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Preface

The monograph presents the polaron theory of superconductivity. The polaron theory,
which was initiated by Landau’s 1933 article, which appeared at the dawn of the for-
mation of quantum mechanics, was first developed in the Soviet Union in the works
by Pekar, and later, starting with the works by Fröhlich, in the publications of other
theorists too. The reason for this interest was the fact that the polaron, being an ele-
mentary quasiparticle, provides the simplest meaningful example of a nonrelativistic
quantum field theory. During almost 90-year development of polaron theory, practi-
cally the entire apparatus of theoretical physics has been tested. For example, the
technique of continual integration became generally recognized after its successful ap-
plication in the polaron theory by Feynman (1955). The method of collective coordi-
nates in the quantum field theory also appeared after the work by Bogolyubov and
Tyablikov on the strong coupling polaron. The methods of the theory of coherent and
squeezed states, widely used in quantum optics and many other branches of physics,
after the appearance of Glauber’s works, were also first developed by Tulub in the the-
ory of polarons. However, despite the efforts of many generations of theorists, the po-
laron problem has not yet found its complete solution.

The polaron theory, based on the Schrödinger equation for an electron interact-
ing with an infinite number of field oscillators, is the simplest example of quantum
field theory.

The mathematical apparatus for the formulation of such a quantum field prob-
lem, in principle, made it possible to do this immediately after the matrix formula-
tion of Schrödinger’s quantum mechanics by Heisenberg.

In the theory of solids, this was first done by Pekar for a strong coupling po-
laron. In modern terms, the solution to the problem was given in the form of an
ansatz, in which it is presented in a multiplicative form, composed of the product of
the electron wave function and the coherent states of the field oscillators. Coherent
states are understood, according to their definition introduced later by Glauber, as
the eigenstates of the annihilation operator.

Later, Fröhlich, Lee, Low, and Pines constructed an ansatz, in which a solution
was given in the form of the product of the Heisenberg operators eliminating the
electronic coordinates and therefore making the theory translation invariant and
the shift operators acting on the vacuum wave function of the Hamiltonian, which
corresponded to the case of weak interaction electron with field oscillators.

Finally, 10 years later, in 1961, Tulub gave a solution to the problem in the form
of an ansatz, in which for the first time appeared the squeezed operator acting on
the vacuum wave function. Tulub’s ansatz gave a solution in the entire range of var-
iation of the coupling constant and, in cases of strong and weak coupling, repro-
duced the results of Pekar, Fröhlich, Lee, Low, and Pines.

https://doi.org/10.1515/9783110786668-202
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A completely different problem, seemingly unrelated to the polaron problem,
arose in 1911 after the Dutch scientist Kamerlingh Onnes (1911) discovered supercon-
ductivity, long before the creation of quantum mechanics.

The construction of the quantum theory of superconductivity took place with great
difficulty. The phenomenological foundations of the theory were laid in the works of
Tisza and London, and its peak was the construction of a phenomenological theory by
Ginzburg and Landau almost 40 years after the discovery of superconductivity.

The discovery of the isotope effect in the middle of the last century turned out to
be a clue for the construction of a microscopic theory of superconductivity. It became
clear that the lattice is involved in this phenomenon, that is, the electron–phonon
interaction. A microscopic theory based on electron–phonon interaction was devel-
oped by Bardeen, Cooper, and Schrieffer (BCS) in 1957. The theory was constructed in
the approximation of weak electron–phonon interaction and described well the situa-
tion in metals.

For some time, after the BCS triumph, the theory of superconductivity and the
theory of polarons were developed as two unrelated theories. Despite their mathe-
matical elegance, in practical terms, they were of little interest: the theory of po-
laron had no practical applications at all, and the theory of superconductivity was
unable to indicate the way to increase the temperature of the superconducting tran-
sition. For this reason, the discovery of high-temperature superconductivity in 1986
by Bednorz and Müller had little to do with theoretical advances. A qualitative guid-
ing idea for one of the authors of the discovery, K. Müller, was his assumption
about the bipolaron mechanism of high-temperature superconductivity. The discov-
ery of Müller and Bednorz inspired researchers all over the world to search for
superconductors operating at room temperature (at the time of writing this mono-
graph, the record temperature was 15 °C for a mixture of hydrogen sulfide and
methane obtained at a pressure of 2.5 million atmospheres).

The bipolaron theory of superconductivity currently provides one of the possi-
ble solutions to this problem. A great contribution to its development was made by
the works by Vinetskii, Anderson, Alexandrov, Mott, Ranninger, and others. Most
of these works were devoted to small-radius polarons and bipolarons.

In the 2010–2020s of our century, the author developed a theory of superconduc-
tivity based on translation-invariant large-radius polarons, capable of explaining a
large set of experimental facts on high-temperature superconductors. The theory is
based on the equivalence of the Bogolyubov transformation, which he used to con-
struct the theory of superconductivity, and the squeezed operator, involved in the solu-
tion of the polaron and bipolaron problem. The theory developed provides a solution
to the spectral problem both in the case of a polaron and a bipolaron. The solution of
the spectral problem for a polaron and a bipolaron can find application in various
fields of physics, but the most urgent is its use in the theory of superconductivity. Al-
though this theory has been published in a number of articles and reviews, its system-
atic presentation in the form of a monograph seems appropriate to the author. At the

VI Preface
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same time, much attention is paid to a consistent explanation of the experimental re-
sults based on the minimum number of assumptions made and the parameters of the
theory.

The results presented in the monograph may be of interest for a wide range of
areas of physics of condensed systems, as well as high-energy physics.

The book can be useful not only for specialists but also for senior students and
graduate students who specialize in condensed matter physics.

Victor Dmitrievich Lakhno, March 2022

Preface VII
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1 Introduction

Pluralitas non est sine necessitate
(entities should not be multiplied without necessity)

Occam

1.1 Background of the problem

The theory of superconductivity (SC) for ordinary metals is one of the finest and
long-established branches of condensed matter physics which involves macro-
scopic and microscopic theories and derivation of macroscopic equations from a mi-
croscopic description (Lifshitz and Pitaevskii, 1980). In this regard, the theory at its
core was presented in its finished form and its further development should imply
detalization and consideration of special cases.

The situation changed after the discovery of high-temperature SC (HTSC) (Bed-
norz and Müller, 1986). Surprisingly, the correlation length in oxide ceramics
turned out to be several orders of magnitude less than in ordinary metal supercon-
ductors and the width of the gap much larger than the superconducting transition
temperature (Ginzburg, 2000). The current state of the theory and experiment is
given in books and reviews (Kakani and Kakani, 2009; Tohyama, 2012; Kruchinin
et al., 2011; Sinha and Kakani, 2002; Benneman and Ketterson, 2008; Schrieffer,
1999; Cooper and Feldman, 2011; Plakida, 2010; Askerzade, 2012; Gunnarsson and
Rösch, 2008; Moriya and Ueda, 2000; Manske, 2004; Kresin et al., 2021).

Presently, the main problem is to develop a microscopic theory capable of ex-
plaining experimental facts which cannot be explained by the standard Bardeen–
Cooper–Schrieffer (BCS) theory (Bardeen et al., 1957).

While modern versions of a microscopic description of HTSC are many – phonon,
plasmon, spin, exciton, and so on – the central point of a microscopic theory is the
effect of electron coupling (Cooper effect). Such “bosonization” of electrons further
lies in the core of the description of their superconducting condensate.

The phenomenon of pairing in a broad sense is the formation of bielectron
states and in a narrow sense, if the description is based on a phonon mechanism –
the formation of bipolaron states. For a long time, this concept has been in conflict
with a great correlation length or the size of Cooper pairs in the BCS theory. The
same reason hindered the treatment of SC as a boson condensate (see footnote at
page 1177 in Bardeen et al. (1957)). In no small measure, this incomprehension was
caused by a standard idea of bipolarons as very compact formations.

The first indication of the fallacy of this viewpoint was obtained in the work of
Keldysh and Kozlov (1967) where an analogy between the BCS and Bose–Einstein con-
densation (BEC) was demonstrated while studying the properties of a high-density ex-
citon gas. The results of Keldysh and Kozlov (1967) enabled one to develop the idea of

https://doi.org/10.1515/9783110786668-001
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a crossover, that is, passing on from the BCS theory which corresponds to the
limit of weak electron–phonon interaction (EPI) to the BEC theory which corre-
sponds to the limit of strong EPI (Eagles, 1969; Nozi`eres and Schmitt-Rink, 1985;
Loktev, 1996; Randeria, 1997; Uemura, 1997; Drechsler and Zwerger, 1992; Griffin
et al., 1996). It was believed that additional evidence in favor of this way is Eliash-
berg strong coupling theory (Eliashberg, 1960). According to Marsiglio and Carbotte
(1991), in the limit of infinitely strong EPI, this theory leads to the regime of local
pairs, though greatly different from the BEC regime (Micnas et al., 1990).

However, attempts to develop a crossover theory between BCS and BEC faced
insurmountable difficulties. For example, it was suggested to develop a theory,
with the use of a T-matrix approach, where the T-matrix of the initial fermion sys-
tem would transform into the T-matrix of the boson system as the EPI enhances
(Zwerger, 2012; Bloch et al., 2008; Giorgini et al., 2008; Chen et al., 2005; Ketterle
and Zwierlein, 2007; Pieri and Strinati, 2000). However, this approach turned out to
fail even in the case of heavily diluted systems. Actually, the point is that even in the
limit when a system consists of only two fermions, one cannot construct a one-boson
state out of them. In the EPI theory, this problem is known as the bipolaron one.

One reason why the crossover theory failed is as follows. Like the bipolaron the-
ory, the BCS theory is based on the Fröhlich Hamiltonian. For this Hamiltonian, an
important theorem of the analyticity of the polaron and bipolaron energy with re-
spect to EPI constant is proved (Gerlach and Löwen, 1991). However, in the BCS the-
ory an important assumption is made – a real matrix element is replaced by a
model quantity which is a matrix element truncated from the top and from the bot-
tom of the phonon momenta. This procedure is, by no means, fair. As it is shown in
Lakhno (2013), in the bipolaron theory this leads to side effects – existence of a
local energy level separated by a gap from the quasicontinuous spectrum (Cooper
effect). This solution is isolated and nonanalytical with respect to the coupling con-
stant. In the BCS theory, just this solution forms the basis for the development of
the SC theory.

As a result, the theory developed and its analytical continuation – Eliashberg
theory – distort the reality and, in particular, make it impossible to construct a the-
ory on the basis of the BEC. Replacement of a real matrix element by its model ana-
log enables one to perform analytical calculations completely. In particular, a
replacement of a real interaction by a local one in the BCS enabled one to derive the
phenomenological Ginzburg–Landau model which is also a local model (Gor’kov,
1959). Actually, the power of this approach can hardly be overestimated since it en-
abled one to get a lot of statements consistent with the experiment.

Another more important reason why the crossover theory failed is that vacuum
in the polaron (bipolaron) theory with spontaneously broken symmetry differs from
the vacuum in the translation-invariant (TI) polaron (TI bipolaron) theory in the
case of strong interaction which makes it impossible for the Eliashberg theory to
pass on to the strong coupling TI bipolaron theory.

2 1 Introduction
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In this book, we present an SC theory based on the EPI. There the BCS corre-
sponds to the limit of weak EPI, and the case of strong EPI corresponds to a TI bipo-
laron SC theory where the SC phase corresponds to a TI bipolaron Bose condensate
(Chapter 4).

The relevance of a monograph on a bipolaron mechanism of SC is caused by
the following facts: (1) Most publications on bipolaron SC are devoted to small-
radius polarons (SRP) (Alexandrov and Krebs, 1992), while in the past time, after
the theory of SC on the basis of SRP had been criticized (Chakraverty et al., 1998; de
Mello and Ranninger, 1997, 1999; Firsov et al., 1999), interest has shifted to large-
radius polarons; (2) most of papers published in the past decades were devoted to
magnet-fluctuation mechanisms of SC while more recent experiments where record
Tc (under high pressure) were obtained, were performed on hydrogen sulfides and
lanthanum hydrides where magnetic interactions are lacking but there is a strong
EPI; (3) crucial evidence in favor of a bipolaron mechanism is provided by recent
experiments (Zhou et al., 2019), which demonstrate the existence of pairs at temper-
atures higher than Tc. (4) Important evidence for the bipolaron mechanism of SC is
experiments (Božović et al., 2016), where the number of paired states in HTSC was
demonstrated to be far less than the total number of current carriers.

In Chapter 2, we outline the main ideas of TI polarons and bipolarons in 3D
polar crystals. The presentation here follows the review (Lakhno, 2015b). As in the
BCS theory, the description of the TI bipolaron gas is based on the EPI and Fröhlich
Hamiltonian. A general form of the solution to the polaron (bipolaron) problem in
the form of the Tulub ansatz is presented.

As distinct from the BCS theory where the correlation length greatly exceeds
the mean distance between the pairs, in this review we deal with the opposite case
when the correlation length is far less than the distance between the pairs. The the-
ory is generalized to the case of excitons (Lakhno, 2021a).

Chapter 3 is devoted to the one-dimensional case of the Holstein polaron and
bipolaron, which is relevant in modern HTSC theories based on the Hubbard model
and its modifications (Lakhno and Sultanov, 2011; Lakhno, 2014, 2016a).

In Chapter 4, we give a general solution to the spectral problem for a polaron
and a bipolaron. The solution obtained is used to describe the thermodynamic
properties of a three-dimensional Bose condensate of TI bipolarons. The critical
transition temperature, energy, heat capacity, and transition heat of the TI bipo-
laron gas are discussed. The influence of an external magnetic field on the thermo-
dynamic characteristics of a TI bipolaron gas is considered. The presentation here
follows the review (Lakhno, 2020a). Based on the results obtained in this chapter,
the theory of the pseudogap phase is constructed (Lakhno, 2021b).

In Chapter 5, a comparison with experiment is given for such characteristics as
the maximum value of the magnetic field intensity at which the existence of TI bi-
polaron condensate is possible, the London penetration depth and its temperature
dependence (Lakhno, 2019b). A theory of the isotope effect for the superconducting
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transition temperature and for the London penetration depth is developed (Lakhno,
2020b). The results obtained are used to explain experiments on HTSCs. Particular
attention is paid to the fact that, according to the TI bipolaron theory of HTSC, dif-
ferent types of experiments measure different quantities as a SC gap. It is shown
that tunneling experiments are used to determine the energy of bipolarons, while
the angular resolution photoemission spectroscopy (ARPES) measures the phonon
frequency for which the EPI is maximum. According to the TI bipolaron theory of
superconductors, a natural explanation is given to such phenomena as the pres-
ence of kinks in spectral measurements of the gap, the angular dependence of the
gap, the absence of the isotope effect for optimally doped superconductors, the
presence of a pseudogap, and so on (Lakhno 2020a).

In Chapter 6, the TI bipolaron theory is used to describe a moving Bose conden-
sate. The Little–Parks effect is considered.

Chapter 7 establishes a correlation between the theories of SC based on the con-
cept of charge density waves (CDW) and TI bipolaron theory. It is shown that CDWs
are formed in the pseudogap phase from bipolaron states due to Kohn anomaly,
forming a pair density wave (PDW), with wave vectors corresponding to nesting.
Formed in the pseudogap phase, CDWs coexist with SC at temperatures below the
superconducting transition temperature, and their amplitude decreases with the
formation of a Bose condensate from TI bipolarons, vanishing at a temperature
equal to zero (Lakhno, 2020c, 2021c). The questions of CDW pinning and the theory
of strange metals are considered.

1.2 Polaron and fundamental problems of nonrelativistic
quantum field theory

The polaron theory is based on the Fröhlich Hamiltonian which describes the inter-
action of an electron with phonon field:

H = p̂2

2m
+
X
k

�hω kð Þa+
k ak +

X
k

Vk

h
ake

ikr + a+
k e

− ikr
i
, (1:2:1)

where r is the radius vector of an electron, and p̂ is its momentum; m is the electron
effective mass; a+

k , ak are operators of the birth and annihilation of the field quanta
with energy �hω kð Þ, and Vk is the matrix element of an interaction between an elec-
tron and a phonon field.

In the condensed matter physics, the polaron theory is a broad field which in-
volves the description of electron properties of ionic crystals (Pekar, 1954; Fröhlich
et al., 1950; Kuper and Whitfield, 1963; Devreese and Alexandrov, 2009; Lakhno,
1994), polar superconductors (Devreese, 1972; Devreese and Peeters, 1984), conduct-
ing polymers (Heeger et al., 1988; Ribeiro et al., 2013; Junior and Stafström, 2015),
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biopolymers (Schuster, 2004; Starikov et al., 2006), HTSCs (Emin, 1986; Emin,
2013; Alexandrov and Mott, 1996; Iadonisi et al., 2006), magnetic semiconductors
(Nagaev, 1979; Lakhno, 1984), and other important objects of condensed matter.

The reason of such popularity of the polaron model is its universality. Funda-
mentally, all the physical phenomena are described relying on the quantum-field
formulation. In nonrelativistic physics, its simplest realization is based on the use
of Fröhlich Hamiltonian (1.2.1).

Various expressions for Vk and ω(k) in the case of ionic crystals, piezoelectrics,
superconductors, nuclear matter, and degenerated semiconductor plasma are given
in Lakhno and Chuev (1995). Thus, Hamiltonian (1.2.1) describes the motion of an
electron in an ionic crystal if:

Vk =
e
kj j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π�hωk

V ε~

r
, ωk =ω0, (1:2:2)

where e is an electron charge and ~ε is the effective dielectric constant.
In a piezoelectric semiconductor:

Vk =
1

k1=2
4π
V

�h=μs
�h2ε=μe2

e2ijk
D E
2εc

0@ 1A, ωk = sk, (1:2:3)

where s is the sound velocity, c is the elastic constant, and e2ijk
D E

is the averaged
square of the piezoelectric tensor.

In a nonpolar medium:

Vk =Gk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2ρVωk

s
, ωk = sk, (1:2:4)

where ρ is the medium density and G is a certain constant. A similar (1.2.4) Hamilto-
nian is used in the SC theory.

In the case of nuclear matter:

Vk =
gffiffiffiffiffiffiffiffiffiffiffi
2ωkV

p , ωk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ20c4

�h2
+ c2k2

s
, (1:2:5)

where g is a coupling constant of a nucleon with a meson field, μ0 is a meson mass,
and c is the light velocity.

In the case of interaction with the plasma of a degenerate semiconductor:

Vk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πωpε kð Þ

Vε0 ε kð Þ− 1ð Þ

s
e
kj j , ωk =ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε kð Þ

ε kð Þ− 1ð Þ

s
, (1:2:6)

where ωp is a plasma frequency and ε kð Þ is a plasma permittivity.
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Recently, Hamiltonian (1.2.1) has been used to describe impurity atoms placed
in a Bose–Einstein condensate of ultracold atoms (Grusdt et al., 2017), electrons in
low-dimensional systems (Iadonisi et al., 2006; Jackson and Platzman, 1981; Chatterjee
and Mukhopadhyay, 2018; Shikin and Monarkha, 1973), and so on.

For an impurity in Bose condensate, according to Cucchietti and Timmermans
(2006), Sacha and Timmermans (2006), and Tempere et al. (2009):

Vk =
aIB

ffiffiffiffiffi
n0

pffiffiffiffiffi
2π

p
M

ξkð Þ2
2+ ξkð Þ2
" #1=4

, ωk = ck 1+ ξkð Þ2
2

" #1=2
, (1:2:7)

c and ξ are the sound velocity in the condensate and a characteristic length of
damping of disturbances in the condensate, respectively, aIB is the length of boson
scattering on an impurity, n0 is a density of Bose condensate, M − 1 =m− 1

B +m− 1
I , mB.

is a mass of a lattice atom, mI is a mass of an impurity atom.
Rather, a simple form of Hamiltonian (1.2.1) has encouraged researchers to find

an exact solution of the polaron problem. In the stationary state, an exact solution
would give a spectrum of Hamiltonian (1.2.1) and, as a consequence, a solution of a
wide range of condensed matter physics problems. However, the problem turned
out to be much more complicated than it seemed to be. To solve it, various methods
and techniques of the quantum field theory were used such as the Green function
method, diagram technique, path integral method, renormalization group method,
quantum Monte Carlo method, diagram Monte Carlo method, and so on. Various
variational approaches, the most efficient of which turned out to be Feynman’s
path integral method, enabled researchers to find an approximate dependence of
the polaron ground-state energy over the whole range of variation of the EPI con-
stant α.

The above approaches, however, failed to determine the spectrum of Hamilto-
nian (1.2.1) even in the weak coupling limit (Tkach et al., 2015).

In the limit of strong coupling, in order to investigate the properties of Hamilto-
nian (1.2.1), starting with pioneering works by Pekar (1954), use was made of the
canonical transformation:

ak ! ak −Vkρ
✶
k =�hω kð Þ, (1:2:8)

where ρk✶ is the Fourier component of the charge distribution density. Transforma-
tion (1.2.8) singles out the classical component (second term in the right-hand side
of (1.2.8)), from the quantum field which, by assumption, should make the main
contribution into the strong coupling limit. Starting with the work by Lieb and Ya-
mazaki (1958) (see also Lieb and Thomas, 1997 and references therein), a lot of pa-
pers dealt with the proof that the functional of Pekar total energy for the polaron
ground state yielded by (1.2.8) is asymptotically exact in the strong coupling limit.
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In other words, it was argued that the choice of a variation wave function of the
ground state in the form:

Ψj i=ϕ rð Þ exp
X
k

Vk

ρ✶k
�hω kð Þ ak − a+

k

� �
0j i, (1:2:9)

where ϕ(r) is the electron wave function, which, in the case of the total energy of
the polaron ground state E = <Ψ|H|Ψ >, leads to Pekar functional of the strong
coupling:

E = �h2

2m

ð
∇Ψj j2d3r −

X
k

V2
k

�hω kð Þρ
✶
k ρk , (1:2:10)

yields rather an exact solution in the strong coupling limit.
In this case, the spectrum of the polaron excited states was considered only for

a resting polaron P =0, where P is the polaron momentum. Variation of (1.2.4) over
Ψ✶ leads to a nonlinear Schrödinger equation for the wave function Ψ, which has
the form of Hartree equation. Numerical integration of this equation was performed
in Balabaev and Lakhno (1980) and some polaron excited states and relevant renor-
malized phonon modes were found (see, for example, review by Lakhno and Chuev
(1995)).

Hence, most of the papers on the polaron theory in the strong coupling limit
realize the method of quantizing in the vicinity of a classical solution which is now
widely used in the nonperturbative quantum field theory (Rajaraman, 1982).

Fundamentally, this method seemed unsatisfactory even at the early stages of
the development of the polaron theory. Indeed, if in the strong coupling limit the
polarization field can be considered to be classical and nonzero, it becomes unclear
how this macroscopic state can be held by a single electron. It is possible only in
the case when the field is equal to zero except for a small region where the electron
is localized forming a self-consistent state with the field. In this case, the initial
translational symmetry turns out to be broken: the polarization potential well can
spontaneously form, equally likely, in any region of space. All the attempts to con-
struct a TI theory on the basis of this physical picture yielded the same results that
the initial semiclassical strong coupling theory developed by Pekar (1954).

The situation changed radically after the publication of the papers (Lakhno,
2010b, 2012a, 2012b, 2013; Kashirina et al., 2012) where a fundamentally different
mechanism of an electron motion in a polar crystal was considered. According to
Lakhno (2010b, 2012a, 2013) and Kashirina et al. (2012), when moving along a crys-
tal, an electron not only displaces equilibrium states of atoms, but also alters the
profile of their potential energy in the crystal which is equivalent to the formation
of their squeezed oscillatory states (Hakioglu et al., 1995; Shumovskii 1991; Braun-
stein, 2005). For a TI polaron, average (i.e., classical) displacements of atoms from
their equilibrium positions, as distinct from a Pekar polaron, are equal to zero.

1.2 Polaron and fundamental problems of nonrelativistic quantum field theory 7
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Accordingly, polarization of the crystal is equal to zero too, since a TI polaron is
spatially delocalized. However, the mean values of phonon occupation numbers in
a polaron crystal are not equal to zero. This paradox is resolved by the fact that the
nonzero mean number of phonons is caused by the availability of squeezed (i.e.,
nonclassical) states excited by an electron.

Squeezing of phonon states induced by the electron motion along a crystal leads
to a new type of a bound state of the electron–phonon system described by a unified
wave function which presents a new type of ansatz and cannot be presented as a fac-
torized ansatz formed by the electron and phonon parts individually (Lakhno, 2015b).

The theory of squeezed states was first used in the polaron theory in Tulub
(1961). In view of a nonoptimal choice of the variation wave function in Tulub
(1961), the results obtained for the ground-state energy actually reproduce those de-
rived by Pekar. This significantly delayed their use in the polaron theory. For this
reason, intensive development of the squeezed state theory took place much later –
after the paper by Glauber (1963), who drew attention to their important role in the
understanding of the principle of uncertainty and the principle of superposition in
quantum mechanics.

Presently, squeezed states have widespread application: in optics they are used
to suppress self-noise of light; in computing technics, for the development of optical
computers and communication lines; in precision measurements; in interference an-
tennae of gravitation waves, and so on (see, for example, books and reviews: Teich
and Saleh (1991), Schleich (2001),Misochko (2013)).

In the polaron theory, the squeezed state method, after the pioneering work by
Tulub (1961), was used in Hang Zheng (1988a, 1988b, 1988c, 1988d, 1989) for a dis-
crete model of a Holstein polaron (Holstein 1959a, 1959b) and in Porsch and Röseler
(1967), Röseler (1968), Barentzen (1975), Kandemir and Altanhan (1994), Kandemir
and Cetin (2005), Nagy (1991), Zhang Yan-Min and Ze Cheng (2007), Kervan et al.
(2003) for a Fröhlich polaron. In Hang Zheng (1988a, 1988b, 1988c, 1988d, 1989),
some very important results were obtained: first, the polaron ground-state energy
of squeezed states turned out to be lower than that in all the papers on a Holstein
polaron where an ordinary vacuum is used; second, the effective mass of a Holstein
polaron calculated for squeezed states appeared to be much less than that obtained
by Holstein (1959a).

This is not the case with Porsch and Röseler (1967), Röseler (1968), Barentzen
(1975), Kandemir and Altanhan (1994), Kandemir and Cetin (2005), Nagy (1991),
Zhang Yan-Min and Ze Cheng (2007), and Kervan et al. (2003), where the squeezed
state theory was applied to Fröhlich Hamiltonian. Despite the fact that a consider-
able enhancing of polaron effects was observed when squeezed states were used, in
general, the results did not differ from those obtained by Pekar (1954). As men-
tioned above, breakthrough results were obtained in Lakhno (2010b, 2012a, 2013)
and Kashirina et al. (2012) where for Pekar–Fröhlich Hamiltonian, it was shown
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that the energy of a polaron ground state and the energy of a bipolaron for squeezed
states is lower than that in the Pekar theory.

The most important application of the polaron and bipolaron theory is SC. Ap-
parently, development of an SC theory is the most difficult problem of the con-
densed matter physics since it requires a solution of a multiparticle problem. This
problem was solved by Bardeen, Cooper, and Schrieffer in the limit of weak interac-
tion on the basis of Fröhlich Hamiltonian (1.2.1) (Bardeen et al., 1957). Its solution
enabled one to explain some properties of ordinary superconductors.

The discovery of HTSC showed that the BCS theory probably cannot be applied
to them since the EPI in HTSC materials cannot be considered to be weak. Presently,
to describe this case, researchers resort to the use of Eliashberg theory (Eliashberg,
1960; Marsiglio and Carbotte, 1991; Carbotte, 1990), since it was developed for the
case of a strong EPI and in the weak coupling limit it coincides with the BCS theory.
In the absence of Coulomb repulsion, Eliashberg theory leads to the expression for
Tc such that (Kresin and Wolf, 2009):

Tc =0.25ω0= e2=λ − 1
� �1=2

, λ= 2
ð
α2 ωð ÞF ωð Þω− 1dω, (1:2:11)

where α2 ωð Þ determines the strength of EPI and depends on ω only slightly, F ωð Þ
has the meaning of the density of phonon states. In the limit of weak coupling
when λ ! 0 it follows from (1.2.11) that:

Tc =0.25ω0e-1=λ , (1:2:12)

that is the expression for Tc in BCS, while in the case of strong coupling when
λ ! ∞:

Tc =0.18λ1=2ω0 . (1:2:13)

An important consequence of Eliashberg theory of strong coupling is the conclusion
that there is no upper limit for Tc in the case of strong EPI.

However, the use of Eliashberg theory in the case of HTSC had limited success.
This fact gave rise to a number of theories which were based not on the Hamilto-
nian of EPI (1.2.1) but on other types of interaction different from EPI. These works,
eventually, faced the same problems that Eliashberg theory did.

In Eliashberg theory, a small parameter is a ratio ω/EF, where ω is the phonon
frequency, EF is the Fermi energy. If ω=EF ! 0, then the EPI constant α~ω− 1=2 ! ∞.
The perturbation theory with respect to this parameter is developed for ordinary vac-
uum phonon functions 0j i, which are taken as a zero approximation. But for α ! ∞

the proper choice of the zero approximation will be the function Λ0 0j i,
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Λ0 =C exp
1
2

X
k, k′

a+
k
A
kk′
a+
k′

8<:
9=; , (1:2:14)

where Λ0 is the operator of a squeezed state (Tulub 1961, 1960, 2015; Lakhno,
2015b). Hence, the Eliashberg theory developed for ordinary vacuum will give dif-
ferent results than the theory developed for squeezed vacuum does. Obviously, in
the limit of weak coupling, when α ! 0 the results of both the theories will coin-
cide. However, as α increases, boson vacuum determined by the vacuum function
0j i will be more and more unstable and for a certain critical value αc, a new boson
vacuum determined by the function Λ0 0j i emerges. It will be a lower energy state.
The inapplicability of the Migdal theorem was probably first mentioned by Alexan-
drov and Krebs (1992), who, in relation to the SC theory based on SRP, pointed out
that vacuum chosen on the basis of Migdal theorem “knows nothing” about another
vacuum which is a polaron narrowing of the conductivity band and formation of a
SRP in a new vacuum of squeezed states (Hang Zheng 1988a, 1988b, 1988c, 1988d,
1989). For this reason, Eliashberg theory is inadequate for the explanation of HTSC.

The foundation of superfluidity was laid in papers by London (1938) and Tisza
(1938), who were the first to relate the fundamental phenomenon of BEC to phe-
nomenon of superfluidity. The idea to treat SC as superfluidity of electron liquid
was suggested by Landau (Landau, 1941; Landau 1947). There a spectrum of ele-
mentary excitations of a superfluid liquid was introduced for the first time which
received the name of a roton spectrum and enabled one to construct a statistical
mechanics of a superfluid state. Landau could not transfer the ideas of his work on
superfluidity to SC because of a difference in statistics: Fermi statistics for electrons
in metals and Bose statistics for helium atoms in liquid helium II. The work by Bo-
golyubov (1947) on superfluidity which related the phenomenon of Bose conden-
sate to superfluidity could have accelerated the construction of the SC theory on the
basis of Bose condensate, however, at that time there was not an example of Bose
gas of charged bosons which is necessary for SC.

Further sequence of events is well known: Ginzburg and Landau (1950) devel-
oped a phenomenological theory of SC in which a microscopic mechanism of SC
was not discussed since its possible nature was unclear.

Finally, in the work by Bardeen et al. (1957), a microscopic mechanism of SC
was found. This was the mechanism of Cooper pairing of electrons. Cooper pairs,
being bosons, supposedly could have played the role of particles from which Bose
gas consists and, thus, have combined the theories of SC and superfluidity. How-
ever, that did not happen. The answer was given in the BCS theory per se – the size
of Cooper pairs in metals turned out to be so huge that in each pair there was about
of a million of other pairs. For this reason, an analogy between a Bose–Einstein
condensate and SC, was discarded in Bardeen et al. (1957). Interest in it emerged
only in 1986 when Müller and Bednorz discovered HTSC.
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To be fair, it should be emphasized that a possibility of the formation of such a
singular quantum state as Bose condensate was predicted by Einstein on the basis
of generalization of Bose statistics to the case of a finite mass of a Bose particle.
Until the publication of the BCS work, there was not an example of a charged boson
with a finite mass in the condensed matter physics. The first example of a possible
existence of such quasiparticles was a Cooper pair which enabled BCS to construct
a theory of SC. A Cooper pair, as was mentioned above, being overlapped with
others could not be a true quasiparticle. For the same reason, both in the BCS and
in Bogolyubov (1958) theory, there is only a single-electron spectrum of Fermi-type
excitations. Hence in the framework of BCS, as it was stated by its authors, a theory
of Bose condensate cannot be constructed.

In 1970–1980, a small-radius bipolaron (SRBP) was considered as a quasiparti-
cle possessing the properties of a charged boson, having a mass, and capable of
forming a Bose condensate in narrow-bandgap crystals (Anderson, 1975).

For a long time, works on SC based on the idea of Bose condensate of SRBP
were developed by Alexandrov and Krebs (1992), Alexandrov and Mott (1996), Alex-
androv and Kornilovitch (1999), Alexandrov and Ranninger (1981), and Firsov et al.
(1999).

In view of a large mass of SRP and SRBP, the temperature of the SC transition
determined by the temperature of BEC formation should be low. This fact was
pointed out in Chakraverty et al. (1998) and de Mello and Ranninger (1997, 1999),
which criticized the SC theory based on SRP.

After the discovery of HTSC some other approaches were developed the most
popular of which was Anderson resonating valence bond theory and t-J model (An-
derson, 1997; Izyumov, 1997).

Notwithstanding a strong attraction of these models from the viewpoint of the-
ory, for example, a possibility to describe both conducting and magnetic properties
of crystals on the basis of one simple Hamiltonian, they turned out to be ineffective
for explaining HTSC. In particular the fact of a possible existence of a SC phase in
these models did not receive a reliable proof.

In view of the fact that recent experiments by Zhou et al. (2019) and Božović
et al. (2016) suggest a phonon nature of the SC mechanism in HTSC with a record
Tc, further presentation is based on EPI. Being general, the theoretical approaches
considered can be applied to other types of interaction different from EPI.
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2 Pekar’s ansatz and the strong coupling problem
in polaron theory

A detailed consideration is given to the translation-invariant theory of Tulub polaron con-
structed without the use of Pekar’s ansatz. It is shown that the wave function of a polaron (bi-
polaron) is the product of the unitary Heisenberg operators, the shift operator and the
squeezed operator acting on the vacuum wave function. A fundamental result of the theory is
that the value of the TI polaron energy is lower than that obtained on the basis of Pekar’s an-
satz which was considered as an asymptotically exact solution in the strong coupling limit. In
the case of bipolarons the theory yields the best values of the coupling energy and critical pa-
rameters of their stability. Numerous physical consequences of the existence of translation-
invariant polarons and bipolarons are discussed. The theory is generalized to the case of
excitons.

2.1 Introduction: Pekar’s ansatz

As is known, polaron theory was among the first to describe the interaction be-
tween a particle and a quantum field. Various aspects of the polaron theory are pre-
sented in numerous reviews and books (Pekar, 1954; Kuper and Whitfield, 1963;
Devreese, 1972; Devreese and Peeters, 1984; Devreese and Alexandrov, 2009; Firsov,
1975; Lakhno, 1994; Kashirina and Lakhno, 2010, 2013; Emin, 2013). Being nonrela-
tivistic, the theory does not contain any divergencies and for more than 60 years
has been a testing area for approbation of various methods of the quantum field
theory. Though no exact solution of the polaron problem has been found up to
now, it has been believed that the properties of the ground state are known in de-
tail. This primarily refers to the limit cases of weak and strong coupling. A solution
in the weak coupling limit was given by Fröhlich et al. (1950), and that in the strong
coupling one was found by Pekar (1954, 1946a, 1946b). By now rather an exact solu-
tion has been obtained for the energy of the polaron ground state in the weak cou-
pling limit (Smondyrev, 1986; Selyugin and Smondyrev, 1989):

E0 = − ðα+ 0.0159196220α2 + 0.000806070048α3 + � � �Þ�hω0 (2:1:1)

where �hωo is the energy of an optical phonon and α is a constant of electron–phonon
coupling.

A solution of the problem in the opposite strong coupling limit was given by
Pekar on the assumption that the wave function Ψ of the electron + field system has
the form:

Ψðr, q1, . . . , qi, . . .Þ=ψðrÞΦðq1, . . . , qi, . . .Þ, (2:1:2)

where ψðrÞ is the electrons wave function depending only on the electron coordinates
and Φ is the wave function of the field depending only on the field coordinates.

https://doi.org/10.1515/9783110786668-002
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Pekar (1954) considered ansatz (2.1.2) to be an approximate solution. In the pioneer
works by Bogolyubov (1950) and Tyablikov (1951), it was shown that in a consistent
translation-invariant theory the use of ansatz (2.1.2) (for decomposed coordinates in-
troduced in Bogolyubov (1950)and Tyablikov (1951)) gives the same results for the po-
laron ground state energy as the semiclassical Pekar (1954, 1946) theory does. Since
the problem of the translational invariance of the polaron was first clearly indicated
in these works, let us dwell in more detail on the assumptions made in them.

For this purpose, we pass in the Fröhlich Hamiltonian (1.2.1) from the creation
and annihilation operators a+

k , ak to the complex coordinates of the field qk using
the relations:

qk = ak + a+
− k

� �
=
ffiffiffi
2

p

−
∂

∂qk
= a+

k − a− k

� �
=
ffiffiffi
2

p
.

(2:1:3)

As a result, Hamiltonian (1.2.1) takes the form of the Pekar Hamiltonian:

H = p̂2

2m
+
X
k

Akqkeikz +
1
2

X
�hω kð Þ qkq− k −

∂

∂qk

∂

∂q− k

� �
,

Ak =
ffiffiffi
2

p
Ck

(2:1:4)

It can be seen from (2.1.4) that the coordinates qk and momenta − i∂=∂qk canonically
conjugate to them enter the field energy in the same way. To make their contribution
into energy unequal, in the works by Bogolyubov (1950) and Tyablikov (1951), the
transformation is used:

~qk = εqk, ω kð Þ= ε2ν kð Þ (2:1:5)

As a result, Hamiltonian (2.1.4) takes on the form:

H = p̂2

2m
+
X
k

~Ak ~qk +
1
2

X
k

v kð Þ~qk~q− k −
ε4

2

X
k

v kð Þ ∂

∂~qk

∂

∂~q− k
,

~Ak =
e
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π�hcv kð Þ

V

r
= 1
ε
Ak,

in which the small parameter ε is involved only in the last term of the Hamiltonian,
whose contribution in the zero approximation can be neglected.

It is easy to see, however, that through the transformation qk = ε~qk, ω= ε2ν we
get that the potential energy of the field is small, which is now ⁓ ε4 and the kinetic
energy should be considered as a zero approximation.

In fact, the reason for the choice in the works by Bogolyubov (1950) and Tyablikov
(1951) of the potential energy as the zero approximation is associated with additional
assumptions. To reproduce the Pekar’s limit of the strong coupling in Bogolyubov
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(1950) and Tyablikov (1951), an assumption is made about the existence of the classi-
cal component of the quantum field. The presence of such a component does not in
any way affect the kinetic energy of the field, while its contribution to the potential
energy of the field becomes dominant. Up to date the energy of ground state with the
use of (1.2) was found with great accuracy and is equal (Miyake, 1975, 1976):

E = ð−0.108513α2 − 2.836Þ�hω0. (2:1:6)

In fact, introducing the classical component is equivalent to choosing a solution in
the form of the Pekar’s ansatz (2.1.2). When the assumption of the presence of the
classical component of the field in the theory by Bogolyubov (1950) and Tyablikov
(1951) is abandoned, the small parameter also ceases to exist. This, in particular, is
associated with all unsuccessful attempts to construct a perturbation theory on ε in
the strong-coupling limit without resorting to the concept of the classical field.

The concept of Pekar’s ansatz (2.1.2) as an exact solution to the problem of a
strong-coupling polaron was fully confirmed after the publication of Adamowski
et al. (1980), in which the method of path integrals, that is, without the use of an-
satz (2.1.2), asymptotics (2.1.3) was rigorously proved (see also the review by Ger-
lach and Löwen (1991)).

Before the publication of Adamowski et al. (1980), many attempts were made to
improve the strong coupling theory (Höhler, 1955; Allcock, 1956; Gross, 1955; Buy-
mistrov and Pekar, 1957; Toyozawa, 1961; Gross, 1976). The reason why Pekar’s an-
satz caused the feeling of disappointment was translation invariance of the initial
polaron Hamiltonian. When ansatz for the wave function ψðrÞ in (2.1.2) is used, the
wave equation has a localized solution. The electron is localized in a potential po-
larization well induced by it. In other words, the solution obtained does not possess
the symmetry of the initial Hamiltonian. Self-trapping of the electron in the local-
ized potential well leads to a spontaneous breaking of the systems symmetry. At-
tempts to restore the initial symmetry were based on the use of degeneration of the
system with broken symmetry. Since in a homogeneous and isotropic medium noth-
ing should depend on the position of the polaron well center r0, one can “spread”
the initially localized solution over all the positions of the polaron potential well by
choosing the wave function in the form of a linear combination in all the positions
of the well.

In the most consistent form, this program was carried out in Buymistrov and
Pekar (1957). With this end in view for the wave function which is an eigenfunction
of the total momentum, the authors used a superposition of plain waves corre-
sponding to the total momentum multiplied by wave functions obtained from (2.1.2)
to which a translations operator is applied. In other words, they took an appropriate
superposition with respect to all the positions of the polaron well r0.

The main result of Buymistrov and Pekar (1957) is that calculation of the po-
laron ground state energy with such a delocalized function yields the same value as
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calculations with localized function (2.1.2) do. Buymistrov and Pekar (1957) also re-
produced the value of the polaron mass which was earlier obtained by Landau and
Pekar (1948), on the assumption that polaron moves in medium in the localized
state (2.1.2) (for acoustic 1D polaron see Schüttler and Holstein, 1986). The results
derived in Buymistrov and Pekar (1957) were an important step in resolving the con-
tradiction between the requirement that the translation-invariant wave function be
delocalized while the wave function of the self-trapped state be localized.

Notwithstanding the success achieved with this approach it cannot be considered
fully adequate since it has quite a few inconsistencies. They follow from the very na-
ture of the semiclassical description used. Indeed, the superposition constructed in
Buymistrov and Pekar (1957), on the one hand, determines the polaron delocalized
state, but on the other hand, without changing this state, one can measure its position
and find out a localized polaron well with an electron localized in it. The reason of this
paradox is a classical character of the polaron well in the strong coupling limit and, as
a consequence, commutation of the total momentum operator with the position of the
polaron well1 r0. To remedy this defect some approaches were suggested in which the
quantity r0, which is not actually an additional degree of freedom was considered to
be that with some additional constraints on the function r0ðr, q1, . . . , qi, . . .Þ. Discus-
sion of these challenges associated with solution of the problem of introducing collec-
tive coordinates is given in Lakhno (1998).

Since the results obtained by introducing collective coordinates into the po-
laron theory are polemical it seems appropriate to describe strict results of the
translation-invariant theory without recourse to the concept of collective coordi-
nates. The aim of this review is to present an approach used in the strong coupling
limit which does not use Pekar’s ansatz.

A solution possessing these properties in the case of a strong coupling polaron
was originally found by Tulub (1960, 1961). For nearly half a century, the result ob-
tained in Tulub (1960, 1961) was not recognized by specialists working in the field
of polaron theory. The reason why the importance of the result obtained in Tulub
(1960, 1961) was not appreciated was an improper choice of the probe wave func-
tion in Tulub (1961) to estimate the ground state. As a result, the ground state en-
ergy was found in Tulub (1961) to be: E0 = −0.105α2�hω0, which is larger than in
(2.1.6). An appropriate choice of the wave function has been made quite recently in

1 At the rise of quantum mechanics, the founders of the science were fully aware of the difficulties
arising here. Thus, for example, Bethe (1964) notices that for a proper quantum-mechanical de-
scription of an interaction between a field and particles, quantizing of the field is required, that is,
quantum theory of the field: “The fact is that, when quantizing mechanical parameters (coordinates
and momenta) one should also quantize the associated fields. Otherwise, as Bohr and Rosenfeld
(1933) showed, an imaginary experiment can be suggested which consists in simultaneous mea-
surement of the coordinate and the momentum of a particle from examination of the field induced
by it. This contravenes Heisenberg’s Uncertainty Principle.”
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Kashirina et al. (2012). This has yielded a lower than in (2.1.6) value of the polaron
ground state energy equal to: E0 = −0.125720α2�hω0. Hence, actually we have to do
with inapplicability of adiabatic approximation in the case of a polaron, though it
is fundamental for solid-state physics.

In this chapter we present the main points of the translation-invariant polaron
(TI polaron) theory and generalize it to the case of a bipolaron and exciton.

2.2 Coordinate-free Hamiltonian: weak coupling

Let us proceed from Pekar–Fröhlich Hamiltonian:

H = −
�h2

2m
Δr +

X
k

Vkðakeikr + a+
k e

− ikrÞ+
X
k

�hω0
ka

+
k ak, (2:2:1)

where a+
k , ak are operators of the birth and annihilation of the field quanta with

energy �hω0
k = �hω0, m is the electron effective mass, and Vk is a function of the wave

vector k.
Electron coordinates can be excluded from (2.2.1) via Heisenberg (1930)

transformation:

S1 = exp
i
�h

P−
X
k

�hkka+
k ak

� �
r

	 

, (2:2:2)

where P is the total momentum of the system. Application of S1 to the field opera-
tors yields:

S− 1
1 akS1 = ake

− ikr, S− 1
1 a+

k S1 = a+
k e

ikr

Accordingly, the transformed Hamiltonian ~H = S− 1
1 HS1 takes on the form:

~H = 1
2m

P−
X
k

�hka+
k ak

� �2

+
X
k

Vkðak + a+
k Þ+

X
k

�hω0
ka

+
k ak, (2:2:3)

Since Hamiltonian (2.2.3) does not contain electron coordinates, it is obvious that so-
lution of the polaron problem obtained on the basis of (2.2.3) is translation invariant.
Lee et al. (1953) studied the ground state (2.2.3) with the probe wave function Ψj iLLP:

Ψj iLLP = S2 0j i, (2:2:4)

where

S2 = exp
X
k

fk a+
k − ak

� �	 

, (2:2:5)
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fk are variational parameters having the meaning of the value of displacement of
the field oscillators from their equilibrium positions and 0j i is the vacuum wave
function. The quantity fk in S2 (2.2.5) is determined by minimization of energy
E = 0h jS− 1

2
~HS2 0j i, which for P = 0 yields:

E = 2
X
k

fkVk +
�h2

2m

X
k

kf 2k

� �2
+
X
k

�h2k2

2m
f 2k +
X
k

�hω0
k f

2
k , (2:2:6)

fk = −
Vk

�hω0
k + �h2k2=2m

. (2:2:7)

In the case of an ionic crystal:

Vk =
e
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π�hω0

~εV

r
= �hω0

ku1=2
4πα
V

� �1=2

, u= 2mω0

�h

� �1=2

, α= 1
2
e2u
�hω0~ε

, ~ε− 1 = ε− 1
∞ − ε− 1

0 ,

(2:2:8)

where e is an electron charge, ε∞ and ε0 are high-frequency and static dielectric
permittivities, α is a constant of electron–phonon coupling. With substitution of
(2.2.8) into (2.2.6) and (2.2.7) the ground state energy becomes E = − α�hω0 , which is
the energy of a weak coupling polaron in the first order with respect to α.

A solution of the problem of transition to the strong coupling case in coordi-
nate-free Hamiltonian (2.2.3) was found on the basis of the general translation-
invariant theory constructed in Tulub (1961). The main points of this theory are
given in the next section.

2.3 Coordinate-free Hamiltonian: general case

To construct the general translation-invariant theory in Tulub (1960, 1961), use was
made of a canonical transformation of Hamiltonian (2.2.3) with the use of operator
S2 (2.2.5), which leads to a shift of the field operators:

S− 1
2 akS2 = ak + fk, S− 1

2 a+
k S2 = a+

k + fk. (2:3:1)

The resultant Hamiltonian ~~H = S− 1
2

~HS2 has the form:

~~H =H0 +H1, (2:3:2)

where

H0 =
P2

2m
+ 2
X
k

Vkfk +
X
k

�hω0
k −

�hkP
m

� �
f 2k +

1
2m

X
k

kf 2k

� �2

+HKB, (2:3:3)
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HKB =
X
k

�hωka
+
k ak +

1
2m

X
k, k′

kk′fkfk′ akak′ + a+
k a

+
k′ + a+

k ak′ + a+
k′ ak

� �
, (2:3:4)

�hωk = �hω0
k
−
�hkP
m

+ �h2k2

2m
+ �hk

m

X
k′

�hk′f 2
k′
. (2:3:5)

Hamiltonian H1 contains terms “linear,” “triple,” and “quadruple” in the birth and anni-
hilation operators. With an appropriate choice of the wave function diagonalizing qua-
dratic form (2.3.4), mathematical expectation H1 becomes zero (Appendix A). In what
follows we believe that �h= 1, ω0 = 1,m = 1. To transform HKB to a diagonal form we put:

qk =
1ffiffiffiffiffiffiffiffi
2ωk

p ak + a+
k

� �
, pk = − i

ffiffiffiffiffiffi
ωk

2

r
ak − a+

k

� �
, zk =kfk

ffiffiffiffiffiffiffiffi
2ωk

p
. (2:3:6)

With the use of (2.3.6), expression (2.3.4) is written as

HKB =
1
2

X
k

p+
k pk +ω2

kq
+
k qk

� �
+ 1
2

X
k

zkqk

� �2

−
1
2

X
k

ωk. (2:3:7)

This yields the following motion equation for operator qk:

€qk +ω2
kqk = − zk

X
k

zk′qk′. (2:3:8)

Let us search for a solution of system (2.3.8) in the form:

qk tð Þ=
X
k′

Ωkk′ξk′ tð Þ, ξk tð Þ= ξ0ke
iνkt. (2:3:9)

Relation between matrix Ωkk′ and Green function is considered in Appendix B. As a
result, we express matrix Ωkk′ as follows:

ν 2
k′
−ω2

k

� �
Ω
kk′

= z
k

X
k′′

z
k′′
Ω
k′′k′

. (2:3:10)

Let us consider determinant of this system which is derived by replacing the eigen-
values ν2k in (2.3.10) with the quantity s which can differ from ν2k. The determinant of
this system will be:

det s−ω2
k

� �
δkk′ − zkzk′

 = Y
k

s− ν2k
� �

. (2:3:11)

On the other hand, according to Wentzel (1942):

det s−ω2
k

� �
δkk′ − zkzk′

 = Y
k

s−ω2
k

� �
1−

1
3

X
k′

z2k′
s−ω2

k′

 !3

. (2:3:12)
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It is convenient to introduce the quantity Δ sð Þ:

Δ sð Þ=
Y
k

s− ν2k
� �

=
Y
k

s−ω2
k

� �
. (2:3:13)

With the use of (2.3.11) and (2.3.12) Δ sð Þ is expressed as

Δ sð Þ= 1−
1
3

X
k′

z2
k′

s−ω2
k′

 !3

. (2:3:14)

From (2.3.11) and (2.3.12), it follows that the frequencies νk renormalized by interac-
tion are determined by a solution to the equation:

Δ ν2k
� �

=0 . (2:3:15)

The change in the systems energy ΔE caused by the electron-field interaction is
equal to

ΔE = 1
2

X
k

νk −ωkð Þ. (2:3:16)

To express the quantity ΔE via Δ sð Þ we use the Wentzel (1942) approach. Following
Wentzel (1942), we write down the identity equation:X

k

f ν2k
� �

− f ω2
k

� �� �
= 1
2πi

þ
C

dsf sð Þ
X
k

1
s− ν2k

−
1

s−ω2
k

� �
=

= 1
2πi

þ
C

dsf sð Þ d
ds

lnΔ sð Þ= −
1
2πi

þ
C

dsf ′ sð Þ lnΔ sð Þ,
(2:3:17)

where integration is carried out over the contour presented in Fig. 2.1.
Taking f sð Þ= ffiffiffi

s
p

, we get:

ΔE = 1
2

X
k

νk −ωkð Þ= −
1
8πi

þ
C

dsffiffiffi
s

p lnΔ sð Þ. (2:3:18)

Turning in (2.3.14) from summing up to integration with the use of the relation:X
k

= 1

2πð Þ3
ð
d3k

in a continuous case, using for zk expression (2.3.6) for Δ sð Þ we obtain

Δ sð Þ=D3 sð Þ, D sð Þ= 1−
2

3 2πð Þ3
ð
k2f 2kω

2
k

s−ω2
k

d3k . (2:3:19)
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As a result, the total energy of the electron is

E =ΔE + 2
X
k

Vkfk +
X
k

f 2kω
0
k . (2:3:20)

The results obtained here are general and valid for various polaron models (i.e.,
any functions Vk and ω0

k ). In Sections 2.4 and 2.5, we consider limit cases of weak
and strong coupling which follow from general expression (2.3.20). On the assump-
tion that P≠0 according to Tulub (1960), expression (2.3.20) takes the form:

E = P2

2m
+ΔEðPÞ+ 2

X
k

Vkfk +
X
k

f 2kω
0
k ,

ΔEðPÞ= −
1
8πi

þ
C

dsffiffiffi
s

p ln
Y3
i= 1

DiðsÞ,

DiðsÞ= 1−
X
k

zik
� �2
s−ω2

k

,

where zik is the ith component of vector zk. Notice that functions fk, ωk, and zk
should be considered to be dependent both on kj j and on kP.

2.4 Weak coupling limit in Tulub’s theory

Quantities fk in the expression for the total energy E (2.3.20) should be found from the
minimum condition: δE=δfk =0, which yields the following integral equation for fk:

fk = −Vk= 1+ k2=2μk
� �

, μ− 1
k = ωk

2πi

þ
C

dsffiffiffi
s

p 1
s−ω2

k

� �
D sð Þ . (2:4:1)

s–plane

ω1
2 ν1

2 ν2
2ω2

2

Fig. 2.1: Contour C.

20 2 Pekar’s ansatz and the strong coupling problem in polaron theory

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



In the case of weak coupling α ! 0 and eq. (2.4.1) can be solved with the use of
perturbation theory. In a first approximation, as α ! 0D sð Þ= 1 and μ− 1

k is equal to

μ− 1
k = ωk

2πi

þ
C

dsffiffiffi
s

p 1
s−ω2

k

� �
D sð Þ = 1. (2:4:2)

Accordingly, fk from (2.4.1) is written as follows:

fk = −Vk= 1+ k2=2
� �

. (2:4:3)

The quantity ΔE involved in the total energy takes on the form:

ΔE = −
3
8πi

þ
C

dsffiffiffi
s

p lnD sð Þ, lnD sð Þ= −
2

3 2πð Þ3
ð
k2f 2kωk

s−ω2
k

d3k. (2:4:4)

With the use of (2.4.3), integrals involved in (2.4.4) are found to be ΔE = α=2ð Þ�hω0. Hav-
ing calculated the rest of the terms involved in expression (2.3.20), we get the first term
of the expansion of polaron total energy in the coupling constant α: E = − α�hω0.

In Tulub (1961), Porsch and Röseler (1967), and Röseler (1968), a general scheme
of calculating the higher terms of expansion in α was developed. In particular, the
eigen energy and effective mass were found to be (Röseler, 1968):

E = − α+0.01592α2
� �

�hω0,

m� = 1+ α=6+0.02362α2
� �

m.
(2:4:5)

Hence within the accuracy of the terms O(α3) the polaron energy expression calcu-
lated within the Tulub approach with the use of perturbation theory coincides with
exact result (2.1.1) (see Section 2.11).

2.5 Strong coupling

The case of strong coupling is much more complicated. To reveal the character of
the solution in the strong coupling region let us start with considering the analyti-
cal properties of the function D(s) in the form:

D sð Þ=Dð1Þ+ s− 1
3π2

ð∞
0

k4f 2kωkdk
ω2

k − 1
� �

ω2
k − s

� �, (2:5:1)

where D(1) is the value of D(s) for s = 1:

Dð1Þ= 1+Q≡ 1+ 1
3π2

ð∞
0

k4f 2kωk

ω2
k − 1

dk. (2:5:2)
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From (2.3.19), it also follows that:

DðsÞ= 1−
1

3π2

ð∞
0

ωkk4f 2k
s−ω2

k

dk. (2:5:3)

Function D(s) being a function of a complex variable s has the following properties:
1) D(s) has a crosscut along the real axis from s = 1 to ∞ and has no other peculiari-
ties; 2) D� sð Þ=D s�ð Þ; 3) as s ! ∞ sD sð Þ increases not slower than s. These proper-
ties enable us to present the function s− 1ð ÞD sð Þ½ �− 1 in the form (Appendix C):

1
s− 1ð ÞDðsÞ =

1
2πi

þ
C + ρ

ds′

s′− s
� �

s′− 1
� �

D s′
� � , (2:5:4)

where contour C+ ρ is shown in Fig. 2.2:

The integrand function in (2.5.4) has a pole at s′= 1 and a section from s′= 1 to
s′=∞. Having performed integration in (2.5.4) along the upper and bottom sides of
the crosscut we get the following integral equation for D−1ðsÞ:

1
DðsÞ =

1
1+Q

+ s− 1
3π2

ð∞
0

k4f 2kωkdk

s−ω2
k

� �
ω2

k − 1
� �

D ω2
k

� � 2 . (2:5:5)

With the use of integration by parts expression (2.3.18) for ΔE can be written as
follows:

ΔE = 1
2π2

ð∞
0

dkk4f 2kωk
1
2πi

þ
C

ffiffiffi
s

p

s−ω2
k

� �2 1
D sð Þds. (2:5:6)

s–plane

1

C
ρ

Fig. 2.2: Contour C +ρ.
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From (2.5.5) and (2.5.6), we have

ΔE = 1
2π2

ð∞
0

k4f 2k
2 1+Qð Þ dk +

1
12π4

ð∞
0

ð∞
0

k4f 2k p
4f 2pωpðωkωp+ωkðωk +ωpÞ+ 1Þ
ωk +ωp
� �2 ω2

k − 1
� �

Dðω2
kÞ

 2 dpdk. (2:5:7)

Equation (2.4.1) for μ− 1
k according to (2.5.5) can be presented in the form:

μ− 1
k = 1

1+Q
+ 1
3π2

ð∞
0

p4f 2pðωkωp + 1Þdp
ω2

p − 1
� �

ωk +ωp
� �

D ω2
p

� � 2 . (2:5:8)

Equations (2.4.1) and (2.5.8) for finding fk as well as expressions in (2.3.20) and
(2.5.7) for calculating polaron energy are very complicated and their exact solution
can hardly be obtained. To calculate approximately the energy E given by (2.3.20)
and (2.5.7) in Tulub (1961), a direct variational principle was used. For the probe
function, the author used Gaussian function of the form:

fk = −Vk expð− k2=2a2Þ, (2:5:9)

where a is a variable parameter, besides, as can be seen in the case of strong cou-
pling, a≫1. Substitution of (2.5.9) into (2.3.19) yields for real and imaginary parts of
D(s) (see Appendix D):

ReDðω2
kÞ= 1+ λvðyÞ, ImDðω2

kÞ= k3f 2k=6π,

vðyÞ= 1− ye− y2
ðy
0

et
2
dt − yey

2
ð∞
y

e− t2dt, (2:5:10)

λ= 4αa=2
ffiffiffiffiffi
2π

p
, y= k=a.

In the limit of strong coupling (α≫1), the expression for energy E, given by (2.3.20)
with the use of (2.5.7), takes on the form:

E = 3
16

a2 1+ q
1ffiffiffi
2

p
� �� �

−
αaffiffiffi
π

p 2−
1ffiffiffi
2

p
� �

, (2:5:11)

q
1
λ

� �
= 2ffiffiffi

π
p

ð∞
0

e− y2 1−Ω yð Þð Þdy
1=λ+ v yð Þð Þ2 +πy2e− 2y2=4

, (2:5:12)

Ω yð Þ= 2y2 1+ 2y2
� �

yey
2
ð∞
y

e− t2dt − y2

8<:
9=;.

As λ ! ∞, integral (2.5.12) has maximum for y4 = 3λ=4, if the function fk is chosen in
the form (2.5.9), however if the actual boundedness of the region of integration with
respect to y is taken into account, this peculiarity does not take place (see Section 2.12).
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When calculating (2.5.12) in Tulub (1961), Tulub assumed that in the strong
coupling limit 1 λ=0= . As a result of numerical integration q(0) was found to be
qð0Þ= 5.75, whence, varying energy E (2.5.11) with respect to a we get:

E = −0.105α2�hω0. (2:5:13)

Comparison of (2.5.13) with (2.1.6) shows that the value of E obtained for α ! ∞ lies
higher than the exact value in Pekar’s theory (2.1.6). For this reason, until quite re-
cently it was believed that Tulub’s theory as applied to a polaron does not give any
new results.

The situation changed radically after publication of Kashirina et al. (2012).
There it was shown that the choice of the wave function for minimizing energy
(2.3.20) in the form (2.5.9) is not optimal since it does not satisfy virial relations. As
is shown in Kashirina et al. (2012), an appropriate function fk should contain the
multiplier

ffiffiffi
2

p
outside the exponent in expression (2.5.9). As a result, instead of

(2.5.11), the polaron energy will be:

E = 3a2

16
1+ q

1
λ

� �� �
−

ffiffiffi
2
π

r
α a (2:5:14)

Minimization of energy (2.5.14) with the optimal probe function yields:

E = −0.12572α2 . (2:5:15)

Result (2.5.15) is fundamental. Above all it means that Pekar’s ansatz does not give
an exact solution. Though result (2.5.15) refers to a particular case of Pekar–Fröhlich
Hamiltonian with Vk given by (2.2.8), the conceptual conclusion should be valid for
all types of self-localized states. Of special interest is to consider the case of bipolar-
ons (Sections 2.7 and 2.8) since they can play an important role in superconductivity.

2.6 Induced charge of translation-invariant polarons
and bipolarons with broken translational symmetry

To find the charge induced by an electron in a polar medium and the polarization
of the medium PðrÞ, we will proceed from the fact that the electrostatic potential
created by the medium φðrÞ and induced in it by the electron is determined by the
operator φ̂ðrÞ:

φ̂ðrÞ= −
1
e
HintðrÞ (2:6:1)

HintðrÞ=
X
k

Vkðakeikr + a+
k e

− ikrÞ (2:6:2)
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From (2.6.1) and (2.6.2) it follows that:

φ̂ðrÞ= −
ffiffiffiffiffiffiffiffiffiffiffi
2πω0

~εV

r X
k

1
k
ðakeikr + a+

k e
− ikrÞ (2:6:3)

Relevant φ̂ intensity of the electric field is determined by the relation Ê= − grad φ̂.
With regard to the relation Ê + 4πP=0 the polarization P will be:

PðrÞ=
ffiffiffiffiffiffiffiffiffiffiffi
ω0

8π~εV

r X
k

k
k
ðakeikr + a+

k e
− ikrÞ. (2:6:4)

From (2.6.1) and (2.6.2) it also follows that the density of the induced charge deter-
mined by the Poisson equation is

ρ̂indðrÞ=Δrφ̂ðrÞ=4π (2:6:5)

In theories of a polaron with spontaneously broken symmetry, it is assumed that
the electron’s center of gravity is localized at a point r0. For an electron located at a
point r0 with energy Hintðr0Þ, as a result of averaging over the phonon variables,
from (2.6.1) the following distribution of the induced potential is obtained as a func-
tion of distance r − r0:

φðrÞ= 0 S− 1
2 S− 1

1 ðrÞφ̂ðr0ÞS1ðrÞS2
 0� �

= −
2
e

X
k

Vkfk cos kðr− r0Þ. (2:6:6)

Thus, for example, in the case of weak coupling, with the use of expression (2.4.3)
for fk, the quantity ρindðrÞ determined by (2.6.5) (Lee et al., 1953) was expressed as
follows:

ρindðrÞ= −
emω0

�h~ε
1
r
expð−urÞ, u= 2mω0

�h

� �1=2

, (2:6:7)

where u− 1 is the characteristic size of the localized state. Accordingly, localized dis-
tributions are obtained for φðrÞ and PðrÞ. Relevant (2.6.7) induced charge will be
equal to Qind =

Ð
ρinddV = − e ~ε.=

In the TI polaron theory, the assumption about the localization of the electron
in the vicinity of the point r0 is not made. As a result, the induced potential is

φðrÞ= 0 S− 1
2 S− 1

1 ðrÞφ̂ðr0ÞS1ðrÞS2
 0� �

= −
2
3

X
k

Vk fk = const, (2:6:8)

that is, it is independent of the electron position. Accordingly, the polarization field
PðrÞ, determined by (2.6.4) and induced charge density ρ̂indðrÞ, determined by (2.6.5)
will be equal to zero.

It is important to note here that the average number of phonons N in a polaron
“cloud”:
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Np = 0h jS− 1
2 N̂S2 0j i=

X
k

f 2k , N̂ =
X
k

a+
k ak

is not equal to zero and for fk, corresponding to the weak coupling limit: fk = −Vk=

ð�hω0 + �h2k2=2mÞ is: Np = α=2, which corresponds to the known value obtained by Lee,
Low, and Pines.

In the limit of strong coupling with the use of fk = −
ffiffiffi
2

p
Vk expð− k2=2a2Þ for Np

we get: Np =0.126 α2, which is much less than the result of the diagrammatic quan-
tum Monte Carlo method: Np =0.22 α2 (Kashurnikov and Krasavin, 2010). For a bipo-
laron, Nbp is also nonzero and proportional to the square of the EPI constant:
Nbp ∝ α2.

2.7 Phonon interaction of electrons in the translation-invariant
theory

The problem of the interaction of two electrons in a phonon field in the case of
weak interaction was first considered by Cooper (1956). The fact that there are many
electrons in the system does not affect the admissibility of the two-electron approxi-
mation, since due to the Pauli principle, electrons below the Fermi surface only
weakly perturb the states located above the surface. The original Hamiltonian in
the Cooper problem is the Fröhlich Hamiltonian, which in the case of two electrons
has the form:

H = −
�h2

2m
Δr1 −

�h2

2m
Δr2 +

X
k

�hω0
ka

+
k ak +U r1 − r2j jð Þ+

+
X
k

Vk exp ikr1ð Þak +Vk exp ikr2ð Þak +H.c.½ �,

U r1 − r2j jð Þ= e2

ε∞ r1 − r2j j , (2:7:1)

where r1 and r2 are coordinates of the first and second electrons, respectively, the
quantity U describes Coulomb repulsion between the electrons, H.c. – Hermitian
complicated terms.

In the system of the center of mass Hamiltonian (2.7.1) takes on the form:

H = −
�h2

2Me
ΔR −

�h2

2μe
Δr +U rð Þ+

X
k

�hω0
ka

+
k ak +

+
X
k

2Vk cos
kr
2

ak exp ikRð Þ+H.c.½ �,

R= r1 + r2
2

, r = r1 − r2, Me = 2m, μe =m 2.= (2:7:2)
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In what follows we will believe that �h= 1, ω0
k = 1, Me = 1 (accordingly, μe = 1 4= ).

Coordinates of the center of mass R can be excluded from Hamiltonian (2.7.2)
through Heisenberg’s canonical transformation:

S1 = exp − i
X
k

ka+
k ak

� �
R,

~H = S− 1
1 HS1 = − 2Δr +UðrÞ+

X
k

a+
k ak +

+
X
k

2Vk cos
kr
2
ðak + a+

k Þ+
1
2

X
k

ka+
k ak

� �2

. (2:7:3)

Let us consider in more detail the term corresponding to the interaction of electrons
with a phonon field. Applying the Lee, Low, and Pines transformation (2.2.5) to it,
we obtain for the interaction energy:

UintðrÞ= 0h jS− 1
2 2

X
k

Vk cos
kr
2
ðak + a+

k Þ
� �

S2 0j i= 4
X
k

Vkfk cos
kr
2
. (2:7:4)

Let us find an exact expression for UintðrÞ in the limit of weak and intermediate
electron–phonon interaction (EPI), which was considered by Cooper. Using for this
purpose the expression for fk given by (2.2.7), for UintðrÞ we obtain:

UintðrÞ= −
4e2

~εr
1− e− r=2r0
� �

, (2:7:5)

where

r0 = �h=2mω0ð Þ1=2 (2:7:6)

has the meaning of a characteristic size in polaron theory. Expression (2.7.5) leads
to the immediate conclusion made by Cooper: the interaction between electrons is
attractive, and the Schrödinger equation corresponding to potential (2.7.5) always
has a discrete electronic level lying below the Fermi surface. The latter follows from
the fact that in the limit r ! ∞ the potential of the electronic interaction has a Cou-
lomb form, which automatically guarantees the existence of a discrete level with
negative energy.

The knowledge of UintðrÞ enables one to calculate the distribution density of the
charge ρindðrÞ induced by electrons in a polar medium:

UintðrÞ= − 2eφindðrÞ (2:7:7)

where φindðrÞ is the potential induced by electrons. Using the Laplace equation for
ρindðrÞ we get:
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ρindðrÞ=ΔrφindðrÞ=4π (2:7:8)

From (2.7.5) and (2.7.8), we express ρindðrÞ as follows:

ρind = −
e

8πr20r~ε
expð−r=2r0Þ (2:7:9)

From (2.7.9) it follows that the density of the induced charge tends to infinity for
r =0. In this case, however, the total induced charge Qind:

Qind =
ð
ρindðrÞd3r (2:7:10)

is finite and equals to:

Qind = −2e=~ε (2:7:11)

Thus, the nonrelativistic quantum theory of the interaction of an electron with a
polar medium gives a finite value of the induced charge, in contrast to quantum
electrodynamics, where the interaction of an electron with vacuum polarization
leads to the value of the induced charge equal in absolute value to the initial one
(the problem of zero charge; Landau et al., 1954). In a nonrelativistic quantum the-
ory, this would correspond to: ε∞ = 1, ε0 =∞ that is, a medium with nonpolarizable
electron shells of ions and an infinite static dielectric constant.

When considering the formation of a bound state, Cooper did not take into ac-
count the Coulomb repulsion between electrons. When repulsion is taken into ac-
count, the total potential Utot takes the form:

UtotðrÞ=UintðrÞ+UðrÞ (2:7:12)

In the absence of screening UðrÞ= e2=ε∞r, a discrete level in potential Utot (2.7.12)
exists under the condition: 3ε0 > 4ε∞. In general, an escaped expression should be
used for UðrÞ.

For example, in the Thomas–Fermi approximation UðrÞ= ðe2=ε∞rÞ expð−r=rTFÞ,
where rTF is the Thomas–Fermi radius. This changes the condition for the existence
of a discrete level, making this condition less stringent.

Notice that Cooper did not use expression (2.7.5). Instead, he used a simplified
expression for the Fourier components of the interaction potential: UintðkÞ= v=V for
EF ≤ �h2k2=2m≤EF + δ, v= const and UintðkÞ=0 for other values of k, which leads to
an interaction of the form: UintðrÞ≈ sinð ffiffiffiffiffiffiffiffiffiffiffiffi

2μeEF
p

r=�hÞ=r and discrete level energy Δ:

Δ= δ exp −1=vρðEFÞ½ � (2:7:13)

which corresponds to the radius of the state �r ≈ �h2kF=mΔ, where ρðEFÞ is the density
of the states in the vicinity of the Fermi level. By virtue of the approximations made,
Cooper did not consider the question of the energy advantage of the formation of a
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discrete level, which is reduced to the study of the question of the bipolaron state
energy.

2.8 Intermediate coupling bipolarons

To answer the question of the value of the total energy in the Cooper problem, let
us return to Hamiltonian (2.7.3). It follows from formula (2.7.3) that the exact solu-
tion of the bipolaron problem is determined by a wave function ψ rð Þ, which con-
tains only relative coordinates r and, therefore, is translation invariant.

Averaging of ~H over ψ rð Þ leads to Hamiltonian �H:

�H = 1
2

X
k

ka+
k ak

� �2

+
X
k

a+
k ak +

X
k

�Vk ak + a+
k

� �
+ �T + �U, (2:8:1)

�Vk = 2Vk Ψh j coskr
2

Ψj i, �U = Ψh jU rð Þ Ψj i, �T = − 2 Ψh jΔr Ψj i.

Hamiltonian (2.8.1) differs from Hamiltonian (2.2.3) by replacing the quantity Vk

into �Vk in (2.2.3) and adding the constants �Tand �U to the Hamiltonian. For this rea-
son, repeating the conclusion given in Section 2.3, for the bipolaron energy Ebp we
obtain:

Ebp =ΔE +
X
k

�Vkfk +
X
k

f 2k + �T + �U, (2:8:2)

where ψ and fk are found from the condition of minimum bipolaron energy with
respect to ψ and fk. Taking into account that the value of the recoil energy ΔE in-
volved in (2.8.2) in the weak coupling limit is equal to: ΔE =

X
�h2k2=2Me
� �

f 2k we
can present fk in the form:

fk =
�Vk

ωk + �h2k2=2Me
(2:8:3)

We will seek the minimum of energy (2.8.2) by choosing a trial wave function ψ in
the Gaussian form:

Ψ rð Þj j2 = 2
πl2

� �3=2

expð− 2r2=l2Þ (2:8:4)

where l is a variation parameter. Substituting (2.8.3) and (2.8.4) into (2.8.2) and min-
imizing the resulting expression with respect to l, we represent the expression for E
in the form:
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E = −
1
24

16ffiffiffi
π

p −
8ffiffiffiffiffi
2π

p 1
1− ηð Þ

� �2
α2�hω0 , (2:8:5)

l= 12 �h2~ε=me2
� �

α
16ffiffiffi
π

p −
8ffiffiffiffiffi
2π

p 1
1− ηð Þ

� �
,

�
(2:8:6)

where l has the meaning of the characteristic size of the Cooper pair. From (2.8.5)
and (2.8.6) follows the condition for the existence of a discrete level (i.e., the exis-
tence of a bipolaron state) in the limit α ! 0 : ε0 > 1.4ε∞ which is close to the crite-
rion obtained in the previous section.

Expression (2.8.5), though corresponding to a gain in energy of the Cooper pair
(i.e., the bipolaron state) for α< 1, 4, nevertheless corresponds to a metastable state.
The reason is that the bipolaron state (2.8.5) is not stable with respect to its decay
into two individual polaron states with energy E = − 2α�hω0, which is fulfilled in the
limit α ! 0.

2.9 Strong coupling bipolaron

In the case of a strong coupling, the recoil energy ΔE is determined by expression
(2.5.7). From expression (2.8.2), one can obtain equations for determining the energy
of a bipolaron, varying Ebp in fk and ψ. Since solution of the equations obtained in
this way presents great difficulties for actual determination of the bipolaron energy,
we use a direct variational approach, assuming (Lakhno, 2013):

fk = −N �Vk exp − k2=2μ
� �

, (2:9:1)

and choosing the wave function in the form (2.8.4), where N, μ, and l are variational
parameters. For N = 1, expression (2.9.1) reproduces the results of the work by
Lakhno (2010b), and for N = 1, μ ! ∞ – the results of the work by Lakhno (2012a).

Substitution of (2.9.1) and (2.8.4) into the expression for the total energy (2.8.2)
after minimization with respect to parameter N yields the following expression for E:

E x, y;ηð Þ=Φ x, y;ηð Þ α2, (2:9:2)

Φ x, y;ηð Þ= 6
x2

+ 20.25
x2 + 16y

−
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 16y

pffiffiffi
π

p
x2 + 8yð Þ + 4

ffiffiffiffiffiffiffiffi
2=π

p
x 1− ηð Þ .

Here x and y are variable parameters: x= lα, y= α2=μ, η= ε∞=ε0. Let us write Φmin for
the minimum value of the function Φ of x and y parameters. Figure 2.3 shows the
dependence of Φmin on the parameter η. Figure 2.4 demonstrates the dependence of
xmin, ymin on the parameter η.

Figure 2.3 suggests that Emin η=0ð Þ= −0.440636α2 yields the lowest estimation
of the bipolaron ground state energy as compared to all those obtained earlier by
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variational method (Vansant et al., 1994; Suprun and Moizhes, 1982). Horizontal
lines in Fig. 2.3 correspond to the energies E1 = −0.217α2 and E2 = −0.2515α2 , where
E1 = 2Ep1, Ep1 is the Pekar polaron ground state energy (2.1.3); E2 = 2Ep2, Ep2 is the
ground state energy of a TI polaron (2.5.14).

Intersection of these lines with the curve Emin ηð Þ yields the critical values of the
parameters η= ηc1 =0.3325 and η= ηc2 =0.289. For η> ηc2 the bipolaron decays into
two TI polarons, for η> ηc1 it breaks down into Pekar polarons. The values of minimiz-
ing parameters xmin, ymin for these values of η are: xminð0Þ= 5.87561, ymin 0ð Þ= 2.58537,

0.2 0.4 0.6 0.8 1.0
η

Φmin

–0.4

–0.3

–0.2

–0.1

Fig. 2.3: Graph Φmin ηð Þ.
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Fig. 2.4: Graphs xmin ηð Þ, ymin ηð Þ.
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xminð0.289Þ = 8.58537, ymin 0.289ð Þ = 3.68098, xminð0.3325Þ = 8.88739, ymin 0.3325ð Þ =
4.03682.

The critical value of the electron–phonon coupling constant α, determined
from comparison of the energy expressions in the weak coupling limit (doubled en-
ergy of a weak coupling polaron: E = − 2α�hω0) and in the strong coupling limit
(E = −0.440636α2�hω0), at which the translation-invariant bipolaron is formed is
equal to αc ≈ 4.54, being the lowest estimate obtained by variational method (Ada-
mowski and Bednarek ,1992; Verbist et al., 1991, 1992; Kashirina et al., 2002, 2003,
2005; Kashirina and Lakhno, 2015). It should be emphasized that this value is con-
ventional. Hamiltonian (2.8.1) coincides in structure with one-electron Hamiltonian
(2.2.3), therefore, as in the case of a polaron, the bipolaron energy, by Gerlach and
Löwen (1991), is an analytical function of α. For this reason at the point α= αc the
bipolaron energy does not have any peculiarities and the bipolaron state exists over
the whole range of α and η variation: 0< α<∞; 0< η< 1− 1=2

ffiffiffi
2

p
, for which E <0.

To solve the problem of the existence of αc value at which the bipolaron state
can decay into individual polarons, one should perform calculations for the case of
intermediate coupling. In particular, a scenario is possible when the bipolaron en-
ergy for some values of η will be lower than the energy of two individual polarons
for all values of α, that is, the bipolaron state exists always. Notice, that for the de-
rived state of the translation-invariant bipolaron, the virial theorem holds to a high
precision.

The problems of arising high-temperature superconductivity (HTSC) and explain-
ing this phenomenon by formation of bipolaron states were dealt with in a number of
papers and reviews (Devreese and Alexandrov, 2009; Kashirina and Lakhno, 2010;
Alexandrov and Krebs, 1992; Alexandrov and Mott, 1996; Smondyrev and Fomin,
1994). In these works the existence of HTSC is explained by Bose condensation of a
bipolaron gas. The temperature of Bose condensation T0 = 3.31�h2n2=30 =kBmbp, which is
believed to be equal to the critical temperature of a superconducting transition Tc, for
mbp ≈ 10m, depending on the bipolarons concentration n, varies in a wide range from
T0 = 3 K at n= 1018cm−3 to T0 ≈ 300 K at n≈ 1021cm−3. In the latter case the bipolarons
concentration is so high that for a bipolaron gas as well as for Cooper pairs, the com-
pound character of a bipolaron when it ceases to behave like an individual particle
should show up. In the case of still higher concentrations a bipolaron should decay
into two polarons. According to (2.8.4) the characteristic size of a bipolaron state is
equal to l and in dimension units is written as: lcorr = �h2~εx η=me2

� �
. Here lcorr has the

meaning of a correlation length. The dependence x ηð Þ is given by Fig. 2.4. Figure 2.4
suggests that over the whole range of η variation where the bipolaron state is stable
the value of x changes only slightly: from x η=0ð Þ≈ 6 to x η=0.289ð Þ≈ 8.

Hence, even for η= ηc, the critical value of the concentration at which the bipo-
larons multipiece character is noticeable is of the order of nc ffi 1021cm−3. This result
testifies that a bipolaron mechanism of HTSC can occur in copper oxides. The theory
of superconductivity on the basis of TI bipolarons will be considered in Chapter 3.
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2.10 Phonon interaction in translation-invariant theory
of strong coupling

In the case of a strong coupling, it is of interest to calculate the interaction between
electrons as a function of the distance between them. Using (2.7.4) for the energy of
the EPI (Lakhno, 2016b) for fk, determined by (9.1) Uint(r) has the form:

Uintð~rÞ= −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 16y
x2 + 8y

s
1
~r
F

2~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16y+ x2

p !
, FðxÞ= 2ffiffiffi

π
p

ðx
0

e− t
2
dt, (2:10:1)

where ~Uintð~rÞ=UintðrÞ 4me4=�h2~ε2
� ��

and ~r = e2m=�h2~ε
� �

r are dimensionless variables.
The quantities x= xðηÞ, y= yðηÞ are determined from the condition that the func-
tional (2.8.2) be minimum.

Figure 2.5 shows the dependencies ~Uintð~rÞ for some values of the parameter η. It can
be seen that for small ~r the interaction potential does not depend on ~r, for interme-
diate values the dependence is close to linear, and for large ~r it has a Coulomb
form: ~Uintð~rÞ≈ 1=~r. Figure 2.5 also suggests that at the point η= ηc =0.289, that is, at
the point where a TI bipolaron decays into TI polarons, the interaction ~UintðrÞ does
not demonstrate any jumps and changes continuously as η varies up to the value of
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Fig. 2.5: The dependence of potential ~Uint (dashed line) and total potential ~Utot (straight line) on η.

2.10 Phonon interaction in translation-invariant theory of strong coupling 33

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



η= 1− =2
ffiffiffi
2

p
for which the total energy of a TI bipolaron Ebp =ϕα2 vanishes. The

total interaction should also include the Coulomb interaction U rð Þ:
UtotðrÞ=UintðrÞ+UðrÞ, (2:10:2)

as is shown in Fig. 2.5. It looks like Coulomb interaction in the case of small r and
has a near-linear shape in a certain range of r variation (this is especially clear in
Fig. 2.5 (f): η=0.6). This behavior reminds the interaction between quarks, with re-
pulsive instead attractive, as in the case of quarks, Coulomb potential (polaron
model of quarks was considered in (Iwao, 1976)).

The knowledge of UintðrÞ enables us to calculate the density distribution of a
charge ρindðrÞ induced by electrons in a polar medium. Assuming:

UintðrÞ= − 2eφindðrÞ (2:10:3)

where φindðrÞ is a potential induced by the electrons, we will write for ρindðrÞ:
ΔrφindðrÞ= 4πρindðrÞ (2:10:4)

With the use of (2.10.1), (2.10.3), and (2.10.4), we express ρindðrÞ as

ρindðrÞ=
32
π

ffiffiffi
2
π

r
e
ε

me2

�h2~ε

� �3

~ρð~rÞ, (2:10:5)

~ρð~rÞ= 1

x2 + 16yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p exp −
8~r

16y+ x2ð Þ
� �

.
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Fig. 2.6: The dependence of function f =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16y + x2ð Þ 8y + x2ð Þ=

p
on η.
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The total charge Qind induced between electrons:

Qind =
ð
ρindðrÞd3r (2:10:6)

is equal to:

Qind =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16y+ x2

8y+ x2

s
2e
~ε
. (2:10:7)

It is pertinent to note here that the density of a charge induced in a polar medium
as a function of the center of mass ρbp Rð Þ is determined by the expression:

ρbp Rð Þ= − e
ð

Ψ✶
bp R, rð Þ Ψbp R, rð Þ

 E
d3r 1

V

D
(2:10:8)

where Ψbp R, rð Þ �
is given by expression (2.11.13). Thus, the density of a charge induced

in a polar medium in the case of a TI bipolaron is zero. Figure 2.6 shows the depen-
dence f =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16y+ x2ð Þ= 8y+ x2ð Þ

p
as a function of the parameter η. The figure suggests

that the value of a charge Q is always greater than that of 2e=~ε, corresponding to a
bipolaron with spontaneously broken symmetry which coincide only in the limit
η ! 1− 1=2

ffiffiffi
2

p
when the distance between the polarons with broken translation sym-

metry is equal to infinity.
It should also be noted that the frequently used concept of interpolaron interac-

tion in the bipolaron state in the case of TI bipolarons seems to be meaningless,
since a TI bipolaron cannot be thought of as being composed of individual polarons
(in this sense, the situation here is similar to quark confinement).

2.11 Ground state functional: Tulub’s ansatz

To diagonalize quadratic form (2.3.4) we can use Bogolyubov–Tyablikov transfor-
mation (Tyablikov, 1967). Let us write αk for the operators of physical particles in
which HKB is a diagonal operator.

Let us diagonalize the quadratic form with the use of the transformation:

ak =
X
k′

M1kk′αk′ +
X
k′

M✶
2kk′

α+
k′
,

ak =
X
k′

M✶
1kk′

α+
k′
+
X
k′

M2kk′αk′,
(2:11:1)

so that the equalities:

a
k
, a+

k′

h i
= α

k
, α+

k′

h i
= δ

kk′
, H

0
, α+

k

h i
=ω

k
α+
k
. (2:11:2)

be fulfilled.

2.11 Ground state functional: Tulub’s ansatz 35

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



Relying on the properties of unitary transformation (2.11.1) we have:

M2M
+
1 =M✶

1 M
T
2 ,

M +
1

� �−1 =M1 −M✶
2 M✶

1

� �−1M2.
(2:11:3)

With the use of (2.11.3) transformation of the operators, reciprocal to (2.11.1) takes
on the form:

αk =
X
k′

M✶
1kk′

a
k′
-
X
k′

M✶
2kk′

a+
k′
,

α+
k =

X
k′

M1kk′a
+
k′
-
X
k′

M2kk′ak′,
(2:11:4)

According to Tulub (1960, 1961), matricesM1 andM2 take the form:

M1, 2

� �
kk′ =

1
2

ωkωk′
� �−1 ωk ±ωk′

� �
δ k−k′
� �

+ kk′
� �

fkfk′
2 ωkωk′
� �1=2

ω2
k′
−ω2

k
± iε

� �
D± ω2

k

� �
24 35,

(2:11:5)

D± ω2
k

� �
= 1+ 1

3π2

ð∞
0

f 2k k
4ωk

ω2
k −ω2

p ∓ iε
dk,

where the superscript sign on the right-hand side of (2.11.5) refers to M1 and the sub-
script sign toM2. As a result of diagonalization quadratic form (2.3.4) changes to:

HKB =ΔE +
X
k

Ekα
+
k αk. (2:11:6)

Functional of the ground state Λ0 0j i is chosen from the condition:

αkΛ0 0j i=0. (2:11:7)

The explicit form of functional Λ0 is conveniently derived if we use Fock representa-
tion for operators αk, α+

k (Novozhilov and Tulub, 1957, 1961) which associates opera-
tor α+

k with some c-number �ak and operator αk with operator d=d�ak. Then, with the
use of (2.11.4), condition (2.11.7) takes on the form:X

k

M✶
1kk′

d
d�ak′

−
X
k

M
2kk′

�a
k′

� �
Λ0 0j i=0. (2:11:8)

It is easy to verify by direct substitution in (2.11.8) that solution of equation (2.11.8)
is written as:
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Λ0 =C exp
1
2

X
k, k′

a+
k Akk′a

+
k

( )
, (2:11:9)

where C is a constant, making operator Λ0 unitary. To this end it is sufficient to re-
turn in (2.11.9) to quantities �ak instead of a+

k . Hence operator Λ0 is a squeezing oper-
ator (see Appendix E). Matrix A satisfies the conditions:

A=M✶
2 M✶

1

� �−1, A=AT . (2:11:10)

Hence, the ground state energy corresponding to functional Λ0 is equal to:

0h jΛ+
0 HKBΛ0 0j i=ΔE. (2:11:11)

In Appendix A we show that 0h jΛ+
0 H1Λ0 0j i≡0.

From (2.11.9), (2.2.2), and (2.2.5), it follows that the wave function of the polaron
ground state ψj ip has the form:

Ψj ip =C exp −
i
�h

X
k

�hka+
k akr

� �
exp

X
k

fk a+
k − ak

� �� �
Λ0 0j i. (2:11:12)

Accordingly, the bipolaron wave function Ψj ibp with regard to (2.7.3) and (2.2.4) is:

Ψj ibp =CΨ rð Þ exp −
i
�h

X
k

�hka+
k akR

� �
exp

X
k

fk a+
k − ak

� �� �
Λ0 0j i. (2:11:13)

Formulae (2.11.12) and (2.11.13) imply that the wave functions of a polaron and bipo-
laron are delocalized over the whole space and cannot be presented as an ansatz
(2.1.2).

From formulae (2.11.12) and (2.11.13), it follows that the reason why the attempt
of Lee et al. (1953) to investigate the polaron ground state energy over the whole
range of α variation failed was an improper choice of probe function (2.2.4) which
lacks the multiplier corresponding to the functional Λ0.

However, it should be stressed that notwithstanding a radical improvement of
the wave function achieved by introducing the multiplier Λ0 in Lee, Low, and Pines
function enables one to take account of both weak and strong coupling, the results
obtained by its application are not exact. The fact that Tulub’s function is an ansatz
follows from its properties:

0h jΛ+
0 H1Λ0 0j i=0, E = 0h jΛ+

0 H0Λ0 0j i, H0Λ0 0j i= EΛ0 0j i. (2:11:14)

Being an ansatz, Tulub’s solution presents a solution of the polaron problem in a
specific class of functions having the structure of Λ0 0j i. That Tulub’s ansatz is not
an exact solution of the problem follows at least from the fact that the use of expres-
sion (2.3.20) alone for calculation of the energy, for example, in the case of weak
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coupling yields for E: E = − α− 1 6 1 2− 4 3π= Þ α2���
(Tulub, 1960). To get an exact co-

efficient at α2 in the expansion of the energy in powers of α (2.1.1) we should take
into account the contribution of Hamiltonian H1, as the perturbation theory sug-
gests (Röseler, 1968).

The fact that wave functions (2.7.12) and (2.7.13) are delocalized has a lot of im-
portant consequences, for example, the property of additivity of contributions to
the energy of a polaron and a bipolaron from various branches of polarization oscil-
lations of atoms that make up the unit cell of a crystal. The Fröhlich Hamiltonian in
this case for a polaron takes the form:

H = −
�h2

2m
Δr +

Xl
j= 1

X
k

Vjk aike
ikr + a+

jk e
− ikr

� �
+
Xl
j= 1

X
k

�hω0
jka

+
jk ajk, (2:11:15)

where j= 1, . . . , l is the number of phonon branches with which an electron interacts
with the force determined by the value of matrix elements Vjk. After removing the elec-
tron coordinates from the Hamiltonian by means of the Heisenberg transformation:

S1 =
Y
j

exp − i
X
j, k

ka+
jk ajk

 !
r (2:11:16)

instead of (2.2.3) we get a Hamiltonian:

~H = 1
2m

X
j, k

�hka+
jk ajk

 !2

+
X
j, k

Vjk ajk + a+
jk

� �
+
X
j, k

�hω0
jka

+
jk ajk. (2:11:17)

Hence, if it were not for the first term on the right-hand side of (2.11.17), we would
have independent contributions from different phonon branches to the total Hamil-
tonian. Let us find the conditions under which this is fulfilled. To do this, let us see
what the first term on the right-hand side of (2.11.17) transforms into after the Lee,
Low, and Pines transformation:

S2 = exp
X
j, k

fjk a+
jk − ajk

� �" #
(2:11:18)

As a result of application of (2.11.18) to Hamiltonian (2.11.17), the latter takes on the
form:

H =
X
j

Hj0 +Hj1
� �

+Hint (2:11:19)

where the first term on the right-hand side is the sum of the Hamiltonians of inde-
pendent branches having the form (2.3.2)–(2.3.5) with vjk, fjk, ajk, ω0

jk instead of vk,
fk, ak, ω0

k . The Hamiltonian Hint will include two types of terms:
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X
j, j′, k, k′
j≠j′

kk′f 2
jk
f 2
j′k′
, (2:11:20)

X
j, j′, k, k′
j≠j′

kk′a+
jk
a
jk
a+
j′k′
a
j′k′
. (2:11:21)

For even functions fj, k, which are (2.5.9), the terms of the form (2.11.20) are equal to
zero.

In calculations of the energy E = 0h jΛ+
o HΛ0 0j i for the wave functions Λ0 0j i,

where:

Λ0 =C exp
1
2

X
j, k, k′

a+
jk
A
jkk′

a+
jk′

 !
,

The terms of the form (2.11.21) will vanish for the same reasons as the Hamiltonian
H1 in (2.3.2). Indeed, involved in expression:X

k, k′
kk′ 0h jΛ+

0

X
j≠j′

a+
jk
a
jk
a+
j′k′
a
j′k′

0j i (2:11:22)

mean is nothing but the norm of vector:X
j

a+
j, kaj, kΛ0 0j i

and therefore, is positive. Then, upon replacement k!−k expression (2.11.22) will
change the sign and, thus, must be equal to zero. In the case of a bipolaron, simi-
larly, it is easy to show that the bipolaron Hamiltonian HBP will give the same spec-
trum as the Hamiltonian

X
HBP, j where HBP, j is the Hamiltonian of the bipolaron

for the jth phonon branch.
For the Fröhlich Hamiltonian, in which many phonon branches appear, the

quantities Vj, k will be:

Vjk =
e
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π�hωj0

~εjV

s
, (2:11:23)

were ~ε− 1
j = ε− 1

j − ε− 1
j+ 1, ε1 = ε∞, εl+ 1 = ε0, ε1 < ε2 < � � � < εl, j= 1, 2, . . . , l. Notice that the po-

larization potential φtot created by all branches is equal to: φtot = −
Pl

j= 1 e=εjr = − e=~ε.
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2.12 Discussion of the completeness of Tulub’s theory

In Klimin and Devreese (2012, 2013), a question was raised as to whether Tulub’s
(1960, 1961) theory is complete. Arguments of Klimin and Devreese (2012, 2013) are
based on the work by Porsch and Röseler (1967), which reproduces the results of
Tulub’s theory. However, in the last section of their paper Porsch and Röseler inves-
tigate what will happen if the infinite integration limit in Tulub’s theory changes
for a finite limit and then passes on to the infinite one. Surprisingly, it was found
that in this case in parallel with cutting of integration to phonon wave vectors in
the functional of the polaron total energy one should augment the latter with the
addition δEPR which input will not disappear if the upper limit tends to infinity
(Porsch and Röseler, 1967; Klimin and Devreese, 2013). Relying on this result, Kli-
min and Devreese (2012, 2013) concluded that Tulub did not take this addition into
account and therefore his theory is incomplete.

To resolve this paradox let us consider the function Δ sð Þ determined by formula
(2.3.14) (accordingly, (2.3.19) in continuous case). As formulae (2.3.14) and (2.3.19)
imply, zeros in this function contribute into “polaron recoil” energy ΔE given by
(2.3.16) and, according to (2.3.15) are found from the solution of the equation:

1= 2
3

X
k

k2f 2kωk

s−ω2
k

. (2:12:1)

If the cutoff is absent in the sum on the right-hand side of equation (2.12.1), then
the solution of this equation yields a spectrum of s values determined by frequen-
cies νki lying between neighboring values of ωki and ωki+ 1

for all the wave vectors ki.
These frequencies determine the value of the polaron recoil energy:

ΔE = 1
2

X
ki

νki −ωki

� �
. (2:12:2)

Let us see what happens with the contribution of frequencies νki into ΔE in the re-
gion of the wave vectors k where fk vanishes but nowhere becomes exactly zero.
From (2.12.1) it follows that as fk!0, solutions of equation (2.12.1) will tend to ωki :
νki !ωki . Accordingly, the contribution of the wave vectors region into ΔE, where
fk!0, will also tend to zero.

In particular, if we introduce a certain k0 such that in the region k > k0 the val-
ues of fk are small, we will express ΔE in the form:

ΔE = 1
2

X
ki ≤ k0

νki −ωki

� �
, (2:12:3)
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which does not contain any additional terms. To draw a parallel with Tulub’s ap-
proach, there we could put the upper limit k0, but no additional terms would
appear.

For example, if in an attempt to investigate the minimum of Tulub’s functional
(2.3.20), (2.5.7) we choose the probe function fk not containing a cutoff in the form
(Lakhno, 2013):

fk = −Vk expð− k2=2a2 kð ÞÞ,

a kð Þ= a
2

1+ th
kb − k
a

� �� �
, (2:12:4)

where a is a parameter of the Tulub probe function (2.5.9), kb satisfies the condition
a<< kb << koc, koc = a

ffiffiffiffiffiffiffiffiffiffi
3λ=44

p
is the value of the wave vector for which Tulub’s inte-

gral (2.5.12) has a maximum (Tulub, 1961; Lakhno, 2012b), then with the use of
(2.12.4) in the limit a ! ∞, Tulub’s integral q 1=λð Þ will be written as

q
1
λ

� �
≈ 5.75+ 6

a
kb

� �3

exp −
k2b
a2

� �
. (2:12:5)

The second term on the right-hand side of (2.12.5) vanishes as kb=a ! ∞ and we
get, as we might expect, Tulub’s result: q 1=λð Þ≈ 5.75.

Equation (2.12.1), however, has a peculiarity. Even in the case of a continuous
spectrum, for fk =0, if k > k0, it has an isolated solution νk0 which differs from the
maximum frequency ωk0 by a finite value. This isolated solution leads to an addi-
tional contribution into ΔE:

ΔE = 1
2

X
ki < k0

νki −ωki

� �
+ δEPR,

δEPR = 3
2

νk0 −ωk0
� �

. (2:12:6)

where νk0 has the meaning of “plasma frequency” (Porsch and Röseler, 1967).
Hence, here a continuous transition from the case of fk ! 0 for k> k0 to the case of
fk =0 for k> k0 is absent. As is shown by direct calculation (Appendix F), of the con-
tribution of the term with “plasma frequency” δEPR into (2.12.6), even for k0 ! ∞,
Porsch and Röseler theory does not transform itself into Tulub’s theory.

In Tulub’s theory we choose such fk, which lead to the minimum of the func-
tional of the polaron total energy. In particular, the choice of the probe function in
the form (2.12.4) provides the absence of a contribution from “plasma frequency” into
the total energy and in actual calculations one can choose a cutoff fk, without intro-
ducing any additional terms in Tulub’s functional (Lakhno, 2012b; Appendix J).

To sum up, critical remarks in Klimin and Devreese (2012, 2013) are inadequate.
Their inadequacy was demonstrated in Lakhno (2012b, 2013) and in Appendix F
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reproduced here. At the present time, Tulub’s theory and the results obtained on its
basis (Kashirina et al., 2012; Lakhno, 2010b, 2012a, 2013) give no rise to doubt.

2.13 Consequences of the existence of translation-invariant
polarons and bipolarons

According to the results obtained, the ground state of a TI polaron is a delocalized
state of the electron–phonon system: the probabilities of electrons occurrence at
any point of the space are similar. The explicit form of the wave function of the
ground state is presented in Section 2.11. Both the electron density and the amplitudes
of phonon modes (corresponding to renormalized by interaction frequencies νqi ) are
delocalized.

It should be noted that according to (2.3.15) renormalized phonon frequencies νqi
in the case of a TI polaron have higher energies than nonrenormalized frequencies of
optical phonons and, therefore, higher energies than nonrenormalized frequencies of
a polaron with spontaneously broken symmetry (Lakhno and Chuev, 1995).

The concept of a polaron potential well (formed by local phonons (Lakhno and
Chuev, 1995)) in which an electron is localized, that is, the self-trapped state, is
lacking in the translation-invariant theory. Accordingly, the induced polarization
charge of the TI polaron is equal to zero. Polarons lacking a localized “phonon envi-
ronment” suggests that its effective mass is not very much different from that of an
electron. The ground state energy of a TI polaron is lower than that of Pekar’s po-
laron and is given by formula (2.5.15) (for Pekar’s polaron the energy is determined
by (2.1.6)).

Hence, for zero total momentum of a polaron, there is an energy gap between
the TI polaron state and the Pekar one (i.e., the state with broken translation invari-
ance). The TI polaron is a structureless particle (the results of investigations of the
Pekar polaron structure are summed up in Lakhno and Chuev (1995)).

According to the TI polaron theory, the terms “large-radius polaron” (LRP) and
“small-radius polaron” (SRP) are relative, since in both cases the electron state is de-
localized over the crystal. The difference between the LRP and SRP in the translation-
invariant theory lies in the fact that for the LRP the inequality kchara<π is fulfilled,
while for the SRP kchara> π holds, where a is the lattice constant and kchar is a charac-
teristic value of the phonon wave vectors making the main contribution into the po-
laron energy. This statement is valid not only for Pekar–Fröhlich polaron, but for the
whole class of polarons whose coupling constant is independent of the electron wave
vector, such as Holstein polaron, for example. For polarons whose coupling constant
depends on the electron wave vector, these criteria may not hold (as is the case with
Su–Schrieffer–Heeger model, for example, Marchand et al. (2010)).

These properties of TI polarons determine their physical characteristics which
are qualitatively different from those of Pekar’s polarons. When a crystal has minor
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local disruptions, the TI polaron remains delocalized. For example, in an ionic crys-
tal containing vacancies, delocalized polaron states will form F-centers only at a
certain critical value of the static dielectric constant ε0c. For ε0 > ε0c a crystal will
have delocalized TI polarons and free vacancies. For ε0 = ε0c a transition from the
delocalized state to that localized on vacancies (collapse of the wave function) will
take place. Such behavior of TI polarons is qualitatively different from that of Pe-
kar’s polarons which are localized on the vacancies at any value of ε0. This fact ac-
counts for, in particular, why free Pekar polaron does not demonstrate absorption
(i.e., structure), since in this case the TI polaron is realized. Absorption is observed
only when a bound Pekar polaron, that is, F-center is formed. These statements are
also supported by a set of recent papers where Holstein polaron is considered
(Hague et al., 2008; Mishchenko et al., 2009; Ebrahimnejad and Berciu, 2012).

Notice that the physics of only free strong-coupling polarons needs to be
changed. The overwhelming majority of results on the physics of strong-coupling po-
larons has been obtained for bound (on vacancies or lattice disruptions) polaron
states of Pekar type and do not require any revision.

Taking account of translation invariance in the case of a polaron leads to a minor
change in the assessment of the ground state, however leads to qualitatively different
visions of the properties of this state. In Tulub (1961), in the section devoted to scat-
tering of a TI polaron, Tulub shows that as the constant of electron–phonon coupling
increases up to a certain critical value, scattering of an electron on optical phonons
turns to zero. Hence, when the coupling constants exceed a critical value a polaron
becomes superconducting. Though in ionic crystals the main mechanism of electron
scattering is scattering on optical phonons (Schultz, 1959), it might appear that the
contribution of acoustic phonons should also be taken into account in this case.
However, as it follows from the law of conservation of energy and momentum, a TI
polaron will scatter on acoustic phonons only if its velocity exceeds that of sound
(Kittel, 1963).

As distinct from polarons, TI bipolarons have much greater binding energy.
This leads to some important physical consequences. In particular, when a crystal
has minor local disruptions, a TI bipolaron will be delocalized. Thus, in an ionic
crystal with lattice vacancies, formation of F’-centers by delocalized bipolarons will
take place only at a certain critical value of the static dielectric constant ε0c1 . For
ε0 > ε0c1 the crystal will contain delocalized TI bipolarons and free vacancies. In the
case of ε0 = ε0c1 TI bipolarons will pass on from the delocalized state to that local-
ized on vacancies, that is, to F’-center. Such behavior of TI bipolarons is qualita-
tively different from the behavior of polarons with spontaneously broken symmetry
of Pekar type (Kashirina and Lakhno, 2010), which are localized on the vacancies at
any value of ε0.

Delocalized for P = 0 TI bipolarons, where P is the total momentum of a bipo-
laron will be separated by an energy gap from bipolaron states with broken transla-
tion invariance which are described by a localized wave function. This problem is
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lacking in in the translation-invariant bipolaron theory of superconductivity (Chap-
ter 4). It should be emphasized that the above-mentioned properties of TI bipolar-
ons impart them superconducting properties even in the absence of their Bose
condensation, and the high binding energy of bipolarons makes such a scenario of
superconductivity real even in highly defective crystals. As with TI polarons, in the
case when the coupling constant exceeds a certain critical value, TI bipolarons be-
come superconducting. As is known, interpretation of the high-temperature super-
conductivity relying on the bipolaron mechanism of Bose condensation runs into a
problem associated with a great mass of bipolarons and, consequently low temper-
ature of Bose condensation. The possibility of smallness of TI bipolarons mass re-
solves this problem. It should be stressed that the above-mentioned properties of
translation-invariant bipolarons impart them superconducting properties even in
the absence of Bose condensation, while the great binding energy of bipolarons
substantiates the superconductivity scenario even in badly defect crystals.

2.14 Quantum field theory methods and TI polarons

At present, Tulub’s theory and the quantitative results obtained on its basis are beyond
doubt. The considered quantum field theory is nonperturbative and can reproduce
not only the limits of strong and weak coupling, but also the mode of intermediate
coupling.

One of the most effective methods for calculating polarons and bipolarons in
this range of coupling strengths is considered to be the path integration method
(Feynman, 1972). This approach, without proper modification, is not translation-
invariant, since in this method the main contribution to the energy levels is made
by the classical solutions (i.e., the extrema of the exponent of the classical action,
which appears in the path integral). Moreover, due to translation invariance, such
solutions are not isolated stationary points, but belong to a continuous family of
classical solutions obtained by acting on the original classical solution of the trans-
lation operator. Accordingly, the stationary phase approximation in a translation-
invariant system is inapplicable.

In the quantum field theory, approaches based on the introduction of collective
coordinates into the functional integral (Rajaraman, 1982) have been developed to re-
construct translational invariance (Rajaraman 1982), which, however, have not been
used in polaron theory until now. For this reason, it is not surprising that the path
integrals method used in the polaron theory leads to a result that coincides with the
semiclassical theory of the strong coupling polaron (Gerlach and Löwen, 1988).

Recently, such a powerful computational method as the quantum Monte Carlo
method has been developed in the polaron theory (Mishchenko, 2005; Kashurnikov
and Krasavin, 2010). This method, itself being only a calculation tool, without the
above modification, cannot reproduce the results of the Tulub ansatz. In the case of

44 2 Pekar’s ansatz and the strong coupling problem in polaron theory

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



the Monte Carlo diagrammatic method, an obstacle to verifying the Tulub ansatz in
the strong-coupling limit is the need to calculate diagrams of a very high order.

Let us sum up the results obtained. Pekar’s ansatz (2.1.2) presents the initial
premise about the form of the solution, which has been confirmed in the course of its
numerous tests and proofs. Over the more than eighty-year history of the develop-
ment of the polaron theory (if the starting point is from Landau’s (1933) note, ansatz
(2.1.2) has confirmed the opinion as an asymptotically exact solution of the polaron
problem in the strong-coupling limit.

Tulub’s ansatz (Section 2.11) presents another premise about the form of a solu-
tion, the structure of which is determined by the form of the function Λ0 0j i. Within
this premise, Tulub’s solution is also asymptotically exact. Since the Tulub solution
gives a lower energy value for the polaron, from the variational point of view, pref-
erence should be given to the Tulub’s ansatz.

Thus, the polaron theory can in no way be considered a complete theory.
Within the framework of the Tulub ansatz, there is a huge amount of work to revise
many concepts (for example, superconductivity in Chapter 4) and provisions in con-
densed matter physics. The extension of the field of application of the Tulub ansatz
to other branches of quantum field theory can lead to a radical revision of many
results that seem to be unquestionable at present, and vice versa. For example, the
inseparability of the bipolaron state in the polaron model of quarks (Iwao, 1976)
(the role of phonons is played by the gluon field) provides a natural explanation for
their confinement. The fundamental question of how does the local particle–field
interaction leads to nonlocal one (action at a distance) is also illustrated by solution
the problem of two electrons in phonon field (Sections 2.7–2.10). It was noted in
Lakhno (2014) that in TI theory there is no need to use the Higgs mechanism of
spontaneous symmetry breaking to obtain the masses of elementary particles.

2.15 Translation-invariant excitons

This section deals with large-radius excitons in polar crystals. It is shown that the
translation-invariant description of excitons interacting with a phonon field leads
to a nonzero contribution of phonons to the energy of the exciton ground state only
in the case of a weak or intermediate strength of the EPI. It is concluded that self-
trapped excitons cannot exist in the strong-coupling limit. The features of the ab-
sorption and emission spectra of translation-invariant excitons in a phonon field
are discussed. The conditions are found under which the hydrogen-like exciton
model remains valid under the conditions of EPI.
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2.15.1 Introduction

The exciton theory represents an extensive chapter in modern condensed matter
physics (Knox, 1963; Agranovich, 1968; Davydov, 1971; Rashba and Sturge, 1982;
Veta et al., 1986). One of its sections is the theory of excitons in polar media (Kuper
and Whitfield, 1963; Devreese and Peeters, 1984). As in the case of polarons, the
description of free excitons in a homogeneous and isotropic polar medium should
be translation-invariant (TI). This leads to numerous consequences. Being bosons,
excitons, like bipolarons, are capable of forming a Bose condensate. However, ex-
perimental confirmation of this possibility was obtained quite recently (Kogan
et al., 2017). A number of theories of superconductivity are also based on the partic-
ipation of excitons in the formation of a Bose condensate.

The extensive literature on excitons provides detailed coverage of numerous ex-
citon-related phenomena. For this reason, we will focus only on some of the quali-
tative differences that result from the translation-invariant theory of EPI from the
theory of self-trapped excitons in polar media.

In most modern works on excitons, when interpreting their spectral lines, the
presence of the environment, in particular, a polar medium (in the case of polar
crystals) is simply ignored (see the review by Aßmann and Bayer (2020) and the lit-
erature cited therein). If the influence of the medium is taken into account, then a
clear picture of the spectral lines of excitons should have been absent. Experimen-
tally, one can clearly see distinguishable peaks corresponding to transitions to
highly excited states with a very large energy number. It seems completely inexpli-
cable how the presence of an environment and a strong EPI, which should lead to
shifts and broadening of the exciton transition lines, as well as to distortions of the
shape of its spectrum, leave the closely located lines of transitions to highly excited
states distinguishable.

As a result of numerous theoretical studies of this issue, an idea was formed
about the significant contribution of EPI into the binding energy of an exciton, ex-
pressed in the replacement of a simple hydrogen-like model with a modified one, in
which consideration of the polarization cloud surrounding the electron and hole,
that is, the polaron effect, is achieved by replacing the Coulomb interaction with
the screened one. The most popular interaction potentials used in the interpretation
of experimental observations are the potentials by Haken (1958),Tulub (1958), Bajaj
(1974), and Pullmann and Büttner (1977). Nevertheless, in the overwhelming major-
ity of works, it is more efficient to use the simplest hydrogen-like model.

We can give the following explanation for the failure of the model potentials
(Haken, 1958; Tulub, 1958; Bajaj, 1974; Pullmann and Büttner, 1977). The point is
that the model potentials by Haken (1958), Tulub (1958), Bajaj (1974), Pullmann and
Büttner (1977) were obtained to approximate the binding energy of an exciton in the
ground state, and then used to calculate the energy levels in such a potential. In fact,
an approach would be correct, in which each excited state would be associated with
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its own (self-consistent) potential, for example, as was done in Lakhno and Balabaev
(1983) for F-centers.

This problem, however, due to its great complexity, was not solved. As will be
shown in this work, in reality, the solution of such a problem is not required, since
in the case of a strong EPI and the presence of translation invariance, the exact
spectrum of the exciton is hydrogen-like. This explains the success of its wide-
spread use.

Thus, the main result is that in TI systems, self-trapped (self-consistent) states
of excitons caused by EPI are impossible, just as self-trapped states of a polaron
and a bipolaron are impossible (Lakhno 2010b, 2012a, 2013, 2015b; Kashirina et al.,
2012). At the same time, as will be shown below, the presence of translational in-
variance leads to important features in the spectra of TI excitons.

2.15.2 Hamiltonian of an exciton in a polar crystal

The Hamiltonian of an exciton in a polar crystal is the Pekar–Fröhlich Hamiltonian,
which describes the interaction of an electron and a hole with each other and with
optical phonons:

Ĥ = −
�h2

2m1
Δr1

−
�h2

2m2
Δr2

+
X
k

�hω0 kð Þ a+
k ak −

e2

ε∞ r1 − r2j j +

+
X
k

Vkeikr1ak −Vkeikr2ak +H.c.
� �

, (2:15:1)

Vk =
e
kj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π�hω0 kð Þ

V~ε

r
, ω0 kð Þ=ω0, ~ε− 1 = ε− 1

∞ − ε− 1
0 ,

where e is the electron charge, m1 and m2 are masses of an electron and a hole, ε∞
and ε0 are high frequency and static dielectric permittivities, r1 and r2 are coordi-
nates of an electron and a hole, ω0 kð Þ is a phonon frequency which in the case of
optical phonons is independent of k and equal to ω0.

Hamiltonian (2.15.1) corresponds to the case of a continuous polar medium,
that is, the case of Wannier–Mott exciton in a polar medium. Opposite signs in the
interaction Hamiltonian (2.15.1) correspond to opposite signs of the charge of an
electron and a hole.

Having passed in Hamiltonian (2.15.1) from r1 and r2 to coordinates of the center
of mass R and relative coordinates r:

r1 =R+ m2

M
r, r2 =R−

m1

M
r, M =m1 +m2, μ= m1m2

M
, (2:15:2)
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we get:

Ĥ = −
�h2

2M
ΔR −

�h2

2μ
Δr +

X
k

�hω0 kð Þ a+
k ak −

e2

ε∞ rj j + (2:15:3)

+
X
k

Vkak eik R+m2r=Mð Þ − eik R−m1r=Mð Þ
h i

+H.c.

Having eliminated in (2.15.3) coordinates of the center of mass of an exciton via Hei-
senberg operator S=exp − i=�h

X
�hkRa+

k ak
� �

and averaged the Hamiltonian ob-
tained over the wave function of relative motion Ψ rð Þ we obtain:

�̂H= 1
2M

X
k

kak
+ak

� �2

+
X
k

�hω0 kð Þa+
k ak +

X
k

�Vkak +H.c.
� �

+ �T+ �U, (2:15:4)

�T = −
�h2

2M

ð
Ψ

�
ΔrΨd3r, �U = −

e2

ε∞

ð
Ψ

� 1
rj jΨd3r,

�Vk =Vk Ψj exp ikrm2=M − exp − ikrm1=Mð ÞjΨh i.

Let us consider different limiting cases for this Hamiltonian.

2.15.3 The ground state of an exciton in a polar crystal in the case of weak and
intermediate electron–phonon interaction

The contribution of EPI into the exciton energy in the case of weak coupling for
m1≠m2 is nonzero and leads to a decrease in the exciton energy. This automatically
follows from expression (2.15.4), which differs from the case of a polaron by substitu-
tions Vk ! �Vk; m1,m2 ! μ,M and adding constants �T and �U to the Hamiltonian. As a

result, for the energy of the ground state of a resting exciton in the case of weak
and intermediate coupling, according to Lee et al. (1953), we obtain:

E = �T + �U −
X
k

�Vk

 2
�hω0 kð Þ+ �h2k2=2M

(2:15:5)

According to Gerlach and Luczak (1996), the energy of the ground state in this limit is

E = − α 1 + α 2ð Þ�hω0 −R0
μ p

μ
, (2:15:6)

R0 =μe4=2�h2ε20, μp =
mp

1m
p
2

mp
1 +mp

2
, mp

i =mi 1+ αi=6ð Þ,

αi =
1
2
e2ui
�hω0 ~ε

, ui =
2miω0

�h

� �1=2

,
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where αi, i= 1, 2 have the meaning of EPI constants for an electron and a hole,
respectively.

It follows from (2.15.6), that in the absence of a static Coulomb interaction be-
tween an electron and a hole ε0 =∞ð Þ, there is an ordinary polaron shift in the ener-
gies of an electron and a hole moving independently. In another limiting case,
when EPI is absent: ~ε=∞, from (2.15.6) follows the expression for the effective hy-
drogen atom in the ground state.

2.15.4 The ground state of an exciton in a polar crystal in the case of a strong
electron–phonon interaction

Hamiltonian (2.15.4) does not depend on the coordinates of the center of mass of
the exciton R. Hence, it follows that self-trapping of the exciton, that is, formation
of an exciton localized in the R-space is impossible. This is a consequence of the
fact that the total momentum of the exciton commutes with the Hamiltonian; ac-
cordingly, the eigenwave functions of the Hamiltonian are simultaneously the ei-
genfunctions of the operator of the total momentum P or plane waves in R-space.

Another important conclusion that follows from the form (2.15.4) is that in the
limit of strong coupling with phonons, the exciton is not polarizable. In other
words, in the strong EPI limit, the exciton behaves like a free exciton in a nonpolar
medium.

Let us show this in the case when ω0 kð Þ does not depend on k. In this case,
Hamiltonian (2.15.4) coincides in structure with the bipolaron one considered in
Lakhno (2010b, 2012a, 2013, 2015b) and Kashirina et al. (2012). Repeating the calcu-
lation carried out in these works for a bipolaron in the strong-coupling limit, for the
ground state energy from (2.15.4) we obtain

E =ΔE + 2
X
k

�Vk fk +
X
k

f 2k + �T + �U, (2:15:7)

Ψ rð Þj j2 = 2=πl2
� �3=2

exp − 2r2=l2
� �

, (2:15:8)

fk = ± c Vk=�hω0ð Þ exp − k2=a2
� �

, (2:15:9)

where the sign «+» in (2.15.9) refers to the case m1 <m2, while the sign «-» – to the
case m1 >m2; a, l, c are variational parameters involved in variational functions ψ
and fk, ΔE is the so-called recoil energy (Lakhno 2010b, 2012a, 2013, 2015b; Kashir-
ina et al., 2012).

Substituting (2.15.8) and (2.15.9) into (2.15.7) we express the ground state energy
as follows:
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E =0, 633 �h
2a2

M
−

e2ffiffiffiffiffi
2π

p
~εa

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m2

2
8M2 + 1

a2

r −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2m2
1

8M2 + 1
a2

r
0BB@

1CCA
2

+ 3�h2

2μl2
− 2

ffiffiffi
2
π

r
e2

ε∞l
(2:15:10)

In which minimization with respect to c is already performed.
It should be noted that expression (2.15.10) gives a solution to the two-particle

problem with different masses even in the case of repulsion between particles, if we
change the “–” sign to “+” in the parenthesis in (2.15.10) and before the last term
on the right-hand side of (2.15.10). In this case, for m1 =m2 and a= 8=

ffiffiffi
2

p
l

� �
this ex-

pression turns into the expression obtained for the bipolaron in Lakhno (2010b).
Expression (2.15.10) was obtained for the case of strong coupling, when a ! ∞.

However, it can be shown that E = E l, að Þ has no minimum in this limit. The only min-
imum which has E l, að Þ corresponds to the values l= 3

ffiffiffiffiffiffiffiffi
π=8

p
�h2ε∞

� �
= μe2ð Þ, a=0,

Emin = − 4=3πð Þμe4=�h2ε2∞ which correspond to the case of a free exciton.
Thus, our initial assumption, made in deriving (2.15.10), about the existence of

a phonon contribution into the exciton energy in the case of a strong EPI turned out
to be erroneous. The result obtained indicates that the sought phonon contribution
to the exciton energy, which corresponds to a polarizable exciton, can be nonzero
only at finite values of a, that is, at finite values of the EPI constant.

Hence it follows that for sufficiently large values of the EPI constants of elec-
trons and holes, when the energy of a polaron exciton is close to the energy of a
free exciton, the decay of an exciton into two separate polarons with energies Ee

p

and Eh
p for an electron and a hole, respectively, can become energetically more

advantageous.
The condition for the stability of excitons with respect to such a decay is the

fulfillment of the inequality:

Eexcj j≥ Eh
p

 + Ee
p

 . (2:15:11)

In the case of strong coupling with the use of expressions for the energies of a free
exciton Eexc = −μe4=2ε2∞�h

2 and TI polarons Ee, h
p = −0.06286m1, 2e4=~ε2�h2 (Lakhno,

2010b, 2012a, 2013, 2015b; Kashirina et al., 2012), the exciton stability region, ac-
cording to (2.15.11), will be determined by the condition:

0.5−0.5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−0.5ε2∞=~ε2

q
<m1, 2=M <0.5+0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−0.5ε2∞=~ε2

q
(2:15:12)

It follows from (2.15.12) that for the condition of exciton stability to be fulfilled, the
static dielectric constant ε0 must be less than 3.4ε∞.
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We also draw attention to the fact that functional (2.15.10) does not turn into the
functional of the F-center as any of the masses tends to infinity, since such a transi-
tion would correspond to the loss of the translational invariance of the original sys-
tem. As shown in Section 2.13, a free TI polaron will be captured by the Coulomb
attractive charge of the F-center, only at a certain critical value of the static dielectric
constant. Accordingly, in the case of free electron and hole TI polarons, such capture
with the formation of an exciton state will occur only if condition (2.15.12) is satisfied.

2.15.5 Spectrum of a TI exciton

To find the spectrum of the Hamiltonian (2.15.3), we will seek a solution to problem
(2.15.3) in the form:

Ψ= Ψ rð Þj i X R, akf gð Þj i (2:15:13)

Then, the mean over Ψ rð Þj i value of Hamiltonian (2.15.3) will have the form:

�̂H = hΨjĤ Ψj i= −
�h2

2M
ΔR +

X
k

�hω0 kð Þa+
k ak +

X
k

�Vk eikRak +H.c.
� �

+ �T + �U, (2:15:14)

which, up to constants �T and �Uand Vk replaced by �Vk, defined by (2.15.4), coincides
with the Hamiltonian of the polaron. Below we will set ħ = 1.

Following Gerlach and Kalina (1999), we will choose the wave function Xj i, in-
volved in (2.15.13), in the translation-invariant form:

X Pð Þj i= cpeiPR +
X∞
N = 1

X
k1 , . . ., kN

cP, k1 , . . ., kN · ei P− k1 − k2 − · · · − kNð ÞRa+
k1
a+
k2
. . . a+

kN

" #
0j i

(2:15:15)

where cP and cP, k1 , . . ., kN are normalized constants, 0j i is a vacuum wave function, P
is the vector of eigenvalues of the total momentum operator:

P̂ = − i∂=∂R+
X∞
i= 1

kia
+
ki
aki (2:15:16)

Since the total momentum operator (2.15.16) commutes with the Hamiltonian �H, the
wave function X Pð Þj i is simultaneously their eigenfunction:

�̂H X Pð Þj i= E Pð Þ X Pð Þj i,

P̂ X Pð Þj i= P X Pð Þj i. (2:15:17)

Let X Pð Þj i be the wave function of the ground state. Then, according to Gerlach and
Kalina (1999), the wave function of one-phonon excited state Ψ Kj

� � �
:
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Ψ Kj
� � �

= a+
kj
X Pð Þj i (2:15:18)

where Kj has the meaning of a total momentum in the jth excited state, will have
the properties:

P̂ Ψ Kj
� � �

=Kj Ψ Kj
� � �

= P+kj
� �

Ψ Kj
� � �

(2:15:19)

�̂H Ψ Kj
� � �

= ε Kj
� �

Ψ Kj
� � �

= E Pð Þ+ωki

� �
Ψ Kj
� � �

= E K−kj
� �

+ωkj

� �
Ψ Kj
� � �

Hence, the spectrum of excited states has the form:

ε Kð Þ= E Kj −kj
� �

+ω0 kj
� �

, ω0 kj
� �

=ωkj (2:15:20)

As for E Kj −kj
� �

in Gerlach and Kalina (1999) it was shown:

E Kj −kj
� �

≤E 0ð Þ+ Kj −kj
� �2 2M

.
(2:15:21)

In fact, according to Lakhno (2018), in this case, instead of the inequality in (2.15.21),
the exact equality holds, and for Kj =0 the spectrum has the form:

ε kj
� �

=E 0ð Þ+ω0 kj
� �

+k2
j =2M (2:15:22)

It should be noted that, in the general case, the wave function of an excited state
containing N phonons has the form:

Ψk1 , . . ., kN
 �

= a+
k1
a+
k2
. . . a+

kN
X Pð Þj i (2:15:23)

for which the inequality:

ε k1, . . ., kNð Þ≤ E 0ð Þ+
XN
i= 1

ω0 kj
� �

+ K−k1 − � � � −kNð Þ2 2M
.

(2:15:24)

holds, where K is the total momentum corresponding to N-phonon excitations.
We also note that in the case of an exciton, when there is a set of electronic

excitations numbered by the subscript n (by n we can mean a set of quantum num-
bers), instead of (2.15.22) we get:

ε1 k =0ð Þ=E1 0ð Þ=Eexc (2:15:25)

εn k≠0ð Þ= En 0ð Þ+ω0 kð Þ+k2=2M, n= 1, 2, . . .
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2.15.6 Peculiarities of absorption and emission of light by TI excitons

Let us consider the case of optical phonons, when ω0 kð Þ does not depend on k, that
is, the case of polar crystals. For direct excitons, according to (2.15.25), in addition
to the ordinary discrete spectrum En 0ð Þ, there is a quasi-continuous spectrum with
energies En 0ð Þ+ω0 + k2=2M, which makes the spectrum En 0ð Þ distinguishable only
under the condition ω0 > E1 0ð Þ−E2 0ð Þj j. When the condition is met:

ε1 − εnc + 1j j>ω0 > ε1 − εncj j (2:15:26)

only nc first levels of an exciton will be discernible. This result can be used to study
soft phonon modes associated with structural phase transitions in crystals, for ex-
ample, in cuprate superconductors. Thus, if, far from the phase transition, condi-
tion (2.15.26) is fulfilled for nc = 2 then the optical transition of the exciton from the
ground state to the first excited state will contribute to absorption. At the point of
the phase transition, when ω0 ≈0 this contribution will be absent, since all discrete
exciton levels fall into the quasi-continuous spectrum.

As is shown in Lakhno (2010b, 2012a, 2013, 2015b and Kashirina et al. (2012),
the excitation spectrum (2.15.25) can be interpreted as the spectrum of renormalized
EPI phonons, which represent the initial phonon with which an electron and a hole
are bound. The scattering of light with a frequency ν by such phonons will lead to
the appearance of satellite frequencies vexcn, k, + = v+ εn kð Þj j and vexcn, k, − = v− εn kð Þj j in
the scattered light. Hence, depending on the parameters involved in these expres-
sions, a more complex structure of the absorption and emission spectrum of a TI
exciton is possible in comparison with the spectrum of a free exciton. Thus, for ex-
ample, when condition (2.15.26) with n= 2 is fulfilled, absorption (emission) of light
is possible without changing the principal quantum number of the exciton n. In this
case, the absorption (emission) curve will have a characteristic two-humped inten-
sity distribution with a maximum for vexcn, k, ± ≈ v±ω0 (Snoke and Kavoulakis, 2014).

Like bipolarons, TI excitons, being bosons, can undergo Bose condensation,
which was predicted in Keldysh and Kopaev (1964) and Keldysh and Kozlov (1967). In
contrast to the bipolaron Bose gas, to which the statistically equilibrium description is
applicable, for an exciton gas in a quasi-equilibrium photoexcited state, such a de-
scription can be applicable only for long-lived exciton states, which can be realized in
semimetals, gapless semiconductors, nanodot systems, or in indirect semiconductors.

In Kogan et al. (2017), exciton condensation was probably observed in the semi-
metallic compound TiSe2. Since the TI exciton Hamiltonian (2.15.4) is similar to the
TI bipolaron one, all the results obtained in the statistical description of the TI bipo-
laron gas are applicable to the case of the TI exciton gas. In particular, for the tem-
perature of Bose condensation of the TI exciton gas, we obtain (Lakhno, 2018):

Tc ω0ð Þ= F3=2 0ð Þ=F3=2 ω0=Tcð Þ� �2=3Tc 0ð Þ (2:15:27)

2.15 Translation-invariant excitons 53

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



Tc 0ð Þ= 3, 31 �h2n2=3exc=M, F3=2 xð Þ= 2ffiffiffiffi
π

p
ð∞
0

t1=2dt
et + x − 1

,

where nexc is the concentration of TI excitons. Accordingly, the phase transition to
the Bose-condensate exciton phase should be of the second order with a jump in
the specific heat during the transition.

2.16 Conclusion

This Chapter provides an answer to the fundamental question about the role of po-
laron effects in the physics of excitons. Despite the fact that the important role of
EPI for excitons in polar media has been established in a large number of experi-
ments, the question of why under these conditions the hydrogen-like model is valid
until now has remained open (Baranowski and Plochocka, 2020). In this Chapter, it
is shown that in the case of the EPI described by the Fröhlich Hamiltonian, the hy-
drogen-like model turns out to be applicable if the energy of the transition to the
excited state does not exceed the energy of the optical phonon.

The Pekar–Fröhlich polaron model is an indispensable component of a wide
range of problems associated with the description of the properties of a particle in-
teracting with a bosonic reservoir. Originally introduced to describe the behavior of
electrons interacting with phonons in crystals, this model has found application in
such diverse areas as highly correlated electronic systems, quantum information,
and high energy physics. Recently, it has been actively used to describe impurity
atoms in boson condensates. The results obtained in this work, in particular, ex-
plain the clearly distinguishable structure of highly excited (Rydberg) atoms sur-
rounded by a Bose condensate (Camargo et al., 2018).

In conclusion, it should be noted that both in the theory of polarons and in the
theory of an exciton interacting with phonons, there is a widespread opinion about
the possibility of self-trapped polaron or exciton states. For example, by analogy
with a polaron, self-trapped exciton states were considered in Dykman and Pekar
(1988, 1953, 1952), Pekar et al. (1979), Sumi (1977), Shimamura and Matsura (1983),
and Song and Williams (1996). They assumed that when the EPI constants exceed a
certain critical value, the exciton is captured by the self-consistent potential it cre-
ates, leading to possible annihilation of an electron and hole and disappearance of
the exciton. It was also believed that in the case of a very strong EPI, the energy of
the lattice deformed by an exciton can exceed the energy of excitons in a rigid lattice.
Changes in the energy of such deformed excitons, being negative with respect to ex-
citons in a rigid lattice, can make advantageous spontaneous formation of excitons
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in crystals with a small gap, for example, in gapless polar semiconductors (excitonic
matter: Veta et al., 1986; Haken, 1973).

The results obtained here exclude the possibility of the formation of self-trapped
exciton states in translation-invariant systems. Conclusions about the possibility of
self-trapped excitons in them are based either on a poor choice of trial variational
functions, or on erroneous calculations with the use of such functions.
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3 Large-radius Holstein polaron and the problem
of spontaneous symmetry breaking

A translation-invariant theory is developed for a Holstein large-radius polaron whose energy is
lower than that found by Holstein. The wave function corresponding to this solution is delocal-
ized. A conclusion is made about the absence of a spontaneous symmetry breaking in the
quantum system discussed.

Based on the Holstein–Hubbard model, a possibility is considered of the formation of bi-
polaron states in discrete molecular chains. A phase diagram determining the stability of bipo-
laron states in such chains is calculated.

3.1 Introduction

In the previous chapters, we considered the problem of whether the problem solution
should have the same symmetry as the Hamiltonian. In this chapter, we will deal
with a one-dimensional case in view of its actuality. In a classical one-dimensional
lattice (molecular chain), a Bloch electron with translational symmetry will always
lose its original symmetry, if we assume the possibility of deformation of such a lat-
tice by an electron.

This problem in the case of a one-dimensional molecular crystal was first consid-
ered in the work of Holstein (1959a, 1959b). If the atoms of the lattice are considered
quantum-mechanically, this conclusion will not be valid any longer. In a quantum lat-
tice, the symmetry of the electron–phonon system is conserved if the interaction of an
electron with the lattice determined by the interaction constant g is not too strong. For
the value of g exceeding some critical value, according to Holstein (1959a), the symme-
try is broken and a self-trapped state is formed. The statement made in Holstein
(1959a) that in the strong coupling limit a self-trapped polaron state is bound to arise
contradicts, however, to the fact that the total momentum of the electron–phonon sys-
tem in an ideal translationally symmetrical chain should be conserved. Since the total
momentum of the system is commuted with the Hamiltonian, the operator of the mo-
mentum and the operator of the Hamiltonian should have the same set of eigenfunc-
tions. However, the eigenfunctions of the total momentum operator are plane waves,
that is, delocalized states, while those of the Hamiltonian operator in the strong cou-
pling limit are localized wave functions of the self-trapped state. This contradiction
was analyzed in Gerlach and Löwen (1988, 1991) and Löwen (1988) where it was
shown that for all the values of the coupling constant, the states should be delocalized.
In the case of Pekar–Fröhlich polaron, these solutions in the strong coupling limit
were studied in the previous chapter. In particular, it was shown that in the strong cou-
pling limit delocalized polaron states have a lower energy than localized ones which
break the symmetry.
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In this chapter, we apply the approach by Tulub (1961) to the problem of a
large-radius strong-coupling Holstein (1959a) polaron. We will show that in this
case, as in the case of Pekar–Fröhlich polaron, in the limit of large g, minimum is
reached in the class of delocalized wave functions.

3.2 Holstein polaron in the strong coupling limit: broken
translation invariance

According to Lakhno (2006), Holstein Hamiltonian in a one-dimensional molecular
chain in a continuum limit has the form (Appendix G):

Ĥ = −
�h2∇2

2m
+
X
k

Vk akeikx + a+
k e

− ikx� �
+
X
k

�hω0
ka

+
k ak;

Vk =
gffiffiffiffi
N

p , ω0
k =ω0 (3:2:1)

where a+
k , ak are the phonon field operators, m is an electron effective mass, ω0 is

the optical phonons frequency, and N is the number of atoms in the chain.
For the following analysis, it is convenient to present some results concerning

Hamiltonian (3.2.1) in the strong coupling limit. In Holstein’s (1959a) theory, as well
as in Pekar’s (1954) theory, it is believed that the wave function of the ground state
has the form:

Ψ=ψ xð ÞΦ q1, . . . , qk, . . .ð Þ (3:2:2)

where ψ xð Þ is the electron wave function independent of phonon variables and Φ is
the phonon wave function. The ground-state energy is determined from the condi-
tion of the total energy minimum E:

E =T −Π, T = 1
2m

ð
∇ψj j2dx, Π= g2a

�hω0

ð
ψj j4dx, (3:2:3)

where a is the lattice constant. Let us introduce a scaled transformation of the wave
function ψ xð Þ, retaining its normalization:

ψ xð Þ= ξj j1=2 ~ψ ξj jxð Þ. (3:2:4)

As a result, with the use of (3.2.3), we rewrite (3.2.2) as follows:

E ξð Þ= ξj j2T − ξj jΠ. (3:2:5)

Figure 3.1 shows the dependence E ξð Þ.
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Figure 3.1 illustrates why the global symmetry of the initially symmetrical delo-
calized state spontaneously breaks. The reason is that this state (ξ = 0) corresponds
to the local maximum of the functional E. The minimum of the functional at the
points ±ξ0 corresponds to the energy and wave function ψ(x):

E ± ξ0
� �

= −
1
6

�h2

mr2
, ψ xð Þ= ±

ffiffiffiffi
2r

p
ch

x− x0
r

� �− 1
, r = �h3ω0

mg2a
, (3:2:6)

where x0 corresponds to the position of the polaron well center in the energy
minimum.

In the vicinity of this minimum, one can carry out quantizing, thereby restoring
the broken symmetry. Upon this restoration a Goldstone boson (zero phonon mode)
automatically arises.

A similar approach is realized in models of elementary particles (Svartholm,
1969). For example, in the standard model, not global (as in the case just consid-
ered), but local symmetry of gauge fields spontaneously breaks. In this case, Gold-
stone bosons do not arise, while fields become massive.

In all the cases, in these models the symmetry spontaneously breaks and the
restored one turns out to be less than the initial symmetry. Below, using Holstein
model as an example, we will show that the approach discussed can lead to errone-
ous results.

3.3 Translation-invariant theory

In the previous section, the results of the strong coupling theory with broken sym-
metry were given. Here, we present the general translation-invariant approach re-
producing the results of Tulub (1961) as applied to Holstein Hamiltonian.

E

ξ0-ξ0 0

ξ

Fig. 3.1: Dependence of E ξð Þ on parameter ξ.
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In order to make the description translation-invariant, let us exclude the elec-
tron coordinates from Hamiltonian (3.2.1) using Heisenberg transformation (2.2.2)
and use Lee, Low, and Pines transformation (2.3.1) from Chapter 2. Repeating calcu-
lations made in Section 2.3, we rewrite (2.3.1) of Chapter 2 as follows:

det
 s−ω2

k

� �
δkk′ − zkzk′

= Y
k

s−ω2
k

� �
1−
X
k

z2
k′

s−ω2
k′

 !
. (3:3:1)

Accordingly, ΔðsÞ is equal to

Δ sð Þ= 1−
X
k

z2
k′

s−ω2
k′

 !
. (3:3:2)

As a result, for DðsÞ instead of (2.3.19) we get:

ΔE = 1
2

X
k

vk −ωkð Þ. (3:3:3)

Δ sð Þ=D sð Þ, D sð Þ= 1−
1
π

ð∞
−∞

k2f 2kωk

s−ω2
k

dk. (3:3:4)

With the use of (3.3.4) in the particular case of P=0, we get the expression for the
ground-state energy of operator H0:

E = −
1
8πi

þ
C

dsffiffiffi
s

p lnD sð Þ+ 2
X
k

Vk fk +
X
k

f 2k . (3:3:5)

Expression for the total energy E, determined by (3.3.5) is applicable for the whole
range of changes of the coupling constant g. In the next section, we will consider
the case of weak coupling.

3.4 The case of weak coupling

The quantities fk in the total energy expression E should be found from the mini-
mum condition: δE=δfk= 0, which leads to the following integral equation for find-
ing fk:

fk = −
Vk

1+ k2=2μkð Þ , μ− 1
k = ωk

2πi

þ
C

dsffiffiffi
s

p 1
s−ω2

k

� �
DðsÞ . (3:4:1)

In the case of weak coupling equations (3.4.1) can be solved using the perturbation
theory. In the first approximation for g ! 0 DðsÞ= 1, the quantity μ− 1

k is equal to:
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μ− 1
k = ωk

2πi

þ
C

dsffiffiffi
s

p 1
s−ω2

k

� � = 1. (3:4:2)

Accordingly, from (3.4.1) fk will be expressed as follows:

fk = −
Vk

1+ k2=2ð Þ . (3:4:3)

Hence, in the first approximation on g:

E =ΔE + 2
X
k

Vk fk +
X
k

f 2k

ΔE = −
1
8πi

þ
C

dsffiffiffi
s

p lnDðsÞ

lnDðsÞ≈ −
1
π

ð∞
−∞

k2f 2kωk

s−ω2
k

dk. (3:4:4)

Passing on in (3.4.4) from summation to integration with the use of the formula:P
k = 1

2π

Ð
dk and substituting (3.4.3) into (3.4.4) with regard to expression (3.2.1) for

Vk, we transform (3.4.4) into a well-known expression for the electron energy in the
weak coupling limit:

E = − g2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=2�h3ω0

q
, (3:4:5)

which we write in dimensional units.
To calculate the next terms of the energy expansion in terms of the degrees of

coupling constant g, one can use the approach developed in Tulub (1961) and Porsch
and Röseler (1967).

3.5 The case of strong coupling

Now, we pass on to the case of strong coupling. To clear up the character of a solu-
tion in this region, let us turn to analytical properties of the function DðsÞ (3.3.4).
For this purpose, we present function DðsÞ in the form:

D sð Þ=Dð1Þ+ s− 1
π

ð∞
−∞

k2f 2kωk

ðω2
k − 1Þðω2

k − sÞ dk (3:5:1)
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where Dð1Þ is the value of DðsÞ for s= 1:

D 1ð Þ= 1+ 1
π

ð∞
−∞

k2f 2kωk

ω2
k − 1

dk ≡ 1+Q. (3:5:2)

From (3.5.1) and (3.5.2), it follows that D− 1ðsÞ satisfies the integral equation:

1
D sð Þ =

1
1+Q

+ s− 1
π

ð∞
0

k2f 2kωk

ðs−ω2
kÞðω2

k − 1Þ Dðω2
kÞ

 2 dk (3:5:3)

whence we get:

ΔE = 1
4π

ð∞
−∞

k2f 2kωkdk
2 ð1+QÞ +

1
4π2

ð ð∞
−∞

k2f 2k p
2f 2pωpðωkωp +ωkðωk +ωpÞ+ 1Þ
ωk +ωp
� �2ðω2

p − 1Þ D+ ðω2
pÞ

 2 dpdk

D± ω2
p

� �
= 1+ 1

π

ð∞
−∞

k2f 2kωkdk
ω2

k −ω2
p ± iε

. (3:5:4)

To calculate the polaron energy in the strong coupling limit, let us choose the probe
function fk in the form:

fk =Nge− k2=2a2 , (3:5:5)

where N and a are variational parameters. As a result, ΔE will be written as follows:

ΔE = a2

32
1+ 2qTð Þ, (3:5:6)

where qT is Tulub’s (1961) integral:

qT =
2ffiffiffi
π

p
ð∞
0

e− y2 1−ΩðyÞð Þdy
v2ðyÞ+ πy2e− 2y2=4

ΩðyÞ= 2y2 1+ 2y2
� �

yey
2
ð∞
y

e− t2dt − y2

8<:
9=;

vðyÞ= 1− ye− y2
ðy
0

et
2
dt − yey

2
ð∞
y

e− t2dt, (3:5:7)

for which an approximate value: qT ≈ 5.75 was obtained in Tulub (1961) with a high
degree of accuracy.

With the use of (3.3.5), (3.5.6), and (3.5.5), the ground-state energy takes the form:
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E =ΔE + 2
X
k

Vkfk +
X
k

f 2k ≈
12.5
32

a2 −
ffiffiffi
2
π

r
1−

N

2
ffiffiffi
2

p
� �

g2a N (3:5:8)

Minimization of the ground-state energy by parameters a and N yields the following
value of the polaron ground-state energy:

E ≈ −0.2037ma20
�h2

g4

�h2ω2
0

, (3:5:9)

which is presented in dimensional units. This result is fundamental since the en-
ergy value obtained is lower than that of Holstein polaron (3.2.6) (Appendix E).

For the probe function chosen in the form (3.5.5), the virial theorem holds:
2T =Π, W = 3E, where W is the electron energy. Notice that the mere fact that the
virial theorem holds says nothing on whether the symmetry in the state under con-
sideration is broken or not and for Holstein polaron, the virial theorem holds true
both in the case of broken symmetry (Section 3.2), and in the state with translation
symmetry discussed here.

Equating the values of the weak coupling energy (3.4.5) and the strong coupling
one (3.5.9), we can, as is customary in the polaron theory, get the value of the di-
mensionless coupling constant gc = g=�hω0 at which a transition from weak coupling
to strong one occurs:

gc ≈ 1.86
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ma20ω0

4
q

. (3:5:10)

It should be stressed, however, that no jump-like transition from weak and interme-
diate coupling to the strong one occurs. The polaron state remains delocalized for
all the values of the coupling constant and EðgÞ is an analytical function g (Gerlach
and Löwen, 1988; Löwen, 1988; Korepin and Essler, 1994). This conclusion auto-
matically results from the analytical properties of the function DðsÞ too.

3.6 Holstein TI polaron and the problem of quantization
in the neighborhood classic solution

Returning to the original Landau hypothesis that an electron wave function loses
symmetry as a result of formation of a self-trapped localized state by the electron, it
can be stated that it is erroneous. This can already be seen from Hamiltonian
(3.2.1), which after the Heisenberg canonical transformation (2.2.2) in Chapter 2
does not contain electronic coordinates at all. Hence, it follows the general form of
the solution of the Schrödinger equation for Hamiltonian (3.2.1) is
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Ψ= exp
i
�h

P −
X
k

�hka+
k ak

� �
x

	 

Λ0 akf g 0j i (3:6:1)

where Λ0 akf g is the functional of the field operators and 0j i is a vacuum wave func-
tion, represents plane waves. It is important that the electronic and phonon varia-
bles, in contrast to the case of broken symmetry (Section 3.2), are not separated in
(3.6.1).

According to Fig. 3.1, from the classical point of view, such a solution is unsta-
ble: any infinitesimal change in the classical orbit at this point will lead to an in-
crease in the amplitudes of the deviation of the electron trajectory, leading to their
finite values. The quantum mechanical consideration expands the space of admissi-
ble states and leads to the possibility of stable oscillations near a classically unsta-
ble point ξ =0.

The quantum mechanical states determined by solution (3.6.1) lack their classi-
cal analogue. In particular, it follows from (3.6.1) that for the found solution the
concept of a classical polaron well localized in space is absent, since a plane wave
cannot maintain a finite number of displacements of atoms from their equilibrium
positions.

The inapplicability of the adiabatic approximation (3.2.2) in translation-invariant
systems can also be qualitatively illustrated by the following reasoning. The criterion
for the applicability of the adiabatic approximation is the smallness of the ratio to
m=M whereM is the mass of the atom in the lattice. Whenm=M ! 0, that is, when the
mass of an atom tends to infinity, it can be viewed as a classical particle. Accordingly,
the displacement field can be regarded as classical. Then the separation of motions de-
termined by (3.2.2) becomes physically obvious: a localized electron, described by the
wave function ψ xð Þ performing a finite motion, rapidly oscillates in a potential well,
and heavy atoms perceive only its average motion, not having time to adapt at each
moment to the position of the electron in space. In other words, the electron is repre-
sented as a static charge, distributed with a density ψ xð Þj j2.

The physical situation changes if the electron is delocalized. In this case, it
makes an infinite motion, enabling even an infinitely heavy atom to shift by a finite
value by the infinite time when electron approaches this atom. Thus, the adiabatic
approximation (3.2.2) turns out to be invalid in this case. Accordingly, the concept
of the displacement field as a classical one becomes inapplicable.

The fact that the delocalized solution has a lower energy compared to the localized
one leads to numerous physical consequences similar to those discussed in the previ-
ous chapter in the case of the Pekar–Fröhlich polaron. First of all, by analogy with an
electron in an ideal rigid lattice, in which Bloch electrons are superconducting, in a
deformed lattice at zero temperature, delocalized polarons described by wave function
(3.6.1) will be superconducting. Any attempts to divide the electron–phonon system
into a polaron and a phonon field in which the polaron moves in order to calculate its
mobility (Melnikov and Volovik, 1974), by virtue of (3.6.1), turns out to be impossible
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for a translation-invariant polaron. In the presence of defects in the lattice, translation-
invariant polarons will not be captured by them if the energy gain due to the localiza-
tion of the polaron on the defect is not greater than the energy gain in the formation of
a translation-invariant polaron. This is the qualitative difference between translation-
invariant polarons and Holstein polarons with spontaneously broken symmetry, since
the latter will be localized at the defect for an arbitrarily small value of the trap
potential.

Since the global symmetry for translation-invariant polarons is conserved,
Goldstone modes will be absent in their spectrum, while for the Holstein polaron
the zero mode will always be present in the phonon spectrum. We also note that in
the case of translation-invariant polarons, the phonon spectrum will lack local
modes arising during the formation of a Holstein polaron (Melnikov, 1977; Shaw
and Whitfield, 1978).

In this case, the values ωk of the renormalized frequencies of delocalized pho-
non modes vk in the case of translation-invariant polarons always lie higher in en-
ergy, while for a strong-coupling polaron with spontaneously broken symmetry,
they lie below the value ωk.

The above results indicate that in order to obtain delocalized states that preserve
translational invariance, generally speaking, there is no need to arrange spontaneous
symmetry breaking in the initial unquantized Hamiltonian of the system, that is,
there is no need for the procedure suggested by Higgs (1964) for the introduction of
the mass of elementary particles. It is also shown that the study of the extrema of the
corresponding classical Hamiltonian cannot provide information as to in the vicinity
of which extremum the quantum problem should be solved. In the example of the
Holstein Hamiltonian considered by us, such an extremum is the maximum of the
classical Hamiltonian. The situation is similar in the case of the Pekar–Fröhlich po-
laron (Lakhno, 2010b; Lakhno, 2012a, 2013; Kashirina et al., 2012).

3.7 Translation-invariant bipolaron in the Holstein model

The question of the possibility of superconductivity in quasi-one-dimensional systems –
polymers and biopolymers – has long attracted the attention of researchers (Williams
et al., 1992; Ishiguro et al., 1998; Toyota et al., 2007; Lebed, 2008; Altmore and Chang,
2013). At present, the bipolaron mechanism is considered as one of the possible mecha-
nisms of superconductivity. It is believed that in three-dimensional systems, bipolaron
gas forms a Bose condensate with superconducting properties. It is well known that
the conditions for the formation of bipolarons in one- and two-dimensional systems
are more favorable than in the three-dimensional case. The main problem in this case
is the fact that Bose condensation is impossible in one- and two-dimensional systems
(Ginzburg, 1968).
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In the previous chapter, the concept of translation-invariant polarons and bipo-
larons was introduced. Under certain conditions, such quasiparticles can possess
superconducting properties even in the absence of their Bose condensation. Chap-
ter 2 discussed three-dimensional translation-invariant polarons and bipolarons. In
connection with the above, it is of interest to consider the conditions for the forma-
tion of translation-invariant bipolarons in low-dimensional systems. In this section,
the results obtained above are applied to the quasi-one-dimensional case corre-
sponding to the Holstein model of the polaron.

In the previous section, a translation-invariant theory of 1D polaron was con-
structed based on the Holstein Hamiltonian. In the case of two electrons, the Hol-
stein Hamiltonian in the one-dimensional case in the continuum limit has the form:

H = −
1
2m

Δx1
−

1
2m

Δx2
+
X
k

½Vk eikx1 + eikx2
� �

ak +H.c.�+ X
k

�hω0
ka

+
k ak +U x1 − x2Þ,ð

Vk =
gffiffiffiffi
N

p , ω0
k =ω0, (3:7:1)

where U x1 − x2ð Þ is the energy of Coulomb repulsion of two electrons such that:

U x1 − x2ð Þ= Γδ x1 − x2ð Þ, (3:7:2)

where Γ is a certain constant and δ xð Þ is a delta function.
In the case of broken translational invariance, the bipolaron state is described

by a localized wave function Ψ=Ψ x1, x2ð Þ and in the strong coupling limit, the total
energy functional �H = Ψh jH Ψj i according to Kashirina and Lakhno (2010) is deter-
mined by the expression:

�H = −
1
2m

X
i= 1, 2

ψh jΔxi ψj i−
X V2

k

�hω
j<ψjeikx1 + eikx2 ψj >j2 + ψh jU x1 − x2ð Þ ψj i. (3:7:3)

The exact solution to problem (3.7.3) is a complex computational problem (Kashir-
ina and Lakhno, 2014; Emin et al., 1992). For the purposes of this section, however,
to illustrate the properties of the ground state with broken symmetry, we will use
the direct variational method. For this purpose, we choose a trial wave function in
the form Ψ x1, x2ð Þ=φ x1ð Þφ x2ð Þ. Note that the choice of the probe function in this
form corresponds to the exact solution of problem (3.7.3) in the case U =0, that is,
in the absence of Coulomb interaction between electrons.

As a result, for the functional of the ground-state energy from (3.7.3) we obtain:

�H = 1
m

ð
∇xφ xð Þj j2dx− 4g2a0

�hω0
− Γ

� �ð
φ xð Þj j4dx, (3:7:4)

where a0 is a lattice constant. Variation of (3.7.4) with respect to φ xð Þ under nor-
malizing condition leads to the Schrödinger equation:
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�h2

m
Δxφ+ 2

4g2a0
�hω0

− Γ
� �

φ2
 φ+Wφ=0, (3:7:5)

whose solutions have the form:

φ xð Þ= ±
ffiffiffiffi
2r

p
ch

x− x0
r

� �− 1
, r = 2�h2

m
1

4g2a0ð Þ= �hω0ð Þ− Γð Þ ,

W = −
1
2

4g2a0
�hω0

− Γ
� �2 m

2�h2
, Ebp = −

1
6

4g2a0
�hω0

− Γ
� �2 m

2�h2
, (3:7:6)

where x0 is an arbitrary constant and Ebp = �H is the bipolaron ground-state energy.
It should be noted that the polaron ground-state energy Ep is given by expression
(3.5.9).

Let us introduce the notation:

γ= Γ�hω0=a0g2. (3:7:7)

It follows from (3.7.6) that for

γ> 4 (3:7:8)

the existence of a bipolaron is impossible. In the case:

2< γ< 4 (3:7:9)

the metastable bipolaron state decays into separate polaron states. For

γ< 2 (3:7:10)

the bipolaron state will be stable.
Note that the choice of more complex probe functions will not change the quali-

tative picture, changing only the numerical coefficients (3.7.8)–(3.7.10).
In view of the arbitrary position of the center of mass of a bipolaron x0 the dis-

cussed state of the bipolaron has infinite degeneracy. Any arbitrarily small pertur-
bation of the lattice leads to the elimination of the degeneracy and localization of
the bipolaron state at a defect with an attractive potential. A qualitatively different
situation is realized in the case of a translation-invariant bipolaron, considered in
the next section.
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3.8 Translation-invariant bipolaron theory

In the system of the center of mass Hamiltonian (3.7.1) takes the form:

H = −
�h2

2Me
ΔR −

�h2

2μe
Δr +

X
k

2Vk cos
kr
2

eikR +H.c.
� �

+
X
k

�hω0
ka

+
k ak +UðrÞ

R= x1 + x2ð Þ=2, r = x1 − x2ð Þ, Me = 2m, μe =m=2. (3:8:1)

In what follows, we will use units, putting �h= 1, ω0 = 1,Me = 1 (accordingly μe = 1=4).
The coordinate of the center of mass R in Hamiltonian (3.8.1) can be eliminated

via Heisenberg canonical transformation:

Ŝ1 = exp − i
X
k

ka+
k akR

	 

, (3:8:2)

As a result, the transformed Hamiltonian: ~H = Ŝ− 1
1 HŜ1 is written as follows:

~H = − 2Δr +
X
k

2Vk cos
kr
2

a+
k + ak

� �
+
X
k

a+
k ak +UðrÞ+ 1

2

X
k

ka+
k ak

� �2

. (3:8:3)

From (3.8.3) it follows that the exact solution of the bipolaron problem is deter-
mined by the wave function ψ rð Þ which depends only on the relative coordinates r
and, therefore, is automatically translation invariant.

Averaging Hamiltonian (3.8.3) over ψ rð Þ we will write the averaged Hamiltonian
as follows:

�~H = �T +
X
k

�Vk a+
k + ak

� �
+
X
k

a+
k ak +

1
2

X
k

ka+
k ak

� �2

+ �U,

�Vk = 2Vkhψjcos kr2 jψi, �U = hψjU rð Þjψi, �T = − 2hψjΔrjψi (3:8:4)

Subjecting Hamiltonian (3.8.4) to Lee–Low–Pines transformation:

Ŝ2 = exp
X
k

fk ak − a+
k

� �	 

, (3:8:5)

we get:

�~H = Ŝ− 1
2

�~HŜ2, ~~H =H0 +H1, (3:8:6)

where

H0 =�T + 2
X
k

�Vk fk +
X
k

f 2k +
1
2

X
k

kfk

� �2

+ �U +HKB, (3:8:7)
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H
KB

=
X
k

ω
k
a+
k
a
k
+ 1
2

X
k, k′

kk′f
k
f
k′

a
k
a
k′
+ a+

k
a+
k′
+ a+

k
a
k′
+ a

k
a+
k′

� �
, (3:8:8)

H
1
=
X
k

V
k
+ f

k
ω

k

� �
a
k
+ a+

k

� �
+
X
k, k′

kk′f
k′

a+
k
a
k
a
k′
+ a+

k
a+
k′
a
k

� �
+ 1
2

X
k, k′

kk′a+
k
a+
k′
a
k
a
k′
, (3:8:9)

ωk =ω0 +
k2

2
+ k
X
k′

k′f 2
k′
. (3:8:10)

According to Appendix I, contribution of Ĥ1 into the energy vanishes if the eigen-
function of Hamiltonian H0 transforming the quadratic form HKB to the diagonal
one, is chosen properly. Diagonalization of HKB leads to the total energy of the addi-
tion ΔE:

ΔE = 1
2

X
k

νk −ωkð Þ= −
1
8πi

ð
C

dsffiffiffi
s

p lnD sð Þ, (3:8:11)

where νk are phonon frequencies renormalized by the interaction with the electron.
In the one-dimensional case under consideration:

D sð Þ= 1−
1
π

ð∞
−∞

k2fkωk

s−ω2
k

dk. (3:8:12)

The contour of integration C involved in (3.8.11) is the same as in Chapter 2.
Repeating calculations carried out in Section 3.3 in the one-dimensional case,

we express ΔE as follows:

ΔE = 1
4π

ð∞
−∞

k2f 2k dk
2 1+Qð Þ+

1
4π2

ð ð∞
−∞

k2f 2k p
2f 2pωp ωkωp +ωk ωk +ωp

� �
+ 1

� �
ωk +ωp

� �2
ω2

p − 1
� �

D+ ω2
p

� � 2 dpdk,

D+ ω2
p

� �
= 1+ 1

π

ð∞
−∞

k2f 2kωkdk
ω2

k −ω2
p − iε

. (3:8:13)

Finally, with the use of (3.8.7) and (3.8.8), the bipolaron total energy E is written as
follows:

E =ΔE + 2
X
k

�Vk fk +
X
k

f 2k +�T + �U. (3:8:14)
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3.9 Variational calculation of the bipolaron state

We could have derived exact equations for determining the bipolaron energy by
varying (3.8.14) with respect to ψ and fk. The quantities ψ and fk obtained as solu-
tions of this equation, being substituted into (3.8.14) determine the bipolaron total
energy E. Since finding a solution of the equation obtained by variation of E is
rather a complicated procedure, we will use the variational approach. To this end,
let us choose the probe functions ψ and fk in the form:

ψ rð Þ= 2
π

� �1=4 1 ffiffi
l

p e− r2=l2 , (3:9:1)

fk = −Nge− k2=2a2 , (3:9:2)

where N, l, and a are variational parameters. Substitution of (3.9.1) and (3.9.2) into
(3.8.14) after minimization with respect to N leads to the following expression for E:

Ebp =
ma20
�h2

g4

�h2ω2
0

min x, yð ÞE x, y;γð Þ, (3:9:3)

E x, y;γð Þ≈ 2 0.390625x2 + 2
y2

−
4xffiffiffi

π
p

1+ x2y2=16ð Þ +
ffiffiffi
2
π

r
γ
y

 !
. (3:9:4)

The expression for the bipolaron energy is given in dimension units. The results of
minimization of function E x, y, γð Þ with respect to dimensionless parameters x, y are
presented in Fig. 3.2 for various values of the parameter γ. Figure 3.2 suggests that as

–0.2

Emin

1 2 3 4 5
γ

–0.4

–0.6

–0.8

Fig. 3.2: Dependence of Emin on γ.

3.9 Variational calculation of the bipolaron state 69

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



distinct from a bipolaron with broken symmetry (inequality (3.7.8)), a translation-
invariant bipolaron exists for all the values of the parameter γ.

In the region:

γ> 3.02 (3:9:5)

a translation-invariant bipolaron is stable relative to its decay into two individual
Holstein polarons, but remains unstable relative to decomposition into individual
translation-invariant polarons.

For

γ< γc = 2.775 (3:9:6)

a translation-invariant bipolaron becomes stable relative to its decay into two individ-
ual polarons. Notice that for γ = 0, the energy of a translation-invariant bipolaron is
equal to: Ebp = − 1.87104ma20g

4=�h4ω2
0, that is, lies much lower than the exact value

of the energy of a bipolaron with broken symmetry, which, according to (3.7.6), is
equal to Ebp = − 4 3= Þma20g

4=�h4ω2
0.

�
The energy of a translation-invariant bipolaron

also lies below the variational estimate of the energy of a bipolaron with spontane-
ously broken symmetry (3.7.6) for all the values of γ (Kashirina and Lakhno, 2014).

The dimensionless parameters x, y involved in (3.9.4) are related to the vari-
ational parameters a, l (3.9.1) and (3.9.2) as follows: a= 2ma20g

2=�h3ω0
� �

x and
l= �h3ω0=2ma20g

2� �
y. The parameter l determines the characteristic size of the electron

pair, that is, the correlation length L γð Þ, whose dependence on γ is given by the
expression:

2

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
γ

3

4

5

6
xmin, ymin

ymin

xmin

Fig. 3.3: Dependence of xmin, ymin on γ.
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L γð Þ= �h2

2ma20

�hω0

g2
ymin γð Þ (3:9:7)

The dependencies of ymin and xmin on γ are presented in Fig. 3.3. Figure 3.3 sug-
gests that the correlation length L γð Þ in the region of a bipolaron stability 0< γ< γc
does not change greatly and for its critical value γc = 2.775 the quantity L γð Þ ap-
proximately three times exceeds the value of L 0ð Þ, that is, the correlation length
in the absence of the Coulomb repulsion. This qualitatively differs from the case
of a bipolaron with broken symmetry for which the corresponding value, accord-
ing to (3.7.6), for γ= γc turns to infinity.

3.10 On the possibility of bipolaron states in discrete chains

To describe electrons in a discrete one-dimensional molecular chain, Hubbard model
(Hubbard, 1963) is used, whose Hamiltonian has the form (Holstein, 1959a, 1959b;
Proville and Aubry, 1998; Lakhno, 2006):

Ĥ = η
X
ði, jÞ,σ

c+
iσcjσ +

X
j

�hω a+
j aj +

1
2

� �
+
X
j

gn̂j a+
j + aj

� �
+
X
j

Un̂j"n̂j#, (3:10:1)

where n̂jσ = c+
jσcjσ, n̂j = n̂j" + n̂j#, c

+
jσ , cjσ are operators of the birth and annihilation of

an electron with a spin σ on the jth site; η is a matrix element of the transition be-
tween neighboring sites (i, j); g is a constant of an electron interaction with the
chain oscillations; U is a parameter of Coulomb repulsion; and �hω is the energy of
oscillator vibrations. By a site here we mean a diatomic molecule considered as an
oscillator.

In the one-dimensional case, regardless of the specific type of molecular chain,
bipolaron states for Hamiltonian (3.10.1) were considered in Proville and Aubry
(1998). However, the stability of bipolaron states with respect to their decay into
individual polaron states was not analyzed in it (Lakhno and Sultanov, 2011).

According to Proville and Aubry (1998), the ground state of Hamiltonian (3.10.1)
is the wave function of the form:

ψj i=
X
ij

ψijc
+
i" c

+
j# 0j i, (3:10:2)

where 0j i is the vacuum wave function, ψij =ψji,
X

ij
jψijj2 = 1. In the adiabatic ap-

proximation, when 1=4 �hω=2gð Þ4 << 1, wave functions ψij satisfy the equation:

η Δψð Þij + − κ ρi + ρj
� �

+Uδi− j

� �
ψij =Wψij, (3:10:3)

3.10 On the possibility of bipolaron states in discrete chains 71

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



ρi = 1=2
X
k

ψik

 2 + ψki

 2� �
,

where κ= 4g2 �hω
�

, Δ is the discrete Laplace operator:

Δψð Þij =ψi− 1, j +ψi+ 1, j +ψi, j− 1 +ψi, j+ 1.

Notice that for κ=0, U =0, N ! ∞, where N is the number of sites in a chain, the
spectrum of permissible energies W is a closed interval [–4η, 4η], where –4η is the
doubled value of the bottom of the conductivity band of a hole in the chain.

Localized hole states correspond to energies W, which lie below the doubled
energy corresponding to the bottom of the conductivity band.

It follows from (3.10.1) to (3.10.3) that the total energy of a bipolaron state reck-
oned from bottom of the conductivity band is equal to:

Ebp =W + κ
2

X
i, j

ψij

 2 ρi + ρj
� �

+ 4η. (3:10:4)

The condition for the stability of bipolaron states is determined by the inequality:

Ebp

 > 2 Ep
 , (3:10:5)

where

Ep = λ+ κ
4

X
i

ψi

 4 + 2η (3:10:6)

and ψi

X
i
ψi

 2 = 1
� �

has the meaning of the wave function of a one-polaron ground
state of an electron with relevant energy λ, determined by the equation:

η Δψð Þi −
κ
2
ψi

 2ψi = λψi, Δψð Þi =ψi− 1 +ψi+ 1. (3:10:7)

As an example, let us consider a polynucleotide chain in which the role of a site is
played by the complementary Watson–Crick pair G/C, where G is guanine and C is
cytosine. The charge carriers in such a chain are holes (Offenhäusser and Rinaldi,
2009).

For the poly(G)/poly(C) duplex, the parameter values η=0.084 eV and κ ¼ 0.5267 eV
are taken the same as in Lakhno (2010a). In the considered case of charged particles
(holes), the parameter U ≠0. Its exact value is unknown, but an approximate value can
be obtained from the following considerations. For two holes localized on one nucleo-
tide, the energy of the Coulomb repulsion is approximately equal to e2=2ε∞l, where ε∞
is the high-frequency dielectric constant of the molecule; l is the characteristic size of
the nucleotide. For DNA, these quantities are of the order of magnitude ε∞ = 2 (Bala-
baev and Lakhno, 1991; Lakhno, 2006), l= 3 A

�
, which gives the value of U ≈ 1 eV. With

this value of the U parameter, localization on one site is not possible. The state when
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holes are localized at two adjacent sites or at a greater number of sites has a lower en-
ergy value.

The ground bipolaron and polaron states, that is, solutions of equations (3.10.3)
and (3.10.7) were calculated by minimizing functionals Ebp ψij

� �
(3.10.4) and Ep ψið Þ

(3.10.6) with symmetry and normalization conditions for η= 0.084 eV in the range of
parameters κ, U, containing the above values for the duplex poly(G)/poly(C). Figure 3.4
shows the diagram of the stability of bipolaron states, determined by inequality
(3.10.5), obtained by interpolation by the least squares method over 40 calculated
points.

From (3.10.3), (3.10.4) and (3.10.6), (3.10.7) for κ ! ∞ we have:

Ebp

 = U − κj j=U − κ> 2 Ep
 = 2 − κ=4j j= κ=2.

Hence, at large values of κ the border of the region is asymptotically serves the
straight line: U = (3/2)κ, which can be seen from the numerical calculation in Fig. 3.4.
For κ ! ∞ obviously U ! 0, U < κ.

It follows from (3.10.3) and (3.10.4) that for U =∞, that is when the holes are at
a great distance from each other, the bipolaron state decays into two individual po-
larons. In this case, in the continuum limit, the total energy of the bipolaron
(3.10.4) is eight times lower than the corresponding energy of the polaron (3.10.6):
Ebp=Ep = 8. By virtue of the virial theorem, this relation is also fulfilled for the eige-
nenergies of the polaron and bipolaron: W=λ= 8. In the discrete case, one can only
assert that if we take a double value of κ in the polaron equation (3.10.7), then we
will obtain an eigenvalue that is twice as small in absolute value as that of a
bipolaron.

Figure 3.5a–d shows charge densities pi = 2
X

j
ψij

 2 of different types of bipolar-
ons for η = 0.084 eV, κ = 0.5267 eV, N = 31. The solution shown in Fig. 3.5 with U = 0
could correspond to Frenkel biexciton self-localized states. Notice that in the case of

0.0
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0.5
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bipolaron
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polarons
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U

Fig. 3.4: Region of stability Ebp
 > 2 Ep

  of a bipolaron; η = 0.084 eV.
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U = 0, the bipolaron state is stable for any parameter values, and the lowest energy
state corresponds to a two-particle state localized at one site.

Expressions (3.10.3)–(3.10.7) suggest that for κ≥ 4U the ground state corre-
sponds to localization of the holes at one site. For κ≤ 4U their localization at two or
more sites becomes energetically advantageous (Fig. 3.5c, d). In the latter case for
κ> 4η the state is localized at two sites. In the range of values of the parameters
κ> 4η, κ> 4U the holes are localized at different sites. The energy of the holes local-
ized at two neighboring sites differs only slightly from the energy of the holes local-
ized at two sites far apart from each other. It can be said that the bipolaron state in
this case is weakly stable relative to decay into two individual polaron states. In the
range of values κ≤ 4η the bipolaron state is localized at more than two sites.

Figure 3.5a–d suggests that in the region of stability the bound bipolaron state
is formed by polaron occurring at distances of 0, 1, 2, and 3 lattice constants.

To quantitatively estimate the length of bipolaron states, we introduce the
quantities P1 and P2:
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Fig. 3.5: Charge densities (pi) of different-type bipolarons for (a) U =0 ; (b) U =0.33eV; (c) U=0.6eV;
(d) U =0.75eV, where U is the Coulomb repulsion parameter.
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P1 =
X
i

i− i0j jpi− i0 , P2 =
1P

i
p2i

,

i0 is the center of symmetry of a bipolaron and pi is a charge density.
P1 determines a characteristic size of a bipolaron, P2 determines a characteristic

size of a polaron (characteristic size of peaks in a two-center configuration). For
U = 0, when a one-center configuration takes place, P1 and P2 are of the same
order of magnitude. For bipolarons in Fig. 3.5, the values of these quantities are
equal: P1 = 1.65, P2 = 0.28 (Fig. 3.5a); P1 = 17.5, P2 = 0.72 (Fig. 3.5b); P1 = 24.7, P2 = 1
(Fig. 3.5c); P1 = 26.1, P2 = 1.04 (Fig. 3.5d).

The table lists the bipolaron binding energies Δ= Ebp

 − 2 Ep
  for some values

of the parameters from the stability region Fig. 3.4.
Table 3.1 suggests that when a bipolaron is maximally stable, that is, when U = 0,

the bipolaron coupling energy for κ = 0.5267 eV is Δ= Ebp

 − 2 Ep
 =0.203 eV. As U in-

creases, the bipolaron binding energy decreases.

The results obtained testify to the possibility of bipolaron states in homogeneous
nucleotide chains.

As it follows from Fig. 3.4, near the value κ = 0.5267 eV, there is a big local mini-
mum on the phase diagram where the value of U although is less than 1 lies close to
this value. Since the value of U was assessed only approximately, it is possible that
the exact value of this quantity will satisfy the condition for the formation of bipo-
laron states. There is currently no exact value for κ either. Moreover, its value can
vary greatly depending on external conditions.

The value κ≈0.5 eV corresponds to a “dry” DNA molecule. It is seen from Tab. 3.1
that for κ=0.4� 0.5 eV and U = 0.75 eV the value Δ≈ 5× 10− 4 eV, which corresponds
to the temperature of a superconducting transition TC ≈ 6 K. In a solution, the value of
κ can greatly increase (according to Voityuk (2005a, 2005b) approximately five times).
In this case, with a very high probability, the conditions for the formation of bipolarons
will be fulfilled. In any case, the results obtained demonstrate that both on-site and

Tab. 3.1: Bipolaron binding energies Δ= Ebp
 − 2 Ep

  (η = 0.084 eV).

U =  � � . . � �
U = . � � . . . .

U = . � � . . . .

U = . � . . . . .

U =  . . . . . .

k . . . . . .

Note. Bipolaron binding energies Δ in eV (� – bipolaron is unstable: Δ<0 ). Values of U and κ in eV.
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inter-site bipolarons have very small bounding energy and for this reason can explain
only low-temperature superconductivity.

Note that earlier, attention was drawn to the possibility of bipolaron states in
short (six-site) heterogeneous oligonucleotide chains in Apalkov and Chakraborty
(2006). According to Apalkov and Chakraborty (2006), the localization of pairs in
such chains should occur on doublets, triplets, and quadruplets of guanines. The
main problem associated with the possibility of a superconducting state in DNA is
the need for the existence of current carriers (electrons or holes Lakhno ,2008; Lewis
and Wu, 2001; Okahata et al.,1998; Porath et al., 2000) in the molecule, since DNA
itself is a dielectric (de Pablo et al., 2000; Storm et al., 2001; Yoo et al., 2001). In the
experiment (Kasumov et al., 2001), when measuring the conductivity, a DNA mole-
cule was attached to two rhenium-carbon electrodes lying on a mica substrate. The
gap between the electrodes in Kasumov et al. (2001) was created by burning out a
strip (≈0.5µm thick) by a laser, which was mica with islands of rhenium–carbon
atoms remaining unconnected with each other on it. In our opinion, the appearance
of current carriers in DNA could be due to the contact of the molecule attached to the
substrate with the rhenium–carbon islands of the gap.
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4 Translational-invariant bipolarons
and superconductivity

A translation-invariant (TI) bipolaron theory of superconductivity based, like Bardeen–Cooper–
Schrieffer (BCS) theory, on Fröhlich Hamiltonian is presented. Here the role of Cooper pairs be-
longs to TI bipolarons which are pairs of spatially delocalized electrons whose correlation length
of a coupled state is small. The presence of Fermi surface leads to the stabilization of such states
in its vicinity and a possibility of their Bose–Einstein condensation.

The theory provides a natural explanation of the existence of a pseudogap phase preced-
ing the superconductivity and enables one to estimate the temperature of a transition T ✶ from
a normal state to a pseudogap one. It is shown that the temperature of BEC of TI bipolarons
determines the temperature of a superconducting transition Tc which depends not on the bipo-
laron effective mass but on the ordinary mass of a band electron. This removes restrictions on
the upper limit of Tc for a strong electron–phonon interaction (EPI). A natural explanation is
provided for the angular dependence of the superconducting gap which is determined by the
angular dependence of the phonon spectrum.

It is demonstrated that a lot of experiments on thermodynamic and transport characteris-
tics, Josephson tunneling and angle-resolved photoemission spectroscopy of high-temperature
superconductors does not contradict the concept of a TI bipolaron mechanism of superconduc-
tivity in these materials. Possible ways of enhancing Tc and producing new room-temperature
superconductors are discussed on the basis of the theory suggested.

4.1 Weak EPI: BCS theory

In BCS a multielectron problem is solved on the assumption that electrons interact
only with a phonon field and do not interact with one another. Hence, only an en-
semble of independent electrons in a phonon field is considered. Such a picture of
BCS is substantiated by a Fermi-liquid model of a metal which implies that instead
of strongly interacting electrons we can consider noninteracting quasiparticles, that
is, an ideal Fermi gas in a phonon field. In this case, the one-electron Fröhlich Ham-
iltonian (1.2.1) can be written in the form suitable for the description of any number
of electrons:

H =
X
p, s

εpc
+
p, scp, s +

X
q

ω qð Þa+
q aq +

X
p, q, s
p′−p= q

Vqc
+
p, scp′, sa

+
q +H.c. (4:1:1)

εp = p2=2m− EF , ω qð Þ= s0q,

where c+
p, s, cp, s are operators of the birth and annihilation of electrons with momen-

tum p and spin s, s0 is the sound velocity. In (4.1.1), the energy of electron states is
reckoned from the Fermi level EF.
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In the case of metals for which the BCS is used:

Vq =G ω qð Þ=2Vð Þ 1=2,

G is the interaction constant. For a weak EPI, using the perturbation theory we can
exclude phonon operators a+

q , aq and present (4.1.1) as the Hamiltonian:

H =
X
p, s

εpc
+
p, scp, s +

X
p,p′, k, s, s′

V2
k

�hω kð Þ
εp+ k − εk
� �2 − �h2ω2 kð Þ

cp+ k, s+ c
+
p′− k, scp′, s′cp, s (4:1:2)

In the BCS theory, an important approximation is made: it is believed that the main
contribution into the interaction is made only by the processes occurring in the en-
ergy range jεp − εp′j< �hωD in the vicinity of the Fermi level where ωD is the Debye
frequency of a phonon. In this energy range the coefficient preceding the electron
operators in the interaction term is replaced by the constant g.

The BCS theory is based on the choice of a probe function in the form of a su-
perposition of Cooper pairs with p= − p′, s= − s′. Hence, in the BCS instead of
(4.1.2) consideration is given to the Hamiltonian:

H =
X
p, s

εpc
+
p, scp, s − g

X
p, k

c+
p+ k, "c

+
−p− k, #c−p, #cp, "

=
X
p, s

εpc
+
p, s − g

X
p

c+
p, "c

+
−p, #

X
p′

c−p′, #cp′, " (4:1:3)

Hamiltonian (4.1.3) can be diagonalized via the canonical transformation:

cp, " = upξp, " + vpξ
+
−p, #, c−p, # = upξ −p, # + vpξ

+
p, ",

c+
p, " = upξ

+
p, " + vpξ −p, #, c+

−p, # = upξ
+
−p, # − vpξp, ". (4:1:4)

As a result, Hamiltonian (4.1.3) is written as

H =E0 +
X
p

Ep ξ +
p, "ξp, " + ξ +

−p, #ξ −p, #
� �

(4:1:5)

Ep =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m
−EF

� �2

+Δ2

s
, Δ= 2g

X
p

′upvp, u2p = 1− v2p = 1+ εp=Ep

� �
=2,

where the prime in the expression for Δ means that summation is performed over
the states lying in a thin layer of the Fermi surface where interaction is nonzero,
vp
 2 provides a probability that the state (p,↑, –p,↓) is occupied, and |up|

2 is the
probability that it is free.

The results obtained correspond only to the case of T = 0. In particular, the en-
ergy of the ground state of the system under consideration reckoned from the en-
ergy of the system in the normal state (i.e., with Δ = 0) is equal to
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E = Ψh jH Ψj i= −
1
2
N 0ð ÞΔ2, Δ= 2�hωD exp −

1
N 0ð Þg

� �
,

Ψj i=
Y

p1 . . . pN
up + vpc

+
p, "c

+
− p, #

� �
0j i, (4:1:6)

where N(0) is the electron density at the Fermi level in a normal phase, N is the
number of electrons.

Hence, formation of paired states leads to a decrease of the system energy by
the value of N(0)Δ2/2 and emergence of superconductivity. It follows from (4.1.5)
that the density of elementary excitations ρ(Ep) → ∞ for Ep → Δ. In the translation-
invariant (TI) bipolaron theory of SC this corresponds to the formation of a Bose
condensate of paired electrons with an infinite state density for the energy equal to
the bipolaron energy which is separated by a gap from the continuous excitation
spectrum.

The problem of the number of paired electrons, that is, Cooper pairs in the BCS
theory is treated differently by different authors. For example, it is often argued
(see, for example, Weisskopf, 1981), that electrons are paired only in the narrow
layer of the Fermi surface so that their number Ns is equal to Ns = Δ=EFð ÞN. For
Δ=EF ffi 10− 4 only a small portion of electrons are paired.

The BCS theory, however, gives an unambiguous answer: for T = 0 Ns =N 2=
(which straightforwardly follows from the expression for the wave function (4.1.6)),
that is, all the electrons are in the paired state.

To resolve this contradiction let us consider the contribution of wp into the total
energy of a superconductor which is made by a pair in the state (p,↑ – p,↓):

wp = ε p −Ep. (4:1:7)

It follows from (4.1.7) that wpF = −Δ. In the normal state (Δ = 0) such a pair would
contribute the energy wN

pF
=0, that is δwpF =ws

pF
−wN

pF
= −Δ. Accordingly, at the bot-

tom of the conductivity band, that is, for p = 0 expression (4.1.7) is written as
ws
0 = − 2EF −Δ2=2EF. In a normal state such a pair would contribute the energy

wN
o = − 2EF , accordingly, δw0 =ws

0 −wN
0 = −Δ2=2EF. It follows that pairs occurring

far below the Fermi surface outside the layer of width Δ, in the BCS approxima-
tion make a very small contribution into the SC energy which is approximately
δw0=δwpF =Δ=2EF⁓10− 4 of the contribution made by the pairs in the layer Δ. Hence,
though all the electrons in the BCS are paired, their contribution depending on the en-
ergy of the pair is different. Only in the thin layer of the Fermi surface it is nonzero.
This fact just resolves the above contradiction: though all the electrons are paired, the
energy is contributed only by a small number of the pairs: Ns =NΔ=EF, which is called
a number of pairs in a SC.
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Therefore, in order not to make a mistake in calculating some or other charac-
teristic of a SC, when a solution is not obvious, one should take account of all the
paired states of the electrons.

For example, when calculating London depth of the magnetic field penetration
into a SC in the BCS theory, one should take account of all the electron paired
states. At the same time, when calculating the critical magnetic field for which an
SC deteriorates, it is sufficient to estimate them only in the layer Δ.

It should be noted that in recent experiments by Božović et al. (2016) it was
shown that only a small portion of electrons make a contribution into the London
penetration depth in HTSC. This means that the BCS theory is inapplicable to them
and the interaction cannot be considered to be weak. This problem will be consid-
ered in Section 4.9.

4.2 Pekar–Fröhlich Hamiltonian: canonical transformations

Before we pass on to presentation of the SC theory in the limit of strong EPI, let us
outline the results of the TI bipolaron theory.

In describing bipolarons, according to Lakhno (2010b, 2012a, 2015a, 2019b) and
Kashirina et al. (2012), we will proceed from Pekar–Fröhlich Hamiltonian in a mag-
netic field:

H = 1
2m

p̂1 −
e
c
A1

� �2
+ 1
2m

p̂2 −
e
c
A2

� �2
+
X
k

�hω0
ka

+
k ak +X

k

Vkeikr1ak +Vkeikr2ak +H.c.
� �

+U r1 − r2j jð Þ, (4:2:1)

U r1 − r2j jð Þ= e2

ε∞ r1 − r2j j ,

where p̂1, r1, p̂2, r2 are momenta and coordinates of the first and second electrons,
A1 =A r1ð Þ, A2 =A r2ð Þ are vector-potentials of the external magnetic field at the
points where the first and second electrons occur; U describes Coulomb repulsion
between the electrons. We write Hamiltonian (4.2.1) in general form. In the case of
HTSC which are ionic crystals Vk is a function of the wave vector k, which corre-
sponds to the interactions between the electrons and optical phonons:

Vk =
e
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π�hω0

~εV

r
= �hω0

ku1=2
4πα
V

� �1=2

, u= 2mω0

�h

� �1=2

, α= 1
2
e2u
�hω0~ε

(4:2:2)

~ε− 1 = ε− 1
∞ − ε− 1

0 , ω0
k =ω0,
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where e is the electron charge; ε∞ and ε0 are high-frequency and static dielectric
permittivities; α is a constant of the EPI; V is the system volume, ω0 is a frequency
of an optical phonon.

The axis z is chosen along the magnetic field induction B and symmetrical
gauge is used:

Aj =
1
2
B× rj,

for j = 1, 2. For the bipolaron singlet state considered below, the contribution of the
spin term is equal to zero.

In the system of the mass center Hamiltonian (4.2.1) takes the form:

H = 1
2Me

p̂R −
2e
c

AR

� �2

+ 1
2μe

p̂r −
e
2c

Ar

� �2
+
X
k

�hω0
ka

+
k ak +

X
k

2Vk cos
kr
2

akeikR +H.c.
� �

+U rj jð Þ , (4:2:3)

R= r1 + r2
2

, r= r1 − r2, Me = 2m, μe =m=2, Ar = 1 2B − y, x,0ð Þ,=

AR = 1 2B −Y,X,0ð Þ, p̂R =p̂1 +p̂2 = − i�h∇R p̂r = p̂1 − p̂2Þ 2= − i�h∇r=
��

where x; y and X; Y are components of the vectors r, R accordingly.
Let us transform Hamiltonian H by Heisenberg transformation (Heisenberg,

1930; Rosenfeld, 1932):

S1 = exp i G−
X
k

ka+
k ak

� �
R, (4:2:4)

G=P̂R +
2e
c
AR, P̂R = p̂R +

X
k

�hka+
k ak, (4:2:5)

where G commutates with the Hamiltonian, thereby being a constant, that is c-
number, is the total momentum in the absence of the magnetic field.

Action of S1 on the field operator yields:

S− 1
1 akS1 = akke

− ikR, S− 1
1 a+

k S1 = a+
k e

ikR (4:2:6)

Accordingly, the transformed Hamiltonian ~H = S− 1
1 HS1 takes on the form:

~H = 1
2Me

G−
X
k

�hka+
k ak −

2e
c
AR

� �2

+ 1
2μe

p̂r −
e
2c

Ar

� �2
+
X
k

�hω0
ka

+
k ak +

X
k

2Vk cos
kr
2

ak + a+
k

� �
+U rj jð Þ . (4:2:7)
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In what follows, we will assume:

G=0. (4:2:8)

The physical meaning of condition (4.2.8) is that the total momentum in a sample
volume is equal to zero, that is, a current is lacking. This requirement follows from
the Meissner effect according to which the current in a SC volume should be equal to
zero. We use this fact in Section 4.7 in determining the London penetration depth λ.

Let us seek a solution of a stationary Schrödinger equation corresponding to
Hamiltonian (4.2.7) in the form:

ΨH r,R, akf gð Þ=ϕ Rð ÞΨH =0 r,R, akf gð Þ (4:2:9)

ϕ Rð Þ= exp − i
2e
�hc

ðR
0

AR′dR′
 !

, ΨH =0 r,R, ak
� �� �

=Ψ rð ÞΘ R, ak
� �� �

.

where ΨH =0 r,R, akf gð Þ is the bipolaron wave function in the absence of a magnetic
field. The explicit form of the functions ψ rð Þand Θ R, akf gð Þ is given in Lakhno
2010b, 2012a, 2015b) (expression (2.11.13)).

Averaging of ~H with respect to the wave functions ϕ Rð Þ and ψ rð Þ yields:

�~H = 1
2Me

X
k

�hka+
k ak

� �2

+
X
k

�h~ωka+
k ak +

X
k

�Vk ak + a+
k

� �
+ �T + �U + �Π, (4:2:10)

where

�T = 1
2μe

ψh j p̂r −
e
2c

Ar

� �2
ψj i, �U = ψh jU rð Þ ψj i,

�Π= 2e2

Mec2
ϕh jA2

R ϕj i, �h~ωk = �hω0
k +

2�he
Mec

ϕh jkAR ϕj i. (4:2:11)

In what follows in this section we will assume ħ = 1, ω0
k =ω0 = 1, Me = 1. It follows

from (4.2.10) that the difference between the bipolaron Hamiltonian and the po-
laron one is that in the latter Vk is replaced by �Vk and �T, �U, �Π are added to the po-
laron Hamiltonian.

With the use of the Lee–Low–Pines canonical transformation:

S2 = exp
X
k

fk a+
k − ak

� �	 

, (4:2:12)

where fk are variational parameters which stand for the value of the displacement
of the field oscillators from their equilibrium positions:

S− 1
2 akS2 = ak + fk, S− 1

2 a+
k S2 = a+

k + fk, (4:2:13)
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Hamiltonian ~~H:

~~H = S− 1
2

~H
−
S2 , ~~H =H0 +H1 , (4:2:14)

will be written as

H0 = 2
X
k

�Vkfk +
X
k

f 2k ~ωk +
1
2

X
k

kf 2k

� �2

+HKB + �T + �U + �Π,

HKB =
X
k

ωka
+
k ak +

1
2

X
k, k′

kk′fkfk′ akak′ + a+
k a

+
k′
+ a+

k ak′ + aka
+
k′

� �
,

(4:2:15)

where

ωk = ~ωk +
k2

2
+k
X
k′

k′f 2
k′
. (4:2:16)

Hamiltonian H1 contains the terms that are linear, threefold, and fourfold in the cre-
ation and annihilation operators. Its explicit form is given in Lakhno (2015b) and
Tulub (1961) (see Appendix A).

Then, according to Lakhno (2015b) and Tulub (1961), the Bogolyubov–Tyablikov
canonical transformation (Tyablikov, 1967) is used to pass on from the operators a+

k ,
ak to α+

k , αk:

ak =
X
k′

M
1kk′

α
k′
+
X
k′

M✶
2kk′

α+
k′
, a+

k =
X
k′

M✶
1kk′

α+
k′
+
X
k′

M
2kk′

α
k′, (4:2:17)

where HKB is a diagonal operator which makes vanish expectation H1 in the absence
of an external magnetic field (see Appendix A). The contribution of H1 into the spec-
trum of the transformed Hamiltonian when the magnetic field is nonzero is dis-
cussed in Section 4.3.

In the new operators α+
k , αk Hamiltonian (4.2.15) takes on the form:

~~~H =Ebp +
X
k

vkα+
k αk ,

Ebp =ΔEr + 2
X
k

�Vkfk +
X
k

~ωkf
2
k + �T + �U + �Π, (4:2:18)

where ΔEr is the so-called recoil energy. A general expression for ΔEr =ΔEr fkf g was
obtained in Section 2.3 (Tulub, 1961). The ground state energy Ebp was calculated in
Chapter 2 (Lakhno, 2010b, 2012a; Kashirina et al., 2012) by minimization of (4.2.18)
with respect to fk and ψ in the absence of a magnetic field.

It should be noted that in the polaron theory with a broken symmetry a diagonal
electron–phonon Hamiltonian takes the form (4.2.18) (Miyake, 1994). This Hamilto-
nian can be interpreted as a Hamiltonian of a polaron and a system of its associated

4.2 Pekar–Fröhlich Hamiltonian: canonical transformations 83

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



renormalized actual phonons or a Hamiltonian which possesses a spectrum of quasi-
particle excitations determined by (4.2.18) (Levinson and Rashba, 1974). In the latter
case, the polaron excited states are Fermi quasiparticles.

In the case of a bipolaron, the situation is qualitatively different because a bipo-
laron is a Bose particle whose spectrum is determined by (4.2.18). Obviously, a gas
of such particles can experience Bose–Einstein condensation (BEC). Treatment of
(4.2.18) as a bipolaron and its associated renormalized phonons does not prevent
their BEC, since maintenance of the particles required for BEC is fulfilled automati-
cally since the total number of the renormalized phonons commutate with Hamilto-
nian (4.2.18).

Renormalized frequencies vk involved in (4.2.18) according to (2.3.15) of Chap-
ter 2 are determined by a secular equation for s:

1= 2
3

X
k

k2f 2kωk

s−ω2
k

, (4:2:19)

whose solutions yield a spectrum of the values of s= v2k
� �

.

4.3 Energy spectrum of a TI bipolaron

Hamiltonian (4.2.18) can be conveniently presented as

~~~H =
X

n=0, 1, 2 . . .
Enα

+
n αn, (4:3:1)

En =
Ebp, n=0;

Ebp +ωkn , n≠0;

( )
(4:3:2)

where, in the case of a three-dimensional ionic crystal kn is a vector with the
components:

kni = ± 2π ni − 1ð Þ
Nai

, ni = 1, 2, . . . ,
Nai

2
+ 1, i= x, y, z, (4:3:3)

Nai is the number of atoms along the ith crystallographic axis. Let us prove the va-
lidity of the expression for the spectrum (4.3.1) and (4.3.2). Since the operators α+

n ,
αn obey Bose commutation relations:

αn, α
+
n′

h i
= αnα

+
n′
− α+

n′
αn = δn, n′ (4:3:4)
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they can be considered to be operators of the birth and annihilation of TI bipolar-
ons. The energy spectrum of TI bipolarons, according to (4.2.19), is given by the
equation:

F sð Þ= 1 (4:3:5)

where

F sð Þ= 2
3

X
n

k2
n
f 2knω

2
kn

s−ω2
kn

.

It is convenient to solve equation (4.3.5) graphically (Fig. 4.1).
Figure 4.1 suggests that the frequencies vkn lie between the frequencies ωkn и

ωkn+ 1 . Hence, the spectrum vkn as well as the spectrum ωkn is quasicontinuous:
vkn −ωkn =0 N − 1� �

, which just proves the validity of (4.3.1) and (4.3.2).

It follows that the spectrum of a TI bipolaron has a gap between the ground state
Ebp and a quasicontinuous spectrum equal to ω0.

In the absence of a magnetic field functions fk involved in the expression for ωk

(4.2.16) are independent of the direction of the wave vector k. If a magnetic field is
present fk cannot be considered to be an isotropic value, accordingly, the last term
in expression (4.2.16) for ωk besides, an angular dependence involved the spectrum
ωk in a magnetic field is also contained in the term ~ωkinvolved in ωk. Since in the
isotropic system under consideration there is only one preferred direction deter-
mined by vector B, for ωk from (4.2.16) we get:

ωkn =ω0 +
�h2k2n
2Me

+ η
Me

Bknð Þ, (4:3:6)

where η is a certain scalar value. It should be noted that the contribution of H1 into
the spectrum (4.3.6) leads to a dependence of η on kj j and kBð Þ too. For a weak

F(s)

νk
2

1

ωk
2

1 = 1

1

ωk
2

2 ωk
2

3 ωk
2

4

s

νk
2

2 νk
2

3 νk
2

4

Fig. 4.1: Graphical solution of equation (4.3.5).
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magnetic field in a long-wave limit (when Fröhlich Hamiltonian is applicable) we
can neglect this dependence and believe that η is constant.

For a magnetic field directed along the z-axis, expression (4.3.6) can be pre-
sented in the form:

ωkn =ω0 +
�h2

2Me
kzn + k0z
� �2 + �h2

2Me
k2xn + k2yn
� �

−
η2B2

2�h2Me
, (4:3:7)

It should be noted that Formula (4.3.7) can be generalized to the anisotropic case
(which will be actual in what follows) when in the directions kx and ky: Mex =
Mey =Mjj; and in the direction kz:Mez =M? (Sections 4.7 and 4.8).

In this case, formula (4.3.7) takes the form:

ωkn =ω0 +
�h2

2M?
kzn + k0z
� �2 + �h2

2Mjj
k2xn + k2yn
� �

−
η2B2

2�h2M?
, (4:3:7ʹ)

if a magnetic field is directed along the z-axis and:

ωkn =ω0 +
�h2

2M?
k2zn +

�h2

2Mjj
kxn + k0x
� �2 + �h2

2Mjj
k2yn −

η2B2

2�h2Mjj
, (4:3:7ʹʹ)

if a magnetic field is directed along the x-axis.
Below we consider the case of a low concentration of TI bipolarons in a crystal.

In this case, as we will show in the next section, they can be considered as an ideal
Bose gas whose properties are determined by Hamiltonian (4.3.1).

4.4 Nonideal gas of TI bipolarons

Being charged, a gas of TI bipolarons cannot be ideal since there should be a Cou-
lomb interaction between the polarons. The theory of a nonideal gas implies that
consideration of an interaction between the particles leads to qualitative changes in
its spectral properties. According to Bogolyubov (1947), consideration of even a
short-range interaction leads to a gap in the spectrum which is lacking in an ideal
gas. Even more considerable changes can be expected in the case of a long-range
Coulomb interaction. In this section we restrict ourselves by a lack of a magnetic
field.

The logical scheme of the approach is as follows:
a) First we consider a particular case when there are only two electrons interacting

with a phonon field. This is a classical bipolaron problem (Lakhno, 2015b).
b) Then we deal with a multiparticle problem that leads to the Fermi liquid con-

cept. For this multielectron problem, we consider the case of two additional
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electrons occurring above the Fermi surface (in its vicinity) bound by EPI (Coo-
per problem) (Lakhno, 2016b).

c) Then we believe that nearly all the electrons lying in the energy level within the
layer [EF +Epol, EF], where EF is the Fermi energy, Epol is the polaron energy,
occur in the TI polaron state; accordingly all the electrons in the narrow layer
[EF + Ebp=2− δE,EF +Ebp=2+ δE], δE ! 0 occur in the TI bipolaron state, where
Ebp is the energy of a TI bipolaron. A condensed bipolaron gas leads to an infi-
nite density of electron states in this level.

d) Bipolarons are considered as charged bosons placed in an electron Fermi liquid
(polaron gas) which screens an interaction between the bipolarons and the
problem is reduced to that of a nonideal charged Bose gas.

e) The spectrum obtained is used to calculate the statistical properties of a TI bipo-
laron gas.

To develop a theory of a nonideal TI bipolaron gas we should know the spectrum of
the states of an individual TI bipolaron in a polar medium. This problem was con-
sidered in detail in Lakhno (2018, 2019a) (Section 4.5). As it is shown in Lakhno
(2016b), this spectrum will be the same as that of TI bipolarons which emerge near
the Fermi surface. Hence, TI bipolarons in the layer [EF +Ebp=2, EF] can be consid-
ered as a TI bipolaron Bose gas occurring in a polaron gas (Lakhno, 2017). If we
believe that TI bipolarons do not interact with one another, such a gas can be con-
sidered to be ideal. Its properties will be fully determined if we know the spectrum
of an individual TI bipolaron.

In considering the theory of an ideal gas and superconductivity on the basis of
Bose particles of TI bipolarons, the Coulomb interaction between the electrons is
taken into account only for electron pairs, that is, when we deal with the problem
of an individual bipolarons. Hamiltonian of such a system, according to Lakhno
(2015b) and Lakhno (2019a) has the form:

H0 =
X
k

εkα
+
k αk, (4:4:1)

εk =EbpΔk,0 + ω0 + Ebp + k2=2Me
� �

1−Δk,0ð Þ, (4:4:2)

where α+
k , αk are the operators of the birth and annihilation of TI bipolarons: εk is

the spectrum of TI bipolarons obtained in Section 4.3; ω0 kð Þ=ω0 is the energy of
an optical phonon; Δk,0 = 1 for k = 0 and Δk, 0 =0 for k ≠0. Expressions (4.4.1) and
(4.4.2) can be rewritten as

H0 = Ebpα
+
0 α0 +

X =

k

ω0 +Ebp + k2=2Me

� �
α+
k αk, (4:4:3)
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where the prime in the sum in the right-hand side of (4.4.3) means that the term
with k = 0 is lacking in the sum. Extraction out of a term with k = 0 in (4.4.1) corre-
sponds to the formation of a Bose condensate where

α0 =
ffiffiffiffiffiffi
N0

p
, (4:4:4)

N0 is the number of TI bipolarons in a condensed state. Hence, in the theory of an
ideal TI bipolaron gas the first term is merely EbpN0. In constructing a theory of a
nonideal TI bipolaron Bose gas we will proceed from the Hamiltonian:

H = EbpN0 +
X =

k

ω0 + Ebp

� �
α+
k
α
k
+
X =

k

t
k
α+
k αk + 1=2V

X =

k

V
k
α+
k′′− kα

+
k′+ k

α
k′′
α
k′
,

tk = k2=2Me, ð4:4:5Þ

where the last term responsible for bipolaron interaction is added to Hamiltonian
H0 (4.4.1), Vk is a matrix element of the bipolaron interaction. The last two terms in
(4.4.5) exactly correspond to Hamiltonian of a charged Bose gas (Foldy, 1961). Fol-
lowing a standard procedure of resolving a Bose condensate we rewrite (4.4.5) into
the Hamiltonian:

H =EbpN0 +
X =

k

ω0 +Ebp
� �

α+
k αk +

X =

k

tk + n0Vkð Þα+
k αk + 1=2n0Vk αkα− k + α+

k α
+
− k

� �� �
,

(4:4:6)

where n0 =N0=V is the density of the particles in the Bose condensate.
Then with the use of Bogolyubov transformation:

αk = ukbk − vkb+
− k,

uk = tk + n0Vk + εkð Þ=2εk½ �1=2,

vk = tk + n0Vk − εkð Þ=2εk½ �1=2, εk = 2n0Vktk + t2k
� �1=2, (4:4:7)

In new operators we get the Hamiltonian:

H =EbpN0 +U0 +
X =

k

ω0 +Ebp + εk
� �

b+
k bk, (4:4:8)

U0 =
X =

k

εk − tk − n0Vkð Þ,

where U0 is the ground state energy of a charged Bose gas without regard to its in-
teraction with the crystal polarization. Hence, the excitation spectrum of a nonideal
TI bipolaron gas has the form:
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Ek =Ebp + u0 + ω0 kð Þ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4=4M2

e + k2Vkn0=Me

q� �
1−Δk,0ð Þ , (4:4:9)

where u0 =Un=N, N is the total number of particles. If we reckon the excitation en-
ergy from the bipolaron ground state energy in a nonideal gas, assuming that
Δk = Ek − Ebp + u0

� �
, then for Δk (when k ≠ 0) we get:

Δk =ω0 kð Þ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4=4M2

e + k2Vkn0=Me

q
. (4:4:10)

This spectrum suggests that a TI bipolaron gas has a gap Δk in the spectrum be-
tween the ground and excited states, that is, superfluid. Being charged, this gas is
automatically superconducting. To determine a particular form of the spectrum we
should know the value of Vk. If we considered only a charged Bose gas with a posi-
tive homogeneous background, produced by a rigid ion lattice, then the quantity
Vkinvolved in (4.4.9) in the absence of screening would be equal to Vk = 4πe2B=k

2.
Accordingly, the second term in the radical expression in (4.4.9) would be equal to
ω2

p = 4πn0e2B=Me, where ωp is the plasma frequency of a Boson gas, eB is the Boson
charge (2e for a TI bipolaron). Actually, if screening is taken into account, Vk takes
the form Vk = 4πe2=k2εB kð Þ, where εB kð Þ is the dielectric permittivity of a charged
Bose gas which was calculated in Hore and Frankel (1975, 1976). The expression for
εB kð Þ obtained in Hore and Frankel (1975, 1976) is too complicated and is not pre-
sented here. However, in the case of a TI bipolaron Bose gas this modification of Vk

is insufficient. As it was shown in Lakhno (2016a, 2016b) (Chapter 5), bipolarons
constitute just a small portion of charged particles in the system. Most of them
occur in the electron gas into which the bipolarons are immersed. It is just the elec-
tron gas that makes the main contribution into the screening of the interaction be-
tween the polarons. To take account of this screening Vk should be expressed as
Vk = 4πe2=k2εB kð Þεe kð Þ, where εe kð Þ is the dielectric permittivity of an electron gas
(Appendix H). Finally, if we take account of the mobility of the ion lattice, Vk takes
the form: Vk = 4πe2=k2εB kð Þεe kð Þε∞ε0, where ε∞, ε0 are the high-frequency and static
dielectric constants.

As a result, we get for Δk:

Δk =ω0 kð Þ+ k2=2Me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ χ kð Þ

p
, (4:4:11)

χ kð Þ= 2Meωp
� �2

=k4εB kð Þεe kð Þε∞ε0. (4:4:12)

To estimate χ(k) in (4.4.11) let us consider the long-wave limit. In this limit εe kð Þ has
the Thomas–Fermi form: εe kð Þ= 1+ κ2=k2, where κ=0.815 kF rs=aBð Þ1=2, aB = �h2=Mee2B,
rs = 3=4πn0ð Þ1=3, therefore, according to Hore and Frankel (1975, 1976), the quantity
εB kð Þ is equal to εB kð Þ= 1+ q4s=k

4, qs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Meωp

p
.

Bearing in mind that in calculations of the thermodynamic functions the main
contribution is made by the values of k: k2=2Me ≈ T, where T is the temperature for
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χ(k) we get an estimate χeT=EFε∞ε0 where EF is the Fermi energy. Hence the spec-
trum of a screened TI bipolaron gas differs from the spectrum of an ideal TI bipolaron
gas (4.4.2) only slightly. It should be noted that in view of screening the value of cor-
relation energy u0 in (4.4.10) turns out to be much less than that calculated in Foldy
(1961) without screening and for actual parameter values – much less than the bipo-
laron energy Ebp

 . It should also be noted that in view of screening a TI bipolaron
gas does not form Wigner crystal even in the case of an arbitrarily small bipolaron
density.

4.5 Statistical thermodynamics of a low-density TI bipolaron gas

In accordance with the result of the previous section let us consider an ideal Bose
gas of TI bipolarons which is a system of N particles occurring in a volume V
(Lakhno, 2018, 2019b). Let us write N0 for the number of particles in the lower one-
particle state, and N′ – for the number of particles in higher states. Then:

N =
X

n=0, 1, 2, . . .
�mn =

X
n

1
e En − μð Þ=T − 1

, (4:5:1)

or:

N =N0 +N′, N0 =
1

e Ebp − μð Þ=T − 1
, N′=

X
n≠0

1
e En −μð Þ=T − 1

. (4:5:2)

If in the expression for N′ (4.5.2) we replace summation by integration over a con-
tinuous spectrum (4.3.1), (4.3.2), and (4.3.7) and assume in (4.5.2) that μ= Ebp we
will get from (4.5.1) and (4.5.2) an equation for the critical temperature of Bose con-
densation Tc:

Cbp = f~ωH
~Tc
� �

, (4:5:3)

f~ωH
~Tc
� �

= ~T3=2
c F3=2 ~ωH=~Tc

� �
, F3=2 αð Þ= 2ffiffiffi

π
p

ð∞
0

x1=2dx
ex+ α − 1

Cbp =
n2=32π�h2

Meω✶

 !3=2

, ~ωH = ω0 − η2H2=2Me

ω✶ , ~Tc =
Tc

ω✶

where n = N/V. In this section we deal with the case when a magnetic field is ab-
sent: H = 0. Figure 4.2 shows a graphical solution of equation (4.5.3) for the parame-
ter values Me = 2m= 2m0, where m0 – is a mass of a free electron in vacuum, ω✶ = 5
meV ≈ 58 Kð Þ, n= 1021cm−3 and the values: ~ω1 =0.2; ~ω2 = 1; ~ω3 = 2; ~ω4 = 10; ~ω5 = 15;
~ω6 = 20; ~ωH = ~ω= ~ω0=ω✶ ; ωHcr =ωH, for ~T = ~Tc.
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Figure 4.2 suggests that the critical temperature grows as the phonon frequency
~ω0 increases. Relations of critical temperatures Tci=ω0i corresponding to the chosen
parameter values are given in Tab. 4.1. It can be seen from Tab. 4.1 that the critical
temperature of a TI bipolaron gas is always higher than in the case of an ideal Bose
gas (IBG). It also follows from Fig. 4.2 that as the concentration of TI bipolarons n
increases the critical temperature will increase and as the electron mass m grows
the critical temperature will decrease.

For ~ω=0, the results pass on to the well-known IBG limit. In particular, from
(4.5.3) for ~ω=0 follows the expression for the critical temperature of IBG:

Tc = 3.31 �h2n2=3=Me. (4:5:4)

It should be stressed that (4.5.4) involves Me = 2m, rather than the bipolaron mass.
This eliminates the problem of low condensation temperature which arises both in
the SRP and LRP theories where expression (4.5.4) involves the bipolaron mass
(Alexandrov and Krebs, 1992; Alexandrov and Mott, 1996; Ogg, 1946; Vinetsky and
Pashitsky, 1975; Vinetsky et al.,1989; Vinetsky et al., 1992; Pashitskii and Vineckii,
1987; Emin, 1989, 2017). Another important result is that the critical temperature Tc
for the parameter values chosen is considerably superior to the gap energy ω0.

From (4.5.1) and (4.5.2), it follows that:

N′ ~ωð Þ
N

=
~T
3=2

Cbp
F3=2

~ω
~T

� �
, (4:5:5)

N0 ~ωð Þ
N

= 1−
N′ ~ωð Þ
N

. (4:5:6)

Fig. 4.2: Solution of equation (4.5.3) with Cbp = 331.3 and ~ωi = 0.2; 1; 2; 10; 15; 20f g, which
correspond to ~Tci :~Tc1 = 27.3; ~Tc2 = 30; ~Tc3 = 32; ~Tc4 =42; ~Tc5 = 46.2; ~Tc6 = 50.
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Figure 4.3 shows the temperature dependencies of the number of supraconden-
sate N′ and condensate N0 particles for the above indicated values of ~ωi.

Figure 4.3 suggests that, as one would expect, the number of condensate par-
ticles grows as the gap ~ωi increases.

Tab. 4.1: Calculated values of characteristics of a TI bipolaron Bose gas with concentration
n= 1021cm −3 ~ωi =ωi=ω✶ , ω✶ = 5meV ≈ 58 Kð Þ, ωi is the energy of an optical phonon; Tci a critical
temperature of the transition, qi is a latent heat of the transition from the condensate to
supracondensate state; −Δ ∂Cvi=∂~T

� �
=∂Cvi=∂~T j~T = Tci +0 −∂Cvi=∂~T j~T = Tci −0 is a jump of the heat

capacity under transition, ~T = T=ω✶ ; Cvi Tc −0ð Þ is the heat capacity in the SC phase at the critical
point; Cs = Cv Tc −0ð Þ, Cn =Cv Tc +0ð Þ. Calculations are performed for the concentration of TI
bipolarons n= 1021 cm −3 and the effective mass of a band electron m=m0. The table also lists the
values of the concentrations of TI bipolarons nbpi for HTSC YBa2Cu3O7, proceeding from the
experimental value of the transition temperature Tc = 93 K.

i       

~ωi  .     

Tci=ω0i ∞ .   .  .

qi=Tci . . . . . . 

−Δ ∂Cvi=∂~T
� �

. . . . . . .

Cvi Tc −0ð Þ . . . . . . ,

Cs −Cnð Þ=Cn  . . . . . .

nbpi × cm3 16× 1019 9.4× 1018 4.2× 1018 2.0× 1018 1.2× 1017 5.2× 1014 2.3× 1013

Fig. 4.3: Temperature dependencies of the relative number of supracondensate particles N′=N and
particles in the condensate N0=N= 1−N′=N for the values of parameters ~ωi given in Fig. 4.2.
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The energy of a TI bipolaron gas E is determined by the expression:

E =
X

n=0, 1, 2 . . .
�mnEn =EbpN0 +

X
n≠0

�mnEn. (4:5:7)

With the use of (4.3.1), (4.3.2), and (4.5.7), we express the specific energy (i.e., en-
ergy per one TI bipolaron) ~E ~T

� �
=E=Nω✶ , ~Ebp = Ebp=ω✶ as

~E ~T
� �

= ~Ebp +
~T
5=2

Cbp
F3=2

~ω− ~μ
~T

� �
~ω
~T
+
F5=2

~ω− ~μ
~T

� �
F3=2

~ω− ~μ
~T

� �
24 35,

F5=2 αð Þ= 2ffiffiffi
π

p
ð∞
0

x3=2dx
ex+ α − 1

(4:5:8)

where ~μ is determined by the equation:

~T3=2F3=2
~ω− ~μ
~T

� �
=Cbp, ~μ=

0, ~T ≤ ~Tc

~μ ~T
� �

, ~T ≥ ~Tc
.

(
(4:5:9)

A relation of ~μ to the chemical potential of the system µ is determined by the
expression ~μ= μ−Ebp

� �
=ω✶ . Formulae (4.5.8)–(4.5.9) also yield the expressions

for the free energy: ΔF = − 2ΔE=3, ΔF = F Tð Þ− F 0ð Þ, ΔE = E Tð Þ−E 0ð Þ, and entropy
S= − ∂F=∂T.

Figure 4.4 shows the temperature dependencies of Δ~E = ~E − ~Ebp for the afore-
mentioned values of ~ωi. Breakpoints of the Δ~Ei

~T
� �

curves correspond to the critical
temperature values Tci.
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Fig. 4.4: Temperature dependencies of Δ~E ~T
� �

= ~E ~T
� �

− ~Ebp for ~ωi values presented in Figs. 4.2 and 4.3.
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The dependencies obtained enable us to find the heat capacity of a TI bipolaron
gas: Cv

~T
� �

=d~E=d~T. With the use of (4.5.8) for ~T ≤ ~Tc we express Cv
~T
� �

as

Cv
~T
� �

=
~T
3=2

2Cbp

~ω2

~T
2 F1=2

~ω
~T

� �
+ 6

~ω
~T

� �
F3=2

~ω
~T

� �
+ 5F5=2

~ω
~T

� �" #
, (4:5:10)

F1=2 αð Þ= 2ffiffiffi
π

p
ð∞
0

1ffiffiffi
x

p dx
ex+ α − 1

.

Expression (4.5.10) yields a well-known exponential dependence of the heat capacity
at low temperatures Cve exp −ω0=Tð Þ, caused by the availability of the energy gap ω0.

Figure 4.5 illustrates the temperature dependencies of the heat capacity Cv
~T
� �

for the above-mentioned values of ~ωi. Table 4.1 lists the values of jumps in the heat
capacity for different ~ωi:

Δ
∂Cv

~T
� �

∂~T
= ∂Cv

~T
� �

∂~T ~T = Tc +0

−
∂Cv

~T
� �

∂~T ~T = Tc −0


 (4:5:11)

at the transition points.
The dependencies obtained enable one to find a latent transition heat q = TS, S

is the entropy of supracondensate particles. At the transition point this value is
equal to q= 2TcCv Tc −0ð Þ=3, where Cv Tð Þ is determined by formula (4.5.10), and for
the abovementioned values of ~ωi is given in Tab. 4.1.

Above, we considered the thermodynamic characteristics of a Bose condensate
with an isotropic phonon spectrum. In fact, in most HTSC materials, the SC gap de-
pends on the wave vector. For example, in YBCO with optimal doping, the depen-
dence of the gap on k has the form:

ω0 kð Þ=Δ0 cos kxa− cos kya
 +ω0, (4:5:12)

where ω0 kð Þ, according to the above, is the phonon frequency. In TI bipolaron the-
ory, the first term on the right-hand side of (4.5.12) corresponds to the contribution
of the d-type wave, and the second term to the contribution of the s-type wave.

When calculating the thermodynamic properties of the gas of TI bipolarons, the
quantity ω0 kð Þ enters into the expression for the spectrum νk in the form:

νk =EbpΔk,0 + Ebp +ω0 kð Þ+ k2 2M
� �

1−Δk, 0ð Þ.�
(4:5:13)
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Fig. 4.5: Temperature dependencies of the heat capacity for different values of the parameters:
~ωi : ω0 =0; ~Tc = 25.2; Cv ~Tc0

� �
= 2;

ω1 =0.2; ~Tc1 = 27.3; Cv ~Tc1 −0
� �

= 2.16; Cv ~Tc1 +0
� �

= 1.9;
ω2 = 1; ~Tc2 = 30; Cv ~Tc2 −0

� �
= 2.46; Cv ~Tc2 +0

� �
= 1.8;

ω3 = 2; ~Tc3 = 32.1; Cv ~T c3 −0
� �

= 2.7; Cv ~Tc3 +0
� �

= 1.78;
ω4 = 10; ~Tc4 = 41.9; Cv ~Tc4 −0

� �
= 3.7; Cv ~Tc4 +0

� �
= 1.7;

ω5 = 15; ~Tc5 =46.2; Cv ~T c5 −0
� �

=4.2; Cv ~Tc5 +0
� �

= 1.65;
ω6 = 20; ~Tc6 = 50 Cv ~Tc6 −0

� �
=4.6; Cv ~Tc6 +0

� �
= 1.6..
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As a result, the quantity N′, determined by (4.5.2):

N′= V

2π �hð Þ3
ð
d3k

1

e νk −μð Þ=T − 1
, (4:5:14)

can be estimated as follows. Equations (4.5.12) and (4.5.13) suggest the following
condition when the main contribution into (4.5.14) is made by s-wave. Taking into
account that the main contribution into integral (4.5.14) is made by the values of
k ≈

ffiffiffiffiffiffiffiffiffiffi
2MT

p
and ka<< 1 we get from (4.5.12) and (4.5.13) that Δ0 cos kxa− cos kya

  ffi
Δ0Ma2=�h2 << 1 .

Hence, for ω0 ≥Δ0Ma2T=�h2 the main contribution into the integral will be made by
s-wave. In this case the results obtained above will remain unchanged. Thus, for exam-
ple in the case of YBCO the values of ω0=Δ0 is ≈0.15 (Smilde et al., 2005; Kirtley et al.,
2006) and the s-approximation condition in this case is satisfied with high accuracy.

4.6 Statistical thermodynamics of 1D low-density TI bipolaron gas

The spectrum of Holstein 1D bipolaron, as in 3D-case is determined by equation
D sð Þ=0, where D sð Þ is determined by equation (3.3.4) of Chapter 3 and has the form
En = EBP, n=0; En =EBP +ω0 + k2n=2, n≠0, kn = ± 2π n− 1ð Þ=Na, n= 1, 2, . . . ,Na=2+ 1:
With the use of (4.5.1), (4.5.2), and (4.5.3), we get an equation for the critical temper-
ature of Bose condensation:

C1D =ϕ~ω TCð Þ, (4:6:1)

ϕ~ω = ~T1=2
C F1=2 ~ω=~TC

� �
, F1=2 αð Þ=

ð∞
0

dxffiffiffi
x

p
ex+ α − 1ð Þ,

T͠T͠
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Fig. 4.5 (continued)
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C1D = 2
ffiffiffi
2

p
π

n�h
M1=2ω✶ 1=2

, ω✶ =ω0 ω, ~TC = T ω✶ ,=
�

where n=N=L is the number of bipolarons per unit length. Figure 4.6 shows a graph-
ical solution of equation (4.6.1) for the values of the parameters: ω✶ = 5meV ≈ 58 Kð Þ,
n= 107cm−1 and the values ~ω1 =0.2; ~ω2 = 1; ~ω3 = 2; ~ω4 = 10; ~ω5 = 15; ~ω6 = 20; C1D = 34.69.

Figure 4.6 suggests that the critical temperature grows as the phonon frequency
grows and vanishes for ω=0. The equality TC =0 for ω=0 corresponds to a well-
known result that Bose condensation is impossible in one-dimensional case.
Figure 4.6 also suggests that an increase in the concentration of bipolarons will lead
to an increase in the critical temperature, while an increase in the electron effective
mass m leads to its decrease.

It follows from (4.5.1) and (4.5.2) that:

N′ ~ωð Þ
N

=
~T
1=2

C1D
F1=2

~ω
~T

� �
(4:6:2)

N0 ~ωð Þ
N

= 1−
N′ ~ωð Þ
N

(4:6:3)

Figure 4.7 shows temperature dependencies of the number of supracondensate par-
ticles N′and the number of condensate particles N0 for different values of the pa-
rameters ~ωC = ~ω TCð Þ.

Figure 4.7 suggests as one would expect that the number of particles in the con-
densate increases with increasing gap energy ωi.

0

ϕω1
34.69

T~
5.82 53.5 68.3 81.514.1 20.9

~

ϕ ω
~

ϕω2~ ϕω3~ ϕω4~ ϕω5~ ϕω6~

Fig. 4.6: Solutions of equation (4.6.1) with C1D = 34.69 and ~ωi =0, 2; 1; 2; 10; 15; 20, which
correspond to ~Tci :

~Tc1 = 5,8; ~Tc2 = 14; ~Tc3 = 20,9; ~Tc4 = 53, 5; ~Tc5 =68, 3; ~Tc6 =81, 5.
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Using the above expression for the spectrum of 1D bipolaron we rewrite the ex-
pression for the specific energy of a bipolaron gas (4.5.7) as

~E = ~EBP +Δ~E, ~E ~T
� �

=E Nω✶ , ~EBP =EBP ω✶=
�

(4:6:4)

Δ~E =
~T
3=2

C1D
F1=2

~ω− ~μ
~T

� �
~ω
~T
+
F3=2

~ω− ~μ
~T

� �
F1=2

~ω− ~μ
~T

� �
24 35 , (4:6:5)

where the chemical potential μ is determined from the equation:

C1D = ~T1=2
C F1=2

~ω− ~μ ~T
� �

~T

 !
, ~μ=

0, ~T < ~TC

~μ ~T
� �

, ~T > ~TC.

(
(4:6:6)

A relation between ~μ and the chemical potential of the system μ is determined by
the expression: ~μ= μ− EBPð Þ=ω✶ . Formulae (4.6.5) and (4.6.6) lead to the following
expression for the thermodynamic potential Ω: ΔΩ= − 2ΔE, ΔΩ=Ω Tð Þ−Ω 0ð Þ,
ΔE = E Tð Þ−E 0ð Þ and entropy S= − ∂Ω=∂T F = − 2E, S= − ∂F=∂Tð Þ.

Figure 4.8 shows temperature dependencies Δ~E = ~E − ~EBP for the above values of
~ωi. The salient point in the dependencies Δ~Ei

~T
� �

corresponds to the values of criti-
cal temperatures Tci .
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Fig. 4.7: Temperature dependencies of the relative number of supracondensate particles
(accordingly condensed particles N0=N= 1−N′=N). For the values of the parameters ~ωi given
in Fig. 4.6.
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Fig. 4.8: Temperature dependencies Δ~E = ~E ~T
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− ~EBP for the parameter values of ~ωi, presented in
Fig. 4.6.
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Fig. 4.9: Temperature dependencies of heat capacities for the parameter values of ~ωi presented in
Fig. 4.6 (numerical values of jumps in the heat capacity are presented in Tab. 4.2).
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The dependencies obtained enable us to determine the heat capacity of 1D TI
bipolaron gas: CV

~T
� �

=d~E=d~T.
Figure 4.9 shows temperature dependencies CV

~T
� �

for the values of ~ωi pre-
sented above.

The dependencies obtained enable one to find the heat of transition q= TS,
where S is the entropy of supracondensate particles. At the points of transition this
value will be equal to q= 2Tc ·CV Tc −0ð Þ=d~E=d~T, where ~E is determined by formu-
lae (4.6.4) and (4.6.5). The values of the heats of transition qi for the values of ~ωi

presented above are given in Tab. 4.2.

4.7 Current states of a TI bipolaron gas

As is well-known, an absence of a magnetic field in a superconductor is caused by
a presence of surface currents which compensate this field. Thus, it follows from
condition (4.2.8) that:

PR = −
2e
c
AR, (4:7:1)

that is, in the superconductor there is a persistent current j:

j= 2en0PR

M✶
e

= −
4e2n0
M✶

e
AR, (4:7:2)

(where M✶
e is the bipolaron effective mass), which leads to Meissner effect where

n0 is the concentration of superconducting current carriers: n0 =N0=V. Comparing
(4.7.2) with the well-known phenomenological expression for a surface current jS
(Schmidt, 1997):

jS = −
c

4πλ2
A, (4:7:3)

and assuming that A=AR from equality j= jS and (4.7.2) and (4.7.3) we derive a
well-known expression for the London penetration depth λ:

λ= M✶
e c2

16π e2n0

� �1=2

. (4:7:4)

The equality of “microscopic” current expression (4.7.2) to its “macroscopic” value
cannot be exact. Accordingly, the equality A=AR is also approximate since AR is a
vector-potential at the point where the mass center of two electrons occurs, while in
the London theory AR is a vector potential at the point where the particle occurs.
Therefore, it would be more realistic to believe that these quantities are propor-
tional. In this case the expression for the penetration depth will be
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λ= const
M✶

e c2

16πe2n0

� �1=2

(4:7:4ʹ)

where the constant multiplier (of the order of 1 in (4.7.4ʹ)) should be determined
from comparison with the experiment.

Expression (4.7.1) was obtained in the case of an isotropic effective mass of cur-
rent carriers. Actually, it has a more general character and does not change when
anisotropy of effective masses is taken into account. For example, in layered HTSC
materials the kinetic energy of current carriers in Hamiltonian (4.2.1) should be re-
placed by the expression:

Ta =
1

2mjj
p̂1jj −

e
c
A1

� �2
+ 1
2mjj

p̂2jj −
e
c
A2

� �2
+ 1
2m?

p̂1? −
e
c
A1z

� �2
+ 1
2m?

p̂2? −
e
c
A2z

� �2
, (4:7:5)

where p̂1, 2jj,A1, 2jj are the operators of the momentum and vector potential in the
planes of the layers (ab-planes); p̂1, 2?,A1, 2? are relevant the values in the direction
perpendicular to the planes ((along the c-axis); mjj,m? are effective masses in the
planes and in the perpendicular direction.

As a result of the transformation:

~x= x, ~y= y, ~z = γz, (4:7:6)

~A~x =Ax, ~A~y =Ay, ~A~z = γ− 1Az,

~p~x = px, ~p~y = py, ~p~z = γ− 1pz,

where γ2 =m?=mjj, γ is an anisotropy parameter, the kinetic energy ~Ta turns out to
be isotropic. Hence, ~PR + 2e=cð Þ ~A~R =0. Then, it follows from (4.7.6) that relation
(4.7.1) is valid in an anisotropic case too. It follows that:

PRjj = −
2e
c
ARjj, PR? = −

2e
c
AR?,

jjj = 2en0PRjj=M✶
ejj , j? = 2en0PR?=M✶

e?. (4:7:7)

A magnetic field directed perpendicularly to the plane of the layers will induce cur-
rents flowing in the plane of the layers. When penetrating into the sample, this
field will attenuate along the plane of the layers. For the magnetic field perpendicu-
lar to the plane of the layers H?ð Þ we denote the London penetration depth by λ?,
and for the magnetic field parallel to the plane of the layers Hjj

� �
by λjj.

This implies the expression for the London depth of magnetic field penetration
into a sample:
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λ? = M✶
e?c

2

16πe2n0

� �1=2

, λjj =
M✶

ejjc
2

16πe2n0

 !1=2

. (4:7:8)

For λjj and λ? the denotations λab and λc are often used. It follows from (4.7.8) that:

λ?
λjj

= M✶
e?

M✶
ejj

 !1=2

= γ✶ (4:7:9)

It also follows from (4.7.8) that the London penetration depth depends on the
temperature:

λ2 0ð Þ=λ2 Tð Þ= n0 Tð Þ=n0 0ð Þ. (4:7:10)

In particular, for ω = 0 with the use of (4.5.4) we get λ Tð Þ= λ 0ð Þ 1− T=Tcð Þ3=2
� �− 1=2

.
This dependence is compared with other approaches in Section 5.1.

It is usually believed that a Bose system becomes superconducting because of
an interaction between the particles. The occurrence of a gap in the spectrum of TI
bipolarons can lead to their condensation even when the particles do not interact
and the Landau superfluidity criterion:

v= �hωk=P (4:7:11)

(where P is a specific momentum of the bipolaron condensate) can be fulfilled even
for noninteracting particles. From condition (4.7.11) we can derive the expression
for the maximum value of the current density jmax = envmax:

jmax = en0

ffiffiffiffiffiffiffiffiffiffiffi
2�hω0

M✶
e

s
. (4:7:12)

In conclusion it should be noted that all of the aforesaid refers to local electrody-
namics. Accordingly, expressions obtained for λ are valid only on condition that
λ>> ξ , where ξ is a correlation length which determines the characteristic size of a
pair, that is, the characteristic scale of changes in the wave function ψ rð Þ in (4.2.9).
As a rule, this condition is fulfilled in HTSC. In ordinary superconductors the re-
verse inequality is fulfilled. A nonlocal generalization of superconductor electrody-
namics was performed by Pippard (1950). It implies that the relation between jS and
A in expression (4.7.3) can be written in the form:

jS =
ð
Q r − r′
� �

A r′
� �

dr′, (4:7:13)
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where is a certain operator whose radius of action is usually believed to be equal to
ξ . In the limit ξ >> λ this leads to an increase in the absolute value of the depth of
the magnetic field penetration into a superconductor which becomes equal to
λ2ξ
� �1=3

(Pippard, 1950).

4.8 Thermodynamic properties of a TI bipolaron gas
in a magnetic field

The fact that Bose condensation of an ideal Bose gas in a magnetic field is impossi-
ble (Schafroth, 1955) does not mean that BEC mechanism cannot be used to de-
scribe superconductivity in a magnetic field. This follows from the fact that a
magnetic field in a superconductor is identically zero. At the same time, abstracting
ourselves from SC problem, there are no obstacles to consider a Bose gas to be
placed in a magnetic field. Of interest is to investigate this problem with respect to
a TI bipolaron gas.

First, it should be noted, that from expression for ~ωH, given by (4.5.3), it follows
that for ω0 =0 Bose condensation of TI bipolarons turns out to be impossible if
H ≠0. For an ordinary ideal charged Bose gas, this conclusion was first made in
Schafroth (1955). In view of the fact that in the spectrum of TI bipolarons there is a
gap between the ground and excited states (Section 4.5), for a TI bipolaron gas this
conclusion is invalid at ω0 ≠0.

From the expression for ~ωH in (4.5.3) it follows that there is a maximum value
of the magnetic field Hmax equal to

H2
max =

2ω0�h
2Me

η2
. (4:8:1)

For H >Hmax a homogeneous superconducting state is impossible. As suggested by
(4.2.11) and (4.2.16), the quantity η consists from two parts η= η′+ η′′. The value of
η′ is determined by the integral involved into the expression for ~ωk (4.2.16). There-
fore η′ depends on the shape of a sample surface. The value of η′′ is determined by
the sum involved into the expression for ~ωk (4.2.16), and depends on the shape of a
sample surface only slightly. Hence, the value of η can change as the shape of a
sample surface changes thus leading to a change in Hmax. With the use of (4.8.1) ~ωH

determined by (4.5.3) will be written as

~ωH = ~ω 1−H2=H2
max

� �
. (4:8:2)

For a given temperature T let us write Hcr(T) for the value of the magnetic field for
which the superconductivity disappears. This value of the field, according to (4.8.2),
corresponds to ~ωHcr :
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~ωHcr Tð Þ= ~ω 1−H2
cr Tð Þ=H2

max

� �
. (4:8:3)

The temperature dependence of ~ωHcr Tð Þ can be found from condition (4.5.3):

Cbp = ~T3=2F3=2 ~ωHcr
~T
� �

=~T
� �

.

It has the shape shown in Fig. 4.2.
With the use of (4.7.1) and the temperature dependence given in Fig. 4.2 we can

find the temperature dependence of Hcr
~T
� �

:

H2
cr

~T
� �

H2
max

= 1−
ωHcr

~T
� �
~ω

. (4:8:4)

For ~T ≤ ~Tci these dependencies are given in Fig. 4.10.

According to Fig. 4.10, Hcr
~T
� �

reaches its maximum at a finite temperature
~Tc ~ω=0ð Þ≤ ~Tc ω0ið Þ. Figure 4.10 suggests that at a temperature below ~Tc ~ω=0ð Þ= 25.24
a further decrease of the temperature no longer changes the critical field Hcr

~T
� �

irre-
spective of the gap value ~ω.

Let us introduce a concept of a transition temperature Tc Hð Þ in a magnetic field
H. Figure 4.11 shows the dependencies Tc Hð Þ resulting from Fig. 4.10 and deter-
mined by the relations:

Cbp = ~T3=2
c, i

Hð ÞF3=2 ~ωH, i=~Tc, i Hð Þ� �
, ~ωH, i = ~ωH =0, i 1−H2=H2

max , i
� �

.

0

1

H2 cr
, i

/H
2 m

ax
, i

27
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.9
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.2

T~

Fig. 4.10: Temperature dependence H2
cr, i=H

2
max , i on the interval 0; Tc, i½ � for the parameter values of

~ωi, given in Fig. 4.2.
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Figure 4.11 suggests that the critical temperature of the transition ~Tc Hð Þ changes
in a stepwise fashion as the magnetic field reaches the value Hmax , i.

To solve the problem of the type of a phase transition in a magnetic field we
will proceed from the well-known expression which relates the free energies in the
superconducting and normal states:

FS +H2=8π = FN , (4:8:5)

where Fs and FN are free energies of the unit volume of superconducting and nor-
mal states, respectively:

FS =
N
V
Ebp H =0ð Þ− 2

3
ΔE ωH =0ð ÞN

V
, FN = N

V
Ebp Hð Þ− 2

3
ΔE ωHð ÞN

V
,

where ΔE =E − Ebp, E =ω✶ ~E, where ~E is determined by the formula (4.5.8). Differenti-
ating (4.8.5) with respect to temperature and taking into account that S= − ∂F=∂T we
express the transition heat q as

q=T SN − SSð Þ= −T∂ FN − FSð Þ=∂T = − T
Hcr

4π
∂Hcr

∂T
. (4:8:6)

Accordingly, the entropy difference SS − SN is

SS − SN = Hcr

4π
∂Hcr

∂T

� �
= H2

max

8πω✶
~SS − ~SN
� �

. (4:8:7)

25.2
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H /    Hmax, i

27.3

30
32.1

41.9

46.2

50

T H
, i

~

Fig. 4.11: Dependence of the critical transition temperature ~TH, i on the magnetic field H for the
parameter values of ~ωi given in Fig. 4.2.
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Figure 4.12 illustrates the temperature dependence of differences between the
entropies in the superconducting and normal states (4.8.7) for different values of
critical temperatures Tc ~ωið Þ, given in Fig. 4.2. The differences presented in Fig. 4.12
can seem strange in, at least, two respects:
1. In the BCS and Landau theories at the critical point Tc the entropy difference

vanishes according to Rutger’s formula. Entropy in Fig. 4.12 is a monotonous
function ~T and does not vanish at T =Tc.

2. The absolute value of the difference ~SS − ~SN
  when approaching the limit point

which corresponds to ~ω=0, would seem to increase rather than to decrease
vanishing for ~ω=0.

Regarding point 2, this is indeed the case for ~SS − ~SN
 , since the value of the maxi-

mum field Hmax and, accordingly, the multiplier Hmax=8π which relates the quanti-
ties SS − SN and ~SS − ~SN vanishes for ~ω=0.

Regarding point 1, as it will be shown below, Rutger’s formula turns out to be
inapplicable to a TI bipolaron Bose condensate.

Table 4.3 lists the values of ~SS − ~SN for critical temperatures corresponding to
different values of ~ωHcr, i .

The results obtained lead to some fundamental consequences:
1. The curve of Hcr Tð Þ dependence (Fig. 4.10) has a zero derivative, dHcr Tð Þ=dT =0

for T = 0. This result is in accordance with the Nernst theorem which implies
that entropy determined by (4.8.6) is equal to zero at T = 0.
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Fig. 4.12: Temperature dependencies of differences between the entropies in superconducting and
normal states for ~ωi parameters used in Figs. 4.10 and 4.11.
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2. According to Fig. 4.10, Hcr Tð Þ monotonously decreases as T grows for
T >Tc ~ω=0ð Þ, and does not change for T ≤Tc ~ω=0ð Þ. Hence ∂Hcr Tð Þ=∂T <0 for
T >Tc ~ω=0ð Þ. Therefore, on the temperature interval Tc ~ω=0ð Þ,Tc ~ωð Þ½ � SS < SN,
and on the interval 0, Tc ~ω=0ð Þ½ � SS = SN .

This has some important implications:
1. Transition on the interval 0,Tc ~ω=0ð Þ½ � occurs without absorption or liberation

of latent heat since in this case SS = SN . That is, in the experiment, it will be
seen as a second-order phase transition. Actually, on the interval 0,Tc ~ω=0ð Þ½ �,
the phase transition into the superconducting state is an infinite-order phase
transition since in this region any-order derivatives of the energy difference
FS − FN , vanish according to (4.8.5) and Fig. 4.10.

2. In a magnetic field on the interval Tc ~ω=0ð Þ, Tc ~ωð Þ½ �, which corresponds to
SS < SN, a transition from a superconducting to a normal state occurs with ab-
sorption of latent heat. On the contrary, in passing on from a normal to a super-
conducting state latent heat releases. The phase transition on the interval
0,Tc ~ω=0ð Þ½ � is not attended by a release or absorption of latent heat, being an
infinite-order phase transition.

With regard to the fact that the heat capacity of a substance is determined by the
formula C = T(∂S/∂T), a difference in the specific heat capacities in a superconduct-
ing and normal states, according to (4.8.7), is written as

CS −CN = T
4π

∂Hcr

∂T

� �2

+Hcr
∂2Hcr

∂T2

" #
. (4:8:8)

The well-known Rutger’s formula can be obtained from this expression if we put in
(4.8.8) the critical field Hcr Tcð Þ=0 for T =Tcand leave in the bracket in the right-
hand side of (4.8.8) only the first term:

CS −CNð ÞR =
T
4π

∂Hcr

∂T

� �2

Tc

.

It is easy to see that at the point T =Tc the value of ωHcr , determined by Fig. 4.2, for
all the temperature values has a finite derivative with respect to T and therefore,
according to (4.8.4), an infinite derivative ∂Hcr=∂T for T =Tc. Hence, the second
term in the square bracket in (4.8.8) turns to −∞, leaving this bracket a finite value.
As a result, the difference in the heat capacities in our model of Bose gas is properly
expressed as
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CS −CN = T
8π

∂2

∂T2 H2
cr Tð Þ= H2

max

8πω✶
~CS − ~CN
� �

,

~CS − ~CN = ~T
∂2

∂~T
2 H2

cr Tð Þ=H2
max

� �
. (4:8:9)

Table 4.3 lists the values of the quantity ~CS − ~CN for the values of the critical temper-
atures corresponding to different values of ~ωHcr, i . It should be noted that according
to the results obtained, the maximum of the heat capacity jump occurs at a zero
magnetic field and decreases as the magnetic field grows, vanishing for H = Hcr,
which is fully consistent with the experimental data (Section 5.1). Comparison of
the heat capacity jumps shown in Fig. 4.5, with expression (4.8.9) enables us to cal-
culate the value of Hmax. The values of Hmax obtained for different values of ωi are
listed in Tab. 4.3. These values unambiguously determine the values of constant η
in formulae (4.3.7ʹ) and (4.3.7ʹʹ).

It follows from what has been said that Ginzburg–Landau temperature expansion
for a critical field near a critical temperature Tc is inapplicable to a TI bipolaron
Bose condensate. Since the temperature dependence Hcr Tð Þ determines the temper-
ature dependencies of all the thermodynamic quantities, this conclusion is valid for
all such quantities. As noted in the Introduction, this conclusion stems from the
fact that the BCS theory, being nonanalytical with respect to the coupling constant
under no conditions passes on the bipolaron condensate theory.

Above we dealt with the isotropic case. In the anisotropic case it follows from
formulae (4.3.7ʹ) and (4.3.7ʹʹ) that:

Tab. 4.3: The values of Hmax, entropy differences ~SS − ~SN, and heat capacities ~CS − ~CN in a
superconducting and normal states determined by relations (4.8.7) and (4.8.9) are presented for
the transition temperatures ~TCi for the same values of ~ωHcr, ias in Fig. 4.2.

i ~ωHcr, i
~TCi

~SS − ~SN
~CS − ~CN Hmax × 10− 3 Oe

  .   

 . . −. −. .

   −. −. .

  . −. −. .

  . −. −. .

  . −. −. .

   −. −. .
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H2
max =H2

max? = 2ω0M?�h
2

η2
, Bjjc, (4:8:10)

– that is, in the case when a magnetic field is directed perpendicularly to the plane
of the layers and:

H2
max =H2

max jj =
2ω0Mjj�h

2

η2
, B?c, (4:8:11)

– in the case when a magnetic field lies in the plane of the layers. From (4.8.10) and
(4.8.11), it follows that:

H2
max?

H2
max jj

=
ffiffiffiffiffiffiffi
M?
Mjj

s
= γ. (4:8:12)

With the use of (4.8.4), (4.8.11), and (4.8.12), we get for the critical field Hcr
~T
� �

in
the directions perpendicular and parallel to the plane of the layers:

Hcrjj,? ~T
� �

=Hmax jj,?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ωHcr

~T
� �

=~ω
q

. (4:8:13)

It follows from (4.8.13) that relations Hcrjj ~T
� �

=Hcr? ~T
� �

are independent of tempera-
ture. The dependencies obtained are compared with the experiment in Chapter 5.

4.9 Translation-invariant bipolarons and a pseudogap phase

Among the most amazing and mysterious phenomena of high-temperature super-
conductivity (HTSC) is the existence of a pseudogap phase at a temperature above
the critical temperature of a superconducting (SC) transition (Norman et al., 2005;
Vishik et al., 2010; Timusk and Statt, 1999; Huefner et al., 2008; Lee et al., 2006). In
a pseudogap phase, the spectral density of states near the Fermi surface demon-
strates a gap for T > TC, where Tc is a temperature of a SC transition which persists
up to the temperatures T ✶ T ✶ > TCð Þ, above which the pseudogap disappears. Pres-
ently, the explanation of this phenomenon is reduced to two possibilities. Accord-
ing to the first one, it is believed that for T > TC some incoherent electron pairs
persist in the sample, while for T < Tc their motion becomes coherent and they pass
on to the SC state. For T >T ✶ the pairs disintegrate and the pseudogap state disap-
pears (Randeria and Trivedi, 1998; Franz, 2007; Emery and Kivelson, 1995; Curty
and Beck, 2003). According to the second one, the transition to the pseudogap
phase is not concerned with superconductivity, but is caused by the formation of a
certain phase with a hidden order parameter or a phase with spin fluctuations
(Moon and Sachdev, 2009; Sadovskii, 2001; Bardeen et al., 1957).
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Presently the first viewpoint on the nature of a pseudogap in HTSC increasingly
dominates which is associated with the idea that paired electron states exist for
T > TC. The question of the nature of paired electron states per se remains open. In
this book paired electron states are taken to be TI bipolarons.

The TI bipolaron theory of SC based on the Pekar–Fröhlich Hamiltonian of EPI
when EPI cannot be considered to be weak as distinct from the Bardeen–Cooper–
Schrieffer theory (Bardeen et al., 1957) was developed in Lakhno (2018, 2019a,
2019b) (see also review of Lakhno, 2020a). The role of Cooper pairs in this theory
belongs to TI bipolarons whose size (≈ 1nm) is much less than that of Cooper pairs
( ≈ 103nm). According to this theory in HTSC materials TI bipolarons are formed
near the Fermi surface and represent a charged Bose gas capable of experiencing
BEC at high critical temperature which determines the temperature of a SC transition.

As distinct from Cooper pairs, TI bipolarons have their own excitation spectrum:

Ebp
k =EbpΔk, 0 + ω0 +Ebp + k2 2Me

� �
1−Δk,0ð Þ,�

(4:9:1)

Me = 2m,Δk,0 = 1 for k = 0 and Δk,0 =0 for k ≠0

where Ebp is the ground state energy of a TI bipolaron (reckoned from the Fermi
level), ω0 is the frequency of an optical phonon, m is a mass of a band electron
(hole), and k is a wave vector numbering excited states of a TI bipolaron.

This spectrum has a gap which in the isotropic case is equal to the frequency of
an optical phonon ω0. At that, the inequality ω0 >> Ebp

  corresponds to the case of
a weak EPI, ω0 << Ebp

  – to the case of strong coupling and ω0~ Ebp

  – to the case of
intermediate coupling. According to Lakhno (2018, 2019a, 2019b, 2020a) the num-
ber of TI bipolarons Nbp at temperature T = 0 is equal to Nbp ffi Nω0 2EF= , where N is
the total number of electrons (holes), EF is the Fermi energy, that is Nbp <<N.

The scenario of a SC based on the idea of a TI bipolaron as a fundamental
boson responsible for superconducting properties explains many thermodynamic
and spectroscopic properties of HTSC. For this reason, the problem of the tempera-
ture of a transition T ✶ to the pseudogap state is of interest.

4.9.1 Temperature of a pseudogap phase

Obviously, the temperature of a transition from a pseudogap phase to a normal one
T ✶ in this model is determined by disintegration of TI bipolarons into individual TI
polarons. Thermodynamically, the value of T ✶ should be determined from the con-
dition that the free energy of a TI bipolaron gas exceeds the free energy of a TI po-
laron gas determined by the spectrum of TI polarons:
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EP
k = EpΔk, 0 + ω0 +Ep + k2 2m

� �
1−Δk,0ð Þ�

(4:9:2)

where Ep is the energy of the polaron ground state.
For further consideration, it is significant that the number of TI bipolarons in

HTSC compounds is Nbp <<N. For n=N=V = 1021cm−3, where V is the system volume,
the typical values of nbp are of the order of nbp⁓1018 − 1019cm−3. Taking into account
that T ✶ >TC, in order to calculate the statistical sum of the bipolaron gas Zbp in the
vicinity of T ✶ one can use a classical approximation which requires that in the re-
gion of stability of the bipolaron gas the inequality:

T ✶ >T >TC (4:9:3)

be fulfilled. In this case the expression for the statistical sum of the TI bipolaron
gas has the form:

Zbp =
1

h3NbpNbp!

YNbp
i= 1

ð
d3kie

−Ebp
ki

=T = e− ω0 +Ebpð Þ=T 2πMeT
h2

� �3=2 eV
Nbp

" #Nbp
(4:9:4)

where e≈ 2.781 is the natural logarithm base, h= 2π�h is Planck constant.
Accordingly, for the statistical sum of a TI polaron gas formed as a result of dis-

integration of TI bipolarons, similarly to (4.9.4), we get

Zp = e− ω0 + Epð Þ=T ð2πmTÞ3=2
h3

eV
2Nbp

" #2Nbp
(4:9:5)

The condition of stability of a TI bipolaron gas with respect to its decay into a TI
polaron gas is written as

Zbp ≥Zp (4:9:6)

where the equality describes the case of an equilibrium between the two gases
which corresponds to the equation for temperature T ✶ of a transition from a normal
phase to a pseudogap one.

Substitution of (4.9.4) and (4.9.5) into (4.9.6) leads to the condition:

Δ= Ebp

 +ω0 − 2 Ep
 ≥ 3

2
T ln κT, κ= e

4

� �2=3 πm
n2=3bp h

2
(4:9:7)

In the case of equality expression (4.9.7) yields the equation for determining T ✶ :

z =WeW , T ✶ = κ− 1eW , z = 2κΔ=3. (4:9:8)
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Fig. 4.13 shows the solution W=W(z) (Lambert function) (4.9.8) on condition that
limitation (4.9.3) is fulfilled.

It holds on the interval − e− 1 < z <∞. On the interval − e− 1 < z <0 Lambert func-
tion is negative. Requirement (4.9.3) leads to the condition: −2,28 <W < ∞. Taking
into account the expression for the temperature of a SC transition obtained in
Section 4.5:

TC =TCðω0Þ= F3=2 0ð Þ=F3=2 ω0=TCð Þ� �3=2TC 0ð Þ, (4:9:9)

TC 0ð Þ= 3.31�h2n2=3bp =Me, F3=2 xð Þ= 2ffiffiffi
π

p
Z∞
0

t1=2dt
et + x − 1

,

we express T ✶ from (4.9.8) as

T ✶ ≈ 9.8 F3=2 ω0=TCð Þ=F3=2 0ð Þ� �2=3TC expW. (4:9:10)

Thus for example, for ω0 ≈TC we obtain from (4.9.10) that T ✶ ≈ 3TC 1ð Þ expW, where
TC 1ð Þ is determined by (4.9.9): TC 1ð Þ≈ 3.3TC 0ð Þ, that is for W=0 the pseudogap tem-
perature T ✶ exceeds the temperature of a SC transition TC more than threefold.

For ω0 >>TC the temperature of a pseudogap phase is T ✶ >> T 1ð Þ. In this case for
estimating T ✶ we can use an approximate formula derived from (4.9.8):

T ✶ ≈
2
3
Δ= ln

2
3
κΔ, κ Δj j> 3=2. (4:9:11)

This limit, however, is observed in experiments only rarely. It can be concluded that in
HTSC materials the main contribution into EPI leading to SC is made by phonon fre-
quencies with ω0 <TCð10 meV). This estimate is an order of magnitude less than the
estimates of phonon frequencies which are generally believed to make the main contri-
bution into the SC. It also follows from (4.9.11) that T ✶ grows only logarithmically as
the concentration of nbp increases, while TC~n

2=3
bp . Hence for a certain value of nbp the

–0.5
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–2

–1

0

W(z)

0 0.5
z

W = –2.28

ω0 = ω

ω0 = 0

–e–1

Fig. 4.13: Solution W(z) of equation (4.9.8).

4.9 Translation-invariant bipolarons and a pseudogap phase 113

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



condition T ✶ <TC, can be fulfilled which corresponds to disappearance of a pseudo-
gap phase as it follows from the form of the exact solution of equation (4.9.8) (see nev-
ertheless Chapter 7). In HTSC materials this takes place as doping increases to an
optimal value for which the pseudogap phase no longer exists.

4.9.2 Isotope coefficient for the pseudogap phase

The TI bipolaron theory of the pseudogap phase developed above enables one to
investigate its isotopic properties.

It follows from (4.9.8) that like the SC phase, the pseudogap one possesses the
isotopic effect. According to (4.9.8), the isotope coefficient is:

α✶ = −d lnT ✶ =d lnM (4:9:12)

where M is the mass of an atom replaced by its isotope. With regard to the fact that
ω0~M

− 1=2, it takes the form:

α✶ = ω0

3T ✶
1

1+W zð Þ , (4:9:13)

It follows from (9.13) and Fig. 4.13 that for the lower branch: W zð Þ< − 1 and α✶ <0.
Accordingly, for the upper branch: W zð Þ> − 1 and α✶ >0. It should be noted that
the upper branch corresponds to ω0 >ω✶ , while the lower branch to ω0 <ω✶ ,
where ω✶ ≈TC. Expressions (4.9.10) and (4.9.13) yield:

W = ln c F3=2 0ð Þ=F3=2 ω0=TCð Þ� �2=3T ✶ TC= � ,
h

(4:9:14)

where c≈0.1 Fig. 4.14 illustrates the graph of the dependence α✶ ω0ð Þ.

0

α

ω
ω0

Fig. 4.14: Dependence of the isotope coefficient for the
pseudogap temperature T ✶ on the phonon frequency
ω0 ω✶ ≈ Tcð Þ.
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Hence, depending on the value of the phonon frequency ω0 coefficient α✶

can have any sign and the value: α✶ <0 for ω0 <ω✶ and α✶ >0 for ω0 >ω✶ . For
ω0 =ω✶ , the isotope coefficient becomes infinite: α✶ ω✶ ±0ð Þ= ±∞. The results
obtained suggest that the isotope exponent diverges for ω0 ! ω✶ , that is for
T ✶ ≈Tc (Fig. 4.14). Great negative values of the isotope coefficient in the pseudo-
gap state were observed experimentally in Rubio Temprano et al. (2000), Bend-
ele et al. (2017), and Furrer (2005). It should be noted that in some cases negative
values of the isotope coefficient were also observed in ordinary SC (Bill et al., 1998a,
1998b), which exceeded in modulus the value of the isotope coefficient in monoa-
tomic systems α = 0,5, yielded by the BCS. According to the theory suggested this is
possible for T ✶ ≈ Tc.

4.9.3 Isotope coefficient for pseudogap phase in magnetic field

According to (4.3.6), the spectrum of a TI bipolaron in a magnetic field B is deter-
mined by the modified expression (4.9.1):

Ebp
k =EbpΔk,0 + ω0 + Ebp + k=2Me + ηbp Bkð Þ=2Me

� �
1−Δk, 0ð Þ, (4:9:15)

where the quantity ηbp, according to (4.8.1), is related to the first critical field SC
Bmax as

ηbp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0Me

Bmax

s
.

The spectrum of a TI polaron will be determined by relation (4.9.2), since in weak
fields B<Bmax the magnetic field leaves it practically unchanged (Bmax, being the
first critical field, is always much less than the value of the quantizing magnetic
field of a TI polaron).

Performing calculations similar to Section 4.2 we obtain the same relations as
in Sections 4.2 and 4.3, where ω0 should be replaced by ~ω0 =ω0 1+B2=B2

max

� �
. Thus,

for example, the graph of the dependence α ~ω0ð Þ, determined by Fig. 4.14, in a mag-
netic field will be a graph of the dependence α ~ω0ð Þ. Hence, for ~ω0 <ω✶ an increase
in the field value will lead to larger negative values of the isotope coefficient, and
for ~ω0 >ω✶ to smaller positive values of α✶ . In particular, a situation is possible
when, for a certain value of the field, the isotope coefficient, being negative, as the
field increases, becomes infinite at the point ~ω0 =ω✶ and becomes positive for
~ω0 >ω✶ . It will be interesting to verify these conclusions experimentally.
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4.9.4 Discussion

Here, we have shown that the existence of the pseudogap state and nonstandard
behavior of the isotope coefficient in HTSC materials can be explained on the basis
of the EPI without the involvement of any other scenarios (Labbé and Bok, 1987;
Radtke and Norman, 1994; Schüttler and Pao, 1995; Nazarenko and Dagotto, 1996;
Greco and Zeyner, 1999).

We witness further discussion on the nature of the pseudogap phase in HTSC ma-
terials. It follows from the foregoing consideration that the pseudogap is a universal
effect and should arise as TI bipolarons are formed in a system. The fact that for a long
time the occurrence of the pseudogap phase was associated with side effects is caused
by that this phase is observed even in ordinary SC (Medicherla et al., 2007; Chainani
et al., 2001; Yokoya et al., 2002; Sacépé et al., 2010; Mondal et al., 2011; Thakur et al.,
2013), where the occurrence of the pseudogap was explained by a crystallographic dis-
order or reduced dimensionality which are usually observed in disordered metals.

In connection to this, recent experiments with MgB2 HTSC seem to be of impor-
tance (Patil et al., 2017). As distinct from oxide ceramics, MgB2 does not have a mag-
netic order and, as proponents of an external nature of the pseudogap state suggest,
should not have a pseudogap. To exclude any other possibilities concerned with dis-
order, low-dimensionality effects, and so on in experiment (Patil et al., 2017) use was
made of highly perfect crystals. Experiments made in Patil et al. (2017) convincingly
demonstrated the availability of the pseudogap state in MgB2 and responsibility of
EPI for this state. The results obtained provide good evidence for the TI bipolaron
mechanism of the formation of the pseudogap state.

The simple scenario presented in the paper may overlap with the effects associated
with spin fluctuations, formation of charge density waves (CDW) and spin density
waves (SDW), pair density waves (PDW) and bond density waves (BDW), formation of
stripes (e.g., a giant isotopic effect caused by EPI was observed in La2-xSrxCuO4 in the
vicinity of the temperature of charged stripe ordering when replacing 160 by 180 (Lan-
zara et al, 1999)), clusters, other types of interactions, and so on. The suggested TI bi-
polaron mechanism of the pseudogap phase formation and explanation of isotopic
effects in HTSC materials on its basis are also important in view of universality of
this mechanism.

At present, there are only a few experiments to study the isotope effect in the
pseudogap phase. The experiments on the influence of the magnetic field on the iso-
tope coefficient proposed in the book for the temperature of the transition to the
pseudogap phase are new. The agreement of the experimental results with the theo-
retical predictions would indicate the validity of the assumption of the TI bipolaron
mechanism of HTSC.

In Lakhno (2020b) an assumption was made that a CDW, and, accordingly,
PDW have a bipolaron nature in HTSC (Chapter 6). If we take this assumption, then
the quantity Ebp involved in (9.1) and (9.15) should refer to quantity Ebp PCDWð Þ,
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where PCDW is the wave vector of the CDW: PCDW = PPDW . Some of TI bipolarons
which

can exist at a temperature exceeding the temperature of CDW formation have a
momentum different from PCDW and therefore a finite life time, determining a
“smeared” transition between the pseudogap and normal phases.

From the theory developed it follows that the temperature of SC transition can
be increased if we increase the concentration of bipolarons, for example

by terahertz irradiation with the energy of about of the phonon TI polaron en-
ergy gap (Mankowsky et al., 2014; Mitrano et al., 2016). Other methods of increasing
SC transition temperature will be considered in Chapter 5.

4.10 Scaling relations

Scaling relations play an important role in the superconductivity theory by promot-
ing a search for new high-temperature superconductors with record parameters.
Such relations can be a generalization of a lot of experiments having no reliable
theoretical justification, or can be deduced from less-than-reliable theoretical con-
struct, though being experimentally confirmed in the future. An example is pro-
vided by Uemura law considered in the next section 5.1.

The theory presented enables one to give a natural explanation to some impor-
tant scaling relations. In particular, in this section we deduce Alexandrov formula
(Alexandrov, 1999; Alexandrov and Kabanov, 1999) and Homes’ scaling law.

4.10.1 Alexandrov formula

As noted in Section 4.3, in an anisotropic case formula (4.5.3) takes on the form:

~Tc = F − 2=3
3=2

~ω=~Tc
� � nbp

Mjj

� �2=3 2π�h2

M1=3
? ω✶

. (4:10:1)

It is convenient to pass on from the quantities which are difficult to measure in an
experiment nbp, Mjj, M? to those which can be measured experimentally:

λab =
Mjj

16πnbpe2

� �1=2
, λc =

M?
16πnbpe2

� �1=2
, RH = 1

2enbp
, (4:10:2)

where λab = λjj, λc = λ? are London depths of penetration into the planes of the layers
and in the perpendicular direction, accordingly; RH is Hall constant. In expressions
(4.10.2) the light velocity is assumed to be equal to 1: c = 1. With the use of relations
(4.10.2) and (4.10.1) we get
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kBTc =
21=3

8
F − 2=3
3=2

~ω=~Tc
� � �h2

e2
eRH

λ 4
abλ

2
c

 !1=3

. (4:10:3)

Here the value of eRH is measured in cm3, λab, λc – in cm, Tc – in K.
Taking into account that in most HTSC ~ω≈ ~Tc and function F3=2 ~ω=~T

� �
varies in

the vicinity of ~ω≈ ~Tc, only slightly, with the use of the value F3=2 1ð Þ=0, 428 we de-
rive from (4.10.3) that Tc is equal to

Tc ffi 8.7 eRH

λ4abλ
2
c

 !1=3

. (4:10:4)

Formula (4.10.4) differs from Alexandrov’s formula (Alexandrov, 1999; Alexandrov
and Kabanov, 1999) only in a numerical coefficient which is equal to 1.64 in Alexan-
drov (1999 and Alexandrov and Kabanov (1999). As it is shown in Alexandrov
(1999) and Alexandrov and Kabanov (1999), formula (4.10.4) properly describes, al-
most without exception, a relation between the parameters for all known HTSC ma-
terials. It follows from (4.10.1) that Uemura’s relation (Uemura et al., 1989; Uemura
et al., 1991) is a particular case of formula (4.10.4).

In an isotropic case, formulae (4.10.3) and (4.10.4) also yield a well-known law
of a linear dependence of Tc on the inverse value of the squared London penetration
depth.

4.10.2 Homes’ law

Homes’ law claims that in the case of superconducting materials scaling relation
holds (Homes et al., 2004; Zaanen, 2004):

ρS =CσDC TCð ÞTC, (4:10:5)

where ρS is the density of the superfluid component for T = 0, σDC TCð Þ is the direct
current conductivity for T = Tc, C is a constant equal to ≈ 35 cm−2 for ordinary super-
conductors and HTSC for a current running in the plane of the layers.

The quantity ρS in (4.10.5) is related to plasma frequency ωp as ρS =ω2
p (Erd-

menger et al., 2012) (ωp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnSe2S=m

✶
S

q
, where nS is a concentration of supercon-

ducting current carriers; m✶
S , eS are a mass and a charge of superconducting

current carriers). With the use of this relation, relation σDC = e2nnnτ=m
✶
n , where nn is

a concentration of current carriers for T =TC, m✶
n , en are a mass and charge of cur-

rent carriers for T = Tc and relation τ~�h=TC, where τ is a minimum Planck time of
electron scattering at a critical point (Erdmenger et al., 2012), on the assumption
that eS = en, mS =mn, we get from (4.10.5):
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nS 0ð Þ ffi nn TCð Þ. (4:10:6)

In our scenario of Bose condensation of TI bipolarons, Homes’ law in the form of
(4.10.6) becomes almost obvious. Indeed, for T = Tc TI bipolarons are stable (they
decay at a temperature equal to the pseudogap energy which far exceeds Tc). Their
concentration at T = Tc is equal to nn and, therefore, at T = Tc these bipolarons start
forming a condensate whose concentration nS Tð Þ reaches maximum nS 0ð Þ= nn TCð Þ
at T = 0 ((i.e., when bipolarons become fully condensed), which corresponds to re-
lation (4.10.6). It should be noted that in the framework of the BCS theory Homes’
law cannot be explained.
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5 Comparison with experiment

Most experiments on HTSC can conventionally be divided into thermodynamic and spectro-
scopic ones. In this chapter we consider the main experiments from both the groups which are
explained on the basis of the TI bipolaron theory.

5.1 Thermodynamic experiments

Success of the Bardeen–Cooper–Schrieffer (BCS) theory is concerned with success-
ful explanation of some experiments in ordinary metal superconductors where
electron–phonon interaction (EPI) is not strong. It is arguable that EPI in high-
temperature ceramics SC is rather strong (Meevasana et al., 2006a, 2006b; Mishchenko
et al., 2008), and the BCS theory is hardly applicable to them. In this case it may be
worthwhile to use the description of HTSC properties on the basis of bipolaron the-
ory. As is known, Eliashberg theory which was developed to describe SC with strong
EPI (Eliashberg, 1960) is inapplicable to describe polaron states (Alexandrov, 2003;
Alexandrov and Mott, 1994). Let us list some experiments on HTSC which are in
agreement with the translation-invariant (TI) bipolaron theory

According to the main currently available SC theories (BCS, RVB, t-J theories
(Bardeen et al., 1957; Anderson, 1997; Izyumov, 1997)), at low temperatures all the
current carriers should be paired (i.e., the superconducting electron density coin-
cides with the superfluid one). In recent experiments on overdoped SC (Božović
et al., 2016) it was shown that this is not the case – only a small portion of current
carriers were paired. The analysis of this situation performed in Zaanen (2016) dem-
onstrates that the results obtained in Božović et al. (2016) do not fit in the available
theoretical constructions. The TI bipolaron theory of SC presented above gives an
answer to the question of paper (Zaanen, 2016) – where most of the electrons in
the studied SC disappeared? The answer is that only a small portion of electrons
nbp:nbp ≈ nω0=EF << n occurring near the Fermi surface are paired and determine
the surface properties of HTSC materials.

Actually, however, the theory of EPI developed in that work is applicable to
underdoped SC and inapplicable to describe experiments with overdoped samples
which were used in Božović et al. (2016). In particular, in underdoped samples, we
cannot expect a linear dependence of the critical temperature on the density of SC
electrons which was observed in Božović et al. (2016). This dependence should
rather be expected to be nonlinear, as it follows from eq. (4.5.3) of Chapter 4.

To describe the overdoped regime, a theory (Shaginyan et al., 2017) has recently
been constructed on the basis of Fermi condensation described in Dukelsky et al.
(1997). It is a generalization of the BCS theory where it was shown that the number
of SC current carriers is only a small portion of their total number which is in agree-
ment with the results of Božović et al. (2016).
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Hence, we can conclude that the results obtained in Božović et al. (2016) are
rather general and are valid for both underdoped and overdoped cases (see also Bo-
žović et al., 2017).

We can also expect that the temperature dependence of the resistance is linear
for T > Tc in the underdoped and overdoped cases since the number of bipolarons is
small as compared to the total number of electrons, if EPI is dominant and a crystal
is isotropic.

In contrast to Shaginyan et al. (2017) in recent work of Pashitskii (2016) it was
shown that the linear dependence of Tc on the number of Cooper pairs which was
observed in Božović et al. (2016) for overdoped La2−xSrxCu2O crystals can be ex-
plained in terms of the BCS on the basis of plasmon mechanism of SC. Nevertheless,
it seems that the special case considered in Pashitskii (2016) cannot explain the
general character of the results obtained in Božović et al. (2016).

The problem of inability of the BCS and other theories to explain the results of
Božović et al. (2016) was also considered in recent work (Hai et al., 2018) where a
simple model of a bipolaron SC is developed and the number of bipolaron current
carriers is shown to be small as compared to the total number of electrons. The re-
sults obtained in Hai et al. (2018) confirm the results of Lakhno (2018, 2019a, 2019b)
that the portion of paired states is small in the low-temperature limit.

Important evidence in favor of bipolaron mechanism of SC is provided by ex-
periments on measuring the noise of tunnel current in LSCO/LCO/LSCO heterostruc-
tures performed in Zhou et al. (2019).

According to these experiments, paired states of current carriers exist at T > Tc too,
that is, they form before the formation of a superconducting phase. This crucially con-
firms the applicability of the bipolaron scenario to high-temperature oxides. This con-
clusion is also confirmed by the results of terahertz spectroscopy (Bilbro et al., 2011).

Figure 4.4 illustrates typical dependencies of E ~T
� �

. They suggest that at the
transition point the energy is a continuous function ~T. This means that the transi-
tion per se proceeds without expending energy and the transition is the second-
order phase transition in full agreement with the experiment. At the same time the
transition of Bose particles from the condensed state to the supracondensed one
proceeds with consuming energy which is determined by quantity q (Section 4.3,
Table 4.1) which determines latent transition heat of Bose gas, therefore the first-
order phase transition takes place.

Let us consider YBa2Cu3O7 (YBCO) HTSC with the transition temperature 90–93
K, the unit cell volume 0.1734× 10− 21cm3, and hole concentration n≈ 1021cm−3.
According to estimates made in Gor’kov and Kopnin (1988), the Fermi energy is
equal to EF =0, 37 eV. The concentration of TI bipolarons in YBa2Cu3O7 can be
found from eq. (4.5.3):

nbp
n

Cbp = f~ω ~Tc
� �

,
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with ~Tc = 1, 6. Table 4.1 lists the values of nbp, i for ~ωi parameters presented in it.
Table 4.1 suggests that nbp, i << n. Hence, only a small portion of current carriers are in
the bipolaron state. It follows that in full agreement with the results of Section 4.4,
the Coulomb interaction of bipolarons will be screened by unpaired electrons, which
justifies the approximation of a noninteracting TI bipolaron gas considered.

According to this approach, for an SC to arise paired states should form. The
condition of the formation of such states in the vicinity of the Fermi surface, accord-
ing to Lakhno (2017), has the form: Ebp <0. Accordingly, the value of the pseudo-
gap, according to the results of Section 4.4, will be:

Δ1 = Ebp + u0
 . (5:1:1)

Naturally, this value is independent of the vector k, but depends on the concentra-
tion of current carriers, that is, the level of doping.

In the simplest version of the SC theory under consideration, the gap ω0 does
not change in passing on from the condensed to the noncondensed state, that is, in
passing on from the superconducting to the nonsuperconducting state and, there-
fore, ω0 has also the meaning of a pseudogap:

Δ2 =ω0 kð Þ, (5:1:2)

which depends on the wave vector k.
Numerous discussions on the gap and pseudogap problem stem from the state-

ment that the energy gap in HTSC is determined by the coupling energy of Cooper
pairs which leads to insoluble contradictions (see reviews by Damascelli et al., 2003;
Norman et al., 2005; Lee, 2014; Hashimoto et al., 2014; Timusk and Statt, 1999).

Actually, the value of a SC gap Δ2, determined by (5.1.2), generally speaking,
does not have anything to do with the energy of paired states which is determined
by Ebp. According to Lakhno (2016b), for small values of the EPI constant α, and for
large ones, the bipolaron energy Ebp

 ⁓α2ω0, that is, Ebp

  does not depend on ω0.
For example, in the framework of the concept considered, it is clear why the

pseudogap Δ2 has the same anisotropy as the SC gap – this is one and the same
gap. It is also clear why the gap and the pseudogap depend on temperature only
slightly. In particular, it becomes understandable why in the course of a SC transition
a gap arises immediately and does not vanish at T = Tc (this is not BCS behavior).
Much-debated question of what order parameter should be put into correspondence
to the pseudogap phase (i.e., whether the pseudogap phase is a special state of the
matter (Norman et al., 2005)) seems to be senseless within the theory presented.

Presently, there are a lot of methods for measuring a gap: angle resolved photo-
emission electron spectroscopy (ARPES), Raman (combination) spectroscopy, tunnel
scanning spectroscopy, magnet neutron scattering, and so on. According to Timusk
and Statt (1999), for the maximum value of the gap in YBCO (6.6) (in the antinodal
direction in the ab-plane) it was obtained Δ1=Tc ≈ 16. This yields Ebp

 ≈ 80 meV.
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Let us determine the characteristic energy of phonons responsible for the for-
mation of TI bipolarons and superconducting properties of oxide ceramics, that is,
the value of a SC gap Δ2. To do so, we compare the calculated jumps of the heat
capacities with the experimental values.

A theoretically calculated in Chapter 4 jump of the heat capacity (Fig. 4.5), co-
incides with the experimental values of jumps in YBa2Cu3O7 (Overend et al., 1994)
for ~ω= 1.5, that is, for ω = 7.5 meV. This corresponds to the TI bipolaron concentra-
tion nbp = 2.6× 1018cm−3. Taking into account that Ebp

 ≈0.44α2ω (Lakhno, 2015b),
Ebp

 = 80 meV, ω = 7.5 meV, the EPI constant will be: α≈ 5, which is far beyond the
limits of the BCS applicability.

As is known, in the BCS theory a jump of the heat capacity is equal to: (CS – Cn)/
Cn = 1.43 (where CS is the heat capacity in the superconducting phase, and Cn is that
in the normal one) and does not depend on the model Hamiltonian parameters. As it
follows from numerical calculations presented in Fig. 4.5 and Table 4.1 in Chapter 4,
as distinct from the BCS, the jump value depends on the phonon frequency. Hence,
the approach presented predicts the existence of the isotope effect for the heat capac-
ity jump.

It should be noted that in calculations of the transition temperature it was be-
lieved that the effective mass Me in eq. (4.5.3) is independent of the wave vector
direction, that is, an isotropic case was considered.

In an anisotropic case, choosing the main axes of vector k for the coordinate
axes, we will get MexMeyMez

� �1=3 instead of the effective mass Me. In layered HTSC
materials the values of effective masses lying in the plane of the layers Mex, Mey are
close in value. Assuming that Me =Mex =Mey =Mjj, Mez =M?, we get instead of Cbp,
determined in (4.5.3), the quantity ~Cbp =Cbp=γ, where γ2 =M?=Mjj is the anisotropy
parameter. Hence consideration of the anisotropy of effective masses gives for con-
centration nbp the value ~nbp = γnbp. Therefore, consideration of anisotropy can enlarge
the estimate of the TI bipolaron concentration by an order of magnitude and greater.
If for YBa2Cu3O7 we take the estimate γ2 = 30 (Marouchkine, 2004), then for the TI bi-
polaron concentration we get: ~nbp = 1.4 · 1019cm−3, which leaves in place the main
conclusion: in the case considered only a small portion of current carriers are in the
TI bipolaron state. The situation can change if the anisotropy parameter is very large.
For example, in layered HTSC Bi-Sr-Ca-Cu-O the anisotropy parameter is γ > 100,
therefore the concentration of TI bipolarons in these substances can be of the same
order as the concentration of current carriers.

Another important conclusion suggested by consideration of anisotropy of effec-
tive masses is that the transition temperature Tc depends not on nbp andMjj individu-
ally, but on their relation which straightforwardly follows from (4.5.3) in Chapter 4.
This phenomenon is known as Uemura law. In the Section 4.10, we discussed a
more general relation, known as Alexandrov formula (for which Uemura law is a
particular case).
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Among the experiments involving an external magnetic field, those measuring
the London penetration depth λ are of great importance. In YBa2Cu3O7 for λ at T = 0
in Buckel and Kleiner (2004) it was obtained that λab = 150− 300nm, λc = 800nm.
The same order of magnitude is obtained for these quantities in a number of works
(Edstam and Olsson, 1994; Panagopoulos et al., 1998; Pereg-Barnea et al., 2004; Bonn
et al., 1993). In Pereg-Barnea et al. (2004) (see also references therein), it is shown that
anisotropy of depths λa and λb in cuprate planes can account for 30% depending on
the type of the crystal structure. If we take the values λa = 150nm and λc = 800nm,
obtained in most papers then the anisotropy parameter, according to (4.7.9) in
Chapter 4, will be γ✶2 ≈ 30. This value is usually used for YBa2Cu3O7 crystals.

The temperature dependence λ2 0ð Þ=λ2 Tð Þ was studied in many works (see Bonn
et al., 1993 and references therein). Figure 5.1 compares the different curves for
λ2 0ð Þ=λ2 Tð Þ. In Bonn et al. (1993), it was shown that in high-quality YBa2Cu3O7 crys-
tals the temperature dependence λ2 0ð Þ=λ2 Tð Þ is well approximated by a simple de-
pendence 1− t2, t = T=Tc. Figure 5.2 illustrates a comparison of the experimental
dependence λ2 0ð Þ=λ2 Tð Þ with the theoretical one:

λ2 0ð Þ
λ2 Tð Þ = 1−

T
Tc

� �3=2 F3=2 ω=Tð Þ
F3=2 ω=Tcð Þ , (5:1:3)

which results from (4.7.10), (4.5.5), and (4.5.6) in Chapter 4. Hence, there is a good
agreement between the experiment and the theory (5.1.3).

The theory developed enables one to compare the temperature dependence of the criti-
cal magnetic field in YBa2Cu3O7 (Wu and Sridhar, 1990). Since the theory developed in
Section 4.8 describes a homogeneous state of a TI bipolaron gas, the critical field
being considered corresponds to a homogeneous Meissner phase. In Wu and Sridhar
(1990) this field is denoted as Hc1 which relates to the denotation of Section 4.8 as:
Hc1 =Hcr, Hc1jj =Hcr?, Hc1? =Hcrjj. For comparison with the experiment, we use the pa-
rameter values earlier obtained for YBa2Cu3O7: ~ω= 1.5, ~ωc = 1.6. Figure 5.3 compares
the experimental dependencies Hc1? Tð Þ and Hc1jj Tð Þ (Wu and Stridhar, 1990) with
theoretical ones (4.8.13), where for Hmax jj,? Tð Þ experimental values Hmax jj Tð Þ= 240,
Hmax? Tð Þ= 816 are taken. The results shown in Fig. 5.3 confirm the conclusion
(Section 4.8) that the relations Hcr? Tð Þ=Hcrjj Tð Þ are independent of temperature.
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Fig. 5.1: Depth of a magnetic field penetration in the
BCS theory (a – local approximation, b – nonlocal
approximation); empirical rule λ−2⁓1− T=Tcð Þ4 cð Þ
(Madelung, 1972); YBa2Cu3O7 (d) (Bonn et al., 1993).
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It follows from relations (4.7.9), (4.8.10), and (4.11) in Chapter 4 that:

γ✶ð Þ2 = M✶
?

M✶
jj
∝

λ2?
λ2jj

; H2
max?

H2
max jj

= γ2 = 11.6. (5:1:4)
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Fig. 5.2: Comparison of the theoretical dependence λ2 0ð Þ=λ2 Tð Þ (solid curve), obtained in Lakhno
(2019b), with the experimental one (Bonn et al., 1993) (dotted curve).
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circles, rhombs; Wu and Sridhar, 1990) for the cases jjc and ?c.
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The choice of the value γ2 = 11.6, determined by (5.1.4), for the anisotropy parameter
differs from the value γ✶ð Þ2 = 30 used above. This difference is probably caused by a
difference in the anisotropy of the polaron effective masses M✶

jj,? and electron band
masses.

The presence of a gap ω0 in HTSC ceramics is proved by numerous spectro-
scopic experiments (ARPES) on angular dependence of ω0 on κ for small kj j (Dam-
ascelli et al., 2003; Norman et al., 2005; Lee, 2014; Hashimoto et al., 2014; Timusk
and Statt, 1999). The availability of d-symmetry in the angular dependence ω0 kð Þ,
is probably concerned with the appearance of a pseudogap and transformation of
Fermi system into the system of Fermi arcs possessing d-symmetry. In experiments
on tunnel spectroscopy the quantity ω0 can manifest itself as an availability of a
gap substructure superimposed on pseudogap Δ1 Δ1 >>ω0ð Þ. This structure was fre-
quently observed in optimally doped YBa2Cu3O7 and Bi2Sr2CaCu208 (BCCO) in the
range of 5–10 meV (Maggio-Aprile et al., 1995; Pan et al., 2000; Hoogenboom et al.,
2000), which coincides with the estimate of ω0 presented above.

In a lot of experiments the dependence of the gap and pseudogap value on the
level of doping x is measured. Even early experiments on magnetic susceptibility and
Knight shift revealed the availability of the pseudogap which emerges for T✶ >Tc. Nu-
merous subsequent experiments revealed the peculiarities of the T – x phase dia-
gram: T✶ increases and Tc decreases as doping decreases (Damascelli et al., 2003;
Norman et al., 2005; Lee, 2014; Hashimoto et al., 2014; Timusk and Statt, 1999). As it
is shown in Lakhno (2017), this behavior can be explained by peculiarities of the exis-
tence of bipolarons in a polaron gas.

It is noted in Lakhno (2017) that 1/8 anomaly (Fig. 5.4) in HTSC systems (Schrieffer,
2007) has probably general character.

The stability condition Ebp <0 presented above means that the presence of Fermi
gas radically changes the criterion of bipolaron stability which, in the absence of
Fermi environment, takes on the form Ebp < 2Ep. This stabilization was first pointed
out in Shanenko et al. (1996) and Smondyrev et al. (2000). This fact plays an important
role in explaining concentration dependencies of Tc on x. Most probably, in real HTSC
materials the value of the EPI constant has an intermediate value. Then in the range of
small concentrations in the absence of Fermi environment, TI bipolarons are unstable
with respect to their decay into individual polarons and SC at small x is impossible. It
arises for finite x when there is a pronounced Fermi surface which stabilizes the forma-
tion of bipolarons (see Chapter 7). This corresponds to a lot of experiments on HTSC
materials. A simple thermodynamic analysis (Chapter 3) demonstrates that at a finite
temperature TI bipolarons are stable if: Ebp − 2Ep

 ≥T. Hence, the characteristic tem-
perature T✶, corresponding to the pseudogap phase is equal to: T✶ ≈ Ebp − 2Ep

 .
The transition to the pseudogap phase per se is concerned with the formation

of TI bipolarons for T <T✶ and highly blurred with respect to temperature in full
agreement with the experiment. It should be noted that T✶ << Ebp

  where T
✶
ap-

proximately 1,5–2 times exceeds Tc.
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As doping increases at x > xopt, where xopt is the value of optimal doping, SC
passes on to overdoped regime when the number of bipolarons becomes so large
that they start overlapping, that is, a transition to the regime of BCS with small Tc

takes place.

In conclusion it should be noted that the long-term discussion of the nature of the
gap and pseudogap in HTSC materials is largely related to the methodological prob-
lem of measurements when different measuring techniques actually measure not
the same but different quantities. In the case under consideration ARPES measures
ω0 kð Þ, while tunnel spectroscopy – Ebp

 . Below we consider these problems in
greater detail.

5.2 Spectroscopic experiments

As it is shown in the previous section, the theory developed is consistent with ther-
modynamic and magnet characteristics of HTSC materials. However, these facts are
insufficient to judge unambiguously that the TI bipolaron theory of SC does not
contradict other experimental facts.

Presently there are a lot of methods to study the properties of paired states and
consequences of these states. The aim of this section is to analyze to what extent the
data of modern spectroscopic methods such as scanning tunnel microscopy (STM),
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Fig. 5.4: Dependence of Tc (x) for high-temperature superconductors with 1/8 anomaly.
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quasiparticle interference, angle-resolved photoelectron spectroscopy (ARPES), and
Raman (combination) scattering are compatible with the ideas of the TI bipolaron
mechanism of HTSC.

5.2.1 Tunnel characteristics

In the case of the TI bipolaron theory of SC tunnel characteristics have their peculiari-
ties. As usual, in considering tunnel phenomena, for example, in considering a Jo-
sephson transition from a superconductor to an ordinary metal via a tunnel contact
we will reckon the energy from the ground state of the SC. In the TI bipolaron theory
of an SC, the ground state is the bipolaron state whose energy is below the Fermi
level of this SC in the normal state by the value of the bipolaron energy EBj j. Hence,
as a result of a tunnel contact of a SC with a conventional metal the Fermi level of a
conventional metal will coincide with the ground-state energy of a SC. It follows that
the one-particle current will have the usual form for such a contact (Fig. 5.5).

A peculiarity arises in considering a two-particle current. It is concerned with the
fact that the spectrum of excited states of a TI bipolaron is separated from the ground
state by the value of the phonon frequency ω0. For this reason, the volt–ampere char-
acteristic of a two-particle current will have the form shown in Fig. 5.5, where EB=2j j is
replaced by ω0. As a result, the resulting volt–ampere characteristic will have the form
of Fig. 5.6.

The curve I–V is constructed for the case of ω0 < EBj j=2. In the opposite case, the
quantities ω0 and EBj j=2 should be inverted. The ω0 <V < EBj j=2 segment of the I–V
curve in Fig. 5.6, corresponds to a kink which is lacking in the BCS theory.

Spectrally, a kink corresponds to a transition of a one-particle electron spec-
trum with energy lying lower than EF by the value of EBj j=2, to a two-particle TI bi-
polaron spectrum of excited states which in a one-particle scheme lies in the range
of (EF − EB=2j j+ω0=2, EF), as it is shown in Fig. 5.7.

I

V
|EB|/2

Fig. 5.5: Volt–ampere characteristic of a one-particle
current.
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The dependence E(k) shown in Fig. 5.7 corresponds to ARPES observations of
kinks in a lot of HTSC materials (e.g., review of Garcia and Lanzara, 2010). For ex-
ample, according to Garcia and Lanzara (2010) in the well-studied cuprate Bi2212
the kink energy ( EBj j=2) is 70 meV.

The phonon nature of the kink is also supported by the observation of the iso-
tope effect near the kink energy (Iwasawa et al., 2008), the independence of the
kink energy from the doping value (Zhou et al., 2003), and the independence of the
kink energy from the nature of current carriers: according to Park et al. (2008), elec-
tron- and hole-doped cuprates have the same kink energy.

Figure 5.8. shows a dependence of dI=dV on V, typical for HTSC which corre-
sponds to the dependence of I on V presented in Fig. 5.7. There a kink corresponds
to a dip on the curve to the right of the high peak.

Notice that since TI bipolarons exist for T >Tc too, at temperature exceeding the
critical one the dI=dV curve will qualitatively retain the form shown in Fig. 5.8.
Hence, the quantity EBj j=2 will play the role of a pseudogap in one-particle transi-
tions, while EBj j plays the role of a pseudogap in two-particle transitions. This con-
clusion is in full agreement with numerous tunnel experiments in HTSC (Garcia and
Lanzara, 2010; Giubileo et al., 2002; Giubileo et al., 2001).

I

V
ω0 |EB|/2 Fig. 5.6: Volt–ampere characteristic of a total current.

E(k)

EF

EF–|EB|/2+ω0/2
EF–|EB|/2

2

k

1
Fig. 5.7: Kink corresponds to a gap in passing on from normal
branch 1 to TI bipolaron branch 2 for energy EF − EB=2j j.
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5.2.2 Angle-resolved photoelectron spectroscopy (ARPES)

Apart from STM, a direct method providing information on the properties of a
superconducting gap is angle resolved photo electron spectroscopy (Damascelli
et al., 2003). Being added by the data of STM and the results of the quasiparticle
interference, this method provides the most complete data on the properties of a SC
gap. Recently, a method of double photoelectron spectroscopy has been developed
where two electrons with certain momenta k1 and k2 and relevant energies E1 and
E2 emit (Hattass et al., 2008). Despite the abundance of data obtained by ARPES the
nature of a HTSC gap is still unclear. To a large extent this is due to the fact that up
to the present time a unified theory of HTSC was lacking. If we proceed from the
fact that a SC mechanism is caused by Cooper pairing, then in the case of strong
EPI, this leads to the TI bipolaron theory if HTSC is being considered. According to
this theory, as distinct from bipolarons with broken symmetry, TI bipolarons are
spatially delocalized and the polarization potential well is lacking (polarization
charge is zero). According to Section 4.3 of Chapter 4, a TI bipolaron has a gap in
the spectrum which has a phonon nature. In the TI bipolaron theory of SC, bipolar-
ons are formed in the vicinity of the Fermi surface in the form of a charged Bose gas
(immersed into electron gas) which condenses at the level lying lower the Fermi
level by the value equal to the bipolaron ground-state energy which leads to SC
state. The spectrum of excitations of such a gas has a gap equal to the phonon fre-
quency. In this section, we will show that the photoemission spectrum obtained in
ARPES just contains this gap and the gap EBj j=2, determined from the two-particle
current by STM which was considered in the previous section has nothing to do
with the measurements of a gap by ARPES.

To this end, we will proceed from the general expression for the light absorp-
tion intensity I k,ωð Þmeasured in ARPES in the form:

I k,ωð Þ=A k,ωð ÞF ωð ÞM k,ωð Þ. (5:2:1)

dI/dV

V
ω0 |EB|/2

Fig. 5.8: Dependence of conductance dI=dV on V,
corresponding to the volt–ampere characteristic shown
in Fig. 5.7.
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In the case of the intensity of light absorption by TI bipolarons measured by ARPES,
the quantities involved in (5.2.1) have a different meaning than in the case of a one-
electron emission.

In the case of a Bose condensate considered k has the meaning of a Boson mo-
mentum and ω is boson energy, A k,ωð Þ is a one-boson spectral function, F ωð Þ is a
Bose–Einstein distribution function, M k,ωð Þ is a matrix element which describes
transitions from the initial boson state to the final one.

In our case, the role of a charged boson taking part in the light absorption be-
longs to a bipolaron whose energy spectrum is determined by (4.3.1) and (4.3.2) of
Chapter 4:

εk =EBΔk,0 + EB +ω0 kð Þ+ k2=2M
� �

1−Δk,0ð Þ, (5:2:2)

where Δk,0 = 1, if k =0, Δk, 0 =0, if k≠0, whose distribution function is F ωð Þ= exp½
ω− μð Þ− 1�− 1. For k=0 TI bipolaron is in the ground state, while for k≠0 – in the
excited state with energy EB +ω0 kð Þ+ k2=2M, where ω0 kð Þ is a phonon frequency
depending on the wave vector, M = 2m, m is the electron effective mass.

For further analysis, it should be noted that the energy of bipolaron excited states
reckoned from EB in eq. (5.2.2), can be interpreted as the energy of a phonon ω0 kð Þ
and the kinetic energy of two electrons coupled with this phonon. The latter, in the
scheme of extended bands, has the form: k+Gð Þ2=2M, where G is the lattice inverse
vector (Fig. 5.9). ARPES measures the spectrum of initial states which in our case is
the spectrum of low-lying excitations of a TI bipolaron. In this connection we can ne-
glect the contribution of one- and two-particle excitations of the electron (polaron)
gas into which the bipolarons are immersed since the density of the TI bipolaron
states in the vicinity of their ground state is much greater than that of the electron
spectrum states. Hence, we a priori exclude consideration of such phenomena as the
de Haas–van Alphen oscillation and the Shubnikov–de Haas oscillation (Vignolle
et al., 2008; Yelland et al., 2008; Helm et al., 2009). Since the kinetic energy corre-
sponding to the inverse lattice vector (or the whole number of the inverse lattice
vectors) is very high, out of whole spectrum of a bipolaron determined by (5.2.2),
we should take account only of the levels EB with k=0 and EB +ω0 kð Þ with k ≠0 as a

G0
Eb

K

1 2

(k _ G)2

2M

ω0 Fig. 5.9: Schematic representation of the bipolaron
transition to the excited state as a result of absorption
of light quanta.
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spectrum of the initial states. In other words, with the use of the spectral function
A ω,kð Þ= − 1=πð ÞImG ω,kð Þ, where G ω,kð Þ= ω− εk − iεð Þ− 1 is the Green bipolaron
function, the expression for the intensity (5.2.1) can be presented as follows:

I k,ωð Þ~ ω−EBð Þ2 + ε21
� �− 1

· ω−EB −ω0 kð Þð Þ2 + ε22
� �− 1

, (5:2:3)

which is fitting of the distribution function F with μ= EB and Green function G by
Lorentzians where ε1 and ε2 determine the width of the Bose distribution and bipo-
laron levels, respectively (matrix element M k,ωð Þ, involved in (5.2.1), has a smooth
dependence on the energy and wave vector, therefore this dependence can be
neglected).

Hence, as a result of light absorption by a pair of electrons (which are initially
in a bipolaron state), ARPES measures the kinetic energy of electrons with momenta
ke, which are expelled from the sample in vacuum as a result of absorption of a
photon with energy �hν. The energy conservation law in this case takes on the form:

�hv=ω0 kð Þ+ k+Gð Þ2
2M

= ξ + k2e
m0

,

ξ = 2Φ0 + EBj j, (5:2:4)

which is illustrated by Fig. 5.10, where Φ0 is the work of electrons escape from the
sample, m0 is the mass of a free electron in vacuum. Figure 5.10 suggests that when
a bipolaron is formed in the vicinity of the Fermi energy EF the energy of two elec-
trons becomes equal to 2EF + EB.

In this case, electrons pass on from the state with pF, where pF is the Fermi mo-
mentum, to a certain state with momentum p below the Fermi surface (since EB <0).
ARPES measures the spectrum of initial states reckoned from the energy 2 ·p2=2m,
which corresponds to the energy of two electrons with momentum p. As a result,
ARPES measures the energy ωi = 2EF + EB − p2=m.

2EF = 0

vacuum

| |Ebω0 + Eb + 2EF
ω0 = SCgap

ω0+ (K–G)2
= ħν2M

2ɸ0 + 2EF

Eb + 2EF

Fig. 5.10: Scheme of energy levels in measuring
the spectrum by ARPES. The region of the
continuous spectrum lying below the Fermi level
is shaded.
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Hence, if a bipolaron with energy ω=ωi =EB + 2vF pF − pð Þ, lying in domain of
existence of a bipolaron gas 2EF + EB, 2EFð Þ, where vF is the velocity of a Fermi elec-
tron, absorbs a photon with energy �hν, then a phonon arising as a result of the bi-
polaron decay recorded in ARPES as a gap ω0 kð Þ, and two electrons with the
kinetic energy k2e=m0, determined by (5.2.4) are emitted from the sample.

In this scenario in each act of light absorption two electrons with similar mo-
menta are emitted from the sample. This phenomenon can be detected by ARPES if
the electron detector is placed just on the sample surface since the kinetic energy of
flying of the emitted electron pair in vacuum (not compensated by the attracting
potential in the bipolaron state) is several electronvolts.

Hence, ARPES, as discussed above, measures the phonon frequency ω0 kð Þ,
which is put into correspondence to the SC gap and therefore in cuprate HTSC with
dx2 − y2 symmetry its angular dependence is determined by the expression ω0 kð Þ=Δ0

cos kxa− cos kya
 .

From the viewpoint of phonon spectroscopy, identification of phonon modes of
this type is difficult in view of their small number (equal to the number of bipolar-
ons) as compared to the number of ordinary phonons equal to the number of atoms
in a crystal. The spectral dependence of phonon frequencies is determined by both
ion–ion interactions and an interaction with the electron subsystem of the crystal.
Calculation of normal oscillations for a plane square lattice of atoms without taking
account of the electron contribution leads to d-symmetry of their spectrum (Emin,
2017; Okomel’kov, 2002). With regard to CuO2 SC planes of oxide ceramics, in the
direction of Cu–O–Cu bonds (antinodal direction), phonons will have a gap, while
in the direction of Cu–Cu bonds, that is, along the unit cell diagonal (nodal direc-
tion) a gap will be lacking.

In calculating the electron contribution into the phonon spectrum account
should also be taken of the relation between the electron density distribution and
the position of ions on CuO2 plane observed in STM/STS experiments with high spa-
tial resolution (Lawler et al., 2010).

The angular dependence ω0 kð Þ leads to the angular dependence of the intensity
I ωi,pð Þ~A ωi,pð Þ, determined by eq. (5.2.3) (Fig. 5.11), which is usually observed in
ARPES experiments (Damascelli et al., 2003; Borisenko et al., 2001; Shen et al.,
2004). The form of the ωi,pð Þ dependence suggests that there is also a dependence
of the absorption peaks on p symmetric about the Fermi level. This dependence is
not presented in Fig. 5.11, since in view of a small population density of states with
p> pF their absorption intensity will be very small (Matsui et al., 2003).

Experimental checking of the effect of TI bipolaron emission as a whole is im-
portant for understanding the pairing mechanisms. Thus, according to Shen et al.
(2004), only one electron should escape from the sample with dispersion of the ini-

tial states determined, for P ≠0 by the formula: εBogp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=2m−EFð Þ2 +Δ2 pð Þ

q
where

εBogp is the spectrum of a Bogolyubov quasiparticle, different from spectrum (5.2.2).
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The use of spectra εBogp and (5.2.2) to describe the angular dependence of the inten-
sity leads to a qualitative agreement with the ARPES data with currently accessible
resolution. Experiments with higher resolution should give an answer to the question
of whether a SC condensate in cuprates has fermion or TI bipolaron character.

The spectrum ω0ðkÞ suggests that in cuprate superconductors EPI constant be-
comes infinite in the nodal direction. Hence, for bipolarons, a regime of strong cou-
pling takes place in this case. Figure 5.12 shows a typical dependence of the absorption
intensity I ωi,pð Þ, observed in ARPES experiments (Borisenko et al., 2001).

The dependence shown in Fig. 5.12 is obtained from the expression for the in-
tensity (5.2.2) where the spectral function corresponds to the TI bipolaron spectrum
(5.2.3) which cannot be obtained from spectral function (5.2.3) from Matsui et al.
(2003), where Bogolyubov spectrum εBogp is used for the spectrum and Fermi distri-
bution function is used instead of Bose distribution F ωð Þ. This result can be consid-
ered as an argument in favor of a TI bipolaron mechanism of SC.

The peculiarities of the ARPES absorption spectrum considered above will
also manifest themselves in tunnel experiments in the form of a thin structure (kinks)
on the volt–ampere characteristics measured. To observe these peculiarities, as
distinct from traditional ARPES measurements with high-energy photon sources
(�hν= 20− 100 eV), one should use low-energy photon sources (�hν= 6− 7 eV) with
higher momentum resolution (Vishik et al., 2010; Plumb et al., 2010; Anzai et al.,
2010; Rameau et al., 2009).

In Kouzakov and Berakdar (2003), a theoretical possibility to observe the emis-
sion of Cooper pairs by ARPES was considered for conventional SC. In particular,
Kouzakov and Berakdar (2003) demonstrated the availability of a peak in the emis-
sion current of Cooper pairs which corresponds to zero coupling energy of occupied
two-electron states. The peak considered in Kouzakov and Berakdar (2003) corresponds

Θ = π/2

Θ = π/4

Θ = 0

In
te

ns
ity

 (a
rb

itr
ar

y 
un

its
)

pmax pF p

Fig. 5.11: Schematic representation of the angular dependence of the absorption intensity
determined by (5.2.3) for ω=ωi.
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to a transition with energy �hν, determined by (5.2.4) where the coupling energy is
~1 meV, which is at the edge of ARPES accuracy. In the case of high-temperature super-
conductors the coupling energy can be 10 times higher which makes checking of the
effects considered more realistic. The main distinction of the results obtained here from
those derived in Kouzakov and Berakdar (2003) is the presence of the angular depen-
dence of the absorption peak in Figs. 5.11 and 5.12, which is characteristic for HTSC
materials.

Let us briefly discuss the temperature dependence of the intensity I ωi,pð Þ. Ac-
cording to eq. (5.2.1), it is determined by the temperature dependenceF ωð Þ.

For T < Tc, where Tc is the temperature of a SC transition F ωð Þ ffi N0 Tð Þ for
ω=EB, where N0 Tð Þ is the number of bosons (bipolarons) in a condensate which
determines the temperature dependence of the absorption intensity. The value of
N0 Tð Þ decreases as T grows and, generally speaking, vanishes at the SC transition
temperature making the absorption intensity vanish. Actually, however, this is not
the case since only the Bose-condensate part vanishes. According to the TI bipo-
laron theory of SC, for T >Tc, bipolarons exist in the absence of a condensate too.
In this case, the population density of the ground state of such bipolarons will de-
crease as the temperature grows vanishing at T✶, which corresponds to a transition
from the pseudogap state to the normal one.
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Fig. 5.12: Dependence of the absorption intensity I k,ωð Þ (arbitrary units) on k and ω (eV),
determined by (5.2.3), for the parameters: EBj j=0.2eV, Δ0 =0.05 eV, ε1 = ε2 =0.01 eV and the wave
vector k in antinodal direction. The lattice constant is assumed to be equal to 1.
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This conclusion is confirmed by ARPES experiments in SC and pseudogap
phases (Varelogiannis, 1998), which demonstrated that the angular dependence of
a d-type SC gap is similar to the angular dependence of the state density in the
pseudogap phase. At the same time, there are considerable differences between the
ARPES experimental data obtained for the SC phase and the gap one. In the SC
phase, the peak of absorption intensity occurs below the Fermi level which corre-
sponds to a sharp spectral peak of the density of Bose-condensate states determined
by eq. (5.2.3), while in the pseudogap phase this peak is lacking in view of the lack
of a condensate in it (Norman et al., 2005). Under these conditions, since the popu-
lation density of bipolaron excited states grows with growing temperature, the in-
tensity of the absorption peak in ARPES experiments will decrease with growing
temperature and reach minimum in the antinodal direction and maximum in the
nodal one.

5.2.3 Neutron scattering

Neutron scattering is a powerful method to study the properties and structure of crys-
tals, widely used in modern physics. With the help of neutrons, one can determine
the atomic structure, establish the magnetic structure, obtain information about the
spectral characteristics of various excitations in crystals, liquids, and so on.

The neutron scattering method plays one of the key roles in the study of HTSC.
In the model of superconductivity, we are considering, based on Bose condensation
of TI bipolarons, a neutron incident on the system under study (in our case, such a
system is a TI bipolaron condensate) removes it from the state of thermodynamic
equilibrium. In this case, the state of the incident neutron itself changes. By regis-
tering the energy and momentum of the incident scattered neutron, we obtain infor-
mation about the excitations that are possible in the system under study.

As is known, the cross section of inelastic scattering σ on a system of particles
of the same type at temperature T = β− 1 per unit solid angle Ω has the form:

d2σ
dΩdω

= M2
n

2πð Þ3�h4
kf
ki

V kð Þj j2N S k,ωð Þ
1− e− βω (5:2:5)

where N is the number of particles in the system, Mn is the neutron mass, �hk=
�h ki − kf
� �

. is the scattering momentum, where ki and kf are the initial and final neu-
tron momenta, respectively; ω is the dissipated energy; V kð Þ is the Fourier compo-
nent of the potential of interaction of a neutron with a scattering particle; S k,ωð Þ is a
dynamical structure factor related to the correlation function of the density–density
type as:
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S k,ωð Þ=
ð
d3r

ð∞
∞

dt
�h
e− ikr + iω t=�h ρ r, tð Þ, ρ 0,0ð Þ½ �h i, (5:2:6)

where ρ r, tð Þ=Ψ+ r, tð ÞΨ r, tð Þ is particle density operator in the Heisenberg represen-
tation, � � �h i is the thermodynamic mean.

In the case of an ordinary ideal Bose gas (IBG) whose particles have the spec-
trum εq = q2=2M the structure factor S k,ωð Þ was calculated in Jackson (1973), Aleks-
androv et al. (1975), and Hohenberg and Platzman (1966). In the considered case of
an ideal TI bipolaron gas with the spectrum ε0 =0 and εk≠0 =ω0 + k2=2M, which cor-
responds to the distribution function F kð Þ:

F kð Þ= n0 kð Þδ kð Þ+ exp βεk − 1½ �− 1, T <Tc

F kð Þ= exp β εk − μð Þ− 1½ �− 1, T ≥Tc (5:2:7)

where n0 kð Þ is the concentration of TI bipolarons in a Bose condensate, μ is a chem-
ical potential, the expression for the structure factor (5.2.6) takes the form:

S k,ωð Þ= S0 k,ωð Þ+ S1 k,ωð Þ,
S0 k,ωð Þ= n0 1+ F kð Þð Þδ ω−ω0 − k2=2M

� �
− F kð Þδ ω+ω0 + k2=2M

� �� �
,

S1 k,ωð Þ= 2πM
�h4βk 1− e− βωð Þ · ln

1− exp − β ω0 +M ω+ k2=2Mð Þ2=2k2 − ~μ
h in o

1− exp − β ω0 +M ω− k2=2Mð Þ2=2k2 − ~μ
h in o ,

~μ=μ−Ebp; ~μ=0, T ≤ Tc; ~μ= ~μ Tð Þ, T >Tc. (5:2:8)

It follows that as T ! 0, when F kð Þ ! 0, the processes with energy absorption are
lacking and only those with energy transfer are present.

In expression (5.2.8), formfactor S0 k,ωð Þdetermines excitations of individual TI
bipolarons in a Bose condensate, while S1 k,ωð Þ – a contribution of TI bipolarons
occurring in the supracondensate state.

It follows from (5.2.8) that for ω>0 the formfactor has two peaks. Figure 5.13 shows
the function S k,ωð Þ for a certain fixed value of k, which has one (blurred) peak for the
energy ω=ω1 = k2=2M (it is determined by S1 k,ωð Þ), and the other (the sharper one)

S(ω)

ωω1 = k2 / 2M ω2 = ω0 + k2 / 2M
Fig. 5.13: Dependence of a scattering formfactor on the
neutron energy.
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for the energy ω=ω2 =ω0 + k2=2M (it is determined by S0 k,ωð Þ) (Fig. 5.13). The energy
difference between the two peaks of ω0, according to the TI bipolaron theory, deter-
mined the value of the superconducting gap. For ω0 =0 two peaks merge into one
which corresponds to IBG.

It follows from (5.2.8) that at T =Tc the maximum for ω=ω2 disappears since in
this case n0 =0. The maximum for ω=ω1 holds at T > Tc too and disappears only at
T = T✶, where T✶ is the temperature of a transition to the pseudophase. At T =0, on
the contrary, the maximum for ω=ω1 disappears, while the maximum for ω=ω2

becomes maximally sharp and intensive.
The above scenario is in agreement with currently available experiments (Song

and Dai, 2015), however, the experimental data are insufficient for an unambiguous
conclusion about a phonon or magnon nature of a neutron peak. In a real experi-
ment, a peak in neutron scattering which appears at T <Tc is obtained by subtract-
ing the scattering in the normal and superconducting phases. Hence, the value of
an SC gap is put into correspondence to the energy ω2 =ω0 + k2=2M, since the peak
with ω=ω1 is automatically subtracted in this approach. This can lead to overesti-
mation of the gap size and a distortion of its angular dependence.

It should be noted that the method of neutron scattering was intensively used
to determine the presence of a superfluid component in 4He, which presumably rep-
resents a Bose-condensate state, into which a part of helium atoms transforms at
T < Tc (Jackson, 1973; Alexandrov et al., 1975; Hohenberg and Platzman, 1966; Cow-
ley and Woods, 1968; Harling, 1970), as it was first presumed in London (1938).

The theory of neutron scattering by a Bose condensate which is formed at T <Tc

and is considered as an ideal gas, leads to the conclusion that there is a sharp peak
due to the presence of a condensate, the position of which coincides with the posi-
tion of the maximum of a wide peak associated with above-condensate excitations
(which corresponds to ω0 =0). This fact creates great difficulties in separating the
Bose-condensate contribution. According to what was said above, this difficulty is
absent in the case of a Bose condensate of TI bipolarons, in which the corresponding
peaks are separated by the value of ω0, which makes the inelastic scattering method
a promising tool to study the properties of Bose condensates of HTSC materials.

5.2.4 Combination scattering

Though the combination scattering does not provide an angular resolution (Devereaux
and Hackl, 2007), its results also testify to the phonon nature of a gap in HTSC. As it
was shown in Lakhno (2018, 2019b), the spectrum determined by (5.2.2), can be inter-
preted as a spectrum of renormalized phonons. Scattering of light with frequency ν on
such phonons will lead to an appearance of satellite frequencies νB+ = ν+ εBk

  and
νB− = ν− εBk

  in the scattered light, where εBk is determined by (5.2.2). In the case of
wide conductivity bands, that is, when the inequality G2=M >> maxω0 kð Þ is fulfilled,
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split lines νB± overlap and form a region with a maximum displaced toward the Stocks
branch ν− . Since in the model considered the bipolaron gas is placed into the polaron
gas where the number of bipolarons is far less than the number of polarons, the
intensity of bipolaron satellites will be much weaker than the intensity of TI po-
laron satellites: νP+ = ν+ εPk

  and νP− = ν− εPk
 , εPk =EPΔk,0 + ω0 + k2 2m

� �
· 1−Δk,0ð Þ�

,
EP is the energy of a TI polaron. As in the case of usual combination scattering,
the intensity of scattering on the polarons and bipolarons will be much weaker
than the intensity of Rayleigh scattering corresponding to frequency ν.

Indeed, in the combination scattering experiments (Misochko, 2003) at T <TC a
wide peak appears which, according to our interpretation, corresponds to widened
frequencies νB,P± . In full agreement with the experiment, the position of this peak is
independent of temperature. In the theory of the combination scattering based on
the BCS, on the contrary, the position of the peak should correspond to the width of
the SC gap and for T = TC the frequency corresponding to this width should vanish.

The combination scattering results also confirm that TI bipolarons do not decay
at T =TC, but persist in the pseudogap phase. Measurement of the temperature de-
pendence of the combination scattering intensity is based on the subtraction of the
absorption intensity in the normal and superconducting phases. The difference ob-
tained, according to our approach, is fully determined by scattering on the Bose
condensate and depends on temperature vanishing at T = TC.

It should be noted that a lot of spectroscopic experiments are based on the sub-
traction method. According to TI theory, the result of subtraction of any spectro-
scopic experiment which measures SC gap in SC phase or in pseudogap phase from
the same experiment in normal phase will show the existence of gap. This result
can be used to check the TI bipolaron theory of superconductivity.

5.3 Isotope effect

The isotope effect plays a central role in superconductivity. The presence of the isotope
effect has played a decisive role in establishing the phonon mechanism of SC in ordi-
nary superconductors. The absence of this effect in optimally doped high-temperature
superconductors served as the basis for the rejection of the phonon mechanism in
HTSC and, as a consequence, of the BCS theory (Bardeen et al., 1957). In recent
years, however, a large number of new experimental facts force us to return to the
EPI as the dominant one in explaining the HTSC effect. At the same time, direct use of
the BCS theory and its various modifications cannot explain these experimental facts
(Bill et al., 1998a, 1998b).

The reason, is probably that the BCS theory, based on EPI, considers this inter-
action as weak, while in the case of HTSC this interaction turns out to be strong.
The generalization of the BCS theory to the case of a strong EPI – the Eliashberg
theory, failed to explain many important phenomena accompanying HTSC, for
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example, the pseudogap state. To overcome these difficulties, in the works of
Lakhno (2018, 2019a, 2019b), a TI bipolaron theory of HTSC was constructed, in
which the role of Cooper pairs is played by TI bipolarons.

The aim of this section is to explain the isotope effects observed in HTSC on the
basis of TI bipolaron theory.

The isotope effect played a decisive role in the establishment of the EPI mecha-
nism of the superconducting state and the substantiation of the BCS theory (Bardeen
et al., 1957) for ordinary metals. In the BCS theory, coefficient α is determined from
the ratio experimentally established for ordinary metals:

TcMα = const (5:3:1)

where Tc is the temperature of a SC transition, M is the mass of an atom replaced by
the isotope. It follows from (5.3.1) that:

α= −d lnTc=d lnM (5:3:2)

In the BCS theory, the value of the coefficient α is positive and close to the value
α ffi 0.5, which is in good agreement with experiment in ordinary metals. The large
value of the isotopic coefficient observed in ordinary metals indicates the dominant
role of EPI in them and the applicability of the BCS theory for their description.

On the contrary, in high-temperature superconducting ceramics in the region of
their optimal doping, the isotopic coefficient is usually very small ⁓10− 2� �

, as a re-
sult of which EPI in them are small, which necessitated the consideration of other
SP mechanisms (Bill et al., 1998a, 1998b).

As is known, the BCS theory developed for the case of a weak EPI is inapplica-
ble in the case of HTSC, in which EPI cannot be considered to be weak. In this case,
the TI bipolaron theory of SC can be used (the reasons why the Eliashberg (1960)
theory, used in the case of a strong EPI, can be inapplicable for the description of
HTSC are discussed in Introduction).

According to TI bipolaron theory, the temperature of SC transition Tc is deter-
mined by the equation:

Tc ω0=Tcð Þ= F3=2 0ð Þ=F3=2 ω0=Tcð Þ� �2=3Tc 0ð Þ

Tc 0ð Þ= 3, 31�h2n2=3bp
=Me, Me = 2m,

F3=2 xð Þ= 2ffiffiffi
π

p
ð∞
0

t1=2dt
et + x − 1

, (5:3:3)

where nbp is the concentration of TI bipolarons, ω0 is the frequency of an optical
phonon, m is the mass of a band electron (hole), �h= h=2π, h is the Planck constant.
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Formulae (5.3.2) and (5.3.3) yield the expression for the isotopic coefficient:

α= 0, 5
1+Φ yð Þ

Φ yð Þ= 3y
ð∞
0

ffiffi
t

p
dt

e ðty+ 1ð Þ=yÞ − 1

ð∞
0

dtffiffi
t

p
e ðty+ 1ð Þ=yÞ − 1ð Þ

,
(5:3:4)

where y=Tc=ω0.
The graph of the function α Tc=ω0ð Þ is shown in Fig. 5.14. Figure 5.14. suggests

that in the case Tc=ω0ð Þ>> 1, which can correspond to optimally doped HTSC: high
Tc and strong EPI (low ω0 and large value of EPI constant: αeph~ω0

− 1=2) the isotopic
coefficient will be small (α ! 0 as Tc ! ∞), in full agreement with experiment (Bill
et al., 1998a, 1998b; Chen et al., 2007; Franck, 1994; Franck et al., 1991; Batlogg
et al., 1987; Zech et al., 1994).

In the opposite case, Tc=ω0 << 1, which corresponds to the case of weak EPI, the iso-
topic coefficient reaches its maximum value α = 0.5 as in the BCS theory, which cor-
responds to the case of weak EPI.

It should be noted that according to (5.3.4) the isotopic coefficient of different
samples will be the same for the same relation Tc=ω0.

Figure 5.14 suggests that for typical values of α, the value of phonon frequency
ω0 does not exceed Tc. For HTSC with Tc= 100 K this leads to the value of ω0 less
than 8.6 meV.

Quite a different picture arises for the isotopic coefficient of the London pene-
tration depth:

β = −
M
λ

dλ
dM

, (5:3:5)

where λ is London penetration depth:
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Fig. 5.14: Dependence of isotopic coefficient α on Tc=ω0.
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λ = M✶
e c

2

16πe2n0

� �1=2

, (5:3:6)

c is the velocity of light, e is the electron charge, M✶
e is the bipolaron mass, n0 is the

concentration of TI bipolarons in Bose condensate, n0 =N0=V, and N0 is the number
of TI bipolarons in the condensate:

N0

N
= 1−

T3=2

cbp
F3=2 ω0=Tð Þ, (5:3:7)

N is the total number of bipolarons, cbp =
n2=32π�h2

Meω✶

 !3=2

, ~T =T=ω✶, ω✶ is an arbi-
trary energy scale factor, n = N/V.

As is noted in Lakhno (2020a), the mass of a TI bipolaron does not differ too
much from 2 m, where m is the mass of a band electron which depends on ω0 only
slightly. Therefore, we will believe that the whole dependence on ω0 is determined
by the concentration of TI bipolarons in the condensate n0 involved in (5.3.6) which
is related with ω0 by relation (5.3.7). As a result, from (5.3.5) to (5.3.7), we express
the isotopic coefficient β as

β= −
1
2
~ωo

~T
1=2
N

cbpN0
Li1=2 e−ω 0=T

� �
,

Li1=2 Zð Þ= 1ffiffiffi
π

p
ð∞
0

1ffiffi
t

p dt
Z − 1et − 1

. (5:3:8)

It follows from (5.3.8) that in the limit of low temperatures when ω0=T >> 1,
Li1=2ðe−ω 0=T Þ= e−ω 0=T :

β= −
1
2
~ω0

~T
1=2

cbp
e−ω 0=T , (5:3:9)

that is the isotopic coefficient is exponentially small.
In the case of ω0=T << 1, Li1=2ðe−ω0=T Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πT ω0=

p
, the isotopic coefficient is

equal to:

β= −
ffiffiffi
π

p
2

~ω1=2
0

~TN
N0cbp

= −
ffiffiffi
π

p
2

~ω3=2
0 N

N0cbp

T
ω0

� �
. (5:3:10)

It should be noted that, as distinct from the coefficient α, which is positive, the coeffi-
cient β for London penetration depth is negative, which is in agreement with experi-
ment. The fact that in the limit of low temperatures (5.3.9) the isotopic coefficient β,
caused by EPI is negligible is in agreement with the BCS (Bill et al., 1998a, 1998b). This
in particular implies that in the limit of weak doping (when Tc ! 0) the isotopic coeffi-
cient for the London penetration depth β (as distinct from the isotopic coefficient α for
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Tc (which will be large in this case)) will be very small. The experiment, however, dem-
onstrates that the value of β in the case of optimal doping (when Tc is maximum) in the
limit of low temperatures can reach large values. Thus, for example, in the optimally
doped HTSC YBa2Cu3O7 at T =0 the value of β is equal to β 0ð Þj j≈0.2 (Khasanov et al.,
2004). It follows that the main contribution in this case can be made by nonadiabatic
mechanism or nonphonon mechanisms (Bill et al., 1998a, 1998b). As an example
of HTSC, in which the contribution of nonadiabaticity and nonphonon mecha-
nisms is probably small we can present a slightly overdoped La2−xSrxCu1−yZnyO4,
for which at T =0 the isotopic coefficient β vanishes in accordance with the theory
developed (Tallon et al., 2005). Experimental results on the isotope dependence of
the penetration depth in La2−xSrxCu1−yZnyO4 are often explained by the isotope de-
pendence of the effective mass of current carriers:

ΔMbp=Mbp = 2Δλ=λ+Δn0=n0. (5:3:11)

Thus, it is stated that we can neglect a change in n0 due to the isotope effect, and the
entire effect can be attributed to the change in effective mass Mbp (Zhao et al., 1997).
This statement could be true if the BCS theory be applicable, in which the quantity n0
coincides with the total number of electrons in the normal phase. In the BCS theory,
however, the effective mass of current carriers does not depend on the masses of
the lattice atoms. As is shown in Lakhno (2018), n0 represents only a small portion of
the number of normal electrons. This is confirmed by the experiments performed by
Božović et al. (2016). As is shown above, the use of this fact enables one to explain
the isotope effect for the London penetration depth by the isotope dependence of the
quantity n0.

At high temperatures, on the contrary, the main contribution near Tc can be
made by the phonon mechanism determined by (5.3.10) according to Bill et al.
(1998a, 1998b), for the value α=0.025, observed in YBa2Cu3O7-δ β was obtained to
be β ~ –0.6 for T/Tc ~ 0.95).

The results obtained enable one to explain the observed peculiarities of the be-
havior of the isotopic coefficient α for Tc in high-temperature superconductors, in
particular, its small value for optimal doping and its large value for weak doping,
on the basis of only EPI. More complicated is the question of the isotopic coefficient
for the London penetration depth λ and its temperature dependence.

The EPI explains the large values for optimally doped HTSC materials only near
the SC transition temperature Tc. In the case of low temperatures, the theory ex-
plains the negligible values of β 0ð Þ in such HTSC as La2−xSrxCu1−yZnyO4 and does
not explain large values in other HTSC compounds. In Bill et al. (1998a, 1998b), this
discrepancy with the theory developed and the BCS is explained by the fact that in
many HTSC materials at low temperatures, the main role is played by nondiabatic
effects, leading to large values of β 0ð Þ.
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5.4 Conclusive remarks

In the theory presented, as in the BCS, the momentum of the bipolaron mass center
P (accordingly G in a magnetic field) is equal to zero. According to this theory, the
SC state is a homogeneous bipolaron BEC. The theory can be generalized to the
case of a moving BEC with P≠0, which remains homogeneous when moving. In
this case, some interesting peculiarities arise (Chapter 6). Presently, a wide discus-
sion is devoted to the possibility of the formation of an inhomogeneous BEC in the
form of the so-called pair density waves (PDW) which destroy the translation invari-
ance (Lee, 2014; Seo et al., 2008; Berg et al., 2009; Agterberg and Tsunetsugu,
2008; Zelli et al., 2012; Chen et al., 2004; see Chapter 7). However, here the situation
is different from the problem of polarons and bipolarons with broken or actual TI
symmetry. The scenario of SC with PDW including the presence of charged density
waves (CDW) or spin density waves (SDW) (Pépin et al., 2014; Freire et al., 2015;
Wang et al., 2015a, 2015b) is provided by the discreteness of the crystal which is not
taken into account in the continuum model of EPI. The problem of the competition
between the CDW mechanism of SC and the bipolaron one is considered, for exam-
ple, in Grzybowski and Micnas (2007) for a SRP in squeezed vacuum.

Modulation of BEC density for wave vector corresponding to nesting leads to
the appearance of a gap in the spectrum which in many works is identified with a
SC gap (Lee, 2014; Seo et al., 2008; Berg et al., 2009; Agterberg and Tsunetsugu,
2008; Zelli et al., 2012; Chen et al., 2004; Pépin et al., 2014; Freire et al., 2015; Wang
et al., 2015a, 2015b). In this case, the TI bipolaron gap ωk, being universal, would
have the properties of a pseudogap manifesting itself as a low-energy thin structure
in the conductance spectrum of optimally doped SC (Maggio-Aprile et al., 1995; Pan
et al., 2000; Hoogenboom et al., 2000).

In the approach considered, we actually did not use any specificity of the mech-
anism of the electron or hole pairing. For example, both in the Hubbard model and
in the t − J model, in describing copper oxide HTSC the same holes take part in the
formation of antiferromagnetic fluctuations and pairing caused by an exchange by
these fluctuations. If an interaction of holes with magnetic fluctuations leads to the
formation of TI magnetopolarons having the spectrum ω0 kð Þ, then this spectrum is
also the spectrum of magnons renormalized by their interaction with holes (bound
magnons). For this reason, the statement that the RVB superconductor is just a lim-
iting case of the BCS SC with strong interaction becomes justified (Kivelson and
Rokhsar, 1990; in this case, the role of polarons and bipolarons belongs to holons
and biholons).

Evidently, d-symmetry is specificity of cuprate HTSC and is not a precondition of
the existence of HTSC. For example, sulfide H2S, demonstrates a record value of the
transition temperature: TC = 203 K (under high pressure, Drozdov et al., 2015), does not
have a magnetic order, but EPI is strong in it. Still greater value of TC under high pres-
sure has recently been obtained in the substance LaH10 with TC = 260 K (Somayazulu
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et al., 2019), where the EPI is also strong and a magnetic order is lacking. Finally, the
room transition temperatures (about 15 °C) were obtained in composition on the basis
of H2S and CH4 (under the pressure of about of 1.4 million atmosphere) in Snider et al.
(2020).

Nevertheless, the mechanism of pairing is still unclear. If it is provided by an
interaction of current carriers with magnetic fluctuations, then, in the approach
considered, the particles which bind electrons into pairs will be magnons rather
than phonons. In passing on from the pseudophase to the normal one, this binding
mode disappears which leads to the decay of a bipolaron into two individual polar-
ons with the emission of a phonon (magnon).

In the pseudogap phase, there may be a lot of different gaps caused by the pres-
ence of phonons, magnons, plasmons, and other types of elementary excitations. In
this case the SC gap will be determined by the type of elementary excitations whose
interaction with the current carriers is the strongest.

From the viewpoint of the TI bipolaron theory, a possible resultant picture of
HTSC looks as follows.

According to the above consideration, the foundation of the microscopic theory
is provided by the TI bipolaron EPI mechanism. It follows from the theory that in
order to reach high TC one should primarily enhance the concentration of TI bipo-
larons. In oxide ceramics, this is reached by the presence of antiferromagnetic
order and stripes in them.

Playing the role of microscopic domain walls, the stripes, having a ferromagnetic
order, attract electrons. Because of the exchange interaction, the energy of electrons in
the stripes is lower than that in the rest of the template (analog of ferrons by Nagaev
(1979) with regard to the contribution of polaron (Lakhno and Nagaev, 1976) and mag-
netostriction effects (Lakhno and Nagaev, 1978) into their formation), accordingly, the
concentration of electrons there is rather high. To restore a charge equilibrium TI bipo-
larons flow from the stripe regions to the template thus enhancing the concentration
of TI bipolarons in it and, on the whole TC of the sample. This redistribution gives rise
to a PDW (elevated concentration of bipolarons in the template and reduced concen-
tration in the stripes) and CDW (elevated concentration of electrons in the stripes and
reduced concentration in the template).

The mechanism described enables one to construct purposively SC materials
which could work at room TC. As it was pointed out in Lakhno (2019b), to do so one
can use inhomogeneous doping making the periphery of a HTSC cable doped with
ferromagnetic impurities which could attract electrons from the core of the cable.
As a result, one can take a cable with enhanced concentration of TI bipolarons on its
axis and, as a consequence, high TC.
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6 Moving bipolaron Bose condensate

In the previous chapters, we dealt with the case of resting Bose condensate of TI bipolarons.
In this chapter, this case is generalized to the case of a moving Bose condensate.

6.1 Introduction

The translation-invariant bipolaron theory suggests that in HTSC materials bipolar-
ons represent almost an ideal Bose gas or Bose liquid, if we are talking about their
Bose condensate, which can move. An example of a nonideal Bose fluid is a quan-
tum fluid such as 4He. The difference between an ideal and a nonideal Bose fluid is
in the spectrum of their elementary excitations. In a nonideal Bose liquid, in the
case of small momenta, there is a phonon branch ε= sk, where s is the sound veloc-
ity: s= ∂P=∂ρ, where P is the pressure, ρ is the liquid density. In the case of large k,
the spectrum becomes quadratic ε = ε k0ð Þ+ k − k0ð Þ2=2M which is called roton.

In an ideal Bose liquid, the pressure does not depend on the density, that is,
s=0, and the linear part is lacking in the spectrum. Such a spectrum (with k0 =0)
was considered in the original work by Landau (1941). As is shown above, such a
spectrum corresponds to a gas of TI bipolarons.

The fundamental difference between the TI bipolaron Bose gas and the super-
fluid Bose liquid in helium is that the elementary quasiparticles of the TI bipolaron
gas are charged, while the elementary excitations in helium are neutral.

Thus, superconductivity is a superfluidity of a charged Bose gas. This point of
view leads to the possibility of using the results of the theory of superfluidity as
applied to superconductivity in the macroscopic description of the latter.

6.2 Moving Bose condensate of TI bipolarons

In Landau (1941), he developed a two-fluid theory of superfluid helium II as an al-
ternative to the theories by London (1938) and Tisza (1938), which related this phe-
nomenon to Bose–Einstein condensation. These two extreme points of view were
reconciled by Bogolyubov, who, using a weakly imperfect Bose gas as an example,
reproduced the phonon–roton spectrum of the two-fluid Landau model and showed
that the superfluid component in this case is a condensate of Bose particles (Bogo-
lyubov, 1947). This, however, did not happen in the case of superconductivity. As
was pointed out by BCS (Bardeen et al., 1957), Cooper pairs in ordinary metals are
unsuitable for the role of Bose particles due to their enormous overlapping. The idea
that superfluidity and superconductivity are related phenomena was strengthened
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only after the discovery of HTSC, when it was found that paired states in these mate-
rials have a small correlation length.

Presently, there is a large number of candidates for the role of the fundamental
Bose particle responsible for HTSC. There are, however, basically two points of view
competing. According to one, the pairing mechanism is caused, as in the case of the
BCS, by the electron-phonon interaction (Bardeen et al., 1957). According to the other,
the pairing of current carriers is caused by magnetic fluctuations (Scalapino, 2012).

Without going into details of the argumentation in favor of one point of view or
another, let us choose the spectrum of the TI bipolaron as the spectrum of the fun-
damental boson responsible for HTSC. The theory of HTSC based on the theory of TI
bipolarons was previously constructed by us using its spectrum of excited states:

ε kð Þ=ω0 +k2=2M, k≠0, (6:2:1)

where M = 2m, m is the effective mass of a band electron which exactly coincides
with roton spectrum in the superfluidity theory by Landau (1941).

At T =0 all the bipolarons are in the condensed state. If Bose condensate moves
relative to the crystal lattice of the sample, then the total momentum of the Bose
condensate relative to the lattice will be equal to P:

P=
X

km kð Þ, (6:2:2)

where m kð Þ is Bose function of the distribution of TI bipolarons. In a condensed
state each TI bipolaron has one and the same momentum: ku =Mbpu, where u is
the velocity of a TI bipolaron in a condensate (i.e., the velocity of a Bose conden-
sate), Mbp is the mass of a TI bipolaron. Accordingly, the function of distribution
m kð Þ in this case will be:

m kð Þ=NoΔ k−kuð Þ, (6:2:3)

where N0 is the number of bipolarons in a condensate which at T =0 is equal to the
total number of TI bipolarons N. Hence, the total momentum of Bose condensate at
T =0 will obviously be equal to: P=N0Mbpu=NMbpu.

Now let us consider the case of nonzero temperature T <Tc, where Tc is the tem-
perature of a superconducting transition. In this case some bipolarons are in an ex-
cited state. Being in an excited state, a bipolaron can interact with other excitations
and defects of a crystal. As a result of such interaction a gas of excited states, being
in equilibrium with the lattice, as a whole rests relative the lattice. At the same
time, the gas of excitations cannot put stay the condensate part, since it cannot ex-
change momentum with it (Lifshitz and Pitaevskii, 1980). As a result, the distribu-
tion function of all TI bipolarons will have the form:
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mðkÞ=N0ΔðkÞ+ exp
ε kð Þ−ku

T

� �
− 1

� �− 1

ð1−ΔðkÞÞ, (6:2:4)

where ε kð Þ is the spectrum of excited states of a TI bipolaron, u is the velocity of a
Bose condensate relative the crystal lattice. The expression takes into account that
if the excitation spectrum of TI bipolarons in a system of a resting Bose condensate
has the form ε kð Þ then in the system where the excitation gas rests (i.e., in the sys-
tem related with the lattice), the relevant spectrum will be ε kð Þ−ku.

Substitution of (6.2.1) and (6.2.4) into (6.2.2) yields the following value of the
total momentum P′ of excitations in the system of a resting condensate:

P′= −MbpuN′, (6:2:5)

N0
.
V = MT

�
2π�h2

� �3=2
F3=2 ~ω=Tð Þ; (6:2:6)

F3=2 αð Þ= 2ffiffiffi
π

p
ð∞
0

x1=2

ex+ α − 1
dx, (6:2:7)

~ω0 =ω0 −Mu2=2, (6:2:8)

where V is the crystal volume, N′=N −N0. Hence, the total momentum of TI bipolar-
ons in a laboratory frame of reference, that is, in the system related with the crystal
lattice will be equal to:

P= N −N′
� �

Mbpu=N0Mbpu. (6:2:9)

It follows from (6.2.6) to (6.2.8) that there exists a limit velocity of the motion of a
Bose condensate uc:

u< uc, uc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0=M

p
. (6:2:10)

Condition (6.2.10) exactly corresponds to Landau’s criterion of superfluidity:

u< ε kð Þ=k. (6:2:11)

It follows from (6.2.6) to (6.2.8) that the expression for the temperature of a super-
conducting transition (which is derived from (6.2.6) for N′=N) will be the same as
that in Lakhno (2018, 2019b, 2020a) (Chapter 4) with ω0 replaced by ~ω0, which is
determined by (6.2.8). Hence, the temperature of a superconducting transition de-
pends on the velocity of the Bose condensate motion and reaches its maximum value
for u=0. As the condensate velocity increases, Tc decreases and reaches its mini-
mum: Tc = 3.31�h2n2=3 M

.
, n=N=V is the concentration of TI bipolarons for u= uc.
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What will happen if the velocity of the motion of a Bose condensate exceeds a
certain critical value, that is, if the inequality u > uc holds? The integral in (6.2.7) in
this case does not exist and a stationary motion turns out to be impossible. For
P > Pc =N0Mbpuc the momentum from the excitations begins to be transmitted to
the condensate, hindering it till the velocity of the condensate becomes equal to uc.

6.3 Bose condensate in a magnetic field

Let us consider the case when a sample is placed in a magnetic field. In view of
Meissner effect, the magnetic field sets in motion the Bose condensate in the near-
surface layer of the sample whose thickness is of the order of the London penetra-
tion depth. Since the magnetic field does not penetrate into the sample, the bulk of
the Bose condensate in the sample will be immobile. The total magnetic field acting
on individual bipolarons includes both the external field and the field created by the
moving Bose condensate itself. Let us consider the contribution of the field induced
by the moving Bose condensate (which will be denoted by B) into the current.

According to Lakhno (2019b, 2020a) (Chapter 3), the excitation spectrum of the
Bose condensate of TI bipolarons in a magnetic field of intensity B has the form:

εB kð Þ=ω0 +
k2

2M
+ η
M

Bkð Þ−ku. (6:3:1)

It follows from (6.3.1) that in the case of a magnetic field all the above formulae do
not change their form if the velocity u in them is replaced by eu=u−ηB=M. The field
induced by a Bose condensate moving with the velocity u rð Þ at each point of the sam-
ple r will always be perpendicular to u rð Þ. Hence, in a magnetic field, instead of the
quantity ~ω0, determined by (6.2.8), we will get the quantity ~ω0,B, equal to:

~ω0,B =ω0 1−
u2

u2c
−

B2

B2
max

� �
, (6:3:2)

where Bmax =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mω0=η

p
. The quantity Bmax has the meaning of the maximum value

of the magnetic field (at T = 0), for which the superconductivity takes place as u=0
(first critical field).

According to the results obtained, the moving near-surface Bose condensate
should have a much lower condensation temperature Tc uð Þ, than a condensate at rest
in the sample, whose condensation temperature is Tc u=0,B=0ð Þ>Tc u≠0,B≠0ð Þ,
as it follows from (6.2.6) to (6.2.8) and (6.3.2).

It follows from (6.3.2) that for the value of ~ω0,B to be positive, the condition:

u< uc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−B2=B2

max

q
. (6:3:3)
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should be fulfilled. Hence, the dependence of the value of the critical current in the
superconductor on the magnetic field B, has the form:

jc Bð Þ= jc 0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−B2=B2

max

q
, jc 0ð Þ= 2en0uc, (6:3:4)

where n0 is the concentration of TI bipolarons in a Bose condensate.

With regard to the temperature dependence n0ðTÞ (Fig. 4.3) we get from (6.3.4) an
ordinary dependence for the critical value of the current density jcðB,TÞ as a function
of the temperature and magnetic field B, presented in Fig. 6.1.

Expression (6.3.2) was obtained on the assumption that the quantity B is a field
induced by a moving Bose condensate. However, according to the Silsbee rule (Sils-
bee, 1917), the action of the field B is independent of whether it is induced by a cur-
rent running in a superconductor (i.e., a moving Bose condensate) or generated by
an external source. Hence, Fig. 6.1 can be considered as a dependence of the critical
current on the external magnetic field and temperature.

6.4 Little–Parks effect

Little–Parks effect (Little and Parks, 1962) is concerned with the fact that quantizing
of a magnetic field in a multiply connected SC is caused by relevant quantizing of a
current running around each hole in a sample. Quantizing of a current, leads to os-
cillations of the velocity of the superconducting current carriers. Since the tempera-
ture of a superconducting transition depends on the velocity of a Bose condensate,
its oscillations lead to relevant oscillations of the temperature of a superconducting

T/Tc

j/jc

1

0

11
B/Bmax

Fig. 6.1: Dependence of the critical current on the magnetic field and temperature.
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transition. The study of this phenomenon has recently attracted much attention of
researchers due to the possibility to use it for enhancing the critical temperature in
SC (Sochnikov et al., 2010; de Gennes, 1981; Staley and Liu, 2012; Liu et al., 2001).

Since at present a generally accepted theory of high-temperature superconduc-
tivity is lacking, a generally accepted explanation of the Little–Parks effect in HTSC
is also lacking. The aim of this section is to develop the theory of the Little–Parks
effect on the basis of the translation invariant bipolaron theory (Lakhno, 2019c).

With the use of (6.3.1) we can get an expression similar to (6.2.5)–(6.2.8), which
instead of ~ω0, determined by (6.2.8), will involve ~ω0,B, determined by (6.3.2). From
the general relations for quantizing the fluxoid Φ′ we get: Φ′= nΦ0, n= 1, 2 . . . ,
Φ0 =π �hc=e, which in the case of a bipolaron Bose condensate has the form:

Φ′−Φ= c
2e

þ
MbpudR, Φ=

þ
AdR, (6:4:1)

where Φ is a magnetic flux passing through the contour of integration R:Φ=
Ð
BdS. In

the case of a thin-walled cylinder corresponding to the conditions of the Little–Parks
experiment, the expression for the velocity of a TI bipolaron Bose condensate is written
as follows:

u= �h
MbpR

n−
Φ
Φ0

� �
, (6:4:2)

where R is the radius of the cylinder. Equation (6.4.2) describes oscillations of the
velocity of a TI bipolaron Bose condensate (Fig. 6.2) which leads to oscillations of
the temperature of the superconducting transition Tc (Tinkham, 1975). Using
(6.2.5)–(6.2.7) and (6.3.2) and assuming that ~ω= ~ω0 +Δ~ω, where ~ω0 =ω0 1−Φ2=Φ2

c

� �
,

Δ~ω= −ω0u2=u2c, where Φc is the critical magnetic flux corresponding to the critical
magnetic field Bc, for small deviations Δ~ω for deviations of the critical temperature
from that determined by (6.2.6) we get:

ΔTc

Tc
= ξ 2

R2 n−
Φ
Φ0

� �2

, (6:4:3)

ξ 2 = −
1

3 2πð Þ3=2
M2

M2
bp

1

n2=3bp

MTc

n2=3bp �h
2

0@ 1A1=2

Li1=2 e− αð Þ, (6:4:4)

Li1=2 e− αð Þ= 1ffiffiffiffi
π

p
ð∞
0

1ffiffi
t

p dt
et + α − 1

, (6:4:5)

α= ω0

Tc
1−

Φ2

Φ2
c

 !
, (6:4:6)
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where nbp is the concentration of TI bipolarons. Formula (6.4.3) determines the am-
plitude of Tc oscillations as the magnetic flux Φ changes. Despite the oscillating be-
havior of ΔTc depending on the magnetic flux, expression (6.3.2) assumes that there
is a maximally possible value of the magnetic flux Φmax =Φc =πR2Bc, correspond-
ing to the maximum value of the magnetic field for which a Bose condensate with
TcðΦ=Φc, u=0Þ= 3, 31�h2n2=3bp =M can exist.

For low critical temperatures: α>> 1, Li1=2 e − αð Þ ffi e − α , while for high ones: α<< 1,
Li1=2 e − αð Þ≈

ffiffiffiffiffiffiffiffi
π=α

p
. With the use of expressions (6.4.3) and (6.4.4) for α ffi 1,

nbp = 1019 cm−3 (Lakhno, 2018), m=m0, M ≈Mbp, R= 100nm for ΔTc=Tc we get:
ΔTc=Tc ≈ 10− 4, which is close to the estimate obtained on the basis of the BCS (Tink-
ham, 1975). It also follows from (6.4.3) and (6.4.4) that for ω0=Tc << 1 (accordingly,
α<< 1) the relation: ΔTc=Tc ≈ 10− 4 Tc=ω0ð Þ1=2 can be much greater than that obtained
on the basis of the BCS theory.

The Little–Parks effect is usually used to check the fundamental positions of
the superconductivity theory, in particular, to prove pairing of current carriers in
superconductors. The results obtained can also be used for finding soft phonon
modes for which ω0 ! 0 (see Kimura et al., 2005), which usually accompany struc-
tural instability and phase transitions in HTSC materials. In this case one can ex-
pect anomalous values of ΔTc=Tc oscillations.

Presently, the main research methods of soft modes investigation are inelastic X-
ray scattering and inelastic neutron scattering (Wakimoto et al., 2004; Reznik, 2010).
The accuracy of these methods is limited to energies of a few millielectronvolts. As a
result, the estimate of the value of Tc=ω0ð Þ1=2 will give a small coefficient: <10. For
real values of Tc equal to several tens of degrees this can lead to difficulties in inter-
preting the data obtained on the basis of the Little–Parks effect.

–3 –2

u2b)

a) u

–1 0

–3 –2 –1 0

1 2 3

1 2 3
Φ/Φ0

Φ/Φ0

Fig. 6.2: (a) Dependence of the quantity u on the magnetic flux passing through the cylinder bore,
(b) dependence of the quantity u2 and, accordingly, ΔTc⁓u2on the magnetic flux. (Tinkham, 1975).
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This conclusion is confirmed by observations of anomalous softening of pho-
non modes in the family of La2−xSrxCuO4 compounds (Kimura et al., 2005) for values
of x close to those for which the ratio ΔTc=Tc can be anomalously large (Sochnikov
et al., 2010), which were associated in (Sochnikov et al., 2010) with the possibility
of vortex formation and their interaction with an oscillating current.

The results obtained here are based on the idea of Bose condensation of TI bipo-
larons with a small correlation length (≈ 1 nm). This is true only in the case of a
strong EPI, when the EPI constant is anomalously large. The condition αph ≈∞ is ful-
filled only as ω0 ! 0, since αph~ω− 1=2

0 . Thus, bipolarons formed by interaction with
such phonon modes will have the lowest energy compared to those formed by other
branches of the phonon spectrum and, hence, it is these phonons that will form the
Bose condensate and lead to anomalies in the Little–Parks effect (see Chapter 7).

Above, we considered the thermodynamic characteristics of a Bose condensate
with an isotropic phonon spectrum. In fact, in most HTSC materials, the SC gap de-
pends on the wave vector. For example, in YBCO with optimal doping, the depen-
dence of the gap on k has the form:

ω0ðkÞ=Δ0 cos kxa− cos kya
 +ω0, (6:4:7)

where ω0 kð Þ, according to the above, is the phonon frequency which depends on k. In
TI-bipolaron theory, the first term on the right-hand side of (6.4.7) corresponds to the
contribution of the d-type wave, and the second term to the contribution of the s-type
wave.

Hence, for ω0 ≥Δ0Ma2T=�h2 the main contribution into the integral (6.2.7) will be
made by s-wave (see Section 4.5). In this case the results obtained above will remain
unchanged if we replace ω by ω0. Thus, for example in the case of YBCO the values of
ω0=Δ0 is ≈0.15 (Smilde et al., 2005; Kirtley et al., 2006), that is, ω0 is sufficiently
small.

Expressions (6.4.3)–(6.4.6) also show that in the general case, when softening
of the phonon modes is small to achieve the maximum amplitudes of Tc oscillations
in HTSC materials, it is necessary to use the maximum values of the magnetic flux
Φ ! Φc. In this case, an arbitrarily small deviation of the Bose condensate velocity
from its equilibrium value Φ ! Φc will lead to finite changes of Tc. This effect can
be used for construction of new types of magnetic field sensors and switchers be-
tween superconducting and normal states by means of small changes in magnetic
field.
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7 Translation-invariant bipolarons and charge
density waves

A relation is established between the theories of superconductivity based on the concept of
charge density waves (CDW) and the translation-invariant bipolaron theory. It is shown that
CDWs are formed in the pseudogap phase from bipolaron states due to Kohn anomaly, forming
a pair density wave (PDW) for wave vectors corresponding to nesting. Formed in the pseudo-
gap phase, CDWs coexist with superconductivity and their amplitude decreases as a TI bipo-
laron Bose condensate is formed and vanishes at zero temperature.

7.1 Translation-invariant bipolarons and charge density
waves in high-temperature superconductors

Presently, there is no consensus on the microscopic nature of high-temperature super-
conductivity (HTSC). At the same time, there are phenomenological models such as
the Ginzburg–Landau model (Larkin and Varlamova, 2005), the CDW or PDW model,
and spin density waves which enable describing numerous HTSC experiments (Grüner,
1994). These models do not say anything about the nature of the paired states partici-
pating in the SC. In this monograph, paired states mean translation-invariant (TI) bipo-
laron states formed by a strong electron-phonon interaction, similar to Cooper pairs.
According to the above results, TI bipolarons are plane waves with a small correlation
length which can form a Bose–Einstein condensate with a high transition temperature,
possessing SC properties. The relation between the Bardeen–Cooper–Schrieffer theory
(Bardeen et al., 1957) (BCS) and the Ginzburg–Landau theory was established in Gor’-
kov (1959). The aim of this chapter is to establish a relation between the TI bipolaron
theory of SC and CDW (PDW).

7.1.1 General relations for the spectrum of a moving TI bipolaron

According to Chapter 4, TI bipolarons are formed at a temperature T✶ much higher
than the temperature of a SC transition Tc. For Tc <T <T✶ and in the absence of a
Fermi surface with a sharp boundary, an ensemble of TI bipolarons would be an
ideal gas, whose particles would have a spectrum determined by the dispersion
equation (4.2.19) of Chapter 4:

1= 2
3

X
k

k2 fkj j2ωk

s−ω2
k

, (7:1:1)

ωk =ω0 k,Pð Þ− kP
M

+ k2

2M
−

k
M

X
k′

k′ fk′
 2,
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fk = fk k,Pð Þ are parameters determining the ground-state energy of a TI bipolaron,
Ebp Pð Þ, P is the total momentum of a TI bipolaron, M = 2m, where m is the mass of a
band electron (hole), ω0 k,Pð Þ is the phonon frequency in an electron gas surround-
ing TI bipolarons (see Appendix I).

A wave function of a TI bipolaron with the wave vector P will have the form:

Ψ Pð Þj ibp = eiPR Ψ 0ð Þj ibp, (7:1:2)

where R is coordinates of the center of mass of a bipolaron. An explicit form of the
wave function Ψ 0ð Þj ibp with zero momentum is given in (2.11.13) Chapter 2. An ex-
pression for P can be obtained by calculating the mathematical expectation of the
total momentum operator P:

P= Ψ Pð Þh jbP Ψ Pð Þj i=Mu+
X
k

k fkj j2, (7:1:3)

where u is the velocity of a TI bipolaron. Assuming P=Mbpu, where Mbp is the bipo-
laron mass, we express Mbp with the use of (7.1.3) as

Mbp =
M

1− η
, η= P

P2

X
k

k fkj j2. (7:1:4)

With the use of (7.1.4) the expression for ωk from (7.1.1) can be rewritten as

ωk =ω0 k,Pð Þ+ k2

2M
−

kP
Mbp

. (7:1:5)

It follows from (7.1.4) that in the case of weak and intermediate coupling (when TI
bipolaron states are metastable for P=0), the exact form of fk k,Pð Þ is known and
the expression for the effective mass of a TI bipolaron will have a simple form:
Mbp =M 1+ α=6ð Þ, where α is a constant of electron–phonon coupling, that is, the
mass Mbp is equal to the sum of masses of individual polarons. When α is large,
good approximations for fk are available only for P=0. For this reason, the calcula-
tion of the effective mass of a strong-coupling TI bipolaron is rather difficult.

7.1.2 TI bipolarons and charge density waves

If there is a Fermi surface with a sharp boundary, the TI bipolaron gas will have
some peculiarities. Thus, if on this surface, there are sufficiently large fragments that
can be combined by transferring one of them to vector P, then, given a sufficient size
of these fragments, the coupling between them will be strong enough, which will
lead to Peierls deformation of the lattice in the direction of such nesting. The loss in
the energy associated with lattice deformation will be compensated by a gain in the
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energy of the bipolaron gas, which forms a CDW with the wave vector P=PCDW . The
availability of a gain in the TI bipolaron energy follows from eq. (7.1.1), solution of
which leads to the spectrum of a TI bipolaron:

Ek Pð Þ=
Ebp Pð Þ, k =0

Ebp Pð Þ+ω0 P,kð Þ+ k2
2M − kP

Mbp
, k ≠0.

8<: (7:1:6)

that is, Ek = Ebp +ωk, and vk =ωk for k ≠0.
A gain in the energy is caused by the so-called Kohn anomaly (Kohn, 1959),

which implies that if P=PCDW softening of a phonon frequency takes place (in 1D
metal PCDW = 2kF; ω0 2kFð Þ=0, where kF is the Fermi momentum) ω0ðPCDW , kÞ=ωCDW

and, as a result, a great decrease in the energy Ebp in view of a sharp increase of
the electron-phonon coupling constant α ⁓ 1=ω1=2

CDW (Appendix I). As ωCDW ! 0,
αCDW ! ∞ accordingly Mbp ! ∞ and CDW turns out to be practically immobile.

An expression for Ebp Pð Þ is complicated in the general case and even in the
case P=0, there are only variational estimates for it (Lakhno, 2015b). It can be as-
sumed that the general form of the dependence of Ebp on P will be δ-shaped, in
which the δ-shaped minimum will correspond to P=PCDW (Fig. 7.1).

Having such a spectrum, TI bipolarons will pass on to the state with a minimum
energy Ebp PCDWð Þ, forming a single CDW of paired states which is determined by
expression (7.1.2).

It follows that for TCDW , Tbp>Tc, where TCDW = Ebp PCDWð Þ−Ebp 0ð Þ , Tbp= Ebp 0ð Þ−
2Ep 0ð Þj, Ep 0ð Þ is the polaron ground-state energy, the pseudogap precedes a SC. If in
this case a condition TCDW >Tbp is fulfilled, the pseudogap represents a coherent
pseudophase, while for Tbp >TCDW , a certain non-coherent phase of free pairs pre-
cedes the coherent pseudophase. If the inequality TCDW , Tbp >Tc is not fulfilled, then
the smallest quantity (TCDW or Tbp) becomes equal to Tc. In any case a superconduct-
ing phase coexists with the pseudogap one which disappears at T =0, when all the
pairs are in a Bose condensate and the amplitude of the CDW vanishes.

Formation of CDW leads to violation of translational invariance up to a temper-
ature equal to the temperature of the superconducting transition Tc. At T <Tc the
inhomogeneous state with CDW ceases to be thermodynamically advantageous and
a coexisting translation-invariant phase is formed with restored symmetry, while TI
bipolarons pass on to the Bose-condensate state. The energy advantage of such a

Ebp(P)

PPCDW

Fig. 7.1: The suggested TI bipolaron spectrum for a charge density
wave. It looks as the roton spectrum, but is sharper at PCDW due to the
Kohn anomaly.
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phase follows from expressions (7.1.5) and (7.1.6), according to which a homoge-
neous Bose condensate has a lower energy under the condition:

P<Mbp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 P, kð Þ=M

p
. (7:1:7)

It should be noted that the scenario considered is in many respects close to the Frӧh-
lich model of superconductivity (Frӧhlich, 1954). In the Frӧhlich model, it was as-
sumed that two electrons with opposite momenta (as in the BCS) on the Fermi
surface are coupled by an interaction with a phonon with a wave vector PCDW (2kF in
1D case), thereby forming a charged phonon. Being bosons, such phonons in the
macroscopic number can be in the same state with the wave vector PCDW forming a
CDW (Frӧhlich charge wave). Such a wave, however, will not be superconducting,
since the pinning which is always present in real crystals or its scattering by normal
carriers will slow down such a wave. The main difference between the TI bipolaron
description and the Frӧhlich approach is the formation of a Bose condensate of TI
bipolarons (which form a wave of Frӧhlich charged phonons), which is responsible
for superconductivity.

7.1.3 Comparison with the experiment

To be specific, let us consider the case of such a HTSC as YBCO. The CDW vector in
YBCO lies in the ab plane and has two equally possible directions: along the a-axis
PCDW, xð Þ and along the b-axis PCDW , y

� �
, corresponding to the antinodal directions.

For Tc < T <T✶ nonzero soft phonon modes ω0 PCDW , kð Þ correspond to this direction
of PCDW . The availability of CDW in these directions in YBCO was revealed in a large
number of experiments, including nuclear magnetic resonance (Wu et al., 2011,
2013, 2015), resonant inelastic X-ray scattering (Ghiringhelli et al., 2012; Achkar
et al., 2012; Blackburn et al., 2013), resonance scattering, and hard X-ray diffraction
(Comin et al., 2014; Chang et al., 2012). The relevant softening of phonon modes
during CDW formation was observed in Tacon et al. (2014).

A still greater softening of the phonon modes can be expected at T <Tc. The pho-
non mode corresponding to the nodal direction can vanish, which corresponds to the
absence of a gap in the nodal direction. Experimental confirmation of this fact was ob-
tained (Comin et al., 2014) for Bi2Sr2−xLaxCuO6+δ (Bi2201) using combined methods of
resonant X-ray scattering, scanning tunneling microscopy, and angle-resolved photo-
emission spectroscopy. In the case of YBCO with ω0 PCDW , kð Þ=Δ0 cos kxa− cos kya

 
(the absolute value of the CDW order parameter or the gap energy (Comin et al., 2015;
Chowdhury and Sachdev, 2014), which in the TI bipolaron theory (Lakhno, 2018,
2019a, 2019b, 2020a) is the frequency of a renormalized phonon) according to (7.1.7),
any value of PCDW leads to instability of the CDW and the formation of the SC phase in
this direction with the preservation of the pseudogap state in the antinodal direction.
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It should be noted that, in the described approach, the difference between CDW
and PDW theories disappears and PCDW =PPDW (Hamidian et al., 2016) (the current
state of affairs concerning the theory and experiment with PDW in high-temperature
superconductors, ultracold atomic gases, mesoscopic devices is given in the review
(Agterberg et al., 2020)).

7.2 Translation-invariant bipolarons and CDW pinning

As was mentioned in the previous section, for the first time the possibility for a
CDW to move without experiencing resistance, or the possibility of “CDW supercon-
ductivity” was noted by Fröhlich (Fröhlich, 1954). It is believed that this process is
hindered by CDW pinning at lattice defects and CDW scattering on normal current
carriers.

Of interest is to discuss this problem on the basis of the microscopic theory of
CDW considered in the previous section. According to the above results, in high-
temperature superconductors, CDWs are formed in the pseudogap phase from bipo-
laron states due to the Kohn anomaly, forming a PDW for wave vectors P=PCDW

corresponding to nesting.
Let us write Epin

bp Pð Þ for the energy of a TI bipolaron in a CDW in the state of
pinning, Ebp Pð Þ – for the energy of a free TI bipolaron, that is, in the state of depin-
ning. Then, the motion of a CDW in a homogeneous electric field will correspond to
Schrödinger equation which in the momentum representation will have the form:

− i�hF
dΨ Pð Þ
dP

+ ΔE Pð Þ−Wð ÞΨ Pð Þ=0 (7:2:1)

where Ψ Pð Þ and W are the wave function and energy of a TI bipolaron in the mo-
mentum representation, ΔE Pð Þ=Ebp Pð Þ−Epin

bp Pð Þ is the energy of bipolaron coupling
on an impurity, F = 2eE, where 2e is a bipolaron charge, E is the intensity of the ap-
plied electric field.

Solution of this equation has the form:

Ψ Pð Þ⁓ exp iϕ Pð Þ, (7:2:2)

ϕ Pð Þ= 1
�hF

WP−
ðP
0

ΔEbp P′
� �

dP′
 !

.

Since in the case of a CDW the maximum of the phase distribution ϕ Pð Þ in (7.2.2) over
momenta corresponds to P=PCDW , then it follows from the condition ϕ′P=PCDW =0
thatW =ΔEbp PCDWð Þ, and the condition of depinning takes on the form:

ϕ P=PCDWð Þ= 2πn, n= 1, 2, 3, . . . (7:2:3)
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Condition (7.2.3) corresponds to the fact that the wave phase remains unchanged as
the momentum changes slightly. If condition (7.2.3) is not fulfilled, the phase ϕ Pð Þ
is a rapidly oscillating function P, which leads to oscillations of the sign of the
charge density in a CDW. AS a result, as P changes slightly, the force acting from
the field will also change the sign, thereby living the wave in the pinning.

Equation (7.2.3) yields the expression for the critical value of the field Fn, for
which the depinning takes place:

Fn =
1

2π �hn
PCDWΔEbp PCDWð Þ−

ðPCDW

0

ΔEbp P′
� �

dP′

0@ 1A. (7:2:4)

It follows from (7.2.4) that F1 is the maximum possible field at which pinning is pre-
served. For F > F1 a stationary value of the phase is impossible and current oscilla-
tions are generated due to oscillations of the CDW. It should be noted that a failure
of the pinning can also occur in a weaker field: Fn < F1, n= 2, 3, . . .. The appear-
ance of a larger number of critical field overtones is also possible. The nature of the
occurrence of stochastic oscillations for F > Fn is associated with the fact that when
this condition is met, the CDW in the field moves with acceleration and its momen-
tum increases, accordingly, condition (7.2.3) is no longer satisfied, which leads to
slowing down of the wave until condition (7.2.3) is fulfilled. This explains the rea-
son why the conductivity of systems with CDW does not exceed the conductivity of
normal systems in which a CDW is absent.

It should be noted that pinning occurs only if the condition ΔE Pð Þ>0 is met.
Otherwise, a free bipolaron state with energy Ebp Pð Þ is energetically more advanta-
geous. In this case, in the pinning state, a bipolaron, being captured by a defect,
loses its translational invariance, as a result of which its energy increases. For this
reason, for the actual realization of pinning, a sufficiently large depth of the poten-
tial well of the defect is required. If this condition is not met, a TI bipolaron remains
free and for P=PCDW does not scatter on phonons, since αCDW >> 1. The absence of
scattering of a TI bipolaron on optical phonons was first shown by Tulub (1961).
The CDW formed by TI bipolarons in this case becomes “superconducting,” in ac-
cordance with Fröhlich’s hypothesis on the possibility of superconductivity based
on CDW (Fröhlich, 1954).

7.3 Strange metals

According to the results presented in Section 7.1, the properties of the pseudogap
phase are determined by the relations between TCDW , Tbp, and Tc. As shown above,
the condition Ebp − 2Ep

 < T✶ must be satisfied for the stability of the pseudogap
phase. This means that, even though the bipolaron states are energetically less ad-
vantageous than polaron ones, their contribution into the thermodynamic properties
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at T <T✶ is dominant. Such dominance, however, may be absent in transport proper-
ties. In any case, for T > T✶ the dominant contribution to both the thermodynamic
characteristics and the transport ones is made by TI polarons. When T < EPj j their en-
ergy lies deeper than the conducting layer of the Fermi surface, their concentration is
much less than the concentration of electrons, accordingly, under the Fermi surface
they represent a non-degenerate conducting fermion gas. As in the case of TI bipolar-
ons, due to the Kohn anomaly, when the momentum of a TI polaron corresponds to
nesting, the relevant EPI constant is large, which leads to their large effective mass. It
follows that at a finite nesting value, TI polarons have a low velocity (poor metal).
For T > T✶✶ ffi EPj j TI polarons decay into ordinary electrons and phonons, and a
poor (or strange) metal becomes an ordinary metal.

Since the concentration of TI polarons both in the pseudogap and in the “strange”
phase is low, the electrical resistance ρ caused by them will be proportional to the
number of phonons and for ω0 <T increases linearly with temperature:

ρ⁓T ω0= , T >Tc. ð7:3:1Þ
This dependence distinguishes strange metals from ordinary ones, in which, in the
region of sufficiently low temperatures T <0.2ω0 <<EFð Þ the electrical resistance is
described by the expression (Sadovskii, 2021)

ρ Tð Þ= ρ0 + aee
T
EF

� �2

+ aep
T
ω0

� �5

, (7:3:2)

where ρ0 is the residual resistance at zero temperature, the second term on the
right-hand side is the contribution of electron–electron scattering, and the third
one is the contribution of electron–phonon scattering.

Linear dependence (7.3.1) for T >Tc is usually observed in overdoped cuprates
ðT✶ ≈TcÞ in the whole range of temperatures T > Tc. The transition from a linear de-
pendence of the resistance for T > T✶ to a nonlinear one for T <T✶ suggests a transi-
tion from the phase of a strange metal to a pseudogap phase, where CDW/PDW
mechanism can dominate. This conclusion is confirmed by experiments in HTSC
La1.6−xNd0.4SrxCuO4, in which superconductivity for T >Tc was suppressed by an ex-
ternal magnetic field (Daou et al., 2009).

It should be noted that due to anisotropy of the SC gap, ρ will have the same
anisotropy. In particular, one can expect a minimum in the scattering of TI polarons
(bipolarons) in the nodal direction, since, according to Tulub (1961), there will be
no scattering of TI polarons by optical phonons at a sufficiently large EPI constant.
In the case of optimal doping, this conclusion is confirmed by experiments with
overdoped HTSC Tl2Ba2CuO6+d (Taillefer, 2006; Abdel-Jawad et al., 2006).
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Afterword

After the discovery of high-temperature superconductivity, it became clear that the
BCS theory does not suit to explain this phenomenon. A large number of theories
have emerged based on the non-phonon mechanism of interaction, which have
been supported by various experiments.

It is widely believed that high-temperature superconductivity is a very complex
phenomenon, which can be explained only if various mechanisms of an interaction
between electrons and the crystal lattice are taken into account. However, this is in
conflict with the epigraph to the monograph.

The approach presented in the monograph, like the BCS, is based on the electron–
phonon mechanism. A method for solving the problem of the interaction of one and
two particles in a phonon field is described in detail. The solutions obtained are used
to develop a translation-invariant bipolaron theory of superconductivity with a strong
electron–phonon interaction. It is shown that this approach is able to explain many
experiments on HTSC and can be generalized to other mechanisms.

Taking into account of the above, the theory of superconductivity, developed
on the basis of the electron–phonon interaction, actually should be considered as a
scheme of actions for describing the properties of real materials (some comments
and suggestions for future work and problems to be solved are added in Appendices
J and K). The number of various compounds with HTSC properties is many thou-
sands, and the number of publications on HTSC is many hundreds of thousands.
Therefore, the construction of a microscopic theory of HTSC, apparently, should be
understood as a certain ideological concept, the role of which can be played by the
TI bipolaron mechanism considered in the book.
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Appendix A
Hamiltonian H1

Hamiltonian H1, involved in (2.3.2) of Chapter 2, has the form:

H
1
=
X
k

�
V
k
+ f

k
�hω

k

��
a
k
+ a+

k

�
+
X
k, k′

kk′

m
f
k′

�
a+
k
a
k
a
k′
+ a+

k
a+
k′
a
k

�
+ 1
2m

X
k, k′

kk′a+
k
a+
k′
a
k
a
k′
,

(A:1)

where �hωk is given by expression (2.3.5). Let us act on functional Λ0 in (2.11.9) of
Chapter 2 by operator H1. Let us show that 0h jΛ+

0 H1Λ0 0j i=0. Indeed, the action of
H1 on Λ0 on the terms containing an odd number of operators in H1 (i.e., on the first
and second terms in H1) will always contain an odd number of them, and the value
of mathematical expectation of these terms will vanish.

Let us consider mathematical expectation of the last term in H1:

0h jΛ+
0

X
k, k′

kk′a+
k
a+
k′
a
k
a
k′
Λ
0
0j i. (A:2)

Function 0h jΛ+
0 a

+
k
a+
k′
a
k
a
k′
Λ
0
0j i represents the norm of the vector akak′Λ0 0j i and

will be positively defined for all the values of k and kʹ. If in (A.2) we replace
k!−k, then the whole expression will change its sign and therefore (A.2) is also
equal to zero. Hence, 0h jΛ+

0 H1Λ0 0j i=0.
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Appendix B
To solution of equation (2.3.10), Chapter 2

Following Tulub (2015), let us introduce Green’s function Gkk′ tð Þ:

Gkk′ tð Þ= i T qk tð Þ, qk′ 0ð Þ� �� �
,

Fourier components of which satisfy the equation:

ω2
k −ω2� �

Gkk′ ωð Þ+ 2
X
k′′

kk′′
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkωk′′

p
f k fk′′Gk′′k′ ωð Þ= δkk′. (B:1)

For fk =0, that is when an interaction is lacking, we get

�
kjG0

± ωð Þ k′ �= δkk′
ω2

k −ω2 ∓ iε
.

Then solution of equation (B.1) has the form:

�
kjG0

± ωð Þ k′ �= �kjG0
± k′
 �

Dðω2Þ , (B:2)

where D ω2� �
=DðsÞ is determined by (2.3.19) of Chapter 2.

The spectrum of excitations of the system under consideration reckoned from
the ground state energy is determined by the poles

�
kjG0

± ωð Þ k′ � on the real axis
and, according to (B.2), has the form ω=ωk, corresponding to the values of ω, for
which Dðω2Þ=0.

The matricesM± involved in Bogolubov transformation (2.11.1) of Chapter 2:

a
k
= M+ð Þ

kk′
α
k′
+ M✶

−
� �

kk′α
+
k′
,

a+
k
= M✶

+
� �

kk′
α+
k′
+ M−ð Þ

kk′
α
k
, (B:3)

where the repeating indexes mean the summation and are related to solutions of
(2.3.10) as follows:

M±ð Þkk′ =
1
2

ωk ±ωk′

ωkωk′
� �1=2 �kjΩ± k′

 �,
�
kjΩ± k′

 �= δ k−k′
� �

+
2 kk′
� �

fkfk′ ωkωk′
� �1=2

ω2
k′
−ω2

k
∓ iε

� �
D± ðω2

k
Þ
,

where Ω is the Møller unitary matrix (Schweber, 1961). Unitarity of transformation
(B.3) was proven in Tulub (1960).
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Appendix C
Analytical properties of the function D sð Þ

Let us show that (2.5.4) and (2.5.5) follow from (2.5.1) and (2.5.2). To this end, we
note that the analytic properties of D(s), indicated in Tulub (1961), follow directly
from (2.3.19), Chapter 2. Indeed, the pole D(s) can only lie on the real axis, since
due to positive definiteness of ωkk

4f 2k in (2.3.19):

1+ 1
3π2

ð∞
0

ωkk
4f 2k ω2

k − s0 + iε
� �

ω2
k − s0

� �2 + ε2
dk =0 (C:1)

can be fulfilled only for ε=0. Besides, D(s) is a monotonously growing function of s
in view of the fact that Dʹ(s) > 0 for s < 1 and as s0 ! ∞ D(s) turns to unity. Therefore,
D(s) cannot have zeros for −∞< s0 < 1. Therefore, function s− 1ð ÞD sð Þ can be pre-
sented in the form:

1

s− 1ð ÞD sð Þ =
1

2πi

þ
C + ρ

ds′

s′− s
� �

s′− 1
� �

D s′
� �, (C:2)

where the contour of integration in the Cauchy integral (C.2) is shown in Fig. 2.1.
The integrand in (C.2) has a pole for sʹ = 1 and a cut from sʹ = 1 to s′ ! ∞. Perform-
ing integration in (C.2) over the upper and lower edges of the cut, we obtain the
integral equation (2.5.5).
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Appendix D
Calculation of recoil energy ΔE

Let us make a detailed calculation of the quantity ΔE (2.5.7) of Chapter 2 with the
use of the probe function (2.5.9).

For this purpose, to calculate the real part of D ω2
p

� �
involved in (2.5.7) we use

the Sukhotsky formula:

1
ω2

k −ω2
p − iε

=P
1

ω2
k −ω2

p
+ iπδ ω2

k −ω2
p

� �
,

Re D ω2
p

� �
= 1+ 1

3π2

ð∞
0

f 2k k
4P

ωk

ω2
k −ω2

p

� � dk.
It is convenient to represent Re D in the form:

Re D= 1+ I1 + I2,

I1 =
1

3π2

ð∞
0

f 2k k
4 dk

ωk +ωp

� � , I2 =P
ωp

3π2

ð∞
0

f 2k k
4dk

ωk −ωp

� �
ωk +ωp

� �.
Substituting fk in the form of (2.5.9), we express I1 in the form:

I1 =
8α

3
ffiffiffi
2

p
π

ð∞
0

e− k2=a2dk −
8α p2 + 4ð Þ
3
ffiffiffi
2

p
π

ð∞
0

e− k2=a2

k2 + p2 + 4
dk.

Assuming that k=a= ~k, in the strong coupling limit (a ! ∞), the quantity I1 will be

I1 =
8αa
3
ffiffiffi
2

p
π

ffiffiffi
π

p
2

−
π
2
~pe~p

2
1−

2ffiffiffi
π

p
ð~p
0

e− t2dt

0@ 1A24 35.
Accordingly, I2 is written as follows:

I2 = P
4αωp

3π
ffiffiffi
2

p
ð∞
0

e− k2=a2k2dk

ωk −ωp

� �
ωk +ωp

� �.
This integral can be presented in the form:

I2 = I20 + I21,
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where

I20 =
16αωp

3π
ffiffiffi
2

p 1−
ωp − 1
p2 + 2

� � ð∞
0

e− k2=a2

k2 + p2 + 4
dk,

I21 =
16αωp ωp − 1

� �
3π

ffiffiffi
2

p
p2 + 2ð Þ P

ð∞
0

e− k2=a2

k2 − p2
dk.

For the integrals involved in I20 and I21, we getð∞
0

e− k2=a2

k2 + p2 + 4
dk = 1

a
1−

2ffiffiffi
π

p
ð~p
0

e− t2dt

24 35 π
2
e
~p2

~p
,

P
ð∞
0

e− k2=a2

k2 − p2
dk = −

ffiffiffi
π

p
a

e− ~p2

~p

ð~p
0

et
2
dt.

As a result, I2 takes the form:

I2 =
2
3
αa~pffiffiffi

2
p e~p

2
1−

2ffiffiffi
π

p
ð~p
0

e− t2dt

24 35−
4
3
αa~pffiffiffi

2
p e~p

2
ð~p
0

et
2
dt.

Finally, Re D is

Re D= 1+ 4αa
3
ffiffiffiffiffi
2π

p 1− ~pe~p
2
ð∞
~p

e− t2dt − ~pe− ~p2
ð∞
~p

et
2
dt

0@ 1A.

This result reproduces the quantity determined by formula (2.5.10). For the imagi-
nary part Im D, according to the Sukhotsky formula, we get

Im D= 1
3π

ð∞
0

f 2k k
4ωkδ ω2

k −ω2
p

� �
dk = 1

6π
f 2pp

3.

As a result, D ω2
k

� �  will be
Dj j2 = Re Dð Þ2 + Im Dð Þ2 = 2

9
α2a2 e− 2~p2~p2 + 8

2π
1− ~p

ð∞
~p

e− t2dt − ~pe− ~p2
ð∞
~p

et
2
dt

0@ 1A224 35.
The first term in formula (2.5.7) is easily calculated and equal to

1
4π2

ð∞
0

k4f 2k
1+Qð Þ dk =

3
16

a2.
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When calculating the second term in (2.5.7), let us single out the integral Ip:

Ip =
ð∞
0

e− k2=a2 k
2 ωkωp +ωk ωk +ωp

� �
+ 1

� �
ωk +ωp
� �2 dk.

As a ! ∞ it is equal to

Ip = a3
ffiffiffi
π

p
4

1− ~p3e~p
2
ð∞
~p

e− t2dt 2+ 4~p2
� �

+ 2~p4

0@ 1A= a3
ffiffiffi
π

p
4

1−Ω ~pð Þð Þ,

where

Ω ~pð Þ= 2~p 1+ 2~p2
� �

~pe~p
2
ð∞
~p

e− t2dt − ~p2

8<:
9=;,

which corresponds to the expression for Ω yð Þ in (2.5.12).
As a result, for the second term in formula (2.5.7), we get

1
12π4

4πaffiffiffi
2

p
ð∞
0

Ipp
4f 2p

ωp

ω2
p − 1

� �
D ω2

p

� � 2 dp.
As a ! ∞, this expression takes the form:

α2a4

3π
ffiffiffi
π

p
ð∞
0

1−Ω ~pð Þð Þ e− ~p2

D ω2
~p

� � 2 d~p=
3
16

a2q,

where q= q 0ð Þ is given by expression (2.5.12). Hence, finally for ΔE (2.5.7), we have

ΔE = 3
16

a2 1+ qð Þ,

which corresponds to the first term on the right-hand side of (2.5.11).
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Appendix E
Squeezed states

As was first shown in Tulub (1961), in order to obtain the polaron energy in the
whole range of α variation, its calculation after two canonical transformations of
the Fröhlich Hamiltonian (those of Heisenberg and Lee, Low, and Pines) should be
carried out not by vacuum wave functions 0j i, but by Λ0 0j i, which have the mean-
ing of squeezed states. Since Λ0 is a unitary operator, then the ground state energy
corresponding to Hamiltonian ~~H (2.3.2) can be written as follows:

E = 0h jΛ+
0
~~HΛ0 0j i= 0h jΛ− 1

0
~~HΛ0 0j i.

Hence, for the operators involved in ~~H, according to (2.11.1) we get

Λ− 1
0 akΛ0 =

X
k′

M
1kk′

α
k′
+
X
k′

M✶
2kk′

α✶
k′
,

that is, operator Λ0 is an operator generating Bogolyubov transformations.
To clarify the physical meaning of the operator Λ0, let us consider a one-

dimensional single-mode case, for example, a one-dimensional oscillator the
ground state of which is described by the wave function Ψ xð Þ. Squeezed is a state
Ψ qxð Þ, where the coefficient q is different from unity. Let us introduce an operator
G0, that transforms the function Ψ xð Þ to the form Ψ qxð Þ:

eiλ Ĝ0Ψ xð Þ=Ψ qxð Þ,

where λ is an arbitrary constant which is called a squeezing parameter. Let us as-
sume that:

Ĝ0 = − i
∂

∂ ln x
.

Let us introduce the function ~Ψ, such that Ψ xð Þ= ~Ψ ln xð Þ.
Then:

eiλ Ĝ0Ψ xð Þ= eiλ Ĝ0 ~Ψ ln xð Þ= ~Ψ ln x+ λð Þ= ~Ψ ln xeλ
� �

=Ψ xeλ
� �

.

Putting here q= eλ, we can see that the operator Ĝ0 actually performs the required
transformation. The operator G0 =− i∂=∂ ln x=− ix∂=∂x= xp̂ is not Hermitian; there-
fore, it is not unitary. This is due to the fact that when squeezed by a factor of q= eλ

on x, the norm of the square of the wave function Ψ decreases by the same factor.
For this reason, instead of Ĝ0 it is convenient to use the Hermitian operator Ĝ, re-
lated to Ĝ0 by adding the constant:
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Ĝ= − i x
∂

∂x
+ 1
2

� �
=x̂p̂− i

2
= 1
2
x̂p̂+ p̂x̂ð Þ= − i a2 − a+ 2� �

=2,

where a+ and a are operators of the birth and annihilation of the oscillation quanta
of the oscillator, and the exponent of the Hermitian operator

Dλ = eiλĜ = eiλ =2 a2 −a+ 2ð Þ, DλΨ xð Þ= eλ =2Ψ eλ x
� �

,

is automatically unitary. The unitary operator Dλ is called the squeezing operator,
which can also be written in the form used in Tulub (1961):

D=Cea
+ Aa+ ,

where C and A are to be determined.
To do this, let us consider, using an oscillator as an example, how squeezed states

can be realized. Let there be an oscillator which corresponds to the Hamiltonian
H1 = p̂2=2m1 + 1=2m1ω

2
1x

2 with parameters fixed up to the moment t ≤0− . At the mo-
ment t =0, they instantly change to the values m2 and ω2. Since the initial wave func-
tion has not changed with this change of the parameters, the relevant root-mean-square
deviations Δx and Δp have not changed either:

Δx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∞
−∞

x2Ψ2
0dx

vuut =
ffiffiffiffiffiffiffiffiffiffiffi
m2ω2

m1ω1

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2m2ω2

s
= e− λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2m2ω2

s
,

Δp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∞
−∞

p̂2Ψ2
0dx

vuut =
ffiffiffiffiffiffiffiffiffiffiffi
m1ω1

m2ω2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hm2ω2

2

r
= eλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hm2ω2

2

r
,

Ψ0 xð Þ= m1ω1

π�h

� �1=4
exp

m1ω1

2�h
x2

� �
, eλ =

ffiffiffiffiffiffiffiffiffiffiffi
m1ω1

m2ω2

r
.

Here, λ= 1 corresponds to the vacuum value of the root-mean-square deviations of
quantum fluctuations. For λ≠1, the dispersion of quantum fluctuations for one of
the canonically conjugated variables will be less than the vacuum value, while for
the other it will be greater, so that the Heisenberg uncertainty relation ΔxΔp≥ �h=2
remains unchanged.

Since the operators involved in the Hamiltonian of the oscillator do not change
when the parameters change, then:

x̂=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�h
2m1ω1

s
a1 + a+

1

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2m2ω2

s
a2 + a+

2

� �
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p̂= − i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ω1�h

2

r
a1 − a+

1

� �
= − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ω2�h

2

r
a2 − a+

2

� �
This can be rewritten with the use of the definition of λ in the form:

a1 + a+
1 = eλ a2 + a+

2

� �
a1 − a+

1 = e− λ a2 − a+
2

� �
Expressing the operators a1 and a+

1 in terms of a2 and a+
2 , we get:

a1 = a2 ch λ+ a+
2 sh λ

a+
1 = a2 sh λ+ a+

2 ch λ.

The latter relations represent the Bogolyubov transformation which preserves the
commutation relations a1, a+

1

� �
= a2, a+

2

� �
= 1.

For the initial Hamiltonian H1 the ground state is the vacuum function 0j i1,
which by definition vanishes when the operator a1 acts on it:

a1 0j i1 =0.

This condition expressed through operators a2, takes the form:

a2 ch λ+ a+
2 sh λ

� �
0j i1 =0.

It is easy to check that the solution to this equation is the function:

0j i1 =N λð Þ exp −
1
2
a+
2 a

+
2 th λ

� �
0j i2.

This can be seen by passing from the operators a+, a to Fock representation in
which the operator a+ is put into correspondence with c-number �a, and operator
a – the derivative d=d�a.

This is the sought-for Tulub form of the squeezed operator. It can be shown
that the normalization constant N λð Þ in this case is equal to: N λð Þ= 1=

ffiffiffiffiffiffiffiffiffi
ch λ

p
.

The theory of squeezed states has found wide application in quantum optics. In
the simplest single-mode regime (such regimes are realized in resonators), the en-
ergy of the electromagnetic field is described by a one-dimensional oscillator con-
sidered here, in which the role of the coordinate is played by the electric field, and
the role of the momentum is played by the magnetic field. Thus, the use of squeezed
states in quantum optics can suppress fluctuations of either electric or magnetic
fields, which is extremely important for precision measurements, for example, of
gravitational waves.
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Appendix F
On the “incompleteness” of the translation-
invariant polaron theory

In Klimin and Devreese (2012), it was concluded that the translation-invariant
continual polaron theories by Tulub and Gross (Tulub, 1961; Porsch and Röseler,
1967) are “incomplete.” This conclusion in Klimin and Devreese (2012) was made
on the basis of Lakhno (2012b), which reproduces the results of Tulub’s (1961) the-
ory. Thus, in Klimin and Devreese (2012), the results of Tulub (1961) are also
questioned.

In Klimin and Devreese (2012), it is argued that the total energy functional obtained
by Tulub must contain an additional term δE PRð Þ

R , which arises if an external cutoff is
introduced into the considered continuous model. Such external cutoff was discussed
in Lakhno (2012b). For this purpose, in the total energy functional, the integration over
the phonon wave vectors was not carried out in infinite limits, but was limited to a
certain finite value q0. In Lakhno (2012b), it was pointed out that in the limit q0 ! ∞

the quantity δE PRð Þ
R ! 0. In contrast to this, in Klimin and Devreese (2012), an ex-

pression was given for δE PRð Þ
R , which does not depend on q0 and does not vanish

as q0 ! ∞.
Let us show that actually the value of δE PRð Þ

R depends on q0 and for fixed other
values of the parameters of the system δE PRð Þ

R ! 0 as q0 ! ∞. We will proceed from
the expression for δE PRð Þ

R (Lakhno, 2012b), which is also the initial one in Klimin and
Devreese (2012):

δEðPRÞ
R ðq0Þ= 3�h

2
Ωq0 −ωq0

� �
,

Ωq0 = ω2
q0

+
ð1
0

dη
ðq0
0

dq
�hq4f qð Þωq

3π2m
2ReF ωq + iδ

� �
+ F ωq + iδ

� � 2
1+ F ωq + iδ

� � 2
( )1=2

F zð Þ = η
�h

6π2m

ðq0
0

dqq4f 2 qð Þ 1
ωq + z

+ 1
ωq − z

� �
,

fq = − Vq=�hω0
� �

exp − q2=2a2
� �

, (F:1)

where ωq =ω0 + �hq2=2m, ω0 is the frequency of an optical phonon, Vq is a matrix
element of EPI, and a is a variation parameter. In the limit δ ! 0 from (F.1), we get

Ω2
q0

−ω2
q0

=
ðq0
0

dq
�hq4f qð Þ4ωq

3π2m
. (F:2)
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With the use of expression for Vq: Vq = 2π
ffiffiffi
2

p� �1=2
α1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h4ω2

0=m
4
q

× 1=qð Þ. where α is a
constant of electron–phonon coupling, it follows from (E.1) and (E.2) that:

Ω2
q0

−ω2
q0

=
ðq0
0

dq
�hq4f qð Þ4ωq

3π2m
.

Δ = 2
ffiffiffi
2

p

3π
αω2

0
�ha20
mω0

� �3=2

N1 1+ �ha2N2=2mω0N1
� �

,

N1 =
ðq0=a
0

dxx2 exp − x2
� �

, N2 =
ðq0=a
0

dxx4 exp − x2
� �

. (F:3)

Let us consider various limiting cases of expression (F.3). In the limit of small val-
ues a of the cutoff parameter: q0 << a – from (E.3), we obtain:

Δ= 2
ffiffiffi
2

p

9π
αω2

0
�hq20
mω0

� �3=2

1+ 3
10

�hq20
mω0

� �� �
. (F:4)

From (F.3) and (F.4), it follows that in this limit δE PRð Þ
R is independent of the param-

eter a. For q0 << a, expression (F.3) yields:

δEðPRÞ
R = 3�h

2
ωq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ q40c=q

4
0

q
− 1

� �
, (F:5)

The quantity q0c has the meaning of the quantity for which the integrand in the
Tulub functional has a maximum (Tulub, 1961; Lakhno, 2010b). From (F.5), it fol-
lows that in the limit q0 << q0c:

δEðPRÞ
R = 3�h

4
ωq0q40c=q

4
0, (F:6)

that is, for large q0 the quantity δE PRð Þ
R ≈ q− 2

0 . For this reason, Klimin and Devreese
(2012) decided that the theory by Porsch and Röseler (1967) goes over to the the-
ory by Tulub (1961) with δE PRð Þ

R =0. It is easy to see, however, that this is not the
case. Indeed, in the Tulub total energy functional obtained by Porsch and Röse-
ler (1967), the upper limit of integration must satisfy the condition q0 > q0c , that
automatically leads to a dependence of the polaron energy on the coupling con-
stant of the form E∝ α4=3 (Lakhno, 2012b, 2012c). Thus, the theory of cutoff by
Porsch and Röseler does not in any case go over into the theory of Tulub. The
use of such an inconsistent theory led Klimin and Devreese (2012) to the conclu-
sion that Tulub’s (1961) theory is “incomplete”.
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To sum up, we will formulate the final conclusions. It is shown in the work that
the conclusion by Porsch and Röeseler that the quantity δE PRð Þ

R vanishes as q0 ! ∞ is
correct. This result, however, does not lead to Tulub’s theory. Hence, the statement
about the incompleteness of the Tulub total energy functional made by Klimin and
Devreese is incorrect. The calculations (Lakhno, 2010b; Lakhno, 2012a; Kashirina
et al., 2012), based on Tulub (1961), are beyond doubt.
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Appendix G
Transition from discrete to continuum Holstein
Hamiltonian

The Holstein Hamiltonian for an electron in a uniform molecular chain can be writ-
ten as

H = − v
X
n

c+
n cn+ 1 + c+

n+ 1cn
� �

+ g
X
n

c+
n cn b+

n +bn
� �

+
X
n

�hω0 b+
n bn +

1
2

� �
, (G:1)

where ν is a matrix element of the electron transition between neighboring sites,
c+
n , cn are the operators of the birth and annihilation of an electron on the nth site,
and b+

n , bn are the operators of the birth and annihilation of the oscillation quanta
on the nth site.

In the case of weak coupling (g=�hω0 << 1), the solutions of (G.1) are Bloch waves
and the ground state for the energy in the second order of the perturbation theory
takes the form (Klamt, 1988)

Ek = − 2v−
g2=�hω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 4v=�hω0

p . (G:2)

For g=�hω0 >> 1, Holstein considered two limit cases: small-radius polaron (v<< �hω0)
and large-radius polaron (v>> �hω0)

1

Solutions in the case of small-radius polaron are translation-invariant states:

ψk

 �
= 1ffiffiffiffi

N
p

X
n

eiknc+
n e

g=ω0ðb+n −bnÞ 0j i, (G:3)

which correspond to the energy spectrum

Ek = − 2ve− g2=�h2ω2
0 cos ka0 − g2=�hω0. (G:4)

To pass on to the limit of large-radius polaron, in (G.1) instead of c+
n , cn we will use

nj i 0h j, 0j i nh j and the operators of birth and annihilation of phonons with the mo-
mentum k: a+

k , ak instead of b+
n , bn.

Hence, we will use the relations:

c+
n = nj i 0h j, cn = 0j i nh j,

b+
n = 1ffiffiffiffi

N
p

X
k

a+
k e

− ikna0 , bn =
1ffiffiffiffi
N

p
X
k

a+
k e

ikna0 .
(G:5)

1 The problem of a small-radius polaron at T = 0 was first solved by Tyablikov (1952).
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As a result (G.1) takes the form:

H = − v
X
n

nj i n+ 1h j+ n+ 1j i nh jð Þ+ gffiffiffiffi
N

p
X
n, k

akeikna0 + a+
k e

− ikna0
� �

nj i nh j+
X
k

�hω0a+
k ak.

(G:6)

Let us choose the wave function ψj i in the form:

Ψj i=
X
n

ψn nj i. (G:7)

As a result, for the averaged Hamiltonian, we get �H = Ψh jH Ψj i

�H = − v
X
n

ψ�
nψn+ 1 +ψnψ

�
n− 1

� �
+ gffiffiffiffi

N
p

X
n, k

ψn

 2 akeikna0 + a+
k e

− ikna0
� �

+
X
k

�hω0a+
k ak.

(G:8)

In the case of a large-radius polaron:

ψn± 1 ≈ψn ±
∂ψn

∂na0
a0 +

1
2

∂2ψn

∂ na0ð Þ2 a
2
0. (G:9)

Having introduced a continuous variable x= na0 and passed on in (G.8) from sum-
mation to integration we obtain:

�H =
ð
Ψ�H Ψdx,

H = −
�h2

2m
Δx +

gffiffiffiffi
N

p
X
k

akeikx + a+
k e

− ikx� �
+
X
k

�hω0a+
k ak, (G:10)

where m= �h2=2va20, that is, Hamiltonian (3.2.1), Chapter 3.
While for the discrete case the exact solution for Hamiltonian (G.1) in the case of

strong coupling is known and determined by equations (G.2) and (G.3), in the contin-
uum limit the exact solution of the Hamiltonian (G.9) for g=�hω0 >> 1 is unknown.

The energy value found in (3.5.8) of Chapter 3 for g=�hω0 >> 1 is currently the
lowest (Fig. G.1).

It is interesting to compare the asymptotic expressions (3.2.6) and (3.5.9) of
Chapter 3 with some real system. For the Holstein energy (3.2.6), such a comparison
was performed using computational experiments with a classical molecular chain
of the DNA type (Lakhno and Korshunova, 2010). These results are in good agree-
ment. Comparison with energy (3.5.9) can be carried out only for a quantum molec-
ular chain, using, for example, the quantum Monte Carlo method.
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Fig. G.1: Dependence of the energy ~E = E=�hω0 on the coupling constant gc: 0) weak coupling in the
continuum limit (v=�hω0 > > 1): ~Eweak = −0.5x, x =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hω0=v

p
g2
c , gc =g=�hω0, (3.4.5), Chapter 3; 1) strong

coupling: ~Estrong = −0.08333x2, corresponding to eq. (3.2.6), Chapter 3; 2) strong coupling:
~Estrong = −0.10185x2, corresponding to eq. (3.5.9), Chapter 3. The values xC1 ≈6 and xC2 ≈ 5
gC1 ≈ 2.45

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v=�hω0

4
p

and gC2 ≈ 2.2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v=�hω0

4
p

correspond to (3.5.10), Chapter 3.

Appendix G Transition from discrete to continuum Holstein Hamiltonian 187

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendix H
On the screening interaction of TI bipolarons

In Section 4.4 (Chapter 4), it was shown that, due to screening, the contribution of
the interaction between bipolarons in an electron gas is small and their spectrum
differs from the case of the absence of such an interaction only slightly; in this
case, an approximate expression for Vk was considered. It is of interest to show that
the use of an exact expression for Vk does not change the conclusions made. For
this purpose, we consider the exact expression for Vk in the formulae for spectra
(4.4.9) and (4.4.10):

Vk =
4πe2

k2ε kð Þ ;

where ε kð Þ is a dielectric permittivity of the system considered which is determined
by the general relation:

ε kð Þ= ρe kð Þ
ρe kð Þ+ ρi kð Þ .

ρe kð Þ is an external charge source, ρi kð Þ is an internal charge induced by this source.
Accordingly:

1
ε kð Þ = 1+ ρi

ρe
, ρi =

XN
n

ρi, n,

where ρi, n is a charge induced by the nth type of polarization. Taking into account that
the inequality:

1+ ρi
ρe

= 1+
ρi1
ρe

+ � � � +
ρiN
ρe

< 1+
ρi1
ρe

� �
� � � 1+

ρiN
ρe

� �

(Bernoulli inequality) is fulfilled if all ρn have the same sign and ðρin=ρeÞ> − 1 (this
corresponds to the fact that the induced charge ρi is opposite in sign to ρe and in
absolute value is less than the external source), the dielectric permittivity will be

1
ε kð Þ <

1
ε1 kð Þ � � �

1
εN kð Þ ,

https://doi.org/10.1515/9783110786668-017
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where εn kð Þ are dielectric permittivities corresponding to different types of polariza-
tion. For this reason:

Vk =
4πe2

k2ε kð Þ <
4πe2

k2
Y
n

1
εn kð Þ.

Hence, even for estimation of V kð Þ from overhead, the contribution of this term into
the spectrum, according to the results of Section 4.4 (Chapter 4), turns out to be
small.
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Appendix I
Kohn anomaly

When describing the Kohn anomaly, one usually proceeds from the Fröhlich Hamil-
tonian of the form (Grimwall, 1981)

H =
X
k

ε kð Þc+
~k
c~k +

X
q

�h ~ω qð Þb+
~q b~q +

X
k, q

g qð Þc+
~k +~qc~kðb

+
−~q + b~qÞ, (I:1)

where the first term corresponds to free electron gas; c+
k and ck are the operators of the

birth and annihilation of an electron with energy ε kð Þ. The second term corresponds to
the lattice Hamiltonian; b+

~q and b~q are the operators of creation and annihilation of
lattice vibrations with energy ~ω qð Þ. The third term describes the interaction of elec-
trons with the lattice; g qð Þ is the matrix element of the interaction.

Renormalization of phonon frequencies corresponding to (I.1), according to
Grimwall (1981), is determined by the expression:

ω2 qð Þ= ~ω2 qð Þ+ 2 ~ω qð Þ g qð Þj j2Re χ qð Þ½ �, (I:2)

where ω qð Þ are phonons renormalized by the interaction with the electron gas
whose polarizability is determined by χ qð Þ.

Kohn anomaly describes vanishing of renormalized phonon modes ω qð Þ for
q=PCDW .

In the TI bipolaron theory of SC (Lakhno, 2018; Lakhno, 2019a; Lakhno, 2019b;
Lakhno, 2020a), it is assumed that bipolarons are immersed in electron gas. The
properties of such bipolarons are also described by the Fröhlich Hamiltonian of the
form (I.1), but with the field of already renormalized phonons with energies ω P, qð Þ
and, accordingly, the matrix element of the interaction V qð Þ instead of g qð Þ.

It should be noted that the spectral equation (7.1.6) of Chapter 7 is independent
of the form of V qð Þ.

An experimental proof of the presence of renormalized phonons with zero energy
in layered cuprate HTSC is the absence of a gap in the nodal direction, which, accord-
ing to the definition in the TI bipolaron theory of SC, is the phonon frequency.

https://doi.org/10.1515/9783110786668-018
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Appendix J
Some comments and suggestions for future work

1 BCS canonical transformation

The main difference between the approaches of TI bipolaron and BCS to HTSC is
that in BCS in Hamiltonian (4.1.3) of Chapter 4, the canonical transformation of the
form is used (see, e.g., Madelung (1972)):

~H = e− SH eS, (J:1)

S=
X
p, q

Vq αa+
− q + βaq

� �
c+
p+ qcp, (J:2)

α− 1 = εp − εp+ q − �hω qð Þ, β− 1 = εp − εp+ q + �hω qð Þ, (J:3)

which eliminates from Hamiltonian (4.1.3) the phonon variables. In the approach de-
veloped in Chapters 2–4 in contrast to BCS, the electron variables from initial Hamilto-
nian are removed by canonical transformations S1, S2, and S3. Thus, the Hamiltonian
(4.2.10) obtained in Chapter 4 contains only phonon variables. The study of such “pho-
non” Hamiltonian is more simple then “electron” BCS Hamiltonian.

2 Magnetic polaron

It was claimed many times that the results obtained for the phonon field can be easily
transferred to magnon one. To demonstrate this, we can consider the s–d(f) electron
magnon interaction in single axis antiferromagnetic (AF) which was considered in
Lakhno (2011) to describe magnetic polarons:

Ĥ = 1
2m

P̂ + e
c
A

� �2
+ Qffiffiffiffi

N
p

X
akeikr + c.c.
� �

+
X

�hωMa+
k ak,

Q= A
4

SHEAð Þ1=2 1−H2=H2
E

� �3=4
4 HE 1−H2=H2

E

� �
+ 2HA

� �
1=2

,

�hωM =μHEA 1−H2=H2
E

� �
,

HEA =
ffiffiffiffiffiffiffiffiffiffiffi
HEHa

p
,

which has the same form as polaron Hamiltonian (1.2.1) in Introduction, where HE is
the exchange field of AF sublattices collapse, HA is the field of magnetic anisotropy
of single axis AF, μ=μB = e�hð Þ= 2m0cð Þ is Bohr magneton, S is the value of magnetic
atom spin, A is the s-d(f) exchange constant.

https://doi.org/10.1515/9783110786668-019
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For the case of magnetic bipolaron, there is the problem that for singlet state
the total input of electron–magnon interaction will be zero since the total bipolaron
spin in singlet state will be zero. So, in this case, the triplet magnetic bipolaron
needs to be investigated.

As the most of HTSC have magnetic order the more general TI bipolaron theory
where for example triplet bipolaron will be stabilized by both EPI and electron-
magnon (paramagnon in pseudogap phase) interactions is required.

It is important that such triplet magnetic bipolarons will undergo Bose conden-
sation when their spin is directed along the external magnetic field, which leads to
the appearance of additional magnetization.

3 Thermodynamics of strange metals

According to Section 7.3 (Chapter 7) at T >T✶ , where T✶ is the temperature of the
transition to the pseudogap phase, the main current carriers are TI polarons formed
after the decay of TI bipolarons. Scattering of such a nondegenerate gas, which is a
phase of a strange metal, by phonons leads to a linear temperature dependence of
the resistance. Thus, the destruction of the strange metal phase must occur at tem-
perature T✶✶ e Ep

 , at the destruction temperature of TI polarons. The thermody-
namics of the strange metal phase can be constructed if we take into account that
the decay of TI polarons occurs with the formation of a free electron and a phonon.
Statistical sums for TI polarons Zp, free electrons Zel, and phonons Zph are:

Zp = e− ω 0 +Epð Þ=T 2πmT
h2

� �3=2 eV
Np

" #Np
, (J:3:1)

Zel =
2πmT
h2

� �3=2 eV
Np

" #Np
, (J:3:2)

Zph =
e−ω0=2T

1− e−ω0=T

� �Np
. (J:3:3)

Accordingly, the condition for the decay of TI polarons will take the form:

ZelZph ≥Zp. (J:3:4)

Relations (J.3.1)–(J.3.4) lead to the condition:

T ln
T
ω0

≥ Ep
 , (J:3:5)
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which determines the Lambert function. That is the study of thermodynamic prop-
erties of the strange metal phase can be carried out similarly to the case of the pseu-
dogap phase (Section 4.9).

The described scenario of the transition of the strange metal phase to the nor-
mal phase leads to the idea of rather a blurred transition, whose properties are
poorly understood as yet. Notice that when

Ep
 > Ebp − 2Ep

  (J:3:6)

the transition temperature T✶✶ determined from the condition of equality (J.3.5)
from the strange metal phase to the normal metal phase will be higher than the
temperature of the pseudogap phase: T✶✶ >T✶ . In the case of the opposite sign in
inequality (J.3.6) the strange metal phase will be absent, since TI bipolarons in this
case will directly fall apart into free electrons and phonons.

4 Exciton in a magnetic field

After passing on to variables (2.15.2) in Chapter 2 for the exciton Hamiltonian in a
magnetic field instead of (2.15.3) we get:

Ĥ = 1
2μ

P̂r −
m2 −m1

M
e
c
Ar −

e
c
AR

� �2
+ 1
2M

P̂R −
e
c
Ar

� �2
+

X
k

Vkak exp ik R+m2r=Mð Þð Þ− exp ik R−m1r=Mð Þð Þ½ �+H.c. +
X

�hω0
ka

+
k ak −

e2

ε∞r
(J:4:1)

Application of the Heisenberg transformation to this Hamiltonian gives

~̂H = 1
2μ

P̂r −
m2 −m1

M
e
c
Ar −

e
c
AR

� �2
+ 1
2M

X
k

ka+
k ak −

e
c
Ar

� �2

+

X
k

Vkak exp ikrm2=Mð Þ− exp ikrm1=Mð Þ½ �+H.c. +
X

�hω0
ka

+
k ak −

e2

ε∞r

(J:4:2)

We will seek the solution of the stationary Schrödinger equation corresponding to
the Hamiltonian (J.4.2) in the form:

ΨH r,R, akf gð Þ=ϕ Rð Þψ rð Þθ R, akf gð Þ, (J:4:3)

where θ R, akf gð Þ is determined by expression (2.11.13) in Chapter 2. Averaging of
(J.4.3) over ϕ Rð Þψ rð Þ yields:
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�~H = 1
2M

X
k

�hka+
k ak

� �2

+
X
k

�h ~ωka+
k ak +

X
k

�Vk ak + a+
k

� �
+ �T + �Π+ �U (J:4:4)

where

�h ~ωk = �hω0
k +

�he
Mc

Ψh jAr Ψj i (J:4:5)

�T = 1
2μ

ΦΨh j Pr −
m2 −m1

M
e
c
Ar −

e
c
AR

� �2
ΦΨj i,

�Π = e2

2Mc2
Ψh jA2

r Ψj i,

�U = Ψh j e2

ε∞r
Ψj i, �Ψk =Vk Ψh j exp ikrm2=Mð Þ− exp − ikrm1=Mð Þ Ψj i.

Hamiltonian (J.4.5) has the same structure as the exciton Hamiltonian without a mag-
netic field or a TI bipolaron Hamiltonian. Using this analogy, we can conclude that,
as in the case of a TI bipolaron in a magnetic field, a Bose condensate of TI excitons
can be formed whose temperature of the transition into a condensate is determined
by the same relation as that in (2.15.27), if we replace ω0 by ~ω0 =ω0 1−H2=H2

max

� �
,

where Hmax is the maximum field for which the existence of a Bose condensate is
possible.

The case of singlet excitons was considered above. In the case of triplet exci-
tons, into which singlet excitons initially excited by light can pass and which, due
to their lower energy, can lead to their high population, the term 2μBH should be
added to Hamiltonian (J.4.5), where μB is the Bohr magneton. As is known, the con-
densation of Bose particles with spin (triplet TI excitons) should begin with spins
directed to the magnetic field, leading to sample magnetization.

5 TI bipolaron scattering on optical phonon

Like the theory of polaron scattering by optical oscillations, the theory of TI bipo-
laron scattering should be constructed as a theory of resonant scattering (Schultz,
1959; Low and Pines, 1955; Ziman, 1960). The Hamiltonian (2.3.2)–(2.3.5) in Chap-
ter 2 has the structure of a bipolaron Hamiltonian if Vk is replaced by �Vk in this
Hamiltonian and the constants �T and �U are added. For this reason, to calculate the
probability of bipolaron scattering by optical phonons, we can use the calculation
results obtained by Tulub (1961). This calculation is based on the calculation of the
matrix element of the scattering matrix S:

P,kh jS− 1 P0,k0j i= − 2πiδ E −E0ð ÞR, (J:5:1)
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R= �Vk0
�Vk

ð
d3r Ψh j exp − ikRð Þ Ĥ − E −ω− iε

� �− 1
exp ik0Rð ÞΨ0i

	
+ Ψh j exp ikRð Þ Ĥ − E0 +ω− iε

� �− 1
exp − ik0Rð Þ Ψ0j ig= = 2πð Þ3δ P+k−P0 −k0ð Þ M.

The initial momenta of the bipolaron and phonon in (J.5.1) are denoted by P0, k0, the
final ones by P, k, EP =P2=2mbp is the kinetic energy of the bipolaron, mbp is the ef-
fective mass of the bipolaron, Ψ0j i, Ψj i are the wave functions (2.11.13) in Chapter 2
of the initial and final states of the bipolaron,

M = �Vk0

 2 · X
k

f 2kω
2
k=δEk

� �− 1

, (J:5:2)

δEk = k0 −kð Þ2=2m+μ− 1P0 k0 −kð Þ− iε,

μ =m 1− ξð Þ− 1, ξP=
X
k

kf 2k , ξ = P
P2

X
k

kf 2k .

In (J.5.1), only the main term of the expansion with respect to α is taken into ac-
count. The next terms of the expansion in terms of the electron–phonon coupling
constant α are of the order of 0(α−2). From (J.5.1), it follows that in the limit P0→0,
M2 k0ð Þeδ kr − k0ð Þ, where kr is the value of the resonant momentum. Substituting
into (J.5.2) the probe functions Ψ and fk, determined by (2.9.1) and (2.9.2) in Chap-
ter 2, we express the resonant momentum kr as follows:

krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω=�h

p = 16α2
1

3
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 16y

p
x2 + 8y

 !1=2

, (J:5:3)

where x, y are the quantities whose dependences on η = ε∞/ε0 are shown in Fig. 2.4
(Chapter 2).

It follows from (J.5.3) that the right-hand side of the equality grows with α as
α2 and the phonon momentum in the lattice has the maximum value π/a0, where
a0 is the lattice constant. For this reason, there is always some maximum value of
the coupling constant αmax, for which equality (J.5.3) is no longer satisfied. Thus,
for α > αmax, the TI bipolaron cannot experience scattering, becoming supercon-
ducting with respect to scattering by optical phonons.

For η=0 from (J.5.3) with the use of Fig. 2.3 x 0ð Þ≈ 5.86; y 0ð Þ≈ 2.59ð Þ we approx-
imately get:

krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω=�h

p ≈ 2.8α2. (J:5:4)

Accordingly, for the polaron in Tulub (1961), it was obtained:
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krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω=�h

p ≈0.04α2. (J:5:5)

In Tulub (1961), for a number of parameter values, an approximate estimate was
given for the maximum value of the estimate of the coupling αmax ,pol, for which the
polaron becomes superconducting. Comparison of (J.5.4) with (J.5.5) shows that the
corresponding value of αmax , bip for a bipolaron is related to the value of αmax ,pol as
αmax , bipe0.12 · αmax ,pol. For particular ionic crystals considered in Tulub (1961), the
estimate αmax ,pole10 was obtained. Thus, for these crystals αmax , bip ≈ 1. Since a small
value was obtained for αmax ,bip, the resulting estimate claims only to an order of
magnitude, and the calculation of the next expansion terms is an urgent problem.
Nevertheless, based on the fact that for a bipolaron αmax ,bip ≈O 1ð Þ one can expect
that the real values αmax , bip lie in the region of an intermediate coupling strength.

6 Phonon and nonphonon mechanisms

HTSC compounds have a complex crystal structure with a unit cell containing a
large number of atoms. As an example, let us consider layered cuprates, the super-
conductivity of which is due to the presence of CuO2 planes in them (Fig. J.1), the
Cu atoms in the plane have a structure of filled levels in the form: [Ar]3d104s1, and
oxygen O: 1s22s22p4.

In the absence of doping, oxygen takes two electrons from copper, so that the
CuO plane forms an ionic lattice composed of Cr2+ and O2– ions. In this case, copper
is in the [Ar]3d9state, that is, with an unfilled d-shell and an empty 4s shell, while
oxygen with a completely filled p-shell is in the 1s22s22p6 state. The absence of one
electron in the d-level of copper is equivalent to the presence of one hole in the d-
shell of copper.

Cu2+

O2–

Fig. J.1: CuO2 plane.
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The presence of a hole at the d-level of copper leads to a hole in d-conduction
band of copper, and since there is one hole on each copper atom, such a band will
be half filled with holes. The calculation of the band structure in this case gives a
wide conductivity band, as in an ordinary metal. However, this contradicts the ex-
periment, which shows that actually in this case a dielectric is realized, and not a
conductor. The reason is that the electron correlations are not taken into account in
such a calculation of the band structure. In the case of a strong electron–electron
interaction of copper d-electrons, the hole band changes from conducting to the
state of a Mott dielectric with AF ordering of hole spins in the CuO2 plane.

The reason for the appearance of the Mott dielectric can be interpreted as fol-
lows. In the ground state, each copper ion is in the d9 configuration. Now suppose
that one of the copper electrons jumped to another atom. Then the copper atom left
by the electron will be in the d8 configuration, while the atom on which the electron
jumped will go into the d10 configuration. But such a jump in the case of a strong
Coulomb repulsion of electrons located on the same atom will lead to a loss in the
total energy of the system (which in the Hubbard model, equals to U, Chapter 3), if
the gain in the kinetic energy during the jump is less than the loss in the energy of
the Coulomb repulsion of two electrons on the atom where the electron jumped.
Thus, in this case, it is advantageous for the electrons to remain localized on their
copper atoms. In this case, the spins of neighboring copper ions will be antiparallel
(i.e., they will form a Neel lattice), since their interaction is due to virtual jumps of
electrons to neighboring copper ions, the spins of which, due to the Pauli principle,
must be antiparallel to the spin of the electron which makes the jump. The energy
of this order is called the superexchange energy J, which, by virtue of the above,
will be proportional to η2=U, where η is the jump energy (the matrix element of the
transition between the sites in Hamiltonian (3.10.1)).

In real cuprates, the situation is somewhat more complicated than that de-
scribed above due to the hybridization of copper d-orbitals and oxygen p-orbitals.
However, the overall picture will not change if we consider the copper ion as an
effective site surrounded by oxygen neighbors.

Such, for example, is the picture in the YBa2Cu3O6 crystal. If we now dope this
crystal with additional oxygen atoms that violate the stoichiometry of the crystal,
as a result of which its composition will have the form YBa2Cu3O6 +x, then additional
empty places will appear in the crystal in the d-shell of copper atoms, which corre-
sponds to the appearance of free holes in the d-band of the Mott dielectric. If, in
this case, the Coulomb repulsion of holes on the copper ion is large, then the holes
that appear during doping will occupy oxygen orbitals, which, thereby, become
conductive. An increase in the concentration of free holes as doping increases leads
to the appearance of a hole Fermi liquid and a Fermi surface in the spectrum of free
holes.

Basically, all theoretical models used to explain HTSC can be divided into two
groups: phonon models and non-phonon models. Phonon models primarily include
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such classical continuum models as BSC and its generalization to the case of strong
EPI – the Eliashberg theory. Many electron-phonon models proceed from a discrete
description of the lattice in its quasi-two-dimensional approximation and the use of
the strong coupling approximation. This is the Hubbard model (Section 3.10) and
its many modifications. The SC theory based on small-radius bipolarons belongs to
the same type of models. Superconductivity in this case is achieved due to the for-
mation of a Bose condensate by such paired states.

The nonphonon models mainly include the models based on the presence of
magnetic ordering in HTSC compounds. As a rule, superconductivity is accompa-
nied by an AF order, although the coexistence of a superconducting phase with a
ferromagnetic order is also possible.

At the end of the last century, the most popular theory with a non-phonon
mechanism was the Anderson theory of resonant valence bonds (RVB) (Anderson,
1997). It is believed that the ground state of 2d AF differs from the Neel one. In it, an
unpaired spin corresponds to an elementary excitation, and its transition through
neighboring sites corresponds to a valence transfer. Such a transfer carries the
spin, but not the charge, over the lattice sites. This moving Fermi excitation is
called a spinon. The spinon, having a free spin, attracts the resulting hole and
forms a bound state with it – a holon, which is a spinless charged boson. Such bo-
sons are capable of forming a Bose condensate, but really biholons are more stable
and form a Bose condensate.

At present, this approach is rather of historical interest, since subsequent calcu-
lations showed that the RVB state is energetically more disadvantageous than the
Neel state and does not correspond to the experiment which confirms the Neel mag-
netic state in cuprates.

Since the SC theory should ultimately be based on the effect of electron (hole)
pairing, models associated with the SC fluctuation mechanism are also considered
as an alternative to the phonon mechanism. These ideas are often based on the idea
of magnetic polarons in antiferromagnets (Nagaev, 1979; Val’kov et al., 2021; Vid-
mar et al., 2009). The first successful application of the theory of magnetic bipolar-
ons to HTSC was realized by Schrieffer et al. (1988, 1989), that is, spin-bag model.

For the Bose condensation temperature of such magnetic bipolarons, Schrieffer
obtained Tc ~ 100 K. The disadvantage of magnetic bipolaron-type models is insta-
bility of such bipolarons in the presence of even a weak external magnetic field (see
(J.2)). A common problem in using the idea of magnetic polarons in SC is the low
coupling energy of their bound bipolaron state.

The nonmagnetic mechanisms of HTSC can also include the exciton mecha-
nism. An exciton is a Bose formation – a bound state of an electron and a hole (Sec-
tion 2.15). Such a boson quasiparticle can act as a virtual one for the efficient
interaction of current carriers in HTSC by analogy with a phonon. If the energy of
the exciton is much higher than that of the phonon, then it is expected that such a

200 Appendix J Some comments and suggestions for future work

 EBSCOhost - printed on 2/14/2023 1:00 PM via . All use subject to https://www.ebsco.com/terms-of-use



mechanism can be used to obtain a sufficiently high SC temperature (Gaididei and
Loktev, 1988; Weber, 1988; Varma et al., 1987).

A large number of models refer to the HTSC plasma mechanism. Plasmons in
these models play the role of optical phonons. The corresponding theory of the elec-
tron-plasmon mechanism of HTSC can be constructed similarly to BCS or bipolaron
superconductivity (Pashitskii and Chernousenko, 1971; Pashitskii, 1993; Takada,
1978; Davydov et al., 2020).

We have briefly considered the most popular models of SC. There exist many
other mechanisms. Nevertheless, all of them use the conception of pairing with the
subsequent formation of Bose condensate below Tc irrespective of the nature of the
resulting attraction.
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Appendix K
The problems to be solved

1. As is known, the theory of ideal Bose gas gives the continuous dependence of
capacity on temperature at T = Tc.

In contrast to this, the theory of TI bipolaron gas leads to discontinuous
behavior at T = Tc in accordance with experiment. The statistical properties of
low-density TI bipolaron gas in Section 4.5 (Chapter 4) were calculated with
the assumption that the input of d-wave part of phonon spectrum is less then
s-wave one. This approach will be incorrect near the nodal direction.

In the more exact theory, it is possible to calculate the temperature depen-
dence of capacity taking into account the d-wave part of phonon spectrum in
order to get a more detailed temperature dependence CV (T) (e.g., T

n depen-
dence instead of exp (–ω0/T) dependence at low T).

The discontinuous behavior of CV Tð Þ at T =TC is due to nonanalyticity of chemi-
cal potential μ Tð Þ (formula (4.5.9), Chapter 4) which has at T =Tc the nonzero
derivative with respect to T (see Fig. K.1).

2. The TI bipolaron theory of pseudogap phase (Section 4.9) was developed only
for the case of classical statistics. In order to describe the coexistence of SC and
pseudogap phase below Tc the more general theory based on quantum statistics
need to be developed. For this aim, the quantum expression for statistical sum
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Fig. K.1: The temperature dependence of chemical potential of 3D TI bipolaron gas determined
by (4.5.9), Chapter 4.
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of TI bipolaron (formula (4.9.4), Chapter 4) and polaron (formula (4.9.5), Chap-
ter 4) need to be calculated.

3. For a long time (and up to date), the idea that the fundamental mechanism of SC
is based on magnetic interaction was grounded on neutron-scattering experi-
ments. For YBCO, the observed neutron peak near ω2 = 41meV (Fig. 5.13) is usu-
ally attributed to the value of SC gap (Rossat-Mignod et al., 1991; Mook et al.,
1993; Dai et al., 2001). For keT1=2

c this peak is linear with Tc in agreement with
the most families of cuprates where the peak was found. So, with the same argu-
ments it can be attributed to its phonon nature. The further investigation of this
problem both theoretical and experimental is necessary.

4. For layered superconductors (cuprates), the 2D theory can be constructed anal-
ogously to 1D and 3D theories considered in monograph. Notice that according
to TI bipolaron theory, Bose condensation is possible not only in 3D but also in
2D and 1D (Chapter 3).

5. The calculation of TI polaron (bipolaron) effective mass is an open question.
The problem is how to choose the appropriate variational coefficients fk and
their dependence on total momentum P in order to get the correct result.

6. To develop the theory of TI bipolaron nonhomogeneous bose condensate is ac-
tual. For this reason, the Lee–Low–Pines and Bogolyubov transformation de-
pendent on coordinates need to be constructed. Such theory is necessary for the
description of vortex superconducting matter.

7. TI bipolaron theory with interaction determined by Hamiltonian (1.2.6) can be
constructed for plasma media as in degenerate semiconductors (Lakhno, 1994)
(plasmon mechanism of superconductivity).

8. There are a lot of interactions in real HTSC. The generalized TI bipolaron theory
which takes into account besides electron (hole) – phonon the electron (hole) –
plasmon interaction (1.2.6) and electron (hole) – magnon interaction (Appendix
J.2) need to be developed.

9. The use of bipolaron Hamiltonian with interaction determined by (1.2.3) pro-
vides an opportunity to construct the theory of superconductivity for heavy nu-
cleus and neutron stars in which in analogy with TI bipolaron theory the role of
bose particles which form bose condensate is realized by dinucleons.
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Abbreviations

AF antiferromagnetic
ARPES angle-resolved photoemission electron spectroscopy
BCS Bardeen–Cooper–Schrieffer theory
BDW bond density wave
BEC Bose–Einstein condensate
CDW charge density wave
EPI electron–phonon interaction
HTSC high-temperature superconductivity
IBG ideal Bose gas
LRP large-radius polaron
PDW pair density wave
RVB resonating valence band theory
SC superconductivity
SRBP small-radius bipolaron
STM scanning tunneling microscopy
STS scanning tunneling spectroscopy
TI translation invariant
YBCO YBa2Cu3O6+x
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