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|
The composition of this book has been for the author a long struggle of escape, and so must the
reading of it be for most readers if the author’s assault upon them is to be successful,—a struggle
of escape from habitual modes of thought and expression. The ideas which are here expressed so
laboriously are extremely simple and should be obvious. The difficulty lies, not in the new ideas,
but in escaping from the old ones, which ramify, for those brought up as most of us have been,
into every corner of our minds.

John Maynard Keynes, The General Theory of Employment, Interest and Money, 1936.

The great thing about physical intuition is that it can be adjusted to fit the facts.

Roger Penrose, quoted in Quantum Field Theory by Mark Srednicki.
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Preface
Like many such endeavors, this book evolved out of lecture notes for a master level
course on quantum information theory that I have given several times at ETH Zürich
and at the Technical University of Darmstadt. The main goal of the book, as with the
course, is to understand in detail some of the fundamental limitations and possibil-
ities of information processing with quantum-mechanical information carriers. The
particular focus is on communication and cryptographic tasks, leaving computational
issues for another day.

In outlook and aims, this book is very much inspired by Asher Peres’s Quantum
Theory: Concepts andMethods and JohnBaez and JavierMuniain’sGauge Fields, Knots
and Gravity. Peres’s “strictly instrumentalist” focus was formative for my own initial
understanding of the field, and I follow an operational approach throughout. This
helps avoid imbuing the mathematical quantities one can define in quantum theory
with any unwarranted physicalmeaning. The relentless operational approach leads to
a slight clash with many other texts in that standard quantities such as distinguisha-
bility or fidelity are defined here in variational terms, having to do with optimal mea-
surements or similar, and only later are the corresponding closed forms derived. Con-
tinuing in this operational spirit, I felt, justified borrowing a bit fromPeres’s title. Baez
and Muniain is, in my opinion, a real masterpiece of exposition. I have sought (per-
haps in vain) to emulate their logical, elegant, andmotivated presentation and devel-
opment of the topics under consideration, though of course the particular topics here
are completely different.

I have also borrowed the three-part structure from both. The first covers the for-
malism of quantum information theory, or really open quantum systems of finite di-
mension, developing it by explicit analogy with classical probability theory. The sec-
ond part deals with the tools useful for analyzing information processing tasks, most
of which also find application in other parts of the field. Characteristic of Part II is a
heavy reliance, if not overreliance, on semidefinite programming to phrase and de-
rive most of the main results. I have attempted to keep the required background for
the reader to amodest level—a thorough understanding of linear algebra—and then to
derive everything from there. The third part takes up the information processing pro-
tocols themselves, with the particular emphasis on so-called “one-shot” statements
of structureless resources. These statements are formulated in terms of a quantity in-
volved in the simpler task of binary hypothesis testing. From there, results for the
usual setting of i. i. d. resources can be recovered by Stein’s lemma relating hypothe-
sis testing to entropy. This is also quite at odds with most texts on information theory,
which places entropy front and center, even treating it axiomatically. Again, I follow
the strictly operational approach. My aim here has also been to keep the number of
different tools developed in Part II and techniques employed in Part III to aminimum.
The statements found in the latest literature use a bewildering variety of quantities
andmethods, andwe have tomake a cut somewhere. I also thought it useful tomake a

https://doi.org/10.1515/9783110570250-201
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X | Preface

somewhat different choice of techniques than other texts, if only for variety. Moreover,
the relationship between privacy and error correction in the quantum realm,mediated
by concrete formulations of the uncertainty principle, is too grand not to explore in
more detail.

The material contained in these pages owes much inspiration to the lecture notes
by Carl Caves, John Preskill, and Renato Renner, as well as John Watrous’s Theory of
Quantum Information andMarkWilde’sQuantum Information Theory. But muchmore
than that it is the result of wrestling with the material contained therein, scrutinizing
and rehashing it, adding some bits and subtracting others, and finally molding it to
fit my own sense of the landscape of the theory. The two quotes in the epigraph speak
beautifully to this point. Readers who really wish to understand thematerial will have
to undertake their own struggle of course, and I hope they (you!) at least gain some in-
spiration from seeing the particular development here.Working through the exercises
will also help.

I have benefited enormously from often lengthy conversations over the past
decade with the members of the quantum information theory group at ETH Zürich,
and the book would not be what it is were it not for the very stimulating atmosphere
of the group and the Institute of Theoretical Physics as a whole. I especially thank
Volkher Scholz, Michael Walter, David Sutter, Christophe Piveteau, Ernest Tan, Hen-
rik Wilming, Fred Dupuis, Marco Tomamichel, Mario Berta, and Renato Renner. The
material on quantum error correction has benefited greatly from my earlier collabo-
rations with Graeme Smith and especially with Jean-Christian Boileau. The overall
presentation has been refined by the very helpful feedback from students and teach-
ing assistants in the quantum information theory course over the years. I am grateful
to the assistants Sandra Stupar, Jinzhao Wang, Lisa Hänggli, Philipp Kammerlan-
der, Raban Iten, Alessandro Tarantola, Imre Májer, and Ernest Tan, and students too
numerous to list here. To be sure, there is about twice as much material here as for
our one semester course, but more than a few rough edges have been polished, and
several gaps in the proofs fixed through their feedback, particularly in the earlier
material.

Finally, I am immensely grateful to my wonderful wife Andrea. Without her en-
couragement, love, and support this project could never have been started, let alone
finished.

Zürich, May 2022 Joseph M. Renes
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1 Introduction

“Information is physical” claimed the physicist Rolf Landauer,1 writing

[Information processing] is inevitably done with real physical degrees of freedom, obeying the
laws of physics, and using parts available in our actual physical universe. How does that restrict
the process? [182]

The field of quantum information theory is concerned with what sorts of information
processing tasks can and cannot be performed if the underlying information carriers
are governed by the laws of quantum mechanics as opposed to classical mechanics.
For example, we might use the spin of a single electron to store information, rather
than the magnetization of a small region of magnetic material as in a hard disk drive
or even ink marks on a piece of paper as in this book; or we might use the spin of the
electron to detect a magnetic field. We might transmit information using just single
photons rather than a number so large that we can use the classical wave equation.

The overriding question iswhat can quantum information processing do that clas-
sical information processing cannot, and vice versa? Famously, it is not even possible
to copy quantum information, due to the no-cloning theorem. While this fact might
make quantum information seem quite useless, it is not so! Quantum computers are,
also famously, capable of factoring large integers very efficiently. (To be fair, computer
scientists are not certain that standard classical computers are not capable of similar
speeds.)

Moreover, information processing by quantum devices makes possible some very
counterintuitive protocols. Perhaps most striking is quantum key distribution, which
allows twoparties separated by a large distance to create a secret key, a randombinary
string known only to them, by using only insecure means of communication. This is
surely impossible using classical information carriers, for how would the parties ever
know if an eavesdropper spied on all their communication? In contrast to the laws
of classical mechanics, quantum mechanics places limitations on the accessibility of
information, as exemplified by no-cloning or the uncertainty principle. A would-be
eavesdropper cannot spy on quantum communication signals without leaving some
evidence of having done so. However, while this is helpful for quantum key distribu-
tion, it raises the question of whether, without the possibility of copying, it is possible
to protect quantum information from the inevitable noise in actual quantum informa-
tion processing devices. The simplest method of protecting classical information is,
after all, just to repeat it.

The goal of this book is to provide a solid understanding of the mathematical for-
malism of quantum information theory, with which we can then examine some of the

1 Rolf Wilhelm Landauer, 1927–1999.
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2 | 1 Introduction

counterintuitive phenomena inmore detail. The focus is on communication and cryp-
tographic tasks, and ultimately we will examine the tasks of protecting quantum in-
formation and of quantum key distribution just mentioned. Nonetheless, before em-
barking on a mathematical treatment, we should first step back and come to a clear
understanding of just what information is and why physical law should place any
restrictions on information processing at all. Then we can ask what quantum infor-
mation is and consider what additional physical restrictions or possibilities exist for
quantum information processors.

1.1 What is information?

To understand what is meant by information, we look back to its original use in com-
munication engineering. Consider a sender and a receiver who would like to commu-
nicate by some means, some communication channel, for instance, an electrical tele-
graph. In this setting, transmitting information refers to the ability to transmit a spe-
cific selected message from a set of possible messages. The amount of information is
then the number of possible messages the sender could reliably transmit to the re-
ceiver. Usually, we describe the amount of information logarithmically, in bits: n bits
refers to the 2nmessages that could be expressed in a binary sequence of length n. The
notion of information is less concerned with which one was actually sent and is com-
pletely unrelated to whether the particular message is meaningful to the recipient. All
that is required in the communication scenario is that the sender and receiver agree
what the possible messages are in advance, i. e., how to recognize which message is
which. This means there is only one kind of information. It does not matter if the mes-
sage to be conveyed is prose or poetry, an image or a sound, or some combination of
all of these.

As a concrete example of a communication device, a very early telegraph from
around 1810used separatewires (!) for different letters andnumerals. Current in awire
was detected by passing the wire through a glass tube filled with acid and observing
hydrogen bubbles created by electrolysis. Here the messages are plain language, en-
coded into current in the appropriate wire one letter or numeral at time and read back
similarly by the receiver. The subsequent invention of the galvanometer2 to measure
current enabledmuch simpler, commercially viable designs with fewer wires, such as
telegraphs using Morse3 code.

Information has to do not only with the actual state of affairs, but also with the
possible states of affairs. This makes it a very different kind of quantity than energy
or momentum, which are inherent properties of a physical system. A physical system,

2 Luigi Galvani, 1737–1798.
3 Samuel Finley Breese Morse, 1791–1872.
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1.1 What is information? | 3

i. e., some particular degrees of freedom, has a certain amount of energy andmomen-
tum thatwe can inprinciple just directlymeasure; the values of these quantities donot
depend onwhat the system could be doing, only on what it is actually doing. Informa-
tion, in contrast, has to take into account all the possible, but indeed counterfactual
states of affairs. For this reason, we cannot just measure the information content of a
system. Furthermore, the correspondence between messages and physical configura-
tions of the information carrier is not inherent to the system, but relative to the sender
and receiver.

Norbert Wiener,4 one of the pioneers of the field of information theory, put it suc-
cinctly:

Because information depends, not merely on what is actually said, but on what might have been
said, its measure is a property of a set of possible messages, or of what is called an ensemble in
statistical mechanics. [302]

Wiener’s mention of statistical mechanics tips us off to the fact that actually there
are physical quantities whose definition relies on an ensemble: the Boltzmann5 or
Gibbs6 entropies of statistical mechanics. The Boltzmann entropy of a gas, for in-
stance, is proportional to the logarithm of the number of microstates, the possible
positions and velocities of the gas molecules themselves, which are consistent with a
fixed macrostate, i. e., fixed macroscopic properties such as volume or pressure. The
entropy thus depends onwhich positions andmomenta themolecules could have, not
merely on which actual configuration they do have. The precise formula, famously
inscribed on his tombstone, is S = k logW , where S is the Boltzmann entropy, W
is the number of microstates, and k is the proportionality constant, which today we
would call theBoltzmann factor.Note that in thermodynamics,wedonot directlymea-
sure entropy either, but rather infer its value from other directly measurable quanti-
ties.

Of course, the difficulty of being able to reliably transmit any one of a large set
of messages lies in the inherent noise of the communication channel. This, too, has a
counterfactual aspect in that the communication systemmust be able to contendwith
different possible noise patterns. Only one noise patternwill actually occur, butwhich
one will not be known beforehand.

The field of information theory did not really take off until the work of Wiener
and, particularly, Claude Shannon7 in the late 1940s, which treated the “counterfac-
tual” aspect of information and noise by using probability theory. In this framework

4 Norbert Wiener, 1894–1964.
5 Ludwig Eduard Boltzmann, 1844–1906.
6 Josiah Willard Gibbs, 1839–1903.
7 Claude Elwood Shannon, 1916–2001.
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encoder noisy
channel

decoder
M X Y M′

ideal
channelM M′

≈

Figure 1.1: The abstract communication scenario. The goal is to transmit messagesM from sender to
receiver. Ideally, the messageM′ understood at the receiver is identical to that sent by the sender. In
the actual device the noisy communication channel takes input X from the sender and outputs Y to
the receiver. The sender and receiver employ some means of encoding and decoding to combat the
noise.

the output of an information source or the pattern of noise is treated as a random vari-
able. Shannon was able to give a meaningful measure of the information content of a
random variable, nowadays called the Shannon entropy, in his landmark 1948 paper
“A Mathematical Theory of Communication”. Moreover, he showed that essentially
error-free communication over repeated uses of a noisy channel is possible, provided
that the rate of communication (the ratio of message bits to channel uses) remains be-
low the capacity of the channel,whichhas an expression in termsof entropy. By giving
an abstract mathematical description of the communication scenario, shown in Fig-
ure 1.1, and developing useful mathematical tools like entropy for its analysis, Shan-
non, Wiener, and the other pioneers of information theory dramatically increased the
scope of how one could engineer reliable means of communication. Instead of focus-
ing on improving the communication channel itself, their work made it possible to
analyze very different encoding and decoding methods used by the sender and re-
ceiver.

A striking example of this difference is the development of different modulation
techniques of electromagnetic signals. The more straightforward approach to faith-
fully transmitting, say, voice or music, is to modulate electromagnetic waves using
the sound waves in an analog fashion, the method used in AM and FM radio. How-
ever, this method does not make very efficient use of the electromagnetic spectrum.
Modern communication standards, such as used in digital audio broadcasting or mo-
bile communication, rely onmuchmore intricatemeans of digital modulation and are
able to reliably transmit substantially more information in the same bandwidth.

The above discussion is concerned entirely with classical information, but the
setup makes it easy to jump to the quantum world. If instead of transmitting or stor-
ing an arbitrary message, we can instead transmit or store different messages in
quantum superposition, then the channel is capable of sending quantum information.
For instance, we may use the two sides of a coin to store a single classical bit: the
coin showing heads corresponding to 0 and tails to 1. These two configurations are
eminently distinguishable from each other and make for a good encoding. Quantum-
mechanically, these two configurations would be represented by quantum states
(wavefunctions or wavevectors) |heads⟩ and |tails⟩, both elements of a quantum-
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mechanical state space ℋ. Here we are using Dirac8 notation to denote the vector
states. The state space is a vector space, meaning we can also consider superposi-
tions such as a|heads⟩ + b|tails⟩ for any coefficients a, b ∈ ℂ. The dimension of the
vector space spanned by the superpositions, here two, is akin to the number of mes-
sages. Quantifying the amount of information logarithmically, as in the classical case,
this “quantum coin” example corresponds to a single qubit of quantum information.
Also, just as in the classical case, when transmitting or storing quantum information,
the encoder and decoder will have to overcome the quantum noise that plagues the
communication channel.

That quantum mechanics plays an important role in communication and has
implications for Shannon’s theory of information was discussed by Gabor9 already
in 1950. In particular, quantum effects play an important role in communication at
optical and infrared frequencies, whereas the limitations on communication in mi-
crowaves and radio were understood to be limited by thermal effects. The ability to
treat the most general quantum noise (a term introduced by Gabor) as well as general
encoding and decoding operations required further development of the formalism of
quantum theory, especially the measurement process. In fact, the ultimate limits on
classical communication in the presence of realistic quantum electromagnetic noise
were only established in the previous decade. In the early development, quantum
effects were seen as a nuisance for the most part, a source of noise mathematically
more complicated to handle. That quantum effects could actually be useful for some-
thing was first realized by Wiesner10 in the early 1970s, whose notion of “conjugate
coding” anticipated quantumkey distribution. The idea of quantum computationwas
proposed not long thereafter, in the early 1980s, but it was not until Shor’s11 discovery
of an efficient factoring algorithm in 1994 that he field of quantum information theory
really came into its own.

1.2 Why are there physical limits to information processing?

Now that we have a firmer understanding of the concept of information, we can ask
if there really “ought” to be any physical limits on information processing at all. For
instance, does computation require energy? How much information can we store in
a given volume of space? Again the issue is the counterfactual nature of information.
Any single execution of a given information processing task is only concerned with
its particular inputs and particular outputs. In each such case, we could imagine that

8 Paul Adrien Maurice Dirac, 1902–1984.
9 Dennis Gabor (Hungarian: Gábor Dénes), 1900–1979.
10 Stephen Wiesner, 1942–2021.
11 Peter Williston Shor, born 1959.

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://en.wikipedia.org/wiki/Paul_Dirac
https://en.wikipedia.org/wiki/Dennis_Gabor
https://en.wikipedia.org/wiki/Stephen_Wiesner
https://en.wikipedia.org/wiki/Peter_Shor


6 | 1 Introduction

it is possible to design a dynamical system to transform the particular input to the
corresponding output without, say, requiring any energy. But for a device to be useful
for information processing, it has to be able to appropriately transform every possible
input to its corresponding output by a single mechanism. Its inner workings cannot
depend on receiving a particular input or a particular subset of inputs. The physical
constraints therefore come from trying to design a single dynamical system that si-
multaneously satisfies all the requirements implied by the protocol.

1.2.1 Erasure

These issues are superbly illustrated by the very simple task of erasure. This was
Landauer’s prototypical example of the fact that executing logically irreversible op-
erations requires free energy. Let us recount his argument that erasing one bit of
information requires at least kT ln 2 units of work when operating at background tem-
perature T. Again, k is the Boltzmann factor. This requirement is now referred to as
Landauer’s principle.

The bit value is recorded in some physical system, and each of the two possible
values must correspond to different values of some degrees of freedom. For instance,
we might record the value using the position of a particle in a double-well potential,
with the left well corresponding to 0 and the right well to 1. Generally, each value
corresponds to some region in phase space, and to have a reliable encoding, these
regions must not overlap significantly. The goal of the erasure procedure is to output
0, regardless of which value was input. Therefore, although only one region is occu-
pied for either individual input, the two phase space regions must be merged in the
dynamical description of the procedure to produce the desired output.

This is incompatiblewithHamiltonian12 dynamics, however, since by Liouville’s13

theoremphase space volume is constant under such dynamics. Hence dissipationwill
be required. The entropy of the system will be reduced by ΔS = k ln 2 according to the
Boltzmann formula, since the number of available states is reduced by half. By the
second law the entropy will have to be exhausted into the environment, just as in a
refrigerator, and this will require free energy. From the relation of entropy to heat,
ΔQ = TΔS, the amount of free energy required will be at least kT ln 2. Note that, while
nonzero, this value is extremely small. At room temperature (20 ∘C) the required free
energy is about 0.02 eV, or about 3 × 10−21 Joules. Erasure is not a practical problem
for computers, at least not yet.

In any individual case the transformation that we need to perform, either 0 → 0
or 1 → 0, does not appear to require any energy. In the former case, we would simply

12 William Rowan Hamilton, 1805–1865.
13 Joseph Liouville, 1809–1882.
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1.2 Why are there physical limits to information processing? | 7

do nothing, while in the latter, we would simply interchange the two phase space re-
gions. The free energy constraint only arises because we require a single process that
performs the correct action in both cases.

This suggests a possible way around the argument: Why not just look at the bit
to determine its value and then take the appropriate action? Since we are interested
in information processing devices, we can outsource the “looking” to the device as
well. But suppose that we want the device to be reset to its initial state at the end of
the process. Now it is susceptible to the same argument as before, for thememory that
stores the observation will also have to be reset. The conditional action will have to be
represented internally by traversingdifferent, essentially disjoint paths throughphase
space, but these paths will have to converge for the process to finish.

These considerationswereusedbyBennett14 to resolve theparadoxofMaxwell’s15

demon. The demon of the paradox, “a being whose faculties are so sharpened that he
can follow every molecule in its course” (Maxwell [202]), controls a small door be-
tween two chambers of gas. One chamber is initially empty, and when a fast-moving
molecule approaches the door from the other chamber, the demon opens the door
and lets it through. Slow-movingmolecules are left in the original chamber. Thus after
some time the two chambers of gas are no longer in equilibrium, an apparent violation
of the second law.

Clearly, any resolution will involve treating the demon as a physical system. Ini-
tial analyses, most prominently by Szilárd,16 then later Brillouin17 and Gabor, concen-
trated on the demon’s observation step, believing that any such processwould require
free energy and thus restore the second law. However, this is not the case, as Bennett
showed in 1982:Measurement of a physical system can in principle be done reversibly.
The only truly irreversible step by Landauer’s principle is the need for the demon to
reset its ownmemory in order to repeat the sorting process. This cost can be shown to
precisely balance the work that would be available from the nonequilibrium state of
the gas, restoring the second law. In retrospect, we can appreciate that the initial ap-
proach of locating the free energy cost in the observation step was not far off. Though
the dynamics of the measurement can be made reversible, we require a properly ini-
tializedmemory system inwhich towrite the result, the creation ofwhich requires free
energy by Landauer’s principle.

14 Charles Henry Bennett, born 1943.
15 James Clerk Maxwell, 1831–1879.
16 Leó Szilárd, 1898–1964.
17 Léon Nicolas Brillouin, 1889–1969.
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1.3 Quantum limits and possibilities

1.3.1 Copying

Now let us turn to a limitation imposed by quantum mechanics, namely that “a sin-
gle quantum cannot be cloned”. This was first stated in 1982, both by Wootters18 and
Zurek19 and separately by Dieks.20 Recall the single qubit, the “quantum coin”, only
now denote the two states simply by |0⟩ and |1⟩. These states are assumed to be or-
thogonal. A generic qubit state |ψ⟩ is a vector in ℂ2 given by |ψ⟩ = a|0⟩ + b|1⟩, with
a, b ∈ ℂ such that |a|2 + |b|2 = 1. The qubit is generally not definitely in either state
|0⟩ or |1⟩; if we perform a measurement to determine whether the coin is heads (|0⟩)
or tails (|1⟩), then the probabilities are

Pr[heads] = ⟨0|ψ⟩

2
= |a|2 and Pr[tails] = ⟨1|ψ⟩


2
= |b|2 . (1.1)

The state of n qubits is a vector in ℂ2
n
, and a convenient basis is given by vectors of

the form |0, . . . ,0⟩ = |0⟩ ⊗ ⋅ ⋅ ⋅ ⊗ |0⟩, |0, . . . , 1⟩, |0, . . . , 1,0⟩, etc. Then the quantum state
of the entire collection is written as |ψ⟩ = ∑s∈{0,1}n ψs|s⟩, where s are binary strings of
length n, and once again ψs ∈ ℂ with ⟨ψ|ψ⟩ = 1 = ∑s |ψs|

2.
By the Schrödinger21 equation, allowed transformations of a set of qubits come

in the form of unitary operators, which just transform one basis of ℂ2
n
into another.

This follows because the state |ψ(t)⟩ at time t is related to the state |ψ(0)⟩ at time 0
by the equation |ψ(t)⟩ = e−itH/ℏ|ψ(0)⟩ for a time-independent Hamiltonian H, and
the operator e−itH/ℏ is unitary since H is Hermitian.22 (Here ℏ is the reduced Planck23

constant.) Time-dependent Hamiltonians will similarly lead to unitary operators.
Suppose then that we have a cloning machine, which should perform the trans-

formation

|ψ⟩ ⊗ |0⟩ → |ψ⟩ ⊗ |ψ⟩ (1.2)

for any qubit state |ψ⟩. Here the second system is the equivalent of a blank sheet of
paper in a usual copy machine, and formally it is just any fixed state independent
of |ψ⟩. According to the laws of quantum mechanics, the transformation should be
described by a fixed unitary U, so that

U |ψ⟩ ⊗ |0⟩ = |ψ⟩ ⊗ |ψ⟩ (1.3)

18 William Kent Wootters, born 1951.
19 Wojciech Hubert Żurek, born 1951.
20 Dennis Geert Bernardus Johan Dieks, born 1949.
21 Erwin Rudolf Josef Alexander Schrödinger, 1887–1961.
22 Charles Hermite, 1822–1901.
23 Max Karl Ernst Ludwig Planck, 1858–1947.
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1.3 Quantum limits and possibilities | 9

for all |ψ⟩. Now notice that the left-hand side is linear in the coefficients a and b, but
the right-hand side is quadratic. Specifically, we have

|ψ⟩ ⊗ |ψ⟩ = a2|00⟩ + ab|01⟩ + ab|10⟩ + b2|11⟩ (1.4)

in the latter case, while for the former, we have

U |ψ⟩ ⊗ |0⟩ = aU |00⟩ + bU |11⟩ = ∑
j,k∈{0,1}
(aujk + bu

′
jk)|jk⟩ , (1.5)

where ujk = ⟨jk|U |00⟩ and u′jk = ⟨jk|U |11⟩ are the components of U . Since by assump-
tion the components of U do not depend on |ψ⟩, (1.3) cannot be satisfied in general.

What does work is a = 0 and b = 1 or vice versa, i. e., the values where linear and
quadratic functions coincide. Thus, although no device can copy an arbitrary quan-
tum state, it is possible to copy an arbitrary element of an orthogonal basis. This is
fortunate, since if we believe that quantum mechanics is fundamentally correct and
supersedes classicalmechanics, thenwedonotwant our argument to rule out the pos-
sibility of classical copying machines! Instead, we can take this as an indication that
classical information theory can be thought of as a particular case of quantum infor-
mation theory, one in which we are always dealing with orthogonal quantum states.

Suppose that the basis that is properly cloned is the |0⟩/|1⟩ basis. Then from |ψ⟩
the “cloning” machine produces the state

U |ψ⟩ ⊗ |0⟩ = a|00⟩ + b|11⟩ , (1.6)

in which the superposition between |0⟩ and |1⟩ inherent in |ψ⟩ has been extended to
two qubits. This can be accomplished by the cnot gate, the unitary which has the
action U |j, k⟩ = |j, j + k⟩, where addition is modulo two. It flips the second qubit if the
value of the first is |1⟩ and does nothing otherwise.

Instead of cloning, the cnot gate extends the superposition over two systems,
producing an entangled state. As we will see, the superposition now manifests itself
only in the two systems jointly, not in either system individually. Superposition of two
states is often called coherence, for just as two classicalwaves are coherent if they have
a definite phase relationship, a given superposition with weights a and b also has a
definite phase relationship between the two states (namely, arg b/a). It turns out that
for a state like (1.6), the coherence of the first systemby itself has completely vanished;
there is no more detectable phase relationship between the two states |0⟩ and |1⟩. Of
course, the coherence is not irrevocably destroyed, since it can be restored by simply
applying U∗. It is now caught up in the entanglement of the state.

The interplay between coherence, cloning, and entanglement already gives us an
idea of the delicate nature of quantum information processing. Superposition, or co-
herence, is the hallmark of the quantum nature of an information processing device.
The above example shows that mere copying of the state in one basis, which we think
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of as copying classical information encoded in this basis, is already enough to destroy
the coherence possessed by part of the system. Thus a truly quantum information pro-
cessing device cannot leak any information whatsoever; it must take care not to be-
come entangled with its environment. It must remain completely isolated to prevent
unwanted entanglement but still needs to be somewhat accessible to control its op-
eration. This requirement is one of the daunting challenges of constructing quantum
information processing devices.

While no cloning appears to mark significant distinction between quantum in-
formation and classical information, there is a sense in which classical information
also cannot be copied. In the classical setting, “copying” usually refers to the task of
duplicating the value of a random variable. But copying could also refer to the task of
duplicating the probability distribution of the random variable. For instance, suppose
that we have constructed a random number generator (possibly involving a quantum
process, like radioactive decay) that can output a single bit. But now we would like
to have two random bits, or perhaps a considerable number, for use in a Monte Carlo
calculation or the operation of an online casino.

Do we need to build two random number generators or can we somehow trans-
form the single random bit into two random bits? For this to be useful, the transfor-
mation itselfmust bedeterministic, else the additional source of randomness is simply
hidden in the transformation. In fact, we cannot copy any probability distribution in
this manner, except the trivial cases in which the value of the bit is certain to be 0 or
certain to be 1.

Suppose X is the random bit whose distribution PX should be duplicated, ideally
producing anadditional bitY . HerePX(x) is the probability thatX = x, i. e., the random
variable X takes the particular value x. The joint distribution PXY of X and Y ideally
satisfies PXY (x, y) = PX(x)PX(y), for then we have two independent instances of the
distribution PX . However, a deterministic function f will just result in the manifestly
different joint distribution PXY (x, y) = PX(x) 1[y = f (x)]. Here we use the indicator
function 1[ ], which returns 1 when its argument is true and zero otherwise, instead of
the usual Kronecker24 delta δy,f (x) simply to better emphasize the equality condition.

The distinction between the two cases is precisely the same as in the quantum
scenario: The joint distribution in the latter case depends only linearly on the proba-
bilities PX(0) and PX(1), whereas the ideal joint distribution depends quadratically on
them. The same reasoning leads to the conclusion that even if we consider stochas-
tic instead of deterministic transformations, there is no single process that can du-
plicate every distribution PX . All of this suggests that quantum states |ψ⟩ should not
be regarded as the analogs of the values of classical random variables, but rather as
probability distributions of random variables.

24 Leopold Kronecker, 1832–1891.
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1.3.2 Cryptography

We can also use the delicate nature of quantum information to our advantage, to per-
form the task of quantum key distribution (QKD). Cryptographic protocols often re-
quire the use of secret keys, information shared between the legitimate parties and
(hopefully) unknown to any would-be eavesdroppers. The task of creating secret keys
between separatedparties is keydistribution. It cannot be accomplishedwithultimate
security using only classical means of communication, because, in principle, there is
no prohibition on copying. However, this conclusion no longer holds in the quantum
realm.

Consider first the effect of measurement on quantum systems. For a generic qubit
|ψ⟩ = a|0⟩ + b|1⟩ not definitely in one of the states |0⟩ or |1⟩, what happens after a
measurement of this basis? Surely, if we repeat the measurement, then we should get
the same result (provided that nothingmuch has happened in themeantime). Indeed,
this is the case in quantummechanics. Starting from |ψ⟩ = a|0⟩+b|1⟩ andmaking the
|0⟩ versus |1⟩ measurement leaves the system in state |0⟩ with probability |a|2 or the
state |1⟩ with probability |b|2. In this way a subsequent measurement yields the same
result as the first.

We can measure in other bases as well. For instance, consider the basis |±⟩ =
1
√2 (|0⟩ ± |1⟩). Now the probabilities for the two outcomes are

Pr[+] = ⟨+|ψ⟩

2
= 1

2 |a + b|
2 and Pr[−] = ⟨−|ψ⟩


2
= 1

2 |a − b|
2 . (1.7)

Thus, if |ψ⟩ = |0⟩, then Pr[±] = 1/2, meaning the measurement outcome is completely
random. After the measurement, the state is in the corresponding state |+⟩ or |−⟩. In
this way, measurement disturbs the system by changing its state.

This phenomenon makes QKD possible. Very roughly, a potential eavesdropper
attempting to listen in on a quantum transmission by measuring the signals will un-
avoidably disturb the signals, and this disturbance can be detected by the sender and
receiver. We can get a flavor of how this works by examining the original BB84 proto-
col, formulated by Bennett and Brassard25 in 1984. The goal, as in any QKD protocol,
is to create a secret key between the two parties, which may then be used to encrypt
sensitive information using classical encryption methods.

The BB84 protocol proceeds as follows. One party (invariably named Alice) trans-
mits n quantum states to the other (invariably named Bob), where each state is ran-
domly chosen from the set {|0⟩, |1⟩, |+⟩, |−⟩}. Physically, these could correspond to vari-
ous polarization states of a single photon (horizontal, vertical,+45∘,−45∘), or anything
else whose quantum description is given by the states above. When Bob receives each

25 Gilles Brassard, born 1955.
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quantum signal, he immediately measures it, randomly choosing either the “stan-
dard” |k⟩ basis (k = 0, 1) or the “conjugate” |±⟩ basis.

The term “conjugate basis” goes back to Wiesner and refers to the fact that if the
system is in the state |0⟩ or |1⟩, then it is equally likely to be found in |+⟩ or |−⟩, just as a
state of well-defined position has a completely uncertain momentum. It is also appro-
priate to refer to the conjugate basis as the complementary basis, just as position and
momentum are complementary observables. We will use the two terms “conjugate”
and “complementary” interchangeably in this context. No matter the specific name,
when the bases used to prepare and measure the state are different, Bob’s measure-
ment outcome is completely random. These cases are not useful in creating a secret
key, so they are discarded by Bob announcing which basis he chose in each case and
Alice announcing which cases they should keep.

On the other hand, if the quantum states arrive at Bob’s end unchanged, then
when he measures in the same basis Alice used to prepare the state, he will certainly
obtain the corresponding outcome. When Alice prepares |0⟩, Bob is certain to see |0⟩,
again provided that therewas nonoise during the transmission, so they can create one
bit of secret key (with value 0). The same is true of the |±⟩ basis, but here we specify
the protocol to only attempt key generation from the standard basis.

The conjugate basis is used to detect the presence of a would-be eavesdropper
(invariably named Eve) spying on the quantum signals. Suppose Eve intercepts each
of the signals, measures it randomly in one basis or the other, and then resends the
state corresponding to the outcome she observed. This will cause mismatches in the
conjugate basis data, which Alice and Bob will notice.

Specifically, in each round, Eve’s “intercept-resend” attack causes amismatch be-
tween Alice and Bob’s conjugate basis data with probability 1/4. This can be seen as
follows. For concreteness, suppose Alice sends |+⟩. Half the time Eve measures in the
conjugate basis and passes |+⟩ to Bob without error. The other half of the time she
measures in the standard basis, which produces a random outcome. Each of the two
possible states |0⟩ and |1⟩ has a probability of 1/2 of generating the correct outcome |+⟩
when measured by Bob, so the overall error probability is 1/4. This attack nets Eve the
value of the key (in the standard basis) with probability 1/2.

By comparing their conjugate basis data publicly, Alice and Bob can determine
if Eve has employed the intercept-resend attack against the standard basis. If they
observe no disagreements in this data, they can be relatively certain that Eve did not
gain any information about the key. If a substantial mismatch is observed, then Alice
and Bob conclude that Eve has spied on their communication, and they discard the
key.

Although we have not proven that QKD can be secure against arbitrary attacks—
Eve is by no means restricted to intercept-resend attacks in quantum mechanics—
this example illustrates the basic mechanism of security. The crucial point is that the
fragility of quantum information implies that the information gained by Eve about
the key is linked to the correlation Alice and Bob observe in the conjugate basis data.
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Classical information, in contrast, is not so fragile and shows no evidence of it having
been copied. Even though in this example Alice and Bob abort the protocol for any
nonzero mismatch rate, it is possible to construct QKD protocols that can tolerate a
finite amount. Showing how to accomplish this task is indeed one of the goals of the
book.

1.4 Overview of the book

The overarching goal of the book is to analyze the fundamental limits and possibilities
of information-processing protocols for communication and cryptography. We adopt
a “resource simulation” approach to information processing, for which the setup de-
picted in Figure 1.1 is the prototype. The aim in building a communication system, for
instance, is to simulate the ideal channel by using the actual noisy channel and other
resources the sender and receiver have at their disposal. In this case the sender can en-
code the message, e. g., by adding redundancy, such that the receiver will still be able
to decode the transmitted message despite the noise. A specific simulation method,
an encoder and decoder, is called a protocol.

The aim of Part I of the book is to develop the formalism of quantum information
theory to fully characterize the form of the possible resources (noisy quantum chan-
nels) and protocols (encoders and decoders): the structure of possible quantum chan-
nels, the eavesdropping possibilities for Eve, and the encoding and decoding possi-
bilities. This is done by adopting the analogy that quantum states are akin to classical
probability distributions, as mentioned above in the discussion of cloning. Therefore
the first part begins with a treatment of classical probability theory and the structure
of classical channels to set the stage for their quantum counterparts.

The important aspect of resource simulation approach is that the quality of a pro-
tocol is measured by its ability to allow the real resources to simulate the ideal resource.
Although this seems like themost naive approach, in fact, ad hocmeasures of protocol
quality are common in the studyof information theory and cryptography. The great ad-
vantage of focusing on simulation is that it ensures composability of resources. Given
an ideal resource consisting of several parts, we can build a protocol to simulate the
whole by constructing protocols to simulate each part. For instance, in the running
example of communication over noisy channels, the incoming message could first be
compressed so that transmission would require fewer uses of the ideal channel. The
compression task can be studied separately from information transmission by just as-
suming a noiseless channel. Then compression can simply be combined or composed
with the transmission protocol because the latter simulates the ideal noiseless chan-
nel. The focus on simulation is especially useful in cryptography because it forces us
to be very precise in the desired ideal behavior of the cryptosystem.

For composability of resources to be defined formally, we must choose a suitable
measure of “simulatability”, the ability of one resource or protocol to simulate an-
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14 | 1 Introduction

other. A simple approach is to define simulatability in an operational way and say that
one resource simulates another to the extent that no experiment could tell them apart,
except with some small probability. Then composability will follow straightforwardly,
as we will see in Part II. This part of the book develops the mathematical tools used in
the analysis of information-processing tasks. Here we formalize the notion of approxi-
mate simulation of one resource by another and develop the properties of the entropy
in the quantum setting. We also establish two information-theoretic uncertainty rela-
tions, which have important implications for quantum information processing.

Analysis of various information processing tasks is the subject of Part III. Quanti-
ties such as the capacity of a noisy channel, asmentioned above, refer to the setting of
asymptotically many uses of the resource channel. However, we take a “one-shot” ap-
proach and derive upper and lower bounds on the required resources for various tasks
for a single use of the resource. Using methods developed in Part II, the one-shot re-
sults can be applied to the many-use setting, and the typical results such as capacity,
which will necessarily involve entropy, can be recovered.

Furthermore, our approach will be to study the relations between the various in-
formation processing tasks and constructively build up to more complicated tasks
such as quantum communication from simpler pieces. Instead of repeatedly using the
tools from Part II to prove properties of each task separately, the strategy is to reduce
one task to another so as to recycle its analysis. For instance, the task of quantum com-
pression can be reduced to classical compression because a suitable modification of
any classical compression protocol enables it to perform quantum compression. The
two aforementioned uncertainty relations feature prominently in Part III, which cul-
minates in the quantum noisy channel coding theorem and a security proof for the
BB84 protocol.

1.5 Notes and further reading

Landauer’s phrase “Information is physical” is in fact the title of his survey of the
subject [182]. The unit of bit for information stretches back to Bush [51], describing the
amount of information that can be stored on a punch card. More details of the early
telegraph example can be found in [205]. The quote fromWiener is taken froman early
look [302] at the new field of information theory, which is generally regarded to have
been founded by Shannon’s 1948 paper [258]. For more on the early days of informa-
tion theory, see [57, 165, 222]. Schumacher [251] coined the name “qubit” for quantum
bits. Gabor’s introduction of “quantum noise” is from [105], and the ultimate limits on
classical communication over so-called Gaussian channels were established in [110].
Though Wiesner’s realization that quantum effects could actually be useful, rather
than just a hindrance, occurred in the 1970s, his paper [303] on conjugate coding was
only published in 1983. Shor’s factoring algorithm was reported in [261].
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Landauer’s argument relating logical and physical irreversibility is found in [181],
and Bennett’s exorcism of Maxwell’s demon in [22]. Penrose [218] gave an exorcism
along the same lines earlier, though without the argument that measurement does
not increase entropy.Maxwell firstmentioned the demon argument in a letter to Tait in
1867 and subsequently included it in his textbook on thermodynamics [202] (though it
was Kelvinwho called the being a “demon”, in the sense of a supernatural beingwork-
ing in the background, as in background daemon process in a computer). Szilard’s ap-
proach is found in [279], and that of Brillouin and Gabor in [47] and [106], respectively.
The interested reader is also directed to the review papers [23, 32, 182, 195, 199, 200].
The Landauer argument is a combination of statements from phenomenological ther-
modynamics and statistical physics, which raises some important and subtle issues;
see [178, 179, 199].

The no-cloning theorem is found in [309] and [81], though it appeared earlier as
part of a different argument by Park [216] and is also arguably implicit in the work of
Wiesner. For more on the history of the no-cloning argument, see [215, 221]. The BB84
protocol was introduced in [26]. Brassard recollects its history in [46].
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2 Probability theory
…the theory of probability is basically just common sense reduced to calculation…1

Pierre-Simon Laplace

In 1815, Laplace2 reported a calculation of the mass of Saturn to the French National
Institute of Sciences and Arts: one part in 3512 of that of the mass of the Sun. The im-
portance of the calculation lies not in its accuracy, though the value differs by less that
0.4% of the current value of roughly 3499, but that the calculation used the formalism
of probability. The difficulty in such a calculation was in combining all the different
data existing at the time, stretching from antiquity to contemporary observations, all
with different reliabilities. Laplace accomplished the task by making use of probabil-
ity. He described the certainty of his final result in such terms as well: “My formulas
of probability show that there are odds of eleven thousand against one that the error
of this result is not a hundredth of its value…”.3 In fact, his calculation makes use of
whatwe today call Bayes’4 rule,whose general formwas published by Laplace himself
in 1774.

The underlying approach to probability by both Bayes and Laplace is that proba-
bilities represent degrees of belief, applying equally well to the truth of logical propo-
sitions or to whether events will (or did) take place. This is referred to as the Bayesian
approach to probability, and in this approach, it is perfectly sensible to consider the
probability that it will rain tomorrow or that the ratio of mass of the Sun to that of
Saturn lies in the range [3477, 3547]. In contrast, if we think of probabilities as long-
run frequencies of repeated experiments, then the mass of Saturn cannot be treated
probabilistically at all.

We adopt the Bayesian approach for our purposes of studying information pro-
cessing. It is very natural in this setting, where, for instance, the decoder of a com-
munication scheme is interested in the probability that the transmitted message had
a particular value. Of course, when regarding probability as a degree of belief, it mat-
ters whose beliefs we are referring to—clearly, the sender will, initially at least, have
a very different belief about the message than the receiver. In the context of analyzing
an information processing protocol, the natural choice is that the beliefs refer to an
outside observer of the operation of the protocol.

1 On voit par cet Essai, que la théorie des probabilités n’est au fond, que le bon sens réduit au calcul:
elle fait apprécier avec exactitude, ce que les esprits justes sentent par une sorte d’instinct, sans qu’ils
puissent souvent s’en rendre compte. [183, page cv]
2 Pierre-Simon Laplace, 1749–1827.
3 “Mes formules de probabilité font voir qu’il y a onze mille à parier contre un, que l’erreur de ce
résultat n’est pas un centième de sa valeur…” [184]
4 Thomas Bayes, c. 1701–1761.

https://doi.org/10.1515/9783110570250-002
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20 | 2 Probability theory

The notion of probability is actually a rather delicate philosophical question, and
it is not the topic of this book to address this question in any detail, nor to take sides
on the issue. Rather, we rely on the Bayesian approach to provide the intuition for the
formalism of probability we will develop in this chapter. Given the fairly simple prob-
abilistic settings we will consider, where it is often sufficient to proceed on intuition,
our formalismmay seem excessive. However, it will allow us to build up the quantum
formalism as a generalization.

2.1 Boolean algebras of events

We will be interested in the probabilities of a finite number of logical propositions
or events A,B,C, . . . and their combinations under the usual logical operations and,
or, and not. We denote these by A ∧ B, A ∨ B, and A, respectively. The value of some
physical property (the mass of Saturn) or the result of an experiment will be common
events in our setting here. To take a simpler but standard example, suppose we throw
two dice. Possible events include things like “the sum of the two numbers is four”,
“one of the dice shows three”, or “the dice both show one”. Call these events A, B,
and C, respectively. Two events or propositions that cannot both be true are called
mutually exclusive or disjoint. In the example, B and C are disjoint, as are A and C, but
A and B are not, since they are both true when the dice show one and three.

A set of propositions or events and all their combinations under the three logi-
cal operations above forms a Boolean5 algebra, the algebra of logical relations of the
propositions. By its nature a Boolean algebra also includes the false statement (self-
contradiction) and true statement (tautology), just by taking A∧A and A∨A for some A.
We denote these by 0 and 1, respectively.

In the finite case, which is our only concern here, we can always find a “basic” set
of disjoint propositions, called atoms, such that every proposition can be constructed
as theorof a set of atoms. For our dice example, the atomsare just the possible pairs of
values, and all other events are just collections of these pairs. In this sense the algebra
is generated from the atoms.

Another immediate implication is that any finite Boolean algebra is equivalent
to the powerset (the set of all subsets) of the set of atoms. The logical operations and,
or, and not correspond to the set operations of union, intersection, and complement,
respectively. The structure of the Boolean algebra is nicely illustrated by means of a
Hasse6 diagram, shown for the case of three atoms in Figure 2.1.

Selecting an element X in a Boolean algebra and regarding it as a tautology gives a
new Boolean algebra, a subalgebra of the original. Formally, we just map all elements

5 George Boole, 1815–1864.
6 Helmut Hasse, 1898–1979.
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2.2 The rules of probability | 21

1

A ∨ B A ∨ C B ∨ C

A B C

0

Figure 2.1: Hasse diagram of the Boolean algebra with three atomic elements A, B, and C. Moving
upward in the diagram corresponds to or, and downward to and, i. e., B = (A ∨ B) ∧ (B ∨ C). As A and
B are disjoint, A ∧ B = 0. The three elements are exhaustive, meaning A ∨ B ∨ C = 1.

Y to Y ∧ X. In the set picture, this amounts to intersecting all sets Y with the given
set X. For instance, regarding A ∨ C as true in our example yields the Boolean algebra
generated by A and C.

Most often, we will specify events by the value of some random variable or collec-
tion of random variables. For instance, M may be the mass of Saturn, or X the value
of the first die above and Y the value of the second. In the information-theoretic set-
ting, all inputs and outputs to an information-processing operation are treated as ran-
dom variables. Moreover, we need not regard these random variables as completely
abstract mathematical entities. Following Landauer’s dictum, they are encoded into
real physical systems, so the random variables refer to the properties of these physical
systems.We denote random variables with capital letters, e. g., Z, the alphabet of pos-
sible values by calligraphic letters, e. g., 𝒵, and often denote a particular value with
lower case letters. Thus the event corresponding to variable Z taking the value z ∈ 𝒵
is written simply as Z = z. The particular alphabets in question are usually not very
important in our context, merely that they are finite. We often denote the cardinality
of 𝒳 for a random variable X by |X| or |𝒳 |.

2.2 The rules of probability

2.2.1 Definition

Degrees of belief naturally depend on the background knowledge we already have,
so the basic notion in our setting is the conditional probability that a proposition A

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



22 | 2 Probability theory

is true or an event A has occurred or will occur, given background knowledge that
propositionB is true.Wedenote this by Pr[A|B]. The value Pr[A|B] is a number between
zero and one,with larger values representing greater degree of belief. It is important to
distinguish Pr[A|B] fromPr[B|A], as these are quite distinct. Just because, for instance,
most accidents occur near home does not imply that we are safer the farther we are
from home!

We encapsulate the notion of probability with the following four basic rules, or
axioms:

Definition 2.1 (Probability axioms). The conditional probability Pr[A|C], defined for all A and C ̸= 0
on a Boolean algebra, satisfies:

1. Positivity: Pr[A|C] ≥ 0,

2. Normalization: Pr[A|C] = 1 if and only if C⇒ A or, equivalently, A ∨ C = 1,

3. Addition rule: Pr[A ∨ B|C] = Pr[A|C] + Pr[B|C] for A ∧ B = 0,

4. Product rule: Pr[A ∧ B|C] = Pr[A|B ∧ C] Pr[B|C].

This axiomatization is due to Rényi.7 Readers more familiar with the Kolmogorov8 ax-
ioms of unconditional probability and measure theory will note that the first three
axioms are such that Pr[⋅|C] is a Kolmogorov probability on the Boolean subalgebra
resulting from setting C = 1.

The fourth axiom ensures that all these probability measures defined on subalge-
bras are consistent with each other. Suppose we start from the situation in which we
condition on C using Pr[⋅|C] and want to condition further on B and use Pr[⋅|B ∧ C].
How should this latter probability be related to the former? The product rule says to
simply use Pr[A∧B|C] for the conditional probability of A given B and C, renormalized
by the probability Pr[B|C]. (In the Kolmogorov framework, setting C = 1 in the fourth
axiom gives the definition of conditional probability.)

Note that in all of this, we need to exclude the subalgebra that results from choos-
ing C to be 0. This is sensible as the resulting algebra is trivial: it is the powerset of the
empty set and has only one element.

Exercise 2.1. Show that taking C = 0 in the probability axioms leads to a contradic-
tion.

There are several ways to motivate these axioms and to confirm that they are con-
sistentwith the underlyingBoolean structure.We give one knownas the “Dutch book”
argument later in this section. First, though, let us investigate the structure in a little
more detail. Foremost is the very intuitive fact that in the finite setting here the prob-

7 Alfréd Rényi, 1921–1970.
8 Andrey Nikolaevich Kolmogorov, 1903–1987.
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2.2 The rules of probability | 23

ability of any event A is just the sum of the probabilities of its constituent atoms. This
follows immediately from the addition rule.

Notice that the addition rule does not discuss the case of nondisjoint events. Nev-
ertheless, it is not too difficult to show that in general

Pr[A ∨ B|C] = Pr[A|C] + Pr[B|C] − Pr[A ∧ B|C] . (2.1)

By induction, we can extend this to an arbitrary number n of events; using positivity
to remove the final term then yields the union bound:

Pr[
n
⋁
i=1

Ai|C] ≤
n
∑
i=1

Pr[Ai|C] . (2.2)

Exercise 2.2 (Union bound). Show (2.1) and prove the union bound (2.2).

2.2.2 The law of total probability

Missing from the list of axioms, but nonetheless implied by them, is the very intuitive
notion that the unconditional probability is the average of the conditional probability.
This is sometimes called the law of total probability, and it states that for any event A
and a set of disjoint events Bi for which⋁i Bi = 1,

Pr[A] =∑
i
Pr[A|Bi] Pr[Bi] . (2.3)

The probability of A is just the average of the conditional probabilities for all the dif-
ferent possible background cases Bi, each case weighted by its probability of occur-
rence. In light of the aforementioned central importance of conditional probability,
we ought to include a background event C in each probability factor. However, it plays
no specific role here, so we can assume that C = 1 in this discussion and later insert a
nontrivial C if needed.

For example, consider the following urn problem, urn problems being a standard
in probability theory since their introduction by Jacob Bernoulli.9 Suppose there are
two urns, the first filled with 50 red and 50 blue balls, and the second with 80 red and
20 blue. Drawing one ball from one of the urns at random, what is the probability of it
being red? Intuitively, we just average the probabilities for the two separate cases, so
it must be 1

2
1
2 +

1
2
4
5 =

13
20 . This is precisely (2.3). We can also check that this must be the

correct answer, since the two urns can simply be combined into one.
To derive (2.3), it is enough to consider the binary case, as the general case is en-

tirely similar. For simplicity, let us abbreviate A∧B as simply AB. Then, given B1 ∧B2 =

9 Jacob Bernoulli, 1655–1705.
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24 | 2 Probability theory

0, it follows that AB1 ∧ AB2 = 0. Therefore, by the addition rule, Pr[AB1 ∨ AB2] =
Pr[AB1] + Pr[AB2]. On the other hand, since B1 ∨ B2 = 1, the proposition AB1 ∨ AB2
is equivalent to A, which completes the derivation.

2.2.3 Bayes’ rule

Returning to Bayes and Laplace, the general problem they (and many others) were
interested in is that of “inverse probability”, which amounts to inverting the order of
arguments in the conditional probability. This is in fact the natural problem in most
areas of science. We entertain different hypotheses Hi (say, about the mass of Saturn),
and we obtain data Dj from different experiments (observations). Then we want to
know Pr[Hi|Dj]; ideally, one hypothesis would have most of the probability. What we
have, though, are the conditional probabilities Pr[Dj|Hi].

Bayes’ rule addresses precisely this problem. Reverting back to generic events A,
B, etc., and using the product rule to decompose A ∧ B in two different ways yields
Bayes’ rule or Bayes’ theorem:

Pr[A|B ∧ C] = Pr[B|A ∧ C]
Pr[B|C]

Pr[A|C] . (2.4)

The factor Pr[A|C] is referred to as the prior probability, the probability we begin with,
whereas Pr[A|B ∧ C] is the posterior probability we are now interested in. The two are
related by a factor of the likelihood, Pr[B|A ∧ C], and (inversely) the evidence Pr[B|C].
In this setting, it is common to regard the likelihood as a function of A (and therefore
not as a probability distribution per se). When the prior is uniform, for instance, the
most likely value of A is the one with themaximum likelihood.

2.2.4 The Dutch book argument

Now let us illustrate the consistency of the probability axioms with the underlying
Boolean algebra. We do this with a variant of the so-called “Dutch book” argument,
which translates probability statements into betting behavior and shows that proba-
bility assignments violating the axioms lead to betting strategies that are certain to
lose money. A Dutch book is a collection of bets offered at prices that ensure a loss for
the buyer.

We begin by making the notion of degree of belief more concrete, regarding Pr[A]
as the price we are willing to pay for a contract or lottery ticket that states “Collect 1
Swiss franc if A”. That is, we are indifferent to holding the contract or Pr[A] francs,
since they are worth the same amount. Conditional probabilities can be handled by
contracts that are canceled with refund if the conditioning event does not occur or is
found to be false. In particular, consider the ticket that states “Collect 1 Swiss franc if
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A∧B; collect p Swiss francs if B” for some p ∈ [0, 1]. If we pay p for the ticket, then our
money is refunded if B is found to be false. We should be willing to pay p = Pr[A|B],
since the situation reduces to the above case when B is true.

The fact that probability is positive is reflected in the fact that either kind of ticket
has positive value. We should not pay one franc for the corresponding ticket if A is not
certain to occur, lestwepossibly face a loss; this also holds in the context ofB assumed
to be true.

If we value the combination of A- and B-tickets differently than the A ∨ B ticket
when A and B are disjoint, then we are again open to a loss. For instance, when we
value the former more than the latter, we buy A- and B-tickets from the bookmaker
(who, for whatever reason, is invariably Dutch in this argument) at a higher price than
we are happy to sell A ∨ B tickets to him or her, and ultimately the bookmaker ends
up with money no matter what. Note that we can extend this argument to conditional
tickets as well. This illustrates the consistency of the addition rule.

The argument for the product rule is similar, based on decomposing the A|B ∧ C
ticket into equivalent pieces, which contain the A∧B|C and B|C tickets. For simplicity,
let p = Pr[A|B ∧ C] and q = Pr[A ∧ B|C]. Consider the ticket for A|B ∧ C, which we value
at p francs. It has two parts, “Collect 1 if A∧B∧C” and “Collect p if B ∧ C”. The second
condition can be rewritten as two conditions, so that the entire ticket has three parts:

Collect 1 if A ∧ B ∧ C, (2.5)
Collect p, (2.6)
Pay p if B ∧ C. (2.7)

The second part pays nomatter what, while the third part would require us to pay, so it
is more sensible to think of it as a contract (or a card from the board gameMonopoly).
We can add two additional clauses, which cancel each other out:

Collect q if C, (2.8)
Pay q if C. (2.9)

Since the combination of (2.5) through (2.9) is equivalent to the original A|B∧C ticket,
the value of the combination is p. Consistency requires that the total value of all the
parts is also p. Notice that (2.5) and (2.8) comprise the A ∧ B|C ticket, meaning their
value is q. The value of (2.6) is clearly p. The value of the remaining two, (2.7) and (2.9),
is p times the value of “Pay 1 ifB∧C” and “Pay q/p if C”. This is aB|C ticket, but nowwe
are holding the other end of the contract, and the implied probability is Pr[B|C] = q/p.
Observe that this is the product rule. It is then a simple calculation to conform that the
value of this decomposition of the original ticket is p as required.

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



26 | 2 Probability theory

2.3 Random variables

2.3.1 Joint, marginal, and conditional distributions

As we will mostly specify events by the values of random variables, it is convenient to
work with the probability mass function instead of the full probability function Pr[].
For a random variable Z, we define PZ : 𝒵 → [0, 1] to be the function PZ(z) = Pr[Z =
z]. Technically, Pr[] is the probability distribution, but we will almost always abuse
this convention and refer to the probability mass function as the probability distribu-
tion.

For several random variables, say X and Y , we define the joint probability PXY :
𝒳 ×𝒴 → [0, 1] as the function PXY (x, y) = Pr[X = x∧Y = y]. In physicist’s notation, we
would drop the label to P and just identify the particular randomvariables involved by
the names of the arguments to P. However, this often leads to confusion in the kinds
of calculations we will later perform, so we will be somewhat pedantic and keep the
labels. This has the benefit that we can treat the label as part of the name, so that PX
and PY refer to distinct probability distributions.

In the context of a joint distributionPXY , themarginal probability PX of justX alone
is found from the addition rule:

PX(x) = ∑
y∈𝒴

PXY (x, y) . (2.10)

Just to emphasize that the particular lower-case variables have nomeaning in the def-
inition here, we could just as well write PX(y) = ∑z∈𝒴 PXY (y, z). Observe that by re-
garding the subscript as part of the name of the distribution, PX and PXY are different
distributions, but using the same P for both indicates that the former is the marginal
of the latter. We will very often make use of this convention.

With the joint andmarginal probabilities, we can use the product rule to write the
conditional probability PX|Y=y : 𝒳 → [0, 1] as

PX|Y=y(x) =
PXY (x, y)
PY (y)

. (2.11)

As for events, the law of total probability says that the marginal is the average of the
conditional:

PX(x) = ∑
y∈𝒴

PX|Y=y(x)PY (y) . (2.12)

In these expressions, we explicitly include the value of the conditioning variable in
the subscript. This emphasizes that PX|Y=y is a probability distribution for X, and it is
the one conditional on the event Y = y. An alternate notation that will also be useful is
to write PX|Y : 𝒳 ×𝒴 → [0, 1] for the collection of conditional probability distributions
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and set PX|Y (x, y) = PX|Y=y(x). Again, the fact that PX|Y (x|y) refers to the conditional
probability of X given Y and not the other way around (or some other random vari-
ables) is recorded in the subscript, not the arguments.

The conditional and marginal probability distributions make it simple to discuss
the probabilities of events in which some of the random variables themselves have
specific values but they do not immediately simplify the situation for general events.
However, to treat these cases, we can just invent new random variables. The probabil-
ity of A in the two-dice example, for instance, is just PZ(4)with Z = X+Y , where X and
Y represent the values of the two dice, respectively. For B, define the function f (u, v)
to be 1 when either argument is three and zero otherwise. Then we have Pr[B] = PZ(1)
for Z = f (X,Y). In general, the probability of Y = f (X) taking the value y is just given
by adding the probabilities of all x values for which f (x) = y, since these are disjoint
events:

PY (y) = ∑
x∈𝒳

1[f (x) = y]PX(x) . (2.13)

It is easy to see that any event pertaining to a set of random variables can be repre-
sented by a suitable function f .

2.3.2 Vector representation

Equation (2.13) exposes the essential linearity of probability, which will be the start-
ing point of our quantum generalization. The equation states that PY (y) is the inner
product between two vectors, one describing the event Y = y and one describing the
probability distribution of the atoms. Choosing some order for the atoms in𝒳 in some
arbitrary way, if we let P = (PX(x))x∈𝒳 and regard the indicator function as the vector
E(A) = (1[f (x) = y])x∈𝒳 , then (2.13) is just

Pr[A] = E(A) ⋅ P . (2.14)

That is, the atoms of the Boolean algebra are used as basis vectors in the vector rep-
resentation. This construction relies on the fact that to describe the probability of any
event, it is sufficient to work in terms of the atoms.

For a Boolean algebra with n atoms, the function E is a map from the algebra to
{0, 1}n. Similarly, P is the vector of probabilities of the atoms, so that P ∈ [0, 1]n. For
instance, in the example of Figure 2.1 with three atomic elements, we can set E(A),
E(B), and E(C) to be (1,0,0), (0, 1,0), and (0,0, 1), respectively. Then E(A∨B) = (1, 1,0).
In this way, the vertices of the Hasse diagram correspond to the vertices of the unit
cube in ℝ3. Pointwise multiplication of the vectors corresponds to the logical and of
the propositions, while pointwise application of the function (x, y) → x∨y := x+y−xy
corresponds to logical or. The latter rule ensures that the values of the vectors are

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



28 | 2 Probability theory

always either 0 or 1, so that, e. g., E(A ∨ B) ∨ E(B ∨ C) = E(1). It will be useful to have
names for the sets of probability distributions and events:

Prob(n) := {(p1, p2, . . . , pn) ∈ ℝ
n : pi ≥ 0,

n
∑
i=1

pi = 1} , (2.15)

Events(n) := {(e1, e2, . . . , en) ∈ ℝ
n : ei ∈ {0, 1}} . (2.16)

In the context of some collection of random variables, we will slightly overload no-
tation and denote the vector (PX(x))x∈𝒳 by just PX and write Prob(X) for the set of
possible distributions for X.

For several random variables, the vector representation formally corresponds to
the tensor product of the vector spaces associated with each of the random variables
individually. To represent PXY , we need to specify the values of both X and Y , mean-
ing the vector representation has dimension |X||Y |. The relevant atomic events for the
joint distribution are specified by pairs of X and Y values, so the basis for the joint
representation is the product of the individual X and Y representation bases.

Exercise 2.3. GivenP ∈ Prob(n) and somepropositionC, show that the representation
P′ ∈ Prob(n) of the conditional probability Pr[⋅|C] is given by

P′ = E(C)P
E(C) ⋅ P

, (2.17)

where juxtaposition of E(C) and P in the numerator denotes the pointwise product.

2.4 Convexity

The average of different possible values is also called a convex combination of those
values with weights given by the probability. For instance, as we already saw in (2.12),
themarginal distribution is a convex combination of the conditional distributions. For
a real-valued random variable Z, the expected value ⟨Z⟩ is a convex combination of
the possible values, ⟨Z⟩ := ∑z∈𝒵 zPZ(z), and the variance is the convex combination
of the squared deviation from the expected value, Var(Z) := ∑z∈𝒵 PZ(z)(z − ⟨z⟩)2.

Convexity plays a pivotal role in both classical and quantum information theory,
so let us make a few definitions. A convex set is a set closed under convex combina-
tions, i. e., 𝒮 is a convex set if there is a meaningful way to add elements of 𝒮 andmul-
tiply them by real numbers so that, for any s1, s2 ∈ 𝒮 and λ ∈ [0, 1], λs1 + (1 − λ)s2 ∈ 𝒮.
Observe that the set Prob(n) is a convex set inℝn. We will only be interested in convex
sets in ℝn.

Any set can be extended to a convex set by just taking all possible convex combi-
nations of all the elements; this gives the convex hull of the original set. The extreme
points of a convex set are the elements that cannot be written as a nontrivial convex
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combination of other elements. Note that the boundary of a convex set is not the same
as its extreme points, e. g., the extreme points of a triangle are its vertices, but its faces
make up its boundary. Aswewould intuitively expect, any (bounded) convex set is the
convex hull of its extreme points, a fact which goes back to Minkowski.10

In Prob(n) the extreme points are the deterministic distributions in which one of
the components is 1 and the rest are 0. A convex set inℝn that is a convex combination
of a finite number of extreme points is called a polytope or polyhedron, and evidently
Prob(n) is such a polytope. In fact, it is a simplex, a convex set for which every point
in the set has a unique convex decomposition in terms of the vertices. This follows
because Prob(n) has n vertices and can be embedded intoℝn−1 by discarding the com-
ponent along the vector whose components are all 1.

A convex function, meanwhile, is a function f : 𝒳 → ℝ from some set 𝒳 to the
reals such that f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2). The function is called strictly
convex if the inequality is strict. It is almost impossible to remember which way the
inequality goes in this definition, but one way to think of it that may help is that the
epigraph of a convex function f , the area above the graph of a function, is a convex set.
Of course, this is only useful if it is easier to remember that epigraph refers to the area
above and not below the function (the area below it is called the hypograph). When
the inequality is reversed, the function is called concave (its hypograph is a convex
set).

For a convex function f on a convex set 𝒳 , the expectation values of X and f (X)
are related by Jensen’s11 inequality

⟨f (X)⟩ ≥ f (⟨X⟩). (2.18)

The inequality is essentially a direct consequence of the definition of convexity and
is depicted for binary random variables in Figure 2.2. For a strictly convex function f ,
equality holds if and only if all the possible X values are identical, or only one value
of X = x has nonzero probability. Equality also holds if f is affine.

Exercise 2.4. Prove (2.18) and the equality conditions for strictly convex functions.

Note that the set Events(n) is not convex, since the entries are confined to either 0
or 1. However, if we relax this constraint to allow entries in [0, 1], then it is not difficult
to see that the resulting set is convex.We can interpret such vectors as a generalization
of events in the following sense. First, (2.14) still leads to a bona fide probability. Sup-
pose T ∈ ℝn satisfies T(j) ∈ [0, 1] for all j ∈ {1, . . . , n} (as with probability vectors, we
also use the notationT(j) to refer to the jth component ofT). Then, for anyP ∈ Prob(n),
we have T ⋅ P ∈ [0, 1], which we could regard as the probability of T: Pr[T] = T ⋅ P.

10 Hermann Minkowski, 1864–1909.
11 Johan Ludwig William Valdemar Jensen, 1859–1925.
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x

y
y = f (x)

f (x0)

x0

f (x1)

x1⟨X⟩

⟨f (X)⟩

f (⟨X⟩)

Figure 2.2: Depiction of Jensen’s inequality for a convex function of a binary-valued random vari-
able X . The random variable X can take two possible values x0 and x1 with corresponding probabili-
ties PX (x0) and PX (x1). A function f induces a new random variable Y = f (X); for convex f , it follows
that ⟨Y⟩ ≥ f (⟨X⟩).

Second, one possible class of such vectors is given by “stochastic events” in which we
donot perfectly or deterministically check if a randomvariable takes a certain value or
values, but do so only randomly. For instance, in the dice example, suppose that with
probability λ1 ∈ [0, 1] we check whether the sum of the dice is even, with probability
λ2 ∈ [0, 1]whether one of them shows three, or with probability 1−λ1−λ2 ∈ [0, 1] check
for “snake eyes” (two ones). The associated vector T is λ1 times the vector representing
the “sum even” event, plus λ2 times the “at least one three” event vector, plus 1−λ1−λ2
times the “snake eyes” event vector. The quantityT ⋅P is the probability that the answer
to this convex combinationof checks is “yes”.We can regard the combination as a kind
of test and T ⋅ P as the probability of passing the test. Formally, the set of all possible
tests is defined by

Tests(n) := {(t1, t2, . . . , tn) ∈ ℝ
n : 0 ≤ ti ≤ 1} . (2.19)

In Chapter 3, we will show that Tests(n) is the convex hull of Events(n), i. e., all tests
can be interpreted as convex combinations of events.

2.5 Independence

A similarly sounding but distinct notion to disjointness of events is independence.
Events A and B are called independent when Pr[A ∧ B] = Pr[A] Pr[B], that is, the
joint probability factorizes. By the product rule this is equivalent to Pr[B|A] = Pr[B]
and Pr[A|B] = Pr[A]. Disjointness is a statement about the logical relationship of the
events, whereas independence involves probability.
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Exercise 2.5. Show that A and B are independent iff A and B are independent.

Independence can be extended to conditional probabilities, in keeping with our
treating conditional probability as the fundamental concept. Two events A and B are
conditionally independent when Pr[A ∧ B|C] = Pr[A|C] Pr[B|C].

Exercise 2.6. Suppose that A and B are conditionally independent given C. Show that
Pr[B|A] = Pr[B|C] Pr[C|A] + Pr[B|C] Pr[C|A].

For three or more events, independence is again defined as having a joint proba-
bility that factorizes. Note that pairwise independence is not sufficient, as shown by
the following standard example. Take X and Y to be the two dice again and consider
the events X+Y = 7, X = 4, and Y = 3. These events are clearly not independent, since
Pr[X + Y = 7|X = 4 ∧ Y = 3] ̸= Pr[X + Y = 7]. However, they are pairwise independent:
Pr[X + Y = 7|X = 4] = 1

6 = Pr[X + Y = 7].
Building on the definition of independence of events, two randomvariablesX and

Y are independent when PXY (x, y) = PX(x)PY (y), so that their joint distribution is the
product of themarginals.Weoftenwrite product distributions directly asPX×PY or just
PXPY . An important particular case is a collection of independent random variables,
eachofwhichhas the sameunderlyingdistribution.A collectionofn randomvariables
X1, . . . ,Xn each with alphabet 𝒳 is said to be independent and identically distributed
(i. i. d.) if their joint probability distribution has the form

PX1 ⋅⋅⋅Xn (x1, . . . , xn) = PX(x1)PX(x2) ⋅ ⋅ ⋅PX(xn) (2.20)

for some PX and all x1, . . . , xn ∈ 𝒳 . The i. i. d. property characterizes situations where
a certain process is repeated n times independently. In the context of information the-
ory, the i. i. d. property is often used to describe the statistics of noise, for example, in
repeated uses of a communication channel. In the context of n random variables Xj,
we will sometimes denote the entire sequence by Xn. The corresponding joint distri-
bution can be written P×nX .

The law of large numbers and the central limit theorem characterize the “typical
behavior” of real-valued i. i. d. random variables X1, . . . ,Xn in the limit of large n. The
law of large numbers states that the sample mean of the Xi tends to the expectation
value for large n. It usually comes in two versions, theweak law and the strong law. As
the names suggest, the latter implies the former.

More precisely, let μ = ⟨Xi⟩ be the expectation value ofXi. By the i. i. d. assumption
the mean is the same for all X1, . . . ,Xn. Let Zn =

1
n ∑

n
i=1 Xi be the sample mean. Then,

according to the weak law of large numbers, the probability that Zn is ε-close to μ for
any positive ε converges to one as n→∞:

lim
n→∞

Pr[|Zn − μ| < ε] = 1 ∀ε > 0 . (2.21)
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The weak law of large numbers will be sufficient for our purposes and is proven
in the following sequence of exercises. These also establish two other often useful
inequalities.

Exercise 2.7. ShowMarkov’s12 inequality: For any randomvariableXwith expectation
⟨X⟩,

Pr[X ≥ ε] ≤ ⟨X⟩
ε
. (2.22)

Exercise 2.8. Using Markov’s inequality, prove Chebyshev’s13 inequality: For any ran-
dom variable Y with average value μ and variance v,

P[(Y − μ)2 ≥ ε] ≤ v
ε
. (2.23)

Exercise 2.9. Use Chebyshev’s inequality to prove (2.21).

By contrast, the strong law of large numbers says that Zn converges to μwith prob-
ability one,

Pr[ lim
n→∞

Zn = μ] = 1 . (2.24)

Note that a proper treatment of the strong law is beyond the scope of this book, as
the number of random variables is infinite. Here we need the more formal machinery
of measure theory. One way to remember the difference between the weak and strong
laws is to observe that they are essentially saying the same thing, but using different
notions of convergence. The weak law is a statement of convergence in probability,
whereas the strong law is a statement of almost-sure convergence.

While the laws of large numbers tell us about the behavior of the sample mean,
the central limit theorem gives some insight into the behavior of fluctuations around
the mean, at least when the Xi have bounded variance v = σ2. In particular, let Φ be
the cumulative distribution function of a standard normal distribution, i. e., Φ(x) =
1
√2π ∫

x
−∞ e
−x2/2, and define the rescaled fluctuation variable Yn = √n(Zn − μ)/σ. Then

the central limit theorem states that the cumulative distribution ofYn converges to that
of the normal distribution:

lim
n→∞

Pr[Yn ≤ y] = Φ(y). (2.25)

This type of convergence is called convergence in distribution. It is weaker than either
of the other two notions mentioned above.

12 Andrey Andreyevich Markov, 1856–1922.
13 Pafnuty Lvovich Chebyshev, 1821–1894.
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The statements above only hold in the limit as n→∞, but since information pro-
cessing protocols are finite, it is important to have bounds on the deviation of i. i. d.
random variables from their typical behavior for finite n, that is, something that tells
us about the rate of convergence to the limit. There is an enormous difference be-
tween converging rapidly, say exponentially in n, versus very slowly, say logarithmi-
cally in n. In the former case the typical asymptotic behavior is reached for reason-
able n, whereas in the latter the convergence is so slow that the asymptotic behavior
is hardly relevant for any finite n.

For the deviation from the mean, such a statement can be obtained from the
Chebyshev inequality (2.23), which gives Pr[|Zn − μ| ≥ ε] ≤ O(

1
nε2 ). Much tighter is the

Hoeffding14 bound. Suppose that the random variables Xj take values in the interval
[a, b]. Then

Pr[Zn ≥ μ + ε] ≤ exp(−
2nε2

(b − a)2
) , (2.26)

and similarly for Zn ≤ μ − ε. For fixed ε, i. e., not varying with n, the sample mean
converges to the expectation value exponentially fast in n. Observe that the Hoeffding
bound is in agreement with the central limit theorem regarding the fluctuations about
the mean. From the latter we know that fluctuations are of size proportional to the
square root of n. Similarly, if we take ε = c

√n in the former, then the bound becomes a
constant.

2.6 Additional exercises

Exercise 2.10 (Two girls?). Your neighbors have two children. What is the conditional
probability of both children being girls, given each of the following conditions:
1. You know the first child is a girl.
2. You ask the parents: “Do you have at least one daughter?”, and they say yes.
3. You happen to see one of the children in the park, and she is a girl.
4. You ask the parents: “Do you have at least one daughter named Ella?”, and they

say yes. (Assume that the probability of a girl being named Ella is p ≪ 1 indepen-
dently of the name of the other child, even though this includes the possibility of
two girls named Ella.)

Assume that the probabilities of any one child being a boy or girl are equal.

Exercise 2.11 (Conditional probabilities: knowing more does not always help). You
and your friend are participating in a research project to track the spread of a novel

14 Wassily Hoeffding, 1914–1991.
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disease. Your task is to test volunteers randomly selected from the general population
for the disease. The tests have a 5% false positive rate and a 30% false negative rate.
Your friend challenges you to a bet: Correctly predicting whether the next volunteer
has the disease. She claims shewill not need to know the results of the test to win. You
both know that 1% of the population is currently infected.
1. What are the optimal guessing strategies for you and for your friend?
2. What is the smallest fraction of infected in the population such that the strategy

“assume the test is always correct” is better than “claim no one is infected”? The
largest such that relying on the test is better than claiming everyone is infected?

Exercise 2.12 (Monty Hall). You are a contestant on a television game show,where you
are given the choice of opening one of three doors. Behind one of them is a car, but
behind theother twoare goats (thedoors are soundproof). Thehost of the show,Monty
Hall, knows which door hides the car. After you choose a door, say number 1, the host
opens a different door, say number 3, revealing a goat. He then asks if you would like
to pick door number 2 instead.
1. Should you (assuming you are interested in winning the car)?
2. Suppose instead that the host did not deliberately open door number 3, but in-

stead slipped on a banana peel and accidentally opened it. Now does it matter if
you switch?

3. Suppose that the host does not like towalk and thereforewill open the door hiding
a goat that has the lowest number. Now what do you do?

2.7 Notes and further reading

Laplace published the general form of Bayes’ rule in [185]. For more on the historical
development of Bayes’ rule, see Dale [67] or Stigler [274]. Boolean algebras were in-
troduced by Boole in 1847 [42]. For more details, consult Givant and Halmos [112] or
Whitesitt [301]. Halmos gives a very nice review of the relation of Boolean algebras to
probability in [117]. Our approach to formalizing probability follows Rényi [247]. Prob-
ability as used in inductive logic, as we have presented it here, is also discussed in
more detail by Skyrms [266] and Hacking [115]. Jaynes [155] describes how Bayesian
probability “ought” to be applied in science; to say that opinions vary among math-
ematical and statistical researchers is an understatement. For the contrary view, see
Mayo [203]. A nice overview of the issues is given by Gelman and Shalizi [107]. For
more on the mathematical structure of probability theory itself, see the introductory
text by Ross [246], an intermediate approach by Gut [113], and themore in-depth treat-
ment by Durrett [87]. The Dutch book argument goes back to Ramsey [234] and de
Finetti [74]. For much more on convexity, including a proof that bounded convex sets
in ℝn are equal to the convex hulls of their extreme points, see the treatments by van
Tiel [288], Rockafellar [244], or Barvinok [13]. A nice overview of inequalities such as
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the Hoeffding bound from [141] is [43]. The two girls problem is from Mlodinow [207],
the original Monty Hall problem from Selvin [257], and the two variants (Monty Fall
and Monty Crawl) from Rosenthal [245].
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3 Classical channels
I think fromwhere we stand the rain seems random. If we could stand somewhere else, wewould
see the order in it.

Haskie Jim, from Coyote Waits by Tony Hillerman

Channels are the central object of study in information theory, as they are used to de-
scribe both the effects of physical noise in a communication medium and the action
of the encoder and decoder. Visible light hardly needs to bementioned as a communi-
cation medium, essential as it is to a printed book. Longer distance communication is
typically accomplished using longer wavelengths. On Earth, most long-distance com-
munication is via infrared laser in optical fiber. Very long-distance communication, to
deep space probes such as Voyager, is via radio frequencies at around 2GHz. This is
essentially the same frequency band used for mobile communication and WiFi. Com-
munication in the broad sense of the termalso includes storage. This is also commonly
electromagnetic, either magnetic as in tape systems or hard disk drives, or electric as
in flash memory.

The difficulty with noisy communication channels, of course, is that the input
cannot be unambiguously determined from the output. The breakthrough of Shannon
was to treat all channels at an abstract level, as a probabilistic mapping of the input to
the output, where both the input and output are described by random variables. That
is, there is only one kind of (classical) information, not separate electromagnetic or
acoustic information. The encoder and decoder of a communication system are also
maps on random variables, though usually deterministic, can be treated formally in
the same way.

Perhaps the simplest abstract model of noise is the binary symmetric channel,
which takes one input bit and reproduces it at the output with some probability, say
1 − p, and otherwise flips the input value with probability p. We can regard the binary
symmetric channel as simply adding a biased noise bit to the input bit modulo two,
where the noise bit has the value 1 with probability p. This is depicted in Figure 3.1,
which also depicts two other examples, the binary erasure channel and the Z channel.

3.1 Definition

Each particular input, say X = x ∈ 𝒳 , to a channel produces a probability distribution
over the outputs𝒴, meaning a channel is specified by a collection of conditional prob-
ability distributions PY |X=x. Following the notation for conditional probability distri-
butions, we can then denote a channel by PY |X , though we will more often useWY |X .
Now consider the action of an arbitrary channelWY |X on an arbitrary distribution PX ,
which we formally express as

PY = WY |XPX . (3.1)

https://doi.org/10.1515/9783110570250-003
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input output
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(a) BSC(p) (b) BEC(q) (c) Z(r)

Figure 3.1: The binary symmetric channel (BSC), the binary erasure channel (BEC), and the Z channel.
The diagrams indicate various transition probabilities from the channel input to output. BSC(p)
flips the input bit with probability p and otherwise leaves the value unchanged. BEC(q) erases the
input with probability q, producing the symbol “?” at the output, and otherwise leaves the value
unchanged. Z(r) does not change 0, but flips 1 to 0 with probability r.

By the law of total probability we have

PY (y) = ∑
x∈𝒳 WY |X(y, x)PX(x) ∀y ∈ 𝒴 . (3.2)

Exercise 3.1. Show that the BEC canbe transformed into a BSCby acting on the output
of the former with another channel. What is the resulting flip probability in terms of
the erasure probability? Can a BSC be similarly transformed into a BEC?

Another simple channel is one that just discards the input and outputs a random
variablewith fixed distribution. That is, the distribution at the output does not depend
on the input. For instance, BSC(1/2) and BEC(1) are such channels.

Exercise 3.2. Show that the BSC is a convex combination of the identity channel and
a fixed-output channel.

If we regard PX as a column vector, then the action of WY |X corresponds to mul-
tiplication from the left by the matrix whose (y, x) entry isWY |X(y, x), i. e., the matrix
formed from the sequence of column vectors WY |X=x. Regarding WY |X as this matrix,
the channel action expressed in (3.1) becomes a statement of matrix multiplication.

Observe that the sum of the entries in every column of any such channel matrix is
just 1. Matrices with positive entries whose column sums are all 1 are called stochas-
tic matrices. According to this definition, the set of possible channels from 𝒳 to 𝒴 is
equivalent to the set Stoc(n,m) of n ×m stochastic matrices with |𝒳 | = m and |𝒴| = n.
Note that Stoc(n,m) is them-fold Cartesian1 product of Prob(n) with itself.

1 René Descartes, 1596–1650.
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Exercise 3.3. Show that Stoc(n,m) is a convex set by showing that the Cartesian prod-
uct of convex sets is convex.

Channels encompass probability distributions and tests: Probability distributions
are columns, while tests are rows. By definition the columns of a stochastic matrix
in Stoc(n,m) are normalized and positive, meaning they are elements of Prob(n).
Put differently, Prob(n) = Stoc(n, 1), as column vectors are matrices acting on a one-
dimensional input space. Meanwhile, the rows of Stoc(n,m) must have components
no larger than one to meet the column-sum normalization condition, meaning the
rows are elements of Tests(m). The set Tests(m) is equivalent to Stoc(2,m). On the one
hand, for any T ∈ Tests(n), we can construct the stochastic matrix with rows T and
1n−T, where 1n ∈ Tests(n) is the vector of all 1s. On the other hand, any 2×n stochastic
matrix specifies a valid test by taking the first (or second) row. Observe that T itself
corresponds to the event of passing the test, whereas the associated binary-output
channel corresponds to the testing procedure, which results in either pass (the first
outcome) or fail (the second). The name “test” is ambiguous in this sense.

Instead of specifying the constraints defining the sets Prob(m), Tests(n), and
Stoc(n,m) by components, we will use pointwise inequalities. For instance, T ≤ 1n for
a test T. Similarly, P ∈ Prob(n)means P ≥ 0 and 1n ⋅ P = 1, equivalently 1TnP = 1, using
the transpose. The complete description of tests of size n is any T such that 0 ≤ T ≤ 1n.
For stochastic n ×mmatricesM, we writeM ≥ 0 and 1TnM = 1

T
m. In expressions involv-

ing matrices, we use the convention that vectors are interpreted as column vectors.
We will also adopt the convention that “|” in a subscript separating random variables
indicates that we interpret the object as a matrix, mapping the alphabets associated
with the random variables on the right to those on the left. For instance, WXY |Z is a
matrix takingℝ|𝒵| toℝ|𝒳 ||𝒴 |. Fixing values in a subscript allows us to pull out column
or row vectors, that is, KY |X=x is a column vector, whereas KY=y|X is a row vector. When
KY |X represents a channel, the former is a probability distribution, whereas the latter
is a test.

We can just as well regard channels as acting on tests instead of on probability
distributions. Given a channelWY |X and a test TY on𝒴, the probability of TY under the
distribution PY = WY |XPX is simply∑x∈𝒳 ,y∈𝒴 TY (y)WY |X=x(y)PX(x). It is easy to see that

T′X(x) = ∑
y∈𝒴 TY (y)WY |X=x(y) (3.3)

defines a valid test on 𝒳 , since WY |X is a stochastic matrix. This can be more com-
pactly written using the transpose as T′TX = TTYWY |X or T′X = WT

Y |XTY . We will see
later that the two ways of viewing the channel action, as a map either on probabilities
or on tests, is completely analogous to the Schrödinger and Heisenberg2 pictures in
quantummechanics, respectively.

2 Werner Karl Heisenberg, 1901–1976.
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Channels also describe physical measurements. Returning to the example of the
mass of Saturn, the measurement or measurements in question are observations of
Saturn’s position in the night sky. Let us describe one such observation by a ran-
dom variable Y . Given the details of the observation, e. g., which kind of telescope
was used, the quality, the observing conditions, etc., we can construct a model for
the value of Y given the actual mass M = m. The model is a conditional probability
distribution PY |M=m, essentially a channel from M to Y . The relevant probability dis-
tribution for M then changes from whatever the prior probability PM was to the con-
ditional probability PM|Y=y, since the value of Y is available after the measurement is
complete.

Note that if we lose Y or just ignore it, then the relevant probability is again PM .
There are two ways to come to this conclusion. On the one hand, once Y is lost, then
we are back to the original state of affairs, so PM must be the relevant probability. On
the other hand, we could just average PM|Y=y over the different possible measurement
results Y = y. The law of total probability ensures that this also gives PM .

3.2 Alternate definitions

We should perhaps not be too quick to adopt the definition of channels as stochastic
matrices based on the law of total probability, as there are several reasonable alter-
natives. If we use the “wrong” channel definition, then any result we derive on the
physical limits of information processing protocols (which necessarily involves chan-
nels) could be invalid. It will also pay off later in the quantum case to have considered
this issue here in the simpler setting of probability theory. Two other reasonable defi-
nitions of classical channels are the following.
1. (Via convexity). Abstractly, channels should map probability distributions to

probability distributions in a way that is compatible with convexity. That is,
a channel WY |X should be a map WY |X : Prob(X) → Prob(Y) such that, for any
random variable Z with distribution PZ ,

WY |X(∑
z∈𝒵 PZ(z)PX|Z=z) = ∑

z∈𝒵 PZ(z)WY |XPX|Z=z . (3.4)

Let us denote by Cvx(n,m) the set of all possible channels defined in this man-
ner.
Themotivation for this definition is as follows. Here Z is a random variable whose
value is correlated to X, but is unaffected by the action of the channel. Given
the value Z = z, we expect to obtain the channel output to have distribution
WY |XPX|Z=z, and if we forget or ignore the value of Z, then we would obtain the
average∑z PZ(z)WY |XPX|Z=z . However, Z has nothing to dowithWY |X ; the channel
acts on X, not Z. Therefore averaging over Z should be the same if done before the
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channel action as after, which is equality (3.4). If the equality did not hold, then
the channel would act differently on X depending on whether we know the value
of Z.

2. (Via deterministic transformations). Since we want to view the input and output
random variables of a channel as the values of physical quantities, we should
restrict our attention to channels that in principle perform some deterministic
(or even better, reversible) dynamics on the input, but we are not completely
certain which. Determinism is in line with the principles of classical mechan-
ics, and our uncertainty is due to the fact that we do not observe all the de-
grees of freedom involved in the dynamics. (Here we sidestep the issue, raised
by the existence of chaotic systems, of whether this is even possible in princi-
ple.) Formally, let {fz}z∈𝒵 be all the deterministic functions from 𝒳 to 𝒴 labeled
by z. Then we should only consider maps WY |X that produce PY from PX such
that

PY (y) = ∑
z∈𝒵 PZ(z) ∑

x∈𝒳 1[fz(x) = y]PX(x) (3.5)

for some distribution PZ . This is similar to (2.13), since we generate Y by apply-
ing a function to X, but now we average over the particular choice of function.
For instance, the BSC is the average of the identity and flipping the value of the
bit.
Any function can be represented by a stochastic matrix whose entries are re-
stricted to {0, 1}. If we set 𝒳 = {1, . . . ,m} and 𝒴 = {1, . . . , n}, and associate the kth
element with the kth unit vector, then the function f : 𝒳 → 𝒴 is represented
by the matrix whose xth column has all zeros except for a single 1 in the f (x)th
row. Let us denote by F(y1, . . . , ym) the matrix with a single 1 in the yxth row of the
xth column and call the entire set of such deterministic n ×mmatrices Det(n,m).
Then (3.5) amounts to saying that the set of channels is given by Hull(Det(n,m)),
the convex hull of deterministic maps.

From the definitions it is clear that

Hull(Det(n,m)) ⊆ Stoc(n,m) ⊆ Cvx(n,m) . (3.6)

The first inclusion follows because deterministic matrices are stochastic. The second
inclusion follows because any channel defined by a stochastic matrix satisfies (3.4).
Hence by adopting the stochasticmatrix definition it could be thatwe either have a too
large or too small set to properly describe physical information processing protocols.
However, we need not worry: All three channel definitions are equivalent.

Channels as stochastic matrices are linear maps on the input distribution, but
this is not explicitly required in the convexity definition. However, linearity is not so
far removed from convexity. For any function f defined on a convex domain 𝒮 ⊂ ℝn
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that is convex-linear in that it satisfies f (λx+ (1−λ)y) = λf (x)+ (1−λ)f (y) for all x, y ∈ 𝒮
and λ ∈ [0, 1], there exists a linear function f | on the span of 𝒮 that agrees with f on 𝒮.
In the present setting, 𝒮 is the simplex Prob(n), whose extreme points are the defining
orthonormal basis forℝn. Denoting the basis vectors ej, we can by definition uniquely
express any point y ∈ ℝn as y = ∑k ckek for some ck ∈ ℝ, so the extension must be
f |(y) = ∑k ckf (ek). Therefore all elements of Cvx(n,m) are linear and have a matrix
representation.

It remains to show that their matrix representations satisfy the two requirements
of stochastic matrices. But both normalization and positivity follow since the inputs
are arbitrary elements of Prob(m). Since normalization is preserved for arbitrary in-
puts from Prob(m), which spans ℝm, the columns must each sum to one. Similarly,
the output is not guaranteed to be nonnegative for arbitrary inputs unless the matrix
components are themselves nonnegative. Hence we have shown the following:

Proposition 3.1. Stoc(n,m) = Cvx(n,m).
The conclusion that convex-linear maps can be extended to linear maps also holds
when 𝒮 is not a simplex, when there is no unique expansion of points y ∈ 𝒮 with
which to define the extension f |. Let us also show this, as it will be useful later.

Proposition 3.2. For any convex-linear function f whose domain is a convex set 𝒮, there exists a
linear function f | whose domain is the span of 𝒮 and which agrees with f on 𝒮.

The proof relies on the notion of the convex cone generated by a convex set𝒮. A convex
cone 𝒞 is a set forwhichax+by ∈ 𝒞 for all x, y ∈ 𝒞 and a, b ≥ 0. A convex set𝒮 generates
the cone 𝒞 consisting of all points λx for x ∈ 𝒮 and λ ≥ 0. To ensure the definition
indeed generates a convex cone, we need to check that ax+by for x, y ∈ 𝒮 and a, b ≥ 0
is the scaled version of some element in 𝒮. This is indeed the case, since we can write
it as (a + b)( aa+bx + b

a+by), and the second factor is an element of 𝒮 by assumption.

Proof. First, extend f to the cone 𝒞 generated from 𝒮 by taking f |(λx) = λf (x) for λ ≥ 0.
In particular, f |(0) = 0. Next, consider an arbitrary point x̄ in the span of 𝒮. By group-
ing the terms with positive and negative coefficients separately, it is clear that x̄ can
be expressed as the difference of two points in 𝒞, i. e., x̄ = λ1x1 − λ2x2 for some λj ≥ 0
and xj ∈ S. We can then define f |(x̄) = λ1f (x1) − λ2f (x2).

However, unlike the case of the simplex, the expression for x̄ is not unique. We
can have x̄ = λ′1x′1 − λ′2x′2, and the question arises whether λ′1f (x′1) − λ′2f (x′2) equals f |(x̄)
defined from λ1x1 − λ2x2. To see that equality does hold, first define x′ = λ1x1 + λ′2x′2
and note that it equals λ′1x′1 + λ2x2 by assumption. Now set c = λ1 + λ′2 and observe that
x′ is c times the convex combination λ1

c x1 +
λ′2
c x
′
2. Hence f

|(x′) = λ1f (x1) + λ′2f (x′2). By
the same reasoning we have f |(x′) = λ′1f (x′1) + λ2f (x2), and therefore the extension is
well-defined.
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Now we turn to the remaining equivalence, for which we need to show that the
set of stochastic matrices is the convex hull of the deterministic matrices. The deter-
ministic matrices are the extreme points of the set of stochastic matrices, so we have
already stated that the conclusion must be true in Section 2.4. However, the proof is
simple enough to give here. Due to the equivalence of Stoc(2, n) and Tests(n), this will
also imply that Tests(n) = Hull(Events(n)).

Proposition 3.3. Stoc(n,m) = Hull(Det(n,m)).
Proof. In light of (3.6), it remains to show that every M ∈ Stoc(n,m) is contained in
Hull(Det(n,m)). SupposeM has componentsMyx and define

M′ = n
∑

y1 ,...,ym=1My1 ,1 ⋅ ⋅ ⋅Mym ,m F(y1, . . . , ym) . (3.7)

The coefficient for a given F(y1, . . . , ym) is simply the product of the transition proba-
bilities for X = 1 to be mapped to Y = y1 and so forth. We can think of the particular
sequence (y1, y2, . . . , ym) as a “path” through the columns of an n × m matrix, where
in each step, we are free to choose a row. The coefficient in the expansion is the prod-
uct of the probabilities encountered in M on the path (y1, y2, . . . , ym). The coefficients
make up a convex combination, since they are positive real numbers whose sum, the
product of the column sums ofM, is unity. HenceM′ ∈ Hull(Det(n,m)).

Nowconsider the (j, k) component ofM′. This component ofF(y1, y2, . . . , ym) is zero
unless yk = j, in which case it is one. Thus the only contributions to M′jk from the
summation are those with yk = j, i. e., paths through the columns ofM that go through
(j, k). The (j, k) step of the path contributes a factor ofMjk, while the summation over
the choice of row in all the other columns just yields one by the same argument as in
the normalization statement above. ThereforeM′jk = Mjk .

For an example of the decomposition used in the proof, consider BSC(p). There
are four possible functions from {0, 1} to itself: identity, flip, zero, and one, where zero
maps everything to zero and one everything to one. Indeed, we have

BSC(p) = (1 − p)2 (1 0
0 1
) + p2 (0 1

1 0
) + p(1 − p)(1 1

0 0
) + (1 − p)p(0 0

1 1
) . (3.8)

Note that, by definition, BSC(p) is 1 − p times identity plus p times flip, so that the
representation in (3.7) is not unique. The set of stochastic matrices is not a simplex.

In fact, the mismatch between the number of extreme points and the space in
which the polytope lives is quite large. Altogether, there are nm vertices, the number
of distinct n×m deterministic matrices. However, onlym(n− 1) parameters are needed
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to specify an arbitrary n × m stochastic matrix. Carathéodory’s3 theorem states that
any element of a polytope living in an d-dimensional space can be represented as a
convex combination of no more than d + 1 vertices, so it is always possible to find a
decomposition of an n×m stochasticmatrix into nomore thanm(n−1)+1 deterministic
matrices. Observe that the binary symmetric channel beats this bound by one.

Exercise 3.4. Determine the decomposition of (3.7) for BEC(q) and Z(r). Are they re-
dundant?

Exercise 3.5. Consider a binary-input channel W : X → Y , where Y = [−1, 1], with
the symmetry that PY |X=1(y) = PY |X=0(1 − y). That is, the two output distributions are
mirror images of each other. Show that W can be regarded as a heralded mixture of
BSCs in the sense that the output is a mixture of BSCs with different parameters plus
an additional piece of information (the herald, so to speak) specifying the parameter
of the BSC. Does the BEC fit into this framework?
Hint: Consider the absolute value |Y | and sign(Y).

3.3 Notes and further reading

Proposition 3.3 is adapted fromDavis [72]. Readers interested in the proof of Carathéo-
dory’s theorem should again consult van Tiel [288], Rockafellar [244], or Barvinok [13].

3 Constantin Carathéodory, 1873–1950.
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4 Quantum probability theory
The important point is that the laws of quantum mechanics can be expressed only in terms of
probability connections.

Eugene P. Wigner

In this chapter,we jump right into the probabilistic aspects of quantum theorywithout
yet worrying too much about the physics. Our approach is to obtain the formalism of
quantum theory by generalizing that of probability theory. Specifically, we give quan-
tum versions of probability distributions, tests, and channels, as well as the rules by
which these are related to each other.

The result does not, on its face, look like it hasmuch to dowith the standard,more
physical approach to quantum mechanics based on wavefunctions, observables, the
Schrödinger equation, and so forth (for a concise formulation, seeAppendixA). Butwe
will see that the two approaches are indeed compatible, particularly in the following
chapter. By presenting quantum theory as a generalization of probability theory it is
much easier to appreciate the relation between the two, and the generalization is quite
straightforward besides.

The setting for our generalization is the simple scenario of a generic experiment
to measure the value of some physical quantity, such as the energy of a particle. As an
example, consider the large hadron collider (LHC). The experiment consists of three
basic steps:

experimental
setup

physical
dynamics measurement

First, the physical system to be investigated is prepared in some way. At the LHC,
a great deal of effort goes into generating circulating beams of high-speed protons
in two rings. Next, the system is allowed to undergo its own internal dynamics or is
subject to an external interaction of some kind, e. g., protons from the two beams are
made to collide. Finally, some kind of measurement is made on the result. Abstract-
ing away a colossal amount of detail, a measurement at the LHC can be thought of as
having just one of two possible outputs, “particle with energy E ± ΔE detected” and
“particle with energy E ± ΔE not detected”.

Indeed, we have abstracted away all of the physics, which consists of knowing
which outputs correspond to these two cases. The above is verymuch the information-
theoretic description of the experiment. On this level, there is not that much distinc-
tionwith an experiment inwhich twodice are rolled andwe check if the output is even.
All that really matters is the set of possible outcome events and their probabilities.

In our probabilistic framework the preparation is described by a probability dis-
tribution, any possible dynamics ismodeled by a classical channel, and the finalmea-

https://doi.org/10.1515/9783110570250-004
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surement is described by a collection of tests, one for each possible outcome. The sys-
tem initially prepared is then described by a random variable X with probability dis-
tribution PX , the channelWY |X maymap this to a different random variable Y , and we
can denote the final measurement result by the random variable Z. Formally, the final
measurement is also a channel, call it T̂Z|Y , and the test associatedwith outcome Z = z
is T̂Z=z|Y . Let us define outcome Z = 0 to be “particle with energy E ± ΔE detected”,
and let TY = T̂Z=0|Y , treating TY as a column vector instead of a row vector. Then the
probability to observe this outcome in one run is just TY ⋅WY |XPX .

4.1 States, effects, and measurements

Now thatwehave the general setup, let us focus on the case inwhich the channelWY |X
is trivial, i. e., focus just on the probability distributions and tests. We will take up
channels in the next chapter. The entire probability structure is given by

PrP[T] = T ⋅ P,
P ∈ ℝn, P ≥ 0, 1n ⋅ P = 1,
T ∈ ℝn, T ≥ 0, T ≤ 1n .

(4.1)

The formalism of quantummechanics can be seen as a generalization that retains this
structure, but allows the analogs of P and T to reside in a different vector space.

In particular, consider the set Lin(ℋ) of linearmaps or operators on a vector space
ℋ = ℂd for some d < ∞. As discussed more thoroughly in Appendix B, Lin(ℋ) is
itself a vector space and can be equipped with the Hilbert1–Schmidt2 inner product
⟨S,T⟩ = Tr[S∗T] for S,T ∈ Lin(ℋ) and the trace operation Tr. Furthermore, there is
a notion of positivity and a partial ordering of operators by positivity for Lin(ℋ) as
well. Now we are ready for the generalization to the quantum case. We replace P, T,
and 1n by operators ρ, Λ, and the identity operator 1 in Lin(ℋ), but otherwise keep the
structure intact. Since positive operators are necessarily Hermitian (see Lemma B.1),
this replacement gives

Prρ[Λ] = Tr[Λ ρ],

ρ ∈ Lin(ℋ), ρ ≥ 0, Tr[ρ] = 1,
Λ ∈ Lin(ℋ), Λ ≥ 0, Λ ≤ 1 .

(4.2)

Now the preparation of the physical system is described by the operator ρ, called the
density operator, densitymatrix, or just the (quantum) state. The event associatedwith

1 David Hilbert, 1862–1943.
2 Erhard Schmidt, 1876–1959.
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a particular outcome of the measurement is described by the operator Λ, sometimes
called an effect or effect operator (the effect produced by themeasurement apparatus).
The probability of this outcome conditioned on the preparation is given by (4.2), the
Born3 rule. Indeed, this rule gives a number between zero and one. As both Λ and ρ
are positive, by Lemma B.3 Tr[Λρ] is, too, and since 1 − Λ is positive and Tr[ρ] = 1, we
have 0 ≤ Tr[(1 − Λ)ρ] = 1 − Tr[Λρ].

The entire quantum measurement is specified by a collection of events such that
precisely one of them is bound to occur. In the quantum setting, this collection is
called a POVM, short for positive operator valued measure,4 a set {Λ(x)}nx=1 of effects
such that ∑nx=1 Λ(x) = 1. Often, the Λ(x) are called POVM elements instead of effects.
The outcome of the measurement is a random variable X with distribution PX(x) =
Prρ[Λ(x)]. The probability of any one of the outcomes occurring, i. e., X = x1 ∨ X =
x2 ∨ ⋅ ⋅ ⋅ ∨ X = xn, is, by the addition rule of probability and linearity of the Born rule,

n
∑
x=1

PX(x) = Tr[
n
∑
x=1

Λ(x) ρ] = Tr[ρ] = 1 . (4.3)

Thus the completeness condition ∑nx=1 Λ(x) = 1 reflects the fact that the POVM covers
every possible outcome.

In this presentation the density operators and POVM elements have no particular
physical status; they are onlymathematical objects used to generate a probability dis-
tribution for the final measurement results. That is not to say that these objects could
not have amore physical meaning, just that we are eschewing that question here. Our
focus is the statistical structure of quantum theory. Note also that we have only dealt
with the (classical) outcomes of the measurement, and the post-measurement quan-
tum state will be treated in the following chapter.

A word on notation: Often subscripts are used to denote elements of a sequence,
e. g., Λx for the xth element of a POVM. However, just as with probability, this will be
unwieldy as we have other uses for the subscript. Instead, we write Λ(x) for the xth
POVM element. Occasionally, we will violate this rule when expedient.

The wavefunctions and projective measurements described by complete sets of
orthogonal projection operators familiar from the usual treatment of quantum me-
chanics are particular cases of this general formalism. Wavefunctions or wavevectors
|ψ⟩ ∈ ℋ correspond to density operators |ψ⟩⟨ψ|. Here we make use of Dirac notation,
the details of which can be found in Section B.2. Projection operators are a particular

3 Max Born, 1882–1970.
4 The mouthful “POVM” comes from the more general setting in which the measurement outcome
can take a continuous range of outcomes. This necessitates the use of measure theory. Then for each
measurable set of outcomes, we require a positive operator such that the probability that themeasure-
ment result is in the set is given by the Born rule. Hence the measure assigned to each measurable set
takes values in the positive operators.
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kind of effect, and the normalization condition of POVMs becomes the completeness
relation for projection operators.

The set of states of a d-dimensional quantum system is given by

Stat(d) := {σ ∈ Lin(ℂd) : σ ≥ 0, Tr[σ] = 1} , (4.4)

and for systems with explicit names, e. g., system A, we also write Stat(A). We could
also name the set of effects and the set of POVMs with a fixed number of outcomes,
but we will not need them very often. To learn something about the extreme points of
the set of states, observe that by the spectral theorem we can decompose any positive
operatorM ∈ Lin(ℋ) into a summation of projection operators of rank one

M =
d
∑
j=1

λj|λj⟩⟨λj| , (4.5)

where λj ≥ 0 are the eigenvalues, and |λj⟩ ∈ ℋ are the associated normalized eigenvec-
tors. When Tr[M] = 1 so thatM is a density operator, the eigenvalues λj form a proba-
bility distribution. The projection operators |ψ⟩⟨ψ| associated with wavefunctions |ψ⟩
are called pure states. Thus the extreme points of the set of states are necessarily pure
states.

Exercise 4.1. Show that a density operator ρ is a pure state if Tr[ρ2] = 1.

In fact, all pure states are extreme points, which is to say that if |ψ⟩⟨ψ| = p|φ⟩⟨φ|+
(1 − p)|θ⟩⟨θ| for normalized |φ⟩ and |θ⟩ and p ∈ [0, 1], then either p = 0 and |θ⟩ = |ψ⟩,
p = 1 and |φ⟩ = |ψ⟩, or p ∈ (0, 1) and |φ⟩ = |θ⟩ = |ψ⟩.

Exercise 4.2. Show this. Hint: One option is to use the fact that ρ2 = ρ for projection
operators ρ. Another is to show that |ψ⟩⟨ψ| − p|φ⟩⟨φ| ≱ 0 for p > 0 and |ψ⟩ ̸= |φ⟩.

From (4.5) it therefore follows that the set of states is the convex hull of the pure
states. Density operators that are not pure are calledmixed states. Unlike its classical
analog, the set of probability distributions, the set of states is not a simplex. In other
words, the decomposition of an arbitrary mixed state into a convex combination of
pure states is not unique. Consider the case of the maximally mixed state in some
arbitrary dimension d, the operator 1

d1, which we will always denote by π. It is clearly
the convex combination (with equal weights) of the d pure states associated with any
orthonormal basis.

This has important consequences for the interpretation of mixed states. Consider
the probability of some effect Λ for a mixed state ρ. For ρ = ∑j λj|λj⟩⟨λj|, the proba-
bility is Tr[Λ ρ] = ∑nj=1 λj Tr[Λ|λj⟩⟨λj|]. This is the average of conditional probabilities
of Λ given the various pure states |λj⟩⟨λj|. We might therefore be tempted to view the
indeterminacy in the outcome Λ as partly due to the quantum nature of |λj⟩ and partly
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due to the ignorance of the value of j. However, it is impossible to uniquely make such
a division since the set of states is not a simplex.

We have less to say about the set of effects and the set of POVMs. The set of ef-
fects has a nice convex structure as well, and it is not difficult to see that projection
operators are the extreme points. Thus general effects are to projection operators what
general (classical) tests are to the more basic events. However, the set of POVMs is not
as simple. In particular, not all POVMs are mixtures of projective measurements, as
we will see later, in Exercise 4.6.

Exercise 4.3. Show that all projections are the extreme points of the set of effects.
Hint: Recycle the methods used in Exercise 4.2 for one direction. For the other, use the
spectral decomposition to express an arbitrary effect as a convex combination of pro-
jections of all ranks, including zero.

4.2 Qubits

The simplest quantum system, the qubit, has just two levels, a state space ofℋ = ℂ2.
We typically denote a “standard basis” for a qubit by the states |0⟩ and |1⟩. A qubit is
any system, ormore precisely degree of freedom,whose state vector |ψ⟩ can bewritten
as |ψ⟩ = a|0⟩ + b|1⟩ with a, b ∈ ℂ and |a|2 + |b|2 = 1. Table 4.1 lists several examples of
qubit systems.

Table 4.1: Examples of qubit systems.

Degree of freedom Basis states |0⟩ and |1⟩

Spin-1/2 |Jz = +1/2⟩ |Jz = −1/2⟩
Photon polarization |horizontal⟩ |vertical⟩
Electron level in an atom |ground state⟩ |excited state⟩
Position in a double well potential |left⟩ |right⟩

A useful parameterization of states comes from the spin-1/2 picture. Any state |ψ⟩ can
be associatedwith a point on the unit sphere described by spherical coordinates (θ,φ)
via the relation

|ψ⟩ = cos θ
2 |0⟩ + e

iφ sin θ
2 |1⟩ . (4.6)

This sphere of states is called the Bloch5 sphere, as depicted in Figure 4.1.

5 Felix Bloch, 1905–1983.
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θ

x̂

ŷφ

̂z

|ψ⟩

|0⟩

|1⟩

|+⟩

|−⟩

Figure 4.1: The Bloch sphere. Every pure qubit state can be associated with a point on the unit
sphere.

Equivalently, we can label states by Bloch vectors, unit vectors n̂ = x̂ sin θ cosφ +
ŷ sin θ sinφ + ̂z cos θ. Then it is easy to see that the states |n̂⟩ and |−n̂⟩ are orthogonal.
The states along the six cardinal directions (±x̂, ±ŷ, and ± ̂z) form three orthogonal
bases, and the states | ± x̂⟩ = 1

√2 (|0⟩ ± |1⟩) are usually just denoted |±⟩. These three
bases are the eigenbases of the three Pauli6 operators:

σx = |0⟩⟨1| + |1⟩⟨0| ≃ (
0 1
1 0
) , (4.7)

σy = −i|0⟩⟨1| + i|1⟩⟨0| ≃ (
0 −i
i 0
) , and (4.8)

σz = |0⟩⟨0| − |1⟩⟨1| ≃ (
1 0
0 −1
) . (4.9)

Here the matrices are representations in the basis {|0⟩, |1⟩}. A linear combination of
Pauli operators with real coefficients leads to a Hermitian operator.

These three operators, together with the identity operator 1, form a very conve-
nient basis for operators on ℂ2, i. e., a basis for Lin(ℂ2). This follows because we can
very easily construct the matrices ( 1 0

0 0 ), ( 0 1
0 0 ), etc. from the Pauli operators, and the

latter is evidently a basis for Lin(ℂ2). Writing A = a01 + a⃗ ⋅ σ⃗ for an operator A with
σ⃗ = x̂σx + ŷσy + ̂zσz, a⃗ = x̂ax + ŷay + ̂zaz, and a0, ax , ay , az ∈ ℝ, it is straightforward to

6 Wolfgang Ernst Pauli, 1900–1958.
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verify that |±â⟩ are the eigenstates ofAwith eigenvalues λ± = a0±‖a⃗‖. Here â is the nor-
malized version of a⃗. Using this relation, we can immediately infer that the projection
operators Πn̂ := |n̂⟩⟨n̂| take the form

Πn̂ =
1
2 (1 + n̂ ⋅ σ⃗) . (4.10)

Then it is simple to verify that the probability of obtaining Πn̂ for the state specified by
|m̂⟩ is just

Prm̂[Πn̂] =
1
2 (1 + n̂ ⋅ m̂) . (4.11)

Exercise 4.4. Show (4.11).

Exercise 4.5. For a given qubit density operator ρ, describe the possible decomposi-
tions of ρ into convex combinations of pure states in terms of the Bloch sphere.

Exercise 4.6. Consider three unit vectors n̂k that point to the vertices of an equilateral
triangle. Show that the operators Λ(k) = 1

3 (1 + n̂k ⋅ σ) form a POVM. What changes in
Λ(k) if the n̂k point to the vertices of a regular tetrahedron?

Observe that the measurements in Exercise 4.6 imply that not all POVMs are con-
vex combinations of simple projective measurements. The only way a convex combi-
nation of effects can give the rank-one Λ(k) there is for each one to be equal to Λ(k) it-
self. On the other hand, mixtures of projection measurements are also useful POVMs;
for instance, Bob’s measurement in the BB84 protocol can be described by a POVM
with four outcomes, two aligned or antialigned with ̂z and the other two aligned or
antialigned with x̂.

Our generalization to density operators andPOVMs is based onobtaining sensible
results from the Born rule. We can turn the setup on its head and ask what form the
Born rule can take, given thatmeasurements are associatedwith projection operators.
That is, we are interested in a function Pr that gives the probability of any projector
Πj, and which satisfies the constraints that Pr[0] = 0, Pr[1] = 1, and Pr[Πj + Πk] =
Pr[Πj] + Pr[Πk] for ΠjΠk = 0. Interestingly, in dimensions three and higher, the Born
rule Pr[Πj] = Tr[Πjρ] for some density operator ρ is the only possibility, a statement
known as Gleason’s7 theorem.

Exercise 4.7. Show that the Born rule is not necessary for qubits, i. e., construct a sen-
sible probability function Pr that is not based on a density operator.

7 Andrew Mattei Gleason, 1921–2008. Known for saying that mathematical proofs “really aren’t there
to convince you that something is true—they’re there to show you why it is true.”
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4.3 Comparison with probability theory

Having established the basics of quantum probability by analogy with standard prob-
ability theory (which we will often refer to as “classical” probability theory), let us
examine the similarities and differences in more detail. First, it is important to note
that the quantum formalism encompasses probability, simply by using commuting
operators. For any test T and probability distribution P, we have

T ⋅ P = Tr[diag(T)diag(P)] , (4.12)

where diag(P) is the operator whose matrix representation is diagonal with en-
tries P(x) and similarly for T. Thus the probability rule can be implemented via the
Born rule. We will further discuss describing classical distributions in the quantum
language in Section 4.4.4.

In our presentation, probability theory was built on the foundation of Boolean
algebras of events. As the events are extreme points of the set of tests, the natural
analogy in the quantum case are projection operators, the extreme points of the set
of effects. However, the crucial distinction between the two formalisms is that the
set of projectors does not form a Boolean algebra. Rather, it forms a whole collection
of Boolean algebras! Something like this must hold, since, as we have just seen, the
quantum formalism encompasses probability theory. More concretely, any complete
set of projectors forms a Boolean algebra, which holds because a complete set must
consist of commuting or, equivalently, disjoint projectors.

Exercise 4.8. Given a set of Πk ∈ Lin(ℋ) such that Π2
k = Πk and ∑k Πk = 1, show that

Πj Πk = Π(j)δjk .

For disjoint projectors, we can define and, or, and not of the projections to be
intersection, span, and orthogonal complement of the underlying subspaces Π∧Π′ =
ΠΠ′Π, Π ∨Π′ = Π +Π′, and ¬Π = 1 −Π. (Here we switch convention, denoting not by
¬ instead of an overline. We will use overline for complex conjugation of vectors and
matrices later on.) Generally, we can say, in the context of the quantum formalism,
that

classical = commuting . (4.13)

On the other hand, the entire collection of Boolean algebras formed fromall sets of
complete commuting projectors does not form one larger algebra, because the repre-
sentation of and, or, and not cannot be extended to noncommuting projectors. This
is a consequence of Gleason’s theorem. If it were possible, it would also be possible to
consistently assign true or false to all projections. Such an assignment would be a
function Pr satisfying the premises of Gleason’s theorem. However, there is no density
operator ρ for which Tr[Πρ] ∈ {0, 1} for all projections Π.
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This leads directly to the indeterminacy of quantum theory. The theory gives
the probabilities of the possible outcomes in a given measurement, but does so in
a way incompatible with the notion that for every possible outcome of every possi-
ble measurement, there is a fact of the matter about whether or not it would occur
if actually measured. That is, probabilities in quantum mechanics are not due to ig-
norance of the “true state of affairs”. We will examine this issue in more detail in
Chapter 7.

4.4 Composite systems

Let us turn back to the structure of the theory itself. As in the probabilistic case, we use
the tensor product to describemultiple quantum systems.We usually give the systems
different namesor labels, e. g.,A,B,C, . . . , anddenote the associated vector spacesℋA,
ℋB, ℋC, and so forth. Occasionally, we write ℋAB for ℋA ⊗ ℋB when there is no pos-
sibility of confusion. The advantage of naming the systems is that, just on the level
of (multi)linear algebra, we can specify the input and output spaces of operators by
their subscripts, e. g.,MA is an element of Lin(ℋA), whileMAB ∈ Lin(ℋAB). Borrowing
the notation from probability,MB|A is an element of Lin(ℋA,ℋB), and there is nothing
wrong with MAB|A ∈ Lin(ℋA,ℋAB). We also write M∗B|A for the adjoint of MB|A instead
of (MB|A)

∗ to avoid parenthetical clutter. Doing so unfortunately collides with the | no-
tation just introduced in thatM∗B|A is an element of Lin(ℋA,ℋB). Parentheses, instead
of subscripts, will be used for function or sequence arguments, so that ρB(x) denotes
the density operator onℋB labeled by x, echoing the notation PX(x) from probability.
In the context of composite systems, it pays to be a little more careful with how Dirac
notation is interpreted; see Section B.2.

4.4.1 Entangled states

The structure of composite quantum systems is quite different than for classical ran-
dom variables, due to the existence of entangled states. As we will see, in one form or
another, entanglement is responsible for the strangeness of quantummechanics.

The simplest situation for a composite system of two parts A and B is that each
is in its own pure state, say |φ⟩ ∈ ℋA and |θ⟩ ∈ ℋB. We will usually use subscripts
to the kets to denote the system, e. g., |φ⟩A and |θ⟩B. The corresponding state in the
composite state spaceℋAB is simply the product state |φ⟩A ⊗ |θ⟩B.

Since ℋAB is a vector space, it also contains all superpositions of product states.
Any state that is not a product state is said to be entangled. For instance, the two-qubit
state |Φ⟩AB =

1
√2 (|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) is an entangled state. As we will see later,

there is good reason to think of it as a “maximally” entangled state.
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Entangled states such as |Φ⟩AB are quite unlike anything we encountered in clas-
sical probability theory for the following reason. Since we can create a measurement
out of any complete set of projection operators, for every entangled state, there is some
measurement whose outcome is certain. In the measurement represented by the pro-
jections ΠAB and 1AB − ΠAB for ΠAB = |Φ⟩⟨Φ|AB, the former outcome is certain. Now
suppose that instead we measure σz on system A, i. e., the observable (σz)A ⊗ 1B. The
measurement has two outcomes, associated with the two projectors |j⟩⟨j|A ⊗ 1B for
j ∈ ℤ2; here each outcome occurs with equal probability. It can be verified that every
nontrivial measurement of A results in a uniform distribution of outcomes, and the
same holds for B.

Exercise 4.9. Show this. Hint: note that the difference in outcome probabilities in the
example is related to the expectation value of σz .

From the classical point of view, this is a very strange state of affairs. If two ran-
dom variables X and Y have a deterministic (extremal) joint distribution PXY , then the
marginals PX and PY are necessarily also deterministic. Not so in the quantum realm.
The joint state of two systems can be pure (extremal) without themarginals also being
pure. In some sense the whole is more than the sum of the parts.

Mixed states can be also be entangled. In terms of their density operator, product
states take the form ρAB = θA ⊗ φB for some θA ∈ Stat(ℋA) and φB ∈ Stat(ℋB). Such
states can be regarded as classical in the sense that there is a well-defined state for
each of the constituent systems A and B. This notion continues to hold for mixtures of
product states, such as

σAB =
n
∑
k=1

P(k) ρA(k) ⊗ φB(k) (4.14)

with P ∈ Prob(n), since then each system again has its own well-defined state condi-
tional on the parameter k of themixture. Any quantum state of the form (4.14) is called
separable, and any state that is not separable is said to be entangled.

4.4.2 Bell bases andWeyl–Heisenberg operators

Given orthonormal bases {|bj⟩}
dA
j=1 and {|b

′
k⟩}

dB
k=1 for ℋA and ℋB, the set of all products

|bj⟩A ⊗ |b′k⟩B is a basis for ℋAB. Indeed, this is one way to define the tensor prod-
uct space. However, ℋAB itself is quite indifferent to any possible underlying tensor
product structure; it is just a vector space of dimension dAdB. Thus, whereas we can
use the product basis above,we can also findbases of entangled states. For two qubits,
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for instance, a very useful basis is the Bell8 basis:

|Φ00⟩ =
1
√2 (|00⟩ + |11⟩), |Φ01⟩ =

1
√2 (|00⟩ − |11⟩),

|Φ10⟩ =
1
√2 (|01⟩ + |10⟩), |Φ11⟩ =

1
√2 (|01⟩ − |10⟩).

(4.15)

The first state is just |Φ⟩, while the other three differ by the action of a Pauli operator
on only one of the qubits. The indices are chosen so that

|Φjk⟩ = 1 ⊗ (σjxσ
k
z )|Φ⟩ , (4.16)

as can be verified by direct calculation.

Exercise 4.10. Show that the Bell basis states are eigenstates of the operators (σx)A ⊗
(σx)B and (σz)A ⊗ (σz)B. Which eigenvalue combination corresponds to the state |Φjk⟩?

Exercise 4.11. Show that |Φ⟩⟨Φ| = 1
4 (1 ⊗ 1 + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz). What are the

other states of the Bell basis in these terms?

We can generalize the Bell basis to arbitrary dimensions using the Weyl9–
Heisenberg operators, a generalization of the Pauli operators. First, for a basis
{|k⟩}k∈ℤd ofℂ

d (which is then referred to as the standard basis), we define the canoni-
cal maximally entangled state onℋA ⊗ℋB withℋA ≃ ℋB and d = dim(ℋA) by

|Φ⟩AB :=
1
√d
∑
k∈ℤd

|k⟩A ⊗ |k⟩B . (4.17)

Here we label the basis states from 0 to d − 1, i. e., by elements ofℤd, as this is conve-
nient for the following calculations.

Meanwhile, to define theWeyl–Heisenberg operators, startwith the shift and clock
operators

U = ∑
k∈ℤd

|k + 1⟩⟨k| , (4.18)

V = ∑
k∈ℤd

ωk |k⟩⟨k| , (4.19)

where ω = e2πi/d. We can regard |k⟩ as the position of a d-dimensional “clock” show-
ing the “time” ωk . The shift operator advances the time by ω. The Weyl–Heisenberg
operators are the d2 operators {UxV z : x, z ∈ ℤd}.

8 John Stewart Bell, 1928–1990.
9 Hermann Klaus Hugo Weyl, 1885–1955.
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Exercise 4.12. Show that UV = ωVU and that the eigenvectors of U are related to the
eigenvectors of V by the discrete Fourier10 transform:

|x̃⟩ = 1
√d
∑
z∈ℤd

ωxz |z⟩ . (4.20)

Just as theBell states are obtained by the action of the Pauli operators on themaxi-
mally entangled state for qubits, the states |Φjk⟩AB := 1A⊗U

j
BV

k
B |Φ⟩AB for j, k ∈ ℤd form

an orthonormal basis in dimension d.

Exercise 4.13. Confirm that the |Φjk⟩AB form an orthonormal basis forℋAB.

4.4.3 Marginal states and the partial trace

Let us return to the discussion of measuring part of a pure entangled state from Sec-
tion 4.4.1. In particular, consider an arbitrary measurement performed on one part,
system A, of bipartite system described by the pure state |Ψ⟩AB. HereℋA andℋB need
not be of the same dimension. Call the POVM elements describing the measurement
ΛA(x). We can perform the calculation of the probability of outcome x slightly differ-
ently, explicitly writing out the trace on system B using the basis {|bk⟩} to obtain

PX(x) = TrAB[ΛA(x) ⊗ 1B|Ψ⟩⟨Ψ|AB] = TrA[ΛA(x) TrB[|Ψ⟩⟨Ψ|AB]]

= TrA[ΛA(x)
dB−1
∑
k=0

B⟨bk |(|Ψ⟩⟨Ψ|AB)|bk⟩B] .
(4.21)

The operation taking |Ψ⟩⟨Ψ|AB to ∑
dB−1
k=0 B⟨bk |(|Ψ⟩⟨Ψ|AB)|bk⟩B] is referred to as the

partial trace over system B and denoted TrB. It is not difficult to show that the result is
a valid density operator.

Exercise 4.14. Show that TrB[|Ψ⟩⟨Ψ|AB] = ∑
dB
k=1⟨bk |(|Ψ⟩⟨Ψ|AB)|bk⟩B is a valid density

operator.

Exercise 4.15. Show that TrB[|Φ⟩⟨Φ|AB] =
1
21A for the qubitmaximally entangled state

|Φ⟩AB.

Thus, if we are only interested in probabilities ofmeasurements on systemA, then
we can just as well use the density operator given by the partial trace over B. It is often
called the reduced state or marginal state. Marginal states are precisely the quantum
analog of marginal probability distributions. We treat them similarly at the level of

10 Joseph Fourier, 1768–1830.
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notation. In the context of a joint state ρAB, we denote by ρB the marginal state on
system B, i. e., ρB = TrA[ρAB], just as PX is the marginal of PXY .

The existence of marginal states is an important locality feature of quantum the-
ory. Despite the possibility of entanglement, no action performed on B can, just by
itself, affect or influence ρA. To see this, first consider a unitary operation on B, such
as would arise from time evolution according to the Schrödinger equation. More gen-
erally, consider any isometry VB′|B. By the cyclic property of the trace, TrB[|Ψ⟩⟨Ψ|AB] =
TrB′ [VB′|B|Ψ⟩⟨Ψ|ABV∗B′|B]. Next, consider ameasurement of B in basis |b′k⟩whose result
is unknown to A. For outcome x, the conditional state of A is |ψk⟩A = B⟨b′k |Ψ⟩AB. This
state is not properly normalized, and its norm encodes the probability of outcome k.
Averaging over the outcomes by their probabilities gives ρA again; this is just the same
calculation as in (4.21). Thus neither unitary evolution normeasurement on B has any
effect on the description of A alone. We will see in the following chapter that this con-
clusion extends to arbitrary quantum channels.

4.4.4 Classical-quantum states

As we saw in (4.12), density operators can also be used to represent classical random
variables, and the Born rule will faithfully replicate the probability rule (4.1). The key
feature is that classical information is encoded in orthogonal quantum states by using
diagonal operators. Representing the states of classical values X = x with mutually
orthogonal vectors |bx⟩ on a Hilbert space ℋX , the density operator associated with
probability distribution PX is just

ρX = ∑
x∈𝒳

PX(x)|bx⟩⟨bx|X . (4.22)

Composite states with a classical and a quantum part are called classical-quantum
(CQ) states. Given some distribution PX and a collection of states φA(x), the following
is a CQ state:

ρXA =∑
x
PX(x)|bx⟩⟨bx|X ⊗ φA(x) . (4.23)

CQ states are closely related to ensemble decompositionsof density operators. Con-
sider an arbitrary density operator ρA on system A. Suppose we find a decomposi-
tion into positive operators, ρA = ∑

n
x=1 φ̂A(x). The φ̂A(x) are necessarily subnormal-

ized, and the set of PX(x) = Tr[φ̂A(x)] forms a probability distribution, as can be seen
by taking the trace of both sides. Defining φA(x) = φ̂A(x)/PX(x), we can then write
ρA = ∑

n
x=1 PX(x)φA(x). The set of normalized states φA(x), each one paired together

with its associated probabilityPX(x), is an ensemble decomposition {(PX(x),φA(x))}nx=1
of ρA. For instance, the spectral decomposition gives an ensemble decomposition into
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pure states. However, decomposition into orthogonal pure states is not the only kind
of pure state ensemble decomposition. In particular, there may be more elements to
the ensemble than the dimension of the density operator. This is especially easy to
see for qubits using the Bloch representation. Any point in the interior can be decom-
posed into an average of an arbitrary number of points n ≥ 2 on the surface in many
different ways.

Physically, we could realize state preparation of ρA by randomly preparing φA(x)
with probability PX(x). This ensemble decomposition corresponds to the CQ state
in (4.23), so that indeed ρA = TrX[ρXA]. Observe that ρXA = ∑x |bx⟩⟨bx|X ⊗ φ̂A(x), a
more direct link between the CQ state and the associated decomposition into positive
operators. The CQ state corresponds to a state preparation device in which φA(x) is
randomlypreparedwithprobabilityPX(x) and theparticular value of x is also recorded
in X at the output. Ignoring X by tracing it out yields the original density operator ρA.

4.5 Isomorphism of operators and bipartite vectors

We will frequently make use of the unnormalized version of the canonical maximally
entangled state |Φ⟩AA′ ,

|Ω⟩AA′ :=
d−1
∑
k=0
|bk⟩A ⊗ |bk⟩A′ , (4.24)

whereℋA′ ≃ ℋA. With it we can convert operators in Lin(ℋA,ℋB) to elements ofℋA ⊗
ℋB and vice versa. In particular, define the map V : Lin(ℋA,ℋB) → ℋA ⊗ ℋB by the
action

V(MB|A) → 1A ⊗MB|A′ |Ω⟩AA′ . (4.25)

Writing outMB|A in the basis defining |Ω⟩AA′ and |Ω⟩BB′ , we see that V “vectorizes” the
matrix representingM by just stacking its columns into a giant column vector.

Exercise 4.16. Show that V(|φ⟩B⟨ψ|A) = |ψ⟩A ⊗ |φ⟩B, where |ψ⟩A is the vector whose
components in the basis defining |Ω⟩AA′ are the complex conjugates of those of |ψ⟩A.

Importantly, V is an isomorphism. The inverse V−1 is just

V−1 : |Ψ⟩AB → AA′⟨Ω|Ψ⟩A′B . (4.26)

Here we use the capabilities of Dirac notation to give such a compact expression, but
let us write it out more explicitly to confirm that it is correct.

First, we should check that AA′⟨Ω|Ψ⟩A′B is an element of Lin(ℋA,ℋB). It is the com-
position of |Ψ⟩ ∈ Lin(ℂ,ℋA′ ⊗ℋB) followed by ⟨Ω| ∈ Lin(ℋA ⊗ℋA′ ,ℂ), so the first com-
plicationwe face is that formally the composition is not well-defined. Inserting appro-

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



58 | 4 Quantum probability theory

priate identity maps does yield a valid composition. Namely, we regard AA′⟨Ω|Ψ⟩A′B as
the composition (⟨Ω|AA′⊗1B)∘(|Ψ⟩A′B⊗1A), which indeed is an element of Lin(ℋA,ℋB).
Here ∘ denotes composition of the linear maps. Henceforth we assume that identity
operators needed to make such expressions well-defined are implicitly included.

Now we must determine that AA′⟨Ω|Ψ⟩A′B is the correct operator for V−1. For any
basis {|b′k⟩} ofℋB, we have

AA′⟨Ω|Ψ⟩A′B = (∑
j
⟨bj|A ⊗ ⟨bj|A′)(∑

kℓ
Ψℓ,k |bℓ⟩A′ ⊗

b
′
k⟩B)

=∑
jkℓ
⟨bj|bℓ⟩Ψℓ,k

b
′
k⟩B ⟨bj|A = ∑

jk
Ψj,k
b
′
k⟩B ⟨bj|A .

(4.27)

Here we make full use of the possibilities of Dirac notation for composite systems. Let
us explain the calculation carefully, as we will very often employ similar sleights of
hand. The expression ⟨bj|A∘|b′k⟩B ismore correctlywritten as (⟨bj|A⊗1B)∘(1A⊗|b′k⟩B). By
the definition of ket in (B.2) and the form of tensor products of operators in (B.13), the
first operator is an element of Lin(ℋA)⊗Lin(ℂ,ℋB) ≃ Lin(ℋA⊗ℂ,ℋAB) ≃ Lin(ℋA,ℋAB)
since ℋA ⊗ ℂ ≃ ℋA. In particular, 1A ⊗ |b′k⟩B acting on an arbitrary |ψ⟩A produces
|ψ⟩A ⊗ |b′k⟩B. Similarly, the second operator is the element of Lin(ℋAB,ℋB) that takes
an arbitrary |ξ ⟩A ⊗ |φ⟩B (the collection of which spans ℋAB) to ⟨bj|ξ ⟩|φ⟩B. Therefore
the composition must be the map fromℋA toℋB that takes |ψ⟩A to ⟨bj|ψ⟩|b′k⟩B. This is
indeed |b′k⟩B⟨bj|A.

Observe that this reasoning is consistent with applying the composition to the
two tensor factors separately, following (B.12). Performing the calculation this way
gives ⟨bj|A ∘ |b′k⟩B = ⟨bj|A ⊗ |b

′
k⟩B ∈ Lin(ℋA,ℂ) ⊗ Lin(ℂ,ℋB). By (B.13) this space is

again equivalent to Lin(ℋA,ℋB). Dirac notation efficiently encapsulates all the tensor
product equivalences so that we do not have to deal with them directly.

Now back to the calculation at hand. A particular case of (4.27) is

AA′⟨Ω|Ω⟩A′B =∑
j
|bj⟩B ⟨bj|A (4.28)

forℋB ≃ ℋA, which is essentially the “identity operator” takingℋA toℋB (for which
weof course need the basis used in the definition of |Ω⟩AA′ ). This particular casemakes
it simple to complete the proof that V is an isomorphism. Consider an arbitrary MB|A
and compute

V−1 ∘ V(MB|A) = AA′⟨Ω|1A′ ⊗MB|A′′ |Ω⟩A′A′′ = MB|A′′ AA′⟨Ω|Ω⟩A′A′′ = MB|A . (4.29)

This establishes one half of the isomorphism, and proving other is entirely similar.

Exercise 4.17. Show that V ∘ V−1 : |Ψ⟩AB → |Ψ⟩AB for any |Ψ⟩AB ∈ ℋAB.
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The map V is actually an isometry in that it transforms the Hilbert–Schmidt inner
product on Lin(ℋA,ℋB) into the usual inner product onℋA ⊗ℋB:

⟨SB|A,TB|A⟩ = Tr[S
∗
B|ATB|A] = AA′⟨Ω|S

∗
B|ATB|A|Ω⟩AA′ . (4.30)

Another useful property of |Ω⟩AA′ is the following:

Exercise 4.18. Show that for anyMB|A ∈ Lin(ℋA,ℋB),

1A ⊗MB|A′ |Ω⟩AA′ = (MB′|A)
T ⊗ 1B|Ω⟩BB′ , (4.31)

where (MB|A)
T ∈ Lin(ℋB,ℋA) is the operator whose matrix components relative to the

bases defining |Ω⟩AA′ and |Ω⟩BB′ are just the transpose of those ofMB|A. Usually,wewill
write the transpose without the parentheses. As with vectors,M denotes the operator
whose matrix components are the complex conjugates ofM.

Exercise 4.19. Show that V(LD|CMC|BRB|A) = (LD|C ⊗ RTB|A)V(MC|B).

Exercise 4.20. What are the marginal states on systems A and B of the density opera-
tor ρAB = |Ψ⟩⟨Ψ|AB in terms ofMB|A = V−1(|Ψ⟩AB)?

4.6 Notes and further reading

The quote from Wigner appears in [304]. Density operators were independently in-
troduced by von Neumann [292] and Landau [180]. The name “effects” is due to Lud-
wig [194], while POVM goes back to mathematical work on functional analysis. The
importance of POVMs for the general setting of quantum mechanics was realized by
Jauch and Piron [153], Davies and Lewis [71], and Holevo [143]. The discussion in Sec-
tion 4.3 follows Bub [48]. That commuting projections offer the only possible realiza-
tion of Boolean algebras in themost general quantum settingwas shownbyVaradara-
jan [290], building on earlier results from von Neumann [293, Ch. 2, § 10]. It is not nec-
essary to appeal to Gleason’s theorem to infer that sets of nonorthogonal projection
operators cannot form a Boolean algebra, and a more direct argument using a finite
set of projectors was given by Kochen and Specker [169]. For more on the formalism of
quantum systems and measurements, see [70, 145, 171, 220, 299, 307].
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5 Quantum channels
I think I can safely say that nobody understands quantummechanics.

Richard Feynman

Just as with classical channels, quantum channels are meant to describe the change
in an experimental setup due to time evolution, external interference, measurement,
and so forth. If we prepare a quantum system in a certain way, intending to measure
it with a given POVM, then the Born rule gives us the probabilities of the various mea-
surement results. But suppose that we wait some time before completing the mea-
surement and possibly let the system interact with additional degrees of freedom or
perform some othermeasurement. Now the probabilities of the original measurement
are presumably different. How should we describe the measurement outcome prob-
abilities in the new setup in terms of the old? We can either ascribe this change to a
change in the quantum state or to a change in the POVM elements. The Schrödinger
picture is the former choice, and the Heisenberg picture the latter. Here wewill mostly
follow the Schrödinger picture and focus on the states.

For instance, supposewe prepare an electron or some other spin-1/2 system so that
it points up along the ̂z axis, i. e., in the state |↑⟩. If we immediately measure its an-
gular momentum along this axis, say using a magnetic field as in a Stern1–Gerlach2

device, then the measurement result should be +1/2, i. e., “up”, with high probability.
However, if wewait too long, then straymagnetic fields near the electron could change
its angular momentum. The probability of “up” will presumably decrease the longer
we wait.

We can model this “noise” by saying that the quantum state of the electron is
transformed by a depolarizing channel, which is a kind of quantum analog to the bi-
nary symmetric channel. The output of a depolarizing channel is just the maximally
mixed state π = 1

21 with probability p, whereas with probability 1− p the output is the
same as the input. Formally, the depolarizing channel is a map 𝒩 : ρ → (1 − p)ρ +
p Tr[ρ]π. Since Tr[ρ] = 1 for quantum states, the factor Tr[ρ] is not necessary in this
case, but it emphasizes that the depolarizing channel is a linear map. In terms of the
Bloch sphere, the Bloch vector of the input simply shrinks to 1 − p times its original
length.

Another common kind of noise encountered in real devices is that it is difficult to
maintain superpositions of relatively stable states. This kind of noise can be modeled
by a dephasing channel. Consider the qubit formed by the ground and excited states of
a trapped ion, which we denote by |0⟩ and |1⟩, and suppose these are relatively stable
for some given amount of time. The depolarizing channel is therefore an inappropriate

1 Otto Stern, 1888–1969.
2 Walther Gerlach, 1889–1979.

https://doi.org/10.1515/9783110570250-005
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noise model. The dephasing channel, in contrast, simply removes all the off-diagonal
elements of the density operator in the |0⟩/|1⟩ basiswith someprobability p and leaves
the state untouchedwith probability 1−p. This is formally described by amap𝒩 : ρ →
(1 − p)ρ + pdiag[ρ], where diag[ρ] removes the off-diagonal terms of ρ (as opposed to
“diag” applied to a vector, which creates a diagonal operator). It also has an intuitive
action in the Bloch representation.

Exercise 5.1. Describe the action of the dephasing channel in the Bloch representa-
tion.

5.1 Definition

5.1.1 First considerations

Now let us turn to the general definition. From the point of view of compatibility with
the Born rule, it is clear than any purported quantumchannelwill have tomapdensity
operators to density operators. Concretely, let us consider amap fromStat(A) to Stat(B)
and denote it by ℰB|A. For precisely the same reasons involving convexity as described
in Section 3.2, quantum channels must also be represented by convex-linear maps. By
Proposition 3.2 any suchmap ℰB|A can be uniquely extended to a linear on the span of
density operators, which is all of the Hermitian operators. Wemay further extend ℰB|A
to a linear map on all operators as follows. Observe that an arbitrary MA ∈ Lin(ℋA)
can be decomposed into “real” and “imaginary” parts Hr

A =
1
2 (MA + M∗A) and H i

A =
1
2i (MA − M∗A), so that MA = Hr

A + iH
i
A. Since both Hr

A and H i
A are Hermitian, we can

define ℰB|A[MA] := ℰB|A[Hr
A] + iℰB|A[H i

A].
Thus a quantum channel ℰB|A ought to be a linear map from Lin(ℋA) to Lin(ℋB)

(often called a superoperator) satisfying the two conditions
1. (Positivity) ℰB|A[ρA] ≥ 0 for ρA ≥ 0 and
2. (Trace preservation) Tr[ℰB|A[ρA]] = 1 for Tr[ρA] = 1.
A trivial example of a map satisfying both conditions is the identity map from Lin(ℋ)
to itself, denoted ℐ.

Exercise 5.2. Check that the depolarizing and dephasing channels satisfy both these
conditions.

We will denote superoperators using calligraphic capital letters, except for ℋ,
which is already reserved for state spaces. Subscripts indicate the input and output
spaces using | as above; a superoperator ℰA maps Lin(ℋA) to itself. The set of maps
or superoperators from Lin(ℋA) to Lin(ℋB) is denoted Map(ℋA,ℋB), and Map(ℋ) de-
notes the maps from Lin(ℋ) to itself. We use square brackets to denote application of
a map to an operator, in contrast to parentheses, which are used to denote applica-
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62 | 5 Quantum channels

tion of a function to a number or an index. Observe that the trace Tr already fits this
convention by regarding the output as an operator on a one-dimensional space.

A superoperator that preserves the trace is called trace-preserving, and one that
preserves positivity is called positive. As a linear map on the inner product space of
operators, every superoperator ℰ has an adjoint ℰ∗ defined in the usual way as the
unique map such that Tr[Λ ℰ[ρ]] = Tr[ℰ∗[Λ] ρ] for all ρ ∈ Lin(ℋA) and Λ ∈ Lin(ℋB).
Another interesting class of superoperators are unital, meaning they preserve the unit
(identity) operator: ℰ[1] = 1.

Exercise 5.3. Show that ℰ∗ is unital iff ℰ is trace-preserving.

However, positivity alone is actually not enough to ensure compatibility with the
Born rule. Consider the superoperator 𝒯 : S → ST resulting frommatrix transposition
in a fixed basis {|bk⟩}, that is, for S = ∑jk⟨bj|S|bk⟩|bj⟩⟨bk |, the output is simply ST =
∑jk⟨bk |S|bj⟩|bj⟩⟨bk |. For more general S ∈ Lin(ℋA,ℋB) with bases |bj⟩A and |b′k⟩B, the
transpose is just ST = ∑jk B⟨b

′
k |SB|A|bj⟩A |bj⟩A⟨b′k |B. Clearly, 𝒯 is trace-preserving, since

the transpose does not affect the diagonal elements of a matrix. Similarly, it does not
change the eigenvalues, since the characteristic polynomials of both S and ST are the
same: Using det(MT ) = det(M), we have det(λ1 − ST ) = det((λ1 − S)T ) = det(λ1 − S) for
λ ∈ ℝ.

Now suppose 𝒯 acts on one part of a bipartite entangled state, say the B system
of the maximally entangled state |Φ⟩AB from (4.17):

σAB = ℐA ⊗ 𝒯B[|Φ⟩⟨Φ|AB] =
1
d
∑
jk
|k⟩⟨j|A ⊗ |j⟩⟨k|B . (5.1)

Observe that the state 1√2 (|j⟩|k⟩ − |k⟩|j⟩) for any j ̸= k is an eigenvector of σAB with
eigenvalue −1/d. Therefore σAB is not positive, leading to nonsense probabilities from
the Born rule (4.2). It should be emphasized that these are not physical constraints on
the allowable form of quantum channels, but rather statistical.

Henceforth we will often abuse notation and write ΦAB for the density operator
associated with |Φ⟩AB, simply for notational convenience. This extends to ΩAB and
other contexts in which a pure state is defined and denoted with a Greek letter, i. e.,
when working with pure state |φ⟩A, the density operator will just be written φA.

Exercise 5.4. Show that ϒAB := ℐA ⊗ 𝒯B[ΩAB] is the swap operator (or flip operator) on
Lin(ℋA ⊗ ℋB) with ℋA ≃ ℋB, satisfying ϒAB|ψ⟩A ⊗ |φ⟩B = |φ⟩A ⊗ |ψ⟩B for arbitrary
|ψ⟩, |φ⟩ ∈ ℋA.

Exercise 5.5. What is the action of transposition on qubits in terms of the Bloch vec-
tor?

Exercise 5.6. Show that Tr[ϒAB σAB] ≥ 0 for all separable states. That is to say, the
negativity of the swap operator can only be detected by entangled states.
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5.1.2 Complete positivity

To avoid this problem, we must demand that quantum operations be completely posi-
tive, i. e., positive on arbitrary and possibly entangled input states.

Definition 5.1 (Completely positive map). A superoperator ℰB|A ∈ Map(ℋA,ℋB) is said to be com-
pletely positive if the map ℰB|A ⊗ ℐR is positive for allℋR .

Clearly, ℐA is completely positive. Conjugation by a unitary operator, i. e. ρ → UρU∗,
is also completely positive, and in fact this holds for any linear operator.

Exercise 5.7. Suppose NB|A is an arbitrary linear map from ℋA to ℋB. Show that the
superoperatorMA → NB|AMA(NB|A)∗ is completely positive, whereMA ∈ Lin(ℋA).

Exercise 5.8. Show that the adjoint ℰ∗ of any completely positive superoperator ℰ is
itself completely positive.

Sums and compositions of completely positive maps are also completely positive.
For a given channel ℰB|A, a collection of operators {KB|A(j) ∈ Lin(ℋA,ℋB)}

n
j=1 such

that

ℰB|A : ρA → n
∑
j=1 KB|A(j) ρA K∗B|A(j) (5.2)

is called a Kraus3 representation (or operator-sum representation) of ℰB|A, and the
KB|A(j) are called Kraus operators. Existence of a Kraus representation is sufficient for
complete positivity, and we will return to the question of necessity in Section 5.4.

Exercise 5.9. Find a Kraus representation of the partial trace map.

The superoperator “diag” in the dephasing channel is an example of a pinchmap,
a mapwhose Kraus operators are projections.Wewill usually denote suchmaps by𝒫.
An important property of the pinch map with rank-one projections is that it creates a
CQ state when applied to one part of a bipartite state.

Exercise 5.10. Show that “diag” is a pinch map with projections |k⟩⟨k| as Kraus oper-
ators. Deduce that 𝒫A[ρAB] is a CQ state for arbitrary states ρAB.

Exercise 5.11. Suppose𝒫 is an arbitrary pinch operator and σ is an operator such that
σ = 𝒫[σ]. Show that Tr[ρσ] = Tr[𝒫[ρ]σ] for all operators ρ.

Now we can give the definition of a quantum channel.

3 Karl Kraus, 1938–1988.
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64 | 5 Quantum channels

Definition 5.2 (Quantum channel). A quantum channel is a completely positive trace-preserving
map. The set of quantum channels mapping Lin(ℋA) to Lin(ℋB) is denoted Chan(A,B).

We have already met two qubit channels, the depolarizing and dephasing chan-
nels. They are examples of Pauli channels, channels whose Kraus operators are (pro-
portional to) Pauli operators. In general, a Pauli channel has the form ℰ : ρ →
∑jk P(j, k) σ

j
xσ

k
z ρσ

k
z σ

j
x for some probability distribution P(j, k). With probability P(j, k),

the operator σjxσ
k
z is applied to the qubit. Another interesting qubit channel is ampli-

tude damping, a kind of quantum counterpart to the classical Z channel. Amplitude
damping describes spontaneous emission, in which an excited state (|1⟩) jumps to the
ground state (|0⟩) with some probability p. The channel is defined by the pair of Kraus
operators

K(0) = (1 0
0 √1 − p

) and K(1) = (0 √p
0 0
) . (5.3)

Exercise 5.12. Show that the amplitude damping channel is trace-preserving.

The definitions of depolarizing and dephasing channels are already sensible for
inputs of arbitrary dimension, with the slight adjustment that we should regard π as
the maximally mixed state for input dimension d, i. e., π = 1

d1. We can also define
the quantum erasure channel for arbitrary input dimension. It is the channel ρ → (1 −
p)ρ + p Tr[ρ] |?⟩⟨?|, where |?⟩ is orthogonal to all states of the input. Put differently,
the output of the channel is a linear operator on the direct sum ℋ ⊕ |?⟩ for the input
spaceℋ.

Exercise 5.13. Show that the depolarizing, dephasing, and erasure channels are in
fact channels. Which of these three channels are unital?

For arbitrary dimension, we can construct Kraus representations for depolar-
ization and dephasing by making use of the Weyl–Heisenberg operators from Sec-
tion 4.4.2.

Exercise 5.14. Suppose 𝒫 is the pinch map with rank-one projections onto an or-
thonormal basis {|k⟩}k∈ℤd . Show that, for V from (4.19),

𝒫[ρ] = 1
d
∑
k∈ℤd Vkρ(Vk)∗ . (5.4)

Furthermore, for π = 1
d1, show that

Tr[ρ]π = 1
d2
∑

j,k∈ℤd U jVkρ(U jVk)∗ (5.5)
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and that for the pinch map �̃� in the eigenbasis of U from (4.20),

Tr[ρ]π = �̃� ∘ 𝒫[ρ] . (5.6)

5.2 Everything is a channel

As in the classical case, quantum channels encompass states, effects, and measure-
ments. Indeed, just as everything classical probability theory is described by compo-
sitions of stochasticmaps, everything in quantumprobability theory can be described
by compositions of completely positive trace-preserving maps.

Formally, we may regard states on ℋ as channels from Lin(ℂ) to Lin(ℋ), so that
ρ ∈ Stat(ℋ) is equivalent to the trivial-input channel 1 → ρ. Note that the set Stat(ℂ),
the positive 1×1matriceswith trace 1, has just one element, the number 1. The simplest
case occurs when ρ = |ψ⟩⟨ψ| is a pure state, for then the channel has just one Kraus
operator, namely |ψ⟩ itself. For arbitrary ρ, any pure state ensemble decomposition
{(P(x), |ψx⟩)} gives rise to Kraus operators K(x) = √P(x)|ψx⟩.

State preparation of some other system is also a channel, e. g., if A is already pre-
pared in state ρA, then the preparation of B in some fixed state σB can be regarded as
the channel ρA → ρA ⊗ σB. Here the Kraus operators are just as before, constructed
from an ensemble decomposition of σB, but each has an additional tensor factor 1A.

A device that can prepare one of a set of quantum states can be described by a
classical-quantum channel, or CQ channel, ℰA|X : Lin(ℋX) → Lin(ℋA), in which the
input |x⟩⟨x|X is mapped to the state ρB(x), for an orthonormal basis {|x⟩X}. Properly
speaking, this does not yet define a channel, since we have not specified the action on
off-diagonal terms such as |x⟩⟨y| for x ̸= y. But these can just be discarded by the chan-
nel. Supposing ρB(x) = |ψx⟩⟨ψx|B is a pure state, Kraus operators KB|A(x) = |ψx⟩B⟨x|A
will deliver the desired result. As an example, the pure state channel PSC(f ) takes clas-
sical binary inputs to pure states |θx⟩ for which f = |⟨θ0|θ1⟩|.

For CQ channels with mixed output states ρB(x) = ∑y PY |X(y, x)|ψy,x⟩⟨ψy,x|B,
we simply use Kraus operators KB|A(x, y) = √PY |X(y, x)|ψxy⟩B⟨x|A. This includes the
case that the ρB(x) commute for all pairs of x values, meaning the channel output
is essentially classical. Working in the standard basis and relabeling B as Y , a pos-
sible set of Kraus operators of a classical channel WY |X is just given by KY |X(y, x) =
√WY |X(y, x)|y⟩⟨x|. The notation ℰA|X=x is also sensible here since x is classical: ℰA|X=x
is a density operator.

A measurement, on the other hand, is a QC channel, as it produces a classical
output from a quantum input. For a POVM with elements ΛA(x), the measurement
can be regarded as a channelℳX|A : Lin(ℋA)→ Lin(ℋX) with the action

ℳX|A : ρA → ∑
x∈𝒳 Tr[Λ(x) ρ] |x⟩⟨x|X . (5.7)
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Since the trace is completely positive (see Exercise 5.9), so is each term in the sum.
The map is trace-preserving due to the completeness relation of the POVM. The no-
tationℳX=x|A is sensible here as well. In this case,ℳX=x|A is the superoperator ρ →
Tr[ΛA(x) ρ]. This map is completely positive but not trace-preserving. We will see in
Section 5.4 that all CQ channels can be regarded as state preparation and all QC chan-
nels as measurement. The choice of Kraus operators above for a classical channel
amount to measurement in the {|x⟩} basis followed by diagonal state preparation in
the {|y⟩} basis. Note that a pinchmapwith rank-one projections corresponds to amea-
surement in the associated basis.

A channel likeℳX|A only describes the classical output of ameasurement but not
the action on the quantum system. A channel that describes both together is called a
quantum instrument. In the projectivemeasurement of usual quantummechanics, the
projection postulate states that upon observing outcome x, a quantum system initially
in the vector state |ψ⟩ is transformed into the normalized version of Π(x)|ψ⟩ for some
projector Π(x). We can express this transformation on density operators using the fol-
lowing quantum channel:

𝒬XA|A : ρA →∑
x
|x⟩⟨x|X ⊗ ΠA(x)ρAΠA(x) , (5.8)

whose Kraus operators are simply KXA|A(x) = |x⟩X ⊗ ΠA(x). The probability of out-
come x is given by the trace of the second factor: PX(x) = Tr[ΠA(x)ρAΠA(x)]. Thus the
postmeasurement state for input ρA conditioned on measurement result x is ρ′A(x) =
ΠA(x)ρAΠA(x)/PX(x); this is the quantum equivalent of (2.17).

Notice that by (5.7) TrA ∘𝒬XA|A = ℳX|A in the particular case that Λ(x) = Π(x). In
general, TrA ∘𝒬XA|A = ℳX|A for 𝒬XA|A defined using the Kraus operators KXA|A(x) =
ΛA(x)

1/2 ⊗ |x⟩X , where Λ1/2 is the square root of the operator Λ, which is well-defined for
any Λ ≥ 0 using the spectral decomposition. We also sometimes denote this as √Λ.
Hence this choice of Kraus operators defines a possible instrument for the POVMwith
elements Λ(x). For the observed measurement result, the conditional output state for
this choice of Kraus operator is then ΛA(x)

1/2ρAΛA(x)
1/2/ Tr[ΛA(x)ρA]. We discuss more

general forms of quantum instruments given a fixed POVM in Section 5.4.
Fixing a value of x in𝒬XB|A gives a superoperator𝒬X=xB|A, whichwemayalsowrite

𝒬B|A(x), so that𝒬XB|A = ∑x |x⟩⟨x|X ⊗𝒬B|A(x). In this way, any decomposition of a chan-
nel into completely positive superoperators can be associated with an instrument,
just as any decomposition of a state leads to a CQ state. That is, if ℰB|A = ∑nx=1 ℰB|A(x)
for some quantum channel ℰB|A and completely positive superoperators ℰB|A(x), then
𝒬XB|A = ∑nx=1 |x⟩⟨x|X ⊗ ℰB|A(x) is a valid channel. It takes a quantum input to a CQ out-
put. In Section 5.4, we will see that every such channel is a quantum instrument in
that it can be regarded as implementing a quantummeasurement.
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Exercise 5.15. Show that each of the superoperators ℰB|A(x) in such a decomposition
of a channel must be trace nonincreasing, i. e., its output must have a trace no larger
than its input.

Unlike decompositions of states, however, decompositions of channels cannot be
interpreted as ensembles. The original channel is not necessarily a convex combina-
tion of some renormalized channels associatedwith ℰB|A(x) in the decomposition. The
difficulty is that the ℰB|A(x) cannot be renormalized independently of their inputs. For
instance, take the channel ℰA = TrX ∘𝒬XA|A for 𝒬XA|A from (5.8). It is not possible to
renormalize the individual superoperators ℰB|A(x) : ρA → ΠA(x)ρAΠA(x) to give a valid
channel. By considering inputs in the kernel of ΠA(x) versus those in its support it is
clear that there is no constant c such that cℰB|A(x) is a trace-preservingmap. Similarly,
just renormalizing ℰB|A(x) by dividing by the trace of the output also fails, as the result
is not a linear map (or is not well-defined, as in the case of inputs in the kernel of the
projector ΠA(x)).

5.3 The Choi isomorphism

In the classical case, we defined a channel by a set of conditional distributions, which
we can regard as stemming from the joint distribution of channel inputs and outputs.
In the quantum setting, that approach is not a priori possible, since we have no ana-
log of conditional distributions, nor is it apparent what to use for the joint state of
the input and output of a quantum channel. Instead, we have followed the approach
required by convexity.

However, it turns out that we can define an analog of a joint input–output distri-
bution of a quantum channel, and moreover we can describe the action of a quantum
channel as marginalization over the input in almost the same manner as for a classi-
cal channel. To do so, we make use of the Choi4 isomorphism between superoperators
and bipartite operators. Under the Choi map C, every superoperator ℰB|A is mapped
to a Choi operator on Lin(ℋA ⊗ ℋB); specifically, the result of the channel acting on
half of an entangled state. In fact, we already encountered the Choi operator of the
transpose operator back in (5.1). It turns out to be a little more convenient to use the
unnormalized version of the entangled state, |Ω⟩, andwedefine the Choimap formally
as follows.

Definition 5.3 (Choi map). ForℋA ≃ ℋA′ , the Choi map C for the basis {|bi⟩}i is given by
C : Map(ℋA,ℋB)→ Lin(ℋA ⊗ℋB)

ℰB|A → ℰB|A′ [ΩAA′ ] . (5.9)

4 Man-Duen Choi.
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Note that the Choi map depends on the choice of basis used to define the state |Ω⟩A′A
of (4.24). The Choi operator associated with the identity channel is clearly just ΩAB,
whereas (5.1) shows that the Choi operator of the transpose channel is the swap oper-
ator ϒAB.

TheChoimapallowsus to represent the actionof anygiven superoperator in terms
of composition of ordinary bipartite operators and application of the partial trace. This
is formalized in the following:

Theorem 5.1 (Choi isomorphism of superoperators and bipartite operators). The Choi map C is an
isomorphismbetweenMap(ℋA,ℋB)and Lin(ℋA⊗ℋB). Its inverseC−1 takesanyMAB ∈ Lin(ℋA⊗ℋB)
to the superoperator C−1(MAB) ∈ Map(ℋA,ℋB) defined by

C−1(MAB) : SA → TrA[𝒯A[SA]MAB] . (5.10)

It is perhaps a little surprising that ΩAA′ , as opposed to 1AA′ , should be the operator
associated with the identity channel, so let us verify that this is indeed the case. For
C−1(ΩAA′ ) acting on an arbitrary SA, we have

TrA[𝒯A[SA]ΩAA′] = TrA[SA ϒAA′ ] , (5.11)

since we can apply the transpose to the system A of all operators inside the partial
trace over A. Now using ϒ2AA′ = 1AA′ , we obtain

TrA[SA ϒAA′ ] = TrA[ϒAA′ϒAA′SA ϒAA′ ] = TrA[ϒAA′SA′ ] = SA′ TrA[ϒAA′ ] . (5.12)

Since ϒAA′ = 𝒯A′ [ΩAA′ ] and TrA[ΩAA′ ] = 1A′ , the latter factor TrA[ϒAA′ ] = 1A′ . So ΩAA′

does implement the identity operator, as intended.

Exercise 5.16. Show that TrB[𝒯B[MAB] 𝒯B[NBC]] = TrB[MABNBC].

Proof of Theorem 5.1. The proof proceeds by showing that C−1 ∘ C(ℰB|A) = ℰB|A for all
superoperators ℰB|A ∈ Map(ℋA,ℋB) and C ∘ C−1(MAB) = MAB for all bipartite operators
MAB ∈ Lin(ℋA ⊗ℋB).

For the former, start by using TrA′ [ΩAA′ ] = 1A to obtain, for any SA ∈ Lin(ℋA),

ℰB|A′ [SA′ ] = ℰB|A′[SA′ TrA[ΩA′A]] = TrA[ℰB|A′[(SA′ ⊗ 1A)ΩA′A]] . (5.13)

Next, recall that STA ⊗ 1A′ |Ω⟩AA′ = 1A ⊗ SA′ |Ω⟩AA′ from (4.31), and therefore

ℰB|A′ (SA′ ) = TrA[ℰB|A′ ⊗ ℐA[(1A′ ⊗ STA)ΩA′A]]

= TrA[(1B ⊗ 𝒯A[SA])(ℰB|A′ ⊗ ℐA[ΩA′A])] .
(5.14)

We recognize C(ℰB|A) as the second factor in the final expression, and we have estab-
lished C−1 ∘ C(ℰB|A) = ℰB|A.
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For the latter, direct calculation gives

C ∘ C−1(MAB) = C
−1(MA′B)[ΩAA′ ] = TrA′[𝒯A′ [ΩAA′ ]MA′B] = MAB , (5.15)

since ΩAA′ is the Choi representative of the identity map.

Exercise 5.17. Determine the Choi operator of an arbitrary Pauli channel.

Exercise 5.18. Consider a channel ℰB|A whose output is a fixed density operator σB,
i. e., ℰB|A[ρA] = σB Tr[ρA]. Show that C(ℰB|A) = σB ⊗ 1A.

Exercise 5.19. Show that C(ℰ∗) = C(ℰ)T for every superoperator ℰ .
Exercise 5.20. Show that the Choi operator of ameasurement channelℳX|A is simply
C(ℳX|A) = ∑x |x⟩⟨x|X ⊗ ΛA(x)T , where ΛA(x) are the POVM elements ofℳX|A.

Importantly, it turns out that the Choi operators of completely positive maps are
positive semidefinite operators and vice versa. Thus the study of channels is reduced
to the study of bipartite positive semidefinite operators, andwe can regard these as the
analogs of classical conditional distributions. The representation of channel action is
also similar: In both cases the input state is combined with a bipartite “state” using
the inner product to give the output.

Theorem 5.2 (Choi representation). A superoperator ℰB|A ∈ Map(ℋA,ℋB) is completely positive iff
C(ℰB|A) ≥ 0. It is trace-preserving iff TrB[C(ℰB|A)] = 1A.

Proof. Take the complete positivity claimfirst. Clearly, C(ℰB|A) is positive if ℰB|A is com-
pletely positive. To establish sufficiency, suppose C(ℰB|A) is positive and consider an
arbitrary input state ρAR to ℰB|A ⊗ ℐR. By superoperator linearity it suffices to con-
sider pure ρAR = |φ⟩⟨φ|AR. Setting KR|A = V−1(|φ⟩AR) using (4.26), we have |φ⟩A′R =
KR|A ⊗ 1A′ |Ω⟩AA′ (note the move from A to A′ in |φ⟩), and therefore

ℰB|A′ ⊗ ℐR[ρA′R] = KR|A(ℐA ⊗ ℰB|A′ [ΩAA′ ])K
∗
R|A = KR|AC(ℰB|A)K∗R|A. (5.16)

Exercise 5.7 then implies that ℰB|A′ ⊗ ℐR[ρA′R] ≥ 0.
Nowconsider the trace-preserving condition. By theChoi isomorphismwithOAB =

C(ℰB|A) we have TrB[ℰB|A[ρA]] = TrA[TrB[OAB] ρTA] for any ρA ∈ Stat(ℋA). Clearly, the
trace is 1 if TrB[OAB] = 1A. Conversely, since ρA is arbitrary, this condition must hold if
the trace is 1.

By the Choi representation theorem the set of channels from A to B is a convex
set corresponding to positive operators on ℋAB whose marginal on A is the identity
operator. On the boundary of this set are the rank-deficient operators subject to the
condition on the marginal. But the extreme points of the set are only a subset of the
boundary, in contrast to, say, the Bloch sphere. For example, the dephasing channel
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has a Choi operator of rank two but is clearly a convex combination of two other chan-
nels.

Exercise 5.21. Consider the family of qubit mappings ℰλ : ρ →
1
2 Tr[ρ]1 + λ(σxρσz +

σzρσx) for λ ∈ [0, 1]. Determine the λ for which ℰλ is positive. When is ℰλ completely
positive?

Exercise 5.22. Consider the qubit superoperator ℰλ that reduces the y component by
multiplying it with a factor λ. For what values of λ is ℰλ completely positive? Suppose
ℱp is the depolarizing channel of probability p, as defined at the top of the chapter.
For what values of λ and p is ℰλ ∘ ℱp completely positive?

Exercise 5.23. For what values of a, b ∈ ℝ is the superoperator ρ → a Tr[ρ]1 − bρ a
valid quantum channel on Lin(ℋ) with |ℋ| = d? What if we only require positivity
instead of complete positivity? What about ρ → a Tr[ρ]1 − bρT?

Exercise 5.24. An entanglement-breaking channel is a channel𝒩B|A such that the out-
put𝒩B|A[ρAR] is a separable state for every input density operator ρAR. Using the Choi
isomorphism, show that every entanglement breaking channel is a composition of a
measurement followed by state preparation.

Exercise 5.25. Consider the superoperator ρ → A ⊙ ρ, where ⊙ represents entrywise
multiplication, known as a Schur5–Hadamard6 channel. Show that it is completely
positive when A ≥ 0. What is the condition for trace-preservation?

Exercise 5.26. Suppose a qubit channel ℰ preserves the Pauli operators σx and σz in
the sense that Tr[σx ℰ[ρ]] = Tr[σx ρ] and similarly forσz, so that ℰ∗[σx] = σx and ℰ∗[σz] =
σz . Show that ℰ = ℐ.

Exercise 5.27. Show that for arbitrary EAB, FBC ≥ 0, TrB[EAB𝒯B[FBC]] is positive. Give
an example of two positive operators such that TrB[EABFBC] is not positive.

5.4 The Kraus representation

Using the Choi representation theorem, we can easily show that completely positive
mapsmust have aKraus representation. TheChoi representation theoremensures that
the Choi state of a channel is positive semidefinite, and therefore we can consider its
spectral decomposition or indeed any decomposition into pure states. Doing so en-
ables the construction of Kraus operators.

5 Issai Schur, 1875–1941.
6 Jacques Salomon Hadamard, 1865–1963.
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Theorem 5.3 (Kraus representation). A superoperator ℰB|A ∈ Map(ℋA,ℋB) is completely positive
iff there exists a set of operators {K(j) ∈ Lin(ℋA,ℋB)}nj=1 such that

ℰB|A : SA → n∑
j=1 KB|A(j)SA KB|A(j)∗ . (5.17)

In addition, it is trace-preserving iff∑nj=1 KB|A(j)∗KB|A(j) = 1A.

Proof. Suppose ℰB|A has Kraus form. By the result of Exercise 5.7 it follows that ℰB|A
is completely positive. On the other hand, if ℰB|A is completely positive, then we have
a decomposition C(ℰB|A) = ∑nj=1 |ψj⟩⟨ψj|AB for some nonnormalized vectors |ψj⟩AB. By
the isomorphism of operators and bipartite states of Section 4.5, each vector can be
expressed as |ψj⟩AB = KB|A′ (j)|Ω⟩AA′ withKB|A′ (j) = V−1(|ψj⟩AB) from (4.26). Then, using
the Choi representation, for arbitrary SA ∈ Lin(ℋA), we have

ℰB|A[SA] = TrA[STA∑
j
KB|A′ (j)ΩAA′ KB|A′ (j)∗]

=∑
j
KB|A′ (j) TrA[STAΩAA′]KB|A′ (j)∗ =∑

j
KB|A(j) SA KB|A(j)∗ . (5.18)

This completes the characterization of completely positive maps.
By taking the trace of the output of (5.17) it is clear that ∑nj=1 K(j)∗K(j) = 1A

implies trace preservation. Conversely, if ℰB|A is trace-preserving, then Tr[ℰ[ρ]] =
Tr[∑nj=1 K(j)∗K(j) ρ]. Since this holds for arbitrary ρ ∈ Lin(ℋA), it implies that
∑nj=1 K(j)∗K(j) = 1, completing the proof.

Note that sets of Kraus operators are in one-to-one correspondencewith pure state
ensemble decompositions of the Choi operator. Hence Kraus representations are not
unique. Theminimal number of Kraus operators is set by the rank of the Choi operator,
since there is no way to construct an ensemble decomposition of an operator with
fewer pure states than its rank.

Exercise 5.28. Find a Kraus representation of the completely positive ℰλ in Exer-
cise 5.21.

Exercise 5.29. Find a Kraus representation of the Schur–Hadamard channel from Ex-
ercise 5.25.

Exercise 5.30. Consider a superoperator from qubit A to qubits A and B of the form

ℰAB|A[ρA] = ΠAB(ρA ⊗ θB)ΠAB (5.19)

for someoperator θB onB,whereΠAB =
1
2 (1AB+ϒAB) is theprojector onto the symmetric

subspace of two qubits. What formmust θB have for ℰ to be a valid quantum channel?
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In Section 5.2, we saw that state preparation and measurement are described by
CQ and QC channels. The Kraus representation theorem implies the converse: All CQ
channels are state preparations, and all QC channels are measurements. To say that
the channel has classical input or output is to say that only the diagonal part of the
input or output matters (in some fixed basis). We can enforce this with a pinch map,
that is, given an arbitrary quantum channel ℰB|A, the channel ℰ ′B|A = ℰB|A ∘ 𝒫A is a CQ
channel. Let us regard the pinchmapas a channel fromX toAwith |X| = |A|, to empha-
size the classical nature of the input (though, strictly speaking, using the letter X only
hints that the channel has a classical input; it is not a requirement) and write ℰ ′B|X =
ℰB|A ∘ 𝒫A|X . If KB|A(y) are the Kraus operators of ℰB|A, then K′B|X(x, y) = KB|A(y)|x⟩A ⟨x|X
are the Kraus operators of the CQ channel ℰB|X . Defining |ψx,y⟩B = KB|A(y)|x⟩A, this is
very nearly the general form of a state preparation channel we encountered in Sec-
tion 5.2. The only difference is that here the probability for outputting |ψx,y⟩ given x is
encoded in the norm, as the normalization condition for Kraus operators implies that
∑y⟨ψx,y|ψx,y⟩ = 1.

Similarly, applying the pinch map after the channel ℰB|A results in a QC chan-
nel ℳX|A = 𝒫X|B ∘ ℰB|A. The Kraus operators of ℳX|A are given by KX|A(x, y) =
|x⟩X ⟨x|BKB|A(y). Therefore the action ofℳX|A on a state ρA can be written as

ℳX|A[ρA] =∑
x,y |x⟩⟨x|X Tr[KB|A(y)∗|x⟩B ⟨x|BKB|A(y) ρA] , (5.20)

which is just∑x |x⟩⟨x|X Tr[ΛA(x) ρA] as in (5.7) for

ΛA(x) =∑
y
KB|A(y)∗|x⟩B ⟨x|BKB|A(y) . (5.21)

Note that the use of Kraus operators ΛA(x)
1/2 for the instrument associated with a

given POVM with elements ΛA(x), as discussed in Section 5.2, is not the most gen-
eral option. As in (5.21), we merely require a set of MB|A(x, y) such that ΛA(x) =
∑yMB|A(x, y)∗MB|A(x, y). Each summand defines a POVM element ΓA(x, y) that is a
“fine-grained” version of ΛA(x) in that ΛA(x) = ∑y ΓA(x, y). Put the other way around,
ΛA is the “coarse-grained” version of ΓA.

The Kraus representation theorem also implies that every quantum channel can
be regarded as a measurement by some quantum instrument, followed by forgetting
the measurement result. That is, for any ℰB|A, there exists an instrument 𝒬XB|A such
that ℰB|A = TrX ∘𝒬XB|A. To see this, suppose {K(x) ∈ Lin(ℋA,ℋB)}

n
x=1 is a set of Kraus

operators for ℰB|A. Observe that the operators K̂(x) ∈ Lin(ℋA,ℋB ⊗ℋX) with |ℋX | = n
defined by K̂(x) = K(x) ⊗ |x⟩ for an orthonormal basis {|x⟩}nx=1 of ℋX are also a valid
set of Kraus operators. Denote the associated channel𝒬XB|A. For a given input ρA, its
output is

𝒬XB|A[ρA] = n
∑
x=1 |x⟩⟨x|X ⊗ KB|A(x) ρA KB|A(x)∗ . (5.22)
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Clearly, ℰB|A = TrX ∘𝒬XB|A. On the other hand, discardingB leaves a classical state inX:
TrB[𝒬XB|A[ρA]] = n

∑
x=1 Tr[K(x)∗K(x)ρ] |x⟩⟨x|X . (5.23)

This is precisely the form of a measurement channel with POVM elements ΛA(x) =
KB|A(x)∗KB|A(x). Such a set of operators indeed forms a POVM. Each ΛA(x) is necessar-
ily positive, and by the trace-preserving condition their sum is 1A.

Although Kraus representations are only available to completely positive maps,
a similar-looking form can be constructed for arbitrary superoperators. Consider the
Choi operator C(ℰB|A) of an arbitrary superoperator ℰB|A. We can express it as C(ℰB|A) =
∑nj=1 |φj⟩⟨ϑj|AB, for some unnormalized vectors |φj⟩AB and |ϑj⟩AB (see (B.4)). But then
we can define LB|A(j) = V−1(|φj⟩AB) and RB|A = V−1(|ϑj⟩) and proceed as in (5.18) to
obtain

ℰB|A[MA] =
n
∑
j=1 LB|A(j)MA RB|A(j)∗ . (5.24)

As with the Kraus representation of completely positive maps, this representation is
not unique.

Exercise 5.31. Given a representation of ℰB|A as in (5.24), show that its Choi operator
satisfies

C(ℰB|A) = n
∑
j=1 V(LB|A(j)) (V(RB|A(j)))∗ . (5.25)

Exercise 5.32. Find a generalized Kraus representation of the transposition map.

5.5 Two further isomorphisms

5.5.1 The Jamiołkowski isomorphism

In the contemporary jargon of quantum information theory, it is common for the Choi
isomorphism to be called the “Choi–Jamiołkowski7” isomorphism. However, this con-
flates two closely related but distinct isomorphisms. The Jamiołkowski map J is defined
similarly to the Choi map but using ϒAB instead of ΩAB:

J : Map(ℋA,ℋB)→ Lin(ℋA ⊗ℋB)

ℰB|A → ℰB|A′ [ϒAA′ ] . (5.26)

7 Andrzej Jamiołkowski, born 1946.
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Its inverse J−1 takes any MAB ∈ Lin(ℋA ⊗ ℋB) to the superoperator J−1(MAB) ∈
Map(ℋA,ℋB), whose action is specified by

J−1(MAB) : SA → TrA[(SA ⊗ 1B)MAB] . (5.27)

Alternatively, J can be defined as themap fromMap(ℋA,ℋB) to Lin(ℋA⊗ℋB) such that,
for all SA ∈ Lin(ℋA) and TB ∈ Lin(ℋB),

⟨S∗A ⊗ TB, J(ℰB|A)⟩ = ⟨TB, ℰB|A[SA]⟩ . (5.28)

Exercise 5.33. Show that J satisfies (5.28).

The characterization by inner products implies that the Jamiołkowski isomor-
phism is natural in that it does not depend on any basis choice. This fact can also be
appreciated in the original definition, since the swap operator ϒAA′ is independent of
any basis choice forℋA andℋA′ .

Since ϒAA′ is the partial transpose of ΩAA′ , the Jamiołkowskimap is closely related
to the Choi map. Indeed, using the transposition map 𝒯A in the basis defining |Ω⟩AA′ ,
we have

J(ℰB|A) = 𝒯A[C(ℰB|A)]. (5.29)

The lack of transposition as compared to the Choi representation is appealing, but we
lose the simple characterization of completely positive superoperators.

Exercise 5.34. Show that the Choimap C satisfies ⟨SA⊗TB,C(ℰB|A)⟩ = ⟨TB, ℰB|A[SA]⟩ for
all SA ∈ Lin(ℋA) and TB ∈ Lin(ℋB). Here the dependence on the basis choice forℋA is
immediately apparent.

5.5.2 The Liouville isomorphism

Since superoperators are linear maps, it must be possible to represent their composi-
tion by ordinary operator composition, essentially matrix multiplication. This is often
called the Liouville isomorphism. It is easily defined using the operator-vector iso-
morphism V from Section 4.5. Suppose we have an operator representative L(ℰB|A) of a
superoperator ℰB|A that satisfies the condition

L(ℰB|A)V(MA) = V(ℰB|A[MA]) (5.30)

for all MA. Evidently, L(ℰB|A) must be an element of Lin(ℋA ⊗ ℋA′ ,ℋB ⊗ ℋB′ ), where
ℋA′ ≃ ℋA and ℋB′ ≃ ℋB. It then follows that L(ℱC|B ∘ ℰB|A) = L(ℱC|B)L(ℰB|A). The
Liouville map is the unique L that satisfies (5.30), and it is an isomorphism. It must be
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unique because varyingMA on the left-hand side of (5.30) results in arbitrary vectors
inℋA ⊗ℋA′ .

However, it is not so straightforward to express L(ℰE|A) in terms of the action of
ℰB|A itself, as done in the Choi and Jamiołkowski isomorphisms. But we can do so by
making use of the generalized Kraus representation in (5.24). Consider the result of
applying the operator ℰB|A[MA] ∈ Lin(ℋB) to half of the state |Ω⟩BB′ for some operator
MA. The result of Exercise 4.19 gives

V(ℰB|A[MA]) =
n
∑
j=1 V(LB|A(j)MA RB|A(j)∗) = ( n

∑
j=1 LB|A ⊗ RB′|A′)V(MA) . (5.31)

The statement in Exercise 4.19 is ambiguous in this case since the operator MA
maps ℋA to itself. Here we make the replacement (A,B,C,D) → (B′,A′,A,B), i. e.,
we treat MA as MA|A′ , Thus, for a superoperator with generalized Kraus operators
LB|A(j) and RB|A(j), we have

L(ℰB|A) = n
∑
j=1 LB|A(j) ⊗ RB′|A′ (j) . (5.32)

The isomorphism can also be understood in terms of the usualmethod of creating
a matrix representation of a linear transformation. Abstractly, for transformation T :
U → V , we choose bases {uj} and {vk} ofU andV , respectively, and then use a suitable
inner product in V to define [T]jk = ⟨vj,Tuk⟩. Here we use the Hilbert–Schmidt inner
product and choose bases {|bj⟩⟨bk |}jk for Lin(ℋA) and {|b′j⟩⟨b′k |}jk for Lin(ℋB), where
{|bk⟩}k is a basis ofℋA, and {|b′k⟩}k is a basis ofℋB. Then the Liouville map L is defined
by

L(ℰB|A) = ∑
jk,ℓm[L(ℰB|A)]jk,ℓmb′j⟩Bb′k⟩B′⟨bℓ|A⟨bm|A′ , (5.33)

[L(ℰB|A)]jk,ℓm = Tr[b′k⟩⟨b′j  ℰB|A[|bℓ⟩⟨bm|]] . (5.34)

Note that the order of j and k is inverted in the expression for the matrix elements due
to the adjoint in the Hilbert–Schmidt inner product.

Exercise 5.35. Show that the matrix elements of (5.32) are those from (5.34).

The Liouville representation is also an isomorphism of superoperators and bipar-
tite operators, which can be appreciated by showing that L(ℰB|A) is just a reshuffled
version of the Choi operator. In particular,

[L(ℰB|A)]jk,ℓm = (⟨bℓ|A ⊗ ⟨b′j B)C(ℰB|A)(|bm⟩A ⊗ b′k⟩B) . (5.35)

Exercise 5.36. Show (5.35).

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



76 | 5 Quantum channels

Exercise 5.37. What is the condition for trace preservation of ℰ in terms of L(ℰ)?

Exercise 5.38. What is the Liouville representation of the transposition map?

We are free tomake other choices of bases in (5.33) and (5.34). Choosing theWeyl–
Heisenberg operators leads to a different representation, often called the process ma-
trix (especially, in the context of qubits), but we will not pursue this further.

5.6 Notes and further reading

The quote is fromFeynman’s 1964Messenger lecture at Cornell University, transcribed
in [99]. The mathematical structure relevant for open quantum systems that we have
traced here were developed in the works of, among many others, Naimark [209],
Stinespring [275], Haag and Kastler [114], Hellwig and Kraus [135, 136], de Pillis [75],
Jamiołkowski [152], and Choi [59]. For more detailed treatments, see the earlier works
by Davies [70] and especially Kraus [171], as well as the more recent treatments by
Peres [220], Werner [299], Holevo [145], and Wolf [307]. The term “pinching” was
coined by Davis [73], while “Liouville representation” stems from Fano [98] (see also
Sudarshan et al. [278]). Leifer and Spekkens [186] explored the analogy of Choi oper-
ators as the analog of conditional probability.
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6 Purification
The best that most of us can hope to achieve in physics is simply to misunderstand at a deeper
level.

Wolfgang Pauli

In Chapter 4, we established two “interpretations” of density operators, either as
mixed states or as marginal states. This raises the question of whether every den-
sity operator ρA can be regarded as the marginal state of a pure state |Ψ⟩AB, that is,
whether every mixed state is mixed because it is only part of a composite pure state.
This issue turns out to be related to the famous “measurement problem” of quantum
mechanics, whether or not measurement can be understood as a dynamical process,
subject to unitary evolution according to the Schrödinger equation. Despite the ap-
parent incompatibility of measurement and unitary dynamics, we will find that not
just measurement, but any channel can be thought of as unitary dynamics involving
additional degrees of freedom.

6.1 Purification of density operators

First, let us consider the issue of marginal versus mixed states. For a given density
operator ρA on system A, any state θAB on systems A and B such that TrB[θAB] = ρA is
an extension of ρA. A purification is an extension to a pure state.

Definition 6.1 (Purification). A purification of ρA ∈ Stat(ℋA) is a normalized |Ψ⟩AB ∈ ℋA ⊗ℋB for
someℋB such that ρA = TrB[|Ψ⟩⟨Ψ|AB]. System B is often called the purifying system.

Purifying a mixed state, regarding it as the marginal of a bipartite pure state, is com-
mon in the study of quantum information theory and is jokingly referred to as “going
to the church of the larger Hilbert space”.

Indeed, all mixed states are marginals of pure states, since every density opera-
tor has a purification as we now show. Suppose ρA has the eigendecomposition ρA =
∑rk=1 P(k)|ξk⟩⟨ξk |A, where r is the number of nonzero eigenvalues (the rank). Then, for
any choice of orthonormal vectors |bk⟩B, the bipartite state

|Ψ⟩AB =
r
∑
k=1
√P(k) |ξk⟩A ⊗ |bk⟩B (6.1)

is a purification of ρA. Hence the purifying system B need only have dimension
equal to the rank of ρA. This works nicely when ρA is already pure, as then B is one-
dimensional, i. e., trivial. Moreover, the notion of purifications completely subsumes
extensions, since any extension of ρA can itself be purified.

https://doi.org/10.1515/9783110570250-006
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78 | 6 Purification

We can construct a purification from any pure state ensemble decomposition.
Given an ensemble decomposition of a density operator ρA = ∑

n
z=1 PZ(z)|φz⟩⟨φz |A,

simply invent an additional system B of dimension at least n and define

|Ψ⟩AB =
n
∑
z=1
√PZ(z) |φz⟩A ⊗ |bz⟩B , (6.2)

where |bz⟩B is a basis for ℋB. Furthermore, the CQ state ρAZ = ∑z PZ(z)|bz⟩⟨bz |Z ⊗
|φz⟩⟨φz |A corresponding to the ensemble is immediately recovered by measuring sys-
tem B in the basis |bz⟩. That is, ρAZ = 𝒫Z|B[ΨAB], where 𝒫Z|B is a pinch map.

The canonical purification

|Ψ⟩AA′ = √ρA ⊗ 1A′ |Ω⟩AA′ (6.3)

is especially convenient in calculations.

Exercise 6.1. Show that the canonical purification is indeed a purification.

The above shows that purifications and pure-state ensembles are two different
descriptions of essentially the same thing. In the framework of quantum theory, we
have two different options for interpreting an ensemble of states on system A. One is
the CQ state ρAZ , where the particular state of A is correlated with the classical ran-
dom variable Z. The other is to regard the randomness of the ensemble as arising from
measurement of one half of the entangled bipartite state in (6.2). Here we are not at-
tempting tomake any claim about which version is the “actual” state of affairs, merely
that they are equivalent for our statistical purposes. This shift in perspective is com-
monly used to understand the properties of various information processing tasks.

6.2 Ensembles and purifications

6.2.1 Schmidt decomposition

In Chapter 4, we saw that general density operators have many possible pure state
ensemble decompositions. The results of the previous section imply that they have
several possible purifications. It turns out that all possible purifications and, equiva-
lently, pure state ensembles are related in a simple way. To see how, we make use of
the Schmidt decomposition of a bipartite vector.

Proposition 6.1 (Schmidt decomposition). For any |Ψ⟩AB ∈ Lin(ℋA ⊗ℋB), there exist orthonormal
bases {|ξj⟩A}

dA
j=1 and {|ηk⟩B}

dB
k=1 and n ≤ min(dA,dB) Schmidt coefficients sk > 0 such that

|Ψ⟩AB =
n
∑
k=1

sk |ξk⟩A ⊗ |ηk⟩B . (6.4)
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Proof. The proof is an application of the singular value decomposition (see Sec-
tion B.6). By (4.26) we can write |Ψ⟩AB = (KA|B′ ⊗1B)|Ω⟩B′B for KA|B′ = BB′⟨Ω|Ψ⟩AB. Now
consider the singular value decomposition KA|B′ . Specifically, denote the n singular
values sk and define ℋF to have dimension n. Then, in accordance with Lemma B.4,
KA|B′ can be expressed as KA|B′ = UA|FDF(VB′|F)∗ for some isometries UA|F and VB′|F ,
where DF is the diagonal matrix with entries sk . Using (4.31), we have

|Ψ⟩AB = UA|FDF(VB′|F)
∗|Ω⟩B′B = UA|FDF ⊗ VB|F′ |Ω⟩FF′

=
n
∑
k=1

skUA|F |bk⟩F ⊗ VB|F′ |bk⟩F′ .
(6.5)

Now define |ξk⟩A = UA|F |bk⟩F and |ηk⟩B = VB|F′ |bk⟩F′ for k = 1, . . . , n. Since U and
V (and therefore V) are isometries, these sets of vectors are each orthonormal. When
n ≤ dA, dB, the sets can each be arbitrarily extended to full orthonormal bases of ℋA
andℋB.

Observe that the marginal density operators ΨA = TrB[ΨAB] and ΨB = TrA[ΨAB]
are given by∑rk=1 s

2
k |ξk⟩⟨ξk |A and∑

r
k=1 s

2
k |ηk⟩⟨ηk |B, respectively. These are eigendecom-

positions of themarginals, andwe immediately see that bothmarginals have the same
eigenvalues. The number of Schmidt coefficients is equal to the rank of either of the
marginals. Hence a purification |Ψ⟩AB of a given ρA can only exist if dim(ℋB) ≥ r =
rank(ρA). By the relation of purifications and ensembles in (6.2) it is evident that ev-
ery ensemble decomposition of a given ρA has at least r elements. Purifications with
dim(ℋB) = r or ensembles with r elements are calledminimal.

Now suppose that |Ψ⟩AB and |Ψ′⟩AC are two purifications of ρA that has rank r.
Because the two states have the same marginal onℋA, using the Schmidt form yields
|Ψ⟩AB = ∑

r
k=1 sk |ξk⟩A ⊗ |ηk⟩B and |Ψ

′⟩AC = ∑
r
k=1 sk |ξk⟩A ⊗ |η

′
k⟩C. If r < dim(ℋB), then

arbitrarily extend the set of |ηk⟩B to a complete orthonormal basis. Then define the
map VC|B : ℋB → ℋC by the action

VC|B|ηk⟩B = {
|η′k⟩C , k = 1, . . . , r,
0, k = r + 1, . . . ,dim(ℋB).

(6.6)

By construction |Ψ′⟩AC = 1A⊗VC|B|Ψ⟩AB. Since {|ηk⟩B} and {|η′k⟩C} are sets of orthonor-
mal vectors, VC|B is a partial isometry, an isometry on its support.

Alternately, suppose that dim(ℋC) ≥ dim(ℋB), which holds without loss of gener-
ality. In this case, we may extend both sets of r vectors |ηk⟩B and |η′k⟩C by additional
dim(ℋB) − r orthonormal elements and define the isometry

V̂C|B|ηk⟩B =
η
′
k⟩C , (6.7)

for which we also have |Ψ′⟩AC = 1A ⊗ V̂C|B|Ψ⟩AB. Altogether, we have shown the fol-
lowing:
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Proposition 6.2 (Existence and nonuniqueness of purifications). For any ρA ∈ Stat(ℋA) of rank r,
there exists a purification in ℋA ⊗ℋB if and only if dim(ℋB) ≥ r. For any two purifications |Ψ⟩AB
and |Ψ′⟩AC , there exists a partial isometry VC|B such that |Ψ′⟩AC = (1A ⊗ VC|B)|Ψ⟩AB. If dim(ℋC ) >

dim(ℋB), then VC|B can be taken to be an isometry, or unitary in the case of equality.

Using the canonical purification of (6.3), every purification of ρ has the form

|Ψ⟩AR = √ρA ⊗ VR|A′ |Ω⟩AA′ (6.8)

for some partial isometry VR|A whose kernel is the kernel of ρA.

Exercise 6.2. For any given state ρAB, suppose that |ψ⟩AC is a purification of ρA. Show
that there exists an isometry VBC|C such that VBC|C |ψ⟩AC purifies ρAB.

The Schmidt decomposition and unitary relation of purifications justifies our
choice of defining |Φ⟩ to be the state of maximal entanglement. It is a state whose
Schmidt values are completely uniform, i. e., whose reduced density operator is the
maximally mixed state. By Proposition 6.2 all other states with this reduced state are
equivalent by local actions on one subsystem, which does not change the entangle-
ment.

6.2.2 Steering

Since pure state ensembles can be recovered frompurifications by projectivemeasure-
ment, the relation of purifications translates into a relation of ensembles.

Proposition 6.3 (Unitary relation of ensemble decompositions). For any density operator ρ, let
{(pk , |φk⟩)}

n
k=1 and {(qj , |ψj⟩)}

m
j=1 be pure state ensemble decompositions, and set ℓ = max(n,m).

Then there exists an ℓ × ℓ unitary matrix U with components Ujk such that

√qj |ψj⟩ =
ℓ

∑
k=1

Ujk√pk |φk⟩ ∀j ∈ {1, . . . ,m}. (6.9)

The smallest ensemble has a number of elements equal to the rank of ρ.

Proof. By assumption, ρ = ∑nk=1 pk |φk⟩⟨φk | = ∑
m
j=1 qj|ψj⟩⟨ψj|. Let ℓ be the larger of n

and m, and define pk = 0 for k = n + 1, . . . ,m when n ≤ m or qj = 0 for j = m + 1, . . . , n
whenm ≤ n. Now construct the purifications

|Ψ1⟩AB =
ℓ

∑
k=1
|φk⟩A ⊗ |bk⟩B and |Ψ2⟩AB =

ℓ

∑
j=1
|ψj⟩A ⊗ |bj⟩B . (6.10)

As these pure states are purifications of the same density operator, by Proposition 6.2
theremust be a unitaryUB ∈ Lin(ℋB) such that 1A⊗UB|Ψ1⟩AB = |Ψ2⟩AB. Applying ⟨bk |B
to both sides of this equation yields the claimed result.
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In fact, not only can we recover an ensemble from a suitably constructed purifi-
cation; as in the beginning of this section, every purification can generate every pos-
sible pure state ensemble by suitable measurement of the purifying system. For in-
stance, measuring system B of (6.10) with projectors Π(k) = |bk⟩⟨bk | produces the en-
semble {(pk , |φk⟩)}, whereas measuring with projectors Π′(j) = U∗|bj⟩⟨bj|U produces
{(qj, |ψj⟩)}. Since all pure state ensemble decompositions are related by unitaries (af-
ter suitable embedding), any of them can be obtained in this way. Put differently, for
any pure state decomposition of a density operator ρA, the associated CQ state can be
generated by suitable measurement of the purifying system of a fixed purification.

Exercise 6.3. Find purifications of minimal dimension for the qubit ensembles (here
specified by their Bloch vectors) { 12 , ⃗rj}

2
j=1 with any ⃗r1 = − ⃗r0 and {

1
3 , ⃗sj}

3
j=1 with ⃗sj forming

an equilateral triangle. Construct a partial isometry taking the second purification to
the first. Find ameasurement on (the purifying system of) the second purification that
yields the first ensemble.

Schrödinger called this phenomenon steering, as it appears that a quantum sys-
tem can be “steered or piloted into one or the other type of state at the experimenter’s
mercy in spite of his having no access to it”. However, this is not quite correct, since
the particular pure state that results from themeasurement procedure is random. The
important distinction here is between the CQ state ρXA representing the ensemble, in
which the measurement result X is recorded, and the marginal state ρA. This distinc-
tion makes clear that steering does not allow measurement on the purifying system
B to itself transmit information to A, as we already saw in Section 4.4.3, because the
marginal state of A is unaffected by action on B.

The above is concerned with pure state ensemble decompositions, but in fact
all ensemble decompositions of ρA can be obtained from any given purification.
We can give an explicit measurement to steer the canonical purification |Ψ⟩AA′ =
√ρA ⊗ 1A′ |Ω⟩AA′ of ρA to the CQ state ρXA = ∑XA = PX(x)|x⟩⟨x|X ⊗ ρA(x) associated with
any ensemble. In particular, the required measurement is a version of the pretty good
measurement (also called the square-root measurement) defined as follows.

Definition 6.2 (Pretty good measurement). For any CQ state ρXA = ∑x PX (x)|x⟩⟨x|X ⊗ ρA(x), the
pretty good measurement is the POVM with elements ΛA(x) ∈ Lin(ℋA) given by

ΛA(x) = ρ
−1/2
A PX (x) ρA(x) ρ

−1/2
A , (6.11)

where the inverse of the square root is defined on the support of ρA.

Observe that all the ρA(x) are supported in the support of the average state ρA, i. e.,
ker(ρA) ⊆ ker(ρA(x)) for all x. If ρA is not full rank, then strictly speaking, ΛA(x) does
not form a POVM, as their sum is equal to the projection ΠA onto the support of ρA.
However, we can include one additional POVM element 1A − ΠA.
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Exercise 6.4. Show that the pretty good measurement for an ensemble consisting of
linearly independent pure states is a projective measurement, that is, the pretty good
measurement constructs an orthonormal basis for the span of the pure states.
Hint:WriteM = ∑nk=1 |φk⟩⟨k| for the pure states |φk⟩ and an orthonormal set |k⟩ and use
the singular value decomposition to compute (MM∗)−1/2M.

To steer the canonical purification |Ψ⟩AA′ to the CQ state ρXA by measurement on
A′, it suffices to make the measurement with POVM elements ΛA′ (x)T . The state of A
given outcome x is indeed ρA(x) with probability PX(x):

TrA′[√ρA ΩAA′√ρA ΛA′ (x)
T] = TrA′[√ρAΩAA′ ΛA(x)√ρA]
= √ρA ΛA(x)√ρA = PX(x)ρA(x) .

(6.12)

From (6.8), any other purification has the form |Ψ⟩AB = √ρA ⊗ VB|A′ |Ω⟩AA′ , meaning
that in the general case, we can simply use the measurement with elements ΓB(x) =
VB|A ΛA(x)T V∗B|A.

Proposition 6.4 (Steering). Suppose |Ψ⟩AB is a purification and ρXA = ∑x PX (x)|x⟩⟨x|X ⊗ ρA(x) is a
CQ extension of a quantumstate ρA. Then there exists ameasurementℳX |B such thatℳX |B[ΨAB] =

ρXA. In particular, let VB|A be the partial isometry such that |Ψ⟩AB = √ρA ⊗ VB|A′ |Ω⟩AA′ , and let
{ΛA(x)} be the pretty goodmeasurement associated with ρXA. Then the POVM elements ofℳX |B are
ΓB(x) = VB|A ΛA(x)T V∗B|A.

Again, we include an additional POVM element in case of rank-deficient ρA.

Exercise 6.5. Fix a density operator ρ and let |ψ⟩ be any vector in the support of ρ, i. e.,
ρ|ψ⟩ ̸= 0. Show that the probability p associated with |ψ⟩ in any minimal pure state
ensemble decomposition of ρ satisfies p ⟨ψ|ρ−1|ψ⟩ = 1.

6.3 Dilation of channels

The results of the previous section also apply to channels via the Choi isomorphism.
Continuing with the analogy to density operators, we can consider for the purifica-
tion of the Choi operator. For an arbitrary channel ℰB|A, let EBA be the associated Choi
operator, and let |Ψ⟩ABR be a purification of EBA. Using (4.26), we can write |Ψ⟩ABR =
1A ⊗ VBR|A′ |Ω⟩AA′ for some map VBR|A : ℋA → ℋB ⊗ ℋR. The fact that the channel is
trace-preserving implies that V is an isometry, since

1A = TrB[EBA] = TrBR[|Ψ⟩⟨Ψ|ABR] = TrBR[VBR|A′ΩAA′V
∗
BR|A′]

= TrA′[(V
∗V)A′ΩAA′] = (V

∗V)TA .
(6.13)
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Using the purification in the Choi isomorphism gives

ℰB|A[ρA] = TrA[EBA ρ
T
A] = TrAR[VBR|A′ ΩA′A (VBR|A′ )

∗ρTA]
= TrAR[VBR|A′ ΩA′A ρA′ (VBR|A′ )

∗] = TrR[VBR|A ρA (VBR|A)
∗] .

(6.14)

Now the channel action is represented by the action of an isometry VBR|A and the par-
tial trace over the purifying system R. This is called the Stinespring1 representation,
and the operator VBR|A is called a dilation of the channel ℰB|A.

Theorem 6.1 (Stinespring representation). Amap ℰB|A is completely positive if and only if there ex-
istℋR and VBR|A ∈ Lin(ℋA,ℋB ⊗ℋR) with

ℰB|A[SA] = TrR[VBR|A SA V
∗
BR|A] ∀SA ∈ Lin(ℋA). (6.15)

The smallest possible dR is no larger than dAdB. A completely positive ℰB|A is trace-preserving if
and only if V is an isometry, i. e., V∗BR|AVBR|A = 1A.

In the trivial case of the identity map ℐA, a Stinespring dilation is clearly just 1A with
a trivial (one-dimensional) system R. This accords with the construction above since
the Choi state is already pure. Another simple case is the pinch map 𝒫A, for which a
Stinespring dilation is just

VRA|A =∑
x
|x⟩R ⊗ |x⟩⟨x|A . (6.16)

The Stinespring representation reveals that quantum channels can be regarded as
unitary operations involving additional systems. Any channel ℰA|A acting on a system
A can be dilated to an isometry VAR|A, which can then be extended to a unitary UAR
on AR. Concretely, the isometry VAR|A determines the action ofUAR on a fixed vector in
R, call it |0⟩R, by VAR|A|φ⟩A = UAR|φ⟩A|0⟩R. We are free to define the action of UAR on
inputs |φ⟩A|k⟩R for k ̸= 0 aswe like, subject to the unitary constraint. For channels ℰB|A
that map one system to another, we can also include a fixed vector of B at the input.
In this case, we use the isometry VBR|A to define the action of a unitary map UABR on
A, B, and R by VBR|A|φ⟩A = UABR|φ⟩A|0⟩B|0⟩R.

Theorem 6.1 is the quantum analog of the equivalence between the two alternate
definitions of classical channels given in Section 3.2. Our definition of quantum chan-
nels in Definition 5.2 is based on convexity, in precisely the same spirit as the first
option in Section 3.2. The second approach there is motivated by physics rather than
statistics. Since classical dynamics is deterministic, any possible classical channel
must be a mixture of deterministic dynamics, where the mixture results from ignor-
ing some degrees of freedom. Deterministic dynamics corresponds to unitary opera-
tions in the quantumcase, and ignoring degrees of freedom to partial trace, the analog

1 William Forrest “Woody” Stinespring, 1929–2012.
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of the second option is to define quantum channels by (6.15). Then, after extending
isometries to unitaries as just explained above, Theorem 6.1 can be understood as es-
tablishing that the two possible definitions of quantum channels are equivalent.

6.4 Relationship of Choi, Kraus, and Stinespring

The relation between Choi, Kraus, and Stinespring representations is precisely that of
density operator, ensemble, and purification. As with the Kraus representation, the
Stinespring representation is not unique either. But, like purifications, all Stinespring
dilations are related by partial isometries. We merely need to use the partial isometry
of (6.6) on different purifications of the Choi operator to infer the following analog of
Proposition 6.2.

Proposition 6.5 (Isometric relation of Stinespring dilations). For any two dilations VBR|A and V ′BR′ |A
of ℰB|A, there exists a partial isometry WR′ |R such that V

′
BR′ |A = WR′ |RVBR|A. If dim(ℋR′ ) > dim(ℋR),

then WR′ |R can be taken to be an isometry, or unitary in the case of equality.

Exercise 6.6. Show that all possible Stinespring representations of the identity chan-
nel ℐA have the form VRA|A = |φ⟩R ⊗ 1A for some normalized vector |φ⟩R ∈ ℋR.

The Stinespring representation also leads to the notion of the complement of
a given quantum channel ℰB|A. Instead of tracing out R to get back to ℰB|A in (6.15), we
could trace out B. This defines the complement ℰ̂R|A. More properly, this construction
leads to a whole set of complementary channels, since the Stinespring dilation is not
unique. However, since all dilations are related by isometries involving the purifying
system, all the possible complementary channels are isometrically related, making
them essentially equivalent.

Exercise 6.7. Consider a channel ℰB|A that has a fixed output independent of the in-
put, i. e., ℰB|A : ρA → σB for some σB and all ρA. Show that its complement is, up to
equivalence, the identity channel ℐA.

Exercise 6.8. Show that the complement of the pinch map 𝒫A with rank-one projec-
tors is again 𝒫A.

Exercise 6.9. Show that the complement of the quantum erasure channel is again an
erasure channel. What is the relationship between the erasure probabilities of the two
channels?

Exercise 6.10. Show that for some appropriate normalized states |θx⟩R, the comple-
ment of the qubit dephasing channel has Kraus operators KR|A(x) = |θx⟩R ⟨bx|A, where
x ∈ {0, 1} and {|bx⟩A}1x=0 is the standard basis of A. Hence the complement is a CQ
channel.

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.4 Relationship of Choi, Kraus, and Stinespring | 85

Exercise 6.11. Show that the complement of an entanglement-breaking channel is a
Schur–Hadamard channel and vice versa. (See Exercises 5.25 and 5.24.)

Kraus representations, meanwhile, are based on pure state ensemble decompo-
sitions of the Choi operator. This has several implications. First, just as in (6.2), we
can directly construct a Stinespring dilation from set of Kraus operators as follows.
Suppose {KB|A(x)}nx=1 is a set of Kraus operators of a channel ℰB|A. Then, for ℋR of di-
mension n and an orthonormal basis {|bx⟩R}nx=1,

VBR|A =
n
∑
x=1

KB|A(x) ⊗ |bx⟩R (6.17)

is a Stinespring dilation of ℰB|A. It is easy to verify that VBR|A leads to the correct chan-
nel action and that the trace-preserving condition from Theorem 5.3 implies thatVBR|A
is an isometry. The second immediate implication is that all Kraus representations
must be unitarily related. The smallest number of Kraus operators is the rank of the
Choi state, and such a Kraus representation is called minimal. Combining Proposi-
tion 6.3 with the Kraus operator construction in the proof of Theorem 5.3, we have the
following:

Proposition 6.6 (Unitary relation of Kraus representations). Let {K(i)}ni=1 and {K ′(j)}mj=1 be two
Kraus representations of the same superoperator ℰ, and set ℓ = max(n,m). Then there exists
an ℓ × ℓ unitary U with components Uji such that K ′(j) = ∑i UjiK(i) for all j ∈ {1, . . . ,m}. Further-
more, the minimal number of Kraus operators is no larger than dAdB.

Exercise 6.12. Show that a Kraus representation is minimal iff the K(j) are linearly
independent.

However, we do not have to confine ourselves to pure state decompositions of the
Choi operator. A general decomposition of C(ℰB|A) gives, via the Choi isomorphism, a
decomposition of ℰB|A into a set {ℰB|A(x)}x of completely positivemaps such that ℰB|A =
∑x ℰB|A(x). As at the end of Section 5.2, any such decomposition of ℰB|A immediately
gives an instrument𝒬XB|A with classical X such that ℰB|A = TrX ∘𝒬XB|A.

In analogy with the general steering result in Proposition 6.4, we can show that
all possible instrument extensions𝒬XB|A of ℰB|A can be obtained by measurement on
the purifying system R of any Stinespring dilation VBR|A.

Proposition 6.7 (Steering channel decompositions). Given a channel ℰB|A, let VBR|A be a Stine-
spring dilation, and let𝒬XB|A = ∑x |x⟩⟨x|X ⊗ ℰB|A(x) be an instrument extension. Then there exists
a measurementℳX |R such that for all SA ∈ Lin(ℋA),

𝒬XB|A[SA] =ℳX |R[VBR|A SA V
∗
BR|A] . (6.18)
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Proof. Let |Ψ⟩ABR = VBR|A′ |Ω⟩AA′ be a purification of the Choi operator, and let
TAB(x) = C(ℰB|A(x)). Since ∑x ℰB|A(x) = ℰB|A, C(ℰB|A) = ∑x TAB(x). By Proposi-
tion 6.4 there exists a measurement ΓR(x) on R that realizes TAB(x) from ΨABR, i. e.,
TAB(x) = TrR[ΓR(x)ΨABR]. Using this expression for TAB(x) in the Choi isomorphism,
the output of ℰB|A(x) applied to any SA is

TrAR[S
T
A ⊗ ΓR(x)ΨABR] = TrAR[S

T
A ⊗ ΓR(x)VBR|A′ΩAA′ (VBR|A′ )

∗]

= TrR[ΓR(x)VBR|A SA (VBR|A)
∗] .

(6.19)

Hence the sought afterℳX|R is the measurement with POVM elements ΓR(x).

By a similar argument steering provides us with a means of implementing any
POVM by projective measurement in a larger space, a result known as the Naimark2

extension. Let ΛA(x) be the POVM elements of ℳX|A and define the isometry VRA|A =
∑nx=1 |bx⟩R ⊗ΛA(x)

1/2 as in (6.17). ThenℳX|A[ρA] = TrA ∘𝒫X|R[VRA|A ρA V∗RA|A]. The pinch
map 𝒫X|A and the partial trace TrA correspond to projective measurement by the pro-
jectors ΠAR(x) = 1A ⊗ |bx⟩⟨bx|R.

The original formulation of theNaimark extension is the statement that any POVM
can be extended to a projection measurement in a larger space, where the projectors
may be of arbitrary rank, but the larger space need not come from the tensor product
of the original space with an ancilla (extra) system. In our presentation the projectors
in the larger space all have rank equal to the dimension ofA, since they are of the form
1A⊗ |bx⟩⟨bx|. Moreover, in the finite-dimensional case we are studying, it is also possi-
ble to find a Naimark extension of any POVM to a projective measurement consisting
of rank-one elements, but we will not go into this here.

Exercise 6.13. Consider the mapping VAR|A defined by

|0⟩A →
1
√2 (|0⟩A|1⟩R + |0⟩A|2⟩R) ,

|1⟩A →
1
√6 (2|1⟩A|0⟩R + |0⟩A|1⟩R − |0⟩A|2⟩R) .

(6.20)

Confirm that VAR|A is an isometry and show that applying VAR|A to system A and then
projectively measuring R in the standard basis implements the three-outcome mea-
surement from Exercise 4.6.

6.5 Information disturbance

According to the uncertainty principle, quantum measurements invariably “disturb”
or alter the system being measured in some way. Using the formalism we have now

2 Mark Aronovich Naimark, 1909–1978. Also transliterated as Neumark.
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developed, we can illustrate two extreme versions of this phenomena. The first states
that measurements that do not disturb the system at all do not reveal any information
about it in the sense that the measurement result is completely independent of the
input state.

Proposition 6.8 (No disturbance implies no information gain). For every quantum instrument
𝒬XA|A satisfying TrX ∘𝒬XA|A = ℐA, there exists a probability distribution PX such that𝒬XA|A = PX ⊗ℐA.

Proof. Recall from Section 5.2 that we can regard the instrument 𝒬XA|A as the set
{𝒬A(x)}x so that 𝒬XA|A = ∑x |x⟩⟨x|X ⊗ 𝒬A(x). Since TrX ∘𝒬XA|A = ℐA, the 𝒬A(x) form
a decomposition of the identity channel: ℐA = ∑x 𝒬A(x). The Choi operators QAA′ (x)
associated with 𝒬A(x) must therefore satisfy ΩAA′ = ∑x QAA′ (x). Rescaling by the
dimension of A transforms this to the statement that { 1dQAA′ (x)}x form an ensem-
ble decomposition of ΦAA′ , where the probability PX(x) for the xth element is just
PX(x) =

1
d Tr[QAA′ (x)]. Since pure states are extreme points, this can only hold if

QAA′ (x) = PX(x)ΩAA′ . Thus the instrument𝒬XA|A has the claimed form.

There cannot be anymeaningful converse statement that no information gain im-
plies no disturbance. For instance, both the classical and quantum outputs of an in-
strument could be fixed and independent, e. g.,𝒬XB|A : ρA → PX ⊗ θB for some distri-
bution PX and state θB and all states ρA.

Exercise 6.14. Prove Proposition 6.8 by appealing to steering to recover the instru-
ment from the Stinespring dilation, which for the identity channel has a simple form
according to Exercise 6.6.

The second information-disturbance statement is the fact that rank-one projec-
tive measurements are completely disturbing in the sense that the output quantum
state can always be generated from the measurement result itself. Thus the projection
postulate is in some sense redundant.

Proposition 6.9 (Rank-one projective measurements are maximally disturbing). Let 𝒬XB|A be a
quantum instrument such that TrB ∘𝒬XB|A = 𝒫X |A for a pinch map 𝒫X |A having rank-one projectors.
Then there exists a set of density operators φB(x) such that𝒬XB|A = ℰXB|X ∘𝒫X |A for the CQ channel

ℰXB|X : |x⟩⟨x|X → |x⟩⟨x|X ⊗ φB(x) . (6.21)

Proof. The proof hinges on the fact that any Stinespring dilationV ′XBR|A of𝒬XB|A is also
a dilation of 𝒫X|A, and therefore the two are isometrically related. Let 𝒫X|A have Kraus
operators |x⟩X⟨x|A; a straightforward dilation is VXA|A = ∑x |x, x⟩XA⟨x|A as in (6.16). As
𝒬XB|A is a quantum instrument, it can be expressed as𝒬XB|A = ∑x |x⟩⟨x|X ⊗𝒬B|A(x) for
some completely positive maps𝒬B|A(x). Now supposeUBR|A(x) is a dilation of𝒬B|A(x).
A possible dilation of 𝒬XB|A itself is then V ′XX′BR|A = ∑x |x, x⟩XX′ ⊗ UBR|A(x). This must
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also be a dilation of 𝒫X|A, and hence by Proposition 6.5 there exists a partial isome-
try WX′BR|A for which V ′XX′BR|A = WX′BR|AVXA|A. Applying ⟨x, x|XX′ to both sides yields
UBR|A(x) = |φ(x)⟩BR⟨x|A, where we define |φ(x)⟩BR = X′⟨x|WX′BR|A|x⟩A. The trace-
preserving condition for V ′ implies that the vectors |φ(x)⟩BR are each normalized.
Thus𝒬B|A(x) : ρA → φB(x) ⟨x|ρ|x⟩A, and the desired result follows.

Exercise 6.15. Consider the projective measurement instrument𝒬XA|A from (5.8) with
ΠA(j) = |j⟩⟨j|A. A Stinespring isometry is simply WRA|A = ∑

d
j=1 |j⟩R ⊗ ΠA(j), where d =

dim(ℋA). Show thatWRA|A = ∑
d
x=1 |x̃⟩R ⊗ V

x
A for V from (4.19) and |x̃⟩ = 1

√d
∑dz=1 ω

xz |z⟩
from (4.18).

6.6 Coherent classical information (?)

Now we turn to a potentially confusing issue in our formalism that also touches on
one of the big outstanding issues in quantummechanics, the measurement problem.
The issue is the status of classical information in a quantum description. On the one
hand, we treat classical information by diagonal (incoherent) quantum systems and
measurements or instruments as producing such states. On the other hand, CQ states
can always be purified, and by the Stinespring representation all QC channels can
be dilated to fully coherent unitary transformations. Thus the status of the encoded
information as “classical” is perhaps not so clear.

6.6.1 Classical information via copying

Let us examine the purification of a CQ state. To purify the state ρXA in (4.23), simply
invent two additional systems B and X′ and define

|Ψ⟩XX′AB =
n
∑
x=1
√PX(x) |bx⟩X ⊗ |bx⟩X′ ⊗ |φx⟩AB , (6.22)

where |φx⟩AB is a purification of φA(x). This is a coherent description, which is to say
that there are no mixtures, only superpositions. System X′ is identical in size to X and
ensures that the marginal state ρXA is a CQ state with classical X. Equally well, then
the state of X′A is a CQ state with the classical information stored in X′. Thus classical
information is information that can be, and in some sense has already been, copied
to another system. Since there is nothing stopping us from appending another system
X′′ to generate an even larger purification, the number of additional systems storing
the classical information is in principle unlimited. This accords nicely with the fact
that classical information can be freely copied.

For quantum instruments, the situation is similar. Given an instrument𝒬XB|Awith
Kraus operators KB|A(x) ⊗ |x⟩X as in (5.22), following the recipe in (6.17) leads to the

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.6 Coherent classical information (?) | 89

Stinespring isometry

UXX′B|A =∑
x
|x⟩X ⊗ |x⟩X′ ⊗ KB|A(x) , (6.23)

so that 𝒬XB|A[ρA] = TrX′ [UXX′B|A ρA U∗XX′B|A]. Tracing out X
′ again ensures that the X

part of the output is diagonal. Indeed, we just made use of this in the proof of Propo-
sition 6.9.

In this way the incoherent and coherent treatments of classical information are
entirely consistent. Either classical information is directly treated as a system in an in-
coherent state, or it can be treated coherently by having (at least) two coherent copies
of the information. Tracing out either copy restores the incoherent description, and
purifying the incoherent description gives the coherent description. Modeling classi-
cal information in a coherent manner by having at least two copies is common in the
literature on quantum information theory. In this view, classical information is epito-
mized by having an arbitrary number (possibly macroscopic) number of copies.

Nevertheless, we may feel that this picture cannot or ought not be fundamental.
One important objection, though it is beyond the scope of this work, is that the picture
does notwork in the case of continuous variable systems. Apart fromvarious technical
issues, amore conceptual problem in that setting is that exactly copying a continuous
value is not particularly realistic.

6.6.2 Classical information via observable restriction

A different, more fundamental perspective on the above treatment of classical infor-
mation is that what we are really doing is restricting our attention to certain observ-
ables on all the “coherently classical” systems. To illustrate, consider the purification
|Ψ⟩XX′AB from (6.22) again. Tracing out X′ in |Ψ⟩XX′AB leaves the X part of the state
classical, which is to say that only diagonal (and therefore commuting) observables
on X are relevant. But there is really no need to go through the whole procedure of
coherently appending copies just to trace them all away; we can just directly restrict
attention to a commuting subset of observables without changing the state. This ac-
cords nicely with the discussion in Section 4.3, particularly (4.13).

For instance, observe that𝒬XB|A could equally well be obtained by using the dila-
tion VBR|A from (6.17) directly and then measuring the R system. The R measurement
can be performed with the pinching operation, so that for all ρA, we have

𝒬XB|A[ρA] = 𝒫X|R[VBR|A ρA V
∗
B|RA] . (6.24)

The important point is that the effect of measuring R is achieved by just restricting
attention to diagonal observables on R. It is not necessary to actually have multiple
copies around to treat classical information as we have done above, nor it is necessary
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to measure the R system itself with the pinching operation. Restricting to commut-
ing observables on the system storing the classical information is sufficient to have a
meaningful coherent (fully quantum) treatment of classical information.

That said, in the present finite-dimensional setting, there is really no difference
between these two approaches. Note that everything ties together nicely because by
treating the projectionmeasurement on R coherently we recoverUXX′B|A of (6.23) from
the dilation of𝒬XB|A. Specifically,

UXX′B|A = WXX′|RVBR|A (6.25)

for the dilationWXX′|R of the pinch map from (6.16).

6.6.3 Consistency

In his treatise of quantum mechanics, von Neumann3 gave two descriptions of the
measurement process, of which (6.24) is the second, called Process 2. Process 1 corre-
sponds to our original description using a quantum instrument and is the statistical
description. Regarding the isometry VBR|A as arising from a unitary interaction of the
systemA to bemeasured and themeasurement deviceR, Process 2 is themore dynam-
ical, physical description of measurement. The fact that there are two descriptions is
a version of the measurement problem. Of course, Process 2 also contains the projec-
tion onto R, which is a Process 1 measurement description. But (6.25) shows that the
Process 1 and Process 2 are consistent, as the projective measurement on R can just as
well be described by (another) Process 2.

In the description of measurement using VBR|A, i. e., Process 2, it is crucial to in-
clude the restriction to commuting observables. This can be done with the pinching
operation by appending an additional copy of the R system, or simply by only consid-
ering observables and operations on R that commute with these two operations. Not
doing so yields a reversible description of the measurement process, which does not
accord with our physical notion of measurement.

The difficulty is that the action of VBR|A can in principle be inverted using V∗BR|A,
though note that V∗BR|A does not give a Stinespring representation as it is only a partial
isometry. To properly treat this case, we can first regard VBR|A as a unitary UABR acting
on a fixed input |0⟩B|0⟩R. Then the action of the adjoint U∗ABR defines a valid channel.
For instance, in the simple case of a projective measurement with VRA|A = ∑x |x⟩R ⊗
|x⟩⟨x|A, a possible unitary extension isUAR = ∑

d−1
x=0 |x⟩⟨x|A⊗ |y+x⟩⟨y|R, where addition

inside the ket is modulo d, the dimension of system A. In the qubit case, this is just
the cnot gate. Notice that now the U∗AR does not commute with the projectors |y⟩⟨y|R

3 John von Neumann, born Neumann János Lajos, 1903–1957.
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needed for the full Process 2 measurement description, and therefore UAR by itself
cannot be regarded as a description of measurement.

6.6.4 The quantum eraser

It is a beautiful irony of quantum mechanics that if we do not include the restriction
to commuting observables on R in the description of measurement, then the original
measurement can be undone not just by inverting the measurement unitary as just
discussed, but by a subsequent measurement of system R! This is called the quantum
eraser, and it will actually be useful to us later in the construction of various quantum
information processing protocols.

Consider an arbitrary pure qubit state |ψ⟩A = a|0⟩A + b|1⟩A for a, b ∈ ℂ, which
is measured in the standard basis by coupling to an ancilla qubit R and applying the
cnot gate. This results in the state |Ψ⟩ = a|00⟩AR + b|11⟩AR. Now consider a measure-
ment of σx on system R. Projecting onto eigenstate |±⟩R gives

R⟨±|Ψ⟩AR =
1
√2 (a|0⟩ ± b|1⟩)A . (6.26)

The normalization of the state gives the probability, so the outcome of the σx measure-
ment is completely random.Moreover, if the outcome is +, then systemA has returned
to the initial state |ψ⟩A. On the other hand, if the outcome is −, then an operation of σz
on A will restore the initial state |ψ⟩A.

Thus U∗AR is not necessary to reverse the action of UAR, and instead a local mea-
surement and a local unitary suffice. Again in this case the operation of the eraser does
not commute with the projection operators |x⟩R, so we do not regard |Ψ⟩AR as describ-
ing the output of ameasurement process. The restriction to commuting observables on
R allows us to avoid the apparent paradox that quantummeasurements can be erased
by further measurement.

Exercise 6.16. Give a fully quantum description of the quantum eraser.

Exercise 6.17. Consider a measurement device whose Process 2 description again uti-
lizes the cnot gate but starts with an ancilla prepared in the state |θ⟩ = cos θ|0⟩ +
sin θ|1⟩. Compute the Kraus operators of the measurement and show that the channel
ℳX|A describing just the measurement result is a mixture of an ideal projective mea-
surement and a measurement with constant output (i. e., independent of the input).
Is the associated instrument a mixture of an ideal projective measurement and some
other measurement?
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6.7 Notes and further reading

The quotation from Pauli is from in the epigraph of [204]. The notion of purification
goes back to Powers and Størmer [229], while the Schmidt decomposition is from [248].
Schrödinger’s discussion of steering is from [249], and his subsequent work [250]
showed the unitary freedom of ensemble decompositions. This was rediscovered by
Jaynes [154], Gisin [111], and Hughston et al. [150]. The pretty good measurement was
introduced by Belavkin [17] and rediscovered by Hausladen and Wootters [123], who
coined the name. The use of the pretty good measurement for steering can be found
inWolf [307]. The Stinespring representation theorem is from [275]. Interested readers
can find a proof along the lines of the original in Theorem 6.9 of [146] by Holevo. For
more details on the Naimark’s extension, see Peres [220, § 9-6] or Preskill [230, § 3.1.4].
Proposition 6.8 is adapted from Werner [299]. Von Neumann’s two descriptions of
measurement are from his treatise on quantummechanics [293]. See also Bub [48] for
a discussion. The quantum eraser was proposed by Scully and Drühl [256].
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7 Quantum mysteries
No reasonable definition of reality could be expected to permit this.

Albert Einstein, Boris Podolsky, and Nathan Rosen

Now that we have completed the presentation of the formalism of quantum theory,
we can look back and examine the differences from usual classical theory in more
detail. The uncertainty principle, the structure of entangled states, and the lack of a
unified Boolean structure all point to irreconcilable differences between quantumand
classical. However, might there be some way, despite these apparent differences, to
reconcile the two? To see quantummechanics in the framework of classicalmechanics
and probability theory? The purpose of this chapter is to carefully explain that there
is no simple, more classical formalism that encompasses all of quantummechanics.

7.1 Complementarity

Let us begin by examining the earliest conceptual difference between classical and
quantum mechanics, namely complementarity, and show how it can be concretely
modeled in our quantum formalism. The notion of complementarity stems from the
rather ancient question about the nature of light, whether it is a particle or a wave.
But first consider the difference between bits and qubits. Both bits and qubits are de-
fined as systems with two well-defined “levels” or configurations. What distinguishes
a bit from a qubit is the ability to realize superposition states and measurements of
noncommuting observables. This distinction is generally referred to as “coherence”.

For instance, even though the qubit state |+⟩ looks like a probabilistic mixture
of |0⟩ and |1⟩, and does give uniform probability of outcome when measuring with
projectors in this basis, it is not a mixture at all, since the probability of the projection
measurement of |+⟩ versus |−⟩ (i. e., measurement of σx) is certain. This distinction is
what ismeant by saying that |+⟩ is a coherent combination of |0⟩ and |1⟩. An incoherent
combination of these alternatives is simply the probabilistic mixture, which would
have Pr[+] = 1/2. In classical probability a coherent mixture cannot occur: If a classical
bit has probability 1/2 to take either value, then there is no other elementary event,
like Π(+), for which the probability is one. Quantum mechanically, however, we can
observe the relative phase +1 = ei0 or −1 = eiπ between the two elementary states |0⟩
and |1⟩ by making the σx measurement.

Anotherway todescribe this phenomena is to say thatσx andσz are complementary
observables or conjugate observables. We have just seen that an eigenstate of one of
these observables has no definite value of the other, as a measurement in the other
basis gives a completely random result. Indeed, there is no vector that is an eigenstate
of bothσx andσz, since theydonot commute.Oneproperty or the other canbe realized,
but not both, making them complementary.

https://doi.org/10.1515/9783110570250-007
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However, quantum mechanics is even stranger than this. Alternately measuring
the two observables can lead to a situation in which a once-certain outcome is made
random. After a σz measurement of |+⟩, for instance, the state is either |0⟩ or |1⟩, both
of which have only a probability of 1/2 of returning + in a subsequent measurement
of σx. Without the intervening σz measurement, the result would of course be + with
certainty. This is quite unlike the classical case, wherewemay imagine that eachmea-
surement just reveals more and more properties about the system (or to a higher and
higher precision) and need not itself cause any change to the system. Moreover, in the
classical framework, making a measurement and forgetting the result can be thought
of as not having performed the measurement at all, by the law of total probability.

Putting things the other way around, we cannot so easily use the probabilistic
framework we have developed to model the complementarity of σx and σz . Suppose X
and Z are random variables that describe the values of σx and σz, respectively. Then
the intervening measurement of σz fixes the value of Z, and we will have some condi-
tional distributions PX|Z=z for the result of the final σx measurement. Apparently, these
are both just uniform distributions. Tomodel the absence of the interveningmeasure-
ment, we would just average the conditional distributions of X over the value of Z = z.
This clearly does not produce the deterministic value of X.

The complementarity of σx and σz is the same complementarity that manifests it-
self in the famous double-slit experiment, devised by Young1 to demonstrate thewave
nature of light. Complementarity of the particle and wave nature of light is one of the
most well-known examples of the difference between classical and quantummechan-
ics. Indeed, Feynman2 starts off his treatment of quantum mechanics in his famous
lectures with a treatment of the double-slit experiment, stating

…we shall tackle immediately the basic element of the mysterious behavior in its most strange
form. We choose to examine a phenomenon which is impossible, absolutely impossible, to ex-
plain in any classical way, and which has in it the heart of quantummechanics. [100]

Let us see how the double slit illustrateswhat Feynman calls the “basic peculiarities of
all quantum mechanics” in our general quantum formalism. For simplicity, consider
a single photon in a balanced Mach3–Zehnder4 interferometer, depicted in Figure 7.1.
The two paths the photon could take through the interferometer constitute a basis for
a qubit. Let us label the paths 0 and 1 so that a basis is just |0⟩ and |1⟩. The paths are
defined as if the beamsplitters were mirrors. After the first beamsplitter, the photon
is in a superposition of the two paths described by the state |+⟩. This is the analog of
the light immediately after the slits in the usual double-slit experiment.We canmodel

1 Thomas Young, 1773–1829.
2 Richard Phillips Feynman, 1918–1988.
3 Ludwig Mach, 1868–1951.
4 Ludwig Louis Albert Zehnder, 1854–1949.
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Figure 7.1: Schematic of a Mach–Zehnder interferometer, nominally consisting of two mirrors and
two beamsplitters. This defines two optical paths, indicated by the dashed and solid lines. The
phase convention of the beamsplitters is such that photons exit the interferometer on the same path
they entered, to be detected by the photodetectors. Inserting a phase shifter into one path alters
this behavior. By replacing one mirror with an optical cavity containing a trapped atom, a passing
photon can in principle be detected without destroying it, determining the path taken by the photon.

the beamsplitter by the Hadamard unitary operator H = 1
√2 (

1 1
1 −1 ) and the preparation

of the state as inputting a single photon to one port, |0⟩ of the beamsplitter, since
|+⟩ = H|0⟩.

We arrange the second beamsplitter so that when the light recombines there, it
exits the interferometer in the same path that it entered. Then we can also model the
second beamsplitter by a Hadamard operator, since H2 = 1. If we insert a π phase
shifter into one arm prior to the second beamsplitter, then the light will exit the inter-
ferometer along the other path. This is modeled by describing the action of the phase
shifter (a dynamical evolution) by the unitary operator σz, which creates the state |−⟩.
Then the Hadamard operation describing the second beamsplitter produces the state
|1⟩ at the output.

Suppose we determine which path the photon exits the interferometer by placing
photodetectors in both outgoing paths. This is the analog of the photographic film in
the double-slit experiment. Altogether, the second beamsplitter and photodetectors
act as a σx measurement, determining the relative phase between the two paths. The
fact that the relative phase takes a well-defined value is the coherence of the quantum
state.

On the other hand, if we measure which path the photon takes in the interfer-
ometer before allowing the two paths to recombine at the second beamsplitter, then
the state is changed to either |0⟩ or |1⟩, corresponding to the measurement outcome.
Such a measurement can in principle be made without destroying the photon, for in-
stance, by replacing one of themirrorswith a small optical cavity containing a trapped
atom and then appropriately measuring the atom. The second beamsplitter will now
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produce a superposition at the output of the interferometer, which will end up as a
random outcome of the photodetectors since there is only one photon.

Thus themeasurement of which path the photon tookwashes out the interference
pattern. One says that the coherence has been destroyed, because there is no longer
any way to determine the relative phase of the input state. As anticipated, path and
phase are complementary observables, and this reflects the wave–particle duality of
quantum mechanics since a definite path is a particle property, whereas a definite
phase is a wave property. Of course, as we know from Section 6.6, the coherence is not
actually destroyed; it has merely been converted to entanglement with the measure-
ment apparatus, e. g., as in the cnot example in Section 6.6.4.

7.2 Hidden variables

The double slit experiment vividly highlights the essential question that stems from
the phenomenon of complementarity. How should we think of the values of σx and
σz or of path and phase information at different stages of the interferometer? Does
the photon possess both properties, and complementarity means that it will never tell
us both, one property remaining forever hidden? Or is it the case that somehow the
photon does not have both properties at the same time? Is our attention to properties
of individual photons perhaps itself incorrect? As we saw above, a straightforward
probabilistic model cannot reproduce the appearance of interference as a mixture of
the two possible interferometer outputs given a particular path.

7.2.1 Hidden variables for the interferometer

A simple model for the first possibility above is that any measurement device just un-
avoidably “kicks” the system being measured in some way, so that both complemen-
tary properties exist but are never simultaneously revealed. For the interferometer, we
can imagine that the path measurement somehow alters the photon. It is actually not
too difficult to come up with a nondeterministic classical probabilistic model for the
above phenomenon. Consider again two random variables X and Z but now suppose
that |0⟩ corresponds to Z = 0 and random X, i. e., PXZ(x, z) =

1
2δz,0, |1⟩ to Z = 1 and

random X, |+⟩ to X = 0 and random Z, and |−⟩ to X = 1 and random Z. The random
variables are meant to correspond to the values of σz and σx, and the model is nonde-
terministic because the various quantum states are not represented by deterministic
random variables.

If we stipulate that a σx measurement reveals the value of X but randomizes the
value of Z, and vice versa for σz, thenwe can recover the interference effect. Measuring
the state |+⟩ in the basis of σx corresponds to asking for the value of X in the distribu-
tion PXZ(x, z) =

1
2δx,0, so the outcome is deterministic. A σz measurement on the same

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.2 Hidden variables | 97

state results in a random value of Z and randomizes the value of X in the process.
Therefore the final σx measurement will also be random, just as in the quantum case.

But notice one consequence of this model: The “back-action” of themeasurement
is not local, it must occur in both arms. In this model the state of the system after the
first beamsplitter is a fixed value X = 0 of the phase and a random value of Z, the
path. If the photon travels through the cavity making the pathmeasurement, then the
notion that the cavity affects the value of X is not problematic. However, the interfer-
ence is also destroyed when the cavity detects no photon, meaning it traveled along
the other arm of the interferometer. Now we are in an awkward situation that there is
no apparent physical mechanism to perform the randomization of X in the other arm.
Thus we say that the effect is nonlocal. Although complementarity can bemodeled by
classical random variables, doing so appears to involve some degree of nonlocality.
Note that this is not saying that quantummechanics itself is somehow nonlocal, only
that this particular hidden variable model is. This state of affairs is summed up nicely
by Einstein:5

Dirac… rightly points out that it appears, for example, to be by nomeans easy to give a theoretical
description of a photon that shall contain within it the reasons that determine whether or not the
photon will pass a polarizator set obliquely in its path. [89]

7.2.2 Local hidden variables for the interferometer

However, the nonlocality of the model arises because we too quickly focused on the
single-photon aspect of the experiment. There we regard the hidden variables as path
and phase properties of the photon that traverses the interferometer, even though
these suffer from nonlocal influences. But a more straightforward starting point is to
shift the focus to the properties of the modes and only afterward restrict to the case
of having a single photon. Instead of labeling the paths 0 and 1, let us now call them
A and B, and instead of |0⟩P and |1⟩P representing the photon traveling either in arm
A or B, we can use states |1⟩A|0⟩B and |0⟩A|1⟩B for the same thing. For systems A and
B, |0⟩ represents the vacuum state in the mode, and |1⟩ represents a single photon. In
principle, there are also states corresponding to two, three, andmore photons, but we
will not need those here.

To formally translate the previous single-photon description of the interferometer
to the two-mode description, we can use a cnot gate plus an ancilla qubit Q in the |1⟩
state. Controlling on system P and associating the P output with B and the Q output
withA, the cnotgateUAB|PQ exactly produces |1⟩A|0⟩B from |0⟩P and |0⟩A|1⟩B from |1⟩P,
as intended. We can use this to translate all the other elements of the single-photon

5 Albert Einstein, 1879–1955.
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description to the two-mode description. A phase shift by π in one of the arms is repre-
sented by σz (on P) in the single-photon model and now becomes UAB|PQ(σz)PU∗AB|PQ =
(σz)A. Confined to the single-photon sector, this has the same action as (σz)B, which
reflects the fact that only the relative phase between the arms matters. Similarly, the
action of either beamsplitter is now UAB|PQHPU∗AB|PQ. This produces |Ψ+⟩AB for input
|1⟩A|0⟩B and maps |Ψ+⟩AB back to |1⟩A|0⟩B at the second beamsplitter. A π phase shift
in either arm produces |Ψ−⟩, which is then transformed by the second beamsplitter
into |0⟩A|1⟩B. Measuring the photon number in either arm, again with the optical cav-
ity, will collapse the state to either |0⟩A|1⟩B or |1⟩A|0⟩B, and then the interference at the
output disappears.

Exercise 7.1. Confirm the details of the translation.

Now consider a pair of binary random variables X and Z for each mode, with the
same association of individual quantum states and distributions as before. The value
of Z encodes the presence of a photon in the mode, which we call the amplitude of
the field (even though “intensity” might be more precise). The value of X is less clear
at this point, because it has to do with the relative phase of the vacuum and single
photon states, but let us just think of it as the phase of the field. This is borne out by
the action of a π phase shifter in a mode. Above we saw that this is described by σz
acting on either A or B. This interchanges |+⟩ and |−⟩ and so corresponds to flipping
the value of X.

Next, we need tomodel the action of the beamsplitter in terms of the random vari-
ables. It is a reversible operation, so the random variables associated with the output
will be deterministic functions of the input randomvariables. As our randomvariables
aremeant to be the values of σx and σz, we can read off the proper transformation from
the action of UAB|PQHPU∗AB|PQ. Then, for instance, (σx)B at the output of the beamsplit-
ter corresponds to (σx)B at the input, and so the value of XB is unchanged. On the
other hand, (σx)A at the output corresponds to (σz)A ⊗ (σx)B, so XA is transformed to
ZA +XB (modulo 2). Actually, let us modify this slightly and say that XA is transformed
to ZA + XB + 1. The two Z variables are transformed as follows: ZA → XA + XB + 1 and
ZB → XA + XB + ZA + ZB + 1.

Exercise 7.2. Confirm that this mapping is its own inverse.

Our interpretationofX as thephaseof themode is further bolsteredby the fact that
the amplitude in the output of A is determined by the relative phase of the two inputs.
Also note that the total photon number is preserved, as it should be. For an input of
ZA = 1 and ZB = 0, with the phases random, the output of the first beamsplitter will
have ZA and ZB anticorrelated but completely random, and similarly XA and XB are
correlated but completely random.

Exercise 7.3. Show that if we drop the +1s from the transformation rules, then XA and
XB end up anticorrelated after the beamsplitter.
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The second beamsplitter will simply reverse this operation, restoring the original
input. Furthermore, a phase shift in one armwill shift the value of XA +XB, and there-
fore the photon will end up in the other output mode.

Now consider the effects of a measurement of the photon number in one arm,
say A. The value of ZA will be determined, and the value of XA will be randomized.
If the photon is found in arm A, so that ZA = 1, then we can infer that ZB = 0. The
back-action of themeasurement decorrelates the phases, so that each is now random.
Therefore the photon will exit the interferometer in a randomly chosen mode.

That is all well and goodwhen the photon is found by themeasurement, but what
happens when the measurement reveals the photon is in the other arm? How does
the back-action of the measurement locally ensure that the photon interference is de-
stroyed? In the standard quantum-mechanical treatment, the wavefunction collapses
to the photon traveling in the other arm. Then the photon meets the vacuum at the
beamsplitter, a combination that results in exit of the interferometer through a ran-
dom output port. Here the story is precisely the same: The vacuum carries the random
phase information to the second beamsplitter, producing a randompath at the output
of the interferometer.

Now it is easy to see that, by focusing to narrowly on the photon properties, the
earlier model simply did not have enough degrees of freedom to make the measure-
ment back-action work locally. Locality is restored by broadening the possibilities of
themodel to include the vacuum doing somethingmeaningful. We have found a local
hidden variablemodel for the double slit experiment, at least a simplified version of it.
Feynman’s claim that the phenomenon of the double slit experiment is absolutely im-
possible to explain in any classical way is starting to look shaky. True, we have made
use of measurement back-action, which is also not classical, but it seems that we have
come a long way to “understanding” quantummechanics.

7.3 Bell’s theorem and the CHSH inequality

Alas, this kind of model cannot be extended to cover arbitrary quantum phenomena.
This is a consequence of Bell’s theorem, which states that quantum mechanics is ca-
pable of statistical predictions that are incompatible with classical probabilistic mod-
els that are local. A simplified version of the argument put forth by Clauser,6 Horne,7

Shimony,8 and Holt9already demonstrates this conclusion for a modification of the

6 John Francis Clauser, born 1942.
7 Michael A. Horne, 1943–2019.
8 Abner Shimony, 1928–2015.
9 Richard Arnold Holt.
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two-mode interferometer setup. Their argument makes use of the so-called CHSH in-
equality, which can be illustrated using the CHSH game.

TheCHSHgame involves twoplayers, Alice andBob. They each receive abinary in-
put and are to each produce a binary output without communicating with each other.
Call Alice’s input x and output a, Bob’s input y and output b, and for simplicity, take
them all to be elements ofℤ2. The goal of the game is to produce outputs a and b that
satisfy a + b = xy.

Suppose that each of their outputs is a deterministic function of the input, and
denote Alice’s output for input x as ax and so forth. It is easy to see that in this case,
there is no way to win the game for all possible inputs x and y. The constraint ax = by
for x ̸= y requires that all values are equal, which then violates the constraint ax ̸= by
for x = y. That is, from the first we have a0 = b0, a0 = b1, and a1 = b0, which implies
a0 = a1 = b0 = b1. At best, Alice and Bob can win with probability 3/4 by satisfying
three of the constraints. For instance, a0 = 1, a1 = 0, b0 = 0, and b1 = 1 obeys ax +by =
xy in only three cases, with x = y = 0 giving a0 + b0 = 1. Similarly, a0 = 0, a1 = 1,
b0 = 0, and b1 = 1 fails in three cases, only x = y = 0 being correct.

More generally, we might consider that Alice’s and Bob’s outputs are not com-
pletely determined by their respective inputs, but are instead given by a conditional
probability distribution PAB|X=x,Y=y. To model local but correlated strategies, we sup-
pose that the conditional distribution takes the form

PAB|X=x,Y=y(a, b) =∑
λ
PΛ(λ)PA|X=x,Λ=λ(a)PB|Y=y,Λ=λ(b) (7.1)

for some random variable Λ. The additional Λ models the choices they might make
before starting the game, and the fact that a (b) is generated only using x and λ (y
and λ) reflects the fact that they cannot communicate during the game. When the in-
puts x and y are chosen uniformly at random, independently of Λ, the overall winning
probability takes the form

Pr[A + B = X ⋅ Y] = 1
4 ∑
a,b,x,y

δa+b=x⋅y∑
λ
PΛ(λ)PA|X=x,Λ=λ(a)PB|Y=y,Λ=λ(b) . (7.2)

By Proposition 3.3 Alice’s and Bob’s conditional distributions (channels) are
convex combinations of deterministic functions, and therefore we can just as well at-
tribute the randomness in the choice of deterministic function to Λ. That is, there
exists a random variable Z, independent of X and Λ, such that PA|X=x,Λ=λ(a) =
∑z PZ(z)1[fz(x, λ) = a]. The same is true at Bob’s end using an independent ran-
dom variable Z′. Then we can just define Λ′ to be the collection of Λ, Z, and Z′, at
which point (7.2) becomes a mixture of local, deterministic strategies. Therefore the
guessing probability in this probabilistic setting inherits the previous bound on the
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winning probability. This is the CHSH inequality:

Pr[A + B = XY] ≤ 3
4
. (7.3)

The CHSH inequality can be violated in quantummechanics bymaking use of en-
tangled states of just two qubits. In this setting, it is more convenient for the outcomes
to be labeled by ±1, so we define a′x = (−1)

ax and b′y = (−1)
by . The observables corre-

sponding to a′x and b
′
y are associated with Bloch vectors âx and b̂y so that a′x = âx ⋅ σ⃗

and similarly for b′y. For a given joint state |Ψ⟩AB and choice of x and y, let us write
⟨a′xb
′
y⟩ for ⟨Ψ|(âx ⋅ σ⃗A)(b̂y ⋅ σ⃗B)|Ψ⟩AB. Then ⟨a

′
xb
′
y⟩ = ⟨(−1)

ax+by⟩. When x = y = 1, the
value of (−1)ax+by should be −1 to win, but in every other case, it should be +1. If we
denote the probability that ax +by = x ⋅y for given x and y by pxy, in terms of a′x and b

′
y,

we have pxy =
1
2 (1+ ⟨a

′
xb
′
y⟩) for the case that x ⋅ y = 0, but p11 =

1
2 (1− ⟨a

′
1b
′
1⟩). Therefore

the overall probability of winning is just

Pr[A + B = XY] = 1
8 (4 + ⟨a

′
0b
′
0⟩ + ⟨a

′
0b
′
1⟩ + ⟨a

′
1b
′
0⟩ − ⟨a

′
1b
′
1⟩) . (7.4)

Nowsuppose |Ψ⟩AB =
1
√2 (|01⟩−|10⟩)AB, whichwealso definedas |Φ11⟩. It is not difficult

to verify that |Ψ⟩has theproperty that for anyunitaryU withdeterminant equal to one,

UA ⊗ UB|Ψ⟩AB = |Ψ⟩AB . (7.5)

(This is the statement that |Ψ⟩, which is the spin singlet, is rotationally invariant.)
A simple calculation gives

⟨Ψ|(â ⋅ σ⃗A)(b̂ ⋅ σ⃗B)|Ψ⟩AB = −â ⋅ b̂ . (7.6)

Exercise 7.4. Show (7.5) and (7.6).

Therefore from (7.4) we obtain

Pr[A + B = XY] = 1
8 (4 − â0 ⋅ b̂0 − â0 ⋅ b̂1 − â1 ⋅ b̂0 + â1 ⋅ b̂1) . (7.7)

Choosing â0 = x̂, â1 = ŷ, b̂0 =
1
√2 (x̂ + ŷ), and b̂1 =

1
√2 (x̂ − ŷ) gives Pr[A + B = X ⋅ Y] =

1
2 (1 +

1
√2 ). Since this is larger than 3/4, we have Bell’s theorem: No local probabilistic

model like that of (7.2) can reproduce all of the predictions of quantum mechanics.
Note that if we apply Proposition 3.3 to a general PAB|X=x,Y=y, then we decompose

it into functions fz : (x, y) → (a, b), which require communication between Alice and
Bob. For instance, clearly, the conditional distribution PAB|X=x,Y=y in which a = 0 and
b = xy will lead to a winning probability of one, as would b = 0 and a = xy. Both
of these are nonlocal in that they allow for instantaneous signaling from one party to
the other. For instance, in the former case, changing the value of x will change the
value of b. This enables Alice to send a one bit message to Bob, and since nothing in
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the measurement setup specifies that Bob cannot be spacelike separated from Alice,
in principle, this would allow for superluminal communication.

Interestingly, the game can be always be won by mixing the above two determin-
istic conditional distributions, but the result does not allow signaling. Their mixture
is

QAB|X=x,Y=y(a, b) =
1
2δa+b,xy , (7.8)

which satisfies QA|X=x,Y=y(a) = QA|X=x(a), and similarly for B.

Exercise 7.5. Show this.

Therefore Alice’s output A only depends on her input X, and no signaling is pos-
sible from Bob to Alice. As much holds for the Alice to Bob direction as well. Never-
theless, there is something nonlocal about this distribution, as it cannot be written in
the form of (7.2).

Exercise 7.6. Show that the CHSH inequality also holds if we require the conditional
distribution to satisfy

PA|B=b,X=x,Y=y(a) = PA|X=x(a) and PB|A=a,X=x,Y=y(b) = PB|Y=y(b) , (7.9)

or if we include hidden variables and require

PA|B=b,X=x,Y=y,Λ=λ(a) = PA|X=x,Λ=λ(a) and
PB|A=a,X=x,Y=y,Λ=λ(b) = PB|Y=y,Λ=λ(b) .

(7.10)

7.3.1 Further implications

In Section4.3,we saw that the quantum formalism is not describedbya singleBoolean
algebra, but by many, one for every possible measurement. Indeed, the quantum for-
malism itself is the means of relating all the algebras together. As we saw with the
double-slit experiment, demanding some simpler, more classical relation immedi-
ately runs into trouble. We cannot average the behavior of the interferometer when
the photon takes a fixed path to reproduce the interference fringes.

Bell’s theorem definitively rules out the simplest thing we could hope for, a single
overarching Boolean algebra that can describe all measurements (as in the classical
case), since this would satisfy the CHSH inequality. True, we can avoid this conclusion
by imagining that the action of measurement necessarily has a back-action on the
probability distribution, but this also takes us away from the simplest thing we could
hope for, just in a different direction. Even then we will have to be content with the
underlying properties specified by the events of the algebra being nonlocal (except in
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some simple cases, like the Mach–Zehnder interferometer, where the properties are
again local).

In either case, we see that Bell’s theorem is saying something quite profound:
It is ultimately incorrect to draw any implications from the results of measurements
that are not actually performed. That is to say, there is no guarantee that doing so will
make sense, as in general, there is simply no overarching Boolean algebra in which
to carry out the logical implications of a particular measurement having a certain re-
sult. If there always were, we would again arrive at the CHSH inequality. In employing
the quantum formalism (or a nonlocal hidden variable theory), we are forced to de-
cide whether to include a measurement under consideration—and its attendant back-
action—or not, but we cannot do both. Peres10 put it succinctly in the title of a paper
on the subject of Bell inequalities: Unperformed experiments have no results [219].

7.4 Notes and further reading

The quote at the start of the chapter is from Einstein, Podolsky, and Rosen’s seminal
1935 paper questioning the completeness of quantummechanics [90]. The importance
of complementarity in quantummechanics was famously stressed by Bohr [41], but it
was Einstein [88] who first realized that both wave and particle aspects of light are
necessary for a correct thermodynamical treatment (specifically, of fluctuations in ra-
diation pressure). For more on Einstein’s role, see Stone’s delightful history [276].

The Mach–Zehnder interferometer was originally introduced by Zehnder [314]
and improved by Mach [197]. Our “qubit” treatment of complementarity in terms of
the Mach–Zehnder interferometer is indebted to Englert [94]. See also Busch and
Shilladay [50]. For the possibilities of measuring the photon nondestructively, see
Reiserer, Ritter, and Rempe [236]. The nonlocal hidden variable model for the inter-
ferometer is an instance of Spekkens’ “toy theory” from [270]. He presented the local
hidden variable model for the interferometer in [271].

The literature on Bell inequalities is vast. It begins with Bell’s original inequal-
ity [19] and discussion of earlier purported hidden variable no-go theorems in [20].
The CHSH appeared shortly thereafter [61]. For more, the two conference proceed-
ings [36, 37] are a good place to start; the contribution by Wiseman and Cavalcanti
in the latter was particularly illuminating to the author. The example of (7.8) is from
Popescu and Rohrlich [226].

10 Asher Peres, 1934–2005.
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8 Basic resources
The algebraic sum of all the transformations occurring in a cyclical process can only be positive,
or, as an extreme case, equal to nothing.1

Rudolf Clausius

In analyzing any given information processing task from the resource simulation ap-
proach, there are two main questions. First, what resources are absolutely necessary
for performing the task? Second, can we actually construct protocols that achieve
these limits? In the world of information theory the latter is usually referred to as
an achievability statement or achievability bound, while the former is termed a “con-
verse” bound in the sense of being a converse to the achievability statement. The ter-
minology goes back to Shannon. A converse bound quantifies the properties needed
by any collection of actual resources that can simulate a chosen ideal resource. The
reader is undoubtedly already familiarwith the two fundamental converse andachiev-
ability statements in thermodynamics: The second law, which limits the efficiency of
heat engines, and the corresponding achievability statement of the Carnot2 cycle.

The purpose of this chapter is to examine the simplest and most immediate con-
verses on classical and quantum communication. For instance, we certainly expect
that a single bit classical channel, i. e., one transforming one bit to one bit, cannot
reliably transmit more than one bit of information. Similarly, we expect a single qubit
channel cannot reliably transmit more than one qubit worth of information. We ex-
pect that a classical bit channel cannot reliably transmit any number of qubits, and
perhaps we are unsure what to think about whether or not a qubit channel can trans-
mit more than one classical bit. The first two statements would appear to be true on
their face, but the latter two are not as immediate. Fortunately, all have simple an-
swers, which we can already formulate.

Moreover, we can also consider the case of either kind of communication assisted
by additional resources such as shared randomness or shared entanglement. Nomi-
nally, there are eight possible simple scenarios corresponding to the choice of which
kind of information (classical or quantum), which kind of channel (classical or quan-
tum), and which kind of assistance (shared randomness or shared entanglement).
However, it happens that shared randomness never helps, leaving just four cases.
Even then, shared entanglement only helps in the two “mixed” scenarios of classical
communication over quantum channels and quantum communication over classical
channels. The former is realized by the protocol of superdense coding and the latter
by teleportation.

1 Die algebraische Summe aller in einem Kreisprocesse vorkommenden Verwandlungen kann nur
positiv oder als Gränzfall Null seyn. [62, p. 109]
2 Nicolas Léonard Sadi Carnot, 1796–1832.

https://doi.org/10.1515/9783110570250-008
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Finally, we also consider a task whose goal is not communication but rather “dis-
tillation”, namely the production of maximally entangled states from available bipar-
tite resource states. Here we imagine that the two constituents of the resource states
are some distance from each other, so that performing joint quantum operations on
both at once is not possible. Indeed, being able to do so would trivialize the problem,
as we can simply create the desired entangled states directly. Instead, the protocol
should distill the entanglement already present in the resource states by performing
local operations on each of the constituent systems and making use of classical com-
munication between the two locations. This set of operations is usually abbreviated
LOCC. Here we will show that there is a sensible notion of “amount of entanglement”
of some given resources in the sense that LOCC protocols cannot output a maximally
entangled state of larger dimension than the resources used to create it.

8.1 Converses for classical communication

8.1.1 Over classical channels

Let us first consider the case of transmitting classical information over classical noisy
channels, as depicted in Figure 1.1. According to the formalism developed in Part I,
themessages and channel inputs andoutputs aremodeledby randomvariables,while
the encoder, noisy channel, and decoder aremodeled by classical channels. Denoting
the input (output) message random variables by M (M′) and by X (Y) the channel
input (output), for a given noisy channel N : X → Y , the sender and receiver would
like to find encoding and decoding operations E : M → X and D : Y → M′ such that
the combination D ∘ N ∘ E is essentially the identity operation from M to M′. This is
depicted below; the equality symbol = denotes the identity channel.

E N D
M X Y M′ =

M M′≈

The approximate equality ≈ in the diagram indicates that we do not expect to sim-
ulate the ideal channel exactly. We will develop the tools needed to properly treat the
approximation and be able to state how good the approximation can be for a fixed
noisy channel in the following chapters. However, we can already establish the sim-
ple and intuitive statement that an identity channel on an alphabet 𝒳 cannot reliably
transmit more than |𝒳 |messages.

To make a concrete statement, let us consider the average probability that the
input to a channel agrees with its output. In some sense, this measures how close
the channel is the identity channel, for which the agreement probability is obviously
equal to unity. For an arbitrary classical channel WY |X with 𝒴 = 𝒳 , the agreement
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probability Pagree(WY |X) is naturally defined as
Pagree(WY |X) := 1

|X|
∑
x∈𝒳 WY |X(x, x) . (8.1)

Now we can consider the communication scenario with WM′|M = DM|Y ∘ NY |X ∘ EX|M .
Then

Pagree(WM′|M) = 1
|M|
∑

m∈ℳ ∑x∈𝒳 ∑y∈𝒴 DM′|Y (m, y)NY |X(y, x)EX|M(x,m) . (8.2)

The encoder EX|M outputs an element of Prob(X) for every inputM = m, so it follows
that EX|M(x,m) ≤ 1 for all x andm. Since the other contributions to the summation are
all positive, using this inequality in (8.2) gives

Pagree(WM′|M) ≤ 1
|M|
∑

m∈ℳ ∑x∈𝒳 ∑y∈𝒴 DM′|Y (m, y)NY |X(y, x) = |X||M| . (8.3)

For the last equality, we use the fact that ∑m∈ℳ DM′|Y (m, y) = 1 for all y, the normal-
ization condition of stochastic matrices, and the corresponding statement for NY |X .
Exercise 8.1. By bounding NY |X instead of EX|M show that Pagree(D ∘ N ∘ E) ≤

|Y ||M| .
Thus, for all choices of encoder and decoder, the average agreement probability

satisfies

Pagree(DM|Y ∘ NY |X ∘ EX|M) ≤ min(|X|, |Y |)
|M|

. (8.4)

This bound formalizes the intuition that an k-bit channel cannot meaningfully trans-
mit more than k bits of information. For the n-bit identity channel NY |X and |M| = 2k,
the bound gives

Pagree(DM|Y ∘ NY |X ∘ EX|M) ≤ 2n−k . (8.5)

In the exact case of zero error the channelmust therefore have at least a k-bit input and
a k-bit output. Moreover, the bound can be achieved for k > n by just transmitting the
first n bits of the input message and having the decoder simply guess the remainder.
The bound in (8.5) is known as the strong converse for the identity channel, as the
error rate is not only nonzero when communicating above its “capacity” (see more in
Chapter 15), but goes exponentially to 1 (the agreement rate goes exponentially to 0)
in the quantity k − n.

Exercise 8.2. Show that (8.4) also holds when the encoder and decoder make use of
arbitrary common randomness, that is, when the encoder has access to U and the
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decoder has access to V for any bipartite probability distribution PUV . The setup is
depicted below.

E N D

P

M X Y M′
U V

8.1.2 Over quantum channels

The case of transmitting classical information over quantum channels is actually not
much different. The goal is still to simulate the classical identity channel, but using a
quantum channel. Hence the encoder and decoder are CQ and QC channels, respec-
tively. That is, as depicted below, the encoder will prepare a quantum state to be input
to the quantumchannel, the specific state depending on themessage, and the decoder
will make a measurement of the output of the quantum channel. Here we use dashed
lines to indicate quantum systems and solid lines for classical systems.

ℰ 𝒩 𝒟
M A B M′ =

M M′≈

For quantum channel 𝒩B|A, encoder ℰA|M , and decoder 𝒟M′|B, we are interested
in the agreement probability Pagree(𝒟M′|B ∘𝒩B|A ∘ ℰA|M). Again, we can denote 𝒟M′|B ∘
𝒩B|A ∘ ℰA|M by WM′|M . Supposing the encoder produces states ρA(m), i. e., ℰA|M=m =
ρA(m), and the decoder is described by POVM elements ΛB(m), i. e., 𝒟M′|B : θB →
Tr[ΛB(m) θB], we can write the agreement probability as

Pagree(WM′|M) = 1
|M|
∑
m

𝒟M′=m|B ∘𝒩B|A ∘ ℰA|M=m]
=

1
|M|
∑
m
Tr[ΛB(m)𝒩B|A[ρA(m)]] . (8.6)

In the previous case of a classical channel, we used the bound EX|M(x,m) ≤ 1, which
holds because EX|M=m is a normalized probability distribution. Similarly, in the quan-
tumcase,wehaveρ ≤ 1 for anydensity operatorρ, implyingρA(m) ≤ 1A for allm. Since
𝒩B|A, 𝒟M′|B, and Tr are completely positive maps, they will preserve this inequality.
Therefore

Pagree(WM′|M) ≤ 1
|M|
∑
m
Tr[ΛB(m)𝒩B|A[1A]]

=
1
|M|

Tr[1B𝒩B|A[1A]] = 1
|M|

Tr[1A] =
|A|
|M|
.

(8.7)
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Comparing with (8.4), we see that the dimension of A plays the same role as the size
of the input alphabet in the classical bound. Thus we have shown that a qubit chan-
nel (for which |A| = |B| = 2) cannot reliably transmit more than one bit of classical
information. Perhaps unfortunately, in this regard, quantum channels are not more
powerful than classical channels.

Exercise 8.3. Extend the above argument to establish that for any channel 𝒩B|A, en-
coder ℰA|M , and decoder𝒟M′|B,

Pagree(𝒟M′|B ∘𝒩B|A ∘ ℰA|M) ≤ min(|A|, |B|)
|M|

. (8.8)

8.2 Converses for quantum communication

To handle the case of quantum communication, we need a quantity analogous to the
agreement probability to quantify how close the resulting channel is to the identity
quantum channel.Wewill investigate this question inmore detail in the coming chap-
ters, but for now let us take an intuitive approach.

One thing an ideal quantum channel can certainly do is transmit entanglement;
that is, if the sender Alice prepares an entangled state |Φ⟩AB, then she can send the
subsystem B through an ideal channel to the receiver Bob, so that they now share the
entangled state. An imperfect version of this process produces some other state ρAB,
and we can compare how close ρAB is to the pure state via the quantity ⟨Φ|ρAB|Φ⟩AB =
Tr[ΦABρAB]. Since ΦAB is a rank-one density operator, we can consider the POVM that
tests if the state is ΦAB or not, and Tr[ΦABρAB] is the probability of passing the test. Let
us therefore define the “agreement probability” for a quantum channel𝒩Q as

Pagree(𝒩Q) := Tr[ΦQQ′ 𝒩Q[ΦQQ′ ]] . (8.9)

Here we abruptly switch from A and B to Q and Q′ as Q and Q′ play the role ofM and
M′ in the classical case, whereas A and B are analogous to the input X and output Y
of the classical channel, respectively.

8.2.1 Over classical channels

Let us first consider the case of sending quantum information over an arbitrary clas-
sical channel NY |X , which we expect will not be very successful. The encoder needs to
transform quantum information into classical information, so it must be a measure-
mentℳX|Q. The decoder needs to perform the opposite transformation, meaning it is
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a state preparation ℰQ|Y . Then we have𝒩Q = ℰQ|Y ∘ NY |X ∘ℳX|Q, as shown below.
ℳ N ℰ

Q X Y Q
=

Q Q
≈

Suppose that ℰQ|Y=y = ρQ(y) andℳX=x|Q is the map ρQ → Tr[ΛQ(x) ρQ]. Then

𝒩Q[ΦQQ′ ] =∑
xy
NY |X(y, x) ρQ(y) ⊗ TrQ[ΛQ(x)ΦQQ′] . (8.10)

This is a separable state, since ρQ(y) and TrQ[ΛQ(x)ΦQQ′ ] are positive operators and
NY |X(y, x) is a positive function. Thereforewe can appeal to the following result, which
shows that separable states cannot have a large overlapwith themaximally entangled
state. In fact, this is even true for states with positive partial transpose, called PPT
states, i. e., states ρAB such that 𝒯A[ρAB] ≥ 0. Clearly, separable states are PPT, but it
turns out that not all PPT states are separable.

Proposition 8.1 (PPT bound). For any PPT state σAB and the maximally entangled state ΦAB,

Tr[ΦAB σAB] ≤ 1|A| . (8.11)

Proof. By Exercise 5.4 we have 𝒯A[ΦAB] =
1|A|ϒAB. Therefore, since σ′AB = 𝒯A[σAB] ≥ 0

by assumption and ϒAB ≤ 1AB,

Tr[ΦABσAB] = Tr[𝒯A[ΦAB] 𝒯A[σAB]]

=
1
|A|

Tr[ϒAB σ
′
AB] ≤

1
|A|

Tr[σ′AB] = 1
|A|
.

(8.12)

The inequality is Tr[σ′AB(1AB−ϒAB)] ≥ 0, which follows from the positivity of σ′AB since
the trace of the product of positive operators is positive.

It follows immediately that for every classical channel NY |X and all choices of en-
coderℳX|Q and decoder ℰQ|Y ,

Pagree(ℰQ|Y ∘ NY |X ∘ℳX|Q) ≤ 1
|Q|
. (8.13)

Thus quantum information cannot be usefully transmitted by classical channels, as
entanglement is not transmitted faithfully even by the ideal classical channel. Indeed,
quantum information cannot be reliably transmitted by any quantum channel 𝒩B|A
whose output ωBR = 𝒩B|A[ρAR] is certain to be a PPT state for any ρAR. This class in-
cludes entanglement-breaking channels discussed in Exercise 5.24.
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Exercise 8.4. Use the PPT condition to determine for which parameters the qubit
depolarizing, dephasing, amplitude damping, and erasure channels are useless for
transmitting quantum information.

In the case of the identity classical channel, the bound canbe saturated by prepar-
ing the correlated classical state ρQQ′ =

1|Q| ∑x |xx⟩⟨xx|QQ′ and using the classical chan-
nel to transmit Q from sender to receiver. Since the state being sent is |x⟩⟨x|Q for some
x, it is essentially classical. It is easy to confirm that Tr[ΦQQ′ρQQ′ ] =

1|Q| : ρQQ′ is 1/|Q|
times a projection operator that acts trivially on ΦQQ′ .

8.2.2 Over quantum channels

Finally, let us confirm that no qubit channel can reliably transmit more than one
qubit. For a generic channel 𝒩B|A, encoder ℰA|Q, and decoder 𝒟Q|B, we are interested
in Pagree(𝒟Q|B ∘𝒩B|A ∘ ℰA|Q):

ℰ 𝒩 𝒟
Q A B Q

=
Q Q

≈

Unlike the case of transmitting classical information, we cannot immediately up-
per bound ℰA|Q[ΦQQ′ ]. However, the bound ρA ≤ 1A can be extended to one subsystem
of a bipartite operator as follows. First, we establish two important inequalities.

Proposition 8.2. Fix a system A with dimension |A| and let 𝒫A be a pinching map in an arbitrary
orthonormal basis. Then, for any SAB ≥ 0,

SAB ≤ |A|𝒫A[SAB] . (8.14)

Moreover, for any CQ operator SAB with classical A (equivalently, SAB = 𝒫A[SAB]),
SAB ≤ 1A ⊗ SB . (8.15)

Proof. Using the Kraus representation of 𝒫A given in (5.4), we immediately have
|A|𝒫A[SAB] − SAB = ∑

|A|−1
k=1 Vk

ASAB(V
k
A)
∗ ≥ 0, which is the first inequality.

The pinched SAB can also be written 𝒫A[SAB] = ∑
d−1
k=0 |k⟩⟨k|A ⊗ TrA[|k⟩⟨k|A SAB],

where |k⟩ is the orthonormal basis of the pinch map. Since SB = ∑
d−1
k=0 TrA[|k⟩⟨k|A SAB]

and each term in the previous sum is positive, we have TrA[|k⟩⟨k|A SAB] ≤ SB, the sec-
ond inequality.

The first of these is often called the “pinching inequality”. Combining the two
yields the following very useful inequality, valid for all positive SAB:

SAB ≤ |A|1A ⊗ SB . (8.16)
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As an aside to the current discussion, but one that will be useful later, a general-
ized pinching inequality holds for pinching maps defined using projection operators
of arbitrary rank. Suppose {ΠA(x)}nx=1 is a complete set of mutually disjoint projection
operators on a system A of dimension |A| ≥ n. Then ΠA(x) are Kraus operators of a
quantum channel 𝒫A, and for all SAB ≥ 0, we have

SAB ≤ n𝒫A[SAB] . (8.17)

Exercise 8.5. Construct a Kraus representation of the generalized pinchmap𝒫A using
operators VA(k) of the form VA(k) = ∑

n
x=1 c(k)ΠA(k) for appropriate coefficients c(k) ∈

ℂ and prove (8.17).

With (8.16) in hand, we can proceed as in Section 8.1.1. Start with ℰA|Q[ΦQQ′ ] ≤
|A|1A ⊗ΦQ′ =

|A||Q|1AQ′ . Abbreviating𝒟Q|B ∘𝒩B|A ∘ ℰA|Q as ℱQ, we have

Pagree(ℱQ) ≤
|A|
|Q|

TrQQ′[ΦQQ′ 𝒟Q|B ∘𝒩B|A[1AQ′ ]]
=
|A|
|Q|2

TrQ[𝒟Q|B ∘𝒩B|A[1A]]
=
|A|
|Q|2

TrB[𝒩B|A[1A]] = |A||Q|2 TrA[1A] = |A|2|Q|2 .
(8.18)

This is precisely analogous to (8.4), albeit with a square.

Exercise 8.6. Extend the above argument to show that

Pagree(𝒟Q|B ∘𝒩B|A ∘ ℰA|Q) ≤ min(|A|2, |B|2)
|Q|2

(8.19)

for all noisy channels𝒩B|A, encoders ℰA|Q, and decoders𝒟Q|B.
When𝒩 is the identity channel on n qubits, i. e., |A| = |B| = 2n, and Q ism qubits,

i. e., |Q| = 2m, the bound can be saturated. The encoder simply transmits the first n
qubits ofm via the identity channel, and they are recovered by the decoder. For each of
the remaining qubits, the encoder discards the input qubit, transmitting nothing, and
the decoder simply generates a fixed state θ at the output. Thus, for each of thesem−n
inputs, the shared state is θ⊗π with π = 1

21. It is easy to work out that Tr[Φ θ⊗π] = 1
4 ,

and so the overall value of Pagree is simply 2−2(m−n), precisely in agreement with (8.18).

8.3 Assisted communication: dense coding and teleportation

Now we turn to the case that the communication task is assisted by additional re-
sources, specifically shared entanglement. Instead of trying to simulate the ideal
channel just using the noisy channel, the encoder and decoder now also have access
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to some distributed quantum state ρTT′ . System T is available to the encoder, system
T′ to the decoder, and the state ρTT′ is arbitrary. Then the encoder has two inputs, one
for the message or quantum information and one for the assistance T. Similarly, the
decoder has two inputs, one for the channel output and one for the assistance T′.

The case of shared classical randomness is included in this description simply
by taking the shared state ρTT′ to be diagonal and characterized by a probability dis-
tribution PXY : ρTT′ = ∑xy PXY (x, y)|x⟩⟨x|T ⊗ |y⟩⟨y|T′ . However, this assistance is never
of any help. We can illustrate the reason in the case of classical communication over
quantum channels. The encoder ℰA|MX will now be a map from two classical inputs to
one quantum output, while the decoder𝒟M′|BY takes a CQ input, with classical Y and
quantumB, to a classical output. The combined channel is justWM′|M = 𝒟M′|BY ∘𝒩B|A ∘
ℰA|MX[PXY ]. The agreement probability ofWM′|M is just the average over the agreement
probability for fixed inputs X = x and Y = y of the assistance:

Pagree(WM′|M) =∑
xy
PXY (x, y)Pagree(𝒟M′|B,Y=y ∘𝒩B|A ∘ ℰA|M,X=x) . (8.20)

Since the maps ℰA|M,X=x and 𝒟M′|B,Y=y are themselves legitimate channels, (8.8) ap-
plies for each value of x and y. Hence we recover the same bound in the case of clas-
sical assistance. The same argument holds for quantum communication, as again the
assistance will show up as an average of the agreement probability.

Shared entanglement, by contrast, does help in the two “mixed” scenarios of clas-
sical communication over quantum channels or quantum communication over classi-
cal channels. In the former, we can use the superdense coding protocol and teleporta-
tion in the latter. The usefulness of shared entanglement in teleportation is especially
dramatic, since without it quantum communication is impossible over classical chan-
nels. Both protocols demonstrate the stark difference between classical and quantum
information, that the physical properties of quantum systems have no fixed “values”
(which are simply revealed bymeasurement). If they did, then the averaging argument
just above would go through, and shared entanglement would not be useful in these
two communication tasks.

The protocol of superdense coding transmits two classical bits over a noise-
less one-qubit quantum channel, making use of the two-qubit shared entangled
state |Φ⟩TT′ . Take the message to be two bits (j, k). The encoder applies the operator
(σjxσ

k
z )T to the share T of the entangled state and then transmits T over the noiseless

channel. Upon receipt of T, the decoder jointly measures the TT′ system in the Bell
basis from (4.15). The Bell states are labeled by two bits, and the output of the decoder
is themeasurement result. The protocol works as intended because the Bell states can
be generated from |Φ⟩TT′ by the Pauli operators, as shown in (4.16).

Teleportation puts the Bell measurement at the sender and the Pauli operation
at the receiver. The teleportation protocol uses a two-bit noiseless classical channel
and the same two-qubit shared entangled state |Φ⟩TT′ to transmit one qubit of infor-
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mation. Here the encoder takes the quantum input A to be transmitted and measures
the combined systemAT in the Bell basis. Again, this results in two classical bits (j, k).
These are transmitted via the classical channel. The decoder subsequently applies the
Pauli operator (σjxσ

k
z )T′ to the share T

′ of the entangled state, and the resulting state is
the output of the protocol.

Confirming that the teleportation protocolworks as intended requires a littlemore
work than superdense coding. The protocol amounts to the quantum channel

ℰT′|A[ρA] = ∑
jk
(σjxσ

k
z )T′ TrAT[|Φjk⟩⟨Φjk |AT ρA ⊗ΦTT′] (σ

j
xσ

k
z )
∗
T′

= ∑
jk
(σjxσ

k
z )T′⟨Φjk |AT |Φ⟩TT′ ρA ⟨Φ|TT′ |Φjk⟩AT(σ

j
xσ

k
z )
∗
T′ ,

(8.21)

where we have used Dirac notation to move the bras and kets around from their more
usual appearance. Doing so reveals that the channel has Kraus operators KT′|A(j, k) =
(σjxσ

k
z )T′⟨Φjk |AT |Φ⟩TT′ , but by (4.16) and (4.28) we have

KT′|A(j, k) = (σjxσkz )T′⟨Φ|AT |Φ⟩TT′ (σjxσkz )∗A = 1
2 (σ

j
xσ

k
z )T′1T′|A(σjxσkz )∗A

= 1
2 (σ

j
xσ

k
z )T′(σ

j
xσ

k
z )
∗
T′1T′|A = 1

21T′|A . (8.22)

Hence the teleportation channel is simply ℐT′|A as intended.
Exercise 8.7. In the teleportation protocol, what is the state of Bob’s system T′ aver-
aged over the measurement result?

Exercise 8.8. Using Proposition 6.8, show that the probability distribution of Alice’s
measurement resultsmust be independent of the input state |ψ⟩.What is theparticular
output distribution in the protocol?

8.4 Converses for assisted classical communication

To address the optimality of superdense coding and teleportation, we require con-
verses for assisted communication. Fortunately, these can be established using the
tools developed for the unassisted case. In this section, we address converses for clas-
sical communication tasks, and we take up quantum communication tasks in the fol-
lowing section.

8.4.1 Over classical channels

For classical information transmission over a classical channel NY |X , the encoder
ℰX|MT is a channel with a CQ input, classical M and quantum T, and classical out-
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put X. Similarly, the decoder𝒟M′|YT′ also has a CQ input, classical Y and quantum T′,
and classical outputM′:

ℰ N 𝒟

ρ

M A B M′
T T′

Given an arbitrary assistance state ρTT′ , the protocol induces a classical channel
WM′|M = 𝒟M′|YT′ ∘ NY |X ∘ ℰX|MT [ρTT′ ], whose agreement probability is

Pagree(WM′|M) = 1
|M|
∑
m

𝒟M′=m|YT′ ∘ NY |X ∘ ℰX|M=m,T [ρTT′ ] . (8.23)

For every inputm, the state ℰX|M=m,T [ρTT′ ] is a CQ state with classical X and quantum
T′. Therefore we can appeal to (8.15) to infer ℰX|M=m,T [ρTT′ ] ≤ 1X ⊗ ρT′ for allm. Then
we have

Pagree(WM′|M) ≤ 1
|M|
∑
m

𝒟M′=m|YT′ ∘ NY |X[1X ⊗ ρT′ ]
=

1
|M|

TrYT′[NY |X[1X ⊗ ρT′ ]] = 1
|M|

TrX[1X] =
|X|
|M|
.

(8.24)

This is precisely (8.3), so even quantum assistance makes absolutely no difference.
The distinction between assistance by ρTT′ and a channel from T to T′ is that here ρT′
is completely independent ofm.

Exercise 8.9. Extend the argument to show

Pagree(𝒟M′|YT′ ∘ NY |X ∘ ℰX|MT [ρTT′ ]) ≤
min(|X|, |Y |)
|M|

. (8.25)

Thus (8.4) holds even with arbitrary assistance ρTT′ .

8.4.2 Over quantum channels

Although classical assistance does not help with classical communication over quan-
tum channels, quantum assistance does, as we saw in the superdense coding protocol
above. To specify the general setup more concretely, we again have a shared entan-
gled state ρTT′ , while the channel 𝒩B|A has quantum inputs and outputs. Therefore
the encoder ℰA|MT outputs a quantum system from a classical and quantum input,
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whereas the decoder𝒟M′|BT′ outputs a classical value from two quantum inputs:

ℰ 𝒩 𝒟

ρ

M A B M′
T T′

We are interested in the agreement probability Pagree(𝒟M′|BT′ ∘𝒩B|A ∘ ℰA|MT [ρTT′ ]),
which we abbreviate by Pagree. In this case, we will show

Pagree ≤
1
|M|

min(|A|2, |B|2, |A||T|, |B||T|, |A|T
′, |B|T′) . (8.26)

The conversebound isnecessarily complicatedbecausewecould just use thequantum
channel directly andnot botherwith the assistance, orwe could performa superdense
coding scheme, or some combination of the two. The first two and last two bounds
follow from methods we have already used.

Exercise 8.10. Use inequality (8.16) to obtain the first two bounds. Use the even cruder
inequality ρ ≤ 1 for a suitable choice of systems to obtain the last two.

To show the middle two upper bounds, we use both (8.14) and (8.15). First, us-
ing (8.14), pinch T to obtain ρTT′ ≤ |T|∑x |x⟩⟨x|T ⊗ φT′ (x) for some subnormalized
φT′ (x). Observe that ∑x φT′ (x) = ρT′ . Applying the encoder, we have ℰA|TM=m[ρTT′ ] ≤
|T|∑k ℰA|TM=m[|k⟩⟨k|T ] ⊗ φT′ (k). Since the right-hand side is a CQ state, (8.15) implies
ℰA|TM=m[ρTT′ ] ≤ |T|∑k 1A ⊗ φT′ (k) = |T|1A ⊗ ρT′ . This gives the third bound. To obtain
the fourth, apply the same argument for the channel𝒩B|A ∘ℰA|TM=m instead of ℰA|TM=m
itself.

Superdense coding saturates (8.26). Setting |A| = |B| and |T| = |T′|, the bound
reduces to Pagree ≤

|A||M| min(|A|, |T|). A single round of the protocol corresponds to the
choice |M| = 4, |A| = 2, |T| = 2. Of course, we can choose |T| = 1 and just transmit clas-
sical information directly over the quantum channel with no assistance. In this case
the bound reduces to (8.8). These bounds are perhaps more insightful in the scenario
of multiple rounds, with |A| = 2n, i. e., n qubits, |T| = 2k, and |M| = 22m (note the 2 in
the exponent). Then the converse implies that 2n ≥ 2m and n + k ≥ 2m, so that to send
2m bits, we will need at least m classical channels and a combination of assistance
and channels numbering 2m.

Notice that a separable assistance state ρTT′ will simply result in a state of the form
∑k P(k)𝒩B|A ∘ℰA|TM=m[σT (k)]⊗θT′ (k) at the decoder. Hencewhatever agreement proba-
bility can be obtainedwill just be the average over k of using product assistance states.
Then we could just pick the states σT (k) and θT′ (k) with the best agreement probabil-
ity and build them into the encoder and decoder, resulting in an unassisted scheme.
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Therefore entanglement in ρTT′ is required to increase the agreement probability over
the unassisted case.

8.5 Converses for assisted quantum communication

8.5.1 Over quantum channels

Just as with classical communication over classical channels, quantum communica-
tion over quantum channels is not enhanced by shared entanglement. Here the en-
coder is a quantum channel ℰA|QT with two quantum inputs, Q and T, and output A.
The decoder is a quantum channel 𝒟Q|BT′ , also with two quantum inputs, B and T′,
and output Q.

ℰ 𝒩 𝒟

ρ

Q A B Q

T T′
Again, we abbreviate the overall channel on Q as ℱQ = 𝒟Q|BT′ ∘𝒩B|A ∘ ℰA|QT [ρTT′ ].

Then the “agreement” probability is

Pagree(ℱQ) = Tr[ΦQQ′(𝒟Q|BT′ ∘𝒩B|A ∘ ℰA|QT [ΦQQ′ ⊗ ρTT′ ])] . (8.27)

We can proceed just as in the unassisted case, applying (8.16) to the state ℰA|QT [ΦQQ′ ⊗
ρTT′ ]. This gives

ℰA|QT [ΦQQ′ ⊗ ρTT′ ] ≤ |A|1A ⊗ TrA[ℰA|QT [ΦQQ′ ⊗ ρTT′ ]]

= |A|1A ⊗ TrQT [ΦQQ′ ⊗ ρTT′ ] =
|A|
|Q|

1A ⊗ 1Q′ ⊗ ρT′ .
(8.28)

Then for any encoder, decoder, and shared entanglement, we have

Pagree(ℱQ) ≤
|A|
|Q|

TrQQ′[ΦQQ′ (𝒟Q|BT′ ∘𝒩B|A[1A ⊗ ρT′ ])]
=
|A|
|Q|2

TrQ[𝒟Q|BT′ ∘𝒩B|A[1A ⊗ ρT′ ]]
=
|A|
|Q|2

TrBT′[𝒩B|A[1A ⊗ ρT′ ]] = |A|2|Q|2 ,
(8.29)

which is precisely the same bound as the unassisted case in (8.18). Applying the same
argument to the state 𝒩B|A ∘ ℰA|QT [ΦQQ′ ⊗ ρTT′ ] gives the bound |B|2/|Q|2, so we re-
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cover (8.19). Neither shared randomness nor shared entanglement helps with quan-
tum communication over quantum channels.

8.5.2 Over classical channels

Finally, we turn to quantum communication over classical channels. Shared entan-
glement is most certainly helpful, as demonstrated by teleportation. Now the encoder
ℰX|QT is essentially a measurement of the two quantum inputs Q and T, whereas the
decoder𝒟Q|YT′ outputs a quantum system from one classical and one quantum input.

ℰ N 𝒟

ρ

Q X Y Q

T T′
The converse bound in this case is not quite as elaborate as (8.26), but does have

four cases:

Pagree(𝒟Q|YT′ ∘ NY |X ∘ ℰX|QT [ρTT′ ]) ≤ min( |X|
|Q|2
,
|Y |
|Q|2
,
|T|
|Q|
,
|T′|
|Q|
) . (8.30)

The argument is not quite as complicated as that of superdense coding, either. There
we have the possibility of ignoring the shared entanglement and just using the quan-
tum channel. For the present task, the analogous bound is (8.13), 1/|Q|. But this is im-
plied by the last of the two bounds in (8.30) by taking |T| = |T′| = 1, so there is no need
for a separate statement as there is in (8.26). The first two bounds are straightforward.

Exercise 8.11. Use (8.15) to obtain the first two bounds in (8.30).

For the latter two, we follow the approach in superdense coding and pinch the
shared entangled state. Pinching T gives ρTT′ ≤ |T|𝒫T [ρTT′ ] = |T|∑z |z⟩⟨z|T ⊗ φT′ (z),
which is a separable state. Then observe that since the encoder is a measurement, the
result of applying the encoder is also separable,

ℰX|TQ[𝒫T [ρTT′ ]ΦQQ′] =∑
xz
|x⟩⟨x|X TrTQ[ΛTQ(x)(|z⟩⟨z|T ⊗ΦQQ′)]φT′ (z)

=∑
xz
|x⟩⟨x|XθQ′ (x, z)φT′ (z) ,

(8.31)

where we have defined the subnormalized θQ′ (x, z) = TrTQ[ΛTQ(x)(|z⟩⟨z|T ⊗ΦQQ′ )] and
omitted some tensor product symbols. The classical channel and decoder will act on
X and T′, but not Q′, so the output of the protocol will be separable between Q and
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Q′. Then employing (8.11) gives the third bound. The fourth follows by the same argu-
ment, starting from a pinch applied to T′.

Observe that the argument goes through immediately without pinching if the ini-
tial assistance state ρTT′ is separable. Hence, as expected, only entangled states can
be of use here.

In teleportation, we have |T′| = |T| and |Y | = |X|, and the converse bound reduces
to min( |X||Q|2 , |T||Q| ). A single round of teleportation is the case |X| = 4, |T| = 2, and |Q| = 2,
which saturates the bound. The converse implies that transmitting m qubits (|Q| =
2m) using k qubits of shared entanglement (|T| = |T′| = 2k) and n single-bit classical
identity channels (|X| = |Y | = 2n) requires n ≥ 2m and k ≥ m.

8.6 Entanglement distillation

Finally, we establish that LOCC operations cannot increase the amount of entangle-
ment shared by two separated parties. In general, an LOCC operation may consist of
many rounds of local operations and classical communication from one party to the
other. Let us first consider the case of just one round, a local operation by Alice, for-
ward communication from her to Bob, and finally a local operation by Bob.

Suppose Alice and Bob share a state ρAB and they would like to create the state
ΦQQ′ for some |Q|. Alice applies the instrument ℰQY |A with quantum outputQ and clas-
sical output Y , and then communicates the classical result to Bob. (We keep with the
symbol ℰ for Alice’s operation out of inertia.) Bob then performs a “decoding” oper-
ation 𝒟Q′|BY , and hopefully the state of the QQ′ system is close to being maximally
entangled:

ℰ

ρ

𝒟

A

B

Y

Q

Q′
Φ

Q

Q′
≈

To quantify the entanglement of the output, we can again make use of the prob-
ability of obtaining the maximally entangled state Tr[ΦQQ′ 𝒟Q′|BY ∘ ℰQY |A[ρAB]]. Then
for all ρAB, instruments ℰQY |A, and channels𝒟Q′|BY , we have

Tr[ΦQQ′𝒟Q′|BY ∘ ℰQY |A[ρAB]] ≤ 1
|Q|

min(|A|, |B|) . (8.32)

Therefore, if the output is precisely ΦQQ′ , then the dimension of the output can never
be larger than that of the input.
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Note that the bound differs from the previous quantum bounds by a square root.
This is due to the fact that Alice and Bob can create correlated states using classical
communication. Indeed, the bound can be achieved for |A| = |B| = 2n and |M| = 2m

with m ≥ n by choosing ρAB to be n maximally entangled states. The protocol leaves
these states untouchedwhile creatingm−n instances of τ = 1

2 (|00⟩⟨00|+ |11⟩⟨11|). The
state τ can be created by Alice randomly preparing |0⟩ or |1⟩ and informing Bob of her
choice, so that he may prepare the same state. It is easy to confirm that Tr[Φ τ] = 1/2,
and so (8.32) can be achieved.

The statement follows more or less immediately from (8.14) and (8.11). Pinching
the initial stateρAB results in a separable state times a systemdimension, and theLOCC
protocol will always result in another separable state at its output. Therefore (8.11) ap-
plies and gives the desired bound. Note that this argument goes through for arbitrarily
many rounds of back and forth communication between Alice and Bob, i. e., all LOCC
protocols.

8.7 Notes and further reading

Dense coding was introduced by Bennett and Wiesner [33] in 1992, teleportation by
Bennett et al. [27] the following year. The general pinching inequality in (8.17) is due
to Hayashi [124], who puts it to several uses in his book on quantum information the-
ory [128]. The PPT bound is due to Rains [232].
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9 Discriminating states and channels
It is difficult to make predictions, especially about the future.

unattributed remark of Danish origin1

Imagine that we are given one of two state preparation devices, one that always pre-
pares ρ and another that always prepares σ. The states could be commuting operators,
and then we could think of the devices as two different random number generators,
one producing an output distributed according to P and the other to Q. Without look-
ing at the internal operation of the device, how can we tell which device we have? The
only option is to make a decision based on observing the outputs of the device.

The extent to which we can correctly determine which device we actually have—
to discriminate between the two possibilities—defines the distinguishability of quan-
tum states in a directly operational way. The setup fits naturally with the information
processing context of this book, as an equivalent formulation is that the device is a
channel with binary classical input and quantum output. The input specifies which
state is generated on the output. We are then in the role of the decoder, attempting
to determine the classical input from the quantum output. The issue is the same in
the context of statistical modeling, though the language is different. There we obtain
data from a physical system and would like to decide which model best describes the
system. The two models correspond to the two states ρ and σ, and we speak of distin-
guishing between them as hypothesis testing.

Suppose that wemake a decision by using the device just once, i. e., by observing
only one output of the device. We need to measure the output in some way and then
make a decision as to which device we have based on the outcome. Any procedure can
be defined as a QC channel from the device output to the classical information repre-
senting our guess. Therefore the entire process may as well be described by a POVM
with just two outputs, one output corresponding to a guess that the device produces
ρ and the other to σ. Denoting Λ the POVM element corresponding to ρ, the POVM
element corresponding to σ is just 1 − Λ. When the device actually produces ρ, the
probability of an incorrect guess is Tr[(1 − Λ)ρ], whereas Tr[Λσ] is the probability of
error when the device actually produces σ.

9.1 Two approaches

There are twomain approaches to quantifying the how good a particular Λ is at distin-
guishing the states and, consequently, of defining the optimal measurement Λ⋆. (We

1 Det er vanskeligt at spå, især naar det gælder Fremtiden. [260, Section Niels Bohr]

https://doi.org/10.1515/9783110570250-009
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124 | 9 Discriminating states and channels

will regularly use the superscript ⋆ to denote the optimal variable.) In the Bayesian ap-
proach to hypothesis testing, we suppose that ρ and σ occur with some prior probabil-
ities p and 1−p, respectively, and then consider the average probability of successfully
guessing,

Pguess = p Tr[Λρ] + (1 − p) Tr[(1 − Λ)σ] = (1 − p) + Tr[Λ(pρ − (1 − p)σ)] . (9.1)

We can regard the setup of state and prior probability as defining a CQ state τXB =
|0⟩⟨0|X ⊗ pρB + |1⟩⟨1|X ⊗ (1 − p)σB. Let us write the guessing probability for a given
measurement Λ as Pguess(X|B)τ,Λ. The dependence on the CQ state from the setup of
the problem is indicated in the subscript, along with the dependence on themeasure-
ment. The optimal guessing probability, denoted Pguess(X|B)τ, is

Pguess(X|B)τ := max
Λ
{Pguess(X|B)τ,Λ : 0 ≤ Λ ≤ 1} . (9.2)

Due to the form of the guessing probability in (9.1), we have

Pguess(X|B)τ = (1 − p) +max{Tr[Λ(pρ − (1 − p)σ)] : 0 ≤ Λ ≤ 1} . (9.3)

Strictly speaking,we shouldwrite the optimizationwith a supremum instead of amax-
imum, to account for thepossibility that there is nomeasurement that precisely attains
the optimal value. However, we will see momentarily that the optimum is always at-
tained.

Meanwhile, in the Neyman2–Pearson3 approach to hypothesis testing, we do not
involve any prior probability and just take the two errors separately. Then the optimal
measurement minimizes one of the errors for a fixed value of the other. Let us denote
by βα(ρ, σ) the smallest error forσ given afixed error for ρof 1−α. This parameterization
is convenient since α = Tr[Λρ], that is,

βα(ρ, σ) := min
Λ
{Tr[Λσ] : Tr[Λρ] = α, 0 ≤ Λ ≤ 1} . (9.4)

An important feature of the operational approach employed here and of the asso-
ciated variational definitions is that the crucial property ofmonotonicity followsmore
or less immediately. Monotonicity, which plays a crucial role throughout information
theory, just says that the discrimination task cannot be made easier by first applying
a channel to the state. The optimal guessing probability will not increase, neither will
the smallest error in σ for fixed error in ρ decrease. The reason is that the possibility
of applying a channel is already considered in the optimization.

2 Jerzy Neyman, born Jerzy Spława-Neyman, 1894–1981.
3 Egon Sharpe Pearson, 1895–1980.
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To appreciate the monotonicity argument more formally, consider a channel ℰC|B
and the probability of distinguishing ℰC|B[ρB] versus ℰC|B[σB] for arbitrary prior distri-
bution specified by p. By (9.3) we are interested in max{Tr[Λ(pℰ[ρ]− (1−p)ℰ[σ])] : 0 ≤
Λ ≤ 1}. Using the adjoint, we can express the action of the channel on the POVM ele-
ment Λ, moving from the Schrödinger to Heisenberg pictures. The objective function
then reads Tr[ℰ∗[Λ](pρ − (1 − p)σ)]. Meanwhile, since ℰ∗ is completely positive and
unital (cf. Exercises 5.3 and 5.8), applying it to the constraints gives 0 ≤ ℰ∗[Λ] ≤ 1.
Therefore Λ′ = ℰ∗[Λ] is a potential POVM element for the optimization, usually re-
ferred to as being feasible. Hence Pguess(X|B)τ ≥ Pguess(X|C)ω, where ωXC = ℰC|B[τXC].
The same argument implies βα(ρ, σ) ≤ βα(ℰ[ρ], ℰ[σ]).

Though the setup of the Bayesian andNeyman–Pearson approaches are different,
it turns out that the form of the optimal measurement is essentially the same in both
cases. To demonstrate this, we need to examine the optimizationsmore carefully. Both
the maximization in (9.3) and the minimization in (9.4) are semidefinite programs, a
specific kind of convex optimization.

A convex optimization is an optimization in which the set of possible optimiza-
tion variables (called the feasible set) is convex, while the objective function to be op-
timized is suitably convex or concave: convex for minimization and concave for maxi-
mization. Semidefinite programs are convex optimizationswhose objective function is
linear and whose variables are subject to positive semidefinite and linear constraints.
The constraint Λ ≤ 1 for Λ ∈ Lin(ℋ) is an example of a semidefinite constraint, and
Tr[Λρ] = α is a linear constraint. Since the objective function is both convex and con-
cave, it is always possible to find an optimal variable among the extreme points of the
feasible set (if an optimal variable exists at all). We will develop most of the concepts
and properties needed to work with SDPs here in the main text, but see Appendix C
for a more general presentation.

Convex optimization has the very nice property that its optimizers can be recog-
nized locally. In a general optimization problem, there are many local optima, which
makes it difficult to determine the global optimal value. This does not occur in con-
vex optimization. Consider the minimization of a convex function f : ℝn → ℝ and
a point x that is the minimum of f in some small region R ⊆ ℝn containing x. If x
were not the global optimum, we would run into a contradiction. Suppose y ∉ R is
such that f (y) < f (x) and consider the points z = (1 − λ)x + λy for λ ∈ [0, 1], which
interpolate between x and y. For suitably small λ, z ∈ R. However, by convexity of f ,
f (z) ≤ (1 − λ)f (x) + λf (y) < f (x). This contradicts the assumption that x is the local
optimizer.

9.2 Bayesian hypothesis testing

Let us first consider the Bayesian approach to hypothesis testing. It is relatively
straightforward to work out the optimal Λ⋆ in (9.3). Since pρ − (1 − p)σ is Hermitian,
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a good guess for Λ⋆ is just the projection onto the subspace of positive eigenvalues of
pρ − (1 − p)σ. The negative eigenvalues would only decrease the objective function, so
it is sensible to leave them out. We are free to include the zero eigenvalues or indeed
set the value of Λ on this subspace to any value between zero and one, since these
eigenvalues do not contribute to the objective function. Let us denote the projection
by {pρ − (1 − p)σ > 0}, i. e., for arbitrary Hermitian M, {M > 0} is the projection onto
the subspace of positive eigenvalues. Similarly, {M ≥ 0} is the projection onto the
nonnegative subspace, {M < 0} is the projection onto the negative, and so forth.

In the classical case of commuting ρ andσ, our guess for the optimalmeasurement
is based on the likelihood ratio. Let ρ = ∑x P(x)|x⟩⟨x| and σ = ∑x Q(x)|x⟩⟨x|. Then
pρ−(1−p)σ > 0 for all |x⟩ such that P(x)/Q(x) > (1−p)/p. The quantity L(x) = P(x)/Q(x)
is the likelihood ratio, and themeasurement decides for ρwhenever x is such that L(x)
exceeds (1−p)/p. This threshold is the prior likelihood of σ relative to ρ, meaning that
the decision is based on whether the observed likelihood L(x) is more biased toward
ρ than the prior probability is biased away from it.

Let us define Λ(γ) = {ρ − γσ > 0} for arbitrary γ ≥ 0. Note that Λ( 1−pp ) = {pρ − (1 −
p)σ > 0} since rescaling does not affect the operator inequality defining the projection.
Certainly, Λ( 1−pp ) is a reasonable guess for Λ

⋆, but it is not immediately clear that it is
in fact optimal. For one thing, should Λ⋆ necessarily commute with pρ − (1 − p)σ? To
see that this is in fact the case, we derive an upper bound on the maximization that
matches the optimal value. This leads to the dual optimization. First, let us define the
primal optimization

f (M) = sup
Λ
{Tr[ΛM] : 0 ≤ Λ ≤ 1,Λ ∈ Lin(ℋ)} , (9.5)

now in terms of an arbitrary Hermitian inputM ∈ Lin(ℋ). We revert to using the supre-
mum instead of maximum to illustrate the general setup. Using the supremum in a
generic optimization not only accounts for the possibility, already mentioned, that
the optimal value is not obtained, but also handles the case that the feasible set is
empty. Then the value of the optimization is −∞.

Neither is an issue here, of course. The feasible set is not empty, and the opti-
mum value will be attained: Since the objective function Λ → Tr[ΛM] is continu-
ous and the feasible set is closed and bounded (see Section B.5), the set of values
the objective function can take is also closed. This will be the case for all the opti-
mizations we consider in this book. Our considerations so far amount to the lower
bound f (M) ≥ Tr[{M ≥ 0}M]. Note that if M has zero eigenvalues, then we can take
Λ = {M ≥ 0} + c{M = 0} for any c ∈ [0, 1] and get the same lower bound.

To derive an upper bound, we could use the method of Lagrange4 multipliers,
but for a linear problem, it is more direct to follow a method that goes back to von

4 Joseph-Louis Lagrange, born Giuseppe Lodovico Lagrangia, 1736–1813.
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Neumann. Consider the constraint Λ ≤ 1 from the optimization and take the Hilbert–
Schmidt inner product of each side with some operator θ. If θ ≥ 0, then we obtain the
inequality Tr[Λθ] ≤ Tr[θ], since θ1/2(1 − Λ)θ1/2 ≥ 0 and the trace of positive operators is
positive. Next, suppose that the left-hand side is larger than Tr[ΛM] for all feasible Λ,
i. e. Tr[ΛM] ≤ Tr[Λθ]. Then f (M) ≤ Tr[θ]. Since Λ ≥ 0, it is sufficient to require θ ≥ M
for the second inequality to hold. Therefore the tightest upper bound is given by

f †(M) = inf
θ
{Tr[θ] : θ ≥ M, θ ≥ 0, θ ∈ Lin(ℋ)} , (9.6)

and f (M) ≤ f †(M). The fact that the primal is bounded by the dual in thisway is known
as weak duality. The difference f †(M) − f (M) is called the duality gap. Again, we only
use the infimum to illustrate the general case; here infeasibility causes the infimum
to take the value +∞.

Just as there was a clear guess for the primal optimal variable, there is also a clear
guess for the optimal dual variable θ⋆. Since we can work in the eigenbasis ofM, take
θ⋆ to be the positive part of M, which we denote by {M}+. Then f †(M) ≤ Tr[{M}+]. In
fact, this matches the lower boundwe already obtained from the primal optimization:
BecauseM and {M ≥ 0} commute, {M ≥ 0}M = {M}+. Hence f (M) = f †(M) = Tr[{M}+].
Equality of the primal and dual optimizations is strong duality. We have thus shown
that strong duality holds for this optimization, though we had to find the optimizer to
do it.

A nice closed-form expression comes from using the trace norm, which for Hermi-
tianM is just ‖M‖1 = Tr[{M}+]−Tr[{M}−]. Since Tr[M] = Tr[{M}+]+Tr[{M}−], it follows
that

f (M) = f †(M) = 1
2 (Tr[M] + ‖M‖1) . (9.7)

Applied to the original problem, we find

Pguess(X|B)τ =
1
2 (1 +
pρ − (1 − p)σ

1) . (9.8)

Exercise 9.1. Compute the probability of correctly distinguishing the qubit states
|0⟩⟨0| and |+⟩⟨+|, assuming uniform prior probability.

Exercise 9.2. Express the probability of correctly distinguishing between two arbi-
trary qubit states ρ and σ with arbitrary prior probabilities p and 1 − p in terms of
the Bloch representation.
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9.3 Neyman–Pearson hypothesis testing

9.3.1 Testing region

Now let us turn to the Neyman–Pearson approach. Consider all the possible outcome
probabilities for a given pair of states ρ and σ when ranging over the set of POVM
elements. Let us denote this the testing region R(ρ, σ). It is a subset of the unit square
in ℝ2 defined as

R(ρ, σ) := {(α, β) : α = Tr[Λρ], β = Tr[Λσ],0 ≤ Λ ≤ 1} . (9.9)

Moreover, R(ρ, σ) is a convex set, since the convex combination of effects is still an
effect operator. We are naturally interested in the extreme points of the set or, more
generally, its boundary. Observe that R(ρ, σ) necessarily contains the diagonal, all
points (c, c) for c ∈ [0, 1], by choosing Λ = c1. This implies βα(ρ, σ) ≤ α. Addition-
ally, (1− α, 1− β) ∈ R(ρ, σ)when (α, β) = R(ρ, σ) since 1 −Λ is an effect if Λ is. Thus the
upper boundary is the image of the lower boundary under a rotation around the point
(1/2, 1/2) by the angle π. The function βα defined in (9.4) therefore completely character-
izes R(ρ, σ). Figure 9.1 depicts a testing region of two probability distributions.

Figure 9.1: An example of a testing region R(P,Q). Here P = (15,4, 1)/20 and Q = (1, 1, 1)/3.

Exercise 9.3. Determine R(P,Q) for P = (p, 1 − p) and Q = (q, 1 − q).

Exercise 9.4. Using (9.5), show that Tr[Λ(γ)σ] ≤ 1
γ Tr[Λ(γ)ρ] for Λ(γ) = {ρ − γσ > 0} as

defined in Section 9.2.

As opposed to the Bayesian case, a good guess for the optimalmeasurement Λ⋆ for
givenα is not as clear.We canalso try to get some insight from thedual optimization. In
the previous example, there was only one constraint besides positivity of Λ, whereas
here there are two. Hence we consider two dual variablesm and θ associated with the
constraints Tr[Λρ] = α and Λ ≤ 1, respectively. The remaining constraint Λ ≥ 0 will
not need a dual variable, but will play a role in the derivation of the dual. Let us write
the inequality constraint as −Λ ≥ −1 and take the inner product with θ ≥ 0 to obtain
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− Tr[Λθ] ≥ − Tr[θ]. The reason for doing so will be evident momentarily. Adding m
times the first constraint then yields

m Tr[Λρ] − Tr[Λθ] ≥ mα − Tr[θ] . (9.10)

Observe that there is no requirement that m be positive, as the associated constraint
is an equality. The primal optimization is a minimization for which upper bounds are
easily obtained from feasible choices of Λ. To get a lower bound, we require

Tr[Λσ] ≥ m Tr[Λρ] − Tr[Λθ] . (9.11)

For this purpose, it is sufficient to require σ ≥ mρ − θ since Λ ≥ 0. The tightest lower
bound is thus βα(ρ, σ) ≥ β†α(ρ, σ) for

β†α(ρ, σ) := max
m,θ
{mα − Tr[θ] : mρ − θ ≤ σ, θ ≥ 0, θ ∈ Lin(ℋ),m ∈ ℝ} . (9.12)

Notice in the above construction that there is one dual variable for each constraint of
the primal. This is the general pattern. Reviewing the derivation, it is also clear that
we needed to express Λ ≤ 1 as a lower bound so as to be consistent with obtaining a
lower bound on βα(ρ, σ). In general, it is convenient to write the inequality constraints
of minimizations as lower bounds and maximizations as upper bounds.

We can construct the dual of the dual, but it is just the primal again.

Exercise 9.5. Confirm that the dual of β†α(ρ, σ) is βα(ρ, σ).

Exercise 9.6. Show that replacing Tr[Λρ] = α with Tr[Λρ] ≥ α does not change the
value of βα(ρ, σ). What is the corresponding change in the dual?
Hint: Use the properties of R(ρ, σ).

Exercise 9.7. Using (9.12), show that for all α ∈ [0, 1], γ ≥ 0, and states ρ and σ,

α − γβα(ρ, σ) ≤ Tr[Λ(γ)ρ] − γ Tr[Λ(γ)σ] . (9.13)

Slater’s5 condition is an easily checked condition which implies strong duality. It
states that if the primal (dual) is feasible and the dual (primal) is strictly feasible, then
the duality gap is zero, and there exists a primal (dual) optimizer. Proposition C.2 in
the appendix provides more details. In the present context, strict feasibility means
that all equality constraints are satisfied and all inequality constraints are strictly sat-
isfied. Thus, for instance, we can infer that f (M) and f †(M) from (9.5) and (9.6) must
be equal by the fact that Λ = 1

21 and θ = 2M + 1 are strictly feasible for the respective
optimizations. (The additional 1 handles rank-deficientM.)

5 Morton Lincoln Slater, 1921–2002.
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Exercise 9.8. Show that strong duality holds for βα(ρ, σ) and β†α(ρ, σ) and that both
primal and dual optimizers exist.

9.3.2 Optimal tests

Given that strong duality holds and the optimal values are both achieved, (9.10)
and (9.11) must be satisfied with equality. This is known as complementary slackness;
the reason for the name will become clear momentarily. Making use of the equality
constraint Tr[Λρ] = α, equality in (9.10) just amounts to Tr[(1 − Λ⋆)θ⋆] = 0. Because
this is the trace of the product of two positive operators, the product itself must be
zero (see Lemma B.3), i. e., (1 − Λ⋆)θ⋆ = 0. Similarly, equality in (9.11) implies

Λ⋆(σ −m⋆ρ + θ⋆) = 0 . (9.14)

Thus there cannot be “slack” in both the constraint and the associated dual variable.
Either the constraint is satisfied with equality (called binding), or the dual variable is
zero, or both. Since the conditions are formulated for operators, the constraint can be
binding in a subspace and slack in its orthogonal complement; then the dual variable
will necessarily be zero on the complement.

We cannow try to determine the formof the optimizers bymaking use of the slack-
ness conditions. First note that they are equivalent to

Λ⋆θ⋆ = θ⋆ and Λ⋆(m⋆ρ − σ) = θ⋆ . (9.15)

Therefore, since Λ⋆, θ⋆, and m⋆ρ − σ are all Hermitian, they all must commute. Due
to the positivity of θ⋆ in the second equation, it follows that θ⋆ is zero on the zero
eigenspace ofm⋆ρ − σ and that Λ⋆ annihilates the negative part ofm⋆ρ − σ. Using the
second to substitute for θ⋆ in the first gives (Λ⋆)2(m⋆ρ−σ) = Λ⋆(m⋆ρ−σ), meaning that
Λ⋆ has eigenvalue 1 on the positive part ofm⋆ρ−σ. Hence the slackness conditions im-
ply that Λ⋆ = {m⋆ρ−σ > 0}+c{m⋆ρ−σ = 0} for some c ∈ [0, 1] and θ⋆ = {m⋆ρ−σ}+. The
remaining constraint Tr[Λ⋆ρ] = α fixes the value of c. We have therefore shown that
likelihood ratio tests are also optimal in βα(ρ, σ). When the likelihood ratio is greater
than 1/m⋆, the test decides for ρ, whereas if the likelihood is exactly this value the
test decides for ρ with probability c. This is precisely the Neyman–Pearson lemma of
classical statistics.

Proposition 9.1 (Neyman–Pearson lemma). For any states ρ, σ and α ∈ [0, 1], there exist m⋆ > 0
and c ∈ [0, 1] such that for Λ⋆ = {m⋆ρ − σ > 0} + c{m⋆ρ − σ = 0}, it holds that Tr[Λ⋆ρ] = α and
Tr[Λ⋆ σ] = βα(ρ, σ).

For classical distributions P andQ, the {m⋆P−Q = 0} portion of the optimal test arises
from interpolation of likelihood tests Λ(γ). In general, the testing region is the convex
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hull of the points generated by the extreme points in the set of tests, i. e., projection
operations. In the classical case, these projections form a discrete set, and therefore
βα must be a piecewise linear function joining the values obtained from such tests, in
particular, from simple likelihood tests. However, the piecewise linear form of βα does
not generally hold in the quantum case.

Exercise 9.9. Determine βα(|0⟩⟨0|, |+⟩⟨+|) for α ∈ [0, 1].

Exercise 9.10. Consider a tangent to R(ρ, σ) at the point (α, βα) such that the test-
ing region lies above the tangent line, and let m(α) be its slope. Show that m(α)α −
βα ≥ m Tr[Λρ] − Tr[Λσ] for all effects Λ. Combine this inequality with (9.7) to infer the
Neyman–Pearson lemma. Conclude that the optimalm in β†(ρ, σ) ism(α).

Exercise 9.11. Consider the distribution PXY such that PX is uniform and X = Y , along
with the completely uniform distribution QXY . Show that βα(PXY ,QXY ) = α for all α ∈
[0, 1].

Exercise 9.12. Suppose X is a ℤ2-valued random variable with PX(1) = p < 1/2. De-
termine βα(PXn ,QXn ) for all α ∈ [0, 1], where PXn = P×nX , and QXn is the uniform dis-
tribution. In particular, for at = ∑

t
j=0 (nj)(1 − p)

n−jpj and bt =
1
2n ∑

t
j=0 (nj), along with

a−1 = b−1 = 0, show that when α = (1− λ)at−1 + λat for some t ∈ {0, . . . , n} and λ ∈ (0, 1),

βα(PXn ,QXn ) = (1 − λ)bt−1 + λbt . (9.16)

Exercise 9.13. Show that βα(ρ, 1) = βα(P, 1) for all α ∈ [0, 1] and all states ρ, where P
is the distribution of eigenvalues of ρ.

Exercise 9.14. Show that if 0 ≤ σ ≤ τ, then βα(ρ, σ) ≤ βα(ρ, τ) for any state ρ and
α ∈ [0, 1].

Exercise 9.15. Show that βα(ρ, σ) = βα(ρ ⊕ 0, σ ⊕ τ) for every τ ≥ 0. Here σ ⊕ τ denotes
the direct sum of operators, i. e., |0⟩⟨0| ⊗ σ + |1⟩⟨1| ⊗ τ.

Exercise 9.16. Show that βα(τ ⊗ ρ, τ ⊗ σ) = βα(ρ, σ) for all ρ, σ, τ.

Exercise 9.17. Show that for any CQ states τXB = ∑x∈𝒳 PX(x)|x⟩⟨x|X ⊗ ρB(x) and θXB =
∑x∈𝒳 PX(x)|x⟩⟨x|X ⊗ σB(x) sharing the same distribution PX and all α ∈ [0, 1],

βα(τXB, θXB) ≤ ∑
x∈𝒳

PX(x)βα(ρB(x), σB(x)) . (9.17)

9.4 Distinguishability

In the case of p = 1/2 the guessing probability satisfies Pguess(X|B)τ =
1
2 (1 +

1
2 ‖ρ − σ‖1).

A sensible notion of the distinguishability of two quantum states ρ and σ is therefore
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captured by

δ(ρ, σ) := 2Pguess(X|B)τ − 1 (9.18)

for τ = 1
2 |0⟩⟨0|X ⊗ρB+

1
2 |1⟩⟨1|X ⊗σB. The easier it is to determine which is the true state,

the more distinguishable the pair, and vice versa.
Bydefinition, 0 ≤ δ(ρ, σ) ≤ 1. The two limits are obtainedby identical states, ρ = σ,

and by completely disjoint states, ρσ = 0, respectively. In the latter case the supports
of the two states are orthogonal subspaces, so it is possible to make a projective mea-
surement that can distinguish between them without error.

Using (9.8), the distinguishability has the closed form

δ(ρ, σ) = 1
2 ‖ρ − σ‖1 , (9.19)

and via (9.7) the dual variational forms

δ(ρ, σ) = max
Λ
{Tr[Λ(ρ − σ)] : 0 ≤ Λ ≤ 1} (9.20)

= min
θ
{Tr[θ] : θ ≥ ρ − σ, θ ≥ 0} . (9.21)

Moreover, the distinguishability measure is faithful in the sense that δ(ρ, σ) = 0 if
and only if ρ = σ. Any difference between the states leads to some bias in the guess-
ing probability away from 1/2. This can be seen from the closed form or from (9.21):
Tr[θ] = 0 for θ ≥ 0 if and only if θ = 0, and therefore there is no positive part of ρ − σ.
Interchanging ρ and σ, the same argument implies that there is no negative part, and
hence ρ = σ.

Similarly, the case of disjoint ρ and σ is the only situation in which the distin-
guishability can achieve its maximal value. For the optimal Λ⋆ in (9.20), Tr[Λ⋆ρ] −
Tr[Λ⋆σ] = 1; since each term is bounded between 0 and 1, the second must be zero,
and the first must be unity. Hence Λ⋆ projects onto the support of ρ and annihilates
that of σ, so the supports are disjoint.

Exercise 9.18. Show that for any three states ρ, σ ∈ Lin(ℋA) and τ ∈ Lin(ℋB),

δ(ρA ⊗ τB, σA ⊗ τB) = δ(ρA, σA) . (9.22)

Exercise 9.19. Show that the distinguishability is invariant under unitary channels
applied to both arguments.

Typically, (9.19) is taken as the definition of the distinguishability, though doing
so is perhaps not quite right from a conceptual point of view. The guessing probability
is the operationally meaningful quantity and therefore should be used in the defini-
tion. Had the guessing probability turned out to be related to some other norm, say

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.4 Distinguishability | 133

the Hilbert–Schmidt norm, we would just as happily use that closed-form expression
instead.

The distinguishability satisfies several important properties. Foremost is mono-
tonicity under the action of an arbitrary quantum channel ℰ, as we saw in Section 9.1.
Another important property is the triangle inequality. For any three states ρ, σ, and τ,
we have

δ(ρ, σ) ≤ δ(ρ, τ) + δ(τ, σ) . (9.23)

To see this, suppose Λ⋆ is optimal in the variational form (9.20) for δ(ρ, σ). Then

δ(ρ, σ) = Tr[Λ⋆(ρ − τ)] + Tr[Λ⋆(τ − σ)] ≤ δ(ρ, τ) + δ(τ, σ) . (9.24)

Exercise 9.20. Prove the triangle inequality and monotonicity of the distinguishabil-
ity using the variational form in (9.21).

Closely related to monotonicity is the joint convexity of the distinguishability,
whichmeans that the function δ is jointly convex in its arguments. Specifically, for ev-
ery probability distribution P over 𝒳 and collection of states {ρ(x)}x∈𝒳 and {σ(x)}x∈𝒳 ,

δ( ∑
x∈𝒳

P(x)ρ(x), ∑
x∈𝒳

P(x)σ(x)) ≤ ∑
x∈𝒳

P(x) δ(ρ(x), σ(x)) . (9.25)

Monotonicity implies joint convexity for the following reason. Fix the probability
distribution P and define the CQ states τXB = ∑x P(x)|x⟩⟨x|X ⊗ ρB(x) and θXB =
∑x P(x)|x⟩⟨x|X ⊗ σB(x). Then δ(τXB, θXB) = ∑x P(x) δ(ρ(x), σ(x)); this is especially easy
to see using the closed-form expression for the distinguishability. Then (9.25) follows
by monotonicity under the channel TrX .

In fact, joint convexity implies monotonicity as well. This requires a little more
work to show. Let us first establish that joint convexity implies monotonicity under
the partial trace. To do so, consider arbitrary states ρBR and σBR. Using (5.5), the par-
tial trace over R can be written as ρR ⊗ πR =

1
|R|2 ∑
|R|2
j=1 WR(j)ρBRWR(j)∗ for appropriate

unitariesWR(j) and πR =
1
|R|1R. Using the shorthand 𝒱R(j)[ρBR] = VR(j)ρBRVR(j)∗, joint

convexity implies

δ(ρB ⊗ πR, σB ⊗ πR) ≤
1
|R|2
|R|2

∑
j=1

δ(𝒱R(j)[ρBR],𝒱R(j)[σBR]) . (9.26)

Since the distinguishability is invariant under unitaries, δ(ρB ⊗ πR, σB ⊗ πR) ≤
δ(ρBR, σBR). Applying (9.22) gives the desired result, δ(ρB, σB) ≤ δ(ρBR, σBR). The case
of a general channel now follows from the above argument by first using the Stine-
spring representation VBR|A for a channel ℰB|A. Specifically, δ(ρA, σA) = δ(𝒱BR|A[ρA],
𝒱BR|A[σA]) ≥ δ(TrR ∘𝒱BR|A[ρA], TrR ∘𝒱BR|A[σA]) = δ(ℰB|A[ρA], ℰB|A[σA]).
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Exercise 9.21. Show that δ(ρ, σ) ≥ α − βα(ρ, σ) for all α ∈ [0, 1]. For what value of α
does equality hold?

Exercise 9.22. Extending the previous exercise, give a geometric interpretation of the
lower boundary of R(ρ, σ) in terms of δ(ρ, γσ) for γ ∈ ℝ.

Exercise 9.23. Show that if δ(ρ, ρ′) ≤ ε, then βα+ε(ρ, σ) ≥ βα(ρ′, σ) for all positive σ and
α ∈ [0, 1 − ε].

9.5 Channel distinguishability

9.5.1 Definition

The notion of state distinguishability can be easily extended to the case of distinguish-
ing channels. Suppose ℰB|A and ℱB|A are two channels from system A to system B. To
distinguish them, we are free to choose the input to the channel and test the output
as we like. Even more, we are free to generate an entangled state ρAR with arbitrary R,
subject A to the channel, and then test the combined output system BR. Assuming a
uniform prior probability, the average probability of correctly guessing which of ℰB|A
and ℱB|A is the true channel is given by

1
2 (1 + δ(ℰB|A,ℱB|A)) for

δ(ℰB|A,ℱB|A) := supremum
ρAR ,ΛBR

Tr[ΛBR(ℰB|A[ρAR] − ℱB|A[ρAR])]

such that Tr[ρAR] = 1 , ΛBR ≤ 1BR ,

ρAR,ΛBR ≥ 0 .

(9.27)

In the definition, wemake use of the supremum since the dimension of the additional
system R is not restricted. Just as in the case of distinguishing states, the channel dis-
tinguishability satisfies monotonicity and the triangle inequality.

Proposition 9.2 (Triangle inequality of distinguishability). For any three channelsℰ,ℱ , and𝒢 with
the same input and output spaces,

δ(ℰ ,𝒢) ≤ δ(ℰ ,ℱ) + δ(ℱ ,𝒢) . (9.28)

Proposition 9.3 (Monotonicity of distinguishability). For every two channels ℱC|B and ℱ ′C|B and
any channels ℰB|A and 𝒢D|C ,

δ(𝒢 ∘ℱ ∘ ℰ ,𝒢 ∘ℱ ′ ∘ ℰ) ≤ δ(ℱ ,ℱ ′) . (9.29)

Note that these two statements also encompass the corresponding results for states,
since we can regard states as channels with trivial input.
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Exercise 9.24. Prove Propositions 9.2 and 9.3.

9.5.2 Composability

Due to these two properties, the notion of resource composability can be formalized
in terms of the channel distinguishability. An actual resourceℛ is said to simulate an
ideal resourceℛ′ to within ε if δ(ℛ,ℛ′) ≤ ε. No experiment can distinguish themwith
probability better than 1

2 (1+ε). Now suppose, as in the example of the Introduction,we
are interested in composing two actual resourcesℛ and𝒮 (protocols for noisy channel
coding and data compression, say) in the hopes that together they simulate the ideal
resource (transmitting the output of the data source to the receiver), which is the com-
position of the ideal resourcesℛ′ and 𝒮′. By the triangle inequality andmonotonicity
the overall approximation error ε will be bounded by the sum of the approximation
errors of either resource. Formally,

δ(ℛ ∘ 𝒮 ,ℛ′ ∘ 𝒮′) ≤ δ(ℛ ∘ 𝒮 ,ℛ′ ∘ 𝒮) + δ(ℛ′ ∘ 𝒮 ,ℛ′ ∘ 𝒮′)
≤ δ(ℛ,ℛ′) + δ(𝒮 ,𝒮′) .

(9.30)

9.5.3 SDP formulation

The optimization in definition (9.27) may look somewhat intractable, as it involves a
potentially very large reference system R. However, it can be transformed into an SDP
that makes no reference to R. To do so, first observe that without loss of generality we
can restrict to pure ρAR. As the objective function is linear in ρAR, a mixed input will
simply lead to a convex combination of objective functions with pure state inputs. We
may simply select the largest term in the convex combination. We can then show the
following:

Proposition 9.4 (Channel distinguishability SDP). Let EBA and E′BA be the Choi operators of any two
channels ℰB|A and ℰ ′B|A, respectively. Then the channel distinguishability δ(ℰB|A, ℰ ′B|A) can be ex-
pressed as the following semidefinite program:

δ(ℰ , ℰ ′) = maximum
ρA ,ΓAB

Tr[ΓBA(EBA − E
′
BA)]

such that Tr[ρA] = 1 , ΓBA ≤ 1B ⊗ ρ
T
A ,

ρA ≥ 0 , ΓBA ≥ 0 .

(9.31)

Proof. Since ρAR is pure, by (4.26) we can write, for some KB|A,

ρAR = (1A ⊗ KR|A′ )ΩAA′(1A ⊗ K
∗
R|A′) , (9.32)

ρTAAR = (1A ⊗ KR|A′ )Ω
TA
AA′(1A ⊗ K

∗
R|A′) = (1A ⊗ KR|A′ )ϒAA′(1A ⊗ K

∗
R|A′) . (9.33)
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Note that ρTA = TrR[ρ
TA
AR] = TrR[KR|A′ϒAA′ (KR|A′ )

∗] = TrA′ [(KR|A′ )∗KR|A′ϒAA′ ]. A useful
property of the swap operator is that for any operators OBA′ and OBA,

Tr[OBA′O
′
BAϒAA′] = Tr[OBAO

′
BA] . (9.34)

Therefore ρTA = (KR|A)
∗KR|A. For the objective function, we nowhave Tr[ΛBR(ℰB|A[ρAR]−

ℰ ′B|A[ρAR])] = Tr[(1B ⊗ K
∗
R|A′ )ΛBR(1B ⊗ KR|A′ )(EBA − E′BA)ϒAA′ ]. If we define ΓBA′ = (1B ⊗

K∗R|A′ )ΛBR(1B ⊗ KR|A′ ), then the objective function becomes simply Tr[ΓBA(EBA − E′BA)].
The condition 0 ≤ ΛBR ≤ 1 translates to

0 ≤ ΓBA = (1B ⊗ K
∗
R|A)ΛBR(1B ⊗ KR|A) ≤ 1B ⊗ (KR|A)

∗KR|A = 1B ⊗ ρ
T
A . (9.35)

Hence we have

δ(ℰB|A, ℰ
′
B|A) ≥ maximum

ρA ,ΓAB
Tr[ΓBA(EBA − E

′
BA)]

such that Tr[ρA] = 1 , ΓBA ≤ 1B ⊗ ρ
T
A ,

ρA ≥ 0 , ΓBA ≥ 0 .

(9.36)

The transpose on ρ does not really serve any purpose in the optimization and can be
safely omitted. However, by keeping it the purification of ρ is the optimal input test
state. Moreover, ρA ≥ 0 is redundant in light of the other two operator constraints.

We have an inequality in (9.36) because we relaxed the constraint on ΛBR by
conjugating with K: It could be that not every feasible ΓAB comes from a ΛBR in
this way. However, equality holds. Given feasible ρA and ΓAR, consider any “ma-
trix square root” KR|A of ρTA, i. e., KR|A such that ρTA = (KR|A)

∗KR|A. The polar de-
composition of KR|A is just KR|A = VR|A√ρTA for some isometry VR|A. Now define
ΛBR = VR|A(ρTA)

−1/2ΓAB(ρTA)
−1/2(VR|A)∗. It is positive by construction, and the constraint

ΓAB ≤ ρTA ⊗ 1B becomes ΛBR ≤ VR|A(VR|A)∗ ⊗ 1B = ΠR ⊗ 1B ≤ 1BR, where ΠR is the
projection onto the image of VR|A. Therefore we have the desired statement.

Exercise 9.25. Show that the dual form is as follows and that strong duality holds:

δ(ℰB|A, ℰ
′
B|A) = minimum

λ,TAB
λ

such that λ1A − TrB[TBA] ≥ 0 ,
TBA ≥ EBA − E

′
BA , TBA ≥ 0 .

(9.37)

Of course, we expect that for a classical channel, the optimal experiment is to
choose a fixed value of x at the input and then make a measurement to distinguish
the output distributions, as with the statistical distance. Indeed, this works for all CQ
channels.
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Exercise 9.26. Show that for any two CQ channels ℰB|X and ℱB|X ,

δ(ℰB|X ,ℱB|X) = max
x∈𝒳

δ(ℰB|X=x ,ℱB|X=x) . (9.38)

For B = Y classical and 𝒴 = 𝒳 , show that this leads to δ(W , I) = 1−minx∈𝒳 WY |X=x(x),
where I is the identity channel.

Exercise 9.27. Consider an arbitrary classical channel WY |X with 𝒴 = 𝒳 , and let
PXY (x, y) = PXX′ (x, y) =

1
|X|δx,y. Show that Pagree(WY |X) = 1 − δ(PXY ,WY |X′PXX′ ).

9.5.4 Need for entanglement

Entanglement is useful for distinguishing quantum channels, even in the case that
one of the channels is the identity, as shown in the following exercises. For certain
channels, it is necessary for achieving the optimal distinguishability, though this is
not always the case.

Exercise 9.28. Determine δ(ℰ , ℐ) for an arbitrary Pauli channel ℰ . Give an optimal in-
put state and measurement that works for all Pauli channels.

Exercise 9.29. Show that the optimal strategy for distinguishing the depolarizing
channel ρ → (1 − q)ρ + q Tr[ρ]π from the identity channel using a nonentangled input
is q/2, whereas 3q/4 is achievable using entangled states.

Exercise 9.30. Show that δ(𝒩p, ℐ) = p for𝒩p, the amplitude damping channel of (5.3)
with damping parameter p.

A particularly dramatic example of the gap in distinguishability when using en-
tangled versus unentangled inputs is given by the so-called Werner6–Holevo7 chan-
nels in dimension d, which were considered in Exercise 5.23:

ℰ[ρ] = 1
d + 1
(Tr[ρ]1 + ρT) and ℱ[ρ] = 1

d − 1
(Tr[ρ]1 − ρT) . (9.39)

Acting on system A of the maximally entangled state ΦAB, the two channels produce
ℰA[ΦAB] =

1
d(d+1) (1AB + ϒAB) and ℱA[ΦAB] =

1
d(d−1) (1AB − ϒAB). A direct calculation

shows that the product of these two states is zero. (In fact, they are proportional to
the projection operators on the symmetric and antisymmetric subspaces ofℋA ⊗ℋB,
respectively.) Therefore δ(ℰ ,ℱ) = 1.

On the other hand, observe that ℰ[ρ] − ℱ[ρ] = 2
d2−1 (dρ

T − 1). Using the triangle
inequality of the trace norm, it follows that δ(ℰ[ρ],ℱ[ρ]) = 1

d2−1 ‖dρ
T − 1‖1 ≤

2d
d2−1 .

6 Reinhard Frank Werner, born 1954.
7 Alexander Holevo, born 1943. Also transliterated as Kholevo.
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This quantity tends to zero as 1/d for large d, and hence in principle there can be a
dimension-dependent gap in the distinguishability when using entangled inputs and
when not.

Exercise 9.31. Confirm that the distinguishability of the Z channel of Figure 3.1 to the
identity channel is just r, the probability of an input 1 being output as 0. Now consider
the equal convex combination of the Z channel with its bit-flipped version, in which
the input 0 is output as 1 with probability r. Show that the resulting channel is just
BSC(r/2), and therefore the distinguishability has decreased to r/2. It is tempting to
think that it should be possible to derandomize the latter scenario and restore the
larger distinguishability. Why is this not the case?
Hint: What is the appropriate input state to use, given the choice of the two versions of
the Z channel?

The channel distinguishability inherits joint convexity from the state distin-
guishability. This can be easily established using the dual formulation (9.37) and
monotonicity applied to the heralded extension ℰXB|A of an arbitrary convex combi-
nation∑x P(x) ℰB|A(x) of channels, given by ℰXB|A = ∑x P(x)|x⟩⟨x|X ⊗ ℰB|A(x).

Exercise 9.32. Show that for any collection of channels ℰB|A(x) and ℰ ′B|A(x) and prob-
ability distribution P,

δ(∑
x
P(x)ℰB|A(x),∑

x
P(x)ℰ ′B|A(x)) ≤∑

x
P(x) δ(ℰB|A(x), ℰ

′
B|A(x)) . (9.40)

Exercise 9.33. Show that the distinguishability of heralded version of the random
choice of the two Z channels in Exercise 9.31 from the (heralded) identity channel is
not increased over the unheralded case.

Exercise 9.34. Suppose ℰB|A and ℱB|A are any two channels, and let ρAB = ℰB|A′ [ΦA′A]
and σAB = ℱB|A′ [ΦA′A] be the normalized versions of their associated Choi representa-
tives. Show that, for the dimension dA of the input system A,

δ(ρAB, σAB) ≤ δ(ℰB|A,ℱB|A) ≤ dAδ(ρAB, σAB) . (9.41)

Hint: Relax the constraints in (9.31) by using ρ ≤ 1.

9.6 Notes and further reading

Bayesian and Neyman–Pearson hypothesis testing of quantum states was first con-
sidered by Helstrom for projective measurements [137], who showed (9.8) in this case,
and later extendedbyHolevo [143] to arbitrary POVMs. The classical Neyman–Pearson
lemma is from [210] andwas shownbyHolevo in full generality in [143]. Herewe follow
an SDP approach taken in [86]; the more geometric approach of Exercise 9.10 follows
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Holevo (see also Helstrom [138]). For more on semidefinite programming, including
proof of Slater’s condition; see Boyd and Vandenberghe, either their review [289] or
their book on convex optimization [44], or Barvinok [13].

Channel distinguishability was considered by Kitaev [161] and Aharonov, Nisan,
and Kitaev [1] in terms of the completely bounded trace norm on the one hand (of-
ten called the “diamond” norm as the notation is ‖ ⋅ ‖◊), and on the other in terms
of the completely bounded operator norm on the adjoint of the channel (working in
the Heisenberg picture instead of the Schrödinger picture as here), as inWerner [299].
These norms are equivalent. For more, see Paulsen [217]. Using the trace norm for-
mulation of the distinguishability in our definition leads to the characterization in
terms of the completely bounded trace norm, i. e., the trace normdistinguishability ex-
tended by entangled inputs. Gilchrist, Langford, Nielsen [109] showed that the chan-
nel distinguishability is a convex optimization, and Watrous [297] showed that it can
be formulated as a semidefinite program.
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10 Fidelity
FIDELITY, n. A virtue peculiar to those who are about to be betrayed.

from The Cynic’s Word Book by Ambrose Bierce

Continuing with the Bayesian approach to discrimination introduced in the previous
chapter, we may ask what happens if the purifying system is included in the state or
channel distinguishability task. This leads to the quantity known as fidelity, which is
often much simpler to work with than the distinguishability itself. This chapter takes
up the definition of the fidelity and explores many of its properties.

10.1 Definition

For states ρ and σ onℋA, let |ψρ⟩AR and |ψσ⟩AR denote purifications of the states toℋR,
respectively. It is not difficult to show that the distinguishability of the purifications
|ψρ⟩ and |ψσ⟩ is given by

δ(ψρ,ψσ)
2 = 1 − ⟨ψρ|ψσ⟩


2 . (10.1)

Since purifications are not unique, the best case distinguishability of the purifications
of two density operators ρ and σ is in fact unity, as the supports of the purification
states could be disjoint. For instance, |ψσ⟩AR|0⟩R′ and |ψσ⟩AR|1⟩R′ are legitimate pu-
rifications. Thus, to have a meaningful measure, we should consider the worst-case
distinguishability when using the purification. In light of (10.1), we define the fidelity
F(ρ, σ) of two density operators ρ and σ on ℋA to be the largest possible overlap of
their purifications,

F(ρ, σ) := sup
R

max|ψρ⟩,|ψσ⟩⟨ψρ|ψσ⟩AR
 . (10.2)

The supremum is taken over purifying systems, which can in principle be of arbitrary
dimension. There is little difference in optimizing the overlap versus the square of the
overlap, and the reader is advised that both choices aremade in the literature. Wewill
need to have |R| larger than the rank of either state to be sure there are purifications
for both states onℋA ⊗ℋR.

From the definition it is clear that F(ρ, σ) ∈ [0, 1]. The most important property of
the fidelity, monotonicity under channel action, follows immediately from the defini-
tion.

https://doi.org/10.1515/9783110570250-010
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Proposition 10.1 (Monotonicity of the fidelity). Foranydensity operatorsρA, σA anda channelℰB|A,
F(ℰB|A[ρA], ℰB|A[σA]) ≥ F (ρA, σA) . (10.3)

Equality holds if ℰB|A is an isometry, i. e., ℰB|A[τA] = VB|AτAV∗B|A for isometry VB|A.
Proof. For convenience, let ρ′B = ℰB|A[ρA] and σ′B = ℰB|A[σA]. Take the equality case
first and observe that for every purification |ψ⟩AE of ρA and |φ⟩AE of σA, VB|A|ψ⟩AE and
VB|A|φ⟩AE are purifications of ρ′B and σ′B, respectively. Conversely, since ρ′B and σ′B are
supported in the image of VB|A by construction, for every purification |ψ′⟩BE of ρ′B and
|φ′⟩BE of σ′B, the states V∗B|A|ψ′⟩BE and V∗B|A|φ′⟩BE are purifications of ρA and σA, re-
spectively. Therefore ⟨ψ|φ⟩ = ⟨ψ|V∗V |φ⟩ and ⟨ψ′|φ′⟩ = ⟨ψ′|VV∗|φ′⟩ imply that the
fidelities are equal.

For a general channel ℰB|A, letVBR|A be aStinespring isometry anddefine |ψ′⟩BRE =
VBR|A|ψ⟩AE and |φ′⟩BRE = VBR|A|φ⟩AE . The equality condition implies that F(ρA, σA) =
F(ψ′BR,φ′BR). Thus it only remains to show that the fidelity cannot decrease under par-
tial trace, so that F(ρ′B, σ′B) = F(ψ′B,φ′B) ≥ F(ψ′BR,φ′BR). However, this follows at once
since every purification of a joint state is a purification of its marginals.

10.2 Closed-form expression

Despite the optimization in the definition, it turns out that the fidelity has a relatively
simple closed-form expression. Using the Schmidt decomposition, we express purifi-
cations of arbitrary ρ and σ as |ψρ⟩ = ∑

|A|
k=1√λk |λk⟩A ⊗ |ξk⟩R and |ψσ⟩ = ∑

|A|
k=1√θk |θk⟩A ⊗

|ηk⟩R, where now we include zero eigenvalues into the expression so that the summa-
tions run over complete orthonormal bases in system A. The overlap is therefore

⟨ψρ|ψσ⟩AR =
|A|
∑
k=1 |A|∑k′=1√λkθk′⟨λk |θk′⟩⟨ξk |ηk′⟩ . (10.4)

Note that this expression implies

F(ρ, σ) = F(ΠσρΠσ , σ) , (10.5)

where Πσ is the projector onto the support of σ, since only those |θk⟩ in the support of
σ contribute to the sum. By the same argument, F(ρ, σ) = F(ρ,ΠρσΠρ).

Rewriting the overlap expression a little gives

⟨ψρ|ψσ⟩AR = Tr[√σ
d
∑
k=1 d
∑
k′=1 |θk′⟩⟨ξk |ηk′⟩⟨λk |√ρ]

= Tr[√σ
d
∑
k=1 d
∑
k′=1 |θk′⟩⟨ηk′ |ξ k⟩⟨λk |√ρ] = Tr[√ρ√σU] ,

(10.6)
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where U = ∑dk,k′=1 |θk′⟩⟨ηk′ |ξ k⟩⟨λk |. Until now we have not placed any constraints on
the states {|ξk⟩R} and {|ηk⟩R}, apart from the fact that they are both orthogonal sets,
in accordance with the Schmidt decomposition. However, to maximize the overlap,
these sets should span the same subspace of R. Hence U must be a unitary operator
since it is the product of twomaps, each of which takes an orthonormal set to another
orthonormal set of the same size, namely∑dk |ξ k⟩⟨λk | and∑

d
k′=1 |θk′⟩⟨ηk′ |. Therefore we

have F(ρ, σ) = maxU | Tr[√ρ√σU]|. By Lemma B.5 this is just ‖√ρ√σ‖1. Thus we have
shown the following:

Proposition 10.2 (Uhlmann’s theorem). For any two density operators ρ, σ ∈ Lin(ℋ),
F (ρ, σ) = ‖√ρ√σ‖1 . (10.7)

Furthermore, there exist optimal purifications of ρ and σ in ℋ ⊗ ℋ. In particular, for U such that√ρ√σU = |√ρ√σ|, the optimal purifications are√ρ ⊗ 1|Ω⟩ and√σ ⊗ UT |Ω⟩, respectively.
The trace norm expression is often written F(ρ, σ) = Tr[√√σρ√σ], which is a little
more explicit but less obviously symmetric in the arguments.

Exercise 10.1. Using this form, show that

F(ρ, |ψ⟩⟨ψ|)2 = ⟨ψ|ρ|ψ⟩ . (10.8)

When ρ and σ commute, so that their eigenvalues define the probability distribu-
tions P and Q, respectively, the expression simplifies to F(ρ, σ) = ∑k √P(k)Q(k). In
classical information theory, this is known as the Bhattacharyya1 coefficient.

Exercise 10.2. Show that the fidelity is multiplicative, that is, F(ρ ⊗ ρ′, σ ⊗ σ′) =
F(ρ, σ) F(ρ′, σ′) for all positive ρ, ρ′, σ, and σ′,.
Exercise 10.3. Following the argument for joint convexity of the distinguishability
in (9.25), show that in this case monotonicity implies joint concavity of the fidelity.

10.3 SDP formulation

Perhaps surprisingly, the fidelity F(ρ, σ) can be formulated as the optimum value of
an SDP in which the states ρ and σ appear linearly in the optimization. Consider a
purification of the operator

Θ = ( ρ X
X∗ σ
) , (10.9)

1 Anil Kumar Bhattacharyya, 1915–1996.
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where we restrict attention to those X such that Θ ≥ 0. We can regard Θ as a (non-
normalized) state on AB, where ρ and σ are states on B, and A is a qubit, i. e., ΘAB =
|0⟩⟨0|A ⊗ ρB + |0⟩⟨1|A ⊗ XB + |1⟩⟨0|A ⊗ X∗B + |1⟩⟨1|A ⊗ σB. Since ΘAB is positive, it has a
purification |Θ⟩ABR, and this can be written

|Θ⟩ABR = |0⟩A ⊗ |ψ⟩BR + |1⟩A ⊗ |φ⟩BR (10.10)

for some vectors |ψ⟩BR and |φ⟩BR. By the form of ΘAB these vectors must be purifica-
tions of ρB and σB, respectively. Therefore the trace of XB is the overlap of the purifi-
cations, since Tr[X] = ⟨φ|ψ⟩ The overlap need not be real-valued, but taking the real
part leads to the following SDP:

F(ρ, σ) = maximum
X

1
2 Tr[X + X

∗]
such that ( ρ X

X∗ σ
) ≥ 0 .

(10.11)

To see that this equality statement is correct, i. e., that the optimal value of the SDP
does deliver the fidelity, note that the overlap of any two purifications can be made
real by adjusting the global phase of one of the pure states. Hence the maximization
is effectively over the absolute value of the overlap.

Exercise 10.4. Prove monotonicity of the fidelity using the SDP formulation. Show
that, in fact, monotonicity holds for all positive arguments ρ and σ (not necessarily
of unit trace) and superoperators ℰ, which do not decrease the trace and for which
ℰ ⊗ ℐ2 is positive, with ℐ2 the identity superoperator on a two-dimensional system.

Exercise 10.5. Confirm that for σ a pure state,X = ρσ/F(ρ, σ) is the optimizer in (10.11).
Hint: Make use of (10.5).

The optimization is not in our usual SDP form, but this is easily done. Instead
of X as the variable and the stated block-operator constraint, take the block operator
W = ( U X

X∗ V ) as the variable subject to the constraintsW = 0, U = ρ, and V = σ. Using
the composite system AB from above to express the block form, the objective function
is Tr[ 12 ((σx)A ⊗ 1B)WAB], and the constraints involving the states can be expressed as
TrA[|0⟩⟨0|AWAB] = ρB and TrA[|1⟩⟨1|AWAB] = σB.

Now we can more easily derive the dual. It has two variables from the two con-
straints, denote them 1

2Y and 1
2Z. The prefactors will be useful momentarily. Taking

the inner product with the corresponding constraints and adding the two results gives

Tr[ 12 (|0⟩⟨0|A ⊗ YB + |1⟩⟨1|A ⊗ ZB)WAB] =
1
2 Tr[Yρ] +

1
2 Tr[Zσ] . (10.12)
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Here we require only Hermiticity of Y and Z for the equality to hold. To ensure that the
left-hand side is larger than the objective function, it suffices to require

(σx)A ⊗ 1B ≤ |0⟩⟨0|A ⊗ YB + |1⟩⟨1|A ⊗ ZB . (10.13)

Rewriting in block form yields the upper bound F(ρ, σ) ≤ F†(ρ, σ) with
F†(ρ, σ) = minimum

Y ,Z 1
2 (Tr[Yρ] + Tr[Zσ])

such that ( Y −1
−1 Z

) ≥ 0 .

(10.14)

In fact, the Slater criterion implies that F†(ρ, σ) = F(ρ, σ), and the infimum is at-
tained by some optimal Y⋆ and Z⋆. Simply takeW = |0⟩⟨0|A ⊗ ρB + |1⟩⟨1|A ⊗ σB (i. e.,
X = 0) as strictly feasible in the primal and Y = Z = 21 in the dual. Having established
strong duality, we can then learn some interesting properties of the optimal solution
from the complementary slackness conditions. Equality of the primal and dual im-
plies, from (10.13), that

Tr [( ρ X
X∗ σ
)(

Y −1
−1 Z

)] = 0 . (10.15)

Since this is the trace of the product of two positive operators, the product itself must
be zero (see Lemma B.3). Therefore the optimal X, Y , and Z satisfy ρ = XZ, σ = X∗Y ,
X = ρY , andX∗ = σZ. This tells us that Tr[Yρ] = Tr[Zσ] aswell as ρ = ρYZ and σ = σZY .
Thus Y = Z−1 at least on the support of ρ and the support of σ.
Exercise 10.6. Show that for ρ = |φ⟩⟨φ| and σ = |ψ⟩⟨ψ|, with phases chosen such that
F(ρ, σ) = ⟨φ|ψ⟩, the choice Y = σ/F and Z = ρ/F is optimal.

10.4 Further properties

10.4.1 Achievability by measurement

The slackness conditions allow us to prove Alberti’s2 characterization of the fidelity,

Proposition 10.3 (Alberti’s theorem). For any two density operators ρ and σ,

F (ρ, σ)2 = minimum
Z

Tr[Zσ] Tr[Z−1ρ]
such that Z > 0 on the support of ρ . (10.16)

2 Peter M. Alberti.
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Proof. By (10.5) we can restrict σ to the support of ρ and then compute the fidelity in
this restricted subspace. Then, by the slackness conditions, we can replace Y by Z−1
in (10.14). The constraint reduces to Z > 0 by the properties of the Schur complement
from Section B.8. The objective function becomes 1

2 (Tr[Zσ] + Tr[Z
−1ρ]), and the in-

equality of arithmetic and geometric means implies the squared fidelity is larger than
the optimal value in (10.16). However, note that it is always possible to find an opti-
mal Z in (10.16) such that the two factors are equal simply by rescaling Z. Then the
arithmetic and geometric means are equal, so a feasible pair (Y , Z) for (10.14) can be
constructed from the optimal Z in (10.16) such that the objective functions are equal.
Therefore the two optimizations have the same optimal value.

Alberti’s theorem implies that there exists a projective measurement with projec-
tors Π(x) such that F(ρ, σ) = F(P,Q) for P(x) = Tr[Π(x)ρ] and Q(x) = Tr[Π(x)σ]. To
see this, first, observe that by monotonicity it follows that F(ρ, σ) ≤ F(P,Q) for any
measurement Π(x). On the other hand, consider the eigenbasis of an optimal Z. For
Z = ∑x νxΠ(x), we have

F(ρ, σ)2 =∑
x
νx Tr[Π(x)σ]∑

x′
ν−1x′ Tr[Π(x)ρ] . (10.17)

Defining ux = √νxQ(x) and vx = √ν−1x P(x), this is F(ρ, σ)2 = (u ⋅ u)(v ⋅ v), and by
Cauchy3–Schwarz4 we have

F(ρ, σ) ≥ |u ⋅ v| =

∑
x
√P(x)Q(x)


= F(P,Q) . (10.18)

Hence both inequalities hold, meaning that F(ρ, σ) = F(P,Q) for measurement in the
eigenbasis of the optimal Z.

Exercise 10.7. Using the singular value decomposition, show that the operator Z =
σ−1/2(σ1/2ρσ1/2)1/2σ−1/2 satisfies Z−1 = ρ−1/2(ρ1/2σρ1/2)1/2ρ−1/2. Therefore this Z is optimal in
Alberti’s theorem, and measurement in its eigenbasis does not change the fidelity.

10.4.2 Bounds between fidelity and distinguishability

It turns out that the worst-case distinguishability when using the purification is
not terribly different from the distinguishability when not using the purification at
all.

3 Augustin-Louis Cauchy, 1789–1857.
4 Karl Hermann Amandus Schwarz, 1843–1921.
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Proposition 10.4. For any two density operators ρ and σ,

δ(ρ, σ) + F (ρ, σ) ≥ 1, (10.19)

δ(ρ, σ)2 + F (ρ, σ)2 ≤ 1. (10.20)

Proof. Suppose P andQ are the classical distributions resulting from the optimalmea-
surement for the fidelity as above. Then we have δ(ρ, σ) ≥ δ(P,Q). But δ(P,Q) ≥ 1 −
F(P,Q) by the following argument:

δ(P,Q) = 1
2∑

x
|Px − Qx| =

1
2∑

x


√Px −√Qx

(
√Px +√Qx)

≥ 1
2∑

x
(√Px −√Qx)

2
= 1 − F(P,Q) .

(10.21)

To show the second, supposeψ andφ are the optimal purifications of ρ and σ from
Uhlmann’s theorem. By (10.1), δ(ψ,φ)2+F(ρ, σ)2 = 1. Monotonicity of the distinguisha-
bility finishes the argument.

The case of pure states saturates the quadratic bound, as in (10.1). Meanwhile,
the linear bound is saturated by the classical distributions P = (1 − t, t,0) and Q =
(1 − t,0, t) for any t ∈ [0, 1]. Observe that the linear bound is obtained by applying
monotonicity of a quantity (distinguishability) to themeasurement channel achieving
another quantity (fidelity). This is a useful technique we will often employ. Indeed, it
is one option for proving the bound in Exercise 9.21. Here are some other examples.

Exercise 10.8. Show that if one of ρ and σ is pure, then δ(ρ, σ) + F(ρ, σ)2 ≥ 1. Fur-
thermore, show that the same bound holds for any two states of dimension two.
Hint: Use monotonicity of the distinguishability under the measurement achieving the
fidelity. Optimize over the free parameters.

Exercise 10.9. Follow the strategy of the previous exercise but use the optimal dis-
tinguishing measurement in monotonicity of the fidelity. Show that this leads back
to (10.20).

Exercise 10.10. Suppose a state ρ is measured with a POVM and the outcome corre-
sponding to POVM element Λ occurs, such that the postmeasurement state is ρ′ =
√Λρ√Λ/ Tr[Λρ]. Show that the state does not change much, provided that the proba-
bility Tr[Λρ] is large: F(ρ, ρ′)2 ≥ Tr[Λρ]. Hint: Use√Λ ≥ Λ for Λ ≥ 0.

10.4.3 Triangle inequality

Although the fidelity is in some sense derived from the distinguishability, due to its
form, it does not satisfy the triangle inequality. However, if we interpret the overlap
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as defining an angle between vectors, then it is not too difficult to show that the angle
itself does. In particular, we have the following:

Proposition 10.5 (Triangle inequality of the fidelity). For all quantum states ρ, σ, and τ,

arccos F (ρ, σ) ≤ arccos F (ρ, τ) + arccos F (τ, σ) . (10.22)

Equivalently, with x = F (ρ, τ) and y = F (τ, σ),
F (ρ, σ) ≥ xy −√1 − x2√1 − y2 . (10.23)

Equivalence of the two forms is easily seen by setting x = cos α and y = cos β in the
latter expression and then substituting α = arccos F(ρ, τ) and β = arccos F(τ, σ). Ob-
serve that the bound is only useful when the right-hand side of the latter expression
is positive, which amounts to F(ρ, τ)2 + F(τ, σ)2 > 1.

Proof. For a given purification |θ⟩ of τ, we can choose |φ⟩ to be a purification of ρ such
that F(ρ, τ) = ⟨φ|θ⟩. Continuing, we may choose |ψ⟩ to be a purification of σ such that
F(τ, σ) = ⟨θ|ψ⟩. Finally, by adjusting the phases of all three states we can ensure that
⟨φ|ψ⟩ ≥ 0. Therefore the three vectors can be represented in ℝ3 and F(ρ, σ) ≥ ⟨φ|ψ⟩.
We are interested in finding the smallest ⟨φ|ψ⟩ given this setup, so that the resulting
bound on F(ρ, σ) holds for all states.

Geometrically, the bound is the intuitive statement that for three vectors in ℝ3

such that the angles between two pairs are fixed, the maximal angle for the third pair
occurswhen the vectors lie in a plane. Though it is perhaps unnecessary to give amore
explicit proof, let us take the opportunity to further illustrate the technique of working
with SDPs. Consider the matrix formed by the overlaps of these three vectors, their
Gram5 matrix,

G =(
1 x z
x 1 y
z y 1

) (10.24)

for x = ⟨φ|θ⟩, y = ⟨θ|ψ⟩, and z = ⟨φ|ψ⟩. Every Gram matrix of a collection of vectors
|vk⟩ is positive semidefinite, since it is just G = T∗T for T = ∑k |vk⟩⟨k|. Thus, we are
looking for f (x, y) = infz{z : G ≥ 0}, which is an SDP.

It is a good guess that the minimal z will occur when there is one zero eigenvalue
and the other two are positive. This also accords with the geometric intuition that in
the optimal configuration the vectors lie in plane: The rank of a Gram matrix is the
dimension of the span of the associated vectors, which follows because T∗T and TT∗
have the same nonzero eigenvalues (see Appendix B.6).

5 Jørgen Pedersen Gram, 1850–1916.
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Again, wemake use of the Schur complement. The upper left 2× 2 block A = ( 1 x
x 1 )

is positive when x ≤ 1, and its inverse is simply A−1 = 1
1−x2 ( 1 −x−x 1 ). By Lemma B.6

positivity of G is therefore equivalent to 1 − (z, y)TA−1(z, y) ≥ 0, which is just x2 + y2 +
z2 ≥ 1 + 2xyz. Setting this equal to zero and using the quadratic formula yields z =
xy ± √x2y2 + (1 − x2 − y2). The choice z = xy − √1 − x2√1 − y2 would therefore seem to
be the minimal value.

To be certain, we turn to the dual. It is given by

f †(x, y) = supremum
J

− Tr[[
[

J(
1 x 0
x 1 y
0 y 1

)]]

]

such that Tr[[
[

J(
0 0 1
0 0 0
1 0 0

)]]

]

≤ 1 , J ≥ 0 .

(10.25)

Using the slackness conditions as a guide, we can construct a feasible dual variable J
with the same value of the objective function, thereby establishing strong duality. The
slackness conditions are JG = 0 and equality in the trace constraint of the dual. Com-
bining these two implies equality of the objective functions, so everything is consis-
tent. Observe that for the putatively optimal value of z, G has two positive eigenvalues
1
2 (3 ±√1 + 8xyz). Therefore we can choose J to be proportional to the zero eigenvector
of G, implying J ≥ 0, scaled so that the trace constraint is satisfied with equality. This
choice of z and J is both feasible and fulfills the slackness conditions and hence is
optimal.

We should expect this form for the optimal J: the positivity constraint forG is only
“barely” satisfied, and so the constraint is binding only on one dimension. By slack-
ness the dual variable can be zero on the orthogonal subspace.

10.5 Channel fidelity

10.5.1 Definition and SDP formulation

We can define a useful fidelity measure for two channels by optimizing the fidelity of
their outputs over all possible input states, including entangled states:

F(ℰB|A, ℰ ′B|A) := infρAR
F(ℰB|A[ρAR], ℰ ′B|A[ρAR]) . (10.26)

Joint concavity of the fidelity (see Exercise 10.3) implies that we may as well take ρAR
in the optimization to be pure.
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Due to the properties of the fidelity, it is tempting to think that this quantity is un-
changed if the system R is omitted. After all, the fidelity will anyway involve purifica-
tion. However, the fidelity involves separate purifications for each argument, whereas
here we demand the input state to both channels be identical.

As with the channel distinguishability, it is possible to cast this optimization as a
semidefinite program, this time building on the SDP in (10.14).

Proposition 10.6 (Channel fidelity SDP). Let EBA and E′BA be the Choi operators of any two quantum
channels ℰB|A and ℰ ′B|A. Then the channel fidelity F (ℰB|A, ℰ ′B|A) can be expressed as the following
semidefinite program:

F(ℰB|A, ℰ ′B|A) = minimumρ,Λ,Γ 1
2 (Tr[EBAΓBA] + Tr[E′BAΛBA])

such that ( ΓBA −1B ⊗ ρTA−1B ⊗ ρTA ΛBA
) ≥ 0 ,

Tr[ρTA] = 1 ,
ρA, ΓBA, ΛBA ≥ 0 .

(10.27)

We leave the transpose in this expression, because then (the purification of) ρA itself
is the optimal input to distinguish the channels.

Proof. First, use (10.14) to write

F(ℰ , ℰ ′) = minimum 1
2 (Tr[Yℰ[ρ]] + Tr[Zℰ

′[ρ]])
such that ( Y −1

−1 Z
) ≥ 0 , Tr[ρT] = 1 , ρAR,YBR, ZBR ≥ 0 .

(10.28)

We can restrict to pure ρAR since the objective is linear in ρAR and proceed as in the
channel distinguishability proof. Using theChoi representation and (9.33),F(ℰ , ℰ ′) can
be written as

F(ℰ , ℰ ′) = minimum 1
2 (Tr[YBREBAKR|A′ϒAA′ (KR|A′ )∗]
+ Tr[ZBRE

′
BAKR|A′ϒAA′ (KR|A′ )∗])

such that ( Y −1
−1 Z

) ≥ 0 , Tr[(KR|A)∗KR|A] = 1 ,
YBR, ZBR ≥ 0 .

(10.29)

Next, we show that any choice of feasible variables in (10.29) can be converted into a
feasible set for (10.27) having the same value of the objective function and vice versa.
Turning the former into the latter is simple. Define ΓBA′ = (KR|A′ )∗YBRKR|A′ and ΛBA′ =
(KR|A′ )∗ZBRKR|A′ so that the objective is simply 1

2 (Tr[ΓBAEBA]+Tr[ΛBAE′BA]). Conjugating
the block matrix by M∗ on the left and M = diag(KB|A,KB|A) on the right yields the

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



150 | 10 Fidelity

form in (10.27). This implies that the channel fidelity F(ℰ , ℰ ′) is at least as large as the
optimal value in (10.27), as conjugation byM relaxes the constraint.

The other direction is complicated by the possibility that ρA does not have full
rank. If it does have full rank, then a simple choice is KR|A = VR|A√ρTA for a density
operator ρA and an arbitrary isometry VR|A, along with

YBR = VR|A(ρTA)−1/2ΓBA(ρTA)−1/2(VR|A)∗ (10.30)

and ZBR defined similarly from ΛBA instead of ΓBA. Direct calculation shows that
Tr[YBRℰB|A[ρA]] = Tr[ΠAΓBAΠAEBA] for the projection ΠA onto the support of ρTA. With-
out loss of generality the optimal Γ will be such that ΠAΓBAΠA = ΓBA since replacing
any feasible ΓBA by ΠAΓBAΠA will maintain the constraints and only potentially lower
the objective. As much holds for Λ. Hence (10.27) and (10.29) are equivalent for ρA of
full rank.

The case of ρA of lower rank can presumably be dealt with by continuity, but here
is amore direct solution. Keep the same formofKR|A but setYBR = Y ′BR+1B⊗(1R−Π′R) for
Y ′BR defined from (10.30) andΠ′R = VR|AΠAV∗R|A, and similarly forZBR. These extra terms
will not contribute to the objective function due to the presence of ρTA. Conjugation of
the block matrix constraint in (10.27) byM = diag(L, L) for LR|A = VR|A(ρTA)−1/2 gives

(
Y ′BR −1B ⊗ Π′R
−1B ⊗ Π′R Z′BR ) ≥ 0 . (10.31)

Adding ( 1B −1B−1B 1B
) ⊗ (1R − Π′R) ≥ 0 gives the block matrix constraint of (10.29).

Exercise 10.11. Show that the dual is given by the following and that strong duality
holds:

F(ℰ , ℰ ′) = maximum
μ,XAB μ

such that μ1 − 1
2 TrB[(XAB + X

∗
AB)] ≤ 0 ,

(
EAB XAB
X∗AB E′AB) ≥ 0 .

(10.32)

Exercise 10.12. Show that for any two channels ℰB|A and ℰ ′B|A,
δ(ℰ , ℰ ′) + F(ℰ , ℰ ′) ≥ 1 and (10.33)

δ(ℰ , ℰ ′)2 + F(ℰ , ℰ ′)2 ≤ 1 . (10.34)

Exercise 10.13. Show that F(ℰ , ℐ) = √1 − p for every Pauli channel ℰ whose probabil-
ity of the identity operation is 1 − p.
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Exercise 10.14. Show that F(𝒩γ , ℐ) = √1 − γ, where 𝒩γ is the amplitude damping
channel with parameter γ.

10.5.2 Comparing a channel to the identity

In Section 9.5, we observed that entangled inputs can provide a large advantage in the
task of distinguishing two channels. However, when one of the channels is the iden-
tity channel, this advantage mostly disappears. This fact is easier to establish using
fidelity than distinguishability.

When comparing a channel ℰA to the identity ℐA, the channel fidelity can be ex-
pressed in terms of what is often called the entanglement fidelity Fent(ρ, ℰ) of a state ρA
and a channel ℰA. For an arbitrary purification ψAR of ρA,

Fent(ρ, ℰ) := F(ℰA[ψAR],ψAR) . (10.35)

Since any other purification differs only by action on R, which does not affect ℰA, this
expression is independent of the choice of purification. Thus F(ℰ , ℐ) = minρ Fent(ρ, ℰ).
Note that Pagree(ℰ) = Fent(π, ℰ)2.

Exercise 10.15. Show that Fent(ρ, ℰ)2 = ∑j | Tr[K(j)ρ]|
2 for a set K(j) of Kraus operators

of the channel. Using this form, argue that it is also independent of the choice of Kraus
operators.

Exercise 10.16. Using (10.27), show that Fent(ρ, ℰ) is convex in ρ for any channel ℰ;
indeed, the fidelity F(ρA, ℰB|A, ℰ ′B|A) between ℰB|A[ψAR] and ℰ ′B|A[ψAR] for a purification
ψAR of ρA is convex in ρA.

Nowdefine the quantityFpure(ℰ) := min|ψ⟩ F(ℰ[|ψ⟩⟨ψ|], |ψ⟩⟨ψ|), which is the chan-
nel fidelity between ℰ and ℐ, but restricted to channel inputs that are pure on A. We
can show that

F(ℰ , ℐ)2 ≥ 2Fpure(ℰ)
2 − 1 . (10.36)

Proof. Suppose that ρ is optimal in the Fent(ρ, ℰ) optimization, and define {|k⟩} to be its
eigenbasis and λ2k its eigenvalues. Defining |ψ⟩AA′ = ∑k λk |k⟩A⊗|k⟩A′ , a straightforward
calculation gives F(ℰ , ℐ)2 = ∑jk λ

2
j λ

2
k⟨j|ℰ[|j⟩⟨k|]|k⟩. Next, define |φ⟩A = ∑k λke

iθk |k⟩ for
arbitrary phases θk ∈ ℝ for all k. Then

Fpure(ℰ)
2 ≤ ⟨φ|ℰ[|φ⟩⟨φ|]|φ⟩

= ∑
jkℓm λjλkλℓλmei(−θj+θk−θℓ+θm)⟨j|ℰ[|k⟩⟨ℓ|]|m⟩ . (10.37)

The phase factor vanishes when j = k, ℓ = m or j = m, k = ℓ. Integrating the in-
equality over the four phases, each in the interval (0, 2π], leaves only these two cases.
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Attributing the contribution j = k = ℓ = m to the first case, we have

Fpure(ℰ)
2 ≤ ∑

jℓ λ2j λ2ℓ⟨j|ℰ[|j⟩⟨ℓ|]|ℓ⟩ + ∑k,j ̸=k λ2j λ2k⟨j|ℰ[|k⟩⟨k|]|j⟩
= F(ℰ , ℐ)2 + ∑

k,j ̸=k λ2j λ2k⟨j|ℰ[|k⟩⟨k|]|j⟩
≤ F(ℰ , ℐ)2 +∑

k
λ2k∑

j ̸=k⟨j|ℰ[|k⟩⟨k|]|j⟩
≤ F(ℰ , ℐ)2 + 1 − Fpure(ℰ)

2 .

(10.38)

The penultimate inequality is just λ2j ≤ 1 for all j. In the final inequality, we use the fact
that ∑j ̸=k⟨j|ℰ[|k⟩⟨k|]|j⟩ ≤ 1 − Fpure(ℰ)2, since ∑j⟨j|ℰ[|k⟩⟨k|]|j⟩ = 1 and the j = k term is
at least Fpure(ℰ)2. This proves (10.36).

10.5.3 Channel fidelity of unitary channels

It turns out that distinguishing a channel that applies a unitary operation from the
identity channel does not require an entangled input. To see this, denote the unitary
operator by U and its eigenvalues by eiθk for θk ∈ ℝ. Use the eigenbasis to define |Ω⟩BA
and choose XBA = e−iφUB|Ω⟩⟨Ω|AB for someφ ∈ ℝ in the dual optimization (10.32). The
Choi operator of the unitary channel is simply UBΩBAU∗B , and so the block matrix in
the constraint becomes

(
UΩU∗ e−iφUΩ
eiφΩU∗ Ω

) = (
e−iφU 0
0 1
)(

Ω Ω
Ω Ω
)(

e−iφU 0
0 1
)
∗
. (10.39)

The right-hand side is positive if the middle operator is, by Exercise B.3. Conjugating
the middle operator by 1√2 ( 1 1

1 −1 ) gives diag(2Ω,0), and therefore the constraint is sat-
isfied.

In the first constraint, this choice of XAB gives TrB[XBA] = e−iφUT
A = e−iφUA,

since we are working in the eigenbasis of U, as well as TrB[X∗BA] = eiφUA. Thus
μ = maxφ∈ℝmink cos(θk − φ) is feasible, and F(𝒰 , ℐ) ≥ maxφ∈ℝmink cos(θk − φ).
We can appreciate what this optimization is looking for geometrically. The eigenval-
ues eiθk specify points on the unit circle in the complex plane. This forms a convex set
inside the unit circle, and μ is the shortest distance from the origin to this set. Con-
sider the edge closest to the origin. By rotating the entire set this edge can be oriented
vertically along the imaginary axis, so that the minimal distance lies along the real
axis. Performing this rotation is the accomplished by varying φ, while the distance
along the real axis is precisely the cosine of the angle.

The closest edge is specified by two eigenvalues, denote them eiθj and eiθk . The
optimal φ must be 1

2 (θj + θk), and therefore the optimal μ for this choice of XBA is
μ = cos( 12 (θj − θk)). Hence F(𝒰 , ℐ) ≥ maxj,k cos( 12 (θj − θk)).
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This lower bound can be achieved by the input state |ψ⟩ = 1√2 (|bj⟩ + |bk⟩), where
|bj⟩ is an eigenvector associated with eigenvalue eiθj and similarly for |bk⟩. Therefore
we have established that entanglement is not needed to optimally distinguish these
channels, and

F(𝒰 , ℐ) = min|ψ⟩ ⟨ψ|U |ψ⟩ = max
j,k cos( 12 (θj − θk)) . (10.40)

Moreover, since the output states under the two channels are pure, the same conclu-
sion regarding entanglement carries over to the channel distinguishability by (10.1).

10.6 Notes and further reading

The fidelity was originally introduced by Uhlmann in a more general setting as the
square of our definition, which then has the interpretation as a transition probability
from one pure state to the other [285]. The name “fidelity” is due to Jozsa [157]. As with
channel distinguishability, in the literature, fidelity is often defined by the expression
in (10.7), and then Uhlmann’s theorem reads the other way. Again, we prefer the op-
erationally motivated variational definition. Monotonicity was shown by Alberti and
Uhlmann [3]. The SDP characterization was independently found by Killoran [160]
and Watrous [298]. Alberti’s theorem appears in [2]; in his proof, he uses the achiev-
ability by measurement shown earlier by Araki and Raggio [8], rather than the other
way around here. The specific form of the measurement achieving the fidelity was de-
termined by Fuchs and Caves [104]. The bounds in Proposition 10.4 are due to Fuchs
and van de Graaf [103]. Exercise 10.10 is known as the “gentle measurement lemma”,
originally due to Winter [305]. The SDP characterization of the channel fidelity was
developed in writing this book and also independently by Katariya and Wilde [158,
Proposition 50]. The entanglement fidelity was introduced by Schumacher [252] using
the square as in Exercise 10.15. Convexity of the squared quantity was shown in [11].
The bound (10.36) is a simplification of Barnum, Knill, and Nielsen [11, Theorem 2].
That entangled inputs are not needed to distinguish unitaries from the identity (or
each other) was shown by Aharonov, Nisan, and Kitaev [1], and a similar result ap-
pears in Childs, Preskill, and Renes [58].
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11 Optimal and pretty good receivers
Failing the possibility of measuring that which you desire, the lust for measurement may, for ex-
ample, merely result in your measuring something else—and perhaps forgetting the difference—
or in your ignoring some things because they cannot be measured.

George Udny Yule

The decoder or receiver in a classical communication protocol is faced with the task
of distinguishing between the states produced by different inputs to the encoder and
channel, just as in the setup of Chapter 9, but it will generally need to distinguish
between more than two possibilities. For quantum communication, the decoder has
to restore the input state. In this chapter, we take up the question of howwell this can
be done by the optimal receivers and show that their “pretty good” cousins are indeed
worthy of the name. In Part III, we will use the pretty good measurement to construct
decoders for both classical and quantum communication tasks.

11.1 Optimal recovery of classical information

11.1.1 Definition

Given a CQ state ρXB = ∑x∈𝒳 PX(x)|x⟩⟨x|X ⊗ φB(x) with arbitrary quantum states
φB(x) and probability distribution PX(x), suppose we would like to determine the
value of X by making a measurement on B. For any POVM on B with elements ΛB(x),
the average probability of guessing correctly is, generalizing (9.1), Pguess(X|B)ρ,Λ :=
∑x∈𝒳 PX(x) Tr[ΛB(x)φB(x)]. In terms of the QC measurement channel ℳX′|B associ-
ated with the POVM ΛB, this can be expressed more compactly as

Pguess(X|B)ρ,ℳ = Tr[ΠXX′ℳX′|B[ρXB]] , (11.1)

where ΠXX′ = ∑x |x⟩⟨x|X ⊗ |x⟩⟨x|X′ . This form emphasizes that themeasurement would
ideally transform the input state ρXB into the completely correlated joint distribution
PXX′ (x, x′) = PX(x)δx,x′ . Then it is a straightforward exercise to show that

Pguess(X|B)ρ,ℳ = 1 − δ(ℳX′|B[ρXB],PXX′) . (11.2)

The optimal guessing probability is therefore

Pguess(X|B)ρ := max
ℳY |B

Tr[ΠXYℳY |B[ρXB]] = max
Λ
∑
x
PX(x) Tr[ΛB(x)φB(x)] . (11.3)

Before examining its properties, it is worth stressing that the optimal average guess-
ing probability should not be confused with the optimal worst-case guessing proba-
bility. For a given measurement Λ, the latter is simply minx∈𝒳 Tr[Λ(x)φ(x)]. Observe

https://doi.org/10.1515/9783110570250-011
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11.1 Optimal recovery of classical information | 155

that this quantity is independent of the prior probability PX(x) of the states. Therefore
we should think of theworst-case guessing probability not as function of the state ρXB,
but as a function of the CQ channel ℰB|X that takes x to φ(x). Using the best possible
measurement gives Pwcguess(X|B)ℰ := maxΛminx Tr[Λ(x)φ(x)]. We will not make very
much use of this quantity as the average guessing probability will be sufficient for our
purposes.

11.1.2 Classical case

Returning to Pguess(X|B)ρ, let us examine some of its properties. In the classical
case of commuting φB(x), the optimal measurement is deterministic. Here φB(x) =
∑y PY |X=x(y)|y⟩⟨y|B for some conditional probability distributions PY |X . The receiver
observes the value of y, and so it is the relevant conditional distribution PX|Y=y. In-
tuitively, the optimal guess for x simply maximizes PX|Y=y. To establish this more
formally, write the POVM elements as ΛB(x) = ∑yW(x, y)|y⟩⟨y|B for some functionW
taking values in [0, 1]. The POVM constraint ∑x ΛB(x) = 1B implies ∑x W(x, y) = 1 for
all y, so thatW(x, y) is a conditional probability distribution over x given the value y.
For the guessing probability, we then have

Pguess(X|B)ρ =∑
x
PX(x)∑

y
W(x, y)PY |X=x(y)

=∑
y
PY (y)∑

x
W(x, y)PX|Y=y(x).

(11.4)

For each y, the summation over x can be interpreted as a convex combination, with
weightsW(x, y), of the values of the conditional distribution PX|Y=y. Then the largest
value that can be obtained from such a convex combination is indeed the largest value
of PX|Y=y.

Exercise 11.1. Assuming a uniform input distribution, confirm that the optimal guess-
ing probabilities for BSC(p), BEC(q), and Z(r) are 1−p, 1−q/2, and (2−r)/2, respectively.

Exercise 11.2. Recall the pure state channel PSC(f ) fromSection 5.2. For uniform input
distribution, what measurement optimizes the average guessing probability? Show
that the optimal guessing probability is 1

2 (1 +√1 − f
2).

11.1.3 SDP formulation

The optimal measurement can be found by semidefinite programming.
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Proposition 11.1 (Optimal guessing probability). For every CQ state ρXB ∈ Stat(ℋX ⊗ℋB)with clas-
sical X,

Pguess(X |B)ρ = maximumΛXB
Tr[ΛXBρXB]

such that TrX [ΛXB] = 1B ,

ΛXB ≥ 0 .

(11.5)

Proof. Since ρXB is a CQ state, it is invariant under the pinch map: 𝒫X[ρXB] = ρXB.
Observe that for any feasible ΛXB in the optimization, 𝒫X[ΛXB] is also feasible. Only
the diagonal part of ΛXB is relevant in the objective function and equality constraint.
Then we may as well consider CQ ΛXB and write ΛXB = ∑x |x⟩⟨x|X ⊗ ΛB(x). Hence the
optimization finds the POVM with the largest guessing probability.

Exercise 11.3. Show that strong duality holds with the dual SDP

Pguess(X|B)ρ = minimum
σB

Tr[σB]

such that 1X ⊗ σB ≥ ρXB .

(11.6)

Exercise 11.4. Show that for any CQ channel ℰB|X : x → φB(x),

Pwcguess(X|B)ℰ = maximum
ΛB ,λ

λ

such that λ − Tr[ΛB(x)φB(x)] ≤ 0 ∀x
∑
x
ΛB(x) ≤ 1B ,

ΛB(x) ≥ 0 ∀x .

(11.7)

11.1.4 Largest and smallest values

The guessing probability is of course bounded between 1/|X| and 1. The former occurs
if ρXB = πX ⊗ ρB, whereas the latter occurs if all of the conditional states φB(x) are
disjoint. In fact, these are the only cases in which the extreme values can occur, i. e.,
both “ifs” in the previous sentence can be replaced with “if and only if”.

The former case is the most straightforward using the dual optimization. When
the optimal value of Tr[σ] = 1/|X|, the operator 1X ⊗ σB is normalized, but we easily
see that the operator inequality implies ρXB = 1X ⊗ σB, and therefore ρXB = πX ⊗ ρB.

Exercise 11.5. Suppose ρ and σ are positive operators such that Tr[ρ] = Tr[σ] and
ρ ≥ σ. Show that ρ = σ. Hint: Appeal to Lemma B.3.

For the latter case, observe that each term Tr[ΛB(x)φB(x)] in (11.3) must be equal
to 1, since the summation is a convex combination and 1 is the largest possible value
for each term. Similarly, since 1 is the largest eigenvalue of ΛB(x), Tr[ΛB(x)φB(x)] = 1
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implies that, for each x, ΛB(x) is a projector on the support of φB(x). Each ΛB(x) may
be zero elsewhere, since this will not affect the optimal value. Finally, the normal-
ization condition ∑x ΛB(x) = 1B implies that the ΛB(x) must be disjoint. For consider
the possibility that ΛB(x) and ΛB(x′) are not disjoint. Then there exists a vector |ψ⟩ in
the intersection of their supports, and therefore ⟨ψ|ΛB(x)|ψ⟩ + ⟨ψ|ΛB(x′)|ψ⟩ = 2. This
contradicts normalization, and hence the supports of φB(x)must all be disjoint.

11.1.5 Monotonicity and chain rules

Clearly, the optimal guessing probability is monotonic under channels acting on B,
since such channels can be regarded as part ofℳX′|B. The dual optimization implies
a stronger monotonicity property. Namely, for an arbitrary quantum channel ℰC|B and
an arbitrary unital classical channel ℱY |X ,

Pguess(Y |C)τ ≤ Pguess(X|B)ρ , (11.8)

where τYC = ℱY |X ∘ℰC|B[ρXB]. The proof proceeds by constructing a feasible variable in
the dual for the left-hand side from the optimal variable of the right-hand side. Sup-
pose σ⋆B is optimal in Pguess(X|B)ρ, so that Tr[σ⋆B] = Pguess(X|B)ρ and 1X ⊗ σ⋆B ≥ ρXB.
Applying ℱY |X ∘ ℰC|B to the operator inequality gives 1Y ⊗ θC ≥ τYC for θC = ℰC|B[σ⋆B].
Then θC is feasible in the dual SDP for Pguess(Y |C)τ, and Tr[θC] = Tr[σ⋆B], which im-
plies (11.8).

Exercise 11.6. Consider an arbitrary CQ state ρXB = ∑x |x⟩⟨x|X ⊗ P(x)φB(x) and an ar-
bitrary function f : X → Y , and define σYB = ∑y |y⟩⟨y| ⊗∑x:f (x)=y P(x)φB(x). Show that
it is always easier to guess the output of a function than the input, i. e.,

Pguess(X|B)ρ ≤ Pguess(Y |B)σ . (11.9)

Exercise 11.7. Show the following crude but useful chain rule for the guessing proba-
bility: For classical X, Y and quantum B,

Pguess(X|YB) ≤ |Y |Pguess(X|B) . (11.10)

Give an example that saturates the bound. On the other hand, replacing classical Y by
quantum C, show that the bound becomes

Pguess(X|BC) ≤ |C|
2Pguess(X|B) . (11.11)

Give an example ρXBC that saturates the bound.

Exercise 11.8. Show that the optimal probability of guessing X and Y by measur-
ing B and C for a product state ρXYBC = σXB ⊗ θYC is just given by Pguess(XY |BC)ρ =
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Pguess(X|B)σ Pguess(Y |C)θ. Hint: Use the channel S → S ⊗ T for positive T to infer that
S ⊗ T ≥ S′ ⊗ T′ for S ≥ S′ and T ≥ T′.

11.1.6 Conditions on the optimal measurement

The complementary slackness conditions give a fairly simple optimality condition
on the measurement ΛXB. Recall that the slackness conditions come from taking the
Hilbert–Schmidt inner product of each inequality constraintwith its dual variable and
demanding the result be an equality. Here this procedure produces Tr[ΛXB(1X ⊗σB)] =
Tr[ΛXBρXB]. Since ΛXB and 1X ⊗ σB − ρXB are positive, it must be that

ΛXB(1X ⊗ σB) = ΛXB ρXB . (11.12)

Therefore the optimal POVM elements ΛB(x) and optimal σB satisfy ΛB(x)σB =
P(x)ΛB(x)φB(x) for all x. Summing over x (equivalently, taking the trace over X in
the previous expression) gives LB := ∑x P(x)ΛB(x)φB(x) = σB. The optimal ΛB(x)must
therefore be such that LB is Hermitian. The inequality constraint on σB implies that it
must also satisfy

LB ≥ P(x)φB(x) ∀x . (11.13)

Exercise 11.9. Consider an ensemble of n pure qubit states |φk⟩ uniformly separated
along an equator of the Bloch sphere. Use (11.13) to show that Λ(k) = 2

n |φk⟩⟨φk | is
optimal for the ensemble with uniform probability.

Exercise 11.10. Derive theoptimality of the optimalmeasurement in the classical case,
which selects argmaxPX|Y=y(x), from the SDP formulation. What happens in the case
of degeneracy?

11.2 Pretty good recovery of classical information

Instead of the optimal measurement to determine X from B, we could use the pretty
good measurement constructed from ρXB, as defined in (6.11). The resulting guessing
probability is simply

PPGMguess(X|B)ρ := Tr[(1X ⊗ ρ
−1/2
B )ρXB(1X ⊗ ρ

−1/2
B )ρXB] . (11.14)

The pretty goodmeasurement has an appealing interpretation in the classical set-
ting when all states φB(x) commute. In this case, we have

φB(x) =∑
y
PY |X=x(y)|y⟩⟨y|B (11.15)
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for some orthonormal basis {|y⟩}, and therefore the POVM elements of the pretty good
measurement are givenbyΛB(x) = ∑y PX|Y=y(x)|y⟩⟨y|B.Wemay regard the entire POVM
as consisting of two parts. The first part is a measurement in the common eigenbasis
{|y⟩},whichdelivers a particular value of y. The secondpart is the generationof a guess
from themeasurement result; here the guess is generated by picking an x according to
the conditional distribution PX|Y=y, i. e., by randomly sampling from the distribution
PX|Y=y. The optimal strategy, as we saw above, is to deterministically pick the x that
maximizes PX|Y=y.

For example, consider the conditional distributions on Y generated by BSC(p) for
uniformly random X. In this case, PX|Y=y(y) = 1 − p, so the pretty good measurement
in this case is to apply BSC(p) again.

Exercise 11.11. Show that the pretty goodmeasurement for Y generated from uniform
X by Z(r) is again a Z channel but with parameter r/(1 + r) and such that the input 1 is
perfectly delivered to the output, not 0 (a “ Z” channel, as it were).What is the resulting
guessing probability?

Exercise 11.12. Show that the pretty good measurements for BEC(q) and PSC(f ) are
each optimal, assuming uniform inputs. Furthermore, show that the measurement in
Exercise 11.9 is the pretty good measurement.

Importantly, the pretty good measurement is guaranteed to be pretty good.

Proposition 11.2 (Quality of the pretty good measurement). For every CQ state ρXB ∈ Stat(ℋX ⊗

ℋB) with classical X,
PPGMguess(X |B)ρ ≥ Pguess(X |B)

2
ρ . (11.16)

Proof. The proof is basically an application of the Cauchy–Schwarz inequality and
(8.15). Suppose that ΛB(x) are the optimal POVM elements and define ΛXB =
∑x |x⟩⟨x|X ⊗ ΛB(x). Then the guessing probability is Pguess(X|B)ρ = Tr[ΛXBρXB]. Let
ΓXB = ρ

1/4
B ΛXBρ

1/4
B and then use Cauchy–Schwarz for the Hilbert–Schmidt inner prod-

uct:

Pguess(X|B)
2
ρ = Tr[ρ

−1/4
B ρXB ρ

−1/4
B ΓXB]

2 ≤ Tr[(ρ−1/4B ρXB ρ
−1/4
B )

2] Tr[Γ2XB]

= PPGMguess(X|B)ρ Tr[ΛXB ρ
1/2
B ΛXB ρ

1/2
B ] .

(11.17)

We can upper bound the second factor by 1 as follows. From (8.15) we have ΛXB ≤ 1X ⊗
ΛB. The right-hand side is just 1XB sinceΛB = ∑x ΛB(x) = 1B. Using Tr[SXB(1XB−ΛXB)] ≥
0 for SXB = ρ

1/2
B ΛXB ρ

1/2
B ≥ 0, we can remove one factor of ΛXB from the second factor.

Tracing the remainder over X just leaves Tr[ρB] = 1.
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Exercise 11.13. Show that PPGMguess(Y |B)ρ ≥ P
PGM
guess(X|B)σ for every CQ state ρXB and func-

tion f : X → Y generating the CQ state σYB.

11.3 Optimal entanglement recovery

11.3.1 Definition

In the guessing probability the task is to recover uniformly distributed classical infor-
mation from quantum information to which it is correlated. A sensible quantum ana-
log, as we examined in Chapter 8, is to recovermaximal entanglement from a bipartite
state by operations acting on one part alone. For a state ρAB and operation ℰA′|B, we
define the recoverable entanglement as

Rent(A|B)ρ,ℰ := Tr[ΦAA′ℰA′|B[ρAB]] . (11.18)

Then the optimal recoverable entanglement is

Rent(A|B)ρ := max
ℰA′ |B

Tr[ΦAA′ℰA′|B[ρAB]] . (11.19)

By (10.8) this is the optimal squared fidelity with the maximally entangled state. As in
the classical case, the recovery operation is only applied one part of the state. Observe
the similarities between (11.19) and (11.1). The recovery channel ℰA′|B is the analog of
the measurementℳY |B, and the maximally entangled projector ΦAA′ is the analog of
the correlation projector ΠXY .

Exercise 11.14. Show that for any bipartite state ρXB and measurement ΛX′|B,

Pguess(X|B)ρ,Λ = |X|Rent(X|B)ρ,Λ . (11.20)

The optimal ℰA′|B can also be found via semidefinite programming.

Proposition 11.3 (Optimal recoverable entanglement). For any bipartite state ρAB, the optimal re-
coverable entanglement is given by

Rent(A|B)ρ = maximumEAB

1
|A|

Tr[EABρAB]

such that TrA[EAB] = 1B , EAB ≥ 0 .

(11.21)

Proof. Using the Choi isomorphism, we have the SDP

Rent(A|B)ρ = maximum Tr[ΦAA′EA′Bρ
TB
AB]

such that TrA′ [EA′B] = 1B , EA′B ≥ 0 .

(11.22)
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Here the superscriptTB denotes partial transpositiononB, i. e.,𝒯B.Weare free to trans-
pose any systems inside the trace (see Exercise 5.16). Choose A′ and B to obtain

Rent(A|B)ρ = maximum 1
|A|

Tr[ϒAA′E
T
A′B ρAB]

such that TrA′ [EA′B] = 1B , EA′B ≥ 0.

(11.23)

Now ET ≥ 0 iff E ≥ 0, so we just replace the variable. Then the trace over the swap
operator just links A and A′ as in (9.34), giving the desired form.

Exercise 11.15. Show that the dual is given by the following and that strong duality
holds:

Rent(A|B)ρ = minimum Tr[σ]

such that |A|1A ⊗ σB ≥ ρAB .

(11.24)

The dual form is nearly identical to that of the guessing probability, (11.6). There-
fore the stronger monotonicity property also holds for the recoverable entanglement.
That is, Rent(C|D)τ ≤ Rent(A|B)ρ for arbitrary quantum channel ℰD|B, arbitrary unital
quantum channel ℱC|A, and τCD = ℱC|A ∘ ℰD|B[ρAB].

Exercise 11.16. Show that doing nothing is the optimal entanglement recovery chan-
nel for a state that is diagonal in the Bell basis, i. e., the output of a Pauli channel
acting on the maximally entangled state.

Exercise 11.17. Show that in general Rent(A|BC)ρ ≤ |C|2Rent(A|B)ρ and, for classical X,
Rent(A|BX)ρ ≤ |X|Rent(A|B)ρ.

11.4 Pretty good entanglement recovery

Recalling the form of the pretty goodmeasurement, we can see that it essentially uses
the CQ state ρXB itself as the Choi map for the measurement, though this has to be
distorted by ρ−1/2B to ensure that the Choi map is trace-preserving. For entanglement
recovery, we can do the same. It turns out that we need to use the transpose ρTAB, so to
keep thenotation simple, let θAB = ρTAB. Thendefine the channel ℰ

PGR
A′|B by theChoi oper-

ator EA′B = θ
−1/2
B θA′Bθ

−1/2
B . The channel is completely positive by the Choi isomorphism

and at least trace nonincreasing because TrA′ [EA′B] = θ
−1/2
B θBθ

−1/2
B = ΠB, where ΠB is

the projector onto the support of θB. Just as for the pretty good measurement, here we
will need to augment the channel action to make it trace-preserving in general. For
simplicity, let us just consider the case that θB has full rank.

For example, consider any Pauli channel acting on themaximally entangled state
ΦAA′ . The result ρAB is a mixture of Bell states, whose matrix representation in the
standard basis is real-valued, and hence θAB = ρAB. Since θB =

1
21B, the Choi operator
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of the pretty good recovery channel is just 2ρAB, precisely the Choi operator of the
original Pauli channel, that is, the pretty good recovery channel is again the original
Pauli channel. Recall that the same occurred with the pretty good measurement for
the BSC.

Exercise 11.18. Determine the pretty good recovery channel for the case of amplitude
damping applied to ΦAA′ .

Thepretty good recoverable entanglement is simply the recoverable entanglement
using this channel, RPGRent (A|B)ρ := Tr[ΦAA′ℰ

PGR
A′|B (ρAB)]. Simplifying the expression for

RPGRent (A|B)ρ reveals a form entirely analogous to (11.14):

RPGRent (A|B)ρ = Tr[ρ
TB
ABΦAA′ EA′B] =

1
|A|

Tr[ρTBAB E
TA′
A′B ϒAA′]

= 1
|A|

Tr[ETA′B ρABϒAA′] =
1
|A|

Tr[ρ−1/2B ρA′B ρ
−1/2
B ρABϒAA′]

= 1
|A|

Tr[ρAB ρ
−1/2
B ρAB ρ

−1/2
B ] .

(11.25)

In the first step, partial transposition ofA′ reverses the order of the operatorsΦAA′ and
EA′B, and ΦAA′ becomes 1

|A|ϒAA′ . The next step is transposition of B, which reverses
the order of ρAB and EA′B. We should confirm that ETA′B = ρ

−1/2
B ρA′B ρ

−1/2
B . To do so, first

note that (S−1)T = (ST )−1 for S > 0, since (S−1)TST = (SS−1)T = 1. Then it must be that
transpose commuteswith the inverse square root: (S−1/2)T = (ST )−1/2, as (S−1/2)T (S−1/2)T =
(S−1/2S−1/2)T = (S−1)T = (ST )−1. Therefore

ETA′B = (θ
−1/2
B θA′Bθ

−1/2
B )

T = (θ−1/2B )
TθTA′B(θ

−1/2
B )

T

= (θTB)
−1/2θTA′B(θ

T
B)
−1/2 = ρ−1/2B ρA′B ρ

−1/2
B .

(11.26)

Exercise 11.19. What is the pretty good recoverable entanglement for the Pauli chan-
nel example above?

Just as for the pretty good measurement, we can show that

RPGRent (A|B)ρ ≥ Rent(A|B)
2
ρ . (11.27)

Let EAB be the optimizer in (11.21), and let E′AB =
1
|A|ρ

1/4
B EAB ρ

1/4
B . The Cauchy–Schwarz

inequality yields

Rent(A|B)
2
ρ = Tr[E

′
AB ρ
−1/4
B ρAB ρ

−1/4
B ]

2 ≤ |A|RPGRent (A|B)ρ Tr[(E
′
AB)

2]

= 1
|A|

RPGRent (A|B)ρ Tr[EAB ρ
1/2
B EAB ρ

1/2
B ] .

(11.28)
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By (8.16), EAB ≤ |A|1A ⊗ EB, and EB = 1B by construction. Therefore we have

1
|A|

Tr[EAB ρ
1/2
B EAB ρ

1/2
B ] ≤ Tr[ρ

1/2
B EAB ρ

1/2
B ] = 1 , (11.29)

which completes the proof.
Like the average guessing probability, the recoverable entanglement is a property

of a bipartite state, not a channel. Though it is not our main focus here, it is worth
mentioning that a channel property like the worst-case guessing probability can just
as well be defined for quantum channels. For a fixed quantum channel𝒩B|A, we could
simply ask for the recovery operation ℛA|B that minimizes δ(ℛ ∘ 𝒩 , ℐ) or maximizes
F(ℛ ∘𝒩 , ℐ). Using (9.37) or (10.32), each of these can even be formulated as an SDP.

11.5 Monotonicity of pretty good recoveries

Monotonicity of the optimal guessing probability and optimal recoverable entangle-
ment under channels is immediate from their respective definitions. Not so, however,
for the pretty good measurement and pretty good recoverable entanglement. We take
this opportunity to delve more deeply into matrix analysis to establish monotonicity
results for both quantities, and because it will be of use later coding theorems for clas-
sical communication over CQ channels and information reconciliation with quantum
side information in Chapters 15 and 16.

Notice that if we define the quantity

Q(ρ, σ) := Tr[ρσ−1/2ρσ−1/2] , (11.30)

then the pretty good guessing probability takes the form PPGMguess(X|B)ρ = Q(ρXB, 1X⊗ρB),
while RPGRent (A|B)ρ =

1
|A|Q(ρAB, 1A⊗ρB). Hence, ifQ(ρ, σ) ≥ Q(ℰ[ρ], ℰ[σ]), then P

PGM
guess and

RPGRent cannot increase under general channels acting on B and unital channels acting
on A or X.

To establish monotonicity, we proceed by first establishing joint convexity of Q.
Then we follow the approach taken in Section 9.4 to show that joint convexity implies
monotonicity. Note that for the two cases of interest, the particular inputs toQ are such
that the support of the first argument is contained in that of the second. The proof
below is specific to this condition, though presumably it can be generalized (e. g., by
a continuity argument).

Proposition 11.4 (Joint convexity of Q). For an arbitrary probability distribution P(x) and arbitrary
collections of states {ρ(x)}x∈𝒳 and {σ(x)}x∈𝒳 such that the support of ρ(x) is contained in the sup-
port of σ(x) for all x ∈ 𝒳 ,

Q(∑
x
P(x)ρ(x),∑

x
P(x)σ(x)) ≤∑

x
P(x)Q(ρ(x), σ(x)) . (11.31)
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Proof. First, note that

Q(ρ, σ) = sup
Λ≥0
(2 Tr[Λρ] − Tr[Λσ1/2Λσ1/2]) . (11.32)

The proof is simple. Observe that for positive K and L, we have Tr[(K − L)2] ≥ 0, and
therefore 2 Tr[KL] ≤ Tr[K2] + Tr[L2]. Using K = σ−1/4ρσ−1/4 and L = σ1/4Λσ1/4 gives the
above variational expression. Note that this step makes use of the support condition
on ρ and σ.

The usefulness of this form is that joint convexity of Q follows once we show
that the map g : σ → Tr[Λσ1/2Λσ1/2] is operator concave for any fixed Λ ≥ 0, that is,
g(∑x P(x)σ(x)) ≥ ∑x P(x)g(σ(x)) for any probability distribution P. Operator concavity
ismuchmore subtle than concavity of scalar functions and is discussed inmore detail
in Section B.9. Writing

Tr[Λσ1/2Λσ1/2] = ⟨Ω|(Λ ⊗ 1)(√σ ⊗√σT)(Λ ⊗ 1)|Ω⟩ , (11.33)

it is apparent that the concavity of g follows from the operator concavity of σ → √σ ⊗
√σT . Note that √σT must be equal to √σT since its square is σT (just as we argued in
the previous section). Therefore we are interested in showing the operator concavity
of σ → √σ ⊗√σT .

To do this, we make use of the geometric mean of two positive definite operators
A and B, denoted A#B. The operator geometric mean can be defined by extending the
extremal property of the usual geometric mean of positive numbers a and b, namely
that it is the largest c such that ab − c2 ≥ 0 or, in terms of matrices, ( a c

c b ) ≥ 0. This
variational definition, detailed in Section B.9, has the advantage that joint concavity
of (A,B) → A#B follows immediately. Moreover, as described there in (B.35), the ge-
ometric mean also has the closed-form expression A#B = A1/2(A−1/2BA−1/2)1/2A1/2. Hence
we canwrite√σ⊗√σT as (σ⊗1)#(1⊗σT ). Note that we can restrict attention to the sup-
port of σ to ensure the diagonal elements in the definition of the geometric mean are
positive definite. Since the geometric mean is jointly concave, the operator concavity
of σ → √σ ⊗√σT therefore follows.

From here it is a short step back to monotonicity following the method in Sec-
tion 9.4. For this, we need to establish two simple properties of Q. First, Q is invariant
under isometries, so that for ρ, σ ∈ Stat(ℋ) and V ∈ Lin(ℋ,ℋ′),

Q(VρV∗,VσV∗) = Q(ρ, σ) . (11.34)

This follows by straightforward calculation using the fact that (VσV∗)1/2 = Vσ1/2V∗.
Second, appending an additional system in the same state to both arguments does
not change the value of Q: for any state τ,

Q(ρ ⊗ τ, σ ⊗ τ) = Q(ρ, σ) . (11.35)
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Again, this follows by straightforward calculation, this time using the fact that (σ ⊗
τ)−1/2 = σ−1/2 ⊗ τ−1/2. Then we proceed just as in the case of the distinguishability.

Proposition 11.5 (Monotonicity of Q). For any quantum channel ℰ and any quantum states ρ and σ
for which the support of ρ is contained in that of σ,

Q(ℰ[ρ], ℰ[σ]) ≤ Q(ρ, σ) . (11.36)

With monotonicity of Q in hand, we can sharpen the PGM and PGR bounds (11.16)
and (11.27) by considering ameasurement related to the optimal guessing probability.
This is the general method we mentioned in (10.19). Consider the optimal measure-
mentℳX′|B in Pguess(X|B)ρ from (11.1), and the POVM element ΠXX′ , which checks for
equality. Then we have a binary-output measurement, which applied to ρXB gives the
distribution P = (Pguess(X|B)ρ, 1 − Pguess(X|B)ρ). For 1X ⊗ ρB, the same operation pro-
duces P′ = (1, |X| − 1). Then by the monotonicity of Q we have

PPGMguess(X|B)ρ ≥ Q(P,P
′) = Pguess(X|B)

2
ρ +
(1 − Pguess(X|B)ρ)2

|X| − 1
. (11.37)

Observe that this bound is saturated by the example ofY generated fromuniformX via
BSC(p). Moreover, unlike (11.16), the bound is nontrivial for Pguess(X|B)ρ ∈ [

1
|X| ,

1
√|X| ].

Exercise 11.20. Adapt this argument to the case of recoverable entanglement and
show that

RPGRent (A|B)ρ ≥ Rent(A|B)
2
ρ +
(1 − Rent(A|B)ρ)2

|A|2 − 1
. (11.38)

Confirm that the bound is saturated by the result of the depolarizing channel acting
on the maximally entangled state.

11.6 Notes and further reading

The quote from Udny Yule appears in [313]. Yuen, Kennedy, and Lax [311, 312] investi-
gated the optimal guessingprobability and stated the optimizations in (11.3) and (11.6).
Later Eldar, Megretski, and Verghese [92] recognized this as an SDP. The optimality
conditions were found by Holevo [143, 144] and Yuen, Kennedy, and Lax [311, 312].
The pretty good measurement deserves its name by Proposition 11.2 due to Barnum
and Knill [10].

Entanglement recovery as formulated here was studied by Reimpell and Werner
[235], Fletcher, Shor, andWin [101], and Kosut and Lidar [170]. The latter twomake use
of the SDP characterization. Later it was realized by König, Renner, and Schaffner [176]
that the min-entropy, a quantity utilized by Renner in conjunction with QKD [241],
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is related to the recoverable entanglement. The pretty good recovery map was intro-
duced by Berta, Coles, andWehner [35] and shown to be pretty good byDupuis, Fawzi,
and Wehner [85].

The quantityQ is the logarithmof theRényi entropy of order 2,which is sometimes
called the collision entropy. For more on Rényi entropies, see Tomamichel [280]. The
variational form of Q is adapted from Frank and Lieb [102], while our proof of con-
cavity of the geometric mean follows methods of Ando [6], itself based on methods
of Uhlmann [286]. See [54] for an excellent overview. The geometric mean itself was
introduced by Pusz and Woronowicz [231].
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12 Entropy
You should call it entropy, for two reasons. In the first place your uncertainty function has been
used in statistical mechanics under that name, so it already has a name. In the second place, and
more important, no one knows what entropy really is, so in a debate you will always have the
advantage.

John von Neumann, discussion with Claude Shannon

I don’t understand everything I know about entropy.

John T. “Ted” Norgord, lecture to engineering students at the University of Idaho

One of the major breakthroughs of Shannon’s 1948 paper was the quantification of
the amount information in a random variable via the entropy. He defined the entropy
H(X) of a random variable X with distribution PX as

H(X)P :=∑
x
PX(x) log

1
PX(x)
. (12.1)

As mentioned obliquely in the first quote above, the Shannon entropy has the same
form as the Gibbs entropy in classical statistical mechanics. Heuristically, X carries
a lot of information if learning the actual value is “surprising”. Conversely, X carries
little information if we are already fairly certain of its value; the value itself does not
tell us anything new. The entropy H(X)P, called the Shannon entropy, is the expected
value (under PX) of the surprisal log

1
PX (x)

, which can be regarded as quantifying the
amount of surprise. For small PX(x), the surprisal is large, and nears zero as PX(x)
tends to 1. Here and throughout this book, we use the binary logarithm, the logarithm
base 2. Then both the surprisal and the entropy are measured in bits.

To be sure, the quantity log 1
PX (x)

is not the only function of PX(x) with this prop-
erty. There exist several axiomatic derivations of the particular functional form of the
entropyas ameasure of information content, starting from“reasonable” axioms.How-
ever, from our operational viewpoint, the ultimate justification is that the entropy
plays a crucial role in characterizing information-processing tasks, e. g., as Shannon
showed for source and channel coding in his 1948 paper, andwhichwewill encounter
in Chapters 14 and 15.

The operational viewpoint is especially relevant in the quantum setting, where an
axiomatic approach is not so straightforward, and thequantumanalogof the Shannon
entropy as an information measure is not so apparent. For one thing, there is no im-
mediate quantum counterpart to the surprisal. Although von Neumann translated the
Gibbs entropy to quantum statistical mechanics and found that the analogous quan-
tity is given by

H(A)ρ := − Tr[ρA log ρA] , (12.2)

https://doi.org/10.1515/9783110570250-012
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his argument by itself does not by imply the usefulness of the von Neumann entropy
in quantum information processing. We will see the relevance of the von Neumann
entropy in this setting in Chapter 14.

More immediately, we can relate the Shannon and von Neumann entropies to the
relative entropy or Kullback1–Leibler2 divergence, which has an operational meaning
in the setting of Neyman–Pearson hypothesis testing. The relative entropy D(ρ, σ) of
two states ρ and σ is defined as

D(ρ, σ) := Tr[ρ(log ρ − log σ)] (12.3)

for σ whose support is contained in the support of ρ. If this support condition is not
satisfied, then D(ρ, σ) = ∞. We will also consider D(ρ, τ) with τ not necessarily nor-
malized. Later in this chapter, we will prove Stein’s3 lemma, which states that in the
task of discriminating the two states ρ⊗n and σ⊗n, the optimal measurement at fixed
error for ρ⊗n will have an error for σ⊗n that decays exponentially in n at a rate given by
D(ρ, σ). Here ρ⊗n denotes the n-fold tensor product of ρwith itself. This fact will enable
us to prove a crucial property of the entropy, the data processing inequality, and will
also be critical in the proofs of the coding theorems of Part III.

12.1 Entropy and relative entropy

First, let us formulate the entropy, conditional entropy, andmutual information quan-
tities and explore theirmore basic properties.We start with the vonNeumann entropy.
In terms of the relative entropy,

H(A)ρ = −D(ρA, 1A) = log |A| − D(ρA,πA) , (12.4)

where πA is themaximallymixed state πA =
1
|A|1A. Note that the vonNeumann entropy

is simply the Shannon entropy of the probability distribution formed by the eigenval-
ues of the state ρ. The definition already covers the case of multiple systems, the joint
entropy

H(AB)ρ = −D(ρAB, 1AB) . (12.5)

Several important properties of the entropy can be derived just from the positivity
of the relative entropy, a statement known as Klein’s4 inequality in the quantum case
and Gibbs’ inequality in the classical case.

1 Solomon Kullback, 1907–1994.
2 Richard A. Leibler, 1914–2003.
3 Charles Max Stein, 1920–2016.
4 Oskar Benjamin Klein, 1894–1977.
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Proposition 12.1 (Klein’s inequality). For all ρ, σ ∈ Stat(ℋ), D(ρ, σ) ≥ 0 with equality if and only if
ρ = σ.

Of course, nonnegativity of the relative entropy must follow from Stein’s lemmamen-
tioned above; otherwise, the error probability would be increasing with increasing n,
which is nonsensical. However, appealing to Stein’s lemma in this way does not give
the equality condition, as the precise statement involves a limit.

To prove Klein’s inequality directly, it is useful to first note that the quantum
relative entropy is equal to a classical relative entropy for a specific pair of prob-
ability distributions. Therefore nonnegativity of the quantum relative entropy fol-
lows from Gibbs’ inequality. Expressing ρ and σ in their respective eigenbases as
ρ = ∑x R(x)|ux⟩⟨ux| and σ = ∑y S(y)|vy⟩⟨vy|, and defining W(x, y) = |⟨ux|vy⟩|2, the
distributions in question are

PXY (x, y) = R(x)W(x, y) , (12.6)
QXY (x, y) = S(y)W(x, y) . (12.7)

Note thatW(x, y) are the entries of a doubly stochastic matrix, i. e., ∑x W(x, y) = 1 for
all y and similarly for x. Then we have

D(ρ, σ) = Tr[ρ(log ρ −∑
y
log S(y)|vy⟩⟨vy|)] (12.8a)

= ∑
x
R(x) logR(x) −∑

x,y
R(x)W(x, y) log S(y) (12.8b)

= ∑
x,y

R(x)W(x, y) log R(x)W(x, y)
S(y)W(x, y)

(12.8c)

= D(PXY ,QXY ) . (12.8d)

Despite this equivalence, there is no channel mapping ρ to PXY and σ to QXY , as is the
case with the distinguishability and fidelity.

Proof of Klein’s inequality. By (12.8) positivity of D(ρ, σ) is implied by positivity of
D(P,Q) for all probability distributions P and Q. We can restrict attention to the case
thatP(x) = 0 impliesQ(x) = 0, as otherwiseD(P,Q) =∞, and there is nothing toprove.

Now observe that ln y ≤ y − 1 for all y > 0. At y = 1, ln y is tangent to y − 1 as is seen
from their first derivatives, and the inequality holds because ln y is strictly concave,
as seen from the negativity of its second derivative. Equality thus only holds at y = 1.
Therefore

D(P,Q) = − 1
ln 2
∑
x
P(x) ln(Q(x)

P(x)
)

≥ −
1
ln 2
∑
x
P(x)(Q(x)

P(x)
− 1) = 1

ln 2
∑
x
P(x) − Q(x) = 0 .

(12.9)
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Equality holds if and only if P(x) = Q(x) for all x, i. e., P = Q. This also covers the case
of commuting ρ and σ.

To establish the equality condition in the quantum case, start from the inequality
in (12.8b) with D(ρ, σ) = 0. Since theW(x, y) form a probability distribution over y and
the logarithm is concave, Jensen’s inequality (2.18) implies

∑
y
W(x, y) log S(y) ≤ log(∑

y
W(x, y)S(y)) = logQX(x) , (12.10)

using (12.7). HenceD(ρ, σ) ≥ D(PX ,QX) ≥ 0, meaning that equality must hold in (12.10)
in order to satisfy D(ρ, σ) = 0.

As stated in the discussion of Jensen’s inequality, equality only holds for strictly
concave functions such as log if the points in the convex combination (here, the S(y))
are all identical or the convex combination is trivial. The former case only occurs
when the eigenvalues of σ are uniform on the support of ρ; then [ρ, σ] = 0, which is
already covered by the classical case above. Thus, equality only holds in the generic
case whenW(x, y) represents a deterministic reversible classical channel, i. e., a per-
mutation. BecauseW(x, y) is the matrix of overlaps of the eigenvectors of ρ and σ, this
implies that these sets of eigenvectors are identical. Then, returning to (12.8b), it is
clear that this expression is only zero if the eigenvalues are also equal. Hence ρ = σ if
and only if D(ρ, σ) = 0, as claimed.

Now we can enumerate several useful properties following from Klein’s inequal-
ity.

Proposition 12.2 (Properties of the entropy of a single system).

1. Positivity: H(A)ρ ≥ 0 for all ρ with equality iff ρ is a pure state,

2. Unitary invariance: H(A)UρU∗ = H(A)ρ for unitary U,
3. Upper bound: H(A)ρ ≤ log |A| with equality iff ρ = π,

4. Concavity: H(A)ρ ≥ ∑x∈𝒳 PX (x)H(A)ρ(x) for ρ = ∑x∈𝒳 PX (x)ρ(x), and

5. Increase under pinching: For any complete set of projectors Π(k) (not necessarily rank-one)
and σ = ∑k Π(k) ρΠ(k), H(A)σ ≥ H(A)ρ.

The last property states that measurements increase entropy when we forget the mea-
surement outcome. Of course, entropy hopefully decreases given themeasurement re-
sult. One clear example of the latter is a measurement with rank-one POVM elements.
In this case the postmeasurement state is pure, and its entropy is therefore zero.

To show the final property, it is useful to note that

log σ = 𝒫[log σ] (12.11)

for any σ = 𝒫[σ] and any pinching operation 𝒫. This is most easily understood by
regarding 𝒫[σ] as a block-diagonal matrix, from which it is clear that its logarithm is

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



12.2 Conditional entropy and mutual information | 171

the logarithm of the blocks. More algebraically, the pinch map will restrict the eigen-
vectors to the subspaces of the projections in the pinch (i. e., the blocks in the block-
diagonal matrix).

Exercise 12.1. Prove the properties in Proposition 12.2 using Klein’s inequality.
Hint: make use of Exercise 5.11.

Proposition 12.3 (Properties of the entropy of several systems).

1. Duality: H(A)ρ = H(B)ρ for pure ρAB,

2. Subadditivity: H(AB)ρ ≤ H(A)ρ + H(B)ρ with equality iff ρAB = ρA ⊗ ρB,

3. Triangle inequality: H(AB)ρ ≥ |H(A)ρ − H(B)ρ|.

Proof. Since the entropy is a function only of the eigenvalues of the reduced state,
duality follows from the form of the purification in (6.1).

For subadditivity, a simple computation shows that

D(ρAB, ρA ⊗ ρB) = H(A)ρ + H(B)ρ − H(AB)ρ , (12.12)

where as usual ρA = TrB[ρAB], and similarly for ρB. Thus positivity of the relative en-
tropy implies subadditivity of the entropy. The equality condition follows from the
equality condition in Klein’s inequality.

The triangle equality follows from subadditivity by making use of duality. Let R
be a purifying reference system so that |ψ⟩RAB is a purification of ρAB. Then

H(B)ψ = H(RA)ψ ≤ H(A)ψ + H(R)ψ = H(A)ψ + H(AB)ψ, (12.13)

which implies that H(AB)ρ ≥ H(B)ρ − H(A)ρ. Interchanging A and B in the argument
gives the bound H(A)ρ − H(B)ρ.

12.2 Conditional entropy and mutual information

Again using the relative entropy, we define the conditional entropy

H(A|B)ρ := −D(ρAB, 1A ⊗ ρB) = log |A| − D(ρAB,πA ⊗ ρB) (12.14)

and themutual information

I(A : B)ρ := D(ρAB, ρA ⊗ ρB) . (12.15)

By straightforward calculation we can see that the conditional entropy of a CQ
state ρYA = ∑y P(y)|y⟩⟨y|Y ⊗ρA(y) is the average of the entropy of the conditional state,
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i. e.,

H(A|Y)ρ =∑
y
P(y)H(A)ρA(y) . (12.16)

In this sense the conditional entropy is the entropy of A conditioned on knowing the
value of Y . Note that concavity of entropy can be expressed as H(A|X) ≤ H(A).

Meanwhile, the classical mutual information I(X:Y)P is heuristically the amount
of information Y has about X (or X about Y , since I(X:Y) is symmetric in X and Y).
Again, a straightforward calculation reveals that I(X:Y) is the average, under PXY , of
the surprisal log 1

PX (x)
minus the surprisal log 1

PX|Y=y(x) . This difference is the amountwe
learn about X by learning the precise value of Y .

However, although definitions (12.14) and (12.15) carry over to the case of quantum
states, the interpretation of the mutual information and the conditional entropy is
not at all clear, since H(A|B)ρ can be negative and I(A : B) can be larger than log |A|.
Unsurprisingly, the maximally entangled state ΦAB gives an immediate example of
both.

Exercise 12.2. Show that H(A|B)Φ = − log |A| and I(A : B)Φ = 2 log |A|.

Nonetheless, the quantum conditional entropy and quantummutual information
also show up in the characterization of information processing tasks.

Conditioning as averaging does continue to hold for classical information in the
context of conditional quantum information.

Exercise 12.3. Consider an arbitrary CQQ state, i. e., ρXAB = ∑x PX(x)⊗σAB(x) for arbi-
trary distribution PX and normalized states σAB(x). Show that

H(A|BX)ρ = ∑
x∈𝒳

PX(x)H(A|B)σ(x) . (12.17)

The conditional entropy andmutual information satisfy the following chain rules:

H(A|B)ρ = H(AB)ρ − H(B)ρ and (12.18)

I(A : B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ (12.19)

= H(A) − H(A|B) . (12.20)

The chain rules give intuitive interpretations of the conditional entropy and mutual
information, and will prove very useful in the analysis of information processing pro-
tocols. The chain rule for conditional entropy essentially says that the uncertainty of a
joint system AB is given by the uncertainty of one (B), plus the uncertainty of the sec-
ond (A) conditioned on the first (H(A|B)). The mutual information of a joint system is
simply the uncertainty of one part (A) minus the uncertainty of that part conditioned
on the other (H(A|B)).
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The first mutual information chain rule (12.19) is just (12.12), and the second fol-
lows from the first and (12.18). So it remains to show the conditional entropy chain
rule. It follows from properties of the relative entropy, in particular, (12.22) in the fol-
lowing:

Proposition 12.4 (Properties of the relative entropy).

1. Additivity: For any ρ, σ ∈ Stat(ℋ) and θ, τ ∈ Stat(ℋ′),

D(ρ ⊗ θ, σ ⊗ τ) = D(ρ, σ) + D(θ, τ) , (12.21)

2. Chain rules: For any ρ ∈ Stat(ℋA ⊗ℋB) and an arbitrary pinch map 𝒫A onℋA,

D(ρAB, πAB) = D(ρAB, πA ⊗ ρB) + D(ρB, πB) and (12.22)

D(ρAB, πA ⊗ ρB) = D(ρAB,𝒫A[ρAB]) + D(𝒫A[ρAB], πA ⊗ ρB) , (12.23)

where πA is the maximally mixed state onℋA, and similarly for πAB.

Proof. Additivity of the relative entropy follows from the fact that log(ρ ⊗ θ) = log ρ ⊗
1+ 1⊗ log θ. This can be seen by using the spectral decomposition and observing that
the eigenvectors of ρ ⊗ θ are the tensor products of eigenvectors of ρ and θ. Then we
have

D(ρ ⊗ θ, σ ⊗ τ) = Tr[(ρ ⊗ θ)(log ρ ⊗ 1 + 1 ⊗ log θ − log σ ⊗ 1 − 1 ⊗ log τ)]
= Tr[ρ(log ρ − log σ) ⊗ θ] + Tr[ρ ⊗ θ(log θ − log τ)]
= D(ρ, σ) + D(θ, τ) .

(12.24)

For the first chain rule, simply add and subtract log(πA ⊗ ρB) to obtain

D(ρAB,πAB) = Tr[ρAB(log ρAB − log(πA ⊗ ρB) + log(πA ⊗ ρB) − logπAB)]
= D(ρAB,πA ⊗ ρB) + Tr[ρAB(log(πA ⊗ ρB) − log(πA ⊗ πB))] .

(12.25)

Using thepreviouslymentionedproperty of the logarithm, in the second term,wehave

log(πA ⊗ ρB) − log(πA ⊗ πB) = 1A ⊗ log ρB − 1A ⊗ logπB . (12.26)

Therefore the second term simplifies to D(ρB,πB).
The second chain rule is similar but relies on (12.11). Let ρ̄AB = 𝒫A[ρAB] for ease of

notation. Adding and subtracting log ρ̄AB as in the first chain rule gives

D(ρAB,πA ⊗ ρB) = D(ρAB, ρ̄AB) + Tr[ρAB(log ρ̄AB − log(πA ⊗ ρB))] . (12.27)

Both ρ̄AB and πA ⊗ ρB are CQ states in the same basis on A, meaning that so are their
logarithms. By the results of Exercise 5.11 the operator ρAB in the trace can therefore
be replaced with ρ̄AB, giving the desired statement.
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Proposition 12.5 (Properties of the conditional entropy).

1. Duality: For ρABC pure, H(A|B)ρ = −H(A|C)ρ,

2. Bounds: − log |A| ≤ H(A|B)ρ ≤ log |A| with equality in the upper bound iff ρAB = πA ⊗ ρB and
equality in the lower bound iff Rent(A|B)ρ = 1,

3. Bound for classical systems: For a CQ state ρXB with classical X,

H(X |B)ρ ≥ 0 . (12.28)

Equality holds iff Pguess(X |B)ρ = 1.

Proof. By the chain rule thefirst statement is equivalent toH(AB)ρ−H(B)ρ = −H(AC)ρ+
H(C)ρ, whence the previously established duality is equivalent to the conditional ver-
sion.

The upper bound on the conditional entropy follows from the positivity of the
relative entropy and the expression H(A|B)ρ = log |A| − D(ρAB,πA ⊗ ρB). By Klein’s
inequality the bound is attained if and only if ρAB = πA ⊗ ρB.

The lower bound follows from the upper bound by duality since H(A|B)ρ =
−H(A|C)ρ ≥ − log d for a purification ρABC of ρAB. Then ρAC must equal ρAC = πA ⊗ ρC,
whose purification is VB|B1B2 (ΦAB1 ⊗ σB2C)V

∗
B|B1B2 for a purification σB2C of ρC, the max-

imally entangled state ΦAB1 , and an isometry VB|B1B2 . Therefore V
∗ρABV = ΦAB1 ⊗ σB2 ,

and hence Rent(A|B)ρ = 1. On the other hand, if Rent(A|B)ρ = 1, then the purification
ρABC must take the form πA ⊗ ρC and H(A|C)ρ = log d. By duality the lower bound is
therefore saturated.

To establish the positivity of the conditional entropy for CQ states, consider the
purification of a generic CQ state ρXB = ∑x PX(x)|x⟩⟨x|X ⊗ φB(x):

|ψ⟩XABR =∑
x
√PX(x)|x⟩X |x⟩A|φ(x)⟩BR . (12.29)

Here A is an additional system which purifies X, whereas R purifies B. We can regard
this state as the result of measuring A in the standard basis, i. e., applying the Stine-
spring isometry VXA|A|x⟩A = |x⟩X |x⟩A to

ψ
′⟩ABR =∑

x
√PX(x)|x⟩A|φ(x)⟩BR . (12.30)

Since projective measurement increases entropy, it follows that H(AR)ψ ≥ H(AR)ψ′ .
Moreover, since entropy is invariant under unitaries and, by the same reasoning, un-
der isometries, it follows that H(XAR)ψ = H(AR)ψ′ . Then we have

H(X|B)ρ = H(X|B)ψ = H(XB)ψ − H(B)ψ
= H(AR)ψ − H(XAR)ψ ≥ H(AR)ψ′ − H(AR)ψ′ = 0 .

(12.31)

The first equality is the chain rule, and the second is entropy duality.
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Exercise 12.4. Show that H(Y |B) ≤ H(X|B) when Y = f (X) for any function f .
Hint: Consider H(XY |B).

From the chain rules the properties of the conditional entropy translate into the
following properties of the mutual information.

Proposition 12.6 (Properties of the mutual information).

1. Duality: I(A : B)ρ + I(A : C)ρ = 2H(A)ρ if ρABC is a pure state.

2. Bounds: 0 ≤ I(A : B)ρ ≤ 2min(log |A|, log |B|).

3. Bound for classical systems: I(X : B)ρ ≤ log |X | for a CQ state ρXB.

The conditional entropy chain rule extends to the case of conditioning every term in
the expression on an additional system C: H(A|BC)ρ = H(AB|C)ρ − H(B|C)ρ for any
tripartite state ρABC. Using the chain rule, it is also possible to define a conditional
mutual information of an arbitrary tripartite state ρABC:

I(A : B|C)ρ := H(A|C)ρ − H(A|BC)ρ . (12.32)

Exercise 12.5. Show that I(A : B|C) = I(A : BC) − I(A : C) and the equivalent of (12.17),
I(A : B|X)ρ = ∑x∈𝒳 PX(x) I(A : B)σ(x).

Exercise 12.6. Show that I(A : B|C)ρ = I(A : B)ρ if ρABC is a pure state.

12.3 Stein’s lemma

Having exhausted all the properties we can obtain about the entropy from Klein’s in-
equality, we turn to Stein’s lemma.

Proposition 12.7 (Stein’s lemma). For all ρ, σ ∈ Stat(ℋ) and α ∈ (0, 1),

lim
n→∞
−1
n

logβα(ρ
⊗n, σ⊗n) = D(ρ, σ) . (12.33)

To prove Stein’s lemma in the quantum case, wewill make use of the result in the clas-
sical case. In both cases, we proceed by showing matching upper and lower bounds.
The lower bound is the achievability bound, as we must construct an appropriate
POVM with the desired exponential decay of error. The upper bound is the converse
bound.

Proof of Stein’s lemma for commuting ρ and σ. Let ρ = ∑x PX(x)|x⟩⟨x| and σ =
∑x QX(x)|x⟩⟨x| for probability distributions PX and QX . For the achievability bound,
set δ > 0 and pick Λ to be the projector Λ = {ρ⊗n ≥ γσ⊗n} for γ = 2n(D(ρ,σ)−δ). It is of
course diagonal in the basis |xn⟩ = |x1⟩⊗ |x2⟩⊗ ⋅ ⋅ ⋅⊗ |xn⟩, where xn denotes the sequence
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x1, x2, . . . , xn. The xn component of Λ, denote it λ(xn) = ⟨xn|Λ|xn⟩, is

λ(xn) = 1[log PXn (xn)
QXn (xn)

≥ n(D(ρ, σ) − δ)]

= 1[ 1
n

n
∑
j=1

log
PX(xj)
QX(xj)
≥ D(ρ, σ) − δ] .

(12.34)

Observe that the classical relative entropy is the average, underP, of the log-likelihood
ratio logP(x)/Q(x). Since the log-likelihood for i. i. d. distributions is a sum of the in-
dividual parts, we can appeal to the weak law of large numbers for a lower bound on
Tr[Λρ⊗n]. In particular,

Tr[Λρ⊗n] = ∑
xn
PXn(xn) 1[ 1

n

n
∑
j=1

log
P(xj)
Q(xj)
≥ D(ρ, σ) − δ] . (12.35)

By (2.21) for any α ∈ (0, 1), there is an n such that Tr[Λρ⊗n] is greater than α. Thus, for
large enough n, Λ is feasible for βα(ρ⊗n, σ⊗n).

On the other hand, using Exercise 9.4 immediately yields Tr[Λσ⊗n] ≤ 2−n(D(ρ,σ)−δ).
Taking the negative logarithm, the limit as n → ∞, and then the limit as δ → 0 gives
the lower bound

lim
n→∞
−1
n
βα(ρ
⊗n, σ⊗n) ≥ D(ρ, σ) . (12.36)

For the upper bound, choose γ = 2n(D(ρ,σ)+δ) for δ > 0 and use (9.13) to obtain

α − γβα(ρ
⊗n, σ⊗n) ≤∑

xn
P(xn) 1[log P(xn)

Q(xn)
≥ n(D(ρ, σ) + δ)] . (12.37)

The right-hand side vanishes as n → ∞, again by the weak law of large numbers.
Therefore βα(ρ⊗n, σ⊗n) ≥ α 2−n(D(ρ,σ)+δ). Now the negative logarithm, the limit as n →
∞, and then the limit as δ → 0 give the upper bound

lim
n→∞
−1
n
βα(ρ
⊗n, σ⊗n) ≤ D(ρ, σ) , (12.38)

and the proof is complete.

Stein’s lemma is stated for fixed α (independent of n) not equal to zero or one
but using Hoeffding’s inequality instead of the weak law in the proof means that the
conclusion holds even when α approaches these limits exponentially fast in n.

Exercise 12.7. Show that for some c > 0, using either the sequence αn = 1 − e−cn or
αn = e−cn, we still have

lim
n→∞
−1
n
log βαn(P

×n,Q×n) = D(P,Q) . (12.39)
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12.3.1 Achievability in the quantum case

Now we turn to the achievability bound in the quantum case. The proof strategy is to
reduce to the classical case as follows. First, given any two states ρ and σ, suppose we
construct a POVM element Λ such that

Tr[Λρ] ≥ PrPXY[
PXY (x, y)
QXY (x, y)

≥ γ] (12.40)

and

Tr[Λσ] ≤ 1
γ

(12.41)

for PXY and QXY from (12.6) and (12.7), respectively. This implies

βα(ρ, σ) ≤
1
γ

(12.42)

for all α ≤ PrPXY [
PXY (x,y)
QXY (x,y)

≥ γ]. Then making the replacements ρ ← ρ⊗n, σ ← σ⊗n,
PXY ← PXnYn , andQXY ← QXnYn , setting γ = 2n(D(PXY ,QXY )−δ), and following the argument
for the classical achievability bound yields

lim
n→∞
−1
n
log βα(ρ

⊗n, σ⊗n) ≥ D(PXY ,QXY ) (12.43)

for all α < 1. Finally, by (12.8) the right-hand side is equal to D(ρ, σ).
Thusweneed to constructΛ satisfying (12.40) and (12.41) for generic statesρ andσ.

First, fix the indexing of the eigenvalues R(x) of ρ so that R(x) is increasing with x.
Next, fix γ ≥ 0 and define the sets T(x) = {y : γS(y) ≤ R(x)} and the projectors Π(x) =
∑y∈T(x,γ) |vy⟩⟨vy|. By the above convention, T(x

′) ⊆ T(x) for all x′ ≤ x, meaning that
the Π(x) are similarly nested and project onto ever-larger eigensubspaces of σ as x
increases. Then set |ξx⟩ = Π(x)|ux⟩ and let Λ be the projector onto the span of {|ξx⟩}x.

Establishing (12.40) is fairly straightforward. Let | ̄ξx⟩ be the normalized version of
|ξx⟩ (or zero if |ξx⟩ = 0). It follows that | ̄ξx⟩⟨ ̄ξx| ≤ Λ. Therefore we have

Tr[Λρ] ≥ ∑
x
R(x)|⟨ux| ̄ξx⟩|

2 = ∑
x
R(x) ⟨ux|Π(x)|ux⟩

2

⟨ξx|ξx⟩

= ∑
x
R(x)⟨ξx|ξx⟩ = ∑

x
∑

y∈T(x)
R(x)W(x, y)

= ∑
x,y

PXY (x, y)1[γS(y) ≤ R(x)] ,

(12.44)

which is (12.40).
Establishing (12.41) takes a little more effort. Let {| ̂ξx⟩}x be the vectors constructed

by the Gram–Schmidt procedure applied to {|ξx⟩}x in increasing order in x. This set
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forms an eigendecomposition of Λ. Note that some of the | ̂ξx⟩ could be zero if the set
|ξx⟩ is not linearly independent. Nevertheless, they satisfy

| ̂ξx⟩ = ∑
x′≤x cxx′ |ξx′⟩ = ∑x′≤x cxx′Π(x′)|ux′⟩ = ∑x′≤x cxx′ ∑y∈T(x′)⟨vy|ux′⟩ |vy⟩ (12.45)

for some complex coefficients cxx′ . Due to the nested properties of the T(x), it follows
that | ̂ξx⟩ is supported on the span of the |vy⟩ with y ∈ T(x), i. e., | ̂ξx⟩ = ∑y∈T(x) txy|vy⟩
for some complex coefficients txy. Since both {|vy⟩}y and the nontrivial {| ̂ξx⟩}x are or-
thonormal sets, it must be that∑y∈T(x) |txy|

2 = 1 for all x such that | ̂ξx⟩ ̸= 0. Otherwise,
txy = 0. Now we have

Tr[Λσ] = ∑
x
⟨ ̂ξx|σ| ̂ξx⟩ = ∑

x
∑

y∈T(x)
S(y)|txy|

2

≤
1
γ
∑
x
∑

y∈T(x)
R(x)|txy|

2 ≤
1
γ
,

(12.46)

and the reduction to the classical case is complete.

12.3.2 Converse in the quantum case

Theproof of the converse bound in the quantumcase also proceeds by reduction to the
classical case, again via PXY and QXY . The main idea is to pinch ρ in the eigenbasis of
σ to obtain commuting operators whose eigenvalue distributions are themarginals PY
and QY . Doing so creates additional terms in the bound, which vanish in the asymp-
totic limit by the strengthened version of Stein’s lemma in (12.39).

Let us startwith the pinching inequality (8.17) and express it here as ρ ≤ ν(σ)𝒫σ[ρ]
for the pinching map 𝒫σ composed of the projection operators onto the eigensub-
spaces of σ and the number ν(σ) of distinct eigenvalues of σ. For the optimal test
Λ⋆ in βα(ρ, σ) for any α ∈ (0, 1), the pinching inequality implies that Λ⋆ is feasible in
βα/ν(σ)(𝒫σ[ρ], σ)with the same value of the objective as βα(ρ, σ). Therefore we have the
first step in the proof,

βα/ν(σ)(𝒫σ[ρ], σ) ≤ βα(ρ, σ) . (12.47)

In the next step, we relate βα(𝒫σ[ρ], σ) to βα(PXY ,QXY ). For ρ and σ with degener-
ate eigenvalues, which will assuredly be the case in the i. i. d. setting, there is some
ambiguity in the definition of PXY and QXY corresponding to the choice of eigenbasis.
A suitable choice for the eigenbasis of σ will ensure that the eigenvalues of 𝒫σ[ρ] are
given by PY , the marginal of the associated PXY . Consider the matrix whose (y, y′) en-
try is ⟨vy|ρ|vy′⟩ for an eigenbasis |vy⟩ of σ. The pinch map will annihilate all but the
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diagonal blocks of this matrix corresponding to the various eigensubspaces. Indepen-
dently of thepinchmap, eachof these diagonal blocks can themselves bediagonalized
by choosing an appropriate eigenbasis |vy⟩. Let us fix this basis to be the eigenbasis
of σ. Then the action of the pinch map will leave a diagonal matrix with elements
∑x R(x)|⟨ux|vy⟩|

2 = ∑x R(x)W(x, y) = PY (y). The eigenvalues of σ are of course QY (y),
and therefore

βα(𝒫σ[ρ], σ) = βα(PY ,QY ) (12.48)

for any α ∈ [0, 1] and this choice of eigenbasis of σ. By monotonicity it follows that,
again for any α ∈ [0, 1],

βα(PXY ,QXY ) ≤ βα(PY ,QY ) . (12.49)

Now combine (12.47), (12.48), and (12.49) and use (9.13) to obtain

βα(ρ, σ) ≥
1
γ
(

α
ν(σ)
− Tr[PXY {PXY > γQXY }]) . (12.50)

Then move to the i. i. d. scenario by making the replacements ρ ← ρ⊗n, σ ← σ⊗n,
PXY ← PXnYn , and QXY ← QXnYn . Set γ = 2n(D(PXY ,QXY )+δ) for some δ > 0 and define
Tn = Tr[PXnYn {PXnYn > γQXnYn }]. Then the limit procedure as n→∞ and then as δ → 0
produces

lim
n→∞
−1
n
log βα(ρ

⊗n, σ⊗n) ≤ D(ρ, σ) − lim
δ→0

lim
n→∞

1
n
log( α

ν(σ⊗n)
− Tn) , (12.51)

again using (12.8). To dispose of the last term, write

−
1
n
log( α

ν(σ⊗n)
− Tn) = −

1
n
log α + 1

n
log ν(σ⊗n) − 1

n
log(1 − 1

α
Tnν(σ

⊗n)) . (12.52)

The first of these tends to zero as n→∞, since α does not vary with n.
Meanwhile, the second term deals with the number of distinct eigenvalues of σ⊗n.

Each such eigenvalue is an n-fold product of the at most d eigenvalues of σ, so the
distinct possible σ⊗n eigenvalues are specified by the number of each of the possi-
ble σ eigenvalue factors. This is often called the type of the sequence of eigenval-
ues, and the set of all sequences of the same type is the type class. As each eigen-
value factor can occur zero up to n times, there are at most (n + 1)d types. Hence the
second term is upper-bounded by d

n log(n + 1), which also vanishes in the limit as
n→∞.

Finally,we come to the third term.By theHoeffdingbound (2.26),Tn goes to zero as
e−cn for some constant c > 0. Then the argument to the logarithm tends to 1 as n→∞,
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since ν(σ⊗n) grows only polynomially in n. Therefore the third term also vanishes in
this limit, and the proof of the converse is complete.

Exercise 12.8. Show additivity of the relative entropy by using Stein’s lemma.

12.4 The data processing inequality

With Stein’s lemma in hand,monotonicity of the relative entropy follows immediately
from the monotonicity of βα. For every pair of states ρ, σ ∈ Stat(ℋA) and every quan-
tum channel ℰB|A, we have βα(ρ⊗n, σ⊗n) ≤ βα(ℰB|A[ρA]⊗n, ℰB|A[σA]⊗n). Applying Stein’s
lemma yields

D(ℰB|A[ρA], ℰB|A[σA]) ≤ D(ρ, σ) . (12.53)

Monotonicity ofD(ρ, σ) canbeused tofindaboundon the relative entropy in terms
of βα(ρ, σ) by considering the optimal measurement for βα. Consider the two-outcome
measurement (QC) channelℳX|A specified by the POVM {Λ, 1−Λ}. For α = Tr[Λρ] and
β = Tr[Λσ], monotonicity implies

D(ρA, σA) ≥ D(ℳX|A[ρA],ℳX|A[σA]) = D((α, 1 − α), (β, 1 − β))

= −h2(α) + α log
1
β
+ (1 − α) log 1

1 − β
≥ α log 1

β
− h2(α) .

(12.54)

Here h2(p) := −p log p − (1 − p) log(1 − p) is the binary entropy. Choosing Λ to be the
optimal test in βα(ρ, σ) gives D(ρ, σ) ≥ −α log βα(ρ, σ) − h2(α).

Exercise 12.9. Let ρXB be an arbitrary CQ state with classical X. Prove Fano’s5 inequal-
ity:

H(X|B)ρ ≤ h2(Pguess(X|B)ρ) + (1 − Pguess(X|B)ρ) log(|𝒳 | − 1) . (12.55)

Exercise 12.10. Using Taylor’s6 theorem, show that the binary relative entropy
d2(p, q) := p log(p/q) + (1 − p) log((1 − p)/(1 − q)) satisfies d2(p, q) ≥

2
ln 2 (p − q)

2. Em-
ploying monotonicity for the optimal measurement in the distinguishability, prove
Pinsker’s7 inequality for all quantum states ρ and σ:

D(ρ, σ) ≥ 2
ln 2δ(ρ, σ)

2 . (12.56)

5 Roberto Mario “Robert” Fano, 1917–2016.
6 Brook Taylor, 1685–1731.
7 Mark Semenovich Pinsker, 1925–2003.
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Exercise 12.11. Following a similar argument for distinguishability, show that joint
convexity and monotonicity of relative entropy are equivalent.

Proposition 12.8 (Monotonicity of mutual information and conditional entropy). For any two quan-
tum channels ℰA′ |A and ℱB′ |B and any quantum state ρAB, let ρ′A′B′ = ℰA′ |A ⊗ ℱB′ |B[ρAB]. Then
I(A′ : B′)ρ′ ≤ I(A : B)ρ. Furthermore, if ℰA′ |A is unital, then H(A′|B′)ρ′ ≥ H(A|B)ρ.

These inequalities are often called data processing inequalities, since processing data
(random variables or quantum states) only increase entropy or decreasemutual infor-
mation. They are also equivalent to the strong subadditivity of the entropy, which is
subadditivity for conditional entropy:

H(AB|C)ρ ≤ H(A|C)ρ + H(B|C)ρ . (12.57)

By (12.32) strong subadditivity is positivity of the conditional mutual information.
When ρABC is a CQ state with classical C, strong subadditivity follows from usual

subadditivity using Property 3 of Proposition 12.5. In the general case, it is easy to
work out the statement of strong subadditivity is equivalent toH(B|AC)ρ ≤ H(B|C)ρ (or
H(A|BC)ρ ≤ H(A|C)ρ), which is just monotonicity under the partial trace map. By the
Stinespring representation, monotonicity for the partial trace implies monotonicity
for all quantum channels.

By (12.17) monotonicity of the conditional entropy immediately implies that
the conditional entropy is a concave function of the quantum state: For ρAB =
∑x PX(x)σAB(x),

∑
x
PX(x)H(A|B)σAB(x) ≤ H(A|B)ρ . (12.58)

Therefore the conditional entropy of separable states is necessarily positive; this gen-
eralizes (12.28). However, the converse statement does not hold: There exist examples
of nonseparable states with positive conditional entropy.

By data processing we can also infer continuity of the conditional entropy.

Proposition 12.9 (Continuity of the conditional entropy). For any two bipartite density operators
ρAB and σAB, let δ(ρAB, σAB) = ε. Then

H(A|B)ρ − H(A|B)σ
 ≤ 2ε log |A| + (1 + ε)h2(

ε
1 + ε
) . (12.59)

Proof. Defineφ = 1
ε {ρ−σ}+,whichmust be anormalizeddensity operator, and then θ =

1
1+ε (σ+εφ). Observe that θ ≥ 0 and Tr[θ] = 1, as well as ρ ≤ (1+ε)θ. Therefore τ =

1
ε ((1+

ε)θ−ρ) is positive and normalized, thus giving another ensemble decomposition of θ:

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



182 | 12 Entropy

θ = 1
1+ε (ρ+ ετ). Now consider the CQ extensions of the two ensemble decompositions,

θ′ABX =
1

1 + ε
(ρAB ⊗ |0⟩⟨0|X + τAB ⊗ |1⟩⟨1|X) , (12.60)

θABX =
1

1 + ε
(σAB ⊗ |0⟩⟨0|X + φAB ⊗ |1⟩⟨1|X) . (12.61)

By construction, θ′AB = θAB, and therefore H(A|B)θ = H(A|B)θ′ . The conditional en-
tropy can be bounded fromabove and belowby entropy quantities involvingX; specif-
ically,

H(A|BX)θ′ ≤ H(A|B)θ′ = H(A|B)θ ≤ H(A|BX)θ + H(X|B)θ . (12.62)

The lower bound is just data processing, and for the upper bound, we appeal to
H(X|AB)θ ≥ 0. By the chain rule this is equivalent to H(AB)θ ≤ H(ABX)θ, which im-
plies H(A|B)θ ≤ H(AX|B)θ and then H(A|B)θ ≤ H(A|BX)θ + H(X|B)θ, both by further
applications of the chain rule. From positivity of the mutual information we can re-
place H(X|B)θ with H(X)θ to get H(A|BX)θ′ ≤ H(A|BX)θ +H(X)θ. For the specific states
in question, this is just

1
1 + ε

H(A|B)ρ +
ε

1 + ε
H(A|B)τ ≤ h2(

1
1 + ε
) +

1
1 + ε

H(A|B)σ +
ε

1 + ε
H(A|B)φ . (12.63)

Rearranging and using the crude dimension upper and lower bounds on the condi-
tional entropy gives

H(A|B)ρ − H(A|B)σ ≤ 2ε log |A| + (1 + ε)h2(
1

1 + ε
) . (12.64)

Interchanging ρ and σ gives the absolute value in the continuity statement.

12.5 Additional exercises

Exercise 12.12. By the data processing inequality, the mutual information of two bi-
nary random variables X and Y decreases when Y is subjected to any channel. For the
output Z of BSC(p)with input Y , show the following strong data processing inequality:

I(X : Y) ≤ (1 − 2p)I(X : Z) . (12.65)

Hint: Decompose BSC(p) into the identity channel and the channel with completely
mixed output.

Exercise 12.13. Extend the previous result to the quantum depolarizing channel.

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



12.6 Notes and further reading | 183

Exercise 12.14. Show that minσB D(ρAB, ρA ⊗ σB) = I(A : B), i. e., ρB is the optimal
choice in the minimization. Similarly, show that H(A|B)ρ = −minσB D(ρAB, 1A ⊗ σB).

Exercise 12.15. Show that for any state ρ, D(ρ, σ) ≥ D(ρ, τ) if 0 ≤ σ ≤ τ. Use this to
show that log is operator monotone.

Exercise 12.16. Using operator monotonicity of log, show that D(τ, σ) ≤ 0 for τ ≤ σ.
Use this to show that H(X|B)ρ ≥ 0 for classical X and an arbitrary CQ state ρXB, as in
Proposition 12.5.

Exercise 12.17. Show the following complement to Fano’s inequality: For any CQ state
ρXB,

H(X|B)ρ ≥ log
1

Pguess(X|B)ρ
. (12.66)

Hint: use the optimal variables for Pguess(X|B)ρ from (11.6), operatormonotonicity of log,
and the variational expression for H(A|B)ρ from Exercise 12.14.

Exercise 12.18. Consider a CQ state ρXBn = ∑x PX(x)|x⟩⟨x|X ⊗ θB1 (x) ⊗ ⋅ ⋅ ⋅ ⊗ θBn (x) for
some arbitrary distribution PX and states θ(x). Show that limn→∞

1
nH(B

n)ρ = H(B1|X)ρ.
Thus the correlations among the B systems induced by X exactly reduce the per-copy
entropy of the collection Bn from H(B1) to H(B1|X).

12.6 Notes and further reading

Entropy as we have defined was first defined by Gibbs in the context of classical
statistical mechanics [108] and later extended to the quantum setting by von Neu-
mann [293]. Shannon introduced entropy as a quantification of uncertainty or infor-
mation [258]. The first quote at the top of the chapter was recounted by Shannon to
Tribus in [283]. The latter was relayed by the author’s father. For more on classical
information theory, see Cover and Thomas [64] and MacKay [198].

Kullback and Leibler [175] introduced the relative entropy, while the form of the
quantum relative entropy is due to Umegaki [287]. Klein [162] had already established
a more general result, which implies positivity of Umegaki’s relative entropy much
earlier. Relation (12.8) to the relative entropy of two probability distributions is due
to Nussbaum and Szkoła [212]. Due to the noncommutation of ρ and σ, many other
variants that capture the notion of a “quantum likelihood ratio ρ

σ ” are possible, e. g.,
DBS(ρ, σ) = Tr[ρ log(ρ

1/2σ−1ρ1/2)] due to Belavkin and Staszewski [18]. Crucially, though,
Stein’s lemma and the chain rules hold for the Umegaki form.

The triangle inequality for the von Neumann entropy was proven (and named) by
Araki andLieb [7] andwasoneof thefirst uses of thepurificationof aquantumstate (as
in the present proof). Strong subadditivitywas first shownbyLieb andRuskai [190] us-
ing a result known as Lieb’s concavity theorem [189]. Later Lindblad [191] used Lieb’s
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concavity theorem to establish joint convexity of the relative entropy, which implies
monotonicity. Fano’s inequality was reported in his early book on information the-
ory [97]. A bound relating relative entropy and distinguishability was originally found
byPinsker [223] and independently improved to the version stated here by Csiszár [65],
Kullback [174], andKemperman [159]. The continuity of conditional entropy isWinter’s
improvement [306] on the original statement from Alicki and Fannes [4].

In the field of statistics, “Stein’s lemma” refers to something different, but our
use is the common one in quantum information theory. In fact, Proposition 12.7 was
first stated by Chernoff, who attributed the result to Stein [56]. Apparently, Stein
denied ever having proved the statement [156]. The proof here follows Polyanskiy
and Wu [225]. The quantum version was shown by Hiai and Petz [139], who showed
achievability, and Ogawa and Nagaoka [214], who established the converse state-
ment. That Stein’s lemma implies monotonicity and the former has a simple proof
was stressed by Bjelaković and Siegmund-Schultze [40]. Our approach to quantum
Stein’s lemma follows Li in the achievability part [187]. Following Hiai and Petz,
Ogawa and Hayashi [213] make use of the pinching inequality ρ ≤ ν(σ)𝒫σ[ρ] as we do,
though in the achievability argument.
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13 Uncertainty relations
It must have been one evening after midnight when I suddenly remembered my conversation
with Einstein and particularly his statement, “It is the theory which decides what we can ob-
serve.” I was immediately convinced that the key to the gate that had been closed for so long
must be sought right here. … The right question should therefore be: Can quantum mechanics
represent the fact that an electron finds itself approximately in a given place and that it moves
approximately with a given velocity, and can we make these approximations so close that they
do not cause experimental difficulties?1

Werner Heisenberg

One of the appealing aspects of the study of quantum information is that in trying to
obtain tight bounds on various kinds of protocols, we are forced to sharpen existing
results from quantum mechanics. In the process, we learn a bit more about quantum
mechanics itself. An example is given by various uncertainty relations. Recall the un-
certainty principle, which is a statement along the lines of

Complementary physical properties, like position and momentum, cannot be si-
multaneously known precisely.

The job of uncertainty relations is to make a precise statement in this direction. (There
can be many such useful statements; there is not necessarily one uncertainty relation
to rule them all.)

Uncertainty relations are mathematical statements, and in quantum mechanics,
we have to be especially careful to make sure that mathematical quantities we use are
meaningful in some way. One way to do this is to try to formulate a statement that has
a direct operationalmeaning in that it says a particular process is constrained in some
way. This distinction is a bit like the various forms of the second law. One formulation
of the second law, due to Carathéodory, pertains more to the mathematical formula-
tion of the theory: “In every neighborhood of any state ρ of an adiabatically enclosed
system, there are states inaccessible from ρ.” The notion of adiabatic accessibility is
not so immediate. But the Kelvin2–Planck formulation ismore direct: “It is impossible

1 Es mag an jenem Abend gegen Mitternacht gewesen sein, als ich mich plötzlich auf mein Gespräch
mit Einstein besann und mich an seine Äußerung erinnerte: »Erst die Theorie entscheidet darüber,
was man beobachten kann.« Es war mir sofort klar, daß der Schlüssel zu der so lange verschlossenen
Pforte an dieser Stelle gesucht werden müsse. … Die richtige Frage mußte also lauten: Kann man in
der Quantenmechanik eine Situation darstellen, in der sich ein Elektron ungefähr—das heißtmit einer
gewissenUngenauigkeit—an einemgegebenenOrt befindet und dabei ungefähr—das heißtwiedermit
einer gewissen Ungenauigkeit—eine vorgegebene Geschwindigkeit besitzt, und kann man diese Un-
genauigkeiten so gering machen, daß man nicht in Schwierigkeiten mit dem Experiment gerät? [134]
2 William Thomson, 1st Baron Kelvin, 1824 –1907.

https://doi.org/10.1515/9783110570250-013

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/William_Thomson,_1st_Baron_Kelvin
https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110570250-000


186 | 13 Uncertainty relations

to devise a cyclically operating device, the sole effect of which is to absorb energy in
the form of heat from a single thermal reservoir and to deliver an equivalent amount
of work.”

13.1 Guessing games

We can construct two concrete uncertainty relations that are more in the Kelvin–
Planck vein and which will illuminate why quantum error correction and key distri-
bution are possible. Instead of the task of delivering some amount of work, consider
the following two guessing games played by Alice and Bob. The overarching goal
of both games is for Bob to prepare a quantum system in a state such that he can
predict the outcome of either of two complementary measurements made by Alice on
that system, measurements in conjugate bases. We refer to these as measurements of
“amplitude” and “phase”, denote the corresponding basis vectors |z⟩ and |x̃⟩, and the
random variables describing the result as Z and X, respectively.

There are two possible complementary measurements that are relevant for the
purposes of this book. The first, applicable for any dimension d of Alice’s system, is
projective measurement in the eigenbasis of the shift and clock operators from (4.18)
and (4.19), respectively. The second is applicable when Alice’s system is a collection
of n qubits. In this case the amplitude (phase) measurement is measurement of every
qubit in the basis of σz (σx).

For either choice of measurement, the two games are:

Alice–Bob guessing games
Version 1

1. Bob prepares a qubit A in any
manner of his choosing and deliv-
ers it to Alice.

2. Alice randomly chooses X or Z
and announces her choice.

3. Bob announces his guess for the
outcome of Alice’s announced
measurement.

4. Alice performs the corresponding
measurement on A.

5. They compare her outcome with
his guess.

Version 2

1. Bob prepares a qubit A in any
manner of his choosing and deliv-
ers it to Alice.

2. Bob announces his guesses for the
outcomes of an X measurement
and a Z measurement.

3. Alice randomly chooses the X or
Z measurement.

4. Alice performs the corresponding
measurement on A.

5. They compare her outcome with
his guess.
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Steps 1, 4, and 5 are identical, whereas Steps 2 and 3 are interchanged in the two
versions. In Version 1, Bob only has to deliver one guess, and inVersion 2, two guesses.
Let us consider Version 2 first. According to the uncertainty principle, it should be
impossible to always win the game. Mathematically, we anticipate this because there
is no joint eigenvector of X and Z. We could hope to show that there is no strategy to
always win Version 2 by appealing to the Heisenberg–Robertson3 relation relating the
variances of the observables in a state |ψ⟩ to the expectation of their commutator:

(ΔX)ψ(ΔZ)ψ ≥
1
2
⟨[X, Z]⟩ψ

 . (13.1)

In this case, however, the bound is trivial. For qubits, the operators X and Z anticom-
mute (XZ + ZX = 0), and so the right-hand side reduces to |⟨XZ⟩ψ|. Choosing |ψ⟩ = |0⟩
immediately yields zero. We will have to take a different approach.

Now consider Version 1. Despite the similarities with Version 2, it is possible to
win this game with certainty! Continuing with the qubit case, in step 1, Bob should
prepare |Φ⟩AB and keep B for himself. In step 3, hemakes the samemeasurement on B
as Alice has announced in step 2. Clearly, due to the form of the state, if Alice chooses
Z, then Bob’s Z measurement outcome from B will be the same as Alice’s from A. But
note that for the X eigenstates |±⟩ = 1√2 (|0⟩ ± |1⟩), we have that

|Φ⟩AB =
1√2 (|+⟩A ⊗ |+⟩B + |−⟩A ⊗ |−⟩B) . (13.2)

Hence, if Alice chooses X, then his measurement result will also be identical to hers.
In this way, he can circumvent the straightforward reading of the uncertainty princi-
ple.

The difference between Versions 1 and 2 hinges on what is meant by “simultane-
ously” in the uncertainty principle. Version 2 corresponds to themore straightforward
reading, since we directly demand both pieces of information from Bob. In Version 1,
though, hehas to be ready to guess either,whichmakes it seem that hewould just need
to have concrete guesses for both. But not quite. Instead, he has a “quantum guess”
in the form of qubit B, since it will tell him either result (but not both at the same
time). It turns out (and we will prove shortly) that it is only possible to certainly win
the game by using a “quantum guess”: If both guessing probabilities are 1, then the
initial state Bob starts withmust bemaximally entangled.Wemightwonder if Bob can
win Version 2 by making use of a “quantum guess”, but alas the answer is no. These
two guessing gameswill play an important role in constructing protocols for quantum
communication over noisy channels (Version 1) and the security of QKD (Version 2).

3 Howard Percy Robertson, 1903–1961.
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13.2 Entropic uncertainty relations

The limitations and possibilities of each version of the game can be captured by en-
tropic uncertainty relations. Before we state the particular relations, let us consider
how to model the situation. Any strategy Bob might employ for Version 2 can be mod-
eled by a device that outputs one quantum and two classical values. For instance, he
may pick an eigenstate of X at random, report the corresponding state as his X guess,
and simply pick a Z guess also at random. He could also prepare a tripartite quantum
state ψABC and measure system B (C) to obtain the Z (X) guess.

Indeed, by Stinespring, every device producing two classical values can be re-
garded as first preparing a tripartite state and thenmeasuring systemsB and C. Impor-
tantly, the measurements on B and C commute, because they pertain to different sys-
tems. In contrast, since Bob reports his guess in Version 1 only after Alice announces
the choice of measurement, he need only prepare a bipartite quantum state ψAB. As
in the entangled-state protocol just mentioned, his measurement on B depends on Al-
ice’s choice of measurement. In this case, Bob’s two measurements do not commute.

To state the entropic uncertainty relations, it is convenient to denote the condi-
tional entropy of Z measurement on system A given B for the bipartite state ρAB by
H(ZA|B)ρ. That is, for the pinch 𝒫A of A in the |z⟩ basis, H(ZA|B)ρ = H(A|B)𝒫A[ρAB] Sim-
ilarly, by H(XA|B)ρ we denote the conditional entropy of the X measurement on A,
which is just H(A|B)�̃�A[ρAB], where �̃� denotes the pinch in the |x̃⟩ basis. Then the un-
certainty relations read as follows.

Proposition 13.1 (Entropic uncertainty relations). For any tripartite state ρABC ,

H(XA|B)ρ + H(ZA|B)ρ ≥ log |A| + H(A|B)ρ and (13.3)

H(XA|B)ρ + H(ZA|C)ρ ≥ log |A| . (13.4)

The first inequality pertains to Version 1 of the guessing game. Since the conditional
entropy of a quantum system can be negative, it is possible to decrease the right-hand
side by choosing more entangled states. Indeed, the canonical maximally entangled
state has a conditional entropy of − log |A| as we have seen, so in this case the bound
becomes trivial. This corresponds to the protocol for winning using entanglement that
we described above.

The uncertainty relation implies that every strategy for perfect guessing inVersion
1will necessarily involve amaximally entangled state by theproperties of purifications
in Proposition 6.2. Stated differently, the extent to which Bob can win the game (and
have low conditional entropy of X and Z) implies that the original state ρAB must have
a conditional entropy near the minimum possible value − log |A|.

The second inequality pertains to Version 2 of the guessing game and ensures that
no strategy will allow Bob to perfectly guess each time. Perfect guessing would lead
to a conditional entropy of zero for both terms, which is impossible. Indeed, the total
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amount of entropy must be the logarithm of the dimension, so for qubits, there will
always be one bit of entropy in Bob’s guesses.

Before proceeding to the proof, it is worth noticing the tension between uncer-
tainty relations and Bell’s theorem. The uncertainty relations allow us to place con-
straints on incompatible observables, but reasoning about their properties is precisely
whatwe learned to bewary of from the Bell scenario. The resolution is that the various
entropies are computed from a fixed quantum state, which mediates the relationship
between the incompatible observables. As remarked in Section 7.3.1, Bell’s theorem is
not an absolute prohibition on reasoning about incompatible observables, only that
local hidden variables cannot be used for this purpose.

Now we turn to the proof. Its crux is that �̃�A ∘ 𝒫A = πA TrA, which is to say that
sequentially measuring in the two bases produces amixed state. This was established
for amplitude and phase bases defined from the shift and clock operators in (5.6). That
result for d = 2 implies the n-qubit version, simply by separately pinching each qubit
in both bases. It is also therefore the case that the entropic uncertainty relations hold
for any choice of complementary bases such that sequential measurement yields the
mixed state, but we will not pursue this further.

Proof. First note that we only need to prove the first relation for pure ρABC. For if ρABC
has a purification ρABCR with nontrivial R andH(XA|B)ρ+H(ZA|CR)ρ ≥ log |A|, then the
desired statement follows by monotonicity of the conditional entropy under partial
trace of R.

So let us assume that ρABC is pure. In this case the two statements imply each
other, because it turns out that H(ZA|B)ρ − H(ZA|C)ρ = H(A|B)ρ. To see this, first note
that for ρABC = |ψ⟩⟨ψ|ABC, we can always express |ψ⟩ABC as

|ψ⟩ABC =∑
z
√PZ(z)|z⟩A|φz⟩BC (13.5)

for some normalized vectors |φz⟩BC. Thus, for every outcome z of the Z measurement
on A, the conditional state of BC is a pure state. ThereforeH(B|ZA)ρ = H(C|ZA)ρ. Using
chain rules and H(AB)ρ = H(C)ρ, we have

H(ZA|B)ρ − H(ZA|C)ρ = H(ZAB)ρ − H(B)ρ − H(ZAC)ρ + H(C)ρ
= H(ZAB)ρ − H(ZAC)ρ + H(C)ρ − H(B)ρ
= H(B|ZA)ρ − H(C|ZA)ρ + H(AB)ρ − H(B)ρ
= H(A|B)ρ .

(13.6)

It remains to prove one of the relations. Writing the first in terms of relative entropy
and rearranging terms reveals that it is equivalent to

D(ρAB,πA ⊗ ρB) ≥ D(�̃�A[ρAB],πA ⊗ ρB) + D(𝒫A[ρAB],πA ⊗ ρB) , (13.7)
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where �̃�A is the pinch of A in the |x̃⟩ basis. Recall (12.23), which states

D(ρAB,πA ⊗ ρB) = D(ρAB,𝒫A[ρAB]) + D(𝒫A[ρAB],πA ⊗ ρB) . (13.8)

By monotonicity under �̃�A the first term on the right-hand side satisfies

D(ρAB,𝒫A[ρAB]) ≥ D(�̃�A[ρAB], �̃�A ∘ 𝒫A[ρAB]) = D(�̃�A[ρAB],πA ⊗ ρB) . (13.9)

Using �̃�A ∘ 𝒫A = πA TrA completes the proof.

The only inequality step in the proof is the pinch in the X eigenbasis and therefore
states ρAB for which ρAB = �̃�A[ρAB] satisfy the uncertainty relations with equality. By
interchanging X and Z in the proof the same is true when ρAB = 𝒫A[ρAB]. These are CQ
states.

For the bipartite relation, these equality conditions are not terribly meaningful:
When ρAB = 𝒫A[ρAB], we have H(ZA|B)ρ = H(A|B)ρ, and (13.3) reduces to H(XA|B)ρ ≥
log |A|. Equalitymust hold in this case, as log |A| is an upper bound on the conditional
entropy. Moreover, when ρAB is classical onA in the Z basis, then naturally the X basis
outcome is completely random, and therefore the entropy is maximal.

Translated to the tripartite relation, however, the equality conditions are more
meaningful. If ρABC is pure and such that ρAB = �̃�A[ρAB], then equality in (13.7) to-
gether with (13.6) gives equality in (13.4). Interchanging (XA,B) and (ZA,C), equality
in (13.4) also holds if ρAC = 𝒫[ρAC]. Equality also holds if 𝒫A[ρAB] = ρAB or �̃�A[ρAC] =
ρAC, since in this case, one of the entropies is maximal, and by (13.6) the other is zero.
Altogether, we have the following:

Proposition 13.2 (Equality conditions). For pure ρABC , if either ρAB or ρAC is a CQstatewith classical
A in either the X or Z basis, then equality holds in (13.4).

Exercise 13.1. Consider a classical state ρAB =
1
2 ∑u,z∈ℤ2 PU (u)|z⟩⟨z|A ⊗ |z + u⟩⟨z +

u|B, i. e., the classical variable B is the image of A under BSC(p) for p = PU (1).
Take the purification to be |ψ⟩ABC1C2 =

1√2 ∑u,z √PU (u)|z⟩A|z + u⟩B|u⟩C1 |z⟩C2 and
show that after applying a cnot gate from C1 to C2, the state becomes |ψ′⟩ABC1C2 =1√2 ∑x |x̃⟩AZxB|Φ⟩BC1ZxC2 |θ⟩C1 for |θ⟩ = ∑u∈ℤ2 √PU (u)|u⟩. Confirm that equality holds
in (13.4). Hence the state in C2 given XA is the output of PSC(f ) for f = |1−2p|, while the
output in C1 is the mixed state π. Thus the BSC and PSC are related by the uncertainty
principle!
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13.3 Guessing probability and fidelity uncertainty relations

13.3.1 Statement

Besides entropic formulations, we can find uncertainty relations for the two versions
of the game in terms of guessing probabilities, recoverable entanglement, as well as
how close a bipartite state is to being completely uncorrelated. The first bound is rel-
evant to Version 1.

Proposition 13.3 (Bipartite guessing and entanglement bound). For any bipartite state ρAB and
measurements ΛB and ΓB, there exists a channel ℰA′ |B such that

arccos F(ΦAA′ , ℰA′ |B[ρAB])≤ arccos Pguess(ZA|B)ρ,Λ + arccos Pguess(XA|B)ρ,Γ . (13.10)

Furthermore, ℰA′ |B has an explicit constructed in terms of ΛB and ΓB.
Note that on the left-hand side we have the square root of Rent(A|B)ρ,ℰ . The bound says
something very similar to (13.3): High guessing probability for bothmeasurements im-
plies that the joint state ρAB is close to being entangled. But the entanglement recov-
ery operation in the bound can be constructed from the underlying POVMs, which
will prove useful in constructing quantum communication protocols using quantum
error-correcting codes in Chapter 19.

Exercise 13.2. Choosing suitable measurements Λ and Γ, show that the bound is sat-
isfied but not tight for bipartite states diagonal in the Bell basis.

For Version 2 of the guessing game, we can show the following:

Proposition 13.4 (Tripartite guessing bound). For any tripartite state ρABC and any measurement
ΛB,

F(�̃�A[ρAC ], πA ⊗ ρC) ≥ Pguess(ZA|B)ρ,Λ , (13.11)

F(𝒫A[ρAC ], πA ⊗ ρC) ≥ Pguess(XA|B)ρ,Λ . (13.12)

If the guess for the ZA measurement using ΛB is good, then Bob’s guess for XA using
C will be poor no matter what measurement he uses, since the fidelity of the CQ state
relevant for theXAmeasurement is correspondingly close tobeing completelyuncorre-
lated. The statement here is the same as (13.4), just phrased using different quantities,
and as there, a poor guessing probability of ZA does not imply much about guessing
XA. It is possible to transform these relations into a statement involving only guessing
probabilities, as in the following exercise, but the formulation involving closeness to
an uncorrelated state already shows that simultaneous perfect guessing is impossible.
This formulation will prove useful in establishing the security of QKD in Chapter 20.
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Exercise 13.3. Show that for d = |A|, (13.11) implies

√Pguess(XA|R)ρ +√d − 1√1 − Pguess(XA|R)ρ ≥ √d Pguess(ZA|B)ρ . (13.13)

13.3.2 Proof of the tripartite bound

The setup for the proofs of both propositions is quite similar, so we prove both in the
remainder of this section. For a bipartite state ρAB, let |ψ⟩ABR be any purification. Using
the eigenstates |z⟩ of ZA, we can write

|ψ⟩ABR =∑
z
|z⟩A
φ(z)⟩BR (13.14)

for |φ(z)⟩BR = A⟨z|ψ⟩ABR. As in (6.17), the isometry UA′B|B = ∑z √ΛB(z) ⊗ |z⟩A′ imple-
ments the ΛBmeasurement coherently, storing the result in systemA′ ≃ A. Ideally, the
state UA′B|B|ψ⟩ABR would be equal to

|ψ′⟩AA′BR =∑
z
|z⟩A|z⟩A′

φ(z)⟩BR . (13.15)

The overlap of the two states is simply∑z⟨φ(z)|√ΛB(z)|φ(z)⟩BR, and using the fact that
√Λ ≥ 0 for Λ ≥ 0 gives

F(ψ
′⟩AA′BR,UA′B|B|ψ⟩ABR) ≥ Pguess(ZA|B)ρ,Λ . (13.16)

Observe that |ψ′⟩ is such that tracing outA′ leaves a CQ state onABRwithdiagonalA in
the ZA basis. Then frommonotonicity under partial trace ofA′Bwehave the following,
which is important enough to highlight as a proposition.

Proposition 13.5. For any tripartite pure state ρABR and measurement ΛB,

F(ρAR ,𝒫A[ρAR]) ≥ Pguess(ZA|B)ρ,Λ . (13.17)

This bound states that a high guessing probability of ZA using B implies the joint state
of A and the purification R is correspondingly close to a CQ state with diagonal A in
the ZA basis.

Proposition 13.4 now follows easily. For such CQ states, it is clear that measure-
ment in the XA basis will yield a random outcome, that is, by monotonicity of the fi-
delity under P̃A, we further obtain

F(�̃�A[ρAR],πA ⊗ ρR) ≥ Pguess(ZA|B)ρ,Λ . (13.18)

Here we again use �̃�A ∘ 𝒫A = πA TrA. To adapt the statement to an arbitrary tripartite
state ρABC, observe that system C must be contained in the purification R. By Proposi-
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tion 6.2, ρABR also purifies ρABC. Tracing out the irrelevant parts of R and again using
monotonicity gives (13.11). Interchanging XA and ZA gives (13.12).

The above argument for the tripartite bound works for both choices of amplitude
and phase bases considered at the outset. For Proposition 13.3, slightly different argu-
ments are required for the two choices. We will first consider the clock and shift case,
and then detail which alterations are required for the n-qubit version after the entire
argument is complete.

13.3.3 Proof of the bipartite bound

To establish Proposition 13.3, we first take an apparent shortcut, which is simpler,
gets very close to the desired statement, and will turn out to be useful in Chap-
ter 19. Then we modify the argument to give the desired bound. The first step is to
apply (13.16) to |ψ′⟩AA′BR from (13.15) itself, but for the XA measurement. First, ex-
press the state as |ψ′⟩AA′BR = ∑x |x̃⟩A|θ(x)⟩A′BR for |θ(x)⟩A′BR = A⟨x̃|ψ′⟩AA′BR. Abusing
notation somewhat, let us overload ZA, and let it also denote the clock operator, so
that Z jA = ∑k∈ℤd ωjk |k⟩⟨k|. That is, ZA denotes the amplitude observable as well as the
random variable resulting from its measurement, depending on the context. Notice
that

θ(x)⟩A′BR = ∑
z
⟨x̃|z⟩|z⟩A′

φ(z)⟩BR =
1
√d
∑
z
ω−xz |z⟩A′ φ(z)⟩BR

=
1
√d
∑
z
Z−xA′ |z⟩A′ φ(z)⟩BR = 1

√d
Z−xA′ |ψ⟩A′BR , (13.19)

where |ψ⟩A′BR is just the same as |ψ⟩ABR with system A′ replacing A. Hence
ψ
′⟩AA′BR = 1

√d
∑
x
|x̃⟩A ⊗ Z

−x
A′ |ψ⟩A′BR . (13.20)

Nowconsider anymeasurement Γ′A′B(x)onA′B anda somewhatnonstandard coherent
implementation

VA′′A′B|A′B =∑
x
√Γ′A′B(x) ⊗ |−x̃⟩ , (13.21)

where arithmetic inside the ket is modulo d. Here the measurement result is stored as
−x in the X eigenbasis, which will prove convenient. The ideal output would be

ψ
′′⟩AA′A′′BR =∑

x
|x̃⟩A|−x̃⟩A′′

θ(x)⟩A′BR =
1
√d
∑
x
|x̃⟩A|−x̃⟩A′′Z

−x
A′ |ψ⟩A′BR . (13.22)
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By (13.16) we therefore have

F(ψ
′′⟩AA′A′′BR,VA′A′′B|A′Bψ′⟩AA′BR) ≥ Pguess(XA|A′B)ψ′ ,Γ′ . (13.23)

In light of (13.22), applying the unitary WA′A′′ = ∑x |x⟩⟨x|A′′ ⊗ Z
x
A′ to |ψ

′′⟩ yields
WA′A′′ |ψ′′⟩AA′A′′BR = 1√d ∑x |x̃⟩A|−x̃⟩A′′ |ψ⟩A′BR. A straightforward calculation shows
that this state is simply |Φ⟩AA′′ ⊗ |ψ′⟩A′BR. Thus by isometric invariance of the fidelity
underW , (13.23) implies

F(|Φ⟩AA′′ ⊗ |ψ⟩A′BR,WA′A′′VA′A′′B|A′Bψ′⟩AA′BR) ≥ Pguess(XA|A′B)ψ′ ,Γ′ . (13.24)

Again using isometric invariance, we can combine this fidelity with F(|ψ′⟩,U |ψ⟩) in
the triangle inequality (10.22) to obtain

arccos F(|Φ⟩AA′′ |ψ⟩A′BR,WVU |ψ⟩)
≤ arccos F(|Φ⟩AA′

ψ⟩A′BR,WV ψ
′⟩) + arccos F(ψ′⟩,U |ψ⟩) . (13.25)

Then the bounds (13.16) and (13.24) give

arccos F(|Φ⟩AA′′ |ψ⟩A′BR,WVU |ψ⟩)
≤ arccosPguess(XA|A

′B)ψ′ ,Γ′ + arccosPguess(ZA|B)ρ,Λ . (13.26)

This is nearly the bound we wish to prove, modulo interchanging the names A′′
and A′. Tracing out A′BR will only increase the fidelity on the left-hand side, and the
entanglement recovery map ℰA′|B is given by (changing the name to fit the current
convention)

ℰA′′|B[ρAB] = TrA′[WVUρAB(WVU)∗] . (13.27)

Themeasurement Γ′A′B potentially makes use of the fact that the ΛB measurement
has already taken place. This is reflected in the fact that the Γ′A′B POVM elements are
operators on A′B, not just B. Nevertheless, we can construct an appropriate Γ′A′B from
a measurement ΓB acting only on B for which

Pguess(XA|A
′B)ψ′ ,Γ′ ≥ Pguess(XA|B)ρ,Γ . (13.28)

In particular, for Π̃(x) = |x̃⟩⟨x̃|, define

Γ′A′B(x) =∑
y
Π̃A′ (y − x) ⊗ ΓB(y) . (13.29)

This measurement yields the difference between the Γ measurement on B and an X
measurement on A′. Notice that since ZxΠ̃(y)Z−x = Π̃(x + y), ZxA′Γ′A′B(x)Z−xA′ = Γ′A′B(0),
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and this is the operator determining Pguess(XA|B)ρ,Γ. Using (13.20) therefore gives
Pguess(XA|A

′B)ψ′ ,Γ′ = Tr[(∑
x
Π̃A(x) ⊗ Γ

′
A′B(x))ψ

′
AA′BR]

= ⟨ψ|Γ′A′B(0)|ψ⟩A′BR = Pguess(XA|B)ρ,Γ . (13.30)

Using this Γ′ in (13.26) completes the proof of (13.10).
Now we examine the case of the amplitude and phase bases defined by tensor

products of σx and σz . Here the two bases are related not by the Fourier transform,
but by the Hadamard transform |x̃⟩ = 1√2n ∑z∈ℤn2 (−1)x⋅z |z⟩ for x ∈ ℤn2 . Instead of using
the clock operator to define the amplitude observable ZA, now let ZxA = σ

x1
z ⊗ ⋅ ⋅ ⋅ ⊗ σ

xn
z

for x ∈ ℤn2 . The entire collection of operators {Z
x
A}x∈ℤn2 is required to specify a specific

eigenstate |z⟩ for z ∈ ℤn2 ; that is, the eigenvalues of the amplitude “observable” ZA
are effectively elements of ℤn2 , not ℂ as for observables properly defined. Neverthe-
less, we still refer to ZA as the amplitude observable. The calculation in (13.19) goes
through as before, though of course Z−xA = ZxA. Now there is no need to store the result
of measuring x as |x̃⟩, or actually there is no difference between | − x̃⟩ and |x̃⟩. The
state 1√2n ∑x∈ℤn2 |x̃⟩|x̃⟩ is just |Φ⟩⊗n for the two-qubit entangled state |Φ⟩, which is also
a 2n-dimensional maximally entangled state. With these modifications, the rest of the
proof goes through as before.

13.4 Notes and further reading

The uncertainty principle was introduced by Heisenberg [132] in 1927. He elaborated
on the argument in a letter to Pauli [133] and later in [134]. See alsoWerner and Farrelly
[300] for a recent discussion on Heisenberg’s thinking and the context of his original
paper on the uncertainty principle. Robertson established the more well-known form
[243]. Everett [95] and Hirschman [140] conjectured an entropic uncertainty relation,
which was later proven by Białynicki-Birula and Mycielski [39] using just established
results in Fourier analysis by Beckner [14, 15]. Białynicki-Birula and Mycielski also
considered entropic relations for angular momentum and phase. Deutsch [76] inves-
tigated for entropic relations for arbitrary discrete observables. Kraus [172] improved
Deutsch’s bound for complementary observables aswe have considered here and con-
jectured that the improvement holds generally. Maassen and Uffink [196] proved the
statement. The extension of the result to classical side information was considered by
Hall [116]. Renes and Boileau [239] showed the result for complementary observables
with quantum side information, drawing on techniques from Christandl and Winter
[60]. Berta et al. [34] proved the relation for general projective observables. A good
overview is the review of Coles et al. [63] The nonentropic statements are taken from
[237] by the author.
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14 Data compression
The essence of a quote is the compression of a mass of thought and observation into a single
saying.

John Morley, 1st Viscount Morley of Blackburn

Having completed our study of the tools needed to analyze information processing
protocols, we can finally proceed to do so. We begin in this chapter with the tasks of
compression, either of classical or of quantum data. The goal, of course, is to reduce
the amount of space needed to store some particular information. For instance, con-
sider compression of text, this text even. In the entire text, there is a vast amount of
redundancy in several senses. For one, it is not usually necessary to write every letter
in a word for the reader to determine which word was meant. Secondly, after reading
a decent amount of the text, it becomes easier to predict what the next word will be,
given the immediate context.

There are a multitude of ways of removing redundancy from data. Here we are
interested in the possibilities and limitations of fixed-length, approximately lossless
protocols. Starting with the first adjective, “fixed-length” refers to the fact that the
compression operation on a sequence of inputs has a fixed output size (number of
bits) for a fixed input size. All inputs are mapped to shorter sequences. Because the
decompressor makes use of the probability distribution of the input, recovery is pos-
sible even though some data is missing. In variable length coding, by contrast, some
inputs are mapped to shorter outputs, while some are made longer, with the idea that
the likely inputs are the ones that become shorter. The familiar zip and gzip software
applications are examples of variable-length compressors.

“Approximately lossless” means that the goal is to recover the exact input se-
quence, at least with high probability. This is the standard approach for digital data
we consider. For continuous signals, such as audio, recovering the exact waveform is
neither necessary nor even really possible with finite-precision devices. Given some
kind of metric on the space of possible signals, we can specify that the signal only
needs to be recovered up to a certain precision. Examples of such lossy compression
are the jpeg image, mp3 audio, and mp4 video formats.

Finally, the specific protocols wewill consider here are block protocols in that they
readall of the input data before outputting the compressedversion. The converses also
apply to streaming protocols, which read in the data sequentially and begin outputting
the compressed version after only a short lag. Streaming protocols are especially im-
portant for large data, e. g., audio and video.

https://doi.org/10.1515/9783110570250-014
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200 | 14 Data compression

14.1 Compression of classical data

14.1.1 Setup and basic properties

Given a random variable X with probability distribution PX , the goal of data compres-
sion is to transform X to Y so that |Y | ≤ |X| and yet X can be approximately recovered
from Y in the sense of Figure 14.1. This task is also known as source coding. It could
be that X = X1, . . . ,Xn, but we will first consider the “monolithic” case of a structure-
less X as it includes this specialization. As remarked in the introduction, the case of a
structureless X is often referred to as the “one-shot” scenario.

More formally, a (k, ε) compression scheme for X consists of a compression map
CY |X with |Y | = k and a decompressionmap DX|Y , such that δ(PXX′ ,DX|Y ∘CY |X[PXX′ ]) ≤
ε, where PXX′ (x, x′) = PX(x)δx,x′ . By (11.2) this is equivalent to saying that the proba-
bility of successfully guessing the value of X from the compressed value Y is at least
1 − ϵ. Clearly, there is a tradeoff between k and ε; they cannot both be small. Define
L⋆ε (X)P to be the smallest k such that there exists a (k, ε) compression protocol for X.

C D

P =
X

X′
X Y X

P =
X

X

X′
≈ε

Figure 14.1: A (k, ε) compression protocol of classical data X with k = |Y |. The random variable Y
is the compressed version of X , since the decompressor D can recreate the particular output of the
source (stored in the copy of X ) from it. The equality symbol =means that X = X ′.
We should be careful not to confuse the compression scenario with approximating a
source. That is, the approximation condition is not that δ(PX ,DX|Y ∘ CY |XPX) ≤ ε, but
rather δ(PXX′ ,DX|Y ∘ CY |X[PXX′ ]) ≤ ε. The variable X′ is used as a reference value to
compare with the output of the decompressor. Without it, the task of simulating PX by
DX|Y ∘CY |XPX is trivial absent any further restrictions. The compressor can just discard
the input, and the decompressor can just output a new X ∼ PX . (Requiring that the
decompressor be deterministic would change this conclusion.)

For the task of compression, though, deterministic compression and decom-
pression are sufficient to achieve any (k, ε) protocol that is achievable by stochas-
tic means. If the compressor uses randomness, then by Proposition 3.3 it is really
CY |X = ∑r PR(r)CY |XR=r for a deterministic channel CY |XR. Then the error will just be the
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average over R, since the joint output distribution over XX′ is
QXX′ = DX|Y ∘ CY |X[PXX′ ] =∑

r
PR(r)DX|Y ∘ CY |XR=r[PXX′ ] . (14.1)

So wemay pick the value of R such that QXX′R=r = DX|Y ∘CY |XR=r[PXX′ ] has the smallest
error and just use that one. An entirely similar argument applies to the decompressor.

14.1.2 One-shot bounds

To characterize the tradeoff between k and ε for a given source PX , we can establish
the following bounds on L⋆ε (X)P.
Proposition 14.1 (Compression bounds). For any random variable X distributed according to PX ,

β1−ε(PX ,1X ) ≤ L⋆ε (X)P ≤ min
η∈(0,ε] 1ηβ1−ε+η(PX ,1X ) + 1 . (14.2)

The lower bound here is the converse bound, since it limits the possibilities of any pro-
tocol. The upper bound is the achievability bound, as it is established by constructing
a particular protocol. In this case the bounds very nearlymatch, as wewill see shortly.

Proof. Let us start with the converse bound. Assume that CY |X and DX|Y constitute a
(k, ε) protocol. Therefore QXX′ as defined in (14.1) passes the equality test TXX′ (x, x′) =
δx,x′ with probability 1 − ε: TXX′ ⋅ QXX′ ≥ 1 − ε. Defining PXY = CY |X′ [PXX′ ] and T̂XY =
DT
X′|Y [TXX′ ] (recall that the transpose is the adjoint here), we have T̂XY ⋅ PXY ≥ 1 − ε.

Hence T̂XY is feasible for β1−ε(PXY ,QXY ) for all positive QXY , meaning that

β1−ε(PXY ,QXY ) ≤ T̂XY ⋅ QXY . (14.3)

Now let EX′X|X be the map that just copies X to X′ and notice that PXY = CY |X′ ∘
EX′X|X[PX]. Choosing QXY = CY |X′ ∘ EX′X|X[1X], it follows from monotonicity of βα that

β1−ε(PX , 1X) ≤ β1−ε(PXY ,QXY ) . (14.4)

Moreover, by design QXY (x, y) = CY |X=x(y), so that QXY ≤ 1XY . Therefore we have

T̂XY ⋅ QXY ≤ T̂XY ⋅ 1XY = TXX′ ⋅ DX′|Y [1XY ] = ∑
xy
DX′|Y=y(x) = |Y |. (14.5)

Combining (14.3), (14.4), and (14.5) gives β1−ε(PX , 1X) ≤ |Y | and therefore the lower
bound in (14.2).

The achievability statement is somewhat simpler. Intuitively, the compressor
should simply keep the values of X with the highest probability and discard the rest,
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mapping them to any one of the high probability x values. The total probability of the
inputs that are not discarded should be at least 1−ε. We therefore take the compressor
to all those x with P(x) ≥ r to themselves for an appropriate value of r, and all other
inputs to be mapped to any fixed element of high-probability inputs. The total size
of the alphabet is now reduced, as some x values are not used. The decompressor,
meanwhile, simply outputs the input value.

The compressor is characterized by the projector {P ≥ r1} with r chosen small
enough so that Tr[{P ≥ r1}P] ≥ 1 − ε. Let us see how we can ensure this is the case
by suitable choice of the compressor output size. The size of the compressed output
is simply k = Tr[{P ≥ r1}], and normalization of P requires that kr ≤ 1. From (9.13) we
get a lower bound on Tr[{P ≥ r1}P]: Tr[{P ≥ r1}P] ≥ α − rβα(P, 1). Combining with the
previous statement gives Tr[{P ≥ r1}P] ≥ α− 1

k βα(P, 1). Choosing α = 1− ε + η for some
η ∈ (0, ε] and k = ⌈ 1ηβ1−ε+η(P, 1)⌉ ensures that the right-hand side is at least 1 − ε and k
is an integer, as intended. The optimal choice for k is minη∈(0,ε]⌈ 1ηβ1−ε+η(P, 1)⌉. Using
⌈y⌉ ≤ y + 1 for y ≥ 0 gives the achievability bound in (14.2).

14.1.3 Optimal asymptotic i. i. d. rate

One case of interest is that the random variable to be compressed Xn is i. i. d. of length
n, i. e., PXn = P×nX as in (2.20). The length n is usually referred to as the blocklength. In
this setting, it is more convenient to work with the logarithm of the compression size.
Even better is the rate R of the compression scheme, R = 1

n log k. For fixed PX , there
are tradeoffs between R, n, and ε, e. g., small ε certainly constrains how large R can
be. We are most interested in what rates are possible in the case of large n and small
ϵ. The optimal rate for fixed ε and n is simply

R(PX , ε, n) :=
1
n
log L⋆ε (Xn)P⊗n . (14.6)

Appealing to Stein’s lemma,we can infer that the optimal compression rate in the limit
as n→∞ is in fact independent of ε and equal to the entropyH(X)P. This is Shannon’s
source coding theorem.

Proposition 14.2 (Shannon’s source coding theorem). For arbitrary i. i. d. Xn ∼ P×n and all ε ∈(0, 1), limn→∞ 1
n L
⋆
ε (Xn)P⊗n = H(X)P .

Proof. From the converse bound we obtain R(PX , ε, n) ≥
1
n log β1−ε(PXn , 1Xn ). By (12.33)

this is −D(PX , 1X) = H(X)P. To obtain a matching upper bound from the achievability
statement, choose η = ε/2. The prefactor 2/ε and additional term +1 vanish in the limit
as n→∞.
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Note that the zero-error rate, with ε fixed to zero from the outset, is quite differ-
ent. Indeed, unless some values of X have zero probability, nontrivial compression is
impossible. The stronger version of Stein’s lemma in (12.39) ensures that the entropy
is still an achievable rate even when taking ε to be exponentially decreasing in n (as
long as the base of the exponent is not too large). For all practical purposes, this is
equivalent to zero-error performance.

On the other hand, we may have thought that allowing a somewhat large error
could lead to compression at a lower asymptotic rate. This is evidently not the case,
and compressing a source below the entropy rate will result in very large error. The
error will increase at least exponentially in the blocklength n, since the optimal rate
even for compression with error exponentially close to 1 is still the entropy.

14.2 Compression of quantum data

14.2.1 Setup and basic properties

Now we turn to the task of compressing quantum data. Here, though, there is less in-
tuition about what this means, or what this task should accomplish. As just discussed
in the previous section, in classical compression, we want to obtain the actual value
of X, not just replicate the machine that generates X distributed according to PX . Put
differently, if there exists some random variable Y that is correlated with X in some
way, then this correlation should survive the compression and decompression opera-
tions. Formulating the definition of a compression protocol using X′ = X ensures that
this is the case, as any other Y can be generated from X′.

ℰ 𝒟

|ψ⟩

A

R

C A

|ψ⟩

A

R

≈ε

Figure 14.2: A (k, ε) protocol for compression of quantum data in A with k = |C|. In contrast to the
classical case, here we also want to retain correlations or entanglement of the system A with its
purification R. Dashed lines indicate quantum systems.

The quantum analog is now more clear. Consider a source described by a density op-
erator ρA on system A. Again, there might be other systems correlated or entangled
withA. To ensure these correlations are preserved, we should take a purification |ψ⟩AR
to be the ideal output andmeasure the quality of the actual output by the fidelity. Then
any actual correlations or entanglement with Awill be preserved, since all extensions
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of ρA can be generated by a purification. Specifically, we will use the entanglement
fidelity from (10.35). A (k, ε) protocol for compression of quantum data A with den-
sity operator ρA then consists of a compressor ℰC|A and decompressor 𝒟A|C such that
Fent(ρ,𝒟 ∘ ℰ) ≥ 1 − ε. This is depicted in Figure 14.2. Again, we define L⋆ε (A)ρ to be the
smallest k such that a (k, ε) protocol exists.

14.2.2 Achievability from classical compression

We could prove an achievability bound along the same lines as in Proposition 14.1,
namely by projecting onto the subspace of eigenstates with large enough eigenvalues.
However, it is important to appreciate that every classical compression protocol can
be transformed into a quantum compression protocol, not merely that particular one.
The strategy is essentially the same:Apply the classical compressionmapdesigned for
the eigenvalue distribution to the eigenbasis of the quantum state. Doing so, we can
show that L⋆ε (A)ρ ≤ L⋆ε (X)P, where PX is the distribution of eigenvalues of ρ. This is
the first instance of a protocol reductionmentioned in the introduction. We will make
extensive use of reductions in the coming chapters.

There are many ways to realize a classical channel as a quantum channel, and
we must be careful to pick the correct one for the reduction to work. Examining the
possibilities carefully will reveal that quantum compression is not so much about re-
ducing the size of the quantum data as it is about maximizing the amount of quantum
information that can be deleted.

To illustrate, let us first make the wrong realization of the classical compressor as
a quantum compressor. Suppose that the eigenvalues of ρA have the distribution PX
andwewould like to recycle the compressor for X. As we just saw in Section 14.1.1, any
(k, ε) compression protocol can already be made to have a deterministic compressor
and decompressor. In particular, wewould like to construct a unitary that implements
the compression function f . However, f is not necessarily one-to-one, so we cannot
just map |x⟩A to |f (x)⟩C. Instead, we can append the input to the output and define
UA′C|A = ∑x |f (x)⟩C |x⟩A′⟨x|A.

To see why this is the wrong choice, imagine for the sake of argument that the
decompressormanages toperfectly reconstruct thebasis states fromC back toA. Then,
applied to the purified input, the compression protocol results in a state of the form

|θ⟩AA′R =∑
x
√PX(x)|x⟩A|x⟩A′ |x⟩R . (14.7)

Now the trouble is clear: This state does not have high fidelity with the ideal purifica-
tion ψAR, since now there is a copy of the x value in the system A′. More precisely, the
fidelity of the actual and ideal outputs is just∑x PX(x)

2, which is only large if the state
to be compressed is nearly a pure state to begin with (and for which k = 1 is possible).
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In retrospect, leaving a copy of the input X value lying around at the compressor was
a too crude approach, since this information interferes with the entanglement we are
trying to preserve.

We can extend f to a reversible functionmore frugally as follows. First, for a given
ordering of the values of x, we can define the sequence𝒳y = {x : f (x) = y}. Thenwe can
define g(x) to be the position of x in𝒳f (x), starting our count from zero, say.With both
f (x) and g(x), we can reconstruct x, so themap x → (f (x), g(x)) is reversible and can be
implemented by a unitary operation. One small detail is that the sequences 𝒳y do not
all have the same size for different values of y, so this map is not so well-defined, but
we can just define g to map 𝒳 to 𝒵 = 0, . . . ,maxy |𝒳y| − 1, and the reversible version ̄f
of f becomes ̄f : 𝒳 → 𝒴 ×𝒵. The unitary, or more precisely isometric, implementation
can be defined as VCB|A = ∑x |f (x)⟩B|g(x)⟩C⟨x|A.

It is convenient to slightly alter the definition of𝒳y so that the x appear in order of
their probability, the largest first. The job of the decompressor is to map y to ̄f −1(y,0).
Then the output of the protocol is

ψ
′⟩ACR =∑

x
√PX(x)

̄f −1(f (x),0)⟩Ag(x)⟩C |bx⟩R

= ∑
x:g(x)=0√PX(x)|x⟩A|x⟩R|0⟩C + |fail⟩ , (14.8)

where |fail⟩ denotes the terms in the superposition with g(x) ̸= 0. The overlap with
|ψ⟩AR|0⟩C is precisely∑x:g(x)=0 PX(x) ≥ 1−ε. Therefore we have established a reduction
of quantum compression to classical compression.

Proposition 14.3. For any quantum state ρA, let PX be the distribution of its eigenvalues. Then for
every (k, ε) compression protocol for PX , there exists a (k, ε) protocol for ρA that can be constructed
from the classical protocol. Hence L⋆ε (A)ρ ≤ L⋆ε (X)P .

Observe that the state |ψ′⟩ACR produced by the protocol is such that C is essentially a
pure state. Thus we may regard the task of the compressor as not so much to squeeze
all of the information into a system B with entropy as high as possible, but rather to
maximize the size of system C, the output with zero entropy. Because the compression
operation is reversible, the part that is not pure must contain all the correlation and
entanglement with the purification R.

The failure of the initial approach can now be appreciated from a different an-
gle via the action of the compression maps. Consider the output B, the only part the
decompressor will see, under UA′B|A versus VBC|A. Their action is identical on inputs
of the form |x⟩⟨x|A; each produces |f (x)⟩⟨f (x)|B, but they differ on “off-diagonal” in-
puts |x⟩⟨x′| for x′ ̸= x. Our original choice UA′B|A simply annihilates them, whereas
VBC|A produces |f (x)⟩⟨f (x′)|δ(g(x), g(x′)). The ability to keep the off-diagonal elements
is crucial for maintaining entanglement.
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14.2.3 Converse

Given the relation L⋆ε (A)ρ ≤ L⋆ε (X)P from Proposition 14.3, we may wonder if quantum
compression is possible at much lower rate than classical compression. The following
converse is nearly identical to the classical converse, and hence this is not the case.

Proposition 14.4. Every (k, ε) compression scheme for a state ρA satisfies k ≥ β(1−ε)2 (ρA,1A).
Equivalently, k ≥ β(1−ε)2 (PX ,1X ) for the distribution PX of eigenvalues of ρA.

Note that (1−ε)2 ≥ 1−2ε, so k ≥ β1−2ε(PX , 1X) also holds; this form ismore immediately
comparable to the achievability statement in Proposition 14.1.

Proof. The proof is based on constructing a feasible test for β1−ε using the fact that
Fent(ρ,𝒟∘ℰ)2 ≥ (1−ε)2. SupposeDm andEj are the Kraus operators of the decompressor
and compressor, respectively; he we will just use subscripts as the system names can
be omitted. Further, let Πm be the projector onto the image of Dm. Note that this space
cannot be larger than |B| by construction, and therefore Tr[Πm] ≤ k for allm. Turning
to the entanglement fidelity, by the Cauchy–Schwarz inequality we have

Fent(ρ,𝒟 ∘ ℰ)
2 = ∑

jm

Tr[ρΠmDmEj]

2
≤ ∑

jm
Tr[ΠmρΠm] Tr[DmEjρE

∗
j D
∗
m]

≤ Tr[Πm⋆ρ]∑
jm
Tr[DmEjρE

∗
j D
∗
m] = Tr[Πm⋆ρ] , (14.9)

where Πm⋆ is such that Tr[Πm⋆ρ] ≥ Tr[Πmρ] for all m. Therefore Πm⋆ is feasible for
β(1−ε)2 (ρ, 1), and we have the desired bound. The equivalent form follows by Exer-
cise 9.13.

It is interesting to note that the converse bound also holds if we consider proto-
cols in which the compressor can also transmit some amount of classical information
to the decompressor as well. In this case the compressor has Kraus operators of the
form E(j, y) ⊗ |y⟩⟨y|, and the operators in the entanglement fidelity will have an ad-
ditional y dependence and the expression an additional summation over y. However,
the range bound on the Kraus operators of the decompressor still holds, and so the
proof goes through. Therefore classical communication does not enable any savings
in the amount of quantum information required for compression.

14.2.4 Optimal asymptotic i. i. d. rate

The optimal rate R(ρ, ε, n) of compressing ρ⊗n with entanglement fidelity at least 1 − ε
is defined in precisely the same manner as in the classical case. Again, the entropy is
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the optimal asymptotic rate, which is Schumacher’s1 source coding theorem. Here it
follows from Stein’s lemma.

Proposition 14.5 (Schumacher’s source coding theorem). For arbitrary quantum states ρA and all
ε ∈ (0, 1), limn→∞ 1

n L
⋆
ε (An)ρ⊗n = H(A)ρ.

14.3 Notes and further reading

The fact that the entropy sets the compressibility of an i. i. d. source was discovered by
Shannon [258]. Compression of general sourceswas considered byHan [120] using the
“information spectrum” approach pioneered by Han and Verdú [119]. The spectrum in
question is the different possible values of the likelihood ratio; see the overview by
Han for much more detail [121]. Hayashi [126] treats the fixed-length problem of clas-
sical compression in a similar setting as here. Schumacher [251] considered the i. i. d.
problem in the quantum context, coining the word “qubit.” The converse in Proposi-
tion 14.4 is an adaptation of an argument given by Datta and Leditzky [69], who con-
sidered the one-shot problem.

1 Benjamin Schumacher.
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15 Classical communication over noisy channels
The fundamental problem of communication is that of reproducing at one point, either exactly
or approximately, a message selected at another point.

Claude Shannon

Let us now (re)turn to the fundamental problem of information theory, noisy channel
coding. Consider communication of a block of binary data sequentially over BSC(p).
Assuming that the noise encountered in each use of the channel is independent, each
bitwill be corruptedwith probabilityp,makingdirect communication very unreliable.
Instead, we attempt to encode the data we wish to transmit into a longer sequence,
building in some redundancy such that the original input canbe reliablydecoded from
the noisy output. For instance, the simplest coding scheme is the repetition code, in
which the input is simply transmitted multiple times and the decoder takes the ma-
jority vote of the channel output. When a single bit is transmitted three times, for in-
stance, two errors have to occur for decoding to fail. This occurswith probabilityO(p2),
an improvement on the original error rate of p.

We can also think of coding as making reliable communication possible because
not all channel inputs are used to transmit information, instead of by adding redun-
dancy. In the three-bit repetition code, to continue the example, only 000 or 111 are
input to the three uses of the BSC. For each input, the noisy channel generates some
output distribution or quantum state, and the fewer of these there are, the easier they
are to distinguish.

15.1 Setup and basic properties

We now formulate the problem more precisely, picking up from Section 8.1. We be-
gin with reliable communication over a CQ channel. Suppose we would like to use a
noisy CQ channel 𝒩B|X to send messages from an alphabetℳ. Often, 𝒩B|X is n i. i. d.
instances of some simple channel, for instance, 𝒩 = BSC(p)⊗n as above, but for now
we formulate the problem for a single arbitrary channel, the “one-shot” setting.

To ensure that themessages are received reliably, we first encode themwith an en-
coder ℰX|M . The output X of the encoder is sent over the channel to the receiver, which
applies a decoding operation𝒟M′|B. The encoder–decoder pair specifies the protocol,
and we denote by k the size ofℳ. The goal of the protocol is to simulate the identity
channel, as depicted in Figure 15.1. A protocol withmessage alphabetℳ that achieves
a distinguishability δ(𝒟 ∘ 𝒩 ∘ ℰ , 1) ≤ ε is called a (k, ε)wc protocol. By Exercise 9.26
the distinguishability is related to the worst-case probability of error for the channel
𝒟 ∘𝒩 ∘ ℰ .

Clearly, there is some kind of limit on possible combinations of k and ε for a given
channel𝒩B|X . For instance, if the channel is very noisy but there are a lot of messages,

https://doi.org/10.1515/9783110570250-015
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ℰ 𝒩 𝒟
M X B M′

=
M M′

≈ε

Figure 15.1: A (k, ε) protocol for classical communication over the CQ channel𝒩B|X with k = |M|.

then we expect that it will be difficult to determine which message was transmitted,
that is, the error rate ε will be large if k is and vice versa.

It turns out to bemuch easier to analyze protocols defined in terms of average error
with the assumption that the messages to be transmitted are uniformly distributed,
i. e., 1 − Pagree(𝒟 ∘ 𝒩 ∘ ℰ). A protocol with k messages that is ε-good in this average
sense is called a (k, ε)protocol. Denote byM⋆ε (B|X)𝒩 the largest k such that there exists
a (k, ε) protocol for𝒩B|X .

Using the average error is actually no real loss of generality for the following rea-
sons. First, any encoder that is ε-good even for theworst-case input is certainly ε-good
in the average case, if not better. Therefore a converse that applies to the average case
also applies to the worst case.

Second, for the average case scenario, we might as well assume that the encoder
is deterministic. More specifically, any stochastic encoding scheme with error ε can
always be converted to a deterministic encoder with an error no larger than ε. This fol-
lows by regarding the encoder as a convex combination of deterministic maps, which
we can do by Proposition 3.3. Then Pagree(𝒟∘𝒩 ∘ℰ) contains an average over the choice
of deterministic encoder, and therefore if Pagree(𝒟 ∘𝒩 ∘ ℰ) ≥ 1 − ε, then at least one of
the deterministic choices satisfies this bound. So we might as well use that encoder.

The outputs of a deterministic encoder define a code or codebook, and the par-
ticular outputs xm for input m are codewords of the error-correcting code. The above
argument does not rule out the possibility that the encoder maps two different mes-
sages to the same codeword, but this is of course unwise. We will henceforth assume
that there is a one-to-one correspondence between messages and codewords when
referring to a (k, ε) code (as opposed to the more general (k, ε) protocol).

Exercise 15.1. Show that the three-bit repetition code over BSC(p) is a (2, p2(3 − 2p))
code. How does this generalize to n channel uses? What is the error rate for n uses of
BEC(q)?

Finally, ifwefinda (k, ε) code in the senseof average error, thenwecan inprinciple
convert it to ( 12k, 2ε)wc code for theworst-case error simply by throwing away theworst
half of the codewords. This is sometimes called expurgation. To see this, split the set of
codewords into two equal-sized subsets such that the error probability of each code-
word in the first set is smaller than any error probability in the second (that is, split the
codewords ordered by error probability at themedian). Call the average error probabil-
ities for the two sets ε− and ε+, respectively, and notice that ε− + ε+ = 2ε. This equation
cannot hold if the largest error probability in the better set is larger than 2ε, for then ε+
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would be larger than 2ε. Thus we have constructed a set of 1
2k codewords with worst-

case error smaller than 2ε. This may seem like a large loss in the code size, but since
code size is usually specified logarithmically and measured in bits, i. e., log2 k bits for
size k, this only represents the loss of one bit at a price of doubling the error.

15.2 Converse

A simple but very useful converse bound relating ε, k, and𝒩B|X follows by setting up
an appropriate hypothesis test involving a good code. The idea is that if a code has a
small error probability, then the input and output are highly correlated, so it should
be easy to distinguish the joint input–output distribution from a distribution with no
correlation whatsoever.

More formally, suppose we have a (k, ε) protocol for average error. The above
argument notwithstanding, let us first consider the possibility of stochastic encod-
ing. Let φB(x) = 𝒩B|X=x be the output of the channel for input x, and let ϑB(m) =
∑x∈𝒳 φB(x)ℰX|M=m(x) be the output of the encoder and channel for input m. Now
consider the case of transmitting a message chosen uniformly at random and let
ρMB =

1
k ∑m |m⟩⟨m|M ⊗ ϑB(m).

Since the protocol is ε-good, the output of the decoder matches the actual mes-
sage with probability no smaller than 1 − ε. With ΠMM′ = ∑m |m,m⟩⟨m,m|MM′ , this is
just the statement Tr[ΠMM′𝒟M′|B[ρMB]] ≥ 1 − ε. Therefore ΛMB = 𝒟

⋆
M′|B[ΠMM′ ] is feasi-

ble in β1−ε(ρMB, τMB) for all τMB ≥ 0, so that β1−ε(ρMB, τMB) ≤ Tr[ΛMBτMB]. Choose an
uncorrelated state τMB = πM ⊗σB for any σB. Since the decoder acts only on B, we have

Tr[ΛMB ρM ⊗ σB] = Tr[ΠMM′∑
m′

1
k
m
′⟩⟨m′M ⊗𝒟M′|B[σB]]

=
1
k
∑
m
⟨m|𝒟M′|B[σB]|m⟩M′ =

1
k
Tr[σB] =

1
k
.

(15.1)

The argument works for any σB, and therefore we obtain the inequality

max
σB

β1−ε(ρMB, ρM ⊗ σB) ≤
1
k
. (15.2)

This inequalitymakes our intuition about goodprotocols precise, showing that ε-good
protocols have a discrimination error less than the inverse of the message size.

However, we do not yet have the desired converse, a bound involving k and ε that
depends only on 𝒩B|X . The left-hand side depends on the encoder ℰX|M through ρMB.
To obtain the converse, restrict attention to deterministic injective encoders, so that
we are dealing with a (k, ε) code. Defining ρXB =

1
k ∑m |xm⟩⟨xm|X ⊗ φB(xm), applying

the inverse of the encoder to X results in ρMB. (To make this operation well-defined on
all x, suppose that x not in the code are randomly mapped toM.) Similarly, applied to
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ρX ⊗σB, the inverse of the encoding operation results in ρM ⊗σB. Therefore by the data
processing inequality we obtain

max
σB

β1−ε(ρXB, ρX ⊗ σB) ≤
1
k
. (15.3)

The state ρXB is defined with a uniform distribution PX over the codewords xm, and
therefore this expression still depends on the details of the code. But optimizing over
PX removes the dependence, leaving the desired converse bound.

Proposition 15.1 (Noisy channel coding converse). For any CQ channel𝒩B|X , every (k, ε) code sat-
isfies

min
PX

max
σB

β1−ε(ρXB, ρX ⊗ σB) ≤
1
k
, (15.4)

where ρXB = ∑x PX (x)|x⟩⟨x|X ⊗ φB(x) for φB(x) = 𝒩B|X=x .

The left-hand side depends on ε and the channel 𝒩B|X , but not on the details of the
encoder or decoder, while the right-hand side evidently only depends on the number
of messages k. The bound has the behavior we mentioned, intuitively expected of a
converse bound, that increasing ε loosens the bound on k. This follows because larger
ε lead to a larger set of feasible tests. Hence the left-hand side of the bound decreases,
meaning that larger k are in principle possible.

The difficulty in working with (15.4) is the minimization over PX . Whereas every
choice of σB will produce a converse bound, the bound requires the optimal PX . In the
i. i. d. analysis to come in Section 15.4, we will deal with this for general channels by
making use of entropic chain rules.

When the channel is symmetric in a suitable sense, it turns out that βα(ρXB, ρX⊗σB)
is independent of PX , at least for symmetric σB. In particular, a channel 𝒩B|X with
outputs φB(x) is symmetric if for all x, x′ ∈ 𝒳 , there exists a unitary UB such that
φB(x′) = UBφB(x)U∗B . For instance, the BSC, PSC, and BEC are all symmetric in this
sense, though the Z channel is not.

Proposition 15.2. For any channel 𝒩B|X symmetric in the sense just described and any state σB
invariant under the symmetry operations UB, we have the following for all α ∈ [0, 1] and x ∈ 𝒳 :

βα(ρXB, ρX ⊗ σB) = βα(φB(x), σB) . (15.5)

Proof. Consider βα(φB(x), σB). By the form of the primal optimization in (9.4) it follows
that this quantity is the same for all x, simply because the optimal POVM element
Λ⋆(x) can be made feasible for x′ by using UBΛ⋆B(x)U

∗
B . Then the upper bound in (15.5)

follows from (9.17). For the lower bound, suppose μ⋆(x) and θ⋆B(x) are optimal in the
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dual formulation (9.12), so that

μ⋆(x)φB(x) − σB ≤ θ
⋆
B(x) and (15.6)

μ⋆(x)α − Tr[θ⋆B(x)] = βα(φB(x), σB) . (15.7)

Applying UB for some x′ gives μ⋆(x)φB(x′) − σB ≤ UBθ⋆B(x)U
∗
B , meaning that μ⋆(x)

and UBθ⋆B(x)U
∗
B are feasible for βα(φB(x′), σ). As we have already established that

βα(φB(x), σB) is independent of x, it follows that μ⋆(x) and UBθ⋆B(x)U
∗
B are an optimal

choice of variables. In particular, μ⋆ = μ⋆(x′) for arbitrary x′ ∈ 𝒳 is optimal for all x.
Therefore μ⋆PX(x)φB(x) − PX(x)σB ≤ PX(x)θ⋆B(x) for all x ∈ 𝒳 , which is the statement

μ⋆ρXB − ρX ⊗ ρB ≤ ∑
x∈𝒳

PX(x)|x⟩⟨x|X ⊗ θ
⋆
B(x) . (15.8)

Thus βα(ρXB, ρX ⊗ σB) ≥ μ⋆α −∑x∈𝒳 PX(x) Tr[θ⋆(x)] = βα(φB(x), σ) for all x ∈ 𝒳 .

Choosing a symmetric σB (i. e., σB = UBσBU∗B for all symmetry operations UB) and
applying (15.5) to (15.4) gives the bound

max
σB symm.

β1−ε(φB(x), σB) ≤
1
k
∀x ∈ 𝒳 . (15.9)

A similar converse bound holds when considering the worst-case error probability.

Exercise 15.2. Using the fact that minz∈𝒵 PZ(z) ≤
1
|Z| for arbitrary PZ , show that for

every (k, ε)wc code,

max
σB

min
x∈𝒳

β1−ε(φB(x), σB) ≤
1
k
. (15.10)

The following example shows that the converse bound is sometimes tight.

Exercise 15.3. For BSC(p)⊗3, show that k ≤ 2 for a codewith error probability p2(3−2p)
when p ∈ (0, 1/2]. What does the converse imply for p = 0 and p > 1/2?

15.3 Achievability

Now let us show the existence of a (k, ε) code for average error for which the relation-
shipbetween k and ε is verynearly the sameas in (15.4). In comparison to the converse,
to establish achievability requires thinking more carefully about the code and the op-
eration of the decoder. We first motivate the choices we will make in the subsequent
formal argument.

Following Shannon, the approach is to show the existence of an ε-good code C by
showing that the error rate suitably averaged over all codes is less than ε. Then there
must be at least one good ε-good code. Moreover, we are free to use any distribution
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over codes in this argument. Note, though, that the argument is nonconstructive, and
we will not learn anything about the structure of the code or codes that satisfy the
achievability bound we derive. This is unfortunate, but our main goal here is actually
to show that the converse bound is tight.

This is often called the random coding argument. It is a method of proving achiev-
ability, not a design of the encoder. The encoder is still a deterministic function from
messages to codewords. Moreover, the probability distribution used in the averaging
over codes has nothing to do with the uniform prior probability of messages to be
transmitted.

For a given code C, the choice of decoder is ostensibly clear: Use the optimal mea-
surement to achieve Pguess(M|B)ρ. However, the behavior of thismaximum a posteriori
(MAP) decoder is difficult to analyze in the random coding approach.Wewill make do
with the pretty good measurement.

Now we turn to the formal argument, where we show the following:

Proposition 15.3 (Noisy channel coding achievability). For any CQ channel 𝒩B|X and error ε ∈
[0, 1], there exists a (k, ε) code with

1
k
≤ min

η∈[0,ε]
min
PX

1
η
β1−ε+η(ωXB,ωX ⊗ ωB) (15.11)

for ωXB = ∑x PX (x)|x⟩⟨x|X ⊗ φB(x).

Proof. For a given code C with codewords {xm}m∈C, the probability of successfully
decoding under the pretty good measurement is just Pr[M′ = M] = 1

kQ(ρXB, ρX ⊗ ρB)
for ρXB = ∑m |xm⟩⟨xm|X ⊗ φB(xm). Consider the average of the successful decoding
over all possible codes, which we denote by ⟨Pr[M′ = M]⟩C. The probability dis-
tribution of codes is generated by picking each codeword according to some PX ,
independently and identically to all other codewords. That is, the probability that
the code contains the codewords x1, x2, . . . , xk, denoted PX1 ⋅⋅⋅Xk (x1, . . . , xk), satisfies
PX1 ⋅⋅⋅Xk (x1, . . . , xk) = PX(x1)PX(x2) ⋅ ⋅ ⋅PX(xk). Joint convexity of Q (Proposition 11.4) im-
plies

⟨Pr[M′ = M]⟩C ≥
1
k
Q(⟨ρXB⟩C , ⟨ρX ⊗ ρB⟩C) . (15.12)

The average in the first argument gives

⟨ρXB⟩C = ∑
x1 ,...,xn

PX1X2 ⋅⋅⋅Xk (x1, . . . , xk)
1
k

k
∑
m=1
|xm⟩⟨xm|X ⊗ φB(xm)

=
1
k

k
∑
m=1
∑
xm
PX(xm)|xm⟩⟨xm|X ⊗ φB(xm)

= ∑
x
P(x)|x⟩⟨x|X ⊗ φB(x) = ωXB .

(15.13)
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The average in the second is slightly more involved:

⟨ρX⊗ρB⟩C = ∑
x1 ,...,xn

PX1X2 ⋅⋅⋅Xk (x1, . . . , xk)
1
k2
∑
m,m′
|xm⟩⟨xm| ⊗ φB(xm′ )

=
1
k
ωXB + ∑

x1 ,...,xn
PX1X2 ⋅⋅⋅Xk (x1, . . . , xk)

1
k2
∑

m′ ̸=m
|xm⟩⟨xm| ⊗ φB(xm′ )

=
1
k
ωXB +

1
k2
∑

m′ ̸=m
∑

xm ,xm′
PX(xm)PX(xm′ )|xm⟩⟨xm|X ⊗ φB(xm′ )

=
1
k
(ωXB + (k − 1)ωX ⊗ ωB) .

(15.14)

Here the first term in the second equality comes from the casesm′ = m, for which the
calculation is the same as that for the first argument. Using the fact that Q(ρ, cσ) =
1
cQ(ρ, σ), it follows that

⟨Pr[M′ = M]⟩C ≥ Q(ωXB,ωXB + (k − 1)ωX ⊗ ωB) . (15.15)

Finally, we relate the bound to something involving βα(ωXB,ωX⊗ωB). Consider the
two-outcome POVM {ΛXB, 1XB − ΛXB} for ΛXB optimal in βα(ωXB,ωX ⊗ ωB) for arbitrary
α ∈ [0, 1]. For notational convenience, set θXB = ωXB+(k−1)ωX ⊗ωB. Monotonicity ofQ
under this measurement implies Q(ωXB, θXB) ≥ Q(P,R) for P = (Tr[ΛXBωXB], Tr[(1XB −
ΛXB)ωXB]), and similarly for R, using θXB. From the form of Q it follows that Q(P,R) ≥
p21/r1 for the first entry p1 of P and the first entry r1 of R. In this case, p1 = α and r1 =
βα(ωXB, θXB). Hence the bound on the probability of successful transmission becomes

⟨Pr[M′ = M]⟩C ≥ α
2(α + (k − 1)βα(ωXB,ωX ⊗ ωB))

−1 . (15.16)

The average error probability is therefore guaranteed to be less than ε if α and k are
chosen so that the right-hand side is at least 1−ε. After some algebra, it can be verified
that this conditionholds for allα ∈ [1−ε, 1] andall k such that k ≤ 1+α α+ε−1

1−ε βα(ωXB,ωX⊗
ωB)
−1. For notational convenience, call the upper bound 1 + t; the best choice of k

is thus k = ⌊t + 1⌋, since k should be an integer. Then, to simplify the bound, write
k = ⌊t + 1⌋ ≥ t, which is

1
k
≤

1 − ε
α(α + ε − 1)

βα(ωXB,ωX ⊗ ωB) . (15.17)

This bound holds for arbitrary α ∈ [1 − ε, 1], so we may pick α leading to the minimal
value. We are also free to pick any PX in the construction of ωXB. Letting α = 1 − ε + η
for η ∈ [0, ε] and loosening the bound slightly by using 1 − ε ≤ 1 − ε + η completes the
proof.

In the above argument, specifically (15.14), we do not actually need the distribu-
tion on codebooks to be such that the codewords are i. i. d. Instead, it is enough if the
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codewords are identically distributed but only pairwise independent, since (15.14) only
involves pairs of codewords. An example is given by linear codes. Taking the input al-
phabet 𝒳 to be an Abelian1 group so that addition is defined, e. g., 𝒳 = ℤn2 , we can
define linear codes to be those that satisfy xj + xk ∈ C for all xj, xk ∈ C. The repetition
code is a (nearly trivial) example. It can be shown that a uniformly random choice of a
linear code results in pairwise independence of the codewords. Therefore linear codes
achieve (15.11), at least for uniform PX .

15.4 Coding for i. i. d. channels

15.4.1 Capacity

In the i. i. d. setting of𝒩 ⊗nB|X the optimal rate for given ε is

R(𝒩B|X , ε, n) :=
1
n
logM⋆(𝒩B|X , ε, n) . (15.18)

In the limit as n → ∞, the optimal rate becomes the ε-capacity C(𝒩B|X , ε). Usu-
ally, we are interested in the limit as ε → 0, which defines the capacity C(𝒩B|X) :=
limε→0 C(𝒩B|X , ε).

As with data compression, the zero-error behavior is quite different from the limit
as ε → 0. It is easy to see that for a channel like the BSC, it is impossible to transmit
any input with zero error, and hence its zero-error capacity is zero: C(BSC(p),0) = 0
for p > 0. Allowing instead a vanishingly small error, we can show the following:

Proposition 15.4 (Classical capacity of CQ channels). For any CQ channel 𝒩B|X and associated
state ωXB = ∑x∈𝒳 PX (x)|x⟩⟨x|X ⊗ φB(x),

C(𝒩B|X ) = maxPX
I(X : B)ω . (15.19)

Proof. Start with achievability and choose PXn = P×nX for any PX , ε ∈ (0, 1), and η ∈
(0, ε) in (15.11). Using Stein’s lemma, we have

lim
n→∞
−1
n
(log η − log k) ≥ max

PX
lim
n→∞
−1
n
log β1−ε+η(ω

⊗n
XB, (ωX ⊗ ωB)

⊗n)

= max
PX

I(X : B)ω .
(15.20)

The restriction to ε ∈ (0, 1) ensures that the first term on the left-hand side van-
ishes in the limit, whereas the second gives C(𝒩B|X , ε). Therefore we have C(W , ε) ≥
maxPX I(X:B)ω for all ε ∈ (0, 1).

1 Niels Henrik Abel, 1802–1829.
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216 | 15 Classical communication over noisy channels

Theupper bound, from the converse, ismoredifficult, sincewenowhave to ensure
that an i. i. d. choice for PXn is optimal. Instead of using Stein’s lemma, herewe employ
Fano’s inequality (12.54) to convert the bound to one involving the relative entropy and
then use chain rules.

Choosing σBn = ω⊗nB and using (12.54) in (15.4) gives

log k ≤ max
PXn

I(Xn:Bn)ω + h2(ε)
1 − ε

. (15.21)

Dividing by n and taking the limit as n→∞ removes the second term. A further limit
as ε → 0 then yields

C(𝒩B|X) ≤ lim
n→∞

1
n
max
PXn

I(Xn:Bn)ω . (15.22)

Now we reduce this to the single-letter expression (involving only n = 1) given
in (15.19). By the chain rule we have

I(Xn : Bn) = H(Bn) − H(Bn|Xn) = H(Bn) −
n
∑
j=1

H(Bj|X
nBj−11 ) . (15.23)

Since each channel use is independent of all the others, the output Bj depends only
on Xj. Hence H(Bj|XnBj−11 ) = H(Bj|Xj). Using subadditivity for the first term gives

I(Xn : Bn) ≤
n
∑
j=1

H(Bj) − H(Bj|Xj) =
n
∑
j=1

I(Xj : Bj) . (15.24)

Thus we have

C(W) ≤ lim
n→∞

max
PXn

1
n

n
∑
j=1

I(Xj : Bj)ωXjBj

= lim
n→∞

1
n

n
∑
j=1

max
PXj

I(Xj : Bj)ωXjBj
= max

PX
I(X : B)ω .

(15.25)

The first equality comes from the fact that the mutual information in the jth term only
depends on the marginal distribution PXj , so we can replace any distribution PXn by
the product of its marginals in the maximization.

The upper bound only matches the lower bound in the case ε → 0, which is the
statement of the weak converse: Codes with rates above the capacity cannot achieve
vanishing error. We might expect that allowing a finite error increases the possible
rate that can be achieved, i. e., that C(𝒩B|X , ε) increases with ε. However, the max-
imum achievable rate is in fact independent of ε, a statement known as the strong
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converse:

C(𝒩B|X , ε) = max
PX

I(X : B)ω ∀ε ∈ (0, 1) . (15.26)

Thus the capacity signals a kind of phase transition in the behavior of error rate of
optimal codes. Codes with rates below the capacity can achieve essentially zero er-
ror, but as soon as the rate surpasses the capacity, the error rate is forced to one. The
strong converse can in fact be obtained from the converse bound in (15.4), but the
derivation is much lengthier than that of the weak converse, and we will not cover it
here.

Looking back, we can now appreciate why entropy and mutual information play
such a pivotal role in this problem. Thehypothesis testing converse already shows that
the likelihood ratio of the joint distribution to the product of its marginals is relevant.
This is a random variable, so any finite-size bound has to extract some property or
other from it. However, by the law of large numbers, in the asymptotic i. i. d. limit the
random variable tends to its average value, the relative entropy.

Importantly, the optimization over PX in the capacity expression is a convex
optimization, that is, the function f : PX → I(X : B)ω for a fixed channel 𝒩B|X
is concave. To see this, suppose the random variable Y determines the distribu-
tion PX , define ωXB(y) = ∑y∈𝒴 PX|Y=y(x)|y⟩⟨y|Y ⊗ φB(x), and consider the joint state
ωXYB = ∑y∈𝒴 PY (y)ωXB(y). Observe that H(B|XY)ω = H(B|X)ω, since the channel
output φB(x) is only a function of the channel input x. Then we have

I(X : B)ω = H(B)ω − H(B|XY)ω
≥ H(B|Y)ω − H(B|XY)ω = ∑

y∈𝒴
PY (y) I(X : B)ω(y) . (15.27)

This is useful when the channel is symmetric. When two different distributions PX|Y=y
lead to the same value of the mutual information, it is advantageous in the optimiza-
tion to consider their uniform mixture.

Exercise 15.4. Determine the capacities of BSC(p), BEC(q), and PSC(f ).

Exercise 15.5. Consider the channel W : ℤn → ℤn that sends any input x ∈ ℤn to
itself with probability 1 − p and to x ± 1 with probability p/2 each, where arithmetic is
modulo n. Observe thatW is covariant with respect to shifts of the input in the sense
that for the channel Vy that takes x to x + y, W ∘ Vy = Vy ∘ W . Using this symmetry,
show that the optimal input distribution in the capacity is the uniform distribution
and determine the capacity. What is the capacity of the related channel that sends x
to x + 1 with probability p and x to itself with probability 1 − p?
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15.4.2 Finite-blocklength bounds

One of the nice features of having one shot bounds in terms of βα is that it is possi-
ble to fairly accurately determine the optimal code lengths at fixed error ε for certain
channels at modest blocklengths, well away from the asymptotic limit. An example is
depicted for the BSC, BEC, and PSC in Figure 15.2. We see that the bounds are quite
close together but not in a particular hurry to arrive at the asymptotic limit.

Figure 15.2: Upper (solid) and lower (dashed) bounds on the optimal code rate versus blocklength
for the three indicated channels. In each case the target error rate of the code is 1/103, and the pa-
rameters are chosen such that the capacity of each channel is 1/2, indicated by the dotted line.

In each case the calculation is simplified by choosing σB = ωB in (15.4), η = ε/2
in (15.11), and then appealing to (15.5) to remove the optimization over the prior distri-
bution. Hence it remains to compute βα(φ(0)⊗n, φ̄⊗n) for α = 1−ε and α = 1−ε/2, where
φ(j) are the outputs of the individual CQ channel in question, and φ̄ = 1

2 (φ(0) + φ(1)).
For the BSC, φ̄ = π, and the necessary calculation is already done in Exercise 9.16. For
the BEC(q), φ(0) is the distribution (1 − q,0, q), and φ̄ is the distribution ( 1−q2 ,

1−q
2 , q).

By Exercise 9.15 the problem reduces to βα((1− q, q), (
1−q
2 , q)). This can be computed in

the same manner as suggested in Exercise 9.16.
The noncommuting outputs of the pure state channel make the calculation more

involved, though still tractable becauseφ(0) is a pure state. Let us investigate the gen-
eral problem of computing βα(|ψ⟩⟨ψ|, σ) for a d-dimensional state |ψ⟩ and arbitrary
positive operator σ, as it provides another example ofworkingwith SDPs.Wewill then
return to the specifics of the pure state channel afterward.

In the dual formulation of (9.12), we have βα(|ψ⟩⟨ψ|, σ) = max{μα − θ} for θ =
{μ|ψ⟩⟨ψ| − σ}+. It happens that θ will be rank one for the following reason. Consider
the (d−1)-dimensional subspace of vectors orthogonal to |ψ⟩ and the two-dimensional
subspace corresponding to the two largest eigenvalues λ1 and λ2 of μ|ψ⟩⟨ψ| − σ. Since
the sum of their dimensions is larger than d, there must be a vector common to both
subspaces, call it |ξ ⟩. Then we have λ2 ≤ ⟨ξ |(μ|ψ⟩⟨ψ| − σ)|ξ ⟩ = −⟨ξ |σ|ξ ⟩ ≤ 0. Hence
only λ1 ≥ 0, and θ has rank one, as claimed.

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



15.4 Coding for i. i. d. channels | 219

Exercise 15.6. Extend the argument and prove theWeyl inequalities that the eigenval-
ues of two Hermitian operators A and B on ℂd satisfy λi+j−1(A + B) ≤ λi(A) + λj(B) for
i + j − 1 ≤ d.

Therefore the optimization becomes βα(|ψ⟩⟨ψ|, σ) = max{μα − λ : μ|ψ⟩⟨ψ| ≤
σ + λ1, λ ≥ 0, μ ≥ 0}. Conjugating the constraint inequality by (σ + λ1)−1/2 (a valid
expression since σ + λ1 ≥ 0 for λ ≥ 0) gives μ(σ + λ1)−1/2|ψ⟩⟨ψ|(σ + λ1)−1/2 ≤ 1, which
implies μ⟨ψ|(σ + λ1)−1|ψ⟩ ≤ 1. This inequality implies the original constraint just by
reversing the steps, and hence βα(|ψ⟩⟨ψ|, σ) = max{μα− λ : μ⟨ψ|(σ + λ1)−1|ψ⟩ ≤ 1}. The
best choice of μ is clear from the constraint. Writing σ = ∑x sx|x⟩⟨x|with the eigenval-
ues sx of σ and |ψ⟩ = ∑x ψx|x⟩, we end up with

βα(|ψ⟩⟨ψ|, σ) = max{α(∑
x

ψ2
x

sx + λ
)
−1
− λ : λ ≥ 0} . (15.28)

This is a convex optimization in one real variable, a considerable simplification. It can
be easily solved by finding the λ for which the derivative is zero; by convexity we can
be sure that there is only one such value. The condition on the optimal λ⋆ is

α∑
x

ψ2
x

(sx + λ⋆)2
= (∑

x

ψ2
x

sx + λ⋆
)
2
. (15.29)

Nowwecanapply this general result to theproblemat hand. The outputs of PSC(f )
can be expressed as |φ(j)⟩ = √p|0⟩+(−1)j√1 − p|1⟩with p = 1+f

2 , which implies that φ̄ is
the diagonal operatorwith eigenvaluesp and 1−p. The state |φ(0)⟩⊗n is invariant under
all permutations and is therefore an element of the symmetric subspace, the span of
such vectors. Fortunately, this subspacehas dimension n+1, and again byExercise 9.15
we only need to concern ourselves with the projection of φ̄⊗n on this subspace. Hence
the number of terms in (15.29) is vastly reduced from 2n to n+ 1. Were this not the case,
the calculation would be intractable.

A convenient basis for the symmetric subspace is simply the normalized vec-
tors |bt⟩of all superpositions of strings of type t, that is, |bt⟩ = (nt)

−1/2∑s Us|1 . . . 10 . . .0⟩,
where the state has precisely t 1s, and Us are unitary operators, which permute the n
systems. Therefore we have

φ(0)⟩
⊗n = (√p|0⟩ +√1 − p|1⟩)⊗n =

n
∑
j=0
√pj(1 − p)n−j(n

j
)|bj⟩ . (15.30)

Todetermine theprojectionof φ̄⊗n, first observe that φ̄⊗n canbe expressedas∑nj=0 p
j(1−

p)n−jΠ(j), where Π(j) is the projector onto the subspace of type j. The projector onto
the symmetric subspace is Πsym = ∑t |bt⟩⟨bt |. As ⟨bt |Π(j)|bt⟩ = δj,t

1
(nt)
, it follows that

Πsymφ̄⊗nΠsym = ∑
n
j=0 p

j(1 − p)n−j|bj⟩⟨bj|. Thus, to compute βα, we need only take ψ2
j =

(nj)p
j(1 − p)n−j and sj = pj(1 − p)n−j in (15.29), which can then be solved numerically.
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15.5 Classical coding over quantum channels

15.5.1 Recycling the CQ result

The setup for communication over CQ channels canbe immediately applied to the task
of classical communication over quantum channels. As discussed in Section 8.1, the
only change we need to make to the definition of a (k, ε) protocol is that the encoder
ℰA|M now has a quantum output.

In this context a general encoding map can be decomposed into a convex combi-
nation of maps that output pure states. Suppose the outputs are ρA(m) and choose a
decomposition for each into pure states: ρA(m) = ∑x PX|M=m(x)|ψx,m⟩⟨ψx,m|. The en-
coder can then be regarded as being composed of two parts: first, a classical channel,
which sends m to the pair (xm,m), and subsequently the CQ channel taking a pair
(x,m) to |ψx,m⟩. To the first channel we can apply Proposition 3.3, and, in particular,
the probability for the map with the specific choice {xm}m will be Πm∈ℳPX|M=m(xm).
Therefore, as for CQ channels, for any (k, ε) protocol, there exists a pure-state output
encoder with the same or better error probability.

Observe that concatenating any state preparationmap𝒮A|X from some alphabet𝒳
with the channel𝒩B|A results in a CQ channel𝒩 ′B|X = 𝒩B|A ∘𝒮A|X . Thereforewemay ap-
ply the one-shot CQ achievability result of Proposition 15.3, combining the optimiza-
tion over PX and 𝒮A|X into a single optimization over CQ states on XA. However, we
cannot proceed in this fashion in the one-shot converse (Proposition 15.1). The latter
half of the proof does not go through:We cannot ensure that 𝒮A|X is invertible to apply
the data processing inequality to obtain (15.3).

15.5.2 Capacity expression

Unlike the case of classical communication over CQ channels, we have no satisfactory
treatment of the relation between M and ε for communication over quantum chan-
nels. As we will see, the difficulty is the possibility of entangled inputs to the channel.
We will settle for results on the capacity of the channel in the asymptotic limit, even
though here again the results are not satisfactory in that we have no single-letter for-
mula.

Nevertheless, the capacity expression is at least similar looking. In analogy with
the case of CQ channels, we might expect that the capacity is given by the Holevo in-
formation

χ(𝒩B|A) = max
ρXA

I(X : B)𝒩B|A[ρXA] , (15.31)

where the maximization is over all CQ states ρXA with classical X. Indeed, this rate
is achievable by the argument above. In the i. i. d. scenario, simply prepend a fixed
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state preparation map 𝒮A|X to each channel 𝒩B|A and make use of the achievability
argument in the proof of Proposition 15.4 for 𝒩 ′B|X = 𝒩B|A ∘ 𝒮A|X . The optimizations
over PX and 𝒮A|X can be combined into an optimization over CQ states ρXA.

By the same argument the rate 1
2χ(𝒩
⊗2
B|A) is achievable simply by fixing a state

preparation map 𝒮A1A2|X for inputs to pairs of channels. The factor of 1/2 accounts for
the two uses of the channel. This argument works for any n, and therefore the regu-
larized Holevo information χreg(𝒩B|A) := limn→∞

1
nχ(𝒩
⊗n
B|A) is also an achievable rate.

Fortunately, we can stop here, as this quantity is in fact the capacity. Since the choice
of preparation map 𝒮An|Xn is included in the optimization, (15.22) from the first step of
the converse proof in Proposition 15.4 applies to𝒩 ′Bn|Xn = 𝒩 ⊗nB|A ∘ 𝒮An|Xn . The remainder
of the converse proof, the single-letterization, fails due to the presence of arbitrary
𝒮An|Xn . In this sense, we are unable to completely remove the dependence of the ca-
pacity bound on the encoding operation.

Proposition 15.5 (Classical capacity of quantum channels). For an arbitrary quantum channel
𝒩B|A, the capacity CC (𝒩B|A) to transmit classical information is given by

CC (𝒩 ) = lim
n→∞

1
n
χ(𝒩 ⊗nB|A) . (15.32)

We can read the single-letterization in the proof of Proposition 15.4 as showing that
the Holevo information for CQ channels is additive, 1

nχ(𝒩
⊗n
B|X) = χ(𝒩B|X) for any n. The

same proof technique fails to establish additivity in the case of quantum channels for
good reason: There exist explicit examples for which the Holevo information is in-
deed superadditive. The examples make use of entangled inputs to pairs of channels,
though we will not go into details here. Thus regularization is in general necessary in
a capacity expression of this form. Whether or not some other single-letter formula
exists for the classical capacity of quantum channels remains an open question.

15.5.3 Properties of the Holevo information

Entanglement is responsible for nonadditivity because the Holevo information is
additive for entanglement-breaking channels. To show this, we need only consider
χ(𝒩B1|A1

⊗𝒩 ′B2|A2
) for an entanglement-breaking channel𝒩B1|A1

and an arbitrary chan-
nel 𝒩 ′B2|A2

. Suppose that the optimal input state is ρXA1A2
= ∑x∈𝒳 PX(x)|x⟩⟨x|X ⊗

φA1A2
(x), and let ωXB1B2 = 𝒩B1|A1

⊗ 𝒩 ′B2|A2
[ρXA1A2
]. Since the output of 𝒩B1|A1

is al-
ways separable, for some states σB1 (x, y) and θA2

(x, y) and conditional distributions
PY |X , we have

ωXB1B2 = ∑
x∈𝒳
∑
y∈𝒴

PX(x)PY |X=x(y)|x⟩⟨x|X ⊗ σB1 (x, y) ⊗𝒩B2|A2
[θA2
(x, y)] . (15.33)
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Let ωXYB1B2 be the extension that includes a classical system storing the value Y . Ob-
serve that ωXYB1B2 can be generated from the marginal ωXYB2 by the quantum channel
ℰB2|XY , which conditionally generates σB2 (x, y) given the values of x and y stored in X
and Y , respectively. Now consider the Holevo information, which is I(X : B1B2)ω by
assumption. By subadditivity of entropy of B1B2 it follows that I(X : B1B2)ω ≤ I(X :
B1)ω + I(XB1 : B2)ω. From data processing we can upper bound the second term by
I(XYB1 : B2)ω = I(XY : B2)ω. Therefore

χ(𝒩B1|A1
⊗𝒩 ′B2|A2

) ≤ I(X : B1)ω + I(XY : B2)ω ≤ χ(𝒩B1|A1
) + χ(𝒩 ′B2|A2

) , (15.34)

and additivity follows. In particular, QC channels, i. e., measurements, like CQ chan-
nels have a single-letter expression for the classical capacity.

However, despite the apparent similarities of the Holevo information and the ex-
pression for the capacity of a CQ channel, the Holevo information is not a convex opti-
mization. As shown above in (15.27), the function f : ρXA → χ(𝒩B|A) is concave in the X
distribution of ρXA for fixed conditional states in A. However, it is a convex function of
the conditional states for fixed distributions on X. Therefore computing the capacity
for general entanglement-breaking channels and even measurements is considerably
more difficult than for CQ channels.

Exercise 15.7. Show that ρXA → χ(𝒩B|A) is convex for fixed ρX .

15.6 Notes and further reading

The coding theorem for i. i. d. classical channels is of course due to Shannon [258];
the quote is from the opening of this paper. One-shot bounds were developed by
Hayashi [127] and Polyanskiy, Poor, and Verdú [224], though the idea of hypothesis
testing for the converse goes back to Nagaoka [208]. Hayashi [128] mentions that
around 2000 Nagaoka had the idea of organizing all topics in information theory
around the binary hypothesis testing quantity. As will become evident in subsequent
chapters, we are very much working in this tradition. See also the recent lecture notes
of Polyanskiy and Wu [225].

The classical capacity of quantum channels was slower to arrive. Holevo [144]
gave an upper bound on the capacity in 1973, but a matching achievability state-
ment was not found until the late 1990s by Schumacher and Westmoreland [254] and
Holevo [142]. One-shot bounds for CQ channel coding were found by Hayashi and Na-
gaoka [129]. The one-shot converse for CQ channel codingpresentedhere is fromWang
and Renner [296], which is based on the aforementioned [224]. The achievability proof
using the pretty good measurement is a modification of the construction by Beigi and
Gohari [16]. Hastings [122] showed that the Holevo information is superadditive.
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16 Information reconciliation
The astonishment of life is the absence of any appearances of reconciliation between the theory
and the practice of life.

Ralph Waldo Emerson

Recall the bipartite scenario in Section 11.1 of a classical random variable X correlated
with a quantum system B. There the goal was to determine X as well as possible by
just making a measurement on B. We can imagine that X is held by Alice and B by
Bob. Suppose now that Alice helps Bob determine X by computing a random variable
Y as a (possibly stochastic) function of X and transmitting it to him. The goal is to
make Bob’s guessing probability close to unity. This task is known as information rec-
onciliation because in the case of classical B, we can view the task as reconciling the
classical value Bwith that of X (i. e., making the former equal to the latter). It can also
be regarded as classical compression or source coding with side information, because
Bob canmake use of the side information B at the decoder. The latter interpretation is
especially clear from the depiction in Figure 16.1.

=

ρ ℰ

𝒟

X
X

Y
B

X′
ρ =

Tr

X

X

X′
B

≈ε

Figure 16.1: A (k, ε) protocol for compression of classical data X relative to quantum side information
B with k = |Y |. The random variable Y is the compressed version of X , since the decompressor𝒟 can
recreate the particular output of the source (stored in X ) from it. The partial trace operation Tr can be
regarded as trashing the B system.

Clearly, Alice could just send Bob the entireX, but the goal is to complete the taskwith
Y as small as possible. It is perhaps surprising that such a scheme is possible at all,
since Alice does not know exactly what Bob needs to know. For example, suppose that
X and B are two classical bit strings of length n; Alice’s string is random, and Bob’s
differs in at most t positions. If Alice knew in which t positions Bob’s string differed
from hers, then the protocol would be simple. However, even by sending a sufficient
amount of essentially random information about her string (in the form of the output
of a randomly chosen function), Bob can combine this information with his string to
determine Alice’s string.

https://doi.org/10.1515/9783110570250-016
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224 | 16 Information reconciliation

As in the case of channel coding, we can gain a better understanding by consider-
ing the protocol from Bob’s point of view. In general, his system B is in one of a set of
states {φB(x)}, but he is unsure which. The set itself is known, but not the particular
state. Furthermore, the states are generally not distinguishable, so he cannot justmea-
sure the system to determine x with high reliability. The information he receives from
Alice narrows the set of possible states, making the distinguishing task simpler. Since
both parties know the joint state produced by the source, for each x, Alice also knows
how likely Bob is to correctly determine that x. She just needs to sufficiently narrow
the set possible states at his end to make the guessing probability close to unity.

16.1 Setup and basic properties

The formal setup is very similar to that of compression of classical information in Sec-
tion 14.1.1. The decompressor just needs to be modified to use the side information.
Consider a CQ state

ρXB = ∑
x∈𝒳 PX(x)|x⟩⟨x|X ⊗ φB(x) (16.1)

for some probability distribution PX and set of states φB(x). Let PXX′ (x, x′) =
PX(x)δ(x, x′), and denote by ρXX′B the CCQ state with X′ containing a copy of X. Then a
(k, ε) information reconciliation protocol for ρXB consists of an encoder or compressor
ℰY |X and a decoder or decompressor 𝒟X′|YB such that δ(PXX′ ,𝒟X′|YB ∘ ℰY |X[ρXX′B]) ≤ ε.
By (11.2) the distinguishability requirement is equivalent to the guessing probability
of X given Y and B being at least 1 − ε. Let L⋆ε (X|B)ρ be the smallest k such that a (k, ε)
protocol exists for ρXB.

The compressor might as well be deterministic, just as in the case of compres-
sion with no side information. The same holds for the decompressor when the side
information is classical, i. e., when all the φB(x) commute. Given B = b and Y = y,
the decompressor simply picks argmaxPX|B=b,Y=y(x). When B is a quantum system,
the channel 𝒟X′|BY is a measurement, or rather a sequence of measurements, one for
each value of Y = y. That is, the POVM elements ΓBY (x) have the form

ΓBY (x) =∑
y
ΛB(x, y) ⊗ |y⟩⟨y|Y (16.2)

for some operators ΛB(x, y), which are positive and satisfy ∑x ΛB(x, y) = 1B for all y.
The measurement consists of two steps: The value of Y is first determined, and then
the measurement with POVM elements {ΛB(x, y)}x∈𝒳 is performed on B.
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16.2 Converse

The main question of the converse is as follows: For a given ρXB, how large does Y
have to be such that Bob’s guessing probability is at least 1 − ε? We can find a con-
straint based on using any possible compression scheme to construct a hypothesis
testing measurement for distinguishing between the source state ρXB and a particular
uncorrelated operator.

Proposition 16.1 (Converse to compression of classical data). Given any CQ state ρXB, every (k, ε)
compression protocol satisfies

k ≥ max
σ∈Stat(ℋB)β1−ε(ρXB,1X ⊗ σB) . (16.3)

Proof. Let ℰXY |X be an extension of the compression operation that retains a copy of
the inputX. For the conditional distributionsPY |X=x of the compressor output for input
X = x, define

ωXYB = ℰYX|X[ρXB] =∑
x,y PX(x)PY |X=x(y)|x⟩⟨x|X ⊗ |y⟩⟨y|Y ⊗ φB(x) . (16.4)

By monotonicity of βα it follows that for any state σB,

β1−ε(ρXB, 1X ⊗ σB) ≤ β1−ε(ωXYB, ℰXY |X[1X] ⊗ σB) . (16.5)

Since ℰYX|X[1X] = ∑x,y PY |X=x(y)|x⟩⟨x|X ⊗ |y⟩⟨y|Y , it satisfies ℰYX|X[1X] ≤ 1XY , and there-
fore

β1−ε(ωXYB, ℰXY |X[1X] ⊗ σB) ≤ β1−ε(ωXYB, 1XY ⊗ σB) . (16.6)

Using the decompressor, define the operator ΓXYB = ∑x,y |x⟩⟨x|X ⊗ |y⟩⟨y|Y ⊗ ΛB(x, y). It
satisfies Tr[ΓXYBωXYB] ≥ 1− ε by assumption and is therefore feasible for the optimiza-
tion in β1−ε(ωXYB, 1XY ⊗ σB). Thus

β1−ε(ωXYB, 1XY ⊗ σB) ≤ Tr[ΓXYB(1XY ⊗ σB)]
= ∑

x,y Tr[ΛB(x, y) σB] = ∑
y
Tr[σB] = k . (16.7)

Since the sequence of inequalities holds for arbitrary σB, the converse follows.

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



226 | 16 Information reconciliation

16.3 Achievability

16.3.1 Statement

To show a nearlymatching achievability bound, we againmake use of Shannon’s ran-
dom coding argument and average over the choice of compression function. We again
use the pretty good measurement for the decompressor.

Proposition 16.2. For every CQ state ρXB and ε ∈ [0, 1], there exists a (k, ε) information reconcilia-
tion protocol such that

k ≤ min
η∈[0,ε] 1ηβ1−ε+η(ρXB,1X ⊗ ρB) + 1 . (16.8)

Proof. For convenience, let ρXB = ∑x |x⟩⟨x|X ⊗ φB(x), absorbing the probability of
x into the normalization of φB(x). Then the compressor creates the state ωXYB =
∑x |x⟩⟨x|X ⊗ |f (x)⟩⟨f (x)|Y ⊗ φB(x). The decompressor applies the pretty good mea-
surement appropriate for the observed value y = f (x). For a fixed y, the POVM
elements are ΛB(x, y) = θB(y)−1/2φB(x)θB(y)−1/2 for θB(y) = ∑x:f (x)=y φB(x), plus an
additional element 1B − {θB(y) < 1B} if necessary. Moreover, we take ΛB(x, y) = 0
when y ̸= f (x). Then we may regard this collection as a POVM on YB with elements
ΓYB(x) = ∑y |y⟩⟨y|Y ⊗ ΛB(x, y).

For any X = x, Pr[X′ = x] satisfies PX(x)Pr[X′ = x] = Q(φB(x), θB(f (x))) with Q
from (11.30). Averaging over the choice of f and using joint convexity of Q gives
PX(x)Pr[X′ = x] ≥ Q(φB(x), ⟨θB(f (x))⟩f ). Since the choice of f is random, we have

⟨θB(f (x))⟩f = ⟨∑
x′ δf (x),f (x′)φB(x

′)⟩
f
= φB(x) +⟨∑

x′ ̸=x δf (x),f (x′)φB(x
′)⟩

f

= φB(x) +
1
k
(ρB − φB(x)) =

k − 1
k

φB(x) +
1
k
ρB .

(16.9)

The value of f (x) is completely random, as is the value of f (x′). Therefore the chance
that they are equal is simply the inverse of the size of the output alphabet. Averaging
over X = x gives the following bound on the overall probability of success:

Pr[X′ = X] ≥ k ∑
x∈𝒳 Q(φB(x), (k − 1)φB(x) + ρB)

= kQ(ρXB, (k − 1)ρXB + 1X ⊗ ρB) .
(16.10)

Now we proceed as in the proof of the achievability of noisy channel coding. Let
ΛXB be the optimal POVM element in βα(ρXB, 1X ⊗ρB) for any α ∈ [0, 1]. Monotonicity of
Qunder the binary POVM {ΛXB, 1XB−ΛXB} gives ⟨Pr[X′ = X]⟩F ≥ Q(P,R) forP = (α, 1−α)
and R = ((k − 1)α + βα, (k − 1)(1 − α) + |X| − βα). Since Q(P,R) ≥ p21/r1, we obtain

⟨Pr[X′ = X]⟩f ≥ kα2((k − 1)α + βα)−1 . (16.11)
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The bound still holds when replacing the k − 1 factor in the inverse with k. Then we
want to choose k such that α(1 + 1

k
1
αβα) ≥ 1 − ε, which translates to

k ≥ βα
1 − ε

α(α − (1 − ε))
. (16.12)

Hence α must be no smaller than 1 − ε for the denominator to be positive, so set α =
1 − ε + η for η ∈ [0, ε]. Choosing

k = ⌈ 1 − ε
η(1 − ε + η)

β1−ε+η(ρXB, 1X ⊗ ρB)⌉ (16.13)

therefore ensures that ⟨Pr[X′ = X]⟩f ≥ 1 − ε. Using ⌈x⌉ ≤ x + 1 for x ≥ 0, the ceiling
function can be removed in the bound. We are still free to optimize η, and again we
loosen the bound slightly for simplicity.

Observe that (16.8) reduces to (14.2) for trivial B, that is, when the φB(x) are all
identical. However, the protocols in this case are somewhat different. Here the com-
pressed output is generated by a function f , and because the decoder uses the pretty
good measurement, upon learning the value of Y = y, it samples an x from the distri-
bution PX|Y=y. Nevertheless, for randomly chosen functions, the size of Y ensures that
there is essentially only one possible high-probability x compatible with any given y.
In the end, though two protocols are designed differently, they function very similarly.

16.3.2 Universal hashing

As in channel coding, it is not necessary to resort to completely random functions
for the compressor. Instead, in (16.9), it is only necessary that ⟨δf (x),f (x′)⟩F = 1

k for all
x′ ̸= x. Since we consider a uniformly random choice, this is equivalent to saying that
the number of functions for which f (x) = f (x′) for any x′ ̸= x is nf /k, where nf is the
number of functions. A collection of functions for which the collision probability is at
most 1/k is called a universal family of hash functions.

A particularly convenient choice for our purposes in later chapters will be to take
𝒳 and 𝒴 to be the linear spaces ℤn2 and ℤ

m
2 , respectively, for which the set of all sur-

jective linear functions forms a universal family. (We could also choose ℤnp for prime
p.) A direct way to see this is to consider the kernels associated with the functions.
Each one will be of dimension precisely dim(𝒳 ) − dim(𝒴) = n −m by the rank-nullity
theorem. By symmetry the probability of f (x) = 0 for a random f and x ̸= 0 is equiva-
lent to the probability of the same event for fixed f and random x ̸= 0. This is just the
probability for x to be in the fixed kernel of f , which is just 2n−m−1

2n−1 = 2−m 1−2m−n
1−2−n ≤ 2−m.

The −1 reflects the fact that x ̸= 0. For the above achievability argument, we need only
make a small change to use this set of functions. In (16.9), k should be replaced by the
precise value 2m 1−2−n

1−2m−n , carried through to (16.11), and then lower bounded by 2m.
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Exercise 16.1. Show that the set of all linear functions f : ℤn2 → ℤ
m
2 withm ≤ n forms

a universal family of hash functions.

16.3.3 Syndrome decoding

Linear hash functions fit very well for reconciliation of X using classical side informa-
tionX′ related toX via additive noise. Consider the case ofX,X′ ∈ ℤn2 with PXX′ (x, x′) =
1|X|PY (x + x′) for the i. i. d. Bernoulli distribution PY with parameter p, that is, X′ is the
output of BSC(p) for input X. To determine X from X′, it is sufficient (and also nec-
essary) to determine Y , meaning that we simply need a hash of Y as just described
above. The hash of Y can be easily obtained using a linear hash function ̂f , since
̂f (x) + ̂f (x′) = ̂f (y).

This is the basis of syndrome decoding. The decoder computes ̂f (x′) and adds the
message from the compressor to obtain the syndrome ̂f (y). This information enables
the decoder to diagnose the particular error y using the error model PY . Hence for this
case,wehave the achievability bound 1

ηβ1−ε+η(PY , 1Y )+1 on the size of the hash. This is
essentially the same as β1−ε(PXX′ , 1X ⊗PX′ ) bymonotonicity of β1−ε under the reversible
operation (x, x′)→ (x, x + x′).
16.4 Reconciliation of i. i. d. sources

The i. i. d. analysis is by now routine. For any CQ state ρXB and ε ∈ (0, 1), we have

lim
n→∞ log L⋆ε (Xn|Bn)ρ⊗n

n
= H(X|B)ρ . (16.14)

Exercise 16.2. Prove the statement.

Exercise 16.3. Consider a tripartite CCQ state ρXZB in which Alice holds X, Charlie
holds Z, and Bob holds B. Show that in the i. i. d. scenario, Alice and Charlie can sep-
arately compress X and Z relative to B so that Bob can reconstruct both X and Z by
receiving information at rate H(XY |B)ρ. Hint: Apply the chain rule for the entropy ex-
pression and take inspiration from the result.

16.5 Notes and further reading

Thequote is fromEmerson’s 1850 essay “Montaigne; or, The Skeptic”, reprinted in [93].
The name “information reconciliation” comes from the cryptographic setting of rec-
onciling secret keys, whichwewill encounter in Chapter 20. In the context of classical
information theory, it is considered compression with side information and was first
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implicitly studied by Slepian and Wolf [268] in their analysis of distributed compres-
sion (Exercise 16.3). The optimal compression rate for i. i. d. sourceswith quantumside
information was found by Devetak andWinter [79]. The one-shot case was considered
by Renes andRenner [240]. The converse boundhere is fromTomamichel andHayashi
[281], and the achievability statement is a modification of an argument by Beigi and
Gohari [16].
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17 Entanglement distillation
A good story cannot be devised; it has to be distilled.

Raymond Chandler

Suppose two separated parties Alice and Bob would like to implement the teleporta-
tion protocol to transfer an arbitrary quantum system from one to the other, but they
only share an imperfectly entangled state ρAB. A natural approach to construct a proto-
col capable of performing the task from the resources at hand is to first try to convert
the state ρAB into something approximating a maximally entangled state, and then
just execute the usual teleportation protocol. This simplified task is known as entan-
glement distillation, which we first encountered in Chapter 8. Since their original aim
is to transmit quantum information, this approach makes sense only if Alice and Bob
employ LOCC operations. In this chapter, we will study entanglement distillation us-
ing one-way communication for a particular class of states ρAB. The case of arbitrary
states is notably more complicated and will be taken up in Chapter 19.

17.1 Setup and basic properties

Before specializing to the states of interest, let us recall the setup of any entanglement
distillation procedure using local operations and one-way classical communication
from Section 8.6. It consists of a map ℰQY |A on Alice’s side that outputs a quantum
system Q and a classical value Y along with a map 𝒟Q′|YB on Bob’s side, which takes
Y and B as inputs and outputs a quantum system Q′. Ideally, the output would be the
maximally entangled state, as depicted in Figure 17.1. For simplicity, we again quantify
the approximation by the squared fidelity

F(ΦQQ′ ,𝒟Q′|YB ∘ ℰQY |A[ρAB])2 = Tr[ΦQQ′𝒟Q′|YB ∘ ℰQY |A[ρAB]] . (17.1)

A pair (ℰ ,𝒟) is a (k, ε) entanglement distillation protocol when the squared fidelity is
greater than 1 − ε and |Q| = k. The largest amount k of distillable entanglement from a
given state ρAB for a specified ε is denoted by E⋆ε (A|B)ρ.

ℰ

ρ

𝒟

A

B

Y

Q

Q′

Φ
Q

Q′

≈ε

Figure 17.1: A (k, ε) protocol for entanglement distillation of ρAB by one-way classical communication
from A to B with k = |Y |.

https://doi.org/10.1515/9783110570250-017
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17.2 Converse

A simple converse bound for general entanglement distillation protocols is given by
the following:

Proposition 17.1 (PPT converse on entanglement distillation). For any bipartite state ρAB, every
(k, ε) entanglement distillation protocol satisfies

max
σ∈ppt

β1−ε(ρAB, σAB) ≤
1
k
. (17.2)

Proof. Suppose ℰ and𝒟 constitute a (k, ε) protocol for ρAB, and consider β1−ε(ρAB, σAB)
for some PPT state σAB. The operator ΛAB = ℰ

∗ ∘𝒟∗[ΦQQ′ ] is feasible for the optimiza-
tion, since the output is nearly entangled. Hence

β1−ε(ρAB, σAB) ≤ Tr[ΛABσAB] = Tr[ΦQQ′𝒟 ∘ ℰ[σAB]] . (17.3)

The state θQQ′ = 𝒟Q′|YB ∘ ℰQY |A[σAB] is PPT if σAB is. To see this, use the Choi represen-
tation to compute the partial transpose ofM′:

𝒯Q′ [θQQ′ ] = Tr[DTQ′
Q′YBEQYAσTAB]

= Tr[DTQ′B
Q′YBEQYAσTAAB] = Tr[DT

Q′YBEQYAσ̂TAB] , (17.4)

where σ̂AB = σ
TB
AB. In the last equality, we also use the fact that the transpose does not

affect the subsystem Y of DQ′YB or EQYA, since it is classical. Since σ̂AB is positive and
DT
Q′YB represents a completely positive map, the Choi representation theorem implies

𝒯Q′ [θQQ′ ] ≥ 0. Then it follows by Proposition 8.1 that β1−ε(ρAB, σAB) ≤ 1/k.
Although we did not precisely define distillation protocols involving two-way

communication, it is easy to see that the bound applies to them as well. Feasibility
is clearly not affected by having more general LOCC operations. Moreover, all LOCC
operations preserve the PPT property of the input state. This follows since in the Choi
operator argument above the map ℰ can be replaced by all operations but the very
last, and the argument goes through as before.

17.3 Achievability for a special case

Nowwe turn to the particular case that ρAB is such that Pguess(ZA|B)ρ = 1 for ZA (either
of) the amplitude observables considered in Chapter 13. From (13.10), the uncertainty
relation relevant for Version 1 of the uncertainty game, it follows that to create entan-
glement, it is enough to create a state such that Bob can predict the conjugate observ-
ables XA and ZA on Alice’s system. Hence the special case here is that the job is half
done already.
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232 | 17 Entanglement distillation

This case includes distillation from pure bipartite states, which is known as en-
tanglement concentration in the literature. Using the Schmidt basis to define ZA, it is
immediately apparent that Pguess(ZA|B)ρ = 1. This case also includes Bell-diagonal
states plagued by phase noise, e. g., ρAB = ∑x P(x)Z

x
BΦABZ−xB for ZB from (4.19).

17.3.1 Linear hashing

In principle, we only need to perform information reconciliation on the XA informa-
tion relative to side information B to ensure a high guessing probability for both am-
plitude and phase. This is another example of a reduction. However, there is an imme-
diate hurdle to overcome if we follow this strategy: the backaction of themeasurement
Alice performs. Surely, she cannot just measure XA and then compute the compressed
output, for it would leave no quantum systems on her end to be entangled with Bob’s
systems. Put differently, measuring XA would completely destroy Bob’s ZA guessing
probability, since Alice’s system would now be an XA eigenstate. What is needed is a
means to generate the output needed for XA information reconciliation without too
badly damaging Bob’s ZA information.

One solution is to base the compressor in information reconciliation on a linear
function. As remarked at the end of Section 16.3, random surjective linear functions
are sufficient for the achievability statement. Let us first see how this allows Alice to
perform her part of the reconciliation protocol and leave some part of her system to be
entangled with Bob.

Suppose that Alice’s system A consists of n qubits (the case of n d-dimensional
systems is similar for prime d). We can choose the n-qubit amplitude and phase ob-
servables from Chapter 13. Then the surjective linear hash function ǧ : ℤn2 → ℤ

m
2 can

be represented by an m × nmatrix Ǧ with entries in ℤ2 such that ǧ(x) = Ǧx, where in
the latter we interpret x ∈ ℤn2 as a column vector. We choose this notation to be consis-
tentwith the discussion of quantumerror correcting codes to come in Section 19.2. The
rows of Ǧmust be linearly independent since ǧ is surjective; otherwise, row reduction
will yield one or more zero rows, implying that the image of Ǧ is not the entirety of
ℤm2 . Therefore we can find n−m additional linearly independent row vectors, yielding
an n × nmatrix G. As all of its rows are linearly independent, G is invertible. The last
n − m rows of G define a function ḡ : ℤn2 → ℤ

n−m
2 , and the function x → ǧ(x) ⊕ ḡ(x)

is invertible. Here ⊕ denotes the concatenation of the vectors, i. e., an element of the
direct sum of the underlying vector spaces.

More abstractly, the kernel of ǧ defines a subspaceW of V = ℤn2 , and its outputs
label the cosets V/W . We have assumed that ǧ has rank m, so the kernel is of dimen-
sion n −m by the rank-nullity theorem. The function ḡ maps x ∈ V to the kernel of ǧ.
Any surjective map suffices to make x → ǧ(x) ⊕ ḡ(x) invertible, since V can be de-
composed into the direct sum ofW and the subspace of its cosets V/W . Note that the
matrix representation of ǧ consists of rows that spanW⊥, the orthogonal complement

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



17.3 Achievability for a special case | 233

of the kernel of ǧ, while that of ḡ consists of rows spanning (V/W)⊥, the orthogonal
complement of the subspace of cosets V/W .

Now consider the unitary operator UA = ∑x∈ℤn2 |G̃x⟩⟨x̃|A. The firstm rows of G cor-
respond to ǧ, so applying U andmeasuring the firstm qubits in the |x̃⟩ basis produces
ǧ(x) for input state |x̃⟩, justwouldmeasuring eachqubit in the |x̃⟩basis and computing
ǧ(x) directly. Therefore, given the output of themeasurement of the firstm qubits, Bob
can implement the decoder of the information reconciliation protocol for XA relative
to his side information B.

The crux of the approach here is that U also acts as a linear function in the ampli-
tude basis as well. Applied to an amplitude basis input |z⟩, U gives

U |z⟩ = ∑
x∈ℤn2

|G̃x⟩⟨x̃|z⟩ = 1
√2n
∑
x∈ℤn2

(−1)x⋅z |G̃x⟩

=
1
2n
∑

x,z′∈ℤn2(−1)
x⋅z(−1)Gx⋅z

′ z′⟩
=

1
2n
∑

x,z′∈ℤn2(−1)
x⋅(z+GTz′)z′⟩ = (GT)−1z⟩ .

(17.5)

The function implemented by U in the amplitude basis is simply the inverse of the
transpose of G. Measuring the last n − m qubits of the output in the amplitude ba-
sis defines a linear function ̄f : ℤn2 → ℤ

n−m
2 . This information is not affected by the

measurement of the first m qubits in the phase basis. The matrix representation of the
function consists of rows that span V , the kernel of ǧ, and so ̄f maps to (V/W)⊥. In
the context of a given ǧ, we call ̄f the dual function (not to be confused with the dual
optimization).

17.3.2 One-shot bound

Suppose then that Pguess(ZA|B)ρ = 1 and we have an (m, ε) information reconciliation
protocol for XA relative to Bwith a linear compression function ǧ. Then Alice’s part of
the entanglement distillation protocol for ρAB is as follows. She first implements ǧ via
U, measures the first m qubits in the phase basis, and transmits the result Y to Bob.
Denote the remaining n−munmeasured qubits systembyQ and the postmeasurement
state by ρ′YQB. Since Pguess(ZA|B)ρ = 1 and ZQ = ̄f (ZA), it follows that Pguess(ZQ|B)ρ′ = 1.
Because the reconciliation protocol is ε-good, Pguess(XQ|BY)ρ′ = 1 − ε. Therefore
by (13.26) Bob can use the decoding measurement from the reconciliation protocol
to construct an entanglement recovery map 𝒟Q′|BY such that F(ΦQQ′ ,𝒟Q′|BY [ρQBY ]) ≥
1 − ε.

Thus we have shown the following for |A| = 2n, n ∈ ℕ. The case of |A| = dn

for prime d is similar, and any A can be embedded into n qubits or n qudits without
changing Pguess(ZA|B).
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Proposition 17.2. Given a state ρAB such that Pguess(ZA|B)ρ = 1, let (ǧ, ΛB) be the compression func-
tion and decompression measurement of a (k, ε) information reconciliation protocol for XA relative
to B, with a surjective linear function ǧ. Then there exists an (|A|/k, ε(2 − ε)) entanglement distilla-
tion protocol (ℰQY |A,𝒟Q′ |BY ) such that ℰ can be constructed from the compression function ǧ, and
𝒟 can be constructed from the reconciliation measurement ΛB.

The following one-shot bounds for the special case follow from Proposition 17.1 and
by combining Proposition 17.2 with Proposition 16.2.

Proposition 17.3 (One-shot entanglement distillation bounds, special case). For any bipartite
state ρAB with Pguess(ZA|B)ρ = 1, we have the following bounds for all ε ∈ (0, 1):

β1−ε(ρAB,𝒫A[ρAB]) ≤
1

E⋆ε (A|B)ρ
≤ min

η∈[0,ε]

4
ε
β1− ε4 (ρAB,𝒫A[ρAB]) + 1 . (17.6)

Proof. The lower bound here is simply the choice σAB = 𝒫A[ρAB] in (17.2). For the up-
per bound, observe that by (13.16) any ρAB for which Pguess(ZA|B)ρ = 1 can be trans-
formed into ψ′AA′B from (13.15) by action solely on B. On B Bob coherently implements
the guessing measurement for ZA, storing the result in A′. Starting from a purifica-
tion |ψ⟩ABR of ρAB, this produces |ψ′⟩AA′BR = ∑z∈ℤn2 |z⟩A|z⟩A′ |φ(z)⟩BR for some states
|φ(z)⟩BR. The probability of Z = z is encoded in the normalization of |φ(z)⟩. Bob holds
the systems A′B.

Now consider the achievability bound (16.8) for ε/2-good information reconcilia-
tion of XA relative to A′B to ensure ε-good entanglement distillation. Due to the form
of ψ′AA′B evident in (13.20), i. e., |ψ′⟩ = 1

√2n
∑x∈ℤn2 |x̃⟩AZ

x
A|ψ⟩ABR, the state ψ̄XA′B after

measuring XA is simply

ψ̄XA′B = 1d∑x |x⟩⟨x|X ⊗ ZxA′ψA′BZxA′ . (17.7)

Recall from the end of Section 13.3.3 that ZA = (σz)A1
⊗ ⋅ ⋅ ⋅⊗(σz)An

. From (5.4), which also
holds for the n-qubit ZA operator, it follows that ψ̄A′B = 𝒫A′ [ψA′B]. Therefore, applying
the unitary UXA′ = ∑x |x̃⟩⟨x̃|A ⊗ ZxA′ to ψ̄XA′B and 1X ⊗ ψ̄A′B results in πX ⊗ ψA′B and
1X ⊗ 𝒫A′ [ψA′B], respectively. Thus we have

1
|X|

βα( ̄ψ′XA′B, 1X ⊗ ψ′A′B) = 1
|X|

βα(πX ⊗ ψA′B, 1X ⊗ 𝒫A′ [ψA′B])
= βα(πX ⊗ ψA′B,πX ⊗ 𝒫A′ [ψA′B])
= βα(ψA′B,𝒫A′ [ψA′B]) .

(17.8)

The second equality is just cβα(ρ, σ) = βα(ρ, cσ), while the third is βα(ρ ⊗ τ, σ ⊗ τ) =
βα(ρ, σ) from Exercise 9.16. Choosing η = ε/4 gives the upper bound.
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17.3.3 Distillation from i. i. d. states

Once again, we can show matching upper and lower bounds on the optimal rate of
entanglement distillation from the special class of state ρAB by appealing to Stein’s
lemma.

Proposition 17.4 (Optimal i. i. d. entanglement distillation rate, special case). For all ρAB such that
Pguess(ZA|B)ρ = 1 and every ε ∈ (0, 1),

lim
n→∞

1
n
log E⋆ε (A

n|Bn)ρ⊗n = D(ρAB,𝒫A[ρAB]) = −H(A|B)ρ . (17.9)

In view of Proposition 17.3, the only thing to show is the equality D(ρAB,𝒫A[ρAB]) =
−H(A|B)ρ. This follows immediately from the chain rule of relative entropy in (12.23)
since H(ZA|B)ρ = 0.

Exercise 17.1. Determine the optimal distillation rates for the states ρAB = |ψ⟩⟨ψ|AB
with |ψ⟩ = √1 − p|00⟩ +√p|11⟩ and σAB = (1 − p)ΦAB + pZBΦABZB.

Exercise 17.2. What is the optimal distillation rate for a general pure state |ψ⟩AB?

17.4 Notes and further reading

The quotation from Chandler can be found in [55]. Entanglement concentration was
introduced by Bennett et al. [25], who also determined the optimal rate in the asymp-
totic limit. One-shot concentration was studied by Datta and Leditzky [69]. General
entanglement distillation was introduced by Bennett et al. [31], and the one-shot set-
ting was investigated by Buscemi and Datta [49] as well as by Brandão and Datta [45].
The converse here is adapted from Fang et al. [96], which follows techniques of Rains
[233].
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18 Randomness extraction
Anyone who considers arithmetical methods of producing random digits is, of course, in a state
of sin.

John von Neumann

Until now we have been interested in protocols which aim to create correlation or en-
tanglement. However, extracting entropy or randomness is also useful, as random-
ness is utilized in many applications. Although the most important thing here is its
usefulness in cryptography, which wewill investigate in Chapter 20, randomness also
plays a role in certain algorithms, e. g., in primality testing and simulation of physical
systems via Monte Carlo methods.

As alluded to by the quotation above, themost we can expect from a deterministic
procedure is to extract the randomness present in the input to the procedure. Random-
ness cannot be created by deterministic means. A simple example of a randomness
extractor comes from von Neumann himself. Consider a sequence of bits with i. i. d.
distribution such that each is biased toward 0 with probability p. The probability that
two particular bits take the values (0, 1) is the same as the probability that they take
the values (1,0). Therefore, with probability 2p(1−p), one uniformly randombit can be
generated from each pair of inputs. For a long sequence of bits, the total rate at which
random bits are produced is thus p(1 − p).

In this chapter, we will see that the ultimate limit is again given by the entropy of
the source, which is h2(p) in this example. With an eye toward cryptographic applica-
tion in Chapter 20, we consider the case of randomness extraction from sources cor-
related to information held by an adversary or eavesdropper. This task is also known
as privacy amplification. In this case, randomness can be extracted at a rate given
by the conditional entropy, even when the adversary holds quantum side informa-
tion.

18.1 Setup and basic properties

Given a CQ state ρZE with classical Z, the goal of randomness extraction is to create
a state ρYE very close to πY ⊗ ρE by applying a suitable extractor function f : Z → Y .
This is depicted in Figure 18.1. The quality of the approximation is measured by the
distinguishability δ(ρYE ,πY ⊗ ρE), and f is a (k, ε) extractor for ρZE when |Y | = k and
δ(ρYE ,πY ⊗ ρE) ≤ ε. Let K⋆ε (Z|E)ρ be the largest k such that a (k, ε) extractor exists for
ρZE . We require f to be a deterministic function. Otherwise, the problem is trivial: Just
forget (trace out) Z and output a random Y ; this is precisely the ideal output.

https://doi.org/10.1515/9783110570250-018
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Figure 18.1: A (k, ε) protocol for randomness extraction from Z relative to side information E with
k = |Y |.

18.2 Converse: from extraction to distillation

By making use of the quantum eraser from Section 6.6.4 any protocol for randomness
extraction canbe transformed into a protocol for entanglement distillation froma suit-
able state. This gives a reduction from the latter to the former. Thus the converse bound
for distillation applies to randomness extraction, and there is no need to prove a sep-
arate converse specifically for extraction.

The particular setup is as follows. Suppose we are given a (k, ε) extractor f for Z
relative to E in the CQ state ρZE . To make it easier to connect with the discussion of
entanglement distillation in Section 17.3, regard Z as a quantum system A such that
ρAE is a CQ state, write ρAE = ∑z |z⟩⟨z|A ⊗ φE(z) for some unnormalized states φE(z),
and let |ψ⟩AA′BE = ∑z |z⟩A|z⟩A′ |φ(z)⟩BE be a purification of ρAE . Then we can show the
following:

Proposition 18.1. For every CQ state ρAE , any (k, ε) extractor for ZA relative to E can be transformed
into a (k, ε) entanglement distillation protocol using one-way communication from A to A′B in the
state ψAA′B.

Proof. To |ψ⟩ apply a unitary implementation of the map z → (f (z), z), where f (z) is
stored in system Q, held by Alice. This produces the state

ψ
′⟩QAA′BE =∑

z

f (z)⟩Q|z⟩A|z⟩A′
φ(z)⟩BE , (18.1)

for which δ(ψ′QE ,πQ ⊗ ψE) ≤ ε. Therefore F(ψ′QE ,πQ ⊗ ψE) ≥ 1 − ε. Clearly, |ψ′⟩ is a
purification of ψ′QE, whereas |Φ⟩QQ′ |ψ⟩ABE purifies πQ ⊗ ψE . Then by the properties of
fidelity there exists an isometry V mapping AA′B to QAA′B such that

⟨Φ|QQ′⟨ψ|AA′BEVQ′AA′B|AA′B
ψ
′⟩QAA′BE ≥ 1 − ε . (18.2)

Using this isometry, Alice and Bob can create a high-fidelity entangled state.
Thus knowing that the Q system is maximally mixed allows us to infer the exis-

tence of an operation that creates the desired state |Φ⟩QQ′ . This trick of inferring that
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entangled states can be created by showing that the marginal is completely mixed is
quite widespread in quantum information theory. It goes under the name decoupling
since Q is decoupled (independent) from everything else.

However, this does not yet yield an LOCC protocol, because V might require joint
operations onAA′B. To show that there is an LOCCversion ofV , we return to |ψ′⟩QAA′BE
and apply the quantum eraser discussed in Section 6.6.4 to remove A. Then the same
decoupling argument will apply, with the resulting isometry acting only on A′B.

Suppose Alice measures system A in the conjugate |x̃⟩ basis from (4.20). Then the
conditional state given outcome x is

A⟨x̃|ψ
′⟩QAA′BE =

1
√d
∑
xz

f (z)⟩MZ
−x
A′ |z⟩A′
φ(z)⟩BE . (18.3)

As in Section 13.3.3, here we overload notation and let ZkA = ∑z ω
kz |z⟩⟨z| for ω = e2πi/d

and d = |A|. Alice can then inform Bob of the outcome x, at which point he can apply
ZxA′ to remove the x dependence from the state. Thus, for every outcome x, the quantum
state after these operations is

|θ⟩QA′BE =∑
z

f (z)⟩Q|z⟩A′
φ(z)⟩BE , (18.4)

where Q is held by Alice. Applying the decoupling argument to |θ⟩, we can infer the
existence of a isometric operation on Bob’s systems A′B, which produce Q′ such that
the QQ′ joint system has high fidelity with |Φ⟩QQ′ .

18.3 Achievability: from reconciliation to extraction

To show achievability, we show how randomness extraction can be reduced to infor-
mation reconciliation. The setup is the same as using information reconciliation for
entanglement distillation; indeed, it is essentially the same argument. Here, however,
weneed only resort to (13.12), the bound relevant for Version 2 of the uncertainty game.

Proposition 18.2. Consider an arbitrary CQ state ρAE with classical A and |A| = 2n for some in-
teger n. Without loss of generality, we can take A to be diagonal in the ZA basis. For an arbitrary
purificationψABE of ρAE , let (ǧ, ΛB)bea (2m, ε) information reconciliation protocol for XA relative to B
with a surjective linear function ǧ : ℤn2 → ℤ

m
2 . Then every surjective function ̄f : ℤ

n
2 → (ℤ

n
2/ ker ǧ)

⊥

is an (|A|/k,√ε(2 − ε)) randomness extractor for ZA relative to E in ρAE .

Proof. Recall the unitary implementationU of the reversible extension of ǧ from (17.5).
Proceed as there, first applying UA and then measuring the first m qubits; denote the
output by Y and the remaining qubits by M. By assumption, Pguess(XM |BY)ψ ≥ 1 − ε.
Therefore, by (13.12) and (10.20), δ(ρZME ,πZM ⊗ ρE) ≤ √ε(2 − ε). Since ZM =

̄f (ZA) for ̄f
as described after (17.5), the proof is complete.

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



18.4 Extraction from i. i. d. sources | 239

Note that we could adopt the entire result of Proposition 17.2, rather than parts of
its proof, and arrive at the same conclusion. Since Alice and Bob are able to create a
high-fidelity entangled state inM andM′, alongwith the fact that theprotocol doesnot
involveE, the state ρME must be similarly close toπM⊗ρE in fidelity. As the construction
in Proposition 17.2 makes use of linear hashing, Alice’s operations can be interpreted
as applying a randomness extractor to ZA. Observe that the approximation parameter
resulting from this argument is precisely the same,√ε(2 − ε).

Exercise 18.1. Consider the three following CQ states ρZB in which Z is random and B
is related to X via (a) BSC(p), (b) BEC(q), and (c) PSC(f ). Show that extraction in these
cases is related to information reconciliation of uniformly random X relative to Rwith
R related to X via (a) PSC(1 − 2p), (b) BEC(1 − q), and (c) BSC( 12 (1 − f )).

By the above reductionwe can conclude that a particular extractor exists from the
existence of an information reconciliation protocol. However, we do not have ameans
to find it. The sameproblemplagues our coding results, but in those contexts the prob-
lem is perhaps less acute. Therewemay imagine testing a coding scheme to determine
if it is good, but in the cryptographic setting, this is not possible. We cannot ask the
eavesdropper to confirm that the key is secret.

Therefore in the cryptographic setting, we usually settle for a seeded extractor,
in which the particular extractor function is chosen by a seed random variable. The
reduction above implies that the dual functions of a suitable set of (surjective linear)
universal hash functions form a seeded extractor. Averaged over the choice of hash
function, the information reconciliation protocol is ε-good, and therefore the random-
ness extractor is√2ε-good.

A littlemore is also usually demanded of the extractor, namely that the output key
is not just independent of eavesdropper’s information E, but also the seed S; that is,
the output ωKSE of an ε-good seeded extractor should obey δ(ωKSE ,πK ⊗ πS ⊗ ωE) ≤ ε.
This is called a strong extractor. Because the seed is classical and uniformly random
in ωKSE, the condition is equivalent to 1

|S| ∑s∈𝒮 δ(ωKE|S=s,πK ⊗ ωE) ≤ ε. This is noth-
ing other than the average of the distinguishability under the choice of seed. The re-
duction above therefore implies that duals of universal hash functions form strong
extractors.

18.4 Extraction from i. i. d. sources

Using the one-shot achievability and converse results, along with Stein’s lemma, we
can now show that the optimal rate of randomness extraction is indeed given by the
conditional entropy of the source.
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Proposition 18.3. For any CQ state ρZE with classical Z and any ε ∈ (0, 1),

lim
n→∞

1
n
logK⋆ε (Z

n|En)ρ = H(Z|E)ρ . (18.5)

Proof. By Proposition 18.1, (k, ε) randomness extraction is subject to the PPT converse
bound (17.2) forA relative toA′B in the stateψ. Thenwe can follow the converse bound
in (17.9) to obtain

1
n
logK⋆ε (Z

n|En)ρ ≤ −H(A|A
′B)ψ . (18.6)

Because |ψ⟩AA′BE is a pure state, −H(A|A′B)ψ = H(A|E)ψ, which is equal to H(ZA|E)ρ.
For the achievability bound, byProposition 18.2we can appeal to the achievability

bound for information reconciliation of XA relative to side information A′B. By the
calculations in (17.8) and (17.9) this leads back to H(ZA|E)ρ.

Exercise 18.2. Referring back to the discussion of types in Section 12.3.2, construct a
seedless randomness extractor for a given i. i. d. source (with no side information).

18.5 Notes and further reading

The quote is from [295], as is the description of the extractor. Randomness extrac-
tion relative to classical side information held by an eavesdropper was introduced by
Bennett et al. [30]. It is closely related to the wiretap communication model of classi-
cal information theory, introduced by Wyner [310]. Optimal rates in the i. i. d. setting
were established by Csiszár and Körner [66]. One-shot bounds were given by Impagli-
azzo, Levin, and Luby [151] and Bennett et al. [28]. For eavesdroppers holding quan-
tum information, optimal rates for the i. i. d. case were given by Devetak and Win-
ter [80] (who implicitly uses the quantum eraser) and a one-shot analysis by Renner
and König [242] and Renner [241]. The approach taken here, of relating randomness
extraction to the task of information reconciliation via quantum effects such as the
uncertainty relation, follows the approach pioneered by Lo and Chau in their analysis
of QKD security [193], the full security proof by Shor and Preskill [264], and follow up
works by Koashi and Preskill [168], Koashi [166, 167], Hayashi [125], and Renes and
Boileau [238], among others. The idea of decoupling goes back to Schumacher and
Westmoreland [255]. The sufficiency of hash functions whose dual functions form a
universal set was emphasized by Tsurumaru and Hayashi [284].
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19 Quantum error correction
It has often been said that classical error correction is based onmaking multiple copies and then
doing ameasurement andmajority voting. And both of those things sounded like something that
you can’t do with quantum information.

Charles H. Bennett

In this chapter, we consider the use of quantum error correction both for transmission
of quantum information over noisy quantum channels and for distillation of maxi-
mal entanglement from arbitrary bipartite quantum states. Continuing our theme of
protocol reductions, we will use the latter to achieve the former.

19.1 Quantum communication: setup and basic properties

19.1.1 Definitions

The goal of quantum communication is of course to simulate the identity channel, as
in Figure 19.1. A (k, ε)wc protocol for a channel𝒩B|A consists of an encoding map ℰA|Q
and a decoding map𝒟Q|B such that δ(ℐQ,𝒟Q|B ∘𝒩B|A ∘ ℰA|Q) ≤ ε.

ℰ 𝒩 𝒟
Q A B Q

=
Q Q

≈ε

Figure 19.1: A (k, ε)wc protocol for quantum communication over the noisy channel𝒩B|A with k = |Q|.

As with classical communication, it is simpler to consider the average case instead of
the worst case, where now “average case”means that we attempt to transmit the state
|Φ⟩QQ′ . Moreover, it will also prove simpler to work with the fidelity, and therefore we
define a (k, ε) protocol for𝒩B|A under average error to be an encoder and decoder such
that

F(ΦQQ′ ,𝒟M|B ∘𝒩B|A ∘ ℰA|M[ΦQQ′ ]) ≥ 1 − ε . (19.1)

Notice that by (10.19) a (k, ε)wc protocol is automatically a (k, ε) protocol. The fidelity
requirement can be expressed as Fent(πQ,ℱQ) ≥ 1 − ε for ℱQ = 𝒟Q|B ∘ 𝒩B|A ∘ ℰA|Q or
using the “agreement probability” Pagree(ℱQ) = Fent(πQ,ℱQ)

2 by Pagree(ℱQ) ≥ (1 − ε)2.
We denote by M⋆ε (𝒩B|A) the largest k for which there exists a (k, ε) quantum coding
protocol for𝒩B|A.

https://doi.org/10.1515/9783110570250-019
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242 | 19 Quantum error correction

19.1.2 Reduction of worst case to average case

Analyzing average-case protocols is no real loss of generality. As with classical com-
munication, we can convert an average-case code into a worst-case code by throwing
away the worst half of the input. In this way, a (k, ε) protocol can be converted into a
( k2 ,√8ε)wc protocol.

Proof. For convenience, define the function f : |ψ⟩→ F(|ψ⟩⟨ψ|,ℱ[|ψ⟩⟨ψ|]) for a given
channel ℱ , e. g., ℱQ above. Starting from Π0 = 1, iteratively define the projectors Πj =
Πj−1 − |ψj⟩⟨ψj| for the minimizer |ψj⟩ of f in the support of Πj−1. Thus |ψ1⟩ is the state
with the lowest fidelity, Fpure(ℱ) = F(ℱ[|ψ1⟩⟨ψ1|], |ψ1⟩⟨ψ1|), |ψ2⟩ is the state with the
lowest fidelity in the space orthogonal to |ψ1⟩, and so forth. By construction, the set
{|ψj⟩}

k
j=1 is an orthonormal set. Therefore by convexity of the entanglement fidelity

(Exercise 10.16) it follows that

Fent(π,ℱ) ≤
1
k

k
∑
j=1

Fent(|ψj⟩⟨ψj|,ℱ) =
1
k

k
∑
j=1

f (|ψj⟩) . (19.2)

Since the sequence of f (|ψj⟩) is nondecreasing by construction, we can further bound
the entanglement fidelity by splitting the sum at the middle (supposing k is divisible
by 2):

Fent(π,ℱ) ≤
1
k

k/2
∑
j=1

f (|ψk/2⟩) +
1
k

k
∑

j=k/2+1
1 = 1

2 (f (|ψk/2⟩) + 1) . (19.3)

Prefixing ℱ with a channel ℰ ′ mapping a k
2 -dimensional space onto support of Πk/2,

the above inequality is just Fpure(ℱ ∘ ℰ ′) ≥ 2Fent(π,ℱ)− 1. In combination with (10.36),
we therefore obtain a lower bound on the channel fidelity of ℱ ∘ ℰ ′ in terms of the
entanglement fidelity of ℱ for a maximally entangled input, namely F(ℱ ∘ ℰ ′, ℐ)2 ≥
2(2Fent(π,ℱ) − 1)2 − 1. Using (10.20) and making some simplifications, it then follows
that a (k, ε) protocol can be converted into a ( k2 ,√8ε)wc protocol as claimed.

19.1.3 Isometric encoding suffices

One advantage of focusing on the average case is that for any encoding map ℰA|Q of a
(k, ε) protocol, it is possible to construct an isometric encoder that performs at least
as well as ℰA|Q, that is, an encoder taking the form ℰA|Q : ρQ → VA|QρQV∗A|Q for some
isometry VA|Q.

To see this, supposeWAC|Q is a Stinespringdilation (isometric extension) of the en-
codingmap, which involves the additional output system C. Defining√P(j)|ϕ(j)⟩AQ′ =
⟨j|CWAC|Q|Φ⟩QQ′ for some orthonormal basis {|j⟩C} of C, with P(j) ≥ 0 chosen so
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that |ϕ(j)⟩ is normalized, observe that ∑j P(j) = ⟨Φ|W
∗W |Φ⟩ = 1. Furthermore,

the marginal state ϕQ′ (j) must be maximally mixed, since W does not act on Q′.
Hence by the properties of purifications there exists an isometry VA|Q(j) such that
|ϕ(j)⟩AQ′ = VA|Q(j)|Φ⟩QQ′ . Thus the encoding map applied to ΦQQ′ can be expressed as
a convex combination of isometric channels𝒱A|B(j): ℰA|Q[ΦQQ′ ] = ∑j P(j)𝒱A|Q(j)[ΦQQ′ ].
Now the square of the entanglement fidelity Fent(πQ,ℱQ) is manifestly linear in the
channel: From (10.35) we have Fent(πQ,ℱQ)

2 = Tr[ΦQQ′ ℱQ[ΦQQ′ ]]. Therefore at least
one of the 𝒱A|Q(j) must lead to a squared entanglement fidelity at least as large as
(1 − ε)2.

Exercise 19.1. Modify this argument to show that classical communication from
sender to receiver cannot yield better protocols for quantum communication; that is,
take the encoder to be a quantum instrument and the decoder to depend on the
classical output of the encoder.

19.1.4 Reduction of noisy channel coding to entanglement distillation

Our constructionof protocols for quantumcommunicationproceeds via entanglement
distillation. Specifically, suppose we have a (k, ε) entanglement distillation protocol
for a stateωAB that is the result of transmitting part of ρAA′ through a quantumchannel
𝒩B|A:ωAB = 𝒩B|A′ [ρAA′ ]. Then from the compressor ℰQY |A and decompressor𝒟Q′|YB we
can construct an encoder/decoder pair of a (k, 2ε) channel coding protocol for𝒩B|A.

The proof is similar to the case of isometric encoding above using the simple form
of the squared entanglement fidelity. In particular, the squared fidelity is an average
over the classical information transmitted from A to B. The compressor produces a CQ
state σYAQ′ = ℰYA|Q[ρAA′ ], which of course has the form σYAQ′ = ∑y∈𝒴 PY (y)|y⟩⟨y|Y ⊗
σAQ′ (y) for PY (y)σAQ′ (y) = ℰY=y,A|Q[ρAA′ ]. By normalization, PY ∈ Prob(𝒳 ). Since the
distillation protocol is ε-good, the squared entanglement fidelity is an average over y:

∑
y∈𝒴

PY (y) Tr[ΦQQ′ 𝒟Q′|Y=yB ∘𝒩B|A[σAQ′ (y)]] ≥ 1 − ε . (19.4)

Thus there is y⋆ for which σAQ′ (y⋆) is also ε-good in this sense. LetψRAQ′ be a purifica-
tion of σAQ′ (y⋆). By monotonicity of the fidelity the marginalQ′ satisfies F(ψQ′ ,πQ′ )2 ≥
1 − ε. Hence there exists an isometry VRA|Q such that |ψ⟩RAQ′ is ε-close to VRA|Q|Φ⟩QQ′
in squared fidelity, and therefore TrR[VRA|QΦQQ′V∗RA|Q] is ε-close to ψAQ′ = σAQ′ (y⋆).

Define the encoding map of the quantum communication protocol to be ̂ℰA|Q =
TrR ∘𝒱RA|Q for the channel 𝒱 with single Kraus operator V , and the decoding map to
be �̂�Q|B = 𝒟Q|BY=y⋆ . For convenience, let ℱQ = �̂�Q|B ∘𝒩B|A ∘ ̂ℰA|Q and φQQ′ = 𝒟Q|BY=y⋆ ∘
𝒩B|A[σAQ′(y⋆)]. Then we have F(ℱQ[ΦQQ′ ],φQQ′ )2 ≥ 1 − ε and F(φQQ′ ,ΦQQ′ ])2 ≥ 1 − ε.
Hence, by the triangle inequality of fidelity in (10.23), F(ΦQQ′ ,ℱQ[ΦQQ′ ]) ≥ 1 − 2ε.
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19.2 CSS codes

Restricting attention to isometric encoding motivates the notion of a quantum error-
correcting code, which is simply a subspace of the channel input. A codeword of the
code is simply an element of this subspace. A good code for a given channel is one for
which any input in the code subspace can be approximately reconstructed from the
output of the channel. In this chapter, we will be especially interested in CSS codes,
named for their inventors Calderbank,1 Shor, and Steane.2

Let us describe a generic CSS code by the form of its encoding isometry in the
case of an n-qubit code. To better align with our initial focus on entanglement dis-
tillation here, we first describe the inverse of the encoding operation. Consider an
invertible function f : ℤn2 → ℤ

n
2 and the associated unitary implementation UA =

∑z∈ℤn2 |f (z)⟩⟨z|A on the n-qubit spaceℋA. In Section 17.3.1, we defined a similar U, and
the only difference now is that U is defined by the action of an invertible function in
the amplitude basis. To appreciate the action ofU in the conjugate basis, it is useful to
work with the matrix representation of f by F, acting to the right on column vectors.
Then from (17.5) we already have U |x̃⟩ = |G̃x⟩ for G = (FT )−1.

Subdivideℤn2 intoℤ
m
2 ⊕ℤ

k
2 ⊕ℤ
ℓ
2 for somem, k, ℓ ∈ ℕ such thatm + k + ℓ = n (e. g.,

taking the firstm elements, the next k, and the final ℓ), and write f (z) = ̌z ⊕ ̄z ⊕ ̂z. This
defines the functions ̌f : ℤn2 → ℤ

m
2 , ̄f : ℤ

n
2 → ℤ

k
2 , and ̂f : ℤ

n
2 → ℤ

ℓ
2 by ̌z = ̌f (z), ̄z = ̄f (z),

and ̂z = ̂f (z). Decomposing F into a block matrix of three appropriately sized rows F̌,
F̄, and F̂, we also have ̌z = F̌z, ̄z = F̄z, and ̂z = F̂z. Similarly,G can be decomposed into
a block matrix of three rows Ǧ, Ḡ, and Ĝ, which defines the functions ǧ, ḡ, and ĝ from
F viaG = (FT )−1. The states |f (z)⟩ form a basis of the state spaceℋA for z ranging over a
basis ofℤn2 , and this decomposition induces a decomposition ofℋA intoℋǍ⊗ℋĀ⊗ℋÂ.
The unitary U may be regarded as a map from the former to the latter. Note that the
earlier constructionof Section 17.3.1was simply the case that ℓ = 0, i. e., of no system Â.

The CSS encoding isometryVA|Ā associatedwith f and the decomposition of n into
k, ℓ, andm is then defined by the action

VA|Ā|ψ⟩Ā = U
∗
ǍĀÂ|A(|+⟩

⊗m
Ǎ ⊗ |ψ⟩Ā ⊗ |0⟩

⊗ℓ
Â ). (19.5)

Put differently, the CSS code is the subspace of vectors inℋA such that application ofU
and measurement of the system Â (the last ℓ qubits) in the standard basis results in
|0⟩⊗ℓ with certainty, whereas measurement of Ǎ (the firstm qubits) results in all |+⟩⊗m

with certainty.
In general, the outputs of such ameasurement procedure are ̂f (z) and ǧ(x), which

are known as the syndromes of the CSS code.Wewill be interested in the syndromes as

1 Robert Calderbank, born 1954.
2 Andrew Martin Steane, born 1965.
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hash functions for the purposes of entanglement distillation, as foreshadowed in the
special case of Section 17.3.1. Related to the syndromes are the stabilizers of the code,
which we mention in passing. From (19.5), the codewords are evidently eigenstates of
the projectors U∗|+⟩⟨+|Ǎi

U and U∗|0⟩⟨0|Âj
U, where Ǎi is the ith qubit of Ǎ and simi-

larly for Âj, with i ∈ {1, . . . ,m} and j ∈ {1, . . . , ℓ}. Equivalently, the codewords are +1
eigenstates of the stabilizers U∗(σx)Ǎi

U and U∗(σz)Âj
U . The syndromes are the result

of measuring the stabilizer operators (associating the outcome 0 with eigenvalue +1
and 1 with −1). In fact, the former stabilizers are simply XǦi1 ⊗ XǦi2 ⊗ ⋅ ⋅ ⋅ ⊗ XǦin , where
Ǧij is the (i, j) component of Ǧ. Similarly, the latter stabilizers are tensor products of Z
operators, one for each row of F̂. This holds because measurement of U∗(σx)Ǎi

U can
be accomplished by applying U and then measuring the ith qubit in the phase basis,
which just gives the ith bit of ǧ(x). But this bit is just the parity of a particular collec-
tion of the bits of x, indexed by the position of 1s in the ith row of Ǧ. This parity value
is precisely the value of the given tensor product of X operators. The same argument
holds for the Z-type stabilizers.

Exercise 19.2. Confirm that Z1Z2 and Z2Z3 are stabilizers of the three-bit quantum rep-
etition code (a CSS code), the subspace spanned by |000⟩ and |111⟩.

The syndromes ̂f (z) and ǧ(x) are each associated with classical linear error-
correcting codes, which we denote CZ and CX , respectively. Specifically, the corre-
spondingℤ2-valued matrices F̂ and Ǧ are the parity-check matrices, which annihilate
the respective codewords; that is, CZ = {z ∈ ℤn2 : F̂z = 0}, and similarly for CX . Observe
that FGT = FF−1 = 1, which implies F̂( Ḡ

Ǧ
)T = 0 and Ǧ( F̂F̄ )

T = 0. Therefore a basis for
the codewords of CZ is given by the rows of Ḡ and Ǧ, while a basis for CX is given by
the rows of F̂ and F̄. Arranged as rows of a matrix, a basis for a linear code is referred
to as a generator matrix.

Now we are in a position to connect our discussion of CSS codes with the more
standard presentation. Usually, a CSS code is defined from a pair of classical error-
correcting codes C1 and C2, where C2 ⊆ C1. Then the code is defined by its stabilizers,
which are of X or Z type, as we have here. In particular, the Z-type stabilizers are given
by the parity check matrix of C1, while the X-type stabilizer Ǧ, corresponding to the
X-type stabilizers, is given by the generator matrix of C2. This is nothing other than
the above construction with the parity check matrix F̂ of C1 and the generator matrix
Ǧ of C2.

Exercise 19.3. Confirm the above construction for the Steane code, given by the code
C1 with parity check matrix

H = (
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

) (19.6)

and the subcode C2 of C1 codewords with even Hamming weight.
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19.3 Quantum coding theorems

Given the difficulties of relating k and ε for classical communication over quantum
channels, we may suspect that similar problems arise for quantum communication.
This is indeed the case. Again, we will settle for analyzing the asymptotic limit, even
though here again we will not be able to derive a single-letter result except in certain
cases.

19.3.1 Statement

Each (k, ε) code for𝒩 ⊗nB|A gives an achievable rate R =
log k
n . SupposeM⋆(𝒩 , ε, n) is the

largest k such that a (k, ε) code exists for𝒩 ⊗nB|A. Just as in the classical case, define

CQ(𝒩B|A, ε) := lim
n→∞

1
n
logM⋆(𝒩 , ε, n) and CQ(𝒩B|A) := limε→0C(𝒩B|A, ε) . (19.7)

The latter is the quantumcapacity, the highest possible rate of arbitrarily reliable com-
munication.

To formulate the quantum noisy channel coding theorem, we first define the co-
herent information

Q(𝒩B|A) := max
ρAA′ −H(A|B)𝒩B|A′ [ρAA′ ] . (19.8)

Here the maximization is over all states ρAA′ , but concavity of the conditional en-
tropy (12.58) implies that the optimal ρAA′ will be a pure state. The quantum noisy
channel coding theorem then states that the capacity of any 𝒩B|A is given by the fol-
lowing expression:

CQ(𝒩B|A) = lim
n→∞

1
n
Q(𝒩 ⊗nB|A) . (19.9)

Below we will show that for arbitrary channels, the quantum capacity is achievable
by CSS codes.

As with the classical capacity, the expression for the quantum capacity is the reg-
ularization of a single-letter quantity. It is also known that regularization is necessary,
and we will shortly investigate this point. On the other hand, it follows immediately
from concavity of the conditional entropy that the capacity of entanglement-breaking
channels is zero, as expected.

Exercise 19.4. Compute the coherent information of a Pauli channel and for the era-
sure channel.

Owing to the relation between the two protocols, the optimal rate for one-way en-
tanglement distillation takes a form similar to the quantumcapacity. TakeE⋆(ρAB, ε, n)
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to be the largest k such that a (k, ε) one-way entanglement distillation protocol exists
for the state ρ⊗nAB. The optimal distillation rate of arbitrarily good entanglement from
ρAB is then defined as D→(ρAB) = limε→0 limn→∞

logE⋆(ρAB ,ε,n)
n . The distillation coding

theorem states that the optimal rate, the one-way distillable entanglement, is given by
the regularized expression

D→(ρAB) = lim
n→∞

1
n
D(1)→ (ρ

⊗n
AB) for (19.10)

D(1)→ (ρAB) = max
𝒬XA′ |A −H(A′|BX)𝒬XA′ |A[ρAB] , (19.11)

where the optimization is over all quantum instruments𝒬XA′|A that output a classical
system X and a quantum system A′. Essentially, it is the same regularized negative
conditional entropy rate as in the coding theorem, but first an arbitrary quantum in-
strument can be applied to the state with the classical output communicated to Bob.
Although forward communication does not increase the quantum capacity, it can in-
crease the entanglement distillation rate, and we will encounter an example of this in
Section 19.5.2.

19.3.2 Converse

The converses to these statements, the upper bounds in (19.9) and (19.10), both
rely on the continuity of the conditional entropy. Consider a (k, ε) code for which
the state ωQQ′ produced by the protocol satisfies F(ΦQQ′ ,ωQQ′ ) ≥ 1 − ε. Clearly,
log k = −H(Q|Q′)ΦQQ′ . Letting ε′ = √2ε, from (10.20) it follows that δ(ΦQQ′ ,ωQQ′ ) ≤ ε′.
Now define f (ε′, k) = 2ε′ log |k| + (1 + ε′) h2(

ε′
1+ε′ ) and then use (12.59), the continuity

of conditional entropy, data processing, and isometric encoding to obtain

log k − f (ε′, k) ≤ −H(Q|Q′)ωQQ′ ≤ −H(Q|B)𝒩 ∘ℰ[ΦQQ′ ]
= −H(A|B)𝒩 ∘ℰ[ΦQQ′ ] ≤ Q(𝒩B|A) .

(19.12)

Now suppose we have a sequence {(kn, εn)}n of codes such that
1
n log kn → R and εn →

0. Applying the above bound,we have 1
n log kn ≤

1
nQ(𝒩

⊗n
B|A)+

1
n f (ε
′
n, kn). Taking the limit

as n→∞, we only need to show that the second term vanishes:

lim
n→∞

1
n
(2ε′n log kn + (1 + ε

′
n) h2(

ε′n
1 + ε′n
)) = 0 . (19.13)

The second term in this expression vanishes because the binary entropy is bounded
above by 1. Since kn ≤ |A|n, the first term is bounded by 2ε′n|A| = 2√2εn|A|, which tends
to zero as n→∞.
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Exercise 19.5. Give a proof of the converse for classical communication over quantum
channels using continuity of conditional entropy.

The argument for entanglement distillation is similar. Again, the protocol outputs
a state ωQQ′ = 𝒟Q′|XB ∘ ℰXQ|A[ρ⊗nAB], which is close to ΦQQ′ . By continuity, log |Q| =
−H(Q|Q′)Φ ≤ −H(Q|Q′)ω + f (ε, k), and again the second term will vanish in the limit.
Meanwhile, by monotonicity under 𝒟Q′|XB, −H(Q|Q′)ω ≤ −H(Q|XB)ℰXQ|A[ρ⊗nAB]. Maximiz-
ing over the instrument ℰXQ|A gives the result.

19.4 Achievability

By the reduction of quantum communication to entanglement distillation we need
only construct a protocol for the latter. We do so by a further reduction of the entan-
glement distillation task to a combination of two information reconciliation protocols,
one for amplitude information and one for phase information. The two compression
functions of the reconciliation protocols are based on a CSS code family, and Alice’s
part of the protocol is to generate the two compressor outputs by appropriate uni-
tary action and measurement. Given these measurement results, Bob could then ac-
curately predict both amplitude and phase of Alice’s remaining systems by suitable
measurements on his system. Therefore, by the bipartite uncertainty relation (13.10),
from these measurements he can construct a decoder to recover maximal entangle-
ment from his system.

19.4.1 Entanglement distillation protocol

Let us now describe the protocol in more detail. First, fix a state ρAB shared by Alice
and Bob. By isometrically embedding A into a larger space we can take |A| = 2n,
i. e., n qubits. In principle, any dn with prime d would also work. Let |ψ⟩ABR be a pu-
rification of ρAB, and arbitrarily pick an amplitude basis {|z⟩A}z∈ℤn2 . The purification
can be written as |ψ⟩ABR = ∑z∈ℤn2 |z⟩A|φ(z)⟩BR, where the normalization of the state
|φ(z)⟩BR = A⟨z|ψ⟩ABR encodes its prior probability PZ(z). By Z we denote the random
variable corresponding to the outcome of measurement of A in the amplitude basis.
Abusing notation somewhat, denote by ψZAB the CQ state ∑z∈ℤn2 |z⟩⟨z|A ⊗ φB(z). Fur-
ther, define the state |ψ′⟩AA′BR = ∑z∈ℤn2 |z⟩A|z⟩A′ |φ(z)⟩BR, a purification of ψZAB. By X
we denote the random variable corresponding to the outcome of measurement of A in
the phase basis defined by |x̃⟩ = 1

√2n
∑z∈ℤn2 (−1)

x⋅z |z⟩ for x ∈ ℤn2 . The CQ state result-
ing from measurement of A in the conjugate basis is denoted by ψ′XAA′B. Now we can
state the precise reduction from entanglement distillation to information reconcilia-
tion.
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Proposition 19.1. Suppose ( ̂f , ΛB) is a (2mz , εz) information reconciliation protocol for amplitude
ZA relative to B in ψZAB and (ǧ, ΓA′B) is a (2mx , εx ) information reconciliation protocol for phase XA
relative to A′B in ψ′XAA′B such that ̂f : ℤn2 → ℤmz

2 and ǧ : ℤn2 → ℤ
mx
2 are linear functions satisfying

(ker ̂f )⊥ ⊆ ker ǧ. Then, provided that n − mx − mz > 0, there exists a (2n−mx−mz ,√εx + √εz) CSS-
based entanglement distillation scheme for ρAB whose encoder is constructed from ̂f and ǧ and
whose decoder is constructed from ΛB and ΓA′B.

Proof. The outputs of the functions ̂f and ǧ can be generated by applying a unitary U
and measuring the appropriate output qubits in the amplitude or phase bases, as de-
scribed in Section 19.2. Performing these operations and transmitting the measure-
ment results to Bob via a noiseless classical channel is Alice’s portion of the entangle-
ment distillation protocol. She will be left with 2n−mz−mx qubits.

The decoder is constructed as in Section 13.3. In particular, consider the Ā sub-
system generated by UĀÂǍ. Nominally, the decoding measurement results of the in-
formation reconciliation protocols are indexed by x, z ∈ ℤn2 . Since X̄ and Z̄ are both
(linear) functions of X and Z, respectively, the POVM elements can be combined to
give POVMs indexed by x̄ and ̄z. Because the compressors are ε-good, these POVMs
will be ε-good at predicting X̄ and Z̄, respectively. Observe that the system A′ ofψ′XAA′B
can also be decomposed into Ā′, Â′, and Ǎ′, so that the coherent copy of Z̄ is present
in Ā′. Therefore we may apply the entanglement recovery map of (13.27) with systems
A and A′ therein replaced by systems Ā and Ā′ here. The bound (13.26) then implies
that the squared fidelity of the output with the maximally entangled state will satisfy
arccos F ≤ arccos(1 − εz) + arccos(1 − εx). It can be verified that this implies the stated
error bound for the squared fidelity.

19.4.2 Rate calculation

Next, we show the existence of a suitable pair of hash functions ̂f and ǧ such that
the achievability construction of Proposition 16.2 applies to both, giving a relation be-
tween the output sizesmz andmx on the onehandand the errors εz and εx on the other.
As usual, the argument is that a random choicewill be good, and thus theremust exist
at least one good pair. Using the results of Section 19.2, we choose a random reversible
function f : ℤn2 → ℤ

n
2 and construct ̂f and ǧ from it.

Consider the expected probability ⟨Pr[ZA ̸= Z′A ∨ XA ̸= X′A]⟩ ̂f ,ǧ that, under the
random choice of ̂f and ǧ, one or both of the information reconciliation tasks fail. By
the union bound and linearity of expectation,

⟨Pr[ZA ̸= Z
′
A ∨ XA ̸= X

′
A]⟩ ̂f ,ǧ ≤ ⟨Pr[ZA ̸= Z

′
A] + Pr[XA ̸= X

′
A]⟩ ̂f ,ǧ

= ⟨Pr[ZA ̸= Z
′
A]⟩ ̂f ,ǧ + ⟨Pr[XA ̸= X

′
A]⟩ ̂f ,ǧ .

(19.14)
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The choice of f delivers precisely the same set of possible functions ̂f as just choos-
ing a full-rank set of ̂f directly, and the same for ǧ. Hence Proposition 16.2 applies
to each term in (19.14) separately and gives an upper bound on mz as a function of
ε1 = ⟨Pr[ZA ̸= Z′A]⟩ ̂f as well as an upper bound on mx as a function of ε2 = ⟨Pr[XA ̸=
X′A]⟩ǧ . It follows that there exists a CSS pair ̂f and ǧ such that ̂f yields a (2mz , ε1 + ε2)
reconciliation protocol for amplitude information and ǧ yields a (2mx , ε1 + ε2) reconcil-
iation protocol for phase information. The resulting CSS-based entanglement distilla-
tion protocolwill have an outputwhose squared fidelitywith themaximally entangled
state is at least 1 − 2√ε1 + ε2 by Proposition 19.1. The output will be n −mx −mz qubits
in size, where 2mz ≤ 2

ε1
β1− ε12 (ψZAB, 1A ⊗ ψB) + 1 and 2mx ≤ 2

ε2
β1− ε22 (ψ

′
XAA′B, 1A ⊗ ψ′A′B) + 1

by Proposition 16.2.
The rate expression simplifies in the asymptotic limit for an input state ρ⊗nAB. In

this case, we obtain mz = H(ZA|B)ψ and mx = H(XA|A′B)ψ′ . The former is just mz =
n − D(ψZAB,πA ⊗ ψB), and as we have seen in Section 17.3.2, the latter is simply n −
D(ψAB,ψZAB). Therefore, by the relative entropy chain rule (12.23), n −mz −mx = −n +
D(ψAB,ψZAB) + D(ψZAB,πA ⊗ ψB) = −n + D(ψAB,πA ⊗ ψB) = −H(A|B)ρ. Hence arbitrar-
ily high quality entanglement distillation is possible at the rate given by the negative
conditional entropy of the state.

Given any particular shared state ρ⊗nmAB , Alice is free to perform an arbitrary instru-
ment𝒬A′X|Am identically on blocks ofm of her systems and broadcast the value of X to
Bob. Then Alice and Bob can execute the entanglement distillation protocol on the n
resulting blocks of the resulting stateωA′BmX , achieving the rate − 1mH(A′|BmX)ω in the
asymptotic limit of large n. Therefore the regularized distillation rate given in (19.10)
is achievable.

By a similar argument it follows that the channel capacity can be achieved. Form
uses of the channel, pick ψAmA′m to be the state such that ρAmBm = 𝒩

⊗m
B|A′ [ψAmA′m ] op-

timizes the coherent information Q(𝒩 ⊗nB|A). Applying the distillation construction to
ρAmBm and the reduction from Section 19.1.4 implies the existence of a CSS code with
high output fidelity and rate 1

mQ(𝒩
⊗m
B|A ). Taking the large m limit gives the capacity

formula (19.9).

19.5 Discussion of the achievability construction

19.5.1 Complementary information

We have established that transmission of the complementary classical amplitude and
phase information is sufficient for quantum communication at capacity. We can think
of quantum information as sort of being comprised of these two classical pieces, at
least for the purposes of information transmission. This is especially clear in the case
of a Pauli channel,whichdescribes additive amplitude andphase errors. Take the sim-
ple case of independent amplitude and phase errors at identical rate p, i. e., the chan-
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nel ρ → (1 − p)2 ρ + (1 − p)p σx ρ σx + (1 − p)p σz ρ σz + p2 σy ρ σy. This is called the BB84
channel for reasons that will become apparent in the following chapter. The job of ̂f in
the distillation or coding procedure is to correct amplitude errors, caused by σx, while
the job of ǧ is to correct phase errors, caused by σz . Correcting each separately will
also correct their combination, caused by σy. Approaching the quantum communica-
tion task in terms of information instead of errors ensures that the above construction
applies to arbitrary channels where there is no sensible notion of additive amplitude
error or phase error.

It is also important to appreciate that the phase transmission task is formulated
assuming that the amplitude transmission task was successful; that is, the pertinent
state in the phase information reconciliation task is ψ′XAA′B, not ψXAB itself. The sys-
tem A′ is essentially a coherent copy of the amplitude information in A, and hence
ψ′ encodes the fact that the amplitude reconciliation was successful. The coding ar-
gument would indeed go through for phase reconciliation formulated for ψXAB by ap-
pealing to (13.10) instead of (13.26). However, the subsequent rate calculation would
not deliver the coherent information, as having H(XA|A′B) instead of H(XA|B) in the
expression is crucial in the general case.

Again, a simple illustration is given by Pauli channels, where A′ accounts for cor-
relations between amplitude and phase errors. For instance, take the channel with
only σy errors at rate p. In the construction, we are free to choose the amplitude basis,
so we could simply choose the eigenbasis of σy such that there are no phase errors; the
coherent information is 1− h2(p). However, we can equally well choose the eigenbasis
of σz as the amplitude basis, and we will arrive at the same rate expression. Though
there are now amplitude and phase errors, they are perfectly correlated, which leads
to H(XA|A′B) = 0. Failing to account for these correlations would lower the rate to
1 − 2h2(p).

19.5.2 Error degeneracy

Observe that in the construction, it is not necessary to use reconciliation protocols
that enable Bob to reconstruct both XA and ZA in their entirety, as we have done. To
apply (13.27) and (13.26), we need that Z̄ and X̄ could be determined byBob. Recall that
the recovery map in (13.27) is constructed by first applying the amplitude information
recovery operation and then thephase recovery operation. Thuswe could insteadbase
the phase reconciliation on the output of the first stage, i. e., consider reconciliation
of X̄X̌ relative to side information A′B, instead of the entire XA itself. Presumably, this
would reduce the necessarymx and increase the rate beyond the single-letter coherent
information. However, at present we have no any way of determining the asymptotic
limits for such a protocol.
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The difference between focusing on XA and ZA versus X̄ and Z̄ is related to the
issue of error degeneracy. Return to the case of a Pauli channel. The use of information
reconciliation for XA and ZA in the construction above means that the precise error
pattern of both bit and phase flips will be exactly determined (with high probability).
Otherwise, oneof the information reconciliationprotocols fails.However, determining
the error pattern precisely is clearly not necessary, since the construction only relies
on predictability of X̄ and Z̄. The bit flip patterns fall into equivalence classes of errors
that lead to the same value of Z̄, the same for phase, and it is only necessary to identify
the particular class.

A concrete example for the BB84 channel is given by concatenating a repetition
code with the random construction above; that is, consider the above construction
applied to the channel 𝒩 ′B1B2B3|A1

= (⨂3
j=1𝒩Bj|Aj

) ∘ ℰA1A2A3|A1
, where ℰA1A2A3|A1

is the
encoding operator for the repetition code. The encoder is given by the isometry
WA1A2A3

|0⟩A2
|0⟩A3

, where W = cnotB1B2cnotB1B3 , and always outputs states in the
span of |000⟩ and |111⟩. Observe that the action of Z1 in⨂

3
j=1𝒩Bj|Aj

is the same as Z2
or Z3 on the repetition code subspace. These three phase errors are degenerate.

If we now follow the general code construction for 𝒩 ′, then the effects of error
degeneracy increase the rate beyond the coherent information. For the BB84 channel
with error rate p, the coherent information is 1 − 2h2(p), which has a threshold value
of p ≈ 0.110028, but the coherent information of𝒩 ′ at this value of p is positive, and it
remainspositiveuntil at leastp ≈ 0.111652. This is a tiny improvement in the threshold,
to be sure. Nonetheless, it is sufficient to demonstrate that the coherent information is
not additive, since the stateWπW∗ is a possible input state in theQ(𝒩 ⊗3)optimization.

To perform the rate calculation, choose a maximally mixed input for the coherent
information, i. e., a maximally entangled input state for the calculation of the neg-
ative conditional entropy. Let ωAB = 𝒩 ′B|A′ [ΦAA′ ] be the output state, where B is an
abbreviation for B1B2B3, while A and A′ are single-qubit systems (A1 and A′1). It is
simpler to compute −H(A|B) for the state ω′AB = WBωABW∗B , and since W is unitary,
H(A|B)ω = H(A|B)ω′ . The action of the channel also has a simple form; using the no-
tation ZvB = Z

v1
B1
⊗ Zv2B2 ⊗ Z

v3
B3
as in Section 13.3.3 and c(j) = (j, j, j) ∈ ℤ32, we have

ωAB =
1
2
∑

j,k∈ℤ2

|j⟩⟨k|A ⊗ ∑
u,v∈ℤ32

PU ,V (u, v)X
u
BZ

v
B
c(j)⟩⟨c(k)

BZ
v
BX

u
B , (19.15)

where PU ,V is the joint distribution of amplitude and phase error patterns, described
by the random variables U ,V ∈ ℤ32, respectively. Due to the form of the channel,
PU ,V (u, v) = Π3

j=1P(uj)P(vj), where P is the binary distribution with P(1) = p. The
errors ZvB act degenerately, meaning that ZvB|r(j)⟩B = Zv1+v2+v3B1

|r(j)⟩B. Let us abbrevi-
ate v1+v2+v3 by s(v). Then, becauseX and Z anticommute and ZB1 commuteswithWB,
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for Π(k) = |k⟩⟨k|, we have

ω′AB =
1
2
∑

j,k∈ℤ2

|j⟩⟨k|A ⊗ ∑
u,v∈ℤ32

PU ,V (u, v) Z
s(v)
B1

WB
c(j) + u⟩⟨c(k) + u

BW
∗
BZ

s(v)
B1

= ∑
u,v∈ℤ32

PU ,V (u, v) Z
s(v)
B1

Xu1
B1
ΦAB1X

u1
B1
Zs(v)B1
⊗ Π(u1+u2)B2 ⊗ Π(u1+u3)B3 .

(19.16)

Hence the systems B2 and B3, which now store the two syndromes of the repetition
code, are classical. It is easy to see that −H(A|B)ρ = 1−H(X)P for ρ a Bell-diagonal state
with eigenvalues given by the distribution PX . Here we have the conditional version
of the same, so the achievable rate is 1 − H(U1, s(V)|U1 + U2,U1 + U3)P. Since U and V
are independent in PU ,V , the rate expression simplifies to 1 −H(U1|U1 +U2,U1 +U3)P −
H(V1 + V2 + V3)P.

The entropies arenownot difficult to determine. The former is an average of binary
entropies over three cases, corresponding to the syndrome having no values equal to
zero, exactly one, or two. The probabilities for these cases are just q0 = p3 + (1 − p)3,
q1 = 2p(1−p), and q2 = p(1−p), respectively, and the respective probabilities forU1 = 1
in each case are r0 = p3/(1−3p(1−p)), r1 = p, and r2 = 1−p. Meanwhile, the probability
that V1 + V2 + V3 = 1 is just t = 3(1 − p)2p + p3 = p((1 − p)2 + 3p2). Altogether, the rate
expression is 1 − h2(t) − ∑j=1 qjh2(rj). Setting this equal to zero, we can numerically
obtain the above estimate of the threshold value of p.

We can also appreciate the large role degeneracy plays in the overall coding
scheme from the results of the calculation. In particular, there is far too little infor-
mation about the phase errors sacrificed as syndrome information to determine the
precise phase error pattern. From the information reconciliation converse, roughly
H(V)P = h2(p) bits of information per qubit are needed to determine the phase er-
ror pattern and H(U)P = h2(p) bits per qubit for the amplitude information. In the
concatenated coding scheme under consideration, there will be only roughly 1

3h2(t)
syndrome bits for phase error correction per qubit, all told, whereas the total num-
ber of amplitude syndromes is roughly 1

3 (2 + ∑j=1 qjh2(rj)). The additional 2 in this
expression comes from the two syndrome bits of the repetition code.

These quantities are shown as a function of p in Figure 19.2, which illustrates that
the number of phase syndromes is far too small to be able to determine the exact phase
error pattern. Unfortunately, the overhead of the repetition code wipes out essentially
all of this advantage, as there are far more syndromes than needed to determine the
exact amplitude error pattern. How tomake use of the savings degeneracy offers with-
out incurring this kind of overhead is still an open question.

It would be remiss not to mention an even more striking example of nonaddi-
tivity of coherent information than that shown above, namely that of superactiva-
tion. Unlike the case of classical communication, in which zero capacity only occurs
when the channel output is the same for every possible input, there are a variety of
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Figure 19.2: Fractional size of amplitude and phase syndromes versus the entropy.

kinds of quantum channels having zero capacity. Amazingly, it turns out that com-
bining different kinds of zero-capacity channels in parallel can lead to a channel with
nonzero capacity! There exist qubit-input quantum channels 𝒩B1|A1

and 𝒩B2|A2
such

that Q(𝒩Bi|Ai
) = 0 for i = 1, 2 but Q(𝒩B1|A1

⊗ 𝒩B2|A2
) > 0. Superactivation calls into

question the usefulness of the notion of capacity in the first place, since the ability of
a quantum channel to transmit information appears to depend on how it is used with
other channels.

19.5.3 Channel degradability

There is at least one class of channels, degradable channels, for which degeneracy
plays no role and the quantum capacity is equal to the coherent information. A quan-
tum channel 𝒩B|A is degradable if there exists a degrading channel 𝒦R|B such that
the complementary channel satisfies 𝒩R|A = 𝒦R|B ∘ 𝒩B|A. Recall the that complemen-
tary channel is not unique, but the only freedom is an isometry on the output R, the
inverse of which can then be included into 𝒦. An example is the quantum erasure
channel with erasure probability q, whose Stinespring dilation maps arbitrary |ψ⟩A
to√1 − q|ψ⟩B|?⟩R +√q|?⟩B|ψ⟩R. Hence the complement is also an erasure channel but
with erasure probability 1−q. To degrade the former to the latter, just erase with prob-
ability r = (1 − 2q)/(1 − q), for which (1 − q)r + q = 1 − q.

Exercise 19.6. Show that dephasing and amplitude damping are degradable.

For degradable channels, the coherent information is additive, i. e., Q(𝒩 ⊗2) =
2Q(𝒩 ). This is easily proven. The only thing to show is that Q(𝒩 ⊗2) is upper bounded
by 2Q(𝒩 ). First, observe that the conditional entropy −H(A|B)ω of the channel output
ωABR for pure state input ρAA′ using the Stinespring dilation of the channel can be ex-
pressed as −H(A|B)ω = H(B)ω−H(R)ω. Therefore, for the optimal ρ inQ(𝒩 ⊗2), we have
Q(𝒩 ⊗2) = H(B1B2)−H(R1R2). By the chain rule this isH(B1)+H(B2)−H(R1)−H(R2)−I(B1 :
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B2) + I(R1 : R2). The latter mutual info is smaller than the former by the degradabil-
ity assumption, so the net contribution of these two terms is negative. Dropping them
gives Q(𝒩 ⊗2) ≤ H(B1) − H(R1) + H(B2) − H(R2) ≤ 2Q(𝒩 ).

For degradable channels, the optimization in the coherent information is convex,
that is, the function ρA → −H(A|B)𝒩B|A[ρAR] is concave, and symmetries of the chan-
nel simplify finding the optimal input ρA. Suppose that ρA = ∑x PX(x)σA(x) for states
σA(x) and an arbitrary distribution PX . Purifying the σA(x) to |φ(x)⟩AR and calling the
associated channel output |ω(x)⟩BR, let θXBR = ∑x PX(x)|x⟩⟨x|X ⊗ ωBR(x). Degradabil-
ity implies that I(X : B)θ ≥ I(X : R)θ. In terms of entropy and conditional entropy,
this inequality is simply H(B)θ − H(R)θ ≥ H(B|X)θ − H(R|X)θ, the concavity state-
ment.

Exercise 19.7. Compute the quantum capacity of the amplitude damping channel.

19.6 Notes and further reading

The quote is from [24]. Long thought to be impossible in principle, quantum error cor-
rection was discovered by Shor [262] and Steane [273]. The connection between quan-
tum coding and entanglement distillation was first discussed in [31]. CSS codes were
first introduced in [52, 272]. A more standard presentation somewhat similar to ours
can be found in Nielsen and Chuang [211] and the lecture notes of Preskill [230]. For
an overview, see the edited volume of Lidar and Brun [188].

The formula for the quantum capacity was established in a long series of papers.
The coherent information was introduced by Schumacher and Nielsen [253]. The up-
per bound in terms of the regularized coherent information was established by Bar-
num, Knill, Nielsen, and Schumacher [11, 12]. See also Allahverdyan and Saakian [5].
Lloyd [192] gave a heuristic argument that the coherent information should be achiev-
able. Shor [263] delivered a lecture outlining a proof, and finally Devetak completed a
proof in [77] based on the relation to private communication over quantum channels
(which we do not consider here). Several different approximation metrics were con-
sidered by various authors, which complicated the initial investigations. An overview
of several of them and their relations is given by Kretschmann andWerner’s delightful
paper [173]. Devetak and Winter [80] proved the optimal rate on entanglement distil-
lation using similar methods.

Several different quantum coding achievability proofs were published in a special
issue of Open Systems& InformationDynamics in 2008. Hayden et al. [130] andKlesse
[163, 164] followadecoupling approach,whileHorodecki, Lloyd, andWinter [149] also
take an approach based on privacy, and Hayden, Shor, and Winter [131] make more
direct use of the uncertainty relation.

For the specific case of CSS codes, Hamada [118] showed that the capacity expres-
sion can be achieved for Pauli channels. The achievability proof here follows Renes
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and Boileau [238], correcting an error in the random coding argument. The role of de-
generacy was recognized by Divincenzo, Shor, and Smolin [84, 265]. Superactivation
was discovered by Smith and Yard [269]. The additivity of the coherent information for
degradable channels was discovered by Devetak and Shor [78].
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20 Quantum key distribution
Be aware in all of this of the Heisenberg–Schrödinger Credulity Effect. That effect is that the word
“quantum” sucks people’s brains out, and otherwise sensible people suffer from impaired rea-
soning.

Jon Callas

20.1 Private communication over public channels

20.1.1 Encryption

Finally, we turn to the cryptographic possibilities of quantum information processing,
in particular, the task of quantum key distribution (QKD). QKD is a means to the ul-
timate end of private communication by our two parties Alice and Bob over a public
communication channel. “Public” refers to the fact that Alice and Bob themselves do
not control the channel and therefore cannot assume anything about how it actually
operates. This includes the possibility that someone (Eve) is eavesdropping on their
communication.

By itself this task is clearly impossible if Alice and Bob only communicate using
classical information carriers. Nothing in principle prohibits Eve simply copying all
of the transmitted information, though, depending on how it is encoded, it may be
difficult in practice. In the language of resource simulation: There is no protocol that
enables Alice and Bob to simulate an ideal private classical channel using only a pub-
lic classical channel.

The solution to this problem is to add another resource, a secret key shared by
Alice and Bob, and then use an encryption protocol. Suppose that Alice would like
to transmit message M to Bob over the public channel and that they already share a
secret key unknown to Eve.We describe the key as a pair of completely correlated ran-
dom variables K and K′ with uniform marginal distribution. The encryption protocol
is specified by an encryption function f :ℳ × 𝒦 →ℳ for Alice and decryption func-
tion g :ℳ×𝒦 →ℳ for Bob such that g(f (m, k), k) = m for all k ∈ 𝒦 andm ∈ℳ. Alice
encrypts the messageM = m, called the plaintext, with the particular value of the key
K = k by computing the ciphertext c = f (m, k). She then transmits the ciphertext over
the public channel to Bob, who computesm′ = g(c, k) to obtain the original plaintext
message.

20.1.2 Information-theoretic security

Before discussing a specific choice of f and g, we should first formalize the security
statement we would like to have in terms of resource simulation. The available real

https://doi.org/10.1515/9783110570250-020
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258 | 20 Quantum key distribution

resources are the secret key and the classical channel, which we assume to be noise-
less. Eve has no access to the key, but does have access the classical channel and may
obtain information from it. Let us also assume that Eve may not alter messages on the
classical channel, i. e., she is a purely passive observer. Meanwhile, an ideal private
communication resource would seem to simply transmit Alice’s message unchanged
to Bob while outputting nothing to Eve.

However, this ideal resource is too simplistic. What we really require is that Eve
obtain no information about the transmitted message, not no output whatsoever. For
one thing, if the eavesdropper literally receives no output in the ideal case, but does
in the real case, then distinguishing the real and ideal cases is trivial. Perhaps more
importantly, it is information that we are concerned with, not the information carriers
per se.

secret key

public channelen
cr
yp
tio

n

de
cr
yp
tio

n

M M′

E

C

K K′
C

=

simulator

E

M M′≈ε

Figure 20.1: Information-theoretic security of an encryption scheme for private communication over
public channels. The simulator outputs an approximation to the distribution Eve obtains from the
public channel.

We can formalize the requirement that Eve obtains no information about the message
by including a simulator with the ideal resource. The simulator simply gives Eve some
output independent of the privatemessage, and the particular output canbe chosen to
match as closely as possible whatever Eve obtains in the real case. Now it is sensible
to compare the real resources and protocol on the one hand with the ideal resource
and simulator on the other. This is depicted in Figure 20.1.

More precisely, denoting by ℐM′|M the ideal channel from Alice to Bob and by
𝒩M′E|M the actual action of the protocol and resources, the approximate resource sim-
ulation statement is that minPE δ(𝒩M′E|M ,PE ⊗ ℐM′|M) ≤ ε, where the minimization is
over probability distributions PE, which describe the output of the simulator. By min-
imizing we only require that a single simulator output PE exists, whichmakes the real
and ideal cases nearly identical, not that all simulator output distributions will do
so. If there exists a simulator satisfying the bound, then the protocol is essentially in-
distinguishable from one that employs the ideal resource, and hence the protocol is
information-theoretically secure.
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20.1.3 One-time pad

An example of a protocol meeting the information-theoretic security definition with
ε = 0 for |𝒦| = |ℳ| is the one-time pad. For simplicity, take ℳ = 𝒦 = ℤn2 . Alice’s
encryption function f is simply f (m, k) = m + k, i. e., the bitwise modulo-two sum of
the two inputs. Bob’s function g is precisely the same operation, since this will return
Alice’s input m for all k. Meanwhile, Eve’s output E is just the ciphertext, i. e., in the
worst case, she simply copies all the information transmitted from Alice to Bob. The
simulator distribution PE is uniformly random, since the ciphertext will be uniformly
random given a uniformly random key. With this choice, δ(𝒩M′E|M ,PE ⊗ ℐM′|M) = 0.

The one-time pad has an important drawback: The length of the key is as long
as the message. This is necessarily the case, as was first shown by Shannon. The ar-
gument is straightforward, and we give a version in the same spirit as the bounds of
Chapter 8. Ideal security has the feature that the probability of guessing the message
M is independent of whether we have the ciphertext C or not: Pguess(M|C) = Pguess(M).
On the other hand, Bob can ideally recover M given C and the key K, meaning that
Pguess(M|CK) = 1. Since Pguess(M|CK) ≤ |K|Pguess(M|C) = |K|Pguess(M) by (11.10), we
have |K| ≥ 1/Pguess(M). For a uniformly distributed message, this gives |K| ≥ |M|.
The following shows that the key length is very stable to increasing approximation
error ε. In particular, ε ≈ 1/|M| is required to reduce the key length log |K| by one
bit.

Exercise 20.1. Show that an ε-goodprotocol for private communication of a uniformly
distributed messageM requires a key of length |K| ≥ |M| 1−ε|M|ε+1 .

Via an entropic argument, we can infer that the one-time pad is essentially the
only information-theoretically secure protocol with |K| = |M|.

Exercise 20.2. Show that in terms of entropy, the two security conditions above imply
that H(K) − H(M) = I(K : C) + H(K|MC) ≥ 0.

Hence, assuming that M is uniformly distributed, having |K| = |M| requires that
the key be independent of the ciphertext but be a deterministic function of the cipher-
text and the message.

It is important to stress that the above is a formalization of information-theoretic
security, not computational security, which is possibly more familiar to readers. In
information-theoretic security, there are no constraints or assumptions on what op-
erations Eve can perform on her data. They can take as much computational time or
memory as necessary. Security holds because there is simply no useful information for
Eve to work with in the first place. Computational security, by contrast, is predicated
on Eve’s limited ability to extract the information about the plaintext contained in the
ciphertext.
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20.2 Key distribution

In the context of information-theoretic security, the one-time pad reduces the prob-
lem of private communication to obtaining the secret key in the first place. However,
unless Alice and Bob have exchanged secret keys in the past, it would appear that
the bound on the key length presents a logical Catch-22, as the only available solution
to the problem of private communication seems to require at least that much private
communication to establish the key. Amazingly, via theBB84protocol (aswell as other
quantum key distribution schemes) quantummechanics allows us to escape this con-
clusion by offering ameans for Alice and Bob to detect howmuch information Eve has
acquired.

20.2.1 Real and ideal resources

Recall from Chapter 1 that the BB84 protocol involves transmitting randomly chosen
quantum systems via an insecure channel, measuring them, and then creating a key
from the classical information specifying which state was sent and which measure-
ment was obtained. Before describing the specifics of the protocol and analyzing its
security, we first need to reconsider the real and ideal resources, as there are two ad-
ditional subtleties beyond the above discussion of private communication. There we
made the assumption that Eve is merely a passive observer, which is too simplistic.
Eve has two attacks at her disposal in any real-world cryptosystem that any protocol
must deal with. The first is an impersonation attack on classical communication be-
tweenAlice andBob, inwhichEve simply pretends to beBob toAlice, andAlice toBob.
Since Alice and Bob are in physically distant locations, there is no immediate way to
know with whom they are actually communicating. The second is a jamming attack
on the quantum channel, in which Eve simply does not allow quantum information
transmission from Alice to Bob.

Due to the possibility of a jamming attack, it is not possible for any real resources
to emulate an ideal resource that always outputs a secret key. Therefore we must alter
the ideal resource slightly. The BB84 protocol is designed to abort when Alice and
Bob notice that the quantum channel is not working or is too noisy. Besides the key
outputs, the ideal resource must therefore have an additional dedicated output for
Alice and Bob that indicates whether the key was successfully created. Because Eve
can choose to jam the physical quantum channel, the ideal resource has an input for
Eve.

In particular, we model the ideal resource as follows. Eve has a binary input D,
while Alice and Bob have length-ℓ key outputs K and K′, respectively. Alice and Bob
also have access to an additional binary “flag” output F, which indicates whether the
key output is good. (Nominally, Alice has access to F and Bob has access to F′, but
F′ always equals F.) Input D = 1 results in successful ideal key creation in the key
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outputs, and this is indicated by F = 1 in the auxiliary flag output. The input D = 0
corresponds to the situation in which the protocol aborts, which is indicated by F = 0.
The key values are unimportant when F = 0, but for concreteness, let them be K =
K′ = 0. Note that the output key length is fixed, and not variable, so that technically
there is a different ideal resource for every ℓ. This will simplify the security analysis
later.

The real resources enable Eve to jam the quantum channel, but of course the ac-
tual description is not as simple as just a binary input as in the ideal resource. Themis-
match betweenwhat kinds of actions Eve can perform in the real case versus the ideal
case is handled by the simulator. In the actual scenario, Eve can choose the quantum
channel through which Alice communicates with Bob. Perhaps more correctly, there
are two channels, one from Alice to Eve and another from Eve to Bob. Eve is free to do
whatever she likes with the output of the first and the input of the second. However,
this ultimately results in some quantum channel from Alice to Bob, with Eve keeping
the purification.

The possibility of an impersonation attack requires additional real-world re-
sources for Alice and Bob. In particular, they require a means of authenticating their
communication. This prevents Eve from tampering with their messages but does not
prevent her from reading them. Hence we must assume that Eve obtains a copy of all
classical information exchanged in the protocol.

Authentication can be simulated by a standard classical channel and a secret key
by appending a short hash of themessage to themessage as a tag. The particular hash
function is chosen by the key, which enables the receiver to authenticate the mes-
sage by comparing the received tag to the hash of the received message. Crucially, the
shared key can be much shorter than the message. We will not go into further details
of authentication and instead simply assume that Alice and Bob have an authentic
classical channel at their disposal. Nonetheless, it is important to appreciate the need
for at least a short key in any quantum key distribution scheme and that the resulting
protocol is more technically key expansion rather than key distribution.

20.2.2 Approximate simulation

Now let us more precisely state the approximate simulation requirement. First, con-
sider the real state of affairs. Eve selects some quantum channel𝒩BE|A through which
Alice communicates to Bob. The protocol makes use of this quantum channel and an
authentic classical channel, ultimately leading to an output ωKK′FPE, where K and K′
are the key outputs, F is the flag output, while E is the purification of the action of the
quantum channel, and P denotes all public communication between Alice and Bob.
Note that E is the only quantum system in the output state.

On the ideal side the simulator makes use of the ideal key resource in some man-
ner, so that the ultimate output state θKK′FPE is as indistinguishable from ωKK′FPE as
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possible. Formally, an (ℓ, ε) QKD protocol is a protocol with output key length ℓ such
that for every channel 𝒩BE|A, there exists a simulator leading to output θKK′FPE for
which

δ(ωKK′FPE , θKK′FPE) ≤ ε . (20.1)

This is depicted in Figure 20.2. Note that the simulator is free to depend onEve’s choice
of the channel 𝒩BE|A. That the condition must hold for all channels is of course the
major difference to the coding tasks we considered previously, where the channel or
state resource was simply fixed.

F F′
K K′Alice Bob

quantum channel

authentic channel

P E

F F′
K K′ideal

key

P E

simulator

D≈ε

Figure 20.2: An (ℓ, ε) protocol for quantum key distribution. The protocol is secure with approxima-
tion parameter ε if for all quantum channels, there exists a simulator such that the distinguishability
is less than ε. The key length |K | = |K ′| = ℓ.
A simple choice of simulator is that it just executes the QKD protocol itself for the
specific 𝒩BE|A. It triggers key creation from the ideal key resource using D = 1 when
the simulated protocol terminates successfully and sets D = 0 when it aborts. Thus
the probability p = Pr[F = 1] that a key is created is precisely the same in the real and
ideal cases. The simulator hands Eve the outputs P and E from the simulatedωKK′FPE .
The output state in the ideal case for this simulator is therefore

θKK′FPE = pτKK′ ⊗ |1⟩⟨1|F ⊗ ωPE|F=1 + (1 − p)|00⟩⟨00|KK′ ⊗ |0⟩⟨0|F ⊗ ωPE|F=0 , (20.2)

where τKK′ =
1|K| ∑k |k, k⟩⟨k, k|KK′ is the quantum state of an ideal secret key. Note

that the real output has a similar form with precisely the same second term. Hence
the security condition reduces to pδ(ωKK′PE|F=1, τKK′ ⊗ ωPE|F=1) ≤ ε. Using the trian-
gle inequality, we can further decompose the quantity to be bounded into two parts,
correctness and secrecy:

p δ(ωKK′PE|F=1, τKK′ ⊗ ωPE|F=1)
≤ pPr[K ̸= K′|F = 1]ω + pδ(ωKPE|F=1,πK ⊗ ωPE|F=1) . (20.3)
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Exercise 20.3. Show (20.3).

Basing the simulator on the actual protocol allows for the possibility of trivially
secure protocols, those that never attempt to output a secret key in the first place!
To make a claim of robustness of a QKD protocol, we should specify an eavesdropper
attack, i. e., a specific channel that we expect from the design of the hardware imple-
menting the protocol, and show that the protocol achieves a good security parameter
and a small probability of not creating a key. The chosen attack is sometimes called
the “honest implementation”, since in this case, Eve is not particularly malicious.

20.3 The BB84 protocol

The broad idea of the full BB84 protocol is to first generate raw keys by preparing,
transmitting, and measuring qubits in the amplitude or phase basis, as described in
Chapter 1, and then use the observed rate of errors to perform information reconcili-
ation and privacy amplification to generate the final output key. Let us now precisely
specify the protocol. It is determined by a long list (n, nx , nz , s, t, ℓ) of integer parame-
ters and real-valued parameters q ∈ [0, 1] and δ ∈ (0, 1−q2 ).

The information reconciliation steputilizes a (2s, εir) syndrome-based information
reconciliation protocol designed to recover from i. i. d. additive binary noise of rate q,
i. e., from BSC(q)⊗n. This protocol consists of an invertible linear function fir : ℤ

nz
2 →

ℤnz2 , the first s bits of which are the syndrome, and a syndrome decoding function
fdec : ℤs2 → ℤ

nz
2 . The output of fdec is the estimated error pattern. A further set of in-

vertible linear functions are used to verify that information reconciliation succeeded.
These are specified by a two-argument function fchk : ℤ

nz−s
2 × ℤ

c
2 → ℤ

nz−s
2 , where the

second argument picks an invertible function of the first argument, the set of which is
such that the first t bits of the output yields a universal hash family. These output bits
are called the checksum. The privacy amplification step, meanwhile, utilizes a seeded
extractor fext : ℤ

nz−s−t
2 ×ℤr2 → ℤ

ℓ
2, where the second input is the seed, and the function

is linear in its first input.
With these definitions in hand, the precise steps of the protocol are as follows.

Steps 4–6 are depicted in Figure 20.3.
1. State preparation. Alice randomly generates two n-bit strings Y = (Y1,Y2, . . . ,Yn)

and W = (W1,W2, . . . ,Wn), and then prepares n qubits in the pure state |ψ⟩ =
⨂n

j=1 e−i π4 (2yj+tj)σy |0n⟩; that is, the value of Wj chooses the amplitude (Wj = 0) or
phase (Wj = 1) basis, and the value of Yj chooses the particular basis element of
the jth qubit. She transmits the n qubits to Bob via the quantum channel.

2. Measurement. Bob randomly generates an n-bit string W ′ and for each j ∈
{1, . . . , n}, measures the jth qubit of the output of the channel in the amplitude
basis forW ′j = 0 or the phase basis ifW ′j = 1. He stores the measurement results
in an n-bit string Y ′.
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Figure 20.3: Alice’s classical processing steps in BB84. The sifting step is a random assignment
of Ys withW = 0 to Z and Ys withW = 1 to V . The arrows from S, T , V indicate that these are
announced to Bob (and known to Eve). Gray shaded entries in theW , Y row indicate rounds in which
Wj ̸= W ′j . The dependence of fchk and fext on the random variables C and R is not depicted.

These are the only parts of the protocol that involve the quantumchannel. The remain-
ing steps only make use of the authenticated classical channel.
3. Randomization setup. Alice and Bob agree on random bit strings C ∈ ℤc2 and R ∈
ℤr2.

4. Sifting. Alice announces W . Bob finds a set of nz indices for which Wj = W ′j = 0
and a set of nx indices for whichWj = W ′j = 1. He randomly orders each into the
sequences IZ and IX , respectively, and announces both. If there are insufficiently
many matching indices, then he sets F = 0, and Alice and Bob abort the protocol.
Alice and Bob keep the substrings Z = Y |IZ and Z

′ = Y ′|IZ of Y and Y ′ with indices
in IZ , respectively. Similarly, they keep the substrings V = Y |IX and V ′ = Y ′|IX
with indices in IX , respectively. The former are the raw keys, and the latter are the
verification bits.

5. Information reconciliation. Alice computes S ⊕ M = fir(Z) and T ⊕ L = fchk(M,C)
and announces the syndrome S and the checksum T. Bob reconciles Z′ to Z by
first computing S′ ⊕ M′ = fir(Z′) and then Ŝ ⊕ M̂ = fir(Z′ + fdec(S + S′)). He tests
if reconciliation was successful by computing T′ ⊕ L′ = fchk(M̂,C) and comparing
T′ with T. He informs Alice if the checksums match or not. If not, then Alice and
Bob set F = 0 and abort the protocol.

6. Privacy amplification. Alice announcesV andBobdetermines if |V+V ′| ≤ nx(q+δ).
If the inequality is not satisfied, then he sets F = 0, and they abort the protocol.
If the inequality is satisfied, then he sets F = 1 and informs Alice. She computes
K = fext(L,R), while he computes K′ = fext(L′,R). The protocol terminates.
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Before embarking on a sketch of why the protocol is secure, first note that we can alter
the initial quantumphase of the protocol to use entanglement. Instead of step 1 above,
Alice executes the following alternative:
1′. Entanglement preparation. Alice generates n maximally entangled qubit pairs
|Φ⟩AB and transmit systems B to Bob. She then generates a random n-bit string T
and measures the jth qubit of her remaining systems in the amplitude or phase
basis according to the value of T. She records the measurement result in an n-bit
string Y .

In other words, Alice can make use of steering to achieve the same result as directly
preparing the ensemble of the four qubit states. The remainder of the protocol pro-
ceeds as before. The two protocols look identical from Eve’s point of view, and there-
fore if the latter is secure, then so is the former.

20.4 Security and robustness analysis

Nowwe turn to the analysis of security and robustness. For the latter, let us fix the hon-
est implementation to be the i. i. d. depolarizing channel with depolarization proba-
bility 2q. (The factor of 2will simplify several calculations.)We first examine the impli-
cations of the final steps of the protocol for security and robustness and then collect
the results into a relation between ℓ and ε in terms of the parameters of the proto-
col.

20.4.1 Sifting

The sifting step does not affect the security parameter, only the robustness probability.
It fails if there are too few amplitude basis matches or too few phase basis matches.
By the union bound the probability the protocol aborts is upper bounded by the sum
of the probabilities of these events individually.

The probability of an amplitude basis match for a single qubit is just 1/4. Thus the
entire sequence of matches in n attempts is described by a sequence of i. i. d. binary-
valued random variables with individual probability 1/4 of taking the value 1. Then by
the Hoeffding bound the probability of fewer than nz matches in n attempts is smaller
than exp(− (n−4nz)28n ). Therefore, for every possible eavesdropper attack, the probability
the sifting stage aborts is no larger than exp(− (n−4nz)28n ) + exp(−

(n−4nx)2
8n ). Choosing n >

4max(nx , nz) suffices to ensure exponentially small (in n) probability of failure in the
sifting stage.
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20.4.2 Information reconciliation

The information reconciliation step affects both correctness and robustness. Correct-
ness for everypossible channel𝒩BE|A is ensuredby the checksum test. Since the check-
sum is computed by universal hashing, the probability thatT = T′ even thoughM ̸= M̂
is less than 2−t . Because the final key is a deterministic function of M through the
choice of C and R, we have

Pr[K ̸= K′ ∧ T = T′] ≤ Pr[M ̸= M̂ ∧ T = T′] ≤ Pr[T = T′|M ̸= M̂] ≤ 1
2t
. (20.4)

Since F = 1 implies T = T′, Pr[K ̸= K′ ∧ F = 1] ≤ Pr[K ̸= K′ ∧ T = T′]. Therefore we
have an upper bound for the correctness condition in (20.3).

The above ignoresPr[M ̸= M̂], just bounding it by 1. In thehonest implementation,
the probability that amplitude inputs to the channel are flipped is just q. Thus using
a (2s, εz) reconciliation protocol for this noise rate will ensure that Pr[M ̸= M̂] ≤ εz,
further reducing the probability that the protocol aborts.

20.4.3 Privacy amplification

The privacy amplification step has implications for the secrecy of the key and, of
course, robustness. Let us first remark on the latter, as the former is considerably
more involved. For the honest implementation, the probability of a mismatch in the
phase basis is again q, as just discussed for the amplitude basis. Thus the probability
that there aremore than nx(q+δ)mismatches is less than exp(−2nxδ2)by theHoeffding
bound.

As for secrecy, it is first important to observe that we do not require the distin-
guishability δ(ωKPE|F=1,πK ⊗ ωPE|F=1) to be small for every attack to ensure secrecy,
which is fortunate, as it is not possible to do so. Consider an intercept-resend attack
in which Eve measures every qubit in the amplitude basis (as opposed to the attack
considered in Chapter 1, where she chose the basis at random). This will result in
completely uncorrelated strings V and V ′, and a very small chance of passing the
V + V ′ ≤ nx(q + δ) test. However, when the test does pass, Eve knows the key with
certainty. The randomness extractor cannot ensure secrecy in this case. Instead, se-
crecy rests on the fact that the test is very unlikely to pass, via the prefactor p in the
secrecy condition in (20.3).

Let us deal with this subtlety right away, as it simplifies the logical argument go-
ing forward. Divide the attacks into those for which the probability ppa of passing the
test in the privacy amplification step is larger than some threshold η ∈ (0, 1) and those
for which it is not. In the latter case, we have pδ(ωKPE|F=1,πK ⊗ ωPE|F=1) ≤ η, since
p ≤ ppa and the distinguishability is less than 1. Then, for the remaining cases, we
only need to show that δ(ωKPE|F=1,πK ⊗ ωPE|F=1) ≤ f (η/ppa) for some function f such
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that ppaf (η/ppa) → 0 as η and ppa go to zero. The result will be the secrecy bound
pδ(ωKPE|F=1,πK ⊗ ωPE|F=1) ≤ max(η, ppaf (η/ppa)). Though the prospects of incorporat-
ing ppa into the analysis of the randomness extractor may seem ominous here at the
outset, this quantity will actually appear quite naturally.

The broad idea to establish extractor secrecy is to show that the test of σx basis out-
comes gives Alice and Bob sufficient information about phase observables associated
with the amplitude values L and L′ to perform phase information reconciliation. As in
Proposition 18.2, this will imply that the output key is independent of the information
held by the eavesdropper.

Observe that in the entanglement-based version of the protocol, Alice andBob can
execute all operations on the n bits coherently, only measuring when necessary to ex-
change classical information. In the sifting step, they simply form two sets of qubits,
one destined to actually bemeasured in the amplitude basis and the other destined to
bemeasured in the phase basis. The functions computed in the information reconcili-
ation step can be implemented coherently, as in Sections 18.3 and 19.4. Alice can apply
unitary implementations of fir and fchk and only then measure some of the qubits in
the amplitude basis to generate S and T. Measurement of the remaining nz−s−t qubits
can be deferred for the moment.

The same holds for Bob’s operations, though these are slightly more complicated.
Note that the correction step can be simplified using linearity of fir. Letting S′′ ⊕M′′ =
fir(fdec(S+S′)), it follows that M̂ = M′+M′′. Therefore Bob’s information reconciliation
steps can be accomplished by first applying the unitary implementation of fir, then
measuring the first s qubits in the amplitude basis to generate S′, computingM′′ from
the final nz − s bits of fir(fdec(S + S′)), and finally applying the bit flip pattern specified
byM′′ to the remaining nz − s qubits. To complete the information reconciliation step,
he subsequently coherently applies fchk and measures the first t qubits.

Thus, immediately prior to the privacy amplification stage of the protocol, we can
imagine that Alice and Bob still hold nz − s − t qubits, ostensibly to be measured in
the amplitude basis, and nx qubits to be measured in the phase basis. Suppose now
that the first set of qubits were instead measured in the phase basis, generating the
(nz − s − t)-bit random variables X̄ and X̄′. Due to the form of the actual amplitude
information reconciliation operations in Step 5, these quantities are linear functions
of X and X′, the nz-bit strings that would result from Alice and Bob measuring their
qubits prior to Step 5. This is immediately clear for X̄ and X, on Alice’s side, given
the discussion in Section 19.2. It also holds for X̄′ and X′ since the only additional
operation on Bob’s qubits is that σx is applied to some of them, which does not affect
phase basis measurements.

Nowwemake use of the relation between randomness extraction of amplitude in-
formation and information reconciliation of phase information. Specifically, if we can
construct a (2nz−s−t−ℓ, 2εx) information reconciliation protocol consisting of a family of
surjective linear compression functions for X̄ relative to X̄′ for some εx, then by the
discussion in Section 18.2 it follows that their dual functions yield a (2ℓ, 2√εx) strong
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randomness extractor for L relative to all systems held by Eve. (The awkward-looking
factor of two in the error will be useful later.) Hence δ(ωKPE|F=1,πK ⊗ ωPE|F=1) ≤ 2√εx.

So our focus shifts to information reconciliation of X̄ relative to X̄′. These random
variables have some distribution PX̄X̄′ depending on the particulars of the channel
𝒩BE|A chosen by Eve. From Proposition 16.8 we know that 2εx is an achievable error in
information reconciliation provided 2nz−s−t−ℓ ≤ 1

εx
β1−εx (PX̄X̄′ , 1X̄ × PX̄′ ) + 1. This bound

gives a constraint between the secrecy parameter and the key length. Since X̄ and X̄′
are functions of X and X′, by (20.5) below we can further bound the right-hand side to
obtain 2nz−s−t−ℓ ≤ 1

εx
β1−εx (PXX′ , 1X × PX′ ) + 1.

Exercise 20.4. Show that for any three random variables X, Y , and Z such that Y =
f (X) for some function f , we have the following inequality for all α ∈ [0, 1]:

βα(PYZ , 1Y × PZ) ≤ βα(PXZ , 1X × PZ) . (20.5)

Hint: Construct a map from PYZ to PXZ and then use monotonicity and Exercise 9.14.

Next, define U = X + X′, the difference between the two binary strings. The deter-
ministic conditional sum map (x, x′) → (x, x + x′) transforms PXX′ to PXU , whereas
1XPX′ becomes the unnormalized distribution with probability PX′ (x + u) at (x, u).
Marginalization over X results in PU for the former and simply 1U for the latter. Since
the conditional sum and marginalization are classical channels, monotonicity of βα
implies 2nz−s−t−ℓ ≤ 1

εx
β1−εx (PU , 1U ) + 1.

By design Alice and Bob directly test the properties of U in the protocol, and this
gives a means to further bound the hypothesis testing quantity. The strings X ⊕V and
X′⊕V ′ are phasemeasurement results from all the qubits that are kept after the sifting
stage, and the division intoX andV , respectively,X′ andV ′, is done randomly. ThusV
is a random sample of the entire set of Alice’s phase measurement results, as is Bob’s
random sample V ′. This implies that the fraction of mismatches between X and X′,
i. e., the number of 1s in U, will not be very different from the fraction of mismatches
observed in V + V ′.

The test ensures that no more than nx(q + δ)mismatches are observed in V + V ′.
Recall that ppa denotes the probability that this test passes. Given that the test passed,
it turns out that the probability of more than nz(q + 2δ) 1s in U is smaller than η/ppa,
where

η := exp(−2δ2(
nzn2x
(nx + nz)2

)) . (20.6)

We will return to why this is the case below.
This bound is only useful when η < ppa, so we use the parameter η to split the

set of attacks in two, as described at the beginning of this subsection. Hence we have
also used the same letter ‘η’. Now we can focus on the case η/ppa < 1, where it is
permissible to set εx = η/ppa. This gives the extractor secrecy bound δ(ωKPE|F=1,πK ⊗
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ωPE|F=1) ≤ 2√η/ppa corresponding to f (x) = 2√x. Hence the overall secrecy bound is
max(η, 2ppa√η/ppa) ≤ 2√η.

Next, we turn to the implications of this choice of εx on the key length ℓ. The event
that the number of 1s in U is no larger than nz(q+ 2δ) has probability 1− εx and is thus
a feasible hypothesis test in β1−εx (PU , 1U ). Making use of the exercise to follow, we
therefore have

β1−εx (PU , 1U ) ≤ ⌊nz(q+2δ)⌋∑
j=0 (nzj ) ≤ 2nzh2(q+2δ) . (20.7)

Hence there exists a 2√εx-good randomness extractor for ℓ satisfying 2nz−s−t−ℓ ≤
ppa
η 2nzh2(q+2δ) ≤ 1

η2
nzh2(q+2δ). Taking the worst case for ℓ gives a restriction on the allow-

able values of ℓ in terms of the other parameters.

Exercise 20.5. Show that∑⌊np⌋j=0 (nj) ≤ 2nh2(p) for any p ∈ (0, 1).Hint: Start from the bino-
mial expansion of 1 = (p + (1 − p))n.

It remains to show the sampling bound for η in (20.6). For this purpose, let us
recycle Z and nowuse it as the randomvariable Z = U⊕(V+V ′) and definem = nx+nz .
Letμ(z)be the empiricalmeanof a string z ∈ ℤm2 , i. e.,μ(z) =

1
m ∑

m
i=1 zi, and letμ1(z)and

μ2(z) be the empirical means of the first nz entries and the last nx entries, respectively.
Thereforemμ(z) = nzμ1(z) + nxμ2(z). Then consider the probability Pr[A ∧ B] of events
A: μ1(Z) ≥ q + 2δ and B: μ2(Z) ≤ q + δ. Note that Pr[B] = ppa and the bound we are
looking for is Pr[A|B] ≤ η/ppa.

Together, these two events imply C : μ1(Z) ≥ μ2(Z) + δ, and so Pr[C] ≥ Pr[A ∧ B].
However, C is equivalent to μ1(Z) ≥ μ(Z) +

nx
m δ. Since the order of entries in Z was ul-

timately random to begin with, for any given z, the event C describes randomly sam-
pling, without replacement, mμ1(z) + nxδ marked items in nz tries from a population
ofmμ(z)marked items inm total. As luck would have it, though nominally formulated
for sampling with replacement (the i. i. d. case), the Hoeffding bound also applies to
sampling without replacement. Therefore Pr[C] satisfies

Pr[C] = ∑
z∈ℤm2 PZ(z)Pr[μ1(z) ≥ μ(z) + nxm δ]

≤ ∑
z∈ℤm2 PZ(z) exp(−2nz(nxm δ)

2
) = η .

(20.8)

Hence Pr[A ∧ B] ≤ η, and the proof is complete.
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20.4.4 Security and robustness statement

Putting everything together, we have established that BB84 is an (ℓ, ε) QKD protocol,
for which

ε ≤ 2−t + 2 exp(−δ2( nzn2x
(nx + nz)2

)) and (20.9)

ℓ ≤ nz − nzh(q + 2δ) − s − t −
2
ln 2

δ2
nzn2x
(nx + nz)2

. (20.10)

Furthermore, in the honest implementation the protocol will abort with probability no
larger than

exp(− (n − 4nz)
2

8n
) + exp(− (n − 4nx)

2

8n
) + εz2

−t + exp(−2nxδ2) . (20.11)

We can get a clearer picture by making a specific choice of parameters in terms
of nz and considering the case of large nz . In particular, set n > 4nz, nx = n2/3z , δ2 =
1/ log nz, and t = n1/2z .Weknow fromSection 16.4 that s = nz(h2(q)−ν) is sufficient to en-
sure that εz is small in nz . Then the security parameter will decay as exp(−n1/3z / log nz),
while the key rate ℓ/nz will approach 1 − 2h2(q).

Interestingly, this rate is precisely the coherent information of the Pauli channel
with independent amplitude and phase errors of identical rate q, the BB84 channel.
Although we specified the depolarizing channel as the honest implementation, the
analysis also holds for this channel. It is to be expected that the protocol performs the
same for depolarization as for the BB84 channel, since it does not make use of any
correlations between amplitude and phase errors. (Doing so would effectively require
modeling the eavesdropper attack.) The key rate in terms of the number of qubits n
will have an additional factor of at most 1/4.

20.5 Discussion of the security proof

The interplay between amplitude and phase information plays a crucial role both in
our construction of quantum error-correcting codes in Chapter 19 and here in the se-
curity proof of BB84, highlighting the close relationship between these two tasks. In-
deed, we are effectively utilizing a CSS code in the information reconciliation and pri-
vacy amplification steps above. Note that the compatibility of the hashing functions
is automatically ensured here because fext acts on the L output of fchk, and not di-
rectly on the raw key Z. We did not do this for quantum error correction, as remarked
in Section 19.5.2, because in the general case, it is not apparent how to recover the
asymptotic statement. Here we are able to employ (20.5), which does not hold when
the conditioning system Z there is quantum, because we reduced the calculation to

 EBSCOhost - printed on 2/13/2023 9:53 PM via . All use subject to https://www.ebsco.com/terms-of-use



20.6 Notes and further reading | 271

one involving only classical random variables. This approach would work to recover
the quantumcapacity of Pauli channels, but a different argument is needed for general
channels.

We can now more fully appreciate that, as remarked in the Introduction, leakage
of amplitude information in a quantum information processing protocol manifests it-
self as corruption of phase information. This is the uncertainty principle at work, as
manifest in Version 2 of the uncertainty game, and was of course the basis for our
construction of (amplitude) randomness extractors from phase information reconcili-
ation protocols. Version 1 of the game ties this phenomenon back to preserving quan-
tum information, as this task can be accomplished, as we have done it, by preserving
amplitude and phase information. It is gratifying to comprehend the vital role played
by the uncertainty principle in quantum information processing.

20.6 Notes and further reading

The quote is from [53]. The one-time pad goes back at least to Miller [206] in 1882.
Vernam and Mauborgne [291] developed an electrical implementation. See Bellovin
[21] for more on the history of the one-time pad. Shannon’s argument that the key
must be as long as the message appears in [259].

The approach of defining approximate cryptographic security by distinguishabil-
ity to the ideal resource was developed by Maurer and Renner [201] and termed ab-
stract cryptography by them. Portmann andRenner [227, 228] give a detailed treatment
of its application toQKD.We follow the latter discussion, aswell as that of Tomamichel
and Leverrier [282]. See also the recent book by Wolf [308].

Ekert [91] proposed a QKD scheme based on Bell inequalities and utilizing en-
tanglement. Bennett, Brassard, andMermin [29] showed that a similar entanglement-
based formulation of BB84 is possible, which nearly all proofs make use of in some
way or another. There are too many QKD security proofs to list here; see the review
by Portmann and Renner [228]. We are broadly following the approach by Shor and
Preskill [264], in which the secrecy of the key is ensured by the complementary cod-
ing task of correcting phase errors, but making the argument in the style of [228, 282].
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A The postulates of quantum mechanics
Here we recount one of the standard approaches to quantum mechanics, the axioms
of Dirac [83] and von Neumann [293].
1. Observables:

Any physical property of a system that can be measured is an observable, and all
observables are represented by Hermitian linear operators acting on someHilbert
spaceℋ. The possible values of the observable are the eigenvalues of the operator.

2. States:
Complete descriptions of physical systems are called states, and states of an iso-
lated physical system are represented by a normalized vector |ϕ⟩ ∈ ℋ. Vectors
differing only by phase represent the same state, e. g., |ϕ⟩ and eiθ|ϕ⟩ for θ ∈ ℝ.

3. Measurements:
The measurement of an observable X yields an eigenvalue x. The Born rule gives
the probability of observing outcome x for a system in state |ϕ⟩ ∈ ℋ:

PX(x) = Tr[Π(x)|ϕ⟩⟨ϕ|] , (A.1)

where Π(x) is the operator that projects onto the subspace of eigenvectors with
eigenvalue x. More generally,weneednot regard the projection operators as being
associated with a particular observable. It is enough to specify a measurement by
a set of projectors {Π(x)}nx=1 such that Π(x)Π(x

′) = 0 for x ̸= x′ and ∑nx=1 Π(x) = 1.
According to the projection postulate, the state |ϕ′x⟩ of the system after the mea-
surement, given the outcome x, is

ϕ
′
x⟩ =

1
√PX(x)

Π(x)|ϕ⟩ . (A.2)

4. Dynamics:
Dynamical evolution of an isolated physical system over any fixed time interval
[t0, t1] is represented by some unitary operator U determined from the Hamilto-
nianof the systemby theSchrödinger equation. In the Schrödinger picture,Umaps
the states |ϕ⟩ ∈ ℋ at time t0 to the states |ϕ′⟩ = U |ϕ⟩ at time t1. In the Heisenberg
picture, U maps observables O at time t0 to observables O′ = U∗OU at time t1.

5. Composition:
For two physical systemswith state spacesℋA andℋB, the state space of the prod-
uct system is isomorphic toℋA ⊗ℋB.

Themeasurement problem arises if we ask for a description ofmeasurement as a phys-
ical process subject to the dynamical laws. How can Schrödinger dynamics give rise
to a measurement process having a particular outcome? Or how could it even lead an
initial state |ψ⟩ to the collection of possible outcomes?

https://doi.org/10.1515/9783110570250-021
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B Vectors and operators

B.1 Linear operators

Consider the vector space ℋ = ℂd for some finite dimension dim(ℋ) = d < ∞. We
denote the usual inner product of two vectors x, y ∈ ℋ by ⟨x, y⟩ := ∑dj=1 x

∗
j yj. Here xj

and yj are the components of x and y, and λ∗ denotes the complex conjugate of any
λ ∈ ℂ. Observe that ⟨x, y⟩∗ = ⟨y, x⟩. The inner product gives rise to the usual norm
‖ ⋅ ‖ : ℋ→ ℝ+ defined by ‖v‖ := √⟨v, v⟩.

In quantummechanics, we need to also consider inner product spaces of infinite
dimension, in particular, Hilbert spaces, e. g., to describe the free particle. There one
must address issues of convergence,which are trivial in the finite case. Nonetheless, in
quantum information theory, it is common to refer toℋ as Hilbert space. This is some-
what unwarranted from the mathematical point of view, and we will mostly refrain
from doing so here.

Wedenote the set of linearmaps, or operators, fromℋ to a possibly different space
ℋ′ by Lin(ℋ,ℋ′), and whenℋ′ = ℋ, we just write Lin(ℋ). Of course, these are vector
spaces, too. The identity operator, which maps any vector v ∈ ℋ to itself, is denoted
by 1. By S∗ we denote the adjoint of an operator S ∈ Lin(ℋ,ℋ′), which is the unique
operator in Lin(ℋ′,ℋ) such that

⟨v′, Sv⟩ = ⟨S∗v′, v⟩ (B.1)

for all v ∈ ℋ and v′ ∈ ℋ′. We have (S∗)∗ = S for any S ∈ Lin(ℋ,ℋ′).
The operators S ∈ Lin(ℋ) for which S = S∗ are Hermitian (or self-adjoint), and the

set of these, denoted Herm(ℋ), forms a real vector space. Normal operators are those
for which SS∗ = S∗S. They include unitary operators U, for which U∗U = UU∗ = 1.
A unitary operator U is an isometry since it preserves the inner product between vec-
tors: ⟨Ux,Uy⟩ = ⟨x,U∗Uy⟩ = ⟨x, y⟩. More generally,V ∈ Lin(ℋ,ℋ′) is an isometrywhen
V∗V = 1ℋ. It is called a partial isometry when it acts as an isometry on the orthogo-
nal complement of its kernel, its support. Observe that V can only be an isometry if
dim(ℋ′) ≥ dim(ℋ) to preserve the inner product between basis vectors. By including
a kernel, partial isometries avoid this constraint. The operators S ∈ Lin(ℋ) for which
S2 = S are projection operators, in particular, orthogonal projection operators when
S ∈ Herm(ℋ). We will not consider nonorthogonal projection operators and just refer
to orthogonal projections as “projection operators”.

B.2 Dirac notation

Dirac notation for vectors and operators simplifies many calculations and is widely
used in quantum information theory. It is a more elaborate version of the representa-
tion of vectors by column vectors and action of linear maps by matrix multiplication

https://doi.org/10.1515/9783110570250-022
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276 | B Vectors and operators

familiar from linear algebra. Formally, we associate any vector v ∈ ℋ with the linear
map |v⟩ ∈ Lin(ℂ,ℋ) defined by

|v⟩ : z → zv (B.2)

for z ∈ ℂ. This mapping is referred to as “ket”, and we can think of ket as promoting
a vector v to a linear map in this sense.

Dual to ℋ is the vector space ℋ∗ of all linear functions from ℋ to ℂ, i. e., ℋ∗ =
Lin(ℋ,ℂ). Then the action of a dual vector ω ∈ ℋ∗ on |v⟩ is just the composition of
the two maps. We essentially never deal with dual vectors directly, only as adjoints of
elements ofℋ using the inner product onℋ. The adjoint of |v⟩, denoted ⟨v| and called
a “bra”, is the linear functional defined by

⟨v| : u → ⟨v, u⟩ (B.3)

for u ∈ ℋ. Note that although ⟨v| is an element of ℋ∗, its label v is (or specifies) an
element ofℋ. Nonetheless, theRiesz1 representation theorem states that every element
of the dual space is of the form given in (B.3).

Using this notation, the composition ⟨u| ∘ |v⟩ of a bra ⟨u| ∈ Lin(ℋ,ℂ) with a ket
|v⟩ ∈ Lin(ℂ,ℋ) results in an element of Lin(ℂ,ℂ), which can be identified with ℂ. It
follows immediately from the above definitions that for all u, v ∈ ℋ, ⟨u| ∘ |v⟩ = ⟨u, v⟩.
Thus, in the following, we will omit the ∘ and denote the scalar product by ⟨u|v⟩.

Conversely, the composition |v⟩ ∘ ⟨u| (the outer product of v and u, also sometimes
called a dyadic) is an element of Lin(ℋ) or of Lin(ℋ,ℋ′) when ℋ′ ̸= ℋ and u ∈ ℋ,
v ∈ ℋ′. We will just denote this by |v⟩⟨u|. Its adjoint is |u⟩⟨v| ∈ Lin(ℋ′,ℋ). This follows
because acting with |v⟩⟨u| on |x⟩ ∈ ℋ and taking the inner product of the result with
|y⟩ ∈ ℋ′ gives ⟨y|v⟩⟨u|x⟩, which is the same as the inner product of |x⟩ with the result
of applying |u⟩⟨v| to |y⟩.

Any map S ∈ Lin(ℋ,ℋ′) can be written as a linear combination of such outer
products,

S =∑
i
|ui⟩⟨vi| (B.4)

for some families of vectors {ui ∈ ℋ′}i and {vi ∈ ℋ}i. For example, for any orthonormal
basis {bi} ofℋ, the identity 1 ∈ Lin(ℋ) can be written as

1 =
d−1
∑
i=0
|bi⟩⟨bi| . (B.5)

1 Frigyes Riesz, 1880–1956.
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B.3 Matrix representations | 277

This is the completeness relation of the basis vectors. For general S, we can choose |vi⟩
to be an orthonormal basis for the support of S and then set |ui⟩ = S|vi⟩, which will
form a basis for its image.

The trace of a linear map S ∈ Lin(ℋ) is the function Tr : Lin(ℋ) → ℂ defined by
extending the action Tr[|v⟩⟨u|] = ⟨u|v⟩ linearly using expansion (B.4). Thus, for S as
there, Tr[S] = ∑i⟨vi|ui⟩. The trace is a linear map from the vector space Lin(ℋ) to ℂ,
the set of which we denote as Map(ℋ,ℂ). It is cyclic, meaning that Tr[ST] = Tr[TS]
for all S ∈ Lin(ℋ,ℋ′), T ∈ Lin(ℋ′,ℋ). Furthermore, since Tr[|u⟩⟨v|] = Tr[|v⟩⟨u|]∗, the
trace is compatible with the adjoint in that Tr[S∗] = Tr[S]∗.

Exercise B.1. Show that Tr[S] = ∑i⟨bi|S|bi⟩ for all S ∈ Lin(ℋ) and an arbitrary or-
thonormal basis {bi} ofℋ.

B.3 Matrix representations

Given an orthonormal basis {|bk⟩}dk=1, we can associate amatrix (Sjk)with any operator
S ∈ Lin(ℋ)with components Sjk = ⟨bj|S|bk⟩. We have chosen j to be the row index and
k the column index, so that a composition of operators such as S ∘ T corresponds to
the product of the corresponding matrices. Moreover, the map |bj⟩⟨bk | is represented
by the matrix with a single 1 in the jth row and kth column.

The representation of an operator by a matrix is not unique, but depends on the
choice of basis. One way to see this is to use the completeness relation (B.5) to write

S = 1 S 1 = ∑
j,k
|bj⟩⟨bj|S|bk⟩⟨bk | = ∑

j,k
Sj,k |bj⟩⟨bk | . (B.6)

Now the basis dependence is plain to see.Matrix representations canbe given formore
general operators S ∈ Lin(ℋ,ℋ′) by the same technique:

S = 1ℋ′ S 1ℋ = ∑
j,k

b
′
j⟩⟨b
′
j
S|bk⟩⟨bk | = ∑

j,k
Sj,k
b
′
j⟩⟨bk | . (B.7)

InDiracnotation, |v⟩ is itself anoperator,meaningwe canapply the abovemethod
to this case. As the input space is one-dimensional,wedrop the associatedbasis vector
and simply write

|v⟩ =∑
j
vj|bj⟩ . (B.8)

According to the above convention, the representation of |v⟩ is automatically a col-
umn vector, as it is the column index (which would take only one value) that has been
omitted. Similarly, the representation of ⟨v| is automatically a row vector. This is a
consequence of representing operators by matrices acting to their right, such that op-
erator composition S ∘T is the multiplication (Sjk)(Tkℓ). If, as would plausibly be more
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sensible, compositionwerewritten in the same order as it is read left to right, i. e., with
T ∘ S denoting first T then S, we would end up using matrices acting to their left and
row vectors for kets. Either choice works, but consistency in that choice is certainly
helpful.

We expect the representation of the adjoint of an operator to be the conjugate
transpose of the matrix, but let us verify that this is indeed the case. The defining
property of the adjoint is (B.1) or ⟨u|Sv⟩ = ⟨S∗u|v⟩ in Dirac notation. By not identifying
|v⟩ with elements inℋ, unlike what is usually done in Dirac notation, the expression
on the right-hand side is still sensible. In terms of matrix representatives, reading the
above from right to left, we have

∑
j
(S∗u)∗j vj = ∑

k
u∗k (Sv)k = ∑

jk
u∗kSkjvj = ∑

jk
(S∗kjuk)

∗vj . (B.9)

Thus the jth component of S∗u is ∑k S
∗
kjuk, so it must be that (S∗)jk = (Skj)∗, as in-

tended.

Exercise B.2. Show that Herm(ℂd) is a real vector space of dimension d2.

B.4 Tensor products

The tensor product of two vector spaces is essentially just the product compatible with
linearity. Let us first give a more abstract definition and properties before examining
how it concretely works with Dirac notation.

Themost straightforwardproduct of twoarbitrary vector spacesℋA andℋB is their
Cartesian productℋA ×ℋB, the set of all ordered pairs (u, v) with u ∈ ℋA and v ∈ ℋB.
This can be made into a vector space by including all formal linear combinations,
e. g., a(u, v) + b(u′, v′) for all choices of a, b ∈ ℂ. This is called the free vector space
generated byℋA ×ℋB. However, doing so does not respect the linearity ofℋA orℋB,
since the Cartesian product is just a product of sets; that is, if u = u0 + u1, then (u, v) ̸=
(u0, v)+ (u1, v). The idea behind the tensor product is to enforce this sort of linearity on
the free vector space. There are four combinations of vectors, which we would expect
to vanish by linearity:

(u, v) + (u′, v) − (u + u′, v),
(u, v) + (u, v′) − (u, v + v′),
a(u, v) − (au, v), a ∈ ℂ,
a(u, v) − (u, av), a ∈ ℂ.

(B.10)

These vectors define an equivalence relation on the free vector space in that we can
consider two elements of that space to be equivalent if they differ by some vector of
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the form in (B.10). These equivalence classes themselves form a vector space, and the
resulting vector space is precisely the tensor productℋA ⊗ℋB.

Since the construction enforces linearity of the products of vectors, we may con-
sider the tensor product to be the space spanned by products of basis elements of each
space. This is precisely how we work with ℝn or ℂn using the standard basis formed
by the vectors (1,0, . . . ), (0, 1,0, . . . ), and so forth.

InDiracnotation,withbases {|bj⟩A}
dA
j=1 and {|b

′
k⟩B}

dB
k=1 forℋA andℋB, respectively, a

set basis vectors of the tensor product is {|bj⟩A⊗ |b′k⟩B}. Furthermore, the inner product
onℋA ⊗ℋB is defined by the linear extension of

⟨u ⊗ v, u′ ⊗ v′⟩ = ⟨u|u′⟩⟨v|v′⟩. (B.11)

The tensor product S⊗T of two linearmaps S ∈ Lin(ℋA,ℋA′ ) and T ∈ Lin(ℋB,ℋB′ )
is the element of Lin(ℋA ⊗ℋB,ℋA′ ⊗ℋB′ ) defined by the action

(S ⊗ T) : (u ⊗ v) → (Su) ⊗ (Tv) (B.12)

for u ∈ ℋA and v ∈ ℋB. In fact, linear combinations of tensor products suffice to span
all of Lin(ℋA ⊗ℋA′ ,ℋB ⊗ℋB′ ), which is the statement that

Lin(ℋA,ℋA′ ) ⊗ Lin(ℋB,ℋB′ ) ≃ Lin(ℋA ⊗ℋB,ℋA′ ⊗ℋB′ ) . (B.13)

This can be easily seen using expansions as in (B.4).
From the form of (B.12) we immediately have the possibility of tracing out part

of a linear map as follows. For an element of Lin(ℋA ⊗ ℋB) of the form SA ⊗ TB with
SA ∈ Lin(ℋA) and TB ∈ Lin(ℋB), define the partial trace over the B factor as the map
TrB : Lin(ℋA ⊗ℋB)→ Lin(ℋA) having the action

TrB : SA ⊗ TB → Tr[TB] SA . (B.14)

Then we can linearly extend the action to an arbitrary maps in Lin(ℋA ⊗ℋB). Here we
have used subscripts to label which vector spaces the operators act on, a notation we
will frequently use.

Similarly to the trace operation, the partial trace TrB is linear and commutes with
the operation of taking the adjoint. Furthermore, it commutes with the left and right
multiplication with an operator of the form TA ⊗ 1B, where TA ∈ Lin(ℋA); that is, for
any operator SAB ∈ Lin(ℋA ⊗ℋB),

TrB[SAB(TA ⊗ 1B)] = TrB[SAB]TA and TrB[(TA ⊗ 1B)SAB] = TA TrB[SAB] . (B.15)

We will also make use of the property that the trace on a bipartite system can be
decomposed into partial traces on the individual subsystems. Specifically, we have
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Tr[SAB] = Tr[TrB[SAB]], or, for an operator SABC ∈ Lin(ℋA ⊗ℋB ⊗ℋC),

TrAB[SABC] = TrA[TrB[SABC]] . (B.16)

As it is a linear map between two inner product spaces, wemay ask for the adjoint
of TrB. By definition it must satisfy

⟨SA, TrB[TAB]⟩ = ⟨Tr
∗
B[SA],TAB⟩ . (B.17)

From this we can easily see that the only choice that works for arbitrary SA and TAB is
the mapping Tr∗B : SA → SA ⊗ 1B.

B.5 Positive operators

An operator S ∈ Lin(ℋ) is positive (or positive semidefinite), denoted S ≥ 0, if ⟨v|S|v⟩ ≥
0 for all v ∈ ℋ. Positive definite corresponds to the strict inequality S > 0. Note that
we should ostensibly refer the latter as positive and the former as nonnegative, but
we will always take “positive” to mean “positive semidefinite” as our uses for positive
definite operators are limited. Positivity gives rise to a partial ordering of operators by
taking S ≥ T to mean S − T ≥ 0. The simple definition of positivity is enough to imply
some very important properties.

Exercise B.3. Show that for any M ∈ Lin(ℋ,ℋ′), the operators M∗M and MM∗ are
both positive and thatMSM∗ ≥ 0 if S ≥ 0, where S ∈ Lin(ℋ).

Positive operators are necessarily Hermitian, at least whenℋ is complex.

Lemma B.1. If S ∈ Lin(ℋ) is positive, then it is Hermitian.

Proof. For positive S, we have ⟨x, (S − S∗)x⟩ = ⟨x, Sx⟩ − ⟨x, S∗x⟩ = ⟨x, Sx⟩ − ⟨Sx, x⟩ =
⟨x, Sx⟩ − ⟨x, Sx⟩∗ = 0. Thus it is enough to show that an arbitraryM ∈ Lin(ℋ) is zero if
⟨x,Mx⟩ = 0 for all x ∈ ℋ. To this end, consider arbitrary x, y ∈ ℋ for which ⟨x,Mx⟩ = 0,
⟨y,My⟩ = 0, ⟨x + y,M(x + y)⟩ = 0, and ⟨x + iy,M(x + iy)⟩ = 0 by assumption. Together
these imply ⟨x,My⟩ = 0 for all x, y ∈ ℋ. Hence My is orthogonal to all of ℋ, which is
only possible ifM = 0.

Thepositivity condition is quite restrictive.An important property is the following,
which states that ⟨u, Su⟩ = 0 implies that u is in the kernel of S.

Lemma B.2. For positive semidefinite S ∈ Lin(ℋ), if ⟨u, Su⟩ = 0 for some u ∈ ℋ, then
⟨v, Su⟩ = 0 for all v ∈ ℋ.

Exercise B.4. Prove the lemma.Hint: Apply positivity of S to w = su+v and w′ = su+ iv
for s ∈ ℝ.
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By the spectral theorem it immediately follows that positive operators have pos-
itive eigenvalues, and in light of the above, we could have made this the definition.
However, it is often more useful to directly apply our basic definition than to use the
spectral theorem, for instance, in Exercise B.3. In any case the trace of a positive oper-
ator S is necessarily positive and can only vanish if S = 0. The square root of a positive
operator S can be defined by taking the square root of the eigenvalues. For eigende-
composition S = ∑dj=1 λj|bj⟩⟨bj|, where λj ≥ 0 are the eigenvalues, and {|bj⟩} is the
orthonormal eigenbasis of S, the square root S1/2 is simply S1/2 = ∑dj=1√λj|bj⟩⟨bj|. We
sometimes denote this operator as√S.

Another restrictive property of positive operators, which turns out to be very use-
ful, is the following:

Lemma B.3. Suppose S and T are arbitrary positive operators in Lin(ℋ). Then Tr[ST] ≥
0, and equality holds only if ST = 0, i. e., S and T have disjoint supports.

Proof. For the first statement, notice that Tr[ST] = Tr[S1/2TS1/2] by the properties of the
trace and positivity of S. Positivity of T then implies positivity of S1/2TS1/2. This implies
that the trace must be positive and only vanishes if S1/2TS1/2 = 0. It must therefore be
that S1/2|bj⟩ = 0 for all eigenvectors |bj⟩ of T with strictly positive eigenvalues. Hence
Tr[ST] = 0 implies ST = 0.

Exercise B.5. For S,T ∈ Lin(ℋ), show that T ≥ 0 if Tr[ST] ≥ 0 for all S ≥ 0.

The set of all positive semidefinite operators in Lin(ℋ) forms a convex cone in
Herm(ℋ), that is, λS is positive semidefinite if S is when λ ≥ 0, and a convex combi-
nation of positive semidefinite operators is also positive semidefinite. This cone is a
closed set. Consider the function λmin(S) = min{⟨v, Sv⟩ : ‖v‖ = 1, v ∈ ℋ}. It is contin-
uous since |λmin(S + T) − λmin(S)| ≤ ‖T‖ for ‖T‖ = max{‖Tv‖ : ‖v‖ ≤ 1, v ∈ ℋ}. Then,
because the set of positive semidefinite operators is just the continuous preimage of
the closed set [0,∞), it must be closed.

Exercise B.6. Prove the continuity statement.

B.6 Operator decompositions

Several operator decompositions play an important role in the formalism of quantum
information theory. Foremost is the spectral decomposition of a normal operator into
eigenvalues and eigenvectors, whichwe just encountered. More precisely, for any nor-
mal S ∈ Lin(ℋ), there exist an orthonormal basis {|ϕj⟩} and complex eigenvalues λj
such that

S =∑
j
λj|ϕj⟩⟨ϕj| . (B.18)
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For a fixed basis {|bj⟩}, (B.18) is equivalent to the existence of a unitary U such
that S = UDU∗, where D is the diagonal matrix in the basis {|bj⟩} with entries λj. In
particular, U = ∑j |ϕj⟩⟨bj|.

The spectral decomposition can be used to give a meaning to applying a function
f : ℂ→ ℂ to a normal operator S by taking the action

f : S →∑
j
f (λj)|ϕj⟩⟨ϕj| . (B.19)

This is sometimes called the functional calculus. A particularly important operator
function is the square root for positive operators,whichwe just defined above. Positive
operators can have other “square roots” though, anyM such that S = M∗M.

All other possibilities are determined by the singular value decomposition of an ar-
bitraryM ∈ Lin(ℋ,ℋ′). The singular values sj ofM are simply the square roots of the
eigenvalues ofM∗M ∈ Lin(ℋ). SinceM∗M is positive, we can use the square root de-
fined by the spectral decomposition, and the number n of nonzero singular values is
no larger than the dimension ofℋ.

Now, given bases {|bj⟩} and {|b′j⟩} for ℋ and ℋ′, there exist isometries U ∈
Lin(ℂn,ℋ′) and V ∈ Lin(ℂn,ℋ) and a diagonal operator D ∈ Lin(ℂn) with entries
sj > 0 such that

M = UDV∗ . (B.20)

This is the singular value decomposition. Note that if we think of M as a collection
of column vectors, i. e., M = ∑k |φk⟩⟨bk |, then from the form of the singular value
decompositionnmust be the dimension of their span, the column rankofM. Similarly,
regarded as a collection of row vectors M = ∑k |k⟩⟨θk |, the same argument implies
that nmust be the row rank ofM, which accords with the fact that these two ranks are
always equal.

Lemma B.4. Every M ∈ Lin(ℋ,ℋ′) has a singular value decomposition as in (B.20).

Proof. The proof proceeds by applying the spectral decomposition to M∗M. Since
M∗M is positive, there exists a unitary V̂ ∈ Lin(ℋ) such that M∗M = V̂ D̂V̂∗, where
D̂ ∈ Lin(ℋ) is diagonal with nonnegative entries s2j . Let ℋn be the subspace of ℋ
corresponding to nonzero sj; this subspace is isomorphic to ℂn. Furthermore, define
V ∈ Lin(ℋn,ℋ) to have the same action as V̂ restricted to inputs in ℋn. By construc-
tion, V is an isometry, i. e., V∗V = 1ℋn

, and moreover the operator VV∗ = Πℋn
,

the projector of ℋ onto ℋn. If we order the basis in which D̂ is diagonal so that the
nonzero singular values appear first, then the matrix representative of V is just the
first n columns of that of V̂ . Since D is invertible, we can set U = MVD−1 ∈ Lin(ℋn,ℋ

′)
to getUDV∗ = MΠℋn

. However,MΠℋn
must be equal toM, since, otherwise,ℋnwould

not contain all the nonzero eigenvalues ofM∗M. Furthermore, U is an isometry, since
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U∗U = D−1V∗M∗MVD−1 = D−1V∗V̂ D̂V̂∗VD−1 = D−1V∗VD2V∗VD−1 = 1ℋn
, completing

the proof.

Observe that MM∗ = UD2U∗, so M∗M and MM∗ have the same nonzero eigen-
values. Therefore the number of singular values is less than the lesser of dim(ℋ) and
dim(ℋ′).

Returning to the question of possible square roots of S ≥ 0, the proof above shows
that V diagonalizes S in that S = VD2V∗. Therefore D = V∗√S V , andM can be written
M = UV∗√S. This is precisely the polar decomposition of M. Namely, for any M ∈
Lin(ℋ,ℋ′), there exists an isometryW ∈ Lin(ℋ,ℋ′) such that

M = W√M∗M = √MM∗W . (B.21)

In particular,W = UV∗ satisfies the two equations. In analogy with the case of com-
plex numbers, we define the absolute value |M| = √M∗M, so that M = W |M|. Since
|M| andW do not necessarily commute, we have to make a choice for this ordering or
the other. Note that either choice √M∗M or √MM∗ agrees with the absolute value of
a Hermitian operator using the functional calculus, and in this case,W = 1.

The singular value decomposition also allows us to define a pseudoinverse M+ for
an arbitrary matrix M as M+ = VD−1U∗. This fulfills the properties that MM+M = M
andM+MM+ = M+, so thatM+ acts as an inverse onM, whereasMM+ is the projection
onto the range ofM (i. e., the column space), andM+M is the projection onto the sup-
port ofM (i. e., the row space). For a positive semidefinitematrixM, the pseudoinverse
is just the usual inverse on the support ofM.

B.7 Inner products and norms of operators

A simple inner product for the space Lin(ℋ,ℋ′) can be defined as follows using the
trace:

⟨S,T⟩ := Tr[S∗T] . (B.22)

This is the Hilbert–Schmidt inner product, and the induced norm ‖S‖2 := √⟨S, S⟩ is the
Hilbert–Schmidt or Frobenius2 norm. This inner product is what we obtain by treat-
ing using the usual vector inner product for the matrix representatives of S and T
in the following sense. Choosing a basis {|bk⟩} for ℋ and {|b′j⟩} for ℋ

′, suppose S =
∑jk Sjk |b

′
j⟩⟨bk | and T = ∑jk Tjk |b

′
j⟩⟨bk |. Then ⟨S,T⟩ = ∑jk S

∗
jkTjk . The induced norm

satisfies the following defining properties of a norm: ‖S‖2 ≥ 0 with equality iff S = 0

2 Ferdinand Georg Frobenius, 1849–1917.
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(positivity), ‖αS‖2 = |α|‖S‖2 forα ∈ ℂ (scalability), and ‖S+T‖2 ≤ ‖S‖2+‖T‖2 (triangle in-
equality). Naturally, the Hilbert–Schmidt inner product satisfies the Cauchy–Schwarz
inequality |⟨S,T⟩| ≤ ‖S‖2‖T‖2.

Two other norms besides the Hilbert–Schmidt norm show up frequently in quan-
tum information theory, though we meet only one of them in this book. This is the
trace norm, sometimes called the nuclear norm, defined by

‖S‖1 := Tr[√S∗S] . (B.23)

Given the results of the previous section, it follows that ‖S‖1 = Tr[|S|], i. e., the trace
norm is the sum of the singular values of S. The other is the operator norm ‖S‖∞ :=
max{‖Sv‖ : ‖v‖ = 1, v ∈ ℋ}, which we implicitly used in the previous section. It is
also known as the infinity norm, as it turns out that ‖S‖∞ = max{σj}, where σj are the
singular values of S. The following lemma provides a useful characterization of the
trace norm on Lin(ℋ).

Lemma B.5. For any S ∈ Lin(ℋ), ‖S‖1 = max{| Tr[SU]| : U unitary onℋ}.

Proof. Let S = |S|V be the polar decomposition of S. Then equality holds for U = V∗.
To show that the maximization cannot be larger than the trace norm, we employ the
Cauchy–Schwarz inequality. Specifically, for every unitary U, we have

Tr[SU]
 =
Tr[|S|VU]

 =
Tr[√|S|√|S|VU]



≤ √Tr[|S|] Tr[U∗V∗|S|VU] = Tr[|S|] ,
(B.24)

and therefore U = V∗ is the optimal choice.

B.8 The Schur complement

A useful tool in characterizing operator positivity is the Schur complement. Consider
an (n +m) × (n +m) block matrix of the form

S = ( A B
B∗ C
) , (B.25)

where A ∈ ℂn×n, B ∈ ℂn×m, and C ∈ ℂm×m, for arbitrary n and m. The Schur com-
plement of C in S is A − BC+B∗, and, similarly, the Schur complement of A in S is
C − B∗A+B, where C+ and A+ are the pseudoinverses of C and A from the end of Sec-
tion B.6. Positive semidefiniteness of S is related to positive semidefiniteness of the
Schur complements:

Lemma B.6 (Schur complement). For an arbitrary matrix S as in (B.25), S ≥ 0 iff A ≥ 0,
C − B∗A+B ≥ 0, and (1 − AA+)B = 0.
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Proof. Start with the “only if” statement. Clearly, the A block must be positive if S is,
so the first condition is fulfilled. To establish the second condition, let K = ( 1 0

−B∗A+ 1 ).
Since A is square, A+ = (A+)∗, and hence K∗ = ( 1 −A+B0 1 ). Now define

S′ = ( A (1 − AA+)B
((1 − AA+)B)∗ C − B∗A+B

) . (B.26)

Direct calculation shows that S′ = KSK∗, so S′ ≥ 0 by Exercise B.3. Hence the second
condition is satisfied. The third condition states that S′ is block diagonal. Since S is
positive, we can write S = MM∗ for some (n +m) × k matrixM, where k is at least the
rank of S. TakeM = √S or the columns ofM to be the eigenvectors of S, normalized, for
instance, by the square root of the corresponding eigenvalues. PartitioningM asM =
( XY ), it follows that A = XX

∗, C = YY∗, and B = XY∗. Using the polar decomposition
to write X = PW for P = √A and some isometry W ∈ Lin(ℂk ,ℂn+m), it follows that
B = √AWY∗ = AP+WY∗ = AR for R = P+WY∗. Hence AA+B = AA+AR = AR = B, i. e.,
the third condition holds.

The “if” statement is now simple. Start from S′, which by the third condition is
block diagonal, and therefore positive by the first and second conditions. Letting K′ =
( 1 0
B∗A+ 1 ), it follows that K

′S′K′ ∗ ≥ 0, and direct calculation shows that S = K′S′K′ ∗.

B.9 Operator monotonicity and convexity

Since we can apply functions f to operators via (B.19), we can also extend the notions
of monotonicity and concavity of f to the domain of positive operators by using the
partial ordering of operators under positivity. A function f : ℝ+ → ℝ is called operator
monotone if A ≥ B implies f (A) ≥ f (B) for all Hermitian A and B, and it is called
operator convex if f (λA + (1 − λ)B) ≤ λf (A) + (1 − λ)f (B) for all λ ∈ [0, 1]. Reversing the
inequalities for the function, f isoperator antimonotonewhen−f is operatormonotone
and operator concave when −f is operator convex. These are stricter conditions than
whenworking over the reals; even the square function is not operator monotone. This
is easily seen by the example

A = (1 1
1 1
) and B = (2 1

1 1
) . (B.27)

Nevertheless, it is easy to show operator convexity in this case.

Exercise B.7. Show that f : t → t2 is operator convex.

An important function for our purposes is the square root, which is both mono-
tone and concave.
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Lemma B.7. The function f : t → √t is operator monotone.

Proof. We show that for positive semidefinite A and Hermitian B, A2 ≥ B2 implies
A ≥ B, and the proof is an application of the Cauchy–Schwarz inequality. For any
vector |λ⟩, we have

⟨λ|AB|λ⟩

2
≤ ⟨λ|A2|λ⟩⟨λ|B2|λ⟩ ≤ ⟨λ|A2|λ⟩2 . (B.28)

Now take |λ⟩ to be an eigenvector of A−Bwith eigenvalue λ. Then ⟨λ|AB|λ⟩ = ⟨λ|A(A−
λ1)|λ⟩ = ⟨λ|A2|λ⟩ − λ⟨λ|A|λ⟩, and therefore by (B.28) it follows that

⟨λ|A
2|λ⟩ − λ⟨λ|A|λ⟩ ≤ ⟨λ|A

2|λ⟩ . (B.29)

But ⟨λ|A2|λ⟩ ≥ 0, so this can only hold if λ⟨λ|A|λ⟩ ≥ 0. Since A ≥ 0, it follows that λ ≥ 0
and hence A ≥ B.

Lemma B.8. The function f : t → √t is operator concave.

Proof. Since the square root function is operator monotone, we just need to show

λA + (1 − λ)B ≥ (λ√A + (1 − λ)√B)2 (B.30)

for all λ ∈ [0, 1]. Expanding the right-hand side gives

λA + (1 − λ)B ≥ λ2A + (1 − λ)2B + λ(1 − λ)(√A√B +√B√A) , (B.31)

which is equivalent to A + B ≥ (√A√B + √B√A). This inequality is just (√A −
√B)2 ≥ 0.

Meanwhile, anti-monotonicity holds for the inverse.

Lemma B.9. The function f : t → t−1 is operator antimonotone.

Proof. For A > 0 and B ≥ 0, the operator C = A−1/2BA−1/2 satisfies C ≥ 0 by Exercise B.3.
Therefore it follows that (1 + C)−1 ≤ 1. Now observe that A−1 − (A + B)−1 = A−1/2(1 −
(1 + C)−1)A−1/2 using (XYX)−1 = X−1Y−1X−1 for X,Y ≥ 0. Using the previous inequality
in this equality gives A−1 ≥ (A + B)−1, which completes the proof.

We can also show joint concavity of the operator geometric mean. Recall that the
geometric mean of two real numbers a and b is just c = √ab. This c is the largest
possible value such that the matrix ( a c

c b ) is positive semidefinite, since positivity of
the determinant requires ab − c2 ≥ 0. For two positive definite operators A and B, we
define the geometric mean in the same way and denote it as A#B. Specifically, A#B is
the largest (in the operator ordering sense) positive C such that

(
A C
C B
) ≥ 0 . (B.32)
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By definition we have B#A = A#B. The variational formulation immediately implies
that the function (A,B) → A#B is jointly concave.

Lemma B.10 (Joint concavity of the geometric mean). For arbitrary positive definite
operators A0, B0, A1, and B1 on Lin(ℋ) and any t ∈ [0, 1], let A = tA0 + (1 − t)A1 and
B = tB0 + (1 − t)B1. Then

A#B ≥ tA0#B0 + (1 − t)A1#B1 . (B.33)

Proof. For C0 = A0#B0 and C1 = A1#B1, let C = tC0 + (1 − t)C1. Then we have

(
A C
C B
) = t (A0 C0

C0 B0
) + (1 − t)(A1 C1

C1 B1
) . (B.34)

Since the convex combination is positive, it follows that A#B ≥ C.

The geometric mean has a closed-form expression, albeit somewhat ungainly:

A#B = A1/2(A−1/2BA−1/2)
1/2A1/2 . (B.35)

This follows at once using the properties of Schur complement discussed above. Posi-
tivity of theblockmatrix in thedefinition impliesB ≥ CA−1C, and thereforeA−1/2BA−1/2 ≥
(A−1/2CA−1/2)2. Monotonicity of the square root gives the desired form.

B.10 Notes and further reading

There are a multitude of books on linear algebra. A few favorites are by Strang [277],
Körner [177], and Axler [9]. Dirac notation was introduced in [82]. For more on the
Schur complement, see the volume edited by Zhang [315]. Carlen [54] gives an excel-
lent overview of operator monotonicity, concavity, and convexity. Readers interested
in exploring matrix analysis in further detail should consult Bhatia [38] and the two
volumes by Horn and Johnson [147, 148].
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C Semidefinite programs

C.1 General form

We start with the simpler case of linear programs. A linear program (LP) is an opti-
mization of a linear function over a set of real variables defined by linear constraints.
The general form of an LP is

infimum
x

a ⋅ x

subject to Lx ≥ b , x ≥ 0 , x ∈ ℝn ,
(C.1)

with a ∈ ℝn, b ∈ ℝm, L ∈ ℝm×n. The optimization is thus completely defined by the
three parameters (L, a, b). The constraints are given by a set of m inequalities to the
variable vector x ∈ ℝn. The inequality is pointwise: (Lx)j ≥ bj for the jth component
of Lx and b, respectively, for all j. Equality conditions can be specified by pairs of in-
equalities, e. g., x0 = b0 by x0 ≥ b0 and −x0 ≥ −b0 for a given component.

If the resulting feasible set is closed, it forms a polytope. Since the objective func-
tion is linear, the optimal value will be found at one of the extreme points of the feasi-
ble set—one of the vertices of the polytope. If the feasible set is open, then the optimal
value may be finite and again occurs at one of the vertices, or the optimal value may
be unbounded. We write infimum instead of minimum to handle the case of an empty
feasible set, i. e., when there exists no x such that Lx ≥ b or when the problem is un-
bounded. In the former case the value of the optimization is +∞, and −∞ in the latter.

Semidefinite programs (SDPs) have a completely analogous structure, but the
variables are Hermitian matrices, and the notion of positivity is positive semidefinite-
ness. More precisely, the objective function uses the Hilbert–Schmidt inner product,
and the positivity constraint is implemented using a linear map on Hermitian opera-
tors:

infimum
X

Tr[AX]

subject to ℒ[X] ≥ B , X ≥ 0 , X ∈ Herm(n) ,
(C.2)

with A ∈ Herm(n), B ∈ Herm(m), ℒ : Herm(n) → Herm(m). Observe that, in our
presentation, SDPs are to LPs as quantum theory is to probability theory. As with LPs,
the optimization problem is specified by the three parameters (ℒ,A,B). Let us denote
the optimal value in (C.2) by f (ℒ,A,B) and call it theprimal optimization. AHermiticity-
preserving superoperator turns out to be one whose Choi operator is Hermitian.

Exercise C.1. Show that a superoperator that maps Hermitian operators to Hermitian
operators has a Hermitian Choi operator. Hint: First show that such a map ℰ satisfies
ℰ[X]∗ = ℰ[X∗] for arbitrary X by decomposing X = 1

2 (X + X
∗) + i 12i (X − X

∗) and using
linearity. It is also helpful to note that the partial trace is compatible with the adjoint in
that TrB[SAB]∗ = TrB[S∗AB].

https://doi.org/10.1515/9783110570250-023
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The above form (C.2) is sometimes called the inequality form, since the constraint
involving ℒ is given as an inequality. Often, SDPs are defined in equality form, where
this constraint is an equality. The two forms can be converted into each other using
slack variables. To convert ℒ[X] ≥ B into equality form, for instance, simply invent
a new variable X′ and demand that X′ = ℒ[X] − B and X′ ≥ 0. The constraints now
become ℒ[X] − X′ = B, X ≥ 0, and X′ ≥ 0.

C.2 Duality

The dual optimization gives lower bound on the value of the primal. To derive the dual
optimization, consider Y ∈ Herm(m). First, observe that for Y ≥ 0, we have

Tr[ℒ[X]Y] ≥ Tr[BY] . (C.3)

If we ensure that for all positive semidefinite X ∈ Herm(n),

Tr[AX] ≥ Tr[ℒ(X)Y] (C.4)

by requiring ℒ∗[Y] ≤ A, then

Tr[AX] ≥ Tr[BY] . (C.5)

Neither of the constraints Y ≥ 0 or ℒ∗[Y] ≤ A is necessary to have Tr[AX] ≥ Tr[BY];
they are in general only sufficient. Nonetheless, any Y satisfying these conditions
gives a lower bound on the objective function of f (ℒ,A,B) for all feasible X. The tight-
est lower bound is given by the dual optimization

f †(ℒ,A,B) = supremum
Y

Tr[BY]

subject to ℒ∗[Y] ≤ A , Y ≥ 0 , Y ∈ Herm(m) .
(C.6)

Again, the optimization might be infeasible, which now leads to a value of = −∞,
finite, or unbounded, i. e., +∞.

Exercise C.2. Show that the dual of the dual is the primal. Therefore either can be
used as the original optimization.

Exercise C.3. Show that the dual of (C.1) is

supremum
y

b ⋅ y ,

subject to LTy ≤ a , y ≥ 0 , y ∈ ℝm .
(C.7)

What happens to equality constraints in the dual?
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By construction, f †(ℒ,A,B) ≤ f (ℒ,A,B), which is the statement of weak duality.
Thedifference f (ℒ,A,B)−f †(ℒ,A,B) is called theduality gap. Strongduality holdswhen
the primal anddual are equal, i. e., when the duality gap is zero. From the construction
of the dual it is easy to see that the following two conditions are each sufficient for zero
duality gap.

Proposition C.1 (Zero duality gap). For an arbitrary SDP, the following are each sufficient for
f (ℒ,A,B) = f †(ℒ,A,B):

1. (Equal objective functions) If there exist feasible X and Y such that Tr[AX] = Tr[BY ], then X
and Y are optimizers and f (ℒ,A,B) = f †(ℒ,A,B).

2. (Complementary slackness) If X , Y are feasible and satisfy the conditions

Tr[(ℒ[X] − B)Y] = 0 and Tr[(ℒ∗[Y ] − A)X] = 0 , (C.8)

then X and Y are optimizers, and f (ℒ,A,B) = f †(ℒ,A,B).

The complementary slackness conditions are just the equality versions of (C.3) and
(C.4), which then implies equality of the objective functions. Because both factors in
the trace of each slackness condition are positive, they imply the stronger form

(ℒ[X] − B)Y = 0 and (ℒ∗[Y] − A)X = 0 . (C.9)

The name complementary slackness refers to the fact that there cannot be “slack” in
both the constraint and the dual variable. Either the constraint is binding in that it is
satisfied with equality (perhaps, only on a subspace), the dual variable is zero (on a
subspace), or both. A positive dual variable implies the corresponding constraint is
binding, whereas slack in the constraint implies that the dual variable is zero. How-
ever, a zero dual variable does not imply slack in the constraint. This occurs when a
constraint is redundant.

Exercise C.4. Consider the linear program specified by

A = −(

3 0 2
3 3 1
−3 0 1
0 −3 2

) , b = (−9,−12,0,0) , c = (0,0,−1) . (C.10)

Show that all primal constraints are binding at the optimum, but, nonetheless, some
of the dual variables may vanish. Can we drop any of the constraints and still obtain
the same optimal value? Is the dual optimizer unique?

It turns out that the duality gap of every linear program is either zero or infinite.
Moreover, the latter happens only when both the primal and dual are infeasible. So
there are three possibilities for LPs:
1. Both primal and dual are infeasible (infinite duality gap, infinite optimum),
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2. One feasible and the other unbounded (zero duality gap, infinite optimum), or
3. Both are feasible (zero duality gap, finite optimum).

Hence, strong duality holds if either of the primal or dual is feasible, and the optimal
value is finite if both are feasible. Unboundedness of the primal (dual) implies infea-
sibility of the dual (primal).

Exercise C.5. Forwhich of the following linear programsdoes strongduality hold? For
which is the optimal value finite?
1. A = ( 1 −1

−1 1 ), b = (2, 1), c = (1,−2),
2. A = ( 1 −1

−1 1 ), b = (−2, 1), c = (1,−2),
3. A = ( 1 −1

−1 1 ), b = (−2, 1), c = (1, 2).

In contrast, the duality gap for SDPs can be finite, as we will see below. A useful
condition for strong duality is known as Slater’s condition, which makes use of strict
feasibility. This simply means that all inequalities describing the feasible region must
be strictly satisfied (all equality conditions are stated as such, not as pairs of inequali-
ties). In particular, variables that are constrained to be positive semidefinite in general
must be strictly positive to be strictly feasible.

Proposition C.2 (Slater conditions for strong duality). For an arbitrary semidefinite program spec-
ified by (ℒ,A,B),

1. if the primal is feasible and the dual strictly feasible, then f (ℒ,A,B) = f †(ℒ,A,B), and there
exists a primal optimizer X⋆, and

2. if the dual is feasible and primal strictly feasible, then f (ℒ,A,B) = f †(ℒ,A,B), and there exists
a dual optimizer Y⋆.

When strong duality is known to hold, it follows that the complementary slackness
conditions (C.8) must also hold. These conditions are often extremely useful in con-
structing the optimal variables. The following example shows that strong duality does
not always hold for SDPs.

Example C.1. Consider the primal SDP f (ℒ,A,B) for X ∈ Herm(3) with A = 1
2(

0 1 0
1 0 0
0 0 0
),

B = diag(0,0,−1), and

ℒ[X] =(
0 X12 0
X21 X22 0
0 0 1

2 (X12 + X21)
) . (C.11)

Notice that the upper left 2 × 2 submatrix of the constraint ℒ[X] ≥ B amounts
to ( 0 X12

X21 X22 ) ≥ 0. By Lemma B.2, X12 = X21 = 0, since the diagonal entry in the first
row is zero. A zero on the diagonal of a positive semidefinite matrix implies that the
entire row and column must also be zero. This can also be seen by using the Schur
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complement. The optimization is feasible; for instance, X = 0 is feasible. Therefore
the optimal value is finite and satisfies f (ℒ,A,B) = 0.

Now we can derive the dual. Computing the adjoint of ℒ, we find Tr[ℒ[X]Y] =
X12Y21 + X21Y12 + X22Y22 +

1
2 (X12 + X21)Y33, and therefore

ℒ∗[Y] =(
0 Y12 +

1
2Y33 0

Y21 +
1
2Y33 Y22 0

0 0 0
) . (C.12)

The task is to find the supremum of the objective function −Y33 subject to ℒ[Y] ≤ A
and Y ≥ 0. Consider the 22 component in the two constraints. From the latter, Y22 ≥ 0,
while the opposite must hold in the former. Hence Y22 = 0, which in turn implies Y12 =
Y21 = 0. All that remains of theℒ[Y] ≤ A constraint isY33σx ≤ σx, which impliesY33 = 1.
Any choice of Y with Y2j = Yj2 = 0, Y33 = 1, and Y11 and Y13 satisfying Y11 − |Y13|2 ≥ 0
satisfies all the constraints. Therefore f †(ℒ,A,B) = −1 ̸= f (ℒ,A,B).

In this particular example, we can appreciate that strong duality does not hold
because the constraints Y ≥ 0 and ℒ∗[Y] ≤ A are not necessary for Tr[AX] ≥ Tr[BY].
For instance, Y = diag(1,0,0) is certainly positive, does not satisfy ℒ∗[Y] ≤ A, and yet
gives Tr[BY] = 0. On the other hand,Y = 1

2(
0 1 0
1 −1 0
0 0 0
) is not positive but satisfiesℒ∗[Y] ≤

A and Tr[BY] = 0. Moreover, although there exist primal and dual optimizers, e. g.,
X = 0 and Y = diag(0,0, 1), there are no strictly feasible primal or dual variables. The
2 × 2 constraint in the primal, which is ultimately forced to be diagonal, is necessarily
satisfied with equality in the 11 component. Similarly, with Y22 = 0 in the dual, the 22
component of Y ≥ 0 is necessarily satisfied with equality.

It is also possible for strong duality to hold, but the optimal value of the primal
or the dual fail to be achieved by any feasible variable. Put differently, it can happen
that only one of the conditions in Proposition C.2 is fulfilled. The following example
also makes use of Lemma B.2.

Example C.2. Consider the SDP for X ∈ Herm(2) with

A = (1 0
0 0
) , B = −(0 1

1 0
) , and ℒ[X] = (X11 0

0 X22
) . (C.13)

The dual is f †(ℒ,A,B) = sup{−Y21 − Y12 : Y11 ≤ 1,Y22 ≤ 0,Y ≥ 0}. The latter two
constraints imply Y12 = Y21 = 0, whereas Y11 is constrained to the unit interval. The
objective function is zero, and the dual is feasible.

Meanwhile, the primal is strictly feasible: X = 21 gives 21 = ℒ[X] > B = σx.
By Slater’s condition strong duality therefore holds. The primal optimization is
f (ℒ,A,B) = inf{X11 : (

X11 1
1 X22 ) ≥ 0,X ≥ 0}. Nevertheless, again by Lemma B.2, the

infimum X11 = 0 cannot be attained. Alternatively, in this case the conditions imply
X11 ≥ 0 , X22 ≥ 0, and X11X22 − 1 ≥ 0, i. e., X11 = 0 is not a feasible choice.
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C.3 Notes and further reading

In this chapter, we only scratch the surface of the very important topic of linear pro-
gramming, semidefinite programming, and convex optimization in general. For an
overview of convex optimization, including semidefinite programming, see Boyd and
Vanderberghe [44, 289] for an applied approach and more mathematical treatments
by van Tiel [288], Rockafellar [244], and especially Barvinok [13]. The duality deriva-
tion (for LPs) goes back to von Neumann [294] in 1947; Dantzig [68] provides inter-
esting historical details. Slater’s condition, which is formulated for general convex
problems, appeared just a few years later [267].
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Index of symbols
Many symbols used only in single chapters are not listed here.

1[⋅] Indicator function 10
A,B,C Common names for events 20
X , Y , Z Common names for random variables 21
𝒳 ,𝒴 ,𝒵 In the context of random variables X , Y , Z: Sets of values taken by

those random variables
21

|𝒳 |, |X | Cardinality of the alphabet𝒳 of random variable X 21
Pr[A|B] Conditional probability of A given B 22
PX Probability distribution (strictly: probabilitymass function) of the ran-

dom variable X
26

PX (x) Pr[X = x] 26
PX |Y=y Conditional probability distribution of X given the event Y = y 26
PX |Y Collection of conditional probability distributions; equivalently, a

classical channel
26

Prob(n), Prob(X) Set of probability distributions of size n or random variable X 28
Events(n) Set of events of size n 28
⟨Z⟩ Expectation value of random variable Z 28
Tests(n), Tests(X) Set of tests of size n or for random variable X 30
Xn In the context of n random variables, the sequence X1, . . . , Xn 31
P×n P × ⋅ ⋅ ⋅ × P⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

n
31

BSC(p) Binary symmetric channel with crossover probability p 37
BEC(q) Binary erasure channel with erasure probability q 37
Z(r) Z channel with parameter r 37
MT Transpose of the matrixM 38
Lin(ℋ,ℋ′), Lin(ℋ) Linear operators fromℋ toℋ′;ℋ to itself 45
Tr Trace of an operator 45
ρ, σ,φ,ψ,θ Typical names for density operators 45
Λ, Λ(x) Typical names for effect operators or POVMs 45
1 Identity operator 45
S ≥ 0,S ≥ T Indicates an operator S is positive; S − T is positive 45
|ψ⟩ Dirac notation for vectors 46
Stat(d),Stat(A) Set of quantum states of dimension d or system A 47
π Maximally mixed state: π = 1

d 1, for d the dimension 47
σx , σy , σz The Pauli operators 49
Π,Π(x) Projection operators 50
A,B, . . . Common names for quantum systems 52
ℋA,ℋB, . . . Vector spaces associated to quantum systems A,B, . . . 52
MBC|A An operatorM from Lin(ℋA) to Lin(ℋB ⊗ℋC ) 52
M∗B|A Adjoint of the mapMB|A ∈ Lin(ℋA,ℋB), an element of Lin(ℋB,ℋA) 52
{|bj⟩}j An orthonormal basis 53
{|k⟩}k “Standard” basis, i. e. a particular chosen basis 54
|Φ⟩AB The canonicalmaximally-entangled state for a given basis on systems

A and B
54

dim(ℋ), |ℋ| Dimension ofℋ 54
TrA Partial trace over system A 55
|Ω⟩AB Unnormalized maximally-entangled state 57
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V “Vectorization” map 57
|ψ⟩ Complex conjugate of the vector |ψ⟩ with respect to a given basis 57
ℱ ∘ ℰ Composition of linear maps or channels, e. g. ρ → ℱ[ℰ[ρ]] 58
MT Transpose of the operatorM with respect to a given basis 59
M Complex conjugate of the operatorM with respect to a given basis 59
ℰB|A,ℱB|A,𝒩B|A Common names of superoperators or quantum channels 61
ℐ Identity channel 61
ℰ[ρ] The channel ℰ applied to input ρ 61
ℰ∗ Adjoint of a superoperator ℰ 62
𝒯 Transpose channel 62
Φ Density operator associated with pure state |Φ⟩ 62
ϒAB Swap operator interchanging systems A and B 62
𝒫 Pinch map 63
ℋ ⊕ℋ′ Direct sum of vector spacesℋ andℋ′ 64
PSC(f ) Pure state channel with fidelity f 65
ℰA|X=x Output density operator of the CQ channel ℰA|X for input X = x 65
ℳX=x|A Effect operator corresponding to the output X = x of a QC channel

ℳX |A

66

M1/2,√M Square root of the positive semidefinite operatorM 66
C Choi map 67
ℰ̂ Complement channel of ℰ 84
Pagree(WY |X ) Agreement probability of a classical channelWY |X 109
Λ⋆ Optimal choice of the variable Λ for a given optimization problem 123
Pguess(X |B)ρ,Λ Probability of guessing X when performing POVM Λ on B for CQ state

ρXB
124

Pguess(X |B)ρ Guessing probability using the optimal measurement 124
βα(ρ, σ) Optimal error probability for state σ at fixed error 1 − α for state ρ 124
{M > 0} Projector onto the subspace of positive eigenvalues ofM 126
{M ≥ 0} Projector onto the subspace of nonnegative eigenvalues ofM 126
f † Dual optimization to f 127
{M}+ Positive part ofM 127
‖M‖1 Trace norm ofM 127
ρ ⊕ σ Direct sum of operators ρ and σ 131
δ(ρ, σ) Distinguishability of states ρ and σ 131
δ(ℰ ,ℱ) Distinguishability of channels ℰ andℱ 134
F (ρ, σ) Fidelity of states ρ and σ 140
F (ℰ ,ℱ) Fidelity of channels ℰ andℱ 148
Fent(ρ, ℰ) Entanglement fidelity of the state ρ and channel ℰ 151
Fpure(ℰ) Minimum pure state fidelity of the channel ℰ 151
PPGMguess(X |B)ρ Probability of guessing X when using the pretty good measurement

on B
158

Rent(A|B)ρ Optimal recoverable entanglement from a state ρAB by operation on
B

160

MTB
AB Partial transpose of operatorMAB on B, i. e. 𝒯B[MAB] 161

Q(ρ, σ) Quantity related to pretty good guessing probability and entangle-
ment recovery

163

H(X)P Entropy of a random variable X with distribution P 167
H(A)ρ Entropy of a quantum system A in state ρ 167
D(ρ, σ) Relative entropy of two quantum states 168
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H(A|B)ρ Conditional entropy of A given B 171
I(A : B)ρ Mutual information of A and B 171
I(A : B|C)ρ Conditional mutual information of A and B given C 175
h2(p) Binary entropy 180
| ̃x⟩ and |z⟩ Conjugate bases 186
X and Z Conjugate observables 186
H(ZA|B)ρ Entropy of observable ZA on system A given system B, for state ρAB 188
𝒫 and �̃� Pinch operators in conjugate bases 188
χ(𝒩B|A) Holevo information of the channel𝒩B|A 220
u ⊕ v Concatenation of vectors u and v; an element of the direct sum 232
̂f , ̌f , ̄f Decomposition of a reversible function f for use in CSS codes 244
Q(𝒩B|A) Coherent information of the channel𝒩B|A 246
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Index
adjoint 275
–of a superoperator 62
–of an operator 52
agreement probability 109, 111
Alberti’s theorem 144
amplitude and phase 98, 186
amplitude damping channel 64
ancilla 86

Bayes’ rule 24
BB84 protocol 11, 263
Bell basis 54
Bell’s theorem 101
Bhattacharyya coefficient 142
binary entropy 180
binary erasure channel (BEC) 36
binary symmetric channel (BSC) 36
Bloch sphere 48
Boolean algebra 20
Born rule 46

Calderbank–Shor–Steane (CSS) code 244
canonical purification 78
Carathéodory’s theorem 43
Cauchy–Schwarz inequality 284
chain rules 172
Choi representation 68
church of the larger Hilbert space 77
classical capacity
– of CQ channels 215
–of quantum channels 221
classical channel 36
classical-quantum (CQ)
– channel 65
– state 56
Clauser–Horne–Shimony–Holt (CHSH)

inequality 101
coherence 93
coherent information 246
complementary channel 84
complementary observable 186
complementary observables 12, 93, 250
complementary slackness 130
complete positivity 63
complex conjugate of an operator 59
composability 135

conditional entropy 171
conditional independence 31
conditional mutual information 175
conjugate basis see also complementary

observables, 186
convex
– combination 28
– cone 41
– function 29
–hull 28
–optimization 125
– set 28

data processing inequality 181
decoupling 238
degeneracy of quantum errors 251
degradable channel 254
density operator 45
dephasing channel 60
depolarizing channel 60
Dirac notation 57, 275
direct sum 64
discrete Fourier transform 55
distinguishability
– of channels 134
–of states 132
dual function 233
duality of semidefinite programs 127, 290
Dutch book argument 24

effect operator 46
ensemble decomposition 56
entangled state 52
entanglement concentration 232
entanglement distillation 121, 230
entanglement fidelity 151
entanglement-breaking channel 70
entropic uncertainty relations 188
entropy 167
error-correcting code 209
event 20
expected value 28
expurgation 209
extension of a density operator 77
extreme points 29
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feasible set 125
fidelity
– of channels 148
–of states 140

gentle measurement lemma 153
geometric mean 164
Gleason’s theorem 50
Gram matrix 147
guessing probability 124, 154

Hadamard transform 195
hidden variables 96
Hoeffding bound 33
Holevo information 220
hypothesis testing
–Bayesian 124
–Neyman–Pearson 124

identity operator 45
identity superoperator 61
independence of events 30
independent and identically distributed (i. i. d.)

31
indicator function 10
information-theoretic security 259
isometry 275

Jamiołkowski representation 74
Jensen’s inequality 29
joint concavity
– of the fidelity 142
–of the geometric mean 287
joint convexity
– of distinguishability 133
–of relative entropy 181
–of the pretty good quantity Q 163

kernel 275
Klein’s inequality 168
Kraus representation 63, 70
Kullback–Leibler divergence see relative

entropy

Landauer’s principle 6
law of large numbers 31
likelihood ratio 126
Liouville representation 74
local operations and classical communication

(LOCC) 108

marginal state 55
maximally-entangled state 54
maximally-mixed state 47
mixed state 47
monotonicity
– of distinguishability 133
–of entropy 181
–of fidelity 140
–of hypothesis testing 124
–of relative entropy 180
–of the optimal guessing probability 157
–of the pretty good quantity Q 165
mutual information 171

Naimark extension 86
Neyman–Pearson lemma 130
no cloning theorem 8

one-shot scenario 14, 200
one-time pad 259
one-way distillable entanglement 247
optimal recoverable entanglement 160

partial isometry 275
partial trace 55
Pauli channel 64
Pauli operators 49
pinch map 63
polar decomposition 283
positive operator-valued measure (POVM) 46
positive partial transpose (PPT) states 112
positive semidefinite operator 280
pretty good
–entanglement recovery 161
–guessing probability 158
–measurement 81
–quantity Q 163
privacy amplification 236
probability distribution 26
product state 52
projective measurement 46
pure state 47
pure state channel (PSC) 65
purification 77

quantum capacity 246
quantum channel 64
quantum eraser 91, 237
quantum erasure channel 64
quantum error-correcting code 244
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quantum instrument 66
quantum key distribution (QKD) 11, 257
quantum measurement 46
– coherent version of 88
quantum state 45
quantum-classical (QC) channel 65
qubit 48

random coding argument 213
random variable 21
randomness extractor 236
regularization 221
relative entropy 168
repetition code 208

Schmidt decomposition 78
Schur complement 145, 284
Schur–Hadamard channel 70
semidefinite program 125, 289
separable state 53
simulator 258
singular value decomposition 282
Slater’s condition 129
source coding theorem
–Schumacher’s 207
–Shannon’s 202
standard basis 48, 54, 279
steering 81, 265
Stein’s lemma 175
Stinespring representation 83
stochastic matrix 37
strong converse 109, 217
strong randomness extractor 239
strong subadditivity 181
superactivation of the quantum capacity 253
superdense coding 115
superoperator 61

support 275
surprisal 167
swap operator 62
syndrome decoding 228

teleportation 115
tensor product 28, 278
test 30
testing region 128
trace norm 127, 284
trace of an operator 45
trace-preserving map 62
transpose of an operator 59
transposition map 62
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