-
tion,Q1, c1 and cc1 need to be defined.Q1 needs to be symmetric positive definite
the size ofω×ω, and this is achieved by randomly generating a diagonal matrix
featuring only positive entries. For the definition of c1 and cc1, no specific crite-
rion is required, therefore, a random vector the size of x is generated for c1, and
a random scalar is generated for cc1.

Step 2 – Level 2 objective function: The same strategy followed for the first level ob-
jective function is also followed for the second level objective function.Q2 needs
to be a symmetric positive definite matrix the size of ω ×ω, and this is achieved
by randomly generating a diagonal matrix featuring only positive entries. For
the definition of c2 and cc2, similar to Level 1, no specific criterion is required.

Step 3 – Constraints: For the generation of constraints for the bilevel optimization
problems, we follow the criteria we developed for the generation of constraints
for multiparametric programming problems [242]. These are (i) feasibility and
(ii) tightness in the sense that different solutions should be optimal in different
parts of the parameter space. The algorithm used to define this constraints was
presented in Oberdieck et al. [242], Algorithm 1.

It is worth mentioning here that there are publicly available B-MILP instance prob-
lems generated by Matteo Fischetti, Ivana Ljubic, Michele Monaci and Markus Sinnl
in their website “https://msinnl.github.io/pages/bilevel.html.” Those problems are
not of the general B-MILP form presented in (2.1) as the leader variables that influence
the follower decisions can only be an integer.

The bilevel problem generator is accessible from the Command Window as

problem = BilevelProblemGenerator(Type, Size, options)

where Type is “BLP,” “BQP,” “BMILP” or “BMIQP” and Size is a structured array fea-
turing the desired dimensions of the optimization variables of each optimization level
and constraints.
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5.3 Bilevel problem library

The final feature of B-POP is a bilevel problem library, featuring problem sets of the
four different problem types and subclasses, “BLP,” “BQP,” “BMILP” and “BMIQP,”
each containing randomly generated problems of different sizes. These problem li-
braries are used in Section 5.4 to analyze the performance and scalability of BPOP.

Each problem in the bilevel problem library is stored in the folder named “Bilevel
Library,” which contains a subfolder for each different test set class, which in return
contains all the randomly generated problems as “.mat” files.

5.4 Assessing the efficiency and performance of B-POP

Four sets of bilevel problems of different classes, sizes and structures were solved to
show the capabilities of B-POP toolbox. Tables 5.1 to 5.4 present the computational re-
sults, where xT denotes the total number of continuous variables of the bilevel prob-
lem, yT denotes the total number of binary variables of the bilevel problem, x1 and x2
denote the number of continuous decision variables of the first and second optimiza-
tion level, respectively, y1 and y2 denote the number of binary decision variables of the
first and second optimization level, respectively,m denotes the number of constraints
of the lower level problem, Level 1 and Level 2 denote the time B-POP takes to solve
each optimization level and Total denotes the total computational time for each test
problem. The computational results are also illustrated in Figure 5.1 for the continuous
problems and Figure 5.2 for mixed-integer problems.

The computations were carried out on a 2-core machine with an Intel Core i7 at
3.1 GHz and 16GB of RAM,MATLAB R2016a and IBM ILOG CPLEX Optimization Studio
12.6.3. Note that the independent problems in Step 5 of the B-QP algorithm, and Step
6 of the B-MIP algorithm, were solved sequentially and not simultaneously (which
obviously would have improved the computational performance).

5.5 Discussion on the computational results

The solution of the test set problems highlight the capabilities of B-POP.
For the continuous bilevel problems (B-LP, B-QP), the computational performance

of B-POP was shown to be very efficient, especially for the bilevel linear problems,
where problems with more than 500 variables could be solved in less than 300 sec-
onds. Bilevel quadratic problems are significantly less efficient with problems with
more than 100 variables needing more than 500 seconds to be solved.

For the mixed-integer bilevel problems (B-MILP, B-MIQP), similar to the contin-
uous problems, the efficiency for the linear problems was much better than for the
nonlinear quadratic problems.
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Table 5.1: Computational results: B-LP.

Problem x1 x2 m mp-Level 2 (s) Single level (s) Total time (s)

test1 2 2 10 0.2939 0.0428 0.3367
test2 2 7 36 0.7889 0.0534 0.8423
test3 2 7 18 0.1776 0.0051 0.1827
test4 2 7 18 0.2488 0.0249 0.2737
test5 10 10 40 0.5160 0.0289 0.5449
test6 12 12 24 1.4423 0.0382 1.4806
test7 15 15 90 0.7352 0.0283 0.7636
test8 17 17 34 0.3994 0.0051 0.4044
test9 19 19 76 63.2557 0.2205 63.4762
test10 20 20 80 1.1779 0.0442 1.2221
test11 22 22 132 1.5016 0.0190 1.5206
test12 25 25 100 1.2853 0.0230 1.3082
test13 27 27 20 0.9264 0.0538 0.9802
test14 30 30 22 0.8055 0.0113 0.8168
test15 35 35 30 0.9586 0.0040 0.9626
test16 40 40 35 2.1567 0.0401 2.1968
test18 50 50 40 2.3846 0.0026 2.3872
test20 55 55 50 2.4196 0.0032 2.4227
test21 60 60 55 2.3239 0.0022 2.3261
test24 70 70 70 3.5598 0.0022 3.5620
test26 80 80 80 7.6918 0.0065 7.6983
test28 90 90 90 5.3004 0.0035 5.3040
test30 100 100 100 15.7899 0.0029 15.7928
test31 110 110 110 13.5997 0.0043 13.6039
test32 120 120 120 41.1437 0.0049 41.1486
test33 130 130 130 55.8976 0.0081 55.9057
test34 140 140 140 55.3011 0.0045 55.3056
test35 150 150 150 39.1210 0.0056 39.1266
test36 160 160 160 46.0358 0.0088 46.0446
test37 170 170 170 55.7919 0.0075 55.7994
test38 180 180 180 71.1564 0.0137 71.1701
test39 190 190 190 105.4210 0.0098 105.4308
test40 200 200 200 100.2806 0.0147 100.2953
test41 220 220 220 184.5859 0.0158 184.6018
test42 240 240 240 151.4938 0.0180 151.5119
test43 260 260 260 289.6922 0.0245 289.7168
test44 280 280 280 225.3628 0.0265 225.3893
test45 300 300 300 1060.1907 0.0344 1060.2251
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Table 5.2: Computational results: B-QP.

Problem x1 x2 m mp-Level 2 (s) Single level (s) Total time (s)

test1 2 2 16 0.6593 0.0948 0.7541
test2 3 3 17 0.6159 0.0783 0.6943
test3 5 5 30 53.7702 5.5880 59.3583
test5 2 7 5 0.1453 0.0152 0.1605
test6 3 7 7 0.7189 0.1486 0.8674
test7 4 7 10 2.1774 0.3588 2.5361
test8 5 7 10 3.0904 0.4446 3.5350
test9 6 7 10 2.1511 0.2712 2.4223
test11 4 10 10 5.1546 0.8471 6.0017
test13 6 10 10 16.2266 2.1169 18.3434
test15 8 10 10 30.1686 3.0333 33.2018
test17 10 10 10 39.4925 2.8606 42.3531
test19 12 10 10 47.5784 2.8586 50.4370
test20 14 10 10 57.7805 2.5489 60.3294
test21 16 10 10 70.3945 2.9120 73.3065
test22 16 12 10 75.5874 3.2628 78.8503
test23 16 14 10 104.0171 3.1920 107.2091
test24 16 16 10 78.1582 2.6769 80.8351
test25 18 18 10 83.4105 2.7502 86.1606
test26 20 20 10 97.3432 2.6917 100.0349
test27 22 22 10 65.3891 2.1492 67.5383
test28 24 24 10 146.8141 3.9729 150.7870
test29 26 26 10 152.3434 3.6763 156.0197
test30 28 28 10 161.6853 3.9808 165.6661
test31 30 30 10 164.9478 3.3726 168.3204
test32 32 32 10 196.2318 3.0421 199.2739
test33 34 34 10 208.1788 3.2885 211.4672
test34 36 36 10 252.2779 3.7759 256.0538
test35 38 38 10 306.4905 3.3287 309.8192
test36 40 40 10 289.6366 4.4620 294.0987
test37 42 42 10 313.0398 4.7300 317.7698
test38 44 44 10 341.7009 5.9530 347.6539
test39 46 46 10 388.4117 4.4595 392.8712
test40 48 48 10 417.8896 4.9598 422.8495
test41 50 50 10 441.9685 4.8927 446.8612
test42 52 52 10 546.9051 5.5651 552.4702
test44 54 54 10 512.1658 4.9903 517.1562
test45 56 56 10 637.0739 5.2642 642.3381
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Table 5.3: Computational results: B-MILP.

Problem x1 y1 x2 y2 m mp-Level 2 (s) Single level (s) Total time (s)

test5 25 25 2 2 15 321.5283 0.9317 322.4600
test6 30 30 2 2 17 107.7841 0.4679 108.2520
test8 40 40 2 2 22 291.130 0.1731 291.3035
test10 50 50 2 2 27 455.0280 0.9539 455.09819
test14 2 2 20 20 12 0.6848 0.0016 0.6864
test16 2 2 30 30 17 1.5148 0.0031 1.5179
test18 2 2 40 40 22 1.2439 0.0021 1.2460
test19 2 2 45 45 25 1.5815 0.0027 1.5842
test20 2 2 50 50 27 1.7802 0.0023 1.7825
test21 2 2 55 55 30 1.6793 0.0019 1.6812
test22 2 2 60 60 32 1.9333 0.0020 1.9353
test23 2 2 65 65 35 3.1148 0.0020 3.1168
test24 2 2 70 70 37 2.7563 0.0026 2.7589
test25 2 2 75 75 40 4.1390 0.0026 4.1416
test26 2 2 80 80 42 3.8449 0.0023 3.8472
test27 2 2 85 85 45 5.6016 0.0031 5.6047
test28 2 2 90 90 47 5.4821 0.0032 5.4853
test29 2 2 95 95 50 5.9115 0.0029 5.9144
test30 2 2 100 100 52 8.1234 0.0029 8.1263
test33 10 10 10 10 10 26.1063 0.0233 26.1296
test37 20 20 20 20 20 4.3209 0.0102 4.3312
test41 30 30 30 30 30 3.5103 0.0019 3.5122
test44 40 40 40 40 40 5.4329 0.0025 5.4354
test45 45 45 45 45 45 4.3939 0.0021 4.3960
test46 50 50 50 50 50 8.3232 0.0099 8.3331
test47 55 55 55 55 55 8.9885 0.0034 8.9918
test48 60 60 60 60 60 17.5849 0.0109 17.5957
test49 65 65 65 65 65 10.2242 0.0046 10.2288
test50 70 70 70 70 70 24.5837 0.0123 24.5960
test51 75 75 75 75 75 18.4030 0.0057 18.4087
test52 80 80 80 80 80 13.8105 0.0069 13.8175
test53 85 85 85 85 85 19.7149 0.0142 19.7291
test54 90 90 90 90 90 37.1772 0.0080 37.1852
test55 95 95 95 95 95 59.2469 0.0159 59.2628
test56 100 100 100 100 100 55.3647 0.0080 55.3727
test57 105 105 105 105 105 45.3738 0.0095 45.3833
test58 110 110 110 110 110 68.0360 0.0074 68.0434
test59 115 115 115 115 115 100.8653 0.0119 100.8772
test60 120 120 120 120 120 191.6486 0.0477 191.6963
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Table 5.4: Computational results: B-MIQP.

Problem x1 y1 x2 y2 m mp-Level 2 (s) Single level (s) Total time (s)

test1 5 5 2 2 5 4.1001 0.1238 4.2239
test2 10 10 2 2 7 2.6959 0.0377 2.7336
test3 15 15 2 2 10 152.1813 0.4648 152.6460
test4 20 20 2 2 12 201.1591 0.5662 201.7052
test5 25 25 2 2 15 175.0922 0.9555 176.0477
test6 2 2 5 5 5 79.3080 0.0730 79.3742
test7 2 2 10 10 7 257.4909 0.0060 257.4969
test8 5 2 5 2 3 8.5233 0.1221 8.6353
test9 10 2 10 2 5 33.0615 0.0601 33.6625
test10 15 2 15 2 6 32.3564 0.0532 32.4096
test11 20 2 20 2 7 47.3702 0.5851 47.9553
test12 25 2 25 2 8 4.5226 0.0345 4.5571
test13 20 5 20 2 5 165.4143 0.7007 166.1150
test14 10 10 30 5 1 210.9560 0.0386 210.9946
test15 5 2 25 5 1 183.3612 0.0856 183.4468

Figure 5.1: Graphical representation of the computational time required to solve continuous bilevel
linear and quadratic problems in B-POP.

The number of constraints was also a key factor for the difficulty of each test problem,
and itwas shown, especially in Figure 5.1, that by increasing thenumber of constraints
the time required to solve the bilevel problems is increased.

Approximate solution methods could be computationally more efficient than the
solvers in B-POP, but B-POP arrives to the exact solution of bilevel problems paying a
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Figure 5.2: Graphical representation of the computational time required to solve mixed-integer
bilevel linear and quadratic problems in B-POP.

penalty in computational time for the solution of the mutliparametric programming
problems. The number of single-level problems required to be solved does not play
a big role in the total computational time as for all four classes of problems solved,
and it was clearly observed that the limiting step of the algorithms, and more time
consuming, is the solution of the lower level multi-parametric problem.
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A Appendix

A.1 PARametric optimization and control framework

The presence of uncertainty in process systems is one of the key reasons for deviation
from set operation policies. As these uncertainties realize themselves on different time
scales such as on a control, scheduling or design level, an integrated, comprehensive
approach to consider uncertainty is required. To address this, the PAROC (PARamet-
ric Optimization and Control) framework was developed [275]. PAROC, a novel unified
framework for the design, operational optimization and advanced model-based con-
trol of process systems, which decomposes this challenging problem into a series of
steps are summarized in this Appendix.

PAROC is a comprehensive framework that enables the representation and solu-
tion of demanding model-based operational optimization and control problems fol-
lowing an integrated procedure featuring high-fidelitymodeling, approximation tech-
niques and optimization-based strategies, including multiparametric programming.
A step-by-step description of the framework is provided below and illustrated in Fig-
ure A.1. The full description of the framework, as well as its principles are presented
in detail in [275].

Step 1: “High fidelity” dynamic modeling
The development of the “high fidelity model,” its quality and robustness determine
the validity of the framework. The modeling of the system takes place in gPROMS®
[276].

Step 2: Model approximation
The resulting highly complex dynamic models of the subsystems of the first step
(most commonly DAE or PDAE programs), although sufficiently accurate compared to
the real process, are not directly suitable for multiparametric programming studies.
Hence, reduction techniques ([277] and [278]) and identification methods (System
Identification Toolbox of MATLAB®) are employed to (i) reduce the model complexity
while (ii) preserving the model accuracy.

Step 3: Design of the multiparametric model predictive controllers
The design of the controllers is based on the validated procedure described in [279]
and [252]. The resulting multiparametric program is solved via the POP® toolbox in
MATLAB®, thus acquiring the map of optimal control actions.

Step 4: Closed-loop validation
The procedure is validated through a closed-loop procedure, where the controllers are
tested against the original model of step 1. This can happen either via the interoper-

https://doi.org/10.1515/9783110760316-006
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122 | A Appendix

ability between software tools such as gPROMS® and MATLAB® via gO:MATLAB or
via the straight implementation of the controllers in the gPROMS® simulation via the
use of C++ programming and the creation of dynamic link libraries.

Figure A.1: The PAROC framework approach. Actions within the gray area happen once and offline.
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B Appendix

B.1 POP – The parametric optimization toolbox

With an ever increasing number of applications for multiparametric programming,
there is a high need for a comprehensive software tool capable of efficiently solving
multiparametric programmingproblems,while being easily embedded into other soft-
ware architectures such as the ones used in the PAROC platform. Thus, within our
group we have developed POP, the parametric optimization toolbox featuring:
– a state-of-the-art multiparametric programming solver for continuous andmixed-

integer problems
– a comprehensive problem library featuring an ever increasing number of example

problems
– a versatile problem generator, which allows for the generation of random multi-

parametric programming problems of arbitrary size
– a link to the software YALMIP

In addition, POP is equipped with a graphical user interface, which enables the user-
friendlyuse of all functionalities of POPanda link to the solvers of theMultiparametric
Toolbox (MPT), as well as the ability to design explicit MPC problems, through PAROC
framework discussed in Appendix A. The interface of POP toolbox is presented in fig-
ure B.1.

In general, POP considers the following optimization problem:

z∗(θ) = min
x,y (Qω + Htθ + c)Tω + (Qtθ + ct)Tθ + cc
s. t. Ax + Ey ≤ b + Fθ

Aeqx + Eeqy = beq + Feqθ
x ∈ ℝn, y ∈ {0, 1}p, ω = [xT yT],
θ ∈ Θ ⊂ ℝq | CRA θ ≤ CRb

(B.1)

where Q ≺ 0, the matrices have appropriate dimensions and which is referred to as a
multiparametric mixed-integer quadratic programming (mp-MIQP) problem, as well
as its simpler counterparts.

For further readingon thePOP toolbox andhow todownload anduse it, the reader
is directed to:
– Oberdieck, R.; Diangelakis, N. A.; Papathanasiou, M.M.; Nascu, I.; Pistikopoulos,

E. N. POP – Parametric Optimization Toolbox. Industrial and Engineering Chem-
istry Research 2016, 55 (33), 8979–8991.

– Pistikopoulos, E. N.; Diangelakis, N. A.; Oberdieck, R. Multi-parametric Optimiza-
tion and Control; John Wiley & Sons, 2020.

– The user manual at https://parametric.tamu.edu/POP/.

https://doi.org/10.1515/9783110760316-007
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Figure B.1: Interface of the POP toolbox.
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C Summary of mp-MILP and mp-MIQP solution
algorithms

C.1 Algorithm for the solution of mp-MILP problems

A schematic representation, Figure C.1, showing the steps of the algorithm for the so-
lution of mp-MILP problems (C.1) by [198] is shown below:

min
x,y Qω + Hθ

s. t. Ax + Ey ≤ b + Fθ
x ∈ ℝn, y ∈ {0, 1}p, ω = [xT yT]
θ ∈ Θ := {θ ∈ ℝq | CRA θ ≤ CRb},

(C.1)

where Q ∈ ℝ(n+p)×(n+p) ≻ 0, H ∈ ℝ(n+p)×q, A ∈ ℜm×n, E ∈ ℝm×p, b ∈ ℝm, F ∈ ℝm×q and
Θ is compact.

C.2 Algorithm for the solution of mp-MIQP problems

Thealgorithmof [199] for the solutionof problemswith thegeneral formulationof (C.2)
is summarized below. It is based on the decomposition algorithm shown graphically
in Figure C.2:

min
x,y (Qω + Hθ + c)Tω

s. t. Ax + Ey ≤ b + Fθ
x ∈ ℝn, y ∈ {0, 1}p, ω = [xT yT]
θ ∈ Θ := {θ ∈ ℝq | CRA θ ≤ CRb},

(C.2)

where Q ∈ ℝ(n+p)×(n+p) ≻ 0, H ∈ ℝ(n+p)×q, c ∈ ℝn+p, A ∈ ℝm×n, E ∈ ℝm×p, b ∈ ℝm,
F ∈ ℝm×q and Θ is compact.

Initialization
A candidate solution for the binary variables is found by solving the MIQP problem
formed when considering parameters as optimization variables. A binary solution is
obtained and subsequently fixed in the original problem, thus resulting in a mp-QP
problem. This problem can be solved using the algorithm presented in [213], which
results in an initial partitioning of the parameter space and provides a parametric up-
per bound to the solution. The upper bound for the remaining part of the parameter
space, which has not yet been explored is set to infinity.

https://doi.org/10.1515/9783110760316-008
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Figure C.1: The mp-MILP algorithm proposed by [198].

Step 1
A candidate solution for the binary variables is found by considering parameters as
optimization variables and solving the resulting MIQP problem.

Step 2
Create an affine outer approximation by employing McCormick relaxations [280] for
each bilinear or quadratic term in the constraints. Since the nonlinearities in the con-
straints only arise from comparison procedures, these relaxations are calculated dur-
ing the comparison procedure.
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Figure C.2: A graphical representation of the decomposition algorithm [213].

Step 3
The candidate solution of the binary variables is substituted into the initial problem,
thus resulting in amp-QP. Thismp-QP problem can be solved usingmp-QP algorithms
by [213].

Step 4
This and all subsequent steps have to be performed for each critical region. Compare
solution with the current upper bound. Here, the explicit solution of the problem is
considered, and thus two new critical regions are created.

Step 5
Calculate appropriate relaxations in order to create the outer approximation for the
next iteration.

Step 6
The original inequalities from the current critical region are re-introduced to each
newly formed critical region, while the relaxations used before are removed. The
newly formed critical regions are returned to Step 1 thus resuming the iteration.

Termination
The algorithm terminates as soon as problem in Step 1 is infeasible for all critical re-
gions.
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